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ABSTRACT

Distributed energy resources play an important role in today’s distribution power
system. The Optimal Power Flow (OPF) problem is fundamental in power systems
as many important applications such as economic dispatch, battery displacement,
unit commitment, and voltage control can be formulated as an OPF. A paradoxical
observation is the problem’s complexity in theory but simplicity in practice. On the
one hand, the problem is well known to be non-convex and NP-hard, so it is likely
that no simple algorithms can solve all problem instances efficiently. On the other
hand, there are many known algorithms which perform extremely well in practice
for both standard test cases and real-world systems. This thesis attempts to reconcile
this seeming contradiction.

Specifically, this thesis focuses on two types of properties that may underlie the
simplicity in practice of OPF problems. The first property is the exactness of
relaxations, meaning that one can find a convex relaxation of the original non-
convex problem such that the two problems share the same optimal solution. This
property would allow us to convexify the non-convex problem without altering the
optimal solution and cost. The second property is that all locally optimal solutions
of the non-convex problem are also globally optimal. This property allows us
to apply local algorithms such as gradient descent without being trapped at some
spurious local optima. We focus on distribution systems with radial networks
(i.e., the underlying graphs are trees). We consider both single-phase models and
unbalanced multi-phase models, since most real-world distribution systems are
multi-phase unbalanced, and distributed energy resources (DERs) can be connected
in either wye or delta configurations.

The main results of this thesis are two-fold. In the first half, we propose a class
of sufficient conditions for a non-convex problem to simultaneously have exact
relaxation and no spurious local optima. Then we apply the result to single-phase
system and conclude that if all buses have no injection lowerbounds, then both
properties (exactness and global optimality) can be achieved. While the same
condition is already known to be sufficient for exactness, our work is the first to
extend it to global optimality. In the second half, we focus on the exactness property
for multi-phase systems. For systems without delta connections, the exactness can
be guaranteed if 1) the binding constraints are sparse in the network at optimality;
or 2) all nodal prices fall within a narrow range. Using the DC model as an
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approximation, we further analyze the OPF sensitivity and explain why nodal prices
tend to be close to each other. In the presence of delta connections, we conclude
that the inexactness can be resolved by either postprocessing an optimal solution, or
adding a new regularization term in the cost function. Both methods achieve global
optimality for IEEE standard test cases.
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C h a p t e r 1

INTRODUCTION

The rapid development in distributed energy resources (DERs) over the past decades
is now pushing the power grid through a historic transformation. Compared to
traditional power generators, renewable energy resources such as wind turbines and
solar panels supply clean and sustainable energy to the power grid. For example,
during the COVID-19 pandemic, it was reported that renewables were the only
energy source for which demand increased in 2020 despite the pandemic [39]. It
is also projected that we will transition to having 100% renewable energy by 2050
[66]. On the demand side, the large-scale adoption of electrical vehicles (EVs) also
has a significant impact, given that there are 10 million EVs worldwide by the end
of 2020 and the industry is growing rapidly [78]. While the rapid growth of DERs
brings numerous convenience to our daily life and improves global sustainability,
there are also huge challenges for the control and optimization of distribution power
networks. The first challenge is the impact of highly volatile distributed renewable
energy resources on the optimization of power systems. Traditional power systems
have a small number of large power plants with controllable generation [54]. As
a result, distribution networks are typically maintained and operated in a more
centralized way. However, with more and more renewable sources available, we
can expect that more consumers will have the potential ability to supply the grid as
well. Secondly, power is carried by three-phase transmission lines and while the
grid operates traditionally in a balanced mode where the power in the three phases is
equal in magnitude and equally spaced in phase angles, future distribution grids will
not be balanced across the three phases because renewable generations fluctuate
randomly and frequently, and DERs including electric vehicles are generally not
phase-balanced. Most existing work on OPF assume the grid is balanced and their
results cannot be directly applied to unbalanced three-phase systems.

This thesis focuses on a specific class of optimization problems for distribution
networks, known as Optimal Power Flow (OPF) problems. An OPF problem is a
mathematical program that computes optimal operating point of a power system,
subject to power flow equations and operational constraints. The problem was first
proposed in [21] and has been intensively studied since it has numerous applications
in power systems, such as economical dispatch, battery displacement, unit commit-
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ment, voltage control, and so on. We refer to [18] for a detailed review of the history
of OPF problems. Specifically, we are interested in the computational properties
of OPF problems. On the one hand, Alternating Current (AC) OPF problems are
non-convex, and it has been proved in [11, 46] that they are NP-hard even for radial
networks, and thus the problem in general can be very difficult in theory. On the
other hand, the problem is also tractable in practice as researchers have found many
algorithms that can yield globally optimal solutions for real-world test-cases [2, 41,
59]. In this thesis, we want to understand why practical OPF problems tend to have
nice computational properties. We divide this research area into four quadrants as
shown in Table 1.1. Network-wise, we consider both single-phase and multi-phase
models of distribution networks. The macro structure of the network is assumed to
be radial unless otherwise specified. Topic-wise, we focus on two types of ques-
tions: 1) is the convex relaxation exact? 2) are there any spurious locally optimal
solutions?

Table 1.1: Four quadrants on OPF computational properties.

Relaxation exactness Global optimality
Single-phase network Existing literature This thesis
Multi-phase network This thesis To be explored

The first quadrant is on the relaxation exactness of OPF problems for single-phase
networks. This topic has been extensively studied since the first proposal of semi-
definite relaxation in [2]. In [45], it has been proven that the semi-definite relaxation
has the same dual problem as the primal problem, and having exact relaxation
is equivalent to the primal problem having zero duality gap. It also shows that
zero duality gap can be guaranteed if the power marginal prices are non-negative.
In subsequent works, many conditions that can be checked a priori have been
discovered to guarantee exactness. For example, [15, 27] proposed the condition
that all injections have no lower bound; the condition in [31] requires the problem
to have no voltage upper-bounds. Work in [74] provides a geometric illustration
of the injection region and shows that Pareto-optimal points of the injection region
remains unchanged when taking the convex hull. Those works all apply to single-
phase radial networks, or meshed networks with phase shifters. In [56], the authors
extend partial results to a class of single-phase meshed network named weakly-cyclic
graphs, and also lossless networks. More detailed surveys on this topic can be found
in [52, 57]. Those works pioneered the research on the computational properties of
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OPF problems and many of them also provide us with the building blocks to extend
results to multi-phase networks.

The second quadrant studies whether there are spurious local optimal solutions of
the non-convex OPF problems for single-phase networks. The idea is motivated
by the observation that local algorithms such as Newton-Raphson or interior-point
methods proposed in [41] often (though not always) yield the same solution as convex
relaxation, indicating that local algorithms also tend to converge to globally optimal
solutions. To the best of our knowledge, no existing work has studied this topic for
OPF problems from a theoretical perspective. However, many similar non-convex
problems in other areas such as machine learning and signal processing have been
found to have no spurious local optima under certain conditions [1, 17, 33, 69, 70].
Some of those problems, such as matrix completion problem and low-rank semi-
definite programs, may have exact relaxation and no spurious local optima at the
same time under very similar conditions. We also have two interesting observations.
First, traditional proof techniques on relaxation exactness and global optimality are
very different though they sometimes can be applied to the same classes of problems.
Second, most proof techniques in the literature analyze the optimization landscape
through the gradient and curvature of the cost function and usually require the
feasible set to have a simple structure, e.g., the spherical surface. In contrast, we
develop a new perspective that can characterize problems that simultaneously have
exact relaxation and no spurious local optima, and with more complicated feasible
sets. Specifically, we consider an optimization problem with a convex cost function
but a non-convex compact feasible set X, and its relaxation with a compact and
convex feasible set X̂ ⊃ X. We prove that if from any point 𝑥 ∈ X̂ \ X there is
a path connecting 𝑥 to X along which both the cost function and a Lyapunov-like
function are improvable, then any local optimum in X for the original non-convex
problem is a global optimum. This result helps explain the widespread empirical
experience that both local algorithms and convex relaxation for OPF problems often
work extremely well.

As we move to the third quadrant, we try to extend the exactness results to multi-phase
networks. Real-world distribution networks typically have more than one phase, and
those phases are usually unbalanced at the operational point. Single-phase models
can be poor approximations of such systems. Additionally, multi-phase networks
may have both wye and delta connected devices. Previous studies on multi-phase
power flow models can be found in [6, 9, 30, 80]. Specifically, the simulation results
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in [76] show that if we relax the multi-phase OPF problem as a convex semi-definite
program or second-order cone program, then the variables that are associated with
wye connected devices are still exact. However, the variables that are associated
with delta connected devices may no longer be exact. This result suggests that delta
devices may require additional treatment in the problem formulation. In this thesis,
we first study the multi-phase OPF problems without delta connections and provide
sufficient conditions for exactness. Our result suggests that if the binding constraints
are sparse, or if the nodal prices fall within a narrow range, then the problem tends
to be exact. In the presence of delta connected devices, we find that the inexactness
is due to under-specification of the relaxation formulation and numerical errors.
Inspired by this finding, we then propose two algorithms which yield exact optimal
solutions up to an acceptable numerical precision in simulations of IEEE 13-, 37-,
and 123-bus systems.

The fourth quadrant is not explored in this thesis. However, we refer to the literature
[8, 25]. These works apply primal-dual algorithms to multi-phase OPF problems
and their applications to real systems perform very well in terms of both convergence
and tracking capabilities. It will be interesting to analyze the performance of local
algorithms for multi-phase distribution networks.

The rest of this thesis is organized as follows. In Chapter 2, we propose a condition
that is sufficient for a non-convex optimization problem to have both exact relaxation
and no spurious local optima. Then we apply the result to single-phase OPF problems
and conclude that as long as there is no lower bounds for the power injections, all
local optima should be globally optimal as well. In Chapter 3, we prove that a
multi-phase OPF problem is exact if the corresponding dual matrix is G-invertible.
Then we consider two cases: 1) binding constraints are very sparse in the network,
and 2) nodal prices fall within a narrow range. We prove that both cases guarantee
the G-invertibility of the dual matrix and hence the exactness of the primal solution.
In Chapter 4, we investigate the multi-phase OPF problems with delta connections,
and we conclude that the inexactness associated with delta devices can be resolved
by either postprocessing the optimal solution, or penalizing a new regularization
term in the cost function. Simulations on new algorithms achieve high accuracy
for IEEE test cases. In Chapter 5, we revisit a question left in Chapter 3 and
explain why nodal prices tend to fall within a narrow range, using DC model as
an approximation. Further, we study the sensitivity of the OPF operator, and some
results are also extended to classes of meshed networks.
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C h a p t e r 2

GLOBAL OPTIMALITY FOR SINGLE-PHASE NETWORKS

2.1 Background
Non-convex optimization problems in general are computationally challenging.
However, many heuristics tend to work well for real-world problems. Those ap-
proaches include convex relaxations and local algorithms. It is usually hoped that
relaxations yields exact solutions and local optima are also globally optimal. In this
chapter, we derive the conditions, sufficient or necessary, for these two properties to
hold simultaneously. Our focus is specifically on the optimization formulation with
convex cost and non-convex constraints.

Related Works
Many problems have been proved to have exact relaxation and no spurious local
optima (such as matrix completion [19, 20, 33] and low rank semidefinite program
[5, 17, 61]); the proofs for those two properties are usually based on different types
of certificates. In this subsection, we review some widely-used certificates for each
property.

One type of certificates to exhibit relaxation exactness is by showing that any relaxed
(and infeasible) point maps to a feasible solution with lower cost. This asserts that
relaxed points cannot be the optimal solution. For instance, [27, 31] prove that
optimal power flow problems can be solved via second-order cone relaxation under
certain conditions, using the argument that any solution in the interior of the second-
order cone can always be moved towards the boundary to further reduce the cost. In
[5, 61], it is proved that if a semi-definite program has a solution with sufficiently
large rank, then one can always reduce the rank without increasing the cost or
violating the constraints. Another type of certificates involve studying the dual
variables and KKT conditions. The underlying idea is a pair of primal and dual
solutions satisfying KKT conditions that certify their optimality for both the primal
and dual problems. Thus constructing dual variables with certain structures can
also certify the optimality of primal solutions. In [19] for instance, the dual variable
is related to the subgradient of the cost function at a desired matrix and therefore it
helps certify the optimality of that desired matrix. Another example is [45], which
proves the primal matrix should be of rank 1 through the argument that the null
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space of its dual matrix has dimension at most 1. Similar techniques are also used
in [42, 49, 53].

There are also considerable literature establishing the global optimality of local
optima. We refer to [32, 70] and references therein. In [70], the authors focus
on a class of problems with twice continuously differentiable function as the cost
and Riemannian manifold as the feasible set. The values of Riemannian gradient
and Hessian at a certain point then help certify properties such as strong gradient,
negative curvature or local convexity in its neighborhood. It then eliminates spu-
rious local optima and saddle points, where local algorithms can be trapped. This
technique or idea were also used in [69] for dictionary recovery problem and [16]
for phase synchronization. In both problems, the Riemannian manifold is some
𝑛-sphere or the Cartesian product of 𝑛-spheres. The framework summarized in
[32] also leverages the landscape of the cost function, and the problem is usually
reformulated into an unconstrained form. Instead of explicitly computing the gra-
dient and Hessian matrix, the paper shows it suffices to find a single direction of
improvement. For certain symmetric positive definite problems, the paper shows
that the decision variable will always get closer to the global optimizer when the
cost is reduced. A similar idea was also applied in [1], where the main result is built
upon a correlation condition which states that the gradient (or any updating rule) is
correlated with the direction from the current location towards the global optimizer.
Therefore the underlying algorithm such as gradient descent can always produce a
solution closer to the global optimizer as the algorithm progresses.

Contribution
The brief review above shows most works study exact relaxation and local optimality
separately. It is unclear what might be the common feature of non-convex problems
that possess both properties. Many real-world non-convex problems, however, seem
to possess both properties, either provably or empirically, and it is hard to explain
why these nice properties, though seemingly different, often occur simultaneously.
Besides, most literature on local optimality focuses on problems without constraints
or with tractable constraints. This is usually the case for problems in the learning
area. However, for problems arising in cyber-physical systems, the constraints could
include non-convex functions enforced by physical laws, as we will see in power
systems. In these cases, either the feasible set is not a Riemannian manifold, or the
Riemannian gradient and Hessian are very hard to derive. These questions motivate
us to study conditions, sufficient or necessary, for problems to simultaneously have
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exact relaxation and no spurious local optima. These conditions also help us study
local optimality using properties of its relaxation, instead of its landscape.

Our conditions have two parts. The first part is on the sufficient condition. Roughly,
if for any relaxed point, there exists a path connecting it to the non-convex feasible
set and the path satisfies the following:

• along the path the cost is non-increasing,

• along the path the ‘distance’ to the non-convex feasible set is non-increasing,

then the problem must have exact relaxation and no spurious local optima simulta-
neously. Here the ‘distance’ can be any properly constructed function, as we will
define later as a Lyapunov-like function (Definition 10). The second part is on the
necessary condition, which says that if a problem does have exact relaxation and no
spurious local optima simultaneously, then there must exist such a Lyapunov-like
function and paths satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed to exist, for specific
problems it could still be difficult to construct them. We then derive certain rules
to construct a Lyapunov-like function and paths of a new problem from primitive
problems with known Lyapunov-like functions and paths. This process allows us
to reuse and extend known results as the problem changes and grows. Finally, we
apply the proposed approach to two specific problems, optimal power flow (OPF)
and low rank SDP. Our work proves the first known condition (that can be checked a
priori) for OPF to have no spurious local optima, and it helps explain the widespread
empirical experience that local algorithms for OPF problems often work extremely
well.

Background for Power Systems
As one of the applications and main motivation of this work, OPF is a core problem
in power systems. First proposed in [21], OPF is a class of optimization problems
that minimizes a certain cost subject to nonlinear physical laws and operational
constraints. It is known to be non-convex and NP-hard in its AC formulation [45,
46, 72]. Therefore, there is no known efficient algorithm that can solve all problem
instances in polynomial time. Traditional approaches to solving OPF are usually

1The necessary condition is based upon some stronger assumptions so the second part is not the
exact converse of the first part.
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based on local algorithms such as Newton-Raphson, see [41, 59, 60] for examples.
Over the past decade, techniques on convex relaxation have also been introduced
to solve OPF [2, 40]. A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex relaxations very often
yield global optimum of the original non-convex problem [2, 15, 40, 45]. In recent
years, there have been considerable analytical works on provable conditions for the
relaxation exactness, which are summarized in the reviews [51, 57] and references
therein. However, few analytical results are known on the performance guarantee
of local algorithms. In this chapter, we show that a known sufficient condition for
exact relaxation is also sufficient for local optima to be globally optimal. To the
best of our knowledge, this is the first analytical result of its kind, and we hope that
the approaches developed in this chapter can help derive more sufficient conditions
along this direction.

2.2 Preliminaries
In this chapter, we will use K to denote the set R of real numbers or the set C of
complex numbers. For any finite positive integer 𝑛, K𝑛 is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
𝑥

𝑓 (𝑥) (2.1a)

s.t. 𝑥 ∈ X (2.1b)

and its convex relaxation

minimize
𝑥

𝑓 (𝑥) (2.2a)

s.t. 𝑥 ∈ X̂. (2.2b)

HereX is a nonempty compact subset ofK𝑛, not necessarily convex, while X̂ ⊆ K𝑛

is an arbitrary compact and convex superset of X. The cost function 𝑓 : X̂ → R is
convex and continuous over X̂. We do not require the relaxation X̂ to be efficiently
represented.

Definition 1. A point 𝑥lo ∈ X is called a local optimum of (2.1) if there exists a
𝛿 > 0 such that 𝑓 (𝑥lo) ≤ 𝑓 (𝑥) for all 𝑥 ∈ X with ∥𝑥 − 𝑥lo∥ < 𝛿.

Definition 2 (Strong Exactness). We say the relaxation (2.2) is exact with respect
to (2.1) if every optimal point of (2.2) is feasible, and hence globally optimal, for
(2.1).
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Unless otherwise specified, we will always use the term exact to refer to such strong
exactness. Definition 2 implies in particular that, if (2.2) is exact, then ∀𝑥 ∈ X̂ \ X,
𝑓 (𝑥) > min𝑥∈X̂ 𝑓 (𝑥).

Definition 3. A path in S ⊆ K𝑛 connecting point 𝑎 to point 𝑏 is a continuous
function ℎ : [0, 1] → S such that ℎ(0) = 𝑎 and ℎ(1) = 𝑏.

We may refer to a path as the corresponding function ℎ in the remainder of the
chapter.

Lemma 1. The following are equivalent:

(A) Problem (2.2) is exact with respect to (2.1).

(B) For any 𝑥 ∈ X̂ \ X, there is a path ℎ in X̂ such that ℎ(0) = 𝑥, ℎ(1) ∈ X,
𝑓 (ℎ(𝑡)) is non-increasing for 𝑡 ∈ [0, 1] and 𝑓 (ℎ(0)) > 𝑓 (ℎ(1)).

Proof. (A) =⇒ (B): Let 𝑥∗ be any optimal point of (2.2). By (A), 𝑥∗ ∈ X, thus for
𝑥 ∈ X̂ \ X, we could choose the path as the line segment from 𝑥 to 𝑥∗ since X̂ is
convex.

(B) =⇒ (A): Condition (B) implies that no point 𝑥 ∈ X̂ \ X can be optimal for
(2.2).

Lemma 1 is not surprising, and in fact many works in the literature proving exact
relaxations of Optimal Power Flow problems can be interpreted as using (B) to prove
(A) by implicitly finding such a path ℎ for each 𝑥 ∈ X̂ \ X [51].

Condition (B) does not say anything about the local optima in X for (2.1). In the
next section we will strengthen (B) by equipping the path with a Lyapunov-like
function and show that the stronger condition implies that all local optima of (2.1)
are globally optimal. We start by classifying local minima.

Definition 4. We classify each local optimum 𝑥lo of (2.1) into three disjoint classes:
𝑥lo is a

• Global optimum (g.o.) if 𝑓 (𝑥lo) ≤ 𝑓 (𝑥) for all the feasible 𝑥 ∈ X.

• Pseudo local optimum (p.l.o.) if there is a path ℎ : [0, 1] → X such that
ℎ(0) = 𝑥lo, 𝑓 (ℎ(𝑡)) ≡ 𝑓 (𝑥lo) for all 𝑡 ∈ [0, 1] and ℎ(1) is not a local optimum.
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• Genuine local optimum (g.l.o.) if it is neither a global optimum nor a pseudo
local optimum.

Examples of all three classes are shown in Fig. 2.1.

X

a

b

c

d

Figure 2.1: Examples for three classes of local optima. The arrow indicates the
direction along which the cost function decreases. Point 𝑏 is a global optimum point
𝑐 is a pseudo local optimum, while points 𝑎 and 𝑑 are genuine local optima.

Definition 5. A point 𝑥 is improvable in X if there is a path ℎ : [0, 1] → X such
that

• ℎ(0) = 𝑥;

• 𝑓 (ℎ(𝑡)) is non-increasing for 𝑡 ∈ [0, 1];

• ℎ(1) is not a local optimum or 𝑓 (ℎ(1)) < 𝑓 (𝑥).

Remark 1. A local optimum is a pseudo local optimum if and only if it is improvable
in X.

Definition 6. A set {ℎ𝑖 : 𝑖 ∈ I} of paths indexed by 𝑖 is said to be uniformly bounded
if there is a finite number 𝑀 such that ∥ℎ𝑖 (𝑡)∥∞ ≤ 𝑀 for every 𝑖 ∈ I and 𝑡 ∈ [0, 1].

Definition 7. A set {ℎ𝑖 : 𝑖 ∈ I} of paths indexed by 𝑖 is said to be uniformly
equicontinuous if for any 𝜖 > 0, there exists a 𝛿 > 0 such that ∥ℎ𝑖 (𝑡1) −ℎ𝑖 (𝑡2)∥∞ < 𝜖
for every 𝑖 ∈ I whenever |𝑡1 − 𝑡2 | < 𝛿.

Remark 2. The index set I could be empty or uncountably infinite. An empty path
set (i.e., when I = ∅) is considered to be both uniformly bounded and uniformly
equicontinuous.
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Let Π |𝑏𝑎 be the family of all the finite ordered subsets of [𝑎, 𝑏]. We use Π as a
shorthand for Π |10. For 𝜋 = (𝑡0, · · · , 𝑡𝑁 ) ∈ Π and a path ℎ, define

𝐿𝜋 (ℎ) :=
𝑁∑︁
𝑖=1
∥ℎ(𝑡𝑖−1) − ℎ(𝑡𝑖)∥ℓ2 .

Clearly, 𝐿𝜋 (ℎ) is always finite for given 𝜋 and ℎ.

Definition 8 ([71]). For path ℎ, define the function 𝐿 (ℎ) := sup𝜋∈Π 𝐿𝜋 (ℎ). We say
ℎ is rectifiable iff 𝐿 (ℎ) is finite. When ℎ is rectifiable, 𝐿 (ℎ) is also referred to as its
length.

Definition 9 ([71]). For a rectifiable path ℎ : [0, 1] → K𝑛, let its arc-length
reparameterization be ℎ̄ : [0, 1] → K𝑛 and{

ℎ̄

(
1

𝐿 (ℎ) sup𝜋∈Π |𝑡0 𝐿𝜋 (ℎ)
)

:= ℎ(𝑡), if 𝐿 (ℎ) > 0

ℎ̄ := ℎ, if 𝐿 (ℎ) = 0

One could see 𝐿 ( ℎ̄) = 𝐿 (ℎ) < ∞ and they have the same function image, i.e.,
{ℎ̄(𝑡) |𝑡 ∈ [0, 1]} = {ℎ(𝑡) |𝑡 ∈ [0, 1]}. For 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 1, ℎ̄ has the property that
sup

𝜋∈Π |𝑡2𝑡1
𝐿𝜋 ( ℎ̄) = (𝑡2 − 𝑡1)𝐿 ( ℎ̄).

Lemma 2. For a set of rectifiable paths ℎ𝑖, 𝑖 ∈ I, if the values of 𝐿 (ℎ𝑖) are uniformly
bounded, then the set of ℎ̄𝑖, 𝑖 ∈ I is uniformly equicontinuous.

Proof. Assume 𝐿 (ℎ𝑖) ≤ 𝑀 for all 𝑖 ∈ I, then for any 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 1, we have for
any 𝑖,

∥ ℎ̄𝑖 (𝑡1) − ℎ̄𝑖 (𝑡2)∥∞ ≤ ∥ ℎ̄𝑖 (𝑡1) − ℎ̄𝑖 (𝑡2)∥ℓ2
≤ sup
𝜋∈Π |𝑡2𝑡1

𝐿𝜋 ( ℎ̄𝑖) = (𝑡2 − 𝑡1)𝐿 (ℎ𝑖) ≤ 𝑀 |𝑡1 − 𝑡2 |.

Setting 𝛿 = 𝜖/𝑀 , the equicontinuity is proved.

Corollary 1. If S is compact in K𝑛 and all paths in a set H = {ℎ𝑖 : 𝑖 ∈ I} are
[0, 1] → S and consist of at most 𝑁 linear segments, then {ℎ𝑖 : 𝑖 ∈ I} must be
both uniformly bounded and uniformly equicontinuous. Here 𝑁 is a finite constant
for all paths inH .
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2.3 Sufficient Conditions
In this section, we first study the sufficient conditions under which (2.2) is exact
w.r.t. (2.1) and all the local optima of (2.1) are also globally optimal. Those
sufficient conditions will be proposed by strengthening Condition (B). Note that (B)
has already implied (2.2) is exact w.r.t. (2.1), so our strategy is to strengthen (B) in
order to rule out the possibility of genuine local optima and pseudo local optima.

Ruling Out Genuine Local Optima

Definition 10. A Lyapunov-like function 2 associated with (2.1) and (2.2) is a
continuous function 𝑉 : X̂ → R+ such that 𝑉 (𝑥) = 0 for 𝑥 ∈ X and 𝑉 (𝑥) > 0 for
𝑥 ∈ X̂ \ X.

A strengthened version of (B) is as follows.

(C) There exists a Lyapunov-like function 𝑉 associated with (2.1) and (2.2) such
that:

(C1) For any 𝑥 ∈ X̂ \ X, there is a path ℎ𝑥 in X̂ such that ℎ𝑥 (0) = 𝑥, ℎ𝑥 (1) ∈
X, both 𝑓 (ℎ𝑥 (𝑡)) and 𝑉 (ℎ𝑥 (𝑡)) are non-increasing for 𝑡 ∈ [0, 1] and
𝑓 (ℎ𝑥 (0)) > 𝑓 (ℎ𝑥 (1)).

(C2) The set {ℎ𝑥}𝑥∈X̂\X is uniformly bounded and uniformly equicontinuous.

Theorem 1. If (C) holds, then (A) also holds and any local optimum in X for (2.1)
is either a global optimum or a pseudo local optimum.

Proof. (C) =⇒ (A) is because (C) is stronger than (B). As for the second part of
the argument, we include an illustrative sketch of the notations in Fig. 2.2. Suppose
𝑥 ∈ X is a local but not global optimum for (2.1). We will prove that 𝑥 must be
improvable in X (and thus a pseudo local optimum).

Let 𝑥∗ ≠ 𝑥 be a global optimum of (2.1), so 𝑓 (𝑥∗) < 𝑓 (𝑥). Let ℓ : [0, 1] → X̂ be the
linear function characterizing the line segment from 𝑥 to 𝑥∗, i.e., ℓ(𝑡) = (1− 𝑡)𝑥+ 𝑡𝑥∗

with 𝑓 (ℓ(1)) = 𝑓 (𝑥∗) < 𝑓 (𝑥). Note that 𝑓 (ℓ(𝑡)) is non-increasing in 𝑡. To see
this, consider any 𝑡 ≥ 0, 𝜖 > 0 with 𝑡 + 𝜖 ≤ 1, 𝑥1 = ℓ(𝑡), 𝑥2 = ℓ(𝑡 + 𝜖). Setting

2In contrast to a standard Lyapunov function, we do not require 𝑉 to be differentiable here.
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x

x∗

X

X̂

ℓ(t†)

ℓ(t1)
ℓ(t2)

ℓ(tm)

h1

h2
hm

h h1(1)

h2(1)
hm(1)h(1)

Figure 2.2: Sketch of notations for the proof of Theorem 1. Point 𝑥 and ℓ(𝑡†) will
be later proved to be identical to each other.

𝑠 := 𝜖/(1 − 𝑡), we have 𝑥2 = (1 − 𝑠)𝑥1 + 𝑠𝑥∗. Since 𝑓 is convex and 𝑥∗ is also a
global optimum of (2.2) over X̂, we have

𝑓 (𝑥2) ≤ (1 − 𝑠) 𝑓 (𝑥1) + 𝑠 𝑓 (𝑥∗) ≤ 𝑓 (𝑥1).

Define

𝑡† := sup
𝑡∈[0,1]

𝑡 s. t. ℓ(𝜏) ∈ X ∀𝜏 ≤ 𝑡.

As X is closed, ℓ(𝑡†) is also in X. We first prove ℓ(𝑡†) must be 𝑥 (i.e., 𝑡† = 0).
Otherwise, as 𝑥 is a local optimum, we could find 𝛿 ∈ (0, 𝑡†) such that 𝑓 (ℓ(𝑡)) ≥
𝑓 (ℓ(0)) = 𝑓 (𝑥) for all 𝑡 ∈ [0, 𝛿). Since 𝑓 (ℓ(𝑡)) is non-increasing in 𝑡, we must
have 𝑓 (ℓ(𝑡)) ≡ 𝑓 (ℓ(0)) = 𝑓 (𝑥) for all 𝑡 ∈ [0, 𝛿). It contradicts the fact that
𝑓 (ℓ(𝑡)) is convex and 𝑓 (ℓ(1)) = 𝑓 (𝑥∗) < 𝑓 (𝑥) = 𝑓 (ℓ(0)) for the same reason 𝑓 is
non-increasing in 𝑡.

Therefore ℓ(𝑡†) = 𝑥 and 𝑓 (ℓ(𝑡†)) = 𝑓 (𝑥). It is sufficient to show ℓ(𝑡†) is improvable
in X. That is to say, it is sufficient to find some function ℎ : [0, 1] → X such that
ℎ(0) = ℓ(𝑡†), 𝑓 (ℎ(𝑡)) is non-increasing in 𝑡 ∈ [0, 1], and either 𝑓 (ℎ(1)) < 𝑓 (ℓ(𝑡†))
or ℎ(1) is not a local optimum in X for (2.1).

By the definition of 𝑡†, there is a decreasing sequence 𝑡𝑚 → 𝑡† such that 𝑡𝑚 ∈ (𝑡†, 1]
and ℓ(𝑡𝑚) ∈ X̂ \ X for all 𝑚. Since 𝑓 (ℓ(𝑡)) is non-increasing in 𝑡, the sequence
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𝑓 (ℓ(𝑡𝑚)) is non-decreasing in𝑚 and 𝑓 (ℓ(𝑡𝑚)) < 𝑓 (ℓ(𝑡†)). 3 For each ℓ(𝑡𝑚) we take
the function ℎ𝑚 : [0, 1] → X̂ guaranteed by Condition (C). As the sequence ℎ𝑚 is
uniformly bounded and uniformly equicontinuous, a subsequence must uniformly
converge to a limit ℎ by Arzelà-Ascoli theorem. Without loss of generality, we
denote this subsequence as ℎ𝑚 as well. Next we prove this ℎ satisfies all the
properties in Definition 5, implying the improvability of 𝑥.

To show ℎ(𝑡) ∈ X for any fixed 𝑡 ∈ [0, 1], we consider the sequence (𝑉 (ℎ𝑚 (𝑡)) :
𝑚 ∈ Z). As X̂ is closed, we have ℎ(𝑡) = lim𝑚→∞ ℎ𝑚 (𝑡) ∈ X̂. Further consider 𝑉 is
continuous and 𝑉 (ℎ𝑚 (𝑡)) ≤ 𝑉 (ℎ𝑚 (0)), thus

0 ≤𝑉 (ℎ(𝑡)) = 𝑉 ( lim
𝑚→∞

ℎ𝑚 (𝑡)) = lim
𝑚→∞

𝑉 (ℎ𝑚 (𝑡))

≤ lim
𝑚→∞

𝑉 (ℎ𝑚 (0)) = lim
𝑚→∞

𝑉 (ℓ(𝑡𝑚)) = 𝑉 (ℓ(𝑡†)) = 0.

Hence 𝑉 (ℎ(𝑡)) = 0 and ℎ(𝑡) ∈ X.

To show ℎ(0) = ℓ(𝑡†), we consider

ℎ(0) = lim
𝑚→∞

ℎ𝑚 (0) = lim
𝑚→∞

ℓ(𝑡𝑚) = ℓ(𝑡†).

To show 𝑓 (ℎ(𝑡)) is non-increasing, we take any 𝑠, 𝑡 ∈ [0, 1] such that 𝑠 < 𝑡. As 𝑓
is continuous, we have

𝑓 (ℎ(𝑠)) = lim
𝑚→∞

𝑓 (ℎ𝑚 (𝑠))

𝑓 (ℎ(𝑡)) = lim
𝑚→∞

𝑓 (ℎ𝑚 (𝑡))

and by Condition (C) we have 𝑓 (ℎ𝑚 (𝑠)) ≥ 𝑓 (ℎ𝑚 (𝑡)) for each 𝑚. Therefore
𝑓 (ℎ(𝑠)) ≥ 𝑓 (ℎ(𝑡)).

Finally, we will show if 𝑓 (ℎ(1)) = 𝑓 (ℓ(𝑡†)) then ℎ(1) must not be a local minimal
in X for (2.1). For each 𝑚,

𝑓 (ℎ𝑚 (1)) ≤ 𝑓 (ℎ𝑚 (0)) = 𝑓 (ℓ(𝑡𝑚)) < 𝑓 (ℓ(𝑡†)) = 𝑓 (ℎ(1))

and ℎ𝑚 (1) ∈ X. Since the sequence ℎ𝑚 (1) converges to ℎ(1) as 𝑚 → ∞, within
any open neighborhood of ℎ(1) inX, we could always find some ℎ𝑚 (1) with strictly
smaller cost value. Thus ℎ(1) cannot be a local minimum in X.

3The strict inequality is due to the convexity of 𝑓 (ℓ(𝑡)) and the fact that 𝑓 (ℓ(1)) < 𝑓 (ℓ(𝑡†)).
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Ruling Out Pseudo Local Optima
So far, Condition (C) has eliminated the possibility of having genuine local optima,
and in this subsection we further strengthen the condition to also rule out pseudo
local optima.

Consider the following lemma and its corollaries.

Lemma 3. If (2.1) is exact with respect to (2.2) and (2.1) has no genuine local
optima, then the feasible set of (2.1) is connected.

Proof. IfX is not connected, then by definitionX can be partitioned into two disjoint
non-empty closed setsX1 andX2 withX = X1 ∪X2, which are hence both compact.
Further we let 𝑥𝑖 be any global optimum of min𝑥∈X𝑖 𝑓 (𝑥) for 𝑖 = 1, 2. Clearly 𝑥1 ≠ 𝑥2

and they are both local optima of (2.1).

If 𝑓 (𝑥1) = 𝑓 (𝑥2), then any convex combination of 𝑥1, 𝑥2 must be a global optimum
to (2.2). Since there is no path in X that connects 𝑥1 and 𝑥2, there must be some
convex combination that is outside X. This contradicts the exactness of relaxation.

If 𝑓 (𝑥1) ≠ 𝑓 (𝑥2), without loss of generality we assume 𝑓 (𝑥1) < 𝑓 (𝑥2), i.e., 𝑥2 is
not a global optimum of (2.1). But 𝑥2 is not a pseudo local optimum of (2.1) either,
contradicting Theorem 1. To see this, note that any point 𝑥′ ∈ X which is connected
to 𝑥2 via a path in X must also be a point in X2 and if 𝑓 (𝑥′) = 𝑓 (𝑥2) then 𝑥′ must be
a local optimum of (2.1) as well.

Corollary 2. Condition (C) implies that the feasible set of (2.1) is connected.

Now we are in a good position to discuss some conditions that rule out pseudo local
optima and therefore guarantee that any local optimum must be a global optimum.

Corollary 3. If all local optima of (2.1) are isolated, then Condition (C) implies
that any local optimum of (2.1) is a global optimum.

Here, local optima being isolated means any local optimum of (2.1) has an open
neighborhood which contains no other local optimum. The proof is straightforward
as by definition isolated local optimum could not be pseudo local optimum. In fact,
in this case the optimum can be proved to also be unique.

Another way to eliminate pseudo local optima is by strengthening the monotonicity
of 𝑓 (ℎ𝑥 (𝑡)) in Condition (C). Consider the following condition which is slightly
stronger than (C).
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(C’) Condition (C) holds, and there exists 𝑘 > 0 such that ∀𝑥 ∈ X̂ \ X, ∀0 ≤ 𝑡 <
𝑠 ≤ 1 we have

𝑓 (ℎ𝑥 (𝑡)) − 𝑓 (ℎ𝑥 (𝑠)) ≥ 𝑘 ∥ℎ𝑥 (𝑡) − ℎ𝑥 (𝑠)∥. (2.3)

In Condition (C’), ∥ · ∥ could be any norm on K𝑛. As a caveat, ℓ0-“norm” is not
allowed here as it is not a norm since it does not satisfy ∥𝛼𝑥∥ = |𝛼 |∥𝑥∥. Note that
Condition (C) already implies 𝑓 (ℎ𝑥 (𝑡)) − 𝑓 (ℎ𝑥 (𝑠)) ≥ 0, while (C’) strengthens this
condition by enforcing a positive lower bound depending on ℎ𝑥 .

Theorem 2. If (C’) holds, then any local optimum of (2.1) must be a global optimum.

Proof. Following the proof of Theorem 1, suppose 𝑥 ∈ X is a local but not global
optimum for (2.1). Then we have 𝑥 = ℓ(𝑡†) and could obtain a limit point of the
sequence ℎ𝑚, denoted as ℎ. Since both sides of (2.3) are continuous in ℎ𝑚 (𝑡) and
ℎ𝑚 (𝑠), and the limits of ℎ𝑚 (𝑡) and ℎ𝑚 (𝑠) are ℎ(𝑡) and ℎ(𝑠), we must have whenever
ℎ(𝑡) ≠ ℎ(𝑠),

𝑓 (ℎ(𝑡)) − 𝑓 (ℎ(𝑠)) ≥ 𝑘 ∥ℎ(𝑡) − ℎ(𝑠)∥ > 0.

Taking 𝑡 = 0 we can conclude that ℎ(0) (which is the same point as 𝑥) is not a local
optimum of (2.1).

2.4 Necessary Conditions
In this section we will study the necessary conditions for a non-convex problem to
have exact relaxation and no spurious local optima simultaneously. It turns out the
results are not exactly the converses of Theorem 1 or Theorem 2, but in a slightly
weaker sense. Specifically, we show that if a non-convex problem is known to have
exact relaxation and no spurious local optima simultaneously, then the Lyapunov-
like function and paths satisfying Condition (C) are guaranteed to exist. However, it
still may or may not be easy to find those functions or paths in practice for a specific
problem.

Results

Assumption 1. The feasible setX is semianalytic and the cost function 𝑓 is analytic.

We refer to [13] for more detailed definitions and properties of semianalytic sets.
This assumption is not restrictive for most engineering problems. If K is chosen as
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C, then we suggest to view all the complex functions as functions of real variables
by separating the real and imaginary parts, and the space of C𝑛 can be viewed as a
shorthand for R2𝑛 in this section.

Theorem 3 (necessary condition). If (2.2) is exact with respect to (2.1) and any
local optimum of (2.1) is globally optimal, then there exists a Lyapunov-like function
𝑉 and a corresponding family of paths {ℎ𝑥}𝑥∈X̂\X satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of Theorem 1 in a strict sense.
There are a few differences in their settings.

• Theorem 1 allows pseudo local optimum (in the conclusion) of the theorem,
while Theorem 3 disallows it (in the premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does not.

Proof Setup
In the rest of the section, we will prove Theorem 3. From now on, we assume (2.2)
is exact with respect to (2.1) and any local optimum of (2.1) is also globally optimal.
We first have the following definition and lemmas, which are the main reasons we
introduced Assumption 1.

Definition 11 (Whitney regularity [12, 13, 36]). For a compact set U ⊂ K𝑛 and a
positive integer 𝑝, we sayU is 𝑝-regular if there exists 𝐶 > 0 such that ∀𝑥, 𝑦 ∈ U,
𝑥, 𝑦 can be joined by a rectifiable curve ℎ inU satisfying 𝐿 (ℎ) ≤ 𝐶∥𝑥 − 𝑦∥1/𝑝.

Lemma 4 (Theorem 6.10 in [13]). IfU is a compact connected subanalytic subset
of K𝑛, then there is a positive integer 𝑝 such thatU is 𝑝-regular and the curves can
always be chosen semianalytic.

The proof of Lemma 4 can be found in [13]. Note that any semianalytic set is also
subanalytic.

Lemma 5. For any 𝑥0 ∈ X that is not a local optimum of (2.1) and for any 𝜖 > 0,
there exists a path ℎ in X such that ℎ(0) = 𝑥0, 𝑓 (ℎ(𝑡)) is non-increasing in 𝑡,
𝑓 (ℎ(1)) < 𝑓 (ℎ(0)) and 𝐿 (ℎ) < 𝜖 .

Proof. Consider the set U := {𝑥 ∈ X : 𝑓 (𝑥) ≤ 𝑓 (𝑥0)}, which by definition is also
semi-analytic. Since 𝑥0 ∈ X is not an optimum of (2.1), the problem min𝑥∈U 𝑓 (𝑥)
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must also be exact with respect to (2.2) and it does not introduce new local optima
compared to (2.1). By Lemma 3,U must be connected.

According to Lemma 4, there is a rectifiable and semianalytic curve ℎ0 inU such that
ℎ0(0) = 𝑥0, 𝐿 (ℎ0) < 𝜖 , 𝑓 (ℎ0(1)) < 𝑓 (𝑥0) and 𝑓 (ℎ0(𝑡)) ≤ 𝑓 (𝑥0) for all 𝑡 ∈ [0, 1].
Here 𝑓 (ℎ0(1)) can be chosen as any point in U which has a strictly smaller cost
value than 𝑥0 and is sufficiently close to 𝑥0 in Euclidean distance. 4 It is known that
a semianalytic curve is analytic except for a finite number of points [29]. Assume
ℎ0(𝑡) is not analytic at 0 = 𝑎0 < 𝑎1 < · · · < 𝑎𝑘 = 1 where 𝑘 ≥ 1. By Theorem on the
parametrization of a semi-analytic arc in [50] and the assumption that 𝑓 is analytic,
the value of 𝑓 (ℎ0(𝑡)) within any interval [𝑎ℓ−1, 𝑎ℓ] should be equal to some analytic
function defined over an open superset of [𝑎ℓ−1, 𝑎ℓ]. Since 𝑓 (ℎ0(1)) < 𝑓 (ℎ0(0)),
the function 𝑓 (ℎ0(𝑡)) cannot be a constant function over [0, 1]. Let [𝑎ℓ−1, 𝑎ℓ] be the
first interval within which 𝑓 (ℎ0(𝑡)) is not constant, then 𝑓 (ℎ0(𝑎ℓ−1)) = 𝑓 (ℎ0(0)).
As 𝑓 (ℎ0(𝑡)) within [𝑎ℓ−1, 𝑎ℓ] equals to a analytic function defined over an open
superset of [𝑎ℓ−1, 𝑎ℓ], there must be a small subinterval [𝑎ℓ−1, 𝑎ℓ−1 + 𝛿) for some
𝛿 > 0 within which we always have

𝑓 (ℎ0(𝑡)) = 𝑓 (ℎ0(𝑎ℓ−1)) +
∞∑︁
𝑖=0

𝑐𝑖 (𝑡 − 𝑎ℓ−1)𝑖,

where the right hand side is the Taylor expansion of 𝑓 (ℎ0(𝑡)) at 𝑎ℓ−1. Since 𝑓 (ℎ0(𝑡))
is not constant over [𝑎ℓ−1, 𝑎ℓ], the coefficients 𝑐𝑖 cannot all be zeros by the identity
theorem. Suppose 𝑐𝑖0 is the first nonzero coefficient in the sequence {𝑐𝑖}∞𝑖=0, we have
two cases. If 𝑐𝑖0 > 0, then 𝑓 (ℎ0(𝑡)) is strictly increasing within [𝑎ℓ−1, 𝑎ℓ−1 + 𝛿′) for
some small positive 𝛿′ < 𝛿. It contradicts to the facts that 𝑓 (ℎ0(𝑎ℓ−1)) = 𝑓 (𝑥0) and
𝑓 (ℎ0(𝑡)) ≤ 𝑓 (𝑥0) for all 𝑡 ∈ [0, 1]. If 𝑐𝑖0 < 0, then 𝑓 (ℎ0(𝑡)) is strictly decreasing
within [𝑎ℓ−1, 𝑎ℓ−1 + 𝛿′) for some small positive 𝛿′ < 𝛿. Then we can construct a
new path ℎ such that ℎ(𝑡) = ℎ0(𝑡 · (𝑎ℓ−1 + 𝛿′)) for all 𝑡 ∈ [0, 1]. It is easy to check
that ℎ satisfies all the requirements in Lemma 5.

Now we consider weaker versions of (C1) and (C2).

(C3) For any 𝑥 ∈ X̂ \ X, there is a path ℎ𝑥 in X̂ such that ℎ𝑥 (0) = 𝑥, ℎ𝑥 (1) ∈ X,
both 𝑓 (ℎ𝑥 (𝑡)) and 𝑉 (ℎ𝑥 (𝑡)) are non-increasing for 𝑡 ∈ [0, 1].

(C4) All the {𝐿 (ℎ𝑥)}𝑥∈X̂\X are finite and uniformly bounded.
4We can always do so because 𝑥0 is not a local optimum of (2.1). The inequality 𝐿 (ℎ0) < 𝜖 is

satisfied because of the 𝑝-regularity ofU.
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Compared to (C1), (C3) does not require 𝑓 (ℎ𝑥 (0)) > 𝑓 (ℎ𝑥 (1)) to strictly hold.
Then we have a weaker version of Theorem 3 as follows.

Lemma 6 (weaker necessary condition). If (2.2) is exact to (2.1) and any local
optimum of (2.1) is also globally optimal, then there always exists a Lyapunov-like
function𝑉 and a corresponding family of paths {ℎ𝑥}𝑥∈X̂\X satisfying (C3) and (C4).

We now show that Lemma 6, though weaker in its statement, actually implies
Theorem 3, so later on we will only focus on the proof of Lemma 6. To see this, we
suppose 𝑉† and {ℎ†𝑥}𝑥∈X̂\X are the Lyapunov-like function and paths guaranteed by
Lemma 6.

For each 𝑥 ∈ X̂ \ X, if ℎ†𝑥 (1) is a local optimum (so it is also a global optimum)
of (2.1) then we must have 𝑓 (ℎ𝑥 (1)) < 𝑓 (ℎ𝑥 (0)) since the relaxation is exact. We
construct ℎ‡𝑥 = ℎ†𝑥 .

If ℎ†𝑥 (1) is not a local optimum, then by Lemma 5, there exists a path ℎ≀𝑥 , which sat-
isfies ℎ≀𝑥 (0) = ℎ†𝑥 (1), ℎ≀𝑥 (𝑡) ∈ X, 𝑓 (ℎ≀𝑥 (𝑡)) is non-increasing, 𝑓 (ℎ≀𝑥 (1)) < 𝑓 (ℎ≀𝑥 (0))
and 𝐿 (ℎ≀𝑥) < 𝜖 . Here we choose 𝜖 as a fixed positive value for all 𝑥. We then
construct

ℎ‡𝑥 (𝑡) :=

{
ℎ
†
𝑥 (2𝑡), if 𝑡 ∈ [0, 1/2]
ℎ≀𝑥 (2𝑡 − 1), if 𝑡 ∈ [1/2, 1] .

We now let 𝑉 = 𝑉† and ℎ𝑥 = ℎ
‡
𝑥 for all 𝑥 ∈ X̂ \ X. Recall that ℎ‡𝑥 is the arc-

length reparameterization of ℎ‡𝑥 . Clearly, such construction satisfies (C1) as we
strictly reduce the cost at the end of each path unless the path has already reached
the global optimum. Besides, {ℎ𝑥}𝑥∈X̂\X is uniformly bounded as X̂ is compact,
and {𝐿 (ℎ𝑥)}𝑥∈X̂\X also has the uniform upperbound as both 𝐿 (ℎ†𝑥) and 𝐿 (ℎ≀𝑥) are
uniformly bounded for all 𝑥. By Lemma 2 {ℎ𝑥}𝑥∈X̂\X is uniformly equicontinuous, so
(C2) is also satisfied. To summarize, when Lemma 6 is correct, one can always revise
the Lyapunov-like function and paths provided by Lemma 6 to make Theorem 3 hold
as well. Therefore, in the rest of the section, we will only prove Lemma 6 and the
correctness of Theorem 3 just follows.

Let 𝑥∗ be any global optimum of (2.1), then it is also an optimum of (2.2). Define

H :={ℎ | ℎ : [0, 1] → X̂ is continuous and 𝐿 (ℎ) < ∞}
H̄ :={ℎ̄ | ℎ ∈ H}
Ĥ :={ℎ | ℎ ∈ H̄ , 𝑓 (ℎ(𝑡)) ≥ 𝑓 (ℎ(1)) for all 𝑡 ∈ [0, 1]}.
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An immediate observation is if a continuous function ℎ : [0, 1] → X̂ satisfies
𝐿 (ℎ) < ∞ and 𝑓 (ℎ(𝑡)) ≥ 𝑓 (ℎ(1)) for all 𝑡, then ℎ̄ ∈ Ĥ .

Construction
We construct 𝑉 as

𝑉 (𝑥) = inf
ℎ∈Ĥ
ℎ(0)=𝑥
ℎ(1)∈X

𝐿 (ℎ) (2.4)

Lemma 7. For a sequence (ℎ𝑖)∞𝑖=1 where ℎ𝑖 ∈ Ĥ , if both (ℎ𝑖)∞𝑖=1 and (𝐿 (ℎ𝑖))∞𝑖=1 are
uniformly bounded, then there must be a subsequence which uniformly converges
to some ℎ∗ such that its arc-length reparameterization, denoted as ℎ∗, is in Ĥ .
Furthermore, 𝐿 (ℎ∗) = 𝐿 (ℎ∗) ≤ lim sup𝑖 𝐿 (ℎ𝑖).

Proof. By Lemma 2, (ℎ𝑖)∞𝑖=1 is both uniformly bounded and uniformly equicontin-
uous. By Arzelà-Ascoli theorem, a subsequence of (ℎ𝑖)∞𝑖=1 uniformly converges
to a limit ℎ∗. Without loss of generalization, we denote this subsequence as
(ℎ𝑖)∞𝑖=1 as well. By uniform limit theorem and the compactness of X̂, ℎ∗ is a
continuous function mapping from [0, 1] to X̂. To show ℎ∗ ∈ Ĥ , it is suf-
ficient to show 𝑓 (ℎ∗(𝑡)) ≥ 𝑓 (ℎ∗(1)) for all 𝑡 ∈ [0, 1] and 𝐿 (ℎ∗) < ∞. If
𝑓 (ℎ∗(𝑡)) = 𝑓 (ℎ∗(1)) − 𝜖 for some 𝑡 ∈ [0, 1] and 𝜖 > 0, then for sufficiently large 𝑖,
we would have | 𝑓 (ℎ𝑖 (𝑡)) − 𝑓 (ℎ∗(𝑡)) | < 𝜖/3 and | 𝑓 (ℎ𝑖 (1)) − 𝑓 (ℎ∗(1)) | < 𝜖/3. Thus
𝑓 (ℎ𝑖 (𝑡)) ≤ 𝑓 (ℎ𝑖 (1)) − 𝜖/3 and it contradicts to ℎ𝑖 ∈ Ĥ .

Instead of showing 𝐿 (ℎ∗) < ∞, we directly prove 𝐿 (ℎ∗) ≤ lim sup𝑖 𝐿 (ℎ𝑖). Other-
wise, there exists 𝜋 = (𝑡1, · · · , 𝑡𝑁 ) ∈ Π such that 𝐿𝜋 (ℎ∗) = lim sup𝑖 𝐿 (ℎ𝑖) + 𝜖 for
𝜖 > 0. For sufficiently large 𝑖, we have

|𝐿𝜋 (ℎ𝑖) − 𝐿𝜋 (ℎ∗) |

=

��� 𝑁∑︁
𝑗=1
∥ℎ𝑖 (𝑡 𝑗−1) − ℎ(𝑡 𝑗 )∥ℓ2 −

𝑁∑︁
𝑗=1
∥ℎ∗(𝑡 𝑗−1) − ℎ∗(𝑡 𝑗 )∥ℓ2

���
≤

𝑁∑︁
𝑗=1

(
∥ℎ𝑖 (𝑡 𝑗−1) − ℎ∗(𝑡 𝑗−1)∥ℓ2 + ∥ℎ𝑖 (𝑡 𝑗 ) − ℎ∗(𝑡 𝑗 )∥ℓ2

)
≤ 𝜖

2
.

Thus, 𝐿 (ℎ𝑖) ≥ 𝐿𝜋 (ℎ𝑖) ≥ lim sup𝑖 𝐿 (ℎ𝑖) + 𝜖/2 holds for sufficiently large 𝑖. It contra-
dicts the definition of lim sup. As a result, we must have 𝐿 (ℎ∗) ≤ lim sup𝑖 𝐿 (ℎ𝑖).

Lemma 8. The optimization in (2.4) is feasible and the optimal cost can be achieved.
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Proof. We fix some 𝑥 ∈ X̂. To show the feasibility, consider ℎfea(𝑡) := (1− 𝑡)𝑥+ 𝑡𝑥∗,
which is feasible to (2.4). Let 𝐿fea = 𝐿 (ℎfea). Since 𝐿fea is finite and 𝐿 (ℎ) is non-
negative, 𝑉 (𝑥) must be finite. To show the achievability of the optimal cost, we
prove by contradiction. If not, then there must be a sequence of feasible (ℎ𝑖)∞𝑖=1 such
that

𝐿fea > 𝐿(ℎ𝑖) ≥ 𝐿 (ℎ𝑖+1) > 𝑉 (𝑥) for all 𝑖 ≥ 1

lim
𝑖→∞

𝐿 (ℎ𝑖) = 𝑉 (𝑥).

The compactness of X̂ implies (ℎ𝑖)∞𝑖=1 is uniformly bounded as well. By Lemma 7,
a subsequence of (ℎ𝑖)∞𝑖=1, denoted as (ℎ𝑖)∞𝑖=1 as well, uniformly converges to a limit
ℎ∗ and 𝐿 (ℎ∗) = 𝐿 (ℎ∗) ≤ 𝑉 (𝑥). Moreover,

ℎ∗(0) = ℎ∗(0) = lim
𝑖→∞

ℎ𝑖 (0) = 𝑥

ℎ∗(1) = ℎ∗(1) = lim
𝑖→∞

ℎ𝑖 (1) ∈ X.

Above all, we proved ℎ∗ is feasible to (2.4), and the cost 𝐿 (ℎ∗) is not worse than
𝑉 (𝑥). It contradicts the non-achievability assumption.

For each 𝑥 ∈ X̂ \ X, we construct ℎ𝑥 as

ℎ𝑥 = arg min
ℎ∈Ĥ
ℎ(0)=𝑥
ℎ(1)∈X

𝐿 (ℎ). (2.5)

If there are multiple minimizers then ℎ𝑥 can be chosen as any one of them.

Lemma 9. For 𝑥 ∈ X̂ \ X, the function ℎ𝑥 is injective.

Proof. Otherwise, for some 𝑥, there exist 𝑡1 < 𝑡2 such that ℎ𝑥 (𝑡1) = ℎ𝑥 (𝑡2). Since
ℎ𝑥 ∈ Ĥ ⊆ H̄ , we have

sup
𝜋∈Π |𝑡2𝑡1

𝐿𝜋 (ℎ𝑥) = (𝑡2 − 𝑡1)𝐿 (ℎ𝑥) = (𝑡2 − 𝑡1)𝑉 (𝑥) > 0.

Consider a new path defined as

ℎ∗(𝑡) :=

{
ℎ𝑥 (𝑡), if 𝑡 ∈ [0, 1] \ [𝑡1, 𝑡2]
ℎ𝑥 (𝑡1), if 𝑡 ∈ [𝑡1, 𝑡2]

.
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It is easy to check ℎ∗ is continuous and entirely within X̂. For any 𝑡 ∈ [0, 1], ℎ𝑥 ∈ Ĥ
implies 𝑓 (ℎ∗(𝑡)) ≥ 𝑓 (ℎ𝑥 (1)) = 𝑓 (ℎ∗(1)). Further, we have

𝐿 (ℎ∗) = sup
𝜋∈Π

𝐿𝜋 (ℎ∗)

= sup
𝜋∈Π |𝑡10

𝐿𝜋 (ℎ∗) + sup
𝜋∈Π |𝑡2𝑡1

𝐿𝜋 (ℎ∗) + sup
𝜋∈Π |1𝑡2

𝐿𝜋 (ℎ∗)

= sup
𝜋∈Π |𝑡10

𝐿𝜋 (ℎ𝑥) + 0 + sup
𝜋∈Π |1𝑡2

𝐿𝜋 (ℎ𝑥)

< sup
𝜋∈Π |𝑡10

𝐿𝜋 (ℎ𝑥) + sup
𝜋∈Π |𝑡2𝑡1

𝐿𝜋 (ℎ𝑥) + sup
𝜋∈Π |1𝑡2

𝐿𝜋 (ℎ𝑥)

= sup
𝜋∈Π

𝐿𝜋 (ℎ𝑥) = 𝐿 (ℎ𝑥).

Above all, the arc-length reparameterization of ℎ∗, denoted as ℎ∗, is feasible to (2.5)
but achieves a strictly lower cost than ℎ𝑥 . This contradicts to the optimality of
ℎ𝑥 .

Corollary 4. For distinctive 𝑡1, 𝑡2, 𝑡3 ∈ [0, 1], if 𝑓 (ℎ𝑥 (𝑡1)) ≥ 𝑓 (ℎ𝑥 (𝑡2)) and
𝑓 (ℎ𝑥 (𝑡1)) > 𝑓 (ℎ𝑥 (𝑡3)), then ∥ℎ𝑥 (𝑡1) − ℎ𝑥 (𝑡2)∥ℓ2 + ∥ℎ𝑥 (𝑡1) − ℎ𝑥 (𝑡3)∥ℓ2 > ∥ℎ𝑥 (𝑡2) −
ℎ𝑥 (𝑡3)∥ℓ2 .

Proof. It is sufficient to show ℎ𝑥 (𝑡1) is not the convex combination of ℎ𝑥 (𝑡2) and
ℎ𝑥 (𝑡3). Otherwise, we assume ℎ𝑥 (𝑡1) = 𝜆ℎ𝑥 (𝑡2) + (1−𝜆)ℎ𝑥 (𝑡3) for some 𝜆 ∈ [0, 1].
First, Lemma 9 implies 𝜆 ≠ 0, 1. For 𝜆 ∈ (0, 1), the convexity of 𝑓 implies

𝑓 (ℎ𝑥 (𝑡1)) = 𝑓 (𝜆ℎ𝑥 (𝑡2) + (1 − 𝜆)ℎ𝑥 (𝑡3))
≤𝜆 𝑓 (ℎ𝑥 (𝑡2)) + (1 − 𝜆) 𝑓 (ℎ𝑥 (𝑡3))
<𝜆 𝑓 (ℎ𝑥 (𝑡1)) + (1 − 𝜆) 𝑓 (ℎ𝑥 (𝑡1)) = 𝑓 (ℎ𝑥 (𝑡1)).

This contradiction shows ℎ𝑥 (𝑡1) is not the convex combination of ℎ𝑥 (𝑡2) and ℎ𝑥 (𝑡3).
Then the triangle inequality implies this corollary.

Lemma 10. For each ℎ𝑥 defined in (2.5), we have 𝑓 (ℎ𝑥 (𝑡)) is non-increasing in 𝑡
for 𝑡 ∈ [0, 1].

Proof. We fix an 𝑥0 ∈ X̂ \ X and prove the result for ℎ𝑥0 defined above. If not, then
there exist 0 ≤ 𝑡1 < 𝑡2 ≤ 1 such that 𝑓 (ℎ𝑥0 (𝑡1)) < 𝑓 (ℎ𝑥0 (𝑡2)). Now define

𝑡† = arg max
𝑡∈[𝑡1,1]

𝑓 (ℎ𝑥0 (𝑡)), 𝑡‡ = max
𝑡∈[𝑡†,1]

𝑓 (ℎ𝑥0 (𝑡))= 𝑓 (ℎ𝑥0 (𝑡
†))

𝑡.
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In other words, 𝑡† is an arbitrary maximizer of 𝑓 (ℎ𝑥0 (𝑡)), while 𝑡‡ is the largest
maximizer. Clearly, both 𝑡† and 𝑡‡ are well defined (due to the continuity and
closedness) and are strictly between 𝑡1 and 1. We also have that 𝑓 (ℎ𝑥0 (𝑡‡)) >
𝑓 (ℎ𝑥0 (1)) strictly holds. By the continuity of ℎ𝑥0 (·) and 𝑓 (ℎ𝑥0 (·)), there exist
𝑟, 𝛿 > 0 such that [𝑡‡ − 𝛿, 𝑡‡ + 𝛿] ⊆ (𝑡1, 1) and

• for 𝑥 ∈ B(ℎ𝑥0 (𝑡‡), 𝑟) ∩ X̂, 𝑓 (ℎ𝑥0 (1)) ≤ 𝑓 (𝑥).

• for 𝑡 ∈ [𝑡‡−𝛿, 𝑡‡), ℎ𝑥0 (𝑡) ∈ B(ℎ𝑥0 (𝑡‡), 𝑟). Therefore 𝑓 (ℎ𝑥0 (1)) ≤ 𝑓 (ℎ𝑥0 (𝑡)) ≤
𝑓 (ℎ𝑥0 (𝑡‡)).

• for 𝑡 ∈ (𝑡‡, 𝑡‡+𝛿], ℎ𝑥0 (𝑡) ∈ B(ℎ𝑥0 (𝑡‡), 𝑟). Therefore 𝑓 (ℎ𝑥0 (1)) ≤ 𝑓 (ℎ𝑥0 (𝑡)) <
𝑓 (ℎ𝑥0 (𝑡‡)).

Now we construct another ℎ∗ as

ℎ∗(𝑡) =


ℎ𝑥0 (𝑡), if 𝑡 ∈ [0, 1] \ [𝑡‡ − 𝛿, 𝑡‡ + 𝛿]
𝑡‡+𝛿−𝑡

2𝛿 ℎ𝑥0 (𝑡‡ − 𝛿) + 𝑡−𝑡‡+𝛿
2𝛿 ℎ𝑥0 (𝑡‡ + 𝛿),

if 𝑡 ∈ [𝑡‡ − 𝛿, 𝑡‡ + 𝛿] .

It is easy to verify ℎ∗ is continuous. For 𝑡 ∈ [𝑡‡ − 𝛿, 𝑡‡ + 𝛿], ℎ∗(𝑡) is the convex
combination of ℎ𝑥0 (𝑡‡ − 𝛿) and ℎ𝑥0 (𝑡‡ + 𝛿), and must be within B(ℎ𝑥0 (𝑡‡), 𝑟) ∩ X̂,
which is convex. Therefore, ℎ∗ is entirely within X̂ and 𝑓 (ℎ∗(𝑡)) ≥ 𝑓 (ℎ𝑥0 (1)) =
𝑓 (ℎ∗(1)) holds for all 𝑡.

Next, we show 𝐿 (ℎ∗) < 𝐿 (ℎ𝑥0) by (2.6). The strict inequality in (2.6) is because of
Corollary 4.

Above all, the arc-length reparameterization of ℎ∗, denoted as ℎ∗, is feasible to (2.5)
but achieves a strictly lower cost than ℎ𝑥0 . This contradicts the optimality of ℎ𝑥0 .

Verification
To show 𝑉 satisfies Definition 10

It is sufficient to show 𝑉 is continuous in 𝑥. The proof is twofold. To abuse the
notations a little bit, we let ℎ𝑥 (𝑡) ≡ 𝑥 for 𝑥 ∈ X, so that ℎ𝑥 is the unique minimizer
of (2.4) and 𝐿 (ℎ𝑥) = 𝑉 (𝑥) = 0 for 𝑥 ∈ X.

First we show for 𝑥0 ∈ X̂ and 𝜖 > 0, there exists 𝛿+ > 0 such that∀𝑥 ∈ B(𝑥0, 𝛿+)∩X̂,
𝑉 (𝑥) ≤ 𝑉 (𝑥0) + 𝜖 . There are two scenarios. If ℎ𝑥0 (1) is a global optimum of (2.1),
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𝐿 (ℎ∗)
= sup
𝜋∈Π

𝐿𝜋 (ℎ∗) = sup
𝜋∈Π |𝑡‡−𝛿0

𝐿𝜋 (ℎ∗) + sup
𝜋∈Π |𝑡‡+𝛿

𝑡‡−𝛿

𝐿𝜋 (ℎ∗) + sup
𝜋∈Π |1

𝑡‡+𝛿

𝐿𝜋 (ℎ∗)

= sup
𝜋∈Π |𝑡‡−𝛿0

𝐿𝜋 (ℎ𝑥0) + ∥ℎ𝑥0 (𝑡‡ − 𝛿) − ℎ𝑥0 (𝑡‡ + 𝛿)∥ℓ2 + sup
𝜋∈Π |1

𝑡‡+𝛿

𝐿𝜋 (ℎ𝑥0)

< sup
𝜋∈Π |𝑡‡−𝛿0

𝐿𝜋 (ℎ𝑥0) + ∥ℎ𝑥0 (𝑡‡ − 𝛿) − ℎ𝑥0 (𝑡‡)∥ℓ2 + ∥ℎ𝑥0 (𝑡‡) − ℎ𝑥0 (𝑡‡ + 𝛿)∥ℓ2

+ sup
𝜋∈Π |1

𝑡‡+𝛿

𝐿𝜋 (ℎ𝑥0)

≤ sup
𝜋∈Π |𝑡‡−𝛿0

𝐿𝜋 (ℎ𝑥0) + sup
𝜋∈Π |𝑡‡+𝛿

𝑡‡−𝛿

𝐿𝜋 (ℎ𝑥0) + sup
𝜋∈Π |1

𝑡‡+𝛿

𝐿𝜋 (ℎ𝑥0)

= sup
𝜋∈Π

𝐿𝜋 (ℎ𝑥0) = 𝐿 (ℎ𝑥0). (2.6)

then we could set 𝛿+ = 𝜖 . For any 𝑥 ∈ B(𝑥0, 𝛿+) ∩ X̂, construct

ℎ∗(𝑡) =
{
(1 − 2𝑡)𝑥 + 2𝑡𝑥0, 𝑡 ∈ [0, 1

2 ]
ℎ𝑥0 (2𝑡 − 1), 𝑡 ∈ ( 12 , 1] .

Its arc-length reparameterization ℎ∗ is feasible to (2.4) (w.r.t. 𝑥) and𝑉 (𝑥) ≤ 𝐿 (ℎ∗) =
|𝑥−𝑥0 |+𝐿 (ℎ𝑥0) ≤ 𝑉 (𝑥0)+𝜖 . Next we focus on the scenario that ℎ𝑥0 (1) is not a global
optimum of (2.1), so it is not a local optimum neither. By Lemma 5, there is a path ℎ≀

in X such that ℎ≀(0) = ℎ𝑥0 (1), 𝑓 (ℎ≀(𝑡)) is non-increasing in 𝑡, 𝑓 (ℎ≀(1)) < 𝑓 (ℎ≀(0))
and 𝐿 (ℎ≀) < 𝜖/2. Suppose 𝑓 (ℎ≀(0))− 𝑓 (ℎ≀(1)) = 𝜏 > 0. Since 𝑓 is continuous, there
must be some 𝛾 > 0 such that for any 𝑥 ∈ B(𝑥0, 𝛾) ∩X̂, we have | 𝑓 (𝑥) − 𝑓 (𝑥0) | < 𝜏.
Now we choose 𝛿+ as min(𝛾, 𝜖/2). For any 𝑥 ∈ B(𝑥0, 𝛿+) ∩ X̂, construct

ℎ∗(𝑡) =


(1 − 3𝑡)𝑥 + 3𝑡𝑥0, 𝑡 ∈ [0, 1

3 ]
ℎ𝑥0 (3𝑡 − 1), 𝑡 ∈ ( 13 ,

2
3 ]

ℎ≀(3𝑡 − 2), 𝑡 ∈ ( 23 , 1] .

Its arc-length reparameterization ℎ∗ is feasible to (2.4) (w.r.t. 𝑥) and𝑉 (𝑥) ≤ 𝐿 (ℎ∗) =
|𝑥 − 𝑥0 | + 𝐿 (ℎ𝑥0) + 𝐿 (ℎ≀) ≤ 𝛿+ +𝑉 (𝑥0) + 𝜖/2 ≤ 𝑉 (𝑥0) + 𝜖 .

Second we show for 𝑥0 ∈ X̂ and 𝜖 > 0, there exists 𝛿− > 0 such that ∀𝑥 ∈
B(𝑥0, 𝛿−) ∩ X̂, 𝑉 (𝑥) ≥ 𝑉 (𝑥0) − 𝜖 . If not, then there must be a sequence (𝑥𝑖)∞𝑖=1 such
that lim𝑖→∞ 𝑥𝑖 = 𝑥0 but 𝑉 (𝑥𝑖) < 𝑉 (𝑥0) − 𝜖 for all 𝑖 ≥ 1. Let ℎ𝑖 := ℎ𝑥𝑖 for 𝑖 ≥ 0, then
both (ℎ𝑖)∞𝑖=1 and (𝐿 (ℎ𝑖))∞𝑖=1 are uniformly bounded. By Lemma 7, a subsequence of
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(ℎ𝑖)∞𝑖=1 uniformly converges to a limit ℎ∗ and

𝐿 (ℎ∗) =𝐿 (ℎ∗) ≤ lim sup
𝑖

𝐿 (ℎ𝑖)

= lim sup
𝑖

𝑉 (𝑥𝑖) ≤ 𝑉 (𝑥0) − 𝜖 .

Lemma 7 also indicates ℎ∗ ∈ Ĥ and ℎ∗(0) = lim𝑖→∞ ℎ𝑖 (0) = lim𝑖→∞ 𝑥𝑖 = 𝑥0,
ℎ∗(1) = lim𝑖→∞ ℎ𝑖 (1) ∈ X (as X is closed). Therefore, ℎ∗ is feasible to (2.4) but its
cost is strictly lower than 𝑉 (𝑥0). It leads to the contradiction.

To show (C3) holds

By our construction (2.5), ℎ𝑥 is entirely within X̂, and ℎ𝑥 (0) = 𝑥, ℎ𝑥 (1) ∈ X.
Lemma 10 shows 𝑓 (ℎ𝑥 (𝑡)) is non-increasing for 𝑡 ∈ [0, 1]. It is sufficient to show
𝑉 (ℎ𝑥 (𝑡)) is also non-increasing for 𝑡 ∈ [0, 1]. Consider the following lemma.

Lemma 11. For fixed 𝑥0 ∈ X̂ and 𝑡0 ∈ [0, 1],

𝑉 (ℎ𝑥0 (𝑡0)) = sup
𝜋∈Π |1𝑡0

𝐿𝜋 (ℎ𝑥0).

Proof. Let 𝑥1 = ℎ𝑥0 (𝑡0). We have 𝐿 (ℎ𝑥1) = 𝑉 (ℎ𝑥0 (𝑡0)). If the lemma does not hold,
then we have two cases.

First, if 𝐿 (ℎ𝑥1) < sup𝜋∈Π |1𝑡0 𝐿𝜋 (ℎ𝑥0), then let

ℎ∗(𝑡) =
{
ℎ𝑥0 (2𝑡0𝑡), 𝑡 ∈ [0, 1

2 ]
ℎ𝑥1 (2𝑡 − 1), 𝑡 ∈ ( 12 , 1]

.

It is easy to check ℎ∗ is continuous and entirely within X̂, and ℎ∗(0) = 𝑥0, ℎ
∗(1) =

ℎ𝑥1 (1) ∈ X. For 𝑡 ∈ [0, 1/2],

𝑓 (ℎ∗(𝑡)) = 𝑓 (ℎ𝑥0 (2𝑡0𝑡)) ≥ 𝑓 (ℎ𝑥0 (𝑡0)) = 𝑓 (𝑥1)
= 𝑓 (ℎ𝑥1 (0)) ≥ 𝑓 (ℎ𝑥1 (1)) = 𝑓 (ℎ∗(1)).

For 𝑡 ∈ [1/2, 1],

𝑓 (ℎ∗(𝑡)) = 𝑓 (ℎ𝑥1 (2𝑡 − 1)) ≥ 𝑓 (ℎ𝑥1 (1)) = 𝑓 (ℎ∗(1)).
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Further, we have

𝐿 (ℎ∗) = sup
𝜋∈Π

𝐿𝜋 (ℎ∗)

= sup
𝜋∈Π |0.50

𝐿𝜋 (ℎ∗) + sup
𝜋∈Π |10.5

𝐿𝜋 (ℎ∗)

= sup
𝜋∈Π |𝑡00

𝐿𝜋 (ℎ𝑥0) + sup
𝜋∈Π

𝐿𝜋 (ℎ𝑥1)

= sup
𝜋∈Π |𝑡00

𝐿𝜋 (ℎ𝑥0) + 𝐿 (ℎ𝑥1)

< sup
𝜋∈Π |𝑡00

𝐿𝜋 (ℎ𝑥0) + sup
𝜋∈Π |1𝑡0

𝐿𝜋 (ℎ𝑥0) = 𝐿 (ℎ𝑥0).

Above all, the arc-length reparameterization of ℎ∗, denoted as ℎ∗, is feasible to (2.5)
(w.r.t. 𝑥0) but achieves a strictly lower cost than ℎ𝑥0 . This contradicts the optimality
of ℎ𝑥0 .

Second, if 𝐿 (ℎ𝑥1) > sup𝜋∈Π |1𝑡0 𝐿𝜋 (ℎ𝑥0), then let

ℎ∗(𝑡) =
{
ℎ𝑥0 (𝑡0), 𝑡 ∈ [0, 𝑡0]
ℎ𝑥0 (𝑡), 𝑡 ∈ (𝑡0, 1] .

It is easy to check that ℎ∗ is continuous and entirely within X̂, and ℎ∗(0) = ℎ𝑥0 (𝑡0) =
𝑥1, ℎ

∗(1) = ℎ𝑥0 (1) ∈ X. For 𝑡 ∈ [0, 1], 𝑓 (ℎ𝑥0 (𝑡)) ≥ 𝑓 (ℎ𝑥0 (1)) implies 𝑓 (ℎ∗(𝑡)) ≥
𝑓 (ℎ𝑥0 (1)) = 𝑓 (ℎ∗(1)). Further, we have

𝐿 (ℎ∗) = sup
𝜋∈Π

𝐿𝜋 (ℎ∗) = sup
𝜋∈Π |𝑡00

𝐿𝜋 (ℎ∗) + sup
𝜋∈Π |1𝑡0

𝐿𝜋 (ℎ∗)

=0 + sup
𝜋∈Π |1𝑡0

𝐿𝜋 (ℎ𝑥0) < 𝐿(ℎ𝑥1).

Above all, the arc-length reparameterization of ℎ∗, denoted as ℎ∗, is feasible to (2.5)
(w.r.t. 𝑥1) but achieves a strictly lower cost than ℎ𝑥1 . This contradicts the optimality
of ℎ𝑥1 .

Using this lemma, we are in a good position to show 𝑉 (ℎ𝑥 (𝑡)) is non-increasing for
𝑡 ∈ [0, 1]. For any 𝑡1 < 𝑡2, we have

𝑉 (ℎ𝑥 (𝑡1)) = sup
𝜋∈Π |1𝑡1

𝐿𝜋 (ℎ𝑥) = sup
𝜋∈Π |𝑡2𝑡1

𝐿𝜋 (ℎ𝑥) + sup
𝜋∈Π |1𝑡2

𝐿𝜋 (ℎ𝑥)

≥ sup
𝜋∈Π |1𝑡2

𝐿𝜋 (ℎ𝑥) = 𝑉 (ℎ𝑥 (𝑡2)).
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To show (C4) holds

The set {𝐿 (ℎ𝑥)}𝑥∈X̂\X is uniformly bounded by max𝑥∈X̂ |𝑥 − 𝑥∗ |, which is finite.

To summarize, we have verified that such construction is well defined and satisfies
both (C3) and (C4), so Lemma 6 is proved. Since we have shown that Lemma 6
implies Theorem 3, the latter is also proved.

2.5 Other Properties
Constructing from Primitives
Though the previous section guarantees the existence of the Lyapunov-like function
and paths under certain conditions, it is not clear how to systematically find or
construct them. In this subsection, we show that if one can find the Lyapunov-
like function and paths for some primitive problems, then there are natural ways
to construct the Lyapunov-like function and paths for new problems built up from
those primitives in certain ways. To streamline the notations, we will use the tuple
( 𝑓 ,X) to refer to (2.1) and the tuple ( 𝑓 ,X, X̂) to refer to the problem pair (2.1),
(2.2). Assume (𝑉, {ℎ𝑥}𝑥∈X̂\X) is a valid construction of Lyapunov-like function and
paths for ( 𝑓 ,X, X̂). In this subsection, when we say 𝑉 and ℎ𝑥 are valid, it means
they not only are valid by definition, but also satisfy (C1) and (C2).

Function Composition

Suppose 𝑔 : R → R is non-decreasing and convex. Then (𝑉, {ℎ𝑥}𝑥∈X̂\X) is also a
valid construction of Lyapunov-like function and paths for (𝑔 ◦ 𝑓 ,X, X̂). This result
is trivial as 𝑔 ◦ 𝑓 preserves the convexity over X̂ and monotonicity over any path.

Union of Feasible Sets

Suppose for two pairs of problems ( 𝑓1,X1, X̂1), for which (𝑉1, {ℎ1
𝑥}𝑥∈X̂1\X1

) is valid,
and ( 𝑓2,X2, X̂2), for which (𝑉2, {ℎ2

𝑥}𝑥∈X̂2\X2
) is valid. We consider a new problem

( 𝑓 ,X, X̂) where X := (X1 ∪ X2) ∩ X̂1 ∩ X̂2 and X̂ := X̂1 ∩ X̂2. The formulation
of 𝑓 will be provided later. If for any 𝑥 ∈ X̂ \ X, we have ℎ1

𝑥 ≡ ℎ2
𝑥 , then construct

�̃� : X̂ → R such that �̃� (𝑥) := 𝑉1(𝑥) ·𝑉2(𝑥) and ℎ̃𝑥 = ℎ1
𝑥 for all 𝑥 ∈ X̂ \ X. We have

the following two results.

Corollary 5. For any 𝜆 ∈ (0, 1), define 𝑓 : X̂ → R as 𝑓 (𝑥) := 𝜆 𝑓1(𝑥)+ (1−𝜆) 𝑓2(𝑥).
Then (�̃� , {ℎ̃𝑥}𝑥∈X̂\X) is valid for ( 𝑓 ,X, X̂).
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Corollary 6. Define function 𝑓 : X̂ → R as 𝑓 (𝑥) := max( 𝑓1(𝑥), 𝑓2(𝑥)). Then
(�̃� , {ℎ̃𝑥}𝑥∈X̂\X) is valid for ( 𝑓 ,X, X̂).

Proof for Corollary 5 and Corollary 6. The function �̃� is still continuous and van-
ishes if and only if 𝑥 ∈ X (since𝑉 (𝑥) = 0⇔𝑉1(𝑥) = 0 or𝑉2(𝑥) = 0). By construc-
tion, {ℎ𝑥}𝑥∈X̂\X is a subset of {ℎ1

𝑥}𝑥∈X̂1\X1
so (C2) is naturally satisfied. To see (C1)

holds, we fix any 𝑥 ∈ X̂ \X. Then ℎ𝑥 (0) = ℎ1
𝑥 (𝑥) = 𝑥 and ℎ𝑥 (1) = ℎ1

𝑥 (1) ∈ X1 ⊆ X.
Further, 𝑉 (ℎ𝑥 (𝑡)) = 𝑉1(ℎ𝑥 (𝑡))𝑉2(ℎ𝑥 (𝑡)) = 𝑉1(ℎ1

𝑥 (𝑡))𝑉2(ℎ2
𝑥 (𝑡)) as ℎ1

𝑥 and ℎ2
𝑥 con-

incide when 𝑥 ∈ X̂ \ X. Because both 𝑉1(ℎ1
𝑥 (𝑡)) and 𝑉2(ℎ2

𝑥 (𝑡)) are non-negative
and non-increasing, so is 𝑉 (ℎ𝑥 (𝑡)). Finally, as 𝑓1(ℎ𝑥 (𝑡)) and 𝑓2(ℎ𝑥 (𝑡)) are both
non-increasing over [0, 1], their convex-combination or maximum (i.e., 𝑓 (ℎ𝑥 (𝑡)))
must be non-increasing as well. A similar argument can also be applied to show
𝑓 (ℎ𝑥 (1)) < 𝑓 (ℎ𝑥 (0)). Thus (C1) holds and it completes the proof.

Intersection of Feasible Sets

We still consider two pairs of problems ( 𝑓1,X1, X̂), for which (𝑉1, {ℎ1
𝑥}𝑥∈X̂1\X1

)
is valid, and ( 𝑓2,X2, X̂), for which (𝑉2, {ℎ2

𝑥}𝑥∈X̂2\X2
) is valid. Different from the

previous setting, two pairs are required to share the same relaxation set X̂. Further,
we view each 𝑥 ∈ X̂ as a tuple with two parts 𝑥 := (𝑢, 𝑣). Define P1 and P2 as two
projection operators such that P1𝑥 = 𝑢 and P2𝑥 = 𝑣.

We consider a new problem ( 𝑓 ,X, X̂) where X := X1 ∩ X2. The formulation of 𝑓
will be provided later.

If 𝑓𝑖, 𝑉 𝑖 and ℎ𝑖𝑥 are completely separated with respect to 𝑢 and 𝑣 in the sense that for
𝑖 = 1, 2, 𝑓𝑖 (𝑥), 𝑉 𝑖 (𝑥) depend on P𝑖𝑥 only and P1−𝑖 (ℎ𝑖𝑥 (𝑡)) is constant, then we can
construct �̃� as �̃� (𝑥) := 𝑉1(𝑥) +𝑉2(𝑥). For 𝑥 ∈ X̂ \ X, the path ℎ̃𝑥 is constructed in
three ways depending on the values of 𝑉1(𝑥) and 𝑉2(𝑥).

If 𝑉1(𝑥) = 0 then ℎ̃𝑥 := ℎ2
𝑥 , (2.7a)

If 𝑉2(𝑥) = 0 then ℎ̃𝑥 := ℎ1
𝑥 , (2.7b)

If 𝑉1(𝑥), 𝑉2(𝑥) > 0 then

ℎ̃𝑥 (𝑡) :=

{
ℎ1
𝑥 (2𝑡), 𝑡 ∈ [0, 1

2 )
ℎ2
ℎ1
𝑥 (1)
(2𝑡 − 1), 𝑡 ∈ [ 12 , 1]

. (2.7c)

Corollary 7. For any 𝜆 ∈ (0, 1), define 𝑓 : X̂ → R as 𝑓 (𝑥) := 𝜆 𝑓1(𝑥)+ (1−𝜆) 𝑓2(𝑥).
Then (�̃� , {ℎ̃𝑥}𝑥∈X̂\X) is valid for ( 𝑓 ,X, X̂).
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Corollary 8. Define function 𝑓 : X̂ → R as 𝑓 (𝑥) := max( 𝑓1(𝑥), 𝑓2(𝑥)). Then
(�̃� , {ℎ̃𝑥}𝑥∈X̂\X) is valid for ( 𝑓 ,X, X̂).

Proof for Corollary 7 and Corollary 8. The function �̃� is still continuous and van-
ishes if and only if 𝑥 ∈ X (since 𝑉 (𝑥) = 0 ⇔ 𝑉1(𝑥) = 0 and 𝑉2(𝑥) = 0). The
set {ℎ̃𝑥}𝑥∈X̂\X satisfies (C2) as each path is constructed either as ℎ𝑖𝑥 or the concate-
nation of ℎ1

𝑥 and ℎ2
ℎ1
𝑥 (1)

. Next we are showing ℎ̃𝑥 (1) is in X. If ℎ̃𝑥 is constructed
by (2.7a), then we have �̃� ( ℎ̃𝑥 (1)) = 𝑉1(ℎ2

𝑥 (1)) + 𝑉2(ℎ2
𝑥 (1)) = 𝑉1(ℎ2

𝑥 (1)). Since
𝑉1(ℎ2

𝑥 (1)) only depends on P1ℎ
2
𝑥 (1) and P1ℎ

2
𝑥 (1) = P1ℎ

2
𝑥 (0) = P1𝑥, there must be

𝑉1(ℎ2
𝑥 (1)) = 𝑉1(𝑥) = 0. Thus �̃� ( ℎ̃𝑥 (1)) = 0 and ℎ̃𝑥 (1) ∈ X. It is similar if ℎ̃𝑥 is

constructed by (2.7b). When ℎ̃𝑥 is constructed by (2.7c), then

�̃� ( ℎ̃𝑥 (1)) =𝑉1(ℎ2
ℎ1
𝑥 (1)
(1)) +𝑉2(ℎ2

ℎ1
𝑥 (1)
(1))

=𝑉1(ℎ2
ℎ1
𝑥 (1)
(1)) = 𝑉1(ℎ2

ℎ1
𝑥 (1)
(0))

=𝑉1(ℎ1
𝑥 (1)) = 0,

so ℎ̃𝑥 (1) ∈ X as well. The monotonicity properties of �̃� ( ℎ̃𝑥 (𝑡)) and 𝑓 ( ℎ̃𝑥 (𝑡)) are also
the direct consequence of the fact that 𝑓𝑖, 𝑉 𝑖 and ℎ𝑖𝑥 are completely separated.

A summary of this subsection has been provided in Table 2.1.

Weak Exactness
One observation from the proof of Theorem 1 is we do not actually need 𝑓 (ℎ𝑥 (0)) >
𝑓 (ℎ𝑥 (1)) to eliminate genuine local optima. However, such strict inequality is
required to show the exactness. We can consider a weaker version of exactness
defined as follows.

Definition 12 (Weak Exactness). We say the relaxation (2.2) is weakly exact with
respect to (2.1) if at least one optimum of (2.2) is feasible, and hence globally
optimal, for (2.1).

Theorem 4. If there exists a Lyapunov-like function 𝑉 associated with (2.1) and
(2.2) such that (C3) and (C2) hold, then (2.2) is weakly exact with respect to (2.1)
and any local optimum in X for (2.1) is either a global optimum or a pseudo local
optimum.

The argument on weak exactness follows from the fact that the path connects any
global optimum of (2.2) must determine an endpoint inX with the same cost, which
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by definition must be a global optimum as well. The argument on local optimality
follows directly from the proof of Theorem 1.

2.6 Applications
In this sections we will use two examples to show for specific problems, what𝑉 and
{ℎ𝑥} might look like. The first example is Optimal Power Flow (OPF) problem in
power systems with tree structres, which is also the motivating problem for us to
develop this theory. By finding the Lyapunov-like function and paths, we show the
first known condition (that can be checked a priori) for OPF to have no spurious
local optima. The same condition was only known to guarantee exact relaxation
before our work.

In the second example, we study the Low Rank Semidefinite Program (LRSDP)
problem, which was known to have weakly exact relaxation [5, 61] and no spurious
local optima [17] in existing literatures. Specifically, we show that part of the results
proved in [17] can also be proved by finding appropriate𝑉 and {ℎ𝑥}. They exemplify
the usage of Theorem 1, Theorem 2, and Theorem 4 in practice.

Optimal Power Flow
Consider a radial power network with an underlying connected directed graph
G(V, E). Let V := {0, 1, · · · , 𝑁 − 1} be the set of buses (i.e., nodes), and
E ⊆ V × V be the set of power lines (i.e., edges). We will refer to a power
line from bus 𝑗 to bus 𝑘 by 𝑗 → 𝑘 or ( 𝑗 , 𝑘) interchangeably. For each power line
( 𝑗 , 𝑘), its series admittance is denoted by 𝑦 𝑗 𝑘 ∈ C, and its series impedance is hence
𝑧 𝑗 𝑘 := 𝑦−1

𝑗 𝑘
. Both the real and imaginary parts of 𝑧 𝑗 𝑘 are assumed to be positive.

As we assume G is a tree, we can adopt the DistFlow Model [3, 4] to formulate
power flow equations. For each bus 𝑗 , let 𝑉 𝑗 ∈ C, 𝑠 𝑗 = 𝑝 𝑗 + 𝒊𝑞 𝑗 ∈ C denote its
voltage and bus injection respectively. For line ( 𝑗 , 𝑘), let 𝑆 𝑗 𝑘 and 𝐼 𝑗 𝑘 ∈ C denote
the branch power flow and current from bus 𝑗 to 𝑘 , both at the sending end. Let
𝑣 𝑗 := |𝑉 𝑗 |2 ∈ R and ℓ 𝑗 𝑘 := |𝐼 𝑗 𝑘 |2 ∈ R. We will denote the conjugate of a complex
number 𝑎 by 𝑎H.
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The power flow equations are:

𝑣 𝑗 = 𝑣𝑘 + 2R𝑒(𝑧 𝑗 𝑘𝑆H
𝑗 𝑘 ) − |𝑧 𝑗 𝑘 |

2ℓ 𝑗 𝑘 , ∀( 𝑗 , 𝑘) ∈ E (2.8a)

𝑣 𝑗 =
|𝑆 𝑗 𝑘 |2

ℓ 𝑗 𝑘
, ∀( 𝑗 , 𝑘) ∈ E (2.8b)

𝑠 𝑗 =
∑︁
𝑘: 𝑗→𝑘

𝑆 𝑗 𝑘 −
∑︁
𝑖:𝑖→ 𝑗

(𝑆𝑖 𝑗 − 𝑧𝑖 𝑗ℓ𝑖 𝑗 ), ∀ 𝑗 ∈ V . (2.8c)

Given a cost function 𝑓 (𝑠) : C𝑁 → R, we are interested in the following OPF
problem:

minimize
𝑥=(𝑠,𝑣,ℓ,𝑆)

𝑓 (𝑠) (2.9a)

subject to (2.8) (2.9b)

𝑣
𝑗
≤ 𝑣 𝑗 ≤ 𝑣 𝑗 (2.9c)

𝑠
𝑗
≤ 𝑠 𝑗 ≤ 𝑠 𝑗 (2.9d)

ℓ 𝑗 𝑘 ≤ ℓ 𝑗 𝑘 . (2.9e)

All the inequalities for complex numbers in this section are enforced for both the
real and imaginary parts.

Definition 13. A function 𝑔 : R→ R is strongly increasing if there exists real 𝑐 > 0
such that for any 𝑎 > 𝑏, we have

𝑔(𝑎) − 𝑔(𝑏) ≥ 𝑐(𝑎 − 𝑏).

We now make the following assumptions on OPF:

(i) The underlying graph G is a tree.

(ii) The cost function 𝑓 is convex, and is strongly increasing in R𝑒(𝑠 𝑗 ) (or I𝑚(𝑠 𝑗 ))
for each 𝑗 ∈ V and non-decreasing in I𝑚(𝑠 𝑗 ) (or R𝑒(𝑠 𝑗 )).

(iii) The problem (2.9) is feasible.

(iv) The line current limit satisfies ℓ 𝑗 𝑘 ≤ 𝑣 𝑗 |𝑦 𝑗 𝑘 |2.

Assumption (i) is generally true for distribution networks and assumption (iii) is
typically mild. As for (ii), 𝑓 is commonly assumed to be convex and increasing
in R𝑒(𝑠 𝑗 ) and I𝑚(𝑠 𝑗 ) in the literature (e.g., [31, 74]). Assumption (ii) is only
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slightly stronger since one could always perturb any increasing function by an
arbitrarily small linear term to achieve strong monotonicity. Assumption (iv) is
not common in the literature but is also mild because of the following reason.
Typically𝑉 𝑗 = (1+𝜖 𝑗 )𝑒 𝒊𝜃 𝑗 in per unit where 𝜖 ∈ [−0.1, 0.1] and the angle difference
𝜃 𝑗 𝑘 := 𝜃 𝑗 − 𝜃𝑘 between two neighboring buses 𝑗 , 𝑘 typically has a small magnitude.
Thus the maximum value of |𝑉 𝑗−𝑉𝑘 |2 = | (1+𝜖 𝑗 )𝑒 𝒊𝜃 𝑗𝑘−(1+𝜖𝑘 ) |2, which is equivalent
to ℓ 𝑗 𝑘/|𝑦 𝑗 𝑘 |2, should be much smaller than 𝑣

𝑗
which is ≈ 1 per unit.

Problem (2.9) is non-convex, as constraint (2.8b) is not convex. Denote by X the
set of (𝑠, 𝑣, ℓ, 𝑆) that satisfy (2.9b)-(2.9e), so (2.9) is in the form of (2.1). We can
relax (2.9) by convexifying (2.8b) into a second-order cone [27]:

minimize
𝑥=(𝑠,𝑣,ℓ,𝑆)

𝑓 (𝑠) (2.10a)

subject to (2.8a), (2.8c), (2.9c) − (2.9e) (2.10b)

|𝑆 𝑗 𝑘 |2 ≤ 𝑣 𝑗ℓ 𝑗 𝑘 . (2.10c)

One can similarly regard X̂ as the set of (𝑠, 𝑣, ℓ, 𝑆) that satisfy (2.10b), (2.10c). It
is proved in [27] that if 𝑠

𝑗
= −∞ − 𝒊∞ for all 𝑗 ∈ V, then (2.10) is exact, meaning

any optimal solution of (2.10) is also feasible and hence globally optimal for (2.9).
Now we show that the same condition also guarantees that any local optimum of
(2.9) is also globally optimal. This implies that a local search algorithm such as
the primal-dual interior point method can produce a global optimum as long as it
converges.

Theorem 5. If 𝑠
𝑗
= −∞ − 𝒊∞ for all 𝑗 ∈ V, then any local optimum of (2.9) is a

global optimum.

Proof. Our strategy is to construct appropriate 𝑉 and {ℎ𝑥} and then prove such
construction satsify both Condition (C) and Condition (C’). Let

𝑉 (𝑥) :=
∑︁
( 𝑗 ,𝑘)∈E

𝑣 𝑗ℓ 𝑗 𝑘 − |𝑆 𝑗 𝑘 |2. (2.11)

Clearly, 𝑉 is a valid Lyapunov-like function satisfying Definition 10.

For each 𝑥 = (𝑠, 𝑣, ℓ, 𝑆) ∈ X̂ \ X, let M be the set of ( 𝑗 , 𝑘) ∈ E such that
|𝑆 𝑗 𝑘 |2 < 𝑣 𝑗ℓ 𝑗 𝑘 . For ( 𝑗 , 𝑘) ∈ M, the quadratic function

𝜙 𝑗 𝑘 (𝑎) :=
|𝑧 𝑗 𝑘 |2

4
𝑎2 +

(
𝑣 𝑗 − R𝑒(𝑧 𝑗 𝑘𝑆H

𝑗 𝑘 )
)
𝑎 + |𝑆 𝑗 𝑘 |2 − 𝑣 𝑗ℓ 𝑗 𝑘
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must have a unique positive root as 𝜙 𝑗 𝑘 (0) < 0. We define Δ 𝑗 𝑘 to be this positive
root if ( 𝑗 , 𝑘) ∈ M and 0 otherwise.

Assumption (iv) implies ℓ 𝑗 𝑘 ≤ 𝑣 𝑗 |𝑦 𝑗 𝑘 |2, and therefore

𝑣 𝑗 − R𝑒(𝑧 𝑗 𝑘𝑆H
𝑗 𝑘 ) ≥ 𝑣 𝑗 − |𝑧 𝑗 𝑘 | |𝑆 𝑗 𝑘 |

≥ 𝑣 𝑗 − |𝑧 𝑗 𝑘 |
√︁
𝑣 𝑗ℓ 𝑗 𝑘 ≥ 𝑣 𝑗 − |𝑧 𝑗 𝑘 |

√︃
𝑣2
𝑗
|𝑦 𝑗 𝑘 |2 = 0.

It further implies 𝜙 𝑗 𝑘 (𝑎) is strictly increasing for 𝑎 ∈ [0,Δ 𝑗 𝑘 ].

Now consider the path ℎ𝑥 (𝑡) := (𝑠(𝑡), �̃�(𝑡), ℓ̃(𝑡), 𝑆(𝑡)) for 𝑡 ∈ [0, 1], where

𝑠 𝑗 (𝑡) = 𝑠 𝑗 −
𝑡

2

∑︁
𝑖:𝑖→ 𝑗

𝑧𝑖 𝑗Δ𝑖 𝑗 −
𝑡

2

∑︁
𝑘: 𝑗→𝑘

𝑧 𝑗 𝑘Δ 𝑗 𝑘 , (2.12a)

�̃� 𝑗 (𝑡) = 𝑣 𝑗 , (2.12b)

ℓ̃ 𝑗 𝑘 (𝑡) = ℓ 𝑗 𝑘 − 𝑡Δ 𝑗 𝑘 , (2.12c)

𝑆 𝑗 𝑘 (𝑡) = 𝑆 𝑗 𝑘 −
𝑡

2
𝑧 𝑗 𝑘Δ 𝑗 𝑘 . (2.12d)

Clearly we have ℎ𝑥 (0) = 𝑥. It can be easily checked that ℎ𝑥 (𝑡) is feasible for (2.10)
for 𝑡 ∈ [0, 1] and ℎ𝑥 (1) is feasible for (2.9). Therefore, ℎ𝑥 is indeed [0, 1] → X̂ and
ℎ𝑥 (1) ∈ X.

Since 𝑧 𝑗 𝑘 > 0, both real and imaginary parts of 𝑠 𝑗 (𝑡) are strictly decreasing for
( 𝑗 , 𝑘) ∈ M and stay unchanged otherwise. By assumption (ii), 𝑓 (𝑠(𝑡)) is also
strictly decreasing. To show 𝑉 (ℎ𝑥 (𝑡)) is also decreasing, we notice that 𝑉 (ℎ𝑥 (𝑡))
equals ∑︁

( 𝑗 ,𝑘)∈E
�̃� 𝑗 (𝑡)ℓ̃ 𝑗 𝑘 (𝑡) − |𝑆 𝑗 𝑘 (𝑡) |2

=
∑︁

( 𝑗 ,𝑘)∈Mc

𝑣 𝑗ℓ 𝑗 𝑘 − |𝑆 𝑗 𝑘 |2 +
∑︁
( 𝑗 ,𝑘)∈M

�̃� 𝑗 (𝑡)ℓ̃ 𝑗 𝑘 (𝑡) − |𝑆 𝑗 𝑘 (𝑡) |2

=
∑︁

( 𝑗 ,𝑘)∈Mc

𝑣 𝑗ℓ 𝑗 𝑘 − |𝑆 𝑗 𝑘 |2 −
∑︁
( 𝑗 ,𝑘)∈M

𝜙 𝑗 𝑘 (𝑡Δ 𝑗 𝑘 ).

As 𝜙 𝑗 𝑘 (𝑎) is strictly increasing for 𝑎 ∈ [0,Δ 𝑗 𝑘 ], we conclude that𝑉 (ℎ𝑥 (𝑡)) is strictly
decreasing for 𝑡 ∈ [0, 1].

By Corollary 1, the set {ℎ𝑥}𝑥∈X̂\X is uniformly bounded and uniformly equicontin-
uous as all ℎ𝑥 (𝑡) are linear functions in 𝑡. In summary, Condition (C) is satisfied.
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Finally, we show Condition (C’) also holds. By assumption (ii), there exists some
real 𝑐 > 0 independent of 𝑥 such that for any 0 ≤ 𝑎 < 𝑏 ≤ 1,

𝑓 (𝑠(𝑎)) − 𝑓 (𝑠(𝑏))
≥ 𝑐

∑︁
𝑗∈V

R𝑒(𝑠 𝑗 (𝑎) − 𝑠 𝑗 (𝑏)) + I𝑚(𝑠 𝑗 (𝑎) − 𝑠 𝑗 (𝑏))

= 𝑐∥𝑠(𝑎) − 𝑠(𝑏)∥m.

where ∥ · ∥m is defined as ∥a∥m :=
∑
𝑖 |R𝑒(𝑎𝑖) | + |I𝑚(𝑎𝑖) | over the complex vector

space. It is easy to check ∥ · ∥m is a valid norm.

On the other hand, by (2.12) we have ∥�̃�(𝑎) − �̃�(𝑏)∥m ≡ 0 and

∥ℓ̃(𝑎) − ℓ̃(𝑏)∥m ≤
1

min
( 𝑗 ,𝑘)∈E

{∥𝑧 𝑗 𝑘 ∥m}
∥𝑠(𝑎) − 𝑠(𝑏)∥m,

∥𝑆(𝑎) − 𝑆(𝑏)∥m ≤
1
2
∥𝑠(𝑎) − 𝑠(𝑏)∥m.

Therefore,

∥ℎ𝑥 (𝑎) − ℎ𝑥 (𝑏)∥m ≤
(3
2
+ 1

min
( 𝑗 ,𝑘)∈E

{∥𝑧 𝑗 𝑘 ∥m}

)
∥𝑠(𝑎) − 𝑠(𝑏)∥m

and there exists 𝑐 > 0 independent of 𝑥, 𝑎, 𝑏 such that

𝑓 (𝑠(𝑎)) − 𝑓 (𝑠(𝑏)) ≥ 𝑐∥ℎ𝑥 (𝑎) − ℎ𝑥 (𝑏)∥m.

Therefore Condition (C’) is also satisfied, and by Theorem 2, any local optimum of
(2.9) is a global optimum.

The results in this subsection only apply to radial networks, which serve as the
underlying network for balanced distribution power systems. For transmission
systems and unbalanced distribution systems, networks are usually highly meshed.
It has been found that for most of meshed networks, both convex relaxation and local
search algorithms can also yield the global optimum for most of testcases [34, 41].
Thus Theorem 3 suggests that there may also exist similar Lyapunov-like function
and paths for meshed networks. Finding such Lyapunov-like function and paths
would be an interesting future work to extend our results in this chapter.
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Low Rank Semidefinite Program
This subsection proves a known result in [17] but using a different approach. Adopt-
ing the same notations as [17], we have the following problem.

minimize
𝑋≥0

tr(𝐶𝑋) (2.13a)

subject to tr(𝐴𝑖𝑋) = 𝑏𝑖, 𝑖 = 1, · · · , 𝑚 (2.13b)

rank(𝑋) ≤ 𝑟. (2.13c)

Here, 𝐶, 𝐴𝑖, 𝑋 are all 𝑛-by-𝑛 matrices. We assume the problem is feasible and
{𝑋 ≥ 0 | (2.13b)} is compact.

Theorem 6. If (𝑟 + 1) (𝑟 + 2)/2 > 𝑚 + 1, then any local optimum of (2.13) is either
a global optimum or a pseudo local optimum.

Before proving Theorem 6, we consider the convex relaxation of (2.13) as

minimize
𝑋≥0

tr(𝐶𝑋) (2.14a)

subject to tr(𝐴𝑖𝑋) = 𝑏𝑖, 𝑖 = 1, · · · , 𝑚. (2.14b)

As a side note, the results in [5, 61] show that if (𝑟 + 1) (𝑟 + 2)/2 > 𝑚, then (2.14)
is weakly exact to (2.13). While our theorem is the same as in [17], some insights
to find 𝑉 and {ℎ𝑋 } are also from the structures first raised in [5, 61].

Proof. Clearly, (2.13) can be reformulated in the form of (2.1) by setting 𝑓 (𝑋) =
tr(𝐶𝑋), X = {𝑋 ≥ 0 | (2.13b), (2.13c)} and X̂ = {𝑋 ≥ 0 | (2.13b)}. Define 𝑉 as

𝑉 (𝑋) :=
𝑛∑︁

𝑖=𝑟+1
𝜆𝑖 (𝑋),

where 𝜆𝑖 (𝑋) is the 𝑖th eigenvalue of 𝑋 (in decreasing order). This function𝑉 satisfies
Definition 10 and is concave.

For fixed 𝑋 ∈ X̂ \ X, we denote rank(𝑋) as 𝑟0 > 𝑟. We first construct 𝑟0 − 𝑟 paths
labeled as ℎ1, ℎ2, · · · , ℎ𝑟0−𝑟 . When we construct ℎ𝑖, if 𝑖 > 1 then we assume path
ℎ𝑖−1 has already been constructed and let 𝑋𝑖−1 := ℎ𝑖−1(1). We let 𝑋0 = 𝑋 . For
𝑖 ≥ 1, if rank(𝑋𝑖−1) ≤ 𝑟0 − 𝑖 then we let ℎ𝑖 (𝑡) ≡ 𝑋𝑖−1 for 𝑡 ∈ [0, 1]. Otherwise,
we decompose 𝑋𝑖−1 as𝑈Σ𝑈H where Σ is a 𝑘-by-𝑘 positive definite diagonal matrix
with 𝑘 = rank(𝑋𝑖−1) > 𝑟0 − 𝑖. The linear system

tr(𝐶𝑈𝑌𝑈H) =0

tr(𝐴𝑖𝑈𝑌𝑈H) =0, 𝑖 = 1, · · · , 𝑚 (2.15)
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must have a non-zero solution for Hermitian matrix 𝑌 ∈ C𝑘×𝑘 . To see this, we have
𝑘 ≥ 𝑟0 − 𝑖 + 1 ≥ 𝑟 + 1, and thus 𝑘 (𝑘 + 1)/2 ≥ (𝑟 + 1) (𝑟 + 2)/2 > 𝑚 + 1. As a result,
(2.15) has more unknown variables than equations. We simply denote this non-zero
solution as 𝑌 and for any 𝛼 ∈ R, 𝛼𝑌 is also a solution to (2.15). The concavity of 𝑉
also implies that 𝑉 (𝑈 (Σ + 𝛼𝑌 )𝑈H) is concave in 𝛼 when 𝑈 and Σ are fixed. Since
Σ > 0, one of the following two scenarios must be true.

• ∃𝑎 < 0 such that𝑉 (𝑈 (Σ+𝛼𝑌 )𝑈H) is non-decreasing, rank(𝑈 (Σ+𝛼𝑌 )𝑈H) ≤ 𝑘
for 𝛼 ∈ [𝑎, 0] and rank(𝑈 (Σ + 𝑎𝑌 )𝑈H) ≤ 𝑘 − 1.

• ∃𝑏 > 0 such that𝑉 (𝑈 (Σ+𝛼𝑌 )𝑈H) is non-increasing, rank(𝑈 (Σ+𝛼𝑌 )𝑈H) ≤ 𝑘
for 𝛼 ∈ [0, 𝑏] and rank(𝑈 (Σ + 𝑏𝑌 )𝑈H) ≤ 𝑘 − 1.

Without loss of generality, we suppose 𝑉 (𝑈 (Σ + 𝛼𝑌 )𝑈H) is non-increasing for 𝛼 ∈
[0, 𝑏] (otherwise we take−𝑌 instead). We then construct ℎ𝑖 as ℎ𝑖 (𝑡) = 𝑈 (Σ+𝑡𝑏𝑌 )𝑈H

for 𝑡 ∈ [0, 1]. By construction, 𝑉 (ℎ𝑖 (𝑡)) is non-increasing and 𝑓 (ℎ𝑖 (𝑡)) stays a
constant.

Finally, we construct ℎ𝑋 as the concatenation of paths ℎ1, · · · , ℎ𝑟0−𝑟 . That is to say,

ℎ𝑋 (𝑡) := ℎ𝑖 ((𝑟0 − 𝑟)𝑡 − 𝑖 + 1) for 𝑡 ∈
[ 𝑖 − 1
𝑟0 − 𝑟

,
𝑖

𝑟0 − 𝑟

]
.

It is easy to see ℎ𝑋 is continuous and ℎ𝑋 (0) = ℎ1(0) = 𝑋 . To see ℎ𝑋 (1) ∈ X, we
prove that rank(𝑋𝑖) ≤ 𝑟0 − 𝑖. We first have rank(𝑋0) = rank(𝑋) = 𝑟0. For 𝑖 ≥ 1, we
have rank(𝑋𝑖) = rank(𝑋𝑖−1) if rank(𝑋𝑖−1) ≤ 𝑟0 − 𝑖 and rank(𝑋𝑖) ≤ rank(𝑋𝑖−1) − 1
otherwise. By induction, we can prove rank(𝑋𝑖) ≤ 𝑟0 − 𝑖 always holds. As a result,
rank(ℎ𝑋 (1)) = rank(ℎ𝑟0−𝑟 (1)) ≤ 𝑟 and thus ℎ𝑋 (1) ∈ X. By construction, ℎ𝑖 (𝑡)
never violates (2.13b) and thus is in X̂, so is ℎ𝑋 (𝑡) for all 𝑡. Functions 𝑉 (ℎ𝑖 (𝑡))
and 𝑓 (ℎ𝑖 (𝑡)) being non-increasing implies that 𝑉 (ℎ𝑋 (𝑡)) and 𝑓 (ℎ𝑋 (𝑡)) are also
non-increasing. Therefore, (C3) is satisfied. By Corollary 1 (C2) also holds for
{ℎ𝑋 }. It completes the proof (by Theorem 4).

Remark 4. In [17], Theorem 3.4 claims that any local optimum of (2.13) should
also be globally optimal, unless it is harbored in some positive-dimensional face of
SDP. The result in this chapter further asserts that if it is indeed harbored in such
a face, then there must be some point on the edge of this face whose cost can be
further reduced in its neighborhood (i.e., the local optimum is in the same situation
as point 𝑐 rather than 𝑑 as in Fig. 2.1).
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Table 2.2: Sufficient and necessary conditions

Condition Relaxation exactness Local optimality
Sufficient conditions: ⇒
(C1), (C2) Strong exactness l.o. is p.l.o. or g.o.
(C3), (C2) Weak exactness l.o. is p.l.o. or g.o.

(C’) Strong exactness l.o. is g.o.
Necessary condition: ⇐
(C1), (C2) Strong exactness l.o. is g.o.

2.7 Conclusion and Discussion
Table 2.2 summaries both sufficient and necessary conditions for non-convex prob-
lem (2.1) to simultaneously have exact (weak or strong) relaxation and no spurious
local optima (allowing or not allowing pseudo local optima). The necessary condi-
tion relies on Assumption 1, which is usually true for real-world problems. Those
results provide a new perspective to certify a non-convex problem is computation-
ally easy to solve. Furthermore, whenever the problem is indeed computationally
easy, the certificates (Lyapunov-like functions and paths) are guaranteed to exist.
We also provide a hierarchical framework which shows how such certificates for a
complicated problem can be constructed from primitive problems. Our results have
been applied to OPF and LRSDP problems.

Based on the examples shown in Section 2.6, a natural way to apply this approach
is to first look at existing results on exact relaxation, and then construct 𝑉 and {ℎ𝑥}
according to the hidden structure underlying the exactness. Once 𝑉 and {ℎ𝑥} are
appropriately constructed, our result can help extend existing results on relaxation
exactness to new results on local optimality.

Compared to some existing techniques to study local optimality, our results do not
require differentiating or analyzing the curvature of feasible sets. It allows the
feasible sets to incorporate more complicated and possibly non-convex constraints.
Those non-convex constraints are common for problems arising in cyber physical
systems which are generally governed by physical laws.
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C h a p t e r 3

RELAXATION EXACTNESS FOR MULTI-PHASE NETWORKS:
WITHOUT DELTA CONNECTIONS

3.1 Background
In previous chapters, we have introduced and studied the Optimal Power Flow
problems in single-phase networks. The single-phase model is widely used to
describe both single-phase and balanced multi-phase networks [2, 40]. Most existing
results on semi-definite relaxation [15, 28, 31, 45, 47, 67, 74] are also based on such
single-phase model and assume that the underlying network topology is a tree.

Most radial distribution networks are, however, unbalanced multiphase, e.g., [43,
68]. SDP relaxation has recently been applied to unbalanced multiphase radial
networks [24, 30, 73, 76]. Simulation results in these papers suggest that SDP
relaxation is often exact even though no sufficient condition for exact relaxation
is known to the best of our knowledge. Indeed, it has been observed in [7, 22,
44] that a multiphase unbalanced network has an equivalent single-phase circuit
model where each bus-phase pair in the multiphase network is identified with a
single bus in the equivalent model. The single-phase equivalent model is then a
meshed network and therefore existing guarantees on exact SDP relaxation are not
applicable. Most distribution systems are unbalanced multiphase networks [23] and
hence the performance of SDP relaxation of OPF on these networks is important.

In this chapter, we generalize the sufficient conditions for single-phase network
proposed in [15] to the multiphase setting. The result shows that the exactness
of the primal problem can be guaranteed if its dual variable is G-invertible (to
be defined later). Informally speaking, it requires every block matrix in the dual
variable that correspond to an edge in the network to be invertible. Then we provide
two perspectives to study this G-invertibility property. One perspective requires the
binding constraints in the primal problem to be sparse, and the other perspective
relates to the condition that the marginal prices of the power should span over a
narrow range.
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3.2 System Model
Network Structure
We use a similar model as in [30, 76].We assume that all buses have the same number
of phases and all generations and loads are wye connected. Let the underlying simple
undirected graph be G = (V, E) where V = {0, 1, . . . , 𝑛 − 1} denotes the set of
buses and E the set of edges. Throughout this chapter, we will use (graph, vertex,
edge) and (power network, bus, line) interchangeably. Without loss of generality,
we let bus 0 be the slack bus where the voltage is specified. Assume all buses have
𝑚 phases for 𝑚 ∈ Z+. We will use ( 𝑗 , 𝑘) and 𝑗 ∼ 𝑘 interchangeably to denote an
edge connecting bus 𝑗 and 𝑘 . Consider an 𝑚-phase line ( 𝑗 , 𝑘) characterized by the
admittance matrix 𝑦 𝑗 𝑘 ∈ C𝑚×𝑚, we assume 𝑦 𝑗 𝑘 is invertible. The admittance matrix
𝒀 ∈ C𝑚𝑛×𝑚𝑛 for the entire network can be divided into 𝑛× 𝑛 number of 𝑚 ×𝑚 block
matrices. Let 𝒀 𝑗 𝑘 ∈ C𝑚×𝑚 denote the block matrix corresponding to the admittance
between bus 𝑗 and 𝑘 , and then we have

𝒀 𝑗 𝑗 =
∑︁
𝑘: 𝑗∼𝑘

𝑦 𝑗 𝑘 , 𝑗 ∈ V

𝒀 𝑗 𝑘 =

{
−𝑦 𝑗 𝑘 , 𝑗 ∼ 𝑘
0 , 𝑗 ≁ 𝑘

.

For each bus 𝑗 , let the voltages of all 𝑚 phases at bus 𝑗 be the vector 𝑽 𝑗 ∈ C𝑚.
We use 𝑽𝜙

𝑗
for 𝜙 ∈ M := {1, 2, . . . , 𝑚} to indicate the voltage for phase 𝜙. Let

𝑽 = [𝑽T
0 ,𝑽

T
1 , . . . ,𝑽

T
𝑛−1]

T be the voltage vector for the entire network. Similarly, we
use 𝑠𝜙

𝑗
to denote the bus injection for phase 𝜙 at bus 𝑗 . We will refer to the 𝜙 th

diagonal entry of 𝑦 𝑗 𝑘 as 𝑦𝜙
𝑗 𝑘

. Let 𝒆𝜙
𝑗
∈ R𝑚𝑛 be the base vector which has 1 at the

( 𝑗𝑚 + 𝜙)th entry and 0 elsewhere. Let 𝑬𝜙

𝑗
= 𝒆𝜙

𝑗
(𝒆𝜙

𝑗
)T, then we define

𝑌
𝜙

𝑗
:= 𝑬𝜙

𝑗
𝒀 ∈ C𝑚𝑛×𝑚𝑛

and

𝚽𝜙

𝑗
:=

1
2
(
(𝑌 𝜙
𝑗
)H + 𝑌 𝜙

𝑗

)
𝚿𝜙

𝑗
:=

1
2𝒊

(
(𝑌 𝜙
𝑗
)H − 𝑌 𝜙

𝑗

)
𝚯𝜙

𝑗 𝑘
:= (𝑦𝜙

𝑗 𝑘
)2(𝒆𝜙

𝑗
− 𝒆𝜙

𝑘
) (𝒆𝜙

𝑗
− 𝒆𝜙

𝑘
)T.

All 𝚽, 𝚿, and 𝚯 are Hermitian matrices. The relationship between bus voltages



41

and injections can be expressed as

Re(𝑠𝜙
𝑗
) = 𝑽H𝚽𝜙

𝑗
𝑽,

Im(𝑠𝜙
𝑗
) = 𝑽H𝚿𝜙

𝑗
𝑽 (3.1)

and the squared current is

ℓ
𝜙

𝑗 𝑘
= 𝑽H𝚯𝜙

𝑗 𝑘
𝑽 .

Optimal Power Flow
Optimal power flow problems minimize certain cost functions subject to constraints
involving voltages, injections, and currents. Here we consider problems that take
the linear combination of bus injections as the cost function and are subject to
operational constraints for voltage magnitudes, real/reactive injections, and line
currents. For problems with nonlinear cost functions, see Section 3.7. Suppose the
bounds 𝑉 and 𝑉 for the voltage magnitudes are always positive and finite, but the
bounds for real/reactive injections can be ±∞ if there are no such constraints.

minimize
𝑽,𝑠

∑︁
𝑗 ,𝜙

𝑐
𝜙

𝑗,reRe(𝑠𝜙
𝑗
) + 𝑐𝜙

𝑗,imIm(𝑠𝜙
𝑗
) (3.2a)

subject to (3.1) (3.2b)

𝑉
𝜙

𝑗
≤ |𝑽𝜙

𝑗
| ≤ 𝑉𝜙𝑗 , ∀ 𝑗 , 𝜙 (3.2c)

𝑝𝜙
𝑗
≤ Re(𝑠𝜙

𝑗
) ≤ 𝑝𝜙

𝑗
, ∀ 𝑗 , 𝜙 (3.2d)

𝑞𝜙
𝑗
≤ Im(𝑠𝜙

𝑗
) ≤ 𝑞𝜙

𝑗
, ∀ 𝑗 , 𝜙 (3.2e)

ℓ
𝜙

𝑗 𝑘
≤ ℓ𝜙𝑗 𝑘 , ∀ 𝑗 ∼ 𝑘, 𝜙 (3.2f)

𝑽0 = 𝑽ref (3.2g)

Here, 𝑽ref ∈ C𝑚 denotes the reference voltage for 𝑚 phases at the slack bus.
Substituting the decision variables 𝑠 and𝑽 with𝑾 := 𝑽𝑽H, the following equivalent
formulation of (3.2) is obtained:

minimize
𝑾≥0

tr(𝑪0𝑾) (3.3a)

subject to 𝑣
𝜙

𝑗
≤ tr(𝑬𝜙

𝑗
𝑾) ≤ 𝑣𝜙

𝑗
, ∀ 𝑗 , 𝜙 (3.3b)

𝑝𝜙
𝑗
≤ tr(𝚽𝜙

𝑗
𝑾) ≤ 𝑝𝜙

𝑗
, ∀ 𝑗 , 𝜙 (3.3c)

𝑞𝜙
𝑗
≤ tr(𝚿𝜙

𝑗
𝑾) ≤ 𝑞𝜙

𝑗
, ∀ 𝑗 , 𝜙 (3.3d)

tr(𝚯𝜙

𝑗 𝑘
𝑾) ≤ ℓ𝜙𝑗 𝑘 , ∀ 𝑗 ∼ 𝑘, 𝜙 (3.3e)

[𝑾]00 = 𝒗ref (3.3f)

rank(𝑾) = 1. (3.3g)
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Here, 𝑣𝜙
𝑗
= |𝑉𝜙

𝑗
|2, 𝑣𝜙

𝑗
= |𝑉𝜙𝑗 |2, 𝒗ref = 𝑽ref𝑽

H
ref, and [𝑾]00 stands for the upper left

𝑚 ×𝑚 submatrix of 𝑾. The cost matrix 𝑪0 =
∑
𝑗 ,𝜙 𝑐

𝜙

𝑗,re𝚽
𝜙

𝑗
+ 𝑐𝜙

𝑗,im𝚿
𝜙

𝑗
. Dropping the

rank-1 constraint in (3.3g) yields the semidefinite relaxation:

minimize
𝑾≥0

tr(𝑪0𝑾) (3.4a)

subject to (3.3b) − (3.3f). (3.4b)

We use the following exactness definition.

Definition 14. A relaxation problem (3.4) is exact if at least one of its optimal
solutions 𝑾∗ is of rank 1.

Given a rank-1 solution 𝑾∗ of (3.4), a 𝑽∗ can be uniquely determined, which is
feasible, and hence optimal, for (3.3).

We first make the assumption that (3.4) has a unique optimal solution. In Section
3.7, we discuss the case when multiple optimal solutions exist.

3.3 Perturbation Analysis
We first study a perturbed version of (3.4). Fix a nonzero Hermitian matrix 𝑪1, and
consider the following perturbed problem for 𝜀 ≥ 0:

minimize
𝑾≥0

tr((𝑪0 + 𝜀𝑪1)𝑾) (3.5a)

subject to (3.3b) − (3.3f). (3.5b)

We say that (3.5) is exact if one of its optimal solution is of rank 1.

Lemma 12. For any nonzero 𝑪1, if there exists a sequence {𝜀𝑙}∞𝑙=1 with lim𝑙→∞ 𝜀𝑙 =

0 such that (3.5) is exact for all 𝜀𝑙 , then (3.4) is exact.

Proof. Suppose the rank-1 optimal solution to (3.5) for 𝜀𝑙 is 𝑾𝑙 . If the rank-1
optimal solution is non-unique, then pick any one as 𝑾𝑙 . As all the 𝑣𝜙

𝑗
are finite,

we assume they are upper bounded by a constant 𝛼. Hence the constraint (3.3b)
implies all the diagonal elements of 𝑾 are upper bounded by 𝛼. Since 𝑾 is positive
semidefinite, the norms of all their entries can be upper bounded by 𝛼 as well.
Consider the set

S = {𝑾 ≥ 0 : (3.3b) − (3.3g)}. (3.6)

The set {𝑾 : rank(𝑾) ≤ 1} is closed [38] and all other constraints (3.3b)-(3.3f)
also prescribe closed sets. Further, the zero matrix is not in S and we have shown
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that for any 𝑾 ∈ S, its max norm must be upper bounded by 𝛼, so S is compact.
The infinite set {𝑾𝑙}∞𝑙=1 is a subset in S and hence has a limit point 𝑾lim ∈ S [64].
For any 𝜀𝑙 , (3.5) has the same feasible set as (3.4), and hence the rank-1 matrix 𝑾lim

is also feasible for (3.4). Next we show that 𝑾lim is also an optimal point for (3.4).

If there exists another feasible 𝑾opt ≠ 𝑾lim such that tr(𝑪0𝑾lim) − tr(𝑪0𝑾opt) = 𝜈 >
0. Clearly ∀𝑾 feasible for (3.4), |tr(𝑪1𝑾) | ≤ 𝑚2𝑛2∥𝑪1∥∞∥𝑾∥∞ ≤ 𝑚2𝑛2𝛼∥𝑪1∥∞.
For sufficiently large 𝑙 such that

𝜀𝑙 <
𝜈

4𝑚2𝑛2𝛼∥𝑪1∥∞
∥𝑾𝑙 −𝑾lim∥∞ <

𝜈

4𝑚2𝑛2∥𝑪0∥∞
,

we have

tr(𝑪0(𝑾𝑙 −𝑾lim)) ≥ −
𝜈

4
(3.7a)

tr(𝜀𝑙𝑪1𝑾𝑙) ≥ −
𝜈

4
(3.7b)

tr(𝑪0𝑾lim) = tr(𝑪0𝑾opt) + 𝜈 (3.7c)
𝜈

4
≥ tr(𝜀𝑙𝑪1𝑾opt). (3.7d)

Summing up (3.7a)-(3.7d) gives

tr((𝑪0 + 𝜀𝑙𝑪1)𝑾𝑙) > tr((𝑪0 + 𝜀𝑙𝑪1)𝑾opt),

contradicting the optimality of 𝑾𝑙 for 𝜀𝑙 .

3.4 Duality
The dual problem of (3.4) is as follows.

maximize
𝜆
𝜙

𝑗 ,𝜆
𝜙

𝑗
,𝜇

𝜙

𝑗
,𝜇𝜙

𝑗
,

𝜂
𝜙

𝑗
,𝜂𝜙

𝑗
,𝜈

𝜙

𝑗𝑘
,𝜅

−
∑︁
𝑗 ,𝜙

(𝜆𝜙𝑗 𝑣
𝜙

𝑗
− 𝜆𝜙

𝑗
𝑣
𝜙

𝑗
+ 𝜇𝜙

𝑗
𝑝
𝜙

𝑗
− 𝜇𝜙

𝑗
𝑝𝜙
𝑗
+ 𝜂𝜙

𝑗
𝑞
𝜙

𝑗
− 𝜂𝜙

𝑗
𝑞𝜙
𝑗
)

+
∑︁
𝑗∼𝑘,𝜙

𝜈
𝜙

𝑗 𝑘
ℓ
𝜙

𝑗 𝑘 + tr(𝜅𝒗ref) (3.8a)

subject to 𝜆
𝜙

𝑗 , 𝜆
𝜙

𝑗
, 𝜇

𝜙

𝑗
, 𝜇𝜙

𝑗
, 𝜂
𝜙

𝑗
, 𝜂𝜙

𝑗
, 𝜈
𝜙

𝑗 𝑘
≥ 0 (3.8b)

𝑨 ≥ 0. (3.8c)

Dual variables (𝜆𝜙𝑗 , 𝜆
𝜙

𝑗
), (𝜇𝜙

𝑗
, 𝜇𝜙

𝑗
), (𝜂𝜙

𝑗
, 𝜂𝜙

𝑗
), 𝜈𝜙

𝑗 𝑘
and 𝜅 correspond to (3.3b)-(3.3f)

in (3.4b), respectively. Specifically 𝜅 ∈ C𝑚×𝑚 is Hermitian but not necessarily



44

semidefinite positive. Here

𝑨 :=
∑︁
𝑗 ,𝜙

(𝜆𝜙𝑗 − 𝜆
𝜙

𝑗
)𝑬𝜙

𝑗
+ (𝜇𝜙

𝑗
− 𝜇𝜙

𝑗
)𝚽𝜙

𝑗
+ (𝜂𝜙

𝑗
− 𝜂𝜙

𝑗
)𝚿𝜙

𝑗
+

∑︁
𝑗∼𝑘,𝜙

𝜈
𝜙

𝑗 𝑘
𝚯𝜙

𝑗 𝑘
+ 𝑪0 + Π(𝜅).

(3.9)

Matrix Π(𝜅) is an 𝑚𝑛 × 𝑚𝑛 matrix whose upper left 𝑚 × 𝑚 block is 𝜅 and other
elements are 0. Note that the upper and lower bounds in (3.3c)-(3.3e) could take
values of ±∞. In this case however, since the feasible set prescribed by (3.5b) is
compact, the actual values of 𝚽𝜙

𝑗
𝑾 and 𝚿𝜙

𝑗
𝑾 are always finite and hence the dual

variables associated with such constraints will be 0. As a result, these constraints
can be removed from (3.5) and (3.8).

We can also define the dual problem of (3.5) as

maximize
𝜆
𝜙

𝑗 ,𝜆
𝜙

𝑗
,𝜇

𝜙

𝑗
,𝜇𝜙

𝑗
,

𝜂
𝜙

𝑗
,𝜂𝜙

𝑗
,𝜈

𝜙

𝑗𝑘
,𝜅

−
∑︁
𝑗 ,𝜙

(𝜆𝜙𝑗 𝑣
𝜙

𝑗
− 𝜆𝜙

𝑗
𝑣
𝜙

𝑗
+ 𝜇𝜙

𝑗
𝑝
𝜙

𝑗
− 𝜇𝜙

𝑗
𝑝𝜙
𝑗
+ 𝜂𝜙

𝑗
𝑞
𝜙

𝑗
− 𝜂𝜙

𝑗
𝑞𝜙
𝑗
)

−
∑︁
𝑗∼𝑘,𝜙

𝜈
𝜙

𝑗 𝑘
ℓ
𝜙

𝑗 𝑘 + tr(𝜅𝒗ref) (3.10a)

subject to 𝜆
𝜙

𝑗 , 𝜆
𝜙

𝑗
, 𝜇

𝜙

𝑗
, 𝜇𝜙

𝑗
, 𝜂
𝜙

𝑗
, 𝜂𝜙

𝑗
, 𝜈
𝜙

𝑗 𝑘
≥ 0 (3.10b)

𝑨(𝜀) ≥ 0, (3.10c)

where

𝑨(𝜀) := 𝑨 + 𝜀𝑪1. (3.11)

We will use 𝜆𝜙𝑗 (𝜀), 𝜆
𝜙

𝑗
(𝜀) and so on to denote the Lagrange multipliers for 𝜀. Clearly,

when 𝜀 = 0, (3.10) is the same as (3.8) with 𝜆𝜙𝑗 (0), 𝜆
𝜙

𝑗
(0) and so on as the Lagrange

multipliers. If the value of 𝜀 is clear in the context, we might denote them simply
as 𝜆𝜙𝑗 , 𝜆

𝜙

𝑗
and so on for convenience. Let 𝑨∗ and 𝑨∗(𝜀) be the dual matrices when

dual variables are evaluated at a KKT point for (3.8) and (3.10), respectively.

Note that (3.8) and (3.10) are always strictly feasible, as we can assign sufficiently
large values to the diagonal entries of 𝑨 and 𝑨(𝜀). Therefore, strong duality always
holds for both (3.4), (3.8) and (3.5), (3.10). KKT conditions hold as well.

Definition 15. An 𝑚𝑛 × 𝑚𝑛 positive semidefinite matrix 𝑿 is G-invertible for some
graph G if the following two conditions hold:

1. ∀(𝑎, 𝑏) ∈ E, [𝑿]𝑎𝑏 is invertible.
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2. ∀𝑎, 𝑏 ∈ V such that 𝑎 ≠ 𝑏 and (𝑎, 𝑏) ∉ E, [𝑿]𝑎𝑏 is all zero.

The next theorem is a generalization of Theorem 3.3 in [37]. While [37] studies
the matrices whose non-zero off-diagonal entries correspond to an edge in G, we
extend the results to G-invertible matrices.

Theorem 7. Let 𝒚 ∈ C𝑚𝑛 be a non-zero vector with the smallest |Ω(𝒚) | satisfying
𝑿𝒚 = 0, where 𝑿 is G-invertible. Then Ω(𝒚) is connected in G.

Proof. If not, then assume Ω(𝒚) = Ω1 ∪ Ω2 where non-empty sets Ω1 and Ω2 are
not connected in G. Construct �̃� in the following manner:

[ �̃�]𝑘 =
{
[𝒚]𝑘 , 𝑘 ∉ Ω2

0 , 𝑘 ∈ Ω2
.

Then for each 𝑗 ∈ Ω1,

[𝑿�̃�] 𝑗 =
∑︁
𝑘∈V
[𝑿] 𝑗 𝑘 [ �̃�]𝑘 = [𝑿] 𝑗 𝑗 [ �̃�] 𝑗 +

∑︁
𝑘:𝑘∼ 𝑗
[𝑿] 𝑗 𝑘 [ �̃�]𝑘

=[𝑿] 𝑗 𝑗 [𝒚] 𝑗 +
∑︁
𝑘:𝑘∼ 𝑗
[𝑿] 𝑗 𝑘 [𝒚]𝑘 = [𝑿𝒚] 𝑗 = 0.

The third equality above is due to the fact that 𝑗 ∈ Ω1 is not connected to any nodes
in Ω2. Therefore,

�̃�H𝑿�̃� =
∑︁
𝑗∈V
[ �̃�]H𝑗 [𝑿�̃�] 𝑗 =

∑︁
𝑗∈Ω1

[ �̃�]H𝑗 [𝑿�̃�] 𝑗 +
∑︁
𝑗∉Ω1

[ �̃�]H𝑗 [𝑿�̃�] 𝑗

=
∑︁
𝑗∈Ω1

[ �̃�]H𝑗 0 +
∑︁
𝑗∉Ω1

0H [𝑿�̃�] 𝑗 = 0.

Since G-invertibility implies 𝑿 ≥ 0, there must be 𝑿�̃� = 0 as well. As |Ω( �̃�) | =
|Ω1 | < |Ω(𝒚) | and �̃� is non-zero by construction, it contradicts the minimality of
|Ω(𝒚) |.

Theorem 8. Let (𝑾∗, 𝑨∗) be a pair of primal/dual solutions to (3.4) and (3.8). If
𝑨∗ is G-invertible, 𝑾∗ must be rank 1.

Proof. Otherwise, we should have rank(𝑾∗) ≥ 2. 1 Suppose the eigen-decomposition
of 𝑾∗ is

𝑾∗ =
𝑚𝑛∑︁
𝑙=1

𝜚𝑙𝒖𝑙𝒖
H
𝑙 ,

1Note that rank(𝑾∗) cannot be 0 as the constraint [𝑾∗]00 = 𝒗ref requires 𝑾∗ to be a non-zero
matrix.
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where 𝜚1 ≥ 𝜚2 ≥ . . . 𝜚𝑚𝑛 ≥ 0 are 𝑾∗’s eigenvalues in decreasing order and 𝒖𝑙

is the eigenvector associated with 𝜚𝑙 . All the 𝒖𝑙 are non-zero and orthogonal. As
rank(𝑾∗) ≥ 2, we have 𝜚2 > 0. Now let 2 ≤ 𝐿 ≤ 𝑚𝑛 be the largest number such
that 𝜚𝐿 > 0, then we have

𝑽ref𝑽
H
ref = [𝑾

∗]00 =

𝐿∑︁
𝑙=1

𝜚𝑙 [𝒖𝑙]0 [𝒖𝑙]H0 =: 𝑼𝑼H,

𝑼 :=
[√
𝜚1 [𝒖1]0,

√
𝜚2 [𝒖2]0, . . . ,

√
𝜚𝐿 [𝒖𝐿]0

]
.

If the rank of 𝑼 is strictly greater than 1, then we can find 𝒛 ∈ span(𝑼) such that
𝒛H𝑽ref = 0. Then 𝑼H𝒛 ≠ 0 implies

0 =𝒛H𝑽ref𝑽
H
ref𝒛 = 𝒛H𝑼𝑼H𝒛 > 0.

The contradiction means rank(𝑼) ≤ 1, and therefore [𝒖1]0 and [𝒖2]0 are linearly
dependent. If [𝒖1]0 = 𝑟 [𝒖2]0 for some 𝑟 ∈ C, then we construct �̃� = 𝒖1 − 𝑟𝒖2.
Otherwise [𝒖2]0 must be zero and we construct �̃� = 𝒖2. Clearly we have

�̃� ≠ 0, [�̃�]0 = 0. (3.12)

On the other hand, KKT conditions give tr(𝑨∗𝑾∗) = 0. As both 𝑨∗ and 𝑾∗ are
positive semidefinite, we have

0 =tr(𝑨∗𝑾∗) = tr
(
𝑨∗

𝐿∑︁
𝑙=1

𝜚𝑙𝒖𝑙𝒖
H
𝑙

)
=

𝐿∑︁
𝑙=1

tr
(
𝜚𝑙𝑨

∗𝒖𝑙𝒖
H
𝑙

)
=

𝐿∑︁
𝑙=1

tr
(
𝜚𝑙𝒖

H
𝑙 𝑨
∗𝒖𝑙

)
≥ 0.

The equality holds only when 𝑨∗𝒖𝑙 = 0 for all 𝑙 ≤ 𝐿. Hence

𝑨∗�̃� = 0. (3.13)

As (3.12) has shown 1 ≤ |Ω(�̃�) | ≤ 𝑛 − 1, Theorem 7 and (3.13) imply that there
exists �̂� such that Ω(�̂�) is non-empty, connected in G, 1 ≤ |Ω(�̂�) | ≤ 𝑛 − 1, and
𝑨∗�̂� = 0. Let 𝑗 be a node not in Ω(�̂�) but is connected to some node 𝑘 ∈ Ω(�̂�).
Since A2 requires G to be a tree and Ω(�̂�) is connected in G, 𝑘 must be the only
node in Ω(�̂�) which is connected to 𝑗 ∉ Ω(�̂�). Otherwise there is a cycle. Then

[𝑨∗�̂�] 𝑗 =
∑︁
𝑙∈V
[𝑨∗] 𝑗 𝑙 [�̂�] 𝑙 = [𝑨∗] 𝑗 𝑗 [�̂�] 𝑗 +

∑︁
𝑙:𝑙∼ 𝑗
[𝑨∗] 𝑗 𝑙 [�̂�] 𝑙

=[𝑨∗] 𝑗 𝑗0 + [𝑨∗] 𝑗 𝑘 [�̂�]𝑘 +
∑︁

𝑙:𝑙∼ 𝑗 ,𝑙∉Ω(�̂�)
[𝑨∗] 𝑗 𝑙 [�̂�] 𝑙 .
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As [�̂�] 𝑙 = 0 for 𝑙 ∉ Ω(�̂�), we have [𝑨∗�̂�] 𝑗 = [𝑨∗] 𝑗 𝑘 [�̂�]𝑘 . Further, ( 𝑗 , 𝑘) ∈ E
and the G-invertibility of 𝑨∗ implies [𝑨∗] 𝑗 𝑘 is invertible. Node 𝑘 is in Ω(�̂�)
implies [�̂�]𝑘 ≠ 0. As a result, [𝑨∗�̂�] 𝑗 = [𝑨∗] 𝑗 𝑘 [�̂�]𝑘 must be non-zero, contracting
𝑨∗�̂� = 0. Therefore, 𝑾∗ must have rank 1.

Similarly, we can prove the following corollary for perturbed problems.

Corollary 9. Let (𝑾∗, 𝑨∗(𝜀)) be a pair of primal/dual solutions to (3.5) and (3.10).
If 𝑨∗(𝜀) is G-invertible, 𝑾∗ must be rank 1.

3.5 First Perspective: Sparse Critical Buses
In this section, we will show that if critical buses (i.e., buses that appear in the cost
function or yield binding constraints) are sparse in the network, then the dual matrix
𝑨∗ tends to be sparse, and the relaxation is therefore exact. We first propose the
following assumption.

A1: Problem (3.4) has unique optimal solution and we remove line current con-
straints (3.3e). 2

The KKT condition is necessary and sufficient optimality condition for the primal
(3.5) and the dual (3.8) problem. In this section, 𝑾∗ refers to the unique solution of
(3.4).

Notations
The following notations and definitions will be used throughout the rest of the
chapter.

For each bus-phase pair ( 𝑗 , 𝜙), we define

𝑓𝑝 ( 𝑗 , 𝜙) :=


0, tr(𝚽𝜙

𝑗
𝑾∗) ∉ {𝑝𝜙

𝑗
, 𝑝𝜙

𝑗
}

1, tr(𝚽𝜙

𝑗
𝑾∗) = 𝑝𝜙

𝑗

−1, tr(𝚽𝜙

𝑗
𝑾∗) = 𝑝𝜙

𝑗

.

The strong duality guarantees that 𝑝𝜙
𝑗

and 𝑝𝜙
𝑗

cannot be attained simultaneously, so
the definition above is fully specified. Similarly we define

𝑓𝑞 ( 𝑗 , 𝜙) :=


0, tr(𝚿𝜙

𝑗
𝑾∗) ∉ {𝑞𝜙

𝑗
, 𝑞𝜙

𝑗
}

1, tr(𝚿𝜙

𝑗
𝑾∗) = 𝑞𝜙

𝑗

−1, tr(𝚿𝜙

𝑗
𝑾∗) = 𝑞𝜙

𝑗

.

2Alternatively, one can assume ℓ
𝜙

𝑗𝑘 = ∞ for all 𝑗 ∼ 𝑘 .
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Definition 16. The critical objective bus set is

So := { 𝑗 ∈ V : ∃𝜙 s.t. 𝑐𝜙
𝑗,r𝑒 ≠ 0 or 𝑐𝜙

𝑗,i𝑚 ≠ 0}.

Definition 17. The critical constraint bus set is

Sc := { 𝑗 ∈ V : ∃𝜙 s.t. 𝑓𝑝 ( 𝑗 , 𝜙) ≠ 0 or 𝑓𝑞 ( 𝑗 , 𝜙) ≠ 0}.

For any 𝑚𝑛 × 𝑚𝑛 matrix 𝑿, we use [𝑿] 𝑗 ,𝑘 to denote the 𝑚 × 𝑚 block of 𝑿 from
rows 𝑗𝑚 + 1 to 𝑗𝑚 + 𝑚 and from columns 𝑘𝑚 + 1 to 𝑘𝑚 + 𝑚. Further, for 𝜙 ∈ M,
we denote [𝑿]𝜙,:

𝑗 ,𝑘
and [𝑿]:,𝜙

𝑗 ,𝑘
as the 𝜙th row and column of [𝑿] 𝑗 ,𝑘 , respectively.

Similarly, for an 𝑚𝑛 dimensional vector 𝒙, we use [𝒙] 𝑗 to denote the subvector of 𝒙
from the ( 𝑗𝑚 + 1)th to ( 𝑗𝑚 + 𝑚)th entry. Denote

Ω(𝒙) := { 𝑗 ∈ V, [𝒙] 𝑗 ≠ 0}

and we use |Ω| to denote its cardinality.

We sayV1 ⊆ V is connected in G if G has a connected subgraph whose vertex set
is V1. For any node 𝑗 ∈ V, we denote the set of its neighbors in G as N( 𝑗). For
K ⊆ V, we reload N(K) := ∪ 𝑗∈KN( 𝑗).

We say a set of real numbers are sign-semidefinite if all the non-zero numbers are
of the same sign.

Main Results
Consider the following conditions.

A2: The underlying graph G is a tree.

A3: (So ∪ Sc) ∩ N (So ∪ Sc) = ∅.

A4: So ∩ Sc = ∅.

A5: For any 𝑗 ∈ So ∩ Sc and 𝜙 ∈ M, 𝑐𝜙
𝑗,r𝑒 𝑓𝑝 ( 𝑗 , 𝜙) ≥ 0 and 𝑐𝜙

𝑗,i𝑚 𝑓𝑞 ( 𝑗 , 𝜙) ≥ 0.

Informally, A3 means all the critical buses are not adjacent to each other. A5
means if a bus is both critical in objective function and constraints, then for all
𝑚 phases, {𝑐𝜙

𝑗,r𝑒, 𝑓𝑝 ( 𝑗 , 𝜙)} and {𝑐𝜙
𝑗,i𝑚, 𝑓𝑞 ( 𝑗 , 𝜙)} are sign-semidefinite, respectively.

The following two theorems provide two sets of sufficient conditions for exact SDP
relaxation.
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Theorem 9. If conditions A1, A2, A3 and A4 hold, then (3.4) is exact.

Theorem 10. If conditions A1, A2, A3 and A5 hold, then (3.4) is exact.

Both theorems rely on strict feasibility, tree structure and critical buses not be
adjacent. Theorem 9 needs So and Sc to be also disjoint. On the other hand,
Theorem 10 allows them to intersect, but says for each ( 𝑗 , 𝜙) in the intersection,
the objective and constraints should encourage its injection to move in the same
direction. 3 Since A4 implies A5, Theorem 10 is stronger than Theorem 9. In the
next section, we will only provide a proof of Theorem 10.

One drawback of Theorems 9 and 10 is that the sufficient conditions are given in
terms of the optimal solution 𝑾∗. The next result provides a sufficient condition
that depends only on the primal parameters in (3.2). Let

S̃c := { 𝑗 ∈ V : ∃𝜙 s.t. {±∞} ⊈ {𝑝𝜙
𝑗
, 𝑝

𝜙

𝑗
, 𝑞𝜙

𝑗
, 𝑝

𝜙

𝑗
}}.

Corollary 10. Suppose A1 and A2 hold, If (So ∪ S̃c) ∩ N (So ∪ S̃c) = ∅ and
So ∩ S̃c = ∅, then (3.4) is exact.

Proof. As Sc ⊆ S̃c, the conditions in the corollary imply A1–A4 and thus exactness
holds.

Informally, Corollary 10 shows that if all the buses involved in the objective function
and constraints are not adjacent to each other, then the SDP relaxation is exact.

3.6 Proof of Sufficient Conditions
Review
The existing works [15, 67] prove that the optimal solution of SDP relaxation is of
rank 1 in single phase networks. A crucial step in their proof uses the strong duality
to show that the product of the primal optimal solution 𝑾∗ and the dual matrix 𝑨∗

is a zero matrix, and hence the rank of 𝑾∗ cannot exceed the dimension of 𝑨∗’s null
space. Under certain conditions [15, 67] prove that 𝑨∗’s null space is of dimension
at most 1. Hence the optimal primal solution 𝑾∗ must be of rank at most 1.

This argument however breaks down in a multiphase network for the following two
reasons. First, although the underlying graph for𝑚 phase network is still a tree, each

3For example, if Re(𝑠𝜙
𝑗
) is minimized in the objective function, then the lower bound of Re(𝑠𝜙

𝑗
)

should not be active in the constraints.
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bus now has 𝑚 different phases and might have 𝑚 unbalanced voltages in general.
If we extend each phase to a separate vertex in the new graph and connect every
phase pair between every two neighboring buses, then the 𝑚 phase network will be
transformed into an (𝑚𝑛)-node meshed network with multiple cycles [7, 22, 44].
Hence the theory for single-phase radial network is not applicable. Second, in an 𝑚
phase network, it is unknown wether the null space of 𝑨∗ at the optimal point is still
of dimension 1. It is therefore not clear how to prove rank(𝑾∗) = 1 via analyzing
the dimension of null(𝑨∗).

In the following argument, we use a similar proof framework to that in [15], but the
proof will be based on the eigenvectors of 𝑾∗ instead of the dimension of null(𝑨∗).
From now on, we suppose A1, A2, A3, and A5 hold.

Preliminaries
Our strategy is to prove the exactness of the perturbed OPF problem and then use
Lemma 12 to show (3.4) is also exact. It is important to make sure that all the
non-active constraints will remain non-active in the perturbation neighborhood.

Lemma 13. For any nonzero 𝑪1, there exists a positive sequence 𝜀 ↓ 0 such that for
each 𝜀 in the sequence, one can collect (𝜇𝜙

𝑗
(𝜀), 𝜇𝜙

𝑗
(𝜀), 𝜂𝜙

𝑗
(𝜀), 𝜂𝜙

𝑗
(𝜀)) from at least

one of its KKT multiplier tuples satisfying

𝑓𝑝 ( 𝑗 , 𝜙) = 0 =⇒ 𝜇
𝜙

𝑗
(𝜀) = 𝜇𝜙

𝑗
(𝜀) = 0 (3.14a)

𝑓𝑝 ( 𝑗 , 𝜙) ≠ 0 =⇒ 𝑓𝑝 ( 𝑗 , 𝜙) · (𝜇𝜙𝑗 (𝜀) − 𝜇
𝜙

𝑗
(𝜀)) ≥ 0 (3.14b)

𝑓𝑞 ( 𝑗 , 𝜙) = 0 =⇒ 𝜂
𝜙

𝑗
(𝜀) = 𝜂𝜙

𝑗
(𝜀) = 0 (3.14c)

𝑓𝑞 ( 𝑗 , 𝜙) ≠ 0 =⇒ 𝑓𝑞 ( 𝑗 , 𝜙) · (𝜂𝜙𝑗 (𝜀) − 𝜂
𝜙

𝑗
(𝜀)) ≥ 0. (3.14d)

Proof. First consider any positive sequence {𝜀𝑙}∞𝑙=1 such that lim𝑙→∞ 𝜀𝑙 = 0. Sup-
pose the optimal solution to (3.5) under 𝜀𝑙 is 𝑾𝑙 (if there are multiple solutions then
select one of them). As (3.5b) prescribes a compact set, using a similar argument
as in the proof of Lemma 12 we know there must be a subsequence of {𝜀𝑙}∞𝑙=1,
denoted by {𝜀𝑧𝑡 }∞𝑡=1, such that 𝑾𝑧𝑡 converges to 𝑾∗ in the max norm. The difference
∥𝑾𝑧𝑡 −𝑾∗∥∞ can be arbitrarily small for sufficiently large 𝑡. When 𝑡 is large enough,
the non-active constraints in (3.5b) under 𝑾∗ will remain non-active under 𝑾𝑧𝑡 , and
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the corresponding KKT multipliers will remain 0. As a result,

𝑓𝑝 ( 𝑗 , 𝜙) = 0 =⇒ 𝑝𝜙
𝑗
< tr(𝚽𝜙

𝑗
𝑾∗) < 𝑝

𝜙

𝑗

=⇒ 𝑝𝜙
𝑗
< tr(𝚽𝜙

𝑗
𝑾𝑧𝑡 ) < 𝑝

𝜙

𝑗
=⇒ 𝜇

𝜙

𝑗
(𝜀𝑧𝑡 ) = 𝜇𝜙𝑗 (𝜀𝑧𝑡 ) = 0,

𝑓𝑝 ( 𝑗 , 𝜙) = +1 =⇒ 𝑝𝜙
𝑗
< tr(𝚽𝜙

𝑗
𝑾∗)

=⇒ 𝑝𝜙
𝑗
< tr(𝚽𝜙

𝑗
𝑾𝑧𝑡 ) =⇒ 𝜇𝜙

𝑗
(𝜀𝑧𝑡 ) = 0

=⇒ 𝑓𝑝 ( 𝑗 , 𝜙) · (𝜇𝜙𝑗 (𝜀𝑧𝑡 ) − 𝜇
𝜙

𝑗
(𝜀𝑧𝑡 )) ≥ 0,

𝑓𝑝 ( 𝑗 , 𝜙) = −1 =⇒ tr(𝚽𝜙

𝑗
𝑾∗) < 𝑝

𝜙

𝑗

=⇒ tr(𝚽𝜙

𝑗
𝑾𝑧𝑡 ) < 𝑝

𝜙

𝑗
=⇒ 𝜇

𝜙

𝑗
(𝜀𝑧𝑡 ) = 0

=⇒ 𝑓𝑝 ( 𝑗 , 𝜙) · (𝜇𝜙𝑗 (𝜀𝑧𝑡 ) − 𝜇
𝜙

𝑗
(𝜀𝑧𝑡 )) ≥ 0

all hold. A similar argument can also be applied to prove (3.14c) and (3.14d).

Properties of Dual Matrix 𝑨∗(𝜀)
In order to apply Lemma 12, we construct 𝑪1 ∈ C𝑚𝑛×𝑚𝑛 in the following manner:

[𝑪1] 𝑗 𝑗 = 0 ∈ C𝑚×𝑚, for 𝑗 ∈ V
[𝑪1] 𝑗 𝑘 = 0 ∈ C𝑚×𝑚, for ( 𝑗 , 𝑘) ∉ E .

When ( 𝑗 , 𝑘) ∈ E, we assume 𝑗 < 𝑘 . If neither 𝑗 nor 𝑘 is in So ∪ Sc, then we
construct [𝑪1] 𝑗 𝑘 = 𝒀 𝑗 𝑘 .

If 𝑗 ∈ So ∪ Sc, then A3 guarantees 𝑘 ∉ So ∪ Sc. ∀𝜙 ∈ M, we set [𝑪1]𝜙,:𝑗 𝑘 to 𝒀𝜙,:
𝑗 𝑘

if
𝑐
𝜙

𝑗,r𝑒 = 𝑐
𝜙

𝑗,i𝑚 = 𝑓𝑝 ( 𝑗 , 𝜙) = 𝑓𝑞 ( 𝑗 , 𝜙) = 0, and to ( 𝑓𝑝 ( 𝑗 , 𝜙) + 𝑓𝑞 ( 𝑗 , 𝜙) 𝒊)𝒀𝜙,:𝑗 𝑘 otherwise.

If 𝑘 ∈ So ∪ Sc, then A3 guarantees 𝑗 ∉ So ∪ Sc. ∀𝜙 ∈ M, we similarly set
[𝑪1]:,𝜙𝑗 𝑘 to (𝒀𝜙,:

𝑘 𝑗
)H if 𝑐𝜙

𝑘,r𝑒 = 𝑐
𝜙

𝑘,i𝑚 = 𝑓𝑝 (𝑘, 𝜙) = 𝑓𝑞 (𝑘, 𝜙) = 0, and to ( 𝑓𝑝 (𝑘, 𝜙) −
𝑓𝑞 (𝑘, 𝜙) 𝒊) (𝒀𝜙,:𝑘 𝑗

)H otherwise.

Finally, we set [𝑪1]𝑘 𝑗 := [𝑪1]H𝑗 𝑘 for all 𝑗 < 𝑘 to make 𝑪1 Hermitian.

The next theorem provides a key intermediate result to prove Theorem 10. Suppose
under such 𝑪1, the sequence guaranteed by Lemma 13 is {𝜀𝑙}∞𝑙=1.

Theorem 11. Under A1, A2, A3, and A5, for each 𝜀𝑙 , the dual matrix 𝑨∗(𝜀𝑙) is
G-invertible. 4

4If the KKT multiplier tuple at 𝜀𝑙 is non-unique, then 𝑨∗ (𝜀𝑙) is evaluated at the multiplier tuple
in Lemma 13 satisfying (3.14).
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Proof. The value of 𝑨∗(𝜀𝑙) is the same as the right hand side of (3.11) when all dual
variables take values at their corresponding KKT multipliers (with respect to 𝜀𝑙).
If not otherwise specified, all the (𝜇𝜙

𝑗
, 𝜇𝜙

𝑗
, 𝜂
𝜙

𝑗
, 𝜂𝜙

𝑗
) in this proof refer to the tuple in

Lemma 13 with respect to 𝜀𝑙 . Since for all 𝑎 ≠ 𝑏, [𝑬𝜙

𝑗
]𝑎𝑏 and [Π(𝜅)]𝑎𝑏 are always

zero matrices, it is sufficient to show

𝑸 :=
∑︁
𝑗 ,𝜙

(
(𝜇𝜙

𝑗
− 𝜇𝜙

𝑗
)𝚽𝜙

𝑗
+ (𝜂𝜙

𝑗
− 𝜂𝜙

𝑗
)𝚿𝜙

𝑗

)
+ 𝑪0 + 𝜀𝑙𝑪1

satisfies the two conditions in Definition 15.5

For 𝑎 ≠ 𝑏 and (𝑎, 𝑏) ∉ E, recall that 𝑪0 is the linear combination of 𝚽𝜙

𝑗
and 𝚿𝜙

𝑗
.

When (𝑎, 𝑏) ∉ E, 𝒀𝑎𝑏 is a zero matrix and so are all [𝚽𝜙

𝑗
]𝑎𝑏 and [𝚿𝜙

𝑗
]𝑎𝑏. The

construction of 𝑪1 also guarantees [𝑪1]𝑎𝑏 is all zero. Hence [𝑸]𝑎𝑏 is all zero as
well.

Now assume 𝑎 < 𝑏. If (𝑎, 𝑏) ∈ E, we have

[𝑸]𝑎𝑏

=
∑︁
𝜙

(
(𝜇𝜙𝑎 − 𝜇𝜙

𝑎
+ 𝑐𝜙𝑎,r𝑒) [𝚽

𝜙
𝑎 ]𝑎𝑏+(𝜂𝜙𝑎 − 𝜂𝜙

𝑎
+ 𝑐𝜙

𝑎,i𝑚) [𝚿
𝜙
𝑎 ]𝑎𝑏

)
+
∑︁
𝜙

(
(𝜇𝜙

𝑏
− 𝜇𝜙

𝑏
+ 𝑐𝜙

𝑏,r𝑒) [𝚽
𝜙

𝑏
]𝑎𝑏+(𝜂𝜙𝑏 − 𝜂

𝜙

𝑏
+ 𝑐𝜙

𝑏,i𝑚) [𝚿
𝜙

𝑏
]𝑎𝑏

)
+𝜀𝑙 [𝑪1]𝑎𝑏 . (3.15)

If neither 𝑎 nor 𝑏 is in So ∪ Sc, then by definition, for all 𝜙 ∈ M there must be

𝑐
𝜙
𝑎,r𝑒 = 𝑐

𝜙

𝑎,i𝑚 = 𝑓𝑝 (𝑎, 𝜙) = 𝑓𝑞 (𝑎, 𝜙) = 0, (3.16a)

𝑐
𝜙

𝑏,r𝑒 = 𝑐
𝜙

𝑏,i𝑚 = 𝑓𝑝 (𝑏, 𝜙) = 𝑓𝑞 (𝑏, 𝜙) = 0. (3.16b)

Equation (3.15) and Lemma 13 imply [𝑸]𝑎𝑏 = 𝜀𝑙 [𝑪1]𝑎𝑏. By construction, [𝑪1]𝑎𝑏 =
𝒀𝑎𝑏 is invertible, and so is [𝑸]𝑎𝑏.

If 𝑎 ∈ So ∪ Sc, then A3 guarantees 𝑏 ∉ So ∪ Sc. Thus (3.16b) holds for all
𝜙 ∈ M. For a given 𝜙 ∈ M, if (3.16a) holds, then by construction, we have
[𝑸]𝜙,:

𝑎𝑏
= 𝜀𝑙 [𝑪1]𝜙,:𝑎𝑏 = 𝜀𝑙𝒀

𝜙,:
𝑎𝑏

. If (3.16a) does not hold for the given 𝜙, then we have

[𝑸]𝜙,:
𝑎𝑏

= (𝜇𝜙𝑎 − 𝜇𝜙
𝑎
+ 𝑐𝜙𝑎,r𝑒 + 2𝜀𝑙 𝑓𝑝 (𝑎, 𝜙))

𝒀𝜙,:
𝑎𝑏

2

+ (𝜂𝜙𝑎 − 𝜂𝜙
𝑎
+ 𝑐𝜙

𝑎,i𝑚 + 2𝜀𝑙 𝑓𝑞 (𝑎, 𝜙))
𝒀𝜙,:
𝑎𝑏

2
𝒊.

5The matrix 𝑸 itself might not be G-invertible as 𝑸 might not be positive semidefinite, but
𝑨∗ ≥ 0 always holds.
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Note that Condition A5 and Lemma 13 imply both {𝜇𝜙𝑎 − 𝜇𝜙
𝑎
, 𝑓𝑝 (𝑎, 𝜙), 𝑐𝜙𝑎,r𝑒} and

{𝜂𝜙𝑎−𝜂𝜙
𝑎
, 𝑓𝑞 (𝑎, 𝜙), 𝑐𝜙𝑎,i𝑚} are sign-semidefinite sets, respectively. When (3.16a) does

not hold, at least one of {𝑐𝜙𝑎,r𝑒, 𝑐
𝜙

𝑎,i𝑚, 𝑓𝑝 (𝑎, 𝜙), 𝑓𝑞 (𝑎, 𝜙)} is non-zero. As a result,
there exists some non-zero 𝜎𝜙,:

𝑎𝑏
∈ C such that [𝑸]𝜙,:

𝑎𝑏
= 𝜎

𝜙,:
𝑎𝑏
𝒀𝜙,:
𝑎𝑏

. In short, in the case
𝑎 ∈ So ∪ Sc, [𝑸]𝜙,:𝑎𝑏 is always a non-zero multiple of 𝒀𝜙,:

𝑎𝑏
. The invertibility of 𝒀𝑎𝑏

indicates all the 𝒀𝜙,:
𝑎𝑏

are independent for 𝜙 ∈ M, so [𝑸]𝑎𝑏 is also invertible.

If 𝑏 ∈ So ∪ Sc, then A3 guarantees 𝑎 ∉ So ∪ Sc. Then (3.16a) holds for all
𝜙 ∈ M. For a given 𝜙 ∈ M, if (3.16b) holds, then by construction, we have
[𝑸]:,𝜙

𝑎𝑏
= 𝜀𝑙 [𝑪1]:,𝜙𝑎𝑏 = 𝜀𝑙 (𝒀

𝜙,:
𝑏𝑎
)H. If (3.16b) does not hold, then similar to the previous

case, there exists some non-zero 𝜎:,𝜙
𝑎𝑏
∈ C such that [𝑸]:,𝜙

𝑎𝑏
= 𝜎

:,𝜙
𝑎𝑏
(𝒀𝜙,:
𝑏𝑎
)H. Hence

[𝑸]:,𝜙
𝑎𝑏

is always a non-zero multiple of (𝒀𝜙,:
𝑏𝑎
)H. The invertibility of 𝒀𝑏𝑎 indicates all

the 𝒀𝜙,:
𝑏𝑎

are independent for 𝜙 ∈ M, so [𝑸]𝑎𝑏 is also invertible.

Proof of Theorem 10
Theorem 11 and Corollary 9 imply that (3.5) is exact under conditions A1, A2, A3,
and A5 for any 𝜀. By Lemma 12, Theorem 10 is proved.

3.7 Discussion and Example
Discussion
Theorem 9, Theorem 10, and Corollary 10 provide us with the first perspective that
partially explain why the SDP relaxation for unbalanced multiphase network tends
to be exact. Conceptually, those results require the critical buses to be sparse over
the network. Particularly, those results give three sets of sufficient conditions which
may have slightly different interpretations and implications.

Sufficient conditions in Corollary 10 do not rely on the optimal solution of SDP
relaxation, and can be checked a priori. Though these conditions are still restrictive
in practice, we hope this result can stimulate more work on unbalanced multiphase
networks.

Conditions in Theorems 9 and 10 rely on knowing the active constraints at the
optimal point, which cannot be checked a priori. Nevertheless, the actual value of
the optimal point is not involved as long as one knows where the bottlenecks are.
These conditions also suggest that relaxation is more likely to be exact if critical
buses turn out to be spread over the network rather than concentrated in some
neighborhood.

In A1 we have assumed that (3.4) has a unique optimal solution so that inactive
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650

646 645

632

633 634

671680 684 611

652

Figure 3.1: An 11 bus network revised from IEEE 13 node test feeder. The switch
in the original system is assumed to be open so 2 buses are removed.

constraints at the optimal solution of (3.4) remain inactive under a small perturbation.
If (3.4) has multiple solutions, A4 and A5 in Theorems 9 and 10 and condition
So ∩ S̃c = ∅ in Corollary 10 need to be replaced by the linear separability condition
proposed in [15]. The proof will be similar.

To generalize the result here to nonlinear cost functions, note that the proposed
conditions involving the cost function only rely on the signs of 𝑐𝜙

𝑗,r𝑒 and 𝑐𝜙
𝑗,i𝑚. The

same argument in this chapter can be extended to the nonlinear case when the cost
function is convex, monotonic, and additively separable in injections.

Illustrative Example
We use an 11 bus radial network shown in Fig. 3.1, adapted from IEEE 13 node test
feeder, to illustrate our theoretical result. The line configuration is reassigned and
noise is added to the admittance matrix, so all the buses have three complete phases
and each 𝑦 𝑗 𝑘 is invertible. For illustrative purpose, all the real/reactive injections are
bounded from at most one direction. Table 3.1 summarizes our setup. The ‘+’ and
‘-’ refer to the sign of 𝑐𝜙

𝑗,r𝑒 or 𝑐𝜙
𝑗,i𝑚 in the cost function. For constraints, ‘u’ (or ‘l’)

means the upper (or lower) bound for the corresponding injection is finite. It is easy
to check that no matter which constraints are active at the optimal point, conditions
A1, A2, A3, and A5 must hold, so Theorem 10 implies the optimal solution is of
rank 1.

After solving the problem, there are actually nine active constraints, highlighted in
light red in Table 3.1. The largest two eigenvalues of the resulting optimal solution



55

Bus Phase Objective
(real)

Objective
(reactive)

Constraints
(real)

Constraints
(reactive)

650
a + + u u
b + + u u
c + + u u

632
a
b
c

633
a - - l l
b - - l l
c - - l l

634
a
b
c

645
a + - u l
b + - u l
c + - u l

646
a
b
c

671
a - + l u
b - + l u
c - + l u

684
a
b
c

611
a + + u u
b + + u u
c + + u u

652
a +
b +
c +

680
a
b
c

Table 3.1: Illustrative example summary.

𝑾∗ are 36.90 and 1.44 × 10−10, respectively. It confirms that 𝑾∗ is indeed rank 1
up to numerical precision.

Finally, we refer to [30] for more simulation results, which show that semidefinite
relaxation is also exact for IEEE 13, 37, 123-bus networks and a real-world 2065-bus
network. In the simulation of [30], our sufficient conditions are actually violated
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since the cost function is set as ∑︁
𝑗∈V

∑︁
𝜙∈M

Re(𝑠𝜙
𝑗
).

It means even when all the buses are critical, the semidefinite relaxation can still be
exact.

3.8 Second Perspective: Narrow Marginal Price Range
In this section, we provide a new perspective which may also partially explain why
𝑨∗, the optimal solution to (3.8), tends to be G-invertible. Recall that in [45], one
key finding says that having nonnegative nodal prices yields exact solutions. For
multi-phase networks, however, we find that such condition is not sufficient. Instead,
we need the nodal prices for any two adjacent buses to be close. This condition
cannot be checked a priori, but for systems maintained at a normal operating point,
such assumption is reasonable, and in Chapter 5 we will estimate the approximate
values of nodal prices to further support this argument. From now on, we will focus
on 3-phase networks, so 𝑚 is set as 3 throughout this section.

In the first assumption, we let 𝑦 𝑗 𝑘 to be a complex matrices that is symmetric across
all phases.

B1: For each edge 𝑗 ∼ 𝑘 , 𝑦 𝑗 𝑘 has the form

𝑦 𝑗 𝑘 =


𝑎 𝑗 𝑘 𝑏 𝑗 𝑘 𝑏 𝑗 𝑘

𝑏 𝑗 𝑘 𝑎 𝑗 𝑘 𝑏 𝑗 𝑘

𝑏 𝑗 𝑘 𝑏 𝑗 𝑘 𝑎 𝑗 𝑘

 ,
where both 𝑎 𝑗 𝑘 , 𝑏 𝑗 𝑘 ∈ C and Further, assume

−Im(𝑎 𝑗 𝑘 ) > Re(𝑎 𝑗 𝑘 ) > 0, (3.17a)

−Im(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 ) > Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 ) > 0. (3.17b)

Now we can also decompose 𝑦 𝑗 𝑘 as 𝐴 𝑗 𝑘 + 𝐵 𝑗 𝑘 where 𝐴 𝑗 𝑘 = (𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )I3 and
𝐵 𝑗 𝑘 = 𝑏 𝑗 𝑘11T.

We let 𝜇𝜙
𝑗
= 𝜇

𝜙

𝑗
− 𝜇𝜙

𝑗
, 𝜂𝜙

𝑗
= 𝜂

𝜙

𝑗
− 𝜂𝜙

𝑗
, where 𝜇𝜙

𝑗
, 𝜇𝜙

𝑗
, 𝜂
𝜙

𝑗
, 𝜂𝜙

𝑗
are the optimal dual

variables of (3.8). Clearly, for any 𝑗 ≁ 𝑘 , [𝑨∗] 𝑗 𝑘 = 0, so to show 𝑨∗ is G-invertible,
it is sufficient to show that [𝑨∗] 𝑗 𝑘 is invertible for all 𝑗 ∼ 𝑘 . For 𝑗 ∼ 𝑘 , the block
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[𝑨∗] 𝑗 𝑘 is

[𝑨∗] 𝑗 𝑘 = −
1
2

diag(𝑐 𝑗 ,re + 𝜇 𝑗 )𝑦 𝑗 𝑘 +
1
2𝒊

diag(𝑐 𝑗 ,im + 𝜂 𝑗 )𝑦 𝑗 𝑘

− 1
2
𝑦H
𝑗 𝑘diag(𝑐𝑘,re + 𝜇𝑘 ) −

1
2𝒊
𝑦H
𝑗 𝑘diag(𝑐𝑘,im + 𝜂𝑘 )

− |𝑎 𝑗 𝑘 |2diag(𝜈 𝑗 𝑘 ).

We define

𝑈 = −1
2

diag(𝑐 𝑗 ,re + 𝜇 𝑗 ) +
1
2𝒊

diag(𝑐 𝑗 ,im + 𝜂 𝑗 )

𝑉 = −1
2

diag(𝑐𝑘,re + 𝜇𝑘 ) −
1
2𝒊

diag(𝑐𝑘,im + 𝜂𝑘 )

𝐷 = −|𝑎 𝑗 𝑘 |2diag(𝜈 𝑗 𝑘 )

to be three diagonal matrices. Then we can evaluate [𝑨∗] 𝑗 𝑘 as

[𝑨∗] 𝑗 𝑘 = 𝑈𝑦 𝑗 𝑘 + 𝑦H
𝑗 𝑘𝑉 + 𝐷

= 𝑈 (𝐴 𝑗 𝑘 + 𝐵 𝑗 𝑘 ) + (𝐴 𝑗 𝑘 + 𝐵 𝑗 𝑘 )H𝑉 + 𝐷

= 𝑈𝐴 𝑗 𝑘 + 𝐴H
𝑗 𝑘𝑉 + 𝐷 + [𝑈1 𝑏H

𝑗 𝑘1]
[
𝑏 𝑗 𝑘1T

1T𝑉

]
, (3.18)

where𝑈𝐴 𝑗 𝑘 +𝐴H
𝑗 𝑘
𝑉 +𝐷 is diagonal. By Weinstein-Aronszajn formula, [𝑨∗] 𝑗 𝑘 being

invertible can be implied by

𝑈𝐴 𝑗 𝑘 + 𝐴H
𝑗 𝑘𝑉 + 𝐷 being invertible, (3.19a)

I2 + [𝑏 𝑗 𝑘1 𝑉T1]T(𝑈𝐴 𝑗 𝑘 + 𝐴H
𝑗 𝑘𝑉 + 𝐷)

−1 [𝑈1 𝑏H
𝑗 𝑘1] being invertible.

(3.19b)

For each 𝑗 ∼ 𝑘 , we define

𝑢
𝜙

𝑗 𝑘
= −1

2
(𝑐𝜙
𝑗,re + 𝜇

𝜙

𝑗
) + 1

2𝒊
(𝑐𝜙
𝑗,im + 𝜂

𝜙

𝑗
);

𝑣
𝜙

𝑗 𝑘
= −1

2
(𝑐𝜙
𝑘,re + 𝜇

𝜙

𝑘
) − 1

2𝒊
(𝑐𝜙
𝑘,im + 𝜂

𝜙

𝑘
);

𝑑
𝜙

𝑗 𝑘
= −|𝑎 𝑗 𝑘 |2𝜈𝜙𝑗 𝑘

ℎ
𝜙

𝑗 𝑘
= (𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )𝑢𝜙𝑗 𝑘 + (𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )

H𝑣
𝜙

𝑗 𝑘
+ 𝑑𝜙

𝑗 𝑘
.

We now complete our new set of sufficient conditions for exactness (in terms of dual
variables)
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B2: For all 𝑗 , 𝜙, 𝑐𝜙
𝑗,re + 𝜇

𝜙

𝑗
> 0 and 𝑐𝜙

𝑗,im + 𝜂
𝜙

𝑗
> 0.

B3: For each 𝑗 ∼ 𝑘 , let 𝑟 𝑗 𝑘 := max𝜙{|𝑢𝜙𝑗 𝑘 |, |𝑣
𝜙

𝑗 𝑘
|}/min𝜙{|𝑢𝜙𝑗 𝑘 |, |𝑣

𝜙

𝑗 𝑘
|}, then 𝑟 𝑗 𝑘

satisfies

1 −
3|𝑏 𝑗 𝑘 |

Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )
− 9

8
(𝑟 𝑗 𝑘 +

1
𝑟 𝑗 𝑘
+ 2)

|𝑏 𝑗 𝑘 |2

Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )2
> 0.

Theorem 12. Conditions B1-B3 are sufficient for 𝑨∗ to be G-invertible, and also
suffcient for Problem (3.4) to be exact respect to (3.3).

We first present the following lemma.

Lemma 14. Assume 𝛼𝑖, 𝛽𝑖 ≥ 0 for 𝑖 = 1, 2, · · · , 𝑛 and 𝑚 ≤ 𝛼𝑖/𝛽𝑖 ≤ 𝑀 , then we
have ( 𝑛∑︁

𝑖=1
𝛼𝑖

) ( 𝑛∑︁
𝑖=1

𝛽𝑖

)
≤ 1

4

(√︂𝑚

𝑀
+

√︂
𝑀

𝑚
+ 2

) ( 𝑛∑︁
𝑖=1

√︁
𝛼𝑖𝛽𝑖

)2
.

Proof. Consider the following function

𝑓 (𝑥) =
( 𝑛∑︁
𝑖=1

𝛼𝑖

)
𝑥2 − (

√
𝑚 +
√
𝑀)

( 𝑛∑︁
𝑖=1

√︁
𝛼𝑖𝛽𝑖

)
𝑥 +
√
𝑚𝑀

𝑛∑︁
𝑖=1

𝛽𝑖

=

𝑛∑︁
𝑖=1
(√𝛼𝑖𝑥 −

√︁
𝑚𝛽𝑖) (

√
𝛼𝑖𝑥 −

√︁
𝑀𝛽𝑖).

As 𝑓 (1) ≤ 0 and 𝑓 (𝑥) → ∞ as 𝑥 →∞, we have the discriminant of 𝑓 is nonnegative.
That is

(
√
𝑚 +
√
𝑀)2 ·

( 𝑛∑︁
𝑖=1

√︁
𝛼𝑖𝛽𝑖

)2
− 4

( 𝑛∑︁
𝑖=1

𝛼𝑖

) (√
𝑚𝑀

𝑛∑︁
𝑖=1

𝛽𝑖

)
≥ 0,

which implies the desired result.

Proof of Theorem 12
It is sufficient to show (3.19a) and (3.19b) are satisfied. For the 𝑗 ∼ 𝑘 , Re(ℎ𝜙

𝑗 𝑘
) < 0

for all 𝜙 (due to B2 and (3.17b)), thus𝑈𝐴 𝑗 𝑘 + 𝐴H
𝑗 𝑘
𝑉 + 𝐷 = diag(ℎ) is invertible.
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Then, notice that

det
(
I2 +

[
𝑏 𝑗 𝑘1T

1T𝑉

]
(𝑈𝐴 𝑗 𝑘 + 𝐴H

𝑗 𝑘𝑉 + 𝐷)
−1 [𝑈1 𝑏H

𝑗 𝑘1]
)

= det
©«

1 + 𝑏 𝑗 𝑘

∑
𝜙

𝑢
𝜙

𝑗𝑘

ℎ
𝜙

𝑗𝑘

|𝑏 𝑗 𝑘 |2
∑
𝜙

1
ℎ
𝜙

𝑗𝑘∑
𝜙

𝑢
𝜙

𝑗𝑘
𝑣
𝜙

𝑗𝑘

ℎ
𝜙

𝑗𝑘

1 + 𝑏 𝑗 𝑘
∑
𝜙

𝑣
𝜙

𝑗𝑘

ℎ
𝜙

𝑗𝑘


ª®®®¬

=

(
1 + 𝑏 𝑗 𝑘

∑︁
𝜙

𝑢
𝜙

𝑗 𝑘

ℎ
𝜙

𝑗 𝑘

) (
1 + 𝑏 𝑗 𝑘

∑︁
𝜙

𝑣
𝜙

𝑗 𝑘

ℎ
𝜙

𝑗 𝑘

)
− |𝑏 𝑗 𝑘 |2

∑︁
𝜙

1
ℎ
𝜙

𝑗 𝑘

∑︁
𝜙

𝑢
𝜙

𝑗 𝑘
𝑣
𝜙

𝑗 𝑘

ℎ
𝜙

𝑗 𝑘

.

To show (3.19b) also holds, it is sufficient to show

1 − |𝑏 𝑗 𝑘 |
∑︁
𝜙

���𝑢𝜙𝑗 𝑘 + 𝑣𝜙𝑗 𝑘
ℎ
𝜙

𝑗 𝑘

��� − |𝑏 𝑗 𝑘 |2 |∑︁
𝜙

���𝑢𝜙𝑗 𝑘
ℎ
𝜙

𝑗 𝑘

���∑︁
𝜙

��� 𝑣𝜙𝑗 𝑘
ℎ
𝜙

𝑗 𝑘

��� − |𝑏 𝑗 𝑘 |2 ∑︁
𝜙

��� 1
ℎ
𝜙

𝑗 𝑘

���∑︁
𝜙

���𝑢𝜙𝑗 𝑘𝑣𝜙𝑗 𝑘
ℎ
𝜙

𝑗 𝑘

���
>0. (3.20)

As |ℎ𝜙
𝑗 𝑘
| ≥ |Re(ℎ𝜙

𝑗 𝑘
) | ≥ Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 ) ( |𝑢𝜙𝑗 𝑘 | + |𝑣

𝜙

𝑗 𝑘
|), the left hand side of (3.20) is

greater than

1 −
3|𝑏 𝑗 𝑘 |

Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )
−

( |𝑏 𝑗 𝑘 |
Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )

)2
(∑︁

𝜙

|𝑢𝜙
𝑗 𝑘
|

|𝑢𝜙
𝑗 𝑘
| + |𝑣𝜙

𝑗 𝑘
|

∑︁
𝜙

|𝑣𝜙
𝑗 𝑘
|

|𝑢𝜙
𝑗 𝑘
| + |𝑣𝜙

𝑗 𝑘
|

+
∑︁
𝜙

1
|𝑢𝜙
𝑗 𝑘
| + |𝑣𝜙

𝑗 𝑘
|

∑︁
𝜙

|𝑢𝜙
𝑗 𝑘
| |𝑣𝜙

𝑗 𝑘
|

|𝑢𝜙
𝑗 𝑘
| + |𝑣𝜙

𝑗 𝑘
|

)

≥1 −
3|𝑏 𝑗 𝑘 |

Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )
−

2|𝑏 𝑗 𝑘 |2

Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )2
·
𝑟 𝑗 𝑘 + 1

𝑟 𝑗𝑘
+ 2

4
·
©«
∑︁
𝜙

√︃
|𝑢𝜙
𝑗 𝑘
| |𝑣𝜙

𝑗 𝑘
|

|𝑢𝜙
𝑗 𝑘
| + |𝑣𝜙

𝑗 𝑘
|
ª®®¬

2

≥1 −
3|𝑏 𝑗 𝑘 |

Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )
− 9

8
(𝑟 𝑗 𝑘 +

1
𝑟 𝑗 𝑘
+ 2)

|𝑏 𝑗 𝑘 |2

Re(𝑎 𝑗 𝑘 − 𝑏 𝑗 𝑘 )2
> 0.

Discussion
Conditions B1-B3 can be interpreted as 1) admittance is symmetric across all
phases, 2) the coupling between different phases should be very small, and 3) for
adjacent buses 𝑗 ∼ 𝑘 , the values for |𝑢𝜙

𝑗 𝑘
|, |𝑣𝜙

𝑗 𝑘
| on all phases should be close

and within a narrow range. While B1 can be easily checked from problem data,
B2 and B3 actually depend on dual variables which are unavailable until the dual
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problem is solved. We notice that for most practical problems, 𝑐𝜙
𝑗,re usually takes

close values for all 𝑗 , 𝜙 since we may penalize injections at different locations with
similar coefficients. For example, when the cost is the total power loss of the entire
network, we would have 𝑐𝜙

𝑗,re = 1 for all 𝑗 , 𝜙. The same argument can also be
applied to 𝑐𝜙

𝑗,im. On the other hand, the values of 𝜇𝜙
𝑗

and 𝜂𝜙
𝑗

reflect the sensitivity of
the optimal cost with respect to the changes in (𝑝𝜙

𝑗
, 𝑝𝜙

𝑗
) and (𝑞𝜙

𝑗
, 𝑞𝜙

𝑗
), respectively.

They can be viewed as the nodal prices of real/reactive power. For power systems
that are maintained at normal operating points, the nodal prices for neighboring
buses tend to be close, and this may qualitatively explain why 𝑟 𝑗 𝑘 is typically close
to 1 for practical systems.

In Chapter 5, we will use single-phase DC model, a linearized version of power
flow equations, to simplify and approximate multi-phase AC model. For DC model
we can easily see the approximate values of 𝑐𝜙

𝑗,re + 𝜇
𝜙

𝑗
are between min 𝑗 ,𝜙 𝑐𝜙𝑗,re and

max 𝑗 ,𝜙 𝑐𝜙𝑗,re.
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C h a p t e r 4

RELAXATION EXACTNESS FOR MULTI-PHASE NETWORKS:
WITH DELTA CONNECTIONS

4.1 Background
In this chapter, we are going to further extend our results in Chapter 3. Recall that the
focus of Chapter 3 is to study the conditions under which convex relaxation of OPF
problems is exact for multi-phase networks, and the underlying model assumes that
all injections are connected in wye configurations. As we can see, the semi-definite
relaxation we studied in Chapter 3 has a very similar formulation compared to the
single-phase scenario. However, in practical systems, injections could be connected
in either wye or delta configurations.

Semi-definite relaxation is recently extended in [77] to networks with both wye
and delta connected devices by introducing a new positive semi-definite matrix
that represents the outer product of voltages and phase-to-phase currents in the
delta connections (matrix M𝒗,𝑿,𝜌 ( 𝑗) in (4.8b) below). Simulation results in [77]
showed that, surprisingly, this matrix was never rank-1 at an optimal solution of
the relaxation. This seems to suggest that the SDP relaxation was inexact in these
simulations. In this chapter, we show that even though the matrix M𝒗,𝑿,𝜌 ( 𝑗) fails to
attain rank 1, an exact solution can still be recovered under certain conditions; see
Theorem 14 and Remark 5. The inexactness in previous works is due to two issues.
First, optimal solutions to the SDP relaxation in these simulations are generally not
unique, and the exact solution is only one of them which is not returned by the solver.
Second, such non-uniqueness could significantly amplify the numerical error and
make it computationally challenging to recover the exact solution. We propose two
variants of the standard SDP relaxation that address both issues. The first algorithm
post-processes the relaxation solution and tends to provide lower cost but larger
constraint violation, while the second algorithm adds a penalty term to the cost and
tends to provide higher cost but smaller constraint violation. Simulations of both
algorithms corroborate the theoretical results and show that they can recover exact
solutions for three IEEE distribution feeders.

To summarize the main contribution, this chapter first explains why conventional
semi-definite relaxation is often inexact when delta connections are present. Then
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Figure 4.1: Illustration of line ( 𝑗 , 𝑘) with both wye and delta connections.

we propose two algorithms and prove that they can recover exact solutions under
certain conditions. As a byproduct, we also prove that two models, bus injection
model and branch flow model, are equivalent when we relax the problem.

The remainder of the chapter is organized as follows. In Section 4.2, we define
the network structure and formulate the three-phase OPF problem in both the bus
injection model (BIM) and the branch flow model (BFM). Section 4.3 proves that
the global optimal solution to the nonconvex OPF problem can be recovered from
its relaxation under certain conditions, and two algorithms are presented. Section
4.4 shows the equivalence between BIM and BFM. Finally, in Section 4.5, we apply
our algorithms to IEEE 13-, 37-, and 123-bus systems.

4.2 System Model
Network Structure
We study the model proposed in [30, 77]. Let the directed graph representing the
electrical network beG = (V, E), whereV = {0, 1, . . . , 𝑛} denotes the set of buses,
and E ⊆ V × V denotes the set of edges; let 𝑁 := |V| = 𝑛 + 1. In this chapter,
we focus on the case where G represents a radial network (i.e., a tree) because
most distribution networks have a tree topology. Throughout the chapter, we will
use (graph, vertex, edge) and (power network, bus, line) interchangeably. Without
loss of generality, we let bus 0 be the substation bus where the distribution feeder is
connected to a transmission network. Suppose the substation also serves as the slack
bus, so the voltages at the substation bus are fixed and specified. We use 𝑗 → 𝑘 to
denote a directed edge from bus 𝑗 to 𝑘 . In many situations, when we do not care
about the direction of the edge, we simply use ( 𝑗 , 𝑘) and 𝑗 ∼ 𝑘 interchangeably to
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denote an edge connecting bus 𝑗 and 𝑘 . That means either 𝑗 → 𝑘 or 𝑘 → 𝑗 is in
E. Consider a three-phase line ( 𝑗 , 𝑘) characterized by the series impedance matrix
𝑧 𝑗 𝑘 ∈ C3×3. When line ( 𝑗 , 𝑘) has three phases, the inverse of 𝑧 𝑗 𝑘 , denoted as 𝑦 𝑗 𝑘 , is
the admittance of line ( 𝑗 , 𝑘). If branch ( 𝑗 , 𝑘) has less than three phases, then we fill
the rows and columns of 𝑧 𝑗 𝑘 corresponding to the missing phases with zeros, and
we let the admittance matrix 𝑦 𝑗 𝑘 be the pseudo-inverse of 𝑧 𝑗 𝑘 . Last, let 𝑦 𝑗 ∈ C3×3

denote the admittance of a shunt device connected to bus 𝑗 .1

For each bus 𝑗 , let the voltages of all three phases at bus 𝑗 be collected in the vector
𝑽 𝑗 ∈ C3. We use𝑽𝜙

𝑗
for 𝜙 ∈ {𝑎, 𝑏, 𝑐} to indicate the voltage of phase 𝜙. The voltage

𝑽0 at slack bus 0 is known and denoted by Vref . Let 𝑽 = [𝑽T
0 ,𝑽

T
1 , . . . ,𝑽

T
𝑛 ]T collect

the voltages for the entire network. Similarly, we use s𝜙
𝑗

to denote the bus injection
for phase 𝜙 at bus 𝑗 , and we denote s 𝑗 and s as the injections at bus 𝑗 and in the
entire network, respectively.

For delta connected components, we use 𝑰Δ, 𝑗 ∈ C3 to collect the delta line currents
for phases in {𝑎𝑏, 𝑏𝑐, 𝑐𝑎}. Define

Γ :=


1 −1 0
0 1 −1
−1 0 1

 .
Therefore, the complex power injections of the delta connected components at bus
𝑗 can be expressed as sΔ, 𝑗 = diag(Γ𝑽 𝑗 𝑰H

Δ, 𝑗
). The net nodal injections contributed by

delta connections at bus 𝑗 are given by −diag(𝑽 𝑗 𝑰H
Δ, 𝑗

Γ) (see the illustration in Fig.
4.1). Assume that the operation regions for s 𝑗 and sΔ, 𝑗 at bus 𝑗 are convex compact
sets S 𝑗 and SΔ, 𝑗 , respectively.

The AC power flow equations are

s 𝑗 − diag(𝑽 𝑗 𝑰H
Δ, 𝑗Γ) − diag(𝑽 𝑗𝑽H

𝑗 𝑦
H
𝑗 )

=
∑︁
𝑘: 𝑗∼𝑘

diag((𝑽 𝑗𝑽H
𝑗 − 𝑽 𝑗𝑽H

𝑘 )𝑦
H
𝑗 𝑘 ) (4.1a)

sΔ, 𝑗 = diag(Γ𝑽 𝑗 𝑰H
Δ, 𝑗 ), (4.1b)

where (4.1a) is the power balance equation at bus 𝑗 and (4.1b) defines the power
through delta connected components.

1The shunt here refers to a capacitive device at bus 𝑗 and not the line charging in the Π circuit
model.
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Similar to [77], we will adopt 𝑿 𝑗 , 𝜌 𝑗 ∈ C3×3 as auxiliary matrices to model the outer
products of voltages and currents.

𝑿 𝑗 = 𝑽 𝑗 𝑰
H
Δ, 𝑗 (4.2a)

𝜌 𝑗 = 𝑰Δ, 𝑗 𝑰
H
Δ, 𝑗 . (4.2b)

We consider an OPF problem that minimizes a continuous convex cost function
𝑓 (s, sΔ) over variables (s, sΔ,𝑽, 𝑰Δ) subject to power flow equations (4.1) as well as
voltage and injection limits:

minimize
s,sΔ,𝑽,𝑰Δ

𝑓 (s, sΔ) (4.3a)

subject to (4.1) (4.3b)

𝑽0 = Vref (4.3c)

s 𝑗 ∈ S 𝑗 , sΔ, 𝑗 ∈ SΔ, 𝑗 , for 𝑗 ∈ V (4.3d)

𝑽 ≤ |𝑽 | ≤ 𝑽 . (4.3e)

In (4.3e), |𝑽 | stands for the modulus of𝑽 elementwise, and𝑽,𝑽 ∈ R3𝑁 are the lower
and upper limits for voltage magnitudes, respectively. If the limits are homogeneous
across all buses and phases, we can denote them as 𝑉1, 𝑉1, where 𝑉,𝑉 are scalars
and 1 is the all-one vector. Next, we will present power flow equations for three-
phase radial networks in both bus injection model (4.5) and branch flow model
(4.9).

Bus Injection Model
The bus injection model (BIM) is defined in terms of (s, sΔ,𝑾, 𝑿, 𝜌), where we
use 𝑾 ∈ C3𝑁×3𝑁 to replace 𝑽𝑽H in (4.1). The matrix 𝑾 𝑗 𝑘 ∈ C3×3 is the ( 𝑗 , 𝑘)
submatrix of 𝑾. For notational simplicity, we let

M𝑾,𝑿,𝜌 ( 𝑗) :=

[
𝑾 𝑗 𝑗 𝑿 𝑗

𝑿H
𝑗

𝜌 𝑗

]
for 𝑗 ∈ V . (4.4)
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The power flow model is represented as

s 𝑗 − diag(𝑿 𝑗Γ) − diag(𝑾 𝑗 𝑗 𝑦
H
𝑗 )

=
∑︁
𝑘: 𝑗∼𝑘

diag((𝑾 𝑗 𝑗 −𝑾 𝑗 𝑘 )𝑦H
𝑗 𝑘 ) (4.5a)

sΔ, 𝑗 = diag(Γ𝑿 𝑗 ) (4.5b)

𝑾00 = VrefVH
ref (4.5c)

𝑾 ⪰ 0 (4.5d)

rank(𝑾) = 1 (4.5e)

M𝑾,𝑿,𝜌 ( 𝑗) ⪰ 0 (4.5f)

rank
(
M𝑾,𝑿,𝜌 ( 𝑗)

)
= 1. (4.5g)

Equations (4.5f), (4.5g) are derived from (4.2) to model the current and power flow
of delta connections.

Hence, the AC-OPF problem in BIM formulation is

minimize
s,sΔ,𝑾,𝑿,𝜌

𝑓 (s, sΔ) (4.6a)

subject to (4.5), (4.3d) (4.6b)

diag(𝑽𝑽H) ≤ diag(𝑾) ≤ diag(𝑽𝑽H). (4.6c)

Branch Flow Model
In a branch flow model (BFM), we introduce 𝑺, 𝒗, and ℓ to model the branch power
flow, squared voltages, and squared currents, respectively. We let 𝑰 𝑗 𝑘 := 𝑦 𝑗 𝑘 (𝑽 𝑗−𝑽𝑘 )
be the sending-end current from bus 𝑗 to bus 𝑘 , and 𝑺 𝑗 𝑘 be the sending-end branch
power from 𝑗 to 𝑘 . The matrices 𝑺, 𝒗, and ℓ can be written as

𝑺 = (𝑺 𝑗 𝑘 ∈ C3×3)( 𝑗→𝑘)∈E , 𝑺 𝑗 𝑘 = 𝑽 𝑗 𝑰
H
𝑗 𝑘 (4.7a)

𝒗 = (𝒗 𝑗 ∈ C3×3) 𝑗∈V , 𝒗 𝑗 = 𝑽 𝑗𝑽
H
𝑗 (4.7b)

ℓ = (ℓ 𝑗 𝑘 ∈ C3×3)( 𝑗→𝑘)∈E , ℓ 𝑗 𝑘 = 𝑰 𝑗 𝑘 𝑰
H
𝑗 𝑘 . (4.7c)

Let

M𝒗,𝑺,ℓ ( 𝑗 , 𝑘) :=

[
𝒗 𝑗 𝑺 𝑗 𝑘

𝑺H
𝑗 𝑘

ℓ 𝑗 𝑘

]
for 𝑗 → 𝑘 (4.8a)

M𝒗,𝑿,𝜌 ( 𝑗) :=

[
𝒗 𝑗 𝑿 𝑗

𝑿H
𝑗

𝜌 𝑗

]
for 𝑗 ∈ V . (4.8b)
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The branch flow model is defined in terms of variables (s, sΔ, 𝑺, 𝒗, ℓ, 𝑿, 𝜌), and it is
expressed as

𝒗𝑘 = 𝒗 𝑗 − (𝑺 𝑗 𝑘 𝑧H
𝑗 𝑘 + 𝑧 𝑗 𝑘𝑺

H
𝑗 𝑘 ) + 𝑧 𝑗 𝑘ℓ 𝑗 𝑘 𝑧

H
𝑗 𝑘 (4.9a)∑︁

𝑘: 𝑗→𝑘
diag(𝑺 𝑗 𝑘 ) −

∑︁
𝑙:𝑙→ 𝑗

diag(𝑺𝑙 𝑗 − 𝑧𝑙 𝑗ℓ𝑙 𝑗 )

= − diag(𝒗 𝑗 𝑦H
𝑗 + 𝑿 𝑗Γ) + s 𝑗

(4.9b)

sΔ, 𝑗 = diag(Γ𝑿 𝑗 ) (4.9c)

𝒗0 = VrefVH
ref (4.9d)

M𝒗,𝑺,ℓ ( 𝑗 , 𝑘) ⪰ 0 (4.9e)

rank
(
M𝒗,𝑺,ℓ ( 𝑗 , 𝑘)

)
= 1 (4.9f)

M𝒗,𝑿,𝜌 ( 𝑗) ⪰ 0 (4.9g)

rank
(
M𝒗,𝑿,𝜌 ( 𝑗)

)
= 1. (4.9h)

Similar to BIM, (4.9g), (4.9h) are also derived from (4.2).

The AC-OPF problem in the BFM form can be formulated as

minimize
s,sΔ,𝑺,𝒗,ℓ,𝑿,𝜌

𝑓 (s, sΔ) (4.10a)

subject to (4.9), (4.3d) (4.10b)

diag(𝑽
𝑗
𝑽H
𝑗
) ≤diag(𝒗 𝑗 ) ≤ diag(𝑽𝑗𝑽

H
𝑗 ). (4.10c)

4.3 Analytical Results
The main challenge to solving OPF problems (4.6) and (4.10) is the nonconvex rank
constraints in (4.5e), (4.5g), (4.9f), and (4.9h). If we drop all the rank-1 constraints,
then we obtain

minimize
s,sΔ,𝑾,𝑿,𝜌

𝑓 (s, sΔ) (4.11a)

subject to (4.5a) − (4.5d), (4.5f), (4.3d), (4.6c) (4.11b)

as the relaxation for the BIM and

minimize
s,sΔ,𝑺,𝒗,ℓ,𝑿,𝜌

𝑓 (s, sΔ) (4.12a)

subject to (4.3d), (4.10c), (4.9a) − (4.9e), (4.9g) (4.12b)
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as the relaxation for the BFM. Solving the relaxed problems (4.11) and (4.12)
could lead to solutions that are infeasible for the original nonconvex problems (4.6)
and (4.10) respectively when the solutions do not satisfy the rank-1 constraints. In
what follows, we will explore conditions under which optimal solutions of (4.6)
and (4.10) can be recovered from their respective relaxations. First, the following
lemma is presented, which is the main ingredient for subsequent results.

Lemma 15. Consider a block Hermitian matrix

M :=

[
A B
BH C

]
(4.13)

where A and C are both square matrices. If M ⪰ 0 and A = xxH for some vector x,
then there must exist some vector y such that B = xyH.

Proof. As M ⪰ 0, it can be decomposed as

M =

[
M1

M2

] [
MH

1 MH
2

]
(4.14)

and A = M1MH
1 , B = M1MH

2 , C = M2MH
2 . Because A = xxH has rank-1, matrix M1

is in the column space of x and has rank-1 as well. There must exist vector z such
that M1 = xzH. As a result, B = M1MH

2 = xzHMH
2 = x(M2z)H.

One observation in Lemma 15 is when submatrices A and B are fixed and specified
as xxH and xyH, there are non-unique C to make M positive semi-definite. Similarly,
in the relaxations (4.11) and (4.12), the optimal solutions are always non-unique.
Taking (4.11) as an example, for any optimal solution (s∗, s∗

Δ
,𝑾∗, 𝑿∗, 𝜌∗), one could

add to 𝜌∗ an arbitrary positive semi-definite matrix to obtain a different optimal
solution (s∗, s∗

Δ
,𝑾∗, 𝑿∗, 𝜌∗ +KKH). This non-uniqueness in the optimal 𝜌 explains

why in existing literature such as [77], the relaxation (4.11) could compute rank-1
𝑾 (within numerical tolerance) but the resulting M𝑾,𝑿,𝜌 is always not rank-1. In
fact, the next result shows in theory, if the optimal 𝑾 is perfectly of rank 1 without
any numerical error, then a feasible and optimal solution of (4.6) is recoverable.

Theorem 13. If 𝒖∗ = (s∗, s∗
Δ
,𝑾∗, 𝑿∗, 𝜌∗) is an optimal solution to (4.11) that

satisfies rank(𝑾∗) = 1, then a feasible and optimal solution of (4.6) can be recovered
from 𝒖∗.
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Proof. We decompose 𝑾∗
𝑗 𝑗

as 𝑽 𝑗𝑽H
𝑗

for each 𝑗 , where 𝑽 𝑗 is a vector. By Lemma
15, there exists vector 𝑰Δ, 𝑗 such that 𝑿∗

𝑗
= 𝑽 𝑗 𝑰

H
Δ, 𝑗

. One could construct �̃� such that
�̃� 𝑗 = 𝑰Δ, 𝑗 𝑰

H
Δ, 𝑗

.

Since (4.11) is a relaxation of (4.6), for (s∗, s∗
Δ
,𝑾∗, 𝑿∗, �̃�) to be optimal for (4.6), it is

sufficient that it is feasible for (4.6). Clearly, constraints (4.3d), (4.6c), (4.5a)–(4.5d)
are satisfied because they are also the constraints in (4.11) and they do not involve
the decision variable 𝜌. Constraint (4.5e) also holds as rank(𝑾∗) = 1. Further, by
Lemma 15, we have [

𝑾∗
𝑗 𝑗

𝑿∗
𝑗

(𝑿∗
𝑗
)H �̃� 𝑗

]
=

[
𝑽 𝑗

𝑰Δ, 𝑗

] [
𝑽 𝑗

𝑰Δ, 𝑗

]H

is both positive semi-definite and of rank-1. Hence, (4.5f) and (4.5g) are also
satisfied. Hence, (s∗, s∗

Δ
,𝑾∗, 𝑿∗, �̃�) is feasible for (4.6), and this completes the

proof.

Theorem 14. If 𝒖∗ = (s∗, s∗
Δ
, 𝑺∗, 𝒗∗, ℓ∗, 𝑿∗, 𝜌∗) is an optimal solution to (4.12) and

satisfies rank(M𝒗∗,𝑺,∗ℓ∗ ( 𝑗 , 𝑘)) = 1 for 𝑗 ∼ 𝑘 and rank(𝒗∗
𝑗
) = 1 for 𝑗 ∈ V, then an

optimal solution of (4.10) can be recovered from 𝒖∗.

The proof of Theorem 14 is omitted because it is similar to the proof of Theorem
13.

Theorem 13 asserts that in theory, the only critical non-convex constraint of (4.6)
is (4.5e), in the sense that a solution satisfying (4.5g) could always be recovered
whenever (4.5e) holds. However in practice, 𝑾∗ is typically not exactly rank-1
due to numerical precision and therefore Theorem 14 could not be directly applied
to recover the optimal solution as long as numerical error exists. This is because
the recovery method in Theorem 13 relies on the rank-1 decomposition of 𝑿∗. In
practice even if 𝑾∗ is close to being rank-1, the optimal 𝑿∗ could still be very
different from being rank-1, as we will explain below in Remark 5.

Remark 5 (Spectrum Error). The matrix A in (4.14) being approximately rank-1
does not necessarily mean that B is also approximately rank-1.2 For example,
consider the case where 𝒙, 𝒆1, and 𝒆2 are orthogonal vectors with norms 1, 10−4,
and 10−5, respectively. Similarly, let 𝒚, 𝒛1, and 𝒛2 be orthogonal vectors with
norms 1, 104, and 105, respectively. Then, construct the matrix 𝑴 as in (4.14) with

2Here, being approximately rank-1 means that the second largest eigenvalue of the matrix is
nonzero but smaller than the largest eigenvalue by several orders of magnitude.
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M1 = [𝒙 𝒆1 𝒆2] and M2 = [𝒚 𝒛1 𝒛2]. Clearly, M has the upper left diagonal block
that is approximately rank-1. On the other hand, the upper right block is of rank
3 with three singular values of 1. Consequently, even when 𝑾∗ is close to rank-1
within a certain numerical tolerance, 𝑿∗ could be far from being a rank-1 matrix,
especially if 𝜌∗ already contains a large redundant positive semi-definite matrix
KKH. Decomposing 𝑿∗ as the product of two vectors, as in the proof of Theorem
13, could result in a large numerical error. In other words, the non-uniqueness of 𝜌
could significantly amplify the numerical error. In fact, as long as the second largest
eigenvalue of 𝑾∗ is not exactly 0, then no matter how small it is, such spectrum
error could potentially be significant, especially when the trace of KKH is large.

To summarize, there are two factors that prevent the relaxation output from being
exact. The first is the non-uniqueness in the relaxation solution, and the second is
that such non-uniqueness further greatly amplify the numerical error in computation.
This finding motivates two algorithms for practical implementation.

Relaxation with Post-Processing
Remark 5 shows recovering the vector 𝑰Δ, 𝑗 from 𝑿∗

𝑗
can lead to poor numerical

performance. In the first algorithm, we instead recover 𝑰Δ, 𝑗 as
(
diag(Γ𝑽 𝑗 )

)−1s∗
Δ, 𝑗

from (4.1b), and then we reconstruct 𝑿 𝑗 as 𝑽 𝑗 𝑰H
Δ, 𝑗

. If there is no numerical error,
𝑿∗ and �̃� should be equal; however, in the presence of spectrum error, they could
be different, as discussed in Remark 5. The pseudo code is provided in Algorithm
1.

Algorithm 1 Relaxation Algorithm with Post-Processing.
Input: 𝑦, S, SΔ
Output: Optimal solution (s, sΔ,𝑾, 𝑿, 𝜌) to (4.6).

1: Solve (4.11) to obtain (s∗, s∗
Δ
,𝑾∗, 𝑿∗, 𝜌∗).

2: if (rank(𝑾∗) > 1) then
3: Output ‘Failed!’
4: Exit
5: else
6: Decompose 𝑾∗

𝑗 𝑗
= 𝑽 𝑗𝑽

H
𝑗

7: 𝑰Δ, 𝑗 ←
(
diag(Γ𝑽 𝑗 )

)−1s∗
Δ, 𝑗

8: �̃� ← 𝑽 𝑗 𝑰
H
Δ, 𝑗

, �̃� 𝑗 ← 𝑰Δ, 𝑗 𝑰
H
Δ, 𝑗

9: return (s∗, s∗
Δ
,𝑾∗, �̃�, �̃�)

10: end if
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Theorem 15. If Algorithm 1 does not fail, then its output is an optimal solution of
(4.6).

Theorem 15 is the direct consequence of Theorem 13. Similarly for BFM, one could
also apply post-processing to recover the solution of (4.10) from an optimal solution
of (4.12). In the BFM, instead of checking the rank of 𝑾∗, we check the rank of
M𝒗∗,𝑺,∗ℓ∗ ( 𝑗 , 𝑘) for each 𝑗 ∼ 𝑘 and 𝒗∗

𝑗
for 𝑗 ∈ V.

Relaxation with Penalized Cost Function
Since the inexactness of relaxations (4.11) and (4.12) originates from two issues: the
non-uniqueness in 𝜌∗ and the spectrum error, where the latter is essentially amplified
by the former. The second algorithm we propose is to penalize and suppress the
trace of 𝜌 𝑗 in the cost function. With such penalty term, the value of 𝜌∗ will be
unique for fixed 𝑾∗ and 𝑿∗ in the solution of (4.11) and the spectrum error can
also be restricted. Similar penalization approaches were also previously proposed
in [55, 58] to promote low-rank solutions. The penalized relaxed formulation under
the BIM becomes

minimize
s,sΔ,𝑾,𝑿,𝜌

𝑓 (s, sΔ) + 𝜆
∑︁
𝑗∈V

tr(𝜌 𝑗 ) (4.15a)

subject to (4.5a) − (4.5d), (4.5f), (4.3d), (4.6c). (4.15b)

Similarly, the penalized relaxed program under the BFM becomes

minimize
s,sΔ,𝑺,𝒗,ℓ,𝑿,𝜌

𝑓 (s, sΔ) + 𝜆
∑︁
𝑗∈V

tr(𝜌 𝑗 ) (4.16a)

subject to (4.9a) − (4.9e), (4.9g), (4.3d), (4.10c). (4.16b)

Because tr(𝜌 𝑗 ) is linear and all constraints in (4.15b) and (4.16b) are convex, both
(4.15) and (4.16) are convex optimization problems and can be efficiently solved in
polynomial time. Here, 𝜆 > 0 controls the weight of

∑
tr(𝜌 𝑗 ) in the cost function.

The pseudo code (based on BIM) is summarized in Algorithm 2. The algorithm for
BFM is similar.

Because the cost function in the penalized program has been changed, the output of
Algorithm 2 might not be the global optimal solution of (4.6). We next show that
the output of Algorithm 2 serves as an approximation of the true optimal solution.
We make the following assumption.

Assumption 2. The problem (4.11) has at least one finite optimal solution.
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Algorithm 2 Relaxation Algorithm with Penalized Cost Function.
Input: 𝑦, S, SΔ
Output: Optimal solution (s, sΔ,𝑾, 𝑿, 𝜌) to (4.6).

1: Pick a sufficiently small 𝜆 > 0
2: Solve (4.15) and obtain 𝒖∗ := (s∗, s∗

Δ
,𝑾∗, 𝑿∗, 𝜌∗)

3: if (rank(𝑾∗) > 1) then
4: Output ‘Failed!’
5: Exit
6: else
7: return 𝒖∗

8: end if

Now consider a sequence of positive and decreasing 𝜆𝑖 for 𝑖 = 1, 2, · · · such that
𝜆𝑖 → 0 as 𝑖 → ∞. Taking BIM as an example, let the optimal solution of (4.15)
with respect to 𝜆𝑖 be 𝒖(𝑖) .3 Then the following lemma implies the sequence 𝒖(𝑖) has
a limit point.

Lemma 16. The sequence (𝒖(𝑖))∞
𝑖=1 resides in a compact set, and hence has a limit

point.

Proof. Because all the constraints in (4.15) are closed, we only need to prove
boundedness. By assumption, s(𝑖)

𝑗
and s(𝑖)

Δ, 𝑗
at bus 𝑗 are in compact sets S 𝑗 and

SΔ, 𝑗 respectively. The positive semi-definite matrix 𝑾 (𝑖) has upper bounds on its
diagonal elements and is therefore bounded. We only need to show that

∑
𝑗 tr(𝜌(𝑖)

𝑗
)

is also bounded because the boundedness of 𝑿 (𝑖) is implied by the constraint (4.5f)
as long as

∑
𝑗 tr(𝜌(𝑖)

𝑗
) is bounded.

To show
∑
𝑗 tr(𝜌(𝑖)

𝑗
) is bounded, let �̂� = (ŝ, ŝΔ, �̂�, �̂�, �̂�) be an optimal solution of

(4.11). Then �̂� is feasible for (4.15) regardless of the value of 𝜆. For any 𝑖, we must
have

∑
𝑗 tr(𝜌(𝑖)

𝑗
) ≤ ∑

𝑗 tr( �̂� 𝑗 ); otherwise, �̂� will always give a strictly smaller cost
value in (4.15) for 𝜆 = 𝜆𝑖 and it would contradict the optimality of 𝒖(𝑖) .

Suppose �̃� := (s̃, s̃Δ, �̃�, �̃�, �̃�) is an arbitrary limit point of the sequence 𝒖(𝑖) . We
present sufficient conditions for �̃� to be an optimal solution of (4.6).

Lemma 17. Consider the positive semi-definite matrix M as in (4.13) where A = xxH

for some vector x such that x ≠ 0, and B = xyH. Then,

tr(M) ≥ xHx + yHy
3If the program has multiple solutions, then pick any one of them.
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and equality holds if and only if C = yyH.

Proof. It is sufficient to prove that C − yyH ⪰ 0. If not, then suppose there exists
z such that zH(C − yyH)z < 0. Because x ≠ 0, we can always find w such that
wHx = −zHy. Consider[

w
z

]H

M

[
w
z

]
=

[
w
z

]H [
xxH xyH

yxH C

] [
w
z

]
= wHxxHw + zHyxHw + wHxyHz + zHCz

= zHyyHz − zHyyHz − zHyyHz + zHCz

= zH(C − yyH)z < 0.

This contradicts the positive semi-definiteness of M.

Theorem 16. If rank(�̃�) = 1, then �̃� is a globally optimal solution of (4.6).

Proof. We first show that �̃� is the optimal solution of (4.11). Since (4.11) and (4.15)
have the same feasible set, which is closed, �̃� is also feasible for (4.11) and (4.15)
for any 𝜆. If �̃� is not optimal for (4.11), then there must exist another point �̄� such
that 𝑓 (s̄, s̄Δ) + 𝛼 = 𝑓 (s̃, s̃Δ) and 𝛼 > 0. Then for some sufficiently large 𝑖0, we have

𝜆𝑖0

∑︁
𝑗∈V

tr( �̄� 𝑗 ) <
𝛼

2

| 𝑓 (s̃, s̃Δ) − 𝑓 (s(𝑖0) , s(𝑖0)Δ
) | < 𝛼

2
.

Therefore

𝑓 (s̄, s̄Δ) + 𝜆𝑖0
∑︁
𝑗∈V

tr( �̄� 𝑗 ) < 𝑓 (s(𝑖0) , s(𝑖0)
Δ
) + 𝜆𝑖0

∑︁
𝑗∈V

tr(𝜌(𝑖0)
𝑗
),

which contradicts the optimality of 𝒖(𝑖0) .

Then for each 𝑗 , we decompose �̃� 𝑗 𝑗 = x̃ 𝑗 x̃H
𝑗

and �̃� = x̃ 𝑗 ỹH
𝑗
, and construct 𝜌†

𝑗

as ỹ 𝑗 ỹH
𝑗
. Under the same argument as in the proof of Theorem 13, the solution

𝒖† := (s̃, s̃Δ, �̃�, �̃�, 𝜌†) is an optimal solution for both (4.6) and (4.11). We want to
prove �̃� = 𝒖† and conclude that �̃� is also an optimal solution for (4.6). The proof is
by contradiction.

Since 𝒖† is optimal for (4.6), M�̃�,�̃�,𝜌† ( 𝑗) must be of rank-1 for all 𝑗 . By Lemma
17, we have

tr(M�̃�,�̃�,�̃� ( 𝑗)) ≥ tr(M�̃�,�̃�,𝜌† ( 𝑗))
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and therefore tr( �̃� 𝑗 ) ≥ tr(𝜌†
𝑗
) for all 𝑗 . If �̃� ≠ 𝒖†, then some equalities cannot be

achieved, and as a result,
∑
𝑗 tr( �̃� 𝑗 ) −

∑
𝑗 tr(𝜌†

𝑗
) = 𝛽 for some 𝛽 > 0.

As �̃� is a limit point of (𝒖(𝑖))∞
𝑖=1, there must be some sufficiently large 𝑖1 such that��� ∑︁

𝑗∈V
tr( �̃� 𝑗 ) −

∑︁
𝑗∈V

tr(𝜌(𝑖1)
𝑗
)
��� < 𝛽

2
.

Hence ∑︁
𝑗∈V

tr(𝜌†
𝑗
) <

∑︁
𝑗∈V

tr(𝜌(𝑖1)
𝑗
).

On the other hand, (4.11) and (4.15) have the same feasible set, so the optimality of
𝒖† for (4.11) implies 𝑓 (s̃, s̃Δ) ≤ 𝑓

(
s(𝑖1) , s(𝑖1)

Δ

)
. Therefore

𝑓 (s̃, s̃Δ) + 𝜆𝑖1
∑︁
𝑗∈V

tr(𝜌†
𝑗
) < 𝑓

(
s(𝑖1) , s(𝑖1)

Δ

)
+ 𝜆𝑖1

∑︁
𝑗∈V

tr
(
𝜌
(𝑖1)
𝑗

)
which contradicts the fact that 𝒖(𝑖1) is the optimal solution for (4.15) with respect to
𝜆𝑖1 .

Theorem 16 shows that when we solve the penalized program with a sequence of
decreasing 𝜆𝑖 that converge to 0, any limit point would be a global optimal for
(4.6) as long as the 𝑾 matrix associated with the limit point is of rank-1. In our
simulations, we apply Algorithm 2 to solve (4.15) with a fixed but sufficiently small
𝜆, which usually results in rank-1 solutions.

Remark 6. Further, if all optimal solutions of (4.11) have the same value for
s, sΔ,𝑾, 𝑿, then Algorithm 1 succeeds if and only if rank(�̃�) = 1 holds in Theorem
16. If Algorithm 1 succeeds, its output will also be the same as �̃�.

4.4 Model Equivalence
In the previous sections, our results for the BIM and BFM always come in pairs and
are analogous. A natural question is whether there exist instances where one model
produces an exact solution while the other does not. In single-phase networks and
multi-phase systems with only wye connections, [14] and [30] have shown that the
two models are equivalent in the sense that one will produce an exact solution if
and only if the other will. We show in this subsection that a similar result holds
in the presence of delta connections. We first define the equivalence between two
optimization problems as follows.
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Definition 18. Consider two optimization problems

minimize
𝑥

𝑓𝐴 (𝑥) subject to 𝑥 ∈ X (4.17)

minimize
𝑦

𝑓𝐵 (𝑦) subject to 𝑦 ∈ Y. (4.18)

We say (4.17) and (4.18) are equivalent if there exist mappings 𝑔1 : X → Y and
𝑔2 : Y → X such that

𝑥 ∈ X ⇒ 𝑔1(𝑥) ∈ Y, 𝑓𝐴 (𝑥) = 𝑓𝐵 (𝑔1(𝑥)),
𝑦 ∈ Y ⇒ 𝑔2(𝑦) ∈ X, 𝑓𝐵 (𝑦) = 𝑓𝐴 (𝑔2(𝑦)).

We do not require 𝑔1 and 𝑔2 to be bijections, but if one of the mappings is a bijection,
then we can always set the other as its inverse. We denote the decision variables for
the BIM as

𝒖BIM = (sBIM, sBIM
Δ ,𝑾BIM, 𝑿BIM, 𝜌BIM)

and the decision variables for the BFM as

𝒖BFM = (sBFM, sBFM
Δ , 𝑺BFM, 𝒗BFM, ℓBFM, 𝑿BFM, 𝜌BFM).

The superscripts here are to distinguish the same variable for different models.

Proposition 1. Problems (4.11) and (4.12) are equivalent. Moreover, for the pairs
𝑔1 and 𝑔2 in Definition 18, if 𝒖BIM satisfies (4.5e), then 𝑔1(𝒖BIM) satisfies (4.9f). If
𝒖BFM satisfies (4.9f), then 𝑔2(𝒖BFM) satisfies (4.5e).

Note that (4.11) and (4.12) are the relaxed BIM and BFM models. The proposition
above implies that besides the equivalence between nonconvex BIM and BFM
models as we derived in Section 4.2, their relaxations are also equivalent. We only
sketch a proof here by providing the mappings 𝑔1 and 𝑔2, where 𝑔1 can be written
as

sBFM = sBIM, sBFM
Δ = sBIM

Δ (4.19a)

𝑺BFM
𝑗 𝑘 = (𝑾BIM

𝑗 𝑗 −𝑾BIM
𝑗 𝑘 )𝑦

H
𝑗 𝑘 (4.19b)

𝒗BFM
𝑗 = 𝑾BIM

𝑗 𝑗 (4.19c)

ℓBFM
𝑗 𝑘 = 𝑦 𝑗 𝑘 (𝑾BIM

𝑗 𝑗 +𝑾BIM
𝑘𝑘 −𝑾

BIM
𝑗 𝑘 −𝑾

BIM
𝑘 𝑗 )𝑦

H
𝑗 𝑘 (4.19d)

𝑿BFM
𝑗 = 𝑿BIM

𝑗 , 𝜌BFM
𝑗 = 𝜌BIM

𝑗 (4.19e)
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and 𝑔2 as

sBIM = sBFM, sBIM
Δ = sBFM

Δ (4.20a)

𝑾BIM
𝑗 𝑗 = 𝒗BFM

𝑗 (4.20b)

𝑾BIM
𝑗 𝑘 =

{
𝒗BFM
𝑗
− 𝑺BFM

𝑗 𝑘
𝑧H
𝑗 𝑘
, if 𝑗 → 𝑘

(𝑾BIM
𝑘 𝑗
)H, if 𝑘 → 𝑗

(4.20c)

𝑿BIM
𝑗 = 𝑿BFM

𝑗 , 𝜌BIM
𝑗 = 𝜌BFM

𝑗 . (4.20d)

For 𝑔2, the value of 𝑾BIM
𝑗 𝑘

where 𝑗 ≠ 𝑘 and ( 𝑗 , 𝑘) ∉ E can be determined arbitrarily
as long as 𝑾 ⪰ 0. As G is a tree, we can always complete the matrix 𝑾BIM ⪰ 0,
but not necessarily in a unique way.

Proposition 1 shows that to apply Algorithm 1, if an optimal solution of (4.11) can
produce an exact solution of (4.6), then there must also be an optimal solution of
(4.12) that can produce an exact solution of (4.10), even though both (4.6) and (4.10)
may have multiple solutions. The converse is also true. Informally, for Algorithm
1, both the BIM and BFM have the same capability of producing exact solutions.

The same holds for the penalized program. The next proposition can be easily
proved using the same mappings 𝑔1 and 𝑔2 in (4.19) and (4.20), respectively.

Proposition 2. Problems (4.15) in the BIM and (4.16) in the BFM are equivalent
when 𝜆 takes the same value for both problems.

Beyond OPF problems, mappings 𝑔1 and 𝑔2 also provide the correspondence be-
tween feasible points under the two models. Thereby, a solution of power flow
equations under one model can also be translated into a solution with the same
physical meaning under the other model by applying 𝑔1 or 𝑔2. Note that power flow
equations may have multiple solutions.

Though BIM and BFM are mathematically equivalent, the two models may behave
differently in practice and shed lights on different properties. Some analysis may
rely on the structure of one model but not the other, which is indeed the case for
single-phase networks [52]. The equivalence implies that one could freely choose
a model that is more convenient for a specific problem. For instance, our result in
Chapter 3 was derived based on BIM.

4.5 Numerical Results
In this section, we show the ability of the proposed relaxation algorithms to recover
the optimal solution to (4.6) and (4.10). We use the IEEE 13-, 37-, and 123-node
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distribution feeders [65] to assess the exactness of both algorithms for both the
BIM and BFM models. Note that the IEEE 123-bus feeder does not include delta
connected components. Hence, we artificially added 4 delta connected loads to the
feeder to assess the performance of the proposed approaches. Therefore, all feeders
in our simulation will include delta connections. In our experiments, we check how
close the output matrices 𝑾,M𝑾,𝑿,𝜌,M𝒗,𝑺,ℓ,M𝒗,𝑿,𝜌 are to being rank-1, and we
evaluate the maximum violation of the constraints when the decision variables are
produced from the two proposed algorithms. For all the experiments in this section,
we show that both algorithms succeed up to numerical precision, and each has its
own advantages and disadvantages.

In previous sections, when we refer to Algorithm 1 and 2 as being exact, the claim is
in the sense that Algorithm 1 in theory would produce the globally optimal solution
of (4.6) if there were no numerical error (i.e., Theorem 15), and the output of
Algorithm 2 would converge to the globally optimal solution of (4.6) as 𝜆 goes to
0 (i.e., Theorem 16). In practice, the machine always has finite precision and we
always set 𝜆 as a fixed small number in the program. Therefore, the output cost of
Algorithm 1 in our simulation should be regarded as a lower bound of the globally
optimal cost and the cost of Algorithm 2 should be regarded as an approximation.
With higher precision and smaller 𝜆 (depending on the precision), the output cost
of both algorithms will be closer to the actual globally optimal cost.

Experimental Setup
The load transformer in the IEEE test feeders are modeled as lines with equivalent
impedance, whereas the substation transformers and regulators are removed. The
switches are assumed to be open or short according to their default status. The
capacitor banks are modeled as controllable reactive power sources with continuous
control space. The same modification is also commonly applied in the literature
[24, 77].

The voltage at the substation is assumed to be Vref = 𝑉 [1, 𝑒 −𝒊2𝜋3 , 𝑒
𝒊2𝜋

3 ]T, where
𝑉 is the maximum allowed voltage magnitude. The operational constraints for
controllable loads are set as in [77]. The AC-OPF problem is solved with the cost
function 𝑓 (s, sΔ) comprising three parts. 4 The first part minimizes the total power

4We will use p, q to denote the real and imaginary parts of s, and pΔ, qΔ to denote the real and
imaginary parts of sΔ.
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losses in the network, and it can be written as

𝑝loss =
∑︁
𝑗∈V

∑︁
𝜙∈˘ 𝑗Y

p𝜙
𝑗
+

∑︁
𝑗∈V

∑︁
𝜙∈˘ 𝑗

Δ

p𝜙
Δ, 𝑗
.

The second part penalizes deviations of the active and reactive injection profile from
nominal profiles, and it is given by 𝑑𝑝 (p, pΔ) and 𝑑𝑞 (q, qΔ) as follows:

𝑑𝑝 (p, pΔ) =
∑︁
𝑗∈V
𝜙∈˘ 𝑗Y

(p𝜙
𝑗
− p𝜙

𝑗
)2

2p𝜙
𝑗

+
∑︁
𝑗∈V
𝜙∈˘ 𝑗

Δ

(p𝜙
Δ, 𝑗
− p𝜙

Δ, 𝑗
)2

2p𝜙
Δ, 𝑗

,

𝑑𝑞 (q, qΔ) =
∑︁
𝑗∈V
𝜙∈˘ 𝑗Y

(q𝜙
𝑗
− q𝜙

𝑗
)2

2q𝜙
𝑗

+
∑︁
𝑗∈V
𝜙∈˘ 𝑗

Δ

(q𝜙
Δ, 𝑗
− q𝜙

Δ, 𝑗
)2

2q𝜙
Δ, 𝑗

.

The values p𝜙
𝑗
, q𝜙

𝑗
, p𝜙

Δ, 𝑗
, q𝜙

Δ, 𝑗
represent the nominal active and reactive injection

values for phase 𝜙 at bus 𝑗 . All the tracking errors are normalized by their nominal
values to have the same order of magnitude for all quantities. In addition, ˘ 𝑗Y ⊆
{𝑎, 𝑏, 𝑐} and ˘ 𝑗

Δ
⊆ {𝑎𝑏, 𝑏𝑐, 𝑐𝑎} denote the available wye and delta connections at bus

𝑗 ∈ V, respectively. Penalizing the deviation of power injection can characterize
either the operational cost of controllable loads, the curtailment of photovoltaic
systems, or the charging cost of batteries. The same cost expression was also used
in [25, 77].

The last part minimizes the deviation of the power injections at the substation from
the reference injections 𝑝0, 𝑞0 ∈ R provided by the transmission system operator.
Therefore, the system operational cost function can be written as

𝑓 (s, sΔ) =𝜇ℓ 𝑝loss + 𝑤𝑝 𝑑𝑝 (p, pΔ) + 𝑤𝑞 𝑑𝑞 (q, qΔ)

+ 𝜇𝑝
(1Tp0 − 𝑝0)2

𝑝0
+ 𝜇𝑞

(1Tq0 − 𝑞0)2
𝑞0

.

The nonnegative weights 𝑤𝑝, 𝑤𝑞, 𝜇ℓ, 𝜇𝑝, and 𝜇𝑞 are used to reflect the relative
importance of the components of the cost function and are set as follows:

𝑤𝑝 = 𝑤𝑞 = 𝜇ℓ = 1, 𝜇𝑝 = 𝜇𝑞 = 4. (4.21)
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Table 4.3: Effect of the penalty parameter on the cost and infeasibility.

𝝀
BIM BFM

Cost Infeas. (kW) Cost Infeas. (kW)

0 100.0036 9.84 × 10−2 100.0194 9.67 × 10−2

0.1 103.9504 1.15 × 10−2 104.7141 5.99 × 10−4

1 104.7846 6.00 × 10−5 104.7840 1.80 × 10−5

10 104.7886 5.75 × 10−6 104.7982 1.45 × 10−6

100 104.9431 3.17 × 10−6 105.0332 1.23 × 10−7

Exactness Results for Algorithm 1
In this subsection, we assess the quality of the solutions recovered using Algorithm
1. We solve (4.11) for the BIM as well as (4.12) for the BFM with different values
of voltage limits for the three considered feeders. We invoke the Mosek 8.0 conic
solver using CVX, a MATLAB-based convex optimization toolbox.

The left-hand side of Table 4.1 provides the result of Algorithm 1 based on the
BIM. The voltage column represents the maximum and minimum voltage deviation
allowed, i.e., 3% means that the value of 𝑉 and 𝑉 are set to 1.03 pu and 0.97 pu,
respectively. We assess the rank of matrices 𝑾 𝑗 𝑗 , for all 𝑗 ∈ V, in terms of the
ratio between the top two largest eigenvalues of these matrices. The maximum
ratio among all 𝑗 ∈ V is listed in the table. In the solution of (4.11) (before
post-processing), the ratio between the two maximum eigenvalues of the matrices
M𝑾,𝑿,𝜌 is on the order of 10−1, and after the post-processing in Algorithm 1, the
final M𝑾,𝑿,𝜌-ratio will be dominated by 𝑾-ratio and is thus not informative to
be displayed in the table. Because of the spectrum error, the output �̃� could be
different from 𝑿∗, and thus having a very small 𝑾-ratio is not enough to guarantee
the feasibility of the final output of Algorithm 1. Therefore, we also assess the
infeasibilty of the power flow equations by measuring the maximum violation in
(4.5a) for the solutions returned by Algorithm 1. Here, the violation is defined as
the difference between the left- and right-hand sides of (4.5a) (in kW) when s,𝑾, 𝑿
are evaluated as the output of Algorithm 1. In our simulations, the infeasibility is
on the order of 10−3 to 10−1 kW, which reflects the effect of the spectrum error after
the post-processing. As a benchmark, the load injections for those feeders are on
the order of 101 to 102 kW, and are typically two orders of magnitude higher than
the infeasibility.

On the right-hand side of Table 4.1, the rank of M𝒗,𝑺,ℓ ( 𝑗 , 𝑘) for all lines ( 𝑗 , 𝑘) ∈ E
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is examined for the same algorithm under the BFM. Again, we present the maximum
ratio between the two largest eigenvalues. Similar to the BIM, the infeasibility, i.e.,
the violation of (4.1a), is shown in the table.

Exactness Results for Algorithm 2
In our setting, the penalized formulations (4.15) and (4.16) are solved with the
parameter 𝜆 = 10 in all experiments. We will later show how the value of 𝜆 affects
the solution quality.

Table 4.2 presents the maximum ratio between the top two largest eigenvalues
of M𝑾,𝑿,𝜌 ( 𝑗) for the BIM and M𝒗,𝑿,𝜌 ( 𝑗) for the BFM returned by the solvers.
Comparing the infeasibility of the solutions obtained using Algorithm 1, shown in
Table 4.1, and Algorithm 2, shown in Table 4.2, it is clear that adding a penalty
helps reduce the effect of the spectrum error and leads to globally optimal solutions
with much lower infeasibility.

To assess the effect of the penalization approach on the quality of the solutions in
terms of cost and feasibility, Table 4.3 shows the effect of increasing the penalty
parameter in the cost function as well as the maximum infeasibility of the power
equations (in kVA) for the IEEE 37-bus network with 3% voltage limits. The cost in
Table 4.3 is evaluated without the penalty term. Note that the case 𝜆 = 0 corresponds
to the output of Algorithm 1. Although the solution feasibility is enhanced by
increasing the penalty parameter, the cost associated with the solution obtained also
increases. Note that the cost obtained with 𝜆 = 0, i.e., from Algorithm 1, represents
a lower bound for the optimal cost of the original AC-OPF problem. 5 In addition,
increasing the penalty parameter beyond the values considered in Table 4.3 leads to
uninteresting solutions because the cost function becomes dominated by the penalty
term. For real applicaitons, we suggest to use binary search to find the smallest 𝜆
such that the infeasibility of the solution is within the user-specified tolerance range.

Results with Distributed Energy Resources
We now assess the performance of the proposed approach in a more general setting
where distributed energy resources (DERs), such as photovoltaics (PV), are installed.
In this simulation, we utilize the IEEE 37-bus distribution feeder where we assume

5 Here is the reason why the cost of Algorithm 1 is regarded as a lower bound. One consequence
of having the spectrum error is that numerical error in BIM formulation could lead to larger constraint
violation (as indicated by the infeasibility). Therefore, the output cost (with slight constraint violation)
may be lower than the actual optimal cost within the feasible set. We would expect the actual optimal
cost to be exact if there were no numerical error.
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Table 4.4: Results on IEEE 37-bus network with DERs installed when minimizing
the electrical losses.

Model Algorithm 1 Algorithm 2 (𝜆 = 1)

Cost Infeas. (kW) Cost Infeas. (kW)

BIM 2.5571 6.68 × 10−2 4.0415 4.42 × 10−6

BFM 2.5631 6.57 × 10−2 4.0442 7.00 × 10−6

that five PV systems are installed in delta connections at the buses 725, 729, 731, 732,
and 740. The available power at these units is set at 120, 75, 90, 105, and 180 KW,
respectively. We also assume that all the PV inverters can provide reactive power
support such that the resultant power factor is at least 0.8. Using this modified feeder,
we evaluate the performance of the proposed algorithms when the cost function is
𝑝loss, i.e., 𝜇𝑝 = 𝜇𝑞 = 𝑤𝑝 = 𝑤𝑞 = 0 and 𝜇ℓ = 1. In addition, we set the upper
and lower bounds on voltage magnitudes to be 1.03 pu and 0.97 pu, respectively, in
this simulation. In Table 4.4, the results of both Algorithm 1 and Algorithm 2 are
presented. It is consistent with previous sections that Algorithm 2 often has lower
infeasibility compared to Algorithm 1. To assess the voltage magnitudes resulting
from the proposed algorithms, Fig. 4.2 depicts the voltage magnitude at all phases
for the solution produced by Algorithm 2 (𝜆 = 1). It is worth noting that the same
voltage profile is obtained by both the BFM and BIM formulations. The results
confirms that the voltages in the solution are within the operational limits.

In additon, we evaluate the performance of both the BIM and BFM under a different
cost function which also includes the substation power deviation, i.e., 𝑤𝑝 = 𝑤𝑞 = 0,
𝜇𝑝 = 𝜇𝑞 = 4, and 𝜇ℓ = 1. Furthermore, we set the reference substation injection
such that it is achievable only if the available PV power is curtailed. Therefore,
the reference power tracking term in the cost function becomes not increasing in
power injections. This is known to lead to inexactness of the relaxation. We test
this cost function using Algorithm 1 and Algorithm 2 (𝜆 = 1). Table 4.5 shows
the infeasibility and the cost function of the solutions obtained using both BIM and
BFM. We can see that the infeasibility of the solution obtained using Algorithm
1 is aggravated due to the use of the cost function that is not increasing with
power injections. However, adding the penalty term in Algorithm 2 is enough to
significantly reduce the infeasibility.
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Figure 4.2: The voltage magnitude at all buses for the solution obtained through
Algorithm 2 (𝜆 = 1) for the modified IEEE 37-bus feeder.

Table 4.5: Results on IEEE 37-bus network with DERs installed when minimizing
reference tracking cost and electrical loss.

Model Algorithm 1 Algorithm 2 (𝜆 = 1)

Cost Infeas. (kW) Cost Infeas. (kW)

BIM 18.2124 1.42 × 10−1 19.6029 6.00 × 10−7

BFM 18.2281 1.40 × 10−1 19.6026 6.35 × 10−6

Algorithm Summary and Comparison
Algorithms 1 and 2 can be useful for different applications. Algorithm 1 solves
the un-penalized problem and therefore prioritizes cost minimization at the cost of
larger constraint violation. The simulation shows that the infeasibility is typically
two orders of magnitude smaller than the load injections and should be acceptable.
Algorithm 2, on the other hand, can recover a solution with much smaller constraint
violation, but the optimal cost is higher because of the penalty term.

The simulation results also show that the methods under BFM are more numerically
stable than BIM, in terms of the infeasibility in Table 4.1 and 4.2. This observation is
consistent with the performance of two models for single-phase feeders and feeders
without delta connections, as shown in [30, 57].
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Table 4.6: Computational Time for both BIM and BFM (in seconds).

Model IEEE-13 IEEE-37 IEEE-123

BIM 2.46 5.56 9.03
BFM 2.77 4.93 9.87

We also benchmark the computational time of the proposed algorithms in our case
studies. Since both algorithms require solving similar optimization problems with
slightly different cost functions, the computational time of the two algorithms is
similar. Hence, we only present the computational time of Algorithm 1 for all net-
works using both the BIM and BFM formulations. The algorithm was implemented
using Mosek 8.0 as a conic solver on a laptop with Intel Core i9 CPU (2.40 GHz),
16 GB RAM, macOS Catalina OS, and MATLAB R2019b. The results show that
the proposed algorithms take less than 10 seconds to solve the AC-OPF problem for
the IEEE 123-bus network on a standard laptop, which demonstrates the computa-
tional efficiency of the proposed algorithms. More advanced methods such as sparse
semi-definite programming solvers, e.g., [75], can further scale the implementation
to thousands of buses.

4.6 Conclusion
This chapter studied the SDP relaxation of the AC-OPF problem for an unbalanced
three-phase radial network with delta connections, formulated under both the BIM
and BFM. We showed the equivalence between the BIM and BFM formulations and
presented sufficient conditions for recovering exact solutions of the nonconvex AC-
OPF formulations from their respective relaxations. The chapter also showed why
conventional relaxation (by directly dropping rank-1 constraints) always fails when
the sufficient conditions are approximately satisfied. It is due to the non-uniqueness
in the relaxation solution and the spectrum error in computation. Inspired by this
finding, we then proposed two algorithms which are guaranteed to produce exact so-
lutions whenever our sufficient conditions are satisfied. One applies post-processing
and produces lower cost but larger constraint violation. The other adds a penalty
term and produces higher cost but smaller constraint violation. In simulations, we
demonstrated that for three IEEE standard test cases, both algorithms are able to
recover near globally optimal solutions with tolerable constraint violation and cost
suboptimality.
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C h a p t e r 5

PRICE AND SENSITIVITY

In this chapter, we are concerned with determining how the optimal cost and the
optimal solution of an given OPF problem vary as the demand changes. As the
penetration of distributed energy resources increases (for example, causing genera-
tion limits to fluctuate depending on the weather), it will become more important to
understand such questions. Similar questions have been addressed recently in [10,
35, 63]. In contrast to other chapters, this chapter is based on a more tractable DC
model, since it offers the advantage of admitting a linear programming formulation
as opposed to a non-convex quadratic program, or in the relaxed case a semidefi-
nite or second-order cone program. Work in [26, 48, 62] explores how good an
approximation the DC power flow provides.

We divide the injections into two classes: power load and power generation, while
power load (denoted by vector 𝒔𝑙) refers to noncontrollable power demand and power
generation (denoted by vector 𝒔𝑔) refers to controllable power supply. Conceptually
the problem can be formulated as a linear program as follows:

minimize
𝒔𝑔

𝒇 T𝒔𝑔

subject to 𝑨eq𝒔
𝑔 = 𝒃eq(𝒔𝑙 , 𝒃) (5.1)

𝑨in𝒔
𝑔 ≤ 𝒃in.

where 𝒇 is a vector of generation costs (per unit time). The function 𝒃eq is linear in
both 𝒔𝑙 and b.1 We are concerned with how an optimal (𝒔𝑔)∗ changes as a function
of 𝒔𝑙 , and how the optima cost 𝒇 T(𝒔𝑔)∗ changes.

In the first half of this chapter, we studied how the optimal cost varies when the load
changes, and this is also referred to as the nodal price of the system. Such price is
an approximation of 2|𝑢𝜙

𝑗 𝑘
|, 2|𝑣𝜙

𝑗 𝑘
| in Chapter 3. For radial networks, we prove that

the nodal price is always between min 𝑗 𝒇 𝑗 and max 𝑗 𝒇 𝑗 , and it helps explain why the
values of |𝑢𝜙

𝑗 𝑘
|, |𝑣𝜙

𝑗 𝑘
| are close for 𝑗 ∼ 𝑘 . In the second half, we go a step further,

1The vector 𝒃 is reserved as a placeholder for any constants which may affect the feasible domain
where 𝒔𝑔 resides.
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and study the sensitivity of the optimal power generation with respect to the load.
It is found that for radial networks, such sensitivity is always bounded by 1, but for
meshed networks, the value of sensitivity could rapidly grow up in the worst case if
the network contains multiple loops.

Notation
Vectors and matrices are typically written in bold while scalars are not. Given
two vectors a, b ∈ R𝑛, a ≥ b denotes the element-wise partial order a𝑖 ≥ b𝑖 for
𝑖 = 1, . . . , 𝑛. For a scalar 𝑘 , we define [𝑘]− := min{0, 𝑘}. We define ∥x∥0 as the
number of non-zero elements of the vector x. Identity and zero matrices are denoted
by I𝑛 and 0𝑛×𝑚 while vectors of all ones are denoted by 1𝑛 where superscripts and
subscripts indicate their dimensions. To streamline notation, we omit the dimensions
when the context makes it clear. The notation R+ denotes the nonnegative real set
[0, +∞). For X ∈ R𝑛×𝑚, the restriction X{1,3,5} denotes the 3 × 𝑚 matrix composed
of stacking rows 1, 3, and 5 on top of each other. We will frequently use a set
to describe the rows we wish to form the restriction from; in this case we assume
the elements of the set are arranged in increasing order. We will use 𝒆𝑚 to denote
the standard base for the 𝑚th coordinate, and its dimension will be clear from the
context. Let (·)† be the Moore-Penrose inverse. Finally, let [𝑚] := {1, 2, . . . , 𝑚}
and [𝑛, 𝑚] := {𝑛, 𝑛 + 1, . . . , 𝑚}. The indicator function is denoted as I.

5.1 System Model
System model
Consider a power network modeled by an undirected connected graph G(V, E),
where V := VG ∪ VL denotes the set of buses which can be further classified
into subsets of generators VG and loads VL, and E ⊆ V × V is the set of all
branches linking those buses. Suppose VG ∩ VL = ∅ and there are |VG | =: 𝑁G

generator and |VL | =: 𝑁L loads, respectively. For simplicity, let VG = [𝑁G],
VL = [𝑁G + 1, 𝑁G + 𝑁L]. Let 𝑁 = 𝑁G + 𝑁L. Without loss of generality, G is a
connected graph with |E | =: 𝐸 edges labelled as 1, 2, . . . , 𝐸 . Let 𝑪 ∈ R𝑁×𝐸 be the
incidence matrix. We will use 𝑒, ( 𝑗 , 𝑘) or (𝑘, 𝑗) interchangeably to denote the same
edge. Let 𝑩 = diag(𝑏1, 𝑏2, . . . , 𝑏𝐸 ), where 𝑏𝑒 > 0 is the susceptance of branch 𝑒
and the value of 𝑏𝑒 is −Im(𝑦𝑒) where 𝑦𝑒 is the line admittance defined in previous
chapters. The Laplacian matrix is defined as 𝑳 = 𝑪𝑩𝑪T. As we adopt a DC power
flow model, all branches are assumed lossless. Further, we denote the generation
and load as 𝒔𝑔 ∈ R𝑁G , 𝒔𝑙 ∈ R𝑁L , respectively. Thus 𝒔𝑔

𝑖
refers to the generation on
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Figure 5.1: Illustration on splitting a bus with both a generator and a load into a
pure generation bus and a pure load bus.

bus 𝑖 while 𝒔𝑙
𝑖

refers to the load on bus 𝑁G + 𝑖. We will refer to bus 𝑁G + 𝑖 simply
as load 𝑖 for simplicity. The power flow on branch 𝑒 ∈ E is denoted as 𝒑𝑒, and
𝒑 := [ 𝒑1, . . . , 𝒑𝐸 ]T ∈ R𝐸 is the vector of all branch power flows. To simplify
analysis, we assume that there are no buses in the network that are both loads and
generators. This setting is different from previous chapters, where injections are
regarded as the net injection of both generation and load. Also, we assume that all
generators have degree 1. In fact, those are not restricted assumptions, as we can
always split a bus with both a generator and a load into a bus with only the generator
connected to another bus with only the load, and connect all the neighbors of the
original bus to that load bus (see Fig. 5.1 for a more detailed illustration). Therefore,
any network in previous chapters can be equivalently transformed into the model
discussed in this chapter.

The DC power flow model assumes that the voltage magnitudes are fixed and known,
and the lines are lossless. The DC-OPF problem is a linear program:

minimize
𝒔𝑔,𝜽

𝒇 T𝒔𝑔 (5.2a)

subject to 𝜽1 = 0 (5.2b)

𝑳𝜽 =

[
𝒔𝑔

−𝒔𝑙

]
(5.2c)

𝒔𝑔 ≤ 𝒔𝑔 ≤ 𝒔𝑔 (5.2d)

𝒑 ≤ 𝑩𝑪T𝜽 ≤ 𝒑. (5.2e)

The decision variables are the power generations 𝒔𝑔 and voltage angles 𝜽 ∈ R𝑁 .
The cost vector 𝒇 ∈ R𝑁G

+ is the unit cost for each generator and constraint (5.2b)
indicates that bus 1 has been set as the slack-bus. All voltage magnitudes are fixed
at 1. In constraint (5.2c), we let the injections for generators be positive while the
injections for loads be −𝒔𝑙 . The upper and lower limits on the generations are set
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as 𝒔𝑔 and 𝒔𝑔, respectively, and 𝒑 and 𝒑 are the limits on branch power flows. We
assume that (5.2) has a non-empty feasible set.

One of our main purposes here is to use the single-phase, DC model to provide an
approximation for 𝜇𝜙

𝑗
in the three-phase, AC model. Consider that our definitions

for injections are slightly differently in two models, we first want to bridge the gap
between them. Assume that the model in Chapter 3 contains 𝑁L buses, and each
bus has its own load, which is noncontrollable. A subset of buses have controllable
generations, and can be split into a pure generator and a pure load. When we apply
the splitting process as shown in Fig. 5.1, we also construct a matrix 𝑷 that if bus
𝑖 is split into 𝑖′ (a generator) and 𝑖′′ (a load), then the 𝑖th row of 𝑷 is constructed as
𝒆T
𝑖′ + 𝒆T

𝑖′′, where 𝒆𝑖′, 𝒆𝑖′′ are the basis vectors. Consider the following problem:

minimize
𝒔𝑔,𝜽

𝒇 T𝑷𝑳𝜽 (5.3a)

subject to 𝜽1 = 0 (5.3b)

𝑳𝜽 =

[
𝒔𝑔

−𝒔𝑙

]
(5.3c)

𝑷

[
𝒔𝑔

−𝒔𝑙

]
≤ 𝑷𝑳𝜽 ≤ 𝑷

[
𝒔𝑔

−𝒔𝑙

]
(5.3d)

𝒑 ≤ 𝑩𝑪T𝜽 ≤ 𝒑. (5.3e)

Problem 5.3 has linear cost in real injection, real power limits, and line constraints.
Compared to (3.3), it drops all the reactive power and voltage constraints. By
setting ( 𝒇 , 𝒔𝑔, 𝒔𝑔, 𝒑, 𝒑) at suitable values, (5.3) can serve as an approximation of
problem (3.3). 2 Conceptually, the value of 𝜇𝜙

𝑗
can also be approximated by the

dual variables associated with constraint (5.3d). 3 Let 𝑔(𝒔𝑙) be the optimal solution
of (5.3) parameterized by 𝒔𝑙 . By perturbation analysis, the dual variables for (5.3d)
are equal to 𝜕𝑔(𝒔𝑙)/𝜕𝒔𝑙 . On the other hand, problems (5.2) and (5.3) are equivalent
in the sense that they share the same optimal solution 𝜽∗. However, the cost function
of (5.3) penalizes the power load while (5.2) does not. Therefore, we have

𝜕 𝒇 T(𝒔𝑔)∗
𝜕𝒔𝑙

=
𝜕𝑔(𝒔𝑙)
𝜕𝒔𝑙

+ 𝒇 ≈ 𝜇 + 𝒇 .

2Here, the approximation includes two steps: 1) approximate a three-phase network by three
decoupled single-phase networks; 2) approximate each single-phase network by the linearized model.

3𝜇
𝜙

𝑗
is the dual variable for both (3.2) and (3.3) since they share the same dual problem.
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Here, (𝒔𝑔)∗ is the optimal solution of (5.2). Compared with Chapter 3, 𝒇 and 𝑐𝜙
𝑗,re

play the same role as the linear coefficients in the cost function. Therefore, the
values of 𝑢𝜙

𝑗 𝑘
, 𝑣
𝜙

𝑗 𝑘
in Chapter 3 can be approximated by 𝜕 𝒇 T (𝒔𝑔)∗

𝜕𝒔𝑙
,the nodal prices of

DC OPF problem (5.2), as long as DC model is accurate and the cost on reactive
power is negligible. In the later sections, we will prove that the values in 𝜕 𝒇 T (𝒔𝑔)∗

𝜕𝒔𝑙

can be bounded by min 𝒇 𝑗 and max 𝒇 𝑗 . This result partially explains that if the cost
function penalizes similarly on all the buses, then the values of 𝑢𝜙

𝑗 𝑘
, 𝑣
𝜙

𝑗 𝑘
should take

values close to each other.

Set Definitions
In general, deriving the closed-form expression for derivatives 𝜕 𝒇 T (𝒔𝑔)∗

𝜕𝒔𝑙
and 𝜕 (𝒔𝑔)∗

𝜕𝒔𝑙
is

both analytically and computationally challenging. Alternatively, we would like to
express those derivatives in terms of the indices of binding constraints. To do so,
we first introduce the OPF operator and provide the following definitions.

Let 𝝃 be a vector of 2𝑁G + 2𝐸 network limits arranged as

𝝃 := [(𝒔𝑔)T, (𝒔𝑔)T, 𝒑T
, 𝒑T]T.

Define the sets

Ω𝝃 := {𝝃 |𝒔𝑔 ≥ 0, (5.2b) − (5.2e) are feasible for some 𝒔𝑙 > 0},
Ω𝒔𝑙 (𝝃) := {𝒔𝑙 |𝒔𝑙 > 0, (5.2b) − (5.2e) are feasible} for 𝝃 ∈ Ω𝝃 .

The set Ω𝒔𝑙 (𝝃) is convex and non-empty. When 𝝃 is clear we will simply refer to
this set as Ω𝒔𝑙 . These two sets collect the parameters we care about. The next set
ensures (5.2) has a unique solution:

Ω 𝒇 := { 𝒇 ≥ 0 | ∀𝝃 ∈ Ω𝝃 , 𝒔
𝑙 ∈ Ω𝒔𝑙 (𝝃), (5.2) has a unique

solution, and ≥ 𝑁G − 1 nonzero dual

variables at the optimal point.}

The definition above is in fact more restrictive than what is needed for uniqueness.
We impose the additional constraint on the number of non-zero dual variables as it
paves the way for further desirable properties, where we show, that up to perturbation
all the binding constraints are independent and there are exactly 𝑁G − 1 of them.

With these definitions in hand, we are ready to define the OPF operator abstraction
of (5.2).
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5.2 The OPF Operator
Existence and Smoothness
Instead of dealing with the convex program (5.2) directly, we instead treat it as an
operator that maps loads to optimal generations.

Definition 19. Assume 𝒇 ∈ Ω 𝒇 . Let OPF be the operator OPF : Ω𝒔𝑙 → R𝑁G

such that OPF (𝒔𝑙) returns an optimal solution to (5.2), i.e. (𝒔𝑔)∗ = OPF (𝒔𝑙).

We collect a few observations pertaining to OPF :

• The assumption that 𝒇 ∈ Ω 𝒇 ensures that OPF is a singleton, i.e. it returns
a unique element.

• OPF defines a parametric linear program. Solution sets to parametric LPs
are both upper and lower hemi-continuous, thus the OPF solution set inherits
hemi-continuity. Furthermore, when 𝒇 ∈ Ω 𝒇 , OPF is continuous.

• Ω 𝒇 is dense in R𝑁G
+ (See Proposition 1 in [79]). Thus, if 𝒇 ∉ Ω 𝒇 applying a

small perturbation to 𝒇 will with probability 1 ensure that 𝒇 ′ ∈ Ω 𝒇 . So the
assumption that 𝒇 ∈ Ω 𝒇 is mild.

We require one final set definition before we can state the differentiability properties
of the OPF operator.

Ω̃𝒔𝑙 (𝝃, 𝒇 ) :={𝒔𝑙 ∈ Ω𝒔𝑙 (𝝃) | (5.2) has exactly 𝑁G − 1

binding inequalities.}

The 𝑁G − 1 binding inequalities condition above ensures (when combined with the
restriction of 𝒇 to Ω 𝒇 ) that the set of binding inequalities are independent. This
technical assumption is required in the proof of Theorem 17.

Theorem 17. Assume that 𝒇 ∈ Ω 𝒇 . Then there exists a dense set Ω̃𝝃 ( 𝒇 ) ⊆ Ω𝝃 such
that for all 𝝃 ∈ Ω̃𝝃 ( 𝒇 ) the following hold:

1. closure(interior(Ω𝒔𝑙 (𝝃))) = closure(Ω𝒔𝑙 (𝝃)),

2. Ω̃𝒔𝑙 (𝝃, 𝒇 ) is dense in Ω𝒔𝑙 (𝝃).

Then, when 𝒇 ∈ Ω 𝒇 and 𝝃 ∈ Ω̃𝝃 ( 𝒇 ), the derivative 𝜕𝒔𝑙OPF (𝒔𝑙) exists for 𝒔𝑙 ∈ Ω̃𝒔𝑙 ,
and the set of binding constraints remain unchanged in some neighborhood of 𝒔𝑙 .
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Proof. The proof of the two topological properties of Ω̃𝒔𝑙 (𝝃, 𝒇 ) is somewhat in-
volved but can be found in Appendix C of [79]. With these definitions in hand,
by construction, the appropriate sets possess the necessary topological properties
such that when combined with the OPF problem (3.2), they satisfy all the necessary
conditions in Lemma 4.1 of [35] which guarantee that the derivatives always exist
and binding constraints do not change locally.

Corollary 11. If 𝒔𝑙 ∈ Ω̃𝒔𝑙 , the 𝑁G−1 binding inequalities, along with 𝑁 +1 equality
constraints, are independent.

Now, suppose at point 𝒔𝑙 , the set of generators corresponding to binding inequalities
is SG ⊆ VG, while the set of branches corresponding to binding inequalities is
SB ⊆ E. As a consequence of 1) and 2) in Theorem 17 we obtain the following:

Corollary 12. When 𝒇 ∈ Ω 𝒇 , 𝝃 ∈ Ω̃𝝃 ( 𝒇 ), 𝒔𝑙 ∈ Ω̃𝒔𝑙 (𝝃, 𝒇 ), we have

|SG | + |SB | = 𝑁G − 1.

We use Fig. 5.2 to summarize the relationship among the sets Ω 𝒇 , Ω𝒔𝑙 , Ω̃𝒔𝑙 , Ω𝝃 , Ω̃𝝃

defined above. Informally, set Ω𝝃 contains all the 𝝃 that make the OPF problem
feasible, and Ω 𝒇 contains 𝒇 that guarantee the unique solution for feasible OPF
problems and sufficiently many non-zero Lagrangian multipliers. Each 𝝃 ∈ Ω𝝃

maps to a set Ω𝒔𝑙 (𝝃), while each (𝝃, 𝒇 ) maps to set Ω̃𝒔𝑙 (𝝃, 𝒇 ), which is a subset of
Ω𝒔𝑙 (𝝃). For fixed 𝒇 , by collecting all the 𝝃 such that Ω𝒔𝑙 (𝝃) has “good” topological
property and Ω̃𝒔𝑙 (𝝃, 𝒇 ) is dense in Ω𝒔𝑙 (𝝃), we obtain a set Ω̃𝝃 ( 𝒇 ) depending on 𝒇 ,
and Theorem 17 implies Ω̃𝝃 ( 𝒇 ) is dense in Ω𝝃 .

We have placed a lot of emphasis on sets being dense. The reason for this is
that if the parameter of the OPF problem under consideration does not satisfy the
necessary assumptions, then there exists another parameter arbitrarily nearby that
does. Thus applying a perturbation to the parameter will provide an OPF problem
that does satisfy the necessary conditions for the derivative to be well defined. In
summary when 𝒇 , 𝝃, 𝒔𝑙 belong to (Ω 𝒇 , Ω̃𝒔𝑙 , Ω̃𝝃), we have shown that OPF has a
unique solution, and is well defined and differentiable, as well as that at the optimal
solution the binding constraints are independent.

Definition 20. We use SG ⊥ SB to denote that in (3.2), all the inequality constraints
corresponding to SG and SB, as well as equality constraints, are independent to
each other.
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Figure 5.2: Relationship among definitions in Sections 5.1 and 5.2. Solid arrows
show the mapping from 𝝃 to Ω𝒔𝑙 (𝝃), and dashed arrows show the mapping from
(𝝃, 𝒇 ) to Ω̃𝒔𝑙 (𝝃, 𝒇 ). A star set being inscribed in a circular set means the former is
dense in the latter.

Definition 21. We say that SG ∈ VG and SB ∈ E form a perfect pair if SG ⊥ SB

and |SG | + |SB | = 𝑁G − 1. A perfect pair is denoted as SG ∼ SB.

Jacobian Matrix
Notice that the nodal prices 𝜕 𝒇

T (𝒔𝑔)∗
𝜕𝒔𝑙

can also be computed from 𝜕 (𝒔𝑔)∗
𝜕𝒔𝑙

= 𝜕𝒔𝑙OPF (𝒔𝑙),
we now focus on the Jacobian matrix 𝜕𝒔𝑙OPF (𝒔𝑙). Let

𝑱(𝒔𝑙 ; 𝒇 , 𝝃) := 𝜕𝒔𝑙OPF (𝒔𝑙) ∈ R𝑁G×𝑁L (5.4)

for 𝒇 ∈ Ω 𝒇 , 𝝃 ∈ Ω̃𝝃 ( 𝒇 ), 𝒔𝑙 ∈ Ω̃𝒔𝑙 ( 𝒇 , 𝝃). Suppose at point 𝒔𝑙 , the set of genera-
tors corresponding to binding inequalities is SG ⊆ VG, while the set of branches
corresponding to binding inequalities is SB ⊆ E. By Corollary 12, we have
|SG | + |SB | = 𝑁G − 1. Further, let

𝑹(SG,SB)T :=


I𝑁VL

𝑪𝑩𝑪T

I𝑁SG
𝑪𝑩𝑪T

I𝐸SB
𝑩𝑪T

𝒆T
1


, 𝑼 = I𝑁VG𝑪𝑩𝑪T (

𝑹(SG,SB)T
)−1
. (5.5)

We can derive

𝑱 = −𝑼(I𝑁[𝑁L])
T. (5.6)

It is worth noting that the value of 𝑱 computed via (5.5)-(5.6) depends on knowing
the binding constraints SG and SB for given ( 𝒇 , 𝝃, 𝒔𝑙). We abuse notation slightly
and let 𝑱(𝒔𝑙 ; 𝒇 , 𝝃) be the Jacobian matrix when ( 𝒇 , 𝝃, 𝒔𝑙) is known and let 𝑱(SG,SB)
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be the Jacobian matrix when (SG,SB) is known. When it is clear from context or
not relevant we simply use 𝑱.

5.3 Topology Analysis
Starting from this section, we study how the network topology, specifically the
properties of SG and SB, may affect the value of 𝑱. The following lemma indicates
that under our assumptions, if we view SB as a cut of the graph, then each subgraph
contains at least one non-binding generator.

Lemma 18. Suppose SB partitions G into 𝑚 disjoint subgraphs {G𝑖 (V𝑖, E𝑖)}𝑚𝑖=1,
where ∪𝑖V𝑖 = V and (∪𝑖E𝑖) ∪SB = E. Then for any 𝑖, we have (VG \SG) ∩V𝑖 ≠ ∅.

Proof. If the conclusion does not hold for some fixed 𝑖, then all the generators inV𝑖
are binding. Denote

T :=

[
𝑪𝑩𝑪T

𝑩𝑪T

]
and let E0 be the subset of SB satisfying ∀𝑒 = (𝑢, 𝑣) ∈ E0, 𝑢 ∉ V𝑖 and 𝑣 ∈ V𝑖. The
condition that SG ⊥ SB implies all the rows T{ 𝑗} for 𝑗 ∈ V𝑖 and T{𝑁+𝑒} for 𝑒 ∈ E0

must be independent of each other. Recall that for each edge, we use its integer
index 𝑒 and (𝑢, 𝑣) interchangeably. Note that∑︁

𝑗∈V𝑖

T{ 𝑗} =
∑︁
𝑗∈V𝑖

∑︁
𝑒=( 𝑗 , 𝑗 ′)∈E

(𝑏𝑒𝒆T
𝑗 − 𝑏𝑒𝒆T

𝑗 ′)

=
∑︁
𝑗, 𝑗′∈V𝑖

𝑒=( 𝑗, 𝑗′)∈E𝑖

(𝑏𝑒𝒆T
𝑗 − 𝑏𝑒𝒆T

𝑗 ′) +
∑︁
𝑗∈V𝑖

∑︁
𝑒=( 𝑗, 𝑗′)
𝑒∈E0

(𝑏𝑒𝒆T
𝑗 − 𝑏𝑒𝒆T

𝑗 ′)

=0 +
∑︁

𝑒=(𝑢,𝑣)∈E0
𝑢∉V𝑖 ,𝑣∈V𝑖

(𝑏𝑒𝒆T
𝑣 − 𝑏𝑒𝒆T

𝑢) =
∑︁
𝑒∈E0

𝑪𝑣,𝑒T{𝑁+𝑒} .

Here 𝑪𝑣,𝑒 is the (𝑣, 𝑒) element of matrix 𝑪. It contradicts to SG ⊥ SB. Thereby,
(VG \ SG) ∩ V𝑖 ≠ ∅.

Now for a fixed graph G(V, E), we can divide the edges into two disjoint sets EI

and EII where

EI := {𝑒 ∈ E | G(V, E \ {𝑒}) is not connected.}, EII := E \ EI.

For set S, we use S(𝑛) to denote the 𝑛th smallest element in S, and we denote its
inverse operation as S−1(·).
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Theorem 18. Suppose SB partitions G into 𝑛 disjoint connected subgraphs {G𝑙 =
(V𝑙 , E𝑙)}𝑛𝑙=1. For 𝑖 ∈ VG, if ∃𝑙 such thatV𝑙 ∩ (VG \ SG) = {𝑖}, then for 𝑗 ∈ [𝑁L],
we have 𝑱𝑖, 𝑗 = I{ 𝑗+𝑁G∈V𝑙}.

Proof. Let Ebri := {𝑒 = (𝑢, 𝑣) ∈ E | 𝑢 ∈ V𝑙 , 𝑣 ∉ V𝑙)} be the set of bridges
connectingV𝑙 andV \V𝑙 . We have Ebri ⊆ SB. 4 We construct 𝒒 ∈ R𝑁 as

𝒒𝑡 =


1, 𝑡 ≤ 𝑁L and 𝑡 + 𝑁G ∈ V𝑙
1, 𝑁L < 𝑡 < 𝑁 − 𝑛 and SG(𝑡 − 𝑁L) ∈ V𝑙
𝑪𝑣,𝑒, 𝑒 = (𝑢, 𝑣) := SB(𝑡 − 𝑁L − |SG |) ∈ Ebri

0, otherwise

.

By assumption, generator 𝑖 has degree 1, so we let 𝑖′ ∈ V be its only neighbor
and 𝑒∗ := (𝑖, 𝑖′) be the edge linking 𝑖 and 𝑖′. If 𝑒∗ ∈ SB, then V𝑙 = {𝑖}, and by
construction we have 𝑹(SG,SB)𝒒 = −𝑪𝑩𝑪T𝒆𝑖. Otherwise, 𝑒∗ is in neither SB nor
Ebri, and by (5.7) we also have 𝑹(SG,SB)𝒒 = −𝑪𝑩𝑪T𝒆𝑖.

𝑹(SG,SB)𝒒 =
∑︁

𝑘∈V𝑙\{𝑖}
𝑪𝑩𝑪T𝒆𝑘 −

∑︁
𝑒=(𝑢,𝑣)∈Ebri

𝑏𝑒 (𝒆𝑢 − 𝒆𝑣) (5.7)

=
∑︁

𝑘∈V𝑙\{𝑖}

∑︁
𝑒=(𝑘,𝑘 ′)∈E

𝑏𝑒 (𝒆𝑘 − 𝒆𝑘 ′) −
∑︁

𝑒=(𝑢,𝑣)∈Ebri

𝑏𝑒 (𝒆𝑢 − 𝒆𝑣)

=
∑︁
𝑘∈V𝑙

∑︁
𝑒=(𝑘,𝑘 ′)∈E

𝑏𝑒 (𝒆𝑘 − 𝒆𝑘 ′) −
∑︁

𝑒=(𝑢,𝑣)∈Ebri

𝑏𝑒 (𝒆𝑢 − 𝒆𝑣) − 𝑏𝑒∗ (𝒆𝑖 − 𝒆𝑖′)

=
∑︁

𝑘,𝑘′∈V𝑙 :
𝑒=(𝑘,𝑘′)∈E

𝑏𝑒 (𝒆𝑘 − 𝒆𝑘 ′) +
∑︁

𝑘∈V𝑙 ,𝑘′∈V\V𝑙 :
𝑒=(𝑘,𝑘′)∈E

𝑏𝑒 (𝒆𝑘 − 𝒆𝑘 ′)

−
∑︁

𝑒=(𝑢,𝑣)∈Ebri

𝑏𝑒 (𝒆𝑢 − 𝒆𝑣) − 𝑏𝑒∗ (𝒆𝑖 − 𝒆𝑖′)

= − 𝑏𝑒∗ (𝒆𝑖 − 𝒆𝑖′) = −𝑪𝑩𝑪T𝒆𝑖 .

Thereby, (5.5) implies that 𝒒 is the 𝑖th row of 𝑼. Therefore, we have 𝑱𝑖, 𝑗 = 𝒒 𝑗 =

I 𝑗+𝑁G∈V𝑙
for 𝑗 ∈ [𝑁L].

Informally, Theorem 18 indicates if, after the removal of SB, generator 𝑖 is the only
non-binding generator in some connected subgraph, then the small change in any
load within the same subgraph will directly affects the generation at 𝑖 by the same

4Otherwise, V𝑙 and V \ V𝑙 will be connected by a path consisting of edges in E \ SB. It
contradicts to the fact thatV𝑙 is one of the subgraphs partitioned by SB.
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amount, while the change in other loads outside the subgraph will have no effects
on 𝑖 at all.

Radial Networks
When G is a tree, EI = E. An set of |SB | edges will always partition the graph
into |SB | + 1 connected subgraphs. Lemma 18, as well as |SG | + |SB | = 𝑁G − 1,
indicates that each subgraph should contain exactly one non-binding generator.
Using Theorem 18 again and we will obtain

𝑱𝑖, 𝑗 (SG,SB) =
{

1, if 𝑖 ⇔ 𝑗 + 𝑁G in G(V, E \ SB), 𝑖 ∉ SG

0, otherwise
.

Here 𝑖 ⇔ 𝑗 + 𝑁G means generator 𝑖 and load 𝑗 (i.e., bus 𝑗 + 𝑁G) are connected by
some path. Informally, it means for tree network, SB partitions the network into
subgraphs and there will be exactly one non-binding generator in each subgraph.
Any change in load will lead to the same amount of change in the generator within
the same subgraph as long as (SG,SB) does not alter.

Therefore, when the binding sets are SG and SB, nodel prices 𝜕 𝒇 T (𝒔𝑔)∗
𝜕𝒔𝑙

can be
computed as

𝜕 𝒇 T(𝒔𝑔)∗
𝜕𝒔𝑙

= 𝑱T 𝒇 .

Since each column of 𝑱 is a basis vector, the values in 𝜕 𝒇 T (𝒔𝑔)∗
𝜕𝒔𝑙

are taken from some
entries of 𝒇 . As a result, all nodal prices must be bounded by min 𝒇 𝑗 and max 𝒇 𝑗 .
For practical problems, the coefficients in 𝒇 usually fall within a narrow range, and
it partially explains why the values of 𝑢𝜙

𝑗 𝑘
, 𝑣
𝜙

𝑗 𝑘
in Chapter 3 are typically close to

each other for multi-phase systems.

5.4 Worst Case Sensitivity
As we can see in previous sections, if the power network is a tree, the sensitivity
is always binary, implying increasing one unit of load requires increasing one unit
of generation somewhere and all other generators remain unaffected. Starting from
this section, we want to study for networks with general topology, specifically
with cycles, how the sensitivity would change. There are indeed many sensitivity
problems that can be formulated. Before we do so, it will be helpful to make concrete
the link between continuity and the Jacobian matrix. To avoid notational overload
we will refer to arbitrary functions and sets and then provide the definition specific
to OPF .
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Recall that a function ℎ : D → R𝑛 with D an open subset of R𝑛 is said to be
Lipschitz on D if there exists some 𝐿 ≥ 0 such that

∥ℎ(𝒙) − ℎ(𝒙′)∥ ≤ 𝐿∥𝒙 − 𝒙′∥ (5.8)

for all 𝒙, 𝒙′ ∈ D. Suppose that the Jacobian 𝑱 := 𝜕ℎ
𝜕𝒙 exists and is continuous on 𝐷.

Then if for some convex subset B ⊆ D, there exists a constant 𝐾 ≥ 0 such that𝜕ℎ(𝒙)𝜕𝒙

 ≤ 𝐾
on B, then (5.8) holds for all 𝒙, 𝒙′ ∈ B with 𝐿 = 𝐾 . This establishes a clear
link between a bound on the norm of the Jacobian and the Lipschitz constant of a
function. We now define the notion of Lipschitz continuity for a generator-load pair,
and then formulate three sensitivity definitions.

Definition 22. The matrices 𝑪, 𝑩 are fixed, as is the cost vector 𝒇 ∈ Ω 𝒇 and
𝝃 ∈ Ω̃𝝃 ( 𝒇 ). Select a generator 𝑖 and load 𝑗 . The pair (𝑖, 𝑗) is said to be 𝐶-Lipschitz
if for all 𝛿 > 0 and 𝜶,𝜶′ ∈ Ω𝒔𝑙 (𝝃) such that |𝜶 𝑗 − 𝜶′

𝑗
| ≤ 𝛿 and 𝜶𝑘 = 𝜶′

𝑘
for all

𝑘 ≠ 𝑗 , we have that
|OPF 𝑖 (𝜶) − OPF 𝑖 (𝜶′) | < 𝐶𝛿,

where OPF 𝑖 (·) denotes the 𝑖th coordinate of OPF (·).

This Lipschitz-like definition forms the basis of the sensitivity analysis formulation
we are proposing. In the remainder of this section we formulate several sensitivity
problems that will be of interest to grid operators.

Remark 7. Recall that in our notation, when we refer to the (𝑖, 𝑗)-generator-load
pair, this corresponds to vertices (𝑖, 𝑁G + 𝑗).

Problem 1: SISO Sensitivity
In this formulation we consider the problem of computing the worst-case sensitivity
of the generator-load pair (𝑖, 𝑗). We use SISO to mean single-input, single-output,
i.e. the change in one output when one input is changed. Recall that according to
our indexing of vertices, load 𝑗 corresponds to the vertex 𝑁𝐺 + 𝑗 .

Definition 23. The (SISO) sensitivity of generator 𝑖 with respect to load 𝑗 is the
minimum value which we denote by 𝐶𝑖← 𝑗 , such that (𝑖, 𝑗) is a 𝐶𝑖← 𝑗 -Lipschitz pair,
i.e., 𝐶𝑖← 𝑗 is the minimal 𝐶 such that |OPF 𝑖 (𝜶) − OPF 𝑖 (𝜶′) | < 𝐶𝛿 for every 𝜶,𝜶′

that differ only in their 𝑗 th coordinates with |𝜶 𝑗 − 𝜶′𝑗 | ≤ 𝛿.
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Problem 2: Worst-Case SISO Sensitivity
In the SISO sensitivity formulation, it was assumed that all the network parameters
and the OPF cost function were fixed. In this version of the problem we allow the
network parameters to change (apart from those which define the network structure,
e.g., 𝑪, the graph incidence matrix).

Definition 24. The worst-case (SISO) sensitivity of generator 𝑖 with respect to load
𝑗 is

𝐶wc
𝑖← 𝑗 := max

𝒇 ∈Ω 𝒇

max
𝝃∈Ω̃𝝃 ( 𝒇 )

𝐶𝑖← 𝑗 . (5.9)

The ability to allow parameter variations means 𝐶wc
𝑖← 𝑗

provides information about
various network scenarios. For example, a generator instantaneously going offline
can be modeled by 𝒑, 𝒑 → 𝜖 , where 𝜖 is a small constant. Taking 𝜖 = 0 would
potentially break the independence conditions we require. In practice a small
constant such as 𝜖 = 10−5 suffices.

Problem 3: MISO Sensitivity
Consider a set of 𝑚 load buses V′L ⊆ VL and let L denote the set of indices
corresponding to those loads. The MISO part of the definition refers to the fact
that here, we are interested in how a single output (generation) changes when
multiple inputs (loads) are allowed to simultaneously change. To make this definition
concrete, we must first modify Definition 22.

Definition 25. Assume that 𝑪, 𝑩 are fixed, as is the cost vector 𝒇 ∈ Ω 𝒇 and
𝝃 ∈ Ω̃𝝃 ( 𝒇 ). We say that (𝑖,L) is 𝐶 (𝑚)-Lipschitz if for all 𝛿 > 0 and 𝜶,𝜶′ ∈ Ω𝒔𝑙 (𝝃)
such that ∥𝜶−𝜶′∥ ≤ 𝛿 and 𝜶𝑘 = 𝜶′

𝑘
for all 𝑘 ∉ L, there exists a constant 𝐶 (𝑚) such

that
∥OPF 𝑖 (𝜶) − OPF 𝑖 (𝜶′)∥ < 𝐶 (𝑚)𝛿.

Definition 26. The (MISO) sensitivity of generator 𝑖with respect to the setL of loads,
denoted by 𝐶𝑖←L , is the minimum value of 𝐶 (𝑚) such that (𝑖,L) is 𝐶𝑚-Lipschitz.

The worst-case MISO sensitivity problem can then be derived analogously to Defi-
nition 24.

Computing Worst Case SISO Sensitivity
It can be shown that the worst-case sensitivity is computed by solving a discrete
optimization problem based on the binding constraint formulation of the Jacobian
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matrix.
𝐶wc
𝑖← 𝑗 = max

SG∈VG ,SB∈E
|SG |+|SB |=𝑁G−1

SG⊥SB

|𝑱𝑖, 𝑗 |. (5.10)

Unfortunately (5.10) is a non-convex, discrete optimization problem and thus in-
tractable in general. However, we provide Algorithm 3 that produces small sub-
graphs such that a brute-force search is possible.

Algorithm 3 Decomposition of the computation of 𝐶wc
𝑖← 𝑗

.
Input: 𝑩, 𝑪, 𝑖 ∈ [𝑁G], 𝑗 ∈ [𝑁L], G(VG ∪VL, E)
Output: 𝐶wc

𝑖← 𝑗

for 𝑒 = (𝑢, 𝑣) in Ebri do
if 𝑢, 𝑣 ∉ VG and 𝑖 ⇔ 𝑗 + 𝑁G in G(V, E \ {𝑒}) then
𝑒 partitions G into G1 and G2 (assume 𝑖, 𝑗 + 𝑁G are both in G1)
if G2 contains any vertex inVG then

Replace G2 by a single generator
else

Replace G2 by a single load
end if

end if
end for
Find a shortest path connecting 𝑖 and 𝑗 + 𝑁G
Get {G𝑙}𝑚𝑙=1 and add 𝑝𝑙 , 𝑞𝑙 to subgraphs
for 𝑙 = 0 to 𝑚 − 1 do

call subroutine to compute 𝐶wc
𝑝𝑙←𝑞𝑙+1

end for
𝐶wc
𝑖← 𝑗
←∏𝑚−1

𝑙=0 𝐶wc
𝑝𝑙←𝑞𝑙+1

return 𝐶wc
𝑖← 𝑗

This algorithm aims to reduce the computational complexity by breaking the large-
scale computation down into independent smaller tasks, which are usually much
easier than the original problem and can be processed in parallel.

Here a bridge is an edge in E whose deletion disconnects the graph. Define Ebri as
the set of bridges in E. In a not necessarily connected graph G′, we say 𝑖 ⇔ 𝑗 + 𝑁G

if there exists a path between nodes 𝑖 and 𝑗 + 𝑁G .

In the first step, for any bridge 𝑒 = (𝑢, 𝑣) ∈ Ebri that partitions G into G1 and G2, if
𝑖 ⇔ 𝑗 + 𝑁G after 𝑒 is deleted, then without loss of generality we assume both 𝑖 and
𝑗 + 𝑁G are in G1. In this case we can replace the whole of G2 by a single bus. The
rule is if G2 contains only load buses then it will be replaced by a single load, else
it is replaced by a single generator.
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In the second step, we find a shortest path (in terms of the number of edges along
the path) connecting 𝑖 and 𝑗 + 𝑁G, and the bridges along the path will partition the
graph into subgraphs {G𝑙 (V𝑙 , E𝑙)}𝑚𝑙=1. Assume the indices are assigned such that
G𝑙−1 is always closer to 𝑖 than G𝑙 . At the location of each bridge connecting G𝑙−1

and G𝑙 , we add a single load 𝑞𝑙−1 to G𝑙−1 and a single generator 𝑝𝑙−1 to G𝑙 , as shown
in Figure 5.3. For notational consistency, we refer to 𝑖 as generator 𝑝0 and 𝑗 as load
𝑞𝑚. Then the computation of 𝐶wc

𝑖← 𝑗
can be composed as

∏𝑚−1
𝑙=0 𝐶wc

𝑝𝑙←𝑞𝑙+1 , where each
𝐶wc
𝑝𝑙←𝑞𝑙+1 only depends on computing the sensitivity for smaller graphs.

5.5 Examples
We now consider two numerical examples that demonstrate Algorithm 3 presented
in the previous section. Both examples make use of the IEEE 9-bus test network,
full details of the model can be found in the MATPOWER toolbox [81].

9-Bus Example
The IEEE 9-bus test network is shown in Figure 5.4. The network consists of 3
generators, {1, 2, 3} and 6 loads, {4, . . . , 9}. In Table 5.1 we have computed the
worst-case SISO sensitivity for every generator load pair in the network.

Table 5.1: E.g. 1: worst-case SISO sensitivity for the 9-bus network.

VG

VL 4 5 6 7 8 9

1 1.0000 1.3935 2.0650 2.4748 1.9389 1.3244
2 2.4236 2.9560 1.7024 1.4748 1.0000 2.0081
3 2.5162 1.9838 1.0000 1.3847 1.6595 3.0081

This example shows that the network is most sensitive to perturbations to bus 9 as
felt by generator 3. It is interesting to note that the distance (in terms of number
of lines between the pair) between this pair of buses is as large as it could be for
a network of this topology. The worst-case sensitivities were computed using a
brute-force search over the discrete sets (SG,SB). This example is small enough for
such an approach to easily be computationally tractable. In the next sub-section we
consider an example where this is not the case.

27-Bus Example
This example computes the worst-case SISO sensitivity of a 27-bus network. The
network is constructed by chaining together three copies of the 9-bus network
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Figure 5.4: IEEE 9-bus network.

Figure 5.5: A 27-bus auxiliary network constructed by chaining three identical
9-bus networks together. Nodes and edges in red indicate that their corresponding
generation and flow constraints are binding for every generator-load worst-case SISO
sensitivity pairing in Table 5.3.

described in the previous example, it is illustrated in Figure 5.5. This system
was chosen to demonstrate Algorithm 3 as it easily decomposes into three 9-bus
subgraphs. The worst-case sensitivity can then be computed (in parallel) for each of
the subgraphs, with the global solution then given by multiplying the sensitivities
of each of the subproblems together.

In Table 5.2 (on the next page) we show a subset of the SISO worst-case generator-
load pairs. We have chosen to show the results of the computation from loads located
at the far right of the network to generators at the far left. From the decomposition
algorithm, we know that these values are likely to be larger than those of pairings
that are closer together because the graph in the middle, i.e. the 9-bus network with
nodes labeled with a single prime, e.g. 4′, acts as a multiplier for generator-load
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pairs that have a shortest path passing through it.

In Table 5.3, for every sensitivity pairing we have listed the binding constraints, i.e.,
the edge flows and generations that hit their limits. Observe that generator 1′ and
lines (7, 8), (5′, 6′) are active for all pairings and hence omitted from the table (they
are, however, marked in red in Figure 5.5).

Table 5.2: E.g. 2: worst-case SISO sensitivity for the 27-bus chained network.

VG

VL 4” 5” 6” 7” 8” 9”

1 7.3155 10.1942 15.1069 18.1045 14.1843 9.6889
2 4.3595 6.0750 9.0026 10.7889 8.4528 5.7739
3 4.0933 5.7040 8.4528 10.1301 7.9366 5.4213

Table 5.3: Binding generators/branches corresponding to the worst-case SISO sen-
sitivity for the 27-bus chained network. Since generator 1′ and the branch (5′, 6′)
(marked by red double-lines in Fig. 5.5) are always binding for all 18 pairs, this
table only lists other binding constraints besides 1′ and (5′, 6′).

VG

VL 4” 5” 6”

1 3, 2”, (6”, 7”) 3, 3”, (4”, 5”) 3, 3”, (6”, 7”)
2 3, 2”, (6”, 7”) 3, 3”, (4”, 5”) 3, 3”, (6”, 7”)
3 2, 2”, (6”, 7”) 2, 3”, (4”, 5”) 2, 3”, (6”, 7”)

VG

VL 7” 8” 9”

1 3, 3”, (7”, 8”) 3, 2”, (6”, 7”) 3, 2”, (6”, 7”)
2 3, 3”, (7”, 8”) 3, 2”, (6”, 7”) 3, 2”, (6”, 7”)
3 2, 3”, (7”, 8”) 2, 2”, (6”, 7”) 2, 2”, (6”, 7”)
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