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Abstract

In the first part of this dissertation we study the problem of designing desirable

mechanisms for economic environments with different types of informational and con-

sumption externalities. We first study the mechanism design problem for the class

of Bayesian environments where preferences of individuals depend not only on their

allocations but also on the welfare of other individuals. For these environments, we

fully characterize interim efficient mechanisms and examine their properties. This

set of mechanisms is compelling, since interim efficient mechanisms are the best in

the sense that there is no other mechanism which generates unanimous improvement.

For public good environments, we show that these mechanisms produce public goods

closer to the efficient level of production as the degree of altruism in the preferences

increases. For private good environments, we show that altruistic agents trade more

often than selfish agents.

We next consider a mechanism design problem for matching markets where exter-

nalities are present. We present mechanisms that implement the core correspondence

of many-to-one matching markets, such as college admissions problems, where the

students have preferences regarding the other students who would attend the same

college. With an unrestricted domain of preferences the non-emptiness of the core is
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not guaranteed. We present a sequential mechanism implementing the core without

any restrictions on the preferences. We also show that simple two-stage mechanisms

cannot be used to implement the core correspondence in subgame perfect Nash equi-

librium without strong assumptions on agents’ preferences.

In the final part of the dissertation we focus on another matching market, one-to-

one assignment games with money. We present an alternative way to characterize the

core as the fixed points of a certain mapping. We also introduce the first algorithm

that finds all core outcomes in assignment games. The lattice property of the stable

payoffs, as well as its non-emptiness, are proved using Tarski’s fixed point theorem.

We show that there is a polarization of interests in the core by using our formulation.
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Chapter 1

Introduction



2

Mechanism design is a general way of thinking about institutions. An institution

or mechanism takes into it messages from agents and responds with an outcome. In

this framework, a group of individuals must choose an alternative from the set of pos-

sible alternatives and must decide how to arrange monetary transfers. Initially, each

agent obtains private information about each of the possible alternative outcomes.

An agent’s utility for a given alternative depends not only on her own material utility

but also on the welfare of other agents. This implies agents are unselfish or altruistic.

We first show how the existence of agents with this type of preference change the

mechanism design problem. Then, we propose the set of mechanisms that we can

observe in practice. These mechanisms correspond to the most efficient (or interim

efficient) mechanisms within the mechanisms that satisfy incentive and feasibility

constraints. If a mechanism is interim efficient, it can never be common knowledge

that there is another mechanism which makes some types of agents better off without

hurting other types of agents. This implies that any other mechanisms should not be

observed in practice. We also provide applications for both public and private goods

environments. In our applications, efficient decisions are independent of the social

concerns of the agents. However, we show that interim efficient decisions depend on

social concerns. In these mechanisms, inefficiencies in public good production de-

creases as the agents care more about the welfare of the other agents in the society.

For bilateral trade environments, we show that altruistic agents trade more often

than selfish agents. On the other hand, altruistic agents do not trade when it is not

optimal to trade.
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We next move to the sequential mechanism design problem for matching markets.

We introduce simple sequential mechanisms that implement the core correspondence

in college admissions problems when students do care about who else goes to the

same college. This is an important problem because it provides the noncooperative

foundations of the core and it might also help to design new institutions for the

real-life college admissions problem. In this matching market, there are two finite

disjoint sets of agents, the set of colleges and the set of students. Each college has a

preference relation over groups of students. Each student has a preferences relation

over colleges and groups of students (or classmates). A matching will be a particu-

lar assignment of students to colleges. The solution concept, core, specifies the set

of matchings we might observe in practice. In college admissions problems, it has

been shown that two-stage simple mechanisms, such as the “students propose and

colleges choose” mechanism and the “colleges propose and students choose” mech-

anism, implement the core. We show that only extension of the colleges propose

and students choose mechanism can implement the core under the restrictions that

guarantee the nonemptiness of the core. Therefore, the symmetry between these two

mechanisms does not hold when students also care about their classmates. We also

provide a multi-stage mechanism that implements the core without any restrictions

on the preferences. This chapter also shows that we should take into consideration

whether students care about their classmates or not when designing institutions for

the real-life matching problem.

We analyze another matching market, a one-to-one assignment game with money,
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in the final chapter. An assignment game is a two-sided matching market with mon-

etary transfers. In this market, there are two exogenously specified disjoint sets of

agents, say firms and workers. The agents engage in bilateral transactions (if worker

i works for firm j then firm j employs worker i) and make monetary transfers. Each

firm can employ no more than one worker and each worker can not work for more

than one firm. A natural solution concept for such markets is the core. The core

outcomes specify which partnership we can expect to observe and how the agents will

divide their gains. The assignment game has traditionally been studied in terms of

its linear programming formulations. We propose an alternative way to characterize

the core of assignment games as the fixed points of a certain mapping. Moreover, our

characterization gives an algorithm for finding the core outcomes. The characteri-

zation is useful because it allows us to construct a simple algorithm to find all core

outcomes and it provides a very simple proof for the lattice structure of the core and

for the polarization of interests in the core.
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Chapter 2

Behavioral Mechanism Design
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2.1 Introduction

This paper studies the problem of designing mechanisms for the class of Bayesian en-

vironments with interdependent preferences. A group of individuals must choose an

alternative from the set of possible alternatives and must decide how to arrange mon-

etary transfers. Initially, each agent obtains private information about each possible

alternative. An agent’s utility for a given alternative depends not only on her own

material utility but also on the welfare of other agents. This implies agents are un-

selfish or altruistic. In this framework, we characterize the most efficient mechanisms

within the mechanisms that satisfy incentive and feasibility constraints.

The assumption of self interest is problematic. Self-interest hypothesis states that

preferences among allocations depend only on an agent’s own material well being.

Experimental results suggest that people often do care for well being of others and

have other preferences. For example, there is more contribution to public goods than

purely selfish maximization can lead us to expect. Moreover, people should not vote

in elections or contribute to public television if they are purely self interested. See

Ledyard (1995) for a survey on public goods which documents these and several other

anomalies. Similar anomalous results are also observed in private goods environments.

For example, in an ultimatum game one player has a strictly dominant strategy if the

player is self-interested but he or she does not choose this selfish strategy. See also

Fehr and Schmidt (2006) for more experimental evidence on unselfish preferences.

Given these observations, I ask a basic question: How does the existence of agents

exhibiting interdependent preferences change the mechanism design problem?
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There exists an extensive literature on mechanism design. We refer the reader to

Jackson (2003) for a survey on mechanism design literature. In those studies the main

focus is on either (the impossibility of) efficient or optimal mechanism design with

selfish agents. In contrast to previous literature, we are interested in characterizing

interim efficient mechanisms with unselfish agents. Interim is used to denote the

informational time frame: agents select their messages after receiving their signals

but before learning the signals of others. We assume that all decisions, including

whether to change the mechanism, are made at the interim stage. Interim efficiency

is a natural extension of efficiency to incomplete information environments. If a

mechanism is interim efficient, then it can never be common knowledge that there

is another feasible mechanism which makes some types of agents better off without

hurting other types of agents. This implies that any other mechanism would be

unanimously rejected by all agents and should thus not be observed in practice. We

show that these mechanisms correspond to decision rules based on modified virtual

cost-benefit criterion, together with the appropriate incentive taxes. Moreover, we

show that interim efficient decisions depend on the social concerns of the agents even

though classical efficient decisions do not depend on the social concerns of the agents.

There are a few papers that explore the properties of interim efficient allocation

rules for standard mechanism design environments with selfish agents. See Wilson

(1985) and Gresik (1991) for a characterization of ex ante efficient mechanisms for

bilateral trade environments (double auctions), and Ledyard and Palfrey (2007) for

a characterization of interim efficient mechanisms for public good environments.
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Our characterization is general and can be applied to different economic settings.

We provide applications for both public and private goods environments. In our

applications, efficient decisions are independent of the social concerns of the agents.

However, we show that interim efficient mechanisms produce public goods more often

as the degree of altruism in the preferences goes up. That is, inefficiencies in public

good production decreases as the agents care more about the welfare of the other

agents in the society. For bilateral trade environments, we show that these mecha-

nisms give the good to the agent with the highest positive modified virtual valuations.

If there is no buyer with a positive modified virtual valuation which is higher than

the virtual valuation of the seller, then the seller keeps the good. We also show that

altruistic agents trade more often than selfish agents. This means that there are some

information states of the economy where it is optimal to trade but selfish agents will

not trade and altruistic agents will trade. Moreover, altruistic agents do not trade

when it is not optimal to trade.

The remainder of the paper is organized as follows. In the next section, we de-

scribe the environment and introduce the basic notation. In Section 2.3 we formulate

the set of constraints and provide necessary and sufficient conditions for incentive

compatibility and individual rationality. The tools of mechanism design are used to

provide these necessary and sufficient conditions. Then, we present the characteri-

zation results and proofs. Section 2.4 provides applications of our characterization

for both public good and bilateral trade environments. Finally, we summarize the

findings of the paper and make some concluding remarks in Section 2.5. The proofs
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are delegated to the Appendix, Section 2.6.

2.2 The Model

Consider a Bayesian mechanism design framework with n agents. The set of agents is

denoted by N = {1, ..., n}. Each agent has a type θi which is her private information.

We assume that each agent knows her own type and does not know the types of the

other agents. Each θi is independently drawn from cumulative distribution function

F i(.) on Θi = [θi, θ
i
] with 0 ≤ θi ≤ θ

i
< ∞. Types are drawn independently across

agents; that is, the θis are independent random variables. We denote a generic profile

of agent types by θ = (θ1, ..., θn) ∈ Θ ≡ ×Ni=1Θi. For any θ ∈ Θ, we adopt the

standard notation so that θ−i = (θ1, ..., θi−1, θi+1, ..., θn), and θ = (θi, θ−i) where

f(θ) =
∏N

i=1 f
i(θi). Let X be a finite set of possible nonmonetary decisions, or

allocations (e.g., X could be a subset of an Euclidean space and represent the set of

possible allocations of private and public goods).

Let ∆(X) be the set of probability distributions on X. A mechanism ζ = (y, t)

consists of an allocation rule y and a payment rule t. Let yx(θ) denote the probability

of choosing x ∈ X, given the profile of types θ ∈ Θ. A feasible allocation rule (or

social choice function) y : Θ → ∆(X) is a function from agents’ reported types to

a probability distribution over allocations such that
∑

x∈X y
x(θ) = 1 and yx(θ) ≥ 0

for all θ ∈ Θ. We allow allocation rules to randomize over feasible allocations. Let

Y be the set of all possible allocation rules and Ω ⊆ Y be the set of all feasible

allocation rules. The payment rule t : Θ → RN is a map from the agents’ reported
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types to monetary compensations where
∑N

i=1 t
i(θ) ≥ 0. This condition (ex-post

budget balance) requires that there is no outside source to finance the compensations.

Therefore, a mechanism cannot run a deficit.

The individual payoff function (or material utility) of an agent i given an allocation

rule y, and her monetary payment ti is

Πi(y, ti, θi) =
∑
x∈X

yx(θ)vi(x, θi)− ti

where vi(x, θi) is agent i’s valuation of allocation x which depends on her private

information. We assume that vi(x, θi) is differentiable, monotone increasing, and

convex in θi for all i and x ∈ X.

Beyond her individual payoff, agent i cares about the payoffs of others:

ui(y, t, θ) = ρiΠi + (1− ρi)Π

=
∑
x∈X

yx(θ)V i(x, θ, ρi) + ρi(

∑
j∈N t

j

N
− ti)−

∑
j∈N t

j

N

where Π =
∑
j∈N Πj

N
is the average payoff in the population and

V i(x, θ, ρi) = ρivi(x, θi) + (1− ρi)
∑

j∈N v
j(x, θj)

N

is the total value of allocation x for agent i . The constant ρi ∈ [0, 1] is an agent-

specific weighting factor showing each agent’s social concerns. If ρi = 1, the agent

has selfish preferences which do not directly depend on the well being of others. If
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ρi < 1, the agent has altruistic preferences which are increasing in the well being of

others. Note that as ρi increases the degree of altruism in preferences goes down. If

all agents are identical in their social concerns ( ρi = ρj = ρ), and ρ = 0, the model

is a common value setting where full social preferences are in action and the society

is homogeneous. If ρ = 1, the model is equivalent to the standard mechanism design

environment with selfish agents. We assume that agents have identical social concerns

to simplify the analysis for the rest of the paper (ρi = ρj = ρ for all i, j ∈ N). The

model can also be extended to environments where agents are spiteful (ρ > 1).

We only consider direct mechanisms in which the set of reported types is equal

to the set of possible types in the rest of the paper. By the revelation principle, any

allocation rule that results from equilibrium in any mechanism is also an equilibrium

allocation rule of an incentive compatible, direct mechanism. Therefore, there is no

loss of generality in restricting our attention to these simple type of mechanisms.

Let U i(ζ, θi, si) be the interim expected utility of agent i when he reports si 6= θi,

assuming all other agents truthfully report their type. That is

U i(ζ, θi, si) = Eθ−i [u
i(y(si, θ−i), t(si, θ−i), θ)].

Denote U i(ζ, θi) ≡ U i(ζ, θi, θi). The ex-ante utility of agent i is

U i(ζ) = Eθ[u
i(y(θ), t(θ), θ)].
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Define also the conditional expected payment function ai : Θi → R such that

ai(θi) = Eθ−i [t
i(θ)].

A mechanism is interim incentive compatible (IIC) if honest reporting of types

defines a Bayesian-Nash equilibrium. That is ζ is IIC if and only if U i(ζ, θi) ≥

U i(ζ, θi, si) for all i, si, θi. We call a mechanism interim individual rational (IIR) if

every agent wants to participate in the mechanism: U i(ζ, θi) ≥ 0 for all i, θi. A

mechanism is ex ante budget balanced (EABB) if a mechanism designer does not

expect to pay subsidies to the agents, e.g., Eθ(
∑N

i=1 t
i(θ)) ≥ 0. A mechanism is

feasible if it satisfies IIC, IIR, and EABB.

A mechanism ζ is interim efficient (IE) if it is feasible and there is no other feasible

mechanism ζ̂ such that U i(ζ̂ , θi) ≥ U i(ζ, θi) for all i, θi and U i(ζ̂ , θi) > U i(ζ, θi) for

some i and for all θi ∈ Θ̃i ⊂ Θi, where Θ̃i has strictly positive measure relative to

Θi. IE is an extension of efficiency to the environments with private information.

A mechanism is IE if there does not exist an alternative feasible mechanism that

interim Pareto-dominates it. Note that the idea of Pareto-domination is applied to

the expected utilities after the agents have learned their types. IE mechanisms can

also be represented as the solutions to a set of maximization problems. A mecha-

nism ζ is an IE mechanism if and only if there exists λ = {λi : Θi → R+}Ni=1 with∫ θi
θi
λi(θi)dF i(θi) > 0 for some i, such that ζ maximizes

∑N
i=1

∫ θi
θi
λi(θi)U i(ζ, θi)dF i(θi)

subject to ζ is feasible. Note that the weight attached to an agent i can vary with

her type. See Holmstrom and Myerson (1983) for more on this. Thus, an IE mech-
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anism maximizes weighted sum of agents’ utilities subject to IIC, IIR, and EABB

constraints. We could also use ex post budget balance condition. It turns out that

EABB is equivalent to ex post budget balance condition in our setting.

2.3 Results

Given welfare weights λ > 0, our main problem can now be stated as finding mecha-

nisms that maximize
N∑
i=1

∫ θ
i

θi
λi(θi)U i(ζ, θi)dF i(θi)

subject to IIC, IIR, EABB, and obvious quantity constraints.

We now proceed to characterize the complete set of interim efficient mechanisms.

We first start to reformulate the constraint set such that we can provide necessary and

sufficient conditions for IIC and IIR. The second step in the characterization involves

a general solution to the maximization problem with the constraints rewritten as

described below. The constraints for IIC correspond to the first-order and second-

order conditions of an individual optimization problem. Following the same idea in

Myerson (1981), I find the solution to the case where the second-order IIC condition

is not binding (regular problems). Then, I provide a sufficient condition in which the

solution to the regular problem coincides with the solution to the original problem.

The standard tools of mechanism design are used to get the following preliminary

results.
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2.3.1 Preliminaries to the Main Results

IIC requires that it is a Bayesian equilibrium for each agent to report her type truth-

fully, i.e., none of the agents can obtain strictly higher payoffs by deviating individu-

ally. Let Si : Θi → R be agent i’s expected surplus function. Then given a mechanism

ζ surplus function is

Si(θi) := sup{U i(ζ, θi, si)|si ∈ Θi}.

This optimization problem determines the agent i’s optimal report. It is easy to see

that a mechanism is IIC if and only if Si(θi) = U i(ζ, θi) for all i, θi. In our frame-

work incentive compatibility can also be characterized by means of an envelope and

a monotonicity condition as in standard mechanism design problems. The following

result, which is useful in our characterization, states that the derivative of the ex-

pected marginal total value of type θi under the mechanism should be nondecreasing

and the expected utility function of that type is uniquely determined by the expected

utility of the lowest type and the allocation rule. The proof is similar to the selfish

preferences environment. A similar result is also proved by Rochet (1987) for linear

environments with selfish preferences.

Lemma 1 A mechanism is IIC if and only if

(si − θi)× (Qi(si, ρ)−Qi(θi, ρ)) ≥ 0 for all si, θi ∈ Θi (2.1)
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U i(ζ, θi) = U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds (2.2)

where

Qi(θi, ρ) ≡
∫

Θ−i

∑
x∈X

yx(θ)
∂V i(x, θ, ρ)

∂θi
dF−i(θ−i).

The first condition is the monotonicity condition which states that the expected

marginal total value of agent i in her own type, Qi(θi, ρ), should be monotone in-

creasing in her own private information. This implies that ∂Qi(θi,ρ)
∂θi

≥ 0. The second

condition is the envelope condition. The monotonicity condition has implications

only for allocation rules. Notice that the expected payment function ai is completely

determined by a constant ai(θi) and the allocation rule y. The constant of integration,

U i(ζ, θi) is uniquely determined by N constants a(θ) and y for all agents.

Now we can write expected budget surplus in an IIC mechanism using the result

above.

B(ζ) ≡
N∑
i=1

∫
Θ

ti(θ)dF (θ) =
N∑
i=1

∫
Θ

(ρti(θ) + (1− ρ)

∑
j t
j(θ)

N
)dF (θ)

=
N∑
i=1

(∫
Θ

∑
x∈X

yx(θ)V i(x, θ, ρ)dF (θ)− U i(ζ, θi)−
∫

Θi
[

∫ θi

θi
Qi(s, ρ)ds]dF i(θi)

)

Using integration by parts,

=
N∑
i=1

∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ)− ∂V i(x, θ, ρ)

∂θi
1− F i(θi)

f i(θi)

)
dF (θ)−

N∑
i=1

U i(ζ, θi).
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Let Φ(ζ, ρ) ≡
∑N

i=1

∫
Θ

∑
x∈X y

x(θ)
(
V i(x, θ, ρ)− ∂V i(x,θ,ρ)

∂θi
1−F i(θi)
f i(θi)

)
dF (θ). Notice that

if ζ is EABB then B(ζ) ≥ 0. This also implies the mechanism designer does not expect

to pay subsidies to the agents.

IIR requires that each type of each agent must be at least as well off by partici-

pating as they would be by not participating at the interim stage. We assume that

outside options are exogenously given and without loss of generality normalized to

zero. We next combine IIR and IIC to get a useful result for later.

Lemma 2 An IIC mechanism ζ is IIR if and only if for all i ∈ N , U i(ζ, θi) ≥ 0.

2.3.2 Interim Efficient Mechanisms

Welfare weights play an important role in my analysis. Before stating the main

characterization, the following definition and lemma will be useful in reformulating

the original problem.

Definition 1 If λ0i ≡
∫ θi
θi
λi(θi)dF i(θi) > 0, let Λi(θi) = 1

λ0i

∫ θi
θi
λi(s)dF i(s). If

λ0i = 0, let Λi(θi) = 0.

λ0i is agent i’s ex ante welfare weight relative to other agents. Λi(θi) is a relative

weight of agent i’s lower types given her private information.

Lemma 3 ∫ θ
i

θi
λi(θi)

(
U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds

)
dF i(θi)

=
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λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
.

Now we can provide our first characterization by using the previous lemmas. This

result implies that the objective function is just a function of utilities of the lowest

types U i(ζ, θi) and the allocation rule y. It does not depend on the transfers anymore.

Theorem 1 A mechanism ζ = (y, a) is IE if and only if there exists non-negative

type-dependent welfare weights, {λi}Ni=1, where
∑

i∈N λ
0i > 0, and N constants,

{ci(θi)}Ni=1, such that (y, {ci(θi)}Ni=1) solves,

maxy∈Ω

N∑
i=1

λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
(2.3)

subject to

Φ(ζ, ρ)−
N∑
i=1

U i(ζ, θi) ≥ 0 (2.4)

U i(ζ, θi) =

∫
Θ−i

∑
x∈X

yx(θi, θ−i)V i(x, θi, θ−i, ρ)dF−i(θ−i)− ci(θi) ≥ 0 (2.5)

Qi(θi, ρ) monotone increasing for all i, θi. (2.6)

Following the same idea in Myerson (1981) we characterize the solution to the

problem in Theorem 1 for the case where monotonicity constraint is not binding.

In this case solution can be obtained by pointwise maximizing the integrand in the

objective function (2.3). Then we provide conditions under which the solutions to this

reduced problem satisfies the monotonicity constraint. When solutions to the original

problem and the reduced problem coincide, we refer to the problem as regular.
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Given non-negative type-dependent welfare weights, {λi}Ni=1, we can define the

Lagrangian function as

L(y, (ci(θi))Ni=1, γ, (µ
i)Ni=1) =

N∑
i=1

λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]

+γ

[
Φ(ζ, ρ)−

N∑
i=1

U i(ζ, θi)

]

+
N∑
i=1

µi

(∫
Θ−i

∑
x∈X

yx(θi, θ−i)V i(x, θi, θ−i, ρ)dF−i(θ−i)− ci(θi)

)
.

The first-order conditions with respect to γ (EABB multiplier) and with respect to

µi (IIR multiplier) imply that

γ ≥ 0, B(ζ) ≥ 0 and γB(ζ) = 0,

µi ≥ 0, U i(ζ, θi) ≥ 0 and µiU i(ζ, θi) = 0 for all i ∈ N.

The first-order condition with respect to ai(θi) yields −λ0i+γ−µi = 0. Then γ ≥ λ0i

for all i ∈ N . This implies the EABB constraint is always binding (γ > 0) since there

is i ∈ N such that λ0i > 0 and µi � 0 for all i ∈ N . The intuition of this result is

the following. We assumed that contributions in excess are not socially valued. If the

EABB is not binding, a redistribution of budget surplus to the agents would result

in an interim Pareto improvement. If we assume that there is a seller (or collector)

who keeps the excess surplus, then excess contributions are not lost for everybody.

This implies the constraint might not be binding depending on the welfare weight of
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the seller.

Let λ = maxi∈N{λ0i}. Define also K = {k | λ = λ0k, ∀ k ∈ N}, the set of agents

who have the highest ex ante welfare weight, and M = {m | λ > λ0m, ∀ m ∈ N}, the

set of agents whose welfare weights are lower than the highest ex ante welfare weight,

where N = K ∪M . There are two possible cases:

Case 1: γ > λ. This implies for all i ∈ N , µi > 0 ⇒ U i(ζ, θi) = 0 ⇒ IIR

constraints are binding for all agents’ lowest types.

Case 2: γ = λ. This implies for each k ∈ K, γ = λ = λ0k ⇒ µk = 0⇒ Uk(ζ, θk) ≥

0 and for each m ∈ M , γ = λ > λ0m ⇒ µm > 0⇒ Um(ζ, θm) = 0⇒ IIR constraints

are binding for all agents’ lowest types in M and the constraints are not binding for

all agents in K.

If IIR constraints for the lowest types of agents with non maximal expected wel-

fare weight is not binding, redistribution of wealth to agents with maximal expected

welfare weight would increase the weighted welfare function. The following lemma

summarizes the discussion above.

Lemma 4

N∑
i=1

λ0iU i(ζ, θi) = γ

N∑
i=1

U i(ζ, θi)

= γΦ(ζ, ρ).
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Using the above result, the objective function (2.3) can be written as follows

N∑
i=1

[∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ)− ∂V i(x, θ, ρ)

∂θi
1− F i(θi)

f i(θi)

)
dF (θ)

+
λ0i

γ

∫
Θi

(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
=

N∑
i=1

∫
Θ

∑
x∈X

yx(θ)

[
V i(x, θ, ρ) +

∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)]
dF (θ).

Suppose we are in Case 1. In this case both constraints are binding. This implies,

Φ(ζ, ρ) = 0

from EABB and

∫
Θ−i

∑
x∈X

yx(θi, θ−i)V i(x, θi, θ−i, ρ)dF−i(θ−i) = ci(θi) = ρai(θi)

from IIR. Therefore, we can uniquely solve for the set of expected payments of all

agents’ minimum types.

Suppose now we are in Case 2. The argument for each i ∈M is similar to Case 1.

On the other hand, for each i ∈ K the IIR constraint may not be binding. Therefore,

we need |K| constants to solve for the payment function. Note that the agents with

the maximal expected welfare weight share the remaining surplus (or cost) to make

the EABB constraint binding. This implies agents in set K will be residual claimants.
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When we combine both cases and rearrange terms, we get the following result.1

This result is simplified reformulation of Theorem 1 for regular problems. The utilities

of lowest types U i(ζ, θi) are explicitly entered into the objective function and the

constraints of the maximization problem reduce to two constraints representing the

EABB constraint for each of the two cases as discussed above.

Theorem 2 Suppose the type-dependent welfare weights are such that λ0i = λ > λ0j

for all j ∈ N\{i} and γ ≥ λ. Then, for regular problems, a mechanism ζ is IE if and

only if y ∈ ∆(X) simultaneously solves the following inequalities

max
y∈Ω

N∑
i=1

∫
Θ

∑
x∈X

yx(θ)
[
V i(x, θ, ρ) +

∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)]
dF(2.7)

0 ≤ Φ(ζ, ρ) (2.8)

0 = (γ − λ)Φ(ζ, ρ). (2.9)

The payment function (if ρ 6= 0) is given by2:

∀ j 6= i, aj(θj) =

∫
Θ−j

∑
x∈X y

x(θ)V j(x, θ, ρ)dF−j(θ−j)−
∫ θj
θj
Qj(s, ρ)ds

ρ
, (2.10)

ai(θi) =

∫
Θ−i

∑
x∈X y

x(θ)V i(x, θ, ρ)dF−i(θ−i)− Φ(ζ, ρ)−
∫ θi
θi
Qi(s, ρ)ds

ρ
. (2.11)

1For this result, we assume that |K| = 1. It is easy to generalize this result to the cases where
|K| 6= 1.

2If ρ = 0, any payment scheme that adds up to zero will work since in this case agents only care
about the average payment and we know that budget is always balanced.
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2.3.3 Modified Virtual Valuations

In this section we show the effects of interdependent preferences in our setting. Let

W i(x, θ, ρ, λi) = V i(x, θ, ρ) +
∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)
. (2.12)

We call W i(x, θ, ρ, λi) as the (modified) virtual valuation of agent i for allocation

x following Myerson (1981). Rather than directly working with total valuations,

interim efficient mechanisms use the agents’ total valuations suitably adjusted. The

virtual valuation for a given allocation is equal to the agent’s total valuation for the

allocation, V i(x, θ, ρ), with two adjustments that depend on the distribution of types,

welfare weights, and social concerns of the agents. The first one, ∂V i(x,θ,ρ)
∂θi

F i(θi)−1
f i(θi)

,

is due to the informational rent to be given for truthful revelation of the agent’s

private information. The second one is due to distortions arising from redistribution

of income (∂V
i(x,θ,ρ)
∂θi

λ0i

γ
1−Λi(θi)
f i(θi)

). Note that these adjustments are weighted with the

marginal total valuation of agent i for a given allocation and hence virtual valuations

also depend on the allocation.

The modified virtual valuations reduce to those given in Ledyard and Palfrey

(2007) if ρ = 1 and vi(xi, θ) = xiθi, which implies that valuations are independent.

For that case these authors show that

W i(θi, λi) = θi +
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)
.

If valuations are linear in the allocation and ρ = 1, then virtual valuations are also
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linear in xi and agents are selfish. Then we can redefine modified virtual valuations

such that they are independent of the allocation.

2.3.4 A Sufficient Condition for Regularity

In this section we provide sufficient conditions under which the solution to the regular

problem coincide with the solution to the original problem in Theorem 1.

Substituting (2.12) into (2.7) gives us:

max
y∈F

N∑
i=1

∫
Θ

∑
x∈X

yx(θ)W i(x, θ, ρ, λi)dF (θ). (2.13)

The regular problem to find IE mechanisms can now be stated as (y, a) is an interim

efficient mechanism if and only if the allocation rule y ∈ ∆(X) simultaneously solves

(2.13), (2.8), and (2.9), and the payment function a is given by (2.10) and (2.11).

The problem stated above has a simple solution defined by3

yx(θ, λ) =


1 if x = argmaxm∈X

∑N
i=1W

i(m, θ, ρ, λi)

0 otherwise.

(2.14)

This implies an IE mechanism assigns probability one to an allocation with the highest

sum of modified virtual valuations. Note that to find the interim efficient mechanism

we use the minimum possible γ ≥ λ̄ such that (2.8) and (2.9) are satisfied.

This solution also provides an algorithm to find the interim efficient mechanisms.

3For simplicity, we assume that there are no allocations x, y, x 6= y such that∑N
i=1W

i(x, θ, ρ, λi) =
∑N

i=1W
i(y, θ, ρ, λi). We can also use a random tie-breaking rule.
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Firstly, given welfare weights, set γ = λ̄ and find the allocation rule yx(θ, λ) for each

θ ∈ Θ. If this solution satisfies (2.8) and (2.9) then the expected transfer functions

a(θ) are given by (2.10) and (2.11). Then, (y, a) is the solution. If the solution does

not satisfy the constraints, then for each γ > λ̄ find the allocation rule. Then, find the

minimum value of γ such that the allocation rule yγ satisfies the constraints. Given

the allocation rule, calculate the expected transfer functions aγ as before. Then,

(yγ, aγ) is the solution.

We now provide a condition under which the solution (2.14) and the condition

imply that the monotonicity constraint is satisfied.

Assumption 1 (a) W i(x, θ, ρ, λi) is non decreasing in θi for all i ∈ N , x ∈ X and

all θ ∈ Θ, and (b) ∂V i(x,θ,ρ)
∂θi

is non decreasing in x for all i ∈ N , all θ ∈ Θ, and all

x ∈ X.

Note that we did not make any assumption about how the total valuations depend

on the allocation up to now. Assumption 1 basically restricts the set of admissible

valuation functions and welfare weights such that the solution to the reduced problem

satisfies the monotonicity condition (2.1). Assumption 1(a) reduces to a joint condi-

tion on priors F i, welfare weights and the curvature of the total valuation functions.

We already know by the initial assumption that ∂V i(x,θi,ρ)
∂θi

increases (decreases) when

θi increases (decreases). However, the allocation might also change as a result of

increase in an agent’s signal. Note that the allocation can not decrease due to As-

sumption 1(a). Assumption 1(b) guarantees that the derivative of the total valuation

functions ∂V i(x,θ,ρ)
∂θi

are also non decreasing in x. For example, if priors are uniform on
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[0, 1], V i(x, θ, ρ) = x(ρθi + (1− ρ)
∑
j∈N θj

N
), and ρ = 0 then

W i(.) =

∑
j∈N θ

j

N
+

1

N
(θi − 1 +

λ0i

γ
(1− Λi(θi)).

So Assumption 1(a) requires ∂W i

∂θi
≥ 0. This is true if and only if λi(θi) ≤ 2γ for

all i ∈ N and all θi ∈ Θi. We know that γ ≥ λ and welfare weights are always

non-negative. Therefore, this condition is satisfied for all possible welfare weights.

For general priors and social concerns, this assumption requires

γ ≥ λi(θi)

2f i(θi)−
∂fi(θi)

∂θi
(F i(θi)−Λi(θi))

f i(θi)

.

This implies Assumption 1(a) may not be satisfied for all welfare weights with arbi-

trary priors. We showed that with uniform priors the assumption can be satisfied for

all welfare weights and thus it is satisfied by all incentive efficient mechanisms. Note

also that the total valuation function satisfies Assumption 1(b).

Theorem 3 If each W i(.) and V i(.) satisfies Assumption 1, then the solution (2.14)

satisfies all constraints in Theorem 1.

2.4 Applications

Our characterization is general and can be applied to different economic settings.

In this section, we present the main intuition of the characterization by providing

simplified applications for both public and private goods environments where the
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private valuations are linear in types and allocation.

2.4.1 Public Goods

There are N people, i=1,...,N, who must decide on the level of a public good which

is produced according to constant returns to scale. In addition, they must decide

how to distribute the production costs. Let X = {0, 1} denote the possible values of

the public good. The cost of producing x ∈ X is equal to Kx. In our main model,

we assumed that social allocation is costless but it is easy to incorporate the cost of

social allocation to our model.

The individual payoff function of agent i, given a decision rule y and her monetary

payment ti, is

Πi(y, ti, θi) =
∑
x∈X

yx(θ)vi(x, θi)− ti.

We had started with the assumption that agents not only care about their individual

payoffs but also they care about the payoffs of other agents,

ui(y, t, θ) = ρΠi + (1− ρ)Π.

For this application we assume that the total valuation functions have the following

form:

V i(x, θ, ρ) = x

(
ρθi + (1− ρ)

∑
j∈N θ

j

N

)
.4 (2.15)

4The private valuation of agent i is vi(x, θi) = xθi.
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This implies the utility function of agent i is

ui(y, t, θ) =
∑
x∈X

yx(θ)V i(x, θ, ρ) + ρ(

∑
j∈N t

j

N
− ti)−

∑
j∈N t

j

N
, (2.16)

where ρ ∈ [0, 1] is the measure of social concerns. If ρ = 1, the model is equivalent

to the standard public good environment where agents are selfish. If ρ = 0, the

model is a common values setting where full social preferences are in action and the

society is homogeneous (every agent has the same valuation for the public good). If

1 > ρ ≥ 0, agents have interdependent preferences. Note that as ρ decreases the

degree of altruism in preferences goes up and the model converges to the full social

preferences setting.

For the regular case, given welfare weights λi : Θi → R+, an IE mechanism

satisfies:

max
y∈Ω

N∑
i=1

∫
Θ

(∑
x∈X

yx(θ)(W i(x, θ, ρ, λi)− K

N
x)

)
dF (θ) (2.17)

0 ≤ Φ(ζ, ρ)−
∫

Θ

K
∑
x∈X

yx(θ)xdF (θ) (2.18)

0 = (γ − λ)

[
Φ(ζ, ρ)−

∫
Θ

K
∑
x∈X

yx(θ)xdF (θ)

]
. (2.19)

Suppose IIR was not required. It is much easier to solve the problem without IIR

constraints. First-order conditions imply λ0i = γ = λ for all i ∈ N . Hence the ex-

ante welfare weights must all be equal. Otherwise, the solution does not exist, since

it is always possible to improve welfare by making arbitrarily large transfers between
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agents with different welfare weights. The problem stated above has a simple solution:

yx(θ, λ) =


1 if x = argmaxm∈X

∑N
i=1W

i(m, θ, ρ, λi)−Km

0 otherwise,

(2.20)

and the payment functions can be found using Theorem 2 after subtracting the ex-

pected cost of the public good from the constraint on the sum of the expected payment

of the lowest types of each agent.

The public good is produced if

N∑
i=1

θi + (ρ+
1− ρ
N

)
N∑
i=1

F i(θi)− Λi(θi)

f i(θi)
≥ K.

The first best decision is to produce the public good when

N∑
i=1

V i(1, θ, ρ) =
N∑
i=1

V i(1, θ, ρ = 1) =
N∑
i=1

vi(1, θ) =
N∑
i=1

θi ≥ K.

Let Θe = {θ|
∑N

i=1 θ
i ≥ K} and Θρ = {θ|

∑N
i=1W

i(.) ≥ K}. Efficiency dictates

that the probability of producing the public good does not depend on whether agents

are selfish or unselfish. In interim efficient mechanisms, there are distortions from

the first best due to informational rents, the type-dependent welfare weights and the

measure of social concerns ρ. Note that even though the sum of the valuations for

the public good is independent of the measure of social concerns, the production of

the public good depends on the interdependence among preferences.

Suppose λi(θi) is decreasing for all i and θi (lower types are weighted more heavily).
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This implies the aim of the planner is that agents valuing the public good more should

bear a larger share of the costs. Then,
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
< 0. This implies there is less

production than the ex post efficient mechanisms for all ρ since sum of the modified

virtual valuations is less than the sum of the valuations. Moreover, as ρ decreases,

or the degree of altruism in the preferences goes up, the public good is produced

more often. That is, when higher types are less heavily weighted than lower types,

underproduction is a more efficient way to relax incentive compatibility constraints

than transfers. However, incentive compatibility constraints are less binding as we

converge to the full social preferences environment (ρ decreases) and there is no need

to relax the incentive compatibility constraints. This leads to a relative increase in

the production of the public good.

Now, suppose λi(θi) is increasing for all i and θi (higher types are weighted more

heavily). Then,
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
> 0. This implies there is more production than

the ex post efficient mechanisms for all ρ since sum of the modified virtual valuations

is more than the sum of the valuations. Moreover, as ρ decreases, the public good

is produced less often. It is also easy to see that if λi(θi) = c ∈ R+ for all i and

θi, ex ante efficient public decisions which are also interim efficient correspond to the

classical first best decision (or ex-post efficient allocation). The following comparative

statistics result directly follows from the above discussion.

Proposition 1 If the welfare weights are decreasing in type, the public good is pro-

duced more often as the degree of altruism in preferences goes up.

Now suppose that IIR constraints are required. The main question is then whether
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the individual rationality constraint will be binding or not for the agent who is as-

signed the highest welfare weight. We know that individual rationality constraints

will be binding for all other agents since γ ≥ λ̄. Note that γ is found using the algo-

rithm in Section 1.3.4. Suppose γ > λ̄. This implies individual rationality constraints

are binding for all agents. For this case, virtual valuations are equivalent to5

W i(θ, ρ, λi) =

(
ρθi + (1− ρ)

∑
j∈N θ

j

N
+ (ρ+

1− ρ
N

)

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

))
.

(2.21)

The public good is produced if

N∑
i=1

θi + (ρ+
1− ρ
N

)

(
N∑
i=1

F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)
≥ K. (2.22)

With IIR constraints, virtual valuations are lower for all agents. Hence interim ef-

ficient choice of the public good is always lower with the constraints than with-

out. This implies that in some cases it might be efficient to produce the pub-

lic good but there might not be enough surplus to cover the incentive costs with-

out violating individual rationality constraints. Note that the adjustment term,

(ρ + 1−ρ
N

)
(∑N

i=1
F i(θi)−1
f i(θi)

+ λ0i

γ
1−Λi(θi)
f i(θi)

)
, is always negative. If interim efficient trade

occurs, then
∑N

i=1 θ
i > K. This is because classical (or ex post) efficiency, interim

incentive compatibility, and interim individual rationality are incompatible in our en-

vironment. IE mechanisms do not produce the public good when it is not optimal

5In this application the virtual valuations are linear in the allocation x since the valuation func-
tions are linear in x. We can redefine modified virtual valuations such that they will not depend on
the level of public good.
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or not classically efficient (
∑N

i=1 θ
i < K) to produce the public good, and IE mecha-

nisms may not produce the public good when it is optimal to produce (
∑N

i=1 θ
i ≥ K).

However, as degree of altruism in the preferences goes up the adjustment term be-

comes smaller. This implies agents earn less informational rents, the budget balance

constraint is relaxed and the constrained optimum is getting more efficient, since it

is easier to satisfy individual rationality constraints with relatively more unselfish

agents. That is, the inefficient provisioning of the public good will decrease as ρ de-

creases, and there will be fewer information states of the economy in which it might be

optimal to produce the public good but the public good is not produced. Moreover,

inefficiency in public good production is the smallest when full social preferences are

in action (ρ = 0). These observations lead to the following result.

Proposition 2 Inefficiencies in interim efficient public good provision decreases as

the degree of altruism in preferences goes up (Θe ⊇ Θρ′ ⊇ Θρ for all ρ, ρ′ ∈ [0, 1] such

that ρ > ρ′).

2.4.2 Bargaining: One Buyer and One Seller

There is a risk-neutral seller who wants to sell an indivisible object that she owns and

a risk-neutral buyer who wants to buy the object. The seller’s type is θs ∈ [θs, θ
s
], and

the buyer’s type is θb ∈ [θb, θ
b
]. We assume that [θs, θ

s
] ∩ [θb, θ

b
] 6= ∅. That is, there

are gains from trade for some information states of the economy. A nonmonetary

decision may be represented by a vector x = (xs, xb), where xs = 1 if the seller keeps

the good, xs = 0 if the seller sells the good, xb = 1 if the buyer gets the good, and
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xb = 0 if the buyer does not get the good. The set of possible allocations is then

X = {(1, 0), (0, 1)}. Agent i’s individual payoff depends on the decision rule y, her

private information θi and her monetary transfer ti,

Πi(y, ti, θi) =
∑
x∈X

yx(θ)vi(xi, θi)− ti.

Beyond her individual payoff, agent i ∈ {b, s} cares about the payoff of the other

agent,

ui(y, t, θ) =
∑
x∈X

yx(θ)V i(x, θ, ρ)− ρti − (1− ρ)
ts + tb

2
.

For this application we assume that total valuation functions have the following form:6

V i(x, θ, ρ) =

(
ρxiθi + (1− ρ)

xsθs + xbθb

2

)
.

If the parties do not reach an agreement, they get their outside options. The

seller’s outside option is U0s(θs) = 1+ρ
2
θs and U0b(θb) =

∫
Θs

1−ρ
2
θsdF s(θs) for the

buyer, the buyer’s expected value when he does not make any payments to the seller

and the seller keeps the good. Note that the interpretation of outside options is not

standard in our model. We could also set U0s(θs) = θs and U0b(θb) = 0. This would

imply interdependence among preferences are not observed if there is no trade.

IIR requires an agent’s net utility given incentive taxes to be non-negative for all

6If ρ = 1, the model is equivalent to the original Myerson and Satterthwaite (1983) bargaining
problem with selfish agents.
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of that agent’s types:

U i(ζ, θi)− U0i(θi) = U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds− U0i(θi) ≥ 0 for all i ∈M, θi ∈ Θi.

This is only true if

U i(ζ, θi) +minθi

[∫ θi

θi
Qi(s)ds− U0i(θi)

]
≥ 0.

It is easy to see that IIR constraint is binding for the lowest possible type of the buyer

and for the highest possible type of the seller. Note that for the buyer individual

rationality is satisfied if and only if U b(ζ, θb) ≥
∫

Θs
1−ρ

2
θsdF s(θs). For the seller,

individual rationality requires U s(ζ, θs) −
∫ θs
θs
Qs(a, ρ)da − 1+ρ

2
θ
s ≥ 0. The expected

surplus using our formulation in the paper can be written as

B(ζ) ≡
∑
i∈{b,s}

∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ)− ∂V i(x, θ, ρ)

∂θi
1− F i(θi)

f i(θi)

)
dF (θ)+

−U b(ζ, θb)− U s(ζ, θs).

Repeating the same arguments, an interim efficient mechanism maximizes

max
y∈Ω

∑
i∈{b,s}

∫
Θ

[∑
x∈X

yx(θ)(V i(x, θ, ρ) +
∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+ (2.23)

λ0i

γ

1− Λi(θi)

f i(θi)
+ (1− λ0i

γ
)
I i(θi)

f i(θi)

)]
dF (θ)

0 ≤ Ψ(ζ, ρ) (2.24)
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0 ≤ γ − λ (2.25)

0 = (γ − λ)Ψ(ζ, ρ) (2.26)

where

I i(θi) =


1 if θi < argminθi

[
U i(ζ, θi) +

∫ θi
θi
Qi(s, ρ)ds− U0i(θi)

]
;

0 if θi ≥ argminθi
[
U i(ζ, θi) +

∫ θi
θi
Qi(s, ρ)ds− U0i(θi)

]
and

Ψ(ζ, ρ) =
∑
i∈{b,s}

[∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ) +

∂V i(x, θ, ρ)

∂θi
F i(θi)− 1

f i(θi)

)
dF (θ) +

min
θi

(∫ θi

θi
Qi(s, ρ)ds− U0i(θi)

)]

=

∫
Θ

y(0,1)(θ)

[
θb − θs +

1 + ρ

2

(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)

)]
dF (θ).

The modified virtual valuation of the buyer is:

W b(x, θ, ρ, λb) = V b(x, θ, ρ) +
∂V b(x, θ, ρ)

∂θb

(
F b(θb)− 1

f b(θb)
+
λ0b

γ

1− Λb(θb)

f b(θb)

)
,

and the modified virtual valuation of the seller is

W s(x, θ, ρ, λs) = V s(x, θ, ρ) +
∂V s(x, θ, ρ)

∂θs

(
F s(θs)

f s(θs)
− λ0s

γ

Λs(θs)

f s(θs)

)
.

An IE mechanism gives the good to the agent with the highest positive modified vir-

tual valuations. Trade will take place whenever the seller’s modified virtual valuation
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is below the buyer’s modified virtual valuation. This implies trade occurs if

θb − θs +
1 + ρ

2

(
F b(θb)− 1

f b(θb)
+
λ0b

γ

1− Λb(θb)

f b(θb)
− F s(θs)

f s(θs)
+
λ0s

γ

Λs(θs)

f s(θs)

)
≥ 0.

The first best decision is to trade the good when θb ≥ θs. Efficient trade cannot

occur with probability one in interim efficient mechanisms. There are distortions from

the first best due to informational rents, redistribution of income, and our behavioral

assumption. Note that the sum of total valuations of agents is independent of the

degree of altruism in preferences. However, interim efficient trade depends on the

interdependence among preferences.

With IIR constraints, modified virtual valuation of the buyer is lower and modified

virtual valuation of the seller is higher than the case without IIR constraints. Hence

trade occurs less often with the constraints than without. It might be efficient to

trade in some cases but there might not be enough surplus to cover incentive costs

without violating individual rationality constraints.

Suppose the priors are uniform on [0, 1]. Then trade occurs if and only if

θb − θs ≥ 1 + ρ

3 + ρ

(
1− λ0b

γ
(1− Λb(θb))− λ0s

γ
Λs(θs)

)
.

In the ex ante efficient mechanism, which is also interim efficient, λs = λb = 1, trade

occurs if and only if

θb − θs ≥ (1 + ρ)(γ − 1)

(3 + ρ)γ − (1 + ρ)
.

The probability of trade in an interim efficient mechanism can be higher or lower than
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the ex ante efficient mechanism depending on welfare weights. Note that the set of

ex ante efficient mechanisms is a subset of the set of interim efficient mechanisms. In

the ex ante efficient mechanism the seller adjusts her total valuation upward and the

buyer adjusts her total valuation downward. They are willing not to trade even if

trade is beneficial to both parties to get more favorable total payoffs. This may not

be the case in an interim efficient mechanism depending on welfare weights.

If we apply our algorithm from Section 1.3.4, we see that γ is positively correlated

with ρ. The following table summarizes the relationship among the resource feasibil-

ity Lagrangian multiplier (γ), the degree of altruism ρ, and information state of the

economy θ = (θb, θs) for which trade occurs.

ρ γ θb − θs ≥
0 1 0

0.3 1.15 0.08
0.6 1.3 0.17
1 1.45 0.25

Table 2.1: Relationship between ex ante efficient trade and the degree of altruism in
preferences.

Note that the probability of ex ante efficient trade is equal to the probability of

efficient trade when ρ = 0. In this case agents only care about the total valuations

but do not care about the transfers, so the problem is equivalent to finding efficient

mechanisms. This will not be true for all interim efficient mechanisms since welfare

weights might be type dependent. We can conclude from the table that the probability

of trade decreases as ρ increases since there will be less (θs, θb) for which trade occurs
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as ρ increases. This implies altruistic agents trade more often than selfish agents.

Moreover, selfish agents are more willing to risk losing beneficial trades to get a

more favorable payment than unselfish agents. The following result states that this

observation can easily be extended to all interim efficient mechanisms.

Proposition 3 Trade occurs more often as the degree of altruism in preferences goes

up (Θe ⊇ Θρ′ ⊇ Θρ for all ρ, ρ′ ∈ [0, 1] such that ρ > ρ′).

The above result implies that agents will trade more often as ρ decreases. That

is, there will be more information states of the economy (θ ∈ Θ) where it is interim

efficient to trade. Moreover, agents do not trade when it is not optimal (or not

classically efficient) to trade (θb− θs < 0) and they may not trade when it is optimal

to trade (θb−θs ≥ 0). However, there will be fewer information states of the economy

where trade does not occur but trade is optimal as the degree of altruism in the

preferences increases.

These results and characterization of interim efficient mechanisms can be applied

to markets with many buyers and many sellers and to auctions with one seller and

many buyers. For competitive environments such as markets and auctions, we do not

have any evidence to support unselfish preferences. We assume that self-interest as-

sumption provides a good description for most people’s behavior for these applications

(ρ = 1).
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2.5 Concluding Remarks

In this paper, we have characterized interim efficient mechanisms for Bayesian envi-

ronments with interdependent preferences. We showed that interim efficient allocation

rules assign probability one to an allocation that maximizes sum of agents’ modified

virtual valuations that are carefully defined for these environments. We mostly con-

centrated on regular problems where we assumed that monotonicity constraint is not

binding and provided a sufficient condition for regular problems. The extension of

characterization to irregular problems remains open. We also provided some applica-

tions of this characterization for both public and private goods environments.

Our initial intention was to extend our analysis to the case where the individuals

share prior claims to the objects (dissolving a partnership). In that case individual

rationality constraints are type specific and the determination of buyers and sellers is

endogenous. Moreover, individual rationality constraints bind in the interior and this

interior point (or region) is also endogenous. This creates difficulties in separating

virtual valuations from the allocation rule, and hence virtual valuations are also en-

dogenous. Then, our formulation does not work for this case. Our conjecture is that

the set of initial shares for which efficient dissolution is possible extends as the degree

of altruism in preferences goes up. Extending the formulation to this problem is an

open question. We did not have this problem in our formulation because individual

rationality constraints are binding for the lowest or highest types of agents for all

incentive-compatible mechanisms.

One possibility for future research is to consider a model where the social con-
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cerns of agents are also private information. Then, types are multidimensional. This

extension appears to be a difficult open question since the problems with multidimen-

sional analysis are well known in mechanism design literature. Another possibility

for future research is to consider a mechanism design problem with Fehr and Schmidt

(1999) type of preferences where individuals are inequity-averse. This complicates the

mechanism design problem since this type of preferences introduces discontinuities.

The extension of our characterization to the Bayesian environments with inequity

averse agents and to the environments with private social concerns will be a subject

of our future research.
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2.6 Appendix

Proof of Lemma 1. (⇒) Let si > θi. IIC implies U i(ζ, θi) ≥ U i(ζ, θi, si) and

U i(ζ, si) ≥ U i(ζ, si, θi) where

U i(ζ, θi, si) = U i(ζ, si)−
∫

Θ−i

∑
x∈X

yx(si, θ−i)V i(x(si, θ−i), si, θ−i, ρ)dF−i(θ−i)

+

∫
Θ−i

∑
x∈X

yx(si, θ−i)V i(x(si, θ−i), θ, ρ)dF−i(θ−i)

and

U i(ζ, si, θi) = U i(ζ, θi)−
∫

Θ−i

∑
x∈X

yx(θ)V i(x(θ), θ, ρ)dF−i(θ−i)

+

∫
Θ−i

∑
x∈X

yx(θ)V i(x(θ), si, θ−i, ρ)dF−i(θ−i).

This implies Qi(si, ρ) ≥ U i(ζ,si)−U i(ζ,θi)
si−θi ≥ Qi(θi, ρ) and hence Qi(θi, ρ) is nondecreas-

ing. Letting si → θi implies ∂U i(ζ,θi)
∂θi

= Qi(θi, ρ). Then U i(ζ, θi) = U i(ζ, θi) +∫ θi
θi
Qi(s, ρ)ds.

(⇐) Now suppose 1 and 2 hold. Then U i(ζ, si) − U i(ζ, θi) =
∫ si
θi
Qi(s, ρ)ds ≥

(si − θi)Qi(θi, ρ). This implies, repeating the construction backwardly in the neces-

sary part, U i(ζ, θi) ≥ U i(ζ, θi, si) and U i(ζ, si) ≥ U i(ζ, si, θi). �

Proof of Lemma 2. IIR is satisfied if and only if U i(ζ, θi) ≥ 0 for all i, θi. By IIC

U i(ζ, θi) = U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds ≥ 0 for all i ∈ N, θi ∈ Θi.
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That is, it requires

minθi∈Θi

[
U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds

]
≥ 0,

⇔

U i(ζ, θi) +minθi∈Θi

[∫ θi

θi
Qi(s, ρ)ds

]
≥ 0⇔ U i(ζ, θi) ≥ 0 for all i ∈ N.

The other direction is trivial since V i(x, θi) is monotone increasing in θi. �

Proof of Lemma 3. By changing the order of integration we get:

LHS = λ0iU i(ζ, θi) +

∫ θ
i

θi
Qi(s, ρ)

[∫ θ
i

s

λi(θi)dF i(θi)

]
ds

= λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
Qi(s, ρ)(1− Λi(s))ds

]

= λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
.

�

Proof of Theorem 1. Directly follows from Lemmas 1, 2, and 3. (2.4) is EABB,

(2.5) is IIR, and (2.6) is the first part of IIC. �

Proof of Lemma 4. Let λ = maxi∈N{λ0i}. Define also K = {k | λ = λ0k, ∀ k ∈ N},

the set of agents who have the highest ex ante welfare weight, and M = {m | λ >

λ0m, ∀ m ∈ N}, the set of agents whose welfare weights are lower than the highest
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ex ante welfare weight, where N = K ∪M . There are two possible cases:

Case 1: γ > λ. This implies for all i ∈ N , µi > 0 ⇒ U i(ζ, θi) = 0 ⇒ IIR

constraints are binding for all agents’ lowest types.

Case 2: γ = λ. This implies for each k ∈ K, γ = λ = λ0k ⇒ µk = 0⇒ Uk(ζ, θk) ≥

0 and for each m ∈ M , γ = λ > λ0m ⇒ µm > 0⇒ Um(ζ, θm) = 0⇒ IIR constraints

are binding for all agents’ lowest types in M and the constraints are not binding for

all agents in K.

From Case 1 and 2, if U i(ζ, θi) 6= 0 for some i ∈ M ⊆ N then for all i ∈ M

ex ante welfare weights are equal to γ = λ = λ0i. This implies
∑N

i=1 λ
0iU i(ζ, θi) =

γ
∑N

i=1 U
i(ζ, θi) = γΦ(ζ, ρ). The second equality follows by EABB constraint which

is always binding. �

Proof of Theorem 2. It follows from Lemma 4 and the discussion for Case 1 and

2 as stated above. We know that IIR constraint is binding for the lowest types of

all −i. This implies
∑

l∈N U
l(ζ, θl) = U i(ζ, θi) = Φ(ζ, ρ) since EABB is always bind-

ing. Then, ρai(θi) =
∫

Θ−i

∑
x∈X y

x(θ)V i(x, θ, ρ)dF−i(θ−i) − U i(ζ, θi). By using the

envelope condition, we get the payment function of the agent with maximal welfare

weight. This implies agent i is the residual claimant. �

Proof of Theorem 3. The solution is constructed such that all constraints other

than monotonicity are satisfied. We only need to show that the solution satisfies the

monotonicity constraint. Suppose θi ≥ si, x = argmaxm∈X
∑N

i=1 W
i(m, θ, ρ, λi) and
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y = argmaxm∈X
∑N

i=1W
i(m, si, θ−i, ρ, λi). This implies x ≥ y by Assumption 1(a).

By Assumption 1(b),

Qi(θi, ρ) =

∫
Θ−i

∑
x∈X

yx(θi, θ−i)
∂V i(x, θ, ρ)

∂θi
dF−i(θ−i) =

∫
Θ−i

∂V i(x, θ, ρ)

∂θi
dF−i(θ−i)

≥ Qi(si, ρ) =

∫
Θ−i

∂V i(y, si, θ−i, ρ)

∂si
dF−i(θ−i).

This implies Qi(θi, ρ) is monotone increasing. Note that if x = y, Qi(θi, ρ) is obvi-

ously monotone increasing since we initially assumed that the valuation functions are

monotone increasing in type for all agents. Therefore, the solution (2.14) satisfies all

constraints in Theorem 1. �

Proof of Proposition 1. Suppose the welfare weights are decreasing in type. This

implies
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
< 0. We know that the probability of public good pro-

duction (the ratio of type profiles in which public good is produced) is equal to

Prob(yx=1
ρ > 0) = Prob(θ|

∑N
i=1 θ

i + (ρ + 1−ρ
N

)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
≥ K). Now con-

sider ρ̂ > ρ and θ where yx=1(ρ, θ) = 1. It is easy to see that Prob(yx=1
ρ > 0) ≥

Prob(yx=1
ρ̂ > 0) since there is ρ̂ such that

∑N
i=1 θ

i + (ρ + 1−ρ
N

)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
≥

K ≥
∑N

i=1 θ
i + (ρ̂ + 1−ρ̂

N
)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
. Note also that if yx=1(ρ, θ) = 0 then

yx=1(ρ̂, θ) = 0. Next consider ρ > ρ̃ and θ where yx=1(ρ, θ) = 0. Then Prob(yx=1
ρ̃ >

0) ≥ Prob(yx=1
ρ > 0) since there is ρ̃ such that

∑N
i=1 θ

i+ (ρ̃+ 1−ρ̃
N

)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
≥

K ≥
∑N

i=1 θ
i + (ρ + 1−ρ

N
)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
. Note also that if yx=1(ρ, θ) = 1 then

yx=1(ρ̃, θ) = 1. The proof for the case of increasing welfare weights is also similar. �
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Proof of Proposition 2. Given welfare weights and priors, let Θρ = {θ |∑
jW

j(θ, ρ, λi) ≥ K} be the set of types where public good is produced by an IE

mechanism ζ, given (ρ, γ). Let Θρ′ = {θ|
∑

jW
j(θ, ρ′, λi) ≥ K} be the set of types

where public good is produced by ζ given (ρ′, γ′). Note that for all ρ∗ ∈ [0, 1] and

all θ ∈ Θρ∗ ,
∑N

i=1 θ
i ≥ K since efficiency, interim incentive compatibility, and interim

individual rationality are incompatible. This implies the adjustment term in modified

virtual valuations is always negative. Suppose without loss of generality ρ′ < ρ. We

want to show that there are more information states of the economy where the public

good is produced as the degree of altruism in preferences goes up, Θρ′ ⊇ Θρ. Suppose

on the contrary there is θ such that θ ∈ Θρ and θ 6∈ Θρ′ . Then

N∑
i=1

θi + (ρ+
1− ρ
N

)

(
N∑
i=1

F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)
≥ K

and
N∑
i=1

θi + (ρ′ +
1− ρ′

N
)

(
N∑
i=1

F i(θi)− 1

f i(θi)
+
λ0i

γ′
1− Λi(θi)

f i(θi)

)
< K.

This is only possible if γ′ > γ. We also know that γ ≥ λ from first-order conditions.

This implies

Ψ(ζ, ρ)−
∫

Θρ
KdF (θ) ≥ Ψ(ζ, ρ′)−

∫
Θρ′

KdF (θ) = 0
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where

Ψ(ζ, ρ′) =

∫
Θρ′

(
N∑
i=1

θi + (ρ′ +
1− ρ′

N
)

N∑
i=1

F i(θi)− 1

f i(θi)

)
dF (θ).

Let, without loss of generality, Θρ = {θ|
∑

j θ
j > A(θ,K)} and Θρ′ = {θ|

∑
j θ

j >

B(θ,K)}. Since (ρ′ + 1−ρ′
N

)
∑N

i=1
F i(θi)−1
f i(θi)

> (ρ + 1−ρ
N

)
∑N

i=1
F i(θi)−1
f i(θi)

for all θ ∈ Θ,

B(θ,K) > A(θ,K). This implies if θ ∈ Θρ then θ ∈ Θρ′ , contradicting our initial

assumption. �

Proof of Proposition 3. Given welfare weights and priors, let Θρ be the set of types

where trade occurs given (ρ, γ) and Θρ′ be the set of types where trade occurs given

(ρ′, γ′). Let, without loss of generality, ρ′ < ρ (altruism in the preferences increases).

We want to show that Θρ′ ⊇ Θρ. Suppose on the contrary there exists θ such that

θ ∈ Θρ but θ 6∈ Θρ′ . (We know that either Θρ′ ⊇ Θρ or Θρ′ ⊆ Θρ.) This implies

θb − θs +
1 + ρ

2

(
F b(θb)− 1

f b(θb)
+
λ0b

γ

1− Λb(θb)

f b(θb)
− F s(θs)

f s(θs)
+
λ0s

γ

Λs(θs)

f s(θs)

)
≥ 0

and

θb − θs +
1 + ρ′

2

(
F b(θb)− 1

f b(θb)
+
λ0b

γ′
1− Λb(θb)

f b(θb)
− F s(θs)

f s(θs)
+
λ0s

γ′
Λs(θs)

f s(θs)

)
≤ 0.

This is only possible if γ′ > γ ≥ λ. This implies Ψ(ζ, ρ′) = 0. Since ρ > ρ′ and trade

does not occur in ρ′, we have

θb − θs +
1 + ρ

2
(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)
) ≤ θb − θs +

1 + ρ′

2
(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)
) ≤ 0.
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We know that trade occurs for θ in ρ. Hence,

Ψ(ζ, ρ) =

∫
Θρ

[
θb − θs +

1 + ρ

2

(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)

)]
dF (θ) ≤ Ψ(ζ, ρ′) = 0.

This is a contradiction since γ is chosen by the algorithm such that Ψ(ζ, ρ) ≥ 0. �
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Chapter 3

Implementation of the Core in
College Admissions Problems
When Colleagues Matter
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3.1 Introduction

This paper presents simple sequential mechanisms that implement the core corre-

spondence in college admissions problems when students do care about who else goes

to the same college. In this matching market, there are two finite disjoint sets of

agents, the set of colleges C and the set of students S. Each college has a preference

relation over groups of students. Each student has a preferences relation over colleges

and groups of students (or classmates). A matching will be a particular assignment

of students to colleges. The solution concept, core, specifies the set of matchings we

might observe in practice.

It is well known that the core of this matching market can be empty. Dutta and

Massó (1997) present conditions under which the core is non-empty. They show that

if the students’ preferences are college-lexicographic and colleges’ preferences satisfy

substitutability, the core is non-empty. There are also other papers in which other

conditions are presented for non-emptiness of the core. See, for example, Revilla

(2004) and Pycia (2007). We first introduce a multi-stage mechanism that imple-

ments the core in Subgame Perfect Nash Equilibrium on an unrestricted domain.

We also show that two-stage mechanisms cannot implement the core without these

restrictions.

In college admissions problems, Alcalde and Romero-Medina (2000) show that

two-stage simple mechanisms, such as the “students propose and colleges choose mech-

anism” and the “colleges propose and students choose” mechanism, implement the

core. We show that only extension of the colleges propose and students choose mecha-
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nism can implement the core under the restrictions that guarantee the non-emptiness

of the core (students’ preferences are college-lexicographic and colleges’ preferences

satisfy substitutability). Therefore, the symmetry between these two mechanisms

does not hold when students also care about their classmates.

Implementation of pairwise-stable outcomes in other matching markets has been

studied by several authors. Roth (1984), Gale and Sotomayor (1985), Alcalde (1996),

and Sotomayor (2003) deal with implementation in one-to-one matching markets.

Kara and Sönmez (1995) show that the set of stable matchings, but no subset of

the core, is Nash implementable. Alcalde and Romero-Medina (2000) provide simple

mechanisms, which implement the core in SPNE, for many-to-one matching markets.

Sotomayor (2004) deals with the implementation problem in many-to-many matching

markets. This paper is the first paper which works on implementation problem for

many-to-one matching markets with preferences over colleagues. Finally, for general

cooperative games in coalitional form Perez-Castrillo (1994), Perry and Reny (1994),

Serrano (1995), and Serrano and Vohra (1997) address the question of implementation

of the core.

The rest of the paper is organized as follows. In Section 3.2 we give a brief intro-

duction to college admissions problems when colleagues matter and define our notion

of subgame perfect implementation. Section 3.3 presents the sequential matching

mechanism and we show that the matching mechanism implements in subgame per-

fect equilibrium the core correspondence in our framework. Section 3.4 introduces

a two-stage simple mechanism which can implement the core when the core is non-
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empty. In Section 3.5 we show that if we exchange the roles of colleges and students,

the two-stage simple mechanism cannot implement the core. The concluding remarks

follows in Section 3.6.

3.2 Preliminaries

3.2.1 The Model

We consider an extended version of a college admissions problem with n students and

m colleges. Let S = {s1, ..., sn} be a set of students and C = {c1, ..., cm} be a set of

colleges. Each college ci has a preference P (ci) defined over groups of students 2S.

Each si has a preference P (si) defined over (C × Ssi) ∪ {(∅, ∅)}, where Ssi = {A|A ∈

2S, si ∈ A} is the set of subsets of S which contains si. Preferences are linear orders.

A preference profile is a list P = (P (x))x∈C∪S ∈ P. We assume that being unmatched

or ∅ is not the last choice for each college.

A matching is a mapping µ from C ∪ S into 2S ∪ (C × Ssi) ∪ {(∅, ∅)} which

satisfies for all ci ∈ C and si ∈ S:

(1) µ(si) ∈ (C × Ssi) ∪ {(∅, ∅)},

(2) µ(ci) ∈ 2S,

(3) If si ∈ µ(ci) then µ(si) = (ci, µ(ci)),

(4) If µ(si) = (cj, S
′) then µ(cj) = S ′.

µ(si) = (∅, ∅) means that the student si is not matched to any college. Similarly,

if µ(ci) = ∅ then there are no students matched to college ci. Given a set of students
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A ⊆ S, we denote by Ch(A,P (c)) the maximal element on 2A under the linear order

P (c).

A matching µ is individually rational if no student prefers to be unmatched

and no college prefers to be matched with a subset of the current set of students.

Formally, for all si ∈ S and all ci ∈ C, µ(si)P (si)(∅, ∅) and µ(ci) = Ch(µ(ci), P (ci)).

LetM be the set of all matchings andN be the set of individually rational matchings.

Given any profile of preferences P , a matching µ is in the core, denoted C(P ), if

there is no C ′ ⊆ C, S ′ ⊆ S, and a matching µ′ such that:

1. C ′ ∪ S ′ 6= ∅;

2. For all c ∈ C ′ and s ∈ S ′, µ′(c) ∈ 2S
′

and µ′(s) ∈ C ′ × S ′s ∪ {(∅, ∅)};

3. For all a ∈ C ′ ∪ S ′, µ′(a)R(a)µ(a);

4. There exists a ∈ C ′ ∪ S ′ such that µ′(a)P (a)µ(a).

If such an C ′, S ′, and µ′ exist, then we say that µ is blocked by C ′∪S ′. It is also easy

to see that if a matching is not in the core, then either it is not individually rational

or it is blocked by a single college and some students. Hence the following definition is

equivalent to the above core definition.1 A matching is in the core if it is individually

rational and there does not exist a student-group–college pair (B, c) ∈ 2S × C where

B ∩ µ(c) = ∅ and A ⊆ µ(c) such that for all s′ ∈ A ∪ B, (c, A ∪ B)P (s′)µ(s′) and

A ∪BP (c)µ(c).

Given a set of students A ⊆ S, we denote by Ch(A,P (c)) the maximal element

on 2A under the linear order P (c). A matching µ is pairwise-stable if there is no

1See Echenique and Yenmez (2007) for a proof.
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pair (s, c) ∈ S × C such that s 6∈ µ(c) implies s ∈ Ch({s} ∪ µ(c), P (c)) and for all

s′ ∈ Ch({s} ∪ µ(c), P (c)) implies (c, Ch({s} ∪ µ(c), P (c)))P (s′)µ(s′). If there exists

such a pair, we will say that µ is pairwise-blocked by (s, c). Let S(P ) be the set of

pairwise-stable matchings.

The following result states the relationship between the core and pairwise-stable

matchings. The core is a subset of the set of pairwise-stable matchings. A proof is

given by Echenique and Yenmez (2007).

Proposition 4 C(P ) ⊆ S(P ).

In the classical college admission problems where students are indifferent about their

colleagues, the set of pairwise-stable matchings coincides with the core when colleges’

preferences satisfy substitutability.2 That is, for any student s 6= s′, if s belongs to

Ch(A,P (c)), then she will also belong to Ch(A \ {s′}, P (c)). Moreover, the substi-

tutability assumption guarantees non-emptiness of the core and implies that the core

has a lattice structure.

In our setting the core can be empty. Dutta and Massó (1997) show that the set

of matchings in the core remains non-empty when students’ preferences are college-

lexicographic and colleges’ preferences satisfy substitutability. That is student si’s

preferences are college-lexicographic if there is a strict ordering P i over colleges such

that for all (C, S), (C ′, S ′), (C 6= C ′), (C, S)P (si)(C
′, S ′)⇔ CP iC

′, and (C, S)P (si)si ⇔

CP isi. Pycia (2007) also presents a sufficient and, in certain sense, necessary condi-

tion for non-emptiness of the core.

2See Roth and Sotomayor (1990) for more on this.
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3.2.2 Subgame Perfect Implementation

We now introduce our definition of subgame perfect implementation. By a sequential

game form, we mean a finite-horizon extensive game form with perfect information.

A sequential game form Γ is said to (fully) implement in subgame perfect equilibrium

a solution = if for every preference profile P ∈ P, =(P ) is the unique pure strategy

subgame perfect equilibrium outcome of the game (Γ, P ). A sequential game form

Γ is said to partially implement in subgame perfect equilibrium a solution = if for

every preference profile P , the pure-strategy subgame perfect equilibrium outcomes

of the game (Γ, P ) is a subset of =(P ). By a sequential game form Γ = (M,h) =

(
∏

i∈N Mi, h), we mean a finite horizon extensive game form with perfect information

where Mi is agent i’s strategy space and h : M →M is an outcome function.

Let SPNE(Γ, P ) denote the set of pure strategy subgame perfect equilibria for

the game (Γ, P ) and let SP (Γ, P ) = h(SPNE(Γ, P )) denote the set of all outcomes

corresponding to the subgame perfect equilibria of (Γ, P ). Then Γ is said to (fully)

implement the core in subgame perfect equilibrium if SP (Γ, P ) = C(P ) for all P ∈ P.

3.3 The Matching Mechanism

Before defining our mechanism (or game form), we need some additional notation. A

college-permutation is a bijection πi ∈ Π from C to C. Given a profile of permutations

π = (πi)i∈C , let f(π) = πc1 ◦ ... ◦ πcm be the composition of the permutations and
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fi(π) be the i-th college of f(π).3 This type of permutation is useful in endogenously

defining the order of moves in our sequential game form. Note that any i ∈ C can

make a unilateral change in πi to make itself the first player in the order of f .

We can now define the matching mechanism which is a sequential game form that

implements the core.

In stage 1, every college ci simultaneously announces an individually rational

matching µci ∈ N and a permutation πci ∈ Π. If for any ci and cj, µci 6= µcj ,

then the game ends with µ(fi(π)) = ∅ for all i < m and µ(fm(π)) ∈ 2S such that

∅P (fm(π))µ(fm(π)). If µci = µcj = µ1 for all ci, cj ∈ C, then proceed to stage 2.

In stage 2, a college f1(π) announces the set of students Sf1(π) ⊆ S that it wants to

admit. Students who received an offer from the college respond sequentially to this

proposal (the order of students is fixed and the order is not important to the results).

If all students in Sf1(π) accept the offer, then we proceed to stage 3. If any student

in Sf1(π) rejects the proposal, the game ends with µ2 = µ1 as the outcome. In stage

3, a college f2(π) announces the set of students Sf2(π) ⊆ S \ Sf1(π) that it wants to

admit. Students who received an offer from the college respond sequentially to this

proposal. If all students in Sf2(π) accept the offer, then we proceed to stage 4. If any

student in Sf2(π) rejects the proposal, then the game ends with µ3 as the outcome.

Outcomes of the game form when a student rejects a proposal is formally defined in

the next paragraphs.

...
...

3This type of permutation device is proposed by Thomson (2005) in implementation of the “no-
envy” correspondence and its variants in abstract economic environments.
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In stage m+ 1, a college fm(π) announces the set of students Sfm(π) ⊆ S \ ∪i<mSfi(π)

that it wants to admit. Students who received an offer from the college respond

sequentially to this proposal. If all students in Sfm(π) accept the offer, then µ(fi(π)) =

Sfi(π) for all i ≤ m, µ(si) = (fj(π), Sfj(π)) for all students such that si ∈ Sfj(π), and

any student who did not receive any offer is unmatched. If any student in Sfm(π)

rejects the proposal, the game ends with µm+1 as the outcome.

To formally summarize, the matching mechanism Γ is defined as follows:

Stage 1. Every college ci simultaneously announces η1
ci
∈ N × Π.

If for any ci and cj, µci 6= µcj , then the game ends with µ(fi(π)) = ∅ for all i < m

and µ(fm(π)) ∈ 2S such that ∅P (fm(π))µ(fm(π)). If µci = µcj = µ1 for all ci, cj ∈ C,

then go to the next stage.

Stage 2. The college f1(π) announces a set of students η2
f1(π) = Sf1(π) ⊆ S. Then,

each si ∈ Sf1(π) sequentially announces λ2
si
∈ {“accept”, “reject”}.4

If there is si ∈ Sf1(π) such that λ2
si

= “reject”, the game ends with µ2 = µ1 as the

outcome. Otherwise, go to the next stage.

Stage 3. The college f2(π) announces a set of students η3
f2(π) = Sf2(π) ⊆ S \ Sf1(π).

Next, each si ∈ Sf2(π) sequentially announces λ3
si
∈ {“accept”, “reject”}.

If λ3
si

= “accept” for all si ∈ Sf2(π), then go to the next stage. If there is si ∈ Sf2(π)

such that λ3
si

= “reject”, the game ends with µ3 as the outcome where;

µ3(f1(π)) = Sf1(π), µ3(si) = (f1(π), Sf1(π)) for all si ∈ Sf1(π),

4We assume that each student announces “accept” if she is indifferent between announcing “ac-
cept” and “reject”. The order of students who respond to the offer of the college is fixed in every
stage and the order is not important to the results.
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∀ 1 < i ≤ m, µ3(fi(π)) =


µ1(fi(π)) if µ1(fi(π)) ∈ S \ Sf1(π)

∅ otherwise.

and

∀ si ∈ S \ Sf1(π), µ3(si) =


(fi(π), µ1(fi(π)) if µ1(fi(π)) ∈ S \ Sf1(π)

(∅, ∅) otherwise.

...
...

Stage m+1. The college fm(π) announces a set of students ηm+1
fm(π) = Sfm(π) ⊆ S \

∪i<mSfi(π). Then, each si ∈ Sfm(π) sequentially announces λm+1
si
∈ {“accept”, “reject”}.

If λm+1
si

= “accept” for all si ∈ Sfm(π), then the game ends with µ(fi(π)) = Sfi(π)

for all i ≤ m, µ(si) = (fj(π), Sfj(π)) for all students such that si ∈ Sfj(π) and any

student who did not get any offer is unmatched, as the outcome. If there is si ∈ Sfm(π)

such that λm+1
si

= “reject”, the game ends with µm+1(fi(π)) = Sfi(π) for all i < m,

µm+1(fm(π)) = ∅, µm+1(sk) = (fi(π), Sfi(π)) for all sk ∈ Sfi(π) and µm+1(sj) = (∅, ∅)

for all sj ∈ S \ ∪i<mSfi(π) as the outcome.

Note that in any stage if a college announces the empty set, then we directly move

to the next stage and the college is unmatched as an outcome of the game induced

by our game form.

3.3.1 Implementing the Core

In our setting, the core might be empty even if we assume that colleges’ prefer-

ences satisfy substitutability. We need very strong assumptions on the preferences
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to guarantee the non-emptiness of the core. In our main result, we do not put these

restrictions on the preferences and we characterize the core as the subgame perfect

equilibrium outcomes of the game induced by the matching mechanism. This also

implies in a matching market with an empty core, the subgame perfect equilibrium

outcomes of the game form are also empty. The following is our main result.

Theorem 4 The matching mechanism Γ implements in subgame perfect Nash equi-

librium the core of college admission problems with preferences over colleagues.

The main structure of the proof is the following. We first assume the existence of

the core and pure-strategy subgame perfect equilibrium. Then, we characterize pure

strategy subgame perfect equilibrium outcomes as the core. We will also show that

the core is empty if and only if there does not exist a subgame perfect equilibrium

whose proof directly follows from the proof of our main result.

Proof. We fix P ∈ P. First, we prove that C(P ) ⊆ SP (Γ, P ). Let µ ∈ C(P ) and

consider the following strategy profile: (i) η1
ci

= (µ, πIci) = (µ, πI) and η1
si

= πIsi = πI

for all ci ∈ C and all si ∈ S, where πI is the identity permutation. (ii) Sfi(π) =

µ(fi(π)) for all i ≤ m, where fi(π) = ci for all ci ∈ C, since every agent announces

the identity permutation. (iii) For all si ∈ Sft−1(π), all 2 ≤ t ≤ m+ 1 and all si ∈ S,

λtsi = “accept” if and only if (ft−1(π), Sft−1(π))R(si)µ
t(si).

We only need to check that this strategy profile is an equilibrium. Since µ ∈ C(P ),

there is no blocking student-group–college pair. This implies no college can gain

by announcing Sfi(π) 6= µ(fi(π)) since it will be rejected by at least one student

who got offer from the college fi(π). Therefore, it is a dominant strategy for all
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fi(π) ∈ C to announce Sfi(π) = µ(fi(π)). This also implies no college can gain by

announcing a different permutation and hence changing the order of colleges. It is also

easy to see that announcing “accept” is an optimal strategy if the condition in (iii)

holds for all students. Note that we assume that if a student is indifferent between

announcing “accept” and “reject”, she announces without loss of generality “accept”.

An equilibrium path corresponding to the above strategy profile is one where every

college makes an offer to the students with whom she is matched in the core matching

and all students announce “accept”. The equilibrium outcome corresponding to the

strategy profile is µ. Thus, µ ∈ SP (Γ, P ), which implies C(P ) ⊆ SP (Γ, P ).

Now, we show that SP (Γ, P ) ⊆ C(P ). Suppose by the way of contradiction

that there is a matching µ such that µ ∈ SP (Γ, P ) and µ 6∈ C(P ). Then µ is not

individually rational or there exists a student-group–college pair (B, c) ∈ 2S × C

which blocks µ. The first case is not possible because each student by rejecting a

proposal can be single or guarantee an individually rational match since µ1 ∈ N .

Moreover, it is easy to see that in every SPNE, µci = µcj = µ1 for all ci, cj ∈ C.

If this is not the case, college fm(π) can gain by announcing different permutation

since ∅P (fm(π))µ(fm(π)). Then we move to stage 2 in every SPNE. This implies

each college cannot be matched with unacceptable set of students since each college

has the option of remaining single by announcing the empty set. Now, consider the

second case. We know that B ∩ µ(c) = ∅ and there is A ⊆ µ(c) such that for all

s′ ∈ A ∪ B, (c, A ∪ B)P (s′)µ(s′) and A ∪ BP (c)µ(c). We claim that c 6= f1(π).

Suppose c = f1(π). Then η2
f1(π) = B ⊆ S and each student si in B accepts this offer.
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This implies µ(c) = B, a contradiction. Suppose c = fk(π) where 1 < k ≤ m. Then

fk(π) can make a unilateral change in πfk(π) to make itself the first announcing college

and announce η2
c = B. Each student in B accepts this offer. This implies college c

was not playing its best response, a contradiction to µ ∈ SP (Γ, P ).

Corollary 1 For all P ∈ P, C(P ) = ∅ ⇔ SPE(Γ, P ) = ∅.

Proof. Immediately follows from our main result.

Corollary 2 The matching mechanism Γ partially implements in subgame perfect

Nash equilibrium the pairwise stable correspondence of college admission problems

with preferences over colleagues.

Proof. Follows from our main result and Proposition 4.

3.4 The Colleges Propose and Students Choose

Mechanism

This mechanism is widely studied in subgame perfect implementation of the core cor-

respondence of many-to-one and many-to-many matching models. See, for example,

Alcalde and Romero-Medina (2000) for college admissions problems and Sotomayor

(2004) for many-to-many matching markets. In this mechanism, each college selects

the set of potential students. Then, once each student receives the admission letters,

she accepts her most preferred college by also considering the classmates. In this

section we show that extension of such a two-stage game to our environment cannot
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implement the core in subgame perfect Nash equilibrium without strong restrictions

to the preferences of colleges and students.

Consider the following mechanism, called ΓCS. This is a two-stage mechanism.

In this mechanism, offers are made by colleges and students select the best college

by also considering the students who were also admitted to the same college. In the

first stage, colleges have to decide simultaneously. Each college message space is 2S.

In the second stage, students knowing colleges’ announcements select simultaneously

the college in which they want to study and their classmates.

Given this strategy space, outcome function hCS selects a matching µ such that:

µ(s) =


(m1(s),m2(s)) if m(m1(s)) = m2(s) for all s ∈ m2(s)

(∅, ∅) otherwise,

and, for each college c ∈ C,

µ(c) =


m(c) if m1(s) = c and m2(s) ⊇ m(c) for all s ∈ m(c)

∅ otherwise.

This mechanism ΓCS also cannot implement in SPNE the core correspondence of col-

lege admissions problems with preferences over colleagues without strong restrictions

on the preferences. The following example shows that there is a preference profile P

such that C(P ) ⊂ SP (ΓCS, P ) where C(P ) = ∅.

Example 1 Consider two colleges c1, c2 and three students s1, s2, s3 with the following

preference profile P :
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P (c1) : {s1, s2}, {s2, s3}

P (c2) : {s1, s3}

P (s1) : (c2, {s1, s3}), (c1, {s1, s2})

P (s2) : (c1, {s1, s2}), (c1, {s2, s3})

P (s3) : (c1, {s2, s3}), (c2, {s1, s3}).

This notation means that c1 prefers {s1, s2} to {s2, s3}. Only acceptable sets of

students for c1 are listed. That is, potential groups of students not listed are worse

for c1 than being single.

For this example Echenique and Yenmez (2007) show that C(P ) = ∅ using their

algorithm. We show that SP (ΓCS, P ) 6= ∅ for this example. Consider the following

set of strategies:

m(c1) = {s2, s3} ; m(c2) = {s1, s3} or ∅

m(s1) = (c2, {s1, s3}) ; m(s2) = (c1, {s2, s3}) ; m(s3) = (c1, {s2, s3}).

This constitutes a SPNE for the game ΓCS whose outcome coincides with µ where

µ =
c1 c2

s2s3 ∅

µ ∈ SP (ΓCS, P ) since college one and other students cannot reach higher utility

by deviating unilaterally. Suppose college one c1 deviates and announces m′(c1) =
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{s1, s2}. This leads to the following matching µ′:

µ′ =
c1 c2

∅ s1s3 .

However, {s2, s3}P (c1)∅. As a result µ ∈ SP (ΓCS, P ) but C(P ) = ∅. This implies the

extension of the “colleges propose and students choose” mechanism cannot implement

the core correspondence with an unrestricted domain of preferences. That is: C(P ) ⊂

SP (ΓCS, P ).

In the next result, we will assume that workers’ preferences are firm-lexicographic

and colleges’ preferences over sets of students satisfy substitutability. We show that

with these strong restrictions on preferences, the core correspondence can be imple-

mented by the ΓCS mechanism.

Theorem 5 If students’ preferences are college-lexicographic and colleges’ prefer-

ences over sets of students satisfy substitutability then the mechanism ΓCS implements

in SPNE the core correspondence.

Proof. First, we show that every SPNE outcome is in the core. SP (ΓCS, P ) ⊆

C(P ) 6= ∅. Suppose by way of contradiction that there is a matching µ such that

µ ∈ SP (ΓCS, P ) and µ 6∈⊆ C(P ). Then µ is not individually rational or there exists

a student-group–college pair (B, c) ∈ 2S × C which blocks µ. The first case is not

possible because each student si can remain unmatched by reporting m′(si) = (∅, ∅)

and for each college cj, Ch(µ(cj), P (cj)) = µ(cj). Suppose there is a college c such that

D = Ch(µ(c), P (c)) ⊂ µ(c). Then college c can be matched with the set of students
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D by reporting m′(c) = D by the construction of the mechanism, a contradiction to

µ ∈ SP (ΓCS, P ). Now consider the second case. We know that B ∩ µ(c) = ∅ and

there is A ⊆ µ(c) such that for all s′ ∈ A∪B, (c, A∪B)P (s′)µ(s′) and A∪BP (c)µ(c).

This implies college c can be better off by announcing m′(c) = A ∪B 6= µ(c). Notice

that in the second stage for all si ∈ A ∪ B, m′1(si) has to be equal to college c

since students’ preferences are college-lexicographic. That is, for all s ∈ B, cPsµ1(s).

Moreover, m′2(si) = A ∪ B for all si ∈ A ∪ B since the students play their best

response after knowing the announcements of the colleges. This cannot be the case

if µ ∈ SP (ΓCS, P ), a contradiction.

Now, we show that C(P ) ⊆ SP (ΓCS, P ). Let µ ∈ C(P ) 6= ∅. Consider the

following strategies for the agents. For each college cj ∈ C, its message is m(cj) =

µ(cj). In the second stage, for each student si, her message is m(si) = µ(si). Clearly,

µ ∈ SP (ΓCS, P ). We only need to show that this strategy profile is an equilibrium.

Suppose by way of contradiction there is a college cj who can reach higher utility

by deviating to m′(cj) = µ′(cj) = A and hence AP (cj)µ(cj). Since µ is individually

rational, µ(cj) = Ch(µ(cj), P (cj)). This implies A 6⊆ µ(cj) but there is a set of

students B ⊂ A such that B ⊂ µ(cj) and A\B 6∈ µ(cj). This implies for all s ∈ A\B,

cjPsµ1(s) since there exists a strict order Ps over colleges. However, we know that µ ∈

C(P ) and hence there is a student s′ ∈ B 6= ∅ such that (cj, µ(cj))P (s′)(cj, A). This

implies m′(s′) = m(s′) = µ(s′) = (cj, µ(cj)) and college cj cannot be matched to the

set of students A by construction of the mechanism (µ′(cj) 6= hcj(m
′)), a contradiction

to our supposition. Moreover, a student cannot deviate since her dominant strategy
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is to choose the college that wants her. Therefore µ is a SPNE. This completes the

proof.

3.5 The Students Propose and Colleges Choose

Mechanism

In this mechanism, each student selects the college at which she wants to study and a

potential set of classmates. Then, once each college has received all of the application

forms, it accepts its most preferred set of students. In this section we show that

if we exchange the role of students and colleges, the core correspondence cannot be

implemented with or without strong restrictions to the preferences of colleges and

students

Let ΓSC be the “students propose and college choose mechanism”. In the first

stage, each student selects the college at which she wants to study and set of students

with whom she wants to go to the college. That is m(s) = (m1(s),m2(s)) ∈ (C×Ss)∪

{(∅, ∅)} for all students. At the second stage each college, knowing the announcements

of the students, accepts its most preferred set of students. Each college message space

is equivalent to 2S.

Given this strategy space, outcome function hSC selects a matching µ such that:

for any student s ∈ S,

µ(s) =


(m1(s),m2(s)) if m(m1(s)) = m2(s) for all s ∈ m2(s)

(∅, ∅) otherwise,
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and, for each college c ∈ C,

µ(c) =


m(c) if m1(s) = c and m2(s) ⊇ m(c) for all s ∈ m(c)

∅ otherwise.

The following example shows that this mechanism ΓSC cannot implement in SPNE

the core correspondence of college admissions problems with preferences over col-

leagues without strong restrictions on the preferences. That is there is a preference

profile P such that C(P ) 6= SP (ΓSC , P ).

Example 2 Consider two colleges c1, c2 and four students s1, s2, s3, s4 with the fol-

lowing preference profile P :

P (c1) : {s1, s2, s4}, {s1, s3, s4}, {s1}, {s2}, {s3}

P (c2) : {s2, s3, s4}, {s3}, {s2}

P (s1) : (c1, {s1, s2, s4}), (c1, {s1, s2}), (c1, {s1, s3}), (c1, {s1})

P (s2) : (c2, {s2, s3, s4}), (c1, {s1, s2, s4})

P (s3) : (c2, {s2, s3, s4}), (c2, {s3})

P (s4) : (c1, {s3, s4}), (c2, {s2, s3, s4}), (c1, {s1, s2, s4}).

This notation means that c1 prefers {s1, s2, s4} to {s1, s3, s4}, {s1, s3, s4} to {s1}, and

so on. Only acceptable students for c1 are listed. That is, potential groups of students

not listed are worse for c1 than being single.
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Now, lets look at the following two matchings,

µ1 =
c1 c2

s1 s2s3s4

µ2 =
c1 c2

s1s2s4 s3 .

It is easy to see that µ1 ∈ C(P ) and µ2 can be supported in SPNE by strategies

m(c1) = {s1, s2, s4}, m(c2) = {s3}, m(s1) = (c1, {s1, s2, s4}), m(s2) = (c1, {s1, s2, s4}),

m(s3) = (c2, {s3}), and m(s4) = (c1, {s1, s2, s4}). That is µ2 ∈ SP (ΓSC , P ). However,

it can be checked that µ2 is blocked by 〈{c2}, {s2, s3, s4}, µ1〉. This implies C(P ) 6=

SP (ΓSC , P ).

In the next example, we assume that students’ preferences are college-lexicographic

and colleges’ preferences over sets of students satisfy substitutability. We will see that

even with these strong restrictions on preferences, the core correspondence cannot be

implemented by the ΓSC mechanism.

Example 3 Consider two colleges C = {c1, c2} and four students S = {s1, s2, s3, s4}

with the following preference profile P :

P (c1) : {s1, s2, s4}, {s1, s2}, {s1, s4}, {s2, s4}, {s1}, {s2}, {s3}, {s4}

P (c2) : {s2, s3}, {s2, s4}, {s3}, {s4}, {s3}, {s2}, {s1}, {s4}

Ps1 : c1

Ps2 : c2, c1

Ps3 : c2 and argmaxP (s3) = (c2, {s3})

Ps4 : c2, c1.

This notation means that (c2, {s3})P (s3)(c2, S
′) for all S ′ ∈ 2S\{s3}, (c2, S

′′)P (s3)(c1, S
′′′),
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and (c2, S
′′)P (s3)(∅, ∅) for all S ′′, S ′′′ ∈ 2S.

Consider the following strategy profile:

m(c1) = {s1, s2, s4},m(c2) = {s3}

m(s1) = m(s2) = m(s4) = (c1, {s1, s2, s4}), and m(s3) = (c2, {s3}).

It is easy to check that,

µ =
c1 c2

s1s2s4 s3

∈ SP (ΓSC , P ).

However, 〈{c2}, {s2, s4}, µ′(c2) = {s2, s4}〉 blocks µ. Therefore, µ 6∈ C(P ). This

implies that a symmetrical result for Theorem 5 cannot be obtained by exchanging

the role of students and colleges.

3.6 Final Remarks

This chapter presents sequential mechanisms to implement the core correspondence

of college admissions problems when colleagues matter. Without any restrictions on

the preferences, we propose a multi-stage mechanism that implements the core. This

implies that there is no SPNE if the core is empty for this multi-stage mechanism.

Under strong restrictions, we show that the extension of the “colleges propose and

students choose” mechanism can be used as a noncooperative game to reach the

core. Moreover, a symmetric version of the mechanism where colleges and students
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change their roles cannot implement the core with or without the restrictions on the

preferences. This shows that we should take into consideration whether students care

about their classmates or not when designing institutions for the real-life matching

problem.
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Chapter 4

A Theory of Stability in
Assignment Games
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4.1 Introduction

An assignment game is a two-sided matching market with monetary transfers. In

this market, there are two exogenously specified disjoint sets of agents, say firms and

workers. The agents engage in bilateral transactions (if worker i works for firm j

then firm j employs worker i) and make monetary transfers. Each firm can employ

no more than one worker and each worker can not work for more than one firm.

A natural solution concept for such markets is the core. The core outcomes specify

which partnership we can expect to observe and how the agents will divide their gains.

In this chapter, we provide an alternative way to characterize the core of assignment

games. We also construct the first algorithm to reach the all core outcomes for such

markets.

Shapley and Shubik (1972) show that every assignment game has non-empty core

and core payoffs have a nice structure. It is a non-empty complete lattice and there

is a polarization of interests in the core. This means that there is a stable outcome

which is the most preferred by every agent on one side of the market and at the

same time it is the least preferred by every agent on the other side of the market.

Geometrically, the core is a closed, convex polyhedron whose dimension is equal to

at most the minimum of the number of members in one group or in the other.

We construct a map T on a set of feasible payoffs such that the set of fixed points

of T is the core. Then we present a way to reach the core outcomes from fixed points

of the map. By recognizing that the mapping is monotone increasing, the lattice

property of the set of stable payoffs, as well as its non-emptiness, is proved as an



71

immediate implication of Tarski’s fixed point theorem. Furthermore, we show that

there is a polarization of interests in the core by using our formulation.

Our characterization is useful because:

1) It allows us to construct an algorithm to find all core outcomes by iterating T .

2) It provides a very simple proof for the lattice structure of the core and the polar-

ization of interests in the core.

This type of fixed point argument has been used in assignment problems with

side payments before, but they only characterized certain points in the interior of

the core (a subset of the core—symmetrically bargained allocations) as stationary

points of a rebargaining process between players, see Rochford (1984). By observing

a certain monotonicity in the rebargaining process, Roth and Sotomayor (1988) show

that these interior points have a lattice property. Moreover, fixed point methods

have been used in assignment problems without side transfers (NTU games), see for

example Adachi (2000), Echenique and Oviedo (2004), or Echenique and Yenmez

(2007) for applications of a fixed point approach for different environments.

The organization of the rest of the chapter is as follows: In the next section, we give

a brief introduction to the Shapley and Shubik assignment game and provide some

of the well-known results using linear programming formulation. In Section 4.3, we

provide some preliminary definitions and state Tarski’s fixed point theorem. Section

4.4 formalizes our fixed point approach to the core and shows that our formulation

fully characterizes the set of stable outcomes which coincides with the core in this

setup. In Section 4.5, we study the lattice structure of stable payoffs. We show
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that the stable payoffs form a non-empty complete lattice using our formulation. In

Section 4.6, we introduce the algorithm. The discussion and future research agenda

follows in Section 4.7.

4.2 Assignment Games with Money

This section gives a brief description of the assignment games and provides some well-

known results via linear programming proofs. We refer the reader to Shapley and

Shubik (1972) or Roth and Sotomayor (1990) for more discussion and justification of

the setup.

The game in coalitional function form with side payments is defined by three-tuple

Γ = 〈F,W, α〉 where

1. F = {f1, ..., fm} is a set of firms,

2. W = {w1, ..., wn} is a set of workers,

3. α is a m× n matrix of nonnegative numbers {αfw ∈ R+ : (f, w) ∈ F ×W} where

αfw is the value of pairwise partnership. Note that αkk = 0 for all k ∈ F ∪W .

An assignment µ : F ∪W → F ∪W is a one-to-one mapping of order two (that

is µ2(k) = k) such that if µ(f) 6= f then µ(f) ∈ W and if µ(w) 6= w then µ(w) ∈ F .

Let M be the set of all assignments. An assignment µ can also be represented as a

vector x ∈ {0, 1}F×W , such that xfw = 1 if µ(f) = w and xfw = 0, otherwise. Hence,∑
w∈W xfw ≤ 1 for all f ∈ F and

∑
f∈F xfw ≤ 1 for all w ∈ W .
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An assignment x is optimal if for all x′ ∈M,

∑
(f,w)∈F×W

αfwxfw ≥
∑

(f,w)∈F×W

αfwx
′
fw.

Let X be the set of optimal assignments. The optimal assignment is usually unique.

If there is more than one optimal assignment, a slight perturbation of the values of

the pairwise partnerships will result in a unique optimal assignment.

Any agent is free to remain single and receive zero, and the worth of an arbi-

trary coalition is equal to the sums of the pairwise coalitions it can form with pairs

consisting of one agent from F and one from W . That is for all coalitions S,

V (S) =



0 if |S| = 0 or 1

0 if S ⊆ F or S ⊆ W

maxµ:F∩S→W∩S
∑

f∈F∩S αfµ(f) if |F ∩ S| ≤ |W ∩ S|

maxµ′:W∩S→F∩S
∑

w∈W∩S αµ(w)w if |F ∩ S| ≥ |W ∩ S|.

Definition 2 The pair of vectors (u, v), with u ∈ Rm and v ∈ Rn, is called a feasible

payoff for Γ = 〈F,W, α〉 if there is an assignment x such that

∑
f∈F

uf +
∑
w∈W

vw =
∑

(f,w)∈F×W

αfwxfw.

In this case we say (u, v) and x are compatible with each other, and we call

((u, v);x) a feasible outcome.

Definition 3 A feasible outcome ((u, v);x) is stable (or the payoff (u, v) with an
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assignment x is stable) if

(i) uf ≥ 0, vw ≥ 0 (individual rationality)

(ii) uf + vw ≥ αfw for all (f, w) ∈ F ×W.

Note that condition (ii) only eliminates deviations by pair of agents since the set

of pairwise stable outcomes coincides with the set of group stable outcomes in this

framework. Let S(Γ) be the set of stable payoffs.

Consider just the assignment problem for the coalition of all players:

(AP)

max z =
∑

(f,w)∈F×W

αfwxfw

s.t.
∑
w∈W

xfw ≤ 1 ∀ f ∈ F,

∑
f∈F

xfw ≤ 1 ∀ w ∈ W,

xfw ≥ 0 ∀ (f, w) ∈ F ×W.

This optimization problem is associated with dual linear program having the form:

(DAP)

min d =
∑
f∈F

uf +
∑
w∈W

vw

s.t. uf + vw ≥ αfw ∀ (f, w) ∈ F ×W,

uf , vw ≥ 0.
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Therefore, (DAP) formulates the problem of finding payoff vectors in the core of the

assignment game. The existence of optimal solutions of (AP) and duality theorem

show that the set of stable payoff vectors is non-empty. Moreover, in the game the

set of stable outcomes and the core are the same.

Theorem 6 (Shapley and Shubik 1972) The core of an assignment game (C(Γ)

= S(Γ)×X ) is non-empty and is precisely equal to the set of solutions of the (DAP).

4.3 Preliminary Definitions

Tarski’s fixed point theorem is crucial in our formulation. Before stating the theorem,

the following definitions will be useful. A partial order is a binary relation which

is reflexive, transitive, and antisymmetric. A set X endowed with a partial order

≤ is denoted 〈X,≤〉. 〈X,≤〉 is a complete lattice if, for all non-empty B ⊆ X,

the greatest lower bound
∧
X B and the least upper bound

∨
X B exist in X. Let

〈X,≤X〉 be a (complete) lattice and 〈Y,≤Y 〉 be a partially ordered set. A function

F : X → Y is monotone increasing if x ≤X y implies F (x) ≤Y F (y). Let

E(F ) = {x ∈ X : x = F (x)} be the set of fixed points of F . See Topkis (1998) for

more on these concepts.

Theorem 7 Let 〈X,�〉, be a complete lattice. If F : X → X is monotone increasing,

then 〈E(F ),�〉, is a non-empty complete lattice.

Proof. See Tarski (1955) or Echenique (2005) for a short and constructive proof.
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4.4 The Core as a Set of Fixed Points

In this section, we present a formulation that allows us to fully characterize the core as

the set of fixed points of a certain function. We assume that |F | = |W | = n to simplify

the formulation.1 We shall also assume that for all f ∈ F uf ∈ {0, 1, ...,maxw∈W αfw}

and for all w ∈ W vw ∈ {0, 1, ...,maxf∈F αfw} to make the payoff space discrete.

These assumptions simplify the notation, but all results hold without these assump-

tions.

We can now proceed to define our formulation. Let Y be the set of possible payoffs

such that:

Y = {((uf )f∈F , (vw)w∈W ) | ∀f ∈ F, 0 ≤ uf ≤ max
w∈W

αfw ; ∀w ∈ W, 0 ≤ vw ≤ max
f∈F

αfw}.

Given (u, v), let

Uf1(u, v) = max
w∈W

(αf1w − vw),

Uf2(u, v) = max
w∈W 2=W\{argmaxw∈W (αf1w−vw)}

(αf2w − vw),

...

Ufn(u, v) = max
w∈Wn

(αfnw − vw),

Vw1(u, v) = max
f∈F

(αfw1 − uf ),

Vw2(u, v) = max
f∈F 2=F\{argmaxf∈F (αfw1

−uf )}
(αfw2 − uf ),

1It is easy to extend the formulation to a more general model that allows for different number
of firms and workers. This can be done by adding null firm (or null worker) which represent being
unemployed for workers (not having any worker for firms).
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...

Vwn(u, v) = max
f∈Fn

(αfwn − uf ).

Note that argmaxw∈W ′(αfiw − vw) and argmaxf∈F ′(αfwj − uf ) may not be a

singleton. Hence, U(.) and V (.) may not be well defined. We use a tie breaking rule to

avoid the cases when these sets are not singleton. A tie breaking rule guarantees that

|argmaxw∈W ′(αfiw − vw)| = |argmaxf∈F ′(αfwj − uf )| = 1 for all (f, w) ∈ F ′ ×W ′ ⊆

F×W . We also want our mapping to be consistent in the sense that it is independent

of the sequence of agents in which the final payoffs are realized.

Let F ⊆ Y be the set of firms consistent payoffs, W ⊆ Y be the set of workers

consistent payoffs, B ⊆ Y be the set of firms and workers consistent payoffs, and

Z ⊆ Y be the set of inconsistent payoffs. (u, v) ∈ F if and only if either there exist

a firm-consistent tie breaking rule or for all f ∈ F |argmaxw∈W (αfw − vw)| = 1, such

that for all n ≥ 2, and all fn ∈ F ,

argmaxw∈W (αfnw − vw) ∈ W n = W n−1 \ {argmaxw∈Wn−1(αfn−1w − vw)}, (4.1)

where W 1 = W . This implies U(.) is independent of the order of firms. (u, v) ∈ W if

and only if either there exist a worker-consistent tie breaking rule or for all w ∈ W

|argmaxf∈F (αfw − uf )| = 1, such that for all n ≥ 2, and all wn ∈ W ,

argmaxf∈F (αfwn − uf ) ∈ F n = F n−1 \ {argmaxf∈Fn−1(αfwn−1 − uf )}, (4.2)



78

where F 1 = F . This implies V (.) is independent of the order of workers. (u, v) ∈ B

if and only if (u, v) ∈ F and (u, v) ∈ W . (u, v) ∈ Z if and only if there does not exist

any type of consistent tie breaking rule or there is no need for a tie breaking rule,

such that neither (4.1) nor (4.2) does hold. Notice that Z = Y \ F ∪W , B ⊆ F , and

B ⊆ W .

Lemma 5 (u, v) ∈ B if and only if there exists a tie breaking rule such that w′ =

argmaxw∈W (αf ′w − vw) if and only if f ′ = argmaxf∈F (αfw′ − uf ).

Proof. It is enough to show that the tie breaking rule defined is consistent. Let

(u, v) ∈ Y and suppose that there exists a tie breaking rule such that

w′ = argmaxw∈W (αf ′w − vw)⇔ f ′ = argmaxf∈F (αfw′ − uf ).

This implies there is no f, f ′ ∈ F , and f 6= f ′ such that argmaxw∈W (αfw − vw) =

argmaxw∈W (αf ′w − vw). Moreover, there is no w,w′ ∈ W , and w 6= w′ such that

argmaxf∈F (αfw−uf ) = argmaxf∈F (αfw′−uf ). Then for all fn ∈ F , argmaxw∈W (αfnw−

vw) ∈ W n = W n−1\{argmaxw∈Wn−1(αfn−1w−vw)} and for all wn ∈ W , argmaxf∈F (αfwn−

uf ) ∈ F n = F n−1 \ {argmaxf∈Fn−1(αfwn−1 − uf )}. Therefore, the tie breaking rule is

consistent. Note that we do not need a tie breaking rule if all argmax{.} are singleton.

Remark 1 There may be more than one consistent tie breaking rule.

Now, define a map T : Y → Y such that if (u, v) ∈ F \ B then Tf (u, v) =

Uf (u, v) ∨ 0 = (maxw∈W (αfw − vw)) ∨ 0 for all f ∈ F and Tw(u, v) = V ′w(u, v) ∨ 0
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for all w ∈ W ; if (u, v) ∈ W \ B then Tf (u, v) = U ′f (u, v) ∨ 0 for all f ∈ F and

Tw(u, v) = Vw(u, v) ∨ 0 = (maxf∈F (αfw − uf )) ∨ 0 for all w ∈ W ; if (u, v) ∈ B then

Tf (u, v) = Uf (u, v) ∨ 0 = (maxw∈W (αfw − vw)) ∨ 0 for all f ∈ F and Tw(u, v) =

Vw(u, v) ∨ 0 = (maxf∈F (αfw − uf )) ∨ 0 for all w ∈ W ; if (u, v) ∈ Z then U(u, v) and

V (u, v) are not order independent and hence we use an arbitrary fixed tie breaking

rule in which if an agent is indifferent between two agents from other side of the

market, the agent prefers the one with a lower index. That is

U ′f1(u, v) = max
w∈W

(αf1w − vw),

U ′f2(u, v) = max
w∈W 2=W\{wi|i≤j ∀ wi,wj∈argmaxw∈W (αf1w−vw)}

(αf2w − vw),

...

U ′fn(u, v) = max
w∈Wn

(αfnw − vw),

V ′w1
(u, v) = max

f∈F
(αfw1 − uf ),

V ′w2
(u, v) = max

f∈F 2=F\{fi|i≤j ∀ fi,fj∈argmaxf∈F (αfw1
−uf )}

(αfw2 − uf ),

...

V ′wn(u, v) = max
f∈Fn

(αfwn − uf ).

Let E(T ) = {(u, v) ∈ Y : (u, v) = T (u, v)} be the set of fixed points of T . We

suppose that E(T ) 6= ∅ for this section. In Section 4.5, we will prove that the set of

fixed points of T is non-empty.
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Lemma 6 If (u, v) ∈ E(T ) then (u, v) ∈ B.

Proof. Suppose (u, v) ∈ F \ B. This implies there exists a tie breaking rule which is

firm consistent but not worker consistent. Then there is wj ∈ W such that Twj(u, v) 6=

maxf∈F (αfwj − vf ). Moreover, there is fi, fk ∈ F such that fi = argmaxf∈F (αfwj −

uf ) 6∈ F j and fk = argmaxf∈F j(αfwj − uf ). This implies Twj(u, v) = αfkwj − ufk <

αfiwj − ufi = vwj . Therefore, (u, v) 6∈ E(T ). Now, suppose (u, v) ∈ W \ B. By

reversing the roles of workers with firms in the above argument, we get (u, v) 6∈ E(T ).

The argument for (u, v) ∈ Z implies (u, v) 6∈ E(T ) is also identical to the first step.

As a result, E(T ) ⊆ Y \ {{F ∪W ∪ Z} \ B} = B.

Remark 2 The other direction of the above result is not true. The following example

shows that there is (u, v) ∈ B but (u, v) 6∈ E(T ).

Remark 3 It is also easy to see that S(Γ) ⊆ B using Lemma 5 and the definition of

core payoffs.

The following example illustrates the structure of the mapping T .

Example 4 [Shapley-Shubik (1972)]. Let Γ = 〈{f1, f2, f3}, {w1, w2, w3}, α〉 be an

assignment game where α is

w1 w2 w3

f1 5 8 2

f2 7 9 6

f3 2 3 0

.
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In this example (0, 0, 0, 7, 9, 6) ∈ F\B, (8, 9, 3, 0, 0, 0) ∈ W\B, (3, 5, 0, 2, 5, 1) ∈ B,

and (0, 0, 0, 7, 9, 1) ∈ Z. Then, T (0, 0, 0, 7, 9, 6) = (0, 0, 0, 7, 8, 0), T (8, 9, 3, 0, 0, 0) =

(8, 7, 0, 0, 0, 0), T (3, 5, 0, 2, 5, 1) = (3, 5, 0, 2, 5, 1), and T (0, 0, 0, 7, 9, 1) = (1, 0, 0, 7, 8, 0).

Moreover, (4, 5, 0, 2, 4, 0) ∈ B but (4, 5, 0, 2, 4, 0) 6∈ E(T ).

Two of our main results can now be stated. The first one (Proposition 5) shows

that the core (or stable) payoffs of the assignment game are equal to the set of fixed

points of the aforementioned mapping. Note that core outcomes are the Cartesian

product of the core payoffs and the set of optimal assignments. The second one

(Corollary 3) which directly follows from the first main result, states that the core

is equivalent to the Cartesian product of the set of fixed points of T and the set of

optimal assignments.

Proposition 5 E(T ) = S(Γ).

Proof. First we show that S(Γ) ⊆ E(T ). Let (u, v) ∈ S(Γ). This implies that

there is at least one optimal assignment x (or µ) such that
∑

f∈F uf +
∑

w∈W vw =∑
(f,w)∈F×W αfwxfw and for all (f, w) ∈ F×W , uf +vw = αfw if f and w are matched

and uf + vw ≥ αfw if f and w are not matched. Moreover, uf ≥ 0 for all f ∈ F and

vw ≥ 0 for all w ∈ W . Then for a given f ∈ F , uf ≥ αfj − vj for all j ∈ W and

µ(f) ∈ argmaxj∈W (αfj − vj). This implies

uf1 = αf1µ(f1) − vµ(f1) =

(
max
w∈W

(αf1w − vw)

)
∨ 0 = Uf1(u, v),

uf2 = αf2µ(f2) − vµ(f2) =

(
max

w∈W\{µ(f1)}
(αf2w − vw)

)
∨ 0 = Uf2(u, v),
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...

ufn = αfnµ(fn) − vµ(fn) =

(
max

w∈W\{∪i≤(n−1)µ(fi)}
(αfnw − vw)

)
∨ 0 = Ufn(u, v).

This implies uf = (Uf ) ∨ 0 for all f ∈ F . Similar arguments also reveal that,

vw = (Vw)∨0 for all w ∈ W . Therefore, T (u, v) = (u, v), which implies (u, v) ∈ E(T ).

Next, we prove that E(T ) ⊆ S(Γ). Let (u, v) ∈ E(T ). This implies (u, v) ∈ B by

Lemma 6. We first need to show that there exists an assignment x such that it is

compatible with (u, v) implying ((u, v);x) is a feasible outcome. Let xfnw′ = 1 and

xfnw′′ = 0 for all w′′ 6= w′, where w′ = argmaxw∈Wn(αfnw−vw) = argmaxw∈W (αfnw−

vw). By Lemma 5, fn = argmaxf∈F (αfw′−uf ). Then ufn ≥ αfnw′−vw′ ≥ αfnw′′−vw′′

for all w′′ 6= w′. Suppose that ufn > αfnw′ − vw′ . This is only possible if ufn = 0 and

vw′ > αfnw′ since ufn = maxw∈W (αfnw′ − vw′) ∨ 0. But then vw′ 6= maxf∈F (αfw′ −

uf )∨0 = αfnw′ , contradicting the assumption that (u, v) is a fixed point. This implies

ufn + vw′ = αfnw′ and ufn + vw′′ ≥ αfnw′′ for all w′′ 6= w′ when xfnw′ = 1. Define x

by repeating the process for all f ∈ F \ {fn}. Observe that x is an assignment by

construction. Then,
∑

f∈F uf +
∑

w∈W vw =
∑

(f,w)∈F×W αfwxfw, which implies that

((u, v);x) is a feasible outcome.

Now, we want to show that the payoff (u, v) with the assignment x is stable (i.e.,

x is an optimal assignment). First note that by the definition of fixed point uf ≥ 0

for all f ∈ F and vw ≥ 0 for all w ∈ W . Hence individual rationality is satisfied. We

already showed that if xfw = 1, uf +vw = αfw and for all f ′ 6= f , uf ′+vw ≥ αf ′w and

all w′ 6= w, uf + vw′ ≥ αfw′ . This implies that uf + vw ≥ αfw for all (f, w) ∈ F ×W .

Therefore (u, v) ∈ S(Γ).
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Corollary 3 E(T )×X = S(Γ)×X = C(Γ).

Proof. The result directly follows from Proposition 5 and the definition of core.

Remark 4 The set of optimal assignments is constructed using the following pro-

cess. Let (u, v) ∈ S(Γ) ⊆ B. Then there is a consistent tie breaking rule such

that w′ = argmaxw∈W (αf ′w − vw) if and only if f ′ = argmaxf∈F (αfw′ − uf ). Let

µ(w′) = f ′ and µ(f ′) = w′. Then, µ ∈ X . Note that there may be more than one

consistent tie breaking rule such that w′′ = argmaxw∈W (αf ′′w − vw) if and only if

f ′′ = argmaxf∈F (αfw′′ − uf ). We need to repeat the process for all such tie breaking

rules to reach the set of optimal assignments.

4.5 The Lattice Structure of Stable Payoffs

In this section we show that E(T ) is non-empty and forms a complete lattice. We

introduce a partial order on Y such that T is a monotone increasing map. Tarski’s

fixed point theorem then leads to a lattice structure on E(T ), and thus on S(Γ). First

we define the following binary relations on Y .

Definition 4 Let (u, v) ∈ Y.

(i) Define a binary relation ≥F by (u, v) ≥F (u′, v′)⇔ u ≥ u′.

(ii) Define a binary relation ≥W by (u, v) ≥W (u′, v′)⇔ v ≥ v′.

(iii) Define a partial ordering �F by

(u, v) �F (u′, v′)⇔ (u, v) ≥F (u′, v′) and (u′, v′) ≥W (u, v).

(iv) Define a partial ordering �W by
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(u, v) �W (u′, v′)⇔ (u, v) ≥W (u′, v′) and (u′, v′) ≥F (u, v).

The following lemma shows that T is a monotone increasing function under both

partial orders, �F and �W .

Lemma 7 For all (u, v), (u′, v′) ∈ Y , (u, v) �F (u′, v′) implies T (u, v) �F T (u′, v′)

and (u, v) �W (u′, v′) implies T (u, v) �W T (u′, v′).

Proof. Let (u, v) �F (u′, v′). We need to show that T (u, v) �F T (u′, v′). Since

(u, v) �F (u′, v′), uf ≥ u′f for all f ∈ F and v′w ≥ vw for all w ∈ W . Then for all

fi ∈ F ,

Tfi(u, v) = max
w∈W i

(αfiw − vw) ∨ 0

≥ max
w∈W i

(αfiw − v′w) ∨ 0 = Tfi(u
′, v′).

Therefore, T (u, v) ≥F T (u′, v′). Similarly, T (u′, v′) ≥W T (u, v). Hence T (u, v) �F

T (u′, v′). The proof of (u, v) �W (u′, v′) implies T (u, v) �W T (u′, v′) is similar.

The following results show that the set of core payoffs forms a complete lattice

under the partial orders �F and �W . We can prove them by applying Tarski’s fixed

point theorem.

Proposition 6 〈E(T ),�F 〉 is a non-empty complete lattice.

Proof. We showed in Lemma 5 that T is monotone increasing with respect to �F .

Moreover, 〈Y,≥F 〉 and 〈Y,≥W 〉 are complete lattices since Y is closed and bounded.

Then 〈Y,�F 〉 is also a complete lattice since it is a product set endowed with a
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product order. Tarski’s fixed point theorem (Theorem 7) implies that E(T ) 6= ∅ and

〈E(T ),�F 〉 is a complete lattice.

Proposition 7 〈E(T ),�W 〉 is a non-empty complete lattice.

Proof. Omitted. The proof is similar to the proof of Proposition 6.

The above propositions (Proposition 6 and 7) also imply that there is a polar-

ization of interest in the core. That is, there is a F-optimal stable payoff (ū, v) that

is simultaneously the best for all firms and the worst for all workers, and opposite

is true for W-optimal stable payoff (u, v). This type of polarization seems to be a

general property of two-sided matching markets.

The following lemma about the structure of the core is useful for the next section.

Lemma 8 Let (u, v) ∈ E(T ),(u′, v′) ∈ E(T ), and (u, v) �F (u′, v′). If uf − u′f = t

then there is w ∈ W such that v′w − vw = t.

Proof. By Lemma 6, (u, v) ∈ B and (u′, v′) ∈ B. Then T is order independent.

Tf (u, v) = maxw∈W (αfw − vw) ∨ 0 = uf and Tf (u
′, v′) = maxw∈W (αfw − v′w) ∨ 0 =

u′f = uf − t. This implies uf = maxw∈W (αfw − v′w + t). Therefore, there is w ∈ W

such that vw = v′w − t.

4.6 The Algorithm

The T-algorithm is very simple and uses our formulation. It starts at some (u, v) ∈ Y

and iterate T (u, v) until two iterations are identical. The algorithm stops when two

iterations are identical. We prove that when the algorithm stops, it must be at a



86

stable payoff. Moreover, we show that all stable payoffs can be reached through the

algorithm.

T-algorithm:

1. Set (u0, v0) = (u, v). Set (u1, v1) = T (u0, v0) and k = 1.

2. While (uk, vk) 6= (uk−1, vk−1), do:

(a) set k = k + 1

(b) set (uk, vk) = T (uk−1, vk−1).

3. Set τ = (uk, vk). Stop.

Proposition 8 If the T-algorithm stops at τ ∈ Y , then τ is a stable payoff and there

is an optimal assignment x ∈ X such that (τ ;x) is in the core. If (uk, vk) is in the set

of stable payoffs, for some iteration k of the T-algorithm, then the algorithm stops at

τ = (uk, vk).

Proof. If the algorithm stops at τ ∈ Y , then (uk, vk) = (uk−1, vk−1) = τ . Then,

τ = T (uk−1, vk−1) = T (τ), so τ ∈ E(T ). By Proposition 1, τ ∈ S(Γ). Moreover, by

Corollary 3, there is an optimal assignment x such that (τ ;x) ∈ C(Γ). To prove the

second part, observe that if (uk, vk) is a stable payoff, then (uk, vk) is a fixed point of

T by Proposition 5. Then the algorithm stops at τ = (uk, vk).

We now provide the second algorithm to find all core payoffs. Let

(ūY , vY ) = (max
w∈W

αf1w, ...,max
w∈W

αfnw, 0, ..., 0),

(uY , v̄Y ) = (0, ..., 0,max
f∈F

αfw1 , ...,max
f∈F

αfwn).
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Moreover, let enl be the l-th unit vector in Rn, i.e. enl = (0, ...1, 0, ..., 0) ∈ Rn, where

1 is the l-th element of enl .

Algorithm 2:

1. Set (u0, v0) = (ūY , vY ). Set (u1, v1) = T (u0, v0) and k = 1.

2. While (uk, vk) 6= (uk−1, vk−1), do:

(a) set k = k + 1

(b) set (uk, vk) = T (uk−1, vk−1).

3. Set τ = (uk, vk).

4. Let Ê = τ . The possible states of the algorithm is Y . Start at state Ω0 where

Ω0 = {(ūY ∧ uk + enl , 0 ∨ vk − enm), (0 ∨ uk − enl , v̄Y ∧ vk + enm)} ⊂ Y

for all 1 ≤ l,m ≤ n. Let the state of the algorithm be Ω. While Ω′ 6= ∅ do the

following subroutine to get a new state Ω′. Then set Ω = Ω′.

SUBROUTINE: Let Ω′ = ∅. For each (u, v) ∈ Ω, run T (u, v). If T (u, v) = (u, v)

add (u, v) to Ê and add {(ūY ∧ u+ enl , 0 ∨ v − enm), (0 ∨ u− enl , v̄Y ∨ v + enm)} \ Ê for

all 1 ≤ l,m ≤ n to Ω′.

Theorem 8 The set Ê produced by Algorithm 2 coincides with the core payoffs S(Γ)

of the assignment games.

Proof. First I prove that the algorithm reaches a fixed point after a finite k number

of iterations. Then, we know that τ = (uk, vk) ∈ S(Γ) by Proposition 8. Then I show
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that Ê ⊆ S(Γ), and then S(Γ) ⊆ Ê .

We want to show that the first part of Algorithm 2, T-algorithm, reaches a fixed

point. That is for some finite k, τ = (uk, vk) = (uk−1, vk−1). Assume this does not hold

for any k. Then, {(uk, vk)} is an infinite sequence of distinct payoffs in Y . However,

there exists a finite number of payoffs that is for all f ∈ F uf ∈ {0, 1, ...,maxw∈W αfw}

and for all w ∈ W vw ∈ {0, 1, ...,maxf∈F αfw}, contradicting to the initial assumption.

This implies there is k <∞ such that T-algorithm reaches a fixed point.

Now we show that the rest of Algorithm 2 stops after a finite number of steps. Let

M ⊆ Y be the collection of states visited by the algorithm. Let d1(Ω), where Ω ⊆M ,

be the minimum of the Euclidean distance between payoffs in Ω and (ūY , vY ) and

d2(Ω) be the minimum of the Euclidean distance between payoffs in Ω and (uY , v̄Y ).

If Ω = ∅, let d1(Ω) = d2(Ω) = 0. We consider d1(Ω) and d2(Ω) because if the state is

{(ūY , vY ), (uY , v̄Y )}, {(ūY , vY )}, or {(uY , v̄Y )} the next state is ∅ by the definition of

the subroutine. Let Ω′ and Ω′′ be successive states in the algorithm. It is clear from

the definition that d1(Ω′) > d1(Ω′′) and d2(Ω′) > d2(Ω′′). Since M is a finite set, d1(.)

and d2(.) takes only a finite number of values. Thus after a finite number of steps the

algorithm stops, i.e., Ω = ∅.

Ê ⊆ S(Γ). Let (u, v) ∈ Ê . This implies (u, v) = T (u, v) by the definition of

the algorithm and hence (u, v) ∈ E(T ). By Proposition 5, E(T ) = S(Γ). Therefore

(u, v) ∈ S(Γ) which proves Ê ⊆ S(Γ).

S(Γ) ⊆ Ê . Let (u, v) ∈ S(Γ) = E(T ). Suppose, by way of contradiction, that

(u, v) 6∈ Ê . This implies τ = (uk, vk) 6= (u, v) and (u, v) 6∈ M so that the algorithm’s
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states does not contain (u, v). Then either τ �F (u, v) or τ �F (u, v). Suppose,

without loss of generality, τ �F (u, v) and maxf∈F (ukf − uf ) = t. By Lemma 8, there

is w ∈ W such that vw − vkw = t. Now we show that {(ūY ∧ u+ enf , 0 ∨ v − eng )} 6∈M

for all 1 ≤ f, g ≤ n. Suppose this is not the case. Then there is a state Ωc of the

algorithm and a, b ∈ [1, n] such that (ūY ∧ u+ ena , 0∨ v− enb ) ∈ Ωc ⊆M . This is only

possible if (u, v) is in the previous state Ωc−1 ⊆M by the definition of the subroutine;

a contradiction since we assumed that (u, v) 6∈M . Using the same argument, we can

also conclude that for all 1 ≤ h, k ≤ n {(ūY ∧ u + enf + enh, 0 ∨ v − eng − enk)} 6∈ M .

Repeating the same argument t − 1 times implies (ūY ∧ uk − enl , 0 ∨ vk + eng ) 6∈ M ,

which is a contradiction since we have shown that there is τ = (uk, vk) ∈ Ê and

(ūY ∧ uk − enl , 0 ∨ vk + eng ) ∈ Ω0 ⊆M . This implies (u, v) ∈M and hence (u, v) ∈ Ê .

The case where τ �F (u, v) is also similar.

Now we use Example 4 to show the details of the algorithm. Algorithm 2 starts at

(u0, v0) = (8, 9, 3, 0, 0, 0) and does T (8, 9, 3, 0, 0, 0) = (8, 7, 0, 0, 0, 0), T (8, 7, 0, 0, 0, 0) =

(8, 7, 0, 2, 2, 0), T (8, 7, 0, 2, 2, 0) = (6, 6, 0, 2, 2, 0), T (6, 6, 0, 2, 2, 0) = (5, 6, 0, 2, 3, 0),

T (5, 6, 0, 2, 3, 0) = (5, 6, 0, 2, 3, 0). This implies τ = (5, 6, 0, 2, 3, 0). Now,

Ω0 = {(6, 6, 0, 1, 3, 0), (6, 6, 0, 2, 2, 0), (6, 6, 0, 2, 3, 0), (5, 7, 0, 1, 3, 0), (5, 7, 0, 2, 2, 0),

(5, 7, 0, 2, 3, 0), (5, 6, 1, 1, 3, 0), (5, 6, 1, 2, 2, 0), (5, 6, 1, 2, 3, 0), (4, 6, 0, 3, 3, 0),

(4, 6, 0, 2, 4, 0), (4, 6, 0, 2, 3, 1), (5, 5, 0, 3, 3, 0), (5, 5, 0, 2, 4, 0), (5, 5, 0, 2, 3, 1),

(5, 6, 0, 3, 3, 0), (5, 6, 0, 2, 4, 0), (5, 6, 0, 2, 3, 1)}.
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Note that for all (u, v) ∈ {(5, 6, 1, 1, 3, 0), (4, 6, 0, 2, 4, 0)} ⊂ Ω0, T (u, v) = (u, v).

Then add {(5, 6, 1, 1, 3, 0), (4, 6, 0, 2, 4, 0)} to Ê . The new state is

Ω = {(5, 6, 1, 1, 3, 0) + (e3
l ,−e3

m), (5, 6, 1, 1, 3, 0) + (−e3
l ,+e

3
m),

(4, 6, 0, 2, 4, 0) + (e3
l ,−e3

m), (4, 6, 0, 2, 4, 0) + (−e3
l , e

3
m)} \ {(5, 6, 0, 2, 3, 0)}.

For all (u, v) ∈ {(4, 6, 1, 1, 4, 0), (4, 5, 0, 2, 4, 1), (3, 6, 0, 2, 5, 0)} ⊂ Ω, T (u, v) = (u, v).

Then add {(4, 6, 1, 1, 4, 0), (4, 5, 0, 2, 4, 1), (3, 6, 0, 2, 5, 0)} to Ê . The new state is

Ω′ = {(4, 6, 1, 1, 4, 0) + (e3
l ,−e3

m), (4, 6, 1, 1, 4, 0) + (−e3
l ,+e

3
m), (4, 5, 0, 2, 4, 1) + (e3

l ,−e3
m),

(4, 5, 0, 2, 4, 1) + (−e3
l ,+e

3
m), (3, 6, 0, 2, 5, 0) + (e3

l ,−e3
m), (3, 6, 0, 2, 5, 0) + (−e3

l ,+e
3
m)} \ Ê .

It is only the case that for (3, 5, 0, 2, 5, 1) ∈ Ω′, T (3, 5, 0, 2, 5, 1) = (3, 5, 0, 2, 5, 1).

Then add (3, 5, 0, 2, 5, 1) to Ê . The new state is

Ω′′ = {(3, 5, 0, 2, 5, 1) + (e3
l ,−e3

m), (3, 5, 0, 2, 5, 1) + (−e3
l ,+e

3
m)} \ Ê .

Note that there is not any (u, v) ∈ Ω′′ such that T (u, v) = (u, v). Then the new state

is ∅. This implies the algorithm stops and the core of the assignment game is

Ê = {(5, 6, 0, 2, 3, 0), (5, 6, 1, 1, 3, 0), (4, 6, 0, 2, 4, 0), (4, 6, 1, 1, 4, 0), (4, 5, 0, 2, 4, 1),

(3, 6, 0, 2, 5, 0), (3, 5, 0, 2, 5, 1)}.
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4.7 Formulation with Core Outcomes Is Not Pos-

sible

It would be nice to find a construction such that fixed points will directly provide

the core outcomes. However unlike assignment literature without money, it is not

possible to work with core outcomes in this setup. In the rest of this section, we

define a reasonable construction which can work with outcomes. Then we provide

examples to show that this type of formulation is not possible.

Let π be a pre-assignment if π : F ∪W → F ∪W such that π(f) ∈ W ∪{f} for

all f ∈ F , and π(w) ∈ F ∪ {w} for all w ∈ W . Let Π be the set of all pre-assignment

vectors. Define a map T ′ : Y × Π→ Y × Π such that

T ′f ((u, v); π(f)) = ((maxUf (u, v)) ∨ 0;w) where w ∈ argmax (αfw − vw) ∀f ∈ F,

and

T ′w((u, v); π(w)) = ((maxVw(u, v); f)) ∨ 0 where f ∈ argmax (αfw − uf ) ∀w ∈ W.

Then we could show that the fixed points of T ′ are equivalent to the core. However,

this type of formulation is not possible in this framework since there might be more

than one optimal assignment and different (pre)assignments might correspond to

same payoffs. Then, fixed point of T ′ may fail to induce an assignment. Moreover,

proving the existence of a fixed point is problematic. On the other hand, by using
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our formulation core payoffs can always be found, and core outcomes will be equal to

the Cartesian product of the fixed points and the set of optimal assignments which

is constructed.

Example 5 [Shapley-Shubik (1972)] Let Γ = 〈{f1, f2, f3}, {w1, w2, w3}, α〉 be an as-

signment game where α is

w1 w2 w3

f1 0 2 0

f2 2 0 2

f3 0 2 0

.

There are four optimal assignments given by

X = {(0, 1, 0; 1, 0, 0; 0, 0, 1), (0, 1, 0; 0, 0, 1; 1, 0, 0), (0, 0, 1; 1, 0, 0; 0, 1, 0),

(1, 0, 0; 0, 0, 1; 0, 1, 0)}

with value
∑

(f,w)∈F×W αfwxfw = 4. The core of the game is given by

C(Γ) = (0, 2, 0, 0, 2, 0)×X .

Moreover, ((0, 2, 0, 0, 2, 0);π) where π(f1) = w1, π(f2) = w3, π(f3) = w2, π(w1) =

f3, π(w2) = f1, π(w3) = f3 is a fixed point of T ′ with appropriate tie breaking rule

but π is not an assignment. Hence ((0, 2, 0, 0, 2, 0); π) 6∈ C(Γ).

The following example shows that a construction like T ′ will not work even though

there is a unique optimal assignment.
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Example 6 (The same as Example 4). Let Γ′ = 〈{f1, f2, f3}, {w1, w2, w3}, α′〉 be an

assignment game where α′ is

w1 w2 w3

f1 5 8 2

f2 7 9 6

f3 2 3 0

.

There is one optimal assignment given by

X = {(0, 1, 0; 0, 0, 1; 1, 0, 0)}

with value
∑

(f,w)∈F×W αfwxfw = 16. It is easy to see that (3, 5, 0, 2, 5, 1) ∈ S(Γ′).

Moreover, ((3, 5, 0, 2, 5, 1);π) where π(f1) = w1, π(f2) = w3, π(f3) = w2, π(w1) =

f3, π(w2) = f1, π(w3) = f2 is a fixed point of T ′ with appropriate tie breaking rule

but π is not an assignment. Hence ((3, 5, 0, 2, 5, 1); π) 6∈ C(Γ′).

Note that we only work on the lattice structure of core payoffs since different

optimal assignments may correspond to same payoffs (See Example 5). Hence, it

is not possible to construct a binary relation which is antisymmetric on E(T ) × X

( �F or �W is not a partial order on the set of core outcomes.)
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4.8 Final Remarks

The paper presents an alternative way to formulate the core of assignment games as

the fixed points of a certain mapping, via a powerful algebraic fixed point theorem of

Tarski.

In our formulation, we work with payoffs and construct optimal assignments

rather than directly working with outcomes. The main reason for that is differ-

ent (pre)assignments might lead to a same payoff structure and the mapping defined

on feasible outcomes may fail to induce an assignment. Moreover, defining a partial

order on the Cartesian product of the payoffs and (pre)assignments is a problem.

Such a formulation (if it is not impossible) which works also with outcomes, seems to

be an important follow-up to our work.

The extension of this new formulation to many-to-one and many-to-many assign-

ment games will be a subject of our future work. Sotomayor (1999) showed that the

results in one-to-one assignment game can be extended to these more complex assign-

ment models. Therefore, it might be possible to extend the techniques developed in

this paper to any such markets.
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