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ABSTRACT

Previous theoretical investigations of cavitation bubble Sy-
namics have failed to consider the effect of a nearby wall or of
translatory motion of the bubble.

It is shown that these effects are not small, but actually
the analysis based on this assumption finally breaks down due to
the large deformation of the bubble in the later stages of col-
lapse. However, as the major portion of the time of collapse is
spent in the low velocity motion, a meaningful time of collapse is
obtained which, for the case of a bubble against a wall, is 209
longer than in the symuetric case. This agrees with the experi-
nents performed in the Hydrodynamics Laboratory at the California
Institute of Technology. The time of collapse is not appreciably
affected by a translatory motion of the bubble of the nagnitude

encountered in the above experiments.,
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I INTRODUCTICH AID CCLCLUSICHS

1:1l. The Kature of Cavitation

Cavitation is the phenomenon present in liquids due to the
occurrence of pockets of vapor phase called cavities or cavita-
tion bubbles in a region of the liquid phase. Several examples
of this are:

a. cavities produced by boiling,

b. cavities produced by flow over suitably shaped bodies,

c. cavities produced in the trailing vortices of propellers,

d. cavities produced by vibrating boundaries.

The essential criterion for cavitation is a region of liquid
in which the presswre of the liquid is less than or equal to the
vapor pressure. <thus, in boiling, the temperature is raised until
the local vapor pressure reaches the liquid pressure, while in the
other cases the fluid motion lowers the liquid pressure to vapor
pressure in certain regions of flow.

For an empirical description of cavitation it is convenient
to correlate experimental results with an appropriate dimension-

()%,

less parameter called the cavitation parameter. Thona, in

his work on cavitation in pumps, defines a parameter

- B

AL

where PS = suctiocn pressure of pump

e}
]

vapor prressure of liquid corresponding to its

temperature

Numbers in parentheses refer to bibliogravhy.



AT = pressure rise obtained from suction to discharge
at the best efficiency point of pump.

This parameter has limited use as it varies from pump to pump and
the definitions are not standardized. In cavitating flow about
submerged bodies, the cavitation parameter is generally defined
by

<- B

PN,

where Poo = static pressure at a large distance from the body,

P
v

it

vapor pressure of liquid corresponding to its
temperature,
p = liquid density,
V = uniform flow velocity at a large distance from
the body.

Plesset(z) defines three regimes of flow over a body and
gualitatively correlates them with the cavitation parameter. The
first of these, noncavitating flow, occurs for sufficiently large
values of K. This state of flow consists of the liquid phase only
and obeys the well knowm laws of fluid mechanics. The second oc-
curs for intermediate values of X and is described as cavitating
flow with a relatively small number of cavitation bubbles in the
field of flow. In this case a few bubbles form at the boundary of
the body but the flow pattern is not appreciably altered from that
found in noncavitating flow. The third reginme, which occurs for
sufficiently small K, is cavitating flow with a single large cavi-
ty about the body. The size of the cavity depends on X, with the

larger cavities occurring for the smaller values of i, while the
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boundary of the cavity closely approximates a surface of constant
pressure and constant flow speed. Pholograpns of the three re-
gimes of flow, taken in the High Speed Water Tumel in the Hydro-
dynamics Laboratory of the California Institute of Technology,
are shown in Fig. 1.

In this study only the second regime of cavitation will be
considered. This is of practical interest to designers of marine
and hydrauvlic equipment for its presence increases the drag of a

body in the fluid, decreases the efficiency of fluld propulsion

systems, and can cause considerable damage to adjacent suriaces.

1:2. Experimental Investigations of Cavitation.

Past experimental work on cavitation has been almost com-
pletely confined to problems related to the damage caused by the
action of cavitation bubbles on various surfaces. The first
study of this phenomenon was initiated in England by the Propeller
Subcomnittee of the Institute of Naval Architects in the year 1915.
Their report(B) stated that the pitting on propellers was caused
by the repeated hammering resulting from the collapse of small
cavities formed adjacent to the moving blades. Since that time a
considerable number of experimental investigations have been car-
ried on, but as yet there has been no general agreement on the
mechanism of the damaging action. Several different types of test
apparatus have been used in these experiments. The Venturi tube
and the Water Tunnel are used to give cavitation, but have the
disadvantage that the production of damage is quite slow. In

* For a survey of the literature, see Schneider (4).
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order to speed up this process a magnetostriction oscillator has
been used in resonznce with a colum of water. In this manner
very rapid production and collepse of bubbles is possible and
the resulting demage greatly increased. From these investiga-

: . ] . 55657)
tions, estimates of the pressure ranging from 4,000 to
(3,8,9) . : .

300, 000 pounds per square inch have been reported. A

(8,9,10)

sufficient number of experiments have been performed,
where chemical action must be negligible, to give strong support
to the view that the destruction is almost entirely caused by
mechanical action from the hich pressures involved in cavita-
tion bubble collapse.

Recently a serles of remarkable photographs showing the
life history of individual cavitation bubbles have been taken in
the High Speed iater Tumnel in the Hydrodynemics Laboratory of the
Californis Institute of Technology.(ll) This ecquipment is well
sulted for cavitation research since it makes possible control of
the production and collapse of the cavities to give reproducible
results. The static pressure can be varied over the range 0.2 to
6e/4 atmospheres, while the water velocity is adjustable from O to
90 ft. per sec. in steps of .09 ft. per sec. The working section
is 83 1/2 in. long and has a diameter of 1/ in., with sides of
glass to allow observation of the models under operating condi-
tions. 4 sketch of the water tunnel is shown in Fig. 2. Photo=
graphs of the bubbles have been taken on a moving film at a rate

up to 20,000 per sec. 4 typical example is shown in Fig. 3,
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1:3. Analytical Investigations of Cavitation.

Analytical siudies of the collapse of bubbles were carried
2
(3) n(12)

iy

cut by Cook and Haylel independently, in 1917. These
were based on an earlier work of Besant<13) who formulated the
problemn as follows:

"An infinite mass of homogeneous incompressible fluid acted
upon by no forces is at rest, and a spherical portion of the
fluid is suddenly amihilated; it is required to find the ine-
stantaneous alteration of pressure at amy point of the mass, and
the time in which the cavity will be filled up, the pressure at
an infinite distance being supposed to remain constant."

The main objection to these resulis# was the infinite velocities
and presswes which were obtained at collapse. Various atbempts
have been made to eliminate the nonphysical infinite pressures
and velocities, both by considering the liguid as compressible
and by £illing the cavity with gas or vapor which can only
escape at a finite rate (L,1L,15). As yet there has been no
satisfactory general solution to this problen. Howéver, these
effects will not be appreciable for the greater portion of the
bubble motion and good agreement between experiment and the
calculations based on the incompressible case is to be expected.

Plesset(z) adapted the Rayleigh solution to the conditions
obtained in the experiments of Knapp and Hellander. Yhe pres-—
swre assumed in the calculation was taken to be the pressure
measured at the appropriate point of the model surface just
before the onset of cavitation. Figwe l; shows the measured
pressure distribution and the comparison bebtween the calculated

and experimental motions. The general agreement is quite good,

but the experimental time of collapse 1s consistently longer

i e - . R é
" The resvlte obtained by Rayleigh will appear as the zero
order approximation in Part III.
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than the calculated value. This discrepancy appears too soon in the
motion to be due to any compressibility effects. The explanation of

this disagreement will appear naturally from the results obtained in

Part 111,

l:4. Conclusions,

a. The causes of cavitation damage are primarily mechanical
in nature.

be The generszl features of cavitation bubble motion are under-
stood.

c. There is need for a general method to take compressibility
effects into account and thus avoid the infinities in the mathematical
solution,

de There is need for a more detailed understanding of the
motion, which will explain the previous discrepancy between the
theoretical and experimental times of collapse and also will explain
the asymmetries observed in the laboratory., It is these questions

which are considered in this work.
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II OUTLINE OF TIE PROBLEK

2:1 The Objective of this Investigation.

Since it is apparent that small perturbation effects may play an ime=
portant role in the later stages of bubble collapse, and thus in cavita=-
tion damage, it was deemed worthwhile to investigate theoretically the
results of severzl none-spherically symmetric conditions that are imposed
in both the experiments performed in the Hydrodynamics Laboratory at the
California Institube of Technology and in the natural occurrence of the
phenomenon, It will be shown that the previously mentioned lifetime dise
crepancy is resolved by considering the effect of a nearby wall on the

motion,

Conditions Assumed Throushout lotion.

For mathematical convenience, the motion of the bubble is calculated
under the assumption that the interior of the bubble is a vacuum while
the surrounding liquid is incompressible and inviscid. It is of interest
to estimate the effect that these simplifying assymptions have on the
motion in order to know what disagreement to expect between this theory
and the experimental observations,

Compressibility of the liquid will have no appreciable effect on the
motion until the velocities approach sonic speed. However, in the later
stages of bubble collapse, the calculated values of pressure and velocity
will be higher than those found experimentally, for some of the available
energy will have been used in compression of the liquid. The asymmetries
will accordingly be less than those calculated, but the time of collapse
will not be appreciably changed as the greater portion of it is spent in

the low velocity motion.
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The interior of the bubble will actually consist of a mixture of
vapor and the aire. Since the initial air content of the bubble will of
necessity be small, the maximum sir content will depend on themte of
diffusion into the bubble during the growth process. This has been calcu=
lated by Epstein and Plesset () and shown to be negligible for this case.
The effect of vapor is twofold: first, the condensation cen only proceed
at a finite rate; and secondly, the heat of condensation will raise the
temperature in the neighborhood of the bubble. Plesset (Z)finds that the
effect of the finite condensation rate is negligible over the major por-
tion of the collapse but will affect the motion in the later stages in
the same manner as the compressibility does. He also considers the second
effect and finds an insignificant temperature rise. Schneider(4) makes
an estimate of the temperature rise in = slightly different way and are
rives at the same conclusion,

To estimate the effect of surface tension, it is only necessary to
compare the availeble energy due to surface tension with that from exe
ternal pressure. The energy of a spherical cavity in a liquid is given
by AHRozv/for surface tension forces alone, and by A/BNROB P, for ex-

ternal pressure alone,

where Ro = the radius of the cavity,
Vo= surface tension of the liquid,
Pa>= pressure at the large distance from the cavity,

Thus the ratio of surface tension energy to energy from external pressure
= 31/7R0Pa). For the experiments performed in the High Speed Water Twnnel,
this has a value of approximately 4 x 10-3, which is certainly negligible,
Consequently no further consideration of surface tension effects will be

included here,



2:3. lMotion of a Bubble Over a Model Surface

When cavitation occurs, the cavities form in the regions of
minimum pressure, which are always at a solid boundary in the ex-
perimental arrangements used with the High Speed Water Tunnel.
The effects of this are several. First, there is a boundary layer
at the solid wall; second, there is the possibility of adhesion
to the wall; third, there is a pressure gradient in the vicinity
of the wall; and fourth, the fluid does not extend to infinity
in all directions.

Plesset(z), using the Blasius formula, estimates a boundary
layer thickness of 6xld-3 inches for the experiments performed
in the High Speed Water Tunnel. Since this is only 1/20 the
maximum sige of the bubble, the boundary layer will have little
effect on the bubble motion. However, since the boundary layer
is a region of constant pressure, the bubbles can be expected to
form at random throughout this thickness instead of only at the
boundary surface. The only noticeable effect of this would be
to reduce the possibilify of the bubble adhering to the wall.

No theoretical study of adhesion has been made, but experi-

16) .,
( ) that on a clean surface

mentally it was shown by Van Iterson
in water the angle of contact of a bubble is 22 1/2o but when
the surface is heavily greased with vaseline, this is increased
to 900. He then notices that the damage in a pump was greatly
increased by operation in oily water. This he explained by
saying that in the latter case the bubble adhered to the wall

during its mobtion and thus collapsed right against it, while

in the former, the bubble may have moved a little distance away
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from it. This effect would probably not be significent for the models
used in the High Speed Wabter Tunnel, as here there is no reason for the
bubble to migrate away from the wall, and, in fact, the presence of the
wall has the reverse effect of attracting the collapsing bubble., How=
ever, in the laborgtory there have appeared examples of distorted bubble
shapes suggesting adhesion of the bubble to the surface,

Pressure gradients are present in the liquid both parslliel and
perpendicular to the model surface. Since the perpendicular change of
pressure is small over the bubble dimensions, the asymrnetries it produces
will be small compared to those from other effects. The parallel gradient,
on the other ﬁand, will have a more marked effect as it will accelerate
the liguid along the model surface. The net resuits of this will be
translatory motion of the bubble through the fluid, which will correspond
to an initial translatory motion of the fluid. Calculations for bubble
collapse in this case are carried out in Part IV.

The presence of a wall near the bubble will restrict the fluld flow
since no fluid can cross the wall surface. The effects of this on the
collapse and growth of the bubble are calculated in Parts III and V,

respectively.
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IIT CAIOULATION OF COLLAPSE IN THEZ VICINITY OF A WAIL

3:1 The Coordinate System.

The coordinate system is set up with an origin placed in the bubble
and with the outward pointing normel to the wall as the positive z-axis.
Polar coordinates r, 6, ﬁg are defined in the usual manner, but since
the problem is symmetric about the z=-axis the f coordinate is eliminated
from further consideration. The radius of the bubble is assumed to be

given by 00

R=2> R,(t)P, (cose (1)

Nn=0

where the Rh(t) are functions only of time, to be determined by the probe
lem. e define the position of the origin in such & manner that Rl = 0
throughout the motion. Then the distance from the origin to the wall is
piven by D [1 - X(ti] /2 where D is constant such that D/2 is the initial
distance to the wall. The motion of the centroid of the bubble ig glven
by the change in the variable X(t) which depends on the time only. This

coordinate system is illustrated in Fig. 5,

3:2. Ihe Differential Ecuatious.

The solution of the problem consists in the simultaneous solubion of
two simpler problems: the calculation of the fluid motion, supposing that
the boundary motion is knownj and the calculation of the boundary motion,
supposing the f1uld motion knowmn.

Since the fluid is assumed incompressible, inviscid, and initially at
resv, the motion will be irrotational. Under these conditions, the e=-

(17)

gustion of continuity teakes the form:

V23 (re,t)=0, (1)
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where é@ is the velocity potential of the motion, such that the
velocity of the fluld with respect to a fixed reference system

is given by:

Viret) =—-vd(reg) (2)

The ¥ in these equations is taken with respect to the moving co-
ordinate system with the origin in the bubble as specified in 3:1.
low the r and @ components of the velocity q of the fluid relative

to the moving coordinate system can be written as:

i

qr(r,g,t) v&(r,@,t)—vo(t)cosé,

qg(r,Q,t) = vc(r,@,t)+vo(t)sin9, (3)

where vo(t) is the velocity of the moving origin and is directed
along the z-axis.

The equation for the motion of the boundary will be deter-
mined from the fact that the bubble surface must always contain
the same particles of fluid. If the boundary is given as

£(r,8,t) = 0, the condition that it always contains the same

L7

particles is given by
= of (4)
%{- ST +g- V¥ =0

vy

‘ne form of £ is assumed in 3:1 to be
r-R (8,%) = 0. (5)

Thus equation (l;) becones

f?=qr-qg§ (©

where the dot is used to represent partial di

5
H,

erentiation with
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respect to time.
The differential equations (1) and (6) are to be solved with

the appropriate boundary and initial conditions.

3:3. The Boundary Conditions

The boundary conditions on the fluid are: the velocity must
be zero at an infinite disbance from the cavity, the z component
of velocity must be zero on the wall, and the pressure must be
zero on the bubble surface and constant at large distances from

the bubble. These are expressed analytically as follows:

v =-V§ =0, atr = o (1)
v, = - -g-% =0, at 2z = 'VD(l"XE/P" (2)
p = 0 satr = R, (3)
p =P >0 ,atr = o, (31)

where p(r,9,t) is the mressure of the liguid. The first two con-
ditions are expressed in terms of @ s but the problem remains to

express (3) in a corresponding mammer. In order to do this, one

7,

uses the momentun relation

Z5 V0P (1)

where p is the constant fluld density. Tiriting out the left side

and dividing by p gives:

-jit—"\?+(c?-\7}7= —-70’—‘7/0

Substituting v = - U in the first term and V= g+ Ezvc in the



L

second, where _éz is the unit vector in the 2z direction, one getls
3 V@E+EW) = -5
——5_2_‘ Vég '/'@ V)(q+€2v°)

An interchange of the order of differentiation in the first term

and the use of the fact that V Ezvo = 0 gives:

V3t g v7--Fvp

or

V[-3¢ 2. 9%/ = v/- %% /
Integration gives

.___-@-,Lz/-?z-——' —-% +C/L‘/, (5)

waere C(%) is an inbtegration constant which depends on t. To

evaluate C(t), the equation is applied to the fluid at infinity.

Since the velocity at infinity is zero, it follows that q2 = v2

0
and @ is independent of the space coordinates and can be set

equal to gero. If the pressure at infinity is denoted by Poo »

then equation (5) becomes:

# %2 ——% + Clt)

or
Q) ~F1¢*+ 5

Substituting this value back into eguation (5) gives:



Thus equation (3) gives the following condition on @ at r = R:

..g_é_,_zq _ /D_fzﬁ%z. o

The units can be chosen so that Poo/p = 1 with no loss in gener-

ality. Then

<LI
N] -
«Q
i
~
3
Nj
N
<

at r = R,

3:li. The Initial Conditions

The initial conditions are that the fluld velocity is zero
and that the cavity is a sphere of radius unity with its center a
distance D/2 [rom the wall. Choosing the initial radius as wnity
involves no loss in generality as it is arbitrary whalt length is

to be called the wnit distance.

3:5, The Calculations

A general solution of equation 3:2(1l), valid for the region

outside the bubble and satisfying condition 3:3(1l), is given by

P = —gﬂ,%l B (cos ), (1)

n=0



-
where the Pﬁ(cos@) are the Legendre polynomials, and the @ (t)
&
are functions of time only, to be debtermined by the problen.

The nost convenient way in which to satisfy condition 3:3(2) is

to form the image potential of equation (1).
t will be shown by inductilon that the image potential of

B cos€

PIIET

making the wall a streanmline is

v (el o
()" I e By (eosd) @
m= LI7Y

which i1s a valid solution of equation 3:3(1) for r < D, where

D/2 is the distance from the origin to the wall. Suppose first

that this relation is true for all n £ N. Then it must be shown

that it also holds for n= I + 1. Consider the potential

5 B2 ®)

The image potential must be, from equabtion (2), with n= X,
Nem (N +m} r”
é (~/) W] Dzwm 2, (cas&/' (L)

since this operation retains the symmetry about the wall required

for the image potential.
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Nowr

OZ  Jz or o6
J sneé o .
= COSOgF 7 06

Thus equation (3) gives:

éi;_; rmfcz/s 9}

/,,N,;_[ () cos© B feosE) + s Q/(COSQ)]

Now, by the relations between Legendre functions ,(18) this can be

simplified to:

Rilcos® e (€056)
8 Bl? -y Bl (©)

Application of the same method to egquation (L) gives:
- - el

* AN+m). s
_ggmgo/“// Nm'?(/f/'"~~ n;”/) D o (e056) =

oo S / 77
Z( ) A+m1+] /CA//::;] p’;fm/,-ﬂcosgp (c05¢9/+5//726,0 [cos@!/

7=/

the m = O term dropping out as it is a constant. By substituting

n' = m -~ 1 and then dropping the prime, one obtains:
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+ ”» +, +* / 7
S g ] S ffrase 8, w0+ 0.2, )]

This simplifies to:

> ANrm me}/ “
S5 S0 L S B teose) = (©)

n”=o

' /
) -,y - N+ Y- 7
Zgo-{’///v e {‘//\//:77/ / ﬂ//\ﬂ/f-mf/ Dm(casej.

Comparison of equations (5) and (6) shows that the image of

2. (cos &)
,«/v+2

is

o

mrer (Wrsmr)!
D ) (/(,’f,/’;’”jﬁ _D’;,T,,,,, B, (cos6),

77=0

which is the same as equation (2). Iow the image of the poten-

tial 1/r, which makes the wall a streamline ") is:
oo o ”
2 ()" For B, (co38).

Since this is the n = 0 case of equation (2}, the proposition

is proved.
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In the problen abt hand the distance to the wall is D(1 - X)/2.
Thus a solution of equation 3:2(1) valid outside the bubble for

r £ D(1~-X) which also satisfies condition 3:3(2) is:

@

I

Z,‘:%% 2, (cosg) +

~ (7)
o0 [+ =3 Ao ( . ’ / m
»% ;g )" p’j"/g“‘/‘“-)a ”[07%/ By (cosE).

The procedure for solution is then to substitute expressions
3:1{(1) and 3:5(7) for K and @ into equations 3:2(6) and 3:3(8)
which hold at r = B, In this manner two first order differential
equations are obtained, each containing terms in Pn(cosg). Since
these equations must be valid over the entire range of € and
since the Pn(cosG) are an orthogonal set, it is necessary that
the terms in each Pﬁ(cos@) independently satisfy the equations.

The solutions to the problem must depend on the initial
distance from the bubble to the wall. To express this analyt—
ically it is convenient to define a parameter h = 1/D which
always is less than or equal to 1/2, from the definition of D.

It is now assumed thav R, and ¢ o &ve finctions of h, that can
be expanded into a Taylor's series about the spherically sym-

metric case of h = 0, as follows:



g - L 48 (=) ©
Xn =) 27 X(B,),

where h depends only on the initial conditions of the problenm
and Rn(m) (RO), o) n(m) (RO), x(m) (RO) are functions of R_ only.
Then the coefficients of equal powers of h are equated to give
the differential equations for Rn(m), @ n(m)’ Kn<m). These are
simultaneous first order equations which can be solved in pairs
from the given initial conditions,.

The calculations will be done step by step starting with the
h-independent terms, then considering all terms up to and includ-
ing ever increasing powers of h. The calculations have been
carried out up to hé, but it is deemed sufficient here to show
the calculations only up to hh, since the expressions rapidly
become exceedingly uwmwieldy with increasing order of h.

Tt will be assumed from physical argwments that |X] < 1
R~-R,
Ro

terms of these quantities will be used freely with the justi-

and ﬁ<14 In the following work, binomial expansions in
fication to appear from their calculated values.

Considering only terms independent of h, one has equations
of the following form. Equation (7) takes the form

3 - 2u00)

v
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and equation 3:1(1) the form

R=R, + OA),

Equation 3:3(8) becomes

2
Ko

+ 592 = /+0(h), ()

while from 3:2(6) and 3:2(3)

VA =g, * o) = ?7:*C]CQ/
=+ o) = -3L +o()

= 7\79; - O(h), (10)

(~]

with g, Qo and v, all evaluated at r = R. At this point it is
convenient to change the independent variasble from t to RO. Since
in this problen Ro is a monotone decreasing function of t, the
change of variable is single valued and can be given by the ex-
pression

L= h" ™ (R,).

=0 (81)

Now, with use of equation (10), equation (9) becomes

(o) 2

Expanding as in equation (&) and equating the h-independent

terms, one obtains
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o) o) (03)2
_8,. a8, LAY
B dr %" . )

Multiplying through by R 2, one finds

_._g:_a/f +2%3_(i/ E

or,
4 g (L] 4R

Integration gives

), 2
-7 i%l -F@’-/),

where the constant of integration is determined by the initial

conditions. Thus

@;@ = -VZz (-2 , (12)

where the sign is chosen for the case of a collapsing bubble,

The time of collapse is given by

=S hT (&)

where




(23)

7“(0) can be found by combining equations (8), (10), and (11)

to give

(e 2 pd
47 _ B, 2

Therefore
7.,(0) ___/o -Poza/go
! /:_52"& (/—pogj

= .9/5

This is the Rayleigh solution.
N .= . A 2 .
GConsidering only terms independent of h™ and higher powers,

one proceeds in a similar manner. Equetion (7) becomes

§- %+ 2 o)

* D(r-X)

and equation 3:1(1) becomes
L =R, + 00t

since no terms in ioPl (cose0) appear to this order, and there-
fore it is not necessary to introduce @ 1 to satisfy the en=
suing equations. Thus @ 7 is O(hz) which gives v = O(h2) and
X = O(hB) since v_ = -'D;(/Z .

Now equation 3:3(8) becomes



- L& . fq%- /e00), (13)

and equation 3:2(6) becomes with equation 2:2(3)
& =G+ Oh) = 9= O(4%)
=V, +O(4Y) = v+O(4?).

From equation 3:2(2)

8 L2 . oY) = g+ohY

Z (14)

Substitution of equation (14) into equation (13) gives
2 _ L 2 )7 _ 2
(-4 - ) 4 E) - 0.

When the indevendent variable is changed from t to Ro, one gets

(e r ) % + 4 /gg}i /+ O

With the use of equation (8), this equation becomes

(o)

_ 2 +A§/Q+A/dg/j(o) w/

(o) ). 2
+2/-2ffé‘f§; - 7+ 0.
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Equating the coefficients of h® gives equation (11). Equating

the coefficients of hl gives

£as’ 58 3 JE°, £
TPPdE, Qfo/@o 230@ 2

which has the solution

(15)

)

3°--4R & (16)

Inverting equation (14) gives

- . . . . - 1
BExpanding in powers of h and considering coefficients of h™,

one obtains with the aid of equation (15)

dtY B AL
am, =~ T

Thus
(o]

7~ -'u/[‘Z? ﬁ?n” ZEL

= 0.4/ 7@

The time of collapse is therefore

= .95 (1+0.2/h) +OF?). (17)



w2

For each higher power of h includedy, another term in the

Legendre polyncmial expansions for @ and R will appear. Thus

b, =0®, v =00 ,

3 3
&, = o), R, = 0(n7) ,
§3=o(h‘4), RB=O(h‘“) » ete.

With this lnowledge it is possible to solve the equations up to

O(h4) in one step. This is done in the following.

Considering all terms up to and including those of O(hl'),

one can write equation (7)

§ = "? '¢- /D(cos 6) -:f; ( cos 9)

§ —’-"é; 'é-/' oS
* A esE) #55o — s , Pcos &)

D«gg(’;)g Pos) - f(g ”)4 2 (cos &)

.2 s
ow* T o4,

and equation 3:1(1)

R= K » & RBesO)+ B, Bees8) + OO®)

(18)

(19)
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Substitution of ecuation 3:2 (3) in 3:2(6) gives, when the terms

are evaluated at r = R,

6= - Lcaso 2 (1g +lg o) 2B
(20)
Prom this eguation and the condition that '{1 = 0, the expression
for v will be found. The first step is to evaluate each of the
terms in eguation (20) to tems of O(h/"). Since v_ and v_ are
O(h‘g) and OR/ O 8 is O(h3 ), the right hand tem of ecuation

(20) can be neglected to O(h'!"). Thus from equations (19) and (20)
- - * . 5
2 = AE; f-AEZ/E?C&oséz)vcjgg,4?(1125659‘+ C:Q§6 /
= |-V cosO » O(H%)

- _.éig— cos @ + 0(65), (21)

evaluated at r = B,

Substituting for é from equation (18), one gebs

5. &, 22 32,
2 - o Ps zp( 9)7‘64 /g(cosé)

4‘-5;9((05 e) +i__ ,D(cosej

OU-x)* "
;?.25;1? ;3Jég 2
—_p3(/_)( 3 g(mse) +.D4(/“X)4 g(casé)

-V cos & + O(b&)
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Substituling for R from equation (19) end simplifying, one finds

b= ) 2% 2 -/

4 Pls ) ZEE o L

» Blos ) /- 255? - 7% +3£€ .

» O ?

Upon comparison of equations (21) and (22), the following i=-

dentities are esbtablished:

Y = 23/ 7‘;% + 0% (23)

&2 = + %) (24)

o’bl@&

s _~28 & 2, Z, s
S - g 2l ZEL L 0y

4, ="25% 2, ‘2{ —-é;—'z 005 e

(25)

From equation 3:2(2) evaluasted at r = R,

=””92/£' = K) + 042),

Substituting for R from equation (19) and simplifving, one ob=

tains

% -—-[/gé —Z%?;//’;e - O,
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Thus, from equations 3:2(3) and (23},

o = W omne = fz€§:sé7é9 +O(#H),
< (27)

Equation 3:3(8) gives

at r = R. This equation is to be broken down into its com-
ponent parts by taking each term, expressing it as a sum of
Legendre polynomials and then combining terms according to this
equation. From equstion (18),

_SF.-2 ;fé-%séy 2 2o
Z5

Z E:
Rkl =

£ L 28 8%
‘2;%§éED=;§%Eos<§D NI /?%21&562)

éf‘i);/?@oss) - ﬁffff Lees ©)

207 2 &% . -
* Sy B D * S A

Ji? é?jir)( 5
R oy R

{9
ot
=

]
£y
®



Substitution for R from eguation (19) and simplification gives

- ;ééé‘é%&szZ) Aéfgyz%Zst?) '624 Aé;G;°5§2)

Zf/-f-x jx ‘{P/?(Co.sé)

‘DZ
- 3
—g——-f(caséﬂ * 52’46 5 os8)
7 jf;* » O (23)
et r = R,

Now qz/é = qrz/? + q02/2 . Therefore, from equations (21),

(22), (27), and 3:2(3)

__‘é_ + __'éé: é 5(6“6)%6;’@@56/

2 /
=2_ ¢ &Z

Zg
21-—‘/2 {(aosej//f %%

gt r = Re

From equation (23)

PR R YR

Substitution of these expressions into equation 3:3(8) zives
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the following ecuations to solve:

»?

Since it is more convenient to use Ro as the independent varia=-
ble, the trensformatior is made with the use of equation (24)
so that

d _ S B s
a7 ‘@,;;z P + o).

Then equation (25) gives

& o4, 284 , 34
A A R A2

equation (26) gives

& L8 2BR . 9d | 388
A7 A S N




——.—

equation (28) zives

& dE EO) AE £ oAx | & ozeT

248 T LD % @ade 2D 2

+L ngz Ja‘g- / <?/<2:.ér 'éi/2 *» OG%);

- L (34)
eonation (29) gives
(-] do
_é dg +D€ vy =O+O(59;
(35)
equation (30) zives
2L 48 & odF & JE | B L4
o I T REdR D AR TR AR
3.@2' s
-= = 0+r00(h°),;
¢ ro,) (36)

and equation (31) gives

2L AL L A% L EL AF
o3 L& @%ze ToT A2

'é: i’{f? =0+ o(/;)

T2 2 (37)

To find the solutions as functions of the distance from the wall,

the expressions for the unknowms, from equation (8), are sub-
stituted into eguations (32) through (37). Vhen these equations
are solved according to powers of h, the following ecuations

result:



. o . .
The h° terms of equation (34) cive

(o) é-(o) f@)
@3 L& 7 z:

The hl terms of equation (34) sive

09 jépég ~é£&962<£%?j jéfy “o<2{2r&®
’63 d? )?3 da @Z d@ /?4 O

=/,

(39)

. 2 . .
The h™ terms of equastion (34) give

é-(O) c{.?é) -gl)dg(/ é@dgfo) j() g(l)
B IR RAR AR R EA

Q;r(o) ( 1), 2 .23’@ ér&)
/?' cze, *7, ;?“ A

O.

(40)

The h” terms of equation (34) give

59 7Y 0Ll T BV
WA A7 i =y 4

_ Lo g F0aE? L E
Zr AR R AR R AR

15219‘53253) 12;60_§§69 -
2 ) = C,
A o (41)

-+
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5
The h™ terms of equation (35) cive

LE_ 23 EZ N
CAA gL

The h° terms of ecuation (35) sive

AL ¥ s L ZE?
2, = AE; <3(A?B

. 4 o . IR
The h™ terms of ecuation (35} give

i?~(i) SZTCZ)
CZfZ? %E; A

The h3 terms of couation (36) give

2 E” > o 5 F© o
62{£i? '=‘A2;‘<:<3¢2{Aé: ¢>5‘62/ 5?4§L€;

The W% terms of equation (36) give

P
;jji( __Ag;é?@y<a£gg .2 é?qﬁ>ci$§f czgzj”

o @4) 2(3) 3 [ _5'(2)}
'6 ‘g 'e g(o) 'g

The h% terms of ecuation (37) zive

<2, 3 2, cz/?c

The h° terms of eguation (32) give

ea{érév g? G@ c{j?ﬁa 7ci}?{) _QZ“%473 ﬁv'

(42)

(43)

(44

(45)

(46)



g-ggc) 2(3) 35_30) 223
o7, 2, »?fi“’ °" (48)

The h terms of eguation (32) sive

d'gz(q) 2/62(4) 5(4) _é-()‘@-(-gg/

<5 A z@z §’°’ Ak (49)
The h¥ terns of ecuation (32) give

d@wiﬁﬁ 4£m 4

<k L RL (50)

Since (0/2) (1-X) is the distance from the bubble origin to the
wally

o DO-x) :
Vo = ==X
<z 2 é )
or, using ecuatior (23) and muwlitiplying through 2/b,
§k~z 22,
)@2 /goa 32

Substituting for X from ecuation (8), one obbtains

2
5% 42@ -2 (51)

o X ) ) _5() G’) 45(3) ZLEO(O@Z
d’eo g(o) CZ/)@ 'QZ(O) _go)

Zx_ FO oD FOyx® 28V _2898E s
JE " TERLL 3Ok LW 29

, (52)
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Equations (38), (39), (40), end (41) can be integrated exactly,

starting with (38) and usirg the results from the rreceding

.

solutions {or each succeeding equation. The results are

Rl

(=)
&= —\Ee =D, (1)
7 o _ L @)
° z4% %) (55)

as belore, and

2 2 ©)
V=28 5" (56)
@«’B) ) 3§(0)

‘G

° . (57)
Zquations (42) through (53) have been integrated numerically by
. 419;

lilne's method o Tguations (42), (43), and (44) are inte=

Y

grated seperately Irom the gbove results. Then the pairs of
equaetions (45) and (48), (46) and (49), (47) and (50) are inte-
grated simalteneously, again using the results from the pre=-
ceding solutions. inally equations (51), (52), and (52) are
sevarately integrated.

The results of these intezretions are shown ir Teble 1.

The pressure field is caleulated from equation 3:3(6)
applied at the point of interest. This gives

&f __/_(VZ _ Z)
p O)Zf' Z e ? ' (58)

The terms in this equation zre caleuwlated as before and ther, by

expending p in powers of h as in equation (&)
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,v=f//”,v”’(ce,€;),

(8!!!)

the coefficients p(“)(r,O,Ro) can be found as functions of r, O,

and R o The results of this colewletion are, for r  D(1l-X),
®) ) @)%
(o)_/*_{_.é:,dfg___{i,é!zl
ARV A 2  pe

2/, 051350) ()nggﬂa ) Jﬁ{f 0ﬁczgép29
»de& z?z i/ P IRE A&,

é;ﬂd cz(é?fj Jirag 2 °) (z)
T RE R &de/} /”"/f-o

f{ﬁé;(174/2 * ﬂj(daseiizf'/V 2‘9;352209

°) —¢2) (c) 2) ® 7 (2)
R AT W~ s a
A A A
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pO- B EP Ed? | EY
o de Btk B ol

E(O)Q/‘é(ﬂ gﬁ) g(z) g(?)dé‘ff)
7 o ol TpidE T BrdR

¢)
FHE) A
J(O)dj() _g(/)dé'@)
f;p(cose)//’/ X -7
/ 2 g’f("’éf @ 2 FF?
)Q.B
zg") 2g? £ dé’f‘j}
A az. T BE A&

- ;55/ 28787 2872}/
A (ces GZQ/;° ﬂ631iizf§fﬁ$ Z -ffﬂj]4/7
A (cos 52%/{:13 55{E9 ﬁé?C” .éyagjércfij7

*d,@ /’6

The time of collapse P+ can be found by integrating equa-
tion (24) with the aid of equations (54), (55), (56), and (57).

Inverting esuation (24), one gets
2

éﬁ%ﬁg =‘-§§§L + O(H%).

Now » / dZ o[@



ory, from eguations (55) and (56),

- AL ~ 0043,
> —/é'f) /—/;Zé fﬁz&@%

Substitution from eguation (54) and integration gives

~ = TCO)*A 0, AZT(3>+ o A3

=. 95 () +. 41/~ .09h%) + 043,

336, Jiscussion of the Results.

The time of collepse for a bubble formed at the wall is found by

setting h = 1/2 in the expression for J~ s giving
o)
T = 1207

which is 20% longer then the time of collapse calculated from the Reyleigh

solution. This completely explains the discrepancy between the experi-

)

. . . 2 Y s < s
mental and theoretical results found by Plesset ( end illustrated in

bz

ige L

In Fig. & the shepe of the bubble initially in cortact with the wall,
is shown at several stages of the collapse. It is noticed first that the
bubble surfece does not remain in cortact with the wall. This displace-

ment is due to the

3]

low convergence of the series expansion for 45 in
the case vhere h = 1/2., Since the effect of the wall on the motion will
be the greatest at the point of contact, the caleulsted distance from the
wall to the bubble surfzce can be used as a guide to the error in the cal-
culated shape of the bubble. The calculations for this case give valid
results down to Ro = 5e 4t Ro = o/, 2 dotted figure is sdded which in-

cludes the next higher terms in the approximation. It is seen that the



4,0

deviation between ithe two degrees of eoproximetion i1s ouite marked, how-
ever judgirg Irom the position of the well, the true shepe will be inter-
medizte belween the two. Over the range of its validity, the caleulated

shape agrees very well with the experimentel results shown in Fig. 3

For the case of h = 1/3 the bubble stays avproximately sphericsl down

to & mean radius of .3 « The shape of the bubble st Ro = 2 is showm in

25

Fize. 74, azain for the itwo dilferent orders of approximstion. At this point

b

A h)

it is doubtful if the expensions used are valid, but in analogy with the

ate

Jodn

case of h = 1/2, if it is assumed that the correct result is intermed
between the two firsures, then s shepe is found similar to that given in

ar - . . . 20 \ .
Fige. 8, This fipgure is glven by Cole (20) as the experin

translatory motion through the liguid. The shape here is sinilar because
in the later stzres of collapse, the main effect of the wall is due to

the induced moticn of the bubbvle towards the well.
Thus it is seen that within the range of their validity, the calcu=-
lated results explein the observed times and shapes, although the defor-

nation becomes too larg e during the later staces of collapse to apply

the method used here for the calculation of the shape of the bubble.

2

figure 7d does sugcest the possibility of o re-entrant jet forming at

o

the top of the bubble, but this can only be in the nature of a specula-

tion.



IV CAIGULATION OF COLLAPSE WITH TRANSLATORY LOTION

OF THY BUBBLE

41 The Coordinste System,

4Again the coorcinate system 1s set up with an origin pleaced
in the bubble, but in this case the positive z direction is
taken to be the direction of the stream flow at a large distence
from the bubble. TPolar coordinstes are introduced as before,
the problem agein being f independent, and the radius of the

bubble assunmed to be

£ = Z@ (¢) /3 (ces 9) (1)
n=o

where the Rn(t} are functions of time to be determined by the
problem. The origin is chosen such that Rl = G throughout the

motion,

422 The Differentizl Eouations.

The solution tc this problem consists in the simultanecus
solution of the two simpler problems, with their appropriste

equations, given in 3:2,



43 The Boundaryv Conditions.

The boundary conditions on the fluid motion are: the
pressure nust be zero on the bubble surface, and the velocity at
an infinite distence from the cavity must be equal to a constant
value V in the z direcction. These are expressed analytically as

-

followsse

=0, at r-A; @)

V=-vU@=-&V a r=oco; )

where e, is the unit vector in the z direction., Again equation

(1) must be expressed as a condition on é » The genersl rela-

tion for p is, from ecuation 3:3(5)

oF
~ 37 *59 “"‘jg"C/ﬁ» (3)

vhere C (t) cen be evaluated by letting r—®. Since the velocity

'3

of the liquid et infinity is e V and the velocity of the origin

is e, v, it follows that at infinity g = eZ(V-vo), and § is

inderendent of time., If the pressure at infinity is denoted by

Pa)’ then equation (3) becomes

#(V- vo)z = —/;i‘g *C(t),

C) ~4(V)tr 2.

Substitution back into equation (3) gzives

2 2
Lstot -2z y )]

2?‘/> (4)
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Combining this with equation (1) and setting Poo/F = 1 as belore,
one finds the finsl result to be

o)f ?z=/+Z£(V_

Tt T Z (5)

ai&r=R.

434 The Initisl Conditions.
The cavitly is initially a sphere of radius unity at rest
with respect to a statiornary reference system. The liguid has a

velocity V in the z direction at larse distances from the cavity.
g g

4t5 The Calculationse.

A general solution of eguation 3:2(1), valid for the region
outsice the bubble, and sstisfying condition 4:3(2), is given by

£ - Z 20 @ b (osey ~ Virceso,

n+! (1)

where the é}n(t) are functions of time only, to be determined by
the problem in & menner similer to that used in Part III.

The procedure for solution is then to substitute expressions
4:1(1) and 4:5(1) for R and ¢ into equations 3:2(6) and 4:3(5)
whichhold at r = R. In this menner two firsteorder differential
equations are obtained, each containing terms in Pn(cosG} which inde=
rendently satigfy the ecuations.

It is corvenient to introduce s dimensionless parameter k
cuch that k = P // o Thus % carn be substituted for ¥V in

21l the eguations, since the choice of units to make P ?D



=l

gives k and V the same numerical vslue.

ot

low the solutions tc the problem must depend on the stream

velocity V of the fluid. It is assumed that Rn and n &re

functions of k that can be expsnded into a Taylor's series about

the spherically symmetric case of k = 0, as follows:

&, =) k&)
£ -] k737%),

(2)

(m) (m)
whers k is constant for the problem, and R_ (RO), @ 0 (R )

are functions of the mean radius Ro only. Then the coefficients

ol esqual povwers of k ere ecuated to zive the differerntial equations

s

for R and é n( ) ¢ These are simultaneous first order e~

3

uations which cen be solved in pairs from the initiel conditionse.
R =R
‘o

=
0
freely in the following work, under the assumption that the ebso-

will be used

Binomizl expansiorns in terms of

lute value of this cuentity is less than unity. The justification
for this assumption will appesr from the calculeted values of this
exXpression.

The calculations will be dore in one step up to terms of
O(kB) since the order of each term can be predicted in advance.
Here @1 must be of O(k) to give a fluic velocity at infinity
equal to k and yet have the velocity of the bubble initizlly zero.
Thus starting with P {cos@), the coefficient of each Legendre

polynomizl will be of orne order less in k than the corresvonding



one was in he
Therefore, consicdering only terms less than O(ké), the e-
quations ares

Equation (1) takes the form

& = —kﬁ@se—f Z §/7( s8) * %/2(6059)

* 53 R lwse) 1 00K, )

and ecuation 4:1(1) the fornm

L =R, +R,Eecs0) t O,Rose) + ok ) "
}
Lt r = R, the substitution of equation 3:2(3} in 3:2(6) gives

oK

s /
Ve \4,,—\4(:0.56—;-(\/6»‘{/.5//)60)9- (5)

Fron ecuaticns (4) and (5)
L =L, » 8 7 (wse) » LBy Blecs &) + 0K
= \/I” ije—é— (lé + \/ 5//79)9? + O(kq)

- ...Q_é. A /o’f q
= T3 V, cas 8 — (5 \/5/,99/ +O(K),(6>

evaluated at r = R, The substitution of equation (Z) for §§ and
of equation (4) for R in ecustion (6) gives the following relations,

upon ecuating coefficlients of the same Legendre polynomiald

2,

o = ;EET"f Cj(ffih (7)

R



V4 nk-f—zg%g“g'%'—éfﬂ“a(kv’ (2)
22L 5%, oF7, (%)

L = e TS5 o= s
__Bcf-/-g-z/%—k-f-?%— +O/k¢). (10)

From equations 3:2(2) and 3:2(3) one obtains

and

Upon substituting for é from equation (3) one obtains, at r=R,

f/f(casé)%é—\(, *%5:_5/_2%? 7"0(kz)) (11)

_2
r-ez
76 = i/m@/—kfg +/<-§T§/ + O(£%). (12)

Egustion 4:3(5) gives



-

of / 2z / 2

S - VS

S TZ9 = (k=
at r = K. This ecuation is to be broker down into its component
parts by teking each term, exvressing it as a sum of Legendre
polynomials end then combining terms according to this ecuation,

From ecuations (3) and (4)

c)jg— i?‘ e
o7 - ff: /= == /5kaa562) ﬁa&55%>2

2 P
_-.fgi. Plos @) -=— =2 2 las &) f.j{ﬁ?(?z;sdg%i;z
Z ’ S &,
2 Z P *
-2 Lleas®) ~—2 Blcas &) + Ok 7).
< A
) f 2
How q /2 =0q,/2 + ¢ /2. Therefore, usinc eguations (11) and
(12) evaluated at r = Ry one finds

/2 f/@,p(mséj

/
z9° -Z% - g2 e (3
_.4?2%”€;é§@§5€%)+--£§ os8) — éi;?é’ég f?ﬁha: o)

8 2 212 1553- ¢Z£€?€2 <?$Z
- 48 (j’p(@sn/c P(zo-e/? % - ’@]

/ eos &) + 5(60-55/2 /« of%/é—f@a:é)

£ o) - £ L s E)f + Ok,

+ 2 Gease) *
38 %
x5;7



From equetion (&)

)+ F (k- / g/’gﬁzfo&’)_

Upon substitutior of these expressions back intc the equation,

one obtzins the following eguations:

B E L 3E B2
IQ‘ * ’e: * ’e: /# 'e:‘ 0(k) (13)
-3 Z S =

AR A e S A

£ BR 28R 3ZF

é? ,ﬁz ’€$ ’ee

- %—% =0+ 07, (15)

2, Bk, e 2h 284K , 245,

oF T RT T5 &’ R 27

-4 i{é 5/—8 %{Z O+0(&7. (16)

Upon changirg the independent varizble to RO 2s in Part III, end
then substituting in the expressions for Rn and @ n from equation

] . « - . i
(2), one obteins the following equations:

_25259<1‘-° L {fiéf%? (17)
22 A", 2 2t

29 E° V5% FOED {FY
@3 d,@ &3 Q/é 'Qq ’Qg"‘ s
EP287

,?4 -l (19)

(18)
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j;«a)cz(§;6» ;Efzaj?‘UA?“) /8 _ér0{25(2> . \
Tv g E TR E gt s @
-—_g‘(o) j‘(z) _i(o)’?(;(} g(o) Z[f(cy )e
'e.: a/F &4 dle ,go.s

@) _r(2) ) ?
S2E AN TE A (21)

4
,eoé @6
) ¢
§0)df€2(2) :_Zj;()’ez(‘?)vl_ 3 aZ) (22)

J¥429 5?{3) 5513%(?c9 c/l?ﬁw Ziggf?j Aé,cv 3.
a7 o7 c//?
f(o) 5_5"”(“’ o) f@)— /5 d—rz/_é'(// 0

L g #- /c
‘437 = 497

0
’Ei

2 g
éfo)dé fojle(j’) (3) 36 f())e )
Fd = 3 _— =2 . (24)
,é; cchz ﬁéia )625' T s léz:F
(1) (2) (3)
The equations for éo ’ é' s and éz give these

quantities as identically zerc throughout the motion. Equations

(17), (18), and (19) can be integrated directly to rive

2 =-V28 (-5

(/) = _/
f(Z) = _j'(o) (

The pairs of ecuations (21} end (22), (23) and (24) are inte=

@

grated simultsnecusly by Milne'!s method (19) using the results

from preceding solutions. The results of these integrations are



shown in Table 2.

4t6 Discussion of the Results.

Figure © shows the shape of a collepsing bubble with translatory
moticn where it has been assumed that the motion of the bubble rela-
tive to the licuid is approximately one-tenth the licuid velocity
(k = 1/10). This relstive velocity is the order of mamitude of that
observed in the High Speed VWater Twnel. The shape is seen to be
aprroximately spherical throughout the greater part of the motion, but
at R0 = 3 a noticeable deformation has appeared. This agrees very
iell with the experimentelly determined shape in Fig. 8. Unfortunately,
for smaller mean radii, the higher order approximations have comparable
magnitudes and nothinz definite can be said about what happens in the

later stages of the collapse, slthough, again, the formation of a re=-

entrant jet is sugpested.



V  CALCULATION OF GROVTH I THIL VICIHITY O 4 WALL

5:1 The Coordirate System.

The coordinate system is the same as that used in Fart IXI. However,
here D/2 is not the initial distaznce to the well, bubl is the distance at
approximately maximun size. This avoids any indeterminzcy in the parameter h,

5:2 The Differential Eoustions.

3

The differential ecuations and their method of solution are identical

toc those used in Part I1I,

5:2 The Boundarv Conditions.
Boundary conditions 3:3(1), (2), and (3) are also satisfied for the
growth of & bubble, but the pressure st infinity is not taken to be a

eld is chosen so as to approximate the experi-

}_1.

constent. The pressure £
mentel conditions found in the hich speed water tunnel and vet be of a

simple form. The pressure is assumed to be

—

2 (1)

as compared to the experimental pressure given in Fig. 4. This expression

/% £ 7 pe
=~3'€c+3——£o:

for the pressure yields a time rate of change of mean radius Ro that is
zero at RO = 0 and Ro = 1,

5t/ The Initial Conditions.

The initial conditions are that the fluid velocity is geroc, and that
the cavity has zero radius. The distance from the well is unspecified in-
itislly, but when the mean radius aporoaches unity, the distance from the
11 becomes D/2. This gives h = 1/D the same mesning as it had in Part IT.

5:5 The Celculations.

The substitution of eguation 5:2(1) in equation 3:3{7) gives for the
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condition on é s at r = R,

oF / 2 & 7 /2
ETZY = FLrsLTE a

The only difference between the equations in Part III end Pert V igin

the h and © independent terms which give equation (1) insteed of ecuation
R «R
)
R
o
suned as in Part III, and the same manner of solution pursued, the only

3:3(8). Thus, if the same conditions on}Xland are as-

chenge in the finel differentizl equations will be in the one ﬂn-§ (O%
0

which will be

o)) )
q/f( < 7
g‘?]_ =2, 5, / "FR A, @)

instead of ecustion 3:5(38). This equation can be intecrated directly.

It gives

/ %) @ 4 o
FHEE GBI = ~Fh e
or

%)y 2
FE[ G- e

2
Nultiplication by R gives

L (i{§££(§2jjz'== ._.:i§<§>'3 R

= - 4 d

Interration gives
0)2
_/ZZE-__Z¢_!7
> = L 5L

"ith the initiel conditions and the sign chosen for an expanding bubble,

+ constant.

one gets

‘?Z;(O):,@ZV%@(/—QJ ‘
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The remainder of the equations are integrated in the same manner as in

Part I1I. The results are given in Table 3.

5:6 Discussior of the Results.

The purpose of this calculation was to demonstrete that the experi-
mertelly determined fact of spherical growth is explained by the theory.
o . m .

Since all the coefficients Rh( ) are less than the corresponding Ro, the

deviation from svherical shape during the growth, is too small to be

observed experimentally.
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VI THE VALIDITY OF THE RESULTS
The question naturally arises as to the validity of the binomial ex-

pangicons used in the development of the results and to the conversence

properties of the derived series. rrom the caleulated results it appears

R - R than
that ol ie not leqs/umtv when R becomes sufficiently small. This
R
o

would maske results for smaller values of RO doubtful. However, in the
early stages of the motion the solutions are evidently convergent, for the
initiel conditions are such that the coefficients of low powers of h are
larger than those of higher powers, An anslysis will be made here to give
idea of the range of validity of the results.
The first item to consider is the behaviour of the coefficients Rn(s)

and § n(s) when Ro becomes smalle It will be assumed that for all s <@

thege coefficients behave according to the following relations:

ol 3
(s) os (s) oo 0+1/2 ~u 1/R , where ~~ denotes
Rn /RON l/RO s and § n /u.o o)

that the two terms are asymptotic to one another, except for a constant
factor, as RO becones smalls, The value of OC is to be determined for the
smallest values of s and n exhibiting this behaviour. The proof is by

methematical induction and will consist in showing that Rn(c‘) /Ro ~o

o G a n+l/2 Lo G
JL/R0 , and @n( )/RO / “~ 1/1%0 . Due to the fact that r
apvears in the numerator of the image terms of é s Dbhese termg will
not give as strong a singularity at Ro = 0 for the same power of h as will
the other terms, and therefore the image terms are nerlected in what follows.
Consider *"irqt t’qe equation for the motion of the bubble boundary
o ?"’ /e de ?9
at r = R, In the preceding sections this ecuation was broken down
d R (o)

into ecuations for n by ecuating coefficients of
d R
o)




h  and P_(cos6).

In this process, at r = R,

, 0) (@) v ”) () v
@;—‘—//-g becane __é:az_. jﬁn +__/j ——'—22-§ .2 —EE‘ ——?"/e “‘"ﬁc -
o Q © '-"1"(:/7)5 om* Ec 16, ’eo
ke
() Cy) (x) w)
?,,, becane _-ED_ + _—é-ézz_ _'.(i& -----—’—é—?—- P)
2254 ,60#2 A ,eo
o zerms ©
lrke
) x) W )
L Ezf?é became § _Q _——— Z@— _%_é_-__ >
g o ter s A © '@ '€°

ke

where X+ VeV *---< g

Thus
) (¢ )
éﬁdeyr)+ _é;(o' - f‘” ,e(x) ’?(u)
)@z £, e Z S% - R
K" s KPR
/rke
/
~ 2% -—Z—-a.. . (1)

The condition for zero pressure on the bubble surface, expressed

in terms of § s is

oF L s 2 /. 2
~57z T29 =/"z2Y%

at r = R, In the same nmanner



-445?2 became

Z

56w

o)_@‘ o F
4oz 92,

becane

/ ’é(c()_

_Z;(o\ p j{r) 2__ j(y) fx)

A Q”"’ v {é,m, ,Q’”"" P A A A

_é;OO

it/

}(o) ff‘
5 Sz g 22 iz )g
YA Gorms %o £

§(X) ’g(u)

where X + y + u + == + v @G~ , and v02 ~ q2.
Thus
o)) (39 ) )
&2 &7 EOEC L L
3 3 oy .
/@/N- C{& ,@nf-4 A '@

Since from ecuation 3:5(12)

g7 ~ &*

it follows from equation (2) that

j;o@ s

~J

'gﬂf"/z ’Cﬁ(a" )
o

and from equations (1) and (3) that

v
<

-

’

(2)

(3)

J



'Af; Kﬁ;d(a' ’ (%)

which proves the contention.
- e o sel 4 (2)
For the case of motion in the vicinity of a wall, 1
approaches & constan®t value as RO spproaches zero. Thus, since
ecuation (3) gives
f(Z) /
/ —
3 20
4, o
“ = 3/1‘,0
For the case with translatory mobtion of the fluid relative
. (1) £
to the bubble, 1 approaches s constent value as Ro ap=

proaches zero. By a method similar to the above, one obtains for

and ‘ Vi |
P

int in the coilapse

this case K = 3/2.

it is interesting to note that

approach unity at epproxinately the same ;

Process,
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(=)

(3)
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TABLE 1

VALUE OF COBFFICIENTS AS A FUNCTION OF THE MEAN RADIUS FOR
BUBBLE COLLAPSE IN THE VICINITY OF A WALL

L = T SO
1.0 0 0 0 0 0 0
0.9  .453 -.0336  9.93x107F  -.795  -.591 135
0.8 .821 -.156  1.007x107%  -.433  =.990 .527
0.7  1.117 - 408 .0452 621 -1.219  1.181

0.6  1.245 - 869 127 2,199  -1.283  2.112

0.5  1.497  =1.706 .327 4,208 =1.155 34247
0t 1.540  =3.281 .799 64342 =J774 4,187
0.3  1.388  =6.610  2.007 6.760  =.0310 2.976

0.2 803  -15.64 64724 456 1.178  -8.122

0.1 - - - - - -

0.0 - - - - - -

2. Rg.b Q:s) ng) Q(gﬁ X &) xm
1.0 0 0 0 0 0 0

0.9  =6.75x10™° 701  -.145 -.803 583 =5.68x107
0.8  =.132 1.082  =.479 -1.130  1.143  =4.95x107°
0.7 =605 1,194  -.897 -1.091  1.702  =1.96x1072
0.6 =-1.922 1.055  =1.072 -5 20290  -4.89x10°%
0.5  =£.955 644 =.311 -.0813  2.954  ~,106

0.k =13.96 -.0716  3.287 742 BJTT0 =218

0.3 =43.25 -.948  14.44 1,473 4,894  =,331

0.2 -181.8 -1.138  80.90 - 6.715 =535

0.1 - - - - 10.784 -

0.0 - - - - - -
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TABLE 1 (Cont'd)

VALUE OF COEFFICIENTS AS A FUNCTICN OF THE IBAN RADIUS FOR
BUBBIE COLLAPSE IN THE VICINITY OF A WALL

R x® &8 & & @ 3
1.0 0 0 0 0 0 0
08  3.77x107°  -.403  .181 -.122 .0917 -.369
0.8  4.09x107° =.510  .204 -.122 .0816 -.236
0.7 1.45x207° -.554  .194 -.102 .0594 - o455
0.6 B3.79x107°  =.560 168 -.0756 0377 - 457
0.5 8.16x10™%  -,540 .135 - L0506 .0211 -254
0.4 159 -.500 0999  =.0300 9.99x107°  -.450
0.3 300 -.441 0662  =.0149 2.82x107°  -.448
0.2 o581 - 364 0363  =5.46x107°  0.09x107C  -.447
0.1 - -.258 0120  -9.66x10F  8.06x1070  =.446
0.0 - 0 0 0 0 -.246
R, §f3) @(:0 § ?(_’5) é(:) @iﬂ @C?f_ﬂ
1.0 0 o 0 0 0 0
0.9  .167 -.114 176 -.150 .0894 .0209
0.8  .182 -.115 .0251 -.160 .0826 495
0.7  .178 -.106  -.114 -.163 .0834 .394
0.6 ATL -.0988  =.201 157 .0923 -.0521
0.5 166 -.0946  =.233 -.137 .105 - 585
0.4  .163 ~.0927 ~.217 -.101 .104 -1.096
0.5 161 -.0920 =.163 -.0522 .0986 ~1.316
0.2 .61 -.0918 =-.0852  =2.56x10° .0933 -1.005
0.1  .161 -.0916 - - - -
0.0  .161 -.0916 - - - -
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TABIE 1 (Cont'd)

VALUE OF COEFFICIENTS AS A FUNCTION OF THE MEAN RADIUS FOR
BUBBLE COLLAPSE I THE VICINITY OF 4 WALL

R @ é(ﬁ) §(GD 5(5) @(@3 .@(ﬁ:ﬂ
& ) 3 ? —4 & =

1.0 ) 0 0 ) 0 0

0.9 -.118 -.0455 3.47x107° L0751 o241 - 0393

0.8  .0382 -.278 0787 -40657 WA13 0769

0.7 129 - o470 143 -.111 «392 0867

0.6 149 - o604 o243 - 0925 .297 0537

0.5 .22 -.670 +360 - 0530 180 +0200

Ok 0747 - o847 640 -.0180 0665 2 .35%107°

0.3 0294 =509  1.122 -4.95%10™°  -.0453 1.32%10™°

0.2  1.35x107° -.282  1.798 5.55x107°  -.151 -

0.1 - - - - - -

040 - - - - - -

PSR Y I Y i
R iR, “dp, Tk, e He S
o 0

o

1.0 -6 o) - e o]

0.9 =~5.68 .0183 - .0159 1.584 =.511 «209
0.8 =5.55 L0771 -.C663 +685 -.0188 =142
067 -5.68 .196 -.162 224 .198 -+250
0.6 -6.16 «406 -.319 -.0810 «304 -+263
0.5 ~7e23 <778 =576 - 309 347 -e231
O« -90.34 1.456 =-1.023 - 496 «349 -.180
0.3 =13.72 2.848 ~1.896 -.674 «322 -.122
0.2 =24.64 6.392 -4 ,041 -.887 271 -.068
0.1 ~-69.19 - - ~1.286 +193 -.024

0.0 - - - -0 0 0
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TABIE 1 {Cont'd)
VALUE OF COEFFICIENTS AS A FUNCTICH OF THS MBAN RADIUS FOR
BUBBLE COLLAFSE IN THE VICINITY OF A WALL

) z) :(3) d.§@5 d.m
Ko ZL%% ‘ﬁ% T:U?” dB. dé. dR.

1.0 - 00 + o0 - @ o - 0
0.9 =.055  1.155 -.378 .152 1.192  .240
0.8 .196 .351 -9.61x10™°  -.0727 1.576  .0456
0.7  .231 .0768 .0680 - .0856 1.151 =.0101
0.6  .194 -.0175 .0657 - .0568 586  =.120
0.5  .138 - .0386 0434 -.0289 .0663 -.283
0.4  .0848 -.0318 .0223 -.0115 -.364  =.438
0.3 .0429 -.0182 8.35x107°0  -3.30%10™°  -.681 -.524
0.2 .0158 71021070 2.17x1070  -5.44x10"% .35 -.430
0.1 .0028 -1.26x107°  1,93x107%  -2.4x107° - -
0.0 0 0 0 0 - -

[

D 43P Y 3y 3E A
Ke Gd T== T8 2 <R %%

1.0 - 0 o0 ® - 00 o - 00

0.9 .0241 -7.859 -1.599 2.320 -.880  1.766

0.8 0367 -1.306 -1.308 2.173 -.644  .926

0.7  =.0718 3.169 - 518 1.577 -.781 40690
0.6  =.158 5.374 .0852 1.009 -1.310 ~.326

0.5  =.0501 5,458 411 .216 -2.483 -.372

0.4  7.63x107° 4,354 492 -.786 -3.811  ~.233

0.3 .0340 -.974 .385 -1.913 -5.143  =.140

0.2 176 -3.137 179 -3.355  =10.02 114

0.1 - - - - - -

0.0 - - - - - -




TABIE 1 (Cont'd)
VALUE OF COEFFICIENTS AS A FUNCTION OF THE MEAN RADIUS FOR
BUBBLE COLLAPSE IN THE VICINITY OF A WALL

1.0 © 0o
0.9 «-3.037 ~1.774
0.8 -.498 - «546
0.7 « 794 <196
0.6 1.266 «349
0.5 1.357 «228
0.4 1l.252 0729
0.3 425 0535
0.2 - -
0.1 - -

000 - -




TABLE 2
VALUS CF COBFFICIENTS AS A FUNCTION OF THE MBANW RADIUS
FOR BUBBLE COLLAPSE WITH INITIAL TRANSLATORY MOTION
OF THE LIQUID
@ &)) © @ §(3) 2)
R, R, R. & &, \ 3,
1.0 0 0 0 C (o} 0
0.9 - o248 -e235 - 403 0691 <170 - 259
0.8 -.588 - 4840 =-+510 124 447 =278
0.7 «~1.068 -2.021 -.5564 «202 929 ~ o048
0.6 =]1.778 -4 .,353 -+560 324 1.798 -.190
0.5 -2.901 -3.,100 -.540 540 3451 ~-e124
0.4 ~4,861 -21.05 - «200 «976 7«29 =-+0681
0.3 «-8.973 -57.92 - 44l 2,040 19.77 -.0082
0.2 ~20:37 =250 - 364 5.69 63.2 0295
0.1 =32.75 -1000 ~+258 323 666 «160
0.0 - - ¢] (v - -
@) 2 )
% © = §(( : - §2- =0
g - -4
v T2
R g dRD T ARE dEY T 48 4™
o s AR AR dR. dr  de.
1.0 0 2.25 0 © - ® -1.35
0.9 -.0563 2.93 4,04 1.58 -.501 -2.14
0.8 0138 4,05 8.38 +685 - 0532 =357
Qa7 «178 5.81 16.2 224 -.947 =6 428
0.6 418 8.82 32.5 -0810 =1.573 -11.72
0.5 «701 14.5 61.8 -,309 -2+851 =24.20
0.4 1.096 26.9 187 - 496 -5 .35 -56.5
043 1.624 80.3 655 -.674 -17.28 =181
0.2 2450 198 4100 - .887 -71.4 =839
0.l 5.0 1670 - -1.286 -808 =15,600
0.0 - - - - - 00 -
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TABLE 2 (Cont'd)

VALUE OF COEFFICISNTS AS A FUNCTION OF THE MBAN RADIUS
FOR BUBBLEZ COLLAPSE WITH INITIAL TRANSLATORY MOTION

OF THE LIQUID
Z) 1))
 3F 25
o
1.0 0 1.35
0.9 .650 ~-.124
0.8 ~.135 -1.22
Oe7 - 482 ~2.06
0.6 - 644 =273
0.5 =-.690 =358
0.4 -.638 ~4 .48
03 - +489 =630
0.2 ~-+338 =14
0.1 - -

0.0
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TABLE 3

VALUZ OF COEFFICIENTS AS A FUNCTION OF THE MBAN RADIUS FOR

BUBBLE GROWIH IN THE VICINITY OF A WALL

Ro 2(3) R@D )((3) i(o) §m é( 2>
- 3 © = 1

0.0 0 0 1.0 0 0 0

0.1 =8.83x10"°  8.37x107° .999 2.58x107° -1.20x107%  1.17x107°

0.2 -1.41x10"°  2.68x0™%  .990 1.46x107% -1.46x10"°  5.31x107°

0.3  =7.14x107°  2,04x10™° .966 3.97x107% =5.95x107°  4.87x107%

0ut  =2.22x107°  8.60x10™° 919 8.00x10™° -1,60x107%  2.20x10™°

0.5 =5.28x10"%  2.61x10"2 .843 1.35x107% -3.37x107%  7.45x10™°

0s6  =.105 7.10x10"2 729 2.01x10"%  -6.03x107%  1.86x1072

0.7 =194 .159 574 2.71x1070  -9.48x10™%  3.78x10"2

0.8 =330 .315 374 3.37x107F -1.35x10"~  6.04x10~2

0.9  -.504 .556 144 3.26x107F -1.45210"%  5.,77x107%

1.0 (=~.735) (.995) (0) ) 0 -

R. §cs§ @@ oL x*? dE 43D LD

2 - d..zo d. Ko L Qo =8 Ro

0.0 0 0 0 0 0 0

0u1  =2.83x107°0  1.84x1070 -3.82x10%  6.50x10™° -5.04x10"0  6.5x10~0

042  =5.10%10"°  1.33x1077  =.153 .181 -2.54x10"%  1.45x10°°

0.3 =1.04x10"% 6.23x10°  -.344 .325 -6.86x10"%  8.77x107°

0wt =8.75x107%  9.42x10"°  -.c06 £430 -.136 3.07x10"%

0s5  =£.09x10"°  8.43x10™F  -.042 617 -.252 7.71x10"2

0.6 =1.44x10"2  5,21x107°  -1.337 .701 - .310 .151

0.7 =2.37x10"%  2.12x107%  -1.78 .663 -.362 .227

0.8 =9.73x107%  6.20x1072 -2.18 .378 -.313 194

0.9 =1.43x10"%  1.20x107% -2.41 - .556 +.082 - 405

1.0 - - - - s o] - 0




TABLE 3 (Cont'd)

VALUE OF COEFFICIENTS AS A FUNCTION OF THE MEAN RADIUS FOR
BUBBLE GROWTH IN THE VICINITY OF A WALL

&(’5) cL §(®
Re &% ==
0.0 0 0

0.1  -2.13x10°°  1.84x10710
0.2  ~1.91x10"%  1.33x10"7

0.3  =2.60x10"°  6.23x10"°

0u4  =1.63x10"2  9.42x107°

0.5  =5.28x10"2  8.43x10°°

0.6 -.180 5.21x10"°

0.7 -.414 2.12x10"2

0.8  =-.640 6.29x10"2

0.9  -.001 .120

100 - -
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Fig. 4 = Comparison between Plesset!s theoreticsl
motion and experimental motion,
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Fige 5 = Coordinate system for bubble motion in the
vicinity of a wall,
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INITIAL SHARPE

Fig. 6a = Theoretical bubble shape for collapse in
the vicinity of a wall, with h = 1/2 and R o=*75.

Coefficients used are 32(3), Rz(‘*), 33(4), R3(5),

Ré(s), 34(6), X(3), and T4,



75

Fiz, 6b = Theoretical bubble shape for collapse in the
vicinity of a wall, wita h = 1/2 and Ry = o5

Cocfficients used are R/, B\, RB(‘/*), 33(5), g (5),
34(6}, X(B)’ ana X4



Pig. 6c - Theoretical bubble shape for collapse in the
vicinity of a wall with h = 1/2 and Ry = ol

)
34(6), X(B), and X(A). The dotted figure is calculated

(5) (6)
RZ 3 .

() 4

Coefficients used are R2

with the additionsl use of and R



Fig. 78 - Theoretical bubble shape for collapse in
the vicinity of a wall, with h = 1/3 and R =e75.

3)’ g (&) 5 ) 5 (5)

b .
2 b 3 b4 3 2

X(B), and Xu").

Coefficients used are RZ(

3
R4(5/, 34(6),



Pige 7o = Theoretical bubble shape for collapse in the
vicinity of a wall, with h = 1/3 and RO = 45

Coefficients used are R, 3, Rz(‘*), R, (4), 33(5), g (5)

2 L ?



Fig. 7c - Theoretical bubble shape for collapse in
the vicinity of a wall, with h = 1/3 and R =e3e

Soefficionts used are 32(3), 32(4), 33(4), Rz(ﬁ),

42 Th ?



Fige 7d - Theoretical bubble shape for collapse in
the vicinity of a wall, with h = 1/3 and R =.2e

s (3) ) )
Coefficients used are R,'”, 32{4 , 33(4', 33(5),

2 (5) 5 (6) 4(3) By

4 4
The dotted figure is(gﬁlculated 2;).*&1 the additional
use of R2 and R ( .

3

Iy and X
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DIRECTION
OF
MoTION
OF
BUBBLE

Fige 8 = Sketch of oscillating gas bubble at
its minimun redius with translatory motion
of the bubble, (See Ref, 20),
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Fige 92 = Theorstical bubble shape for collapse
with translatory motion of the bubble, with
k = 1/10 and R = .7,



Fig. 90 = Theoretical bubble shape for collapse
with translatory motion of the bubble,
with k¥ = 1/10 and Ry = o5



Fige 9c = Theorstical bubble shepe for collapse
with translatory motion of the bubble,
with k = 1/10 and R = .3.



