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ABSTRACT

A real quadratic form Q = Q Xiseens Xn) is called copositive if

o E TRRRT Xn) > 0 whenever Xpseees X >0, If we associate each
quadratic form Q = Zqijxixj % = qji (i,j =1,...,n) with a point
(qll’ cees qnn,'\/quZ, ce ’\/Zq'n-l, n) of Euclidean n(n + 1)/2 space, then

the copositive forms constitute a closed convex cone in this space.
We are concerned with the extreme points of this cone. That is, with
those copositive quadratic forms Q for which Q = Q1 + Q,2 (with Ql’ QZ
copositive) implies Q, = aQ, Q,=(-a)Q, 0= a<l, We show that

(1) 1f Q(Xl, e Xn) nz3 is an extreme copositive quadratic
form then for any index pair-i,j (i = j included) Q has a zero u with
LR .,unZO where ui,uj > 0.

(2) If Qn is an extreme copositive quadratic form inn >3
variables x

IRERE then replacing % by x +x in Qn yvields a new

n+l

copositive form Q which is also exireme.

n+l
(3) 1f Q(xl, vees X5) is an extreme copositive quadratic form

then either (i) Q is positive semi-definite, or (ii) Q is related to an

extreme form discoyered by A. Horn, or (iii) Q possesses exactly

five zeros having non-negative components. In this later case the

zeros can be assumed to be u = (ul, Uy 1,0,0), v =(0, Vs Vas 1, 0),

w = (0, 0, Was Wy 1), v=(1,0, 0,y4, y5) and z = (zl, 1, 0, 0, z5) where

WV, WY 2 = 1 and U Uns Vo Vs v ooy Zg, zl> 0.



EXTREME COPOSITIVE QUADRATIC FORMS

1. Introduction. A real quadratic form Q = Q(xl, cee xn) is
called copositive if Q(x.,..., xn) 2 0 whenever Xps e n X 20, If we as—
soclate each quadratic form Q - = qijxixj qij = qji (,j =1 ...,n)

with a point (qll’ ceesd s '\/quz, ...,N2q } of Euclidean n{(n + 1)/2

n-1,n
space then (Ref. 2) the copositive forms constitute a closed convex cone
in this space. We shall be concerned with the extreme points of this
cone. That is, with those copositive quadratic forms Q for which

Q = Ql + Q2 (with Ql’ Q‘2 copositive) implies Ql = aQ, Q‘2 = (1 - a)qQ,
0=as=s1l,

Let P denote the class of quadratic forms all of whose coef—
ficients are non-negative, let S be the class of positive semi-definite
quadratic forms and let P + S be the set of all forms expressible as a
sum of elements of P and S. Clearly, every form in P + S is copositive;
in fact there are no other copositive quadratic forms for n = 4 varia-
bles (Thm. 2, Diananda Ref. 1). The extreme copositive forms which
belong to P + S have been determined (Thm. 3.2, Hall and Newman
Ref. 2). Thus our main interest lies with those extreme copositive
forms which do not belong to P +S. In section 2 we list the known ex—
treme copositive quadratic forms. These forms have many interesting
properties and we state a series of conjectures based on these proper-—
ties (indicating which are proved or disproved subsequently). Section
3 contains general results on copositive quadratic forms, i.e., results
which are independent of the number of variables n. The most im-

portant of these are:



Corollary 3.5, If Q(xl, e xn) n = 3 is an extreme copositive
quadratic form then for any index pair i, j (1 = j included) Q has a zero
u with U...,u = 0 where u, and u, >0,

I i Jj
Theorem 3, 12. If Qn is an extreme copositive quadratic form

in n =2 3 variables Rpsovvs X then replacing x, by x, +x

ntl i Qn yields

i
a new copositive form Qn+ 12 which is also extreme.

In section 4 we concern ourselves wholly with the problem for
n = 5 variables, but in so doing we establish the existence of a previ-
ously unknown class of extreme copositive quadratic forms, which can
then be extended (Theorem 3. 12) to any number of variables n' =5,

Before procesading further, let us say why we are interested in
extreme copositive quadratic forms. To do this we need the concept
of a dual set in Em (Euclidean m space). If H is a subset of points of
Enl, the dual set of H is H¥ = {x:(x,h) 20 for all h in H}. Now
(Ref. 2) the dual set of the cone of copositive quadratic forms is a

closed convex cone. The quadratic forms associated with the points

of this dual cone are called completely positive and they constitute all

forms Q which are expressible as a sum of squares of non—negative

linear forms. That is, a quadratic form Q is completely positive, if

24,..+L2

Q=L1 t

where L, = +

kT S Tt S Cik

subset of the cone of completely positive quadratic forms arises in the

(c., 20, k = 1,...,t). An important

theory of block designs. A balanced incomplete block design is an

arrangement of v objects into b sets (called blocks) in such a manner



that (1) each block contains exactly k different objects, (2) each
object occurs in exactly r different blocks and (3) each unordered
pair of objects occurs in exactly N different blocks, If the jth block
is associated with the linear form L. = a,.x, +...+ a_.x_where

- ] 1571 viTv
aij = 11if the ifEh object appears in the jlCh block and a'ij = 0 otherwise,

then

) 2 2 2 2
Q=L"+..+L°% = (r -)\}(xl +...+xv)+Px(x1+...+xv).

Thus a completely positive quadratic form Q is associated with each
block design.

Let us assume that we are attempting to decide whether a block
design exists for a particular set of values of b, v, r, k and A . Fur-
ther, suppose (as is often the case) that the first t blocks of the
hypothetical design have been specified, then

i 2 2 _ 2 2
Q = Q--Ll —...-Lt —Lt+1 +... +L

must be completely positive. As Q is known at this point, it can be
tested for complete positivity; thus such a test would be useful for
early rejection of otherwise plausible sets of initial blocks. Hence,
we are interested in a test for complete positivity of a quadratic form.
Duality tells us that a form is completely positive if and only if its
inner product with every copositive quadratic form is 20. This is
certainly the case if the form has non-negative inner product with all
the extreme copositive quadratic forms, Hence a tabulation of the ex-
treme copositive quadratic forms would provide us with a text for

complete positivity,



2. Known extreme copositive quadratic forms. Conjectures.

We shall often be concerned with the values taken by a quadratic form
for x; =20 (i = 1,...,n), to which end homogeneity will usually permit
us to restrict attention to those x for which x +...% x = 1, We call
this subset S(n), that is S(n) = {x in E:x+...+x =1, x,20
i=1,...,n)}

Note that Q(Xl’ ce e xn) is an extreme form if and only if
Q(rlxl, ey rnxn) is extreme for T >0 (i =1,...,n); hence in
questions of extremity whenever ¢q,, >0 (i = 1,...,n) there is no loss
of generality in assuming that Qy = 1i1=1,...,n).

The exireme copositive quadratic forms belonging to P + 3

were given by Hall and Newman (Thm. 3.2, Ref, 2). Considering only

forms with n variables or less these are; axiz, a=z0{l=1,...,n);
T
bx.x,, b20 (i # j;1,j=1,...,n) and (U - V)2, where U= = a.u,,
t 8 i=1 ? i
V= Z bivi (ai >0, bi >0, r 21, s 21) and the u's, v's are disjoint

i=1
subsets of Xpsee s X In many ways the extremes (U — V)2 are typical,

while the others (axiz, a 20 and bx;x,, b 2 0) are not. Hence most of

3
our general results are subject to the qualification Q # axiz, az=0
and Q # inXj’ b 2 0, which will usually be enforced by limiting our-
selves to n = 3 variables. This restriction also excludes the extremes
(ax, - bxj)Z a,b >0 i # j for which the results are generally true.

But since the extreme copositive forms are completely determined for

n < 4 variables (by the results quoted above) not much is lost by this

exclusion.



In addition to the extremes belonging to P + S, A. Horn
(Ref, 2) has discovered another extreme copositive quadratic form in

5 variables:
Q = (%) +x;+ X3 + X4 +%5)2 = 4x;%, — 4X,%5 — 4Xy%, — 4%,%;5 ~ 45X,

Note that the matrix associated with Q takes the form

1 -1 1 1 -1
-1 1 -1 1 1
1 -1 1 -1 1
1 1 -1 1 -1
-1 1 1 -1 1

and that Q has a continuum of zeros u in S(5) which are of 5 types

BQ(U.)/GXi
i =1 Z 3 4 5
1. (z, 3, 3-2,0,0) 0 0 0 4z 2-4z
2. (0, z, 3, 3-32, 0) 2-4z 0 0 0 4z
3. (0,0, z, 3, 32) 4z 2-4z O 0 0
4, (3-2,0,0,z,3) 0 4z  2~4z O 0
5. (3, ;;——z, 0,0, z) 0 0 4z 2~4z 0O

for 0 <z < %,
Hall and Newman (Thun, 4.1, Ref, 2) have shown that if
Q(xl, cees xn) is an extreme copositive quadratic form (Q # bxixj,

b 20)andif { # j (1 £1, j < n) then upon replacing some of  STREREEN



by zero (but neither x, nor Xj) Q becomes a positive semi—-definite
ciuadratic form in the remaining variables, Hence, if Ay = 1
(k = 1,...,n) then -1 Sq. <1 for r,s = 1,...,n.

Based on this information, with an eye toward the Horn form
and the extreme copositive quadratic forms of P + S, we make the
following conjectures:

Conjecture Z2.1. If an extreme copositive quadratic form Q
has dig = 13- 1,...,n) then qij = &1 (,j~=1,...,n), (False for
n =5, see Corollary 4.4.)

Note that if this conjecture had been true, the search for
extreme copositive quadratic forms with q; = 1 would have been
simplified, in fact reduced to a combinatorial matter.

Conjecture 2.2, For each i,j (1 =1i,j Sn;n 2= 3) an extreme
copositive quadratic form has a zero u in S(n) with U, uj >0. (True,
see Corollary 3.5.)

Conjecture 2.3. Each zero u in S(n) of an extreme copositive
quadratic form, not belonging to P + S, has at least two zero com~
ponents. (True, see Corollary 3.11.)

Conjecture 2.4. For each i {1 £1 =n) an extreme copositive
quadratic form, not belonging to P + S, has a zero u in S(n) with
u; = 0. (True for n =5 variables, see Theorem 4. 3; for n > 5°?)

Conjecturc 2.5. Each zero in S(n) of an extreme copositiw}e
quadratic form in n 2 3 variables has at least two non-zero com-

ponents. (True, proof of Corollary 3,7 applies.)



Conjecture 2. 6. For each zero u in S(n) of an extreme
copositive quadratic form, not in P + S, there exists an i (1 =i =n)
such that BQ(u)/Bxi >0. (True, see Corollary 3.2.)

Call a zero u in S(n) of a quadratic form Q, a maximal zero

of Q if there does not exist another zero y of Q in S(n) for which (1)

Vi =0 implies u, = 0 (i = 1,,..,n) and (2) thereis a j (1 =j =n) for

i
which u‘j = 0 and Yj > 0. For example, (i, % %, 0, 0) is 2 maximal
zero of the Horn form whereas the zero (3, 3, 0, 0, 0) is not.

Conjecture 2.7. Let u be a maximal zero in S(n) of an
extreme copositive quadratic form, fhen u; = 0 implies aQ(u)/axi >0
forany i =1,...,n. (Truefor n =5, see Corollary 4.5; for n >57?)

Note that for n =2 3 the extreme copositive quadratic forms in

P + S have a continuum of zeros in S(n) and so does the Horn form,
In fact since Conjecture 2.6 is valid, the Implicit Function Theorem
guarantees that no zero of an extreme copositive quadratic form (for
n = 3) is isolated in X(n) = {x in En: x ...+ x = 1}. This leads
us to

Conjecture 2.8. No zero of an extreme copositive quadratic
form in n = 3 variables is isolated in S(n). (False, see Theorem 4.3.)

The Horn form has the property that ? 8()(u)/8xi = 2 for all
zeros u in S(5). This is not gene.rally true. That is, an extreme co-
positive quadratic form, not belonging to P + S, does not necessarily
have 4;3 c’)Q(u)/axi = ¢ for some constant ¢ and all zeros u in S(n).
For example, consider the form Q which arises when x, is replaced

by x, + x;, in the Horn form. This is an extreme copositive quadratic

form {see Theorem 3.12). Among its zeros in S(6) are (0,0,0, 3, %, 0)



for which % 9Q(u)/dx, = 4 and (3, %,0,0,0,0) for which %} 90 (u)/ 8x,
= 2,

Conjecture 2. 9. If R and Q are two extreme copositive
quadratic forms in n variables having the same zeros in S(n), then
R = aQ, a >0. (True, if either Q or R is the Horn form or if either
Q or R belongs to P + S, otherwise?)

If Q belongs to P + S, this follows from the determination of
those extremes by Hall and Newman (Ref. 2), Validity for the Horn
form follows from Theorem 4.3. Note that the validity of this con-
jecture would imply that the extreme copositive quadratic forms are

characterized by their zeros in S(n).

3. General results. In many instancesthe concept of extremity

for a copositive quadratic form is hard to handle — and it often suffices
to replace it with the weaker property which (following Diananda) we
call A*(n). We say that a quadratic form Q(Xl, ey Xn) has _A:__(_1_1_), or
Qe A*(n), if (1) Q is copositive and (2) if for all i,j (i,j = 1,...,n)
Q- exixj is not copesitive for any ¢ > 0. (That is, if Q is a copositive
quadratic form which is "reduced' with respect to the extremes of P.)

We prove first a lemma which will be required later. It has an
immediate corollary which validates one of our conjectures.

Lemma 3.1, If Q(xl, cens xn) is a copositive quadratic form
having a zero u on S(n), at which ul, s >0 = u =, = 1u

m m+1 T n
and {:"Q_(u)/axi =0{l=1,...,n), then

— 2 2
Q(xl,...,xn) = Ll_+"'+Ls +Q1(xm+1,...,xn),



where Q, is copositive and by renumbering the x; (i1 =1...,m)we
may assume that L, isa linear form in Koo X i =1...,s)

Proof. Since 8Q(u)/8xi =0(i=1,...,n), letting x;k = x, —u

we have

oK i %

Qlxpe.nyx ) = Q='=(X;i---’x;'h;) = QN X X e X ) (3.1)

x
n

Further Q copositive implies that Q* =0 for xlb = —u, i=1...,n).

Since Q*(Xik, c ey x;;, 0,...,0) is non—negative in a neighborhood of the

origin it is positive semi—definite and we collect squares with respect

s sk, sk, ok £ . .
to xi, ces X in QU(x), ..., x ) yielding

m n

6o k2 Ko L]

0 —Ll +"'+Ls + 2 Z Z aijxixj+Q1(Xm+1""’Xn) (3.2)
i=s+l j=m+1

where by renumbering the xf (i =1,...,m) we may assume that L;r<
is a linear form in x’f, . ,xz i=1...,8).

For any set of xj 20 (i =s+1,...,n) provided they are suf-
ficiently small the values of x; > —u, (i =1,...,8) may be chosen so

that L;k = ... = LS = 0. But QF =0 for these values of x (i=1,..,0)

and thus so is

m n
2 X%, Q) X ) EQ(K e X
Z Z 2457455 LSS R Xp) = QX s K R e %)
i=s+1l j=m+l

Thus by homogeneity Q.,is copositive, and so, by Lemma 2 of Diananda

(Ref. 1), aiij(i =s+l...,m;j=m+1,...,n). By (3.1),
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Q*(u) = 0 and aQ*(u)/ax;‘ =0(=1...,n). Let m+1<j<n, then

by (3. 2)

m
= * * s e _
00" (w)/0x = 2 L(w) +... + 2¢ L) +2 Z 8 u; + B0 (u)/2x} = 0
' i=zg+1

X +..,8). Now Q*(u) =0
and (Q, copositive imply by (3. 2) that Ll:(u) = 0 (k

where g, is the coefficient of XJ' in L¥ (k = 1,

1,...,s8); further
* = i = = = >
an(u)/ij 0 since W 1% e T ouy 0. Thus since u, 0

(i=s+1...,m)we have a

ij: 0O@=s+L ..., m;j=m-+1,...,n).

Hence

where Ql is copositive.

Recalling that x; = X, ~u;, we see that L:‘ = Li + ey where

the ci’s are constants, thus

0 = (L +c1)z

, 2
1 +...T(LS+CS) +Q1(

xm+1,...,xn)‘

Letting x, = 0(i=1,...,n) we find c; = 0@E1i=1...,8), so

_ 2 2
Q = L1 +...+LS +Ql(xm+1,...,xn)

with Ql copositive, and the Li's constituted as desired, which com-

pletes the proof.

Corollary 3.2, If Q(xl, ..., X ) is an extreme copositive
n

quadratic form which has, among its zeros on S(n), a zero u at which

BQ(u)/axi = 0(i=1,...,n) then Q is positive semi-definite.
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Proof. By relabeling the variables we may assume that
> = = = < <
e By 0 LI P u where 1 =m =n, Thus by the

lemma

x_)

' 2
Q(Y.l,...,Y) = T, +...+I..S +Q1(Ym+l,..., n

. . . 2 2
with Ql copositive. Since Q is extreme we must have L2 +...t LS +

Ql(xm+1’ R xm) = ale for some a = 0, but this is impossible for
a >0 (as x| appears in Ll2 but not in LZz +...+ LSZ + Q’l)' Hence
a = 0 which implies that Q is positive semi-definite.

Since the slopes at a zero u in S(n) of a copositive quadratic
form are necessarily 2 0 (otherwise, copositivity would be viclated),
we conclude that any extreme copositive quadratic form which does not
belong to P + S must have a positive slope at each of its zeros in S(n),
i.e., Conjecture 2.6 is valid. As we shall presently use this infor-
mation, we note further that copositivity requires 8Q(u)/8xi =0
whenever u, >0, if u in S(n) is a zero of the copositive quadratic
form Q.

Our next result is the most important of this paper; almost
everything that is new here depends upon it in one way or another. In
many respects it is an extension of Theorem 4.1 (Hall and Newman,
Ref. 2),

Theorem 3.3. A copositive quadratic form Q(Xl’ e xn) has
a zero u on S(n) with Uss uj >0 if and only if Q - exixj is not coposi-
tive for any e >0, (1 =1i,j < n).

Proof. If Q has such a zero u then Qu) ~ cuu, = —eu.u, <0

for any ¢ > 0. On the other hand, proceeding by induction on n, let
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n =1, then Q = qxl2 (g 2 0), but Q - exlz not copositive for all € >0
implies that q = 0, whence Q has the zero x = 1 of S(1), For n = 2,

there are only 3 essentially distinct copositive Q's, these are (1)
axpxp (a2 0), (2) ayyxp® + 20,%p%, Gy 9, >0 B) appe® + 2q,% %,
%" g 95, > 0)-

Case 1, Q has zeros X = 1, Xy = 0 and x = Q, X, = 1 and
(q - vs)xlx‘2 not copositive for all € > 0 implies that q = 0, so
X = X, = 3 is our zero on S5(2).

Case 2. Q- EXin not copositive for all € > 0 implies that
1 =3 =2, and Q has the zero x

=0, x, =1 on S(2).

1 2

Casc 3. Since 94 >0 we can assume without loss of gener—

ality that q;; = q,, = 1, thus Q = Xlz +2q,%%, + xzz = (xl - xz)2

+ kxlxz where k 20 since Q is copositive. Now Q - exixj not co-

positive for all ¢ > 0 implies (LLemma 4 Diananda, Ref. 1) that

Q = (x1 - xz)z + i(xlxz, k 20 has a zero on S(2) which can only be

X = %, = %, thus k = 0. So X = %, = 3 is the desired zero on S(2).
More generally, since Q ~- exixj is not copositive for ¢ > 0,

there exists a non—negative n—tuple z [which may be assumed to be on

S(n)] for which Q(z) < ezizj. By taking successively smaller positive

€'s we construct a sequence of non-negative n—tuples, of which a sub~

sequence converges to an n—tuple u of S(n). We denote tile generic

member of this subscquence by v, and note that continuity implies

Q(u) = 0. There are 6 cases to consider, which are (1) 1 # j,

uiujio, (2)iij,uiqéozuj,@)izf-‘j,ui:0¢uj, (4y i # j,

ui=‘llJ = 0, () 1= 3, u, = 0, and () i = j, ui:ﬁ 0. In cases 1 and

6 we are done and case 2 is equivalent to case 3; thus only cases 3, 4,
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and 5 remain. Let us renumber the variables so that i = j = 1, u, >0

ih case 5 and otherwise i = 1, j = 2; and further Ugs e en U >0 =
W1 T e T U where E)Q(u)/axi =0 =m+l,...,k) and

8Q(u)/8x, >0 (i = k+1,...,n),
In the sequence of points v = (vl, ceas vn) approaching

u = (O,uz,.. 0,...,0) put v, = u.i+wi (i =1,...,n) so that the

Lu_,
m
w, all approach zero as v approaches u. Since F)Q(u)/axn =
> =
anlul +...t quun 0 and u 0 we have

_ 3Q(u)
Qv) = Qlvyseesv 1 0) +w_( Bx_ t2q wyt...t2q qw ,tq w )

Here if v, o= W >0, then for sufficiently small w's [since 9Q(u)/

9x > 0] we have
n

0= Q(vl,...,vn_l, 0) < O(v) <ev (3.3)

1v2

Thus there exists a subsequence of the v's in which we may replace
_ . . .
V = (Vyseens Vn) by v' = (Vl, A ST 0) to yield a sequence which
approaches u and has the property Q(v') < €Vyv,. Repeating this
process we replace all the non—zero Viegprr 1 ¥y in some suitable
subsequence of the v's by zero. This yields a form Ql(x s e s xk) =
Q(xl, e Xps 0,...,0) and a sequence of k—tuples (in which we again
designate the generic member by v) v = (Vl' caey vk) approaching .
u = (ul, ey uk) for which Ql(vl’ ceny Vk) < €viVy and for which
E)Ql(u)/BXi = 0 for 1 = 3,...,k (copositivity implies SQI(u)/axi = Q

if u, > 0). Since u = 0 we have
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: Q. (u)
Ql(vl’ s vk) = Wl(qllwl + ——-——axl + quzwz +...+ qukwk)
+ Ql(O, Vorenn ’Vk)

with wy = vy >0 {(follows from 3.3). Since Ql(O,vz, ve.y, V. ) 20 the

i)
inequality Ql(vl, Ve vk) < evyv, can only hold for sufficiently small

w's if '()Ql(u)/axl =0, If u, # 0 then BC.)l(u)/ax‘2 = 0 by copositivity,
whereas u, = 0 yields Ei(.‘h)]‘(u)/ax2 = 0 by the process used for U = 0.

Hence for QI(XI’ vv+» %) we have Ql(u) = 0 and an(u)/E)xi =0

i=1...,k).

Cases 3 and 5. Here u, > 0 and we apply Lemma 3.1 getting

_ 2 2
Ql(x,...,xk) = LZ +...-I—LS +Q2(x1,xm+1,...,x.k) (3.4)

with QZ copositive and we may assume that Li ig a linear form in

X Ko ooes Xy i=2,...,s8)
If (vl, R vk) = v is one of our k-tuples for which Ql(v) < €ViV,

then (3. 4) shows that QZ(Vl’ v Note that in what

< evlvz.

follows it is immaterial whether QZ actually contains x,, the proof

10V

goes through even when QZ =0, Now 0 <k-m+1<n so by the in—

duction hypothesgis Q2 has a zero z = (zl, Z . zk) on Sk ~m + 1)

m+1

with z, # 0. Now Q,(u) = 0, hence (by 3. 4) Lo(u) = ... = L. (=0
where uy = 0 = Wl T e T o and u.1>0 i =2,...,m). Due to
the structure of the Li’s, the equations

LZ: =I"szxs+1_ :xrn:O’
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have a unique solution (Zl” ey zk) where the z; i=2,...,s) may be
negative. Taking t >0 large enough we can insure that w, = tu, + oz
20(i=1...,k) and w, >0 for (i = 1,..., m). Since w; = =z, and
W, =z, (i > m) we have Qz(w) = 0; further Lz(w) = L., = Ls(w) =
Hence (3. 4) implies that Ql(w) = 0 with Wi W, > 0, thus there is a
zero of Q1 on S(k) with X, X, > 0. Since Ql(xl, e xk) =

Q(xl, v Xy 0,...,0) the theorem is proved in these cases.

Case 4. Here u, = 0 and we apply the lemma to get

- 2 2
Ql(xl,...,xk) = L3 +...+LS +Qz(xl,x2,xm+l,...,xk)

with QZ copositive and the Li's linear forms in Xy Koy Koy oo ey Xy
(i =3,...,8). This yields QZ(V) < €V, and using the induction
hypothesis we find a zero z of Q2 on Stk ~-m+ 2), for which Zy, Zy > 0.

As before L3(u) = ... = Ls(u) = 0 where u = u, = 0 = w o

= U U >0 (3 = 3,...,m) and the equations

L3:.._:L - x = ... = X =0, x, = =

22 *m+l T Pmalc

b
[\

1

e

1

N
o

possess a unique solution (zl, cees zk) with z, (i = 3,...,8) possibly

negative. Similarly, W = tu, + 2, provides a solution for t >0 large

enough with Wy W > 0, and thus Q(x -5 Xy 0,...,0) has a zero on
S{n) with x5 X, > 0 in this case also. So the theorem is proved.
In the following we state the equivalent results for extreme

forms and for forms possessing A¥(n). We shall often do this, be-

cause while our main concern is extreme copositive forms the proofs
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have a unique solution (zl, e zk) where the zy i=2,...,8) may be

negative. Taking t >0 large enough we can insure that wo = tug t oz

20 (1i=1,...,k) and wi>0 for (i = 1,...,m). Since Wy = Zy and

w, =z, (i > m) we have QZ(W) = 0; further Lz(w) = .,..=L (w) = 0.
Hence (3.4) implies that Q (w) = 0 with w;,w, >0, thus there is a
zero of Ql on S(k) with X1 %Xy > 0. Since Ql(xl, Cees xk) =

Q('xl, v X 0,...,0) the theorem is proved in these cases.

Case 4, Here u, = 0 and we apply the lemma to get

_ 2 2

Ql(x,...,xk) = L3 +...-i—Ls + QZ(X’XZ’Xm+1""’Xk)
with Q’Z copositive and the Li‘s linear forms in K Kos Ky vve s X
(i =3,...,8). This yields QZ(V) < €VIV, and using the induction

hypothesis we find a zero z of QZ on S(k -m+ 2), for which Zy» 25 >0.

As before L3(u) = ... = Ls(u) = 0 where u = u, = 0 = Vgl T o
=, ou >0 (3 = 3,...,m) and the equations
L3= :Ls=Xs+1_ =xm=0,x1:z1
20782 T4 T Fmar % T %k
possess a unique solution (zl, ceas zk) with z, (i =3,...,s) possibly

negative. Similarly, w, = 1:ui + oz, provides a solution for t >0 large
enough with W W, > 0, and thus Q(x.,..., X, 0,...,0) has a zero on
S(n) with X X, > 0 in this case also. So the theorem is proved.

In the following we state the equivalent results for extreme
forms and for forms possessing A*(n). We shall often do this, be-

cause while our main concern is extreme copositive forms the proofs
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often require knowledge of the A%{n) case. Hence Theorem 3.3 has
the immediate corollaries:

Corollary 3.4, Q(Xl’ ce Xn) is a quadratic form having A% (n)
if and only if for every index pair i,j (i = j included), Q has a zero u
on S{n) with u, uj > 0.

Corollary 3.5. If Q(Xl’ v Xn) n2 3 is an extreme copositive
quadratic form then for any index pair i, j (i = j included) Q has a
zero u on S(n) with u,, u, > 0. |

Thus we have established Conjecture 2.2. From these facts
we may deduce slightly more than Theorem 4.1 (Hall and Newman,
Ref, 2), that is:

Corollary 3.6. Let Q(Xl, ve e Xn) be a copositive quadratic
form such that, for somc fixcd index pair i,j (i = j allowed), Q e XX
is not copositive whenever € > 0. Then upon replacing some of the
X (k =1,...,n) by zero, but neither x, nor Xj, Q becomes a positive
semi-definite quadratic form in the remaining m variables which has
A% (m).

Proof, Leti=1andif j#iletj= 2., Letube a zero of
Q on S(n) with uge Uy >0, where the remaining non-zero components of
u have indices 2,...,m or 3,...,m respectively. Then Lemma 1 of
Diananda (Ref. 1) says that Ql(xl, vy xm) = Qx, ..., X 0,...,0)1is
a positive sefni-deﬁnite quadratic form. Clearly Ql has A*(m).

Note that if a copositive form Q(xl, cees Xn) has A%(n) then
qii> 0(i=1,...,n), for otherwise q;; = 0 for some i, and then

(Lemma 2 Diananda, Ref, 1) % > 0(j=1,...,n), whence
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Q:Ql(Xl,...,X. O,X.

i-1 SRR Xn) + 2 Z qinin where Q1 is copositive,

which contradicts A*(n). Thus if Q is an extreme copositive quadratic
form, not of the type quXj’ then q;;>0 (i=1,...,n).

Corollary 3.7. Let Q(Xl, cees Xn) be a quadratic form having
A*.(n) and let i, j be any indiccs (not ncccssarily distinct). Then upon
replacing some of Xppee e X by zero, but neither x, nor Xj’ Q
becomes a positive semi-definite quadratic form in the remaining m
variables and has A*(m). Further, even if i = j, the residual form
contains at least two variables.

Proof. The only question is that of the number of residual
variables. But the methodof proof (Thm. 3. 3) indicates that the re-
sidual form has a zero in S(m) and since a4 >0(i=1,...,n) this
can ouly happen if at least two variables are 0.

Corollary 3.8, Let Q(Xl, e Xn) n 23 be an extreme coposi-
tive quadratic form and let i, j be any two of the indices (i = j in-
cluded), then upon replacing some of Kps oo es X by zero, but neither
X, nor Xj’ Q becomes a positive semi-definite quadratic form in the
remaining m variables which has A%(m). Further, evenifi = j, the

residual form contains at least two variables.

Note that Corollary 3,7 yields -1 Sqij <1if q; =1 (i
1, ...,n) for copositive quadratic forms having A%(n) in the same way
that Theorem 4.1 (Hall and Newman, Ref, 2) yielded it for extreme
copositive forms (see section 2). As we shall need this result under
this less stringent condition, we state it separately.

Corollary 3.9. If Q(Xl, R Xn) has A%(n) and has qy; = 1

i=1...,n) then -1<q..< 1.
(i ) Cl.lJ
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Another immediate result of Theorem 3.3, which we make
extensive use of in the next section is:

Corollary 3.10, If Q(Xl' vees xn) is a quadratic form having
A*(n), and if, among its zeros on S(n), Q has a zero u with
Upp e es Wy Uy g qre e >0 = Uy then Q is positive semi-definite.

Proof. By Lemma 11 Diananda (Ref, 1), we are done if we
can show that Q has a zero with u > 0, but this follows from Corol~
lary 3.4.

Corollary 3. 11, If Q(Xl, v xn) n z 3 is an extreme coposi-
tive quadratic form which has a zero u on S(n) with U
R TR, >0 = W then Q is positive semi—definite.

Thus Corollary 3; 11 vindicates Conjecture 2.3. Our final
result of this section allows us to construct extreme copositive forms
in n variables from thosc in n' <n variables.

Theorem 3.12. If Qn is an extreme copositive quadratic

form in n 2 3 variables Xpswee s X then replacing X, by X, t X in

+1

Qn yvields a new copositive form Qn+l’ which is extreme.
Proof. We may assume that i = n and that qjj = 1 for all j

(since n 23 and Qn is extreme)., Q 1 is obviously copositive. Now

n+
suppose that

Q. = QtQ" (3.5)

with Q', Q" copositive, then by setting X 417 0 and x = 0 in turn,

+
we get

Q =aQ +(l-a)Q, Q¥ = sz + (1-B)Q

*
n n
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by the extremity of Q , Q::. By (3.5) the coefficients of Xil in aQ
aﬁd bQ: are the same and as qyy = 1 # 0 we have a = b. So we see

that

n-1
—_ 2
Q' = a.(Qn+xn+1+2 Z qinxixn+1) +kxnxn+1
i=1
n-1
- - 2 '
Q" = (1 a)(anl_xn-s-lihz Z qinxixn+1)+txnxn+l
i=1

with Kk +t = 2. Thus
1 — —_
Q' = aQn+l + (k Za)xnxn+1,

QY = (1—:3.)Qn+l + (t + Za—Z)xnxn+1

Since Qn is extreme it has a zero u in S(n) with u >0 (Corollary

3.5), thus (ul, ceesU s un/Z, un/Z) is a zero of Q in S(n+1) with

n+l
o= A - 2 L - LS ; - 2
- > 0. At this zero Q' = 3(k Za)un and Q 2(t+2a A)un,
thus the copositivity of Q', Q" insures that (k-2a) 20 and (t+2a-2)
=20 respéctively. But Qn+1 = 0 here so k—-2a = t+2a-2 = 0, Thus

Qr = a.Qn+1, QY = (1~a.)Qn and so Qn-l-l is extreme,

+1

4. Extreme Copositive Quadratic Forms in Five Variables.

In this section we show (Lemma 4. 1) that the only extreme copositive
quadratic forms in 5 variables which satisfy Conjecture 2.1 (i.e. have
qij = #*]1 i,j = 1,...,5) are the Horn form (see section 2) and the
positive semi-definite extremes. Further we exhibit a copositive
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quadratic form which does not belong to the convex hull generated by
the previcusly known extremes (i. e. the extremes of P + S taken to-
gether with the Horn form). Thus we establish the existence of a new
class of 5-variable extremes {Thm. 4. 3) and hence (Thm. 3.12) of
n—yariable extremes for n » 5. In fact we are able to show that our
specifically exhibited form is itself a new extreme of this type.
As Conjecture 2.1 implies (Lemma 4.1) the non-existence of these
new 5-variable extremes, we see that Conjecture 2.11is not valid,
Further our method of proof shows that any 5-varié.ble extreme which
does not belong to P + S and is not the Horn form must belong to this
new class.

In the determination of the extreme 5-variable forms we need
only concern ourselves with forms for which %3 >0{(i=1...,5); for
g = 0 (some i) implies that Q does not have A*(5) (by the remarks
immediately preceding Corollary 3.7) and hence cannot be extreme or
that Q does not contain all the variables explicitly., In the latter case
the form can be considered to be a four variable form and thus the ex-
tremes have been previously determined. So Q has a4, >0(i=1...,5)
whence we may assume q; = 1(i=1,...,5) without loss of generality.
Further we already know the Horn form and those positive semi-defi-
nite forms which are also copositive extremes (Thm. 3.2 Hall and
Newman), so .We will summarily reject any line of reasoning which
leads to these. In particular we shall often discard cases saying that
they are positive semi-definite, more precisely this means that if the

form is copositive then it is positive semi-definite. Since most of our
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conclusions depend on Q having A*(5), we shall specifically point out
where extremity is required.

Lemma 4,1. If Qis an extreme copositive quadratic form in
5 variables which has qij = *x1 (i,j = 1,...,5), then Q is either posi-
tive semi-definite or by a relabeling of the variables we can make Q
into the Horn form.

Proof. Our method of proof is simply to consider all quadratic
forms having qij = %1 (i,j = 1,...,5) and discard those which belong
to P +S or are not copositive or are not extreme,

Copositivity obviously implies C # -1 hence Qy = 1
(i =1,...,5). We relabel the variables so that the first row of the

matrix has at least as many —1's as any other row and so that

92 =

i

-1, while q, .= Qg = 1. Suppose

Ay r+l -

= - - ind 1
Q3 = dy4 = Y5 = 1, then all the remaining qij a must be +1

H

92

in order to preserve copositivity. Thus Q = (xl—xz ~Xg “X4—X5)2

which is extreme and positive semi-definite. Suppose 915 = Y3 = 94

= -1, q45 = 1 then copositivity implies that Gp3 = dpy = = 1 and

d34

as (Xl—x2 ~x, --x4+x5)z is extreme no other extremes will result from

the choices dy5r 9352 Ayg = x£1. Suppose Qo = Y3 ~ -1 and 4 = Y5

= 1 then copositivity requires dy3 = 1. At most one of Aoy -1,

95 =

for otherwise row 2 would have 3 entries of -1 which violates our as-—

sumption. Thus by relabeling the variables, if necessary, we can in-

sure that Aoy = 1. Soif d34 = 1 we geta form (x, —x, -x X, tx

_ 2
1 7T¥, 7% 5)

+4x.x, + 2 + 1) + 2.(::135 + 1) + 2(q45 + 1) which is obviously not ex-—

1% T 295
treme for any choice of A5 9357 Ay5- Hence d34 = -1 and counting
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-1's in row 3 yiel_dsfq35 = 1, If we now assume dp5 = -1 we

Q5 =
get a form which is equivalent under a relabeling of the variables to

the Horn form. Hence any other choice of dy5s G5 yvields a non-ex—

treme form. Suppose qi, = -1,q13 = Qg = Y = 1 then Qys = Gy

= .qZS = 1 by the -1 assumption. If any other row contains a -1 we
relabel the variables to make it row 3 and to make q,, = -1. Thus
4
- - = 2
d3p = Gup = 1 and so Q(xl, .. ,x5) = Q(Xl’ s Xy, 0) + g + 2i=zl XXy

is not extreme. From which it follows that the remaining cases (1)
9, = ~liay, = +1 and (2) qip = 434 = +1 are not extreme either,
Thus the only 5-variable extremes having qij = %] are equivalent to
one of (xl T X, TRy THy —xs)z, (xl—xz % —x4+ xs)z or the Horn form,
as was to be proved,

Similar searches have been performed for 6 and 7 variables,
the results of which are that the only 6(7)-variable extremes having
qij = £] can be derived from the 5 variable ones through the use of
Theorem 3, 12.

Thus we have Lemma 4.1 which will prove to be vital to the
existence of our new class of extreme forms. Before turning to that
proof we give a summary of its stages. First we establish (by ex—
haustive search) that any new extreme copositive forms in 5 variables
will have one of two classes of zeros in S(5). Secondly, we show for
forms with the first class of zeros that they cannot have any further
zeros in S(5) and from this it follows that they are not copositive,
The Horn form has zeros of the second class and we establish that
any extreme copositive quadratic form, not belonging to P + S, which

has the zeros of the second class and any additional zeros in S(5) is
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necessarily the Horn form. Thus we are left with quadratic forms
having a particular class of zeros and no others in S(5). The structure
of these zeros is such that the coefficients qij i#j of the form can

be expressed in terms of the zeros, We do this and the resulting
equations together with other restrictions are noted. Further we give
a solution of these equations, which is then tested and shown to be co-
positive and to be outside the convex hull of the previously known ex-
tremes. Thus we are able to conclude (using Lemma 4.1) that there
exists a new class of extreme quadratic forms in 5 variables, and
hence (Thm. 3.12) in n variables for n2 5,

We shall requirc the following lemmas

Lemma 4.2. 1f Q has A*(5) and some 4-variable sub-form
Q4 has A*(4), then Q is positive semi-definite.

Proof, Q, has A% (4) implies that Qyis positive semi-definite
(Thm. 2, Diananda), whence Q4 has a zero u with 4 positive com-
ponents (Thm. 4, Diananda). Hence so does Q, and thus by Corollary
3.10, Q is positive semi-definite,

Definition. The pattern of an n-dimensional vector v =
(vl, v Vn) is the vector obtained by replacing those Vi # 0 by 1.

Thus (3, -2, 0, 4, -971) has pattern (1,1, 0,1,1).

We shall see that the 5-variable extreme forms can be classi-
fied by the patterns of their zeros. Let us summarize what we know
about the zeros in S(5) of a quadratic form Q in A*(5) which has
q; = 1 (i=1,...,5) and is not positive semi-definite.

1. Each zero has at least two non-zero components {since

qﬁ:l;i=1,...,5).
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2. Bach zero has at least two Zero components, (Lemma 1,
Diananda and Corollary 3, 10.)

3. Q has a zero with uiuj # 0 ({,j =1,...,5) (Corollary 3. 4).

4. Q has at most six 2-variable zeros,

This last follows because each 2—variable zero implies that a different

off-diagonal coefficient is -1 (since q,, = 1,i = 1,...,5) and (Corollary
3.9) because 1 = qij =13 # j;4,j=1,...,5); thus if Q had more than
6 such zeros then Q(1,1,1, 1, 1) <0, contradiction.  Since all (g) = 10

pairs (i # j) appear together in some zero (by 3) we have

5. Q has at least two 3-variable zeros.

The roquired 3-variable zeros may be assumed to be (uy,u,,us,
0, 0) and one of (vl, 0,0, vy v5), (Wl’WZ’ O,w4, 0). We shall call these
case a and b respectively and refer only to their zero patterns. Thus
case a has zeros (11100), (10011) and case b has zeros (11100},
(11010).

Case a. The zero uyu, # 0 can appear with patterns (01010),
(11010), (01110), (01011) and calling these a.1, a.2, a.3, a.4 re-
spectively, we see that a.4 is equivalent to a.3 under a relabeling of
the variables, Ilence we need not consider it further. The zero usug
# 0 may be added to case a.l as (01001), (11001), (01101), (01011)
which we call a,l.a, a.l.b, a.l.c, a.l.d. Here a.l.b is positive
semi-definite by Lemma 4.2 above, since Q, = Q(x;,x,, 0, %;, x,) has
zero patterns (1011), (0110), (1101) and thus clearly has A*(4). Sowe
need not consider a.l.b further. Adding the zero Uz, # 0 to case

a. l.a in all possible ways vields cases a.l.a.l, a.l.a.2, a.l.a.3,
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a.l.a.4 with additional patterns (00110), (10110), {01110), (00111).

In case a.l.a.?2, Q4 = Q(Xl’ X5s Xqy Ky, 0) and Lemma 4.2 make Q
positive semi-definite, so we delete that case. The zero ujug # 0
adjoined to case a.l.a.l yields a.l.a.l.a (00101), a.l.a.1l.b (10101),
a.l.a.l.c (01101) and a.l.a.1l.d (00111). In case a.l.a.l.a,

Gy = 9pg = Q34 = 93g = -1 and hence Q(O,xz,x3,x4, 0) copositive
implies dy3 = 1. Similarly Q(O,O,x3,x4, XS) copositive implies

Ay = 1, thus Q(0,1,1,1,1) = 0 and so Q is positive semi—definite by
Corollary 3.10. Case a.l.a.l.b yilelds Q positive semi-definite also,
since Q4 = Q(Xl, X1 X34 0,x5) has A*(4). Cases a.l.a.l.c and
a.l.a.l.d are contained in a, 1l,a.4, At his point all of a.l.a.1 has
been either eliminated or subsumed, and as a.l.a.2 was previously
eliminated we consider a.1l.a.3. Adding u U, # 0 yields a.l.a.3.a
(00101), a.l.a.3.b (10101), a.l.a.3.c (01101) and finally a.1l.a.3.d
(00111). Now a.l.a.3.b and a.l.a.3.d are positive semi-definite by
the lemma, so we discard them. Further a.l.a.3.a is equivalent to
a.l.a.l.c and thus contained in a.l.a.4 as was that case. Thus we
are left for the moment with a.l.a.3.c and a.l.a.4 both of which are
contained in future cases as we shall see,

Having thus accounted for all of a.l.a, and eliminated a.1.b
we turn to a.l.c. Adding u3n4 # 0 yields a.l.c.1 (00110), a,.l.c.2
(10110), a.1l.c.3 (01110) and a. l.c.4 (00111). Here a.l.c.l is
equivalent to a.l.a.4; a.l.c.2 and a.l.c.4 are positive semi-definite
by the lemmma and a, l.c.3 remains — actually it is contained in a

future case. We note that a,.l.a.3.c is a sub—case of a.l.c.3, hence
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we discard a.l.a.3.c. Adding usuy # 0 to a.l.d yields a.l.d.1
(00110), a. l.d.2 (10110), a.1.d.3 (01110) and a.l.d.4 (00111). Now
a,1l,d.2 is positive semi-definite by the lemma and a. 1l.d.4 is
equivalent to a.l.c.3. We now add uaug # 0 to a.1.d.1 giving
a.l.d.1.a (00101), a.1.d.1.b (10101), a.l.d.1.c (01101) and
2.1.d.1.d4 (00111). Of these a.1.d.1.h and a.1.d.1.c are positive
semi-definite by the lemma, and a.l.d.1l,a is included in a.l.a.4

while a.1l.d.1.d is a sub—case of a,l.c.3. Adding u # 0 to the

3%
remaining case a.l.d.3 yields a.l.d.3.a (00101), a.1.d.3.b (10101),
a.l.d.3.¢c (01101) and a.1.d4.3.d (00111). Here a.l.d.3.b is included
in a future case and the others are positive semi-definite. Thus we
have a.l.a.4, a.l.c.3 and a.l.d.3.b as the only patterns remaining
from a.l (and these all will appear as sub-cases of others).

Turning to a.2 we add u,u, # 0 getting a.2.a (01001), a.2.b
(11001), a.2.c (01101) and a.2.d (01011). The other three being posi~-
tive semi-definite we consider only a.2.c. Adding ugity # 0 gives
a.2.c.1(00110), a.2.c.2 (10110), a.2.c.3 (01110) and a.2.c.4 (00111),
with a.2.c.4 providing the only solution as the three other cases are
positive semi-definite. Note that a.1l.d.3.b is contained in a.2.c. 4.

As for a.3, we add u # 0 toget a.3.a (01001), a.3.b (11001),

245
a.3.c (01101) and a.3.d (01011). Note that a.3.c includes a.l.c. 3.

It also includes a.l.a.4 for in this case 954 = =1 and so

- 925
qu5 = 1 toinsure copositivity, Hence Q(0, x,, 0, x, xg) = (XZ—X4—X5)2
and thus a.l.a.4 has the additional zero pattern (01011) from which

we see that a.l.a.4 is indeed included in a.3,c. Now adding
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usug # 0 to a.3.a vyields a.3.a.1 (00101), a.3.a.2 (10101), a.3.a.3

(01101) and a.3.a.4 (00111). Of these a.3.a.2 and a.3.a.4 are
positive semi—definite and the others are included in a.3.,¢. To a.3.b

we adjoin u # 0 and get a.3.b.1 (00101), a.3.b.2 (10101), a.3.b.3

3%s
(01101) and a.3.b.4 (00111). Here a.3.b.4 is a sub—case of a.2.c.4
and the others are positive semi—-definite. Turning to a.3.d we add
U ug # 0 yielding a.3.d.1 (00101), a.3.d.2 (10101), a.3.d.3 (01101)
and a.3.d.4 (00111) of which the second is a sub—case of a.2.c.4 and
the others are positive semi-definite.

Since a.4 was equivalent to a.3 we have exhausted case a and

discovered only two possible zero palterns a.2.c¢.4 and a.3.c¢; re~

labeling the variables gives

a.2.c. 4 11100 a.3.c 11100
01110 11010
00111 11001
10011 00111
11001

Case b. Here we have (11100) and (11010} as the basic
patterns and we add uug # 0 yielding b.1 (10001), b.2 (11001), b.3
(10101) and b.4 (10011}, Now b.3 and b.4 were considered under
case 2, thus only b.1 and b.2 need be investigated. Adding
u,ug # 0 to b.1 g'ives b.1l.a (01001), b, 1.b (11001), b.1.c (01101)
and b.1.d (01011) of which b.1l.c and b.1.d are sub-cases of a. Ad-

joining uguy #+ 0 to b.l.a yields b.1l.a.1 (00110), b.1l.a.2 (10110),
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b.1.a.3 {01110) and b.1l.a.4 (00111), This last is a sub~case of a
and the others are positive semi-definite., Adding U Uy # 0 to b.1.b
gives b, 1.b,1 (00110), b.1.b.2 (10110), b, 1l.b.3 (01110) and b.1l.b,4
(00111). Here again the last case belongs to a and the others are
positive semi-definite, Considering b.2 now, we add u3u4 + 0 and
get b.2.a (00110), b.2.b (10110), b.2.c (01110} and b.2.d (00111).
Of these, the first is positive semi-definite and the others are sub-
cases of a, Hence case b adds no new solutions.

In dealing with our two solutions, a.2.c.4 and a.3.c, we shall
continuously use the facts that dy; = ‘l (i =1,...,5) and hence that
-1 = 454 < 1 (Corollary 3. 9).  Let us label the known zeros of a.3.c
as follows u = (ul, Uy, U, 0,0), v = (Vl’ V) O,v4, 0), w = (Wl’WZ’O’O’WS)
and z = (0,0, Z3s Zys 25). Applying Theorem 2 (Diananda) to Q4 =
Q(xl, Xy Kgs Xy, 0) we see that it is contained in P + 5, hence zeros u, v
of Q imply that Q, = Q'+ bx,x, where Q' has A*(4) for b =20 large
enough. Thus Q' is positive semi-definite and (Thm. 4, Diananda) has
a zero in S(4) with all components positive. So Corollary 3. 10 implies
that Q is positive semi-definite if b = 0, Thus we may assume b > 0;
hence applying Corollary 3.9 to Q' yields A3y > -1, Similarly
d35: A5 > -1. Since 4340 9357 945 > -1 Q has no zeros with patterns
00110, 00101, 00011 and any further zero patterns that Q might have
are equivalent to one of A(11000), B(10100) or C(10110) by a relabe.ling
of the variables. In case C, Q4 = Q(xl, Xy X35 Xy, 0) and the lemma

prove that Q is positive semi-definite. In case B, d3 = -1 and

Q(xl, X5y X3, 0, 0) being positive semi-definite (Lemma 1, Diananda)
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we see that Q(u) = 0 implies that (in’ ng) is (1, -1) or (-1, 1). Using
the facts that Q_(Xl, X9 0, Xy 0) and Q(xl, X5 0,0, XS) are similarly

positive semi-definite with zeros v and w yields

912 423 914 424 415 425
Bl 1 -1 -1 -1 ~1 -1
B2 ~1 1 1 -1 1 -1
B3 -1 1 1 -1 -1 1
B4 -1 1 -1 1 1 -1
B5 -1 1 -1 1 -1 1

For Bl we have Q(xl, 0,X3,x4, 0) copositive, thus A3y = 1; similarly
d3g = Ay = 1 but this contradicts the existence of the zero z. In
case B2, Q(O,XZ,O,X4,X5) copositive implies that A5 = 1, hence
Q(0, 0, Xas Ky, X5) positive semi-definite with Q(z) = 0 and qy; = 1

(I =1,...,5) ylelds d3g = Y35 -1, contradicting Uy >-1 as as—

sumed above, Case B3 proceeds similarly using Q(xl, 0, x 0,x5) co—

31
positive to establish that d3g = 1 and hence [using Q(0, 0, X9 Xy, x5)]
that d3gq = Ays ==-1, which violates our assumption. In case R4, we
establish day = 1 and hence that A35 = Qg = -1 similarly, arriving

at the same contradiction., For B5, Q(Xl, 0,x3,x4, 0) copositive yields

q34 = 1 and proceeding similarly we establish that A5

s =L
which contradicts Q(z) = 0. Only case A remains, here dy = -1
whence one of 413953 = —1 and thus we have a sub~case of B. So we

conclude that a,3,c cannot have any further zero patterns, which

implies 9 >-1(,j =1,...,5). Further if qij = 1 for some i # j
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(i,j = 1,...,5) then at least one of Q(xl, X35 X3, 0, 0), Q(xl, X5, 0, Xy 0),
2
Q(xl, X54 0, 0, xs), Q(0, 0, X3y Xy, x5) would be of the form (xi + Xj - xk)
which would produce an additional zero x, = x = 1, contradiction,

Hence for a.3.c we know that -1 <qij <1 i#j{,j=1...,5). Note

further that if Q has two distinct zeros in S(5) with the same pattern,

say for example the pattern u, then Q(XL'XZ’X3' 0, 0) is (Xl + X, + xs)z

where the signs are not both plus. That is, this also introduces a new
zero pattern, But we have ruled out such happenings, thus in the case
a.3.c the only zeros of Q in S(5) are u, v,w, z and these are unique.
Since u is a unique zero of Q we know that
X Xs)z

2
Q(xl, X5, %5, 0,0) = (x + qpp%, + q13x3) + k(uz =

k,u,,u, >0

2’73

and hence that

2 2
Q = (% +app%x, ¥ q3%; +ap,x, + q5%) = L)
2
X2 _ X > = z
+k(u2 = +ex4+fx5\) Kyuyuy >0 (= KL,
+bx3x4+cx3x5 b>0,cz0

2 2
+ Ax4 + Bx4x5 + Cx5

where b > 0,¢c 20 follow from Corollary 3. 2 and a relabeling of the
variables if necessary. (We note that this is the first time that the
extremity of QQ is crucial, Note further that if the variables need to

be relabeled no change in the zero patterns is produced.) A, C =<0
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 follow from Q(v) = Q(w) = 0. Now Q(xl, Xos 0,x4, 0) is positive semi-

définite (LLemma 1, Diananda), whence Q(v) = 0 implies A 0.

il

Similarly C = 0. So Q(z) = 0 implies B <0 since b>0,c 20. Now

let r = v +w, then Q(r)

le(r) + kLZZ(r) + Br,r, <0 since
Ll(w) = Ll(v) = Lz(w) = Lz(v) = 0 which contradicts the copositivity
of 3, and thus rules out pattern a. 3. c.

Case a.2.c.4 remains and it certainly has solutions, since the
Horn form clearly belongs to this category. Let the known zeros of Q
be u = (uy,u5,1,,0,0), v = (0,v;,v5,vy,0), w = (0,0, w,,w, ,wg),
y = (yl, 0,0,y y5), and z = (zl, z5 0, 0, 25). Applying Theorem 2
(Diananda) to Q4 = Q(Xl’ X1 X35 Xy, 0) we see that it is contained in
P + S, hence zeros u, v of Q imply that Q4 = Q'+ bx1x4 where Q' has
A*(4) for b 20 large enough. Thus Q' is positive semi-definite and
(Thm. 4, Diananda) has a zero in S(4) with all components positive.
So Corollary 3. 10 implies that Q is positive semi-definite if b = 0.
Thus we may assume b > 0; hence applying Corollary 3. 9 to Q' yields
Uy >-1. Similarly, we see Uy e i3> Apyr U35 >~ Thus Q has nao
zeros with patterns (10010), (01001), (10100), (01010), (00101). Hence
if Q has any 2-variable zeros they must involve X, X, | 15 SO without
loss of generality we may assume that 4y = ~-1. Then 93 >-1 im-
plies Q(xl, xz,,x3,0, 0) = (x1 - %, + x3)z, whence 453 = -1, So
Q(0, Kys X3y Xy, 0) = (xz - X, + x4)2, and similarly Q(0, O, K3 Ky, XS) =
(x, = %, + XS)Z, Qxp, 0,0, %, %) = (x, = % +x)" and Qlx;, x5, 0,0, %)
= (x5 - X + XZ)Z. That is Q is the Horn form, Thus we may assume

that Q has no 2—varlable zeros. If Q has an additional 3—variable zero
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pattern we have a sub-case of a,3.c, ‘which was already eliminated.
Suppose Q has two distinct zeros in S(5) with the same pattern, say
the pattern u. Then Q(x,, X, X3, 0, 0)=(Xl *x, = x3)2 where the signs
are not both plus, hence Q has a 2—variable zero which contradicts our
assumption. Hence the only zeros of Q in S(5) are u,v,w,y,z, and
these are unique.

For computational convenience we normalize the zeros so that
Uz = Vy = Wg = ¥y = 2, = 1; this takes the zeros out of S(5) but
does no other damage. Consider Q5 = Q(xl, Xps Xgn Xy, 0). it is a co-
positive 4—variable form and hence (Thm. 2, Diananda) belongs to
P + 8, Further Q5(u) = QS(V) = 0 and so the part from P is neces~—
sarily tpxix, with t; 20. But if ty = 0 then Qg would be positive
semi—definite and hence would have the 4-variable zero u + v [since
Qglu) = Q(v) = 0]. But Corollary 3. 10 then implies that Q itself is

positive semi-definite. So we may assume that t5 >0, Thus
- _ 1 2

Qg = tgxpxy + [x) + qppx) +ay3xg + (agy — 2tg)x,]

2
T g5(xy +Pp3xg by xy)

b 2
+ (x3 + c34x4)
+j x 2

4

with t5,g5,h,j =z 0, But QS(u) = Q5(V) = 0 hence h = j = 0 and the

uniqueness of the zero u implies 85 ~ 0, thus
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- ‘ . o1
Qp = tgxx, + [x +aqpx, + %, + (g, — Btg)x]

2
+ gS(XZ. + b23x3 + b24x4)

Now Q5(u) = 0 implies u, + b = 0, i.e. b

2 23 23

It

Q (v)
QS(u) = 0, Q5(v) = 0 imply

up Fqppuy gy = 0
— 1
qpVy T p3Vs T {dgy ~ Ftg)

and the coefficients of xzz, XXy, X 2 yield

3

2 _
9" 85 = 1

912913 ~ 85Y T 9p3

|
—

2 &
913" * 854,

0 implies vyt b23v3 +b24 = 0, i.e. b‘24

2

-V, +u,v,.

t5: gS >0
Also
23

(4.1)

(4. 2)

(4. 3)

(4.4)

(4.5)

Solving (4. 3) for gx and using this in equation 4. 4 together with

equation 4. 1 yields

W, tuy; tgp; =0

(4.6)

Similarly, salving for 85 in equation 4. 5 and using it in equation 4. 4

one gets

ulq13 + u2q23 +1 = 0

(4.7)
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Hence using equations 4,1, 4.6 and 4, 7 we get the system

_ - _ - 9
u, 1 0 4> —uy
uy 0 1 i3] = ™% (4. 8)
0 b1 M| |23 -1

L - - L -

which has determinant —Zulu2 <0, and thus may be solved for CIPE

Ay3r Az3- We obtain similar equations for each of the 4-variable sub-

forms of Q and as we shall have to refer to them later, we list them

here.

Uy Fuyq, tagg S

g, t u, tg,, = 0 (4.9)

U,4,, + u,q,, +1 = 0

Vo T V3dpy Fdy, =0

+ -0 (4. 10)

Vadp3 T V3t A3y

V2q24+v3q34+1 = 0

W3t Wydgy T35 = 0
w3q34+w4 +q45 = 0 (4.11)

Wadsg +W4q45 +1 =0



Solving equations

912

+ =z

Zgdy5 t 2y T4,

Zgdygs T 24y, + 1

- 2 2
1 4+ u1 + u,

—Zuluz

2 _ 2
1 + u1 u2

.9, ...,4.13 for the q_ij yields

- 2 2
1 z5 + z1

—Zzl

(4.

(4.

(4.

(4.

(4.

12)

13)

. 14)

. 15)

16)

18)

. 19)



5 1
= 4,20
95 o ( )
5
-1 + w2+ w,? 1 - v, + v, 2
= = 4,21
434 A 3%y —.2V3 ( )
1 + w2 - w,?
3 4
= (4.22)
435 -—ZW3
- 2 2 — 2 2
_ 1+ V4ot Yy 1 Wit twy
Q45 = > = (4.23)
Y45 —2Wy
which are subject to the constraint (4.2), and similar constraints
arising from the other 4-variable sub-forms, these are
Ay, + i3Vt Ay = Ftg >0
p3W3 T AWy T Qg5 = Ft; >0
UGgVy * d35Y5 * A3 = 2 >0 (4.24)
Aus%s T A1g%y T dpy T 3ty >0
dy58; + Qpgu, Fdgp = 3ty >0
Further constraints are those imposed initially, i.e.
Uy U V2 V3 W3 Wy 0 Vg Vs B5 %y 2 0
“l<qy <1l (i#))
(4. 25)
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Equations 4, 9,...,4. 25 have a wide range of solutions, but
the constraints (4. 24) only insure that all 4-variable sub-forms of a

solution are copositive (see preceding where t_. was introduced).

5
Hence a solution of these equations must be checked for copositivity
in 5 variables. (Fortunately, such a test exists, see Motzkin Ref. 3.)
Even so equations 4.9,...,4.25 appear to yield a large family of co-
positive quadratic forms which has not as yet been parameterized.

We give the following example of a solution, listing first the zeros and

then the coefficients

84-15), {0.125,1.1075+,1,0,0}

I

v

1

v = {o,—flg,—é—3 (N8¥-15 + N/86-15), 1,0} {0,0.125,1.1247+,1,0}

w = {0,0, 5, (N8b-15 + N/88-15),1} = {0,0,0.125,1.1249+, 1}
v = {1,0, O,%,%E(N/SB—«IS +N89-15)} = {1,0,0,0.125,1.1249+}
% = % 7 + N819-15), 1, 0, 0, 84} = {4096.874+, 1,0, 0, 4096}
Uy = 922 T 933 T U4q T 955 7 !

a4, = & = -0.875

a,, = 57 (WE-15 - 15) = 0. 844099482+

d,, = o N(E°-15)(89-15) - 15} = 0.999999434+

-1
Qp5 = gE N8Y-15 = —(0.999999993+)
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qy, = 55 N84 -15 = —(0.998167265+)
a,, = 55 (N(8¥-15) (8 -15) - 15} = 0.997680943+

G = o (WBP-15-15) = o g12-15(7+ N80 -15)2

0. 874942773+

Q4 = ’é_; ,,}86_15 = —(0,999971389+)

a,5 = 57 (N(8°-15) (8°-15) - 15} = 0.999963789+
el S Y B = -

a5 = 5+ NE-15 = ~(0.999999552+)

Here the 1:i are:

= 3. 745+, t, = 3.688+, t3 = 3,744+, t, = 3,687+, t. = 3,680+

Y 4 5

One notes, among other things, that in this solution U VoW oY 2
= 1. In fact this is generally the case as will be shown later (Thm.
4.3).

As mentioned above t. >0 (i =1,...,5) implies that our form
Q is copositive in any four variables, Thus in order to establish the

copositivity of Q we need only determine whether Q(x) = 0 for X, >0

(i = 1,...,5). Using homogeneity, we can ascertain this from the

values of Q(x) resgtricted to g = 1. To do this we first note that
Q(x) 2 0 for all x on the boundary of J = {x txp = 1, X, 2 0
(i=1...,4)}. For those portions of the boundary which have x; = 0
for some i (i = 1,...,4) this follows from tr.o..ty >0, ie. from

the 4-variable sub-forms. A typical point on the other part of the
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boundary might be y = lim (951, M, 3, M, 1). Now let yj be any
m -

sequence of points of J which converges to y. For each Yj =

(le’ v Yj4’ 1) let Nj = le S Yj‘l + 1, then by homogeneity we

have

— 2

and thus in particular Q(yj) and Q(yj/Nj) have the same sign for all j.
Hence Q(y) has the same sign as Q(0, %, 0, %, 0) which is = 0 since
Xy = 0 and t5 > 0. As the same proof works for all such boundary
points we see that Q(x) =2 0 on the boundary of J. Further we note that
]li-{%o Q(yj) z 0 no matter what sequence yj approaching v we choose.
Let us suppose that there exists a point s in J for which
Q(s) = d <0. (We wish to show that this implies that Q has a stationary
point in J.) Then consider the set T = {x in J: Q(x) = $d}, clearly s
belongs to T and T is closed. Suppose T was not bounded, then there
would exist a sequence of points of T which would approach a boundary
point of I. But T is closed, thus this houndary point must have a
function value =< 3d, contradiction. Thus T is bounded. So there
exists an R such that all of T lies inside the intersection of the sphere
of radius R with the set J. This is a closed and bounded region
outside of which Q > 3d, thus Q has a minimum =< d in this region.
Since Q is continuous this minimum cannot appear on the bound.ary,'
hence Q has a stationary point in the interior of this region — hence in

the interior of J.
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Thus if we wish to prove that Q(x) 20 in J, we need only
examine the stationary points of Q which lie in J. For this purpose
we write Q(x) = xtAx and apply Lagrange's method to Q(x) + )\x5.

So we are led to solve

2Ax = (0,0,0,0, -\)F

for the vector x. As IAI ~11,925 this is possible and we determine A
by Cramer's rule from x; = 1 = —)\Dn_I/ZIAl where D _,~ -0.0124
is the determinant of the first four rows and columns of A, This
yields x ~(-0,1272, -513.6, -521.6, —8.017, 1) with the associated
value Q(x) = x'Ax = x°(0,0,0,0, —40)% = =3\ ~ -961.8. Thus Q has
no stationary point in J and hence Q(x) =2 0 in J by the previous para-
graph. That is, Q is copositive.

So at this point we have a copositive quadratic form Q which
has A*(S) — as follows from its zero patterns — but we do not know
whether it is extreme. Letting H be the class of forms of the Horn
type, i.e. H = {Q:Q = -.i?- Ri(tilxl’ ey tiEXB) where Ri(xl’ ey X5) is
equivalent to the Horn form by a relabeling of the variables and

t .t

i1’ - i5

positive quadratic forms which might exist outside H+ P + S, we must

>0 for all i}, and letting N be the class of all other co-

have Qe P+ S+ H+ N, Thus
Qx) = Px) + S(x) + H(x) + N(x)

Now P(x) = 0 since Q(x) has zeros with Xixj #0({i,j=1,...,5).

Further S(x) = 0 since the determinant of the zeros of Q(x) — hence
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also zeros of S(x) — has value ~3.678 # 0, So Q¢ H + N; suppose

Qx) = Hl(x) + Ql(x) where Ql is copositive and H, is a particular

1
scaled Horn form, i.e. Hl(xl, e x5) = R(pl'xl', ooy p5'x5‘) with R
the Horn form, pi' >0 =1,...,5) and each xi' = xJ; for a different
value of j (i,j = 1,...,5). Now the zero patterns of Q, hence also of
Hl’ imply that j = 1 + k for some fixed k (where we define Xg oo

x ,m 2 0). Thus (since R is fixed under cyclic relabeling of the vari-
ables) we may assume that Q(x) = Hl(x) + Ql(x) = R(plxl, ey p5x5)

+ Ql(x) where R is the Horn form. Making the transformation

X, ~> Xi/pi we see that the transformed Q has zeros (Plul’ P,U5: P3; 0, 0)
s ey (plzl, Py 0,0, psz5). But these are also the zeros of R, thus

from our listing of the zeros of R (see section 2) we know that

PiU ~ Ppup t Py = 0,...,Pgzg ~ Py7y + P, = 0 that is
S T T 0 0| |py 0
0 £ ~vs 1 0 P, 0
0 0 w3 o Wy bgpy = |0
! ! 0 Yy Vg | P4 0
B 0 0 5| | Ps) o

But the determinant in question has value ~ 0.32112 >0, so Pp = ..

= Py = 0 thus Hl(x) = 0. Thus H({x) = 0, and so O lies outside the
convex hull P + S + H. That is, Q is a sum of new extremes. We note
that any new extreme must satisfy all the conditions that Q has satis—

fied, hence we state:
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Theorem 4.3, If Q(Xl’ C ey x5) is an extreme copositive
qﬁadratic form having 93 = 1 =1, e ,5) then (i) Q is a positive
semi-dcfinitc extreme or (ii) Q is a replica of the Horn form in which
the variables have been relabeled or (iii) after a relabeling of the
variables Q is a solution of equations 4.9,...,4.25. In this later
case, Q has exactly 5 zeros in S(5) which are thus isolated in S(5)

and can be assumed to be multiples of u

(ul, u,, 1, 0,0),

Vo= (0:V25V3: 1,0), w = (0, O:W3:W4’ 1), y = (1, 0,0, Y4:Y5>:

Z

(zl, 1, 0,0, 25), where u1V3W3V4Z5 = 1.
Proof. The only assertion which we have not yet established
is that U VoW eV % = 1, To this end we first show that not both EIPY

Qg = 0. Suppose so, then
- 2 2 2
Q(xl, X5, 0,0, x5) = %y + X, + xg + 2q25x2x5

= 2 2 2
= (x2 + qZSXS) text %)

where -1 <q25 <1 and hence s > 0. Now Q(z) = 0, but this is im-
possible by the above representation. Hence at least one of CIPY
5 ¥ O

We now establish W VoW oY% = 1 using 5 # 0 (an analogous
proof holds for ;5 # 0). Since the Ugs o vns 2y 2 0 we need only prove

that (u1V2w3y42‘5)2 = 1. By equation 4, 13 we have

(vaWs¥ass) = (vawayy)® (=g (q75 # ©)
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and solving (4, 14) and (4. 17) simultaneously for Zy yvields

95
— —— 2 _ 2 —_
Zl = qlz * qlSZ_l '\/(q15 1) (q.]_z 1Y) (as -1 < q15 <1)

thus
(q;,%-1)
(W, v, w,y,z.)% = (uv,w,y,)? 122
1727374%5 1727374 (ay5%-1)
But
2 = 2 . 2
95" = (q45 1)\[4 + 1 (4. 12, 4. 23)
deg® = (Qg %~ Dw,y? + 1 (4. 11, 4.21)
A3 = (Qy3f — 1)vy® + 1 (4. 10, 4. 18)
2 2 — 2
Qy3” = g% = Du* + 1 (4.9, 4.14)

and using these in turn gives the desired result, since -1 < qij <1, for

L4 ]

Corollary 4. 4. There exists an extreme copositive quadratic
form in 5 variables with Qyy = 1{i=1,...,5) which does nat have
q; = F b= L...,5).

Proof. Follows immediately from the theorem if we use
Lemma 4. 1.

At this point only Conjecture 2.7 remains; we prove it for
n =5 variables,

Corollary 4. 5. Let u be a maximal zero in S(n) of an ex—

treme copositive quadratic form in n =5 variables, then u, = 0



implies 8Q(u)/8xi-> 0 forany i =1,...,n.

Proof., The copositive extremes for n £ 4 variables all belong
to P +S5 (Thm. 2, Diananda), These have been determined (Thm. 3.2,
Hall and Newman), see the first part of section 2 for a listing of them.
The corollary is obviously true for all these and also for the Horn
form as the exhaustive listing of its zeros in section 2 indicates. Thus

(Thm. 4.3) we need only concern ourselves with our new category of

extremes. Any of these may be written

— 2 — 2
Q = (x + appxy + dyp%Xy F QX+ apsx;) (= M)
i R § 2 = 2
# (G2 - 22+ exy +Ixy) k>0 (= KM,?)
+ b:se:3x4 + CX, X b,c =0

2 2
+ Ax4 + Bx4x5 + st

where k > 0 is implied by the isolation of the zero u = (ul, U, 1,0, 0)
in S(5). Further b,c =20 since E)Q(u)/i‘)x4 = bu3 = b =20 (by coposi~-
tivity), similarly 8Q(u)/3x5 = ¢ 20, Now Q(z) = 0 where z =
(Zl’ 1,0, 0, z5) hence C < 0, but Q(Xl’ X5, 0, O,x5) is positive semi-defi-
nite (Lemma 1, Diananda) and so C = 0. Thus from Ml(u) = Mz(u)
= Ml(z) = MZ(Z) = 0 we get Qfu + z) = Cugzg = Czp 2 0. If ¢ =0
then u + z is a 4-variable zero of Q, which contradicts Corollary 3.11.
Hence ¢ > 0 (i.e. B'Q(u)/ax5 > 0). Now if aQ(u)/8X4 = b = 0 then

— 2 2 3 3
Q(xl, X5y Xqy Xy, 0) = Ll ...+ LS + Ql(x4) with Ql copositive, by

Lemma 3.1 {using the zero u), Hence Qlx,) = ax42 with a 20, But
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v = {0, Vi Vg 1,0) is also a zero of Q and hence of Q(Xl’ 0),

X5y X35 Xy,
thus Qv) = le(v) + ... LSZ(V) + a = 0 and hence Ll(v) = L., = Ls(v)
= a = 0. But this implies Q(u + v) = 0, that is Q must have the 4-
variable zero u + v, contradiction. Hence we are forced to conclude
that b >0 also. So for the zero u of Q we have shown that u, = 0
implies aQ(u)/axi > 0. This is true for the other zeros v, w, vy, z of
Q, since a cyclic relabelling of the variables takes u into any one of
these.

Finally we show that our solution for equaﬁons (4.9), ...,
(4.25) is actually an extreme form. Suppose not, then Q = Ql + Q2
where Ql’ Q, are copositive and hence have the zeros u,v, w,y, z of
Q. We shall show that these zeros determine Q up to a scalar
multiple and hence that Ql = an, QZ =(1 - a)Q (0=£a<l).

Let us assume that R(Xl, ...»%g) is a copositive quadratic
form having the zeros u, v,w, vy, z, then R has A*(5) and thus R has
rii\/ 0{(i=1,...,5). So by multiplying R by a suitable scalar we may
assume that Ty = 1. Since R is copositive and has the zero u,

R(Xl, Xy Xas 0, 0) is positive semi-definite (Lemma 1, Diananda) and

hence
Uy + Tl + ri3 = 0
Tipup *oTpoup, b T3 = 0
Tig¥h t o Tpau, + Tz4 = 0
Thus letting Ty = b, r,, = € we can solve for Tigs Tpg and raqin

turn, getting in each case a linear equation in b and e. Using these

values and the analoguous equations for the zero v we determine T4

Tay and Tyye Ultimately we establish all the rij as linear expressions
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in b and e. Explicitly we have

=1 1, =b, Typ= -up-buy, oy = (bygtayg-zg)/y g

11
)5 = (-2 25, Ty, =6 Ty = -buj-euy,
rog = —Vze + (bu1+eu2)v3, Tog = (-e-bzl)/z5,

2 2
Tyq =4 +2bu1u2+eu2 s

2 2
34 vz(bul+eu2) - v?’(u1 +2bu1u2+eu2 }s

H
H

. 2 2 :
35 = (V3W4—W3)(ul +2bulu2+eu2 ) - vzw4(bul+eu2),
2 2, 2 2
Ty4=Vy ©- 2V2V3(bul+eu2) + v, (u1 +2bu1u2+eu2 )s
r,. =(bz.+z,z2.~2 2 -2bz.y.-ev.)/v,z 2
45 57%1%57%1 Y5 1757 Y5}/ Y425 »
., 2 2
rog = (z1 +2bzl+e)/z5 .
An examination of these equations would show that they were obtained

without the use of relations r,.w, + TasWy + r55 =0 and r +

35V3 343

TaaWa tT4s = 0. TUsing these and VWY g2 1 yields
(uszw zz—uzw2 z2+wzz-w zz+ ZZ)
1 V3W3WaY4%s "Y1 W3 Y4P5 TW4aZ5%17VWaV 5% V4%
+ (2uu,v,w,w ZZ-Zuu.WZ ZZ-ZW z.+2y ,2,)b
1"2V3W3Wa¥s%s "eMUW3 Y45 4Y5%17 4V 4%

2

+ (uZVWW'ZZ-u szz-uvww zz-w vy, )e =0
2 VaWaWyVyZp ~Up W3 VyZg “UpVoWaWuVyZg ~WyVsTVy

(-u 2'v WLV 42 2'+u 2V 2W Z 2+z Z -~V Z 2')
1 VaW3a¥gZ%5 TU V3 WyuVg¥Bs T21Z57V5%)
+ (-2u,u,v,w ZZ—ZU.VVW zz+2uuvzw z2+2z )b'
1%2V3V3V4%5 1V2V3V4Y4%5 192V3 W4Y4%5 5
2 2 2 2 2 2
+ (uzvzw3y4z5 U, TV WY 4 Zg +v2 W4Y 4%5 -2u2v2v3w4y4z5 e

2 2 2
+ (-221Y5)b +(u2 Va WyV4Zs -y5)e =0
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For our particular values of LT ,'zi these two equations have the
unique solution b = -7/8, e = 1. Hence R is unique and thus Q is

extreme.
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