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ABSTRACT

Waveguide quantum electrodynamics (QED) refers to the study of quantum emitters
(qubits) coupled to a single mode waveguide — a 1D electromagnetic reservoir
with a continuum of states. This paradigmatic quantum-optical system can serve
as a test-bed for experimental investigations in many-body physics, quantum non-
linear optics, reservoir engineering, non-Markovian physics, quantum networks,
and quantum computing. While such a system can be realized in a variety of
physical platforms, superconducting quantum circuits are well suited to the study of
waveguide QED due their readily available strong light-matter interaction strengths.

Of particular interest is the ability to tailor the dispersion relation and modal prop-
erties of the waveguide beyond that of a conventional waveguide with linear disper-
sion. For example, through periodic modulation of the geometry of a waveguide,
or through the fabrication of an array of coupled resonant elements, novel electro-
magnetic responses can be engineered. These include spectral constriction of the
1D continuum to a transmission band of finite bandwidth, enhanced or suppressed
emission rates of quantum emitters into the waveguide that are dependent on their
frequencies, and extreme slowing of the velocity of light. Such attributes of disper-
sive waveguides can be leveraged to substantially enrich the physics and applications
of qubit-waveguide systems.

In this thesis, we demonstrate the design, fabrication, and characterization of a
slow-light waveguide (SLWG) comprised of an array of coupled lumped-element
superconducting microwave resonators, and present on various experiments involv-
ing superconducting transmon qubits coupled to the SLWG. We investigate the
physics of a qubit strongly coupled to the SLWG reservoir by tuning its frequency
across the passband of this waveguide, where we find substantial changes to the
qubit emission rate, along with oscillatory energy relaxation of the qubit resulting
from the beating of bound and radiative dressed qubit-photon states. Further, upon
addition of a reflective boundary to one end of the waveguide, we observe revivals
in the qubit population on a timescale 30 times longer than the inverse of the qubit’s
emission rate, corresponding to the round-trip travel time of an emitted photon.

In addition, we show how we leveraged the ability to induce this non-Markovian
time-delayed feedback via the SLWG’s long delay to generate multidimensional
cluster states of itinerant microwave photonic qubits. By utilizing the SLWG as
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a delay line with 240 ns round-trip delay, a single flux-tunable transmon qubit as
a quantum emitter, and a second auxiliary transmon as a switchable mirror, we
achieve rapid, shaped emission of entangled photon wavepackets, and effect time-
delayed feedback within the waveguide between previously emitted photons and
the emitter qubit. We leverage these capabilities to generate a 2D cluster state
of four photons with 70% fidelity, as verified by tomographic reconstruction of
the quantum state. We conclude by discussing directly realizable novel follow-
up experiments that involve a continuously driven qubit in the presence of time-
delayed feedback, and discuss how our cluster-state generation scheme could be
straightforwardly extended to generation of even larger multidimensional cluster
states, thereby enabling utilization of such states for quantum information processing
techniques in the microwave domain.
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C h a p t e r 1

INTRODUCTION

The development of quantum mechanics in the early twentieth century has had a
profound impact in the technological advances of the last ∼100 years. By first learn-
ing to understand the true physical nature of particles and fields at the microscopic
scale, crucial inventions such as the transistor [1], laser [2, 3], atomic clocks, etc.,
were developed through intimate understanding of quantum mechanical principles.
In turn, these inventions fueled the development of technologies such as modern
computers, the internet, global positioning systems, and others, which have revolu-
tionized the way we interact and work on a day-to-day basis. However, while the
physics underpinning the development of these new technologies was “quantum,"
their fabrication and control remained “classical," and deterministic quantum control
of quantum degrees of freedom eluded scientists for many additional decades.

However, the advent of quantum optics in the 1960s and 1970s, and the ability to
isolate and probe single atoms with optical light, afforded a stage in which scientists
could begin to attempt to manipulate and control matter at the microscopic quan-
tum level [4–7]. The ensuing unrelenting march to observe and control dynamical
processes of individual quantum systems encompassed the development of laser
cooling [8], atomic traps [9], cavity quantum electrodynamics (QED) [10, 11], and
an ever-increasing understanding and appreciation for the subtleties of light-matter
interaction. Today, the ground work laid by pioneering quantum optics experiments
has helped usher a new age of unprecedented quantum control, where sophisticated
new techniques and tools allow for routine generation and measurement of complex
quantum states in a variety of experimental systems. Indeed, the maturation of
quantum information science as a field has recently even culminated in industry-led
efforts to build a practical quantum computer [12–15], where the distinguishing
features of quantum mechanics such as quantum entanglement and quantum super-
position are no longer merely theoretical constructs, but rather form the backbone
for potentially breakthrough technology. And although today there are many po-
tential platforms in which to realize quantum-computing, the study of light-matter
interaction nevertheless lies at the heart of nearly all of them.

But while atoms were the first system in which scientists learned to isolate and



2

control quantum degrees of freedom, effective “qubits" can now also be routinely
realized in condensed matter systems such as superconducting circuits, where the
same techniques that historically were applied to atoms can now be emulated in
superconducting qubits. For example, in direct analogy to “cavity QED" in quantum
optics, “circuit QED" was developed in superconducting circuits [16], where the
bosonic modes consist of_-sized isolated sections of microwave coplanar waveguide
transmission lines, and the “artificial atoms" consist of Josephson-junction-based
superconducting qubits. The important advantage of this approach is that the ability
to fabricate superconducting circuits with deep sub-wavelength dimensions allowed
for very small effective mode volumes which, as predicted by quantum optics decades
prior, confers superbly strong (and engineerable) light-matter coupling in these
systems. With typical couplings on the order of 𝑔 ∼ 100 MHz, and with qubit 𝑇∗

2 =

1/(2𝛾) ∼ 100`𝑠 and resonator quality factors of 𝑄 = 𝜔𝑟/^ ∼ 106 demonstrated
[17, 18], state-of-the-art cooperativities 𝐶 = 𝑔2/(𝛾^) in these system can exceed
one billion. Furthermore, the ability to fabricate arbitrary circuit topologies enables
one to engineer a diverse array of Hamiltonians, thereby allowing application of
superconducting circuits to various endeavors such as quantum computing, quantum
simulation of many-body systems, and naturally, fundamental research of quantum
optics and light-matter interaction. Thus, in an unanticipated turn of events, bringing
together an∼Avogadro’s number of degrees of freedom in macroscopic-sized pieces
of metal has delivered one of the most versatile qubits to date. This astonishing
fact, of course, is thanks to the physics of superconductivity [19], where all internal
degrees of freedom of the superconductor become correlated and conspire to yield
an effective single collective degree of freedom that behaves quantum-mechanically:
the superconducting phase 𝜙.

And naturally, given that prior studies of quantum optics and quantum-light matter
interaction are chiefly responsible for fueling this new “quantum revolution," its
continued study is also expected to further contribute to the maturation of quantum
technologies. In this vein, we now turn to the particular work of this thesis, which
finds itself in a subfield of quantum optics research that is different, yet complimen-
tary, to the field of cavity QED: the field of waveguide quantum electrodynamics
(QED). Wveguide QED refers to the study of quantum emitters (qubits) coupled to
a single mode waveguide — a 1D electromagnetic reservoir with a continuum of
states [20–22]. In contrast to cavity QED, where light-matter interaction is achieved
between a qubit and a photon that is spatially confined in all dimensions, in waveg-
uide QED qubits are made to interact with propagating, un-localized photons. This
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paradigmatic quantum-optical system can serve as a test-bed for experimental inves-
tigations in many-body physics [23, 24], quantum non-linear optics [25], reservoir
engineering [26, 27], non-Markovian physics [28–30], quantum networks [31], and
quantum computing [32].

Additionally, superconducting circuits are well-suited to the study of waveguide
QED. In contrast to atomic-optical systems where the finite atom-waveguide coop-
erativity is often a limiting factor [33, 34], superconducting circuit QED systems
enjoy a strong qubit-waveguide coupling that far exceeds the strength of other dissi-
pative channels. Indeed, there have been several recent waveguide QED experiments
with superconducting circuits, including observation of paradgmatic quantum op-
tical phenomena such as Mollow Triplets and Autler-Townes splitting [35, 36],
observation of Dicke super-radiance and subradiance [37, 38], demonstration of
anti-bunching of fluorescence from a continuously driven qubit [39, 40], observa-
tion of the Hong–Ou–Mandel effect [41], “giant artificial atoms" that couple to
the waveguide at distances much longer than the wavelength of light [42–45], and
generation of non-classical states of light [46–49].

However, these aforementioned waveguide QED experiments mostly employ copla-
nar waveguides, which have linear dispersion, small propagation delays, and can
usually studied be through conventional quantum-optical theoretical approaches that
invoke the Born-Markov approximation. Thus, in this thesis, we substantially en-
rich the physics and applications of superconducting qubit-waveguide systems by
tailoring the dispersion relation and modal properties of the waveguide beyond that
of a conventional waveguide with linear dispersion. Through the fabrication of an
array of coupled resonant elements, we engineer novel electromagnetic responses
of the waveguide, and through proof-of principle experiments we demonstrate our
dispersive waveguide’s application in the generation of novel multipartite entangled
photonic states. In this manner, the work presented in this thesis constitutes a
meaningful contribution to the fields of quantum optics and quantum information
science.

The outline of this thesis is as follows. First, in Chapter 2, I provide a brief
overview of superconducting circuits and other relevant background necessary to
understand the physics, technical aspects, and noteworthy attributes of this thesis’
work and its applications. In Chapter 3, I give detailed overview of our approach
to constructing a dispersive slow-light waveguide (SLWG) through fabrication of
a chain of coupled lumped-element superconducting resonators, where we achieve
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a group delay of ∼ 55 ns per centimeter over a large bandwidth, low ripple in its
transmission, and sharp extinction of transmission outside of the passband. I present
on the theory underpinning the novel properties of the SLWG, its design and physical
implementation, and its characterization. Successful implementation of this SLWG
system constitutes one of the main technical achievements in this thesis’ body of
work, and it underpins the rest of the experiments we present on.

In Chapter 4, we investigate the non-Markovian physics of a qubit strongly coupled
to the SLWG environment through spectroscopic and time-domain measurements.
We report on direct observation of dynamical phenomena of the qubit-SLWG system
resulting from the beating of their bound and radiative dressed states that are con-
sistent with predictions of theoretical work investigating the atomic-optical physics
of structured reservoirs [50–59]; to our knowledge this is the first experimental
demonstration of these dynamical phenomena. Further, upon addition of a reflec-
tive boundary to one end of the waveguide, we observe time-delayed feedback within
the waveguide in the form of revivals in the qubit population at a significantly later
time than its initial emission, due to the waveguide’s large round-trip delay. We also
explore the effects of time-delayed feedback when controlling the emission rate of
the qubit to the waveguide via flux-modulation, and observe a crossover between
Markovian and non-Markovian qubit emission dynamics.

In Chapter 5, we leverage the attributes and capabilities of our system demonstrated
in Chapter 4, chiefly: a SLWG with large delay and finite passband, time-delayed
feedback between a qubit and its previously emitted photon, and tunable emission
rate of the transmon qubit coupled to the SLWG via flux-modulation, to gener-
ate multipartite entangled states of itinerant microwave photons. And principally,
we demonstrate an experimental implementation in the microwave domain of a
resource-efficient scheme for the deterministic generation of 2D photonic cluster
states [60]. By utilizing the SLWG as a delay line with 240 ns round-trip delay,
a single flux-tunable transmon qubit as a quantum emitter, and a second auxiliary
transmon as a switchable mirror, we achieve rapid, shaped emission of entangled
photon wavepackets, and effect time-delayed feedback within the waveguide between
previously emitted photons and the emitter qubit. We leverage these capabilities
to generate a 2D cluster state of four photons with 70% fidelity, as verified by
tomographic reconstruction of the quantum state.

Finally, in Chapter 6 I provide an outlook on future directions that build upon the
research presented in this thesis. I do so by discussing follow-up experiments to
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the work presented here that are directly realizable, as well as by commenting how
straightforward hardware and design improvements could enable more complex
experiments, such as the generation of significantly larger cluster states. And lastly,
in subsequent chapters I provide ample supplementary information, with the hopes
that any future graduate student who would seek to understand or replicate any
aspect of my work would be well-equipped to do so!
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C h a p t e r 2

GENERAL BACKGROUND AND KEY CONCEPTS

In this Chapter we provide a brief review of superconducting circuits (for a more
detailed overview, see Refs. [61–63]), and provide brief descriptions of essential
concepts referred to in this thesis.

2.1 Background: Superconducting Circuits
LC Resonator
We start by reviewing the classical description of a linear LC resonant circuit, shown
in Figure 2.1a, one of the simplest paradigmatic circuits to consider. The energy of
photons stored in this resonator oscillates between the electrical energy of the capac-
itor 𝐶 and magnetic energy of the inductor 𝐿. In analogy to a classical mechanical
resonator, we can associate the electrical energy with the “kinetic energy" and the
magnetic energy with the “potential energy," although the opposite association is
also a valid (although usually less practical) description.

The energy contained in a circuit element at time 𝑡 can be described as the power
absorbed by the element (where power is given by the product of voltage and current)
from a time where the circuit was completely at rest to the present time 𝑡; we may
write this energy as

𝐸 (𝑡) =
∫ 𝑡

−∞
𝑉 (𝑡′)𝐼 (𝑡′)𝑑𝑡′. (2.1)

To arrive at the Hamiltonian description of the circuit, it is useful to work with the
generalized flux circuit coordinate, which is given by (see Faraday’s Law)

𝑉 (𝑡) = 𝑑Φ(𝑡)
𝑑𝑡

. (2.2)

By using the classical circuit relation 𝑉 = 𝐿𝑑𝐼/𝑑𝑡 with Equation 2.1, we obtain the
energy of the inductor as 𝐿𝐼2/2, and by using Equation 2.2 we obtain this energy in
terms of flux as Φ2/2𝐿. Likewise by using the classical circuit relation 𝐼 = 𝐶𝑑𝑉/𝑑𝑡
with Equation 2.1 we obtain the energy of the capacitor as 𝐶𝑉2/2, and by using
Equation 2.2 we obtain this energy in terms of flux as 𝐶 ¤Φ2/2. The Lagrangian is
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defined as the difference between “kinetic" and ‘potential" energy and thus can be
expressed as

L =
𝐶 ¤Φ2

2
− Φ2

2𝐿
. (2.3)

Further, we obtain the Hamiltonian from the Legendre transform 𝐻 = 𝜕L
𝜕 ¤Φ

¤Φ − L =

𝑄 ¤Φ − L, where the momentum conjugate to the flux is the charge 𝑄 = 𝜕L
𝜕 ¤Φ = 𝐶 ¤Φ.

We find:

𝐻 =
𝑄2

2𝐶
+ Φ2

2𝐿
. (2.4)

This Hamiltonian has the same functional form as that of a mechanical harmonic
oscillator, with mass 𝑚 = 𝐶 and frequency 𝜔 = 1/

√
𝐿𝐶. Promoting the charge and

flux coordinates to operators (which satisfy a commutation relation [Φ̂, �̂�] = 𝑖ℏ by
virtue of the classical coordinates having an unit-valued Poisson bracket), we may
subsequently write

�̂� = 𝑖

√︂
ℏ𝜔𝐶

2
(�̂�† − �̂�) = 𝑖𝑄zpf(�̂�† − �̂�),

Φ̂ =

√︂
ℏ

2𝜔𝐶
(�̂�† + �̂�) = Φzpf(�̂�† + �̂�),

(2.5)

where 𝑄zpf and Φzpf are the zero-point charge and flux fluctuations of the resonator
respectively, and �̂� (�̂�†) is the annihilation (creation) operator for a photon in the
LC resonator. Plugging in Equations 2.5 into Equation 2.6, we arrive at the typical
harmonic oscillator Hamiltonian in the second quantization formalism:

𝐻 = ℏ𝜔(�̂�†�̂� + 1/2). (2.6)

We note that although we refer to excitations in superconducting resonators and
superconducting qubits as “microwave photons;" they are technically quantized
plasmonic oscillations of the superconducting Cooper pair electron condensate [62].

Josephson Junction and SQUID
The Josephson junction is the paradigmatic non-linear circuit element of supercon-
ducting circuits, which we leverage to engineer a non-linearity in a LC resonator.
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Figure 2.1: Superconducting Circuits. a Circuit of an LC resonator. b Diagram of a Josephson
junction, where gray denotes superconductor, and orange denotes insulator. 𝜓 refers to the super-
conducting quantum state which all Cooper pairs occupy, where 𝜓1 =

√
𝜌1𝑒

𝑖 \1 and 𝜓2 =
√
𝜌2𝑒

𝑖 \2 . c
Diagram of a SQUID, where one junction is denoted as “a," while the other junction is denoted as
“b." Φext refers to the flux threading the SQUID loop. d Circuit of a superconducting transmon qubit.
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energy potential of the Josephson junction.
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This non-linearity allows us to realize anharmonic oscillators, whose unequal energy
level spacing allows us to use these oscilltors as effective “qubits," our “artificial
atoms." Following Ref. [64], below we briefly review the physics behind the Joseph-
son effect.

Consider a Josephson junction as shown in Figure 2.1b, composed of two pieces of
superconducting metal that are separated by a thin layer layer of insulating material,
where the two superconducting regions are connected to the two terminals of a
voltage source of voltage𝑉 . If the insulating layer is thin enough, there will be some
finite probability of tunneling from one superconductor to the other for a Cooper
pair. Thus, for a Cooper pair this system is akin to “double-well potential" system,
where the tunneling hybridizes the eigenstates of the zero tunneling limit associated
with the exclusive occupation of each well. Thus, in order to learn how the tunneling
between the superconductors affects the state of a Cooper pair “charge particle" in
this Josephson junction system, we may start by defining the state of the Cooper pair
on one side as 𝜓1, the state of the Cooper pair on the other side as 𝜓2, and writing the
following standard equations for two quantum mechanical states coupled together:

𝑖ℏ
𝜕𝜓1
𝜕𝑡

= 𝑈1𝜓1 + 𝐾𝜓2,

𝑖ℏ
𝜕𝜓2
𝜕𝑡

= 𝑈2𝜓1 + 𝐾𝜓1,

(2.7)

where 𝐾 captures the “coupling" between the two superconductors due to the tun-
neling between them and is characteristic of the junction, and 𝑈1,𝑈2 is the energy
of the Cooper pair in the first and second superconductor, respectively. Due to the
voltage source, 𝑈1 −𝑈2 = 𝑞𝑉 , where 𝑞 = 2𝑒 is the charge of a Cooper pair, and for
convenience, we define𝑈1 = 𝑞𝑉/2, and𝑈2 = −𝑞𝑉/2.

Moreover, from the standard theory of superconductivity [19] it is known that at
zero temperature all electrons in a superconductor pair up into Cooper pairs, due to
an effective attractive interaction between electrons when they are embedded in the
lattice of positively charged nuclei of the metal atoms. Further, it can be shown that
the Cooper pairs are bosonic quasiparticles, and at zero temperature they occupy
the same quantum mechanical state; this quantum mechanical state may be written
as √

𝜌𝑒𝑖\ , where 𝜌 is the charge density and 𝜙 is the well-defined global phase of
the wavefunction that all Cooper pairs share. We may thus make the following
substitutions in Equation 2.7: 𝜓1 =

√
𝜌1𝑒

𝑖\1 and 𝜓2 =
√
𝜌2𝑒

𝑖\2 . Equating the real
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and imaginary parts in each equation, performing standard algebra, and defining
\2 − \1 = 𝜙, we arrive at the following equations:

¤𝜌1 =
2𝐾
ℏ
√
𝜌1𝜌2 sin 𝜙,

¤𝜌2 = −2𝐾
ℏ
√
𝜌1𝜌2 sin 𝜙,

¤\1 = −𝐾
ℏ

√︂
𝜌1
𝜌2

cos 𝜙 − 𝑞𝑉

2ℏ
,

¤\2 = −𝐾
ℏ

√︂
𝜌1
𝜌2

cos 𝜙 + 𝑞𝑉
2ℏ
.

(2.8)

The first two equations can be written as ¤𝜌1 = − ¤𝜌2, and thus correspond to the
current from side 1 to side 2. Further, in practice we expect the charge densities for
both superconductors to stay the same, and not change, due to the voltage source
keeping the potential constant (although current will still flow due to the constant
voltage difference). Thus we may say that 𝜌1 = 𝜌2 = 𝜌0, and define the current
across the junction as

𝐼 =
2𝐾
ℏ
√
𝜌1𝜌2 sin 𝜙 = 𝐼0 sin 𝜙, (2.9)

where 𝐼0 = 2𝐾𝜌0/ℏ and depends on the microscopic characteristics of the super-
conductor and of the junction. Through a more involved microscopic derivation
[65], one may show that 𝐼0 is the junction critical current, the maximum current the
junction can support without incurring dissipation, and it is given by 𝐼0 = 𝜋Δ/2𝑒𝑅𝑁 ,
where Δ is the superconducting gap, and 𝑅𝑁 is the normal state resistance (i.e., the
resistance of the junction if the metal were not superconducting; note that 𝑅𝑁 scales
inversely with junction area). Furthermore, we can use the other two formulas in
Equation 2.8 to relate the phase difference across the junction \2 − \1 to the voltage
across the junction:

𝑉 =
ℏ
2𝑒
𝑑𝜙

𝑑𝑡
. (2.10)

Equations 2.9 and 2.10 together give the two Josephson relations: the voltage and
current as a function of the superconducting phase difference across the junction.

We can further extend this analysis to derive the current across two Josephson
junctions connected in parallel as shown in Figure 2.1c; this circuit is referred to as
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a “Superconducting Quantum Interference Device" (SQUID) and forms the basis for
flux-tunable transmon qubits [66]. Calling the two different junctions connected in
parallel as “a" and “b," we may define the current across each junction as 𝐼𝑎 and 𝐼𝑏,
and the phase difference cross the two junctions as 𝜙𝑎 and 𝜙𝑏. From electromagnetic
theory, it is known that the probability amplitude for a charged particle to go from
some beginning point 𝑖 to some endpoint 𝑗 along a certain route is proportional to
exp

[
(𝑖𝑞/ℏ

∫ 𝑗

𝑖
𝑨𝑑𝒔

]
. Thus, if an electron travels from one end of the SQUID loop

to the other through path “a" or path “b," it will acquire the phase

Θ = 𝜙𝑎 +
2𝑒
ℏ

∫
𝑎

𝑨𝑑𝒔 (2.11)

or
Θ = 𝜙𝑏 +

2𝑒
ℏ

∫
𝑏

𝑨𝑑𝒔 (2.12)

respectively. However, for current flowing in parallel across the two junctions, the
phase gained by charges traveling from one end of the SQUID to the other will
be the same irrespective of path; thus we may subtract Equations 2.14 and 2.11 to
arrive at the relationship between 𝜙𝑎 and 𝜙𝑏 in a SQUID loop:

𝜙𝑏 − 𝜙𝑎 =
2𝑒
ℏ

∮
SQUID

𝑨𝑑𝒔, (2.13)

where
∮

SQUID 𝑨𝑑𝒔 is the line integral of the vector potential around the SQUID
loop. By Stokes theorem, we may equate this line integral to the external magnetic
flux through the SQUID loop, giving us the fluxoid quantization condition

𝜙𝑏 − 𝜙𝑎 =
2𝑒
ℏ
Φext = 2𝜋

Φext
Φ0

, (2.14)

where Φ0 is the magnetic flux quantum ℎ/2𝑒. The total current through the SQUID
loop will be 𝐼 = 𝐼𝑎 + 𝐼𝑏 = 𝐼0 sin 𝜙𝑎 + 𝐼0 sin 𝜙𝑏; using trigonometric relations, the
current is given by

𝐼 = 2𝐼0
����cos

(
𝜋
Φext
Φ0

)���� sin 𝜙, (2.15)

where 𝜙 = (𝜙𝑎 + 𝜙𝑏)/2. Moreover, note that ℎ
2𝑒
𝑑𝜙

𝑑𝑡
= 1

2

(
ℎ

2𝑒
𝑑𝜙𝑎
𝑑𝑡

+ ℎ
2𝑒
𝑑𝜙𝑏
𝑑𝑡

)
= 𝑉 for

the parallel junction circuit. Thus, the current across the SQUID loop behaves
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just like the current across a single junction, with the exception that the critical
current is tunable via the external flux Φext threading the SQUID loop. Thus in all
following discussions we make no further distinction between 𝜙 of a single junction
and 𝜙 of a SQUID. Intuitively, this phenomenon may be understood by drawing
analogy to Young’s double-slit experiment, where light coming from two slits can
constructively or destructively interfere. The currents across the two arms of the
SQUID interfere, and what sets their interference are the phases that the currents
acquire through propagation in each arm. What sets that phase is the vector potential
on the SQUID loop, which in turn is related to the flux through the SQUID loop
Φext. For some Φext there is destructive interference, and hence the effective critical
current (the maximum current the junction can support) is smaller, while for other
Φext there is constructive interference and the effective critical current is greater.

Finally, we note that if we plug in Equation 2.10 into Equation 2.2, we obtain
Φ = ℏ

2𝑒𝜙 → 𝜙 = 2𝜋Φ/Φ0. Thus each time the flux coordinate Φ of the junction
changes by one flux quantum, the superconducting phase variable 𝜙 winds by 2𝜋.
Furthermore, by calculating the derivative of the Josephson current, we can see that
it is proportional to the voltage: 𝑑𝐼/𝑑𝑡 = 𝐼0 cos 𝜙 𝑑𝜙

𝑑𝑡
= 𝐼0 cos 𝜙 2𝜋

Φ0
𝑉 , as is the case for

an inductor where 𝑉 = 𝐿𝑑𝐼/𝑑𝑡. We thus see that the Josephson junction effectively
behaves as a non-linear inductor with inductance 𝐿𝐽 = Φ0/(2𝜋𝐼0𝑐𝑜𝑠𝜙).

Superconducting Qubits
Given that a Josephson junction consists of two parallel metal plates separated by
a dielectric, it will also have a capacitance that can be considered to be parallel
to its effective “inductance." In addition, large shunting capacitances are typically
added in parallel to Josephson junctions in order to realize transmon qubits. Thus,
we may generically represent a Josephson junction circuit as depicted in Fig 2.1d.
We may obtain the “inductive" energy of the junction (or SQUID) by plugging in
Equations 2.10 and 2.9 into Equation 2.1, obtaining 𝐸 = − 𝐼0ℏ

2𝑒 cos 𝜙 = −𝐸𝐽 cos 𝜙,
where 𝐸𝐽 =

𝐼0Φ0
2𝜋 . Note that if a SQUID is used instead of a single junction, then

𝐸𝐽 is tunable via the the external flux Φext threading the SQUID loop (see Equation
2.15). Furthermore, recognizing that the charge �̂� on the capacitor formed by the
junction electrodes and other shunting capacitances corresponds to the number of
Cooper pairs that have tunneled from one side of the junction to the other, we
may define the number operator (for Cooper pairs) �̂� = �̂�/2𝑒, with the associated
charging energy of a single tunneling electron 𝐸𝑐 = 𝑒2/2𝐶Σ, where 𝐶Σ is the total
capacitance in parallel with the junction. We can therefore write the Hamiltonian
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of the circuit depicted in Figure 2.1d as

𝐻 = 4𝐸𝑐�̂�2 − 𝐸𝐽 cos 𝜙. (2.16)

Expanding the Hamiltonian potential energy term into a a Taylor series −𝐸𝐽 cos 𝜙 =

−𝐸𝐽
(
1 − 𝜙2

2 + 𝜙4

24

)
, we obtain the following anharmonic oscillator Hamiltonian (up

to a constant term):

𝐻 = 4𝐸𝑐�̂�2 + 𝐸𝐽
𝜙2

2
− 𝐸𝐽

𝜙4

24
+ O(𝜙6). (2.17)

We can once again transform the Hamiltonian of Equation 2.17 into a second-
quantized Hamiltonian of a harmonic oscillator, albeit this time with the quartic
−𝐸𝐽 𝜙

4

24 perturbation. Writing �̂� and 𝜙 in terms of �̂� and �̂�†:

�̂� = 𝑖

(
𝐸𝐽

32𝐸𝐶

)1/4
(�̂�† − �̂�),

𝜙 =

(
2𝐸𝑐
𝐸𝐽

)1/4
(�̂�† + �̂�)

(2.18)

we arrive at the following anharmonic oscillator second-quantized Hamiltonian

𝐻 =
√︁

8𝐸𝐽𝐸𝑐
(
�̂�†�̂� + 1

2

)
− 𝐸𝑐

12
(�̂�† + �̂�). (2.19)

By calculating the energy corrections to the states |0⟩, |1⟩, and |2⟩ via first-order
perturbation theory, where the perturbation Hamiltonian is given by −𝐸𝑐

12 (�̂�
† + �̂�) ≈

−𝐸𝑐

2
(
(�̂�†�̂�)2 + �̂�†�̂�

)
after dropping fast-rotating terms that have an uneven number

of �̂� and �̂�†, we can calculate the anharmonicity [ of the superconducting qubit as

ℏ[ = 𝐸21 − 𝐸10 = (𝐸2 − 𝐸1) − (𝐸1 − 𝐸0) = −𝐸𝑐, (2.20)

while its new renormalized frequency due to the perturbation is𝜔𝑄 = (𝐸1−𝐸0)/ℏ =

(
√

8𝐸𝐽𝐸𝑐 − 𝐸𝑐)/ℏ. We plot the anharmonic energy potential of the transmon qubit,
and a comparison to a harmonic potential, in Figure 2.1e.

For transmon qubits, we will have the following typical parameter values: 𝐸𝐽/ℏ2𝜋 =

15 GHz, [/2𝜋 = 250 MHz, 𝜔𝑄/2𝜋 = 5 GHz, and driving powers commensurate
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with qubit Rabi frequencies of Ω/2𝜋 ∼ 20 MHz. The transmon anharmonicity
ensures that a drive resonant with the first transmon qubit transition is off-resonance
with other transmon qubit transitions, thereby preventing population of higher trans-
mon levels during driving as would be the case for a linear harmonic oscillator.
Hence, the transmon anharmonicity allows us to effectively control this anharmonic
oscillator as a two-level system, yielding to us our effective “qubit." We note that the
ratio of 𝐸𝐽/𝐸𝑐 is typically chosen to be 50-100, in order to minimize the dependence
of 𝜔𝑄 on offset charges of the transmon island while still maintaining sufficient an-
harmonicity [66]. Lastly, asymmetric SQUIDs are often used in transmon qubits
because they have a smaller tuning curve, and hence their sensitivity to flux noise
tends to be smaller (see Figure 2.5 for an example of a tuning curve of a supercon-
ducting transmon qubit with an asymmetric SQUID). The 𝐸𝐽 of a transmon qubit
with an asymmetric SQUID is given by

𝐸𝐽 → 𝐸𝐽Σ

����cos
(
𝜋
Φext
Φ0

)����√︄1 + 𝑑2tan2
(
𝜋
Φext
Φ0

)
, (2.21)

where 𝐸𝐽Σ = 𝐸𝐽1 + 𝐸𝐽2, 𝑑 = (𝐸𝐽2 − 𝐸𝐽1)/(𝐸𝐽2 + 𝐸𝐽1), and 𝐸𝐽1 and 𝐸𝐽2 are the
Josephson energies of each junction of the SQUID.

Two Capacitively Coupled LC Resonators
Here we briefly review how to derive the second quantized Hamiltonian of two
capacitively coupled LC resonators as shown in Figure 2.2; a typical circuit in
circuit QED systems.

By inspection of the circuit in Figure 2.2, we denote the voltage at node 1 as 𝑉1 and
the voltage at node 2 as 𝑉2 where, as previously discussed, we may relate a node
voltage to the node flux via 𝑉 = ¤Φ. As done before, the energy associated with 𝐿1,
𝐿2, 𝐶1, and 𝐶2 is Φ2

1/2𝐿1, Φ2
2/2𝐿2, 𝐶1 ¤Φ2

1/2, and 𝐶2 ¤Φ2
2/2 respectively, while the

energy associated with 𝐶𝑔 is 𝐶𝑔 (𝑉1 − 𝑉2)2/2 = 𝐶𝑔 ( ¤Φ1 − ¤Φ2)2/2, where 𝑉1 − 𝑉2 is
the voltage across 𝐶𝑔. Thus, the Lagrangian of the system may be written as:

L =
𝐶1 ¤Φ2

1
2

+
𝐶2 ¤Φ2

2
2

+
𝐶𝑔 ( ¤Φ1 − ¤Φ2)2

2
−

Φ2
1

2𝐿1
−

Φ2
2

2𝐿2
. (2.22)

The conjugate momenta of the Lagrangian are calculated as 𝑄1 = 𝜕L
𝜕 ¤Φ1

= 𝐶1 ¤Φ1 +
𝐶𝑔 ¤Φ1 − 𝐶𝑔 ¤Φ2, and 𝑄2 = 𝜕L

𝜕 ¤Φ2
= 𝐶2 ¤Φ2 + 𝐶𝑔 ¤Φ2 − 𝐶𝑔 ¤Φ1. Solving for ¤Φ1 and ¤Φ2 in

terms the node charges 𝑄1 and 𝑄2, we obtain ¤Φ1 =
𝑄1

𝐶1+𝐶𝑔
+ 𝐶𝑔𝑄2

(𝐶1+𝐶𝑔) (𝐶2+𝐶𝑔) , with a
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Figure 2.2: Circuit of Two Capacitively Coupled LC Resonators. The numbers 1 and 2 refer to
the circuit nodes.

similar formula for ¤Φ2. Performing the Legendre transform
∑2
𝑖 𝑄𝑖

¤Φ𝑖 −L, we arrive
at the following Hamiltonian of the coupled resonator system:

𝐻 =
𝑄2

1
2(𝐶1 + 𝐶𝑔)

+
𝑄2

2
2(𝐶2 + 𝐶𝑔)

+
Φ2

1
2𝐿1

+
Φ2

2
2𝐿2

+
𝐶𝑔𝑄1𝑄2

(𝐶1 + 𝐶𝑔) (𝐶2 + 𝐶𝑔)
. (2.23)

We can once again obtain the second quantized form of this Hamiltonian by making
the associations 𝑚𝑖 = 𝐶𝑖 + 𝐶𝑔 and 𝜔𝑖 = 1/

√︁
𝐿𝑖 (𝐶𝑖 + 𝐶𝑔) where 𝑖 = 1, 2, promoting

the charge and flux coordinates to operators, and defining them in terms of raising
and lowering operators

�̂�𝑖 = 𝑖

√︂
ℏ𝜔𝑖𝑚𝑖

2
(�̂�†
𝑖
− �̂�𝑖),

Φ̂𝑖 =

√︄
ℏ

2𝜔𝑖𝑚𝑖
(�̂�†
𝑖
+ �̂�𝑖).

(2.24)

Plugging Equations 2.24 into the Hamiltonian of Equation 2.23, we obtain:

𝐻 = ℏ𝜔1

(
�̂�
†
1�̂�1 +

1
2

)
+ ℏ𝜔2

(
�̂�
†
2�̂�2 +

1
2

)
− ℏ𝑔(�̂�†1 − �̂�1) (�̂�†2 − �̂�2), (2.25)

where the effective coupling constant 𝑔 for two capacitively coupled resonators is
given by

𝑔 =
1
2
√
𝜔1𝜔2

𝐶𝑔√︁
(𝐶0 + 𝐶1) (𝐶0 + 𝐶2)

. (2.26)
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We thus see that the Hamiltonian consists of a harmonic oscillator portion for each
resonator, plus a coupling Hamiltonian 𝐻𝑐. Applying the rotating wave approxima-
tion (RWA) to discard fast-rotating terms, we arrive at the familiar “beam-splitter"
coupling Hamiltonian

𝐻𝑐 = ℏ𝑔(�̂�†1�̂�2 + �̂�†2�̂�1). (2.27)

It can be verified that in the single-photon manifold if 𝜔1 = 𝜔2, the eigenstates
of the system are given by the even and odd symmetric superposition of the states
corresponding to a photon in each mode: |𝜓⟩ = 1√

2
( |01⟩ ± |10⟩). Note that because

𝑔 is positive valued, the anti-symmetric odd normal mode of the system is the lower
energy eigenmode. This has direct consequences on the dispersion of a periodic
chain of coupled resonators, as described in Chapter 3. Finally, note that Equation
2.26 is what is often used in practice to predict couplings between capacitively
coupled resonant elements given their simulated circuit parameters.

Dispersive Coupling of Transmon Qubit to a Resonator
Here, we briefly review how to obtain the “dispersive approximation" Hamiltonian
of a qubit coupled to a substantially detuned resonator, and the properties of this
coupled system. Dispersive coupling of a qubit to a resonator is the predominant
method for QND single-shot readout of superconducting qubit states. In addition,
we review key practical concepts regarding single-shot qubit dispersive readout in
the next subsection.

We start by considering the generalized Jaynes-Cummings Hamiltonian for a multi-
level atom interacting with a bosonic mode in the RWA approximation

�̂� = ℏ
∑︁
𝑗

𝐸 𝑗 | 𝑗⟩ ⟨ 𝑗 | + ℏ𝜔𝑟 �̂�†�̂� +
(
ℏ
∑︁
𝑖

𝑔𝑖,𝑖+1 |𝑖⟩ ⟨𝑖 + 1| �̂�† + h.c

)
, (2.28)

where we consider the limit where (𝐸1 − 𝐸0) − 𝜔𝑟 = 𝜔01 − 𝜔𝑟 ≫ 𝑔01. In order
to arrive at the dispersive limit Hamiltonian of the coupled qubit-resonator system,
we perform the canonical transformation �̂�disp = �̂�†�̂��̂�, where �̂� = exp

(
𝑆 − 𝑆†

)
,

𝑆 =
∑
𝑖 (𝑔𝑖,𝑖+1/Δ𝑖) |𝑖 + 1⟩ ⟨𝑖 | �̂�, and Δ𝑖 = (𝐸𝑖+1 − 𝐸𝑖) − 𝜔𝑟 = 𝜔𝑖,𝑖+1 − 𝜔𝑟 . We em-

ploy the canonical transformation through the Baker-Campbell-Haussdorf relation:
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𝑒 �̂��̂�𝑒−�̂� = �̂� +
[
�̂�, �̂�

]
+ 1

2
[
�̂�,

[
�̂�, �̂�

] ]
+ ..., and discard all fast rotating terms and

terms of order O(1/Δ2
𝑖
). It can be verified that due to the form of operator 𝑆,

the Baker-Campbell-Haussdorf expansion with �̂� = 𝑆 − 𝑆† can be simplified to
�̂�disp = �̂� +

(
[𝑆, �̂�] + h.c

)
− 1

2

( [
𝑆†, [𝑆, �̂�]

]
+ h.c

)
+O(1/Δ2

𝑖
). Calculation of these

commutators and some serious algebra leads to the following Hamiltonian:

�̂�disp = ℏ
∑︁
𝑗

𝐸 𝑗 | 𝑗⟩ ⟨ 𝑗 | + ℏ𝜔𝑟 �̂�†�̂� + ℏ
∑︁
𝑖=0

𝜒𝑖,𝑖+1 |𝑖 + 1⟩ ⟨𝑖 + 1|

+ ℏ�̂�†�̂�

(∑︁
𝑖=1

(𝜒𝑖−1,𝑖 − 𝜒𝑖,𝑖+1) |𝑖⟩ ⟨𝑖 | − 𝜒01 |0⟩ ⟨0|
)
+ O

(
1
Δ2
𝑖

)
,

(2.29)

where 𝜒𝑖,𝑖+1 = 𝑔2
𝑖,𝑖+1/Δ𝑖. Further restricting the Hilbert Space to the first two

levels of the transmon, we obtain �̂�disp = ℏ𝐸0 |0⟩ ⟨0| + ℏ(𝐸1 + 𝜒01) |1⟩ ⟨1| +
ℏ�̂�†�̂� (𝜔𝑟 + (𝜒01 − 𝜒12) |1⟩ ⟨1| − 𝜒01 |0⟩ ⟨0|). Defining the Pauli matrix𝜎𝑧 = |0⟩ ⟨0|−
|1⟩ ⟨1|, and �̃�𝑄 = 𝜔10 + 𝜒01, �̃�𝑟 = 𝜔𝑟 − 𝜒12/2, and 𝜒 = −(𝜒01 − 𝜒12), after some
algebra we obtain the familiar dispersive Hamiltonian

�̂�disp = −ℏ
2
�̃�𝑄�̂�𝑧 + ℏ�̂�†�̂� (�̃�𝑟 + 𝜒�̂�𝑧) , (2.30)

where the dispersive shift 𝜒 is calculated to be:

𝜒 = −
𝑔2

01
Δ0

1
1 + Δ0

[

, (2.31)

where the transmon anharmonicity is [ = −𝐸𝑐/ℏ. It is evident from Equation 2.30
that the effective frequency of the bosonic mode �̂� is dependent on the state of the
qubit, where the difference in frequency depending on if the qubit is in its ground or
excited state is given by 2𝜒. Typical parameters for dispersive readout of transmon
qubits are 𝑔01/2𝜋 ∼ 50− 200 MHz, Δ0/2𝜋 = 0.8− 2 GHz, and 𝜒/2𝜋 = 1− 5 MHz.

This analysis reveals several important attributes of a dispersively coupled transmon-
resonator system. Firstly, we see that the effective qubit and resonator frequencies
are renormalized from their bare frequencies due to their coupling to a detuned
mode; an effect known as the “Lamb shift." Moreover this Lamb shift, which is on
the order of the dispersive shift 𝜒, can be measured in experiment: by driving the
resonator coupled to the qubit at various powers, one will see a shift in the resonator
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frequency from �̃�𝑟 to the bare frequency 𝜔𝑟 for drive powers commensurate with
a resonator photon occupation significanty larger than the critical photon number
𝑛crit = Δ2/4𝑔2 [16]. Furthermore, the result obtained for 𝜒 in Equation 2.31 is
different than the one obtained for a bare two level system where 𝜒TLS = −𝑔2/Δ;
this can be ascribed to the fact that the transmon has several transitions of different
frequencies that each have dispersive coupling to the bosonic mode. Moreover, from
Equation 2.29 it can be shown that the effective frequency of the bosonic mode �̂� if
the qubit is in its second excited state |2⟩ is given by 𝜔𝑟 + 𝜒12 − 𝜒23, where 𝜒12 − 𝜒23

is on the order of 𝜒 but is still different from 𝜒. Thus, the resonator will have
different frequencies depending on if the transmon qubit is in either in its ground,
excited, or second excited state; which can be leveraged for readout discrimination
of its first three levels. Finally, note that the Hamiltonian in Equation 2.30 can be
re-written as �̂�disp = ℏ

2 �̂�𝑧
(
−�̃�𝑄 + 2𝜒�̂�†�̂�

)
+ ℏ�̃�𝑟 �̂�†�̂�. By inspection of this form

of �̂�disp it is evident that photon occupation in the resonator will change the qubit
frequency, otherwise known as the “AC Stark-shift" effect, where for each photon
the qubit frequency will change by an amount 𝜒. This phenomenon can be leveraged
to measure the photon occupation of the resonator.

Qubit Readout via Dispersive Coupling to Readout Resonator
We conclude with a brief discussion about further technical details of dispersive
readout of transmon qubits. As discussed, the readout (RO) resonator frequency
is different depending on the qubit state; thus if one probes the RO resonator
by driving it through some transmission line they will see a state-dependent RO
resonator response. By connecting a RO resonator to a transmission line in a way
such that drive pulses sent down the transmission line can interact with the RO
resonator (see Figure 4.1 for an example), and can subsequently leave the chip for
quantum-limited amplification and heterodyne measurement via a digitizer, we may
perform dispersive single-shot readout of the qubit state. Through signal processing
techniques, this measured state-dependent RO resonator response can be processed
into a state-dependent voltage measurement; see Figure E.3d for an example of
histograms of single-shot measurements for when the qubit is prepared in its ground
state or second excited state. State discrimination then consists of assigning a
qubit state for a given measured voltage based on the measurement results of such
histograms. Again considering Figure E.3d as an example, if a readout voltage above
≈ 0.1 was measured, we would assign the qubit to have been in its excited state, while
if a readout voltage below ≈ 0.1 was measured, we would assign the qubit as having
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Figure 2.3: Experimentally Measured Readout Voltages. State-dependent readout voltages as a
function of readout probe frequency, measured for when the qubit is prepared in the |𝑔⟩ state or the |𝑒⟩
state. The readout signal sent is a 600ns square pulse. 𝜔𝑅𝑂 here corresponds to the carrier frequency
of the readout pulse that yields maximum readout voltage contrast between the two states. The
difference in readout voltage at 𝜔𝑅𝑂 between the |𝑔⟩ and |𝑒⟩ curves yields the quantity |𝑉diff (𝜔RO) |;
see main text for more details. The readout resonator in this measurement is side-coupled to its
feedline, and transmission through the feedline is what is measured here.

been in its ground state. Additionally, note that measurement of these histograms
will be negatively impacted by the non-ideal effects of state preparation errors, such
as initial thermal population of the excited state |𝑒⟩, as well as measurement errors
such as measurement-induced state transitions or decay of the qubit during readout
that leads to misclassification of the qubit state [67, 68].

Two important metrics to consider for single-shot superconducting qubit readout are
the readout SNR and readout infidelity. Again referring to Figure E.3d, the readout
SNR may be defined as the ratio of the voltage separation between the centroids of
the (dominant) Gaussian distributions for the |𝑔⟩ and |𝑒⟩ measurement histograms, to
the standard deviation of these Gaussian distributions. The standard deviation is set
by the noise in the heterodyne measurement of the drive pulse, where the drive pulse
is a coherent state. Thus, this noise will include the intrinsic vacuum fluctuations of
the coherent state, as well as added amplifier noise and effects from losses before the
first amplifier in the output chain; see Appendix G.1 for more details on the sources
and magnitudes of noise in heterodyne measurement of amplified signals.

Meanwhile, the magnitude of voltage separation between the state-dependent Gaus-
sian distributions depend on a combination of other factors. Given that readout
pulse signals are typically long enough to drive the RO resonator to steady state,
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the effective voltage separation will intrinsically be determined by the difference
in complex voltage between the measured spectra of the transmission line used
to probe the resonator (either reflection spectra or transmission spectra depending
on the measurement modality) at the carrier frequency of the readout pulse (see
Figure 2.3 for an example of transmission spectra for a readout resonator when the
qubit is prepared in either the |𝑔⟩ state or the |𝑒⟩ state). We henceforth refer to
this complex voltage difference as 𝑉diff(𝜔R0), where 𝜔RO is the carrier frequency
of the readout pulse. The resonator’s spectral lineshape in turn is related to its
decay dynamics, and lineshape’s “width" is given by the decay rate ^ of the RO
resonator. Furthermore, the spectra’s dependence on carrier frequency will differ
if the qubit is in the |𝑔⟩ state or the |𝑒⟩ state by virtue of the dispersive shift 𝜒 of
the resonator frequency. Thus, because ^ affects the RO resonator lineshape and 𝜒
affects the spectra’s dependence on carrier frequency, both will impact the overall
𝑉diff(𝜔R0). Additionally, the spectra will also be affected by other components in
the amplification chain such as filters, impedance mismatches, etc., which in turn
will also impact the overall voltage separation. Finally, the readout power used will
also affect this voltage separation, where the readout power will effectively scale
the intrinsic difference in complex voltage between the RO spectra, up to powers
commensurate with the critical photon number 𝑛crit (above which the dispersive
approximation breaks down).

On the other hand, readout infidelity will result from non-ideal effects of dispersive
measurement, such measurement-induced state transitions or decay of the qubit
during readout, as alluded to earlier. Generally, shorter readout lengths are com-
mensurate with less decay of the qubit during readout, and shorter readout lengths
can be achieved with a larger ^ (which allows one to “ring up" the RO resonator
to steady state faster). Meanwhile, measurement-induced state transitions can be
minimized by utilizing readout powers meaningfully below 𝑛crit.

Thus, optimization of qubit readout, through maximization of readout SNR and
minimization of readout infidelity, must carefully take into account all the interde-
pendent factors discussed above. For example, while a larger ^ yields faster readout,
which minimizes readout infidelity, it also broadens the RO lineshape width relative
to the dispersive shift 𝜒, and can thus decrease the intrinsic difference in complex
voltage between the RO spectra. Moreover, while larger readout power may increase
the voltage difference between the centers of the Gaussian distributions, it also can
induce more measurement-induced state transitions. Further, the choice of 𝑔 and Δ
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that would allow for a large 𝑛crit = Δ2/4𝑔2, and thus allow for large readout powers,
would also result in a small 𝜒 ∼ 𝑔2/Δ, which would result in a smaller 𝑉diff(𝜔R0).
While for ideal systems optimal relations between some of these parameters have
been obtained, system complexity such as Purcell filters (see next paragraph), dis-
persion, impedance mismatches, additional components in the amplification chain,
etc., further complicate this optimization challenge. Thus in practice, one must aim
for a reasonable 𝑛crit and readout time, pick reasonable 𝑔 and Δ based on those
considerations, and empirically optimize things such as 𝜔RO, readout power, and
readout length in experiment.

Finally, we note that although it is possible for the qubit to decay through its readout
resonator through the Purcell effect, this decay channel can largely be mitigated
through the use of a Purcell Filter. If a passive filter circuit that yields 𝑍ext(𝜔𝑄) ≈ 0
is placed between the RO resonator and its feedline, where𝜔𝑄 is the qubit frequency
and 𝑍ext(𝜔) is the impedance of the external environment that the RO resonator is
coupled to, qubit emission at its frequency 𝜔𝑄 is effectively blocked [69]. Thus,
through the use of an appropriate Purcell filter, one may use a large ^ to increase
readout speed without incurring reduction in qubit lifetimes. In Appendix E.1 we
discuss the design and performance of a Purcell filter comprised of a coupled-
resonator array. For further details on signal processing techniques typically used
in superconducting qubit dispersive readout, see Refs. [61, 70].

2.2 Additional General Concepts
Waveguide QED
Waveguide quantum electrodynamics (QED) refers to the study of quantum emitters
(qubits) coupled to a one-dimensional (1D) single mode waveguide [20–22]. In
contrast to cavity QED, where strong light-matter interaction is achieved between
a qubit and a photon due to confinement of the photon in a cavity, in waveguide
QED qubits are made to interact with propagating, un-localized photons. While
light-matter interaction with propagating photons tends to be weak in free-space
due to their small scattering cross section, this predicament can be circumvented by
restricting the electromagnetic mode profile of the photon’s field in the dimensions
transverse to its direction of propagation [71]. This confinement to propagation in
only one dimension not only increases the light-matter coupling between qubits and
propagating photons due to decrease in the mode volume in the propagating photon’s
transverse dimensions, it also enhances interference effects between photons because
light can only propagate to the left or to the right. In this manner, waveguide QED
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experiments may enjoy strong-light matter interaction while meaningfully differing
from experiments where photons are confined in all spatial dimensions, such as
cavity QED. Hence, waveguide QED systems enable exploration of novel physics
and applications in quantum information science that complement the extensive
body of work accomplished in other quantum optical systems. While such a system
can be realized in a variety of physical platforms, superconducting quantum circuits
are well suited to the study of waveguide QED due their readily available strong
light-matter interaction strengths [16].

Strong light-matter interaction in waveguide QED systems can be characterized by
the collection efficiency of the emitter’s radiation to the desired waveguide channel.
In a canonical waveguide QED system where the waveguide has linear dispersion, a
light-matter interaction figure of merit known as the Purcell factor may be defined
as [72]

𝑃1𝐷 =
Γ1D
Γ′ , (2.32)

where Γ1D is the emission rate of the qubit into the waveguide, and Γ′ quantifies
the intrinsic decoherence rate of the qubit. Γ′ will have contributions both from
the decay of the qubit to other radiative channels Γloss, as well as dephasing of
the qubit Γ𝜑, such that Γ′ = Γloss + 2Γ𝜑. However, if the waveguide’s dispersion
is significantly non-linear in the vicinity of the qubit frequency, its decay will be
non-exponential, and thus its emission into the waveguide will not be characterized
by a single “rate." Nevertheless, strong-light matter interaction in waveguide QED
systems with dispersive waveguides can still be characterized by the degree of
“desired emission" relative to the parasitic damping and dephasing rates.

The Hamiltonian describing the interaction of the qubit with the waveguide contin-
uum may be generically written as (ℏ = 1)

�̂� =
1
2
(𝜔𝑄 − 𝑖Γ

′

2
)�̂�𝑧 +

∫
𝑘

𝜔𝑘 �̂�
†
𝑘
�̂�𝑘 +

∫
𝑘

𝑔𝑘 (�̂�−�̂�†𝑘 + �̂�+�̂�𝑘 ), (2.33)

where 𝜔𝑘 captures the dispersion of the waveguide, and 𝑔𝑘 allows for a frequency-
dependent coupling of the qubit to waveguide modes with wavevector 𝑘 . From this
Hamiltonian, one may derive generic properties of a single qubit-waveguide system
by making the simplifying assumption that 𝜔𝑘 = 𝑐 |𝑘 | and 𝑔𝑘 = 𝑔. For example,
through input-output theory, we may derive the Rabi frequency of a qubit driven by
an input coherent drive on the waveguide as [73]:
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Figure 2.4: Waveguide QED. a, b Illustrations of typical waveguide QED systems, where a qubit
is coupled to a waveguide with emission rate Γ1D and parasitic decoherence rate Γ′. a Qubit side-
coupled to a waveguide. Qubit emission induced by the incident field 𝑎𝑡𝑒𝑥𝑡𝑖𝑛 destructively interferes
with the incident field, leading to an extinction of transmission. b Qubit coupled to the end of a
semi-infinite waveguide. The input field 𝑎𝑡𝑒𝑥𝑡𝑖𝑛 scatters off of the qubit when it reaches the end of
the waveguide and picks up a scattering phase, which is illustrated by the color change on the drawing.
c Reflectance 𝑟 (𝛿) |2 and transmitance |𝑡 (𝛿) |2 of a side-coupled qubit with Γ1D/2𝜋 = 100 MHz and
𝑇∗

2 = 500 ns (the parameters of our mirror qubit in the experiment discussed in Chapter 5). In the
vicinity of the qubit frequency, the transmitance is negligible. d Phase of the reflection coefficient
of an end-coupled qubit with Γ1D/2𝜋 = 140 MHz, plotted in degrees. e Illustration of distortion
of a wavepacket with exponential pulse shape 𝑒𝛾𝑡/2 after scattering on an end-coupled qubit with
Γ1D = 𝑛𝛾. Note that although a 𝜋 phase shift is obtained for all cases, significant distortion of
the input pulse shape occurs unless Γ1D ≫ 𝛾. Moreover, note that the distortion is significantly
smaller for Gaussian-shaped pulses, and here exponential pulses are plotted instead for visualization
purposes.
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Ω = 2𝛼
√︁
Γ1D/𝑘𝑛, (2.34)

where |𝛼 | is the amplitude of the coherent state drive, 𝑘𝑛 = 2 for a qubit side-
coupled to an infinite waveguide, and 𝑘𝑛 = 1 for a qubit coupled to the end of a
semi-infinite waveguide (which we henceforth refer to as an “end-coupled" qubit).
See Figure 2.4a, b for an illustration of a side-coupled qubit and an end-coupled
qubit, respectively. Furthermore, for a waveguide QED system with a side-coupled
qubit, scattering theory reveals the low-power behavior of the system with a side-
coupled qubit to be [72]:

𝑟 (𝛿) = Γ1D/2
𝑖𝛿 − (Γ1D + Γ′)/2

, 𝑡 (𝛿) = 1 + 𝑟 (𝛿), (2.35)

where𝜔 is the frequency of an input weak coherent state or single-photon signal onto
the waveguide, 𝛿 = 𝜔𝑄−𝜔, and 𝑟 and 𝑡 are the reflection coefficient and transmission
coefficient, respectively. On resonance (when 𝛿 = 0), the reflectance |𝑟 |2 can be
calculated from Equation 2.35 to be |𝑟 (0) |2 = (𝑃1𝐷/(1 + 𝑃1𝐷))2; see Figure 2.4c for
a plot of |𝑟 |2 and |𝑡 |2. Thus, for a large 𝑃1𝐷 the side-coupled qubit can act as a nearly
perfect mirror for propagating single photons, with “mirror efficiency" ∼ |𝑟 (0) |2.
This phenomenon can be attributed to the destructive interference between the
incident single-photon signal and the qubit’s induced radiation into the forward
reaction. This property of a highly-coherent side-coupled qubit was leveraged to
realize a switchable mirror for propagating itinerant photons in the experiment
discussed in Chapter 5. Note that for high-power coherent states, the behavior of
the system is given by:

𝑟 (𝛿) = −Γ1D
2

𝑖𝛿 + Γ1D+Γ′

2

𝛿2 +
(
Γ1D+Γ′

2

)2
+ Ω2

2

. (2.36)

For largeΩ, saturation phenomena will be observed such as power-broadening, finite
transmission on resonance, and incoherent broadend emission by the qubit.

In the case of a qubit coupled to the end of a semi-infinite waveguide, the low-power
behavior of the system is given by [74]

𝑟 (𝛿) = 1 − 𝑖Γ1D
𝛿 + 𝑖(Γ1D + Γ′)/2

. (2.37)
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For negligible Γ′ and a resonant signal, we find that 𝑟 (𝜔𝑄) = −1, indicating that
a single-photon signal scattering on the qubit picks up a scattering phase of 𝜋.
Meanwhile, for detuned signals, we find that the scattering phase approaches 0 with
large detuning; see Figure2.4d for a plot of arg(𝑟) for the end-coupled system. This
property of a highly-coherent “end-coupled" qubit was leveraged to realize a 𝐶𝑍
gate between a transmon qubit and a propagating itinerant photon. Note that for an
itinerant wavepacket of finite-bandwidth with carrier frequency resonant with the
qubit frequency, scattering upon the qubit will induce distortion of the wavepacket
shape due to the frequency dependence of the scattering phase; see Figure 2.4e for an
example for exponential-shaped pulses. However, this distortion can be minimized
if Γ1D ≫ 𝜎, where 𝜎 is the bandwidth of the photon. This distortion directly
impacts the fidelity of the 𝐶𝑍 gate alluded to (see Ref. [60] for further details), and
thus as discussed in Chapter 5 we used Gaussian-shaped photons with bandwidth
𝜎 ∼ 1/14Γ1D during realization of the 𝐶𝑍 gate.

Note that although the formulas of the preceding discussion would technically be
different for a waveguide with non-linear dispersion, the general intuition behind
the formulas still generally apply for a dispersive waveguide QED system.

Fundamentals of Flux-Modulation of Qubit Coupled to Finite-Bandwidth Waveg-
uide
In our experiments, we achieve tunable interaction between flux-tunable qubits
and the coupled resonator array slow-light waveguides (SLWG) discussed in the
introduction via sinusoidal flux modulation of the qubit frequency. For the purposes
of the following discussion, consider a SLWG to be a waveguide with a finite-
bandwidth passband, and an absence of propagating modes outside of the passband.
Flux modulation induces a sideband-mediated interaction with the passband of the
SLWG, whose strength is controlled by the amplitude of the flux modulation AC
flux drive [75–77], if the sideband frequency lies in the passband of the SLWG.

Here, we briefly review the underlying physics of flux modulation by analyzing the
following Hamiltonian of a qubit coupled to a waveguide

�̂� =
1
2
𝜔𝑄 (Φ(𝑡))�̂�𝑧 +

∫
𝑘

𝜔𝑘 �̂�
†
𝑘
�̂�𝑘 + 𝑔𝑄

∫
𝑘

(�̂�−�̂�†𝑘 + �̂�+�̂�𝑘 ), (2.38)

where 𝜔𝑄 (Φ(𝑡)) is the qubit frequency as a function of the time-dependent flux
Φ(𝑡), 𝜔𝑘 is the frequency of a propagating waveguide mode with wavevector 𝑘 , 𝑔𝑄
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Figure 2.5: Flux Modulation of Qubit Frequency a Illustration of flux modulation of a qubit,
when the qubit has a static flux bias Φ𝐵 = 0.234Φ0 and the AC flux amplitude Φ𝐴𝐶 = 0.152Φ0,
where Φ0 is the magnetic flux quantum. The gray curve is the qubit tuning curve. The black line
depicts typical flux modulation amplitudes in terms of flux quanta, while the purple curve depicts
qubit frequency as a function of time under flux modulation. �̃�𝑄 corresponds to the average qubit
frequency under flux modulation. b Sideband spectrum of a qubit under flux modulation. |b | refers
to sideband strength. The red colored arrow corresponds to the sideband used to effect emission into
the SLWG in the experiment discussed in Chapter 5.

is the coupling of the qubits to the propagating modes, �̂�+, �̂�− are the raising and
lowering operators of the qubit, and �̂�†

𝑘
, �̂�𝑘 are the raising and lowering operators

of mode 𝑘 . By going into the interaction picture by the unitary transformation
𝑈 (𝑡) = exp[−𝑖

∫ 𝑡

0
1
2𝜔𝑄 (Φ(𝑡′))�̂�𝑧𝑑𝑡′ − 𝑖𝑡

∫
𝑘
𝜔𝑘 �̂�

†
𝑘
�̂�𝑘 ], we arrive at the following

interaction Hamiltonian

�̂�𝑖𝑛𝑡 = 𝑔𝑄

∫
𝑘

𝑒−𝑖(𝜙(𝑡)−𝜔𝑘 𝑡)�̂�−�̂�
†
𝑘
+ h.c., (2.39)

where 𝜙(𝑡) =
∫ 𝑡

0 𝜔𝑄 (Φ(𝑡′))𝑑𝑡′. Note that setting 𝑔𝑄 to be independent of 𝑘 is a
valid assumption for a qubit coupled to a single unit-cell of an infinite periodic array
of coupled resonators [78].

Under sinusoidal modulation of external flux Φ(𝑡), we can write Φ(𝑡) = Φ𝐵 +
Φ𝐴𝐶 sin(𝜔mod𝑡), where Φ𝐵 is the the static flux bias, Φ𝐴𝐶 is the AC flux ampltiude,
and 𝜔mod is the modulation frequency. The periodicity of the flux signal allows for
the 𝑒−𝑖𝜙(𝑡) term to be expanded by the following Fourier series [79]

�̂�𝑖𝑛𝑡 = 𝑔𝑄

∫
𝑘

∑︁
𝑠

b𝑠𝑒
−𝑖(�̃�𝑄−𝑠𝜔mod−𝜔𝑘)𝑡�̂�−�̂�

†
𝑘
+ h.c., (2.40)
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where �̃�𝑄 is the average of 𝜔𝑄 (𝑡), and b𝑠 is the Fourier coefficient of the 𝑠-th term,
which we refer to as the “sideband amplitude." We note that because qubit tuning
curves are non-linear (as depicted in Figure 2.5a), sinusoidal flux modulation will
result in an average DC shift to the static qubit frequency𝜔𝑄 (Φ𝐵), which is captured
by the term �̃�𝑄 . Moreover, note that one can obtain the magnitudes of b𝑠 by simply
taking the Fourier transform of 𝑒−𝑖𝜙(𝑡) , as shown in Figure 2.5b for one set of flux
modulation and qubit parameters.

According to the RWA, we expect that only non-fast rotating terms of the Hamil-
tonian of Equation 2.40 would appreciably contribute to the qubit dynamics; hence
we seek terms where �̃�𝑄 − 𝑠𝜔mod − 𝜔𝑘 ≈ 0. Assuming that the waveguide has a
finite bandwidth passband, and that only the first lower sideband (𝑠 = 1) is resonant
with one of the passband modes, we can assume terms involving all other 𝑠 are
fast-rotating terms and discard them. This results in the final Hamiltonian

�̂�𝑚𝑜𝑑 = 𝑔𝑄b

∫
𝑘

𝑒
−𝑖(𝜔1

𝑄
−𝜔𝑘)𝑡�̂�−�̂�

†
𝑘
+ h.c., (2.41)

where 𝜔1
𝑄

≡ �̃�𝑄 − 𝜔𝑚 is the frequency of the first lower sideband, and b ≡ b1.
Thus, 𝜔𝑘 = 𝜔1

𝑄
will be the center frequency of emission, while photon emission

will also occur at surrounding frequencies where 𝜔1
𝑄
−𝜔𝑘 is small; thus imparting a

finite bandwidth to any emitted photon. Note that the resultant Hamiltonian is in an
equivalent form as Equation (2.39) up to a renormalization of the effective coupling
rate. Thus, we can tune the strength of interaction between a qubit and the SLWG
by controlling the sideband amplitude b and locating the first lower sideband inside
the passband.

Non-Markovianity
While the Schrödinger equation is sufficient to describe the dynamics of theoretical
isolated quantum systems, in practice quantum systems one wishes to control will
have interactions with an external environment; we call such systems “open quantum
systems." In general, these interactions influence the dynamics of open quantum
systems, and can result in loss of their energy and information.

The standard approach to the study of open quantum system dynamics typically
employs the Born–Markov approximation, which presupposes that future evolution
of the system does not depend on past interactions with its environment [80,
81]. More precisely, this approximation assumes that the quantum system and its
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environment are initially uncorrelated at 𝑡 = 0, and that the interaction between the
system and the environment is sufficiently weak such that 1) system-environment
correlations do not manifest and 2) that the environment’s state negligibly changes.
This assumption can be succinctly expressed as 𝜌𝑆𝐸 (𝑡) = 𝜌𝑆 (𝑡) ⊗ 𝜌𝐸 , where 𝜌𝑆𝐸
is the joint density matrix of the system and the environment, and 𝜌𝑆 and 𝜌𝐸 are
the individual density matrices of the system and environment, respectively. These
assumptions imply short environmental correlation times, and thus memory-less
interaction with the environment, which allows one to theoretically predict the
behavior of open quantum systems through the familiar Lindblad master equation
[82].

However, it is known that this naive approximation can break down, and substan-
tial quantitative and qualitative deviations from the dynamics of quantum Markov
processes have been previously observed [83–86]. Such dynamics are referred to as
“non-Markovian," implying that they are governed by significant memory effects,
which arise in the case of strong system-environment couplings, structured or finite
reservoirs, or large initial system–environment correlations. There have been sev-
eral studies investigating the effects of “non-Markovianity" on the preservation of
quantum information and multipartite entanglement [28, 30].

In particular, for non-Markovian systems the following two aspects of Markovian
physics no longer hold: that information contained in the system is lost to the
environment and never returns, and that any coupling between subsystems mediated
by the environment can be approximated as an effective static interaction between
them. In the non-Markovian regime there can be backflow of information from the
environment back to the system, and if two subsystems couple via the environment
one cannot simply trace out the environment’s degrees of freedom and still be able
to faithfully describe the dynamics.

A more rigorous definition of non-Markovianity was presented in Ref. [81]. First,
consider the trace distance between two quantum states 𝐷, an often-used distance
measure in quantum information theory [87]:

𝐷 (𝜌1, 𝜌2) = 1
2
| |𝜌1 − 𝜌2 | | (2.42)

where | |𝐴| | = 𝑇𝑟
(√
𝐴†𝐴

)
. The trace distance has the property that 0 ≤ 𝐷 (𝜌1, 𝜌2) ≤

1, where 𝐷 (𝜌1, 𝜌2) = 0 if and only if 𝜌1 = 𝜌2, and 𝐷 (𝜌1, 𝜌2) = 1 if and only if 𝜌1

and 𝜌2 are orthogonal. It can be shown that for Markovian processes, the following
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holds for all possible pairs of initial states 𝜌1
𝑆
(0) and 𝜌2

𝑆
(0) of an open quantum

system at all times 𝑡 [81]:

𝐷

(
𝜌1
𝑆 (𝑡), 𝜌

2
𝑆 (𝑡)

)
≤ 𝐷

(
𝜌1
𝑆 (0), 𝜌

2
𝑆 (0)

)
. (2.43)

Thus, a quantum process is non-Markovian if there is an initial pair of states 𝜌1
𝑆
′(0)

and 𝜌2
𝑆
′(0) whose trace distance 𝐷

(
𝜌1
𝑆
′(𝑡), 𝜌2

𝑆
′(𝑡)

)
is non-monotonic, i.e., starts to

increase for some time 𝑡 > 0. An increase in the trace-distance in this context
is strictly associated with information flow from the environment back to the open
quantum system, which is a non-Markovian phenomena. Equation 2.43 is consistent
with the typical intuition behind Markovian decoherence, where decoherence results
in the system state evolving toward either a mixed state or some specific lower
energy dissipated state irrespective of its initial state. Note that in principle, if one
could perform state tomography of different initial states at different times during
their evolution, non-Markovianity could be experimentally assessed for a general
quantum system. However, in general there are many competing manners to quantify
non-Markovianity which do not necessarily agree [88].

In the work presented in this thesis, we are typically concerned with non-Markovianity
in the context of a quantum emitter interacting with a slow-light dispersive waveg-
uide reservoir. It is shown in Ref. [89] that for a qubit with population dynamics
𝑃|𝑒⟩ (𝑡), that:

if
𝑑𝑃|𝑒⟩ (𝑡)
𝑑𝑡

< 0 ∀𝑡 → the system is Markovian. (2.44)

Thus, non-monotonic population dynamics of a qubit when coupled to a dispersive
waveguide is a signature of non-Markovian dynamics.

Measurement-Based Quantum Computation
Conventional approaches to quantum computing entail implementing quantum algo-
rithms by controlling and entangling a large number of matter-based qubits (trapped
ions, quantum dots, superconducting qubits, etc.) via unitary quantum gates. At
the end of the computation, the quantum information stored in the system of entan-
gled matter-based qubits is converted to classical information, i.e., the result of the
computation, through projective measurements on the qubits. However, an alterna-
tive approach to quantum computation exists called “measurement-based quantum
computation" or “one-way quantum computation" [32, 90]. In measurement-based



30

quantum computation we start with a resource state of entangled qubits, and per-
form quantum computation by applying a time-ordered sequence of single-qubit
measurements in specific bases to specific qubits. The choice of measurement basis
in later measurements generally depends on the outcome of earlier measurements,
thus in general there is a feedforward of information during computation (hence
the qualifier “one-way"). Thus, the “computational step" here is projective mea-
surements rather than unitary gates, and as the computation progresses, the total
initial entanglement in the resource state diminishes. At the end of the computation
when all qubits have been measured, the qubit measurement results comprise the
result of the computation. See Figure 2.6a, b for an schematic representation of
measurement-based quantum computation.

By starting with an universal highly-entangled resource state called the “cluster
state," it can be shown that universal quantum computation is possible simply
through single-qubit projective measurements on a 2D cluster state, while fault-
tolerant quantum computation can be realized through this measurement-based
scheme with a 3D cluster state [91]. Furthermore, it can also be shown that this
measurement-based scheme incurs additional overhead compared to conventional
gate-based quantum computing that is at most polynomial in the number of qubits
[92]. Accordingly, there has been significant interest in the photonics community
and industry in achieving photonic quantum computing via this measurement-based
approach, where optical photons comprise the entangled qubits of the cluster state.
Hence, reliably making large cluster states of entangled photonic qubits constitute
a large burden of this approach to quantum computation, and is an area of active
exceedingly active research [60, 93–98].

A cluster state of photons is simply a lattice of photons where each photonic qubit is
entangled to its nearest neighbor; a cluster state can be 1D, 2D, 3D, etc., see Figure
2.6c for an illustration. A cluster state of 𝑁 photons may be defined as the following
quantum state:

|𝜙⟩C =
∏

(𝑎,𝑏)∈LC

𝐶𝑍𝑎.𝑏 |+⟩⊗𝑁 , (2.45)

where |+⟩ = 1
2 ( |0⟩ + |1⟩), 𝐶𝑍𝑎,𝑏 is a controlled CZ gate between qubit 𝑎 and qubit

𝑏, and (𝑎, 𝑏) ∈ LC denotes all pairs of qubits (𝑎, 𝑏) that are nearest neighbors in
the cluster state lattice, which is denoted by LC . This state will obey the following
set of eigenvalue equations:
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Figure 2.6: Measurement-Based Quantum Computing. a Schematic of measurement-based
quantum computation with a 2D cluster state; this figure is adapted from Ref. [90]. Rows of the
cluster state may be regarded as “logical qubits," while information is propagated horizontally through
the cluster. Qubits indicated to have been measured in the Z-basis are all unentangled from other
qubits and do not participate in computation. The quantum logic carried out is hence dependent on
the shape of the cluster state C′ containing the remaining entangled qubits. b Cartoon illustrating that,
as computation is carried out through single-qubit measurements, the initial entanglement contained
in the resource state diminishes as entangled qubits are projected into their measured state. Thus,
all the entanglement necessary for computation should be initially contained in the resource state.
c Cartoon illustration of a 2D cluster state. d Illustration of measurement sequences for realizing
specific quantum gates on the 2D cluster state via the measurement-based approach. Leftmost qubits
are the “input qubits" to the gate, and comprise the state of the “logical qubit" prior to the gate.
Rightmost qubits (denoted by the black square with a white circle) are the “output qubits," whose
states correspond to the states resulting from application of the desired gate on the input qubits.

𝐾 (𝑎) |𝜙⟩C = ± |𝜙⟩C , where 𝐾 (𝑎) = 𝜎 (𝑎)
𝑥

⊗
𝑏∈𝑁 (𝑎)

𝜎
(𝑏)
𝑧 , (2.46)

and where 𝑁 (𝑎) denotes all qubits in the neighborhood of qubit 𝑎, and the distri-
bution of positive and negative eigenvalues depends on the distribution of qubits on
the lattice.

In the following discussion we turn to universal measurement-based quantum com-
putation with 2D cluster states, and reference the reader to Ref. [91] for further
discussion of fault-tolerant measurement based quantum computing. As shown in
Figure 2.6a, in a 2D cluster state the number of rows may be regarded as the number
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of “logical qubits," while the number of columns is related to the circuit depth of
the effective quantum circuit being realized through measurement of the photonic
qubits. Quantum information is thereby propagated horizontally through the cluster,
while vertical entanglement connections in the cluster are utilized to realize effective
two qubit gates.

In general, realization of a specific quantum circuit will require a specific graph state
C′ of nearest-neighbor entangled qubits where only some of the qubits in the original
cluster state are necessary for computation. Thus, the first step in utilizing the initial
cluster state is to disentangle unnecessary qubits from the state by measuring them in
the Z-basis, resulting in the desired graph state C′. With the desired state, effective
gates on the “logical qubits" may be performed through a sequence of adaptive
one-qubit measurements.

In Figure 2.6d we schematically show the measurement sequences of some common
gates, such as an x-rotation, a Hadamard gate, and a CNOT gate, and further
detail their measurement sequences below [92]. As alluded to earlier, rows in a
cluster state correspond to “logical qubits." Thus, single-qubit gates are realized
through measurements on a single row of photonic qubits, while entangling gates
will involve multiple rows of qubits. In order to realize an x-rotation “gate"𝑈𝑥 (𝛼) =
exp (−𝑖𝛼𝜎𝑥/2) on a “logical qubit" corresponding to a row of the cluster state, three
photonic qubits are required. Qubit 1 (the first leftmost qubit) will contain the input
“qubit state" |𝜓in⟩ to the gate, i.e., qubit 1 contains the state of the logical qubit
established through all preceding measurements. The first qubit is measured in the
x-basis, and we denote its measurement result by 𝑠1. Qubit 2 will then be measured
in the basis specified by the following equation (where 𝑗 = 2):

B 𝑗 (𝜑 𝑗 ) =
{
|0⟩ + 𝑒𝑖𝜑 𝑗 |1⟩

√
2

,
|0⟩ − 𝑒𝑖𝜑 𝑗 |1⟩

√
2

}
, (2.47)

where 𝜑2 = (−1)𝑠1 (−𝛼). It can be shown that qubit 3, which is the output qubit,
will have the state |𝜓out⟩ = 𝑈Σ𝑈𝑥 (𝛼) |𝜓in⟩, where 𝑈Σ = 𝜎

𝑠2
𝑥 𝜎

𝑠1
𝑧 is a “byproduct

operator." Thus, we see that the effective rotation angle realized depends on the
outcome of the measurement on qubit 1 (𝑠1). This is an example of the “informa-
tion feedforward" alluded to earlier: in order to realize𝑈𝑥 (𝛼) deterministically, the
basis of measurement of qubit 2 depends on the measurement result of qubit 1, thus
measurement of qubit 1 must be done before measurement of qubit 2. Addidion-
ally, in general effective “gates" performed in this measurement-based manner are
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equivalent to the “ideal gate” concatenated with a byproduct operator that depends
on qubit measurement outcomes. Thus, these byproduct operators are intrinsically
random. However, by keeping track of the measurement outcomes, one can effec-
tively “commute” these byproduct operators to the end result of the computation,
and correct for them in post-processing with the recorded measurement results [92].
In this manner, deterministic quantum logic can be executed in spite of the intrinsic
randomness of quantum measurement results. Similarly, to realize an arbitrary rota-
tion𝑈Rot(𝛼, [, b) = 𝑈𝑥 (b)𝑈𝑧 ([)𝑈𝑥 (𝛼) 5 qubits are needed, and they are measured in
bases B1(0),B2(−𝛼(−1)𝑠1),B3(−[(−1)𝑠2),B4(−b (−1)𝑠1+𝑠3), where the qubits are
measured one after the other since their measurement basis depends on the results
of preceding measurements.

In order to realize a Hadamard gate, qubits 1-4 must be measured in the X,Y,Y, and
Y bases respectively, albeit for this specific gate all measurements can be performed
simultaneously. Once again qubit 1 contains the input qubit state |𝜓in⟩, and qubit 5
is the output qubit such that |𝜓out⟩ = 𝑈Σ𝐻 |𝜓in⟩, where 𝑈Σ = 𝜎

𝑠1+𝑠3+𝑠4
𝑥 𝜎

𝑠2+𝑠3
𝑧 . To

realize a CNOT gate, measurements on two cluster state rows will be performed,
in addition to a measurement on an intervening qubit between the rows, in order
to entangle two “logical qubits" of the cluster state. An schematic of the required
measurements is shown in Figure 2.6d; here qubit 1 and qubit 9 are the input
control and target qubits respectively, qubit 7 and qubit 15 are the output control and
target qubits respectively, and all measurements can be performed simultaneously
as well. Note that since in this discussion we have briefly reviewed how to perform
arbitrary single-qubit gates and a two-qubit gate, it is evident that universal quantum
computation is possible with this measurement-based approach.

In the experiments in Chapter 5 we experimentally demonstrate deterministic gen-
eration of a 2D cluster state of itinerant microwave photons; thus paving the way for
exploration of measurement-based quantum computation in the microwave domain.

Overview of Early Literature on an Atom Coupled to a Bandgap Material
Spontaneous photon emission by a quantum emitter into the fluctuating quantum-
electrodynamic vacuum is an emblematic example of the dynamics of an open
quantum system, characterized by memory-less exponential decay and a Lamb shift
of the emitter’s transition frequency [99]. However, these dynamics are altered
upon constriction of the electrodynamic vacuum’s mode density, as demonstrated
by the appearance of coherent vacuum Rabi oscillations when the radiation field is
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constricted to a single mode [100]. Between the limits of boundless vacuum and
a single mode field, the rich dynamics that arise when an emitter is coupled to a
radiation field with a bounded continuous spectrum, as typically found in dispersive
media, became the subject of strong theoretical interest during the late 80s and 90s
[50–59]. We briefly review some of this work below.

From the pioneering works in cavity QED, it was already apparent to the quantum-
optics community that the spontaneous decay and Lamb shift of an atom were
dependent on the geometry and associated mode structure of its environment. For
example, an atom’s decay rate could be enhanced if placed inside a high 𝑄 resonant
cavity, while it could be suppressed if placed inside a detuned cavity [101]. Nonethe-
less, while modulation of the atom’s decay rate by a cavity is possible, theoretically
in the 𝑡 → ∞ limit the atom will eventually fully decay to the environment, as is the
case for an atom in free-space.

However, pioneering quantum-optics works theoretically demonstrated that a dras-
tically different situation arises if the atom is placed in an environment where its
electromagnetic mode spectrum exhibit gaps in frequency, which are henceforth
called bandgaps. They found that because there are no modes with frequencies
inside the bandgap for radiation to propagate in, an atom whose transition frequency
falls deep in the bandgap will never decay, even in the 𝑡 → ∞ limit.

Furthermore, the dynamics of an atom with frequency in the vicinity of the “band-
edge" of a photonic bandgap (PBG) was also an area of strong interest. It was
found that due to the singular nature of the density of states (DOS) at the bandedge
of a PBG material, the resulting dynamical behavior of the atom is fundamentally
different from that of an atom in a cavity or free-space. This fundamental difference
may be understood to stem from the many-body nature of a PBG material that leads
to such a singular DOS. Note that a singular DOS precludes application of the Born-
Markov approximation, thus rendering master equation approaches inapplicable to
the study of atoms in PBG materials.

More specifically, pioneering works by Sajeev John and others investigated the
behavior of an atom placed in a material where a bandgap is realized by modulation
of the refractive index, which forbids propagation of radiation at certain frequencies
due to Bragg scattering. In their earlier work [52], they directly solve the time-
independent Schrödinger equation with a Hamiltonian similar to the one in in
Equation 2.33 ( Γ′ = 0), with the 𝜔𝑘 and 𝑔𝑘 one could expect in an isotropic PBG
material. By solving for the eigenenergies through complex-analysis mathematical
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Figure 2.7: Dynamics of an Atom Inside a Photonic Bandgap Material. Dynamics of an initially
excited atom inside a photonic bandgap material (PBG) for various values of the detuning from the
bandedge 𝛿 = (𝜔𝑄 − 𝜔𝑏)/𝛽, where 𝜔𝑏 is the frequency of the bandedge and 2𝛽 is the difference
in energy between the bound and radiative dressed states when 𝛿 = 0 (i.e., the resonant frequency
splitting by the bandedge). We bring particular attention to the 𝛿 = 1 curve, where it is evident that
finite population trapping occurs even though the qubit is outside the bandgap, where the DOS is
finite. Figure adapted from Ref. [58].

methods, they found that in the vicinity of the bandedge, the bandedge splits the
transition of the atom into a non-radiative atom-photon bound state in the bandgap,
and a radiative state outside of the bandgap. Because there are no electromagnetic
modes in the bandgap, the photonic component of the atom-photon bound state
remains bound to the qubit and is not lost into the continuum; thus the atom can be
considered to be self-dressed by its own localized radiation. Note that, unlike the
case of an atom coupled to a cavity, the dressed states resultant from the splitting of
the atom by the bandedge are fundamentally different from one another, due to the
properties of the dressed states discussed. In Chapter 3.2 we go through a similar
derivation, where we also demonstrate that the bound state has an exponentially
localized photonic wave function.

Additionally, in a follow-up work [55], they directly solve the time-dependent
Schrödinger equation with the same Hamiltonian (albeit in the rotating frame of
the atom), and with the following ansatz for the state of the system in the single-
photon manifold:



36

|𝜓⟩ = 𝑐𝑒 (𝑡) |𝑒, vac⟩ +
∑︁
𝑘

𝑐𝑘 (𝑡)�̂�†𝑘 |𝑔, vac⟩ 𝑒−𝑖Δ𝑘 𝑡 , (2.48)

where Δ𝑘 = 𝜔𝑘 − 𝜔𝑄 . Through their analytical methods, they derive equations of
motion for the population of an initially excited atom as a function of its detuning
from the bandedge 𝛿 = 𝜔𝑄 − 𝜔𝑏, where 𝜔𝑏 is the frequency of the bandedge; we
plot dynamics calculated from their equations of motion for several values of 𝛿 in
Figure 2.7. In the vicinity of the bandedge they find non-exponential oscillatory
decay dynamics as well as finite population trapping in the 𝑡 → ∞ limit, where the
frequency of oscillations and the amount of trapped population depends on 𝛿. Far
from the bandedge, they recover the expected dynamics of exponential decay when
𝜔𝑄 is far from the bandgap, and no decay when 𝜔𝑄 is deep in the bandgap.

These phenomena can be understood by considering the dynamical interplay of the
dressed radiative and bound states. The initial state of the system |𝑒, vac⟩, where the
qubit is excited and there are no photons in the PBG material, is not an eigenstate
of the system, but is rather a superposition of the dressed bound and radiative
eigenstates of the system. The observed interaction dynamics of the qubit with the
PBG material thus originate from interference of the dressed states during time-
evolution, which leads to oscillatory behavior in the qubit population analogous
to vacuum-Rabi oscillations. The frequency of these oscillations is thus set by
the difference in energy between the dressed states. Moreover, the amplitude of
these oscillations decays with time because the energy in the radiative dressed state
component of the initial superposition state is lost into the waveguide as the emission
propagates away. However, the energy in the bound dressed state component of the
initial superposition state does not decay even in the 𝑡 → ∞ limit, which results in
the finite population trapping observed in the dynamics. The fraction of the initial
excitation that remains trapped in the bound state depends on 𝛿, which sets the
relative magnitudes of the different dressed states in the initial superposition state.
Note that even for atom frequencies outside the bandgap (with moderate detunings
from the bandedge), some degree of population trapping in the 𝑡 → ∞ limit occurs.

The most remarkable aspect of the behavior of an atom coupled to a PBG material is
the formation of a stable, non-radiative atom-photon bound state due to hybridization
of the atom with the structured continuum of modes. The formation of this bound
state, and thus some degree of finite population trapping, is observed even for
atom frequencies outside the bandgap where the DOS is finite. This behavior is
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fundamentally distinct from the behavior of conventional open quantum systems,
where hybridization with a continuum leads to dissipation and full loss of energy in
the 𝑡 → ∞ limit, and where the strength of decay typically depends on the value of
the DOS at the transition frequency of the atom. Due to the physical nature of the
structured reservoir, it retains memory of the atom’s past interactions with it, thus
leading to this distinctly non-Markovian behavior of the atom-PBG system. Hence,
it was recognized by Sajeev John and others that the behavior of an atom in a PBG
material constituted a new paradigm in the study of open quantum-optical systems,
which led to its further detailed study for decades to come [56, 57, 78, 102, 103].

In the experiment described in Chapter 4, where we couple a superconducting
transmon qubit to a SLWG that has a finite passband (and accordingly has “bandgaps"
outside of the passband), we demonstrate experimental observation of this canonical
behavior of an atom coupled to a structured reservoir that has been thus far described.
To our knowledge, this is the first time that these physical phenomena have been
observed in dynamical measurements. Thus, our results constitute a substantial
contribution to this field of quantum optics in structured reservoirs.
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C h a p t e r 3

COUPLED MICROWAVE RESONATOR ARRAYS FOR
METAMATERIAL SLOW-LIGHT WAVEGUIDES

In this Chapter we present the theory, design principles, and characterization of an
all-electrical slow-light waveguide (SLWG) consisting of a chain of coupled lumped-
element superconducting resonators, fabricated out of aluminum patterned on a
silicon substrate. We demonstrate that this compact, low-loss microwave waveguide
has sharp bandedges, and a passband with group delay of 55 ns per centimeter over
an 80 MHz bandwidth. This slow-light waveguide system forms the basis for all
subsequent experiments in this thesis. This Chapter starts with an overview of the
design principles of this slow-light waveguide, as well as characterization data for
a SLWG test device (without qubits). We then delve deeper into various aspects of
the SLWG system’s theory and design, as well as further characterization analysis
of the SLWG test device.

3.1 Slow-Light Metamaterial Waveguide Overview
In prior work studying superconducting qubit emission into a photonic bandgap
waveguide [104], we employed a metamaterial consisting of a coplanar waveguide
(CPW) periodically loaded by lumped-element resonators. In that geometry, whose
circuit model simplifies to a transmission line with resonator loading in parallel to
the line, one obtains high-efficiency transmission with a characteristic impedance
approximately that of the standard CPW away from the resonance frequency of the
loading resonators, and a transmission stopband near resonance of the resonators.
The spectral characteristics of the metamaterial in Ref. [104] were studied via
spontaneous emission lifetime and lamb-shift measurements of a weakly coupled
superconducting qubit, which revealed information about the local DOS at the qubit
frequency that were consistent with the metamaterial’s engineered dispersion. In
contrast, here we seek a waveguide with high transmission efficiency, slow-light
propagation within a transmission passband, and considerably stronger qubit cou-
pling to the waveguide’s guided modes. The stronger coupling renders the Born
approximation inapplicable in such a system, where the effect of the qubit’s interac-
tion with the photonic reservoir takes on significantly more complexity than simply
a decay rate dependent solely on the DOS at the qubit’s frequency. Furthermore,



39

the increased propagation delay gives rise to non-Markovian memory effects in the
waveguide-mediated interactions between qubits, for which the waveguide degrees
of freedom can no longer be be traced out, as in Ref. [38] for instance.

Large delay per unit area can be obtained by employing a network of sub-wavelength
resonators, with light propagation corresponding to hopping from resonator-to-
resonator at a rate set by near-field inter-resonator coupling. This area-efficient
approach to achieving large delays is well-suited to applications where only limited
bandwidths are necessary. However, realizing such a waveguide system in a com-
pact chip-scale form factor requires a modular implementation that can be reliably
replicated at the unit cell level without introducing spurious cell-to-cell couplings.
In optical photonics applications, this sort of scheme has been realized in what
are called coupled-resonator optical waveguides, or CROW waveguides [105, 106].
Here we employ a periodic array of capacitively coupled, lumped-element mi-
crowave resonators to form the waveguide. Such a resonator-based waveguide
supports a photonic channel through which light can propagate, henceforth referred
to as the passband, with bandwidth approximately equal to four times the coupling
between the resonators, 𝐽. The limited bandwidth directly translates into large prop-
agation delays; as can be shown (see Section 3.2), the delay in the resonator array is
roughly 𝜔0/𝐽 longer than that of a conventional CPW of similar area, where 𝜔0 is
the resonance frequency of the resonators.

An optical and scanning electron microscope (SEM) image of the unit cell of the
metamaterial slow-light waveguide used in this work are shown in Figure 3.1a. The
cell consists of a tightly meandered wire inductor section (𝐿0; false color blue)
and a top shunting capacitor (𝐶0; false color green), forming the lumped-element
microwave resonator. Note that these delineations between inductor and capacitor
are not strict, and that the meandered wire inductor (top shunting capacitor) has
a small parasitic capacitance (parasitic inductance). The resonator is surrounded
by a large ground plane (gray) which shields the meander wire section. Laterally
extended ‘wings’ of the top shunting capacitor also provide coupling between the
cells (𝐶𝑔; false color green). Note that at the top of the optical image, above each
shunting capacitor, we have included a long superconducting island (𝐶𝑞; false color
green); this is used in the next section as the shunting capacitance for Xmon qubits.
Similar lumped-element resonators have been realized with internal quality factors
of 𝑄𝑖 ∼ 105 and small resonator frequency disorder [104], enabling propagation
of light with low extinction from losses or disorder-induced scattering [107]. The
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Figure 3.1: Microwave Coupled Resonator Array Slow-light Waveguide. a Optical image of a
fabricated microwave resonator unit cell. The capacitive elements of the resonator are false-colored
in green, while the inductive meander is false colored in blue. The inset shows a false colored SEM
image of the bottom of the meander inductor, where it is shorted to ground. b Circuit diagram of the
unit cell of the periodic resonator array waveguide. c Theoretical dispersion relation of the periodic
resonator array. See Section 3.2 for derivation. d Transmission through a metamaterial slow-light
waveguide spanning 26 resonators and connected to 50-Ω input-output ports. Dashed blue line:
theoretical transmission of finite array without matching to 50-Ω boundaries. Black line: theoretical
transmission of finite array matched to 50-Ω boundaries through two modified resonators at each
boundary. Red line: measured transmission for a fabricated finite resonator array with boundary
matching to input-output 50-Ω coplanar waveguides. The measured ripple in transmission is less
than 0.5 dB in the middle of the passband. e Measured group delay, 𝜏𝑔. Ripples in 𝜏𝑔 are less than
𝛿𝜏𝑔 = 5 ns in the middle of the passband.
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waveguide resonators shown in Figure 3.1a have a bare resonance frequency of
𝜔0/2𝜋 ≈ 4.8 GHz, unit cell length 𝑑 = 290 `m, and transverse unit cell width
𝑤 = 540 `m, achieving a compact planar form factor of 𝑑/_ = (

√
𝑑𝑤)/(2𝜋𝑣/𝜔0) ≈

1/60, where 𝑣 is the speed of light in a CPW on an infinitely thick silicon substrate.

The unit cell is to a good approximation given by the electrical circuit shown in
Figure 3.1b, in which the photon hopping rate is 𝐽 ∝ 𝐶𝑔/𝐶0 [108]. We chose a
ratio of 𝐶𝑔/𝐶0 ≈ 1/70, which yields a delay per resonator of roughly 2 ns. Note
that we have achieved this compact form factor and large delay per resonator while
separating different lumped-element components by large amounts of ground plane,
which minimizes spurious crosstalk between different unit cells. Analysis of the
periodic circuit’s Hamiltonian and dispersion can be found in section 3.2, where
the dispersion is shown to be 𝜔𝑘 = 𝜔0/

√︃
1 + 4𝐶𝑔

𝐶0
sin2(𝑘𝑑/2). Figure 3.1c shows

a plot of the theoretical waveguide dispersion for an infinitely periodic waveguide,
where the frequency of the bandedges of the passband are denoted with the circuit
parameters of the unit cell.

For finite resonator arrays, care must be taken to avoid reflections at the boundaries
that would result in spurious resonances (see Figure 3.1d, dashed blue curve, for
example). To avoid these reflections, we taper the impedance of the waveguide by
slowly shifting the capacitance of the resonators at the boundaries. In particular, we
modify the first two unit cells at each boundary, but in principle, more resonators
could have been modified for a more gradual taper. Increasing 𝐶𝑔 to increase
the coupling between resonators, and decreasing 𝐶0 to compensate for resonance
frequency changes, effectively impedance matches the Bloch impedance of the
periodic structure in the passband to the characteristic impedance of the input-
output waveguides [109]. In essence, this tapering achieves strong coupling of all
normal modes of the finite structure to the input-output waveguides by adiabatically
transforming guided resonator array modes into guided input-output waveguide
modes. This loading of the normal modes lowers their 𝑄 such that they spectrally
overlap and become indistinguishable, changing the DOS of a finite array from
that of a multi-mode resonator to that of finite-bandwidth continuum with singular
bandedges. Further details of the design of the unit cell and boundary resonators
can be found in section 3.3.

Using the above design principles, we fabricated a capacitively coupled 26-resonator
array metamaterial waveguide. The waveguide was fabricated using electron-beam
deposited aluminum (Al) on a silicon substrate and was measured in a dilution refrig-
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erator; transmission measurements are shown in Figure 3.1d, e, and further details
of our fabrication methods and measurement set-up can be found in Appendix A.
We find less than 0.5 dB ripple in transmitted power and less than 10% variation in
the group delay (𝜏𝑔 ≡ − 𝑑𝜙

𝑑𝜔
, 𝜙 = arg(𝑡 (𝜔)), where 𝑡 is transmission) across 80 MHz

of bandwidth in the center of the passband, ensuring low distortion of propagat-
ing signals. Qualitatively, this small ripple demonstrates that we have realized a
resonator array with small disorder and precise modification of the boundary res-
onators. More quantitatively, from the transmitted power measurements we extract
a standard deviation in the resonance frequencies of 3× 10−4 ×𝜔0 (see section 3.4).
Furthermore, we achieve ≈ 55 ns of delay across the 1 cm metamaterial waveguide,
corresponding to a slow-down factor given by the group index of 𝑛𝑔 ≈ 650. We
stress that this group delay is obtained across the center of the passband, rather than
near the bandedges where large (and undesirable) higher-order dispersion occurs
concomitantly with large delays.

3.2 Capacitively Coupled Resonator Array Waveguide Fundamentals
Band Structure Analysis
We consider a periodic array of capacitively coupled LC resonators, with unit
cell circuit diagram shown Figure 3.1b. The Lagrangian for this system can be
constructed as a function of node fluxes 𝜙𝑥 of the resonators, and is written as,

𝐿 =
∑︁
𝑥

[
1
2
𝐶0 ¤𝜙2

𝑥 +
1
2
𝐶𝑔 ( ¤𝜙𝑥 − ¤𝜙𝑥−1)2 − 𝜙𝑥

2

2𝐿0

]
. (3.1)

Since we seek traveling wave solutions to the problem, it is convenient to work with
the Fourier transform of the node fluxes, defined as

𝜙𝑘 =
1

√
𝑀

𝑁∑︁
𝑥=−𝑁

𝜙𝑥𝑒
−𝑖𝑘𝑥𝑑 , (3.2)

where 𝑀 = 2𝑁 + 1 is the total number of periods of a structure with periodic
boundary conditions, 𝑑 is the lattice constant of the resonator array, and 𝑘 are
the discrete momenta of the first Brillouin zone’s guided modes and are given by
𝑘 = 2𝜋𝑚

𝑀𝑑
for integer 𝑚 = [−𝑁, 𝑁]. Using the inverse Fourier transform,

𝜙𝑥 =
1

√
𝑀

∑︁
𝑘

𝜙𝑘𝑒
𝑖𝑘𝑥𝑑 , (3.3)
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we arrive at the following 𝑘-space Lagrangian

𝐿 =
∑︁
𝑘

[
1
2
𝐶0 ¤𝜙𝑘 ¤𝜙−𝑘 +

1
2
𝐶𝑔 ¤𝜙𝑘 ¤𝜙−𝑘

��1 − 𝑒−𝑖𝑘𝑑
��2 − 𝜙𝑘𝜙𝑘

2𝐿0

]
, (3.4)

where we note that
��1 − 𝑒−𝑖𝑘𝑑

��2 is equivalent to 4 sin2 (𝑘𝑑/2). The canonical node
charges 𝑄𝑘 of the system will be given by the conjugate “momenta" of the node
fluxes:

𝑄𝑘 =
𝜕𝐿

𝜕 ¤𝜙𝑘
= ¤𝜙−𝑘

(
𝐶0 + 4𝐶𝑔 sin2 (𝑘𝑑/2)

)
. (3.5)

We can invert this relationship (and make use of that fact that sin2(𝑘𝑑/2) =

sin2(−𝑘𝑑/2)) to obtain the Hamiltonian via the standard Legendre transformation
𝐻 =

∑
𝑘
¤𝜙𝑘𝑄𝑘 − 𝐿, yielding

𝐻 =
∑︁
𝑘


1
2

𝑄𝑘𝑄−𝑘(
4𝐶𝑔 sin2 (𝑘𝑑/2) + 𝐶0

) + 𝜙𝑘𝜙−𝑘
2𝐿0

 . (3.6)

Promoting charge and flux to quantum operators and utilizing the canonical commu-
tation relation

[
𝜙𝑘 , 𝑄𝑘 ′

]
= 𝑖ℏ𝛿𝑘𝑘 ′, we define the following creation and annihilation

operators:

�̂�𝑘 =

√︂
𝑚𝑘𝜔𝑘

2ℏ

(
𝜙𝑘 +

𝑖

𝑚𝑘𝜔𝑘
�̂�−𝑘

)
,

�̂�
†
𝑘
=

√︂
𝑚𝑘𝜔𝑘

2ℏ

(
𝜙−𝑘 −

𝑖

𝑚𝑘𝜔𝑘
�̂�𝑘

)
,

(3.7)

where 𝑚𝑘 =

(
𝐶0 + 4𝐶𝑔 sin2 (𝑘𝑑/2)

)
. The resulting dispersion relation, 𝜔𝑘 , plotted

in Figure 3.1c is given by,

𝜔𝑘 =
𝜔0√︃

1 + 4𝐶𝑔

𝐶0
sin2(𝑘𝑑/2)

, (3.8)

where 𝜔0 = 1/
√
𝐿0𝐶0, and

[
�̂�𝑘 , �̂�

†
𝑘 ′

]
= 𝛿𝑘𝑘 ′. Expressing the flux and charge

operators in terms of �̂�𝑘 , �̂�†𝑘 ′ and substituting them into Equation (3.6), we recover
the second-quantized Hamiltonian in the diagonal k-space basis
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�̂� =
∑︁
𝑘

ℏ𝜔𝑘
(
1
2
+ �̂�†

𝑘
�̂�𝑘

)
. (3.9)

Note that, given the translational invariance of the capacitively coupled resonator
array circuit, it was expected that the the Hamiltonian would be diagonal in the
Fourier plane-wave basis (Bloch Theorem).

Also note that, for two capacitively coupled LC resonators, their coupling 𝐽 =
𝜔0
2 (𝐶𝑔/(𝐶0 + 𝐶𝑔)) is positive-valued [108] due to the fact that the anti-symmetric

odd mode of the circuit is the lower energy eigenmode. This results in positive-
valued photon hopping terms in the Hamiltonian, which directly lead to a maximum
in frequency at the Γ point and opposite directions of the phase velocity and group
velocity in the structure, as observed in other dispersive media [110–112].

Comparison to Tight-Binding Model
In the limit 𝐶0 ≫ 𝐶𝑔, the dispersion is well approximated to first order by a
tight-binding model with dispersion given by 𝜔𝑘 = 𝜔𝑝 + 2𝐽 cos (𝑘𝑑), where 𝐽 =

𝜔0(𝐶𝑔/2𝐶0) is approximately the nearest-neighbor coupling between two resonators
of the resonator array, and 𝜔𝑝 = (𝜔0 − 2𝐽) is the center of the passband. The
difference in the two dispersion relations reflects the coupling beyond nearest-
neighbor that arises due to the topology of the circuit, in which any two pairs of
resonators are electrically connected through some capacitance network dependent
on their distance. The magnitude of these interactions is captured in the Fourier
transform of the dispersion. Consider the Fourier transform for the annihilation
operator of the (localized) mode of the individual resonator located at position 𝑥,

�̂�𝑘 =
1

√
𝑀

∑︁
𝑥

�̂�𝑥𝑒
−𝑖𝑘𝑥𝑑 . (3.10)

Substituting Equation (3.10) into Equation (3.9), we arrive at the following real-
space Hamiltonian,

�̂� = ℏ
∑︁
𝑥

∑︁
𝑥 ′
𝑉 (𝑥 − 𝑥′)�̂�†𝑥 �̂�𝑥 ′, (3.11)

where𝑉 (𝑥−𝑥′) is the distance-dependent interaction strength between two resonators
located at positions 𝑥 and 𝑥′, and is simply given by the Fourier transform of the
dispersion relation,
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𝑉 (𝑥 − 𝑥′) = 1
𝑀

∑︁
𝑘

𝜔𝑘𝑒
−𝑖𝑘𝑑 (𝑥−𝑥 ′) . (3.12)

For example, substituting the tight-binding dispersion 𝜔𝑘 = 𝜔𝑝 + 2𝐽 cos (𝑘𝑑) into
Equation (3.12) yields 𝑉 (𝑥 − 𝑥′) = 𝜔𝑝𝛿𝑥,𝑥′ + 2𝐽

(
𝛿𝑥−𝑥 ′,1 + 𝛿𝑥−𝑥 ′,−1

)
, which, upon

substitution into Equation (3.11), recovers the tight-binding Hamiltonian with only
nearest-neighbor coupling.

In Figure 3.2a we plot the magnitudes of nearest neighbor (𝑥 − 𝑥′ = 1), next-nearest
neighbor (𝑥 − 𝑥′ = 2), and next-next-nearest neighbor (𝑥 − 𝑥′ = 3) couplings in the
capacitively coupled resonator array as a function of 𝐶𝑔/𝐶0, calculated numerically
via the discrete Fourier transform of the dispersion relation. It is evident that for
small 𝐶𝑔/𝐶0 the nearest neighbor coupling overwhelmingly dominates.

Qubit Coupled to Passband of a Waveguide
The Hamiltonian of a transmon-like qubit coupled to the metamaterial waveguide
via a single unit cell, where only the first two levels of the transmon (|𝑔⟩ , |𝑒⟩) are
considered, can be written as (ℏ = 1, 𝑑 = 1),

�̂� = 𝜔𝑔𝑒 |𝑒⟩ ⟨𝑒 | +
∑︁
𝑘

𝜔𝑘 �̂�
†
𝑘
�̂�𝑘 +

𝑔uc√
𝑀

∑︁
𝑘

(
�̂�
†
𝑘
�̂�− + �̂�𝑘 �̂�+

)
, (3.13)

where 𝜔𝑘 is given by Equation (E.1). For an infinite array, the time-independent
Schrödinger equation �̂� |𝜓⟩ = 𝐸 |𝜓⟩ has two types of solutions in the single-
photon manifold: there are scattering eigenstates, which have an energy within
the passband, and there are bound states that are energetically separated from the
passband continuum. We demonstrate this in the following analysis. First, we
substitute into �̂� |𝜓⟩ = 𝐸 |𝜓⟩ the following ansatz for the quantum states of the
composite qubit-waveguide system, i.e., for dressed states of the qubit,

|𝜓⟩ = 𝑐𝑒 |𝑒, vac⟩ +
∑︁
𝑘

𝑐𝑘 �̂�
†
𝑘
|𝑔, vac⟩ , (3.14)

where |vac⟩ corresponds to no excitations in the waveguide. Doing this substitution
and subsequently collecting terms, we arrive at the following coupled equations for
𝑐𝑒 and 𝑐𝑘 :
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Figure 3.2: a Magnitude of nearest neighbor, next-nearest neighbor, and next-next-nearest neighbor
inter-resonator couplings in an (infinite) capacitively coupled resonator array as a function of 𝐶𝑔/𝐶0
ratio. The bare resonator frequency was chosen to be 4.8GHz. b Magnitude of delay per resonator
and bandwidth of the passband as a function of𝐶𝑔/𝐶0 ratio. The bare resonator frequency was again
chosen to be 4.8GHz, and the calculated delays are for frequencies in the middle of the passband.

𝑐𝑒 =
𝑔uc√
𝑀

∑︁
𝑘

𝑐𝑘

𝐸 − 𝜔𝑔𝑒
, (3.15)

𝑐𝑘 =
𝑔uc√
𝑀

𝑐𝑒

𝐸 − 𝜔𝑘
. (3.16)

By further assuming that the waveguide supports a continuum of modes (which
is appropriate for a finite tapered waveguide, as described in Section 3.1), the
sum can be changed into an integral

∑
𝑘 → 1

Δ𝑘

∑
𝑘 Δ𝑘 → 1

Δ𝑘

∫ 𝜋

−𝜋 d𝑘 , where Δ𝑘 =

2𝜋/𝑀 . In this continuum limit, 𝐸 can be found by first substituting Equation (3.16)
into Equation (3.15) and subsequently dividing both sides by 𝑐𝑒, which yields the
following transcendental equation for 𝐸 ,
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𝐸 = 𝜔𝑔𝑒 +
1

2𝜋

∫
d𝑘

𝑔2
uc

𝐸 − 𝜔𝑘
, (3.17)

where the integral on the right-hand side of Equation (3.17) is known as the “self-
energy" of the qubit [55, 57, 58]. Note that in the opposite limit of a single
resonator (where 𝜔𝑘 takes on a single value and the density of states 𝜕𝜔

𝜕𝑘
becomes a

delta–function at that value), Equation (3.17) yields the familiar Jaynes-Cummings
splitting

√︁
𝛿2 + 𝑔2

uc.

Computation of the self-energy for 𝐸 such that 𝐸 > 𝜔𝑘 or 𝐸 < 𝜔𝑘 ∀𝑘 , i.e., for
energies outside of the passband, yields real solutions for Equation (3.17). On the
other hand, for energies 𝐸 inside the passband, the self-energy integral contains a
divergence at 𝐸 = 𝜔𝑘 for real 𝐸 while there is no divergence if 𝐸 is allowed to be
complex with an imaginary component; thus Equation (3.17) has complex solutions
when Re(𝐸) is inside the passband. While a Hermitian Hamiltonian such as the
one in Equation (3.13) by definition does not contain complex eigenvalues, it can
be shown that the magnitude of the imaginary component of complex solutions of
Equation (3.17) gives the decay rate of an excited qubit for a qubit dressed state
with energy in the passband. For further details we suggest Refs. [52, 57, 58] to the
reader. Thus, the existence of complex solutions of Equation (3.17) reflects the fact
that qubit dressed states with energy in the passband are radiative states that decay
into the continuum, characteristic of open quantum systems coupled to a continuum
of modes. In contrast, the dressed states with (real) energies outside of the passband
do not decay, and are known as qubit-photon bound states in which the photonic
component of the dressed state wavefunction remains bound to the qubit and is not
lost into the continuum.

For further analytical progress, we consider only the upper bandedge, and make
the effective-mass approximation. This approximation is tantamount to assuming
the dispersion is quadratic, such that 𝜔𝑘 ≈ 𝜔0 − 𝐽𝑘2, which is obtained in the
limit of small 𝐶𝑔/𝐶0 (where 𝜔𝑘 is well approximated by the tight binding cosine
dispersion) and small 𝑘 (where cos(𝑘) to second order is approximately 1 − 𝑘2/2).
This approximation is appropriate when 𝜔𝑔𝑒 is close to the upper bandedge, where
the qubit is dominantly coupled to the Γ-point 𝑘 = 0 modes close to the bandedge due
to the van Hove singularity in the DOS, and when the lower bandedge is sufficiently
detuned from the qubit. Complimentary analysis for the lower bandedge can also
be done in the same manner. For a more detailed derivation, see Refs. [51, 52, 57,
78, 113].
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Under the effective-mass approximation, the self-energy integral in Equation (3.17)
can be easily analyzed by taking the bounds of integration to infinity, and is calculated
to be 𝑔2

uc/2
√︁
𝐽 (𝐸 − 𝜔0). For 𝜔𝑔𝑒 = 𝜔0, Equation (3.17) then has the following two

solutions:

𝐸𝑏 = 𝜔0 + (𝑔4
uc/4𝐽)1/3, (3.18)

𝐸𝑟 = 𝜔0 − 𝑒𝑖𝜋/3(𝑔4
uc/4𝐽)1/3. (3.19)

These two solutions are indicative of a splitting of the qubit transition frequency
by the bandedge into two dressed states: a radiative state with energy 𝐸𝑟 in the
passband and a bound state with energy 𝐸𝑏 above the bandedge. The magnitude dif-
ference between the dressed state energies is 2(𝑔4

uc/4𝐽)1/3, which is the frequency of
coherent qubit-to-photon oscillations for an excited qubit at the photonic bandedge.

For the remainder of the analysis, we focus on the qubit-photon bound state of the
system. The wavefunction of the bound state with energy 𝐸 can be obtained by first
substituting Equation (3.16) into Equation (3.14), which yields

|𝜓𝐸⟩ = 𝑐𝑒

(
|𝑒⟩ + 𝑔uc√

𝑀

∑︁
𝑘

1
𝐸 − 𝜔𝑘

�̂�
†
𝑘
|𝑔, vac⟩

)
. (3.20)

The qubit and photonic components of the bound state can be calculated from the
normalization condition of |𝜓𝐸⟩,

|𝑐𝑒 |2
(
1 + 1

2𝜋

∫
d𝑘

���� 𝑔uc
𝐸 − 𝜔𝑘

����2) = 1. (3.21)

By assuming 𝐸 > 𝜔0, the integral in Equation (3.21) is calculated to be equal to
𝑔2

uc/4
√︁
𝐽 (𝐸 − 𝜔0)3, which yields the following magnitude for the qubit component

of the bound state,

|𝑐𝑒 |2 =

(
1 + 1

2
𝐸 − 𝜔𝑔𝑒
𝐸 − 𝜔0

)−1
, (3.22)

whereas the photonic component is simply
∫

d𝑘 |𝑐𝑘 |2 = 1 − |𝑐𝑒 |2. We can thus
see that when 𝐸 ≈ 𝜔𝑔𝑒 ≠ 𝜔0, the qubit is negligibly hybridized with the passband
modes and |𝑐𝑒 |2 ≈ 1. On the other hand, as 𝜔𝑔𝑒 → 𝜔0 we have |𝑐𝑒 |2 → 2/3,
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indicating that the bound-state photonic component contains half as much energy
as the qubit component when the qubit is tuned to the bandedge.

We can also obtain the real-space shape of the photonic bound state by inserting
Equation (3.10) into Equation (3.20), where for a continuum of modes in 𝑘-space
we arrive at the following photonic wavefunction,

∑︁
𝑥

𝑒−|𝑥 |/_�̂�†𝑥 |𝑔, vac⟩ , (3.23)

up to a normalization constant, where _ =
√︁
𝐽/(𝐸 − 𝜔0) and the qubit is assumed to

reside at 𝑥 = 0. We thus find an exponentially localized photonic wavefunction for
the bound state. The localization length _ increases as 𝐽 increases, indicating that
the bound state becomes more delocalized across multiple resonators as the strength
of coupling between the resonators in the waveguide increases, whereas _ diverges
as the 𝐸 → 𝜔0, which is associated with full delocalization of the bound-state as its
energy approaches the continuum of the passband.

Group Delay
Lowering the ratio 𝐶𝑔/𝐶0 effectively lowers the photon hopping rate 𝐽 between
resonators, and can thus be chosen to significantly decrease the group velocity
of propagating modes of the structure, albeit at the cost of decreased bandwidth
of the passband modes. The group delay per resonator may be obtained from
the inverse of the group velocity 𝜕𝜔𝑘

𝜕𝑘
, while the bandwidth can be calculated to

be equal to 𝜔0

(
1 − 1/

√︁
1 + 4𝐶𝑔/𝐶0

)
; both are plotted in Figure 3.2b. Note that

although the group velocity approaches zero near the bandedge, a traveling pulse at
the bandedge frequency would experience significant distortion due to the rapidly
changing magnitude of the group velocity near the bandedge. At the center of
the passband where the dispersion is nearly linear, however, it is possible to have
propagation with minimal distortion.

Hence, in order to effectively use the coupled resonator array as a delay line, the
coupling should be made sufficiently high such that the bandwidth of propagating
modes (where the dispersion is also nearly linear) is sufficiently high, and the effect
of resonator frequency disorder due to fabrication imperfections is tolerable. After
the resonator coupling constraints have been met, the desired delay may be achieved
with a suitable number of resonators. It is thus evident that the ability to fabricate
resonators of sub-wavelength size with minimal frequency disorder is critical to
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the effectiveness of implementing a slow-light waveguide with a coupled resonator
array.

An appropriate metric to compare the performance of the resonator array as a
delay line against dispersionless waveguides is to consider the delay achieved per
area rather than per length, in order to account for the transverse dimensions of
the resonators. In addition, typical implementations of delay lines with CPW
geometries commonly require a high degree of meandering in order to fit in a
packaged device; thus the pitch and turn radius of the CPW meandered trace also
must be taken into account when assessing delay achieved per area. However, by
making certain simplifying assumptions about the resonators it is possible to gain
intuition on how efficient the resonator array is in achieving long delays compared
to a dispersionless CPW. For the unit cell resonators implemented throughout (see
Figure 3.1), the capacitive elements of the resonator are electrically connected to
one end of the meander while the opposite end of the meander is shunted to ground.
This geometry is therefore topologically similar to a _/4 resonator, and consequently
the lengths of the meander and a conventional _/4 CPW resonator will be similar
to within an order of magnitude for conventional implementations (here _ is the
wavelength of the CPW resonator mode).

Thus, by approximating that a single resonator of the array occupies the same
area as a _/4-section of CPW, a direct comparison between the delays of the two
different waveguides can be made. In the tight-binding limit, the group delay per
resonator in the middle of the passband is approximately equal to 1/2𝐽, where
𝐽 is the coupling between two resonators of the array. Hence, for N resonators
array/CPW=

𝑁/2𝐽
𝑁_/4𝑣 ∼ 𝜔0/𝐽, where 𝜏𝑑 is group delay and 𝑣 is the group velocity

of light in the CPW. Hence, the resonator array is more efficient as a delay line
when compared to conventional CPW by a factor of approximately 𝜔0/𝐽 (assuming
group velocity is approximately equal to phase velocity in the CPW). In practice,
this factor will also depend on the particular geometrical implementations of both
kinds of waveguide. For example, for the resonator array described in Figure 3.1,
𝜔0/𝐽 ≈ 120 and = 55 ns delay was achieved in the middle of the passband for a
resonator array of area 𝐴 = 6 mm2. This constitutes a factor of 60 (500) improvement
in delay per area achieved over the CPW delay line in Ref. [114] (Ref. [115]).
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Figure 3.3: a CAD diagram showing the end of the finite resonator array, including the boundary
matching circuit (which in this case includes the first two resonators) and the first unit cell. b
Corresponding circuit model of the end of the finite resonator array. c Zoomed-in SEM images of
the first (left) and second (right) boundary-matching resonators. d Transmission spectrum of the full
resonator array consisting of 22 unit cells and 2 boundary-matching resonators on either end of the
array (for a total of 26 resonators). Measured data is plotted as a red curve and the circuit model fit
is plotted as a black curve. Fit model parameters are given in the text.

3.3 Physical Implementation of Finite Resonator Array
Geometrical Design of Unit Cell
As shown in Figure 3.1, the unit cell of the resonator array in this work includes a
lumped-element resonator formed from a tightly meandered wire with a large “head"
capacitance, and “wing" capacitors which, in addition to providing the majority of
the capacitance to ground, are used to couple between resonators in neighbouring
unit cells. The meandered wire has a 1 `m pitch and a 1 `m trace width for
tight packing. From the top of the meander inductor is the head capacitor and
a pair of thin metal capacitor strips which extend to the lateral edges of the unit
cell (the wing capacitors). The ground plane in between the resonators’ meander
inductor and their lateral wing capacitors acts as an electrical “fence", restricting the
meander from coupling to neighboring resonators via stray capacitance or mutual
inductance. This ensured that the bulk of the coupling between resonators was from
the resonators’ wing capacitive elements, thereby facilitating theoretical analysis of
the structure using a simple single resonator per unit cell model. Furthermore, we
included ground metal between the thin metal capacitor traces of neighbouring unit
cell wing capacitors. In this way, the ground planes above and below the resonator
array are tied together at each unit cell boundary, thereby suppressing the influence



52

of higher-order transverse, slot-line modes of the waveguide.

In addition, anticipating integration with Xmon qubits, we incorporated into our
unit cell design a Xmon shunting capacitance to ground, along with pads for facile
addition of Josephson Junctions. This ensured that the addition of a qubit at a
particular unit cell site in the resonator array minimally affected the capacitive
environment surrounding that unit cell, and prevented the breaking of translational
symmetry of the resonator array due to the addition of qubits. The capacitance
between the Xmon capacitor and the rest of the unit cell was designed to be ∼ 2 fF,
yielding a qubit-unit cell coupling of 𝑔uc ∼ 𝐽.

Matching of the Finite Resonator Array to Input-Output CPWs
It has been previously shown that for a finite coupled cavity array, low-ripple trans-
mission at the center of the passband is possible by appropriate variation of the
inter-resonator coupling coefficients for a few of the resonators adjacent to the ports,
effectively matching the finite periodic structure to the input-output ports [116].
In the case of capacitively coupled electrical resonators, modifying the coupling
capacitance in isolation results in a renormalization of the resonance frequency and
thus constitutes a scattering center for propagating light. Thus, concurrent modifi-
cation of both the coupling capacitance and the shunt capacitance to ground for the
boundary resonators is necessary to achieve low-ripple transmission in the middle
of the passband, as previously shown in filter design theory [117]. By constraining
the total capacitance in each modified resonator to remain constant (and keeping the
inductance constant), the total number of parameters to adjust in order to achieve
low ripple transmission is merely equal to the chosen number of resonators to be
modified, resulting in a low-dimensional optimization problem. A filter design soft-
ware such as Microwave Office can be used to provide initial guesses on the optimal
circuit parameters with high accuracy, which can then be further optimized.

In Section 3.1 we present results on matching of a resonator array spanning 26
resonators to 50-Ω CPWs via modification of two resonators at each of the array-
CPW boundaries. The geometrical design of the boundary resonators is shown
in Figure 3.3. The number of boundary resonators to modify (2) was chosen as a
compromise between device simplicity and spectral bandwidth over which matching
occurs. In principle, however, more resonators could have been used for matching
of the finite structure to the ports in order to decrease the ripples in the transmission
passband near the bandedges. Referring to the notation in Figure 3.3b, the targets for
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the unit cell resonator and boundary resonator elements extracted from Sonnet [118]
electromagnetic simulations were 𝐶2𝑔 = 89 fF, 𝐶1𝑔 = 8.9 fF, 𝐶𝑔 = 6.47 fF, 𝐶2 =

269 fF, 𝐶1 = 351 fF, 𝐶0 = 353 fF, and geometric inductance 𝐿0 = 2.92 nH.
The individual capacitive and inductive elements have parasitic inductance and
capacitance, respectively, and thus were not simulated separately. Rather, circuit
parameters for the three different resonators were extracted by simulating the whole
resonator circuit. We extracted the circuit element parameters from these simulations
by numerically obtaining the dispersion for an infinite array of each of the three types
of resonators via the 𝐴𝐵𝐶𝐷 matrix method [109]. This yielded 𝜔0 and 𝐶𝑔/𝐶0; 𝐶𝑔
was obtained from the 𝐵 parameter of the 𝐴𝐵𝐶𝐷matrix (which contains information
on the series impedance of the unit cell circuit). We found this method of extracting
parameters from simulation to give much higher accuracy when compared to other
approaches, such as simulating unit cell elements separately.

Figure 3.3d shows a plot of the measured transmission spectrum of the fabricated 26
unit cell slow-light waveguide based upon the above design and presented in Section
3.1 (c.f., Figure 3.1). A circuit model fit to the measured transmission spectrum
yields the following circuit element parameters for boundary and central waveguide
unit cells: 𝐶2𝑔 = 87.5 fF, 𝐶1𝑔 = 7.3 fF, 𝐶𝑔 = 5.05 fF, 𝐶1 = 352.1 fF, 𝐶2 = 275.5 fF,
𝐶0 = 353.2 fF, and geometric inductance 𝐿0 = 3.151nH. Based upon this model
fit, we were thus able to realize good correspondence (within 3%) between design
and measured capacitances to ground, while extracted coupling capacitances are
systematically lower by approximately 1.5 fF. We attribute the systematically smaller
coupling to stray mutual inductance between neighboring meander inductors, which
tends to lower the effective coupling impedance between the resonators. The slightly
larger fit inductance compared to design is to be expected as the kinetic inductance
of the meander trace was not included in simulation. According to Ref. [119], for
a 1 `m trace width and 120 nm-thick aluminum wire, the expected increase in the
total inductance due to kinetic inductance is approximately 5% of the geometric
inductance, in reasonable correspondence to the measured value.

3.4 Disorder in the Metamaterial Waveguide
Fluctuations in the bare resonance frequencies of the lumped-element resonators
making up the metamaterial waveguide breaks the translational symmetry of the
waveguide, and effectively leads to random scattering of traveling waves between
different Bloch modes. The interference between the randomly rescattered waves can
be shown to lead an exponential reduction in the probability that a propagating pho-
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ton traverses across the entire length of the waveguide. Furthermore, if the strength
of scattering is large relative to the photon hopping rate, Anderson localization of
light occurs where photons are completely trapped within the waveguide[107]; see
Figure 3.4. Thus, the aforementioned strategy for constructing a slow-light waveg-
uide from an array of weakly coupled resonators is at odds with the inherent presence
of fabrication disorder in any practically realizable device. Therefore, a compromise
must be struck between choosing an inter-resonator coupling low enough to provide
significant delay, but high enough such that propagation through the metamaterial
waveguide is not significantly compromised by resonator frequency disorder.

Figure 3.5a shows numerical calculations of the transmission extinction in the meta-
material waveguide as a function of 𝜎/𝐽, where 𝜎 is the resonator frequency disor-
der. This analysis was performed for a 50 unit cell waveguide, with 𝐶0 = 353.2 fF,
𝐶𝑔 = 5.05 fF, and 𝐿𝑖 = 3.101 nH + 𝛿𝑖. Here, 𝐿𝑖 is the inductance of the ith unit cell
and 𝛿𝑖 are random inductance variations in each unit cell that give rise to a particular
resonator frequency disorder, 𝜎. These 𝐿𝑖 were calculated by: (i) determining the
resonator frequencies of each unit cell by drawing from a Gaussian distribution
with mean 𝜔0 and variance 𝜎2, and (ii) solving for the corresponding inductances
given the resonator frequencies and a fixed 𝐶0. Note that we modeled the disorder
as originating from inductance variations, rather than 𝐶0 or 𝐶𝑔 variations, based
on the fact that earlier work showed that disorder in superconducting microwave
resonators was primarily due to variations in kinetic inductance [121]. As we see in
Figure 3.5a, in order for the average transmission to drop by less than 0.5dB (10%),
the normalized resonator frequency disorder must be less than 𝜎/𝐽 < 0.1 .

In order to quantify the resonator frequency disorder in our fabricated resonator
array one can analyze the passband ripple in transmission measurements [121] (c.f.,
Figure 3.1d, e). Given that the effect of tapering the circuit parameters at the
boundary is to optimally couple the normal modes of the structure to the source
and load impedances, the ripples in the passband are merely overlapping low-𝑄
resonances of the normal modes. Therefore, we can extract the normal mode
frequencies from the maxima of the ripples in the passband, which will be shifted
with respect the to normal mode frequencies of a structure without disorder.

Furthermore, the mode spacing is dependent on the number of resonators and, in
the absence of disorder, follows the dispersion relation shown in Figure 3.1c where
the dispersion is relatively constant near the passband center and starts to shrink
near the bandedges. In the presence of disorder, however, this pattern breaks down
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a

b

Figure 3.4: Anderson Localization in a 1D Periodic Potential with Finite Disorder. a Perfectly
periodic potential of nearest-neighbor coupled lattice sites. For a particle in this potential, one obtains
freely propagating waves as the solution of the Schrödinger equation, as per the Bloch Theorem. b
Disordered potential of nearest-neighbor coupled lattice sites, with disorder 𝑊 . Due to destructive
interference between randomly scattered waves, one obtains an exponentially localized wavefunction
in space as the solution of the Schrödinger equation. Note that in 1D, some degree of localization
happens irrespective of how small 𝑊 is, because even small potential fluctuations will cause some
degree of scattering. Figure adapted from Ref. [120].
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Figure 3.5: a Numerically calculated extinction as a function of disorder. Here, 𝜎 is the disorder
in the bare frequencies of the (unit cell) resonators making up the metamaterial waveguide and 𝐽
is the coupling between nearest-neighbor resonators in the resonator array. 50 unit cells were used
in this calculation, which included taper-matching sections at the input and output of the array that
brought the overall passband ripple to 0.01dB. For a given disorder strength, 𝜎, disorder extinction
was calculated by taking the mean of the transmission across the passband for a given disorder
realization, and subsequently averaging that mean transmission over many disorder realizations.
Note that the calculated values depend on the number of unit cells. b Numerically calculated
variance in normal mode frequency spacing as a function of disorder. See text for details on the
method of calculation of ΔFSR. Dashed line indicates the experimentally measured ΔFSR, which was
extracted from the data shown in Figure 3.1d.
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as the modes become randomly shifted. Our approach was therefore as follows.
Starting with the fit parameters presented in section 3.3, we simulated transmission
through the metamaterial waveguide for varying amounts of resonator frequency
disorder, 𝜎. For each level of disorder we performed simulations of 500 different
disorder realizations, and for each different disorder realization we computed the
standard deviation in the free spectral range of the ripples, ΔFSR. This deviation in
free spectral range was then averaged over all disorder realizations for each value of
𝜎, yielding an empirical relation between ΔFSR and 𝜎.

The numerically calculated empirical relation between variation in free spectral
range and frequency disorder is plotted in Figure 3.5b. Note that the minimum of
ΔFSR at 𝜎 = 0 is set by the intrinsic dispersion of the normal mode frequencies of
the unperturbed resonator array. As such, in order to yield a better sensitivity to
disorder we chose to only use the center half of the passband in our analysis where
dispersion is small. From the data in Figure 3.1d, we calculated the experimental
ΔFSR. Comparing to the simulated plot of Figure 3.5b, this level of variance in the
free spectral range results from a resonator frequency disorder within the array at
the 1 MHz level (or 2 × 10−4 of the average resonator frequency), corresponding to
𝜎/𝐽 ≈ 1/30. We have extracted similar disorder values across a number of different
metamaterial waveguide devices realized using our fabrication process.
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C h a p t e r 4

DYNAMICS OF A QUANTUM EMITTER COUPLED TO A
ONE-DIMENSIONAL STRUCTURED RESERVOIR

4.1 Introduction
Spontaneous emission by a quantum emitter into the fluctuating electromagnetic
vacuum, and the corresponding exponential decay of the emitter excited state, is
an emblematic example of Markovian dynamics of an open quantum system [99].
However, modification of the electromagnetic reservoir can drastically alter this
dynamic, introducing “non-Markovian" memory effects to the emission process, a
consequence of information back-flow from the reservoir to the emitter [83, 84, 86,
122]. A canonical example of this, considered in early theoretical work [50–52], is
the behavior of a quantum emitter whose natural emission frequency lies close to
the gap edge of a photonic bandgap material [53, 54] where a sharp transition of
the photonic density of states (DOS) occurs. Inside the bandgap the emitter sees
a reservoir devoid of electromagnetic states, while just outside of the bandgap lies
a continuum of states. This structure of the photonic bandgap reservoir leads to a
strong dressing of the emitter, and a resulting emission dynamics modified by the
interplay between bound and radiative emitter-photon resonant states [55–59].

More recently, theoretical studies have explored how a structured reservoir with non-
Markovian memory alters the entanglement within a quantum system coupled to such
a reservoir [28–30]. This has led to the paradigm of reservoir engineering, where
non-Markovianity is a quantifiable resource for quantum information processing
and communication. Theory work from this quantum information perspective has
shown that long-lived reservoir correlations can be used for the generation and
preservation of entanglement [26, 27] and quantum control [123] of a quantum
system, enhancement of the capacity of quantum channels [124], and the synthesis
of exotic many-body quantum states of light from single emitters [60].

In practice, observation of non-Markovian emission phenomena can be achieved
by strongly coupling an emitter to a single-mode waveguide — a one-dimensional
(1D) reservoir with a continuum of states. Waveguides which break continuous
translational symmetry, or which host resonant elements within the waveguide, are
of particular interest in this regard owing to the structure in their spectrum [125–
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127]. For example, an array of coupled resonant elements leads to a constriction of
the 1D continuum of guided modes to a transmission band of finite bandwidth, with
sharp transitions in the photonic DOS occurring at the bandedges as in a photonic
bandgap material.

Spectral constriction of the waveguide continuum, and the concomitant frequency
dispersion, can also result in the slowing of light propagation which enables observa-
tion of additional non-Markovian phenomena. For instance, by placing a reflective
boundary (mirror) on one end of a slow-light waveguide, a fraction of the emitter’s
radiation can be fed back from the waveguide reservoir to the emitter at signifi-
cantly delayed timescales [89, 128, 129]. The non-Markovian regime is reached
when Γ1D > 1, where Γ1D is the emitter’s emission rate into the waveguide and
is the round-trip travel time of an emitted photon. Theoretical studies have shown
that such non-Markovian delayed feedback in a 1D waveguide reservoir can lead
to revivals in excited-state population of an emitter as it undergoes spontaneous
emission decay [89, 130–135], realization of stable bound states in a continuum
(BIC) [136, 137], and enhanced collective effects including multipartite entangle-
ment and superradiant emission from emitters interacting via a common waveguide
channel [30, 138–142]. This deceptively simple mechanism of time-delayed feed-
back can also be used for the generation of multi-dimensional photonic cluster states
by a single emitter, and has been proposed as a means for generating the universal
resource states necessary for measurement-based quantum computation [60].

Superconducting microwave circuits incorporating Josephson-junction-based qubits [143,
144] represent a near-ideal test bed for studying the quantum dynamics of emit-
ters interacting with a 1D continuum [37, 145]. In comparison to solid-state and
atomic optical systems [146–149], superconducting microwave circuits can be cre-
ated at a deep-sub-wavelength scale, giving rise to strong qubit-waveguide cou-
pling far exceeding other qubit dissipative channels. This has enabled a variety
of pioneering experiments probing qubit-waveguide radiative dynamics, employ-
ing waveguide spectroscopy [42, 102, 103, 129], time-dependent qubit measure-
ments [38, 104, 114, 150], and analysis of higher-order field correlations [39, 151].
Recent experiments have also explored the coupling of superconducting qubits to
acoustic wave devices, demonstrating the capability of these systems to produce
significant time-delayed feedback and remote entanglement of qubits [42, 150].

In this work, through the addition of strongly coupled Xmon-style superconducting
qubits [66, 152] to a microwave metamaterial slow-light waveguide, we are able to
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realize a quantum emitter-reservoir system operating deep within the non-Markovian
limit. Spectroscopic measurement of the coupled system shows the emergence of
dressed qubit-photon resonant states near the bandedges of the constricted passband
of the waveguide [51, 52, 102]. Using non-adiabatic tuning of the qubit emission
frequency, we also measure the time-dependent dynamics of the qubit excited-state
population when it is resonant at different points across the bandgap and passband
of the waveguide. We directly observe non-exponential, oscillatory radiative decay
of the qubit, which modeling indicates is a result of the interference of the pair
of bound and radiative dressed qubit-photon states that exist on either side of the
bandedge of the slow-light waveguide [55]. Further, by terminating one-end of
the slow-light waveguide with a reflective boundary, we explore the effects of time-
delayed feedback on the qubit emission as it emits into the passband of the slow-light
waveguide. In this regime, we observe multiple, well-resolved revivals in the qubit
excited state population, and explore the cross-over between Markovian and non-
Markovian emission dynamics through in situ tuning of the qubit coupling to the
waveguide.

4.2 Non-Markovian Spectroscopic Signatures
In order to study the non-Markovian radiative dynamics of a quantum emitter, a
second sample was fabricated with a metamaterial waveguide similar to that in the
previous section, this time including three flux-tunable Xmon qubits [152] coupled
at different points along the waveguide (see Figure 4.1a—c). Each of the qubits
is coupled to its own XY control line for excitation of the qubit, a Z control line
for flux tuning of the qubit transition frequency, and a readout resonator (R) with
separate readout waveguide (RO) for dispersive read-out of the qubit state. The
qubits are designed to be in the transmon-limit [66] with large tunneling to charging
energy ratio (see Refs. [104, 153] for further qubit design and fabrication details).
As in the test waveguide of Figure 3.1, the qubit-loaded metamaterial waveguide is
impedance-matched to input-output 50-Ω CPWs. In order to extend the waveguide
delay further, however, this new waveguide is realized by concatenating two of the
test metamaterial waveguides together using a CPW bend and internal impedance
matching sections. The Xmon qubit capacitors were designed to have capacitive
coupling to a single unit cell of the metamaterial waveguide, yielding a qubit-unit
cell coupling of 𝑔uc ≈ 0.8𝐽.

In this work only one of the qubits, Q1, is used to probe the non-Markovian emission
dynamics of the qubit-waveguide system. The other two qubits are to be used in a
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Figure 4.1: Artificial Atom Coupled to a Structured Photonic Reservoir. a False-colored optical
image of a fabricated sample consisting of three transmon qubits (Q1,Q2,Q3) coupled to a slow-
light metamaterial waveguide composed of a coupled microwave resonator array. Each qubit is
capacitively coupled to a readout resonator (false color dark blue) and a XY control-line (false
color red), and inductively coupled to a Z flux-line for frequency tuning (false color light blue). The
readout resonators are probed through feed-lines (false color lilac). The metamaterial waveguide path
is highlighted in false color dark purple. b SEM image of the Q1 qubit, showing the long, thin shunt
capacitor (false color green), XY control-line, the Z flux-line, and coupling capacitor to the readout
resonator (false color dark blue). c SEM zoom-in image of the Z flux-line and superconducting
quantum interference device (SQUID) loop of Q1 qubit, with Josephson Junctions and its pads false
colored in crimson. d Transmission through the metamaterial waveguide as a function of flux. The
solid magenta line indicates the expected bare qubit frequency in the absence of coupling to the
metamaterial waveguide, calculated based on the measured qubit minimum/maximum frequencies
and the extracted anharmonicity. The dashed black lines are numerically calculated bound state
energies from a model Hamiltonian of the system; see Appendix D.1 for further details. e Zoom-in
of transmission near the upper bandedge, showing the hybridization of the qubit with the bandedge,
and its decomposition into a bound state in the upper bandgap and a radiative state in the continuum
of the passband.
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separate experiment, and were detuned from Q1 by approximately 1 GHz for all of
the measurements that follow. At zero flux bias (i.e., maximum qubit frequency), the
measured parameters of Q1 are: 𝜔𝑔𝑒/2𝜋 = 5.411 GHz, [/2𝜋 = (𝜔𝑒 𝑓 − 𝜔𝑔𝑒)/2𝜋 =

−235 MHz, 𝜔𝑟/2𝜋 = 5.871 GHz, and 𝑔𝑟/2𝜋 = 88 MHz. Here, |𝑔⟩, |𝑒⟩, and | 𝑓 ⟩
are the vacuum, first-excited, and second-excited states of the Xmon qubit, with
𝜔𝑔𝑒 the fundamental qubit transition frequency, 𝜔𝑒 𝑓 the first-excited state transition
frequency, and [ the anharmonicity. 𝜔𝑟 is the readout resonator frequency, and 𝑔𝑟
is the bare coupling rate between the qubit and the readout resonator.

As an initial probe of qubit radiative dynamics, we spectroscopically probed the
interaction of Q1 with the structured 1D continuum of the metamaterial waveguide.
These measurements are performed by tuning 𝜔𝑔𝑒 into the vicinity of the passband
and measuring the waveguide transmission spectrum at low power (such that the
effects of qubit saturation can be neglected). A color intensity plot of the measured
transmission spectrum versus flux bias used to tune the qubit frequency is displayed
in Figure 4.1d. These spectra show a clear anti-crossing as the qubit is tuned toward
either bandedge of the passband (a zoom-in near the upper bandedge of the passband
is shown in Figure 4.1e). As has been shown theoretically [55, 56], in the single
excitation manifold the interaction of the qubit with the waveguide results in a pair of
qubit-photon dressed states of the hybridized system, with one state in the passband
(a delocalized “continuum" state) and one state in the bandgap (a localized “bound"
state). This arises due to the large peak in the photonic DOS at the bandedge (in
the lossless case, a van Hove singularity), the modes of which strongly couple to
the qubit with a coherent interaction rate of ΩWG ≈ (𝑔4

uc/4𝐽)1/3, resulting in a
dressed-state splitting of 2ΩWG. This splitting has been experimentally shown to be
a spectroscopic signature of a non-Markovian interaction between an emitter and a
photonic crystal reservoir [102, 103]. Further details and discussion can be found
in section 3.2 and Appendix D.1.

The dressed state with frequency in the passband is a radiative state which is respon-
sible for decay of the qubit into the continuum [52]. On the other hand, the state with
frequency in the gap is a qubit-photon bound state, where the qubit is self-dressed by
virtual photons that are emitted and re-absorbed due to the lack of propagating modes
in the waveguide for the radiation to escape. This bound state assumes an exponen-
tially shaped photonic wavefunction of the form

∑
𝑥 𝑒

−|𝑥 |/_�̂�†𝑥 |vac⟩, where |vac⟩ is
the state with no photons in the waveguide, �̂�†𝑥 is the creation operator of a photon
in unit cell at position 𝑥 (with the qubit located at 𝑥 = 0), and _ ≈

√︁
𝐽/(𝐸𝑏 − 𝜔0)
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is the state’s localization length. In the theoretical limit of an infinite array, and in
absence of intrinsic resonator and qubit losses, the qubit component of the bound
state does not decay even though it is hybridized with the waveguide continuum; a
behavior distinct from conventional open quantum systems. Practically, however,
intrinsic losses and the overlap between the bound state’s photonic wavefunction and
the input-output waveguides will result in decay of the qubit-photon bound state.

4.3 Non-Markovian Radiative Dynamics
In complement to spectroscopic probing of the qubit-reservoir system, and in order
to directly study the population dynamics of the qubit-photon dressed states, we
also performed time-domain measurements as shown in Figure 4.2. In this protocol
(illustrated in Figure 4.2a) we excite the qubit to state |𝑒⟩ with a resonant 𝜋-pulse
on the XY control line, and then rapidly tune the qubit transition frequency using a
fast current pulse on the Z control line to a frequency (𝜔′

𝑔𝑒) within, or in the vicinity
of, the slow-light waveguide passband. After an interaction time 𝜏, the qubit is then
rapidly tuned away from the passband, and the remaining qubit population in |𝑒⟩ is
measured using a microwave probe pulse (RO) of the read-out resonator which is
dispersively coupled to the qubit. The excitation of the qubit is performed far from
the passband, permitting initialization of the transmon qubit whilst it is negligibly
hybridized with the guided modes of the waveguide. Dispersive readout of the
qubit population is performed outside of the passband in order to minimize the loss
of population during readout. Note that, as illustrated in Figure 4.2a, the qubit is
excited and measured at different frequencies on opposite sides of the passband; this
is necessary to avoid Landau-Zener interference [154].

Results of measurements of the time-domain dynamics of the qubit population as
a function of 𝜔′

𝑔𝑒 (the estimated bare qubit frequency during interaction with the
waveguide) are shown as a color intensity plot in Figure 4.2b. In this plot we observe
a 400-fold decrease in the 1/𝑒 excited state lifetime of the qubit as it is tuned from well
outside the passband to the middle of the slow-light waveguide passband, reaching
a lifetime as short as 7.5 ns. Beyond the large change in qubit lifetime within the
passband, several other more subtle features can be seen in the qubit population
dynamics near the bandedges and within the passband. These more subtle features
in the measured dynamics show non-exponential decay, with significant oscillations
in the excited-state population that is a hallmark of strong non-Markovianity in
quantum systems coupled to amplitude damping channels [88, 155].
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Figure 4.2: Non-Markovian Radiative Dynamics in a Structured Photonic Reservoir. a Pulse
sequence for the time-resolved measurement protocol. The qubit is excited while its frequency is
250 MHz above the upper bandedge, and then it is quickly tuned to the desired frequency (𝜔′

𝑔𝑒) for
a interaction time 𝜏 with the reservoir. After interaction, the qubit is quickly tuned below the lower
bandedge for dispersive readout. b Intensity plot showing the excited-state population of the qubit
versus interaction time with the metamaterial waveguide reservoir as a function of the bare qubit
frequency. c Line cuts of the intensity plot shown in (b), where the color of the plotted curve matches
the corresponding horizontal dot-dashed curve in the intensity plot. Solid black lines are numerical
predictions of a model with experimentally fitted device parameters and an assumed 0.8% thermal
qubit population (see Appendix D.1 for further details).
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The observed qubit emission dynamics in this non-Markovian limit are best un-
derstood in terms of the qubit-waveguide dressed states. Fast (i.e., non-adiabatic)
tuning of the qubit in state |𝑒⟩ into the proximity of the passband effectively initial-
izes it into a superposition of the bound and continuum dressed states. The observed
early-time interaction dynamics of the qubit with the waveguide then originate from
interference of the dressed states, which leads to oscillatory behavior in the qubit
population analogous to vacuum-Rabi oscillations [156]. The frequency of these
oscillations is thus set by the difference in energy between the dressed states. The
amplitude of the oscillations, on the other hand, quickly decays away as the energy
in the radiative continuum dressed state is lost into the waveguide.

All of these features can be seen in Figure 4.2c, which shows plots of the measured
time-domain curves of the qubit excited-state population for bare qubit frequen-
cies near the top, middle, and bottom of the passband. Near the upper bandedge
frequency we observe an initial oscillation period as expected due to dressed state
interference. Once the continuum dressed state has decayed away, a slower decay
region free of oscillations can be observed (this is due to the much slower decay of
the remaining qubit-photon bound state). Finally, around 𝜏 ≈ 115 ns, there is an
onset of further small-amplitude oscillations in the qubit population. These late-
time oscillations can be attributed to interference of the remaining bound state at
the site of the qubit with weak reflections occurring within the slow-light waveguide
of the initially emitted continuum dressed state. The 115 ns timescale corresponds
to the round-trip time between the qubit and the CPW bend that connects the two
slow-light waveguide sections.

In the middle of the passband, we see an extended region of initial oscillation and
rapid decay, albeit of smaller oscillation amplitude. This is a result of the much
smaller initial qubit-photon bound-state population when tuned to the middle of the
passband. Near the bottom of the passband we see rapid decay and a single period of
a much slower oscillation. This is curious, as the dispersion near the upper and lower
bandedge frequencies of the slow-light waveguide is nominally equivalent. Further
modelling has shown this is a result of weak non-local coupling of the Xmon qubit to
a few of the nearest-neighbor unit cells of the waveguide. Referring to Figure 3.1c,
the modes near the lower bandedge occur at the X-point of the Brillouin zone edge
where the modes have alternating phases across each unit cell, thus the extended
coupling of the Xmon qubit causes cancellation effects which reduce the qubit-
waveguide coupling at the lower frequency bandedge. Further detailed numerical
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model simulations of our qubit-waveguide system via a tight-binding model and a
circuit model, as well as the correspondence between the observed dynamics and the
theory of spontaneous emission by a two-level system near a photonic bandedge [55],
are given in Appendix D.1.

4.4 Time-Delayed Feedback
In order to further study the late-time, non-Markovian memory effects of the qubit-
waveguide dynamics, we also perform measurements in which the end of the waveg-
uide furthest from qubit Q1 is terminated with an open circuit, effectively creating
a “mirror" for photon pulses stored in the slow-light waveguide reservoir. As il-
lustrated in Figure 4.3a, we achieve this in situ by connecting the input microwave
cables of the dilution refrigerator to the waveguide via a microwave switch. The
position of the switch, electrically closed or open, allows us to study a truly open
environment for the qubit or one in which delayed-feedback is present, respectively
(see Appendix A for further details).

Performing time-domain measurements with the mirror in place and with the qubit
frequency in the passband, we observe recurrences in the qubit population at one
and two times the round-trip time of the slow-light waveguide that did not appear in
the absence of the mirror (see Figure 4.3b). The separation of timescales between
full population decay of the qubit and its time-delayed re-excitation demonstrates an
exceptionally long memory of the reservoir due to its slow-light nature, and places
this experiment in the deep non-Markovian regime [89]. The small recurrence levels
as they appear in Figure 4.3b are not due to inefficient mirror reflection, but rather
can be explained as follows. Because the qubit emits towards both ends of the
waveguide, half of the emission is lost to the unterminated end, while the other half
is reflected by the mirror and returns to the qubit. In addition, the exponentially
decaying temporal profile of the emission leads to inefficient re-absorption by the
qubit and further limits the recurrence (see, for instance, Ref. [157, 158] for details).
These two effects can be observed in simulations of a qubit coupled to a dispersion-
less and loss-less waveguide (pink dotted line; for more details, see Ref. [131] and
Appendix D.3). The remaining differences between the simulation and the measured
population recurrence (blue solid line) can be explained by the effects of propagation
loss and pulse distortion due to the slow-light waveguide’s dispersion.

We also further probed the dependence of this phenomenon on the strength of
coupling to the waveguide continuum by parametric flux modulation of the qubit
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Figure 4.3: Time-Delayed Feedback from a Slow-Light Reservoir with a Reflective Boundary
a Illustration of the experiment, showing the qubit coupled to the metamaterial waveguide which is
terminated on one end with a reflective boundary via a microwave switch. b Measured population
dynamics of the excited state of the qubit when coupled to the metamaterial waveguide terminated in
a reflective boundary. Here the bare qubit is tuned into the middle of the passband. The onset of the
population revival occurs at 𝜏 = 227 ns, consistent with round-trip group delay () measurements at
that frequency, while the emission lifetime of the qubit is (Γ1D)−1 = 7.5 ns. The magenta curve is a
theoretical prediction for emission of a qubit into a dispersionless, lossless semi-infinite waveguide
with equivalent and Γ1D (see Appendix D.3 for details). c Population dynamics under parametric
flux modulation of the qubit, for varying modulation amplitudes, demonstrating a Markovian to
non-Markovian transition. When the modulation index (𝜖/𝜔mod) is approximately 0.4 we have
Γ1D (𝜖) = 1/; the corresponding dynamical trace is colored in blue.
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transition frequency [159] when it is far detuned from the passband. This modu-
lation creates sidebands of the qubit excited state, which are detuned from 𝜔𝑔𝑒 by
the frequency of the flux tone 𝜔mod. By choosing the modulation frequency such
that a first-order sideband overlaps with the passband, the effective coupling rate
of the qubit with the waveguide at the sideband frequency was reduced approxi-
mately by a factor of J 2

1 [𝜖/𝜔mod], where 𝜖 is the modulation amplitude and J1

is a Bessel function of the first kind (𝜖/𝜔mod is the modulation index). Keeping a
fixed 𝜔mod, we observe purely exponential decay at small modulation amplitudes.
However, above a modulation amplitude threshold we again observe recurrences in
the qubit population at the round-trip time of the metamaterial waveguide, demon-
strating a continuous transition from Markovian to non-Markovian dynamics (see
Appendix D.3 for further comparisons between this data and the theoretical model
of Ref. [131]).

4.5 Conclusion
In conclusion, by strongly coupling Xmon qubits to a 1D structured photonic reser-
voir consisting of a metamaterial slow-light waveguide, we are able to probe the
non-Markovian dynamical regime of waveguide quantum electrodynamics. In this
regime, we observe non-exponential qubit spontaneous decay near the bandedges of
the slow-light waveguide, attributable to interference resulting from the splitting of
the qubit state into a radiative state in the passband and a bound state in the bandgap
region of the metamaterial waveguide. Moreover, by placing a reflective boundary
on one end of the waveguide, we observe recurrences in the qubit population at
the round-trip time of an emitted photon, as well as a Markovian to non-Markovian
transition when varying the qubit-waveguide interaction strength.

The demonstrated ability to achieve a true finite-bandwidth continuum with time-
delayed feedback opens up several new research avenues for exploration [128, 130–
142, 160]. As a straightforward extension of the current work, one may probe the
qubit-waveguide-mirror system in a continuous, strongly-driven fashion, and use
tomography to study photon correlations in the output radiation field [128]. This
output field, with expected photon stream of high entanglement dimensionality, has
a direct mapping to continuous matrix product states which can used for analog sim-
ulations of higher-dimension interacting quantum fields [46, 160]. With technical
advancements in the tomography of microwave fields [151, 161], and realization
of single-microwave-photon qubit detectors [162–164], the basic tools for charac-
terization of these entangled photonic states and their quantum many-body-system
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analogues are now available. And looking forward even further, additionally lever-
aging the multi-level structure of transmon-type qubits, by situating 𝜔𝑒 𝑓 in the
passband and 𝜔𝑔𝑒 in the gap, enables high-fidelity generation of 2D cluster states
for device parameters already achieved in this work [60]. We therefore expect our
results to find applications in future studies of non-Markovian open quantum sys-
tems, studies of many-body physics, and measurement-based quantum computation
with microwave photons.
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C h a p t e r 5

DETERMINISTIC GENERATION OF MULTIDIMENSIONAL
CLUSTER STATES VIA TIME-DELAYED FEEDBACK

5.1 Introduction
Quantum entanglement is generally regarded as a necessary resource for exceeding
classical performance limits in tasks such as quantum computing, quantum com-
munication, and quantum metrology [31, 165–168]. In the optical domain, where
photons are the ubiquitous carriers of quantum information, multi-partite entangled
states are key resources for various quantum computation and networking protocols
[169, 170]. Of particular importance are multi-dimensional cluster states, a subset
of the family of entangled graph states, which are highly flexible resource states
necessary for measurement-based quantum computing [32, 90, 91, 171], and well
suited for tackling many paradigmatic metrological problems [172, 173], as well
as decoherence protected preservation and teleportation of quantum information
[174–177].

However, reliable generation of cluster states of photonic qubits by conventional
optical means remains an outstanding challenge due to reliance on probabilistic
photon entanglement heralding schemes and a large number of optical components
[95, 178, 179]. Thus, there has been significant interest in achieving generation
of such multi-dimensional cluster states by deterministic, resource-efficient means.
Notable among these are schemes that involve sequential emission of entangled
photons via control of only one or a small number of quantum emitters [93, 180].
Note that while sequential emission from a single coherent emitter is sufficient to
generate 1D cluster states, higher dimensional cluster states require more emitters
or an additional memory element. A promising approach is based on delay lines
generating a time-delayed feedback mechanism, expanding the class of cluster states
that can be generated with a single emitter [60, 181–184].

Superconducting circuit QED systems are a natural fit to implement such protocols.
In contrast to atomic-optical systems where the finite atom-waveguide cooperativity
is often a limiting factor [33, 34], superconducting circuit QED systems enjoy a
strong qubit-waveguide coupling that far exceeds the strength of other dissipative
channels due to the ease of creating microwave circuits at a deep subwavelength scale
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[16]. Indeed, there has been significant progress over the last decade in leveraging
superconducting qubits to generate, manipulate, and measure non-classical states of
light, including 1D cluster states [39, 41, 46–48, 161]. However, to date, determin-
istic generation of higher dimensional photonic cluster states via a single quantum
emitter remains largely unexplored, and generation schemes involving time-delayed
feedback have yet to be tackled.

Thus in this work, we go beyond the previous state-of-the-art by using time-delayed
quantum feedback, via a slow-light waveguide, for the generation of multipartite
entangled photonic states, thereby achieving generation of a 2D cluster state of mi-
crowave photons. Our system consists of two superconducting flux-tunable trans-
mon qubits coupled to the two ends of a slow-light waveguide that serves as a delay
line. One qubit serves as our quantum emitter, generating shaped photon pulses
with durations as short as 30 ns. The other qubit serves as a switchable mirror for
selective reflection of emitted photons. In conjunction with the slow light waveg-
uide this mirror allows us to introduce a time-delayed feedback mechanism, which
is essential to our multidimensional entanglement generation scheme (following the
proposal in Ref. [60]).We characterize the time-delayed feedback between the emit-
ter qubit and previously emitted photons through quantum process tomography, and
certify via quantum state tomography the generation of a 2D cluster state of four
photons with a fidelity of 70%. Finally, we comment on how straightforward hard-
ware and design improvements could increase the size of generated cluster states
by an order of magnitude, and allow for the generation of 3D cluster states. Thus,
our demonstrated results pave the way for deterministic, resource-efficient synthesis
of multi-dimensional photonic quantum resource states, and their use in quantum
information science.

5.2 Results
Cluster State Generation Protocol: We first discuss the general scheme we use to
generate multidimensional cluster states on a conceptual level. Our approach is
based on the proposal in Ref. [60], and is illustrated in Figure 5.1a. In our scheme
we couple a quantum emitter to the terminated end of a single-ended, low-group
velocity waveguide. This quantum emitter has two stable states |𝑔⟩ and |𝑒⟩, as well
as a radiative state | 𝑓 ⟩ which is highly damped to the waveguide and decays to the
|𝑒⟩ state.

Starting with the emitter in the |𝑔⟩ state, the protocol first involves the generation
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Figure 5.1: Deterministic Generation of 2D Cluster States with a Single Emitter Qubit. a,
General scheme for generation of 2D cluster states of photons via a single quantum emitter qubit
and time-delayed feedback. The qubit is made to emit a pulse train of nearest-neighbor entangled
photons (colored blue) into a delay line. Via control of a switchable mirror, each emitted photon
pulse is reflected at the end of the delay line for re-scattering (blue to orange color change) by the
emitter qubit. In the device used in this work, superconducting transmon qubits are used as both the
quantum emitter (𝑄𝐸) and the switchable mirror (𝑄𝑀 ), and an array of weakly coupled resonators
comprise a slow-light waveguide, which serves as a single-ended delay line. b, Visualization of
the resulting entanglement structure. c, d False-color optical images of the device, comprising a
slow-light waveguide (SLWG) and two transmon qubits (false color green), with each qubit coupled
to a readout resonator (false color dark blue), a XY control-line (false color red), and a Z fast flux-
line (false color light blue). The readout resonators are probed through a coupled resonator array
Purcell filter connected to CPW feed-lines (false color lilac). The emitted photons exit the slow-light
waveguide and device via a CPW feedline (false color dark purple).

entanglement between the emitter and a photon mode using two coherent pulses: a
first 𝜋𝑔𝑒/2 pulse generates an equal superposition of the |𝑔⟩ and |𝑒⟩ state, then a 𝜋𝑒 𝑓
pulse transfers the amplitude from the |𝑒⟩ state to the | 𝑓 ⟩ state, which subsequently
decays back to the |𝑒⟩ state by emission of a photon into the waveguide. This
leaves the emitter and the first emitted photon in the maximally entangled state
|𝜓⟩ = ( |𝑔⟩ |0⟩1 + |𝑒⟩ |1⟩1) /

√
2. Repeating this 2-pulse control sequence leads to

sequential emission of a train of entangled photonic time-bin qubits with a nearest-
neighbor entanglement structure equivalent to the one of a 1D cluster state [93, 180]
into the slow-light waveguide (illustrated in Figure 5.1a as the blue colored pulses).

This train of sequentially-emitted pulses is then reflected back toward the emitter
by a switchable mirror at the other end of the delay line. After a full round-trip
the photons thus scatter from the quantum emitter and pick up a state-dependent
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scattering phase (illustrated in Figure 5.1a as a color change in the pulses from blue
to orange). Specifically, if the emitter qubit is in state |𝑒⟩, the returning photon
is resonantly coupled to the |𝑒⟩ → | 𝑓 ⟩ transition, and acquires a scattering phase
of 𝜋. However, if the emitter qubit is in state |𝑔⟩, then the returning photon is
not resonant with any transition, and no scattering phase is acquired. Thus, this
scattering process effectively implements a controlled 𝐶𝑍 gate between the emitter
qubit and the returning photonic qubit of the form |𝑔⟩ ⟨𝑔 |

⊗
I + |𝑒⟩ ⟨𝑒 | ⊗ 𝜎𝑧.

This combination of the sequential emission process and the state-dependent scat-
tering process allows us to synthesize the 2D cluster state: through judicious control
of the switchable mirror and emitter qubit, we ensure that all sequentially emitted
photons scatter from the emitter qubit exactly once and thereafter are allowed to
leave the waveguide. The resulting entanglement structure of the outgoing photon
pulse train is that of a 2D cluster state with shifted periodic boundary conditions,
as illustrated in Figure 5.1b (see [60] and Appendix F.1 for a quantum circuit rep-
resentation of this protocol). Nearest-neighbor entanglement in this photonic pulse
train is derived from the sequential emission of photons representing one of the
two dimensions, whereas entanglement along the other dimension results from the
time-delayed scattering process. Importantly, the extent of the second dimension is
set by the number of photon pulses that can be generated during one round trip time
𝜏d, highlighting the role of the time-delayed feedback.

Device Description: Inspired by this proposal, we fabricated the device shown
in Figure E.1c, d in order to achieve a practical realization of this scheme. We
implement the requisite delay line as a single-ended slow-light waveguide (SLWG),
which is comprised of a periodic coupled resonator array of 52 resonators [185].
The output port of the SLWG is connected to a coplanar waveguide (CPW) through
which emitted itinerant photons leave the device for amplification and subsequent
measurement at the digitizer (see Appendix A for details on the measurement output
chain of the device). The round-trip delay of the slow-light waveguide is 𝜏d = 240
ns. The resonator array is terminated at one end via a capacitance between the
leftmost unit cell and the ground plane. At the other end of the resonator array
the last two boundary resonators are modified relative to the unit cells in order to
effectively match the Bloch impedance of the periodic structure to the characteristic
impedance of the output CPW (for further details and design principles of this
resonator array slow-light waveguide, see Ref. [185] and Appendix A). The
resulting transfer function of such a slow-light waveguide is that of a flat “passband"
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of finite bandwidth for guided modes, and a sharp extinction of transmission outside
of the passband due to the sharp decline in the photonic density of states (DOS)
of the periodic structure occurring at the bandedges. The width of the passband is
4𝐽, where 𝐽 is the coupling between unit cells in the resonator array; in our device
𝐽/2𝜋 = 34 MHz (giving a passband width of 136 MHz) and the passband center
frequency is 𝜔𝑝/2𝜋 = 4.82 GHz.

On the terminated end of the slow-light waveguide we couple the emitter qubit
𝑄𝐸 , while at the other end of waveguide we couple another qubit 𝑄𝑀 . The mirror
qubit is effectively side-coupled to the slow-light waveguide, allowing it to act as a
high-reflectivity mirror for single photons if the ratio between its decay rate into the
waveguide and its decoherence rate into other channels, Γ1D/Γ′, is sufficiently high
[186]. Each qubit is coupled to its own XY control line for single-qubit control,
a Z control line for rapid flux tuning of the qubit transition frequency, and a CPW
readout resonator (R) coupled to a Purcell filter for dispersive readout of the qubit
state (the Purcell filter in this work is also comprised of a coupled resonator array; for
more details, see Appendix A). At zero flux bias, the transition frequency between
𝑄𝐸 ’s ground state (denoted |𝑔⟩) and first excited state (denoted |𝑒⟩) is 𝜔𝐸𝑔𝑒/2𝜋 =

6.21 GHz, and the transition frequency between the first excited state and second
excited state (denoted | 𝑓 ⟩) is 𝜔𝐸

𝑒 𝑓
/2𝜋 = 5.93 GHz, with associated anharmonicity

of [𝐸/2𝜋 = (𝜔𝐸
𝑒 𝑓

−𝜔𝐸𝑔𝑒)/2𝜋 = −273 MHz. The center frequency of the𝑄𝐸 readout
resonator at this bias is 𝜔𝐸𝑟 /2𝜋 = 7.67 GHz, and its induced dispersive shift 2𝜒𝐸

is given by 𝜒𝐸/2𝜋 = 2.1 MHz. The same quantities parameterizing the mirror
qubit at its zero flux bias are given by 𝜔𝑀𝑔𝑒/2𝜋 = 6.44 GHz, [𝑀/2𝜋 = −280 MHz,
𝜔𝑀𝑟 /2𝜋 = 7.47 GHz, and 𝜒𝑀/2𝜋 = 3.4 MHz (see Appendix A for further qubit
characterization details).

Crucially, due to the finite width of the slow-light waveguide passband and its sharp
bandedges, it is possible to tune the |𝑒⟩ → | 𝑓 ⟩ transition frequency into resonance
with 𝜔𝑝 and achieve large emission rates of the | 𝑓 ⟩ state, while simultaneously
protecting the |𝑒⟩ state from decay if the |𝑔⟩ → |𝑒⟩ transition frequency is situated
outside the passband of the waveguide (where the DOS of the periodic structure
is negligible). In our system we naturally achieve this configuration, where our
anhamonicity [𝐸/2𝜋 of ∼280 MHz allows us to situate the |𝑒⟩ → | 𝑓 ⟩ transition
frequency inside the passband of 136 MHz width, while maintaining the |𝑒⟩ → |𝑔⟩
outside the passband. Thus, with these parameters, the first three levels of the
transmon comprise the aforementioned necessary ladder level structure for cluster



75

Figure 5.2: [Emission of Shaped Photon Pulses via Flux-Modulation. a Effective level diagram of
the qubit-waveguide system, showing the photon emission process. In the |𝑖, 𝑛⟩ notation, 𝑖 denotes the
state of the transmon emitter qubit, and 𝑛 denotes the number of photons in the slow-light waveguide;
additionally, 𝜔𝑚 is the flux-modulation frequency, and 𝜔𝑝 is the center frequency of the waveguide’s
passband. When 𝜔𝑒 𝑓 −𝜔mod = 𝜔𝑝 , the qubit’s levels assume a three-state ladder system where only
the | 𝑓 ⟩ state is selectively damped to the slow-light waveguide. b Simplified frequency spectrum of
the emitter qubit under flux-modulation, where [ is the qubit anharmonicity. The flux-modulation
waveform is depicted as a dashed black line; the waveform’s modulated amplitude directly maps to
a modulated emission rate into the waveguide that allows for shaped emission of photon pulses. c
Measured photon flux ⟨𝑎†out𝑎out⟩ (dots) of shaped emitted pulses, in normalized units. Black lines
are Gaussian fits. d Measured | 𝑓 ⟩ population during shaped emission. Black lines are the scaled
integral of the Gaussian fits of subfigure c.
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state generation. We stress that the sharp bandedges of the waveguide allow us to
engineer remarkably large emission rates of Γ𝑒 𝑓1D/2𝜋 = 2Γ𝑔𝑒1D/2𝜋 ≈ 140 MHz for𝑄𝐸 ,
while strongly suppressing decay of the |𝑔⟩ → |𝑒⟩ transition to single kHz rates,
even though [ is comparable to Γ

𝑔𝑒

1D.

Shaped Photon Emission: For generation of 2D cluster states as we have described,
it is crucial to be able to control the shape of emitted photon pulses. This allows us to
mitigate the effects of the waveguide’s residual dispersion near 𝜔𝑝, and to improve
the fidelity of the CZ gate after a photon round trip. For this it is necessary to control
the photon pulse shape as well as its bandwidth, reducing it to less than Γ

𝑒 𝑓

1D (see
Ref. [60] for more details). We shape the pulse of the emitted photons by a tunable
qubit-waveguide interaction strength for 𝑄𝐸 via parametric flux modulation of the
qubit frequency [75–77]. Specifically, we apply an AC flux drive to the SQUID loop
of𝑄𝐸 with frequency 𝜔mod, which generates a series of sidebands, spaced by 𝜔mod,
for each transition of the transmon qubit (for more details, see Appendix E.2).

By judiciously choosing the qubit frequency and modulation frequency such that
𝜔𝑒 𝑓 −𝜔mod = 𝜔𝑝, while 𝜔𝑔𝑒 −𝜔mod lies outside the passband due to the anharmoni-
ciy of the qubit, we can ensure that only a first-order sideband of the 𝑒− 𝑓 transition
overlaps with the passband. Meanwhile, all other relevant qubit transition frequen-
cies and their sidebands do not fall into the passband. Thereby we achieve photon
emission into the waveguide from the | 𝑓 ⟩ state through the first order 𝑒− 𝑓 sideband,
while retaining protection of the |𝑔⟩ and |𝑒⟩ levels. This is shown schematically
in Figure 5.2a, b: where in Figure 5.2a we illustrate this emission process through
a level diagram, whereas in Figure 5.2b we show a simplified frequency spectrum
of the particular configuration of qubit frequencies and sideband frequencies used
in our experiment. By choosing 𝜔𝑔𝑒/2𝜋 = 5.55 GHz and 𝜔mod/2𝜋 = 450 MHz,
we situate the lower first sideband of the |𝑒⟩ → | 𝑓 ⟩ transition at 𝜔𝑝/2𝜋 = 4.823
GHz, while all other sidebands and bare qubit transition frequencies are sufficiently
detuned from the passband as to negligibly contribute to qubit emission, as verified
by separate measurements.

We thereby achieve shaped emission by continuously varying the amplitude of the
flux modulation AC drive during the emission time, which varies the strength of
the aforementioned emission sideband and thus allows us to achieve arbitrary time-
dependent modulation of 𝑄𝐸 ’s emission rate Γ

𝑒 𝑓

1D(𝑡) (see Appendix E.2 for further
details on how we achieve pulse shaping of emitted photons in this manner). With
this capability we achieve shaped emission of Gaussian-shaped photons with ex-
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cellent accuracy, as demonstrated in Figure 5.2c, which henceforth constitutes our
photonic time-bin qubits. We plot the measured photon flux of three emitted Gaus-
sian pulses with different bandwidths (along with their respective fits), demonstrating
the flexibility in our shaped emission scheme (photon flux is plotted in normalized
units, see Appendix F.1 for further details). This emission is also achieved with
high-efficiency, and thus enables deterministic high-fidelity preparation of entangled
photonic states (see Appenddix F.1 for more details).

Further, in Figure 5.2d, we plot 𝑄𝐸 ’s population dynamics during emission, as well
as the integral of the photon fluxes plotted in Figure 5.2c which, in the absence of
waveguide-induced distortion, would coincide with the measurement of the popula-
tion dynamics of 𝑄𝐸 . We find excellent agreement between the two, indicating that
the effects of the slow-light waveguide dispersion are minimal for Gaussian pulses.
Finally, we stress that our large Γ1D allows high-efficiency emission of pulses that
are tightly confined to a time-bin window of length as small as 30 ns, which not only
is an important attribute to achieve in order to increase the size of generated cluster
states given a fixed 𝜏d, but also demonstrates significant improvement in emission
speed of shaped photons over previous shaped emission demonstrations in circuit
QED systems[187–190].

Qubit-Photon CZ Gate Implementation: In addition to high efficiency shaped photon
preparation, we also demonstrate a high fidelity𝐶𝑍 gate between𝑄𝐸 and previously
emitted photonic qubits, which is effected by the time-delayed feedback. In Figure
5.3a we show an schematic of the process, where an itinerant photon emitted by 𝑄𝐸

propagates through the waveguide, is reflected by 𝑄𝑀 , and propagates back toward
𝑄𝐸 , whereupon photon scattering on𝑄𝐸 realizes the𝐶𝑍 gate. Afterward, the photon
propagates back toward the output, and is allowed to leave the slow-light waveguide
by suitable 𝑄𝑀 control. The fast flux control sequence necessary to implement this
process is shown in Figure 5.3b. An amplitude modulated AC pulse on the 𝑍𝐸
line induces photon emission, while a square pulse is initiated in the 𝑍𝑀 line at a
time 𝑡 = 𝜏d/2, the single-trip time of the waveguide (see Appendix E.2 for details
on flux-line distortion compensation). The square pulse amplitude is chosen such
that 𝜔𝑀𝑔𝑒 is tuned to the center of the passband, which reflects the emitted itinerant
photon. At 𝑡 = 𝜏d, a square pulse is initiated on the 𝑍𝐸 line, which tunes 𝜔𝐸

𝑒 𝑓
to the

center of the passband in order to re-scatter the reflected photon and realize the 𝐶𝑍
gate. Note that while a flux-modulation sideband is used to emit the photon, decay
rates induced by the sideband are at maximum less than 50% the intrinsic Γ

𝑒 𝑓

1D of
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the qubit. Thus it is more suitable to rapidly tune the qubit frequency rather than
modulate it to re-scatter the photon, given that larger Γ1D increases the fidelity of
the time-delayed feedback induced 𝐶𝑍 gate (see Ref. [60] for more details).

In Figure 5.3c, d we illustrate the actions of reflection by 𝑄𝑀 and photon re-
scattering by𝑄𝐸 on an emitted photon. In Figure 5.3c we show the emitted photon’s
measured photon flux at the digitizer with the square pulse on the 𝑍𝑀 line turned
on or turned off. With the 𝑍𝑀 square pulse turned on, the photon’s arrival at the
digitizer is delayed by 𝜏d, while negligible photon flux is measured at all prior times,
demonstrating that the 𝑄𝑀 reflects the itinerant photon with high efficiency. Note
that the magnitude of the photon flux when the 𝑍𝑀 square pulse is turned on is
lower than when the pulse is turned off due to the additional 0.6 dB loss incurred
by the itinerant photon during its round-trip. Furthermore, in Figure 5.3d we show
the emitted photon’s average measured field when 𝑄𝐸 is prepared in either the |𝑔⟩
state or the |𝑒⟩ state (where the phase of the field is referenced to the measurement
in which 𝑄𝐸 is in the |𝑔⟩ state). It is evident that the sign of the real part of the
re-scattered photon’s complex field changes when the state of 𝑄𝐸 is changed from
|𝑔⟩ to 𝑘𝑒𝑡𝑒 (while the imaginary part of the re-scattered photon’s complex field is
negligible). This corresponds to a state-dependent 𝜋 difference in the phase of the
photon, as desired for the 𝐶𝑍 gate implementation.

In addition, we perform quantum process tomography in order to demonstrate the
quantum character of the 𝐶𝑍 gate. The tomography procedure is shown in the
top left of Figure 5.4: different input photonic states are first prepared via suitable
𝑄𝐸 control, followed by qubit preparation into 𝑄𝐸 ’s different cardinal states. The
𝐶𝑍 gate is then performed for each photon/qubit state combination, after which
single shot measurements of both the qubit state and the photon field are carried
out. The single-shot measurements of the time-dependent photon field, obtained
via heterodyne detection of the field after suitable amplification, are post-processed
to field quadratures 𝐼 and 𝑄 of the photonic qubit, and are thereupon correlated
with single-shot qubit readout measurements (for further details on the single-shot
measurement of the field quadratures of the photonic qubits, see Appendix F.1). Joint
qubit-photon moments ⟨(𝑎†)𝑛𝑎𝑚𝜎𝑖⟩ are calculated from the processed single-shot
data, which are finally used to reconstruct the process matrix 𝜒CZ, show in Figure

5.4; we calculate a process fidelitiy of Tr
(√︁√

𝜒CZ𝜒ideal
√
𝜒CZ

)2
of 90%. We attribute

most of the infidelity to dephasing and state preparation and measurement (SPAM)
errors, given that a similar measurement of the I

⊗
I process matrix yields a process
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Figure 5.3: Time-Delayed Feedback Between Emitter Qubit and Previously Emitted Photons.
a, Illustration of the time-delayed feedback process that realizes the 𝐶𝑍 gate between 𝑄𝐸 and its
emitted photon, where the photon undergoes a round-trip through the slow-light waveguide and
re-scatters on 𝑄𝐸 . b,. Z-control of the qubits that implements the 𝐶𝑍 gate. Both square pulses on
𝑍𝑀 and 𝑍𝐸 tune their respective qubit frequencies to the middle of the passband. c, Measured photon
flux of qubit emission with the 𝑍𝑀 square pulse for mirror reflection ON vs OFF. d, Measured ⟨𝑎out⟩
of the reflected pulse after it re-interacts with 𝑄𝐸 , where 𝑄𝐸 is prepared in either the |𝑔⟩ or the
|𝑒⟩ state. The complex phase of ⟨𝑎out⟩ in both cases is normalized to the phase of the measurement
where 𝑄𝐸 is prepared in the |𝑔⟩ state.
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Figure 5.4: Qubit-Photon CZ Gate Quantum Process Tomography. Quantum Process Tomogra-
phy of the Pauli process matrix 𝜒CZ of the𝐶𝑍 gate between𝑄𝐸 and its emitted photon, demonstrating
a 90% fidelity relative to the ideal gate; the procedure for performing the tomography is shown on
the top left.

fidelity of 92.5% (for further details of the process tomography, see Appendix F.2).

2D Cluster State Preparation: Finally, with our high-efficiency shaped photon
preparation and high-fidelity 𝐶𝑍 gate, we demonstrate generation of a 2D cluster
state of four microwave photons. In Figure 5.5a, we show the full 𝑄𝐸 control we
used to generate the cluster state, which results in the entangled state schematically
shown in Figure 5.5b. The control sequence essentially consists of four cycles of the
aforementioned operation that generates a 1D cluster state: a 𝜋𝑔𝑒/2 pulse followed
by a 𝜋𝑒 𝑓 pulse and flux modulation induced photon emission. Additionally, the first
emitted photon is reflected by𝑄𝑀 and re-scatters on𝑄𝐸 in between the fourth 𝜋𝑔𝑒/2
and 𝜋𝑒 𝑓 pulses, thus entangling photon 1 to photon 4 once photon 4 is emitted.
Notably, before the last 𝜋𝑒 𝑓 pulse we also apply a 𝜋𝑔𝑒 to 𝑄𝐸 in order to disentangle
it from the photonic state upon its final emission. Also, we emit photon 1 with a
lower bandwidth than other photons in order to maintain the high fidelity of the CZ
gate between photon 1 and 𝑄𝐸 , while photons 2, 3, and 4 are emitted more rapidly
(within a 30ns time window) in order to more efficiently use the fixed 𝜏d delay
available. The measured photon flux of the individual time-bin photonic qubits is
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Figure 5.5: Deterministic Generation of a 4-photon 2D Cluster State a Pulse sequence of 𝑄𝐸

control lines, and illustration of outgoing photon flux from 𝑄𝐸 . Depiction of 𝑍𝑀 line control can be
found in Figure 5.3. Photons 1, 2, 3, and 4 are represented by the colors orange, purple, green, and
blue, respectively. b Illustration of the generated entangled state. “CZ" signifies the entanglement
that arises due to the CZ gate between 𝑄𝐸 and photon 1. c Photon flux of individual time-bin
photonic qubits. The dotted orange line corresponds to the photon flux of the first emitted photon in
the absence of reflection by the mirror qubit, and is only shown for illustration purposes.

shown in Figure 5.5c, where their position in time corresponds to their arrival time
at the digitizer.

In order to tomographically reconstruct the generated state, we once again obtain
the single-shot field quadratures 𝐼𝑖 and 𝑄𝑖 of each photonic time-bin qubit, and
obtain their correlations through calculation of all joint moments of the photonic
fields. With the moments, we obtain the density matrix 𝜌 of the generated state
through a maximum likelihood (MLE) algorithm, shown in Figure 5.6 (for a de-
tailed description of the photonic state tomography process, refer to Appendix
F.1). When compared to the ideal expected density matrix 𝜌ideal shown in Fig-
ure F.5b, we observe excellent agreement between the phase pattern of the density
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Figure 5.6: 4-photon 2D Cluster State Quantum State Tomography. Density matrix 𝜌 of the
generated 2D cluster state obtained from photonic quantum state tomography. The height of the bars
represents the magnitudes of the elements of 𝜌, while the color of the bars represents the phases of

the elements of 𝜌. The fidelity of the generated state 𝐹 = Tr
(√︁√

𝜌𝜌ideal
√
𝜌

)2
is 70%.

matrix elements, qualitatively indicating that we have achieved the desired entan-
glement structure of the state shown in Figure 5.5b. Further, each photon has a
finite weight-three stabilizer operator 𝜎𝑖𝑥

⊗
𝑗∈𝑁 (𝑖) 𝜎

𝑗
𝑧 expectation value, where 𝑁 (𝑖)

are the nearest neighbors of photon 𝑖 (assuming the connectivity of Figure 5.5b),
with calculated values 0.73, 0.73, 0.8, 0.75, consistent with a square entanglement
connectivity rather than a linear entanglement connectivity.

We calculate a fidelity 𝐹 = Tr
(√︁√

𝜌𝜌ideal
√
𝜌

)2
of 70% between the generated

and ideal state, indicating achievement of genuine four-partite entanglement and
successful implementation of the protocol of Ref. [60]. This is in good agreement
with our estimated state fidelity limit of 76%, which we calculate from contributions
to preparation infidelity that include the dephasing of 𝑄𝐸 (the primary source of
infidelity), the round-trip loss suffered by photon 1, and measured qubit preparation
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and control errors (see Appendix E.3 for more details).

5.3 Conclusion
In conclusion, we successfully implemented a resource-efficient protocol for gener-
ation of multidimensional cluster states by utilizing a single superconducting qubit
as a source of entangled photons, and a coupled resonator array as a slow-light
waveguide for time-delayed feedback. We accomplished this by achieving rapid,
shaped emission of single photons, as well as by implementing a high-fidelity 𝐶𝑍
quantum gate between 𝑄𝐸 and previously emitted photons through the controllable
time-delayed feedback of our system. This allowed us to generate a 2D cluster state
of four microwave photons, attaining a good state fidelity of 70% (95% CI [69.1%,
70.4%]).

There are numerous avenues for straightforward improvements to our implementa-
tion of the cluster state generation protocol that would enable generation of signif-
icantly larger cluster states (which we discuss in detail in Chapter 6). By simply
improving the dephasing times of the qubit (𝑇∗

2 = 561 ns in this work) and the quality
factors of the unit cell resonators (approximately ∼ 90, 000) to state of the art values
[191–193], the major sources of infidelity we incurred could already be dispensed
with. Furthermore, potentially increasing the anharmonicity [ of the qubit through
different qubit design [17, 194, 195] would enable even larger Γ1D, allowing for a
high-fidelity 𝐶𝑍 gate with high-bandwidth photons and even more rapid emission
of shaped photon pulses. The round-trip delay 𝜏d could also be increased by either
further reducing the footprint of our unit cell resonators, for example by leverag-
ing compact high kinetic inductance superconducting resonators [196, 197], or by
incorporation of acoustic delay lines [42, 150, 198], increasing the possible size of
generated cluster states even further.

Not only would these discussed improvements substantially increase the size of
generated 2D cluster states, they would also allow for generation of more complex
graph states such as 3D cluster states. Our time-delayed feedback-based scheme
for generating 2D cluster states can be easily extended to generate 3D cluster states
by simply adding another time-delayed feedback event with a different delay for
every photon [181, 182] (which is achievable simply by incorporation of another
mirror qubit), where each photon would then be re-scattered by the emitter qubit
twice at different times. Indeed, as a preliminary demonstration of this capability,
in Appendix F.1 we demonstrate generation of a 5 photon cluster state where we
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implemented the time-delayed feedback process twice for one photon, which was
necessary for achieving its resultant entanglement connectivity. Generation of 3D
cluster states would constitute a hitherto unachieved accomplishment, and would
allow for the exploration of fault-tolerant measurement-based quantum computation
[91]. We therefore expect our results to not only broaden conventionally optics-
based approaches for quantum information science to the microwave domain, but
also bolster them by leveraging the rich circuit QED toolbox.
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C h a p t e r 6

OUTLOOK

The results presented in this thesis encompass the design and fabrication of a finite-
bandwidth SLWG comprised of a coupled-resonator array in a circuit QED system,
and its use in various waveguide QED experiments. These experiments included
investigation of the physics of a qubit strongly coupled to the SLWG reservoir by
tuning its frequency from the bandgap of the waveguide to the passband of the
waveguide, as well as demonstration of non-Markovian time-delayed feedback in
the system due to the large round-trip delay 𝜏𝑑 of the waveguide. In addition, in
another experiment we demonstrated generation of multidimensional cluster states of
itinerant microwave photons by leveraging our demonstrated time-delayed feedback,
as well as other advantageous properties of the SLWG.

These demonstrated results pave the way for several research avenues, chiefly among
them being generation of larger cluster states and their use in a proof of princi-
ple measurement-based quantum computation demonstrations, as well as different
waveguide QED experiments that make use of our demonstrated non-Markovian
time-delayed feedback. In addition, our coupled-resonator array system modality
may find use in more conventional circuit QED applications, such as our coupled-
resonator array Purcell filter. In the following discussion, I briefly touch upon these
different research avenues.

Scaling the Size of the Cluster State
Although there were limiting technical issues in the experiment described in Chapter
5, we believe there is a straight forward path for mitigation of these issues, and
realistic strategies for extending our generation scheme to synthesis of much larger
cluster states. Firstly, we are confident that there is ample room to reduce the
excessive flux noise in our setup to state-of-the-art values [199]. Additionally,
while our reliance on flux modulation for tunable coupling between 𝑄𝐸 and the
SLWG necessitates operation at “flux sensitive" qubit frequencies, the use of tunable
couplers [200, 201] between 𝑄𝐸 and the SLWG would allow operation at 𝑄𝐸 ’s
“sweet spot" frequencies, thereby increasing its resilience to flux noise. Given
that 𝑇∗

2 ∼ 100`s has been reported for transmon qubits in the past, we expect that
the deleterious effects of dephasing could be nearly fully dispensed with. If even
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more emitter coherence were to be required, the use of an error-corrected “logical
qubit," with emission via an ancilla qubit, could be utilized to fully suppress emitter
decoherence based errors.

Furthermore, the 0.7 dB round-trip loss of our waveguide is another serious limiting
factor to our fidelity, and arises due to the limited𝑄 of our unit cell resonators, which
we estimate to be 90, 000. However, microwave superconducting resonators with
𝑄 > 1, 000, 000 have been fabricated in numerous previous works [191–193]. Thus,
with fabrication or materials improvement that have already been demonstrated, the
waveguide loss could realistically be substantially reduced. We note that while our
current compact unit cell design has sharp corners that likely induce strong electric
fields that couple to TLS, this effect could be mitigated with different geometrical
design or material improvement.

Moreover, while the SLWG’s dispersion hinders the use of higher bandwidth Gaus-
sian photon pulses due to dispersion-induced broadening, our tunable coupling
capability or dispersion engineering allows for use of well-established [202, 203]
or novel [204] dispersion mitigation techniques. By compensating for the disper-
sion through signal pre-distortion, or via dispersion-cancelling elements post-SLWG
propagation, one could ensure that photon pulses arriving for re-scattering or for
measurement are well-confined in time, thus alleviating the problem of overlapping
broadened pulses. Such techniques would in principle enable even faster emission
of photon pulses, and thus would allow for better utilization of limited round-trip
delays.

Furthermore, achieving higher anharmonicity of 𝑄𝐸 would allow for realization
of even larger Γ1D, without compromising qubit coherence, than what was already
achieved in this work. Increasing Γ1D would allow for even more rapid emission of
shaped photon pulses, as well as less residual | 𝑓 ⟩ population after emission, and a
high fidelity𝐶𝑍 gate with high bandwidth photons. Analysis in Ref. [60] shows that
higher Γ1D improves the fidelity of CZ gates, due to decreased “dispersion" of the
𝑄𝐸 induced reflection phase near 𝑄𝐸 ’s resonance frequency that is commensurate
with the broadening of 𝑄𝐸 ’s lineshape. This reduced “dispersion" of the reflection
phase results in the overall phase gained by the photon pulse during re-scattering
to be closer to 𝜋, and reduces the distortion of the photon pulse imparted by the
re-scattering process (which improves mode-matching efficiency). Limited anhar-
monicity [ of 𝑄𝐸 is the main limiting factor to the magnitude of Γ1D, as a Γ1D

significantly larger than [ would lead to more substantial leakage of the |𝑒⟩ popu-
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lation into the SLWG. However, by using a different superconducting qubit design
that has higher anharmonicity than the transmon [17, 194, 195], the magnitude of
Γ1D could be substantially increased without compromising other aspects of cluster
state generation. Also, achieving higher anhamonicity would allow for a larger
waveguide passband, which would lower higher-order dispersion (albeit at the cost
of less delay per resonator).

Additionally, the round-trip delay could be substantially increased in several ways.
One straightforward way is simply by increasing the number of unit cells of the
SLWG. Although that would increase the size of the device, which could introduce
spurious box modes to the sample, recent advances in microwave packaging tech-
niques could ameliorate the impact of larger device size [205, 206]. Furthermore,
the unit cell size could be reduced by leveraging compact high kinetic inductance su-
perconducting resonators [196, 197], allowing for more delay per area. And looking
forward even further, incorporation of an acoustic delay line into our system could
allow for longer round-trip delays without additional dispersion or susceptibility
to microwave packaging box modes [42, 150, 198], increasing the possible size of
generated cluster states even further.

We stress that in addition to increasing cluster state size, cluster state dimensionality
could be increased to 3D by coupling of another mirror qubit somewhere along the
delay line rather than at the end, which would impart the ability to perform time-
delayed feedback with two different delays. The ability to perform two time-delayed
feedback events with two different delays is the pre-requisite to generating 3D cluster
states via sequential photon emission and time-delayed feedback [181, 182], because
it allows for sufficient non-nearest neighbor entanglement between photons of the
emitted pulse train such that the entanglement topology is that of a 3D cluster state.
While this extension of our scheme would necessitate significantly larger delays, we
believe achieving such delays is possible. Thus, we believe there is a viable path
to measurement-based quantum computation with microwave photons via photonic
resource state generation as we have described. We conclude by observing that, even
if the size of generated photonic states were to hit some practical limitation, there
are other measurement-based quantum computation schemes, such as fusion-based
quantum computation [207], that only require the repeated synthesis of smaller
photonic resource states which are later “fused" into larger photonic states via linear
optical elements. Our cluster state generation scheme would be well suited to be
incorporated into such approaches, and could provide a “bridge" toward the goal of
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photonic resource state generation via linear optical elements.

Finally, we note that previous works [181, 182] have performed analysis of errors
in cluster state generation in the context of fault-tolerant quantum computing. They
find that for a gate error rate of ∼ 10−3 (where “gates" in this context includes 𝑄𝐸

single qubit gates, photon emission, and the qubit-photon CZ gate) and delay line
losses of ∼ 3 · 10−5 dB/ns, one can achieve a fault-tolerance “break-even" point
where the logical error rate is lower than the gate error rate, and beyond which
logical errors are exponentially suppressed as delay line loss is decreased. State-of-
the-art single-qubit gates can routinely achieve such gate error rates of 10−3, while
photon emission should in principle also achieve such error rates if there is enough
time for full emission from the | 𝑓 ⟩ state, and sufficient protection of the |𝑒⟩ state.
Furthermore as mentioned in the main text, although our reported CZ gate fidelity
was 90 %, we are able to ascribe most of that infidelity to SPAM errors via separate
measurements. From separate simulations, we expected a 97 % fidelity for the CZ
gate, and this fidelity could be increased further simply by increasing the Γ1D of
the emitter qubit. In addition, while necessary delay line losses are around ∼ 100
times smaller than our current losses in our experiment, recent and future advances
in superconducting circuit fabrication are expected to allow for 100 times (or more)
lower losses in superconducting resonators [208]. Thus, we foresee that with realistic
device and fabrication improvements, generating 3D cluster states for fault-tolerant
measurement based quantum computation with negligible logical error rates should
be feasible. Further, while single-shot photon measurements along arbitrary basis
would also be necessary for quantum computation with itinerant microwave photons,
such single photon detection could be achieved with a “detector" qubit. With such a
detector, an itinerant photon’s state would be mapped to the detector qubit state’s via
suitable time-dependent control of the detector qubit’s coupling to the waveguide,
as demonstrated in previous works [209, 210]; the “detector" qubit could then be
measured in an arbitrary basis. Lastly, we also note that with different photon qubit
encodings, different generation and measurement protocols are also possible.

Continuous Wave Experiments in the Presence of Time-Delayed Feedback
While many interesting waveguide QED experiments with superconducting qubits
coupled to regular transmission line coplanar waveguides have been accomplished
over the last several years, long delays and time-delayed feedback have the po-
tential to enrich the physics hitherto explored in these systems. While there are
many interesting experiments involving time-delayed feedback proposed in the lit-
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erature, experiments involving correlation measurements of the fluorescence from
a continuously driven qubit in the presence of time-delayed feedback present a nice
complement to the “pulsed" experiments discussed in Chapter 5. Realizing such
proposals with our superconducting qubit-SLWG systems would in principle be a
direct extension of the work presented in this thesis, and thus constitute natural
follow-up experiments to the work presented here.

For example, in the experiment proposed in Ref. [128], probing a waveguide
QED system with a qubit in front of a distant mirror in the continuous, strongly
driven regime would reveal remarkably different properties of its steady-state field as
compared to a Markovian system without time-delayed feedback. Firstly, the output
power spectrum of the qubit’s fluorescence would differ from a Mollow Triplet,
and would develop many additional “interference peaks" due to the coherence of
photons emitted toward and away from the mirror, which results in the interference
of signals whose emission time is separated by the round-trip delay 𝜏𝑑 . Moreover,
the second-order correlation function 𝑔2(𝑡) would contain long-time correlations,
including anti-bunching at 𝑔2(𝜏𝑑) < 1, in contrast to the usual 𝑔2(𝑡) of fluorescence
of a driven atom that exhibits an antibunching dip only at the vicinity of 𝑡 = 0.
𝑔2(𝜏𝑑) < 1 corresponds to a reduced probability of detecting two photons separated
in time by 𝜏𝑑 , which can be understood by considering that since photons are emitted
in a superposition of states corresponding to propagation toward and away from the
mirror, detection of photons emitted away from the mirror at time 𝑡 = 𝑡′ precludes
detection of photons emitted toward the mirror at time 𝑡′, which would consequently
arrive at the detector at a later time 𝑡 = 𝑡′ + 𝜏𝑑 . This phenomenon may be described
as the anti-bunching of photons emitted towards and away from the mirror at the
same time. Furthermore, depending on the round-trip phase 𝜑 picked up by a
photon emitted toward the mirror, 𝑔2(𝑡 = 0) can change from an anti-bunching dip
𝑔2(0) < 1 to a bunching peak 𝑔2(0) > 1, corresponding to an increased probability
of detecting two photons at the same time. In spite of the qubit only being limited to
emitting one photon at a time, 𝑔2(0) > 1 may occur in this system with time-delayed
feedback because photons emitted toward the detector at time 𝑡′ may constructively
interfere with photons that were emitted toward the mirror at an earlier time. Note
that observation of non-Markovian phenomena in 𝑔2(𝑡) correlation measurements
have hitherto been unexplored, and thus offer an exciting new follow-up research
direction. Also, we encourage the reader to see Ref. [140] for a proposed experiment
that would measure the 𝑔2(𝑡) for a waveguide QED system consisting of a driven
waveguide coupled to two qubits separated by a very long propagation delay, where
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the non-Markovianity of the system again leads to properties of the transmitted field
different than that expected for a Markovian system.

Additionally, the output field of a continuously driven qubit, which consists of a
stream of strongly correlated photons, has a direct mapping to matrix-product states,
which can be leveraged for analog quantum simulation of interacting quantum fields
[160, 211]. Via this mapping, analog variational quantum simulation of a 1D
quantum field was realized via fluorescence of a tunable waveguide QED system,
see Ref. [46] for more details. Nevertheless, while there is strong interest in
simulating higher-dimensional interacting quantum systems via analog quantum
simulation methods, simulation of interacting 1D systems are typically tractable
through classical means. However, by incorporating time-delayed feedback into a
system such as the one presented in Ref. [46], the entanglement dimensionality of
the continuous output stream of correlated photons can be increased beyond 1D.
This would allow for analog simulations of two-dimensional interacting quantum
fields, rather than one-dimensional fields, and would hence constitute a significant
advancement in analog quantum simulation of interacting quantum systems.

Finally, we note that there has been several demonstrations and technical advance-
ments in measuring correlation functions of the output from continuously driven
quantum circuit QED systems [39–41]. Thus the proposed experiments described
here are tractable with our SLWG system in conjunction with conventional circuit
QED control and measurement set ups.
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A p p e n d i x A

FABRICATION AND MEASUREMENT SETUPS

Device Fabrication
The devices used in the work presented in this thesis were fabricatedvia the tech-
niques described in detail in Ref. [70]. A brief summary follows below.

Our devices were fabricated on silicon substrates [525 `m thickness, > 10kΩ-cm
resistivity]. Our first aluminum (Al) layer consisting of the ground plane, CPWs,
metamaterial waveguide, and qubit capacitor is fabricated as follows. After stan-
dard solvent cleaning of the substrate, we spin resist and pattern it by electron-beam
lithography. After resist patterning, we clean the exposed substrate surface with
oxygen plasma and BOE, followed by electron-beam evaporation of 120 nm alu-
minum at a rate of 1 nm/s. A liftoff process is performed in n-methyl-2-pyrrolidone
at 80 ◦C for 2.5 hours (with 10 minutes of ultrasonication at the end) to yield the
aforementioned metal structures.

The Josephson junctions were fabricated using double-angle electron beam evapo-
ration of 60 nm and 120 nm of Al (at 1 nm/s) on suspended Dolan bridges, with an
intervening 20 minute oxidation and a subsequent 2 minute oxidation at 10 mbar,
followed by liftoff as described above. Note that prior to the double-angle evap-
oration, the sample was cleaned by an oxygen plasma treatment and a HF vapor
etch.

Furthermore, in order to electrically connect the evaporated Josephson junctions
to the first Al layer, a 6 min argon ion mill was performed to locally remove
surface aluminum oxide around the areas of overlap between the first Al layer
and the Josephson junctions, which was followed by evaporation of an additional
“bandage” layer of 140 nm Al that electrically connected the metal layers. Note that
if any “patches" were necessary to connect spuriously disconnected/broken metal
structures (as was the case for the fabrication of the device shown in Figure 5.1), these
patches were concomitantly fabricated together with the “bandage" layer. Finally,
airbridges (used in the device shown in Figure 5.1) were fabricated by grayscale
electron-beam lithography on a trilayer resist stack. After development and 2 hours
of resist reflow at 105 ◦C, electron-beam evaporation of 200 nm Al was performed
at a rate of 1 nm/s following 6 min of Ar ion milling.
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Figure A.1: Schematic of the measurement chain inside the dilution refrigerator. See Appendix
A text for further details (“dir." is shorthand for “directional," and “term." is shorthand for “termina-
tion"). See Figure 4.1 for electrical connections at the sample.

Measurement Setup
Schematics of the fridge wiring used in the work discussed in Chapters 4 and 5
are shown in Figs. A.1 and A.2, respectively. Measurements were performed in
a 3He/4He dry dilution refrigerator, with a base fridge temperature at the mixing
chamber (MXC) plate of𝑇𝑀𝑋𝐶 ∼ 10 mK. Devices are wirebonded to a CPW printed
circuit board (PCB) with coaxial connectors, and are housed inside a small copper
box that is mounted to the MXC plate of the fridge. The packaged devices are
enclosed in two layers of magnetic shielding to suppress effects of stray magnetic



93

SLWG
IN

20
 d

B

300 K
50 K plate

4 K plate

XYE, M      ZE, M
 Readout 

IN

HEMT

OUT

Cold plate

TWPA
Pump

10
 d

B

20
 d

B

20
 d

B

20
 d

B

20
 d

B

20
 d

B

20
 d

B
TWPA

20
 d

B

20
 d

B

20
 d

B

 6
 d

B MXC plate

Coil

80
kHz

Device

PFWG
SLWG

+ –

Attenuator DC block Circulator 16 dB
dir. coupler

LP Filter 
(0.85, 8 GHz) Eccosorb 50 Ω

terminator

XYE OUT

Q

I

LO1

ADC
PHOTON

ADC
RO

LP Filter
160 MHz

Readout
IN

Q

I

LO2BP Filter
600-900 MHz

TWPA Pump
Notch Filter

IQ Mixer

Room Temp.
Ampli�er

a

b
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fields.

Attenuators are placed at several temperature stages of the fridge to provide ther-
malization of the coaxial input lines and to reduce thermal microwave noise at the
input to the sample. Our gigahertz microwave input lines have significantly more
attenuation than our fast flux Z lines for reasons explained in Ref. [212]. In addition,
fast flux lines are filtered by a < 1 GHz low-pass filter below the MXC plate, which
suppresses thermal noise photons at higher frequencies while still maintaining short
rise and fall times of square flux pulses, as well as allowing transmission of AC flux
drives. Outside the fridge, all inputs to the dilution refrigerator are low-pass filtered
and attenuated such that the noise levels from the electronic sources are reduced to
a 300 K Johnson-Nyquist noise level.

Our amplifier chain for our measurements consists of a quantum-limited traveling-
wave parametric amplifier (TWPA) [213] as the initial amplification stage, followed
by a high mobility electron transistor (HEMT) amplifier mounted at the 4K plate.
We use superconducting NbTi cables to minimize loss from the MXC plate to the
4K plate. For operation of the TWPA, a microwave LO pump signal is added to the
amplifier via the coupled port of a ∼ 20 dB directional coupler, with its isolated port
terminated in 50-Ω. We include two isolators between the directional coupler and
the sample in order to shield the sample from the strong TWPA pump, as well as an
isolator in between the TWPA and the directional coupler in order to suppress any
standing waves between the two elements due to spurious impedance mismatches.
Our isolators consist of 3 port circulators with the third port terminated in 50-Ω.
Note also that all 50-Ω terminations are thermalized to the MXC plate in order to
suppress thermal noise from their resistive elements.

We calibrate our TWPA by continuously driving one of the input lines, and measur-
ing the output from the output line with a spectrum analyzer for a wide frequency
range; thus with the spectrum analyzer measurement we can measure both the gain
and the noise floor. We then run sweeps of TWPA pump power and pump frequency
in order to obtain the optimal operating point that best improves SNR by maximiz-
ing the ratio of signal power increase to noise power increase. We typically choose
the frequency of the continuous tone to be at a measurement frequency of interest;
this measurement can be done at multiple different input tone frequencies in order
to maximize TWPA SNR at different frequencies. In practice, we have found that
some TWPA parameters that maximize gain also lead to large increases in amplifier
added noise, and thus are not the optimal points that maximize SNR. This is why
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we do spectrum analyzer measurements rather than VNA measurements (which do
not give information on noise floor increases) for TWPA calibration.

Chapter 4 Measurement Setup Details

In addition to the attenuation schemes already discussed, the 40 dB attenuation
of the “Metamaterial IN" line at the MXC plate includes a 20 dB thin-film “cold
attenuator" [214] to ensure a more complete reduction of thermal photons in the
metamaterial waveguide. Moreover, in between the TWPA and HEMT amplifiers,
we have included a reflective bandpass filter (thermalized to the MXC plate) to
suppress noise outside of 4–8 GHz.

We also employed microwave switches in our measurement chain in order to provide
in situ experimental flexibility in the following manner. As discussed in Chapter
4, in between the “Metamaterial IN" chain and the metamaterial waveguide we
have placed a Radiall R573423600 microwave switch. By electrically opening the
switch, we can establish an open circuit at the end of the waveguide furthest from Q1,
effectively creating a mirror for emission from Q1 and thereby inducing time-delayed
feedback.

In addition, in order to utilize our amplifier chain for either spectroscopic or
time-domain measurements within the same cool-down, we employed Radiall
R577432000 2x2 microwave switches for selective routing of the outputs of the
metamaterial waveguide or the readout waveguide to the amplification chain. With
our switch configuration, we ensured that when routing the readout waveguide out-
put to the amplification chain, the metamaterial waveguide output was connected to
a 50-Ω termination. This allowed us to maintain a 50-Ω environment at the meta-
material output at all times, and thereby ensured that the metamaterial waveguide
remained an open quantum system due to its coupling to the 50-Ω continuum of
modes. By employing two 2x2 switches instead of one, we had the ability to by-
pass the TWPA amplifier if desired, although ultimately the TWPA was used when
collecting all measurement data presented in Figs. 4.1–4.3.

For spectroscopic measurements, the “Metamaterial IN” and “Output” lines were
connected to the input and output of a ZNB20 Rohde & Schwarz vector network
analyzer (VNA), respectively. For time-domain measurements, GHz excitation and
readout pulses were generated by upconversion of MHz IF in-phase (I) and quadra-
ture (Q) signals sourced from a Keysight M320XA arbitrary waveform generator
(AWG), utilizing a Marki IQ-4509 IQ mixer and a LO tone supplied by a BNC
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845 microwave source. Following amplification, output readout signals were down-
converted (using an equivalent mixer and the same LO source) and subsequently
digitized using an Alazar ATS9360 digitizer. For all measurements, qubit flux bi-
asing was also sourced from a M320XA AWG, the TWPA pump tone was sourced
by an Agilent E8257D microwave source.

Chapter 5 Measurement Setup Details

In addition to the attenuation schemes already discussed, Gigahertz microwave
input lines are filtered by an 8 GHz lowpass filter, and all microwave lines have an
Eccosorb filter, in order to ensure strong suppression of thermal noise photons at
very high frequencies. Moreover, a coil was used for static flux tuning of the qubits;
the coil is placed on top of the copper box package. The tuning coil is differentially
biased by two DC input lines, with 80 kHz low-pass filters at the 4K stage to further
suppress noise photons.

Output signals from the Purcell filter waveguide (PFWG) and slow-light waveguide
(SLWG) device lines are merged to a single amplifier chain in the following manner.
Their corresponding coaxial lines are connected to a circulator as shown in Fig-
ure A.2a, such that signals exiting the SLWG continue directly to the output chain,
while signals exiting the Purcell filter are first routed to the SLWG device line and
subsequently reflect off of the finite-bandwidth structure, thus finally routing them
to the output chain. Note that input signals to the SLWG IN line undergo similar
routing in order to arrive at the device.

We show the wiring outside the fridge in Figure A.2b. Following amplification inside
the fridge, we further amplify output signals with amplification that is suitable for
the dynamic range of our ADC. We note that we use a Micro Lambda Wireless
MLBFR-0212 tunable notch filter to reject the TWPA pump signal in order to
prevent saturation of the following room temperature electronics. Additionally, we
use IF amplifiers (0-1GHz bandwidth) for downconverted signals due to IQ mixer
saturation power limits.

Due to their different frequencies, we route SLWG and PFWG signals to different
downconversion stages via a 2-way power splitter, followed by a circulator at each
branch to prevent crosstalk between the two branches. The “PHOTON" branch is
connected to a IQ mixer for downconversion of ∼ 4.8 GHz photonic signals, which
are then measured by an Alazartech ATS9371 digitizer (ADC PHOTON); measure-
ment of both photonic signal quadratures 𝐼 (𝑡) and 𝑄(𝑡) comprise the heterodyne
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measurement of time-dependent photon signals alluded to in Appendix F.1. Mean-
while, the other branch of the power splitter is also connected to an IQ mixer for
downconversion of ∼ 7.5 GHz readout signals, which are then measured a Keysight
M3102 digitizer (ADC RO). We note that downconversion mixers share LO signals
(generated by Rohde & Schwarz SMB100A microwave signal generators) with their
upconversion counterparts (where a Zurich HDAWG is used) , in order to ensure
phase drift/jitter of LO’s during upconversion are cancelled out during downcon-
version. And crucially, we place additional filters before measurement at the ADC
in order to suppress noise outside of the IF measurement band of interest. This not
only allows for better utilization of the ADC dynamic range, but also rejects noise
at irrelevant Nyquist bands that “fold" over to the bandwidth of measured signals;
we note that this effectively improved the 𝑛noise of our photon measurement chain
by almost a factor of 2 (see Appendix F.1 for more details).
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A p p e n d i x B

MODELING OF QUBIT COUPLED TO COUPLED RESONATOR
ARRAY WAVEGUIDE - GENERAL MODEL

Throughout the work done in this thesis, we perform time-domain measurements
involving the interaction of an excited qubit with a coupled resonator array waveg-
uide. In order to analyze the measurement data for the purposes of device parameter
extraction, or for further understanding of observed dynamical phenomena, we
compare the measurement data to transient time-domain simulations performed in
Qutip.

The following general tight-binding model, which we use in all master equation
simulations in this thesis, captures the salient attributes of our system of qubits
coupled to our coupled resonator array metamaterial waveguides.

�̂� = 𝜔𝑔𝑒 |𝑒⟩ ⟨𝑒 | +
𝑀∑︁
𝑥=1

𝜔𝑥 �̂�
†
𝑥 �̂�𝑥 + (𝐽𝑥 �̂�†𝑥 �̂�𝑥+1 + 𝐽𝑛𝑛𝑛�̂�†𝑥 �̂�𝑥+2 + ℎ.𝑐) +

∑︁
𝑖

𝑔𝑖�̂�𝑥

(
�̂�
†
𝑖
+ �̂�𝑖

)
,

(B.1)

where 𝑀 is the number of resonators, 𝜔𝑥 are the frequencies of the individual
resonator modes and, as discussed in Section 3.2, in our parameter regime the
capacitively coupled resonator array Hamiltonian can be well approximated as a
tight-binding Hamiltonian with dominant nearest-neighbor coupling 𝐽𝑥 and small
(∼ 𝐽/100) next-nearest neighbor coupling 𝐽𝑛𝑛𝑛 (which we keep as a constant in
the model for simplicity). In our simulations, for all unit cells we set 𝜔𝑥 = 𝜔𝑝 =

𝜔0 − 2𝐽, which is the passband center frequency and constitutes the bare resonator
frequency 𝜔0 renormalized by its coupling to neighboring resonators; however, for
the taper resonators we introduce moderate detunings in order to capture the weak
reflections within the slow-light waveguide that is typically evidenced by measured
data. Further, we include qubit coupling to multiple resonators in the array in our
model with couplings 𝑔𝑖, where 𝑖 indicates resonator position in the array, in order
to capture both 𝑔uc and the weak non-local coupling of the qubit to a few of the
neighboring unit cells that is typically evidenced by the measured data.

Going into the rotating frame of the passband center frequency 𝜔𝑝 and applying the
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rotating wave approximation (RWA) to remove counter-rotating terms, we arrive at
the following Hamiltonian

�̂� = Δ𝑔𝑒 |𝑒⟩ ⟨𝑒 | +
𝑀∑︁
𝑥=1

𝛿𝑥 �̂�
†
𝑥 �̂�𝑥 + (𝐽𝑥 �̂�†𝑥 �̂�𝑥+1+𝐽𝑛𝑛𝑛�̂�†𝑥 �̂�𝑥+2+ℎ.𝑐) +

∑︁
𝑖

𝑔𝑖

(
�̂�
†
𝑖
�̂�− + �̂�𝑖�̂�+

)
,

(B.2)

where Δ𝑔𝑒 = 𝜔𝑔𝑒 − 𝜔𝑝 and 𝛿𝑥 = 𝜔𝑥 − 𝜔𝑝 It can be shown that the Hamiltonian in
Equation B.2 preserves the number of excitations 𝑁 by noting that the commutator[
�̂�, �̂�

]
= 0 with �̂� =

∑𝑀
𝑥=1 �̂�

†
𝑥 �̂�𝑥 + �̂�+�̂�−. Consequently, the dynamics of the system

can be partitioned into subspaces with fixed excitation number, and for the purposes
of modeling dynamical data of a system with initially only one excited qubit and
no other excitations, we only need to consider the subspaces of 𝑁 = 0, 1. The
Hamiltonian in this reduced subspace can be computed by explicitly evaluating the
matrix elements ⟨𝜙 | �̂� |𝜙′⟩ between different states {|𝜙⟩} in the zero- and single-
excitation manifold, and subsequently directly used in numerical master equation
simulations.

Finally, while the Hamiltonian in Equation B.2 generates the unitary dynamics of
the system, the external loading of the system to the input/output 50-Ω waveg-
uides is incorporated into the model via dissipation with rate ^50Ω in the resonators
of the array preceding input/output waveguides. This dissipation by input/output
waveguides is generated in our master equation simulations via collapse operators
which transfer population from the single-excitation states |11, 02, 03, . . . , 0𝑀 ; 𝑔⟩ and
|01, 02, 03, . . . , 1𝑀 ; 𝑔⟩ for input and output waveguides respectively, to the (trivial)
zero-excitation ground state of the system |01, 02, 03, ..., 0𝑀 , 𝑔⟩. Note that master
equation simulations of a qubit’s non-Markovian radiative dynamics are only pos-
sible here due to the fact that we are explicitly simulating all the photonic degrees
of freedom of the slow-light waveguide in addition to the qubit’s degrees of free-
dom. A Lindbladian master equation simulation of solely the qubit’s degrees of
freedom, with the photonic degrees of freedom traced out, would not capture its
non-Markovian radiative dynamics. Moreover, a simulation of the entire qubit-
waveguide system is only amenable here due to our restriction of the Hilbert space
to its low-energy sector, and would quickly grow intractable if a higher number of
excitations were allowed.
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A p p e n d i x C

MICROWAVE DESIGN OF COUPLED RESONATOR ARRAY
WAVEGUIDES AND QUBIT SYSTEMS

The successful fabrication of our coupled resonator array waveguides was predicated
on the development of robust design methodologies that achieved translation of
simulated (effective) circuit parameters to fabricated (effective) circuit parameters
with good accuracy. In this Chapter I briefly summarize some of these design
methodologies and their accompanying theory.

C.1 Dispersion Relation of a Periodic Circuit: Transfer Matrix Analysis
The following is a summary of analysis presented in Ref. [109] Considering the
unit cell of a periodic circuit as two-port network, there will be a transfer matrix that
relates voltages and currents at the input to the network to the voltages and currents
at the output to the network; this matrix is commonly called the 𝐴𝐵𝐶𝐷 matrix.
Thus, for the 𝑛th unit cell of a periodic circuit, we may write

[
𝑉𝑛

𝐼𝑛

]
=

[
𝐴 𝐵

𝐶 𝐷

] [
𝑉𝑛+1

𝐼𝑛+1,

]
(C.1)

where in general we expect the 𝐴𝐵𝐶𝐷 matrix elements to be frequency dependent.

We expect a periodic circuit to support propagation of traveling modes due to the
Bloch Theorem. In order to find the dispersion relation of these propagating modes,
we may assume that for these traveling modes, the voltages and currents at the 𝑛th

unit cell will differ from the voltages and currents at the 𝑛+1 unit cell by the traveling
mode propagation factor 𝑒𝑖𝑘𝑑

[
𝐴 𝐵

𝐶 𝐷

] [
𝑉𝑛+1

𝐼𝑛+1

]
= 𝑒𝑖𝑘𝑑

[
𝑉𝑛+1

𝐼𝑛+1

]
. (C.2)

This constitutes an eigenvalue problem. By using the fact that the determinant of
the 𝐴𝐵𝐶𝐷 matrix (𝐴𝐷 − 𝐵𝐶) is always equal to 1 for reciprocal networks, the
dispersion relation of the periodic circuit can be shown to be given by the following
relation:
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cos(𝑘𝑑) = 𝐴 + 𝐷
2

. (C.3)

Finally, note that one may obtain the 𝐴𝐵𝐶𝐷 matrix of a two-port network from its
scattering matrix [109]:

𝐴 =
(1 + 𝑆11) (1 − 𝑆22) + 𝑆12𝑆21

2𝑆21
, (C.4)

𝐵 = 𝑍0
(1 + 𝑆11) (1 + 𝑆22) − 𝑆12𝑆21

2𝑆21
, (C.5)

𝐶 =
1
𝑍0

(1 − 𝑆11) (1 − 𝑆22) − 𝑆12𝑆21
2𝑆21

, (C.6)

𝐷 =
(1 − 𝑆11) (1 + 𝑆22) + 𝑆12𝑆21

2𝑆21
, (C.7)

(C.8)

where 𝑍0 is the characteristic impedance of the ports. This allows us to obtain the
𝐴𝐵𝐶𝐷 matrix of a two-port network from the scattering matrix simulation results
of Sonnet.

C.2 Metamaterial Waveguide Circuit Design Methods
As discussed in Chapter 3, our metamaterial slow-light waveguide consists of a
periodic coupled resonator array, with modified resonators at the boundary of the
array for impedance matching of the periodic structure to input/output 50-Ω CPWs.
In order to obtain target circuit parameters for our structure, we in practice utilized
the AWR Microwave Office software. First, using its built-in iFilter functionality
allows one to obtain the circuit parameters for a low-ripple coupled resonator array
bandpass filter comprised of 25 resonators with a target center frequency, bandwidth,
and fixed resonator inductance. Taking the circuit parameters of the middle resonator
as the unit cell parameters of the periodic structure, and the parameters of the last
two resonators as the taper cell parameters, already yields good initial parameters
for a tapered coupled resonator array with good impedance matching in the middle
of the passband. Further optimization of these initial parameters can then be done
with Microwave Office’s optimization functionality in order to obtain the lowest
passband ripple possible with two taper resonators.

With target circuit parameters in place, we then typically design and simulate planar
circuits in Sonnet in order to obtain lumped-element microwave resonator geometri-
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Figure C.1: Microwave Office Taper Simulation. Illustration of Microwave Office Simulation
of the “taper" section of a coupled resonator array. Here, the simulation results of the first taper
resonator and the second taper resonator are “cascaded." This simulation will also eventually be
“cascaded" with simulations of the unit cell of the coupled resonator array. The lumped element
capacitor values can be adjusted to learn what capacitance values need to be modified in order to
improve the simulated transmission of the full array.

cal designs, as is discussed in detail in Section C.3. These simulations are typically
performed at the single-resonator level. Scattering parameter simulations results
from Sonnet can then be imported into Microwave Office as an effective two-port
network. By importing each of the Sonnet simulation results of the unit cell res-
onator and taper resonators simulations as a two-port network, these “networks"
can then be cascaded in Microwave Office to yield a simulation of the transmission
through the entire coupled resonator array, based on the planar circuits simulated in
Sonnet.

This simulation of the transmission of the full array can then be compared to the
ideal transmission of the target coupled resonator array circuit. This comparison
allows one to see if any modifications to effective circuit parameters of the simulated
resonators need to be made in order to improve transmission characteristics such
as ripple. In order to learn which circuit parameters need to changed and by how
much, it is convenient to add additional lumped element capacitors to the “cascaded"
simulation, as illustrated in Figure C.1. Note that in Microwave Office, these lumped
element capacitors can have “negative" capacitances. Thus they can be tuned at
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will to change the transmission characteristics of the “cascaded" simulation, and
upon reaching the target transmission, their values indicate the change necessary in
effective circuit parameters to obtain the target transmission.

Note that while we have described the use of single resonator Sonnet simulations
to learn predicted transmission characteristics of the final design, simulations with
multiple resonators give spurious results if imported to “cascaded" simulations in
Microwave Office. This is because such Sonnet simulations contain additional near-
field coupling between the resonators in the simulation, but if the results of such
simulations are “cascaded," then near-field coupling between cascaded simulations
will not be captured. This inconsistency will lead to flawed transmission simulations.

C.3 Sonnet Simulation of Metamaterial Waveguide Resonators and Parame-
ter Extraction

In our research group, we perform electromagnetic finite-element analysis simula-
tions primarily using Sonnet [118]. Sonnet is a simulation tool well-suited to “quasi-
2D" patterned microwave circuits, because it can simulate frequency-dependent
scattering parameters very quickly compared to full-field simulation softwares such
as Comsol. Sonnet simulations involve defining a microwave network consisting of a
“circuit" comprised of patterned metal, as well as “ports" of the microwave network
that connect to the circuit. The Sonnet simulation outputs scattering parameters
between the defined ports of the network, which contains information about the
intervening circuit between the ports.

There are a variety of ways of obtaining effective circuit parameters of a planar
circuit comprised of patterned metal in Sonnet. For example, for a circuit consisting
of planar inductors and capacitors, one may simulate these elements individually at
DC frequencies in order to obtain circuit parameters. Or, for resonators, one may
connect to the resonator circuit an ideal circuit element (which Sonnet allows), sweep
its value, extract resultant resonance frequencies from Sonnet simulations, and fit to
the resultant frequencies in order to extract circuit parameters. However, we found
such approaches to be intolerably inaccurate for the design of our metamaterial slow-
light waveguides, whose transmission is very susceptible to inaccuracies in circuit
parameters. I describe below a simulation/design flow and design principles that
yielded fabricated structures with good correspondence to target design parameters.

Firstly, for lumped element resonators such as those illustrated in Figure 3.1a, we
found that it was best to simulate as much of the unit cell together as possible, rather
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Figure C.2: Sonnet Unit Cell Simulation. a Illustration of Sonnet simulation for a unit cell of the
coupled resonator array. The length of the "wing capacitor" is a simulation geometrical dimension
that in practice is varied in order to obtain a desired 𝐶𝑔. Also note that in practice, the box extent
is bigger than what is shown here. b Plot of the dispersion relation of the unit cell, numerically
calculated from the simulation’s output scattering parameters. The dispersion relation is fit to
Equation 3.8, showing excellent agreement. This fit is used to obtain circuit parameters of the unit
cell.
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than simulating different components of the unit cell individually. This allowed the
simulation to capture the effects of parasitic inductances and capacitances of the
different unit cell elements together at once, as well as near-field coupling between
the different unit cell elements. This improved the accuracy of the simulation as
compared to simulation of the capacitive and inductive elements of the unit cell
separately. Moreover, we found that due to these parasitic reactances, simulations
at DC frequencies failed to properly capture effective capacitances and inductances
at the ∼ GHz frequencies of interest; thus we only implemented Sonnet simulations
at the frequencies of interest. Further, we found that using ideal lumped element
components directly in Sonnet were not accurate due to the details of their imple-
mentation (we refer the reader to the Sonnet manual [118] for a detailed discussion
of this), and did not use them for the design of the slow-light waveguides.

Thus, for finite-element simulations of our metamaterial waveguide resonators, we
will typically employ a simulation similar to what is shown in Figure C.2a. This
simulation includes the full meander (which contains the bulk of the inductance) and
head capacitance of the unit cell, as well as the coupling capacitance to the previous
unit cell. Note that the simulation only contains one “wing capacitor" (from which
most of the coupling capacitance between unit cells is derived) such that this “unit
cell" can be periodically repeated to yield the full structure. While this simulation
does not contain the full capacitance to ground of a single lumped element resonator
due to the absence of its other “wing capacitor," this is practically not a problem.
In addition, the simulations will have a large simulation “box" compared to the
size of the unit cell, such that the effective circuit parameters of the unit cell are
not affected by proximity to the simulation box walls. While this necessitates long
metal leads from the ports of the simulation to the unit cell circuit, their effect
on simulation results can be removed by use of “reference planes" with the ports
(we again refer the reader to the Sonnet manual for more details). Furthermore,
as discussed in Chapter 3, we note that it was important to have sufficient ground
plane surrounding the “wing" coupling capacitors and meanders; otherwise we
found that stray capacitance or mutual inductance between neighboring unit cell
components were severe enough to thwart simulation of the slow-light waveguide
at a single-resonator level.

After obtaining two-port scattering parameters from a simulation such as the one
shown in Figure C.2a, we convert the (frequency-dependent) two-port scattering
matrix to a (frequency-dependent) 𝐴𝐵𝐶𝐷 matrix of the unit cell. This allows us
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to obtain the effective circuit parameters of the unit cell in the following manner.
First, from inspection of Figure C.2b, it is evident that the coupling capacitance
of the “wing capacitor" is the only series impedance in the entire planar circuit;
everything else can be regarded as a shunt impedance. Due to the absence of any
other series impedance, the 𝐵 matrix element of the 𝐴𝐵𝐶𝐷 matrix can be shown to
directly yield the series impedance, and thus the coupling capacitance 𝐶𝑔, between
unit cell resonators [109]. In practice, the extracted coupling capacitance will have
some small frequency dependence due to parasitic reactances of the unit cell; thus
we typically extract the value at the passband center frequency. Furthermore, from
the 𝐴𝐵𝐶𝐷 matrix we can extract the dispersion relation of the unit cell as discussed
in Appendix C.1. By fitting the dispersion relation to Equation 3.8 as shown in
Figure C.2b, we can obtain the resonance frequency of the unit cell 𝜔0 as well as the
ratio of 𝐶𝑔/𝐶0. With these fit parameters and knowledge of 𝐶𝑔, we can obtain the
𝐶0 and 𝐿0 of the unit cell as well. This method is well suited to our needs because
these circuit parameters are obtained directly in the context we care about, at the
frequencies of interest, via fitting methods that assume a periodic array of the unit
cell structure.

For the taper resonators, they will have different coupling geometries to the previous
and subsequent resonators, and these different coupling geometries will lead to
different contributions to the ground capacitance of the taper resonator. Thus, in
order to use the methods above, one must perform a simulation as the one shown in
Figure C.2a with each coupling geometry (where the rest of the resonator geometry
is maintained the same), and take the average of the obtained 𝐶0 values from both
simulations in order to obtain the true 𝐶0.

Furthermore, in order to obtain target circuit parameters, certain geometrical di-
mensions of the planar circuit will need to be varied (as illustrated in Figure C.2a).
We note that in practice, we have typically observed that changes in geometrical
dimensions linearly change effective circuit parameters. Thus, by performing two
different simulations with two different dimensions, one can approximately learn
this linear scaling, and with that, efficiently iterate through simulations to arrive at
target circuit parameters.

Finally, once all target circuit parameters have been realized via Sonnet simulations,
we found it helpful as a last check to perform simulations of a small coupled resonator
array with input/output taper resonators, as shown in Figure C.3. Observing the
ripple in the output 𝑆21 of the simulation allows one to see the effectiveness of the
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“taper" matching beyond simulations at the single-resonator level, and if further
adjustments to geometrical parameters are necessary. In practice, we typically
found that adjusting geometrical parameters for small ripple at the single-resonator
level also led to small ripple in the larger simulation of an entire tapered array.
However, we found that passband widths of the larger simulation were smaller
than predicted passband widths from single-resonator simulations. While mutual
inductance between resonators not captured by single resonator simulations could
cause this effect, preliminary simulation investigations revealed that the ground
connectivity of the lumped element resonators in the structure could have large
effects on the passband width as well; further investigations are needed to fully
understand this phenomenon. Lastly, the 𝑆21 of the larger simulation of an entire
tapered array would contain resonances outside of the passband that would also be
observed in experiment, but were not observed from simulation results of single
resonator simulations; preliminary simulation investigation ascribes this effect to
the ground connectivity of the structure as well.

In order to extract the capacitive coupling of the qubit to the metamaterial waveg-
uide, we perform the Sonnet simulation illustrated in Figure C.4. We then import
the simulation results into Microwave Office, and attach an ideal inductor to port
3 to effectively add inductance to the qubit capacitance island. By using this unit
cell/qubit simulation in a “cascaded" simulation of the entire array (with the ideal
inductor added), we obtain the simulation of a qubit side-coupled to the metamate-
rial waveguide. By comparing such a simulation with a similar simulation where
the “qubit" is represented by an ideal circuit (with the same lumped element in-
ductance), we can obtain the qubit total capacitance to ground, and its coupling
capacitance to the unit cell resonator, by closely matching the two simulation results
via modification of the capacitance values of the ideal qubit circuit. Although other
methods are in principle possible, this method worked with good accuracy for us.
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Figure C.3: Sonnet Simulation of a Full Tapered Array. a Sonnet Simulation of a Full Tapered
Array. Simulations with more resonators require significantly more computational overhead b |𝑆21 |
simulation results.
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Figure C.4: Qubit Coupled to Unit Cell Simulation. a Illustration of Sonnet simulation for a qubit
coupled to the unit cell of the coupled resonator array. The full unit cell planar circuit, as well as
ports 1 and 2 to the left and right of the unit cell circuit respectively, are not shown in this illustration
but are included in the full simulation. Port 3 is used in Microwave Office to connect an ideal lumped
element inductor.
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A p p e n d i x D

SUPPLEMENTARY INFORMATION FOR CHAPTER 4

D.1 Master Equation and Circuit Simulations of Qubit Radiative Dynamics
In this section we present modeling of the interaction between Q1 and the metamate-
rial waveguide. Note that, while we observe dynamics that are due to emission and
propagation of single-photon radiation field states, which are non-classical states of
light, in the single-excitation limit the dynamics of the qubit can also be described by
a classical circuit model, where the qubit is represented by a faux resonator. Thus,
here we share both viewpoints of analysis, and we employ two separate models to
represent our system: a tight-binding model with nearest and next-nearest neighbor
coupling which we analyze via a numerical master equation solver, and a classical
circuit model (shown in Figure D.2). We find excellent agreement between the two
models.

Master Equation Simulations
For our master equation simulations, we employ the model discussed in Appendix
B. Referring to Equation B.2 and Figure D.1a, our model assumed the follow-
ing parameters (2𝜋 factors are omitted for readability): 𝑀 = 50, 𝛿1 = 𝛿50 =

𝛿′ = −13.9 MHz, 𝛿2 = 𝛿24 = 𝛿27 = 𝛿49 = 𝛿′′ − 4.7 MHz, 𝛿25 = 𝛿26 = 𝛿′′′ =

323 MHz, 𝐽1 = 𝐽24 = 𝐽26 = 𝐽49 = 𝐽′ = 44.1 MHz, 𝐽2 = 𝐽23 = 𝐽27 = 𝐽48 = 𝐽′′ =

32.47 MHz, 𝐽25 = 𝐽′′′ = 349 MHz, 𝐽𝑛𝑛𝑛 = 0.3 MHz, all other 𝐽𝑥 = 𝐽 = 32.52 MHz,
all other 𝛿𝑥 = 0, and ^50Ω = 169.92 MHz (note that the values of 𝛿′′′ and 𝐽′′′ are
very different from other values in order to accurately capture the circuit of the
waveguide’s bend section as discussed in Chapter 4). Note that these parameters are
consistent with the circuit parameters of the model shown in Figure D.2 that is later
discussed. Furthermore, in the model we coupled the qubit to the first, third, and
fourth resonators of the array (as opposed to just the third resonator), with couplings
𝑔1 = 2.2 MHz, 𝑔2 = 𝑔uc = 26.4 MHz, 𝑔3 = 3.5 MHz; where all other 𝑔𝑖 = 0.
Physically, the coupling to resonators 1 and 4 was not intentional and was due to
parasitic capacitance. We set 𝑔2 = 0 in the model because the second metamaterial
resonator was not expected to parasitically couple to the qubit as strongly as the first
and fourth resonator due to the absence of an interdigitated capacitor or an integrated
Xmon shunting capacitance (see Figure 3.3 for images of the second resonator of
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Figure D.1: Master Equation numerical simulations of our qubit-slowlight waveguide system. a
Diagram of tight-binding model used in simulations. Simulation parameters are described in the
text. Note that the next-nearest neighbor coupling 𝐽𝑛𝑛𝑛, which is present in the model for all
resonators, is omitted from the diagram for readability purposes. b Simulation of Figure 4.2b
dataset. Bandedges are highlighted in dashed yellow lines, while dashed black lines are guides to the
eye. c Scatter plot of the eigenenergies of the Hamiltonian in Equation B.2 with Δ𝑔𝑒/(2𝜋) = 83 MHz
(in the single excitation manifold) offset by 𝜔𝑝 . The orange curve is a plot of the dispersion relation
(see Equation E.1). The eigenmode with energy outside of the passband corresponds to the bound
state of the system |𝑏⟩ d Plot of photonic states of the system as a function of position 𝑥. Top
panel: plot of the photonic wavefunction of the bound eigenstate of the system |𝑏⟩ in open red dots;
“norm" indicates that the photonic wavefunction coefficients ⟨𝑥 |𝑏⟩ are normalized by

√︁∑
𝑥 |⟨𝑥 |𝑏⟩|2,

where |𝑥⟩ corresponds to the state |01, 02, . . . , 1𝑥 , . . . , 0𝑀 ; 𝑔⟩. The solid black line corresponds to
a plot of 𝐴𝑒 |𝑥−3 |/_, where _ =

√︁
𝐽/(𝐸𝑏 − 𝜔0) and 𝐴 is a normalization constant. Bottom panel:

plot of the photonic portion of the simulated qubit-waveguide state after 𝑡 = 90 ns. The solid
blue line corresponds to a simulation with initial state |01, 02, . . . , 0𝑀 ; 𝑒⟩; the dashed black line
corresponds to a simulation with initial state |𝑏⟩. 𝜌𝑛𝑜𝑟𝑚𝑥𝑥 refers to the scaled density matrix element
𝜌𝑥𝑥/

(∑10
𝑥=1 𝜌𝑥𝑥

)
. This particular scaling is chosen because it similarly scales the photonic part of

the state within the first 10 resonators of the array, thereby aiding visual comparison between the
blue and dashed black curves. e Comparison of the dynamics simulated by a modified tight-binding
model of a qubit coupled to a metamaterial waveguide (left), and by population equations of motion
derived in Ref. [55] (right). Refer to (b) for colorbar. Both models assume 𝑔uc/2𝜋 = 19 MHz, as
well as 𝐽/2𝜋 = 33 MHz. See text for description of modified model. We use (𝑔4

uc/4𝐽)1/3 in place of
𝛽 for simulations using Equations 2.21—2.28 from Ref. [55].

the metamaterial waveguide). The 𝑔1 and 𝑔4 parasitic couplings were crucial to
reproduce some of the subtle features in the measured data; this will be discussed
in detail below.
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Dynamical Simulations and Eigenenergy Analysis

Figure D.1b shows the simulated dynamics from numerical master equation simula-
tions as a function ofΔ𝑔𝑒 (note that bare qubit frequency𝜔𝑝+Δ𝑔𝑒 is shown in the plot
instead for comparison purposes to Figure 4.2) with initial state |01, 02, . . . , 0𝑀 ; 𝑒⟩.
It is evident that there is agreement between Figure D.1b and the measured data
in Figure 4.2b, indicating that our model captures the salient dynamical features of
our measured data. Furthermore, with the Hamiltonian in Equation B.2, we can
numerically calculate its eigenstates and the eigenenergy spectrum; as an example,
the spectrum when Δ𝑔𝑒/(2𝜋) = 83 MHz is plotted in Figure D.1c. Figure D.1c
shows a band of states within the passband, and a state with energy outside of
the passband. Because 𝑀 = 50, the Hamiltonian is that of a finite-sized system
and the band of states within the passband represents the normal modes of the fi-
nite waveguide structure; however, in the presence of input/output waveguides they
represent a band of scattering states that support wave propagation between the
input/output waveguides. The state with energy outside of the band, however, is the
bound eigenstate |𝑏⟩. We calculate bound-state energies as a function of bare qubit
frequency Δ𝑔𝑒, and converting bare qubit frequency to the physically applied flux
through the SQUID loop used to tune the qubit frequency Φ (via measured qubit
minimum/maximum frequencies and the extracted anharmonicity), we numerically
obtain the predicted energy of the system’s bound eigenstates as a function of flux
bias and plot it on Figure 4.1d as dashed black lines. As Figure 4.1d shows, we
obtain good quantitative agreement between the prediction of our model and the
spectroscopically measured bound-state energies of the qubit-waveguide system.

In our model, the 𝑔3 coupling primarily sets the coupling of the qubit to the metama-
terial waveguide. Its magnitude relative to the 𝐽 between the unit cells, along with
the qubit frequency𝜔′

𝑔𝑒 (Φ), predominantly determines the frequency of oscillations
near the bandedge, as well as the decay rate into the waveguide in the passband. In
the absence of other parasitic couplings, this decay rate is theoretically determined to
be ∼ 𝑔2

uc/𝑣(𝜔′
𝑔𝑒 (Φ)) [78], where 𝑣(𝜔′

𝑔𝑒 (Φ)) is the group velocity of the metamate-
rial waveguide at the qubit-waveguide interaction frequency 𝜔′

𝑔𝑒 (Φ). The parasitic
coupling 𝑔4, however, is necessary to replicate the asymmetry in the dynamics near
the upper and lower bandedges. This is because the lower bandedge modes have an
oscillating charge distribution between unit cells, while the upper bandedge modes
have a slowly-varying charge distribution across the unit cells (which is typical of
1D tight-binding systems). The parasitic coupling of the qubit to the neighboring
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unit cell therefore has the effect of lowering the qubit coupling to the lower bandedge
modes due to cancellation effects arising from the opposite charges on neighbouring
resonators for lower bandedge modes. On the other hand, coupling of the qubit
to the upper bandedge modes which have slowly-varying charge distributions, is
enhanced.

In addition, in simulations, the onset of oscillations seen at 𝜏 ≈ 115 ns could
be delayed or advanced by increasing or decreasing the number of resonators in
between the qubit and the bend in the metamaterial waveguide model, while it could
be removed altogether by removing the bend section. This indicated that these
late-time oscillations are a result of spurious reflection of the qubit’s emission at
the bend, due to the imperfect matching to the 50-Ω coplanar waveguide in between
the two resonator rows (which is manifested in this model through parameters 𝛿′′′

and 𝐽′′′). Note that this impedance mismatch and reflections are amplified near the
bandedges, where the Bloch impedance rapidly changes.

Photonic State Spatial Analysis

In Chapter 4, the observed qubit emission dynamics into the slow-light waveguide
are described in terms of the interplay of the qubit-waveguide dressed states; in
particular, the bound and continuum dressed states of the qubit-waveguide system.
Here we further elucidate this description of our system via our modeling, using the
dynamics of the system when the qubit is tuned 18 MHz above the upper bandedge
(Δ𝑔𝑒/(2𝜋) = 83 MHz) as an illustrative example, corresponding to the brown curve
in Figure 4.2c.

Firstly, in Chapter 4 we assert that initializing the qubit in state |𝑒⟩ with its fre-
quency in the proximity of the passband effectively initializes it into a superposition
of bound and continuum dressed states. This can be explicitly verified by first
numerically calculating the eigenstates and the eigenenergy spectrum of the Hamil-
tonian, as was done for Figure D.1c. As previously discussed, the state with energy
outside of the band is the bound eigenstate |𝑏⟩, and the photonic component of its
wavefunction is plotted in the top panel of Figure D.1d. It is evident from Fig-
ure D.1d that the photonic component of the bound state wavefuncion is localized
around resonator 3, which is the unit cell that the qubit is predominantly coupled
to. As discussed in Section 3.2, the bound state is exponentially localized with
localization length approximately _ =

√︁
𝐽/(𝐸𝑏 − 𝜔0) where 𝐸𝑏 is the energy of the

bound state; this theoretical photonic wavefunction is plotted in the top panel of
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Figure D.1d with a solid black line, and shows good agreement with the numeri-
cally calculated |𝑏⟩ wavefunction plotted in red open dots. Numerically calculating
the overlap between the |01, 02, 03, ..., 0𝑀 , 𝑒⟩ state and the bound eigenstate yields
|⟨𝑏 |01, 02, 03, ..., 0𝑀 , 𝑒⟩|2 ≈ 0.8, agreeing well with Equation 3.22.

Secondly, in Chapter 4 we also assert that the amplitude of the early-time oscillations
quickly dampen away as the energy in the radiative continuum dressed state is quickly
lost into the waveguide, while the energy in the bound state remains localized around
the qubit, albeit slowly decaying (details of this slow decay are given in the next
paragraph). In order to illustrate this point, in the bottom panel of Figure D.1d
we plot the photonic portion of the system’s state at time 𝑡 = 90 ns, at which
point the early-time oscillations have subsided and the qubit can be observed to
be slowly decaying. It is evident that while part of the state is delocalized in the
array, a significant portion is still localized around the qubit location; this portion
corresponds to the bound state portion of the initial state |01, 02, 03, ..., 0𝑀 , 𝑒⟩ after
time evolution.

Thirdly, in order to understand the slow decay of the qubit following the early-time
oscillations, note that a non-negligible proportion of the bound state wavefunction
is found on resonator 1, the taper resonator directly coupled to output waveguide,
signifying finite overlap between the bound state and the external 50-Ω environment
of the output waveguide. This overlap constitutes the dominant intrinsic loss channel
for the bound state and leads to its slow decay, which in the 𝑡 → ∞ limit results in
the full decay of qubit even if its frequency is tuned outside the passband. Near the
bandedges, it is this loss that results in a slow population decay as compared to the
initial fast dynamics in the data (see top panel of Figure 4.2c for a clear example),
and leads to the feature highlighted by dashed black lines in Figure D.1b. This
feature would be flat for an infinite-sized resonator array and there would be partial
“population trapping" [58] of the qubit in the 𝑡 → ∞ limit if its bare frequency was
detuned from the passband and there were no other intrinsic loss channels. Note
that the 𝑔1 coupling between the qubit and the resonator directly coupled to the
50-Ω port is necessary to quantitatively replicate the slow decay rates of the qubit
when its frequency is outside of the passband. In the absence of the 𝑔1 coupling,
this overlap was not sufficiently high in the simulations given the coupling of the
qubit to the metamaterial waveguide (extracted from separate measurements in the
passband). Therefore, this overlap was made larger, while minimizing the increase
to the overall coupling of the qubit to the metamaterial waveguide, by incorporating
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the small 𝑔1 coupling to the first resonator of the array.

Finally, it can be observed in Figure 4.2b and Figure D.1 that there are differences
in both duration and amplitude between the early-time oscillations and the late-time
oscillations that occur at 𝜏 ≈ 115 ns. This is because, when the qubit frequency is
near the bandedges, the reflected emission is distorted through its propagation in the
metamaterial waveguide due to the significant dispersion near the bandedges. This
results in a spatio-temporal broadening of the emitted radiation, which is evident
in the bottom panel of Figure D.1d. The frequencies of both sets of oscillations,
however, are set by 𝑔uc and 𝐽 as discussed in Chapter 4.

Comparison to Paradigmatic Model of Spontaneous Emission Near the Edge
of a Photonic Bandgap

As alluded to in Chapter 4, the early-time oscillations observed in our work are,
qualitatively, a generic feature of the interaction between a qubit and a bandedge in
a dispersive medium, and not merely an attribute of our specific system. In order
to illustrate this point, in Figure D.1e, we further compared the initial oscillations
to the theory presented by John and Quang in Ref. [55] of a qubit whose frequency
lies in the spectral vicinity of a bandedge. The model assumed for Ref. [55] was
that of an atom (qubit) with point dipole coupling to an infinite periodic dielectric
environment, whose frequency is in the spectral vicinity of only a single bandedge.
Thus, in order to make a comparison to this theory, we changed the model of our
system described by Equation B.2 and Figure D.1a in the following manner: (i) we
removed the parasitic couplings of the qubit to neighboring unit cells, in order to
simplify the coupling to a single-point coupling, (ii) we increased the size of the
array and moved the qubit to the middle in order to remove boundary effects from
the dynamics, (iii) we reduced the overall coupling of the qubit to the metamaterial
waveguide so it predominantly couples to only the bandedge it is least detuned from.
Note, however, that the dispersion relation of the waveguide is different than the
dispersion assumed in Ref. [55]. Nonetheless, above the bandedge, we see good
qualitative agreement between the dynamics modeled both by the modified model
and the population equation of motion derived in Ref. [55] (in particular, equation
2.21), with both simulations exhibiting very similar oscillatory decay to what is
observed in Figure D.1b and 4.2b. This further confirms our interpretation of the
early-time non-Markovian dynamics in Figure 4.2 discussed in Chapter 4: that the
non-exponential oscillatory decay is due to the interaction between the qubit and the
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Figure D.2: a Full circuit model used in simulations. All inductors were made equivalent, with
inductance 𝐿0. Parameters are further discussed in the text. b Simulation of Figure 4.2b dataset.
Intensity plot is of energy in the faux-qubit resonator normalized by the initial energy; this simu-
lated time-dependent normalized energy corresponds directly to the qubit’s excited-state population
measurements of Figure 4.2b. Simulation parameters are described in the text. Bandedges are
highlighted in dashed yellow lines, while dashed black lines are guides to the eye. c Simulation of
Figure 4.1d dataset. Circuit model and simulation parameters are described in the text. Simulations
were done with the aid of the Microwave Office software package.

strong spike in the density of states at the bandedge.

D.2 Circuit Simulations
In addition to dynamical master equation simulations, we also performed modeling
via classical circuit analysis, where the qubit is represented by a linear resonator; this
is an accurate representation of the qubit-waveguide system in the single-excitation
limit. Time-resolved dynamical simulations were performed with the LTSpice
numerical circuit simulation package, while frequency response simulations were
performed with Microwave Office and standard circuit analysis. Our model, shown
in Figure D.2, assumes the following metamaterial waveguide parameters: 𝐶2𝑔 =
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92.5 fF, 𝐶1𝑔 = 7.8 fF, 𝐶𝑔 = 5.02 fF, 𝐶2 = 273 fF, 𝐶1 = 351.2 fF, 𝐶0 = 353.2 fF,
and 𝐿0 = 3.099 nH, which were obtained from fitting the transmission through the
metamaterial device shown in Figure 4.1a with the qubit detuned away (600 MHz)
from the upper bandedge. While in principle there are three independent parameters
for every resonator (capacitance to ground, coupling capacitance, and inductance to
ground), the set of metamaterial parameters above in addition to the qubit parameters
were sufficient to achieve quantitative agreement between simulations and our data.

Our model utilizes a qubit capacitance (excluding the capacitance to the metamaterial
waveguide) of 𝐶Σ = 77.8 fF, which, when assuming 𝐸𝑐 ≈ −ℏ[, is consistent with
measurements of the anharmonicity that was extracted by probing the two-photon
transition between the |𝑔⟩ and | 𝑓 ⟩ states. Furthermore, in the model we coupled
the qubit to the first, third, and fourth resonators of the array, with capacitive
couplings 𝐶1𝑞𝑔 = 0.16 fF, 𝐶3𝑞𝑔 = 1.9 fF, and 𝐶4𝑞𝑔 = 0.25 fF, while 𝐶2𝑞𝑔 = 0 fF, for
reproducing both the dominant and the subtle features in the measured data due to
the same reasons described in the preceding discussion.

Time Domain
Figure D.2b shows the simulated dynamics of our circuit model as a function of
bare qubit frequency (where the qubit inductance was swept to change the bare
qubit frequency). It is evident that there is agreement between Figure D.2b and the
measured data in Figure 4.2b, indicating that our circuit model captures the salient
dynamical features of our measured data. Moreover, we find excellent agreement
between our circuit model and the tight-binding model presented in the preceding
discussion, which was expected given that the parameters of the circuit model map
nearly directly to the parameters of the tight-binding model. Thus, both models are
appropriate for analyzing the data of Figure 4.2, and the insights into the system
gained from the tight-binding model in the preceding discussion directly carry over
to this circuit model.

Frequency Domain
In addition to time-domain simulations of our circuit model representing the fabri-
cated qubit-waveguide system, in Figure D.2c we plot an intensity color plot of the
transmission through the slow-light waveguide as the bare qubit frequency is tuned
across the passband using the circuit model (c.f., the corresponding measurement
data plotted in Figure 4.1d). Note that in order to capture the background transmis-
sion levels as well as the interaction of the qubit with the background transmission,
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we included a small direct coupling capacitance of 0.75 fF between the first and
last resonators of the array. These two resonators have the largest crosstalk. This is
due to the large portion of charge contained in the interdigitated capacitors between
the resonators and the input-output waveguides. In simulations without this back-
ground transmission, the qubit mode break-up near the bandedge and signatures of
the bound-state outside of the passband were significantly weaker.

In addition, the series capacitance of the boundary resonators coupled to the input-
output waveguides was made 7 fF higher than the series capacitance of the boundary
resonators coupled to the short CPW section in the bend, which is due to the
proximity of the large bondpads used to probe the waveguides. Our simulations are
in excellent qualitative agreement with the data presented in Figure 4.1d. They also
capture the spectroscopic non-Markovian features of our data — the repulsion of the
bound state’s energy from the bandedge and the persistence of the bound state even
when the bare qubit frequency overlaps with the passband (see Refs. [78, 102, 103]
for further details).

D.3 Modeling of Qubit Coupled to Dispersion-less Waveguide in Front of a
Mirror

In this section we present modeling of the time-delayed feedback phenomenon
described in the Chapter 4. Here, we employ a dispersion-less waveguide in our
model instead of our slow-light waveguide in order to compare our data to the
dynamics of an ideal scenario where pulse distortion and propagation losses are
absent. We employ a dispersion-less waveguide with equivalent round-trip delay of
= 227 ns to the slow-light waveguide. The theoretical model we use is described at
length in Ref. [131]; below we briefly summarize the derivation of the model found
in this reference.

Ref. [131] starts with the following Hamiltonian, where the coupling to different
waveguide modes is now allowed to vary as a function of 𝑘 ,

�̂� = 𝜔𝑔𝑒 |𝑒⟩ ⟨𝑒 | +
∫

𝑑𝑘𝜔𝑘 �̂�
†
𝑘
�̂�𝑘 +

∫
𝑑𝑘𝑔𝑘

(
�̂�
†
𝑘
�̂�− + �̂�𝑘 �̂�+

)
, (D.1)

and the same single-excitation ansatz of Equation 3.14, but with time-dependent
coefficients 𝑐𝑒 (𝑡) and 𝑐𝑘 (𝑡) (and where a continuum of modes is already assumed).
Following similar analysis to section 3.2, Equations D.1 and 3.14 are substituted
into the time-dependent Schrödinger equation 𝜕𝑡 |𝜓(𝑡)⟩ = −𝑖�̂� |𝜓(𝑡)⟩, and after
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collecting terms and going into the rotating frame of the qubit, the authors arrive at
the following system of coupled differential equations:

¤𝑐𝑒 (𝑡) = −𝑖
∫

𝑑𝑘𝑔𝑘𝑐𝑘 (𝑡), (D.2)

¤𝑐𝑘 (𝑡) = −𝑖Δ𝑘𝑐𝑘 (𝑡) − 𝑖𝑔𝑘𝑐𝑒 (𝑡), (D.3)

where Δ𝑘 = 𝜔𝑔𝑒 − 𝜔𝑘 . The authors then explicitly integrate Equation D.3 to
obtain a solution for 𝑐𝑘 (𝑡), and substitute that solution into Equation D.2. In
order to evaluate the resultant equation of motion for 𝑐𝑒 (𝑡), the authors make the
following assumptions: (i) they assume the dispersion is linearized around the
qubit frequency such that 𝜔𝑘 = 𝜔𝑔𝑒 + 𝑣(𝑘 − 𝑘0), where 𝑣 is the group velocity,
and (ii) 𝑔𝑘 =

√︁
Γ1D𝑣/𝜋 sin 𝑘𝑥0, where 𝑥0 is the qubit position in the waveguide.

The particular form of 𝑔𝑘 is chosen by asserting that the field assumes a sin 𝑘𝑥
spatial profile such that the field fulfills the boundary condition of being zero at
the waveguide termination; thus the field strength at the qubit is sin 𝑘𝑥0. With
these expressions for 𝜔𝑘 and 𝑔𝑘 , the resultant equation of motion for 𝑐𝑒 (𝑡) can be
simplified to the following form

¤𝑐𝑒 (𝑡) = −Γ1D
2
𝑐𝑒 (𝑡) +

Γ1D
2
𝑒𝑖2𝑘0𝑥0𝑐𝑒 (𝑡−)\ (𝑡−), (D.4)

where 𝜏d is the round-trip delay and \ is the heavyside step function; the first term on
the right-hand side is responsible for the decay of the qubit, while the second term
is responsible for photon re-absorption. Equation D.4 is finally solved via methods
described in Ref. [215], yielding the following analytic expression for the dynamics
of a qubit excited-state population when coupled to a semi-infinite dispersion-less
waveguide:

𝑐𝑒 (𝑡) = 𝑒Γ1D𝑡/2
∑︁
𝑛

1
𝑛!

(
Γ1D
2
𝑒𝑖𝜙+Γ1D/2

)𝑛
× (𝑡 − 𝑛)𝑛\ (𝑡 − 𝑛), (D.5)

where 𝜙 = 2𝑘0𝑥0 is the round-trip phase gained by the propagating emitted pulse.

Substituting Γ1D/(2𝜋) = 21 MHz and = 227 ns into Equation D.5, we obtain
the magenta curve plotted in Figure 4.3b. As discussed in Chapter 4, our measured
dynamics compare favorably to the ideal scenario of no dispersion-induced distortion
of the traveling emitted pulse, as well as no propagation losses, captured by the model



120

0 200 400 600

0

10-1

0

10-1

0

10-1

0

10-1

0

10-1

Time (ns)

P e

Figure D.3: Replots of the five (white) line cuts of Figure 4.3c, with accompanying theoretical
predictions for emission of a qubit into a dispersionless, lossless semi-infinite waveguide. In the
theoretical model, was maintained fixed for all simulations, while the qubit emission rate Γ1D and
round-trip phase 𝜙 were allowed to vary as fit parameters to capture the effects of the changing
flux-modulation amplitude, which not only changes Γ1D but also causes a residual DC-shift of the
average qubit frequency [159], which in turn affects 𝜙. Moreover, a thermal qubit population of
2.4% was assumed. From top panel to bottom panel, the fit parameters Γ1D and 𝜙 are, respectively:
Γ1D/2𝜋 = 0.17 MHz, 𝜙 = 𝜋/2.6; Γ1D/2𝜋 = 0.6 MHz, 𝜙 = 𝜋/2.6; Γ1D/2𝜋 = 1.8 MHz, 𝜙 = 𝜋/2.1;
Γ1D/2𝜋 = 5 MHz, 𝜙 = 𝜋/2.6. Note that the parameter 𝜙 has negligible effect for dynamics involving
large Γ1D where revival events are clearly discernible, and for dynamics involving small Γ1D, 𝜙 simply
modulates the emission rate . However, for intermediate Γ1D such as Γ1D/2𝜋 = 0.6 MHz, 1.8 MHz,
the shapes of the population dynamics curves are sensitive to 𝜙.

discussed above. Thus, the limited recurrence observed can be mostly attributed to
emission into the open end of the waveguide, as well as inefficient re-absorption of
the emitted wavepacket due to its exponential shape.

In addition, in Figure D.3 we have also plotted similar comparisons between this ideal
model of the observed time-delayed feedback phenomenon, and the data shown in
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Figure 4.3c. For this comparison, we choose to plot the five line cuts plotted in white
in Figure 4.3c, along with comparisons to the theoretical model. The agreement
between the two for all five curves is similar to the agreement observed in Figure
4.3b. Quantification of the non-Markovianity of the discussed model under various
parameters is presented in Ref. [89]; however, as the reference notes, there are many
competing manners to quantify non-Markovianity.
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A p p e n d i x E

SUPPLEMENTARY INFORMATION FOR CHAPTER 5 -
DEVICE CHARACTERIZATION, MODELING, AND CONTROL

METHODS

E.1 Device Characterization
Slow-Light Waveguide
As discussed in the 2D cluster state generation protocol proposed in ref [60], one
of the dimensions of the resultant cluster state is limited by the number of photons
that can be held in the delay line simultaneously, necessitating a delay line with
a sufficiently large round trip time 𝜏d. In this work, we realize such a delay line
via implementation of a slow-light waveguide (SLWG), which provides large group
delay for time-delayed feedback. In addition, the SLWG also provides spectral
constriction of propagating modes to a passband with a finite bandwidth, where
the photonic density of states (DOS) sharply decreases at the bandedges and is
negligible outside the passband, thus enabling selective emission of the𝑄𝐸 ’s | 𝑓 ⟩ −→

Figure E.1: Single-Ended Coupled Resonator Array Slow-Light Waveguide Characterization.
a False-colored optical image of the end of the slow-light waveguide that is connected to the CPW
output waveguide, including the “tapered" boundary matching circuit consisting of the last two
resonators. The mirror qubit shunt capacitance is false colored in green. b Full circuit model of the
slow-light waveguide and coupled qubits. c Transient response of slow-light waveguide with narrow-
band input pulses of frequencies near around the passband. See Appendix text for further details.
d Transmittance of the tapered end of slow-light waveguide, calculated from the data in subfigure c
and a separate measurement of round-trip loss. e Photon flux of emitter qubit emission, measured for
400 ns. After one round-trip delay of the slow-light waveguide, the initially non-transmitted portion
of the qubit’s emitted pulse can be observed.
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|𝑒⟩ transition, as discussed in Chapter 5. The SLWG is physically realized as a
periodic array of capacitively coupled lumped-element superconducting microwave
resonators, with low resonator loss and negligible resonator frequency disorder, as
was demonstrated in our prior work [185].

The SLWG is implemented by periodically placing 𝑁 = 50 unit cells across the
device as seen in Figure5.1b. At the output side of the SLWG, the Bloch impedance
of the SLWG is matched to its output 50 Ω CPW via a “taper section" comprised
of two lumped element resonators. Crucially, in order to prevent distortion of 𝑄𝐸

photon emission, at the terminated side of the single-ended SLWG a capacitance to
ground via a long capacitive wing is placed at the left of the first unit cell resonator
(Figure5.1c), thus maintaining the resonance frequency of the first resonator to be
the same as the frequency of the other resonators, which ensures monotonic emission
from 𝑄𝐸 (as observed in separate modeling).

The corresponding circuit model of the SLWG waveguide coupled to 𝑄𝐸 and 𝑄𝑀

is depicted in Figure E.1b. In the regime of 𝐶𝑔 ≪ 𝐶0, the dispersion of the SLWG
is approximately

𝜔𝑘 = 𝜔𝑝 + 2𝐽 cos (𝑘), (E.1)

where 𝜔0 = 1/
√
𝐿0𝐶0 is the resonance frequency of unit cell resonators, 𝐽 = 𝜔0

𝐶𝑔

2𝐶0
,

𝜔𝑝 = 𝜔0 − 2𝐽 is the center frequency of the passband, and the passband width is
4𝐽. To mitigate the deleterious effects in the time-domain shape of emitted photons
emerging from the higher-order dispersion [216], a sufficiently large 𝐽 is required.
On the other hand, our requirement for large group delay 𝜏𝑑 = 𝑁

𝐽
necessitates a

sufficiently small 𝐽. In order to balance the conflicting requirements of large delay
and manageable dispersion, we chose 𝐽 = 33.5 MHz as a target parameter that
corresponds to the round-trip delay of 𝜏𝑑 = 237 ns.

We thus aimed for the following target circuit parameters: 𝐿0 = 3.1 nH, 𝐶0 = 353
fF, 𝐶𝑔 = 5.05 fF, 𝐶1 = 347 fF, 𝐶1𝑔 = 8.6 fF, 𝐶2 = 267 fF, and 𝐶2𝑔 = 87 fF, yielding
𝐽/2𝜋 = 33.5 MHz, 𝜔𝑝/2𝜋 = 4.744 GHz, and the requisite impedance matching at
the boundary. As seen in FigureE.1a, in the taper section the increased coupling
capacitances are implemented as longer capacitive wings or interdigitated capacitors,
and adjustments to the resonance frequencies are achieved by both shortening the
length of the meandered lines and modifying the head capacitances. In addition,
the coupling capacitances of 𝑄𝐸 and 𝑄𝑀 to their respective unit cells, as depicted
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in Figure5.1c and FigureE.1a, were designed to be 2.41 fF and 5.37 fF, respectively.
This yields the qubit-unit cell coupling 𝑔𝑢𝑐 = 38.5 MHz of𝑄𝐸 and 𝑔𝑀𝑢𝑐 = 85.6 MHz
of 𝑄𝑀 via the following relation:

𝑔𝑢𝑐 =
𝐶𝐸𝑞𝑔

2
√︃
(𝐶0 + 2𝐶𝑔) (𝐶𝐸Σ + 𝐶𝐸𝑞𝑔)

𝜔𝑝, (E.2)

where 𝑔𝑀𝑢𝑐 is obtained by a similar calculation. As discussed in the next subsection
of the appendix, these small coupling capacitances lead to large emission rates due
to the slow-light nature of the SLWG, where a small group velocity 𝑣𝑔 = 𝜕𝜔

𝜕𝑘
is

commensurate with a large density of states ∼ 1/|𝑣𝑔 |, which enhances emission
rates. [78, 217]

In order to characterize the SLWG, we investigated the transmittance of the SLWG
boundary for an itinerant pulse by sending coherent Gaussian pulses of variable
carrier frequency through the SLWG IN line and measuring their outgoing intensity
at ADC PHOTON after they pass through the device. The measurement result,
comprising distinct features separated in time that correspond to different reflection
events, is shown in E.1c. First, when the pulses arrive at the SLWG boundary,
due to the finite reflectance of the taper section, a fraction of the incident pulse is
reflected (and thus does not enter the SLWG) and is measured as the first bright
feature in FigureE.1c. Next, the transmitted fraction of the pulse propagates through
the SLWG, completes a round-trip, and arrives at the SLWG boundary again. While
a small fraction of the pulse is again reflected due to finite reflectance, most of
the energy transmits through the boundary to constitute the second bright feature
in FigureE.1c. Finally, this reflected fraction of the pulse completes a second
round-trip, and is found as the last bright feature of in FigureE.1c. Note that this
process continues with more round-trips, while the measured data up to the second
round-trip is used for analysis.

We estimated the transmittance 𝑇 of the SLWG boundary via comparing the energy
contained in the second bright feature 𝐸2 and the energy contained in the last bright
feature 𝐸3, where we define the energy of the “feature" 𝐸 =

∫
|⟨𝑉 (𝑡)⟩|2𝑑𝑡, where

𝑉 (𝑡) is the measured voltage at the ADC for a particular “feature." As discussed, the
pulse corresponding to the last bright feature undergoes an additional incidence at
the SLWG boundary and an additional round-trip in the SLWG relative to the pulse
corresponding to the second bright feature. Thus, we can compare their energies
via the following relation:

𝐸3 = 𝑅(1 − 𝐿)𝐸2, (E.3)
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where 𝑅 = 1 − 𝑇 is the reflectance of the boundary, and 𝐿 is the photon loss during
a round trip. By using 𝐿 ≈ 0.13, which is obtained from the measurement of Figure
5.3, we estimate transmittance𝑇 ≈ −1.2 dB at the center of the SLWG passband. The
transmittance, shown in FigureE.1d, is measured for two different bandwidths of the
incident Gaussian pulses, such that the slow pulses (red curve) have approximately
the same bandwidth as photon 1 of the generated cluster state (see Figure 5.5) and the
fast pulses (blue curve) have approximately the same bandwidth as photon 2—4 of
the generated cluster state. The difference of the transmittance between the two cases
demonstrates the necessity of adjustment of the power calibration scaling factor 𝐺
of the output chain according to the bandwidth of the photons (see Appendix F.1 for
further details). Note that we measured 𝑇 via the transient response of the SLWG
because the transient response more directly captured the SLWG transmissivity
for broadband itinerant signals, as well as because the transient response is less
susceptible than the steady-state response to the compounding effects of multiple
reflection events due to all impedance mismatches at the output of the SLWG and
throughout the OUT line.

Additionally, we directly investigated the effect of reflection at the SLWG boundary
on photon pulses emitted from the𝑄𝐸 . For this measurement, shown in Figure E.1e,
a photon pulse with bandwidth of 9.8 MHz is emitted from 𝑄𝐸 prepared in the | 𝑓 ⟩
state via shaped emission. This photon first propagates through the SLWG and is
partially transmitted at the tapered boundary due to the finite transmissivity of the
taper with transmittance 𝑇 ; this transmitted fraction then arrives at the ADC and the
photon flux is measured. Meanwhile, the reflected fraction of the photon undergoes
an additional round-trip in the SWLG, and thus arrives at the ADC time 𝑡 = 𝜏d later,
as seen in Figure E.1e. If this returning portion of the photon field interacts with the
qubit during subsequent photon emissions, it can lead to qubit control errors as well
as an overlap of our desired photon signal with this spurious reflected signal, which
leads to measurement errors. Thus, when generating the four-photon 2D cluster
state presented in Figure 5.5, and the 5-photon state presented in Figure F.4, we had
to ensure that photon emission did not overlap with the returning reflected portion of
previously emitted pulses. Thus, for photons emitted after 𝑡 = 𝜏d into the generation
sequence, their emission time was judiciously chosen to avoid this overlap. This is
why there is a gap in time between the measured photon flux of photon 1 and photon
4 in Figure 5.5c.
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Figure E.2: Emitter and Mirror Qubit Characterization. a Left: measured emission dynamics
of 𝑄𝐸 prepared in |𝑒⟩, where emission to the ground state is induced via flux modulation with
𝜔mod = 450 MHz. Right: fit to tight-binding model of equation (add eq ref). The fit yields SLWG
center frequency of 𝜔𝑝 = 4.823 GHz, 𝑄𝐸 to first unit cell coupling of 𝑔𝑢𝑐/2𝜋 = 35.16 MHz, 𝑄𝐸 to
second unit cell coupling of 𝑔𝑛𝑢𝑐/2𝜋 = 2.27 MHz, and unit cell to unit cell coupling 𝐽/2𝜋 = 33.96
MHz. b Left: measured averaged field of𝑄𝐸 emission with different mirror detuning from the center
of the passband; right: fit to single-excitation Hamiltonian yielding an effective mirror qubit to unit
cell coupling of 𝑔𝑀𝑢𝑐/2𝜋 = 57 MHz. In both cases, the mirror is detuned away from the passband
after the time indicated by the dashed yellow line.



127

Qubits
To characterize the system consisting of 𝑄𝐸 and 𝑄𝑀 coupled to our SLWG, we
performed multiple dynamical measurements. The central parameters of the sys-
tem Hamiltonian, 𝜔𝑝, 𝐽, 𝑔𝑢𝑐, and 𝑔𝑀𝑢𝑐 were obtained via fitting the results from
these measurements to the expected results from a time-domain simulation of a
model Hamiltonian. In the following paragraphs, we discuss how we performed the
measurements, and the simulation methods.

In order to investigate the interaction between 𝑄𝐸 and the SLWG, we measured
the decay dynamics of 𝑄𝐸 prepared in |𝑒⟩ interacting with the SLWG, as found
in FigureE.2a (left). First, 𝑄𝐸 is prepared in the first excited state |𝑒⟩𝐸 , following
which flux modulation of 𝑄𝐸 ’s transition frequency induces an interaction between
a sideband of 𝑄𝐸 and the SLWG. This interaction time (during which the flux mod-
ulation is on) is varied, and the sideband frequency is swept across the passband, as
indicated on the x- and y-axis of FigureE.2a, respectively. Finally, the interaction
is deactivated by turning off the flux modulation, followed by readout of 𝑄𝐸 to
measure the remaining population in |𝑒⟩𝐸 . In this experiment, the flux modula-
tion altered the effective qubit-unit cell coupling rate 𝑔eff

𝑢𝑐 = b𝑔𝑢𝑐, where b is the
sideband amplitude. We implemented b = 0.22 (see Appendix E.2 for details on
flux modulation) in order to slow down 𝑄𝐸 ’s intrinsic emission rate, such that we
were able to perform time-resolved measurements of 𝑄𝐸 ’s dynamics without being
restricted by the limited sampling rate of our instruments. However, the resulting
decay rate is sufficiently strong such that the population in |𝑒𝐸⟩ completely decays
to ground state when the sideband is resonant with the passband of the SLWG, as
seen in FigureE.2a.

The measured decay dynamics are fit to the following tight-binding interaction
picture Hamiltonian (a specific instance of the model described in Appendix B):

�̂�𝐸 = (𝜔𝐸1 − 𝜔𝑝) |𝑒⟩ ⟨𝑒 |𝐸 + 𝑔eff
𝑢𝑐 (�̂�𝐸+ �̂�1 + �̂�𝐸− �̂�†1)

+ 𝑔eff
𝑛𝑢𝑐 (�̂�𝐸+ �̂�2 + �̂�𝐸− �̂�†2) + 𝐽

50∑︁
𝑥=1

(�̂�†𝑥 �̂�𝑥+1 + �̂�𝑥 �̂�†𝑥+1),
(E.4)

where 𝜔𝐸1 is the frequency of the sideband 𝑄𝐸 that is resonant with the SLWG, �̂�𝐸+ ,
�̂�𝐸− are the raising and lowering operators of𝑄𝐸 , �̂�†𝑥 , �̂�𝑥 are the raising and lowering
operators of the unit cell resonator at position 𝑥, 𝑔𝑛𝑢𝑐 is the parasitic coupling rate
of 𝑄𝐸 to the second unit cell resonator, and b = 0.22 is the sideband amplitude that
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renormalizes the following coupling rates to 𝑔eff
𝑢𝑐 = b𝑔𝑢𝑐 and 𝑔eff

𝑛𝑢𝑐 = b𝑔𝑛𝑢𝑐. Note
that 𝑔eff

𝑛𝑢𝑐 accounts for the asymmetry of the decay dynamics at frequencies near the
upper bandedge and the lower bandedge of the SLWG that is observed in the data,
as discussed in [185]. Also note that the interaction time of 𝑄𝐸 with the SLWG
is shorter than 𝜏d, and thus the Hamiltonian terms involving the boundary taper
resonators of the SLWG and 𝑄𝑀 can be neglected in this model.

With this Hamiltonian, we simulated the decay dynamics of 𝑄𝐸 initially prepared
in |𝑒⟩𝐸 for various values of 𝜔𝐸1 , as done in experiment. The fit is performed with
𝜔𝑝, 𝐽, 𝑔eff

𝑢𝑐 , and 𝑔eff
𝑛𝑢𝑐 as fit parameters, yielding 𝜔𝑝 = 4.823 GHz, 𝐽 = 33.96 MHz,

𝑔𝑢𝑐 = 35.16 MHz, and 𝑔𝑛𝑢𝑐 = 2.27 MHz, with the simulated dynamics shown in
Figure E.2a (right), demonstrating excellent agreement to the data.

With these parameters, we calculate the intrinsic Γ1D of 𝑄𝐸 when it is tuned to
the middle of the passband via the formula 2𝑔2

uc/𝐽 [57, 78], where 2𝐽 is the group
velocity (per unit cell) in the middle of the passband, while 𝑔uc also corresponds
to the coupling of the qubit to each propagating mode of the passband (note that
this formula applies to a qubit end-coupled to a waveguide, while for a side-coupled
qubit the effective Γ1D is 𝑔2

uc/𝐽). The dependence of Γ1D on 𝐽 is reflective of the
slow-light effect on the emission dynamics of the qubit, where a smaller 𝐽 leads
to a smaller group velocity 𝑣𝑔 = 𝜕𝜔

𝜕𝑘
, which in 1D systems corresponds to a large

density of states 1/𝜋 |𝑣𝑔 |. Per Fermi’s Golden Rule, a large density of states boosts
emission rates for a given coupling [217]. Thus, due to the slow group velocity of
the SLWG, we are able to achieve strong emission rates without relying on bulky
coupling capacitors of the qubit to the waveguide, and instead achieve sufficient
coupling by simply bringing the qubit island within enough proximity to the unit
cell of the SLWG. This allows us to hew to the qubit design principles outlined in
Ref. [218] that ensure high qubit 𝑇1. Note that we utilize this value of Γ1D for
absolute power calibration of measured field amplitudes (see Appendix F.1).

In addition, the interaction of 𝑄𝑀 with an incident photon pulse as a function of
𝑄𝑀’s frequency was also investigated experimentally. The measurements consisted
of emitting a Gaussian photon pulse from 𝑄𝐸 with a bandwidth of 9.8 MHz and
carrier frequency 𝜔𝑝 via shaped photon emission, followed by rapid tuning of𝑄𝑀’s
frequency to the vicinity of the passband after the photon’s one-way propagation
time of 𝑡 = 𝜏d/2 through the waveguide. This tuning is maintained for the duration
of the emitted pulse’s interaction with the mirror and then is subsequently turned
off. These measurements are performed for various 𝑄𝑀 bias frequencies during the
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rapid tuning; the measured average SLWG output photon field ⟨𝑎out⟩ as a function
of 𝑄𝑀 frequency (see Appendix F.1 for details on measurement of ⟨𝑎out⟩) is plotted
in Figure E.2b (left).

The transmitted fraction of the photon pulse upon the first incidence at the SLWG
boundary is measured as the first bright feature at time 140 ns. When 𝑄𝑀 is
tuned close to the center of the passband (“Mirror ON"), 𝑄𝑀 scatters the photon
pulse with large Γ1D and thus reflects most of the energy, which is observed as
the disappearance of the first bright feature near zero detuning in Figure E.2b.
The second bright feature corresponds to the fraction of the photon pulse that was
reflected at the SLWG boundary, traveled a round-trip through the waveguide, and
subsequently exited the SLWG for measurement. Note that the yellow line in Figure
E.2b corresponds to the time when the 𝑄𝑀 fast flux bias is turned off; thus turning
off the interaction of 𝑄𝑀 with subsequently incident photon fields.

The measured data of Figure E.2b are fit to the expected output photon field, which
is simulated with the following model Hamiltonian

�̂�𝐸𝑀 = �̂�𝐸 (𝑡) + Δ𝑀 (𝑡) |𝑒⟩ ⟨𝑒 |𝑀 + 𝑔𝑀𝑢𝑐 (�̂�𝑀+ �̂�50 + �̂�𝑀− �̂�†50)
+ Δ1�̂�

†
51�̂�51 + Δ2�̂�

†
52�̂�52 + 𝐽1(�̂�†51�̂�52 + �̂�51�̂�

†
52),

(E.5)

where Δ𝑀 (𝑡), Δ1, and Δ2 are the detunings of 𝑄𝑀 , the left taper cell resonator, and
the right taper cell resonator from the center of the passband 𝜔𝑝 respectively, 𝜎𝑀+ ,
𝜎𝑀− are the raising and lowering operators of 𝑄𝑀 , and 𝐽1 is the photon hopping rate
between the taper cell resonators. We replicate the described rapid tuning of 𝑄𝑀

used in the experiment via the Hamiltonian time-dependent termΔ𝑀 (𝑡). In addition,
the external loading of the system to the output 50 Ω waveguide is implemented in
the model via a dissipation collapse operator in the last taper resonator with rate
^ = 148 MHz (calculated from circuit parameters of the system). �̂�𝐸 (𝑡) corresponds
to the Hamiltonian of Equation E.4 where b is time-dependent, which allows us to
model shaped photon emission. The envelope of output field |⟨𝑎𝑜𝑢𝑡 (𝑡)⟩| is obtained
in the simulation via taking the time derivative of the accumulated population in
the zero-excitation ground state. This output field obtained from the simulation is
fit to the measured data by utilizing Δ1, Δ2, 𝑔𝑀𝑢𝑐, and 𝐽1 as fit parameters, yielding
Δ1 = −6 MHz, Δ2 = −70 MHz, 𝑔𝑀𝑢𝑐 = 57 MHz, and 𝐽1 = 45.4 MHz. The simulated
dynamics, shown in Figure E.2b (right), demonstrates excellent agreement to the
data.
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In our modeling, the non-zero Δ1 and Δ2 fit values account for the asymmetry of the
measured photon field at positive detunings of𝑄𝑀 and negative detunings of𝑄𝑀 that
is observed in the data. Moreover, in our model we do not include parasitic couplings
of 𝑄𝑀 to neighboring resonators, and thus any effect of parasitic couplings on the
overall Γ1D and reflectance of 𝑄𝑀 are incorporated into the one effective coupling
rate 𝑔𝑀𝑢𝑐. We note that the fitted value of 𝑔𝑀𝑢𝑐 is consistent with the amount of
transmitted energy from an incident photon that 𝑄𝑀 does not reflect, calculated as
0.02 from the data in Figure 5.3c; this corresponds to a “mirror efficiency" of 0.98
as we have defined it.

Purcell Filter
We perform conventional dispersive readout of the state of our qubits by probing
_/4 coplanar waveguide resonators that are capacitively coupled to the qubits in
the dispersive regime. There is an implicit speed-fidelity tradeoff in such readout
schemes due to the Purcell decay of the qubit into the readout lines mediated by
the readout resonator to which it is coupled. Reducing the Purcell decay without
adding auxiliary circuit components requires reducing the dispersive shift of the
cavity, thus reducing readout SNR, or the readout resonator decay rate ^, thus
reducing readout speed [219]. The common method for bypassing the implicit
speed-accuracy tradeoff of such a readout scheme is to add an extra layer of bath
engineering via a Purcell filter that modifies the environmental impedance seen by
the qubit-resonator system so as to maintain a desirably large ^ (for rapid information
gain about the qubit state) while simultaneously suppressing decay at the qubit center
frequency [206, 219, 220].

A Purcell filter can be modeled by replacing the series impedance of the output
CPW seen by the qubit-resonator system with a frequency-dependent environmental
impedance 𝑍ext(𝜔). Within such a model the qubit Purcell decay is given by [69]:

𝛾filt
𝑃 = ^

𝑔2

Δ2
Re 𝑍ext(𝜔𝑞)
Re 𝑍ext(𝜔𝑟)

, (E.6)

which is just the bare Purcell decay weighted by the ratio of the real impedances of the
external load at the qubit and readout resonator frequencies. Thus, by engineering
the frequency-dependence of 𝑍ext to be matched to the output CPW at𝜔𝑟 , while have
negligible real part at 𝜔𝑞, we can surpress Purcell decay while efficiently probing
the readout resonator.

A coupled resonator array, such as the one we use to implement the SLWG used in
our experiment, can be used as a Purcell filter due to its highly flexible impedance
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properties, allowing for a purely imaginary Bloch impedance at frequencies outside
of its passband and a purely real Bloch impedance inside [109]. Ideally this allows
for complete extinction of qubit Purcell decay by placing𝜔𝑄 outside the passband of
the array, while maintaining high readout speed by placing 𝜔𝑟 within the passband.
In essence, the coupled resonator array has a large nonzero density of states through
which the readout resonator can decay if 𝜔𝑟 is within the passband, while having no
density of states, and thus no available decay channels, at the qubit frequency [185].

To that end, we engineered a Purcell Filter Waveguide (PFWG) serving as a single
Purcell filter for the two readout resonators of both the emitter and mirror qubits.
The Purcell filter, which can be seen in Figure E.3a, b, extends between two ports of
our device and replaces the usual CPW readout lines to which readout resonators are
coupled to on chip. It has the same circuit topology as the SLWG designed for the
cluster state generation scheme, comprising 54 lumped-element resonator unit cells
coupled to their nearest neighbors capacitively. Referring to the model of Figure
E.3b, the following circuit parameters: 𝐿′0 = 1.2 nH, 𝐶′

0 = 323.5 fF, 𝐶′
𝑔 = 19.5 fF,

𝐶′
1 = 315.0 fF, 𝐶′

1𝑔 = 27.4 fF, 𝐶′
2 = 218.2 fF, 𝐶′

2𝑔 = 126.4 were targeted for the
PFWG using the same principles employed in designing the SLWG.

The transmission spectrum of the PFWG, including the two resonances of the
readout resonators, can be seen in Figure E.3 c. The passband of the PFWG is
situated from 7.24 GHz to 7.9 GHz so as to safely encompass the resonances of
both 𝑄𝐸 and 𝑄𝑀 readout resonators centered at 𝜔𝑅𝑀 ∼ 7.4 GHz and 𝜔𝑅𝐸 ∼ 7.7
GHz respectively, while excluding the entire tuning ranges of the qubits and the
frequency of a pump tone at ∼ 7.95 GHz used for driving a Josephson Travelling
Wave Parametric Amplifier (TWPA) for output signal amplification.

The readout resonators are inductively side-coupled to the PFWG by bringing the
current antinode of the _/4 resonator into close proximity to the grounded end of a
unit cell’s meander trace, as can be seen in Fig E.3a, for a target resonator decay rate
of ^ = 10 MHz. Due to geometric constraints each resonator was coupled to one
of the eleventh unit cells of the PFWG counted from its ends. Note that we chose
inductive coupling to the PFWG via the current antinode of the resonator because that
afforded strong coupling to the PFWG, while still allowing for capacitive coupling
to the qubit at the resonator’s charge antinode.

The readout-unit cell coupling strength was adjusted in design by changing the
distance between the last airbridge of the readout resonator and the current antinode
of the resonator near the meander trace of the PFWG unit cell. Moving the airbridge
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Figure E.3: Purcell Filter Waveguide and Readout Characterization a False-colored optical
image of the on-chip Purcell filter waveguide. The image on the right depicts one end of the Purcell
filter waveguide, while the image on the left depicts the unit cell inductively coupled to one of the
CPW readout resonators of the qubits b Full circuit model of the Purcell filter and an inductively
coupled readout resonator. c Transmission spectrum of the full Purcell filter waveguide with two
side-coupled readout resonators 𝑅𝐸 and 𝑅𝑀 . d Log-linear raw histogram of single-shot readout
measurement results for 100,000 ground-state preparations and 100,000 excited-state preparations.
Solid lines are fits to a bimodal normal distribution. Readout fidelity = 97.6% was obtained from
this histogram.
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closer to the coupling point reduces the overall strength of the inductive coupling,
while moving it away increases the strength. We believe the presence of the airbridge
screens the extent of magnetic fields generated by the current near the coupling point
and thus reduces the overall overlap volume of fields generated by the resonator
and the PFWG unit cell. The fabricated resonator decay rate was found to be
approximately ^ ∼ 11 MHz. Moreover, the dispersive shift of the readout resonator
was measured to be 2𝜒 = 4.2 MHz for a qubit-readout resonator detuning of
Δ = 1.45 GHz, yielding a qubit-resonator coupling strength 𝑔 ∼ 140 MHz that
agrees well with the design value. The measured Purcell-protected 𝑇1 time of 𝑄𝐸

at its upper sweet spot was measured to be 20`𝑠, which is more than one order of
magnitude larger than what would be expected in the absence of a Purcell filter; we
believe this 𝑇1 is ultimately limited by sample loss.

In order to optimize 𝑄𝐸 ’s single shot readout, we first found the readout probe
pulse carrier frequency and length that maximized the complex voltage contrast
between the readout transmission when 𝑄𝐸 was initialized to either |𝑔⟩ or |𝑒⟩. Due
to the distorting effects of the ripples in the PFWG transmission spectrum, the
optimal frequency of the readout probe tone was found empirically. We also chose
the optimal readout power by maximizing contrast while avoiding any powers that
led to spurious features in the 2D single-shot readout signal histograms in the IQ
plane (which we attributed to readout-induced qubit transitions). To characterize
the readout fidelity we prepared 𝑄𝐸 in either the |𝑔⟩ or |𝑒⟩ state, and measured
histograms of demodulated single-shot signals resulting from probing the readout
resonator. These histograms were fit to a double-Gaussian model seen in Fig E.3 d.
from which a ground-excited discrimination boundary was determined. The readout
fidelity with respect to this discrimination boundary was found to be 97.6%; this
high single-shot readout fidelity was an important resource for the joint qubit-photon
measurements required for the quantum process tomography of the 𝐶𝑍 gate used in
the cluster state generation protocol.

E.2 Flux Control for Shaped Photon Emission and Qubit-Photon CZ Gate
As alluded to in Chapter 5, sophisticated flux control techniques for dynamical
control of the qubit frequency were critical in achieving both shaped photon emission
as well as a high-fidelity qubit-photon CZ gate. Below we present a summary of
the techniques we employed in order to achieve distortion-free square flux pulses at
𝑄𝐸 and 𝑄𝑀 , and precise control of the time-dependent coupling between 𝑄𝐸 and
the SLWG via flux modulation.
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Figure E.4: Reconstructed step response of flux line with and without “Cryoscope" distortion pre-
compensation. The pulse sequence used for reconstructing the step response is illustrated as an inset;
see Appendix E.2 text for further details.

Distortion Pre-Compensation of Square Flux Pulses
Contributions from dilution refrigerator wiring to signal distortions from flux con-
trol lines are often temperature dependent, necessitating techniques for in situ
characterization of such distortions via the controlled qubit itself. We used the
so-called “Cryoscope" technique [221], consisting of Ramsey-type measurements
to reconstruct the step-response of the flux line followed by iterative digital pre-
compensation, to mitigate distortion in our 𝑍𝐸 and 𝑍𝑀 lines. With pre-compensation,
we achieved a desired flat step response within ±0.2% of error, as depicted in
FigureE.4, for both qubits. The qubit measurements undertaken to reconstruct the
step response of the flux line are shown in the inset of FigureE.4. We refer the
reader to Ref. [221] for a detailed description of the entire “Cryoscope" process,
and discuss small modifications to what is presented in Ref. [221] below.

Firstly, we observe that we did not require real-time digital filtering given that our
pulse sequences were only ∼ 500 ns in length, and thus chose to use pre-compiled
waveforms in order to have more computational flexibility for pre-distortion. Ad-
ditionally, we note that we observed residual long-time transient responses when
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applying pre-compensated flux pulses, as discussed in Ref. [222]. To address this
problem, rather than waiting for decay of the transient response, a negative copy of
the flux signal is appended at the end of every sequence.

Moreover, when obtaining the reconstructed step response, we found it useful to
digitally filter the ⟨𝑋⟩(𝑡) + 𝑖⟨𝑌⟩(𝑡) data, in order to eliminate data contributions
from phase errors in the gates or population offsets, which manifest themselves
as spurious features in the spectrum of the data. Moreover, we apply oscillating
decaying exponential IIR filters of the form 1+𝐴𝑒−𝑡/𝜏IIR cos (𝜔IIR𝑡 + 𝜙IIR) in addition
to solely decaying exponential IIR filters to achieve better pre-compensation. Finally,
for the FIR short-scale precompensation, we mention that it is important to include
the smoothing effects of the Savitzky-Golay filter in calculation of the predicted
signal from the optimized FIR coefficients.

Photonic Pulse Shaping
As described in Chapter 5, it is important to properly control the time-domain shape
of emitted photon pulses in order to ameliorate the effects from the SLWG’s non-
linear dispersion and to improve the fidelity of the qubit-photon CZ gate. Arbitrary
photon pulse shapes can be achieved by controlling the time-dependent decay rate
of the 𝑄𝐸 , which necessitates a tunable interaction between 𝑄𝐸 and the SLWG.

For flux-tunable transmon qubits, such tunable interaction can be attained via sinu-
soidal flux modulation of the qubit frequency (depicted in Figure2.5a) which induces
a sideband-mediated interaction with the SLWG whose strength is controlled by the
amplitude of the flux modulation AC flux drive [75–77]. In this work, we utilize
amplitude modulated AC flux pulses to dynamically control the sideband interaction
strength between𝑄𝐸 and the SLWG, thereby achieving shaped photon pulses. For a
review of the theory of flux modulation, we refer the reader to Appendix 2.2, where
we note that in that analysis, the two levels of the qubit correspond to the |𝑒⟩ and
| 𝑓 ⟩ levels of 𝑄𝐸 that participate in photon emission in our experiment

In order to achieve a desired time-dependent coupling between𝑄𝐸 and the SLWG, we
must achieve the necessary time-dependent sideband strength b (𝑡) through control
of the AC flux drive amplitude. We are able to accurately predict the necessary
AC flux drive amplitudes to achieve desired values of the sideband amplitude b
by numerical calculation of the “sideband spectrum" of 𝑄𝐸 under flux modulation.
Remembering that we are concerned with emission from the | 𝑓 ⟩ state, for this
calculation, we require the functional form of the qubit tuning curve 𝜔𝑒 𝑓 (Φ), the



136

Figure E.5: Pulse Shaping via Flux Modulation of the Emitter Qubit. a Flux-modulation
waveform used in experiment to generate high-bandwidth photons 2, 3, and 4. The blue curve
corresponds to a dynamic DC correction that is used to maintain the emission frequency constant;
see text for details. b Effective Γ1D (𝑡) obtained from the flux modulation waveform shown in a. c
Energy spectra of qubit emission for a constant flux modulation amplitude that is swept. Left: energy
spectra without DC shift compensation. Right: energy spectra with DC shift compensation, where
DC shifts are calculated theoretically assuming an specific insertion loss in the flux line for the used
𝜔mod.
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static flux biasΦ𝐵, and the strength of the sinusoidal flux driveΦ𝐴𝐶 . We adopted the
analytical form of the transmon tuning curve from ref [79] for accurate calculation
of 𝜔𝑒 𝑓 as a function of Φ, from measurement of the highest qubit frequency, the
lowest qubit frequency, and the anharmonicity [ at the highest qubit frequency.

The sideband spectrum is calculated via the Fourier Transform of 𝑒−𝑖𝜙(𝑡) (with an
example shown in Figure 2.5b), where the 𝑠 = 1 sideband is highlighted in red.
The spectrum yields the different b𝑠, as well as the average “DC shift" of the qubit
frequency 𝛿𝐷𝐶 ≡ �̃�𝑄 − 𝜔𝑄 (Φ𝐵) which depends on both Φ𝐵 as well as Φ𝐴𝐶 . We
can leverage this DC shift effect to obtain a mapping from AC flux amplitude at the
qubit to input AC voltages to the fridge, as illustrated in FigureE.5e. By inducing
𝑄𝐸 emission via flux modulation at various AC input voltages and measuring the
carrier frequency of emitted photons, we observe the average DC shift of the qubit
frequency via the changing carrier frequency of emitted photons. By comparing the
change in photon carrier frequency to numerical predictions of 𝛿𝐷𝐶 , we can obtain
the scaling factor for converting input AC voltages to Φ𝐴𝐶 at the qubit. Meanwhile,
note that we obtain a similar scaling factor for converting static DC bias voltages
to Φ𝐵 at the qubit via measurements of the qubit tuning curve (note that the two
scaling factors are different due to differing DC and AC losses of the flux line).

Thus, we can achieve a desired time-dependent coupling between𝑄𝐸 and the SLWG
via flux modulation, by effecting a time-dependent b (𝑡) via some specific Φ𝐴𝐶 (𝑡).
However, a time-dependentΦ𝐴𝐶 (𝑡) will also lead to a time-dependent 𝛿𝐷𝐶 (𝑡), which
necessitates a “DC correction" signal to maintain the emission frequency constant.
Therefore, we obtain the necessary flux drive Φ(𝑡) = Φ𝐷𝐶 (𝑡) + Φ𝐴𝐶 sin(𝜔mod𝑡)
that achieves a desired b (𝑡) while maintaining a constant emission frequency. This
is achieved by considering a suitable range of AC flux amplitudes, and obtaining
associated Φ𝐷𝐶 correction flux biases for each flux amplitude such that for a given
Φ𝐴𝐶 , overall static qubit bias Φ𝐵, and the flux amplitude-dependent correction
bias Φ𝐷𝐶 , the average qubit frequency �̃�𝑒 𝑓 will be equal to 𝜔𝑒 𝑓 (Φ𝐵); see Figure
E.5e (right) for demonstration of this DC correction procedure for various AC
flux amplitudes. Then, the sideband amplitudes b (Φ𝐵,Φ𝐴𝐶 ,Φ𝐷𝐶) are numerically
calculated for each set of the aforementioned parameter values, with which a desired
b (𝑡) can be mapped to the necessary Φ(𝑡) signal; see Figure E.5c,d for an example.
Finally, we note that under the flux drive Φ(𝑡), the time-dependent decay rate Γ𝑒 𝑓1𝐷 (𝑡)
of 𝑄𝐸 will be equal to Γ

𝑒 𝑓

1𝐷 · |b (𝑡) |2, where Γ
𝑒 𝑓

1𝐷 is the intrinsic decay rate of the | 𝑓 ⟩
state given by ∼ 4𝑔2

𝑢𝑐/𝐽.
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As discussed in Chapter 5, we sought to emit Gaussian-shaped photons for our
cluster state generation sequence, as illustrated in Figure 5.2. We observed, both
numerically and experimentally, that shaped photons with Gaussian spectra could
be emitted by realizing the following sideband amplitude time dependence b (𝑡):

b (𝑡) = b𝑀erf2( 𝑡
𝑡𝑅

+ 𝛿),

erf(𝑡) ≡ 2
√
𝜋

∫ 𝑡

0
𝑒−𝑡

′2
𝑑𝑡′,

(E.7)

where 𝑡𝑅 scales the erf function with respect to time, b𝑀 is the maximum attainable
sideband amplitude at a givenΦ𝐵, and the second line defines the erf function whose
square increases from 0 and converges to 1 smoothly. The spectral bandwidth of the
resultant Gaussian pulse is controlled by 𝑡𝑅, where slow (fast) increase of Γ1D(𝑡)
due to large (small) 𝑡𝑅 leads to small (large) bandwidth. Moreover, the 𝛿 parameter
shifts the entire function with respect to time, such that it reduces the time needed
to reach the maximum sideband amplitude for a given emission time and 𝑡𝑅; this is
useful to further suppress residual | 𝑓 ⟩ population after emission for short emission
times. This parametrized time dependence is plotted in FigureE.6a.

For the photonic pulses shown in Figure 5.54c, photon 1 was generated by realizing
the time-dependent sideband amplitude b (𝑡) of equation E.7 with parameters 𝑡𝑅 = 50
and 𝛿 = 0, yielding a Gaussian pulse with 9.9 MHz bandwidth. However, for
photons 2, 3, 4 we chose to utilize a finite 𝛿 in order to achieve a small | 𝑓 ⟩ residual
| 𝑓 ⟩ population for the photons’ short 30 ns emission time. In order to obtain the best
𝛿, 𝑡𝑅 combination, we modeled and measured experimentally this residual population
after photon emission for a range of 𝛿, 𝑡𝑅 values, as depicted in FigureE.6b, c (see
Appendix E.1 for modeling details). We found that the combination 𝑡𝑅 = 15 ns,
𝛿 = 0.33, suppresses residual | 𝑓 ⟩ state population below 1% and constricts emitted
photon pulses to a short time-bin measurement window, and we chose this parameter
combination for emission of photons 2, 3, 4 depicted in Figure 5.5c. We note that
while higher 𝛿 values in general result in less residual | 𝑓 ⟩ population, large 𝛿 values
also lead to distortions in the emitted Gaussian pulse; thus the parameter choice
𝑡𝑅 = 15 ns, 𝛿 = 0.33 strikes a balance between minimizing residual | 𝑓 ⟩ state
population and maintaining the approximately Gaussian shape of the emitted pulse
with 17.9 MHz bandwidth.

We also note that we realize fast unconditional reset using flux modulation, where
the |𝑒⟩ and | 𝑓 ⟩ state populations are emptied via induced photon emission. First, a
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Figure E.6: High-Bandwidth Photon Emission a Shape of time-dependent coupling effected by flux

modulation, given by the square of the erf function:
��� 2√

𝜋

∫ 𝑡/𝑡𝑅+𝛿
𝑒−𝑡

′2
𝑑𝑡 ′

���2, where 𝑡𝑅 and 𝛿 scale and
shift the erf function with respect to time, respectively. b Residual | 𝑓 ⟩ state population measurement
after photon emission via flux modulation with various 𝑡𝑅 and 𝛿 parameters. c Simulation of the
experiment done in part b using the model of Equation E.4.

constant flux modulation signal that induces emission of | 𝑓 ⟩ to |𝑒⟩ is applied to𝑄𝐸 .
Next, another constant flux modulation signal that induces emission from |𝑒⟩ to |𝑔⟩
is applied to 𝑄𝐸 , bringing it to the ground state. Lastly, we wait approximately 3 `s
after this reset before starting qubit control, in order to allow residual emitted fields
trapped in the SLWG due to finite taper reflections to fully leave the waveguide. We
note that this reset protocol effectively thermalizes 𝑄𝐸 to the SLWG temperature;
indeed we confirm via separate measurements that the resultant |𝑒⟩ thermal popu-
lation is ∼ 1% (corresponding to an effective ∼ 50 mK temperature). Using this
unconditional reset protocol, we generate the 2D cluster state with a conservative
repetition rate of 100 kHz.

E.3 Sources of Infidelity During Cluster State Generation
The main source of infidelity in this work was the poor decoherence rate 𝑇∗

2 = 561
ns of𝑄𝐸 . We ascribe this low 𝑇∗

2 to excessive flux noise given our robust 𝑇1 = 34 `s
(and measured𝑇∗

2 of over 15 `s at its maximum frequency). The Ramsey decay time-
dependence was strongly Gaussian, which suggests that our dephasing is limited by
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1/ 𝑓 noise [61, 223]. In order to properly model 1/ 𝑓 noise, typical Linbladian
master-equation approaches, which assume a Markovian model of decoherence, do
not suffice. We thus modeled the effect of 1/ 𝑓 noise in our cluster state generation
sequence by simulating the state evolution of our joint system of 𝑄𝐸 (here a 3-level
system) and photonic qubits under the influence of a 𝛿(𝑡)𝑐†𝑐 term in the Hamiltonian,
where 𝑐 here is the annihilation operator of 𝑄𝐸 ’s anharmonic mode, and 𝛿(𝑡) is a
random noise signal with noise power spectral density of 1/ 𝑓 . The Hamiltonian
for state evolution is thus comprised of this 𝛿(𝑡)𝑐†𝑐 term, and the time-dependent
Hamiltonian that realizes the pulse sequence depicted in Figure 5.5b.

Many different realizations of this noise are generated in the following manner: a
random FFT spectrum is generated where each FFT bin is a normally distributed
random complex value (and the spectrum is conjugate symmetric), the FFT bins are
scaled according to a 1/ 𝑓 spectrum, and the inverse FFT is taken to arrive at a random
noise signal. We ensure that the generated noise signals are long enough such that
the center frequencies of FFT bins are as low as 50 Hz, in order for the resultant time
signal to have significant power at very low frequencies. Consequently, we only use
small portions of this long noisy time signal as the different realizations of 𝛿(𝑡) in our
simulations (which are confirmed to have a 1/ 𝑓 power spectrum). We simulate state
evolution of our system under different realizations of 𝛿(𝑡) and average the resultant
states in order to obtain the “average" effect of 1/ 𝑓 noise induced dephasing on
the system. We confirm that this simulation approach reproduces Gaussian-shaped
Ramsey decay as well as the “spin-echo" phenomenon; and with full simulation of
our cluster state generation sequence of Figure 5.5b under 1/ 𝑓 noise, we determine
that our𝑄𝐸 dephasing results in an infidelity of ∼ 15% for the final 2D cluster state.

Secondly, the second most significant source of infidelity in our generation scheme
is the round-trip loss of the slow-light waveguide. As seen in Figure 5.3c, the
round-trip loss of the slow-light waveguide corresponds to 13% energy loss for each
photon undergoing a round trip. Note that while a limited detection efficiency [det is
compensated for in heterodyne based state tomography via the scaling factor𝐺, loss
that occurs before the𝐶𝑍 gate, i.e., during state generation, is not considered part of
[det and directly contributes to infidelity. We find that our photon loss contributes to
∼ 5% infidelity. Further, we estimate that control and preparation errors, including
qubit thermal population (measured to be 1%), residual | 𝑓 ⟩ state population after
emission (measured to be 1%), and 𝐶𝑍 gate infidelity, contribute another total ∼
4% infidelity. In total, we estimate a 76% fidelity limit for the generated state,
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which does not take into account measurement errors or other state preparation
errors. This is in good agreement of our measured fidelity of 70%. Finally, we
note that while waveguide dispersion was not a serious impediment for the photonic
state generation that we have presented, it would limit the use of higher bandwdith
photons as compared to what we used.

E.4 Theoretical Analysis of Qubit-Photon “Gate" Errors
The cluster state generation protocol can be theoretically described by the quantum
circuit illustrated in Figure F.5. This quantum circuit consists of single-qubit gates
for controlling 𝑄𝐸 and qubit-photon gates; where the qubit-photon gates are the
CNOT gate and the 𝐶𝑍 gate. While in practice the “CNOT gate" consists of
excitation from |𝑒⟩ → | 𝑓 ⟩ by a single qubit gate and emission from | 𝑓 ⟩, thereby
placing a photon in the SLWG, it can still be instructive to consider this process as
effectively another “gate."

Following a similar analysis to Ref. [60], we calculate the fidelities of these qubit-
photon gates based on experimentally relevant parameters. For the effective CNOT
gate (assuming a perfect |𝑒⟩ → | 𝑓 ⟩ rotation), the main source of infidelity will be
residual population in the | 𝑓 ⟩ state as discussed in Appendix E.2; which essentially
can be regarded as a leakage error where the qubit leaves its computational subspace.
For the𝐶𝑍 gate, the main source of infidelity will be the wavepacket distortion of the
photon after it scatters on 𝑄𝐸 (see Chapter 2.2 for discussion of this phenomenon),
as well a scattering phase different than 𝜋. The wavepacket distortion will lead to the
mode shape of the photon to differ from its true mode-matching function 𝑓 (𝑡) when
the qubit is in the |𝑒⟩ state. This results in a mode-matching inefficiency that can
be regarded as a leakage error where the photon leaves its computational subspace;
i.e., the subspace spanned by vacuum state and the state with an excitation in the
wavepacket mode of interest with shape 𝑓 (𝑡).

We can calculate the average fidelity of gates that suffer from such leakage error
via the formula derived in Ref. [224], where “average fidelity" here corresponds to
assessing the “error" of the gate uniformly over all pure initial states in the system
Hilbert space. The formula derived is given by

𝐹 =
1

𝑑2 + 𝑑

[
Tr

(
𝑀comp𝑀

†
comp

)
+

��Tr
(
𝑀comp

) ��2] , (E.8)

where 𝑀comp = 𝑃𝑈
†
0𝑈𝑃, where 𝑈0 is the target gate and 𝑈 is the effective gate and
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Figure E.7: Theoretical 𝐶𝑍 and CNOT Qubit-Photon Gate Fidelities. Theoretically calculated
qubit-photon CNOT fidelities as a function of residual | 𝑓 ⟩ state population, and theoretically calcu-
lated qubit-photon 𝐶𝑍 fidelities as a function of Γ1D/𝜎, where 𝜎 is the bandwidth of a Gaussian
wavepacket; see Appendix text for more details. The black dashed line indicates the realized values
of residual population and Γ1D/𝜎 in our experiment. For the dashed blue curve, the Gaussian
wavepacket is truncated outside of 2𝜎, where for the solid blue curve the Gaussian wavepacket is
truncated outside of 4𝜎. In our experiment, our emission protocol effectively truncated the Gaussian
pulse outside of 2𝜎.

these are defined on the full Hilbert space of the system including the leakage states,
and 𝑃 is the projection operator onto the computational subspace. Note that 𝑀comp

will not be unitary if there is leakage out of the computational subspace, and this
property will thus lead to a computed infidelity through Equation E.8.

For the CNOT gate, the | 𝑓 ⟩ state residual population directly gives the magnitude
of the leakage. For the CZ gate, the leakage and phase error may be computed by
calculating the mode-matching integral

∫
𝑑𝑡 𝑓 ∗(𝑡)𝑔(𝑡), where 𝑔(𝑡) is the resultant

distorted wavepacket when the 𝑄𝐸 is in the |𝑒⟩ state. Defining the frequency
dependent scattering response of 𝑄𝐸 as 𝑟 (𝜔), we may write in the Fourier basis
𝑔(𝑡) =

∫
𝑑𝜔 𝑓 (𝜔)𝑟 (𝜔)𝑒−𝑖𝜔𝑡 , where 𝑓 (𝜔) is the Fourier Transform of 𝑓 (𝑡). Further,

we note that since the SLWG dispersion is approximately linear in the middle of the
passband and our qubit is “end-coupled" to the waveguide, the scattering response
𝑟 (𝜔) will be approximately given by Equation 2.37. Further, given that Γ1D ≫ Γ′

in our system, we may assume that 𝑟 (𝜔) = 𝑒𝑖\𝑟 (𝜔) , where the magnitude of 𝑄𝐸 ’s
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scattering response is unit-valued for all frequencies. By calculating the overlap
integral in the Fourier basis, we arrive at the following result:

∫
𝑑𝑡 𝑓 ∗(𝑡)𝑔(𝑡) =

∫
𝑑𝜔 | 𝑓 (𝜔) |2𝑒𝑖\𝑟 (𝜔) , (E.9)

where it is evident that the overlap integral is simply the “weighted average" of the
scattering phase across the wavepacket’s power spectrum. Thus, if the wavepacket’s
bandwidth is significantly smaller than the “width" of 𝑟 (𝜔), which is set by Γ1D,
then this weighted average of the phase will be approximately equal to -1.

In Figure E.7 we plot fidelities for the 𝐶𝑍 and CNOT gates that were numerically
calculated via Equation E.8. For the CNOT gate we calculate the fidelity as a
function of residual population, where for the purposes of this calculation the
following CNOT matrix element is given by ⟨11|CNOT|10⟩ =

√︁
1 − 𝑝res, where

𝑝res is the residual population (and all other matrix elements are standard). Further,
for the CZ gate we assume a Gaussian wavepacket with width 𝜎, we assume that
𝑟 (𝜔) is given by Equation 2.37, and we calculate the fidelity as a function of Γ1D/𝜎,
where the 𝐶𝑍 matrix element ⟨11|𝐶𝑍 |10⟩ =

∫
𝑑𝑡 𝑓 ∗(𝑡)𝑔(𝑡) (and all other matrix

elements are standard). We indicate with a dotted line the expected theoretical gate
fidelities given our experimental parameters of Γ

𝑒 𝑓

1D/𝜎 ∼ 1/14 and 𝑝res ∼ 0.01.
Moreover, for the 𝐶𝑍 fidelity we perform the calculation for a Gaussian pulse that
is truncated 2𝜎 away from the mean, and for a Gaussian pulse that is truncated 5𝜎
away from the mean, where outside the truncation window the pulse amplitude is
set to 0.

From the plotted curves, it is evident that the CZ gate fidelity has a non-linear
dependence on Γ1D, while the CNOT gate has a linear dependence on the residual
population, in agreement with Ref. [60]. Further, we note that the infidelities
calculated here in general are smaller than the magnitude of leakage, because leakage
due to the gate only happens for some of the states of the computational subspace
(for example, no CZ leakage error occurs if the photon is in the |0⟩ state). Finally,
we point out to the reader that although our theoretically expected 𝐶𝑍 gate fidelities
are only 97% given our experimental parameters, by merely increasing Γ1D by a
factor of 3 and minimizing spurious effects of pulse truncation, we can expect a 𝐶𝑍
gate infidelity ∼ 10−4.
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A p p e n d i x F

SUPPLEMENTARY INFORMATION FOR CHAPTER 5 -
TOMOGRAPHY METHODS AND ADDITIONAL RESULTS

F.1 Radiation Field Quantum State Tomography
In order to characterize generated multipartite entangled photonic states, we utilize
tomography methods for itinerant microwave photons that were pioneered in Circuit
QED systems by Eichler et. al. [161, 225] with suitable modifications when
appropriate for us. Below we present a detailed summary of our entire data analysis
and tomography procedure. We conclude by presenting additional photonic quantum
state preparation and tomography results not presented in Chapter 5. For even
further details on our microwave field measurement and tomography techniques,
see Appendix G.

Measurement of ⟨𝑎out(𝑡)⟩ and
〈
𝑎†out(𝑡)𝑎out(𝑡)

〉
The average photon flux

〈
𝑎†out(𝑡)𝑎out(𝑡)

〉
and average field ⟨𝑎out(𝑡)⟩ of emitted

photons are routinely measured in our experiment for the purposes of characterizing
our shaped photon emission procedure, characterizing different aspects of our time-
delayed feedback process, and obtaining mode matching functions 𝑓 (𝑡) for the
different photonic qubits in order to obtain time-independent statistics from their
time-dependent fields (see rest of Appendix text for further details). Measurement
of both of these quantities for an emitted photon starts with heterodyne measurement
of both quadratures, 𝐼 (𝑡) and 𝑄(𝑡), of its time-dependent microwave field, via the
output chain described in Appendix A. Many measurements are performed and
their results are averaged to compute the average field ⟨𝑉 (𝑡)⟩ = ⟨𝐼 (𝑡) + 𝑖𝑄(𝑡)⟩ and
the the average photon flux ⟨𝑉2(𝑡)⟩ =

〈
|𝐼 (𝑡) |2 + |𝑄(𝑡) |2

〉
. Note that the calculation

of ⟨𝑉2(𝑡)⟩ results in a signal without any carrier frequency, but ⟨𝑉 (𝑡)⟩ retains the
carrier frequencies of 𝐼 (𝑡) and𝑄(𝑡) which must be removed by digital demodulation.

Due to spurious DC shifts in the detection set-up, as well as imbalance and LO
bleedthrough in the downconversion IQ mixer, the spectrum of ⟨𝑉2(𝑡)⟩ and the
demodulated ⟨𝑉 (𝑡)⟩ will have spurious features outside of the baseband signal. In
addition, these band-limited baseband signals will also have significant noise outside
of their bandwidth. These undesirable features serve to obscure the time-dependent
shape of the baseband signal that we wish to measure, and we remove them through
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digital low-pass filtering, with filter bandwidth set to be sufficiently high to capture
all of the baseband signal. At this point, the resultant demodulated and filtered
⟨𝑉 (𝑡)⟩ signal, followed by suitable normalization, can already be used as the mode-
matching function 𝑓 (𝑡), where the normalization is such that

∫
| 𝑓 (𝑡) |2𝑑𝑡 = 1.

Further, with an absolute power calibration of our output chain that maps voltage
measured at the ADC to field amplitude at the qubit (see subsequent subsection for
details on how to obtain this calibration), the digitally processed ⟨𝑉2(𝑡)⟩ and ⟨𝑉 (𝑡)⟩
signals can be suitably scaled to yield the true

〈
𝑎†out(𝑡)𝑎out(𝑡)

〉
and ⟨𝑎out(𝑡)⟩ in units

of photon/s and
√︁

photon/s, respectively. However, for the purposes of plotting in this
manuscript, we presented these quantities in terms of unitless, normalized values
⟨�̃�out⟩ = ⟨𝑎out⟩ /Γ̃−1/2

1𝐷 and
〈
�̃�
†
out�̃�out

〉
=

〈
𝑎†out𝑎out

〉
/Γ̃1𝐷 , where Γ̃1𝐷/2𝜋 = 40.8

MHz is the maximum expected emission rate of the | 𝑓 ⟩ → |𝑒⟩ transition under
flux modulation induced emission (see Appendix E.2 for further details regarding
Γ̃1𝐷). Thus, these normalized quantities express the time-dependent photon flux
and field as a fraction of the maximum expected photon flux and field, respectively,
for an excited qubit with emission rate Γ̃1𝐷 (as an illustrative example, note that for
constant flux modulation with flux amplitude that yields Γ

𝑒 𝑓

1𝐷 (𝑡) = Γ̃1𝐷 ,
〈
�̃�
†
out�̃�out

〉
at 𝑡 = 0 would be equal to 1).

Absolute Power Calibration
In order to perform quantum-state tomography via heterodyne detection, we need
an absolute power calibration that maps voltage measured at the ADC to field
amplitude at the qubit’s location on the device, given by some conversion factor
𝐺. This conversion factor 𝐺 includes the following contributions: the scaling from
the quantum field 𝑎 to the physical voltage on the device, the gain of the output
chain from the first amplifier forward, and the detection efficiency [det. We define
[det such that (1 − [det) corresponds to the fraction of the itinerant photon’s energy
that is lost before it reaches the first amplifier (which in our case is a quantum-
limited TWPA), either due to the loss or spurious reflections that are suffered by
the photon (see Figure E.1e for measurement of such reflections). Generically, 𝐺
is obtained by measuring a signal at the ADC whose power at the qubit can be
independently verified. In our work, we rely on measurement of the AC Stark shift
of the qubit frequency induced by an input pulse on the SLWG as our method for
power calibration.

The procedure for obtaining 𝐺 via AC Stark shift measurements is the following.
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The qubit frequency 𝜔𝑔𝑒 is detuned from 𝜔𝑝 by 740 MHz. A square pulse with
carrier frequency 𝜔𝑝 is sent into the SLWG, for varying input powers. This square
pulse induces an AC Stark shift Δ𝐴𝐶 on the qubit frequency whose magnitude is
dependent on the SLWG input power; this Δ𝐴𝐶 is measured by determining the
resonance excitation frequency of the qubit. The qubit’s resonance frequency is
measured by applying an excitation pulse to the qubit while the SLWG input pulse
is off-resonantly driving the qubit; by sweeping the excitation pulse’s frequency,
measuring the qubit response, and fitting the resultant lineshape to a Gaussian, we
obtain the resonance frequency via the Gaussian’s mean. Repeating this procedure
for all SLWG input powers, we experimentally obtain the dependence of Δ𝐴𝐶 on the
power of the SLWG input pulse. Finally, the amplitude of the SLWG input pulse is
measured at the ADC for all input powers used.

The power dependence of Δ𝐴𝐶 is then fit to the following transmon AC Stark shift
model involving five transmon levels [66]:

�̂� =

𝑁=4∑︁
𝑗=0

( 𝑗Δ + 𝑗 ( 𝑗 − 1)[) | 𝑗⟩ ⟨ 𝑗 | + Ω

2

(√︁
𝑗 + 1 | 𝑗 + 1⟩ ⟨ 𝑗 | + h.c.

)
, (F.1)

where { 𝑗} corresponds to the transmon levels, the SLWG drive frequency is 𝜔𝑝,
Δ = 𝜔𝑔𝑒 − 𝜔𝑝, the transmon anharmonicity is [/2𝜋 = −277 MHz, and Ω is
the Rabi frequency of the SLWG drive. Note that this Hamiltonian is obtained
from the full Hamiltonian of a transmon interacting with a classical drive by
simply going into the rotating frame of the drive (via the unitary transformation
𝑈 = exp

[
𝑖𝑡

∑
𝑗 𝑗 | 𝑗⟩ ⟨ 𝑗 |𝜔𝑝

]
) and discarding counter-rotating terms. Also note

that our model includes multiple transmon levels because the presence of multiple
transitions, along with their associated anharmonicities, quantitatively changes the
theoretically predicted Δ𝐴𝐶 . We found that we needed up to five transmon levels
for the theoretically predicted Δ𝐴𝐶 to converge for our experimental parameters,
whereas beyond five levels changes in the predicted Δ𝐴𝐶 were negligible.

For a qubit coupled to a single-ended waveguide, the Rabi Frequency is given by
Ω = |𝛼 |

√
4Γ1D [73], where |𝛼 | is the field amplitude of the SLWG drive at the qubit,

and for our slow-light waveguide the qubit’s emission rate into the waveguide (at the
center of the passband) is given by Γ1D = 2𝑔2

uc/𝐽 [78]. The parameters 𝑔uc and 𝐽 of
our device were obtained through device characterization experiments described in
Appendix E.1, and were directly used in this model. From this model Hamiltonian,
Δ𝐴𝐶 is numerically calculated in the following manner: first, the Hamiltonian is
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Figure F.1: Absolute Power Calibration via AC Stark Shift of Emitter Qubit. a Pulse sequence
for the AC Stark Shift calibration experiment. An input square pulse with carrier frequency 740 MHz
detuned from the qubit𝜔𝑔𝑒 is sent into slow-light waveguide (SLWG) and drives𝑄𝐸 . Simultaneously,
a qubit excitation pulse is sent into the 𝑋𝑌𝐸 line and arrives at the qubit at the same time the input
SLWG pulse is driving the qubit, for the purposes of determining the resonance frequency of the
AC Stark Shifted qubit. This experiment is repeated for multiple SLWG input pulse powers. b
Level diagram depicting the detuned drive on the qubit from the SLWG, and how that effects an AC
Stark Shift of the qubit frequency. c AC Stark Shift measurement data. The square markers are
the measured qubit frequencies at different SLWG drive amplitudes, while the black line is a fit to
a model of the expected qubit frequency due to off-resonant driving. See the Appendix F.1 text for
more details.
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diagonalized to obtain its eigenenergies. Then, the difference between the energies
of the “dressed" ground state and the “dressed" excited state is obtained, and by
subtracting Δ from this difference Δ𝐴𝐶 is finally obtained.

The fit is performed simply by using |𝛼 | = 𝑉𝐴𝐷𝐶 · 𝐺 in the model, where 𝑉𝐴𝐷𝐶 is
the amplitude of the SLWG input pulse measured at the ADC. By obtaining Δ𝐴𝐶

with 𝐺 as a fit parameter, the fit of the model to the data is shown as the black curve
in Figure F.1c, showing excellent agreement to the data. The obtained fit parameter
𝐺 was henceforth used to scale all radiation field voltages measured at the ADC.
We note that by using a pulsed measurement, rather than a continuous wave (CW)
SLWG input tone, the obtained 𝐺 more accurately captures the contribution of
spurious reflections to the overall [det that is experienced by emitted pulses, and is
significantly less sensitive to ripples in the output chain transfer function.

Measuring Expectation Values of Radiation Field Moments
The time-independent quantum statistics of emitted photons can be extracted from
single shot measurements of their (properly scaled) time-dependent fields by integra-
tion with a suitable mode-matching function 𝑓 (𝑡). This integration

∫
𝑓 (𝑡)𝑎out(𝑡)𝑑𝑡 =

𝐼 + 𝑖𝑄 = 𝑆 can be shown to yield single-shot measurements of the complex quantity
𝑆 = 𝑎 + ℎ†, where 𝑎 is the mode of interest, and ℎ is the noise mode of the detection
chain. By taking many single-shot measurements, one gains access to the statistics
of 𝑎+ℎ†, and similarly, one can also perform many single-shot “dark" measurements
of the noise mode ℎ to obtain its statistics. By calculating the expectation values
of moments of 𝑎 + ℎ† and ℎ from their single shot measurements, the expectation
values of moments of 𝑎 can thus be obtained, which is sufficient to reconstruct the
density matrix of the mode of interest.

The procedure described above can be straightforwardly extended to multiple modes.
For our experiment, the mode-matching function 𝑓𝑖 (𝑡) for each photonic time-bin
qubit is obtained by direct measurement of the average pulse shape

〈
𝑎𝑖,out(𝑡)

〉
. This

allows for single-shot measurements of 𝑆𝑖 = 𝑎𝑖 + ℎ†𝑖 for every photon, which are then
processed into joint moments S of the form

〈
(𝑆†1)

𝑛1𝑆
𝑚1
1 (𝑆†2)

𝑛2𝑆
𝑚2
2 ...(𝑆†

𝑁
)𝑛𝑁 𝑆𝑚𝑁

𝑁

〉
.

Given that our emitter qubit is a single-photon source, we take 𝑛𝑖, 𝑚𝑖 ∈ {0, 1} by
assuming that the Hilbert Space of the photonic modes can be restricted to the
single-photon manifold subspace. Note that we have experimentally verified the
single-photon character of our emitted photons (for each time-bin photonic qubit)
via measurements of

〈
(𝑎†)2𝑎2〉 for various prepared photonic states, which are
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plotted in Figure F.2. The measured
〈
(𝑎†)2𝑎2〉 moments are close to 0 for all

prepared photonic states, corresponding to a vanishing second-order correlation
function 𝑔(2) (0) at zero time delay.

In turn, the joint photon moments
〈
(𝑎†1)

𝑛1𝑎
𝑚1
1 (𝑎†2)

𝑛2𝑎
𝑚2
2 ...(𝑎†

𝑁
)𝑛𝑁 𝑎𝑚𝑁

𝑁

〉
∀ 𝑛𝑖, 𝑚𝑖 ∈

{0, 1} can be calculated from algebraic formulas involving the measured joint mo-
ments S and the measured moments

〈
ℎ
†
𝑖
ℎ𝑖

〉
under the following simplifying as-

sumptions: the signal modes 𝑎𝑖 are uncorrelated from the noise modes ℎ𝑖, the noise
modes ℎ𝑖 are not correlated to one another, and odd-order moments of ℎ𝑖 are taken
to be zero. These assumptions are appropriate when the noise modes ℎ𝑖 are in
a thermal state, which is typically the case when the main added noise source of
the output chain is amplifier noise (note that these assumptions were also verified
experimentally). It can be shown that the expectation values of these joint photon
moments is sufficient to uniquely reconstruct the density matrix of a multipartite
state of 𝑁 photonic qubits. While algebraic formulas relating the density matrix
elements to the joint photon moments can be derived, we instead reconstruct the
density matrix of generated photonic states via a maximum-likelihood estimation
(MLE) algorithm that uses the obtained joint photon moments as input (for more
details, see the next subsection).

MLE
We reconstruct the quantum state of the entangled microwave photons using a
maximum-likelihood estimation (MLE) state tomography technique under the fol-
lowing assumptions: (1) the Fock spaces of the bosonic modes representing indi-
vidual time-bin photonic qubits can be restricted to the single excitation manifold
(i.e., the Hilbert space spanned by Fock states |0⟩ and |1⟩), and (2) the distributions
of the sample means of the moments of the measured photonic fields are well ap-
proximated by normal distributions in the case of many samples (i.e., the statistical
central limit theorem holds for the distributions of the means of these moments).

In statistics a likelihood functional L(𝐷 |𝐻) is a function on a set 𝐷 of observed
statistical data sampled from a system which, assuming some underlying parame-
terization 𝐻 of the system, returns a value proportional to the probability that the
assumed parameterization would result in the observed data. Thus L encapsulates
how “likely" a set of observations is under certain assumptions on the system. Given
a dataset of observations 𝐷, MLE techniques aim to explore the space of parameter-
izations of a system to find the one that maximizes a chosen likelihood functional.
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Figure F.2: Magnitude of measured moments ⟨𝑎⟩ (red circles), ⟨𝑎†𝑎⟩ (blue circles), and ⟨(𝑎†)2𝑎2⟩
(gray circles), for emitted photon pulses from 𝑄𝐸 when it is prepared in state |𝜓⟩𝐸 = cos (\/2) |𝑒⟩ +
sin (\/2) | 𝑓 ⟩. Dashed black lines are ideal expected moments given a qubit rotation angle \.

Our specified goal is to find the quantum state �̂� of 𝑁 photons that best approximates
the actual photonic state we have prepared with our protocol. Thus to proceed with
an MLE approach to this state tomography problem we must identify a dataset 𝐷 we
intend to collect and a likelihood functional L(𝐷 |𝜌) over which we will optimize
𝜌.

To identify a sufficient dataset and associated likelihood functional for MLE state
tomography of 𝑁 entangled photons, note that for a single bosonic mode 𝑎 con-
strained to the single excitation manifold, it suffices to know the expectation values
⟨𝑎⟩, ⟨𝑎†⟩, and ⟨𝑎†𝑎⟩ to uniquely reconstruct the quantum state of the mode. This
is so because linear combinations of these operators along with the identity, when
restricted to the Hilbert space of a two-level system, can reconstruct the single-qubit
operators 𝜎𝑥 , 𝜎𝑦, and 𝜎𝑧 whose expectation values uniquely determine an arbitrary
single-qubit state. In a similar way, unique reconstruction of the state of a joint
system of 𝑁 bosonic modes each restricted to their single-excitation manifold can
be accomplished if all 22𝑁 expectations of the joint moments of the system of the
form

〈
(𝑎†1)

𝑛1𝑎
𝑚1
1 (𝑎†2)

𝑛2𝑎
𝑚2
2 ...(𝑎†

𝑁
)𝑛𝑁 𝑎𝑚𝑁

𝑁

〉
∀ 𝑛𝑖, 𝑚𝑖 ∈ {0, 1} are known.

Consider 𝐴 𝑗 ∈ {(𝑎†1)
𝑛1𝑎

𝑚1
1 (𝑎†2)

𝑛2𝑎
𝑚2
2 ...(𝑎†

𝑁
)𝑛𝑁 𝑎𝑚𝑁

𝑁
} to be one of the 22𝑁 moments
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of interest for such an 𝑁 mode system. If we assume our system to be in the state 𝜌,
then there will be an underlying distribution determined by 𝜌 governing the statistics
of measured values of 𝐴 𝑗 that will have some mean ` 𝑗 = Tr

(
𝐴 𝑗 𝜌

)
and variance 𝑣 𝑗 .

By the central limit theorem the sample mean of 𝑁 measurements of 𝐴 𝑗 should,
for large enough 𝑁 , respect a normal distribution centered around Tr

(
𝐴 𝑗 𝜌

)
with

variance 𝑣 𝑗/𝑁 . This being the case, then the probability 𝑝(⟨�̄� 𝑗 ⟩|𝜌) of finding the
sample mean of 𝑁 measurements of 𝐴 𝑗 to be ⟨�̄� 𝑗 ⟩ (we use the bar notation to
emphasize that we are talking about a measured statistical value and not a calculated
quantum mechanical expectation value), assuming a system state 𝜌, should obey
[226]:

𝑝(⟨�̄� 𝑗 ⟩|𝜌) ∝ 𝑒−|⟨�̄� 𝑗 ⟩−Tr(𝐴 𝑗 𝜌) |2/(𝑣 𝑗/𝑁) . (F.2)

Assuming the actual variance 𝑣 𝑗 of the moment is very well approximated by
the measured sample variance �̄� 𝑗 , which it should be for large 𝑁 by the law of
large numbers, then 𝑣 𝑗 can be safely replaced by the measured variance �̄� 𝑗 in this
expression.

Consequently we find that we can define a likelihood functional inspired by (F.2)
that takes the form [227]

L(𝐷 |𝜌) =
𝑗=22𝑁∏
𝑗=1

𝑒−|⟨�̄� 𝑗 ⟩−Tr(𝐴 𝑗 𝜌) |2/�̄� 𝑗 (F.3)

This functional requires a dataset 𝐷 = {(⟨�̄� 𝑗 ⟩, �̄� 𝑗 )} 𝑗=22𝑁

𝑗=1 of measured sample means
and variances of all the joint 𝑁 photon moments considered above.

Because of the monotonically increasing nature of the logarithm, minimizing the
negative log-likelihood is equivalent to maximizing the likelihood, and taking the
negative of the logarithm of the likelihood yields

− logL(𝐷 |𝜌) =
𝑗=22𝑁∑︁
𝑗=1

|⟨�̄� 𝑗 ⟩ − Tr
(
𝐴 𝑗 𝜌

)
|2/�̄� 𝑗 . (F.4)

Intuitively we see that minimizing this negative log-likelihood corresponds to find-
ing the state 𝜌 whose moments minimize the mean-squared error of the measured
moments, discounting the error associated with higher variance measured moments
more than the error associated with low-variance measured moments. This op-
timization problem has the form of a quadratic programming problem subject to
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Figure F.3: Reconstructed Density Matrices of Various Photonic States. a Reconstructed density
matrix of a prepared single-photon Fock state |1⟩. (𝐹 = 97%). Only here, the Hilbert space includes
the two-photon manifold for a single mode in order to demonstrate the single photon character of
photon emission. b—f, Reconstructed density matrices of a two-photon GHZ state (𝐹 = 91%), a
two-photon cluster state (𝐹 = 91%), a three-photon GHZ state (𝐹 = 83%), a three-photon 1D cluster
state (𝐹 = 90%), and a three-photon triangular cluster state (where there is all-to-all entanglement
connectivity, 𝐹 = 73%). Note that time-delayed feedback was used to generate the three-photon
triangular cluster state. The Hilbert space for each individual mode is truncated to the single-photon
manifold. For each state, density matrix elements smaller than 10% of the expected largest density
matrix element are colored gray for ease of visualization. Note that global offset phases associated
with each photon are adjusted via software in order to arrive at the density matrices plotted here; this
amounts to local-Z corrections on the states.

physicality constraints on the quantum state 𝜌 (namely that 𝜌 be trace-one and
positive semidefinite):

min
𝜌

− logL(𝐷 |𝜌)

s.t. Tr(𝜌) = 1

𝜌 ≻ 0.

(F.5)

To perform this optimization over valid states 𝜌 of an 𝑁 mode system we use the
CVXPY python library [228].

Quantum-State Tomography Results
In addition to the quantum-state tomography results of Figure 5.5, we present in
Figure F.3 and F.4 reconstructed density matrices for other generated multipartite
entangled photonic states (along with their associated fidelities), in order to illustrate
the flexibility of our photonic state generation method. We bring particular attention
to the 5-photon state illustrated in Figure F.4c, with measured density matrix in
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Figure F.4: Five-Photon Cluster State with Multiple Time-Delayed Feedback Events. a Quan-
tum circuit for the generation of the five-photon cluster state

��𝜓ring
〉
. In this state, the entanglement

structure forms a pentagon, as shown in the diagrams at the end of the quantum circuits. b Recon-
structed density matrix of the

��𝜓ring
〉

state. The fidelity of the generated state is 𝐹 = 61%. Note that
the data for this state was taken in a separate cooldown, and due to techincal reasons, the absolute
power calibration we used was acquired from the integrated flux of a prepared single photon state.
c Quantum circuit for the generation of the five-photon cluster state |𝜓tetra−1⟩. In this state, the
entanglement structure of the first four photons (photon 1—4) forms a tetrahedron, and the photon 5
is entangled to photon 4, as shown in the diagram on the right. Two time-delayed feedback events
on photon 1 (corresponding the the highlighted CZ gates) entangle photon 1 with both photon 3 and
photon 4. d Reconstructed density matrix of the |𝜓tetra−1⟩ state. The fidelity of the generated state is
𝐹 = 50%. Note that the global phases associated with each photon are adjusted via software in order
to arrive at the plotted density matrices.

Figure F.4d. In order to generate this state, it was necessary to perform multiple CZ
gate operations, including two CZ gate operations for photon 1. Such use of two time-
delayed feedback events for an emitted photon is the most fundamental prerequisite
for extending our 2D cluster state generation scheme to generation of 3D cluster
states [91, 181, 182]. Thus, generation of the 5-photon state illustrated in Figure F.4,
via multiple time-delayed feedback events, constitutes a preliminary demonstration
of the adaptability of our platform for future generation of 3D cluster states of
microwave photonic qubits. We also note that the 97% fidelity of the density matrix
shown in Figure F.3a of a prepared single-photon Fock state constitutes the quantum
efficiency of our 𝑄𝐸 single-photon source (measurement errors notwithstanding),
and that the reconstructed density matrix reveals our source’s emission has negligible
two-photon character.

We conclude this Appendix section by describing some technical details of our
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Figure F.5: Phase Control of Cluster State. a Quantum circuit of cluster state generation protocol,
assuming 𝑄𝐸 and photonic states prepared in ground state. b Ideal cluster state obtained from the
quantum circuit of (a). c Measured phase of single photon moment ⟨𝑎⟩ as a function of the phase of
virtual-Z gates applied to 𝑄𝐸 during generation (blue circles). Red line shows ideal expected phase.
Virtual-Z gates applied on 𝑄𝐸 are realized by adding an offset phase to 𝜋𝑒 𝑓 pulses before photon
emission.

radiation field tomography measurements that may be of interest to the reader.
Firstly, we note that when generating photonic states, lingering gate errors due to the
AC Stark shifting of the |𝑒⟩ → | 𝑓 ⟩ transition, as well as the use of flux modulation,
will result in spurious phases gained by the qubit, which will be imparted onto
the phase of emitted photons. This phase, however, is deterministic, and thus can
be compensated in hardware by suitable qubit Z-control. For the density matrix
presented in Figure 5.5d, these spurious phases were compensated for by the use of
Virtual Z-gates [229] when performing 𝜋𝑒 𝑓 pulses before emission of every photon.
Thus, we were able to generate the state whose ideal counterpart is shown in Figure
F.5b, and the 70% state fidelity quoted in Chapter 5 is calculated with respect
to this state. We also note that while these spurious phases correspond to local
Z-gates for every photon, which can be removed from the processed tomography
data, in practice they could hinder use of such cluster states in quantum information
applications. Thus, we chose to demonstrate this additional photon phase control in
our generation process, and we stress that the data presented in Figure 5.5d did not
have any post-processing phase modification.

In addition, the measured
〈
ℎ
†
𝑖
ℎ𝑖

〉
moments reveal an effective added noise photon
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number of 𝑛noise ≈ 3.5, corresponding to a quantum measurement efficiency of the
output chain of [meas = (1+𝑛noise)−1 ≈ 0.22. We note that for heterodyne detection,
a finite detection efficiency [det can be shown to be equivalent to added noise in the
output chain, and we believe that the majority of 𝑛noise can be attributed to losses
and spurious reflections before the TWPA (where we estimate a total transmissivity
for emitted photon pulses of -5.5dB).

Furthermore, we note that the scaling factor 𝐺 will be slightly different for photons
of different bandwidth. This is due in part to slight differences in the effective trans-
mission coefficient of the tapered end of the SLWG for different bandwidth pulses
(see Figure E.1d). Moreover, higher bandwidth pulses will have slightly higher
mode-matching inefficiency due to dispersion-induced distortion, which results in
a small fraction of the pulse being situated outside of its measurement time-bin
window. When generating photonic states we use up to two different bandwidths,
and we quantify the difference in their respective 𝐺 scaling factors by taking the
ratio of their measured

〈
𝑎†𝑎

〉
moments when the qubit is fully excited to the | 𝑓 ⟩

state before emission. We find a ∼ 5% difference between the two𝐺 scaling factors,
which we take into account for calculation of joint photon moments (we use the 𝐺
obtained from Stark shift measurements for the lower bandwidth photon pulses) .

Finally, for generation of four photon and five photon states, we performed 500 mil-
lion and 2 billion single-shot measurements, respectively, in order to have sufficient
averaging for higher order joint-photon moments; these numbers are consistent with
the predicted number of single-shot measurements required from the statistical anal-
ysis presented in Ref. [230]. This corresponded to measurement times of 6 hours
and 24 hours, respectively; and due to the presence of slow qubit frequency drifts
of ∼ 0.5 MHz in our experimental setup, we recalibrated the qubit flux bias every
hour during these long measurements. We expect that the use of GPU or FPGA
based methods for data processing would significantly reduce these measurement
times. Nevertheless, we note that full tomography of a photonic state of five itinerant
microwave photons has hitherto never been demonstrated until now.

F.2 Process Tomography of the Time-Delayed Feedback Operation
QPT Experiment Design
In order to characterize the qubit-photon CZ gate implemented with our time-
delayed feedback protocol, we perform full quantum process tomography (QPT)
of the qubit-photon interaction. We again limit the Hilbert space of the bosonic
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mode representing the itinerant photon to the single-excitation subspace, so the
implemented CZ gate can be considered as a quantum process mapping the Hilbert
space of an effective two qubit system to itself.

With this in mind, in characterizing our CZ implementation we are interested in
the set of quantum processes that maps two-qubit states to two-qubit states. Such
processes (outside of certain cases in which we are not concerned here, e.g., projec-
tive measurements) are described by the set of completely-positive trace-preserving
(CPTP) linear maps from two-qubit density matrices to two-qubit density matrices.
[87].

Performing quantum process tomography requires identifying a complete set of
“fiducial" input states of the system and an “informationally complete" set of mea-
surement operators [87, 231]. A complete fiducial set of input states on a 𝑑-
dimensional Hilbert space H is a set of 𝑑2 states whose density matrices span the
space of density matrices on H . An informationally complete set of measurement
operators {𝑀 𝑗 } is a set of 𝑑2 − 1 operators on H whose expectation values given a
state 𝜌, {Tr

(
𝑀 𝑗 𝜌

)
}, uniquely determine 𝜌.

As our set of 𝑑2 fiducial input states we select all 16 possible unentangled states
of the form

��𝜓𝑞〉 ⊗
��𝜙𝑝〉 where

��𝜓𝑞〉 ∈ {|+𝑧⟩𝑞 , |−𝑧⟩𝑞 , |+𝑥⟩𝑞 , |+𝑦⟩𝑞} and
��𝜓𝑝〉 ∈

{|+𝑧⟩𝑝 , |−𝑧⟩𝑝 , |+𝑥⟩𝑝 , |−𝑦⟩𝑝} (where we are using the conventional names for eigen-
states of the Pauli spin operators 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧). For our informationally complete set
of measurement operators we select the 15 non-identity joint qubit-photon corre-
lators of the form 𝜎𝑖 ⊗ 𝑎†𝑛𝑎𝑚 (where 𝑛, 𝑚 ∈ {0, 1} and 𝜎𝑖 ∈ {I, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}). The
expectations of these operators can be shown to uniquely specify any of the joint
qubit-photon states we are considering in our effective two-qubit Hilbert space [227].
To measure the expectations of these operators for a given prepared state, we perform
single-shot heterodyne measurements of the microwave field in conjunction with
single-shot measurements of the qubit polarization (after rotation to the appropriate
basis). This allows us, on a shot-by-shot basis, to compute the correlations between
the microwave field moments and the qubit polarization operators.

The experimental sequence of our QPT implementation can be seen in Figure F.6.
We begin with 𝑄𝐸 and the photonic qubit in their respective ground states, after
which we prepare the state of the photonic qubit by performing an 𝑋𝑔𝑒𝜋 pulse on𝑄𝐸 ,
followed by one of an 𝑋𝑒 𝑓𝜋 pulse, an 𝑋𝑒 𝑓

𝜋/2 pulse, an 𝑌 𝑒 𝑓
𝜋/2 pulse, or no pulse (I𝑒 𝑓 ),

following which we use a flux modulation tone to induce shaped emission of the
photonic time-bin qubit from 𝑄𝐸 . This results in the initialized photonic time-bin
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qubit state to be conditioned on the choice of 𝑒 𝑓 pulse, resulting in the states |1⟩,
|−𝑦⟩, |+𝑥⟩, or |0⟩ respectively, while 𝑄𝐸 ends in state |𝑒⟩ after flux modulation.

Before the photonic qubit finishes its propagation through one round trip of the
waveguide, we prepare 𝑄𝐸 in one of its four above specified cardinal states. When
the photonic qubit finally returns to𝑄𝐸 , both subsystems have been properly prepared
and the 𝐶𝑍 gate between the two proceeds by way of our time-delayed feedback
interaction. After the 𝐶𝑍 is completed the photonic time-bin qubit leaves the
waveguide where it is amplified, and its two independent 𝐼 and 𝑄 quadratures are
measured via heterodyne detection. The 𝑄𝐸 state is also measured along one of
the three chosen polarization axes defining which qubit polarization operator 𝜎𝑖 we
are measuring. Note that the emitter state preparation is deferred until immediately
prior to the onset of time-delayed feedback, after the itinerant photon has travelled
almost the entire round-trip length of the SLWG, in order to minimize the amount
of dephasing suffered by 𝑄𝐸 before the CZ gate.

We perform the above control sequence for all 16×3 combinations of prepared states
and possible values of 𝜎𝑖. Note that, for example, while the experimental sequence
corresponding to measuring 𝜎𝑥𝑎 and 𝜎𝑦𝑎 require different qubit basis rotation
pulses, the nature of heterodyne measurement of the microwave field means a single
experiment can be used to measure all four quantities {𝜎𝑥 , 𝜎𝑥𝑎, 𝜎𝑥𝑎†, 𝜎𝑥𝑎†𝑎}. We
thus perform 48 different experiments (each repeated many times) to compute the
16× 15 = 240 different expectations of the form ⟨𝜎𝑖 ⊗ 𝑎†𝑛𝑎𝑚⟩ that uniquely specify
each output state of the implemented CZ gate for each input state.

MLE
Once this data is collected, we perform a maximum-likelihood reconstruction of
the time-delayed feedback operation to find the most likely quantum process ap-
proximating it. To do this we represent the quantum process E underlying the
time-delayed feedback operation as its 𝜒 matrix in the Pauli Product basis of 2
qubits, whereby its action on a general input state is given by:

E(𝜌) =
∑︁
𝑛,𝑚

𝜒𝑛,𝑚𝑃𝑛𝜌𝑃
†
𝑚 . (F.6)

The quantity 𝜒 is a 16×16 Hermitian, positive-semidefinite matrix, and {𝑃 𝑗 } is some
enumeration of the 2 qubit Pauli group. With this representation of the time-delayed
feedback process, we use the python library CVXPY [228] to minimize the negative
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Figure F.6: Experimental Pulse Sequence for QPT. A schematic for the pulse sequences that
implement the QPT protocol for characterizing our 𝐶𝑍 implementation. The shaded regions of
different coloration represent different subsequences of the QPT protocol indicated by the italic text
above or below the figure (the grey region is time during which the photonic qubit propagates through
one round-trip of the waveguide). The bracketed lists of gates below the pulses on the XYE line
represent variable pulses corresponding to different photonic qubit state preparations (red region),
𝑄𝐸 state preparations (blue region), and 𝑄𝐸 measurement basis rotations (yellow region).

log-likelihood functional of the dataset of qubit-photon correlator expectations given
the CZ process E:

− logL(𝐷 |𝜒) =
𝑖=15, 𝑗=16∑︁
𝑖=1, 𝑗=1

|⟨�̄�𝑖 𝑗 ⟩ − Tr
(
𝑀 𝑗 E ◦ B𝑖 (𝜌0)

)
|2/𝑣𝑖, 𝑗 , (F.7)

where 𝜌0 = |0⟩⟨0|𝑞 ⊗ |0⟩⟨0|𝑝 is the initial state of the joint qubit-photon system,
assumed to be the ground state of both systems, 𝑀 𝑗 is the 𝑗 𝑡ℎ qubit-photon correlator,
B𝑖 is the 𝑖𝑡ℎ generalized state preparation superoperator (explained in more detail
below), ⟨�̄�𝑖 𝑗 ⟩ is the measured sample mean of𝑀 𝑗 given state preparationB𝑖, and �̄�𝑖, 𝑗
is the sample variance of ⟨�̄�𝑖, 𝑗 ⟩. The free parameters available to the optimization
are the elements of 𝜒 implicitly contained in the computation of E ◦ B𝑖 (𝜌0) above.
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The choice of this log-likelihood follows from exactly the same arguments as the
state tomography log-likelihood functional Equation (F.4) given in Appendix F.1,
extended to the case of 16 simultaneous sets of state tomography data for the 16
states E ◦ B𝑖 (𝜌0). Enforcing the CPTP physicality constraints on E defines the
quadratic programming optimization problem for finding the most-likely Pauli-
Product representation of E, �̂�:

min
𝜒

− logL(𝐷 |𝜒)

s.t.
∑︁
𝑛,𝑚

𝜒𝑛,𝑚𝑃
†
𝑚𝑃𝑛 = I

𝜒 ≻ 0.

(F.8)

After the 𝜒 matrix representing our 𝐶𝑍 implementation has been reconstructed we
find the𝐶𝑍 gate that it most closely approximates modulo any simultaneous local 𝑍
operations on either 𝑄𝐸 or the photonic time-bin qubit. These local 𝑍 gates can be
removed in software and do not quantitatively alter the entangling nature of the 𝐶𝑍

gate we are implementing, and thus have no impact on the Tr
(√︁√

𝜒CZ𝜒ideal
√
𝜒CZ

)2

figure of merit we use to characterize the gate.

Generalized state-preparation superoperator
It is well-documented that QPT can suffer significantly from so-called state prepa-
ration and measurement (SPAM) errors, wherein errors during preparation of the
QPT input states and errors during measurement are interpreted by the tomographic
reconstruction method as errors on the process itself. We find two sources of
state-preparation error that we are able to correct for systematically by substituting
idealized state preparation unitaries for more general state preparation superopera-
tors. These sources of error are the initial thermal population of 𝑄𝐸 prior to the
application of any state preparation control pulses, which by gate set tomography of
𝑄𝐸 (we use the Python library pyGSTi [232] for this) we estimate to be ∼ 1%, and
the round trip loss of ∼ 13% that the itinerant microwave photon suffers between
emission and reinteraction with 𝑄𝐸 .

To account for these errors we define the generalized state-preparation super opera-
tors {B𝑖}, each of which we factorize as the composition of three different processes:

B𝑖 = R ◦U𝑖 ◦ P . (F.9)

The process U𝑖 corresponds to the 𝑖𝑡ℎ ideal state preparation, the process P models
the 1% initial thermal population of 𝑄𝐸 , and the process R models the 13% round
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trip loss of the itinerant microwave photon. P can be implemented by a pin map
on the emitter qubit’s Hilbert space: P(𝜌𝑞) = 0.99 |0⟩⟨0| + 0.01 |1⟩⟨1| for all 𝜌𝑞. R
can be modeled by a relaxation channel on the photonic qubit’s Hilbert space with
loss parameter 𝑙 = 0.13. The preparation process U𝑖 is given by the ideal processes
implementing the pulse sequences in the red and blue shaded regions of Figure F.6
(ie: photonic qubit state preparation and 𝑄𝐸 state preparation).

Readout Error Correction
In the same way that it is possible to correct for certain characterized state preparation
errors, it is also possible to correct for qubit readout measurement errors that obey
certain assumptions. By computing the confusion matrix of the single-shot𝑄𝐸 state
measurement, we can correct for identifiable readout misclassification errors that
give rise to erroneous values for qubit-photon correlator expectations.

Consider the quantity ⟨𝜎𝑧𝑎⟩. This expectation can be computed from measured data
in the following way:

⟨𝜎𝑧𝑎⟩ = 𝑝(+1)⟨�̃�⟩|𝜎𝑧=+1 − 𝑝(−1)⟨�̃�⟩|𝜎𝑧=−1, (F.10)

where 𝑝(+1) denotes the proportion of single-shot measurements for which the
qubit polarization along the 𝑧 quantization axis was found to be +1, and ⟨�̃�⟩|𝜎𝑧=+1

denotes the average value of the single shot field measurements in these same cases;
with a similar computation for the −1 case.

Due to the fact that there are probabilities of mismeasurement of the qubit polar-
ization, which we characterize in Appendix E.1, the quantity 𝑝(+1)⟨�̃�⟩|𝜎𝑧=+1 itself
should be written as:

𝑝(+1)⟨�̃�⟩|𝜎𝑧=+1 = 𝑝(+1| + 1)𝑝(+1)⟨𝑎⟩|𝜎𝑧=+1

+ 𝑝(+1| − 1)𝑝(−1)⟨𝑎⟩|𝜎𝑧=−1,
(F.11)

where 𝑝(+1| +1) corresponds to the probability of measuring a qubit polarization of
+1 when the polarization was in fact +1, 𝑝(+1) is the actual probability that an ideal
measurement would have yielded a polarization of +1, and ⟨𝑎⟩|𝜎𝑧=+1 is the actual
expected value of the field conditioned on the qubit polarization along 𝑧 being +1.
There is a similar expression for 𝑝(−1)⟨�̃�⟩|𝜎𝑧=−1:

𝑝(−1)⟨�̃�⟩|𝜎𝑧=−1 = 𝑝(−1| + 1)𝑝(+1)⟨𝑎⟩|𝜎𝑧=+1

+ 𝑝(−1| − 1)𝑝(−1)⟨𝑎⟩|𝜎𝑧=−1.
(F.12)
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These two expressions can be combined into a simple linear relationship between the
measured quantities 𝑝(+1)⟨�̃�⟩|𝜎𝑧=+1 and 𝑝(−1)⟨�̃�⟩|𝜎𝑧=−1 and the “premeasurement"
undistorted quantities 𝑝(+1)⟨𝑎⟩|𝜎𝑧=+1 and 𝑝(−1)⟨𝑎⟩|𝜎𝑧=−1:(

𝑝(+1)⟨�̃�⟩|𝜎𝑧=+1

𝑝(−1)⟨�̃�⟩|𝜎𝑧=−1

)
= 𝐶

(
𝑝(+1)⟨𝑎⟩|𝜎𝑧=+1

𝑝(−1)⟨𝑎⟩|𝜎𝑧=−1

)
, (F.13)

where 𝐶 is given by the confusion matrix

𝐶 =

(
𝑝(+1| + 1) 𝑝(+1| − 1)
𝑝(−1| + 1) 𝑝(−1| − 1)

)
. (F.14)

This confusion matrix can be measured under the assumption of perfect state prepa-
ration by preparing the qubit many times in the ground or excited state, performing
a single-shot measurement of 𝑄𝐸 ’s state, and counting the relative proportions of
ground and excited measurements given a particular state preparation. This matrix
𝐶 can then be inverted and applied to the erroneous conditional photon moments to
give the correct moments:(

𝑝(+1)⟨𝑎⟩|𝜎𝑧=+1

𝑝(−1)⟨𝑎⟩|𝜎𝑧=−1

)
= 𝐶−1

(
𝑝(+1)⟨�̃�⟩|𝜎𝑧=+1

𝑝(−1)⟨�̃�⟩|𝜎𝑧=−1

)
, (F.15)

from which the correct qubit photon correlators can be computed.

State Fidelity Confidence Intervals
The 70% state reconstruction fidelity relative to an ideal target cluster state is quoted
with a 95% confidence interval [69.1%, 70.4%] in Chapter 5. We computed this
confidence interval using a parametric bootstrapping protocol [233] that involved
fitting the distributions of the measured photonic correlations and resampling the fit
distributions to reconstruct 1000 bootstrap states. Each distribution of a measured
photonic correlation contains 5000 points, where each point is computed from an
average of 100,000 single-shot field measurements. Thus corresponding to each
moment was an approximately normal histogram of these 5000 values. These
histograms could be fit and resampled to reconstruct bootstrapped versions of the
generated cluster state. We reconstructed 1000 bootstrap copies this way, and for
each copy we computed the fidelity relative to the target cluster state. Then we
sorted these fidelities and approximated the 95% confidence interval by taking the
25th element of this sorted list fidelity as the lower bound of the 95% confidence
interval and the 975th element as the upper bound.
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A p p e n d i x G

HETERODYNE MEASUREMENT OF ITINERANT
MICROWAVE PHOTONS - ADDITIONAL DETAILS

In this appendix section we expand on the discussion of heterodyne measurement
of itinerant microwave photons discussed in Appendix F.1. Note that in the entire
following discussion, we refrain from using the “hat symbol" in equations involving
quantum operators.

G.1 Heterodyne Measurement
Basics
In our experiment, itinerant photons are generated via emission of the emitter qubit
𝑄𝐸 into the output mode of the slow-light waveguide 𝑎out. This emission will
consist of a traveling wavepacket, which is a multi-mode state that in general may
be written as |𝜓⟩ =

∫
𝑑𝜔 𝑓 (𝜔)𝑎†out(𝜔) |vac⟩, where |vac⟩ is the vacuum state with

no excitation in any of the modes. We may define a photon wavepacket creation
operator 𝑎†, where [234]

𝑎† =

∫
𝑓 (𝜔)𝑎†out(𝜔)𝑑𝜔 =

∫
𝑓 (𝑡)𝑎out(𝑡)𝑑𝑡, (G.1)

and the equivalence of the frequency and time-dependent forms is easily established
by use of the Fourier transforms of the functions in the integrands. Note that the
time-dependent field 𝑎out(𝑡) is what is continuously sampled in the experiment after
quantum-limited amplification. The functions in the integrand are normalized, such
that the commutation relation [𝑎, 𝑎†] = 1 is satisfied when

∫
| 𝑓 (𝑡) |2𝑑𝑡 = 1 (note

that the commutation relation of the output field is [𝑎out(𝑡), 𝑎†out(𝑡′)] = 𝛿(𝑡− 𝑡′)). As
discussed in Appendix F.1, we obtain the time-independent statistics associated with
𝑎 via integration of the measured field against 𝑓 (𝑡), which is given by the temporal
shape of the traveling wavepacket. Finally, we point out to the reader that although
quantum optical theory is typically described in the context of distinct single-
frequency modes, one may equivalently consider a basis of distinct time-dependent
“wavepacket" modes, and the mapping between the two is achieved simply by
change of basis transformation given by a unitary matrix; for more information on
multi-mode quantum optics, we refer the reader to Refs. [234, 235].
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Figure G.1: Heterodyne Detection of Microwave Fields a Schematic of heterodyne detection as
is typically performed in circuit QED experiments. Emitted fields are amplified by an amplification
chain (here represented as a single amplifier) that imparts added noise ℎamp to the output mode 𝑎out.
The resultant signal then enters an IQ mixer, where it is split and subsequently mixed with an LO
signal. This splitting imparts 1/2 photon of additional noise ℎdet to the measured signal through the
unused splitter port; however the added amplifier noise will tend to dominate ℎdet. This measurement
allows both quadratures of the field to be measured. b Ideal Husimi Q-function of a single-photon
Fock state |1⟩. c Experimentally measured phase-space distribution for the prepared state |1⟩, where
the heterodyne measurement suffered from added noise corresponding to a thermal population of
𝑛noise ≈ 3.5 noise photons. d Experimentally measured phase-space distribution for the prepared
state |0⟩, corresponding to the “dark measurement" of the noise mode ℎ; see Appendix text for further
details.

We measure the output field 𝑎out(𝑡) through heterodyne detection, which allows us to
measure both quadratures of the field. Heterodyne measurement consists of splitting
the output field via a beam-splitter (or its microwave equivalent), and “mixing" the
output field on both arms of the beam splitter with a detuned strong local oscillator
field; see Figure G.1a. By having the phase of the local oscillator field used for
mixing differ by 90◦ for the outputs of each beam splitter arm, we can measure both
conjugate quadratures of the field. However, the output field measured will consist
of the emitted wavepacket as well as added noise: 𝑎out(𝑡) + ℎ†out(𝑡).
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Noise in Heterodyne Detection
In general, there are three main contributions to added noise in heterodyne detection.
The first contribution is the vacuum noise that enters through the unused port of the
beam splitter, referred to as ℎhet in Figure G.1a. This will add 1/2 quanta of added
noise to the signal. Fundamentally, one may consider this additional “vacuum noise"
ℎhet as the “physical source" of the additional measurement uncertainty associated
with the simultaneous detection of two non-commuting conjugate variables, as per
Heisenberg’s uncertainty principle.

The second contribution to ℎ
†
out(𝑡) is the noise added from amplification of the

signal. For a generic phase-insensitive linear amplifer with gain 𝐺, the input signal
is transformed according the following relation [236]:

𝑎out →
√
𝐺𝑎out +

√
𝐺 − 1ℎ†amp, (G.2)

where ℎamp is an additional bosonic mode accounting for the noise added by the
amplifier. For a quantum limited amplifier, ℎamp will be in the vacuum state, thus
corresponding to an additional 1/2 quanta of added noise to the signal. However,
we stress that the magnitude of the quantum-limited amplifier added noise is 1/2
quanta when referred to the input of the amplifier, and it is much larger (by a factor
of

√
𝐺 − 1) when finally reaching the heterodyne measurement stage. Thus, for a

signal that is both amplified and undergoes heterodyne detection, the total added
noise, referred to the input of the amplifier, will be

ℎout =

√︂
𝐺 − 1
𝐺

ℎamp +
√︂

1
𝐺
ℎhet. (G.3)

In the limit of large gain 𝐺 ≫ 1, the contribution to the added noise from ℎamp

overwhelmingly dominates the added noise intrinsic to heterodyne detection ℎhet,
and thus we may neglect ℎhet when the measured field is substantially amplifed
(phase-insensitively) before heterodyne detection. Naturally, this implies that if a
phase-insensitive amplifier is used, measurement of either one or both quadratures
of the field will effectively have the same signal-to-noise ratio; thus both quadratures
of the field may be measured at no additional cost of added noise. Thus, heterodyne
detection of an emitted field will have at a minimum 1/2 quanta of added noise
(whether the field is amplified or not).
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The third contribution to the added noise will be detection inefficiencies of the
measurement; where for the measurement of amplified fields this detection inef-
ficiency primarily consists of loss before the first amplifier of the output chain.
Theoretically, it can be shown that heterodyne measurement with sub-unit detection
efficiency is equivalent to heterodyne measurement with added (thermal) noise be-
yond the aforementioned 1/2 quanta added noise lower bound [237]. One can gain a
practical intuition for this fact by considering the data processing for our experiment
described in Appendix F.1. The output field is continuously sampled at the digitizer,
and we convert voltage at the digitizer to field amplitude at the qubit via a conversion
scaling factor 𝐺, which is measured via an absolute power calibration experiment
such as AC-Stark Shift measurements of the qubit frequency. The key point is that
the obtained 𝐺 will be affected by losses before the first amplifier (because this loss
will lower the measured digitizer voltage commensurate with a given field amplitude
at the qubit), but the physical amount of amplifier added noise will not be affected
by losses before the first amplifier (because this noise is added from the amplifier
itself). However, because we apply the scaling factor 𝐺 to measured digitizer volt-
ages that simultaneously consist of emitted fields as well as added noise fields, by
“scaling out" the detection inefficiency loss of the measured emitted fields, this scal-
ing effectively increases the magnitude of measured added noise fields (which did
not suffer this loss before the first amplifier). Thus in this manner, the added noise
measured during heterodyne detection is higher due to sub-unit detection efficiency.
Moreover, note that the inverse relationship is also true: heterodyne measurement
with added (thermal) noise is equivalent to heterodyne measurement with sub-unit
detection efficiency [237].

Another contribution to detection inefficiency is mode-matching inefficiency. As
shown in Equation G.1, time-independent statistics associated with the itinerant
mode 𝑎 are obtained from a measured time-dependent field via the mode matching
function 𝑓 (𝑡). Ideally, 𝑓 (𝑡) is given by the temporal shape of the itinerant mode,
and is experimentally obtained through measurement of ⟨𝑎out(𝑡)⟩. However, if this
measurement is imperfect, or if for practical reasons part of the emitted field is
outside of the measurement time-bin window (as discussed in Appendix E.1), then
an imperfect or truncated 𝑓 (𝑡) will lead to an effective “mode-matching loss" of the
itinerant mode when used in the data processing discussed. This “mode-matching
loss" will have the same effect as loss before the first amplifier, as discussed above.

The detection efficiency [meas of the heterodyne measurement is thus given by



166

[meas = (1 + 𝑛noise)−1, where 𝑛noise consists of physical added noise beyond the 1/2
noise quanta lower bound, as well as “effective" added noise due to losses before the
first amplifier and mode-matching inefficiency. The factor of “1" in the denominator
reflects the minimum “uncertainty" in the heterodyne measurement of a field, which
is comprised of intrinsic vacuum fluctuations of the field, as well the additional 1/2
quanta of added noise intrinsic to quantum limited amplification or measurement of
two non-commuting quadratures.

Correspondence to Quasi-Probability Distribution of the Field
In practice, in order to perform tomography of an itinerant photon through hetero-
dyne detection, we have to obtain its phase-space distribution in the IQ plane, from
which we can extract the quantum statistics of the field. We obtain this phase-space
distribution through many single-shot heterodyne measurements of the field (via
preparing multiple copies of the field). For every single-shot measurement of the
measured field 𝑆out(𝑡) = 𝑎out(𝑡) +ℎ†out(𝑡), we integrate the measured time-dependent
field against the emitted photon’s mode-matching function 𝑓 (𝑡). This integration∫
𝑓 (𝑡)𝑆out(𝑡)𝑑𝑡 = 𝐼 + 𝑖𝑄 = 𝑆 can be shown to yield single-shot measurements of the

complex quantity 𝑆 = 𝑎 + ℎ†, where 𝑎 is the wavepacket mode of interest. By col-
lecting many such measurements, we obtain the phase-space distribution in the IQ
plane of 𝑆, which we henceforth refer to as 𝐷 (𝑆). An example of an experimentally
measured 𝐷 (𝑆) is shown in Fig G.1c.

In the limiting case of ideal heterodyne detection where we have [meas = 1, it can
be shown that the measured IQ plane phase space distribution 𝐷 (𝑆) is given by the
Husimi-Q function[237]

𝑄(𝛼) = 1
𝜋
⟨𝛼 |𝜌 |𝛼⟩, (G.4)

where |𝛼⟩ = 𝑒−|𝛼 |2/2 ∑
𝑛
𝛼𝑛

𝑛! |𝑛⟩, 𝛼 = 𝐼+𝑖𝑄, and 𝜌 is the density matrix of the itinerant
microwave photon. The Husimi-Q function is non-negative and normalized to 1,
and for a given radiation field state 𝜌, 𝑄(𝛼) is the probability of measuring 𝛼

when performing a heterodyne measurement of the state 𝜌. Nevertheless, it is
still considered a “quasi-probability" because since different coherent states are not
orthogonal, measurement of two different 𝛼 do not represent two mutually exclusive
measurements.

For further insight into the properties of the Husimi Q-function, consider the func-
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tional forms of 𝑄(𝛼) in the IQ plane for the vacuum state |0⟩, the Fock state
|1⟩, and the coherent state |𝛽⟩. Calculation via formula G.4 yields 𝑒−(𝐼2+𝑄2) ,
𝑒−(𝐼

2+𝑄2) (𝐼2 + 𝑄2), and 𝑒−( (𝐼−𝐼𝛽)2+(𝑄−𝑄𝛽)2) respectively, where 𝛽 = 𝐼𝛽 + 𝑖𝑄𝛽. In-
spection of these functional forms reveals that𝑄(𝛼) for the vacuum state becomes a
two-dimensional Gaussian distribution with variance equal to 1 centered around the
origin, while for the coherent state its 𝑄(𝛼) is simply the vacuum Husimi function
displaced by 𝛽 in the IQ plane. Half of this variance is due to the intrinsic vacuum
fluctuations of the field of the |0⟩ and |𝛽⟩ states, while the other half is due to
the minimal added measurement “uncertainty" when measuring the two conjugate
quadratures of the field. Likewise, Fock states also have intrinsic vacuum fluctu-
ations of their field (⟨𝑛|𝐸 |𝑛⟩ = 0, ⟨𝑛|𝐸2 |𝑛⟩ ∼ ℏ𝜔(𝑛 + 1

2 ), where 𝐸 is the electric
field operator). Thus, the functional form of 𝑄(𝛼) for the Fock state |1⟩ consists
of the functional form of a ring broadened by the same Gaussian with variance 1,
where the ring shape in the IQ plane is reflective of the fact that Fock states have
a well defined photon number (i.e., a well-defined field “intensity") but complete
phase uncertainty. As a final example, consider a squeezed state, which for one
quadrature will have field fluctuations smaller than those of a coherent state/vacuum
state. The𝑄(𝛼) of a squeezed state |Z⟩ with a real valued squeezing parameter Z = 𝑟

can be shown to be ∼ exp
[
−

(
𝐼2

0.5(𝑒−2𝑟+1) +
𝑄2

0.5(𝑒2𝑟+1)

)]
[238]. In the limit of large

squeezing (large 𝑟), we find that 𝑄(𝛼) of |Z⟩ is a two-dimensional Gaussian with
infinite variance in the 𝑄 quadrature, and variance equal to 1/2 in the 𝐼 quadrature.
The 1/2 variance in the 𝐼 quadrature is reflective of the fact that although large
squeezing with Z = 𝑟 completely removes intrinsic fluctuations of the field in the 𝐼
quadrature, the minimal added measurement “uncertainty" when measuring the two
conjugate quadratures persists.

In practice, our amplification output chain won’t be perfectly quantum limited,
and we will have sub-unit detection efficiency [det. In that realistic scenario, the
measured IQ phase space distribution will differ from the Husimi Q-function. In
order to understand the resulting phase space distribution, consider the fact that
heterodyne measurement yields the quantity 𝑆 = 𝑎 + ℎ†, where the noise mode
ℎ is in a thermal state. If the noise mode ℎ is uncorrelated to the signal mode 𝑎
(which is typically the case, and can be experimentally verified), then the probability
distribution for the sum of two independent random variables 𝑎 and ℎ is equal
to the convolution of the probability distributions for the two random variables.
Furthermore, the total noise mode ℎ will have contributions from various sources
(see Equation G.3 for example), such as the minimal added “vacuum" noise for
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heterodyne detection, as well as additional field fluctuations of a thermal field
associated with an added noise photon number 𝑛noise. Thus, we can identify the
measured phase space distribution in the IQ plane 𝐷 (𝑆) to be the following two-
dimensional convolution involving 𝑄(𝛼) [225]:

𝐷 (𝑆) =
∫
𝛼

𝑑𝛼𝑄(𝛼)𝑒−|𝑆−𝛼 |2/𝑛noise/𝜋𝑛noise, (G.5)

where 𝑛noise is the added noise photon number, 𝑛noise = 0 corresponds to ideal
heterodyne detection, and 𝑒−|𝛼 |2/𝑛noise is the Gaussian associated with the additional
field fluctuations from a thermal population of 𝑛noise noise photons in the noise mode
ℎ. Note that in the 𝑛noise → 0 limit, this Gaussian becomes a delta function, and
we have 𝐷 (𝑆) = 𝐷 (𝛼) as expected. Finally, we observe that although we arrived at
Equation G.5 through a probabilistic argument, one may also arrive at this equation
through standard theoretical quantum optical methods [237, 238]. Indeed, it can be
shown that this phase space IQ distribution 𝐷 (𝑆), as well as the Husumi Q-function,
the Wigner function, the Glauber-Sudarshan P function, etc., are all related to each
other by a Gaussian convolution, where each distribution corresponds to a phase-
space distribution with a particular amount of “fluctuations" that are contained in
the distribution; for more information, we refer the reader to Refs. [225, 237, 238].

In Figure G.1b,we plot the theoretical Husumi Q-function of a |1⟩ Fock state, while
in Figs. G.1c, d we plot the experimentally obtained IQ phase-space distributions of
the prepared |1⟩ and |0⟩ states, which were measured via heterodyne detection with
𝑛noise ≈ 3.5. It is evident that while Figure G.1b shows the expected broadened ring
shape of the Husimi Q-function, this ring shape is no longer discernible in Figure
G.1c due to additional noise photons in mode ℎ. However, it is also clear that the
phase space distribution in Figure G.1c is meaningfully different than the one in
Figure G.1d for the vacuum state |0⟩. In the next section we discuss how one may
isolate the statics of 𝑎 from the statistics of ℎ given the measurements shown in
Figs.G.1c, d.

G.2 Obtaining Field Moments from Noisy Heterodyne Measurements
Generally in statistics, important characteristics of a probability distribution can
be described by its moments, and under certain typical conditions a probability
distribution is uniquely specified by its moments. In a similar vein, we can perform
tomography of radiation field states by experimentally obtaining expectation values
of the moments of their measured phase space distributions, because the moments
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hold the all the relevant information of the phase space distribution that is necessary
for tomography [239]. For a single-mode field, the density matrix is given by

⟨𝑚 |𝜌 |𝑛⟩ = 1
√
𝑛!𝑚!

∞∑︁
𝑙=0

(−1)𝑙
𝑙!

⟨(𝑎†)𝑛+𝑙𝑎𝑚+𝑙⟩, (G.6)

where ⟨(𝑎†)𝑛𝑎𝑚⟩ are the expectation values of different moments of the field. Note
that, practically, the signal-to-noise ratio for determining a moment of the field
degrades exponentially with order of the moment; thus moment-based tomography
is only well suited for states that either have finite photon number contributions
(satisfying ⟨𝑚 |𝜌 |𝑛⟩ = 0 for 𝑚, 𝑛 ≧ 𝑁), or Gaussian states (coherent, thermal, and
squeezed states) for which moments up to second order determine all higher order
moments [225]. Equation G.6 can be straightforwardly extended to multipartite
photonic states with multiple modes; for example, for a two-mode photonic state,
the density matrix is given by

⟨𝑚𝑙 |𝜌 |𝑛𝑘⟩ = 1
√
𝑛!𝑚!𝑘!𝑙!

∑︁
𝑖, 𝑗=0

(−1)𝑖+ 𝑗
𝑖! 𝑗!

⟨(𝑎†)𝑛+ 𝑗𝑎𝑚+ 𝑗 (𝑏†)𝑘+𝑖𝑎𝑙+𝑖⟩, (G.7)

where 𝑎 and 𝑏 are the lowering operators for two distinct photonic modes.

However, because in heterodyne detection we experimentally measure 𝑆 = 𝑎 + ℎ†

rather than exclusively 𝑎, we cannot directly obtain expectation values of 𝑎 from
measurements of 𝑆. Nevertheless, given that the signal mode 𝑎 is uncorrelated to
the noise mode ℎ, the moments of the measured distribution 𝐷 (𝑆) are related to the
moments of 𝑎 and ℎ through the following algebraic relation:

⟨(𝑆†)𝑛𝑆𝑚⟩ = ⟨(𝑎† + ℎ)𝑛 (𝑎 + ℎ†)𝑚⟩ =
𝑚,𝑛∑︁
𝑖, 𝑗=0

(
𝑚

𝑗

) (
𝑛

𝑖

)
⟨(𝑎†)𝑖𝑎 𝑗 ⟩⟨ℎ𝑛−𝑖 (ℎ†)𝑚− 𝑗 ⟩, (G.8)

where the right-hand side of the equation is simply obtained through the binomial
theorem and by assuming that products of 𝑎 are uncorrelated with products of ℎ.
Consequently, Equation G.8 can be inverted to obtain algebraic relations that yield
the moments of 𝑎 via the moments of 𝑆 and the moments of ℎ. Additionally, the
moments of ℎ can simply be measured through a “dark measurement" where no
signal is generated through qubit emission or other means, i.e., through heterodyne
measurement of the noise of the output chain. For this dark measurement, the signal
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mode 𝑎 will be in the vacuum state, and thus all moments of 𝑎 will be zero valued
except for the trivial moment ⟨(𝑎†)0(𝑎)0⟩. Thus, for this “dark measurement, via
Equation G.8 we have ⟨(𝑆†)𝑛𝑆𝑚⟩dark = ⟨ℎ𝑛 (ℎ†)𝑚⟩.

Consequently, we can invert Equation G.8 in order to calculate the moments of 𝑎
from the measured moments of 𝑆 and ℎ. Furthermore, calculating the moments of
𝑎 via the moments of 𝑆 and ℎ can be simplified by assuming that complex-valued
moments of the noise ℎ are zero valued, which is true for thermal states (because
single-shot measurements of these moments will always have a random phase, which
will lead to zero-valued expectation values when measurement results are averaged).
Below, we give some examples of such calculations for a single-mode field:

⟨𝑆⟩ = ⟨𝑎⟩ +�
�⟨ℎ†⟩ = ⟨𝑎⟩

=⇒ ⟨𝑎⟩ = ⟨𝑆⟩

⟨𝑆†𝑆⟩ = ⟨(𝑎† + ℎ) (𝑎 + ℎ†)⟩ = ⟨𝑎†𝑎 + 𝑎†ℎ† + ℎ𝑎 + ℎℎ†⟩

= ⟨𝑎†𝑎⟩ + ⟨𝑎†⟩���⟨ℎ†⟩ + ⟨𝑎⟩��⟨ℎ⟩ + ⟨ℎℎ†⟩
= ⟨𝑎†𝑎⟩ + ⟨ℎℎ†⟩

=⇒ ⟨𝑎†𝑎⟩ = ⟨𝑆†𝑆⟩ − ⟨ℎℎ†⟩ = ⟨𝑆†𝑆⟩ − ⟨𝑆†𝑆⟩dark

⟨(𝑆†)2𝑆⟩ = ⟨(𝑎† + ℎ)2(𝑎 + ℎ†)⟩ = ⟨((𝑎†)2 + 2𝑎†ℎ + ℎ2) (𝑎 + ℎ†)
= ⟨(𝑎†)2𝑎 + (𝑎†)2

��ℎ
† + 2𝑎†��ℎ𝑎 + 2𝑎†ℎℎ† +��ℎ

2𝑎 +���
ℎ2ℎ†⟩

= ⟨(𝑎†)2𝑎⟩ + 2⟨𝑎⟩⟨ℎℎ†⟩
=⇒ ⟨(𝑎†)2𝑎⟩ = ⟨(𝑆†)2𝑆⟩ − 2⟨𝑎⟩⟨ℎℎ†⟩.

And below we give some examples for multipartite photonic states where we have
two distinct itinerant wavepacket modes 𝑎 and 𝑏, with their individual measurements
given by 𝑆𝑎 = 𝑎 + ℎ†𝑎 and 𝑆𝑏 = 𝑏 + ℎ†𝑏, and we further assume that the noises of the
individual modes ℎ†𝑎 and ℎ†

𝑏
are uncorrelated:

⟨𝑆†𝑎𝑆𝑏⟩ = ⟨(𝑎† + ℎ𝑎) (𝑏 + ℎ†𝑏)⟩ = ⟨𝑎†𝑏⟩ +�
��⟨ℎ𝑎⟩⟨𝑏⟩ + ⟨𝑎†

�
��⟩⟨ℎ†
𝑏
⟩ +�

��⟨ℎ𝑎⟩���⟨ℎ†
𝑏
⟩

= ⟨𝑎†𝑏⟩
=⇒ ⟨𝑎†𝑏⟩ = ⟨𝑆†𝑎𝑆𝑏⟩
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⟨𝑆†𝑎𝑆𝑎𝑆†𝑏𝑆𝑏⟩ = ⟨(𝑎†𝑎 + 𝑎†ℎ†𝑎 + ℎ𝑎𝑎 + ℎ†𝑎ℎ𝑎) (𝑏†𝑏 + 𝑏†ℎ†𝑏 + ℎ𝑏𝑏 + ℎ
†
𝑏
ℎ𝑏)⟩

= ⟨𝑎†𝑎𝑏†𝑏 + 𝑎†𝑎𝑏†
�
�ℎ
†
𝑏
+ 𝑎†𝑎��ℎ𝑏𝑏 + 𝑎

†𝑎ℎ𝑏ℎ
†
𝑏

+ 𝑎†��ℎ
†
𝑎𝑏

†𝑏 + 𝑎†��ℎ
†
𝑎𝑏

†
�
�ℎ
†
𝑏
+ 𝑎†���ℎ†𝑎ℎ𝑏𝑏 + 𝑎†��ℎ

†
𝑎ℎ𝑏ℎ

†
𝑏

+��ℎ𝑎𝑎𝑏
†𝑏 +

�
��ℎ𝑎ℎ

†
𝑏
𝑎𝑏† +��ℎ𝑎𝑎��ℎ𝑏𝑏 +��ℎ𝑎𝑎ℎ𝑏ℎ

†
𝑏

+ ℎ†𝑎ℎ𝑎𝑏†𝑏 + ℎ†𝑎ℎ𝑎𝑏†��ℎ
†
𝑏
+ ℎ†𝑎ℎ𝑎��ℎ𝑏𝑏 + ℎ

†
𝑎ℎ𝑎ℎ𝑏ℎ

†
𝑏
⟩

= ⟨𝑎†𝑎𝑏†𝑏⟩ + ⟨𝑎†𝑎⟩⟨ℎ𝑏ℎ†𝑏⟩ + ⟨𝑏†𝑏⟩⟨ℎ𝑎ℎ†𝑎⟩ + ⟨ℎ†𝑎ℎ𝑎⟩⟨ℎ𝑏ℎ†𝑏⟩

=⇒ ⟨𝑎†𝑎𝑏†𝑏⟩ = ⟨𝑆†𝑎𝑆𝑎𝑆†𝑏𝑆𝑏⟩ −
(
⟨𝑎†𝑎⟩⟨ℎ𝑏ℎ†𝑏⟩ + ⟨𝑏†𝑏⟩⟨ℎ𝑎ℎ†𝑎⟩ + ⟨ℎ†𝑎ℎ𝑎⟩⟨ℎ𝑏ℎ†𝑏⟩

)
.

In Figs. G.1c, d we show the experimentally measured IQ phase space distributions
of the prepared |1⟩ and |0⟩ states, which were measured via heterodyne detection
with 𝑛noise ≈ 3.5. By obtaining the moments of 𝑆 from the data in Figure G.1c, and
obtaining the moments of ℎ from the data in Figure G.1d, we were able to calculate
the moments of 𝑎 via the methods outlined above, and reconstructed the density
matrix of the single-photon Fock state |1⟩ shown in Figure F.3a, achieving a 97 %
fidelity to the ideal state.

We point out to the reader that, given our discussed assumptions about ℎ and by
further assuming that each signal mode only has a maximum photon occupancy
of 1, only the moments ⟨ℎ𝑖ℎ†𝑖 ⟩ for each noise mode were necessary to measure
to the obtain field moments

〈
(𝑎†1)

𝑛1𝑎
𝑚1
1 (𝑎†2)

𝑛2𝑎
𝑚2
2 ...(𝑎†

𝑁
)𝑛𝑁 𝑎𝑚𝑁

𝑁

〉
∀ 𝑛𝑖, 𝑚𝑖 ∈ {0, 1}.

Moreover, in practice, after obtaining field moments for single-mode fields or joint
field moments for multipartite photonic states, instead of using equations such as
G.6, G.7 to obtain density matrices, we instead reconstructed the density matrix of
generated photonic states via a maximum-likelihood estimation (MLE) algorithm
that uses the moments as input; see Appendix F.1 for more detail. We found
that although equations such as G.6 and G.7 reconstructed density matrices with
reasonable accuracy, numerical and SPAM errors could result in these equations
yielding unphysical density matrix outputs.

G.3 Insights on Heterodyne Measurement Data for Multipartite Entangled
Photonic States

While a straightforward recipe for reconstructing the density matrix of multipartite
photonic states through expectation values of joint field moments has been presented,
here we seek to give the reader some additional insights into some properties of the
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Figure G.2: Probability Distribution Of Phases of Measured Moments. a Normalized histograms
of phases of experimentally measured moments of the prepared state |𝜓⟩ = 1√

2
(|00⟩ + |11⟩). For

each single-shot measurement, the two distinct itinerant modes 𝑎 and 𝑏 are measured via heterodyne
detection as discussed in the thesis text, and the measured values are used to calculate the moments
for each single shot. The histograms plotted are normalized such that the plotted values represent
probability densities.

collected raw data. These insights were often helpful in further understanding our
experiment, and aided in debugging.

Measuring Entanglement Through Phase Correlations of Single-Shot Field
Measurements
While it is straightforward to visualize properties of phase space distributions of
single mode radiation fields, as shown in Figs. G.1b, c, d, visualizing phase space
distributions of multiple entangled photonic modes is difficult due to their high
dimensionality. Thus, in order to visually ascertain properties of the raw data, it
is instead helpful to plot histograms of the phases from single-shot measurements
of complex-valued joint field moments. We elucidate this claim by discussing a
specific example: the entangled two mode state GHz state |𝜓⟩ = 1√

2
( |00⟩ + |11⟩).

We plot the histograms of measured phases for different field moments in in Figure
G.2 for the prepared state, where the data used to generate these plots was directly
used in the reconstruction of the density matrix shown in Figure F.3b.

From inspection of Figure G.2, it is evident that the probability distribution of
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measured phases for single-shot measurements of the complex-valued moments
𝑎𝑏†, 𝑎, 𝑏, and ℎ follows an uniform distribution; thus each single-shot measurement
of these moments will have a completely random phase. However, the probability
distribution for the moment 𝑎𝑏 is peaked at 0 phase (mod 2𝜋); thus shot-to-shot
measurements of this moment have phase coherence. These properties of these
probability distributions will result in expectation values (obtained from averaging
all the single-shot data) of the moments ⟨𝑎𝑏†⟩, ⟨𝑎⟩, ⟨𝑏⟩, and ⟨ℎ⟩ to be zero-valued,
while the expectation value of the moment ⟨𝑎𝑏⟩ will be finite. This is consistent
with the density matrix 𝜌 = |𝜓⟩ ⟨𝜓 | = 1

2 ( |00⟩ ⟨00| + |00⟩ ⟨11| + |11⟩ ⟨00| + |11⟩ ⟨11|)
and Equation G.7; according to Equation G.7 the density matrix element ⟨11|𝜌 |00⟩
is equal to ⟨𝑎𝑏⟩ and the density matrix element ⟨10|𝜌 |01⟩ is equal to ⟨𝑎𝑏†⟩. Hence,
for the prepared GHz state we expect ⟨𝑎𝑏⟩ to be finite-valued, and thus expect
to see phase coherence in the probability distribution of measured phases for the
moment 𝑎𝑏. Likewise, for the GHz state we expect ⟨𝑎𝑏†⟩ to be zero-valued, and
thus expect to see a uniform distribution in the measured phases for the moment 𝑎𝑏†

(i.e., completely random measured phases). Note that in general, complex valued
field moments will yield off-diagonal density matrix elements, while real-valued
moments will yield on-diagonal density matrix elements.

Furthermore, we point out to the reader that the expectation values ⟨𝑎⟩, ⟨𝑏⟩ = 0
are consistent with the fact that |𝜓⟩ is a fully entangled state; the reduced density
matrix of either the 𝑎 or 𝑏 mode is equal to a fully mixed state, and thus single-mode
measurements by themselves should contain no information on the entanglement of
the state. Hence, we expect single-shot measurements of 𝑎 or 𝑏 to have completely
random phase consistent with a fully mixed state, as is seen in Figure G.2. Thus, these
properties of the moments of |𝜓⟩ imply that we may heuristically understand single-
shot measurement results of 𝑎𝑏 as being equal to |𝑎 | |𝑏 |𝑒𝑖(𝜙𝑎+𝜙𝑏) , where the statistics
𝜙𝑎 + 𝜙𝑏 is given by the plot in Figure G.2, and where single-shot measurement
results of 𝑎 are |𝑎 |𝑒𝑖𝜙𝑎 and of 𝑏 are |𝑏 |𝑒𝑖𝜙𝑏 . When writing the moments in this
manner, it is evident that although 𝜙𝑎 and 𝜙𝑏 are completely random on a shot-by-
shot basis, their correlation is deterministic on a shot-by-shot basis, and it is given
by 𝜙𝑎 = −𝜙𝑏 + 𝜙noise, where 𝜙noise encapsulates the (Gaussian) noise of heterodyne
detection that is responsible for the width of the phase distribution of 𝑎𝑏 in Figure
G.2. Essentially, for every single-shot measurement, 𝜙𝑎 is random and 𝜙𝑏 is random,
but 𝜙𝑎 is equal to the negative of 𝜙𝑏 up to detection noise, i.e., their values have a
deterministic correlation. Thus, when obtaining single-shot measurement results of
𝑎𝑏 = |𝑎 | |𝑏 |𝑒𝑖(𝜙𝑎+𝜙𝑏) , the shot-to-shot randomness of 𝜙𝑎 and 𝜙𝑏 cancel out, and the
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moment on average has a deterministic phase. Moreover, this heuristic description
also explains why ⟨𝑎𝑏†⟩ = 0 as well. We may write single-shot measurement results
of 𝑎𝑏† as |𝑎 | |𝑏 |𝑒𝑖(𝜙𝑎−𝜙𝑏); in this case 𝜙𝑎 −𝜙𝑏 = 2𝜙𝑎 +𝜙noise and thus the randomness
of 𝜙𝑎 and 𝜙𝑏 does not cancel out on average, and the 𝑎𝑏† moment also has random
phase for every single-shot measurement.

Thus, through this specific example we see that in general the properties of entangle-
ment of a specific multipartite photonic state leads to specific phase correlations in
the single-shot heterodyne measurements of these fields, which are obtained through
measurement of complex-valued joint-field moments. On the other hand, real val-
ued moments will hold information on Tr (𝜌 |𝑖⟩ ⟨𝑖 |) where {|𝑖⟩} are the basis states
of the Hilbert space of the multipartite photonic state, thus yielding the diagonal
elements of the density matrix.

Effect of Field Overlap Between Different Itinerant Photonic Modes
One source of measurement error in our heterodyne-based tomography of multi-
partite photonic states is the overlap of fields of different itinerant photonic modes.
While in our experiment we do not have overlapping measurement windows for
different itinerant photonic modes, fields of one mode can bleed into the measure-
ment windows of other modes, due to either dispersion-induced pulse distortion
and broadening (particularly for broader bandwidth photons), or finite reflections
at the “tapered boundary" of the slow-light waveguide overlapping with emission
at a later time. Thus, there was a need to understand and measure such overlap’s
effect on our measurement results in our experiment. In order to understand this
effect further, we again consider the two mode GHz state |𝜓⟩ = 1√

2
( |00⟩ + |11⟩).

As discussed in the last section, only the joint moment ⟨𝑎𝑏⟩ has phase coherence,
and other moments like ⟨𝑎𝑏†⟩ do not have phase coherence and are zero-valued.
Moreover, we may heuristically understand single-shot measurement results of 𝑎 to
be |𝑎 |𝑒𝑖𝜙𝑎 , and likewise for 𝑏.

Consider the scenario where some of the field from mode 𝑎 overlaps with the mea-
surement window of mode 𝑏, which we define to be [𝑡𝑏

𝑖
, 𝑡𝑏
𝑓
]. We may heuristically

write 𝑆𝑏 =
∫ 𝑡𝑏

𝑓

𝑡𝑏
𝑖

𝑑𝑡 𝑓𝑏 (𝑡) (𝑏out(𝑡) + 𝑎out(𝑡)) = |𝑏 |𝑒𝑖𝜙𝑏 + |𝑎 |𝑒𝑖𝜙𝑎 , where |𝑎 | is the mag-
nitude of overlap between mode 𝑎 and the mode-matching function 𝑓𝑏 (𝑡) over the
measurement window [𝑡𝑏

𝑖
, 𝑡𝑏
𝑓
], and 𝜙𝑎 is the phase from the mode-matching integral.

Upon calculation of moments, we then have 𝑎𝑏† = |𝑎 | |𝑏 |𝑒𝑖(𝜙𝑎−𝜙𝑏) + |𝑎 | |𝑎 |𝑒𝑖(𝜙𝑎−𝜙𝑎) .
As discussed in the previous section, for the two-mode GHz state we have the fol-
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lowing deterministic correlation 𝜙𝑎 − 𝜙𝑏 ∼ 2𝜙𝑎 up to detection noise, and 𝜙𝑎 is
completely random shot-to-shot, so ideally ⟨𝑎𝑏†⟩ is calculated to be zero-valued.
However, in the scenario of mode overlap, there will be some deterministic cor-
relation between 𝜙𝑎 and 𝜙𝑎, and their difference 𝜙𝑎 − 𝜙𝑎 will always be some
deterministic value up to detection noise. Thus, the term |𝑎 | |𝑎 |𝑒𝑖(𝜙𝑎−𝜙𝑎) will not
average out to zero over many single-shot measurements, and ⟨𝑎𝑏†⟩ will not be
zero-valued.

Hence, in order to ascertain the degree to which overlap between two itinerant
photon modes is affecting measured expectation values of moments, we can prepare
a GHz state of the two modes while maintaining their temporal mode shape and
emission time. If measured the ⟨𝑎𝑏†⟩ is negligible, then one may conclude that the
effect of mode overlap is minimal. However, if one finds that the ⟨𝑎𝑏†⟩ moment is
non-negligible and depends on the emission time of the second mode (increasing
if emission happens earlier, and decreasing if emission happens later), then this is
a clear sign that the overlap between the two itinerant modes is leading to spurious
expectation values of moments, and thus to measurement error. In that scenario, it
is recommended to increase separation in time between the modes if possible. In
our experiment, we used this method to determine if there was too much overlap
between the second and third photons in the 4-photon cluster state prepared discussed
in Chapter 5. We found that due to dispersion-induced broadening, the measured
⟨𝑎𝑏†⟩ was ∼ 0.1 with a 20 ns interval between their emissions, ∼ 0.042 with a
30 ns interval, and did not decrease further than ∼ 0.01 for all intervals 40 ns or
longer. We hence used this measurement to conclude that we needed 40 ns spacing
between broadband (fast)-emitted photons in order to minimize measurement error
from their field overlap.

Analysis of Effect of Detection Inefficiency on Moments of Field
As discussed in Appendix G.1, the detection inefficiency [meas affecting measure-
ment of emitted itinerant photons are taken into account during tomography through
the conversion scaling factor 𝐺. Because this scaling factor 𝐺 is applied to the raw
measured field 𝑆out, a calculated properly scaled moment ⟨(𝑎†)𝑛𝑎𝑚⟩ will be scaled
by a factor𝐺−(𝑚+𝑛)/2, where part of this scaling includes the factor [−(𝑚+𝑛)/2

meas . Below
we present some rudimentary analysis that corroborates that this is the appropriate
scaling.

Consider the following generic model for loss: a partial swap interaction �̂�[ between
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the itinerant mode 𝑎 and some environmental degree of freedom, where

�̂�[ |0⟩𝑎 |0⟩env = |0⟩𝑎 |0⟩env

�̂�[ |1⟩𝑎 |0⟩env = [1/2 |1⟩𝑎 |0⟩env + (1 − [)1/2 |0⟩𝑎 |1⟩env .

Moreover, consider an initial state of mode 𝑎: |𝜓⟩𝑎 = 1√
2
( |0⟩𝑎 + |1⟩𝑎). After

interaction with the environment loss channel, we have:

�̂�[ |𝜓𝑎⟩ |0⟩env =
1
√

2
|0⟩𝑎 |0⟩env +

1
√

2

(
[1/2 |1⟩𝑎 |0⟩env + (1 − [)1/2 |0⟩𝑎 |1⟩env

)
=

1
√

2

(
|0⟩𝑎 + [1/2 |1⟩𝑎

)
|0⟩env +

1
√

2

(
(1 − [)1/2 |0⟩𝑎

)
|1⟩env .

Now, by tracing out the environmental degrees of freedom, we arrive at the following
reduced density matrix:

Tr
(
�̂�[ |𝜓𝑎⟩ |0⟩env ⟨0| ⟨𝜓𝑎 | �̂�†

[

)
=

1
2

(
|0⟩𝑎 + [1/2 |1⟩𝑎

) (
⟨0|𝑎 + [1/2 ⟨1|𝑎

)
+ 1

2
(1 − [) |0⟩𝑎 ⟨0|

=
1 + [

2

(
|0⟩𝑎 + [1/2 |1⟩𝑎√︁

1 + [

) (
⟨0|𝑎 + [1/2 ⟨1|𝑎√︁

1 + [

)
+ 1

2
(1 − [) |0⟩𝑎 ⟨0| .

We may thus identify the resultant state of the itinerant mode 𝑎 after the loss to be
a mixed state that is composed of the following pure states |𝜙⟩ =

|0⟩𝑎+[1/2 |1⟩𝑎√
1+[

and

|𝜙′⟩ = |0⟩𝑎 with probabilities 1+[
2 and 1−[

2 , respectively. Thus, it is evident that
the moments ⟨(𝑎†)𝑛𝑎𝑚⟩ will be scaled by a factor [−(𝑚+𝑛)/2 for the state |𝜓𝑎⟩ (as
well as any generic superposition state) relative to their value in the hypothetical
scenario of unit detection efficiency. Finally, note that the resultant partial density
matrix is not equal to the following density matrix one might naively expect: 𝜌𝑎 =
(1 − [) |0⟩𝑎 ⟨0| + [𝜌other, i.e., a mixed state where the vaccum state has probability
(1 − [) and a complimentary state has probability [; one may prove that there is no
𝜌other that would lead to a valid, physical density matrix.
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