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ABSTRACT

An analytical technique is developed for computing mode
functions and associated diffraction losses of perturbed multimode
optical resonators. It is based upon a consistent field formulation
of resonance in an open two-mirror system.

To illustrate the method the theory of confocal resonators
is extended to include configurations differing from the confocal case
by small geometrical perturbations. This involves computing and ex-
panding a perturbed Green's function for such near confocal resonators.
Diffraction losses for certain statistical and deterministic pertur-
bations are computed and related to disturbances arising from an im-
perfect figure, polish or alignment of the mirrors.

The design and construction of a stable laser spectrometer
consisting of a single mode tuneable gas laser and a swept interfer-
ometer are described. Measurements of the diffraction losses of per-
turbed confocal resonators are found to be in agreement with the above

analysis.
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CHAPTER I

INTRODUCTION

1.1 Ovtical Maser Multimode Resonators

The recent advent of thc optical mascr has stimulated con-
siderable interest in multimode resonators. Due to its simplicity and
high resolving power thig interest has centered around the Fabry-Perot
interferometer. 1In their classic paper Schawlow and Townes (1) sug-
gested the plane-parallel Fabry-Perot resonator as did Prokhorov (2)
and Dicke (3). Fox and Ii (4) carried out extensive machine compu-
tations on the mode patterns and associated diffraction losses of this
type of resonator. |

Upon the realization that the confocal or spherical Fabry-
Perot could be conveniently employed as a maser multimode resonator
with its associated higher resolving power Boyd and Gordon (5), Boyd
and Kogelnik (6), Soohoo (7) and Fox and Ii (4) analyzed its properties
with reference to this application. From an electromaggetic theory
point of view these papers develop a basic mathematical approach and
work out the diffraction losses for a variety of resonators of the
spherical Fabry-Perot family. The usual analytical approach employed
in these treatments is based upon the following general argument. A
scalar field distribution is assumed on one of the mirrors. By means
of the'Green‘s function for the scalar Helmholtz equation the resulting
field at the opposite mirror may be computed. With a small angle ap-

proximation and confocal geometry the integral reduces very convenient-

ly to the finite Fourier transform of the initial field distribution



function. Then requiring the field to reproduce itself in form at each
mirror implies that the eigenfunction fields are those which are in-
variant under é finite Fourier transformation. One is thus led to the
angular and radiai prolate spheroidal wave functions, respectively, for
the eigenfunctions and eigenvalues of the confocal resonator.

Many papers have dealt with various aspects of multimode
resonators aﬁd quite a number have extended, modified and broadened the
works cited above. Among these are (8 - 18).

In addition the consistent field approach outlined above
gserved to inspire an optics oriented discussion by G. Toraldo di
Francia (19) which employs the plane wave representation of a radiation
field. Discussions of thée decomposition of an arbitrary field into an
angular spectrum of plane waves may be found in Courant-Hilbert (20),
Stratton (21) or Born and Wolf (22). Following this method an initial
scalar field function a(x,y) on one of the mirrors generates an
angular spectrum of piane waves wilh an amplitude distribullon glven by

L

as8) = & [ atoy) el -ix(ox+py) | axay,
A S

where x' signifies the radiation wavelength and k = 2x/). The inte-
gral is over the surface of the mirror and « and p are the di-
rection cosines of the propagation vector. As the resonator is con-
focal each plane wave A(®,B) will be brought to a focus at the co-
ordinates x' =ab, y' = Bb on the surface of the second mirror. b

is the mirror separation. In (19) it is stated that as a consequence

the amplitude distribution on the second mirror will be the Fourier



transform of that on the first. However, we must realize that the
total intensily in the focal plane is a superposition of a distribution
of Fraunhofer diffraction patterns. For rectangular mirror apertures

the Fraunhofer field distribution about each focal point will be of the

form
/
i meal i Enﬁag
_—_ Y SE
Enaal Enﬁae/
A A

where the dimensions of each mirror are Eal and 2a2. Dropping the
constants multiplying the integral for simplicity of notation we find

the total intensity at the plane of the second mirror will be

2na —}E' 23‘[8.237
[o) . = , = Sil’l — Sin -~
a'(x' yv) = IJ A{X = i —y‘} AD o AD dg'd§'
] . b ’ b / ona- X! 2na _37'
e ene X oy
b Ab
?o ® al a2 [ 1t
_ Jd)—q Jd}* jdx jdy a(x,y) expf-ik’[x T 3’)]
- - —al ‘a2
-, Tt
sin Eiiii_ singﬂa?y
b . —___Ab )
2ra, x enasy
b Xb

where it has been assumed that the radiation remains close to the opti-

cal axis so that small angle approximations may be employed. Carrying



out the integration over x' and 5' we find

a'(x,y) = [[aley) exef -ixGoc+ yy) | axay

The above equation demonstrates that focal plane intensity is just
that deduced from geometrical optics. ConseQuently, a finite Fourier
transform does indeed relate the amplitude distributions on the two

mirrors.

1.2 Perturbed Fabry-Perot Resonators

With any physical multimode resonator will be associated
geometrical defects as well as inhomogeneities in the media between
the mirrors. It is the purpose of this investigation to study the de-
tailed manner in which mirror perturbations arising from an imperfect
figure, polish or alignment degrade the characteristics of such reso-
nators.

In particular we are concerned with the effect of such con-
siderations on optical maser performance. For example, let us consider
the threshold condition fdr oscillation in a maser. Requiring the gain
through stimulated emission to equal or exceed the resonator losses it

can be shown (1) that for oscillation

n - > hV"Av/hnuzcls . (1.1)

1" "
where ny and n, are the numbers of systems in the upper and lower

gtates, respectively, v 1is the cavity volume, AV 1s the half-width

of the atomic resonance, u' is the transition matrix element and Qg



is quality factor for a particular resonator mode s. In 1.1 the
threshold population)inversion is inversely proportional to mode
quality factor. Therefore, as cavity perturbations degrade QS it
will require correspondingly greater population inversions to achieve
oscillation. Before ﬁroceeding with the role cavity perturbations
rlay in the camputation of QS let us review the concept of the
quality factor.

The quality factor QS of the normal mode s with a reso-

nant angular frequency ®, may be defined (23)

Q= total time-average energy stored (1.2)
s~ s time-average power dissipated ’

Signifying the average energy by Ws we have equivalently,

L (1.3)

Assuming an initial energy Wso in a passive cavity and solving 1.3

we find

w
S

W) =W e Wt (1.4)

illustrating that the quality factor may be considered as a normalized
decay time constant for the mode. The harmonic electric field magni-
tude corresponding to 1.4 is
. U.)s
-iw t -éag

Es(t) = Eb e 5 e s (1.5)

with a Fourier transform



3 (©) = 22 . (1.6)
. S
l(lbs— 0.)) + E_Q;

The half-power frequencies are at w = ws + mS/EQS and thus the reso-
nance width Aw 1is

(DS
Ao = Q—S- . (l.?)

Having assembled the basic formulas relating to the concept
of mode @Q let us now consider the characteristics of a multimode con-
focal resonator. The field in such a resonator can be thought of as a
superposition of waves traversing the space between the mirrors in
opposite directions. Call the energy crossing a plane perpendicular to
the optical axis in one direction per unit time P. For a resonator of
length b the total stored energy is E%E where ¢ dis the velocity
of light. Assume each mirror has a small fractional power loss as 50
that the stored energy changes little during one transit time. The

time average power dissipated will be aasp. From 1.2 we find

2bPy , 1 2reh
Qs=ws(c)(aaSP)=om : (1.8)

s's

In optics one of the important performance figures of a
Fabry-Perot resonator is the finesse F. It is defined (22) as the
ratio of fringe separation and half-width. From Appendix IV we find
an axial mode separation of c/2d in the frequency domain. From 1.7

X A

- (&Y (= - 5 =
P = Eb) ( c Qs) =) Qs = a . (1.9)
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The commonly employed expression for the finesse of a Fabry-Perot

resonator (22) is

mR _ ™R , (1.10)

F=13 a

where R is the reflectance of each mirror. Comparing 1.9 and 1.10
we see that the two expressions are equivalent in the limit of high
mirror reflectance or in what we shall term the high Q approximation.
Now let us consider a resonator with perfectly reflecting
mirrors which are slightly irregular. We may characterize the optical
length of such a cavity by a distribution function D(b) = dS/db, 4aS
being the mirror surface area where the corresponding resonator length
lies between b and b + db. Referring to Appendix IV we see that a
variation in resonator length is related to a variation in resonant

frequency by the relation
&t _ab (1.11)

Thus, we deduce that the Dirac resonance peaks of the ideal cavity are
replaced by peaks of the form D(f-—fs) for the perturbed resonator.
Signilfying the variance of the mirror surface as o and recalling 1.7

we find a perturbed resonator Q of
b
Q =< - (1.12)

Returning to the threshold equation for an optical maser 1.1
we see that the population inversion necessary for oscillation is di-

rectly proportional to mirror surface roughness when other loss



mechanisms are neglected.

n - ny>hv (W) o/l (1.13)

Clearly, mirror roughness can be of importance in an optical maser.
Of course the Q appfoximation given by 1.12 is quite crude and in
subsequent chapters we shall look at it much more closely.

In addition imperfect mirrors will distort the cavity mode
patterns. This in turn means that waves emerging from an optical
maser will be distorted, and hence such a beam will not have ideal
collimation and focusing properties. As these factors are quite im-
portant to many optical maser applications they are also treated.

Finally, it should be emphasized that the scope of this
paper is limited to the confocal Fabry-Perot resonator. The con-
venience with which the confocal geometry may be handled analytically
is the primary motivation for this restriction. One would thus expect
this study to be applicable to gas laser theory where the confocal
geometry has been widely employed. However, Evtuhov (17) has pre-
sented evidence that the confocal theory is more appropriate than
* plane-parallel resonator theory for ruby lasers with plane ends. This
results from a charaéteristic spatial variation in the refractive index
of ruby crystals giving them the appearance of having curved ends when
the ends are physically flat. This suggests that confocal theory may
correctly describe the field characteristics of most optical maser |

resonators currently in use.



1.3 Scattering from Irregular Surfaces

'Central.to the problem of determining the resonance charac-
teristics of a pertufbed cavity is the theory of electromagnetic
gcattering from a rough surface. A large number of papers have been
puﬁlished treating this field from various points of view and for a
range of geometries. Much of this work was initiated through a nesed
to gain a fuller understanding of radar sea clutter; therefore, its
validity is restricted to cases where the radiation wavelength is
negligible relative to the heights of the surface ifregularities.
These studies then are not applicable to scattering in an optical reso-
nator where the roughness must be very slight by necessity. Mitzner
(29) has recently presented é theory of scattering from irregular
surfaces which contains a comprehensive bibliography and review of
such sea clutter oriented papers. In this paper that aspect of the
general scattering problem will not be commented upon further.

Some recent work has been reported concerning scattering
from surfaces with small scale roughness (25-28). These studies are
based, either implicitly or explicitly, on a perturbation treatment.
They postulate a scalar electromagnetic wave incident upon a perfectly
conducting surface of infinite extent. The surface deviates only
slightly from a perfect plane. The random process describing the ir-
regularities is assumed to be single-valued and bounded such that no
areas ére shadowed .from the radiation. Thus, the maximum deviation
must be small relative to the radiation wavelength and the surface

slope must be small. Bass and Bocharov (25) work out the rigorous
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perturbation series in generality. Davies (27) assumes that surface
'currents are set uﬁ of the same magnitude as those in the smooth surface
but with phases varying according to the local height of the irregu-
larities. His method is equivalent to taking the first perturbation
term of Bass and Bocharov.

Davies' results give the specular reflectance at normal inci-

dence of a slightly rough, perfectly conducting plane surface;

R, = exp[-(um)?/ﬂ , | . (1.1k)

where o is the root mean square roughness. If it is assumed that
the irregularities have a very short correlation distance we may take
the radiation field in a resonator as being statistically independent
of the roughness and then approximate the diffraction loss by 1.1k,

The @ of a resonator with one such rough mirror becomes

Q == mé . (1.15)
Lxo

We see that 1.1h4 is quite different from the approximation of 1.12.
Curiously, they yield the same value for Q when O = %; , which is
-not far from the roughness one might encounter in practice.

‘By employing two common techniques for estimating the @q of
an optical resonator we have obtained quite different results. It is
clear from both, however, that ﬁhe Q 1is a very sensitive function of
mirror roughness.

The above:considerations suggest performing a more exact
analysis of the relationship between roughness and Q .not only as a

practical matter in laser technology but to provide an improved means



of studying
iperfections
~nately, for

is a rather

11

surface irregularities. Surfaces with smell scale im-
are fréquently studied via their reflectivity. Unfortu-
slight roughness the specular reflectance as given by 1.14

insensitive function of ¢. When the scattering is measured

in some other manner it generally depends on several aspects of the

surface such as the root mean square slope, root mean square deviation

and correlation distance. However, we would expect the @Q to depend

on the characteristics of the roughness in much the same fashion as the

specular reflectance. Thus employing an optical resbnator for rough-

ness measurements appears attractive and should be less amenable to

experimental error than previous methods.
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CHAPTER IT

CONVENTTONAT, CONFOCAL RESONATOR THEORY

2.1 The Symmetric Spherical Fabry-Perot Resonator

In this section the Boyd and Gordon (5) treatment of the
conf@cal resonator with identical spherical feflectors separated by
their common radius of curvature is reviewed. Such a resonator 1s
illustrated schematically in Figure 2.1.

The radiation wavelength is assumed negligible in comparison
to the resonator dimensions. In addition we require b >> a. Postu-
lating a linearly polarized electric field distribution on the primed
reflector Eofm(x‘)gn(y'), the field on the other mirror, Ey, may
be computed with the aid of the Kirchhoff formulation of Huygen's

prihciple. Then

+a
_ _]éi__ 'ikp 1 ' 1 '
Ey = M Brs © Eofm(x )gn(y Ydx'dy' . (2.1)
, -a
The quantity K = %?,, where A 1is the radiation wavelength. p 1is

the distance between two arbitrary points on the two mirrors. We re-
quire Ey to be propertional to the initial field in order to obtain

the normal modes. We set E_ =0 o E f (x)g (y) in 2.1 and obtain
y mnom ’‘®n

‘ik. +ae-ikp
o.0.% (x)e () = o= |] s e (yaxay o (2.2)
-a

where Gm?n is the transfer factor expressing the phase shift and

diffraction loss in making one transit of the resonator. As the
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4 +a
(x4 ¥y, 2%) (x, v, 2)
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Fig. 2.1 Confocal resonator with square mirrors and spherical curvature.
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aperture 2a is small relative to the separation b and the geometry

is confocal the distance p may be approximated;

xx' + yy'

p2b 5 . (2-3)

2.3 is employed in the exponent and little error is incurred by taking
only the first term of 2.3 where p appears in the denominator of the
integrand. With these subgstitutions equation 2.2 becomes

o0.f (xe (v) = —5— fm(X')gn(y')‘dX'dy' . (2.h)

ConseQuently, the transverse eigenfunctions satisfy integral equations

of exactly the same form. They are

./ kb
oo 2 } S (2.5)
0 f(x) = —— | ¢ f (x')ax' , 2.5
mm f;}; .
ei(%‘;-%) kg
(1) = S j e (v)ay' - (2.6)

~ Considering only 2.5 for the moment and defining the normalized vari-
o .

1
ables N = E, n = %; and the quantity c¢ = E%— we have
G-
- [E 2 I fem' Nam .
cmfm(n) = Iz e le fm(n yan' . (2.7)

It is clear that the eigenfunctions of this integral equation are self

reciprocal under a finite Fourier transformation. From Flammer (24) it
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is clear that the angular prolate spheroidal wave functions Som(c,n)
have just this property and satisfy the equation
+1

o™ R(()i)(c,l) S, (ert) = J e
-1

T G LE (2.8)

where Réi)(c,l) is the radial prolate spheroidal wave function. By

idenﬂification between 2.7 and 2.8 we find the eigenfunctions and

eigenvalues of the confocal resonator.

£ (n) = 5, (c)m) (2.9)
1(E-ER
o = J%? e Réi)(c,l) e B2 (2.10)

Thus, the electric field at an aperture is

- X Y .
Ey = omanosom(c,a) son(c,a) s (2.11)

and the correspoﬁding transfer factor becomes

i\:—;—(m+ n+1) - kb]

0,0, = %9 Rc()i)(c,l) Réi)(c,l) e . (2.12)

The resonance condition is obtained by setting the round trip phase

shi?t equal to an integer q times 2n. Then

onq = 2|%(m+n+l) - kb| , (2.13)
or

) : )

- =°2a+ (m+ n+1) . (2.14)

The fractional power loss per transit, ap» due to diffraction follows

from 2.12 and the fact that the power is proportional to the electric
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field squared.

Op = 1= lcmcn :
-1 - &2 [, 2P (2.15)

The various modes are designated as TEanq where m and n refer to
the transverse order and q refers to the longitudinal order.

This completes the formal summary of the Boyd-Gordon approach
to confocal resonator theory. Before proceeding into an analysis of
perturbed resornators some extensions of this treatment, needed later,

will be presented now.

2.2 Asymptotic Solutions for the Confocal Resonator

In subsequent sections of this paper it will be necessary to
evaluate certain integrals involving spheroidal wave functions. This
is most readily accomplished through the use of the asymptotic ex-
pressions for the resonator eigenfunctions in the limit of large c.
This is the same as taking the limit as the wavelength approaches zero,
which is consistent with the analytical treatment presented so far.

Referring to equation 2.5 the eigenfunctions must satisfy

L(F-22) 4
S

itt!
o £ (t) = —j‘ I e (gnyag (2.16)
mm == m
| ST
_ k . k_, . .
where t = T X t" = T In the zero wavelength 1limit the eigen-

functions are self reciprocal under a common Fourier transformation.
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. T kb) o

LT oy
o f (t) = 9___..__I e’ £ (t')at! (2.17)
.omm /211: o m

Tt is well known that the functions having this property are the
Hermite polynomials with a gaussian density function. In other words

the functions satisfying the equation

-n .
(0) = 2— | e ¢ (v)av (2.18)
o) = = ",
are given by the relation
_;UQ .
g (u) = e™®" H (u) . (2.19)

It follows that the limiting'form of the resonator eigenfunction is

1.n
£ (fen) = 7 n " (42n) . (2.20)

In this case the transfer factor i1s imaginary indicating zero dif-

fraction loss.

(R
.M L~72
g =1 e

n (2.21)

2.3 The Planar-Spherical Resonator

Let us consider now the configuration illustrated in Figure
2.2. This hybrid cavity which we shall term the planar-spherical reso-
nator is of practical importance and may be visualized as derivable.
from the confocal system by locating a flat reflector at the common
focal plane of the spherical mirrors. Thus, it is a folded over con-

focal resonator., . Its resonance properties may be deduced readily from
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(2) (x5, Yo, O)

(1) p

- b/2 >

Fig. 2.2 Half confocal resonator with infinite plane mirror.
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those of the spherical Fabr&-Perot. In addition inspection of 2.5 anad
.2;6 leads one to the conclusion that it is unnecessary to consider the
problem in three dimensions. The separated equations for the x and
y dependence will be identical within a phase factor to the equation
for_a swo-dimenglonal strip rssonator.

Rather than accepting the above statements from ceduction it
will be instructive to prove them directly. In addition the working
out of the analytical details will be useful later when considering
perturbed resonators. |

Referring to Figure 2.2 we define a spherical surface (1)
with a radius of curvature b and square sides of width 2a. It is
locased at a distance % to the left of an infinite plane mirror (2).
We want to show that this half resanator has the same eigenfunction
field distributions on mirror (1) as the equivalent full resonator.
Cur approach will be to postulate an initial field distribution on
mirror (1) and compute the resultant field on mirror (2). Then by a
similar computation work back to (1). Considering the image of mirror
(1) in (2) we would expect this (1)-(2)-(1) propagation to be equiva-
lent fo a single transit of the full confocal system.of Section 2.1.

By means of Kirchhoff's formulation of Huygen's principle
the field distribution on mirror (2), E2(X2,y2), is computed fron

that on mirror (1).

& -ikpl
ik T e
-8
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where p, 1s the distance from (Xl,yl) to (xg,y2) and is given by
2 2 , 2 2
x“+ yo\% Gy - %)+ (y,- 77)
IS PR A N YTl 2" Y1
1 b2 - 2 b2
X2 y2
b 2 2 1 2 1
o = - b=ty - - —
=311 -z (Xz XK F I - BV - 3

Similarly, the field Ei(§1,5i) reradiated back to (1) from (2) is

w -lkp
where the distance Po between the locations (X2,y2) and (Ei,?l)
is
-2 =2\ - \2 - \21 3%
X?+ y2 R (x.-x )"+ (y,-y.)"|®
o, = bl 1Y 1 1+ L 2 1 2 v
- T o 2 2
2 b2 2 b2
=2 =2
X y
b 2 2 —_ 1 2 -— 1
e — |- ]+ — - e -2 -
=1t Mot FT TV VYD

‘Combining 2.22 and 2.23 we find ar approximate expression for

El(xl,yl) in terms of the initial field El(xl,yl).

2 8 -ik(o,+ p,)
E (Xl,yl =535 f dxedye H dxldyl El(xl,yl) e (2.24)
Th o -8

In arriving at 2.24 we set Py and p equal to % in the denomi-

o

nator of the integrand. The exponential term involves the sum of p:L

and s and referring to their approdmate expressions we see that

this involves no cross terms between x ard y coordinates.
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Corsequently, 2.24 may be separated into integrals over x and V.

Now, separating the field functions El(xl,yl) and El(xl,yl) into

orthogonal amplitude factors as follows;

El(XlJ yl) =

we have for 2.24

E (x)E (yl)~

Performing the

E,(x,) B (7,)

5 (%) 5,F,)

-1kb

J dx, I dx E

x2+ 322
'}B]E{gxg‘ 2%, (%, + x))¥ l2 l] s ‘
] dygj dy, B (y)
- -3,

ye+3°
ik[. 2 1 1]
_® [Eyg' 2y, (v, * 3’1)+

X, and Yo integrations;

2

k (kb——) J o B (x ) e-lxxlxl

2rb 171 l
-a

(2.25)
-iky.y
1¥1
-4

which is identical to the full confocal resonator integral eguation as

was tc be shown.

Having demonstrated thet the same mathematics describes both
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the full and half resonators let us now go one step further and skow
.that when treating such cavities we do not need to treat the three-
dimensional case. Let us consider a two-dimensional infinite strip
half resonator. TILet such a resonator consist of a circular trough of
width 2a and radius of curvature b at a distance g from an infinite
plane. We may refer again %o Figure 2.2 but now there is no y de-
pendernce.

By means of Kirchhoff's two-dimensional formulation of
Huygen's principle the one-dimensional field distribution on mirror

(2), E2(x2), is computed in terms of that on the curved strip mirror

(1).

-ikpy

_%a
e 1T e
E,(x,) = ﬁ-’L Ts; E, (% )dx,

Similarly, for the radiation returning to (1);

-1-)_-l_oo -ikp2
B (%) --2= ¢ E_(x.)dx. ,
11 5y - MFEE 2 2 2
where
x2
) [ 2 (_i . ]
pl = l+b2 5 2X1X2 + x2 s
§2
b 2 1 — .
Po 5-2- ]il+;2- -5 - 2xlx2 + Xg)]

Combining these expressions as before,

" -i(kb-%) a k-
E (x)=3—— | ax e 1L B (x) . (2.26)
D -a
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Comparing 2.26 for the strip resonator and 2.25 for the three-
.dimensional half-confocal resonator we see thet with the exception of
the multiplying constart the orthogonal field distributioﬁ functions
obey exactly the same equations in the two cases. Bearing this in
mind we shall limi% the analysis to two-dimensional resonators hence-
forth, remembering that it is a simple matter to generalize the results
to three-dimensional cases.

To complete the analysis of the half resonator we now let the
width of the trough become infinite and reduce the ?lane mirror to
width 2a. Now an initial field distribution is assumed on the plane
mirror (2) and we follow it in propagating to mirror (1) and back to
its starting point, mirror (2). 1In this way the field distribution on
the flat mirror may be computed through the self consistent field
analysis. The reason for interchanging the finite and infinite widths
of the two mirrors is to facilitate the intermediate integration which
can be performed readily over infinite 1imits. Then the total dif-
fractior loss of such & resonator may be found approximately by adding
the loss for a finite width curved mirror resonator and finite width
plane mirror resonator.

Now we may start with a field distribution on a flat mirror
of width 2a and require that it reproduce itself after being reflected
by a concave mirror of infinite extent and at a distance of one half
its radius of curvature. With the same notation as before we find a
one-dimensioral equation analogous to 2.24, but for the field distri-

bution on the flat mirror instead.
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Eg(xg) = =5 I/dxe e IZ(XE,X2) Eg(xg) R (2.;7)
-8, )
where
® ik[ 2 — :|
— - +
I.(x X, ) = J e b Xl 2X1(X2 X2> ax
2\’ 1
-0
(2.28)
LT Lk — \2
'lﬂﬁﬁ 15 Gt %p)
= e — e .
A
Inserting 2.28 into 2.27 we have
YL +g .2k =
_ jE? l(E-Kb) a 1T X%,
E (%) - -/= e j e B, (x,)dx,, - (2.29)
-a

Equation 2.29 shows just what could have been deduced from general
confocal resonator theory. It indicates that the field distribution

functions are the angular spheroidal wave functions and that the spot

gize on tke flat mirror is 2 2 times that on the curved surface. How-

ever, oy such a treatment as in this section we are able to predict the
diffraction loss of such a resonator when both mirrors are finite. It
will be simply the stm of the losses of the two configurations treated
here.

Inspection of 2.26 yields a transfer factor for the infinite
plane mirror case of

2e, . i(% -%Db)
o = J(;;i iv e R(i)(c,l) s (2.30)

(024



25

2
ka
where ¢y = —Bl , and 8 is the half aperture of the curved airror.
From 2.29 we find
Tt
c i{= -kb)
|72 .n n (1) .
= —_ ) 2.
Gp=2d— 1 e R . (2c2,~) (2.31)
2
kag

Here Cp = —p— a, being the flat mirror half aperture.
The di“fraction losses associated with the above transfer

lfactors will be

Olnl =1 - T 3 (l)( l)]
ey, (1) 72
O =1 - -Ef'[Ron (ECE’l)J

It “ollows that the diffraction loss to first order of a half resonator

with finite aperlures at both mirrors will be

0 =0 + o
n nl ne

- S 0] - 2 agleep ]

If the apertures are equal, then a; = 8y and

I

o = 2{1 - % ‘_Réi)(c,l)]g + QERgrll)(ac,l)]g} . (2.32)

For the case of the ratio of spot size to aperture size being the same

&% both mirrors we have al = 2 a2. Then

o, = 2{ = !_R(l)(c 1)] } (2.

(O]
)
~—
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Equation 2.33 indicates that a half resonator with finite
apertures of ratio J2 will have twice the diffrection loss of the
equivalent full resonator.

In this section the relations necessary to a periurbation

treatment of such a resonator have been developed.

2.4 The Mathematical Technique for Unsymmetrical Confocal Resonators

When considering a confocal resonator as illustrated in
Figure 2.1 the characteristic integral equation is formulated by re-
guiring the field to reproduce itself in form after one transit of the
resonator. This procedure is legitimate for & symmetrical resonator.
Ag the final topic ir this preparatory chapter we consider the manner
in whick such &a résonator may be treated when it is not quite sym-
metrical, say, due to random irregularities on the reflectors. At
this point we will not explicitly introduce the perturbation, but will
treat the ideal resonator as if it were unsymmetrical.

Thig being the case the field distribution must reproduce
itgelf ir form after a round trip through the resonator. With this
requirement the equations can then be formulated in exactly the same
manner as those Tor the half resonator of the preceding section. Doing

this the equation corresponding to equation 2.29 1is

c-- +g
ie—ZliD _ A
_XB—I axy k(xp,xp) By (%) 5 (2.5%)

=&

2 . _—
c El(xl) =

where
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(x +X )x
k(xl,;c-l) = J ES
(2.35)
2 sin %?(xl+»§l)
k (xl+ SZl)

El(xl) is the field distribution on one of the mirrors and 02 is

the round trip transfer factor. Introducing normalized variables as

in Section 2.1 we have

sin c(nl+-?E)
-1 C(ﬂl+'?a)

Referring to Flammer (24) we find that the spheroidal wave functions

o E (nl El(rh) . (2.36)

satisfy this integral equation. Fortunately, we find exactly the same

gsolutions as when considering a single transit.
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CHAPTER ITI
ELECTROMAGNETIC SCATTERING FROM AN IRREGULAR SURFACE

3.1 Perturbation Treatment of the Boundary Conditions

Let us consider a plane wave incident on a perfectly con-
ducting surface which deviates slightly from the plane z = O. This
deviation is represented by z = g(x,y), where the function g(x,y)
is assumed to be continuous, single-valued and bounded such that its
maxims are small compared to the radiation wavelength. This will in-
sure that no parts of the surface are shielded from near normal radi-
ation.

In calculating the radiation scattered by such a surface the
perturbation approach of Bass and Bocharov (25) is employed. For the
perfectly conducting surface introduced above the boundary conditions

may be expressed as follows:

E +E éﬁ:o,
X Z oOx

Y (3.1)
Ey + EZ 8§ =0 .

Next the total field E on tke surface is expressed as a power series

n g.

E(X:y)g(x)) = E(X:Y)O) +

We seek a geries solution for the:radiation field of the form

E(x,7,2) = B (0,y,2) + 8 (,y,2) + B (e,y2) + . . 0 (3.3)
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In 3.3 E(o) represents the unperturbed total field above a perfectly

smooth surface. The terms are the various orders of pertur-

bation fields excited by the surface roughness. Introducing 3.3 and
3.2 Into 3.1 we effectively satisfy the boundary conditions at the

plane z = O and determine the magnisudes of the E(n) there. The

3

first two perturbation fields fall out easily and are

au!°)
(l> — XY
EX,y = - - g >
aE(:L) (3’”)
g2 %y
X, ¥ Z

In obtaining 3.4 the Ein) were set equal to zero in light of the
transverse field solutions of Chapter II. Also it was noted that

' BQE;?;/BZQ vanishes at the plane 2z = 0. By means of 3.4 and the
Kirchhof? formula the field at any point in space may now be computed

in terms of an integral over the surface 2z = 0.

3.2 Derivation of the Perturbed Green's Function

The confocal resonator fleld solution presented earlier is
based or Kirchhoff's formulation of the scalar Huygens-TFresnel princi-
ple. For the geometry of interest the Kirchhoff formula for a trans-

verse Tleld component may be expressed in the form

ik

Ey = %; I EOG(p)ds s (3.5)
8

where

e-lkp

G(p) = >
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By means of the method of Bass and Bocharov the perturbation terms for
the Field on the regular surface were computed in the preceding section.

The results are

1 3£(°)
E3(r)=-3_z_ g
(3.6)
(2) ol
Bl =5 8-

In the confocal problem EZ = 0 and in the neighborhood of the gsurface

the total unperturbed field may be written,
E(o) _ Eo(e_lkz- elkz> Jlwt

Now the perturbation terms are easily evaluated. Dropping the time

dependence they are

(1)

il

2ikg EO
Z = O (3-7)

5(2) okog” E

Employing thege values in 3.5 we find the expression for the perturbed

diffrected field.
. -ikp
-3 + 2ikg - 2k°g") E— 3
Ey 5 Eo(l 2ikg - 2k g ) 5 ds . (3.8)
s
Thus the perturbed Green's function may be written,
-ikp

P

6(p) = (1 + oixg - 2655 & (3.9)

For (lhe sake of comparison we may derive an alternate pcr-

turbed Green's function as follows. Assume that each localized region
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of the confocal surface scatters as an unperturbed plane surface.
Then introduce the effect of the surface displacement g as a vari-
ation in the distance p. The phase shi®t in a reflected wave will Dbe
-2ikg so we have alternately
e-ikp + 2ikg

p

G'(p) =
(3.10)

-ik
e p

P

2
= (1 + 2ikg - 2k2g2 -g—ikgg“ .. .)

Compering 3.9 and 3.10 it is evident that the first three terms in
their respective expansions are identical. We see that the two ap-
proaches are essentially equivalent when dealing solely with trans-
verse field components. At the same time we have demonstrated the
equivalence of the two types of treatments to be found in the litera-
ture.

In deriving these perturbed kernels it was assumed that in
the neigkborhood of the surface the field behaves as if it were a
plane. wave. Now in a spherical Fabry-Perot resonator each mirror is
at the effective focus of the spherical wave converging upon it Ifrom
the other mirror. Thus, each mirror is at the localized Fraunhoffer
region of the focal plane. Therefore, let us look at the detailed
neture of a three-dimensional field near the focus.

Consider first the wave intensity. According to Born and

Wolf (22) we have in lhe local region
(2)2 2 -2 .
I(u,v) =13 [Il(uyv) +TI2(uJV> IO ;- (3'11)

where the 'Uh are Lommel functions given by
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h+2s
|

U, (u,v) = 5 (-1)° (%— (v) . (3.12)

nt2s

The quantity u is a normalized longitudinal distance and v 1is a
normalized transverse coordinate. IO is the intensity at the geo-
metrical focus w,v = 0. We are interested in the behavior of I(u,v)

for very small values of wu. Then,
U (o) = (Y |7, - [B)F 0
N T Ay 1 v 3 7

Ug(u,v) B {%)2 Jg(v)

Using these approximate expressiors in 3.11 we find,

2
T(u,v) = (%]2 l%)g {JL(V) - (%)2 Js(v)]
J—I- .
+ |3 Jg(")} I, - (3.13)
= &) 1, £

From 3.13 i5 is clear that the field strength is constant for small
deviations from the focal plane.
Next we consider the phase behavior near the focal plane.

This is given by

0
B(u,v) = [g) u - x(u,v) -

A

where
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. 8
sin ¥ = TFm/—= >
02 + s2
CcOos %u sin 3"
_ z
C(U-;V) = U Ul(u:v) + U Ue(u}v) >
z z
sin 3% cos 1"
= 2= 8 - =22 2
S(U-:V) U Ul(u:V) U Ue(u:v)
= z

For small u we have

clu,v) =27 (v) - LE}g [ L -J (V)]
Tyt vl 7w T2 ’

¥
e

s(a,v)

[Jl(v) - %_— J2(v)] .

Then
sin = — —2- JE(V)
X AR

nlc

and the expression for the relative phase reduces to

2 L0
o = [ -5+ 2] -

This expression shows that we may assume a linear phase shift when
looking at sufficiently small deviations of a surface from the exact
focal plane.

In this section the perturbed Green's function was derived
asguring that in the immediate vicinity of the irregular surface the
incident wave may be represented by a plane wave. By studying the

behavior of a converging spherical wave near its geometrical focus we
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found that such an assumption 1s justified.

3.3 The Scattered Field: Statistical Considerations and Orthogonal
Expansion

Before proceeding to evaluate the eigenfunctions and eigen-

values of the perturbed confocal resonator let us take a look at some
characteristics of the field scattered by a general irregular surface.

As a starting point consider the two-dimensional formulation of 3.8.

i% ik
-ikp
E_ 1 =E 1 + 2ik - 2k2 2 <

The function g(x) is assumed to be a stationary gaussian random

dx (3.14)

E' =
Y

process with zero mean, variance Gi and a correlation function
R{x - x') = <g(x) g(x")>» . Taking the expectation of 3.14 the mean
value of the scattered field becomes

14
1

T
<E>————(l—2k )IE

-1kp
(3.15)

Thus, the mean of the scattered field changes only to second order.
Similarly the variance of the total scattered field may be determined.

<ep 3= 1 [[ w00 s [ - Bl + Bt - a0
(3.16)
~ik(p - p")
Npp*

dxdx’
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Finally, the variance of the perturbation field 1is

<, - 5(%)) (z, - 2O - L [ B () B ()" [1PR0e- x)]

ss'

oik(p - p")

Apo’

dxdx" (3.17)

WLy

The preceding manipulations have illustrated the manner in
which the characteristics of a scattered field may be handled. They
have also brought into the open the fundamental difficulty that must be
faced when attacking the problem of a perturbed resonator. We are
dealing with & statistical guantity g(x) which cannot be represented
explicitly in the integral equation. It would be desirable to take
the expectation of the entire integral equation and then solve for the
statigtical eigenfunctions and the statistical eigenvalues. TI7 we
were to attempt to proceed in this manner, expressions of the form
<le(x) Eo(x)>- would arise. In general we must first be able to solve
the eigenvalue problem before such terms can be evaluated. In the
following chapter we will approach the problem from this point of
view by assuming the unperturbed confocal solutions in the integrand
of the characteristic integral equation.

" Before proceeding in that manner let us consider an alternate
approach. The random process g(x) may be expanded in an orthogonal

series. If the terms are properly chosen the coefficients in the
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expansion will be statistically independent random variables. The
expansion may be represented as follows:
g(x) = Te ), (3.28)

where

1]
(@)
-

<Cs>

gl

0 if s #t
1 if s=1t
The functions ¢S(X) are orthogonal over the aperture. Now the first

order surface perturbation term may be written as

AP 5 ey, (x) - (3.19)

With this substitution in 3.14 we have

i% ta -ikp
3; = —JT f E_O(x) [1 + 21k ? cs¢s(x)1 '*/E

E dx . (3.20)

-a
Requiring the field to reproduce itself we arrive at the characteristic

integral equation

e—ikp
dx . (3.21)
p

+a
i € . ‘
o) Eo(x ) = —7\_ J:aEO(x) [1+— 2ik ‘Sacsgés(x)]

which can be solved in principle. The variance of the eigenvalue field
can be obtained by simply squaring the solution Eo(x) and making use
of the statistical properties of the cs's.

In this chapter we have introduced two possible approaches

to the boundary value problem of a perturbed confocal resonator. In
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the next two chapters both of these techniques will be developed more
fully. The first leads directly S0 a closed form approximation of the
fZeld distributions. In the second the determination of the eigen-

values for the resonator is eagily carried out.



CHAPTER IV

SCATTERING FROM AN IMPERFECT CONFOCAL SURFACE

4,1 Formulatior of the Scattering Integral for a Perturbed Confocal
Resonator.

Let us begin by recapitulating our analytical development to
this point. We found that when considering & confocal geometry in
three dimensions the characteristic equatior separates and the trans-
verse solutions are irdependently solutions of the two-dimensional
problem. We may thus neglect the three-dimensional character of the
problem at this point. Ther treating an infinite strip resonator with
confocal mirrors the equation relating the field on a surface with
normalized primed coordinates to that on the surface with unprimed

coordinates is

) 1(T[ - kb) L : 1
E(n) =f2-%—e E r e M E (n")dn' . (L.1)
-1

Introduecing an irregularity on the primed reflector by the normalized

random function h(mn') the intesral becomes

.C l(% - kb) L ie (R lk]ﬂ( !)
E(n) = /2—1f e je m 1 Eo(n‘)dn' . (h.2)
-1
Our procedure in this chapter will be to seek to integrate
equations of the form of 4.2 for the statistical properties of the

scattered field. The scattered fieid E(m) will not be required to

match the incident field EO(TH). The incident field will be
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represented by the unperturbed sclutions of Chapter II. The approxi-
mate resonator eigenfunctions computed in this manner will not be as
rigorous as those of the next chapter because correlation between the
irregularities and eigenfunctions is neglected. However, the solutions
obtained here’can be’represented in a simple functional fbrm rather
than as the sum of an infinite series of functions.
The important quantity which we wish to compute is the co-
variance of the scattered fieldy-. From 4.2 we find
1, Vo o
Sty > = & [ WL TR
T (1.3)

ik h(n') - h{ny)
,<ek[ E “2]>Eo<ni>ﬂo<%>dnm-

Apsuming a gaussian correlation function for h(ﬂ') and a

correlation length £, 4.3 becomes

+1

| te(nn! - nony L22r. )]
i) #n)>= £ T (mymy - mprg) o [1- R, )
- (L.b)

Bl Bo(mp)amymy;

where _(T& _ TE)Q/£2
R(T]imé) = e s

and 02 is the wvariance of the normalized roughness h(n'). Recalling

L

2
that k GE << 1 ard requiring the surface correlation distance to be

large compared to the mode spot size we find
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el - nn)
&) )= [[e T =F
-1
(4.5)
2 2 T
2 1 ; 1 t 1
1-— — (17 - m)7| E_(0)E (ny)an;any, -
Setting E (ﬂ equal to the unperturbed confocal solutions Sp(c,ﬂ')
the coveriance becomes
2c [— (l) Ckgcrgl
) w5 > 2[R, 1] 5 (en) 8, (e,1,)- —5 1Ty
T
(4.6)
where
o Le(n;m! - M,M3)
(n,m,) = [ (np -apfe ME EE
- (4.7)

Son(c’ni> Son(c,ﬂé)dﬂidﬂé ’

Now <o find the covariance we must determine solutions of L.7.

L,2 HEvaluation of the Scattering Integral by the Method of Steepest
Descents.

In the preceding section the following integral was en-

countered:

I(Tllﬂ nf)

o)
=4

LH~ (- 1) 2 IC(ﬂlﬂi-ﬂgﬂé)
1

son(a,ni) s (c,né)dﬂidﬂé .

on
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For large values of the parameter c¢ the field distribusion functions

may be approximated by appropriate Hermite functioas. Thus,

_—Lc’ﬂg
SonesM) TH (W) e *70 (k.9)
and 4.8 becomes
+1
1(n,m,) = [ (- 0)® B (veny) 1 _(vany)
172 1~ el FpWET Ty 2
-1
(%.10)
, c 2. .2
1C(T\lm - ﬂzﬂé) - -2_ (T]-; + ng )
e - - anran. .
172
This may be rewritten as
0 2
o —e(inyny + —-)
(1) = [ A E (eny) e 2° 0 °
1’ e 2 "n 2
-1 2 (L.11)
+1 . ' 1
, Y B Gl k-
[ any 1 _(vemp) (n3-my)
-1
The Hermite polynomials are represented by the series
Ln/2] v n- 2v
: - 2
H (x) =nl T (\l)) ((};)-2\))1 (L.12)

V=0

With the aid of 4.12 the integrand of I(ﬂl,ﬂe) may be expressed in
terms of a polynomial in M and solved in generelity for any valuc of
n. However, to avoid the rather involved expressions resulting from
a solution of L4.11 for an arbitrary n we will pick a specific Hermite

polynomial, n = 2, to Zllustrate the method of solution.
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For the particular mode n = 2 UL.11 is

+1
 (2en:®
I(n,1,) = jldng (2enz® - 1) e

2
o
-e(inyng + )

2
']’]'2 ()'I"l«)
+1 . 1
: o clmny - 5
It A _ L 1
[fani(een - 1) (g - ) e
-1
We concern ourselves initially with the first integration:
+1
I. = J (zon'2 1) (w ')2 c¢l an! (L.1k)
17 hT - My e 1’ ’

where ¢l is defined

2
g = im M - E;—
17t 5

As the parameser c¢ 1is very large the behavior of I, will depend

1
strongly or. She function ¢l. To evaluate this integral we replace the
limits of integration by + « and then deform the contour so that it
passes through tke saddle point along the path of steepest descent.

In the complex ﬂi plane the saddle point is located by setiing

d¢l/dﬂi = 0. We find

anr T ot T

or

UPEEL A

In addition
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1ls
where a subgcript s refers to the magnitude of a quantity at the
The originsal and deformed paths of integration are
which is real on the path

saddle point

hown in Figure 4.1

We next define a new variable ul

of steepest descent

Now,
aer I [2@11 (2,) - 1] [n (u,)- n2] "o I 1(; : du, . (b5)
L= T

in a Taylor series about ﬂl

contour
To find M (ul) we expand u.
() = (A - d )+ =2 (- ) (n - )"+ . .
- g - )P
S0
(N - M)" =29 ,
T‘i(ul> = i“gul + ﬂis )

and

' 1
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Im 'r;"

PATH OF STEEPEST A
DESCENT

ORIGINAL
CONTOUR

Fig. 4.1 Contours of integration in the complex T\i— plane.

BRANCH CUT

Fig. 4.2 Contour of integration in the 4, - plane.
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The integration path in the wu,-plane is shown in Figure k4.2,

Additional terms needed in the integration are

~
1 &

o
1 — 1 +
My = 2w raden e+ Mg

3 3/2 3/2 ' W 5T a2 3

! = ° \ +
MU= 2T T ey F SvRuy Ty o+ T

i 2 — 2 3 U
\ ! = " n + .
ﬂl Mul + 8ul J2ul + 12u1ﬂis + H«/2ulﬂls nls

Using Shese relations 4.15 becomes

© L
C¢ -CU . § T]‘ )
~1s 1 — 2 18
Il = Qe i dﬂl e [2c(2ulJ2ul + 642ulﬂls + —;;7
-Len (3»/53 v+ 2B . (2cn'2 -1) ('/EE + 28 (4.16)
2 11ls //Ealf 2 1 ”Qii J ]
2
Ny 5 '
oy =2 - 2]
~231 J2ul

where we have taken note of the fact that the plus and minus signs
arrived at by taking the square root of uy refer to the contour on
opposite sides of the breanch cut. From the elementary integral

relations

i

©

3/ o g 2 [E
jvu € du )_('2’\(3,
(o]

Olﬁl

[ee)

[ /2 o gy L
2C

o)
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J u-l/2 o 4 =4/§ ,

(e}

Il is evaluated and reduces to

| = Pislis 1, ek
Il = 2/% e UE + '/—E nlS + EC t'ﬂls)
(L.17)

1s

ﬂég]

We can now proceed to perform the second integration of I(ﬂl,ﬂe) in

&t l‘3 1 L 12
502 Mt azc nls,) m, * (A/§+ 2cT

precisely the same fashion. Using the result of the Il integration,
+1 -clin.mn. + ﬂ‘g
[T C¢ls ‘ 22 ‘é}
— - N 1
(n,m,) = 2fEe B[ an e
-1
[gcn'gg _1] {(_?_ L 12 nf + A/'écn'li) (4.18)
JEC JE s

—

s, » o) g (L0 e

Performing the indicated multiplication,
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+1 -C

ls - '
t(n,my) = 2f e 1= [any e

.0
. 5
Ny + = )

5 11 |2 vLF 1 YRy 13 '
[‘ (E * NS Me ¥ A/50“15) * (54/§“1s * 2"2(3“13) T

+

2+ »/ElOcniSE + eﬁcgniz) e

JE 2

- (10,/’2'cnis+ u«/écgnis n;’ + (/Ec + @ecgnif) n5 L‘]

Again we define a quantity ¢ such that

n.?
¢2 = -1iN - =

Then

It

gy = -im, -

g5 = -1
and ‘the saddle point is located at
fag = 1T -

The value of ¢, at the saddle point is

2
. ng
¢25 -7

A Dbefore we define a new variable U, which is real along the contour.
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N
n
=
n
=
n
w

Now Uy is expanded in a Taylor series about the saddle point and we

#ind ﬂé and dﬂé/due in terms of Uy, - The transformration again
maps the pvath of integration around a branch cut from zero to infinity

as shown in Figures 4.3 and L.4.

We now have the straightforward integral

(9, + 9,.) -cu
I('ﬂl,'ng) = LE o} s 28 I du2 e 2

. Mn!
5 , 11 ..,2 B2 : 3| o
[- 2¢ " 2 ls * Cﬂls) /'_ug - (Sﬂls * QCT\ls ) [T,

2 4 lO@c’ﬂis + 2-/_2-(221]{ :‘) (Qu2 + =28 )

i Jaw,

Mha
_(1o4f§cnl's - h@cgﬂi:’) (34/2712772'3 + 5%2‘)

+

4
’T]l

+ L,Ec + 20270 2 |ous2u, + 6430, 2 + =2

1s 2 c 2'2s A/"2—11

2

]

Performing the integration,
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/

In\na

ORIGINAL
CONTOUR

4

Re A

PATH OF STEEPEST
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Ly C(¢ls * QES)' 5 21 '
I(N,My) = 5 e [E T e cMa

3 21 2 2..,2
1 t t 1 e 1 t
_25nlsﬂ25 - locﬂls nQS * 2 HES * 22Cﬂ2s nis (4.19)
+202ﬂ'uT'2 - 1CcT} ﬂ - he ﬂ n + eNA t i 2c M ﬂ 1
1s'l2s nls ls 2s 28 1ls 2s
Now recallinrng the relations
Te =1 g = 1T, >
2 2
n il
A g, = -2
s~ 2’ 2s 2 ’
therefore, 4.19 reduces to
c 2 ,
e M * ) s 21 2 4
I(T\l:ﬂg) = ? € ‘:E 2 lnﬂ ﬂl
3 21 .2 2.2
-25M My + 10e0iM, - 5= T, + 22¢ M5y (4.20)
222 & 1oen R - bePrind + enp - 2Py ]
11l h ' 12 2 172
To £ind the perturbation intensity we set
n = 'nl = ng ¢
Ther. the perturbation intensity is simply
2
-cM
i) = 2 e [5.06 e+ bkePnt - 831 ] (1.21)

C
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Rather thah directly looking into the implications of this result, at
this point we will proceed with the analysis of the second approach
suggested in Chapter III. Then with the mathematics of both technigues

worked out their implications and validity will be delved into.
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CHAPTER V

PERTURBATION TREATMENT OF THE CHARACTERISTIC EQUATION FOR

A CONZT'OCAL RESONATOR WITH AN IRREGULAR MIRROR

5.1 Formal Development of the Series Solution

In Section 3.3 the following integral equation was derived

for a perturbed confocal resorator;

LT ;-
i+ -ik
e p

iﬁc j EO(X) rl + 2ik ? CS¢S(X>] ,f; ax . (5.1)

tY
0E4x Y =

Introducing the geometrical approximations and the normalized notation

of earlier chapters this becomes

1(F - ¥) T s o
0E_(T') = /;iﬁ— e T [ &M [1+2ime g ()] B (man .

4

(5.2)
To solve this equation for its eigenfunctions and eigenvalues, we
expand the unperturbed kernel in an orthogonal series of spheroidal

functions.

icmn’
c

a(n,1") = - D a8 (e) (5.3)

In order to find the Am, we multiply both sides of the equation by

Son(c,ﬂ)dﬂ and integrate over the range -1 to +1.

'+:— +l
[ 2ot g (c,man- | T a8, (e, 8 (e, Man (5.4)
g -1
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Then

+1
>
g Réi>(c,l) 5,,(e M) = A j [Son(c,u)] du . (5.5)
_1

And for the expansion coefticients, we have

o1 Rgi)(c,l)

A=
o
[Son(c,d) du
-1

There are some limited tables available from which the integral in the

JRCR DI (5.6)

denominator may be calculated; however, for large values of the
parameter c¢ the spheroidal function may be approximated by a Hermite
function and the integral can be evaluated approximately through such
a substitution. First, the Hermite function must be normalized in the
same manner as the spheroidal function. Following the normalization

of Flammer (17), we have
S {c,0) =P (0) = ALy ar n even .
on* "’ n ’

When its argument is zero, the Hermite function reduces to a Hermite

polynomial and becomes

n

(-1)2 n!

H (o) =
. (3

, 0 even .

With prover normaligzation, it follows that
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a

Now, going back to the integral in the limit ¢ - =,

+]

2
Jl[%on(c’u)] du “on

i1l
=

< 2

. 12 -u .
\ - .
J [Hn(u/] - du

A g T

]

_ n! Vﬁi
- 2 c

Eh[l“(% + l)]'

Finelly, the expansion for the kernel may be written as

Qingi)(c,l)

om

(M) 8, (oM 8, (e1")

2m+l

Il

(5.7)

(5.8)

(5.9)

E' m! im-[r(% * l)]g Réi)(c’l)a/g Som(c’ﬂ) Som(c’ﬂ') ’

We may now proceed to write the perturbed integral equation with The

expanded Kernel as
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i(F - xb) imR(l)(r:,l)
o5, (1) = [Z e 5 Son(®1")
+1 . (5.10)

[ 8gu(esm) [1 + Deixe d (W] B (Man .

-1
The zeroth approximation of the perturbed field distribution results

from setting Eo(ﬂ} in the integrand equal to the unperturbed mode of

interest, or

E (M) = 5_, (c;M)

Then

1(T-kb) imR(l)(c)l)
anon(n')'—:/%ée L 2 —20 5 (c,n")

N om
m om

+1 (5.11)
j som(c,n) [; + %‘Qikcs¢s(ﬂ)].son(c,ﬂ)dﬂ .
-1

When the perturbation coefficient Cq goes to zero, the series re-

duces to one term with the result

o E (M) = /= e inR(l)(c,l) S (e,m) (5.12)

n on s on on

yielding the unperturbed solutions obtained previously.
The first integration of 5.11 is readily evaluated and we
arrive at the final form of the series solution for the perturbed

resonator.



i(F -xp
o8 (M) = L2 Dy e T s, (o)
(5.13)
i
5o Hp-x0) _ymp(S)ig gy ,
+2k[e z Ol’lg ocmn Som( :'ﬂ);
om
where
+1
o =0, [ s, (e,m) g (1) 8 (c,man . (5.14)
-1

To obtain explicit solutions we must now evaluate integrals of the

form
+1

of =c_[s,_(c,m g (M s (c,man . (5.15)

In the next sectior we shall work out an example for a particular

orthogonal function ¢S(ﬂ)

5.2 Evaluation of the Perturbation Integral for Surfaces with
Trigonometric Expansions

Ir. Apperdix I it is shown that a random function g(T) may
be expanded in a discrete series of trigonometric functions when the
correlation function has an exponential form. By choosing the series
properly it can ve assured that the coefficients cS of the expansion

are uncorrelated random variables. With such an expansion 5.15 assumes

the form
s *1 sin Psﬂ'
a . = csdsns J som(c,n) N Son(c,T])d’ﬂ . (5.16)
-1 cos P_T

S
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Since the cosine and sine are expressible, respectively, as the sum
and difference of a positive and a negative exponential, we need only

evaluate the integral

+l +ip 7|
(i) = [\ Som(c)'ﬂ) e~ 8 Son(c,’ﬂ)dﬂ . (517)

-1

IS
mn
Again, we approach an infegral involving spheroidal functions by
substituting the approximate Hermite functions and evaluating the
integral ir the limit ¢ - «, Defining a rew variable u = JEﬂ and

letting 4J¢ arproach infinity in the limits of irtegration, we have

tigu 2

j e H (u) H (v) e au
-S - ™ n
lmn(i) = m+n m n ’
- Ac2 JC r(§+ 1) r(§ +1)
where qs = PS/J” . Except for a trivial constant, this is simply <he

Fourier transform of the product

[e-ug/ 2 Hm<u)] -[e-uE/E Hn(u>] :

Ry means of the convolution theorem, the integral may be written as

o 2
menl P gy TSI
s J o m n'ds
I ()) = — s
mn Jootth F(% +1) T(3+1)
where; for the present, we have taken only the positive qq - Now we

set
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.m+n
1

A rE+1) T(5+1)

A =

Then

2
I;n(ﬂ o ~(v-q_)7/2

Changing S0 a new variable

W= v- qS/E ,

T -(w+ qs/2)2/2

)= (1) afe 4 (0+q,/2)

(w-q /2)%/2
e s Hn(a) - qS/E)dm
) Y-S |
- ()% j e H (o+q/2) H (0 -a_/2)d

Now, defining a new variable of integration u = {20 5

u- qS/J§

2% NEJH d
1w

o n

mn 2

o
1° (+) = (1) A *) 2. / I e

o/l
(-1)ae ° —u2/2 9g 4
2-_% (m+n ~ ;) I € Hem<u +’/"'"§.-> Hen(u - A/__—g)du »

where the polynomials Hen(x) are defined by the equations:

n -V s
A [ e H (v) e H (v-q)dv .
oo

(5.18)
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n ax

2 2
/o _i g n o _ )
Hen(x) - o2y (272%) = F /2 -EL) ¥ / .

The integral of 5.18 can be found tabulated in the literature (30).

We arrive at the expression

2
n-nm . -a /b ) 5
IS (+) = = 1 - T m - S VS]. m n m( S/g) , (5‘19)
ma AT T(E+1) T(E+12 m
2 2
m<n,

where the functions Li—nkx) are Laguerre polynomials. It follows

immediately that

. m-1n ' -q_ /h - - 2
s (2) = . i , Jﬁ'm.n s qz InLi m(qs/g) ) (5.20)
2 4/61"(§+ 1) r(§+1) :

ms=mn .

Recalling 5.16, wc have for the terms in the perturbation expansion

o” (sin)= Sgi S {I;n(+) - Iin(')} )
eéasas s s
o (cos)= 5 [Imn(+) + Imn(-)1

Defining the quantity
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2
—o2/L
ml qr_—m qS .
BS' =,J§ n _,m - n L; -m(q:/e)
e 2Pz + 1) T(z+ 1)
2
0 —PS/HC

n! PoC
- fE 5
“ Ao - _m) /2
c on C(n m).

m=n,

the perturbation Lerm

o (sin)

I

a”_ (sin)

]

o (sin)

(cos)

i

Il

o (cos)

a;n (cos)

These are tabulated b

8 n .0
By =43 o
8 Ps i
Bn=7% o

n- 2
2P /2e)
r(gn) r(§+1) m 5

s may be wrilten simply as

IS
cdn B n-m=1 N
An B, » 55 9

S ; . .
- n B n - m= | 11 Y
Csds s “mn’ 30 ?

O, n-m=0, 2, 4, . ..

dn B, n-m=0, b, 8, . ..

~ A 3
-C n B ,n-n=2, 6, 10,
g 8’s Tmn

C,n-m=1, 3, 5, . . .

elow form, n < 3 .

- fhe

(5.21)



N

N

v,

m‘
olm

ny

o | d
(@2 §¥2]
W

(@]

B

[\S]

lav}

g
[ 3\

s

NS
0

H

W)

—Pi/Mc

-P~ /he



P p° _-PE/uc P 3132 P” -Pe/uc
B - SrhS e 8 - Sl3_. 848/, =
23 7 3¢ 2\2¢c 3¢ 2c §cl
P o -P2/1+c P 3p° p -Pg/uc
gS . _& Ll-—i e S _ _s kg _ + S ]o 8
32 7 3c 2{2c) 3e 2c 82
. Lo Pi -Pi/hc L 3P§ 3132L Pg -Pi/uc
B, = —— L \= = 1- - e
33 7 S/re 3\Z2c 3/ic 2c ' 8c? T h8e3

5.3 Calcnlatibn of Perturbed Eigenvalues

In 5.1 we developed a series expansion for the field disgtri-
bution of a perturbed resonator. Now we want to determine the eigen-
values for the perturbed system in order to find the effect of surface
roughness on Q and resonant [requency. The modes of the cavity were

represented by the solutions of an integral equation of the form

+1

E (1) = x | &(n,m) w(n) E_(Man (5.22)
1

where u(7) represents the effect of the surface roughness. The

Kernel was expanded in an orthogonal series,

G(T‘"ﬂ) - %Cm SOII'J.(C’T‘,) SOIIJ.(C)F”)

With this substitution the integral becomes

+1
my(n1) = x D ey S (e,nt) [ s (e uln) 5 (man . (5.23)
-1
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The series representation of the perturbed eigenfunction is
! - «a 1 .
E(M") = 2D, 8, () . (5.2%)

Introducing 5.24 on the left hand side of 5.23 yields for each value

of m
+1

D= %Gy jlsom<e,m> w(1) B, (1)an . (5.25)

Expressing the eigenfunction in the integrand by a similar series

represensation we find,

+1
D= % ¢, | 8y (em) uw(n) Bo s (e,man

(5.26)
- XCm EDn Man 2
where

+1
b = jlsom<u,n> u(n) s, (c,man .
Equation 5.26 msy be written in the more compact form,

E(Xcmum'smn)Dn:O'

Thus, for nonzero solutions for Dn to exist the determinant of the
coefficients must vanish. Consequently, the eigenvalues ¥ may be

found from the determinantal equation

X Cm Mo~ amn: =05 (5.27)

where .
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o4 R(l)(c,l)

C _ onl
=
om
m+1 .m
o ] c - 2 (1
= — = - [l(g + l)} Rém)(o:l) »
and +1 )
b = | Soules [ 1+ 25a(m ] 5 (eman
or
L =N_ B + 2ika
mn om mn mr.
where +1
%mn = E Cy J"]_SOIH(C"T]) ¢S(ﬂ) Son(c,ﬂ)dﬂ )

5.4 The Perturbed Figenvalues: Numerical Examples

First, let us look at the determinantal equation 5.27 in our
often employed 1imit of ¢ approaching infinity. Inspection of 5.21
indicates that we may neglect the off-diagonal terms in this case.

Then 5.27 reduces to the simple product

T e, w -1 =c¢. (5.28)

The irdividual eigenvalues may be determined independently and they are
given by

where



Therefore,
2 -1
. -P7/Le
) aem (L) . . s 0,2
X, =21 R (c,1) (_ + E}csdsns(Elk) e Lm(PS/Zc)

As ¢ dig very large we gset the exponential and the Laguerre polynomial

equa’l to unity.

om S 8 S

: -1
X, = p: R(l)(c,l) [1+ zixzea‘ﬁ]k (5.29)
- - z l

The eigenvaiues and the transfer factors are related by the following

expression.
S kb
1({ - 2;)
- (£ &
*n T J2n o :
jul

It follows that the perturbed transfer factor is

i(f - )
G = ?Eime ko2 R(l)(c,l)[l+2ik§3@ﬁﬁ],
m i om s S 8°'s
(5.30)
and for its square we have
. g7
PO i(5 - kb) o 5 N
oo = B¢ 4Fm 2 [R<l)(c,1):] [1 - hx 2’&‘32] :
om om s §°s

(5.31)
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Now let us consider specific numerical examples as worked
out in Appendix IT. For £ = 1.0 the series of expansion coefficients
nay be summed approximately.

Thus,

2, 2c .2 1 -i 1 2 p) o
LU OF] M ER TSN

N

2n2 2
%}ﬁsns = 0.09 &,

Then,

2
o)
m

iy

_i 2
%§ gem L 1kb'[Réi)(c,1)1 [1 - 1 (0.09) gi} .

For 4 = 0.01

o p Py 2 2
. = %; ;2m + 1 . ikb [Rgi)(c’l)] [1 - hkg (0.006) go] P

as

2A2 2
%}asns ~ 0.006 g, -

The'above results lead us to a number of conclusions. First,
shorter correlation distances imply lower diffraction losses for the
same surface variance. This is consistent with a general result of
scattering theory which states that for sufficiently fine scale rough-
ness the inccherent scattering may be neglected. Secondly, for the

:correlation distances congidered the diffraction losses are signifi-
cantly less than those predicted by the simple theories presenﬁed in
the introductiona This i1s a consequence of the highly corrected nature

of the confocal system as discussed in reference (1). Finally, we
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note thas in this large c¢ approximation the reiative decrease in the
transfer factor is the same for al> modes.
For a resonator with square mirrors the diffraction loss is

2 - 2 2
op - 1 - 2 LRéI]r'l)(c,l)] 25,0 @ - wlred)
) M

where 02 is the total variance of a surface with two orthogonal
rardom processcs gl(x) and. gg(y) which are assumed to have idernti-
cal statistical properties. F 1is the sum of the squares of their

exparsion coefficients:

For lcw order modes with high ¢
2c (1) -
Ea Rom (‘-‘)l) =1,

and the perturbed diffraction loss may be approximated

2

oy ¥ I F o (5.32)

A

Now considering a half confocal resonator with mirror separation b

we find

T

oA

(5.33)
g F 02

Q

Comparing 5.33 with 1.5 it is clear that the perturbed Q may be fronm
ter to one hundred times greater than that predicted by the simple
theory for the range of correlation lengths considered.

As a further example suppose a mirror roughness has a
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standard deviation of one hurdredth of an optical wavelength and

N

1rs

h(eﬂ)e (0.006) x 10~

11

0.01% ,

which Is negligible compared to typical transmission and absorption
losses. Thus, the diffraction losses introduced by imperfections in
the figuring of high quality optical surfaces can probably be neg-

~ected.
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CHAPTER VI

EXTENSIONS AND IMPLICATIONS OF THE PERTURBATION TREATMENT

6.1 Analysis of a Full Confocal Resonator with Rough Mirrors
| In preceding sections we congidered a confocal resonator
with a rough mirror and treated this problem by requiring that the
field distribution on the second mirror be of the same form as that
on the first. As a confocal resonator with rough mirrors is no longer
symmetrical we should require the field distribution on a mirror one
to generate the same distribution again on the first mirror after
being reflected by a second mirror. 'This procedure would then be
correct for a full confocal system, whereas the solution of the pre-
vioueg chapter is rigorous only for thec half confocal system; i.e. a
resonator with a plane mirror at the focus of a rough spherical mirror
(treated in 6.2).
We will now compute the round trip field for a perturbed
Confoéal system. As the roughnesses on the two mirrors will be sta-
tistically independent functiong, we need to consider a resonator with
only one rough mirror when treating the statistics of the field dis-
tribution. The geometry of such a situation is depicted in Figure 6.1.
The normalized harmonic perturbation cs¢s(xl) may as usual
represent dne of the statistically independent terms in the orthogonal
‘expansion of a random surface.
| In terms of the fileld 'El(Xl) on Lhe confocal surface at

mirror 1 the field on the second mirror is



(X}, ¥p2 Z)) (X2, ¥z, 25)

Cgs bealx)) A

() (2)

—g— b L

Fig. 6.1 Confocal resonator with an harmonic perturbation on mirror (1).
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. T .
i ta e—lkpl

{e

my0e) = T ) (x)ax . (6.1)

-a

- Similarly, in terms of EE(XE) we have for the field at 1,

LT .
) —1kp2
e e

D= | e ml)e, (6.2)

-a 2

With the usual approximation Py and Py are
p. £b - Lxx, + e B o(x)
1 b 172 s’s V7L’

o ; s
Db - o X X .

P2 %1

Introducing 6.1 into 6.2 and employing the approximations for Py and

Py We find El(xl) must satisfy the following integral equation:

- L Rikb i o
=\ _ 1T = 5
o, By (x)) o I dx, e
-,
+a ik
= x_x, -ik ¢ X, )
J dx]_ eb 12 ¢ qgss( 1 , (6.3)
-a,

where the transfer factor o has been defined as in previous sections.

Interchanging the ofder‘of integration this becomes,

. _-2ikb
ie

. I o e-lkcs¢s (Xl)
m 117 1o 1

B (x)) K(x,X) 5 (6.4)
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+a, ik - . ka -
— 1 s + 5,
K, 5) _,J“ . oD () + %)) Cogp sty (gt xg) (6.5)
1% =) 4% =% CRE : -
| - 17 %

In order to solve the above pefturbed integral equation we

‘expand the unperturbed kernel k(xl,§ in an orthogonal series of

1)
spheroidal wave functions and then evaluate the resulting series of
integrals using as a trial function the unperturbed solution for

El(xl). For convenience we first define the dimensionless variables

“1 = Xl/a and ﬁ1 = El/a and the quantity c = kag/b. With these

definitions we rewrite 6.4 and 6.5 as

. +1 . i~
. =2ikb —1k¢3¢ ;) sin c(M, +1,)
= ic e 1 1 1
E (M) = T Y an, e E, (1) (M +m)
) (6.6)
The expansion of the kernel will be of the form

sin c('nl—r- ’ﬁl) - ) (6.1)
c(nli_“l) o n Son(c,ﬂl ) a

To find An both sides of the equation are multiplied by Som(c,ﬂl)

and integrated over the range of ﬂl.

. +1
Som(c’nl) = E‘An I Son(c’nl) Som(c’nl)dnl
-1

sin c(n+ M.)
Idﬂ ety ™ Ty
ﬂ+ﬂl)

2(“l)m [Réi)(c,l)]g Som(c’ﬁl) - Am f [Som(c’nl>]2dnl
' -1
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Therefore,
. 2
21 [R5 (e,7))
Am _ [ om ] om 1 , (6.8)
om
where
+1 5
- ,[l[som(c,nl)] an, (6.9)
The expénsion of 6.6 becomes
. _2ikb T ike ¢ (1.)
Gxi B (M) = =5 Ildﬂl e E (1)
o(-1)" [R l)(c 1)]
E Non (C,'nl) S (C}Tll) . (6"10)

The perturbation exponential is expanded to yield

(nl) _ 2ic (c1)" e -2ikb [R(l)( 1) ]2 Som(c9ﬁl)

JI

o 2 NES <1>( 1 ]
~ike %—9 gTeLkD T (-1)" S.,(cy)  (6.11)

+1
jlsom<c,ni> g(0) 8 (e dan,

where we have utilized the property of the orthogonality of the
spheroidal functions and the definition of Non . Using the notation

of Chapter V the series may be written



Th

Gi'El(ﬁl) 21c (- l) —leb [R(l)( l)] S (C’nl)

NE <1>(C, N

-ike_ 2_;;3 ,-2ikDb E (-1)" ocmn S.,(cT)
(6.12)
The perturbation coefficient is defined,
+1
o = flsom(c,nl) g.(n) s, (e,n)an, . (6.13)

Clearly, the mathematics pertinent to this resonator was
worked oul in the preceding chapter. Comparing 6.12 and 5.13 we see
that the solution for a full resonator with one rough mirror is identi-
cal to that obtained by successive application of the perturbed and

unperturbed solutions of Chapter V and Chapter II, respectively.

6.2 The Half Confocal Resonator with a Rough Mirror

Having developed the equations characterizing the half reso-
nator in Section 2.3 we now consider the effecﬁ of mirror roughness on
such a cavity. For practical experimental reasons we are primarily
interested in the case of roughness on the flat mirror; however, for
the sake of comparison we shall consider in turn roughness on each
mirror.

‘With roughness on the curved reflector 1 of Section 2.3 the

integral equation satisfied by its field distribution function is



. -ikp 1 -ikp
= =y _ 1 2 J 1
E (%) = [ ax, e ax, B (x)) e . (6.14)
—® _al
In 6.14
—2
~ b r 2 I_]:. - e ]
P2t B T TR Xz\ )

201212 é]
SN E Le - exy xe) +teghy(x)

where cs¢s(xl) represents a normalized harmonic perturbation. Now

6.14 becomes

2
. b:d
ik @ EL 3 R
B (E ). ie—lkb [ o e—b E 2xlx2 + xg)
1M \b J 2
-0
XE
. ik {1 2)
_lkcs¢s(xl) e—Tb— 2 2xlx2 * X2

+

!
I dxy By(xy) e
-8,

1 (6.15)
As before the order of integration may be reversed, and the integration

over X, is perfofmed directly. The perturbation does not affect this

and the resulting equation is

i(%.-kb) ey 15w X -ike ¢ (x.)
= S b 11 s"sV 1
O'El(Xl) = '———’J——T—E——[ Xm El(Xl) e e . (6.]_6)
-a
1

In terms of the dimensionless variable T, = xl/al 6.16 becomes,

_ = i@ ow) e . -ixe ¢ (1)
oE, (M) =j;—i et e T s Y g (qan, , (6.17)
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~ where

H P

©1

I

This equation is identical to that developed for a single pass in a
full resonator; therefore, our assumption that we could trest a half
resonator with a rough curved mirror in such a manner was Justified.
Hence we may apply the results of Chapter V to the half resonator con-
figuration.

To complete this treatment of such a resonator we must look
into the case of roughness on the flat reflector. The perturbed inte-
gral equation for the field distribution on the flat mirror is

+ —
1(Eow) Y iZE % -ike ¢ (x)
B =2 e [ Ted B R g o a, . (6.16)
22 Ab 2 272
_a2 '

In terms of dimensionless variables

LT +1 . = .
oE (-ﬁ A) =j§ el(ﬂ ~e) J' 62102T\2T12 e-lkcs¢s(n2)
2° 2 8 !l

where
ka,

N o

it

c

i

2
For the sake of comparison let us relate the characteristics
of such a resonator to one of the previous type with an unperturbed
diffractiqn loss of the same magnitude. This requires that ¢, = 2c2;
i.e., the ratio of the spot size to aperture size is the same at the

finite aperture of each resonator. Thus, 6.19 may be written as
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= i(f-xb) }l eiclﬂéﬁg efikcs¢s(ﬂ2)

oE,(M,) = 5 E(1y)an, . (6.20)

-1

This is identicél to 6.18. Consequently, the perturbation induced loss
of such a resonator has the same geometrical dependence as the normal
diffraction loss. We gee that in an unsymmetrical system such as the
half éonfocal resonator it makes né‘difference which mirror is perturbed

ag long ag the gpot size to aperture size ratio remains constant.

6.3 Diffraction Losses for Slightly Nonconfocal Resonators

Previously, we found the eigenvalue determinant for a per-

turbed sgpherical Fabry-Perot resonator of the form

| xcp -3 =0 . (6.21)

m mn mr

Rather than considering the perturbation as a random irregularity and
obtaining an expected value for the eigenvalue, we may take one of the
random harmonics on‘the mirror as a definité distortion of the confocal
.geometry and determine the characteristics of such a resonator. TFor
instance 'a resonator with nonconfocal spacing may be approximated by
addiné an even hafmonic to the mirror contour. One with imperfect
aligmment would be represenled by adding an odd harmonic.

VAS an example of such a procedure let us look at the eigen-

value determinant for m,n = 0,1.
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Using the notation of Chapter V this may be rewritten as

v (1 + EiKEOéoso)

v (2ik E o)

oL
23(%)(@1)

) s
¥ (ik#rc oy

g 1
v (L+ ikfmcal . )- —
1L 2iR§);L_>(c,l)

(6.23)

Consulting table of perturbation terms in Chapter V it is clear that

the off-diagonal terms are negligible when c % 100 and the perturbation

period is comparable to the aperture size. Conseguently, within the

region of wvalidity of the solutions misalignment losses may be neg-

lected.

- Now expanding 6.23 we have approximately

[X (1 + Qikjlg- oaOSO) - ;i—(l)

00 (C)'

The eigenvalues are

Hx(l+
1)

S 1
kT AL ) - —— = 0
11 213&)(@1)]

(6.24)
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Tt follows that the corresponding transfer factors are
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Setting PS = % these become
(7 - %)
~ |2cC 1), 2 .
o, T Rc()o)(c,l) e (1 + 2ike) , (6.25)
i (% kb
~ ’2c (1) LT~ )
oy =45 1R1 (c,1) e (1 + 21kcs) s (6.26)

for large c. We have taken Cq és the amplitude of the perturbation
harmonic. However, it cannot have quite such a simple interpretation.
In deriving the perturbed Green's function it was required that the
surface irregularity be a random process with zero mean. Obviously the
even perturbation chosen above is not of zero mean. We may compensate
for Lhis by golng back to the original characteristic integral and
dividing the perturbed Green's function by its mean magnitude. For
convenience we take the mean as its value at the spot size radius or,

typically, at N ¥ 0.1. Now 6.25 becomes
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Fais kb« - .
T -—= 1+ 21kc
(1)( )l) E 2 2 °
1+ 2 (0.98) K2e

o Aw

This implies that just as in the misalignment cése the imperfect spacing
loss will bé negligiblevwithin the region of wvalidity of this expansion.
- Let us now see just what the foregoing implies. An odd
perturbation harmohic with an amplitude of one twentieth the radiation
wavelength corresponds to a mirror rotation of approximately 10
radian or 20 seconds. For rotations of this magnituae the change in
difffaction loss should be small relative to 1%. An even perturbation
harmonic with a comparable amplitude corresponds to a variation of
gbout 1 em. in a basic 1 m. mirror separation and this should intfo-

duce a similarly small increase in the diffraction loss.

6.4 Characteristics of the Perturbed Field at the Aperture

In Chapter V the following series expansion was derived for

the perturbed aperture field.

i (¥ -kb)
0, Bonim) = [22 7 2B,y o (esm0)

(6.27)

) — i(} -xp) " R(l)(c,l)
- 211:]% e T — a . 8..(c,m)

m om

As this solutidn is valid only for small perturbations, we would ex-
pect the correction represented here to be most discernable at a zero

of the unperturbed field distribution. The first function to possess
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‘& zero is Sol(c,n) ~which vanishes at T = 0. Let us now consider the
filling-in of this zero due to the rough mirrors. For this case 6.27

becomes

—l(E_ kb)
o1 (M) = (c,m")
77(—‘1— «F ) =8y, (esm

(6.28)

.M

—-——l 1
- 2k %N Ol SorlrL(C"n )
om ,

where ¢ has been assumed large so that the radial spheroidal functions
converge to the same value. Taking the first order corrections to the

unperturbed mode, the right hand side of 6.28 becomes

%0 194
Sol(c,ﬂ') - 2k [ﬁ_ SOO(C’T") + Sol(C:ﬂ')

00 ol
o, (6.29)

T SOE(C’T")

02z
The relative energy at the null (7' = 0) will be

RE

uk [ 8, ( M) - = s (c,ﬂ')] . (6.30)
00 02

The normalization of the spheroidal functions is such that a mode's
energy content is approximately proportional to its maximum value.
The modes m.=‘O,2 Jhave maxima at. T = O; therefore, the peak to
valley energy ratio is approximately the ratio of normal to scattered

energy. As an example 1f we congider c¢ = 100, £ = 0.1  and go = )\ﬂ_OO
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and refer to Chapter_v and Appendix IIT we find a peak td valley energy
ratio of 1.5 x 1073,

In the foregoing discussion it was pointed out that the
strongest contribﬁtions to the spatial Ecattering of a spécific mode
occurs in adjacent modes. Thus, if the unperturbed field is ever, the
scattering will be primarily of arn odd character. Similarly, an odd
field scatters into even modes. This suggests a possible experiment
to investigate sﬁdh scattering. Specifically, the rglativc phascs at
pairs of "zeros" will have the opposite phase relationship from that
of the major portiong of the mode so that performing a Young's experi-

mert should show a shift in the fringes for interference from a pair

of nodes in the field distribution.

6.5 Comparison of the Two Computations for the Scattered Field

In Chapfer IV the radiation scattered from an imperfect con-
focal surface was computed neglecting any correlation beftween the in-
cident field and the perturbation. From 4.21 the relative field in-
tensity at a zero of the mode n ¥ 2 will be

o 0 -cn

I(ﬂo) = 8k'g [5 - u6cn + Whe®qt - 8e n6] (6.31)

where

-L

Taking the parameters of previous examples: Koo° = (2n)2 x 10

‘c = 100 and £ = 0.1, the relative intensity is



y "l
IO(T]O) ¥1.5x107 .

Comparing this with the results of the preceding section we see that
for identical resonator parameters spproximately one hundred times as
much scattered energy appears at a pattern node when spatial corre-

lation bétween radiation and irregularities is neglected.
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~ CHAPTER VIT

SCATTERING FROM SMALL RANDOM IMPERFECTIONS

In this paper the emphasis has teen placed on finding the
distortion of the modes of a confocal resconator by small irregularities
in the shapes of the mirrors. This deviation of the surface of the
mirror must be small with.respect to the radiation wavelength and in
addition 1s allowed to change only by a negligible amount in a distance
comparable to an optical wavelength along the mirror surface. Howéver,
Specht (32) has found that most of the séattering is from a distri-
bution of;small localized scattering centers. In this section we will
treat a similar situation.

It is assumed that each mirror has a large number of very
small, sharp irregularities. Bach of these scattering centers is much
smaller than the radiétion wavelength. The reflection from such a
-gsurface will be characterized as coming from arn undisturbed surface
with a random distribution of multipoles with random strengths and
phases. We presume *the scattering centers are similar pinholes irn the
dielectric films and thus wiill be predomirantly dlpole scabterers with
random phases and of stréngth proportional to the incident field in-
tensity. To the approximation that cos & = 1 as in Chapter 11 we

may formulatec the characteristic integral as follows;
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i(F-we) [,
0, By (M) =,Jg% o jﬂelcﬂ“ E_ (1) (1 - 8)ay
(7.1)
+l . .
+ [ elcle' AEm('ﬂv) el¢(ﬂ’)dw

where A 1s the fraction of the incident radiation scattered Ly the
imperfections and @(7') represents their distribution of phase shifts.
As we are considering very fine scale imperfections we may take the
field distribution Em(ﬂ’) and the phase distribution @(1') as being
statistically independent and take their expectations indspendently.

The expectation of 7.1 is then

+1

i(F -xb) e
o CB (> =[S " [ete™Me () (1 - a)any:

-4

(7-2)

+1

j et A<Em(nv)><ei¢(“")> an’

+

Writing Fm(T]) <Em(ﬂ)> and evaluating <ei¢('ﬂ')> we have

+1

M
i("ﬂ-kﬂ(}) . . ‘
o (M = Jzz e [ 2™ 5 () (@ - ajan

+

R i
+ ﬁ Jemt Fm(n‘)<l - igln) + —[—140-5-‘-2—’—‘, .. > an’

-1

i._!

(7.3)
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Takin, (n) =0 and requiring that the variance 2(’n) 206 be
n
small we find
LT +1
, i(y-%b) . 2
_ e 4 ‘ iemm’ ' _Ac '
cmFm(ﬂ) = leﬂ‘e fi e Fm(n ) (1-75 )an' .
i (7-1)

We see that Fm(ﬂ') satisfies the same integral equation as the sphe-

roidal wave functions Som(c,n‘). In this case the transfer ratio is

i(F- xb) 2
2c .m I
A (-2 e . (7.5)

It is clear that the phase shift of 7.5 is unaffected.by the
perturbation, and, therefors the resonance condition remains unchanged.

On the other hand the magnitude of the transfer ratio is given by

2
o | = 22 -2 5 e, (7.6)

For ¢ > 1 we have

,IES R<l)(c,l) 1.
T om
Therefore,
2
A o Ac
‘O'm]—‘-i.—"",é"; . (7"7)

o, =1- )0 |7F20" . (7.8)

From 7.8 we see that the diffraction loss is proportional to the product

of the relative area of the scattering centers and the variance of their
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‘phase shifts.

 An examination of 7.1 indicates that this same formula will
apply to a three-dimensional resonator with rectangular mirrors as
well. In this case A represents the relative crosgs-gection of the
scattering centers and again 02 is the variance of the phage shifts.

Specht (32) has determined that for typical dielectric film

mirrors A = 0.04 . He finds that the corresponding power loss is
about l%. With this data and 7.8 we can obtain an approximate value
for 02 (it must be borne in mind, however, that we have neglected

any absorption losses in the scatteriﬁg centers). Thus, we find

o° = 0.25. . (7.9)

By setting the standard deviation o equal to twice an equivalent

depth of pinholes in angular measure we find for the rms depth of the

holes,

d =g .
If such a pinhole model conforms with the situation encountered in
practice, this rough calculation would indicate that they are less than

one film layer thick.-
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CHAPTER VIII

MEASUREMENT OF THE DIFFRACTION I0SS OF PERTURBED CONFOCAL RESONATORS

8.1 Quality Factor and Diffraction Loss of a Multimode Resonator

In the preceding analytlcal treatments of perturbed systems
pefhaps the most readily verifiable result is the predicted diffraction
loss. Boyd and Gordon (8) show that the quality factor Q, 1s related
to the parameters of a multimode resonator by the equation

en

s 0
S

O
Il
B

(8.1)

>

where d is the mirror separation, o 15 the fractional pover loss
of mode s per bounce from & mirror and A is the optical wave-
length. Thus, a measurement of the QS for a particular confocal
mode is a direct measure of its diffraction loss.

A gas laser with its exceedingly sharp ocutput spectrum is
well adapted as a diagnostic probe in § measuremente on confocal
resonators. Consider the scheme represented in Figure 8.1. Resonator
1 is a half confocal configuration containing an active region to
provide stimulated emission. The spherical mirror is mounted so that
the mirror separation may be varied electrically providing a frequency
svwept laser output. The passive resonator 2 is axially aligned to the
laser beam and.allows energy to reach the photodetector whenever the
probe signal sweeps through one of its resonances. Consequently, a
display of photodetector output versus laser sweep voltage will yield

- conventional resonence curves. Introducing a controlled perturbation
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into the passive cavity should cause an enhanced diffraction loss and
degraded Qé as predicted by the analysis of the preceding chapters.

In performing such measurements there are several complicat-
ing factors which must be considered and which will modify the
experimental configuration as presented in Figure 8.1. These are
listed below.

(1) In Appendix IV it is shown that a very slight mirror
movement is sufficient to modulate a cavity resonance by many mega-
cycles. Thus, acoustically induced mirror vibrations must be held to
a very low level to insure negligible resonance broadening.

(2) Amblent turbulence will modify the optical length of
the resonator and can broaden a line in much the same manner as mirror
vibrations.

(3) With the laser operating simultaneously on several modes
there is the possibility of certain resonance curves overlapping and
leading toc false line-broadening. Consequently, it 1s desirable to
have as few laser modes as possible and proper resonator dimensions
to insure evehly spaced resonances which do not overlap.

(%) If there is direct transmission between the active and
passive resornators the laser output may be pulled and modulated by the
test cavity. Therefore, it is desirable to provide isolation between
them.

(5) Should there be imperfect alignment between the two
resonators, a particular laser mode may couple into a different test

cavity mode. With multimode laser operation this could lead to
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overlapping resonances. In addition, without overlapping it still
means that an observed resonance may be for an unwanted mode with a
different Q from that of interest. One must then be able to dis-

tinguish between wanted and unwanted resonances.

8.2 Experimental Details

Figure 8.1 of the preceding section illustrates a possible
basic experimental configuration. However, it was found that a great
deal of attention to detail was important in performing accurate méa—
surements. The entire optical portior_l of the apparatus is mounted on
a 3'x6' Brown and Sharpe surface plate of approximately one thousand
pounds total weight. This provides structural rigidity as well as
inertial damping for the system. The surface plate 1is in turn sup-
ported six inches from floor level by a layered structure of felt,
neoprene and metal sheets and low pressure rubber inner tubes.

Finally, each mirror is isolated from its respective mount by felt
cushioning. The resonators are hooded to absorb scattered light and
minimize ambient turbulence. 1In addition an acoustically insulated
hood.surrounding the entire apparatus and capable of providing a helium
atmosphere was available but not required for the measurements reported
here. It was found that in the frequency range of 20-20,000 cps the

peak table acceleration was approximately 1/28 that of the nearby

floor.
The final form of the apparatus is shown schematically in
Figure 8.2. PFigure 8.3 1s a photograph of the apparatus. In this

arrangement it should be pointed out that the passive instead of the
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active resonator is swept. This is desirable as the laser can be
operated then at constant power rather than inducing undesirable AM
along with the FM laser sweep. Stable single mode operation is then
not difficult to achieve.
The components are listed below.

(1) Electromagnetic driver which tunes the laser through

the movement of curved mirror 2.

(2) 1laser mirror of one inch diameter homosil and one-half
inch thick. The front surface is 99°6% reflecting and

has a 5 meter radius of curvature.
(3) 1Iris to cut out off-axis laser modes: 2-4 mm diameter.

(%) D.C. excited hot cathode Ne-He gas laser tube of 82 cm
length.

(9) Arc anode
(6) Arc cathode

(7) First plane laser mirror of one inch diameter homosil
with 10" wedge angle and one-half inch thick. Coating
gives 98.6% reflection.

(8) Brass spacer between plane laser mirrors, 0.001" thick.
(9) Second plane laser mirror of same type as (7).
(10) rLaser beam reflector. Same as (7).

(ll) Irls to reduce bhackground light reaching photomultiplier
13:2 mm diameter.

-(12) Red Corning photomultiplier filter: Type (S2-60.

(13) Photdmultiplier for monitoring laser output level and
multimode beats: RCA Type 7102.

(14) Red Corning glass filter CS2-60 slightly misaligned to



(15)
(16)
(17)
(18)
(19)

(20)

(21)

(22)

(23)
(2k4)
(25)
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reduce coupling between resonators and destroy

resonances between mirrors 9 and 17.

Neutral Density Filter: same function as (14), ND = 1.0
Red Wratten Filter: same function as (14). A type 25.
Passive resonator plane mirror; same as (7).

Passive resonator perturbation sample.

Shutter for zeroing photommaltiplier 25.

Iris to control diffraction losses of off-axis modes in
passive resonator: 2-4 mm diameter.

Pagssive resonator rear mirror; same as 2 but 1.2 mater

radius of curvature.

Barium Titanate slug to svweep passlve resonator; 500

volts rms sweeps over approximately 280 mcs.
Photomultiplier iris: 2-4 mm diameter.
Red Glass Photomultlplier Filter: Corning CS2-60

Photomultiplier EMI 9558/B.

Let us now go through a detailed functional discussion of this

apparatus.

Mirror 1 is supported by two flexible metal diaphragms such

that it may be moved axially without suffering misalignment. It is

driven by an electromagnetic wobbulator adapted from an FM altimeter.

A DC bias of a few millivolts 1s sufficient to center any particular

laser mode on a line of the passive resonator. The basic laser resona-

tor is formed by mirror 2 with a 5 meter radius of curvature and plane

mirror 7 separated by 89 cm. Such a resonator is nearly plane parallel

Fabry-Perot geometry and is relatively free of off axls modes. However,
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iris 3 is useful in iﬁcreasing st1ll further the losses of such modes.
Plane mirror 9 is useful in suppressing both off axis and multiple
axial modes (31). In addition, mirror 9 provides sufficient decoupling
to render negligible the effect of passive resonator feedback on the
laser. Although the transmission through 9 is 1.5%, the laser output
is only down to about one-fourth the intensity without 9. This results
from the fact that the laser loss is greatly reduced giving rise to a
greater radlation intensity in the laser resonator. It was found that
the above features were sufficient to cause single mode laser operation
vhen the discharge current was reduced from a normal valuve of 20 ma
down to 5 ma.

Mirror 10 reflects 98.5% of the intensity of the laser beam
into the passive resonator. Approximately 1.5% of the beam, therefore,
is transmitted to iris 11, filter 12, and then to photomultiplier 13.
The photomultiplier output is observed on a spectrum analyzer to
determine the laser mode structure through optical beats. The photo-
multiplier also serves as a monitor of the laser output level.

Mirrors 17 and 21 define the passive confocal test resonator.
However, the region between mirrors 9 and 17 will behave as a plane
Fabry-Perot resonator. Consequently, the laser beam blooms in this
parasitic resonator with the result that additional energy is coupled
into higher order modes in the passive. test resonator. This causes no
real difficulty, as these unwanted resonances are easily recognized by
thelir large width and low amplitude. Nevertheless, to achieve clearer

resonance curves, additional decoupling between active and passive
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resonators, and to improve the noisz figure of the system, the filter
.elemenhs 14, 15 aﬁd 16 vere employed. In transmission they favor the
red laser wavelsngbth. By misaligning each filter by a few milliradians
the surface reflections from each element are lost virtually elimirat-
ing any resonances in that region, while causing only a very minor
distortion of the laser beam.

Mirrors 17 and 21 define the passive confocal rescnator. Ths
curver mirror 21 is mounted on a barium titanate slgbo A sweep voltags
applied to the barivm titanate and the horizontal amplifier of an oscil-
loscope produces a swept interfercmeter display. The light transmitted
by this resonator passes through a hole in the barium titanate to reach
a photomultiplier driving the vertical amplifier -of the oscilloscope.
Thus; aleng the horizontal sweep a vertical displacement of the trace
indicates that one of the passive system resonances coincides in wave-
length to s laser line.

Element 18 represents an arbitrary transparent perturbation
sample placed in the passive rescnator. It is slightly misaligned to
remove the effect of surface reflections on mode coupling. Howevérp
any surface irregularities will modify the optical length of the
resonatar‘acroés its aperture and give mirror 17 an effective réughnesso
‘A measurement of the resonance width of such an artificially perturbed
interferometer can be compared then with the analysis of the previocus
chaptars.

Finally; it should be pointed out that there is & non-lotegral

ratio hetwesn the lengths of the two resonators. This causes a vernier
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effect between the resonance lines of the laser and test interfero-
meter. The reason for this is to eliminate any false broadening

through the coincidence of multiples resonances.

8.3 Sweep Calibration

When sweeping the passive resconator of the experimental
apparatus one observes resonance curves on the oscilloscope monitoring
its transmission. The widths of the various resonances are propor-
tional to the diffraction losses of the various modes. In order to
determine the absolute diffraction loss of a particular mode, it is
necessary to calibrate the sweep.

Referring to Appendix IV, it is evident that the passive
resongtor with a 58.3 cm mirror spacing will have a basic axial mode
separation of 258 me. For a sufficiently great sweep voltage ohe
would expect & resonance separation of this value under conditions of
single mcde laser operation. Indeed such a resonance repetition was
observed when the sweep voltage was increased to 510 volts rms. -Sub-
sidiary resonances were observed for enexgy coupling intc off axis
modes. These alsc exhibited the same periodicity. When the laser was
gaused to operate on several modes, resonsnces appsared which approxi-
mately trisected the basic spacing as would be expected from the basic
168 mc axial leser mode spacing. The relative amplitudes of such
multiple resconances also indicate the spectral gain curve of the laser.

Phctographs vere taken of the multiple rescnances with a sweep
of 510 volts rms. On the photographs the basic axlal mode separation

was 5.54 cm or 4 mc/cm. With such a sweep voltage the resonance
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yidth is extremely narrow. Thus for Q measurements a 290 volt rms
sweep vas employed. This corresponds to a sweep scale of 26 mc/cm on

similar photographs.

8.4 Measurements

With a 290 volt sweep on the unperturbed passive resonator a
line-width of 0.0k inches was measured on the photographs. This cor-
responds to a bandwidth of 2.7 mc and a qQ of 1.75 x 108. From
equation 8.1 we find an average power loss per bounce of 3..4%.

To perturb the resonator one-half inch thick discs of homosil
were placed in front of the plane mirror. The first was polished and
flat to 1/70 wavelength. Its function was to calibrate the surface
reflection losses of the samples. It increased the line-width to
0.09 inches or 6.0 mc which corresponds to an average power loss per
bounce of 7.6%. A second sample was secured upon which no effort had
been taken during polishing to maintain surface flatness. Over the
central one-half inch portion of this disc it was estimated to have a
maximum surface deviation on each side of one-quarter fringe. It
degraded the line-width to 0.15 inches or 10 mc and yielded an average
power -loss per bounce of 13%.

An additional disc was prepared by grinding with the finest
grinding compound readily availéble which was 0.3 micron alumina. This
produced a frosty surface when ground against a hard surface and couid
not be considered a!small perturbation surface. When placed in the
resonator the line-width was (.72 inches or 48 mec. The measurements

are summerized in Table 8.1.
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Perturbétion : Af(me) Qg a,
7
None 2.7 17.5 x 10 3.4
2/70 Flat 6.0 7.9 7.6
Wavy Disc | 10.0 4.7 13.0
Ground Disc 48.0 0.9 -

Table 8.1 Summary of Measurements

8.5 Discussion.and Conclusions

Let us now return to the measurements of the preceding section
and consider their meaning and implications.

"An average povwer loss per bounce of 3°h% was measured for the
unperturbed resonator. With a measured 1.0% average transmission loss
per bounce we compute a 2.4% scattering and absorption figure for each
mirror. Specht (32) arrived at a figure of 1.0% for his mirrors. - As
the best mirrors available for these measurements were used in the
laser resonator, it is not surprising that the passive resonator mir-
rofs exhibited a greater loss than those studied by Specht.

Now considering the perturbed resonator it may be asked why
the sample is not placed at the Brewster angle thereby improving‘the
precisioﬁ‘of the measurement. -The primary reason for this is to pfe-
vent portions ﬁf the surface from being shadowed by higher peaks. This
could happen for a finely ground surfsce. If such a situation did
'occur, it could no longer be considered s small perturbation. However,
-1t would be quite reascnable to place the wavy polished surface at an

angle. Let us now compare'the implications of the alternate
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orlentations for the perturbation element. First we consider the
- effect of_slight variations in the angle at which the perturbation
plate is set. Por an electric vector lying in the plane of incidence

the power reflectivity from the dielectric boundary is given by

tane(e - 8,)
o} 1
tan (90~ 91)

where GO and Ol are the angles of incidence and refraction; res-

pectively. For slight deviations from near normal incidence the total

derivative of R 1is

8n. (l-n_)
@’ 2 12 ae, > (normal incidence)
ao_ 3(1+n,)
where n,, is the ratio of the velocities of light in the two media.

Evaluating the constant we have approximately

=-0.3346_ . (normal incidence)

Now at the Brewster angle

dR cos QO 5 o
=——=(L+n )" tan“(e - ©,) de
as 12c059l o "1

(Brewster angle)

Again we find the slope of the reflectivity is proportional to the

~angular error, and evaluating the constant,
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drR -
— = 0,32 d9_ . Brewster angle
- o ( gle)

0

Clearly, the two orientations are virtually equivalsnt regarding
susceptibility to angular error. Next let us compare the perturbation
to nonperturbation line width ratio in order to determine the relative
signal sensitivities of the two orientations. With the perturbation
plate normal to the resonator axis as described in Section 8.k4; the

- ratio of perturbed to unperturbed line width is

10 me

r = = 1.7
6 me

for the polished irregular disc. Consider placing the disc at the
Brewster angle. The surface irregularities will have a prcjection
along the axis of cos(53°) times their normal height. Therefore the
increase in perturbation line width will be (cos 530)2 times that

observed at normal incidence. This ylelds a line width ratio of

_ 4.1 me

r =
2.7 mc

= 1.5,

vwhere i1t 1s assumed that transmission at Brewster's angle is lossless.
Again we see that the alternate’configurations are virtually equivalent.
Now smploying the resulis of Chaptar V let us compute the
expected diffractioﬁ loss for the resonator of the previous section
perturbed by the irregular polished homosil disc. Monochromatic

fringes were observed for the homosil surface against an cptical flat.
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It was estimated that in the central one-half inch portion the maxi-
mum deviation of both sides was one-quarter fringe. This corresponds
to a maximum deviation of approximately 0.085 fringe over the diameter
of the resonator aperture which is 0.17 inches. As the index of
refraction of quartz is approximately 1.5, the irregular surfaces on
each side will have the same net effect as a mirror with an identical
deviation. - Taking the correlation distance of the irregularity as
equal to the aperture radius and the standard deviation equal to one-
half the maximum deviation, or 0.042 fringe, and referring to Section

5.4, we have for the computed perturbation diffraction loss

a T 8k2(0°97) gi
Z 13.5% .

This is equivalent to an average loss per pass of 6.7%. This is to
be compared with the difference between 13% and 7.6% or 5.4% of the
preceding section. The agreement between 6.7% and 5.4% is entirely
satisfactory as there is nc reason to suppose that the irregularities
on the disc obey Gaussian statistics or can be described by an
exponential correlation function. In addition;as the diffraction loss
depends on the sguare of the déviation of the surface, a small error
in the measured deviation is magnified in the computed loss. However,
the above resulis ére most dramatic when compared to the spectro-
scopi¢ approximation presented in Section 1.2. According to this

theory



~ b
@ = o
For the perturbed test resonator discussed here we have by this

approximation

Q% 4.5 x 10

This is equivalent to an average diffraction loss per pass of 13% or
approximately two and one-half times that observed experimentally. It
thus seems clear that the perturbation analysis offers a significant

improvement in accuracy over the earlier theory.



106

CHAPTER IX

SUMMARY AND CONCLUSIONS

A self consistent field analysis has been applied to per-
turbed confocal resonators and it has been demonstrated that such
solutions may be applied to half confccal resonators. In addition
both full and half resonators are readily amenable to a two-dimen-
sional analysis and the three-dimensional solutions are products of
solutions for infinite strip resonators. These solutions of Chapter
V are given in general by an infinite series of the unperturbed mode
solutions. The diffraction losses for several perturbatlion correla-
tion distances are worked out and it is found that as this distance
approaches the resonator aperture radius the loss becomes that pre-
dicted by the linear theory of Section 1.3, viz. equation 1.15. As
the correlation 1ength decreases, the corresponding loss becomes
vanishingly small in agreement with a general conclusion of the theory
of scattering from rough surfaces.

In Chapter IV an approximate technique is developed for
obtaining closed form solutions of the perturbed integral equation.
The method is then applied to a particular confocal mode and the null
filling-in for a perturbed field distribution function is computed.
Such solutions apply when correlation between the radiation field and
the surface irregularities may be neglected as when the roughness has
a very short correlation length. The corresponding eigenvalues and

diffraction losses are worked out in Chapter VII.
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Finally, in Chapter VIII an.experiment is described for
making diffraction loss measurements on multimode optical resonators.
The technique involves measuring the resonance width of a particular
mode of an open resonator by sweeping it through a sharp laser line
(34). Two irregular quartz discs were prepared and introduced into
the passive resonator. The sample conforming with the requirements of
small roughness height and slope demanded by the perturbation analysis
produced a change in resonance width excsedingly close to that pre-

dicted by the analysis.
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APPENDIX T

EXPANSION OF THE MIRROR ROUGHNESS IN AN ORTHOGONAL SERIES (33)

In 3.3 we found it desirable to expand the mirror roughness
in a series of spatial harmonics. For such an expansion to be useful
it must be developed in a special manner in order that the coefficients
will be uncorrelated random variables.

The required series will be of the form

gln) = 1 cf.() (1.1)
p .
where
CS = 0 P
0, s # t
C C't =
1, s=t
and
B (n) = e (n)
such that
+1 0, s#t
EEOENORIE
-1 . 1 y B = t

According to Karhunen's representation  theorem the gquantities

ds and the orthogonal functions Qs(q) satisfy the integral equation
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+1 :
,of’R(ﬂf-n') o (n) dn = di o (n') .+ (1.2)
-1

The kernel R(n-n7') .is the correlation function of thebrandom surface.
Consider now that the correlation function has an exponential

form. Then

o clu-nl/2

R(n-n") = g e

where £ 1s the correlation length and gi is the variance of the
random process g(n) . Now the characteristic integral equation for

the uncorrelated orthogonal functions becomes

+1 ,
-in-n'l/2
K 5,(n) an -

-1

o (n") - (1.3)

N
P No

Defining the new variables x = n/8 , y = n'/4 and the constant
® = ds/ﬁgi , (T.3) takes on the form

+£_l

-f_l e"XfY' S (x) ax = w e (y) . (1.1)
-4

This may be written

s

. v
w @s(y)v‘f'g[7 &Y Gs(x) dx +J'3 A Qs(x) ax . (1.5)
-1
-£ ¥

Equation I.5 will be solved by findinz a differential equation
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“satisfied by @S(x) and substituting the solution back into the inte-

gral to find « . Differentiating I.5 twice, we have

-1
v +4
6! (y) = f &Y o_(x) ax + f J7* 6, (x) ax . (1.5)
-1
-2 b4
+£-l l |
n = - X—y - 2 .
» 05(y) I e o (x) ax o, (¥ .
-1
~4
Now using I.4 we find
11" —
®0"(y) + 20 (y) =w o (y)
or
" 2= _ .
or(y) + —o_(y) = 0. (1.8)

This second order differential has two solutions. The first is

in 2b
sin s/z -1/2

1 ,
o (y) = (= - —5 sinby
s
where
2
@ = ) »
5 l+'b2
s
and bS satisfies
bs
bS cot 7;. = 1.

The second is
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sin 2%\8 /i -1/2

N 1 ~
o (y) = ("+——7\———-——) cos b ¥
s b s
s
5 - 2
<) ~ J
1+ b2
s
-~ FaN
b tanb /L = 1
8 S

Finally we may write the expansion as
AN AN
g(n) = % cd B (n) + ; c d_o_(n)

N
where the < and c¢_  are mutually uncorrelated random variables

(=3

with mean zero and variance one. In addition,

and

2
8

~
l1+1
For convenience we alsc introduce the alternate notation

AN -~
g(n) = ZS: csdsns ein PST] + é csdsns cos PS'Q 5



whers

Wi

]

-

I

2b
sin ——

2b
5

2b
sin ——

2b
]
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-1/2

-1/2
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APPENDIX IX

NUMERICAL EXAMFLES OF ORTHOGONAL EXPANSIONS

—

In Appendix I the random irregularities on a mirror of finite
extent were expanded formally in an orthogonal series with uncorrelated
coefficients. Let us now consider a specific numerical example. The
crucial parameter is the normalized correlation distance 4 . It will
be taken as 1.0 or equal to the radius of the resonator aperture.
Having chesen ¢ we may proceed to calculate the quantities

bs which are solutions of the equation

b

5 _
bS cot -E— = 1
which may be written
bc‘
bS = tan. 7 °

The solutions of this equation are illustrated graphically in Figure I.

The first few bS“s are found to bhe

b, = S
b, = 7.73
b3 = 10.90
b, = 1k.07
b - 17.22

AN
The complementary quantities bS are solutions of the equa-

tion
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b
'f:’ bg

tan

= tan b_/4 for £ = 1.0.

=]

5]

Fig. A.I Graphical solution of b



b tand /g =1 .
<] S .

\

This may be rewritten as

AN P
b, = cot b /4

The solutions of this equation are illustrated graphically in Figure
ITs
Now, recapitulating, the orthogonal series has the form

AN A

o R ) A i -
gln) = zs: csdsus sin p_n + 25 Gsdslls ces pn s

vhers for a normalized cdrrelation length 4 = 1.0 +the coefficients

are given in Tables I and II.

R 2 o
s (o] S S
1 0.095 12 b9 |
2 0.033 1.02 7.73
3 0.017 1.01 10.90
y ' 0.010 1.00 14,07
5| 0.007 1.00 17.22

Table I. Trigoncmetric expansion

cosfficients for £ = 1.0
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— . s iy, ettt e

|
|
|
|
|
|
|
1

Fig. A.IT Graphical solution of %S

n
cot bs/z for £ = 1.0.

r--lmza')



| Ae | R | R

1 1.150 | 0.835 = 0.86
2 0.157 | 0.93 3.42
3 0.047 | 0.98 6.44
b 0.022 | 0.99 9.53
5 0.012 | 1.00 12.65

Table II. Complementary expansion
coefficients for 4 = 1.0

In exactly the same manner the coefficients may be computed

for 4= 0.1 . The first fev b_'s and %S's are tabulated below.

b, = 0.348 bg = 199
b, = 0.689 b, = 2.318
by = 1.022 bg = 2.63k
by, = 1.355 by = 2.932
b5 = 1.67h b= 3.269
%i = 0.143 ?6 = 1.626
%, = 0.430 b = 1.933
~ N

b, = 0.722 by = 2.241
b, = 1.020 b9 = 2.551
A A

by = 1.321 b= 2861

The corresponding coefficlents are given in Tables IIT arnd IV.
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: |
8 df/ gi ni P,
1 0.179 0.110 3.48
2 0.136 0.101 6.88
3 . 0.098 0.105 10.22
by 0.070 0.10k4 13.55
5 0.053 0.103 16.7h4
6 0.040 0.102 19.95
7 0.031 0.102 23.18
8 0.025 0.101 26.3k4
9 0.021 0.101 | 29.52
10 0,017 0.101 32.69
Table IIT. Trigonometric expansion
coefficients for £ = 0.1
<] ﬁi/gi 25 3
1 0.196 0.091 1.430
2 0.169 0,092 4,300
3 0.131 0.094% 7.220
I 0.098 0.095 10.200
5 0,073 0.096 13.21
6 - 0.055 0.097 16.26
7 0.042 0.098 19.33
8 0.033 0.098 22,41
9 0.027 0.099 25.51
10 0.022 0.099 28.61

Table IV. Complementary expansion
£ =0.1

coefficients for
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: N
Similarly, for £ = 0.01 the first few bs’s and bs's are

tabulated below.

b, = 3.17 x 10'2 b. = 19.0%3 x 10'2
1 6

b, = 6.35 b, = 22.21

b3 = 9,52 by = 25,38

b, = 12.69 b9 = 28.55

b5 = 15.86 b= 31.45

’~ -2 ~ -2

b, = 1.55 x 10 b = 17.11 x 10

N N

b, = 4,67 b, = 20.22

VaS Fal

b3 = 7.78 bg = 23.33

b, = 10.89 b9 = 26.4k

A N

h5 = 14.00 b = 29.56

The corresponding coefficients are given in Tables V and VI.
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1 0.020 0.01 3.17

2 0.020 0.01 6.32

3 0.020 0.01 9.52

I 0.020 0.01 12.69

5 0.019 0.01 15.86

6 0.019 0.01 19.03

T 0.019 0.01 22.21
8 0.019 0.01 25,38

9 0.019 0.01 28.55

10 0.018 0.01 31.72

Table V. Trigonometric expansion
coefficients for £ =0.01
' ~ ~ ~
N

1 0.020 0.01 1.55

2 0.020 0.01 L.67

3 0.020 0.01 7.78

L 0.020 0.01 10.89

5 0.020 0.01 14.00

6 0.019 0.01 17.11

7 0.019 0.01 20.22

8 0.019 0.01 23.33

9 0.019 0.01 26. Lk

10 0.018 0.01 29.56
Table‘VI° Complementary coefficients

for

£ = 0.01
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COMPUTATION OF THE PERTURBATTION TERMS

With the aid of the nuwerical examples of Appendix [T

;psjo_ceed te evaluate the perturbation elements as derived in 5.2, The
results are given in the followiny tables.

T S ———— R e
® Boo Po1 P11 Bz Bio Boo B03 Bl3 23 333
1/0.176 | 0.034| 0.103 | 0.001| 0.033| 0.086 | 0.001| 0.0011| 0.032| 0.072
2/0.189 | 0.0611 0.077 ; 0.008; 0.054! 0.070 | 0.005| 0.0097| 0.047| 0.053
3|0.156 | 0.079| 0,042 | 0.020| 0.058]| 0.040 | 0.014| 0.0235] 0.041| 0.021
410.136 | 0.086| 0.006 | 0.035| 0.046! 0.006 | 0.026 | 0.0485! 0.019(-0.010
510.115 | 0.083[-0.023 | 0.049| 0.025|-0.021 | 0.039| 0.0453{-0.006 |-0.028
610.091 | 0.074|-0.0k2 | 0.061| 0.000|-0.032 | 0.049| 0.0430|-0.026 |-0.028
710.070 | 0.061{-0.050 | 0.065 |-0.021(-0.036 | 0.054 | 0.0313|-0.029|-0.013
810.050 | 0.047-0.049 | 0.063|-0.034|-0.021L | 0.054 | 0.0131|-0.021| 0.007
910.035 | 0.034|-0.043 | 0.057 {-0.039|-0.004 | 0.049|-0.0060|-0.007| 0.020
100,023 | 0.023|-0.034% | 0.046|-0.038|+0.014 | 0.041 [-0.0217 |+0.009| 0.02k4

Perturbation elements for 4 = 0.1, ¢ = 100

Table V.
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Q0

01

Bll

B02

12

22

B03

13

,B23

33 |

0.176
0.168
0,153
0.133
0.109
0,085
0.064
10,045
0.031
0.020

O N oo Fw D

5

0.031
0.057

0.076

0.085

0.084
0.076
0.065
0.052
0.037
0.026

0.111
0.095
0.068
0.035
0.001
0.025
-0.043
=0.049
-C.049
-0.043

0.001
0.010
0.023
0.039
0.053
0.063
0.085
0.062
0.054
0.0kk

0.030
0.051
0.059
0.051
0.031
0.007
~0.015
=0.031

-0.038

-0.039

0.086

0.066

0.034
-0.001
-0.026
-0.036
-0.032
-0.017
-0.002
+0.018

0.001
0.004
0.012
0.023
0.035
0.046
0.054
0.055
0.050
0.0k43

0,001
0.013
0.026
0.0k0
0.0k46
0.0kl
0.026
0.007
-0,01h
-0.025

0.029
0.0Lks
0.0L4
0.026
0.001
-0,018
-0.030
~0.026
-0.011
+0.00k4

0.072
0.049
0.015
-0.016
-0.030
-0.025
-0.008
+0.011
0.023
0.022

Table VI.

‘Perturbation

elements for

"4 = 0,01, ¢ =

100

The quantities which determine the magnitude of the perturba-

tion on the eigenfunctions and eigenvalues are the %o These may

~ be obtained by multiplying the Bin by the coefficients of the

orthogonal expansion. These coefficients and their products are given

in Table VIT and Table VIIT for two correlation distances.



, x A A
s ds/go _ s dsps/go ﬁ;/go ns dsns/go
1 Omes 0.332] 0.141 | 0.443 | 0.302 | 0.134
2} 0.369 | 0.318| 0.117 | 0.411 | 0.303 | 0.125
31 0.313 | 0.324| 0,102 | 0.362 | 0.307 | 0.111
41 o.264 | 0.323]| 0.085 | 0.313 | 0.308 | 0.097
5] 0.230 | 0.321] 0.074 | 0.270 | 0.310 | 0.08k
6| 0.200 | 0.319| 0.064% | 0.234 | 0.312 | 0.073
7| 0.176 | 0.319| 0.056 | 0.205 | 0.313 | 0.06k4
8| 0.158 | 0.318] 0.050 | 0.182 | 0.313 | 0.057

9] 0.145 | 0.318| 0.046 | 0.164 | 0.315 | 0.052

10| G.130 | 0.318| 0.041 | 0.148 | 0.315 | 0.047

Table VITI. Orthcgonal expansion coefficients

for 4 =0.1
s ds/go nS dSnS/gO /&S/go ﬁs ﬁ\sﬁ\s/go
1| 0.141 | 0.100| 0.0141| 0.141 | 0.100 | 0.01k1
2! 0.1k1 | 0.100| 0.0141] 0.141 | 0.100 | 0.01k1
3|1 0.141 | 0.100| 0.0141| 0.141 | 0.100 | 0.01k41
Lio0.141 | 0.100{ 0.0141| 0.141 | 0.100 | 0.01k1
5| 0.141 | 0.100| 0.0141| 0.141 | 0.100 | ©.01k1
6| 0.138 | 0.100{ 0.0138| 0.138 | 0.100 | 0.0138
7| 0.138 | 0.100| 0.0138| 0.138 | 0.100 | 0.0138
8} 0.138 | 0.100] 0.0138| 0.138 | 0.100 | 0.0138
9| 0.138 | 0.100| 0.0138| 0.138 | 0.100 | 0.0138
10| 0.134 | 0.100| 0.0134 0.13% | 0.100 | ©.0134

Table VIII. Orthogonal expansion coefficients
For 4 = 0.01

Forming the pertinent products between the coefficients and

the perturbation elements of the preceding tables yields values for the
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perturbation terms _oin defined in the solution of the perturbed

char:cteristic integral equation.

E4

S s B S S
s |00/ %8y | %1/ %8, |1/ %680 | %2/ SsBo | P10/ %8s

0.0236
0.0210
0.0173
0.0132
.00965
.00670
.004L7
.00287
00181
.00106

0.00473
0.00720
0.00798
0.00730
0.00615
0.00473
0.00340
0.00234
0.00155
0.00095

0.00460
0.0063k
0.00590
0.00388
0.00185
0.00002k
-0.00116
-0.00171
-0.00182
-0.00157

0.01380
0.00955
0.00461
0.00055
-0.00188
-0.0030k
-0.00267
-0.00280
~0.00223
-0.00159

-0.00012
-0.00097
.00225
.00343
.00L415
.00k42
.00388
.00362
.0029k
.00207

J

O & N o0 i F w b+
© O o O O O

-
@]

Table IX.

4]

s
a22/csgo

s
Ol;C)3/csgo

)
al3/csgo

S
O‘23/(:550

S
O‘33/(:sgo

O @~ O W = w

)
O

0.01160
0.00863
0.00445
0.00059
-0.00173
-0.00234
-0.00206
-0.00119
-0.00018
+0.00065

-0.000095
-0.000564
-0.001k41
-0.00221
-0.00286
-0.00313
-0.00304
-0.00270
-0.00226
-0.00170

-0.00015k
-0.00120
-0.00261
-0.00468
-0.00379
-0.0031k
-0.00276
-0.000238
+0.00031
+0.00101

0.004k45
0.0055k4
0.00420
0.00161
-0.000k2
-0.00169
-0.00163
-0.00108
-0.000336
+0.00039

0.0097
0.0066
0.0023k
-0.00095
~0.00238
-0,00204
~0.0018
+0.00039
0.00105
0.0011k

Perturbation terms for

2 =0.1 and c¢ = 100
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8 C‘go/ 8 ag‘l/ %o ail/ csgo o6(832/ 8o aiE/ 58 l
1 | 0.00248 | 0.0004k | 0.00156 | -0.00001 | 0.00042 |
2 0.00237 | 0.00081 | 0.00135 | -0.00013 o,ooo73g
3 | 0.00216 | 0.00107 0.00095 | -0.00032 | 0.00083
b | 0.00188 | 0.00120 0.00049 | -0.00054 | ©0.00072
5 | 0.00154 o°00119 0.00002 —oaooo75' 0.0004k
6  0.00118 | 0.00105 | 0.00035 | -0.00086 | 0.00010
7 | 0.00088 ' 0.00089 | -0.00059 | -0.00090 | -0.00021
8 0.00063 © 0.00072 | -0.00068 | -0.00085 | -0.00043
9 0,00043 | 0.00051 | =0.00075 | -0.0007k -0.00053
10 0.00027 - 0.00034% | -0.00058 | -0.00058 |-0.00052
e O";’a/csgo _ag3/csgo C)6?3/05@;0 ozZB/cho o{iﬁ/cse‘“o
1| 0.00121 | -0.00001 |-0.00002 | 0.00041 | 0.00102
2 | 0.00094% | -0.00005 |-0.00018 | 0.00065 | 0.00069
3 | 0.00047 |-0.00016 |-0.00037 | 0.00062 | 0.00021L
4 |-0.00001 |-0.00032 |-0.00056 | 0.00036 |-0.00022
5 |-0.00037 |-0.00050 |-0.00064 | 0.00002 |-0.00043
6 [-0.00049 | -0.00064 |-0.00056 |-0,00025 |-0.00035
7 {-0.0004k4 | -0.0007% |-0.00036 |-0.00040 |-0.00011
8 |-0.00023 |=-0.00077 |-0.00011 |-0.00036 |+0.00016
"~ 9 1=0.00002 |[-0.00070 [+0.00020 |-0.00016 | 0.00031
10 |{+0.00024 |-0.00057 | 0.00034 [+0.00006 | 0.00030
Table X. Perturbation terms for £ = 0.01 and ¢ = 100
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APPENDIX IV

RESONANCE PRCPERTIES OF CONFOCAL RESONATORS

In performing Q measurements on Spherical Fabry-Perot
Rcsopators there arc some crucial calculations which must be carried
out before designing the experimental apparatus. Among the numbers re-
quired are mode separation as a function of mirror separation and the
mirror movement necessary to sweep the resonance over a given fre-
.quency range.

The resonance condition for a three-dimensional cavity is

%=2q+m+n+1. (IV.1)

With b fixed the frequency separation between adjacent axial modes

is given by

AF_ = -2-% . (1v.2)

The separation between adjacent transverse modes is

Af, = E% . (Iv.3)

The mode separations -for various values of the length b are given in
Table XI. The quantity c¢ in the above equations is the free-space

velocity of light not to be confused with the dimensionless quantity

introduced earlier.
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b ’ At Af
0.lm 1.50 x 107%eps 7.50 x lO8cps ,
0.2 7.50 x 10° 3.75
0.3 1 5.00 2.50
‘o.u 3.75 1.88
0.5 3.00. 1.50
0.6 2.50 1.25
0.7 2.14 1.07
0.8 1.88 9.38 x 107
0.9 1.67 8.33
1.0 | 1.50 7.50
1.1 1.36 1 6.82
1.2 1.25 6.25
1.3 1.15 5.77
R A 5.36
1.5 ‘ 1.00 5.00

Table'XI. “Mode Separation vs. Resonator Length.

For a given axial and transverse resonance condition we may

compute the . frequency shift for a slight variation in mirror separation.

The center frequency of a particular mode is given by

c
iy = o
m,n,q - o (2q +m+ n+ 1)‘
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A shift Ab 1in the spacing represents a frequency shifs,

c - /Ab -
AT = = (2qg + m+ n+ 1) (7; p (Iv.5)
or
Af  Ab -
F=5 - (1v.6)

As an example let us say Af equals tre axial mode separation, then

C
AT = £,
and’
Ab = ?é‘- : (1V.7)

The above equations show that in a resorator sweeping scheme there is

>

no point in moving the mirror more than . In addition it is clear
that microphonic jitter must be kept well below this level. The shift
in frequency is inversely proportional to . Thus, it takes less
mirror movement to achieve a given frequency sweep in a shorter reso-
‘nator; however, microphonic problems will be correspondingly worse
in such a resonator. Table XII gives the mirror movement necessary
to produce a 100 mc shift in frequency for various resonator lengths.
Next we look at the half resorator in the same manner as

the full rescnator. We note that the resonance condition hecomes

%? = Mq +m+n+ 1. (IV.8)

To compare full and half resonators of the same physical length we

define a nsw parameter

Lo
i

o
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b Ab(h= 1.15u) | Ab(A= 6328X)
0.1lm 0.038u - 0.021u
0.2 0.077 0.0k2
0.3 0.115 0.063
0.4 0.153 0.08h
0.5 0.192 0.105
0.6 0.230 0.127
0.7 0.268 0.148
0.8 0.306 0.169
0.9 0.345 0.190
1.0 | 0.383 0.211
; 1.1 0.h21 0.232
i 1.2 0.460 0.253
1 1.3 0.498 0.27k4
; 1.h4 | 0.536 0.295
‘ 1.5 . 0.575 0.316

Table XIT. Mirror Movement to Produce 100 me

Frequency Shift vs. Resonator Length.

which is the length of the half resonator.

IV.8 becomes

L m+n+ 1

4 =29 F

A 2

With this substitution

From IV.9 we see that the axial mode separation 1is

(1v.9)
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fa =53 ° (IV.lO)

f, =37 (Tv.11)

Equafions IV.lO and IV.11 show that full and half resonators of the
same physical length (d = b) have the same axial mode separabion, but
the helf resonator has half the transverse separation.

Inspection of IV.9 indicates the same modulation character-

istics for full and half systems with mirror movement.
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