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Abstract

The problem of proximal bodies in hypersonic flow is encountered in several important
situations, both natural and man-made. The present work seeks to investigate one
aspect of this problem by exploring the forces experienced by a secondary body when
some part of it is within the shocked region created by a primary body travelling at

hypersonic speeds.

An analytical methodology based on the blast wave analogy is developed and
used to predict the secondary force coefficients for simple geometries in both two and
three dimensions. When the secondary body is entirely inside the primary shocked
region, the nature of the lateral coefficient is found to depend strongly on the relative
size of the two bodies. For two spheres, the methodology predicts that the secondary
body will experience an exclusively attractive lateral force if the secondary diameter is
larger then one-sixth the primary diameter. The analytical results are compared with
numerical simulations carried out using the AMROC software and good agreement is
obtained if an appropriate normalization for the lateral displacement is used.

Results from a series of experiments in the T5H hypervelocity shock tunnel are also
presented and compared with perfect-gas numerical simulations, again with good
agreement. In order to model this situation experimentally, a new force-measurement
technique for short-duration hypersonic facilities has been developed, and results from
the validation experiments are included.

Finally, the analytical methodology is used to model two physical situations. First,

the entry of a binary asteroid system into the Earth’s atmosphere is simulated. Sec-



iv
ond, a model for a fragmenting meteoroid in a planetary atmosphere is developed, and
simulations are carried out to determine whether the secondary scatter patterns in
the Sikhote-Alin crater field may be attributed to aerodynamic interactions between
fragments rather than to secondary fragmentation. It is found that while aerody-
namic interactions lead to increased secondary crater grouping, these groups do not
exhibit the typically elliptical shape that we would expect secondary fragmentation

to produce.
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Chapter 1

Introduction

1.1 Problem Definition and Scope of Current Work

There are several important situations, in both the man-made and natural worlds, in
which separate bodies travelling at hypersonic speeds may interact with one another
aerodynamically. Launch vehicle stage separation, re-entry of multiple vehicles or a
single vehicle with a trailing ballute, and a hypersonic vehicle launching some form
of payload are all man-made situations in which the problem of proximal bodies in
hypersonic flow may arise. In the natural world, such examples as a binary asteroid
system entering a planetary atmosphere and meteoroid fragments interacting after
atmospheric breakup may be cited. The current investigation will seek to better
understand and quantify the forces at work in such situations.

Figure 1.1 shows a computational schlieren image of the top half of a sphere in
a uniform freestream of Mach number M., = 10. This visualisation was produced
by a simulation of the given configuration using the Amrita software system (Quirk,
1998). The axisymmetric two-dimensional Euler equations were solved using a finite-
volume method - such a solution technique is typical in this flow regime. The Euler
equations may often be used in place of the full Navier-Stokes equations in determining
aerodynamic forces in hypersonic blunt body flows, in which most of the vorticity is

generated by curved shocks and viscous forces may often be neglected.



Bow ShO e Separation shock
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Figure 1.1: Computational schlieren image showing the top half of a sphere in a hy-
personic freestream of Mach number M., = 10. Important flow features are indicated.

The main flow features are indicated on the image and are typical of blunt bodies
in hypersonic flow in both two and three dimensions. A detached bow shock is
generated, starting out as a normal shock just ahead of the stagnation point, and
decaying to a Mach wave of angle § = arcsin(1/M,) in the far field. The distance
from the stagnation point to the normal shock ahead is known as the shock stand-off
distance and typically becomes very small at high Mach numbers. The flow separates

from the rear surface of the sphere, creating a separation shock and wake region.

We now imagine placing a second body somewhere in this picture. Obviously,
the aerodynamic effects - in particular, the nature of the forces - that this body will
experience will depend very strongly on where the body is placed. We may identify
at least four qualitatively different regions, as shown in Figure 1.2.

First, if the secondary body is placed immediately behind the primary body, it will
find itself in the wake region, where, due to aerodynamic shielding from the primary
body, the forces experienced will be small. Wake regions are also typically subject to
unsteadiness, so we would expect time-variations to be present in the force history
here. As the lateral displacement of the body is increased, it will move out of the
aerodynamic shadow of the primary body and begin to experience the primary-shock-

processed flow. It is not immediately obvious what the nature of the forces will be



Figure 1.2: Regions of interest in the proximal bodies problem, clockwise from top left;
the secondary body in the wake of the primary; the secondary body between the wake
and primary bow shock; the primary bow shock impinging on the secondary body;
the two bodies travelling independently but producing a shock-on-shock interaction

in this region; in particular, it is not obvious whether the body will experience an

attractive or repulsive force from the primary axis of symmetry.

As the lateral displacement is increased further, the primary bow shock will begin
to impinge upon the secondary body. In this region the drag force will be large, as the
interaction between the two bow shocks produces a very high local pressure. We would
also expect a repulsive force from the axis of symmetry to develop, as the outer part
of the body will experience singly-shocked flow, whereas the inner part of the body

will experience doubly-shocked - and thus higher pressure - flow. As the secondary
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body clears the bow shock it will begin to travel independently of the primary body.
What might be of interest here, rather than the forces on the secondary body, is the
nature of the shock-shock interactions that occur between the two bodies, especially
if there are further bodies downstream that may be affected.

In this study, then, we will be primarily interested in investigating the forces on
a secondary body placed within the second flow region as described above (i.e., that
between the wake region and primary shock). We will also seek to better quantify the
forces acting on the secondary body when the primary bow shock impinges upon it.
In order to gain some general understanding of the effects at work in this problem,
it will be necessary to restrict ourselves to simple body geometries. We shall thus
limit our investigation to circular cylinders (in two dimensions) and spheres (in three

dimensions). A three-pronged attack shall be mounted on the problem as follows:

1. The blast wave analogy from classical hypersonics is used to develop an analytic

methodology to model both two- and three-dimensional versions of the problem.

2. The AMROC software is used to carry out ideal gas simulations of the two-body

problem in both two and three dimensions.

3. Experiments are performed in the T5 hypervelocity shock tunnel to simulate
the three-dimensional version of this problem. In order to determine the forces
acting on the secondary body, a new force-measurement technique for short-

duration hypersonic facilities is developed.

In addition, the analytic methodology will be used to model two physical prob-
lems. Firstly, the passage of a binary asteroid system through a planetary atmosphere
will be simulated, and the effect of aerodynamic interactions on the relative body dis-
placement at impact will be determined. Secondly, a model will be developed for

the atmospheric fragmentation of a meteoritic body and the subsequent aerodynamic
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interactions of the fragments. In particular, we will seek to determine whether aerody-
namic interactions could be responsible for the crater groupings that are observed in

recent crater fields and have previously been attributed to secondary fragmentation.

1.2 Review of Previous Work

The previous work in this area has been concerned primarily with modeling the be-
haviour of a fragmented meteoroid in a planetary atmosphere. Among the first to
investigate the problem were Passey and Melosh (1980), who looked at possible mech-
anisms for cross-range dispersion of fragments in crater fields. They concluded that
the combined effects of bow shock interactions, crushing deceleration, and possibly
spinning of the meteoroid were primarily responsible. They also obtained an estimate
for the tranverse velocity of two fragments resulting from near-field shock interactions.
Artem’eva and Shuvalov (1996) carried out numerical simulations of two fragments
travelling in various relative configurations and found that when a secondary frag-
ment was travelling within the shocked region created by a primary fragment, it
experienced a force towards the axis of travel of the primary. In further simulations,
Artemieva and Shuvalov (2001) found that this resulted in a collimation effect for a
large number of fragments. These authors also developed a rough model to simulate
the passage of a continually fragmenting body through the atmosphere. The collima-
tion effect had previously been noted in experiments using the NASA-Ames Vertical
Gun by Schultz and Sugita (1994).

A configuration very similar to the one that we will be investigating here has also
been observed in the T5H hypervelocity shock tunnel. In Figure 1.3 is a shadowgraph
taken by Lemieux (1999) during a series of experiments with the light gas gun mod-
ification of the T5H. The projectile was broken during the acceleration phase, and a

fragment is observed to travel within the shocked region created by the main body.



Figure 1.3: Shadowgraph of a broken spherical projectile in the light gas gun modifi-
cation of the T5 hypervelocity shock tunnel.

1.3 Discussion of Hypersonic Force-Measurement

Techniques

In order to carry out an experimental investigation of the proximal body problem, a
new force-measurement technique had to be developed for use in the T5 hypervelocity
shock tunnel. Traditionally, the measurement of forces and moments in high-enthalpy
hypersonic wind tunnels, such as T5, has been restricted by the short test time intrin-

sic to these facilities. This flow time can be less than the period of the lowest natural
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frequency of a typical model and support, rendering measurement by conventional
force balance techniques impractical. This has necessitated the development of other

techniques. These may be loosely divided into two groups.

The first group consists of attempts to modify traditional force balance techniques
so that they are more suited to short duration measurements. Storkmann et al.
(1998) combined a model of high natural frequency (above 1 kHz) with accelerome-
ters mounted in either the model or support to compensate for support oscillations.
Measurements were made using a six-component strain gauge balance at two facilities:
the Aachen shock tunnel TH2 and the Longshot facility at the von Karman Institute
in Brussels. The success of this method appears to be highly dependent on model
geometry, however. Results for a cone model showed good agreement with refer-
ence data, but agreement for a capsule model was less satisfactory, and the technique
could not be applied to slender bodies, as such geometries are unable to accommodate

internal mounting of the balance.

Another technique along these lines is the stress-wave force balance technique,
first proposed by Sanderson and Simmons (1991). Instead of measuring steady-state
forces, this technique involves the interpretation of stress waves induced within the
model by aerodynamic loading. Extensive calibration is thus required to determine
the response function of the system, introducing further error into the force-signal
recovery. Mee (2003) claimed to have achieved 3% accuracy in calibration studies for
this technique and performed measurements in the T4 shock tunnel at the Univer-
sity of Queensland, Australia. These, however, were limited to a single component
drag measurement - accuracy in earlier attempts at multi-component force measure-
ment (Mee et al.; 1996) were limited to 11% accuracy. An attempt was recently made
to apply this method to three-component force measurements on a large scramjet
model (Robinson et al., 2004), but in this configuration the measurements were ad-

versely affected by facility vibrations. Another limitation of this technique is the
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necessity of including a long stress-wave bar which places a constraint on the testable

geometry.

The second group consists of techniques that make use of a support allowing for
free-floating model behaviour during the test time. The short test time of the rel-
evant facilities is actually an advantage for such techniques, as even for high loads
the extent of motion of the model during the test time will be extremely small. Sa-
hoo et al. (2003) implemented a method in which the model was mounted in flexible
rubber bushes, allowing free-floating behaviour in flows of millisecond duration. The
force and moments were measured during this period by means of embedded ac-
celerometers. They achieved good agreement with theoretical values (typically 3-8%)
in a series of measurements on blunted cones in the HST2 hypersonic shock tunnel
at the Indian Institute of Science, Bangalore. This is a relatively low-load facility,
however - dynamic pressures in a facility such as the T5 are typically higher by an
order of magnitude or more. It is thus questionable whether model motions in these
facilities could be accommodated by such a setup. This technique also has the dis-
advantage of requiring extensive finite-element modeling, and the required mounting
limits the geometries that may be simulated. Joarder and Jagadeesh (2004) imple-
mented another free-floating technique in the HST2 facility, but this was limited to

drag measurements.

Naumann et al. (1993) devised a method to allow for free-flight during the steady
flow period whereby the model was mounted on a support that released just prior
to the onset of the flow and tightened again shortly afterwards. Again, forces and
moments were measured by means of accelerometers embedded in the model. This
method relied on a cumbersome model support, however, which again limited the
geometries that could be studied. Tanno et al. (2004) measured the forces generated
by the interaction of a shock wave with a sphere in the vertical shock tube at the

Interdisciplinary Shock Wave Research Center at Tohoku University. The sphere was
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suspended from a wire of sufficient length (~4m) that tensile stress waves in the wire
had a negligible effect during the test time. Obviously, such a suspension method is
not practical in a typical horizontal flow wind tunnel.

The technique that has been developed in the present work falls in this latter
group. A relatively simple support system consisting of metal wires or cotton thread
is used in conjunction with a catcher that halts the model motion after the end of the
test time. Accelerations are recorded by an embedded accelerometer and by images

taken with a high-speed digital camera.
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Chapter 2

Application of the Blast Wave
Analogy to Proximal Hypersonic
Bodies

2.1 Introduction

In this chapter we will develop an analytical methodology in both two and three
dimensions to model the forces experienced by a secondary body when it is entirely
within the shocked region created by a hypersonic primary body. To develop such
a model, certain assumptions will need to be made about the body geometries. For
reasons that will become apparent, we shall choose both bodies to be circular cylinders
in two dimensions and spheres in three dimensions. In order to quantify the nature of
the shocked region created by the primary body, we will make use of the blast wave

analogy from classical hypersonics.

2.2 The Blast Wave Analogy

A similarity solution for the flow generated by a point explosion in an undisturbed
atmosphere was first proposed by Taylor (1950) and famously applied to the New
Mexico detonation of 1945. The explosion is idealized as instantaneously depositing

a large energy E into a perfect-gas atmosphere. The resulting flow is assumed to
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exhibit spherical symmetry and is bounded by a spherical shock wave expanding
in the radial direction. Let the subscript oo denote conditions in the undisturbed
atmosphere. If the shock is strong, defined by U/ay > 1 (where U is the shock
velocity and a the sound speed), then the ambient pressure p,, may be neglected,

and conditions immediately behind the shock (indicated by subscript s) are given by

2 2

s = ——p U2, 2.1
Pe=5? (2.1)
2

Uy = ———U, (2.2)
v+1
v+ 1

= 2.3

ps= P (2.3)

Using this strong shock assumption, Taylor was able to form a similarity variable
involving only p.,, E,r, and t and obtained a numerical solution to the problem. Full
analytic solutions were subsequently obtained by Sedov (1959) in one, two, and three

dimensions (corresponding to planar, circular, and spherical shocks, respectively).

If the shock is instead generated by a body travelling at speed V' in a direction
which we assign to the (negative) z-axis, we may use dimensional similitude to replace
t in the point explosion solution by x/V'. This is the so-called blast wave analogy, with
planar and circular shocks analogous to plane and axisymmetric bodies, respectively.
The explosion energy F is equated with the work done by the drag force of the
body. The strong shock assumption requires that the normal shock Mach number
everywhere be large and so is formally valid in the limit M., — oo where My, = V/a ..
For finite (but large) M., this assumption will become less accurate at large values
of ©/V. A graphical representation of the axisymmetric blast wave analogy is shown

in Figure 2.1.



12

Body travelling at

Eeltt sxplosion speed V along x-axis

at t=0

Figure 2.1: The axisymmetric blast wave analogy. The temporally-growing circular
shock wave produced by a point explosion in two space dimensions, shown at vari-
ous times (left), is analogous to the axisymmetric shock wave generated by a body
travelling at hypersonic speeds (right).

2.3 Modeling in Two Dimensions

2.3.1 The Planar Blast Wave Analogy

A planar blast wave is analagous to the flow produced by a symmetric two-dimensional

body. The similarity variable in this case is

/3
P\ T 2 \'° r
= (E) TTEE (AC’D 223 (2.4)

where po, is the ambient density and E is the energy released, per unit area, in the
analogous explosion. A and Cp are the projected frontal surface area per unit depth
and drag coefficient of the body, respectively. We have equated E with the drag

force, per unit depth, on the body, given by %C’DpOOVZA. We assume the body to be
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a circular cylinder, and so replace A with d;, the body diameter. The drag coefficient
is given a value of 1.2 in this exposition, which is appropriate for a cylinder in high
Mach number flow. As may be seen, however, dependence on the drag coefficient is

relatively weak.

The shock radius R; is then given by

1/3
Ry =m0 (dlCD> :C2/37 (25)

2

where 1) is a constant that depends on the ratio of specific heats, 7. It may be shown
to take the values given in Table 2.1. Details of the calculation of 79 may be found

in Landau and Lifshitz (1989).

v | 1.30 | 140 | 1.67
mo | 0.8805 | 0.9756 | 1.1861

Table 2.1: Values of 7y in planar geometry for various values of v

The nondimensional dependent variables are

. 9(y+1) P

_ 2.6
p ] poo(T’V/x)z’ ( )
. 3(v+1) w

_ 2.
“ 4 rV/jx’ (27)
. y—1p

S 2.8
T T (2:8)

where u is the radial velocity. The constants have been introduced to simplify the

A

boundary conditions at r = Ry (i.e., p=u=p=1at r = R,).
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The equations of motion for the gas flow behind the shock are

ou du 10p
0 0 P
(ua + V%) log e 0. (2.11)

The first two equations are conservation of mass and momentum, respectively,
while the third is the condition that the entropy is constant along a streamline.
Upon substitution of the dimensionless variables into Equations 2.9 through 2.11, the

following solution may be obtained:

3 ~ k1
o e 27u—(7+1)) ok
L) = @212 ) (3-2a 2.12
() - (255 o
A y4+1=2a\" [ 2va— (v +1)\™ N
= 24)" 2.1
p- () () sl ey
) 2y +1 -2
po_ Wly+1-20) (2.14)
p 2va— (v + 1)
where
g s = b
2v —1
572+ —4
]{32 =
(v+1)(2y-1)
2
ky = ——
3 2_7
1
k pu—
: 27 — 1
2
—4
- o+

Y+ DE2=7)(2y-1)

A derivation of the general solution (in one, two, or three dimensions) may be

found in Hayes and Probstein (1966). Plots of the dimensional form of the solution
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variables, normalized by their values immediately behind the shock, are shown in
Figure 2.2. A value of 7 = 1.4 has been chosen and shall be assumed in that which

follows.

—
_ _ plpg | | | _//’
087 _ Pg | S
: : 7
‘ ‘ ‘ A
0.6F
. . L —~ /
N e
0 S R -
/
p
Ve
0.2F v T
0 e — = — 7 ; ;
0 0.2 0.4 0.6 0.8 1
Ry =1Mm,

Figure 2.2: Variables in the planar blast wave analogy for a ratio of specific heats of
vy=14

The Mach number M and flow angle § may also be calculated:

VETTE

M =
Yp/p
2
() ()" v
= - (2.15)
y(y—=1)p/p

4 2 2\ "
_ (2x il 2.1
arctan 3511 (CD d1> N (2.16)

Plots of these variables are shown in Figure 2.3. Note that the Mach number at

a given value of 1 will increase without bound as x/d; — oc.
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Figure 2.3: Mach number and flow angle profiles at various distances downstream in
the planar blast wave analogy

2.3.2 Proximal Bodies in Two Dimensions

2.3.2.1 Pressure Distribution on the Secondary Body

We now imagine placing a second body at some point inside the shocked region
described by the planar blast wave analogy. We specify this also to be a circular
cylinder and assume that it is placed above the plane of symmetry of the primary
body, so a positive lift coefficient indicates a repulsive force from this plane. We also
assume that the secondary body is stationary with respect to the primary body. The
forces (lift and drag) acting on this body may be obtained by integrating the pressure
with the appropriate component of the normal vector over the surface of the body.

We thus require an estimate of the pressure distribution over the body.

To this end, let us first consider the same body travelling in the uniform supersonic

freestream outside the shocked region. The pressure distribution corresponding to the
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Newtonian flow solution, valid in the double limit M., — oo,y — 1, is

2 cos?f for |0] < /2,
C, () = (2.17)
0 for m/2 < |0| <,

where C,(0) = (p(#) — ps)/2pcV? and 6 is the angle measured from the stagnation
point. For finite M, and v > 1, an improved estimate is possible if we keep the
cos? 6 dependence but fix the value of the pressure at the stagnation point with
our knowledge of the flow processes along the stagnation streamline. The fluid will
pass through a normal shock and then decelerate to the stagnation point. If the
subscripts 2 and stag refer to conditions immediately behind the normal shock and

at the stagnation point, respectively, we have for a inviscid, perfect gas:

pstag _ p_2pstag
P Poo P2
2y 71 T
= (1+ = (M2 -1 1+ -——M? 2.18
(e ) (175 ) 219

with
2 (7—1)Mo20+2
P T ML — (7= 1)

(2.19)

and we have for the || < 7/2 component of our distribution the modified Newtonion
profile p(6) = (Pstag — Poo) €082 0 4 Poo. For |0] > 7/2, p(0) = pso, as before. We have

dropped the C}, notation, as it is somewhat unwieldy in this case.

The normalized profile, p(6)/pstaq, given by this description is plotted in Figure 2.4
for two different Mach numbers. These are compared with profiles computed using
the Amrita software system (details of numerical simulations are given in Chapter 3).
These computational profiles have been normalized by the computed pressures at
the stagnation point, which differ slightly from the theoretical values. The Gaussian

profile p(0) = psiag exp(—60?) is also included, as this was found to give very good
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agreement with the computed distributions ahead of the respective separation points.
Neither theoretical profile is able to capture the pressure jumps aft of the separation
points, but the Gaussian profile does particularly poorly in this region due to the
decaying exponential tail. As may be seen, however, this pressure jump becomes
less significant as the freestream Mach number is increased, so we might expect the
Gaussian profile to be most appropriate at high Mach numbers. We shall consider
both the modified Newtonian and Gaussian profiles as reference distributions, and,
defining the pressure coefficient p’ = p/ %pOOVQ, we write the modified Newtonian

profile as

Phiag — Dho) cOs20 + pl o for 0] < /2,
p'(0) = (htay = Poc) o)</ (2.20)
Pl for m/2 < |0 <

and the Gaussian profile as

P'(0) = plygg exp(—67) for 0] < m. (2.21)

We now wish to use these reference distributions to approximate the pressure
distribution on the cylinder inside the shocked region. Thus, we redefine py, as
the pressure obtained by passing the flow at some point within the shocked region
through a normal shock, followed by an isentropic deceleration to zero velocity. If the
subscript 1 denotes conditions at a point in the blast wave solution, Equations 2.18
and 2.19 will now hold for py,, if we replace po, and My, by p; and M;, respectively.
Similarly, the modified Newtonian profile 2.20 will be appropriate for this region if
Do 18 replaced by pi; the Gaussian profile 2.21 carries over directly with our new
definition of py.,. Note that in our normalization of the pressures, however, we still

use 1psV? rather than 1p,V?2.

We now encounter a problem that was not present in the freestream case. The
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Figure 2.4: Theoretical and computed normalized pressure distributions on a cylinder
in a uniform freestream of M, = 4 (left) and M, = 10 (right)

variables pgqq, p1, and M; are not constant in space and hence will vary over the area
occupied by the secondary body. We choose as our reference point for these variables

the center of the secondary body.

The first deviation from the redefined reference distributions that we wish to
account for is that the flow experienced by the secondary body will no longer be
aligned with the plane of the primary body’s travel but will be deflected by an angle
0, given by Equation 2.16. This will have the effect of shifting the stagnation point
towards the underside of the cylinder, resulting in a decrease in drag and a positive
lift contribution. Here our choice of the secondary body as a circular cylinder becomes
important - the rotational symmetry possessed by this shape make this deviation easy

to account for.

Second, noting from Figure 2.5 that p,,, varies strongly with r /Rs, we wish to

account for the variation of py,,, over the area covered by the cylinder. For example,
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0

Figure 2.5: Pressure coefficient pl,,, at the stagnation point of a secondary body
placed at various distances downstream within the shocked region.

noting from Figure 2.5 that pl,,, increases strongly in the radial direction, the effective
stagnation pressure on the upper side of the secondary body will be greater than that
on the lower side. This will result in a negative contribution to the lift. Let us then
examine which variations we need to consider. As the profile varies only very little
with downstream displacement, variation of p{,,, with z will be due almost entirely

to variation of R, with z. As R, o x%/®

, the dependence of p;,, on = will be weaker
than that on r. Also, as the flow is principally in the z direction, it is not clear
that we can legitimately localize x-variations over the body. Thus, we shall include

variations of py,,, with = for the sake of completeness, but with the understanding

that they are not indispensible to our model.

We may estimate the variations by Taylor-series expanding psq, to the linear term
in r and x. If dy is the diameter of the secondary body, the x and r displacements of
a point on the cylinder’s surface are given by dy/2 cosf and dy/2 sin 6, respectively.

We then make the approximation that the effective stagnation pressure, pi{a];, at a
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point on the cylinder’s surface is given by

1d 0 0
eff _ %2 Dstag . 9 Pstag ) 999
Dstag = Pstag T 5d; (8(T/d1) sin 6 + Bz /dy) cos > , (2.22)

where Opstay/0(r/dy) and Opstag/0(z/d1) may be determined by differentiating Equa-
tion (2.18). All lengths have been non-dimensionalized by the primary body diameter
dy.

2.3.2.2 Drag and Lift Coefficients

The drag and lift coefficients of the secondary body are given by

Cp = %/ p'(6) cos 6d6 (2.23)
CrL = —%/ p'(0) sin 0d6. (2.24)

Combining the effects described above, these may be written for the modified

Newtonian case as

1 (2 , 1dy O(Pyey — 1Y)
== — 228 T din(f— 4§
C’D 9 /_ﬂ-/2 (pstag Py + le 3(r/d1) SlIl( )

1 d2 8(p{stag _pll)

—_—— — [— 2 —
24 Ow/d) cos(f 5)) cos” 0 cos(f — 9)db

1 g / 1d2 8]9’1 .
" 2/_,r (p1+ RO
2d, 90z /dy) cos(f 5)) cos(6 — 6)db (2.25)
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and
1 /2 / / 1d2 a(p/t g _pll)
== ol s 2 st P G —
C’L 2 /77/2 <pstag Py + 2d1 8(7“/d1) SlIl( )

1 dy O(Pitag — PY) 2 o
_§d—1W cos(f — ¢) ) cos” @ sin(0 — §)db

1 g ’ 1d2 ap'l .
5 /_7r (pl + 2y O /) sin(f — )

~ 5a 300 0 5)) sin(g — )de. (2.26)

For consistency, the derivatives of p| have also been included. For the Gaussian

distribution:

. 1 T / ]-d2 ap{stag .
Cp = 5 /_7T (pstag + 2y (/) sin(f — )

1 d2 8p;tag )
24, - - - 2.2
3 dy 9z /dy) cos(0 — §) | exp(—67) cos(0 — &)do (2.27)
_ 1 i ’ 1 dQ aplstag .
CL N _5 /7r (pstag + §d_16(7“/d1> Sln(@ — (5)
1 dg Gp’smg N
- 37 5l cos(0 — 6) | exp(—6?) sin( — 6)do. (2.28)

For the modified Newtonian description, the integrals may be evaluated to yield

9 T dy . 8(p/t _pl)
_2 500 AN 25 ——teg “ 7
CD 3 CcOs (psmg pl) 32 dl Sl 8(r/d1)

7 dy OPae —P1)  7wdy OP!

- ——(2 20)— L — — = ! 2.2
6, 2t S50y T 1ds da/dy) (2.29)
2 mdy . 0Py — P1)

— / _ / _ e 2 stag

Cr 3 Sin 6 (prag — P1) 324, sin 5—8(a:/d1)

T dy OWPitag —P1)  wdy Op)

— D222~ cos20) 2t 1D RT2 _TTL 2.30
164, 2 S0 =50y T 1, 0(r/dy) (2.30)

The integrals in the Gaussian case may also be evaluated, and the resulting ex-

pressions may be found in Appendix A. The error incurred by using the following
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approximations to these expressions is less than 0.01%:

Cp =~ \/T% {e‘l/4p’smg cosd — 4—23—?8?2:75?) sin 26

—%L;l—j (1 + %cos 26) aé()ig/t;;] (2.31)
Cp ~ \/7% |:6_1/4p{9mg sin§ — %@Z—i% sin 24

—ij—i (1 - écos 25) a(?f;/t;?)} | (2.32)

As the diameter ratio is the only parameter we can freely choose in the coefficient
expressions, it is of interest to ask what the effect of varying this parameter may
be. We see that in each expression, all but one term contains the diameter ratio.
Concentrating on the modified Newtonian coefficients, we assume in each case that
this term is of the same order as the dominant term involving ds/d;. Noting then
that over most of the shocked region [d] is small and py,, > p, we approximate the

modified Newtonian formulae as

2 3 d, ap/t
Cpr2pl 200 stag 2.33
D™ 3 Pstas ™ 1670, 9z /dy) (233)

. 1@ 8p;tag

2
CL & 7 Digag Sin 0

5 (2.34)

The second term in the Cp equation is positive in sign (as dpl,,/0r < 0) and
will serve to augment the first term, which is the freestream drag coefficient. In
the C, equation the two terms are of opposite sign. As only the second depends
on body size, we have the potential for a qualitative change of behaviour as the
body size is varied. In particular, there will be a tendency for the lift coefficient to
become more negative as the body size is increased. This is in fact precisely what
is observed in Figures 2.6 and 2.7, in which the lift and drag coefficients (the full

modified Newtonian expressions 2.29 and 2.30, rather than the approximations 2.33
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and 2.34) are plotted for different sized bodies at various distances downstream. The
profiles in Figure 2.7 include the x-derivative terms, whereas those in Figure 2.6 do
not. In both cases we see that the lift coefficient varies strongly with body size, as
predicted. Note also the tendency for the lift coefficients to become more positive with
increasing distance downstream, indicating that the second term in Equation 2.34
decays more rapidly than the first. In the cases in which z-derivatives are absent,
the drag coefficient is hardly affected by either body size or distance downstream,
whereas if they are included the drag drops gradually as the distance downstream is

increased.

Having noted that the sign of the lift coefficient may, in general, depend on the
ratio of sizes of the two bodies, we may wish to ask whether there is a critical diameter
ratio above or below which the lift is exclusively of one sign throughout the shocked
region. To determine whether this is the case, we set Equation 2.30 to zero and solve
for dy/dy. The resulting curves, as functions of r/R;, are plotted in Figure 2.8 for
various distances downstream. At a given distance downstream, a secondary body
with a diameter ratio lying below the corresponding curve will experience a positive
lift coefficient, and thus a repulsive lateral force, while one lying above will experience
a negative lift coefficient. As may be seen, however, the value of dy/d; needed to
produce an exclusively negative lift coefficient continues to rise as the downstream
displacement is increased. This is consistent with our earlier observations. Also, the
diameter ratio must become vanishingly small for the lift coefficient to be exclusively
positive throughout the domain. We thus conclude that there is no critical value of
the diameter ratio for which the secondary body will experience a lift coefficient of

exclusively one sign throughout the shocked region.
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Figure 2.6: Theoretical secondary drag and lift coefficients in two dimensions, us-
ing the modified Newtonian profile without z-derivatives, for various d;/dy ratios at
x/dy = 2.5 (top), 5 (center), and 10 (bottom).
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Figure 2.7: Theoretical secondary drag and lift coefficients in two dimensions, using
the modified Newtonian profile with x-derivatives, at x/d; = 2.5 (top), 5 (center),
and 10 (bottom).
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Figure 2.8: Diameter ratio in two dimensions at which a cross-over from a positive to
a negative lift coefficient occurs

2.4 Modeling in Three Dimensions

2.4.1 The Axisymmetric Blast Wave Analogy

An axisymmetric blast wave is analagous to the flow produced by an axisymmetric

body. The similarity variable in this case is

1/4
Poo > 1/4 ¢ 2 T
— (Peo 2 = —, 2.35
g ( E) Vi \4cp,) = (2:35)
where p,, is again the ambient density and E the energy released, per unit depth, in
the analogous explosion. A and Cp are the projected frontal area and drag coefficient
of the body, respectively. E has been equated with the drag force on the body, given

by 3CppcV?A. We assume the body to be a sphere, so A = wdj/4. The drag

coefficient is given a value of 0.88, which is appropriate for a sphere in high Mach



28

number flow.

The shock radius is then given by

2 1/4
- (” ECD) Vi (2.36)

Here 1y takes the values given in Table 2.2. The reader is again referred to Landau

and Lifshitz (1989) for details.

v | 1.30 | 140 | 1.67
mo | 0.9317 | 1.0040 | 1.11554

Table 2.2: Values of 7y in axisymmetric geometry for various values of v

The nondimensional dependent variables are

A p

=2 l)———5 2.37
R (7
. y—1p

_r—-r 2.39
e . (2.39)

where the constants have again been introduced to simplify the boundary conditions

at r = R,.

The equations of motion are

Ju dp dp  pu
P or +u8r+vax+ r =0 (2.40)
ou Oou 10p

0 0 p
<u§ + Va_x) log i 0 (2.42)
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and the resulting solution:

(@)2 - (—M miGhs ”)kl (v +1—u) (2.43)

n v—1
A~ ko ~ k3
) 7+1-2da 274 — (v +1) ka
= (== il A A 1— 2.44
p < po— ) ( po— (y+1—7u) (2.44)
A /\2 1_2/\
po_ Wy “), (2.45)
p 27— (v +1)
where
1
B, o= —1—-
¥
2
ky = ———
2 2~
1
]{Zg = -
ol
2
ky = —— .
2—7y

The dimensional forms of these variables, normalized by their values at the shock,
are plotted in Figure 2.9 for v = 1.4. This value will again be assumed throughout

this section.

The Mach number M and flow angle 4 may again be obtained:

+1)° (s 2 2\
(1) (s8) v
M = |2 (2.46)

1 1/4 -1/2

These are plotted in Figure 2.10 for various distances downstream. Note again

that the Mach number at a given value of 7 increases without bound as z/d; — oc.
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Figure 2.9: Variables in the axisymmetric blast wave analogy for v = 1.4

2.4.2 Proximal Bodies in Three Dimensions
2.4.2.1 Pressure Distribution on the Secondary Body

To estimate the forces acting on a second body placed in the shocked region given
by the axisymmetric blast wave analogy, we proceed in a manner similar to the
planar case. We specify this body also to be a sphere since, as in the planar case,
the problem will become more tractable if the secondary body possesses rotational
symmetry. We also assume that it is placed above and behind the primary sphere, so
that the relevant lateral force coefficient is the lift coefficient, with a positive value
indicating a repulsive force from the axis of symmetry of the primary body. Again,
the secondary body is assumed to be stationary relative to the primary body.

The Newtonian-flow pressure distribution on a sphere in the uniform freestream

outside the shocked region is

2 cos®6 for 0 € [0,7/2)
Cy(0) = (2.48)
0 for 6 € [r/2,m),
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Figure 2.10: Mach number and flow angle profiles at various distances downstream
in the axisymmetric blast wave analogy

where 6 is the zenith angle measured from the stagnation point.

The modified Newtonian description gives p(6) = (Pstag — Poo) €08% 0 + poo for
6 € [0,7/2), where pg,, may again be obtained from Equation 2.18. The correspond-
ing normalized pressure distribution, p(#)/pstag, is plotted in Figure 2.11 along with
computed profiles for two different Mach numbers. These computed profiles were
obtained from Amrita simulations using axisymmetric symmetry. As in the planar
case, the computed stagnation point values differ slightly from the theoretical values.
Again, we also try a Gaussian profile of the form p() = pgay exp(—k6?) to fit the
region near § = w/2 more closely. The value of k is determined by a least-squares fit
of the computed profiles ahead of the separation point. For M=4, 10, and 20, values
of 1.089, 1.211, and 1.191, respectively were obtained, so a representative value of

k=1.2 was chosen.

The modified Newtonian profiles in Figure 2.11 show much better agreement with

the computational profiles than in the case of a circular cylinder. The exponential
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tails of the Gaussian profile again do a poor job behind the separation point, so
for lower Mach numbers the Newtonian profile seems preferable. For higher Mach
numbers, however, at which the pressure jump behind the separation point becomes

less significant, we expect the Gaussian distribution to perform well.
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Figure 2.11: Theoretical and computed normalized pressure distributions on a sphere
in a uniform freestream at My, = 4 (left) and M., = 10 (right)

We again define p’ = p/ %poo\/2 and write the modified Newtonian and Gaussian

profiles as

Piiae — Do) cos?0 +pl . for 6 € [0,7/2
P (0) = (htay = Poc) 0.m/2) (2.49)
Pho for 0 € [7/2,7)

and

P'(0) = Plyag xp(—k6?) for 6 € [0, 7), (2.50)



33

respectively.

We wish to use these reference profiles to model the pressure distribution on a
sphere inside the shocked region. We thus redefine pj;,, as we did in the planar case
to be the pressure obtained if the flow at a point in the blast wave solution is passed
through a normal shock and subsequently decelerated isentropically to stagnation
conditions, and p} replaces p/ in Equation 2.49. The reference point for the blast
wave conditions is again taken to be the center of the secondary body. In Figure 2.12,
Ditag @s Tedefined here is plotted at various distances downstream. Noting that these
profiles are qualitatively very similar to those in the planar case, we consider the
same two deviations from the reference distributions as in the planar case, namely

deflection of the flow angle and variation in stagnation pressure over the body.

14

_ x/d1=1

Figure 2.12: Pressure coefficient py,,, at the stagnation point of a secondary body at
various distances downstream

An additional complication is introduced in this case by the fact that isosurfaces
in the blast wave solution are now axisymmetric rather than planar. To make the
integration tractable, however, we treat the isosurfaces as locally flat in the region of

the secondary body. This will be a reasonable approximation provided the displace-
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ment of the secondary body from the axis of symmetry of the primary body is large

compared to the secondary body radius.

2.4.2.2 Drag and Lift Coefficients

Making use of Euler angles, we may write the drag and lift coefficients for the modified

Newtonian case as

/ 1d2 a(p,stag _pll) ~
/ / |: pstag ) + §d_1 a(r/dl) ()

1 d2 pstag pl)
—_— 20 &sinfdbd
3 d1 (/) cos” 0 z sin [0)

//[pl dj( (‘21/’;1)17 é?iil)A)}i'sinede(b

(2.51)
= ——/Zﬂ/ {psmg ’)+%§—j%z)
;Zj% ]cos 0y sin @ db do
__/ / { ;Z—j (8(2%1)@—6(i%1):z)]gsm9ded¢,
(2.52)
and for the Gaussian case:
o - L L e
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where

§ = cosdsingsing —sindcosb (2.55)

=
I

sin d sin ¢ sin 6 + cos d cos 6. (2.56)

For the modified Newtonian profile, the double integral may be evaluated to give

Cp = %COS 0(Pstag = P1) — 1—15% sin 25%
_%53—?(24—00525)%_;%85_% (2.57)
Cr = %Sin 0(Pstag — 1) — 1—53—? sin 25%
- %5%(2 - 25)% - ;Z—fa(i%ﬂ- (2.58)

The integrals in the Gaussian case may also be evaluated, but lead to rather untidy
expressions, and there is little point including them here. The full expressions may
be found in Appendix A. The form of these expressions is similar to the equivalent
Newtonian expressions, although the constants differ slightly, and the p} terms are

absent.

As in the planar case, we may identify the dominant terms involving the diameter

ratio in the drag and lift equations. For the Newtonian case, these give

L, 1 d, 8p/stag

9 Pstas = 50 90z /dy)

1 dy 8plstag
15d; O(r/dy)

Cp

Q

(2.59)

Q

(2.60)

1
— p;mg sind —

Cr 5

These approximate expressions are similar in form to the corresponding planar
expressions, and the same comments apply. In particular, we see again that the lift

expression has two terms of opposite sign, only the second of which has a dependence
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on body size. Thus we again predict a qualitative change in lift behaviour as the
body size is varied. This is indeed seen in Figures 2.13 and 2.14, in which the full
formulae for the modified Newtonian lift and drag coefficients are plotted. The profiles
in Figure 2.14 include the z-derivative terms, whereas those in Figure 2.13 do not.
While the effect of body size on the lift profiles is similar to that in the planar case,
the downstream displacement effect does not seem to carry over - while the magnitude
of the lift values decreases as x/d; is increased, there is very little qualitative change.
This difference is probably due to the dpy;,,/0(r/d:) term in Equation 2.34 decaying
more rapidly than that in Equation 2.60, as the shock radius grows more rapidly in the
planar case. The drag coefficient profile is seen to change very little with body size.
In those profiles in which the z-derivative terms are absent, the effect of downstream
displacement is also very small, although if the z-derivatives are included we see the

drag values drop gradually as x/d; is increased.

As in the two-dimensional case, we may wish to ask if there is a critical body-size
ratio above or below which the lift experienced by the secondary body is exclusively
of one sign within the shocked region. We thus set Equation 2.58 to zero and solve
for dy/dy. The resulting curves, as functions of r/R;, are shown in Figure 2.15 for
various distances downstream. These may be read in the same manner as in the
two-dimensional case: at a given distance downstream, a secondary body for which
the diameter ratio lies above the curve will experience a negative lift coefficient, and
thus an attractive lateral force, while one lying below will experience a positive lift
coefficient. In contrast to the two-dimensional case, however, there does appear to be
a value of dy/d; above which the lift coefficient will be exclusively negative throughout
the shocked region. This critical value is at dy/d; ~ 0.165, i.e., for a primary body
approximately six times the diameter of the secondary body. A secondary body with
a diameter larger than this value, if placed within the shocked region with the same

initial velocity as the primary body, is certain to be entrained within the shocked
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Figure 2.13: Theoretical secondary drag and lift coefficients in three dimensions, using
the modified Newtonian distribution without z-derivatives, for various d;/dy ratios
at x/d; = 2 (top), 8 (center), and 32 (bottom).
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Figure 2.14: Theoretical secondary drag and lift coefficients in three dimensions, using
the modified Newtonian distribution including z-derivatives, for various d;/ds ratios
at x/d; = 2 (top), 8 (center), and 32 (bottom).
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region, whereas smaller bodies have the possibility of being ejected.
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Figure 2.15: Diameter ratio in three dimensions at which a cross-over from a positive
to a negative lift coefficient occurs

The effect that we have noted of body size on the secondary lift coefficient could
have important consequences in situations such as the distribution of fragments in the
crater field produced by the atmospheric breakup of a meteoritic body. Immediately
after the fragmentation event, a single bow shock will encompass the collection of
fragments. As the fragments separate, this shock will grow until the bodies are
sufficiently far apart that they develop individual bow shocks. During the initial main
shock phase, this body-size effect could lead to smaller fragments being ejected away
from the collection, whereas larger fragments would be more likely to be entrained.
At later times, one could imagine a large fragment entraining many smaller fragments
behind it. This could lead to groupings of craters within the main field and would
be similar to the effect of secondary fragmentation. This latter possibility will be

discussed further in Chapter 7.
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Chapter 3

Computational Modeling

3.1 Introduction

Computational modeling of the proximal body problem has been carried out in both
two and three dimensions. In order to provide direct comparisons with the ana-
lytical methodology developed in the previous chapter, simulated body geometries
were limited to circular cylinders in the two-dimensional case and spheres in the
three-dimensional case. Conceivably, however, arbitrary body geometries could be
simulated with the available software. In this chapter we will outline the details of
the computational modeling a selection of the results will be presented; in the fol-
lowing chapter the complete results will be compared with those obtained using the

blast wave methodology.

3.2 Two-Dimensional Computations

3.2.1 Introduction

Two-dimensional numerical simulations were performed using two different softwares.
The principal software used was AMROC (Adaptive Mesh Refinement in Object-
oriented C++), developed by R. Deiterding (2003). AMROC is a mesh adaption

framework specifically designed for the solution of hyperbolic fluid flow problems
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on distributed memory machines. Implementation of the ghost fluid method allows
the integration of complex, time-dependent boundaries into simulations. AMROC
computations were run on the CACR (Center for Advanced Computing Research)
machine ASAP at the California Institute of Technology. ASAP is a Pentium-II based
parallel cluster with a Gigabit network running under Linux. A typical simulation, in
which the two-dimensional Euler equations were solved for an ideal gas, used between
6 and 18 nodes. Initially a hybrid Roe-HLLE scheme with Godunov dimensional
splitting was used, but this was later changed to the Van-Leer flux vector-splitting
scheme to maintain consistency with the three-dimensional computations. All results
presented here were obtained with the Van-Leer scheme.

The second software used was Amrita, due to Quirk (1998). Amrita was not
available on the parallel cluster, so computations were limited to a single Pentium-1V
machine. This limited the size of computations that could be performed, so the re-
sults obtained using Amrita were mainly used as a consistency check for the AMROC
results. The Amrita simulations also solved the two-dimensional Euler equations, us-
ing the HLLE scheme with Kappa-MUSCL reconstruction and Godunov dimensional
splitting.

In all computations, unless otherwise specified, the ratio of specific heats is vy = 1.4.

3.2.2 Details of Computations

In all two-dimensional simulations, both bodies were circular cylinders. The parame-
ters that were varied were the downstream and lateral displacements of the secondary
body, the freestream Mach number, and the ratio of radii of the two bodies (for con-
venience, in this chapter we will use the radius ratio rather than the diameter ratio
of the previous chapter - the two are, of course, interchangeable). The runs were
grouped according to the downstream displacement, Mach number, and radius ratio,

and for each combination of these, a series of simulations was performed in which
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the lateral position of the secondary body was varied incrementally from immediately
behind the primary body to outside the primary bow shock. The lateral displacement
was in the upwards direction, so a positive lift coefficient indicates a repulsive force
from the plane of symmetry of the primary body.

Details of the AMROC computations are given in Table 3.1. The distance down-
stream value is the center-to-center displacement of the secondary body relative to
the primary body, normalized by the radius of the primary body. The additional re-
finement entry indicates the refinement factor for each level of additional refinement
over the base grid. Thus, for all simulations, two additional levels of refinement were
used, each with a refinement factor of 2. The number of CPU hours in each case is
a typical value, as the actual number could vary from computation to computation,
especially if a different number of nodes was used. The number of timesteps could

also vary slightly between computations in a given series.

Distance downsteam 4 4 8 8
(primary body radii)
Mach number, M 10 50 10 50
Body radius ratio (r/72) 2,6 2,6 2,6 2,6
Base grid 200200 | 200x200 | 320x280 | 320x280
Additional refinement 2,2 2,2 2,2 2,2
Physical domain 2.5%2.5 | 2.5x2.5 | 4.0x3.5 | 4.0x3.5
Primary body radius 0.24 0.24 0.24 0.24
CFL number 0.9 0.7 0.9 0.7
Number of timesteps 3100 4250 3100 3600
Last time 3.0 0.7 3.0 0.6
Computational overhead 12/35 12/42 12/60 12/65
(nodes/CPU hours)

Table 3.1: Details of two-dimensional AMROC computations.

For each run, the lift and drag values on each body were calculated every 10
timesteps by a numerical integration of the pressure with the appropriate component
of the surface normal vector over the body. The mean lift and drag values were then

calculated over the final 30% of the flow time.
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Amrita computations were carried out on a 264 x 264 coarse grid with one level of
additional refinement, with a refinement factor of 2. The physical domain in Amrita
simulations corresponds to the mesh dimensions, and the radius of the primary body
was 24. These simulations thus had approximately half the resolution of the AMROC
simulations. Each computation consisted of 5000 timesteps with a CFL number of
0.6 to a final time of around ¢ = 200. The lift and drag values were averaged over the
last 10% of this time period. A single computation took approximately 8 hours on a

Pentium IV machine running under Linux.

3.2.3 Results

The flow development during a typical AMROC simulation is shown in Figure 3.1.
The visualisations are computational schlieren images overlaid on the refinement level
sets and are taken at four time instants in the flow development. The first three
images are taken during the establishment of the flow, while the lower right image
shows the steady flow solution. The flow is established by ramping up the velocity
at the inlet on the left boundary at constant pressure and density, resulting in the
observed shock system. The plot below shows the lift and drag coefficients experienced
by the secondary body, as well as the drag coefficient for the primary body, during
this startup process. The time instants corresponding to the first three of the images
are indicated by the dashed vertical lines. The Mach number in this case was 10,
the downstream and lateral displacements were both 4 primary body radii (center-
to-center), and the ratio of body radii was 2.

Figures 3.2 and 3.3 show, for two combinations of downstream displacement and
radius ratio, the drag and lift coefficients of the secondary body as functions of lateral
displacement - in each case the configuration is shown in the schlieren image above.
The coefficients are plotted for both M = 10 and M = 50. In Figure 3.2 the ratio

of radii is 6, and the downstream displacement is 4 primary body radii. Error bars
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Time

Figure 3.1: Flow development in a typical two-dimensional computation. Computa-
tional schlieren images overlaid on refinement level sets are shown at, clockwise from
top left, t = 0.177,0.317,3.0,0.365. The drag and lift coefficient profiles are plotted
below with the three earliest times indicated.
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are included for those points in which the standard deviation of the drag value is
greater than 5% of the mean value over the averaging time. As may be seen, this
occurs exclusively near the wake region, where we would expect some unsteadiness
to be present. Near y/R = 1, the unsteadiness is caused by interactions between
the secondary body and the separation shock from the primary body. As there are
subsonic regions in the wake, information can propagate upstream from the secondary
body, and this causes oscillations in the position of the separation shock. These in
turn produce unsteadiness in the flow around the secondary body. A small hump in
the drag profile is also typically seen in this region, as the interaction of the separation

shock with the secondary bow shock produces locally high pressure.

As y/R is increased further, we see that the M = 10 and M = 50 profiles are
almost identical for both lift and drag. For this configuration, both increase monoton-
ically with increasing y/R until maximum values are reached at y/R =~ 4.5, at which
point the primary shock is impinging near the leading point of the secondary body.
The M = 50 profiles do climb slightly more steeply, as the primary shock radius is
smaller than in the M = 10 case. As the secondary body clears the primary shock,

the drag and lift coefficients revert to their freestream values of C'p =~1.2 and C, = 0.

In Figure 3.3, the ratio of radii is 2 and the downstream displacement is 8 primary
body radii. Again, unsteadiness is observed near the wake region and is seen to persist
to larger lateral displacements in the M = 10 case. This is a result of the separation
shock lying closer to the primary body’s plane of symmetry at higher Mach numbers.
Once outside the wake/separation shock region, the drag profiles conform to one
another more closely, but again the M = 50 profile rises more steeply due to the
smaller primary shock radius. The lift profiles also conform over a small region, but
then show some qualitative differences: the M = 10 profile rises slightly before the
shock impingement point (here at y/R =~ 6), whereas the M = 50 values continue to

decrease until this point is reached. Note also the contrast between the lift profiles
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Figure 3.2: Drag and lift coefficents as functions of lateral displacement for cylinders
in a configuration as shown above. The freestream Mach number in the schlieren
image is M = 10.
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Figure 3.3: Drag and lift coefficents as functions of lateral displacement for cylinders
in a configuration as shown above. The freestream Mach number in the schlieren
image is M = 50.
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in Figures 3.2 and 3.3. In the former, with a body radius ratio of 6, the lift is mainly
positive in the region between the separation and the bow shock, whereas in the latter,
with a radius ratio of 2, the tendency is for the lift coefficient to remain negative.
This observation conforms to the predictions of Chapter 2 regarding the effect of
body size on lift. Once the shock impingement point is reached, both lift profiles
rise sharply to positive values, as was predicted in Chapter 1. This was explained
crudely by the observation that, in this configuration, whereas the upper side of the
body will experience singly-shocked flow, the lower side of the body will experience

doubly-shocked, and thus higher pressure, flow.

The close agreement between the profiles for the two Mach numbers in Figure 3.2
is a demonstration of the Mach number independence principle, which states that as
the Mach number is increased, the flow becomes increasingly independent of further
changes in Mach number. This principle holds well in the near-field, but becomes
more approximate in the far-field - hence the larger discrepancies seen in the profiles
in Figure 3.3. The primary shock shapes, for example, must diverge somewhat in the

far-field, as each must tend to the Mach angle for that particular Mach number.

For validation purposes, the Amrita software system was also used to simulate
this problem for a particular choice of parameters, namely a Mach number of 10, a
downstream displacement of 4 primary body radii, and a radius ratio of 2. Figure 3.4
shows a comparison of the lift and drag coefficients obtained with the two softwares.
As may be seen, although agreement is reasonably good over much of the domain,
there are some discrepancies, particularly as the primary bow shock begins to impinge
on the secondary body. This is not entirely unexpected, however. We have already
noted that the AMROC simulations have approximately twice the resolution of those
performed with Amrita, and this extra resolution will become most notable in the
vicinity of high-gradient flow features, such as shocks. In particular, as the primary

bow shock becomes better resolved, the effective shock position could change slightly.
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To provide a more fair comparison then, a single Amrita simulation with two levels
of additional refinement over the base grid was also carried out, giving approximately
the same resolution as the Amroc simulations. The resulting drag and lift coefficients
are shown in Table 3.2 and are compared with AMROC values computed at the same
lateral displacement. The more refined Amrita coefficients agree very closely with the

AMROC values obtained with two additional levels.

Table 3.2 also contains the results of a refinement study carried out with AMROC.
The downstream and lateral displacements of the secondary body are both 4 primary
body radii, the ratio of body radii is 2, and the Mach number is 10 (this choice of
parameters is shown in Figure 3.1 for two levels of additional refinement). These
values were chosen because in this configuration some of the largest discrepancies
were seen between the Amrita and AMROC results, both in lift and drag coefficients
(see Figure 3.4). We therefore might expect this to be a worst-case scenario with
respect to the effect of refinement on the lift and drag values obtained. Up to three
additional levels of refinement over the base grid were used, each with a refinement
factor of 2. The lift and drag do appear to be converging, but the lift especially seems

to be quite sensitive to changes in refinement, even between the two highest levels.

Additional. | Cp | ACp Cy, ACT
levels
Amroc
0 2.051 -0.051
1 2.117 | 0.066 | -0.128 | -0.077
2 2.320 | 0.203 | -0.228 | -0.100
3 2.346 | 0.026 | -0.183 | 0.045
Amrita
1 2.076 -0.120
2 2.288 | 0.212 | -0.227 | -0.107

Table 3.2: Cp and Cp, values for two-dimensional refinement study and comparison
with Amrita. A indicates the difference between the values at current and previous
levels of refinement.
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3.3 Three-dimensional Computations

3.3.1 Introduction

All three-dimensional simulations were carried out using the AMROC software, but
were run at two different facilities. A small number of less-refined computations
were run on the CACR machine ASAP, as in the two-dimensional case, while all
other computations were run on DataStar at the San Diego Supercomputing Center
(SDSC). DataStar is an IBM terascale machine consisting of 176 8-way P655+ nodes,
each with 16GB of memory and 7 32-way P690 shared nodes, each with 128GB
of memory. Simulations were run on the 8-way nodes - typically between 6 and
16 nodes were used on a given run. The three-dimensional Euler equations were
solved for an ideal gas - as in the two-dimensional case, a ratio of specific heats
of 1.4 is assumed unless otherwise stated. Initially a hybrid Roe-HLLE scheme with
Godunov dimensional splitting was used, but this was found to lead to spurious spatial
variations in the freestream flow profile. An exact Riemann solver was subsequently
tried, but the best results were obtained with Van-Leer flux vector-splitting, again
with Godunov dimensional splitting. This scheme was thus used in all computations

presented here.

3.3.2 Details of Computations

In all three-dimensional simulations, both bodies were specified as spheres. The
parameters that were varied were again the downstream and lateral displacements
of the secondary sphere, the ratio of body radii, and the Mach number. For each
given combination of downstream displacement, radius ratio, and Mach number, a
series of simulations was performed in which the lateral displacement of the secondary
body was varied. To maintain consistency with the two-dimensional simulations, we

shall refer to the force coefficient in the lateral direction as the lift coefficient, with a
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positive value indicating a repulsive force from the axis of symmetry of the primary
body.

Details of the computations are given in Table 3.3. The entries correspond di-
rectly to the equivalent two-dimensional entries in Table 3.1, with the exception of
the computational overhead entry. The sizes of the computations were such that
they could not be completed in a single step without exceeding the Datastar clock
limit. They were thus divided into a minimum of two steps, sometimes using differing
numbers of CPUs at each step. The computational overhead entry thus includes the
total number of CPU hours, with the number in brackets indicating the number(s) of
CPUs used for the multiple steps. In particular, as the early steps were used simply
to establish the flow, some of the refinement was suppressed, which allowed a smaller
number of CPUs to be used. Unfortunately, some of the timing data for the simu-
lations has been lost, hence the empty entry in the fourth column. Also, note that
while for the radius ratio 2 simulations, only a single secondary body was included
in the computation, for those in which the radius ratio was 4 or 8, four secondary
bodies at different lateral displacements (but sufficiently spaced so as not to interfere

with one another) were included in a single computation.

3.3.3 Results

Figure 3.5 shows the development of the flow during a typical three-dimensional
simulation. The visualisations are computational schlieren images overlaid on the
refinement level sets, calculated on the slice plane parallel to the flow that includes
the centers of the two bodies. The time instants at which these images are taken are
indicated in the plot below, which shows the temporal development of the lift and drag
coefficients of the secondary body and the drag coefficient of the primary. The lower
right visualisation corresponds to the steady flow solution. As in the two-dimensional

case, the steady flow is generated by ramping up the inlet flow speed at constant
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pressure and density until the desired Mach number is obtained. The drag and lift
values on the spheres are calculated every 10 timesteps by integrating the pressure
on the surface with the appropriate components of the surface normal. Mean values
are calculated once the steady flow is established - typically the averaging takes place

over the last 10% of the flow time.

In Figures 3.6 and 3.7 the mean drag and lift coefficients of the secondary body,
as functions of lateral displacement, are shown for two combinations of downstream
displacement and radius ratio - these are indicated on the schlieren images above.

Profiles for Mach numbers of both 10 and 50 are included.

In Figure 3.6 the downstream displacement is 3 primary body radii, and the ratio
of body radii is 4. The drag profile is qualitatively very similar to those seen in
the two-dimensional case. The drag coefficient is typically small in the wake region,
increases to a maximum value as the lateral displacement is increased, then decreases
to the freestream value (of approximately 0.88) as the body moves out of the shocked
region. The M = 50 profile climbs slightly more sharply, as the primary shock radius

is slightly smaller at higher Mach numbers.

The lift values are typically also small in the wake region and then show a negative
tendency as the lateral displacement is increased. As in the two-dimensional case, the
lift coefficient jumps sharply once the primary shock impingement point is reached
and attains a maximum value when the center of the secondary body is in the vicinity

of the primary shock radius. As the body clears the shock, the lift tails off to zero.

The unsteadiness experienced by the secondary body in the wake region is some-
what smaller in the three-dimensional case than the two-dimensional case. In all
simulations here the standard deviation of the mean drag value was smaller than 2%.
This may be attributed to the generally weaker nature of features such as separation
shocks in three dimensions - the extent of the wake region is also smaller than in the

two-dimensional case.
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Figure 3.5: Flow development in a typical three-dimensional computation. Computa-
tional schlieren images overlaid on refinement level sets are shown at, clockwise from
top left, ¢ = 0.109,0.201, 3.0,0.244. The drag and lift coefficient profiles are plotted
below with the three earliest times indicated.
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Figure 3.6: Drag and lift coefficients as functions of lateral displacement for spheres
in a configuration as shown above. The freestream Mach number in the schlieren
image is M = 10.
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In Figure 3.7 the downstream displacement is 8 primary body radii, and the
ratio of body radii 2. The profiles are qualitatively similar to those in Figure 3.6,
although we see a greater difference between results for the two Mach numbers. This
is another demonstration of the Mach number independence principle becoming more
approximate in the far-field.

As no secondary software was available to validate the AMROC computations,
instead a set of computations was repeated with one level of refinement discarded.
The freestream Mach number for these computations was 10, the ratio of body radii
2, and the downstream displacement of the secondary body 3 primary body radii.
The lift and drag coefficients for the two resolutions are compared in Figure 3.8.
Agreement between the two is generally good, although there are small discrepancies
in the area of primary bow shock impingement. To quantify these discrepancies

better, a refinement study was also carried out in three dimensions.

3.3.4 Refinement Study

The configuration for the three-dimensional refinement study is shown in the com-
putational schlieren images of Figure 3.5. The downstream and radial displacements
(center-to-center) of the secondary body are three and 2.5 primary body radii, re-
spectively, and the freestream Mach number is 10. These values were chosen because,
as may be seen in Figure 3.8, in the vicinity of this configuration the lift coefficient is
most sensitive to changes in secondary body position (or conversely, changes in shock
position). Therefore, this configuration will represent something of a worst-case sce-
nario with regards to the effect of resolution changes on the lift value.

Simulations were carried out for one to four additional levels of refinement over
the base grid, and the results are shown in Table 3.4. The Cp and C}, values are
given in each case, as well as the change in value from that at the previous level of

refinement. As may be seen, the values are converging, but the lift especially is quite
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Figure 3.7: Drag and lift coefficients as functions of lateral displacement for spheres
in a configuration as shown above. The freestream Mach number in the schlieren
image is M = 50.
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Figure 3.8: A comparison of drag and lift coefficients for 2 and 3 levels of additional
refinement. The freestream Mach number is 10, the downstream displacement 3
primary body radii, and the radius ratio 2.

sensitive to changes in refinement level. In these simulations, the effect of increasing
the resolution was to lead to a slight decrease in the primary bow shock radius, or
alternatively, a small increase in the effective lateral displacement of the secondary
body. This is consistent with the more positive lift values observed at higher levels

of refinement.

The computation with four additional levels took approximately 35 000 compu-
tational hours using 144 CPUs to complete. Thus, given current computing perfor-
mance, the maximum number of additional levels that can realistically be used is
three. If we assume that the lift values continue to converge at the rate indicated

by Table 3.4, we obtain a refinement error at this level of refinement that is 5% of
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the drag value. Similarly, we estimate the refinement error in the drag value to be
2%. These errors will be smaller, however, in configurations that are less sensitive to

changes in shock position.

Additional. CD ACD CL ACL
levels
1 1.264 -0.176
2 1.442 | 0.178 | -0.019 | 0.157
3 1.423 | -0.019 | 0.052 | 0.071
4 1.408 | -0.015 | 0.087 | 0.035

Table 3.4: Cp and C', values for the three-dimensional refinement study. A indicates
the difference between the value at the current and the previous level of refinement.
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Chapter 4

Comparison of Theoretical and
Computational Results

We are now in a position to see how well the analytical methodology developed in
Chapter 2 performs. In this chapter we will compare the analytical drag and lift

coefficients with those obtained in the numerical simulations of Chapter 3.

4.1 Two-Dimensional Comparison

To begin with, we will compare coefficients with the lateral displacement of the sec-
ondary body non-dimensionalized by the primary body diameter. In Figure 4.1, the
theoretical coefficients obtained using the Gaussian profile with no z-derivatives are
plotted along with computational values for Mach numbers of 10 and 50. The body
diameter ratio, d;/ds, is 2, and the downstream displacement (center-to-center) is
2d;. This corresponds to a x/d; value of approximately 2.75, as the shock stand-off
distance is approximately half a body radius.

As may be seen, agreement between the theoretical and computational values is
poor. The reason for this may be seen from the dashed vertical lines, which indicate
the shock radius in each case at this distance downstream (for the computational
cases, the shock radius was estimated from visualizations of the computed flow; the

theoretical value is given by Equation 2.5). The blast wave analogy significantly



62
underestimates the shock radius, and, as the shock provides the boundary for quali-
tatively different flow regions, this results in a large discrepancy in the lift and drag
values. This suggests that the more appropriate non-dimensionalization for the lat-
eral displacement is the shock radius in each case. The profiles resulting from this
non-dimensionalization are shown in Figures 4.2 through 4.5 for combinations of body
diameter ratios of 2 and 6 with downstream displacements (center-to-center) of 2 and
4d,y. The latter downstream displacement value corresponds to an x/d; value of ap-
proximately 4.75. In all cases, computational profiles at Mach numbers of both 10

and 50 are included.

First, we should make note of the regions in which we do not expect the blast
wave analogy model to perform well. For /R, close to 1, the primary bow shock
will impinge on the secondary body and significantly affect the pressure distribution.
In each of the computational profiles, we see that this impingement causes a large
increase in the lift coefficient, for reasons previously outlined. The effect of the
impingement on the drag coefficient is less significant, as the main contribution to
the drag comes from the region near the stagnation point, which does not feel the

impingement effects until larger values of /R, are reached.

For small values of /R, on the other hand, the secondary body is in the wake of
the primary body, or for slightly larger values, interacts with the primary separation
shock. This interaction was noted in Chapter 3 and may be seen in the hump in the
drag profile in each case at around r/R; ~ 0.2 — 0.4. As neither the wake region nor
the separation shock is present in the blast wave analogy, it is not surprising that
there are discrepancies between the theoretical model and computations for small

7/ Rs.

For r/Rs not too close to either 0 or 1, however, we see that the blast wave model
does a reasonably good job of predicting the drag and lift coefficients. Qualitatively,

the trends are very well captured - note that the effect of body size predicted by the
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Figure 4.1: Theoretical and computed drag and lift coefficients in two dimensions for
M =10 and 50, d;/dy = 2, at a downstream displacement of 2d; (center-to-center).
The lateral displacement has been normalized by the primary body diameter, and
the dashed vertical lines indicate the position of the primary bow shock in each case.
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theoretical model is very much present in the computations. The model also predicts
such details as the lift coefficient crossing from positive to negative as the lateral dis-
placement is decreased for the two d; /dy = 6 cases (Figures 4.3 and 4.5). In Figure 4.4
we also notice an interesting effect. It was in this configuration in the previous chap-
ter that we noted slight qualitative differences in the two computational lift profiles.
The theoretical profiles mirror these differences, with the modified Newtonian profile
lying closer to the M = 10 values and the Gaussian profile better approximating
the M = 50 values. This is consistent with our earlier prediction that the Gaussian

profile should be more appropriate at higher Mach numbers.

Overall, the modified Newtonian description without z-derivatives seems to do the
best job of modeling the lift and drag coefficients. The inclusion of the z-derivatives
for either distribution results in predicted drag coefficients that are too high. The
Gaussian description (without z-derivatives) does well in most cases, but notably in
Figure 4.2 the lift coefficient profile falls too quickly with increasing r/R,. In the
other cases, however, both the modified Newtonian and Gaussian descriptions allow

reasonable quantitative predictions to be made.

4.2 Three-Dimensional Comparison

We begin again by comparing theoretical and computational profiles in which the
secondary lateral displacement has been non-dimensionalized by the primary body
diameter. In Figure 4.6 the theoretical coefficients calculated with the Gaussian profile
(with no z-derivatives) are compared with those generated by AMROC computations
for a ratio of body diameters of 2 and a downstream displacement (center-to-center)
of 1.5 primary body diameters. This downstream displacement corresponds to a x/d;
value of approximately 2.07 - the shock stand-off distance is measured from visuali-

sations of the computed flow. Computational profiles with freestream Mach numbers
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Figure 4.2: Theoretical and computed drag and lift coefficients in two dimensions
with the lateral displacement normalized by respective shock radii for M = 10 and
50, dy/dy = 2, and a downstream displacement of 2d; (center-to-center).
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Figure 4.3: Theoretical and computed drag and lift coefficients in two dimensions for

M =10 and 50, d;/dy = 6, and a downstream displacement of 2d;.
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of 10 and 50 are included. As in the two-dimensional case, non-dimensionalization
by the primary body size does not give good agreement between the theoretical and
computational values. The problem is once again a disagreement in primary shock

radii, as indicated by the dashed vertical lines.

We thus try normalizing again by the shock radius in each case: the results are
shown in Figures 4.7 through 4.10. Once again, agreement is much improved with
this normalization. For r/R; close to 0 and 1, the expected discrepancies appear as
a result of the secondary’s interaction with the wake region and the primary bow-
shock, but away from these extremes agreement is quite reasonable. Agreement with
the M = 50 computational values is better than that for the M = 10 values, as might
be expected. As in the planar case, the Newtonian profiles appear in general to
capture the computational values better than the Gaussian profiles do. In Figure 4.7
the profiles that include z-derivatives show better agreement than those without, but
in other cases this is not as obvious. Note, however, that the further downstream the
secondary body is, the smaller the effect of including the z-derivatives will be, as all
derivatives will decay as the shock radius grows. The inclusion of the x-derivatives

will also become less important as the secondary body size is decreased.

The most significant problem with the theoretical profiles under the current nor-
malization seems to be that the predicted drag profile (and in some cases the lift
also) decays too rapidly as r/ Ry is decreased from 1, leading to smaller values than
those predicted by the computations. This is most likely caused by the p’stag profile
predicted by the blast wave analogy decaying more rapidly than that in the computed

flow.
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Figure 4.6: Theoretical and computed drag and lift coefficients in three dimensions for
M =10 and 50, d;/dy = 2 at a downstream displacement of 1.5d; (center-to-center).
The lateral displacement has been normalized by the primary body diameter, and
the dashed vertical lines indicate the position of the primary bow shock in each case.
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Figure 4.7: Theoretical and computed drag and lift coefficients in three dimensions
with the lateral displacement normalized by the respective shock radii for M=10 and
50, dy/dy = 2, and a downstream displacement of 1.5d; (center-to center).



72

3 T T T T T T T T T K
—— Theoretical, Mod. Newtonian w/o x derivatives /
— — Theoretical, Gaussian w/o x derivatives i
25H - — Theoretical, Mod. Newtonian w/ x derivatives : : A
Theoretical, Gaussian w/ x derivatives -
x  Comp. M=10 /
ol © Comp. M=50 i
X
001 S 7
1 - -
0.5F i
. ; ;
© O
0 I | S R S

0.4

T T T T T T T T T
—— Theoretical, Mod. Newtonian w/o x derivatives
— - Theoretical, Gaussian w/o x derivatives
— - Theoretical, Mod. Newtonian w/ x derivatives
Theoretical, Gaussian w/ x derivatives x
021 x Comp. M=10 : R ]
O  Comp. M=50

i ) Q

_04 1 1 1 1 1 1 1 1 i\ \
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r/R

S

Figure 4.8: Theoretical and computed drag and lift coefficients in three dimensions
for M=10 and 50, d;/dy = 4, and a downstream displacement of 1.5d;.
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Figure 4.9: Theoretical and computed drag and lift coefficients in three dimensions
for M=10 and 50, d;/dy = 8, and a downstream displacement of 1.5d;.
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Figure 4.10: Theoretical and computed drag and lift coefficients in three dimensions
for M=10 and 50, d;/dy; = 2, and a downstream displacement of 4d;.
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4.3 Discussion

As we have seen, the theoretical profiles in both two and three dimensions provide
reasonable approximations to the computational values, but only once the lateral dis-
placements have been normalized by the appropriate shock radii. This does limit the
predictive power of the analytical methodology somewhat. If a given physical situa-
tion is to be modeled by the methodology, the physical value of Ry must be determined
independently. This would be possible through an experimental or numerical simu-
lation, but then one may ask why not simply simulate the physical configuration
directly, rather than carry out a simulation to determine the shock radius. Of course,
a single simulation in the latter case would yield a shock shape, which would then
enable the methodology to be employed over a range of secondary body positions,

whereas the former simulation would yield only the forces at a single position.

As an alternative to a full simulation, numerical or experimental, several authors
have proposed empirical correlations to the shock shape produced by a supersonic
blunt body based on experimental data. The detached shock wave is assumed to
take the form of a hyperbola that is asymptotic to the freestream Mach angle. The

equation for the coordinates of the shock is
2 t 2 I 1/2
x:R+A—Rccot20[(1+&> -1, (4.1)

where @ is the shock angle, A is the shock stand-off distance, and R, is the shock
radius of curvature at the vertex. Ambrosio and Wortman (1962) gave correlations

for the shock stand-off distance based on experimental data from several sources:

Spheres : A/R = 0.143 exp(3.24/M?) (4.2)

Cylinders : A/R = 0.386 exp(4.67/M?). (4.3)
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Similarly, Billig (1967) obtained correlations for the vertex radius of curvature:

Spheres : R./R = 1.143exp[0.54/(M — 1)*?)] (4.4)

Cylinders : R./R = 1.386 exp[1.8/(M —1)*7]. (4.5)

These relations could be used to provide a more accurate shock radius to which the
blast wave methodology could be applied.

As a final alternative, we have seen that the problem under current discussion
arises from the underprediction of the shock radius by the blast wave analogy. This
problem is well-documented, however, and is understood to arise from the fact that in
the blast wave analogy the energy in the flow originates from a point source, whereas
any physical body has a finite extent. In effect, the shock in the physical situation
is displaced outwards from the point explosion solution by the body, resulting in a
larger shock radius. It thus seems reasonable to propose an effective origin for the
shock radius in the blast wave solution. This origin would be displaced outwards
from the existing origin and could be useful in obtaining a more accurate value for
the shock radius in the intermediate- and far-fields. This idea will be explored further

in Section 6.2.
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Chapter 5

Experimental Investigation

5.1 Introduction

In order to further investigate the proximal bodies problem, and to provide verification
for the numerical simulations, a series of experiments has been performed in the TH
hypervelocity shock tunnel facility at Caltech. The main objective of the experimental
investigation was to measure the forces on a secondary sphere in configurations similar
to those simulated in Chapter 3. As outlined in Chapter 1, there is a dearth of reliable
force- and moment-measurement techniques available for short duration hypersonic
facilities: thus, as part of the experimental investigation, the development of new

techniques was required.

5.2 Experimental Procedure

5.2.1 The T5 Hypervelocity Shock Tunnel Facility

The T5 hypervelocity shock tunnel is one in a series of free-piston driven facilities of
the type pioneered by Stalker (1961). A schematic of the facility with enlargements
of the important components is shown in Figure 5.1.

The operational principle of T5 and other similar facilities is as follows. Com-

pressed air, stored in the secondary reservoir (2R), is used to accelerate a free piston
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down the compression tube (CT), adiabatically compressing the CT gas ahead of it.
This gas, typically a mixture of helium and argon, is then used as the driver gas for
the shock tube (ST). The ST is filled with the test gas at low pressure and room
temperature and is separated from the CT by a stainless steel diaphragm. The di-
aphragm is scored so that it will burst at the desired pressure - typically this occurs
when the driver gas has been compressed by a volumetric ratio of 40-70. A strong
shock then propagates down the ST and is reflected at the end wall, creating stagna-
tion conditions for expansion through a hypersonic nozzle into the test section. The
test section and dump tank are initially kept under vacuum and are separated from
the ST by a secondary mylar diaphragm at the ST-nozzle junction. This diaphragm
is vaporized by the incident shock. Test times are limited by the onset of driver gas

contamination and are typically of the order of 1-2 ms.

Pressure transducers mounted at points along the shock tube and at the reservoir
allow measurements of the shock speed and the stagnation pressure to be made. These
are used to determine the freestream conditions in the test section. T5 is capable of
producing stagnation pressures of up to 80 MPa, and flow speeds are typically in the
range 3-6 km /s, sufficient to reproduce many of the real-gas effects that are present in
real hypervelocity flows. Further information regarding the T5 facility may be found

in Hornung et al. (1991).

Conditions for the current series of experiments were relatively benign. The test
gas was carbon dioxide for all but two shots, with typical stagnation pressures of ~20
MPa and stagnation enthalpies of less than 10 MJ/kg. The freestream velocity and
density in the test section were typically 3 km/s and 0.03 kg/m?, respectively. A full
list of run conditions is given in Appendix B. In all experiments described here, a
conical nozzle of half-angle 7° and with an exit diameter of 300 mm was used together

with a throat of diameter 30 mm.
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5.2.2 Experimental Setup

In Figure 5.2 we see a cutaway of the TH test section with the experimental configu-
ration used in the later technique validation experiments, described in Section 5.3.1,
as well as the proximal body experiments, described in Section 5.3.2. The primary
sphere, of diameter 63.5 mm (2 1/2 inches), was rigidly attached to the test section
by means of a conical-cylindrical sting and mounting plates. The mounting allowed
for adjustments in both the horizontal and vertical position of the primary sphere.
Pitot pressure measurements were provided by a pressure transducer mounted in a
probe a short distance behind the front point of the sphere.

The secondary sphere, of diameter 31.8 mm (1 1/4 inch), was positioned directly
above and behind the primary sphere. It was suspended from the roof of the test
section in such a way that it was able to move freely over the distance it was ex-
pected to travel during the test time. A variety of suspension methods were tested
and will be discussed shortly. An accelerometer was mounted inside the sphere - a
schematic of the model with accelerometer is shown in Figure 5.4. In the experiments
described here, a single uniaxial accelerometer was mounted in the drag direction,
but if multiple-component force measurements were required, this could be replaced
by a triaxial accelerometer. The sphere was constructed so that the geometric center
coincided with the center of mass, ensuring that the aerodynamic loading would not
result in the generation of any rotational moments. For a general body, however, a
combination of accelerometers mounted at different locations within the body could
be used to measure both forces and moments.

A catcher, in the form of a bent tube, was mounted behind the suspended sphere.
The purpose of the catcher was two-fold. First it served to halt the sphere motion after
a short distance, preventing the accumulation of a velocity sufficient to damage the
sphere or accelerometer (to lessen the impact, a rubber pad was attached to the front

of the catcher). The catcher also provided a path by which the accelerometer cable
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could leave the test section without being exposed to the hostile flow environment.

Several suspension methods for the secondary sphere were tested. Initially the
sphere was suspended from thick (1.25 mm diameter) wire rope with no catcher to
impede the motion. The grooves that may be seen on the inside of each hemisphere
in Figure 5.4 are for the clamping of these wires. A rubber mat was attached to the
roof of the test section to absorb the impact of the swinging sphere. This method
led to the accelerometer cable being torn from the sphere during each shot, however,
and the thick wires were found to result in high measured drag values (this will be
discussed in Section 5.3.1). Thin piano wires (0.25 mm diameter) were also tried in
this configuration, but these broke under the aerodynamic loading, resulting in the

loss of the accelerometer.

The next suspension method tested was thinner wire rope (0.7 mm diameter)
secured to the test section both above and below the sphere, as shown in the left
photograph of Figure 5.3. The lower wires contained some initial slack, allowing the
sphere to move freely over a small distance in the drag direction, but were intended
to arrest the sphere’s motion before striking the catcher. These wires were also found
to break during the course of a typical run however, and again led to excessively high

drag values.

The final method tested consisted of suspending the sphere from the test section
roof by cotton thread, as shown in the right photograph of Figure 5.3. The intention
was that the thread would break at the onset of the flow, allowing for free-floating
behaviour during the test time. To ensure the sphere was guided towards the catcher,
a thin metal pipe of diameter 4.8 mm (3/16 inch) was attached to the back end of
the sphere such that it could move freely into the hole in the center of the catcher.
This pipe also provided further protection for the accelerometer cable from the flow.
One disadvantage of this method is that although the pipe might be expected to

have a negligible effect on the drag value, the contribution to the lift in the proximal
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Figure 5.2: Cutaway of the T5 test section showing model arrangement

Figure 5.3: Photographs of models in the T5 test section with secondary sphere
suspended by wire rope (left) and cotton thread (right).
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Figure 5.4: Schematic showing an exploded view of the secondary model with ac-
celerometer attached

body experiments would be more significant. Thus, in addition to experiments with
accelerometer measurements, shots were also carried out with the accelerometer and
metal pipe absent, providing a cleaner configuration. In these shots, the lift and
drag were measured only through the displacement profile recorded by a high-speed

camera, as will be discussed shortly.

5.2.3 Accelerometer Measurements

The primary method of drag measurement was through direct acceleration measure-
ments made by a uniaxial accelerometer mounted inside the model. The accelerometer
used was the Endevco model 7270A-2K. This is a piezoresistive-type accelerometer,
which allows measurement of steady-state accelerations. This model is rated to ac-
celerations of up to 2000 g and has a typical resonant frequency of 90 kHz.

In Figure 5.5 the power spectrum and acceleration signal recorded by the ac-
celerometer during a typical shot are shown. Note the log scale on the y-axis of the
power spectrum plot. Two large peaks are seen in this plot at approximately 85 and
91 kHz, respectively, the former of these probably corresponding to the resonant fre-
quency. The main frequency content of the remainder of the signal is well separated

from these peaks, which allows them to be removed by the simple application of a



84

12

10 . . T ; 5000
10'°l 7 7 7 7 7 | 4000}
v 3000f
10° £
o c
o
2 = 2000}
o 5
10 o
8 1000f
4
10 0
2
10 ‘ ' ' ' -1000 :
0 20 40 60 80 100 -1 0 1 2 3 4 5
Frequency (kHz) Time (ms)

Figure 5.5: (Left) Power spectrum of the accelerometer signal for shot 2322; (right)
accelerometer signal after application of low-pass and box-car filters.

low-pass filter. The acceleration signal has been filtered in this way and has been
further smoothed with the application of a box-car filter of width 21 time-steps. The
steady flow period in this signal is between approximately 1.5 and 2.5 ms, and the
mean acceleration is calculated over this time. Given that the mass of the sphere is

known, the drag force is then easily calculated.

To determine the coefficient of drag, knowledge of the freestream conditions is
required: in particular the density and the velocity. To this end, the reservoir condi-
tions are calculated from the reservoir pressure and shock-timing measurements using
ESTC (Equilibrium Shock Tube Calculation) due to Mcintosh (1969). Freestream
conditions are then calculated with NENZF (Non-Equilibrium NoZzle Flow) due to
Lordi et al. (1966). For the conical nozzle, as the flow continues to diverge past the
nozzle exit, the nozzle calculations are continued as far as the downstream coordinate

of the sphere in question.
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5.2.4 High-speed Camera Measurements

In addition to the accelerometer measurements, a high-speed camera was used to
track the motion of the secondary sphere in both the drag and lift directions. The
optical setup, a conventional Z-schlieren system, is shown in Figure 5.6. For clarity,
the arrangement of the optical components shown has been adjusted slightly from
the physical arrangement.

A Vision Research Phantom v5 high-speed digital camera was used in conjunction
with a continuous white light source. Three different resolutions were used: 256 x 256,
256 x 128, and 256 x 64 pixels. The frame-rate was set to the maximum allowed by
each of these resolutions; respectively 12000, 25000, and 38000 frames/second. The
exposure time was typically 10-20us. This was usually short enough to negate the self-
luminosity in the test section, although for nitrogen test-gas shots this was more of a
problem. For the proximal body experiments, a high pass optical filter was inserted
in the optical setup just ahead of the knife-edge to further reduce this luminosity.

The recovery of a time-dependent acceleration profile from displacement measure-
ments is a questionable operation, as it involves the double differentiation of a noisy
signal. Thus, the interpretation of unsteady effects using this method will not be at-
tempted here. Assuming, however, that the acceleration is steady over the test time,
a second degree polynomial may be fitted to the displacement in a given direction as
a function of time. The acceleration in that direction is then simply given by twice
the quadratic coefficient.

The acceleration was thus deduced from the camera images in the following way.
For each image obtained during the test time, an edge detection was carried out on the
entire image using the Sobel method. Points were chosen on the edges corresponding
to the moving sphere, and a circle of the form (z — z0)?> + (y — yo)* = r? (where
Zo, Yo, and r are the unknowns) was fitted in the least-squares sense to these points.

While this equation is not in a form to which a standard multiple regression may be
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Figure 5.6: Top view of the T5 optical setup for high-speed camera visualisation.
Components have been rearranged slightly for clarity, and are not to scale.
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applied, if we rewrite it as z = ax + by + ¢ where z = 22 + 4%, a = 220, b = 2y, and
c=1r?—x% —y2, we see that standard linear techniques may be used.

Once a displacement history of the sphere has been determined over the time
period of interest, quadratic polynomials may be fitted to the x and y profiles as
functions of time. As the stan