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ABSTRACT

Cavitation induced instabilities of hydraulic systems were
investigated both experimentally and analytically. The instability,
known as auto-oscillation, was found to occur in a well defined region
of cavitation numbers just above head breakdown of the inducer.
Auto-oscillation is characterized by large amplitude fluctuations in
the pressures and mass flow rates throughout the system. The fi‘equency
of the oscillations was observed to decrease with a reduction in both
the ﬂow coefficient and cavitation number. The amplitudes of the
fluctuation increased with a reduction in the flow coefficient. These
detailed measurements reflect changes in the dynamic performaﬁcé
of the inducer due to cavitation and the interaction between the dynamics
of the inducer and those of the inlet flow field. Some detailed analytical
studies were performed to try to understand the nature of this interaction.

A linear stability analysis was developed which was based upon
the understanding that auto-oscillation is a function of the entire hy-
draulic system including the cavitating inducer. Using the experimen-
tally obtained transfer functions of two impellers, the analysis success-
fully predicted both the onset and frequency of auto-os cillation. The
stability of the Dynamic Pump Test Facility is significantly redﬁced
by the increased dynamically active character of the inducers at the
lower cavitationnumber. In addition, the stability of the Dynamic
Pump Test Facility was found to be particularly sensitive to the mass

flow gain factor and pump impedance.
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I. INTRODUCTION

1.1 Background

Designers of hydraulic systems have long recognized the suscep-
tibility of these systems to instabilities. Instabilities can occur during
transient or steady state operation of the system. In either case, the
~amplitude of the resulting oscillations can become exceedingly large.
The damage caused by an instability can be considerable. In the case
of the Lac Blanc-Lac Noir pump storage system, ''a great power station
was completely destroyed' and several engineers were killed [3 2]1.

According to Stepanoff [51] the following three conditions are
necessary for a hydraulic system to become unstable,

1) The mass of water must be free to
oscillate.
2) There must be a member in the system
which can store and give back the pressure
energy or act as a spring in a water system.
3) There must be some member that will
provide impulses at regular intervals to
start the swings."
Depending upon the hydraulic system, trapped gas or vapor volumes,
the compressibility of the working fluid and/or the elasticity of the
piping can act as the spring like member of the second criterion. The
necessary excitation can be provided in many ways. Guide vane vibra-
tion, vibration of valves, and seal leakage have been known to generate

an instability [1,32]. In pumping systems, pumps or compressors can

excite an instability if operated at flow rates for which their head-capacity

l Numbers in brackets designate References at end of thesis.

2A. J. Stepanoff [51].
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characteristics have a positive slope [18,26,44,51].

1.2 Design Methods for Hydraulic Systems

Several philosophically different design methods have been
developed in order to minimize the unstable behavior of hydraulic
systems. One technique is to simply suppress the resulting oscillations
and vibrations. Pressure oscillations have been suppressed by the
inclusion of surge tanks in hydropower systems [32] and feedline ac-
cumulators in liquid propelled rockets [20,39]. Usually, increasing the
stiffness of the structure reduces the vibration level of the'piping.

These precautions do not, however, guarantee a stable system. The
accident of the Kandergrund Tunnel is a case in point, The’surge tank
of this tunnel was located at a pressure node of the Ilth harmonic of the
system. Needless to say, the surge tank was ineffective in suppressing
the pressure oscillations at this frequency.

Besides the passive suppression schemes described above,
active suppression systems have also been designed. Farrel and Fenwick
23] have designed an electronic-hydraulic servo feedback system to
control the feedline pressure to the Space Shuttle Main Engine.

The third design method is based upon avoidance of the instability
rather than minimizing the effects of the instability by either of the above
suppression methods. This technique requires a basic understanding of
the actual or potential causes of an instability. In the past, the steady
state characteristics of pumps, compressors or turbines and a quasi-
static assumption were used in the stability analysis [18,26, 36, 49].

This information is sufficient in many cases. However, the trend
towards higher speed and higher performance devices has caused a

reassessment of these approximations. Recently, it has been discovered
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that cavitating inducer pumps, in particular, are dynamically active.
The dynamic performance of such inducers is significantly different
thanthat obtained via the quasi-static approximation[41,42,43]. Active
devices, by definition, have the capability to supply energy to fluctua-
tions within the flow. The results of the stability analysis may indicate
'a particular sensitivity to the suction line resistance and inertance, for
example [8,49]. A consid_eration of these factors during the design proc-
ess will hopefully lead to enhanced stability of the system.
The choice of design technique does depend upon the design
criteria and the type or mode of instability encountered. A brief digres-
sion to discuss the dynamic performance of pumps will follow in the next

section,

1.3 Dynamic Performance of Pumps -

The small amplitude linear dynamic behavior of a pump at con-
stant rotational speed can be represented in terms of a transfef function
[3,15,41, 42,43]. The transfer function relates the non-dimensional
discharge fluctuating pressure and mass flow rate to those quantities

at inlet. The transfer function of a pump is then defined by

-

P2l | Y11 Yiz| |P1
(" B (1.3.1)
m, Yo Yoo m,

The pressures and mass flow rates have been non-dimensionalized by
-é— pUT2 and pAlUT » respectively. The elements of the transfer
function are complex in order to represent the phase relationship

between the fluctuating quantities.
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The Yll term represents a dynamic, pressure gain. Values of
this parameter differing from unity indicate that the pump is acting as
a pressure amplifier. The Y21 element is the pump compliance term.
It indicates the variation of the cavitation volume with fluctuations of
the inlet pressure. The YZZ term, known as the mass flow gain factor,
is related to the ﬂuctﬁating rates of vapor production caused by fluctu-
ations in the angle of attack. Finally, the le term repre sent»s the
pump impedanee.

The problem of evaluating the dynamics of pumps is reduced to
determining, in some manner, the elements of the transfer function.
Except for Brennen's '""Bubbly Flow Model' [12], analytical efforts to
predict the Yij 's have Been largely unsuccessful [14,15,25,28]. This
is a result of the very complex nature of the flow field and of the various
types of cavitation that occur in pumps, neither of which are quantita-
tively well understood. An experimental program was undertaken at
the California Institute of Technology to measure transfer functions of
several ind‘uéer pumps at various mean flow conditions [16,41, 42, 43].

The results of these experiments indicate that quasi-static assumptions

are valid only at very low frequencies.

1.4 Classification of Hydraulic System Instabilities

The type of instability that occurs depends upon the size and
dynamic characteristics of the hydraulic system and the exciting element.
In systems whose dimensions are larger than the acoustic wave length,
an '""organ pipe'' mode of resonance in the pipelines can occur. Many
examples of pipeline resonances in connection with hydropower systems

have been documented [1, 32 ]. In most instances, the resonance did
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nof occur in the fundamental mode but at an odd harmonic. Systems
whose dimensions are smaller than the acoustic wavelength do not
exhibit such behavior.

Excluding the above acoustic phenomena, the instabilities
associated specifically with cavitating inducers belong to two general
catagories. One possible mode of instability is connected predominantly
with characteristics of the inducer and the inlet flow field, This
instability, referred to as rotating cavitation, manifests itself és an
unsteady cavitation pattern at inlet that rotates with respect to the
inducer blades. Both Kamijyo, et al[34] and Taylor, et al [53] have
indicated that the propagation of the cavities requires a circumferential
non-uniformity in the inlet flow. In addition, according to Kamijyo,
et al [34], the occurrence of rotating cavitation is accompanied by
“iarge“ inlet pressure fluctuations and no measurable pressure
fluctuations at discharge. There is no indication that this instability
involves fluctuations in the global mass flow rates at inlet or discharge.

The other type of instability is associated with the entire
hydraulic system. Structural vibrations can, under the right circum-
stances, excite a flow instability. The POGO instability of liquid
propellant rockets is an example of a coupled structural-hydraulic
instability. The PQGO instability is characterized by large amplitude
longitudinal vibrations of the rocket mainframe [20,39,48]. The
acceleration amplitude of these oscillations has been measured at tens
of g's. The vibrations feed back into the propulsion system causing
fluctuations in the oxidizer and fuel pressure and mass flow rates.
These perturbations in turn result in an unsteady thrust generation

which couples back into the structural vibrations.
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It is not necessary, however, for the structure to actively
~ participate in an instability. In passive or stiff systems, an active
device, such as cavitating inducer, can excite an instability charac-
terized by large amplitude fluctuations in both the inlet and discharge
pressuies-and mass flow rates [2,6,8, 21, 33, 34, 38, 40,49, 56].
This self induced instability is known as auto-oscillation. The
phenomenon of auto—oscillation will be more fully discussed in the

next section,

1.5 Auto-Oscillation

Auto-oscillation is a function of the entire hydraulic circuit.
It has been recognized[21,49,53,56] that the hydraulic systém does
not cause the instability; bpt rather, it influences the frequency and
amplitude of the oscillations. The cavitating inducer (i.e. the active
element of the hydraulic system) has been identified as the cause of
the auto-oscillation. A list of possible mechanisms would include a
‘hy-dro-ela>stic instability such as leading edge ﬂufter of the inducer
blades; rotating cavitation, cavitation occurring within the inducer,
backflow induced prerotation of the inlet flow, dynamic pressure gain,
etc. Barr [6] and Etter [21] using a momentum anaiysis by Yeh [55]
have concluded that rotating cavitation does not excite a coﬂdition of
auto-oscillation. In that analysis, no allowance was made for the
cavitation that would be present in the inducer. Neither Barr nor
Etter considered this a2 sericus deficiency fo their arguments. Instead,
they along with other investigators [31, 34,40, 46] have concluded that
auto-oscillation is a cavitation induced phenomenon. However, there

is no universally accepted means by which cavitation induces or excites
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‘auto-oscillation. Both Barr [6] and Etter [21] suggest that an inherent

" instability associated with cavity length causes auto-oscillation. Tests
on cascades of hydrofoils [ 4,37 ] do indicate that for cavity length to
chord ratios between ~0.5 and ~1.2 the cavitation pattern is highly
unsteady and the unsteadiness is periodic. In inducers, an unsteadiness
has been observed in the cavitation when either the length of the cavity
.approa(v:hes the chord of the ..inducer blades [6] or when the cav*ivty
length is such that the trailing edge of the cavity just enters the} i)assage
formed by the adjacent blade [21]. Young, et al [56] on the other hand,
indicates that the mechanism is more subtle. They propose that it is
the dynamic behavior or compliance of the cavitation that is the
important factor. This conviction has been arrived at by Young, et al
[56] mainly through stability models. The predicted stability margins
are sensitive to or directly related to the compliance contributions

due to the cavitation within the inducer. Alternatively, Badows'ki [5]
has proposed that the coupling between the cavitation, the head produc-
tion and the backflow induced prerotation as the ultimate cause of
auto-oscillation.

With regard to the possibility of a dynamic pressure gain
causing auto-oscillation, Young, et al [56], in their stability analysis,
found the pressure gain to be a stabilizing feature of the pump dynamics.
Finally, leading edge flutter cannot be completely ruled out in‘all cases.
HoWever, estimates of the flutter frequency based on the results of
Barton [7] and Lindholm, et al [35] can, in some instances, be several
orders of magnitude larger than the auto-oscillation frequenéy.
Similarly, the frequency of other internal hydrodynamic disturbances

is much larger than the auto-oscillation frequency.
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Clearly, the actual mechanism behind auto-oscillation is not
~ well understood. Indeed, it may be necessary for several of the above

mechanisms to occur simultaneously.

1.6 Goals of this Research

The object of the current study was to investigate the phenom-
enbn of ‘aufo—os cillatidn in de“tail. This study had a dual purpose. The
firsf was to define and identify the characteristics of auto-oscillation.
This Was accomplished by means of a set of experiments in which |
fneasurements of the fluctuating pressures and mass flow r.a.tes through-
out the system during auto-oscillation were made. The second goal
was to predict the onset of auto-oscillation. Towards this eﬁd; a
linear stability analysis incorporating a more accurate description of
the pump dynamics was developed,

The experiments were performed on the Dynamic Pump Test
Facility (DPTF) located at the California Institute of Technology. In
addition, the dynamic characteristics of cavitatihg inducers used i:ﬁ

the staﬁbility analysis were obtained on this pump loop.
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' II. EXPERIMENTAL FACILITY AND TECHNIQUES

2.1 Test Facility

As mentioned in the introduction, the current investigations
were performed in the DPTF, 'I‘his‘ compact, closed loop system
was originally designed to obtain transfer functions of several inducers.
’Thé size of the pump loop wés selected so as to limit the amplitude
of the pressure fluctuations,

| A schematic of the original configuration of the DPTF appears
in Fig. 2.1. Each component of this pump loop has been déscribed
in detail in Ref. [41]. Several modifications were made on the pump
loop during the course of the present study. The working séction
(the pump housing and volute) was rédesigned for the purpose of
observing and comparing the dynamics of 10.16 cm (4 inch) diameter
impellers to the original 7.62 cm (3 inch) diameter impellers. The
downstream smoothing section provided a significant compliance
which had to be removed from the earlier trénsfér functions. The
diameter of the downstream smoothing section was reduced and its
wall thickness increased in order to reduce its structurallcompliance
by a factor of 2. The volume reduction also decreased the overall
compliance provided by the cornpressibilit&r of the water wit;hin this
section. The magnitude of this correction to the transfer function was
substantially reduced by this redesign. In addition, the length of both
the upstream and downstream smoothing sections was reduced to
allow insertion of two modified Foxboro electromagnetic flow meters.
The resulting configuration of the DPTF is presented in Fig. 2.2.

For future reference, the experimentally obtained transfer

functions, [ Z], describe or define the dynamics of the entire portion
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of the pump loop between the two laser doppler velocimeters., Cor-
rections for the dynamics of the system external to the inducer-volute
combination are then applied to obtain the transfer function of the

pump, [ZP]. This procedure is described in complete detail in Ref. [41].

2.2 Instrumentation

The location of the standard transfer function instrumentation
is indicated in Figs. 2.1 and 2.2, This basic instrumentation
and its associated electronics is fully described in Ref. [41]. The
instrument package consists of two laser doppler velocimeters, two
Statham model PAB22 strain gauge pressure transducers, a turbine
flow meter and a magnetic pickup which sensed the pump rotational
speed. Supplementing the above measurement capability, three
Validyne model DP15 variable reluctance pressure transducers were
mounted axially in the neighborhood of the inlet of the inducer. The
location of these transducers is indicated in Fig. 2.3.

All pfessure transducers were calibrated against a precise
~ Heise pressure gauge. Prior to this study, the slope of these calibra-
tion curves was used to reduce the dynamic data. The high estimates of
the natural frequency of the pressure transducers supplied by the vendors
indicated the validity of this procedure. To corroborate this informa-
tion, a dynamic pressure transducer calibration scheme was devised
similar to that reported in Ref.[29]. This calibration scheme uses
inertially generated sinusecidal pressure fluctuations. The details of
the procedure are discussed in Appendix A. The amplitude and phase
of the transducer outputs are presented in Figs. A.2-A.5. 1Itis

evident that the mounting connections cause a latge reduction in the
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natural frequency of the pressure transducers. This frequency is
particularly sensitive to any source of compliance—air bubbles,
cavitation, etc. Care was taken to purge each of the transducers of
any trapped air bubbles before every experiment. The appropriate
corrections in both amplitude and phase were made during reduction
of the data. Corrections associated with the amplifiers and filters
were also applied.

Furthermore, electronic calibrations were applied to the
upstream and downstream velocity measurements. As mentioned in
Ref, [41l], the laser doppler velocimeters possess certain inherent
limitations. The magnitude of the velacity transient or fluctuations
that could be accurately measured was limited by the ability of the
phase locked loop located within the processing electronics to track
or follow large amplitude velocity excursions. This limitation did
not appreciably affect the quality of the data obtained in this study.
Secondly, the laser beams could be entirely scattered by free stream
nucleii, eithér particles or bubbles, within the flow preventing any
velocity measurement. Particle scattering has never presented any
problem in this regard. The scattering of the laser beams by the
traveling or gaseous cavitaticn bubbles was minimized by deaerating
the water. The dissolved air content of the water was approximately
3—6 ppm for each test. Deaeration effectively eliminated the scat-

tering problem.

2.3 Impellers

Experiments were performed with five different inducers

during the course of this investigation. The initial preliminary
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observations on auto-oscillation were made on IMP4 and IMP5. IMP4
is a 7.62 cm (3.0 inch) diameter, ¥ scale model of the Low Pressure
Oxidizer Turbopump (LPOTP) of the Space Shuttle Main Engine (SSME),
A schematic of this impeller appears in figure 2.4. IMP5, which is
also shown in that figure, is a 7.62 cm (3.0 inch) diameter, three
bladed helical inducer. The blade angle at the tip was 90. After

the initial cursory observations were completed, the DPTF was .
modified to accommodate the 10,26 cm(4.0 inch) diameter inducers
IMP6, IMP7 and IMP8. IMP6 and IMP7 are both just scaled up versions
of IMP4 and IMP5, respectively. IMPS8, however, is a four bladed
helical inducer with a blade angle at the tip of 7%—0. Both IMP7 and
IMP8 had a solidity of 2.0. IMP4 and IMP6 were operated with a
stator blade row behind the impeller; the other inducers were not

followed by a stator.

2.4 Experimental Techniques

. The experiment from which the auto-oscillation data were ob-
tained was based upon the traditional steady state cavitation perform-
ance test, First, a mean flow rate or flow coefficient was selected.
Then, the cavitation number was reduced fr-om an initially high value
while maintaining the chosen flow coefficient. The steady flow data
was extracted from the transducer outputs by means of an integrating
voltmeter. If auto-oscillation occurred, the transducer outputs were
recorded on a 14 channel Ampex FM instrumentation tape recorder;
while the D. C. or mean values were simultaneously obtained via the
integrating voltmeter. Data were also recorded for operating states

just outside the auto-oscillation region. After the recording, the
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cavitation number was altered by a small amount and the above procedure
repeated.

A Spectral Dynamics Model SD360 Signal Analyzer was used to
obtain the amplitude and phase relationships of the recorded data.
The Signal Analyzer used a Fast Fourier Transform to calculate the
spectra of the input wave forms. The phase of each transducer output
relative to the downstream pressure fluctuations was determined by

cross~-correlation of the two wave forms.
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Fig. 2.3 Schematic of transducer locations on the Dynamic Pump
Test Facility.
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Fig. 2.4  Sketch of Impeller 5 and Impeller 4. Both impellers are
7.62 cm in diameter.



-18-
111, STEADY STATE PUMP PERFORMANCE

3.1 Introduction

The performance of pumps has traditionally been éharacterized
by three distinct quantities. Although these quantities appear in many |
forms in the literature, they are based upon the head rise across the
vpump, the suction or inlet pressure and the mean flow rate through
the pump. For the purposes of this study, these quaﬁtities will be

non~-dimensionalized as follows:

P27Py
Y =~ = head coefficient,
PUT

@ = mg?wr = flow coefficient (3.1)
and
P1-Py cr o as b
o ='—1-—-——-2— = cavitation number
pUp
whete

discharge pressure

e
n
n

= inlet pressure

o
[
i

vapor pressure of liquid

o
<
1

volumetric flow rate

a O
u

1

T tip speed of pump
AI = inlet area of the pump

p = liquid density.

Under fully wetted or non-cavitating conditions, the function

¥(op) is sufficient to describe the performance of a pump. However,
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under cavitating conditions, the head coefficient, ¥, becomes a function

of cavitation number, ¢, as well,

3.2 Non-Cavitating Pump Performance

The non-cavitating dependence of the head coefficient upon the
ﬂow_coefficient for both the £ and % scale models of the LPOTP of
the SSME, IMP4 and IMP6, is presented in Fig. 3.1. The general
form of these characteristics is typical of all inducer pumps. 'I‘hé
differences between the performance of IMP4 and IMP6 are due to
differences in the efficiency of pressure recovery in the volute. The
solid line on this figure is an analytical prediction of the performance
of IMP4 and IMP6 [ 9 ]. The agreement is quite good, especially near
the design flow coefficient of 0.070.

A brief digression will be made at this point to describe the
inlet velocity profiles, Knowledge of the inlet velocity profiles is
important in that the performance of the inducer is determined by the

blade geometry and the local angle of attack.

3.3 Inlet Velocity Field

3.3.1 Introduction

The inlet axial and swirl velocity profiles were obtained by means
of a wedge probe and a total head probe connected to a manometer. A
radial traverse with the wedge probe determined the angle of the flow.
This measurement was followed by a radial traverse with the total
head probe to determine the stagnation pressure at the flow angle.
The large inertia of the manometer connections effectively averaged

out any three dimensional structure in the flow. Under the assumption
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of radial equilibrium, the axi-symmetric mean axial and swirl

velocities could be calculated as described in Appendix C.

'3.3.2 Axial Velocity Profiles

The radial distribution of the axial velocity 0.5 radii upstream
of IMP6 is presented in Fig. 3.2. At the higher flow coefficients,
the initially (i, e, far upstream) uniform and irrotational inlet flow is
slightly retarded at the outer radii, As the flow coefficient is.decreased,
the amount of retardation increases until a reversed flow region is
observed. The extent of the reversed flow region increases with a
further decrease in flow coefficient. From Fig. 3.1. the above
trend is directly related to a corresponding increase in the head coef-
ficient. The reversed flow region results from a jet that forms in the
tip clearance region of the pump. In addition, the presence of the
backflow jet causes an acceleration of the fluid at the inner radii due
to the reduction in through flow area and the source-like character of

the tip clearance flow, The above axial velocity profiles were obtained

et B e ¢ e e

with IMP6 operating at 4000 RPM. The axial velocity profiles at 6000 RPM
are identical to those at 4000 RPM,

In Fig. 3.3,the radial distribution of the axial velocity 1.0 radii
upstream of IMP6 is presented. It is apparent from the comparison
between Figs. 3.2 and 3.3 that upstream penetration of the backflow jet
depends strongly upon the head coefficient. The strength of the backflow
ot tip clearance jet is therefore determined Ly the head rise across the

impeller as indicated in these figures,

3.3.3 Swirl Velocity Profiles

The swirl velocity profiles 0.5 and 1.0 radii upstream of IMP6
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are given in Figs. 3.4 and 3.5. Non-zero swirl velocities only occur for
-those head coefficients associated with reversed flow in the axial velocity
profile. It follows that the prerotation of the inlet flow is induced by the
"highly rotational fluid of the tip clearance jet. It is interesting to note
that the swirl velocities are not, however, confined to the region of re-
versed flow. As with the axial velocity profiles, the swirl velocity pro-

files obtained at 6000 RPM are identical to those obtained at 4000 RPM.

The strength or intensity of the swirl velocity distribution is
also directly associated with the head coefficient. In addition, the
intensity of the swirl velocity is a function of axial position. The
intensity of the swirl distribution as well as the extent of the reversed
flow region decays axially upstream. A series of flow angle measure-
ments at a cavitation number of 0. 10 indicates that fhe éwirl velocity
profiles do not vary greatly with the cavitation number. This set of
measurements also suggests that the axial velocity profiles are not

affected by the increased amounts of cavitation in the backflow jet.

3.3.4 Discussion of Inlet Velocity Profiles

Similar inlet axial and swirl velocity profiles have been found
for the Mark 10 liquid oxygen inducer [46,47]. Clearly, the inlet axial
and swirl velocity profiles are a complicated function of the head
coefficient, Hence, it is not surprising that the analytical performance
prediction in Fig. 3.1 [9 ], which did not account for prerotation of
the inlet flow, is more accurate at the higher flow coefficients,

The actual mechanism by which the inlet velocity distributions
are developed is not yet fully understood. A large three dimensional
structure (i.e. shed vortices ) or time dependence (i.e. turbulentmixing)
in the flow may contribute significantly to the generation of this flow

patterh. However, these effects have been suppressed by the smoothing
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" of the measurement process. Therefore, a certain amount of caution
must be exercised when interpreting or formulating a model based

upon these inlet velocity profiles,

3.4 Cavitating Pump Performance

_ Thev head coefficient variation with cavitation number for specific
ﬂow»coe‘fficients is given in Figs. 3.6 and 3.7 for IMP4 and IMP6, re-
spectively. The letters on these figures indicate the mean operatﬁng
conditions at which transfer functions of these inducers were obtained.
These steady state cavitation performance curves are reasonably
typical of all inducers. The large fall off in the head coefficient at
low cavitation numbers indicates that the impeller is approaching a
choked condition due to the presence of cavitation. -

In order to describe the various forms and amounts of cavitation
that occur within IMP6, photographs of IMP6 at several caﬁtatiqn
numbers are presented in Figs. 3.8-3,10. These photographs were.
téken at a flow coefficient of 0.070. At high cavitation numbers,
’cavitation occurs only at the center of the trailing vortex shed from
the leading edge of the inducer at the blade tip. As the cavitation
number is reduced, cavitation becomes more extensive within the core
of the shed vortex and also begins to occur in the remainder of the
backflow. Continued reduction of the cavitation number causes the
length of the now cavitating backflow to increase along the blade tip.

At some cavitation number, an attached blade cavity develops at the
leading edge of the inducer. Initially, the attached blade cavity forms
near the blade tip. This cavity expands both radially and axially with

a further decrease in the cavitation number. When choking occurs,
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the cavitating tip clearance flow essentially disappears because of the
~ reduced head production. It is important to notice that,for the most
part, the cavitation occurs in the immediate neighborhood of the
entrance to the inducer.

In a range of cavitation numbers just above head breakdown,
the cavitation pattern becomes unsteady. This unsteadiness is ac-
companied by large amplitude oscillations in both the pressure and

velocity fields. This is the phenomenon of auto—oscillation.'

3.5 Initial Observations of Auto-Oscillation

Auto-oscillation is characterized by large amplitude fluctuations
in both the inlet and discharge pressures and mass flow rates. These
oscillations occurred in a range of cavitation numbers just above head
breakdown as indicated by the stars in Fig. 3.6 for IMP4. This agrees
with the observations reported in Refs. [2,6,8,21,34,40,56].

At 9000 RPMV, the auto-oscillation frequencies ranged between 28 and
- 35 Hz. Assuming the frequencies scale with the tip speed of the
impeller, UT’ the corresponding non-dimensional frequencies are
0.293 and 0.. 367 respectively (see Eq. 5.2.1).

As the region of auto-oscillation is approached, the cavity
length to chord ratio approaches unity. It was observed that under
these conditions the length of the cavitating backflow began to fluctuate
randomly. The amplitude of these excursions from the mean cavity
length increased as the cavity length to chord ratio neared unity, A

similar behavior has been reported in Ref. [6] for attached blade
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cavities. Since the backflow cavitation obscured the attached blade
cavities, such observations were not possible in this study. However,
Etter [21] has observed that the "tip cavities tended to collapse at the
same point as the base cavities'. Once auto-oscillation occurs, the
variations in the length of the backflow cavitation are no longer random

: -butv'period‘ic at the auto—oscil].ation frequency. During auto-oscillation,
the cavitation on all blades oscillates in unison. The unsteadiness in
the cavitation pattern leads to perturbations in the pressure and velocity
fields. The low amplitude perturbations in the velocity and‘ pressure
fields have a very broad spectrum. Itisthesefluctuations thateventually
receive or accept energy from the inducer and grow to manifesﬁ the
phenomenon of auto-oscillation.

As the cavitating backflow is increasing in length and just before
the onset of auto-oscillation, the cavitating backflow collapses back
towards the inlet plane of the pump. This reduced penetration into the
inlet flow field suggests that a redistributi-on‘of the velocity field |
occurs at these operating conditions.

Measurements made on the 9°-he1ica1 inducer, IMPS, presented
in Fig. 3.1 indicate that the frequency of the auto-oscillation is a
function of both cavitation number and flow coefficient, 'I‘hé amplitude
of the oscillations is also a function of the mean flow rate. Both Sack
and Nottage [4D] and Miller and Gross [38] have also observed an
amplitude dependence on flow coefficient, They found that the ampli-

tude increased with a decrease in flow coefficient.

3.6 Implications of Initial Auto-Oscillation Observations

The fact that large amplitude pressure and mass flow rate
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ﬂﬁétﬁatioﬁs were observed throughout the pump loop implies that the

| s‘ystem participates in the instability. It is thought [4] that the
system determines the frequency of the resulting instability and has

a direct influence on the amplitudes as well. If this is so, then com;
‘bining the dynamics of the system with that of the cavitating inducer -
should yield predictions of the onset and frequency of auto-oscillation.
The rhodeling procedure suggested above is carried out in the next

chapter.
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Fig. 3.1 Non-cavitating performance of Impeller 4 and Impeller 6.
Also shown are full scale test data for these impellers and
a theoretical prediction of their performance (Brennen [9]).
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Fig. 3.11 Auto-oscillation measurements associated with Impeller 5.
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IV. THE STABILITY OF HYDRAULIC SYSTEMS

4,1 Introduction

In this chapter, a linear stability analysis is developed for the
purpose of predicting the onset of auto-oscillation. The analysis is
based upon the observation that auto-oscillation is a function of thé
entire hydraulic system., As a result, the dynamic characteristics of
each component of the system have been integrated into the sfabiiity
analysis. The model of the DPTF used in the analysis cons.ists of four
elements. Referring to Fig.4.1, these four elements are the inlet
line, the discharge line, the inducer-volute combination and‘the air
bladder. The linear dynamic behavior of each of these circuit elements
is discussed in the following sections. It must be noted, however, that
the DPTF does exhibit some nonlinear behavior during auto-oscillation.

This is discussed further in Chapter 5.

4.2 Pump Dynamics

- 4,2.1 Introduction

The dynamic behavior of a cavitating inducer can be represented
in terms of a transfer function. The transfer function representation
is only valid for linear perturbations. Ng [41] demonstrated that IMP4
acts dynamically as a linear device up to af least a 3% oscillation in the
fluctuating upstream mass flow rate. The assumption of linearity is

therefore not a serious limitation,

4,2.2 Transfer Function

A transfer function relates a vector of fluctuating quantities

that describe the discharge flow field to a vector which describes the
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- fluctuating quantities that characterize the inlet flow field. The inlet

| vector also contains information concerning fluctuations in other system
_ parar;qeters, such as the pump rotational speed. The exact form or
dimensions that the pump transfer function assumes depends upon the

physical situation being modeled. The general representation of the

transfer function of a cavitating inducer is

fy} = [¥] {x) (4.2

where
{y}l is the n-dimensional output vector
{x} is the m-dimensional input vector
[Y] is the nXxm transfer matriv
As a result of the large inertia of the drive system, the fluctuations
in the rotational speed of the pump were less than 1% at all operating
conditions during this investigation and that of Ref.[41]. Brennen and
Acosta [15] have shown that if the fractional speed variatiop is small
compared to the percentage fluctuation in the cavitation number (i.e.
'ET/pUZTU) then the fractional speed variation has a negligible effect on
the transfer function. As a result of the deaeration of the water, the
effects or complications of two phase or two component flow can be
eliminated from the transfer function. In addition, as long as the flow
remains isentropic, thermal effects represented by a fluctuating entropy
field are not required for a complete definition of the dynamic behavior
of the inducer.
The transfer function of a cavitating inducer satisfying the above
assumptions relates the non-dimensional pressure and mass flow rate

fluctuations at discharge, ?’2 and i‘vnz » to those guantities at inlet,
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'131 and fﬁl . Such a transfer function is expressed by

5, | Y11 Y| | Py
_ (4.2.2)
m,l Y1 Y |™

or equivalently

B 1

where
p=€+ Real{EeJQt}
m=M + Real {?neJQtj

The pressures and mass flow rates have been non-dimensionalized by

: %pUi, and pA U'I‘ , respectively,

I

The experimental techniques and data reduction procedures re-
quired to obtain the transfer functions are described in detail in Ref, [41]
and will not be repeated here.

At high cavitation numbers, the fluctuating pressure difference
would notbe expected to depend upon the inlet pressure. Hence, it is
expected that Z,,=0 at high cavitation numbers. This is confirmed
by a quasi-static assumption in which the pump is assumed to traverse

its steady state performance curves. The slope of the head coefficient —

cavitation number curves, Figs. 3.6 and 3.7, at high cavitation numbers
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is zero. Also, if the compliance of the structure and the compressibility

21 and ZZZ’

should vanish at high cavitation numbers. The quasi-static approxima-

of the water is neglected, the two compliance terms, Z

tion applied to the head coefficient-flow coefficient curve provides an
estimate of the pump resistance or real part of Z12 . The value for
IMP4 at a flow coefficient of 0,070 is 16 according to Fig.3, 1.

The transfer function of IMP4 operating ata cavitation number of 0. 51
and flow coefficient of 0,070 is presented in Fig.4.2. As expected,
Zyy1» 25y and Z,, all vanish; and the real part of Z,, does appear
to approach the steady state value of 16, However, it is apparent that
the quasi-static argument is valid only for very small frequencies.
Just how the dynamics of IMP4 are modified as the cavitation number
is reduced is answered in Fig.4.3. In creating this figure, the indivi-

dual transfer functions were fitted to a power series in jQ, i.e.

NT
Zy; = ; qijk(jQ)k ) | (4.2.3)

k=1
It is the fitted transfer functions with NT =3 that are plotted in this
figure, These transfer functions were obtained at the flow coefficient
of 0.070 and at various cavitation numbers. Several trends in the data
due to a reduction in cavitation number or equivalently an increase in
the volume of cavitation present are immediately apparent. The dynamic
pressure gain increases more or less monotonically from zero. It is
not, however, purely real. A phase shift is definitely indicated by the
data. The compliance terms also tend to increase from zero reflecting

the increased amounts of cavitation present within the inducer. The
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pump impedance, Z,,, is a particularly complicated function of fre-
quency and cavitation number. A decrease in the resistive or real part
at the higher frequencies with a decrease in cavitation number is the
predominant effect. Similar trends occur for IMP6 as indicated in
Fig.4;4. The transfer functions in this figure have also been fitted
accbrding to Eq (4. 2.3).

To assess the resulting impact on the overall dynamics of the
distinct changes with cavitation number is not trivial, several approaches
ﬁ:ight be taken. One approach consists of inverse transforfning the
transfer functions into the time domain and computing the time history
of the discharge pressure and mass flow rate for various‘ input
wave forms., There are difficulties with such a procedure.

This method would also be quite time consuming and the resulting time
histories would be difficult to assess. An alternate approach consists of
borrowing ideas from electrical network theory. Network theory pro-
vides a means of classifying the overall dynamic characteristics of the
system according to the relationships between the elements of its
transfer function. This second approach is the one undertaken in this
investigation, The results of this analysis are presented in the next

two sections.

4,2.3 Classgification of Linear Systems

Electrical networks, like pumps, are characterized by
transfer functions., The transfer function of any four-terminal network

is represented by



= (4.2.4)

where

ey and e, are the input and output voltages
‘and

il and iz the corresponding currents.

The networks are then classified according to the relationships between
the four elements of the transfer function,

Symmetric networks are characterized by only two parameters
[17,24,28,54], All symmetric networks satisfy the following two condi-

tions,
a=d - | (4.2.5)
determinant = ad - bec = 1 (4.2.6)

By relaxing the first condition, the definition of a reciprocal network
is obtained. Four terminal networks containing only resistance, induct-
ance and capacitance elements are reciprocal [24,54], Those networks

which do not satisfy Eq.(4.2.6) are considered non-reciprocal.

The above conditions are valid for discrete, lumped parameter
networks. Such systems have an infinite wave propagation speed. How-
ever, if a system contains distributed parameters (i.e. finite wave
propagation speed), the reciprocity condition is modified. The modulus

of the determinant of a distributed parameter reciprocal system is
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unity [ 11]. A1l fluid systems contain distributed properties and hence

must satisfy Eq. (4.2.7) in order to be reciprocal, i.«.
|determinant| = |ad - be| =1 . (4.2.7)

The flow of a compressible fluid in a rigid, constant area duct with or
without frictional resistance illustrates the above statements. This
particular flow is known to be reciprocal. The tra,néfer function .ap-
propriate to this flow, without going into details, is given in the follow-

ihg set of relations.

Y =e"j®”<cos ®+4sin ®>

11 n

Y, ,= :Jzﬁe'i'@”sinca
i

(4.2.8)

2
oo (M =N\
YZl"-J( e sin @

Y, e-J@n<cos ®- J’ﬁ sin @)
where
w = frequency
s = sonic velocity
L = length of duct
WO = average axial velocity
N =
0
wl
0 = S
Yo
o
®=>
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The determinant of this t{ransfer function is

S=det{Y}=e 2% (4.2.9)

Clearly, the modulus of the determinant is unity.

The determinants of the fitted transfer functions of IMP4 and
1MP6 found in Figs. 4. 3 and 4.4 are presented in Figs. 4.5 and 4.6.
At high cavitation numbers, the modulus of these determinanfs is es-
sentially unity. The discrepancy for the IMP4 transfer functions is due
to experimental error, However, as the cavitation number is reduced,
the modulus of the determinant differs increasingly from unity. This
indicates that a cavitating inducer is not a reciprocal device. In ad-
dition, it demonstrates that models of the dynamic behavior of a cavitat-
ing inducer baséd upon combinations of resistance, inertance and com-
pliance elements will be in error.

Electrical networks are further classified as to whetherl they

are passive or active. A network is considered active if there is a

possible state in which a net amount of energy is delivered by the net-
work [19,28]. The network is passive if it is not active. Unfortunately,
a direct connection between the concepts of reciproéal and active does not
exist., Generally, reciprocal systems are passive and non-reciprocal
systems are active, In order to examine the situation rﬁore closely,

an energy balance must be performed in order to determine whether

a system is passive or not. In the context of a hydraulic system element
(such as a cavitating inducer), the physical interpretation or meaning of
the above network definition is unclear. Therefore, instead of listing

the criteria developed for electrical networks, the appropriate criteria

for a hydraulic system element will be derived in the next section.
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4,2.4 Energy Considerations
The difference in the flux of energy into and out of the hydraulic

system element indicates whether or not it can provide the energy needed

to sustain an instability. The flux of energy of an incompressible fluid

is defined by
' %®/ % A
Aw ( +%pw 2  (4.2.10)

"

E = energy flux

ES sk
m =pAw =mass flow rate

% * *
h =p +—;~pw Z=1:of:al head .

Converting to the non-dimensional variables, the energy flux is now

defined by
€= E3 =mh (4.2.11)
3PAUL
where
bd
m = -
pAUT
s
P._.._B.___
1 ..2 *
2PVt

The total head and mass flow rates can be separated into a mean
or steady components, H and I, and fluctuating components, h and

~

m , according to
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h=H +Real {T{eJm}
(4.2,12)
m=Mh+ I?»ea,l{r'x\{eJQJL

Equations (4.2.11) and (4. 2. 12) yield an energy flux difference as follows:

AL = mzhz- l’nlh1

- 5 Lot
..mZHZ m1H1+mzRea1{h2e j
~ jot) ~ ot
+HZRea1{m2e } mlReal{hle i (4.2.13)
jot

-HlReal{ﬁi e }+ Real bt pZJQt}

m,K e
1, fro o Zth}_ _1_[
- ZRe{mlhle Fal™;

It is important to realize that only those terms in Eq. (4.2.13) which

ptmyhy-mh, - mlhl:‘

::*z
:r:
le

contribute to a net change in energy over one cycle of the oscillation can
provide the energy needed to sustain the auto-oscillation. Hence, a
hydraulic system element will be defined as active if the following

quantity, Aeosc , is positive for some combination of the fluctuating

total heads and mass flow rates.

2
=2

AN

B +m.m R.o-m
osc .

phptmyh,-m hy 11]' (4.2.14)

e

The total head and mass flow rate fluctuations at discharge are
related to those quantities at inlet by the pump transfer function. Sub-

stituting from Eq. (4.2.2) yields the following result

1 ~ 12 ~ 12 = o~ _
A€ =Z|G|hl! +aalm1|+ZRea1{(c-1)h1mlﬂ (4.2.15)
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vy'vvvhere
G=Y,Y,,+Y,Y,

B=Y1,Y55tY12Y5,

C=Y))Y,,+Y,7,,;

The form of C in Eq.(4.2.15) is suggestive of the determinant, 8 , of
-the transfer function. After some algebraic manipulations, the following

identity is obtained.

lc]?= |s]|%+as | (4.2.16)
where
S=det{Y} .
An alternate form of Eq. (4.2.15) is

, , ,
l~~C-12 ~2(Iﬁ(3-1] ,
e, =] W+, Eayr 1, | el ez
According to the definition given above, a hydraulic system element and
in particular a cavitating inducer is an active device if the het energy
flux, Aeosc , is a positive quantity for at least one possible combination

of ’1:1'1 and ﬁil . The necessary conditions for an inducer to be an ab-

solutely or completely passive device are, from Eq.(4.2.17),

G=<0 (4.2.18)
and

lc-1]%-grs<o . (4.2.19)
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The second condition, Eq. (4.2.19), upon substitution of Eq. (4.2.16)

" becomes
2
Real {C} = l_ifz.lﬂ . (4.2.20)

Equation (4.2.19) also indicates that 8 must be less than zero fof this
‘condition to beisatisiﬁe‘d. If either of the above conditions is not
‘satisfied, then the inducer is an active device.

A set of sufficient conditions which determine whether the in-
ducer is active at a particular operating condition can also Be derived.
If the dynamics of the cavitating inducer cause any or all of the following
relations to be satisfied or Eqs. (4.2.18)-(4.2.20) fail to be‘ savtisfied,

then the inducer is active.

B>0
and ~ .
h m ,
\a@]zlg_ll.‘_ll 4 lgl | (4.2.21)
|1 | |51 . |

It is interesting to determine under what conditions an inducer is
dynamically active during non-cavitating operation. At high cavitation

numbers, Yll = Yzz =1 and Y21 = 0. Substituting, it is found that

G=0 (4.2.22)
C=1
8 =1

B=2Reall¥,])=-28,

where

Rp = pump resistance



_49 -

: Cleérly, as long as the pump resistance is positive, the inducer remains
'a passive device. However, should the pump resistance become negative,
the inducer is then an active device. A negative pump resistance

can occur if the head coefficient — flow coefficient characteristic
‘has a pésitive slope. A negative pump resistance may also be-achiieved
dynamically. For IMP4, this occurs only at low cavitation numbers

(see Fig. 4.3).

‘ The parameters G, 8, 9 and |C-1 |?-G8 have been calculated

for all of the IMP4 and IMP6 tfansfer functions. It turned out that G

was invariably negative. # was negative for all IMP6 transfer functions.
Inthe lower cavitation number IMP4 transfer functions(i. e. 0=0.040, 0.024),
" did become positive at the higher frequencies. However, the para-
meter |C-1 |?-GB appeared to be the most sensitive criterion for the
acfive -passive distinction. This parameter has been plotted in Figs. 4.7
and 4. 8 for IMP4 and IMP6 respectively. According to Eq. (4.2.19),
IMP4 is an active device. IMP6 is similarly .an active device, Iﬁarti‘cularly

at low cavitation numbers and high frequencies. A compariéon between

- Figs. 4.7 and 4. 8 indicates that IMP6 is not as active a device as is IMP4,

4.3 Linear Stability Analysis

4.3.1 Introduction

The existence of instabilities within a hydraulic system containing
a dynamically active cavitating inducer is not surprising. The dynamic
characteristics of the remaining components of the system need to be

specified before beginning the stability analysis.
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4.3.2 Dyriamic Model of Inlet and Discharge Lines

The inlet and discharge sections of the DPTF defined in Fig. 4.1
will be fnodeled dynamically by transfer functions. The assumptions
outlined in Section 4.2.2 concerning the inducer apply for these com-
ponents as well. In addition, it shall be assumed that compliance

: effécts'aré negligible. This condition is perhaps too restrictive; but

it is forced upon the analysis by experimental difficulties in measuring
moré than one mass flow rate. Even so, the compliance terms, Y21
'and Yzz, are not expected to contribute significantly to thé dynamics.
The above restrictions concerning the dynamic behavior of the inlet

and discharge lines reduce the model of these components t6 irhpedances,
IU and ID respectively. The trans‘fer function under the above assump-

tions takes the following form

i

[Y] (4.3.1)

where

I = Impedance of line element

The in’xpedances,lU and ID’ have also been assumed inde'pendent of the

mean pressure level occurring within the corresponding line eiement.

The impedances are, however, both complex and functions of frequency.
These system impedances have been experimentally measured.

The details of the experimental techniques are provicied in Appendix B.

The resulting system impedances are presented in Figs. B.1—-B.4.

It should be noted that the deterrninant of the transfer functions of

these system components is identically unity. In addition, according

to the criteria expressed in Eq. (4.2.15), these components dissipate
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‘energy. Hence, the inlet and discharge lines are passive systems.

4.3.3 Dynamic Model of Air Bladder

The air bladder will be modeled solely as a compliant element.

The transfer function of a simple compliant element has the following

1 0 o
[Y] = [ ] ; (4.3.2)
-0C 1 |

form

where

C = compliance of air bladder.

Again, the determinant of the transfer function of a ’simple éonﬁpliant
element is identically unity. In addifion, according to Eq. (4.2.15), a
simple compliant element does not supply or extract energy from the
oscillations (i.e. A€,5.=0). Hence, the air bladder is also a passive
element. |

This completes the characterization Eﬁ' the dynami,c_behaviof of

each component comprising the DPTF,

4.3.4 Derivationef Stability Criteria

The final model of the DPTF dynamics is illustrated in Fig. 4.9.
One way to evaluate the overall stability of the system is to '"open' the
system at some point. Since the final conclusions do not depend upon
the actual location of this break-point, the circuit will be ''opened'' at
the point labeled by the X in Fig. 4.9. By combining the transfer
matrices of each system component appropriately, the transfer function

of the entire open system, [S], is obtained. The elements of [S]are:
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Spp= 1+ le'jﬂc( 12 Ig(l + Z11)>
Up
512= =3 (le-(IUHD)(l +le) +JQC(IDZ12'IUID(1 +le))

5,17 “U’” ( -JC (142,,- 1U221)> (4.3.3)

S, 1+ Zps" (IU+ID) Z21+jQC(ID(1 +ZZZ) -IU_IDZ21 ) .

The difference between the flux of energy leaving and entering
the system provides a measure of the stability of the entire. system.
When averaged over one cycle of the oscillations, an excess of energy
in the flow leaving the system would help to sustain an auto-yos cillation.
If a deficit in the discharge flow energy occurs, the system would be
unquestionably stable. The ideal neutral stability point is given by a
perfect balance in the net energy flux.

Proceeding as before, the net differences between the non-

dimensional energy flux into and out of the system is given in Eq. (4.3.4)

A& Z{ml 1 ﬁw H

gn

h mzhz} (4.3.4)

where subscripts 1 and 2 refer to the input and output variables at
the break point, respectively. The discharge total head and mass flow
rate fluctuations, 'ﬁz and 512, are related to the same quantities at

inlet, Tll and 1“1'11, by the system transfer function, [S]. Substituting

for TIZ and f{lz and equating the inlet and discharge mass flow rates

~

(m, = ﬁ"ll), results in the following expression for the net difference

in energy fluxes.
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se =11l Real (F(E) g (9) (4.3.5)
08C 2 s
where
S
21
3 (S) =
1-5,,
and ‘
oy L T 522 7511 +511552 75128,
Q’(S) - ) 1 - SZZ

‘Using the relations in Eq. (4.3.3), &(S) and G(S) become

U (221 +HC(1;2,, - 1"‘Zzz))
TI 251 - Zpp TRICUGZ,, T-2Z

22)  (4.3.8)

and

@S) =2y 25, - 21,25 +(Iytlp) Z,

+JQC(Z12 + IUID Z21 - IU(1 +le) - ID('”ZZZ))
(IU+1D) 221 - 222 + 0C (IUZ21 -1 -2

22)

It is known and shall be assumed that the compliance of the air bladder,

C, is large. More specifically, it shall be assumed that

c >> Izijl ; 1,j=1,2

and _ - (4.3.7)
c>> 1|+ |1, ]

The validity of this assumption is discussed in Appendix G. For large
C, #(8) and G (S) reduce to

F(S) ~ %  (4.3.8)



-54 -

and
- 2y Iyl Zyy +I4(142)) +IL(1+2,,)
G(5)~ T+2,, 1.2

22 U~21

The stability criterion is then given by

~ 2 '

) 11‘_ IU(1+ZH)+ID(1+ZZZ)-le- IylpZy,y
Aeosc = =7 Real
14252 - 12y
(4.3.9)
If AE c‘ssc>0 , energyis extracted from or dissipated inthe system; and the

systemis stable. If Aeos <0, thenanenergysource (i.e. the inducer)

c
exists within the system. The system must be considered unstable for
this condition.

A look at the detailed structure of the stability criterion provides
valuable insight. At high cavitation numbers, Z“, Z21 and Z22 vanish.
Stability is then determined by the sign of the quantity

Rea1{1U+1D - 212} | (4.3.10)

' The quantity Real {- le} is the pump resistance. The quantity given
in Eq. (4.3.10) therefore represents the total resistance of the system.
If this is positive, the system will be stable. This is simply a require-
ment that the damping be non-negative for stability. This mechanism
has been known to cause or identified as the cause of surging associated
with axial flow compressors [18,26,27,44]. In addition, Stepanoff [51]
indicates that unstable behavior of a pump can be associated with
negative steady state pump resistances.

As the cavitation number is reduced, the compliance and dynamic

pressure gainterms beginto influence the stability of the system.
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The criterionexpressedin Egq. (4.3.10) has wide application.
It turns out [30] that in boiling two phase flows a hydrodynamic
instability is generated due to buoyancy effects. The instability is
characterized by oscillations within the flow. The condition for
instability is that the slope of the hydrostatic head-flow rate curve
becomes negative. This is equivalent to Eq. (4.3.10).

From the form of Eq. (4.3.9) it is evident that the stability of
‘a hydraulic system depends upon the entire system and not just one
component. It should be possible to suppress a system instability by
an appropriate redesign or redistribution of the system impedénces
and/or compliances. This is in fact the method by which Rocketdyne
[20,39 ] has attempted to suppress the oscillations within the feedlines
to the Space Shuttle Main Engine. It is also clear that, given a hydraulic
system whose resistance is positive, only the inducer itself has the

capability of driving or exciting a system instability.

4.3.5 Stability Criterion Applied tothe DPTF

The net difference in the energy flux into and out of the DPTF
has been calculated using Eq. (4.3.9) for each experimentally obtained
transfer function and all combinations of the inlet and discharge system
impedances. These results cannot be used directly. During each
transfer function test, the inducer operates into a system whose total

steady state resistance is given by

Resys =-2%’- . (4.3.11)

An interpolation procedure is necessary to match the system impedance

combinations to the transfer function of the inducer. Otherwise, an
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energy source or sink is arbitrarily being inserted into the system.

The variation in the stability of the system resulting from a
redistribution of the system impedances, IU and ID’ is demopstrated
in Fig. 4.10. The transfer function of IMP4 operating at ©®=0.070 and
0 =0.040 was used to create Fig. 4.10. Eachcurveinthisfigure represents
‘a different combination of the inlet and discharge system impedances.
The fact that each of these curves is different reconfirms that auto-
oscillation is a function of the entire hydraulic system. The trends
indicated in this figure are typical of both IMP4 and IMP6 operating
at all cavitation numbers. It can also be concluded that the system
is least stable at the higher frequencies for this particular cavitation
number.

Selecting one combination of matched system impedances, the
effects of the increased active character of the inducer with a reduction
in cavitation number are illustrated in Fig. 4.11 for IMP4 operating
at 9000 RPM. Several conclusions can be drawn from this figufe. The
hydraulic system, or more accurately the model of the DP.TF, becomes
more and more unstable as the cavitation number is decreased. This
feature is entirely consistent with the discussion concerning the increased
activity of the inducer., It should also be noted that the predicted
frequency of minimum stability agrees with the observed range of auto-
oscillation frequencies of 28-35 Hz. The frequency of minimum instabil-
ity is predicted to decrease monotonically with cavitation number.
Although data have not yet been presented to substantiate this result,
auto-oscillation frequency data will be presented in the next chapter
which will confirm this prediction. Finally, there appears to be a

trend towards increased stability at low frequencies. In addition,
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_the. cavitation numbers for which auto-oscillation is predicted to occur
~agree with the experimental cbservations presented in Fig. 3.6,
Several transfer functions of IMP4 were obtained at 12000 RPM.

The stability plot for these transfer functions appears in Fig. 4.12.
These curves are not unlike those of the 9000 RPM transfer functions
(Fig. 4.11). The non-dimensional frequency of minimum stab'ility;
'rexﬁains uhchanged. Again, frequency shift with cavitation number
is observed. Similar results for IMP6é have been obtained and are
prese.nted in Fig. 4.13. The enhanced stability of IMP6 compared to

IMP4 corresponds to the less active character of IMP6.

The decreased stability of the DPTF is a direct resﬁlt of the
increased activity or changes in the dynamic characteristics of the
inducer caused by cavitation, It has not yet been determined which of
the elements of the transfer function have the gfeatest effect on the

stability of the system. This question is addressed in Section 4.3. 6.

4.3.6 Seﬁsitivity of the Stability Criterion to the Elements of the [ Z] Matrix

-Othe,r than the results of [10,11,16,22,41,43], little is
quantitatively known about the actual dynamics (i.e. transfer functions)
of the turbomachines. Hence, knowledge of the senéitivity of the DPTF
to the various dynamic parameters of the transfer function of the inducer
is of interest., This sensitivity check was accomplishedby creating a
hypothetical transfer function by combining elements from a non-cavitating
(0 = 0.508) and a cavitating (o = 0.024) transfer function of IMP4.
The stability of the systern to all possible permutations of the elements
of these two transfer functions was determined by use of equation (4.3.9)

for one combination of system impedances. The results of these
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calculations are presented in Figs. 4.14. Also included in that figure
- are the results of a similar set of calculations in which the sensitivity
to the phase of each element of the transfer function was investigated.
In this second set of calculations, the transfer function was assumed to

take the following form:

1z, |z,

(4.3.12)
iz, | -ilz,, |

In each of the four graphs in Fig. 4. 14, the net difference in
the energy flux into and out of the system for both the non-cavitating and
the cavitating transfer function alone are plotted. The other two curves
correspond to the effects on the stability of the DPTF caused by cavita-
tion induced dynamics of that particular element of the transfer function.
Consider the two graphs on the left hand side of Fig. 4.14. Neither
the dynamic pressure gain nor the compliance terms appreciabi-y affect
the stability of the DPTF. The impedance of the inducer, however,
does measureably affect the stability of the system. The reduction in
the pump resisténce and changes in the inertance of the pump at low
cavitation numbers adversely affect the stability of the system. The
stability of the DPTF is most sensitive, however, to the mass flow
gain factor, ZZZ’ as indicated in the lower right hand graph in
Fig. 4.14. In all of these four graphs, the phase shifts found in the
experimental transfer functions are a destabilizing feature of the pump
dynamics.

It is apparent from the above results that an accurate estimate

not only of the amplitude but of the phase of the pump impedance and
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‘mass flow gain factor is necessary to adequately model the dynamics

of a cavitating inducer.

- 4.3.7 Discussion of Linear Stability Analysis

The above linear stability analysis is seen to be remarkably
successful. The analysis correctly predicts both the cavitatioh nuﬁbers
for-whi(:h fhe system is unstéble and the correct frequency range of
auto-oscillation. In addition, the stability analysis suggests é. decrease
in the auto-oscillation frequency with cavitation number. T_his vfeature,
as well, will be confirmed in the next chapter. Unfortunately, the
variations with flow coefficient could not be investigated because of
difficulty in obtaining transfer functions at other flow coefficients.

Of greater importance, however, is the idea that auto-oscillation
is a function of the entire hydréﬂic system, As a consequerice, fhe
stability of the system can be altered by appropriately redesigning the
system. Alternately, the stability of the system can be improvéd by
changing the mean operating state of the indu'cer. | In order to reduce
the capabiiity of the inducer to supply energy to the flow, it is necessary
to increase the cavitation number. The fact that the activity cén be
attributed to the presence of cavitation within the inducer strongly
suggests that other phase change processes must be similarly active.
Brennen [11] has demonstrated that phase change interfaces such as
those found in the pressure suppression systems of Boiling Water
Reactors (BWR) are active. The dynamics of these interfaces can
excite a system resonance [13]. Consequently, hydraulic systems

containing a phase change may exhibit similar instabilities.:
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Fig, 4.1 Schematic of the Dynamic Pump Test Facility indicating

the system components to be modeled for the linear stability
analysis,
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plotted against the non-dimensional frequency.
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Fig. 4.7 The activity parameters for Impeller 4 transfer functions.
Positive values of this parameter indicate that Impeller 4 is
an active device.
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stable operation of the system.
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V. DETAILED AUTO-OSCILLATION MEASUREMENTS

5.1 Introduction

IMP6 was used in an additional series of experiments to obtain
a more detailed and complete set of data on auto-oscillation. The
effects of variations in flow coefficient, cavitation number and imiucer
rotational SPeed were vinvesiv:i_gat,ed. The measurements consist of
frequencies, amplitudes and phase angle-s of several pressures and
mass flow rates around the system. The location of these measurements

has been described in Chapter 2.

5.2 Auto-Oscillation Frequency Data

The frequencies, w®w, of auto-oscillation will be presented in
terms of non-dimensional frequency, () . The non-dimensional

frequency is defined by Eq. (5.2.1).

N = i » : (5 L2 1)
where
¥ = blade tip spacing = 2rR/ number of blades

R = radius of the inducer.

The dominant frequencies in the pressure fluctuations at the
inlet to IMP6 are presented in Fig. 5.1. The 535 Hz frequency
at high cavitation numbers corresponds to the pressure fluctua-
tions at twice the blade passage frequency. At lower cavitationnumbers,
the blade passage frequency, w = 267 Hz, dominates the pressure
spectra. The amplitude of the blade passage frequencies decreases
axially away from the inducer. These pressure fluctuations appear

to be confined to the tip clearance flow. The 20 Hz frequency at still
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iower cavifation numbers indicates the region of auto-oscillation.
During auto-oscillation, the low frequency oscillations completely
| obscure the blade passage effects. This figure shows that the auto-
oscillation frequencies are much (i. e. in order of magnitude) smaller
than ;che blade passage frequencies. Hence, it is unlikely that these
internal hydrodynamic forci.zng frequencies are related to auto-oscillation.
The auto-oscillation frequency depends upon several parameters
as indicated in Fig. 5.2 for IMP6. The parameters of importance are
the mean flow rate through the pump, the cavitation number and the
tip speed of the inducer. The large variation with flow coefficient
suggests that the detailed structure of the inlet flow field is one of the
controlling features of the instability. Referring to Figs. 3.2 and 3.4,
a reduction in the auto-oscillation frequency is produced by an increase
in the strength of the backflow jet and prerotation of the inlet flow. A
section of honeycomb was inserted one diameter upstream of the in-
ducer in order to investigate this further. The effect of the honey-
comb was to '"straighten'' out the inlet flow by reducing the amount of
“backflow induced prerotation. This effect was particularly pronounced
at the lower flow cnefficients, This straightening of the inlet flow by
the honeycomb is documented in Figs. 5.3 and 5.4. From these
figures, it is apparent that the honeycomb produces a reduction in the
swirl velocity. Two experiments were then performed on IMP7. In
the first, the honeycomb was not inserted. Data on the auto-oscillation
occurring at a flow coefficient of ¢ = 0.067 were obtained. Subsequently,
the honeycomb section was installed; and data taken for the identical
mean flow conditions. As expected, Fig, 5.5 shows that straightening

the inlet flow resulted in higher auto-oscillation frequencies even
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though the flow coefficient was held fixed. The performance with the
honeycomb installed was thus equivalent to the performance at a
higher flow coefficient.

The auto-oscillation frequency is also a function of the cavita-
tion number. A decrease in the frequency occurs simultaneously with
a decrease in cavitatioﬁ number. This frequency reduction is
.physi?c_::ally related to the amount of cavitation occurring within the
“induc;er. Since the dynamic behavior of the inducer is determined by
the cavitation, this shift in the auto-oscillation frequency is direct
evidence of a change in the dynamic characteristics of the inducer.
These experimental measurements provide confirmation of the trend
for a frequency reduction with cavitation number that was predicted
by the results of the linear stability analysis in Section 4.3.5. The
identical trend has been reported in Refs. [5,38,40,56]. Acostaand
Wade [4] have also reported observing a decrease in frequency
corresponding to a decrease in cavitation number for cavitating'
hydrofoils iﬁ cascade.

Finally, the auto-oscillation frequency depends upon the tip
speed of the inducer, UT. In Fig. 5.2, data obtained at 4000 RPM
are given by the dashed curves. Since the curves for the flow coef-
ficient of 0.070 are very close, this indicates that Eq. 5.2.1 represents
the correct scaling relationship. This scaling relationship was further
investigated over a larger range of tip speeds. IMP7 was used for
this test, A cavitatlion number for which auto-oscillation occurred at
a flow coefficient of 0.055 was selected. The rotational speed, RPM
was then varied while maintaining the chosen tlow coefficient and

cavitation number. The results of this experiment are presented in
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| Flg 5.6. The results demonstrate that the scaling of the auto-oscillation
frequency with tip speed is correct.

The observed auto-oscillation frequencies for IMP4 were
generally smaller than the corresponding frequencies excited by IMP6 .
This difference can be attributed in part to changes in the system
parameters caused by.the system redesign. In addition, variations in

.the,per.formance between these inducers contribute to the abqvé

‘différences.

5.3 Amplitude Data

The pressure and mass flow rate fluctuations at high cavitation
numbers are random with a broad frequency spectrum and Havé small
amplitudes except in the neighborhood of the inducer, as iﬁdicated in
Fig. 5.1. These low level, random fluctuations do not become
organized into a single dominant frequency until the system becomes
unstable. The onsetvof auto-oscillation is quite dramatic, as indicated
in Fig. 5.7.. In that figure, the non-dimensibnalipressure and masé
flow rate ﬂuctuation amplitudes have been plotted against cavitation
number for a flow coefficient of 0.070. These data were obtained on
IMP6 at 6000 RPM. The amplitudes of the pressure ﬂuctﬁations have
been non-dimensionalized by p U:[‘?‘ and the mass flow rates by
p AIUT .

of the fluctuations are vanishingly small. At a cavitation number of

At cavitation numbers greater than 0.051, the amplitude

0.047, a large jump in amplitude occurs. The amplitude remains
high down to a cavitation number of 0.02 at which point the system
becomes stable once more. The region of auto-oscillation or system
instability is thus readily defined. In Fig. 5.8, amplitude data taken

at 4000 RPM on IMP6 for ® = 0.070 are presented. It is apparent
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"fhaft the non-dimensional amplitudes of the various quantities are
smaller that those of the 6000 RPM data. In addition, the onset
cavitation number 0. 039 is significantly less than 0.047 at 6000 RPM.
Thisnis evidence of a system effect. The dynamic characteristics of
the system do not scale with the tip speed of the inducer. Hence, -

‘such differences should be expected.

The regions of auto-oscillation at flow coefficients of 0.075,

'.O. 065 and 0.055 are given Figs. 5.9-5.11. These data were obtained at
6000 RPM. The general éharacteristics of auto-oscillation at these flow
coefficients are identical to those at ¢ = 0,070. In each of the>se figures,
the amplitude of the downstream pressure and mass flow rate fluctuations
are greater than those far upstream of the inducer. The amplitude of

the pressure fluctuations near the inlet plane of IMP6 are comparable

to the amplitude of the downstream pressure fluctuations. This
correspondence is to be expected. The pressure transducers near
the inlet plane are located in the housing of the inducer and are ;adesed

to the tip clearance flow. The tip clearance flow responds 4direct1y

- to the press’ure rise across the inducer blading as described in

Section 3.3. Hence, the pressure fluctuations meas“ured at the inlet
should resemble those downstream of the inducer. However, tvhis
explanation does not completely account for the large amplitude of the
pressure fluctuations at an axial location of 0.5 radii upstream of the
inlet plane of IMP6. Referring to Figs. 3.2 and 3. 4,' the axial and
swirl velocity profiles indicate that the steady state backflow jet does
not penetrate to this axial location for the flow coefficients of 0.070
and 0.075. The upstream mass flow rate oscillations during auto-

oscillation at these flow coefficients are not sufficiently great to reduce
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'fhe‘instantaneous flow coefficient to less than 0.067. At flow coefficients
" less than 0.067, a reversed flow region is observed 0.5 radii upstream
of IMP6. The above considerations strongly suggest that the dynamics
of the inlet flow field are an important and perhaps controlling factor in
auto-oséillation.

Replotting the auto-oscillation amplitudes of the downstream
pressure fluctuations against cavitation number for the four flow.
coefficients provides additional insight (Fig. 5.12). Clearly, the
range of cavitation numbers for which the system exhibits an auto-
oscillation varies with flow coefficient, It is interesting to note that
the auto-oscillation occurred over a wider range of cavitation numbers
at the design flow coefficient of 0.070, Also, the maximum amplitude
of auto-oscillation tends to increase with a decrease in flow coefficient.
This general trend was also observed at 4000 RPM on IMP6. This
trend for larger amplitudes at the lower flow rates has been mentioned
several times in the literature [21,34,38,49,50,56]. In addition, Acosta
and Wadé [4] have documented a similar behavior for cavitafing cascades
-of hydrofoils’. When the angle of attack is increased, the arnplitude of
the instability increases. An angle of attack increase is eqﬁivalent to
a decrease in the flow coefficient for an inducer and, in additioﬁ, results
in a larger cavity volume. The above variations with flow coefficient
are related to or result from the inlet velocity profiles and cavifation.
As indicated before, these two effects are coupled and directly influence

the dynamic characteristics of the inducer.

5.4 Phase Relationships

The relative phases of the dynamic measurements with respect
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’ ;fo i;he upsfream mass flow rate fluctuations follow trends similar to
those of the amplitude data. The relative phase angles corresponding
to the amplitude data presented in Figs, 5.7 and 5.9-5.11 appear in
Fig. 5.13. Again, the phase of the pressure fluctuations in the
neighborhood of the inlet plane of IMP6 is more closely related ’ﬁ‘o
the downstream pressure fluctuations than to the far upstream pressure
ﬂuétuations. . In Fig. 5.13, the relative phase angle of all quantities
‘is a continuous function of the cavitation number. This variation with
cavitation nurnber is another manifestation of the changes in the
dynamic characteristics of the inducer accruing from the existence
of cavitation within the inducer. In addition, a reasonably smooth
variation with flow coefficient is also evident.

The relative phase angle data also indicate that the dynamics

of the inlet flow field contribute significantly to auto-oscillation.

5.5 Indications of Nonlinear Effects
| The auto-oscillation measurements described above are not
sufficient to distinguish whether auto-oscillation is a nonlinear limit
cycle oscillation or the response of a very lightly damped linear system.
The large jump in the amplitude of the various field quantities as the
regicn of instability is entered is indicative of a jump resonance.
However, lightly damped linear systems exhibit a similar rapid increase
in amplification. In either case, the frequency reduction corresponding
to a decrease in cavitation number (Fig. 5.2) indicates that the DPTF
is a softening system. This softening could be attributed to the increasing
"compliance' in the pump.

A series of experiments with IMP8 provides further insight,
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Initially, this series of tests Was intended to complement the IMP6
auto-oscillation data. Both inducers perform in a similar manner
outside of the region of instability. Upon entering the large amplitude
auto«osgillation region, IMP8 suffers a large decrease in the head
coefficient. This loss in head production is indicated in Fig. 5. 14.
If the cavitation number is reduced still further, auto-oscillation
continues and follows trends identical to those of IMP6. However, to
'exit the region of auto-oscillation, it is necessary to increase the
cavitation number above the value at which the system origihally
became unstable. This hyéteretic behavior is characteristic of a
nonlinear system. It is curious that the steady state head rise pro-
duced during auto-oscillation is essentially the same for all flow
coefficients whose fully wetted head coefficients is greater than the
value during auto-oscillation.

This hysteretic behavior was not investigated on IMP6 simply
because IMP6 did not exhibit such a dramatic loss in the head coef-
ficient. The cbservation that the cavitating backflow collapéed back
" towards the inlet plane of IMP6 and extended further down the blade
passage is an indication that a small decrease in head production

occurred.
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Fig. 5.2 Non-dimensional auto-oscillation frequencies associated
with Impeller 6 at several flow coefficients and rotational
speeds are plotted against cavitation number.
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Fig. 5.5 Comparison between auto-oscillation frequencies associated

with Impellexr 7 operating at ¢ = 0.067 with and without the
inlet flow straightener. _



NON-DIMENSIONAL FREQUENCY

-87-

IMP7

¢ =0.055
0.8} -

0.5 [~ Wﬂ : —

0.4} —
0.2 —
- N
0 1 | 1 1 L d \
4000 5000 6000 7000 8000

ROTATIONAL SPEED (RPM)

Fig. 5.6 Scaling of the auto-oscillation frequency with rotational

speed of the inducer. Data were obtained with Impeller
7 at ¢©=0.055 and © = 0.020.
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Fig. 5.7 Non-dimensional amplitudes of the fluctuating pressures
and mass flow rates during auto-oscillation. These data
were taken with Impeller 6 at o = 0.070 and 6000 RPM. The
letters correspond to the instrumentation so indicated on
Fig. 2.3, ‘
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Fig. 5.8 Non-dimensional amplitudes of the fluctuating pressures

and mass flow rates during auto-oscillation. These data
were taken with Impeller 6 at ¢ = 0,070 and 4000 RPM. The
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Fig. 2.3. ‘
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Fig. 5.9 Non-dimensional amplitudes of the fluctuating pressures
and mass flow rates during auto-oscillation. These data
were taken with Impeller 6 at ¢ = 0.075 and 6000 RPM. The
letters correspond to the instrumentation so indicated in
Fig. 2.3.
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Fig. 5.10 Non-dimensional amplitudes of the fluctuating pressures

and mass flow rates during auto-oscillation. These data
were taken with Impeller 6 at ¢ = 0.065 and 6000 RPM. The
letters correspond to the instrumentation so indicated in
Fig., 2.3. ‘
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Fig. 5.11 Non-dimensional amplitudes of the fluctuating pressures and
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Fig. 2.3.
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Vi. MODELS OF INLET FLOW DYNAMICS

6.1 Introduction

Several models of the inlet flow were proposed to independently
investigate the dynamics of various features of this flow field. The
parameters deemed important in light of the previous discussions are
the“inertanvce of the fluid Witiain the system, the cavitation compliance
'(in the backflow jet and the distribution of the swirl velocity ahead of
the inducer. The complexity of the flow forced the models to be
1inear. Each of these models will be discussed in the remaining

sections of this chapter.

6.2 Inertance Model

The simplest or most basic model of an unsteady, incompres-
sible flow within a rigid pipe is the inertance model. This model
neglécts frictional effects and accounts solely for the pressure .
fluctuations resulting from the acceleration of the fluid within thé
pipe. The détails of this model are described in Appendix D.1. The

- result of the analysis, Eq.(D.1.6), is repeated here.

p(z) ::'f)oo -jQzGJVm . (6.2.1)

where

p=@ 4 1'; ejQ t
The far upstream pressure and velocity measurements, '1300 and GJVoo ,
were used as the reference quantities in this calculation. A typical
axial pressure distribution calculated from Eq. (6.2.1) is presented
in Figs. 6.1 and 6.2 . These particular results were based on

measurements of the upstream quantities Eoo and \hi’m taken during
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auto-oscillation at @ =0.070 and 0 = 0.044. The amplitudes and
phases of the pressure fluctuations near the inlet to IMP6 are indi-
cated on the figures, This model seems to predict the phase of the
pressure fluctuations relative to the upstream mass flow rate reason-

ably well. The predicted amplitudes, however, are approximately

~an order of magnitude too small,

6.3 Compliant Backflow Model

The basic inertance model can be extended to include or
simulate the effects of cavitation in the backflow jet. The cavitation
will be assumed to form a continuous vapor layer of thickness §(z,t)
about the circumference of the pipe. The length of this cavitating
region was selected arbitrarily but can be related to a particular flow
coefficient through the inlet velocity profiles in Chapter 3 or photo-
graphs of IMP6 during auto-oscillation. In addition, the cavitation
or vapor layer shall be assumed to act dynamically as a simple
compliance. The details of this analysis are described in Appendix
D.2. As in the inertance model, the far upstream velocity and pressure
fluctuation measurements were used as the reference quantities. A
typical axial distribution of the amplitude and phase of the pressure
fluctuations is presented in Figs., 6.1 and 6.2. These particular
results were based on measurements taken during auto-oscillation
at ® = 0.070 and 0 = 0,044, The length of the cavitating region was
arbitrarily selected to be 3.0 radii, Again, the amplitudes predicted
in the neighborhood of the inlet plane of IMP6 were an order of magni-
tude too small, In Fig. 6.2, the structure of the traveling waves

generated by the cavitation is evident,
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Clearly, the compressibility provided by the cavitation in the
| tip clearance jet does not adequately explain the experimental obser-

vations.

6.4 Swirling Inlet Flow Model

Thé previous tWo quels have neglected the known three
dimensional structure of the inlet flow field described in Chapter 3
and its effect upon the dynamics of this flow. Asindicatedin Chaﬁter 5,
the structure: of the inlet flow field does influence the re_sultying
auto-oscillation. For this reason, the structure of the steady flow
field was incorporated into this third model, which is developed in
Appendix E,

_In addition to the incompressible, inviscid and axi-symmetﬁc
assumptions, it was necessary to neglect the known axial variation
of the velocity field. The assumed steady velocities were thérefore
solely a function of the radial coordinate and were assumed to have

the following form.

U{x) = U(r)/Wo =0

V(r) = V(z)/ W, = N£* : | (6.4.1)
b(x) = W(r)/W, = 1+KeS
where

(U, ¥, ) is the non-dimensional velocity vector

corresponding to (r, 8, z).

The problem is then linearized by perturbing this steady flow by a

small amplitude harmonic traveling wave of the form f(x) e(cvz +J Qt).

The dynamics of the inlet flow are then determined by the eigenvalue, @
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The eigenira.hx‘es, @, however, depend strongly upon the mean flow
velocity profiles and the non-dimensional frequency, . It turns out
that a critical value of the swirl parameter, N, exists for given values
of K and (). For values of N less than the critical value, N,
the perturbation waves propagating upstream are attenuated, For
these conditions, the flow is in a sense supercritical. Subcritical
flow occurs for N>NM . The perturbation waves are not attenuated
‘when' N>Nea

In order to calculate the appropriate perturbation pressure and
velocity fields, the values of the parameters K and N will be selected
to correspond to the axial and swirl velocity profiles 0.5 radii upstream
of IMP6 (Iigs, 3.2 and 3.4), Table 6.1 lists the values of K and N
for various ""curvatures' in the mean velocity profiles for several
flow coefficients. A consideration of Fig. E.4 in conjunction with the
auto-oscillation frequency data, Fig, 5.2, indicates that these calcu-
lated values of N ave all less than the appropriate critical swirl
intensity. The predicted waves are therefore attenuated aé they
propagate upstream,

A typical example of the axial pressure distribution is presented
in Figs. 6.3 and 6.4, These curves are based on the far upstream
fluctuating pressure and mass flow rate measurements obtained during
auto-oscillation at ¢ = 0,065 and ¢ = 0.041. The rapid attenuation of
the perturbation waves corresponding to swirl intensities less than the
critical value is apparent, In addition, the phase angle of the pressure
fluctuations relative to the upstream mass flow rate rapidly converges
to that of the inertance wave alone. The predicted phase angles of the

pressure fluctuations at the inlet to IMP6 are in moderately good
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agreement with the experimental data as indicated in Fig. 6.4. How-
ever, the amplitudes are not well predicted.

For comparison, the amplitudes and phases of the axial pressure
distribution associated with a swirl intensity greater than the critical
value are presented in Figs. 6.5 and 6.6. The same experimental
data used in cdnstructing Figs. 6.3 and 6.4 was used in these calcula-
tions. Again, the phase angle of the pressure field asymptotically
‘approaches that of the inertance wave alone as the wave propagates
further upstream., Similar statements concerning the predictive
capability of the model under these conditions are applicable.

The neglect of the axial variation of the mean flow velocity
distribution does not seem serious in the light of the above results,

A systematic variation of the mean flow profiles to simulate their
axial variation would not change the final conclusions.

This model of the inlet flow dynamics, as well as the previous
two models, does not adequately predict the experimental observations.
Since the inertance wave eventually masks the perturbation waves,
this model is essentially no improvement over the inertance model.

The results of Appendix E may, however, be of some use in other

applications conéerning confined rotating flows.

6.5 Transfer Function Model

It is now apparent that the various features of the inlet flow
field do not act or respond independently of each other. Since the
activity of an impeller results from cavitation and since a significant
fraction of the cavitation occurs in the backflow ahead of the inducer,

it seems possible that the transfer function of the inducer effectively
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- reéresénts the dynamics of the inlet flow field. If so, then the transfer
 functions of IMP6 could be used to predict the inlet pressure fluctuations.
The IMP6 transfer function obtained at a flow coefficient of
0.070 and a cavitation number of 0,052 was used in the calculations,
As before, the far upstream pressui'e and mass flow rate measurements
~obtained during auto-oscillation were used as the input variables,
Sihce transfer functions at other flow coefficients were not available,
’the cp = 0.070 transfer function was used in all the calculations. The
results of these calculations are presented in Table 6.2. The phases
of the predicted inlet pressures are in good agreement with the data.
An improvement in the amplitude prediction has occurred. The cal-
culated amplitudes are approximately a factor of three low.

An alternate approach of using the measurements to determine
the transfer function of this region of the flow has been attempted.
Two linearly independent sets of data at each auto-oscillating condition
are needed to uniquely define both elements of the transfer ftmcfion;
Unfortunately, only' one set of data can ever be obtained. Thus, it
"~ is necessary to assume a value for one element and calculate the
other. The results of this process are listed in Taﬁle 6. 3 In this
table, the elerﬁents of the original modified transfer function, ‘X“
and XlZ’ appear in the first line. In the next two lines, the values of
X11 and X].Z determined from the auto-oscillation measurements are
given. These results suggest that a large change in the dynamics of

the inducer has occurred.

6.6 Discussion of Inlet Flow Models

As mentioned in Section 6.5, a large change in the dynamic
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chacterisﬁcs of a cavitating inducer appears to accompany a condition
of auto-oscillation, This is consistent with the indication of non-
linearities in the performance of IMP8 described in Chapter 5. In
addition, these models strongly suggest that the dynamics of the inlet
flow field cannot be separated from those of the inducer. The coupling
- between the inlet flow and the inducer provided by the backflow is

_believed to be a central feature of the dynarmics.
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TABLE 6.2

INLET PRESSURE
AMPLITUDE PHASE ANGLE
P 9 | EXPT|CALC EXPT | CALC
0.055 | 0.033 1 22.94 { 10.80 | -119.8 | -127.8
0.065 | 0.041 | 16.67 6.21 | -143.6 | -134.3
0.070 | 0.044 | 12,68 3.65 | ~111.7 | -109.6
TABLE 6.3
P g X11 %12
Real Imag. Real Imag.
0.055 | 0,033 0.98 0.60 - 9.97 |-14.34
-21.40 12.92
-17.52 |-33.24
0.065 | 0.041 0.81 0.72 - 8.22 |-14.58
- 4,44 5.09 :
-30.87 |[-31.63
0.070 | 0,044 0.19 1.02 - 3,62 | -14.68
~25.68 4,04 ~ .
-18.10 | -50.05
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SUMMARY AND CONCLUSIONS

The hydrodimamic, global instabilities associated with hydraulic
systems containing cavitating inducer pumps have been investigated in
the present research. A stability criterion was derived on the basis
of a balance of ﬂovx} ehergy Minto' and "out'" of the system. It was found
that thé linear stability of t’ﬁe system was dete‘rmined by t‘hedyn»amic
"characteristics of the entire system. The stability of the hydraulic
system, however, was partiéularly sensitive to the dynamic characteristics
of the inducer. The inducer is a dynamically active device. The activity
of the inducer increases as the cavitation number decreases and thus is
directly related to the cavitation induced dynamics of the inducer. The
linear stability analysis is remarkably accurate in predicting both the
onset and frequency of auto-oscillation. In addition, it successfully pre-
dicted the experimentally observed freqeuncy variation with cavitation
number.

The underlying principles of the stability analysis'a're valid for
a wide class of problems. Any system that can be modeled by‘v a series
combination of transfer functions is amenable to this type of analysis.

It can be shown that a systern will be unconditionally stable unless it
contains at least one‘ active element. Unfortunately, outside of the
results of Refs. [ 10,11, 16, 22,41, 43], little is quantitatively known
about the transfef functions of rotating fluid machinery, such as pumps
and turbines, or other complex hydraulic elements. The results of
this investigation indicate, however, that the use of quasi-static ap-
proximations of the pump performance is not adequate. The stability

of the Dynamic Pump Test Facility is most sensitive to the mass flow

gain factor, Z,, , and to a lesser degree the pump impedance, Zyo .
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The pump compliancé, Z51 » and dynamic pressure gain, Zy,» terms
did not appreciably affect the stability of the system. The sensitivity
of the Dynamic Pump Test Facility to the pump impedance and mass
flow gain factor suggests that an accurate estimate of these quantities
is required in the deﬁnition of the pump dynamics and in the stability
‘ ana',lsr.sis. It is recommended that the sensitivity of the results of any
‘stability analysis to the parameters of the system's active element be
inve s.tigated, espeéially if these are uncertainties concerning the actual
v values of these parameters.

Experimentally the instability, known as auto-oscillation, was
found to occur in a well defined region of cavitation numberé just above
head breakdown. Clearly, the entife hydraulic system paiticipates
in the.instability since the large amplitude fluctuations in the pressure
and mass flow rate occur throughout the system. However, in that the
dynamics of the hydraulic system excluding the inducer are independent
of cavitation number, auto-oscillation is a dire ct manifes,tgtion of .the
dynamically active behavior of the inducer, Furthermore, from the
linear stability analysis, it is known that the stability of the Dynamic
Pump Test Facility is extremely sensitive to the mass flow gain factor,
Z,, . This suggests that the onset of auto-oscillation occurs when a
critical value of this parameter is reached as the cavitation number is
reduced. The frequency of oscillations is strongly influent:ed‘ by the
cavitation number and the tip speed of the inducer. Again, since the
dynamic characteristics of the system excluding the inducer are inde-
pendent of both the cavitation number and tip speed, these data indicate
that the frequency of the instability is determined predominantly by the

dynamics of the inducer. An estimate of the frequency can be obtained
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in terms of the inertance and compliance of the inducer. Such an
estimate does provide the correct scaling with tip speed of the inducer.
In addition, calculations based on these parameters yield surprisingly
accuraté predictions of the auto~oscillation frequency. A certain
amount of caution must be exercised when making estimates of this

‘ tyée, however, since the dynamics of the inducer are very complicated
. and physical effects are not isolated in only one element in the transfer
function,

In comparing the pressure fluctuation measurements at the inlet
of the inducer to those far upstream, it becomes clear that there are
congiderable dynamics associated with this flow field., The dynamics
of the inlet flow field are included in the transfer functions of the inducer.
Several dynamic models were proposed to separate out the dynamics
of the inlet flow from those of the puimnp. These models separately
incorporated the inertia of the fluid, the compliance effects of fhe cavi-
tation and the backflow induced prerotation of thé inlet flow, Although
the models were unsuccessful in predicting the inlet pressure measure-
ments, the dynamics of the inducer and inlet flow appear to be strongly
coupled. It should also be noted that the mean or steady inlet velocity
field is in itself not currently well understood.

Indications of nonlinear effects were also observed. The hy-
steretic behavior when entering and exiting the region of instability could
cause some problems in the conirol of the system. However, the potenti-
ally large loss in the mean head production during auto-oscillation imposes
an additional limitation on the operation of the hydraulic system. Besides
structural integrity consideraticns in regards to the fluctyations in the

flow, the decrease in the performance of the pump may also be unacceptable.
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_ APPENDIX A
DYNAMIC PRESSURE TRANSDUCER CALIBRATION

A.1 Test Procedure

‘The dynamic pressure transducer calibration scheme is based
upon inertially generated sinusoidal pressure fluctuations. The ex-
perimental setup consisted of a tube containing a column of water
(see Fig. A.1). The top of the tube was left open to the atmosphere.
The pressure transducers were connected to a mounting block at the
base of the tube, This entire system was mounted verticaliy on a
Ling electro-magnetic shaker, The shaker was used to provide a
harmonic excitation of the water column, In addition, an Eﬁdevco
Model 2272 piezioelectric accelerometer was mounted on the system
to provide a reference waveform.

During the calibration tests, the maximum acceleration levels
were kept at less than 0.5 g. Typically, data were obtained over a
frequency range of 4-250 Hz. The transducer outputs were recorded
on a four channel Hewlett Packard Model 3960 instrumentation tape
recorder. The amplitude and phase relationships of the recorded
data were obtained by means of a Spectral Dynamics Model SD360
Signal Analyzer. The signal analyzer used a Fast Fourier Transform
to calculate the spectra of the data, The phase of the pressure trans-
ducer outputs relative to the base acceleration was determined by a
cross~-correlation of the two wave forms,

The results of these calibration tests are presented in Figs.
A.2—-A.5, Clearly, a resonance has occurred for each of the five

pressure transducers.
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A.2 Analysis of Calibration Scheme

A one-dimensional model of the flow within the tube yields the

following result.

-

p(O):pMM+pg£o+p£oZe3wt (A. 1)
where |
| g = gravitation acceleration
3= amplitude of base acceleration

lo = height of water column.

Clearly, the pressure fluctuations depend entirely upon the base ac-
cele}‘ation.

The above result must be modified if a compliant element
exists within this system, The diaphragm ofthepressuretransducers
provides such an effect. As a result, relative motion between the
tube and water exists. The expression for the pressure at the b;;.se

of the tube now becomes

p(0) = Pt pgl(t) + ph(t)a JUt pﬂ(t)&l%vr(t) (A.2)

where
#t) = height of water column

v r(1:) =velocity of water column relative to the tube.

This is not the pressure at the transducer, however. The transducer
connections have dynamics of their own which must be accounted for.
If ’ec and Ac represent the equivalent length and cross-sectional area
of the transducer connections, then the pressure at the transducer is

given by
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= . d
p_= p(0) - pf, Fu_(t) (A.3)
where
ur(t) = velocity of water in transducer connections.
The pressure at the transducer is related to the volume change
by
dp .. '
w1 dv (A.4)
at ~ C dt
where

C = compliance of pressure transducer

v = volume of transducer,

Continuity considerations yield the following relationships.

do  _ di(t)
T T Ay —-}F

ROREE- U3 (A.5)

A

T dgt)
o ()= - —x-~a&
where
A = cross sectional area of the tube.

T

Substituting all of the above expressions into Eq. (A.3) gives the

following result.
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(;z(t) AN O sy a2qt)

(A )

dt3 AT d dtz
~ jwt o~ et T
g+ae 1 dft)  jwae _
* ( .- t 5T ) A v t) =0 (A.6)

Equation (A, 6) can be linearized by assuming that
- 7 Jwt |
At) =4 +1e : (A.7)

Substituting this back into equation (A.6) yields an expression for the
fluctuating height of the water column, 1, interms of the inertances
of the water colummn and transducer connections, and the compliance

of the pressure transducer,

~ 1
af ’
a4 o

£ [
4= - 2/ 7o [ g 1 (A.8)
T w (K——T + 1:_) - (I_T + el )

It is apparent that a resonance can occur under appropriate circum-
stances. Equation (A.8) provides an explanation for the resonant
behavior observed during the dynamic pressure transducer calibration
tests. Inaddition, it can be seen that the natural frequency of the
measuring system is sensitive to the compliance of the transducer

or any other source of compliance (i, e. trapped air bubbles, cavitation,
structural compressibility, etc. ).

Equations (A, 2) and(A. 3) are then used to fit the experimental
calibration curves up to the first resonance given in Figs. A.2 and
A.4, This process determined the unknown compliance of the trans-
ducer. It was these fitted curves which were applied to the auto-

oscillation data.
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- A\ _—o]

'a'ejwi

Fig. A.1 Schematic of dynamic pressure transducer calibration

facility.
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APPENDIX B
SYSTEM IMPEDANCES

As mentioned in Chapter 4, the inlet and discharge lines are

dynamically modeled as impedances. An impedance is defined by

(B.1)

]
i
2B,

"This requires the measurement of three fluctuating quantities: the
entrance and exit pressures and a mass flow rate., The impedances
are complex quantities. The following convention will be used to

represent these impedances, i.e.
I=R +jud . (B.2)

The real part of the impedance, R, represents resistive contributions
and the imaginary part, £, the inertance contributions.

Besides the standard transfer function instrumentation, another
Statham pre.s sure transducer was mounted on the tank between the
fluctuators. This provided the other necessary pressure measure-
ment. The oscillations were generated by the fluctuators., When
deterinining the downstream system impedance, the upstream
fluctuator was used and vice versa.

Data were ohtained at seven frequencies ranging from 4 to 42 Hz
under non-cavitating conditions. After each set of data, the system
configuration was modified so as to alter the value of the system im-
pedance. The impedance of the inlet line was changed by varying the
static position of the upstream fluctuator components, The "silent"

throttle valve was used to vary the discharge line impedance. The
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data were reducedin exactly the same manner as the transfer function

data. Each data signal was cross-correlated against a reference

sine wave to obtain its in-phase and quadrature components. After

applying all the necessary calibrations and corrections to the data,

the impedance was calculated as indicated by Eq. (B.1). |
The resistancé, R, and the inertance, £, of the impedances

thus obtained are presented in Figs. B.1-B.4. Figures B.1 and

B.2 correspond to the original system configuration pictured in

Fig, 2.1. Figures B.3 and B.4 correspond to the modified version

of the DPTF, Fig. 2.2.
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APPENDIX C
INLET VELOCITY PROFILES

C.1 Test Procedures

‘The mean or steady velocity profiles in the inlet flow field of
IMP6 at two axial locations were obtained by means of a wedge probe
and a total head probe. TﬁeSe probes were connected to manometers
~via relatively long connecting lines, The inertia of the fluid in the
lines effectively smoothed or averaged out any time dependent or
non~axi-symmetric structure in the flow. |

A radial traverse with the wedge probe was first performed
to determine the flow angle. Once the angle of the flow was ‘knbwn, a
radial traverse with the total head probe at the flow angle was per-
formed. The data obtained from the total head probe test were
stagnation pressures, h(r), referenced to an upstream pressure,

P_.,- 7The form of this measurement is expressed in Eq. C.1.
m .

B(r) = p(r) + 3¢ |V(x) | % - p (C.1)

a0

- where

p(r) = radial pressure distribution

| V() |= magnitude of the velocity vector,

In terms of the flow angle, y (r), and |V(r)| , the axial and

swirl velocities, w and v, are defined by

v(r) = | V(r) | siny(r)

and -
w(r) = | V(r) | cos y(r) (C.2)
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C.2 Data Reduction

It was further assumed that the inlet flow field was in a state
of radial equilibrium. The condition of radial equilibrium is expressed

in Eq. (C.3).

dp(z) _ pvz(r) (C.3)
dr r

~Taking the derivative of Eq. (C.1) and substituting from Eq. (C. 3)

results in

(C.4)

2 .. 2
i) _ o V() Psinv(x) 158 |y

This equation can be used directly to calculate |V(r)| through finite

difference techniques. Alternately, Eq. (C.4) can be put into the

following form:

-gai‘r—[a(mvm\z] - S a) (C.5)

where

r .2
sin”y(T) ..
G(r) = ezf o —F A7)
Integrating this equation yields therequired result:
o122 fF dh(7) v(o)|?

To use Eq. {(C.6), an estimate of the centerline velocity must
be made. This estimate is refined by comparing the calculated mass
flow rate to that obtained with the turbine flow meter. The axial and

swirl velocity profiles are then calculated from Eq. (C.2).
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APPENDIX D
INERTANCE AND COMPLIANT BACKFLOW MODELS

- D.1 Inertance Model

The linear inertance model is the simplest representation of
an unsteady flow in a pipe. In this model, the flow within the pipe is
assumed to be one-dimensional, inviscid and incompressible. The
inertance model solely accounts for the pressure fluctuations produced
by the acceleration of the fluid within the pipe. Under the one-dimen-

~sional and incompressible flow assumptions, continuity considerations
require that

o W
gz*

=0 . (D.1.1)

The equation of motion in the axial direction then reduces to

dw¥ 1 9p* '
v =l (D.1.2)

From Egs. (D.1.1) and (D.1.2), it is apparent that the steady mean

4 flow velocity, Wo’ and pressure, Po’ are constants and not functions
of the axial coordinate. Before linearizing these two equations by
superimposing small amplitude harmonic perturbations on the steady
mean flow, it is convenient to non-dimensionalize these relations. The
length scale in this flow model is the radius of the cylindrical pipe, R;
and the characteristic velocity is taken to be Wo . The corresponding
time and pressure scales are R/Wo and pWo?' , respectively. The

linearized equations of motion are



ow
5 = 0 (D.1.3)
and
.~ 9p
jQw = - w= (D.1.4)
where
w=1+ \';reJQt
p=¢_ +pft
o
Equation (D. 1. 3) requires that
w(z) = v, (D.1.5)
Integrating Eq. (D.1.4) and applying the boundary condition that
p(z=o0) = AISOD results in the following expression.
p(z) = py, -iQzw (D.1.6)

This expression can now be used to compare or predict the pressure
field at the inlet of the inducer given data concerning the amplitude of
the pressure and mass flow rate fluctuations far upstream and the

relative phase difference between these quantities.

D.2 Compliant Backflow Model

The simple inertance model can be extended to include the
compressibility effects of the cavitation in the backflow jet. The
cavitation shall be assumed to form a circumferentially symmetric
layer of thickness 5 (z,1) and length I“';r asg illustrated in Fig. D.1.
The length of this compliant backflow region can be related to the mean
flow rate. The thickness of the vapor layer will be assumed small

(i.e. &= 8%/R<<1)., The cavitation will also be assumed to respond
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to local pressure fluctuations as a simple compliance. Thus, by

~ definition, the cavitation responds to pressure fluctuations as indicated

in Eq. (D.2.1).

gv* _  .op¥

where
v¥ = volume of cavitation region

C = compliance

In terms of the compliant layer thickness, equation (D.2.1) reduces to

36*_“ ;kap* .
Fy=Ja K-é—?;— (D.2.2)

where

#* = modified compliance coefficient.

In addition, the fluid outside of this region will be considered inviscid
and incompressible,

Since the thickness of the compliant layer is small, the steady
~mean flow velocity, Wo , and pressure, Po , are again constants

independent of the axial coordinate. The other equations governing

this flow model are

0 y 0 2 2
—3 (w*A*) = ¢ s (RT - (R- 5%)) (D.2.3)
and
o w’ w QwH 1 §p*
-—--t';F-- + W mz* w—-'—p—az (D.Z.4)
where
% 2
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Before linéarizing the model by superimposing small harmonic pertur-
bations on the velocity and pressure fields, these relations can be
non-dimensionalized in the same manner as Section D.1. The result-

ing set of linear equations which describe the flow are

5= -up (D.2.5)
.o~ 988 _1 9w |
jas +-5-E--ZW (D.Z.é)
and
‘ dw _  0p ' (D.2.7)
A R T
where

w(z,t) =1 + w(z) AL

p(z,t) = é’o +i§(z) eth

8 (z,t) = 8(z) &l €1

This set of equations can be further simplified by assuming an expo-

nential dependence upon the axial coordinate (i.e. :v(z) ~e%?),

Upon
substitution and after further manipulation, the following dispersion

relation is obtained.
o®(2-3) +4j0a - 20% = 0 ' (D.2.8)

The solutions to this dispersion relation are

¥1,2 = (:'Li*&-’) i (D.2.9)

where
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Since the a's are purely imaginary, these harmonic pertur-
bations represent two traveling waves. The non-dimensional speeds
and wave lengths are given by (/o and 2n/a , respectively.

‘The two as yet unknown amplitudes of these waves are deter-
mined if the fluctuating pressure and velocity are known or specifieéi at
some location. The solution in terms of the fluctuating pressure and

velocity, p, and W, , at z=0 is given by Egs.(D.2.10) and (D. 2. 11).

¥ () = %_,‘(eoaz 4 edaZ) - U [(1-!\)e""‘1~Z + (1+4) &2 % J : (D.>2. 10)

B(2) = gy (07 - %% ) B [(1-0) €M7 - (140)e% | (D.2.11)

The amplitude and relative phase of the fluctuating pressure and
velocity at z=0, ?)1 and \';/1 » can be related to the far upstream
pressure and velocity measurements, ’i;oo and G;oo » by use of the
results of Section D.1. The result of this calculation is the following

relation.

Py =Py - JQLW_ - (D.2.12)
and
Wy =W | (D.2.13)
where

L = distance between the far upstream pressure
measurement and the upstream end of the
cavitation region.
Equations (D.2.10)~(D.2,13) can now be used to calculate an
axial pressure distribution based upon measurements of the far upstream

pressure and velocity fluctuations and various estimates of the compliance

and length of the vapor layer.
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APPENDIX E
SWIRLING INLET FLOW MODEI,

E.1 Model of Mean Flow

The dynamics of the inlet flow field is thought to influence and
control the occurrence of auto-oscillation. The mean flow which is
‘known to be purely axial and nearly uniform far upstream becomes
,highly rotational and non-uniform in the neighborhood of the inlef to the
inducer. The flow is further complicated by the extensive cavitation
that occurs due to the upstream penetration of the tip clearance jet. In
addition, this backflow jet rolls up into vortex sheets which causes
extensive mixing to occur. Since the mechanics of the momentum
and vorticity transport processes of this flow are not well understood,
it'is necessary to simplify the mean flow field. For the purpose of
this model, the mixing provided by the vortex sheets and the compliance
provided by the cavitation in the backflow will be neglected. Inaddition,
the flow will be assumed inviscid, incompressible and axi-symmetric.
Under the above restrictions, the following continuity and momentum
equations define .the steady mean flow.

1 8, 4 aW _

USU  WOU V? 1 9P
R — - e e ——— E.l.l
art az* r* P gr* ( )

Uav +WQ_Y +UV 0
ar¥ 9z*  TF

UBW , WaW _ 1 9P
9 r¥ 8z%  p Dz*
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Whére
(U, V, W) are the velocity components in the
(x%, 0%, z*) directions.
It is necessary to further restrict the class of flows. This‘ is
accomélished by assuming that the axial velocity, W, does not dépend

*
‘upon the axial coordinate, z . This restricts the allowable class

of ﬂows to
W = W(r¥) = W+ Wl(r*) . (E.1.2)

Since the radial velocity, U, must vanish at r* = 0, the continuity

equation and the azimuthal equation of motion require that

U=0 (E.1.3)

and

V = V(%) . | (E.1.4)

The exact functional dependence of V(r*) and W(r®), however., is
not fixed by either the continuity or momentum equations.

The ’above velocity field constitutes the proposed modellv of the
mean inlet flow. Althoﬁgh the actual flow field is cdnsidefably more
complicated, it is hoped that this model contains the essential features

important to the dynamics.

E.2 Perturbation Analysis

To investigate the linear dynamic behavior of the specified
steady flow, a small amplitude harmonic perturbation to the velocity
and pressure fields is superimposed upon the steady flow field. Before

linearizing the unsteady, inviscid, incompressible, axi-symmetric
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‘Na;rier fStékes' equations, it is useful to non-dimensionalize these
equations. The length scale in the assumed flow model is the radius
of the cylindrical pipe, R ; and the characteristic velocity is taken
from Eq (E.1.2) as Wo . The corresponding characteristic time
and pressure scales are R/Wo and pWOZ, respectively. Substituﬁng
‘and retaining dnly terms to first order in the perturbaticn quantities

yields the following set of linearized continuity and momentum equations.

18 (ru), 89w =0
¥ Jr 9z
S du _ 2V(x)v _ 8p ‘
0%+ 14w ()] 2 - 2l % C(E.2.1)
% 1 d
v +[1+Ww(x)] F‘zi t T [rV(r)]d =0
A oW , Gd(r) _ op
W +[1 40 ()] 5= + eIt
where
“u(r, z,t) =1':1(r,z)e'th
v(r, 2z, t) = ¥V (r) + ¥z, z)ed O
w(r,z,t) = 1+ Ww(r) -!—\7'<>(r,z.,)ejQt # X JOF
_ n iot . jQt | . jot
p(r,z,t) = &(r)+ p(r, z)e -jQzX e +Ye' M
and

0z r=r¥/R=s1

~-m< z=z¥%/R<0

The term X e‘]Qt in the perturbation axial velocity field will be referred
P Yy ,

to as an inertance wave. 7
The above relations, Eq. (E.2.1), are simplified further by

assuming an exponential dependence on the axial coordinate. The
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| 'per’turbatic'm velocity and pressure fields now represent traveling
 waves. Substitution of this separated form of the perturbation quantities
allows separable solutions of equations (E.2.1). The result is four
coupled ordinary differential equations for the four as yet unknowﬁ
radial distributions of the perturbation pressure and velocities. This
set of four equations can be reduced to the following second order

ordinary differential equation involving only the radial distribution of

‘the radial velocity,

d“ dv 2.2 20°Y d ~
* "“Zdr'u + 1 +{°’ * '1+jQ+a[1fuﬁn)(r)] I [V ()]
2
o 1fdo(xr) d"W(x) ~
O Te[17B ()] ‘r“[ dr T T2 ]} u=0 (E.2.2)

where

(r,z) = ﬁ(r)emz

The radial velocity is subject to the boundary conditions

specified in Eq. (E.2.3).
9(0) =0
u(1) =0 (E.2.3)
The radial distributions of the other perturbation quantities are

calculated from Wu(r) . The process of elimination which generated

Eq. (E.2.2) also yielded the following relations.
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-1 1ld

“i0+all+w(r)] rdr [=v(x)Ta(r)

w(r) ‘é‘;g;[ru(r)J (E.2.4)

(r) JQ+a[1+w(r)] 1 d [ru(r)]
G’
o d(r) ~
TR Te[IIB(a] dr i(r) |

where
¥z, z) = v(r)e??
R#(r, z) = w(r)e*?

p(r,2) = p(r)e*”

It is apparent that this procedure has ied to an eigenvalue
problem with eigenvalues, «, and eigenvectors, ﬁ(r;a) . An infinite
hierachy of solutions exist which are distinguished by the number of
internal zeros the eigenvector possesses. Due to the fact that the
problem is linear, it is sufficient to consider only one eigeﬁvalue—-
~ eigenvector pair at a time. Hence, only those &'s corresponding to
Aﬁ(r;a) with no internal zeros shall be considered.

To continue the analysis further, it becomes necessary to
specify the functional form of the steady axial and swirl velocity
distributions, W(r) and ¥ (r}). For the special case of rigid body
rotation and a uniform axial velocity profile, an explicit solution
exists. For this special case, W(r) = 0.0 and ¥(r) = Nr, the accept-

able solution to Eq. (E.2.2) is
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~ ' 4N2
u(r;al)=J1 o 1+-(—-—-—--2r . (E.2.5)

iQ+a)
The eigenvalues, @, are determined by the boundary conditions at

the wall, r=1; and they satisfy the following quartic equation.

o 12003+ (aN%-%- 1) e®-2jante + 1202 = 0 " (E.2.6)

where

n= first zero of Bessel function J, = 3.832.

1

The alphas . are independent functions of the swirl ana fiequency
parameters, N and(). The explicit dependence upon these parameters
will be explained in Section E. 3.

The form of Eq. (E.2.2) suggests that alternate choices of the

steady velocity profiles be of the form

V(r) = Ne©

. and

b(r) = KeX . |  (E.2.7)

As long as k and n are selected from the set of positive integers, a
solution for f{(r) can be obtained in terms of a power series such as
e o)

u(r) =)  prt . ' (E.2.8)

L 1

i=~00
The coefficients of the power series, ;> are determined by the
constraints (i.e. boundary conditions) at r=0 and r=1 previously

specified in Eq. (E.2.3). The first of these boundary conditions forces
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B. =0 ;

: ; for alli=o0 (E.2.9)

The remaining coefficients are prescribed by the differential equation
for :1(1') , Eq. (E.2.2), in the usual manner; and they are functions of
parameters k, K, n, Nand . The mth term in the recursion re-

lation for the ﬁi's is

ﬁm=0 ; if m is even

and
2,. 2
B = -1 a”(jQ+a) Bm«-2+

m 2 . 2
(m”-1)(j+a) 20 K(j0+9) B 1, ~ (E.2.10)

+ [2(m-k-1)(m-k+1) +k(k-2)] e K(a +iQ) Bn-k

+ [(m-2k-1)(m-2k+1) + k(k-2)] a2 K2 B2

4

+ ati? Prn-2k-2* 2(n+1) o?

N°B_ .t ifmis odd
Application of the boundary condition at r =1 detefmines the
eigenvalues, @, and the corresponding eigenvectors, g(r; a). For
specific choices of the parameters k, K, n, N and (), the values of
@ corresponding tc eigenvectors, u(r;a), with no internal zeros
were calculated numerically. The numerical search routine used
Newton's method assisted by the method of steepestdescent(see Ref. [45]).
As in the special case of rigid body rotation, four eigenvalues were
located for each mode. The convergence of the numerical scheme has
been confirmed by comparison to the results obtained from Eq. (E.2.6)
for the special case of rigid body rotation and uniform axial velocity.

The agreement between the alphas obtained from Eq. (E.2.6) and via
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’che“ search routine was remarkable. There was no problem in achieving
an agreement to four significant figures.

Once the eigenvalues, «, and corresponding eigenvectors,
g(r; @), are determined, the radial distribution of the other perturbation
field qﬁantities are readily computed by means of Eq. (E.2.4).

The linear perturbati‘on analysis is now complete except for
the four as yet undetermined constants — the leading coefficient in the
qpower series. The value of these constants are fixed by conditions’

specified at either z = 0 or far upstream.

E.3 The Eigenvalues

E.3.1 Special Case of Rigid Body Rotation

The four eigenvalues for the special case of rigid body rotation
and uniform axial velocity are depicted in Fig. E.1. Their real and
imaginary components have been plotted with respect to the swirl
parameter, N, for a specific non-dimensional frequency, Q. | Sevéral
interesting observations are established by these curves. Of the four
complex eigenvalues, two invariably have positive imaginary p‘arts and
two are negative. The imaginary component of the 'alphaé determines
both the wave number, or equivalently the wave length, and the wave

speed. The non-dimensional wave speed is defined by

Q

5 “Tmag (a] (E.3.1)
and the non-dirmmensional wave number is defined by

K:-ZX-T-r- = Imag {a} . : (E.3.2)
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The wavesv propogate‘upst’ream towards negative infinity in the axial
direction if the imaginary part of alpha is positive. Consideration
shall be restricted to only those disturbances (waves) which are
generated by the inducer. This condition requires that the leading
coefficient in the power series expansion for M(r; @) corresponding to
alphas with negative imaginary parts to vanish., Hence, only those
‘alphas with positive imaginary components, &(1) and @(2), need be
considered further. The other useful piece of information to be
gieaned from the imaginary component of the eigenvalues céncerns
the wave speed. The assumed form of the steady axial velocity profile
indicates that unless the wave speed of the waves is greater ‘than 1.0
the effective direction of propagation is downstream. Such a wave
cannot effect the inlet flow and hence is unimportant to the dynamics

of this flow field. The following equation spells out this criterion.
Imag {@} <Q. S (E.3.3)

Referring again to Fig. E.1, the eigenvalue «(2) does not
 satisfy this criterion for values of the swirl parameter greater than
5.5. Since the effective direction of propagation of these waves is
downstream, waves corresponding to eigenvalue «(2) and srwirl
parameters greater than 5.5 will not be considered further.

The behavior of the real part of «o{l) and @(2) is more com-
plicated. For values of the swirl parameter, N, greater than 5.5,
the real parts of «(1) and @(2) vanish. Below this critical value of
5.5, the real part of a(l) is positive and the real part of «(2) is

negative. Thus, a wave possessing an eigenvalue with positive real
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paft, 01(1), is attenuated as it propagates upstream. To prevent in-
finite perturbation velocity amplitudes within the flow field, those waves
which are amplified as they propagate upstream (i.e. Real{a} <0) must
be rejected. Therefore, waves corresponding to the éigenvalue a(2)
and swirl parameters less than the critical value of 5.5 shall not be
considered further since these waves are amplified as they propagate
upétream. |

The functional dependence upon the frequency of the oscillation
is quite apparent in Fig. E.2. In Fig. E.2, a(1) has been plotted as
a function of swirl intensity, N, for several frequencies. It i‘s im-
portant to notice that the value of the critical swirl parameter is a
monotonically increasing function of frequency. For values of N
larger than the critical value, NcR , the imaginary part of a(l) -
increases with frequency. Referring to Eq. (E.3.1), this trend cor-
responds to a reduction in wave speed with frequency. Below the
critical value, NcR’ both the wave speed and rate of attenuation are
increased with increasing frequency.

A gréph of the critical value of swirl intensity plotted as a
function of frequency appears in Fig. E.3. In the région above the
curve, one wave (in addition to the inertance wave) propagates ﬁp—
stream without a change in amplitude. An attenuating wave propagates
upstream for values of the swirl parameter which lie in the region
below the curve.

A comparison between the special case of rigid body rotation
and uniform axial velocity and other mean flow fields is giyen in the

next section.
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E.3.2 Other Mean Flow Velocity Profiles

As in the case of rigid body rotation described above, four
eigenvalues exist for each mode for all other combinations of V(r) = N
and W(r) =Krk. The waves corresponding to two of these eigenval_ues
propagate downstream and are not considered further. One of the
other two veigenvalues. was eliminated for the same reasons that a(2)
*was‘ eliminated previously.

A comparison of the critical swirl curve for the various mean
- flow profiles listed in Table E. 1 is given in Figs.E.4a andﬁ. In Fig. E. 4a,
the critical swirl intensity curve is shifted towards larger values of N
with an increase in the curvature of the steady swirl velocit{r pfofile
(i.e, an inerease in n). The direction of the shift in the critical swirl inten-
sity curve for non-uniformity in the steady axial velocity profile depénds upon
the signof K asdemonstrated in Fig.E.4b. A positive value of K leads to
larger critical values; while the more physically appropriate név_gative
value of K leads to a smaller value of the cfiticé,l swirl intensity.

The variation in attenuation rate and wave speed with changes
" in the curvature of the steady swirl velocity profile are illustrated
in Fig. E.5. As with the frequency dependence, thé rate of attenuation
is increased by an increase in the curvature of the swirl vellocity pro-
file. The wave speed is increased for N< Ncn and reduéed for N>NCR

Non-uniformity in the steady axial velocity profile produces.
smaller variations as depicted in Fig., E.6. Negative values of K
lead to a higher rate of attenuation and slower wave speeds for swirl
intensities below the critical value. For N> Ncn’ the wave speed of

the disturbance is increased slightly.
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E.4 Radiavl Distributions of Perturbation Pressure and Velocities

The radial distribution of the perturbation velocity and pressure
fields are calculated from Eqs. (E.2.4) once @ (1) has been determined.
A typical example of the velocity and pressure profiles for a non-dimen -
sional frequency of 4.0 is given in Figs. E.7 through E.10. The selected
steady flow profiles were uniform axial velocity and a quadratic swirl
velocity, For reference, the critical swirl intensity lies between

7.0 and 7.5,

-E.5 Data Simulation

The axial distribution of the pressure fluctuations at the wall

of the cylindrical pipe provides a means of verifying the analysis.
However, the amplitudes of the inertance and perturbation waves have
yet to be determined. To determine the relative amplitude of the
perturbation wave with respect to the amplitude of the inertance wave,
X, a condition at some axial location must be applied. It shall be
assumed that the unsteady flow field must remain parallel to the steady
flow field at z = 0. This effectively defines the blade angle of the
inducer assuming the flow remains tangent to the blades. This con-

dition requires that

NP 1¥(r)e (oz +j0t) n

1.0+ KrS +3(r)e(®2 T30t)

Nr
k

= (E.5.1)
1.04+Kr

+erQt
Substituting for the perturbation axial and swirl velocities determines

the relative amplitude of the leading coefficient in the power series

expansion for Tl(r; a(1)).
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In order to determine the appropriate values for the unknown
' coefficients X and ¥ in Eq. (E.2.1) and hence the absolute amplitude
of the perturbation wave, it is necessary to use the far upstream pres-
sure and velocity measurements. These measurements will be used
to deﬁné the absolute amplitude of the inertance wave. The pertufbation
wave is not involved in this calculation since the flow is both uniform
and irrotational far upstream which results in a rapid attenuation

(see Figs. E.b6 and E.7) of the perturbation wave. If w e‘]Qt

@
~ 0t i . : ,
pmeJQ represent the experimental velocity and pressure measurements

and

taken at a distance L. upstream of z = 0, then X andY are defined

as follows,

o

=W
The fluctuating pressure field reduces to
2 jQt
p(r, z,t) = p( )e (@z+j€2t) _ JQW (L+z)eJ(t +p e (E.5.3)

[0 0]

Both the phase and amplitude of the pressure fluctuations at the wall
(r = 1) can be calculated from Eq. (E.5.3). The phase angle, &,

of the pressure fluctuations at r = 1.0 is given by

tmag {B(1)e%% +5 - JoF_ (L+2) ]
tan ® = J’~ o (E.5.4)
Real Lp(l)e -l—poo—jQW (L+z)‘|*
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E.6 Non-Axi-Symxnetric Perturbations Analysis

It is also possible to investigate the dynamic behavior of
the steady flow specified in Section E.1 to non-axi-symmetric perturba-
tions. After relaxing the axi-symmetric assumption, the appropriate

linearized, non-dimensional Navier-Stokes equations are

b2FS

1 3(r) _ 1 &y
T ToT LI

CDIQ:
I
o

au + ﬂri) _g%_ ) ZVrfr)?r 1 +U7(r)]-5— -9p

Bt “or

v , & dv(r) , ¥(r) ov ., a V(r) v _ -1 9P

T U — 55 t—% +[1+w(r)]52 = =5

ow _ dadww(r) , V(r) oaw oW _ -9p

5t * —ar g T LWz = =3 (E.6.1)
where

it

u = 4(r, 8, z,t)

V{(r) + %(r,6, z,t)

v
w=1+W(r)+&r,0,2z,t) +x it
p =9(x) + B(r, 9, z,t) -0z Xeth + ¥ SO,

As in the axi~symmetric case, the perturbation pressure and velocity

fields will be assumed to have the following form:

ﬁ(r,e,z,t) _ ;(r e(crz + juO + jOt)

)
wr, 8,2, t) = ¥(r) 7 T IO +i0Y)
W(r,8,2,t) = 9 (r) ¥ T O +J0)

p(r,0,z,t) = P(r) o(@z +jub + jat) A (E.6.2)
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Under this assumption, Egs. (E.6.1) reduce to

%%(rﬁ)uﬁ taw =0

~  2¥(r)vy ,dp =0
Fefa - 258 4

%Hdi' [rV(r)]ll\i +I‘(r)';' +E-¥) =0
ﬁb_éf).u +T(r)w +ozp =0 . - (E.6.3)

where
(r) = g0+ 4 a1 4w (1))

This set of four equations can be reduced to the following second order

ordinary differential equation for the radial distribution of the radial

velocity.
[r"‘r(r) }d""‘ﬁm . [ijr(r) b X &)
aZI_Z__ IJ-Z drz a2r2 - U erZ_ U-Z ‘dr
: (‘fff) )orte) + B - ol o
- az:g-z 2 A )] dggr) + [r(r) + olzrzjiz 2

2 .
+ (—Z—-z——zza )-gv(%) %—;[1 V(r)] - (—TZ—TZJW )jg i) El—‘&%{)

a r -y

2 2 2 .2
+ oy al (r) ar . T(r) + 2jue T d [£V(r)]

- (
2l O (ZrZ ) @222 T

. 2 2.2 2
) ju ____2 [xV ()] - 2ozzr d”W(r)

r -d o r —|.12 cilr2

21.12 ar din(r)

~ E.6.4
' (ozzrz HZ)Z dr } u(r) =0 ( )
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 The radial velocity is again subject to the boundary conditions specified
‘in Eq. (E.2.3). The radial distributions of the other perturbation
quantities are calculated from u(r).

The radial distribution of the mean swirl and axial velocities
will be ?rescribed according to Eq. (E.2.7). As before, a solution
for -a(r) can be obtaine‘d in terms of the power series given in Eq.(E. 2. 8).
Clearly, the coefficients f, vanish for all i=1,.

- In the case of a quadratic swirl velocity (V(r) = er) and a

uniform axial velocity (W(r) = 0), the mth term in the power series

expansion for u(r) is

"

: -1 . 3A 2
8 % M I‘N[Zu +1 - z(m~1)(m+1)] B, _
m quz [uz-(m+1)2] m-1

-+

| [M4N2(rn(m-2)-2~uz) + ?T? ((m-z)2 -1“2U2>] Pm-2

. A 2 2
JQZH‘I\N [1+2(rn-3) -4u] Pm-3

+

+ [o‘t4f‘2 + aZuZNZ(Zuz- 8 - (m-4)2)] P-4
.4 & ’ 4 2 2 '
+ 2jo pTNﬁln_S + @ N (6-7) Brm-6 ‘ (E.6.5)

where

T ::o!+jQ.

When the boundary conditions are applied, it transpires that

B, = 0; for all m < -1 (E.6.6)

For m=y - 1, the coefficients are calculated by means of Eq. (E.6.5)

relative to B“ In addition, the above recursion relation reduces to

-1°

the following expression for large values of m.



-158-

3 2juN . _ZNZ +012 6
o = ()Pt | 52 | P

_ chyzN B + aZNZ B
W{a+i) "m-3 (cr+jQ)2 m-4 (E.6.7)

In order for the power series to converge, the modulus of all the above
ratios must be strictly less than one. Consequently, the following two

inequalities must hold for the series to converge.

o

- < .

'u‘ 1 (E.6.8)
and

2uN

The second of these two inequalities, Eq. (E.6.9), can be put into the
following form: |
2N<-‘-°f-‘-<1 +Q--)< 1. (E.6.10)
. LIV o
The magnitude of the swirl velocity is linearly related to thé frequency
" of the pertufbaticms. At low frequencies, a power series solution for
TJ,(I‘) exists only for very small swirl velocities. Lérger swirl
velocities are associated with higher frequency waves. An eigénvalue
search has not yet been performed. However, if the eigenvalues, «,
follow the same general behavior as those of the axi-symmetric
perturbations, (i. e. see Fig. E.5), then the non-axi-symmetric pertur-
bations corresponding to auto-oscillation frequencies will be attenuated
as they propagate upstream. If the assumed similarity between the
axi-symmetric and non-axi-symmetric eigenvalues is correct, then

the alphas will be composed of a large positive real part and a small
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positive imaginary component. Thus, the first convergence criterion
| Eq. (E.6.8), merely puts a bound upon the rate of attenuation of the
perturbations; it is proportional to the azimuthal wave number, u .
It appears that the waves with a greater periodicity in the azimuthal
direction are attenuated at a greater rate. If the assumed similarity is
not valid and the alphas are purely imaginary, then Eq. (E.6.8) requires
that the axial wave length of the perturbations be larger than the

azimuthal wave length, i.e.

LN (E.6.11)

where
A = dimensional wavelength of the perturbations in the
axial direction (Imag {a} = 27/}).
The non-axi-symmetric perturbation analysis was not carried
any further. This section was included in order to indicate the .

feasibility of such calculations,
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TABLE E.1
V(r) = Nr" b(r) = Kr~
n K
1
2
3 -0.40
0.40
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Fig.E.1lb Real part of eigenvalues, «, associated with uniform axial
velocity and rigid body rotation for the given non-dimensional
frequency of 4.
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Fig. E.3 Critical value of the swirl intensity plotted as a function of '
frequency for the mean flow of uniform axial velocity and
rigid body rotation,
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APPENDIX F

TRANSFER FUNCTION MODEL

The idea upon which this model is based is the observation that
the activity of the inducer depends upon the cavitation present rwith‘in
the inducer. It has ’beén observed that the cavitation occurs primarily
in the tip clearance or backflow ahead of the inducer. It seems reason-
‘able to assume that most of the pump dynamics included in the tl;ansfer
functién occur in the inlet flow field. This contention is furthel; sup-

- ported by the correspondence between the inlet pressure fluctuations
and the downstream pressure fluctuations. The above approximation
neglects the inertance associated with the inducer. The transfer
function, [Y], of the inducer cannot be used immediately. The dynamics
of the downstream section of the system, which consists of a diffuser,
the downstream smoothing chamber and a nozzle, must bé remqved
from the transfer function. A lumped parameter model consisting of
a resistance,' R, inertance, £, and compliance, C, was used to
describe the dynamics of these components. This model is illustrated
in Fig. F.1. The reduced transfer function of the inducer, [x], is

defined by the following relation.

Y 1 -R +j0<£) X . X

1

Y, Y, ac  14ac® +jaL)| | x (F.1)

21 22

In terms of the far upstream fluctuating pressure and mass flow rate
measurements, 500 and If;loo’ the pressure fluctuations at the inlet

of the inducer, 51, are given by
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m (F.2)

+X12 o

Py = Xll poo
where

Xy = [1HACR+jOL)] ¥, + R+i02L) Y,
X, = [14JACR+IR)] Y, + R+J02) Y,

Alternately, the measurements of the inlet pressure fluctuations
can be used to generate the two elements, X11 and XIZ’ of the réduced

transfer function. Unfortunately, both X.,. and X12 canndt be obtained

11
simultaneously since two linearly independent sets of velocity and
pressure measurements are needed. It is necessary to assume the

value of either X11 or X12. in order to determine the other quantity.
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APPENDIX G
JUSTIFICATION OF LARGE COMPILIANCE ASSUMPTION

A direct verification concerning the relative magnitude of the
air bladder compliance with regard. to Eq.(4.3.7) was provided by a
specially designed experiment. An operating condition for which IMP7
‘exhibited an auto-oscillation was selected. This steady state operating
‘condition ~¢ = 0,055 and o= 0,019 — was then maintained while the
volume of the air bladder, and hence its compliance, were varied. The
results of this experiment are presented in Figs, G.1 and G.2. The
frequency of the auto-oscillation remained essentially constant as the
air bladder volume was increased from a small fraction of a liter to
37.5 liters of air. Similarly, the amplitudes of the pressure and mass
flow rate fluctuations both upstream and downstream of the pump re-
mained constant. Therefore, large changes in the air bladder compliance
do not appear to affect the stability of the hydraul_ic system. Ti:is
suggests that the compliance of the air bladder is indeed large. Hence,
if the proposed model of the DPTF is accepted, then the stability

criterion expressed in Eq. (4.3.9) is the appropriate criterion.
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Fig. G.1 Variation of the frequency of auto-oscillation with

bladder compliance.
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