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ABSTRACT

The field of robotic hopping began over 40 years ago, when it was first shown that
robust hopping could be achieved on real hardware. In the years since then, it’s be-
come clear that hopping requires high performance and precision from its actuation
and planning, due to its extreme interactions with the environment occurring over
periodic, yet very short durations of time. Despite being of lower dimensionality
than many other legged robots, hoppers are very underactuated, which only adds to
the difficulty of planning motions quickly for real-time needs.

The studies of robotic hopping presented in this thesis start with a look into two
different actuation styles for creating vertical periodic motion: a compress-release
mechanism and a moving-mass mechanism. The dynamics of each were examined
from the perspective of stability and robustness to uncertainties in the model and
measurements. The compress-release hopper (CRH) was found to be very stable,
simple to control, and robust to all uncertainties, but inherently had some inefficien-
cies due to the requirement of holding compression during portions of the aerial
phase. The moving-mass hopper (MMH) required optimization to generate the
proper cyclic motions as well as closed-loop control to make them stable. Further-
more, the original configuration of the MMH was also less energetically efficient
and robust to uncertainty than the CRH.

In an effort to improve the efficiency of the MMH, a second-generation robot was
designed using the principle of parallel elasticity. This involved placing a second
spring in parallel to the actuator which would naturally guide the motion of the
moving-mass into an optimal path, eliminating a significant portion of actuation
effort and improving the overall efficiency. An added benefit of this change was
that the robot no longer required closed loop control to create stable hopping. This
new robot was built and tested in the lab showing a dramatic improvement over
the previous design. The principle of controlling the compliance in the actuator
for efficient motion was then taken one step further by creating custom, nonlinear
stiffness springs which would provide a more ideal trajectory of motion. This
process utilized a design-in-the-loop optimization strategy that would both design
these springs as well as the motions of the moving-mass to yield better actuation
efficiency. A set of these springs was created and attached to the second-gen MMH,
replacing the lower spring, and tested in the lab. These springs did slightly improve
the efficiency of the robot, but were restricted by the material selection of the springs
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due to manufacturing limitations.

Moving into the realm of 3-Dimensional hopping, a final robot was designed and
built: ARCHER. Unlike traditional hopping robots which use a torso with very large
inertia to control the leg motion and balance, ARCHER uses a set of three flywheels.
The goal of this robot was twofold: to study the feasibility of using flywheels alone
to control attitude, and to take advantage of the principle of decoupled systems. By
using strategically placed flywheels, the dynamics of the leg and the attitude sub-
systems were decoupled, meaning their actuation did not have a direct influence on
each other. This allows for simpler motion planning and control. The culmination of
this thesis was running experiments with this robot, showing its initial performance
and ability to hop with separate controllers for each subsystem.
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C h a p t e r 1

INTRODUCTION

1.1 Background
Robotics is now a booming industry, stretching over a huge range of fields from
industrial robots assembling vehicles (Tran and Ha, 2018) or moving products
around a warehouse (Ackerman, 2022), all the way to the medical field where
robots are used to sort medications (Hoffmann et al., 2016) and perform surgeries
(C. Yang et al., 2019). Creating robots has become achievable by hobbyists, where
small robotic components like actuators, sensors, and microprocessors are becoming
cheaper and better than ever before.

The fields of robotic hopping and running alone have been around for decades
(M. H. Raibert, 1984), studying the ways to create stability in very underactuated
situations. These robots undergo rapid changes of contact with the world, resulting
in extreme impacts and changes in energy level (M. H. Raibert, H. B. Brown, and
Chepponis, 1984). Despite this, these systems have been able to achieve incredible
behaviors beyond just hopping in place, such as reaching high speeds and heights
(Salton et al., 2010), performing flips (M. Raibert, 1986), and jumping off of walls
and over uncertain terrain (Haldane, Yim, and Fearing, 2017; Fiorini and J. Burdick,
2003; C. M. Hubicki et al., 2016). Underlying all of these behaviors is the need to
find a balance between planning out upcoming motions and being able to overcome
uncertain and unforeseen events.

Finding ways to lessen the impact with the world or extend the duration of contact
with the world can allow for more manageable dynamics for the robot and its
environment (Yoon et al., 2005; Lens and Stryk, 2012), and more energetically
efficient motions in general (Sharbafi et al., 2019). This improvement can usually
be achieved through changing the motion of the robot as well as modifying the
mechanical system. However, doing motion generation before a robot’s design has
been finalized is often tedious due to the iterative nature of design. By utilizing
optimization techniques, finding more efficient motions and mechanical designs can
be accomplished together before the robot has even been made.

Lastly, even in relatively low-dimensional systems like a hopping robot, planning out
where to place the foot and how to get around an object can be a challenge (Chang
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et al., 2019). With only a fraction of a second between each hop and the limited
time in contact with the world, there is very little time to update and take action.
The concept of decoupled dynamics and interconnected systems (Wen-Loong Ma,
Noel Csomay-Shanklin, and Aaron D. Ames, 2020) has been shown to reduce
computation time of a robot’s planner or gait generation simply through separating
the dynamics into carefully constructed parts. In the case of hopping robots, this can
be inherently done by replacing a torso mechanism with flywheels which leads to
no change in the center of mass during attitude control. This completely separates
the influence of the leg compression and the attitude control, meaning they can
be controlled and planned separately. The only information that needs be shared
between them could be the timing of events to sync up behaviors.

1.2 Contribution
The contributions of this thesis work is threefold.

First, the designs of multiple robotic legged platforms were created: AMBER-
3M (Eric Ambrose, Wen-Loong Ma, C. Hubicki, et al., 2017) and AMPRO-3/4
(Huihua Zhao, Eric Ambrose, and Aaron D. Ames, 2017). The process of designing
and testing these systems led to huge improvements during their re-design. After
the second version of each platform was created, their usefulness and longevity
skyrocketed. Each of these devices have already been used by many other researchers
for their work in the 5 years since their creation.

Secondly, throughout the original two generations of hopping robots created in the
lab (E. Ambrose, N. Csomay-Shanklin, et al., 2019; E. Ambrose and A. D. Ames,
2020; Eric Ambrose, Wen-Loong Ma, and Aaron D Ames, 2021), methods of
improving locomotion efficiency through design were explored. Moreover, some
aspects of mechanical design were incorporated into the optimal motion generation
process, leading to further reductions of cost of transport. These techniques could
be used in future robotic systems, especially in the presence of compliance which is
being used more and more now that robotic systems are going out into the real world
and interacting with humans and other environments requiring safety. This was all
shown experimentally through 3 different hopping robots discussed in Chapters 4
and 5.

Finally, the concept of decoupled dynamics was taken to heart in the design of the
3D hopper: ARCHER. By changing the morphology of this hopping robot, it is
now capable of 3D motions with much simpler control schemes which would allow
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for quicker planning during real-time motion. Simulations with both simple PD
control and more rigorous CLF-QP control methods were run. Experiments were
performed to validate the idea of decoupled control for a robot, and well as for the
efficacy of a flywheel controlled hopping robot on the platform, ARCHER.

1.3 Organization of dissertation
The layout of the thesis chapters is as follows:

Chapter 2: AMBER-3M: A Modular Planar Biped Platform. The next chapter in-
troduces the AMBER series of robots, and the two iterations that I designed:
AMBER-3 and AMBER-3M. This chapter also provides my published work on
using the modularity of AMBER-3M to study the locomotion economy of different
legs on the robot. At the end you will find a brief listing of the other topics this
platform has been used to study.

Chapter 3: AMPRO-3: A Transfemoral Prosthesis. Afterward, a similar introduc-
tion of the AMPRO series of transfemoral prosthetic legs is provided. These devices
are designed to not only test out behaviors and controllers in the AMBER Lab, but
can also be used to help amputees regain functional movement. The design of
AMPRO-3 and AMPRO-4 are explained along with a section of published work on
the design of the former. There will also be a listing of other papers that used these
two devices.

Chapter 4: Analysis of Vertical Hopping Mechanisms. Here, the discussion of these
robotic hopping systems begins, starting with a study of two different mechanisms
for hopping. This chapter will also introduce the concept of "safe actuation" which
was a critical design constraint for all of the hoppers created in this thesis work. The
performance and stability of each style of vertical hopping will be detailed along
with some experimental results for the Moving-Mass Hopper that was created for
this work.

Chapter 5: Improving Hopping Efficiency Through Design. Moving further on the
moving-mass hopping mechanism, this chapter studies how this method of hopping
could be made more efficient through alteration in the mechanical design. This
includes new actuation, a different compliance model, improved electrical hardware,
and a design-in-the-loop optimization algorithm. There were two different versions
of the same robot created and tested in this work, with experimental results for each
being provided throughout the chapter.

Chapter 6: ARCHER: The 3D Hopper. Finally, a 3D hopping robot using flywheels
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for attitude control was designed, simulated, and tested in the lab. This chapter runs
through to design of each subsystem and explains how this style of robot benefits
from decoupled dynamics and can exploit this for simpler modelling, control, and
motion planning. Full-body simulations were created to design and observe a pair
of controllers for this flywheel-based attitude subsystem. The control and design of
the robot were then tested on hardware with the robot, ARCHER. The experimental
results of these tests are shown.
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C h a p t e r 2

AMBER-3M: A MODULAR PLANAR BIPED PLATFORM

The AMBER series of bipeds were created as a humanoid platform to test controllers,
behaviors, and walking gaits created in the similarly named AMBER Lab at Texas
A&M University. To date, all iterations of this robot have been planar bipeds,
meaning they are constrained to the Sagittal plane of motion. While this requires the
robot be supported in the lateral direction, the robots are still responsible for carrying
their own eight, and controlling their forward motion. This greatly simplifies the
scale of robot’s dynamics, allowing for a quicker path to test out new research with a
higher chance of success, given the difficulty of implementing some control methods
on hardware.

The first two generation of this series, AMBER-1 (Yadukumar, Pasupuleti, and
Aaron D Ames, 2012) and AMBER 2 (H.-H. Zhao et al., 2014), were small scale
humanoids consisting of two legs and a simple torso which was mostly just the
hip joints. All of the computation and power was delivered from off-board on
these robots, in order to reduce the weight being carried by the joint actuators.
Experiments were run on these two robots up until around 2015, when the lab moved
to Georgia Institute of Technology and they had to be left behind. In 2013 and 2014
AMBER-2 was used to experimentally realize multi-contact walking behavior, for
improved walking efficiency. This behavior was an incredible push forward for the
field.

However, around this same, the lab saw the need for a larger-scale humanoid that
could generate higher joint torques and speeds, allowing for more strenuous behav-
iors like stair climbing or walking over rough terrain. This led to the design of
AMBER-3, the next iteration of the AMBER series. The robot was designed over
the course of late 2013 through 2014, being assembled and tested for the first time
in late 2014. While the initial testing showed promise, this robot also needed to be
left behind during the move to Georgia Tech. Once there, the robot was redesigned,
taking the opportunity to fix some of the problems and inconveniences discovered
during that brief testing of the original.

This new robot changed the placement of many electronics, allowing for more
accessible control hardware. The structural pieces of the robot were lightened
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to allow for less required effort by the actuators. The actuators themselves were
given a slightly larger reduction, increasing their peak torque by roughly 14%.
The feedback on the torso angle was also increased to improve the performance
of controllers during experiments. Lastly, this robot’s joint layout was modified to
make the legs easily "swap-able," meaning different types of legs could be tested
as well. Originally the plan for this was specifically to allow for both point feet,
and fully-actuated morphologies to be tested. Later it was expanded to include
compliant legs as well, but there options were endless.

This modular feature led to research on the comparison between different legs,
and how they effected the performance and efficiency of legged locomotion. The
following sections are taken directly from the research paper discussing this topic
(Eric Ambrose, Wen-Loong Ma, C. Hubicki, et al., 2017).

2.1 Review of Locomotion Efficiency

Figure 2.1: AMBER-3M: Modular Bipedal Robot. A robot designed to test energy
cost across three configurations: Flat-Foot (left), Point-Foot (center), and Spring-
Foot (right).

In the field of bipedal robotics, a significant importance has been placed on opti-
mizing a robot’s motion for improved locomotion economy (Collins et al., 2005),
(Seok et al., 2013). In these situations, it is common to modify control methods
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and joint trajectories as a means of lowering this transport cost. However, there
are many factors that have been shown to contribute to a robot’s energy economy,
such as using different controllers (Sreenath, H. Park, Poulakakis, et al., 2011), (H.
Zhao, J. Reher, et al., 2015), actuation methods (Seok et al., 2013), (Martin, Post,
and J. Schmiedeler, 2014), morphologies (Sobajima et al., 2013), or behaviors (A.
Kuo, 2007). When comparing energy economy across multiple morphologies and
behaviors, it can be difficult to guarantee that the differences seen are only from
those changes. This is especially true when separate robots are being used in the
comparison, since differing hardware can inherently affect the measured economy.

This work parallels research in the field of biomechanics, which has for long stud-
ied the energy costs of animal locomotion. For decades, experiments were done
suggesting that an animal’s cost of transport seems to be a function of their leg
length and mass (Pontzer, 2007). Beyond this, they also performed tests showing
an energetically optimal speed for animals during walking (Wickler et al., 2000),
(Bastien et al., 2005). Further studies compared animals executing different gaits
at the same speed (Hoyt and Taylor, 1981), showing an optimal behavior at each
speed, based on energy usage. Adopting a similar methodological approach could
provide insight into robotic behaviors and morphologies as well.

Performing behavioral comparisons in robotics requires a machine capable of per-
forming varied gait patterns (e.g. heel-toe vs. point-foot walking). Robots have
already been used to perform various locomotion behaviors across ranges of en-
ergy cost (Bhounsule et al., 2014), speed (Sreenath, H. Park, and J. Grizzle, 2014),
and terrain (Manchester et al., 2011). Despite this wider array of behaviors, the
observed differences could be partly induced by changing actuation or controllers.
Other groups have begun working towards using a single robot in this way through
different means. One approach compares behaviors on a simplified simulation
model using optimal control (Srinivasan and Ruina, 2006), (Xi, Yesilevskiy, and
Remy, 2015). Another method models an existing robot shown to walk efficiently in
experiments (J. Reher, E. Cousineau, et al., 2016), and systematically explores the
energetics of it running in simulation (W. Ma, A. Hereid, et al., 2016). Additional
work explored the energetic benefits of incorporating new modes of actuation into
economical locomotion, such as a motorized reaction wheel (T. L. Brown and J. P.
Schmiedeler, 2016). These experiments motivate the creation of our own platform
for assessing how modulating a behavior can affect the cost of transport.

In this paper, we demonstrate the AMBER-3M platform’s capability of experi-
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mentally assessing the locomotion economy of varied behaviors and mechanical
configurations. The following sections of the report provide a detailed description
of the mechanical design and modularity of the platform, our behavior-generalized
control, modeling, and gait generation procedures, the experimental setup, and
comparative hardware results.

2.2 The Design of AMBER-3M
With the aim of testing a variety of bipedal robot design configurations, we developed
the planar bipedal robotic platform, AMBER-3M. The following section describes
the mechanical and modular design which allows for effective switching between
behaviors.

Mechanical Design of AMBER3M
AMBER-3M, seen in Fig. 2.1, is a planar bipedal robot created in the AMBER
Lab of the California Institute of Technology. Each actuated joint is articulated via
identical drive systems, consisting of a motor, gearbox, belt, and linkage. The drive
motors (MOOG BN34-25EU-02) are capable of applying 355 W of power, 2.2 Nm
peak torque, and 0.66 Nm of continuous torque. The maximum motor speed is rated
at 785 rad/s. The output of the motors is connected to a Harmonic gearhead (CSG-
20-80-2UH-LW) through a timing belt with a 7:8 speed reduction. The Harmonic
gearhead itself has a 1:80 gear reduction and an efficiency of roughly 65%. The
full system, including efficiency losses, is capable of a peak torque of 130 Nm,
continuous torque of 39.2 Nm, and a max speed of 8.6 rad/s. The output of the
gearhead is connected to the joint by linkages with a 1:1 input to output position
ratio. The presence of linkages allows for the leg segments to be any length and
a variety of shapes, without changing the actuation mechanics. An exploded view
of these components is shown in Fig. 2.2. Rotor position and velocity feedback is
provided by incremental encoders (Renishaw RM22IC) mounted to the back of each
motor.

Since AMBER-3M is a planar robot, a support structure is used to constrain it to
the sagittal plane. This is accomplished through a 3.43 m radius circular boom
which allows the robot to walk on an unending track, while still being fixed in the
plane. The distal end of the boom connects to the robot via a rod passing through
bearing mounts in the torso, as seen in Fig. 2.1. The forward progression of the
boom arm and the relative angle at the torso-boom connection are also measured by
encoders. The boom is counterbalanced with weights while the robot is disconnected
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Figure 2.2: An exploded view of the drive system for each actuated joint on AMBER-
3M.

to counteract the weight of the arm itself.

The torso of AMBER-3M acts as the control center for the robot. It houses all
of the control and power distribution electronics. A National Instruments (NI)
cRIO-9033, running LabVIEW2015, is used as the high-level controller, while the
low-level control is provided by the motion controllers (ELMO G-SOL-WHI). Fig.
2.3 shows the placement of the control and drive components within AMBER-3M.

Figure 2.3: The key drive and control components within AMBER-3M.
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Modularity
The key design feature of AMBER-3M is the modularity of the legs. Each of the
leg segments, from thigh to feet, is able to be removed from the rest of the robot
individually. Furthermore, the connection points of all joints on the robot have the
same shape and functionality, with only two shafts holding a module to the one
above it. The electrical connections running down the legs can also disconnect
individually at the joints, for complete modularity. This simple connection style
allows for portions of the leg to be swapped out in a matter of minutes. For the proof
of concept experiments described later in this paper, three different leg configurations
were used: Flat-Foot, Point-Foot, and Compliant Point-Foot (Spring Foot). A CAD
model view of each is provided in Fig. 2.4 and the general configuration properties
are shown in Table 2.1.

Figure 2.4: The three leg configurations of AMBER-3M: Flat Foot (left), Point Foot
(center), and Compliant Point Foot (Right).

Flat-Foot Walking. In this standard leg configuration, AMBER-3M has fully
actuated ankle joints with feet and, therefore, six total actuators. These feet can be
used to walk with a more complex hybrid multi-contact behavior, as in (H. Zhao,
W.-L Ma, et al., 2014), but are only used for flat-foot walking in the presented
experiments. The ankles use the same drive system described previously, and have
pivoting toe and heel sections which allow them to conform to the ground geometry.

Point-Foot Walking. Alternatively, a pair of rigid calves can be placed on the robot
for when underactuated behaviors are desired. These calves do not have ankles or
feet attached, but instead have a small rounded surface on bottom. This allows for a
small point of contact and easy rotation between the legs and ground. It should be
noted that the center of mass is above the hip in this configuration.

Compliant Point-Foot Walking. While these legs have a similar function to the
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previous behavior, these calves now include a compression spring. The springs
have a stiffness of 17 000 N/m and can deflect up to 3.5 cm, capable of storing up to
10.4 J during each step. There are position (LVDT) sensors placed within each calf
to measure the spring deflection (but are not utilized for the experiments presented
here). For ease of viewing these components of the calf in Fig. 2.4, the shell of the
left leg has been removed.

Configuration Weight Height CoM (from hip)
Flat-foot 29.3 kg 1.400 m −0.161 m
Point-foot 21.9 kg 1.373 m 0.025 m

Spring-foot 23.5 kg 1.430 m −0.024 m

Table 2.1: A list of robot properties for each configuration.

2.3 Control Methodology
In an effort to explore the properties of walking behaviors, we sought a formu-
laic approach to generating comparable control for multiple modes of locomotion.
Here, we generalized the control framework from modeling to gait optimization
on AMBER-3M across the three mechanical configurations. We built this control
framework upon the hybrid zero dynamics (HZD) method for its generalizability to
both fully- and under-actuated systems, and its track-record of successful hardware
implementations (Aaron D. Ames et al., 2015; A. Hereid, E. A. Cousineau, et al.,
2016; Wen-Loong. Ma et al., 2017).

Controlled Dynamics
From the view of hybrid zero dynamics, control is the successful satisfaction of a
set of output equations on the robot via motion of its actuators. Importantly, these
outputs are designed to be impact invariant, i.e., they must satisfy an HZD condition
at all times. We will focus on presenting these output equations in a fashion which
generalizes to all three AMBER-3M hardware configurations.

Hybrid Control System. The configuration-modular multi-domain hybrid control
system is defined as a tuple (A. Hereid, E. A. Cousineau, et al., 2016),

ℋ𝒞 = (Γi,Di,Ui, 𝑆i,Δi,FGi) (2.1)

where Γi = (𝑉 i, 𝐸 i) is a directed cycle and i ∈ { 𝑓 , 𝑝, 𝑠} denotes the design con-
figuration (flat-, point-, and spring-foot models respectively). 𝑣 ∈ 𝑉 i are vertices
indicating domains of admissibility, where𝑉 𝑓 = 𝑉 𝑝 = {𝑠𝑠},𝑉 𝑠 = {𝑠𝑠, 𝑑𝑠} and ss,ds
represent the single-support (only one leg on ground) and double-support phases of
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Figure 2.5: The flow of domains for the three configurations.

locomotion (both feet in ground contact). Vertices are connected by edges 𝑒 ∈ 𝐸 i,
where 𝑒 = {𝑣 → 𝑣+}, and 𝑣+ is the sequential domain for a given configuration 𝑖.
These are shown as arrows in Fig. 2.5.

In the hybrid control system, Di = {Di
𝑣} is the set of admissible domains of the

system for a given configuration, written as the coordinates (𝑞i, ¤𝑞i) ∈ Di
𝑣, where

𝑞i represent positions and ¤𝑞i are velocities. The actuation inputs, Ui = {Ui
𝑣} are

a set of admissible controls with 𝑛i
𝑢 control inputs where Ui

𝑣 ⊆ R𝑛i
𝑢 . Particularly,

𝑛
𝑝
𝑢 = 𝑛𝑠𝑢 = 4 and 𝑛 𝑓𝑢 = 6. In addition, 𝐹𝐺 i = {𝐹𝐺 i

𝑣} is the set of control systems
in the admissible domains Di

𝑣. On the edges, we define the switching surfaces
𝑆i = {𝑆i

𝑒}, where 𝑆i
𝑒 ⊂ Di

𝑣 and reset maps, Δi = {Δi
𝑒}, that smoothly map between

domains. The predefined flow of these domains is illustrated in Fig. 2.5.

Flat foot (f) Point foot (p) Spring foot (s)

Figure 2.6: Depiction of the generalized coordinates for the three AMBER-3M
design configurations.

With this setup, we now specialize to the robot under consideration. In this case the
generalized coordinates, 𝑞i, which differ across configurations, are 𝑞i ∈ 𝑄i

𝑣 ⊂ R𝑛i

where 𝑛 𝑓 = 6, 𝑛𝑝 = 5, and 𝑛𝑠 = 7. In particular, we define 𝑞i with specific
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design configuration i ∈ { 𝑓 , 𝑝, 𝑠} as 𝑞 𝑓 = (𝑞𝑠𝑎 𝑞𝑠𝑘 𝑞𝑠ℎ 𝑞𝑛𝑠ℎ 𝑞𝑛𝑠𝑘 𝑞𝑛𝑠𝑎), 𝑞𝑝 =

(𝑞𝑠 𝑓 𝑞𝑠𝑘 𝑞𝑠ℎ 𝑞𝑛𝑠ℎ 𝑞𝑛𝑠𝑘 ), and 𝑞𝑠 = (𝑞𝑠 𝑓 𝑞𝑠𝑟 𝑞𝑠𝑘 𝑞𝑠ℎ 𝑞𝑛𝑠ℎ 𝑞𝑛𝑠𝑘 𝑞𝑛𝑠𝑟), as labeled in
Fig. 2.6.

Continuous Dynamics. The Equations of Motion over a continuous domain Di
𝑣

is determined by the Euler-Lagrange equation and holonomic constraints (J. W.
Grizzle, Chevallereau, A. D. Ames, et al., 2010):

𝐷 (𝑞i) ¥𝑞i + 𝐻 (𝑞i, ¤𝑞i) = 𝐵𝑣𝑢i
𝑣 + (𝐽 i

𝑣 (𝑞i))𝑇𝐹 i
𝑣 (2.2)

𝐽𝑣 (𝑞i) ¥𝑞i + ¤𝐽𝑣 (𝑞i, ¤𝑞i) ¤𝑞i = 0 (2.3)

where 𝐷 (𝑞i) is the inertia matrix, 𝐻 (𝑞i, ¤𝑞i) contains the Coriolis-centrifugal and
gravity terms, 𝐵𝑣 is the actuation distribution matrix, and 𝐽𝑣 (𝑞i) is the Jacobian of
the holonomic constraints. Manipulation of these equations of motion yields the
control systems 𝐹𝐺 i

𝑣 = ( 𝑓𝑣, 𝑔𝑣) given by:

¤𝑥i = 𝑓𝑣 (𝑥i) + 𝑔𝑣 (𝑥i)𝑢i
𝑣 (2.4)

where 𝑥i = (𝑞i, ¤𝑞i) is the system state for a given robot configuration i ∈ { 𝑓 , 𝑝, 𝑠}.

Outputs. With the goal of synthesizing controllers and the dynamics defined,
we now consider the outputs (or virtual constraints) (J. W. Grizzle, Chevallereau,
Sinnet, et al., 2014; A. D. Ames, 2013) of the form:

𝑦i
𝑣 (𝑞i, ¤𝑞i) =

[
𝑦i

1,𝑣 (𝑞
i)

𝑦i
2,𝑣 (𝑞

i, ¤𝑞i, 𝛼i
𝑣)

]
(2.5)

=

[
𝑦
𝑎,i
1,𝑣 (𝑞

i) − 𝑦𝑑,i1,𝑣
𝑦
𝑎,i
2,𝑣 (𝑞

i) − 𝑦𝑑,i2,𝑣 (𝜏(𝑞
i), 𝛼i

𝑣)

]
where 𝑦𝑎,i1,𝑣 : 𝑄i → R and 𝑦

𝑎,i
2,𝑣 : 𝑄i → R𝑛

i
𝑜,𝑣 define the “actual” relative degree

1 and 2 outputs, respectively (see (A. D. Ames, 2014) for justification). Here,
𝑛i
𝑜,𝑣 indicates the dimension of relative degree 2 outputs, with 𝑛 𝑓𝑜,𝑠𝑠 = 5, 𝑛𝑝𝑜,𝑠𝑠 =

4, and 𝑛𝑠𝑜,𝑠𝑠 = 4, 𝑛𝑠
𝑜,𝑑𝑠

= 3. For the flat-foot, single support walking, we have
𝑦
𝑎, 𝑓

2,𝑠𝑠 (𝑞
i) = [𝑞𝑠𝑘 , 𝑞𝑛𝑠𝑘 , 𝜃𝑡𝑜𝑟 (𝑞i), 𝛿𝑚𝑛𝑠𝑙 (𝑞i), 𝑞𝑛𝑠 𝑓 ]𝑇 , where 𝜃𝑡𝑜𝑟 (𝑞i) and 𝛿𝑚𝑛𝑠𝑙 (𝑞i) are

defined in Ma et al., 2014. For the other cases, actual degree 2 outputs are simply
joint angles: 𝑦𝑎,𝑝2,𝑠𝑠 (𝑞

i) = [𝑞𝑠𝑘 , 𝑞𝑠ℎ, 𝑞𝑛𝑠ℎ, 𝑞𝑛𝑠𝑘 ]𝑇 , 𝑦𝑎,𝑠2,𝑠𝑠 (𝑞
i) = [𝑞𝑠𝑘 , 𝑞𝑛𝑠𝑘 , 𝑞𝑠ℎ, 𝑞𝑛𝑠ℎ]𝑇 ,

and 𝑦𝑎,𝑠2,𝑑𝑠 (𝑞
i) = [𝑞𝑠𝑘 , 𝑞𝑠ℎ, 𝑞𝑛𝑠ℎ]𝑇 . The actual relative degree 1 output, 𝑦𝑎, 𝑓1 (𝑞i) is the

linearized hip velocity (see (Ma et al., 2014)) for flat-foot walking. Note that there
are no relative degree one outputs for under-actuated walking (point- and spring-
foot).
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Desired relative degree 2 outputs, 𝑦𝑑,i2,𝑣 (𝜏(𝑞
i), 𝛼i

𝑣) are represented by a series of
4𝑡ℎ order Bézier polynomials (Sreenath, H. Park, and J. Grizzle, 2014), whose
parameters 𝛼i

𝑣 are a set of constant matrices representing a specific gait and will be
solved by an optimization algorithm.

𝜏(𝑞i) =
𝛿𝑝ℎ𝑖𝑝 (𝑞i) − 𝑝i,+

𝑣

𝑝
i,−
𝑣 − 𝑝i,+

𝑣

(2.6)

where 𝛿𝑝ℎ𝑖𝑝 (𝑞i) is the linearized 𝑥-position of the hip, whose initial and final values,
𝑝
𝑖,+
𝑣 and 𝑝𝑖,−𝑣 , are predefined.

Partial Hybrid Zero Dynamics. To drive the outputs to zero, we used an input-
output feedback linearizing control law A. D. Ames, 2013 for our hybrid control
systems:

𝑢𝜖𝑣 (𝑞i, ¤𝑞i, 𝛼i
𝑣) = −(Ai

𝑣)−1

([
0

𝐿2
𝑓𝑣
𝑦i

2,𝑣 (𝑞
i, ¤𝑞i, 𝛼i

𝑣, )

]
+

[
𝐿 𝑓𝑣 𝑦

i
1,𝑣 (𝑞

i, ¤𝑞i)
2𝜖𝐿 𝑓𝑣 𝑦i

2,𝑣 (𝑞
i, ¤𝑞i, 𝛼i

𝑣)

]
+

[
𝜖 𝑦i

1,𝑣 (𝑞
i, ¤𝑞i)

𝜖2𝑦i
2,𝑣 (𝑞

i, 𝛼i
𝑣)

])
(2.7)

where Ai
𝑣 = [𝐿𝑔𝑣 𝑦i

1,𝑣 (𝑞, ¤𝑞) 𝐿𝑔𝑣𝐿 𝑓𝑣 𝑦
i
2,𝑣 (𝑞

i, ¤𝑞i, 𝛼i
𝑣)]𝑇 and 𝜖 > 0. Applying this

controller results in linear output dynamics ¤𝑦i
1,𝑣 = −𝜖 𝑦i

1,𝑣 and ¥𝑦i
2,𝑣 = −2𝜖 ¤𝑦i

2,𝑣−𝜖
2𝑦i

2,𝑣,
which yield the partial zero dynamics surface, given by:

PZi
𝑣={(𝑞i, ¤𝑞i) ∈ Di

𝑣 |𝑦i
2,𝑣 (𝑞

i) = 0, ¤𝑦i
2,𝑣 (𝑞

i, ¤𝑞i) = 0} (2.8)

showing asymptotic stability. Furthermore, for any 𝑒 ∈ 𝐸 i, if there exists an 𝛼i
𝑣 such

that

Δi
𝑒 (𝑆i

𝑒 ∩ PZi
𝑣) ⊂ PZi

𝑣+ , (2.9)

then the system is hybrid invariant. In such cases, stability of the full order system
reduces to that of the partial hybrid zero dynamics (PHZD). Next, our mission is
to find the parameters 𝛼i

𝑣 (the gait) that guarantee PHZD conditions for each design
configuration.

2.4 Efficient HZD Gait Optimization
To generate proper walking gaits for the modular robot AMBER-3M, we generalized
and used a collocation based optimization algorithm. Our gait-optimization problem
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is defined by the following nonlinear programming (NLP):

Zi,∗
𝑣 = argmin

Z

∑︁
𝑣

J (Zi
𝑣) (2.10)

s.t Zmin ≤ Zi
𝑣 ≤ Zmax, (2.11)

Cmin ≤ C(Zi
𝑣) ≤ Cmax, (2.12)

where, Zi
𝑣 is a vector of decision variables, Z𝑚𝑖𝑛 and Z𝑚𝑎𝑥 are the enforced limits of

each decision variable, and C(Zi
𝑣i) is a vector of nonlinear constraint functions.

For the purpose of energy-efficient walking, we formulate the objective function
J𝑣 (Zi

𝑣) as the mechanical cost of transport (2.13). In this modular optimization
problem, the constraints C(Zi

𝑣i) are chosen to be the HZD invariant condition, foot
height clearance, torso moving range, and ZMP constraints (ZMP only applies to
flat-foot case). To generate gaits with a specified forward velocity (for upcoming
experiments), we enforced an average x-velocity as a nonlinear equality constraint.
Due to the complex nonlinearity of this problem, we employed a pseudospectral
method (Gottlieb and Orszag, 1977) to improve computational efficiency and ro-
bustness. This pseudospectral method numerically approximates the time solution
of the dynamics by trigonometric or orthogonal polynomials at chosen collocation
points. This method was previously applied to single-domain, under-actuated walk-
ing in (A. Hereid, S. Kolathaya, and A. D. Ames, 2016), but was extended to all
three configurations in this paper.

2.5 Experimental Evaluation
To validate the modularity in the robot design experimentally, this framework also
requires modularity of the control structure, including mechanical, electrical, and
controller implementation. This section will introduce the electrical system of
AMBER-3M first, then an experimental control procedure for walking is detailed.
The effectiveness of the modular components will be shown through tests of each
behavior. Finally, we present a more thorough analysis of point-foot walking loco-
motion economy.

Experiment Configuration
The control framework of AMBER-3M is composed of three levels: the high level
controller, the low level controller and the data logger. In the high level, the on-
board cRIO running RTLinux serves as the master board, communicating with the
low level controllers in a real-time fashion. Experimental data is sent to a remote
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desktop, which acts as the data logger. On the low level, motor drivers deliver the
desired torque-driven motion to their corresponding BLDC motors. Other modes of
experimental feedback, such as the rotary boom states, torso rotation, and electrical
power consumption, are collected by an embedded FPGA board.

Algorithm 1 Real Time Controller
Input: AMBER-3M design configuration: 𝑖 ∈ { 𝑓 , 𝑝, 𝑠};
Input: AMBER-3M model parameters;
Input: Domain/step switching flag: 𝜏𝑖𝑚𝑎𝑥,𝑣;
Input: Optimization Parameters: 𝑝𝑖,+𝑣 , 𝑝𝑖,−𝑣 , 𝑞𝑖,+, 𝛼𝑖𝑣;
Input: PD controller gains: 𝐾 𝑖𝑝 , 𝐾 𝑖

𝑑
;

Input: System states (Left/Right): (𝑞𝑖
𝐿𝑅
, ¤𝑞𝑖
𝐿𝑅

)𝑇 ;
Input: L/R stance; Encoder status; Drive status;
Output: Enable/Disable motor drives;
Output: Desired torque for each BLDC motor;
1: Enable motor drives;
2: repeat
3: Wait till all motor drives are enabled
4: until ( Drive-Status == Enable )
5: while ( ¬ Stop-RT ) do
6: if Control type == Initialization then
7: 𝑞𝑑 = 𝑞𝑖,+; ¤𝑞𝑑 = 0;
8: else
9: Map (𝑞, ¤𝑞)𝑇 from Left/Right to Stance/nonStance;

10: Calculate phase variable 𝜏 = 𝜏(𝑞𝑖) ;
11: if 𝑖 == 𝑓 then
12: Calculate (𝜉1, 𝜉2) based on 𝜏;
13: end if
14: Calculate ¤𝜏;
15: Calculate (𝑦𝑑 , ¤𝑦𝑑);
16: Calculate (𝑞𝑑 , ¤𝑞𝑑) using PHZD reconstruction Ma et al., 2014;
17: end if
18: Apply PD controller:

𝑢𝑖 = 𝐾 𝑖𝑝 (𝑞𝑎 − 𝑞𝑑) + 𝐾 𝑖𝑑 ( ¤𝑞𝑎 − ¤𝑞𝑑);
19: Map 𝑢𝑖 from Stance/nonStance to Left/Right;
20: if 𝜏 > 𝜏𝑖𝑚𝑎𝑥,𝑣 then
21: Switch to next domain 𝑣+ or step.
22: end if
23: Sending torque command to motor driver;
24: Log data into remote desktop;
25: end while

Demonstrating Multiple Walking Behaviors
For each leg configuration, an optimized gait can be reliably produced by the
aforementioned optimization method. To realize the motion experimentally on
AMBER3M, a real time controller was programmed in C++ and compiled onto the
cRIO. A detailed pseudocode is presented in Algorithm 1 to illustrate this control
method. Further explanations for the algorithm can be found in (Ma et al., 2014).
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It is very important to notice that, for each configuration, the control method was
purely PD feedback control without any pre-defined feedforward component. Due
to the modularity of this control structure, switching among design configurations
is accomplished without restructuring code. To demonstrate the efficacy of the
modular framework, gaits were generated for each leg configuration and realized on
AMBER-3M using Algorithm 1. The robot was able to walk three laps (64.65 m) on
the boom with each tested gait, at which point they were deemed successful. Tiles of
a single step from each behavior are shown in Fig. 2.7. A phase portrait of the gaits’
experimental and simulated performance is provided in Fig. 2.8, demonstrating that
periodic walking was achieved.

Figure 2.7: Walking tiles from each configuration trial: Flat-foot (top), Point-Foot
(middle), and Compliant Point-Foot (bottom).
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Point-Foot Locomotion Economy
Here, we assess the locomotion economy of point-foot walking across speeds with
systematic experiments. The objective was to discover the energetic optimal limit for
point-foot walking over a range of transportation speeds, as well as any trend in this
performance. 36 walking gaits were generated, covering a speed range of 0.34 m/s
to 0.94 m/s, and tested on AMBER-3M. Note that these speeds are the simulated
average forward velocity of the center of mass of the robot. Due to underactuation
and model uncertainty, experimental velocities differed from the simulation. For
instance, at very slow speeds (< 0.3 m/s), unmodeled friction has a more significant
effect, resulting in a reduced speed in experiment.

For each experiment, AMBER-3M again walked three laps while data was logged.
Since the robot walks in a circle, the gait is not symmetric between the left and right
legs. To circumvent this issue, COT was analyzed for every two steps, or one stride,
to average these asymmetries. The mechanical cost of transport for the 𝑗 𝑡ℎ stride
was calculated as:

𝑀𝐶𝑂𝑇𝑗 =
1

𝑀𝑔𝑑 𝑗

∫ 𝑡+
𝑗

𝑡−
𝑗

| 𝑢 |𝑇 | ¤𝑞 | 𝑑𝑡 (2.13)

where 𝑀 is the total mass of the robot, 𝑔 is the gravitational constant, and 𝑑 𝑗 is
the distance traveled by the center of mass in the kinematic model. The torque 𝑢 is
estimated from the measured current going to the motor, and the angular velocity
¤𝑞 is measured by the incremental encoder at each joint. These measurements were
then plotted against their corresponding average forward velocities for each step in
Fig. 2.9.

As shown in the plot, it can be seen that six gaits occupied the lowest region of
the plot which have been highlighted in the figure. Using these six gaits, a Pareto
frontier can be created to represent the locomotion economy extreme for point-feet
walking on AMBER-3M. A significant (𝑝 < 0.005) trend was found in these optimal
gaits through regression analysis, showing that the mechanical energy required to
walk increases with speed.

The electrical power consumption of the motor drivers was measured directly from
the DC power supply. We calculated the electrical cost of transport for the 𝑗 𝑡ℎ stride
by

𝐸𝐶𝑂𝑇𝑗 =
1

𝑀𝑔𝑑 𝑗

∫ 𝑡+
𝑗

𝑡−
𝑗

𝐼𝐸 𝑑𝑡 (2.14)
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Figure 2.8: Phase portraits for each behaviors: Flat-foot (top), Point-foot (middle),
and Compliant Point-Foot (Bottom).

where 𝐸 = 48.3𝑉 is the DC voltage of the power supply, and 𝐼 is the total current
going to the motor drivers. The electrical cost of transport for the six optimal gaits
is shown in Fig. 2.10. It should be noted that this power data does not include the
power consumed by the sensors and on-board computers. Because these additional
power costs are relatively constant, they would not effect any trends seen in the
data. In comparison with Fig. 2.10, where higher velocity tends to require higher
mechanical energy, electrical power shows a significant (𝑝 < 0.01) decrease in cost
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Figure 2.9: Plot of mechanical cost of transport vs walking speed for (a) all 36
successful gaits and (b) the six optimal gaits. Each color is a distinct gait and each
dot is a single stride.

versus speed.

A video of the experiments is shown in n.d.

2.6 Conclusions
A modular robot design was presented as a means of comparing locomotion economy
for multiple bipedal gait behaviors. To show the physical capability of AMBER-
3M to viably walk with all its leg modules, three different walking behaviors were
implemented experimentally. These preliminary results demonstrated that a single
robotic platform and control methodology can successfully realize stable walking
across multiple behaviors. A total of 36 optimized gaits were used to further study
locomotion economy for point-foot walking over a wide walking speed range. A
Pareto-optimal frontier for locomotion economy was distilled, illustrating the peak
energy performance of this design configuration at various speeds. Significant, yet
opposite, trends were seen in the mechanical and electrical costs. Future work will
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Figure 2.10: Plot of electrical cost of transport vs walking speed.

focus on similar in-depth analysis for the flat- and spring-foot configurations, with
the intent of further investigating the energetics of robotic bipedal locomotion.

2.7 Lessons Learned and Later Work
This work was a great look into how the physical shape, size, and configuration of
a robot was directly influencing the limit of a robot’s capability, regardless of how
optimizations are used in the motions and controllers. This idea would come to play
a part in the later work with hopping robots and how to improve their locomotion
efficiency through mechanical design.

Around the same time that this work on robotic locomotion efficiency was being
performed, AMBER-3M was also being used to test out new control and motion
generation methods (M. J. Powell et al., 2016). This work was looking into using
the angular momentum state of the system as the control target when designing
gaits for AMBER-3M, which was a great candid for the initial tests given its model
simplicity.

In the years since then, AMBER-3M has been used in many other research appli-
cations including Data-driven control (Tabuada et al., 2017), walking over slippery
surfaces (Wen-Loong Ma, Or, and Aaron D Ames, 2019), Preference-based learning
(Noel Csomay-Shanklin, Tucker, et al., 2021; Tucker et al., 2021), Control barrier
functions (Noel Csomay-Shanklin, Cosner, et al., 2021; Rodriguez et al., 2022), and
Model predictive control (Galliker et al., 2022).
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C h a p t e r 3

AMPRO-3: A TRANSFEMORAL PROSTHESIS

Figure 3.1: AMPRO-3 in use on a treadmill in the AMBER Lab at Caltech.

3.1 Introduction of the AMPRO Series
Throughout 2013 and 2014 the AMBER Lab designed and created the first two
iterations of the prosthetic devices known as AMPRO-1 and AMPRO-2, while at
Texas A&M University. These prostheses were intended for people that had an
amputation or injury above the knee, somewhere in the thigh. The goal of the
devices was to attach to the user’s leg and allow them to regain the ability to move
efficiently. Each prosthesis contained two actuators to drive the extension/flexion
degree of freedom of the both knee and ankle in a controlled manor. This would
allow the user to not only walk, but move over terrain such as stairs where the height
of the surface is changing and the knee would preferably need to be bending while
also exerting torque. This was different from commercial devices which would
generally only control the ankle, while leaving the knee motion as passive with a
built in locking feature to support weight during stance.

Throughout 2014 and parts of 2015 AMPRO-2 was successfully tested by both
the students responsible for designing it and an amputee, yielding results for many
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papers. However, when the AMBER lab moved to the Georgia Institute of Tech-
nology in 2015, these two devices remained behind. In order to continue this area
of research after this point, a new iteration of the AMPRO series was created:
AMPRO-3. Between the desires to have a more capable robot and to expand beyond
previous research, this new device was created with a few extra features and consid-
erations. This chapter of the thesis will discuss those novel changes incorporated
into AMPRO-3 and some of the results/papers that arose from its creation.

Figure 3.2: AMPRO-3 assembled for the first time after manufacturing was com-
plete.

3.2 AMPRO-3
AMPRO-3, seen in Fig. 3.2, began getting designed in Fall 2015 out of need for
a new device. After all of the testing done with the previous iterations of the
device, it was decided that a few changes were in order. Specifically, higher torque
capability, more user comfort, and improved ability to walk over terrain, all while
still maintaining the electrical framework of AMPRO-2 for ease of transferring code
to the new device.

The improved torque required a slight increase in gear reduction at each joint,
especially for the ankle. Additionally, it was found that the actuator and transmission
layout on AMPRO-2 had some noise issues and were quite wide, making the device
a little more cumbersome for the user. To fix all of these issues, the actuator was
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split into sections. Rather than having the motor and gearbox in line, with a belt
leading to the joints, the new layout would have the motors and gearboxes offset
with timing belts placed between. This solved the large width problem as well as
the noise complaints. The overall gear reduction was also increased by having the
timing belt pulleys perform an additional reduction, increasing the peak torque of
each joint. In order to keep the center of mass for the leg higher, a linkage was used
to drive the ankle torque down to the joint rather than the chains used on AMPRO-2.

In order to tackle the goal of improving user comfortability, springs were added
at the output of each actuator. As will be shown later, these springs would give
some deflection under the users weight, leading to lower impacts felt by the user.
The device would still be able to sense this compliant motion through the use of
additional sensors on the joint outputs. These springs can be seen as dark spirals in
the right hand side of Fig. 3.2 above.

To give the device the ability to comform to terrain as well as add more user comfort,
a third joint was incorporated in the design: ankle roll. This joint would allow the
foot to passively match the angle of the terrain in the frontal plane, while the actuated
ankle pitch joint could handle the rest. This joint took the longest to design, since
the goal was to still keep it compact around the ankle joint. In the end, small springs
and a pair of bushings were placed to give the joint its compliant range of motion.
This third joint can be seen in the lower portion of Fig. 3.2, just above the foot. This
joint had its own sensor placed on the front to provide feedback to the controller if
desired. Further, a 6-axis load cell was also placed just below the ankle to give any
ground reaction information needed for the controller or assessment of the motion.

Lastly, most of the frame of the device was customized to reduce the mass of the
overall device. While this meant the manufacturing time and cost was higher, it
meant that the device was able to be kept just below the typical leg mass that it
was replacing. These custom frame pieces can seen throughout the device in Fig.
3.2. The device was finished getting manufactured around May 2016, at which time
testing began inearnest. The design of the AMPRO-3 was first presented in (Huihua
Zhao, Eric Ambrose, and Aaron D. Ames, 2017), where the device, its functionality,
and its initial performance were documented. The section on the design from this
paper is shown next.
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Figure 3.3: Assembled hardware of AMPRO3 (left) and the experimental testing
setup (right).

3.3 Excerpt on the Design of AMPRO3
To experimentally validate the systematic control methodology—including hybrid
system modeling, nonlinear control and gait generation—a new powered trans-
femoral prosthesis, AMPRO3, is designed and built from ground up. The mechanical
design of AMPRO3 is discussed here with a special focus on the various compliant
components. The electrical on-board computation and sensing of AMPRO3 are
then illustrated in detail.

Mechanical Design of AMPRO3
The design of AMPRO3, seen in Fig. 3.3, provides the convenience of on-board
power alongside the advantages of highly dynamic motion and sensing capabilities,
all in a compact design. The device weighs in at 5.95 Kg without the knee adapter,
and reaches a total height of 451 mm. Both the knee and ankle flexion/extension
joints are actuated and actively controlled on this device. A closer look at the
transmission drives is shown in Fig. 3.4. Each of these joints contains a 206 W
brushless DC motor (MOOG BN23) capable of just over 1 Nm peak torque. In order
to achieve the desired torques associated with human walking, harmonic Gearheads
with a 1:100 reduction are placed between the motor and the joint.
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Figure 3.4: The novel design features of AMPRO3, including: Transmission (Left),
Torsion Springs (top right), and Ankle Roll Joint (bottom right).

Unlike previous AMPRO models, which had the motor and gearhead mounted in
line with each other (H. Zhao, Horn, et al., 2016a), AMPRO3 has the gearhead
separated from the motor and then connected via a timing belt. Adding this belt
connection between the two allows for separate management of the gear reduction
at each joint, while still using the same motors and gearheads for both. The belts
are also used to produce the last reduction between the motor and joints. The belt
ratio in the ankle and knee transmissions are 4:7 and 5:6, respectively. Table 3.1
shows the final gear ratio, peak torque (𝑇𝑝), continuous torque (𝑇𝑐), and max speed
(𝑉𝑚𝑎𝑥) for each joint’s transmission. The joint torques listed include an approximate
efficiency of the harmonic gearheads of 70%. In addition to these changes, two
major design changes were made in AMPRO3 from previous versions. These key
changes are discussed separately in the following paragraphs.

SEA Joints. The first major mechanical design change within AMPRO3 is the

Table 3.1: Joint Transmission Capabilities

Joint Gear Ratio 𝑇𝑝(Nm) 𝑇𝑐(Nm) 𝑉𝑚𝑎𝑥(rad/s)
Ankle 1:175 123 38.5 4.0
Knee 1:120 85 26.5 5.8
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addition of compliance at each joint. For the two actuated degrees of freedom, this
compliance is represented in the form of a planar torsional spring mounted between
the gearhead and the joint. The resulting compliance from the springs decreases the
effects of impact on the motors and user, leading to smoother and more comfortable
movement. The shape of the torsion springs is based on the design of (Ihrke et al.,
2010), modified only for mounting purposes and to reach the desired stiffness of
20Nm/deg. The spring model is shown in Fig. 3.4. The stiffness of these springs
was chosen based on the joint torque profile seen in simulation. Adding in this
compliance between the motor and the joint creates the possibility of a SEA. In
cases like walking, where impacts happen at predictable moments within the gait, it
becomes possible to control the timing of energy storage and release in coordination
with desired motion, thus saving energy (Paluska and Herr, 2006).

Compliant Passive Ankle Roll Joint. Motivated by the fact that lateral ankle
movement plays an important role for a person’s preferred motion during walking
(for example, walking on uneven terrains) (Ficanha, Rastgaar, and Kaufman, 2014),
AMPRO3 also contains a third joint, ankle roll, as another major change from
previous designs. This joint is not actuated, although motion is passively controlled
through compression springs as shown in Fig. 3.4. These springs are linear and
placed on both sides of the joint, leading to a roll joint stiffness of about 2.1Nm/deg.
The stiffness of these springs was chosen through a control-in-the-loop method of
design, as in (J. Reher, E. A. Cousineau, et al., 2016). The optimization for the
prosthetic model was run with multiple spring constants, and the final choice was
made based on gait parameters like joint torques and cost of transport.

While the addition of this roll joint provides further compliance between the envi-
ronment and the user, it also allows for a wider variety of gaits and control methods
through available 3D movement (Bauby and A. D. Kuo, 2000). The user can change
the width of their stance or walking, and navigate sloped terrain. Based on the
designed gaits in simulation, the range of motion for this joint is limited through
hard-stops to provide up to 5 degrees of adduction and 2 degrees of abduction. The
latter is limited to ensure the user does not move their center of pressure outside
their base of support.

On-board Sensing and Computation
A BeagleBone Black (BBB) micro-controller runs the three-level control architecture—
including sensing and computation—on board the prosthetic. The low-level control
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Driver DC Motor LipoEncoder Load CellIMUs AMPRO Cape

Figure 3.5: Electric components of 3D prosthesis AMPRO3.

of motor driving comes from two ELMO motion controllers (Gold Solo Whistle).
The motion controllers are actively controlling the motion of the ankle and knee
joints using feedback from two encoders at each joint and input from the BBB.
An incremental encoder placed on the motor side of the joints and an absolute
encoder placed on the joint output side can be used to measure any deflection of
the torsion spring. User sensory feedback is provided to the device through an
Inertial Measurement Unit (IMU) fixed to the knee adapter. Further environment
sensing is gained from a 6-axis load cell in the foot. Two flex force sensors can
also be mounted at the heel and toe of the foot to provide on-and-off ground contact
feedback during more complex foot motion (e.g., multi-contact with heel strike and
toe off). The whole system is powered through a 9-cell (33.3 V), 3900 mAh Li-Po
battery (ThunderPower).

To expand the functionality of the BBB, a custom printed circuit board (PCB):
AMPRO Cape, is designed. The Cape adds in a CAN bus chip (for communicating
with ELMO drives), 4 USB ports (for communicating with load cell, force sensors,
and IMUs), and a 5 V voltage regulator (for power supply of the BBB and USB
ports). For the purpose of better wire organization, we also designed a PCB for the
ELMO motion driver. This ELMO board contains a) a voltage converter to power
the logic board of the ELMO, and b) serial CAN bus and power connectors to allow
multiple ELMOs to be connected in serial. The result is a compactly organized
self-contained prosthesis. The major electric components are shown in Fig. 3.5
and the assembled hardware of AMPRO3 is shown in Fig. 3.3. The three-level
control architecture of AMPRO3 is similar to AMPRO1, which can be referred to
(H. Zhao, Horn, et al., 2016b). The high level controller of AMPRO3 is coded into
C++ packages and runs on the ROS. The detailed discussion is omitted here and can
be referred to in the discussion of AMPRO1 (H. Zhao, Horn, et al., 2016a).
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3.4 Later Work on AMPRO
Beyond the work performed in (Huihua Zhao, Eric Ambrose, and Aaron D. Ames,
2017), AMPRO-3 was used for two other papers around this same time (Azimi,
Shu, Huihua Zhao, Eric Ambrose, et al., 2017) and (Huihua Zhao, Ayonga Hereid,
et al., 2016), which looked more into the motion generation for prosthesis-human
combined gaits and some novel controller testing. In parallel to all of this, a new
collaboration was initiated with another lab at Georgia Tech that wanted to use
AMPRO-3. It was decided that a new version of the device would be designed, and
two copies would be created; one for each lab. This final version of the device is
AMPRO-4. Only a few changes were made for this device from AMPRO-3, but they
greatly improved the ease of use for the device. These changes included adding in a
disconnect point in the leg, where spacers could be added to allow the height of the
device to change depending on the user. Before, the user would have to add spacers
to their other leg to match the device, and this would remove the need for that. This
disconnection point can be seen in Fig. 3.6. The other changes were mainly to
fix small issues with assembly and functionality that were discovered while using
AMPRO-3.

Figure 3.6: Assembly of the foot from AMPRO-4 disconnected from the rest of the
device.
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3.5 Other Work Using AMPRO-3 and AMPRO-4
The hardware of AMPRO-3 and AMPRO-4 have been used on many papers since
2017. AMPRO-3 has gone on to facilitate six more papers in the AMBER lab, for
a variety of topics such as Adaptive control (Azimi, Shu, Huihua Zhao, Gehlhar,
et al., 2019), developing human-machine interface technology (Yu et al., 2020),
recurrent neural network control (Gao et al., 2020), testing musculoskeletal models
(K. Li et al., 2021), and model-dependent control (Gehlhar, J.-h. Yang, and Aaron D
Ames, 2021; Gehlhar and Aaron D Ames, 2021).

The version of AMPRO-4 that was used by the EPIC Lab at Georgia Tech was
modified to fit a multitude of amputees and retrofitted with more sensing to assess
performance. This device has since been used by them for many research topics
(Bhakta, Camargo, Donovan, et al., 2020; Bhakta, Camargo, Kunapuli, et al., 2019;
Bhakta, Camargo, and A. J. Young, 2018; Bhakta, Camargo, Compton, et al., 2021;
A. Young and Krishan, 2019).

Unfortunately, the mechanical design side of the AMPRO project has been dormant
since the fourth iteration was created, and the maker has moved on to focus on
hopping robots. Many of the lessons and findings of the work with prostheses made
there way towards influencing the design of these hopping robots. This can been
seen in the research of internal compliance and the use of new actuators, on-board
power, and custom-machined parts within these hoppers. These hopping robot
projects will be examined in the following chapters, as they make up the majority of
this thesis.
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C h a p t e r 4

ANALYSIS OF VERTICAL HOPPING MECHANISMS

After the lab moved from Georgia Tech to Caltech, a new project in partnership with
Disney Research and Development was started. This project involved creating a
hopping robot that would mesh with a few key design principles that Disney stands
by such as safe-actuation. The work discussed in this and the next two chapters will
cover the multiple generation of hopping robots that were designed, built, and tested
in the AMBER Lab, opening doors for new behaviors and directions of research.
This chapter presents the work published in (E. Ambrose, N. Csomay-Shanklin,
et al., 2019).

4.1 Introduction to hopping

Figure 4.1: A 1-Dimensional, moving-mass hopping robot used to experimentally
demonstrate the results of this paper

The hopping motion is fundamentally hybrid in nature, consisting of multiple phases
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of differing governing dynamics as well as discrete events (Westervelt, J. W. Grizzle,
and Koditschek, 2003; Sinnet et al., 2011). Similar to the case of bipedal running
(W. Ma, Kolathaya, et al., 2017; J. Park et al., 2014), there are two different domains
of continuous dynamics separated by very dramatic discrete impacts. These impacts
cause energy to be lost beyond what would normally be lost in a robot due to friction
alone. In order to make up for this disruption and reach a desired hopping height,
the robot must add energy back in through actuation. The easiest way to do this is
by applying a force on the world while the robot is in contact with the ground, and
then spend the time in the air preparing for that action. However, the duration of
the ground phase tends to be much smaller than that of the aerial phase, leading to
a need for very brief and powerful actuation during this time.

Robotic hopping is not a new problem, but one that has been studied for decades
(M. H. Raibert, 1984; H. B. Brown and Zeglin, 1998; Fiorini and J. Burdick, 2003),
with many approaches to the problems of actuation and control. Two methods of
overcoming the issue of inputting energy during the short ground phase have been
followed. The first is the idea of decreasing the amount of energy lost at each
impact, to therefore reduce the amount that must be input back to the system by
the actuator. This has been accomplished by decreasing the mass of the robot’s
foot (Zeglin, 1999), or by taking shorter and higher frequency hops (Zeglin, 1999;
M. H. Raibert, H. B. Brown, and Chepponis, 1984). The second way of improving
actuation is to increase the amount of time spent on the ground to allow for longer
durations of energy input. This is typically done by using a leg with a large range of
motion and an elastic element (Haldane, Yim, and Fearing, 2017; Hwangbo et al.,
2018). By increasing the duration of the ground phase, the on-board actuators can
be less powerful and lighter while still having sufficient time to provide the required
energy to the system. Work has also been done to increase the capabilities of robots
to jump higher (Salton et al., 2010; BostonDynamics, 2012) or over difficult terrain
(C. M. Hubicki et al., 2016). For the case of the Urban Hopper and the Sand Flea
robot, extreme jump heights were achieved using compressed energy that could be
released at a chosen moment. However, storing the amount of energy needed to
jump to these heights required more time than the robot was in the air, preventing
the immediate succession of another jump. This type of energy release could also
be unsafe due to the high impulse force.

With the end goal of developing robots which can freely hop around in safe ways,
the group at Disney Research and Development began working towards hopping
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with safe actuation via their LEAP robot (DisneyResearchHub, 2016). The idea of
safe actuation entails placing an elastic element between the robot and the world
and, in doing so, creating a limit on the impulse that can be transmitted between
the two. This can be best seen in the patent (Smoot et al., 2018), detailing a robotic
bouncing ball consisting of an elastic shell and internal actuators. Given the size
constraints of this elastic element and the robot itself, further limits on the duration
of the ground phase, the range of motion for the robot, and total amount of energy
storage are placed on the system. Such constraints prevent the use of certain energy
input strategies during the ground phase.

The goal of this work is to begin examining methods of hopping which will work
in such a scenario while still achieving sufficient stability in the process. The two
methods analyzed here for storing energy in the spring are a clutch-release method,
similar to the style of the Bow Leg hopper (H. B. Brown and Zeglin, 1998), and a
moving-mass method, as in (Aguilar and Goldman, 2016), to generate force during
the ground phase.

4.2 Models of 1D Hoppers
Two hopping robots are examined in this work, with different designs and methods of
actuation. The coordinates, 𝑞, of each model represent the heights of the individual
entities from the ground, as shown in Fig. 4.2. The corresponding configuration
space is given by 𝑞 ∈ 𝑄 ⊂ R𝑛, where 𝑛 is the number of coordinates for the given
model. For the tangent bundle with coordinates (𝑞, ¤𝑞) ∈ 𝑇𝑄 ⊂ R2𝑛, the hybrid
control system is defined as the tuple,

ℋ𝒞 = (Γ,D,U, 𝑆,Δ,FG) (4.1)

• Γ = {𝑉, 𝐸} is a directed cycle containing vertices 𝑉 and edges 𝐸

• D = {D𝑣}𝑣∈𝑉 is the set of admissible domains

• U ∈ R is the set of admissible control inputs

• 𝑆 = {𝑆𝑒}𝑒∈𝐸 is the set of guards for domains, which represents the transition
point between domains

• Δ = {Δ𝑒}𝑒∈𝐸 is the set of reset maps between domains

• FG is the set of vector fields representing continuous dynamics of the domains
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Figure 4.2: Model coordinates for the Compress-Release (left) and Moving-Mass
(right) hopping robots.

Fig. 4.3 contains a visual representation of the hybrid domain cycle for each model.

The dynamics during each domain can be written as

𝑀 ¥𝑞 + 𝐻 (𝑞, ¤𝑞) = 𝐵𝑢 + 𝐽𝑇𝑣 (𝑞)𝐹𝑣 (4.2)

where 𝑀 ∈ R𝑛×𝑛 is the mass matrix, 𝐻 ∈ R𝑛 is a matrix containing the gravity,
damping, and spring forces, 𝐵 ∈ R𝑛 is the actuation distribution matrix, and 𝑢 ∈ R
is the input force from the actuator. In addition, 𝐽𝑣 ∈ R𝑛 is the Jacobian of
the holonomic constraint in 𝐷𝑣 and 𝐹𝑣 ∈ R is the magnitude of that holonomic
constraint force. The method of defining these constraints and their forces is based
on the work in (Murray, Z. Li, and Sastry, 1994). During the ground phase this
holonomic constraint represents the foot being held in place by ground forces. The
beginning of the aerial domain is subject to another holonomic constraint in the
form of a hardstop around the spring, preventing the spring from extending past its
equilibrium length. As a consequence of this constraint, the foot and body of the
robot will move as one entity together until a compressive force is placed on the
spring again. The purpose of this hardstop is to allow for a simpler spring design
and to cause the robot to leave the ground at a known moment, i.e. when the spring
reaches its equilibrium length.

Some of the transitions between domains involve what are assumed to be perfectly
plastic impacts, leading to reset maps governing sudden changes of velocity for some
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coordinates. In Fig. 4.3 the reset maps at landing and take-off are represented by
Δ𝐿 and Δ𝑇 , respectively. The method of getting a reset map is based on the work in
(J. W. Grizzle, Chevallereau, A. D. Ames, et al., 2010), where the velocity change
is deemed a result of an instantaneous impulse force. The map for landing sets the
velocity of the foot to zero instantly, while the reset map at take-off is a conservation
of momentum equation between the foot and body given by

¤𝑧 𝑓 + = ¤𝑧𝑏+ = Δ𝑇 ¤𝑧𝑏− =
𝑀𝑏

𝑀𝑏 + 𝑀 𝑓

¤𝑧𝑏− (4.3)

where 𝑀𝑏 and 𝑀 𝑓 are the masses of the body and foot, and the scripts − and +
represent information from before and after the reset, respectively. This means that
as the body of the robot rises up and the spring reaches the hardstop, then the foot
and body velocities will instantaneously change to a new and equal value.

Figure 4.3: Hybrid cycles for both the Compress-Release Hopper (left) and the
Moving-Mass Hopper (right).

The following subsections will further detail each robot and their corresponding
hybrid control system.

Compress-Release Hopper (CRH)
The CRH hopper uses an actuator within the body to compress a spring and store
energy while in the air, and then releases that energy during the ground domain. In
order to simplify analysis, a hardstop is placed around the spring which prevents
extension past its equilibrium length. This results in the air phase being split
between two parts. The first aerial domain has the hardstop active and the spring
un-compressed, while the second aerial domain is the spring compression phase
when the hardstop is no longer active. The end result is a hopping motion with three
domains, as seen in the left half of Fig. 4.3. This cycle starts with the robot entering
the first air domain, 𝐷𝑎1, with the hardstop in effect until a certain time, 𝑡 = 𝑡𝑠.
The robot then begins compressing the spring, removing contact with the hardstop
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and entering a second air domain, 𝐷𝑎2, where there is no internal constraint. This
continues until the foot contacts the surface, beginning the ground domain, 𝐷𝑔.
While on the surface, the robot reverses direction and leaves the ground when the
body extends to the hardstop length, 𝐿0. At this moment, time is reset and the cycle
repeats. The definitions for these domains and their boundary guard surfaces are

𝐷𝑎1 = {(𝑡, 𝑞, ¤𝑞) ∈ R × T𝑄 : 𝑧 𝑓 ≥ 0, 𝑡 ≤ 𝑡𝑠} (4.4a)

𝑆𝑎1 = {(𝑡, 𝑞, ¤𝑞) ∈ 𝐷𝑎1 : 𝑡 = 𝑡𝑠} (4.4b)

𝐷𝑎2 = {(𝑡, 𝑞, ¤𝑞) ∈ R × T𝑄 : 𝑧 𝑓 ≥ 0, 𝑡 > 𝑡𝑠} (4.4c)

𝑆𝑎2 = {(𝑡, 𝑞, ¤𝑞) ∈ 𝐷𝑎2 : 𝑧 𝑓 = 0, ¤𝑧 𝑓 < 0} (4.4d)

𝐷𝑔 = {(𝑞, ¤𝑞) ∈ T𝑄 : 𝑧 𝑓 = 0, 𝑧𝑏 ≤ 𝐿0} (4.4e)

𝑆𝑔 = {(𝑞, ¤𝑞) ∈ 𝐷𝑔 : 𝑧𝑏 = 𝐿0, ¤𝑧𝑏 > 0} (4.4f)

where here, 𝑞 = [𝑧𝑏, 𝑧 𝑓 ]𝑇 and 𝑄 ⊂ R2.

For the CRH model, there is a specific amount of pre-compression to generate in
the spring during the aerial phase, 𝛿∗, that will yield the correct return height of the
robot after a full period of motion. Once 𝛿∗ has been calculated, as done in Section
4.3, a cubic Bézier polynomial is used as the desired profile for the compression of
the spring given by

𝐵(𝜏) = 𝛿∗(3(1 − 𝜏)𝜏2 + 𝜏3) (4.5)

𝜏 = 𝑚𝑜𝑑 (𝑡, 𝑡𝑠)/𝑡𝑖 (4.6)

where 𝑡𝑠 is the time after entering 𝐷𝑎1 to begin spring compression, and 𝑡𝑖 is the
anticipated time to impact from 𝑡𝑠 which can be calculated from height and velocity
information. To minimize energy consumption of the motor, it is best to set 𝑡𝑠
as large as possible; however, in order to ensure that the hardware is capable of
following the given trajectory, 𝐵′(𝜏) ≤ 𝑣𝑚𝑎𝑥 and 𝐵′′(𝜏) ≤ 𝑎𝑚𝑎𝑥 need to be enforced
over the compression profile, where 𝑣𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥 are the maximum velocity and
acceleration of the motor, respectively.

Moving-Mass Hopper (MMH)
The second hopper utilizes a moving mass within the body of the robot, which is
actuated in series with the spring via a ball screw in order to apply a force to the
spring during the ground phase, as seen in Fig. 4.2. The dynamics for this hopper
are setup in the same way as in (4.2), but with a few minor changes. The inherent
differences between this model and the CRH model revolve around this third mass:
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the mover. Firstly, there are now three coordinates used to represent the hopper as
seen in Fig. 4.2, so 𝑞 = [𝑧𝑏, 𝑧 𝑓 , 𝑧𝑚]𝑇 ∈ R3 and 𝑄 ⊂ R3. Secondly, the actuator is
now a motor moving itself along a ball screw and is therefore acting between the
body and mover, which will be reflected in the actuation matrix, 𝐵. Lastly, there
is no actuator force across the spring so there is only one domain within the aerial
phase leading to a simpler domain cycle, as seen in 4.3. There are still the same two
impacts due to the ground and a hardstop around the spring, but the aerial domain
and its guard are now defined as

𝐷𝑎 = {(𝑞, ¤𝑞) ∈ T𝑄 : 𝑧 𝑓 ≥ 0} (4.7a)

𝑆𝑎 = {(𝑞, ¤𝑞) ∈ 𝐷𝑎 : 𝑧 𝑓 = 0, ¤𝑧 𝑓 < 0}}. (4.7b)

4.3 1D Hopping Mechanism Analysis
In this section, orbital stability analysis will be performed for each hopper model
using a Poincarémap (M’Closkey and J. W. Burdick, 1993). The Poincarésection is
placed at the hop apex, given by

Σ =

{
(𝑞, ¤𝑞) ∈ TQ : 𝑧 𝑓 > 0, ¤𝑧𝑏 = 0

}
(4.8)

Four cases of damping and control action will be examined in simulation. The
first is with actuation assuming there is no damping in the robot joints and the
simulation also includes no damping. The second case will take this same action
but in simulation containing damping to see how it performs. The third trial will
use actuation based on a robot model with damping during the ground phase and
in a simulation with that exact same amount of damping present. The final case
will show how the actuation from the third case performs with a larger amount of
damping in the simulation.

CRH Model Analysis
The value of compression needed in the spring, 𝛿∗, is found through calculating
the amount of spring energy that will make up for the losses from friction and
impacts, as well as any desired height change. The complexity of determining this
compression value gets increasingly difficult when including the damping terms of
the dynamics. In order to analyze the stability of the hopper and its control methods,
we will begin with the case where damping is not considered and then work towards
the case with damping during the ground phase. By not considering these damping
terms, we can determine whether or not the robot is able to converge to the goal
height with corresponding model uncertainty.
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Due to the spring hardstop, the foot coordinates are fixed relative to the body during
flight, which leads to the Poincarésection of this model being a one-dimensional
curve in the 𝑧𝑏 coordinate. The simplicity of this section allows for the Poincarémap
to be easily plotted as a scalar map, as seen in the subplots of Fig. 4.4.

The control input for this system is the amount of potential energy to generate
through spring compression during the second aerial domain. In order to calculate
these controllers, we also define the following height characteristics:

• 𝐻𝑘 , the actual apex height of the current hop

• 𝐻∗, the desired height to reach at the apex of the next hop

• 𝐻𝑘+1, the actual apex height reached on the next hop

• 𝐻𝑐, the value given to the controller as the apex height of the current hop

Note that this 𝐻𝑐 variable is used as a means of simulating uncertainty in the state
measurement for the body height. By giving incorrect information to the system,
we can observe any bounds on the allowable uncertainty.

Undamped Cases

In order to find the amount of energy needed to input, we must first find how much
energy is expected to be lost during our next hop if we were to reach the desired
height. We will do this by calculating the energy lost in each impact and also the
energy required to make any anticipated height change. In the case without damping,
these are given by

𝐸𝐿 (𝐻𝑐) = 𝑀 𝑓 𝑔(𝐻𝑐 − 𝐿𝑠) (4.9a)

𝐸𝑇 (𝐻∗) = (𝑀𝑏 + 𝑀 𝑓 )𝑔(𝐻∗ − 𝐿𝑠)
(𝑀 𝑓

𝑀𝑏

)
(4.9b)

𝐸𝐻 (𝐻𝑐, 𝐻∗) = (𝑀𝑏 + 𝑀 𝑓 )𝑔(𝐻∗ − 𝐻𝑐) (4.9c)

where 𝐸𝐿 is the energy lost in the landing impact due to the foot contacting the
ground, 𝐸𝑇 is the energy lost in the take-off impact due to the foot being picked back
up off the ground, and 𝐸𝐻 is the potential energy required to change height from the
current hop height to the next. In order to reach the desired hop height, the energy
we input in the spring, 𝑢(𝐻𝑐, 𝐻∗), must be equal to the sum of these three energy
values

𝑢(𝐻𝑐, 𝐻∗) = 𝐸𝐿 (𝐻𝑐) + 𝐸𝑇 (𝐻∗) + 𝐸𝐻 (𝐻𝑐, 𝐻∗) (4.10)
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(a) Undamped model (b) Unmodeled damping

(c) Damped model (d) Additional damping

Figure 4.4: Poincarémaps for the CRH.

and from this, we get the desired compression:

𝛿∗ =

√︄
2𝑢(𝐻𝑐, 𝐻∗)

𝑘𝑠
(4.11)

where 𝑘𝑠 is the stiffness of the spring.

With this controller in mind, we can assess the stability around a desired hop height.
A simple closed-form solution exists for this undamped case. We are able to calculate
the total amount of energy lost from impacts for a hop using the given input spring
energy, and then determine the final hop height. The total amount of energy added
into the system after impact losses is

Δ𝐸 = 𝐻∗𝑔(𝑀𝑏 + 𝑀 𝑓 ) −
𝐻𝑐𝑀

2
𝑏
𝑔

𝑀𝑏 + 𝑀 𝑓

−
𝐻𝑘𝑔(2𝑀𝑏𝑀 𝑓 + 𝑀2

𝑓
)

𝑀𝑏 + 𝑀 𝑓

. (4.12)

Using this added energy value, we can find the corresponding height change

Δ𝐻 =
Δ𝐸

(𝑀𝑏 + 𝑀 𝑓 )𝑔
. (4.13)
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With this, we can find the actual final height for the system

𝐻𝑘+1 = 𝑃(𝐻𝑘 , 𝐻𝑐, 𝐻∗) = 𝐻𝑘 + Δ𝐻 (4.14)

which is also the Poincarémap of the system under this controller. Substituting
(4.12)-(4.13) into (4.14) yields the full form of the Poincarémap

𝑃(𝐻𝑘 , 𝐻𝑐, 𝐻∗) = 𝐻∗ −
𝑀2
𝑏
(𝐻𝑐 − 𝐻𝑘 )

(𝑀𝑏 + 𝑀 𝑓 )2 . (4.15)

Illustrated in Fig. 4.4a is the Poincarémapping for control action taken based on two
different choices of 𝐻𝑐: either 𝐻𝑐 = 𝐻∗, labeled as 𝑈∗, or 𝐻𝑐 = 𝐻𝑘 , labeled as 𝑈𝑘 .
In the case of the former, we would not be measuring the actual height of the robot,
but instead always choose the control input that is associated with our theoretical
periodic solution. On the other hand, when we set 𝐻𝑐 = 𝐻𝑘 we are using the exact
information of the current hop height. The convergence of each of these cases, i.e.
the stability of the Poincarémap, can be seen in the figure, or found by taking the
derivative of the Poincarémap with respect to the current hop height:

𝜕𝑃

𝜕𝐻𝑘
=

𝑀2
𝑏

(𝑀𝑏 + 𝑀 𝑓 )2 (1 − 𝜕𝐻𝑐

𝜕𝐻𝑘
). (4.16)

When 𝐻𝑐 = 𝐻𝑘 , this derivative evaluates to 0, which shows that our controller would
drive the robot to the desired height in a single hop as a deadbeat controller. For
the case where 𝐻𝑐 = 𝐻∗, the derivative is slightly less than 1, which still yields
asymptotic convergence, albeit slowly.

Due to the damping present in the hardware, the plots in Fig. 4.4a do not show
an accurate representation of the return height for a hop starting from each 𝐻𝑘 .
In order to see the performance of the controlled system with damped equations
of motion, these same controllers were used in simulation which integrated the
dynamics through each domain to give the return height. The same controllers from
before were used, and yet still gave convergence as seen in Fig. 4.4b. Here the solid
lines are the curves from the damped dynamics, while the dashed lines are that from
the previous case. It can be seen that both controllers still lead to convergence, just
to a different point then our desired height. Now, using the actual previous height
yields not only faster convergence, but convergence to a height that is closer to our
desired height. As the damping value increases away from the ideal un-damped
model, the convergence point will start to move away from the desired height.
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Ground Damping Cases

We now consider the case when damping during the ground phase of hopping is
added in the form of spring material damping. Since the air domains here remain
deterministic, the key calculation only relates to the dynamics of the ground domain.
To this end, only the height of the body needs to be used, as the foot is always fixed
to the ground during this time. To simplify notation in this section, the body height
coordinate is referred to as 𝑧. The dynamics of the ground phase become that of a
single degree of freedom spring-mass-damper system, which has a known solution
of

𝑧(𝑡) = 𝑒𝑎𝑡 (𝑧(0) cos(𝑏𝑡) + −𝑎𝑧(0) + ¤𝑧(0)
𝑏

sin(𝑏𝑡)) (4.17)

𝑎 = −𝑐𝑠/(2𝑀𝑏)
𝑏 = (𝑘𝑠/𝑀𝑏 − 𝑐2

𝑠/(4𝑀2
𝑏 ))

1/2

where 𝑧(0) and ¤𝑧(0) are the starting position and velocity of the body, and 𝑐𝑠 is the
damping coefficient of the joint. Note that this is the solution around the equilibrium
length of the spring. Therefore, the 𝐿0 term will be excluded until later since this
will only shift the curve. For our case, (4.17) represents the equation of motion
during the time between impact and take-off. For a given hop height, 𝐻𝑘 , and spring
compression, 𝛿𝑘 , the height of the next hop can be calculated from the known initial
conditions at the landing impact, 𝑧𝐿 , ¤𝑧𝐿 , and moving forward in time to the known
boundary condition at take-off, 𝑧𝑇 = 0. With this information, the duration of the
ground domain can be found analytically through the expression

𝑡𝑔 = −2
𝑏

arctan
[
𝑐

𝑏
+ 𝑎
𝑏
− ¤𝑧𝐿
𝑏𝑧𝐿

]
(4.18)

𝑐 =

√︃
𝑎2𝑧2

𝐿
− 2𝑎𝑧𝐿 ¤𝑧𝐿 + 𝑏2𝑧2

𝐿
+ ¤𝑧2

𝐿

Substituting 𝑡𝑔 into the derivative of (4.17), the velocity of the robot before take-off,
¤𝑧𝑇−, can be found. The height of the next hop is then found using this velocity and
the impact map of take-off yields

𝐻𝑘+1 =
(Δ𝑇 ¤𝑧𝑇−)2

2𝑔
+ 𝐿0 (4.19)

Conversely, the method of determining the required amount of compression to reach
a certain hop height involves using the desired states at take-off, and then working
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backwards towards the initial conditions at landing. The take-off states are found by
using the same boundary conditions as before. The landing states are unknown, but
each are a function of the desired spring compression, 𝛿∗. Taking these conditions
along with (4.17) and its derivative, and simplifying yields the equation

𝑒2𝑎𝑡𝑔 ( 𝑎
2

𝑏2 sin2(𝑏𝑡𝑔) + cos2(𝑏𝑡𝑔)) =
2𝑔
𝑣0

( 𝑒
𝑎𝑡𝑔

𝑎
sin(𝑏𝑡𝑔) −

𝐻𝑘 − 𝐿0

𝑣0
) (4.20)

which is only a function of the ground phase duration, 𝑡𝑔, that is now a negative value.
Solving this transcendental equation for 𝑡𝑔 must be done numerically. Substituting
that value into (4.17) along with the take-off conditions, will yield the desired
compression needed to overcome even the energy lost from damping. Using the
fsolve function in MATLAB to find this value, a similar Poincaréplot is created
and shown in Fig. 4.4c. Once again, exact convergence can be achieved in a
range around the desired hop height with proper height measurement, and quick
convergence elsewhere. Even in the case where steady-state control is used, the
convergence is slightly faster than that of the un-damped case which is shown by
dashed lines in the figure.

Simulation was also performed for the case with damping set 50% higher than the
controller model. The results of this in Fig. 4.4d, show that once again the point
of convergence is lowered from the desired point. The dashed lines here represent
the curves from the ideal damped case. The exact convergence height relative to
the desired is based on the level of uncertainty for both the height measurement and
model damping. These results show that the robot should be stable under this control
method, even with poor measurement of the hop height and some uncertainty in the
damping estimation. It is clear that having a better estimate of the actual damping
in the system will allow for a better choice of compression actuation.

MMH Model Analysis
This model uses an additional moving mass inside the body to input energy, which
gives a third coordinate in the dynamics, 𝑧𝑚, and another source of internal friction.
The presence of this moving mass inherently allows for many possible motions that
will lead to a desired hop height change, since this is determined by the energy
propagated to the spring during the ground phase. However, due to the indirect
method of adding energy into the system and the extra friction, it becomes non-trivial
to find those solutions. These issues point towards using trajectory optimization to
generate the desired motions, and then tracking those trajectories during simulation
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Figure 4.5: Example trajectories for the 𝑦 coordinate for both the damped and
undamped models.

or in practice. Consequently, characterizing the stability of these motions will be
done numerically in MATLAB.

Generating Periodic Motions

The trajectory optimization package used in this project is GPOPS-II (Patterson and
Rao, 2014), which utilizes the ipopt solver. This software package allows users to
specify the continuous and discrete dynamics, constraints, initial conditions, and
the cost function in a convenient way within MATLAB and then maps those setup
criteria into the form needed by the solver. An initial guess for the solution can be
given in this framework as well. For this problem, it was found that the initial guess
needed to be feasible, but not accurate in order to yield a solution.

The general optimization formulation is

minimize:

𝐽 (𝑡) =
∫ 𝑡 𝑓

𝑡0

𝑈2(𝑡)𝑑𝑡 (4.21)
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subject to:

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑈 (𝑡)
𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥
𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥

¤𝑦𝑚𝑖𝑛 ≤ ¤𝑦 ≤ ¤𝑦𝑚𝑎𝑥
−𝑢𝑚𝑎𝑥 ≤ 𝑈 (𝑡) ≤ 𝑢𝑚𝑎𝑥

𝑥(𝑡0) = 𝑥(𝑡 𝑓 )

where𝑈 (𝑡) is the computed trajectory of the input force, 𝑥 = (𝑧𝑏, 𝑧𝑚, 𝑧 𝑓 , ¤𝑧𝑏, ¤𝑧𝑚, ¤𝑧 𝑓 )𝑇

is the system state, and 𝑦 = 𝑧𝑚 − 𝑧𝑏 is the relative degree of freedom that is directly
controlled by the actuator. For a given hop height, the initial conditions for the body
and foot states are fixed, while the remaining mover states are only given bounds
within the optimization framework. Note that the trajectory 𝑈 (𝑡) is different from
the control input 𝑢, so that the controllers may be formulated using this trajectory
as a feed-forward term.

Figure 4.6: Phase space representation for the 𝑧𝑏 and 𝑦 coordinates for both damped
and undamped models.

Using this method and the model parameters from hardware, trajectories were
generated for the robot spanning a hop height range 0.32 m to 0.42 m. For this
section, trajectories for a 0.38 m height with and without damping will be explored
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as an example. Fig. 4.5 shows the trajectory of the 𝑦 coordinate for these example
motions, while Fig. 4.6 shows the phase space orbits of both the body and relative
coordinates of the robot.

Stability Analysis

Two controllers were run in simulation: open-loop (4.22), and open-loop with PD
feedback on the 𝑦 coordinate (4.23).

𝑢(𝑡) = 𝑈 (𝑇) (4.22)

𝑢(𝑡) = 𝑈 (𝑇) + 𝑘 𝑝 (𝑦𝑎 − 𝑦𝑑) + 𝑘𝑑 ( ¤𝑦𝑎 − ¤𝑦𝑑) (4.23)

where 𝑇 = 𝑚𝑜𝑑 (𝑡, 𝑡 𝑓 ) and 𝑡 𝑓 is the duration of the generated hop motion. Once
again, Poincaréanalysis was used to assess the stability of the system under these
controllers. With the additional coordinate, the Poincarésection for this model
becomes a three dimensional surface along (𝑧𝑏, 𝑧𝑚, ¤𝑧𝑚)𝑇 . Despite that the value of
the mover coordinate is not critical for reaching the desired height, it still needs to
be stable within the allowable range of motion due to hardware constraints. This
necessitates achieving stability for all three dimensions of the Poincarésection, which
can be determined by looking at the Jacobian of the section and its eigenvalues, 𝜆𝑖,
which are found using the MATLAB function fsolve. The system is stable if |𝜆𝑖 | < 1
for all eigenvalues.

This was first done with the open-loop controller. The results in Table 4.1 show that
the undamped system is not stable, while the optimal motion for the damped model
is stable. However, the open-loop controller on this damped system had a small
domain of attraction and was not robust to uncertainty in the damping terms. From
here, a PD controller was added to improve stability and the domain of attraction.
The gains of this controller were tuned to give optimal stability, while maintaining
the input limits of the hardware. The right side of Table 4.1 shows that stability was
dramatically improved with this controller. The domain of attraction also improved,
now allowing for a wider range in initial conditions that lead to convergence.

This stability analysis shows that (4.23) is robust to uncertainty in the hop height
measurement, but it does not take model uncertainty of the damping terms into
account. With simulation, it was shown that the chosen gains were not able to keep
the system stable with uncertainty greater than 5% for the damping terms of the
spring and the internal relative joint. The right-most column of Table 4.1 contains
the stability analysis of the controller when gains were tuned to perform better with
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Table 4.1: Eigenvalues of PoincaréMap Jacobian

OL OL OL+PD OL+PD OL+PD
Undamped Damped1 Undamped Damped1 Damped2

𝜆1 1.4941 0.5177 0.0368 0.0757 0.5942
𝜆2 0.8647 0.6395 0.0170 0.0312 0.3942
𝜆3 1.4733 0.0630 0.0952 0.1277 0.0054

unmodeled damping. Compared with the ideal case, this controller took a larger
number of hops to stabilize, but was able to do so with parameter uncertainty of up
to 20% in the damping terms.

4.4 Moving-Mass Hopper Experiments

Figure 4.7: CAD model of the MMH, with a clear view of the core components.

Running experiments with robots is valuable for showing the performance of these
concepts in the real world. Currently, a robot for the MMH model has been custom
built for this purpose. Fig. 4.7 shows the CAD model for the robot and a clear view
of the inner workings. The force is input from a brushless DC motor connected to
a ball screw via pulleys and a belt. This motor moves itself and some additional
mass vertically along the ball screw, generating force onto the body of the robot,
and therefore, onto one end of the spring. Using the known specifications of this
motor and the ball screw transmission, max linear force and velocity of the actuator
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were found to be 100 N and 1.75 m/s, respectively. Due to the size of the body, the
relative coordinate, 𝑦, is limited to ± 0.1 m, restricting the range that the mover can
deviate from the body. The breakdown of mass within the robot is 55% in the body,
31% in the mover, and 14% in the foot.

These model parameters and constraints were given to the optimization described in
Section 4.3, resulting in hopping motions up to 0.42 m. The max force of the motor
and mass of the foot prevent the robot from hopping any higher. These trajectories
were taken and given to the controller on the robot in the form of desired input
versus time. Experiments were run for each control method described previously,
with the initial conditions being provided by the user dropping the robot from a
chosen height. Data was collected from two on-board encoders monitoring the
height of the body and the 𝑦 coordinate. The hopper is constrained to be vertical at
all times by linear bearings and rails on either side of the robot.

Figure 4.8: Experiment hopping data (shaded blue) compared with simulated tra-
jectory (dark curve), showing the existence of a periodic orbit.
Experiments were run for at least 30 consecutive hops to show long term stability.
It was seen in experiment that the initial condition of the drop did have to be fairly
close to the ideal, but did not need to be perfect. This was apparent since the hopper
needs to settle into the periodic orbit. This could take anywhere from 1 to 15 hops,
depending on the timing and height of the initial drop. Fig. 4.8 shows data collected
from an experiment for a hop height of 0.34 m, containing about 40 hops and an
initial condition that was too high. The robot took about 8 hops to settle into its
stable hop height. The data shows that the robot was able to remain around the
simulated periodic orbit throughout the experiment. The two sections of data near
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Figure 4.9: Motion tiles of MMH robot over two consecutive hops.

the top and bottom of the plot show an oscillation in velocity of the robot that is not
seen in simulation. This is likely due to the assumption of perfectly plastic impacts
being not entirely true, showing that these impacts had a small bounce before coming
to completion. Fig. 4.9 shows motion tiles of a two consecutive hops from the same
experiment on our rail system. The video of these experiments can been seen in
(E. Ambrose, 2019).
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C h a p t e r 5

IMPROVING HOPPING EFFICIENCY THROUGH DESIGN

After the preliminary efforts described previously studying hopping mechanisms,
this work transitioned toward trying to improve the efficiency of the moving-mass
mechanism in particular. The work in this chapter will talk about the many changes
made on both hardware and in the optimization space towards this goal. The work
presented here was originally published in (E. Ambrose and A. D. Ames, 2020;
Eric Ambrose, Wen-Loong Ma, and Aaron D Ames, 2021).

5.1 Review of Efficient and High-performance Hopping
Hopping is a mode of locomotion that undergoes rapid changes in contact with
the world; as a result, advanced methods from nonlinear and hybrid dynamics are
well-suited for its analysis (Sinnet et al., 2011), (Westervelt, J. W. Grizzle, and
Koditschek, 2003). Just as in the case of running with legged robots (W. Ma,
Kolathaya, et al., 2017), (J. Park et al., 2014), hopping consists of long airborne
phases and shorter ground contact phases separated by dramatic discrete impacts.
These impacts, along with friction and other forces, cause energy to be lost at every
hop. This necessitates adding energy back into the system through its actuators in
order to reach the desired hop height in a controlled manner. The most straight
forward way to accomplish this is to apply force on the world during the ground
contact phase to assist the robot’s ascent. Due to the limited time on the ground, this
leads to a need for brief and high power actuation coupled with compliant elements
to store and return energy.

Over the past few decades, robotic hoppers have been developed with many ap-
proaches to the challenges of design and control (M. H. Raibert, 1984), (M. H.
Raibert, H. B. Brown, and Chepponis, 1984), (Fiorini and J. Burdick, 2003). These
robots successfully hop for long periods of time, avoid large obstacles, and perform
extreme behaviors such as flips (M. Raibert, 1986). Beyond this, they helped set
the standard for the level of control to be expected for such a dynamic type of loco-
motion. One of the main focuses of hopping robot design has been to improve the
efficiency of locomotion (H. B. Brown and Zeglin, 1998), (Hwangbo et al., 2018),
(Haldane, Yim, and Fearing, 2017) to allow for long-term hopping using on-board
power. These improvements were achieved through a variety of means such as
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Figure 5.1: A 3-mass, vertically-constrained hopping robot with two springs: one
in parallel with the actuator and one below in series with the actuator.

lessening the mass of components, using more direct actuation methods, or using
more efficient elastic elements. With improved efficiency of actuation, researchers
have been able to push the capabilities of the robots further towards higher hops
(Hwangbo et al., 2018), (Haldane, Yim, and Fearing, 2017) and over complex terrain
(C. M. Hubicki et al., 2016).

When using high-power actuation in critical environments such as when humans
are present, the task of safety becomes a critical concern. The issue of robotic
safety has been brought up in the field of robotic manipulators, due to the more
recent prominence of manufacturing and surgical robots. Measures have been to
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taken to deal with this issue in a variety of ways, including the addition of elasticity
(Yoon et al., 2005), (Lens and Stryk, 2012). In the realm of robotic hopping,
safety can be improved by placing a spring between the robot and the world, as
was done with the LEAP robot developed by Disney Research and Development
(DisneyResearchHub, 2016). The goal of putting an elastic element here is to limit
the impulse force transferred from the robot to prevent any possible damage or harm
on the surroundings. This can be further seen in the patent of a robotic bouncing
ball (Smoot et al., 2018), where all actuators and mechanisms are contained within
the ball itself.

With the goal of finding robotic hopping solutions that fit within the paradigm of this
safe actuation, previous research (E. Ambrose, N. Csomay-Shanklin, et al., 2019)
examined two methods of hopping: a clutch-release hopper similar to that of the
Bowleg Hopper (H. B. Brown and Zeglin, 1998), and a moving-mass hopper akin to
that used in (Aguilar and Goldman, 2016). It was shown that both types of hopping
could reach a stable desired hop height through control methods in the span of a few
hops. The previous model for the moving-mass hopper had a single spring below the
body of the robot which would act as a safe barrier between it and the world, while
also providing the necessary energy storage to achieve periodic hopping. However,
the results with this model showed a need for large actuation force in order to reach
a desired hop height.

This work focuses on improving the design of the moving-mass hopper model
through the addition of a second spring, placed in parallel with the actuator. Research
groups have shown a possible improvement in efficiency to robot locomotion with
the incorporation of parallel elasticity (Sharbafi et al., 2019), (Eslamy, Grimmer,
and Seyfarth, 2012). Furthermore, it has been shown that parallel elastic actuators
can be used to improve the tracking of motion trajectories (Mettin et al., 2010),
such as those used in the original moving-mass model. A new robot was created for
this work, with the addition of the second spring in parallel in order to examine the
benefits of parallel elasticity.

5.2 The Double-Spring Hopper Model
The original moving-mass model was made up of three masses and a single spring,
acting between the body and foot masses. The third mass, the mover, was contained
within the body and could be moved vertically with the use of linear actuation. This
arrangement had the spring in series with the actuator which would serve to redirect
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Figure 5.2: Model coordinates and design for the double-spring, moving-mass robot,
with a look at the core mechanism.

the motion of the body back upwards after an impact with the ground. The actuator
could slide the mover impulsively while the robot was on the ground in order to
assist the reversal of the body’s velocity. The actuator also needed to apply force in
order to keep the mover from reaching the end of its range of motion and creating an
internal impact which could reduce the energy in the system and lead to an unwanted
loss of hop height.

Unlike this previous model, the new model presented here contains an additional
spring between the body and mover which acts in parallel with the actuator (Fig.
5.1). By adding this second spring here, the mover will now undergo its own
passive reversal of velocity during the ground phase. A caveat of this design, is that
the mover will now contact the body when the spring is at its equilibrium length,
meaning that the spring will only compress and not extend past this point. This
leads to internal contact occurring between the body and mover at the end of the
second springs compression cycle.



53

Dynamics
In order to model this new double-spring hopping robot, the coordinates of the
configuration space are chosen to be 𝑞 = (𝑧𝑏, 𝑦, 𝛿) ∈ 𝑄 ⊂ R3, where 𝑧𝑏 is the height
of the body from the ground, 𝑦 is the deflection of the upper spring in parallel, and 𝛿
is the deflection of the lower spring in series. These are shown in red within Fig. 5.2,
along with two of the constant length parameters of the robot model. The unpinned
dynamics were derived using these coordinates and Lagrangian mechanics, then put
in the form


𝑀0 −𝑀𝑚 𝑀 𝑓

−𝑀𝑚 𝑀𝑚 0
𝑀 𝑓 0 𝑀 𝑓

︸                    ︷︷                    ︸
𝑀


¥𝑧𝑏
¥𝑦
¥𝛿

︸︷︷︸
¥𝑞

+

𝑐𝑏 ¤𝑧𝑏 + 𝑀0𝑔

𝐹𝑝 − 𝑀𝑚𝑔

𝐹𝑠 + 𝑀 𝑓 𝑔

︸           ︷︷           ︸
𝐻 (𝑞, ¤𝑞)

=


0
1
0

︸︷︷︸
𝐵

𝑢 (5.1)

where 𝑀0 is the total mass of the robot, 𝑀𝑚 is the mass of the mover, 𝑀 𝑓 is the
mass of the foot, 𝑐𝑏 is the damping coefficient of the body moving vertically, 𝐹𝑝 is
the extension force in the upper spring in parallel, 𝐹𝑠 is the extension force of the
lower spring in series, and 𝑔 is the gravitational acceleration constant. The full form
of the spring forces includes a term of the stiffness force and a term for the damping
force, i.e. 𝐹𝑝 = 𝑘 𝑝𝑦 + 𝑐𝑝 ¤𝑦, where 𝑘 𝑝 and 𝑐𝑝 are the stiffness and damping constants
of the spring in parallel. The ’foot’ of the robot is a virtual mass at the lower end of
the spring in series, containing a third of that spring’s mass. The height of the foot
is defined as 𝑧 𝑓 (𝑞) = 𝑧𝑏 − 𝐿𝑏 − 𝐿𝑠 + 𝛿.

The sole difference in the unpinned dynamics of this robot model from the single-
spring case comes from the 𝐹𝑝 term, which is highlighted in (5.1). For the case of
the single-spring model, this term was just the damping force between the mover and
body. Despite this small difference in the unpinned dynamics, the complexity from
the internal contact is more significant, as will be shown in the following subsection.

Hybrid Structure
Beyond the dynamics described in (5.1), there are also external and internal forces
acting on the robot intermittently during each hop, which come from the contact
with the ground, as well as a range of motion limit placed around the spring in
parallel within the body. This hardstop prevents the upper spring from extending
past its equilibrium length. The mover is able to move downwards within the
body, compressing the upper spring, but will impact the body when it reaches the



54

equilibrium position again. At the point of some of these discrete events an impact
occurs, such as when the foot reaches the ground. Due to these changes in the
dynamics and the presence of discrete impact events, the dynamical model can
be re-written as a hybrid control system. For the tangent bundle with coordinates
(𝑞, ¤𝑞) ∈ 𝑇𝑄 ⊂ R6, the hybrid control system is defined as the tuple,

ℋ𝒞 = (Γ,D,U, 𝑆,Δ,FG) (5.2)

• Γ = {𝑉, 𝐸} is a directed cycle containing vertices 𝑉 and edges 𝐸 . Fig. 5.3
shows the cycle for the double-spring model

• D = {D𝑣}𝑣∈𝑉 is the set of admissible domains

• U ∈ R is the set of admissible control input forces

• 𝑆 = {𝑆𝑒}𝑒∈𝐸 is the set of guards for domains, which represents the transition
point between domains

• Δ = {Δ𝑒}𝑒∈𝐸 is the set of state reset maps between domains, defined in (5.7)

• FG is the set of vector fields representing the control system dynamics for
each domain, defined in (5.3)-(5.6)

For the case of this double-spring hopper model, there are four possible domains
for the robot as shown in Fig. 5.3. These are based on the state of ground contact
and internal hardstop contact, which are visually represented in the figure by the
gray animation effect lines. The arrows in the figure represent the possible domain
switching that can occur. Note that there is only one diagonal arrow in the diagram.
This is due to an assumption that two contact switching events will not occur at the
same time, with the exception of if the robot hits the ground while applying zero
actuator force, in which case it will transition straight from domain 1 to domain 3.
Each contact manifests in the dynamics through a holonomic constraint, which can
be added onto the end of our equations of motion to yield the new set of equations
augmenting (5.1):

𝑀 ¥𝑞 + 𝐻 (𝑞, ¤𝑞) = 𝐵𝑢 + 𝐽𝑇𝑣 𝐹𝑣 (5.3)

𝐽𝑣 ¥𝑞 + ¤𝐽𝑣 ¤𝑞 = 0 (5.4)



55

Figure 5.3: Directed cycle for the hybrid system, with vertices depicted as boxes and
edges shown as arrows. Blue arrows show the specific domain map for this work,
and gray arrows show other possible switches.

where 𝐽𝑣 is the Jacobian of the holonomic constraints in domain, 𝐷𝑣, and 𝐹𝑣 are the
forces of those same constraints. Domain 𝐷2 does not include any contacts, unlike
the other three domains. The Jacobians for the contact domains are:

𝐽1 =

[
0 1 0

]
, 𝐽3 =

[
1 0 1

]
, 𝐽4 =

[
0 1 0
1 0 1

]
(5.5)

The method of defining these Jacobians and their forces is based on the concepts
presented in (Murray, Z. Li, and Sastry, 1994) where the constraint force, 𝐹𝑣, is
found using the following calculation:

𝐹𝑣 (𝑞, ¤𝑞) = −(𝐽𝑣𝑀−1𝐽𝑇𝑣 )−1 [𝐽𝑣𝑀−1(𝐵𝑢 − 𝐻 (𝑞, ¤𝑞)) + ¤𝐽𝑣 ¤𝑞] (5.6)
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As mentioned before, there are impacts which occur at some of the domain transi-
tions. This includes any time that the foot contacts the ground and anytime that the
mover reaches its range of motion limit against the body of the hopper. The impact
in each case is assumed to be perfectly plastic, so the corresponding reset map will
result in a instantaneous velocity change for some of the coordinates. The method of
calculating the reset map, Δ𝑒, is based on the work in (J. W. Grizzle, Chevallereau,
A. D. Ames, et al., 2010), and is defined by the equation

¤𝑞+ = Δ𝑒 ¤𝑞− = [𝐼 − ((𝑀−1𝐽𝑇𝑣+)/(𝐽𝑣+𝑀−1𝐽𝑇𝑣+))𝐽𝑣+] ¤𝑞− (5.7)

where 𝐼 is the 3𝑥3 identity matrix, 𝐽𝑣+ is the Jacobian of the constraint for the
upcoming domain, and ¤𝑞− and ¤𝑞+ represent the coordinate velocities before and
after the reset, respectively. The result of this reset mapping for ground contact is
the foot velocity will be immediately set to zero after the impact, while that for the
mover hardstop is based on conservation of momentum principles for the mover and
body so they have the same velocity after impact.

5.3 Simulation of the Double-Spring Hopper
Motion Generation
Due to the complexity of hybrid system models—and thereof hopping—that com-
bines discrete and continuous dynamics, motion generation becomes non-trivial.
To this end, trajectory optimization is used to find the ideal actuation input to fol-
low. The method of optimization utilized here is similar to that used in (W.-L. Ma,
Hamed, and A. D. Ames, 2019), with the nonlinear programming formulated as

min
𝑞(𝑡),𝑢(𝑡)

∫ 𝑡 𝑓

𝑡0

𝑢2(𝑡)𝑑𝑡 (5.8)

𝑠.𝑡. C1. 𝑝𝑖𝑛𝑛𝑒𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

C2. ℎ𝑦𝑏𝑟𝑖𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦

C3. 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑓 𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

where constraint C1 is the dynamics from (5.3) and (5.4), C2 represents the di-
rected cycle continuity and desired initial conditions constraints, and C3 includes
torque/range of motion limits present in the experimental hardware. The optimiza-
tion package used for this work was GPOPS-II (Patterson and Rao, 2014), which is
MATLAB based and allows for multiple domains and discrete events as are required
for hopping systems.

From previous work with the single-spring model, only two domains were planned
in optimization. This was assuming that the mover would never contact the body,
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Figure 5.4: The model for the single-spring hopper and its hybrid system, with
the possible other domains that were considered, but found sub-optimal shown as
greyed-out.

restricting the hybrid structure to only be based on foot contact with the ground.
Alternative hybrid domain cycles were explored, allowing for this internal contact
and various orders of events; see Fig. 5.4. However, it was found that the optimal
choice was in fact to restrict the mover to never reach contact with the body, and
again to only use the two-domain structure as done previously. The optimization
was re-run for the single-spring model using parameters consistent with the robot
to be used in experiment, but with the absence of the second spring and its resulting
damping on the motion of the mover.

For the double-spring case, multiple hybrid cycles were examined to find the optimal
discrete sequence of events, i.e., the optimal graph Γ to use in the hybrid system
model. The best hybrid structure was found with stiffness constants of the two
springs being close together and then skipping over domain 2, following the path
of 𝐷1 → 𝐷3 → 𝐷4 → 𝐷1. The process of going straight from 𝐷1 to 𝐷3 involves
applying no input from the actuator until the foot reaches the ground, and then
making sure that the initial input force is non-negative. This aligned with the
preferred direction of input during the ground phase, requiring no extra constraint in
the optimization. Note that in this particular hybrid cycle, there is only one domain
when the mover is not locked to the body and when actuation will occur: domain 3.
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Figure 5.5: (a) Optimal trajectory for the body height with ground contact threshold.
(b) Input current profiles for 5 hop heights. (c) Optimal trajectory for both spring
deflections (𝑦 and 𝛿). (d) Input force comparison for both models.

This optimization was run for multiple hop heights with foot clearance ranging from
0.1 m to 0.5 m. Fig. 4(a) shows the optimal trajectory of the body height coordinate
for a foot clearance of 0.3 m, while Fig. 4(c) shows the corresponding optimal
spring deflection trajectories. Fig. 4(b) shows the optimal input force trajectories
for all 5 hop heights over the time interval of domain 3, when the upper spring is
not locked in contact with the body. Fig. 4(d) shows a comparison between the
optimal force profiles of the single-spring and double-spring models, both for a hop
with foot clearance of 0.3 m. It can be seen that the optimal force trajectory for the
double-spring model follows a path similar to that of the spring in parallel, assisting
its compression and extension.

Table 5.1 shows further comparisons between both versions of the moving-mass
model in these optimizations. Specifically, it compares peak force, mechanical
efficiency, and electrical efficiency. Mechanical energy used in each hop is a
function of motor force and mover velocity given by

𝐸𝑀𝐸𝐶𝐻 =

∫ 𝑡 𝑓

𝑡0

|𝑢 ¤𝑦 |𝑑𝑡 (5.9)

Current and voltage were estimated as functions of the force and velocity of the
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Single-Spring Double-Spring
𝐻 𝑓 𝐹𝑚𝑎𝑥 𝜂𝑀𝐸𝐶𝐻 𝜂𝐸𝐿𝐸𝐶 𝐹𝑚𝑎𝑥 𝜂𝑀𝐸𝐶𝐻 𝜂𝐸𝐿𝐸𝐶

0.1 95.2 25% 17% 50.9 78% 58%
0.2 183.4 26% 16% 98.3 77% 55%
0.3 250.1 29% 16% 132.6 76% 54%
0.4 303.0 30% 15% 165.2 76% 52%
0.5 348.1 30% 15% 196.4 76% 51%

Table 5.1: Key comparison data for the optimization results.

motor using the measured resistance and back emf of the motor. Using these values
of current and voltage, the total electrical energy provided in each hop was

𝐸𝐸𝐿𝐸𝐶 =

∫ 𝑡 𝑓

𝑡0

|𝐼𝑉 |𝑑𝑡 (5.10)

where 𝐼 is the current in the motor, and𝑉 is the voltage being sent to the motor from
the motor controller. These energy consumptions were compared to the amount of
energy lost in the system when the actuator provided zero force throughout an entire
hop, in order to get the energetic efficiencies.

It was found that the optimal input of the double-spring model required 40% less peak
force than the single-spring model, due to the fact that the motor only assisted the
natural motion of the upper spring rather than manipulate the mover completely on
its own. The double-spring model also had about 2.5𝑥 better mechanical efficiency
and 3𝑥 better electrical efficiency, despite the fact that the additional spring resulted
in higher damping between the mover and body and, therefore, slightly more inherent
energy loss during each hop.

Stability of the Simulation
Hopping was simulated for both models in MATLAB starting with open-loop play-
back of the input trajectories. At the onset of every hop, time is reset and the
trajectory starts again from the beginning in order to observe stability with mini-
mal state feedback. Poincarémap analysis (M’Closkey and J. W. Burdick, 1993) is
used to provide a metric to the stability, where the system is considered stable if
|𝜆𝑖 | < 1 for all eigenvalues of the Poincarésection Jacobian. Just as discovered in (E.
Ambrose, N. Csomay-Shanklin, et al., 2019), the single-spring model with updated
parameters is not stable using this open-loop plus time reset control method alone.
For example, in the case of hopping 0.3 m off the ground, the maximum eigenvalue
magnitude was 𝜆𝑚𝑎𝑥 = 1.711. It is possible to achieve stability by adding a closed-
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loop controller around the 𝑦 coordinate; PD control is used in this example. By
closing the loop around this coordinate, the max eigenvalue magnitude becomes
𝜆𝑚𝑎𝑥 = 0.332, allowing the robot to stabilize from errors in initial conditions.

In contrast, the double-spring model is stable simply through open-loop playback
and time reset. The eigenvalue magnitude for the same example hop height is
𝜆𝑚𝑎𝑥 = 0.803, without the use of a stabilizing controller. This is due to the spring in
parallel forcing the 𝑦 coordinate along a path very similar to that desired, since the
the optimal trajectory acts only to assist this deflection. Any small deviations from
the optimal path are guided back to the trajectory by the spring’s natural dynamics.
Furthermore, the fact that control input is only occurring during a single domain
lasting roughly 60 ms also limits the negative effects of any error as well.

5.4 Double-Spring Hopper Experiments

Figure 5.6: An exploded view of the CAD model of the robot, calling out the key
internal components.
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Hopping Robot Hardware
The one-dimensional hopping robot shown in Fig. 5.1 was developed to demonstrate
these concepts on real hardware. The robot is fixed to the vertical axis through the
use of two linear rails and ball bearings on either side of the robot. The core of
the system is built around a linear brushless DC motor from Nippon Pulse (Pulse,
2019), capable of providing up to 450 N of peak force and 75 N of continuous force.
This motor is made up of two parts: a forcer, which is a box shaped ‘stator’, and a
shaft, which acts as the moving ‘rotor’.

As shown in Fig. 5.6, the body of the hopping robot is built around the motor shaft,
accounting for the majority of the robot’s 52 cm height. The mover is connected
to the motor’s forcer and also contains most of the robot’s electronics, including
the batteries. This allows for a high percentage of the robot’s mass to be on the
mover, rather than with the body. The upper spring is placed around the motor
shaft to act in parallel with the actuation. In order to minimize the mass of the foot,
the lower spring is only held at the top using a clamp mechanism while the lower
end is unconstrained. This reduces the amount of energy lost during each impact
with the ground, but allows for some off-axis deflection in the spring. Parameter
estimation for the system was performed with drop tests of the robot, while the
motor was commanded to maintain zero current. The data from these tests was used
to identify the three damping coefficients and two spring stiffness constants in the
model. While estimates of the stiffness constants were provided by the manufacturer,
it was found that the actual values differed slightly and were updated accordingly.
Final values the model parameters were: 𝑀0 =6.025 kg, 𝑀𝑚 =3.3 kg, 𝑀 𝑓 =0.05 kg,
𝑘𝑠 =17 330 N/m, 𝑘 𝑝 =18 000 N/m, 𝑐𝑏 =2 N s/m, 𝑐𝑠 =10 N s/m, and 𝑐𝑝 =25 N s/m.

Experiments
Experiments were performed with this robot using the force input trajectories gath-
ered from optimization for hopping motions with foot clearances ranging from 0.1 m
to 0.4 m. As done in the simulations for this model, the robot attempted to playback
the open-loop trajectory of current to the motor while on the ground. From the
initial tests, it was seen that the robot was not returning to its starting height after
the impacts with the ground. It was found that this was due to the internal impact
between the mover and body not being perfectly plastic. Instead, there was a some
bouncing happening at that domain transition leading to less uniform energy trans-
fer. This was corrected by having the motor apply a negative current until lift-off
occurred to ‘lock’ the body and mover together. With this change, the robot was
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able to hop back up to its intended height, with noticeably less bouncing during this
impact.

Figure 5.7: Phase portraits of the 𝑧𝑏 coordinate during 20 consecutive hops in
experiment for each height. The dark curves represents the ideal trajectories from
optimization, and the light curves are the experimental sensor data.

Experiments were run at four different heights corresponding to foot clearances of
0.1 m, 0.2 m, 0.3 m, and 0.4 m (experiments can be seen in the supplemental video
(E. Ambrose, 2020)). A phase portrait of data from each experiment is provided
in Fig. 5.7, showing the periodic nature of the hopping motion. The data further
confirms the stability inherent to this hopping model as seen by the very consistent
path from the robot during the experiments. The efficiency of the experiments
were lower than in simulation, partially due to the locking feature added onto the
trajectories. The actual electrical efficiency ranged from 46% to 50%, depending
on hop height.

It can be seen that there is significant deviation from the optimal trajectory between
the time of the internal impact until the time just after the take-off of the robot. This
deviation causes oscillations around the ideal path and is eventually damped out by
the time the robot reaches its apex. This is due to the way the robot is attached to
the rails in experiment and the fact that the lower spring can laterally deflect while
on the ground. The linear bearings are able to rotate slightly from the rails via
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Figure 5.8: Tiles from the 0.3 m experiment over a single hop.

backlash, so the whole robot is able to rock back and forth marginally, leading to
oscillations in the body velocity during ascent. This phenomenon can also be seen
in the experimental video: (E. Ambrose, 2020).

5.5 Conclusions and Next Steps
A new double-spring version of the moving-mass hopper model was presented and
compared with the previously used single-spring model. Trajectory optimization
was used to identify the optimal actuation for each model, showing two different
patterns of force input. The single-spring case had large force impulses during the
ground phase acting in time with the spring in series. Conversely, in the double-
spring case, the actuator acted in time with the natural compression of the upper
spring in parallel. This led to a prolonged deflection of the spring in series, but an
overall more condensed period of actuation. It was shown in simulation that adding
this spring in parallel improved hopping performance through greatly increasing
energy efficiency, reducing peak actuator effort by roughly 40%, and providing
stability to the hopping motion without the need for closed-loop control.

This model was further demonstrated on hardware using a novel, vertically con-
strained hopping robot designed and built in the lab. The robot was able to reach
hop heights up to 40 cm off the ground, while maintaining the improved energetic
efficiency. This max height was only limited by the length of the lower spring, which
was reaching its solid length at higher hop heights. In the future, an alternative elas-
tic component will be made to replace this spring, allowing for larger deflections
and increased energy storage. Additional actuators will also be added to provide the
balancing mechanisms necessary for hopping in 3-dimensional space.

The study of system design optimization has a long and rich history in both academia
and industry. Shape design in aerodynamics (Lyu, Kenway, and Martins, 2015),
(Jameson, Martinelli, and Pierce, 1998) using computational fluid dynamics (CFD)



64

focuses on designing aircraft shape against airflow from the front and lateral direc-
tions. Logic optimization was used by the automated electronic design industry in
circuit design given volume constraints for optimal manufacturing cost (Buchfuhrer
and Umans, 2011). Structural optimization (Haftka and Gürdal, 1992) designs me-
chanical systems according to metrics such as minimal weight or increased strength
according to specific application scenarios. Lastly, the genetic algorithm uses evolu-
tion of population to guide the design of static components for complex environments
(Lohn, Hornby, and Linden, 2005).

One such example of design optimization study was from the realm of industrial
robotic manipulation tasks, which could greatly benefit from even small improve-
ments to efficiency (Schmit and Okada, 2013). Here, springs were placed in parallel
to joint motors and optimized alongside the motion trajectories to boost efficiency.
In this case, researchers were able to find a closed-form solution for the optimal
spring parameters in terms of the trajectories, which allowed for the optimization to
again be considered as a classic trajectory optimization problem. In another example
from the field of robotic hopping, model-free design optimization techniques were
used to streamline the design iteration process (Saar, Giardina, and Iida, 2018).
This method involved hopping experiments, using a robot which could have certain
design parameters changed quickly between separate tests rather than using prior
simulation to yield a single final design.

However, most traditional system design optimization problems often craft the
design variables for a specific task. The goal of this paper is to make a first step
towards simultaneously generating high-performance motions for robotic systems
and finding their optimal design parameters. This is achieved through controlling
and designing the hopping robot in Fig. 5.9 (right side). A related example is the
leg design of quadrupedal robots such as (Chadwick et al., 2020).

Previous studies of designing motions and control laws for compliant bipeds (Jake
Reher, Wen-Loong Ma, and Aaron D. Ames, 2019) and hoppers (Chang et al., 2019)
have demonstrated the effectiveness of model-based approaches using collocation-
based optimization (A. Hereid, C. M. Hubicki, et al., 2018). We have also explored
different design methodologies of spring-loaded hoppers (E. Ambrose, N. Csomay-
Shanklin, et al., 2019), and hopping with parallel elasticity (E. Ambrose and A. D.
Ames, 2020). These first two hopping robots can be seen in the left and center
positions of Fig. 5.9. In this paper, we further exploit the use of high-performance
mechanisms via curved plate springs to enhance performance. Plate springs have the
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Figure 5.9: Evolution of the moving-mass hopping robot. Mark I (left, E. Ambrose,
N. Csomay-Shanklin, et al., 2019), Mark II (center, E. Ambrose and A. D. Ames,
2020), and now Mark III (right) is modified to feature the curved-springs for this
work.
advantage of being easy to design for a variety of nonlinear stiffness profiles, which
can provide for improved energy storage and acceleration profiles (H. B. Brown and
Zeglin, 1998), (Kooi, 1994). However, the nonlinear and compliant nature of these
springs cannot be easily characterized by a traditional relationship, such as Hooke’s
law, and is thus a memoryless system. Instead, beam theory (Barber, 2010) must
be used to develop the spatial-domain dynamical equations that govern the springs.
To incorporate this with traditional time-domain dynamics of the torso, which are
largely used to characterize robotic systems (Featherstone, 2008) and legged loco-
motion (J. W. Grizzle, Chevallereau, A. D. Ames, et al., 2010), we take inspiration
from interconnected dynamical systems (Antonelli, 2013). Through shared vari-
ables of spring force and length, the torso and the spring subsystems are dynamically
coupled. We represent this formulation as an interconnected time-spatial dynamical
system. A similar idea was used to decouple quadrupedal dynamics as two coupled
bipedal subsystems (Wen-Loong Ma, Noel Csomay-Shanklin, and Aaron D. Ames,
2020).

Further, we can configure the curved spring design as decision variables for an op-
timization algorithm. This allows the optimization to concurrently find the solution
to the interconnected dynamical system and the optimal spring design parameters.
The end result is a custom-made hopping robot driven by the full-body dynamics
and optimal design, which can hop stably and with greater energy efficiency.
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Our main contributions are twofold. First, we propose a time-spatial dynamic
modeling of the hopping robot that utilizes the curved springs in Fig. 5.9. Based on
this, a generic optimization formulation is presented to solve for a solution to this
dynamical system with a corresponding hopping motion, and find the optimal design
variables for the curved springs. Secondly, the construction of a hopping robot, on
which experiments are conducted and stable hopping is achieved. Therefore, we
demonstrate the complete process of system and controller design, and experimental
validation.

Figure 5.10: The system’s configuration coordinates, with a look at the core mech-
anism features.

5.6 Interconnected Dynamics
The dynamics of the hopping machine in Fig. 5.10 are composed of two main
parts: the time-domain dynamics of the “torso”, whose electric motor’s controller
is our control target; and the spatial-domain dynamics of a curved spring, whose
physical parameters are our design target. The two subsystems are interconnected
through the shared spring force and length variables, 𝐹𝑠 and 𝐿. We will introduce
each subsystem first, then show the interconnected full-body dynamics. Note that
we used the following notations to distinguish the two types of derivative:

¤□ ≜ 𝜕□
𝜕𝑡
, □′ ≜

𝜕□

𝜕𝑠
. (5.11)

Time-domain dynamics of the torso
As Fig. 5.10 shows, the torso contains all of the robot other than the curved springs.
Hence, as detailed in (E. Ambrose and A. D. Ames, 2020), we can obtain the
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torso’s time-domain dynamics with configuration coordinates 𝑞 = (𝑧𝑏, 𝑦, 𝛿)⊤ ∈ R3

and using the Euler-Lagrangian methods to obtain the equations of motion. Without
considering any constraint, we have

𝑀 (𝑞) ¥𝑞 + 𝐻 (𝑞, ¤𝑞) + 𝐵𝑠𝐹𝑠 = 𝐵𝑢 + 𝐽⊤𝑣 (𝑞)𝜆𝑣, (5.12)

with

𝑀 (𝑞) =

𝑀0 −𝑀𝑚 𝑀 𝑓

−𝑀𝑚 𝑀𝑚 0
𝑀 𝑓 0 𝑀 𝑓

, 𝐻 (𝑞, ¤𝑞) =

𝑐𝑏 ¤𝑧𝑏 + 𝑀0𝑔

𝐹𝑝 − 𝑀𝑚𝑔
𝑀 𝑓 𝑔

,
and the actuation matrices 𝐵⊤

𝑠 = (0, 0, 1), 𝐵⊤ = (0, 1, 0). 𝑀𝑚, 𝑀 𝑓 , and 𝑀0 are
the mass of the mover, foot, and total robot. 𝑐𝑏 is the damping of the body as it
moves vertically. The internal spring creates a standard linear extension force given
by 𝐹𝑝 = 𝑘 𝑝𝑦 + 𝑐𝑝 ¤𝑦, where 𝑘 𝑝 and 𝑐𝑝 are the stiffness and damping coefficients,
respectively. 𝐹𝑠 is the extension force of the curved springs being examined in this
work.

There exist four different dynamic domains, denoted by D𝑣 with 𝑣 ∈ {1, 2, 3, 4}.
Each domain has a holonomic constraint representing certain locking mechanisms.
Fig. 5.11 shows the domain map for this hybrid system. The hopping motion
followed here contains three continuous-time domains: one aerial domain, D1, and
two ground domains, D3 and D4. The two ground domains are distinguished by
whether the mover is in contact with the body. During each domain, a holonomic
constraint is used to represent the contacts with internal components and the ground.
In this case, these are

ℎ1(𝑞) ≜ (𝑦, 𝛿)⊤, ℎ3(𝑞) ≜ (𝑧𝑏 + 𝛿), ℎ4(𝑞) ≜ (𝑦, 𝑧𝑏 + 𝛿)⊤. (5.13)

and the corresponding Jacobian matrices can be defined as

𝐽𝑣 ≜
𝜕ℎ𝑣 (𝑞)
𝜕𝑞

.

Therefore, we can explicitly solve the constraint force 𝜆𝑣 for domain D𝑣, and (5.12)
simply becomes
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Figure 5.11: Directed graph for the hybrid hopping system. Each phase of dynamics
can be represented by a interconnected system as given by (5.24)-(5.25). The blue
arrows indicate the order of phases followed in this work.

𝑀 (𝑞) ¥𝑞 + 𝐻𝑣 (𝑞, ¤𝑞) + 𝐵𝑠,𝑣𝐹𝑠 = 𝐵𝑣𝑢. (5.14)

In D1 the mover and foot are each locked to the body due to hard-stops present in
the system. In both cases the spring forces will tend to keep the coordinates 𝑦 and
𝛿 fixed to that of the body coordinate, 𝑧𝑏. When the robot contacts the ground, the
system enters D3 and the foot becomes fixed to the surface, leading to a holonomic
constraint acting on the foot, while the mover continues downward. During this
phase the actuator will input force to the system until the mover reestablishes contact
with the body, and the system enters D4. This final ground domain is very short
and lasts until the curved springs extend back to their equilibrium length and the



69

hardstop engages, at which time the system re-enters the air domain, D1, and the
cycle repeats.

In order to distinguish the effects of the actuator input and curved spring forces from
the other dynamics, we write the equations of motion from (5.14) in an ODE format:

¤𝑥1 =

[
¤𝑞

−𝑀−1𝐻𝑣

]
︸        ︷︷        ︸

𝑓𝑣 (𝑥1)

+
[

0
𝑀−1𝐵𝑣

]
︸     ︷︷     ︸
𝑔𝑣 (𝑥1)

𝑢 +
[

0
−𝑀−1𝐵𝑠,𝑣

]
︸          ︷︷          ︸

𝑔̄𝑣 (𝑥1)

𝐹𝑠, (5.15)

where 𝑥1 = (𝑞, ¤𝑞)⊤ ∈ R6 are the time-domain states.

Spatial-domain dynamics of the curved springs
Normally for linear springs, the spring dynamics are given as a linear map: 𝐹𝑠 =
−𝑘𝐿−𝑐 ¤𝐿 according to Hooke’s law, where 𝑘 is the stiffness and 𝑐 is the coefficient of
an additional damping term. However, the curved spring of interest here is governed
by spatial-domain dynamics, which will be detailed next. Designing the springs
from curved plates serves as a way of controlling their stiffness profile. This will
allow for the timing of the ground phase to be synced with a desirable force input
from the actuator, resulting in a more efficient motion than would be possible by
having two coils springs in the system as was done in (E. Ambrose and A. D. Ames,
2020).

Fig. 5.12 details the basic model of the curved, plate spring that will be used in
this problem. Based on the work in (Georgiev and Joel Burdick, 2018), the internal
relations for the moment along the beam and its derivative can be described in terms
of the parameterized arclength, 𝑠, as

𝑀 (𝑠) = (𝐴(𝑠)𝐸𝑒𝑟𝑛)𝛾′(𝑠) (5.16)

𝑀′(𝑠) = −𝑁 (𝑠) (5.17)

where 𝑠 ∈ [0, 𝑠0] is the position along the arc length of the beam’s neutral surface,
which is shown as a grey, dashed arc within the beam in Fig. 5.12. 𝑀 (𝑠), 𝑁 (𝑠),
and 𝛾(𝑠) are the internal moment, force, and resultant deflection at that point due
to the loading force, 𝐹𝑠. 𝐹𝑠 ∈ R is the external force acting on the spring along
the vertical direction. Note: 𝛼(𝑠) represents the natural angle of the beam at point
𝑠 when the spring is unloaded. The deflection angle 𝛾(𝑠) is relative to this 𝛼(𝑠)
value. Furthermore, 𝐸 represents the Modulus of Elasticity of the spring material,
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Figure 5.12: The geometry properties of the curved spring from a front view (left)
and side view (right).

𝑟𝑛 is the radius of the unloaded spring’s neutral surface, and 𝑒 is the eccentricity of
the neutral surface from spring center due to the curvature of the spring.

Throughout this paper, the radius of the neutral surface and the in-plane thickness
of the spring, 𝑑, will be held constant, while the width, 𝑤(𝑠), is allowed to vary
along the length of the spring. From these spatial metrics, the cross sectional area
of the spring at the given position, 𝐴(𝑠) = 𝑑𝑤(𝑠), can be found. For this work, we
define the variable width to be

𝑤(𝑠) =
(𝑤min − 𝑤max

2

)
sin(2𝜋

𝑠0
𝑠) + (𝑤𝑚𝑖𝑛 + 𝑤𝑚𝑎𝑥

2
),

where 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 are the minimum and maximum width of the spring. This
width profile was chosen to make the ends of the spring narrow while the middle is
wider. This will allow for a better distribution of stress along the beam (H. B. Brown
and Zeglin, 1998). The internal normal force 𝑁 (𝑠) is given by

𝑁 (𝑠) = −𝐹𝑠 cos(𝛼(𝑠) + 𝛾(𝑠)) ≜ 𝑁̂ (𝑠)𝐹𝑠 . (5.18)
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Rearranging the governing equations (5.16)-(5.18) gives the final deformation as:

𝛾′′(𝑠) ≜ 𝜕
2𝛾

𝜕𝑠2 = −𝑁 (𝑠) + 𝐸𝑒𝑟𝑛𝐴′(𝑠)𝛾′(𝑠)
𝐴(𝑠)𝐸𝑒𝑟𝑛

= −𝐴
′(𝑠)
𝐴(𝑠) 𝛾

′(𝑠) − 𝑁̂ (𝑠)
𝐴(𝑠)𝐸𝑒𝑟𝑛

𝐹𝑠 . (5.19)

We now define the spring’s states as 𝑥2 = (𝛾(𝑠), 𝛾′(𝑠))⊤ ∈ R2 and the static
parameters as 𝜌 = (𝑑, 𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥 , 𝐸) ∈ R4, i.e., design variables. We then can
write (5.19) as in the form of an ordinary differential equation (ODE):

𝑥′2 = 𝑓𝜌 (𝑠, 𝑥2) + 𝑔𝜌 (𝑠, 𝑥2)𝐹𝑠 . (5.20)

For this system, the independent variable is now 𝑠 rather than time, and the dependent
variable is the deflection angle 𝛾 ≜ 𝛾(𝑠). Hence the solution to (5.20) can be
expressed as

𝑥2(𝑠)⊤ = (𝛾(𝑠), 𝛾′(𝑠)), ∀ 𝑠 ∈ [0, 𝑠0] . (5.21)

Since 𝑠 is a spatial characterization of the spring dynamics, we call (5.20) the
spatial-domain dynamics of the curved-spring subsystem.

Boundary condition and numerical solution.

For the subsystem (5.20), a boundary condition is required to uniquely determine the
solution. Since the ends of this spring are pinned, there is no moment transferred
at these points (Georgiev and Joel Burdick, 2017), and we can set the boundary
condition as 𝛾′(0) = 𝛾′(𝑠0) = 0. We then can solve for the numerical solutions
𝑥2(𝑠 𝑗 ) for a specified grid 𝑗 ∈ {0, 1, 2 . . . ,K}, where 𝑠 𝑗 = 𝑗 𝑠0/K. This will be
detailed in the next section.

Output.

The output of the curved-spring subsystem is the vertical length of the spring, i.e.
𝐿 (𝑡, 𝑠) for at a given time 𝑡 ∈ [0, 𝑇]. This can be calculated from the natural shape
of the spring in conjunction with the deflection angles as,

𝑦(𝑠) ≜ 𝐿 (𝑡, 𝑠) =
∫ 𝑠0

0
sin(𝛼(𝑠) + 𝛾(𝑠))𝑑𝑠 (5.22)

≈ 𝑠Δ
∑︁
𝑗

sin(𝛼(𝑠 𝑗 ) + 𝛾(𝑠 𝑗 )) (5.23)

Note that (5.22) defines the exact value while (5.23) is the trapezoidal approximation.
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Figure 5.13: The signal-flow diagram of the interconnected full-body dynamics.

Full-Body Dynamics
Due to the fact that the curved-spring subsystem evolves according to a spatial-
domain, independent variable 𝑠, the full-body dynamics of the hopper in design
becomes a interconnected time, spatial-domain system. This is achieved through
an interconnected mechanism, characterized by the shared variables 𝐿 (𝑡, 𝑠), 𝐹𝑠.
Concretely, we summarize the full-body dynamics from (5.15) and (5.21) as:

𝑆1 : ¤𝑥1 = 𝑓𝑣 (𝑥1) + 𝑔𝑣 (𝑥1)𝑢 + 𝑔̄𝑣 (𝑥1)𝐹𝑠 (5.24)

𝑆2 :

𝑥′2 = 𝑓2(𝑠, 𝑥2) + 𝑔2(𝑠, 𝑥2)𝐹𝑠
𝐿 ≈ 𝑠0

𝐾2

∑𝐾2
𝑗

sin(𝛼(𝑠 𝑗 ) + 𝛾(𝑠 𝑗 ))
(5.25)

where 𝑥1(𝑡) ≜ (𝑞, ¤𝑞)⊤, 𝑥2(𝑡) ≜ (𝛾, 𝛾′)⊤, 𝑗 = 0, 1, . . . , 𝐾2, and 𝑠 𝑗 = 𝑗 𝑠/𝐾2. As the
block diagram shown in Fig. 5.13, this interconnection between the two subsystems
happens at the output level instead of the states level, resulting in a coupled control
system (Wen-Loong Ma, Noel Csomay-Shanklin, and Aaron D. Ames, 2020). Since
the curved springs only deflect while the robot is on the ground, we only need to
match the shared variables during phases D3 and D4. Throughout D1, 𝐿 ≡ 𝐿0 and
𝐹𝑠 ≡ 0.

5.7 System-Level Optimization
The goal of this section is to use optimization (Betts, 1998), (Kelly, 2017) to simul-
taneously design highly-dynamic hopping motions and a curved spring of nonlinear
stiffness which allows for such motions with high energy efficiency of the electric
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motor. Leveraging the previous construction of the multi-phase interconnected dy-
namics, we introduce a general optimization formulation that solves for a solution
to the full-body dynamics, given by (5.24)-(5.25), and find the optimal spring pa-
rameters 𝜌. These parameters will be later used to guide our manufacturing of a
hopping robot.

Decision variables.
We first discretize the time horizon as an evenly distributed grid {𝑡𝑖}𝑖=0,1,...,𝐾1 where
𝑡𝐾𝑖 = 𝑇 for the time-domain dynamics. Then we similarly define the spatial grid as
{𝑠 𝑗 } 𝑗=0,1,...,𝐾2 . We denote the time-domain states at time 𝑡𝑖 as 𝑥𝑖1 and the spatial-
domain states at 𝑠 𝑗 as 𝑥 𝑗2. Correspondingly, the shared spring force at time 𝑡𝑖 is
defined as 𝐹𝑖𝑠. Define the decision variable as:

𝑋 ≜ {𝑥0
1, 𝑃, (𝛾

0)𝑖, 𝐹𝑖𝑠, 𝜌} with 𝑖 = 0, 1, . . . 𝐾1 (5.26)

where 𝑥0
1 is the initial condition of (5.24) when 𝑡 = 0, 𝑃 is the vector of Bezier

polynomial coefficients describing the desired motion of the mover coordinate, 𝑦,
and 𝛾0 is a boundary value of (5.25). Note that (𝛾′)0 = 0 was a given condition,
and (𝛾0)𝑖 is the boundary value at time 𝑡𝑖. The mover coordinate is the degree of
freedom which is directly controlled by the actuator, and will be the key trajectory
to track on the actual hardware in experiments.

Optimization problem.
We denote 𝑝(𝑥𝑖) ≤ 0 as the path constraints for the time-domain dynamics, then we
have the optimization problem using a direct-shooting method as:

System-Level Design Optimization:

min
𝑋

𝐽 (𝑋) (OPT)

s.t. C1. 𝑥
𝑖+1
1 = 𝑥𝑖1 +

∫ 𝑡𝑖+1

𝑡𝑖

(
𝑓𝑣 (𝑥1) + 𝑔𝑣 (𝑥1)𝑢(𝑥1) + 𝑔𝑣 (𝑥1)𝐹𝑖𝑠

)
𝑑𝑡

𝑖 = 0, . . . 𝐾1-1

C2.


𝑥
𝑗+1
2 = 𝑥

𝑗

2 +
∫ 𝑠 𝑗+1

𝑠 𝑗
𝑓𝜌 (𝑠, 𝑥2) + 𝑔𝜌 (𝑠, 𝑥2)𝐹𝑖𝑠 𝑗 = 0, . . . 𝐾2-1

𝑠0
𝐾2

𝐾2∑︁
𝑗

cos(𝑠 𝑗 + 𝛾 𝑗 ) − 𝐿𝑖 = 0 𝑖 = 0, . . . , 𝐾1

C3. (𝛾′)0 = 0, (𝛾′)𝐾2 = 0

C4. 𝑝(𝑥𝑖1) ≤ 0 𝑖 = 0, . . . , 𝐾1

C5. 𝑏(𝑥𝑖1) = 0 𝑖 = 0, . . . , 𝐾1
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Essentially, for the initial condition 𝑥0
1 and every spring force 𝐹𝑖𝑠 picked by the

optimization algorithm, C1 solves for its states at time 𝑡𝑖 with the assumed closed-
loop controller 𝑢𝑣 (𝑥1) (details of the tracking controller can be found in (E. Ambrose,
N. Csomay-Shanklin, et al., 2019)) for all phases D𝑣. We post the boundary
condition as an equality condition C3, so that for each sampling time 𝑡𝑖 and the
shared spring force 𝐹𝑖𝑠 from C1, the dynamics of (5.25) is then solved. Its output 𝐿𝑖

is also shared by (5.24) as one of the torso’s states. Note that this characterization
of 𝐹𝑖𝑠 and 𝐿𝑖 is the same as the Lagrange multiplier. Further, we posted a range of
inequality constraints such as hopping height and max spring deflection, 𝛿𝑚𝑎𝑥 , in
C4. This max deflection was based on the max allowable travel given the size of
the robot, as well as the max stress that the plates can handle before failure. A set
of equality constraints C5 is additionally used to enforce the boundary conditions
of the torso dynamics to match each other through the ground impact, so that the
optimization solution is periodic within the interconnected dynamics. This periodic
solution then can be implemented on the hardware as a cyclic hopping motion.
Lastly, the cost function was chosen to be 𝐽 (𝑋) =

∫ 𝑇
0 𝑢(𝑥1)2𝑑𝑡, to minimize the

effort of the actuator over a single hop within the constraints described.

Figure 5.14: Output results of the optimization: desired trajectory of the actuated
mover coordinate (top), and expected spring force in each curved spring (bottom).

Optimal hopping motion and design variables.
This optimization problem was implemented as described in MATLAB using fmin-
con. The average run time for the optimization to complete was 5 min. In order to
facilitate manufacturing of the springs, the material’s elastic modulus of the curved-
springs was set for Al-7075 (𝐸 = 72𝐺𝑃𝑎), while the other spring design parameters
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were allowed to vary. Other materials such as steel and titanium would be better
suited for large strain deformation like this, but were not considered here for the
sake of time and limited manufacturing resources at hand. In order to stay within
the yield stress limit of Al-7075, 𝜎𝑦 = 503 MPa, the feasible height of hopping was
limited. The optimization was able to generate results for hop heights up to 17 cm
off the ground, before the max stress of the material reached unsafe levels. Fig. 5.14
shows the mover trajectory and temporal spring force profile for the result of a 9 cm
hop height, which requires a max input force of 49 N.

Figure 5.15: Final spring force profile as a function of deflection showing the
softening nature of the designed springs.

The chosen spring design was based on this same 9 cm hop result which gave the
geometric spring properties of 𝑑 = 3.25 mm, 𝑤𝑚𝑖𝑛 = 24 mm, and 𝑤𝑚𝑎𝑥 = 41 mm.
The resultant spring force profile for this spring design is shown in Fig. 5.15. The
stiffness of these springs vary from 2390 N/m at zero deflection to 1080 N/m at
10 cm of deflection. At this 10 cm mark, the springs are storing 16.45 J and the
max stress within the plates is 283 MPa. The duration of the ground phase using
this result is 0.18 s, which is almost 3 times longer than what was seen in previous
work with a stiff coil spring. The ground phase elongation alone allows for lower
peak actuator force and less stressful impacts on the robot. This resultant spring and
motion design was taken and implemented as described in the next section.

5.8 Final Moving-Mass Hopper with Custom Springs
The robot used for the experimental validation of this spring design and hopping
motion was previously constructed using two linear coil springs (E. Ambrose and
A. D. Ames, 2020). To replace the lower coil spring, a set of curved springs were
machined out of Aluminum 7075-T651 and mounted to this robot through slight
modifications to the top and bottom of the robot’s body (see Fig. 5.9). A linear
guide was also attached in order to constrain the spring deflection to the vertical
direction.
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Figure 5.16: Phase portrait of the body coordinate with simulated trajectory (dark
blue) and experimental results from 20 consecutive hops (light blue).

The hopping robot was connected to a frame of vertical rails to facilitate its 1-
dimensional motion. Experiments were run utilizing an open-loop input of motor
force as a time-based trajectory as in (E. Ambrose and A. D. Ames, 2020). The
trajectory used here was generated through optimization for a hop height of 9 cm off
the ground. Experiments were performed for trials of 20 consecutive hops. A phase
portrait of the body coordinate, 𝑧𝑏, for one of these trials is shown in Fig. 5.16.
Vibration of the rails and curved springs was visually observed during the trials and
was present in the state tracking data as seen in the phase portrait. The plot shows the
consistent nature of both the overall hop height and the effects of the ground impact
and system vibrations, despite the motion being driven by an open-loop playback
of the input trajectory. Motion tiles of a single hop are shown in Fig. 5.17, which
show the full extent of the deflection within the plate springs. The supplemental
video shows the experiments in real time and slow-motion (E. Ambrose, 2021).

Figure 5.17: Tiles from the experiment over a single hop.
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C h a p t e r 6

ARCHER: THE 3D HOPPER

Moving beyond the work presented in the last two chapters on 1 Dimensional
hopping robots, this chapter presents the expansion into the realm of 3D hopping.
First, the two subsystem of the robot will be presented along with the details of how
they were simulated, designed, and finally combined to form the final robot that is
ARCHER. Next, simulations of the full robot were created to assess performance of
controllers for the attitude subsystem. Finally, the robot was built and tested in the
lab to show its initial performance.

6.1 Compression Actuator Design

Figure 6.1: Basic model used to simulate the compression motion

The goal of this robot is to show the effectiveness of the flywheels to control attitude,
and the ability to decouple the leg from this attitude control. With this goal in mind,
this final robot switches to using the compress-release method for controlling the
vertical component of hopping. While the moving-mess method was able to be
vastly optimized through design and motion planning, the CRH method is still far
simpler to control and plan. Switching to this method will allow any on-board
computation to focus the majority of its efforts on the motion planning of the overall
robot and the attitude control.
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Design Planning through Simulation
In order to plan out the design of the compression actuator, a set of MATLAB sim-
ulations were created. The first would be used to simulate the basic 1-Dimensional
hopping motion for this type of mechanism, and the second would simulate the com-
pression and release motion of the actuator. Previous work had shown that selecting
an actuator that was both strong enough to compress the spring, and quick enough to
release the cable completely within the short ground phase was a challenge. Rather
than sticking with the idea of using a clutch to do the releasing, the new idea was to
use a higher power motor in combination with a low reduction gearbox to reach the
desired performance of both motions directions directly.

Fig. 6.1 shows the an example of the basic model used for these simulations. The
actuator here will have a pulley connected at its output, which will be used to pull up
on a cable connected to the foot of the robot. As the pulley spins, the cable will either
act to apply a compressing force on the spring or will let slack back out of the cable
allowing the spring to expand, depending on the direction of rotation. The equations
of motion here are just as they were for the original CRH hopper in Chapter 4. The
actuation in these equations, 𝑢, will be treated separately in the second simulation.
Here 𝑢 is will just be a simple PD+FF controller on the deflection of the spring,
while in the air-decent phase, and 𝑢 = 0 during the ground phase. Reiterating the
equations of motion used previously, we have[

𝑀𝑏 + 𝑀 𝑓 𝑀 𝑓

𝑀 𝑓 𝑀 𝑓

]
︸               ︷︷               ︸

𝑀

[
¥𝑧𝑏
¥𝛿

]
︸︷︷︸

¥𝑞

+
[
(𝑀𝑏 + 𝑀 𝑓 )𝑔 + 𝑐𝑏 ¤𝑧𝑏
𝑘𝑠𝛿 + 𝑐𝑠 ¤𝛿 + 𝑀 𝑓 𝑔

]
︸                      ︷︷                      ︸

𝐻 (𝑞, ¤𝑞)

=

[
0
1

]
︸︷︷︸
𝐵

𝑢. (6.1)

Since the design of this actuator will affect the mass and inertia of this robot,
the model parameters will change throughout the process until the final design is
reached. These model parameters were chosen to approximate the final mass at
first, then iterated a few times throughout. Similarly, the stiffness of the spring was
also a variable of this process as well since it would need to change along with the
actuator to yield the desired performance within our constraints of max deflection
and minimum ground phase duration. With this in mind, the simulation process
became as follows:

1. Select approximate model info

2. Simulate the generic 1D hopping motion to determine the required compres-
sion to maintain a certain hop height for that model
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3. Collect the data of that sim, including: air/ground phase duration, required
compression, and hop height

4. Run a second simulation of the motor compression and release cycle, given
desired current/voltage limits and the model of the actuator

5. Observe the minimum time to compress and release and compare with the
max duration of the air and ground phases

6. Iterate as desired to get required performance/safety margins

During the design process, both low and high hops were simulated in order to see
the limits of the actuator. Low heights show the smallest time intervals in which
to compress, while the higher hops would show the limit of the compression the
actuator could perform, as well as the max height that the spring would be capable
of handling. Next, the details of each simulation will be discussed in more detail.

With the model being as simple as it is, there are just a few parameters to be set
before a simulation can be run such as mass and damping terms. The mass terms
will get updated as the model becomes more solidified. Meanwhile the stiffness of
the spring will be adjusted during the iteration process, attempting to minimize the
stiffness without going past the max allowable deflection during the higher hops.
The goal with the spring stiffness selection is to be stiff enough to prevent deflections
too large for foot’s range of motion in hardware, but also soft enough to prolong the
ground phase duration.

Figure 6.2: Effect of pre-compression on the hop height of the hopper. The left side
plot shows the result of under compression, and the right side plot shows a hop with
over compression.
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With this model, the hopping simulations were set to start from an initial hop height,
with a given pre-compression to reach at impact with the ground. That will play out
until the next hop apex is reached. Fig. 6.2 shows some examples of the vertical
motion throughout a single hop, and how different amounts of pre-compression
control the hop height. A simple optimization process was wrapped around this
simulation, which will determine the ideal pre-compression, 𝛿0, to yield a specific
final hop height given the initial height. At the end of the optimization, the duration
of both phases is recorded along with 𝛿0.

This timing information gets used in the second simulation step next, where the
actuator is assessed under chosen electrical limits for max current and voltage. The
goal here is to see how quickly the actuator can compress the spring to the deflection
𝛿0, and also how quickly it can "release" the slack under no load (assuming the ground
contact will remove the load from the actuator). These times will be compared to
the maximum values which are the duration of the phases gathered previously.

The dynamics of this second model involves the motor-gearbox-pulley-spring sys-
tem. In an effort to make this gearbox be customizable yet achievable on hardware,
it was chosen to be a planetary design as seen in Fig. 6.3. The layout of the planetary
gearbox in the compression actuator places the Sun gear onto the rotor of the motor,
and the carrier of the gearbox at the output and connected to the pulley. The ring gear
will be fixed to the frame along with the stator of the motor. With this configuration,
the gear ratio of the drive is defined as 𝑅 =

𝑟𝑠
2(𝑟𝑠+𝑟𝑝) , where the output (carrier-side)

of the gearbox has a higher torque, but lower angular velocity than the motor side.
Here, 𝑟𝑠 and 𝑟𝑝 are the radii of the Sun gear and Planet gear, respectively.

This system will be treated as a single degree of freedom, despite the presence of a
flexible cable. In order to place the dynamics of the spring load in the same equation
as the electro-mechanical motor dynamics, there is a need for a relation for how
torque is transmitted across the gearbox via the equivalent inertia of the system as a
whole. As derived in (Borders, 2009), this equivalent inertia of the system felt by
the motor is given as

𝐽𝑒𝑞 = (𝐽𝑠 + 𝐽𝑟𝑜𝑡) +
𝑛𝑝𝑟

2
𝑠

4
(
𝐽𝑝

𝑟2
𝑝

+ 𝑀𝑝) + 𝐽𝑐𝑅2 (6.2)

where 𝐽𝑠, 𝐽𝑝, 𝐽𝑐, and 𝐽𝑟𝑜𝑡 are the inertias of the sun gear, planet gears, carrier, and
rotor of the motor, respectively. Additionally, 𝑛𝑝 is the number of planets and 𝑀𝑝 is
their mass.
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Figure 6.3: Basic profile of the planetary gearbox

The general equation of motion for this actuator can be written using this equivalent
inertia as

𝐽𝑒𝑞 ¥𝜃 + 𝑐 ¤𝜃 +
𝑟𝑝𝑢𝑙𝑅

𝑛
𝐹𝑠 = 𝑘𝑣 𝐼 (6.3)

where 𝜃 is the motor angle, 𝑐 is a damping coefficient, 𝑟𝑝𝑢𝑙 is the radius of the pulley,
𝑛 is the efficiency of the gearbox, 𝐹𝑠 is the spring force, 𝑘𝑣 is the torque constant of
the motor, and 𝐼 is the system input of motor current.

In order to determine the quickest possible compression and release, the control in
these simulations will be bang-bang at the chosen current limit. Voltage limits are
also present, but they end up not coming into play since the motor never gets up to
a high speed during these motions and the motor’s low terminal resistance. This
simulation has two phases: compression and release. The compression phase will
have the actual spring force working against the motor, while the release phase will
have no spring force throughout. The states of motor velocity and position will be
continuous across the phase change, which will lead to a little bit of overshoot in the
deflection before beginning to extend again.

Fig. 6.4 shows an example of one of these simulations via a graph of deflection
over time. The red curve represents the absolute minimum rate of compression and
release given the phase durations found in the first simulation, which is based on the
data from a stable hop height of 0.75 m. The blue curve shows the actual deflection
of the actuator undergoing the motion with the chosen control. In this case, the
motor current throughout the first phase is set at 20 A, while in the second phase it
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Figure 6.4: Example motion from the compress-release cycle simulation, for a hop
height of 0.75m and a current limit of 20A.

is −20 A. It can be seen that with this current limit, the actuator can compress more
than the required amount for this hop height, and is also able to release the cable
more than quickly enough during the ground phase.

Hardware Realization
From here, the design of the actuator can be iterated on by changing the motor
or gearbox parameters, and the spring stiffness could be shifted as desired. Some
factors are limited by available products, such as gear ratios are based on the standard
gearing options, particularly the ring gears which are difficult to find in more than
just a few sizes. It was quickly seen that the best route to take was pairing a more
powerful motor with a low-reduction gearbox, due to the limited duration of the
ground phase. In order to prioritize speed, a torque-dense motor was needed to
make up for the lower gearbox benefit. Luckily, drone motors are amazing now, so
this wasn’t difficult to do and a final design was reached.

Solidworks was used as a key tool during the design process. Each time a new motor
or gear ratio was selected for a simulation trial, it was modeled up in CAD in order
to determine the inertias for the components. Fig. 6.5 shows the final design along
with the overall dimensions. The overall mass of the actuator came out to 950 g,
and is capable of generating 13 N m of torque and rotating at 600RPM.

The motor selected for this actuator is the U10-plus from T-Motor (T-Motor, 2021b),
with a custom wiring to reach a back-emf constant of 50RPM/V. The frame of the
stator on the motor was also customized so it would have a thicker aluminum section
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Figure 6.5: Views of the final compression actuator giving the overall size and the
location of the incremental encoder on its back.

leading to better heat capacity and heat transfer. Furthermore, in order to not push
the temperature of the motor, the current is limited to 25 A. This motor, as with the
flywheel motors, is controlled with a Gold Solo Twitter from ELMO-MC (ELMO-
MotionControl, 2021). The specific model used was the G-SOLTWIR50/100SE1S,
which is capable of outputting up to 50 A and 100 V. This controller will use an
incremental encoder as its feedback source on the motor’s motion. The encoder
used here and for the flywheels is the LM13 from Renishaw (Renishaw, 2021). This
sensor works by reading the rotation of a circular magnet that is attached to the rotor
of the motor, in this case that magnet is the MR031C.

Figure 6.6: Internal views of the compression actuator, to see the layout of the
components and specifically the gear train.

A better view of the internal layout can be seen in Fig. 6.6. The larger section of
the actuator contains the motor, with the back plate being the mounting point for
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Parameter Value Parameter Value
𝑟𝑠 0.015 m 𝑟𝑝 0.0075 m
𝐽𝑟𝑜𝑡 0.000 134 041 kg m2 𝑛𝑝 3
𝐽𝑠 0.000 007 150 kg m2 𝑅 1

3
𝐽𝑝 0.000 000 335 kg m2 𝜂𝑒 𝑓 𝑓 90%
𝑀𝑝 0.0154 kg 𝑐 0.1 Nms/rad
𝐽𝑐 0.000 023 273 kg m2 𝑘𝑣 0.191 N m/A
𝐽𝑝𝑢𝑙 0.000 075 000 kg m2 𝑟𝑝𝑢𝑙 0.0375 m

Table 6.1: Final parameter selection for the compression actuator.

the motor and the encoder. This back plate also has fins over the exterior in order to
further help with the heat transfer away from the motor, since the motor temperature
is the limiting factor on performance and capability. The front, smaller section of
the actuator contains the gear box and supporting bearings. There are two halves
of the carrier of the gearbox, each with its own bearing between it and the frame
to force proper alignment and keep things running efficiently. Similarly, there are
smaller bearings on either side of the planets, connecting them to the carrier. The
final consideration for improving gear-train efficiency was to allow the sun gear to
float, meaning it can slightly deviate from the rotor center in order to properly center
itself between the planets. This is more important than staying concentric with the
motor, as long as the motor can still transmit torque through the sun gear, which it
can due to the spline profile between the two.

Table 6.1 provides the specific parameters selected for this actuator, including the
inertias and radii for each key component, the approximate damping coefficient, and
overall torque efficiency. The radius of the output pulley is provided here, since it
is used in the compression simulation, and will be discussed later on along with the
rest of the cable and foot system. Plots of the electrical and mechanical capabilities
of this actuator can be seen in Fig. 6.7. The two limits in place within these plots are
for the max current and max power of the motor. Both of these limits are selected
to prevent the motor coil temperature from getting too high which would lead to
shorts and other permanent damage. As mentioned previously, for this hardware the
current limit is set to 25 A, while the motor power will be limited to 250 W.

A cable system is used to connect the output of the compression actuator to the
foot of the robot. This is accomplished through two pulleys and a flexible, Teflon-
reinforced cable. Fig. 6.8 shows the general layout of these components with the
rest of the robot hidden. The upper pulley is attached directly to the output of the
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Figure 6.7: Plots of the actuator performance, showing output torque, motor current,
and various power specs vs output speed.

compression actuator, and spins in order to take up or let out slack in the cable. The
lower end of the cable is attached to a fixed pulley connected to the top of the foot.
Between the two pulleys, just below the upper one, there is a small bearing placed
to force the cable to align directly above the lower pulley and cause the compression
force to be in-line with the spring.

Figure 6.8: CAD view of the compression sub-system, including the pulleys, cable,
foot, spring, and alignment features.

The cable itself is clamped to each pulley at its ends. In order to prevent slipping
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of the cord within the clamp, it is wrapped around the pulley multiple times which
allows the friction between the pulley/cable to provide extra force rather than relying
completely on the clamp. There are grooves in the rim of the pulleys that force the
cable to sit consistently while under load. Fig. 6.9 shows some close-up views of
the upper pulley as an example of these grooves and clamps.

Figure 6.9: Views of the upper pulley which show the groove and clamp features
that help hold onto the cable during compression.

To prevent the cable from coming out of the grooves, a light plastic cover is placed
over the pulleys once the cable has been wrapped, as can be seen in Fig. 6.10.
Cutouts in the covers allow the cord to exit/enter at the required spots, but prevent it
from moving at all in most of the wrapped areas, and add extra normal force which
will further increase the friction resistance and reduce the likelihood of slipping at
the clamps.

Figure 6.10: CAD model of both pulleys with their covers to keep the cable from
slipping out of the grooves.

The foot assembly can also be seen in Fig. 6.8, specifically the foot pad, spring, foot
guides, and the hardstop plates. During the process of simulating and designing the
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compression actuator, the foot mass was used since it is the main factor in energy loss
and motivates the need for pre-compression. Fortunately, its mass doesn’t change
as most design factors are updated, so it remained a constant throughout the design
process. This was due to the fact that springs are generally designed around having
a convenient diameter, but modulate stiffness through other dimensions like wire
diameter and number of coils. As with the original 1D-CRH robot, this foot contains
hard-stops placed at an equilibrium length based on the given weight of the robot.
This CRH hopping system would be very conducive to the non-linear spring design
optimization done in previous work. Since the control of this system can be treated
as a discrete event that occurs in the air and does nothing during the ground phase,
the optimization would be much simpler and more likely to give a global optimum
for the spring design. A few designs were generated for these springs throughout
the process of designing the rest of the robot. For the sake of time on this thesis,
it was decided to remain with the standard linear coil spring. Through months of
hearing from companies that they couldn’t or wouldn’t be willing to make custom
springs from fiber glass materials like E-glass and S-Glass, it was decided to not
make further attempts and slow down the rest of the project.

6.2 Flywheel Simulation and Design
The attitude control of the robot is preformed by a group of 3 flywheels within the
torso, which will act in conjunction to keep the torso upright and place the foot as
desired. The key metric in planning out this subsystem come down to choosing the
mass/inertia of each flywheel, the maximum torque which can be exerted by each
flywheel actuator, and the maximum speed that each flywheel can spin before the
actuator loses its control bandwidth. This section will describe in detail the process
of designing and simulating the attitude subsystem of the robot, to not only determine
these key parameters, but also to observe the efficacy of this style of attitude control.
The following subsections will delve into a review of attitude control used on hoppers
in the past, the reasoning behind the choice of using flywheels on this robot, and
their design process including the final choices made for ARCHER.

Review of other 2D/3D Hopping Platforms
Hopping is a mode of periodic, legged locomotion in which the body spends part of
the motion cycle on the ground and the rest completely airborne. In between these
two phases of motion, there are rapid and extreme changes of contact with the world
in the form of impacts. In this way, hopping is alike to running in legged systems
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(W. Ma, Kolathaya, et al., 2017), (J. Park et al., 2014). The presence of these
contact changes and their energetic consequences motivate the use of methods for
dynamics analysis used in classical legged locomotion (M. Raibert, 1986), or also
in hybrid systems (Sinnet et al., 2011), (Westervelt, J. W. Grizzle, and Koditschek,
2003). Furthermore, hopping robots have been shown to be very capable despite
these conditions, resulting in complex behaviors like flipping (M. Raibert, 1986),
or changing terrain (C. M. Hubicki et al., 2016),(Yim, Wang, and Fearing, 2019).
Achieving good performance and stability on hopping systems requires intelligent
planning to prepare the robot during the air phase for the quick dynamics of the
upcoming ground phase.

Researchers in the Leg Lab developed a set of control methods to stabilize hopping
and other similar legged systems based on conservation of energy, foot placement,
and leg sweeping (M. H. Raibert, 1984), (M. H. Raibert, H. B. Brown, and Cheppo-
nis, 1984), (M. Raibert, 1986). These controllers were able to successfully generate
hopping motions for both 2D and 3D hopping systems and could maintain balance
over a large number of hops and with a variety of disturbances. Furthermore, they
required fairly simple state information and computations, making their implemen-
tation very straight-forward. One caveat of their hopping robots was the presence of
a large torso, which could easily affect the dynamics of the system during the ground
phase through a change in its position. This fact was reflected in the control strate-
gies they developed, in both the placement of the robot’s foot and the magnitude of
the hip’s forward velocity being dramatically effected by the torso angle. A benefit
of having a torso is that the robot is able to control its center of mass location and
apply torques to the leg during the ground phase with a single joint. The down-side
of this is that the two dynamic features are coupled, when it could be better to have
a separate actuator to control each.

As part of a collaboration with Disney Research and Development, a robotic hopping
platform is being created which will adhere to the principles of safe actuation (E.
Ambrose, N. Csomay-Shanklin, et al., 2019),(E. Ambrose and A. D. Ames, 2020).
This safety concern forces any contact between the world and the robot to occur
through an elastic element such as a spring. This requirement, along with those
implied by recent patent on a robotic bouncing ball (Smoot et al., 2018), gives rise
to many design constraints including the size of the mechanisms within the elastic
exterior. In order to fit a torso of the robot inside, the size and range of motion of
the link would need to be reduced, which would decrease the controllability of the
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robot. Beyond this, the added weight of a torso would entail increasing the stiffness
of the spring and lessening the benefits of the elastic boundary.

In order to maintain the controllability of the robot while satisfying the design
constraints, flywheels are now being considered as the alternative source of ac-
tuation. Flywheels provide many benefits over a torso design within the context
of this project. For one, they are significantly lighter, even when including three
separate wheels and actuators. Secondly, they are usually small, but can be made
up to any size that fits within your size constraint. Thirdly, flywheels are able to
spin indefinitely which removes the range of motion constraints on the angle of
this degree of freedom. The constraint on the velocity of the flywheel remains and
then becomes the limiting factor on controllability of the system. Additionally, the
flywheels center of mass is at its joint, which means that the center of mass for
the robot is unaffected by the flywheel spinning. This could potentially allow for a
separate actuator to be placed on the system to control center of mass location and
gain more decoupled control over the dynamics of the robot.

The design of this robot will assume flywheels alone are the acting agent for attitude
control. The model of the robot will have these flywheels placed such that their
axes of rotation align at a single point which coincides not only with the central
vertical axis of the robot leg, but also with the over all center of mass for the body of
the robot. The body of the robot would include everything other than the foot and
springs elements. To start these flywheels will be aligned with the overall directions
of Yaw, Pitch, and Roll for the robots motion with an additional mass placed so that
the center of mass remains in the desired location. Later on, this is changed so that
the flywheels would be placed symmetrically around the central axis of the robot,
removing the need for a large additional mass and lowering the mass of the overall
robot.

In order to properly plan out the design of the flywheels, simulations must be run.
This will require more than just basic balancing in place, but also in cases where the
robot will be hopping around from spot to spot as well as having a constant velocity
in a given direction. These simulations which move beyond balancing will require a
plan for foot placement, which hadn’t yet been studied in this project. The following
subsection will describe how other methods were modified for the purpose of a
flywheel driven system. The results of the initial simulations using these methods
will be presented, which were the key factors used to settle on the design of the
flywheel subsystem.
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Figure 6.11: The 2D Flywheel-SLIP model.

Initial Simulations of a Flywheel-Controlled Hopper
Historically, methods for controlling the motions of hopping robots have made the
assumption that there is a torso present above the leg which has larger inertia than the
leg itself. This torso is typically used to modulate the angular position and velocity
of the leg during the periodic motion. Flywheels are being examined to assess their
possible replacement of such a torso, in order to meet the required performance on
this potential hopping robot. To begin, we first introduce the Flywheel Spring-loaded
Inverted Pendulum (fSLIP) model seen in Fig. 6.11, as described in Xiong and A.
Ames, 2020. This model places a revolute joint and flywheel at the point mass of
a typical Spring-loaded Inverted Pendulum (SLIP) model. This model allows for a
torque between the leg and flywheel in order to effect the angular degree of freedom.
Overall, this model now contains three degrees of freedom. In this work, the three
model coordinates are chosen to be the horizontal and vertical position of the mass,
𝑥 and 𝑧, as well as the angle of the flywheel, 𝜃𝑤. The dynamics for the fSLIP model
are given by the following three equations:

𝑚 ¥𝑥 = −𝜏
𝑟
𝑐𝑜𝑠(𝜃𝐿) + 𝐹𝑠𝑠𝑖𝑛(𝜃𝐿) (6.4)

𝑚 ¥𝑧 = 𝜏

𝑟
𝑠𝑖𝑛(𝜃𝐿) + 𝐹𝑠𝑐𝑜𝑠(𝜃𝐿) − 𝑚𝑔 (6.5)

𝐼 ¥𝜃𝑤 = 𝜏 (6.6)

where 𝑚 is the combined mass of the flywheel and point mass, 𝐼 is the inertia of
the flywheel, 𝜏 is the torque on the flywheel, 𝐹𝑠 = 𝑘𝑠𝛿 + 𝑐𝑠 ¤𝛿 is the spring extension
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force, and 𝛿 is the spring deflection. The model kinematic constraints are on the
angle of the leg from vertical, 𝜃𝐿 = 𝑡𝑎𝑛−1( 𝑥

𝑧
), and the instantaneous length of the

leg, 𝑟 = 𝐿0 − 𝛿, where 𝐿0 is the free length of the leg.

Vertical Control Vertical control is used to maintain the desired oscillations of
the robot between ground and air phases. Actuation along the leg axis is required
when energy loss is present in the system or when you wish to change hop height
(amplitude of oscillations). Energy loss can come from dissipation forces such as
damping or through impacts when there is unsprung mass in the leg of the robot. In
the classical methods, actuation is used to counteract energy lost during impacts. It
is possible to determine the exact amount that will be lost during the next ground
phase, and prepare to add that same amount back into the system in advance to
create a net zero loss of energy.

The foot is assumed to be massless for the fSLIP model, which means that energy
is conserved through the ground contacts. This leads to no need for any actuation to
maintain a given vertical hop height. However, actuation will be used to change hop
height due to the inherent difference in energy required for a mass at a given height.

Foot Placement Foot placement is used to effect the dynamics of the robot to provide
stability. This will first be shown for the case when you wish to reach zero velocity.
In the classical methods, the desired placement of the foot, 𝑥𝑡𝑑 , is given with respect
to the hip joint between the leg and torso, where a positive value represents placing
the foot in front of the hip joint and a negative value means placing the foot behind
the hip joint. Here, the hip joint represents the joint between the leg and flywheel.
The calculation for this placement is based on the desire to keep the foot nominally
below the robot’s center of gravity, with small deviations designed to correct any
unwanted motion. Consequently, the equation for 𝑥𝑡𝑑 can be broken up into a term
for the center of gravity offset and a second term other for the error correction, given
as

𝑥𝑡𝑑 = 𝑥𝑐𝑔 + 𝑥𝑒𝑟𝑟 . (6.7)

The error correction term can be made up of multiple feedback metrics added up.
The choice made in (M. H. Raibert, 1984) included three such terms given by

𝑥𝑒𝑟𝑟 = 𝑘1( ¤𝑥𝑇 − ¤𝑥𝑇,𝑑) + 𝑘2(𝜃𝑇 − 𝜃𝑇,𝑑) + 𝑘3( ¤𝜃𝑇 ), (6.8)

where ¤𝑥𝑇,𝑑 and 𝜃𝑇,𝑑 are the desired values for the torso’s forward velocity and
orientation, ¤𝑥𝑇 and 𝜃𝑇 , and 𝑘𝑖 are controller gains.
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In the fSLIP model, the flywheel’s center of mass is located at the revolute joint
so the angle of the flywheel does not effect the dynamics. Therefore, the second
term in (6.8) may be omitted leaving just two state-based terms determining the
placement of the foot. This leads to the forward velocity of the flywheel and leg to
be equivalent. The modified version of the error correction term is

𝑥𝑒𝑟𝑟 = 𝑘1( ¤𝑥 − ¤𝑥𝑑) + 𝑘2( ¤𝜃𝑤). (6.9)

Once the foot placement distance has be chosen, the desired angle of landing can be
found via

𝜃𝐿 = 𝑠𝑖𝑛−1(−𝑥𝑡𝑑
𝑟

), (6.10)

where 𝑟 = 𝐿0 − 𝛿 is the instantaneous length of the leg, given the current deflection
of the spring, 𝛿.

Leg-Sweeping In order to maintain a velocity, the foot placement algorithm must
be altered. The method discussed in the previous sub-section assumes that the
robot holds position while on the ground, and acts only to pivot about the ground
contact. The distance traveled by center of mass during the stance phase is linearly
approximated by

Δ𝑥𝑠 = ¤𝑥𝑑𝑇𝑠, (6.11)

where 𝑇𝑠 is the duration of the stance phase. Due to the nature of the spring-leg
system, the duration of the stance phase closely follows the half-period of the natural
frequency oscillation of the spring-mass system given by

𝑇𝑠 =
𝜋

𝜔𝑛
= 𝜋

𝑚

𝑘𝑠
. (6.12)

The nominal touchdown distance is modified to place the foot underneath in the
center of the body traversal as

𝑥𝑡𝑑 = 𝑥𝑒𝑟𝑟 +
Δ𝑥𝑠

2
. (6.13)

With the desire to keep the body following the same velocity throughout the stance
phase, the body center must follow a distinct path. The corresponding foot placement
trajectory is given by

𝑥(𝑡) = 𝑥𝑡𝑑 − Δ𝑥𝑠
𝑡 − 𝑡𝑡𝑑
𝑇𝑠

, (6.14)

where 𝑡𝑡𝑑 is the time of touchdown and 𝑡 is the time within the stance phase with
respect to 𝑡𝑡𝑑 . This second term acts to track the foot placement throughout stance
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and correct for any error during each step. The touchdown angle can now be made
a function of this time-varying stance position as

𝜃𝐿 (𝑡) = 𝑠𝑖𝑛−1(−𝑥(𝑡)
𝑟

). (6.15)

In the case where there is a large difference between actual and desired forward
velocity, the robot will attempt to place its foot further away from its center of
gravity. This will lead to large ground reaction force in the lateral direction, which
could violate the friction cone conditions typical of ground forces. To prevent such
events, the desired velocity can be modulated to limit the acceleration or deceleration
of the robot, just as in (M. H. Raibert, 1984). This modulation method is described
by the logical condition

Δ𝑥𝑠 =


( ¤𝑥 − Δ ¤𝑥0)𝑇𝑠, if ( ¤𝑥 − Δ ¤𝑥𝑑) > Δ ¤𝑥0

( ¤𝑥 + Δ ¤𝑥0)𝑇𝑠, if ( ¤𝑥 − Δ ¤𝑥𝑑) < −Δ ¤𝑥0

¤𝑥𝑑𝑇𝑠, otherwise,

(6.16)

where Δ ¤𝑥0 is the max change in velocity.

Figure 6.12: Mathematical model of the 3D Flywheel Hopper.

3D Hopping Specialization The foot placement techniques described in the pre-
vious section were developed for the ideal 2D-fSLIP model. In this section the
controllers will be extended to the 3D hopper model which more closely represents
the robotic system that will be soon developed in the lab. The goal is to use these
methods to assess the performance of this hopping robot before the design is fi-
nalized. Fig. 6.12 shows the 3D hopper model with some of the new coordinates
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labelled for clarification. The robot will consist of a body with three orthogonally-
mounted flywheels, which will be able to control the full body orientation. This
model assumes that the center of mass for the body-flywheel assembly is at the
point of intersection for the three flywheel joint axes. This could be reasonably
matched on actual hardware later on by adding a counter weight as was modelled in
this simulation. Below the body is a linear spring and foot with mass. The contact
between the foot and the ground is assumed to be a point contact.

The orientation of the body is modeled as three rotations in the order of Roll (𝜃𝑅-
rotation about X), Pitch (𝜃𝑃-rotation about Y), and then Yaw (𝜃𝑌 -rotation about Z).
The angle of the flywheel connected along each of these axis will be labeled as 𝜃𝑤𝑖,
with 𝑖 ∈ [𝑅, 𝑃,𝑌 ]. As was the intention with these methods, control in the X-Z plane
and the Y-Z plane will be kept separate and treated as a decoupled system. However,
the simulation method described later in the section will follow the full non-linear
dynamics of the robot. In order to simplify the section, the modified methods will
be described for only control in the X-Z plane which involves controlling around
desired values of ¤𝑥, 𝜃𝑃, and 𝜃𝑤𝑃. The same methods will be used for the states in
the Y-Z plane during simulation.

Due to the presence of the foot’s unsprung mass, the system will now lose energy
during each ground phase of the hopping cycle. To make up for this loss, a linear
actuator is placed in series with the spring. The controller for this linear actuator
follows the same principles as in (M. H. Raibert, 1984),(E. Ambrose, N. Csomay-
Shanklin, et al., 2019), where the amount of energy in the system is calculated at
take-off and compared with the desired energy to reach a chosen height. The linear
actuator can then choose how much energy to store and then release during the
upcoming ground phase in order to change the current energy level. The equations
for calculating the desired spring compression, 𝛿0 is given as

𝛿0 =

√︂
2Δ𝐸
𝑘𝑠

, (6.17)

where Δ𝐸 is the required input energy to reach the desired hop height during the
next air phase. The actuator will compress the spring by this amount during each
air phase and release it during the ground phase.

Now that the masses and inertias of the robot model are no longer trivial as in the
fSLIP case, the foot placement controller must also be modified accordingly. The
changes show up in the estimate of the center of gravity, 𝑥𝑐𝑔, since the mass is no
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longer condensed to a point. This distance is given by

𝑥𝑐𝑔 = −
𝑟𝑀 𝑓 𝑠𝑖𝑛(𝜃𝑃)

𝑀0
, (6.18)

where 𝑀 𝑓 is the mass of the foot and 𝑀0 is the total mass of the system. Since this
equation depends on the touchdown angle, the formulation of the desired touchdown
distance must be solved for in combination with the error correction term described
in (6.9). The final equation for the touchdown distance comes out to be

𝑥𝑇𝐷 =
𝑀 𝑓

𝑀0 − 𝑀 𝑓

𝑥𝑒𝑟𝑟 . (6.19)

From here, the desired touchdown angle can be solved for again using (6.10).

The leg sweeping adjustments to the foot placement algorithm used in the fSLIP
model were tried in simulation, but the forward velocity tracking was not very
successful and lead to steady-state velocity error. When the feedback gain on the
flywheel velocity was lowered, the steady-state error would decrease but then the
flywheel velocity would build up to infeasible levels. Conversely, if the gain on body
velocity was increased then the hopping became unstable. The end result used in
simulation was to add a third feedback term on the desired body position to combat
the negative effect of the flywheel velocity gain. The new equation for touchdown
distance error correction is given by

𝑥𝑒𝑟𝑟 = 𝑘1( ¤𝑥 − ¤𝑥𝑑) + 𝑘2( ¤𝜃𝑤) + 𝑘3(𝑥 − 𝑥𝑑), (6.20)

where 𝑥𝑑 is determined by the initial and desired velocities, as well as the velocity
change limits. With this additional term, the robot was seen to track the desired
velocity better while still adhering to the flywheel velocity limits.

3D Hopping Simulations In order to assess the performance and stability of the con-
trollers on the 3D hopper platform, a fully non-linear model of the robot was created
in Simscape. The parameter values for mass, inertia, lengths, and torque/velocity
limits were chosen to reflect those of the future hardware system. A few of these
values are given here as reference. The mass and max principle inertia of the hopper
body were set to 4.8 kg and 0.052 kg m2. The mass and max principle inertia of the
flywheels were set at 0.3 kg and 0.0012 kg m2. The torque and velocity limits for
the flywheels were placed at 2.0 N m and 500 rad/s.

Ground contact was simulated through the addition of a SphereToPlane contact from
the Simscape Multibody Library. This model block treats the ground contact as a
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Figure 6.13: Phase portrait for hopping over a period of 25 hops.

spring-damper system, with user-defined stiffness and damping parameters. These
were chosen to be fairly high to prevent noticeable bouncing between the foot and
surface during the ground phases of the hopping motion. Simulations were run
to show the controllers ability to stabilize the robot at a given hop height. Fig.
6.13 shows the phase portrait for 25 consecutive hops in simulation at a height of
0.625 m. This is the height that will be used throughout the following foot placement
simulations of the hopper controllers as well.

The foot placement algorithm for the case of stabilizing the robot to zero velocity was
tested next for both the 2D and 3D cases. The body was given an initial velocity of
0.5 m/s in either the 𝑥 axis for the 2D case, or both for 3D. The controller gains were
tuned again for this model, and were finally set at 𝑘1 = 0.08 and 𝑘2 = 0.00025. Due
to friction constraints between the foot and ground in simulation, the robot is only
able to slow down or speed up in increments. The method of limiting acceleration
and deceleration used in (6.16) was implemented here with the max desired change
in velocity for a single hop set to 0.2 m/s. Fig. 6.14 shows the simulation results
for this behavior in the 2D case over a period of 7 s. The robot was able to bring its
body velocity and flywheel velocity down to zero within 15 hops, and easily stayed
within the flywheel torque and velocity limits.

A final set of simulations for the hopper were run to test the leg sweeping and
velocity tracking controllers. As mentioned previously, the standard form of the
error correction terms was not sufficient to track velocity, leading to steady-state



97

Figure 6.14: Simulation for the foot placement algorithm on the 3D hopper, showing
settling after 7 seconds. State data are shown for a) Body forward position, b) Body
forward velocity, c) Body pitch angle, and d) Pitch flywheel velocity.

error for the forward velocity. This was fixed through adding the third term with
feedback on the desired position in (6.20), essentially acting as an integral term on
the velocity. Fig. 6.15 shows the results of a simulation with an initial forward
velocity of zero, and a desired velocity of 0.3 m/s.

Final Design of the Flywheel Subsystem
The simulations described previously were used to determine the key parameters of
the system through an iterative process. The objective was to select the mass and
inertia of the flywheels, as well as the motor used to spin them. Selecting the motor
was the first step of this process, since the torque would show how much orientation
error could be corrected in a single hop. The simulations were run using different
peak torques in order to establish if certain actuators could bring the robot back to
rest in a short time. Through a few attempts it was found that 2 N m of torque would
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Figure 6.15: Simulation for the foot placement algorithm on the 3D hopper, showing
settling after 7 seconds. State data are shown for Body forward velocity (top) and
Body pitch angle (bottom).

be enough to achieve this. With the goal of choosing the lightest motor possible,
out-runner motors were the style of choice. The specific model chosen was the
Anti-Gravity MN7005, KV115 motor from T-Motor (T-Motor, 2021a). This motor
was designed to have a very minimal frame, leading to a mass of 188 g while still
being capable of the required torque and over 750 W of power.

Figure 6.16: Plot of the torque limit of the flywheel motors as a function of their
velocity.
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With this motor and an assumed max battery voltage of 50 V, the max allowable
velocity of the flywheels can be found to be 600 rad/s. However, the current that
can be run through the motor will diminish as the motor velocity approaches this
max velocity. Fig. 6.16 show this limited torque, which begins once the motor gets
above 511 rad/s. Once the motor reaches its ultimate limit, the motor will be unable
to apply torque in that direction anymore, severely limiting its control bandwidth.

In order to keep the motor away from the limits as effectively as possible, its better
to have a flywheel with large inertia. However, this would also drive up the mass
of the flywheel and, therefore, the whole robot as well. The question was how large
of an inertia could be reasonably allowed for this robot. The max diameter of the
flywheel was already determined from the CAD model as 150 mm, and similarly the
thickness was limited to 15 mm. Flywheels of a few different masses were designed
in CAD, attempting to get the largest inertia possible within the geometric limits
mentioned. Each of these models were examined in the simulations via using their
mass/inertia in the Simscape model. It was determined that the flywheel with a
mass of 250 g, and inertia of 0.001 25 kg m2, was the smallest version that could
perform the constant velocity simulations up to a forward velocity of 0.5 m/s without
crossing the speed threshold of the motors, so this was the size that was selected.

Figure 6.17: CAD model of the flywheel-actuator assembly, including the feedback
encoder and frame mounting plates.

Fig. 6.17 shows the final model of the flywheel actuator. The inertia wheel itself
is attached to the motor through a thin aluminum spoke frame. This spoke piece
is glued directly to the rotor of the motor, while the other end is bolted to the
main piece of the flywheel, which is a stainless steel ring in order to drive up the
inertia-mass ratio of the overall flywheel. The feedback and motor controller for
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these actuators are the same as for the compression actuator, meaning a incremental
encoder (Renishaw, 2021) mounted to the back of the motor, and driven by an
ELMO Twitter (ELMO-MotionControl, 2021). The flywheel actuators are attached
to the main body of the robot through aluminum frame pieces. The frame pieces
directly holding the motor and motor controllers have heat sink fins machined into
their backs, in the hopes this will help transfer heat away from these components
during experiments and allowing the performance of the motors to be less limited
by heat.

Figure 6.18: Layout of the 3 Flywheels within the robot. In the right-hand image,
the angle of the flywheel axis is called out relative to the horizontal plane.

The right side of Fig. 6.18 shows the 3 flywheels within the frame of the final robot
CAD, with most of the other features hidden or faded to highlight the flywheels only.
The model used previously was adapted to have the flywheels mounted at these final
symmetrical positions, rather than in line with the body’s Yaw, Pitch, and Roll axes
as can be seen in Fig. 6.18. Each of the flywheels are angled upwards from level
by an angle of 𝛼 = 0.5𝑎𝑐𝑜𝑠(1/3), and spaced 120° apart around the central vertical
axis of the robot. The flywheels are still orthogonal to each other, but rotated so they
are symmetric with respect to the robot allowing for the robot’s center of mass to
remain on the center axis. You can imagine that this change of flywheel orientation
is like taking a cube that is flat on a table, and rotating it so its standing up on one
of its corners. The three flywheels are labelled 1-3 in Fig. 6.18, with flywheel 1 on
the front of the robot and having its axis of rotation lying within the x-z plane.

The next section will cover the culmination of the ARCHER design, including the
mathematical explanation for the decoupled nature of this system’s dynamics.
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6.3 Final Design of ARCHER

Figure 6.19: Final CAD model for ARCHER, showing the combined leg compres-
sion and flywheel balancing subsystems within its frame.

Component Layout and Specifications Fig. 6.19 shows the full CAD model of
ARCHER, including its compression actuator, spring leg design, and the recently
described flywheel attitude control system. The central spine of the robot along with
the frame holding the flywheels is made of anodized aluminum, which was custom
machined to allow for the core mechanisms to be precisely aligned. The peripheral
frame is made of thin plates of carbon fiber to save on weight, while still providing
support. Additional rings of carbon fiber were placed around the perimeter of the
upper portion of the robot in order to prevent the flywheels from contacting the
ground if it fell over.

Power is provided from two on board LiPo batteries connected in series. The voltage
from the batteries is up to 50.8 V, but will often be slightly lower as the batteries
drain. This voltage is the source of velocity limit on the flywheels. The batteries are
able to deliver over 100 A of current, which is more than the 4 motors of the robot
will ever need at one time. These batteries are placed in compartments on either
side of the upper pulley, slightly shifted towards the front of the robot to help offset
the rear-biased weight of the compression actuator. This can be seen in Fig. 6.20
along with the main power relay of the robot. This relay allows for a switch on the
front of the robot to control when power is given to all of the electronics.

The main computation and user interface happens at the front of the robot just below
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Figure 6.20: Close up of the batteries and power relay, from a perspective looking
up at the robot.

the flywheel, as can be seen in Fig. 6.21. The front plate of the electronics contains
three switches and an LED. These three switches control the main power, safety-
stop for the motor controllers, and an additional user interface switch to interact
with the controllers. There are two control circuit boards on the robot; one on
each side of the main switch board. These divide the work load of the control into
subsystems of the flywheels and the leg actuator. This not only makes the speed
of each controller faster, but also helps demonstrate the decoupled nature of this
robot’s dynamics. The computation on ARCHER was designed to be performed by
two Teensy 4.1 Arduino boards (one per control board). These boards work very
well for communicating with sensors, motor controllers, and other devices, but are

Figure 6.21: View of the robot’s front with call-outs for the main electronics.
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limited in their computational ability (PJRC, 2021) compared to typical embedded
computing options. These two controllers have a signal exchange between them for
the purpose of syncing up at the start of the experiment, which makes sure they start
their portions of the hopping motion together, as well as have correct relative timing
in their data logs. There is an additional circuit board at the back of the control area
which routes all of the feedback and communication signals to the motor controllers.

Because the foot is connected to the leg actuator through a cable, it is not possible
to always measure the position of the foot using the encoder on the compression
actuator. The cable itself is made from a polyester shell with a Teflon core to limit
the stretch in the cable, but the cable does still stretch a little despite the use of
Teflon, adding to the need for another way to measure the foot position. This is
accomplished through a separate encoder placed directly at the foot. This encoder is
used to detect ground contact, determine the moment of launch, and measure current
foot deflection. This sensor will also be used in a pre-experiment process to find
the zero position of the leg actuation. This is critical because of the cable’s ability
to stretch. Fig. 6.22 shows a close up this encoder and the connection between the
foot guides and the spine of the robot. This encoder functions like the ones on the
motors, but uses a linear magnetic strip attached to the side of the robot’s spine.

Figure 6.22: Close up of the foot joint on ARCHER from behind. Note the orange
frame piece connecting the foot encoder to the rest of the foot assembly.
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The total mass of the robot comes out to around 6.5 kg, with a height of 54 cm and a
diameter of 26 cm at its widest point. With the known final mass, the spring stiffness
was also selected to be 11 732 N/m. Now that the model of the robot being finalized
to the point of manufacturing, it was also time to write out the final equations of
motion in preparations for the simulations that would be performed next.

Decoupled Dynamics ARCHER has 10 degrees of freedom, with the configuration
variables defined as

𝑞⊤ = (𝑥, 𝑦, 𝑧︸︷︷︸
𝑝

, 𝜙𝑥 , 𝜙𝑦, 𝜙𝑧︸     ︷︷     ︸
𝜙

, 𝜃1, 𝜃2, 𝜃3︸    ︷︷    ︸
𝜃

, 𝛿) (6.21)

where (𝑥, 𝑦, 𝑧, 𝜙𝑥 , 𝜙𝑦, 𝜙𝑧)⊤ ∈ R6 are the floating base coordinates for the robot’s
body at the center of mass, (𝜃1, 𝜃2, 𝜃3) are the angles of each flywheel relative to the
body, and 𝛿 is the deflection of the leg spring. There are 4 actuators on the robot;
one directly attached to each flywheel, and one controlling the compression of the
leg spring. This gives the control inputs of

𝑢⊤ = (𝑢1, 𝑢2, 𝑢3︸    ︷︷    ︸
𝑢1

, 𝑢𝑙︸︷︷︸
𝑢2

) (6.22)

where we are now denoting the split between the subsystems, with the subscript 1 for
the attitude control subsystem, and the subscript 2 representing the leg subsystem.

The continuous-time dynamics of the robot are then given as:

R ≜

𝐷 (𝑞) ¥𝑞 + 𝐻 (𝑞, ¤𝑞) = 𝐵(𝑞)𝑢 + 𝐽𝑣 (𝑞)⊤𝜆𝑣
s.t. ℎ𝑣 (𝑞) ≡ 0

(6.23)

where ℎ𝑣 (𝑞) is the holonomic constraint on the robot during motion, 𝐽𝑣 (𝑞) = 𝜕ℎ/𝜕𝑞,
and 𝜆 is the vector of constraint force magnitudes. The holonomic constraints vary
depending on the domain of motion, either the stance or flight phase, denoted by
the subscript 𝑣 ∈ (𝑠, 𝑓 ). During the stance phase, the constraints act to keep the
toe of the robot in static contact with the ground, while in portions of the air phase
the constraints act to keep the spring from extending beyond its set pre-load length
(based on the physical hardstop built into the foot, as in the 1D CRH robot).

Through structuring the actuation matrix, 𝐵(𝑞), in a specific way we can observe
the important decoupled nature of this robot’s dynamics. The actuation throughput
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portion of the dynamics can written as

𝐵(𝑞)𝑢 =


0(3𝑥3) 𝐵𝑝2 (𝜙)
𝐵𝜙 (𝜙, 𝑙) 0(3𝑥1)

𝐵𝜃 0(3𝑥1)

0(1𝑥3) 𝐵𝑙


[
𝑢1

𝑢2

]
. (6.24)

Due to the way this actuation matrix was set up, we can note a few important facts:

• 𝐵 has no terms that depend on 𝑝 or 𝜃.

• 𝐵𝑝2 only depends on 𝜙.

• 𝐵𝜃 and 𝐵𝑙 are constants.

• 𝑢2 does not directly effect the angular coordinates of the robot.

• 𝑢1 has no effect on the spring deflection.

These last two bullet point show definitively that the two subsystems of the robot
can be decoupled, so the control and planning can be separated. This was a large
motivation for designing the robot with flywheels. The next section will show the
final simulation structure used to plan the motions and control strategies to be used
in experiments. These simulations will use the final model parameters from the
CAD model to start, and slowly move over to measured values from hardware once
the robot is built.

6.4 Simulation and Controller Design
The Simscape simulation framework used previously in the design of the flywheels
and the foot placement planning method was adapted to this final full-body model.
All of the mass, inertia, and other model parameters were updated to match the
CAD model. The final inertia matrix for the body was increased slightly from
the CAD in order to account for the mass of the cabling that would be present on
hardware. As mentioned in the previous section, the flywheels were realigned to
match the hardware rather than remaining in-line with the robot’s Cartesian frame.
This required that the base frame of the simulation move away from a series of 3
individual rotary joints representing the body’s rotation, to a spherical joint which
would provide a quaternion as positional feedback. The overall coordinate frame
remains the same, with the alignment of x-forward, y-left, and z-up. Lastly, the
timing of the foot’s spring compression algorithm was updated to be more realistic
to future experiments. Rather than constantly tracking the energy level of the system,
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this would wait until the robot was beginning to to descend in the air phase, before
starting to track the desired compression of the spring. This would place a safety
factor of sorts on the compression time to make sure it would be achievable on
hardware.

The only remaining piece of the simulations that needed to be developed were the
attitude controllers. The next two subsections will delve into the formulation of both
a standard linear control method, and a nonlinear CLF-QP control method and their
performances in Simscape.

PD Controller
A simple PD controller will be used on the orientation of the robot based around the
quaternion feedback along with angular rates, as that is the state information that
will be received from the IMU on the actual hardware. Since the flywheels axes do
not line up with the primary directions of motion that will guide the robot, there
was a need to create a control strategy that will use the properly aligned IMU data.
This was essentially accomplished through checking the error between desired and
actual quaternions and mapping it to each of the three flywheel axes to yield their
contribution to the control action required to correct the error. This subsection will
show the math behind this control method and the performance of the simulations.

In general, the behaviors that we will want from the robot’s orientation will be stated
in terms of yaw (Y - rotation about z-axis), pitch (P - rotation about y-axis), and
roll (R - rotation about x-axis) angles. This was based on the formulation of the
foot placement planner that was described previously, being in terms of pitch and
roll angles to reach a given foot touch-down position. Since the orientation state
feedback will be given in terms of quaternion, we will need to relate our desired
positions, (𝑌𝑑 , 𝑃𝑑 , 𝑅𝑑) in the same frame. The process of converting our desired
YPR angles into a quaternion requires creating 3 vectors:

𝑞1 = (𝑐𝑜𝑠(𝑌𝑑/2), 0, 0, 𝑠𝑖𝑛(𝑌𝑑/2))𝑇 (6.25)

𝑞2 = (𝑐𝑜𝑠(𝑃𝑑/2), 0, 𝑠𝑖𝑛(𝑃𝑑/2), 0)𝑇 (6.26)

𝑞3 = (𝑐𝑜𝑠(𝑅𝑑/2), 𝑠𝑖𝑛(𝑅𝑑/2), 0, 0)𝑇 (6.27)

and then multiplying them together as 𝑄 = 𝑞1 ∗ 𝑞2 ∗ 𝑞3, where each multiplication
is done via quaternion multiplication. Given two quaternions, 𝑞 = (𝑞0, 𝑞1, 𝑞2, 𝑞3)𝑇

and 𝑝 = (𝑝0, 𝑝1, 𝑝2, 𝑝3)𝑇 , quaternion multiplication of the two is performed as
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follows:

𝑞 ∗ 𝑝 =


𝑝0𝑞0 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3

𝑝0𝑞1 + 𝑝1𝑞0 + 𝑝2𝑞3 − 𝑝3𝑞2

𝑝0𝑞2 − 𝑝1𝑞3 + 𝑝2𝑞0 + 𝑝3𝑞1

𝑝0𝑞3 + 𝑝1𝑞2 − 𝑝2𝑞1 + 𝑝3𝑞0


(6.28)

This multiplication is performed sequentially to get the final quaternion of the desired
orientation, 𝑄𝑑 . To get the error between our actual quaternion, 𝑄𝑎, and desired,
another multiplication is performed yielding a new quaternion vector

𝑄𝑒 = 𝑄𝑑 ∗𝑄𝑎 . (6.29)

From here, we need to find the axis vector associated with the error and the magnitude
of the error. The magnitude of the error quaternion is found by simply taking the 2-
norm of the last 3 entries in 𝑄𝑒 = (𝑤𝑒, 𝑥𝑒, 𝑦𝑒, 𝑧𝑒)𝑇 , specifically 𝐴𝑒 =

√︁
𝑥2
𝑒 + 𝑦2

𝑒 + 𝑧2
𝑒.

The entries of the axis vector of the error quaternion, 𝑉𝑒 = (𝑒1, 𝑒2, 𝑒3)𝑇 are defined
as follows:

𝑒1 = 𝑥𝑒/𝐴𝑒 (6.30)

𝑒2 = 𝑦𝑒/𝐴𝑒 (6.31)

𝑒3 = 𝑧𝑒/𝐴𝑒 (6.32)

The flywheel axes will need to be compared to this orientation error axis and the
vector of body angular rates, 𝑤 = (𝑑𝑌, 𝑑𝑃, 𝑑𝑅)𝑇 , in order to determine how much
contribution they need to make towards correcting the error. This will require
knowing the direction vector of the flywheels. The default axis vectors for the three
flywheels when the body is in its zero position are given by

𝑓1 = (𝑐𝑜𝑠(𝛼), 0, 𝑠𝑖𝑛(𝛼))𝑇 (6.33)

𝑓2 = (−0.5𝑐𝑜𝑠(𝛼),
√

3
2
𝑐𝑜𝑠(𝛼), 𝑠𝑖𝑛(𝛼))𝑇 (6.34)

𝑓3 = (−0.5𝑐𝑜𝑠(𝛼),−
√

3
2
𝑐𝑜𝑠(𝛼), 𝑠𝑖𝑛(𝛼))𝑇 (6.35)

where 𝛼 = 0.5𝑎𝑐𝑜𝑠(1/3), listed in Fig. 6.18, is the angle each flywheel axis is
angled up from the horizontal plane.

Each of these axis vectors are rotated from their zero position as the robot moves,
by the amount defined in the quaternion, 𝑄𝑎. Converting this quaternion into euler



108

angles of YPR is done through via

𝑌 = 𝑎𝑡𝑎𝑛2(2(𝑞𝑎0𝑞𝑎1 + 𝑞𝑎2𝑞𝑎3), 𝑞𝑎2
0 + 𝑞𝑎

2
3 − 𝑞𝑎

2
1 − 𝑞𝑎

2
2) (6.36)

𝑃 = 𝑎𝑠𝑖𝑛(2(𝑞𝑎0𝑞𝑎2 + 𝑞𝑎1𝑞𝑎3)) (6.37)

𝑅 = 𝑎𝑡𝑎𝑛2(2(𝑞𝑎1𝑞𝑎2 + 𝑞𝑎0𝑞𝑎3), 𝑞𝑎2
2 + 𝑞𝑎

2
3 − 𝑞𝑎

2
0 − 𝑞𝑎

2
1) (6.38)

where 𝑞𝑎𝑖 is the i-th element of the 𝑄𝑎 vector. With these Euler angles, the default
flywheel axes can be rotated to their current position by multiplication with the
rotation matrix associated with those Euler angles, defined as

𝑅𝑎 =


𝑐(𝑌 )𝑐(𝑃) 𝑐(𝑌 )𝑠(𝑃)𝑠(𝑅) − 𝑐(𝑅)𝑠(𝑌 ) 𝑠(𝑌 )𝑠(𝑅) + 𝑐(𝑌 )𝑐(𝑅)𝑠(𝑃)
𝑐(𝑃)𝑠(𝑌 ) 𝑐(𝑌 )𝑐(𝑅) + 𝑠(𝑌 )𝑠(𝑃)𝑠(𝑅) 𝑐(𝑅)𝑠(𝑌 )𝑠(𝑃) − 𝑐(𝑌 )𝑠(𝑅)
−𝑠(𝑃) 𝑐(𝑃)𝑠(𝑅) 𝑐(𝑃)𝑐(𝑅)


(6.39)

where the cosine and sine functions have been abbreviated as 𝑐(𝑥) and 𝑠(𝑥). The
final vectors for each flywheel axis are then found as

𝑣1 = 𝑅𝑎 𝑓1 (6.40)

𝑣2 = 𝑅𝑎 𝑓2 (6.41)

𝑣3 = 𝑅𝑎 𝑓3 (6.42)

With these vectors defined, the final control input for each flywheel can be calculated
using the following control scheme:

𝑢1 = 𝑘 𝑝 | |𝐴𝑒 | | (𝑣1 · 𝑣) + 𝑘𝑑 | |𝑤 | | (𝑣1 · 𝑤) (6.43)

𝑢2 = 𝑘 𝑝 | |𝐴𝑒 | | (𝑣2 · 𝑣) + 𝑘𝑑 | |𝑤 | | (𝑣2 · 𝑤) (6.44)

𝑢3 = 𝑘 𝑝 | |𝐴𝑒 | | (𝑣3 · 𝑣) + 𝑘𝑑 | |𝑤 | | (𝑣3 · 𝑤) (6.45)

where 𝑘 𝑝 and 𝐾𝑑 are the proportional and derivative gains in the controller. These
inputs are also capped by the max torque of the system, 2 N m, before being sent as
the final inputs in the simulation.

PD Controller Performance
Numerous simulations were performed in Simscape using this model and controller.
In general, the robot began airborne and was then dropped with various initial
conditions of orientation, angular velocities, and linear velocities. The robot was
able to correct itself and reach a steady-state hopping in place motion over a wide
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Figure 6.23: Motion tiles from a simulation with PD control (view from the side).

range of initial conditions. Based on the desired behaviors that would be performed
in hardware-based experiments later on, the robot was limited to pitch and roll
angles within 0.25 rad of vertical and the initial linear velocities were capped at
0.5 m/s. In some cases where the initial orientation and angular velocities were in
an antagonistic condition, then the maximum initial linear velocity that could be
corrected was lower, sometimes even as low as 0.15 m/s.

Data from a specific run are shown here for reference. In this simulation, the initial
conditions were 𝑃0 = 0.15 rad, 𝑅0 = 0.15 rad, ¤𝑥0 = 0.2 m/s, and the robot was
attempting to reach zero linear velocity while maintaining the hop height of 0.6 m.
Fig. 6.23 shows motion tiles of this simulation over the first 3 hops, during which
the robot is able to cancel out almost all of the unwanted forward velocity.

The horizontal velocity was tracked during the simulation, and showed the robot
was able to come to a stop, with only small deviations around 0 m/s while hopping
in place. Fig. 6.24 shows both the x- and the y-velocity over the first 4 seconds
of the simulation, although most of the efforts to correct the initial condition were
done throughout the first 3 hops which were shown in the tiles of Fig. 6.23. Despite
having no initial y-velocity, the robot did still deviate from zero during the process
of correcting its roll angle. Similarly, the orientation of the body was tracked to
show its progression over that same time period. Fig. 6.25 shows the initial pitch
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Figure 6.24: Horizontal body velocity data from one of the simulations, showing
the robot’s ability to limit unwanted initial conditions.

and roll offsets, and how the robot settles back towards its zero-position for all three
attitude angles. Again, most of the progress towards leveling out happens within the
first few hops. It should be noted here that, as with the body velocities, the robot
tends to hover or oscillate around zero, but never truly settling fully.

Figure 6.25: Attitude data from the example simulation, showing how the robot was
able to successfully recover from initial angular offsets.

Based on the performance of the simulation model, it seems that this type of
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controller could be easily adapted to the hardware for experiments, with some
gain tuning for the attitude control and foot placement depending on the quality of
feedback data being received from the on board inertial measurement unit (IMU).
With a desire to test more stable and optimal control methods on hardware, another
controller was tested in simulation to assess its efficacy. This is described in the
next subsection.

CLF-QP Controller
A second version of the robot simulation was created using a different controller,
namely a control Lyapunov function based quadratic program (CLF-QP) (Aaron D
Ames and M. Powell, 2013). This was done by creating a few new blocks in the
Simscape model, replacing the basic PD controller used previously. The algorithm
for this new controller is described next.

Starting with the general dynamics of the robot, written as

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (6.46)

𝑦 = ℎ(𝑥) (6.47)

where 𝑥 = (𝑞, ¤𝑞)𝑇 are the states of the system, and 𝑞 ∈ R𝑛 (𝑛 = 10) are the
coordinates of the robot. Further, 𝑦 ∈ R𝑚 is the vector of outputs for the controller.
We wish to track the Roll, Pitch, and Yaw angles for the robot’s base, so these
outputs are defined as the difference between the actual and desired values of those
angles, or 𝑦(𝑞) = 𝑦𝑎 (𝑞) − 𝑦𝑑 . In this case, there are 3 outputs, i.e. 𝑚 = 3, which are
all relative degree 2 outputs. Therefore:

¥𝑦 = 𝐿2
𝑓 ℎ(𝑥) + 𝐿𝑔𝐿 𝑓 ℎ(𝑥)︸      ︷︷      ︸

𝐴

𝑢 (6.48)

where 𝐿 denotes the Lie derivative. Using a general FL-IO controller of 𝑢 =

𝐴−1(−𝐿2
𝑓
ℎ(𝑥) + 𝜇) we can set

¥𝑦 = 𝜇 (6.49)

where 𝜇 ∈ R𝑚 can be of our design. We can re-write these output dynamics as

¤𝜂 =

[
0 𝐼

0 0

]
︸ ︷︷ ︸

𝐹

𝜂 +
[
0
𝐼

]
︸︷︷︸
𝐺

𝜇 (6.50)
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where 𝜂 = (𝑦, ¤𝑦)𝑇 ∈ R2𝑚.

The goal from here is to set up a control Lyapunov function which will drive these
outputs to zero. The general conditions of a stabilizing CLF are

𝐶1 | |𝑥 | |2 ≤ 𝑉 (𝑥) ≤ 𝐶2 | |𝑥 | |2 (6.51)
¤𝑉 (𝑥) ≤ −𝐶3𝑉 (𝑥)

where 𝐶1, 𝐶2, 𝐶3 > 0 (Aaron D Ames, Galloway, et al., 2014). In regards to the
control system listed in (6.50), we can formulate the following continuous time
algebraic Riccati equation:

𝐹𝑇𝑃 + 𝑃𝐹 − 𝑃𝐺𝐺𝑇𝑃 +𝑄 = 0 (6.52)

for𝑄 = 𝑄𝑇 > 0 and solution, 𝑃 = 𝑃𝑇 > 0. The solution, 𝑃, can be used to construct
a Lyapunov function of the form 𝑉 (𝜂) = 𝜂𝑇𝑃𝜂, which satisfies the first condition of
(6.51). Taking the derivative

¤𝑉 (𝜂) = 𝐿 𝑓𝑉 (𝜂) + 𝐿𝑔𝑉 (𝜂)𝜇, (6.53)

it is apparent that by choosing 𝜇 we can ensure that the second condition of (6.51)
is met as well. Combining (6.53) and (6.50) yields

¤𝑉 (𝜂) = 𝜂𝑇 (𝐹𝑇𝑃 + 𝑃𝐹)𝜂 + 2𝜂𝑇𝑃𝐺𝜇. (6.54)

From here, a quadratic program can be formulated which finds an optimal solution
for 𝜇.

𝑢∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∥𝐴𝑢 + 𝐿2
𝑓 ℎ(𝑥)∥

2 (6.55)

𝑢

𝑠.𝑡. 𝜂𝑇 (𝐹𝑇𝑃 + 𝑃𝐹)𝜂 + 2𝜂𝑇𝑃𝐺 (𝐴𝑢 + 𝐿2
𝑓 ℎ(𝑥)) ≤ −𝐶3𝜂

𝑇𝑃𝜂

The final control actions sent to the flywheel motors takes the form of

𝑢 = 𝐴−1(−𝐿2
𝑓 ℎ(𝑥) + 𝑢

∗) (6.56)

This control method was implemented in Simscape using a custom control block,
and preforming the QP algorithm via the built-in MATLAB quadprog function. The
terms for the dynamics in (6.46) were generated offline using the built-in functions
in the FROST package (Ayonga Hereid and Aaron D Ames, 2017) for generating
dynamics, using the same model parameters as the Simscape model. The following
section details the performance of the simulations using this controller.
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Figure 6.26: Motion tiles of the first three hops from a simulation with the CLF-QP
controller (view from the side of the robot).

CLF-QP Controller Performance
Once again, the Simscape simulations were run on the same model as before with
this new controller replacing the PD controller block. It was quickly seen that the
window of initial conditions from which the robot could stabilize was rather small.
When the initial conditions were above just a few degrees for roll and pitch offsets,
or the initial x- and y-velocities were above a few 𝑐𝑚/𝑠, then the robot would fail
after just a few hops. However, when the robot did start within that small domain,
then it stabilized very quickly and smoothly. The data shown in the following figures
and plots of this section will be from a successful run, with initial conditions near
the boundary of that small window. The specific initial conditions in this run were
𝑃0 = 0.05 rad, 𝑅0 = 0.05 rad, ¤𝑥0 = 0.05 m/s, and ¤𝑦0 = 0.02 m/s.

Fig. 6.26 shows some motion tiles of the first three hops in this example simulation
for this control method. Most of the course correction is happening during the first
hop, so there is very little to distinguish the tiles of the second and third hop. As
with the PD-controlled simulations, the body orientation and linear velocity data
was collected as reference for the performance of the robot. As is seen in Fig. 6.27,
the robot was able to stabilize itself very quickly throughout the first two hops of the
simulation. The rest of the hops within the 4 second window stayed almost perfectly
in place, showing just how stable the robot could be. At each impact, there was
a small and brief blip in the velocity data, but it was removed almost immediately
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upon entering the air-phase again. Fig. 6.28 shows the body attitude data from the
same simulation, and once again the speed of stabilization can be seen. The amount
of deviation from zero after stabilizing is also much smaller under this controller
than with the PD controller.

Figure 6.27: Horizontal body velocity data from a simulation using a CLF-QP
controller, showing the robot’s ability to limit unwanted initial conditions quickly
while in its small window of stability.

Due to the limited computational ability of the on-board Teensy 4.1 boards, compu-
tation for this quadratic programming method would likely need to be performed by
a different computer which would exchange motor input and feedback information
with ARCHER in order to properly function in real-time. This inconvenience could
be fixed by redesigning the computing electronics on the robot, but given the time
frame of the project, this has yet to be done, and will be mentioned in the future
work section later on. The following section will move onto the experiments of the
robot, showing the results gathered thus far on ARCHER. These experiments will
only be using the PD control method described previously.

6.5 Experiments with ARCHER
During the same period of time that the simulations in the last section were being
created and run, the process of building and testing ARCHER was also commencing.
The hardware of the robot was ordered, manufactured, and procured over the course
of a year, with delays in the ordering of key electronics and some of the CNC
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Figure 6.28: Attitude data from the example CLF-QP simulation, showing how the
robot was able to successfully recover from initial angular offsets in just 2 hops.

made parts. As the components were coming in, preliminary assembly, testing, and
preparations could be made for the final experiments. These will be detailed in the
next subsection.

Preparing for Experiments
The custom parts for the compression actuator were manufactured in-house at Cal-
tech before the rest of the custom machined parts arrived, so that it could be
assembled and tested while waiting for the rest of the robot’s components. This
process involved using CNC mills to machine the gears, the inner aluminum trans-
mission parts, and the housing. The motors, motor controllers, and some of the
encoders were also among the first components to arrive, so testing of the motors
and compression actuator was done first, which also allowed for the set up of the
motor controllers to be performed. A torque cell was used to verify the torque
constant of the compression motor, since it was custom wound and this parameter
is critical to quickly controlling the spring deflection during hopping. The constant
was measured to be between 0.175−0.190 N m/A, which matched very closely to
the expected value.

Next, all three flywheel motors were mounted so that a full test of communication
could be done between the the motor controllers, motors, and Arduino. The Vector-
Nav VN-100 IMU (VectorNav, 2021) was also setup within this testing, so that the
direction/sign of feedback could be observed. This was put into the loop with the
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motors to verify the directions the motors would spin to correct for different attitude
errors.

Once all of the manufactured parts were in hand, and modified to meet tolerances,
the central compression system was assembled. The compression actuator was
tested with the cable and spring system for the first time. The amount of stretch
in the cable was observed to be larger than expected. This forced the need of a
initialization step for determining the amount of torque from the motor which would
lead to spring compression. This step would mark both the torque and position of
the motor at the moment when the foot encoder measures a change in deflection.
To account for any possible changes to the cable during repeated experiments, this
process is performed every time ARCHER starts up, before hopping begins.

The circuit boards for controlling the robot and routing power/signals, were designed
using AutoDesk Eagle and sent to an online PCB shop to be fabricated. All
component soldering was done in the AMBER Lab once the boards arrived. Each
of the two control boards were tested in controlling their subsystem separately,
before any full system tests were done to set up the syncing behavior between the
two as would be done in hopping experiments.

Figure 6.29: Photo of ARCHER on its test stand with labels showing the experi-
mental handle and anchor point for the safety rope.

To prepare for later testing and experiments, a few extra parts were 3D-printed.
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The first of these was a stand for the robot when not in use, since the foot of
the robot comes to a point and the robot does not have a good surface to rest on
otherwise. Fig. 6.29 shows this stand along with the other 3D-printed parts. The
second of these was a handle bolted to the top of the robot, which would serve as
a way of holding/supporting the robot during tests, as well as for the location of
perturbations being given to the robot during balance experiments. The last of these
parts was an anchor point for a rope that would be used during the initial hopping
experiments. To make sure the robot would be safe from catastrophic falls during
hopping experiments, a rope-pulley system was put in place. The rope would anchor
to the top of ARCHER, then pass up and over a pulley in the ceiling, then back down
to the user. This would allow the user to lift and lower the robot during testing
without having to reach near the flywheels.

Balancing
Before moving straight to hopping, a large amount of time was devoted to making
sure the balancing controller was dialed in. This was essentially done via the robot
running its normal balancing controller, while the leg controller was inactive. For
these tests, the robot was placed on the ground and held near vertical until the control
went active, then letting go. The motor controllers here send commands of current
rather than torque, so the gains had to be placed higher by a factor of roughly 12 as
a starting point compared to the simulations.

For the first few months of testing, the controller was not able to successfully balance
the robot. Rather than converging on something near vertical, it would reach a sort
of orbit instead. Many attempts at changing gains took place, leading to a discovery
that the robot would vibrate when the flywheels reach high velocity. An unforeseen
aspect of the design, was that the resonance frequency was low enough to get
triggered by the flywheel motors. This was apparent in the angular rate data from
the IMU, once the flywheels got above roughly 250 rad/s. It even became apparent
on a visible and auditory scale once the flywheel velocity reached around 500 rad/s.
The gains were lowered to limit how quickly the flywheels would spin up, since
raising the gains wasn’t solving the problem anyway.

The level of filtering on the angular rate data was increased in an attempt to solve
the oscillation/orbiting behavior, but this also didn’t change the issue. After months
of trying to debug why it would be tracking something other than vertical, it was
discovered that the yaw and roll rate data were swapped at one section of the
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controller which was the source of the orbiting issues. In testing it had appeared that
the pitch angle was also orbiting, but it was just a side-effect of the yaw issue, since
any yaw rate causes an outward force trying to push the robot away from vertical.

Figure 6.30: Video frames from one of the push recovery balance tests.

Once this bug was fixed, the balancing was immediately improved. After a little
bit of tuning, the robot was able to balance well enough for the final hopping
experiments. Some data was collected from these later successful balancing tests
along with videos. These balancing experiments involved the robot running its
attitude controller while the user pushed on the handle to provide disturbances
in both roll and pitch directions. The robot was able to successfully reject these
disturbances, and stay within a small window of vertical throughout. Fig. 6.30 shows
some video frames from one of these trials both during and after a disturbance. Each
push caused the robot’s pitch/roll angle to deviate by about 1°, then recover back
towards its zero position. The max motor current commanded by the controller
during these pushes was recorded at just under 7 A, which is less than a third of the
current limit set in the motor controllers showing that the robot is capable of much
larger corrections if needed. Fig. 6.31 shows the pitch and roll data from this same
balance test. Each of the moments of disturbances are marked by a red dot. Some
of the pushes from the user were aimed in the direction of roll, and others in pitch,
so the red markers are separated in the plots accordingly. Given the success from
these balance tests, experiments moved on to full hopping. These experiments are
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detailed in the following subsection.

Figure 6.31: Plot of the body pitch and roll data from one of the balancing experi-
ments, with disturbance points marked by red dots.

Hopping
For these first round of hopping experiments, there was no foot placement algorithm
in place. The on-board IMU and OptiTrak cameras in the lab could help track the
necessary global position and linear velocity of ARCHER, but this was left off until
later experiments, time permitting. To start the robot would attempt to balance in
place without foot placement’s help. This required dropping the robot with near
vertical motion to give the robot a starting condition within its limited region of
stability. Initial tests were given a fixed number of hops to attempt before shutting
off to make sure the hopping controllers could succeed, before moving up to longer
duration tests.

To begin, the experiments were limited to 3 hops. It was found that using the
safety rope system to drop the robot at the start of each test worked well to give
the robot manageable initial conditions, and ARCHER was able to pass these tests.
The experiments were then modified to go up until 10 hops, and at this point the
deviations from perfect initial conditions became more apparent. The rope easily
became twisted during repeated use and torsion built up along its length, so when the
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robot was being dropped it was sometimes given an initial yaw rate that led to failure
in fewer than 10 hops. With taking care to hold the robot until just before it was
dropped, this was able to be mitigated, leading to successful runs of 10 continuous
hops.

Figure 6.32: Body pitch and roll data from one of the 10-hop hopping experiments.
The dashed red line represents the moment when the leg controller shuts off.

Fig. 6.32 shows the pitch and roll data from one of these experiments. The robot
began with an initial error in pitch of about 0.055 rad, then successfully corrected
itself over the first two hops. Over the course of the test, both pitch and roll angles
drift a little. This aligns with what was observed in real-time, where the robot was
beginning to hop sideways by the end. Meanwhile, the vertical control tracked very
well throughout all the hops. Fig. 6.33 shows the spring deflection data from this
same experiment. The black curve in the plot is the actual measurements taken
from the foot encoder, while the red lines represent the desired position that the
compression actuator is attempting to track. When the red line drops down to 0,
that means the robot is on the ground and the compression actuator is driving the
pulley back to its zero position while the spring is actually undergoing its natural
compression cycle for ground contact.

The experiments were then shifted to a less controlled setup, where the robot would
be dropped by hand and there would be no safety rope to catch it. The duration of
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Figure 6.33: Spring deflection data from the same 10-hop hopping experiment. The
red line represents the desired effort of the compression actuator.

the hops were also allowed to go beyond 10 hops, in the attempt to push the limit of
how many hops could be achieved without a foot placement algorithm. Dropping
the robot without giving initial lateral velocity to the body was a challenge, and took
a lot of trial and error to learn a good method. At this point it was discovered that
not all locations in the lab were created equal with respect to levelness. Some areas
had sloped ground as high as a few degrees, which was causing the robot to drift to
the side regardless of initial velocity. Once a reasonably level area was found, the
final experiments commenced.

Fig. 6.34 shows the pitch and roll data from an experiment that achieved 15
consecutive hops. The run-away nature of the lateral velocity was very noticeable
here. On roughly the 11th hop, the attitude control was no longer able to overcome
the y-velocity, leading to the immediate up slope in the roll data from hop to hop.
The red line in this plot marks the last successful hop before the user grabbed the
robot. Despite the issues in the attitude on control and over all leaning of the robot
that was occurring, the leg controller was still tracking very well as seen in Fig.
6.35. On this trial, it would seem that the robot was dropped from a height lower
than its goal height. This can be seen by both the increase in spring deflection during
the first few hops, and by comparing to the spring deflection of the previous 10-hop
experiment shown in Fig. 6.33.
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Figure 6.34: Body pitch and roll data from a hopping experiment reaching 15 hops.
The dashed red line represents the end of the 15th hop.

From here, it was clear that some sort of foot placement method was going to be
required to improve the endurance of the hopping. It was determined that getting
the OptiTrak system set up to work with the robot smoothly would take a long time,
so instead an approximate foot placement strategy was used. This method included
looking at the angle of launch at each take-off moment and then attempting to track

Figure 6.35: Spring deflection data from the same 15-hop hopping experiment,
showing that the vertical controller was largely unaffected by the lateral velocity.
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complementary roll and pitch angles throughout the next hop. There was a gain put
on this term of the planner, so the actual desired angle had a magnitude equal to half
the launch angle and with the opposite sign. For example, if the robot left the ground
with a pitch angle of 2deg, than it would attempt to land with an angle of −1deg.
This was a very simplistic replacement for the foot placement methods described
previously which would require the global position and velocity information of the
robot’s base coordinate frame.

Using this planner, the robot was able to hop for longer periods of time with much
less lateral movement or build up of orientation error. Fig. 6.36 show the results of
one of the final experiments where the robot was able to hop for 20 consecutive hops
without issue. In this experiment the robot was stopped prematurely by the user,
but as can be seen in the data and collected video, the robot could have continued
hopping longer. The orientation angle of roll and pitch were both able to stabilize
within 1deg and remain there through all of the remaining hops. The moment the
user bumps the handle of the robot is pretty clear from the sudden change of the
periodic data after the 20th hop. A video of this experiment can be found here (E.
Ambrose, 2022) for your reference.

Figure 6.36: Body pitch and roll data from a final hopping experiment reaching 20
hops. The last portion of the data represents the time after user intervention.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions
The work presented in this thesis covers the design and testing of 8 different robotic
platforms, taking place over the course of 9 years. To begin, the AMBER-3 hu-
manoid was introduced showing the benefit of a modular and consistent robot for
testing out new behaviors, controllers, and other methods. AMBER-3M is still
in the AMBER today, operating with its original mechanical hardware, but via a
new computation system allowing for more involved computations such as used in
gait generation and neural networks. Next, the transfemoral prosthesis platform
AMPRO-3 was presented, along with a detailed description of its mechanical hard-
ware and novel additions from previous generations of the device. The final iteration
of the prosthesis, AMPRO-4, was also presented along with its use by the EPIC at
Georgia Tech in a clinical setting, tested by amputees.

The last few chapters dove into the process of assessing the stability and feasibility of
different hopping mechanisms that fit into the scheme of safe-actuation, making sure
that the robot will minimize its impulses on its environment. These mechanisms
were then used in later generations of hopping robots to plan methods of improving
both energetic efficiency and stability in systems with uncertainty. A technique
of performing design-in-the-loop optimization was developed, with the goal of
designing custom non-linear springs that could further improve efficiency. Finally,
a 3D hopper design was introduced, along with simulations of balancing, foot
placement methods, and control for a flywheel-based attitude system. Each of
the hopping robots were experimentally validated over the course of a few years,
culminating in the experiments on this 3D robot, ARCHER.

7.2 Future Work and Ideas
This section will delve into a few of the paths forward each of the robotic platforms
that were presented in this work could take.

AMBER
Given that AMBER-3M has been used in tests ranging over roughly 6 years, there
has of course been some wear and tear seen by the joints and actuators. The most



125

obvious issue on the robot currently is the backlash in the joints, which is caused
by worn out bushings. These bushings could be replaced by bearings and metal
shafts which would provide a tighter and longer lasting fit, and subsequently remove
almost all of the backlash from the joints.

A second pair of feet were created for AMBER back at Georgia Tech, which were
specifically designed to improve the robots ability to walk with a multi-contact
behavior, which has been widely shown as a method of lowering the cost of transport
for both humans and our robotic counterparts. Replacing the current feet on the
robot with these would help with all experiments that wish to move beyond strict
flat-footed walking.

AMPRO
Typically, prosthetic devices are tested on humans, both amputees and non-amputees.
However, humans and other animals naturally adapt to our situation to improve
comfort and save energy. This often times will lead to the user walking in ways that
are actually not optimal, or just not working efficiently with the device. If the goal
is to make a device that will conform to the user, and hopefully save them energy,
then it would actually be best to test on someone that does not adapt. AMPRO could
be connected up to AMBER as an alternative leg configuration, which would allow
for such assessment, given that AMBER is not inherently able to adapt to anything.

ARCHER
Obviously, there are a lot of directions left which could be pursued with ARCHER.
The experiments can be expanded to utilize the cameras and allow for true foot
placement and other motion planning methods to be used. Moving onto experiments
of higher hops and moving around the lab can show the full capability of this
hardware platform.

Additionally, it would be great to finally get a pair of custom designed springs for
this robot made from E-glass or S-glass. These would allow for a huge increase in
the maximum hop height that the hardware would be capable of, as well as move
the design towards the route of putting this mechanism into a ball-like enclosure.
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