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ABSTRACT

Harmonic maps are fundamental objects in differential geometry. They play an
important role in studying deformations of geometric structures and in various
rigidity problems. In this thesis, we present three projects, all of which involve
harmonic mappings of Riemann surfaces.

In the first project, we study infinite energy harmonic maps and spacelike maximal
surfaces in pseudo-Riemannian manifolds, and give applications to domination for
surface group representations and anti-de Sitter geometry. The culminating result
is the existence of a new class of anti-de Sitter 3-manifolds and a parametrization of
their deformation space.

The second project concerns moduli spaces of harmonic surfaces inside higher
dimensional Riemannian manifolds. First, we prove a factorization theorem for
harmonic maps. We then use infinite-dimensional transversality theory to prove
results about the distribution of certain families of harmonic surfaces inside our
moduli spaces.

The final project is motivated by the Labourie conjecture from Higher Teichmüller
theory. We find unstable minimal surfaces in products of hyperbolic surfaces and
products of R-trees, and we make a connection to classical minimal surfaces.
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C h a p t e r 1

INTRODUCTION

The theory of harmonic maps is a large subject in differential geometry, with a rich
history and many applications in mathematics and physics, pure and applied. A
number of developments in differential geometry and geometric analysis have come
about through analytic problems in harmonic maps. On the other side, questions
about geometry have motivated a deeper study of harmonic maps. The subject is
especially fruitful on Riemann surfaces, where harmonic maps give rise to complex
analytic objects.

The utility of harmonic maps in geometry can be explained as follows.

1. When there is non-trivial geometry, harmonic maps usually exist (especially
in non-positive curvature). For instance, see the resolution of the Schoen
Conjecture [Mar17] and its relatives [BH21].

2. Harmonic maps are rigid: they are highly constrained by the geometric objects
they live on, and hence they can reveal quite a lot of geometric information.

One striking occurence of this is Siu’s superrigidity for Kähler manifolds of strongly
negative curvature (see [Siu80]).

Theorem 1.0.1 (Siu). Let 𝑀 be a compact Kähler manifold of complex dimension at
least 2 and whose curvature tensor is strongly negative. Then any compact Kähler
manifold of the same homotopy type as𝑀 must either be biholomorphic or conjugate
biholomorphic to 𝑀 .

The proof is summarized in two steps.

1. Let 𝑁 be another compact Kähler manifold of the same homotopy type, and
𝑓 : 𝑁 → 𝑀 a homotopy equivalence. By the well-known existence result of
Eells-Sampson [EL81], there exists a harmonic map ℎ in the homotopy class.

2. Using the curvature assumption on 𝑀 (but nothing about the curvature of 𝑁),
Siu proves a rigidity result: that the harmonic map ℎ is a biholomorphism or
a conjugate biholomorphism.
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Siu extended the result in [Siu82], and various authors have built on this line of
thought to prove rigidity results and approach different problems. Most notably,
there is the work of Corlette [Cor92a] and then Gromov and Schoen (who initiated
a theory of harmonic maps to buildings) [GS92] related to Margulis superrigidity.

Harmonic maps are also useful when there is no rigidity and a manifold supports a
family of geometry structures. Harmonic maps parametrize the Teichmüller space of
marked Riemann surfaces [Wol89] and now play a large role in Higher Teichmüller
theory via the non-abelian Hodge correspondence (see [Wie18] and [Li19]).

1.1 Questions of interest
In this thesis, we present a number of projects that all involve harmonic maps in an
essential way. Below, we outline the basic questions that motivate these projects.

Infinite energy harmonic maps and AdS 3-manifolds
Let Σ𝑔 be a closed surface of genus 𝑔 ≥ 2. A discrete and faithful representation
𝜌 : 𝜋1(Σ𝑔) → PSL(2,R) is called Fuchsian. PSL(2,R) acts via linear frac-
tional transformations on the two-dimensional hyperbolic space H, and the quotient
H/𝜌(𝜋1(Σ𝑔)) is a hyperbolic surface. In Higher Teichmüller theory, one studies
discrete and faithful representations of surface groups into higher rank Lie groups of
non-compact type. Often, such representations correspond to geometric structures
on manifolds.

It is a theme in Higher Teichmüller theory that geometric structures can be parametrized
and understood through analytic objects. This is where harmonic maps come into
play. Given a semisimple Lie group 𝐺 of non-compact type, certain families of
(closed) surface group representations give rise to equivariant harmonic maps from
H to a Riemannian or pseudo-Riemannian symmetric space 𝐺/𝐾 . The harmonic
map highlights some information about the representation.

In the first part of the project, we study existence and uniqueness results for infinite
energy equivariant harmonic maps. Keeping to the line of thought above, we use
the harmonic maps to study representations of surface groups and anti-de Sitter
geometry in dimension 3.

An anti-de Sitter (AdS) manifold is a smooth manifold with a Lorentzian metric
of constant negative sectional curvature. Equivalently, it is a Lorentzian manifold
locally modeled on the Anti-de Sitter space AdS𝑛+1. Anti-de Sitter manifolds
originally arose as negatively curved models of spacetime in general relativity, and
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now there are more modern applications in mathematics and physics.

Our inquiry here is about properly discontinuous group actions on AdS3. There are
two main motivations for the subject:

1. Following Thurston’s geometrization program (see Scott’s article [Sco83]), it
is natural to study Lorentzian structures on 3-manifolds.

2. This fits into the wider program of studying properly discontinuous actions
on Clifford-Klein forms, which is itself motivated by results from affine ge-
ometry such as Bieberbach’s theorems [Bie11] [Bie12], and questions like the
Auslander conjecture [Aus64].

In dimension 3, AdS3 identifies with the Lie group PSL(2,R) with (a multiple of) its
Lorentzian Killing metric. The time and space orientation preserving component of
the isometry group is PSL(2,R) ×PSL(2,R), acting by left and right multiplication

(𝑥, ℎ) · 𝑔 = 𝑥𝑔ℎ−1.

Consequently, anti-de Sitter geometry has a lot of interesting features in dimension
3, and AdS3 geometry is intertwined with two-dimensional hyperbolic geometry.

We give a short survey on the subject at the beginning of Chapter III. For now, we
put forth some natural questions.

Question 1.1.1. Which subgroups of PSL(2,R) ×PSL(2,R) act properly discontin-
uously on AdS3? More generally, which subgroups act properly discontinuously on
proper domains?

Question 1.1.2. Do these quotients admit good deformations? And can we describe
the deformation space?

Describing quotients of AdS3 is intimately related to the domination problem be-
tween representations (see Chapter III for more information). Given Riemannian
manifolds (𝑋𝑖, 𝑔𝑖) and group representations 𝜌𝑖 : Γ → Isom(𝑋𝑖, 𝑔𝑖), 𝑖 = 1, 2, we say
that 𝜌1 dominates 𝜌2 (strictly) if for some 𝜆 ≤ 1 (𝜆 < 1), there is a 𝜆-Lipschitz map
𝑓 : (𝑋1, 𝑔1) → (𝑋2, 𝑔2), with the property that for all 𝑧 ∈ 𝑋1 and 𝛾 ∈ Γ,

𝑓 (𝜌1(𝛾)𝑧) = 𝜌2(𝛾) 𝑓 (𝑧).

Deroin-Tholozan used harmonic maps in [DT16] to find strictly dominating pairs
(see also Salein’s thesis work [Sal00], in which he had previously used holomorphic
maps to find domination). This raises another set of questions.
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Question 1.1.3. Given a representation 𝜌 of a surface group into the isometry
group of a Hadamard manifold, can we describe the Fuchsian representations that
(strictly) dominate 𝜌? To what extent can domination be seen through the geometry
of equivariant harmonic maps?

Moduli spaces of harmonic surfaces
Harmonic maps have a robust existence and uniqueness theory in non-positive
curvature. As for qualitative properties (immersedness, embeddedness, etc.), quite
a lot is understood for harmonic maps between surfaces (see [SY97, Chapter 1]).
For harmonic maps from surface to higher dimensional manifolds, a number of
questions remain open.

Question 1.1.4. Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be an incompressible harmonic map from
a closed hyperbolic surface to a convex cocompact hyperbolic 3-manifold. Is 𝑓 an
immersion?

Even for minimal surfaces, this question is not resolved.

Question 1.1.5. Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be an incompressible minimal map from
a closed hyperbolic surface to a convex cocompact hyperbolic 3-manifold. Is 𝑓 an
immersion?

By standard theory, there is always an area minimizing minimal surface ([SY79] and
independently [SU81]), and this one is an immersion. This follows from [Oss70],
[Gul73], and Gabai’s Simple Loop Theorem for surfaces [Gab85]. An unpublished
argument of Hass and Thurston shows that there are quasi-Fuchsian 3-manifolds that
contain arbitrarily many incompressible minimal surfaces (the argument is sketched
in [KS07, Section 2.3]). In the paper [HW15], the authors construct quasi-Fuchsian
3-manifolds with many incompressible minimal surfaces, which are all immersed.

It is conjectured that harmonic maps for Hitchin representations are immersions
[Li19, Conjecture 9.3] (see the next subsection for the definition). It is not hard to
see that minimal maps for Hitchin representations are immersions [Li19, page 16].
We do not know if such minimal maps are embeddings. There is actually a number
of conjectures about the geometry of harmonic maps for Hitchin representations
[Li19, Part 3]. One can also ask more generally about equivariant harmonic maps
for Anosov representations into symmetric spaces of non-compact type.
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While it’s difficult to get precise information on a single harmonic map, perhaps one
can make a statement about generic harmonic maps. Marković initiated the study
of moduli spaces of harmonic surfaces in 3-manifolds in an unpublished preprint
[Mar18]. Here we take up the study of qualitative properties of harmonic maps of
surfaces, and moduli spaces of harmonic surfaces in higher dimensional Riemannian
manifolds. We try to answer the loosely posed question below.

Question 1.1.6. Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be a harmonic map from a closed
hyperbolic surface to a Riemannian manifold of dimension at least 3 and of non-
positive curvature. If 𝑓 is “generic,” what can we say about 𝑓 ? For example,

1. How does 𝑓 (Σ) intersect itself?

2. Is 𝑓 is an immersion?

3. Is 𝑓 an embedding?

Uniqueness of minimal surfaces in products
Let Σ𝑔 be a closed surface of genus 𝑔 ≥ 2, and let 𝐺 be a simple split real Lie
group of non-compact type, such as SL(𝑛,R). Given a Fuchsian representation
𝜎 : 𝜋1(Σ𝑔) → SL(2,R), we compose with the unique irreducible embedding
𝜄 : SL(2,R) → 𝐺 to get a representation 𝜄◦𝜎 : 𝜋1(Σ𝑔) → 𝐺.A Hitchin represention
into 𝐺 is any representation that can be continuously deformed to one of the form
𝜄 ◦ 𝜎.

The space of Hitchin representations (mod conjugation) forms a connected compo-
nent inside the space of representations into 𝐺 (mod conjugation) that contains the
Teichmüller space of marked hyperbolic surfaces. Using Higgs bundles, Hitchin
found that this component is contractible, just like Teichmüller space [Hit92].

The Hitchin component for 𝐺 = RP3 coincides with the space of convex projec-
tive structures investigated by Goldman [Gol90] and then Choi-Goldman [CG93].
Hitchin components are some of the first examples of Higher Teichmüller spaces:
spaces of special representations into particular Lie groups of non-compact type
[Wie18, Section 3].

Given a Hitchin representation 𝜌, and a Riemann surface 𝑆 of genus 𝑔 ≥ 2, there
is a unique 𝜌-equivariant harmonic map from a universal cover 𝑆 to the symmetric
space 𝐺/𝐾 ([Cor88] for existence, and [Lab08, Proposition 4.1.5] proves Hitchin
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representations are irreducible, which implies uniqueness). The Labourie conjecture
asks about conformal harmonic maps (minimal maps).

The Labourie Conjecture. Given a Hitchin representation into a rank 𝑛 simple
split real Lie group of non-compact type 𝜎 : 𝜋1(Σ𝑔) → 𝐺, there exists a unique
equivariant minimal surface in the corresponding symmetric space.

Labourie proves existence in general [Lab08, Theorem 1.0.1]. Loftin had indepen-
dently proved uniqueness for SL(3,R) [Lof01], and Labourie gave a unified proof
of uniqueness for all such 𝐺 of rank 𝑛 = 2 [Lab17] (apart from SL(3,R), this adds
𝐺 = Sp(4,R) and 𝐺2). See also [CTT19], where Collier-Tholozan-Toulisse prove
the analogous statement for maximal representations into Hermitian Lie groups of
rank 2.

The Labourie conjecture is already intriguing from the perspective of harmonic
maps and minimal surfaces. Harmonic maps in symmetric spaces are controlled
by Hitchin’s self-duality equations, which are difficult and interesting in their own
right.

The main interest in this conjecture stems from its connections to Higher Teichmüller
theory. A positive resolution of the Labourie conjecture would be remarkable: when
true for a Lie group 𝐺, it implies that there is a real analytic diffeomorphism from
the Hitchin component for 𝐺 onto an explicit complex manifold, equivariant with
respect to actions of the mapping class group on both spaces. Moreover, the quotient
by the mapping class group action is a holomorphic vector bundle over the moduli
space of Riemann surfaces, with an explicit description of the fibers. See [Lab08,
Section 2] and [Lab17, Section 1] for more details.

A cousin of the Labourie conjecture is the following.

Question 1.1.7. Given a product of Fuchsian representations 𝜎 : 𝜋1(Σ𝑔) →
PSL(2,R)𝑛, is there a unique minimal surface in the relevant homotopy class in
the corresponding product of closed hyperbolic surfaces?

Schoen first proved that the minimal surface is unique when 𝑛 = 2 [Sch93]. However,
Marković proved that, assuming the genus 𝑔 is large enough, uniqueness fails when
𝑛 ≥ 3 [Mar22]. This casts doubt on the Labourie conjecture, and suggests that Lie
groups of rank 3 should be the critical case. In the third part of the thesis, we study
the following question.
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Question 1.1.8. How can we geometrically understand non-uniqueness of minimal
surfaces in products of hyperbolic surfaces?

In joint work with Vladimir Marković and Peter Smillie [MSS22], we believe that
we’ve found a satisfactory answer. Looking ahead, this leads to another question.

Question 1.1.9. Can the recent ideas from [Mar22] and [MSS22] be generalized to
resolve the Labourie conjecture?

1.2 Overview of thesis and main results
Most of the content in this thesis is contained in the papers [Sag19], [Sag21a],
[Sag21b], and [Sag21c], and the preliminary version of our work in progress
[MSS22]. In Chapter II, we provide some definitions, background constructions,
and expository content. To deal with overlap in the papers, we removed quite a lot
of preliminaries from Chapters III-VII, and put this in Chapter II.

Below, we give a brief overview of the thesis and results. Our main results are stated
informally; we leave the precise theorems for the relevant chapters.

Infinite energy harmonic maps and AdS 3-manifolds
In Chapters III and IV, we study infinite energy harmonic maps and AdS 3-manifolds.
Chapter III is a modified version of [Sag19], while Chapter IV is a modified version
of [Sag21b]. We present a synthesized version of the two papers.

Beginning with Chapter III, the results progress as follows.

• We first prove our existence and classification result for tame infinite energy
equivariant harmonic maps into CAT(−1) Hadamard manifolds (Theorem
3A).

• We then use this result to prove a domination result for surface group repre-
sentations (Theorem 3B).

• The main application of the domination result is the existence of new complete
AdS 3-manifolds (Theorem 3C).

Starting in Chapter IV, we introduce our notion of almost strict domination. In the
paper [Sag19] we found representations with this property, and here we study these
representations in earnest.
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• The central part of the chapter is the proof that a pair of representations
has the almost strict domination property if and only if one can find an
equivariant spacelike maximal immersion in a certain pseudo-Riemannian
product manifold (Theorem 4A)).

• We then parametrize the space of almost strictly dominating pairs in a rela-
tive representation space, or equivalently the space of maximal immersions
(Theorem 4B).

• We apply our results to AdS3: these almost strictly dominating pairs give rise
to special proper domains in AdS3 with properly discontinuous group actions,
and they are parametrized by the maximal surfaces. In the end, we find the
deformation space of these geometric structures (Theorem 4C).

In [AL18], Alessandrini-Li use results from [DT16] and [Tho17] to study AdS
3-manifolds in the framework of non-abelian Hodge theory. In the original arXiv
version of the paper [Sag21b], we followed [AL18] to provide an alternative con-
struction for the AdS 3-manifolds from [Sag21b, Theorem C], which highlights
some different information. There was only one new computation that didn’t follow
from [AL18], so we removed the section from the paper. Instead, we’ve put this
content in the thesis as Section 4.5.

Moduli spaces of harmonic surfaces
This topic occupies Chapters V and VI. In Chapter V, we present the paper [Sag21a],
the factorization theorem for harmonic maps. The result doesn’t require many
preliminary definitions, so we state it in full here. Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be a
harmonic map from a Riemann surface to a Riemannian manifold, and assume that
the image of 𝑓 is not contained in a geodesic.

• Suppose that there is a conformal diffeomorphism ℎ : Ω1 → Ω2 between
open subsets of Σ such that 𝑓 ◦ ℎ = 𝑓 on Ω1. If ℎ is holomorphic, then
there is a Riemann surface (Σ0, 𝜇0), a holomorphic map 𝜋 : Σ → Σ0, and
a harmonic map 𝑓0 : (Σ0, 𝜇0) → (𝑀, 𝜈) such that 𝜋(Ω1) = 𝜋(Ω2) and 𝑓

factors as 𝑓 = 𝑓0 ◦ 𝜋. If ℎ is anti-holomorphic, Σ0 is a Klein surface and 𝜋 is
dianalytic (Theorem 5A).

This result tells us that the self-intersections of the harmonic surface 𝑓 (Σ) are related
to the geometry of the original Riemann surface. The factorization theorem is used
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as a lemma in Chapter VI, but is an interesting result on its own. As we’ll explain in
Chapter V, it’s connected to an old and important piece of mathematics: the Plateau
problem.

In Chapter VI we study the moduli spaces (the paper [Sag21c]). We fix a closed
surface Σ of genus at least 2 and a Riemannian manifold (𝑀, 𝜈) of dimension 𝑛 at
least 3, and a homotopy class of maps 𝑓 : Σ → 𝑀 such that the subgroup

𝑓∗(𝜋1(Σ, 𝑥0)) < 𝜋1(𝑀, 𝑓 (𝑥0))

is not abelian. For suitably chosen metrics on Σ and 𝑀 (for example, if all metrics
have negative curvature), there is a unique harmonic map in the homotopy class of
𝑓 .

We consider an infinite-dimensional Banach manifold 𝔐 consisting of pairs of
metrics on Σ and𝑀 with the desired properties (for example, the space of hyperbolic
metrics on Σ cross negatively curved metrics on 𝑀). We then map 𝔐 into a Banach
manifold of maps from Σ to 𝑀 , by associating each pair to its harmonic map in
the homotopy class of 𝑓 . We call this the moduli space of harmonic maps. In
Chapter VI, after giving the formal constructions, we prove the main results, which
we informally state below.

• In all dimensions 𝑛 ≥ 3, somewhere injective harmonic maps form an open,
dense, and connected subset (Theorem 6A).

• When the target manifold has dimension at least 4, harmonic maps with
isolated singularities can be approximated by harmonic immersions (Theorem
6B).

• When the target manifold has dimension at least 4, harmonic maps with
isolated singularities can be approximated by harmonic embeddings (Theorem
6C).

For 3-manifolds, the somewhere injective result is contained in the unpublished
preprint [Mar18], although some pieces of the argument were incomplete. We’ve
given a full proof, and we’ve extended the result to all dimensions.

In the introductory portion of Chapter VI, we make a conjecture that the hypothesis
on singularities can be removed. At the end of the chapter, we explain our use of
this hypothesis.
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Uniqueness of minimal surfaces in products
The subject of Chapter VII is the paper [MSS22], joint with Vladimir Marković
and Peter Smillie. Marković proved that for genus 𝑔 sufficiently large, there exists
a product of Fuchsian representations into PSL(2,R)𝑛 that allows mutiple minimal
surfaces in the corresponding product of closed Riemann surfaces [Mar22]. This is
the starting point for our work.

• The results of Chapter VII provide a strengthening of Marković’s result:
we produce unstable minimal surfaces for all genus 𝑔 ≥ 2 (Theorem 7A).
Moreover, the proof is simpler and more geometric.

In a way that can be made precise, harmonic maps into surfaces approximate
harmonic maps into R-trees (see [Wol95]). While the term R-tree is not explicitly
mentioned in the paper [Mar22], it should be clear to experts that harmonic maps to
R-trees come into play. The first result clarifies the role of R-trees.

• We prove that finding unstable minimal surfaces in products of hyperbolic
surfaces is equivalent to finding unstable equivariant minimal surfaces in
products of R-trees (Theorem 7B2). We also prove an auxiliary result about
minimal maps to products of surfaces and R-trees that do not minimize their
energy functionals over Teichmüller space (Theorem 7B1).

The idea is that an unstable minimal surface in a product of R-trees is approximated
by unstable minimal surfaces in products of hyperbolic surfaces. We then construct
minimal surfaces in products of R-trees. We find two constructions.

• First, we show that any unstable equivariant minimal surface in R𝑛 is equiva-
lent to the data of an unstable surface in a product of R-trees (Theorem 7C).
The notion of instability in R-trees will be discussed. An example of an
unstable equivariant minimal surface in R𝑛 is the lift of an unstable minimal
surface in an 𝑛-torus. Minimal surfaces in the 3-torus are a classical subject!
One of the basic examples is the Schwarz P-surface (see [DHS10, Section
3.5.9]).

• Secondly, we prove that any three quadratic differentials 𝜙1, 𝜙2, 𝜙2 on a Rie-
mann surface 𝑆 such that the product 𝜙1𝜙2𝜙3 is the square of a cubic differential
gives rise to an unstable minimal surface in a product of R-trees (Theorem
7D).
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The set of Riemann surfaces admitting such triples from Theorem 7D is non-empty
in all genus 𝑔 ≥ 2 (see the end of Chapter VII). Thus, combining Theorem B with
Theorem 7D gives the proof of Theorem 7A.

Finally, let us comment on future directions and the Labourie conjecture. It is con-
jectured in [Kat+15] that the asymptotics of the non-abelian Hodge correspondence
are controlled by harmonic maps to buildings. See the survey [Li19, Section 8]
for developments, as well as the work of Parreau on compactifications of spaces of
representations [Par12]. As we discussed briefly, harmonic maps between surfaces
converge in some sense to harmonic maps from surfaces to R-trees [Wol95]. With
[Wol95] and [Kat+15] in mind, there is a general idea that, in the high energy limit,
harmonic maps for Hitchin representations converge in a suitable sense to harmonic
maps to buildings.

Especially in view of Theorems 7B1 and 7B2 in Chapter VII, this conjectural picture
suggests an approach toward uniqueness questions in higher rank symmetric spaces.
At the time of writing, I believe that the ideas from [Mar22] and [MSS22] extend to
this setting. I look forward to seeing how everything plays out.
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C h a p t e r 2

PRELIMINARIES

In this chapter, we give basic definitions and constructions that are used throughout
the thesis. First we discuss harmonic maps between Riemannian manifolds, then
we specialize to Riemann surfaces, and then we discuss connections to (Higher)
Teichmüller theory. We linger on a few things that deserve explanation.

As harmonic maps are a huge subject in differential geometry, we can touch on only
a few aspects here. For general references on harmonic maps, we suggest the books
[EL83] and [SY97].

2.1 Harmonic maps
Let (Σ, 𝜇) be a Riemannian 𝑚-manifold with a𝐶2 metric, and (𝑀, 𝜈) a Riemannian
𝑛-manifold with a 𝐶2 metric. Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be a 𝐶2 map. If 𝑓 ∗𝑇𝑀
denotes the pullback bundle, the derivative 𝑑𝑓 defines a section of the endomorphism
bundle 𝑇∗Σ ⊗ 𝑓 ∗𝑇𝑀 . We denote by ∇ the connection on the tensor bundle 𝑇∗Σ ⊗
𝑓 ∗𝑇𝑀 induced by the Levi-Civita connections (∇𝜇)∗ and ∇ 𝑓 ∗𝜈 = 𝑓 ∗∇𝜈 on 𝑇∗Σ and
𝑓 ∗𝑇𝑀 respectively.

Definition 2.1.1. The tension field of a 𝐶2 map 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) is the section
of 𝑓 ∗𝑇𝑀 given by

𝜏 = 𝜏( 𝑓 , 𝜇, 𝜈) = trace𝜇∇𝑑𝑓 . (2.1)

The map 𝑓 is harmonic if 𝜏 = 0.

The energy density of a 𝐶2 map 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) is the function

𝑒(𝜇, 𝜈, 𝑓 ) = 1
2

trace𝜇 𝑓 ∗𝜈. (2.2)

When Σ is compact, 𝜏( 𝑓 , 𝜇, 𝜈) = 0 arises as the Euler-Lagrange equation for the
Dirichlet energy functional

𝑓 ↦→ E(𝜇, 𝜈, 𝑓 ) =
∫
Σ

𝑒(𝜇, 𝜈, 𝑓 )𝑑𝑉𝜇, (2.3)

where 𝑑𝑉𝜇 is the volume form of 𝜇. In this thesis, we don’t restrict ourselves
to compact manifolds, so we take Definition 2.1.1. When there is no risk of
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confusion, we suppress the metrics 𝜇, 𝜈 from our notation. For example, we write
𝑒( 𝑓 ) = 𝑒(𝜇, 𝜈, 𝑓 ).

In a local coordinate 𝑥 = (𝑥1, . . . , 𝑥𝑚) on the source, and a coordinate on the target
in which 𝑓 = ( 𝑓1, . . . , 𝑓𝑛), the tension field in the 𝑖𝑡ℎ coordinate is given by

Δ𝜇 𝑓
𝑖 + 𝜈𝛼𝛽 ( 𝑓 (𝑥))Γ𝑖𝑗 𝑙 ( 𝑓 (𝑥))

𝜕 𝑓 𝑗

𝜕𝑥𝛼

𝜕 𝑓𝑙

𝜕𝑥𝛽
= 0. (2.4)

Here, Δ𝜇 is the Riemannian Laplacian with respect to the metric 𝜇, the Γ𝑖
𝑗 𝑙

’s are
the Christoffel symbols for 𝜈, and we are using the Einstein summation convention.
Hence, 𝜏( 𝑓 , 𝜇, 𝜈) = 0 defines a system of second order semilinear elliptic equations.

Due to the semilinear PDE, harmonic maps automatically have a number of good
local properties: a unique continuation property [Sam78, Theorem 1] and a maxi-
mum principle [Sam78, Theorem 2], to name a few. We refer the reader to the paper
[Sam78].

Basic examples
Some examples should be familiar.

1. A constant speed map 𝑓 : 𝑆1 → (𝑀, 𝜈) is harmonic if and only if it
parametrizes a geodesic. Likewise for intervals in the real line.

2. More generally, totally geodesic maps are harmonic.

3. A map to R𝑛 with its standard flat metric is harmonic if and only if the
component functions are harmonic functions. Indeed, if the target is flat, then
the equation (2.4) reduces to the ordinary Laplace equation.

4. Holomorphic maps between Kähler manifolds are harmonic. In particular,
holomorphic maps between Riemann surfaces are harmonic.

5. Minimal surfaces are harmonic. Given a symplectic manifold with compatible
almost complex structure, pseudoholomorphic curves are minimal and hence
harmonic.

6. Equipping spheres with the round metrics, the Hopf fibrations 𝑆3 → 𝑆2,

𝑆7 → 𝑆4, and 𝑆15 → 𝑆8 are harmonic.
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The heat flow
Eells-Sampson developed the heat flow method to prove existence of harmonic maps
in non-positive curvature [ES64]. Begin with a𝐶2 map 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈). Given
a function 𝑓 : (Σ, 𝜇) × [0, 𝑡0) → (𝑀, 𝜈), 𝑓𝑡 (𝑧) = 𝑓 (𝑧, 𝑡), where [0, 𝑡0) has the flat
metric and global coordinate 𝑡, the time derivative is the section of 𝑓 ∗𝑇𝑀 given by

𝜕 𝑓𝑡

𝜕𝑡
= ∇ 𝜕

𝜕𝑡
𝑑𝑓 .

On some time interval, we seek a solution to the Cauchy problem

𝜕 𝑓𝑡

𝜕𝑡
= 𝜏( 𝑓𝑡), 𝑓0 = 𝑓 . (2.5)

Short-time existence of a solution follows from the standard parabolic theory, without
any curvature assumption. For closed manifolds, Eells-Sampson use a curvature
hypothesis to prove long-time existence, i.e., to find a solution on the domain
(Σ, 𝜇) × [0,∞). Taking 𝑡 → ∞, the solution to the heat equation converges to a
harmonic map. The end result is the following.

Theorem 2.1.2 (Eells-Sampson). Suppose (Σ, 𝜇) and (𝑀, 𝜈) are closed and that
(𝑀, 𝜈) has non-positive sectional curvature. Then there exists a 𝐶∞ harmonic map
in the homotopy class of 𝑓0.

The curvature hypothesis ensures that the energy density of 𝑓𝑡 is uniformly controlled
along the heat flow (see, for example, [ES64, page 135], [ES64, Lemma 8A], and
the Moser-Harnack inequality [Mos64]). For details, see the original paper [ES64],
or the book [LW08]. The situation is quite different in positive curvature: for
sequences of maps with controlled total energy, the mass of the energy density is
allowed to concentrate at isolated points. This leads to “bubbles” (see [SU81]).

Hamilton wrote a whole book in which he used the heat flow to prove the analogous
result for maps into non-positively curved manifolds with convex boundary [Ham75].
The convexity condition on the boundary is very natural in the context of harmonic
functions in the plane (see, for instance, the Radó-Kneser-Choquet theorem [Dur04,
Chapter 2]).

Uniqueness results in non-positive curvature are typically attributed to Hartman
[Har67, Theorem H] (see also [Sam78, Theorem 4]). The derivative of (2.1) in
the 𝑓 -direction is the Jacobi operator acting on 𝐶2 sections in Γ( 𝑓 ∗𝑇𝑀), which
is positive semi-definite when the target space has non-positive curvature. More
details are given in Chapter VI, where the Jacobi operator plays a large role.
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Theorem 2.1.3 (Hartman, Sampson). Suppose that Σ is closed and that (𝑀, 𝜈) has
non-positive curvature. Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be a harmonic map. If 𝑓 (Σ)
contains a point 𝑞 at which all sectional curvatures of (𝑀, 𝜈) at 𝑞 are negative, and
if 𝑓 (Σ) is not contained in a geodesic, then 𝑓 is the unique harmonic map in its
homotopy class.

The heat flow is used for the main existence theorem for equivariant harmonic maps
from compact surfaces (more on this below).

2.2 Harmonic maps of Riemann surfaces
From now on, (Σ, 𝜇) is a Riemann surface with compatible metric 𝜇, in the sense
that if 𝑧 is a local holomorphic coordinate, then

𝜇 = 𝜇(𝑧) |𝑑𝑧 |2.

Note that any metric 𝜇 on Σ gives rise to a unique marked Riemann surface structure
in which 𝜇 is conformal.

Harmonic maps in dimension 2 are conformally invariant: if we replace the metric
𝜇 with a metric 𝜇𝜑 that locally takes the form 𝑒𝜑(𝑧)𝜇(𝑧) |𝑑𝑧 |2 for some 𝐶2 function
𝜑, then the 𝑒𝜑 factor in the area form 𝑑𝐴𝜇𝜑 cancels with the 𝑒−𝜑 factor in 𝑒(𝜇𝜑, 𝜈, 𝑓 ),
so that

E(𝜇𝜑, 𝜈, 𝑓 ) = E(𝜇, 𝜈, 𝑓 ).

Consequently, critical points, or solutions to the harmonic map equation, are the
same for both metrics.

Let 𝑇𝑀C = 𝑇𝑀 ⊗ C denote the complexification of the tangent bundle of 𝑀 and
E := 𝑓 ∗𝑇𝑀C the pullback bundle. Let 𝑧 = 𝑥 + 𝑖𝑦 be a local complex parameter on
an open subset of Σ and set

𝜕

𝜕𝑧
=

1
2

( 𝜕
𝜕𝑥

− 𝑖 𝜕
𝜕𝑦

)
,
𝜕

𝜕𝑧
=

1
2

( 𝜕
𝜕𝑥

+ 𝑖 𝜕
𝜕𝑦

)
.

We define local sections of E by 𝑑𝑓
(
𝜕
𝜕𝑥

)
= 𝑓𝑥 , 𝑑𝑓 ( 𝜕𝜕𝑦 ) = 𝑓𝑦, and

𝑑𝑓 ( 𝜕
𝜕𝑧

) = 1
2
𝑑𝑓

( 𝜕
𝜕𝑥

− 𝑖 𝜕
𝜕𝑦

)
=

1
2
( 𝑓𝑥 − 𝑖 𝑓𝑦) = 𝑓𝑧 .

One can check that
( 𝑓 ◦ ℎ)𝑤 = ( 𝑓𝑧 ◦ ℎ)ℎ𝑤 (2.6)
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for any holomorphic map such that ℎ(𝑤) = 𝑧. Therefore, the expression 𝑓𝑧𝑑𝑧 is a
globally defined E-valued (1, 0)-form on Σ.

From a classical theorem of Koszul and Malgrange, the complex vector bundle
E admits a unique holomorphic structure such that the (0, 1)-component of the
connection ∇ = ∇E is the standard 𝜕-operator. In the complex coordinate, the
harmonic map equation reduces to

∇ 𝜕
𝜕𝑧
𝑓𝑧 = 0.

That is, 𝑓𝑧 is a local holomorphic section of E. We highlight this characterization
because it underscores the relation between harmonicity and complex geometry on
Riemann surfaces.

For a general 𝐶2 map 𝑓 , the pullback metric 𝑓 ∗𝜈 decomposes into tensors of type
(1,1), (2,0), and (0,2) as

𝑓 ∗𝜈 = 𝑒( 𝑓 )𝜇 + 𝜙 + 𝜙. (2.7)

The tensor 𝜙 is expressed in the local coordinate 𝑧 as

𝜙 = 𝜙(𝑧)𝑑𝑧2 = 𝑓 ∗𝜈( 𝑓𝑧, 𝑓𝑧) (𝑧)𝑑𝑧2.

From (2.6), we see that when 𝑓 is harmonic, 𝜙 defines a holomorphic quadratic
differential on Σ (see below for the definition).

Definition 2.2.1. The holomorphic quadratic differential 𝜙 = 𝜙( 𝑓 ) is called the
Hopf differential.

It is clear from (2.7) that 𝑓 is weakly conformal precisely when 𝜙 ≡ 0.

Definition 2.2.2. 𝑓 is a minimal map when it is harmonic and weakly conformal.

The weakly conformal condition is the same as being a branched immersion that is
conformal away from the branch points. The image of a minimal map is a weakly
minimal surface: it has zero mean curvature at immersed points.

Holomorphic quadratic differentials
Quadratic differentials will play a large role throughout the thesis. We review only
the basics; the book [Str84] treats the subject carefully. Let K be the holomorphic
cotangent bundle of the Riemann surface Σ.
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Definition 2.2.3. A holomorphic quadratic differential 𝜙 on the Riemann surface 𝑆
is a holomorphic section of the symmetric square K⊗2.

Informally, 𝜙 is a tensor on the surface, which in a local holomorphic coordinate 𝑧
takes the form 𝜙 = 𝜙(𝑧)𝑑𝑧2,with 𝜙(𝑧) holomorphic. If 𝜙 does not vanish identically,
then the zeros of 𝜙 are independent of the parametrization and discrete. If 𝜙(𝑝) ≠ 0,
then integrating a choice of square root of 𝜙 in a chart in which 𝑧(𝑝) = 0 defines a
holomorphic coordinate

𝑤(𝑧) =
∫ 𝑧

0
𝜙1/2(𝜁)𝑑𝜁

in which
𝜙(𝑤) = 𝑑𝑤2.

If 𝜙(𝑝) vanishes to order 𝑛, there is a coordinate 𝑤 such that

𝜙(𝑤) = 𝑤𝑛𝑑𝑧2.

Such coordinates are called natural coordinates for 𝜙.

The quadratic differential 𝜙 induces a singular flat metric |𝜙 | with singularities at the
zeros, which we call the 𝜙-metric. Locally, the metric tensor is |𝜙 | = |𝜙(𝑧) | |𝑑𝑧 |2.

A singular foliation F on Σ is a foliation that is allowed to have prong singularities
(see [FLP12, Exposé Five]). A 𝐶1 arc 𝛾 on Σ is transverse to the singular foliation
if it misses the singular points and is transverse to the leaves it touches at interior
points. A transverse measure 𝜇 on a foliation F is a function that assigns a positive
real number to each 𝐶1 arc transverse to F , invariant under leaf-preserving isotopy
and absolutely continuous with respect to the Lebesque measure on Σ. The latter
condition means that away from singular points, there is a smooth chart to R2 with
its standard coordinates (𝑥, 𝑦) and in which 𝜇 is obtained by integration against the
measure |𝑑𝑦 |. A singular measured foliation (F , 𝜇) is the data of a singular foliation
and a transverse measure.

The horizontal (vertical) foliation of a holomorphic quadratic differential 𝜙 on 𝑆 is
a singular foliation defined as follows.

1. The leaves are 𝐶1 curves on 𝑆 that don’t go through the zeros of 𝜙 and whose
tangent vectors evaluate under 𝜙 to positive (negative) numbers.

2. The singularities are standard prongs at the zeros; a zero of order 𝑛 corresponds
to an (𝑛 + 2)-pronged singularity.
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Both foliations come equipped with transverse measures on arcs that avoid the
zero set, defined by the densities |

√︁
Im𝜙| (horizontal) and |

√︁
Re𝜙| (vertical). In a

natural coordinate 𝑧 = 𝑥 + 𝑖𝑦 away from the zeros, the 𝑑𝑥 integrates the horizontal
foliation, and 𝑑𝑦 the vertical. It is a theorem of Hubbard-Masur that every singular
measured foliation on Σ arises from a unique holomorphic quadratic differential as
the horizontal (vertical) foliation with the above transverse measure [HM79].

Returning to harmonic maps from Riemann surfaces, away from the zeros and in a
natural coordinate 𝑧 = 𝑥 + 𝑖𝑦, the pullback metric is diagonal and takes the form

𝑓 ∗𝜈(𝑧) = 𝑒( |𝜙|, 𝜈, 𝑓 ) |𝑑𝑧 |2 + 𝑑𝑧2 + 𝑑𝑧2

= (𝑒( |𝜙|, 𝜈, 𝑓 ) + 2)𝑑𝑥2 + (𝑒( |𝜙|, 𝜈, 𝑓 ) − 2)𝑑𝑦2.

That is, the horizontal and vertical foliations integrate the directions of maximum
and minimum stretch for the harmonic map.

Holomorphic and anti-holomorphic energies
For now, assume that (𝑀, 𝜈) is also a hyperbolic Riemann surface, and that 𝜈 is
compatible in the sense that if 𝑤 is a holomorphic coordinate on 𝑀 , then 𝜈 =

𝜈(𝑤) |𝑑𝑤 |2. We consider the expressions 𝜕 𝑓

𝜕𝑧
and 𝜕 𝑓

𝜕𝑧
in local coordinates.

Definition 2.2.4. The holomorphic and anti-holomorphic energies are the functions
𝐻 ( 𝑓 ) = 𝐻 (𝜇, 𝜈, 𝑓 ) and 𝐿 ( 𝑓 ) = 𝐿 (𝜇, 𝜈, 𝑓 ) on Σ defined by

𝐻 ( 𝑓 ) (𝑧) = 𝜈( 𝑓 (𝑧))
𝜇(𝑧)

���𝜕 𝑓
𝜕𝑧

(𝑧)
���2, 𝐿( 𝑓 ) (𝑧) = 𝜈( 𝑓 (𝑧))

𝜇(𝑧)

���𝜕 𝑓
𝜕𝑧

(𝑧)
���2. (2.8)

Since the context is clear, we write 𝐻 = 𝐻 ( 𝑓 ) and 𝐿 = 𝐿 ( 𝑓 ), and likewise for other
analytic quantities. The energy density decomposes as

𝑒 = 𝐻 + 𝐿.

We also record that the Jacobian determinant 𝐽 ( 𝑓 ) satisfies

𝐽 = 𝐻 − 𝐿,

and the Hopf differential
|𝜙 |2𝜇 := |𝜙 |2𝜇−2 = 𝐻𝐿.

𝐻 and 𝐿 play a key role in the theory through the Bochner formulae, which we now
introduce. Firstly, let Δ𝜇 be the Laplacian with respect to the metric 𝜇, expressed
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in coordinates as Δ𝜇 = 4
𝜇

𝜕2

𝜕𝑧𝜕𝑧
. The Gauss curvatures 𝐾𝜇 and 𝐾𝜈 are defined in

conformal coordinates by

𝐾𝜇 (𝑧) = −1
2
Δ𝜇 log 𝜇(𝑧), 𝐾𝜈 (𝑤) = −1

2
Δ𝜈 log 𝜈(𝑤).

The Bochner formulae are as follows:
1
2
Δ𝜇log𝐻 ( 𝑓 ) = −𝐾𝜈𝐻 + 𝐾𝜈𝐻−1 |𝜙 |𝜇 + 𝐾𝜇 (2.9)

1
2
Δ𝜇log𝐿 ( 𝑓 ) = −𝐾𝜈𝐿 − 𝐾𝜈𝐿−1 |𝜙 |𝜇 + 𝐾𝜇 (2.10)

See [SY97, Chapter 1.7].

Now we lift our assumption that (𝑀, 𝜈) is a surface. The content below is not
contained in the standard references; we first saw it in [DT16, Section 2]. The
pullback metric 𝑓 ∗𝜈 satisfies det 𝑓 ∗𝜈 ≥ 0, and is locally a genuine metric on the
bundle when det 𝑓 ∗𝜈 > 0, or equivalently at points where 𝑓 is locally immersed.
From the formula (2.7),

𝑒( 𝑓 ) − 2|𝜙 |2𝜇 ≥ 0.

As a consequence, the system of equations
𝑥 + 𝑦 = 𝑒

𝑥𝑦 = |𝜙 |2𝜇
has two non-negative solutions 𝑥 and 𝑦 satisfying 𝑥 ≥ 𝑦, which we suggestively
denote by 𝐻 ( 𝑓 ) and 𝐿 ( 𝑓 ). If there is an open set on which 𝑓 is a diffeomorphism
onto its image, then the map itself defines a complex coordinate system. In the
coordinates, 𝐻 and 𝐿 are equal to the functions described by (2.8) in these coor-
dinates, provided we choose orientations correctly. The local computations from
[SY97, Chapter 1.7] go through for these 𝐻 and 𝐿: in the open set𝑈 on which 𝑓 is
an immersion (this is either empty or dense [Sam78, Theorem 3]),

1
2
Δ𝜇log𝐻 ( 𝑓 ) = −𝜅( 𝑓 ∗𝜈)𝐻 + 𝜅( 𝑓 ∗𝜈)𝐻−1 |𝜙|𝜇 + 𝐾𝜇

1
2
Δ𝜇log𝐿 ( 𝑓 ) = −𝜅( 𝑓 ∗𝜈)𝐿 − 𝜅( 𝑓 ∗𝜈)𝐿−1 |𝜙 |𝜇 + 𝐾𝜇,

where 𝜅( 𝑓 ∗𝜈) is the Gauss curvature of the pullback metric 𝑓 ∗𝜈. The only difference
with the original Bochner formulae is that 𝐾𝜈 becomes 𝜅( 𝑓 ∗𝜈). 𝑘 ( 𝑓 ∗𝜈) ≤ 𝐾𝜈, with
equality at a point if and only if the second fundamental form vanishes at that point
[Sam78, Theorem 7], [DT16, Lemma 2.5]. The curvature term adds some difficulty
in higher dimensions, but the equations are still very powerful in some contexts.
The version here will be used in Chapter III.
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2.3 Teichmüller theory
Teichmüller space
Let Σ be Riemann surface of genus 𝑔 and 𝑛 punctures, and 𝜒(Σ) = 2 − 2𝑔 − 𝑛 < 0.
A marking of another Riemann surface 𝑆 is a homeomorphism 𝑓 : Σ → 𝑆. We
demand that at every puncture, the surfaces Σ and 𝑆 are conformal to a standard
punctured disk D∗. Two marked Riemann surfaces (𝑆1, 𝑓1) and (𝑆2, 𝑓2) are said to
be equivalent if 𝑓2 ◦ 𝑓 −1

1 : 𝑆1 → 𝑆2 is a biholomorphism isotopic to the identity.

Definition 2.3.1. The Teichmüller space T𝑔,𝑛 (based atΣ) is the space of equivalence
classes of marked Riemann surfaces [(𝑆, 𝑓 )] .

It is a consequence of the uniformization theorem that T𝑔,𝑛 also identifies with the
space of marked finite volume hyperbolic surfaces. Teichmüller space is a cell of
real dimenision 6𝑔 − 6 + 2𝑛, and it has a wealth of metrics and a natural complex
structure. See textbooks such as [Gar87], [IT92], [Hub06] for more information.

There is an interpretation of T𝑔,𝑛 in terms of representations. Recall that SL(2,R)
acts biholomorphically and isometrically on the upper half space

(H, 𝜎) = ({𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 𝑥 > 0}, 𝜎(𝑧) = 𝑦−2 |𝑑𝑧 |2)

by linear fractional transformations(
𝑎 𝑏

𝑐 𝑑

)
· 𝑧 = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑 .

A marking 𝑓 : Σ → 𝑆 lifts to a mapping of universal covers, and once we pick
basepoints for the fundamental groups, the map intertwines the (biholomorphic)
deck group actions. Identifying universal covers with the upper half space H,
the deck group action gives a discrete and faithful representation 𝜌 : 𝜋1(Σ) →
SL(2,R). 𝜌 necessarily takes curves enclosing punctures to parabolic elements.
Conversely, by K(𝐺, 1) theory, such a representation gives a marking on the Riemann
surfaceH/𝜌(𝜋1(Σ𝑔)). Conjugating the representation has the effect of changing the
basepoint, and so T𝑔,𝑛 identifies with the space of conjugacy classes of discrete and
faithful representations of the 𝜋1 into SL(2,R).

A Beltrami form 𝜂 on a Riemann surface 𝑆 is a (−1, 1)-form: a section of K∗ ⊗ K.
Locally, 𝜂 = 𝜂(𝑧) 𝑑𝑧

𝑑𝑧
. According to the measurable Riemann mapping theorem, any

Beltrami form 𝜂 with | |𝜂 | |𝐿∞ < 1 determines a unique quasiconformal homeomor-
phism to another Riemann surface 𝑓 𝜂 : 𝑆 → 𝑆′ (from the transformation law, the
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𝐿∞ norm is well-defined). In this way, a deformation of a marked Riemann surface
is equivalent to a path of Beltrami forms of small 𝐿∞ norm.

The tangent space of T𝑔,𝑛 at a marked Riemann surface (𝑆, 𝑓 ) should be the space of
variations of Beltrami forms that non-trivially distort the marked Riemann surface
structure. There is a pairing between Beltrami forms and holomorphic quadratic
differentials via integration over 𝑆,

⟨𝜙, 𝜂⟩ =
∫
𝑆

𝜙𝜂. (2.11)

It turns out the tangent space in question identifies with the subspace of harmonic
Beltrami forms: 𝜂 such that there exists 𝜙 making (2.11) non-zero [IT92, Theorem
7.7]. The cotangent space identifies with the space of holomorphic quadratic differ-
entials on 𝑆 (this is an instance of Serre duality). See [IT92, Chapter 7] for more
details.

Let Diff+(Σ) be the group of 𝐶∞ orientation preserving diffeomorphisms of Σ, with
the 𝐶∞ topology, and Diff+

0 (Σ) the normal subgroup of maps that are isotopic to the
identity. The mapping class group of Σ is

MCG(Σ) := 𝜋0(Diff+(𝑆)) = Diff+(𝑆)/Diff+
0 (𝑆).

MCG(Σ) acts on Teichmüller space by changing the marking, and this action is
isometric with respect to various metrics on T𝑔,𝑛 (see [FM12, Part 2]).

Minimal surfaces
Let Σ be closed. Suppose we are given (𝑀, 𝜈) and a homotopy class of maps
𝑓 : Σ → (𝑀, 𝜈) such that for every metric 𝜇 on Σ, there is a unique harmonic map
in the homotopy class. From conformal invariance, the map is determined by the
class of the source metric 𝜇 in Teichmüller space. Hence, there is a well-defined
energy functional

E : T𝑔 → [0,∞)

that records the total energy of the unique harmonic map. E is𝐶1 and has maximum
regularity depending on that of 𝜈 (see [EL81, Theorem 3.1]).

Theorem 2.3.2. Let 𝜂 be a harmonic Beltrami form on (Σ, 𝜇), and let 𝜙 be the Hopf
differential of the harmonic map at 𝜇. The derivative of E is given by

𝑑E[𝜇] (𝜈) = −4⟨𝜂, 𝜙⟩ = −4 Re
∫
Σ

𝜙𝜂.
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Consequently, at a critical point of E, the harmonic map is minimal. See [Wen07,
page 2] for some remarks on the history of this result. We’ll see many variations of
E in the main parts of the thesis.

The usual example of this set-up is when (𝑀, 𝜈) is a closed manifold of negative
curvature, and the induced map on the fundamental groups

𝑓∗ : 𝜋1(Σ, 𝑥0) → 𝜋1(𝑀, 𝑓 (𝑥0))

does not have abelian image. A seminal result is proved in [SY79, Theorem 3.1].

Theorem 2.3.3 (Schoen-Yau). Suppose that (𝑀, 𝜈) is a closed manifold of negative
curvature and 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) is 𝜋1-injective. Then the associated energy
functional E : T𝑔 → [0,∞) is proper. Consequently, there exists a minimizer for
E, which yields a minimal map in the homotopy class.

The harmonic maps parametrization
Now we assume that (Σ, 𝜇) and (𝑀, 𝜈) are closed surfaces of the same genus 𝑔 ≥ 2.
The following result is the starting point for applying harmonic maps to Teichmüller
theory.

Theorem 2.3.4 (Schoen-Yau, Sampson). Suppose that 𝑀 is negatively curved, and
let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be the unique harmonic map in the homotopy class of the
identity. Then 𝑓 is a diffeomorphism.

See [Sam78, Theorem 11] and [SY78, Theorem 3.1]. Let𝑄𝐷 (𝑆) denote the Banach
space of holomorphic quadratic differentials on 𝑆 with the 𝐿1 norm. Fix a source
metric 𝜇. We define a map

𝛽 : T𝑔 → 𝑄𝐷 (𝑆)

by associating to each metric 𝜈 on 𝑀 the Hopf differential of the harmonic map in
the homotopy class of the identity from (Σ, 𝜇) → (𝑀, 𝜈). It was proved by Sampson
that this map is injective: if 𝜈1 and 𝜈2 yield harmonic maps 𝑓𝑖 : (Σ, 𝜇) → (𝑀, 𝜈𝑖),
𝑖 = 1, 2, with 𝜙( 𝑓1) = 𝜙( 𝑓2), then 𝑓2 ◦ 𝑓 −1

1 : (𝑀, 𝜈1) → (𝑀, 𝜈2) is an isometry
in the homotopy class of the identity [Sam78, Theorem 12]. In his thesis [Wol89,
Theorem 3.1], Wolf proved the following.

Theorem 2.3.5 (Sampson, Wolf). The map 𝛽 is a homeomorphism.

There are also independent proofs by Hitchin [Hit87, Section 11] and Wan [Wan92].
Thus, Teichmüller theory can be reformulated in terms of harmonic maps.
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High energy harmonic maps
High energy harmonic maps, first studied in Wolf’s thesis [Wol89] (see also Minsky’s
thesis work [Min92]) are at the heart of the matter in Chapter VII. The high energy
behaviour is also lurking behind the scenes in Chapters III and IV.

Let Σ be a closed Riemann surface of genus 𝑔 ≥ 2, and 𝜙 ∈ 𝑄𝐷 (Σ). From the
previous subsection, we know that for each 𝑡 > 0, there is a metric 𝜎𝑡 such that the
identity map id𝑡 : (Σ, 𝜇) → (Σ, 𝜎𝑡) is harmonic and has Hopf differential 𝑡𝜙. Let
𝑑 (·, ·) denote the distance function on 𝑆 induced by the 𝜙 metric, and let Z be the
zero set of 𝜙. Let 𝐻𝑡 and 𝐿𝑡 be the holomorphic and anti-holomorphic energies for
id𝑡 , 𝐽𝑡 the Jacobian, and 𝜈𝑡 the Beltrami form. There is a universal constant 𝑐 such
that, as we take 𝑡 → ∞, the following estimates hold.

1. Away from Z, 𝐻𝑡 and 𝐿𝑡 satisfy the estimates

1
𝑡
𝐻𝑡 (𝑧) = |𝜙(𝑧) |+𝑜(𝑒−𝑐𝑡1/2𝑑 (𝑧,Z)), 1

𝑡
𝐿𝑡 (𝑧) = |𝜙(𝑧) |+𝑜(𝑒−𝑐𝑡1/2𝑑 (𝑧,Z)). (2.12)

2. Away from Z, |𝜈𝑡 | increases to 1, and |𝜈𝑡 | − 1 = 𝑜(𝑒−𝑐𝑡1/2𝑑 (𝑧,Z)).

3. It follows from (2.12) that away from Z, 𝐽𝑡 = 𝑜(𝑒−𝑐𝑡
1/2𝑑 (𝑧,Z)). At the zeros,

𝐽𝑡 → ∞.

These estimates are all proved via the Bochner formulae (see [Wol89, Proposition
4.3], [Wol91a, Theorem 3.1], and [Min92, Lemma 3.2]). In terms of the geometry
of the harmonic maps, these estimates show that

1. for large 𝑡, leaves of the horizontal foliation for 𝜙 are stretched by the harmonic
map with scale 𝑡1/2, and the images have geodesic curvature 𝑜(𝑒−𝑐𝑡1/2𝑑 (𝑧,Z))
(see [Wol91a, Lemma 2.2]).

2. For large 𝑡, images of leaves of the vertical foliation have length 𝑜(𝑒−𝑐𝑡1/2𝑑 (𝑧,Z)).

We formally define leaf spaces and harmonic maps toR-trees in Chapter VII. Loosely
speaking, the space of leaves of the vertical foliation of 𝜙, when equipped with a
distance function induced by the transverse measure, forms a metric space (𝑇, 𝑑)
called the leaf space of 𝜙. It comes with a harmonic map 𝜋 : Σ̃ → (𝑇, 𝑑). It is a
consequence of the results above that as we take 𝑡 → ∞, the high energy harmonic
maps converge in a suitable sense to the map 𝜋 (see [Wol95, Corollary 5.2]).
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Thurston gave a compactification of Teichmüller space on which the action of the
mapping class group extends continuously to the boundary. The boundary objects
are projective measured foliations on the surface 𝑆 (see the book [FLP12]). Wolf
compactified Teichmüller space using harmonic maps; the boundary points can
be interpreted as harmonic maps to R-trees (dual to foliations) [Wol89, Section
4]. Wolf shows [Wol89, Theorem 4.1] that this compactification agrees with the
Thurston compactification.

2.4 The non-abelian Hodge correspondence
In this section, (Σ, 𝜇) is a finite volume hyperbolic surface with compatible complex
structure. We denote by Γ the Fuchsian holonomy group of (Σ, 𝜇).

Representations and flat bundles
Let 𝐺 be a Lie group, acting by isometries on a contractible manifold 𝑋 . For any
representation 𝜌 : Γ → 𝐺, there is an associated fiber bundle 𝑋𝜌 → Σ whose total
space is the quotient of Σ̃ × 𝑋 by the action of the deck group Γ via

𝛾 · (𝑧, 𝑥) = (𝛾 · 𝑧, 𝜌(𝛾)𝑥).

This is naturally endowed with a flat 𝐺-connection, and upon choosing a basepoint
for the 𝜋1, the holonomy representation is conjugate to 𝜌. This mapping 𝜌 ↦→ 𝑋𝜌

produces a bijection between the set of conjugacy classes of representations and that
of gauge equivalence classes of flat 𝑋-bundles with structure group 𝐺.

Global sections always exist because 𝑋 is contractible. Under this correspondence,
taking the pullback bundle with respect to the universal covering Σ̃ → Σ shows that
sections of 𝑋𝜌 are equivalent to 𝜌-equivariant maps from Σ̃ → 𝑋 , i.e., maps 𝑓 that
satisfy, for all 𝑧 ∈ Σ̃ and 𝛾 ∈ Γ,

𝑓 (𝛾 · 𝑧) = 𝜌(𝛾) 𝑓 (𝑧).

We will pass back and forth between these two perspectives.

We now assume that (𝑋, 𝜈) is Hadamard, meaning that it is complete, simply
connected, and non-positively curved.

Definition 2.4.1. A representation 𝜌 : 𝜋1(Σ) → (𝑋, 𝜈) is reductive if there exists a
convex set 𝐶 ⊂ 𝑋, invariant under 𝜌(𝜋1(Σ)) and such that

1. 𝐶 splits as a Riemannian product 𝐶 = 𝐶1 × 𝐸, where 𝐶1 is convex and 𝐸 is a
Euclidean space, and
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2. 𝜌(𝜋1(Σ)) preserves the decomposition, and the restriction 𝜌 : 𝜋1(Σ) →
Isom(𝐶1, 𝜈) does not fix a point on the Gromov boundary 𝜕∞𝐶1.

This extends the usual notion of reductive groups.

Lemma 2.4.2. Let 𝐺 be a real algebraic group, and 𝑋 a homogeneous space for 𝐺.
Then 𝜌 : 𝜋1(Σ) → (𝑋, 𝜈) is reductive if and only if the Zariski closure of 𝜌(𝜋1(Σ))
is a reductive subgroup of 𝐺.

When (𝑋, 𝜈) has negative sectional curvature, there is a dichotomy for reductive
representations. A reductive representation 𝜌 is either

1. irreducible, meaning that there is no point 𝜉 on the Gromov boundary 𝜕∞𝑋
such that 𝜌(Γ) fixes 𝜉; or

2. reducible, which means that the group 𝜌(Γ) stabilizes a geodesic, on which it
acts by translations.

Equivariant harmonic maps
Let (𝑋, 𝜈) be a Hadamard manifold, 𝐺 = Isom(𝑋, 𝜈), and 𝜌 : Γ → 𝐺 be a
reductive representation. Since 𝜌 is acting by isometries, the energy density 𝑒( �̃�, 𝑓 )
is invariant under the action of Γ on Σ̃, and hence descends to a function 𝑒(𝜇, 𝑓 ) on
Σ. Similarly, the Hopf differential is invariant, and we call the downstairs quotient
𝜙 the Hopf differential of 𝑓 .

Definition 2.4.3. A 𝜌-equivariant map 𝑓 : (Σ̃, �̃�) → (𝑋, 𝜈) is harmonic if it satisfies
the usual Euler-Lagrange equation.

If the surface is closed, we can define the usual total energy as in (2.3) by integrating
𝑒(𝜇, 𝑓 ) over Σ, and define equivariant harmonic maps as critical points. When Σ

is closed and 𝑋 = H3, Donaldson solved the heat equation (2.5) to prove existence
of equivariant harmonic maps for irreducible representations [Don87]. Working
in local coordinates, one can apply the usual parabolic theory to get a short-time
equivariant solution 𝑓𝑡 with energy density bounds (the methods of [ES64] apply
directly). Donaldson observes that the irreducible condition guarantees that 𝑓𝑡 takes
compact sets into compact sets, independent of 𝑡. Then one can do Arzelà-Ascoli
for long-time convergence.
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The method is used in more general contexts by Corlette [Cor88], Labourie [Lab91],
Jost-Yau [JY91], and Corlette again [Cor92b]. We compile some of the results into
one:

Theorem 2.4.4. (Corlette, Donaldson, Labourie, Jost-Yau) Suppose 𝑀 is a com-
plete Riemannian manifold possibly with boundary, Γ ≃ 𝜋1(𝑀), 𝑋 is a CAT(−1)
Hadamard manifold, and 𝜌 : Γ → 𝑋 is a reductive representation. If there exists a
𝜌-equivariant map with finite energy (with equivariant boundary values if 𝜕𝑀 ≠ ∅),
then there exists an equivariant harmonic map (with the same boundary values).

The non-abelian Hodge correspondence
Here we give a very brief overview of the non-abelian Hodge correspondence for
a closed Riemann surface (Σ, 𝜇) and the Lie group 𝐺 = SL(𝑛,C). The theory
holds for more general Lie groups of non-compact type, but for simplicity we
restrict ourselves. We also leave out some definitions, since we discuss the non-
abelian Hodge correspondence for parabolic Higgs bundles in Section 4.5. For an
introduction to Higgs bundles and non-abelian Hodge theory, see [Wen16], [Gui18].
For more on the harmonic maps perspective, see [Li19].

The correspondence concerns two moduli spaces associated to the surface Σ. The
Betti moduli space is the GIT quotient (we like the reference [Szé14, Section 5])

𝐵(𝐺) = Hom(𝜋1(Σ), 𝐺)//𝐺,

where the 𝐺-action is by conjugation. Alternatively, it is obtained by removing the
representations that are not reductive, and then quotienting by conjugation. Hitchin
introduced Higgs bundles in his seminal paper [Hit87].

Definition 2.4.5. A rank 𝑛 Higgs bundle over Σ is a pair (𝐸, 𝜕𝐸 , 𝜑), where (𝐸, 𝜕𝐸 )
is a holomorphic vector bundle of rank 𝑛 over Σ and 𝜙 ∈ 𝐻0(Σ,End(𝐸) ⊗ K) is a
section called the Higgs field. An SL(𝑛,C)-Higgs bundle has the extra requirements
that det𝐸 is the trivial line bundle, and trace𝜑 = 0.

On a closed Riemann surface 𝑆, the space of polystable Higgs bundles (see [Wen16,
Definition 2.3]) mod Higgs bundle isomorphism (see [Wen16, page 7]) is called the
Dolbeaut moduli space 𝐷𝑆 (𝐺). The correspondence is below.

Theorem 2.4.6 (Corlette, Donaldson, Hitchin, Simpson). Let 𝑆 be a closed Riemann
surface of genus 𝑔 ≥ 2. There is a homeomorphism between the moduli spaces
𝐵(𝐺) → 𝐷𝑆 (𝐺).
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The passage from 𝐷𝑆 (𝐺) to 𝐵(𝐺) is contained in the work of Hitchin [Hit87]
and Simpson [Sim88], and Donaldson [Don87] and Corlette [Cor88] proved the
other direction of the correspondence. The proof of both directions involve an
intermediate moduli space: the de Rham moduli space 𝑅(𝐺) of gauge equivalence
classes of flat bundles with holonomy in 𝐺. As explained previously, 𝐵(𝐺) is in
bijection with 𝑅(𝐺).

Harmonic maps provide the engine for one side of the correspondence. Given a
representation 𝜌 : 𝜋1(Σ) → SL(𝑛,C), we form the bundle 𝐸 = C𝑛𝜌 → Σ with flat
connection ∇. Corlette provides a 𝜌-equivariant harmonic map to the symmetric
space for SL(𝑛,C), which is equivalent to a harmonic metric on the bundle 𝐸 . From
the harmonic metric and the flat connection, one can construct a complex structure
𝜕
𝐸

on 𝐸 and a Higgs field, which, up to some identifications, can be seen as the
(1, 0)-component of the derivative of the harmonic map (see Section 4.5 in Chapter
IV).

On the other side, Hitchin and Simpson show that from a polystable Higgs bundle
(𝐸, 𝜕𝐸 , 𝜑), one can find a metric ℎ on the bundle such that if ∇ℎ is the Chern
connection, and 𝐹∇ℎ

its curvature, then (∇ℎ, 𝜑) solves Hitchin’s self-duality equation

𝐹∇ℎ
+ [𝜑, 𝜑∗ℎ] = 0,

where the Lie bracket has been extended to 𝐻0(Σ,End(𝐸) ⊗ K), and 𝜑∗ℎ is the
Hermitian adjoint with respect to ℎ. In other words, ∇ = ∇ℎ + 𝜑 + 𝜑∗ℎ is a flat
connection on 𝐸 . The holonomy of this connection defines the corresponding
representation.

Unfortunately, the non-linear nature of the PDE (2.4) makes it difficult to extract
information about a specific representation from its Higgs bundle. We remark here
that if ℎ is the 𝜌-equivariant harmonic map with Higgs bundle 𝜑, then the Hopf
differential 𝜙(ℎ) satisfies 𝜙(ℎ) = 2𝑛trace(𝜑2) [Li19, Section 5]. For harmonic maps
between surfaces of degree 1, i.e., rank 2 Higgs bundles, the Hopf differential gives
the entire data of the Higgs field [Li19, Section 6].

Higher Teichmüller theory
There are many surveys on Higher Teichmüller theory, such as [Wie18]. Here we
give a cursory introduction. Let Σ be closed and of genus 𝑔 ≥ 2. We mentioned
previously that Teichmüller space can be seen as a space of representations. In fact,
there are two components of 𝐵(SL(2,R)) that each identify with Teichmüller space.
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In Section 1.2, we introduced the Hitchin components inside 𝐵(SL(𝑛,R)), which
in the case 𝑛 = 3 parametrizes convex projective structures on surfaces. Using the
non-abelian Hodge correspondence, Hitchin discovered that the Hitchin component
is contractible: attaching a Riemann surface structure 𝑆, Hitchin analyzed this
component by looking in the moduli space of Higgs bundles 𝐷𝑆 (SL(𝑛,R)). Years
later, Labourie [Lab06, Theorem 1.5] and Fock-Goncharov [FG06] independently
proved that Hitchin representations are discrete and faithful.

The definition below is taken from [Wie18].

Definition 2.4.7. A Higher Teichmüller space for a semisimple Lie group 𝐺 of
non-compact type is any connected component of 𝐵(𝐺) that consists entirely of
discrete and faithful representations.

The Higher Teichmüller spaces all fit into the framework of positive representations
[GLW21]. Harmonic maps and the non-abelian Hodge correspondence continue to
be a valuable tool in Higher Teichmüller theory.

There is a key difference between Hitchin’s parametrization and the parametrization
that would follow from the Labourie Conjecture: the first one depends on a choice
of marked Riemann surface structure 𝑆, while the second does not (see [Lab17,
Section 1]). Also, the Labourie parametrization has mapping class group symmetry
(see [Lab08, Theorem 1.0.2] and [Lab17, Section 1]). It is worth commenting here
that even if Labourie’s conjecture is false, there are still approaches for finding a
complex structure with the desired properties (for example, see [FT21]).

In the next two chapters, we study AdS 3-manifolds. The representations giving
actions on AdS3 have a reasonable deformation space, but they do not form connected
components of the 𝐵(PSL(2,R)2). They are not Higher Teichmüller spaces in the
sense above, but the work follows the same philosophy.
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C h a p t e r 3

INFINITE ENERGY HARMONIC MAPS AND ADS
3-MANIFOLDS

3.1 Introduction
Harmonic maps play a special role in the theory of geometric structures on manifolds.
The existence results of Donaldson, Corlette, and Labourie link the purely algebraic
data of a matrix representation of a discrete group to a geometric object—an equiv-
ariant harmonic map between manifolds—realising the prescribed transformations.
In this chapter we generalize their work to a non-compact setting and apply it to the
study of domination between representations.

Let Γ be a discrete group and for 𝑘 = 1, 2 let 𝜌𝑘 : Γ → Isom(𝑋𝑘 , 𝑔𝑘 ) be repre-
sentations into the isometry groups of Riemannian manifolds (𝑋𝑘 , 𝑔𝑘 ). A function
𝑓 : 𝑋1 → 𝑋2 is (𝜌1, 𝜌2)-equivariant if for all 𝛾 ∈ Γ and 𝑥 ∈ 𝑋1,

𝑓 (𝜌1(𝛾) · 𝑥) = 𝜌2(𝛾) · 𝑓 (𝑥).

𝜌1 dominates 𝜌2 if there exists a 1-Lipschitz (𝜌1, 𝜌2)-equivariant map. The dom-
ination is strict if the Lipschitz constant can be made strictly smaller than 1. The
translation length of an isometry 𝛾 of a metric space (𝑋, 𝑑) is

ℓ(𝛾) = inf
𝑥∈𝑋

𝑑 (𝑥, 𝛾 · 𝑥).

𝜌1 dominates 𝜌2 in length spectrum if there is a 𝜆 ∈ [0, 1] such that

ℓ(𝜌2(𝛾)) ≤ 𝜆ℓ(𝜌1(𝛾))

for all 𝛾 ∈ Γ. This domination is strict if 𝜆 < 1. From the definitions, (strict)
domination implies (strict) domination in length spectrum.

Domination is essential to understanding complete manifolds locally modeled on
𝐺 = PO(𝑛, 1)0: a geometrically finite representation 𝜌1 : Γ → 𝐺 strictly dominates
𝜌2 : Γ → 𝐺 if and only if the (𝜌1, 𝜌2)-action on 𝐺 by left and right multiplication
is properly discontinous [GK17]. For 𝑛 = 2 these are the anti-de Sitter (AdS)
3-manifolds, and for 𝑛 = 3 we have the 3-dimensional complex holomorphic-
Riemannian 3-manifolds of constant non-zero curvature (see [DZ09] for details).
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Anti-de Sitter space
The exposition here is minimal, and for more information, we suggest the recent
survey [BS20]. Denote by R𝑛,2 the real vector space R𝑛+2 equipped with the non-
degenerate bilinear form

𝑞𝑛,2(𝑥) =
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑥𝑛+1𝑦𝑛+1 − 𝑥𝑛+2𝑦𝑛+1.

We define
H𝑛,1 = {𝑥 ∈ R𝑛,2 : 𝑞𝑛,2(𝑥) = −1}.

The quadric H𝑛,1 ⊂ R𝑛,2 is a smooth connected submanifold of dimension 𝑛 + 1,
and each tangent space 𝑇𝑥H𝑛,1 identifies with the 𝑞𝑛,2-orthogonal complement of
the linear span of 𝑥 in R𝑛,2. The restriction of 𝑞𝑛,2 to such a tangent space is a non-
degenerate bilinear form of signature (𝑛, 1), and this induces a Lorentzian metric on
H𝑛,1 of constant curvature −1 on non-degenerate 2-planes. H𝑛,1 identifies with the
Lorentzian symmetric space 𝑂 (𝑛, 2)/𝑂 (𝑛, 1), where 𝑂 (𝑛, 1) embeds into 𝑂 (2, 2)
as the stabilizer of the standard basis vector 𝑒𝑛.

The center of 𝑂 (𝑛, 2) is {±𝐼}, where 𝐼 is the identity matrix. The Klein model of
AdS𝑛+1 is the quotient

AdS𝑛+1 = H𝑛,1/{±𝐼},

with the Lorentzian metric induced from H𝑛,1. This also identifies as the space of
negative (timelike) directions in R𝑛,2,

AdS𝑛+1 = {[𝑥] ∈ RP𝑛+1 : 𝑞𝑛,2(𝑥) < 0}.

A tangent vector 𝑣 ∈ 𝑇𝑥H2,1 is timelike, lightlike, and spacelike if 𝑞𝑛,2(𝑣, 𝑣) < 0,
𝑞𝑛,2(𝑣, 𝑣) = 0, and 𝑞𝑛,2(𝑣, 𝑣) > 0 respectively, and likewise for AdS3. The causal
character of a geodesic curve is constant, and correspondingly we call geodesics
timelike, lightlike, or spacelike if every tangent vector is timelike, lightlike, or
spacelike.

AdS𝑛+1 space arose in physics: anti-de Sitter metrics are exact solutions of the Ein-
stein field equations (in which the only term in the stress-energy tensor is a negative
cosmological constant). Now there are more modern applications in physics. In this
part of the thesis we study 3-dimensional anti-de Sitter space. The low dimensional
AdS3 appears in physics—for instance, see the work of Witten [Wit89], [Wit07].
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On AdS 3-manifolds
In dimension 3, there is another model of AdS3: the Lie group PSL(2,R). The
determinant form 𝑞 = (−det) defines a signature (2, 1) bilinear form on the lie
algebra 𝔰𝔩(2,R) = 𝑇[𝐼] PSL(2,R) (it is a multiple of the Killing form). Translating
to each tangent space via the group multiplication, we obtain a Lorentzian metric that
is isometric to AdS3. The space and time-orientation preserving component of the
isometry group is PSL(2,R)×PSL(2,R), acting via the left and right multiplication:

(𝑔, ℎ) · 𝑥 = 𝑔𝑥ℎ−1.

An AdS 3-manifold is a Lorentzian 3-manifold of constant curvature −1. Equiva-
lently, such a manifold is locally isometrically modelled on PSL(2,R).

There are two main lines of research in AdS3:

1. globally hyperbolic maximally compact AdS 3-manifolds, as studied by Mess
[Mes07] and developed by many others [KS07] (see [BS20] and the references
therein).

2. and the study of properly discontinuous group actions on AdS3. Some of the
main works are [KR85], [Kli96], [Sal00], [Kas10], [GKW15], [DGK16a],
[DGK16b], [DT16], [Tho17], and [Tho18].

Our interest here is in the latter. More generally there is an interest in properly
discontinuous group actions on Clifford-Klein forms, and study that has its roots in
some famous conjectures about affine geometry.

We give a brief overview of some aspects. If an AdS 3-manifold is geodesically
complete, meaning geodesics run for all time, then it comes from a proper quotient of
P̃SL(2,R) with respect to the lift of the action above. Goldman showed that the space
of closed AdS 3-manifolds is larger than originally expected [Gol85], and Kulkarni
and Raymond took up the problem of understanding all geodesically complete AdS
3-manifolds [KR85]. Among other things, they proved [KR85, Theorem 5.2] that
any torsion-free discrete group acting properly discontinuously on AdS3 is of the
form

Γ𝜌1,𝜌2 = {(𝜌1(𝛾), 𝜌2(𝛾)) : 𝛾 ∈ Γ},

where Γ is a the fundamental group of a surface, and 𝜌1, 𝜌2 : Γ → PSL(2,R) are
representations, with at least one of them Fuchsian. This is generalized for actions
on rank 1 Lie groups in [Kas08].
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Remark 3.1.1. Shortly after, Klingler [Kli96] proved that closed Lorentzian man-
ifolds of constant curvature are geodesically complete. Thus, the completeness
assumption can be dropped in the work of Kulkarni and Raymond on closed AdS
3-manifolds.

The natural next step is to understand which Γ𝜌1,𝜌2 act properly discontinuously. In
the cocompact case, Salein observed it is sufficient [Sal00], and Kassel proved it
is necessary [Kas10] that 𝜌1 strictly dominates 𝜌2 (defined below). Guéritaud and
Kassel extended these results to surfaces with punctures and higher dimensional
hyperbolic spaces [GK17].

When a group Γ acts on a manifold with no reference to a representation 𝜌1, we
may just write 𝜌2-equivariant. By the Selberg lemma, we only need to consider
torsion-free groups.

Theorem 3.1.2 (Guéritaud-Kassel, Theorem 1.8 in [GK17]). A finitely generated
discrete group Γ𝜌1,𝜌2 acts properly discontinuously and without torsion if and only
if 𝜌1 is Fuchsian and strictly dominates 𝜌2, up to interchanging 𝜌1 and 𝜌2.

The quotient is a Seifert-fibered AdS 3-manifold over the hyperbolic surfaceH/𝜌1(Γ)
such that the circle fibers are timelike geodesics.

In the PSL(2,R) model, timelike geodesics are all of the form

𝐿𝑝,𝑞 = {𝑋 ∈ PSL(2,R) : 𝑋 · 𝑝 = 𝑞},

where (𝑝, 𝑞) range over H × H. These are topological circles and have Lorentzian
length 𝜋.

There was an open question: is every non-Fuchsian representation 𝜋1(𝑆𝑔) →
PSL(2,R) strictly dominated by a Fuchsian one? This question was answered
by Deroin-Tholozan in [DT16] and Guéritaud-Kassel-Wolf in [GKW15], using dif-
ferent methods. Deroin-Tholozan actually proved a more general result.

Theorem 3.1.3 (Deroin-Tholozan, Theorem A in [DT16]). Let (𝑋, 𝜈) be a CAT(−1)
Hadamard manifold with isometry group 𝐺 and 𝜌 : 𝜋1(𝑆𝑔) → 𝐺 a representation,
𝑔 ≥ 2. Then 𝜌 is strictly dominated by a Fuchsian representation, unless it stabilizes
a totally geodesic copy of H on which the action is Fuchsian.

Marché and Wolff use the domination result to answer a question of Bowditch and
resolve the Goldman conjecture in genus 2 [MW16].
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Tholozan completed the story for closed 3-manifolds in [Tho17].

Theorem 3.1.4 (Tholozan, Theorem 1 in [Tho17]). Fix 𝑔 ≥ 2 and a CAT(−1)
Hadamard manifold (𝑋, 𝜈) with isometry group 𝐺. The space of dominating pairs
within T𝑔 × Rep𝑛 𝑓 (𝜋1(𝑆𝑔), 𝐺) is homeomorphic to

T𝑔 × Rep𝑛 𝑓 (𝜋1(𝑆𝑔), 𝐺),

where Rep𝑛 𝑓 (𝜋1(𝑆𝑔), 𝐺) is the space of representations that do not stabilize a totally
geodesic copy of H on which the action is Fuchsian.

The homeomorphism is fiberwise in the sense that for each 𝜌 ∈ Rep𝑛 𝑓 (𝜋1(𝑆𝑔), 𝐺),
it restricts to a homeomorphism from T𝑔 × {𝜌} → 𝑈 × {𝜌}, where 𝑈 ⊂ T𝑔 is an
open subset. The key point is that when (𝑋, 𝜈) = (H, 𝜎), this is the deformation
space of closed AdS quotients of PSL(2,R). The components of the deformation
space are thus organized according to Euler numbers.

Results
Henceforth a manifold that is “complete, finite volume” is implicitly understood to
be non-compact. A Hadamard manifold (𝑋, 𝑔) is CAT(−𝜅), 𝜅 ≥ 0, if all sectional
curvatures are ≤ −𝜅. See [BH99] for information on CAT(−𝜅) metric spaces. When
describing a fundamental group we suppress dependence on a basepoint. We often
identify the fundamental group with the group of deck transformations without a
change in notation. If Γ acts isometrically on a Riemannian manifold and 𝜌 is
a representation, an (id, 𝜌)-equivariant map is simply called 𝜌-equivariant. The
function Λ : R→ C given by

Λ(𝜃) = (1 − 𝜃2) − 𝑖2𝜃

will frequently appear in the chapter. We record here that as 𝜃 increases from −∞
to ∞, the complex argument of Λ(𝜃) decreases from 𝜋 to −𝜋.

All of the other relevant definitions and ambiguities will be discussed in later
sections. Our first result generalizes the work of Donaldson [Don87], Corlette
[Cor88], and Labourie [Lab91] and may also be regarded as an equivariant extension
of [Wol91b, Theorem 3.11]. Naturally, a portion of our analysis resembles that of
Wolf.

Theorem 3A. Let Σ = Σ̃/Γ be a complete finite volume hyperbolic surface and
(𝑋, 𝑔) a Hadamard manifold. Let 𝜌 : Γ → Isom(𝑋, 𝑔) be a reductive representation.
There exists a 𝜌-equivariant harmonic map 𝑓 : Σ̃ → 𝑋 .
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If we assume 𝑋 is CAT(−1), we may construct 𝑓 so that if 𝛾 is a peripheral isometry
and 𝜃 ∈ R, the Hopf differential Φ has the following behaviour at the corresponding
cusp:

• if 𝜌(𝛾) is parabolic or elliptic, Φ has a pole of order at most 1 and

• if 𝜌(𝛾) is hyperbolic, Φ has a pole of order 2 with residue

−Λ(𝜃)ℓ(𝜌(𝛾))2/16𝜋2.

Suppose that 𝜌 does not fix a point on 𝜕∞𝑋 . Then all harmonic maps whose Hopf
differentials have poles of order at most 2 at the cusps are of this form. If 𝜌 stabilizes
a geodesic, then any other harmonic map with the same asymptotic behaviour differs
by a translation along that geodesic.

Regarding domination, the next theorem is the main result of this chapter.

Theorem 3B. Let Σ = Σ̃/Γ be a complete finite volume hyperbolic orbifold and
(𝑋, 𝑔) a CAT(−1) Hadamard manifold. Let 𝜌 : Γ → Isom(𝑋, 𝑔) be any represen-
tation. There exists a geometrically finite representation 𝑗Σ dominating 𝜌 in length
spectrum. If 𝜌 is reductive, then 𝑗Σ dominates 𝜌 in the traditional sense. There is a
family of convex cocompact Fuchsian representations strictly dominating 𝑗Σ. Given
a peripheral isometry 𝛾,

• if 𝜌(𝛾) is not hyperbolic, then 𝑗Σ (𝛾) is parabolic and

• if 𝜌(𝛾) is hyperbolic, 𝑗Σ (𝛾) is hyperbolic with the same translation length.

In general 𝑗Σ will not strictly dominate 𝜌. This will be discussed in detail in Section
3.6. If 𝑋 = H and 𝜌 is Fuchsian with no elliptic monodromy it will follow from
the proof that 𝑗Σ = 𝜌. For holonomy representations of closed surfaces, Thurston
observed in [Thu98, Proposition 2.1] that strict domination contradicts the Gauss-
Bonnet theorem and is therefore impossible.

Most of the proof of Theorem 3B is devoted to constructing 𝑗Σ. To upgrade to
a strictly dominating representation we perform a strip deformation, a procedure
introduced by Thurston [Thu98] and further developed in [DGK16a].

Setting 𝑋 = H in Theorem 3B, from [GK17, Theorem 1.8] we obtain:
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Theorem 3C. Let Σ = Σ̃/Γ be a complete finite volume hyperbolic orbifold and
𝜌 : Γ → PSL2(R) any representation. Then there is a Fuchsian representation
𝑗Σ dominating 𝜌 and a family of convex cocompact representations ( 𝑗𝛼

Σ
) strictly

dominating 𝑗Σ such that

(𝜌 × 𝑗𝛼Σ) (Γ) ⊂ PSL2(R) × PSL2(R)

admits a properly discontinuous action on PSL2(R) preserving the Lorentz metric
of constant curvature −1. If 𝛾 ∈ Γ is elliptic and 𝜌(𝛾) has smaller order than 𝛾, then
the action is torsion free as well. Consequently there exists a geometrically finite
AdS 3-manifold Seifert-fibered over H/ 𝑗𝛼

Σ
(Γ).

Note that if Σ is a manifold, the torsion condition always holds.

As an intermediate step in the proof of Theorem 3B, we obtain a result of independent
interest. Let Σ be a complete finite volume hyperbolic surface with 𝑛 punctures and
let 𝑇 (Σ, 𝑝1, . . . , 𝑝𝑑1 , ℓ𝑑1+1, . . . , ℓ𝑛) denote the subspace of the Fricke-Teichmüller
space of Σ consisting of holonomies of hyperbolic surfaces with 𝑑1 ordered punc-
tures and 𝑑2 ordered geodesic boundary components of length ℓ𝑑1+1, . . . , ℓ𝑑2 > 0.
Let (𝜃𝑘 )𝑛𝑘=𝑑1+1 ⊂ R and 𝑃 := (ℓ𝑘 , 𝜃𝑘 )𝑛𝑘=𝑑1+1. Denote by 𝑄(Σ, 𝑃) the space of holo-
morphic quadratic differentials on Σ with poles of order at most one at the punctures
corresponding to cusps and poles of order 2 with residue

−Λ(𝜃𝑘 )ℓ2
𝑘/16𝜋2

for each puncture labelled by ℓ𝑘 . From the results in [Wol91b], for each point
in 𝑇 (Σ, 𝑝1, . . . , 𝑝𝑑1 , ℓ1, . . . , ℓ𝑑2), there is a unique homotopic harmonic diffeomor-
phism ℎ 𝑓 : Σ → 𝑆 whose Hopf differential lives in 𝑄(Σ, 𝑃).

Theorem 3D. Let Σ be a finite volume hyperbolic surface. The map

Ψ : 𝑇 (Σ, 𝑝1, . . . , 𝑝𝑑1 , ℓ1, . . . , ℓ𝑑2) → 𝑄(Σ, 𝑃)

given by [𝑆, 𝑓 ] ↦→ Hopf(ℎ 𝑓 ) is a homeomorphism.

We expect the above result is known to experts, but could not find a proof in the
literature. Hence we supply our own. The parametrization of the Teichmüller space
of a closed surface by holomorphic quadratic differentials goes back to Sampson,
Schoen-Yau, and Wolf (see [Wol89] for the full result). The case of Teichmüller
spaces of punctured surfaces, corresponding to differentials with a pole of order at
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most 1, was completed by Lohkamp [Loh91]. In [Gup17], Gupta parametrized wild
Teichmüller spaces by certain equivalence classes of holomorphic differentials with
poles of order at least 3. Theorem 3D thus completes a description of the space of
meromorphic quadratic differentials over a Riemann surface in terms of harmonic
diffeomorphisms.

We end this subsection by presenting quick corollaries of Theorem 3B, unrelated
to the rest of the chapter. When 𝑋 is a CAT(−1) Hadamard manifold and 𝜌 : Γ →
Isom(𝑋, 𝑔) is geometrically finite, the limit set of 𝜌(Γ) is the set of limit points of
Γ · 𝑧 in 𝜕∞𝑋 for a fixed point 𝑧 in 𝑋 . It is a standard exercise to confirm that this
does not depend on the point 𝑧. When 𝑋 = PSL2(R) and 𝜌 is Fuchsian, the limit
set is either the full circle 𝜕∞H or a Cantor set. The critical exponent 𝛿(𝜌) is the
smallest constant 𝑠 such that the Poincaré series∑︁

𝛾∈Γ
𝑒−𝑠𝑑 (𝑧,𝜌(𝛾)·𝑧)

converges, and it coincides with the Hausdorff dimension of the limit set (see
[Coo93] for a proof). The analogue of the following result is known for closed
surfaces and is observed in [DT16], but to the author’s knowledge it is new in our
context.

Corollary 3E. Let Σ = Σ̃/Γ be a complete finite volume hyperbolic orbifold and
(𝑋, 𝑔) a CAT(−1) Hadamard manifold. Let 𝜌 : Γ → Isom(𝑋, 𝑔) be a geometrically
finite representation. There is a Fuchsian representation 𝑗Σ such that the Hausdorff
dimension of the limit set of 𝜌(Γ) is bounded below by that of 𝑗Σ. 𝑗Σ has the
following property around a peripheral 𝛾:

• if 𝜌(𝛾) is not hyperbolic, then 𝑗Σ (𝛾) is parabolic and

• if 𝜌(𝛾) is hyperbolic, then 𝑗Σ (𝛾) is hyperbolic with ℓ( 𝑗Σ (𝛾)) = ℓ(𝜌(𝛾)).

The Hausdorff dimension can be estimated and sometimes fully understood from
the monodromy around the punctures. For instance, if Σ is a pair of pants and 𝜌
takes the cuffs to isometries with lengths 𝑎, 𝑏, 𝑐 > 0, then the Hausdorff dimension
of the limit set of 𝑗Σ occurs as a zero of a certain Selberg zeta function

𝑍𝑎,𝑏,𝑐 (𝑠) =
∏
𝛾∈Γ

∞∏
𝑚=0

(
1 − 𝑒−(𝑠+𝑚)ℓ(𝛾)

)
.

The map 𝛾 ↦→ ℓ(𝛾) is determined entirely by 𝑎, 𝑏, 𝑐. These zeroes can be computed
efficiently (see [PV17] for details).
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Outline and strategy of proof
In the next section we introduce the relevant definitions and notations in the repre-
sentation theory of discrete groups, and we prove some preparatory results about
equivariant harmonic maps for surfaces with punctures. In Section 3.3 we prove the
energy domination lemma, which says that the energy of an equivariant harmonic
map is bounded above by that of a special harmonic diffeomorphism of the disk with
the same Hopf differential. As is standard in this field, we argue via an analysis of
the Bochner formula. This estimate is a central technical results of this paper, and
is instrumental in proving Theorem 3B.

In Section 4.4 we prove Theorem 3D using classical techniques from the theory of
harmonic maps. Section 3.5 is devoted to the proof of Theorem 3A. Infinite energy
harmonic maps were constructed for some special cases in [Wol91b], [Sim90],
[JZ97], and [KM08]. Consequently, there is nothing truly novel in the proof of the
general existence result—it is an amalgamation of known ideas. The real work is
done in studying the behaviour and uniqueness of the harmonic maps. We combine
the energy estimate from Section 3/3 with Theorem 3D to control the energy locally,
as well as a distance comparison to a special non-harmonic map to understand the
directions in which our map should expand and contract.

In Section 3.6, we attempt to follow the approach of [DT16] to prove domination
in the compact case. We take an equivariant harmonic map 𝑓 from Theorem
3A and choose a harmonic diffeomorphism ℎ from Σ to the convex core of some
geometrically finite hyperbolic surface 𝑁 that has the same Hopf differential as
𝑓 . From our energy estimates, 𝑓 ◦ ℎ−1 is 1-Lipschitz and intertwines 𝜌 with the
holonomy of 𝑁 , but it is not strictly 1-Lipschitz (this issue does not occur in [DT16]).
We introduce strip deformations to strictly dominate the holonomy of 𝑁 , completing
the proof of Theorem 3B.

Other recent work
Shortly after a preprint of the paper was posted to the arXiv, Gupta-Su proved
the same domination result for representations to PSL2(C) [GS20]. Their proof
is different: they straighten the pleated plane determined by the Fock-Goncharov
coordinates associated to a framed representation, and then use strip deformations.
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3.2 Representations of discrete groups
Geometrically finite surfaces
Firstly, we review isometries for Hadamard manifolds. The translation length of an
isometry 𝛾 ∈ 𝐺 is

ℓ(𝛾) = inf
𝑥∈𝑋

𝑑𝜈 (𝛾 · 𝑥, 𝑥),

and 𝛾 is

• elliptic if ℓ(𝛾) = 0 and the infimum is attained,

• parabolic if ℓ(𝛾) = 0 and the infimum is not attained, and

• hyperbolic if ℓ(𝛾) > 0.

Elliptic isometries fix points inside 𝑋 , parabolic isometries fix points on 𝜕∞𝑋 , and
a hyperbolic isometry stabilizes a unique geodesic on which it acts by translation
of length ℓ(𝛾). Around a peripheral 𝜁 , we say a representation 𝜌 has hyperbolic,
parabolic, or elliptic mondromy if 𝜌(𝜁) is hyperbolic, parabolic, or elliptic respec-
tively.

Let 𝜇 be any metric on Σ, with no constraint on the volume. A cusp region is a
neighbourhood surrounding a puncture of Σ that identifies isometrically with

𝑈 (𝜏) := {𝑧 = 𝑥 + 𝑖𝑦 : (𝑥, 𝑦) ∈ [0, 𝜏] × [𝑎,∞)}/⟨𝑧 ↦→ 𝑧 + 𝜏⟩,

equipped with the hyperbolic metric 𝑦−2 |𝑑𝑧 |2.

Definition 3.2.1. The convex core 𝐶 (Σ, 𝜇) of (Σ, 𝜇) is the quotient of the convex
hull of the limit set of Γ by the action of Γ. We denote the convex hull of the limit
set by �̃� (Σ, 𝜇). We sometimes omit the metric from the notation and write 𝐶 (Σ),
�̃� (Σ).

It is the minimal convex set such that the inclusion 𝐶 (Σ, 𝜇) → Σ is a homotopy
equivalence. The convex core is a finite volume hyperbolic surface with finitely many
cusps and geodesic boundary components. (Σ, 𝜇) can be recovered from 𝐶 (Σ, 𝜇)
by attaching infinite funnels along the boundary components. In the language of
representations, the monodromy of the holonomy representation around a cusp is
parabolic, and for a geodesic boundary component it is hyperbolic.
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Optimal Lipschitz constants
Given Γ discrete, 𝜌 : Γ → Isom(𝑋, 𝑔), and 𝑗 : Γ → PSL2(R) geometrically finite,
we set

𝐶 ( 𝑗 , 𝜌) := inf Lip( 𝑓 ),

where the infimum is taken over the family of all ( 𝑗 , 𝜌)-equivariant Lipschitz maps.
The theorem below is Theorem 1.8 in [GK17].

Theorem 3.2.2. (Guéritaud, Kassel) Let Γ be a discrete group and 𝜌, 𝑗 : Γ →
PSL2(R) two representations with 𝑗 geometrically finite. Then 𝐶 ( 𝑗 , 𝜌) < 1 if and
only if

𝐶 ( 𝑗 , 𝜌)′ := sup
ℓ(𝜌(𝛾))
ℓ( 𝑗 (𝛾)) < 1,

unless 𝜌 has exactly one fixed point on 𝜕∞H and there exists a 𝛾 ∈ Γ such that 𝑗 (𝛾)
is parabolic and 𝜌(𝛾) is not elliptic.

Remark 3.2.3. As we will see later, equivariant harmonic maps only exist for
reductive representations. To dominate non-reductive representations we would
like to use a version of Theorem 3.2.2 that holds for variable curvature. The result
and the proof of Theorem 3.2.2 do not directly transfer, and trying to extend them is
outside the scope of the current work. Hence, for the non-reductive case we settle
for length spectrum domination, although we expect the full domination result to
be true. From the theorem above, non-reductive representations still lead to AdS
3-manifolds, which is the most important application.

Now suppose Σ = Σ̃/Γ is a complete finite volume hyperbolic orbifold. By the
Selberg lemma, Γ admits a finite index torsion free normal subgroup Γ0. The
quotient Σ̃/Γ0 is a complete finite volume hyperbolic manifold. We close this
section with a lemma that reduces Theorem 3B to the case of hyperbolic manifolds.

Lemma 3.2.4. Let Γ be a discrete group and Γ0 ⊂ Γ a finite index normal subgroup.
Let 𝜌 : Γ → Isom(𝑋, 𝑔) and 𝑗 : Γ → PSL2(R) be representations and let 𝜌0 and
𝑗0 be their restrictions to Γ0. Then 𝐶 ( 𝑗 , 𝜌) = 𝐶 ( 𝑗0, 𝜌0).

This is essentially done in [GK17], although the authors prove something more
general and restrict to the case 𝑋 = H𝑛. For the convenience of the reader, we
essentially repeat the proof. We use a lemma from [GK17].
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Lemma 3.2.5. Let 𝐼 be any countable index set and 𝛼 = (𝛼𝑖)𝑖∈𝐼 ⊂ R a sequence
summing to 1. Given 𝑝 ∈ 𝐾 ⊂ H and 𝑓𝑖 : 𝐾 → 𝑋 , 𝑖 ∈ 𝐼 such that∑︁

𝑖∈𝐼
𝛼𝑖𝑑 ( 𝑓1(𝑝), 𝑓𝑖 (𝑝)) < ∞,

the map

𝑓 :=
∑︁
𝑖∈𝐼
𝛼𝑖 𝑓𝑖 , 𝑥 ↦→ argmin

{
𝑝′ ∈ 𝑋 :

∑︁
𝑖∈𝐼
𝛼𝑖𝑑 (𝑝′, 𝑓𝑖 (𝑥)) < ∞

}
is well-defined and satisfies

Lip𝑥 ( 𝑓 ) ≤
∑︁
𝑖

𝛼𝑖Lip𝑥 ( 𝑓𝑖) , Lip𝑌 ( 𝑓 ) ≤
∑︁
𝑖

𝛼𝑖Lip𝑌 ( 𝑓𝑖).

If each 𝑓𝑖 is equivariant with respect to a pair of representations then so is 𝑓 .

The authors give a proof for 𝑋 = H𝑛 but the proof only uses the fact that H𝑛 is a
CAT(0) metric space.

Proof of lemma 3.2.4. If no ( 𝑗 ′, 𝜌′)-equivariant maps exist there is nothing to prove,
so assume otherwise. The inequality 𝐶 ( 𝑗 ′, 𝜌′) ≤ 𝐶 ( 𝑗 , 𝜌) is obvious because any
( 𝑗 , 𝜌)-equivariant map is ( 𝑗 ′, 𝜌′)-equivariant. As for the other inequality, write

Γ =

𝑟∐
𝑖=1

𝛾𝑖Γ0

for some collection of coset representatives 𝛾𝑖. Let 𝑓 be a ( 𝑗 ′, 𝜌′)-equivariant map.
Notice that for any 𝛾 ∈ Γ, the map

𝑓𝛾 := 𝜌(𝛾)−1 ◦ 𝑓 ◦ 𝑗 (𝛾)

depends only on the coset 𝛾Γ0. Indeed, suppose we are given 𝛾1, 𝛾2 ∈ Γ such that
𝛾1𝛾

−1
2 ∈ Γ0. For 𝑥 ∈ H let 𝑦 = 𝑗 (𝛾2)−1𝑥. Then

𝑓𝛾1 (𝑥) = 𝜌(𝛾1)−1 ◦ 𝑓 ( 𝑗 (𝛾1𝛾
−1
2 )𝑦) = 𝜌(𝛾2)−1 ◦ 𝑓 (𝑦) = 𝑓𝛾2 (𝑥).

By Lemma 3.2.5 the map

𝑓 ′ :=
𝑟∑︁
𝑖=1

1
𝑟
· 𝑓𝛾𝑖

satisfies

𝜌(𝛾)−1 ◦ 𝑓 ′ ◦ 𝑗 (𝛾) =
𝑟∑︁
𝑖=1

1
𝑟
· 𝑓𝛾𝛾𝑖 = 𝑓 ′

since the sum in the middle is just a rearrangement of the sum describing 𝑓 ′. By
Lemma 3.2.5 again we have Lip( 𝑓 ′) ≤ Lip( 𝑓 ). Taking Lip( 𝑓 ) → 𝐶 ( 𝑗 ′, 𝜌′), the
lemma follows. □
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Useful lemmas
We collect some general results on harmonic maps that we’ll use throughout.

Theorem 3.2.6 (Ishihara). Suppose that all sectional curvatures of a manifold (𝑋, 𝜈)
are non-negative. Then 𝑓 : (Σ, 𝜇) → (𝑋, 𝜈) is harmonic if and only if it pulls back
germs of convex functions to germs of subharmonic functions.

We record a corollary.

Corollary 3.2.7. Suppose that all sectional curvatures of a manifold (𝑋, 𝜈) are
non-negative and let 𝑓1, 𝑓2 : (Σ, 𝜇) → (𝑋, 𝜈) be harmonic maps. Let 𝑑𝜈 be the
Riemannian distance function on (𝑋, 𝜈). Then the function on Σ given by 𝑝 ↦→
𝑑 ( 𝑓1(𝑝), 𝑓2(𝑝)) is subharmonic.

A harmonic function between Euclidean spaces has a representation in terms of the
Poisson integral formula. Out of this formula, one can obtain local 𝐶𝑘 bounds in
terms of local 𝐶0 bounds. For harmonic maps between manifolds, Cheng’s lemma
gives 𝐶1 bounds in terms of 𝐶0 control.

Lemma 3.2.8 (Cheng’s lemma). Let 𝑋 and 𝑌 be Hadamard manifolds with −𝑏2 ≤
𝐾𝑋 ≤ 0 and dim 𝑋 = 𝑘. Let 𝑧 ∈ 𝑋 , 𝑟 > 0, and let ℎ : 𝐵(𝑥, 𝑟) → 𝑌 be a𝐶∞ harmonic
map such that the image ℎ(𝐵(𝑧, 𝑟)) is contained in a ball of radius 𝑅0. Then

| |𝐷ℎ(𝑧) | | ≤ 25𝑘
1 + 𝑏𝑟
𝑟

𝑅0.

See [Che80]. Local 𝐶𝑘 bounds are deduced from local 𝐶1 bounds via elliptic
bootstrapping.

Energy of harmonic maps
We prove some preliminary results relevant to equivariant harmonic maps from
surfaces with punctures.

Proposition 3.2.9. If Σ = Σ̃/Γ is a complete finite volume hyperbolic surface, (𝑋, 𝑔)
is a Hadamard manifold, and 𝜌 : Γ → Isom(𝑋, 𝑔) is a representation, then a finite
energy 𝜌-equivariant map exists if and only if 𝜌 has no hyperbolic monodromy.

Before we begin, we modify the metric to a new one that will be used throughout the
chapter. Label the cusp neighbourhoods 𝐶1, . . . , 𝐶𝑛. Take collar neighbourhoods
𝑈𝑘 of each 𝜕𝐶𝑘 inside Σ\𝐶𝑘 and consider the metric on Σ that agrees with the
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hyperbolic metric on Σ\(∪𝑘𝐶𝑘 ) and is flat on each 𝐶𝑘 ∪ 𝑈𝑘 . Then interpolate on
a neighbourhood of 𝜕𝑈𝑘\𝜕𝐶𝑘 that does not touch 𝜕𝐶𝑘 to a smooth non-positively
curved metric 𝜎′, conformally equivalent to the hyperbolic metric. We will call this
the flat-cylinder metric.

We also take this opportunity to introduce the transverse horospherical flow. With
𝑋 as above, consider a horoball 𝐵 ⊂ 𝑋 with horospherical boundary 𝐻 centered at
the fixed point 𝜉 of a parabolic isometry 𝜓. The subgroup generated by 𝜓 preserves
𝐻 and 𝐵. The data (𝐵, 𝐻, 𝜉) determines a flow 𝜑𝑡 : 𝐵 × [0,∞) → 𝐵 defined by

𝜑𝑡 (𝑝) = 𝛼𝑝,𝜉 (𝑡),

where 𝛼𝑝,𝜉 : [0,∞) → 𝑋 is the unique geodesic starting from 𝑝 and tending towards
𝜉 at ∞.

Lemma 3.2.10. The transverse horospherical flow is ⟨𝜓⟩-equivariant.

Proof. Notice
𝛼𝜓·𝑝,𝜉 (0) = 𝜓 · 𝑝 = 𝜓 · 𝛼𝑝,𝜉 (0).

Since 𝛼𝜓·𝑝,𝜉 (𝑡) and 𝜓 · 𝛼𝑝,𝜉 (𝑡) describe geodesics with the same starting point and
end point, they are identical. □

Proof of proposition 3.2.9. By conformal invariance of energy we’re permitted to
do all of our computations in the flat-cylinder metric. Firstly let us assume there is
a peripheral 𝛾 such that 𝜌(𝛾) is hyperbolic. Take any equivariant map 𝑓 : Σ̃ → 𝑋

and fix a cusp neighbourhood associated to the peripheral and isometric to 𝑈 (𝜏).
As 𝜌(𝛾) is hyperbolic,

𝑑𝑔 ( 𝑓 (𝑖𝑦), 𝑓 (𝜏 + 𝑖𝑦)) = 𝑑𝑔 ( 𝑓 (𝑖𝑦), 𝜌(𝛾) 𝑓 (𝑖𝑦)) ≥ ℓ(𝜌(𝛾)) > 0,

independent of 𝑦. For each 𝑦 let 𝛾𝑦 be the path 𝑥 ↦→ 𝑓 (𝑥 + 𝑖𝑦), 𝑥 ∈ [0, 𝜏]. The
inequality above implies

ℓ(𝜌(𝛾)) ≤
∫ 𝜏

0
| |𝑑𝛾𝑦 | |𝜎′𝑑𝑦

and by Cauchy-Schwarz we obtain

ℓ(𝜌(𝛾))2

2𝜏
≤ 1

2

∫ 𝜏

0
| |𝑑𝛾𝑦 | |2𝜎′𝑑𝑦 ≤

∫ 𝜏

0
𝑒( 𝑓 ) (𝑥, 𝑦)𝑑𝑦.
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Hence,

𝐸 ( 𝑓 ) ≥ 𝐸𝑉 ( 𝑓 ) =
∫ ∞

𝑎

∫ 𝜏

𝑎

𝑒( 𝑓 ) (𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≥ ℓ(𝜌(𝛾))2

2𝜏

∫ ∞

𝑎

𝑑𝑦 = ∞,

which shows all equivariant maps have infinite energy.

For the other direction, we simply produce an equivariant finite energy map. We
build a finite energy map in a neighbourhood of each cusp, equivariant with respect
to the subgroup generated by 𝜌(𝛾 𝑗 ) and then extend smoothly to a 𝜌-equivariant
map on the (compact) complement of the cusps.

By induction it suffices to assume that there is only one cusp neighbourhood 𝑉 . We
identify it with some 𝑈 (𝜏). Let 𝛾 be the corresponding curve. If 𝜌(𝛾) is elliptic
then we simply map all of 𝑉 to a fixed point of 𝜌(𝛾). This is clearly equivariant and
has zero energy in𝑉 . Henceforward we assume 𝜌(𝛾) is parabolic. ⟨𝜌(𝛾)⟩ stabilizes
a horoball 𝐵 with horopsherical boundary 𝐻. Let 𝑔 be any 𝐶∞ 𝜌 |⟨𝛾⟩-equivariant
map R→ 𝐻. Define 𝑓 : �̃� → 𝐵 by

𝑓 (𝑥 + 𝑖𝑦) = 𝜑𝑣 log(𝑦+1) (𝑔(𝑥)),

where 𝜑 is the transverse horospherical flow with respect to the fixed point and 𝑣 > 0
will be specified later. We compute

|𝑑𝑓 (𝜕/𝜕𝑦) | 𝑓 (𝑥+𝑖𝑦) = |𝜕/𝜕𝑦(𝑣 log(𝑦 + 1)) | = 𝑣

𝑦 + 1
.

Next, note that
𝐽𝑥 (𝑦) :=

𝜕

𝜕𝑥
𝑓 (𝑥 + 𝑖𝑦)

is a Jacobi field for each 𝑥. By the curvature assumption on 𝑋 , the Rauch comparison
theorem shows that any Jacobi field on 𝑋 along a geodesic decays exponentially in
time: there is a 𝑢 > 0 such that

|𝐽𝑥 (𝑦) | ≤ 𝐴𝑒−𝑢·𝑣 log(𝑦+1)

for all 𝑥. Now choose 𝑣 so that 𝑢𝑣 ≥ 1. Then

|𝑑𝑓 (𝜕/𝜕𝑥) | 𝑓 (𝑥+𝑖𝑦) ≤
𝐴

(𝑦 + 1)𝑢𝑣 ,

and furthermore

𝐸𝑉 ( 𝑓 ) ≤
1
2

∫ ∞

0

∫ 𝜏

0

𝑣2 + 𝐴2

(𝑦 + 1)2 𝑑𝑥𝑑𝑦 =
𝜏

2
(𝑣2 + 𝐴2) < ∞,

and the result follows. □
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Remark 3.2.11. The total energy of a harmonic map is finite if and only if the Hopf
differential is integrable. Passing to polar coordinates, we see that an integrable
holomorphic quadratic differential has a pole of order at most 1 at a puncture.

Suppose a representation admits a finite energy equivariant map. If it does not fix
a point on the ideal boundary, the harmonic map determined by Theorem 2.4.4 is
unique. If 𝜌 stabilizes a geodesic, there is a 1-parameter family of harmonic maps
that differ by translations along that geodesic axis. The standard methods push
through to give a uniqueness criterion in our setting.

Lemma 3.2.12. Let Σ be a complete finite volume hyperbolic surface, let (𝑋, 𝑔) be
Hadamard, and let 𝑓1 and 𝑓2 equivariant harmonic maps for 𝜌 such that the map
𝑧 ↦→ 𝑑 ( 𝑓1, 𝑓2) (𝑧) is bounded. If 𝜌 does not fix a point on 𝜕∞𝑋 then 𝑓1 = 𝑓2. If 𝜌
stabilizes a geodesic, then 𝑓1 and 𝑓2 may differ by translation along a geodesic.

Proof. For 𝑧 ∈ Σ let {𝑒1, 𝑒2} be an orthonormal frame for the tangent bundle in a
neighbourhood of 𝑧 and let {𝑣0

1, . . . , 𝑣
0
𝑛}, {𝑣1

1, . . . , 𝑣
1
𝑛} be orthonormal frames for

neighbourhoods of 𝑓1(𝑧), 𝑓2(𝑧) respectively. In these frames we write

( 𝑓𝑘 )∗𝑒𝑖 =
𝑛∑︁

𝑚=1
𝜆𝑘𝑖,𝑚𝑣

𝑘
𝑚 .

{𝑣0
1, . . . , 𝑣

0
𝑛, 𝑣

1
1, . . . , 𝑣

1
𝑛} is an orthonormal frame near ( 𝑓1(𝑧), 𝑓2(𝑧)) ∈ 𝑋×𝑋 . Define

vector fields 𝑋𝑖 ∈ Γ(𝑇 (𝑋 × 𝑋)) so that around ( 𝑓1(𝑧), 𝑓2(𝑧)) the projections onto
the first and second factors are 𝑓 ∗1 𝑒𝑖 and 𝑓 ∗2 𝑒𝑖 respectively. Let 𝑑 : Σ̃ → R be the
function

𝑑 (𝑧) = 𝑑𝑔⊕𝑔 ( 𝑓1(𝑧), 𝑓2(𝑧))

which is 𝐶∞ away from the diagonal. From a computation in [SY97, Chapter 11.2],
if we assume 𝑓1(𝑧) ≠ 𝑓2(𝑧) then from the fact that the 𝑓𝑘 are harmonic,

Δ𝑑2 ≥ 2𝑑
2∑︁
𝑖=1

𝐷2𝑑𝑔 (𝑋𝑖, 𝑋𝑖)

around 𝑧. Above, Δ is the Laplacian on Σ̃ and 𝐷2𝑑𝑔 is the Hessian of 𝑑𝑔, the distance
function on (𝑋, 𝑔).

By equivariance, 𝑑 descends to a bounded subharmonic function on Σ. As Σ is
parabolic in the potential theoretic sense, this function is constant. Therefore,

2𝑑
2∑︁
𝑖=1

𝐷2𝑑𝑔 (𝑋𝑖, 𝑋𝑖) = 0.
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This forces 𝑑 = 0 or 𝐷2𝑑𝑔 (𝑋𝑖, 𝑋𝑖) = 0. In the first case we have 𝑓1 = 𝑓2 so let
us move to the latter. From an argument in [SY97, Chapter 11.2], this implies
either 𝑓1 = 𝑓2 or 𝑓1 and 𝑓2 have image in a geodesic and differ by a translation
along that geodesic. By equivariance, this last case can only occur if 𝜌 stabilizes a
geodesic. □

3.3 Energy domination
Domination inequality
The goal of this subsection is to prove Proposition 3.3.2. Let𝜎 denote the hyperbolic
metric on H with constant curvature −1. Unless otherwise specified, for the rest of
the chapter this is the metric on H. We recall from [Wan92] a fundamental result in
the theory of harmonic maps between surfaces.

Theorem 3.3.1. (Wan) For any holomorphic quadratic differential Φ on H, there is
a (possibly non-surjective) harmonic diffeomorphism ℎ : H→ H such that

• 𝐻 (ℎ) ≥ 1,

• The metric 𝐻 (ℎ)𝜎(𝑧) |𝑑𝑧 |2 is complete on H, and

• Hopf(ℎ) = Φ.

The harmonic map is unique up to isometries.

We now have the machinery to state the energy estimate.

Proposition 3.3.2. Suppose 𝑓 is a harmonic map from H to a CAT(−1) Hadamard
manifold (𝑋, 𝑔). The energy density is always bounded above by that of any
harmonic diffeomorphism ℎ : H→ Hwith the same Hopf differential and𝐻 (ℎ) ≥ 1.
The inequality is strict unless 𝑓 takes H into a totally geodesic plane of constant
sectional curvature −1.

This is essentially a non-compact and generalized version of [DT16, Lemma 2.1].
Proposition 3.3.2 is a consequence of the next lemma.

Lemma 3.3.3. 𝐻 ( 𝑓 ) ≤ 𝐻 (ℎ) everywhere on H, with equality for one of them if
and only if and 𝑓 maps H diffeomorphically into a totally geodesic plane H ⊂ 𝑋 of
constant curvature −1. If equality holds at one point, it holds everywhere.
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Proof of proposition 3.3.2. Indeed, assuming the above result, if 𝑓 is not such an
embedding with totally geodesic image, then 𝐿 ( 𝑓 ) < 𝐻 (ℎ) and 𝐻 ( 𝑓 ) < 𝐻 (ℎ)
everywhere. As

𝐻 ( 𝑓 )𝐿 ( 𝑓 ) = | |Φ| |2 = 𝐻 (ℎ)𝐿 (ℎ),

we obtain 𝐿 ( 𝑓 ) > 𝐿(ℎ), 𝐻 ( 𝑓 ) > 𝐿(ℎ). Since 𝐻 ( 𝑓 ) −𝐿 ( 𝑓 ) ≥ 0, (𝐻 ( 𝑓 ) −𝐿 ( 𝑓 ))2 <

(𝐻 (ℎ) − 𝐿 (ℎ))2. Adding 4𝐻 ( 𝑓 )𝐿 ( 𝑓 ) = 4𝐻 (ℎ)𝐿 (ℎ) to both sides, we have

𝑒( 𝑓 )2 = (𝐻 ( 𝑓 ) + 𝐿 ( 𝑓 ))2 < (𝐻 (ℎ) + 𝐿 (ℎ))2 = 𝑒(ℎ)2,

which yields the desired result. □

We will prove Lemma 3.3.3 via the Bochner formula. Our main tool is the gener-
alized maximum principle of Omori-Yau (see [Omo67] for the version we use and
also [CY75, Theorem 3] for the extension to manifolds with a lower bound on the
Ricci curvature).

Lemma 3.3.4. (Omori) Let 𝑀 be a Riemannian manifold such that all sectional
curvatures are bounded from below. Let 𝑓 be a 𝐶2 function on 𝑀 that is bounded
above. There is a sequence (𝑥𝑛)∞𝑛=1 such that 𝑓 (𝑥𝑛) → sup 𝑓 and

|∇ 𝑓 (𝑥𝑛) | → 0 , lim sup
𝑛→∞

Δ 𝑓 (𝑥𝑛) ≤ 0

as 𝑛→ ∞.

Proof of lemma 3.3.3. By [Sam78, Corollary 3], the set D on which 𝑓 ∗𝑔 is non-
degenerate is either empty or open and dense. From [SY97, page 10] either𝐻 ( 𝑓 ) = 0
everywhere or the zeroes are isolated. We replace D with the open dense set

𝑈 := D − {𝑧 : 𝐻 ( 𝑓 ) (𝑧) = 0}.

For 𝐻 (ℎ) and 𝐻 ( 𝑓 ),

• 𝐻 (ℎ) ≥ 1 and the Bochner formula is

Δ log𝐻 (ℎ) = 2𝐻 (ℎ) − 2
| |Φ| |2
𝐻 (ℎ) − 2.

• On𝑈, 𝐻 ( 𝑓 ) solves the Bochner formula

Δ log𝐻 ( 𝑓 ) = −2𝜅( 𝑓 ∗𝑔)𝐻 ( 𝑓 ) + 2𝜅( 𝑓 ∗𝑔) | |Φ| |2
𝐻 ( 𝑓 ) − 2.
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The next result is essentially [Sam78, Theorem 4]. It was tweaked to its present
form in [DT16].

Lemma 3.3.5. For all 𝑥 ∈ 𝑈, 𝜅( 𝑓 ∗𝑔) ≤ −1. We have equality iff the second
fundamental form of 𝑓 (H) vanishes at 𝑥. In particullar, 𝜅( 𝑓 ∗𝑔) = −1 everywhere
on𝑈 iff 𝑓 (𝑈) ⊂ 𝑋 is totally geodesic.

When the metric 𝑓 ∗𝑔 is degenerate,

𝐻 ( 𝑓 ) = | |Φ| | = 𝐻 (ℎ)1/2𝐿 (ℎ)1/2 < 𝐻 (ℎ).

Hence we can dismiss the case 𝑈 = ∅ and furthermore we’re allowed to work
only on 𝑈. As stated previously 𝐻 (ℎ) ≥ 1 everywhere, so that 𝐻 ( 𝑓 )/𝐻 (ℎ) never
vanishes on 𝑈. Assume for the sake of contradiction that 𝐻 ( 𝑓 ) > 𝐻 (ℎ) at a point
𝑥. Necessarily, 𝐻 ( 𝑓 ) (𝑥) ≥ 𝐿 ( 𝑓 ) (𝑥). From the Bochner formula we have

Δ log(𝐻 ( 𝑓 )/𝐻 (ℎ)) = 2(𝐻 (ℎ) − 𝐻 ( 𝑓 )) + 2| |Φ| |2(𝐻 (ℎ)−1 − 𝐻 ( 𝑓 )−1)
− 2(𝜅( 𝑓 ∗𝑔) + 1) (𝐻 ( 𝑓 ) − 𝐿 ( 𝑓 )).

Let 𝑤 := log(𝐻 ( 𝑓 )/𝐻 (ℎ)). Since 𝜅( 𝑓 ∗𝑔) ≤ −1 and𝐻 (ℎ) ≥ 𝐿 (ℎ), one can simplify
the above equation to

Δ𝑤 ≥ 2(𝐻 ( 𝑓 ) − 𝐻 (ℎ)) (1 + ||Φ| |2/(𝐻 (ℎ)𝐻 ( 𝑓 ))) = 2(𝐻 (ℎ) + 𝐿 (ℎ)) (𝑒𝑤 − 1),

and hence
Δ𝑤 ≥ 2(𝑒𝑤 − 1) > 0

at such an 𝑥. It now follows that this point 𝑥 cannot be a local maximum for
𝐻 ( 𝑓 )/𝐻 (ℎ) as otherwise

0 ≥ Δ𝑤 > 0.

Thus, there is a sequence contained in 𝑈 and tending to the boundary of H along
which 𝐻 ( 𝑓 )/𝐻 (ℎ) > 1 and increases to sup𝐻 ( 𝑓 )/𝐻 (ℎ). We argue this supremum
is finite. Let 𝑏 > 𝑎 > 0 and define 𝐹 : [𝑏,∞) → R by

𝐹 (𝑠) =
∫ 𝑠

𝑏

( ∫ 𝑡

𝑎

𝑒2𝜏𝑑𝜏
)−1/2

𝑑𝑡 + 1.

𝐹 is monotonically increasing, bounded above, and 𝐹′′ < 0 everywhere. Extend 𝐹
smoothly to R so that it is still monotonic and satisfies

lim
𝑡→−∞

𝐹 (𝑡) > 0.
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For some large 𝑁 > 0, let 𝜂 : H→ [0, 1] be a 𝐶∞ function that is 0 on the open set
{𝑧 : 𝑒𝑤(𝑧) < 1/2𝑁} and is 1 on {𝑧 : 𝑒𝑤(𝑧) ≥ 1/𝑁}. Then 𝐹 ◦ (𝜂𝑤) is a bounded 𝐶∞

function on H. By the Omori-Yau maximum principle there is a sequence (𝑥𝑛)∞𝑛=1
escaping to the boundary such that

𝐹 ◦ 𝑤(𝑥𝑛) = 𝐹 ◦ (𝜂𝑤) (𝑥𝑛) → sup 𝐹 ◦ 𝜂𝑤 = sup 𝐹 ◦ 𝑤

as 𝑛→ ∞ and

|∇𝐹◦𝑤(𝑥𝑛) | = |∇𝐹◦(𝜂𝑤) (𝑥𝑛) | → 0 , lim sup
𝑛→∞

Δ𝐹◦𝑤(𝑥𝑛) = lim sup
𝑛→∞

Δ𝐹◦(𝜂𝑤) (𝑥𝑛) ≤ 0.

Above, we removed finitely many points in the sequence so we can assume 𝑤(𝑥𝑛) >
2/𝑁 always, and we also used the fact that 𝑤 = 𝜂𝑤 in this region.

An analogue of the computation below is contained in [CY75, Section 5], where
they work with global subsolutions. We may choose a subsequence of the 𝑥𝑛, and
abuse notation by still labelling it 𝑥𝑛, so that

0 ≤ 𝐹′(𝑤) |∇𝑤 |
𝐹 (𝑤)2 (𝑥𝑛) ≤ 1/𝑛 (∗)

and
−𝐹

′′(𝑤) |∇𝑤 |2
𝐹2 (𝑥𝑛) −

𝐹′(𝑤)Δ𝑤
𝐹2 (𝑥𝑛) +

(𝐹′)2 |∇𝑤 |2
𝐹3 (𝑥𝑛) ≥ −1/𝑛.

Multiplying the above by (𝐹′(𝑤))2/𝐹 (𝑤)2 |𝐹′′(𝑤) | we obtain

− 𝐹′′(𝑤)
|𝐹′′(𝑤) |

𝐹′(𝑤)2 |∇𝑤 |2
𝐹4 − 𝐹′(𝑤)3

𝐹4
Δ𝑤

|𝐹′′(𝑤) | +
𝐹′(𝑤)2

𝐹 (𝑤) |𝐹′′(𝑤) |
𝐹′(𝑤)2 |∇𝑤 |2
𝐹 (𝑤)4

≥ −𝐹′(𝑤)2

𝑛𝐹 (𝑤)2 |𝐹′′(𝑤) |

at 𝑥𝑛. Note 𝐹 satisfies

lim sup
𝑠→∞

|𝐹′(𝑠) |2
𝐹 (𝑠) |𝐹′′(𝑠) | < ∞,

and combining this with the line above yields that

1
𝑛2 − 𝐹′(𝑤)3

𝐹4(𝑤)
Δ𝑢

|𝐹′′(𝑤) | +
𝐴

𝑛2 ≥ −𝐴
𝑛
.

Using Δ𝑤 ≥ 2(𝑒𝑤 − 1) at 𝑥𝑛 we infer

𝐹′(𝑤)3(𝑒2𝑤 − 1)
𝐹4(𝑤) |𝐹′′(𝑤) |

(𝑥𝑛) ≲
1
𝑛
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as 𝑛→ ∞. However, it is straightforward to compute

lim inf
𝑠→∞

𝐹′(𝑠)3(𝑒2𝑠 − 1)
𝐹 (𝑠)4 |𝐹′′(𝑠) |

> 0.

This means lim sup𝑛→∞ 𝑤(𝑥𝑛) = ∞ is impossible.

To understand this supremum we apply the generalized maximum principle to the
function 𝜂𝑤. As with 𝐹 ◦ (𝜂𝑤), there is a sequence (𝑦𝑛)∞𝑛=1 leaving all compact
subsets of H such that after refining if necessary so that 𝑤(𝑦𝑛) > 2/𝑁 ,

𝑤(𝑦𝑛) = 𝜂𝑤(𝑦𝑛) → sup 𝜂𝑤 = sup𝑤

and
0 ≥ lim sup

𝑛→∞
Δ𝜂𝑤(𝑦𝑛) = lim sup

𝑛→∞
Δ𝑤(𝑦𝑛) ≥ 2(𝑒𝑤(𝑦𝑛) − 1) ≥ 0.

This forces sup𝐻 ( 𝑓 )/𝐻 (ℎ) = 1, which contradicts our assumption that 𝐻 ( 𝑓 ) >
𝐻 (ℎ) at least once. Hence, 𝐻 ( 𝑓 ) ≤ 𝐻 (ℎ) always. Now that we have our inequality,
a special case of [Min87, Theorem 1] indicates when this inequality is strict.

Lemma 3.3.6. Let 𝑢 be a real non-positive function on a domain 𝑉 in the complex
plane such that Δ𝑢 ≥ 𝐴𝑢 for a constant 𝐴 > 0. Then either 𝑢 = 0 on 𝑉 or 𝑢 < 0 on
all of 𝑉 .

With this in mind, take an increasing exhaustion (𝐷𝑘 )∞𝑘=1 of H by pre-compact open
sets. 𝑒𝑥 ≥ 𝑥 + 1 gives

Δ𝑤 ≥ (𝐻 ( 𝑓 ) − 𝐻 (ℎ))𝑤 ≥ [max
𝐷𝑘

(𝐻 ( 𝑓 ) − 𝐻 (ℎ))]𝑤

in 𝐷𝑘 ∩ 𝑈. It follows that either 𝐻 ( 𝑓 ) = 𝐻 (ℎ) or 𝐻 ( 𝑓 ) < 𝐻 (ℎ) everywhere. If
𝐻 (ℎ) = 𝐻 ( 𝑓 ) then 𝐿 (ℎ) = 𝐿 ( 𝑓 ) and we see that 𝑓 ∗𝑔 is non-degenerate everywhere.
By the Bochner formula above this forces 𝜅( 𝑓 ∗𝑔) = −1, and so by Lemma 3.3.5 𝑓

maps H diffeomorphically into a totally geodesic plane. Identifying this plane with
H, the formulas

ℎ∗𝜎 = 𝑒(ℎ)𝜎 +Φ +Φ , 𝑓 ∗𝑔 = 𝑒( 𝑓 )𝜎 +Φ +Φ

show that 𝑓 differs from ℎ by an isometry ofH. This implies 𝑓 : (H, ℎ∗𝜎) → (𝑋, 𝑔)
is an isometric embedding. □

3.4 Quadratic differentials with poles of order 2
We prove Theorem 3D.
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Harmonic diffeomorphisms

Definition 3.4.1. The Fricke-Teichmüller space is the subset of 𝐵(PSL2(R)) con-
sisting of classes of geometrically finite representations.

Each representation in this space is the holonomy of a geometrically finite hyperbolic
structure on Σ. Fix an 𝑛-tuple (ℓ1, . . . , ℓ𝑛) ∈ R𝑛≥0.

Definition 3.4.2. Let 𝑇 (Σ, ℓ1, . . . , ℓ𝑛) be the subspace of the Fricke-Teichmüller
space such that the convex core of the underlying surface associated to each repre-
sentation has, for each ℓ𝑘 , either a puncture if ℓ𝑘 = 0 or a closed geodesic boundary
component of length ℓ𝑘 ≠ 0.

When the context is clear we just call this the Teichmüller space. We represent
points as equivalence classes [𝑆, 𝑓 ], where 𝑆 is a surface and 𝑓 : Σ → 𝐶 (𝑆) is a
diffeomorphism onto the convex core of 𝑆. Another point [𝑆′, 𝑓 ′] is equivalent if
𝑓 −1 ◦ 𝑓 ′ is an isometry and isotopic to the identity.

Recall that there is a compatible Riemann surface structure on Σ. Around any
puncture 𝑝 we choose a local holomorphic coordinate 𝑧 such that 𝑧(𝑝) = 0. A
meromorphic quadratic differential Φ with a pole of order 2 at such a puncture
admits a Laurent expansion

(𝑎−2𝑧
−2 + 𝑎−1𝑧

−1 + 𝑎0 + . . . )𝑑𝑧2.

The 𝑎−2 term is invariant under holomorphic coordinate changes that take 0 to 0,
and correspondingly we call it the residue of Φ at 𝑝

For ease of notation we assume ℓ1, . . . , ℓ𝑑1 = 0, ℓ𝑑1+1, . . . , ℓ𝑑2 > 0, 𝑑1 + 𝑑2 = 𝑛. For
any (𝑑2 − 𝑑1)-tuple of unit norm complex numbers 𝜃𝑑1+1, . . . , 𝜃𝑑2 let 𝑃 be the vector
(ℓ𝑘 , 𝜃𝑘 )𝑛𝑘=𝑑1+1.

Definition 3.4.3. 𝑄(Σ, 𝑃) is the space of meromorphic quadratic differentials on Σ

with poles of order at most 2 at the 𝑝𝑘 and residues

−Λ(𝜃𝑘 )ℓ2
𝑘/16𝜋2.

If ℓ𝑘 = 0 we have a pole of order at most 1.

The space of holomorphic quadratic differentials 𝑄(Σ) with pole-type singularities
at the cusps of Σ is a Fréchet space with seminorms coming from the restriction of
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the 𝐿1 norm to pre-compact open sets. 𝑄(Σ, 𝑃) inherits the subspace topology from
𝑄(Σ). The following result can be deduced from the work of Wolf in [Wol91b]. It
links the two spaces above.

Theorem 3.4.4. (Wolf) For any [𝑆, 𝑓 ] ∈ 𝑇 (Σ, ℓ1, . . . , ℓ𝑛) there is a unique harmonic
diffeomorphism

ℎ 𝑓 : Σ → 𝐶 (𝑆)

in the isotopy class such that Hopf(ℎ 𝑓 ) ∈ 𝑄(Σ, 𝑃).

This allows us to define a map

Ψ : 𝑇 (Σ, ℓ1, . . . , ℓ𝑛) → 𝑄(Σ, 𝑃)

by [𝑆, 𝑓 ] ↦→ Hopf(ℎ 𝑓 ).

Remark 3.4.5. In [Wol91b], Wolf only explicitly computes and writes down the
residue in the event 𝜃 = 0, although he outlines constructions for 𝜃 ≠ 0. The values
listed above can be computed by following the proof of Proposition 3.5.5 in the
current chapter.

The content of Theorem 3D is that the map Ψ is a diffeomorphism. The first step is
a dimension count.

Lemma 3.4.6. 𝑇 (Σ, ℓ1, . . . , ℓ𝑛) and𝑄(Σ, ℓ1, . . . , ℓ𝑛) are homeomorphic toR6𝑔−6+2𝑛.

Proof. For the Teichmüller space, view the punctures as nodes and double the surface
across the boundary. By mapping an element to this double, 𝑇 (Σ, ℓ1, . . . , ℓ𝑛) then
embeds into a strata of the augmented Teichmüller space consisting of surfaces of
genus 2𝑔+𝑑2−1 with 𝑑1 nodes. Choosing a pants decomposition that includes all of
our boundary curves and nodes (the nodes correspond to pinched curves) and taking
the corresponding Fenchel-Nielsen coordinates shows this strata has dimension

12𝑔 + 6𝑑2 + 4𝑑1 − 12.

Every curve in the image of 𝑇 (Σ, ℓ1, . . . , ℓ𝑛) has an involutive symmetry across the
boundary, and so the image is determined by at most 6𝑔−6+3𝑑2 +2𝑑1 coordinates.
Fixing the lengths of the boundary curves kills another 𝑑2 parameters and we obtain
6𝑔−6+2𝑛. On the other hand, the space of holomorphic quadratic differentials with
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poles of order bounded above by 𝑘1, . . . , 𝑘𝑛 at 𝑝1, . . . , 𝑝𝑛 forms a complex vector
space and by Riemann-Roch it has real dimension

6𝑔 − 6 + 2
∑︁
𝑗

𝑘 𝑗 .

Specifying the Laurent expansion at the poles then removes 2 parameters for each
puncture and we end up with 6𝑔 − 6 + 2𝑛 degrees of freedom. □

For a closed arc 𝑐 on a hyperbolic surface, let ℓ(𝑐) denote the hyperbolic length
of the geodesic representative. Below, the surface on which the curve lives will be
clear.

Proof of Theorem 3D. By Brouwer’s invariance of domain, it is enough to showΨ is
continuous, injective, and proper. Continuity and injectivity follow from arguments
in [Wol91b, Section 4], so we only need properness. To this end, let 𝐾 ⊂ 𝑄(Σ, 𝑃)
be compact. Remove cusp neighbourhoods around all punctures, each one chosen
small enough so that all simple closed geodesics of Σ are contained in the resulting
subsurface, which we will call Σ′. By a estimate from [Wol89, Lemma 3.2]

𝐸Σ′ (ℎ 𝑓 ) ≤ 2
∫
Σ′
|Φ| + Area(ℎ 𝑓 (Σ′)) ≤ 2

∫
Σ′
|Φ| + Area(ℎ 𝑓 (Σ)).

The Gauss-Bonnet theorem yields

𝐸Σ′ (ℎ 𝑓 ) ≤ 2
∫
Σ′
|Φ| − 2𝜋𝜒(Σ).

By a minor and well-understood modification of the proof of the Courant-Lebesque
lemma [Jos84, Lemma 3.1], we obtain ℓ𝑌 ′ (ℎ′

𝑓
(𝛾)) ≤ 𝐴F for any finite collection F

of simple closed geodesics inside 𝑆 and any choice of representative pair (𝑌 ′, ℎ′
𝑓
) ∈

[(𝑌 ′, ℎ′
𝑓
)] ∈ 𝜓−1(𝐾). Since the boundary lengths are fixed we have an upper bound

on the lengths of finite collections of simple closed geodesics in all of any 𝑌 ′. We
argue that we also have a uniform lower bound on such lengths. On a complete finite
volume hyperbolic surface, any essential simple closed geodesic 𝛿 is contained in
an embedded annulus. This annulus has a horizontal coordinate specified by 𝛿 and
an orthogonal vertical coordinate. Any simple closed geodesic 𝛿′ that transversely
intersects 𝛿 once must pass through the entire vertical length of the annulus. If we
have a geodesic 𝛿 such that ℓ(ℎ 𝑓𝑘 (𝛿)) shrinks to 0 along some sequence (𝑌𝑘 , ℎ 𝑓𝑘 ),
select a curve 𝛿′ in Σ as above. From the collar lemma we see that ℓ(ℎ 𝑓𝑘 (𝛿′)) → ∞
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as 𝑘 → ∞. However, we can uniformly bound ℓ(ℎ 𝑓𝑘 (𝛿′)) from above, so this is
impossible.

Now, view the punctures on Σ as nodes and double across all punctures that “are
opened” to get a noded surface Σ𝑑 . Likewise double all surfaces (𝑌, ℎ 𝑓 ) ∈ Ψ−1(𝐾)
across the boundaries. ℎ 𝑓 extends by reflection and we get a pair (𝑌 𝑑 , ℎ𝑑

𝑓
). This

provides a map
𝜄 : 𝑇 (Σ, ℓ1, . . . , ℓ𝑛) → T2𝑔+𝑑1−1,2𝑑2

that is a diffeomorphism onto its image. By [Ham03, Lemma 3.3] on any 𝑆𝑔,𝑛 there
is a collection of simple closed curves 𝛿1, . . . , 𝛿6𝑔−5+2𝑛 so that the map

L𝑔,𝑛 : T𝑔,𝑛 → R6𝑔−5+2𝑛

given by
[𝑋, 𝜙] := 𝜒 ↦→ (ℓ𝜒 (𝛿1), . . . , ℓ𝜒 (𝛿6𝑔−5+2𝑛))

is a diffeomorphism onto its image. The composition L2𝑔+𝑑1−1,2𝑑2 ◦ 𝜄 takes Ψ−1(𝐾)
into a compact set, and hence Ψ is proper. As discussed above, this completes the
proof. □

3.5 Existence and classification of tame harmonic maps
Existence and behaviour
Once and for all, fix a complete finite volume hyperbolic surface Σ = Σ̃/Γ, a CAT(0)
Hadamard manifold (𝑋, 𝑔), and a reductive representation 𝜌 : Γ → Isom(𝑋, 𝑔).
We denote both the metric on Σ and its lift to Σ̃ by 𝜎.

There is a finite set of punctures 𝑝1, . . . , 𝑝𝑛 with associated peripheral isometries
𝛾1, . . . , 𝛾𝑛 such that 𝜌(𝛾 𝑗 ) is hyperbolic. If this set is empty then 𝜌 admits a
finite energy equivariant map, for which the existence is already known. Hence we
declare 𝑛 ≥ 1 and by an induction argument we may reduce to 𝑛 = 1. Let us now
fix some notation: set 𝛾 := 𝛾1 and write Σ = Σ𝑐 ∪ 𝐶, 𝐶 is a cusp neighbourhood
corresponding to 𝛾 and Σ𝑐 is the complement. 𝐶 is isometric to 𝑈 (𝜏) for some
𝜏 > 0 and we equip it with the relevant coordinates 𝑥 + 𝑖𝑦, 0 ≤ 𝑥 ≤ 𝜏, 𝑦 > 𝑎. For
𝑟 > 𝑎, 𝐶𝑟 will be {𝑥 + 𝑖𝑦 ∈ 𝐶 : 𝑎 < 𝑦 ≤ 𝑟} and Σ𝑟 = Σ𝑐 ∪ 𝐶𝑟 . Let 𝐷 be some
fixed fundamental domain with respect to the covering 𝜋 : Σ̃ → Σ and analogously
we put 𝐷𝑐 = 𝐷 ∩ 𝜋−1(Σ𝑐), 𝐷′ = 𝐷 ∩ 𝜋−1(𝐶), 𝐷𝑟 = 𝐷 ∩ 𝜋−1(𝐶𝑟) ∪ 𝐷𝑐. We set
𝑖𝑟 : Σ𝑟 → Σ to be the inclusion map. Finally, we use ℓ(·) to denote the length of a
rectifiable curve on a surface and hope there is no confusion with isometries.
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Proposition 3.5.1. Given the data Σ, 𝑋, 𝜌 as above, there exists a 𝜌-equivariant
harmonic map 𝑓 : Σ̃ → 𝑋 .

Proof. Let 𝛼 : [0, 𝜏] → 𝑋 be a constant speed curve with image in the axis of 𝜌(𝛾)
and so that 𝛼(𝜏) = 𝜌(𝛾)𝛼(0). By [Cor92b] there exists a unique harmonic section
𝑠𝑟 of the pullback bundle 𝑖∗𝑟𝑋 → Σ𝑟 with boundary values 𝛼. Extend 𝑠𝑟 to Σ via
𝑠𝑟 (𝑥, 𝑡) = 𝑠𝑟 (𝑥). The 𝑠𝑟 induce equivariant maps 𝑓𝑟 : Σ̃ → 𝑋 , that are harmonic on
𝜋−1(Σ 𝑗 ). We prove the 𝑓𝑟 converge along a subsequence in the 𝐶∞ topology to an
equivariant harmonic map.

Let 𝜑 be any non-harmonic equivariant map corresponding to a section of 𝑖∗0𝑋 → Σ𝑐

with boundary values 𝛼. As with 𝑓𝑟 , define 𝜑 on the rest of 𝐷 by 𝜑(𝑥, 𝑡) = 𝜑(𝑥)
and then extend equivariantly to Σ̃. Let 𝛽 be the image of 𝛼 on the geodesic axis of
𝜌(𝛾) and set

𝛽𝑟𝑡 := 𝑓𝑟 ( [0, 𝜏] × {𝑡}).

Notice that |𝑑𝜑|𝜎′ = ℓ(𝛽)/𝜏 on 𝐶 since it has constant speed. For 𝑟 > 𝑠,

2𝐸𝐶𝑟\𝐶𝑠
(𝜑) =

∫
𝐶𝑟\𝐶𝑠

|𝑑𝜑|2𝜎′𝑑𝑣𝜎′ = (𝑟 − 𝑠)ℓ(𝛽)2/𝜏.

As 𝛽 is a geodesic arc in a negatively curved space,

𝑠ℓ(𝛽) ≤
∫ 𝑠

0
ℓ(𝛽𝑟𝑡 )𝑑𝑡,

and hence for any 𝑟 > 𝑠,

𝐸𝐶𝑟\𝐶𝑠
(𝜑) ≤ 1

2

∫ 𝑟

𝑠

ℓ(𝛽𝑟𝑡 )2/𝜏𝑑𝑡 ≤ 1
2

∫ 𝑟

𝑠

( ∫
𝑆1×{𝑡}

|𝑑𝑓𝑟 |𝑑𝜃
)2
𝜏−1𝑑𝑡 ≤ 𝐸𝐶𝑟\𝐶𝑠

( 𝑓𝑟).

From the non-positive curvature hypothesis 𝑓𝑟 minimizes energy among maps to 𝑋
with the same equivariant boundary values. In particular,

𝐸Σ𝑟
( 𝑓𝑟) ≤ 𝐸Σ𝑟

(𝜑),

and moreover

𝐸Σ𝑠
( 𝑓𝑟) = 𝐸Σ𝑟

( 𝑓𝑟) − 𝐸Σ𝑟\Σ𝑠
( 𝑓𝑟) ≤ 𝐸Σ𝑟

(𝜑) − 𝐸Σ𝑟\Σ𝑠
(𝜑) = 𝐸Σ𝑠

(𝜑).

By a classical PDE estimate (say, from [SY97, page 171]),

sup
𝐷𝑠

𝑒( 𝑓𝑟) = sup
Σ𝑠

𝑒( 𝑓𝑟) ≤ 𝐴𝑠𝐸Σ𝑠+1 ( 𝑓𝑟) ≤ 𝐴𝑠𝐸Σ𝑠+1 (𝜑),
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where 𝐴𝑠 depends on the Ricci curvature of Σ𝑠+1, the injectivity radius on Σ𝑠, and
dist(𝜕Σ𝑠, 𝜕Σ𝑠+1). Since 𝜌 is acting by isometries we get the same bound in all of
𝜋−1(Σ𝑟). Next, we claim there is a compact set 𝑂𝑠 ⊂ 𝑋 such that

𝑓𝑟 (𝐷𝑠) ⊂ 𝑂𝑠

for all 𝑟. Appealing to the energy density bound above, it is enough to show that for
a fixed point 𝑥0 ∈ 𝐷𝑠, 𝑓𝑟 (𝑥0) stays within some compact set as 𝑟 → ∞. We find it
convenient from here to split cases. Firstly, let us assume that the image of 𝜌 does
not lie in a parabolic subgroup. Let 𝜉 be a point in the boundary at infinity 𝜕∞𝑋 .
There is loop 𝛾 : [0, 𝐿] → Σ parametrized by arclength such that

𝜌(𝛾) (𝜉) ≠ 𝜉.

Choose ℓ so that the image of 𝛾 under 𝜋 lies entirely in Σℓ and let 𝐴ℓ be a uniform
bound on the derivative in 𝜋−1(Σℓ). We then have, for 𝑟 > ℓ,

𝑑𝑔 (𝜌(𝛾) 𝑓𝑟 (𝑥0), 𝑓𝑟 (𝑥0)) = 𝑑𝑔 ( 𝑓𝑟 (𝛾(𝑥0)), 𝑓𝑟 (𝑥0)) ≤ 𝐴ℓ𝐿.

This is because lifting 𝛾 to the universal cover gives a path between 𝑥0 and 𝛾 · 𝑥0

that remains within lifts of Σℓ. Choose a neighbourhood 𝐵 of 𝜉 in 𝑋 ∪ 𝜕∞𝑋 such
that

𝑑𝑔 (𝐵 ∩ 𝑋, 𝜌(𝛾)𝐵 ∩ 𝑋) > 𝐴ℓ𝐿.

Then 𝑓𝑟 (𝑥0) cannot enter 𝐵, no matter how large 𝑟 grows. Via compactness we find
a finite number of neighbourhoods (𝐵𝑘 )𝑘 as above that cover the boundary sphere.
Choosing 𝑂𝑠 := 𝑋\(∪𝑘𝑁𝑘 ) the claim follows. Notice then that 𝑓𝑟 takes any lift of
Σ𝑠 to a compact set:

𝑓𝑟 (𝛾𝐷𝑠) ⊂ 𝜌(𝛾)𝑂𝑠

for all 𝑟, 𝑠. It now follows by a well-known argument, namely an application of the
Arzelà-Ascoli theorem and a bootstrap, that a subsequence of the ( 𝑓𝑟)𝑟>0 converges
uniformly on compact subsets of Σ̃ to a harmonic map 𝑓∞. By equivariance of the
𝑓𝑟 on 𝜋−1(Σ𝑟), 𝑓∞ is necessarily equivariant.

We next treat the case where 𝜌 stabilizes a totally geodesic flat 𝐹. 𝐹 is a symmetric
space and identifies isometrically as

𝐺/𝐻 := (𝑂 (𝑛) ⋊ R𝑛)/𝑂 (𝑛).

Fix two points 𝑥0 ∈ 𝐷𝑠 and 𝑦0 ∈ 𝐹 and for each 𝑟 choose 𝑔𝑟 ∈ 𝐺 such that
𝑔𝑟 𝑓𝑟 (𝑥0) = 𝑦0. We notice that for any 𝑦 ∈ 𝐹 and 𝛾 ∈ Γ, 𝑑 (𝑔𝑟𝜌(𝛾)𝑔−1

𝑟 𝑦, 𝑦) is
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uniformly bounded in 𝑟 . Indeed,

𝑑𝑔 (𝑔𝑟𝜌(𝛾)𝑔−1
𝑟 𝑦, 𝑦) ≤ 𝑑𝑔 (𝑔𝑟𝜌(𝛾)𝑔−1

𝑟 𝑦, 𝑔𝑟𝜌(𝛾)𝑔−1
𝑟 𝑦0) + 𝑑𝑔 (𝑔𝑟𝜌(𝛾)𝑔−1

𝑟 𝑦0, 𝑦0) + 𝑑𝑔 (𝑦, 𝑦0)
= 2𝑑𝑔 (𝑦, 𝑦0) + 𝑑𝑔 (𝑔𝑟𝜌(𝛾)𝑔−1

𝑟 𝑦0, 𝑦0)
= 2𝑑𝑔 (𝑦, 𝑦0) + 𝑑𝑔 (𝑔𝑟𝜌(𝛾) 𝑓𝑟 (𝑥0), 𝑔𝑟 𝑓𝑟 (𝑥0))
= 2𝑑𝑔 (𝑦, 𝑦0) + 𝑑𝑔 (𝑔𝑟 𝑓𝑟 (𝛾 · 𝑥0), 𝑔𝑟 𝑓𝑟 (𝑥0))
= 2𝑑𝑔 (𝑦, 𝑦0) + 𝑑𝑔 ( 𝑓𝑟 (𝛾 · 𝑥0), 𝑓𝑟 (𝑥0)),

and we know 𝑓𝑟 has a uniform energy density bound on 𝜌(Γ) ·𝐷𝑟 . By the argument
of [JY91, Lemma 2] there is a sequence (𝑟𝑛)∞𝑛=1 increasing to ∞ and an element
𝑔∞ ∈ 𝐺 such that for every 𝛾 ∈ Γ and 𝑦 ∈ 𝐹,

lim
𝑛→∞

𝑔𝑟𝑛𝜌(𝛾)𝑔−1
𝑟𝑛
𝑦 = 𝑔∞𝜌(𝛾)𝑔−1

∞ 𝑦.

The orbit of the point 𝑥0 under the family of maps 𝑔𝑟𝑛 𝑓𝑟𝑛 is a singleton, and by our
uniform energy bound we see as above that there is a compact set 𝑂𝑠 such that

𝑔𝑟𝑛 𝑓𝑟𝑛 (𝐷𝑠) ⊂ 𝑂𝑠 .

Arguing as above there is a subsequence along which 𝑔𝑟𝑛 𝑓𝑟𝑛 converges to a harmonic
map 𝑓∞. Note that 𝑔𝑟𝑛 𝑓𝑟𝑛 is 𝑔𝑟𝑛𝜌(Γ)𝑔−1

𝑟𝑛
-equivariant, so that 𝑓∞ is 𝑔∞𝜌(Γ)𝑔−1

∞ -
equivariant. Therefore, we may take 𝑓 := 𝑔−1

∞ 𝑓∞ as the sought harmonic map. □

We use the ideas above to build a family of harmonic maps, indexed by a real
parameter 𝜃 ∈ R. We perform a fractional Dehn twist on each cylinder 𝐶. This is
the map given in the cusp coordinates by

𝑥 + 𝑖𝑦 ↦→ 𝑥 + 𝜃𝑦 + 𝑖𝑦

on𝐶 and the identity map on the rest of Σ. Lift to a map 𝑑𝜃 on Σ̃. The lift commutes
with the relevant parabolic isometry. Define 𝑓 𝜃𝑟 to be the equivariant harmonic map
on 𝜋−1(Σ𝑟) with the same equivariant boundary values as 𝜑 ◦ 𝑑𝜃 |𝜕𝐷𝑟

. Then extend
to agree with 𝜑 ◦ 𝑑𝜃 on the complement. The derivative matrix of 𝑑𝜃 is(

1 𝜃

0 1

)
,

so that
| |𝑑 (𝜑 ◦ 𝑑𝜃) | | ≤ | |𝑑𝜑| | (1 + 𝜃).
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Thus on Σ𝑠,
𝐸Σ𝑠

( 𝑓 𝜃𝑟 ) ≤ 𝐸Σ𝑠
( 𝑓𝑟) (1 + 𝜃)2.

By the argument of Proposition 3.5.1 there is a subsequence along which the 𝑓 𝜃𝑟 ’s
converge to a limiting harmonic map 𝑓 𝜃 . Of course, 𝑓 = 𝑓 0.

We keep the same characters 𝛼 and 𝛽 from the proof of the above proposition. Note
ℓ(𝛽) = ℓ(𝜌(𝛾)). Define 𝜑𝜃 := 𝜑◦𝑑𝜃 . In local Euclidean coordinates, 𝑑𝜃 is harmonic
on 𝐶. Since ∇𝑑𝜑 = 0 on 𝐶, the composition is a harmonic map there (see [EL83,
Proposition 2.20]).

Lemma 3.5.2. The function 𝑧 ↦→ 𝑑 ( 𝑓 𝜃 , 𝜑𝜃) (𝑧) is uniformly bounded.

Proof. Let 𝜓𝑟 := 𝑑 ( 𝑓 𝜃𝑟 , 𝜑𝜃). By equivariance, each 𝜓𝑟 descends to a function on Σ.
𝜓𝑟 = 0 on Σ\Σ𝑟 , and since 𝜓𝑟 > 0 at some point we know it attains a maximum at
a point in the interior of Σ𝑟 . As 𝜓𝑟 is subharmonic on 𝐶𝑟 , sup𝑧∈𝐶𝑟

𝜓𝑟 (𝑧) occurs on
𝜕Σ𝑐 and moreover 𝜓𝑟 is maximized at a point in Σ𝑐. Meanwhile,

𝜓𝑟 → 𝑑2( 𝑓 𝜃 , 𝜑𝜃)

uniformly on compacta as 𝑟 → ∞. By smoothness, 𝜓 is uniformly bounded on Σ𝑐.
This implies we have a uniform bound on the 𝜓𝑟’s inside Σ𝑐 as 𝑟 → ∞. Since the
relevant maximum is attained inside Σ𝑐, this bound holds everywhere. □

LetΦ := Hopf( 𝑓 𝜃). The context is clear so we do not include a 𝜃 in our notation. By
equivariance we can view Φ as a holomorphic quadratic differential on any quotient
of Σ̃ by a subgroup of Γ.

Lemma 3.5.3. Φ has a pole of order 2 at the cusp.

Proof. From the infinite energy phenomena, Φ either has a pole of order at least 2
or an essential singularity. The (2, 0) component of the pullback metric by 𝜑𝜃 is a
section of K2 that is holomorphic on 𝐶. We still denote it by Hopf(𝜑𝜃).

We compute this differential in 𝐶. Choose a local orthonormal basis 𝜕/𝜕𝑥, 𝜕/𝜕𝑦
of the relevant tangent spaces so that 𝜕𝜑0/𝜕𝑦 = 0 always. Starting with 𝜃 = 0, we
know that in local coordinates

Hopf(𝜑0) (𝑧) = 1
4

(
|𝜕𝜑0/𝜕𝑥 |2 − |𝜕𝜑0/𝜕𝑦 |2 − 2𝑖⟨𝜕𝜑0/𝜕𝑥, 𝜕𝜑0/𝜕𝑦⟩

)
𝑑𝑧2.
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Since 𝜑0 is constant in the vertical direction

Hopf(𝜑0) (𝑧) = 1
4
|𝜕𝜑0/𝜕𝑥 |2𝑑𝑧2 = ℓ(𝜌(𝛾))2/4𝜏2𝑑𝑧2.

From the chain rule, 𝑑𝜑0 and 𝑑𝜑𝜃 admit matrix representations with

𝑑𝜑0 =

(
𝑣 0

)
, 𝑑𝜑𝜃 =

(
𝑣 𝜃𝑣

)
,

where 𝑣 is a 1 × dim 𝑋 column vector. Thus,

Hopf(𝜑𝜃) (𝑧) = 1
4
( |𝜕𝜑𝜃/𝜕𝑥 |2 − |𝜕𝜑𝜃/𝜕𝑦 |2 − 2𝑖⟨𝜕𝜑𝜃/𝜕𝑥, 𝜕𝜑𝜃/𝜕𝑦⟩)𝑑𝑧2

=
1
4
(1 − 𝜃2 − 𝑖2𝜃) |𝜕𝜑0/𝜕𝑥 |2𝑑𝑧2.

We take the strip conformally to a punctured disk via

𝑧 ↦→ 𝜁 (𝑧) = 𝑒
2𝜋𝑖𝑧
𝜏 ,

taking the point at ∞ to 0. The transformation law multiplies by −𝜁−2𝜏2/4𝜋2, and
we see that we have a pole of order 2 with residue

−Λ(𝜃)ℓ(𝜌(𝛾))2/16𝜋2.

We now compare Φ to Hopf(𝜑𝜃). As 𝜑𝜃 has rank 1, the formula 𝐽 = 𝐻 − 𝐿 implies

𝐻 (𝜑𝜃)1/2 = 𝐿 (𝜑𝜃)1/2 =
1
2
𝑒(𝜑𝜃)1/2,

so that Hopf(𝜑𝜃) = 𝜎𝐻 (𝜑𝜃)1/2𝐿 (𝜑𝜃)1/2 = 𝜎𝑒(𝜑𝜃)/4. From Young’s inequlaity,

| |Φ| | = 𝜎𝐻 ( 𝑓 )1/2𝐿 ( 𝑓 )1/2 ≤ 1
2
𝜎𝑒( 𝑓 𝜃),

and hence it is enough to bound 𝑒( 𝑓 𝜃) by a sublinear function of 𝑒(𝜑𝜃). This is not
hard: for any 𝑥0 ∈ Σ̃, 𝑟0 > 0, and 𝑦 ∈ 𝐵(𝑥0, 𝑟0),

𝑑 ( 𝑓 𝜃 (𝑥0), 𝑓 𝜃 (𝑦)) ≤ 𝑑 ( 𝑓 𝜃 (𝑥0), 𝜑𝜃 (𝑥0)) + 𝑑 ( 𝑓 𝜃 (𝑦), 𝜑𝜃 (𝑦)) + 𝑑 (𝜑𝜃 (𝑥0), 𝜑𝜃 (𝑦))
≤ 𝐴 + sup

𝐵(𝑥0,𝑟0)
| |𝑑𝜑𝜃 | |𝑑 (𝑥0, 𝑦).

Working in the flat cylinder metric, Cheng’s lemma then gives

| |𝑑𝑓 | | (𝑥0) ≲
1 + 𝑟0

𝑟0
(1 + sup | |𝑑𝜑𝜃 | |𝑟0).

In a cusp neighbourhood, the injectivity radius of the flat cylinder metric is uniformly
bounded below, and hence we may choose 𝑟0 uniformly bounded below. Squaring
for the energy density gives the desired bound. □
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Henceforth, we assume that 𝑋 is CAT(−1). By equivariance, 𝑓 𝜃 and 𝜑𝜃 induce
quotient maps

𝑓𝛾, 𝜑𝛾 : Σ̃/⟨𝛾⟩ → 𝑋/⟨𝜌(𝛾)⟩.

We suppress the 𝜃 from our notation for convenience. 𝛽 projects in the quotient to a
core geodesic 𝛽. From the CAT(−1) hypothesis, this is the unique geodesic in the
homotopy class. Any 𝐷𝑟/⟨𝛾⟩ identifies isometrically with the cylinder

{(𝑥, 𝑦) = 𝑥 + 𝑖𝑦 : 0 ≤ 𝑥 ≤ 𝜏, 𝑎 ≤ 𝑦 ≤ 𝑟}

with the usual identification.

Lemma 3.5.4. There is a translation �̃� of the geodesic axis of 𝜌(𝛾) such that the
map Σ ∋ 𝑧 ↦→ 𝑑 ( 𝑓 𝜃 , �̃� ◦ 𝜑𝜃) (𝑧) tends to 0 as we move into the puncture.

Proof. We define C∞ to be the infinite cylinder

{(𝑥, 𝑡) ∈ [0, 1] × (−∞,∞) : (0, 𝑡) ∼ (1, 𝑡)}

with the flat metric. Let 𝑏𝑠 : C∞ → 𝐷/⟨𝛾⟩ be the map given by
(𝑥, 𝑡) ↦→ (𝑥, 𝑠) −∞ ≤ 𝑡 ≤ −𝑠

(𝑥, 𝑡) ↦→ (𝑥, 2𝑠 + 𝑡) −𝑠 ≤ 𝑡 ≤ 𝑠

(𝑥, 𝑡) ↦→ (𝑥, 3𝑠) 𝑠 ≤ 𝑡 ≤ ∞.

Then set 𝐵𝑠 := 𝑓𝛾 ◦𝑏𝑠 and 𝜑𝑠 := 𝜑𝛾 ◦𝑏𝑠. Both 𝐵𝑠 and 𝜑𝑠 are harmonic on−𝑠 ≤ 𝑡 ≤ 𝑠

because 𝑏𝑠 is conformal there. From Lemma 3.5.2 the orbit of any point under 𝐵𝑠
remains in a compact set as 𝑠 → ∞. The uniform energy bounds from Lemma 3.5.3
permit us to construct a subsequence along which both 𝐵𝑠 and 𝜑𝑠 converge in the
𝐶∞ topology to harmonic maps 𝑓∞ and 𝜑∞ respectively.

Let ℎ denote the harmonic diffeomorphism of the disk whose Hopf differential is
Φ. By [Wol91b, Lemma 3.6], the Jacobian 𝐽 (ℎ) = 𝐻 (ℎ) − 𝐿 (ℎ) tends to 0 as we
approach the puncture. From Proposition 3.3.2, 𝐽 ( 𝑓 ) → 0 as well. Therefore,
𝐽 ( 𝑓∞) = 0 and necessarily rank𝑑𝑓∞ ≤ 1 at each point. By equivariance this is rank
1 in an open set, and by [Sam78, Theorem 3] the image is contained in a geodesic
arc. Again by equivariance, the image must then be a closed geodesic arc. There is
only one such arc in the quotient, and hence 𝑓∞ maps onto the core geodesic. Lifting
𝑓∞ and 𝜑∞ to maps from R2 to the axis of 𝜌(𝛾), 𝑓∞ and 𝜑 differ by a translation
along 𝛽. One can justify that last claim by observing that their distance function is
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a bounded subharmonic function on R2—hence a constant—and then following the
proof of Lemma 3.2.12. Lifting back to Σ̃ this means there is a translation �̃� of the
geodesic axis such that for any 𝑟 > 0,

𝑑 ( 𝑓 𝜃 (𝑥, 𝑠𝑚 + 2𝑡), �̃� ◦ 𝜑𝜃 (𝑥, 𝑠𝑚 + 2𝑡)) = 𝑑 (𝑏𝑠𝑚 (𝑥, 𝑡), 𝑅 ◦ 𝜑𝑠𝑚 (𝑥, 𝑡)) → 0

as 𝑚 → ∞ for −𝑟 ≤ 𝑡 ≤ 𝑟. In particular, the quantities 𝑑 ( 𝑓𝛾 (𝑥, 𝑠𝑚), 𝑅 ◦ 𝜑𝛾 (𝑥, 𝑠𝑚))
and 𝑑 ( 𝑓𝛾 (𝑥, 𝑠𝑚+1), 𝑅 ◦ 𝜑𝛾 (𝑥, 𝑠𝑚+1)) are very close to 0. Since the relevant distance
function is subharmonic, its maximum on

{(𝑥, 𝑡) ∈ C∞ : 𝑠𝑚 ≤ 𝑡 ≤ 𝑠𝑚+1}

is achieved on the boundary. It follows that

𝑑 ( 𝑓𝛾 (𝑥, 𝑡), 𝑅 ◦ 𝜑𝛾 (𝑥, 𝑡)) → 0

as 𝑡 → ∞. Returning to the universal cover, we conclude that

𝑑 ( 𝑓 𝜃 (𝑧), �̃� ◦ 𝜑𝜃 (𝑧)) → 0

as we move toward the puncture. □

Proposition 3.5.5. Φhas a pole of order 2 at the cusp with residue−Λ(𝜃)ℓ(𝜌(𝛾))2/16𝜋2.

Proof. The lemma above shows

lim
𝑠→∞

𝐵𝑠 = 𝑅 ◦ 𝜑𝛾

in the 𝐶0 topology, and along a subsequence in the 𝐶∞ topology. We prove there
is no need to pass to a subsequence. Indeed, if we don’t have 𝐶1 convergence we
can pick a subsequence along which our maps are uniformly far from 𝑓∞ in the 𝐶1

norm. One can then use the argument above to pass to a subsequence that converges
in the 𝐶∞ sense to 𝑆 ◦ 𝜑𝛾 for some other rotation 𝑆. 𝐶0 convergence to 𝑅 ◦ 𝜑 forces
𝑆 = 𝑅, which is a contradiction. Continuing inductively gives 𝐶𝑘 convergence for
any 𝑘 . The Hopf differential of 𝑓 then converges to Hopf(𝜑𝜃) as we move into the
puncture. The result now follows from the computation in Lemma 3.5.3. □

Uniqueness
Let 𝑓1 and 𝑓2 be two harmonic maps whose Hopf differentials have second order
poles and such that the residues have the same complex argument 𝜈 ∈ (−𝜋, 𝜋).
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Lemma 3.5.6. There exists an 𝐴𝑘 > 0 such that as 𝑦 → ∞, the image of 𝑓𝑘 remains
in an 𝐴𝑘 -neighbourhood of the geodesic axis of 𝜌(𝛾).

Proof. Let 𝛽𝑘𝑦 be the curve 𝑓𝑘 ( [0, 𝜏] × {𝑦}) in the usual coordinates. From Propo-
sition 3.3.2 and [Wol91b, page 516], the energy density of 𝑓𝑘 is uniformly bounded
on Σ in the flat-cylinder metric. This implies

ℓ(𝛽𝑘𝑦 ) ≤ 𝐴

for all 𝑦 > 0. We argue each 𝛽𝑘𝑦 becomes trapped close to the geodesic as 𝑦 → ∞.
If not, there is a subsequence 𝑠 𝑗 tending to ∞ and points 𝑓𝑘 (𝑧 𝑗 ) ∈ 𝛽𝑘𝑠 𝑗 such that the
closest-point projection onto the geodesic, say 𝑦 𝑗 , satisfies

𝑑 ( 𝑓𝑘 (𝑧 𝑗 ), 𝑦 𝑗 ) → ∞.

Then
ℓ(𝛽𝑘𝑠 𝑗 ) ≥ 𝑑 ( 𝑓𝑘 (𝑧 𝑗 ), 𝑓𝑘 (𝛾 · 𝑧 𝑗 )) = 𝑑 ( 𝑓𝑘 (𝑧 𝑗 ), 𝜌(𝛾) 𝑓𝑘 (𝑧 𝑗 )).

The right most term blows up as 𝑗 → ∞, and this is a clear contradiction. To
verify that last statement, note 𝑓𝑘 (𝑧 𝑗 ) accumulates along a subsequence to a point
𝜉 ∈ 𝜕∞𝑋 , and since the distance from 𝛽𝑘𝑠 𝑗 to the geodesic is uniformly bounded
below, this is not an endpoint of the geodesic. In particular, the extension of 𝜌(𝛾)
to 𝜕∞𝑋 does not fix 𝜉, and hence if 𝐵𝑘𝑠 𝑗 is a neighbourhood of 𝜉 in 𝑋 ∪ 𝜕∞𝑋 ,

𝑑 (𝐵𝑘𝑠 𝑗 ∩ 𝑋, 𝜌(𝛾)𝐵
𝑘
𝑠 𝑗
∩ 𝑋) → ∞

as 𝑗 → ∞. □

Recall the cylinder C∞. Let 𝑏𝑘𝑠 be the map 𝑏𝑠 ◦ 𝑓 𝑘𝛾 : C∞ → 𝑋/⟨𝜌(𝛾)⟩. Since
the energy is controlled and it stays close to the geodesic, 𝑏𝑘𝑠 converges along a
subsequence to a harmonic map 𝑓 𝑘∞. By the same argument as in the previous
subsection 𝑓 𝑘∞ has image in a geodesic and from equivariance this must be the core
geodesic 𝛽. One can slightly modify an argument as in the previous subsection to
check that 𝑎𝑘𝑠 limits to 𝑓 𝑘∞ along the whole sequence in the 𝐶∞ topology. Moreover
𝑓𝑘 limits onto the geodesic 𝛽 as we go further into the cusp.

Lemma 3.5.7. The residue of 𝑓1 and 𝑓2 is the same.

Proof. Let Φ𝑘 := Hopf( 𝑓𝑘 ). In the computations to follow, we use the flat-cylinder
metric on Σ. Let 𝛾𝑦 (𝑥) be the curve 𝑥 ↦→ 𝑥 + 𝑖𝑦. From the discussion above, the
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length of the core geodesic in 𝑋/⟨𝜌(𝛾)⟩ is

lim
𝑦→∞

ℓ𝑔 ( 𝑓𝑘 (𝛾𝑦)).

There are differentials Φ′
𝑘

such that

Φ𝑘 = 𝑒
𝑖𝜈Φ′

𝑘 .

That is, a differential that differs from Φ𝑘 by a rotation and whose residue at the
cusp is real. The pullback metrics can thus be written

𝑓 ∗𝑘 𝑔 = 𝑒( 𝑓𝑘 )𝜎′𝑑𝑧𝑑𝑧 + 𝑒𝑖𝜈Φ′
𝑘 + 𝑒

−𝑖𝜈Φ′
𝑘
= 𝑒( 𝑓𝑘 )𝜎′𝑑𝑧𝑑𝑧 + 2ℜ𝑒𝑖𝜈Φ′

𝑘 .

Writing Φ′
𝑘
= 𝜙′

𝑘
(𝑧)𝑑𝑧2 in a local coordinate we know that in the cylinder

|𝜙′𝑘 | = 𝐻 ( 𝑓𝑘 )1/2𝐿 ( 𝑓𝑘 )1/2 = 𝐻 ( 𝑓𝑘 ) ·
𝐿 ( 𝑓𝑘 )1/2

𝐻 ( 𝑓𝑘 )1/2 .

From [Wol91b, Proposition 3.8], in the strip we can write

Φ𝑘 =

(
𝑒𝑖𝜈𝑎𝑘−2 + 𝑒

𝑖𝜈𝑂 (𝑒−𝐴𝑦)
)
𝑑𝑧2,

where 𝑎𝑘−2 > 0. From Proposition 3.3.2 and [Wol91b, Lemma 3.6], we also know

𝐿 ( 𝑓𝑘 )
𝐻 ( 𝑓𝑘 )

→ 1

as we move into the puncture. The length of the core geodesic is therefore

lim
𝑦→∞

ℓ𝑔 ( 𝑓𝑘 (𝛾𝑦)) = lim
𝑦→∞

∫ 𝜏

0
| | ¤𝛾𝑦 (𝑥) | | 𝑓 ∗

𝑘
𝑔𝑑𝑥

= lim
𝑦→∞

∫ 𝜏

0

√︁
𝑒( 𝑓𝑘 )𝜎′ + 2ℜ𝑒𝑖𝜈𝜙′𝑑𝑥

= lim
𝑦→∞

∫ 𝜏

0

√︁
𝐻 ( 𝑓𝑘 ) (1 + 𝐿 ( 𝑓𝑘 )/𝐻 ( 𝑓𝑘 )) + 2ℜ𝑒𝑖𝜈𝜙′𝑑𝑥

= 𝜏

√︃
2|𝑎𝑘−2 | (1 + cos 𝜈)

by the dominated convergence theorem. Meanwhile, passing to the quotient H/⟨𝛾⟩
we know the core geodesic has length ℓ(𝜌(𝛾)). We deduce

ℓ(𝜌(𝛾) = 𝜏
√︃

2|𝑎𝑘−2 | (1 + cos 𝜈).

Since 𝜈 is fixed, |𝑎𝑘−2 | does not depend on 𝑘 . □

Henceforth put 𝑎−2 = 𝑎𝑘−2 (𝑘 = 1, 2).
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Remark 3.5.8. From above we see that the complex argument 𝜈 is related to the
twist angle 𝜃 from the previous subsection by

𝜃 =
− sin 𝑣

1 + cos 𝑣
.

Lemma 3.5.9. The distance function 𝑧 ↦→ 𝑑 ( 𝑓1, 𝑓2) (𝑧) is bounded.

Proof. It suffices to bound 𝑑 ( 𝑓 1
∞, 𝑓

2
∞) as then it is constant and we can lift to the

universal cover. By [Wol91b, Proposition 3.8] we can express

Φ𝑘 =

(
𝑎−2𝑒

𝑖𝜈 + 𝑒𝑖𝜈𝑂 (𝑒−𝐴𝑦)
)
𝑑𝑧2

in the cylinder coordinates, where 𝑎−2 is real. Thus, upon taking 𝑠 → ∞, the Hopf
differential of 𝑓∞

𝑘
is 𝑎−2𝑒

𝑖𝜈𝑑𝑧2. That is, the Hopf differentials of 𝑓∞1 and 𝑓∞2 agree.
We denote this differential by Φ0, and highlight that the Φ0-metric is nonsingular.
Set

𝑤0( 𝑓𝑘 ) =
1
2

log𝐻0( 𝑓𝑘 ) (𝑧) −
1
2

log |Φ0(𝑧) |.

Here 𝐻0 denotes the holomorphic energy in the Φ0-metric, and analogously for
the other quantities. From above it is clear that 𝐽0( 𝑓𝑘 ) = 0 so 𝐻0( 𝑓𝑘 ) = 𝐿0( 𝑓𝑘 ).
From |Φ0 | = 𝐻0( 𝑓𝑘 )1/2𝐿0( 𝑓𝑘 )1/2 we see 𝑤0( 𝑓𝑘 ) = 0. One can compute 𝑒0 =

2 cosh 2(𝑤0( 𝑓𝑘 )). In a coordinate 𝑧 = 𝑥 + 𝑖𝑦 such that Φ0 = 𝑑𝑧2,

𝑓 ∗𝑘 𝑔 = (𝑒0 + 2)𝑑𝑥2 + (𝑒0 − 2)𝑑𝑦2 = 2𝑑𝑥2.

Let 𝛾ℎ and 𝛾𝑣 be horizontal and vertical curves for the Φ0-metric. Explicitly, we
mean the tangent vectors for 𝛾ℎ, 𝛾𝑣 always evaluate underΦ0 to positive and negative
numbers respectively. Then,

ℓ( 𝑓𝑘 (𝛾ℎ)) =
∫
𝛾ℎ

√︁
𝑒0 + 2𝑑𝑥 , ℓ( 𝑓𝑘 (𝛾𝑣)) =

∫
𝛾ℎ

√︁
𝑒0 − 2𝑑𝑦

and we see
ℓ( 𝑓𝑘 (𝛾ℎ)) = 2ℓ(𝛾ℎ) , ℓ( 𝑓𝑘 (𝛾𝑣)) = 0.

Therefore, if 𝑣𝑎 is the tangent vector to the geodesic at a point 𝑎 then for all points
𝑧, (𝑑𝑓𝑘 )𝑧 (𝜕𝑥) = 2𝑣 𝑓𝑘 (𝑧) and (𝑑𝑓𝑘 )𝑧 (𝜕𝑦) = 0. In particular, 𝑓𝑘 is a constant speed map
onto the geodesic in the horizontal direction and constant in the vertical direction.
Any two such maps differ by a translation. This establishes the result. □

We apply Lemma 3.2.12 to obtain the uniqueness portion of Theorem 3A. If 𝑓1 ≠ 𝑓2,
which is only possible if 𝜌 stabilizes a geodesic, then 𝑓2 may be obtained from 𝑓1

by precomposing with a lift of the translation found in Lemma 3.5.9. The results in
this section constitute the proof of Theorem 3A.
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3.6 Domination and AdS 3-manifolds
Non-reductive representations
When 𝜌 is not reductive we can still produce a harmonic map that will be relevant
to the domination problem. The content of the following exposition is contained in
[DT16] and [GK17]. Assume 𝜌 fixes a point 𝜉 on 𝜕∞𝑋 . Given any geodesic ray
𝜂 : [0,∞) → 𝑋 with an endpoint on 𝜕∞𝑋 , the Busemann function 𝛽𝜂 : 𝑋 → R is
defined by

𝛽𝜂 (𝑥) = lim
𝑡→∞

(𝑑 (𝜂(𝑡), 𝑥) − 𝑡).

The fact that this is well-defined and continuous is standard [BH99]. Now assume
the endpoint is 𝜉. For any isometry 𝛾 with 𝛾 · 𝜉 = 𝜉 there is a 𝑚(𝛾) ∈ R such that

𝛽𝜂 (𝛾 · 𝑥) = 𝛽𝜂 (𝑥) + 𝑚(𝛾)

and |𝑚(𝛾) | = ℓ(𝛾). It is easy to see the function 𝑚 ◦ 𝜌 : Γ → R is a group
homomorphism. Let 𝜂 be any biinfinite oriented geodesic in H and let 𝜌𝑟𝑒𝑑 be the
representation Γ → PSL2(R) that acts by translations along 𝜂 with lengths 𝑚 ◦ 𝜌,
with signs chosen according to the orientation. Since 𝜌𝑟𝑒𝑑 stabilizes a geodesic
there is a family of equivariant harmonic maps as in Theorem 3A. By construction,
for all 𝛾′ ∈ Γ,

ℓ(𝜌𝑟𝑒𝑑 (𝛾′)) = ℓ(𝛾′).

Consequently, the problem of dominating 𝜌 in length spectrum is equivalent to
dominating 𝜌𝑟𝑒𝑑 in length spectrum. Henceforth if 𝜌 is not reductive we replace it
with 𝜌𝑟𝑒𝑑 .

Digression: elliptic monodromy
Looking toward domination, it is necessary to understand the behaviour of a har-
monic map 𝑓 when 𝜌 has elliptic monodromy. In the event 𝜌 has hyperbolic
monodromy, the choice of parameter 𝜃 will have no effect here, so we assume 𝜃 = 0.
Let 𝜉 be the point on 𝜕∞Σ̃ associated to the horocycle for 𝛾 and let 𝐹 be the set of
points in 𝑋 fixed by 𝜌(𝛾).

Proposition 3.6.1. In the setting above, as 𝑧 → 𝜉 the function 𝑓 limits to an element
of 𝐹. Furthermore 𝑒( 𝑓 ) (𝑧) → 0.

Proof. Let 𝐵 be a relevant horoball for 𝛾 in the universal cover. By adapting a
procedure from [GK17, Proposition 4.16], we first show that for any choice of
𝛿 > 0 and 𝜌-equivariant map 𝑤 that has a uniform Lipschitz constant in 𝐵 there is a
𝜌-equivariant map 𝑤𝛿 such that
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• 𝑤𝛿 = 𝑤 on Σ̃\(Γ · 𝐵),

• 𝑑 (𝑤𝛿 (𝑝), 𝑤𝛿 (𝑞)) ≤ 𝑑 (𝑤(𝑝), 𝑤(𝑞)) for all points 𝑝, 𝑞 ∈ 𝐵, and

• there is a smaller horoball 𝐵′ ⊂ 𝐵 such that 𝑓𝛿 (𝐵′) is contained in the
intersection of the convex hull of 𝑓 (𝐵′) and a ball of radius 𝛿.

Towards this let D be a fundamental domain for the image of 𝜕𝐵 in the quotient and
let 𝑝 ∈ D. Let 𝜋𝑡 be the closest point projection from 𝐵 onto the closed horoball of
distance 𝑡 > 0 from 𝜕𝐵 and put 𝑝𝑡 = 𝜋𝑡 (𝑝). Note the map 𝑡 ↦→ 𝜋𝑡 (𝑝) is nothing more
than the transverse horospherical flow for (𝐵, 𝜕𝐵, 𝜉). By hyperbolic trigonometry
(see [GK17, Appendix A]),

𝑑 (𝑝𝑡 , 𝛾 · 𝑝𝑡) → 0

as 𝑡 → ∞. We next find fundamental domains D𝑡 of 𝜋𝑡 (𝜕𝐵) containing 𝑝𝑡 such that
diamD𝑡 → 0 as 𝑡 → ∞. By the Lipschitz condition

𝑑 (𝑤(𝑝𝑡), 𝜌(𝛾) · 𝑤(𝑝𝑡)) → 0

and diam 𝑓 (D𝑡) → 0 as 𝑡 → ∞.

Next, there is an 𝜖 (𝛿) > 0 such that if 𝑑 (𝑥, 𝜌(𝛾) · 𝑥) < 𝜖 (𝛿) then

𝑑 (𝑥, 𝐹) < 𝛿/2.

In particular, for 𝑡 large enough there is a 𝑞𝑡 ∈ 𝐹 such that 𝑑 (𝑤(𝑝𝑡), 𝑞𝑡) < 𝛿/2
and diam𝑤(𝜋𝑡 (D)) < 𝛿/2. This implies the ⟨𝜌(𝛾)⟩-invariant set 𝑤(𝜋𝑡 (𝜕𝐵)) is
contained in 𝐵(𝛿, 𝑞𝑡). If 𝜋𝐵𝛿

is the closest point projection onto this ball, then take
𝑤𝛿 to be the 𝜌-eqiuivariant map that coincides with 𝑤 on Σ̃\(Γ · 𝜋𝑡 (𝐵)) and with
𝜋𝐵𝛿

◦ 𝑤 on Γ · 𝜋𝑡 (𝐵). This has all of the required properties.

With that cleared up recall that the total energy of 𝑓 is finite in 𝐵, so that Hopf( 𝑓 )
has a pole of order at most 1. By Proposition 3.3.2 and [Wol91b, Proposition 3.13],

𝑒( 𝑓 ) ≤ 𝐴

in 𝐵. From here we make the assumption that Σ has at least two punctures, around
one of which 𝜌 has hyperbolic monodromy. This is the most complicated situation
and the other cases are resolved similarly. Returning to the sequence 𝑓𝑟 from the
proof of Proposition 3.5.1, we may enlarge 𝐴 if necessary to obtain

𝑒( 𝑓𝑟) ≤ 𝐴
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for all 𝑟. This guarantees a uniform Lipschitz constant across all 𝑓𝑟 . Next consider
the maps 𝑓𝑟,𝛿. We underline that they agree with 𝑓𝑟 on 𝜕Σ𝑐 (here we are using the
notations and conventions of Proposition 3.5.1). By definition

𝑒( 𝑓𝑟,𝛿) ≤ 𝑒( 𝑓𝑟)

everywhere, so that
𝐸Σ𝑐 ( 𝑓𝑟,𝛿) ≤ 𝐸Σ𝑐 ( 𝑓𝑟).

By the energy minimizing property of harmonic maps this forces 𝑓𝑟,𝛿 to be harmonic.
From the finite energy theory, if 𝜌 does not fix a point on the boundary then 𝑓𝑟 = 𝑓𝑟,𝛿.
If 𝜌 does fix such a point then 𝑓𝑟 and 𝑓𝑟,𝛿 differ by a translation along a geodesic.
Since they are set to be equal on 𝜕Σ𝑐 they agree everywhere. Taking 𝑟 → ∞ implies
𝑓 has the listed properties of 𝑓𝛿.

Now we put 𝛿𝑛 = 2−𝑛 and iterate the procedure above. We obtain a sequence of
horoballs tending to 𝜉 whose image under 𝑓 is contained in a closed ball of radius
𝛿𝑛 that intersects 𝐹 non-trivially. Taking 𝑛→ ∞ the first result follows.

To see that the energy decays to zero, we argue by contradiction: suppose there is a
𝛿0 > 0 and sequence 𝑧𝑛 tending to 𝜉 such that 𝑒( 𝑓 ) (𝑧𝑛) ≥ 𝛿0. Consider the cylinder

C = {(𝑥, 𝑡) ∈ [0, 1] × [0, 1] : (0, 𝑡) ∼ (1, 𝑡)}

and take a sequence of conformal embeddings 𝑏𝑛 : C → 𝐷/⟨𝛾⟩ such that the
projection of 𝑧𝑛 is contained in int(𝑏𝑛 (C)). The energy density of 𝐵𝑛 := 𝑓𝛾 ◦ 𝑏𝑛 is
uniformly bounded, and we can choose 𝑏𝑛 so that 𝑒(𝐵𝑛) (𝑥, 𝑡) = 𝑒( 𝑓𝛾) (𝑏𝑛 (𝑥, 𝑡)).
By the usual argument, 𝐵𝑛 subconverges in the 𝐶∞ sense to a harmonic map
𝐵∞ : C → 𝑋/⟨𝜌(𝛾)⟩. From the first result, we see 𝐵∞ is constant, which forces a
contradiction in that 𝑒( 𝑓 ) (𝑧𝑛) must then tend to 0. □

Proof of domination theorem
Take any 𝜌-equivariant harmonic map (Σ̃, 𝜎) → 𝑋 produced by Theorem 3A or
a map Σ̃ → H from the previous subsection and call it 𝑓 . Let Φ denote the Hopf
differential. By Theorem 3D there is a surface (𝑁, 𝜎0) with cusps and infinite
funnels attached along closed geodesics as well as a harmonic map ℎ with Hopf
differential Φ taking Σ diffeomorphically onto the interior of the convex core 𝑁 .
Lift ℎ to a map between the universal covers, that we will still denote ℎ. We will
always identify Σ̃ and the universal cover of 𝑁 with H. Let 𝑗 denote the holonomy
of ℎ∗𝜎. Proposition 3.3.2 implies that

𝜓 := 𝑓 ◦ ℎ−1 : (�̃� (H/ 𝑗 (Γ)), 𝜎0) → (𝑋, 𝑔)
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is ( 𝑗 , 𝜌)-equivariant and 1-Lipschitz. Indeed, ℎ∗𝜎 ≥ 𝑓 ∗𝑔 in the sense that

(ℎ∗𝜎)𝑧 (𝑣, 𝑣) ≥ ( 𝑓 ∗𝑔)𝑧 (𝑣, 𝑣)

for all points 𝑧 and non-zero vectors 𝑣 ∈ 𝑇𝑧�̃� (H/ 𝑗 (Γ)). Hence for any two points
𝑥, 𝑦 ∈ �̃� (H/ 𝑗 (Γ)) and path 𝑐 from 𝑥 to 𝑦,

ℓ𝑔 (𝜓(𝑐)) = ℓ 𝑓 ∗𝑔 (ℎ−1(𝑐)) ≤ ℓℎ∗𝜎 (ℎ−1(𝑐)) = ℓ𝜎 (𝑐).

Now, extend 𝜓 to the lift of the boundary of the convex core via uniform continuity,
and precompose 𝜓 with the ( 𝑗 , 𝑗)-equivariant 1-Lipschitz nearest point projection
from H to �̃� (H/ 𝑗 (Γ)). This resulting map from H → 𝑋 is 1-Lipschitz and ( 𝑗 , 𝜌)-
equivariant. This chosen 𝑗 is 𝑗Σ from the statement of Theorem 3B.

Remark 3.6.2. For this construction, it does not matter which initial harmonic map
𝑓 we choose. Going forward we work with 𝜃 = 0.

Lemma 3.6.3. In general 𝑗Σ does not strictly dominate 𝜌. If 𝑋 = H, a necessary and
sufficient condition is that the image of any peripheral isometry under 𝜌 is elliptic.
In the general case, a sufficient condition is that

lim sup
𝑚→∞

𝑑 (𝜓(𝑝), 𝜌(𝛾𝑚)𝜓(𝑝))
2 log𝑚

< 1.

This will be achieved if 𝜌 has no hyperbolic or parabolic monodromy, but is still
possible with parabolic monodromy.

Proof. If 𝛾 is a peripheral isometry such that 𝜌(𝛾) is hyperbolic, then the translation
length is fully encoded by the residue of the Hopf differential, so that ℓ( 𝑗Σ (𝛾)) =
ℓ(𝜌(𝛾)). Hence 1 is the optimal Lipschitz constant in this setting. If 𝑗Σ (𝛾) is
parabolic, then by elementary hyperbolic trigonometry (see [GK17, Lemma 2.7]),

ℓ( 𝑗Σ (𝛾𝑚)) = 2 log𝑚 + 𝐴.

If 𝜌(𝛾) is parabolic then

ℓ(𝜌(𝛾𝑚)) ≤ 2 log𝑚 + 𝐴.

This follows from [HI77, Theorem 1] and a minor modification of the argument in
[GK17, Lemma 2.7]. We have equality above if all sectional curvatures of 𝑋 are
−1, which implies 𝜌 cannot have parabolic monodromy if 𝑋 = H. When the image
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is elliptic we have shown 𝑒( 𝑓 ) → 0 at the cusp. From [Wol91b, Proposition 3.13]
we have 𝑒(ℎ) → 1 at such a cusp. This handles the case 𝑋 = H.

Working with arbitrary 𝑋 , from the proof of Proposition 3.3.2 we know 𝜓 either has
Lipschitz constant 1 everywhere or the Lipschitz constant is strictly less than 1 on
every compact set. By equivariance of 𝜓 this implies the condition

lim sup
𝑚→∞

𝑑 (𝜓(𝑝), 𝜌(𝛾𝑚)𝜓(𝑝))
2 log𝑚

< 1

is sufficient. To see the last statement, simply fix 𝜅 < −1 and consider a rescaled
copy of H with a metric of constant curvature 𝜅. □

With 𝑗Σ in hand, we perturb it to a convex cocompact representation that strictly
dominates 𝜌. Let us first assume 𝑗Σ is convex cocompact. We use the strip
deformations of Thurston, which we now describe. Recall that an arc of a complete
hyperbolic surface 𝑆 is any non-trivial isotopy class of complete curves in 𝑆 such that
both ends exit into an infinite funnel. A geodesic arc is the geodesic representative
of an arc.

Definition 3.6.4. A strip deformation of a hyperbolic surface 𝑆 along a geodesic
arc 𝛼 is the new surface obtained by cutting along 𝛼 and gluing a strip, the region
on H bounded between two ultraparallel geodesics. The strip is inserted without
shearing: so that the two endpoints of the most narrow cross section are identified to
a single point 𝑧, which is called the waist. A strip deformation along a collection of
pairwise disjoint and non-isotopic geodesic arcs 𝛼1, . . . , 𝛼𝑛 is the hyperbolic surface
produced by performing strip deformations along 𝛼𝑘 iteratively.

Note that strip deformations along geodesic arcs commute because the curves are
disjoint. It was observed by Thurston [Thu98] and proved in full detail in [PT10]
that as soon as a collection of pairwise disjoint non-isotopic arcs decomposes 𝑆 into
disks, the corresponding strip deformation uniformly lengthens all closed geodesics.
Any geodesic arc 𝛼 has two parameters associated to a strip deformation, namely
the waist and the width: the thickness of the strip at its most narrow cross section.
The lemma below follows from [DGK16a, Theorem 1.8].

Lemma 3.6.5. For any choice of geodesic arcs (𝛼1, . . . , 𝛼𝑛) that decomposeH/ 𝑗Σ (Γ)
into disks, as well as waist and width parameters 𝑧𝑘 , 𝑤𝑘 , the holonomy of the corre-
sponding strip deformation strictly dominates 𝑗Σ.
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Figure 3.1: A strip deformation along a geodesic arc on a two-holed torus

Remark 3.6.6. The complex of arc systems S is the subcomplex of the arc complex
obtained by removing all cells that do not divide 𝑆 into disks. Danciger, Guéritaud,
and Kassel established a homeomorphism between an abstract cone over S and the
subspace of the Fricke-Teichmüller space of representations strictly dominating a
convex cocompact representation. See [DGK16a] for the full description.

This solves the convex cocompact case. Without this condition we proceed as
follows. For each puncture 𝑝𝑘 in H/ 𝑗Σ (Γ) select disjoint biinfinite geodesic arcs
𝛼𝑘 such that both ends of each 𝛼𝑘 escape toward 𝑝𝑘 . Arbitrarily choose points
on 𝛼𝑘 as a waist parameter and pick some positive width parameters. Insert a
hyperbolic strip without shearing, exactly as one would do for a convex cocompact
surface. The resulting surface admits a complete hyperbolic metric of infinite area,
and therefore its holonomy is convex cocompact. The length spectrum of this new
holonomy obviously dominates that of 𝑗Σ. Then perform a strip deformation on the
new surface to obtain a representation that strictly dominates 𝑗Σ in length spectrum.
By Theorem 3.2.2, in this context length spectrum domination implies domination
in the regular sense.

This completes the proof of Theorem 3B for complete finite volume hyperbolic
manifolds. The general case is now a consequence of Lemma 3.2.4.
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C h a p t e r 4

MAXIMAL SURFACES AND ADS 3-MANIFOLDS

4.1 Introduction
Near the end of the original paper [Sag19], we found something curious: pairs of
representations 𝜌1, 𝜌2 that give rise to circle bundles with an anti-de Sitter structure
that do not come from properly discontinuous actions on all of AdS3. At the time we
did not put much emphasis on the result; in fact, it’s buried near the end of the paper
as Proposition 7.7. The motivation for the next work is to explore representations
such as (𝜌1, 𝜌2) in more depth. The representations all satisfy a geometric condition,
which we call almost strict domination. Below, let (𝑋, 𝜈) be a Hadamard manifold
with isometry group 𝐺.

Definition 4.1.1. Let 𝜌1 : 𝜋1(𝑆𝑔,𝑛) → PSL(2,R), 𝜌2 : 𝜋1(𝑆𝑔,𝑛) → 𝐺 be two
representations with 𝜌1 Fuchsian. We say that 𝜌1 almost strictly dominates 𝜌2 if

1. for every peripheral 𝜁 ∈ 𝜋1(𝑆𝑔,𝑛), ℓ(𝜌1(𝜁)) = ℓ(𝜌2(𝜁)), and

2. there exists a (𝜌1, 𝜌2)-equivariant 1-Lipschitz map 𝑔 defined on the convex hull
of the limit set of 𝜌1(𝜋1(𝑆𝑔,𝑛)) in H such that the local Lipschitz constants are
< 1 inside the convex hull, and for peripherals 𝜁 such that 𝜌1(𝜁) is hyperbolic,
𝑔 takes each boundary geodesic axis for 𝜌1(𝜁) isometrically to a geodesic axis
for 𝜌2(𝜁).

In the definition above, the global Lipschitz constant is

Lip(𝑔) = sup
𝑦1≠𝑦2

𝑑𝜈 (𝑔(𝑦1), 𝑔(𝑦2))
𝑑𝜎 (𝑦1, 𝑦2)

,

where 𝜎 is the hyperbolic metric. The local one is

Lip𝑥 (𝑔) = inf
𝑟>0

Lip(𝑔 |𝐵𝑟 (𝑥)) = inf
𝑟>0

sup
𝑦1≠𝑦2∈𝐵𝑟 (𝑥)

𝑑𝜈 (𝑔(𝑦1), 𝑔(𝑦2))
𝑑𝜎 (𝑦1, 𝑦2)

,

which by equivariance is a well-defined function on the convex core ofH/𝜌1(𝜋1(𝑆𝑔,𝑛).
In the language of [GK17], the projection to H/𝜌1(𝜋1(𝑆𝑔,𝑛)) of the stretch locus of
an optimal Lipschitz map is exactly the boundary of the convex core. This property
is very rare: it implies domination in the simple length spectrum (see [GS20]). In
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view of [GK17], we will say a Lipschitz map 𝑔 : (H, 𝜎) → (𝑋, 𝜈) is optimal if it
satisfies the properties above.

Remark 4.1.2. Note that 𝜌2 cannot be Fuchsian, by an application of Gauss-Bonnet.
Almost strict domination is the same as strict domination when every 𝜌2(𝜁𝑖) is elliptic
(see also [Sag19, Lemma 6.3]).

Before moving on, we comment that Dai-Li recently proved domination results for
higher rank Hitchin representations into PSL(𝑛,C) [DL20]. It would be interesting
to see if the almost strict condition generalizes meaningfully to higher rank.

Maximal surfaces
We first fix some notations that we will keep throughout the chapter.

• Σ is surface with genus 𝑔 and 𝑛 punctures 𝑝1, . . . , 𝑝𝑛, with 𝜒(Σ) < 0. The
deck group for the universal covering 𝜋 : Σ̃ → Σ is denoted by Γ.

• T (Γ) is the Teichmüller space of classes of complete finite volume marked
hyperbolic metrics on Σ.

• {𝜁1, . . . , 𝜁𝑛} ⊂ Γ are the peripheral elements, i.e., those representing the
simple closed curves enclosing 𝑝𝑖. If 𝑛 = 1, write 𝜁1 = 𝜁 .

• (𝑋, 𝜈) is a CAT(−1) Hadamard manifold with isometry group 𝐺.

• (H, 𝜎) denotes the hyperbolic space with constant curvature −1.

Let 𝜌1 : Γ → PSL(2,R), 𝜌2 : Γ → 𝐺 be reductive representations. Then 𝜌1 × 𝜌2 :
Γ → PSL(2,R) × 𝐺 defines its own representation.

Definition 4.1.3. A 𝜌1 × 𝜌2-equivariant map 𝐹 : (Σ̃, �̃�) → (H × 𝑋, 𝜎 ⊕ (−𝜈)) is
maximal if the image surface has zero mean curvature. It is spacelike if the pullback
metric 𝐹∗(𝜎 ⊕ (−𝜈)) is non-degenerate and Riemannian.

The vanishing of the mean curvature is equivalent to the condition that 𝐹 is harmonic
and conformal. Using the product structure, we can write

𝐹 = (ℎ, 𝑓 ),

where ℎ, 𝑓 are 𝜌1, 𝜌2-equivariant harmonic maps, and from (2.7),

Φ(𝐹) = Φ(ℎ) −Φ( 𝑓 ).
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Since 𝐹 is conformal, Φ(ℎ) and Φ( 𝑓 ) agree.

Definition 4.1.4. A spacelike maximal surface 𝐹 : (Σ̃, �̃�) → (H×, 𝜎 ⊕ (−𝜈)) is
called tame if the Hopf differentials of the harmonic maps have poles of order at
most 2 at the cusps.

At this point, we can see a relationship to almost strict domination.

Lemma 4.1.5. If 𝜌 is Fuchsian, the existence of a tame spacelike maximal surface
implies almost strict domination.

Proof. Let 𝐹 be such a maximal surface and split it as 𝐹 = (ℎ, 𝑓 ). Note that
Φ(ℎ) = Φ( 𝑓 ) implies ℓ(𝜌1(𝜁𝑖)) = ℓ(𝜌2(𝜁𝑖)) for all 𝑖. Indeed, ℓ(𝜌𝑘 (𝜁𝑖)) = 0 if
and only if the Hopf differential has a pole of order at most 1 at the cusp. And if
ℓ(𝜌𝑘 (𝜁𝑖)) > 0, this is because the residue at each cusp is determined entirely by the
choice of twist parameter and the translation length ℓ(𝜌𝑘 (𝜁𝑖)). We proved in the
previous chapter that 𝑓 ◦ ℎ−1 is an optimal map in the sense of this chapter. □

Main theorems: maximal surfaces

Theorem 4A. Let 𝜌1 : Γ → PSL(2,R) and 𝜌2 : Γ → 𝐺 be reductive representa-
tions with 𝜌1 Fuchsian. 𝜌1 almost strictly dominates 𝜌2 if and only if there exists
a complete finite volume hyperbolic metric 𝜇 on Σ and a 𝜌1 × 𝜌2-equivariant tame
spacelike maximal immersion from

(Σ̃, �̃�) → (H × 𝑋, 𝜎 ⊕ (−𝜈)).

The maximal surfaces are not unique but are classified according to Proposition
4.2.2.

Let’s give some idea of the proof. For representations 𝜌1, 𝜌2, we define a functional
E𝜃𝜌1,𝜌2

on the Teichmüller space by

E𝜃𝜌1,𝜌2
(𝜇) =

∫
Σ

𝑒(𝜇, ℎ𝜃𝜇) − 𝑒(𝜇, 𝑓 𝜃𝜇 )𝑑𝐴𝜇,

where ℎ𝜃𝜇, 𝑓 𝜃𝜇 are certain harmonic maps on (Σ̃, �̃�) that may have infinite energy, in
the sense that ∫

Σ

𝑒(𝜇, ℎ𝜃𝜇)𝑑𝐴𝜇 =
∫
Σ

𝑒(𝜇, 𝑓 𝜃𝜇 )𝑑𝐴𝜇 = ∞.
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We show that this is always finite, provided the boundary lengths for 𝜌1 and 𝜌2 agree
(Section 4.2). We then compute the derivative (Section 4.2), showing that critical
points correspond to spacelike maximal surfaces (Proposition 4.2.1). To anyone
working with harmonic maps, this is expected, but with no good theory of global
analysis to treat infinite energy maps on surfaces with punctures, we have to work
through some thorny details directly. In the course of our analysis, we develop a new
energy minimization result (Lemma 4.2.14) that may be of independent interest.

Then we show that E𝜃𝜌1,𝜌2
is proper if and only if 𝜌1 almost strictly dominates 𝜌2.

Here is an indication as to why this is true. Suppose we diverge along a sequence
(𝜇𝑛)∞𝑛=1 ⊂ T (Γ) by pinching a simple closed curve 𝛼. Then there is a collar around
𝛼 whose length ℓ𝑛 in (Σ, 𝜇𝑛) is tending to ∞. Almost strict domination implies
ℓ(𝜌1(𝛼)) > ℓ(𝜌2(𝛾), and the analysis from [Sag19] shows that the total energy of
the harmonic maps in the collar behaves like

ℓ𝑛 (ℓ(𝜌1(𝛼))2 − ℓ(𝜌2(𝛼))2) → ∞. (4.1)

This reasoning, however, cannot be turned into a full proof. Two problems:

1. Along a general sequence that leaves all compact subsets of T (Γ), the two
harmonic maps could apriori behave quite differently in a thin collar. For
instance we could have twisting in one harmonic map, which increases the
energy, but no twisting in the other.

2. For a general sequence, we also have little control over the energy outside of
thin collars.

We circumvent these issues as follows: if 𝑔 is an optimal map, then our energy
minimization Lemma 3.12 implies that

E𝜃𝜌1,𝜌2
(𝜇) ≥

∫
Σ

𝑒(𝜇, ℎ𝜃𝜇) − 𝑒(𝜇, 𝑔 ◦ ℎ𝜃𝜇)𝑑𝐴𝜇 .

The integrand is positive, so now we can bound below by the energy in collars. The
contracting property of 𝑔 then allows us to effectively study the energy in collars.
In the end we make a rather technical geometric argument in order to find lower
bounds similar to (4.1) along diverging sequences.

We also remark that even in the non-compact but finite energy setting, the result on
the derivative of the energy functional was not previously contained in the literature.
Hence we record it below.
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Proposition 4.1.6. Let 𝜌 : Γ → 𝐺 be a reductive representation with no hyperbolic
monodromy around cusps, so that equivariant harmonic maps have finite energy.
Then the energy functional 𝐸𝜌 : T (Γ) → [0,∞) that records the total energy of a
𝜌-equivariant harmonic map from (Σ̃, 𝜇) → (𝑋, 𝜈) is differentiable, with derivative
at a hyperbolic metric 𝜇 given by

𝑑𝐸𝜌 [𝜇] (𝜓) = −4 Re⟨Φ, 𝜓⟩.

Here Φ is the Hopf differential of the harmonic map at 𝜇.

The proof can actually be extended to non-positively curved settings (see Remark
4.2.17).

Main theorems: parametrizations
The next theorem concerns the space of almost strictly dominating pairs. We denote
by Hom∗(Γ, 𝐺) ⊂ Hom(Γ, 𝐺) the space of reductive representations. 𝐺 acts on
Hom∗(Γ, 𝐺) by conjugation, and we define the representation space as

Rep(Γ, 𝐺) = Hom∗(Γ, 𝐺)/𝐺.

In general this may not be a manifold, but it can have nice structure depending on𝐺.
For surfaces with punctures we would like to prescribe behaviour at the punctures.

Definition 4.1.7. Fix a collection of conjugacy classes c = (𝑐𝑖)𝑛𝑖=1 of elements in 𝐺.
The relative representation space Rep𝔠 (Γ, 𝐺) is the space of reductive representa-
tions taking 𝜁𝑖 into 𝑐𝑖, modulo conjugation.

We require one technical assumption on the group𝐺: that if we choose a good cover-
ing of Σ and let 𝜒(Γ, 𝐺) denote the space of𝐺-local systems with respect to this cov-
ering that have reductive holonomy, then the projection from 𝜒(Γ, 𝐺) → Rep(Γ, 𝐺)
is a locally trivial principal bundle. We demand the same for the relative represen-
tation space, instead considering local systems whose holonomy representations
respect c. This assumption is satisfied under most cases of interest in Higher Te-
ichmüller theory, for instance if 𝐺 is a linear algebraic group (see [Lab13, Chapter
5]).

Within Repc(Γ, 𝐺), we have the subset Rep𝑛 𝑓c (Γ, 𝐺) of representations that do not
stabilize a plane of constant curvature−1 on which the action is Fuchsian. The almost
strict domination condition is invariant under conjugation for both representations,
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so we can define ASDc(Γ, 𝐺) to be the subspace of pairs of representations 𝜌1 :
Γ → PSL(2,R), 𝜌2 : Γ → 𝐺 such that 𝜌1 is Fuchsian and almost strictly dominates
𝜌2. Necessarily, 𝜌1 lies in the Teichmüller space Tc(Γ) (we use this notation when
we fix the boundary monodromy according to c).

Theorem 4B. Assume there are 𝑚 peripherals such that 𝑐1, . . . , 𝑐𝑚 are hyperbolic
conjugacy classes. For each choice of parameters 𝜃 = (𝜃1, . . . , 𝜃𝑚) ∈ R𝑚, there
exists a homeomorphism

Ψ𝜃 : T (Γ) × Rep𝑛 𝑓c (Γ, 𝐺) → ASDc(Γ, 𝐺).

Moreover, the homeomorphism is fiberwise in the sense that for each 𝜌 ∈ Rep𝑛 𝑓c (Γ, 𝐺),
it restricts to a homeomorphism

Ψ𝜃
𝜌 : T (Γ) × {𝜌} → 𝑈 × {𝜌} ⊂ 𝐴𝑆𝐷c(Γ, 𝐺),

where𝑈 is a non-empty open subset of the Teichmüller space Tc(Γ).

The mappingsΨ𝜃 are defined in essentially the same way as the mapΨ from [Tho17].
Theorem 4B should be compared with Theorem 3.1.4.

Main theorems: AdS 3-manifolds
Concerning AdS 3-manifolds, the following explains the relationship with spacelike
immersions.

Proposition 4.1.8. Given a 𝜌1-invariant domain 𝑉 ⊂ H on which 𝜌1 acts properly
discontinuously, there is a bijection between

1. (𝜌1, 𝜌2)-equivariant maps 𝑔 : 𝑉 → H that are locally strictly contracting,
i.e.,

𝑑𝜎 (𝑔(𝑥), 𝑔(𝑦)) < 𝑑𝜎 (𝑥, 𝑦)

for 𝑥 ≠ 𝑦,

2. and circle bundles 𝑝 : Ω/(𝜌1 × 𝜌2(Γ)) → 𝑉 , where Ω ⊂ AdS3 is a domain
on which 𝜌1 × 𝜌2 acts properly discontinuously and such that each circle fiber
lifts to a complete timelike geodesics in AdS3.

Indeed, given a spacelike maximal surface (ℎ, 𝑓 ) defined on 𝑉 ⊂ H, we will see
later on that 𝑔 = ℎ ◦ 𝑓 −1 is locally strictly contracting on a domain. The implication
from (1) to (2) is a slight generalization of the work of Guéritaud-Kassel in [GK17],
and should be known to experts.
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Remark 4.1.9. The proof in [KR85] that properly discontinuous subgroups of AdS3

are of the form Γ𝜌1,𝜌2 rests on their main lemma that there is no Z2-subgroup acting
properly discontinuously. The proof is local, and one can adapt to show that any
torsion-free discrete group acting properly discontinuously on a domain in AdS3

takes this form.

Remark 4.1.10. A version of this holds more generally for geometric structures
modelled on some rank 1 Lie groups. See Section 4.4.

Specializing to almost strict domination, we have the following.

Theorem 4C. Let 𝜌1, 𝜌2 : Γ → PSL(2,R) be two reductive representations with
𝜌1 Fuchsian. The following are equivalent.

1. 𝜌1 almost strictly dominates 𝜌2.

2. 𝜌1 × 𝜌2 acts properly discontinuously on a domain Ω ⊂ AdS3 and induces a
fibration fromΩ/(𝜌1×𝜌2(Γ)) onto the interior of the convex core ofH/𝜌1(Γ)
such that each fiber is a timelike geodesic circle. Moreover, when there is at
least one peripheral 𝜁 with 𝜌1(𝜁) hyperbolic, no such domain in AdS3 can be
continued to give a fibration over a neighbourhood of the convex core.

3. There exists a complete hyperbolic metric 𝜇 on Σ and a (𝜌1, 𝜌2)-equivariant
embedded tame maximal spacelike immersion from (Σ̃, �̃�) → (H × H, 𝜎 ⊕
(−𝜎)).

Fixing a collection of conjugacy classes c, there is a fiberwise homeomorphism

Ψ : Tc(Γ) × Rep𝑛 𝑓c (Γ, PSL(2,R)) → ASDc(Γ, PSL(2,R)).

If we restrict the domain to classes of irreducible representations, the image identifies
with a continuously varying family of AdS 3-manifolds.

Components of our space of AdS 3-manifolds are classified by the relative Euler
numbers (see [BIW10]). The only piece that doesn’t follow quickly from Theorems
4A, 4B, and Proposition 4.1.8 is the implication from (2) to (1). To prove this
part, we draw on the work of Guéritaud-Kassel on maximally stretched laminations
[GK17] and show that the stretch locus (Definition 6.4) of an optimally Lipschitz
map is exactly the boundary of the convex hull of the limit set.
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In (2), the domain Ω is all of AdS3 if and only if every 𝜌2(𝜁𝑖) is elliptic. This is
a consequence of [GK17, Lemma 2.7] and the properness criteria, Theorem 3.1.2.
Also related to (2), one can get incomplete AdS 3-manifolds fibering over larger
subsurfaces, but still not extending to the whole surface, by doing strip deformations
(see Section 4.4).

Outline

• In Section 4.2 we set up the proof of Theorem 4A by defining the energy
functionals E𝜃𝜌1,𝜌2

. We then show that it is well-defined and compute the
derivative.

• In Section 4.3 we show that E𝜃𝜌1,𝜌2
is proper if and only if 𝜌1 almost strictly

dominates 𝜌2.

• We prove Theorem 4B in Section 4.3 by studying variations of minimizers of
E𝜃𝜌1,𝜌2

(similar to [Tho17, Section 2]).

• Section 4.4 is a change of pace. After giving an overview of the relevant
aspects of AdS geometry, we prove Proposition 4.1.8 and Theorem 4C.

• We close with a section on parabolic Higgs bundles (not included in the paper,
only in this thesis). This is adapted on [AL18] (closed surfaces). We explain
how that the residue of the maximal surfaces (encoded as the residue of the
Higgs field) is related to twisting behaviour of the associated map into the
timelike Grassmanian.
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on a draft of the paper.

4.2 The derivative of the energy functional
In this section, we introduce the energy functional needed for the proof of Theorem
4A and compute its derivative. First, we discuss some notions that will be useful
for working with tame harmonic maps.
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Tame harmonic maps and twist parameters
On a hyperbolic surface (Σ, 𝜇), recall that we have cusp regions that identify iso-
metrically with

𝑈 (𝜏) := {𝑧 = 𝑥 + 𝑖𝑦 : (𝑥, 𝑦) ∈ [0, 𝜏] × [𝑎,∞)}/⟨𝑧 ↦→ 𝑧 + 𝜏⟩, (4.2)

equipped with the hyperbolic metric 𝑦−2 |𝑑𝑧 |2. When needed, we write 𝜏𝜇 to highlight
dependence on 𝜇.

Throughout this chapter, by “hyperbolic metric on Σ” we mean a complete finite
volume hyperbolic metric, unless specified otherwise. We refer to the Teichmüller
space as the space of such metrics. To highlight dependence on the uniformizing
Fuchsian group, we denote it by T (Γ)

[Sag19, Theorem 1.1] says that for a reductive representation 𝜌 with hyperbolic
monodromy around the cusp, tame harmonic maps exist and are determined by the
choice of twist parameter, with an exception if 𝜌 is reducible. Here we introduce
the twist parameters.

Take 𝜁𝑖 with 𝜌(𝜁𝑖) hyperbolic, and choose a constant speed parametrization 𝛼𝑖 for
the geodesic axis 𝛽𝑖 of 𝜌(𝜁𝑖). Let C be the cylinder

C = {(𝑥, 𝑦) ∈ [0, 1]2}/⟨(0, 𝑦) ∼ (1, 𝑦)⟩ (4.3)

with the flat metric. There is a “model mapping” �̃�𝜃𝑖
𝑖

: C → 𝛽𝑖 defined as follows.
For 𝜃𝑖 = 0, we set

�̃�𝑖 (𝑥, 𝑦) = 𝛼𝑖 (𝑥),

a constant speed projection onto the geodesic. For 𝜃𝑖 ≠ 0, �̃�𝜃
𝑖

is defined by precom-
posing �̃�𝑖 with the fractional Dehn twist of angle 𝜃𝑖, the map given in coordinates
by

(𝑥, 𝑦) ↦→ (𝑥 + 𝜃𝑖𝑦, 𝑦).

Choosing a cusp neighbourhood 𝑈 of a 𝑝𝑖, we take conformal maps 𝑖𝑟 : C → 𝑈

that take the boundaries linearly to {(𝑥, 𝑦) : 𝑦 = 𝑟} and {(𝑥, 𝑦) : 𝑦 = 𝑟 + 1}. The
mappings 𝑓 𝜃 ◦ 𝑖𝑟 : C → (𝑋, 𝜈) are harmonic, and as 𝑟 → ∞ they converge in the
𝐶∞ sense to a harmonic mapping that differs from �̃�

𝜃𝑖
𝑖

: C → 𝛽𝑖 by a constant speed
translation along the geodesic (see [Sag19, Section 5]).

The energy functional
One direction of Theorem 4A is Lemma 4.1.5. The proof of the other direction
will go as follows. Take a pair (𝜌1, 𝜌2) such that 𝜌1 almost strictly dominates 𝜌2.
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We want to show there is a hyperbolic metric 𝜇 on Σ such that, after choosing
twist parameters in some way, the associated (𝜌1, 𝜌2)-equivariant surface from
(Σ̃, �̃�) → (H × 𝑋, 𝜎 ⊕ (−𝜈)) is spacelike and maximal. Clearly, we must have the
same twist parameter 𝜃 for both 𝜌1 and 𝜌2, and it turns out we can choose any 𝜃,
as we will now explain. Given a metric 𝜇, let ℎ𝜃𝜇, 𝑓 𝜃𝜇 be harmonic maps for 𝜌1, 𝜌2

respectively with twist parameter 𝜃. Define

E𝜃𝜌1,𝜌2
: T (Γ) → R

by

E𝜃𝜌1,𝜌2
(𝜇) =

∫
Σ

𝑒(𝜇, ℎ𝜃𝜇) − 𝑒(𝜇, 𝑓 𝜃𝜇 )𝑑𝐴𝜇 .

This does not depend on the metric 𝜇 ∈ [𝜇], by conformal invariance. When 𝜌2 is
reducible, harmonic maps are not unique, but the energy density does not depend
on the choice of harmonic map, so the integral is well-defined. Apriori, it is not
given that the integral defining E𝜃𝜌1,𝜌2

(𝜇) is finite, for the harmonic maps themselves
could have infinite energy. Finiteness will be proved in Proposition 4.2.4. The main
goal of this section is to prove Proposition 4.2.1.

Proposition 4.2.1. Given (𝜌1, 𝜌2) with ℓ(𝜌1(𝜁𝑖)) = ℓ(𝜌2(𝜁𝑖)) for all 𝑖, the functional
E𝜃𝜌1,𝜌2

: T (Γ) → R is differentiable with derivative at a hyperbolic metric 𝜇 given
by

𝑑 E𝜃𝜌1,𝜌2
[𝜇] (𝜓) = −4 Re⟨Φ(ℎ𝜃𝜇) −Φ( 𝑓 𝜃𝜇 ), 𝜓⟩.

Thus, critical points of E𝜃𝜌1,𝜌2
correspond to maximal surfaces. And by [Sag19,

Proposition 3.13], any critical point is a spacelike immersion. In Section 4.3, we
prove that the almost strict domination hypothesis implies there is a metric 𝜇 that
minimizes E𝜃𝜌1,𝜌2

, and that this is the only critical point. Granting this, we can
discuss uniqueness.

Proposition 4.2.2. Suppose 𝜌1 almost strictly dominates 𝜌2 and that 𝜌2 is irre-
ducible. Assume that for every choice of twist parameter 𝜃, each E𝜃𝜌1,𝜌2

admits
a unique critical point. Then every spacelike maximal immersion is of the form
(ℎ𝜃𝜇𝜃 , 𝑓

𝜃
𝜇𝜃
), where 𝜇𝜃 is the minimizer for E𝜃𝜌1,𝜌2

. If 𝜌2 is reducible, then for each 𝜃
there is a a 1-parameter family of tame maximal surfaces, and each one is found by
translating 𝑓 𝜃𝜇 along a geodesic axis.

Proof. In the irreducible case, let 𝐹 = (ℎ′, 𝑓 ′) : (Σ̃, �̃�) → (𝑋, 𝜈) be a spacelike
maximal immersion. By the uniqueness statement in [Sag19, Theorem 1.1], ℎ′ must
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be of the form ℎ𝜃𝜇 for some parameter 𝜃. Thus 𝑓 = 𝑓 𝜃𝜇 , and by our assumption, 𝜇 is
the unique critical point for E𝜃𝜌1,𝜌2

.

In the reducible case, all 𝜌2(𝜁𝑖) that are hyperbolic must translate along the same
geodesic. Since translating along the geodesic does not change the energy density
or the Hopf differential, the one minimizer for E𝜃𝜌1,𝜌2

is the only one that yields
maximal surfaces. □

Analytic preliminaries
The rest of this section is devoted to proving Proposition 4.2.1. We assume Σ has
only one puncture 𝑝 with peripheral 𝜁—the analysis is local so the general case
is essentially the same. When 𝜌1(𝜁), 𝜌2(𝜁) are hyperbolic, we assume the twist
parameter 𝜃 is 0, and we also write ℓ in place of ℓ(𝜌𝑘 (𝜁)). At the end of the section,
we explain the adjustments for the general case. With these assumptions, it causes
no harm to write E for E𝜃𝜌1,𝜌2

. Not only in this section but for the rest of the chapter,
we write ℎ𝜇, 𝑓𝜇 for ℎ𝜃𝜇, 𝑓 𝜃𝜇 when 𝜃 is zero.

We collect some notations that, in the sequel, we use without comment.

• When unspecified, 𝐶 denotes a constant that may grow in the course of a
proof.

• Setting 𝑥 = 𝑥1, 𝑦 = 𝑥2, let 𝑒𝛼𝛽 ( 𝑓 ) = 𝑓 ∗𝜈
(
𝜕 𝑓

𝜕𝑥𝛼
,
𝜕 𝑓

𝜕𝑥𝛽

)
, so that 𝑒(𝜇, 𝑓 ) =

1
2𝜇

𝛼𝛽𝑒𝛼𝛽 ( 𝑓 ).

• 𝐻 and 𝐿 are holomorphic and anti-holomorphic energies.

• For a conformal metric 𝜇 = 𝜇(𝑧) |𝑑𝑧 |2, | |Φ| |2 := 𝜇−2 |Φ|2 = 𝐻𝐿.

• Set |𝜓 | = 𝐿1/2/𝐻1/2. If (𝑋, 𝜈) = (H, 𝜎) and 𝜌 is Fuchsian, 𝜓 =
𝑓𝑧
𝑓𝑧

is the
Beltrami form.

We now prepare notation for dealing with cusps (we do things slightly differently
than in the last chapter). For 𝑟 ≥ 2, we define (Σ𝑟 , 𝜇) to be Σ\{𝑧 ∈ 𝑈 (𝜏) : 𝑦 > 𝑟},
and we put (Σ̃𝑟 , �̃�) to be the preimage in Σ̃. Note that, as a set of points, this depends
on 𝜇. C is a conformal cylinder, and when we say a “conformal cylinder for 𝜇,” we
mean the length is adjusted to be 𝜏 and the height is 1, so that there are conformal
maps C → 𝑈 (𝜏). We define the maps

𝑖𝑟 : C → Σ𝑟+1\Σ𝑟 ⊂ Σ
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by (𝑥, 𝑦) ↦→ 𝑥 + 𝑖(𝑦 + 𝑟), which are used to study asymptotics of harmonic maps.

As in the previous chapter, it is often helpful to perturb the metric in the cusp. A
metric 𝜇 is expressed in the coordinate of𝑈 (𝜏) as 𝜇(𝑧) = 𝑦−2 |𝑑𝑧 |2. The flat-cylinder
metric 𝜇 𝑓 is defined by 𝜇 in Σ2 = Σ\𝑈, the flat metric |𝑑𝑧 |2 in the cusp coordinates
on Σ\Σ3, and smoothly interpolated in between. This is conformally equivalent to
𝜇, so harmonic maps for 𝜇 and 𝜇 𝑓 are the same.

Lastly, we recall some aspects of the construction of infinite energy harmonic maps
from [Sag19, Section 5]. We specialize to a reductive representation 𝜌 such that
𝜌(𝜁) is hyperbolic with 𝜃 = 0. Denote by 𝛽 the geodesic axis of 𝜌(𝜁) and fix a
constant speed parametrization 𝛼 : [0, 𝜏] → 𝛽 such that 𝜌(𝜁)𝛼(0) = 𝛼(𝜏). We
define mappings 𝑓𝑟 to be equivariant harmonic maps on (Σ̃𝑟 , �̃�) with equivariant
boundary values specified by 𝛼 on 𝜕Σ̃𝑟 . In keeping with the notation of [Sag19],
we set 𝜑 = 𝑓2, extend 𝜑 vertically into the cusp by 𝜑(𝑥, 𝑦) = 𝛼(𝑥) in a fundamental
domain for Γ, and extend equivariantly. In this cusp, 𝜑 satisfies

𝑒(𝜇, 𝜑) = ℓ2

2𝜏2 .

In [Sag19, Proposition 5.1], we show there is a uniform bound∫
Σ𝑠

𝑒(𝜇, 𝑓𝑟)𝑑𝐴𝜇 ≤
∫
Σ𝑠

𝑒(𝜇, 𝜑)𝑑𝐴𝜇 =
∫
Σ2

𝑒(𝜇, 𝜑)𝑑𝐴𝜇 +
(𝑠 − 2)ℓ2

2𝜏
. (4.4)

This bound will be used in the analysis below.

Next we turn to finiteness of E. If no monodromy is hyperbolic, then harmonic
maps have finite energy. So suppose 𝜌(𝜁) is hyperbolic.

Proposition 4.2.3. Let 𝑓 : (Σ̃, �̃�) → (𝑋, 𝜈) be a 𝜌-equivariant harmonic map.
Then there exists𝐶, 𝑐, 𝑦0 > 0 such that, in the cusp coordinates (4.2), for all 𝑦 ≥ 𝑦0,
the inequality

|𝑒(𝜇 𝑓 , 𝑓𝜇) (𝑥, 𝑦) − ℓ2/2𝜏2 | < 𝐶𝑒−𝑐𝑦

holds.

Proof. We implicitly work with the metric 𝜇 𝑓 . Write

𝑒 = 𝐻 + 𝐿 = 𝐻1/2𝐿1/2
(𝐻1/2

𝐿1/2 + 𝐿1/2

𝐻1/2

)
= |Φ| ( |𝜓 |−1 + |𝜓 |). (4.5)

SinceΦ has a pole of order at most 2, changing coordinates to the cusp [0, 1]×[1,∞)
(see the subsection below) gives the expression

|Φ| = ℓ2

4𝜏2 +𝑂 (𝑒−2𝜋𝑦). (4.6)
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From [Wol91b, page 513], if 𝑓 is Fuchsian, we have the estimate

1 − |𝜓 |2 = 𝑂 (𝑒−ℓ/2𝑦),

and hence
1 −𝑂 (𝑒−𝑐𝑦) ≤ |𝜓 |2 ≤ 1.

If 𝜌 is not Fuchsian, we find the Fuchsian harmonic map ℎ : (Σ̃, �̃�) → (H, 𝜎)
with the same Hopf differential. Then from 𝐻 ( 𝑓 )𝐿 ( 𝑓 ) = 𝐻 (ℎ)𝐿 (ℎ) and [Sag19,
Proposition 3.13] we get

𝐿 (ℎ) ≤ 𝐿 ( 𝑓 ), 𝐻 ( 𝑓 ) ≤ 𝐻 (ℎ),

which implies
|𝜓(ℎ) | ≤ |𝜓( 𝑓 ) | ≤ |𝜓(ℎ) |−1,

and furthermore
1 −𝑂 (𝑒−𝑐𝑦) ≤ |𝜓 |2 ≤ 1

1 −𝑂 (𝑒−𝑐𝑦) . (4.7)

Inserting (4.6) and (4.7) into (4.5) gives

𝑒(𝜇 𝑓 , 𝑓 ) = ℓ2

2𝜏2 +𝑂 (𝑒−𝑐1𝑦),

as desired. □

The following is now evident.

Proposition 4.2.4. For a fixed hyperbolic metric 𝜇, the integral defining E(𝜇) is
finite. That is, E : T (Γ) → R is well-defined.

Tangent vectors of Teichmüller space.
To do analysis on Teichmüller space, we need a tractable way to study tangent
vectors. Fix a metric 𝜇0 on Σ and let 𝑧 = 𝑥 + 𝑖𝑦 be a conformal coordinate for the
compatible holomorphic structure, so that 𝜇0 = 𝜇0(𝑧) |𝑑𝑧 |2. In this subsection we
describe variations of the metric

𝜇′ = 𝜇 + ¤𝜇.

Since we are working with harmonic maps, which are conformally invariant, we
are permitted to work in a specified conformal class. In particular, we may restrict



83

to variations through complete finite volume hyperbolic metrics. The hyperbolic
condition is satisfied if and only if

¤𝜇11 + ¤𝜇22 = 0

and
𝜙(𝑧)𝑑𝑧2 = ( ¤𝜇11 − 𝑖 ¤𝜇12)𝑑𝑧2

is a holomorphic quadratic differential. When Σ has a puncture, the necessary and
sufficient condition on ¤𝜇 to preserve the complete finite volume property is that 𝜙
has a pole of order at most 1 at the cusp.

Remark 4.2.5. We have described the tangent space to Teichmüller space at (Σ, 𝜇) as
the space of 𝐿1-integrable quadratic differentials on the conjugate Riemann surface.
This characterization coincides with the one we get from the Bers embedding into
C3𝑔−3+𝑛. If 𝜇(𝑧) is a conformal metric, the mapping

𝜙(𝑧)𝑑𝑧2 ↦→ 𝜇(𝑧)−1𝜙(𝑧) 𝑑𝑧
𝑑𝑧

yields the usual identification with the space of harmonic Beltrami forms.

We work out the growth condition on 𝜙 in the cusp coordinates for 𝑈 (𝜏). For
convenience put 𝜏 = 1. The mapping 𝑧 ↦→ 𝑤(𝑧) = 𝑒2𝜋𝑖𝑧 takes a vertical strip to a
punctured disk

{0 ≤ 𝑥 < 1, 𝑦 > ℎ, 𝑦−2 |𝑑𝑧 |2} → {0 < |𝑤 | < 𝑒−ℎ, |𝑤 |−2(log |𝑤 |)2 |𝑑𝑤 |2}

holomorphically and isometrically. A meromorphic quadratic differential in the
disk with a pole of order at most 1 is written

Φ = 𝜙(𝑤) = (𝑎−1𝑤
−1 + 𝜑(𝑤))𝑑𝑤2,

with 𝜑 holomorphic. Applying the above holomorphic mapping, the differential
transforms according to

Φ = 𝜙(𝑤(𝑧))
(𝜕𝑤(𝑧)
𝜕𝑧

)2
𝑑𝑧2 = 𝜙(𝑒𝑖𝑧) (𝑖𝑒𝑖𝑧)2𝑑𝑧2 = −(𝑎−1𝑒

𝑖𝑧 + 𝑒2𝑖𝑧𝜑(𝑒𝑖𝑧))𝑑𝑧2. (4.8)

Thus, any admissible variation decays exponentially in the cusp as we take 𝑦 → ∞.

We also need to describe the inverse variation

(𝜇′)𝛼𝛽 = 𝜇𝛼𝛽 + ¤𝜇𝛼𝛽.
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In the Einstein notation, the relation 𝜇𝛼𝛽𝜇𝛽𝛾 = 𝛿𝛼𝛾 gives ¤𝜇𝛼𝛽𝜇𝛽𝛾 + 𝜇𝛼𝛽 ¤𝜇𝛽𝛾 = 0, and
hence

¤𝜇𝛼𝛽 = −𝜇𝛼𝜌𝜇𝛽𝜏 ¤𝜇𝜏𝜌 .

When 𝜇 is conformal, this returns

¤𝜇𝛼𝛽 = −𝜇−2 ¤𝜇𝛼𝛽.

We derive that, in the cusp coordinates,

¤𝜇𝛼𝛽 = −𝑦4 ¤𝜇𝛼𝛽,

so the decay is still exponential. From these descriptions we deduce the following.

Proposition 4.2.6. Suppose 𝑔 is a finite energy equivariant map with respect to a
finite volume hyperbolic metric 𝜇. Then it also has finite energy for any other metric.

Proof. By conformal invariance of energy, we are permitted to work with complete
finite volume hyperbolic metrics. It is enough to prove the claim for metrics that
are as close as we like to 𝜇. For then we can connect 𝜇 to any other metric 𝜇′ via a
smooth path in the Teichmüller space, cover this path with finitely many small balls,
and argue inductively. That is, we can assume 𝜇′ = 𝜇 + ¤𝜇, for some small variation
¤𝜇. In a local coordinate 𝑧 = 𝑥 + 𝑖𝑦, we write |𝜇 + ¤𝜇 | = det(𝜇 + ¤𝜇), so that the volume
form is

𝑑𝐴𝜇+ ¤𝜇 =
√︁
|𝜇 + ¤𝜇 |𝑑𝑧 ∧ 𝑑𝑧 =

√︃
|𝜇 | − |𝜙|2𝑑𝑧 ∧ 𝑑𝑧,

where 𝜙 is the holomorphic quadratic differential associated to ¤𝜇. For simplicity,
let’s restrict to a 𝐶1 map 𝑔. In a cusp,

2𝑒(𝜇 + ¤𝜇, 𝜈, 𝑔)
√︁
|𝜇 + ¤𝜇 | =

√︃
|𝜇 | − |𝜙|2(𝜇 + ¤𝜇𝛼𝛽)𝑒𝛼𝛽 (𝑔)

=

√︁
|𝜇 | − |𝜙 |2√︁

|𝜇 |
·
√︁
|𝜇 |𝑒(𝜇, 𝑔) +

√︃
|𝜇 | − |𝜙 |2 ¤𝜇𝛼𝛽𝑒𝛼𝛽 (𝑔).

By hypothesis, the first term is uniformly bounded and converges to an integrable
quantity. For the second term, using the flat cylinder metric we gather∫

Σ

(𝑒11 + 𝑒22)𝑑𝐴𝜇 𝑓 < ∞.

By Cauchy-Schwarz, 𝑒12 is integrable as well. Meanwhile, the factor
√︁
|𝜇 | − |𝜙 |2 ¤𝜇𝛼𝛽

decays exponentially as we go into the cusp. □

The proof above shows that the bound depends only on the energy of 𝑔 with respect
to 𝜇 and the Teichmüller distance of the new metric to 𝜇 (see [Ahl06, Chapter 5] for
the definition).
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Variations: finite energy harmonic maps
In the proof of Proposition 4.2.1, we need to know that for a variation of hyperbolic
metrics 𝑡 ↦→ 𝜇𝑡 , 𝑓𝜇𝑡 → 𝑓𝜇 pointwise as 𝑡 → 0. In this subsection and the next, we
show uniform convergence of harmonic maps on compacta. To do so, we verify that
analytic results for harmonic maps can be made uniform in the source metric. We
start with the case of elliptic and parabolic monodromy at the cusp. Throughout, let
𝜌 : Γ → 𝐺 be a reductive representation.

Proposition 4.2.7. Assume the monodromy is elliptic or parabolic and fix an admis-
sible metric 𝜇0. For all 𝜇, there exists a 𝐶𝑘 > 0 depending only on the Teichmüller
distance from 𝜇0 to 𝜇 such that for all 𝑘 > 0,

| (∇𝜇 𝑓 ,𝜈) (𝑘)𝑑𝑓𝜇 |𝜇 𝑓 ≤ 𝐶𝑘 .

Proof. We showed in [Sag19, Proposition 3.8] that one can always find finite energy
harmonic maps. Take such a map 𝑔 : (Σ̃, �̃�0) → (𝑋, 𝜈), which by Lemma 4.2.6
is finite energy for any other metric, with a bound depending on the Teichmüller
distance to 𝜇0. By the energy minimizing property in negatively curved spaces,∫

Σ

𝑒(𝜇 𝑓 , 𝑓𝜇)𝑑𝐴𝜇 𝑓 =

∫
Σ

𝑒(𝜇, 𝑓𝜇)𝑑𝐴𝜇 ≤
∫
Σ

𝑒(𝜇, 𝑔)𝑑𝐴𝜇 ≤ 𝐶.

For the uniform bounds on the energy density, independent of 𝜇, one uses a Harnack-
type inequality, say, from [SY97, page 171], that only depends on uniform quantities:
the Ricci curvature and the injectivity radius. Since we work with the flat-cylinder
metric 𝜇 𝑓 as opposed to the hyperbolic metric 𝜇, we do have uniform control on
the injectivity radius. The estimates on higher order derivatives then come from the
elliptic theory on the Sobolev space adapated to (Σ, 𝜇0) (see [Nic21, Chapter 10]).
It is clear from the general theory that the implicit constants in these estimates can
be made uniform in 𝜇. □

Lemma 4.2.8. Suppose 𝜌 is irreducible. Let 𝐾 ⊂ Σ̃ be compact and suppose
𝑓 : (𝐾, 𝜇) → (𝑋, 𝜈) is 𝐶-Lipschitz for some 𝐶 > 0. Then there exists a compact set
Ω(𝐾,𝐶) ⊂ 𝑋 that does not depend on the map 𝑓 such that 𝑓 (𝐾) ⊂ Ω(𝐾,𝐶).

This is essentially carried out in the proof of Proposition 5.1 in [Sag19] (which is
a modification of the argument from the main theorem of [Don87]), but with some
slightly different assumptions. We sketch a proof for the reader’s convenience.
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Proof. We show the claim holds for a single point 𝜉, and then the Lipschitz control
promotes the result to general compact sets. Since 𝜌 is irreducible, there exists
𝛾 ∈ Γ such that 𝜌(𝛾)𝜉 ≠ 𝜉. For each 𝑥 ∈ 𝐾 , 𝛾 may be represented by a loop
𝛾𝑥 : [0, 𝐿𝑥] → Σ based at 𝜋(𝑥). Since 𝐾 is compact, there is an 𝐿 > 0 such that
𝐿𝑥 ≤ 𝐿 for all 𝑥. Now choose a neighbourhood 𝐵𝜉 ⊂ 𝑋 ∪ 𝜕∞𝑋 such that

𝑑𝜈 (𝑋 ∩ 𝐵𝜉 , 𝜌(𝛾)𝑋 ∩ 𝐵𝜉) > 𝐶𝐿.

This implies that for any 𝑥 ∈ 𝐾 , 𝑓 (𝑥) cannot lie in 𝐵𝜉 . Repeating this procedure and
using compactness of 𝜕∞𝑋 , we get a neighbourhood of 𝜕∞𝑋 in 𝑋 ∪ 𝜕∞𝑋 that 𝑓 (𝐾)
cannot enter. We then takeΩ(𝐾,𝐶) to be the complement of this neighbourhood. □

Lemma 4.2.9. Let 𝐾 ⊂ Σ be compact. Then there is a choice of harmonic maps 𝑓𝜇
that vary continuously on lifts of 𝐾 inside (Σ̃, �̃�) in the 𝐶∞ topology.

Proof. We argue by contradiction. First if 𝜌 is irreducible, suppose there exists
𝛿 > 0 and sequences (𝑘𝑛)∞𝑛=1 ⊂ 𝐾 , 𝑟𝑛 → ∞, and 𝜇𝑛 → 𝜇 such that

𝑑 ( 𝑓𝜇𝑛 , 𝑓𝜇) ≥ 𝛿 (4.9)

for all 𝑛. Then by Lemma 4.2.7 we have uniform derivative bounds on each 𝑓𝜇𝑛 and
by Lemma 4.2.8 they all take a lift of 𝐾 to Σ̃ into a compact subset of (𝑋, 𝜈). By
Arzelà-Ascoli we see the 𝑓𝜇𝑛 𝐶∞-converge in 𝐾 along a subsequence to a limiting
harmonic map 𝑓∞. By equivariance, we have this same convergence on the whole
preimage of 𝐾 .

We now show 𝑓∞ = 𝑓 , which contradicts (4.9). Taking a compact exhaustion of Σ
and applying the same argument on each compact set, the maps 𝑓𝜇𝑛 subconverge on
compact subsets of Σ̃ to a limiting finite energy harmonic map 𝑓 ′∞ that agrees with
𝑓∞ on lifts of 𝐾 . By uniqueness for finite energy maps we get 𝑓∞ = 𝑓 .

If 𝜌 is reducible, we can recenter the harmonic maps via translations along the
geodesic so that they take 𝐾 into a fixed compact set (see the proof of [Sag19,
Proposition 5.1] for this routine procedure), and then repeat the argument above. □

Variations: infinite energy harmonic maps
Now we treat harmonic maps for representations 𝜌with hyperbolic monodromy at the
cusp. Recall the map 𝜑, which for a metric 𝜇 we now denote 𝜑𝜇 : (Σ̃2, �̃�) → (𝑋, 𝜈).
We emphasize that the boundary curve for (Σ̃2, �̃�) is varying with �̃�
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Lemma 4.2.10. Near a base hyperbolic metric 𝜇0, 𝜑𝜇 can be chosen so that the
association 𝜇 → 𝜑𝜇 is continuous in the 𝐶∞ topology .

Proof. Since the metrics are varying smoothly, the lifts of 𝜇-horocycles vary
smoothly with 𝜇. Indeed, in conformal cusp coordinates as in (4.3), the 𝜇-horocycles
are just curves with 𝑦𝜇 constant. Smoothness here thus comes from the regularity
theory for the Beltrami equation (if we follow the approach of Ahlfors and Bers for
finding isothermal coordinates on a hyperbolic surface).

From the standard arguments (see the beginning of the section), the result amounts
to choosing 𝜇 → 𝜑𝜇 so that we have a uniform total energy bound on compacta,
independent of 𝜇, and such that the boundary data varies continuously. It would
follow that as 𝜇 → 𝜇0, the harmonic maps subconverge to a harmonic map, and
continuity in the boundary values shows this is exactly 𝜑. One can then modify
the contradiction argument from Lemma 4.2.9 to see 𝐶∞ convergence on compacta
along the whole sequence.

By the energy minimizing property, it suffices to construct a family of maps 𝜓𝜇 with
suitably chosen boundary values and uniformly controlled energy. To build 𝜓𝜇, let
𝑓 𝜇 be the unique quasiconformal diffeomorphism between (Σ2, 𝜇) and (Σ2, 𝜇0) that,
in the cusp coordinates, takes (𝑖2, 𝜏𝜇+𝑖2,∞) ↦→ (𝑖2, 𝜏𝜇0+𝑖2,∞). Then𝜓𝜇 = 𝜑𝜇0◦ 𝑓 𝜇

has the correct boundary values. By our choice of normalizations, 𝑓 𝜇 converges to
the identity as 𝜇 → 𝜇0. This gives an energy bound on 𝑓 𝜇, and moreover we get
uniform bounds for 𝜓𝜇. □

We can now prove the analogue of Lemma 4.2.9 for infinite energy harmonic maps.

Lemma 4.2.11. Let 𝐾 ⊂ Σ be compact. Then there is a choice of harmonic maps
𝑓𝜇 that vary continuously on lifts of 𝐾 in the 𝐶∞ topology.

Proof. From the estimate (4.4) and the Fatou lemma we get∫
Σ𝑠

𝑒(𝜇, 𝑓𝜇)𝑑𝐴𝜇 ≤
∫
Σ2

𝑒(𝜇, 𝜑𝜇)𝑑𝐴𝜇 +
(𝑟 − 2)ℓ2

2𝜏𝜇
.

Via the lemma above, ∫
Σ𝑠

𝑒(𝜇, 𝑓𝜇)𝑑𝐴𝜇 ≤ 𝐶 + 2(𝑟 − 2)ℓ2

2𝜏𝜇0

,

for 𝜇 close enough to 𝜇0. Then from the discussion in Proposition 4.2.7, we get
uniform control on all derivatives on 𝐾 .
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If 𝜌 is irreducible we apply Lemma 4.2.8, and if 𝜌 is reducible we rescale by
translations along the geodesic so that they take 𝐾 into a fixed compact set. Well-
used arguments show that for any sequence 𝜇𝑛 → 𝜇, the harmonic maps subconverge
on compacta in the 𝐶∞ sense to a limiting harmonic map 𝑓∞. From [Sag19,
Lemma 5.2], 𝑑 ( 𝑓𝜇𝑛 , 𝜑𝜇𝑛) is uniformly bounded, and an investigation of the proof of
this lemma shows it is maximized on Σ2. By uniform convergence on compacta,
𝑑 ( 𝑓∞, 𝜑) is also (non-strictly) maximized on Σ2, and hence it is globally finite.
According to the classification in [Sag19, Theorem 1.1] and the explanation of the
twist parameter, 𝑓𝜇 is the only harmonic map with this property: if we precompose
an equivariant map with a non-trivial fractional Dehn twist, the distance between
the original map and the new map grows without bound as we limit toward a lift of
the puncture on the boundary at infinity. □

We deduce the following.

Lemma 4.2.12. Given a metric 𝜇0, there exists a uniform 𝐶𝑘 > 0 such that

| (∇𝜇 𝑓 ,𝜈) (𝑘)𝑑𝑓𝜇 |𝜇 𝑓 ≤ 𝐶𝑘

everywhere on Σ, with 𝐶𝑘 depending on the Teichmüller distance to 𝜇0.

Proof. By uniform convergence on compacta, we have uniform control on the
distance to 𝜑𝜇. We then couple the uniform energy bounds on 𝜑𝜇 with Cheng’s
lemma to get uniform energy bounds, and then we appeal to the elliptic theory (as
we have done many times at this point). □

Energy minimizing properties
It is well known that finite energy equivariant harmonic maps minimize the total
energy among other equivariant maps. Here we show that this extends in some
sense to the infinite energy setting.

Definition 4.2.13. Let 𝑔 : (Σ̃, �̃�) → (𝑋, 𝜈) be 𝜌-equivariant and let 𝛼 be a
parametrization of the geodesic axis of the image of the peripheral, say 𝛽. We
say 𝑔 converges at ∞ to 𝛼 if, after precomposing with the conformal mapping
𝑖𝑟 : C → Σ̃𝑟\Σ̃𝑟−1, 𝑔 ◦ 𝑖𝑟 : C → 𝛽 converges in 𝐶0 as 𝑟 → ∞ to a mapping
�̃� : C → 𝛽 given by

�̃�(𝑥, 𝑦) = 𝛼′(𝑥),

where 𝛼′(𝑥) is some translation of 𝛼 along 𝛽.
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Proposition 4.2.14. Let 𝑓 be the harmonic map from [Sag19, Theorem 1.1] whose
Hopf differential has real reside at the cusp. Suppose that a locally Lipschitz map
𝑔 : (Σ̃, �̃�) → (𝑋, 𝜈) converges at ∞ to 𝛼. Then 𝑒(𝜇, 𝑓 ) − 𝑒(𝜇, 𝑔) is integrable with
respect to 𝜇 and ∫

Σ

𝑒(𝜇, 𝑓 ) − 𝑒(𝜇, 𝑔)𝑑𝐴𝜇 ≤ 0.

Remark 4.2.15. The lemma holds provided 𝑔 is weakly differentiable and these
weak derivatives are locally 𝐿2. If 𝑔 is not harmonic, then this inequality is strict.

Proof. Let 𝑔𝑟 be the harmonic map with the same boundary values as 𝑔 on Σ𝑟 and
set 𝜙 : (Σ̃, �̃�) → R to be any Γ-invariant function that is equal to 𝜇−1ℓ2/2𝜏𝜇 in
𝜇-conformal coordinates after Σ̃2. For example, we can take the 𝜇-energy of the
harmonic map 𝜑. Then ∫

Σ𝑟

𝑒(𝜇, 𝑔𝑟)𝑑𝐴𝜇 ≤
∫
Σ𝑟

𝑒(𝜇, 𝑔)𝑑𝐴𝜇,

and hence
lim inf
𝑟→∞

∫
Σ𝑟

𝑒(𝑔𝑟) − 𝜙𝑑𝐴𝜇 ≤
∫
Σ

𝑒(𝑔) − 𝜙𝑑𝐴𝜇 . (4.10)

Without loss of generality, 𝛼 is the limiting parametrization of the geodesic for 𝑔.
Let 𝜑𝑟 be the unique harmonic map on Σ̃𝑟 with boundary values 𝛼 on 𝜕Σ̃𝑟 , defined
by using 𝛼 on one lift and then extending equivariantly. The distance function

𝑝 ↦→ 𝑑 (𝜑𝑟 (𝑝), 𝑔𝑟 (𝑝))

is subharmonic and hence maximized on 𝜕Σ𝑟 . By the convergence property of 𝑔,
we can thus assume that for 𝑟 large enough,

𝑑 (𝜑𝑟 (𝑝), 𝑔𝑟 (𝑝)) ≤ 1

for all 𝑝. By Cheng’s lemma, we obtain uniform bounds on the energy density
of 𝑔𝑟 in terms of that of 𝜑𝑟 on compact sets. Since 𝜑𝑟 → 𝑓 locally uniformly on
compacta, 𝑔𝑟 also subconverges locally uniformly on compacta, and the limiting
map is harmonic. As 𝑔𝑟 has bounded distance to 𝜑, as above the uniqueness result
[Sag19, Theorem 1.1] shows the limit must be 𝑓 . Returning to our integrals (4.10),
Fatou’s lemma then yields∫
Σ

𝑒(𝜇, 𝑓 ) − 𝜙𝑑𝐴𝜇 =
∫
Σ2

𝑒(𝜇, 𝑓 ) − 𝜙𝑑𝐴𝜇 +
∫
Σ\Σ2

𝑒(𝜇, 𝑓 ) − 𝜙𝑑𝐴𝜇

=

∫
Σ2

𝑒(𝜇, 𝑓 ) − 𝜙𝑑𝐴𝜇 +
∫ ∞

2

( ∫ 𝜏𝜇

0
𝑒(𝜇 𝑓 , 𝑓 ) (𝑥, 𝑦) − 𝜙(𝑥, 𝑦)𝑑𝑥

)
𝑑𝑦

≤ lim inf
𝑟→∞

∫
Σ𝑟

𝑒(𝑔𝑟) − 𝜙𝑑𝐴𝜇 .
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(4.10) then gives ∫
Σ

𝑒(𝜇, 𝑓 ) − 𝜙𝑑𝐴𝜇 ≤
∫
Σ

𝑒(𝑔) − 𝜙𝑑𝐴𝜇 .

If the integral on the right is infinite then the result of our lemma is obvious, and if
it is finite then we can rearrange to get the desired inequality. □

Lemma 4.2.16. In the setting above, work with a metric 𝜇0. Then for any other 𝜇,
𝑓𝜇 satisfies the hypothesis above.

Proof. Let 𝑤 be a complex coordinate parametrizing a cusp as a quotient of a
vertical strip of length 1. Recall 𝑧 is defined on a strip 𝑦 ≥ 𝑎, 0 ≤ 𝑥 ≤ 𝜏𝜇, and
similar for 𝑧𝜇 (we take the same 𝑎). We can assume 𝑧 = 𝑓 𝜆0 (𝑤), 𝑧𝜇 = 𝑓 𝜆 (𝑤),
where 𝑓 𝜆0 , 𝑓 𝜆 are smooth quasiconformal maps with complex dilatations 𝜆0, 𝜆

respectively. From the choice of coordinates, 𝑓 𝜆0 maps (0, 1,∞) ↦→ (0, 𝜏𝜇0 ,∞) and
𝑓 𝜆 maps (0, 1,∞) ↦→ (0, 𝜏𝜇,∞). 𝑓 𝜆 ◦ ( 𝑓 𝜆0)−1 takes (𝑥, 𝑦) ↦→ (𝑥𝜇, 𝑦𝜇), yielding a
quasiconformal mapping between the strips. Provided the metrics are close enough
in Teichmüller space, 𝜆 and 𝜆0 are related by a small variation

𝜆 = 𝜆0 + ¤𝜆.

Note that from a previous computation, ¤𝜆 → 0 as 𝑦 → ∞. It follows that 𝑓 𝜆◦( 𝑓 𝜆0)−1

has complex dilatation tending to 0 as 𝑦 → ∞. Mori’s theorem [Ahl06, Chapter 3]
implies 𝑓 𝜆 ◦ ( 𝑓 𝜆0)−1 has uniform Hölder continuity.

Upon pre-composing with cylinders that are conformal for 𝜇, the harmonic map 𝑓𝜇

converges to a projection onto the geodesic axis 𝛽. We can take these 𝜇-cylinders
as large as we like. Using the Hölder continuity and our normalizations, given a
family 𝜇0 cylinders of height 1, we can embed each cylinder in a 𝜇-cylinder of fixed
height. 𝐶0 convergence to the projection onto the geodesic thus follows. □

Proof of Proposition 4.2.1
For the remainder of this section, fix a background metric 𝜇0. There is a Serre
duality pairing between holomorphic quadratic differentials on Σ with at most first
order poles at the cusp and harmonic Beltrami forms with appropriate decay (see
Remark 4.2.5):

⟨Φ, 𝜓⟩ =
∫
Σ

𝜙𝜓𝑑𝑧𝑑𝑧,

where Φ = 𝜙(𝑧)𝑑𝑧2 is a coordinate expression. We recall that Proposition 4.1.6
asserts that the derivative of the total energy of a finite energy harmonic map,
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evaluated on a harmonic Beltrami form 𝜓, is

𝑑𝐸𝜌 [𝜇] (𝜓) = −4 Re⟨Φ( 𝑓𝜇), 𝜓⟩.

For finite energy harmonic maps, Proposition 4.2.1 is a direct corollary of Propo-
sition 4.1.6, which we prove first. For closed surfaces, Proposition 4.1.6 is well
known, although the history is unclear—the earliest computation may go back to
the work of Douglas [Dou39]. The most modern version is contained in [Wen07].
The difference without compactness is that we must control variations at the cusp.

Proof of Proposition 4.1.6. Let us assume 𝜇(𝑧) is conformal, and let

𝜇𝑡 = 𝜇 + 𝑡 ¤𝜇 + 𝑡𝜖 (𝑡)

be a variation through hyperbolic metrics, where 𝜖 (𝑡) → 0 as 𝑡 → 0. We denote
by 𝜙𝑡 the associated holomorphic quadratic differential, which is given in local
coordinates by

𝜙𝑡 (𝑧) = 𝑡
(
( ¤𝜇11 + ¤𝜖11(𝑡)) − 𝑖( ¤𝜇12 + ¤𝜖12(𝑡))

)
𝑑𝑧2,

and we set 𝜓𝑡 to be the associated harmonic Beltrami form. We put 𝜙 to be the
quadratic differential for the variation 𝜇 + ¤𝜇, and 𝜓 the harmonic Beltrami form.
Writing 𝑓 = 𝑓𝜇, 𝑓𝑡 = 𝑓𝜇𝑡 , our objective is to show that

𝑑

𝑑𝑡
|𝑡=0

∫
Σ

𝑒(𝜇𝑡 , 𝑓𝑡)𝑑𝐴𝜇𝑡 = −4 Re⟨Φ( 𝑓 ), 𝜓⟩.

By energy minimization, we have the inequalities∫
Σ

𝑒(𝜇𝑡 , 𝑓𝑡)𝑑𝐴𝜇𝑡 −
∫
Σ

𝑒(𝜇, 𝑓 )𝑑𝐴𝜇 ≤
∫
Σ

𝑒(𝜇𝑡 , 𝑓 )𝑑𝐴𝜇𝑡 −
∫
Σ

𝑒(𝜇, 𝑓 )𝑑𝐴𝜇

and ∫
Σ

𝑒(𝜇𝑡 , 𝑓𝑡)𝑑𝐴𝜇𝑡 −
∫
Σ

𝑒(𝜇, 𝑓 )𝑑𝐴𝜇 ≥
∫
Σ

𝑒(𝜇𝑡 , 𝑓𝑡)𝑑𝐴𝜇𝑡 −
∫
Σ

𝑒(𝜇, 𝑓𝑡)𝑑𝐴𝜇 .

Thus, it suffices to divide by 𝑡 and take the limit on the two expressions on the right.
We expand√︁

|𝜇 |𝑡𝜇𝛼𝛽𝑡 −
√︁
|𝜇 |𝜇𝛼𝛽

𝑡
=

(√︁|𝜇 | − |𝜙𝑡 |2 −
√︁
|𝜇 |

𝑡

)
𝜇𝛼𝛽 +

√︃
|𝜇 | − |𝜙𝑡 |2( ¤𝜇𝛼𝛽 + 𝜖𝛼𝛽 (𝑡)).

(4.11)
Twice the first integrand is obtained by hitting the expression above with 𝑒𝛼𝛽 ( 𝑓 ),
and the second with 𝑒𝛼𝛽 ( 𝑓𝑡), which both converge to 𝑒𝛼𝛽 ( 𝑓 ) pointwise as 𝑡 → 0.
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The first term in (4.11) converges to 0, while the second one to
√︁
|𝜇 | ¤𝜇𝛼𝛽. Using the

relation ¤𝜇𝛼𝛽 = −𝜇−2 ¤𝜇𝛼𝛽, the integrand converges pointwise to

− 1
2𝜇

( ¤𝜇11𝑒11+ ¤𝜇22𝑒22+2 ¤𝜇12𝑒12) = − 1
2𝜇

( ¤𝜇11(𝑒11− 𝑒22) +2 ¤𝜇12𝑒12) = −4 ReΦ( 𝑓 )𝜓.

Therefore, it suffices to show the integrands are always bounded above by an inte-
grable quantity, for then we can justify an application of the dominated convergence
theorem. We have the expression√︁
|𝜇 | − |𝜙𝑡 |2 −

√︁
|𝜇 |

𝑡
=

−|𝜙𝑡 |2

𝑡 (
√︁
|𝜇 | − |𝜙𝑡 |2 +

√︁
|𝜇 |)

=

−𝑡
���( ¤𝜇11 + ¤𝜖11(𝑡)) − 𝑖( ¤𝜇12 + ¤𝜖12(𝑡))

���2√︁
|𝜇 | − |𝜙𝑡 |2 +

√︁
|𝜇 |

.

If 𝑎𝑡 is the −1 Laurent coefficient in the coordinates on the punctured disk for the
quadratic differential associated to ¤𝜇 + 𝜖 (𝑡), then because 𝜖 (𝑡) → 0, 𝑎𝑡 converges to
a constant 𝑎0. Therefore, for 𝑡 small enough, using the expression (4.8), we see that
for small 𝑡, the first term in (4.11) decays at most like

−𝑡 (2|𝑎0 | + 1)2𝑦2𝑒−2𝑦𝑦2 ∼ 𝑦4𝑒−2𝑦 .

By similar reasoning, the second term in (4.11) decays like 𝑦2𝑒−2𝑦. Thus, it suffices
to bound 𝑒𝛼𝛽 ( 𝑓𝑡) by a constant. The one obstruction to applying Lemma 4.2.7 for
𝑓𝑡 is that 𝑒𝛼𝛽 depends on the cusp coordinates for 𝜇 rather than 𝜇𝑡 . The argument of
Lemma 4.2.16 shows that the 𝜇 and 𝜇0 coordinates are related by a mapping that is
asymptotically Lipschitz—the Hölder exponent in Mori’s theorem is the reciprocal
of the quasiconformal dilatation, which is tending to 1. Thus, once high enough
in the cusp, we have the same bound in the 𝜇0-coordinates. From the discussion
above, the result follows. □

Remark 4.2.17. We have worked in negative curvature, but the proof carries through
in non-positive curvature if total energies of harmonic maps to (𝑋, 𝜈) are unique,
and if one can locally continuously associate source metrics to harmonic maps in
the 𝐶∞ topology. Our proof uses the existence of a single finite energy harmonic
map and an energy minimizing property. In non-positive curvature we have energy
minimization, and for existence one can modify our [Sag19, Proposition 3.8] to
include NPC manifolds.

Now we turn to the main result of this section. Assume the monodromy is hyperbolic.

Proof of Proposition 4.2.1. As above, let 𝜇𝑡 = 𝜇 + 𝑡 ¤𝜇 + 𝑡𝜖 (𝑡) be the variation with
𝜇. Similarly, denote by 𝜙𝑡 and 𝜓 the family of holomorphic quadratic differentials



93

and the harmonic Beltrami form associated to this path respectively. Put 𝑓 = 𝑓𝜇,
𝑓𝑡 = 𝑓𝜇𝑡 , ℎ = ℎ𝜇, ℎ𝑡 = ℎ𝜇𝑡 , recalling that 𝑓 and ℎ correspond to the representations
𝜌1 : Γ → PSL(2,R), 𝜌2 : Γ → 𝐺 respectively. From the energy minimization
Lemma 4.2.14, we deduce∫

Σ

𝑒(𝜇, ℎ) − 𝑒(𝜇, 𝑓𝑡)𝑑𝐴𝜇 ≤ E(𝜇) ≤
∫
Σ

𝑒(𝜇, ℎ𝑡) − 𝑒(𝜇, 𝑓 )𝑑𝐴𝜇

and ∫
Σ

𝑒(𝜇𝑡 , ℎ𝑡) − 𝑒(𝜇𝑡 , 𝑓 )𝑑𝐴𝜇𝑡 ≤ E(𝜇𝑡) ≤
∫
Σ

𝑒(𝜇𝑡 , ℎ) − 𝑒(𝜇𝑡 , 𝑓𝑡)𝑑𝐴𝜇𝑡 .

We cannot apply Lemma 4.2.3 to an expression like 𝑒(𝜇, 𝑓𝑡) directly, but from the
expression for the cusp coordinates (4.2), it follows that when changing

√︁
|𝜇 |𝑒(𝜇, 𝑓 )

to
√︁
|𝜇𝑡 |𝑒(𝜇𝑡 , 𝑓𝜇), the energy density is asymptotically multiplied by 𝜏𝜇𝑡/𝜏𝜇. There-

fore, Lemma 4.2.3 does imply that every integral above is finite. Furthermore, it
makes sense to manipulate these integrals, and so the difference E(𝜇𝑡) − E(𝜇) is
bounded above by∫

Σ

(
√︁
|𝜇𝑡 |𝑒(𝜇𝑡 , ℎ) −

√︁
|𝜇 |𝑒(𝜇, ℎ)) − (

√︁
|𝜇𝑡 |𝑒(𝜇𝑡 , 𝑓𝑡) −

√︁
|𝜇 |𝑒(𝜇, 𝑓𝑡))𝑑𝑧𝑑𝑧

and bounded below by∫
Σ

(
√︁
|𝜇𝑡 |𝑒(𝜇𝑡 , ℎ𝑡) −

√︁
|𝜇 |𝑒(𝜇, ℎ𝑡)) − (

√︁
|𝜇𝑡 |𝑒(𝜇𝑡 , 𝑓 ) −

√︁
|𝜇 |𝑒(𝜇, 𝑓 ))𝑑𝑧𝑑𝑧.

Dividing by 𝑡, the local computations from the proof of Proposition 4.1.6 work out
almost the same. We write out the details for the upper bound and leave the lower
bound to the reader. The relevant quotient may be expressed

1
2

((√︁|𝜇 | − |𝜙𝑡 |2 −
√︁
|𝜇 |

𝑡

)
𝜇𝛼𝛽 +

√︃
|𝜇 | − |𝜙𝑡 |2( ¤𝜇𝛼𝛽 + 𝜖𝛼𝛽 (𝑡))

)
(𝑒𝛼𝛽 (ℎ) − 𝑒𝛼𝛽 ( 𝑓𝑡)).

The quotient converges pointwise to −4 Re(Φ(ℎ)−Φ( 𝑓 )) ·𝜓, so we are left to bound
it by an integrable quantity that does not depend on 𝑡. Lemma 4.2.12 and the fact
that the change of coordinates is asymptotically conformal shows that the second
term in the product is uniformly integrable. And it was shown in the proof of the
previous proposition that the first term in the product decays exponentially. □

Different twist parameters
The proof of Proposition 4.2.1 is complete for finite energy harmonic maps, and
infinite energy harmonic maps with 𝜃 = 0. We sketch the necessary adjustments for
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the remaining harmonic maps 𝑓 𝜃𝜇 . Fix 𝜃 ∈ R. To construct the harmonic map 𝑓 𝜃𝜇 ,
we define the fractional Dehn twist to be the map in the cusp coordinates defined by

𝑥 + 𝑖𝑦 ↦→ 𝑥 + 𝜃𝑖𝑦 + 𝑖𝑦.

We then postcompose with the approximation maps 𝑓𝑟 and take limits on these maps
as (see [Sag19, Section 5.1]).

• The inequality in Lemma 4.2.3 becomes

|𝑒(𝜇, 𝑓 𝜃𝜇 ) − Λ(𝜃)ℓ(𝜌(𝛾))2/2𝜏2 | < 𝐶𝑒−𝑐𝑦 .

The proof is the same, except the Hopf differential has expression at the cusp
according to [Sag19, Theorem 1.1].

• For continuity of harmonic maps on compacta, the main step is to find bounds
on the total energy of 𝜑𝜃𝜇 on compacta. This is a consequence of the chain
rule, since in the coordinates (4.2), the derivative matrix of the fractional
Dehn twist is simply (

1 𝜃

0 1

)
. (4.12)

• For the energy minimizing property, we can say that a map converges at ∞
to 𝛼𝜃 if after pulling back to conformal cylinders approaching the cusps, the
harmonic maps converge to the composition of a projection onto the geodesic
with a fractional Dehn twist on the cylinder. We then have the analogue of
Lemma 4.2.14, which we can show the harmonic maps 𝑓 𝜃 satisfy.

We leave the rest of the details to the reader.

4.3 Maximal surfaces: existence, uniqueness, deformations
With Proposition 4.2.1 in hand, we prove the main theorems. For convenience
we assume the twist parameter is zero—the proof has no dependence on it. The
existence result is immediate from the next proposition.

Proposition 4.3.1. The functional E = E𝜌1,𝜌2 : T (Γ) → R is proper if and only if
𝜌1 almost strictly dominates 𝜌2.

Indeed, by Proposition 4.2.1, properness implies the existence of a maximal space-
like immersion. Thus, the proof of the existence result reduces to showing that
almost strict domination implies properness.



95

Mapping class groups
Preparing for the proof of Theorem 4A, we review some Teichmüller theory. Set
Diff+(Σ) to be the group of 𝐶∞ orientation preserving diffeomorphisms of Σ,
equipped with the 𝐶∞ topology. Denote by Diff+

0 (Σ) the normal subgroup con-
sisting of maps that are isotopic to the identity. The mapping class group of Σ is
defined

MCG(Σ) := 𝜋0(Diff+(𝑆)) = Diff+(𝑆)/Diff+
0 (𝑆).

Given a collection of boundary lengths ℓ = (ℓ1, . . . , ℓ𝑛) ∈ R𝑛, we can consider the
Teichmüller space Tℓ (Γ) of surfaces with punctures and geodesic boundary with
lengths determined by (ℓ1, . . . , ℓ𝑛). This is not a relative representation space but a
union of them. The mapping class group acts on Teichmüller space by pulling back
classes of hyperbolic metrics:

[𝜑] · [𝜇] ↦→ [𝜑∗𝜇] . (4.13)

The action of the mapping class group is properly discontinuous and the quotient is
the moduli space of hyperbolic surfaces.

There is a wealth of metrics on Teichmüller space, and the mapping class group acts
by isometries on a number of them. In the work below, we set 𝑑T to be any metric
distance function on Teichmüller space on which the mapping class group acts by
isometries. One example is the Teichmüller distance.

Selecting a basepoint 𝑧 ∈ Σ, there is an action of the mapping class group on 𝜋1(Σ, 𝑧),
which identifies with Γ. Given 𝜑 ∈ Diff+(Σ) such that 𝜑(𝑧) = 𝑧, the induced map
𝜑∗ : 𝜋1(Σ, 𝑧) → 𝜋1(Σ, 𝑧) is an automorphism. While a general 𝜑 may not fix 𝑧, one
can find a different 𝜑1 ∈ Diff+(Σ) that does fix 𝑧 and is isotopic to 𝜑. The isotopy
gives rise to a path 𝛾1 from 𝜑(𝑧) to 𝑧. If 𝜑2 ∈ Diff+(Σ) also fixes 𝑧 and is isotopic to
𝜑, then we get another path 𝛾2 from 𝜑(𝑧) to 𝑧. The automorphisms (𝜑1)∗ and (𝜑2)∗
of 𝜋1(Σ, 𝑧) differ by the inner automorphism corresponding to the conjugation by
the class of 𝛾1 · 𝛾2. This association furnishes an injective homomorphism from

MCG(Σ) → Out(𝜋1(Σ)) = Aut(𝜋1(Σ))/Inn(𝜋1(Σ)).

Through this injective mapping, the mapping class group acts on representation
spaces: we can precompose a representative of a representation with a representative
of an element in Out(𝜋1(Σ)), and then take the corresponding equivalence class.
On a Teichmüller space, this agrees with the action (4.13). For this action, we use
the similar notation

[𝜑] · [𝜌] ↦→ [𝜑∗𝜌] = [𝜌 ◦ 𝜑∗] .
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Note that it does not in general preserve relative representation spaces: a mapping
class may permute the punctures. Finally, we record that MCG(Σ) acts equivariantly
with respect to

• length spectrum: for a representation 𝜌 and [𝜑] ∈ MCG(Σ), ℓ(𝜑∗𝜌(𝛾)) =

ℓ(𝜌(𝜑∗(𝛾))). If 𝜇 is a hyperbolic metric we set ℓ𝜇 (𝛾) to be the 𝜇-length
of the geodesic representative of 𝛾 in (Σ, 𝜇). A restatement of the above is
ℓ𝜑∗𝜇 (𝛾) = ℓ𝜇 (𝜑(𝛾)).

• Energy of harmonic maps: if 𝑓 : (Σ̃, �̃�) → (𝑋, 𝜈) is a 𝜌-equivariant map,
then

𝑒(𝜇, 𝑓𝜇) = 𝑒(𝜑∗𝜇, 𝑓𝜇 ◦ 𝜑). (4.14)

Furthermore, if 𝑓 is harmonic, then 𝑓 ◦ 𝜑 : (Σ̃, �̃�∗ �̃�) → (𝑋, 𝜈) is a 𝜑∗𝜌-
equivariant harmonic map.

Existence of maximal surfaces
Suppose a simple closed curve 𝜉 is either a geodesic boundary component or a
horocycle in a hyperbolic surface. If 𝜉 is a boundary, let 𝐶𝑑 (𝜉) denote the collar
around 𝜉 consisting of points with distance to 𝜉 at most 𝑑. If it is a horocycle, put
𝐶𝑑 (𝜉) to be the union of the 𝑑-collar and the enclosed cusp (both are defined for
suitably small 𝑑).

We now begin the proof of properness. Suppose 𝜌1 almost strictly dominates 𝜌2.
We assume there is a single peripheral curve—there are no substantial changes in the
case of many cusps—and we set 𝜉 to be either the geodesic boundary component of
the convex core ofH/𝜌1(Γ), or a deep horocycle ofH/𝜌1(Γ), depending on whether
the monodromy is hyperbolic or parabolic. Let 𝑔 be an optimal (𝜌1, 𝜌2)-equivariant
map. If the image of the peripheral curve under 𝜌1 and 𝜌2 is hyperbolic, then 𝑔 has
constant speed on the boundary components. Note that 𝑔 ◦ ℎ𝜇 is 𝜌2-equivariant, and
in the hyperbolic case, converges at ∞ to a projection onto the geodesic at infinity
in the sense of Definition 4.2.13. Thus, from Lemma 4.2.14 we have

E(𝜇) =
∫
Σ

𝑒(𝜇, ℎ𝜇) − 𝑒(𝜇, 𝑓𝜇)𝑑𝐴𝜇 ≥
∫
Σ

𝑒(𝜇, ℎ𝜇) − 𝑒(𝜇, 𝑔 ◦ ℎ𝜇)𝑑𝐴𝜇 .

One of the main advantages of replacing 𝑓𝜇 with 𝑔 ◦ ℎ𝜇 is that the integrand is now
non-negative. Moving toward the proof of properness, let ( [𝜇𝑛])∞𝑛=1 ⊂ T (Γ) be
such that

E(𝜇𝑛) ≤ 𝐾
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for all 𝑛, for some large 𝐾 . It suffices to show [𝜇𝑛] converges in T (Γ) along a
subsequence. Structurally, our proof is similar to that of the classical existence
result for minimal surfaces in hyperbolic manifolds (see [SY79] and also the more
modern paper [GW07]): we first prove 1) compactness in moduli space, and then
2) extend to compactness in Teichmüller space.

Toward 1), we show there is a 𝛿 > 0 such that for all non-peripheral simple closed
curves in Γ, we have ℓ𝜇𝑛 (𝛾) ≥ 𝛿. We argue by contradiction: suppose this is not the
case, so that there is a sequence of non-peripheral simple closed curves (𝛾𝑛)∞𝑛=1 ⊂ Γ

such that
ℓ𝑛 := ℓ𝜇𝑛 (𝛾𝑛) → 0

as 𝑛 → ∞. By the regular collar lemma, we know that in (Σ, 𝜇𝑛), the geodesic
representing 𝛾𝑛 is enclosed by a collar 𝐶𝑛 of width 𝑤𝑛 = arcsinh((sinh ℓ𝑛)−1). Up
to a conjugation of the holonomy, 𝐶𝑛 is conformally equivalent to {𝑥 + 𝑖𝑦 ∈ C : 0 ≤
𝑥 ≤ 𝑤𝑛, 0 ≤ 𝑦 ≤ 1} with the lines {𝑦 = 0} and {𝑦 = 1} identified.

Let 𝑓𝑛 = 𝑓𝜇𝑛 , ℎ𝑛 = ℎ𝜇𝑛 . Henceforward, conformally modify the metric 𝜇𝑛 to be flat
in𝐶𝑛. Our control over the energy functional depends on our knowledge of the local
Lipschitz constant of the map 𝑔. This in turns relies on the image of the harmonic
map ℎ𝑛, in particular how far it takes𝐶𝑛 into𝐶𝑑 (𝜉). For all 𝑥, 0 < 𝑡 < 𝑑 in question,
set 𝐴𝑡𝑥 = {𝜃 ∈ {𝑥} × 𝑆1 : ℎ𝑛 (𝑥, 𝑦) ∉ 𝐶𝑡 (𝜉)}. We also write

Lip(𝑔, 𝑡) = max
𝑥∈𝐶 (H/𝜌1 (Γ))\𝐶𝑡 (𝜉)

Lip𝑥 (𝑔).

We have the inequalities

E(𝜇𝑛) (𝜎𝑛) ≥
∫
𝐶𝑛

𝑒(𝜇𝑛, ℎ𝑛) − 𝑒(𝜇𝑛, 𝑔 ◦ ℎ𝑛)𝑑𝐴𝜇𝑛

=

∫ 𝑤𝑛

0

∫ 1

0
𝑒(𝜇𝑛, ℎ𝑛) − 𝑒(𝜇𝑛, 𝑔 ◦ ℎ𝑛)𝑑𝑦𝑑𝑠

≥ 𝑤𝑛 min
𝑥

∫
𝐴𝑡𝑥

𝑒(𝜇𝑛, ℎ𝑛) − 𝑒(𝜇𝑛, 𝑔 ◦ ℎ𝑛)𝑑𝑦

≥ 𝑤𝑛 min
𝑥

(1 − Lip(𝑔, 𝑡)2)
∫
𝐴𝑡𝑥

𝑒(𝜇𝑛, ℎ𝑛)𝑑𝑦

≥ 𝑤𝑛

2
min
𝑥

(1 − Lip(𝑔, 𝑡)2)
∫
𝐴𝑡𝑥

���𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���2𝑑𝑦
≥ 𝑤𝑛

2
min
𝑥

(1 − Lip(𝑔, 𝑡)2) (ℓ(A𝑡
𝑥))−1

( ∫
𝐴𝑡𝑥

���𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦)2

≥ 𝑤𝑛

2
min
𝑥

(1 − Lip(𝑔, 𝑡)2)
( ∫

𝐴𝑡𝑥

���𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦)2
.
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Here ℓ(𝐴𝑡𝑥) is the length of the (possibly broken) segment 𝐴𝑥,𝑡 , which is clearly
bounded above by 1. Fuchsian representations have discrete length spectrum, and
hence there is a 𝜅 > 0 such that ℓ(𝜌1(𝛾)) ≥ 𝜅 for all 𝛾 ∈ Γ.

Lemma 4.3.2. Set 𝑡 = 𝑑/2. Then for any 𝑥, the inequality∫
𝐴
𝑑/2
𝑥

| 𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦 ≥ min{𝑑/2, 𝜅} =: 𝑘

holds.

Proof. Let 𝛼 be any core curve of the form {𝑥} × 𝑆1. If ℎ𝑛 (𝛼) always remains
outside 𝐶𝑑/2(𝜉), then∫

𝐴𝑡𝑥

| 𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦 = ∫ 1

0

���𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦 ≥ ℓ(𝜌1(𝛾𝑛)) ≥ 𝜅.

Thus, we assume ℎ𝑛 (𝛼) intersects 𝐶𝑑/2(𝜉). We parametrize ℎ𝑛 (𝑥, ·) by arc length,
so that the integral in question measures the hyperbolic length on H/𝜌1(Γ) of the
segment of ℎ𝑛 (𝛼) that does not enter 𝐶𝑑/2(𝜉). If this length is ever less than 𝑑/2,
then the curve ℎ𝑛 (𝛼) is contained in 𝐶𝑑 (𝜉). Phrased differently, it is a simple closed
curve contained in an embedded cylinder. There is only one such homotopy class
of curves, namely the homotopy class of the boundary geodesic. This situation is
impossible, since ℎ𝑛 (𝛼) is homotopic to a non-peripheral simple closed curve, and
hence the length is at least 𝑑/2. □

Returning to the inequalities above, we now have

E(𝜇𝑛) ≥
𝑤𝑛

2
(1 − Lip(𝑔, 𝑑/2)2)𝑘2.

We thus find E(𝜇𝑛) → ∞ as 𝑛→ ∞, which violates the uniform upper bound.

The lower bound on the length spectrum shows the metrics (𝜇𝑛)∞𝑛=1 satisfy Mum-
ford’s compactness criteria [Mum71] and hence project under the action of the
mapping class group to a compact subset of the moduli space.

Now we promote to compactness in Teichmüller space. By compactness in moduli
space, after passing to a subsequence of the 𝜇𝑛’s, there exists a sequence of mapping
class group representatives (𝜓𝑛)∞𝑛=1 such that 𝜓∗

𝑛𝜇𝑛 converges as 𝑛 → ∞ to a
hyperbolic metric 𝜇∞.

Lemma 4.3.3. Upon passing to a further subsequence, ( [𝜓𝑛])∞𝑛=1 ⊂ MCG(Σ) is
eventually constant.
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The main thrust of the proof is to show that for each non-peripheral 𝛾 ∈ Γ, ℓ(𝜌1 ◦
𝜓𝑛 (𝛾)) is uniformly bounded above in 𝑛. Our proof of this claim is by contradiction
and similar in nature to the argument above. Suppose there is a class of curves 𝛾 ∈ Γ

such that ℓ(𝜌1 ◦𝜓𝑛 (𝛾)) → ∞ as 𝑛→ ∞. Modify the notation: set ℎ𝑛 = ℎ𝜇𝑛 ◦𝜓𝑛 and
𝑓𝜇𝑛 ◦ 𝜓𝑛. These are harmonic for 𝜓∗

𝑛𝜌1 and 𝜓∗
𝑛𝜌2 respectively, and have the correct

boundary behaviour according to [Sag19, Theorem 1.1]. From (4.14), we also have
the equality

E𝜌1,𝜌2 (𝜇𝑛) = E𝜓∗
𝑛𝜌1,𝜓

∗
𝑛𝜌2 (𝜓∗

𝑛𝜇𝑛).

On each (Σ, 𝜓∗
𝑛𝜇𝑛), there is a collar 𝐶𝑛 of finite width 𝑤𝑛 around 𝛾, and the 𝐶𝑛’s

converge to some collar 𝐶∞ in (Σ, 𝜇∞) of width 𝑤∞ < ∞. As before, we perturb to
a flat metric and parametrize 𝐶𝑛 by [0, 𝑤𝑛] × 𝑆1. We note that 𝑔 is (𝜓∗

𝑛𝜌1, 𝜓
∗
𝑛𝜌2)-

equivariant. Therefore, we can apply our previous reasoning to see that for 𝑛 large
enough, any small enough 𝑥, and 𝑡 ∈ [0, 𝑤𝑛],

E𝜌1,𝜌2 (𝜇𝑛) = E𝜓∗
𝑛𝜌1,𝜓

∗
𝑛𝜌2 (𝜓∗

𝑛𝜇𝑛) ≥
𝑤∞
4

min
𝑥

(1 − Lip(𝑔, 𝑡)2)
( ∫

𝐴𝑡𝑥

���𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦)2
,

(4.15)
where 𝐴𝑡𝑥 is defined as above. This leads us to the analogue of Lemma 4.3.2.

Lemma 4.3.4. Set 𝑡 = 𝑑/2. Then, independent of the choice of 𝑥,∫
𝐴
𝑑/2
𝑥

���𝜕ℎ𝑛 (𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦 → ∞

as 𝑛→ ∞.

Proof. Choose any simple closed curve 𝛼 of the form {𝑥}×𝑆1. Parametrize ℎ𝑛 (𝑥, ·)
by arc length so that the integral above returns the length of the segment of ℎ𝑛 (𝛼)
that does not enter 𝐶𝑑/2(𝜉). If ℎ𝑛 (𝛼) does not enter 𝐶𝑑/2(𝜉), then we can argue as
we did in the proof of Lemma 4.3.2, bounding the length below by the ℓ(𝜓∗

𝑛𝜌1(𝛾)),
which blows up. Thus, we restrict our discussion to 𝛼 such that ℎ𝑛 (𝛼) intersects
𝐶𝑑/2(𝜉). Let us first assume there is a positive integer 𝐾 such that every ℎ𝑛 (𝛼)
enters 𝐶𝑑/2(𝜉) at most 𝐾 times. Of course, ℎ𝑛 (𝛼) cannot live entirely in 𝐶𝑑/2(𝜉),
for then it lies in the wrong homotopy class. We construct a new curve as follows:
if we choose a basepoint not within 𝐶𝑑/2(𝜉), then every time ℎ𝑛 (𝛼) enters 𝐶𝑑/2(𝜉),
there is a corresponding point at which it exits. We plan to erase the segment of
ℎ𝑛 (𝛼) that connects these two points and replace it with the one of the two possible
paths on 𝜕𝐶𝑑/2(𝜉), say, 𝛽1 and 𝛽2. If ℎ𝑛 (𝛼) spends some time going in a path along
the boundary circle when it is entering or when it is exiting (we count just touching
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it once as an exit), we connect the endpoint of the entrance path to the starting point
of the exiting path and concatenate with the path going along the boundary.

The question is: which path to take? We argue there is a choice so that the homotopy
class of the new curve is the same as that of ℎ𝑛 (𝛼). To this end, orient the boundary
circle so that there is a “left” and a “right” path. Arbitrarily choose one of the two
paths connecting the entrance and the exit point, say, 𝛽1, and consider the loop in
the cylinder obtained by concatenating this path with the piece of ℎ𝑛 (𝛼) ∩ 𝐶𝑑/2(𝜉)
that connects the endpoints. This is a simple closed curve in a cylinder, and hence
there are three possible homotopy classes: trivial, non-trivial and left oriented, and
non-trivial and right oriented. If the class is trivial, then using this path 𝛽1 will
work. If it is non-trivial and left oriented, then 𝛽1 must be the right oriented path.
Thus, if we use the opposite path 𝛽2, it will cancel the homotopy class, and therefore
the new path will indeed be homotopic to ℎ𝑛 (𝛼). The right oriented case is similar.

Each replacement adds at most ℓ(𝜕𝐶𝑑/2(𝜉)) to the length of the path. Thus, the
length of the new path is (quite crudely) bounded above by

ℓ𝑑/2(ℎ𝑛 (𝛼)) + 𝐾ℓ(𝜕𝐶𝑑/2(𝜉)).

Therefore,
ℓ𝑑/2(ℎ𝑛 (𝛼)) ≥ ℓ(𝜓∗

𝑛𝜌1(𝛾)) − 𝐾ℓ(𝜕𝐶𝑑/2(𝜉))

which tends to ∞ as 𝑛→ ∞, and moreover establishes the result of the lemma.

We are left to consider the case of an unbounded number of crossings into 𝐶𝑑/2(𝜉)
as we take 𝑛 → ∞. The idea is that each time ℎ𝑛 (𝛼) crosses 𝜕𝐶𝑑/2(𝜉), there is a
corresponding “down-crossing,” a curve that connects the point at which it exits to
the new point of entry. If each down crossing is denoted by 𝑐𝑛

𝑗
, then∫

𝐴
𝑑/2
𝑥

���𝜕ℎ𝑛 (𝑥, 𝑦
𝜕𝑦

���𝑑𝑦 ≥ ∑︁
𝑗

ℓ(𝑐𝑛𝑗 ).

Clearly, if the limit of these sums is infinite, then we are done. Hence, we assume
the total length due to down-crossings is finite. This implies that there is an even
integer 𝐾 > 0 such that, as we take 𝑛→ ∞, there are at most 𝐾 down-crossing that
exit 𝐶𝑑 . Again using our chosen basepoint, let 𝑏1 be the first crossing into 𝐶𝑑/2(𝜉),
and then let 𝑏2 be the first crossing out of 𝐶𝑑/2(𝜉) that exits 𝐶𝑑 . Set 𝑏3 to be the
next entry point into 𝐶𝑑/2(𝜉), and 𝑏4 the next exit point from 𝐶𝑑 (𝜉). We end up
with 𝐾𝑛 ≤ 𝐾 points 𝑏1, . . . 𝑏𝐾𝑛

. Replace the segments of ℎ𝑛 (𝛼) between 𝑏𝑖 and 𝑏𝑖+1
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with the correct arc on 𝜕𝐶𝑑/2(𝜉) that does not change the homotopy class, where
𝑖 = 1, 3, . . . , 𝐾𝑛 − 1 ≤ 𝐾 − 1. As above, we end up with a curve of length at most

ℓ𝑑/2(ℎ𝑛 (𝛼)) + 𝐾ℓ(𝜕𝐶𝑑/2(𝜉))

and homotopic to ℓ(𝜓∗
𝑛𝜌1(𝛾)). Using the minimizing property of geodesics once

again, we have

ℓ𝑑/2(ℎ𝑛 (𝛼)) ≥ ℓ(𝜓∗
𝑛𝜌1(𝛾)) − 𝐾ℓ(𝜕𝐶𝑑/2(𝜉)) → ∞,

and the resolution of this final case completes the proof. □

Returning to (4.15), this lemma shows E(𝜇𝑛) → ∞, which is a contradiction. We
can now conclude that each sequence ℓ(𝜓∗

𝑛𝜌1(𝛾)) remains bounded above.

It is well-understood that the boundedness of the length spectrum implies that
(𝜓∗

𝑛𝜌1) converges along a subsequence to some new Fuchsian representation 𝜌∞ :
Γ → PSL2(R). We now restrict the [𝜇𝑛], [𝜓𝑛] to this chosen subsequence. Since
the mapping class group acts properly discontinuously on the Teichmüller space, it
follows that [𝜓∗

𝑛𝜌1] = [𝜌∞] for all 𝑛 large enough. In particular, 𝜓𝑛 is isotopic to
𝜓𝑚 for all 𝑛, 𝑚 large enough. This completes the proof of Lemma 4.3.3.

To finish the proof of Proposition 4.3.1, we know there is an 𝑁 such that [𝜓𝑛] = [𝜓𝑁 ]
for all 𝑛 ≥ 𝑁 . As the mapping class group acts by isometries with respect to the
metric 𝑑T ,

𝑑T ( [𝜇𝑛], [(𝜓−1
𝑁 )∗𝜇∞]) = 𝑑T ( [𝜓∗

𝑁𝜇𝑛], [𝜇∞]) → 0,

and hence [𝜇𝑛] converges to [(𝜓−1
𝑁
)∗𝜇∞] as 𝑛→ ∞. Proposition 4.3.1 is proved.

Uniqueness of critical points
The uniqueness statement in Theorem 4A amounts to showing that critical points
of E are unique. The main step in the uniqueness proof for closed surfaces [Tho17,
Theorem 1] is a local computation ([Tho17, Lemma 2.4]) that goes through in our
setting. For this reason, we omit the proof of uniqueness and invite the reader
to see [Tho17]. The only real difference is that we must address convergence of
various integrals, and use our Lemma 4.2.14 instead of the usual energy minimizing
property. We’ve shown this type of calculation throughout the chapter, so we feel
comfortable leaving it to the interested reader.
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The maps Ψ𝜃

We now begin the proof of Theorem 4B. Generalizing the map Ψ from [Tho17,
subsection 2.3]), we define the map

Ψ𝜃 : T (Γ) × Repc(Γ, 𝐺) → ASDc(Γ, 𝐺) ⊂ Tc(Γ) × Repc(Γ, 𝐺)

as follows. When c has no hyperbolic classes, we implicitly assume there is no 𝜃.
Begin with a hyperbolic surface (Σ, 𝜇) and a reductive representation 𝜌2 : Γ →
PSL(2,R). Associated to this representation, we take a 𝜌2-equivariant harmonic
map with twist parameter 𝜃, 𝑓 𝜃 : (Σ̃, �̃�) → (𝑋, 𝜈). We proved in [Sag19, Theorem
1.4] that there exists a unique Fuchsian representation 𝜌1 : Γ → PSL(2,R) and
a unique 𝜌1-equivariant harmonic diffeomorphism ℎ𝜃 : (Σ̃, 𝜇) → (H, 𝜎) that has
Hopf differential Φ(ℎ𝜃) = Φ( 𝑓 𝜃). From [Sag19, Proposition 3.13], the mapping
𝐹 = (ℎ𝜃 , 𝑓 𝜃) is a spacelike maximal immersion into the pseudo-Riemannian product,
and hence 𝜌1 almost strictly dominates 𝜌2. Ψ𝜃 is defined by

Ψ𝜃 ( [𝜇], [𝜌2]) = ( [𝜌1], [𝜌2]).

It is clear that the map is fiberwise in the sense of the statement of Theorem 4B.
Theorem 4A shows Ψ𝜃 is bijection, and the content of Theorem 4B is that Ψ𝜃 is a
homeomorphism.

Remark 4.3.5. We do not know if Ψ𝜃 = Ψ𝜃 ′ for 𝜃 ≠ 𝜃′!

Proof of Theorem 4B: continuity
From now on we refine our notation: when the representation 𝜌 is not implicit,
the 𝜌-equivariant harmonic map for a metric 𝜇 with zero twist parameter will be
denoted 𝑓

𝜌
𝜇 , unless specified otherwise.

The proof of continuity is almost identical for each twist parameter, so we work
only with Ψ = Ψ0. Let us also assume for the remainder of this section that there
is a single peripheral 𝜁 . Lifting various equivalence relations, Ψ is described by a
composition

(𝜇, 𝜌2) ↦→ ( 𝑓 𝜌2
𝜇 , 𝜌2) ↦→ (Φ( 𝑓 𝜌2

𝜇 ), 𝜌2) ↦→ (𝜌1, 𝜌2),

where 𝜌1 is the holonomy of the hyperbolic metric 𝜇′ on Σ such that the associ-
ated harmonic map from (Σ, 𝜇) → (Σ, 𝜇′) has Hopf differential Φ( 𝑓 𝜌2

𝜇 ). [Sag19,
Theorem 1.4] implies the association from Φ( 𝑓 𝜌2

𝜇 ) ↦→ 𝜌1 is continuous. Here, the
topology on the space of holomorphic quadratic differentials is the Fréchet topology
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coming from taking 𝐿1-norms over a compact exhaustion. To show continuity of
𝜇 ↦→ 𝑓

𝜌2
𝜇 ↦→ Φ( 𝑓 𝜌2

𝜇 ) with respect to this topology, note that, by the constructions of
Section 4.2, we already have continuity in the Teichmüller coordinate. Continuity
will thus follow from the results below.

Lemma 4.3.6. Suppose representations (𝜌𝑛)∞𝑛=1 converge to an irreducible 𝜌 in
Hom(Γ, 𝐺), and all such representations project to Repc(Γ, 𝐺). Then 𝑓 𝜌𝑛𝜇 converges
to 𝑓

𝜌
𝜇 in the 𝐶∞ sense on compacta as 𝑛→ ∞.

Below, we work in fixed local sections of the principal bundles 𝜒c(Γ, 𝐺) →
Repc(Γ, 𝐺) 𝜒c(Γ, PSL(2,R)) → Repc(Γ, PSL(2,R)) (having assumed in the in-
troduction that such things exist). We choose a basepoint for the 𝜋1 so that we can
view these local systems through their holonomies, which are genuine representa-
tions.

Proof. We may assume each 𝜌𝑛 is irreducible and that there is a single cusp. The
parabolic and elliptic cases are much simpler than the hyperbolic case, so we treat
only the latter. Set 𝑓𝑛 = 𝑓

𝜌𝑛
𝜇 , 𝑓 = 𝑓

𝜌
𝜇 and let 𝜑𝑛, 𝜑 be the approximation maps

for 𝑓 𝜌𝑛𝜇 , 𝑓 𝜌𝜇 from 3.1. These maps project a cusp neighbourhood onto a geodesic,
but now the geodesic is varying with 𝜌𝑛, and converging in the Gromov-Hausdorff
sense to the geodesic for 𝜌. If the 𝜑𝑛’s can be chosen to vary smoothly, then we have
a uniform bound on the total energies (recall they depend on a choice of a constant
speed map onto their geodesic). As discussed in Section 4.2 (in particular the proof
of Lemma 4.2.11), this yields a uniform total energy bound for 𝑓𝑛 on compacta. Via
the argument described early in Section 4.2, the maps 𝑓𝑛 𝐶∞-converge on compacta
along a subsequence to some limiting map 𝑓∞. The mapping is necessarily 𝜌-
equivariant and harmonic. To see that 𝑓∞ = 𝑓 , recall that 𝑓 is characterized by the
fact that its Hopf differential has a pole of order 2 at the cusp and the residue has a
specific complex argument. To check this property, from the uniqueness in [Sag19,
Theorem 1.1] it suffices to check 𝑑 ( 𝑓∞, 𝜑) < ∞, and the standard contradiction
argument will also show there is no need to pass to a subsequence. As remarked
previously, the proof of [Sag19, Lemma 5.2] shows 𝑑 ( 𝑓𝑛, 𝜑𝑛) is maximized on 𝜕Σ2.
If 𝑛𝑘 is the subsequence, then taking 𝑘 → ∞, via compactness we do win

𝑑 ( 𝑓∞, 𝜑∞) ≤ lim sup
𝑘→∞

max
𝜕Σ2

𝑑 ( 𝑓𝑛𝑘 , 𝜑𝑛𝑘 ) ≤ max
𝜕Σ2

𝑑 ( 𝑓∞, 𝜑∞) + 1 < ∞.

We are left to argue that one can choose the 𝜑𝑛 so that 𝜑𝑛 → 𝜑 in the 𝐶∞ sense. We
realize 𝜌, 𝜌𝑛 as monodromies of flat connections ∇,∇𝑛 respectively on an 𝑋-bundle
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𝐸 over Σ with structure group 𝐺. This is possible when all 𝜌𝑛 lie in the same
component of the relative representation space ([Lab13, Corollay 6.1.2] generalizes
to relative representation spaces), which we are free to assume. The pullback bundle
with respect to the universal covering Σ̃ → Σ identifies with the trivial bundle and
also pulls ∇,∇𝑛 back to flat connections ∇̃, ∇̃𝑛. That is, up to an isomorphism, we
have a family of commutative diagrams

(𝑋 × Σ̃, ∇̃𝑛) (𝐸,∇𝑛)

Σ̃ Σ.

The bundle 𝐸 and connections ∇𝑛 are constructed by choosing a good covering of
Σ and depend on the local section of the principal bundle 𝜒c(Γ, 𝐺) → Repc(Γ, 𝐺)
(see the proof of [Lab13, Lemma 6.1.1]). We can build a good covering by glueing a
good covering of a relatively compact tubular neighbourhood of (Σ2, 𝜇) with a good
covering of a tubular neighbourhood of (Σ\Σ2, 𝜇). This ensures a lower bound on
the 𝜇-radius inside Σ2 (note that we cannot do this on all of Σ). With this constraint,
the local systems can be prescribed so that ∇𝑛 → ∇ in the 𝐶∞ sense on Σ2 in the
affine space of connections.

The map 𝜑 induces a section 𝑠 of the bundle (𝐸,∇), which can also be seen as
a section 𝑠𝑛 of (𝐸,∇𝑛). With respect to the diagram above, 𝑠𝑛 pulls back to a
𝜌𝑛-equivariant map �̃�𝑛 : H → 𝑋 , and by our comments above, �̃�𝑛 → 𝜑 in the 𝐶∞

sense. The maps �̃�𝑛 are most likely not harmonic and may not project onto the
geodesic axis of 𝜌𝑛 (𝜁). However, because they are converging to 𝜑, the geodesic
curvature of �̃�𝑛 (𝜕Σ̃2) is tending to 0. Moreover, 𝜑|𝜕Σ̃2

is arbitrarily close to some
parametrization of a geodesic. So, we set 𝜑𝑛 to be the harmonic map with boundary
data equal to this nearby geodesic projection. From energy control on �̃�𝑛, we get
the same for 𝜑𝑛, and hence convergence along a subsequence to a harmonic map
𝜑∞. From the boundary values, we must have 𝜑∞ = 𝜑, and as usual we can show
there is no need to pass to a subsequence. □

For a reducible representation, the harmonic maps are not unique but differ by
translations along a geodesic. However, the Hopf differential is unique. We can
choose a sequence 𝜑𝑛 → 𝜑 as in the previous proposition—boundary values are fixed
so we do have uniqueness for these harmonic maps. Then we take the harmonic maps
𝑓𝑛 built from using the approximating maps 𝜑𝑛, and the proof above goes through,
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with the minor modification that we must rescale the approximating maps as in
[Sag19, Proposition 5.1]. 𝐶∞ convergence implies the Hopf differentials converge.

Remark 4.3.7. For different twist parameters, we simply precompose every 𝜑𝑛 with
a fractional Dehn twist. Using (4.12), the energies are uniformly controlled.

Asymmetric metrics on Teichmüller spaces
In [GK17, Section 8], Guéritaud-Kassel define asymmetric pseudo-metrics on de-
formation spaces of geometrically finite hyperbolic manifolds. These metrics are
natural generalizations of Thurston’s asymmetric metric on Teichmüller space. We
will use such a metric in the proof of bi-continuity of Ψ𝜃 .

For [𝜌1], [𝜌2] ∈ T𝔠 (𝑆𝑔,𝑛), we set

𝐶 (𝜌1, 𝜌2) = inf{Lip( 𝑓 ) : 𝑓 : H→ H is (𝜌1, 𝜌2) − equivariant}.

The metric 𝑑𝑇ℎ : T𝔠 (𝑆𝑔,𝑛) × T𝔠 (𝑆𝑔,𝑛) → R is defined by

𝑑𝑇ℎ ( [𝜌1], [𝜌2]) = log
(
𝐶 (𝜌1, 𝜌2)

𝛿(𝜌1)
𝛿(𝜌2)

)
.

Here 𝛿(𝜌1) is the critical exponent of 𝜌1:

𝛿(𝜌1) = lim
𝑅→∞

1
𝑅

log #( 𝑗 (Γ) · 𝑝 ∩ 𝐵𝑝 (𝑅)),

where 𝑝 is any point in H and 𝐵𝑝 (𝑅) is the ball of radius 𝑟 centered at 𝑝. Alterna-
tively, 𝛿(𝜌1) is the Hausdorff dimension of the limit set of 𝜌1 in 𝜕∞H = 𝑆1. If all
𝑎 𝑗 = 0, so that all critical exponents are 1 and T𝔠 (𝑆𝑔,𝑛) is the ordinary Teichmüller
space of a surface of finite volume, then this agrees with Thurston’s asymmetric
metric introduced in [Thu98]. Here asymmetric means that in general,

𝑑𝑇ℎ ( [𝜌1], [𝜌2]) ≠ 𝑑𝑇ℎ ( [𝜌2], [𝜌1]).

Proposition 4.3.8 (Guéritaud-Kassel, Lemma 8.1 in [GK17]). The function 𝑑𝑇ℎ :
Tc(Γ) × Tc(Γ) → R is a continuous asymmetric metric.

Remark 4.3.9. The correction factor 𝛿(𝜌1)/𝛿(𝜌2) is needed for non-negativity. For
a general hyperbolic 𝑛-manifold, continuity may fail and the generalization may be
just an asymmetric pseudo-metric (𝑑 (𝑥, 𝑦) need not imply 𝑥 = 𝑦).

This metric allows us to control translation lengths nicely. Consider a left open ball
around 𝜌2:

𝐵𝑇ℎ (𝜌2, 𝐶) = {[𝜌1] ∈ Tc(Γ) : 𝑑𝑇ℎ (𝜌1, 𝜌2) < 𝐶}.
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If 𝜌1 ∈ 𝐵𝑇ℎ (𝜌2, 𝐶), there is a (𝜌1, 𝜌2)-equivariant Lipschitz 𝑔 map with Lipschitz
constant < 𝑒𝐶 . Therefore, for every 𝛾 ∈ Γ,

𝑑 (𝜌2(𝛾)𝑔(𝑧), 𝑔(𝑧)) = 𝑑 (𝑔(𝜌1(𝛾)𝑧), 𝑔(𝑧)) < 𝑒𝐶𝑑 (𝜌1(𝛾)𝑧, 𝑧),

and it follows that ℓ(𝜌2(𝛾)) < 𝑒𝐶ℓ(𝜌1(𝛾)).

Proof of Theorem 4B: bi-continuity
The inverse mapping of Ψ𝜃 , on the Teichmüller side, takes as input a class of an
almost strictly dominating pair (𝜌1, 𝜌2) and returns the unique minimizer of E𝜃𝜌1,𝜌2

.
We can follow the same approach as in [Tho17, subsection 2.4] here, adapted to our
infinite energy setting.

Let 𝑋,𝑌 be metric spaces and (𝐹𝑦)𝑦∈𝑌 a family of continuous functions 𝐹𝑦 : 𝑋 → R
depending continuously on 𝑦 in the compact-open topology. (𝐹𝑦)𝑦∈𝑌 is said to be
uniformly proper if for any 𝐶 ∈ R, there exists a compact subset 𝐶 ⊂ 𝑋 such that
for all 𝑦 ∈ 𝑌 and 𝑥 ∉ 𝐾 , we have 𝐹𝑦 (𝑥) > 𝐶. We say that the family (𝐹𝑦)𝑦∈𝑌 is
locally uniformly proper if for all 𝑦0 ∈ 𝑌 , there is a neighbourhood 𝑈 of 𝑦0 such
that (𝐹𝑦)𝑦∈𝑈 ⊂ (𝐹𝑦)𝑦∈𝑌 is uniformly proper.

Lemma 4.3.10 (Proposition 2.6 in [Tho17]). Let 𝑋 and 𝑌 be two metric spaces
and (𝐹𝑦)𝑦∈𝑌 a locally uniformly proper family of continous functions from 𝑋 to R
depending continuously on 𝑌 (for the compact open topology). Assume that each
𝐹𝑦 achieves its minimum at a unique point 𝑥𝑚 (𝑦) ∈ 𝑋 . Then the function

𝑦 ↦→ 𝑥𝑚 (𝑦)

is continuous.

We verify the conditions for E𝜃𝜌1,𝜌2
, with (𝜌1, 𝜌2) living in the space of almost strictly

dominating representations. For the remainder of this subsection, we are working
over local sections for our bundles of local systems over representation spaces.

Lemma 4.3.11. The association (𝜌1, 𝜌2) ↦→ E𝜃𝜌1,𝜌2
is continuous for the compact-

open topology.

In the proof, we require control on the energy of the harmonic maps at the cusp, as
we vary the source metric and the representation. We defer the proof of the lemmas
below to the next subsection. In these lemmas, let 𝜌0 be a reductive representation
and 𝜇0 a hyperbolic metric.
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Lemma 4.3.12. Suppose 𝜌0 has parabolic monodromy. Then for every represen-
tation 𝜌 in the same representation space that is close enough to 𝜌0, and metric 𝜇
close to 𝜇0, there is a function 𝑒 that is integrable in the flat metric and such that√︁

|𝜇 |𝑒(𝜇, 𝑓 𝜌𝜇 ) ≤ 𝑒

everywhere.

Lemma 4.3.13. Suppose 𝜌0 has hyperbolic monodromy. Then for every represen-
tation 𝜌 in the same representation variety that is close enough to 𝜌0, and metric 𝜇
close to 𝜇0, working in the cusp coordinates for 𝜇 there is a 𝑦0 > 0, 𝐶, 𝑐 > 0 such
that for all 𝑦 ≥ 𝑦0,

Λ(𝜃)ℓ2

2𝜏2
𝜇

− 𝐶𝑒−𝑐𝑦 ≤ √
𝜇𝑒(𝜇, 𝑓 𝜌𝜇 ) ≤

Λ(𝜃)ℓ2

2𝜏2
𝜇

+ 𝐶𝑒−𝑐𝑦,

where 𝑓 𝜌𝜇 is the harmonic map with twist parameter 𝜃.

Proof. We want to show that if (𝑖𝑛, 𝑗𝑛) → (𝜌1, 𝜌2) in Repc(Γ, PSL(2,R) × 𝐺) and
𝐾 ⊂ T (Γ) is compact, then E𝑛 := E𝜃𝑖𝑛, 𝑗𝑛 → E = E𝜃𝜌1,𝜌2

uniformly on 𝐾 as 𝑛 → ∞.
The finite energy case is easy: from our previous results, if 𝜇𝑛 → 𝜇 and 𝜌𝑛 → 𝜌,
then the energy densities of the harmonic maps converge pointwise to 𝑒(𝜇, 𝑓 𝜌𝜇 )
(recall this is independent of the harmonic map if 𝜌 is reducible). Lemma 4.3.12
then justifies an application of the domination convergence theorem, so that the total
energies converge.

Going forward, we assume the monodromoy is hyperbolic. Fixing a metric 𝜇, set
ℎ𝑛 = ℎ

𝑖𝑛
𝜇 , 𝑓𝑛 = 𝑓

𝑗𝑛
𝜇 , ℎ = ℎ

𝜌1
𝜇 , 𝑓 = 𝑓

𝜌2
𝜇 . It suffices to show E𝑛 (𝜇) → E(𝜇), and that

the rate only depends on the Teichmüller distance from 𝜇 to a base metric 𝜇0. By
Lemma 4.3.13, for 𝑟 > 𝑦0,

| E(𝜇) − E𝑛 (𝜇) | =
��� ∫

Σ𝑟

(𝑒(𝜇, ℎ) − 𝑒(𝜇, 𝑓 )) − (𝑒(𝜇, ℎ𝑛) − 𝑒(𝜇, 𝑓𝑛))𝑑𝐴𝜇
���

+
��� ∫

Σ\Σ𝑟

(𝑒(𝜇, ℎ) − 𝑒(𝜇, 𝑓 )) − (𝑒(𝜇, ℎ𝑛) − 𝑒(𝜇, 𝑓𝑛))𝑑𝐴𝜇
���

≤
��� ∫

Σ𝑟

(𝑒(𝜇, ℎ) − 𝑒(𝜇, 𝑓 )) − (𝑒(𝜇, ℎ𝑛) − 𝑒(𝜇, 𝑓𝑛))𝑑𝐴𝜇
��� + ∫

Σ\Σ𝑟

𝐶𝑒−𝑐𝑦𝑑𝐴𝜇

holds for every 𝜇 close enough to 𝜇0. Fixing 𝜖 > 0, for every 𝑟 ≥ 𝑦0 we can find
𝑁𝑟 > 0, depending only on Teichmüller distance to 𝜇0, such that for all 𝑛 ≥ 𝑁𝑟 , the
first integral is < 𝜖/2. Hence, for such 𝑛,

| E(𝜇) − E𝑛 (𝜇) | < 𝜖/2 + 2𝜋𝐶
𝑐
𝑒−𝑐𝑟 .
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Taking 𝑟 = 𝑐−1 log(4𝜋𝐶𝜖−1), we get | E(𝜇) − E𝑛 (𝜇) | < 𝜖 . □

We now show that the functionals E𝜃𝜌1,𝜌2
are locally uniformly proper. From here

we assume 𝜃 = 0, because the proof is identical for every 𝜃. We essentially
show that the bounds from the proof of Proposition 4.3.1 depend continuously on
( [𝜌1], [𝜌2]). For ( [𝜌1], [𝜌2]) ∈ ASDc(Γ, 𝐺), we choose an open neighbourhood
𝑈 ⊂ ASDc(Γ, 𝐺) containing ( [𝜌1], [𝜌2]) with compact closure. We intersect it
with a product open set 𝑈1 ×𝑈2, where 𝑈1 is a left 𝑑𝑇ℎ-open ball around 𝜌1. We
then lift via some section to the space of local sections to view these points as
representations. Picking a boundary geodesic or a horocycle for 𝐶 (H/𝜌1(Γ)), as
we perturb the representations we get a continuously varying family of such curves
in the new metric. We write 𝐶 𝑗

𝑑
(𝜉) for the collar neighbourhood of such a curve in

H/ 𝑗 (Γ), 𝑗 ∈ 𝑈2. By choosing𝑈 even small enough, we can assume we have a fixed
presentation for our fundamental group, and the collar neighbourhood 𝐶 𝑗

𝑑 𝑗
(𝜉) has

uniform upper and lower bounds 𝛿1 ≤ 𝑑 𝑗 ≤ 𝛿2.

Set 𝛿 = (𝛿1 + 𝛿2)/2. We can choose a neighbourhood 𝐶𝛿 containing every 𝐶 𝑗

𝛿
(𝜉)

for all 𝑗 ∈ 𝑈2. For a ( 𝑗 , 𝜌)-equivariant map 𝑔, we put

Lip𝛿 (𝑔) = max
𝑥∈𝐶 (H/ 𝑗 (Γ))\𝐶𝛿

Lip𝑥 (𝑔).

Lemma 4.3.14. Shrinking 𝑈 if necessary, there exists an 𝜖 > 0 such that for every
( 𝑗 , 𝜌) ∈ 𝑈, there is a ( 𝑗 , 𝜌)-equivariant map 𝑔 𝑗 ,𝜌 that satisfies Lip(𝑔 𝑗 ,𝜌) ≤ 1 and
Lip𝛿 (𝑔 𝑗 ,𝜌) < (1 − 𝜖)1/2. Moreover, we can choose it so that if 𝜌(𝜁) is hyperbolic,
then 𝑔 𝑗 ,𝜌 translates the geodesic axis of 𝑗 (𝜁) along the axis of 𝜌(𝜁) with constant
speed 1.

Proof. We first define 𝑔 𝑗 ,𝜌 on the complement of 𝐶𝛿. One at a time, we vary 𝑗

and then 𝜌. By our choice of 𝑈1, there is an 𝜖0 > 0 such that for every 𝑗 ∈
𝑈1, there is a ( 𝑗 , 𝜌1)-equivariant (1 + 𝜖0)-Lipschitz map. Composing with our
original optimal (𝜌1, 𝜌2)-equivariant map, we get a ( 𝑗 , 𝜌2)-equivariant map with
nice control. Choosing 𝑈1 small enough, we can shrink 𝜖0 so as to ensure the right
behaviour outside of 𝐶𝛿.

Now we fix a base surfaceH/ 𝑗 (Γ) and vary 𝜌 around 𝜌2. We can use flat connections
as in Lemma 4.3.6. For any continuous path of classes with initial point 𝜌2, the
procedure detailed there gives a path of equivariant maps starting at 𝑔. From
compactness of the complement of the collar and cusp neighbourhoods, the local
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Lipschitz constants vary upper semicontinuously. In particular, we can achieve an
upper bound Lip𝛿 (·) < (1 − 𝜖)1/2 when close enough to ( [𝜌1], [𝜌2]).

Now we extend in𝐶𝛿 and above. Note that while the local Lipschitz constants of 𝑔 𝑗 ,𝜌
are uniformly controlled, this can be strictly below the global Lipschitz constant,
and in the hyperbolic case this global Lipschitz constant is exactly 1. To see this, we
do have 𝑑𝜈 (𝑔 𝑗 ,𝜌 (𝑥), 𝑔 𝑗 ,𝜌 (𝑦)) < 𝑑𝜎 (𝑥, 𝑦) for every 𝑥 ≠ 𝑦, so Lip(𝑔 𝑗 ,𝜌) ≤ 1 certainly.
But in the case of hyperbolic monodromy, for any two points 𝑥, 𝑦 that are connected
by a segment that mostly fellow-travels the geodesic axis of 𝑗 (𝜁),

𝑑𝜈 (𝑔 𝑗 ,𝜌 (𝑥), 𝑔 𝑗 ,𝜌 (𝑦)) = 𝑑𝜎 (𝑥, 𝑦) +𝑂 (1),

where the implied constant depends only on the position of 𝑥 and 𝑦 in H/ 𝑗 (Γ).
Since 𝑥, 𝑦 can be taken as far as we like, in the limit the ratio of distances becomes
1. Using the equivariant Kirszbraun-Valentine theorem [GK17, Proposition 3.9],
adapted to the stabilizer of the cusp or funnel, we extend each such equivariant
map to a globally defined equivariant map with global Lipschitz constant ≤ 1 in the
parabolic and elliptic cases, and exactly 1 in the hyperbolic case. The constraint
ℓ( 𝑗 (𝜁)) = ℓ(𝜌(𝜁)) forces 𝑔 𝑗 ,𝜌 to translate along the geodesic. □

Remark 4.3.15. [GK17, Proposition 3.9] is only proved for equivariant maps from
hyperbolic 𝑛-space to itself. However, a version still holds for maps from (H, 𝜎)
to any CAT(−1) metric space. The proof involves taking barycenters of Lipschitz
maps, which can be done just the same in any CAT(0) space, and a few applications
of the Toponogov theorem that go through in a CAT(−1) setting.

Remark 4.3.16. In [GK17, Proposition 3.9], only Lipschitz constant at least 1
is addressed. Using compactness of 𝐶𝛿 and adapting the proof using [GK17,
Proposition 3.7] rather than Propositions 3.1 and Remark 3.6 from that paper, we
acquire the result in this other context (with a potential loss on the Lipschitz constant).

Returning to the main proof, we write ℎ to be a Fuchsian harmonic map, omitting
dependence on the metric and representation. For any ( 𝑗 , 𝜌) ∈ 𝑈, the fact that 𝑔 𝑗 ,𝜌
translates along the geodesic means we can apply Lemma 4.2.14:

E 𝑗 ,𝜌 (𝜇) ≥
∫
Σ

𝑒(𝜇, ℎ) − 𝑒(𝜇, 𝑔 𝑗 ,𝜌 ◦ ℎ)𝑑𝐴𝜇 .

And using that Lip(𝑔) = 1, we get

E 𝑗 ,𝜌 (𝜇) ≥
∫
𝐾

𝑒(𝜇, ℎ) − 𝑒(𝜇, 𝑔 𝑗 ,𝜌 ◦ ℎ)𝑑𝐴𝜇
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for any compact 𝐾 ⊂ Σ.

Fix a simple closed curve 𝛾 ∈ Γ. We are positioned to repeat the initial computation
in the proof of Theorem 4A, and doing so gives that for ( [ 𝑗], [𝜌]) ∈ 𝑈 and [𝜇] ∈
T (Γ) we have

E 𝑗 ,𝜌 (𝜇) ≥
𝑤𝜇

2
𝜖 min

𝑥

( ∫
𝐴𝑡𝑥

���𝜕ℎ(𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦)2
, (4.16)

where 𝐴𝑡𝑥 is defined as in the proof of properness, and 𝑤𝜇 is the 𝜇-length of the
collar associated to 𝛾. Repeating the proof of Lemma 4.3.2, almost word for word,
we can see ∫

𝐴𝑡𝑥

���𝜕ℎ(𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦 ≥ min{𝛿1/2, 𝜅𝛾},

where 𝜅𝛾 is the minimum of the lengths for 𝑗 (𝛾). If the 𝜇-length of any 𝛾 goes
to 0, then this integral explodes. Thus, for any ( [ 𝑗], [𝜌]) ∈ 𝑈, and curve 𝛾, there
is a length 𝜖𝛾 such that if ℓ𝜎 (𝛾) < 𝜖𝛾, the right-hand-side of (4.16) is greater than
𝐾 . This implies there is a compact subset of the moduli space such that if we take
a fundamental domain 𝑉 for this subset in Teichmüller space, then we have the
E 𝑗 ,𝜌 > 𝐾 on the complement of the mapping class group orbit of 𝑉 .

To finish the proof, we show there are only finitely many mapping classes [𝜓] such
that E 𝑗 ,𝜌 ≤ 𝐾 on the translate 𝜓∗𝑉 . Suppose there exists a metric 𝜇 representing a
point in 𝑉 and a sequence of distinct mapping classes 𝜓𝑛 such that E 𝑗 ,𝜌 (𝜓∗

𝑛𝜇) ≤ 𝐾

for all ( [ 𝑗], [𝜌]) ∈ 𝑈. Then, by proper discontinuity of the mapping class group,
(𝜓−1

𝑛 )∗ 𝑗 diverges in Teichmüller space for every 𝑗 . This implies that for each 𝑗 there
exists a non-trivial simple closed curve 𝛾 𝑗 whose length under (𝜓−1

𝑛 )∗ 𝑗 blows up as
𝑛→ ∞ .

Since we intersected with a left open ball for 𝑑𝑇ℎ, we can choose all 𝛾 𝑗 to be equal
to a single curve 𝛾. If 𝐶 is the radius for our left open ball, then for all 𝑛 and 𝛾 ∈ Γ,

ℓ((𝜓−1
𝑛 )∗ 𝑗 (𝛾)) ≥ 𝑒−𝐶ℓ(𝜓−1

𝑛 )∗𝜌1(𝛾)). (4.17)

Thus, if 𝛾 ∈ Γ is such that ℓ((𝜓−1
𝑛 )∗𝜌1(𝛾)) blows up, then by (4.17), the same holds

for every 𝑗 sufficiently close by. Moreover, the rate at which ℓ((𝜓−1
𝑛 )∗ 𝑗 (𝛾)) → ∞

is independent of 𝑗 , close to that of (𝜓−1
𝑛 )∗𝜌1(𝛾). Now we have an integral estimate

as in Theorem 4A:

𝐾 ≥ E 𝑗 ,𝜌 (𝜓∗
𝑛𝜇) = E (𝜓−1

𝑛 )∗ 𝑗 ,(𝜓−1
𝑛 )∗𝜌 (𝜇) ≥

𝑤

2
𝜖 min

𝑥

( ∫
𝐴𝑡𝑥

���𝜕ℎ(𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦)2
,
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where 𝑤 is minimum of the lengths of the collars around 𝛾 for [𝜇] ∈ 𝑉 . The proof
of Lemma 4.3.4 can then be made uniform: by examination of the proof, the integral∫

𝐴𝑡𝑥

���𝜕ℎ(𝑥, 𝑦)
𝜕𝑦

���𝑑𝑦
trails off to infinity with a rate depending on that of the translation length of the bad
sequence. This is a contradiction, and thus the energy functional does have the > 𝐾
condition on the complement of a finite orbit. Therefore, we’ve satisfied Lemma
4.3.10, and modulo Lemmas 4.3.12 and 4.3.13, finished the proof of Theorem 4B.

Variations at the cusp
Here we prove Lemmas 4.3.12 and 4.3.13. Let 𝜇 be any metric close to 𝜇0.
Uniformizing a neighbourhood of the cusp to a punctured disk, we consider the
Hopf differential as a meromorphic function for the complex structure of 𝜇 with a
pole of order at most 2:

𝜙(𝑧) = −Λ(𝜃)ℓ2

16𝜋2 𝑧−2 + 𝑎𝜇𝑧−1
𝜇 + 𝜑𝜇 (𝑧),

where 𝑧𝜇 is a holomorphic coordinate for 𝜇, and ℓ is the translation length of
the peripheral curve in question. If the representation does not have hyperbolic
monodromy at the cusp, then it is understood that ℓ = 0 in the expression above.
We can choose a neighbourhood of the puncture containing cusp neighbourhoods
for all 𝜇 that uniformize for 𝜇 to an open set containing a punctured disk of 𝜇-radius
uniformly bounded below.

It follows from the results of Section 4.2 and the proof of continuity in Theorem 4B
that for any (𝜇𝑛, 𝜌𝑛) converging to (𝜇, 𝜌), the harmonic maps can be chosen, even in
the reducible case, to converge in the 𝐶∞ sense on compacta. This implies the Hopf
differentials, viewed simply as smooth rather than holomorphic functions, converge
to that of 𝑓 𝜌0

𝜇0 locally uniformly on compacta in this punctured disk. If 𝑧 = 𝑧𝜇0 , then
after choosing our normalizations correctly, 𝑧𝜇 → 𝑧 as 𝜇 → 𝜇0. It follows that the
Laurent coefficients converge, and hence 𝑎𝜇 is bounded and 𝜑𝜇 is 𝐶0 bounded.

To prove Lemma 4.3.12, we first assume 𝜌 is Fuchsian. Then, in the coordinates on
D∗, the Beltrami form 𝜓 satisfies

|𝜓 | = |Φ|
𝜇𝐻 (𝜇, 𝑓𝜇)

≤ |Φ|
𝜇

≤ 𝐶𝑧−1

|𝑧 |−2(log |𝑧 |)2 = 𝐶 |𝑧 | (log |𝑧 |)−1 → 0

as 𝑧 → 0. Via this decay on the Beltrami form, we know that once we go high
enough into the cusp, 𝑓 there is a uniform bound on the quasiconformal dilata-
tion (independent of 𝜇 and 𝜌). Thus from uniform convergence on compacta, we
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have a uniform 𝐾-quasiconformal bound everywhere. By the Schwarz lemma for
quasiconformal harmonic maps [GH77], we extract the bound 𝐻 (𝜇, 𝑓𝜇) ≤ 2𝐾2.
Since 𝐿 ≤ 𝐻 in the Fuchsian case, 𝑒(𝜇, 𝑓𝜇) ≤ 4𝐾2. If 𝜌 is not Fuchsian, then by
Proposition 3.13 from [Sag19] we can bound the energy density above by that of
the harmonic map for the Fuchsian representation with the same Hopf differential.
This constant is integrable, and this proves Lemma 4.3.12.

Lemma 4.3.13 is a bit more work. Passing to the cusp coordinates, the uniform
bound on the Laurent coefficients implies there is a uniform 𝐶, 𝑐 > 0 such that 𝜙
satisfies

Λ(𝜃)ℓ2

4𝜏2
𝜇

+ 𝐶𝑒−𝑐𝑦 ≤ |𝜙 | ≤ Λ(𝜃)ℓ2

4𝜏2
𝜇

+ 𝐶𝑒−𝑐𝑦 (4.18)

in Σ\Σ𝑠. Setting 𝜓 = 𝜓𝜇 to be | ( 𝑓𝜇)𝑧 |/| ( 𝑓𝜇)𝑧 |, the formula

𝑒(𝜇 𝑓 , 𝑓𝜇) = |Φ| ( |𝜓 | + |𝜓 |−1) (4.19)

suggests we should turn to |𝜓 |. Using (4.18), we find uniform upper and lower
bounds on |𝜓 |, independent of (𝜇, 𝜌). If there are no such bounds, then there is
a sequence 𝜇𝑛 tending to 𝜇 and points 𝑧𝑛 with |𝜓𝑛 | (𝑧𝑛) → 0 or |𝜓𝑛 | (𝑧𝑛) → ∞,
where |𝜓𝑛 | = 𝐿 ( 𝑓𝑛)1/2/𝐻 ( 𝑓𝑛)1/2, for 𝑓𝑛 = 𝑓𝜇𝑛 . We can assume each 𝑧𝑛 lies in a
cylinder of the form (Σ𝑟𝑛\Σ𝑟𝑛−1, 𝜇). Taking 𝑖𝑛 : C → (Σ𝑟𝑛\Σ𝑟𝑛−1, 𝜇) to be a cylinder
embedding, conformal for 𝜇, uniform energy density bounds imply convergence of
𝐹𝑛 = 𝑓𝑛 ◦ 𝑖𝑛 along a subsequence to a limiting harmonic map 𝐹∞ : C → (𝑋, 𝜈).
From the inequalities (4.18), the Hopf differential is exactly Λ(𝜃)ℓ2/4𝜏2

𝜇0
𝑑𝑧2𝜇0

. 𝐹∞
projects onto the geodesic and hence has rank 1. Thus, there is an 𝜂 ∈ R such
that (𝐹∞)∗(𝜕/𝜕𝑥) = 𝜂(𝐹∞)∗(𝜕/𝜕𝑦). Hence, writing out the Hopf differential in
coordinates gives

Φ(𝐹∞) =
1
4
( | (𝐹∞)∗(𝜕/𝜕𝑥) |2𝜈 − |(𝐹∞)∗(𝜕/𝜕𝑦) |2𝜈 − 2𝑖⟨ 𝑓𝑥 , 𝑓𝑦⟩𝜈) =

1
4
(𝜂2 − 1− 2𝑖𝜂)𝑑𝑧2.

Therefore, 𝜂 = 𝜃. We thus find from the linear ODE theory that the limit is a
constant speed parametrization of the geodesic, composed with a fractional Dehn
twist. This implies the limiting quantity |𝜓∞ | is exactly 1, which contradicts our
assumption |𝜓 | (𝑧𝑛) → 0 or ∞.

From uniform bounds we upgrade to more precise control. Let us temporarily
assume 𝜌 is Fuchsian. Working in the region where we have these bounds, because
the pullback metric for our harmonic map is hyperbolic, it can be deduced from the
Bochner formulae [SY97, Chapter 1] that

Δ𝜇 𝑓 log |𝜓 |−1 = 2|Φ𝜇 | sinh log |𝜓 |−1.
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Hence,
Λ(𝜃)ℓ2

4𝜏2
𝜇

log |𝜓 |−1 ≤ Δ𝜇 𝑓 log |𝜓 |−1 ≤ Λ(𝜃)ℓ2

2𝜏2
𝜇

log |𝜓 |−1

when |𝜓 | < 1, if we are high enough to get uniform control on |Φ𝜇 |. If |𝜓 | > 1, we
have the opposite inequality

Λ(𝜃)ℓ2

2𝜏2
𝜇

log |𝜓 |−1 ≤ Δ𝜇 𝑓 log |𝜓 |−1 ≤ Λ(𝜃)ℓ2

4𝜏2
𝜇

log |𝜓 |−1.

Our uniform bounds on |𝜓 | give control on log |𝜓 |−1, which yields more bounds of
the form

−𝑐Λ(𝜃)ℓ2

2𝜏2
𝜇

≤ Δ𝜇 𝑓 log |𝜓 |−1 ≤ 𝐶Λ(𝜃)ℓ2

2𝜏2
𝜇

.

Using the maximum principle, we can then deduce

−𝐶𝑒−𝑐𝑦 ≤ log |𝜓 |−1 ≤ 𝐶𝑒−𝑐𝑦 .

Taylor expanding 𝑥 ↦→ log(1 − 𝑥), we then obtain

1 − 𝐶𝑒−𝑐𝑦 ≤ |𝜓 | ≤ 1 + 𝐶𝑒−𝑐𝑦 .

If 𝜌 is not Fuchsian, we apply an argument similar to that of Lemma 4.2.3 to get this
same asymptotic. Inserting the bounds into the formula (4.19) gives

Λ(𝜃)ℓ2

2𝜏2
𝜇

− 𝐶𝑒−𝑐𝑡 ≤ 𝑒(𝜇 𝑓 , 𝑓𝜇) ≤
Λ(𝜃)ℓ2

2𝜏2
𝜇

+ 𝐶𝑒−𝑐𝑡 ,

as desired. This completes the proof of Lemma 4.3.13, and moreover the proof of
Theorem 4B.

4.4 Anti-de Sitter 3-manifolds
AdS 3-manifolds with 𝑆1-fibrations
In this subsection we prove Proposition 4.1.8, which is actually a quick consequence
of the proposition immediately below. We work in the PSL(2,R) model throughout.

Proposition 4.4.1. Let 𝑉 ⊂ H be a domain. The data of a domain Ω ⊂ AdS3 and a
fibration Ω → 𝑉 such that every fiber is a timelike geodesics is equivalent to that of
a domain 𝑉 ⊂ H and a locally strictly contracting map 𝑔 : 𝑉 → H.

The proof of the first direction of the equivalence is a straightforward adaptation of
the procedure from [GK17, Proposition 7.2]. There, 𝑉 = H, Ω = AdS3, and ℎ is
(globally) strictly contracting. We include the proof for the readers convenience.
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Proof. The key fact we use is that timelike geodesics 𝐿𝑝1,𝑞1 and 𝐿𝑝2,𝑞2 intersect if
and only if

𝑑𝜎 (𝑝1, 𝑝2) = 𝑑𝜎 (𝑞1, 𝑞2).

With this in mind, given a locally strictly contracting mapping 𝑔 : 𝑉 → H × H
with the properties above, timelike geodesics of the form 𝐿𝑝,𝑔(𝑝) and 𝐿𝑞,𝑔(𝑞) never
intersect. Thus, the geodesics 𝐿𝑝,𝑔(𝑝) sweep out a connected set Ω ⊂ AdS3 as 𝑝
ranges over 𝑉 .

We argue that Ω is open. We record that 𝑋 ∈ 𝐿𝑝,𝑔(𝑝) if and only if

𝑋−1 ◦ 𝑔(𝑝) = 𝑝.

For small 𝜖 > 0, let 𝐵𝜖 (𝑝) ⊂ 𝑉 denote the 𝜖-ball around 𝑝 in H. Let 𝐵 ⊂ AdS3 be
the open ball consisting of isometries 𝑌 such that

𝑑𝜎 (𝑝,𝑌−1𝑔(𝑝)) < (1 − Lip(𝑔 |𝐵𝜖 (𝑝)))𝜖 .

Then for any 𝑞 ∈ 𝐵𝜖 (𝑝) and 𝑌 ∈ 𝐵,

𝑑𝜎 (𝑌−1 ◦ 𝑔(𝑞), 𝑝) ≤ 𝑑 (𝑌−1𝑔(𝑞), 𝑌−1𝑔(𝑝)) + 𝑑 (𝑌−1𝑔(𝑝), 𝑝) < 𝜖.

Thus, 𝑌−1𝑔 takes the closure of 𝐵𝜖 (𝑝) to itself, and by the Banach fixed point
theorem there is a unique 𝑞 ∈ 𝐵𝜖 (𝑝) such that 𝑌 ◦ 𝑔(𝑞) = 𝑞. So 𝐵 ⊂ Ω. This
argument also shows that the fibration from Ω → 𝑉 described by 𝐿 𝑓 (𝑝),ℎ(𝑝) ↦→ 𝑝 is
continuous.

For the other direction, any circle fibration Ω → 𝑉 with timelike geodesic fibers
determines a map 𝐹 : 𝑉 → H × H by 𝐹 (𝑝) = (ℎ(𝑝), 𝑓 (𝑝)), where 𝐿 𝑓 (𝑝),ℎ(𝑝) is
the geodesic lying over 𝑝 in Ω. 𝐹 preserves connectedness—using the product
structure, [JM18, Theorem 2.2] guarantees it is continuous when 𝑓 is non-constant.
If 𝑓 is a constant 𝑞, then because Ω is open, for any 𝑝 and path from 𝑝 to 𝑞,
we can find a continuous path of isometries 𝑟 ↦→ 𝑋𝑟 such that ℎ(𝑟) = 𝑋−1

𝑟 𝑞.
Thus we have continuity here as well. As the timelike geodesics never intersect,
𝑑 ( 𝑓 (𝑝), 𝑓 (𝑞)) ≠ 𝑑 (ℎ(𝑝), ℎ(𝑞)) for 𝑝 ≠ 𝑞. As the diagonal in H × H has codi-
mension 2, a connectedness argument shows 𝑑 ( 𝑓 (𝑝), 𝑓 (𝑞)) < 𝑑 (ℎ(𝑝), ℎ(𝑞)) or
𝑑 ( 𝑓 (𝑝), 𝑓 (𝑞)) > 𝑑 (ℎ(𝑝), ℎ(𝑞)) always for 𝑝 ≠ 𝑞. By switching coordinates,
we may assume we have the former. This condition ensures that ℎ is injective.
Therefore, 𝑔 = 𝑓 ◦ ℎ−1 is a well-defined locally strictly contracting map. □
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Proposition 4.1.8 is just the equivariant version of this: for a pair (𝜌1, 𝜌2) with 𝜌1

acting properly discontinuously on 𝑉 , we have

𝜌2(𝛾)𝐿𝑝,𝑔(𝑝)𝜌1(𝛾)−1 = 𝐿𝜌1 (𝛾)𝑝,𝜌2 (𝛾)𝑔(𝑝) ,

so 𝜌1 × 𝜌2 acts properly discontinuously on Ω and equivariance of the fibration is
clear.

It is seen in the proof that Ω ⊂ AdS3 consists of all isometries 𝑋 such that 𝑋−1 ◦ 𝑔
has a fixed point.

Remark 4.4.2. The results here generalize, almost word for word, for quotients
of proper domains in the rank 1 Lie groups 𝐺 = O(𝑛, 1), SO(𝑛, 1), SO0(𝑛, 1), and
PO(𝑛, 1). One can consider the action by left and right multiplication and equivariant
𝐾-fibrations 𝐺 ⊃ Ω → 𝑉 ⊂ H𝑛, 𝑛 ≥ 2, where 𝐾 ⊂ 𝐺 is the maximal compact
subgroup. Here the fibers are copies of 𝐾 , each of the form {𝑋 ∈ 𝐺 : 𝑋 · 𝑝 = 𝑞} for
some 𝑝, 𝑞 ∈ H𝑛.

Remark 4.4.3. Proposition 4.1.8 applies to non-reductive representations. They
have been largely excluded from our discussion because harmonic maps and maximal
surfaces do not exist for these representations.

Theorem 4C
Here we give the proof of Theorem 4C. We make use of results from the paper
[GK17]. Fix reductive representations 𝜌1, 𝜌2 : Γ → PSL(2,R) with 𝜌1 Fuchsian.

Definition 4.4.4. Let 𝑉 ⊂ H be a 𝜌1-invariant domain, and 𝑓 : 𝑉 → H a (𝜌1, 𝜌2)-
equivariant map realizing the minimal Lipschitz constant 𝐿 among equivariant
maps. The stretch locus is the set of points 𝑥 ∈ H such that the restriction of 𝑓 to
any neighbourhood of 𝑥 has Lipschitz constant exactly 𝐿 and no smaller.

The result below is culled from [GK17, Theorem 1.3 and 5.1]. See the reference for
more general statements and details.

Theorem 4.4.5 (Guéritaud-Kassel). Assume there exists a (𝜌1, 𝜌2)-equivariant map
with minimal Lipschitz constant 𝐿 = 1, and let 𝐸 be the intersection of all the stretch
loci among such maps. Then there exists an “optimal” (𝜌1, 𝜌2)-equivariant 1-
Lipschitz map whose stretch locus is exactly 𝐸 . 𝐸 projects under the action of
𝜌1(Γ) to the convex core for 𝜌1, and is either empty or the union of a lamination and
2-dimensional convex sets with extremal points only in the limit set Λ𝜌1 (Γ) ⊂ 𝜕∞H.
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Proof of Theorem 4C. The equivalence between (1) and (3) is contained in The-
orem 4A. Assuming (1) we prove (2). Take any optimal map 𝑔, and the map
�̃� (H/𝜌1(Γ)) → H × H given by 𝑝 ↦→ (𝑝, 𝑔(𝑝)). In the case that there exists a pe-
ripheral on which 𝜌1 is hyperbolic, suppose for the sake of contradiction that there is
a choice of 𝑔 so that the domain extends to give a fibration over a larger subsurface.
From the other direction of Proposition 4.1.8, we obtain a (𝜌1, 𝜌2)-equivariant and
a locally contracting map defined on the preimage of this subsurface in the univer-
sal cover. This implies there is a peripheral 𝛾 with ℓ(𝜌1(𝛾)) > ℓ(𝜌2(𝛾)), which
contradicts our original Definition 4.1.1.

Now we prove that (2) implies (1). Given such a domain and fibration, from
Proposition 4.1.8 we obtain a strictly 1-Lipschitz (𝜌1, 𝜌2)-equivariant map defined
on �̃� (H/𝜌1(Γ)). If 𝜌1 has no hyperbolic peripherals, then we get (1) for free and
we’re done. So assume there is a peripheral 𝜁 with 𝜌1(𝜁) hyperbolic. Any 1-
Lipschitz map 𝑔 defined inside �̃� (H/𝜌1(Γ)) extends to a 1-Lipschitz map of the
frontier inside H, and hence

ℓ(𝜌2(𝜁)) ≤ ℓ(𝜌1(𝜁)).

We extend 𝑔 to all of H by precomposing with the 1-Lipschitz (𝜌1, 𝜌1)-equivariant
nearest point projection onto �̃� (H/𝜌1(Γ)), so we know that the set of globally
defined Lipschitz maps is non-empty. From Lemma 4.10 in [GK17] (an application
of Arzelà-Ascoli), there exists an optimal (𝜌1, 𝜌2)-equivariant Lipschitz map 𝑔′. As
for the optimal Lipschitz constant, 𝑔 shows 𝐿 ≤ 1, and if 𝐿 < 1 then 𝜌1 × 𝜌2 acts
properly discontinuously on the whole AdS3, and hence 𝐿 = 1. Applying Theorem
4.4.5, we have a stretch locus 𝐸 .

𝐸 is contained in the intersection of the stretch loci of 𝑔 and 𝑔′. Since 𝑔 does not
maximally stretch in the interior of �̃� (H/𝜌1(Γ)), 𝐸 is contained in the boundary of
�̃� (H/𝜌1(Γ)). If 𝐸 is missing the lifts of one boundary component of C(H/𝜌1(Γ)),
then 𝑔′ is strictly contracting inside the half-spaces in H that project to the infinite
funnel bounding this component in H/𝜌1(Γ). From Proposition 4.1.8, we can thus
find a 𝜌1× 𝜌2-equivariant domain that yields a fibration onto the union of the convex
core with this funnel, which contradicts our standing assumption. We conclude
that the stretch locus is exactly these components, and hence 𝑔′ is an almost strictly
dominating map.

For the final statement, we use the homeomorphism Ψ = Ψ0 from Theorem 4B to
parametrize the space of representations. We take the domains in AdS3 associated
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to the spacelike maximal immersions with 0 twist parameter (any one will do). The
energy domination implies that they yield proper quotients by Proposition 4.1.8.
Since the harmonic maps for irreducible representations vary continuously with the
representation, so do the domains in AdS3. Hence, when we restrict to these classes,
Ψ parametrizes a deformation space of AdS 3-manifolds. □

To produce more representations that give such incomplete quotients, take an almost
strictly dominating pair (𝜌1, 𝜌2) (Theorem 4B shows there are many) and an optimal
map 𝑔. To relax the condition that all boundary lengths agree, first choose a
collection of peripherals, but not all of them. For each of the selected peripherals,
there is a geodesic or a horocycle in H/𝜌1(Γ). We then specify a transversely
intersecting geodesic arc that does not intersect any other peripheral geodesic or
horocycle, and apply strip deformations toH/𝜌1(Γ) along these arcs (see [DGK16a],
[Sag19, Section 6]). This gives a new hyperbolic surface whose holonomy is
a Fuchsian representation 𝑗 , and for some 𝜆 < 1, a strictly 𝜆-Lipschitz ( 𝑗 , 𝜌1)-
equivariant map 𝑔′. We can extend 𝑔 outside of the convex hull of the limit set by
using the 1-Lipschitz (𝜌1, 𝜌1)-equivariant closest-point projection. We then take
the composition 𝑔 ◦ 𝑔′ and the corresponding circle bundle.

With the main theorems complete, we briefly digress to discuss the topology of
the quotients. The quotients naturally acquire an orientation. Since the surface is
not compact, the bundle is topologically trivial: BU(1) = CP∞ and [Σ,CP∞] =

𝐻2(Σ,Z) = 0.

However, the global trivialization is by no means compatible with the AdS structure.
To be precise, the 3-manifold is not “standard” in the sense of [KR85]: its casual
double cover does not possess a timelike Killing field. If it did, the holonomy would
normalize the isometric flow generated by the Killing field, and it follows from
[KR85, pages 237-238] that this is impossible for reductive 𝜌2.

4.5 Parabolic Higgs bundles
In [AL18], Alessandrini and Li use Higgs bundles to construct AdS structures on
closed 3-manifolds. They build circle bundles explicitly, rather than first passing
through [GK17, Theorem 1.8]. Following their work closely, we offer an alternative
construction of the AdS structures from Theorem 4C for representations 𝜌1× 𝜌2 that
lift to SL(2,R) × SL(2,R). In this way, we are able to compute some geometrically
meaningful quantities. And in the process, we explain how this construction is
related to the previous one.



118

Since we are working over surfaces with punctures, we use parabolic Higgs bundles.
We refer the reader to [Sim90] and [Mon16] for more background information on
parabolic Higgs bundles.

More on timelike geodesics
Recall the billinear form 𝑞𝑛,2 from the beginning of Chapter III. In this section, we
set 𝑄 = 𝑞2,2, so that H2,1 = {𝑥 ∈ R2,2 : 𝑄(𝑥, 𝑥) = −1}. We use the Klein model
AdS3 = H2,1/{±𝐼}.

When restricted to a timelike geodesic, the covering H2,1 → AdS3 restricts to a
covering of the circle (and the universal covering of this circle can be seen through�AdS3 → AdS3). Thus, there is a bijection between the space of timelike geodesics
in H2,1 and AdS3. In H2,1, timelike geodesics are intersections of timelike planes
with H2,1. Projecting to AdS3, timelike geodesics are projective lines contained
wholly in AdS3.

Working in H2,1, the space of timelike geodesics is the Grassmanian Grt(2, 4) of
timelike planes in R2,2. To see the structure of this Grassmanian, 𝑆𝑂0(2, 2) acts
transitively on the space of timelike planes, and the stabilizer of any timelike plane
is conjugate to 𝑆𝑂 (2) × 𝑆𝑂 (2). Thus, Grt(2, 4) is the symmetric space

𝑆𝑂0(2, 2)/(𝑆𝑂 (2) × 𝑆𝑂 (2)).

We recall that H × H is the space of timelike geodesics in the PSL(2,R) model.
The symmetric structure there is seen through the obvious action of PSL(2,R) ×
PSL(2,R) on H × H, with stabilizer of a point (𝑥, 𝑦) being the product of the
stabilizers.

This implicit identification from Grt(2, 4) → H × H actually preserves a pseudo-
Riemannian structure on Grt(2, 4). Given Span(𝑣1, 𝑣2) ∈ Grt(2, 4), where 𝑣1, 𝑣2 are
𝑄-orthonormal, we find spacelike vectors 𝑤1, 𝑤2 completing 𝑣1, 𝑣2 to a positively
oriented 𝑄-orthonormal basis. Lifting the classical Plücker embedding, there is a
map from

Grt(2, 4) (2, 4) → ∧2R4

defined by taking
Span(𝑣1, 𝑣2) ↦→ 𝑣1 ∧ 𝑣2.

The wedge product ∧2R4 × ∧2R4 → ∧4R4 gives rise to a signature (3, 3) non-
degenerate bilinear form, and this restricts to a signature (2, 2) pseudo-Riemannian
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metric on the image of Grt(2, 4). Henceforth we endow Grt(2, 4) with the pullback
metric 𝑚. As for the geometry of this metric, we have the result below.

Proposition 4.5.1. (Grt(2, 4), 𝑚) is isometric to (H×H, 𝜎 ⊕ (−𝜎)) via an isometry
that intertwines the actions of the Lie groups 𝑆𝑂0(2, 2) and PSL(2,R) ×PSL(2,R).

This seems well-known, but we could not locate a proof or even a formal statement
in the literature.

Proof. Denote by 𝐵 the bilinear form on ∧2R4. For the reader’s convenience we
remark that if 𝑒𝑖 is the standard basis and 𝑣 𝑗 =

∑
𝑖 𝑎𝑖 𝑗𝑒𝑖, then

𝐵(𝑣1 ∧ 𝑣2, 𝑣3 ∧ 𝑣4) = det(𝑎𝑖 𝑗 ).

For any 𝑄-orthonormal basis 𝑣1, 𝑣2, 𝑣3, 𝑣4 satisfying 𝑄(𝑣1, 𝑣1) = 𝑄(𝑣2, 𝑣2) = −1,
𝑄(𝑣3, 𝑣3) = 𝑄(𝑣4, 𝑣4) = 1, the 2-vectors

𝑉1
± =

1
√

2
(𝑣1∧𝑣2±𝑣3∧𝑣4) , 𝑉2

± =
1
√

2
(𝑣4∧𝑣2±𝑣3∧𝑣1) , 𝑉3

± =
1
√

2
(𝑣1∧𝑣4±𝑣2∧𝑣3)

satisfy 𝐵(𝑉 𝑗
±, 𝑉

𝑗
±) = ±1. Consider the subspaces ∧±R4 = Span(𝑉2

±, 𝑉
3
±, 𝑉

1
∓) ⊂ ∧2R4,

along which ∧2R4 splits as

∧2R4 = ∧+R
4 ⊕ ∧−R

4.

The first subspace has signature (2, 1), while the second has signature (1, 2). With
respect to the splitting, 𝑆𝑂0(3, 3) decomposes into an 𝑆𝑂0(2, 1) and a 𝑆𝑂0(1, 2)
factor. The timelike Grassmanian embeds via

𝑣1 ∧ 𝑣2 ↦→ 1
√

2
(𝑣1 ∧ 𝑣2 + 𝑣3 ∧ 𝑣4, 𝑣1 ∧ 𝑣2 − 𝑣3 ∧ 𝑣4) ∈ ∧+R

4 ⊕ ∧−R
4,

and this respects the 𝑆𝑂0(2, 1) and 𝑆𝑂0(1, 2) actions. The induced metric on the
first factor is the pullback metric from the natural inclusion into Minkowski space,
invariant under 𝑆𝑂0(2, 1). This is exactly the hyperboloid model of H. The same
reasoning applies for the second factor. □

Immersions in the Grassmanian
In this subsection, we explain a construction of AdS3 from the perspective of the
projective model, which is needed to approach AdS3 quotients via Higgs bundles.
Given representations 𝜌1, 𝜌2 to SL(2,R), we write 𝜌1 ⊗ 𝜌2 for the projectivization
of their tensor product, which maps to 𝑆𝑂0(2, 2).
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Proposition 4.5.2. There is a bijection between 𝜌1 ⊗ 𝜌2-equivariant spacelike sur-
faces in Grt(2, 4) and isomorphism classes of AdS circle bundles over Σ with
monodromy 𝜌1 × 𝜌2 and such that each circle fiber develops bijectively to a timelike
geodesic in AdS3.

The work below uses the notion of a geometric structure.

Definition 4.5.3. An AdS3 structure on a 3-manifold 𝑈 is an atlas of charts
{(Ω𝑖, 𝜑𝑖)}𝑖∈𝐼 such that every 𝜑𝑖 is a diffeomorphism onto an open subset of AdS33,
and every transition map 𝜑𝑖 ◦ 𝜑−1

𝑗
is the restriction of an element of 𝑃𝑂 (2, 2).

This is an example of a more general (𝐺, 𝑋)-structure on a manifold𝑈, where 𝐺 is
a Lie group acting transitively and faithfully on a manifold 𝑋 with dim 𝑋 = dim𝑈.
As in the definition above, this is an atlas of charts on a manifold 𝑈 taking image
in 𝑋 and such that transition maps are restrictions of elements of 𝐺. We refer the
reader to the survey [Ale19] for the general theory. The data of a (𝐺, 𝑋)-structure
on manifold 𝑈 is equivalent to that of a representation 𝜌 : 𝜋1(𝑈) → 𝐺 and a 𝜌-
equivariant local diffeomorphism �̃� : �̃� → 𝑋 called the developing map. At least
in one direction, from a pair (𝜌, �̃�), one can construct an atlas for (𝐺, 𝑋) structure
as follows: for a sufficiently small neighbourhood Ω ⊂ 𝑈, choose a local section of
the universal covering 𝑠 : Ω → Ω̃ ⊂ �̃�, and define 𝜑 : 𝑈 → 𝑋 by 𝜑 = �̃� ◦ 𝑠.

In [Bar10, Section 3.5], Baraglia finds a correspondence between real projective
structures on circle bundles over surfaces and equivariant maps into Grassmanians.
AdS3 lies inside RP3, so Proposition 4.5.2 is found by “restricting” Baraglia’s
constructions. To some extent, Proposition 4.5.2 is also observed in [AL18]. We
give a proof because we need the map 𝐷 below, although we omit some details.

Proof of Proposition 4.5.2. Start with a bundle 𝑈 → 𝑆. There is a commutative
diagram

�̃� 𝑈 𝑈

Σ̃ Σ,

where �̃� → 𝑈 is the universal covering and 𝑈 is the pullback circle bundle over
Σ̃. The circle fibers of 𝑈 also develop bijectively to timelike geodesics, so the
developing map induces a (𝜌1, 𝜌2)-equivariant map 𝐺 : Σ̃ → Grt(2, 4).



121

The passage above is reversible: suppose we have a (𝜌1, 𝜌2)-equivariant map 𝐺 :
Σ̃ → Grt(2, 4). We define a circle bundle 𝐸 over Grt(2, 4) by taking the fiber over a
point to be the corresponding timelike geodesic in AdS3. Alternatively, the Plücker
embedding gives a map to a projective space

Grt(2, 4) → Gr(2, 𝑟) → P(∧2R4),

and we take the pullback to Grt(2, 4) of the tautological RP1-bundle. Above,
Gr(2, 4) is just the ordinary Grassmanian of 2-planes in R4, or lines in RP3. By
definition, there is a natural map 𝑖 : 𝐸 → AdS3. Set 𝑈 to be the pullback bundle
𝑈 = 𝐺∗𝐸 → Σ̃.

We obtain a map 𝐷 : 𝑈 → AdS3 by precomposing 𝑖 with the bundle map𝐺∗𝐸 → 𝐸 .
Using this, we find an action of Γ on 𝑈 that lifts the action on Σ̃. Let 𝑧 ∈ Σ̃ and let
𝑎 ∈ 𝑈𝑧. Then 𝐷 (𝑎) ∈ 𝐺 (𝑧) ⊂ AdS3, and for any 𝛾 ∈ Γ,

(𝜌1 ⊗ 𝜌2) (𝛾)𝐷 (𝑎) ∈ (𝜌1 ⊗ 𝜌2) (𝛾)𝐹 (𝑧) = 𝐹 (𝛾𝑧).

Thus, there is a unique 𝑏 ∈ 𝑈𝛾𝑧 such that 𝐷 (𝑏) = (𝜌1 ⊗ 𝜌2) (𝛾)𝐷 (𝑎). Therefore,
we define the action by 𝛾 · 𝑎 = 𝑏. It is easy to verify this is smooth and properly
discontinuous, and moreover that 𝑈 descends to a bundle 𝑈 → Σ with respect to
this action.

It follows from [Bar10, Lemma 3.5.01] that the map 𝐷 is a local diffeomorphism,
hence pulls back to �̃� to make a developing map for an AdS3 structure, if and only if
𝐺 is spacelike or timelike. After possibly passing from Grt(2, 4) to (H×H, 𝜎⊕(−𝜎))
and applying (𝑥, 𝑦) ↦→ (𝑦, 𝑥), we can assume the surface is spacelike. □

Relating back to Theorem 4C, if we take 𝜌1 almost strictly dominating 𝜌2 from
Theorem 4A and an equivariant maximal spacelike immersion 𝐹, then passing
through the isomorphism we get a map 𝐺 to the Grassmanian. The map 𝐷 here is
injective, and hence a diffeomorphism onto its image. This recovers a domain Ω as
Ω = 𝐷 (𝑈), and the properly discontinuous action of 𝜌1 ⊗ 𝜌2 on 𝑈 is mapped to an
action on Ω.

Parabolic Higgs bundles
In the next few subsections, we construct the circle bundles from Theorem 4C
directly. This requires us to set up the basic definitions and results for parabolic
Higgs bundles.
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Throughout this section, we work on a closed Riemann surface 𝑆 of genus 𝑔 ≥ 2
with canonical bundle 𝐾𝑆. Setting 𝐷 = 𝑝1 + . . . 𝑝𝑛 to be an effective divisor, we
view Σ = 𝑆\𝐷.

Definition 4.5.4. A parabolic vector bundle 𝐸∗ of rank 𝑟 over 𝑆 is the data of

• a holomorphic vector bundle 𝐸 → 𝑆 of rank 𝑟,

• at each 𝑝𝑖, a choice of real numbers 0 ≤ 𝛼1
𝑖
≤ . . . 𝛼

𝑛𝑖
𝑖
< 1 called parabolic

weights,

• at each 𝑝𝑖, a strictly decreasing filtration 𝐸𝑝𝑖 = 𝐸1
𝑖
⊃ 𝐸2

𝑖
⊃ · · · ⊃ 𝐸

𝑛𝑖+1
𝑖

= 0.

For bundles 𝐸∗ = (𝐸, 𝑝𝑖, 𝛼 𝑗𝑖 ), 𝐹∗ = (𝐹, 𝑝𝑖, 𝛽𝑘𝑖 ) over 𝑆, we can define direct sums
and tensor products (see [Mon16, page 16]), as well as homomorphisms of bundles:

Hom(𝐸∗, 𝐹∗) = {𝜑 ∈ Hom(𝐸, 𝐹) : 𝛼𝑖𝑗 > 𝛽
𝑖
𝑘 ⇒ 𝜑(𝐸 𝑗

𝑖
) ⊂ 𝐹𝑘𝑖 )}.

Any holomorphic subbundle 𝐹 ⊂ 𝐸 of a holomorphic subbundle acquires a
parabolic structure: for each 𝑝𝑖, 𝐹𝑝𝑖 ∩ 𝐸

𝑗

𝑖
defines a filtration of the fiber 𝐹𝑝𝑖 .

The parabolic weight of a subspace 𝑉 ⊂ 𝐹𝑝𝑖 is the maximum of the numbers
{𝛼 𝑗

𝑖
: 𝑉 ⊂ 𝐸

𝑗

𝑖
∩ 𝐹𝑝𝑖 }. We say that a parabolic bundle is trivial if the underlying

bundle is trivial and the parabolic structure is trivial (𝑛𝑖 = 1 and all weights vanish).

Over parabolic bundles, we consider logarithmic connections: first order holomor-
phic differential operators

∇ : 𝐸 → 𝐸 ⊗ Ω1
𝑆 (log𝐷)

satisfying the Liebniz rule with respect to locally defined holomorphic sections of
𝐸 and locally defined holomorphic functions. Here Ω1

𝑆
(log𝐷) = 𝐾𝑆 ⊗ O𝑆 (𝐷),

O𝑆 (𝐷) is the holomorphic line bundle associated to 𝐷. Concretely, this produces
a “meromorphic” connection on 𝐸 , holomorphic over 𝐸 |Σ, and such that in a
holomorphic chart around 𝑝𝑖 with coordinate 𝑧, ∇ is specified by

∇ = 𝑑 + 𝑀 (𝑧) 𝑑𝑧
𝑧
.

The induced endomorphism of the filtered vector space is called the residue of ∇
and denoted Res𝑝𝑖 (∇). It just so happens that there is a choice of frame in which 𝑀
is constant and equal to the matrix for the monodromy of ∇ around 𝑝𝑖 (see [Sim90,
page 725]).
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There is a theory of parabolic Higgs bundles for reductive Lie groups, but here we
are concerned with𝐺 = SL(2,R) ×SL(2,R). We give definitions for𝐺 = SL(𝑟,C),
and then specialize. Given a holomorphic line bundle 𝐿 and positive real numbers
𝛼𝑖 for each 𝑝𝑖, we define the parabolic line bundle 𝐿 (∑𝑖 𝛼𝑖𝑝𝑖) to be the underlying
bundle 𝐿 (∑𝑖 [𝛼𝑖]𝑝𝑖) with the weight 𝛼𝑖 − [𝛼𝑖]. Here, [·] is the integral part. The
determinant of a parabolic vector bundle 𝐸∗ is

det(𝐸∗) = det(𝐸) ⊗
(
O𝑆

(∑︁
𝑖, 𝑗

𝛼
𝑗

𝑖
𝑝𝑖

))
.

Definition 4.5.5. A parabolic SL(𝑟,C)-Higgs bundle over (𝑆, 𝐷) is a pair (𝐸∗,Θ)
consisting of a rank 𝑟 parabolic vector bundle 𝐸∗ over 𝑆 with det(𝐸∗) trivial and a
holomorphic endomorphism Θ ∈ 𝐻0(𝑆;𝐾𝑆 (𝐷) ⊗ End(𝐸∗)) called the Higgs field.
The induced endomorphisms Res𝑝𝑖 (Θ) ∈ End(𝐸∗ |𝑝𝑖 ) of the filtered vector spaces
𝐸∗ |𝑝𝑖 are called the residues of Θ at 𝑝𝑖.

In the definition above, the notation 𝐾𝑆 (𝐷) means that we allow endomorphisms to
be meromorphic on 𝐷. In this work, we only consider Higgs fields with poles of
order at most one. The bundle is then called a regular parabolic Higgs bundle.

There are notions of degree, slope, and (semi, poly) stability for Higgs bundles. The
parabolic degree of a parabolic bundle is

pdeg(𝐸∗) = deg(𝐸) +
𝑛∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1
𝛼𝑖dim(𝐸 𝑗

𝑝𝑖/𝐸
𝑗+1
𝑝𝑖 ).

The slope and (semi, poly) stability conditions are defined as in the case of Higgs
bundles on closed surfaces, using this notion of degree (see [Sim90, Section 6]).

From representations to parabolic Higgs bundles
First we review the passage from representations to parabolic Higgs bundles in
Simpson’s non-abelian Hodge correspondence [Sim90]. Keeping the same notation
as above, let Σ̃ = Σ/Γ be the universal cover and 𝜇 the hyperbolic metric on Σ that
is compatible with the holomorphic structure from 𝑆.

Fixing a reductive representation 𝜌 : Γ → SL(𝑟,C), we take the bundle C𝜌 → Σ

with flat connection ∇. By a theorem of Koszul-Malgrange, the (0, 1)-component
of ∇ gives rise to a holomorphic structure 𝜕. There is an extension to a parabolic
bundle 𝐸 → 𝑆 with respect to which ∇ extends to a logarithmic connection such
that the eigenvalues 𝑎𝑖 + 𝑖𝑏𝑖 of Res𝑝𝑖 (∇) satisfy 0 ≤ 𝑎1(𝑝𝑖) < · · · < 𝑎𝑘𝑖 (𝑝𝑖) < 1
(see [Sim90, pages 718, 724]).
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Given a Hermitian metric 𝐻 on 𝑉 = 𝐸 |Σ → Σ, we can decompose the connection
as

∇ = ∇𝐻 + Ψ𝐻 ,

where ∇𝐻 is an 𝐻-unitary connection and Ψ𝐻 ∈ Ω1(Σ,End(𝑉)) is self-adjoint.
A choice of 𝜌-equivariant harmonic map to the symmetric space 𝑓 : (Σ̃, 𝜇) →
SL(𝑟,C)/SO(𝑟,C) is equivalent to that of a harmonic Hermitian metric: one that
satisfies ∇𝐻 (∗Ψ𝐻), where ∗ is the Hodge star on Ω∗(Σ,End(𝑉)). We choose the
harmonic map so that the Hopf differential has at most a pole of order 2 at each
𝑝𝑖. The equivalent condition for the harmonic metric is that it is tame: as a family
of metrics in the symmetric space, it has at most polynomial growth (see [Sim90,
Section 2]).

From these objects we can build a parabolic Higgs bundle (𝐸∗,Θ): decompose the
components of ∇ by type as

∇ = ∇1,0
𝐻

+ ∇0,1
𝐻

+ Ψ
1,0
𝐻

+ Ψ
0,1
𝐻
.

By Koszul-Malgrange again, there is a complex structure on𝑉 with del-bar operator
𝜕
𝑉

= 𝜕 − Ψ
∗𝐻
𝐻

, so that ∇𝐻 is the Chern connection. Returning to our original
bundle 𝐸 , through this del-bar operator we obtain a new parabolic structure 𝜕

𝐸
,

with filtration at 𝑝𝑖,

𝐸 |𝑝𝑖 = Eig≥𝑎1 (𝑝𝑖) (Res𝑝𝑖 (∇𝑖)) ⊃ · · · ⊃ Eig≥𝑎𝑛𝑖 (𝑝𝑖) (Res𝑝𝑖 (∇𝑖)) ⊃ 0,

and weights 𝛼 𝑗
𝑖
= 𝑎 𝑗 (𝑝𝑖). For this set of filtrations, Θ := Ψ

1,0
𝐻

is a Higgs field with a
pole of order at most one at 𝑝𝑖 [Sim90, page 723]. Here, the parabolic Higgs bundle
is polystable. The flat condition means that 𝐻 solves Hitchin’s equation

𝐹∇𝐻 + [Θ,Θ∗𝐻 ] = 0,

where 𝐹∇𝐻 is the curvature and Θ∗𝐻 is the 𝐻-adjoint of Θ. Simpson’s work in
[Sim90, Chapters 5-7] shows that from a polystable parabolic Higgs bundle (𝐸∗,Θ)
solving the Hitchin equation with at most first order poles, one can recover the data
of a parabolic bundle (and hence a representation) with a harmonic metric.

Now we take 𝑟 = 2. Assume 𝜌 is irreducible; we leave the general case to the reader.
Reorder the punctures as 𝑝1, . . . , 𝑝𝑚, 𝑝𝑚+1, . . . , 𝑝𝑛, so that 𝜌 takes the monodromy
around 𝑝1, . . . , 𝑝𝑚 to hyperbolic isometries. We assemble the parabolic vector
bundle associated to (C𝜌,∇). Choose twist parameters 𝜃 = (𝜃1, . . . , 𝜃𝑚) ∈ R𝑚 and
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form the harmonic map 𝑓 𝜃 . In model charts around 𝑝𝑖, recall the connection may
be expressed as ∇ = 𝑑 + 𝜌(𝜁𝑖)𝑑𝑧/𝑧. The associated harmonic metric converges to a
“model metric” as we approach each 𝑝𝑖. That is, in the nice choice of charts for ∇,
the metric has a particular form that depends

• only on the image 𝜌(𝜁𝑖) if 𝜌(𝜁𝑖) is elliptic or parabolic, and

• on the image 𝜌(𝜁𝑖) and the choice of twist parameter.

The model metrics in the case of elliptic and parabolic mondoromy are worked out
in [Mon16, Examples 5 and 7]. For hyperbolic isometries, replace 𝜇 with the flat
cylinder metric 𝜇 𝑓 and take a cusp𝑈 around 𝑝𝑖 as in (4.2). Let

C∞ = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥 ∈ [0, 1], 𝑦 ∈ [0,∞)}⟨𝑧 ↦→ 𝑧 + 1⟩

be a half-infinite cylinder and 𝑘𝑟 : C∞ → 𝑈 a conformal mapping into 𝑈 that
takes [0, 1] × {0} to [0, 1] × {𝑟} linearly and then extends vertically. It is shown in
[Sag19, Section 5.2] that as 𝑟 → ∞, 𝑓 𝜃 ◦ 𝑘𝑟 : C∞ → 𝑈 converges in the 𝐶∞ sense
to a harmonic map with constant Hopf differential ℓ(𝜌(𝜁𝑖))2/4. This shows that, in
the model coordinates for ∇, the harmonic metric is determined only by the twist
parameter.

Given the data of the representation, the Higgs fieldΘ depends only on the harmonic
map. For an SL(𝑟,C) Higgs bundle,

Φ( 𝑓 𝜃) = 2𝑟trace𝐻 (Θ2). (4.20)

In this way, for our 𝑟 = 2 case, the residue of the Higgs field and the twist parameter
for the harmonic map determine each other.

The circle bundle𝑈
Assume we have representations 𝜌1, 𝜌2 : Γ → PSL(2,R) that lift to representations
to SL(2,R) ⊂ SL(2,C). Since 𝜌1, 𝜌2 lie in the split real form for SL(2,C), we
construct real bundles R2

𝜌𝑘
with volume forms 𝜔𝑘 . We can complexify to obtain

bundles (𝐸C
𝑘
,∇C

𝑘
, 𝜔C

𝑘
). As a representation of SL2(R) × SL2(R), the tensor 𝜌1 ⊗ 𝜌2

gives a real vector bundle (𝐸,∇, 𝑄), where 𝐸 = 𝐸1⊗𝐸2,∇ = ∇1⊗∇2,𝑄 = −𝜔1⊗𝜔2,
and this yields a complexification (𝐸C,∇C, 𝑄C) of (𝐸,∇, 𝑄) that is compatible with
the tensor products. We then attach Simpson’s parabolic structure.

Remark 4.5.6. In [AL18], the signature (2, 2) bilinear form𝑄 is defined as𝜔1⊗𝜔2.
We use a minus sign so that our conventions agree with that of Section 4.4.
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We now choose harmonic maps ℎ𝜃1 , 𝑓 𝜃2 for 𝜌1, 𝜌2 and form the associated Higgs
bundles ((𝐸C

𝑘
)∗, 𝜕𝐸 𝑘 ,Θ𝑘 ). From [Mon16, Lemma 3.11], the reality the representa-

tion implies that (𝐸C
𝑘
)∗ splits as a holomorphic parabolic line bundle and its inverse:

(𝐸C1 )∗ = 𝐿∗ ⊕ 𝐿
−1
∗ , (𝐸C2 )∗ = 𝑁∗ ⊕ 𝑁−1

∗ .

The parabolic degrees can be expressed in terms of the relative Euler numbers of
the representations (see [BIW10, Theorem 12]),

eu(𝜌1) = 2pdeg(𝐿∗) , eu(𝜌2) = 2pdeg(𝑁∗). (4.21)

With respect to the splittings, the harmonic metrics 𝐻𝑘 are diagonal and satisfy
det(𝐻𝑘 ) = 1, so that 𝐻𝑘 = diag(ℎ−1

𝑘
, ℎ𝑘 ), with ℎ1 ∈ 𝐻0(Σ, 𝐿−1

∗ ⊗ 𝐿∗), ℎ2 ∈
𝐻0(Σ, 𝑁−1

∗ ⊗ 𝑁∗). The Higgs fields take the form

Θ1 =

(
0 𝛼

𝛽 0

)
, Θ2 =

(
0 𝛾

𝛿 0

)
,

where 𝛼 ∈ 𝐻0(Σ, 𝐿2
∗⊗𝐾∗), 𝛽 ∈ 𝐻0(Σ, 𝐿−2

∗ ⊗𝐾∗), 𝛾 ∈ 𝐻0(Σ, 𝑁2
∗ ⊗𝐾∗), 𝐻0(Σ, 𝑁−2

∗ ⊗
𝐾∗). The bundles also come equipped with real structures for the complex structure
of 𝜕

𝐸
: 𝜏𝑘 (𝑣) = 𝐻−1

𝑘
𝜔𝑘𝑣.

As for 𝜌1 ⊗ 𝜌2 : Γ → SL(2,R) × SL(2,R) ⊂ SL(4,C), Simpson’s correspondence
is functorial with respect to the tensor product. If {𝑒𝑘 , 𝑒∗𝑘 } are local holomorphic
frames for the flat SL(2,R)-connections ∇C

𝑘
, then {𝑒1 ⊗ 𝑒2, 𝑒1 ⊗ 𝑒∗2, 𝑒

∗
1 ⊗ 𝑒2, 𝑒

∗
1 ⊗ 𝑒

∗
2}

furnishes a frame for the flat connection ∇C. Taking the associated SL(4,C)-Higgs
bundle, we write all of our data down in this frame.

• The parabolic vector bundle

𝐸C∗ = (𝐸C1 )∗ ⊗ (𝐸C2 )∗ = (𝐿∗ ⊗ 𝑁∗) ⊕ (𝐿∗ ⊗ 𝑁−1
∗ ) ⊗ (𝐿−1

∗ ⊗ 𝑁∗) ⊕ (𝐿−1
∗ ⊗ 𝑁−1

∗ ).

• The harmonic metric 𝐻 = 𝐻1 ⊗ 𝐻2 = diag(ℎ−1
1 ℎ−1

2 , ℎ1ℎ
−1
2 , ℎ

−1
1 ℎ2, ℎ1ℎ2).

• The Higgs field

Θ = Θ1 ⊗ 𝐼 + 𝐼 ⊗ Θ2 =

©«
0 𝛾 𝛼 0
𝛿 0 0 𝛼

𝛽 0 0 𝛾

0 𝛽 𝛿 0

ª®®®®®¬
.
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• The bilinear form

𝑄 = −𝜔1 ⊗ 𝜔2 =
1
2

©«
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

ª®®®®®¬
.

• The real structure 𝜏 = 𝜏1 ⊗ 𝜏2

©«
𝑣1

𝑣2

𝑣3

𝑣4

ª®®®®®¬
↦→

©«
0 0 0 ℎ1ℎ2

0 0 ℎ−1
1 ℎ2 0

0 ℎ1ℎ
−1
2 0 0

ℎ−1
1 ℎ−1

2 0 0 0

ª®®®®®¬
©«
𝑣1

𝑣2

𝑣3

𝑣4

ª®®®®®¬
.

The key observation from [AL18], which extends to the parabolic setting, is that
the real structure 𝜏 leaves invariant the two subbundles (𝐿∗ ⊗ 𝑁−1

∗ ) ⊗ (𝐿−1
∗ ⊗ 𝑁∗)

and (𝐿∗ ⊗ 𝑁∗) ⊕ (𝐿−1
∗ ⊗ 𝑁−1

∗ ). The degrees are communicated by (4.21), and hence
depend on relative Euler numbers [BIW10]. This is related to the structure of the
bundle.

Now restrict (𝐿∗ ⊗ 𝑁−1
∗ ) ⊗ (𝐿−1

∗ ⊗ 𝑁∗) and (𝐿∗ ⊗ 𝑁∗) ⊕ (𝐿−1
∗ ⊗ 𝑁−1

∗ ) to Σ, effectively
forgetting the parabolic structure for now, and set 𝐹1, 𝐹2 to be the real parts with
respect 𝜏. The proposition below is proved exactly as in [AL18, Proposition 3.2].

Proposition 4.5.7. The real vector bundle 𝐸 → Σ splits as a 𝑄-orthogonal direct
sum of two rank 2 real bundles 𝐸 = 𝐹1 ⊗ 𝐹2. With respect to 𝑄, 𝐹1 is timelike and
𝐹2 is spacelike.

We are now prepared to define the circle bundle 𝑈: it is the timelike unit circle of
𝐹1,

𝑈 = {𝑣 ∈ 𝐹1 : 𝑄(𝑣, 𝑣) = −1}.

AdS structures
We define a bundle AdS3

𝜌 → Σ to be the bundle whose fibers are the points in
each fiber of R4

𝜌1⊗𝜌2
→ Σ with 𝑄(𝑣, 𝑣) = −1. This is well-defined because 𝜌1 ⊗ 𝜌2

preserves𝑄. Each fiber is a copy of AdS3, and there is a natural inclusion𝑈 → AdS3
𝜌.

AdS3
𝜌 → Σ pulls back to a bundle 𝑝∗AdS3

𝜌 over 𝑈 with respect to the projection
𝑝 : 𝑈 → Σ. There is a tautological section 𝑠 : 𝑈 → 𝑝∗AdS3

𝜌 that reframes each
𝑣 ∈ 𝑈 as a point in 𝑝∗AdS3

𝜌. For the reader’s convenience, we write 𝑠 in local
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coordinates. For 𝑣 ∈ 𝑈, 𝑣 ∈ (𝐿∗⊗𝑁−1
∗ ) ⊗ (𝐿−1

∗ ⊗𝑁∗) means 𝑣 = (0, 𝑣1, 𝑣2, 0)𝑇 . The
conditions 𝜏𝑣 = 𝑣 and 𝑄(𝑣, 𝑣) = −1 yield |𝑣1 | = (ℎ2ℎ

−1
1 )−1/2, |𝑣1 | = (ℎ2ℎ

−1
1 )1/2.

Thus, in a local trivialization (𝑧, 𝜃) over an open set Ω × 𝑆1,

𝑠(𝑣) =
©«

0
(ℎ2ℎ

−1
1 )−1/2𝑒𝑖𝜃

(ℎ2ℎ
−1
1 )1/2𝑒−𝑖𝜃

0

ª®®®®®¬
.

The section 𝑠 pulls back via the universal covering �̃� → 𝑈 to a section of the
pullback bundle, which yields a mapping �̃� : �̃� → AdS3.

Remark 4.5.8. We are implicitly using the notion of a graph of a geometric structure
here. See [Ale19, Section 4] for details.

For closed surfaces, a computation in local coordinates [AL18, Theorem 7.1] shows
that when �̃� is the developing map of an AdS3 structure, the preimage of a circle fiber
develops bijectively to a timelike geodesic. The proof actually works on any surface,
independent of if �̃� is an immersion. So we are welcome to study the associated
map from (Σ̃, �̃�) → (Grt(2, 4), 𝑚) = (H × H, 𝜎 ⊕ (−𝜎)) from Proposition 4.5.2
instead. As a map into the Grassmanian, this is equal to 𝑠 ∧ ∇𝜃𝑠, and we can derive
an explicit expression in coordinates. We write the map into the Grassmanian as 𝐺,
and the equivalent map into (H × H, 𝜎 ⊕ (−𝜎)) as 𝐹.

Proposition 4.5.9. The associated mapping 𝐹 : (Σ̃, �̃�) → (H × H, 𝜎 ⊕ (−𝜎)) is
exactly (ℎ𝜃1 , 𝑓 𝜃2).

Proof. From the computation in local coordinates on Grt(2, 4) from [AL18, Theo-
rem 7.3], 𝐺 is harmonic. Upon passing to (H ×H, 𝜎 ⊕ (−𝜎)), 𝐹 splits as a product
of harmonic maps 𝐹 = (ℎ, 𝑓 ). We will compute the Laurent expansion of the Hopf
differentials of ℎ and 𝑓 in the usual uniformized punctured disk, see the poles have
order 2, and appeal to the uniqueness in [Sag19, Theorem 1.1]. The following
observations allow us to do so neatly.

• Φ𝑚 (𝐺) = Φ𝜎⊕(−𝜎) (𝐹) = Φ(ℎ) −Φ( 𝑓 ).

• Consider the signature-(4, 2) symmetric bilinear form on ∧2R4 defined as

𝐵(𝑣1 ∧ 𝑣2, 𝑣3 ∧ 𝑣4) = 4𝑄(𝑣1, 𝑣4)𝑄(𝑣2, 𝑣3) − 4𝑄(𝑣1, 𝑣3)𝑄(𝑣2, 𝑣4). (4.22)
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𝐵 has signature (4, 2), and Torralbo [Tor07] shows that with the metric 𝑚′

on Grt(2, 4) induced by inclusion into (∧2R4, 𝐵), (Grt(2, 4), 𝑚′) identifies
with (H × H, 𝜎 ⊕ 𝜎) (he uses a slightly different form, but we appeal to
Sylvester’s law). With respect to this metric,𝐺 is also harmonic andΦ𝑚′ (𝐺) =
Φ𝜎⊕𝜎 (𝐹) = Φ(ℎ) +Φ( 𝑓 ).

Above we use subscripts 𝑚, 𝑚′ to designate Hopf differentials for the target metric,
and the target metric for ℎ and 𝑓 is understood to be 𝜎. From this, we see

Φ(ℎ) = 1
2
(Φ𝑚′ (𝐺) +Φ𝑚 (𝐺)) , Φ( 𝑓 ) = 1

2
(Φ𝑚′ (𝐺) −Φ𝑚 (𝐺)),

so it suffices to compute these Hopf differentials in the coordinates on the Grass-
manian, where the Higgs bundle gives us nice expressions. Write ∇C

𝜕/𝜕𝑧𝑠 = 𝑠𝑧,
∇C
𝜕/𝜕𝜃𝑠 = 𝑠𝜃 , and likewise for 𝐺. In the frame {𝑒1 ⊗ 𝑒2, 𝑒1 ⊗ 𝑒∗2, 𝑒

∗
1 ⊗ 𝑒2, 𝑒

∗
1 ⊗ 𝑒

∗
2},

∇C𝜕
𝜕𝑧

= 𝜕 + 𝐻−1𝜕𝐻 +Φ

= 𝜕 +
©«
𝜕 log(ℎ−1

2 ℎ−1
1 ) 𝛾 𝛼 0

𝛿 𝜕 log(ℎ2ℎ
−1
1 ) 0 𝛼

𝛽 0 𝜕 log(ℎ−1
2 ℎ1) 𝛾

0 𝛽 𝛿 𝜕 log(ℎ1ℎ2)

ª®®®®®¬
Φ𝑚 (𝐺) = 𝑚(𝐺𝑧, 𝐺𝑧), same for 𝑚′, and

𝐺𝑧 = (𝑠 ∧ 𝑠𝜃)𝑧 = 𝑠𝑧 ∧ 𝑠𝜃 + 𝑠 ∧ 𝑠𝜃,𝑧 .

In [AL18], all of these are computed in local coordinates: set 𝑔 = (ℎ2ℎ
−1
1 )−1/2,

𝑐 = 𝑖𝑔−1𝜕𝑔, 𝑋 = 𝛾𝑔𝑒𝑖𝜃 + 𝛼𝑔−1𝑒−𝑖𝜃 , 𝑌 = 𝛽𝑔𝑒𝑖𝜃 + 𝛿𝑔−1𝑒−𝑖𝜃 , 𝑋′ = 𝑖𝛾𝑔𝑒𝑖𝜃 − 𝑖𝛼𝑔−1𝑒−𝑖𝜃 ,
𝑌 ′ = 𝑖𝛽𝑔𝑒𝑖𝜃 − 𝑖𝛿𝑔−1𝑒−𝑖𝜃 . Then, in a trivialization over an open set Ω × 𝑆1 with
coordinate (𝑧, 𝜃),

𝑠 =

©«
0
𝑔𝑒𝑖𝜃

𝑔−1𝑒−𝜃

0

ª®®®®®¬
, 𝑠𝜃 =

©«
0

𝑖𝑔𝑒𝑖𝜃

−𝑖𝑔−1𝑒−𝜃

0

ª®®®®®¬
, 𝑠𝑧 =

©«
𝑋

0
0
𝑌

ª®®®®®¬
+ 𝑐𝑠𝜃 , 𝑠𝜃,𝑧 =

©«
𝑋′

0
0
𝑌 ′

ª®®®®®¬
− 𝑐𝑠.

As in [AL18], we thus find Φ𝑚 (𝐺) is the determinant of the matrix specified by

𝐺𝑧 ∧ 𝐺𝑧 = 2𝑠𝑧 ∧ 𝑠𝜃 ∧ 𝑠 ∧ 𝑠𝜃,𝑧,

which is 8(𝛾𝛿 − 𝛼𝛽). For Hopf𝑚′ (𝐺),

𝐵(𝐺𝑧, 𝐺𝑧) = 𝐵(𝑠𝑧∧𝑠𝜃 , 𝑠𝑧∧𝑠𝜃)+𝐵(𝑠𝑧∧𝑠𝜃 , 𝑠∧𝑠𝜃,𝑧)+𝐵(𝑠∧𝑠𝜃,𝑧, 𝑠𝑧∧𝑠𝜃)+𝐵(𝑠∧𝑠𝜃,𝑧, 𝑠∧𝑠𝜃,𝑧).
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In view of (4.22), we record 𝑄(𝑠, 𝑠) = 𝑄(𝑠𝜃 , 𝑠𝜃) = −1, 𝑄(𝑠𝑧, 𝑠𝑧) = −𝑐2 + 𝑋𝑌 ,
𝑄(𝑠𝜃,𝑧, 𝑠𝜃,𝑧) = −𝑐2 + 𝑋′𝑌 ′, 𝑄(𝑠, 𝑠𝜃) = 0, 𝑄(𝑠, 𝑠𝑧) = 0, 𝑄(𝑠𝜃 , 𝑠𝑧) = −𝑐. From this we
calculate

𝐵(𝑠𝑧 ∧ 𝑠𝜃 , 𝑠𝑧 ∧ 𝑠𝜃) = 4𝑋𝑌 , 𝐵(𝑠 ∧ 𝑠𝜃,𝑧, 𝑠 ∧ 𝑠𝜃,𝑧) = 4𝑋′𝑌 ′,

and
𝐵(𝑠𝑧 ∧ 𝑠𝜃 , 𝑠 ∧ 𝑠𝜃,𝑧) = 𝐵(𝑠 ∧ 𝑠𝜃,𝑧, 𝑠𝑧 ∧ 𝑠𝜃) = 0.

Thus,
Φ𝑚′ (𝐺) = 4(𝑋𝑌 + 𝑋′𝑌 ′) = 8(𝛾𝛿 + 𝛼𝛽).

From (4.20), Φ(ℎ) = 8𝛼𝛽, Φ( 𝑓 ) = 8𝛾𝛿. Meanwhile, using the Higgs fields for the
harmonic metrics coming from ℎ𝜃 and 𝑓 𝜃 , Φ(ℎ𝜃1) = 8𝛼𝛽, Φ( 𝑓 𝜃2) = 8𝛾𝛿. Passing
to the parabolic structures, we see the residues of the Hopf differentials via the
residues of the Higgs fields. We conclude ℎ = ℎ𝜃1 , 𝑓 = 𝑓 𝜃2 , as desired. □

Definition 4.5.10. (𝜌1, 𝜃1) metric dominates (𝜌2, 𝜃2) if (ℎ𝜃1)∗𝜎 > ( 𝑓 𝜃2)∗𝜎, where
ℎ𝜃1 , 𝑓 𝜃2 are the harmonic maps for 𝜌1, 𝜌2 respectively.

𝑔1 > 𝑔2 means 𝑔1−𝑔2 is a positive definite metric. Better yet, by Proposition 4.5.9 it
is equivalent to 𝐹 being a spacelike immersion. The proposition below thus follows
immediately.

Proposition 4.5.11. The map �̃� defines a developing map if and only if we have
metric domination.

And moreover, Theorem 4A gives the next result.

Proposition 4.5.12. Choosing 𝜃1 = 𝜃2, there is a choice of conformal structure on
Σ such that we have metric domination if and only if 𝜌1 almost strictly dominates
𝜌2.

The upshot is that when we have almost strict domination, we can construct this
circle bundle 𝑈 so that the induced map �̃� → AdS3 is the developing map. The
computation of the spacelike immersion shows the bundle is the same one as in
Theorem 4C.
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Volume
Following the local computations from [AL18], the Higgs bundles can be used to
write down the AdS metric 𝑔 = (𝑔𝑖 𝑗 ) in terms of the harmonic maps data, and also
to compute the volume. Explicitly, one arrives at the formula

Vol(𝑔𝑖 𝑗 ) = 𝜋
∫
Σ

(𝐽 (ℎ) + 𝐽 ( 𝑓 ))𝑑𝑥 ∧ 𝑑𝑦, (4.23)

where ℎ and 𝑓 are the associated harmonic maps, and 𝐽 (·) denotes the Jacobian
determinant. Since infinite energy harmonic maps converge exponentially to pro-
jections onto a geodesic, both of these Jacobians can be integrated over the surface.
They also satisfy the requirements from [KM08], so that the integral is the volume
of the representation, depending only on the representation and computed via the
relative Euler number and the total rotation (see [BIW10] for details). When the
AdS3 geometric structure is complete, this recovers Tholozan’s formula for the vol-
ume of AdS3 quotients (see [Tho18, Theorem 1]). We leave it to the interested
reader to check, but it turns out that we can also arrive at the formula (4.23) above
by imitating Tholozan’s integration over the fibers in [Tho18].
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C h a p t e r 5

THE FACTORIZATION THEOREM

5.1 Introduction
A harmonic map 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) is admissible if its image is not contained in
a geodesic. There is a viewpoint that while admissible harmonic maps are abundant
in many contexts, they also reveal rigid geometric properties of the spaces on which
they live. The result of this chapter is another instance of this phenomenon. It
connects local behaviour of a harmonic map to the global complex geometry of the
underlying Riemann surface.

Theorem 5A. Suppose 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) is an admissible harmonic map, and
there is a conformal diffeomorphism ℎ : Ω1 → Ω2 between open subsets of Σ such
that 𝑓 ◦ ℎ = 𝑓 on Ω1. If ℎ is holomorphic, then there is a Riemann surface (Σ0, 𝜇0),
a holomorphic map 𝜋 : Σ → Σ0, and a harmonic map 𝑓0 : (Σ0, 𝜇0) → (𝑀, 𝜈) such
that 𝜋(Ω1) = 𝜋(Ω2) and 𝑓 factors as 𝑓 = 𝑓0 ◦ 𝜋. If ℎ is anti-holomorphic, Σ0 is a
Klein surface and 𝜋 is dianalytic.

Among other solutions to geometrically flavoured PDEs, Theorem 5A has been
known for minimal harmonic maps and pseudoholomorphic curves since the 1970s.
Osserman in [Oss70] and Gulliver in [Gul73] studied singularites of the Douglas and
Rado solutions to the Plateau problem. The only possible singularities are branch
points, which are separated into so-called true branch points and false branch points.
Osserman ruled out true branch points and made progress toward the non-existence
of false branch points in [Oss70], and Gulliver showed there are no false branch
points in [Gul73]. Alt also proved the result of Gulliver independently and in
greater generality in [Alt72] and [Alt73]. This work proves that the Douglas and
Rado solutions are immersed. For an exposition of the Plateau problem, see [Nit74],
[DHS10, Chapter 4], and [DHT10, Chapter 4].

Curiously, very few properties specific to minimal surfaces come into play in
[Gul73], but rather qualities shared by a larger class of surfaces. This prompted
a deeper study of branched immersions of surfaces, which was carried out by
Gulliver-Osserman-Royden in [GOR73]. A version of Theorem 5A holds for the
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maps considered in [GOR73]. In the next subsection we describe their theory of
branched immersions of surfaces and how minimal maps fit into the framework.

Aside from connections to the Plateau problem, the result of Gulliver-Osserman-
Royden has other applications. We would like to highlight the work of Moore in
[Moo06] and [Moo17], where he studies moduli spaces of minimal surfaces. A
map 𝑓 is somewhere injective if there is a regular point 𝑝 such that 𝑓 −1( 𝑓 (𝑝)) = 𝑝.
Moore uses Theorem 5A for minimal maps to show that a closed minimal map in
an 𝑛-manifold, 𝑛 ≥ 3, is not somewhere injective if and only if it factors through a
conformal branched covering map. The same result holds for pseudoholomorphic
curves [MS12, Proposition 2.5.1], whose moduli spaces are an active field of study.

If (Σ, 𝜇) is closed with genus at least 2 and (𝑀, 𝜈) has negative curvature, then Σ0

must have genus at least 2. The described results for minimal surfaces thus show
the somewhere injective condition is generic, for it is very rare for a closed Riemann
surface to admit a holomorphic map onto another Riemann surface with non-abelian
fundamental group.

In the next chapter, we use Theorem 5A to show that somewhere injective harmonic
maps are generic moduli spaces of harmonic maps. In [Moo06], [MS12], and
[Moo17], as well as our own work, the somewhere injective condition plays a role
in various transversality arguments.

In a different inquiry, Jost and Yau proved a version of Theorem 5A in [JY83] for
harmonic maps to Kähler manifolds, using it as a tool in their study of deformations
of Kodaira surfaces. Their work has played a role in the development of the theories
of Kähler manifolds and Higgs bundles. See the survey of Jost [Jos08] for more
information.

Minimal surfaces
Loosely following the exposition of Moore in section 4 of [Moo06], we explain how
the proof of Theorem 5A for minimal maps is deduced from the results in [GOR73].
Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be a𝐶1 map. A point 𝑝 ∈ Σ is a branch point if 𝑑𝑓 (𝑝) = 0.
We say a branch point is a good branch point of order 𝑚 − 1 if there is a choice of
coordinates 𝑧 on Σ and (𝑥1, . . . , 𝑥𝑛) on 𝑀 such that 𝑓 is described by the equations

𝑥1 = re𝑧𝑚 , 𝑥2 = im𝑧𝑚 , 𝑥𝑘 = 𝜂𝑘 (𝑧) , 𝑘 ≥ 3,

where 𝜂𝑘 ∈ 𝑜( |𝑧 |𝑚). Note that 𝑚 = 1 implies we have a regular point.
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Remark 5.1.1. These conventions could be a source of confusion. In [GOR73],
Gulliver-Osserman-Royden refer to “good branch points” as simply “branch points.”
This causes no harm in their work, but we should distinguish here.

In [GOR73], a branched immersion is a map from a surface that is regular everywhere
apart from an isolated set of good branch points. For clarity we refer to such
a map here as a good branched immersion. Gulliver-Osserman-Royden use the
representation formula of Hartman and Wintner [HW53] to show that a minimal map
is a good branched immersion (see Propositions 2.2 and 2.4 in [GOR73]). In fact,
using this same formula, Micallef and White recover finer coordinate expressions
for minimal surfaces (see [MW95, Theorem 1.]).

An order 𝑚 − 1 branch point 𝑝 of a good branched immersion is ramified of order
𝑟 − 1 if 𝑟 is the maximal non-negative integer such that there is a disk𝑈 centered at
𝑝 on which 𝑓 factors through a branched covering of degree 𝑟. If 𝑟 = 𝑚, 𝑝 is called
a false branch point, and true otherwise. We say 𝑓 is unramified if 𝑟 = 0. We now
recast one of the key results of [GOR73].

Theorem 5.1.2 (Proposition 3.19 in [GOR73]). Let Σ be a 𝐶1 surface, 𝑀 a 𝐶1

manifold, and 𝑓 : Σ → 𝑀 a 𝐶1 good branched immersion with the unique continu-
ation property and no true branch points. Then there is a 𝐶1 surface Σ0, a 𝐶1 good
branched immersion 𝜋 : Σ → Σ0, and an unramified 𝐶1 good branched immersion
𝑓0 : Σ0 → 𝑀 such that 𝑓 = 𝑓0 ◦ 𝜋.

We do not define the unique continue property of Gulliver-Osserman-Royden (see
[GOR73, page 757]), but remark that minimal maps have this property (see [GOR73,
Lemma 2.10]). The minimal case is essentially handled in [GOR73, Proposition
3.24]. If a map is conformal, one can dispense of the hypothesis that there are no
true branch points, and the objects 𝜋, Σ0, and 𝑓0 all have the same regularity as 𝑓
apart from at branch points and images of branch points.

To prove Theorem 5.1.2, Gulliver-Osserman-Royden define a relation ∼ on Σ as
follows.

1. If 𝑝1 and 𝑝2 are regular points for 𝑓 , 𝑝1 ∼ 𝑝2 if there exists open sets Ω𝑖

containing 𝑝𝑖, and an orientation preserving 𝐶1 map ℎ : Ω1 → Ω2 such that
𝑓 ◦ ℎ = 𝑓 on Ω1.
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2. If one of 𝑝1 or 𝑝2 is a branch point, then in any pair of neighbourhoods Ω𝑖

containing 𝑝𝑖 there exists neighbourhoods Ω′
𝑖
⊂ Ω𝑖 of 𝑝𝑖 consisting of only

regular points such that for all 𝑝′1 ∈ Ω′
1\{𝑝1} there exists 𝑝′2 ∈ Ω′

2\{𝑝2} such
that 𝑝′1 ∼ 𝑝′2, and for all 𝑝′2 ∈ Ω′

2\{𝑝2} there exists 𝑝′1 ∈ Ω′
1\{𝑝1} such that

𝑝′1 ∼ 𝑝′2.

Gulliver-Osserman-Royden show that this is an equivalence relation and define the
quotient 𝜋 : Σ → Σ0. They prove Σ0 has the structure of a 𝐶1 manifold and the map
𝑓0 : Σ → 𝑀 is defined by setting 𝑓0( [𝑝]) = 𝑓 (𝑝). Ramification leads to equivalent
points, so 𝑓0 is unramified.

When Σ is a Riemann surface and Σ and 𝑀 are equipped with metrics so that
𝑓 is minimal, we impose that ℎ is holomorphic. Following the proof of [GOR73,
Proposition 3.24], one can show that the transition maps onΣ0 are holomorphic away
from the branch points and extend holomorphically via the removeable singularities
theorem. One checks in coordinates that the map 𝑓0 is minimal with respect to the
conformal metric on Σ0 obtained via uniformization. The existence of a map ℎ as
in Theorem 5A amounts to saying some classes under ∼ are not singletons. The
minimal case follows directly.

Gulliver-Osserman-Royden do not consider orientation reversing maps in the defi-
nition of ∼, but their construction can be modified to allow for this. In this situation,
we may end up with a mapping onto a non-orientable surface. Moore notes this in
[Moo06], although his context is slightly different from ours. Since we could not
locate a formal proof in the literature, we explain the necessary adjustments the the
end of Section 5.4.

Harmonic maps vs. minimal maps
To prove Theorem 5A in the holomorphic case, we follow the blueprint of Gulliver-
Osserman-Royden. That is, we define an equivalence relation on Σ and take the
quotient as our candidate for the surface Σ0. However, it is not obvious how one
should define ∼. The difficulty comes from the singularities of harmonic maps, in
that

1. harmonic maps can have rank 1 singularities, which do not occur in the theory
of Gulliver-Osserman-Royden, and

2. branch points are not good branch points. At best, we can combine the
Hartman-Wintner formula with [Che76, Lemma 2.4] to see that near a branch
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point 𝑝 of order 𝑚 − 1 there is a 𝐶1 coordinate 𝑧 on the source and a 𝐶∞

coordinate on the target such that 𝑝 ↦→ 0, 𝑓 (𝑝) ↦→ 0, and 𝑓 may be expressed
𝑓 = ( 𝑓 1, . . . , 𝑓 𝑛) with

𝑓 1 = 𝑝1 , 𝑓 𝑘 = 𝑝𝑘 + 𝑟 𝑘 , 𝑘 ≥ 2,

where 𝑝1 is a spherical harmonic of degree 𝑚, 𝑝𝑘 is a spherical harmonic of
degree at least 𝑚, and 𝑟 𝑘 ∈ 𝑜( |𝑧 |𝑚).

To overcome these difficulties, we exploit the geometry of the Hopf differential. In
some sense, the Hopf differential treats rank 1 and 2 points on an equal footing.
Thus, if we define ∼ in terms of a condition on the Hopf differential, in theory we
shouldn’t encounter any difficulties due to rank 1 singularities. In practice this is
mostly true—at some points we need to refer to the Hartman-Wintner formula. As
for (ii), the Hopf differential defines a “natural coordinate” for the harmonic map
near a branch point, in which the geometry can be more easily probed. At a false
branch point, we see ramification behaviour similar to that displayed by minimal
maps.

The only missing piece of Gulliver-Osserman-Royden’s theory is the unique contin-
uation property. In Proposition 5.2.3, we show that analytic continuation of natural
coordinates for the Hopf differential induces a continuation of ℎ. Using this propo-
sition, we establish a “holomorphic unique continuation property” (Proposition
5.3.5).

Future directions.
It is tempting to conjecture that some version of Theorem 5A should hold without
the hypothesis that ℎ is conformal. The main motivation would be to improve our
understanding of somewhere injective harmonic maps. We would like to point out
that, in view of the example below, we cannot expect the map 𝜋 to be holomorphic
with respect to a complex structure on Σ0.

Let (Σ0, 𝜇0) be a closed hyperbolic surface and 𝑓0 : (Σ0, 𝜇0) → (𝑀, 𝜈) a totally
geodesic map. Fix a smooth surface Σ of genus at least 2 and a homotopy class of
maps f : 𝜋1(Σ) → 𝜋1(Σ0) with degree at least 2. Any 𝐶2 metric 𝜇 yields a unique
harmonic map 𝜋 : (Σ, 𝜇) → (Σ0, 𝜇0) in the homotopy class f. One can then find
many diffeomorphisms ℎ : Ω1 → Ω2 between open subsets of Σ such that 𝑓 ◦ℎ = 𝑓 ,
and by construction 𝑓 factors as 𝑓 = 𝑓0 ◦ 𝜋. Generically, the surface (Σ, 𝜇) will not
admit a holomorphic map onto any Riemann surface of genus at least 2.
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We simplify our study of singularities using complex analytic methods. Without the
conformal hypothesis, the only local information we have comes from the Hartman-
Wintner representation formula. If this is the main tool, then it is also natural to ask
about more general solutions to second order semiliinear elliptic systems, rather than
just harmonic maps. An analysis of singularities would be related to understanding
local behaviour of spherical harmonics.

A substitute for the unique continuation property seems to be a large hurdle. Implicit
in the proof of the unique continuation property for minimal maps is the following
result (see [GOR73, Lemma 2.10]).

Proposition 5.1.3. Let D ⊂ R2 be the unit disk. Suppose 𝑢1, 𝑢2 : D → 𝑀 are
minimal maps such that, for all open sets 𝐷1 ⊂ D containing 0, there is an open
subset 𝐷2 ⊂ D (possibly not containing 0) such that 𝑢2(𝐷2) ⊂ 𝑢1(𝐷1). Then there
exists an open subset 𝐷′ ⊂ D containing 0 such that 𝑢2(𝐷′) ⊂ 𝑢1(D).

This result above fails emphatically if we replace minimal maps with harmonic
maps, even if 𝑀 = R2. Indeed, the simple example

𝑢1(𝑥, 𝑦) = (𝑥, 𝑥𝑦) , 𝑢2(𝑥, 𝑦) = (𝑥, 𝑦)

does not satisfy Proposition 5.1.3. On the other hand, our “holomorphic unique
continuation property” provides a substitute for Proposition 5.1.3 (see Proposition
5.3.5). This is one of the reasons we expect a more general version of Theorem 5A
to be much more delicate, and we defer this investigation to a future project.
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5.2 Local properties of harmonic maps
We’ll work a lot with singular flat metrics and natural coordinates. For a holomorphic
quadratic differential Φ on Σ, a disk of radius 𝑟 centered at a point 𝑝 in the Φ-metric
shall be called aΦ-disk and written 𝐵𝑟 (𝑝). The induced distance function is denoted
𝑑 (·, ·). Although we work with different differentials in the course of our work, the
use of this notation in context should be clear.
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Analytic continuation
Until Section 5.4, let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be an admissible harmonic map with
non-zero Hopf differential Φ and let ℎ : Ω1 → Ω2 be a holomorphic map as
in the statement of Theorem 5A. We treat anti-holomorphic maps in Section 5.3.
Throughout the chapter, we let Z denote the zero locus of Φ. By restricting, we
assume Ω1 is a Φ-disk.

We use the geometry of the Hopf differential to analytically continue ℎ. Let 𝑝 ∈ Ω1

be such that Φ(𝑝) ≠ 0, and let 𝑈 ⊂ Ω1 be an open subset containing 𝑝 such
that Φ ≠ 0 in 𝑈. Given a holomorphic local coordinate 𝑧 in 𝑈, we define a local
coordinate𝑤 on ℎ(𝑈) by𝑤 = 𝑧◦ℎ−1. In these coordinates, ℎ is given by𝑤(ℎ(𝑧)) = 𝑧
and

𝑑𝑓𝑝

( 𝜕
𝜕𝑧

)
= 𝑑𝑓ℎ(𝑝)

( 𝜕
𝜕𝑤

)
∈ 𝑇 𝑓 (𝑧)𝑀 ⊗ C.

Remark 5.2.1. Here we are viewing 𝑑𝑓 as a map from 𝑇Σ → 𝑇𝑀 rather than as a
section of the endomorphism bundle 𝑇∗Σ ⊗ 𝑓 ∗𝑇𝑀 .

Choosing 𝑧 to be a natural coordinate with 𝑧(𝑝) = 0, we obtain

⟨ 𝑓𝑤, 𝑓𝑤⟩(𝑤(ℎ(𝑧))) = ⟨ 𝑓𝑧, 𝑓𝑧⟩(𝑧) = 1.

Therefore, 𝑤 defines a natural coordinate on ℎ(𝑈). We have proved the following
lemma.

Lemma 5.2.2. ℎ is a local isometry in the Φ-metric. If Ω1 is a Φ-disk then so is Ω2,
and ℎ takes a natural coordinate 𝑧 on Ω1 to a natural coordinate 𝑤 on Ω2 in which
𝑤(ℎ(𝑧)) = 𝑧.

The goal of this subsection is to prove the proposition below. In the proof we use
the notion of a maximal Φ-disk. See section 5 in [Str84] for a detailed discussion
on maximal Φ-disks. Let Z denote the zero set of Φ (which is isolated).

Proposition 5.2.3. Suppose Ω1,Ω2 are Φ-disks with no zeros of Φ and that 𝛾 :
[0, 𝐿] → Σ is a curve starting in Ω1 and that 𝛾 first strikes 𝜕Ω1 at a point 𝑞. If
there is an 𝜖 > 0 such that

min
{

inf
𝑠∈𝛾 |Ω1 ,𝑡∈Z

𝑑 (𝑠, 𝑡), inf
𝑠∈𝛾 |Ω1 ,𝑡∈Z

𝑑 (ℎ(𝑠), 𝑡)
}
≥ 𝜖

then there is a neighbourhood of 𝑞 in which ℎ can be analytically continued along
𝛾.
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Proof. We can choose an arc on 𝜕Ω1 centered at 𝑞 on which Φ ≠ 0. We then
connect the endpoints via an arc contained inside Ω1 so that the enclosed region 𝑈
is a topological disk. We pick these arcs in such a way that

min
{

inf
𝑠∈𝑈,𝑡∈Z

𝑑 (𝑠, 𝑡), inf
𝑠∈𝑈,𝑡∈Z

𝑑 (ℎ(𝑠), 𝑡)
}
≥ 𝜖/2.

The restriction of the Φ-metric to any compact region that does not intersect Z is
complete. As ℎ is an isometry in theΦ-metric, we can extend it to a map ℎ : 𝑈 → 𝑈.
Therefore, we have a well-defined point ℎ(𝑞).

For every point 𝑝 ∉ Z, there is a maximal radius 𝑟𝑝 such that we can extend any
natural coordinate centered at 𝑝 to a Φ-disk of radius 𝑟𝑝. 𝑟𝑝 does not depend on the
initial choice of natural coordinate. If 𝑑 (𝑠, 𝑡) = 𝛿, then

𝑟𝑠 − 𝛿 ≤ 𝑟𝑡 ≤ 𝑟𝑠 + 𝛿.

Let 𝑟0 = min{𝑟𝑞, 𝑟ℎ(𝑞)}. Select a point 𝑞′ ∈ 𝐵𝑟0/4(𝑞) ∩ Ω1. This point satisfies
𝑟𝑞′ ≥ 3𝑟0/4 and likewise for ℎ(𝑞′). Let 𝛿 = 𝑑 (𝑞, 𝑞′) and take a natural coordinate 𝑧
in a Φ-disk 𝐵𝛿/2(𝑞′). We restrict ℎ to this Φ-disk, and as above, we use ℎ to build
a natural coordinate 𝑤 on 𝐵𝛿/2(ℎ(𝑞′)). More precisely, we have a disk 𝐷 ⊂ C of
radius 𝛿/2 and two holomorphic maps

𝜑 : 𝐷 → 𝐵𝛿/2(𝑞′) , 𝜓 : 𝐷 → 𝐵𝛿/2(ℎ(𝑞′))

such that 𝑧 = 𝜑−1, 𝑤 = 𝜓−1. We can extend these maps to a larger disk 𝐷′ ⊂ C with
radius 3𝑟0/4. The map

𝑤−1 ◦ 𝑧 : 𝐵3𝑟0/4(𝑞′) → 𝐵3𝑟0/4(ℎ(𝑞′))

is a holomorphic diffeomorphism that agrees with ℎ on 𝐵𝛿/2(𝑞′). Since 𝐵𝑟0/2(𝑞) ⊂
𝐵3𝑟0/4(𝑞′), we see we have analytically continued ℎ to the open set Ω1 ∪ 𝐵𝑟0/2(𝑞).
From conformal invariance, the map 𝑓 ◦ ℎ is harmonic, and hence the Aronszajn
theorem [Aro57] implies 𝑓 ◦ ℎ = 𝑓 on Ω1 ∪ 𝐵𝑟0/2(𝑞). □

Via this result, we often find ourselves in the following situation: either ℎ can be
continued along an entire curve 𝛾, or we have a segment 𝛾′ ⊂ 𝛾 along which ℎ has
been continued but the endpoint of ℎ(𝛾′) is a zero of Φ.

We remark that there is no guarantee that the analytic continuation is a diffeomor-
phism. It is at least a local diffeomorphism and a local isometry for the Φ-metric.
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Harmonic singularities
Toward the proof of the main theorem, we rule out possible pathological behaviour
of harmonic maps near rank 1 singularities. We need not delve too deep into the
theory of singularities, but we invite the reader to see Wood’s thesis [Woo74] and
the paper [Woo77], in which he studies singularities of harmonic maps between
surfaces in detail.

Our key tool is the Hartman-Wintner theorem [HW53], which gives a local repre-
sentation formula for harmonic maps. Let 𝑧 be a holomorphic coordinate centered
on a disk centered at 𝑝 ∈ Σ with 𝑧(𝑝) = 0, and let (𝑥1, . . . , 𝑥𝑛) be normal (but
not necessarily orthogonal) coordinates in a neighbourhood 𝑈 of 𝑓 (𝑝) such that
𝑓 (𝑝) = 0. According to the Hartman-Wintner theorem, we can write the compo-
nents ( 𝑓 1, . . . , 𝑓 𝑛) as

𝑓 𝑘 = 𝑝𝑘 + 𝑟 𝑘 ,

where 𝑝𝑘 is a spherical harmonic (a harmonic homogeneous polynomial) of some
degree 𝑚 < ∞ and 𝑟 𝑘 ∈ 𝑜( |𝑧 |𝑚). We are allowing 𝑝𝑘 = ∞, which means 𝑓 𝑘 = 0.

By permuting the coordinates, we may assume deg 𝑝1 = min𝑘 deg 𝑝𝑘 , and deg 𝑝𝑘 ≥
deg 𝑝2 for all 𝑘 ≥ 3. Note deg 𝑝1, deg 𝑝2 < ∞, for otherwise Sampson’s result
[Sam78, Theorem 3] implies 𝑓 takes its image in a geodesic.

Lemma 5.2.4. There does not exist a sequence of points (𝑝𝑛)∞𝑛=1 ⊂ Σ converging to
𝑝 with the property that there exists a (not necessarily conformal) diffeomorphism
ℎ𝑛 taking a neighbourhood of 𝑝𝑛 to a neighbourhood of 𝑝 that leaves 𝑓 invariant.

Proof. Arguing by contradiction, suppose there is such a sequence (𝑝𝑛)∞𝑛=1. Since 𝑓
is an embedding near regular points, 𝑝must be a singular point. Choose a coordinate
𝑧 on the source and normal coordinates on the target with 𝑝 = 0, 𝑓 (𝑝) = 0. We
apply Hartman-Wintner to obtain the formula

𝑓 𝑘 = 𝑝𝑘 + 𝑟 𝑘

with the same degree assumptions as above. It is clear that there is at least one 𝑝𝑘

with deg 𝑝𝑘 = 𝑚 > 1, 𝑚 ≠ ∞.

We invoke a result of Cheng [Che76, Lemma 2.4]: there is a𝐶1 diffeomorphism from
a neighbourhood of 0 in R2 to a neighbourhood of 𝑝, taking 0 to 0 in coordinates,
and such that

𝑓 𝑘 ◦ 𝜑(𝑤) = 𝑝𝑘 (𝑤).
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As a spherical harmonic of degree 𝑚, the zero set of 𝑝𝑘 consists of 𝑚 distinct
lines going through the origin, arranged so that the angles between two adjacent
lines is constant (this is an easy consequence of homogeneity). Notice that in our
neighbourhood of 𝑝,

{𝑞 : 𝑓 𝑘 (𝑞) = 𝑓 𝑘 (𝑝)} = {𝜑(𝑤) : 𝑝𝑘 (𝑤) = 𝑝𝑘 (0)}.

Therefore, the set {𝑞 : 𝑓 𝑘 (𝑞) = 𝑓 𝑘 (𝑝)} is collection of 𝑚 disjoint 𝐶1 arcs all trans-
versely intersecting at the origin. For 𝑛 large enough, 𝑝𝑛 lies inside the coordinate
chart determined by 𝜑, and hence it lies on one of the arcs. Fixing such a 𝑝𝑛,
we use that ℎ𝑛 is a diffeomorphism to see that there should be 𝑚 − 1 more curves
transversely intersecting the line containing 𝑝𝑛, and such that 𝑓 (𝑞) = 𝑓 (𝑝) on those
curves. This is a clear contradiction. □

5.3 Holomorphic factorization
Throughout this section, we continue to assume ℎ : Ω1 → Ω2 is a holomorphic dif-
feomorphism. Following the structure of Section 3 in [GOR73], we prove Theorem
5A holds for such ℎ (although the technical details of our proofs are for the most
part quite different).

The equivalence relation

Definition 5.3.1. Given 𝑝1, 𝑝2 ∈ Σ, we define a relation ∼ by

1. If 𝑝1, 𝑝2 ∉ Z, 𝑝1 ∼ 𝑝2 if there exists open sets Ω1,Ω2 such that 𝑝𝑖 ∈ Ω𝑖 and
a holomorphic diffeomorphism ℎ : Ω1 → Ω2 such that 𝑓 = 𝑓 ◦ ℎ on Ω1.

2. If one of 𝑝1, 𝑝2 is a zero of Φ, then for any pair of neighbourhoods Ω𝑖

containing 𝑝𝑖 one can find smaller neighbourhoods Ω′
𝑖
⊂ Ω𝑖 containing 𝑝𝑖

such that for each 𝑞1 ∈ Ω′
1\{𝑝1} there exists 𝑞2 ∈ Ω′

2\{𝑝2} such that 𝑞1 ∼ 𝑞2,
and for each 𝑞2 ∈ Ω′

2\{𝑝2} there is a 𝑞1 ∈ Ω′
1\{𝑝1} such that 𝑞2 ∼ 𝑞1.

If 𝑝1 ∼ 𝑝2 then 𝑓 (Ω′
1) = 𝑓 (Ω′

2) and 𝑓 (𝑝1) = 𝑓 (𝑝2) are apparent from the definition.
Recall Z = {𝑝 ∈ Σ : Φ(𝑝) ≠ 0}.

Proposition 5.3.2. ∼ is an equivalence relation.

Proof. Reflexivity and symmetry are obvious. As for transitivity, this is clear if
𝑝1, 𝑝2, 𝑝3 are all not zeros of Φ. If at least one is a zero, we consider two cases:
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1. 𝑝1, 𝑝3 are zeros, or

2. 𝑝2 is a zero while 𝑝1, 𝑝3 are not

The other cases are trivial. Case (i) can be seen from the definitions: take Ω1,Ω2

containing 𝑝1, 𝑝2 respectively such that for all 𝑝′1 ∈ Ω1\{𝑝1} there exists 𝑝′2 ∈
Ω2\{𝑝2} with 𝑝′1 ∼ 𝑝′2. Within Ω2 we find an open set Ω′

2, and then an open set Ω′
3

containing 𝑝3 with the same property. Set

Ω′
1 = {𝑝′1 ∈ Ω1\{𝑝1} : there exists 𝑝′3 ∈ Ω′

3 such that 𝑝′1 ∼ 𝑝′3} ∪ {𝑝1}.

We can find an open disk centered at 𝑝1 inside Ω′
1 by applying the definition of ∼ to

the open sets Ω1,Ω
′
2. It is also clear that Ω′

1 is open away from 𝑝1, and hence it is
open. It is now simple to check that Ω′

1 and Ω′
3 satisfy the definition of ∼.

The second case requires more work. Select Φ-disks𝑈1,𝑈3 of radius 𝑅 > 0 around
𝑝1 and 𝑝3 respectively such that there are no points 𝑞𝑖 with 𝑞𝑖 ∼ 𝑝𝑖 and no zeros of
Φ. Let 𝑈′

1,𝑈
′
3 be Φ-disks centered at the same points with half the radius. Using

∼, we can find open sets Ω𝑖 ⊂ 𝑈′
𝑖

containing 𝑝𝑖 such that 𝑓 (Ω3) ⊂ 𝑓 (Ω1) and every
point in 𝑞 ∈ Ω3\{𝑝3} is equivalent to a point in Ω1\{𝑝1}. We shrink Ω3 to turn it
into an open disk in the Φ-metric centered at 𝑝3 with radius 𝛿 < 𝑅/2.

Let 𝑝′
𝑖
∈ Ω𝑖 be such that 𝑝′3 ∼ 𝑝′1. Viewing Ω3 in natural coordinates, let 𝛾 be the

straight line from 𝑝′3 to 𝑝3. We have a holomorphic map ℎ taking a neighbourhood
of 𝑝′3 to one of 𝑝′1 that leaves 𝑓 invariant. We analytically continue along 𝛾 as much
as we can. Either ℎ(𝛾) hits a zero of Φ or we can continue up until the endpoint.
The Φ-length of any segment of ℎ(𝛾) is at most 𝛿, and we infer ℎ(𝛾) is contained
in 𝐵𝑅/2+𝛿 (𝑝2) ⊂ 𝑈3. Thus, ℎ(𝛾(𝑡)) can never be a zero for any time 𝑡, and we
can continue to the endpoint. From the proof of Proposition 5.2.3, 𝑝3 = 𝛾(1) is
equivalent to the endpoint ℎ(𝛾(1)).

To finish the proof, we need to argue ℎ(𝛾(1)) = 𝑝1. Let 𝑞1 = ℎ(𝛾(1)). We do
know 𝑝3 ∼ 𝑞1. We claim we could have chosen 𝑅 small enough to ensure no point
other than possibly 𝑝1 is equivalent to 𝑝3. Indeed, if this is not possible, then we
get a sequence of points (𝑞𝑛)∞𝑛=1 converging to 𝑝1 such that 𝑝3 ∼ 𝑞𝑛 for all 𝑛. Using
transitivity of ∼ for points in Σ\Z, we can then construct a sequence of points 𝑞′𝑛
converging to 𝑝3 that are all equivalent to 𝑝3. This directly contradicts Lemma 5.2.4
and completes the proof. □

We use Proposition 5.3.2 to prove another useful property of ∼.
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Lemma 5.3.3. Suppose 𝑝1, 𝑝2 ∉ Z. Then there is no sequence (𝑞𝑛)∞𝑛=1 such that
𝑞𝑛 ∼ 𝑝1 for all 𝑛 and 𝑞𝑛 → 𝑝2 as 𝑛→ ∞.

Proof. Again going by way of contradiction, assume such a sequence 𝑞𝑛 exists.
Firstly, by Lemma 5.2.4, we cannot have 𝑝1 ∼ 𝑝2. Using the definition of ∼, we see
that in any pair of neighbourhoods Ω𝑖 of 𝑝𝑖, we can find points 𝑝′

𝑖
∈ Ω𝑖 such that

𝑝′1 ∼ 𝑝′2.

Let 𝛿, 𝜖 > 0 and 𝜏 = 𝜖 + 2𝛿. We choose 𝛿, 𝜖 to be small enough to ensure

1. there is no point equivalent to 𝑝1 in 𝐵𝜏 (𝑝1)\{𝑝1},

2. there is no point equivalent to 𝑝2 in 𝐵𝛿 (𝑝2)\{𝑝2}, and

3. there are no zeros of the Hopf differential in either ball.

Choose 𝑝′1 ∈ 𝐵𝜖 (𝑝1) that is equivalent to a point 𝑝′2 ∈ 𝐵𝛿 (𝑝2). In natural coor-
dinates, let 𝛾 be the straight line path from 𝑝′2 to 𝑝2. 𝛾 has length at most 𝛿, and
hence the image of any segment of 𝛾 along an analytic continuation of ℎ lies in
𝐵𝜏 (𝑝1). Thus, we can continue ℎ along 𝛾 as much as we like, and we extend to the
boundary point 𝑝2. The endpoint ℎ(𝛾(1)) is then equivalent to 𝑝2. Since 𝑝1 ≁ 𝑝2,
ℎ(𝑝2) ≠ 𝑝1.

Set 𝑞′1 = ℎ(𝑝2). Replace 𝛿, 𝜖, 𝜏 with smaller numbers 𝛿′, 𝜖′, 𝜏′ satisfying the same
relations as above and 𝑞1 ∉ 𝐵𝜏′ (𝑝1). By repeating the previous procedure we secure
another point 𝑞′2 ∼ 𝑝2 that is closer to 𝑝1. Continuing in this way, we can build a
sequence (𝑞′𝑛)∞𝑛=1 converging to 𝑝1 such that 𝑞′𝑛 ∼ 𝑝2 for all 𝑛.

We now find our contradiction. Given that both such sequences exist, 𝑓 cannot
be an embedding around 𝑝1 nor 𝑝2 and has rank 1 at both points. Choose normal
coordinates on 𝑀 centered at 𝑓 (𝑝1) = 𝑓 (𝑝2), and a conformal coordinate centered
at 𝑝1 in which 𝑓 takes the form

𝑓 𝑘 = 𝑝𝑘 + 𝑟 𝑘

as in the previous subsection. Since 𝑓 is not regular at 𝑝1, there is at least one 𝑘
such that deg 𝑝𝑘 = 𝑚 > 1, 𝑚 ≠ ∞. Choosing a conformal coordinate at 𝑝2, 𝑓 takes
the form

𝑓 𝑘 = 𝑝𝑘 + 𝑟 𝑘
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with 𝑝𝑘 a spherical harmonic and 𝑟 𝑘 decaying faster. The images of 𝑝𝑘 and 𝑝𝑘 in
R intersect on open sets, so 𝑝𝑘 is clearly non-zero. Thus, the set of points near
𝑝2 on which 𝑓 𝑘 is equal to 𝑓 𝑘 (𝑝1) is some collection of arcs intersecting at that
point. However, since deg 𝑝𝑘 > 1, we can find the same contradiction as in Lemma
5.2.4. □

The Hausdorff condition
The main result of this subsection is Proposition 5.3.4, which implies the topological
quotient of Σ by∼ is Hausdorff. We say 𝑝1 ∼′ 𝑝2 if for every pair of neighbourhoods
𝑈𝑖 containing 𝑝𝑖, there exists 𝑝′

𝑖
∈ 𝑈𝑖 with 𝑝′1 ∼ 𝑝′2.

Proposition 5.3.4. Suppose 𝑝1 ∼′ 𝑝2. Then 𝑝1 ∼ 𝑝2.

Proposition 5.3.4 is our “holomorphic unique continuation property.” Combined
with [Sam78, Theorem 3], Proposition 5.3.4 implies the following result of inde-
pendent interest.

Proposition 5.3.5. Let D ⊂ R2 be the unit disk. Suppose 𝑢1, 𝑢2 : D → 𝑀 are
harmonic maps maps such that, for all open sets 𝐷1 ⊂ D containing 0, there is
an open subset 𝐷2 ⊂ D (possibly not containing 0) such that 𝑢2(𝐷2) ⊂ 𝑢1(𝐷1).
Moreover, assume that for any subsets 𝐷′

𝑖
⊂ 𝐷𝑖 on which 𝑢𝑖 is regular such that

𝑢2(𝐷′
2) ⊂ 𝑢1(𝐷′

1), the map 𝑢−1
2 |𝑢1 (𝐷 ′

1) ◦ 𝑢1 |𝐷 ′
1

is holomorphic. Then there exists an
open subset 𝐷′ ⊂ D containing 0 such that 𝑢2(𝐷′) ⊂ 𝑢1(D).

Turning toward the proof of Proposition 5.3.4, if 𝑝1 and 𝑝2 are both not zeros of
Φ, then one can follow the argument from the proof of Proposition 5.3.2, almost
word-for-word, up until the last paragraph. We just need to note that Lemma 5.3.3
shows we can choose a Φ-disk surrounding 𝑝1 that is small enough that it contains
no point equivalent to 𝑝2. .

Going forward, we assume at least one of the two points is a zero of Φ. The main
step in the proof is the next lemma.

Lemma 5.3.6. There exists 𝛿, 𝜏 > 0 such that every 𝑝′1 ∈ 𝐵𝛿 (𝑝1)\{𝑝1} is equivalent
to a point 𝑝′2 ∈ 𝐵𝜏 (𝑝2)\{𝑝2}.

Proof. Let 𝛿, 𝜖 > 0 and 𝜏 = 𝜖 + 3𝛿. We choose 𝛿, 𝜖 to be small enough such that
𝐵𝛿 (𝑝1) ∩ 𝐵𝜏 (𝑝2) = ∅ and that in 𝐵𝛿 (𝑝1)\{𝑝1} and 𝐵𝜏 (𝑝2)\{𝑝2},
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1. we have no points equivalent to the centers, and

2. there are no zeros of Φ.

We take open sets 𝑝′1 ∈ 𝐵𝛿 (𝑝1), 𝑝′2 ∈ 𝐵𝜖 (𝑝2) with 𝑝′1 ∼ 𝑝′2, and let ℎ be the
associated holomorphic diffeomorphism. Let 𝑞 ∈ 𝐵𝛿 (𝑝1), 𝑞 ≠ 𝑝1, and let 𝛾 be
a path from a point 𝑝′1 to 𝑞. We choose 𝛾 to be either the straight line from 𝑝′1
to 𝑞, or a slight perturbation of that line to make sure the path does not touch 𝑝1.
Regardless, we can arrange so the Φ-length is bounded above by 5𝛿/2.

We analytically continue ℎ along 𝛾 as much as we can. Since the starting point
lies in 𝐵𝜖 (𝑝2), we see the image under ℎ of any segment lies in 𝐵𝜏 (𝑝2). If we can
continue ℎ along 𝛾 to the endpoint, and the endpoint of ℎ(𝛾) is not 𝑝2, then we have
𝑞 = 𝛾(1) ∼ ℎ(𝛾(1)). The only way we could not extend is if some segment of ℎ(𝛾)
touches 𝑝2. Notice that, regardless, we have a point 𝑞 ∈ 𝐵𝛿 (𝑝1) that satisfies 𝑞 ∼′ 𝑝2

(here we are relabelling 𝑞 to be the endpoint of a bad segment if that happens). We
rule this out with the lemma below.

Lemma 5.3.7. In the setting above, we can choose our Φ-disks to be small enough
so that no point 𝑞 ∈ 𝐵𝛿 (𝑝1)\{𝑝1} satisfies 𝑞 ∼′ 𝑝2.

Proof. We first show that given such a point 𝑞, we have 𝑞 ∼′ 𝑝1. Let 𝑈1,𝑈2,𝑈3 be
open sets containing 𝑝1, 𝑝2, 𝑞 respectively. Let 𝛿1, 𝛿2, 𝛿3 > 0 and find 𝑝′1 ∈ 𝐵𝛿1 (𝑝1),
𝑝′2 ∈ 𝐵𝛿2 (𝑝2) with 𝑝′1 ∼ 𝑝′2, as well as 𝑝′′2 ∈ 𝐵𝛿2 (𝑝2), 𝑞′ ∈ 𝐵𝛿3 (𝑞) with 𝑝′′2 ∼ 𝑞′.
We choose the 𝛿 𝑗 ’s so that 𝐵𝛿3+3𝛿2 (𝑞) contains no zeros of the Hopf differential,
and 𝐵𝛿𝑖 (𝑝𝑖) can only have zeros at 𝑝𝑖. We also choose the 𝛿𝑖’s so that all balls
mentioned above are contained in𝑈1,𝑈2,𝑈3 and disjoint. Let ℎ be the holomorphic
map relating 𝑝′′2 to 𝑞′. We analytically continue ℎ along a path 𝛾 from 𝑝′′2 to 𝑝′2
with length at most 5𝛿2/2 that is chosen to avoid 𝑝2. Then the image path lies
in 𝐵𝛿3+3𝛿2 (𝑞) and so we can continue to the endpoint. The endpoint ℎ(𝛾(1)) is
equivalent to 𝑝′2. If the endpoint is not 𝑞, then ℎ(𝛾(1)) ∼ 𝑝′2 ∼ 𝑝′1, and this proves
the claim. If the endpoint ℎ(𝛾(1)) is 𝑞 itself, then 𝑞 ∼ 𝑝′2 ∼ 𝑝′1, and we can find 𝑞′′

very close to 𝑞 that is equivalent to a point very close to 𝑝′1 (in particular, contained
in 𝐵𝛿1 (𝑝1)).

Therefore, we see that if the lemma is false, we can construct a sequence (𝑞𝑛)∞𝑛=1
converging to 𝑝1 such that 𝑞𝑛 ∼′ 𝑝1 for all 𝑛. Fix a 𝑞𝑛, along with a 𝛿′ > 0 such
that 𝐵4𝛿′ (𝑞𝑛) contains no zeros and no points equivalent to 𝑞𝑛 and 𝐵𝛿′ (𝑝1) has no
zeros other than possibly 𝑝1. We find 𝑞′𝑛 ∈ 𝐵𝛿′ (𝑞𝑛) and 𝑝′1 ∈ 𝐵𝛿′ (𝑝1) such that
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𝑞′𝑛 ∼ 𝑝′1. There is another point 𝑞𝑁 ∈ 𝐵𝛿′ (𝑝1) such that 𝑞𝑁 ∼′ 𝑝1. Connect 𝑝′1 to
𝑞𝑁 via a path of length at most 5𝛿′/2 that does not touch 𝑝1. Analytically continue
the associated map ℎ along this path. The image lies in 𝐵4𝛿′ (𝑞𝑛), so we can always
continue. The endpoint ℎ(𝛾(1)) ∈ 𝐵4𝛿′ (𝑞𝑛) is equivalent to 𝑞𝑁 . We claim we can
choose 𝑞𝑁 with the property that ℎ(𝛾(1)) ≠ 𝑞𝑛. To this end, if ℎ(𝛾(1)) = 𝑞𝑁 , we
take the straight line path 𝜎 from 𝑞𝑁 to 𝑞𝑁+1. According to [Str84, Theorem 8.1], if
𝑝1 is a zero of Φ of order 𝑛, then geodesics in the Φ metric are either straight lines
or the concatenation of two radial lines enclosing an angle of at least 2𝜋/(𝑛+2). By
pigeonholing, we can pass to a subsequence where every 𝑞𝑛 lies in a closed sector
of angle 𝜋/(𝑛+2) around the origin. This guarantees that the straight line path from
any 𝑞 𝑗 to 𝑞𝑘 is a geodesic in the Φ-metric and has length at most 𝛿′. As Φ(𝑞𝑛) ≠ 0,
the image ℎ(𝜎) is then a straight line contained in 𝐵4𝛿′ (𝑞𝑛) with initial point 𝑞𝑛, so
it certainly cannot terminate at 𝑞𝑛. We prove the claim by replacing 𝑞𝑁 with 𝑞𝑁+1

and taking the concatenation of our original path with the straight line 𝜎. We now
just want to show 𝑞𝑁 ∼ 𝑞𝑛, and we will have a contradiction. Toward this, it is
enough to show 𝑞𝑁 ∼′ 𝑞𝑛, since Φ does not vanish at these points.

This last step is similar to the beginning of our proof, and so we only sketch the
argument. Recall that we have 𝑝1 ∼′ 𝑞𝑛 and 𝑝1 ∼′ 𝑞𝑁 . Find smalls balls containing
𝑞𝑛, 𝑝1, and 𝑞𝑁 . Then within the ball containing 𝑝1 we have two points 𝑝′1 and 𝑝′′1 ,
with 𝑝′1 equivalent to a point near 𝑞𝑛 and 𝑝′′1 equivalent to a point near 𝑞𝑁 . Connect
𝑝′1 and 𝑝′′1 via a small arc that does not touch 𝑝1. We can arrange for the arc to stay
in a ball around 𝑞𝑛 in which it can always be continued. We thus get a point near 𝑞𝑛
that is equivalent to a point near 𝑞𝑁 . We may need to wiggle the path so the point
is not 𝑞𝑛. As discussed above, we are done. □

Returning to the proof of Lemma 5.3.6, we see that we can always extend our
chosen segments, and moreoever each 𝑞 ∈ 𝐵𝛿 (𝑝1)\{𝑝1} has an equivalent point in
𝐵𝜏 (𝑝2)\{𝑝2}. □

With Lemma 5.3.6 in hand, we are now ready to complete the proof of Proposition
5.3.4. Let Ω′

2 be the set of points in 𝐵𝜏 (𝑝2)\{𝑝2} that have an equivalent point in
𝐵𝛿 (𝑝1)\{𝑝1}. Let Ω2 = Ω′

2 ∪ {𝑝2}. By repeating the previous argument, we can
find a very small ball 𝐵𝛼 (𝑝2) such that every point in 𝐵𝛼 (𝑝2)\{𝑝2} is equivalent to
a point in 𝐵𝛿 (𝑝1)\{𝑝1}. This shows that 𝑝2 is an interior point of Ω2. Away from
𝑝2, Ω2 is open by elementary considerations. It is now simple to conclude 𝑝1 ∼ 𝑝2

by using the open sets 𝐵𝛿 (𝑝1) and Ω2.
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Ramification at branch points
We now investigate the local behaviour of the map 𝑓 near zeros of the Hopf dif-
ferential. This leads us to define a notion of ramification for branch points. Our
definition is slightly different from the one given in Section 5.1.

Lemma 5.3.8. Suppose 𝑝 is a branch point of 𝑓 , and hence a zero of Φ of some
order 𝑛. Let ℎ : Ω1 → Ω2 be a holomorphic diffeomorphism with 𝑓 ◦ ℎ = 𝑓 , and
suppose Ω1,Ω2 are both contained in a ball 𝐵𝜖 (𝑝), where 𝜖 > 0 is chosen so that
there are no other zeros and no other point is equivalent to 𝑝 in 𝐵2𝜖 (𝑝). Then, in
the natural coordinates for Φ, ℎ is a rational rotation of angle 2𝜋 𝑗/(𝑛 + 2)

Proof. Select 𝑝𝑖 ∈ Ω𝑖 with ℎ(𝑝1) = ℎ(𝑝2). Let 𝛾 : [0, 1] → 𝐵𝜖 be a straight line
path starting at 𝑝1 that terminates at the point 𝑝. We analytically continue ℎ in a
simply connected neighbourhood of 𝛾, as far as we can. Either there is an interior
point 𝑞 in the straight line that is mapped via ℎ to 𝑝, or we can continue along the
whole curve and extend to the boundary point 𝑝. In the first case, Proposition 5.3.4
guarantees 𝑞 ∼ ℎ(𝑞) = 𝑝, which by our choice of 𝜖 means 𝑞 = 𝑝, contradicting
the definition of 𝑞. In the second case, Proposition 5.3.4 yields 𝑝 ∼ ℎ(𝑝) and we
deduce ℎ(𝑝) = 𝑝.

We now prove ℎ is a rotation. Work in the interior of the extension of Ω1 in which
ℎ has been continued. If we write the Hopf differential in local coordinates as
Φ = 𝜙(𝑧)𝑑𝑧2, then

𝜙(𝑧) = 𝜙(ℎ(𝑧)) (ℎ′(𝑧))2.

In the natural coordinate for the Hopf differential this becomes

𝑧𝑛 = (ℎ(𝑧))𝑛 (ℎ′(𝑧))2.

Since we’re in a simply connected region that doesn’t touch zero we can choose a
branch of the square root. ℎ then satisfies

𝑧𝑛/2 = (ℎ(𝑧))𝑛/2ℎ′(𝑧) = 𝜕

𝜕𝑧

(ℎ(𝑧))𝑛/2+1

𝑛/2 + 1
.

Integrate to get
𝑧𝑛/2+1 = (ℎ(𝑧))𝑛/2+1 + 𝑐

for some complex constant 𝑐. Since ℎ(𝑝) = 𝑝, taking 𝑧 → 0 along 𝛾 forces 𝑐 = 0.
This implies

𝑧𝑛+2 = (ℎ(𝑧))𝑛+2

and the result is now clear. □
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Definition 5.3.9. A non-minimal harmonic map 𝑔 with Hopf differential Φ is holo-
morphically ramified of order 𝑟 − 1 if 𝑟 is the largest integer such that there exists a
Φ-diskΩ centered at 𝑝 and a holomorphic degree 𝑟 branched cover 𝜓 : Ω → 𝐷 with
one branch point at 𝑝 onto a disk 𝐷 with 𝜓(𝑝) = 0 and such that 𝜓(𝑝1) = 𝜓(𝑝2)
implies 𝑓 (𝑝1) = 𝑓 (𝑝2).

A map is called unramified if 𝑟 = 1. Clearly, a map can only ramify non-trivially at
a branch point.

Lemma 5.3.10. A non-minimal harmonic map 𝑔 with Hopf differentialΦ is ramified
of order 𝑟 > 1 at 𝑝 if and only if for all 𝜖 > 0, there exists 𝑝1, 𝑝2 ∈ 𝐵𝜖 (𝑝)\{𝑝} such
that 𝑝1 ∼ 𝑝2 and 𝑝1 ≠ 𝑝2, where 𝑝1 ∼ 𝑝2 in the sense that there is a holomorphic
map ℎ taking a neighbourhood of 𝑝1 to one of 𝑝2 that leaves 𝑔 invariant.

Remark 5.3.11. A similar statement holds for minimal maps. See [GOR73, Lemma
3.12].

Proof. If 𝑔 is ramified we take a Φ-disk Ω of 𝑝 and a map 𝜓 : Ω → 𝐷 as in
the definition. Select two points 𝑝𝑖 ≠ 𝑝 such that 𝜓(𝑝1) = 𝜓(𝑝2) as well as
neighbourhoods Ω𝑖 on which 𝜓 is injective and share the same image under 𝜓.
Setting 𝜓𝑖 = 𝜓 |Ω𝑖

, the map 𝜓−1
2 ◦ 𝜓1 : Ω1 → Ω2 is a holomorphic diffeomorphism

that leaves 𝑔 invariant and hence 𝑝1 ∼ 𝑝2. Conversely, pick 𝜖 > 0 such that there are
no other zeros of Φ in 𝐵2𝜖 (𝑝) and so we have a coordinate 𝑧 such that Φ = 𝑧𝑛𝑑𝑧2.
There exists 𝑝1, 𝑝2 ∈ 𝐵𝜖 (𝑝) with 𝑝1 ∼ 𝑝2 but 𝑝1 ≠ 𝑝2. Lemma 5.3.8 shows there
are small disks surrounding 𝑝1, 𝑝2 that are related by a rotation ℎ of the form

𝑧 ↦→ 𝑒
2𝜋𝑖 𝑗
𝑛+2 𝑧

such that 𝑔 = 𝑔 ◦ ℎ. By the Aronszajn theorem, 𝑔 is invariant under this rotation in
all of 𝑉 . Dividing by the gcd, we see 𝑔 is invariant under a rotation of the form

𝑧 ↦→ 𝑒
2𝜋𝑖 𝑗1

𝑟 𝑧,

where 𝑗1 and 𝑟 are coprime. It follows that 𝑔 ◦ 𝛼 = 𝑔 in 𝐵𝜖 (𝑝), where 𝛼 is the
rotation 𝑧 ↦→ 𝑒2𝜋𝑖/𝑟 𝑧. In these coordinates, we define a holomorphic branched
cover 𝜓 : 𝐵𝜖 (𝑝) → 𝐷 by 𝜓(𝑧) = 𝑧𝑟 , and note that 𝜓(𝑝1) = 𝜓(𝑝2) implies
𝑔(𝑝1) = 𝑔(𝑝2). □

Lemma 5.3.12. Let 𝑝 be a branch point of 𝑓 of order 𝑚 − 1 at which 𝑓 is ramified
of order 𝑟 − 1. Then there is a Φ-disk Ω of 𝑝 such that 𝑓 admits a factorization
𝑓 |Ω = 𝑓 ◦ 𝜓, where
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1. 𝜓 : Ω → 𝐷 is a holomorphic map onto a disk {|𝜁 | < 𝛿} such that 𝜓 |Ω\{𝑝} is
an 𝑟-sheeted covering map,

2. 𝑓 is harmonic with respect to the flat metric on 𝐷 and the given metric on 𝑀 ,
and

3. 𝑓 : 𝐷 → 𝑀 is unramified with a single branch point of order 𝑠 − 1 at the
origin, where 𝑠 = 𝑚/𝑟.

Proof. Define 𝑓 by 𝑓 (𝜓(𝑧)) = 𝑓 (𝑧). (i) is given and we begin with (ii). Harmonicity
is a local matter, and at any point away from zero we can choose a neighbourhood
surrounding that point where 𝜓−1 exists and we have the factorization 𝑓 = 𝑓 ◦ 𝜓−1

in that neighbourhood. Since 𝜓−1 is conformal, 𝑓 is harmonic off 0. Near 0, we
compute 𝑓 𝜁 in coordinates to realise 𝐶1 bounds. Via Schauder theory we promote
to 𝐶2 (or even 𝐶∞) bounds. This implies that the tension field is continuous and
therefore vanishes everywhere. As for (iii), we can write each component 𝑓 𝑘 in
certain coordinates as

𝑓 𝑘 = 𝑝𝑘 + 𝑟 𝑘 ,

where 𝑝𝑘 is a spherical harmonic and 𝑟 𝑘 decays faster than 𝑝𝑘 . In this form, it is
easy to check the branching orders of 𝑓 and 𝑓 .

It remains to show that 𝑓 is unramified. Toward this, let Θ be the Hopf differential
of 𝑓 and note the image of a Φ-disk under 𝜓 is a Θ-disk. Indeed, if Φ = 𝜙(𝑧)𝑑𝑧2,
Θ(𝜁) = 𝜃 (𝜁)𝑑𝜁2 in local coordinates, then

𝜙(𝑧) = 𝜃 (𝑧𝑟)
(𝜕𝑧𝑟
𝜕𝑧

)2
= 𝜃 (𝑧𝑟)𝑧2𝑟−2𝑟2.

We rearrange to see
𝜃 (𝜁) = 𝜃 (𝑧𝑟) = 𝑧𝑛−2𝑟+2𝑟−2,

and the fact that the image is a Θ-disk is derived from direct computation. If 𝑓 is
ramified, we can build another holomorphic branched covering map 𝜓′ as in Lemma
5.3.10. Since both 𝜓 and 𝜓′ have finite fibers, the composition 𝜓′ ◦ 𝜓 yields a
branched cover of degree greater than 𝑟, which is impossible. This finishes the
proof. □

Remark 5.3.13. Our computations show that the ramification order is constrained
by 𝑟 |𝑚, 𝑟 | (𝑛 + 2), and 2𝑟 ≤ 𝑛 + 2. The last condition is superfluous, since we always
have 2𝑚 ≤ 𝑛 + 2.
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Lemma 5.3.14. For 𝑖 = 1, 2, let 𝑝𝑖 be branch points of 𝑓 of order 𝑚𝑖 − 1 (we are
allowing 𝑚𝑖 = 1), ramified of order 𝑟𝑖 − 1. Then 𝑝1 ∼ 𝑝2 if and only if

1. 𝑓 (𝑝1) = 𝑓 (𝑝2),

2. 𝑚1/𝑟1 = 𝑚2/𝑟2, and

3. if 𝑠 is the common value 𝑚𝑖/𝑟𝑖, there exist maps 𝜓𝑖 : 𝑈𝑖 → 𝐷, 𝑓 𝑖 : 𝐷 → 𝑀 ,
𝜓𝑖 (𝑝𝑖) = 0, such that 𝜓𝑖 |𝑈𝑖\{𝑝} is an 𝑟𝑖-sheeted holomorphic covering map, 𝑓
factors as 𝑓 |𝑈𝑖

= 𝑓 ◦ 𝜓𝑖, and 𝑓 is a harmonic map for the flat metric on the
disk with a branch point of order 𝑠 − 1.

Proof. If 𝑚 = 0 this is trivial, so we assume 𝑚 > 0. Suppose the conditions
hold. Given any two open sets Ω𝑖 containing 𝑝𝑖, we can radially shrink our Φ-
disks to have 𝑈𝑖 ⊂ Ω𝑖 (the argument from Lemma 5.3.8 shows any two points with
𝜓𝑖 (𝑞1) = 𝜓𝑖 (𝑞2) have the same Φ-distance to 𝑝𝑖). For 𝑝′1 ∈ 𝑈1\{𝑝1} let 𝜓′

1 be
the restriction to a neighbourhood 𝑈′

1 of 𝑝′1 on which 𝜓1 is injective. Let 𝜓′
2 be

the restriction onto some neighbourhood 𝑉 ′
2 such that 𝜓2 maps 𝑈′

2 injectively onto
𝜓1(𝑈′

1). Set 𝑝′2 = 𝜓′−1
2 ◦ 𝜓′

1(𝑝
′
1) and ℎ = 𝜓′−1

2 𝜓1. ℎ is holomorphic and leaves 𝑓
invariant. The result follows.

Conversely, assume 𝑝1 ∼ 𝑝2. (i) was already discussed. We first want to show
that we can choose Φ-disks 𝑈𝑖 that satisfy condition (2) in the definition of ∼.
We take 𝜓𝑖 : 𝑈𝑖 → 𝐷𝑖 and 𝑓𝑖 : 𝐷𝑖 → 𝑀 as in Lemma 5.3.12. If 𝑝′1 ∈ 𝑈1 is
equivalent to 𝑝′2 ∈ 𝑈2, then combining our reasoning from Proposition 5.3.2 with
Proposition 5.3.4 shows 𝑑 (𝑝1, 𝑝

′
1) = 𝑑 (𝑝2, 𝑝

′
2). We’ve run this type of argument a

few times at this point, but we feel a duty to elaborate. Pick subdisks 𝑈′
𝑖
⊂ 𝑈𝑖 that

satisfy condition (2) and balls 𝐵𝛿 (𝑝1), 𝐵𝜖 (𝑝2) contained in the subdisks, such that
in 𝐵2𝛿 (𝑝1) and 𝐵𝜖+2𝛿 (𝑝2) there are no points equivalent to 𝑝1, 𝑝2 respectively and
no other possible zeros of Φ. Find 𝑝′1 ∈ 𝐵𝛿 (𝑝1)\{𝑝1} and 𝑝′2 ∈ 𝐵𝜖 (𝑝2)\{𝑝2} with
𝑝′1 ∼ 𝑝′2. Take the straight line path 𝛾 from 𝑝′1 to 𝑝1 and analytically continue ℎ
along 𝛾 as much as we can. The image of any segment of this path under ℎ is also a
straight line contained in 𝐵𝜖+2𝛿 (𝑝2). We now have two possibilities:

1. the path ℎ(𝛾) runs into 𝑝2 before we have finished extending, or

2. we can extend ℎ to the boundary point 𝛾(1) = 𝑝1.
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In the first scenario, we obtain 𝑑 (𝑝2, 𝑝
′
2) ≤ 𝑑 (𝑝1, 𝑝

′
1). In the latter, Proposition

5.3.4 ensures ℎ(𝛾(1)) ∼ 𝑝1 ∼ 𝑝2, so that ℎ(𝛾(1)) = 𝑝2. Regardless of the situation,
we have

𝑑 (𝑝′2, 𝑝2) ≤ 𝑑 (𝑝′1, 𝑝1).

To reverse the argument for the other inequality, we go via a straight line from 𝑝′2
to 𝑝2. For any segment 𝛾′ along which we can continue, the length of ℎ(𝛾′) is now
bounded above by 𝑑 (𝑝′1, 𝑝1) < 𝛿. Thus, we can continue along the whole curve so
long as we don’t hit 𝑝1. In the same way as above we get the opposite inequality.
This is the desired result.

Using the definition of ∼, we can now assume the Φ-disks𝑈𝑖 are such that 𝑓 (𝑈1) =
𝑓 (𝑈2) and that for all 𝑝′1 ∈ 𝑉1, 𝑝′1 ≠ 𝑝1, there is 𝑝′2 ∈ 𝑉2, 𝑝′2 ≠ 𝑝2, such that 𝑝′1 ∼ 𝑝′2,
and vice versa. We construct a holomorphic diffeomorphism 𝐺 : 𝐷1 → 𝐷2 such
that

𝑓 2 ◦ 𝐺 = 𝑓 1.

Let 𝑤1 ∈ 𝐷1\{0}. We take a small neighbourhood of 𝑤1 and a lift to an open set
via 𝜓1 such that the restriction of 𝜓1 is injective. Let 𝑤′

1 be the given preimage
under 𝜓1. There is then a point 𝑤′

2 ∈ 𝑉2 related by a holomorphic map such that 𝑓
agrees in neighbourhoods surrounding 𝑤′

1 and 𝑤′
2. Set 𝑤2 = 𝐺 (𝑤1) = 𝜓2(𝑤′

2). We
claim there can be no other point with this property. If there was such a 𝑤′, then
we would have 𝑤 ∼ 𝑤′ with respect to the corresponding equivalence relation for
𝑓 2. However, we know the map 𝑓 2 is unramified, and by Lemma 5.3.10 we can
choose our disks small enough that there are no two distinct points in 𝐷2 with this
property. The association 𝑤1 ↦→ 𝑤′

1 defines our map 𝐺. If we set 𝐺 (0) = 0, then
we see 𝐺 is a diffeomorphism from 𝐷1\{0} → 𝐷2\{0}, because we can invert the
construction. The map 𝐺 is holomorphic off {0}. Since it is bounded near 0, it
extends to a holomorphic diffeomorphism on all of 𝐷1.

From Lemma 5.3.12 the branching order of 𝑓 𝑖 is 𝑚𝑖/𝑟𝑖 − 1, and since 𝐺 is a
diffeomorphism, it is clear that these branching orders agree. Defining 𝐷 = 𝐷1 and
𝑓 to be the common map 𝑓

2 ◦𝐺 = 𝑓 1, 𝜓1 = 𝜓1, 𝜓2 = 𝐺−1 ◦𝜓2, (iii) can be verified
easily. □

Constructing the Riemann surface
Preparations aside, we build the covering space. Our work here is drawn from
Propositions 3.19 and 3.24 in [GOR73]. Let Σ0 denote the space of equivalence
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classes of Σ with respect to ∼, equipped with the quotient topology. We denote by
𝜋 : Σ → Σ0 the projection map.

Proposition 5.3.15. Σ0 is an orientable surface.

Proof. For each 𝑝 ∈ 𝑀 let𝑈 be a neighbourhood of 𝑝 with no other point equivalent
to 𝑝 and as in Lemma 5.3.12, so that we have a map 𝜓 : 𝑈 → 𝐷, a harmonic map
𝑓 : 𝐷 → 𝑀 , and a factorization 𝑓 = 𝑓 ◦𝜓. Let𝑈 = {[𝑞] : 𝑞 ∈ 𝑈}. To prove such a
set is open, we show any 𝜋−1(𝑈) ⊂ Σ is open. If 𝑝1 ∈ 𝜋−1(𝑈), then there is 𝑝2 ∈ 𝑉
such that 𝑝1 ∼ 𝑝2. Then we can find neighbourhoods Ω𝑖 containing 𝑝𝑖 with Ω2 ⊂ 𝑈
and such that for each 𝑝′1 ∈ Ω1 there exists 𝑝′2 ∈ Ω2 with 𝑝′1 ∼ 𝑝′2. This implies the
𝑈 define an open cover of Σ0.

On each 𝑈 we have a map 𝜓 : 𝑈 → 𝐷 given by 𝜓( [𝑞]) = 𝜓(𝑞). We will see that
these maps define charts. If 𝑞1, 𝑞2 ∈ 𝑈 are such that 𝑞1 ∼ 𝑞2, then 𝜓(𝑞1), 𝜓(𝑞2)
are equivalent with respect to 𝑓 and hence we can choose𝑈 so that 𝜓(𝑞1) = 𝜓(𝑞2),
since 𝑓 is unramified. This proves 𝜓 is well-defined.

For injectivity, suppose [𝑝1], [𝑝2] ∈ 𝑈 are such that 𝜓( [𝑝1]) = 𝜓( [𝑝2]). Choosing
representatives 𝑝1, 𝑝2, either 𝑝1 = 𝑝2 = 𝑝 or neither of them is equal to 𝑝. In the
second case, since 𝜓 is a holomorphic covering map on𝑈\{𝑝} we can use it to build
a holomorphic diffeomorphism from a neighbourhood of 𝑝1 to a neighbourhood of
𝑝2. Since 𝑓 = 𝑓 ◦ 𝜓 on𝑈, this map leaves 𝑓 invariant.

As for continuity and openness, the argument is the same as the one found in
[GOR73, page 779]. The Hausdorff condition is immediate from Proposition 5.3.4.
Σ0 is orientable because 𝜋 respects the orientation of Σ. □

There exists a continuous map 𝑓0 : Σ0 → 𝑀 such that 𝑓 = 𝑓0 ◦ 𝜋, defined by
𝑓0( [𝑝]) = 𝑓 (𝑝).

Proposition 5.3.16. There exists a complex structure on Σ0 so that 𝜋 : Σ → Σ0 is
holomorphic and the map 𝑓0 is harmonic with respect to the conformal metric 𝜇0

obtained via uniformization.

Proof. We use the collection of charts specified in Lemma 5.3.14. Let (𝑈1, 𝜓1)
and (𝑈2, 𝜓2) be two charts for Σ0 arising from open sets 𝑈1,𝑈2 centered at points
𝑝1, 𝑝2. We have maps 𝜓𝑖 : 𝑈𝑖 → 𝐷𝑖, 𝜓𝑖 : 𝑈𝑖 → 𝐷𝑖, 𝜋 : Σ → Σ0, and harmonic
maps 𝑓 𝑖 : 𝐷𝑖 → 𝑀 such that 𝑓 = 𝑓 𝑖 ◦ 𝜓𝑖, 𝜓𝑖 = 𝜓𝑖 ◦ 𝜋. We show the map

𝜓2 ◦ 𝜓
−1
1 : 𝜓1(𝑈1 ∩𝑈2) ⊂ 𝐷1 → 𝜓2(𝑈1 ∩𝑈2) ⊂ 𝐷2
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is holomorphic.

By the removeable singularities theorem, it suffices to check holomorphy away from
the copies of 0 in 𝐷𝑖. Let [𝑞] ∈ 𝑈1 ∩ 𝑈2 be so that 𝜓𝑖 ( [𝑞]) ≠ 0, and choose a
neighbourhood𝑈 around [𝑞] and𝑈′ ⊂ 𝜋−1(𝑈) such that

1. 0 ∉ 𝜓𝑖 (𝑈),

2. the map 𝜋 |𝑈 ′ : 𝑈′ → 𝑈 is injective, and so we can define an inverse 𝜋−1 :
𝑈 → 𝑈′, and

3. the holomorphic map 𝜓𝑖 is injective in𝑈′, so that we can define a holomorphic
inverse 𝜓−1

𝑖
: 𝜓𝑖 (𝑈′) → 𝑈′.

Note that 𝜓𝑖 (𝑈′) = 𝜓𝑖 (𝑈). Clearly, the map 𝜓2 ◦ 𝜓−1
1 is holomorphic in 𝜓1(𝑈).

Meanwhile, since we can invert 𝜋, we obtain

𝜓2 ◦ 𝜓
−1
1 = (𝜓2 ◦ 𝜋−1

0 ) ◦ (𝜓1 ◦ 𝜋−1)−1 = 𝜓2 ◦ 𝜓−1
1 .

It follows that the map in question is holomorphic near [𝑞], and hence everywhere.

In holomorphic local coordinates, the map 𝜋 is of the form 𝑧 ↦→ 𝑧 or 𝑧 ↦→ 𝑧𝑛, so it
is surely holomorphic. From conformal invariance of the harmonic map equation,
𝑓0 = 𝑓 𝑖 ◦ 𝜓𝑖 is harmonic away from images of branch points of 𝜋. The argument of
Lemma 5.3.12 shows 𝑓0 is globally harmonic. □

This completes the proof of Theorem 5A for holomorphic diffeomorphisms.

5.4 Klein surfaces
We explain the adjustments required to prove Theorem 5A for anti-holomorphic
diffeomorphisms ℎ : Ω1 → Ω2.

Preparations.
We begin with a review of Klein surfaces. More details on the theory of Klein
surfaces can be found in the book [AG71]. Set

C+ = {𝑧 ∈ C : Im𝑧 ≥ 0}

to be the closed upper half plane.
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Definition 5.4.1. LetΩ ⊂ C+ be open. A function 𝑓 : Ω → C is (anti-)holomorphic
if there is an open set 𝑈 ⊂ C containing Ω such that 𝑓 extends to an (anti-
)holomorphic function from𝑈 → C.

Definition 5.4.2. A map between open subsets of C is dianalytic if its restriction to
any component is holomorphic or anti-holomorphic.

Definition 5.4.3. Let 𝑋 be a topological surface, possibly with boundary. A diana-
lytic atlas on 𝑋 is a collection of pairs U = {(𝑈𝛼, 𝜑𝛼)} where

1. 𝑈𝛼 is an open subset of 𝑋 , 𝑉𝛼 is an open subset of C+, and 𝜑𝛼 : 𝑈𝛼 → 𝑉𝛼 is a
homeomorphism.

2. If𝑈𝛼 ∩𝑈𝛽 ≠ ∅, the map

𝜑𝛼 ◦ 𝜑−1
𝛽 : 𝜑𝛽 (𝑈𝛼 ∩𝑈𝛽) → 𝜑𝛼 (𝑈𝛼 ∩𝑈𝛽)

is dianalytic.

A Klein surface is a pair 𝑋 = (𝑋,U).

Closely related is the notion of a Real Riemann surface.

Definition 5.4.4. A Real Riemann surface is the data (𝑋, 𝜏) of a Riemann surface
𝑋 and an anti-holomorphic involution 𝜏 : 𝑋 → 𝑋 .

Given a Real Riemann surface (𝑋, 𝜏), the quotient 𝑋/𝜏 has the structure of a
Klein surface, and as a matter of fact every Klein surface 𝑋 arises in this fashion
(see Chapter 1 in [AG71]). The associated Real Riemann surface is called the
analytic double, and it is unique up to isomorphism in the category of Real Riemann
surfaces. The boundary of the Klein surface corresponds to the fixed-point set of
the involution.

Definition 5.4.5. A harmonic (minimal) map on a Klein surface is a continuous
map that lifts to a harmonic (minimal) map on the analytic double with respect to
the conformal metric obtained via uniformization.

To prove Theorem 5A for anti-holomorphic maps, as previously done we define
an equivalence relation ∼ and build a dianalytic atlas on the topological quotient
Σ0 = Σ/∼. Before we get into details, we make an important reduction: we apply
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the holomorphic case of Theorem 5A to Σ and acquire a new Riemann surface Σ′,
as well as maps 𝜋 : Σ → Σ′, 𝑓 ′ : Σ′ → 𝑀 . The key property of the pair (Σ′, 𝑓 ′) is
that equivalences classes under Definition 5.3.1 are singletons.

We define a relation ∼ on Σ by taking Definition 5.3.1, but this time insisting the
maps involved are merely conformal rather than holomorphic.

Lemma 5.4.6. Given 𝑝 ∈ Σ, there is at most one other point 𝑞 ∈ Σ′ such that 𝑝 ∼ 𝑞.

Proof. Suppose 𝑝, 𝑞1, 𝑞2 are distinct points and 𝑝 ∼ 𝑞1 and 𝑝 ∼ 𝑞2. If all points are
not in Z, then we have anti-holomorphic maps ℎ1, ℎ2 relating to 𝑞1, 𝑞2 to 𝑝. The
composition ℎ2 ◦ ℎ−1

1 is then a holomorphic map relating 𝑞1 to 𝑞2, which means they
are equivalent for Definition 4.1.8, and this is impossible. If at least one of them is
a zero, then we can find disjoint neighbourhoods Ω containing 𝑝 and Ω𝑖 containing
𝑞𝑖 such that every point in Ω1\{𝑞1} is equivalent to a point in Ω\{𝑝}, and every
point in Ω\{𝑝} is equivalent to a point in Ω2\{𝑞2}. This brings us to the non-zero
case. □

By the previous lemma, transitivity for ∼ holds vacuously. Accordingly, the proof
of the lemma below is trivial.

Lemma 5.4.7. ∼ is an equivalence relation.

Proof of the main theorem.
Referencing our earlier work, we prove Theorem 5A for anti-holomorphic ℎ. Hence-
forth we abuse notation and set Σ = Σ′, 𝑓 = 𝑓 ′.

The first thing to note is that ℎ is an orientation-reversing isometry for the Φ-metric.
Indeed, if Φ does not vanish on an open subset𝑈 ⊂ Ω1 and 𝑧 is a natural coordinate
for Φ, then the function

𝑤 = 𝜄 ◦ 𝑧 ◦ ℎ−1

defines a holomorphic coordinate on ℎ(𝑈), where 𝜄 is the complex conjugation
operator on the disk. In this coordinate, 𝑤(ℎ(𝑧)) = 𝑧, and it can be easily checked
that

𝑑𝑓𝑝

( 𝜕
𝜕𝑧

)
= 𝑑𝑓ℎ(𝑝)

( 𝜕
𝜕𝑤

)
∈ 𝑇 𝑓 (𝑧)𝑀 ⊗ C.

We infer
⟨ 𝑓𝑤, 𝑓𝑤⟩ = 1
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and furthermore
⟨ 𝑓𝑤, 𝑓𝑤⟩ = ⟨ 𝑓𝑤, 𝑓𝑤⟩ = 1.

As in Lemma 5.2.2, we find that 𝑤 is a natural coordinate for Φ. The result follows.

Moreover, we can analytically continue ℎ exactly as we did in Proposition 5.2.3.
Moving toward the main proof, we follow the proof of Lemma 5.3.6, word-for-
word, and note that Lemma 5.3.7 is immediate from Lemma 5.4.6. The proof of the
analogue of Proposition 5.3.4 follows. As for ramification, we do see new behaviour.

Lemma 5.4.8. Suppose 𝑝 is a zero of Φ of order 𝑛 ≥ 0. Let ℎ : Ω1 → Ω2 be
an anti-holomorphic diffeomorphism with 𝑓 ◦ ℎ = 𝑓 , and so that Ω1,Ω2 are both
contained in a ball 𝐵𝜖 (𝑝), where 𝜖 > 0 is chosen so that there are no other zeros
and no other point is equivalent to 𝑝 in 𝐵2𝜖 (𝑝). Then, in the natural coordinates for
Φ,

ℎ(𝑧) = 𝑒
2𝜋𝑖 𝑗
𝑛+2 𝑧

on its domain.

Proof. We follow the proof of Lemma 5.3.8, except now we have a map ℎ that
satisfies

𝑧𝑛 = (ℎ(𝑧))2
(𝜕ℎ
𝜕𝑧

)2
.

As in the proof of Lemma 5.3.8, ℎ is defined in a simply connected open set
whose distance to zero can be taken to be arbitrarily small. We observe that ℎ is
holomorphic, and take a branch of the square root and integrate to derive

ℎ(𝑧) = 𝑒−
2𝜋𝑖 𝑗
𝑛+2 𝑧

for some 𝑗 = 0, 1, . . . , 𝑛 + 1. We conjugate to finish the proof. □

The lemma implies that in a neighbourhood of a ramification point 𝑝, 𝑓 is invariant
under the map

𝜓(𝑧) = 𝑒
2𝜋𝑖 𝑗
𝑛+2 𝑧.

This is an anti-holomorphic involution that fixes every point on the line

L = {𝑟𝑒
𝜋𝑖 𝑗

𝑛+2 : −1 < 𝑟 < 1}

and acts by reflection across this line on all other points.

Lemma 5.4.9. Let 𝑝 and 𝜓 be as above. If 𝜓(𝑞) = 𝑞, then 𝑞 has no equivalent
points with respect to ∼.
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Proof. 𝜓 is two-to-one in a neighbourhood of 𝑞. Suppose there exists 𝑞′ ∈ Σ with
𝑞 ∼ 𝑞′. Then 𝑞′ ∉ 𝐵𝜖 (𝑝). Using the definition of ∼, we can find a small disk 𝐵𝜖 ′ (𝑞)
and points 𝑝1, 𝑝2 ∈ 𝐵𝜖 ′ (𝑞) with 𝑝1 ∼ 𝑝2, but we can also find a point 𝑞′′ near 𝑞′

such that 𝑝1 ∼ 𝑞′′. This contradicts Lemma 5.4.6. □

We deduce the following.

Lemma 5.4.10. Every 𝑞 ∈ 𝐵𝜖 (𝑝)\L is equivalent to 𝜓(𝑞) and only 𝜓(𝑞).

We say 𝑓 anti-holomorphically ramifies near 𝑝 if 𝑓 is invariant under an anti-
holomorphic involution in a neighbourhood of 𝑝. In contrast to the holomorphic
definition, 𝑓 can anti-holomorphically ramify near rank 1 singularities. If 𝑓 does
ramify at 𝑝, we form the quotient

K = 𝐵𝜖 (𝑝)/𝜓

by identifying points 𝑧 and 𝜓(𝑧). This has the structure of a Klein surface with
boundary, the boundary being identified with L.

Lemma 5.4.11. 𝑝 ∈ Σ satisfies [𝑝] = {𝑝} if and only if 𝑓 ramifies at 𝑝.

Proof. We need only to show that every point at which 𝑓 is unramified admits an
equivalent point. Looking toward a contradiction, suppose there exists 𝑝 ∈ Σ with
[𝑝] = {𝑝} and at which 𝑓 does not ramify and choose 𝜖 > 0 so that no two points
are equivalent in 𝐵𝜖 (𝑝) and that there are no zeros of Φ in 𝐵2𝜖 (𝑝).

We claim [𝑞] = {𝑞} for every 𝑞 ∈ 𝐵𝜖 (𝑝). If not, there is a 𝑞 ∈ 𝐵𝜖 (𝑝) that admits
an equivalent point 𝑞′ ≠ 𝑞. Let ℎ be the anti-holomorphic diffeomorphism relating
a neighbourhood of 𝑞 to one of 𝑞′. In coordinates, analytically continue ℎ along
a straight line 𝛾 from 𝑞 to 𝑝. It follows from our assumption {𝑝} = [𝑝] that no
segment ℎ(𝛾′) for 𝛾′ ⊂ 𝛾 can touch 𝑝, for otherwise we get a point equivalent to 𝑝.
Thus, we can continue to the endpoint, and the endpoint of ℎ(𝛾) is 𝑝 itself. This
implies

𝑑 (𝑝, 𝑞) = 𝑑 (𝑝, 𝑞′),

which contradicts our choice of 𝜖 > 0, and therefore settles the claim.

With the claim in hand, we define a map

𝜏 : Σ → Σ
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as follows. If [𝑞] = {𝑞}, set 𝜏(𝑞) = 𝑞. If [𝑞] = {𝑞, 𝑞′}, we put 𝜏(𝑞) = 𝑞′. If 𝑓
is unramified at 𝑞 and [𝑞] = {𝑝, 𝑞}, then 𝜏 is an anti-holomorphic diffeomorphism
near p. If [𝑞] = {𝑞}, then our claim above shows it is the identity map in a
neighbourhood of 𝑞. If 𝑓 ramifies at 𝑞, 𝜏 acts like the map 𝜓 considered above. In
any event, 𝜏 is real analytic. Since we know the set {𝑞 : | [𝑞] | = 2} is non-empty,
𝜏 is globally anti-holomorphic and moreover cannot fix the point 𝑝. This gives a
contradiction. □

We now come to the main goal. Simply take the anti-holomorphic map 𝜏 defined in
the proof above. Checking on a topological base forΣ, it is clear that 𝜏 is a continuous
and open mapping. As 𝜏2 = 1, it is an anti-holomorphic diffeomorphism of Σ. The
quotient

Σ0 = Σ/𝜏 = Σ/∼

is the sought Klein surface.

Remark 5.4.12. We can read off an atlas as follows. If 𝑝 is not a ramification point,
∼ identifies a small neighbourhood of 𝑝 with no ramification points to some other
neighbourhood. The coordinate chart near 𝑝 then gives the chart on Σ0. Transition
maps can be holomorphic or anti-holomorphic. If 𝑝 is a ramification point, the
quotient gives us a space K as above, with two different choices for coordinates:
natural coordinates for Φ, or the complex conjugation of those coordinates. Both
holomorphic and anti-holomorphic transition maps exist. We omit the technical
details.

With regard to Theorem 5A, we are left to discuss the projection 𝜋 : Σ → Σ0 and
the harmonic map 𝑓 . The remark gives coordinate expressions for 𝜋 in which we
see it is dianalytic. Σ is actually the analytic double of Σ0, and 𝑓 clearly descends
to a continuous map 𝑓0 on Σ0 that is harmonic by definition. This finishes the proof
of Theorem 5A.

Minimal Klein surfaces
For completeness, we extend the work of Gulliver-Osserman-Royden on minimal
maps to the anti-holomorphic case. To the author’s knowledge, the result of this
subsection is new.

We begin with a minimal map 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) and anti-holomorphic ℎ : Ω1 →
Ω2 such that 𝑓 ◦ ℎ = 𝑓 . As in our approach for non-minimal maps, we first apply
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[GOR73, Proposition 3.24] to assume Σ has no points that are holomorphically
related. We then define ∼ exactly as in Section 5.1, but allow the diffeomorphisms
involved to be conformal. The application of their result assures that Lemma 5.4.6
goes through for ∼. The proof of Proposition 3.14 in [GOR73] applies to the map
𝑓 , which proves the relation ∼ is Hausdorff.

For ramification, the distinction is thatΦ = 0, so we cannot apply the usual methods.
At the same time, all singular points are good branch points. Recall from Section
5.1 that near a branch point 𝑝 of order 𝑚 we can find a neighbourhood of 𝑝 with
a holomorphic coordinate 𝑧 and coordinates (𝑥1, . . . , 𝑥𝑛) around 𝑓 (𝑝) so that 𝑓 is
given by

𝑥1 = re𝑧𝑚 , 𝑥2 = im𝑧𝑚 , 𝑥𝑘 = 𝜂𝑘 (𝑧) , 𝑘 ≥ 3,

where 𝜂𝑘 (𝑧) ∈ 𝑜( |𝑧 |𝑚). If we have distinct 𝑝1, 𝑝2 in this neighbourhood with
𝑝1 ∼ 𝑝2, then the anti-holomorphic map ℎ that relates the two must satisfy

(ℎ(𝑧))𝑚 = 𝑧𝑚 .

Consequently, ℎ is of the form

ℎ(𝑧) = 𝑒
2𝜋𝑖 𝑗
𝑚 𝑧

for some 𝑗 = 0, 1, . . . , 𝑚 − 1. Up until Lemma 5.4.11, almost word-for-word, one
can run through the rest of the proof of the anti-holomorphic case for non-harmonic
maps. The only difference is that we use coordinate disks rather than natural
coordinates for a holomorphic differential. The analogue of Lemma 5.4.11 can be
worked out without difficulty.

Lemma 5.4.13. In this setting, 𝑝 ∈ Σ satisfies [𝑝] = {𝑝} if and only if 𝑓 ramifies
at 𝑝.

Proof. Even if 𝑓 is minimal, analytic continuation is possible. Given a curve 𝛾
starting in Ω1, we can analytically continue ℎ along 𝛾 as long as 𝛾 and ℎ(𝛾) stay
sufficiently far away from the set

{𝑝 ∈ Σ : [𝑝] intersects the branch set of 𝑓 }.

To do so, we first can assume 𝑓 is a diffeomorphism on Ω𝑖 and injective on Ω𝑖. If 𝑞
is the first point at which 𝛾 strikes 𝜕Ω1, then ℎ(𝑞) is well-defined. We choose disks
𝑈1 and 𝑈2 around 𝑞 and ℎ(𝑞) respectively such that 𝑓 |

𝑈𝑖
is a diffeomorphism. We
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then invoke the unique continuation property of Gulliver-Osserman-Royden to find
a smaller disk𝑈′

1 ⊂ 𝑈1 such that 𝑓 (𝑈′
1) ⊂ 𝑈2. Setting𝑈′

2 = 𝑓 |−1
𝑈2
( 𝑓 (𝑈′

1)), the map

𝑓 |−1
𝑈 ′

2
◦ 𝑓 |𝑈 ′

1
: 𝑈′

1 → 𝑈′
2

is a conformal diffeomorphism that continues ℎ, and is therefore anti-holomorphic.
This establishes the continuation result. We also note that [GOR73, Proposition
3.14] implies that if 𝛾 is a curve along which we have continued ℎ, then 𝑝 ∼ ℎ(𝑝)
for all 𝑝 in the image of 𝛾.

We suppose there is a point 𝑝 at which 𝑓 is unramified and such that [𝑝] = {𝑝}.
Choose a coordinate disk Ω around 𝑝 in which no two points are equivalent. We
show that under this assumption we must have [𝑞] = {𝑞} for all 𝑞 ∈ Ω. If not,
then there is a 𝑞 ∈ Ω and a 𝑞′ ∉ Ω such that 𝑞 ∼ 𝑞′, and an anti-holomorphic
diffeomorphism ℎ relating a neighbourhood of 𝑞 to one of 𝑞′. We analytically
continue ℎ along a simple curve from 𝑞 to 𝑝 that does not touch any point that
is equivalent to a branch point of 𝑓 . It is easy to build such a curve, since the
branch set is discrete, and equivalence classes can have only two points. Using the
reasoning from Lemma 5.4.11, we can continue along all of 𝛾 and ℎ(𝛾(1)) = 𝑝.
Now, note that by assumption there is no pair 𝑝1, 𝑝2 ∈ 𝐵𝜖 (𝑝) with 𝑝1 ∈ 𝛾( [0, 1])
and 𝑝1 ∼ 𝑝2. Taking 𝛾 to the endpoint gives that ℎ(𝛾(𝑡)) lies outside 𝐵𝜖 (𝑝) for
𝑡 ∈ [0, 1] sufficiently close to 1. This contradicts ℎ(𝑝) = 𝑝, and hence yields
[𝑞] = {𝑞} for all 𝑞 ∈ Ω. We can now conclude the proof exactly as we did in
Lemma 5.4.11. □

The remainder of the content in the previous subsection goes through verbatim. The
resulting map from the Klein surface to 𝑀 is minimal.
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C h a p t e r 6

MODULI SPACES OF HARMONIC SURFACES

6.1 Introduction
The theory of harmonic maps from surfaces is well developed and has proved to
be a useful tool in geometry and topology. There are many broadly applicable
existence theorems for harmonic maps, but, compared to other objects like minimal
surfaces, their geometry is neither well behaved nor easy to understand. Locally,
the most we can say about a random harmonic map from a surface is that, in a
good choice of coordinates, up to small perturbations it agrees with an 𝑛-tuple of
harmonic homogeneous polynomials (see the Hartman-Wintner theorem [HW53]).
And in contrast, minimal maps are weakly conformal and hence have much nicer
local properties. In this chapter, we consider moduli spaces of harmonic surfaces
and study their generic qualitative behaviour through transversality theory. The goal
is twofold: to find nice properties shared by a wide class of harmonic maps, and to
further develop the methods and analysis for future problems.

Throughout the chapter, let Σ be a closed and orientable surface of genus 𝑔 ≥ 2,
and let 𝑀 be an orientable 𝑛-manifold, 𝑛 ≥ 3. Fixing integers 𝑟 ≥ 2 and 𝑘 ≥ 1, as
well as 𝛼, 𝛽 ∈ (0, 1) with 𝛼 ≥ 𝛽, denote by 𝔐(Σ) an open and connected subset of
the space of 𝐶𝑟,𝛼 hyperbolic metrics on Σ, and by 𝔐(𝑀) an open and connected
subset of the space of 𝐶𝑟+𝑘,𝛽 metrics on 𝑀 . Set 𝐶 (Σ, 𝑀) to be the space of 𝐶𝑟+1,𝛼

mappings from Σ → 𝑀 . These all have 𝐶∞ Banach manifold structures.

Definition 6.1.1. In this chapter, a homotopy class f of maps from Σ to 𝑀 is
admissible if the subgroup f∗(𝜋1(Σ)) ⊂ 𝜋1(𝑀) is not abelian.

In the settings in this chapter, this agrees with the definition from the previous
chapter. For the whole chapter, we fix an admissible class homotopy class f of maps
from Σ to 𝑀 and assume the following.

Technical Assumption. For all (𝜇, 𝜈) ∈ 𝔐(Σ) × 𝔐(𝑀), there exists a unique
harmonic map 𝑓𝜇,𝜈 : (Σ, 𝜇) → (𝑀, 𝜈) in the class f, and 𝑓𝜇,𝜈 is a non-degenerate
critical point of the Dirichlet energy functional.
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The technical assumption is satisfied by a wide range of manifolds 𝑀 and families of
metrics. The central example is that of a closed manifold 𝑀 , with 𝔐(𝑀) consisting
of negatively curved metrics. In Section 6.2, we give more examples that are of
interest in geometry and topology.

With this assumption, 𝔐 = 𝔐(Σ) × 𝔐(𝑀) may be viewed as a moduli space
of harmonic surfaces inside 𝑀 . More precisely, a result of Eells-Lemaire [EL81,
Theorem 3.1] (a consequence of the implicit function theorem for Banach manifolds)
implies that around each pair of metrics (𝜇0, 𝜈0) ∈ 𝔐, there is a neighbourhood
𝑈 ⊂ 𝔐 such that the mapping from𝑈 → 𝐶 (Σ, 𝑀) given by

(𝜇, 𝜈) ↦→ 𝑓𝜇,𝜈

is 𝐶𝑘 . By uniformization and conformal invariance of energy, the restriction to
hyperbolic metrics on the source does not give up any information.

Our first result concerns the notion of a somewhere injective map, which is originally
from symplectic topology.

Definition 6.1.2. A 𝐶1 map 𝑓 : Σ → 𝑀 is somewhere injective if there exists a
regular point 𝑝 ∈ Σ such that 𝑓 −1( 𝑓 (𝑝)) = {𝑝}. Otherwise, we say 𝑓 is nowhere
injective.

Remark 6.1.3. When the somewhere injective harmonic map 𝑓 has isolated singular
set, or more generally the set 𝐴( 𝑓 ) from Section 6.4 is connected, it is injective on
an open and dense set of points. This follows from the Aronszajn theorem [Aro57,
page 248] (see also [Sam78, Theorem 1]).

We let 𝔐∗ ⊂ 𝔐 denote the space of metrics (𝜇, 𝜈) such that 𝑓𝜇,𝜈 is somewhere
injective.

Theorem 6A. The subset 𝔐∗ ⊂ 𝔐 is open, dense, and connected.

Remark 6.1.4. A minimal map on a Riemann surface is nowhere injective if and
only if it factors through a holomorphic branched cover [GOR73, Section 3], or
the surface admits an anti-holomorphic involution that leaves the map invariant
[Sag21a, Theorem 1.1]. Pseudoholomorphic maps from a surface to a symplectic
manifold have the same property (see [MS12, Chapter 2.5]). Harmonic maps, in
contrast, do not have the same rigidity.
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Remark 6.1.5. These results for minimal surfaces, or more general branched im-
mersions in the sense of [GOR73], are proved using the factorization theorem of
Gulliver-Osserman-Royden. The analogue of this theorem for harmonic surfaces is
the subject of our paper [Sag21a]. Fittingly, the factorization theorem for harmonic
maps [Sag21a, Theorem 1.1] is a crucial ingredient in the proof of Theorem 6A.

Secondly, we prove a set of results about the structure of the moduli space near
somewhere injective maps. The somewhere injective condition, while not obviously
significant, comes into play in transversality arguments used for moduli spaces of
minimal surfaces (see the paper of Moore [Moo06] and the book that followed
[Moo17, Chapter 5]) and pseudoholomorphic curves (see [MS12, Chapter 3]). In
some sense, nowhere injective surfaces play the same role as reducible connections
in Yang-Mills moduli spaces.

Theorem 6B. Suppose dim𝑀 ≥ 4, and let (𝜇, 𝜈) be such that 𝑓𝜇,𝜈 is somewhere
injective and has isolated singularities. Then there exists a neighbourhood 𝑈 ⊂ 𝔐

containing (𝜇, 𝜈) such that the space of harmonic immersions in𝑈 is open and dense.
If dim𝑀 ≥ 5, then the space of harmonic immersions in𝑈 is also connected.

Theorem 6C. Suppose dim𝑀 ≥ 5, and let (𝜇, 𝜈) be such that 𝑓𝜇,𝜈 is somewhere
injective and has isolated singularities. Then there exists a neighbourhood 𝑈 ⊂ 𝔐

containing (𝜇, 𝜈) such that the space of harmonic embeddings in𝑈 is open and dense.
If dim𝑀 ≥ 6, then the space of harmonic immersions in𝑈 is also connected.

We obtain the following corollary.

Corollary 6D. If dim𝑀 ≥ 4, then any somewhere injective harmonic map with
isolated singularities can be approximated by harmonic immersions. If dim𝑀 ≥ 5,
then any such harmonic map can be approximated by harmonic embeddings. The
embeddings can be chosen to be immersed.

At the very end of the chapter, we explain our use of the hypothesis that 𝑓 has
isolated singularities and the possibility of removing it. We propose the following
conjecture.

Conjecture 6E. The weak Whitney theorems hold for harmonic surfaces. That is,

1. if dim𝑀 ≥ 4, the space of harmonic immersions in 𝔐 is open and dense, and
connected if dim𝑀 ≥ 5, and
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2. if dim𝑀 ≥ 5, the space of harmonic embeddings in 𝔐 is open and dense,
and connected if dim𝑀 ≥ 6.

The weak Whitney theorems [Whi36, Theorem 2] state that a regular enough map be-
tween manifolds 𝑔 : 𝑋 → 𝑌 can be approximated by immersions if dim𝑌 ≥ 2 dim 𝑋 ,
and by embeddings if dim𝑌 ≥ 2 dim 𝑋 + 1. Combined with the Whitney trick, they
yield the Whitney immersion theorem and the Whitney embedding theorem. One
can give modern proofs of the weak theorems via transversality theory. The conjec-
ture holds for Moore’s moduli spaces of minimal surfaces [Moo17, Theorem 5.1.1
and 5.1.2].

Outline of chapter and proofs
In the next section, we define harmonic maps and associated Jacobi operators,
and give examples of moduli spaces of harmonic surfaces. These examples mostly
require 𝔐(𝑀) to be a space of non-positively curved metrics. We prove Proposition
6.2.11 to show that some positive curvature is allowed. In Section 6.3, we compute
precise expressions near singularities for reproducing kernels for Jacobi operators.
We proceed by constructing parametrices for some objects that resemble Green’s
operators.

The proof of Theorem 6A is contained in Sections 6.4 and 6.5. Section 6.4 is the
reduction to a transversality lemma and Section 6.5 is the proof of that lemma.
Since the details are technical, we explain the proof here. For disjoint open disks
𝑃,𝑄 ⊂ Σ and 𝛿 > 0, we set

D(𝑃,𝑄, 𝛿) = {(𝜇, 𝜈) ∈ 𝔐 : 𝑑𝜈 ( 𝑓 (𝑃), 𝑓 (𝑄)) > 𝛿, 𝑃, 𝑄 ⊂ ΣSR ( 𝑓 )},

whereΣSR ( 𝑓 ) is the super-regular set, to be defined in Section 6.4. For Theorem 6A,
it is enough to prove that somewhere injective maps are open, dense, and connected
in restriction to 𝐷 (𝑃,𝑄, 𝛿)’s. We define a map

Θ : Σ2 × (𝑃 ×𝑄 × D) → 𝑀2 × 𝑀2,

Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) = ( 𝑓𝜇,𝜈 (𝑟), 𝑓𝜇,𝜈 (𝑠), 𝑓𝜇,𝜈 (𝑝), 𝑓𝜇,𝜈 (𝑞)).

If Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) avoids the diagonal, then 𝑓𝜇,𝜈 is somewhere injective. So, if
we show that Θ is transverse to the diagonal, then the preimage has codimension
2 dim𝑀 ≥ 6. Since Σ2 has dimension 4, the projection of Θ−1(𝐿) to D should be
dense and connected. One complication is that this projection may not itself be a
manifold, so we have to prove connectedness directly using transversality theory.
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The real substance of the proof is to show that Θ is transverse to 𝐿. We argue
by contradiction and suppose that Θ is not a submersion at points that map to 𝐿.
Invoking an existence result for reproducing kernels, this implies that at some pair of
metrics (𝜇, 𝜈), there is a non-zero section 𝑋 : Σ → Γ(F) such that for all variations
through harmonic maps 𝑉 ∈ Γ(F),∫

⟨J𝑉, 𝑋⟩𝑑𝐴𝜇 = 0. (6.1)

Above, F is the pullback bundle 𝑓 ∗𝜇,𝜈𝑇𝑀 , Γ(F) is the space of sections, and J is the
Jaocbi operator for 𝑓𝜇,𝜈. 𝑋 satisfies the Jacobi equation away from its singularities,
and we show that these singularities can be resolved, making use of the local
expressions from Section 6.3. 𝑋 thus extends to a global Jacobi field, which is our
contradiction.

To resolve the singularities, we vary the target metric on 𝑀 to find harmonic
variations 𝑉 such that (6.1) gives us good information. One could also vary the
source metric on Σ, but it shouldn’t work too well: in some situations where the
homotopy class f is compressible and the original harmonic surface 𝑓𝜇,𝜈 (Σ) ⊂ 𝑀 is
totally geodesic, we will have 𝑓𝜇,𝜈 (Σ) = 𝑓𝜇+ ¤𝜇,𝜈 (Σ) for all admissible variations ¤𝜇.
Thus, we can’t in general perturb away from a nowhere injective map.

The singularities of 𝑋 are at intersection points of harmonic disks 𝑓 (Ω1), 𝑓 (Ω2) ⊂
𝑀 , and we divide into cases: either the disks are tangential at the intersection
point or they are not. When not only are they tangential but also 𝑓 (Ω1) = 𝑓 (Ω2)
and 𝑓 |−1

Ω2
◦ 𝑓 |Ω1 is conformal, then our approach simply cannot work. To give

one example of what can go wrong, if 𝑓 factors through a holomorphic branched
covering map (in which case the homotopy class is compressible) and Ω1 and Ω2 are
related by a covering transformation, then no matter how we vary the target metric,
the harmonic maps will continue to factor in this way and identify the two sets. This
is where we use the factorization theorem [Sag21a, Theorem 1] to say that the set
of metrics giving rise to harmonic maps with this property can be removed from
the moduli space without disconnecting it. The tangential case is then settled using
the super-regular condition (Section 6.4). For the non-tangential case, we choose
variations supported in what we call “fat cylinders” that give J𝑉 more support near
some places than others.

In Section 6.6, we prove Theorems 6B and 6C, yet again by transversality theory.
Right now, we explain only Theorem 6B, since Theorem 6C is a similar argument.
We trivialize the complexified tangent bundle of 𝑀 and let 𝜎 be the projection onto



166

the C𝑛 factor. Then we define a map

Ψ : Σ̃ ×𝔐 → C𝑛,Ψ(𝑝, 𝜇, 𝜈) = 𝜎( 𝑓𝑧 (𝑝)),

where 𝑧 is the uniformizing parameter for the metric 𝜇 on the universal cover Σ̃.
We try to show that Ψ is transverse to {0} and the submanifold of C𝑛 consisting of
rank 1 vectors. We achieve this near (𝜇, 𝜈) that yield somewhere injective harmonic
maps with isolated singularities. Modulo transversality details, this gives Theorem
6B. As in the proof of Theorem 6A, we suppose transversality fails, and then we
find there must be a section 𝑋 : Σ → Γ(F) that is annihilated by all J𝑉 , where 𝑉
ranges over variations through harmonic maps.

The contradiction is different from that of Theorem 6A. We attach a particular
holomorphic structure to the complexification E of F. Using somewhere injectivity
and a lemma of Moore [Moo06], we find there is an open setΩ on which 𝑋 is the real
part of a holomorphic section of a special holomorphic line bundle L ⊂ E. Making
use of the isolated singularity condition, we analytically continue the “imaginary
part,” so that 𝑋 is the real part of a globally defined meromorphic section 𝑍 of L.
From Section 6.3 we see that 𝑍 has at most a simple pole at one point. We then
check that the order of this section does not match up with the degree of L. This
final contradiction can also be seen through Riemann-Roch.

Acknowledgements
In the case of 3-manifolds, an argument for Theorem 6A is given in an unpublished
manuscript of Vladimir Marković [Mar18]. The proof had a few small issues, which
have been resolved here, and also more needs to be done for the argument to work
in all dimensions.

I thank Vlad for allowing me to absorb content from his manuscript, and for the
many discussions that we had related to this project. This work here is intended to be
independent and self-contained, and the reader should not have to consult [Mar18].
I have tried to keep similar notation.

6.2 Moduli spaces
Before we begin, we review transversality theorems for Banach manifolds.

Transversality theorems
We state the transversality theorems used in the proofs. For more background
on transversality theory and Banach manifolds in general, we refer the reader to
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[AMR88] and [Moo17, Chapter 1].

Definition 6.2.1. Let 𝑋,𝑌 be 𝐶1 manifolds, 𝑓 : 𝑋 → 𝑌 a 𝐶1 map, and 𝑊 ⊂ 𝑌 a
submanifold. We say 𝑓 is transversal to 𝑊 at a point 𝑥 ∈ 𝑋 if 𝑓 (𝑥) = 𝑦 ∉ 𝑊 or if
𝑓 (𝑥) = 𝑦 ∈ 𝑊 and

• the inverse image (𝑇𝑥 𝑓 )−1(𝑇𝑦𝑊) splits and

• the image 𝑇𝑥 𝑓 (𝑇𝑥𝑋) contains the closure of the complement of 𝑇𝑦𝑊 in 𝑇𝑦𝑌 .

We say 𝑓 is transversal to𝑊 if we have transversality for every 𝑥 ∈ 𝑋 .

The central transversality theorem is below.

Theorem 6.2.2 (Transversality Theorem for Banach Manifolds). Let 𝑋,𝑌 be 𝐶𝑟

manifolds (𝑟 ≥ 1), 𝑓 : 𝑋 → 𝑌 a 𝐶𝑟 map, and 𝑊 ⊂ 𝑌 a 𝐶𝑟 submanifold. Then if 𝑓
is transverse to𝑊 ,

• 𝑓 −1(𝑊) is a 𝐶𝑟 submanifold of 𝑋 and

• if𝑊 has finite codimension in 𝑌 , then codim𝑋 𝑓
−1(𝑊) = codim𝑌 𝑊 .

Let 𝐴, 𝑋,𝑌 be 𝐶𝑟 manifolds and 𝛿 : 𝐴 → 𝐶𝑟 (𝑋,𝑌 ) a map. We say 𝛿 is a 𝐶𝑟

representation if and only if the evaluation map 𝛽 : 𝐴 × 𝑋 → 𝑌 given by

𝛽(𝑎, 𝑥) = 𝛿(𝑎) (𝑥)

is 𝐶𝑟 .

Theorem 6.2.3 (Parametric Transversality Theorem). Let 𝐴, 𝑋,𝑌 be 𝐶𝑟 manifolds
and 𝛿 : 𝐴 → C𝑟 (𝑋,𝑌 ) a 𝐶𝑟 representation. Let 𝑊 ⊂ 𝑌 be a 𝐶𝑟 submanifold and
let 𝛽 be the associated evaluation map. Let 𝐴𝑊 be the set of 𝑎 ∈ 𝐴 such that 𝛿(𝑎)
is transverse to𝑊 . Assume that

• 𝑋 has finite dimension 𝑛 and𝑊 has finite codimension 𝑞 in 𝑌 ,

• 𝐴 and 𝑋 are second countable,

• 𝑟 > max(0, 𝑛 − 𝑞), and

• the evaluation map is transverse to𝑊 .



168

Then 𝐴𝑊 is residual in 𝐴.

Recall that a subset of a topological space is residual if it is a countable intersection
of dense open subsets. By the Baire Category theorem, residual sets are dense.

Conventions
Given two non-negative functions defined on some set 𝑋 , we say

𝑓 ≲ 𝑔

if there exists a constant 𝐶 > 0 such that 𝑓 (𝑥) ≤ 𝐶𝑔(𝑥) for all 𝑥 ∈ 𝑋 . We define
𝑓 ≳ 𝑔 similarly. If 𝑋 = R, and 𝑓 , 𝑔, ℎ are functions from 𝑋 → [0,∞), we write

𝑓 = 𝑔 +𝑂 (ℎ)

to mean | 𝑓 − 𝑔 | ≲ ℎ. Given Banach spaces (𝐵𝑖, | | · | |𝑖), equipped with an inclusion
map 𝐵1 → 𝐵2, we write

| |𝑉 | |2 ≲ | |𝑉 | |1

to mean there is a uniform constant 𝐶 > 0 such that for all 𝑉 ∈ 𝐵1, we have
| |𝑉 | |2 ≤ 𝐶 | |𝑉 | |1.

Throughout, the space of 𝐶𝑛,𝛼 sections of a 𝐶𝑛,𝛼 vector bundle 𝑉 over 𝑀 is denoted
Γ(𝑉). Here we are allowing 𝑛 = ∞ and 𝑛 = 𝜔 (real analytic). Given a map
𝑓 : Σ → 𝑀 , we let F = 𝑓 ∗𝑇𝑀 be the pullback of 𝑇𝑀 over Σ. If 𝑓 is𝐶𝑛,𝛼 then F is a
𝐶𝑛,𝛼 bundle. As in the preliminaries chapter,𝑇𝑀C = 𝑇𝑀⊗C is the complexification
of the tangent bundle of 𝑀 and E := 𝑓 ∗𝑇𝑀C is the pullback bundle. Also recall
that 𝑓𝑧 = 𝑑𝑓 ( 𝜕𝜕𝑧 ) is a local holomorphic section of E (see the preliminaries chapter).

Under the technical assumption, 𝑓𝜇,𝜈 will be the unique harmonic map from (Σ, 𝜇) →
(𝑀, 𝜈). When working with fixed (𝜇, 𝜈) we sometimes write 𝑓 = 𝑓𝜇,𝜈. The con-
nections ∇F and ∇E will be used quite often, so henceforward we condense

∇ := ∇F, ∇E

when the context is clear. A section 𝑊 ∈ Γ(E) may be uniquely written as 𝑊 =

Re(𝑊) + 𝑖Im(𝑊), where Re(𝑊), Im(𝑊) ∈ Γ(F).

Jacobi operators
The tension field may be seen as a map

𝜏 : 𝔐 ×𝐶 (Σ, 𝑀) → Γ(F).
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For (𝜇, 𝜈) fixed, the derivative in the 𝐶 (Σ, 𝑀) direction is the Jacobi operator
[EL81], which we are about to define. The Dirichlet energy is non-degenerate—or
the technical assumption from the introduction is satisfied—if and only if the Jacobi
operator has no kernel.

Let 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) be a 𝐶2 (not necessarily harmonic) map and as before
set F = 𝑓 ∗𝑇𝑀 . Let Δ denote the Laplacian induced by the connection ∇F and
𝑅 = 𝑅𝑀 the curvature tensor of the Levi-Civita connection of 𝜈. The Jacobi
operator J 𝑓 = J : Γ(F) → Γ(F) is defined

J𝑉 = Δ𝑉 − trace𝜇 𝑅(𝑑𝑓 ,𝑉)𝑑𝑓 , 𝑉 ∈ Γ(F).

If 𝑧 = 𝑥 + 𝑖𝑦 is a local complex parameter and the conformal density is 𝜇, then

J𝑉 = −∇𝑥∇𝑥𝑉 − ∇𝑦∇𝑦𝑉 − |𝜇 |−1(𝑅( 𝑓𝑥 , 𝑉) 𝑓𝑥 + 𝑅( 𝑓𝑦, 𝑉) 𝑓𝑦). (6.2)

The Jacobi operator is a second order strongly elliptic linear operator and it is
essentially self-adjoint in the sense that∫

Σ

⟨J𝑉,𝑊⟩𝑑𝐴 =

∫
Σ

⟨𝑉, J𝑊⟩𝑑𝐴

for all 𝑉,𝑊 ∈ Γ(F). Above, recall that ⟨·, ·⟩ = ⟨·, ·⟩𝜈 is the inner product on F
induced by the metric 𝜈 on 𝑀 . The integration over Σ is with respect to the volume
form 𝑑𝐴 = 𝑑𝐴𝜇.

Remark 6.2.4. The assumption 𝑟 ≥ 3 guarantees the coefficients of the operator
are at least 𝐶2. This is relevant for the regularity theory, and we use this implicitly
throughout the chapter.

Calculus on vector bundles
The following Banach spaces will come into play.

• For 1 ≤ 𝑝 < ∞, (𝐿𝑝 (F), | | · | |𝑝) is the space of 𝐿𝑝-bounded measurable
sections of F.

• For 𝑘 ∈ Z+, 1 ≤ 𝑝 < ∞, (𝑊 𝑘,𝑝 (F), | | · | |𝑘,𝑝) is the Sobolev space of 𝑘-
times weakly differentianble sections with 𝐿𝑝 derivatives with respect to the
Levi-Civita connection.

• For 𝑘 ∈ Z+, 𝛼 ∈ (0, 1), (𝐶𝑘,𝛼 (F), | | · | |𝑘,𝛼) is the space of 𝑘-times differentiable
sections whose 𝑘 𝑡ℎ derivatives are 𝛼-Hölder.
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• We can define these spaces in restriction to any open set Ω ⊂ Σ. For 𝐿𝑝 (F|Ω),
we use the notation | | · | |𝑝,Ω, and likewise for the other Banach spaces.

Above, if the vector bundle is only 𝐶𝑛,𝛼, we restrict 𝑘 ≤ 𝑛. For precise definitions
and other basic facts, see [Nic21, Chapter 10]. If we choose a different metric
or connection on F, the relevant Sobolev spaces are equal as sets of sections, and
the identity map is bicontinuous. Thus, it is unambiguous to write 𝑊 𝑘,𝑝 (F) (and
likewise for the other spaces), while not specifying the choices involved.

Now we recall some results relevant to the Jacobi operator. A Jacobi field is a
section 𝑉 ∈ Γ(F) such that J𝑉 = 0. We again refer the reader to [Nic21, Chapter
10]. From the basic elliptic theory, essential self-adjointness implies the following.

Proposition 6.2.5. Suppose there are no non-zero Jacobi fields. Then for every
𝑝 > 1 and 0 < 𝛼 < 1, the operator J extends to a family of isomorphisms J :
𝑊2,𝑝 (F) → 𝐿𝑝 (F), J : 𝐶2,𝛼 (F) → 𝐶0,𝛼 (F). Each such isomorphism preserves the
subspace of smooth sections.

The result below is a consequence of the Weyl lemma for linear elliptic operators.

Proposition 6.2.6. Let Ω ⊂ Σ be open and 𝑉 be a measurable section over Ω such
that | |𝑉 | |𝑝,Ω < ∞ for some 1 < 𝑝 < ∞. If J𝑉 = 0 weakly on Ω, then 𝑉 is as regular
as the bundle Γ(F), and J𝑉 ≡ 0 on Ω.

Examples of moduli spaces
Here we list some examples of manifolds 𝑀 and spaces of metrics 𝔐(𝑀) satisfying
the technical assumption.

Example 6.2.7. 𝑀 is a closed 𝑛-manifold that admits a metric of negative curvature,
with 𝔐(𝑀) consisting of negatively curved metrics.

In this case, Sampson proves in [Sam78, Theorem 4] that there are no smooth Jacobi
fields. In fact, he proves a more general result.

Theorem 6.2.8 (Sampson, Theorem 4 in [Sam78]). Let (𝑀, 𝜈) be a closed Rie-
mannian manifold with non-positive curvature. Suppose 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈) is an
admissible harmonic map and there is at least one point 𝑝 at which all sectional
curvatures of 𝑀 at 𝑓 (𝑝) are strictly negative. Then there are no non-zero Jacobi
fields.
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Compactness of the target is not important.

Example 6.2.9. 𝑀 is not necessarily compact, all 𝔐(𝑀) are negatively curved, and
the induced mapping between the fundamental groups is irreducible.

This class of examples includes admissible classes 𝑓 such that at least one simple
closed curve is mapped by f∗ to a class whose geodesic length is positive. Even
more specific examples include convex cocompact manifolds of negative curvature,
such as quasi-Fuchsian 3-manifolds.

To demonstrate the level of generality, we prove a slight extension of Sampson’s
result that allows for some positive curvature.

Definition 6.2.10. A pair (𝜇, 𝜈) ∈ 𝔐 is f-admissible if (𝑀, 𝜈) is non-positively
curved and there exists a map 𝑓 ∈ f ∩ 𝐶 (Σ, 𝑀) that is harmonic with respect to
(𝜇, 𝜈) and a point 𝑝 ∈ Σ such that all sectional curvatures of 𝑀 are negative at 𝑓 (𝑝).

As discussed, f-admissibility implies uniqueness of the harmonic map.

Proposition 6.2.11. Suppose (𝜇, 𝜈) is f-admissible, and let 𝜈𝑛 be a sequence of
metrics converging to 𝜈. Furthermore, assume 𝑓 𝑗 : (Σ, 𝜇) → (𝑀, 𝜈 𝑗 ) is a sequence
of harmonic maps converging to a harmonic map 𝑓 : (Σ, 𝜇) → (𝑀, 𝜈). Then J 𝑓 𝑗
admits no non-trivial 𝐶2 Jacobi fields for sufficiently large 𝑗 .

This gives another example of interest.

Example 6.2.12. A sufficiently small neighbourhood of an f-admissible pair inside
the moduli space of all Riemannian metrics.

Proof. Since the harmonic maps 𝑓 𝑗 , 𝑓 are homotopic through 𝐶𝑛+1,𝛼 maps, the
bundles 𝑓 ∗

𝑗
𝑇𝑀 = F 𝑗 and 𝑓 ∗𝑇𝑀 = F are isomorphic in the 𝐶𝑛+1,𝛼 category. We

identify them all with the bundle F. Under this identification, F inherits a family
of Riemannian metrics ⟨·, ·⟩ 𝑗 with corresponding Levi-Civita connections ∇ 𝑗 , as
well as elliptic operators J 𝑓 𝑗 . Since 𝜈 𝑗 → 𝜈 and 𝑓 𝑗 → 𝑓 , we have convergence of
associated objects ⟨·, ·⟩ 𝑗 → ⟨·, ·⟩ := ⟨·, ·⟩𝜈, ∇ 𝑗 → ∇ := ∇𝜈, and J 𝑓 𝑗 → J 𝑓 in the
relevant topologies. Henceforth, rename J 𝑗 = J 𝑓 𝑗 .

One could write our Sobolev spaces more precisely as

𝑊 𝑘,𝑝 (F, 𝜇, 𝜈,∇).
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We write 𝑊1,2(F) to denote the usual Sobolev space for F, and 𝑊1,2(F 𝑗 ) for
𝑊1,2(F 𝑗 , 𝜇, 𝜈 𝑗 ,∇ 𝑗 ) (and likewise for the 𝐿2 spaces). In our notation, we set | | · | |2,
| | · | |1,2 to be the norms for F and | | · | |2, 𝑗 , | | · | |1,2, 𝑗 to be the norms for F 𝑗 . From
bicontinuity of the identity map between these Banach spaces, there exists 𝐶 𝑗 ≥ 1
such that for all 𝑉 ∈ Γ(F),

𝐶−1
𝑗 | |𝑉 | |2 ≤ ||𝑉 | |2, 𝑗 ≤ 𝐶 𝑗 | |𝑉 | |2, and

𝐶−1
𝑗 | |𝑉 | |1,2 ≤ ||𝑉 | |1,2, 𝑗 ≤ 𝐶 𝑗 | |𝑉 | |1,2.

It is an easy exercise to show that 𝐶 𝑗 → 1 as 𝑗 → ∞.

To prove the lemma, assume for the sake of contradiction that there is a subsequence
(which we still denote 𝜈 𝑗 ) and a family of non-zero sections 𝑉 𝑗 ∈ 𝐶2(F) such that
J 𝑗𝑉 𝑗 = 0 and | |𝑉 𝑗 | |2 = 1. Necessarily,∫

Σ

⟨J 𝑗𝑉 𝑗 , 𝑉 𝑗 ⟩ 𝑗𝑑𝐴 = 0.

Unravelling the definition of the Jacobi operator and integrating by parts, we obtain∫
Σ

|∇ 𝑗𝑉 𝑗 |2𝑗 −
∫
Σ

⟨trace𝜇 𝑅𝜈 𝑗 (𝑑𝑓 𝑗 , 𝑉 𝑗 )𝑑𝑓 𝑗 , 𝑉 𝑗 ⟩ 𝑗𝑑𝐴 = 0. (6.3)

Remark 6.2.13. We implicitly use that ∇ 𝑗 is the Levi-Civita connection for 𝜈 𝑗 to
integrate by parts. If we tried to use the metric 𝜈, then some extra terms involving
Christoffel symbols would appear.

Let 𝜎𝑗 denote the maximum of 0 and the largest sectional curvature of 𝑀 in the
image of 𝑓 𝑗 . Then

⟨trace𝜇 𝑅𝜈 𝑗 (𝑑𝑓 𝑗 , 𝑉 𝑗 )𝑑𝑓 𝑗 , 𝑉 𝑗 ⟩ 𝑗 ≤ 𝜎𝑗 | trace𝜇 (𝑑𝑓 𝑗 ) |2𝑗 |𝑉 𝑗 |2𝑗

pointwise. Convergence of 𝜈 𝑗 → 𝜈 and 𝑓 𝑗 → 𝑓 then implies

⟨trace𝜇 𝑅𝜇 𝑗 (𝑑𝑓 𝑗 , 𝑉 𝑗 )𝑑𝑓 𝑗 , 𝑉 𝑗 ⟩ 𝑗 ≲ 𝜎𝑗 |𝑉 𝑗 |2𝑗 .

Substituting into (6.3) we see∫
Σ

|∇ 𝑗𝑉 𝑗 |2𝑗 ≲ 𝜎𝑗
∫

|𝑉 𝑗 |2𝑗𝑑𝐴.

Again using convergence of 𝜈 𝑗 → 𝜈, we see 𝜎𝑗 → 0 as 𝑗 → ∞. Choosing 𝑗 large
enough so that 𝐶 𝑗 ≲ 1, and using | |𝑉 𝑗 | |2 = 1 we obtain∫

Σ

|∇ 𝑗𝑉 𝑗 |2𝑗𝑑𝐴 ≲ 𝜎𝑗 → 0 (6.4)
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as 𝑗 → ∞.

The above result gives uniform control on the𝑊1,2(F 𝑗 ) norm of𝑉 𝑗 , and hence we also
have control on the𝑊1,2(F) norm. Since𝑊1,2(F) is reflexive, the Banach-Alaoglu
theorem guarantees the existence of a subsequence along which𝑉 𝑗 converges weakly
in𝑊1,2(F) to a section𝑉 ∈ 𝑊1,2(F). By the Rellich lemma, we may pass to a further
subsequence to obtain strong convergence in 𝐿2, so that | |𝑉 | |2 = 1.

We now claim that ∇𝑉 = 0 in the sense of distributions, i.e., it is an almost
everywhere constant field. Working in a conformal parameter 𝑧 = 𝑥 + 𝑖𝑦 for 𝜇, we
write out

|∇ 𝑗𝑉 𝑗 |2 = 𝜇−1
(
|∇ 𝑗 ,𝑥𝑉 𝑗 |2𝜈 + |∇ 𝑗 ,𝑦𝑉 𝑗 |2𝜈

)
and observe the linear maps ∇ 𝑗 ,𝑥 , ∇ 𝑗 ,𝑦 converge strongly to ∇𝑥 and ∇𝑦 respectively
in Hom(𝑊1,2(F), 𝐿2(F)) with respect to the operator norm | | · | |𝑂𝑃. Thus,

| |∇𝑥𝑉 𝑗 | |2 ≤ ||(∇𝑥−∇𝑥, 𝑗 )𝑉 𝑗 | |2+||∇𝑥, 𝑗𝑉 𝑗 | |2 ≤ ||∇𝑥−∇𝑥, 𝑗 | |𝑂𝑃 | |𝑉 𝑗 | |1,2+𝐶 𝑗 | |∇𝑥, 𝑗𝑉 𝑗 | |2, 𝑗 .

Our observation above shows the first term decays to 0 as 𝑗 → ∞. It follows from
inequality (6.4) that the second term tends to 0 as well. Therefore∇𝑥𝑉 𝑗 → 0 strongly
in 𝐿2. By the same method we see ∇𝑦𝑉 𝑗 → 0 strong as well. The claim follows.

We obtain a contradiction by arguing that 𝑉 = 0 on a set of positive measure. This
would force | |𝑉 | |2 = 1 to be impossible. This is essentially Sampson’s observation
in [Sam78, Theorem 4]. From (6.3) it follows that∫

⟨trace𝜇 𝑅𝜇 (𝑑𝑓 ,𝑉)𝑑𝑓 ,𝑉⟩𝑑𝐴 = 0. (6.5)

Since (f, 𝜈) is an admissible pair, there is a point 𝑝0 ⊂ Σ such that all sectional
curvatures of 𝑀 are negative at 𝑓 (𝑝). We extract a neighbourhood Ω ⊂ Σ on which
𝑓 is a regular embedding and there is a 𝑐 > 0 such that all sectional curvatures of 𝑀
at points in 𝑓 (Ω) are bounded above by −𝑐. Thus, from the non-positive curvature
assumption on 𝜈, if 𝑉 is not zero almost everywhere, the left-hand side of (6.5) is
strictly negative. As discussed above, this is a contradiction, and so we are done. □

Finally, the results should hold for some more examples that we don’t pursue here:
manifolds with boundary (see [EL81, Section 4]), non-orientable manifolds (Moore
considers non-orientable minimal surfaces in [Moo06, Section 11]), and equivariant
Anosov representations into Lie groups of non-compact type. For the analogue of
the Eells-Lemaire result, applied to a suitable class of equivariant harmonic maps,
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we invite the reader to see [Sle20]. In these three cases, the only substantial missing
ingredient is the factorization theorem [Sag21a]. A version of the theorem should
be true in these contexts, but it would take us too far afield here.

6.3 Reproducing kernels
Let 𝑝 ∈ Σ and 𝑈 ∈ F𝑝. We say that 𝑋 : Σ\{𝑝} → F is a zeroth order reproducing
kernel for the Jacobi operator if, for all𝑊 ∈ Γ(F), we have

⟨𝑊 (𝑝),𝑈⟩ =
∫
Σ

⟨J𝑊, 𝑋⟩𝑑𝐴.

For𝑉 ∈ 𝑇𝑝Σ, 𝑋 : Σ\{𝑝} → F is a first order reproducing kernel if, for all𝑊 ∈ Γ(F),

⟨(∇𝑉𝑊) (𝑝),𝑈⟩ =
∫
Σ

⟨J𝑊, 𝑋⟩𝑑𝐴.

In the proof of the main theorems, we need explicit expressions for the singularities
of reproducing kernels. We compute these singularities by constructing the kernels
directly. Independent of the work below, one can find general existence results in
[Mar18, Section 3].

Remark 6.3.1. From the self-adjoint property, kernels satisfy J𝑋 = 0 away from
the singularities.

The parametrices
Let (Ω, 𝑧) be a disk neighbourhood of 𝑝, and Ω′ ⊂ Ω. In the local chart, extend the
vector𝑈 to a 𝐶2 section𝑈 (𝑧). Let 𝜙𝑛 : Ω → [0, 1] be a smooth function in Ω such
that

• 𝜙𝑛 has support in {|𝜁 | ≤ 1/𝑛},

• 𝜙𝑛 ≡ 1 in {|𝜁 | ≤ 1/2𝑛},

• 𝜙𝑛 integrates to 1 in Ω′, and

• 𝜙𝑛 converges in the sense of distributions to the Dirac delta 𝛿𝑝 as 𝑛→ ∞.

Let 𝐺 (𝑧, 𝜁) be the ordinary Green’s function on Ω′, of the form

𝐺 (𝑧, 𝜁) = 1
2𝜋

log |𝑧 − 𝜁 |−1 + 𝑟 (𝑧, 𝜁),

where 𝑟 is smooth, and define a section 𝑆𝑛 in Ω′ by

𝑆𝑛 (𝑧) = 𝑈 (𝑧)
∫
Ω′
𝐺 (𝑧, 𝜁)𝜙𝑛 (𝜁)𝑑𝜁 ∧ 𝑑𝜁 .
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Observe that∫
Ω′
𝐺 (𝑧, 𝜁)𝜙𝑛 (𝜁)𝑑𝜁 ∧ 𝑑𝜁 → 𝐺 (𝑧, 0) = 1

2𝜋
log |𝑧 |−1 + 𝑟 (𝑧, 0)

as 𝑛 → ∞ with maximum regularity on Ω′\{𝑝} and in 𝐿𝑝 for all 1 < 𝑝 < ∞. We
then extend 𝑆𝑛 to a globally defined section of F with support in Ω, in a way that 𝑆𝑛
converges as 𝑛→ ∞ in the 𝐶∞ sense on Σ\{𝑝} to a section 𝑆 satisfying

𝑆(𝑧) = 1
2𝜋

log |𝑧 |−1𝑈 (𝑧) + 𝑟 (𝑧, 0)𝑈 (𝑧).

By the defining properties of 𝐺 (𝑧, 𝜁),
𝜕2

𝜕𝑧𝜕𝑧

∫
Ω′
𝐺 (𝑧, 𝜁)𝜙𝑛 (𝜁)𝑑𝜁 ∧ 𝑑𝜁 = 𝜙𝑛 (𝑧).

Using this, we compute that in Ω′,

∇𝑧∇𝑧𝑆𝑛 (𝑧) = (∇𝑧∇𝑧𝑈 (𝑧))
∫
Ω′
𝐺 (𝑧, 𝜁)𝜙𝑛 (𝜁) + (∇𝑧𝑈)

𝜕

𝜕𝑧

∫
Ω′
𝐺 (𝑧, 𝜁)𝜙𝑛 (𝜁)

+ (∇𝑧𝑈)
𝜕

𝜕𝑧

∫
Ω′
𝐺 (𝑧, 𝜁)𝜙𝑛 (𝜁) +𝑈 (𝑧)𝜙𝑛 (𝑧).

Set Φ1
𝑛 = ∇𝑧∇𝑧𝑆𝑛 (𝑧) −𝑈 (𝑧)𝜙𝑛 (𝑧).

Lemma 6.3.2. For all 1 ≤ 𝑝 < 2, Φ1
𝑛 converges along a subsequence in 𝐿𝑝 as

𝑛→ ∞.

Proof. It suffices to show that the three terms above all subconverge in 𝐿𝑝 near
0. Since 𝐺 splits into a log term and a regular term, we only need show 𝐿𝑝-
subconvergence for

(∇𝑧∇𝑧𝑈 (𝑧))
∫
Ω′

log |𝑧−𝜁 |𝜙𝑛 (𝜁), (∇𝑧𝑈)
𝜕

𝜕𝑧

∫
Ω′

log |𝑧−𝜁 |𝜙𝑛 (𝜁), (∇𝑧𝑈)
𝜕

𝜕𝑧

∫
Ω′

log |𝑧−𝜁 |𝜙𝑛 (𝜁).

By the basic properties of 𝜙𝑛,
∫
Ω′ log |𝑧 − 𝜁 |𝜙𝑛 (𝜁) → log |𝑧 | in 𝐿𝑝 as 𝑛→ ∞, so the

first term 𝐿𝑝-converges to ∇𝑧∇𝑧𝑈 (𝑧) log |𝑧 | in Ω′, and away from Ω′ our regularity
assumptions give 𝐿𝑝 convergence. As for the second term, since 1/|𝑧 | is in 𝐿𝑝 (Ω′)
for 1 ≤ 𝑝 < 2, an application of dominated convergence shows it is equal to

1
2
(∇𝑧𝑈)

∫
Ω′

𝜙𝑛 (𝜁)
𝑧 − 𝜁 𝑑𝜁 ∧ 𝑑𝜁 .

Taking 𝑛→ ∞, we have convergence for such 𝑝 to
∇𝑧𝑈
𝑧

in Ω′, and nice convergence outside of Ω′ (note we can make this continuous by
choosing 𝑈 so that ∇𝑧𝑈 = 0, but this is not necessary). The final term is handled
similarly. □
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The zeroth order kernel
With the parametrices in hand, the remainder of the computation is a routine proce-
dure. Complementary to Φ1

𝑛, set

Φ2
𝑛 =

1
𝜎2 𝑅(𝑆𝑛, 𝑓𝑧) 𝑓𝑧 .

Let Φ𝑛 = Φ1
𝑛 −Φ2

𝑛 and Ψ𝑛 = 𝐽
−1(Φ𝑛). Here 𝑅 is the complexified curvature tensor

of 𝑀 and 𝜎2 is the density of the conformal metric 𝜇 on Σ𝜇.

Lemma 6.3.3. For every 1 ≤ 𝑝 < 2, the sequence of norms of | |Φ𝑛 | |𝑝 is uniformly
bounded. Moreover, for any 𝛼 ∈ (0, 1), Ψ𝑛 converges along some subsequence to a
section Ψ ∈ 𝐶0,𝛼.

Proof. We showed above that Φ1
𝑛 converges in 𝐿𝑝 to an 𝐿𝑝 section. As for Φ2

𝑛, away
from 0 it converges locally uniformly to some 𝐶∞ section. Around 0 we have the
estimate

Φ2
𝑛 ≤ 𝐶 log |𝑧 |

for some 𝐶 > 0 and hence we have uniform 𝐿𝑝 bounds for all 𝑝.

Invoking Proposition 6.2.11, Ψ𝑛 is uniformly bounded in𝑊2,𝑝 (E) for any 𝑝 ∈ [1, 2).
The convergence result now follows from the Rellich-Kondrachov theorem, which
gives a compact embedding from𝑊2,𝑝 → 𝐶0,𝛼 when 2 − 2/𝑝 > 𝛼. □

Proposition 6.3.4. The reproducing kernel is of the form

𝑋 (𝑧) = − 1
2𝜋

log |𝑧 |𝑈 (𝑝) + 𝐵(𝑧), (6.6)

where 𝐵(𝑧) is a 𝐶0,𝛼 local section of E near 𝑝, for any 𝛼 ∈ (0, 1).

Proof. Let 𝑊 ∈ Γ(E). In local coordinates, the complexified Jacobi operator is
given by

𝐽𝑊 = ∇𝑧∇𝑧 − 𝜎−2𝑅(𝑊, 𝑓𝑧) 𝑓𝑧 .

As J is essentially self-adjoint,∫
Σ

⟨J𝑊, 𝑆𝑛⟩𝑑𝐴 =

∫
Σ

⟨𝑊,∇𝑧∇𝑧𝑆𝑛⟩𝑑𝐴 −
∫
Σ

⟨𝑊, 𝜎−2𝑅(𝑆𝑛, 𝑓𝑧) 𝑓𝑧⟩𝑑𝐴

=

∫
Σ

⟨𝑊,Φ𝑛⟩𝑑𝐴 +
∫
Σ

⟨𝑊, 𝜇𝑛⟩𝑑𝐴

=

∫
Σ

⟨J𝑊,Ψ𝑛⟩𝑑𝐴 +
∫
Σ

⟨𝑊, 𝜇𝑛⟩.
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We reorganize this to∫
Σ

⟨J𝑊, 𝑆𝑛⟩𝑑𝐴 −
∫
Σ

⟨J𝑊,Ψ𝑛⟩𝑑𝐴 =

∫
Σ

⟨𝑊, 𝜇𝑛⟩.

The term on the right tends to ⟨𝑊,𝑈 (𝑝)⟩ as 𝑛 → ∞. Meanwhile, passing to the
subsequence from the previous lemma, the left-hand side converges to∫

Σ

⟨J𝑊, 𝑆 − Ψ⟩

as 𝑛→ ∞. Therefore, 𝑋 = 𝑆 −Ψ, and the expression for 𝑋 is then derived from the
local expression for 𝑆 stated above and the fact that Ψ ∈ 𝐶0,𝛼 for any 𝛼 ∈ (0, 1). □

Remark 6.3.5. We have made no attempt to optimize the regularity of 𝐵(𝑧).

Remark 6.3.6. If we change to a different (not holomorphic) coordinate 𝜑(𝑧) =

𝜑(𝑥, 𝑦) with 𝜑(0) = 0, the expression may not be so simple, but we know it behaves
asymptotically like a constant multiple of log |𝜑 |−1.

First order kernels
We don’t need explicit information for the singularity for the first order kernel, but
we do need to know the rate at which it blows up. A calculation is given in [Mar18,
Appendix A], that strongly uses that ∇𝑧 = 𝜕 for the Koszul-Malgrange holomorphic
structure. Here we give a different method that works in more generality (and
applicable for higher order kernels).

We find the first order kernel with respect to the tangent vector 𝜕
𝜕𝑧

. Taking real
and imaginary parts, we can then get any kernel. Extend the vector 𝑈 in a local
trivialization so that ∇𝑧𝑈 (𝑝) = 0. For 𝑧 ∈ Ω′, 𝜁 ∈ Ω, we thus have a well-defined
function 𝑋 (𝑧, 𝜁) such that

⟨𝑉 (𝑧),𝑈 (𝑧)⟩ =
∫
Σ

⟨J𝑉 (𝜁), 𝑋 (𝑧, 𝜁)⟩𝑑𝐴(𝜁)

for all 𝑉 ∈ Γ(F). Here we are changing our notation: �̃� is integrated in 𝜁 rather
than 𝑧. From the work above, �̃� (𝑧, 𝜁) takes the form

𝑋 (𝑧, 𝜁) = 1
2𝜋
𝑈 (𝜁) log |𝑧 − 𝜁 |−1 + 𝐵(𝑧, 𝜁),

where, for fixed 𝑧, 𝐵(𝑧, 𝜁) is locally 𝐶0,𝛼 in 𝜁 ≠ 𝑧. This function is not regular
and in fact blows up on the diagonal (unless 𝑈 (𝑧) = 0). Away from the diagonal,
regularity in 𝑧 is the maximum of regularity of 𝑈 and the vector bundle: from the
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construction, we can choose 𝜇𝑛 and 𝑆𝑛 to vary nicely with 𝑧 for each 𝑛, and then we
get the correct regularity in the limit.

Observe
𝜕

𝜕𝑧
⟨𝑉 (𝑧),𝑈 (𝑧)⟩ = ⟨∇𝑧𝑉 (𝑧),𝑈 (𝑧)⟩ + ⟨𝑉 (𝑧),∇𝑧𝑈 (𝑧)⟩

in Ω′. In terms of our integrals, differentiating under the integral via dominated
convergence, we get

𝜕

𝜕𝑧

∫
Σ

⟨J𝑉 (𝜁), 𝑋 (𝑧, 𝜁)⟩ =
∫
Σ

⟨J𝑉 (𝜁),∇𝑧𝑋 (𝑧, 𝜁)⟩ = ⟨∇𝑧𝑉 (𝑧),𝑈 (𝑧)⟩+⟨𝑉 (𝑧),∇𝑧𝑈 (𝑧)⟩.

Setting 𝑧 = 0, we find that the first order kernel is given by ∇𝑧𝑋 (0, 𝜁). From this we
deduce the following.

Proposition 6.3.7. In the complex coordinate 𝑧, the reproducing kernel is of the
form

𝑋 (𝑧) = 1
𝜋𝑧
𝑈 (𝑝) + 𝐵(𝑧) (6.7)

where 𝐵(𝑧) is a 𝐶0,𝛼 local section of E near 𝑝, for any 𝛼 ∈ (0, 1).

6.4 Somewhere injective harmonic maps
As discussed earlier, Theorem 6A reduces to a transversality result, whose proof is
given in the next section. Apart from a few things, the content of this section is
adapted from [Mar18, Section 6].

Exceptional Riemann surfaces
Our proof of Theorem 6A involves a “super-regular” condition (defined below) that
we would like to know is generic. The lemma below allows us to dismiss a class of
metrics on which the condition fails.

Definition 6.4.1. A Riemann surface Σ is exceptional if either

• Σ is a holomorphic branched cover of another Riemann surface of genus at
least 2 or

• Σ admits an anti-holomorphic involution.

The lemma below is a consequence of the factorization theorem established in
[Sag21a].
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Lemma 6.4.2. Suppose there is a pair of disks Ω1,Ω2 ⊂ Σ and a conformal
diffeomorphism ℎ : Ω1 → Ω2 such that 𝑓 ◦ ℎ = 𝑓 on Ω1. Then the Riemann surface
Σ is exceptional.

Proof. According to [Sag21a, Theorem 1.1], if ℎ : Ω1 → Ω2 is a holomorphic map
between open subsets of Σ such that 𝑓 ◦ℎ = 𝑓 , then 𝑓 factors through a holomorphic
branched covering map onto a surface Σ0. If Σ0 has genus less than 2, then it is
either a sphere or a torus. In both cases, the subgroup

𝑓∗(𝜋1(Σ)) < 𝜋1(𝑀)

is abelian, which contradicts our assumption that the homotopy class f is admissible.
If ℎ is anti-holomorphic, the result follows from Theorem 1.1 and the discussion in
Section 4 of [Sag21a]. □

This next result is well understood and one can find details in [Mar18, Appendix B].

Proposition 6.4.3. We let 𝜇 ∈ 𝔐′(Σ) if Σ𝜇 is not exceptional. 𝔐′(Σ) is an open,
dense, and connected subset of 𝔐(Σ).

For ease of notation, we write 𝔐 = 𝔐′(Σ) × 𝔐(𝑀) instead of 𝔐(Σ) × 𝔐(𝑀)
throughout the rest of the chapter.

Super-regular points
Denote by 𝐴( 𝑓 ) the set of 𝑝 ∈ Σ such that 𝑓 −1( 𝑓 (𝑝)) ⊂ Σ𝑟𝑒𝑔 ( 𝑓 ). Given metrics
(𝜇, 𝜈) and 𝑝, 𝑞 ∈ 𝐴( 𝑓 ), we say that the inner products 𝜇(𝑝) and 𝜇(𝑞) are conformal
to each other via 𝑓 if the tangent planes 𝑑𝑓 (𝑇𝑝Σ) and 𝑑𝑓 (𝑇𝑞Σ) agree in 𝑇 𝑓 (𝑝)𝑀 , and
if the push forwards 𝑓∗𝜇(𝑝) and 𝑓∗𝜇(𝑞) are collinear.

Definition 6.4.4. Given a map 𝑓 , a point 𝑝 ∈ Σ is said to be super-regular if

• 𝑝 ∈ 𝐴( 𝑓 ) and

• if 𝑓 (𝑝) = 𝑓 (𝑞), then 𝜇(𝑝) and 𝜇(𝑞) are not conformal to each other via 𝑓 .

We denote the set of super-regular points for a map 𝑓 by ΣSR ( 𝑓 ). We define
SR ⊂ Σ ×𝔐 by (𝑝, 𝜇, 𝜈) ∈ SR if 𝑝 ∈ ΣSR ( 𝑓𝜇,𝜈).

Proposition 6.4.5. Continuing to exclude the exceptional metrics from 𝔐, the set
SR is open in Σ ×𝔐 and ΣSR ( 𝑓 ) is open and dense in Σ.
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We first treat 𝐴( 𝑓 ) on its own. It is due to Sampson [Sam78, Theorem 3] that the
set of regular points of an admissible harmonic map is open and dense.

Lemma 6.4.6. 𝐴( 𝑓 ) is open and dense in Σ.

Proof. Openness is obvious. As for density, suppose on the contrary that there is an
open setΩ ⊂ Σ on which 𝑓 is regular but no point is in 𝐴( 𝑓 ). By shrinkingΩwe may
assume 𝑓 |Ω is an embedding. We then find a small tubular neighbourhood 𝑁 ⊂ 𝑀

of the submanifold 𝑓 (Ω), in which the nearest point projection 𝜋 : 𝑁 → 𝑓 (Ω) is
well-defined. The set 𝑆 = 𝑓 −1(𝑁) ⊂ Σ is then an open submanifold of Σ.

Let 𝑔 = 𝜋 ◦ 𝑓 : 𝑆 → 𝑓 (Ω). If 𝑦 ∈ 𝑆 is a singular point of 𝑓 , then it is a singular
point of 𝑔. By assumption, for each 𝑢 ∈ 𝑓 (Ω), the set 𝑓 −1(𝑢) contains a singular
point of 𝑔. Thus, each point in 𝑓 (Ω) is the image of a singular point 𝑦 ∈ 𝑆 of the
map 𝑔. This contradicts Sard’s theorem. □

Proof of Proposition 6.4.5. It is clear that bothΣSR ( 𝑓 ) andSR are open. It remains
to prove ΣSR ( 𝑓 ) is dense. Note that the set 𝑓 −1( 𝑓 (𝑥)) is finite provided 𝑥 ∈ 𝐴.
Indeed, if | 𝑓 −1( 𝑓 (𝑥)) | = ∞, then the closed set 𝑓 −1( 𝑓 (𝑥)) has an accumulation
point, at which the rank of 𝑑𝑓 is necessarily strictly less than two (as 𝑓 cannot be an
embedding near that point).

From the previous lemma, we are left to show that the conformality condition holds
on a dense subset of 𝐴( 𝑓 ). Arguing by contradiction, suppose that on an open
subset Ω ⊂ 𝐴 we have that for every 𝑝 ∈ Ω there exists 𝑞 ∈ 𝑓 −1( 𝑓 (𝑝)) such that
𝜇(𝑝) and 𝜇(𝑞) are conformal to each other via 𝑓 . Given 𝑝 ∈ Ω, we have a finite
number of disks 𝐷1, . . . , 𝐷𝑛 with centers 𝑝𝑖 such that 𝑓 (𝑝) = 𝑓 (𝑝𝑖) and with 𝜇(𝑝)
and 𝜇(𝑝𝑖) conformal via 𝑓 . We also assume 𝑓 is a regular embedding on 𝐷𝑖 and Ω.
Let 𝐶𝑖 ⊂ 𝐷𝑖 be the closed set of points 𝑥 ∈ 𝐷𝑖 with the property that there exists
𝑦 ∈ Ω with 𝑓 (𝑥) = 𝑓 (𝑦) and such that 𝜇(𝑥) is conformal to 𝜇(𝑦) via 𝑓 . We claim
that for at least one 𝑖, 𝐶𝑖 has non-empty interior. If not, then

C = ∪𝑖 𝑓 (𝐶𝑖) ∩ 𝑓 (Ω)

has empty interior, for it is a finite union of closed nowhere dense sets. Choosing a
sequence (𝑝𝑛)∞𝑛=1 ⊂ Ω\( 𝑓 −1(C)∩Ω) converging to 𝑝, we can find another sequence
(𝑞𝑛)∞𝑛=1 ⊂ Σ\(∪𝑖𝐷𝑖) with 𝑓 (𝑝𝑛) = 𝑓 (𝑞𝑛) and 𝜇(𝑝𝑛) and 𝜇(𝑞𝑛) are conformal via
𝑓 . Passing to a subsequence, the 𝑞𝑛 converge to some point 𝑞 ∈ Σ\(∪𝑖𝐷𝑖) such
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that 𝑓 (𝑝) = 𝑓 (𝑞) and 𝜇(𝑝) and 𝜇(𝑞) are conformal via 𝑓 . This contradicts our
construction of the 𝐷𝑖, and so the claim is proved.

Relabelling so that 𝑓 (Ω) and 𝑓 (𝐷1) intersect with non-empty interior, we can find
open sets Ω1 ⊂ Ω and Ω2 ⊂ 𝐷1 as well as a diffeomorphism ℎ : Ω1 → Ω2 such that
𝑓 ◦ ℎ = 𝑓 on Ω1. The metrics 𝜇 and ℎ∗𝜇 are pointwise conformally equivalent on
Ω, and thus ℎ is a conformal map. This contradicts Lemma 6.4.2. □

The map Θ

Denote by J the subset of nowhere injective maps.

Lemma 6.4.7. J is closed.

Proof. If a somewhere injective map 𝑓 (which need not be harmonic) has an injective
point at 𝑝, meaning 𝑓 −1( 𝑓 (𝑝)) = {𝑝}, then there is an open set containing 𝑝 that
consists only of injective points. Indeed, choose a disk Ω around 𝑝 on which 𝑓 is
regular and 𝑓 |Ω is injective. If the claim fails, we can find 𝑝𝑛 → 𝑝 and 𝑞𝑛 ∈ Σ\Ω
such that 𝑓 (𝑝𝑛) = 𝑓 (𝑞𝑛). By compactness, the 𝑞𝑛 subconverge to a point 𝑞 at which
𝑓 (𝑝) = 𝑓 (𝑞), a contradiction.

So, suppose ((𝜇𝑛, 𝜈𝑛))∞𝑛=1 ⊂ J converges to (𝜇, 𝜈), and 𝑓 = 𝑓𝜇,𝜈 is somewhere
injective with injective point 𝑝. There is a disk Ω around 𝑝 such that 𝑓𝜇𝑛,𝜈𝑛 is
injective on Ω. Thus, there exists 𝑝𝑛 ∈ Σ\Ω such that 𝑓𝜇𝑛,𝜈𝑛 (𝑝𝑛) = 𝑓𝜇𝑛,𝜈𝑛 (𝑝), and
again we find a contradiction by extracting an accumulation point 𝑞 ≠ 𝑝. □

For the remainder of Sections 6.4 and 6.5, let us replace 𝔐 with the complement
of the set of pairs with exceptional metrics on Σ. We hope this harmless change of
notation does not cause any confusion.

Let 𝑃,𝑄 ⊂ Σ be two disjoint open embedded disks in Σ. For 𝛿 > 0 we let

D(𝑃,𝑄, 𝛿) = {(𝜇, 𝜈) ∈ 𝔐 : 𝑑𝜈 ( 𝑓 (𝑃), 𝑓 (𝑄)) > 𝛿, 𝑃, 𝑄 ⊂ ΣSR ( 𝑓 )}.

It follows from Proposition 6.4.5 that D(𝑃,𝑄, 𝛿) is an open subset of 𝔐. By
Proposition 6.4.5 we also know that the set ΣSR ( 𝑓𝜇,𝜈) is dense in Σ, and therefore
non-empty. Thus, each pair (𝜇, 𝜈) ∈ 𝔐 is contained in D(𝑃,𝑄, 𝛿) for some disks
𝑃,𝑄 and 𝛿 > 0.

Lemma 6.4.8. Let 𝐴 ⊂ 𝔐 be a subset. Suppose every pair (𝜇, 𝜈) ∈ 𝔐 has a
neighbourhood D ⊂ 𝔐 such that D\𝐴 is open, dense, and connected in D. Then
𝔐 \𝐴 is open, dense, and connected in 𝔐.
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The proof is trivial point-set topology and left to the reader. Thus, toward Theorem
6A it suffices to prove that every D\J is connected, where D ranges over connected
components of D(𝑃,𝑄, 𝛿). Henceforward we work on a single such component
D. Set Σ2 = Σ × Σ, 𝑀2 = 𝑀 × 𝑀 , and Y = Σ2 × (𝑃 × 𝑄 × D). Define the map
Θ : Y → 𝑀2 by

Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) = ( 𝑓 (𝑟), 𝑓 (𝑠), 𝑓 (𝑝), 𝑓 (𝑞))

where we abbreviate 𝑓 = 𝑓𝜇,𝜈. As we have noted earlier, the map (𝜇, 𝜈) ↦→ 𝑓𝜇,𝜈 is
𝐶𝑘 and the evaluation map has the same regularity as 𝑓 . We deduce Θ is 𝐶𝑚, where
𝑚 = min{𝑘, 𝑛 + 1}.

Let 𝐿 be the diagonal

𝐿 = {((𝑢, 𝑣), (𝑢, 𝑣)) ∈ 𝑀2 × 𝑀2}.

The significance of Θ and 𝐿 is contained in the fact that

𝜋−1(J) ⊂ Θ−1(𝐿),

where 𝜋 : Y → D is the projection onto the last factor. Indeed, suppose (𝜇, 𝜈) ∈ J .
Then for each pair of points (𝑝, 𝑞) ∈ 𝑃 × 𝑄 there exists (𝑟, 𝑠) ∉ 𝑃 × 𝑄 such that
𝑓 (𝑝) = 𝑓 (𝑟) and 𝑓 (𝑞) = 𝑓 (𝑠). Thus Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) ∈ 𝐿.

Remark 6.4.9. 𝜋−1(J) also contains the set 𝐿𝑃,𝑄 ×𝔐, where 𝐿𝑃,𝑄 is the diagonal
of 𝑃 ×𝑄. This set has codimension 4 and will not play a role in any of our analysis.

Proof of Theorem 6A
Assuming the transversality lemma below, we prove Theorem 6A.

Lemma 6.4.10. Let (𝜇, 𝜈) be a pair of metrics with 𝜇 not exceptional. Then for all
(𝑟, 𝑠, 𝑝, 𝑞) ∈ Y such that Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) ∈ 𝐿, Θ is a submersion at that point. In
particular, Θ is transverse to 𝐿 at such points.

Via Lemma 6.4.10, we can shrink D(𝑃,𝑄, 𝛿) so that Θ is transverse to 𝐿 on all
of Y × D. Beginning the proof of Theorem 6A, it is enough to show it is dense
and connected. If (𝜇, 𝜈) yields a somewhere injective harmonic map, then by
openness there is nothing to do. According to Lemma 6.4.2, we can also dismiss
pairs (𝜇, 𝜈) such that 𝜇 is exceptional. Henceforth fix (𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) such that 𝜇 is
non-exceptional, and 𝑓 = 𝑓𝜇,𝜈 is nowhere injective. Define 𝜃𝑝,𝑞,𝜇,𝜈 : Σ2 → 𝑀2×𝑀2

by
𝜃𝑝,𝑞,𝜇,𝜈 (𝑟, 𝑠) = Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈).
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The map 𝜃𝑝,𝑞,𝜇,𝜈 is a direct sum of evaluations of 𝑓𝜇,𝜈, and hence 𝐶𝑛+1. The
evaluation map is just Θ, and hence it is 𝐶𝑚, with 𝑚 as above. Therefore, the
association

(𝑝, 𝑞, 𝜇, 𝜈) ↦→ 𝜃𝑝,𝑞,𝜇,𝜈

defines a 𝐶𝑚 representation. 𝐿 is of codimension 2 dim𝑀 ≥ 6, while Σ2 has
dimension 4, so the Parametric Transversality Theorem ensures that for a generic
(𝑝, 𝑞, 𝜇, 𝜈) ∈ 𝑃 × 𝑄 × D the corresponding map 𝜃𝑝,𝑞,𝜇,𝜈 is transverse to 𝐿. From
dimensional considerations, 𝜃𝑝,𝑞,𝜇,𝜈 (Σ2) is therefore disjoint from 𝐿. It follows that
(𝜇, 𝜈) does not belong to D ∩ J . This is true for generic (𝑝, 𝑞, 𝜇, 𝜈), and therefore
a generic pair (𝜇, 𝜈) does not live in D ∩ J . This establishes that J is nowhere
dense.

Recalling the projection 𝜋 : Y → D, since 𝜋(Θ−1(𝐿)) may not be a manifold,
we cannot conclude immediately from transversality that D ∩ J is connected. We
argue directly, using transversality theorems.

Let 𝛾 : [0, 1] → D be a path whose endpoints lie in D \J . We show that 𝛾 can
be perturbed, while keeping the endpoints fixed, to lie entirely in 𝔐 \ J . First we
partition [0, 1] into sufficienltly small intervals, each of whose images under 𝛾 is
contained in a sufficiently small subset of D that fits into a single (convex) chart in
the model Banach space for 𝔐.

Suppose (𝜇𝑖, 𝜈𝑖) ∈ D, 𝑖 = 0, 1, are contained in such a chart. We show that one
can perturb (𝜇1, 𝜈1) so that the straight line connecting (𝜇0, 𝜈0) and the perturbed
(𝜇1, 𝜈1) is contained in D \J . Let 𝑈 ⊂ 𝑃 × 𝑄 × D be a small neighbourhood of
(𝜇1, 𝜈1) and consider the 𝐶𝑚 map

𝜂 : [0, 1] × Σ2 ×𝑈 → 𝑀2 × 𝑀2

given by

𝜂(𝑡, 𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) = Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝑡 (𝜇0, 𝜈0) + (1 − 𝑡) (𝜇, 𝜈)).

𝜂 arises as the evaluation map for the 𝐶𝑚 representation given by (𝑝, 𝑞, 𝜇, 𝜈) ↦→
𝜌𝑝,𝑞,𝜇,𝜈, where

𝜌𝑝,𝑞,𝜇,𝜈 (𝑡, 𝑟, 𝑠) = 𝜂(𝑡, 𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈).

The representation does take values in 𝐶𝑚 because it may be realized as the compo-
sition

(𝑡, 𝑟, 𝑠) ↦→ (𝑡 (𝜇0, 𝜈0) + (1− 𝑡) (𝜇, 𝜈), 𝑟, 𝑠) ↦→ ( 𝑓𝑡 , 𝑟, 𝑠) ↦→ ( 𝑓𝑡 (𝑝), 𝑓𝑡 (𝑞), 𝑓𝑡 (𝑟), 𝑓𝑡 (𝑠)),
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where 𝑓𝑡 = 𝑓𝑡 (𝜇0,𝜈0)+(1−𝑡) (𝜇,𝜈) . Using 𝑚 ≥ 1 we appeal to the Parametric Transver-
sality Theorem to find that for a generic point (𝑝, 𝑞, 𝜇, 𝜈) ∈ 𝑈, the map 𝜌𝑝,𝑞,𝜇,𝜈 is
transverse to 𝐿. Counting dimensions, we see that 𝛿( [0, 1] × Σ2) does not intersect
𝐿. This implies that the path

𝜋(𝜂(𝑡, 𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈))

is contained in D \J and connects (𝜇0, 𝜈0) and (𝜇, 𝜈). Since D\J is open, once
(𝜇, 𝜈) is close enough, we can connect it to (𝜇1, 𝜈1) via a straight line in a model
chart contained in D\J .

Returning to the path 𝛾, we do the above procedure over all of the coordinate charts,
which perturbs 𝛾 to a new path contained entirely in D\J and connecting the
endpoints. This completes the proof.

Remark 6.4.11. A slightly simpler transversality argument is possible when 𝑀 has
dimension ≥ 4. We leave this for the reader to understand on their own. The proof
of the analogue of Lemma 6.4.10 is essentially the same.

6.5 Proof of the transversality lemma
We give the proof of Lemma 6.4.10.

The derivative 𝑑Θ
The deriative of Θ is a map 𝑑Θ : 𝑇 Y → F2 × F2. The tangent space 𝑇 Y splits as
𝑇 (Σ2 × 𝑃 × 𝑄) × 𝑇𝔐. The restriction 𝑑Θ : 𝑇 (Σ2 × 𝑃 × 𝑄) × {0} → F2 × F2 is
given by

𝑑Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈, 0) = 𝑑𝑓𝑟 × 𝑑𝑓𝑠 × 𝑑𝑓𝑝 × 𝑑𝑓𝑞,

where 𝑑𝑓𝑥 denotes the derivative of 𝑓 = 𝑓𝜇,𝜈 at 𝑥. Since all four points are regular,
the image of 𝑑Θ contains every quadruple of vectors (𝑍1, 𝑍2, 𝑍3, 𝑍4) ∈ F2 ×F2 that
are tangent to the surface of 𝑓 (Σ) at the corresponding points.

For derivatives in the 𝔐-coordinates, we leave the source metric 𝜇 fixed and vary
the target metric. Let ¤𝜈 ∈ 𝑇𝔐(𝑀). By [EL81, page 35], the section 𝑉 ∈ Γ(F)
defined by

𝑉 =
𝑑

𝑑𝑡
|𝑡=0 𝑓𝜇,𝜈+𝑡 ¤𝜈

satisfies
J𝑉 = G( ¤𝜈).
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Here, G( ¤𝜈) is the derivative of the tension field in the ¤𝜈-direction:

G( ¤𝜈) = 𝑑

𝑑𝑡
|𝑡=0𝜏(𝜇, 𝜈 + 𝑡 ¤𝜈, 𝑓𝜇,𝜈).

Accordingly, 𝑉 is called a harmonic variation. It follows that

𝑑Θ(0, 0, 0, 0, 0, ¤𝜈) = (𝑉 (𝑟), 𝑉 (𝑠), 𝑉 (𝑝), 𝑉 (𝑞)).

Suppose Θ(𝑟, 𝑠, 𝑝, 𝑞, 𝜇, 𝜈) ∈ 𝐿. To simplify notation, we rename the points as
𝑧1 = 𝑝, 𝑧2 = 𝑟, 𝑤1 = 𝑞, 𝑤2 = 𝑠. The proof of Lemma 6.4.10 is another contradiction
argument. Suppose the lemma is incorrect. Then, there are four vectors 𝑍𝑖 ∈ F𝑧𝑖 ,
𝑊𝑖 ∈ F𝑤𝑖

, not all of them zero, such that

• 𝑍𝑖 and𝑊𝑖 are either zero or normal to the surface 𝑓 (Σ) at the points 𝑓 (𝑧𝑖) and
𝑓 (𝑤𝑖) respectively and

• for every 𝑉 such that J𝑉 = G( ¤𝜈), the following holds:

2∑︁
𝑖=1

(⟨𝑉 (𝑧𝑖), 𝑍𝑖⟩ + ⟨𝑉 (𝑤𝑖),𝑊𝑖⟩) = 0. (6.8)

We now invoke reproducing formulas for the zeroth derivative. We showed the
existence of reproducing kernels in Section 6.3. Adding up the four zeroth or-
der reproducing kernels associated to the points 𝑧𝑖, 𝑤𝑖, we find a section 𝑋 :
Σ\{𝑧1, 𝑧2, 𝑤1, 𝑤2} → F with maximum regularity and such that

2∑︁
𝑖=1

(⟨𝑊 (𝑧𝑖), 𝑍𝑖⟩ + ⟨𝑊 (𝑤𝑖),𝑊𝑖⟩) =
∫
Σ

⟨J𝑊, 𝑋⟩𝑑𝐴

for all 𝑊 ∈ Γ(F). We also record here that J𝑋 (𝑝) = 0 for every 𝑝 ≠ 𝑧1, 𝑧2, 𝑤1, 𝑤2

and 𝑋 ∈ 𝐿𝑝 (F) for every 𝑝 ≥ 1. 𝑋 is not identically equal to zero as we can
certainly find sections𝑊 ∈ Γ(F) such that the left-hand side above is not zero. On
the other hand, from (6.8) we conclude that∫

Σ

⟨J𝑉, 𝑋⟩𝑑𝐴 = 0

for every harmonic variation 𝑉 .

Stepping back for a moment, if ¤𝜈 has support near 𝑓 (𝑧1), then the associated J𝑉
is supported near all preimages of 𝑓 (𝑧1). The kernel 𝑋 may have singularities at
𝑧1 and 𝑧2, while 𝑋 is smooth at the other preimages of 𝑓 (𝑧1). The tangent planes
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𝑑𝑓 (𝑇𝑧1Σ) and 𝑑𝑓 (𝑇𝑧2Σ) are either tangential or span a 𝑘-plane for 𝑘 = 3 or 4, and we
find it convenient to treat the cases separately. In both cases, it is possible to choose
¤𝜈 so that G( ¤𝜈) is negligible at 𝑧2 but not so at 𝑧1. In the tangential case, we use
the argument from [Mar18, Section 7]. This is where the super-regular condition
comes into play (and this is the only place it does). In this way, we can eliminate
the singularity of 𝑋 at 𝑧1. Repeating the procedure, but interchanging the roles of
𝑧1 and 𝑧2, we’re able to show that 𝑋 is a global Jacobi field, which means 𝑋 ≡ 0.

The time derivative of the tension field
We compute ⟨J𝑉, 𝑋⟩ in coordinates for a general variation ¤𝜈.

We let (𝑥1, 𝑥2) and (𝑢1, . . . , 𝑢𝑛) denote local coordinates near 𝑧1 ∈ Ω and 𝑓 (𝑧1) ∈ 𝑀
such that 𝑧1 = (0, 0), 𝑓 (𝑧1) = (0, . . . , 0). Near 𝑧1, the reproducing kernel 𝑋 can be
expressed as a linear combination of the sections 𝜕

𝜕 𝑓 𝑗
= 𝑓 ∗ 𝜕

𝜕𝑢 𝑗
, 𝑗 = 1, . . . , 𝑛. We let

𝑋 𝑗 denote the real valued functions on Ω such that

𝑋𝑘 =

𝑛∑︁
𝑗=1

𝑋 𝑗 𝜕

𝜕 𝑓 𝑗
.

In local coordinates on Σ (not necessarily holomorphic), the tension field 𝜏 is given
by

𝜏𝛾 = 𝜏𝛾 ( 𝑓 , 𝜇, 𝜈) = 𝜇𝑖 𝑗
( 𝜕2 𝑓 𝛾

𝜕𝑥𝑖𝜕𝑥 𝑗
− 𝜇Γ𝑘𝑖 𝑗

𝜕 𝑓 𝛾

𝜕𝑥𝑘
+ 𝜈Γ

𝛾

𝛼𝛽
( 𝑓 ) 𝜕 𝑓

𝛼

𝜕𝑥𝑖

𝜕 𝑓 𝛽

𝜕𝑥 𝑗

)
,

where 𝛾 = 1, . . . , 𝑛, and we’re using the Einstein summation convention. Here 𝜇𝑖 𝑗

are the components of the inverse of the metric tensor 𝜇. Let ¤𝜈 be a variation of
𝜈 and set 𝜈𝑡 = 𝜈 + 𝑡 ¤𝜈. Recall we have defined G( ¤𝜈) = 𝜕

𝜕𝑡
𝜏( 𝑓𝜇,𝜈, 𝜇, 𝜈𝑡) |𝑡=0. Since

𝜏( 𝑓 , 𝜇, 𝜈) = 0, we see

⟨G( ¤𝜈), 𝑋⟩ = 𝑑

𝑑𝑡
|𝑡=0⟨𝜏( 𝑓 , 𝜇, 𝜈𝑡), 𝑋⟩.

The only term that does not die upon taking the derivative is the term involving
𝜈Γ

𝛾

𝛼𝛽
( 𝑓 ). Thus,

⟨G( ¤𝜈), 𝑋⟩ = 𝑑

𝑑𝑡
|𝑡=0

∑︁
𝛼,𝛽

𝜈𝛼𝛽𝜇
𝑖 𝑗 𝜈𝑡Γ𝛼𝛾𝛿 ( 𝑓 )

𝜕 𝑓 𝛾

𝜕𝑥𝑖

𝜕 𝑓 𝛿

𝜕𝑥 𝑗
𝑋 𝛽. (6.9)

Set
𝜈𝑡Γ𝛾,𝛼𝛽 =

1
2
(𝜈𝑡𝛼𝛾,𝛽 + 𝜈

𝑡
𝛾𝛽,𝛼 − 𝜈

𝑡
𝛼𝛽,𝛾),

where 𝜈𝑡
𝛼𝛽,𝛿

=
𝜕𝜈𝑡

𝛼𝛽

𝜕𝑢𝛿
and 𝜈𝛾𝛿𝑡 denote inverse components of 𝜈𝑡 . Under this notation,

the Christoffel symbols are computed by the well-known formula
𝜈𝑡Γ

𝛾

𝛼𝛽
=

∑︁
𝛿

𝜈
𝛾𝛿
𝑡 · 𝜈𝑡Γ𝛿,𝛼𝛽.
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Inserting back into (6.9) yields

⟨G( ¤𝜈), 𝑋⟩ = 𝑑

𝑑𝑡
|𝑡=0

∑︁
𝛼

𝜇𝑖 𝑗 𝜈𝑡Γ𝛾𝛿,𝛼 ( 𝑓 )
𝜕 𝑓 𝛾

𝜕𝑥𝑖

𝜕 𝑓 𝛿

𝜕𝑥 𝑗
𝑋𝛼 =

∑︁
𝛾

𝜇𝑖 𝑗 ¤Γ𝛼𝛽,𝛾
𝜕 𝑓 𝛼

𝜕𝑥𝑖

𝜕 𝑓 𝛽

𝜕𝑥 𝑗
𝑋𝛾 .

(6.10)
Here we are using the notation

¤Γ𝛾
𝛼𝛽

= lim
𝑡→0

𝜕𝜈𝑡Γ
𝛾

𝛼𝛽

𝜕𝑡
.

We also record that
¤Γ𝛾,𝛼𝛽 =

1
2
( ¤𝜈𝛼𝛾,𝛽 + ¤𝜈𝛾𝛽,𝛼 − ¤𝜈𝛼𝛽,𝛾).

Tangential harmonic disks
Let Ω be a small neighbourhood of 𝑧1 such that 𝑓 : Ω → 𝑀 is an embedding. We
let (𝑥1, 𝑥2) be conformal coordinates near 𝑧1 and (𝑢1, . . . , 𝑢𝑛) normal coordinates
centered at 𝑓 (𝑧1) ∈ 𝑀 such that

• 𝑓 (𝑧1) = (0, . . . , 0),

• the (regular) surface 𝑓 (Ω) is tangent to the plane 𝑃 = {𝑢3 = · · · = 𝑢𝑛 = 0} at
𝑓 (𝑧1), and 𝑓 (𝑥𝑖) = 𝑢𝑖 for 𝑖 = 1, 2, and

• 𝜈 𝑗 𝑘 = 𝜈 𝑗 𝑘 = 0 and 𝜈 𝑗 𝑗 = 1 for 𝑘 = 1, 2 and 𝑗 = 3, . . . , 𝑛 when restricted to 𝑃
at 𝑓 (𝑧1).

Note that, as observed in Section 6.4, the set 𝑓 −1( 𝑓 (𝑧1)) is finite. Set

𝑓 −1( 𝑓 (𝑧1)) = {𝑧1, 𝑧2, . . . , 𝑧𝑚}.

For 𝜖 ∈ (0, 1) small enough, we let 𝐷 (𝜖) denote the disk of radius 𝜖 in the plane
𝑃, and let 𝐷𝜖 be the ball of radius 𝜖 in the (𝑢1, . . . , 𝑢𝑛)-coordinates centered at 0.
Since 𝑧𝑘 ∈ Σ𝑟𝑒𝑔 ( 𝑓 ), we may choose 𝜖 so that

𝑓 −1(𝐷𝜖 ) =
𝑚⋃
𝑘=1

Ω𝑘 ,

where Ω𝑘 = Ω𝑘 (𝜖) is the corresponding neighbourhood of 𝑧𝑘 . If we choose a
variation ¤𝜈 with support in 𝐷𝜖 , then the induced variation of the pullback metric
𝑓 ∗𝜈 is supported in 𝑓 −1(𝐷𝜖 ). If J𝑉 = G( ¤𝜈), we will see that this implies J𝑉 is
supported there as well, and we obtain∫

Σ

⟨J𝑉, 𝑋⟩𝑑𝐴 =

𝑚∑︁
𝑘=1

∫
Ω𝑘

⟨J𝑉, 𝑋⟩𝑑𝐴 = 0. (6.11)



188

Our proof of transversality of Θ involves analyzing each integral in the sum above.
We split into cases: (i) the harmonic surfaces 𝑓 (Ω1) and 𝑓 (Ω2) are tangential at
𝑓 (𝑧1) and (ii) they are not tangential. In each case, we pick a different variation of
the target metric to find our contradiction.

We first treat case (i). For 𝜖 > 0 small enough,

1 ≲ |𝑑𝑓 | ≲ 1

on each Ω𝑘 . Here | · | is the operator norm. Since the surface 𝑓 (Ω𝑘 ) is regular and
proper, it follows that

𝜖2 ≲

∫
Ω𝑘

𝑑𝐴 ≲ 𝜖2 (6.12)

for all 𝑘 .

We now specify our variation. We let 𝜑𝛼𝛽 = 𝜑𝛽𝛼 denote a set of real numbers such
that 𝜑𝛼𝛽 = 0 if at least one 𝛼, 𝛽 is greater than two. Let 𝜒 be a non-negative function
of (𝑢1, . . . , 𝑢𝑛) with support in 𝐷2, equal to 1 on 𝐷1/2, and such that it has total
integral 1 with respect to the induced Euclidean area form on 𝑃. These conditions
guarantee that, restricted to this plane, 𝜒𝜖 (𝑢) = 𝜖−2𝜒(𝑢/𝜖) converges in the sense
of distributions to the Dirac delta function as 𝜖 → 0. 𝜒𝜖 has compact support in
𝐷 (2𝜖), and the product 𝜒𝜖𝜑𝛼𝛽 is equal to 𝜑𝛼𝛽 on 𝐷 (𝜖/2). Define ¤𝜈 = ¤𝜈(𝜖) by

¤𝜈𝛼𝛽 (𝑢) =
𝑛∑︁
𝑗=3

−2𝑢 𝑗 𝜒𝜖 (𝑢)𝜑𝛼𝛽.

We suppress the 𝜖 from our notation wherever possible. Referring back to (6.10),
we are interested in the variation of Γ𝛼𝛽,𝛾. For 𝛾 ≥ 3,

¤Γ𝛼𝛽,𝛾 = −1
2
¤𝜈𝛼𝛽,𝛾 = 𝜑𝛼𝛽𝜒𝜖 (𝑢) + 𝑢𝛾𝜑𝛼𝛽𝜒𝜖𝛾 (𝑢)

and hence, on (−𝜖/2, 𝜖/2), this is

¤Γ𝛼𝛽,𝛾 = ¤𝜈𝛼𝛽,𝛾 = 𝜑𝛼𝛽𝜒𝜖 (𝑢).

For 𝛾 = 1, 2,
| ¤Γ𝛼𝛽,𝛾 | ≲ max

𝛼𝛽,𝛿
| ¤𝜈𝛼𝛽,𝛿 | ≲ 𝜖 |∇𝜒𝜖 | ≲ 𝜖−2.

In any case, we always have a 𝑂 (𝜖−2) bound.

The local coordinates (𝑥1
1, 𝑥

1
2) near 𝑧1 satisfy

𝜕 𝑓 𝛼

𝜕𝑥1
𝑖

(𝑧) = 𝛿𝑖𝛼 .
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Since 𝑓 (Ω2) is tangent to {𝑢3 = 0} at 𝑧2, we can choose coordinates (𝑥2
1, 𝑥

2
2) near

𝑧2 such that
𝜕 𝑓 𝛼

𝜕𝑥2
𝑖

(𝑧) = 𝛿𝑖𝛼 +𝑂 (𝜖). (6.13)

Note that, by our restrictions on 𝜇, 𝜇 is no longer conformal in these coordinates.

Remark 6.5.1. When the two harmonic disks are equal, the𝑂 (𝜖) term is identically
zero.

Inserting these expressions into (6.9) gives, near 𝑧1,

⟨G( ¤𝜈), 𝑋⟩ =
∑︁
𝛾

𝜇𝑖 𝑗 ¤Γ𝑖 𝑗 ,𝛾𝑋𝛾 (6.14)

and near 𝑧2,

⟨G( ¤𝜈), 𝑋⟩ =
∑︁
𝛾

𝜇𝑖 𝑗 ¤Γ𝛼𝛽,𝛾 (𝛿𝑖𝛼𝛿 𝑗 𝛽 +𝑂 (𝜖))𝑋𝛾 =
∑︁
𝛾

𝜇𝑖 𝑗 ¤Γ𝑖 𝑗 ,𝛾𝑋𝛾 +𝑂 (𝜖)
∑︁
𝛼,𝛽,𝛾

¤Γ𝛼𝛽,𝛾𝑋𝛾 .

(6.15)

Incompatible asymptotics
The reproducing kernel 𝑋 is regular near each point 𝑧𝑘 when 𝑘 > 2. Trivially,
| J𝑉 | ≲ 1 near 𝑧𝑘 . Recalling (6.12), we deduce��� ∫

Ω𝑘

⟨J𝑉, 𝑋⟩𝑑𝐴
��� ≲ 𝜖−2

for 𝑘 > 1, 2. For 𝑘 = 1, 2, it may be the case that 𝑋 has a singularity near 𝑧1 or 𝑧2
(or both). We computed this singularity in Proposition 6.3.7, the result being that
in a trivialization near 𝑧1,

𝑋 (𝑧) = 1
2𝜋

(
log

1
|𝑧 |

)
𝑍𝑘 + 𝐵1(𝑧),

where 𝐵1(𝑧) is a 𝐶0,𝛼 local section of F near 𝑧1, and 𝑍𝑘 ∈ F𝑧𝑘 is the vector normal
to the surface 𝑓 (Σ) at 𝑓 (𝑧1), defined above. Our coordinate is not conformal around
𝑧2.

Here we are considering the zero vector to be normal. Recall we are assuming that
for 𝑘 = 1, 2, the patches 𝑓 (Ω𝑘 ) are tangent to the plane 𝑃 at 𝑓 (𝑧𝑘 ). 𝑍𝑘 is normal to
𝑃 because 𝜈1𝛾 = 𝜈2𝛾 = 0 for 𝛾 ≥ 3. Incorporating these asymptotics into (6.14) and
(6.15), we isolate that at 𝑧1,

⟨G( ¤𝜈), 𝑋⟩ =
∑︁
𝛾≥3

𝜇𝑖 𝑗 ¤Γ𝑖 𝑗 ,𝛾𝑋𝛾 +
∑︁
𝛿=1,2

𝜇𝑖 𝑗 ¤Γ𝑖 𝑗 ,𝛿𝑋𝛿 =
∑︁
𝛾≥3

𝜇𝑖 𝑗 ¤Γ𝑖 𝑗 ,𝛾𝑋𝛾 +𝑂 (𝜖−2) (6.16)
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and at 𝑧2,
⟨G( ¤𝜈), 𝑋⟩ =

∑︁
𝛾≥3

𝜇𝑖 𝑗 ¤Γ𝑖 𝑗 ,𝛾𝑋𝛾 (1 +𝑂 (𝜖)) +𝑂 (𝜖−2).

We now use the fact that the restrictions of the metric 𝜇 at the points 𝑧1 and 𝑧2 are
not conformal to each other via 𝑓 . By the choice of local coordinates, this means
the matrix 𝜇𝑖 𝑗 (𝑧1) is not a multiple of the matrix 𝜇𝑖 𝑗 (𝑧2), where both matrices are
found by trivializing the pullback bundle F over 𝑓 −1(𝐷𝜖 ) using a trivialization of
𝐷𝜖 . Furthermore, the two spaces of 2×2 matrices orthogonal to 𝜇𝑖 𝑗 (𝑧1) and 𝜇𝑖 𝑗 (𝑧2)
respectively (with respect to the Frobenius inner product) do not coincide. Thus,
we can choose 𝜑𝑖 𝑗 uniformly bounded above and such that

2∑︁
𝑖, 𝑗=1

𝜇𝑖 𝑗 (𝑧1)𝜑𝑖 𝑗 ( 𝑓 (𝑧1)) = 1

and
2∑︁

𝑖, 𝑗=1
𝜇𝑖 𝑗 (𝑧2)𝜑𝑖 𝑗 ( 𝑓 (𝑧2)) = 0.

Taylor expanding (6.16), we see that near 𝑧1,

⟨G( ¤𝜈), 𝑋⟩ =
∑︁
𝛾≥3

𝜖−2𝜒(𝑧/𝜖)
( 1
2𝜋

(
log

1
|𝑥 |

)
𝑍
𝛾

1 (𝑥) + 𝐵
𝛾 (𝑥)

)
+𝑂 (𝜖−2)

=
∑︁
𝛾≥3

𝜖−2 log |𝑥 |−1 𝜒(𝑧/𝜖)
2𝜋

𝑍
𝛾

1 (0) +𝑂 (𝜖−2).

As for 𝑧2,
2∑︁

𝑖, 𝑗=1
𝜇𝑖 𝑗 (𝑧2)𝜑𝑖 𝑗 ≲ 𝜖

follows by Taylor expansion, and therefore

⟨G( ¤𝜈), 𝑋⟩ =
∑︁
𝛾≥3

𝜇𝑖 𝑗 (𝜑𝑖 𝑗 𝜒𝜖 (𝑢) + 𝑢𝛾𝜑𝑖 𝑗 𝜒𝜖𝛾 (𝑢))𝑋𝛾 (1 +𝑂 (𝜖)) +𝑂 (𝜖−2)

≲
∑︁
𝛾≥3

𝜖 (𝜒𝜖 (𝑢) + 𝑢𝛾𝜒𝜖𝛾 (𝑢)) (1 +𝑂 (𝜖))
(
log

1
|𝑥 |

)
𝑍
𝛾

2 (𝑥) + 𝐵
𝛾 (𝑥)

)
+𝑂 (𝜖−2)

≲
∑︁
𝛾≥3

𝜖−1 log 𝜖−1 |𝑍𝛾2 (0) | +𝑂 (𝜖−2).

Taking integrals yields∫
Ω1

⟨J𝑉, 𝑋⟩𝑑𝐴 =
𝜖−2

2𝜋

∑︁
𝛾≥3

∫
Ω1

(
log

1
|𝑥 |

)
𝜒(𝑧/𝜖)𝑍𝛾1 (0)𝑑𝐴(𝑥

1
1, 𝑥

1
2) +𝑂 (1)∫

Ω2

⟨J𝑉, 𝑋⟩𝑑𝐴 ≲ 𝜖 log 𝜖−1 |𝑍2(0) | +𝑂 (1) ≲ 1,



191

and replacing back into (6.11) gives∫
Σ

⟨J𝑉, 𝑋⟩𝑑𝐴 =
𝜖−2

2𝜋

∑︁
𝛾≥3

∫
Ω1

(
log

1
|𝑥 |

)
𝜒(𝑧/𝜖)𝑍𝛾1 (0)𝑑𝐴(𝑥

1
1, 𝑥

1
2) +𝑂 (1).

Our standing assumption is that for all 𝜖 > 0, the left-hand side is equal to 0.
Therefore, ∑︁

𝛾≥3
|𝑍𝛾1 (0) |

1
2𝜋

∫
Ω1

(
log

1
|𝑥 |

)
𝜒(𝑧/𝜖)𝑑𝐴(𝑥1

1, 𝑥
1
2)

=

���∑︁
𝛾≥3

∫
Ω1

1
2𝜋

∫
Ω1

(
log

1
|𝑥 |

)
𝜒(𝑧/𝜖)𝑍𝛾1 (0)𝑑𝐴(𝑥

1
1, 𝑥

1
2)

��� ≲ 1.

In coordinates, Ω1 is contains a ball of radius 𝜖/2 with respect to the Euclidean
metric, and in such a ball 𝜒(𝑧/𝜖) = 1. Thus,

𝜖−2

2𝜋

∫
Ω1

(
𝜒(𝑧/𝜖) log

1
|𝑥 |

)
𝑑𝐴(𝑥1

1, 𝑥
1
2) ≳ 𝜖

−2
∫
Ω1

(
log

1
|𝑥 |

)
𝑑𝑥1

1𝑑𝑥
1
2 ≳ log(𝜖−1).

If there exists 𝛾 ≥ 3 such that 𝑍𝛾1 (0) ≠ 0, this implies

log 𝜖−1 ≲ 1,

which is nonsensical. This forces 𝑍𝛾1 (0) = 0 for all 𝛾 ≥ 3. Furthermore, recalling
that 𝑍1 is normal to 𝑓 (Ω1) at 𝑧1, we must have that 𝑍1(𝑧1) = 0 identically. This
proves the following lemma.

Lemma 6.5.2. Suppose 𝑓 (Ω1) and 𝑓 (Ω2) are tangential at 𝑓 (𝑧1). Then 𝑋 extends
smoothly over 𝑧1.

Non-tangential harmonic disks
We have essentially proved transversalityΘ, if we assume the images of the harmonic
map are tangential at 𝑧1, 𝑧2, and at 𝑤1, 𝑤2. In this subsection, we consider other
intersections. Namely, we prove the following.

Lemma 6.5.3. Suppose 𝑓 (Ω1) and 𝑓 (Ω2) are not tangential at 𝑓 (𝑧1). Then 𝑋

extends smoothly over 𝑧1.

Equipped with this lemma, we can prove transversality with ease.

Proof of transversality of Θ. AssumeΘ is not transverse, so that we have the section
𝑋 as in the work above. Applying Lemma 6.5.2 or Lemma 6.5.3, depending on the
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circumstance, we see 𝑋 extends smoothly over the point 𝑧1. Repeating this procedure
with 𝑍2,𝑊1, and 𝑊2 taking the role of 𝑍1, we can show it extends smoothly over
those points as well. However, that means 𝑋 extends to a global Jacobi field, which
can only occur if 𝑋 ≡ 0. This is a contradiction. □

Moving toward the proof of Lemma 6.5.3, the proof of the tangential case does not
immediately adapt because (6.13) does not hold, and the super-regular condition
can not be used effectively. To accommodate, we choose our variation differently.
Instead of picking one supported in the ball 𝐷𝜖 , we set 𝐶𝜖 = 𝐷 (𝜖) × {|𝑢 𝑗 | < 𝜖2 :
𝑗 = 3, . . . , 𝑛} and use

𝐵𝜖 = 𝐷𝜖 ∩ 𝐶𝜖 .

The three-dimensional picture of this is the intersection of a ball with a fat cylinder.
Similar to before, let Ω𝑘 denote the connected components of 𝑓 −1(𝐵𝜖 ). Since 𝐵𝜖 is
contained in 𝐷𝜖 , regularity gives∫

Ω𝑘

𝑑𝐴 ≲

∫
𝑓 −1 (𝐷 𝜖 )

𝑑𝐴 ≲ 𝜖2.

Following our previous approach, for 𝛼, 𝛽 = 1, 2, we continue to use functions
𝜑𝛼𝛽 = 𝜑𝛽𝛼 defined on the patch 𝑓 (Ω) ∩ 𝑃. Let 𝜒𝜖 be exactly as before. Take 𝜔1 to
be a smooth function with support in 𝑃 ∩ {𝑢2

1 + 𝑢
2
2 < 4} and such that 𝜔1 = 1 on

𝑃 ∩ {𝑢2
1 + 𝑢

2
2 < 1}, and let 𝜔2 : R → R be a smooth function that is 1 on (−1, 1)

and 0 off (−2, 2). Assuming 𝜖 < 1, set

𝜔𝜖 (𝑢) = 𝜔1(𝜖−1𝑢1, 𝜖
−1𝑢2, 0, . . . , 0)𝜔2(0, 0, 𝜖−2𝑢3, . . . , 𝑢𝑛).

𝜒𝜖𝜔𝜖 has compact support in 𝐵2𝜖 , and 𝜒𝜖𝜔𝜖𝜑𝛼𝛽 = 𝜑𝛼𝛽 in 𝐵𝜖 . Define ¤𝜈 = ¤𝜈(𝜖) by

¤𝜈𝛼𝛽 (𝑢1, 𝑢2, 𝑢3) = −2
𝑛∑︁
𝑗=3
𝑢 𝑗 𝜒

𝜖 (𝑢1, 𝑢2, 𝑢3)𝜔𝜖 (𝑢1, 𝑢2, 𝑢3)𝜑𝛼𝛽 (𝑢1, 𝑢2, 0)

and ¤𝜈𝛼𝛽 = 0 for other 𝛼, 𝛽. One can slightly adjust our previous computations to get

max
𝛼,𝛽

| ¤Γ𝛾
𝛼𝛽
| ≲ 𝜖−2.

Reusing our previous notation, one can now show∫
Σ

⟨J𝑉, 𝑋⟩𝑑𝐴 =

2∑︁
𝑘=1

∫
Ω𝑘

𝜈𝛼𝛽 ( 𝑓 )G𝛼 ( ¤𝜈)𝑋 𝛽
𝑘
𝑑𝐴 +𝑂 (𝜖2).

We aim to find asymptotics for both integrals on the right-hand side above. The
key observation in bounding the integral over Ω2 is that, since 𝑓 (Ω2) is not wholly
contained in 𝐵𝜖 , we have a stronger area estimate.
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Lemma 6.5.4. The area of Ω2 satisfies

Area(Ω2) ≲ 𝜖3

as 𝜖 → 0.

Proof. Since |𝑑𝑓 | is uniformly bounded above and below on Ω2, it suffices to prove
the same asymptotic for the area of 𝑓 (Ω2) ⊂ 𝐵𝜖 . Let (𝑢1, . . . , 𝑢𝑛), (𝑥2

1, 𝑥
2
2) be the

coordinates from above, and let 𝑄 be the embedding of the tangent plane 𝑑𝑓 (𝑇𝑧2Σ)
inside our coordinate patch. Our metrics are locally comparable to Euclidean
metrics, and hence

Area( 𝑓 (Ω2)) ≲
∫
Ω2

𝐽 ( 𝑓 ) (𝑥2
1, 𝑥

2
2)𝑑𝑥

2
1𝑑

2
𝑥 ≲

∫
Ω2

𝐽 ( 𝑓 ) (0)𝑑𝑥2
1𝑑

2
𝑥 +𝑂 (𝜖3),

where 𝐽 ( 𝑓 ) is the Jacobian determinant for 𝑓 . Let Ω̃2 be the relevant component of
𝑓 −1(𝐶𝜖 ). Then ∫

Ω2

𝐽 ( 𝑓 ) (0)𝑑𝑥2
1𝑑𝑥

2
2 ≤

∫
Ω̃2

𝐽 ( 𝑓 ) (0)𝑑𝑥2
1𝑑𝑥

2
2 .

As 𝑓 is an immersion near 𝑧2, from multivariable calculus we have∫
Ω̃2

𝐽 ( 𝑓 ) (0)𝑑𝑥2
1𝑑𝑥

2
2 =

∫
𝑄∩𝐶𝜖

𝑑𝑆, (6.17)

where 𝑑𝑆 is the Euclidean area form on the parametrized surface 𝑄 ∩ 𝐶𝜖 ⊂ R𝑛.

To compute, if 𝑃 and𝑄 span a four-dimensional subspace, then our job is very easy:
the plane 𝑄 only intersects 𝑃 at 𝑓 (𝑧2), and is hence contained in a ball of radius
𝜖2. So the area integral is on the order of 𝜖2𝑛. The less trivial case is when 𝑃
and 𝑄 intersect transversely inside a copy of R3. That is, 𝑄 intersects 𝑃 in a line,
making some acute angle 𝛼 > 0 with 𝑃. The family of planes making such an angle
admits an 𝑆1 action by rotations around the normal axis (which we now assume is
the 𝑢3-axis), which preserves the area of intersections with the cylinder. Hence, we
can replace 𝑄 with any plane that makes the same angle 𝛼. A convenient choice is

𝑄 = {(𝑢1, 𝑢2, 𝑢3) : 𝑢1 sin𝛼 + 𝑢3 cos𝛼 = 0}.

If not already the case, shrink 𝜖 so that 𝜖 < tan𝛼. We view 𝑄 as the parametrized
surface specified by

𝐹 (𝑢1, 𝑢2) = 𝑢3 = −𝑢1 tan𝛼,

subject to the constraints 𝑢2
1 + 𝑢

2
2 < 𝜖

2, |𝑢3 | < 𝜖2. Set 𝐹𝑖 = 𝐹𝑢𝑖 . We compute∫
𝑄∩𝐶𝜖

𝑑𝑆 =

∫
𝑄∩𝐶𝜖

√︃
𝐹2

1 + 𝐹2
2 + 1𝑑𝑆 = 2

∫ 𝜖 2
tan 𝛼

− 𝜖 2
tan 𝛼

∫ √
𝜖2−𝑢2

1

0

√︁
tan2 𝛼 + 1𝑑𝑢2𝑑𝑢1 ≲ 𝜖

3.

Thus, in both cases, inputting the estimates into (6.17) gives the desired bound. □
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With this lemma in hand,

𝑋2(𝑧) = 𝐶
(
log

1
|𝑧 |

)
𝑍2 + 𝐵(𝑧)

with 𝑍2 a vector normal to 𝑓 (Ω2) at 𝑧2 (and thus not normal to𝑃) and 𝐵 ∈ 𝐶0,𝛼 (F|Ω2).
Independent of the choice of function 𝜑𝛼𝛽, we estimate

⟨G( ¤𝜈), 𝑋⟩ =
∑︁
𝛾

𝜇𝑖 𝑗 ¤Γ𝛼𝛽,𝛾
𝜕 𝑓 𝛼

𝜕𝑥𝑖

𝜕 𝑓 𝛽

𝜕𝑥 𝑗
𝑋𝛾 ≲ log

1
|𝑥 | max

𝛼,𝛽,𝛾
| ¤Γ𝛼𝛽,𝛾 |

≲ |
∫
Ω2

𝜈𝛼𝛽 ( 𝑓 )G𝛼 ( ¤𝜈)𝑋 𝛽2 𝑑𝐴| ≲ max
𝛽

∫
Ω2

|𝑋 𝛽2 |𝑑𝐴 ≲
∫
Ω2

log
1
|𝑥 | 𝑑𝐴 +𝑂 (𝜖3).

We bound the integral on the right:∫
Ω2

log
1
|𝑥 | 𝑑𝐴 =

∫
Ω2\(Ω∩𝐵(0,𝜖3/2))

log
1
|𝑥 | 𝑑𝐴 +

∫
Ω∩𝐵(0,𝜖3/2)

log
1
|𝑥 | 𝑑𝐴

≤ log 𝜖−3/2Area(Ω2) +
∫
𝐵(0,𝜖3/2)

log
1
|𝑥 | 𝑑𝐴 ≲ 𝜖

3 log 𝜖−1.

Returning to our original integral, we obtain

0 =

∫
Σ

⟨J𝑉, 𝑋⟩𝑑𝐴 =

∫
Ω1

⟨J𝑉, 𝑋⟩𝑑𝐴 +𝑂 (𝜖2).

For Ω1, the area estimate
𝜖2 ≲

∫
Ω1

𝑑𝐴 ≲ 𝜖2 (6.18)

is obvious. We choose 𝜑𝛼𝛽 exactly as in the tangential case, and if 𝑋 does not extend
smoothly over 𝑧1, then using (6.18) returns∫

Ω1

⟨J𝑉, 𝑋⟩𝑑𝐴 ≳ log 𝜖−1

and produces the same contradiction as in the tangential case. This completes the
proof of Lemma 6.5.3. As discussed above, this concludes our proof of transversality
of Θ.

6.6 Immersions and embeddings
Preparing the arguments
Here we set up transversality arguments for Theorem 6B and Theorem 6C. We
assume that𝑀 is parallelizable, the general case being a slight modification (because
transversality is a local property). Accordingly, we choose an isomorphism 𝜎 :
𝑇𝑀C → 𝑀 × C𝑛 with projection map from

𝑇𝑀C → C𝑛
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that restricts to a family of isomorphisms 𝜎𝑝 : 𝑇𝑀C𝑝 → C𝑛, isometric with respect
to the inner product induced by the metric on 𝑇𝑀C𝑝 and the standard inner product
on C𝑛.

Let Σ̃ denote the universal cover of Σ. The metric 𝜇 on Σ lifts to a metric on the
universal cover Σ̃ that we still denote by 𝜇. Likewise, the harmonic map 𝑓𝜇,𝜈 lifts to
a map 𝑓𝜇,𝜈 : (Σ̃, 𝜇) → (𝑀, 𝜈), and we do not distinguish our notation.

The Riemannian manifold (Σ̃, 𝜇) identifies isometrically with (D, 𝜎), the complex
unit disk endowed with its hyperbolic metric. We further identify the Riemann
surface Σ𝜇 in the conformal class of (Σ, 𝜇) with D/Γ𝜇, where Γ𝜇 is a smoothly
varying family of Fuchsian groups acting on D. Let 𝑧 ∈ D denote the complex
parameter. This provides us with a canonical complex parameter 𝑧𝜇 = 𝑧 on Σ̃ that
depends only on 𝜇.

Unless stated otherwise, the dimension (codimension) of some object in a category
(vector space, manifold, etc.) refers to the real dimension (codimension). To prove
Theorem 6B, consider the subset I ⊂ C𝑛 defined by

I = {𝐴 ∈ C𝑛 : rank𝐴 < 2}.

Here, Rank(𝐴) denotes the dimension of the vector space spanned by Re(𝐴) and
Im(𝐴). I is not a submanifold, but it splits as a union of two submanifolds of C𝑛:
I = L0 ∪ L1, where

L0 = {0} ⊂ C𝑛, L1 = {𝐴 ∈ C𝑛 : rank𝐴 = 1} ⊂ C𝑛.

We define
Ψ : Σ̃ ×𝔐 → C𝑛

by
(𝑝, 𝜇, 𝜈) ↦→ 𝜎( 𝑓𝑧 (𝑝)).

The point is that 𝑓𝜇,𝜈 is an immersion as long as Ψ(𝑝, 𝜇, 𝜈) ∉ I for all 𝑝. L0 has
codimension 2𝑛 and L1 has codimension 𝑛 − 1 in C𝑛, so if Ψ is transverse to both
submanifolds, then Ψ−1(I) is contained in a codimension 𝑛 − 1 submanifold. Let
𝜋 : Σ̃ ×𝔐 → 𝔐 be the projection map. 𝜋(Ψ−1(I)) is contained in a submanifold
of codimension at least (𝑛 − 1) − 2 = 𝑛 − 3, so openness and density should hold
for 𝑛 ≥ 4. Heuristically speaking, we should have connectedness for 𝑛 ≥ 5,
although because the image may not be a manifold, this last point does not follow
immediately. Thus, once we formalize this argument, the content of Theorem 6B is
that Ψ is transverse at all points in the preimage of I.
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Toward transversality of Ψ, we compute the derivative of Ψ at a point (𝑝, 𝜇, 𝜈) in
the direction of a variation of the target metric (0, 0, ¤𝜈). As before, the infinitesimal
variation of the maps 𝑓𝜇,𝜈+𝑡 ¤𝜈 is a section 𝑉 ∈ Γ(F) satisfying J𝑉 = G( ¤𝜈). Choosing
our coordinate so that 𝑉 (𝑝) = 0, the vector 𝑑Ψ(0, 0, 0, ¤𝜈) can be identified with
the vertical lift of the associated vector in C𝑛 under the identification of the tangent
space at 0. In such a coordinate, the derivative becomes

𝑑Ψ(0, 0, ¤𝜈) = 𝜎𝑝 (∇𝑧𝑉 (𝑝)).

Thus, we have the following.

Lemma 6.6.1. Fix a point (𝑝, 𝜇, 𝜈) ∈ Σ̃ × 𝔐. Suppose that for every 𝑊 ∈ E𝑝,
there exists a variation ¤𝜈 ∈ 𝑇𝜈𝔐(𝑀) such that if 𝑉 ∈ Γ(F) is the section satisfying
J𝑉 = G( ¤𝜈), then 𝑉 (𝑝) = 0 and

𝜎𝑝 (∇𝑧𝑉 (𝑝)) = 𝑊 (𝑝).

Then Ψ is transverse to L0 and L1 at (𝑝, 𝜇, 𝜈).

Granting the following, we prove Theorem 6B.

Lemma 6.6.2. Suppose 𝑓𝜇,𝜈 is somewhere injective and has isolated singularities.
Then the hypothesis of the lemma above is satisfied. That is, Ψ is transverse to L0

and L1 at (𝑝, 𝜇, 𝜈).

Proof of Theorem 6B. This is similar to the proof of Theorem 6A, so we don’t dwell
on the details. Transversality is an open property, so we can fix a neighbourhood𝑈
around (𝜇, 𝜈) in which Ψ is transverse. We let 𝑈 𝐼 denote the subset of (𝜇, 𝜈) ∈ 𝑈
corresponding to harmonic immersions. Observe𝑈 𝐼 = 𝑈 ∩𝔐 \(𝜋(Ψ−1(I))). The
goal is to show this is open, dense, and connected.

I is clearly closed, from which the openness result is immediate. The Transversality
Theorem for Banach Manifolds implies that Ψ−1(L0) has codimension 2𝑛 and
Ψ−1(L1) has codimension 𝑛 − 1, and from our comments above, we obtain density
when 𝑛 = dim𝑀 ≥ 4.

Assuming 𝑛 = dim𝑀 ≥ 5, we prove connectedness directly. Let 𝛾 : [0, 1] → 𝑈 𝐼

be a path with endpoints in 𝑈 𝐼 . We show that 𝛾 can be perturbed (while keeping
the endpoints fixed) to be entirely contained in 𝑈 𝐼 . By the end of the proof of
Theorem 6A, we can assume that 𝛾 lives in a single chart in the model Banach
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space for 𝔐. Let the initial point and terminal point for our path be (𝜇0, 𝜈0) and
(𝜇1, 𝜈1) respectively. We show that we can slightly perturb the endpoint so that the
straight line that connects (𝜇0, 𝜈0) to the new pair of metrics lies entirely in 𝑈 𝐼 .
Then, provided our perturbation is close enough, we can use openness to connect
to (𝜇1, 𝜈1). Let 𝑉 ⊂ 𝔐′ be a small convex neighbourhood of (𝜇1, 𝜈1) and for
(𝜇, 𝜈) ∈ 𝑉 consider the map 𝛿𝜇,𝜈 (𝑝, 𝑡) : Σ̂ × [0, 1] → C𝑛 given by

𝛿𝜇,𝜈 (𝑝, 𝑡) = Ψ(𝑝, 𝑡 (𝜇0, 𝜈0) + (1 − 𝑡) (𝜇, 𝜈)).

Set 𝑚 = min{𝑟 − 1, 𝑘} (see page 1). Using [EL81, Corollary 3.2], one can apply
standard arguments to see that 𝛿𝜇,𝜈 is 𝐶𝑚.

Remark 6.6.3. The reader can find an example of such an argument in Proposition
2.4.7 of [AMR88].

Moreover, the association (𝜇, 𝜈) ↦→ 𝛿𝜇,𝜈 gives a well-defined map 𝛿 : 𝑈 → 𝐶𝑚 (Σ̂ ×
[0, 1],C𝑛). The evaluation map 𝛽 : 𝑈 × (Σ̂ × [0, 1]) → C𝑛. is given by

𝛽((𝜇, 𝜈), (𝑝.𝑡)) = Ψ(𝑝, 𝑡 (𝜇0, 𝜈0) + (1 − 𝑡) (𝜇, 𝜈)).

This map 𝛽 has the same regularity as Ψ. As above, 𝛿 is a 𝐶𝑚 representation.
The dimension of Σ̃ × [0, 1] is 3 and the codimension of L0 and L1 are 2𝑛 and
𝑛 − 1 respectively, at least 4. Since 𝑚 ≥ 1 > 0, it is legal to apply the Parametric
Transversality Theorem, and we conclude that for a generic point (𝜇, 𝜈) ∈ 𝑈, the
map 𝛿𝜇,𝜈 is transverse to L0,L1. From the dimension and codimension constraints,
this implies the path does not touch L0 or L1. Therefore, the path

𝜋(𝑝, 𝑡 (𝜇0, 𝜈0) + (1 − 𝑡) (𝜇, 𝜈))

lies in 𝑈 𝐼 and connects (𝜇0, 𝜈0) and (𝜇, 𝜈). This shows we may connect (𝜇0, 𝜈0)
via a straight line contained in 𝑈 𝐼 to a point arbitrarily close to (𝜇1, 𝜈1), and hence
completes the proof. □

We now explain Theorem 6C. Define

Φ : Σ2 ×𝔐 → 𝑀2

by
(𝑝, 𝑞, 𝜇, 𝜈) ↦→ ( 𝑓𝜇,𝜈 (𝑝), 𝑓𝜇,𝜈 (𝑞)),
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and let E be the diagonal

E = {(𝑥, 𝑥) : 𝑥 ∈ 𝑀} ⊂ 𝑀2.

If Φ is transverse to E, then, again heuristically, the set of metrics on which 𝔐 fails
to be an embedding has codimension 𝑛 − 4. The derivative in a ¤𝜈 direction is just
(𝑉 (𝑝), 𝑉 (𝑞)), where 𝑉 is the associated harmonic variation. The following lemma
is the transversality criterion.

Lemma 6.6.4. Fix points (𝑝, 𝑞, 𝜇, 𝜈) ∈ Σ2 ×𝔐. Suppose that for every 𝑊1 ∈ F𝑝,
𝑊2 ∈ F𝑞, there exists a variation ¤𝜈 ∈ 𝑇𝜈𝔐(𝑀) such that if 𝑉 ∈ Γ(F) is the section
satisfying J𝑉 = G( ¤𝜈), then (𝑉 (𝑝), 𝑉 (𝑞)) = (𝑊1,𝑊2). Then Ψ is transverse to E at
(𝑝, 𝑞, 𝜇, 𝜈).

As above, Theorem 6C follows from a lemma that we leave for later.

Lemma 6.6.5. Suppose 𝑓𝜇,𝜈 is somewhere injective and has isolated singularities.
Then the hypothesis of the lemma above is satisfied. That is, Ψ is transverse to E at
(𝑝, 𝜇, 𝜈).

Assuming this lemma, the proof of Theorem 6C follows the same line as the proofs
of Theorems 6A and 6B (in fact, it is simpler). Hence we omit the proof.

The holomorphic line bundle L
Working toward the lemmas, we introduce the line bundle L. Here we follow the
exposition of [Moo17, section 4.1]. Fix a pair (𝜇, 𝜈) ∈ 𝔐 and let 𝑓 = 𝑓𝜇,𝜈 denote
the associated harmonic map. As in Chapter II, if we take a local complex parameter
𝑧 = 𝑥 + 𝑖𝑦, 𝑓𝑧 is a local holomorphic section of the bundle E, which we recall is
equipped with its Koszul-Malgrange holomorphic structure.

While 𝑓𝑧 is only locally defined, the zero set is independent of the choice of coor-
dinate, and the projectivization [ 𝑓𝑧] is a well-defined holomorphic section of the
projectivized bundle P(E). Analytically continuing to the zero set we obtain a
well-defined global section

[ 𝑓𝑧] : Σ → P(E).

This section defines a family of lines in E, which patch together to form a holomor-
phic line bundle L ⊂ E, and 𝑓𝑧 may be naturally viewed as a local holomorphic
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section of L. If 𝑝 is a branch point, we can choose a coordinate 𝑧 in which 𝑧(𝑝) = 0
and

𝑓𝑧 = 𝑧
𝑘𝑔(𝑧),

where 𝑔 is a local section of L such that 𝑔(𝑝) ≠ 0. The integer 𝑘 is called the
branching order of 𝑓 .

The E-valued (1, 0)-form 𝑓𝑧𝑑𝑧 is naturally a holomorphic section of the holomor-
phic vector bundle L ⊗ K, where K is the canonical bundle. If 𝑓 branches at
points 𝑝1, . . . , 𝑝𝑛 with branching orders 𝑘 𝑝1 , . . . , 𝑘 𝑝𝑛 , then 𝑓𝑧𝑑𝑧 defines a nowhere
vanishing holomorphic section of the bundle

L ⊗ K ⊗ 𝜁−𝑘 𝑝1
𝑝1 ⊗ · · · ⊗ 𝜁−𝑘 𝑝𝑛𝑝𝑛 ,

where 𝜁𝑝 𝑗
is the holomorphic point bundle at 𝑝 𝑗 . It follows that

L ≃ K∗ ⊗ 𝜁 𝑘 𝑝1
𝑝1 ⊗ · · · ⊗ 𝜁 𝑘 𝑝𝑛𝑝𝑛 .

The degree of L can then be computed by the evaluation of the first Chern class
against the fundamental class of Σ:

deg 𝐿 = ⟨𝑐1(L), [Σ]⟩ = 2 − 2𝑔 +
∑︁
𝑝

𝑘 𝑝,

where the sum is taken over the branch set.

Prescribing harmonic variations for Lemma 6.6.2
Lemma 6.6.2 is a special case of the following stronger result.

Lemma 6.6.6. Fix a local complex coordinate 𝑧 = 𝑥 + 𝑖𝑦 near 𝑝 ∈ Σ. Then, for any
three vectors 𝑍 𝑗 ∈ F𝑝, 𝑗 = 1, . . . , 3, we can find ¤𝜈 ∈ 𝑇𝜈𝔐∗(𝑀) such that

𝑉 (𝑝) = 𝑍1 , ∇𝑥𝑉 (𝑝) = 𝑍2 , ∇𝑦𝑉 (𝑝) = 𝑍3,

where G( ¤𝜈) = J𝑉 .

Suppose the lemma false, so that there are three vectors 𝑍1, 𝑍2, 𝑍3 ∈ F𝑝 such that the
above fails for every 𝑉 of the form J𝑉 = G( ¤𝜈), where ¤𝜈 ∈ 𝑇𝜈𝔐(𝑀). Considering
the induced inner product on ⊕3

1F𝑝, we can find a triplet of vectors𝑈1,𝑈2,𝑈3 ∈ F𝑝
(with not all of them equal to the zero vector) that is orthogonal to every of the form
𝑉 (𝑝), where 𝑉 is a section such that J𝑉 = G( ¤𝜈). This yields the identity

⟨𝑉 (𝑝),𝑈1⟩ + ⟨∇𝑥𝑉 (𝑝),𝑈2⟩ + ⟨∇𝑦𝑉 (𝑝),𝑈3⟩ = 0
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for every such 𝑉 .

Adding together reproducing kernels, we obtain a smooth section 𝑋 : Σ\{𝑝} → F
such that

⟨𝑊 (𝑝),𝑈1⟩ + ⟨∇𝑥𝑊 (𝑝),𝑈2⟩ + ⟨∇𝑦𝑊 (𝑝),𝑈3⟩ =
∫
Σ

⟨J𝑊, 𝑋⟩𝑑𝐴 (6.19)

for every 𝑊 ∈ Γ(F). Moreover, J𝑋 (𝑝) = 0 for every 𝑥 ∈ Σ\{𝑝} and the growth of
𝑋 is controlled by |𝑧 |−1 at 𝑝.

Lemma 6.6.7. 𝑋 is not identically zero.

Proof. It is an elementary exercise to show that one can construct sections of F with
prescribed 1-jet at 𝑝 (and we used this fact already in Section 6.3). So, one can
choose𝑊 such that the left-hand side of equation (6.19) is positive. □

The following lemma, a very important piece of our argument, is the content of
[Moo06, Lemma 3.1]. The argument can also be found in Moore’s book [Moo17,
page 311].

Lemma 6.6.8. Let Ω ⊂ Σ𝑟𝑒𝑔 ( 𝑓 ) be a small open subset of the regular set of 𝑓 , and
assume 𝑓 = 𝑓𝜇,𝜈 satisfies 𝑓 −1( 𝑓 (Ω)) = Ω. Suppose 𝑌 : Ω → F is a smooth section.
If ∫

Σ

⟨J𝑉,𝑌⟩𝑑𝐴 = 0

for every ¤𝜈 ∈ 𝑇𝜈𝔐(𝑀) whose support is contained in 𝑓 (Ω), then each point 𝑝 ∈ Ω

has a neighbourhood on which𝑌 equals the real part of a local holomorphic section
of L.

Remark 6.6.9. The existence of such a set Ω is guaranteed by the hypothesis that 𝑓
is somewhere injective.

Since the somewhere injective property is so strongly used, we give a word on the
proof.

Ideas in the proof. The hypothesis that 𝑓 −1( 𝑓 (Ω)) = Ω implies that if we take any
variation ¤𝜈 with support in 𝑓 (Ω), then the support of J𝑉 = G( ¤𝜈) is contained in Ω,
where 𝑉 is the associated harmonic variation. Therefore,∫

Σ

⟨J𝑉,𝑌⟩𝑑𝐴 =

∫
Ω

⟨J𝑉,𝑌⟩𝑑𝐴. (6.20)



201

Choosing variations ¤𝜈 normal to 𝑓 (Ω), Moore uses (6.20) to show that 𝑌 is a
tangential section of F over Ω, i.e., it maps into the image of 𝑑𝑓 (𝑇Σ |𝑈) inside the
pullback bundle 𝑓 ∗𝑇𝑀 . Since 𝑓 is regular in Ω, one can identify F|Ω with a real
subbundle of L. This will be explained after Proposition 6.6.10. Then, choosing
tangential variations, (6.20) is used to show that, under the identification, 𝑌 is the
real part of a holomorphic section of L. □

Now we return to our main argument. Choose an open set Ω as above and not
containing 𝑝 and apply Lemma 6.6.8 to the section 𝑋 . Note that 𝑋 has no singularity
in Ω. Let 𝑍 be the holomorphic section of L defined on Ω.

We use the isolated singularity condition to analytically continue 𝑍 . Let 𝑈 be any
open subset of the regular set that intersects Ω with non-empty interior. We chose a
conformal coordinate 𝑧 = 𝑥1 + 𝑖𝑥2 on the source as well as coordinates on the target
so that we could write

𝑋 = 𝑋 𝑗 𝜕

𝜕𝑢 𝑗

with 𝜕 𝑓 𝑖/𝜕𝑥 𝑗 = 𝛿𝑖 𝑗𝑢𝑖. This identifies the first two components with the tangent bun-
dle overΩ, and we get an orthogonal splitting into tangential and normal components
as

𝑓 ∗𝑇𝑈 = ( 𝑓 ∗𝑇𝑈)𝑇 ⊕ ( 𝑓 ∗𝑇𝑈)⊥.

𝑋 |Ω is tangential, and hence the projection 𝜋( 𝑓 ∗𝑇𝑈)⊥ (𝑋) vanishes on Ω. We see via
the next proposition that this holds on all of𝑈.

Proposition 6.6.10. 𝜋( 𝑓 ∗𝑇𝑈)⊥ (𝑋) = 0 on all of𝑈. In other words, 𝑋 |𝑈 is tangential
to the image surface 𝑓 (𝑈).

Remark 6.6.11. This is automatic when the metrics (𝜇, 𝜈) are real analytic (which
implies 𝑓 is real analytic as well).

Proof. We prove 𝜋( 𝑓 ∗𝑇𝑈)⊥ (𝑋) = 0 in an open disk 𝑉 ⊂ 𝑈 that intersects Ω. The
proposition then follows from point-set considerations.

Let
{
𝜕
𝜕 𝑓1
, 𝜕
𝜕 𝑓2
, . . . 𝜕

𝜕 𝑓𝑛

}
be a trivialization for 𝑓 ∗𝑇𝑉 such that

{
𝜕
𝜕 𝑓1
, 𝜕
𝜕 𝑓2

}
and

{
𝜕
𝜕 𝑓3
, . . . 𝜕

𝜕 𝑓𝑛

}
are frames for the tangential and normal subbundles respectively. In these frames,
write 𝑋 = 𝑋 𝑗 𝜕

𝜕 𝑓 𝑗
, so that

𝜋( 𝑓 ∗𝑇𝑈)⊥ (𝑋) =
𝑛∑︁
𝑗=3

𝑋 𝑗 𝜕

𝜕 𝑓 𝑗
.
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Let 𝑝 ∈ 𝑉 and let 𝑧 = 𝑥 + 𝑖𝑦 be a local complex parameter for 𝑉 with 𝑧(𝑝) = 0. In
the coordinate, J𝑋 is expressed as

J𝑋 = −𝜇−1
( 𝑛∑︁
𝑗=1

(𝑋 𝑗
𝑥𝑥 + 𝑋 𝑗

𝑦𝑦)
𝜕

𝜕 𝑓 𝑗

)
+ 𝜇−1

𝑛∑︁
𝑗=1

(
2𝑋 𝑗

𝑥∇𝑥𝜕 𝑓 𝑗 − 2𝑋 𝑗
𝑦∇𝑦

𝜕

𝜕 𝑓 𝑗

)
− 𝜇−1

( 𝑛∑︁
𝑗=1

𝑋 𝑗 (∇𝑥∇𝑥 + ∇𝑦∇𝑦)
𝜕

𝜕 𝑓 𝑗
− 𝜇−1

∑︁
𝑖,𝑘, 𝑗 ,ℓ

𝑋 𝑘 (𝜈𝑅 𝑗
ℓ𝑘𝑖

◦ 𝑓 ) ( 𝑓 ℓ𝑥 𝑓 𝑖𝑥 + 𝑓 ℓ𝑦 𝑓
𝛼
𝑦 )

𝜕

𝜕 𝑓 𝑗

)
,

where the 𝜈𝑅𝛾
𝛿𝛽𝛼

are the coordinate expressions for the Riemannian curvature tensor
of (𝑀, 𝜈). Since J𝑋 = 0 on 𝑉 , we deduce that for all 𝑗 ,���( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)
𝑋 𝑗

��� ≲ |∇𝑋 | + |𝑋 |,

where ∇ is the ordinary Euclidean gradient in the local coordinates. We can now
invoke the Hartman-Wintner theorem [HW53], which asserts that, in our choice of
coordinates,

𝑋 (𝑧) = 𝑝(𝑧) + 𝑟 (𝑧),

where 𝑝(𝑧) is a vector-valued harmonic homogeneous polynomial, and 𝑟 (𝑧) ∈
𝑂 (𝑧𝑝(𝑧)). It follows immediately that 𝑋 𝑗 = 0 on 𝑉 for 𝑗 ≥ 3. □

Next, let 𝛾 be any curve emanating fromΩ that does not intersect the singular set (this
includes 𝑝). In a neighbourhood 𝑈 containing the first intersection point of 𝛾 ∩ Ω,
we continue to choose a conformal coordinate 𝑧 = 𝑥1 + 𝑥2 so that 𝜕 𝑓 𝑖/𝜕𝑥 𝑗 = 𝛿𝑖 𝑗𝑢𝑖.
Then there is a real linear isomorphism 𝜏 : ( 𝑓 ∗𝑇𝑈)𝑇 → L|𝑈 defined by

𝑀𝜕/𝜕𝑥1 + 𝑁𝜕/𝜕𝑥2 ↦→ (𝑀 + 𝑖𝑁) 𝑓𝑧 .

In Ω ∩𝑈, the proof of Lemma 6.6.8 explicitly constructs the holomorphic section
𝑍 as

𝑍 = 𝜏(𝑋) = (𝑋1 + 𝑖𝑋2)
𝜕

𝜕𝑧
.

Extending 𝑍 by this formula on all of 𝑈, it is easily checked that 𝑍 is a Jacobi field
if and only if 𝑋 is. Thus, arguing similarly to above, we see via Hartman-Wintner
that in our coordinates,

𝑍 (𝑧) = 𝑞(𝑧) + 𝑠(𝑧),

with 𝑞 a complex vector-valued harmonic homogeneous polynomial and 𝑠(𝑧) de-
caying faster. Differentiating, the local expression for the section 𝜕𝑍 takes this form
as well. Thus, since ∇𝑧𝑍 = 𝜕𝑍 vanishes on Ω, it vanishes everywhere. That is, 𝑍 is
holomorphic on 𝑈. In this way, we continue along all of 𝛾. The next lemma shows
that the analytic continuation does not depend on the path.
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Lemma 6.6.12. Let𝑊 denote a local holomorphic section of L. Then Re(𝑊) is not
identically 0.

Indeed, suppose we have two open sets Ω1,Ω2 ⊃ Ω and local holomorphic exten-
sions 𝑋1, 𝑋2 of 𝑋 . Setting 𝑊 = 𝑋1 − 𝑋2, the lemma above forces 𝑊 ≡ 0. Thus 𝑍
extends in well-defined fashion to the complement of the singular set.

Proof. This is also found in [Mar18, Proposition 4.2], but we include the proof for
completeness. In a local complex parameter 𝑧 = 𝑥 + 𝑖𝑦,𝑊 may be written𝑊 = ℎ 𝑓𝑧

for some locally defined meromorphic function ℎ = ℎ1 + 𝑖ℎ2 (with possible poles
matching up with zeros of 𝑓 ). Then

Re(𝑊) = 1
2
(ℎ1 𝑓𝑥 + ℎ2 𝑓𝑦).

If𝑊 is non-zero and Re(𝑊) ≡ 0, then 𝑓𝑥 and 𝑓𝑦 are linearly dependent vectors, and
moreover Rank(𝑑𝑓 ) < 2 on Ω. This is impossible since, as remarked earlier, the set
of regular points for 𝑓 is open and dense in Σ. □

We now address singular points.

Lemma 6.6.13. 𝑍 extends holomorphically over every singular point except possibly
𝑝.

Proof. Let S be the singular set of 𝑓 , so that we have a section 𝑌 : Σ\S → F such
that 𝑍 = 𝑋 + 𝑖𝑌 : Σ\S → L is holomorphic.

From the local coordinate expression for 𝑍 , the norm with respect to the natural
metric on F blows up at singular points at worst like the inverse of the Jacobian
of 𝑓 . Thus, 𝑍 extends to a meromorphic section of E on all of Σ. Taking the
projectivization gives a well-defined holomorphic section [𝑍] : Σ → P(E), which
by the identity theorem must agree with [ 𝑓𝑧]. That is, 𝑍 is parallel to 𝑓𝑧, even at the
singularities.

Let 𝑞 ≠ 𝑝 be a singularity. Choosing a local complex coordinate 𝑧 with 𝑧(𝑞) = 0
and any trivialization for our bundle, we can write

𝑍 = 𝑧𝑛𝑔(𝑧),

with 𝑔 holomorphic and parallel to 𝑓𝑧, 𝑔(0) ≠ 0, and 𝑛 ∈ Z. Write 𝑔 = ℎ(𝑧) 𝑓𝑧, with
ℎ meromorphic. Let 𝑔 = 𝑔1 + 𝑖𝑔2, ℎ−1 = ℎ−1

1 + 𝑖ℎ−1
2 . Then

𝑓𝑧 =
1
2
( 𝑓𝑥 − 𝑖 𝑓𝑦) =

1
2

(
(ℎ−1

1 𝑔1 + ℎ−1
2 𝑔2) − 𝑖(ℎ−1

2 𝑔1 − ℎ−1
1 𝑔2)

)
,
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and if 𝑋 = 𝑎(𝑧) 𝑓𝑥 + 𝑏(𝑧) 𝑓𝑦 away from 𝑞 (the coefficients may blow up at 𝑞), then
we can also write

𝑋 = 𝑎(𝑧) (ℎ−1
1 𝑔1 + ℎ−1

2 𝑔2) + 𝑏(𝑧) (ℎ−1
2 𝑔1 − ℎ−1

1 𝑔2)
= (𝑎(𝑧)ℎ−1

1 + 𝑏(𝑧)ℎ−1
2 )𝑔1 + (𝑎(𝑧)ℎ−1

2 − 𝑏(𝑧)ℎ−1
1 )𝑔2.

Since 𝑋 is regular bounded at 𝑞, the coefficents on 𝑔1 and 𝑔2 are regular and bounded.
This demonstrates that 𝑋 can be expressed as a real section in the trivialization
determined by 𝑔. The same can be done for 𝑌 off 𝑞. Since 𝑋 is bounded at 𝑞, it
follows that the singularity of 𝑍 is removeable. □

To obtain a contradiction and finish the proof of Lemma 6.6.2, we explain that
no holomorphic section such as 𝑍 can exist. From the proof of Lemma 6.6.13,
𝑍 behaves at worst like the asymptotic (6.7), so it extends to a globally defined
meromorphic section

𝑍 : Σ → L

with a pole of order at most 1 at 𝑝. We let ordL
𝑞 (𝑋), ordE

𝑞 (𝑋) denote the order of
vanishing of 𝑍 at 𝑞 with respect to the charts on the bundles L and E respectively.
In this notation,

ordL
𝑝 𝑗
(𝑍) = ordE

𝑝 𝑗
(𝑍) + 𝑘 𝑗 .

The degree of the divisor for 𝑍 with respect to L agrees with the degree of L, so that

deg L =
∑︁
𝑞∈Σ

ordL
𝑞 (𝑍) =

∑︁
𝑞∈Σ

ordE
𝑞 (𝑍) +

∑︁
𝑗

𝑘 𝑗 ≥ −1 +
∑︁
𝑗

𝑘 𝑗 .

Meanwhile, we showed earlier that

deg L = 2 − 2𝑔 +
∑︁
𝑗

𝑘 𝑗 .

This implies 2 − 2𝑔 ≥ −1, or 𝑔 ≤ 3/2, and this contradiction establishes the result.

Harmonic embeddings: the proof of Lemma 6.6.5
This is similar to Lemma 6.6.2, so we only sketch the proof. As before, the lemma
follows from a more general result.

Lemma 6.6.14. Fix a local complex coordinate 𝑧 = 𝑥 + 𝑖𝑦 near 𝑝 ∈ Σ. Then for
any three vectors 𝑍 𝑗 ∈ F𝑝, 𝑗 = 1, . . . , 3, we can find ¤𝜈 ∈ 𝑇𝜈𝔐∗(𝑀) such that

𝑉 (𝑝) = 𝑍1 , ∇𝑥𝑉 (𝑝) = 𝑍2 , ∇𝑦𝑉 (𝑝) = 𝑍3,

where G( ¤𝜈) = J𝑉 .
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If the lemma fails, there are vectors𝑈1 ∈ F𝑝,𝑈2 ∈ F𝑞 such that for every harmonic
variation 𝑉 ,

⟨𝑈1, 𝑉 (𝑝)⟩ + ⟨𝑈2, 𝑉 (𝑞)⟩ = 0.

Taking the reproducing kernels for𝑈1 and𝑈2, we have a section 𝑋 : Σ\{𝑝, 𝑞} → F
such that ∫

Σ

⟨J𝑊, 𝑋⟩𝑑𝐴 = ⟨𝑈1,𝑊 (𝑝)⟩ + ⟨𝑈2,𝑊 (𝑞)⟩

for all sections𝑊 ∈ Γ(F). Invoking Moore’s lemma and then repeating our argument
from the previous subsection, one finds a section 𝑌 : Σ\{𝑝, 𝑞} → F such that
𝑍 = 𝑋 + 𝑖𝑌 is holomorphic. The asymptotic (6.6) ensures that 𝑍 blows up strictly
slower than any meromorphic section, and hence the singularities at 𝑝 and 𝑞 are
removeable. Thus, 𝑍 yields a globally defined holomorphic section, a Jacobi field,
and this is a contradiction.

Toward the Whitney theorems
Theorems 6B and 6C show that Conjecture 6E holds near harmonic surfaces that
are somewhere injective and have isolated singularities. To conclude the chapter,
we discuss our use of this hypothesis and the possibility of removing it.

Firstly, to prove Conjecture 6E, by Theorem 6A it suffices to prove it holds near
surfaces that are somewhere injective. So the only extra condition that we use here is
the isolated singularities. Let us assume that (𝜇, 𝜈) are such that 𝑓𝜇,𝜈 is somewhere
injective, with no condition on singularities. Beginning the proof of Lemma 6.6.2,
we find a kernel 𝑋 satisfying (6.19). Then we can find an open set Ω on which 𝑓

is injective, and by Moore’s lemma, 𝑋 |Ω is the real part of a holomorphic section
𝑍 : Ω → L. At this point, it is tempting to believe that some sort of unique
continuation argument should promote this to a global result.

It is unclear if this is possible, one obstruction being that we are not aware of a
coordinate-free way to express that 𝑋 is the real part of a holomorphic section.
The issue stems from the following remark: 𝑋 is a real section of E with respect
to the real structure induced from the splitting E = F ⊕ 𝑖F, but there is no reason
for a transition map to the holomorphic trivialization for the Koszul-Malgrange
holomorphic structure to preserve this real structure. All we can say is that in such
a trivialization,

𝑋 (𝑧) = 𝐾 (𝑧)𝑋0(𝑧),

where 𝑋0(𝑧) is a real section, and 𝐾 (𝑧) is a smoothly varying family of complex
matrices. Furthermore, the imaginary part𝑌 has been defined in terms of a particular
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local frame for F. And the norm of the elements in this frame may explode as we
approach singularities of 𝑓 . In other words, we have no apriori uniform continuity
for 𝑍 in Ω, and the imaginary part could blow up in an attempt to analytically
continue.

While the holomorphic coordinates on E are opaque, we do have some understanding
of what it means to be a holomorphic section of L. This is what allows for some
results under stronger hypothesis. In the end we want to find our contradiction by
realizing 𝑋 as the real part of a global meromorphic section of L with constrained
poles. Two steps:

1. Show that when 𝑓 is regular, 𝑋 is tangential to 𝑓 .

2. Find mappings from the distribution 𝑑𝑓 (𝑇Σ) ⊂ 𝑓 ∗𝑇𝑀 to L, under which
𝑋 corresponds to the real part of a meromorphic section (a meromorphic
multiple of 𝑓𝑧).

When 𝑓 is regular, we have well-defined splittings of 𝑓 ∗𝑇𝑀 into tangential and
normal components for the image of 𝑓 . Thus, if the set 𝐴( 𝑓 ) from Section 4 is
connected, we can show (1) holds via a unique continuation argument (Proposition
6.6.10). Note that the isolated singularity condition is really more than what we
need for this to work. Once we have (1), we can define the section 𝑌 at regular
points as before, and again a connectedness assumption allows us to deduce that
𝑍 = 𝑋 + 𝑖𝑌 is holomorphic where defined.

The last challenge is to extend 𝑍 over singular points. If the singularity is isolated,
then 𝑍 is meromorphic, and then we can argue using the boundedness of 𝑋 in
the right choice of coordinates. But with a more complicated singular set—say, a
general fold or a meeting point of general folds—controlling 𝑍 becomes a delicate
task.

At this point, we see no direct geometric reason for the argument to fail in general.
It is reasonable to expect that we can relax our assumptions to include harmonic
maps with particular types of (non-isolated) singularities. It is unclear how far the
method goes.
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C h a p t e r 7

UNSTABLE MINIMAL SURFACES IN PRODUCTS

The content of this chapter is joint work with Vladimir Marković and Peter Smillie.

7.1 Introduction
Minimal surfaces in products of hyperbolic surfaces
Let Σ𝑔 denote a closed surface of genus 𝑔 ≥ 2 and let T𝑔 be the Teichmüller space
of marked complex structures on Σ𝑔. Let (𝑋, 𝑑) be the hyperbolic plane, an R-tree,
or product thereof with an action 𝜎 : 𝜋1(Σ𝑔) → Isom(𝑋, 𝑑). For every Riemann
surface structure 𝑆 on Σ𝑔, with universal cover 𝑆, and 𝜎-equivariant Lipschitz map
𝑓 : 𝑆 → (𝑋, 𝑑), there is a well-defined notion of Dirichlet energy E(𝑆, 𝑓 ) (see
Section 2 for details). For admissible 𝜎, there is an essentially unique 𝜎-equivariant
harmonic map ℎ : 𝑆 → (𝑋, 𝑑), which satisfies

E(𝑆, ℎ) = inf
𝑓
E(𝑆, 𝑓 ).

This gives a function E𝜎 : T𝑔 → R, by E𝜎 (𝑆) = E(𝑆, ℎ). When 𝑆 is a critical point
of E𝜎, we say that ℎ is minimal; if 𝑋 is a manifold and ℎ is an immersion, this is
equivalent to ℎ(𝑆) being a minimal surface.

One case of interest is when 𝜎 is a product of Fuchsian representations into
PSL(2,R)𝑛 (also called a maximal representation), in which case each compo-
nent of the harmonic map is a diffeomorphism, and critical points correspond to
genuine minimal surfaces in a product of hyperbolic surfaces. The work of Schoen-
Yau [SY79] implies that in this case, E𝜎 is proper, and therefore admits a global
minimum, which is a stable critical point. For 𝑛 = 2, Schoen proved that this is the
unique critical point of E𝜎 [Sch93].

However, the first author proved in [Mar22] that uniqueness fails when 𝑛 ≥ 3,
assuming the genus 𝑔 is large enough. See also the paper [Mar21], which provides
a strengthening of Schoen’s result for 𝑛 = 2. The main goal of this chapter is
to show that unstable equivariant minimal surfaces in R𝑛 yield unstable minimal
surfaces in products of hyperbolic surfaces. In particular, this strengthens the result
from [Mar22], while providing a simpler and more revealing proof. When 𝑛 ≥ 3,
there are many unstable equivariant minimal surfaces in R𝑛; most notably, unstable
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minimal surfaces in tori, which Meeks [Mee90], Hass-Pitts-Rubenstein [HPR93],
and Traizet [Tra08] have shown to be abundant, lift to unstable equivariant minimal
surfaces in R𝑛.

We say that a critical point of E𝜎 is unstable if there exists a 𝐶2 path in T𝑔 starting
at the point and at which the second derivative of E𝜎 along the path is negative.

Theorem 7A. Let 𝑛 ≥ 3. For every genus 𝑔 ≥ 2, there exists a maximal representa-
tion 𝜎 : 𝜋1(Σ𝑔) →

∏𝑛
𝑖=1 PSL(2,R) such that E𝜎 : T𝑔 → (0,∞) admits an unstable

critical point. In particular, there are at least two minimal surfaces in the product of
hyperbolic surfaces determined by 𝜎.

Labourie conjectured that for a Hitchin representation into a simple split real Lie
group 𝐺 of non-compact type, there exists a unique equivariant minimal surface in
the corresponding symmetric space. Labourie proves existence in general [Lab08],
and that uniqueness holds when the rank of𝐺 is 2 [Lab17] (see also [CTT19], where
Collier-Tholozan-Toulisse prove the analogous statement for maximal representa-
tions into Hermitian Lie groups of rank 2). The conjecture remains open in rank at
least 3, and [Mar22] suggests that this is the critical case.

The key idea of the proof of Theorem 7A is to reduce it to finding unstable minimal
surfaces in products ofR-trees (Theorem 7B2 below). The unstable minimal surfaces
are provided by Theorems 7C and 7D. We explain in the forthcoming subsections.

Minimal surfaces in products of R-trees
We give the definitions about harmonic maps to R-trees in Section 7.2. Throughout
the chapter, let 𝑆 be a Riemann surface structure on Σ𝑔 and QD(𝑆) the space of
holomorphic quadratic differentials on 𝑆. The Riemann surface structure 𝑆 lifts to a
Riemann surface structure on the universal cover of Σ𝑔, which we denote 𝑆. Given
a non-zero 𝜙 ∈ QD(𝑆), there are two natural ways of producing an equivariant
harmonic map. First, the leaf space of the vertical singular foliation of the lift
𝜙 to 𝑆 is an R-tree (𝑇𝜙, 𝑑). The action of 𝜋1(Σ𝑔) on 𝑆 descends to an action
𝜌 : 𝜋1(Σ𝑔) → Isom(𝑇𝜙, 𝑑) by isometries. The quotient map 𝜋 : 𝑆 → (𝑇𝜙, 𝑑) is
harmonic and 𝜌-equivariant, with Hopf differential 𝜙/4.

On the other hand, it is proved independently by Hitchin [Hit87], Wan [Wan92],
and Wolf [Wol89] that there is a unique hyperbolic structure 𝑀𝜙 on Σ𝑔 such that the
identity map from 𝑆 to 𝑀𝜙 is harmonic with Hopf differential 𝜙. Moreover Wolf
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shows that as 𝑡 → ∞, 𝑀𝑡𝜙 converges in a certain sense to the rescaled tree (𝑇𝜙, 2𝑑)
(see [Wol95] for the precise statement).

Now let 𝜙1, . . . , 𝜙𝑛 be 𝑛 nonzero holomorphic quadratic differentials on the same
surface 𝑆, and let 𝑋 be the product of the R-trees (𝑇𝜙𝑖 , 2𝑑𝑖) arising from the con-
struction above. Let 𝜌 : 𝜋1(Σ𝑔) → Isom(𝑋) be the product of the actions 𝜌𝑖 on
each factor. The energy function E𝜌 on T𝑔 associated to 𝜌 is then the sum of the
energy functions 𝐸𝜌𝑖 associated to each component. Also for each positive 𝑡 > 0,
let 𝑀 𝑡

𝑖
be the hyperbolic structures associated to 𝑡𝜙𝑖. We set E𝑡𝜌 to be the energy

functional for the product of Fuchsian representations associated to the 𝑀 𝑡
𝑖
.

𝑆 is a critical point for E𝜌 if and only if it is a critical point for E𝑡𝜌 for every 𝑡 > 0.
In other words, minimality of the harmonic map into the product of surfaces is
equivalent to the minimality of the equivariant harmonic map into the product of
R-trees. The condition occurs precisely when

∑𝑛
𝑖=1 𝜙𝑖 = 0.

Let 𝑛 ≥ 2. For 𝑖 = 1, . . . , 𝑛, let 𝜙𝑖 be nonzero holomorphic quadratic differentials
on the Riemann surface 𝑆 such that

∑𝑛
𝑖=1 𝜙𝑖 = 0.

Theorem 7B1. 𝑆 is not a (local) minimum for E𝜌 if and only if there exists 𝑡 > 0
such that 𝑆 is not a (local) minimum for E𝑡𝜌. In this case, for all 𝑠 > 𝑡, 𝑆 is not a
(local) minimum for E𝑠

𝜌.

Remark 7.1.1. If 𝑛 = 2, Schoen’s result shows that the only critical point of E𝑡𝜌 is a
minimum, and so by (1), the same is true of E𝜌. This was first proved by Wentworth
who showed that, provided existence, the equivariant minimal surface in a product
of two R-trees is unique [Wen07, Theorem 1.6].

Remark 7.1.2. It appears to be unknown whether the energy functional on Teich-
müller space for harmonic maps to R-trees is 𝐶2. It is always 𝐶1, and real analytic
near a Riemann surface such that the Hopf differential of the harmonic map has only
simple zeros (this is a generic condition) [Mas95].

Theorem 7B1 can give critical points of E𝑡𝜌 that are not minima, but this is not quite
strong enough to prove Theorem 7A, which is about unstable critical points. To that
end, we give a notion of instability in products of R-trees that will be suitable for
our purposes. Let 𝑆 be a critical point for E𝜌 with harmonic map 𝜋 = (𝜋1, . . . , 𝜋𝑛).
Given 𝐶∞ vector fields 𝑉1, . . . , 𝑉𝑛 on 𝑆, let 𝑟 ↦→ 𝑓 𝑟1 , . . . , 𝑓

𝑟
𝑛 : 𝑆 → 𝑆 be their flows,

and construct the map 𝜋𝑟 = (𝜋1 ◦ 𝑓 𝑟1 , . . . , 𝜋𝑛 ◦ 𝑓
𝑟
𝑛 ). For any 𝐶∞ path of Riemann



210

surfaces 𝑟 ↦→ 𝑆𝑟 , there is a Beltrami form 𝜇 representing a point 𝑇𝑆T𝑔 that is tangent
to our path at 𝑟 = 0.

Definition 7.1.3. We define a quadratic form L : 𝑇𝑆T𝑔 × 𝐻0(𝑆, 𝑇𝑆)𝑛 → R by

L(𝜇,𝑉1, . . . , 𝑉𝑛) =
𝑑2

𝑑𝑟2 |𝑟=0E(𝑆𝑟 , 𝜋𝑟),

where 𝑟 ↦→ 𝑆𝑟 is any path tangent to 𝜇 at 𝑟 = 0.

The self-maps index of 𝑆 for E𝜌 is the maximal dimension of 𝑇𝑆T𝑔 ×𝐻0(𝑆, 𝑇𝑆)𝑛 on
which 𝐿 is negative definite. If the index is positive, we say that 𝑆 is unstable.

We explain that L is well-defined in Section 2.2. L is positive semi-definite on
{0} × 𝐻0(𝑆, 𝑇𝑆)𝑛, and hence if L is negative definite on a subspace 𝑈 ⊂ 𝑇𝑆T𝑔 ×
𝐻0(𝑆, 𝑇𝑆)𝑛, then𝑈 projects injectively to 𝑇𝑆T𝑔 × {0}. Moreover, for any variations
𝑟 ↦→ 𝑆𝑟 and 𝑟 ↦→ 𝜋𝑟 ,we have E𝜌 (𝑆𝑟) ≤ E(𝑆𝑟 , 𝜋𝑟), and hence if L(𝜇,𝑉1, . . . , 𝑉𝑛) < 0,
then E𝜌 (𝑆𝑟) < E𝜌 (𝑆) for small 𝑟. See Remark 7.3.4 below for more motivation for
the definition of L.

Theorem 7B2. The index of E𝑡𝜌 at 𝑆 is non-decreasing with 𝑡, and converges to the
self-maps index of 𝑆 for E𝜌 as 𝑡 → ∞. Consequently, 𝑆 is unstable for E𝜌 if and
only if it is unstable for E𝑡𝜌, for 𝑡 sufficiently large.

Toward the proof of Theorem 7A, we only need the “only if" direction of Theorem
7B2. We include the “if" direction and Theorem 7B1 because they show thatR-trees
are really at the heart of the result. A conjecture in Higher Teichmüller theory is that
high energy minimal maps into symmetric spaces converge in an appropriate sense to
minimal maps into buildings (see [Kat+15]). This is the higher rank generalization
of [Wol95]. If our results extend to this setting, then this would suggest that any
counterexample to the Labourie conjecture would have to come from an unstable
minimal map into a building.

Equivariant minimal surfaces in R𝑛

In order to use Theorem 7B2 to prove Theorem 7A, we construct unstable surfaces
in products of R-trees. We start by looking in a more familiar place: Euclidean
space R𝑛.

For 𝑖 = 1, . . . , 𝑛, let 𝛼𝑖 be a non-zero holomorphic 1-form on the Riemann surface
𝑆. Lifting to 1-forms �̃�𝑖 on a universal cover 𝑆 gives the data of a harmonic map to
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R𝑛 via integrating the real parts:

ℎ = (ℎ1, . . . , ℎ𝑛), ℎ𝑖 (𝑧) = Re
∫ 𝑧

𝑧0

�̃�𝑖,

unique up to translation. The map ℎ intertwines the action of 𝜋1(Σ𝑔) on 𝑆 with
some non-trivial homomorphism 𝜒 : 𝜋1(Σ𝑔) → R𝑛. The Hopf differential of ℎ𝑖 is
the square 𝜙𝑖 = 𝛼2

𝑖
, which descends to a holomorphic quadratic differential on 𝑆, by

the equivariance property. ℎ is weakly conformal if and only if
∑𝑛
𝑖=1 𝜙𝑖 = 0, which

is equivalent to ℎ being minimal.

By the construction of Section 7.1, the Hopf differentials 𝜙𝑖 also define an action 𝜌
of 𝜋1(Σ𝑔) on a product 𝑋 of R-trees and a 𝜌-equivariant minimal map 𝜋. The map ℎ
naturally factors through 𝜋. Let E𝜒 and E𝜌 be the corresponding energy functionals
on Teichmüller space. In the end we prove the following near-equivalence.

Theorem 7C. For 𝑛 ≥ 2 and 𝑖 = 1, . . . , 𝑛, let 𝛼𝑖 be nonzero holomorphic 1-forms
on 𝑆 such that

∑𝑛
𝑖=1 𝛼

2
𝑖
= 0,. Let 𝜌, and 𝜒 be as above.

1. If 𝑆 is not a (local) minimum for E𝜌, then it is not a (local) minimum for E𝜒.

2. The index of E𝜒 at 𝑆 is equal to the self-maps index of E𝜌 for 𝑆. In particular,
if 𝑆 is unstable for E𝜒, then 𝑆 is unstable for E𝜌 .

Remark 7.1.4. As in Theorem 7B, the statement is not so interesting when 𝑛 = 2
since every critical point is a stable minimum.

Remark 7.1.5. Instability for E𝜒 at 𝑆 is equivalent to instability for the (equivariant)
area functional on the space of all equivariant maps. The second variations for both
functionals have the same index (see [Eji02, Theorem 3.4]).

The final ingredient needed to prove Theorem 7A is an example of an unstable
equivariant minimal surface in R𝑛. Fortunately, these aren’t so hard to find: when
𝑛 = 3, every non-planar equivariant minimal surface in R3 is unstable, since a
constant section of the normal bundle is destabilizing. Consequently, for any three
1-forms on 𝑆 whose squares sum to zero, as long as they span a 2-dimensional space,
𝑆 will be an unstable point of E𝜒 (we explain the details in Section 7.5).

The most natural example is the lift of a minimal surface in a flat 3-torus; there a
many classical examples, such as the Schwarz P-surface of genus 3 (see [Mee90]).
In fact, for every 𝑔 ≥ 3, every flat 3-torus contains infinitely many distinct unstable
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minimal surfaces of genus 𝑔 in the same homotopy class (see [Mee90], [HPR93],
and [Tra08]).

By inclusion, this gives examples for every 𝑛 ≥ 3, as long as 𝑔 ≥ 3. We can also
perturb these examples to give even more. Unfortunately, if 𝑔 = 2, then the only
triples of 1-forms whose squares sum to zero are scalar multiples of one another, so
we cannot use Theorem 7C to prove Theorem 7A in the case 𝑔 = 2.

A generalization of Theorem 7C, and the case 𝑔 = 2
In the general setting where we start with 𝑛 quadratic differentials summing to
zero that are not necessarily squares of abelian differentials, we may have to lift
to a branched covering of 𝑆 in order to get a harmonic map to R𝑛. Replacing
𝜋1(Σ) with the Deck group of this branched covering, and 𝜒 with the corresponding
representation of this group, we prove that an analog of statement (2) from Theorem
7C still holds.

When 𝑛 = 3, the minimal surface in R3 arising from a branched cover is no longer
automatically unstable for its energy functional, because the normal bundle is not
necessarily equivariantly trivial with respect to the action of the Deck group of the
branched covering. Instead, we find a condition on the quadratic differentials that
guarantees that the bundle is equivariantly trivial, which then yields the following
theorem.

Theorem 7D. Let 𝜙1, 𝜙2, 𝜙3 be holomorphic quadratic differentials on 𝑆 that are
not colinear and such that 𝜙1𝜙2𝜙3 is the square of a cubic differential. Then the
corresponding equivariant minimal surface in the product of R-trees is unstable via
self-maps for its energy functional.

We show that the locus of solutions to this problem is non-empty for every genus
(Proposition 7.5.8). In particular, this gives us unstable minimal surfaces in genus
2, and hence allows us to complete the proof of Theorem 7A.
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7.2 Preliminaries
Harmonic maps to manifolds
Let 𝜈 be a smooth metric on 𝑆 compatible with the complex structure. Let (𝑀, 𝜎)
be a closed Riemannian manifold, and ℎ : 𝑆 → 𝑀 a𝐶2 map. Assuming that (𝑀, 𝜎)
is a surface with conformal metric 𝜎, then in holomorphic coordinates 𝑧 on 𝑆 and 𝑤
on 𝑀 , we write 𝜈 = 𝜈(𝑧) |𝑑𝑧 |2, 𝜎 = 𝜎(𝑤) |𝑑𝑤 |2, and ℎ as a complex-valued function
ℎ(𝑧). The energy density takes the form

𝑒(ℎ) (𝑧) = 𝜎(ℎ(𝑧))
𝜈(𝑧) ( |ℎ𝑧 |2 + |ℎ𝑧 |2) (𝑧), 𝜙(ℎ) (𝑧) = 𝜎(ℎ(𝑧))ℎ𝑧 (ℎ𝑧)𝑑𝑧2.

Considering equivariant maps to the real line, again in local coordinates,

𝑒(ℎ) (𝑧) = 2𝜈(𝑧)−1 |ℎ𝑧 |2, 𝜙(ℎ) = ℎ2
𝑧𝑑𝑧

2.

For a harmonic map to a product space, the definitions (2.2) and (2.7) shows that
the energy density and the Hopf differential are the sum of the energy densities
and the Hopf differentials respectively of the component maps. So for a mapping
ℎ = (ℎ1, . . . , ℎ𝑛) into a product of Riemann surfaces, or an equivariant mapping
into R𝑛, the Hopf differential is the sum

𝜙(ℎ) =
𝑛∑︁
𝑖=1

𝜙(ℎ𝑖). (7.1)

ℎ is minimal if 𝜙 ≡ 0.

If (𝑀, 𝜎) is a negatively curved surface, it is well-known that there is a unique
harmonic map ℎ : 𝑆 → (𝑀, 𝜎) in the homotopy class of the identity (see [ES64]
for existence, and [Har67, Theorem H] for uniqueness). If we work on a different
Riemann surface structure 𝑆′ on Σ𝑔, we get a harmonic map from 𝑆′ → (𝑀, 𝜎)
in the class of the identity, and the total energy depends only on the class of 𝑆′ in
Teichmüller space. Thus, we get a functional E : T𝑔 → (0,∞), where E(𝑆′) is the
total energy of the harmonic map from 𝑆′ → (𝑀, 𝜎). For a map into a product of
surfaces, the energy functional is the sum of the energy functionals of the component
mappings.

Harmonic maps to R-trees
Definition 7.2.1. An R-tree is a length space (𝑇, 𝑑) such that any two points are
connected by a unique arc, and every arc is a geodesic, isometric to a segment in R.
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A point 𝑥 ∈ 𝑇 is a vertex if the complement 𝑇\{𝑥} has greater than two components.
Otherwise it is said to lie on an edge.

Let 𝑆 be a closed Riemann surface of genus 𝑔 ≥ 2. The horizontal (resp. vertical)
foliation of a holomorphic quadratic differential 𝜙 on 𝑆 is the singular foliation
whose non-singular leaves are the integral curves of the line field on 𝑆\𝜙−1(0) on
which 𝜙 is a negative real number. The singularities are standard prongs at the
zeros. Both foliations come equipped with transverse measures |Im

√
𝜙 | and |Re

√
𝜙 |

respectively (see [FLP12, Exposé 5] for precise definitions).

In this chapter, we work with the vertical foliation, unless specified otherwise. Lift-
ing to a singular measured foliation on a universal cover 𝑆, we define an equivalence
relation under which two points 𝑥, 𝑦 ∈ 𝑆 are equivalent if they lie on the same leaf.
The quotient space is denoted 𝑇 , and we can push the transverse measure down via
the projection 𝜋 : 𝑆 → 𝑇 to form a distance function 𝑑 such that (𝑇, 𝑑) is an R-tree,
with an induced action 𝜌 : 𝜋1(𝑆) → Isom(𝑇, 𝑑).

According to Korevaar-Schoen, for Lipschitz maps 𝑓 from 𝑆 to complete and non-
positively curved (NPC) length spaces such as (𝑇, 𝑑), there is a well-defined 𝐿1

directional energy tensor 𝑔𝑖 𝑗 = 𝑔𝑖 𝑗 ( 𝑓 ) that generalizes the pullback metric (see
[KS07, Theorem 2.3.2]). In this way, one can define a measurable energy density
function by

𝑒( 𝑓 ) = 1
2

trace𝜈𝑔𝑖 𝑗 ( 𝑓 ). (7.2)

For an equivariant Lipschitz map ℎ, the energy density 𝑒(ℎ) is invariant under the
group, and we define a total energy as in the smooth setting by

E(𝑆, ℎ) =
∫
𝑆

𝑒(ℎ)𝑑𝐴.

Definition 7.2.2. We say that a 𝜌-equivariant map ℎ : 𝑆 → (𝑇, 𝑑) is harmonic if,
among other 𝜌-equivariant maps, it is a critical point for the energy ℎ ↦→ E(𝑆, ℎ).

For the projection map 𝜋, we can describe the energy density explicitly. At a point on
𝑝 ∈ 𝑆 on which 𝜙(𝑝) ≠ 0, the map locally isometrically factors through a segment
inR. In a small enough neighbourhood around that point, 𝑒(𝜋) is equal to the energy
density of the locally defined map to R, which is computed as usual via the formula
(2.2). From this, we see that the energy density has a continuous representative that
is equal to 𝜈−1 |𝜙|/2 everywhere.
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The Hopf differential is well-defined for maps 𝑓 from 𝑆 to NPC spaces as above: in
local coordinates, it is given by

1
4
(𝑔11( 𝑓 ) (𝑧) − 𝑔22( 𝑓 ) (𝑧) − 2𝑖𝑔12( 𝑓 ) (𝑧))𝑑𝑧2. (7.3)

The projection map 𝜋 : 𝑆 → (𝑇, 𝑑) is 𝜌-equivariant and harmonic, with Hopf
differential 𝜙/4. Instead of the equation (7.3), one can also see this by using the
local isometric factoring. As in the case of maps to surfaces, a harmonic mapping
into a product of trees is called minimal if the Hopf differential–which splits as a
sum as in (7.1)–vanishes.

Given (𝑇, 𝑑) as above, we always rescale the metric to 2𝑑, which makes it so that
the Hopf differential of 𝜋 : 𝑆 → (𝑇, 2𝑑) is 𝜙. For any other Riemann surface
𝑆′ representing a point in T𝑔, there is a unique 𝜌-equivariant harmonic map from
𝑆′ → (𝑇, 2𝑑) (see [Wol96]). Again like the surface case, the representation 𝜌 then
defines an energy functional on Teichmüller space. The same holds for products of
R-trees with admissible actions.

Let’s now address the quadratic form L : 𝑇𝑆T𝑔 × 𝐻0(𝑆, 𝑇𝑆)𝑛 → R. Given a 𝐶∞

path of Riemann surfaces and a flow 𝑟 ↦→ 𝑓𝑟 , we consider

𝑟 ↦→ E(𝑆𝑟 , 𝜋 ◦ 𝑓𝑟). (7.4)

In [Moo06, Section 5], Moore computes the derivative of the two-variable energy for
maps from a surface to a Riemannian manifold. Using the characterization (7.2), one
can word-for-word redo that computation, but with the measurable density 𝑒(𝜋◦ 𝑓𝑟),
to see that (7.4) is 𝐶∞ in 𝑟. Working with a minimal map into a product of trees
and 𝑛 vector fields, one does the computation 𝑛 times to get L. We note that it only
depends on the tangent vectors and not the specific path of Riemann surfaces and
flow of maps, because a minimal map is a critical point for the two-variable energy.

7.3 Minimal surfaces in products of R-trees
We first prove Theorem 7B2, and then Theorem 7B1.

The Reich-Strebel energy formula
Reich-Strebel computed a formula for the difference of energies of quasiconformal
maps (equation 1.1 in [RS87]). Let ℎ : 𝑆 → 𝑀 and 𝑓 : 𝑆 → 𝑆′ be quasiconformal
maps between Riemann surfaces, with a conformal metric on 𝑀 . Let 𝜇 be the
Beltrami form of 𝑓 , and 𝜙 the Hopf differential of ℎ, which need not be holomorphic.
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Then,

E(𝑆′, ℎ ◦ 𝑓 −1) − E(𝑆, ℎ) = −4Re
∫
𝑆

𝜙 · 𝜇

1 − |𝜇 |2
+ 2

∫
𝑆

𝑒(ℎ) · |𝜇 |2
1 − |𝜇 |2

𝑑𝐴. (7.5)

The computation goes through just the same when ℎ maps 𝑆 equivariantly into an
R-tree. For a map ℎ to a tree (𝑇, 𝑑) with Hopf differential 𝜓, the energy density
satisfies 𝑒(ℎ) = 2𝜈−1 |𝜓 |. We obtain the Proposition below.

Proposition 7.3.1. Let ℎ : 𝑆 → (𝑇, 𝑑) be an equivariant harmonic map to anR-tree
with Hopf differential 𝜓, and 𝑓 : 𝑆′ → 𝑆 a quasiconformal map. Then the following
formula holds:

E(𝑆′, ℎ ◦ 𝑓 −1) − E(𝑆, ℎ) = −4Re
∫
𝑆

𝜓 · 𝜇

1 − |𝜇 |2
+ 4

∫
𝑆

|𝜓 | · |𝜇 |2
1 − |𝜇 |2

. (7.6)

In the formula above, 𝑓 is the lift to 𝑆 and 𝜇 is the Beltrami form.

Proof of Theorem 7B2
Let 𝜙 ∈ QD(𝑆) − {0}. For 𝑡 > 0, let 𝑀𝑡 be the hyperbolic structure with hyperbolic
metric 𝜎𝑡 such that the identity map ℎ𝑡 : 𝑆 → 𝑀𝑡 is harmonic with Hopf differential
𝑡𝜙, let E𝑡𝜌 be the two-variable energy functional for 𝑀𝑡 , and 𝐸 𝑡𝜌 the corresponding
energy functional on Teichmüller space. Similarly, let E𝜌 and 𝐸𝜌 be the energies
for the R-tree (𝑇, 2𝑑) determined by 𝜙 (with a rescaled metric).

The main step in the proof of Theorem 7B2 is Lemma 7.3.2. If we rescale 𝜎𝑡 by
𝑡−1, then for any Riemann surface structure 𝑆′ and 𝐶2 map 𝑓 : 𝑆′ → 𝑀𝑡 , the energy
with respect to the target metric 𝑡−1𝜎𝑡 is 𝑡−1E𝑡𝜌 (𝑆′, 𝑓 ). Let 𝑟 ↦→ 𝑆𝑟 be a path of
Riemann surfaces and 𝑟 ↦→ 𝑓𝑟 a flow starting at the identity map. Lemma 7.3.2
shows that the second derivative in 𝑟 of the energy of ℎ𝑡 ◦ 𝑓𝑟 on 𝑆𝑟 with respect to
the target metric 𝑡−1𝜎𝑡 converges as 𝑡 → ∞ to the second derivative of the energy
of 𝜋 ◦ 𝑓𝑟 : 𝑆𝑟 → (𝑇, 2𝑑).

Lemma 7.3.2. For 𝑠 > 𝑡,

1
𝑡

𝑑2

𝑑𝑟2 |𝑟=0E𝑡𝜌 (𝑆𝑟 , ℎ𝑡 ◦ 𝑓𝑟) >
1
𝑠

𝑑2

𝑑𝑟2 |𝑟=0E𝑠𝜌 (𝑆𝑟 , ℎ𝑠 ◦ 𝑓𝑟) >
𝑑2

𝑑𝑟2 |𝑟=0E𝜌 (𝑆𝑟 , 𝜋 ◦ 𝑓𝑟),

and
lim
𝑡→∞

1
𝑡

𝑑2

𝑑𝑟2 |𝑟=0E𝑡𝜌 (𝑆𝑟 , ℎ𝑡 ◦ 𝑓𝑟) =
𝑑2

𝑑𝑟2 |𝑟=0E𝜌 (𝑆𝑟 , 𝜋 ◦ 𝑓𝑟).

Toward the proof, we first record the lemma below about the growth of the energy
density.
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Lemma 7.3.3. Let 𝑒(ℎ𝑡) be the energy density of ℎ𝑡 with respect to the target metric
𝜎𝑡 . Then for 𝑠 ≥ 𝑡,

𝑒(ℎ𝑡)
𝑡

≥ 𝑒(ℎ𝑠)
𝑠

, (7.7)

and the inequality is strict away from the zeros of 𝜙. Moreover,

lim
𝑡→∞

𝑒(ℎ𝑡)
𝑡

= 2𝜈−1 |𝜙 |. (7.8)

Proof. Let 𝜇𝑡 and 𝜇𝑠 be the Beltrami forms of ℎ𝑡 and ℎ𝑠 respectively. It is proved in
[Wol89, Proposition 4.3] that away from the zeros of 𝜙 (at which |𝜇𝑡 | = 0 for every
𝑡), |𝜇𝑡 | monotonically increases to 1 as 𝑡 → ∞. A simple computation gives

𝑒(ℎ) = 2𝑡 |𝜙 |
𝜈

cosh log |𝜇𝑡 |−1,

and likewise for 𝑠. Therefore, (7.7) is equivalent to the inequality

cosh log |𝜇𝑡0 |−1 ≥ cosh log |𝜇𝑡 |−1. (7.9)

Since |𝜇𝑡 | < 1 everywhere, the inequality (7.9) follows. Using the limiting behaviour
of |𝜇𝑡 |, we take 𝑡 → ∞ to obtain (7.8). □

Proof of Lemma 7.3.2. Let (𝜇,𝑉) ∈ 𝑇𝑆T𝑔 × 𝐻0(𝑆, 𝑇𝑆), and let 𝑟 ↦→ 𝑓𝑟 be the flow
of 𝑉 . Let 𝜇𝑟 be the Beltrami form of 𝑓 −1

𝑟 , and 𝛼 the 𝐶∞ (1,−1)-form and 𝛽 the 𝐶∞

function on 𝑆 described by

𝛼(𝑧) = 𝑑2

𝑑𝑟2

����
𝑟=0

𝜇𝑟 (𝑧)
1 − |𝜇𝑟 (𝑧) |2

, 𝛽(𝑧) = 𝑑2

𝑑𝑟2

����
𝑟=0

|𝜇𝑟 (𝑧) |2
1 − |𝜇𝑟 (𝑧) |2

.

We use the Reich-Strebel fomula (7.5). For each 𝑡 > 0,

1
𝑡

𝑑2

𝑑𝑟2

����
𝑟=0

E𝑡𝜌 (𝑆𝑟 , ℎ𝑡 ◦ 𝑓𝑟) =
1
𝑡

𝑑2

𝑑𝑟2

����
𝑟=0

(
E𝑡𝜌 (𝑆𝑟 , ℎ𝑡 ◦ ( 𝑓 −1

𝑟 )−1) − E𝑡𝜌 (𝑆, ℎ𝑡)
)

=
𝑑2

𝑑𝑟2

����
𝑟=0

(
− 4Re

∫
𝑆

𝜙 · 𝜇𝑟

1 − |𝜇𝑟 |2
+ 2

∫
𝑆

𝑒(ℎ𝑡)
𝑡

· |𝜇𝑟 |2
1 − |𝜇𝑟 |2

𝑑𝐴

)
= −4Re

∫
𝑆

𝜙 · 𝛼 + 2
∫
𝑆

𝑒(ℎ𝑡)
𝑡

· 𝛽𝑑𝐴.

On the other hand, by the same computation, but using (7.6),

𝑑2

𝑑𝑟2

����
𝑟=0

E𝜌 (𝑆𝑟 , 𝜋 ◦ 𝑓𝑟) = −4Re
∫
𝑆

𝜙 · 𝛼 + 4
∫
𝑆

|𝜙(ℎ) | · 𝛽.
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By Lemma 7.3.3, for 𝑠 > 𝑡,∫
𝑆

𝑒(ℎ𝑡)
𝑡

· 𝛽𝑑𝐴 >
∫
𝑆

𝑒(ℎ𝑠)
𝑠

· 𝛽𝑑𝐴,

so that 𝐿𝑡
𝑡
>

𝐿𝑠
𝑠

. By Lemma 7.3.3 again and the dominated convergence theorem,∫
𝑆

𝑒(ℎ𝑡)
𝑡

· 𝛽𝑑𝐴→ 2
∫

|𝜙 | · 𝛽

in a strictly decreasing fashion as 𝑡 → ∞. The result follows.

□

Moving onto the proof of Theorem 7B2, we resume the notation from the intro-
duction: for 𝑖 = 1, . . . , 𝑛, 𝜙𝑖 are nonzero holomorphic quadratic differentials on
𝑆 summing to 0. The product of R-trees (𝑇𝑖, 2𝑑𝑖), which we denote by 𝑋 , comes
equipped with the action 𝜌 = (𝜌1 × · · · × 𝜌𝑛). For each positive 𝑡 > 0, 𝑀 𝑡

𝑖
is the

hyperbolic structure such that the identity map ℎ𝑡
𝑖

: 𝑆 → 𝑀 𝑡
𝑖

is harmonic and has
Hopf differential 𝑡𝜙𝑖. The energy functionals are denoted E𝜌 and E𝜌 for the trees
and E𝑡𝜌 and E𝑡𝜌 for the surfaces.

We define L𝑡 : 𝑇𝑠T𝑔 × 𝐻0(𝑆, 𝑇𝑆)𝑛 → R for the harmonic map ℎ𝑡 = (ℎ𝑡1, . . . , ℎ
𝑡
𝑛) in

the same way as L: if 𝑟 ↦→ 𝑆𝑟 is a path of Riemann surfaces tangent to a Beltrami
form 𝜇 at 𝑟 = 0, and 𝑉1, . . . , 𝑉𝑛 are vector fields giving rise to flows ↦→ 𝑓 𝑟1 , . . . , 𝑓

𝑟
𝑛 ,

then we set

L𝑡 (𝜇,𝑉1, . . . , 𝑉𝑛) =
𝑑2

𝑑𝑟2 |𝑟=0E𝑡𝜌 (𝑆𝑟 , ℎ𝑡𝑟),

where ℎ𝑟𝑡 = (ℎ𝑡1 ◦ 𝑓
𝑟
1 , . . . , ℎ

𝑡
𝑛 ◦ 𝑓 𝑟𝑛 ).

Remark 7.3.4. The two-variable energy for
∏𝑛
𝑖=1 𝑀

𝑡
𝑖
is defined on T𝑔×

∏𝑛
𝑖=1 Maps(𝑆, 𝑀 𝑡

𝑖
).

Since any small perturbation of the identity map is a diffeomorphism, the space on
which L𝑡 acts is canonically isomorphic to the tangent space of T𝑔×

∏𝑛
𝑖=1 Maps(𝑆, 𝑀 𝑡

𝑖
)

at 𝑆 × ∏𝑛
𝑖=1 id.

Remark 7.3.5. Since 𝑆 is a critical point for the two-variables energies E𝑡𝜌 and E𝜌,
the second order derivatives L𝑡 and L depend only on the first order data 𝜇,𝑉1, . . . , 𝑉𝑛

(this is not true for the second variations of each component harmonic map).

Proposition 7.3.6. For 𝑠 > 𝑡,

L𝑡
𝑡
>

L𝑠

𝑠
> L,

and lim𝑡→∞
L𝑡

𝑡
= L.
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Proof. We invoke Lemma 7.3.2 𝑛 times. □

Lemma 7.3.7. The index of L𝑡 is equal to the index of E𝑡𝜌 .

Proof. Let 𝑟 ↦→ 𝑆𝑟 be a path of Riemann surfaces, tangent to the Beltrami form 𝜇 at
𝑟 = 0, and suppose there exists (𝑉1, . . . , 𝑉𝑛) ∈ 𝐻0(𝑆, 𝑇𝑆)𝑛 such that L𝑡 (𝜇,𝑉1, . . . , 𝑉𝑛) <
0. For each fixed 𝑡 > 0, the maps 𝑟 ↦→ E𝑡𝜌 (𝑆𝑟) and 𝑟 ↦→ E𝑡𝜌 (𝑆𝑟 , ℎ𝑟𝑡 ) have
zero first variation at 𝑟 = 0. By the minimizing property for harmonic maps,
E𝑡𝜌 (𝑆𝑟) ≤ E𝑡𝜌 (𝑆𝑟 , ℎ𝑟𝑡 ) for every 𝑟, and it follows that

1
𝑡

𝑑2

𝑑𝑟2 |𝑟=0E𝑡𝜌 (𝑆𝑟) ≤
1
𝑡

𝑑2

𝑑𝑟2 |𝑟=0E𝑡𝜌 (𝑆𝑟 , ℎ𝑟𝑡 ) =
1
𝑡
L𝑡 (𝜇,𝑉1, . . . , 𝑉𝑛) < 0.

So, the index of E𝑡𝜌 is at least that of L𝑡 .

For the other direction, assume 𝑟 ↦→ 𝑆𝑟 lowers E𝑡𝜌 to second order, and for each
𝑟 > 0, let 𝑘 = (𝑘𝑟1, . . . , 𝑘

𝑟
𝑛) : 𝑆𝑟 → ∏𝑛

𝑖=1 𝑀
𝑡
𝑖

be the harmonic map in the class
of the identity. All ℎ𝑡

𝑖
’s and 𝑘𝑟

𝑖
’s are orientation-preserving diffeomorphisms. Set

𝑓 𝑟
𝑖
= (ℎ𝑡

𝑖
)−1 ◦ 𝑘𝑟

𝑖
and let 𝑉𝑖 be the infinitesimal generator of the flow 𝑟 ↦→ 𝑓 𝑟

𝑖
. Then

1
𝑡
L𝑡 (𝜇,𝑉1, . . . , 𝑉𝑛) =

1
𝑡

𝑑2

𝑑𝑟2 |𝑟=0E𝑡𝜌 (𝑆𝑟) < 0,

which gives the result. □

We now deduce Theorem 7B2.

Proof of Theorem 7B2. Proposition 7.3.6 implies that the index of L𝑡 is non-decreasing
with 𝑡, and converges to the self-maps index of 𝑆 for E𝜌. We then apply Lemma
7.3.7 to obtain the same statement for the index of E𝑡𝜌 at 𝑆. □

Proof of Theorem 7B1
The proof of Theorem 7B1 is similar to that of Theorem 7B2, so we don’t go through
every detail. The main difference is that we replace Lemma 7.3.2 with Lemma 7.3.8
below.

As above, let 𝑀𝑡 be the hyperbolic structure on Σ𝑔 with hyperbolic metric 𝜎𝑡 such
that the identity map has Hopf differential 𝑡𝜙, with energy functional 𝐸 𝑡𝜌, and let 𝐸𝜌
be the energy functional for the R-tree (𝑇, 2𝑑) for 𝜙.

Lemma 7.3.8. For all Riemann surfaces 𝑆′,

lim
𝑡→∞

𝐸 𝑡𝜌 (𝑆′)
𝑡

= 𝐸𝜌 (𝑆′).
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In order to prove the lemma, we recall some facts about the Thurston compactifi-
cation of Teichmüller space. Let S be the set of homotopically non-trivial simple
closed curves on Σ𝑔 and RS the product space with the weak topology. There is an
embedding

ℓ : T𝑔 × R+ → RS

that associates the data of a hyperbolic metric 𝜎 and 𝑠 ∈ R+ to the set of lengths of
geodesic representatives of curves inS with respect to the metric 𝑠𝜎. Every singular
measured foliation (F , 𝜇) on 𝑆 also defines a point in RS , by taking 𝜇-transverse
measures of simple closed curves. Furthermore, there is an injective map

𝛽 : QD(𝑆) → RS

that takes a quadratic differential to its vertical foliation, and then to RS . Note that
both ℓ and 𝛽 are homogeneous with exponent 1

2 .

According to Thurston and Hubbard-Masur (see [FLP12] and [HM79]), both ℓ

and 𝛽 are homeomorphisms onto their images, and ℓ(T𝑔 × R+) ⊔ 𝛽(𝑄𝐷 (𝑆)) is
homeomorphic to a cone over a closed ball, which we call C (the cone over the
Thurston compactification of Teichmuller space). The following result can be
gleaned from the results of [Wol89].

Theorem 7.3.9. For any Riemann surface 𝑆, let 𝐸𝑆 : T𝑔 × R+ ⊔ 𝑄𝐷 (𝑆) → R+

be the function that associates to each point in T𝑔 × R+ the energy of the unique
harmonic map isotopic to the identity from 𝑆, and to each point of𝑄𝐷 (𝑆) the energy
of the unique equivariant harmonic map to the corresponding R-tree. Then 𝐸𝑆 is
continuous with respect to the topology on C.

We now explain how to deduce this theorem from the paper [Wol89]. The first
ingredient is a de-projectivized version of Lemma 4.7 of that paper, whose proof is
identical to the proof of the lemma in the paper.

Lemma 7.3.10. Suppose (𝜆𝑛)∞𝑛=1 ⊂ T𝑔 leaves all compact subsets of the Teichmüller
space, and let 𝜙𝑛 be the Hopf differential of the harmonic map from 𝑆 to (𝑆, 𝜆𝑛).
Suppose (𝑎𝑛)∞𝑛=1 ⊂ (R+)S is a chosen sequence. Then ℓ(𝜆𝑛, 𝑎𝑛) converges in RS if
and only if 𝛽(𝑎𝑛𝜙𝑛) does, and in the case of convergence, the two sequences have
the same limit.

The second ingredient is the following computation (in which each term is linear in
the scalars 𝑎𝑛, so the factors of 𝑎𝑛 are superfluous).
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Lemma 7.3.11 (Lemma 3.2 in [Wol89]). In the notation of the previous lemma,

| |𝑎𝑛𝜙𝑛 | |𝐿1 (𝑆) ≤ 𝐸𝑆 (𝑎𝑛𝜆𝑛) ≤ ||𝑎𝑛𝜙𝑛 | |𝐿1 (𝑆) + 𝑎𝑛 |𝜒(Σ𝑔) |.

Proof of Theorem 7.3.9. For brevity, write 𝐸 = 𝐸𝑆. First, 𝐸 is continuous on T𝑔×R+

and 𝐸 (𝜙) = | |𝜙 | |𝐿1 (𝑆) , which is certainly continuous on 𝑄𝐷 (𝑆). To show that 𝐸
is continuous on all of C, we just need to show that if ℓ(𝜆𝑛, 𝑎𝑛) → 𝛽(𝜙), then
𝐸 (𝑎𝑛𝜆𝑛) → 𝐸 (𝜙). By Lemma 7.3.10, 𝛽(𝑎𝑛𝜙𝑛) → 𝛽(𝜙) (where as above 𝜙𝑛 is the
Hopf differential of the harmonic map to 𝜆𝑛), and since 𝛽 is a homeomorphism onto
its image, 𝑎𝑛𝜙𝑛 → 𝜙 as well, so 𝐸 (𝑎𝑛𝜙𝑛) → 𝐸 (𝜙). Finally, since 𝑎𝑛 must tend to
zero in order for the sequence 𝑎𝑛𝜆𝑛 to converge in RS , Lemma 7.3.11 shows that
𝐸 (𝑎𝑛𝜙𝑛) and 𝐸 (𝑎𝑛𝜆𝑛) have the same limit. □

Now the proof of Lemma 7.3.8 is easy.

Proof of Lemma 7.3.8. By definition, 𝐸 𝑡𝜌 (𝑆′) = 𝐸𝑆′ (𝜎𝑡), and 𝐸𝜌 (𝑆′) = 𝐸𝑆′ (𝜙), so
by the continuity of 𝐸𝑆′ and its homogeneity, we just need to show that ℓ(𝜎𝑡/𝑡) →
𝛽(𝜙) in C. To prove this, we use Lemma 7.3.10 applied to the surface 𝑆. Indeed,
the Hopf differential of the harmonic map from 𝑆 to 𝜎𝑡/𝑡 is 𝜙 by construction, and
since the constant sequence at 𝜙 trivially converges to 𝜙, Lemma 7.3.10 implies that
ℓ(𝜎𝑡/𝑡) does as well. □

Preparations aside, we prove Theorem 7B1. We return to all of the notation from
the introduction and the proof of Theorem B2. We don’t recall it in full, but just
record here that the energy functionals are E𝜌 for the product of R-trees and E𝑡𝜌 for
the product of surfaces. The proof is quite similar to that of Theorem 7B2, so we
leave the details of the computations to the reader.

Proof of Theorem 7B1. Beginning with a Riemann surface 𝑆′ such that E𝜌 (𝑆′) <
E𝜌 (𝑆), applying Lemma 7.3.8 𝑛 times yields that E𝑡𝜌 (𝑆′) < E𝑡𝜌 (𝑆) for sufficiently
large 𝑡.

Conversely, suppose that there exists 𝑡 > 0 such that E𝑡𝜌 (𝑆′) < E𝑡𝜌 (𝑆), and let
𝑘 = (𝑘 𝑡1, . . . , 𝑘

𝑡
𝑛) : 𝑆′ → ∏𝑛

𝑖=1 𝑀
𝑡
𝑖

be the 𝑛-tuple of harmonic diffeomorphisms
with lower energy. Let ℎ𝑡

𝑖
be the 𝑖𝑡ℎ component of the harmonic map ℎ𝑡 , and set

𝑓 𝑡
𝑖
= (ℎ𝑡

𝑖
)−1 ◦ 𝑘 𝑡

𝑖
. Arguing similarly to the proof of Lemma 7.3.2, Reich-Strebel
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formulas (7.5) and (7.6) and the monotonicity on the level of energy densities from
Lemma 7.3.3 show that for 𝑠 > 𝑡,

E𝑡𝜌 (𝑆′) − E𝑡𝜌 (𝑆)
𝑡

=

∑𝑛
𝑖=1 E𝑡𝜌 (𝑆′, ℎ𝑡𝑖 ◦ 𝑓 𝑡𝑖 ) − E𝑡𝜌 (𝑆)

𝑡

>

∑𝑛
𝑖=1 E𝑠𝜌 (𝑆′, ℎ𝑠𝑖 ◦ 𝑓 𝑡𝑖 ) − E𝑠

𝜌 (𝑆)
𝑠

>

𝑛∑︁
𝑖=1

E𝜌 (𝑆′, 𝜋 ◦ 𝑓 𝑡𝑖 ) − E𝜌 (𝑆).

It follows from the minimizing property that

E𝑡𝜌 (𝑆′) − E𝑡𝜌 (𝑆)
𝑡

>
E𝑠
𝜌 (𝑆′) − E𝑠

𝜌 (𝑆)
𝑠

and
E𝑡𝜌 (𝑆′) − E𝑡𝜌 (𝑆)

𝑡
> E𝜌 (𝑆′) − E𝜌 (𝑆),

and hence the result follows. □

7.4 Unstable equivariant minimal surfaces in R𝑛

We recall the setup of Theorem 7C. For 𝑛 ≥ 2 and 𝑖 = 1, . . . , 𝑛, let 𝛼𝑖 be nonzero
holomorphic 1-forms on 𝑆 such that

∑𝑛
𝑖=1 𝛼

2
𝑖
= 0. Let 𝜒 be the action of 𝜋1(𝑆) on

R𝑛 corresponding to the 1-forms 𝛼𝑖, and let 𝜌 be the action of 𝜋1(𝑆) on a product
𝑋 =

∏
𝑖 (𝑇𝑖, 2𝑑𝑖) of trees corresponding to the quadratic differentials 𝜙𝑖 = 𝛼2

𝑖
. We

write E𝜒 and E𝜌 for the associated two-variable energies, and E𝜒 and E𝜌 for the
energy functionals on Teichmüller space. Let ℎ = (ℎ1, . . . , ℎ𝑛) and 𝜋 = (𝜋1, . . . , 𝜋𝑛)
be the 𝜒- and 𝜌- equivariant minimal maps respectively.

Isometric folding
We begin with the statement (1) from Theorem 7C. The result is a consequence of
the proposition below.

Proposition 7.4.1. E𝜌 ≥ E𝜒, with equality at 𝑆.

The key is that there is a natural map 𝐹 : 𝑋 → R𝑛 intertwining 𝜌 and 𝜒. To see
why, let’s focus on a single tree 𝑇𝑖. Along a curve parametrizing a non-singular leaf
for the vertical singular foliation of 𝜙𝑖, 𝛼𝑖 evaluates the tangent vectors to purely
imaginary numbers. Since 𝑑ℎ𝑖 = Re(�̃�𝑖), we deduce that ℎ𝑖 is constant along the
singular vertical foliation of 𝜙𝑖. Hence, ℎ𝑖 descends to a map 𝐹𝑖 : 𝑇𝑖 → R, which
we call the folding map of the tree. The map 𝐹 = (𝐹1, . . . , 𝐹𝑛) has the required
equivariance.



223

Lemma 7.4.2. If 𝑆′ is any point of T𝑔, and 𝜋′
𝑖

the unique 𝜌𝑖-equivariant harmonic
map from 𝑆′ to (𝑇𝑖, 2𝑑𝑖), then the energy density of 𝜋′

𝑖
is pointwise equal to the

energy density of 𝐹𝑖 ◦ 𝜋′𝑖 .

Proof. Let 𝜓𝑖 be the Hopf differential of 𝜋′
𝑖
. As discussed in Section 2, for any point

𝑝 at which 𝜓𝑖 (𝑝) ≠ 0, there exists a neighbourhood Ω of 𝑝, an open interval 𝐼 ⊂ R,
a map �̂�′

𝑖
: Ω → 𝐼, and an isometric inclusion 𝜄 : 𝐼 → (𝑇𝑖, 2𝑑𝑖) such that in Ω,

𝜋′𝑖 = 𝜄 ◦ �̂�′𝑖 .

By construction, the restriction of 𝐹𝑖 |𝜄(𝐼) : 𝜄(𝐼) → R is an isometric embedding. It
follows by continuity that the energy densities are equal everywhere. □

Proof of Proposition 7.4.1. For any 𝑆′ ∈ T𝑔, let 𝜋′ be the 𝜌-equivariant harmonic
map to the product of trees. The map 𝐹 ◦ 𝜋′ is a 𝜒-equivariant Lipschitz map to R𝑛.
By the minimizing property for harmonic maps,

E𝜒 (𝑆′) ≤ E𝜒 (𝑆′, 𝐹 ◦ 𝜋′).

By the lemma above, E(𝑆′, 𝐹 ◦ 𝜋′) = E𝜌 (𝑆′), so we have

E𝜌 ≥ E𝜒 .

Working on the Riemann surface 𝑆, ℎ𝑖 = 𝐹𝑖◦𝜋𝑖 for every 𝑖, so E𝜒 (𝑆) = E𝜒 (𝑆′, 𝐹◦𝜋),
and we have equality. □

Remark 7.4.3. Maps of the form 𝐹𝑖 ◦ 𝜋′𝑖 above are subtle. They are harmonic apart
from some preimages under 𝜋′

𝑖
of the vertices in (𝑇𝑖, 2𝑑𝑖), which are typically disjoint

arcs or connected sums of disjoint arcs. Even though they have finite total energy,
a Weyl lemma cannot be applied because they fail to be twice weakly differentiable
on these lines. The map 𝑥 ↦→ |𝑥 | on R exhibits this type of behaviour.

We see immediately from Proposition 7.4.1 that if 𝑆 is not a global (resp. local)
minimum of E𝜌, then it is not a global (resp. local) minimum of E𝜒. So (1) is
proved. Furthermore, we are very close to proving one direction of (2), once we
recall the definition of the self-maps index, and its basic properties. We do this after
collecting some standard facts about minimal surfaces in R𝑛.
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Energy and area
Let 𝑓 be any smooth 𝜒-equivariant map from Σ̃𝑔 to R𝑛. The differential of 𝑓

descends to a closed R𝑛-valued 1-form 𝜃 on Σ𝑔, and the cohomology class of 𝜃 is
prescribed by the representation 𝜒. The map 𝑓 also defines a 𝜋1(Σ𝑔)-invariant area
form 𝑑𝐴 𝑓 =

√︁
det(𝜃𝑇𝜃), and the area of 𝑓 , which we write 𝐴( 𝑓 ), is defined to be

the integral of this form over Σ𝑔. If 𝑆 is a Riemann surface structure on Σ𝑔, then
E𝜒 (𝑆, 𝑓 ) ≥ 𝐴( 𝑓 ), with equality if and only if 𝑓 is minimal (in fact, the integrands
are equal pointwise).

Now suppose we are in the setting of Theorem 7C, so that ℎ is a minimal 𝜒-
equivariant map from 𝑆 to R𝑛. Let 𝐵 be the branch locus of ℎ on 𝑆.

Lemma 7.4.4. Let ℎ𝑟 be a smooth 𝜒-equivariant variation of ℎ such that ℎ𝑟 = ℎ

in a neighborhood of 𝐵. Then for 𝑟 small enough, there is a smooth variation of
Riemann surface structures 𝑆𝑟 such that ℎ𝑟 is minimal with respect to 𝑆𝑟 .

Proof. For 𝑟 sufficiently small, the map ℎ𝑟 is still an immersion away from 𝐵, and
hence uniquely defines a new conformal structure on 𝑆 − 𝐵. Since 𝑋 is compactly
supported away from 𝐵, this conformal structure patches to the conformal structure
of 𝑆 near 𝐵, and defines a new conformal structure 𝑆𝑟 on 𝑆, with respect to which ℎ
is minimal. □

We say that a smooth R𝑛-valued vector field𝑊 on 𝑆 supported on 𝑆 − 𝐵 is a normal
variation of ℎ if it is perpendicular to the image of 𝑑ℎ at each point of 𝑆−𝐵. For any
such𝑊 , let �̃� be the pullback to 𝑆; then the family ℎ𝑟 = ℎ + 𝑟�̃� is a 𝜒-equivariant
deformation of ℎ equal to ℎ on a neighborhood of 𝐵. Taking the derivative of the
corresponding 𝑆𝑟 at 𝑟 = 0 defines a linear map from the space of normal variations
supported on 𝑆 − 𝐵 to the tangent space of Teichmüller space at 𝑆. Let 𝑉 the graph
of this map, viewed as a subspace of 𝑇𝑆T𝑔 × 𝑇ℎMap𝜒 (Σ̃𝑔,R𝑛). We have shown that
restricted to 𝑉 , the Hessian of E𝜒 at the critical point (𝑆, ℎ) is equal to the Hessian
of 𝐴 at the critical point ℎ. The latter has the following formula:

Proposition 7.4.5 (Theorem 32 in [Law80]). If𝑊 is a normal variation supported
in 𝑆 − 𝐵, the second derivative of the area of any equivariant variation ℎ𝑟 with
derivative𝑊 at 𝑟 = 0 is given by the quadratic form

𝑄(𝑊) =
∫
𝑆

| (𝑑𝑊)𝑁 |2 − |⟨𝑘,𝑊⟩|2 (7.10)
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where (𝑑𝑊)𝑁 is the component of 𝑑𝑊 normal to the image of 𝑑ℎ, 𝑘 is the vector-
valued second fundamental form of ℎ(𝑆), and the second term is interpreted as the
square norm of the scalar-valued 2-tensor ⟨𝑘,𝑊⟩.

Lifting to R-trees via self-maps
In this section, we study energy and area in the context of the 𝜌-equivariant harmonic
maps to products of R-trees. Specifically, we relate 𝑄 to the quadratic form L :
𝑇𝑆T𝑔 × 𝐻0(𝑆;𝑇𝑆)𝑛 → R defined in the introduction, which defines the self-maps
index for E𝜌. Let 𝐻0

𝑐 (𝑆 − 𝐵,𝑇𝑆) be the subspace of 𝐻0(𝑆, 𝑇𝑆) of smooth vector
fields supported on 𝑆 − 𝐵.

The key to the proof of the second part of Theorem 7C is the result below.

Lemma 7.4.6. Suppose that 𝑊 is a normal variation of 𝑆 with support in 𝑆 − 𝐵,
and such that 𝑄(𝑊) < 0. Then there exists a harmonic Beltrami form 𝜇 on 𝑆 and
vector fields 𝑉1, . . . , 𝑉𝑛 ∈ 𝐻0

𝑐 (𝑆 − 𝐵,𝑇𝑆)𝑛 such that

L(𝜇,𝑉1, . . . , 𝑉𝑛) < 0.

Proof. Denote the coefficients of 𝑊 by 𝑊 𝑖. For each 𝑖 = 1, . . . , 𝑛, let 𝑉𝑖 be the
vector field which vanishes on 𝐵 and is equal to𝑊 𝑖∇𝑥𝑖/|∇𝑥𝑖 |2 on 𝑆 − 𝐵, where ∇𝑥𝑖

is the gradient of the coordinate function 𝑥𝑖 on 𝑆, which is nonvanishing on 𝑆 − 𝐵.
We point out that 𝑉𝑖 has compact support on 𝑆 − 𝐵.

Let 𝑓𝑊
𝑖

: R × 𝑆 → 𝑆 be flow of 𝑉𝑖, so that 𝑓𝑊
𝑖
(𝑟, ·) = 𝑓 𝑟

𝑖
(·). Then the family

𝐻 : R × 𝑆 → R𝑛 defined by 𝐻𝑖 (𝑟, 𝑝) = ℎ𝑖 ◦ 𝑓 𝑟𝑖 (𝑝) has derivative 𝑊 at time zero.
Moreover, the family Π : R × 𝑆 → ∏

𝑖 (𝑇𝑖, 2𝑑𝑖) defined by Π𝑖 (𝑟, 𝑝) = 𝜋𝑖 ◦ 𝑓 𝑟𝑖 (𝑝)
satisfies 𝐹𝑖 ◦ Π𝑖 = 𝐻𝑖, where 𝐹𝑖 is the folding map from 𝑇𝑖 to R. Let 𝜋𝑟 be the map
(𝜋1 ◦ 𝑓 𝑟1 , . . . , 𝜋𝑛 ◦ 𝑓

𝑟). By Lemma 7.4.4, there exists a 𝐶∞ variation of conformal
structures 𝑟 ↦→ 𝑆𝑟 along which E𝜌 (𝑆𝑟 , 𝜋𝑟) = E𝜒 (𝑆𝑟 , ℎ𝑟) = 𝐴(ℎ𝑟), and we set 𝜇 to be
the Beltrami form in𝑇𝑆T𝑔 tangent to this path at time zero. If𝑄(𝑊) < 0, then taking
the second variation of 𝑟 ↦→ E𝜌 (𝑆𝑟 , 𝜋𝑟) yields L(𝜇,𝑉1, . . . , 𝑉𝑛) = 𝑄(𝑊) < 0. □

Log cutoff
In order to construct destabilizing variations for 𝑄, it is helpful to do away with the
condition that 𝑊 is supported on 𝑆 − 𝐵. First, we need to say what it means for 𝑊
to be a normal variation over all of 𝑆. The map 𝑆 − 𝐵 → CP𝑛−1, which sends 𝑝
to the (one-dimensional) image of (𝛼1, . . . , 𝛼𝑛) at 𝑝, extends holomorphically to all
of 𝑆 by clearing denominators. Thus, the normal bundle also extends analytically
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to all of 𝑆. The quadratic form 𝑄 is still finite for normal variations that are not
necessarily supported on 𝑆 − 𝐵.

For normal variations 𝑊 , which are not necessarily supported on 𝑆 − 𝐵, we will
need to show that one can replace them with variations that are supported on 𝑆 − 𝐵
without changing the value of 𝑄 too much. This is the log cut-off trick. If 𝑟 is the
radial coordinate in C then the function log(𝑟)/log(𝛿−1) + 2, defined between 𝑟 = 𝛿
and 𝑟 = 𝛿2, is equal to 1 for 𝑟 = 𝛿 and 0 for 𝑟 = 𝛿2 and has Dirichlet energy

1
2

∫ 𝛿

𝛿2

2𝜋
𝑟 log(𝛿−1)2 =

𝜋

log(𝛿−1)
. (7.11)

The point is this this tends to zero as 𝛿 goes to zero. A good picture is that log 𝑟 is
the height coordinate on a cylinder conformal to the punctured disk, so our function
is an affine function of the height of the cylinder, and its derivative is small. The
extension of this function by 0 and 1 is Lipschitz. For very minor reasons, it will
be convenient to use a smooth cutoff function, so we let 𝑙𝛿 (𝑟) be a perturbation of
log(𝑟)/log(𝛿−1) + 2 which extends smoothly by 0 and 1 and has Dirichlet energy no
more than 2𝜋/log(𝛿−1).

We use this model to define a cut-off function as follows. For each point 𝑝𝑖 of 𝐵,
fix a holomorphic coordinate 𝑧𝑖 with 𝑧𝑖 (𝑝𝑖) = 0. Then, for any value of 𝛿 small
enough that each 𝑧𝑖 is defined on the ball of radius 𝛿 around 𝑝𝑖 and these balls do
not overlap, let 𝜂𝛿 be the function on 𝑆 defined by

• 𝜂𝛿 (𝑝) = 𝑙𝛿 ( |𝑧𝑖 |) if 𝛿2 ≤ |𝑧𝑖 (𝑝) | ≤ 𝛿 for some 𝑖

• 𝜂𝛿 (𝑝) = 0 if |𝑧𝑖 (𝑝) | ≤ 𝛿2 for some 𝑖

• 𝜂𝛿 (𝑝) = 1 otherwise.

We now use the log cut-off trick to prove the following.

Lemma 7.4.7. Suppose that𝑊 is normal variation of ℎ on 𝑆. Then given any 𝜖 > 0,
there is a constant 𝑑 (𝜖, 𝑄(𝑊), sup |𝑊 |) such that for all 𝛿 < 𝑑,

|𝑄(𝜂𝛿𝑊) −𝑄(𝑊) | < 𝜖. (7.12)
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Proof. For 𝛿 to be determined, we compute𝑄(𝜂𝛿𝑊). We first treat the normal term
in the formula (7.10) applied to the variation 𝜂𝛿𝑊 :∫

Σ

| (𝑑 (𝜂𝛿𝑊))𝑁 |2 =

∫
Σ

|𝜂𝛿 (𝑑𝑊)𝑁 + (𝑊𝑑𝜂𝛿)𝑁 |2

=

∫
𝛿2≤|𝑧 |≤𝛿

|𝜂𝛿 (𝑑𝑊)𝑁 + (𝑊𝑑𝜂𝛿)𝑁 |2 +
∫
|𝑧 |≥𝛿

| (𝑑𝑊)𝑁 |2,

where𝑊𝑑𝜂𝛿 is the R𝑛-valued 1-form𝑊 ⊗ 𝑑𝜂𝛿 . Hence,

|𝑄(𝜂𝛿𝑊) −𝑄(𝑊) | ≤
∫
𝛿2≤|𝑧 |≤𝛿

|𝜂𝛿 (𝑑𝑊)𝑁 + (𝑊𝑑𝜂𝛿)𝑁 |2 +
∫
|𝑧 |≤𝛿

| (𝑑𝑊)𝑁 |2 +
∫
𝑆

(1 − 𝜂2
𝛿) |𝑊 |2 |𝑘 |2

=

∫
𝛿2≤|𝑧 |≤𝛿

|𝜂𝛿 (𝑑𝑊)𝑁 + (𝑊𝑑𝜂𝛿)𝑁 |2 +𝑂 (𝛿2),

since 1 − 𝜂2
𝛿

is supported in |𝑧 | ≤ 𝛿. By Cauchy-Schwarz and (7.11),

|𝑄(𝜂𝛿𝑊) −𝑄(𝑊) | ≤
∫
𝛿2≤|𝑧 |≤𝛿

|𝜂𝛿 (𝑑𝑊)𝑁 |2 + |(𝑊𝑑𝜂𝛿)𝑁 |2 + 2|𝜂𝛿 (𝑑𝑊)𝑁 |2 | (𝑊𝑑𝜂𝛿)𝑁 |2 +𝑂 (𝛿2)

= 𝑂 (𝛿2) +𝑂
( 1
log 𝛿−1

)
= 𝑂

( 1
log 𝛿−1

)
.

Thus, we can choose 𝛿 > 0 so that the difference of second variations is at most
𝜖 . □

An immediate consequence is that we can speak without ambiguity of the index of
𝑄.

Proposition 7.4.8. The index of 𝑄 on the space of all normal variations is equal to
the index of 𝑄 on the subspace of normal variations supported in 𝑆 − 𝐵.

Proof. We just need to show that if there is a 𝑘-dimensional space of normal
variations on which 𝑄 is negative definite, then there is another 𝑘-dimensional
space of normal variations supported in 𝑆 − 𝐵 on which 𝑄 is still negative definite.
Let𝑉 be a 𝑘-dimensional space of normal variations on which𝑄 is negative definite.
Let 𝑆(𝑉) be the unit sphere in 𝑉 with respect to any metric on 𝑉 . Then for 𝛿 small
enough, 𝑄(𝜂𝛿𝑊) < 0 for every 𝑊 ∈ 𝑆(𝑉). Since this implies 𝜂𝛿𝑊 ≠ 0, the space
{𝜂𝛿𝑊 |𝑊 ∈ 𝑉} is a 𝑘-dimensional subspace of normal variations supported in 𝑆 − 𝐵
on which 𝑄 is negative definite. □

We may now finish the proof of Theorem 7C.
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Proof of Theorem 7C (2). Let 𝑘 be the index of E𝜒, and let 𝑊 ⊂ 𝑇𝑆T𝑔 be a 𝑘-
dimensional subspace on which the second variation is negative definite. By the
implicit function theorem, the unique harmonic 1-form in a given cohomology class
varies smoothly with the conformal structure of 𝑆. We can integrate this smoothly-
varying 1-form to give a smooth equivariant variation of the harmonic map ℎ.
Projecting the variation onto the normal bundle, we get from 𝑊 a vector space of
normal variations of ℎ on which the second derivative of E𝜒 is equal to 𝑄. Since it
is assumed to be positive definite, this space is still 𝑘 dimensional.

By Proposition 7.4.8, we can replace this with a 𝑘-dimensional subspace of normal
variations supported on 𝑆 − 𝐵 on which𝑄 is still negative definite. Then by Lemma
7.4.6, there is a 𝑘-dimensional subspace of 𝑇𝑆T𝑔 × 𝐻0

𝑐 (𝑆 − 𝐵,𝑇𝑆)𝑛 on which L is
negative definite, and so the index of E𝜌 by self-maps is at least 𝑘 .

In the other direction, suppose𝑊′ is a 𝑘-dimensional subspace of𝑇𝑆T𝑔×𝐻0(𝑆, 𝑇𝑆)𝑛

on which L is negative definite. Since L is positive semidefinite on {0}×𝐻0(𝑆, 𝑇𝑆)𝑛,
the projection of 𝑊′ to 𝑇𝑆T𝑔 is still 𝑘-dimensional. For maps to manifolds, the
positive semidefinite property follows from the computation [Har67, Theorem H],
and we get the same result in our setting by repeating the computation but using the
measurable energy density with the characterization (7.2). Since E𝜌 is an infimum
over all maps, we get an upper bound for E𝜌 near 𝑆 by a smooth function with
negative definite Hessian at 𝑆. Recall that Proposition 7.4.1 says that E𝜒 ≤ E𝜌, and
so the index of E𝜒 at 𝑆 is at least 𝑘 . □

7.5 The general case
In this section, we generalize Theorem 7C to the situation in which the quadratic
differentials are not necessarily squares of abelian differentials. We then specialize
to dimension 3 and give the proof of Theorem 7D.

The spectral curve
Let 𝑆0 be a point of T𝑔, and let 𝜙1, . . . , 𝜙𝑛 be nonzero holomorphic quadratic
differentials on 𝑆0 summing to zero. To this data, there is an associated spectral
curve. This is a particular branched covering 𝑆 of 𝑆0 with abelian differentials 𝛼𝑖 on
𝑆 that square to the pullback of 𝜙𝑖. It is always a 2𝑛-fold branched covering of 𝑆0,
but may be disconnected, for instance if any 𝜙𝑖 is already a square. By universality,
𝑆 has 𝑛 holomorphic involutions 𝜏𝑖, each of which negates 𝛼𝑖 and fixes 𝛼 𝑗 for 𝑗 ≠ 𝑖.

We let 𝜌 be the action of 𝜋1(𝑆0) on the product 𝑋 of the 𝑛 R-trees (𝑇𝑖, 2𝑑𝑖) corre-
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sponding to the quadratic differentials 𝜙𝑖, and 𝜋 the canonical equivariant map from
𝑆0 to 𝑋 .

Since 𝑆 has 𝑛 abelian differentials whose squares sum to zero, the theory of the pre-
vious section applies. For instance, we can integrate Re(�̃�𝑖) on a simply connected
covering space to get a harmonic map ℎ to R𝑛, equivariant under a representation 𝜒
of the Deck group, and well defined up to a constant on each component of 𝑆. The
energy density of this map descends not only to 𝑆, but all the way to 𝑆0, where it is
equal to the energy density of 𝜋.

In the spirit of Proposition 7.4.8, we want to compare the index of E𝜌 through
self-maps at 𝑆0 to the index of the quadratic form 𝑄 associated to ℎ. But to get
the right comparison, we need to restrict 𝑄 to a subspace of the space of normal
variations. Let 𝐺 � (Z/2Z)𝑛 be the group generated by the 𝜏𝑖. Let 𝜎 be the action
of 𝐺 on R𝑛 such that each 𝜏𝑖 acts by reflection in the 𝑖th coordinate hyperplane. Let
𝑁𝑉𝜎 be the space of normal variations of ℎ that are 𝜎-equivariant.

Proposition 7.5.1. The index of E𝜌 by self-maps is equal to the index of𝑄 on 𝑁𝑉𝜎.

Proof. Let 𝑘 be the index of 𝑄 on 𝑁𝑉𝜎. The first thing we want to do is use
Proposition 7.4.8 to find a 𝑘-dimensional space of 𝜎-equivariant normal variations
on 𝑆−𝐵 on which𝑄 is still negative definite. This works fine if we choose our cutoff
function 𝜂𝛿 to be 𝜏𝑖-invariant. For instance, we can define 𝜂𝛿 to be the pull-back to 𝑆
of the similarly-defined function on 𝑆0; then the dependence of the energy of 𝜂𝛿 with
𝛿 is the same up to a factor of 2 coming from the relation log( |√𝑧 |) = log( |𝑧 |)/2.

Next, for every𝑊 in this space, we get 𝑛 tangential vector fields 𝑉𝑖 = 𝑊 𝑖∇𝑥𝑖/|∇𝑥𝑖 |2

on 𝑆, as in Proposition 7.4.6. Since both𝑊 𝑖 and 𝑑𝑥𝑖 transform the same way under
each 𝜏𝑗 , we have 𝜏𝑗 (𝑉𝑖) = ±𝑊 𝑖 (±∇𝑥𝑖)/|∇𝑥𝑖 |2, where each sign is + if 𝑖 ≠ 𝑗 and − if
𝑖 = 𝑗 . Hence each 𝑉𝑖 descends to a vector field on 𝑆0 − 𝐵, which we still call 𝑉𝑖.

For each 𝑖, let 𝑓𝑊
𝑖

: R × 𝑆 → 𝑆, 𝑓𝑊
𝑖
(𝑟, ·) = 𝑓 𝑟

𝑖
(·) be the flow of 𝑉𝑖. Let ℎ𝑖 be

the component functions of ℎ, ℎ𝑟
𝑖
= ℎ𝑖 ◦ 𝑓 𝑟𝑖 , and ℎ𝑟 = (ℎ𝑟1, . . . , ℎ

𝑟
𝑛). The conformal

structures 𝑆𝑟 for which each ℎ𝑟 is conformal are still 𝐺-invariant, hence descend
to conformal structures (𝑆0)𝑟 on Σ𝑔. Let 𝜋𝑟

𝑖
= 𝜋 ◦ 𝑓 𝑟

𝑖
. Even though the tree 𝑇𝑖 no

longer folds to R, the energy density of 𝜋𝑟
𝑖

on (𝑆0)𝑟 is still pointwise equal to the
energy density of ℎ𝑟

𝑖
on 𝑆𝑡 ; indeed, both are equal to | ( 𝑓 𝑟

𝑖
)∗Re(𝛼𝑖) |2. Therefore, the

second derivative of E𝜌 is equal to 𝑄 on this 𝑘-dimensional space so the index of
E𝜌 by self-maps is at least 𝑘 .
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The other inequality is easier. If the index of E𝜌 by self-maps is 𝑘 , then we can
use the log-cutoff trick to find a 𝑘-dimensional space of vector fields 𝑉𝑖 supported
on 𝑆0 − 𝐵 and variations 𝜇𝑖 of conformal structure on which 𝐿 is negative definite.
Lifting everything to 𝑆 and differentiating the coordinate functions, we get a 𝑘-
dimensional space of equivariant variations of ℎ for which the second derivative
of energy is negative definite. Taking the normal components of these variations,
and using that energy dominates area, we get a 𝑘-dimensional subspace of 𝑁𝑉𝜎 on
which 𝑄 is negative definite. □

Unstable minimal surfaces in R𝑛

In order to finish the proof of Theorem 7A, we need to construct for each 𝑔 ≥ 2
and 𝑛 ≥ 3, either an unstable equivariant minimal surface 𝑆 of genus 𝑔 in R𝑛, or
a surface 𝑆0 of genus 𝑔 whose spectral curve is a (Z/2Z)𝑛-equivariantly unstable
minimal surface in R𝑛.

If 𝑔 ≥ 3, then as we discuss in the next section, there are plenty of equivariant
minimal surfaces of genus 𝑔 in R𝑛. They are not always unstable; for instance, if
the minimal map is holomorphic with respect to some complex structure on a linear
subspace ofR𝑛, then it is calibrated by the Kähler form, and hence stable. In general,
it is not straightforward to decide if a minimal surface in a flat space is unstable.

A special case is when the equivariant minimal surface is contained in a real 2-plane,
and hence is stable. We call such a minimal surface flat. These at least are easy to
identify.

Proposition 7.5.2. Let 𝜙1, . . . , 𝜙𝑛 ∈ 𝑄𝐷 (𝑆0) sum to 0, giving a 𝜒-equivariant map
ℎ : 𝑆 → R𝑛 as before. The vector valued second fundamental form 𝑘 of ℎ(𝑆)
vanishes identically if and only if the quadratic differentials 𝜙𝑖 are all complex
multiples of one another.

Proof. Let ℎ1, . . . , ℎ𝑛 denote the coordinate functions of ℎ. Since 𝜙𝑖 = ((ℎ𝑖)𝑧)2𝑑𝑧2,
the quadratic differentials are all complex multiples of one another if and only if
the functions (ℎ𝑖)𝑧 are. In one direction, assume (ℎ𝑖)𝑧 = 𝑎𝑖 𝑓 (𝑧) for some function
𝑓 (𝑧) and some complex constants 𝑎𝑖. Then the image of the R𝑛-valued 1-form 𝑑ℎ

is contained in a two-dimensional subspace, and by integrating, we see that image
of ℎ is contained in an affine subspace of R𝑛. In particular, it is totally geodesic, so
the second fundamental form is zero. Conversely, if the second fundamental form
is zero, then the image of 𝑑ℎ is contained in some two-dimensional linear subspace,
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and so the image of ℎ𝑧 is contained in the complexification of that subspace, which
is two-dimensional. As ℎ is weakly conformal, ⟨ℎ𝑧, ℎ𝑧⟩ = 0; since the inner product
is nondegenerate on the complexification of any real two-dimensional subspace, this
shows that ℎ𝑧 is contained in a complex line (we use analyticity to deduce this as
well at the branch points), and so the functions (ℎ𝑖)𝑧 are all complex multiples of
one another. □

For the remaining section, we restrict to 𝑛 = 3. For 𝑛 ≥ 3, any isometric inclusion
of R3 into R𝑛 gives examples in R𝑛. Let M𝑔 be the moduli space of Riemann
surfaces of genus 𝑔, and let 𝐸𝑛 be the total space of the bundle over M𝑔 consisting
of 𝑛-tuples of quadratic differentials that sum to 0. Instability of the corresponding
equivariant minimal surfaces in R𝑛 is an open condition on 𝐸𝑛, so by perturbing the
3-dimensional examples we get many more.

Equivariant minimal surfaces in R3

Every non-flat equivariant minimal surface in R3 is unstable. Indeed, in dimension
3, the expression |⟨𝑘,𝑊⟩|2 in the formula for 𝑄(𝑊) is equal to 2|𝐾 | |𝑊 |2, where 𝐾
is the Gauss curvature of the equivariant minimal surface. The normal bundle to the
minimal surface ℎ(𝑆) is a real line bundle on 𝑆. Since 𝑆 is always orientable, the
normal bundle is as well, and hence it is equivariantly trivial. If 𝑁 is a unit normal
section, and 𝜂 is any function on 𝑆, then the second variation formula (7.10) takes
the form

𝑄0(𝜂𝑁) =
∫
Σ

|∇𝜂 |2 − |𝐾 |2 |𝜂 |2.

As long as the curvature 𝐾 is anywhere nonzero, a constant section of 𝑁 will
therefore be destabilizing: for 𝜂 = 1,

𝑄0(𝑁) =
∫
Σ

−|𝐾 |2 < 0.

When 𝑔 ≥ 3, the moduli space of (𝑆, 𝛼1, 𝛼2, 𝛼3), where 𝑆 is a Riemann surface of
genus 𝑔 and 𝛼𝑖 are abelian differentials on 𝑆 whose squares sum to zero, but are
not all mutliples of one another, is nonempty and has complex dimension 3𝑔 (in
[FR20, Section 6] it is shown that the quotient by the natural free actions of C∗ and
SO(3,C) has dimension 3𝑔 − 4). This proves Theorem 7A for 𝑔 ≥ 3.

Remark 7.5.3. In fact, in [Ros06, Theorem 16], Ros proves that every non-flat
minimally immersed surface of genus 𝑔 in a 3-torus has index at least 2𝑔/3 − 1.
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The result easily generalizes to any non-flat equivariant minimal immersion for any
representation, but we emphasize that it applies only to immersed surfaces.

Unfortunately, there are no non-flat equivariant minimal surfaces of genus 2 in R3,
stable or not. This is because the canonical map lands in P1, so the canonical
curve cannot be contained in a rank 3 quadric (or see the comment after Proposition
7.5.6). Hence, we are forced to study 𝜎-equivariant deformations of the spectral
curve. The key that makes this work is that the normal bundle of the spectral curve
𝑆 of (𝑆0, 𝜙1, 𝜙2, 𝜙3) can be equivariantly trivial even if the 𝜙𝑖 are not squares (in
which case 𝑆 is just 8 copies of 𝑆0).

Proposition 7.5.4. Suppose that the sextic differential 𝜙1𝜙2𝜙3 is the square of a
cubic differential 𝑐. Then there is a 𝜎-equivariant deformation of 𝑆 of constant
length 1.

Proof. The cubic differential 𝑐 distinguishes two components of 𝑆; one on which
𝛼1𝛼2𝛼3 = 𝑐, and one on which it is equal to −𝑐. Each 𝜏𝑖 interchanges the two
components of 𝑆. The subgroup Γ < (Z/2Z)3 preserving the components acts on
R3 in an orientation-preserving way. Indeed, for each element 𝛾 ∈ Γ, the determinant
of the matrix describing the product of hyperplane reflections is equal to the product
of the monodromies of the 𝛼𝑖 under the action of 𝛾. We can use the orientation
of R3, together with the orientation of the component of 𝑆, to equivariantly orient
the normal bundle. Since the normal bundle is a line bundle, it therefore has an
equivariant section of constant length. □

Remark 7.5.5. If each 𝜙𝑖 is the square of an abelian differential 𝛼𝑖, then clearly
𝜙1𝜙2𝜙3 = 𝑐2 with 𝑐 = 𝛼1𝛼2𝛼3.

If the quadratic differentials 𝜙𝑖 are not complex multiples of one another, then neither
are their lifts 𝛼𝑖 to the spectral curve. Hence, the minimal map from the lift of the
spectral curve is non-flat, so any 𝜎-equivariant deformation of constant length will
be destabilizing.

The final step is to show that there are non-flat solutions even in genus 2 to the
equations 𝜙1𝜙2𝜙3 = 𝑐 and 𝜙1 + 𝜙2 + 𝜙3 = 0. For any 𝑔 ≥ 2, let P𝑔 be the moduli
space of genus 𝑔 Riemann surfaces 𝑆 together with a triple of quadratic differentials
𝜙𝑖 summing to zero whose product is a square and which are not all complex
multiples of one another.
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Proposition 7.5.6. The moduli space P2 has dimension 3.

Proof. Consider the three dimensional family of algebraic curves 𝑤2 = 𝑧(𝑧−1) (𝑧−
𝑎) (𝑧−𝑏) (𝑧− 𝑐) for (0, 1, 𝑎, 𝑏, 𝑐) distinct complex numbers. This is a finite covering
of the moduli space of genus 2 Riemann surfaces. Every holomorphic quadratic
differential on a curve in this family is of the form 𝑝(𝑧) (𝑑𝑧)2/𝑤2 for 𝑝(𝑧) a polyno-
mial of degree at most 2. If the roots of 𝑝(𝑧) are branch points of the curve, then the
quadratic differential vanishes to order two at the corresponding point of the curve.
For arbitrary 𝑎 and 𝑏, and 𝑐 to be determined, let

𝜙1 = 𝑧(𝑧 − 1) 𝑑𝑧
2

𝑤2

𝜙2 = 𝜇(𝑎, 𝑏) (𝑧 − 𝑎) 𝑑𝑧
2

𝑤2 ,

where 𝜇(𝑎, 𝑏) = −𝑏(𝑏 − 1)/(𝑏 − 𝑎) is chosen so that 𝜙1 + 𝜙2 vanishes at 𝑏 (equiva-
lently, that the corresponding quadratic polynomial vanishes at 𝑏). A short compu-
tation shows that the other root of the polynomial for 𝜙1 + 𝜙2 is at 𝑎(𝑏 − 1)/(𝑏 − 𝑎),
so if this happens to be the value of 𝑐, then the sextic differential 𝜙1𝜙2𝜙3 vanishes
to order two at each of the six branch points of the curve (including ∞). Hence it is
the square of the cubic differential 𝑑𝑧3/𝑤2, which vanishes to order one at each of
these points. Including a parameter rescaling 𝜙1, 𝜙2, and 𝜙3, this shows that P2 has
dimension 3. □

For example we could take 𝑎 = −1, 𝑏 = 𝑖, and 𝑐 = −𝑖 to get a solution on the
hyperelliptic curve 𝑤2 = 𝑧5 − 𝑧. This suffices for the proof of Theorem 7A.

Remark 7.5.7. Note that the triples of quadratic differentials in genus 2 are squares
of abelian differentials since the polynomials 𝑧(𝑧−1), etc., are not squares. However,
they still have even order zeros.

Together with [FR20, Section 6] and the Remark 7.5.5, this shows:

Proposition 7.5.8. For every genus 𝑔 ≥ 2, P𝑔 is nonempty and every component
has complex dimension at least 3𝑔 − 3.

We give a self-contained proof of this proposition, since it is very brief in the
reference.
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Proof. We have already proved this for genus 2. The canonical map of a hyperel-
liptic curve of genus 3 is the vanishing locus of a nondegenerate quadric on CP2;
diagonalizing this quadric gives three abelian differentials whose squares sum to
zero on the curve. By Remark 7.5.5, these give points in P3. Since the hyperel-
liptic locus has dimension 5, we get a sixth dimension from rescaling the abelian
differentials. This proves the result for 𝑔 = 3.

In general, taking unramified coverings of a point in P2 shows that P𝑔 is nonempty
for every 𝑔. To get the bound on dimension, we observe that P𝑔 is, up to a double
cover, the intersection in the total space of the bundle 𝐻0(𝐾3) over M𝑔 (dimension
14(𝑔−1)) of the sextic differentials that are squares of cubic differenitals (dimension
8(𝑔 − 1)) and those that are the product of three independent quadratic differentials
summing to zero (dimension 9(𝑔 − 1)). This gives a lower bound on the dimension
of 8(𝑔 − 1) + 9(𝑔 − 1) − 14(𝑔 − 1) = 3(𝑔 − 1). □



235

BIBLIOGRAPHY

[AG71] Norman L. Alling and Newcomb Greenleaf. Foundations of the theory
of Klein surfaces. Lecture Notes in Mathematics, Vol. 219. Springer-
Verlag, Berlin-New York, 1971, pp. ix+117.

[Ahl06] Lars V. Ahlfors. Lectures on quasiconformal mappings. Second. Vol. 38.
University Lecture Series. With supplemental chapters by C. J. Earle,
I. Kra, M. Shishikura and J. H. Hubbard. American Mathematical So-
ciety, Providence, RI, 2006, pp. viii+162. isbn: 0-8218-3644-7. doi:
10.1090/ulect/038. url: https://doi.org/10.1090/ulect/
038.

[AL18] Daniele Alessandrini and Qiongling Li. “AdS 3-manifolds and Higgs
bundles”. In: Proc. Amer. Math. Soc. 146.2 (2018), pp. 845–860. issn:
0002-9939. doi: 10.1090/proc/13586. url: https://doi.org/
10.1090/proc/13586.

[Ale19] Daniele Alessandrini. “Higgs bundles and geometric structures on
manifolds”. In: SIGMA Symmetry Integrability Geom. Methods Appl.
15 (2019), Paper 039, 32. doi: 10.3842/SIGMA.2019.039. url:
https://doi- org.clsproxy.library.caltech.edu/10.
3842/SIGMA.2019.039.

[Alt72] Hans Wilhelm Alt. “Verzweigungspunkte von H-Flächen. I”. German.
In: Math. Z. 127 (1972), pp. 333–362. issn: 0025-5874; 1432-1823/e.

[Alt73] Hans Wilhelm Alt. “Verzweigungspunkte von H-Flächen. II”. German.
In: Math. Ann. 201 (1973), pp. 33–55. issn: 0025-5831; 1432-1807/e.

[AMR88] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis,
and applications. Second. Vol. 75. Applied Mathematical Sciences.
Springer-Verlag, New York, 1988, pp. x+654. isbn: 0-387-96790-7.
doi: 10.1007/978-1-4612-1029-0. url: https://doi-org.
clsproxy.library.caltech.edu/10.1007/978- 1- 4612-
1029-0.

[Aro57] N. Aronszajn. “A unique continuation theorem for solutions of elliptic
partial differential equations or inequalities of second order”. In: J.
Math. Pures Appl. (9) 36 (1957), pp. 235–249. issn: 0021-7824.

[Aus64] Louis Auslander. “The structure of complete locally affine manifolds”.
In: Topology 3.suppl, suppl. 1 (1964), pp. 131–139. issn: 0040-9383.
doi: 10.1016/0040-9383(64)90012-6. url: https://doi.org/
10.1016/0040-9383(64)90012-6.

[Bar10] David Baraglia. G2 geometry and integrable systems. 2010. arXiv:
1002.1767 [math.DG].



236

[BH21] Yves Benoist and Dominique Hulin. “Harmonic quasi-isometric maps
II: negatively curved manifolds”. In: J. Eur. Math. Soc. (JEMS) 23.9
(2021), pp. 2861–2911. issn: 1435-9855. doi: 10.4171/jems/1065.
url: https://doi.org/10.4171/jems/1065.

[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive
curvature. Vol. 319. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1999, pp. xxii+643. isbn: 3-540-64324-9. doi: 10.1007/978-
3-662-12494-9. url: https://doi.org/10.1007/978-3-662-
12494-9.

[Bie11] Ludwig Bieberbach. “Über die Bewegungsgruppen der Euklidischen
Räume”. In: Math. Ann. 70.3 (1911), pp. 297–336. issn: 0025-5831.
doi: 10.1007/BF01564500. url: https://doi.org/10.1007/
BF01564500.

[Bie12] Ludwig Bieberbach. “Über die Bewegungsgruppen der Euklidischen
Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fun-
damentalbereich”. In: Math. Ann. 72.3 (1912), pp. 400–412. issn:
0025-5831. doi: 10.1007/BF01456724. url: https://doi.org/
10.1007/BF01456724.

[BIW10] Marc Burger, Alessandra Iozzi, and Anna Wienhard. “Surface group
representations with maximal Toledo invariant”. In: Ann. of Math. (2)
172.1 (2010), pp. 517–566. issn: 0003-486X. doi: 10.4007/annals.
2010.172.517. url: https://doi-org.clsproxy.library.
caltech.edu/10.4007/annals.2010.172.517.

[BS20] Francesco Bonsante and Andrea Seppi. Anti-de Sitter geometry and
Teichmüller theory. 2020. arXiv: 2004.14414 [math.GT].

[CG93] Suhyoung Choi and William M. Goldman. “Convex real projective
structures on closed surfaces are closed”. In: Proc. Amer. Math. Soc.
118.2 (1993), pp. 657–661. issn: 0002-9939. doi: 10.2307/2160352.
url: https://doi.org/10.2307/2160352.

[Che76] Shiu Yuen Cheng. “Eigenfunctions and nodal sets”. In: Comment.
Math. Helv. 51.1 (1976), pp. 43–55. issn: 0010-2571. doi: 10.1007/
BF02568142. url: https : / / doi - org . clsproxy . library .
caltech.edu/10.1007/BF02568142.

[Che80] Shiu Yuen Cheng. “Liouville theorem for harmonic maps”. In: Geom-
etry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii,
Honolulu, Hawaii, 1979). Proc. Sympos. Pure Math., XXXVI. Amer.
Math. Soc., Providence, R.I., 1980, pp. 147–151.

[Coo93] Michel Coornaert. “Mesures de Patterson-Sullivan sur le bord d’un
espace hyperbolique au sens de Gromov”. In: Pacific J. Math. 159.2



237

(1993), pp. 241–270. issn: 0030-8730. url:http://projecteuclid.
org/euclid.pjm/1102634263.

[Cor88] Kevin Corlette. “Flat 𝐺-bundles with canonical metrics”. In: J. Differ-
ential Geom. 28.3 (1988), pp. 361–382. issn: 0022-040X. url: http:
//projecteuclid.org/euclid.jdg/1214442469.

[Cor92a] Kevin Corlette. “Archimedean superrigidity and hyperbolic geome-
try”. In: Ann. of Math. (2) 135.1 (1992), pp. 165–182. issn: 0003-
486X. doi: 10.2307/2946567. url: https://doi.org/10.2307/
2946567.

[Cor92b] Kevin Corlette. “Archimedean superrigidity and hyperbolic geome-
try”. In: Ann. of Math. (2) 135.1 (1992), pp. 165–182. issn: 0003-
486X. doi: 10.2307/2946567. url: https://doi.org/10.2307/
2946567.

[CTT19] Brian Collier, Nicolas Tholozan, and Jérémy Toulisse. “The geometry
of maximal representations of surface groups into SO0(2, 𝑛)”. In: Duke
Math. J. 168.15 (2019), pp. 2873–2949. issn: 0012-7094. doi: 10.
1215/00127094-2019-0052. url: https://doi.org/10.1215/
00127094-2019-0052.

[CY75] S. Y. Cheng and S. T. Yau. “Differential equations on Riemannian
manifolds and their geometric applications”. In: Comm. Pure Appl.
Math. 28.3 (1975), pp. 333–354. issn: 0010-3640. doi: 10.1002/
cpa . 3160280303. url: https : / / doi . org / 10 . 1002 / cpa .
3160280303.

[DGK16a] Jeffrey Danciger, François Guéritaud, and Fanny Kassel. In: Invent.
Math. 204.1 (2016), pp. 133–193. issn: 0020-9910. doi: 10.1007/
s00222-015-0610-z. url: https://doi.org/10.1007/s00222-
015-0610-z.

[DGK16b] Jeffrey Danciger, François Guéritaud, and Fanny Kassel. “Fundamental
domains for free groups acting on anti–de Sitter 3-space”. In: Math.
Res. Lett. 23.3 (2016), pp. 735–770. issn: 1073-2780. doi: 10.4310/
MRL.2016.v23.n3.a10. url: https://doi.org/10.4310/MRL.
2016.v23.n3.a10.

[DHS10] Ulrich Dierkes, Stefan Hildebrandt, and Friedrich Sauvigny. Minimal
surfaces. second. Vol. 339. Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. With
assistance and contributions by A. Küster and R. Jakob. Springer, Hei-
delberg, 2010, pp. xvi+688. isbn: 978-3-642-11697-1. doi: 10.1007/
978-3-642-11698-8. url: https://doi.org/10.1007/978-3-
642-11698-8.



238

[DHT10] Ulrich Dierkes, Stefan Hildebrandt, and Anthony J. Tromba. Global
analysis of minimal surfaces. second. Vol. 341. Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer, Heidelberg, 2010, pp. xvi+537. isbn: 978-3-642-
11705-3. doi: 10.1007/978-3-642-11706-0. url: https://doi-
org.clsproxy.library.caltech.edu/10.1007/978-3-642-
11706-0.

[DL20] Song Dai and Qiongling Li. Domination results in 𝑛-Fuchsian fibers
in the moduli space of Higgs bundles. 2020. arXiv: 2005.13960
[math.DG].

[Don87] S. K. Donaldson. “Twisted harmonic maps and the self-duality equa-
tions”. In: Proc. London Math. Soc. (3) 55.1 (1987), pp. 127–131.
issn: 0024-6115. doi: 10.1112/plms/s3-55.1.127. url: https:
//doi.org/10.1112/plms/s3-55.1.127.

[Dou39] Jesse Douglas. “Minimal surfaces of higher topological structure”. In:
Ann. of Math. (2) 40.1 (1939), pp. 205–298. issn: 0003-486X. doi:
10.2307/1968552. url: https://doi-org.clsproxy.library.
caltech.edu/10.2307/1968552.

[DT16] Bertrand Deroin and Nicolas Tholozan. “Dominating surface group
representations by Fuchsian ones”. In: Int. Math. Res. Not. IMRN
13 (2016), pp. 4145–4166. issn: 1073-7928. doi: 10.1093/imrn/
rnv275. url: https://doi.org/10.1093/imrn/rnv275.

[Dur04] Peter Duren. Harmonic mappings in the plane. Vol. 156. Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2004,
pp. xii+212. isbn: 0-521-64121-7. doi:10.1017/CBO9780511546600.
url: https://doi.org/10.1017/CBO9780511546600.

[DZ09] Sorin Dumitrescu and Abdelghani Zeghib. “Global rigidity of holo-
morphic Riemannian metrics on compact complex 3-manifolds”. In:
Math. Ann. 345.1 (2009), pp. 53–81. issn: 0025-5831. doi: 10.1007/
s00208-009-0342-8. url: https://doi.org/10.1007/s00208-
009-0342-8.

[Eji02] Norio Ejiri. “A differential-geometric Schottky problem, and mini-
mal surfaces in tori”. In: Differential geometry and integrable systems
(Tokyo, 2000). Vol. 308. Contemp. Math. Amer. Math. Soc., Provi-
dence, RI, 2002, pp. 101–144. doi: 10.1090/conm/308/05314. url:
https://doi.org/10.1090/conm/308/05314.

[EL81] J. Eells and L. Lemaire. “Deformations of metrics and associated
harmonic maps”. In: Proc. Indian Acad. Sci. Math. Sci. 90.1 (1981),
pp. 33–45. issn: 0253-4142. doi: 10.1007/BF02867016.



239

[EL83] James Eells and Luc Lemaire. Selected topics in harmonic maps.
Vol. 50. CBMS Regional Conference Series in Mathematics. Pub-
lished for the Conference Board of the Mathematical Sciences, Wash-
ington, DC; by the American Mathematical Society, Providence, RI,
1983, pp. v+85. isbn: 0-8218-0700-5. doi: 10.1090/cbms/050. url:
https://doi.org/10.1090/cbms/050.

[ES64] James Eells Jr. and J. H. Sampson. “Harmonic mappings of Rieman-
nian manifolds”. In: Amer. J. Math. 86 (1964), pp. 109–160. issn:
0002-9327. doi: 10.2307/2373037. url: https://doi.org/10.
2307/2373037.

[FG06] Vladimir Fock and Alexander Goncharov. “Moduli spaces of local
systems and higher Teichmüller theory”. In: Publ. Math. Inst. Hautes
Études Sci. 103 (2006), pp. 1–211. issn: 0073-8301. doi: 10.1007/
s10240-006-0039-4. url: https://doi.org/10.1007/s10240-
006-0039-4.

[FLP12] Albert Fathi, François Laudenbach, and Valentin Poénaru. Thurston’s
work on surfaces. Vol. 48. Mathematical Notes. Translated from the
1979 French original by Djun M. Kim and Dan Margalit. Princeton
University Press, Princeton, NJ, 2012, pp. xvi+254. isbn: 978-0-691-
14735-2.

[FM12] Benson Farb and Dan Margalit. A primer on mapping class groups.
Vol. 49. Princeton Mathematical Series. Princeton University Press,
Princeton, NJ, 2012, pp. xiv+472. isbn: 978-0-691-14794-9.

[FR20] Gavril Farkas and Richárd Rimányi. “Quadric rank loci on moduli
of curves and 𝐾3 surfaces”. In: Ann. Sci. Éc. Norm. Supér. (4) 53.4
(2020), pp. 945–992. issn: 0012-9593. doi: 10.24033/asens.2437.
url: https://doi.org/10.24033/asens.2437.

[FT21] Vladimir Fock and Alexander Thomas. “Higher complex structures”.
In: Int. Math. Res. Not. IMRN 20 (2021), pp. 15873–15893. issn: 1073-
7928. doi: 10.1093/imrn/rnz283. url: https://doi.org/10.
1093/imrn/rnz283.

[Gab85] David Gabai. “The simple loop conjecture”. In: J. Differential Geom.
21.1 (1985), pp. 143–149. issn: 0022-040X. url:http://projecteuclid.
org/euclid.jdg/1214439470.

[Gar87] Frederick P. Gardiner. Teichmüller theory and quadratic differentials.
Pure and Applied Mathematics (New York). A Wiley-Interscience Pub-
lication. John Wiley & Sons, Inc., New York, 1987, pp. xviii+236. isbn:
0-471-84539-6.

[GH77] Samuel I. Goldberg and Zvi Har’El. “A general Schwarz lemma for
Riemannian-manifolds”. In: Bull. Soc. Math. Grèce (N.S.) 18.1 (1977),
pp. 141–148. issn: 0373-1391.



240

[GK17] François Guéritaud and Fanny Kassel. “Maximally stretched lamina-
tions on geometrically finite hyperbolic manifolds”. In: Geom. Topol.
21.2 (2017), pp. 693–840. issn: 1465-3060. doi: 10.2140/gt.2017.
21.693. url: https://doi-org.clsproxy.library.caltech.
edu/10.2140/gt.2017.21.693.

[GKW15] François Guéritaud, Fanny Kassel, and Maxime Wolff. “Compact anti–
de Sitter 3-manifolds and folded hyperbolic structures on surfaces”.
In: Pacific J. Math. 275.2 (2015), pp. 325–359. issn: 0030-8730. doi:
10.2140/pjm.2015.275.325. url: https://doi.org/10.2140/
pjm.2015.275.325.

[GLW21] Olivier Guichard, François Labourie, and Anna Wienhard. Positivity
and representations of surface groups. 2021. doi: 10.48550/ARXIV.
2106.14584. url: https://arxiv.org/abs/2106.14584.

[Gol85] William M. Goldman. “Nonstandard Lorentz space forms”. In: J. Dif-
ferential Geom. 21.2 (1985), pp. 301–308. issn: 0022-040X. url:
http://projecteuclid.org.clsproxy.library.caltech.
edu/euclid.jdg/1214439567.

[Gol90] William M. Goldman. “Convex real projective structures on compact
surfaces”. In: J. Differential Geom. 31.3 (1990), pp. 791–845. issn:
0022-040X. url: http://projecteuclid.org/euclid.jdg/
1214444635.

[GOR73] R. D. Gulliver II, R. Osserman, and H. L. Royden. “A theory of
branched immersions of surfaces”. In: Amer. J. Math. 95 (1973),
pp. 750–812. issn: 0002-9327. doi: 10.2307/2373697. url: https:
/ / doi - org . clsproxy . library . caltech . edu / 10 . 2307 /
2373697.

[GS20] Subhojoy Gupta and Weixu Su. Dominating surface-group representa-
tions into PSL2(C) in the relative representation variety. 2020. arXiv:
2003.13572 [math.GT].

[GS92] Mikhail Gromov and Richard Schoen. “Harmonic maps into singular
spaces and 𝑝-adic superrigidity for lattices in groups of rank one”. In:
Inst. Hautes Études Sci. Publ. Math. 76 (1992), pp. 165–246. issn:
0073-8301. url: http://www.numdam.org/item?id=PMIHES_
1992__76__165_0.

[Gui18] Olivier Guichard. “An introduction to the differential geometry of flat
bundles and of Higgs bundles”. In: The geometry, topology and physics
of moduli spaces of Higgs bundles. Vol. 36. Lect. Notes Ser. Inst. Math.
Sci. Natl. Univ. Singap. World Sci. Publ., Hackensack, NJ, 2018, pp. 1–
63.



241

[Gul73] Robert D. Gulliver II. “Regularity of minimizing surfaces of prescribed
mean curvature”. In: Ann. of Math. (2) 97 (1973), pp. 275–305. issn:
0003-486X. doi: 10.2307/1970848. url: https://doi- org.
clsproxy.library.caltech.edu/10.2307/1970848.

[Gup17] Subhojoy Gupta. “Harmonic maps and wild Teichmüller spaces”. In:
arXiv e-prints, arXiv:1708.04780 (2017), arXiv:1708.04780. arXiv:
1708.04780 [math.DG].

[GW07] William M. Goldman and Richard A. Wentworth. “Energy of twisted
harmonic maps of Riemann surfaces”. In: In the tradition of Ahlfors-
Bers. IV. Vol. 432. Contemp. Math. Amer. Math. Soc., Providence,
RI, 2007, pp. 45–61. doi: 10.1090/conm/432/08299. url: https:
//doi-org.clsproxy.library.caltech.edu/10.1090/conm/
432/08299.

[Ham03] Ursula Hamenstädt. “Length functions and parameterizations of Te-
ichmüller space for surfaces with cusps”. In: Ann. Acad. Sci. Fenn.
Math. 28.1 (2003), pp. 75–88. issn: 1239-629X.

[Ham75] Richard S. Hamilton. Harmonic maps of manifolds with boundary.
Lecture Notes in Mathematics, Vol. 471. Springer-Verlag, Berlin-New
York, 1975, pp. i+168.

[Har67] Philip Hartman. “On homotopic harmonic maps”. In: Canadian J.
Math. 19 (1967), pp. 673–687. issn: 0008-414X. doi: 10.4153/CJM-
1967-062-6. url: https://doi.org/10.4153/CJM-1967-062-
6.

[HI77] Ernst Heintze and Hans-Christoph Im Hof. “Geometry of horospheres”.
In: J. Differential Geom. 12.4 (1977), 481–491 (1978). issn: 0022-
040X. url:http://projecteuclid.org/euclid.jdg/1214434219.

[Hit87] N. J. Hitchin. “The self-duality equations on a Riemann surface”. In:
Proc. London Math. Soc. (3) 55.1 (1987), pp. 59–126. issn: 0024-
6115. doi: 10.1112/plms/s3-55.1.59. url: https://doi.org/
10.1112/plms/s3-55.1.59.

[Hit92] N. J. Hitchin. “Lie groups and Teichmüller space”. In: Topology
31.3 (1992), pp. 449–473. issn: 0040-9383. doi: 10.1016/0040-
9383(92)90044-I. url: https://doi.org/10.1016/0040-
9383(92)90044-I.

[HM79] John Hubbard and Howard Masur. “Quadratic differentials and folia-
tions”. In: Acta Math. 142.3-4 (1979), pp. 221–274. issn: 0001-5962.
doi: 10.1007/BF02395062. url: https://doi.org/10.1007/
BF02395062.



242

[HPR93] Joel Hass, Jon T. Pitts, and J. H. Rubinstein. “Existence of unstable
minimal surfaces in manifolds with homology and applications to
triply periodic minimal surfaces”. In: Differential geometry: partial
differential equations on manifolds (Los Angeles, CA, 1990). Vol. 54.
Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1993,
pp. 147–162.

[Hub06] John Hamal Hubbard. Teichmüller theory and applications to geome-
try, topology, and dynamics. Vol. 1. Teichmüller theory, With contri-
butions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain
Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mi-
tra, With forewords by William Thurston and Clifford Earle. Matrix
Editions, Ithaca, NY, 2006, pp. xx+459.

[HW15] Zheng Huang and Biao Wang. “Counting minimal surfaces in quasi-
Fuchsian three-manifolds”. In: Trans. Amer. Math. Soc. 367.9 (2015),
pp. 6063–6083. issn: 0002-9947. doi: 10.1090/tran/6172. url:
https://doi.org/10.1090/tran/6172.

[HW53] Philip Hartman and Aurel Wintner. “On the local behavior of solutions
of non-parabolic partial differential equations”. In: Amer. J. Math. 75
(1953), pp. 449–476. issn: 0002-9327. doi: 10.2307/2372496. url:
https://doi- org.clsproxy.library.caltech.edu/10.
2307/2372496.

[IT92] Y. Imayoshi and M. Taniguchi. An introduction to Teichmüller spaces.
Translated and revised from the Japanese by the authors. Springer-
Verlag, Tokyo, 1992, pp. xiv+279. isbn: 4-431-70088-9. doi: 10.
1007/978-4-431-68174-8. url: https://doi.org/10.1007/
978-4-431-68174-8.

[JM18] István Juhász and Jan van Mill. “On maps preserving connectedness
and/or compactness”. In: Comment. Math. Univ. Carolin. 59.4 (2018),
pp. 513–521. issn: 0010-2628. doi: 10.14712/1213-7243.2015.
263. url: https://doi-org.clsproxy.library.caltech.edu/
10.14712/1213-7243.2015.263.

[Jos08] Jürgen Jost. “Harmonic mappings”. In: Handbook of geometric anal-
ysis. Vol. 1. Ed. by Lizhen Ji et al. Vol. 7. Advanced lectures in math-
ematics (International Press). Boston: International Press of Boston,
2008, pp. 147–194. isbn: 978-1-57146-130-8.

[Jos84] Jürgen Jost. Harmonic maps between surfaces. Vol. 1062. Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1984, pp. x+133. isbn:
3-540-13339-9. doi: 10.1007/BFb0100160. url: https://doi.
org/10.1007/BFb0100160.



243

[JY83] Jürgen Jost and Shing Tung Yau. “Harmonic mappings and Kähler
manifolds”. In: Math. Ann. 262.2 (1983), pp. 145–166. issn: 0025-
5831. doi: 10 . 1007 / BF01455308. url: https : / / doi - org .
clsproxy.library.caltech.edu/10.1007/BF01455308.

[JY91] Jürgen Jost and Shing-Tung Yau. “Harmonic maps and group represen-
tations”. In: Differential geometry. Vol. 52. Pitman Monogr. Surveys
Pure Appl. Math. Longman Sci. Tech., Harlow, 1991, pp. 241–259.

[JZ97] Jürgen Jost and Kang Zuo. “Harmonic maps of infinite energy and
rigidity results for representations of fundamental groups of quasipro-
jective varieties”. In: J. Differential Geom. 47.3 (1997), pp. 469–503.
issn: 0022-040X. url: http://projecteuclid.org/euclid.
jdg/1214460547.

[Kas08] Fanny Kassel. “Proper actions on corank-one reductive homogeneous
spaces”. In: J. Lie Theory 18.4 (2008), pp. 961–978. issn: 0949-5932.

[Kas10] Fanny Kassel. “Quotients compacts des groupes ultramétriques de
rang un”. In: Ann. Inst. Fourier (Grenoble) 60.5 (2010), pp. 1741–
1786. issn: 0373-0956. url: http://aif.cedram.org/item?id=
AIF_2010__60_5_1741_0.

[Kat+15] Ludmil Katzarkov et al. “Harmonic maps to buildings and singular
perturbation theory”. In: Comm. Math. Phys. 336.2 (2015), pp. 853–
903. issn: 0010-3616. doi: 10.1007/s00220-014-2276-6. url:
https://doi.org/10.1007/s00220-014-2276-6.

[Kli96] Bruno Klingler. “Complétude des variétés lorentziennes à courbure
constante”. In: Math. Ann. 306.2 (1996), pp. 353–370. issn: 0025-
5831. doi: 10.1007/BF01445255. url: https://doi.org/10.
1007/BF01445255.

[KM08] Vincent Koziarz and Julien Maubon. “Harmonic maps and represen-
tations of non-uniform lattices of 𝑃𝑈 (𝑚, 1)”. In: Ann. Inst. Fourier
(Grenoble) 58.2 (2008), pp. 507–558. issn: 0373-0956. url: http:
//aif.cedram.org/item?id=AIF_2008__58_2_507_0.

[KR85] Ravi S. Kulkarni and Frank Raymond. “3-dimensional Lorentz space-
forms and Seifert fiber spaces”. In: J. Differential Geom. 21.2 (1985),
pp. 231–268. issn: 0022-040X. url: http://projecteuclid.org/
euclid.jdg/1214439564.

[KS07] Kirill Krasnov and Jean-Marc Schlenker. “Minimal surfaces and par-
ticles in 3-manifolds”. In: Geom. Dedicata 126 (2007), pp. 187–254.
issn: 0046-5755. doi: 10.1007/s10711-007-9132-1. url: https:
//doi.org/10.1007/s10711-007-9132-1.



244

[Lab06] François Labourie. “Anosov flows, surface groups and curves in pro-
jective space”. In: Invent. Math. 165.1 (2006), pp. 51–114. issn: 0020-
9910. doi: 10.1007/s00222-005-0487-3. url: https://doi.
org/10.1007/s00222-005-0487-3.

[Lab08] François Labourie. “Cross ratios, Anosov representations and the en-
ergy functional on Teichmüller space”. In: Ann. Sci. Éc. Norm. Supér.
(4) 41.3 (2008), pp. 437–469. issn: 0012-9593. doi: 10 . 24033 /
asens.2072. url: https://doi.org/10.24033/asens.2072.

[Lab13] François Labourie. Lectures on representations of surface groups.
Zurich Lectures in Advanced Mathematics. European Mathematical
Society (EMS), Zürich, 2013, pp. viii+138. isbn: 978-3-03719-127-9.
doi: 10.4171/127. url: https://doi.org/10.4171/127.

[Lab17] François Labourie. “Cyclic surfaces and Hitchin components in rank
2”. In: Ann. of Math. (2) 185.1 (2017), pp. 1–58. issn: 0003-486X.
doi: 10.4007/annals.2017.185.1.1. url: https://doi.org/
10.4007/annals.2017.185.1.1.

[Lab91] François Labourie. “Existence d’applications harmoniques tordues à
valeurs dans les variétés à courbure négative”. In: Proc. Amer. Math.
Soc. 111.3 (1991), pp. 877–882. issn: 0002-9939. doi: 10.2307/
2048427. url: https://doi.org/10.2307/2048427.

[Law80] H. Blaine Lawson Jr. Lectures on minimal submanifolds. Vol. I. Second.
Vol. 9. Mathematics Lecture Series. Publish or Perish, Inc., Wilming-
ton, Del., 1980, pp. iv+178. isbn: 0-914098-18-7.

[Li19] Qiongling Li. “An introduction to Higgs bundles via harmonic maps”.
In: SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019),
Paper No. 035, 30. doi: 10.3842/SIGMA.2019.035. url: https:
//doi.org/10.3842/SIGMA.2019.035.

[Lof01] John C. Loftin. “Affine spheres and convex RP𝑛-manifolds”. In: Amer.
J. Math. 123.2 (2001), pp. 255–274. issn: 0002-9327. url: http://
muse.jhu.edu/journals/american_journal_of_mathematics/
v123/123.2loftin.pdf.

[Loh91] Jochen Lohkamp. “Harmonic diffeomorphisms and Teichmüller the-
ory”. In: Manuscripta Math. 71.4 (1991), pp. 339–360. issn: 0025-
2611. doi: 10.1007/BF02568411. url: https://doi.org/10.
1007/BF02568411.

[LW08] Fanghua Lin and Changyou Wang. The analysis of harmonic maps and
their heat flows. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2008, pp. xii+267. doi: 10.1142/9789812779533. url: https:
//doi.org/10.1142/9789812779533.



245

[Mar17] Vladimir Marković. “Harmonic maps and the Schoen conjecture”. In:
J. Amer. Math. Soc. 30.3 (2017), pp. 799–817. issn: 0894-0347. doi:
10.1090/jams/881. url: https://doi.org/10.1090/jams/
881.

[Mar18] Vladimir Marković. Harmonic surfaces in 3-manifolds and the simple
loop theorem. 2018. url: https://doi-org.clsproxy.library.
caltech.edu/10.1007/BF02867016.

[Mar21] Vladimir Marković. “Uniqueness of minimal diffeomorphisms be-
tween surfaces”. In: Bull. Lond. Math. Soc. 53.4 (2021), pp. 1196–
1204. issn: 0024-6093. doi: 10.1112/blms.12493. url: https:
//doi.org/10.1112/blms.12493.

[Mar22] Vladimir Marković. “Non-uniqueness of minimal surfaces in a product
of closed Riemann surfaces”. In: Geom. Funct. Anal. 32.1 (2022),
pp. 31–52. issn: 1016-443X. doi: 10.1007/s00039-021-00590-4.
url: https://doi.org/10.1007/s00039-021-00590-4.

[Mas95] Howard Masur. “The Teichmüller flow is Hamiltonian”. In: Proc.
Amer. Math. Soc. 123.12 (1995), pp. 3739–3747. issn: 0002-9939. doi:
10.2307/2161902. url: https://doi.org/10.2307/2161902.

[Mee90] William H. Meeks III. “The theory of triply periodic minimal sur-
faces”. In: Indiana Univ. Math. J. 39.3 (1990), pp. 877–936. issn:
0022-2518. doi: 10.1512/iumj.1990.39.39043. url: https:
//doi.org/10.1512/iumj.1990.39.39043.

[Mes07] Geoffrey Mess. “Lorentz spacetimes of constant curvature”. In: Geom.
Dedicata 126 (2007), pp. 3–45. issn: 0046-5755. doi: 10.1007/
s10711-007-9155-7. url: https://doi.org/10.1007/s10711-
007-9155-7.

[Min87] David Minda. “The strong form of Ahlfors’ lemma”. In: Rocky Moun-
tain J. Math. 17.3 (1987), pp. 457–461. issn: 0035-7596. doi: 10.
1216/RMJ-1987-17-3-457. url: https://doi.org/10.1216/
RMJ-1987-17-3-457.

[Min92] Yair N. Minsky. “Harmonic maps, length, and energy in Teichmüller
space”. In: J. Differential Geom. 35.1 (1992), pp. 151–217. issn:
0022-040X. url: http://projecteuclid.org/euclid.jdg/
1214447809.

[Mon16] Gabriele Mondello. “Topology of representation spaces of surface
groups in 𝑃𝑆𝐿2(R) with assigned boundary monodromy and nonzero
Euler number”. In: Pure Appl. Math. Q. 12.3 (2016), pp. 399–462.
issn: 1558-8599. doi: 10.4310/PAMQ.2016.v12.n3.a3. url:
https://doi- org.clsproxy.library.caltech.edu/10.
4310/PAMQ.2016.v12.n3.a3.



246

[Moo06] John Douglas Moore. “Bumpy metrics and closed parametrized min-
imal surfaces in Riemannian manifolds”. In: Trans. Amer. Math. Soc.
358.12 (2006), pp. 5193–5256. issn: 0002-9947. doi: 10 . 1090 /
S0002-9947-06-04317-0. url: https://doi-org.clsproxy.
library.caltech.edu/10.1090/S0002-9947-06-04317-0.

[Moo17] John Douglas Moore. Introduction to global analysis. Vol. 187. Grad-
uate Studies in Mathematics. Minimal surfaces in Riemannian mani-
folds. American Mathematical Society, Providence, RI, 2017, pp. xiv+368.
isbn: 978-1-4704-2950-8.

[Mos64] Jürgen Moser. “A Harnack inequality for parabolic differential equa-
tions”. In: Comm. Pure Appl. Math. 17 (1964), pp. 101–134. issn:
0010-3640. doi: 10.1002/cpa.3160170106. url: https://doi.
org/10.1002/cpa.3160170106.

[MS12] Dusa McDuff and Dietmar Salamon. 𝐽-holomorphic curves and sym-
plectic topology. Second. Vol. 52. American Mathematical Society
Colloquium Publications. American Mathematical Society, Providence,
RI, 2012, pp. xiv+726. isbn: 978-0-8218-8746-2.

[MSS22] Vladimir Marković, Nathaniel Sagman, and Peter Smillie. Unstable
minimal surfaces in R𝑛 and in products of hyperbolic surfaces. 2022.
arXiv: 2206.02938 [math.DG].

[Mum71] David Mumford. “A remark on Mahler’s compactness theorem”. In:
Proc. Amer. Math. Soc. 28 (1971), pp. 289–294. issn: 0002-9939. doi:
10.2307/2037802. url: https://doi-org.clsproxy.library.
caltech.edu/10.2307/2037802.

[MW16] Julien Marché and Maxime Wolff. “The modular action on PSL2(R)-
characters in genus 2”. In: Duke Math. J. 165.2 (2016), pp. 371–
412. issn: 0012-7094. doi: 10.1215/00127094- 3166522. url:
https://doi- org.clsproxy.library.caltech.edu/10.
1215/00127094-3166522.

[MW95] Mario J. Micallef and Brian White. “The structure of branch points
in minimal surfaces and in pseudoholomorphic curves”. In: Ann. of
Math. (2) 141.1 (1995), pp. 35–85. issn: 0003-486X. doi: 10.2307/
2118627. url: https://doi-org.clsproxy.library.caltech.
edu/10.2307/2118627.

[Nic21] Liviu I. Nicolaescu. Lectures on the geometry of manifolds. Third.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2021,
p. 682.

[Nit74] Johannes C. C. Nitsche. “Plateau’s problems and their modern ram-
ifications”. In: Amer. Math. Monthly 81 (1974), pp. 945–968. issn:
0002-9890. doi: 10.2307/2319297. url: https://doi- org.
clsproxy.library.caltech.edu/10.2307/2319297.



247

[Omo67] Hideki Omori. “Isometric immersions of Riemannian manifolds”. In:
J. Math. Soc. Japan 19 (1967), pp. 205–214. issn: 0025-5645. doi:
10.2969/jmsj/01920205. url: https://doi.org/10.2969/
jmsj/01920205.

[Oss70] Robert Osserman. “A proof of the regularity everywhere of the clas-
sical solution to Plateau’s problem”. In: Ann. of Math. (2) 91 (1970),
pp. 550–569. issn: 0003-486X. doi: 10.2307/1970637. url: https:
/ / doi - org . clsproxy . library . caltech . edu / 10 . 2307 /
1970637.

[Par12] Anne Parreau. “Compactification d’espaces de représentations de groupes
de type fini”. In: Math. Z. 272.1-2 (2012), pp. 51–86. issn: 0025-5874.
doi: 10.1007/s00209-011-0921-8. url: https://doi.org/10.
1007/s00209-011-0921-8.

[PT10] Athanase Papadopoulos and Guillaume Théret. “Shortening all the
simple closed geodesics on surfaces with boundary”. In: Proc. Amer.
Math. Soc. 138.5 (2010), pp. 1775–1784. issn: 0002-9939. doi: 10.
1090/S0002-9939-09-10195-8. url: https://doi.org/10.
1090/S0002-9939-09-10195-8.

[PV17] Mark Pollicott and Polina Vytnova. “Critical points for the Hausdorff
dimension of pairs of pants”. In: Groups Geom. Dyn. 11.4 (2017),
pp. 1497–1519. issn: 1661-7207. doi: 10 . 4171 / GGD / 436. url:
https://doi.org/10.4171/GGD/436.

[Ros06] Antonio Ros. “One-sided complete stable minimal surfaces”. In: J.
Differential Geom. 74.1 (2006), pp. 69–92. issn: 0022-040X. url:
http://projecteuclid.org/euclid.jdg/1175266182.

[RS87] Edgar Reich and Kurt Strebel. “On the Gerstenhaber-Rauch princi-
ple”. In: Israel J. Math. 57.1 (1987), pp. 89–100. issn: 0021-2172.
doi: 10.1007/BF02769462. url: https://doi.org/10.1007/
BF02769462.

[Sag19] Nathaniel Sagman. “Infinite energy equivariant harmonic maps, domi-
nation, and anti-de Sitter 3-manifolds”. In: To appear in J. Differential.
Geom. (2019). doi: 10.48550/ARXIV.1911.06937. url: https:
//arxiv.org/abs/1911.06937.

[Sag21a] Nathaniel Sagman. “A factorization theorem for harmonic maps”. In:
J. Geom. Anal. 31.12 (2021), pp. 11714–11740. issn: 1050-6926. doi:
10.1007/s12220-021-00699-w. url: https://link.springer.
com/article/10.1007/s12220-021-00699-w.

[Sag21b] Nathaniel Sagman. Almost strict domination and anti-de Sitter 3-
manifolds. 2021. doi: 10.48550/ARXIV.2105.12886. url: https:
//arxiv.org/abs/2105.12886.



248

[Sag21c] Nathaniel Sagman. Moduli spaces of harmonic surfaces in non-positive
curvature. 2021. doi: 10.48550/ARXIV.2111.04142. url: https:
//arxiv.org/abs/2111.04142.

[Sal00] François Salein. “Variétés anti-de Sitter de dimension 3 exotiques”. In:
Ann. Inst. Fourier (Grenoble) 50.1 (2000), pp. 257–284. issn: 0373-
0956. url: http://www.numdam.org/item?id=AIF_2000__50_
1_257_0.

[Sam78] J. H. Sampson. “Some properties and applications of harmonic map-
pings”. In: Ann. Sci. École Norm. Sup. (4) 11.2 (1978), pp. 211–228.
issn: 0012-9593. url: http : / / www . numdam . org . clsproxy .
library.caltech.edu/item?id=ASENS_1978_4_11_2_211_0.

[Sch93] Richard M. Schoen. “The role of harmonic mappings in rigidity and de-
formation problems”. In: Complex geometry (Osaka, 1990). Vol. 143.
Lecture Notes in Pure and Appl. Math. Dekker, New York, 1993,
pp. 179–200.

[Sco83] Peter Scott. “The geometries of 3-manifolds”. In: Bull. London Math.
Soc. 15.5 (1983), pp. 401–487. issn: 0024-6093. doi: 10.1112/blms/
15.5.401. url: https://doi.org/10.1112/blms/15.5.401.

[Sim88] Carlos T. Simpson. “Constructing variations of Hodge structure using
Yang-Mills theory and applications to uniformization”. In: J. Amer.
Math. Soc. 1.4 (1988), pp. 867–918. issn: 0894-0347. doi: 10.2307/
1990994. url: https://doi.org/10.2307/1990994.

[Sim90] Carlos T. Simpson. “Harmonic bundles on noncompact curves”. In:
J. Amer. Math. Soc. 3.3 (1990), pp. 713–770. issn: 0894-0347. doi:
10.2307/1990935. url: https://doi-org.clsproxy.library.
caltech.edu/10.2307/1990935.

[Siu80] Yum Tong Siu. “The complex-analyticity of harmonic maps and the
strong rigidity of compact Kähler manifolds”. In: Ann. of Math. (2)
112.1 (1980), pp. 73–111. issn: 0003-486X. doi: 10.2307/1971321.
url: https://doi.org/10.2307/1971321.

[Siu82] Yum Tong Siu. “Complex-analyticity of harmonic maps, vanishing
and Lefschetz theorems”. In: J. Differential Geometry 17.1 (1982),
pp. 55–138. issn: 0022-040X. url: http://projecteuclid.org/
euclid.jdg/1214436700.

[Sle20] Ivo Slegers. “Equivariant harmonic maps depend real analytically on
the representation”. In: arXiv preprint (2020).

[Str84] Kurt Strebel. Quadratic differentials. Vol. 5. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)]. Springer-Verlag, Berlin, 1984, pp. xii+184. isbn: 3-540-
13035-7. doi: 10.1007/978-3-662-02414-0. url: https://doi-



249

org.clsproxy.library.caltech.edu/10.1007/978-3-662-
02414-0.

[SU81] J. Sacks and K. Uhlenbeck. “The existence of minimal immersions of
2-spheres”. In: Ann. of Math. (2) 113.1 (1981), pp. 1–24. issn: 0003-
486X. doi: 10.2307/1971131. url: https://doi.org/10.2307/
1971131.

[SY78] Richard Schoen and Shing Tung Yau. “On univalent harmonic maps
between surfaces”. In: Invent. Math. 44.3 (1978), pp. 265–278. issn:
0020-9910. doi: 10.1007/BF01403164. url: https://doi.org/
10.1007/BF01403164.

[SY79] R. Schoen and Shing Tung Yau. “Existence of incompressible minimal
surfaces and the topology of three-dimensional manifolds with non-
negative scalar curvature”. In: Ann. of Math. (2) 110.1 (1979), pp. 127–
142. issn: 0003-486X. doi: 10.2307/1971247. url: https://doi-
org.clsproxy.library.caltech.edu/10.2307/1971247.

[SY97] R. Schoen and S. T. Yau. Lectures on harmonic maps. Conference
Proceedings and Lecture Notes in Geometry and Topology, II. Interna-
tional Press, Cambridge, MA, 1997, pp. vi+394. isbn: 1-57146-002-0.

[Szé14] Gábor Székelyhidi. An introduction to extremal Kähler metrics. Vol. 152.
Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2014, pp. xvi+192. isbn: 978-1-4704-1047-6. doi:
10.1090/gsm/152. url: https://doi.org/10.1090/gsm/152.

[Tho17] Nicolas Tholozan. “Dominating surface group representations and de-
forming closed anti-de Sitter 3-manifolds”. In: Geom. Topol. 21.1
(2017), pp. 193–214. issn: 1465-3060. doi: 10.2140/gt.2017.
21.193. url: https://doi.org/10.2140/gt.2017.21.193.

[Tho18] Nicolas Tholozan. “The volume of complete anti–de Sitter 3-manifolds”.
In: J. Lie Theory 28.3 (2018), pp. 619–642. issn: 0949-5932.

[Thu98] William P. Thurston. “Minimal stretch maps between hyperbolic sur-
faces”. In: arXiv Mathematics e-prints, math/9801039 (1998), math/9801039.
arXiv: math/9801039 [math.GT].

[Tor07] Francisco Torralbo. “Minimal Lagrangian immersions inRH2×RH2”.
In: Symposium on the Differential Geometry of Submanifolds. [s.n.],
[s.l.], 2007, pp. 217–219.

[Tra08] Martin Traizet. “On the genus of triply periodic minimal surfaces”.
In: J. Differential Geom. 79.2 (2008), pp. 243–275. issn: 0022-040X.
url: http://projecteuclid.org/euclid.jdg/1211512641.



250

[Wan92] Tom Yau-Heng Wan. “Constant mean curvature surface, harmonic
maps, and universal Teichmüller space”. In: J. Differential Geom. 35.3
(1992), pp. 643–657. issn: 0022-040X. url:http://projecteuclid.
org/euclid.jdg/1214448260.

[Wen07] Richard A. Wentworth. “Energy of harmonic maps and Gardiner’s
formula”. In: In the tradition of Ahlfors-Bers. IV. Vol. 432. Contemp.
Math. Amer. Math. Soc., Providence, RI, 2007, pp. 221–229. doi:
10.1090/conm/432/08311. url: https://doi-org.clsproxy.
library.caltech.edu/10.1090/conm/432/08311.

[Wen16] Richard A. Wentworth. “Higgs bundles and local systems on Rie-
mann surfaces”. In: Geometry and quantization of moduli spaces. Adv.
Courses Math. CRM Barcelona. Birkhäuser/Springer, Cham, 2016,
pp. 165–219.

[Whi36] Hassler Whitney. “Differentiable manifolds”. In: Ann. of Math. (2)
37.3 (1936), pp. 645–680. issn: 0003-486X. doi: 10.2307/1968482.
url: https://doi-org.clsproxy.library.caltech.edu/10.
2307/1968482.

[Wie18] Anna Wienhard. “An invitation to higher Teichmüller theory”. In:
Proceedings of the International Congress of Mathematicians—Rio de
Janeiro 2018. Vol. II. Invited lectures. World Sci. Publ., Hackensack,
NJ, 2018, pp. 1013–1039.

[Wit07] Edward Witten. Three-Dimensional Gravity Revisited. 2007. doi: 10.
48550/ARXIV.0706.3359. url: https://arxiv.org/abs/0706.
3359.

[Wit89] Edward Witten. “2 + 1-dimensional gravity as an exactly soluble sys-
tem”. In: Nuclear Phys. B 311.1 (1989), pp. 46–78. issn: 0550-3213.
doi: 10.1016/0550-3213(88)90143-5. url: https://doi-org.
clsproxy.library.caltech.edu/10.1016/0550-3213(88)
90143-5.

[Wol89] Michael Wolf. “The Teichmüller theory of harmonic maps”. In: J.
Differential Geom. 29.2 (1989), pp. 449–479. issn: 0022-040X. url:
http://projecteuclid.org/euclid.jdg/1214442885.

[Wol91a] Michael Wolf. “High energy degeneration of harmonic maps between
surfaces and rays in Teichmüller space”. In: Topology 30.4 (1991),
pp. 517–540. issn: 0040-9383. doi: 10 . 1016 / 0040 - 9383(91 )
90037-5. url: https://doi.org/10.1016/0040-9383(91)
90037-5.

[Wol91b] Michael Wolf. “Infinite energy harmonic maps and degeneration of
hyperbolic surfaces in moduli space”. In: J. Differential Geom. 33.2
(1991), pp. 487–539. issn: 0022-040X. url:http://projecteuclid.
org/euclid.jdg/1214446328.



251

[Wol95] Michael Wolf. “Harmonic maps from surfaces to R-trees”. In: Math.
Z. 218.4 (1995), pp. 577–593. issn: 0025-5874. doi: 10 . 1007 /
BF02571924. url: https://doi.org/10.1007/BF02571924.

[Wol96] Michael Wolf. “On realizing measured foliations via quadratic differ-
entials of harmonic maps to R-trees”. In: J. Anal. Math. 68 (1996),
pp. 107–120. issn: 0021-7670. doi: 10.1007/BF02790206. url:
https://doi.org/10.1007/BF02790206.

[Woo74] John C. Wood. Harmonic maps between surfaces. Ph.D. Thesis. Uni-
versity of Warwick, 1974.

[Woo77] John C. Wood. “Singularities of harmonic maps and applications of
the Gauss-Bonnet formula”. In: Amer. J. Math. 99.6 (1977), pp. 1329–
1344. issn: 0002-9327. doi: 10.2307/2374027. url: https://doi-
org.clsproxy.library.caltech.edu/10.2307/2374027.


