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Abstract

The problem of proximal bodies in hypersonic flow is encountered in several important

situations, both natural and man-made. The present work seeks to investigate one

aspect of this problem by exploring the forces experienced by a secondary body when

some part of it is within the shocked region created by a primary body travelling at

hypersonic speeds.

An analytical methodology based on the blast wave analogy is developed and

used to predict the secondary force coefficients for simple geometries in both two and

three dimensions. When the secondary body is entirely inside the primary shocked

region, the nature of the lateral coefficient is found to depend strongly on the relative

size of the two bodies. For two spheres, the methodology predicts that the secondary

body will experience an exclusively attractive lateral force if the secondary diameter is

larger then one-sixth the primary diameter. The analytical results are compared with

numerical simulations carried out using the AMROC software and good agreement is

obtained if an appropriate normalization for the lateral displacement is used.

Results from a series of experiments in the T5 hypervelocity shock tunnel are also

presented and compared with perfect-gas numerical simulations, again with good

agreement. In order to model this situation experimentally, a new force-measurement

technique for short-duration hypersonic facilities has been developed, and results from

the validation experiments are included.

Finally, the analytical methodology is used to model two physical situations. First,

the entry of a binary asteroid system into the Earth’s atmosphere is simulated. Sec-



iv

ond, a model for a fragmenting meteoroid in a planetary atmosphere is developed, and

simulations are carried out to determine whether the secondary scatter patterns in

the Sikhote-Alin crater field may be attributed to aerodynamic interactions between

fragments rather than to secondary fragmentation. It is found that while aerody-

namic interactions lead to increased secondary crater grouping, these groups do not

exhibit the typically elliptical shape that we would expect secondary fragmentation

to produce.
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Chapter 1

Introduction

1.1 Problem Definition and Scope of Current Work

There are several important situations, in both the man-made and natural worlds, in

which separate bodies travelling at hypersonic speeds may interact with one another

aerodynamically. Launch vehicle stage separation, re-entry of multiple vehicles or a

single vehicle with a trailing ballute, and a hypersonic vehicle launching some form

of payload are all man-made situations in which the problem of proximal bodies in

hypersonic flow may arise. In the natural world, such examples as a binary asteroid

system entering a planetary atmosphere and meteoroid fragments interacting after

atmospheric breakup may be cited. The current investigation will seek to better

understand and quantify the forces at work in such situations.

Figure 1.1 shows a computational schlieren image of the top half of a sphere in

a uniform freestream of Mach number M∞ = 10. This visualisation was produced

by a simulation of the given configuration using the Amrita software system (Quirk,

1998). The axisymmetric two-dimensional Euler equations were solved using a finite-

volume method - such a solution technique is typical in this flow regime. The Euler

equations may often be used in place of the full Navier-Stokes equations in determining

aerodynamic forces in hypersonic blunt body flows, in which most of the vorticity is

generated by curved shocks and viscous forces may often be neglected.
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Sonic line

Separation point

Bow shock Separation shock

Wake region

Figure 1.1: Computational schlieren image showing the top half of a sphere in a hy-
personic freestream of Mach number M∞ = 10. Important flow features are indicated.

The main flow features are indicated on the image and are typical of blunt bodies

in hypersonic flow in both two and three dimensions. A detached bow shock is

generated, starting out as a normal shock just ahead of the stagnation point, and

decaying to a Mach wave of angle β = arcsin(1/M∞) in the far field. The distance

from the stagnation point to the normal shock ahead is known as the shock stand-off

distance and typically becomes very small at high Mach numbers. The flow separates

from the rear surface of the sphere, creating a separation shock and wake region.

We now imagine placing a second body somewhere in this picture. Obviously,

the aerodynamic effects - in particular, the nature of the forces - that this body will

experience will depend very strongly on where the body is placed. We may identify

at least four qualitatively different regions, as shown in Figure 1.2.

First, if the secondary body is placed immediately behind the primary body, it will

find itself in the wake region, where, due to aerodynamic shielding from the primary

body, the forces experienced will be small. Wake regions are also typically subject to

unsteadiness, so we would expect time-variations to be present in the force history

here. As the lateral displacement of the body is increased, it will move out of the

aerodynamic shadow of the primary body and begin to experience the primary-shock-

processed flow. It is not immediately obvious what the nature of the forces will be
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Figure 1.2: Regions of interest in the proximal bodies problem, clockwise from top left;
the secondary body in the wake of the primary; the secondary body between the wake
and primary bow shock; the primary bow shock impinging on the secondary body;
the two bodies travelling independently but producing a shock-on-shock interaction

in this region; in particular, it is not obvious whether the body will experience an

attractive or repulsive force from the primary axis of symmetry.

As the lateral displacement is increased further, the primary bow shock will begin

to impinge upon the secondary body. In this region the drag force will be large, as the

interaction between the two bow shocks produces a very high local pressure. We would

also expect a repulsive force from the axis of symmetry to develop, as the outer part

of the body will experience singly-shocked flow, whereas the inner part of the body

will experience doubly-shocked - and thus higher pressure - flow. As the secondary
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body clears the bow shock it will begin to travel independently of the primary body.

What might be of interest here, rather than the forces on the secondary body, is the

nature of the shock-shock interactions that occur between the two bodies, especially

if there are further bodies downstream that may be affected.

In this study, then, we will be primarily interested in investigating the forces on

a secondary body placed within the second flow region as described above (i.e., that

between the wake region and primary shock). We will also seek to better quantify the

forces acting on the secondary body when the primary bow shock impinges upon it.

In order to gain some general understanding of the effects at work in this problem,

it will be necessary to restrict ourselves to simple body geometries. We shall thus

limit our investigation to circular cylinders (in two dimensions) and spheres (in three

dimensions). A three-pronged attack shall be mounted on the problem as follows:

1. The blast wave analogy from classical hypersonics is used to develop an analytic

methodology to model both two- and three-dimensional versions of the problem.

2. The AMROC software is used to carry out ideal gas simulations of the two-body

problem in both two and three dimensions.

3. Experiments are performed in the T5 hypervelocity shock tunnel to simulate

the three-dimensional version of this problem. In order to determine the forces

acting on the secondary body, a new force-measurement technique for short-

duration hypersonic facilities is developed.

In addition, the analytic methodology will be used to model two physical prob-

lems. Firstly, the passage of a binary asteroid system through a planetary atmosphere

will be simulated, and the effect of aerodynamic interactions on the relative body dis-

placement at impact will be determined. Secondly, a model will be developed for

the atmospheric fragmentation of a meteoritic body and the subsequent aerodynamic
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interactions of the fragments. In particular, we will seek to determine whether aerody-

namic interactions could be responsible for the crater groupings that are observed in

recent crater fields and have previously been attributed to secondary fragmentation.

1.2 Review of Previous Work

The previous work in this area has been concerned primarily with modeling the be-

haviour of a fragmented meteoroid in a planetary atmosphere. Among the first to

investigate the problem were Passey and Melosh (1980), who looked at possible mech-

anisms for cross-range dispersion of fragments in crater fields. They concluded that

the combined effects of bow shock interactions, crushing deceleration, and possibly

spinning of the meteoroid were primarily responsible. They also obtained an estimate

for the tranverse velocity of two fragments resulting from near-field shock interactions.

Artem’eva and Shuvalov (1996) carried out numerical simulations of two fragments

travelling in various relative configurations and found that when a secondary frag-

ment was travelling within the shocked region created by a primary fragment, it

experienced a force towards the axis of travel of the primary. In further simulations,

Artemieva and Shuvalov (2001) found that this resulted in a collimation effect for a

large number of fragments. These authors also developed a rough model to simulate

the passage of a continually fragmenting body through the atmosphere. The collima-

tion effect had previously been noted in experiments using the NASA-Ames Vertical

Gun by Schultz and Sugita (1994).

A configuration very similar to the one that we will be investigating here has also

been observed in the T5 hypervelocity shock tunnel. In Figure 1.3 is a shadowgraph

taken by Lemieux (1999) during a series of experiments with the light gas gun mod-

ification of the T5. The projectile was broken during the acceleration phase, and a

fragment is observed to travel within the shocked region created by the main body.
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Figure 1.3: Shadowgraph of a broken spherical projectile in the light gas gun modifi-
cation of the T5 hypervelocity shock tunnel.

1.3 Discussion of Hypersonic Force-Measurement

Techniques

In order to carry out an experimental investigation of the proximal body problem, a

new force-measurement technique had to be developed for use in the T5 hypervelocity

shock tunnel. Traditionally, the measurement of forces and moments in high-enthalpy

hypersonic wind tunnels, such as T5, has been restricted by the short test time intrin-

sic to these facilities. This flow time can be less than the period of the lowest natural
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frequency of a typical model and support, rendering measurement by conventional

force balance techniques impractical. This has necessitated the development of other

techniques. These may be loosely divided into two groups.

The first group consists of attempts to modify traditional force balance techniques

so that they are more suited to short duration measurements. Storkmann et al.

(1998) combined a model of high natural frequency (above 1 kHz) with accelerome-

ters mounted in either the model or support to compensate for support oscillations.

Measurements were made using a six-component strain gauge balance at two facilities:

the Aachen shock tunnel TH2 and the Longshot facility at the von Karman Institute

in Brussels. The success of this method appears to be highly dependent on model

geometry, however. Results for a cone model showed good agreement with refer-

ence data, but agreement for a capsule model was less satisfactory, and the technique

could not be applied to slender bodies, as such geometries are unable to accommodate

internal mounting of the balance.

Another technique along these lines is the stress-wave force balance technique,

first proposed by Sanderson and Simmons (1991). Instead of measuring steady-state

forces, this technique involves the interpretation of stress waves induced within the

model by aerodynamic loading. Extensive calibration is thus required to determine

the response function of the system, introducing further error into the force-signal

recovery. Mee (2003) claimed to have achieved 3% accuracy in calibration studies for

this technique and performed measurements in the T4 shock tunnel at the Univer-

sity of Queensland, Australia. These, however, were limited to a single component

drag measurement - accuracy in earlier attempts at multi-component force measure-

ment (Mee et al., 1996) were limited to 11% accuracy. An attempt was recently made

to apply this method to three-component force measurements on a large scramjet

model (Robinson et al., 2004), but in this configuration the measurements were ad-

versely affected by facility vibrations. Another limitation of this technique is the
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necessity of including a long stress-wave bar which places a constraint on the testable

geometry.

The second group consists of techniques that make use of a support allowing for

free-floating model behaviour during the test time. The short test time of the rel-

evant facilities is actually an advantage for such techniques, as even for high loads

the extent of motion of the model during the test time will be extremely small. Sa-

hoo et al. (2003) implemented a method in which the model was mounted in flexible

rubber bushes, allowing free-floating behaviour in flows of millisecond duration. The

force and moments were measured during this period by means of embedded ac-

celerometers. They achieved good agreement with theoretical values (typically 3-8%)

in a series of measurements on blunted cones in the HST2 hypersonic shock tunnel

at the Indian Institute of Science, Bangalore. This is a relatively low-load facility,

however - dynamic pressures in a facility such as the T5 are typically higher by an

order of magnitude or more. It is thus questionable whether model motions in these

facilities could be accommodated by such a setup. This technique also has the dis-

advantage of requiring extensive finite-element modeling, and the required mounting

limits the geometries that may be simulated. Joarder and Jagadeesh (2004) imple-

mented another free-floating technique in the HST2 facility, but this was limited to

drag measurements.

Naumann et al. (1993) devised a method to allow for free-flight during the steady

flow period whereby the model was mounted on a support that released just prior

to the onset of the flow and tightened again shortly afterwards. Again, forces and

moments were measured by means of accelerometers embedded in the model. This

method relied on a cumbersome model support, however, which again limited the

geometries that could be studied. Tanno et al. (2004) measured the forces generated

by the interaction of a shock wave with a sphere in the vertical shock tube at the

Interdisciplinary Shock Wave Research Center at Tohoku University. The sphere was
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suspended from a wire of sufficient length (∼4m) that tensile stress waves in the wire

had a negligible effect during the test time. Obviously, such a suspension method is

not practical in a typical horizontal flow wind tunnel.

The technique that has been developed in the present work falls in this latter

group. A relatively simple support system consisting of metal wires or cotton thread

is used in conjunction with a catcher that halts the model motion after the end of the

test time. Accelerations are recorded by an embedded accelerometer and by images

taken with a high-speed digital camera.
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Chapter 2

Application of the Blast Wave
Analogy to Proximal Hypersonic
Bodies

2.1 Introduction

In this chapter we will develop an analytical methodology in both two and three

dimensions to model the forces experienced by a secondary body when it is entirely

within the shocked region created by a hypersonic primary body. To develop such

a model, certain assumptions will need to be made about the body geometries. For

reasons that will become apparent, we shall choose both bodies to be circular cylinders

in two dimensions and spheres in three dimensions. In order to quantify the nature of

the shocked region created by the primary body, we will make use of the blast wave

analogy from classical hypersonics.

2.2 The Blast Wave Analogy

A similarity solution for the flow generated by a point explosion in an undisturbed

atmosphere was first proposed by Taylor (1950) and famously applied to the New

Mexico detonation of 1945. The explosion is idealized as instantaneously depositing

a large energy E into a perfect-gas atmosphere. The resulting flow is assumed to
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exhibit spherical symmetry and is bounded by a spherical shock wave expanding

in the radial direction. Let the subscript ∞ denote conditions in the undisturbed

atmosphere. If the shock is strong, defined by U/a∞ � 1 (where U is the shock

velocity and a the sound speed), then the ambient pressure p∞ may be neglected,

and conditions immediately behind the shock (indicated by subscript s) are given by

ps =
2

γ + 1
ρ∞U

2, (2.1)

us =
2

γ + 1
U, (2.2)

ρs =
γ + 1

γ − 1
ρ∞. (2.3)

Using this strong shock assumption, Taylor was able to form a similarity variable

involving only ρ∞, E, r, and t and obtained a numerical solution to the problem. Full

analytic solutions were subsequently obtained by Sedov (1959) in one, two, and three

dimensions (corresponding to planar, circular, and spherical shocks, respectively).

If the shock is instead generated by a body travelling at speed V in a direction

which we assign to the (negative) x-axis, we may use dimensional similitude to replace

t in the point explosion solution by x/V . This is the so-called blast wave analogy, with

planar and circular shocks analogous to plane and axisymmetric bodies, respectively.

The explosion energy E is equated with the work done by the drag force of the

body. The strong shock assumption requires that the normal shock Mach number

everywhere be large and so is formally valid in the limitM∞ →∞ whereM∞ = V/a∞.

For finite (but large) M∞, this assumption will become less accurate at large values

of x/V . A graphical representation of the axisymmetric blast wave analogy is shown

in Figure 2.1.
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Figure 2.1: The axisymmetric blast wave analogy. The temporally-growing circular
shock wave produced by a point explosion in two space dimensions, shown at vari-
ous times (left), is analogous to the axisymmetric shock wave generated by a body
travelling at hypersonic speeds (right).

2.3 Modeling in Two Dimensions

2.3.1 The Planar Blast Wave Analogy

A planar blast wave is analagous to the flow produced by a symmetric two-dimensional

body. The similarity variable in this case is

η =
(ρ∞
E

)1/3 r

t2/3
−→

(
2

ACD

)1/3
r

x2/3
, (2.4)

where ρ∞ is the ambient density and E is the energy released, per unit area, in the

analogous explosion. A and CD are the projected frontal surface area per unit depth

and drag coefficient of the body, respectively. We have equated E with the drag

force, per unit depth, on the body, given by 1
2
CDρ∞V

2A. We assume the body to be
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a circular cylinder, and so replace A with d1, the body diameter. The drag coefficient

is given a value of 1.2 in this exposition, which is appropriate for a cylinder in high

Mach number flow. As may be seen, however, dependence on the drag coefficient is

relatively weak.

The shock radius Rs is then given by

Rs = η0

(
d1CD

2

)1/3

x2/3, (2.5)

where η0 is a constant that depends on the ratio of specific heats, γ. It may be shown

to take the values given in Table 2.1. Details of the calculation of η0 may be found

in Landau and Lifshitz (1989).

γ 1.30 1.40 1.67
η0 0.8805 0.9756 1.1861

Table 2.1: Values of η0 in planar geometry for various values of γ

The nondimensional dependent variables are

p̂ =
9(γ + 1)

8

p

ρ∞(rV/x)2
, (2.6)

û =
3(γ + 1)

4

u

rV/x
, (2.7)

ρ̂ =
γ − 1

γ + 1

ρ

ρ∞
, (2.8)

where u is the radial velocity. The constants have been introduced to simplify the

boundary conditions at r = Rs (i.e., p̂ = û = ρ̂ = 1 at r = Rs).
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The equations of motion for the gas flow behind the shock are

u
∂ρ

∂r
+ V

∂ρ

∂x
+ ρ

∂u

∂r
= 0, (2.9)

u
∂u

∂r
+ V

∂u

∂x
+

1

ρ

∂p

∂r
= 0, (2.10)(

u
∂

∂r
+ V

∂

∂x

)
log

p

ργ
= 0. (2.11)

The first two equations are conservation of mass and momentum, respectively,

while the third is the condition that the entropy is constant along a streamline.

Upon substitution of the dimensionless variables into Equations 2.9 through 2.11, the

following solution may be obtained:

(
η0

η

)3

= û2

(
2γû− (γ + 1)

γ − 1

)k1

(3− 2û)k2 (2.12)

ρ̂ =

(
γ + 1− 2û

γ − 1

)k3
(

2γû− (γ + 1)

γ − 1

)k4

(3− 2û)k5 (2.13)

p̂

ρ̂
=

û2(γ + 1− 2û)

2γû− (γ + 1)
, (2.14)

where

k1 = −3(γ − 1)

2γ − 1

k2 =
5γ2 + γ − 4

(γ + 1)(2γ − 1)

k3 = − 2

2− γ

k4 =
1

2γ − 1

k5 =
5γ2 + γ − 4

(γ + 1)(2− γ)(2γ − 1)
.

A derivation of the general solution (in one, two, or three dimensions) may be

found in Hayes and Probstein (1966). Plots of the dimensional form of the solution
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variables, normalized by their values immediately behind the shock, are shown in

Figure 2.2. A value of γ = 1.4 has been chosen and shall be assumed in that which

follows.

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8
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r/R
s
 = η/η
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u/u
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ρ/ρ
s

p/p
s

Figure 2.2: Variables in the planar blast wave analogy for a ratio of specific heats of
γ = 1.4

The Mach number M and flow angle δ may also be calculated:

M =

√
u2 + V 2√
γp/ρ

=

 9
8

(
γ+1

η

)2 (
2

CD

x
d1

)2/3

+ 2û2

γ(γ − 1)p̂/ρ̂


1
2

(2.15)

δ = arctan
( u
V

)
= arctan

(
4

3(γ + 1)

(
2

CD

x

d1

)−1/3

ηû

)
. (2.16)

Plots of these variables are shown in Figure 2.3. Note that the Mach number at

a given value of η will increase without bound as x/d1 →∞.
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Figure 2.3: Mach number and flow angle profiles at various distances downstream in
the planar blast wave analogy

2.3.2 Proximal Bodies in Two Dimensions

2.3.2.1 Pressure Distribution on the Secondary Body

We now imagine placing a second body at some point inside the shocked region

described by the planar blast wave analogy. We specify this also to be a circular

cylinder and assume that it is placed above the plane of symmetry of the primary

body, so a positive lift coefficient indicates a repulsive force from this plane. We also

assume that the secondary body is stationary with respect to the primary body. The

forces (lift and drag) acting on this body may be obtained by integrating the pressure

with the appropriate component of the normal vector over the surface of the body.

We thus require an estimate of the pressure distribution over the body.

To this end, let us first consider the same body travelling in the uniform supersonic

freestream outside the shocked region. The pressure distribution corresponding to the
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Newtonian flow solution, valid in the double limit M∞ →∞, γ → 1, is

Cp(θ) =

 2 cos2 θ for |θ| < π/2,

0 for π/2 ≤ |θ| < π,
(2.17)

where Cp(θ) = (p(θ)− p∞)/1
2
ρ∞V

2 and θ is the angle measured from the stagnation

point. For finite M∞ and γ > 1, an improved estimate is possible if we keep the

cos2 θ dependence but fix the value of the pressure at the stagnation point with

our knowledge of the flow processes along the stagnation streamline. The fluid will

pass through a normal shock and then decelerate to the stagnation point. If the

subscripts 2 and stag refer to conditions immediately behind the normal shock and

at the stagnation point, respectively, we have for a inviscid, perfect gas:

pstag

p∞
=

p2

p∞

pstag

p2

=

(
1 +

2γ

γ + 1

(
M2

∞ − 1
))(

1 +
γ − 1

2
M2

2

) γ
γ−1

(2.18)

with

M2
2 =

(γ − 1)M2
∞ + 2

2γM2
∞ − (γ − 1)

, (2.19)

and we have for the |θ| < π/2 component of our distribution the modified Newtonion

profile p(θ) = (pstag − p∞) cos2 θ + p∞. For |θ| ≥ π/2, p(θ) = p∞, as before. We have

dropped the Cp notation, as it is somewhat unwieldy in this case.

The normalized profile, p(θ)/pstag, given by this description is plotted in Figure 2.4

for two different Mach numbers. These are compared with profiles computed using

the Amrita software system (details of numerical simulations are given in Chapter 3).

These computational profiles have been normalized by the computed pressures at

the stagnation point, which differ slightly from the theoretical values. The Gaussian

profile p(θ) = pstag exp(−θ2) is also included, as this was found to give very good
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agreement with the computed distributions ahead of the respective separation points.

Neither theoretical profile is able to capture the pressure jumps aft of the separation

points, but the Gaussian profile does particularly poorly in this region due to the

decaying exponential tail. As may be seen, however, this pressure jump becomes

less significant as the freestream Mach number is increased, so we might expect the

Gaussian profile to be most appropriate at high Mach numbers. We shall consider

both the modified Newtonian and Gaussian profiles as reference distributions, and,

defining the pressure coefficient p′ = p/1
2
ρ∞V

2, we write the modified Newtonian

profile as

p′(θ) =

 (p′stag − p′∞) cos2 θ + p′∞ for |θ| < π/2,

p′∞ for π/2 ≤ |θ| < π
(2.20)

and the Gaussian profile as

p′(θ) = p′stag exp(−θ2) for |θ| < π. (2.21)

We now wish to use these reference distributions to approximate the pressure

distribution on the cylinder inside the shocked region. Thus, we redefine pstag as

the pressure obtained by passing the flow at some point within the shocked region

through a normal shock, followed by an isentropic deceleration to zero velocity. If the

subscript 1 denotes conditions at a point in the blast wave solution, Equations 2.18

and 2.19 will now hold for pstag if we replace p∞ and M∞ by p1 and M1, respectively.

Similarly, the modified Newtonian profile 2.20 will be appropriate for this region if

p∞ is replaced by p1; the Gaussian profile 2.21 carries over directly with our new

definition of pstag. Note that in our normalization of the pressures, however, we still

use 1
2
ρ∞V

2 rather than 1
2
ρ1V

2.

We now encounter a problem that was not present in the freestream case. The
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Figure 2.4: Theoretical and computed normalized pressure distributions on a cylinder
in a uniform freestream of M∞ = 4 (left) and M∞ = 10 (right)

variables pstag, p1, and M1 are not constant in space and hence will vary over the area

occupied by the secondary body. We choose as our reference point for these variables

the center of the secondary body.

The first deviation from the redefined reference distributions that we wish to

account for is that the flow experienced by the secondary body will no longer be

aligned with the plane of the primary body’s travel but will be deflected by an angle

δ, given by Equation 2.16. This will have the effect of shifting the stagnation point

towards the underside of the cylinder, resulting in a decrease in drag and a positive

lift contribution. Here our choice of the secondary body as a circular cylinder becomes

important - the rotational symmetry possessed by this shape make this deviation easy

to account for.

Second, noting from Figure 2.5 that p′stag varies strongly with r/Rs, we wish to

account for the variation of p′stag over the area covered by the cylinder. For example,
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Figure 2.5: Pressure coefficient p′stag at the stagnation point of a secondary body
placed at various distances downstream within the shocked region.

noting from Figure 2.5 that p′stag increases strongly in the radial direction, the effective

stagnation pressure on the upper side of the secondary body will be greater than that

on the lower side. This will result in a negative contribution to the lift. Let us then

examine which variations we need to consider. As the profile varies only very little

with downstream displacement, variation of p′stag with x will be due almost entirely

to variation of Rs with x. As Rs ∝ x2/3, the dependence of p′stag on x will be weaker

than that on r. Also, as the flow is principally in the x direction, it is not clear

that we can legitimately localize x-variations over the body. Thus, we shall include

variations of p′stag with x for the sake of completeness, but with the understanding

that they are not indispensible to our model.

We may estimate the variations by Taylor-series expanding pstag to the linear term

in r and x. If d2 is the diameter of the secondary body, the x and r displacements of

a point on the cylinder’s surface are given by d2/2 cos θ and d2/2 sin θ, respectively.

We then make the approximation that the effective stagnation pressure, peff
stag, at a
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point on the cylinder’s surface is given by

peff
stag = pstag +

1

2

d2

d1

(
∂pstag

∂(r/d1)
sin θ +

∂pstag

∂(x/d1)
cos θ

)
, (2.22)

where ∂pstag/∂(r/d1) and ∂pstag/∂(x/d1) may be determined by differentiating Equa-

tion (2.18). All lengths have been non-dimensionalized by the primary body diameter

d1.

2.3.2.2 Drag and Lift Coefficients

The drag and lift coefficients of the secondary body are given by

CD =
1

2

∫ π

−π

p′(θ) cos θdθ (2.23)

CL = −1

2

∫ π

−π

p′(θ) sin θdθ. (2.24)

Combining the effects described above, these may be written for the modified

Newtonian case as

CD =
1

2

∫ π/2

−π/2

(
p′stag − p′1 +

1

2

d2

d1

∂(p′stag − p′1)

∂(r/d1)
sin(θ − δ)

−1

2

d2

d1

∂(p′stag − p′1)

∂(x/d1)
cos(θ − δ)

)
cos2 θ cos(θ − δ)dθ

+
1

2

∫ π

−π

(
p′1 +

1

2

d2

d1

∂p′1
∂(r/d1)

sin(θ − δ)

− 1

2

d2

d1

∂p′1
∂(x/d1)

cos(θ − δ)

)
cos(θ − δ)dθ (2.25)
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and

CL = −1

2

∫ π/2

−π/2

(
p′stag − p′1 +

1

2

d2

d1

∂(p′stag − p′1)

∂(r/d1)
sin(θ − δ)

−1

2

d2

d1

∂(p′stag − p′1)

∂(x/d1)
cos(θ − δ)

)
cos2 θ sin(θ − δ)dθ

− 1

2

∫ π

−π

(
p′1 +

1

2

d2

d1

∂p′1
∂(r/d1)

sin(θ − δ)

− 1

2

d2

d1

∂p′1
∂(x/d1)

cos(θ − δ)

)
sin(θ − δ)dθ. (2.26)

For consistency, the derivatives of p′1 have also been included. For the Gaussian

distribution:

CD =
1

2

∫ π

−π

(
p′stag +

1

2

d2

d1

∂p′stag

∂(r/d1)
sin(θ − δ)

− 1

2

d2

d1

∂p′stag

∂(x/d1)
cos(θ − δ)

)
exp(−θ2) cos(θ − δ)dθ (2.27)

CL = −1

2

∫ π

−π

(
p′stag +

1

2

d2

d1

∂p′stag

∂(r/d1)
sin(θ − δ)

− 1

2

d2

d1

∂p′stag

∂(x/d1)
cos(θ − δ)

)
exp(−θ2) sin(θ − δ)dθ. (2.28)

For the modified Newtonian description, the integrals may be evaluated to yield

CD =
2

3
cos δ(p′stag − p′1)−

π

32

d2

d1

sin 2δ
∂(p′stag − p1)

∂(r/d1)

− π

16

d2

d1

(2 + cos 2δ)
∂(p′stag − p′1)

∂(x/d1)
− π

4

d2

d1

∂p′1
∂(x/d1)

(2.29)

CL =
2

3
sin δ(p′stag − p′1)−

π

32

d2

d1

sin 2δ
∂(p′stag − p′1)

∂(x/d1)

− π

16

d2

d1

(2− cos 2δ)
∂(p′stag − p′1)

∂(r/d1)
− π

4

d2

d1

∂p′1
∂(r/d1)

. (2.30)

The integrals in the Gaussian case may also be evaluated, and the resulting ex-

pressions may be found in Appendix A. The error incurred by using the following
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approximations to these expressions is less than 0.01%:

CD ≈
√
π

2

[
e−1/4p′stag cos δ − 1

4e

d2

d1

∂p′stag

∂(r/d1)
sin 2δ

−1

4

d2

d1

(
1 +

1

e
cos 2δ

)
∂p′stag

∂(x/d1)

]
(2.31)

CL ≈
√
π

2

[
e−1/4p′stag sin δ − 1

4e

d2

d1

∂p′stag

∂(x/d1)
sin 2δ

−1

4

d2

d1

(
1− 1

e
cos 2δ

)
∂p′stag

∂(r/d1)

]
. (2.32)

As the diameter ratio is the only parameter we can freely choose in the coefficient

expressions, it is of interest to ask what the effect of varying this parameter may

be. We see that in each expression, all but one term contains the diameter ratio.

Concentrating on the modified Newtonian coefficients, we assume in each case that

this term is of the same order as the dominant term involving d2/d1. Noting then

that over most of the shocked region |δ| is small and p′stag � p′1, we approximate the

modified Newtonian formulae as

CD ≈
2

3
p′stag −

3π

16

d2

d1

∂p′stag

∂(x/d1)
(2.33)

CL ≈
2

3
p′stag sin δ − π

16

d2

d1

∂p′stag

∂(r/d1)
. (2.34)

The second term in the CD equation is positive in sign (as ∂p′stag/∂x < 0) and

will serve to augment the first term, which is the freestream drag coefficient. In

the CL equation the two terms are of opposite sign. As only the second depends

on body size, we have the potential for a qualitative change of behaviour as the

body size is varied. In particular, there will be a tendency for the lift coefficient to

become more negative as the body size is increased. This is in fact precisely what

is observed in Figures 2.6 and 2.7, in which the lift and drag coefficients (the full

modified Newtonian expressions 2.29 and 2.30, rather than the approximations 2.33
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and 2.34) are plotted for different sized bodies at various distances downstream. The

profiles in Figure 2.7 include the x-derivative terms, whereas those in Figure 2.6 do

not. In both cases we see that the lift coefficient varies strongly with body size, as

predicted. Note also the tendency for the lift coefficients to become more positive with

increasing distance downstream, indicating that the second term in Equation 2.34

decays more rapidly than the first. In the cases in which x-derivatives are absent,

the drag coefficient is hardly affected by either body size or distance downstream,

whereas if they are included the drag drops gradually as the distance downstream is

increased.

Having noted that the sign of the lift coefficient may, in general, depend on the

ratio of sizes of the two bodies, we may wish to ask whether there is a critical diameter

ratio above or below which the lift is exclusively of one sign throughout the shocked

region. To determine whether this is the case, we set Equation 2.30 to zero and solve

for d2/d1. The resulting curves, as functions of r/Rs, are plotted in Figure 2.8 for

various distances downstream. At a given distance downstream, a secondary body

with a diameter ratio lying below the corresponding curve will experience a positive

lift coefficient, and thus a repulsive lateral force, while one lying above will experience

a negative lift coefficient. As may be seen, however, the value of d2/d1 needed to

produce an exclusively negative lift coefficient continues to rise as the downstream

displacement is increased. This is consistent with our earlier observations. Also, the

diameter ratio must become vanishingly small for the lift coefficient to be exclusively

positive throughout the domain. We thus conclude that there is no critical value of

the diameter ratio for which the secondary body will experience a lift coefficient of

exclusively one sign throughout the shocked region.
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Figure 2.6: Theoretical secondary drag and lift coefficients in two dimensions, us-
ing the modified Newtonian profile without x-derivatives, for various d1/d2 ratios at
x/d1 = 2.5 (top), 5 (center), and 10 (bottom).
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Figure 2.7: Theoretical secondary drag and lift coefficients in two dimensions, using
the modified Newtonian profile with x-derivatives, at x/d1 = 2.5 (top), 5 (center),
and 10 (bottom).
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Figure 2.8: Diameter ratio in two dimensions at which a cross-over from a positive to
a negative lift coefficient occurs

2.4 Modeling in Three Dimensions

2.4.1 The Axisymmetric Blast Wave Analogy

An axisymmetric blast wave is analagous to the flow produced by an axisymmetric

body. The similarity variable in this case is

η =
(ρ∞
E

)1/4 r√
t
−→

(
2

ACD

)1/4
r√
x
, (2.35)

where ρ∞ is again the ambient density and E the energy released, per unit depth, in

the analogous explosion. A and CD are the projected frontal area and drag coefficient

of the body, respectively. E has been equated with the drag force on the body, given

by 1
2
CDρ∞V

2A. We assume the body to be a sphere, so A = πd2
1/4. The drag

coefficient is given a value of 0.88, which is appropriate for a sphere in high Mach
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number flow.

The shock radius is then given by

Rs = η0

(
πd2

1CD

8

)1/4√
x. (2.36)

Here η0 takes the values given in Table 2.2. The reader is again referred to Landau

and Lifshitz (1989) for details.

γ 1.30 1.40 1.67
η0 0.9317 1.0040 1.11554

Table 2.2: Values of η0 in axisymmetric geometry for various values of γ

The nondimensional dependent variables are

p̂ = 2(γ + 1)
p

ρ∞(rV/x)2
, (2.37)

û = (γ + 1)
u

rV/x
, (2.38)

ρ̂ =
γ − 1

γ + 1

ρ

ρ∞
, (2.39)

where the constants have again been introduced to simplify the boundary conditions

at r = Rs.

The equations of motion are

ρ
∂u

∂r
+ u

∂ρ

∂r
+ V

∂ρ

∂x
+
ρu

r
= 0, (2.40)

u
∂u

∂r
+ V

∂u

∂x
+

1

ρ

∂p

∂r
= 0, (2.41)(

u
∂

∂r
+ V

∂

∂x

)
log

p

ργ
= 0 (2.42)
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and the resulting solution:

(
η0

η

)2

= u

(
2γû− (γ + 1)

γ − 1

)k1

(γ + 1− γu) (2.43)

ρ̂ =

(
γ + 1− 2û

γ − 1

)k2
(

2γû− (γ + 1)

γ − 1

)k3

(γ + 1− γu)k4 (2.44)

p̂

ρ̂
=

û2(γ + 1− 2û)

2γû− (γ + 1)
, (2.45)

where

k1 = −γ − 1

γ

k2 = − 2

2− γ

k3 =
1

γ

k4 =
2

2− γ
.

The dimensional forms of these variables, normalized by their values at the shock,

are plotted in Figure 2.9 for γ = 1.4. This value will again be assumed throughout

this section.

The Mach number M and flow angle δ may again be obtained:

M =

2

(
γ+1

η

)2 (
8

πCD

) 1
2 x

d1
+ û2

γ(γ − 1)p̂/ρ̂


1
2

(2.46)

δ = arctan

(
1

γ + 1

(
πCD

8

)1/4(
x

d1

)−1/2

ηû

)
. (2.47)

These are plotted in Figure 2.10 for various distances downstream. Note again

that the Mach number at a given value of η increases without bound as x/d1 →∞.
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Figure 2.9: Variables in the axisymmetric blast wave analogy for γ = 1.4

2.4.2 Proximal Bodies in Three Dimensions

2.4.2.1 Pressure Distribution on the Secondary Body

To estimate the forces acting on a second body placed in the shocked region given

by the axisymmetric blast wave analogy, we proceed in a manner similar to the

planar case. We specify this body also to be a sphere since, as in the planar case,

the problem will become more tractable if the secondary body possesses rotational

symmetry. We also assume that it is placed above and behind the primary sphere, so

that the relevant lateral force coefficient is the lift coefficient, with a positive value

indicating a repulsive force from the axis of symmetry of the primary body. Again,

the secondary body is assumed to be stationary relative to the primary body.

The Newtonian-flow pressure distribution on a sphere in the uniform freestream

outside the shocked region is

Cp(θ) =

 2 cos2 θ for θ ∈ [0, π/2)

0 for θ ∈ [π/2, π),
(2.48)
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Figure 2.10: Mach number and flow angle profiles at various distances downstream
in the axisymmetric blast wave analogy

where θ is the zenith angle measured from the stagnation point.

The modified Newtonian description gives p(θ) = (pstag − p∞) cos2 θ + p∞ for

θ ∈ [0, π/2), where pstag may again be obtained from Equation 2.18. The correspond-

ing normalized pressure distribution, p(θ)/pstag, is plotted in Figure 2.11 along with

computed profiles for two different Mach numbers. These computed profiles were

obtained from Amrita simulations using axisymmetric symmetry. As in the planar

case, the computed stagnation point values differ slightly from the theoretical values.

Again, we also try a Gaussian profile of the form p(θ) = pstag exp(−kθ2) to fit the

region near θ = π/2 more closely. The value of k is determined by a least-squares fit

of the computed profiles ahead of the separation point. For M=4, 10, and 20, values

of 1.089, 1.211, and 1.191, respectively were obtained, so a representative value of

k=1.2 was chosen.

The modified Newtonian profiles in Figure 2.11 show much better agreement with

the computational profiles than in the case of a circular cylinder. The exponential
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tails of the Gaussian profile again do a poor job behind the separation point, so

for lower Mach numbers the Newtonian profile seems preferable. For higher Mach

numbers, however, at which the pressure jump behind the separation point becomes

less significant, we expect the Gaussian distribution to perform well.
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Figure 2.11: Theoretical and computed normalized pressure distributions on a sphere
in a uniform freestream at M∞ = 4 (left) and M∞ = 10 (right)

We again define p′ = p/1
2
ρ∞V

2 and write the modified Newtonian and Gaussian

profiles as

p′(θ) =

 (p′stag − p′∞) cos2 θ + p′∞ for θ ∈ [0, π/2)

p′∞ for θ ∈ [π/2, π)
(2.49)

and

p′(θ) = p′stag exp(−kθ2) for θ ∈ [0, π), (2.50)
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respectively.

We wish to use these reference profiles to model the pressure distribution on a

sphere inside the shocked region. We thus redefine p′stag as we did in the planar case

to be the pressure obtained if the flow at a point in the blast wave solution is passed

through a normal shock and subsequently decelerated isentropically to stagnation

conditions, and p′1 replaces p′∞ in Equation 2.49. The reference point for the blast

wave conditions is again taken to be the center of the secondary body. In Figure 2.12,

p′stag as redefined here is plotted at various distances downstream. Noting that these

profiles are qualitatively very similar to those in the planar case, we consider the

same two deviations from the reference distributions as in the planar case, namely

deflection of the flow angle and variation in stagnation pressure over the body.

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

r/R
s

p’
st

ag

x/d
1
 = 1

         2
         4
        16

Figure 2.12: Pressure coefficient p′stag at the stagnation point of a secondary body at
various distances downstream

An additional complication is introduced in this case by the fact that isosurfaces

in the blast wave solution are now axisymmetric rather than planar. To make the

integration tractable, however, we treat the isosurfaces as locally flat in the region of

the secondary body. This will be a reasonable approximation provided the displace-
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ment of the secondary body from the axis of symmetry of the primary body is large

compared to the secondary body radius.

2.4.2.2 Drag and Lift Coefficients

Making use of Euler angles, we may write the drag and lift coefficients for the modified

Newtonian case as

CD =
1

π

∫ 2π

0

∫ π/2

0

[
(p′stag − p′1) +

1

2

d2

d1

∂(p′stag − p′1)

∂(r/d1)
ŷ

− 1

2

d2

d1

∂(p′stag − p′1)

∂(x/d1)
x̂

]
cos2 θ x̂ sin θ dθ dφ

+
1

π

∫ 2π

0

∫ π

0

[
p′1 +

1

2

d2

d1

(
∂p′1

∂(r/d1)
ŷ − ∂p′1

∂(x/d1)
x̂

)]
x̂ sin θ dθ dφ

(2.51)

CL = − 1

π

∫ 2π

0

∫ π/2

0

[
(p′stag − p′1) +

1

2

d2

d1

∂(p′stag − p′1)

∂(r/d1)
ŷ

− 1

2

d2

d1

∂(p′stag − p′1)

∂(x/d1)
x̂

]
cos2 θ ŷ sin θ dθ dφ

− 1

π

∫ 2π

0

∫ π

0

[
p′1 +

1

2

d2

d1

(
∂p′1

∂(r/d1)
ŷ − ∂p′1

∂(x/d1)
x̂

)]
ŷ sin θ dθ dφ,

(2.52)

and for the Gaussian case:

CD =
1

π

∫ 2π

0

∫ π

0

(
p′stag +

1

2

d2

d1

∂p′stag

∂(r/d1)
ŷ

− 1

2

d2

d1

∂p′stag

∂(r/d1)
x̂

)
exp(−kθ2) x̂ sin θ dθ dφ (2.53)

CL = − 1

π

∫ 2π

0

∫ π

0

(
p′stag +

1

2

d2

d1

∂p′stag

∂(r/d1)
ŷ

− 1

2

d2

d1

∂p′stag

∂(x/d1)
x̂

)
exp(−kθ2) ŷ sin θ dθ dφ, (2.54)
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where

ŷ = cos δ sinφ sin θ − sin δ cos θ (2.55)

x̂ = sin δ sinφ sin θ + cos δ cos θ. (2.56)

For the modified Newtonian profile, the double integral may be evaluated to give

CD =
1

2
cos δ(p′stag − p′1)−

1

15

d2

d1

sin 2δ
∂(p′stag − p′1)

∂(r/d1)

− 1

15

d2

d1

(2 + cos 2δ)
∂(p′stag − p′1)

∂(x/d1)
− 2

3

d2

d1

∂p′1
∂(x/d1)

(2.57)

CL =
1

2
sin δ(p′stag − p′1)−

1

15

d2

d1

sin 2δ
∂(p′stag − p′1)

∂(x/d1)

− 1

15

d2

d1

(2− cos 2δ)
∂(p′stag − p′1)

∂(r/d1)
− 2

3

d2

d1

∂p′1
∂(r/d1)

. (2.58)

The integrals in the Gaussian case may also be evaluated, but lead to rather untidy

expressions, and there is little point including them here. The full expressions may

be found in Appendix A. The form of these expressions is similar to the equivalent

Newtonian expressions, although the constants differ slightly, and the p′1 terms are

absent.

As in the planar case, we may identify the dominant terms involving the diameter

ratio in the drag and lift equations. For the Newtonian case, these give

CD ≈ 1

2
p′stag −

1

5

d2

d1

∂p′stag

∂(x/d1)
(2.59)

CL ≈ 1

2
p′stag sin δ − 1

15

d2

d1

∂p′stag

∂(r/d1)
. (2.60)

These approximate expressions are similar in form to the corresponding planar

expressions, and the same comments apply. In particular, we see again that the lift

expression has two terms of opposite sign, only the second of which has a dependence
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on body size. Thus we again predict a qualitative change in lift behaviour as the

body size is varied. This is indeed seen in Figures 2.13 and 2.14, in which the full

formulae for the modified Newtonian lift and drag coefficients are plotted. The profiles

in Figure 2.14 include the x-derivative terms, whereas those in Figure 2.13 do not.

While the effect of body size on the lift profiles is similar to that in the planar case,

the downstream displacement effect does not seem to carry over - while the magnitude

of the lift values decreases as x/d1 is increased, there is very little qualitative change.

This difference is probably due to the ∂p′stag/∂(r/d1) term in Equation 2.34 decaying

more rapidly than that in Equation 2.60, as the shock radius grows more rapidly in the

planar case. The drag coefficient profile is seen to change very little with body size.

In those profiles in which the x-derivative terms are absent, the effect of downstream

displacement is also very small, although if the x-derivatives are included we see the

drag values drop gradually as x/d1 is increased.

As in the two-dimensional case, we may wish to ask if there is a critical body-size

ratio above or below which the lift experienced by the secondary body is exclusively

of one sign within the shocked region. We thus set Equation 2.58 to zero and solve

for d2/d1. The resulting curves, as functions of r/Rs, are shown in Figure 2.15 for

various distances downstream. These may be read in the same manner as in the

two-dimensional case: at a given distance downstream, a secondary body for which

the diameter ratio lies above the curve will experience a negative lift coefficient, and

thus an attractive lateral force, while one lying below will experience a positive lift

coefficient. In contrast to the two-dimensional case, however, there does appear to be

a value of d2/d1 above which the lift coefficient will be exclusively negative throughout

the shocked region. This critical value is at d2/d1 ≈ 0.165, i.e., for a primary body

approximately six times the diameter of the secondary body. A secondary body with

a diameter larger than this value, if placed within the shocked region with the same

initial velocity as the primary body, is certain to be entrained within the shocked
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Figure 2.13: Theoretical secondary drag and lift coefficients in three dimensions, using
the modified Newtonian distribution without x-derivatives, for various d1/d2 ratios
at x/d1 = 2 (top), 8 (center), and 32 (bottom).
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Figure 2.14: Theoretical secondary drag and lift coefficients in three dimensions, using
the modified Newtonian distribution including x-derivatives, for various d1/d2 ratios
at x/d1 = 2 (top), 8 (center), and 32 (bottom).
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region, whereas smaller bodies have the possibility of being ejected.
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Figure 2.15: Diameter ratio in three dimensions at which a cross-over from a positive
to a negative lift coefficient occurs

The effect that we have noted of body size on the secondary lift coefficient could

have important consequences in situations such as the distribution of fragments in the

crater field produced by the atmospheric breakup of a meteoritic body. Immediately

after the fragmentation event, a single bow shock will encompass the collection of

fragments. As the fragments separate, this shock will grow until the bodies are

sufficiently far apart that they develop individual bow shocks. During the initial main

shock phase, this body-size effect could lead to smaller fragments being ejected away

from the collection, whereas larger fragments would be more likely to be entrained.

At later times, one could imagine a large fragment entraining many smaller fragments

behind it. This could lead to groupings of craters within the main field and would

be similar to the effect of secondary fragmentation. This latter possibility will be

discussed further in Chapter 7.
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Chapter 3

Computational Modeling

3.1 Introduction

Computational modeling of the proximal body problem has been carried out in both

two and three dimensions. In order to provide direct comparisons with the ana-

lytical methodology developed in the previous chapter, simulated body geometries

were limited to circular cylinders in the two-dimensional case and spheres in the

three-dimensional case. Conceivably, however, arbitrary body geometries could be

simulated with the available software. In this chapter we will outline the details of

the computational modeling a selection of the results will be presented; in the fol-

lowing chapter the complete results will be compared with those obtained using the

blast wave methodology.

3.2 Two-Dimensional Computations

3.2.1 Introduction

Two-dimensional numerical simulations were performed using two different softwares.

The principal software used was AMROC (Adaptive Mesh Refinement in Object-

oriented C++), developed by R. Deiterding (2003). AMROC is a mesh adaption

framework specifically designed for the solution of hyperbolic fluid flow problems
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on distributed memory machines. Implementation of the ghost fluid method allows

the integration of complex, time-dependent boundaries into simulations. AMROC

computations were run on the CACR (Center for Advanced Computing Research)

machine ASAP at the California Institute of Technology. ASAP is a Pentium-II based

parallel cluster with a Gigabit network running under Linux. A typical simulation, in

which the two-dimensional Euler equations were solved for an ideal gas, used between

6 and 18 nodes. Initially a hybrid Roe-HLLE scheme with Godunov dimensional

splitting was used, but this was later changed to the Van-Leer flux vector-splitting

scheme to maintain consistency with the three-dimensional computations. All results

presented here were obtained with the Van-Leer scheme.

The second software used was Amrita, due to Quirk (1998). Amrita was not

available on the parallel cluster, so computations were limited to a single Pentium-IV

machine. This limited the size of computations that could be performed, so the re-

sults obtained using Amrita were mainly used as a consistency check for the AMROC

results. The Amrita simulations also solved the two-dimensional Euler equations, us-

ing the HLLE scheme with Kappa-MUSCL reconstruction and Godunov dimensional

splitting.

In all computations, unless otherwise specified, the ratio of specific heats is γ = 1.4.

3.2.2 Details of Computations

In all two-dimensional simulations, both bodies were circular cylinders. The parame-

ters that were varied were the downstream and lateral displacements of the secondary

body, the freestream Mach number, and the ratio of radii of the two bodies (for con-

venience, in this chapter we will use the radius ratio rather than the diameter ratio

of the previous chapter - the two are, of course, interchangeable). The runs were

grouped according to the downstream displacement, Mach number, and radius ratio,

and for each combination of these, a series of simulations was performed in which
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the lateral position of the secondary body was varied incrementally from immediately

behind the primary body to outside the primary bow shock. The lateral displacement

was in the upwards direction, so a positive lift coefficient indicates a repulsive force

from the plane of symmetry of the primary body.

Details of the AMROC computations are given in Table 3.1. The distance down-

stream value is the center-to-center displacement of the secondary body relative to

the primary body, normalized by the radius of the primary body. The additional re-

finement entry indicates the refinement factor for each level of additional refinement

over the base grid. Thus, for all simulations, two additional levels of refinement were

used, each with a refinement factor of 2. The number of CPU hours in each case is

a typical value, as the actual number could vary from computation to computation,

especially if a different number of nodes was used. The number of timesteps could

also vary slightly between computations in a given series.

Distance downsteam 4 4 8 8
(primary body radii)

Mach number, M 10 50 10 50
Body radius ratio (r1/r2) 2, 6 2, 6 2, 6 2, 6
Base grid 200×200 200×200 320×280 320×280
Additional refinement 2,2 2,2 2,2 2,2
Physical domain 2.5×2.5 2.5×2.5 4.0×3.5 4.0×3.5
Primary body radius 0.24 0.24 0.24 0.24
CFL number 0.9 0.7 0.9 0.7
Number of timesteps 3100 4250 3100 3600
Last time 3.0 0.7 3.0 0.6
Computational overhead 12/35 12/42 12/60 12/65
(nodes/CPU hours)

Table 3.1: Details of two-dimensional AMROC computations.

For each run, the lift and drag values on each body were calculated every 10

timesteps by a numerical integration of the pressure with the appropriate component

of the surface normal vector over the body. The mean lift and drag values were then

calculated over the final 30% of the flow time.
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Amrita computations were carried out on a 264×264 coarse grid with one level of

additional refinement, with a refinement factor of 2. The physical domain in Amrita

simulations corresponds to the mesh dimensions, and the radius of the primary body

was 24. These simulations thus had approximately half the resolution of the AMROC

simulations. Each computation consisted of 5000 timesteps with a CFL number of

0.6 to a final time of around t = 200. The lift and drag values were averaged over the

last 10% of this time period. A single computation took approximately 8 hours on a

Pentium IV machine running under Linux.

3.2.3 Results

The flow development during a typical AMROC simulation is shown in Figure 3.1.

The visualisations are computational schlieren images overlaid on the refinement level

sets and are taken at four time instants in the flow development. The first three

images are taken during the establishment of the flow, while the lower right image

shows the steady flow solution. The flow is established by ramping up the velocity

at the inlet on the left boundary at constant pressure and density, resulting in the

observed shock system. The plot below shows the lift and drag coefficients experienced

by the secondary body, as well as the drag coefficient for the primary body, during

this startup process. The time instants corresponding to the first three of the images

are indicated by the dashed vertical lines. The Mach number in this case was 10,

the downstream and lateral displacements were both 4 primary body radii (center-

to-center), and the ratio of body radii was 2.

Figures 3.2 and 3.3 show, for two combinations of downstream displacement and

radius ratio, the drag and lift coefficients of the secondary body as functions of lateral

displacement - in each case the configuration is shown in the schlieren image above.

The coefficients are plotted for both M = 10 and M = 50. In Figure 3.2 the ratio

of radii is 6, and the downstream displacement is 4 primary body radii. Error bars
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Figure 3.1: Flow development in a typical two-dimensional computation. Computa-
tional schlieren images overlaid on refinement level sets are shown at, clockwise from
top left, t = 0.177, 0.317, 3.0, 0.365. The drag and lift coefficient profiles are plotted
below with the three earliest times indicated.
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are included for those points in which the standard deviation of the drag value is

greater than 5% of the mean value over the averaging time. As may be seen, this

occurs exclusively near the wake region, where we would expect some unsteadiness

to be present. Near y/R = 1, the unsteadiness is caused by interactions between

the secondary body and the separation shock from the primary body. As there are

subsonic regions in the wake, information can propagate upstream from the secondary

body, and this causes oscillations in the position of the separation shock. These in

turn produce unsteadiness in the flow around the secondary body. A small hump in

the drag profile is also typically seen in this region, as the interaction of the separation

shock with the secondary bow shock produces locally high pressure.

As y/R is increased further, we see that the M = 10 and M = 50 profiles are

almost identical for both lift and drag. For this configuration, both increase monoton-

ically with increasing y/R until maximum values are reached at y/R ≈ 4.5, at which

point the primary shock is impinging near the leading point of the secondary body.

The M = 50 profiles do climb slightly more steeply, as the primary shock radius is

smaller than in the M = 10 case. As the secondary body clears the primary shock,

the drag and lift coefficients revert to their freestream values of CD ≈1.2 and CL = 0.

In Figure 3.3, the ratio of radii is 2 and the downstream displacement is 8 primary

body radii. Again, unsteadiness is observed near the wake region and is seen to persist

to larger lateral displacements in the M = 10 case. This is a result of the separation

shock lying closer to the primary body’s plane of symmetry at higher Mach numbers.

Once outside the wake/separation shock region, the drag profiles conform to one

another more closely, but again the M = 50 profile rises more steeply due to the

smaller primary shock radius. The lift profiles also conform over a small region, but

then show some qualitative differences: the M = 10 profile rises slightly before the

shock impingement point (here at y/R ≈ 6), whereas the M = 50 values continue to

decrease until this point is reached. Note also the contrast between the lift profiles
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in a configuration as shown above. The freestream Mach number in the schlieren
image is M = 10.
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48

in Figures 3.2 and 3.3. In the former, with a body radius ratio of 6, the lift is mainly

positive in the region between the separation and the bow shock, whereas in the latter,

with a radius ratio of 2, the tendency is for the lift coefficient to remain negative.

This observation conforms to the predictions of Chapter 2 regarding the effect of

body size on lift. Once the shock impingement point is reached, both lift profiles

rise sharply to positive values, as was predicted in Chapter 1. This was explained

crudely by the observation that, in this configuration, whereas the upper side of the

body will experience singly-shocked flow, the lower side of the body will experience

doubly-shocked, and thus higher pressure, flow.

The close agreement between the profiles for the two Mach numbers in Figure 3.2

is a demonstration of the Mach number independence principle, which states that as

the Mach number is increased, the flow becomes increasingly independent of further

changes in Mach number. This principle holds well in the near-field, but becomes

more approximate in the far-field - hence the larger discrepancies seen in the profiles

in Figure 3.3. The primary shock shapes, for example, must diverge somewhat in the

far-field, as each must tend to the Mach angle for that particular Mach number.

For validation purposes, the Amrita software system was also used to simulate

this problem for a particular choice of parameters, namely a Mach number of 10, a

downstream displacement of 4 primary body radii, and a radius ratio of 2. Figure 3.4

shows a comparison of the lift and drag coefficients obtained with the two softwares.

As may be seen, although agreement is reasonably good over much of the domain,

there are some discrepancies, particularly as the primary bow shock begins to impinge

on the secondary body. This is not entirely unexpected, however. We have already

noted that the AMROC simulations have approximately twice the resolution of those

performed with Amrita, and this extra resolution will become most notable in the

vicinity of high-gradient flow features, such as shocks. In particular, as the primary

bow shock becomes better resolved, the effective shock position could change slightly.
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To provide a more fair comparison then, a single Amrita simulation with two levels

of additional refinement over the base grid was also carried out, giving approximately

the same resolution as the Amroc simulations. The resulting drag and lift coefficients

are shown in Table 3.2 and are compared with AMROC values computed at the same

lateral displacement. The more refined Amrita coefficients agree very closely with the

AMROC values obtained with two additional levels.

Table 3.2 also contains the results of a refinement study carried out with AMROC.

The downstream and lateral displacements of the secondary body are both 4 primary

body radii, the ratio of body radii is 2, and the Mach number is 10 (this choice of

parameters is shown in Figure 3.1 for two levels of additional refinement). These

values were chosen because in this configuration some of the largest discrepancies

were seen between the Amrita and AMROC results, both in lift and drag coefficients

(see Figure 3.4). We therefore might expect this to be a worst-case scenario with

respect to the effect of refinement on the lift and drag values obtained. Up to three

additional levels of refinement over the base grid were used, each with a refinement

factor of 2. The lift and drag do appear to be converging, but the lift especially seems

to be quite sensitive to changes in refinement, even between the two highest levels.

Additional. CD ∆CD CL ∆CL

levels
Amroc

0 2.051 -0.051
1 2.117 0.066 -0.128 -0.077
2 2.320 0.203 -0.228 -0.100
3 2.346 0.026 -0.183 0.045

Amrita
1 2.076 -0.120
2 2.288 0.212 -0.227 -0.107

Table 3.2: CD and CL values for two-dimensional refinement study and comparison
with Amrita. ∆ indicates the difference between the values at current and previous
levels of refinement.
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3.3 Three-dimensional Computations

3.3.1 Introduction

All three-dimensional simulations were carried out using the AMROC software, but

were run at two different facilities. A small number of less-refined computations

were run on the CACR machine ASAP, as in the two-dimensional case, while all

other computations were run on DataStar at the San Diego Supercomputing Center

(SDSC). DataStar is an IBM terascale machine consisting of 176 8-way P655+ nodes,

each with 16GB of memory and 7 32-way P690 shared nodes, each with 128GB

of memory. Simulations were run on the 8-way nodes - typically between 6 and

16 nodes were used on a given run. The three-dimensional Euler equations were

solved for an ideal gas - as in the two-dimensional case, a ratio of specific heats

of 1.4 is assumed unless otherwise stated. Initially a hybrid Roe-HLLE scheme with

Godunov dimensional splitting was used, but this was found to lead to spurious spatial

variations in the freestream flow profile. An exact Riemann solver was subsequently

tried, but the best results were obtained with Van-Leer flux vector-splitting, again

with Godunov dimensional splitting. This scheme was thus used in all computations

presented here.

3.3.2 Details of Computations

In all three-dimensional simulations, both bodies were specified as spheres. The

parameters that were varied were again the downstream and lateral displacements

of the secondary sphere, the ratio of body radii, and the Mach number. For each

given combination of downstream displacement, radius ratio, and Mach number, a

series of simulations was performed in which the lateral displacement of the secondary

body was varied. To maintain consistency with the two-dimensional simulations, we

shall refer to the force coefficient in the lateral direction as the lift coefficient, with a
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positive value indicating a repulsive force from the axis of symmetry of the primary

body.

Details of the computations are given in Table 3.3. The entries correspond di-

rectly to the equivalent two-dimensional entries in Table 3.1, with the exception of

the computational overhead entry. The sizes of the computations were such that

they could not be completed in a single step without exceeding the Datastar clock

limit. They were thus divided into a minimum of two steps, sometimes using differing

numbers of CPUs at each step. The computational overhead entry thus includes the

total number of CPU hours, with the number in brackets indicating the number(s) of

CPUs used for the multiple steps. In particular, as the early steps were used simply

to establish the flow, some of the refinement was suppressed, which allowed a smaller

number of CPUs to be used. Unfortunately, some of the timing data for the simu-

lations has been lost, hence the empty entry in the fourth column. Also, note that

while for the radius ratio 2 simulations, only a single secondary body was included

in the computation, for those in which the radius ratio was 4 or 8, four secondary

bodies at different lateral displacements (but sufficiently spaced so as not to interfere

with one another) were included in a single computation.

3.3.3 Results

Figure 3.5 shows the development of the flow during a typical three-dimensional

simulation. The visualisations are computational schlieren images overlaid on the

refinement level sets, calculated on the slice plane parallel to the flow that includes

the centers of the two bodies. The time instants at which these images are taken are

indicated in the plot below, which shows the temporal development of the lift and drag

coefficients of the secondary body and the drag coefficient of the primary. The lower

right visualisation corresponds to the steady flow solution. As in the two-dimensional

case, the steady flow is generated by ramping up the inlet flow speed at constant
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pressure and density until the desired Mach number is obtained. The drag and lift

values on the spheres are calculated every 10 timesteps by integrating the pressure

on the surface with the appropriate components of the surface normal. Mean values

are calculated once the steady flow is established - typically the averaging takes place

over the last 10% of the flow time.

In Figures 3.6 and 3.7 the mean drag and lift coefficients of the secondary body,

as functions of lateral displacement, are shown for two combinations of downstream

displacement and radius ratio - these are indicated on the schlieren images above.

Profiles for Mach numbers of both 10 and 50 are included.

In Figure 3.6 the downstream displacement is 3 primary body radii, and the ratio

of body radii is 4. The drag profile is qualitatively very similar to those seen in

the two-dimensional case. The drag coefficient is typically small in the wake region,

increases to a maximum value as the lateral displacement is increased, then decreases

to the freestream value (of approximately 0.88) as the body moves out of the shocked

region. The M = 50 profile climbs slightly more sharply, as the primary shock radius

is slightly smaller at higher Mach numbers.

The lift values are typically also small in the wake region and then show a negative

tendency as the lateral displacement is increased. As in the two-dimensional case, the

lift coefficient jumps sharply once the primary shock impingement point is reached

and attains a maximum value when the center of the secondary body is in the vicinity

of the primary shock radius. As the body clears the shock, the lift tails off to zero.

The unsteadiness experienced by the secondary body in the wake region is some-

what smaller in the three-dimensional case than the two-dimensional case. In all

simulations here the standard deviation of the mean drag value was smaller than 2%.

This may be attributed to the generally weaker nature of features such as separation

shocks in three dimensions - the extent of the wake region is also smaller than in the

two-dimensional case.
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Figure 3.5: Flow development in a typical three-dimensional computation. Computa-
tional schlieren images overlaid on refinement level sets are shown at, clockwise from
top left, t = 0.109, 0.201, 3.0, 0.244. The drag and lift coefficient profiles are plotted
below with the three earliest times indicated.
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Figure 3.6: Drag and lift coefficients as functions of lateral displacement for spheres
in a configuration as shown above. The freestream Mach number in the schlieren
image is M = 10.
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In Figure 3.7 the downstream displacement is 8 primary body radii, and the

ratio of body radii 2. The profiles are qualitatively similar to those in Figure 3.6,

although we see a greater difference between results for the two Mach numbers. This

is another demonstration of the Mach number independence principle becoming more

approximate in the far-field.

As no secondary software was available to validate the AMROC computations,

instead a set of computations was repeated with one level of refinement discarded.

The freestream Mach number for these computations was 10, the ratio of body radii

2, and the downstream displacement of the secondary body 3 primary body radii.

The lift and drag coefficients for the two resolutions are compared in Figure 3.8.

Agreement between the two is generally good, although there are small discrepancies

in the area of primary bow shock impingement. To quantify these discrepancies

better, a refinement study was also carried out in three dimensions.

3.3.4 Refinement Study

The configuration for the three-dimensional refinement study is shown in the com-

putational schlieren images of Figure 3.5. The downstream and radial displacements

(center-to-center) of the secondary body are three and 2.5 primary body radii, re-

spectively, and the freestream Mach number is 10. These values were chosen because,

as may be seen in Figure 3.8, in the vicinity of this configuration the lift coefficient is

most sensitive to changes in secondary body position (or conversely, changes in shock

position). Therefore, this configuration will represent something of a worst-case sce-

nario with regards to the effect of resolution changes on the lift value.

Simulations were carried out for one to four additional levels of refinement over

the base grid, and the results are shown in Table 3.4. The CD and CL values are

given in each case, as well as the change in value from that at the previous level of

refinement. As may be seen, the values are converging, but the lift especially is quite
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refinement. The freestream Mach number is 10, the downstream displacement 3
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sensitive to changes in refinement level. In these simulations, the effect of increasing

the resolution was to lead to a slight decrease in the primary bow shock radius, or

alternatively, a small increase in the effective lateral displacement of the secondary

body. This is consistent with the more positive lift values observed at higher levels

of refinement.

The computation with four additional levels took approximately 35 000 compu-

tational hours using 144 CPUs to complete. Thus, given current computing perfor-

mance, the maximum number of additional levels that can realistically be used is

three. If we assume that the lift values continue to converge at the rate indicated

by Table 3.4, we obtain a refinement error at this level of refinement that is 5% of
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the drag value. Similarly, we estimate the refinement error in the drag value to be

2%. These errors will be smaller, however, in configurations that are less sensitive to

changes in shock position.

Additional. CD ∆CD CL ∆CL

levels
1 1.264 -0.176
2 1.442 0.178 -0.019 0.157
3 1.423 -0.019 0.052 0.071
4 1.408 -0.015 0.087 0.035

Table 3.4: CD and CL values for the three-dimensional refinement study. ∆ indicates
the difference between the value at the current and the previous level of refinement.
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Chapter 4

Comparison of Theoretical and
Computational Results

We are now in a position to see how well the analytical methodology developed in

Chapter 2 performs. In this chapter we will compare the analytical drag and lift

coefficients with those obtained in the numerical simulations of Chapter 3.

4.1 Two-Dimensional Comparison

To begin with, we will compare coefficients with the lateral displacement of the sec-

ondary body non-dimensionalized by the primary body diameter. In Figure 4.1, the

theoretical coefficients obtained using the Gaussian profile with no x-derivatives are

plotted along with computational values for Mach numbers of 10 and 50. The body

diameter ratio, d1/d2, is 2, and the downstream displacement (center-to-center) is

2d1. This corresponds to a x/d1 value of approximately 2.75, as the shock stand-off

distance is approximately half a body radius.

As may be seen, agreement between the theoretical and computational values is

poor. The reason for this may be seen from the dashed vertical lines, which indicate

the shock radius in each case at this distance downstream (for the computational

cases, the shock radius was estimated from visualizations of the computed flow; the

theoretical value is given by Equation 2.5). The blast wave analogy significantly
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underestimates the shock radius, and, as the shock provides the boundary for quali-

tatively different flow regions, this results in a large discrepancy in the lift and drag

values. This suggests that the more appropriate non-dimensionalization for the lat-

eral displacement is the shock radius in each case. The profiles resulting from this

non-dimensionalization are shown in Figures 4.2 through 4.5 for combinations of body

diameter ratios of 2 and 6 with downstream displacements (center-to-center) of 2 and

4d1. The latter downstream displacement value corresponds to an x/d1 value of ap-

proximately 4.75. In all cases, computational profiles at Mach numbers of both 10

and 50 are included.

First, we should make note of the regions in which we do not expect the blast

wave analogy model to perform well. For r/Rs close to 1, the primary bow shock

will impinge on the secondary body and significantly affect the pressure distribution.

In each of the computational profiles, we see that this impingement causes a large

increase in the lift coefficient, for reasons previously outlined. The effect of the

impingement on the drag coefficient is less significant, as the main contribution to

the drag comes from the region near the stagnation point, which does not feel the

impingement effects until larger values of r/Rs are reached.

For small values of r/Rs, on the other hand, the secondary body is in the wake of

the primary body, or for slightly larger values, interacts with the primary separation

shock. This interaction was noted in Chapter 3 and may be seen in the hump in the

drag profile in each case at around r/Rs ≈ 0.2− 0.4. As neither the wake region nor

the separation shock is present in the blast wave analogy, it is not surprising that

there are discrepancies between the theoretical model and computations for small

r/Rs.

For r/Rs not too close to either 0 or 1, however, we see that the blast wave model

does a reasonably good job of predicting the drag and lift coefficients. Qualitatively,

the trends are very well captured - note that the effect of body size predicted by the
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Figure 4.1: Theoretical and computed drag and lift coefficients in two dimensions for
M = 10 and 50, d1/d2 = 2, at a downstream displacement of 2d1 (center-to-center).
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the dashed vertical lines indicate the position of the primary bow shock in each case.
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theoretical model is very much present in the computations. The model also predicts

such details as the lift coefficient crossing from positive to negative as the lateral dis-

placement is decreased for the two d1/d2 = 6 cases (Figures 4.3 and 4.5). In Figure 4.4

we also notice an interesting effect. It was in this configuration in the previous chap-

ter that we noted slight qualitative differences in the two computational lift profiles.

The theoretical profiles mirror these differences, with the modified Newtonian profile

lying closer to the M = 10 values and the Gaussian profile better approximating

the M = 50 values. This is consistent with our earlier prediction that the Gaussian

profile should be more appropriate at higher Mach numbers.

Overall, the modified Newtonian description without x-derivatives seems to do the

best job of modeling the lift and drag coefficients. The inclusion of the x-derivatives

for either distribution results in predicted drag coefficients that are too high. The

Gaussian description (without x-derivatives) does well in most cases, but notably in

Figure 4.2 the lift coefficient profile falls too quickly with increasing r/Rs. In the

other cases, however, both the modified Newtonian and Gaussian descriptions allow

reasonable quantitative predictions to be made.

4.2 Three-Dimensional Comparison

We begin again by comparing theoretical and computational profiles in which the

secondary lateral displacement has been non-dimensionalized by the primary body

diameter. In Figure 4.6 the theoretical coefficients calculated with the Gaussian profile

(with no x-derivatives) are compared with those generated by AMROC computations

for a ratio of body diameters of 2 and a downstream displacement (center-to-center)

of 1.5 primary body diameters. This downstream displacement corresponds to a x/d1

value of approximately 2.07 - the shock stand-off distance is measured from visuali-

sations of the computed flow. Computational profiles with freestream Mach numbers
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Figure 4.2: Theoretical and computed drag and lift coefficients in two dimensions
with the lateral displacement normalized by respective shock radii for M = 10 and
50, d1/d2 = 2, and a downstream displacement of 2d1 (center-to-center).
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Figure 4.3: Theoretical and computed drag and lift coefficients in two dimensions for
M = 10 and 50, d1/d2 = 6, and a downstream displacement of 2d1.
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Figure 4.4: Theoretical and computed drag and lift coefficients in two dimensions for
M = 10 and 50, d1/d2 = 2, and a downstream displacement of 4d1.



68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
D

r/R
s

Theoretical, Mod. Newtonian w/o x derivatives
Theoretical, Gaussian w/o x derivatives
Theoretical, Mod. Newtonian w/ x derivatives
Theoretical, Gaussian w/ x derivatives
Computational, M=10
Computational, M=50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

C
L

r/R
s

Theoretical, Mod. Newtonian w/o x derivatives
Theoretical, Gaussian w/o x derivatives
Theoretical, Mod. Newtonian w/ x derivatives
Theoretical, Gaussian w/ x derivatives
Computational, M=10
Computational, M=50

Figure 4.5: Theoretical and computed drag and lift coefficients in two dimensions for
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of 10 and 50 are included. As in the two-dimensional case, non-dimensionalization

by the primary body size does not give good agreement between the theoretical and

computational values. The problem is once again a disagreement in primary shock

radii, as indicated by the dashed vertical lines.

We thus try normalizing again by the shock radius in each case: the results are

shown in Figures 4.7 through 4.10. Once again, agreement is much improved with

this normalization. For r/Rs close to 0 and 1, the expected discrepancies appear as

a result of the secondary’s interaction with the wake region and the primary bow-

shock, but away from these extremes agreement is quite reasonable. Agreement with

the M = 50 computational values is better than that for the M = 10 values, as might

be expected. As in the planar case, the Newtonian profiles appear in general to

capture the computational values better than the Gaussian profiles do. In Figure 4.7

the profiles that include x-derivatives show better agreement than those without, but

in other cases this is not as obvious. Note, however, that the further downstream the

secondary body is, the smaller the effect of including the x-derivatives will be, as all

derivatives will decay as the shock radius grows. The inclusion of the x-derivatives

will also become less important as the secondary body size is decreased.

The most significant problem with the theoretical profiles under the current nor-

malization seems to be that the predicted drag profile (and in some cases the lift

also) decays too rapidly as r/Rs is decreased from 1, leading to smaller values than

those predicted by the computations. This is most likely caused by the p′stag profile

predicted by the blast wave analogy decaying more rapidly than that in the computed

flow.
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Figure 4.6: Theoretical and computed drag and lift coefficients in three dimensions for
M = 10 and 50, d1/d2 = 2 at a downstream displacement of 1.5d1 (center-to-center).
The lateral displacement has been normalized by the primary body diameter, and
the dashed vertical lines indicate the position of the primary bow shock in each case.
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Figure 4.7: Theoretical and computed drag and lift coefficients in three dimensions
with the lateral displacement normalized by the respective shock radii for M=10 and
50, d1/d2 = 2, and a downstream displacement of 1.5d1 (center-to center).
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Figure 4.8: Theoretical and computed drag and lift coefficients in three dimensions
for M=10 and 50, d1/d2 = 4, and a downstream displacement of 1.5d1.
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Figure 4.9: Theoretical and computed drag and lift coefficients in three dimensions
for M=10 and 50, d1/d2 = 8, and a downstream displacement of 1.5d1.
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Figure 4.10: Theoretical and computed drag and lift coefficients in three dimensions
for M=10 and 50, d1/d2 = 2, and a downstream displacement of 4d1.
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4.3 Discussion

As we have seen, the theoretical profiles in both two and three dimensions provide

reasonable approximations to the computational values, but only once the lateral dis-

placements have been normalized by the appropriate shock radii. This does limit the

predictive power of the analytical methodology somewhat. If a given physical situa-

tion is to be modeled by the methodology, the physical value of Rs must be determined

independently. This would be possible through an experimental or numerical simu-

lation, but then one may ask why not simply simulate the physical configuration

directly, rather than carry out a simulation to determine the shock radius. Of course,

a single simulation in the latter case would yield a shock shape, which would then

enable the methodology to be employed over a range of secondary body positions,

whereas the former simulation would yield only the forces at a single position.

As an alternative to a full simulation, numerical or experimental, several authors

have proposed empirical correlations to the shock shape produced by a supersonic

blunt body based on experimental data. The detached shock wave is assumed to

take the form of a hyperbola that is asymptotic to the freestream Mach angle. The

equation for the coordinates of the shock is

x = R + A−Rc cot2 θ

[(
1 +

y2 tan2 θ

R2
c

)1/2

− 1

]
, (4.1)

where θ is the shock angle, A is the shock stand-off distance, and Rc is the shock

radius of curvature at the vertex. Ambrosio and Wortman (1962) gave correlations

for the shock stand-off distance based on experimental data from several sources:

Spheres : A/R = 0.143 exp(3.24/M2) (4.2)

Cylinders : A/R = 0.386 exp(4.67/M2). (4.3)
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Similarly, Billig (1967) obtained correlations for the vertex radius of curvature:

Spheres : Rc/R = 1.143 exp[0.54/(M − 1)1.2)] (4.4)

Cylinders : Rc/R = 1.386 exp[1.8/(M − 1)0.75]. (4.5)

These relations could be used to provide a more accurate shock radius to which the

blast wave methodology could be applied.

As a final alternative, we have seen that the problem under current discussion

arises from the underprediction of the shock radius by the blast wave analogy. This

problem is well-documented, however, and is understood to arise from the fact that in

the blast wave analogy the energy in the flow originates from a point source, whereas

any physical body has a finite extent. In effect, the shock in the physical situation

is displaced outwards from the point explosion solution by the body, resulting in a

larger shock radius. It thus seems reasonable to propose an effective origin for the

shock radius in the blast wave solution. This origin would be displaced outwards

from the existing origin and could be useful in obtaining a more accurate value for

the shock radius in the intermediate- and far-fields. This idea will be explored further

in Section 6.2.
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Chapter 5

Experimental Investigation

5.1 Introduction

In order to further investigate the proximal bodies problem, and to provide verification

for the numerical simulations, a series of experiments has been performed in the T5

hypervelocity shock tunnel facility at Caltech. The main objective of the experimental

investigation was to measure the forces on a secondary sphere in configurations similar

to those simulated in Chapter 3. As outlined in Chapter 1, there is a dearth of reliable

force- and moment-measurement techniques available for short duration hypersonic

facilities: thus, as part of the experimental investigation, the development of new

techniques was required.

5.2 Experimental Procedure

5.2.1 The T5 Hypervelocity Shock Tunnel Facility

The T5 hypervelocity shock tunnel is one in a series of free-piston driven facilities of

the type pioneered by Stalker (1961). A schematic of the facility with enlargements

of the important components is shown in Figure 5.1.

The operational principle of T5 and other similar facilities is as follows. Com-

pressed air, stored in the secondary reservoir (2R), is used to accelerate a free piston
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down the compression tube (CT), adiabatically compressing the CT gas ahead of it.

This gas, typically a mixture of helium and argon, is then used as the driver gas for

the shock tube (ST). The ST is filled with the test gas at low pressure and room

temperature and is separated from the CT by a stainless steel diaphragm. The di-

aphragm is scored so that it will burst at the desired pressure - typically this occurs

when the driver gas has been compressed by a volumetric ratio of 40-70. A strong

shock then propagates down the ST and is reflected at the end wall, creating stagna-

tion conditions for expansion through a hypersonic nozzle into the test section. The

test section and dump tank are initially kept under vacuum and are separated from

the ST by a secondary mylar diaphragm at the ST-nozzle junction. This diaphragm

is vaporized by the incident shock. Test times are limited by the onset of driver gas

contamination and are typically of the order of 1-2 ms.

Pressure transducers mounted at points along the shock tube and at the reservoir

allow measurements of the shock speed and the stagnation pressure to be made. These

are used to determine the freestream conditions in the test section. T5 is capable of

producing stagnation pressures of up to 80 MPa, and flow speeds are typically in the

range 3-6 km/s, sufficient to reproduce many of the real-gas effects that are present in

real hypervelocity flows. Further information regarding the T5 facility may be found

in Hornung et al. (1991).

Conditions for the current series of experiments were relatively benign. The test

gas was carbon dioxide for all but two shots, with typical stagnation pressures of ∼20

MPa and stagnation enthalpies of less than 10 MJ/kg. The freestream velocity and

density in the test section were typically 3 km/s and 0.03 kg/m3, respectively. A full

list of run conditions is given in Appendix B. In all experiments described here, a

conical nozzle of half-angle 7◦ and with an exit diameter of 300 mm was used together

with a throat of diameter 30 mm.



80

5.2.2 Experimental Setup

In Figure 5.2 we see a cutaway of the T5 test section with the experimental configu-

ration used in the later technique validation experiments, described in Section 5.3.1,

as well as the proximal body experiments, described in Section 5.3.2. The primary

sphere, of diameter 63.5 mm (2 1/2 inches), was rigidly attached to the test section

by means of a conical-cylindrical sting and mounting plates. The mounting allowed

for adjustments in both the horizontal and vertical position of the primary sphere.

Pitot pressure measurements were provided by a pressure transducer mounted in a

probe a short distance behind the front point of the sphere.

The secondary sphere, of diameter 31.8 mm (1 1/4 inch), was positioned directly

above and behind the primary sphere. It was suspended from the roof of the test

section in such a way that it was able to move freely over the distance it was ex-

pected to travel during the test time. A variety of suspension methods were tested

and will be discussed shortly. An accelerometer was mounted inside the sphere - a

schematic of the model with accelerometer is shown in Figure 5.4. In the experiments

described here, a single uniaxial accelerometer was mounted in the drag direction,

but if multiple-component force measurements were required, this could be replaced

by a triaxial accelerometer. The sphere was constructed so that the geometric center

coincided with the center of mass, ensuring that the aerodynamic loading would not

result in the generation of any rotational moments. For a general body, however, a

combination of accelerometers mounted at different locations within the body could

be used to measure both forces and moments.

A catcher, in the form of a bent tube, was mounted behind the suspended sphere.

The purpose of the catcher was two-fold. First it served to halt the sphere motion after

a short distance, preventing the accumulation of a velocity sufficient to damage the

sphere or accelerometer (to lessen the impact, a rubber pad was attached to the front

of the catcher). The catcher also provided a path by which the accelerometer cable
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could leave the test section without being exposed to the hostile flow environment.

Several suspension methods for the secondary sphere were tested. Initially the

sphere was suspended from thick (1.25 mm diameter) wire rope with no catcher to

impede the motion. The grooves that may be seen on the inside of each hemisphere

in Figure 5.4 are for the clamping of these wires. A rubber mat was attached to the

roof of the test section to absorb the impact of the swinging sphere. This method

led to the accelerometer cable being torn from the sphere during each shot, however,

and the thick wires were found to result in high measured drag values (this will be

discussed in Section 5.3.1). Thin piano wires (0.25 mm diameter) were also tried in

this configuration, but these broke under the aerodynamic loading, resulting in the

loss of the accelerometer.

The next suspension method tested was thinner wire rope (0.7 mm diameter)

secured to the test section both above and below the sphere, as shown in the left

photograph of Figure 5.3. The lower wires contained some initial slack, allowing the

sphere to move freely over a small distance in the drag direction, but were intended

to arrest the sphere’s motion before striking the catcher. These wires were also found

to break during the course of a typical run however, and again led to excessively high

drag values.

The final method tested consisted of suspending the sphere from the test section

roof by cotton thread, as shown in the right photograph of Figure 5.3. The intention

was that the thread would break at the onset of the flow, allowing for free-floating

behaviour during the test time. To ensure the sphere was guided towards the catcher,

a thin metal pipe of diameter 4.8 mm (3/16 inch) was attached to the back end of

the sphere such that it could move freely into the hole in the center of the catcher.

This pipe also provided further protection for the accelerometer cable from the flow.

One disadvantage of this method is that although the pipe might be expected to

have a negligible effect on the drag value, the contribution to the lift in the proximal
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Figure 5.2: Cutaway of the T5 test section showing model arrangement

Figure 5.3: Photographs of models in the T5 test section with secondary sphere
suspended by wire rope (left) and cotton thread (right).
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Figure 5.4: Schematic showing an exploded view of the secondary model with ac-
celerometer attached

body experiments would be more significant. Thus, in addition to experiments with

accelerometer measurements, shots were also carried out with the accelerometer and

metal pipe absent, providing a cleaner configuration. In these shots, the lift and

drag were measured only through the displacement profile recorded by a high-speed

camera, as will be discussed shortly.

5.2.3 Accelerometer Measurements

The primary method of drag measurement was through direct acceleration measure-

ments made by a uniaxial accelerometer mounted inside the model. The accelerometer

used was the Endevco model 7270A-2K. This is a piezoresistive-type accelerometer,

which allows measurement of steady-state accelerations. This model is rated to ac-

celerations of up to ±2000 g and has a typical resonant frequency of 90 kHz.

In Figure 5.5 the power spectrum and acceleration signal recorded by the ac-

celerometer during a typical shot are shown. Note the log scale on the y-axis of the

power spectrum plot. Two large peaks are seen in this plot at approximately 85 and

91 kHz, respectively, the former of these probably corresponding to the resonant fre-

quency. The main frequency content of the remainder of the signal is well separated

from these peaks, which allows them to be removed by the simple application of a
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Figure 5.5: (Left) Power spectrum of the accelerometer signal for shot 2322; (right)
accelerometer signal after application of low-pass and box-car filters.

low-pass filter. The acceleration signal has been filtered in this way and has been

further smoothed with the application of a box-car filter of width 21 time-steps. The

steady flow period in this signal is between approximately 1.5 and 2.5 ms, and the

mean acceleration is calculated over this time. Given that the mass of the sphere is

known, the drag force is then easily calculated.

To determine the coefficient of drag, knowledge of the freestream conditions is

required: in particular the density and the velocity. To this end, the reservoir condi-

tions are calculated from the reservoir pressure and shock-timing measurements using

ESTC (Equilibrium Shock Tube Calculation) due to Mcintosh (1969). Freestream

conditions are then calculated with NENZF (Non-Equilibrium NoZzle Flow) due to

Lordi et al. (1966). For the conical nozzle, as the flow continues to diverge past the

nozzle exit, the nozzle calculations are continued as far as the downstream coordinate

of the sphere in question.
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5.2.4 High-speed Camera Measurements

In addition to the accelerometer measurements, a high-speed camera was used to

track the motion of the secondary sphere in both the drag and lift directions. The

optical setup, a conventional Z-schlieren system, is shown in Figure 5.6. For clarity,

the arrangement of the optical components shown has been adjusted slightly from

the physical arrangement.

A Vision Research Phantom v5 high-speed digital camera was used in conjunction

with a continuous white light source. Three different resolutions were used: 256×256,

256× 128, and 256× 64 pixels. The frame-rate was set to the maximum allowed by

each of these resolutions; respectively 12000, 25000, and 38000 frames/second. The

exposure time was typically 10-20µs. This was usually short enough to negate the self-

luminosity in the test section, although for nitrogen test-gas shots this was more of a

problem. For the proximal body experiments, a high pass optical filter was inserted

in the optical setup just ahead of the knife-edge to further reduce this luminosity.

The recovery of a time-dependent acceleration profile from displacement measure-

ments is a questionable operation, as it involves the double differentiation of a noisy

signal. Thus, the interpretation of unsteady effects using this method will not be at-

tempted here. Assuming, however, that the acceleration is steady over the test time,

a second degree polynomial may be fitted to the displacement in a given direction as

a function of time. The acceleration in that direction is then simply given by twice

the quadratic coefficient.

The acceleration was thus deduced from the camera images in the following way.

For each image obtained during the test time, an edge detection was carried out on the

entire image using the Sobel method. Points were chosen on the edges corresponding

to the moving sphere, and a circle of the form (x − x0)
2 + (y − y0)

2 = r2 (where

x0, y0, and r are the unknowns) was fitted in the least-squares sense to these points.

While this equation is not in a form to which a standard multiple regression may be
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Figure 5.6: Top view of the T5 optical setup for high-speed camera visualisation.
Components have been rearranged slightly for clarity, and are not to scale.
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applied, if we rewrite it as z = ax + by + c where z = x2 + y2, a = 2x0, b = 2y0, and

c = r2 − x2
0 − y2

0, we see that standard linear techniques may be used.

Once a displacement history of the sphere has been determined over the time

period of interest, quadratic polynomials may be fitted to the x and y profiles as

functions of time. As the standard errors in the accelerations obtained are of interest,

it is useful here to outline the fitting procedure, following the exposition of Meyer

(1975). If x and y are the n×1 vectors containing the x and y displacements over the

time during which the acceleration is assumed to be constant, and t is the vector of

corresponding times, we write

α =



1 t1 t21

1 t2 t22

· · · · · · · · ·

1 tn t2n


. (5.1)

Then the coefficient vector of the best fit quadratic for the x-displacement profile,

for example, is

ĉ = (αT α)−1αTx. (5.2)

We have assumed that the weightings are equal for all points in the profile. An

unbiased estimate of the scale factor σ2 may be obtained from the sum of the squared

residuals:

σ̂2 =
(x−αĉ)T (x−αĉ)

n− 3
. (5.3)

An estimate of the covariance matrix of ĉ is then given by

[Covar(ĉ)] = σ2(αT α)−1. (5.4)
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The acceleration in the x-direction is simply d2x/dt2 = 2ĉ(3), and our estimate of

the standard deviation in this value is
√

[Covar(ĉ)](3, 3).

Figure 5.7 shows the results from this process for a typical shot. The top plot

shows the displacement profile in space, while the middle and lower plots show the

x and y displacements as functions of time, with the best-fit quadratic polynomials

plotted during the steady flow time.

Once the x and y accelerations have been calculated in this way, the drag and lift

coefficients may be derived in a manner identical to the accelerometer measurement.

5.3 Results

5.3.1 Technique Validation

Before the techniques described above were used to model the proximal bodies prob-

lem, a series of validation experiments was performed. For these experiments, the

two spheres were arranged in a configuration as shown in the left image of Figure 5.8,

with the secondary sphere positioned in the uniform freestream outside the primary

shock. Such a situation (a sphere in a uniform freestream) can easily be simulated nu-

merically, and experimental and computational drag values can then be compared. A

number of experiments were carried out in this configuration using a variety of model

suspension techniques and protection methods for the accelerometer cable. These are

documented in Table 5.1, together with the drag coefficient value(s) obtained for each

shot. Schlieren images from three of these shots are shown in Figure 5.8.

To calculate the numerical drag value, simulations of a single sphere in a uni-

form, inviscid, ideal gas freestream were carried out using AMROC and Amrita. The

AMROC simulation was three-dimensional on a base grid of 50× 40× 40 with three

levels of additional refinement, each of factor two. At the finest level of refinement,

the sphere radius corresponded to 32 cells. Other computational parameters were
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the same as the simulations described in Chapter 3. The Amrita computations were

carried out using axisymmetric geometry. The base grid was 320×160, with one level

of additional refinement of factor 2. One sphere radius corresponded to 80 computa-

tional cells at the finest refinement level. Further details of the Amrita computations

may be found in Section 5.4.3.

The freestream conditions for the numerical simulations were chosen to be as

similar as possible to the conditions experienced by the secondary sphere in the ex-

periments, given the perfect gas assumption. For the CO2 shots, freestream Mach

numbers of 4.45 and 4.5 were used for the AMROC and Amrita simulations, respec-

tively. The ratio of specific heats was chosen in the following way. As all CO2 shots

were at roughly the same condition, freestream compositions and temperatures (given

in Appendix B) varied but very little. The components considered were CO2, CO, and

O2, and values of γi for each at 2000 K were calculated using the NASA Glenn ther-

modynamics database tool, Thermobuild (see http://cea.grc.nasa.gov/). The ef-

fective ratio of specific heats was then calculated according to the following equation

given by Thompson (1988):

γ =

∑
i χi

γi

γi−1∑
k χk

1
γk−1

, (5.5)

where χi is the mole fraction of the appropriate component. For the present runs,

this gave a value of γ ≈ 1.19. This value was used in both AMROC and Amrita

simulations, and drag coefficients of 0.956 and 0.945 were obtained, respectively.

To estimate the effect of viscosity in the CO2 case, a viscous computation was car-

ried out for a perfect gas in axisymmetric geometry by J. Olejniczak. The freestream

conditions for this simulation were chosen to be those corresponding to shot number

2322. The calculated drag coefficient was 0.997, indicating that viscosity contributes

approximately 5% to the drag value. Further details of this computation may be

found in Section 5.4.4.

http://cea.grc.nasa.gov/
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To simulate the two nitrogen shots, a freestream Mach number of 5.8 and γ = 1.35

were specified. This was a compromise between the two shots, as they had quite

different freestream conditions. This value of γ is appropriate for molecular nitrogen

at a temperature of 900 K (negligible amounts of atomic N were present in both

shots). AMROC was not used to calculate the nitrogen drag coefficient; the Amrita

simulation yielded a value of 0.896. Although a viscous simulation was not carried

out for nitrogen, we would expect viscosity to contribute around 5% to the drag value

here also.

In comparing the experimental drag values of Table 5.1 to the relevant numerical

values, the first point to notice is that the experimental values in those shots for which

the model was suspended by metal wires are significantly higher than the numerical

values. The likely reason for this may be seen in the left image of Figure 5.8, which

shows a schlieren image taken during shot 2320. Tension in the wires is obviously

present as a result of aerodynamic loading, and a non-negligible component of this is

in the drag direction. Oscillations in the wire ropes are also observed during the test

time, which could be responsible for the typically higher standard errors in the drag

values for these shots. It was for these reasons that cotton thread was adopted as the

suspension method.

The drag coefficients obtained in those shots in which cotton thread was used,

i.e. shot numbers 2322, 2324 and 2325, show much improved agreement with the

numerical coefficients. In each case the appropriate numerical value (whether or not

the viscous contribution is included) is within the error bound of the experimental

value. We conclude that of the suspension methods tested here, only cotton thread is

able to give reliable results. Finally, we note that agreement between accelerometer

and camera drag values is generally good, in each case agreeing to within the standard

error.
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5.3.2 Proximal Bodies Experiments

A limited number of experiments in the proximal bodies configuration were per-

formed - unfortunately, time and financial constraints restricted the extent of this

experimental investigation. A combination of high-speed camera and accelerometer

measurements were made. In all experiments the test gas was CO2, and the Mach

number was approximately 4.5.

The results from the proximal bodies investigation are shown in Table 5.2. The ax-

ial and lateral displacements are calculated from the centers of the two bodies and are

given in primary body radii. Also indicated is the position of the primary bow shock

relative to the secondary body. The measured drag and lift coefficients are given,

together with their standard errors. To obtain these values, the drag and lift forces

were normalized by the freestream conditions at a position downstream correspond-

ing to the leading point of the secondary sphere in its initial position. Corresponding

inviscid, perfect gas computational values are also indicated. Figures 5.9 through 5.12

show experimental and computational schlieren images obtained for each shot. The

experimental images have been rotated to compensate for the rotation in the T5 op-

tical setup. For those shots in which the primary body is not visible in the image,

reference images were taken before the shot to determine the relative displacements

of the two bodies.

The computational values were obtained from AMROC simulations using the same

relative body displacements as the experiments. A specific heats ratio of γ=1.19

was chosen as outlined above. To simulate the flow produced by the conical nozzle,

diverging conical flow was specified at the inlet. The density and velocity for the

calculation of the computational force coefficients were obtained by probing the flow

solution in the freestream region at a distance downstream corresponding to the

leading point of the secondary sphere.

The computational parameters for the numerical simulations were the same as
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those of the three-dimensional refinement study of Chapter 3. Three additional levels

of refinement were used over the base grid, with refinement factors of 3 at the highest

level and 2 at the lower two levels. As may be seen in the schlieren images, in all shots

the secondary body was relatively close to the primary bow shock. In the refinement

study we found that in such a configuration, refinement errors of ∼2% and ∼5% of the

drag value could be expected in the computational drag and lift values, respectively,

at three levels of refinement, each of factor 2. As the present computations are slightly

more refined, we would expect the errors in the computational values to be slightly

less here.

The agreement between experimental and computational values seen in Table 5.2

is generally good. The accelerometer signal in shot 2328 was somewhat question-

able - on integrating the measured acceleration, displacements significantly less than

those recorded in the images were obtained. The signal in shot 2327, in which the

configuration was identical, shows much closer agreement with both the computed

value and the drag value obtained from the images. It is possible that the accelerom-

eter sustained damage during shot 2327, resulting in the observed discrepancy in the

following shot.

Aside from this discrepancy, all experimental values agree with the computational

values to within the standard errors, with the exception of the lift measurement in

shot 2326 (although the computational drag value in shot 2330 lies outside the ex-

perimental error, if we include a computational error of 2%, agreement is obtained .)

The computational lift value in shot 2326 is significantly higher than the experimental

value, but we should note that in this impinging configuration, the lift value will be

very sensitive to any slight differences in the impingement point between the compu-

tation and experiment. Note also that the experimental drag values are consistently

slightly higher than the computational values - this may be explained by the lack of

a viscous drag component in the numerical simulations.
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Figure 5.9: Experimental (above) and computational (below) schlieren images of shot
2326. The cross-wire is outside the flow and was used to provide a reference point.
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Figure 5.10: Experimental (above) and computational (below) schlieren images of
shot 2328. This was also the configuration for shot 2327.
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Figure 5.11: Experimental (above) and computational (below) schlieren images of
shot 2329
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Figure 5.12: Experimental (above) and computational (below) schlieren images of
shot 2330
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5.4 Error Analysis

There are a number of sources of error associated with the measurements that have

been described above. These may be loosely grouped into two categories: those that

contribute to the standard error seen in the signals and those that will result in

systematic errors. In the first group we have the following:

5.4.1 Model Movement

The movement of the secondary sphere during the test time could lead to further

errors in two ways. First, if the sphere attains significant velocity during the test

time, the freestream velocity will not be an accurate indicator of the flow velocity in

the frame of reference of the sphere. However, in Figure 5.13, in which the sphere

acceleration, velocity, and displacement during a typical shot are plotted, we see that

the maximum sphere velocity during the test time (indicated by the vertical dashed

lines) is less than 4 m/s, a negligible fraction of the freestream velocity. The velocity

profile in this plot was calculated by an integration of the accelerometer signal.

The second possible source of error caused by the sphere’s movement is the re-

sulting change in the sphere’s position during the test time. In Figure 5.13, we see

that this change in position is of the order of 2.5 mm, or approximately one sixth

of the sphere radius. While for the technique validation experiments this movement

will have little effect on the forces experienced, in the proximal body experiments the

effect may not be so negligible. In Chapter 3 we noted that in those configurations in

which the primary bow shock was impinging on the secondary body, the computed

forces were quite sensitive to the location of the impingement point. Thus, in the

proximal body experiments we would expect the forces on the secondary body to

vary slightly as the position of the sphere changes over the test time. As we assume

constant accelerations, this will contribute to the standard error in the signals.
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5.4.2 Flow Unsteadiness

Compared to flows produced by cold hypersonic facilities, those in the T5 are in-

herently unsteady. Although we specify a test time over which we assume the flow

properties to be constant, this is only an approximation to reality. Assuming that

the flow across the conical nozzle is uniform, the unsteadiness recorded in the pitot

pressure at the primary sphere will be a good indication of that experienced by the

secondary sphere. As the magnitudes of the forces acting on a body are roughly

proportional to the pitot pressure, this will also provide a good estimate of the un-

steadiness in the force history on the secondary sphere.

In Figure 5.14 are plotted the pitot pressure histories for two shots - the test gas in

the upper plot is carbon dioxide; that in the lower plot is nitrogen. The signals have

been smoothed using a box-car filter of width 11 to remove noise associated with the

transducer rather than the flow. The standard deviation in the mean value over the

test time is indicated and is typically 2-3%. In general, the unsteadiness associated

with carbon dioxide shots in T5 tends to be less than that for nitrogen shots, as is

observed here.

There will also be a secondary effect associated with the flow unsteadiness in

the proximal body experiments. In the high-speed camera images, small oscillations

in the primary shock position were noted during the test time. This will lead to

oscillations in the forces experienced by the secondary body in impinging situations, as

the impingement point will be fluctuating in time. The magnitude of these oscillations

were, however, typically smaller than the movement of the model during the test time.

Thus, the standard error produced by this effect will generally be smaller than that

noted in the previous section.

There will also be systematic sources of error, as follows:
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5.4.3 Effect of the Model Support Components

The experimental model required support components that were not present in the

numerical simulations. We have already noted the effect on the drag coefficient of

the wire rope used in the early validation experiments. The use of cotton thread

corrected for this, but we might expect the presence of the catcher, and the cable

protection tube for those shots in which the accelerometer was present, to affect the

flow and thus the measured forces.

To quantify these discrepancies for the technique validation experiments, further

numerical simulations were carried out using the Amrita software system in which

these physical features were added. Simulations were performed for a ratio of specific

heats of γ=1.19 at a Mach number of 4.5, simulating a typical CO2 shot, and for

γ=1.35 at a Mach number of 5.8, to simulate an N2 shot. The simulations were

performed on a 320×160 grid with axisymmetric geometry, with a single level of

refinement of refinement factor 2. The sphere radius was 40, and the dimensions of

the tube and catcher were scaled according to the experimental configuration. Other

computational parameters, such as the solver, were the same as those described in

Chapter 3.

Simulations were performed for the four permutations involving the catcher and

tube. The catcher, in those simulations in which it was present, was positioned 1

sphere diameter behind the back point of the sphere. This was slightly less than the

minimum separation of the sphere and catcher during the validation experiments and

thus provided a worst-case scenario. The mean drag coefficients on the sphere for these

cases are shown in Tables 5.3 and 5.4. Computational schlieren images comparing an

unsupported sphere to a sphere with supporting components are shown in Figure 5.15.

We see that the inclusion of the cable protection tube makes a negligible change

to the drag coefficient. The catcher has a more significant effect, giving a systematic

decrease in drag of between 2 and 3 %. The cause of this drag decrease may be seen
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Tube Catcher Mean CD

No No 0.945
Yes No 0.947
No 1 Diameter 0.920
Yes 1 Diameter 0.924

Table 5.3: Calculated drag coefficients for simulations in which model support com-
ponents are included. The test gas is carbon dioxide, and the Mach number is 4.50.

Tube Catcher Mean CD

No No 0.896
Yes No 0.898
No 1 Diameter 0.876
Yes 1 Diameter 0.879

Table 5.4: Calculated drag coefficients for simulations in which model support com-
ponents are included. The test gas is nitrogen, and the Mach number is 5.80.

in Figure 5.15. The presence of the catcher is communicated to the sphere via the

subsonic wake, which strengthens the recompression shock and results in a higher

pressure on the back of the sphere.

In the proximal body experiments we would expect, if anything, that the effect

of the catcher would be smaller, as the wake will be deflected somewhat away from

the catcher by the primary shock. We have already noted, however, that this flow

deflection is likely to result in the tube having a non-negligible effect on the measured

lift.

5.4.4 Flow Chemistry

The flows produced by the T5 are at sufficiently high enthalpies that real gas effects

become important. We have already noted that in the CO2 shots there are significant

fractions of CO and O2 in the freestream; further dissociation will occur immediately

behind the shocks generated by the two spheres. It is a well-known phenomenon

that dissociation can lead to a significant increase in density; the effect on pressure
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Figure 5.15: Comparison of an unsupported sphere to a sphere with catcher and tube
in a carbon dioxide freestream of Mach number 4.5

is typically far less, however. For the full dissociation of a diatomic gas, the increase

in pressure behind a normal shock compared to a perfect gas is of the order of 6%

(Hornung, 2002), so we would expect the increase in the current experiments to be

even smaller.

In order to estimate the effect of flow chemistry on the measured forces, a pair

of simulations were carried out by J. Olejniczak using the DPLR nonequilibrium

code developed by Wright et al. (1998). This code solves the equations of motion

for thermochemical nonequilibrium flow in both viscous and inviscid cases. Source

terms for chemical reactions and vibrational relaxation processes are included and are

derived from microscopic considerations.

Simulations were carried out of a sphere in freestream conditions corresponding

to those at the secondary sphere in shot 2322 (these are documented in Appendix B).

A body-fitted grid with axisymmetric geometry was used, and the effects of viscosity

were included in both simulations. Both reacting and perfect gas flows were simulated;
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the drag coefficient and stagnation point pressure were determined in each case. In the

perfect gas case, the stagnation pressure was 339 600 Pa and the drag coefficient 0.997;

in the reacting case the values were 343 300 Pa and 0.995. These differences are small

and could be due to grid artifacts rather than reaction effects. We thus conclude that

in the flow regime considered in the current experiments, flow chemistry will affect

the measured forces but very little.

5.4.5 Shot-Induced Structural Vibrations

During the course of a T5 shot, large changes of momentum occur inside the facility,

some of which are transferred to the surrounding structures. This could lead to

significant vibrations in the optical setup. These vibrations, if present during the test

time, could result in an apparent movement of the secondary body in the camera

images. If the vibration frequencies are high compared to the inverse of the test

time, this would simply contribute noise to the signal. For longer period vibrations,

however, a systematic contribution to the acceleration signal could result.

In an attempt to measure the effect of structural vibrations in the images, a

reference point was created by attaching intersecting wires to the outside of one of

the test section windows. These may be seen in the experimental schlieren images of

Figures 5.9 and 5.10. It is assumed that the T5 test section and dump tank assembly

remain stationary during the course of a shot, so any movement recorded in the point

of intersection of these wires would be caused by movement of the optical setup. The

point of intersection was determined in each image by fitting a straight line to each

of the wires.

The x- and y-displacements of the intersection point recorded during shots 2326

and 2328 are shown in Figure 5.16. The apparent x- and y-acceleration of this refer-

ence point during the test time is indicated on each plot (these were calculated in the

same way as the sphere accelerations). There does not, however, appear to be any
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similarity in profiles between the two shots. In shot 2326 there is significant initial

movement in the x direction that levels off during the test time, resulting in a signif-

icant apparent acceleration. This apparent acceleration is approximately 13% of the

x-acceleration recorded by the sphere during the same shot. The y−displacement in

this shot shows significant movement throughout the recorded time, but the profile is

almost linear, resulting in a smaller apparent acceration in this direction. The noise

seen in these signals is most likely due to errors in the determination of the reference

point, rather than high-frequency vibrations - unfortunately, the fitting of an open

curve such as a line results in a larger error than fitting a closed curve such as a

sphere.

During the test time of shot 2328 a large jump is seen in both profiles, resulting in

large apparent accelerations, but with significant uncertainty. If this jump were due

to vibrations in the optics, we would expect it to be present in the sphere displace-

ment profile for this shot. An inspection of this profile did not indicate the presence

of such a large jump, however. It is possible, given the small displacements involved,

that our assumption that the test section remains stationary is mistaken. The re-

sults obtained here do suggest, however, that a further investigation of the effect of

structural vibrations would be worthwhile.

5.4.6 Misalignment of the Model

While a sphere has no preferred direction, and the orientation of the sphere is thus

unimportant for measurements made with the camera, misalignment would affect the

accelerometer measurements. The effect of model misalignment would be to slightly

decrease the drag value recorded by the accelerometer. If ax is the actual acceleration

experienced by the sphere in the x-direction, a′x is the measured acceleration, and θ

and φ are the yaw and pitch misalignments, respectively, then a′x = ax cos θ cosφ.

Yaw alignment was provided by the suspension arrangement: the suspension
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strings were secured in a V configuration near the outside points of the sphere by

clamping the two hemispheres together over the strings. Correct pitch orientation

was to be ensured by the sphere design - in particular by ensuring that the center of

mass lay at the geometric center. The inclusion of the metal tube as well as tension

in the accelerometer cable will affect the model orientation, however, particularly the

pitch.

Fortunately, any pitch misalignment could be measured in the cases in which the

metal tube was present. The tube edges provide a reference direction in the images

which could be compared to that provided by the nozzle exit. Straight lines were fitted

(in the least-squares sense) to the tube and the nozzle exit, and the angle between

them was calculated. The maximum deviation from perpendicularity in these shots

was 1.2◦. The resulting error in the drag from this maximum deviation is 0.02%, so

we can safely conclude that the misalignment error is negligible.

5.5 Movement of the Primary Sphere

Finally, we make note of a rather unexpected result. During those technique validation

shots in which the primary sphere was visible in the camera images, this sphere was

also observed to move during the course of the test time. The primary motion was

tracked in the same way as the secondary motion, and this allowed for the resolution

of displacements of fractions of a millimeter. In Figure 5.17 the movement of the

primary sphere in the flow direction is plotted along with the pitot pressure recorded

during shot 2321. As may be seen, the profiles are quite similar, with even some of the

minor features in the pitot pressure history also present in the displacement profile.

The force on the sphere is roughly proportional to the pitot pressure, suggesting that

the sphere is responding elastically to the induced aerodynamic loading. While this

is not surprising in itself, the apparent shortness of the response time and the ability
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to resolve the movement were somewhat unexpected.

This response of the primary sphere suggested that an alternative force-measurement

technique might be possible. In particular, if the movement of the primary sphere

could somehow be calibrated, the displacement recorded during a shot would give a

direct measurement of the induced force. Such a calibration was attempted with the

use of an impulse hammer. Unfortunately, the extent of movement produced by the

hammer impact was insufficient to allow a satisfactory calibration to be performed.

This is perhaps another area in which further investigation could be warranted.
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Figure 5.17: Plots of pitot pressure (solid line) and primary sphere displacement in
the flow direction (dashed line) recorded during shot 2321
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Chapter 6

Binary Asteroids in a Planetary
Atmosphere

6.1 Introduction

Recent observations have revealed that approximately 16% of asteroids in near-Earth

orbits may be binary systems (Margot et al., 2002). Range-Doppler imaging has

indicated that the primary bodies in these systems are typically spheroidal and are

spinning at rotation rates near the breakup point for strengthless bodies. Such obser-

vations suggest that these bodies are gravitationally bound ”rubble-piles”. Numerical

simulations have indicated that a likely mechanism for the formation of such binary

systems is the tidal disruption of a single strengthless body during a close planetary

encounter (Bottke and Melosh, 1996).

Evidence for binary systems entering planetary atmospheres may be seen in binary

crater fields on Earth and Venus (Melosh and Stansberry, 1991). If the secondary

body lies within the primary shock wave generated during the atmospheric transit, we

would expect the aerodynamic interactions to affect the final crater locations. These

interactions will be especially important in the case of Venus, with its extremely dense

and diffuse atmosphere.

The analytic methodology developed in Chapter 2 will allow us to model the

aerodynamic interactions during such an entry. Before attempting this, however, two
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tasks await us. First, we must determine the extent of the flow region over which

the blast wave methodology may be assumed to give a reasonable solution. Second,

the methodology must be extended to include, in particular, the case in which the

primary shock impinges on the secondary body.

6.2 Domain of Validity of the Blast Wave Method-

ology

In Chapter 2, the force coefficients of the secondary body predicted by the blast wave

methodology showed good agreement with coefficients obtained through numerical

simulations of flows with Mach numbers of the order of 50. This agreement held over

a range of secondary body sizes and for downstream displacements taken from the

centers of the two bodies of 3 and 8 primary body radii. These correspond to x/d1

values of ≈2 and 4.5, given that the shock stand-off distance is very small at these

Mach numbers. There was one important caveat to these results, however, in that the

theoretical shock radius was somewhat smaller than the computed radius. As we wish

to use the theoretical shock shape in our asteroid simulations, we need to determine

if it gives a reasonable approximation to the physical shock shape (as represented by

the computed profile).

In the top image of Figure 6.1 is a computational schlieren image of a sphere in a

freestream of Mach number 50. This image was produced by an Amrita simulation in

which the computational domain included up to 32 body diameters downstream. Also

plotted on this image is the shock radius given by the blast wave analogy. As may be

seen, the discrepancy noted earlier between the computational and theoretical shock

profiles persists downstream, but becomes a decreasing fraction of the shock radius.

In particular, the shock angles seem to agree very well to this point downstream.

Note, however, that the angles will eventually diverge, as the computational angle
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must tend towards the Mach angle β = arcsin(1/M), whereas the theoretical angle

will tend to zero as x/d1 → ∞. From this picture, then, we conclude that although

for small distances downstream there will be a fairly large error in the shock position,

the blast wave analogy gives a reasonable approximation to the physical shock shape

at these Mach numbers.
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Figure 6.1: Above: The shock wave generated by a sphere in an M = 50 freestream,
with the dashed line indicating the shock shape predicted by the blast wave analogy.
Below: Shock angles given by the blast wave analogy and computations at several
Mach numbers.

Also plotted in Figure 6.1 are the shock angles as functions of distance downstream

for the blast wave analogy and several computations, such as the one described above.

Profiles for Mach numbers of 20, 50, and 100 are included. To calculate the shock

angle in each case, a general hyperbolic curve of the form y2 = a − b(x − x0)
2 was

fitted to the locus of points given by the location of the maximum density gradient

at each point downstream. A curve of this form provides an extremely good fit over

the domain shown and allows the shock angle to be easily calculated. The blast wave

profile does not give a particularly good match to the M=20 curve, but matches the
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other two curves well. The blast wave and M=50 curves are all but indistinguishable

for x/d1 ≥ 5: somewhat surprisingly this match is better than that for M=100.

In Section 4.3, we raised the possibility of defining an effective origin to com-

pensate for the offset of the blast wave shock relative to the physical shock in the

intermediate- and far-fields. The close agreement between theoretical and computa-

tional shock angles observed in Figure 6.1 at high Mach numbers provides support

for this idea. For each of the computations shown, the mean offset between the com-

putational shock and the blast wave shock was calculated from a distance two body

diameters downstream of the stagnation point. For M=20, 50, and 100 the mean

offsets were 0.46, 0.28, and 0.24d1, respectively. Using these offsets, the maximum

discrepancy between the blast wave shock and the computational shock over the do-

main considered were 17%, 4%, and 2%. Thus, we conclude that for high Mach

numbers (M & 50), if we define an effective origin for the blast wave shock with an

offset of approximately half a body radius, this will give much improved agreement

with the actual shock shape in the intermediate- and far-fields.

Using the fitted hyperbolic computational shocks, we are able to make further

comparisons between computational and theoretical predictions. In particular, for

a perfect gas, knowledge of the shock angle at a particular Mach number allows us

to calculate the flow conditions immediately behind the shock through the oblique

shock relations. These may then be compared with the equivalent quantities given

by the blast wave analogy. Agreement or otherwise of these conditions will give us

an indication of the extent of the flow field over which we may consider the blast

wave methodology to give us reasonable results. The most important variables for

our calculation of CD and CL are the normal-shock-processed stagnation pressure

coefficient p′stag and the flow angle δ, so these shall be considered in that which

follows.

We first consider the blast wave case. Let the subscripts ∞ and 1 denote con-
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ditions in the freestream and immediately behind the shock wave (i.e., at r = Rs),

respectively. The subscript 2 indicates conditions immediately behind a normal shock

occurring at condition 1. A primed pressure variable again indicates normalisation

by ρ∞V
2/2. From Section 2.4, we have the following:

M2
1 =

2

γ(γ − 1)

[
1 + (γ + 1)2

(
x

Rs

)2
]

=
2

γ(γ − 1)

[
1 +

(γ + 1)2

η2
0

√
πCD/8

x

d1

]
(6.1)

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − (γ − 1)

(6.2)

p′1 =
1

γ + 1

(
Rs

x

)2

=
η2

0

γ + 1

(
πCD

8

)1/2
d1

x
(6.3)

p′2 = p′1
p2

p1

= p′1

(
1 +

2γ

γ + 1
(M2

1 − 1)

)
(6.4)

p′stag = p′2
pstag

p2

= p′2

(
1 +

γ − 1

2
M2

2

) γ
γ−1

. (6.5)

Note that as x/d1 →∞, p′stag tends to a constant value, given by

p′stag(x/d1 →∞) =
4

γ − 1

(
1 +

(γ − 1)2

4γ

) γ
γ−1

. (6.6)

The flow angle δ at r = Rs is

δ = arctan

(
1

γ + 1

Rs

x

)
= arctan

[
η0

γ + 1

(
πCD

8

)1/4(
x

d1

)−1/2
]
. (6.7)



118

We now consider the equivalent conditions behind an oblique shock. The shock

angle β is assumed to be known - here we will use the fitted profiles from above.

The Mach number and flow angle behind this shock, denoted by hatted variables to

distinguish them from the equivalent blast wave quantities, are

M̂2
1 = csc2(β − δ̂)

2 + (γ − 1)M2
∞ sin2 β

2γM2
∞ sin2 β − (γ − 1)

(6.8)

tan δ̂ = 2 cot β
M2

∞ sin2 β − 1

M2
∞(γ + cos 2β) + 2

. (6.9)

The pressure ratio through the oblique shock is

p̂1

p∞
= 1 +

2γ

γ + 1
(M2

∞ sin2 β − 1). (6.10)

The relations 6.2, 6.4, and 6.5 still hold here (with hatted variables replacing their

non-hatted counterparts), and since for a perfect gas ρ∞V
2/2 = γp∞M

2
∞/2, we have

p̂′stag =
2

γM2
∞

p̂stag

p∞
. (6.11)

In Figure 6.2, the stagnation pressure coefficients p′stag and p̂′stag and flow angles δ

and δ̂ are compared. The flow angles all agree reasonably well, with the M=50 and

M=100 profiles lying slightly closer to the blast wave curve than the M=20 profile

does. As for the stagnation pressure coefficient, the blast wave solution approxi-

mates the M = 20 profile quite poorly, whereas the M=100 profile is approximated

reasonably well over the domain considered. Agreement with the M = 50 pressure

coefficient profile is reasonable for x/d1 . 25, but diverges considerably after this.

At this Mach number, the force coefficients predicted by the blast wave methodology

showed good agreement with computational results for x/d1 ≈ 2, 4.5. Given that the

oblique value drops by approximately 20% from x/d1 = 5 to x/d1 = 25, whereas

the blast wave value drops by only a small amount, this gives a rough limit for the
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distance downstream to which we may expect the theory to give reasonable results.

For higher Mach numbers, of course, this limit will be somewhat greater; for lower

Mach numbers, somewhat smaller.
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Figure 6.2: Flow angle (top) and stagnation pressure coefficient p′stag (bottom) im-
mediately behind blast wave and computed oblique shocks.

For asteroids entering a planetary atmosphere, the minimum entry velocity is

the escape velocity for that planet (11.2 km/s for Earth, 10.4 km/s for Venus) but

the actual entry velocity will typically be significantly higher than this value. For

Earth, the minimum entry velocity corresponds to a minimum Mach number in the

upper atmosphere of M ≈ 35, but a value of 50 or higher is more likely. Within the

constraints of the perfect gas assumption, then, we may feel reasonably confident in

using the blast wave methodology to model asteroid entry for separation distances of
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up to ∼ 20d1. For higher entry velocities, we may extend this even further.

Finally, note that the blast wave methodology will not be valid for small values

of x/d1 (i.e., for x/d1 . 1.5). Although this part of the solution is not shown in

Figure 6.2, the singularity at x = 0 in the blast wave solution is not present in the

computed flows and leads to a considerable discrepancy, particularly in the value of

p′stag, in this region of the flow.

6.3 Extension of Blast Wave Methodology

We now wish to extend the methodology developed in Chapter 2 to enable us to

model, in particular, the forces on the secondary body when the primary bow shock

is impinging upon it. We shall do this using a combination of the blast wave analogy

and the oblique shock relations. As we saw in the previous section, the blast wave

methodology becomes increasingly questionable as the downstream displacement is

increased - it is hoped that by including the oblique relations, the domain of validity

may be extended beyond what it would otherwise be.

6.3.1 Lift Coefficients

Consider the computational lift profiles seen in Figures 4.7 to 4.10. The lift typically

reaches a minimum value at the point where the primary shock first begins to impinge

on the secondary body, which we assume to occur when the center of the sphere is

at r = Rs − d2/2, i.e., when the outside edge of the sphere is level with the shock.

As the lateral displacement is increased past this point, the lift coefficient increases

in a roughly linear fashion to a maximum value at r ≈ Rs and then falls away again.

As the flow configuration at the point r = Rs lends itself somewhat readily to simple

approximations, in that which follows we shall attempt to calculate the lift and drag

coefficients in this situation.
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At the point r = Rs, we may crudely model the top half of the body as being

exposed to singly-shocked flow and the lower half as being exposed to doubly-shocked

flow, all rotated by an angle δ corresponding to the flow angle immediately behind

the oblique shock. The geometry of this situation is shown in Figure 6.3. Note that

the use of the oblique shock flow angle rather than the corresponding blast wave angle

will introduce the freestream Mach number into the solution, whereas previously the

methodology was independent of Mach number (or more correctly, assumed an infinite

freestream Mach number). To determine the flow angle behind the oblique shock, we

require knowledge of the oblique shock angle. In the previous section we used a fitted

profile to provide this angle, but given the close agreement that was observed at high

Mach numbers between the shock angles of these fitted profiles and the blast wave

shock, we shall henceforth assume the shock angle to be given by the blast wave

analogy profile.

δregion
Singly−shocked

shock
Primary bow

Reference point
for lower region

region
Doubly−shocked

Figure 6.3: Approximation of flow configuration for calculation of the drag and lift
coefficients at r = Rs, corresponding to the assumed maximum CL position.

To calculate the force coefficients in this configuration, we assume that the pressure

distribution on the surface of the sphere is still given by the modified Newtonian

distribution, but with differing pressure coefficients on top and bottom. On the
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upper, singly-shocked side, p′stag is given by

p′stag =
2

γM2
∞

(
1 +

2γ

γ + 1

(
M2

∞ − 1
))(

1 +
γ − 1

2
M2

2

) γ
γ−1

, (6.12)

where

M2
2 =

(γ − 1)M2
∞ + 2

2γM2
∞ − (γ − 1)

. (6.13)

We have also used p′∞ = 2
γM2
∞

. The contribution to the lift coefficient from this

upper side is

Cu
L = − 1

π

∫ π

0

∫ π/2

0

(p′stag − p′∞) cos2 θ ŷ sin θ dθ dφ

− 1

π

∫ π

0

∫ π

0

p′∞ŷ sin θ dθ dφ

=
p′stag − p′∞

8
(2 sin δ − cos δ)− p′∞ cos δ, (6.14)

where ŷ = cos δ sinφ sin θ − sin δ cos θ.

Similarly, the contribution to the drag coefficient from the upper side is

Cu
D =

p′stag − p′∞
8

(2 cos δ + sin δ)− p′∞ sin δ. (6.15)

On the lower side, the relevant pressure coefficients are the blast wave values p′1 and

p′stag, as in Section 2.4. Note that p′stag differs here from 6.12 in that the conditions

before the normal shock are the blast wave conditions rather than the freestream

conditions. In Chapter 2 we took the sphere’s center as our reference point for the

calculation of these pressure coefficients, but in the configuration being considered

here, this point will no longer be suitable. A reasonable choice seems to be the point

at the same distance downstream but midway between the center and the inside edge

of the sphere, i.e., if we denote this point by rref , then rref = Rs − d2/4. This choice

is shown in Figure 6.3. The contribution to the lift coefficient from the lower side,
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given the current assumptions, will be

C l
L =

p′stag − p′1
8

(2 sin δ + cos δ) + p′1 cos δ. (6.16)

For the contribution to the drag coefficient, however, we wish to include the deriva-

tives of p′stag and p′1 with respect to x, as we saw in Section 2.4 that the inclusion of

these terms generally resulted in improved agreement with the computational profiles.

With these terms, the contribution to the drag coefficient from the lower half of the

sphere may be written

C l
D =

p′stag − p′1
8

(2 cos δ − sin δ)− p′1 sin δ

− 1

30

d2

d1

∂(p′stag − p′1)

∂(x/d1)

(
2 cos2 δ + 1− 8

π
sin δ cos δ

)
− 1

3

d2

d1

∂p′1
∂(x/d1)

.

(6.17)

However, having noted in the previous section that the value of p′stag in the blast

wave solution near the shock can diverge downstream from that for the oblique shock,

we multiply C l
L and C l

D by the ratio of the oblique shock value to the blast wave value

at r = Rs, which is p̂′stag/p
′
stag in the notation of the previous section. The resulting

CL value, which we assume to be the maximum value in the profile, is

Cmax
L = Cu

L +
p̂′stag

p′stag

C l
L, (6.18)

and the corresponding CD value:

CD = Cu
D +

p̂′stag

p′stag

C l
D. (6.19)

The resulting profiles as functions of the diameter ratio d1/d2 are plotted in Fig-

ure 6.4 for a freestream Mach number of 50 and x/d1 ≈ 2.07 (this value corresponds
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to a center-to-center downstream displacement of 3 primary body radii). Also plot-

ted are values obtained from an AMROC simulation with the same parameters. The

technical details of this computation are identical to the M = 50, diameter ratio 4

computations in Chapter 3. Agreement of the CL profile with the computational val-

ues is remarkably good, considering the crudity of the approximations that have been

made. The CD profile agrees well for smaller values of d1/d2, but less well for larger

values. Note, however, that there was some uncertainty involved with the location

of the shock in the computations, and any resulting error in the positioning of the

spheres will affect those of a smaller diameter most greatly.
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Figure 6.4: Computed and theoretical force coefficients at r = Rs as a function of
diameter ratio for a downstream displacement of 3 primary body radii and Mach
number of 50.
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So, our semi-empirical description of the lift coefficient profile is as follows. For

r < Rs−d2/2, the lift coefficient is given by the blast wave methodology of Section 2.4,

using the modified Newtonian pressure distribution and including x-derivatives. If

Cmin
L is the value given by the methodology at r = Rs− d2/2, the value for CL in the

range r ∈ (Rs− d2/2, Rs) is obtained by a linear interpolation between Cmin
L and the

value Cmax
L from 6.18. As r is increased further, the lift coefficient must eventually

revert to its freestream value of zero; this is assumed to occur at r = Rs + d2/2.

Between r = Rs and r = Rs + d2/2, we assume that the drop in lift also occurs

linearly.

6.3.2 Drag Coefficients

We now turn to the drag coefficient profiles. These are generally less easily charac-

terised than the lift profiles, so we must be a little careful. Using the description

above, we have already obtained reasonable values when the center of the sphere is

at r = Rs, so we shall seek to extend this description for r < Rs. We assumed at

r = Rs that the sphere was cut by a plane through its center into a singly-shocked

region above and a doubly-shocked region below. For r < Rs, we also assume that

the sphere is cut by a plane into these two regions, with the plane passing through

Rs and rotated by the flow angle δ. However, when the center of the sphere is at

r = Rs, we have used the value of δ given by the oblique shock relations, whereas at

r = Rs − d2/2 we use the blast wave value, so for points in between we use a linear

bridging function between the oblique shock and blast wave values. The geometry in

this situation is shown in Figure 6.5.

We again use the modified Newtonian pressure distribution on the surface of the

sphere, with differing pressure coefficients in the two regions. If α is the angle that

separates the singly- and doubly-shocked regions, as shown in Figure 6.5, it may be
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shock
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α

Figure 6.5: Approximation to the flow geometry used to calculate the drag coefficient
for shock impingement with r < Rs.

shown that the contribution to the drag coefficient from the upper region is given by

Cu
D = (p′stag − p′∞)

[
1

8
sin δ cos4 α+

cos δ

4π

(
π − 2α− 4

3
sin 2α− 1

6
sin 4α

)]
+ p′∞ sin δ cos2 α (6.20)

On the lower region we use the blast wave analogy as at r = RS, but it is not im-

mediately clear at which reference point, rref , we should take the blast wave variables.

At r = Rs − d2/2, the reference point coincides with the center of the sphere (i.e.,

rref = r), whereas at r = Rs, our choice of reference point is rref = Rs − d2/4. We

could use a simple linear bridging function between these two values, but this does

not make much physical sense, for the following reason. For r only slightly greater

than Rs − d2/2, the fact that the shock is impinging near the top of the sphere will

make little difference to the conditions near the front of the sphere that contribute

most to the drag. Thus, for r close to Rs−d2/2, we would like rref ∼ r. The simplest

function that satisfies this and the two boundary conditions is the quadratic function

rref = r − (Rs − d2/2− r)2/d2.

We may then obtain the contribution to the drag coefficient from the lower region

of the sphere. The full expression is rather lengthy and is given in Appendix C,

along with the full derivation of the drag coefficient in the impinging situtation.
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This expression simplifies to Equation 6.17 for r = Rs. As we multiplied this latter

expression by p̂′stag/p
′
stag to obtain the full drag coefficient, to ensure continuity at

r = Rs we multiply the lower contribution in the impinging case by a function that

varies linearly between 1 at r = Rs − d2/2 and p̂′stag/p
′
stag at r = Rs.

Thus we have our expression for the drag coefficient in the case r ∈ (Rs−d2/2, Rs].

For r > Rs, this coefficient, like the lift coefficient, is assumed to drop off linearly

to the freestream value (in this case 0.88) at r = Rs + d2/2. For r < Rs − d2/2, we

again use the methodology from Section 2.4 with the modified Newtonian distribu-

tion and including x-derivatives. We will, however, drop the r-derivatives from the

drag expression, as these contribute negligibly to the drag but would cause a slight

discontinuity at r = Rs − d2/2.

Finally, we observed in Chapter 4 that the theoretical drag coefficient profile drops

off with decreasing r/Rs more rapidly than in the numerical simulations. In all the

simulations, however, as r → 0, the drag coefficient tends to a value of between 0.15

and 0.2 that is relatively independent of body size or downstream displacement. We

thus set a minimum value for the drag coefficient of 0.15 in the shocked region.

The full drag and lift coefficient profiles that result from these adjustments are

shown in Figure 6.6. The Mach number for the theoretical profiles is M = 50, while

both the M = 10 and M = 50 computations are shown, as there are not always

sufficient points for M = 50 alone to be able to make a good comparison. We have

made no attempt to model the wake area, but forces are generally small there and

so will not differ significantly from those provided by our semi-empirical description.

Agreement between theoretical and computational profiles is generally quite good.

Note that the minimum lift point occurs at a slightly smaller value of r/Rs in the

theoretical profiles than in the computational profiles. We may attribute this to the

fact that the shock radius is smaller in the theoretical case, so Rs − d2/2, the value

of r at which the minimum lift is assumed to occur, also takes a smaller value.
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6.4 Simulating the Planetary Entry of a Binary

Asteroid System

6.4.1 Simulations of the Asteroid 2000 DP107

We now focus our attention on the near-Earth asteroid 2000 DP107. Radar images

obtained by Margot et al. (2002) have shown this asteroid to be composed of two

bodies: an ∼800 meter diameter primary and an ∼300 meter diameter secondary

orbiting around their common center of mass. The orbital semimajor axis is 2620±160

meters and the orbital period is 1.755±0.007 days, which constrain the total mass

of the system to 4.6±0.5 × 1011 kilograms and the bulk density of the primary to

1.7±1.1× 103 kilograms per cubic meter. The primary body is roughly spherical and

has a rotation period of 2.7755±0.0002 hours, which is near the breakup limit for a

strengthless body of this size. Such rotation rates are typical of primary bodies in

other observed binary systems, suggesting these bodies to be gravitationally-bound

aggregrates rather than monoliths.

The heliocentric orbit of asteroid 2000 DP107 has a semimajor axis of 1.37 AU,

an eccentricity of 0.38, and an inclination of 8.7◦, which brought it within 0.048 AU

of Earth on 19 September 2000. In this section, we will model a somewhat closer

approach in which this binary system enters the Earth’s atmosphere. In particular,

we will investigate the effect of aerodynamic interactions on the relative displacement

of the two bodies at the point of impact. We will also seek to determine the effect

that these interactions have on the likelihood that a single impact crater is formed

rather than a doublet crater.
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6.4.1.1 Simulation Parameters

We begin by assuming that the orbital parameters of the binary system at the point of

atmospheric entry have been unperturbed by the approach; in particular, we assume

that tidal forces do not disturb the orbital configuration (more shall be said about this

shortly). For the 2000 DP107 system, the task of simulating an atmospheric entry

is made easier by the fact that the value of the eccentricity of the secondary’s orbit

is only 0.01, which means we may to a very good approximation treat the orbit as

circular. Even with this simplification, however, there are many variables that must

still be considered.

We assume that the initial entry velocity of the primary body lies in the x-z

plane, where the z axis is normal to the surface of the Earth (which we assume to

be flat). We denote the angle made by the velocity vector with the x-axis by θ and

the magnitude of the velocity by V . The angle θ may take any value from 0 to π/2,

with π/4 being the most likely entry angle. The minimum value for V is 11.2 km/s,

corresponding to the Earth’s escape velocity, with values of up to around 70 km/s

possible. We will need two further angles to describe the orientation of the plane of the

secondary’s orbit relative to the x-z plane, and another angle to describe the position

of the secondary within this orbit. This gives us five variables, just for this particular

binary system, which is too large a parameter space to explore. Fortunately, we can

make further simplifications.

First, for the given orbital period and semimajor axis, the orbital speed is of the

order of 0.1 m/s, and this will be typical of such systems, given the weakness of the

gravitational attraction between bodies of such sizes. This initial orbital velocity is

negligible, given that the atmosphere will be traversed within a few seconds, and so

we may treat the secondary as initially stationary relative to the primary. As the

initial relative position of the secondary is limited to points described by the surface

of a sphere with the primary at the center, we may replace the three angles describing
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the secondary’s orbit by two angles describing the secondary’s initial position relative

to the primary. These angles, which we denote by φ and ψ, are shown in Figure 6.7.

The figure should be interpreted as follows. If we initially place the secondary body

at the point (a, 0, 0), we first rotate by an angle θ about the y-axis - this also gives

the rotated x′- and z′-axes. Subsequently, a rotation of ψ about the z′-axis and a

further rotation of φ about the y-axis are performed.
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Figure 6.7: Initial binary system configuration for atmospheric entry

We now consider the entry velocity V . For bodies of the size of those in the

2000 DP107 system, this velocity will change by only a small amount during the

flight time, and the relative displacement of the two bodies will typically be small

compared to the shock radius (although in the impinging case, the secondary radius is

the more relevant length). The forces on the secondary body are given by 1
2
ρ(z)CiV

2A,

where Ci is the force coefficient in the i-th direction. In the blast wave methodology,

however, we assume Ci to depend only on the position of the secondary relative to

the primary (and to a small degree the Mach number, but this will also change only
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very little during the flight). We also assume that the mass and area are constant

throughout the flight - more will be said about these assumptions shortly. The total

displacement of the secondary relative to the primary in the i-th direction due to

aerodynamic loading will then be

si =

∫ t0

0

∫ t

0

ai(τ)dτ dt

=

∫ t0

0

∫ t

0

1

2
ρ(ζ(τ))CiV

2A

m
dτ dt

=

∫ 0

z0

∫ z

z0

1

2
ρ(ζ)CiV

2A

m

dτ

dζ

dt

dz
dζ dz

≈ 1

2
Ci

A

m sin2 θ

∫ 0

z0

∫ z

z0

ρ(ζ)dζ dz,

which is independent of the entry velocity (z0 is the height at which the atmosphere

is assumed to begin).

We are thus left with three parameters: the entry angle θ and the two angles

describing the position of the secondary relative to the primary, φ and ψ. For a given

value of θ, then, we vary φ and ψ over the range of values in which shock wave inter-

actions will be important. For each combination of values, the trajectories of the two

bodies are integrated from a height of 95 km. Atmospheric information is taken from

the Smithsonian reference tables (Forsythe, 1954), with linear interpolation between

values. The primary body is assumed to generate a shock shape as given by the blast

wave analogy, with the shock stand-off distance assumed to be zero. The aerodynamic

force acting on the primary body is simply 1
2
ρ(z)CDV

2A in the direction of travel,

where CD is assumed to take the value 0.88. The aerodynamic forces on the secondary

are given by the extended blast wave methodology if part of the secondary is inside

the primary shock; otherwise, the force is simply the drag force in the direction of

travel. Acceleration due to gravity is included, though it will have a negligible effect

on bodies of these sizes. The integration is continued until both bodies have reached
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ground level.

At the point of impact, the bodies are assumed to create craters with sizes given

by an energy-diameter scaling law. The law that shall be assumed here was proposed

by Gault (1974) and used by Passey and Melosh (1980) to describe impacts producing

craters of kilometer dimensions:

D = 0.027ρ1/6
m ρ

−1/2
t E0.28

k sin1/3 θf , (6.21)

whereD is the crater diameter, ρm and ρt are the densities of the meteoroid and target

respectively, Ek is the kinetic energy of the relevant body and θf is the impact angle

relative to the horizontal. All variables are in cgs units. For these simulations, we

will assume a target density for Earth of 3 g/cm3. It is not clear exactly the amount

of separation needed between the two craters in order that they may be recognized

as a doublet rather than a single crater; we shall use the criterion that if the center of

the secondary crater lies outside the primary crater, a doublet crater is recognizable.

6.4.1.2 Model Assumptions

The assumptions of the model during the atmospheric transit are as follows:

1. The rotation rates of the two bodies and the relative velocity are negligible.

2. Both bodies are spherical and remain so, with no mass loss throughout the flight

time.

3. The atmosphere behaves as a perfect gas.

4. The curvature of the Earth is negligible.

We have already deduced that the initial relative velocities of the two bodies in

such binary systems may be ignored. During the course of the atmospheric transit

the bodies will experience different accelerations, but, for bodies the size of those in
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question, the resulting relative velocity will be small compared to the velocity of the

system. To show this, for each of the simulations of 2000 DP107, the final velocities

of the two bodies were recorded. For an entry angle of π/8, the root-mean-square

velocity difference over all simulations was around 1% of the final primary velocity,

with the maximum difference being approximately 4% of this value. For an entry angle

of π/16, the mean and maximum differences were around 2% and 9%, respectively. For

a 9% difference this assumption becomes a little questionable, especially considering

the V 2 dependence of the forces, but, given the other assumptions of the model, is

not cause for too much concern.

As for rotations, the surface of the 2000 DP107 primary is initially moving at

approximately 2.5 m/s, which is again negligible compared to the entry velocity.

During the atmospheric transit, if the bodies are spheres of uniform composition, the

moments generated will be negligible. Real bodies will of course deviate from perfect

sphericity, but given the size of the bodies (and thus the extremely large rotational

inertias), it is unlikely that rotations would become important during the flight time.

Assumption (2) is somewhat questionable, however. While radar images have in-

dicated that the primary body is roughly spherical, it probably owes this shape to

its strengthless composition. Thus, on entering the atmosphere it will be subject to

deformation - indeed, authors have used hydrodynamic equations of state to describe

such an entry. The loading will tend to flatten the primary body, leading to a broad-

ening of the primary bow shock. Given the size of the primary body, however, and

thus the length of time necessary for an induced pressure wave to travel throughout

the body, we do not expect this deformation to be too significant. Also, the depen-

dence of the shock radius on primary diameter is relatively weak - at a given point

downstream, Rs ∼
√
d1. Any deformations or other deviations from sphericity of the

secondary would be more significant, however, given that our analysis is very much

tied to this geometry. As the secondary is smaller, it is more likely to be monolithic
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in nature, but at the same time less likely to be initially spherical. From the point of

view of the assumption of sphericity, then, this modeling is of a somewhat idealized

situation.

The assumption of constant mass is also open to question, as ablation will occur

during the atmospheric transit. This effect could easily be incorporated into the

model through the introduction of an ablation equation such as that found in Passey

and Melosh (1980), but given the further uncertainty associated with the relevant

constants, such as the heat transfer coefficient, it was deemed preferable to neglect the

effects of ablation in the current simulations. Also, for bodies of the sizes considered

here, the fraction of mass lost through ablation will typically be quite small.

While we may accept Assumption (2) as something of an idealization in the case

of Earth, for Venus it will become hopelessly unrealistic. Asteroids hundreds of

meters in size typically undergo catastrophic fragmentation in the dense atmosphere of

Venus, leaving a characteristic radar-dark pattern on the surface of the planet (Bottke

and Melosh, 1996). Obviously, an assumption of no deformations will become quite

untenable in this situation, and it is for this reason that we will limit ourselves to an

Earth entry in the simulations of this chapter.

Assumption (3) also represents something of an idealization. We observed in

Section 5.4.4 that the effect of dissociation on the pressure behind a shock wave in

a diatomic gas is quite small, although at the speeds in question, further real-gas

effects, such as ionization, will become significant. Flow chemistry is also known

to have an effect on shock shape - the shock over a wedge in dissociating flow, for

example, is curved inwards from the oblique frozen shock. Thus, we might expect

the shock angle to be affected near the primary body, which will modify the shock

radius further downstream. If anything, however, the effect of dissociation will be to

shift the shock inwards, bringing it closer to the blast wave analogy profile. Finally,

Assumption (4) will be reasonable provided the angle of entry is not too shallow.
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In addition to these aerodynamic assumptions, we have also made note of the

assumption that the orbital parameters of the system are unchanged during the ap-

proach to Earth. In fact, the influence of Earth’s gravity could significantly affect

the orbital configuration. Note, for example, that the force on the secondary body

due to the Earth’s gravity becomes larger than that due to the primary’s gravity at

a distance of approximately 107 km. If the average approach speed is 10 km/s, this

distance will take approximately 6.5 orbital periods to cover. During this time, the

orbital configuration could be strongly perturbed by the accumulative effect of tidal

forces caused by the slightly different positions of the two bodies in the Earth’s gravi-

tational field. Tidal forces will also cause significant deformations to the strengthless

bodies. Such effects are, however, outside the scope of this work and will not be

considered further.

6.4.1.3 Results

Figures 6.8 through 6.10 show the results of simulations for three entry angles: π/4,

π/8, and π/16. In the left plot of each figure, the magnitude of the relative displace-

ment of the two bodies on impact are plotted as a function of the angles φ and ψ,

with contours plotted underneath. The entry velocity in each of these cases is 20

km/s. In the right plot of each figure, the profiles are shown on the slice ψ = 0 and

include entry velocities of 11.2, 20, and 50 km/s as well as the profile obtained if no

aerodynamic interactions are included. The horizontal lines in these plots indicate

the radius of the primary crater produced at the relevant entry velocity. Thus, if

the relative displacement curve lies above this line, a doublet crater will be formed

according to our criterion; otherwise, the secondary crater will be indistinguishable

from the primary crater.

The form of the displacement profiles are generally as one might expect, given

the nature of the lift coefficients experienced by the secondary body in the current
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configuration. For small φ and ψ, the secondary body is initially positioned entirely

within the primary shock, where entrainment will occur due to the attractive force

experienced towards the primary axis of travel. The resulting relative displacement

on impact will then be smaller than if no aerodynamic interactions were present. If

the primary shock impinges in the initial configuration, however, the force will be

repulsive, and this is observed in the sharp jump in relative displacement at certain

values of φ and ψ. Note that, from the point of view of aerodynamic interactions,

the relative displacement should be symmetric in φ and ψ. At the point of impact,

however, this symmetry is lost.

The effect of aerodynamic interactions on the final relative displacement for θ =

π/4 is very small as the time available for interaction is relatively brief. As the entry

angle becomes shallower the effect of the interactions becomes more noticeable. With

bodies of these sizes, however, the entry angle needs to be quite shallow (of the order

of π/16) before the transit time is large enough that the aerodynamic effects are

really significant. The effect of the entry velocity is quite small, as predicted, but also

becomes more noticeable as the entry angle is decreased.

As the effect of aerodynamic interactions is relatively small for this asteroid sys-

tem, the effect on the likelihood of a doublet rather than a single crater being formed

will also be small. For θ = π/4, we see that there will in fact be no effect as, even

at the slowest entry velocity, a doublet crater will be formed only if the bodies are

initially configured such that no aerodynamic interactions will occur. For entry angles

of π/8 and π/16, however, aerodynamic interactions will occur in the configurations

for which the final relative displacement is near the transition point from a single to

a doublet crater. Note that, away from ψ = 0, these interactions will occur for con-

figurations that result in smaller relative displacements than those at ψ = 0. Thus,

although the effect of interactions appears negligible in the ψ = 0 slice of Figure 6.10

this will not necessarily be the case for other values of ψ.
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To quantify the effects of interactions on this likelihood, further simulations were

run in which φ and ψ were varied from -π/2 to π/2, corresponding to configurations

in which the secondary is located on the downstream hemisphere of possible positions

(and thus representing half of all possible configurations). These were carried out for

both interacting and non-interacting cases and the numbers of simulations resulting

in single rather than doublet craters were compared between the two. Differences

were found to be negligible, however. For θ = π/8 and V=20 km/s, for example,

the fractions of impacts resulting in single craters were 0.1100 in the interacting case

and 0.1103 in the non-interacting case, while for θ = π/16 and V=50 km/s the

corresponding fractions were 0.109 and 0.108 respectively.

6.4.2 Further Simulations

As we have seen, for bodies of the size of those in the binary system 2000 DP107,

aerodynamic effects during the atmospheric transit are relatively small. In this section

we will simulate the planetary entry of a smaller system for which we would expect

the effect of aerodynamic interactions to be more significant. As no binary systems

have been observed with a primary diameter smaller than ∼200 m, we will choose

this as our primary body size. In addition to the entry angle, we will vary the size

and orbital radius of the secondary to observe the effect that these parameters have

on the final configuration.

In Figure 6.11 are plotted the final relative displacements for the entry of a system

one quarter the scale of 2000 DP107 (i.e., secondary radius 37.5 m, orbital radius 655.5

m), with an entry angle of θ = π/4. Comparing to Figure 6.8, we see that the effect

of aerodynamic interactions for these smaller bodies is far more significant. This may

also be seen in Figure 6.12, in which this same system is simulated for θ = π/8.

In Figure 6.13 the secondary body radius is 37.5 m, as in the previous two figures,

but the initial orbital radius has been doubled to 1311 m. The entry angle is π/4.
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The final relative displacement profiles are similar to those in Figure 6.11, but the

domain of aerodynamic influence is smaller at this radius as less solid angle is covered

by the primary shock. In Figure 6.14 the orbital radius is 655.5 m, but the secondary

radius has been halved to 18.75 m. The entry angle is again θ = π/4. In Chapter 2 we

saw that the lift coefficient experienced by the secondary body became smaller (less

negative) as the body size was decreased. Here we see that this results in relatively

small aerodynamic effects in those cases in which the secondary remains entirely inside

the primary shock during atmospheric transit. If the primary shock impinges on the

secondary, however, large relative displacements still result.

As in the case of the larger system, for the most probable entry angle of θ = π/4

the effect of aerodynamic interactions on the likelihood of a doublet versus a single

crater forming is very small. Only at the slowest entry speeds will the interactions

produce any sort of effect. For shallower entry angles, however, such as in the config-

uration shown in Figure 6.12, we see that the interactions could substantially affect

this likelihood. To quantify this, simulations were performed for the parameters con-

sidered in Figure 6.12 for φ and ψ in the range -π/2 to π/2, and the numbers of

simulations resulting in single rather than doublet craters were again compared be-

tween interacting and non-interacting cases. For an entry velocity of 20 km/s, the

fraction of impacts resulting in a single crater was 0.179 for the interacting case and

0.203 for the non-interacting case. For an entry velocity of 50 km/s, the correspond-

ing fractions were 0.406 and 0.437, while for 11.2 km/s they were 0.080 and 0.088

respectively. We see then that in all cases the interactions increase the overall proba-

bility that a doublet crater will be formed, albeit by a relatively small amount. This

increase is a result of configurations in which the secondary body is repelled from

the primary shock due to shock impingement. Note also that this increase would

be larger were these configurations not compensated for to some degree by those in

which entrainment occurs, the effect of which is to make a single crater more likely.
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Chapter 7

Meteoroid Fragmentation in a
Planetary Atmosphere

7.1 Introduction

It has been estimated that over 70 million meteoritic bodies enter the Earth’s atmo-

sphere every day (Baldwin, 1963). A vast majority of these burn up in the upper

atmosphere, but occasionally a larger body will penetrate into the lower atmosphere.

For bodies ∼1 km or larger in diameter, the pressure waves induced by the result-

ing aerodynamic loading do not have time to travel throughout the body during the

atmospheric transit. These bodies effectively do not see the atmosphere, and thus

arrive at the surface of the Earth relatively intact. For smaller bodies, however, the

aerodynamic loading will typically exceed the strength of the body at some point

during the flight, and breakup will occur. If the resulting fragments are large enough,

they will survive transit through the remaining atmosphere and leave a crater field

on the surface of the Earth. A recent example is the Sikhote-Alin meteoroid. The

crater field produced by such a fragmentation event is typically elliptical in shape and

is a record of the processes undergone by the fragments from the moment of breakup

onwards.

Passey and Melosh (1980) have estimated that three main effects are responsible

for the separation of fragments in crater fields: gravity/drag, bow shock interactions,
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and separation due to crushing. The first of these is well understood and is pri-

marily responsible for the downrange separation seen in crater fields (i.e., along the

semimajor axis of the ellipse). Smaller fragments are decelerated more quickly by

aerodynamic drag than larger fragments, allowing gravity a greater time to steepen

their trajectories. Larger fragments thus typically impact further downrange, with

smaller fragments impacting towards the uprange end of the field. The other two

effects are less well understood and are responsible primarily for the cross-range sep-

aration.

Within the the main scatter ellipses of more recent falls, however, are sometimes

observed secondary patterns that are indicative of further processes at work. Krinov

(1974), for example, identifies secondary scatter ellipses in the Sikhote-Alin field and

attributes these to further stages of fragmentation. As was noted in Chapter 2,

however, the effect of aerodynamic interactions after the main separation could result

in a pattern similar to that that would be produced by secondary fragmentation. In

particular, if a large fragment entrains several other fragments inside its shock, this

could lead to a grouping of craters within the main scatter pattern.

In this chapter, then, we put forward the hypothesis that the secondary scatter

ellipses seen in fields such as Sikhote-Alin are produced by later-time aerodynamic

interactions rather than secondary fragmentation. To test this, we will carry out

simulations of a Sikhote-Alin-like breakup and fall. A single fragmentation event

will be assumed in each case, but during the fall the fragments will be allowed to

interact aerodynamically. Comparisons will be made with simulations in which no

aerodynamic interactions are included, and conclusions will be drawn based on pat-

terns seen in the resulting fields. First, however, we will outline the models used in

these simulations to describe the fragmentation event and the aerodynamic processes

during the fall.
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7.2 The Fragmentation Process

The processes at work during the actual fragmentation of a meteoroid are not partic-

ularly well understood, and no attempt to further this understanding will be made

here. For the current work, we are more concerned with modeling the aerodynamic

interactions after the fragmentation event. However, to carry out such a modeling,

we require at least a plausible initial arrangement of fragments with appropriate sep-

aration velocities. Producing such an arrangement is in itself not a trivial task and

will be the focus of the current section.

7.2.1 Generation of Fragment Masses

As in the binary meteoroid case, assumptions will need to be made about the shapes

of the parent body and fragments. For simplicity, the parent body is assumed to

be spherical and unrotating, although these assumptions are not key to our model.

The fragments are also assumed to be spherical, in this case because we wish to use

the extended blast wave analogy of Section 6.3 to model the subsequent aerodynamic

interactions. There is some justification to this last assumption, however. Frag-

mentation models, such as the dynamic fragmentation model of Grady (1982), often

assume that the generation of fragments is such as to minimize the overall energy

density with respect to the fracture surface area. Since, for a given fragment size, the

surface energy to volume ratio is minimized in the case of a spherical fragment, we

might expect the fragments to be generally spherical in shape.

It is assumed that a particular fragmentation event is to be modeled, and that

the fragment number, which we denote by N , is known. To generate the fragments,

N − 1 random numbers between 0 and 1 are generated. These numbers are ordered,

dividing the interval [0,1] into N fractional lengths, each of which is assigned to a

fragment. The mass of each fragment is then taken to be the assigned fraction of the
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initial parent body mass. This process was presented by Grady and Kipp (1985) to

describe dynamic fragmentation, but the differences between particle size statistics

in static and dynamic fragmentatation are not well understood, and theoretical work

in both areas has tended to start from similar statistical assumptions. It may be

shown that as the parent body becomes large in relation to the average fragment size,

the resulting distribution of masses is described by Poissonian statistics (Grady and

Kipp, 1985).

7.2.2 Initial Fragment Positions

Having generated the fragment masses, we wish to position them within the parent

volume in an appropriate manner. In general, it is impossible to fill a given volume

with an arbitrary distribution of spheres without either some empty remaining volume

or some overlap between spheres. If the sum of volumes of the spheres is the same as

the total volume of the space to be filled, as is the case here, the unoccupied volume

will be equal to the overlapping volume, and we seek to minimize this in some way.

The approach taken here is to use an iterative routine, as follows.

The fragments are initially assigned positions at random within the volume of

the parent body. If two spheres share an overlapping volume, they are each as-

signed a ”force” away from one another, with a magnitude proportional to the

volume overlapped. For two spheres of radii r1 and r2, with centers separated by

a distance d < r1 + r2, it may be shown (see http://mathworld.wolfram.com/

Sphere-SphereIntersection.html) that the overlapping volume is given by

V =
π

12d
(r1 + r2 − d)2(d2 + 2d(r1 + r2)− 3(r1 − r2)

2). (7.1)

Once each pair of spheres has been considered, each sphere is displaced by an

amount proportional to, and in the direction of, the sum of forces acting upon it. If

http://mathworld.wolfram.com/Sphere-SphereIntersection.html
http://mathworld.wolfram.com/Sphere-SphereIntersection.html
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this leads to part of a sphere being outside the primary volume, it is brought back

inside. This process is repeated until the sphere positions converge to a somewhat

steady arrangement (some small oscillations will be unavoidable).

Figure 7.1 shows one example of this approach. The number of fragments is

200, and the radius of the parent body is 2. The fraction of the total volume left

unoccupied is estimated with a Monte-Carlo integration scheme. The fraction of the

total volume left unoccupied before arrangement in this instance is 0.425; this value

is reduced to 0.157 by the arrangement.

To investigate the effect that the number of fragments has on the efficacy of this

arrangement process, a number of simulations were run for a variety of fragment

numbers (100 simulations for each choice of fragment number) and the mean reduc-

tion factors calculated. The results from these simulations are shown in Figure 7.2.

The upper plot shows the mean of the volumes left unoccupied before and after the

arrangement process - in each case this was again estimated using a Monte-Carlo

integration scheme. The reduction factor may be seen to be typically of the order

of 2.5-3. The lower plot shows the sum of all intersected volumes between pairs of

spheres, divided by the sum of fragment volumes, before and after arrangement. As

the same physical volume may be occupied by more than two spheres, it is possible

for this value to exceed 1, as indeed may be seen to happen. The reduction factor for

this value is greater - typically 4-6. Note that a minimum occurs in both reduction

factors at around 500 fragments.

7.2.3 Fragment Separation Velocities

We now turn to the velocities the fragments might be expected to have after the

fragmentation event and initial separation phase. Let us first consider the source of

these velocities.

For a meteoroid of a few to a few tens of meters in diameter, the aerodynamic
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Figure 7.1: Configuration of spherical fragments before (top) and after (below) ar-
rangement according to the procedure described. The left plot in each case shows an
exterior view of the fragments, while the right plot shows a cut through the center of
the initial volume. The number of fragments is 200.
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Figure 7.2: Reduction in the unoccupied volume (top) and the sum of intersecting
volumes (bottom) divided by total volume for various numbers of fragments.
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loading experienced during the atmospheric transit will be, to a good approximation,

quasistatic. Consider, for example, a body 20 m in diameter entering the atmosphere

at a rather high velocity of 50 km/s at the most probable entry angle of π/4. Assuming

a sound speed of 4 km/s in the body, a compression wave will take 0.01 seconds to

travel across the body and be reflected back again. During this time, the body will

have travelled 500 m, or 350 m in the vertical direction. Assuming an atmospheric

scale height of 8.4 km, the atmospheric density will have increased over this time

by 4%. As the velocity will change very little during this time, this will also be the

increase in dynamic pressure. As this increase is small, the aerodynamic loading may

be treated as approximately quasistatic during the transit.

Given that the loading is static, the kinetic energy imparted on the fragments

during the fragmentation event can only come from the strain energy within the me-

teoroid just prior to fragmentation. To estimate the mean fragment velocity resulting

from this, we note that the strain energy Es in the unfragmented meteoroid may be

estimated as

Es ≈ pA∆l

= pAle

= pAl
σ

E

=
p2Al

E
,

where p is the mean pressure over the front of the sphere, which we may estimate as

ρaV
2/2, ρa being the atmospheric density; A is the meteoroid cross-sectional area; l

the length; e and σ the strain and stress, respectively; and E the Young’s modulus.

For an iron meteoroid, with Young’s modulus ≈200 GPa, of ∼ 2 m diameter, frag-

menting at a height of 15 km and a velocity of 20 km/s (these will be the approximate

values of the meteoroid we will consider shortly), the strain energy will be ∼20 MJ.
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Assuming that this is converted entirely into kinetic energy of the fragments, the

mean fragment velocity will be given by vf =
√

2Es/m, where m is the meteoroid

mass. In the current case, vf ∼1 m/s, which is very small.

The fragmentation process will thus impart only a negligible initial velocity on

the fragments; the bulk of the separation velocity must come from the repulsive

aerodynamic forces developed as the fragments separate. This force is present because

in the space between two closely positioned fragments the pressure is close to the

dynamic pressure, ρV 2, whereas on the outsides of the bodies the pressures are much

smaller. Passey and Melosh (1980) deduced that for two fragments, the tranverse

velocity developed due to this interaction is

VT =

(
3

2
C
Ri

Rf

ρa

ρm

)1/2

Vi, (7.2)

where Ri and Rf are the radii of the initial meteoroid and fragment, respectively, ρa

and ρm are the atmospheric and meteoroid densities, and Vi is the initial meteoroid

velocity. The value of the constant C was deduced from the cross-range dispersions

in known crater fields to lie between between 0.02 and 1.5.

For the case of many fragments, however, the situation is somewhat more com-

plicated, and a simple analysis such as the one that resulted in Equation 7.2 is not

possible. Note, for example, that the tranverse velocity in this expression is greater

for smaller fragments. This effect will tend to be neutralised in the many-fragment

case by the fact that the pressure difference from one side of the fragment to the

other that is responsible for the repulsive force will be greater in the case of a larger

fragment.

Given the large degree of uncertainty involved in determining the fragment veloc-

ities resulting from the initial aerodynamic interactions, then, we will assume that

initial velocities are imparted on the fragments as follows. Each fragment is assumed
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to develop a radial velocity away from the center of the parent body, with a magni-

tude proportional to the initial displacement from the center. This is similar to the

dynamic fragmentation model of Grady (1982), but here is assumed to result from the

aerodynamic interactions. The maximum velocity (i.e., that of the outermost frag-

ments) is assumed to be proportional to the initial meteoroid velocity and the square

root of the ratio of atmospheric density at the height of breakup to the meteoroid

density, i.e.,

Vmax = C

√
ρa

ρm

Vi. (7.3)

These dependencies come from Equation 7.2 and are also plausible in the many-

fragment case. The constant of proportionality, C, is calculated to give the desired

cross-range dispersion of the crater field in question.

Starting from their initial positions, the calculation of which was described in the

previous section, the fragments are assumed to maintain this initial velocity until they

achieve a certain average spacing, at which point aerodynamic modeling is initiated.

For the current simulations, this crossover point occurs when the outermost fragments

have reached a radius twice the initial radius of the parent body.

7.3 Modeling of Aerodynamic Interactions

The basis of the aerodynamic modeling is the procedure developed for the simulation

of the atmospheric entry of binary meteoroids, as described in Chapter 6. Consid-

ering the more complex nature of the current problem, however, there are further

assumptions that will have to be made in this methodology to enable it to be used

here.

First, this model was tested only for cases in which the secondary body inside

the shocked region was smaller than the primary body producing this region. We

do not expect that the model will perform well in the opposite situtation. Thus, in
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our simulations, if a larger body is found to lie within the shock of a smaller body,

they shall both be assumed to travel independently of one another. This is not a

particularly restrictive assumption, since smaller bodies are more greatly affected by

aerodynamic drag, and so the larger body would be expected to soon move ahead of

the smaller body anyway.

Further, the methodology was developed to model binary interactions, and cannot

be easily extended to the multiple-body case. We shall thus be limited to pair-wise

interactions. If a smaller fragment lies within two or more shocked regions created by

larger fragments, we consider only the effect from the largest fragment. Such multiple

interactions might be expected to occur at very early times, but will be rare once the

fragments have separated further.

In Chapter 6, as the two meteoroids remained relatively close throughout the

atmospheric transit, we did not have to deal with the problem that, in the far-

field, the conditions in the blast wave analogy do not tend towards the physical

freestream conditions (as may be observed in Figure 6.2). In the present simulations

this problem will become relevant, so, to prevent one fragment significantly affecting

another extremely distant fragment, we set a downstream limit to the extent of a

primary shock. The specification of the limiting value is somewhat arbitrary: we

choose the point at which the Mach number immediately behind the blast wave

shock, given by Equation 6.1, is equal to the freestream value.

There is also the possibility that, during a simulation, two fragments approach

sufficiently close to one another that a collision would occur in the physical situtation.

To avoid the added complication that collisions would introduce, we assume in our

modeling that the fragments have zero cross-sectional area with respect to collisions.

If the secondary fragment is found to lie within the primary shock, but ahead of the

primary body, it is assumed to travel independently of the primary body.

In the case of the binary meteoroids, the velocities changed relatively little over
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the course of the atmospheric transit. For the smaller fragments considered here,

however, the aerodynamic forces will greatly reduce the velocities over the course of

the flight. Thus, the hypersonic drag coefficient of 0.88 will not be appropriate at all

times. As the Mach number is decreased from large values, the drag coefficient of a

sphere rises to a value of around 1 at M ∼1 and then decreases to around 0.5 when

the flow becomes subsonic. For the purposes of these simulations, we shall simply

assume values of 0.88 for M > 1 and 0.5 for M < 1.

Finally, an adaptive time-stepping mechanism, based on the maximum relative

speed between fragments, is implemented. This is to prevent the incidence of a

fragment entirely crossing the shocked region created by another fragment within a

single time-step.

A flowchart showing the sequence of events during each fragmentation simulation

is shown in Figure 7.3.

7.4 The Sikhote-Alin Crater Field

In the present work, we will focus on the Sikhote-Alin crater field, located in Siberia,

Russia. The fall that produced this field occurred on February 12, 1947, and because

of its recent nature, many smaller craters are present that might have eroded away in

the case of an older field. Over 150 craters are present in the field, as well as thousands

of meteoritic fragments. The cross-range width is 0.9 km, and the downrange length

is 2.0 km. Krinov (1974) noted the presence of secondary scatter ellipses superposed

on the main ellipse and attributed these to secondary fragmentation. The impact

angle has been estimated to be 30◦ (Krinov, 1966), which provides an upper limit for

the entry angle, as the combined effects of gravity and drag will steepen the angle of

travel with respect to the horizontal.

The density of the meteoroid is taken to be 7.8×103 kg/m3; a value appropriate
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for an iron meteoroid. The total mass of the fall has been estimated at 70 tons

(Krinov, 1966), with another 200 tons estimated to be present in the smoke trail

(Heide, 1963). As we are not considering the effects of ablation in the current work,

we will take the intermediate value of 200 tons as the initial mass, which gives a

radius of approximately 1.8 m.

Krinov (1966) estimated that the meteoroid entry velocity was 14-15 km/s, with

the initial breakup occurring at high altitude and the final stage of fragmentation

taking place at approximately 6 km. More recently, Passey and Melosh (1980) have

suggested that the initial fragmentation took place at 40 km, which would require an

entry angle of less than 20◦, according to their model. In simulations in the current

work, however, it was found that these values led to far greater downrange spread than

is observed in the physical field. The problem may well be that Passey and Melosh

use a drag coefficient value of 0.5 for the entire flight. This value is inappropriate at

high Mach numbers and would lead to smaller fragments being less affected by drag

and thus impacting further downrange.

Given the uncertainty in the values cited by the previous authors, a series of

simulations was performed in order to determine appropriate values for the entry

velocity, the fragmentation height, and the constant C in Equation 7.3. An entry angle

of 30◦, corresponding to the estimated impact angle, was assumed, as the flight angles

of larger fragments change relatively little during the flight. The fragmentation event

was assumed to produce 200 fragments according to the procedure described above,

but the smallest 10% of fragments were not considered. The reasoning for this was

that these fragments would likely be ablated away during the remaining atmospheric

transit, and even if they did survive, would typically be carrying insufficient speeds

at impact to create discernible craters. A combination of a velocity and an altitude

at fragmentation of 18 km/s and 15 km, together with a value for the constant C

of ∼3, were found in general to lead to appropriate downrange and cross-range field
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lengths, although other combinations may be possible. These values will be used in

the simulations in the following sections of this chapter.

7.5 Results

7.5.1 Conditions During Aerodynamic Interactions

First, having noted the limitations of the blast wave methodology in Chapter 6, we

will investigate whether the aerodynamic interactions in the fragmenting meteoroid

simulations are taking place at conditions at which we can expect the methodology to

give reasonable results. In Figure 7.4 are histograms showing the relevant conditions

for the aerodynamic interactions during a typical simulation. Shown are the Mach

number of the primary body, the normalized downstream distance of the secondary,

x/d1, and the normalized speed difference between the two fragments ||V1−V2||/V1.

The interactions shown are those from every tenth timestep and can be considered

representative of all interactions calculated during the simulation.

The majority of interactions are seen to take place at a primary Mach number

greater than 50, with only a small fraction occurring at a Mach number of less than

40. The minimum Mach number is approximately 25. The downstream distance for

the interactions is typically at an x/d1 value of less than 30, with a small number at

x/d1 > 50. In Chapter 6 we concluded that at a primary Mach number of 50, we

could expect the unmodified blast wave methodology to give reasonable results out

to a downstream value of x/d1 ∼ 25. Given the modifications that were subsequently

made in order to increase this domain of validity, and also considering that the average

primary Mach number is greater than 50, we may feel confident in extending this

domain somewhat. We also see that the vast majority of interactions take place at a

velocity difference of less than 5%, which provides support for our assumption that

the bodies are stationary relative to one another during interactions. We conclude
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Figure 7.4: Histograms of primary Mach number (top), downstream displacement
x/d1 (middle), and relative fragment speeds ||V1−V2||/V1 (bottom) for aerodynamic
interactions during a typical simulation.
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then that a substantial majority of the interactions take place at conditions at which

we can be confident of the extended methodology giving reasonable results, although

a few, in particular those at large downstream values, will be somewhat questionable.

7.5.2 The Crater Field

In Figures 7.5 and 7.6 are plotted the crater fields resulting from several fragmentation

simulations. The left side in each case corresponds to the downrange end of the

field. In order that the effect of the aerodynamic interactions may be gauged, crater

locations are also plotted from simulations with identical initial conditions but in

which all fragments are subsequently assumed to travel independently of one another.

The crater radius, Rc, corresponding to each fragment is assumed to be a function of

the impact kinetic energy, Ek, and the impact angle, θf . The scaling law used here

is similar to that considered by Passey and Melosh (1980) for craters up to 10m in

diameter:

Rc ∼ E
1/3
k sin2/3 θf , (7.4)

where the constant of proportionality depends on the impactor and target densities.

The crater radii are not, however, to the same length scale as the crater locations.

As may be seen, although the overall crater field shapes are not significantly altered

by the aerodynamic interactions, the locations of fragments within the fields differ

notably between the interacting and non-interacting cases. In particular, secondary

groupings of craters appear more likely to occur in the interacting case, as we predicted

earlier. In each field, the most notable secondary groupings that result from the

interactions are indicated by dashed boundaries, although the selection of these is

subjective to a small degree. The amount of secondary grouping does seem to vary

somewhat from simulation to simulation, however. Note, for example, that in the

top field in Figure 7.6, although there are many small groupings of craters resulting
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Figure 7.5: Crater locations for two simulated falls with and without aerodynamic
interactions after separation. The origin corresponds to the center of mass of the
system, with the left side corresponding to the downrange end of the field. Possible
secondary groupings of fragments for the interacting cases are indicated by dashed
boundaries.



165

Figure 7.6: Crater locations for two further simulated falls
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from the aerodynamic interactions, there are no obvious larger-scale groupings such

as may be seen in the other fields. This contrasts most obviously with the lower field

in Figure 7.6 in which much large-scale grouping is seen, although only two of the

more notable groups are indicated.

7.5.3 Statistical Analysis of Crater Distributions

7.5.3.1 Overall Crater Field Shape

In order to provide more substantive evidence that secondary grouping is more likely

to occur in interacting simulations, a statistical analysis has been performed on a

sample set of fifty simulations, comparing interacting and non-interacting cases. First,

we will try to gain an overall picture of the fragment position distributions in the fields

produced by these simulations, focusing in particular on how these positions might

vary with fragment radius.

Figure 7.7 shows scatter plots of the downrange and cross-range displacements

of the combined fragments from the fifty simulated falls as functions of the frag-

ment radius. Both interacting and non-interacting cases are shown. The fragment

displacements in each case are calculated from the final position of the group center-

of-mass for that particular simulation. In the upper plot we see the expected result

that smaller fragments typically fall further uprange (indicated by a more positive

downrange displacement value) than larger fragments due to the drag/gravity effect

described earlier. However, the aerodynamic interactions are seen to result in a num-

ber of smaller fragments impacting further downrange than they would otherwise.

This must be caused by entrainment of these fragments by larger fragments, which

would negate to some degree the drag/gravity effect. Note, however, that this en-

trainment does not seem to be present in the case of the smallest fragments. A likely

explanation for this is the body-size effect noted in Chapter 2 - a smaller fragment
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travelling in the shocked region of a much larger fragment will experience a repulsive

lateral force and will thus not be entrained. Supporting this explanation is the fact

that the ratio of the fragment radius below which the entrainment effect no longer ap-

pears significant (∼0.09m) to the radius of a typical large fragment is approximately

1:6, which is the critical body-size ratio determined in Section 2.4.2.

In the lower plot of Figure 7.7,the aerodynamic interactions are also seen to result

in some smaller fragments falling at more extreme cross-range displacements. This

can be explained by a combination of the body-size effect and repulsion due to primary

shock impingement, as described in Section 6.3.

In Figure 7.8 the downrange and cross-range displacements are again plotted, but

in this case the fragments have been grouped into thirty equally spaced bins according

to fragment radius, and the mean displacement and standard deviation for each bin

is plotted (note that the absolute value of the cross-range displacement is considered

here). Each data point is located on the x-axis at the maximum fragment radius for

that bin, with the non-interacting cases shifted slightly for clarity. The differences

in mean values between the interacting and non-interacting cases are as we may

have predicted from Figure 7.7. For smaller fragments (but not the very smallest),

the mean downrange displacement is less in the interacting case than in the non-

interacting case, while the mean cross-range displacements for smaller fragments is

increased by the aerodynamic interactions. Note that these differences all lie within

the bin standard deviations, however.

7.5.3.2 Crater Groupings and Pair-wise Statistics

We now wish to consider the fragment distributions within each simulation in order

to determine whether statistically significant differences in groupings may be seen

between the interacting and non-interacting cases. To this end we will consider pair-

wise relative displacements of fragments within each fall pattern, as follows.
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Figure 7.7: Scatter plots of downrange and cross-range fragment displacements as
functions of fragment radius, for combined simulations. Both interacting and non-
interacting cases are included.



169

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Fragment radius (m)

M
ea

n 
do

w
nr

an
ge

 d
is

pl
ac

em
en

t (
m

)
Interacting
Independent

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

350

Fragment radius (m)

M
ea

n 
cr

os
s−

ra
ng

e 
di

sp
la

ce
m

en
t (

m
)

Interacting
Independent

Figure 7.8: Mean downrange and cross-range displacements for fragments grouped
by radius. These are the combined fragments from twelve simulations.
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For each fragment in each simulation, the final distances to all other fragments in

that simulation were calculated and placed in ascending order. These distances were

calculated separately for the interacting and non-interacting cases. In Figure 7.9, the

mean values of these distances over all fragments and all simulations are plotted. To

obtain the value corresponding to n=4, for example, for each fragment in a given

simulation the distance to the fourth-closest neighboring fragment was chosen, and

this distance was averaged over all fragments in all the simulations (note that this

data should strictly be plotted discretely, but differences between the two cases can

be seen more clearly when the plotting is continuous). We see that, except at the

two extremes, i.e., for the closest and most distant fragments, the mean distances in

the interacting cases are slightly less than those in the non-interacting cases. This

indicates that aerodynamic interactions lead to slightly more compact overall crater

fields. In Figures 7.7 and 7.8 we noted a tendency in the interacting simulations for

smaller fragments to land further downrange, closer to the main field, but also at

larger cross-range displacements. The effect seen in Figure 7.9 would result if this

former tendency were dominating the latter.

Note, however, that for smaller values of n (i.e., n.20), there is very little dif-

ference between the interacting and non-interacting cases. If there was a tendency

for increased secondary grouping in the interacting cases, we might expect to see a

difference here. However, in this plot we have considered all possible pairs of frag-

ments, whereas it is unlikely that all fragments would be affected by such a tendency.

Thus, we now consider only the 50% of fragments in each simulation that have a

closest neighbor, as it is reasonable to expect that these would be the fragments most

likely to form part of a secondary group. In Figure 7.10, the mean distance to the

n-th nearest fragment for only these fragments over all simulations is plotted. As

may be seen, the mean values are typically smaller for the interacting cases than the

non-interacting cases.
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Figure 7.9: Plot of the mean distance from each fragment in a given simulation to
the n-th closest fragment, averaged over all fragments in all simulations.

To determine whether the differences in mean values between the two cases is

statistically significant, paired t tests were performed on the sample groups for each

value of n. The null hypothesis in each case was that there was no statistically

significant difference between the two mean distances. The results from these tests

for n ≤ 20 are tabulated in Table 7.1. As may be seen, the significance level for

rejection of the null hypothesis is better than 1% for up to n=13. This indicates that

there is very strong evidence that the mean distances are not equal in the interacting

and non-interacting cases for the thirteen closest fragments (and there is still strong

evidence at the 5% level up to n=20). We cannot conclude immediately that the

aerodynamic interactions are leading to increased grouping, however, as the tendency

for interacting simulations to lead to more compact crater fields, as noted previously,

could also result in a similar effect. To determine whether this is the case, in Table 7.1

are also tabulated the results from tests that were identical except that the 90% of

fragments with closest neighbors in each simulation were included. If the difference

in means were a result of a tendency to more compact overall crater fields, we would
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Figure 7.10: Plot of the mean distance from the 50% of fragments with nearest neigh-
bors in a given simulation to the n-th closest fragment, averaged over all simulations.

expect the difference to be present for the larger group of fragments as well (the

remaining 10% of fragments in each was excluded as these are likely to be outliers that

have fallen short of the main field, and could thus skew the statistics). The evidence

against the null hypothesis of equal means in these tests is much weaker - in fact, it

is weaker than the 10% level for all but the sixth closest fragment for n ≤13. This

evidence actually becomes stronger for n > 13 - this is probably a result of the trend

to more compact fields in the interacting case. However, the combination of the two

results for n ≤ 13 gives strong statistical evidence that increased secondary grouping

is present in those simulations in which aerodynamic interactions are included.

7.5.4 Conclusions

Having concluded that increased secondary grouping is produced by aerodynamic in-

teractions, we wish to determine whether these groupings are consistent with those

that would be produced by secondary fragmentation. To this end, we go back to the

plots of crater locations in Figures 7.5 and 7.6. First, we may exclude groups such
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as that seen to the lower right of the origin in the top field of Figure 7.5, as this is

centered on a large fragment that we would not expect to be present after secondary

fragmentation. Those groups that involve a large number of smaller fragments, how-

ever, such as the uprange groups in the two lower fields, would not be excluded on

this basis. In the case of secondary fragmentation, however, the resulting secondary

crater fields will be generally of the same shape as the primary field, i.e., roughly

elliptical with smaller fragments located near the uprange end. This shape is not

generally observed in the secondary groupings in the fields of Figures 7.5 and 7.6, nor

in the fields produced by other simulations in the sample set described above. This

suggests that aerodynamic interactions and secondary fragmentation have similar but

not identical effects on the secondary distribution of craters in the field. If a convinc-

ing, physically-based fragmentation model were available, simulations including the

effects of secondary fragmentation would cast further light on this issue. As we lack

such a model, however, we cannot draw truly definitive conclusions here.
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Chapter 8

Conclusions

In the current work we have sought to gain a general understanding of the dynamic

effects at work in the hypersonic proximal bodies problem. In particular we have

investigated the forces acting on a secondary body when some part of it is within the

shocked region created by a primary body travelling at hypersonic speeds.

An analytical model has been developed based on the blast wave analogy for cases

in which the secondary body is positioned entirely inside the primary shocked region.

This allowed us to predict the force coefficients acting on the secondary body for sim-

ple body geometries in both two and three dimensions. The methodology predicted

the nature of the lateral force coefficient to depend strongly on the relative size of the

two bodies. For the case of two spheres it was found that, if the secondary body di-

ameter was larger than one-sixth that of the primary body, the lateral force coefficient

would be attractive throughout the shocked region. For smaller secondary bodies a

repulsive lateral coefficient was possible. The results obtained using this analytical

model have been compared with values obtained from numerical simulations using

the AMROC software in both two and three dimensions, and these have generally

shown good agreement provided an appropriate normalization is used for the lateral

displacement.

To investigate the three-dimensional proximal body problem further, a series of

experiments has been carried out in the T5 hypervelocity shock tunnel. This neces-
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sitated the development of a new force-measurement technique, and in a series of

validation experiments, it was shown that this technique could successfully measure

the drag on a sphere. In simulations of the proximal body problem, good agreement

was obtained between measured forces and those predicted by perfect-gas numerical

simulations. An error analysis was performed, and several areas in which further work

could be warranted were identified.

The blast wave methodology was extended and used to simulate the entry of the

binary asteroid system 2000 DP107 into the Earth’s atmosphere. It was found that

a very shallow entry angle was required for a system of this size for the aerodynamic

interactions to become important. The methodology was also used to investigate

the passage of a fragmented meteoroid through the Earth’s atmosphere. In partic-

ular, the question was raised as to whether aerodynamic interactions, rather than

secondary fragmentation, could be responsible for the secondary groupings observed

in crater fields such as Sikhote-Alin. A statistical analysis provided strong evidence

that aerodynamic interactions do lead to increased secondary crater grouping, but it

was found that the shape of these groups did not exhibit the typically elliptical shape

that we would expect secondary fragmentation to produce.

This thesis has been concerned exclusively with simple body geometries, i.e., cylin-

ders in two dimensions and spheres in three dimensions. The most obvious way in

which this work could be extended would be to consider more complex body geome-

tries, particularly for the secondary body. One possibility would be to investigate bod-

ies with intrinsic lift, in particular to determine whether the intrinsic lift contribution

could be decoupled from that produced by the shocked flow. The analytical method-

ology that was developed in the current work relied on the secondary body possessing

rotational symmetry, so an extension to more complex bodies would be difficult. The

numerical software used, however, is in principle capable of modeling arbitrary ge-

ometries, so a computational approach would be feasible. Experimentally, the move
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to more complex geometries would require a refinement of the techniques developed

here. The use of multiple accelerometers, located at appropriate positions, would al-

low multiple-component force-measurements as well as moment-measurement. Also,

more sophisticated image-recognition algorithms would be required in order to enable

the tracking of more complex body shapes in the high-speed visualisations.
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Appendix A

Force Coefficients for Gaussian
Pressure Distribution

In this appendix we give the full expressions for the drag and lift coefficients derived in

Chapter 2 for the Gaussian pressure distributions in both two and three dimensions.

In the two-dimensional case, the integrals in Equations 2.27 and 2.28 may be

evaluated to give
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In the three-dimensional case, an evaluation of the φ integrals in Equations 2.53

and 2.54 leads to

CD = 2 cos δ
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The θ integrals in Equations A.3 and A.4 may be evaluated to give the following

unwieldy expressions:
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and
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where erfc is the complimentary error function, and erfi is the imaginary error function

erfi(z) = erf(ız)/ı.

For k=1.2, these expressions take values of 0.2469, 0.1970, and 0.1664 respectively.
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Appendix B

T5 Run Conditions

Listed here is the run information for all relevant shots in the T5. Included are the

operating conditions, stagnation conditions, and freestream conditions at both the

secondary and, where relevant, the primary sphere.

Shot Test P2R PCT % He PST P0 h0

no. gas (psi) (kPa) (MPa) (MJ/kg)
2290 CO2 405 50 86 21 16.6 8.8
2291 CO2 405 50 86 21 16.9 9.1
2292 CO2 405 50 86 21 17.5 9.5
2320 CO2 405 50 86 21 19.7 9.0
2321 CO2 405 50 86 21 18.9 9.8
2322 CO2 405 50 86 21 20.0 9.6
2324 N2 600 82.5 78 65 21.3 6.34
2325 N2 450 62 90 37.2 17.0 10.7
2326 CO2 405 50 86 21 16.4 9.55
2327 CO2 405 50 86 21 16.8 9.58
2328 CO2 405 50 86 21 18.1 9.40
2329 CO2 405 50 86 21 17.4 9.44
2330 CO2 405 50 86 21 18.2 9.48

Table B.1: Operating and stagnation conditions for all T5 shots relevant to this
investigation. Stagnation enthalpies are calculated using ESTC (see Mcintosh (1969)).
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Primary sphere Secondary sphere
Shot P∞ T∞ ρ∞ u∞ M∞ P∞ T∞ ρ∞ u∞ M∞
no. (kPa) (K) (kg/m3) (m/s) (kPa) (K) (kg/m3) (m/s)

2290 - - - - - 12.6 1888 0.0315 3044 4.47
2291 - - - - - 12.8 1920 0.0312 3082 4.48
2292 - - - - - 13.2 1973 0.0310 3148 4.48
2320 15.7 1954 0.0381 3072 4.44 14.5 1932 0.0354 3084 4.48
2321 15.0 2029 0.0340 3185 4.45 13.9 2008 0.0318 3195 4.49
2322 16.0 2023 0.0367 3158 4.44 14.9 2004 0.0346 3168 4.4 8
2324 7.43 776 0.0323 3324 5.93 6.80 758 0.0302 3330 6.01
2325 7.22 1460 0.0166 4242 5.61 6.70 1434 0.0157 4250 5.67
2326 14.3 2001 0.0331 3127 4.41 12.2 1958 0.0288 3149 4.49
2327 14.4 2001 0.0331 3127 4.41 12.0 1953 0.0283 3152 4.50
2328 16.0 2007 0.0372 3108 4.40 13.3 1959 0.0317 3133 4.49
2329 15.3 2003 0.0355 3113 4.40 12.4 1947 0.0295 3142 4.51
2330 16.0 2016 0.0369 3121 4.40 12.9 1960 0.0307 3150 4.51

Table B.2: Freestream conditions at distances downstream corresponding to the lead-
ing points of the primary and secondary spheres. These and the values in the following
table were calculated using NENZF (Lordi et al. (1966)).

Shot no. CO2 CO O2 O N2 N
2290 0.69 0.20 0.10 0.01 - -
2291 0.67 0.22 0.10 0.01 - -
2292 0.64 0.24 0.11 0.01 - -
2320 0.69 0.20 0.10 0.01 - -
2321 0.62 0.25 0.12 0.01 - -
2322 0.64 0.24 0.11 0.01 - -
2324 - - - - 1.000 0.000
2325 - - - - 0.996 0.004
2326 0.63 0.24 0.12 0.01 - -
2327 0.63 0.24 0.12 0.01 - -
2328 0.65 0.23 0.11 0.01 - -
2329 0.65 0.23 0.11 0.01 - -
2329 0.65 0.23 0.11 0.01 - -

Table B.3: Freestream test gas concentrations in mole fractions. The downstream
reference point is the secondary sphere, but changes in composition are small between
the primary and the secondary sphere. In all CO2 shots the concentration of atomic
carbon was negligible.
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Appendix C

Calculation of the Drag Coefficient
in the Impinging Case

Here we will evaluate the drag coefficient in the general impinging case discussed in

Section 6.3. The more difficult integrals in this section were evaluated using Math-

ematica. The flow geometry in the present situation is shown in Figure 6.5. The

modified Newtonian pressure distribution will be assumed on the upper and lower

regions, but the value of p′stag will differ in each case, as explained in Section 6.3.

The primary shock is assumed to cut the sphere as a plane, and thus the contri-

bution to the drag from the upper, singly-shocked region is
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Note the reversal of the order of integration in the second and fourth terms in C.1.

This was necessary in order to enable these double integrals to be evaluated. We may

evaluate the integrals in C.1 as follows:
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Our expression for Cu
D then becomes
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On the lower doubly-shocked side, we wish to include the x-derivative terms, and
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our expression for this contribution to the drag coefficient is given by

C l
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[∫ 2π

0

∫ π/2

0

−
∫ π−α

α

∫ π/2

arcsin( sin α
sin φ )(

(p′stag − p′1)−
1

2

d2

d1

∂(p′stag − p′1)

∂(x/d1)
x̂

)
sin θ cos2 θx̂ dθ dφ

+

∫ 2π

0

∫ π

0

−
∫ π−α

α

∫ π−arcsin( sin α
sin φ )

arcsin( sin α
sin φ )

(
p′1 −

1

2

d2

d1

∂p′1
∂(x/d1)

x̂

)
sin θx̂ dθ dφ

]
,

where x̂ = sin δ sinφ sin θ + cos δ cos θ. After some algebra, we obtain

C l
D =

1

π
(p′stag − p′1)

[
sin δ

∫ π/2

0

∫ 2π

0

−
∫ π/2

α

∫ π−arcsin( sin α
sin θ )

arcsin( sin α
sin θ )

sinφ sin2 θ cos2 θ dφ dθ

+ cos δ

∫ 2π

0

∫ π/2

0

−
∫ π−α

α

∫ π/2

arcsin( sin α
sin φ )

sin θ cos3 θ dθ dφ

]

− 1

2π

d2

d1

∂(p′stag − p′1)

∂(x/d1)

[
sin2 δ

∫ 2π

0

∫ π/2

0

−
∫ π−α

α

∫ π/2

arcsin( sin α
sin φ )

sin3 θ cos2 θ sin2 φ dθ dφ

+ 2 sin δ cos δ

∫ 2π

0

∫ π/2

0

−
∫ π−α

α

∫ π/2

arcsin( sin α
sin φ )

sin2 θ cos3 θ sinφ dθ dφ

+ cos2 δ

∫ 2π

0

∫ π/2

0

−
∫ π−α

α

∫ π/2

arcsin( sin α
sin φ )

sin θ cos4 θ dθ dφ

]

+
1

π
p′1

[
sin δ

∫ π

0

∫ 2π

0

−
∫ π−α

α

∫ π−arcsin( sin α
sin θ )

arcsin( sin α
sin θ )

sinφ sin2 θ dφ dθ

+ cos δ

∫ 2π

0

∫ π

0

−
∫ π−α

α

∫ π−arcsin( sin α
sin φ )

arcsin( sin α
sin φ )

sin θ cos θ dθ dφ

]

− 1

2π

d2

d1

∂p′1
∂(x/d1)

[
sin2 δ

∫ 2π

0

∫ π

0

−
∫ π−α

α

∫ π−arcsin( sin α
sin φ )

arcsin( sin α
sin φ )

sin3 θ sin2 φ dθ dφ

+ 2 sin δ cos δ

∫ 2π

0

∫ π

0

−
∫ π−α

α

∫ π−arcsin( sin α
sin φ )

arcsin( sin α
sin φ )

sin2 θ cos θ sinφ dθ dφ

+ cos2 δ

∫ 2π

0

∫ π

0

−
∫ π−α

α

∫ π−arcsin( sin α
sin φ )

arcsin( sin α
sin φ )

sin θ cos2 θ dθ dφ

]
. (C.3)

Again the order of some of the integrals has been reversed in order to allow the

relevant double integral to be evaluated. The integrals involving α may be evaluated
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as follows:

∫ π−α

α

∫ π/2

arcsin( sin α
sin φ )

sin3 θ cos2 θ sin2 φ dθ dφ

=
1

15

∫ π−α

α

(
1− sin2 α

sin2 φ

)3/2 (
2 sin2 φ+ 3 sin2 α

)
dφ

=
π

480
(32− 30 sinα+ 5 sin 3α+ 3 sin 5α)∫ π−α

α
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arcsin( sin α
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sin2 θ cos3 θ sinφ dθ dφ
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1
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sinφ dφ
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α
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=
1

5
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α
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π
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arcsin( sin α
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sin2 θ cos θ sinφ dθ dφ = 0
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α

∫ π−arcsin( sin α
sin φ )

arcsin( sin α
sin φ )

sin θ cos2 θ dθ dφ

=
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3

∫ π−α

α

(
1− sin2 α

sin2 φ
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dφ

=
π

12
(8− 9 sinα− sin 3α).
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Also:
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0

∫ π/2

0

sin2 θ cos2 θ sinφ dθ dφ = 0∫ 2π

0

∫ π/2

0

sin θ cos3 θ dθ dφ = 0∫ 2π
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sin2 θ sinφ dθ dφ = 0∫ 2π

0

∫ π

0

sin θ cos θ dθ dφ = 0∫ 2π

0

∫ π

0

sin3 θ sin2 φ dθ dφ =
4π

3∫ 2π

0

∫ π

0
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3
.

Combining these with the integrals evaluated for the upper region, we may write

the lower contribution as:

C l
D =

1

π
(p′stag − p′1)

[
cos δ

(
π

4
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α

2
+

sin 2α

3
+
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1
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+
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.

(C.4)
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