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Abstract

One eventual goal of bioengineering is to build complex biological machines that fully

realize the unique potential of biotechnology, namely adaptation, survival, growth, and

dominance. In order to do so, not only do we need theoretical understanding and

reliable manufacturing of biological parts and components, we also need a systems theory

that captures fundamental structures to obtain insight about the space of all possible

behaviors when parts are put together. This enables us to understand what can and

cannot be achieved. Examples from other engineering disciplines are Turing machines for

computers, information channels for communication networks, linear input output systems

for electrical circuits, and thermodynamics for heat engines. This work is an attempt at

developing a systems theory tailored to biomolecular systems in cells. The results form the

following statements.

Biomolecular systems are binding and catalysis reactions. Catalysis determines the

direction of change, while binding regulates how the catalysis rates vary with reactant

concentrations. Given a binding reaction network, the full range of regulatory profiles can

be captured by the reaction orders of catalysis, which in turn is constrained in polyhedral

sets determined by the stoichiometry of binding. This constitute a rule, that since cells

control catalysis by binding, cells control catalysis rates by regulating reaction orders

constrained in polyhedral sets. This rule has ramifications in several directions. On

metabolism, by incorporating the constraint that reaction orders of metabolic fluxes, not

the fluxes themselves, are controlled, we can predict metabolism dynamics directly from

network stoichiometry, e.g. glycolytic oscillations and growth arrests. This is a fully

dynamic upgrade of flux balance analysis, a popular constraint-based method to model

metabolism. On systems biology, this rule derives a method of biocircuit analysis based on

the full range of values that reaction orders can take. This allows discovery of necessary

and sufficient conditions for a circuit to achieve a certain function, thus revealing regimes

hidden by traditional methods of analysis. It also promotes holistic comparisons of different

circuit implementations, e.g. activating versus repressing, thur enabling biocircuit design
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where we know when a design will work, and when a design will fail. On dynamics

and control of biocircuits, reaction order can work as a robust basis for stability, perfect

adaptation, multistability, and oscillations. Lyapunov functions and dissipative control

theory tailored for biomolecular systems are constructed based on reaction orders. On

the mathematics of biology, it relates bioregulation to convex polyhedra, log derivative

operator decompositions, and fundamental rules of calculus for positive variables.
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dominate in 𝑡𝐺, so
𝐶𝐺𝑅

𝐺
≥ 10. The orange region is from the above and that

𝑅 dominates 𝑡𝑅 by
𝑅

𝐶𝐺𝑅
≥ 10. (d) Reaction order polyhedron of 𝐺 obtained

by computer sampling, with
𝐺
𝐾

and
𝑅
𝐾

log-uniformly sampled between 10−6

and 106
with a total of 105

points. The orange dot corresponds to the (−1, 1)
vertex in DDT from (b). The red line is the constraint that 𝛼𝐺 + 𝛼𝑅 = 0 from

plasmid number invariance and catalysis steady state. . . . . . . . . . . . . . 57
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2.6 Illustration of the biophysical setting considered in connecting chemical

potential with reaction orders. (a) A system consisting of two types of

particles, 𝑋1 and 𝑋2, in equilibrium within the system. The number of

these two particles, 𝑁1 and 𝑁2, can be added or removed via exchange

with external environments. Once the particle number changes, the system

quickly re-equilibrates. So the Gibbs free energy of the system is described by

𝐺(𝑁1, 𝑁2) and satisfy the equilibrium relation 𝑑𝐺 = 𝜇1𝑑𝑁1 + 𝜇2𝑑𝑁2, where

𝜇𝑖 is the chemical potential of particle 𝑋𝑖. (b) A system consisting of two

types of particles 𝑋1 and 𝑋2 with internal chemical reaction 2𝑋1 ⇌ 𝑋2 that

two 𝑋1 dimerize to form 𝑋2. To distinguish free monomers 𝑋1 and the

monomer molecules bound in 𝑋2, we denote 𝑋 as the generic monomer,

so 𝑋1 is monomer of 𝑋 , and 𝑋2 is dimer of 𝑋 . The dimerization reaction

only happens inside the system, not outside, so we color particles orange

as reaction-capable, while grey is not reaction-capable. The exchange with

external environment can add or remove monomers. But once a monomer

is added or removed externally, the internal reaction quickly equilibrates,

therefore causing a net increase or decrease of total monomers, or total 𝑋 ,

denoted 𝑁𝑡. The reaction equilibrium internal of the system is therefore

𝑑𝐺 = 0 for fixed 𝑁𝑡, captured by equilibrium constant 𝐾 for dimer dissociation.

From an external point of view, where we can only add or remove 𝑋 to change

𝑁𝑡, but not modify the equilibrium internal to the system, we want 𝐺(𝑁𝑡, 𝐾)
expressed in terms of 𝑁𝑡 that can be externally modified, and 𝐾 that cannot

be modified. So the equilibrium relation is 𝑑𝐺 = 𝜇𝑡𝑑𝑁𝑡 + 𝜅𝑑𝐾, where 𝜇𝑡 is

chemical potential for a generic 𝑋 , regardless of monomer or dimer form,

and 𝜅 is how 𝐺 changes with 𝐾. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Comparison of approximate solution (Approx) to exact solution for a simple
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held fixed. The units of concentrations are 𝐾 here. . . . . . . . . . . . . . . . 71
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3.2 Illustration of how methods from this chapter can be used to study the

enzymatic reaction with product binding. (a). The binding network for

enzymatic reaction with product binding. 𝐸 is enzyme, 𝑆 is substrate, they

bind to form complex 𝐶𝐸𝑆 , which gets catalyzed to complex 𝐶𝐸𝑃 which can

unbind or bind from 𝐸 and prouduct molecule 𝑃 . The catalysis rate of

substrate to product conversion is therefore proportional to 𝐶𝐸𝑆 , which is the

target species here (grey cicle). The squiggly arrow denotes catalysis reaction.

(b). Simulation of this enzymatic reaction with product binding, converting

substrates to products. Blue lines are product fraction, defined as total

product over the sum of total product and substrate
𝑡𝑃

𝑡𝑆+𝑡𝑃
. Orange lines are

the concentration of target species 𝐶𝐸𝑆 , proportional to catalysis rate. Three

different parameter settings are run, with increasing enzyme-product binding

strength (i.e. decreasing 𝐾𝐸𝑃 , graphically represented as increasing opacity).
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the binding network, showing how the vertices and rays of 𝐶𝐸𝑆’s reaction

order polyhedron can be obtained analytically. Upper right corner lists the

definition for totals and the steady state expressions of the target species, to

help with keeping track of the decomposition steps. The convex combination

of the vertices circled by orange or green corresponds to the orange or green

points in (d). (d). The reaction order polyhedron of 𝐶𝐸𝑆 , the target species, by

computer sampling. The upper left is a 3D view. The other three panels are

projection of the 3D polyhedron to different 2D planes. The green and orange

points corresponds to the dominance conditions and vertices in the DDT

in (c). 105
points are taken by log-uniformly sampling (𝐸, 𝑆, 𝑃, 𝐶𝐸𝑆, 𝐶𝐸𝑃 )

with values in (10−6, 106). Dominance condition is evaluated for 100-fold

difference: orange points is
𝑡𝑆

𝑡𝐸
≥ 100, green points is 𝑡𝐸 ≫ 𝐶𝐸𝑃 defined by

𝐶𝐸𝑃

𝑡𝐸
≤ 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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4.1 Diagram showing knowledge of biological systems split into mechanisms and
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properties not varying for the timescale of concern, while phenotypes are

system properties that are varying. From our knowledge about mechanisms,

scientific rules can be summarized, often using the language of mathematics,

to capture the core mechanistic structures. Such core structures can be used to

systematically create models from knowledge about mechanisms. By analysis

or simulation of these models we can demonstrate that a given mechanism is

sufficient for phenotypes it exhibits. To map phenotypes back to mechanisms,

mathematical abstractions for the class of systems is needed since phenotypes

are behaviors on the system level. Systems theory captures the core structures

on the system level, and derive hard limits or laws for given phenotypes.

Such laws can then be used to capture necessary conditions on mechanisms
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as a constraint-based model where some mechanisms are fixed and other

mechanisms are free to vary, many phenotypes or system behaviors can

be achieved. As an example, cars have some common features fixed as

constraints, with the rest left to vary, resulting in a wide range of mileage,
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4.10 Comparison of simulations of the mechanistic model proposed in [25] for

glycolytic oscillation (left), the regulatory trajectories from flux exponent
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Chapter 1

Introduction: constraints and hard limits,
systems theory, and biocontrol

This thesis makes two main contributions to understanding biomolecular systems in

cells. One, biomolecular systems consist of two types of reactions, namely binding

and catalysis reactions. Like mass and force constitute the core structure of mechanical

components, binding and catalysis constitute the core structure of biomolecular reactions

in cells. Catalysis determines the direction of change (in molecule concentrations), while

binding governs how the catalysis fluxes are regulated (by molecule concentrations). The

regulatory profile of catalysis fluxes is therefore determined by the network of binding

reactions. Because the regulation of catalysis fluxes by molecule concentrations requires

solving intractable systems of polynomial equations from the steady states of binding

networks, previously this can only be determined for specific scenarios under restrictive

assumptions, e.g. substrate is much more than enzyme in Michaelis-Menten [57] and

enzyme state-counting models in statistical physics [35, 88, 91]. However, recent advances

in understanding natural biological regulatory circuits and engineering synthetic circuits

achieve highly dynamic or combinatorial regulations [9, 10, 32, 83, 103, 122], violating

these restrictive assumptions. Therefore a theoretical framework to characterize the

full regulatory profile of binding networks on catalysis fluxes, while circumventing the

intractability of polynomial equations, is needed. This thesis finds an alternative approach

to characterize the full regulatory profile by focusing on the reaction orders of the catalysis

fluxes in molecule concentrations, rather than the fluxes themselves. The full regulatory

profile of a binding network is then shown to be polyhedral sets of reaction orders,

determined directly from the stoichiometry of the binding network. As a result, we can

analyze biocircuits in a holistic fashion, revealing hidden functional regimes and predict
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when circuits would fail. So the first main contribution is defining the core structure of

reactions in biomolecular systems, namely binding and catalysis, and finding a method for

its holistic analysis, namely reaction order polyhedra. This is discussed in Chapter 2 and 3.

The other main contribution is a formulation of biomolecular reactions in cells as metabolic

machines, where the reaction orders, or exponents, of metabolic fluxes are controlled.

This formulation is a logical extension of the previous contribution. Since cells regulate

metabolic fluxes by binding reactions, and the regulatory profile of binding reactions is

adjusting reaction orders in a polyhedral set, cells control metabolic fluxes by adjusting

their reaction orders or exponents. This rule, which we term flux exponent control (FEC),

allows us to formulate metabolism dynamics in cells as a problem in control theory on how

regulatory mechanisms, e.g. enzyme allostery, control the exponents of fluxes. Similar to

how the Langrangian formulation can study the dynamic behavior of any given mechanical

system in terms of its response to applied forces, FEC can study the dynamic behavior of

any given metabolic system in terms of its response to adjustments of flux exponents. This

opens up the frontier to systematically define, categorize, and study metabolic machines in

terms of their structures in metabolic stoichiometry and flux exponents.

As a general systems-level formulation of metabolic networks, FEC also makes practical

improvement over existing methods to quantitatively study metabolism. Data on metabolic

networks are sparse, in the sense that the stoichiometry of metabolic reactions can be

reliably understood, but the regulatory mechanisms of the metabolic fluxes, e.g. enzyme

allostery, are largely unknown beyond a few well studied pathways. As a result, constraint-

based methods, such as flux balance analysis (FBA), that use the sparse reliable data as

constraints, and study the set of possible biological behaviors, have been widely applied to

understand metabolism. However, existing constraint-based methods such as FBA mainly

use metabolic stoichiometry as constraint, while allowing all fluxes to be adjusted. This

does not capture intrinsic dynamics of metabolism, such as glycolytic oscillations and

growth arrest, that are often the reason for metabolic regulation. FEC serves as an upgrade

to existing constraint-based methods by naturally incorporating intrinsic dynamics of

metabolism, and therefore can study dynamic properties from hard constraints. This

is achieved by including a fundamental constraint on bioregulation of metabolic fluxes

in addition to stoichiometry, namely that cells control metabolic fluxes by adjusting

their exponents. Another approach to understanding metabolism is by studying hard

limits that hold for arbitrary regulatory mechanisms, invented in [25] where limit-on-

performance theorems from control theory are applied to explain glycolytic oscillations.

FEC also upgrades this approach by formalizing generic metabolic networks into control



4

systems, where exponents of fluxes are adjusted by regulatory mechanisms. Therefore FEC

allows the study of hard limits on metabolism for general systems, e.g. conservation of

robustness or accuracy-robustness tradeoffs from feedback control of metabolic fluxes, akin

to conservation of energy and the principle of least action from the Lagrangian formulation

of classical mechanics. This is discussed in Chapter 4.

In this chapter, I provide broad discussions on the contexts that I am motivated by when

developing these results. Readers interested in concrete results and technical contents

may skip this and move on to the other chapters. The hope is that the contexts could help

the reader understand where I come from, what I aim for, and where I am going next.

Ultimately, I cannot make contributions more than what the mental picture of my “pathetic

thinking” suggests [56]. Ideally these discussions could serve as a check on the general

“mental model” of biomolecular systems in cells with the reader. The discrepancies pointed

out in this check could reveal my limitation in reasoning and motivate the reader to make

improvements, or at least caution the reader when reading the rest of this thesis.

There are four points about the context that I am motivated by: bioengineering as a

potential industry, constraints and hard limits, catalysis at the core of biological activity,

and dynamics as the reason for most bioregulatory mechanisms.

One of the eventual goal of bioengineering is to engineer biomolecular systems in cells

as biomachines to perform diverse functions, such as adaptation, survival, growth, and

dominance. Importantly, to enable an industrial revolution based on technologies from

bioengineering, design and manufacture processes of biomachines need to be scaled

up so that they become routine, instead of risky, explorative, and requiring experienced

craftsmanship. Looking at other mature engineering disciplines, such as classical mechanics,

this scaling up requires foundational theoretical understanding on two fronts: elicitation

of core structures on the components level, such as Newton’s laws of mass and force, and

a systems theory on the machine level, such as Lagrangian formulation of mechanical

structures subject to applied forces. This is in contrast to the typical trial-and-error, or

“model, simulate, fit data” approach currently popular in bioengineering, which does not

scale. Therefore, this thesis aspires to build a foundational theory on both components and

systems level for biomachines. This is the first perspective taken in this thesis, elaborated

in Section 1.1.

Second, against the myth that “anything is possible in biology”, this thesis emphasizes the

constraints and hard limits on behaviors of biomolecular systems. In other words, I take

the view that constraints and hard limits are not in conflict with the diversity of biological

behaviors, but rather guides us and enhances our understanding of this diversity. This
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means that I strive to capture the space of all behaviors that a system is capable of, and

understand its specific behaviors in particular scenarios in this context. This perspective is

important because for machines to be useful, they are built to be both restrictive in certain

aspects, yet universal in other aspects. For example, electronic computers can only do bit

flips, but is capable of general computations; cars can only drive rotational motions on

wheels, but can traverse diverse paths on roads. This restrictive yet diverse property of

machines is sometimes called “constraints that deconstrain” [38]. To understand it, we see

that machines consist of several layers in a hierarchy, characterized by timescales of their

modifications. For example, from a machine’s defining structures (slowest at the bottom),

to its tunable parameters (faster in the middle), to its input-output behaviors in action

(fastest at the top). A specific behavior in a particular scenario of one machine is the result

of specifying everything in all layers of the hierarchy. To obtain insights on biomachines

that hold on longer timescales, we need constraints and hard limits based on information

of just lower layers of the hierarchy. This perspective is also discussed in Section 1.1. As an

illustration of constraints and hard limits on biomachines, the example of autocatalysis

processes is considered in Section 1.4.

Third, this thesis aims to develop rules and principles as well as corresponding mathematical

tools tailor-made for structures in biology, rather than straightforward borrowing from

other disciplines. In particular, this thesis considers catalysis as the core of bioactivity,

since most actions in biology happen through catalysis. On the components level, each

catalysis reaction is regulated by binding reactions. So I consider the core structure on

the components level of biomolecular systems in cells as catalysis and binding reactions,

akin to force and mass for mechanical components. Catalysis, like force, determines the

direction of change, while binding, like mass, governs how the change is regulated. On the

systems level, again motivated by catalysis as the core of bioactivity, this thesis focuses

on biomolecular systems in cells as metabolic machines, serving the function of adjusting

metabolic fluxes. This perspective is motivated by a general conception that catalysis, such

as in metabolism, is the foundational biological behavior that most other behaviors build

on top of. This is discussed in Section 1.3.

Lastly, this work considers dynamics as the major reason for most regulatory mechanisms in

biology, therefore takes the perspective of biocontrol. As an example, although homeostasis

is one of the hallmarks of biological behavior, a stable steady state is not guaranteed but

instead achieved only via elaborate regulatory architectures. This perspective is illustrated

by an intuitive inspection of autocatalytic processes in Section 1.4. Autocatalysis is one of

the core processes of all life, from energy generation to growth. However, autocatalytic
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processes are intrinsically unstable, therefore any homeostasis maintained on top of

autocatalysis requires active regulations. Biocontrol can analyze instability and the

necessary regulations explicitly, as well as reveal hard limits on system performance. In

Section 1.4, hard limits due to instabilty of autocatalysis from the perspective of biocontrol

is compared with constraints from stoichiometry and thermodynamics, as an illustration

of constraints and hard limits on biomachines.

1.1 Systems theory as foundation of an engineering industry

There are two main contributions of this thesis: one on the components level, and one on the

systems level. The main result on the components level is a principled way of formulating

and analyzing biomolecular systems, namely as networks of catalysis and binding reactions.

By principled, I mean similar to how Newton’s laws enable our reasoning of systems with

mechanical components: (1) all mechanical components can be specified by force and

mass; (2) force and mass interact in a particular way specified by Newton’s laws, so that

force determines the direction of motion, while mass determines how the force-motion

relation is regulated; (3) to analyze or design a mechanical system is to analyze or design a

system of force and mass (see Figure 1.1). In other words, Newton’s laws formulate force

and mass as the core structure of mechanical components in any system, and this serves

as the universal protocol (the middle knot of Figure 1.1) that all behaviors of mechanical

components (on the left) are converted to, and all methods of analysis and design (on the

right) are applied to. In short, one result this thesis strives to deliver is a core structure,

namely binding and catalysis, that does the same thing for biomolecular systems in cells.

On top of the core structure, just like calculus was invented or adapted to describe the

mathematical structure in mechanical systems’ behaviors, this thesis also develops reaction

order polyhedra as a tool to describe regulatory profiles of binding network on catalysis

fluxes.

The other main contribution of this thesis is on the systems level: biomolecular systems

in cells is formulated as metabolic machines acting on metabolic fluxes, with external

adjustments of fluxes’ exponents. This is a systems theory of biomolecular systems,

similar to how Lagrangian mechanics formulates mechanical systems as a structure made

of mechanical components and subject to applied forces. A systems theory defines an

abstract class of machines for a generic purpose or function, and characterizes the space

of machines, or systems, in terms of the structures that connect the components into a

machine (see Figure 1.2). To come up with a systems theory, we need a formalization of

the constrained mathematical structures from the components level. For example, while
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Figure 1.1 Mass and force serve as the core structure of mechanical problems.

each mechanical component has its own position, velocity, and forces, these variables are

constrained due to the structural connection that put them together into a machine. The

Lagrangian formulation of mechanics, as a systems theory, then builds these constraints as

its foundational mathematical structures so we can focus on functions at the machine level.

Once a systems theory is defined, it enables fundamental characterizations of a class of

machines that often take the form of hard limits on machine performances. By hard

limits, I mean similar to conservation of energy for mechanical systems, and conservation

of robustness for control systems, that characterize what these systems can and cannot

do in a fundamental way. In particular, conservation of robustness shows that fragility

cannot be fully mitigated by control design, but only shifted or re-distributed [104]. This

provides a coordinate to view control system design in terms of unavoidable tradeoffs of

different performance metrics, guiding the development of the discipline. It also shows

that unstable plants (i.e. processes to be controlled) make control problems harder and the

resulting system more fragile, in a way that cannot be mitigated by control design. This

places control design at the interface with external constraints from physical limitations of

hardware, in turn deepening our understanding of control problems at large, beyond just

controller design. For example, problems with different physical limitations then constitute

control problems with different “hardness”, in a fundamental way. This hardness is then

to be tackled outside of control design, such as by means of hardware engineering or

materials design. In short, the second result that this thesis strives for is a systems theory

of biomolecular systems in cells as metabolic machines, defined through constrained

structures of bioregulation. The hope is that this provides a systematic way to study generic

metabolic systems, enabling the study of hard limits on what biomolecular systems can

and cannot do, and guiding the development of biocontrol methods.

To better see why these two types of results, core structures on the components level and a



8

Figure 1.2 A systems theory defines a class of machines for a purpose or function. It takes components with

diverse properties, and utilizes core structures on the components level to connect to machines with diverse

structures and resulting performances.

systems theory on the machine level, might be useful, let us start with some context for

motivations of my research. The goal of my research is to push towards a bio-industry that

can tap on the unique capabilities of bio-organisms, namely adaptation, survival, growth,

and dominance. Not as a sub-industry or a technique in chemistry, medicine, materials,

or health care, but for bio-industry to be an industry with its own unique capabilities

that enable other industries, like the rise of digital networks or AI industries. There are

examples of employing such unique capabilities in certain fields, such as agriculture, cattle

breeding, or tree-growing to reverse desertification. The rise of bio-industry should enable

systematic and routine application of engineered bio-organisms that adapt, survive, grow,

and dominate to suit societal needs.

To think about how the rise of bio-industry can happen, it is helpful to provide a historical

perspective, albeit simplistically. Supposedly an industry is based on some advance

in engineering technology, which in turn is based on scientific knowledge. Scientific

knowledge about the world is accumulated from a sea of observations (see Figure 1.3).

Based on a set of closely-related observations, a phenomenon or a heuristic rule can be

summarized, and used as a working knowledge. For example, ancient astronomy was

based on heuristic rules of how certain planets seem to move, accumulated from many

observations of the sky. From several such heuristic rules, a more general phenomenological

model, or mathematical law, can be formulated, e.g. Kepler’s law of planet motion. From

several such phenomenological laws, the fundamental structure of a large class of problems

can be formulated, e.g. Newton’s laws of mechanics. This view of scientific progress

can be seen as a funneling process from larger and larger sets of observations to smaller

and smaller sets of rules that reveal structures of the problem that are more and more

fundamental. There are of course further relations among the rules and further dynamics
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Figure 1.3 Scientific progress as a funneling process of rules that capture the core structures of components.

within this funneling process that we are not going into. One example is the emergence

of rules and laws on a larger scale from smaller scale ones, as exemplified in chemistry,

statistical physics, and fluid mechanics. Another example is the feedback from a rule as

motivation to seek particular kinds of observations, as in hypothesis-driven experiments,

and the invalidation of wrong rules.

On top of this scientific progress, from any rule at any stage, it can be used as a basis

for engineering (see Figure 1.4). For example, a simplistic engineering directly from

observations would be that from several observations of apples falling down from trees,

we can use this to harvest apples by waiting for apples to fall. A more fundamental rule

capturing the core structure of a wider class of components would yield engineering

techniques that can be applied to wider classes of problems and generate more ways to

solve a problem. For example, while Kepler’s laws can only be applied to planetary systems

similar to a planet around a star, Newton’s laws can be applied to more complex planetary

systems such as three-body problems, as well as other tasks such as calendar keeping,

projectiles such as catapults, and fluid motion.

However, when a scientific law is used to solve an engineering problem, it is not as simple

as just straightforwardly applying it. The reason is that an engineering problem is often not

of analysis, but of design. While the components simply exist, with properties summarized

by scientific rules, a machine needs a purpose to be conceived and then built. Given a
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Figure 1.4 On top of core structures of components from scientific progress, engineering progress is made

by coming up with systems theories. A systems theory defines a class of machines by formalizing the

constrained mathematical structure from the core rules of the components.

mechanical system of mass and force, Newton’s laws can analyze it by specifying how

the components’ position, velocity, force and mass relate. But it is nontrivial to even

formulate, let alone answer, a design problem based on Newton’s laws. This is because the

components’ variables have complicated internal constraints, and a purpose or function is

not naturally specified in variables of the components. Furthermore, a design problem

is not analyzing a given system of components, but rather defining a space of possible

systems and then finding one system for an optimizing objective. Given I want a rock

to move in a particular motion using some wood sticks, how to put together a machine

that is the right mechanical system to do it? We would need to define the general class of

machines that can be built from wood sticks, and characterize how each machine design is

related to moving a rock, so as to optimize over the designs based on performances. In

mechanics, this is approached by alternative formulations of mechanical problems such

as the Lagrangian that build internal constraints of component variables from machine

structure directly into the formulation and describe machine behavior in terms of system

variables rather than components. These formulations also take mechanical control and

other domain-specific constraints more explicitly into account. As designs of mechanical

machines continue to evolve, new formulations of mechanical machines are still actively

invented today, e.g. to tackle cyber-physical systems in robotics.

This points to the need of an engineering systems theory when going from scientific rules

to solving engineering problems at scale. Given the core structures for the components

that will be used for an engineering purpose, we still need to define a systems theory
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characterizing a class of machines by eliciting how the machine architecture of putting

components together relates to machine performance on the functional level (see Figure

1.4). This is more apparent from looking at some of the modern engineering fields.

Thermodynamics is a systems theory for heat engines on top of gas laws etc. describing

system components; Kirchhoff’s laws is a systems theory for electrical circuits on top

of ohm’s law describing resistors and capacitors as components; linear time-invariant

input-output systems is a system theory for electronic signal processing on top of op-amps

as components; communication channel and its information transmission properties is a

systems theory for radio, phone, and internet; and Turing machine is a systems theory for

modern computers on top of transistors and band gaps as components (Figure 1.4).

A systems theory often offers two important contributions that make an engineering

discipline scale up to an industry. One, it takes the core structure of components from

relevant scientific progress and charts out the mathematical space of all possible systems

or machines relevant for an engineering problem. This allows systematic explorations in

the space of machines for useful designs, especially ones optimal for a certain objective.

Second, it can develop hard limits on machine performance based on general features of

machine structure. Examples of such hard limits are Carnot’s efficiency bound of thermal

engines, channel capacity of communication channels, undecidable halting problems for a

Turing machine, and Bode’s conservation of robustness for control systems. By pointing

out fundamental limitations of the class of machines for an engineering problem, this

systems theory establishes a central coordinate or direction that aligns and compares all

designs and implementations of machines, thereby guiding development of a discipline.

In other words, a systems theory charting out the set of engineering systems relevant for a

problem and its hard limits is a crucial stage to begin solving an engineering problem at

scale.

In the context of biological engineering, this pursuit for scaling up is sometimes not

appreciated. There is an implicit but widely accepted notion, especially in bioengineering

academia, that theories are useful only to fit and explain experimental data by building

models and simulating them. Systems theories, in terms of general rules, axiomatic

formulations, and mathematical theorems that characterize the biological systems we deal

with, have not been successful, and therefore not necessary for bioengineering. Indeed, most

major advances in engineering novel functions in synthetic biology proceed by intuitive

reasoning of domain experts aided by model simulations and feedback from experimental

data. However, if industrialization of bioengineering is the eventual goal, then scaling

up both the design and manufacture processes are necessary. Current design-test-build



12

cycles of bioengineering highly rely on the experience and craftsmanship of experts, often

taking several years of a top-tier PhD student just to have a chance at accomplishing one

design. While similar situations are true for the early stages of other mature engineering

fields, as discussed above, eventually foundational systems theories were developed to

scale up both the education of engineers and the design-build-test process. In other words,

systems theories are at the core of enabling industrialization, where works that previously

involve high uncertainty and require experienced experts and extensive trial and error now

become routine and readily doable at scale. It is this scalability enabled by a systems theory

that I hope to achieve in this thesis when developing the systems theory of biomolecular

systems in cells as metabolic machines with control input on flux exponents.

From this vantage point of systems theory aiming for scaling up, I note that most ideas in

this thesis are not new, but taken more seriously, made systematic, and developed to their

logical conclusions. For example, the idea that binding regulates catalysis dates all the way

back to Michaelis-Menten [57, 63]. My main contribution is in formalizing that this is the

core structure of biomolecular reactions. In other words, I propose that all biomolecular

reactions in cells consist of these two types of reactions, with binding regulating catalysis.

Placing this at the formal foundation of biomachine components has several implications.

On one hand, it claims that we do not need more. Binding and catalysis reactions form

a strict subset of all possible chemical reactions. This can avoid some pathology and

generality that arise in the study of general chemical reaction networks, which is one

obstacle in that discipline [93]. Indeed, without biological restrictions, it has been shown

that CRNs can perform Turing complete computations and produce arbitrary steady state

distributions [24, 90]. So binding and catalysis can also be seen as a regularization on the

space of chemical reaction networks by demanding realistic networks to be “biological”,

similar to demanding functions to be continuous or smooth in physical solutions of many

partial differential equations. This is also facilitated by concretely relating each reaction to

a physical process, so that one process always has a detailed and correct way to specifying

it, with other specifications corresponding to simplifications with explicit assumptions. On

the other hand, binding and catalysis claims that we can not have less. While assumptions

such as one species is much more abundant than another is often made for simplifying

assumptions in analyzing binding networks, we cannot restrict ourselves to always make

such assumptions. Instead, taking binding and catalysis as the components’ core structure

demands that we characterize the full regulatory profile of binding on catalysis, and

analyzing specific scenarios and making restrictive assumptions within the context of the

full behavior.
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As another example, the idea that the exponents, or reaction orders, are what is important

for regulating catalysis fluxes is also not new. It was pioneered by Michael Savageau [97]

in his work on S systems in 1970s and has been included in many works on analyzing

metabolism, such as metabolic control analysis (see Chapter 13 of [30] for an introduction).

However, in those cases, the reaction orders are often taken as empirically useful quantities,

such as sensitivities or enzyme efficiency, and used to interpret numerical simulations. This

thesis again takes this idea seriously and extends it to its logical conclusions. If reaction

orders are truly representative of bioregulation, then what is the space of all possible

reaction orders, and how do they relate to underlying regulatory mechanisms, namely

binding networks? In other words, what is the mechanistic basis of reaction orders? If

reaction orders are truly the quantity regulated when controlling metabolic fluxes, then this

is a severe limitation on cells’ control of metabolism dynamics. What are the consequences?

The answers to these questions, which are logical consequences of the reaction order idea,

are important for developing a systems theory that formalize metabolic machines. Through

the work of this thesis, surprising properties about reaction orders are revealed when

exploring these questions. One is that reaction orders can often take arbitrarily large values

in certain directions, which are regimes that corresponds to rays towards infinity (Chapter

3). Biologically, this corresponds to the important phenomenon of hypersensitivity (see

Chapter 2). This is rather unexpected from empirical and intuitive notions of reaction

orders in previous works, where reaction orders are motivated by saturation phenomenon

in Michaelis-Menten type enzymatic activities, so they are often restricted between 0 and

some small positive integer. In fact, because Hill functions or other Michaelis-Menten type

representations of enzymatic activities cannot naturally handle dependence on multiple

total concentrations, reaction orders as vectors in a multi-dimensional space is under

studied until this work. Another surprise is that restricting bioregulation of fluxes to

adjusting their exponents is actually the natural way to preserve intrinsic dynamics of

metabolism (see Section 1.4 and Chapter 4). This observation only becomes clear after

confidently taking the FEC rule as a genuine constraint on what cells can do and make it

into a constraint-based approach for modeling metabolism.

Our discussion in this section motivates why this thesis aims at formulating the core

structure of components and a systems theory of machines for biomolecular systems in

cells. Inspired by other engineering disciplines with mature industries, I consider work

on these two directions as crucial developments in enabling bioengineering to scale up

into an industry. With this in mind, Section 1.3 describes why catalysis is at the center of

core structures and systems theory for biomolecular systems in cells. The core structure

of binding and catalysis is in terms of how catalysis is regulated, and the systems theory
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of metabolic machines is in terms of catalysis fluxes in metabolism as machine function.

The next section, Section 1.2, discusses how can systems theory of machines be useful. In

particular, how can constraints and hard limits on machines be possible, given that there

are examples of machines with extreme diversity in behavior, such as computers, neural

networks, and biological organisms.

1.2 Constraints and hard limits characterize properties of
machines

In this chapter I provide broad discussions for trying to understand biological behaviors

through constraints and hard limits, which is one of the perspectives taken in this thesis. In

biological science, there is a general sense that anything is possible in biology, that there is

an exception to every rule. However, in traditional quantitative disciplines such as physics

and chemistry, we gain fundamental understanding by characterizing what the systems

cannot do. The most powerful rules and laws, like the second law of thermodynamics,

conservation of energy, or conservation of atoms and charges in chemical reactions, always

specify constraints on systems’ behavior. This is even more true for engineering, where the

class of systems serving a purpose, or machines, are often defined at the very beginning

by a complete set of rules governing their basis of behavior. Kirchhoff’s current and

voltage laws govern electrical circuits; definitions of states, symbols and transitions govern

automata and Turing machines; rigid bodies and their holonomic constraints define a

mechanical machine such as a tower crane. Even for science or engineering disciplines

without a complete set of rules, a major goal, if not the highest priority one, is to uncover

such rules.

This appreciation for rules is not completely alien to biology. Rules, such as the central

dogma and that bio-organisms are made of cells, are at the foundation of many science and

engineering efforts in biology [54, 56]. However, when such biological rules are formulated,

it seems they always have exceptions, and often important exceptions. So we have this

phenomenon that many useful rules are applicable to different classes of scenarios, but

they are brutally violated in many other classes of scenarios. One popular reaction to

this, especially given the power of modern molecular biology tools, is that no rules are

general; hard limits do not exist; we just have to understand by probing all the details down

to the molecules. This view has the strength that some important biological details are

well respected, instead of ignored because they do not fit a preconceived theory. I would

encourage some optimism on top of it by observing that at least conservation of energy
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still holds everywhere in biology, and so does conservation of atoms and charges. In fact,

biology is even more constrained than chemistry because the pressure, temperature, and

the scale of energy available are quite restricted. So from this line of thinking, we begin to

have hope that constraints and hard limits should exist in biology, at least more so than

chemistry. However, this immediately reminds us of all the fascinating enzymes, proteins,

lipid membranes and other molecular dances that are quintessentially biological, that they

seem to defy any summary. I argue that this is not because biology violated the constraints

we just described. But on the contrary, it is exactly because of these many severe constraints

that life has to evolve and find diverse ways to achieve objectives within the constraints.

This is sometimes referred to as “constraints that deconstrain” [38]. Many examples of this

phenomenon can be seen in engineered devices. By committing to just 0s and 1s, digital

computers are severely constrained in what it can do on this basic level: flipping bits. But

on top of this severe constraint, generality and diversity in a totally different sense, namely

information storage and processing by software, can be achieved. Below 0s and 1s, another

totally different kind of generality and diversity is also achieved by allowing all kinds of

hardware to implement bit flips and therefore digital computers. Both the diversity on top

and diversity below are achieved without ever violating the constraint of just using 0s and

1s and doing bit flips.

To reconcile all this and reason about how constraints and hard limits can be derived for

biology, we need to make a distinction between two kinds of rules: scientific rules on

components, and engineering rules on machines. Scientific rules capture the core structures

of objects’ behavior based on observations. For example, mechanical properties of wood

sticks capture how they respond to forces, generally formulated in terms of Newton’s laws

on mass and force. Engineering rules capture the systems theory describing a class of

machines, an abstract conception serving a purpose or function, and characterize it by

relating the structures of how components are put together with machine behavior. On top

of a systems theory, the class of machines can also be characterized by deriving the hard

limits and laws governing this class. For example, catapults, as a class of systems serving

the purpose of shooting a projectile, can be described by the systems theory of Lagrangian

mechanics on catapult-shape mechanical structures, and has hard limits on the conversion

from elastic energy of ropes to kinetic energy of boulders.

These two types of rules also govern systems in reality in different ways. Core structures are

empirical summaries of the common properties that many objects share. These are therefore

descriptive, and naturally restricted to the systems where the observations were made. So

the process of obtaining core structures also includes understanding the boundary where
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this core structure holds. When we discover an object that violate a certain core structure,

it does not make the core structure useless, but instead just clarifies the boundary within

which the core structure applies. Hard limits and laws, on the other hand, are based on a

systems theory, where a class of machines to be studied is completely defined, usually in a

mathematical sense. A systems theory is often defined via mathematical abstractions of

machine architectures, i.e. how components are put together to make up a machine and

perform a function. This guarantees that hard limits and laws derived from the systems

theory actually govern any machine put together to function in the prescribed way. For

example, the systems theory of Turing machines governs any machine with components of

states connected by state transitions, performing the function of reading input symbols and

writing output symbols. As another example, the systems theory of Lagrangian mechanics

govern any machine with components and junctions satisfying mechanical rules subject

to externally applied forces. As a further example, Kirchhoff’s laws govern any machine

made by interconnecting components with current-voltage-like input-output pairs. So

a systems theory takes some physical boundaries of core structures on the components

level, and integrate it with mathematical boundaries on machine architectures, to form the

space of a class of machines. Then hard limits derived on top of a systems theory holds for

all machines that satisfy both the abstract machine architecture in a mathematical sense,

and the boundary of components’ core structures in a physical sense. In other words, if a

machine is made by components put together in the same way as prescribed by a systems

theory, and the components satisfy the rules of core structures required by the systems

theory, then the hard limits governs this machine simply as a logical consequence.

With this distinction made, we see that biology has an exception to every rule in the sense

of an exception to every core structure summarized. But this is not surprising, since one of

the points of coming up with a core structure is to define the boundary where it applies.

The same is true for all known rules from physics and chemistry. Therefore, while any

constraints, or scientific rules, from one core structure may not be applicable to all biological

systems, there exists core structures that govern wide classes of biological systems. In this

thesis, the main constraint from components’ core structure is that binding’s regulation of

catalysis has reaction orders constrained in polyhedral sets. This holds whenever the core

structure of binding’s regulation of catalysis holds. In quantitative detail, we assumed,

and only assumed, time-scale separation that binding reaches steady state and that mass

action governs on-off rates of binding reactions. Both are well-tested rules that govern a

wide range of biomolecular reactions. It is arguable that more restrictive constraints from

further assumptions on the components level, such as Michaelis-Menten approximations,

can also be applicable to a wide range of scenarios of interest. However, as discussed at
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the beginning of this chapter and in Chapter 2, there are many scenarios of interest in

bio-science and engineering that do not satisfy such assumptions. More importantly, even

if further assumptions are applicable for a given case, we would like to retain a holistic

view so that restricted scenarios can be analyzed in a holistic context. This way, when the

system is pushed out of the assumptions, such as in debugging of design-build-test cycles,

we always have a holistic view to go back to. This is at the core of how systems theory

can scale up design-build-test cycles of an engineering discipline, similar to how fluid

dynamics simulations scale up the aviation industry.

Then do there exist hard limits on biological behaviors? While hard limits on all possible

observed and yet-to-be observed life may be hard to find, if we define a systems theory

based on some component core structures and some class of machine architectures, then

hard limits and laws on top of this systems theory holds for all biological machines

satisfying the prescriptions as a matter of logic. In this thesis, we consider biomolecular

systems in cells as metabolic machines with external adjustments of flux exponents. This

formulation combines the constraints from core structure that binding regulates catalysis,

and the layered machine architecture from metabolism. The core structure from binding’s

regulation of catalysis specifies that this regulation is constrained in polyhedral sets

in terms of reaction orders. Therefore, since cells regulate catalysis fluxes by binding

reactions, and binding reactions regulate fluxes’ exponents, we have cells regulate fluxes’

exponents. We term this constraint flux exponent control (FEC). The layered architecture of

metabolism integrates this constraint into the function of metabolic machines. Metabolism

has unchanging and easy-to-characterize metabolic stoichiometry, while metabolic fluxes

are quickly varying and hard to measure. So we can consider stoichiometry as the bottom

layer with the fluxes regulated by higher layers. Then metabolic fluxes are regulated by

binding reactions, which make up the middle layer. Combined with the constraint from

core structures that exponents are regulated by binding reactions, the middle layer consists

of unchanging structures of binding reactions such as network topology and binding

energies, with exponents regulated by higher layers. The top layer then includes all the

ways to regulate the exponents, such as protein synthesis and degradation. See Chapter

4 for details. Together, the systems theory of metabolic machines with fluxes exponents

adjusted is defined by combining the FEC rule from core structures of binding and catalysis,

and the machine architecture from layers of metabolism. As a result, any conclusions such

as hard limits derived from this systems theory would hold for a metabolic system as

long as it is made of biomolecular reactions satisfying the core structure of binding and

catalysis, and has the layered architecture of metabolism described above.
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Figure 1.5 A cartoon illustrating how universality of a machine’s performance in some metrics (a) can become

a tradeoff with additional metrics (b). (a). The blue rectangle indicates that all points in the positive orthant

can be achieved by a machine. (b). With an additional axis, the achievable points in this 3d space is on top of

the blue curved surface. While its projection onto the bottom 2d plane is still the blue rectangle as in (a),

in 3d space the corner close to the origin is not achievable. This constitutes a hard limit on the machine’s

performance, or a tradeoff amongst the performance metrics.

Now we have argued that constraints and hard limits are indeed plausible for biomolecular

systems in cells, a further question arise: while a machine may be governed by constraints

from components and hard limits from system architecture, they may say very little about

limits on machine function. For example, a given computer has fixed architecture and

processes information using only 0s and 1s and performing bit flips, yet it can achieve

universal computations. A car has a fixed architecture and its components are very

restricted in their properties, yet it can drive between a wide range of locations. A neural

network is defined with a fixed architecture, and its components are just linear threshold

units and nonlinear maps such as ReLU, yet it can approximate universal input-output

maps.

While it is true that “universality” in certain performance metrics may be achievable despite

constraints and hard limits, such universality is often an indication that other practically

important performance metrics are ignored. Once a performance metric closer to practice

is defined, often hard limits on performance from machine architecture become clear (see

Figure 1.5). In fact, while universality in certain metrics is important characterizations

of the ideal power of a class of machines, finding additional metrics to turn universality

in one metric into a tradeoff in multiple metrics is often more useful in guiding practical

improvements for machine design and engineering.

To be explicit about where hard limits on performance may result from machine architecture,

let us consider the hierarchy of machine specification that determines a machine’s behavior

(see Figure 1.6). This hierarchy is defined in terms of the timescales that each layer can be

modified. Given a class of machines defined by a systems theory, we specify a particular

machine via its architecture. This is slowest to change, because changing architecture is

usually considered switching to a new machine. Therefore the machine architecture is the

bottom layer. On top of the architecture, we often have parameters of the machine that



19

Figure 1.6 The hierarchy of machine behavior defined by timescales of modification. Given a class of machines

defined by a systems theory, the architecture specifies a machine. The architecture changes on the slowest

timescale, since modifying it is considered switching to a new machine. The parameters of the machine can

be tuned on a slower timescale. The performance of a machine is the input-output behavior under fixed

parameters and architectures. This changes on the fastest timescale, since the input varies on the functional

timescale.

we can tune on a faster timescale than modifying the architecture. The performance of a

machine is then defined by the input-output behavior of the machine with parameters and

architectures fixed. This is fastest, since inputs vary at the timescale of machine functions.

Let us take neural networks as an example to walk through how architectures may imply

hard limits on machine performance. Canonically, a neural network machine is defined by

its network architecture, i.e. how the linear threshold units, or neurons, are interconnected.

Then, when training a neural network to perform a certain task, say classifying pictures

in computer vision, we tune the neural network’s parameters so that it approximates the

correct picture-to-category map. With the parameters adjusted, or learned from data, the

neural network can then perform input-to-output functions that classify any given picture.

In this context, it is often considered that this neural network is “universal” in the sense of

image classification that by tuning the parameters, the same neural network can learn all

kinds of image classification tasks, without modifying the architecture. However, it is also

well known that this universality holds even for a neural network with just two hidden

layers and a nonlinearity in between, as long as the size of each layer is large enough.

But this architecture is rarely used in practice. In fact, diverse architectures of neural

networks are invented to adapt to the need for different tasks, such as convolutionary

neural networks for computer vision, and recurrent neural networks and transformers

for natural language processing. In terms of the performance metric of approximating an

input-output map, these architectures all have the same universality, therefore make no

difference. These architectures are invented for other performance metrics not included in

the previous description of neural networks as machines, such as network size, amount of

training data needed, and ease of tuning the parameters.
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Figure 1.7 A hierarchy of machine behavior with two performance objectives, motivated by training and

testing performance of neural networks. The output of the training task is parameters for the testing task.

To incorporate these practically important performance metrics in our systems theory

description of neural networks, we need to modify our definition of architecture, parameters,

and inputs-outputs. Since training is a large part of practical performance, we need to

consider both training and testing performances. For the training task, the input is training

data, and the output is parameters of the network. The output of this training task is

then fed into the testing task as parameters. This results in the hierarchy of machine

behavior with two layered performance objectives. Now, with the performance metrics

of both the training and the testing process taken into account, we see quite clearly that

architecture significantly limits the machine performance of neural networks. In fact, most

important questions of machine learning research concern the training process, rather than

the testing process, with many innovations on the architecture layer to improve neural

network performance. This is another testament to architectures’ limitation on neural

networks’ machine performance.

We can similarly understand how architecture can limit machine performance for other

cases. For example, while cars can universally transport between locations, this universality

becomes a tradeoff that promotes diversity of car architectures when other metrics are

taken into account, such as speed, ease-of-care, machine longevity, and requirement on

road condition. In fact, we can go one step further. Transportation between locations is a

performance metric shared by several types of transportation carriers, from walking to

cars to trains to airplanes. In this case it becomes even more clear that the universality

of transportation between locations for these machines is hiding the necessary diversity

promoted by hard limits, or tradeoffs, on multiple performance metrics, such as speed,

accuracy, and price. Although we do not discuss it in this work, there are further implications

on this necessary diversity due to hard limits or tradeoffs, such as diversity-enabled sweet

spots [79, 80].
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As a concrete example relevant to biomolecular systems in cells, hard limits on regulation

of metabolic fluxes can take the form of a speed-accuracy tradeoff or a tradeoff between

steady state error and fragility to disturbances. This is exemplified in the work of [25]

that demonstrates how glycolytic oscillation is an inevitable side effect of enzymatic

regulations in glycolysis that adapts to steady state metabolite supply and demand. It is

based on the general theorem on conservation of robustness from control theory [39, 69,

104]. Furthermore, the autocatalytic stoichiometry of glycolysis worsens the tradeoff so

that oscillations are necessarily more severe, due to the intrinsic instability of the system,

making it fundamentally harder to control. This is also illustrated in Section 1.4.

From the discussion in this section, we distinguished between constraints from core

structures on the components level, and hard limits from systems theories on the machine

level. This makes it clear that biology has an exception to every rule is not in conflict with

constraints and hard limits can be fruitfully applied to understand biological systems.

In terms of hard limits from systems theory, we discussed how a machine’s apparent

universality in one performance metric may hide hard limits and tradeoffs in multiple

practically important metrics by looking at the hierarchy of machine behavior. Together,

this discussion motivates the importance of constraints and hard limits in characterizing

properties of biomachines.

In Section 1.4, hard limits on cells as metabolic machines from stoichiometry, thermo-

dynamics, and biocontrol are considered in a simple example of autocatalysis. I argue

that hard limits from dynamic properties, such as intrinsic instability of certain machine

architecture, are especially important. In the next section, I discuss how catalysis is at the

core of biomolecular systems’ function in cells. As a result, the core structure and the

systems theory of biomolecular systems developed in this thesis are formulated around

catalysis and its regulation.

1.3 Bioactivity as catalysis, bioregulation as binding

Catalysis is considered the central activity of biology in this work. For biomolecular

systems in cells, this thesis formulates the core structure as binding’s regulation of catalysis

reactions, and the systems theory as machines regulating catalysis fluxes in metabolism.

This central position of catalysis in bioactivity is motivated by viewing biomolecular

systems in cells from a thermodynamics or statistical mechanics point of view.

A cell, or a biomolecular system inside it, can be viewed as a bag of molecules inside

a big environmental bath consisting of many more molecules. For example, think of a
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Figure 1.8 A cell in an environmental bath of glucose solution.

vesicle inside an aqueous solution of glucose (see Figure 1.8). The bath is always full

of energy, i.e. it is far away from the lowest energy state, so it can serve as the source

of energy for life. From thermodynamics, we know such systems’ overall behaviors are

characterized by bulk parameters, such as pressure / volume, temperature / entropy, and

chemical potential / molecule number. There are also more exotic parameters relevant

in less-common cases, such as magnetic interactions, but these are not central to our

discussion. Based on observations of what typically happen, we assume the cell cannot

modify these bulk parameters from the bath, but instead have to take them as given. This

is especially true for pressure and temperature. We also assume the environmental bath is

relatively stable in itself, therefore the bath is constant for the timescale of the cell. For

example, although a lower energy form of glucose is carbon dioxide and water, glucose

does not spontaneously degrade in water at a timescale relevant for cells (half life is 96

years [115]). Together, thermodynamics dictates that the long-time dynamics of the cell

is to converge towards equilibrium with the bath. This means, in addition to the cell’s

pressure and temperature tending towards those of the bath, the molecular concentrations

in the cell also become equal to the environment, via processes such as diffusion, transport

or chemical reactions. In the vesicle in glucose solution example, this means in the long

run, the vesicle should become the same glucose solution as the environment. But we don’t

see this as a typical behavior for cells! We typically expect there is higher pressure inside

the cell, the temperature does not necessarily follow the environment, pH in the cell can

be drastically different from that out of the cell, and glucose in the cell gets burned into

carbon dioxide and water on a very fast time scale. This means although the cell cannot

change the bath, it somehow keeps itself away from converging towards equilibrium with

the bath. The secret is that cells are able to take reactions that are slow or not possible in the

environment and make them happen fast inside the cell (see Figure 1.11). In other words,

cells take in molecules that are stable in the environment, and make them unstable through

catalysis reactions to unleash the energy in these molecules. To how this is plausible from
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Figure 1.9 An intuitive landscape of the cell with bath fixed.

Figure 1.10 The overall landscape of the cell and bath system.

a thermodynamics perspective, let us use an energy landscape analogy.

Intuitively, we can imagine the cell is a point in an energy landscape defined by the

bath. Height, or vertical 𝑧-axis, corresponds to energy, and 𝑥-axis corresponds to varying

molecule concentrations of the cell, for example (see Figure 1.9). By default rules from

thermodynamics, the cell would tend to the cell-lowest-energy point to be in equilibrium

with the bath. In the vesicle in glucose solution example, this means the conditions in

the vesicle becoming equal to the solution. We can visualize the landscape along the

𝑥-axis as relatively flat to illustrate that skiing down the landscape, or this process towards

equilibrium with the bath, happens relatively slowly.

On the very slow time scale, however, we see that the bath is moving towards lower energy

states itself. It’s just that this is so slow that the bath appears essentially constant. In
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Figure 1.11 By catalysis, the cell makes reactions that are too slow or not possible in the bath happen fast in

the cell, to keep it from becoming in equilibrium with the bath.

the example, the glucose in solution is also tending towards carbon dioxide and water,

but that is very slowly. This means the energy landscape the cell is in is actually larger

than what is defined by the bath, since the state of the bath itself is slowly moving. To

visualize this, we can imagine there is a 𝑦-axis that the whole (𝑥, 𝑧)-axis landscape defined

by the bath can move along (see Figure 1.10). The landscape along the 𝑦-axis is extremely

flat, but going eventually to a very low energy level, illustrating that the natural process

towards equilibrium along the 𝑦-axis is very slow, but there is lots of energy to dissipate.

In the example, the lowest energy state in the (𝑥, 𝑧)-axis landscape is that the glucose

concentration in the vesicle is the same as in solution, but if moving along the 𝑦-axis is

included, then the lowest energy state is all glucose decomposed into carbon dioxide and

water, both in solution and vesicle.

Now we see that the cell can deviate away from the equilibrium track with the bath if it can

go down in energy along the 𝑦-axis faster than the bath! That is achieved by catalysis, and

keeping catalysis restricted to the cell. Visually, catalysis opens a new track along the 𝑦-axis

that goes down steeply, allowing the cell to tend towards the cell-bath’s overall equilibrium

along a path that is not in equilibrium with the bath. Indeed this is steep, bringing

processes on hundreds-of-years timescale down to milliseconds! Therefore, although the

overall cell-bath system is always going down in energy, the cell can explore the landscape

outside the equilibrium-with-bath path and perform versatile behaviors by dissipating

energy faster-than-bath through catalysis. In short, cell activities are enabled by catalysis.

Given this, we see the core in understanding the behavior of cells is understanding how

catalysis is regulated. This motivates our central focus on catalysis, that the core structure

of biomolecular reactions is binding’s regulation of catalysis, and the systems theory is

machines with inputs and outputs as catalytic fluxes in metabolism.

To formally describe this understanding that catalysis is the core of bioactivity, let us
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consider how biological catalysis reactions are different from generic chemical reactions,

e.g. in chemical plants. To clearly denote catalysis reactions and their kinetics, we introduce

some basic notions from chemistry. Generic chemical reactions are divided into two classes:

elementary reactions and non-elementary reactions. We denote elementary reactions with

arrow −−→, and non-elementary reactions with squiggly arrow . Elementary reactions

are where molecules directly react to form products, with no intermediate. In practice,

this is defined by either no intermediate is detected, or no intermediate is needed to

explain the behavior of the reaction. Elementary reactions almost always are unimolecular

(one reactant molecule) or bimolecular (two reactant molecules). The rate of elementary

reactions follow the law of mass action. For example, reaction 𝐴
𝑘−→ * happens with rate

𝑘𝐴, where 𝑘 is rate constant and 𝐴 denote the concentration of 𝐴. Reaction 𝐴 + 𝐵
𝑘−→ *

happens with rate 𝑘𝐴𝐵, and similarly 2𝐴
𝑘−→ * happens with rate 𝑘𝐴2

. This law of mass

action can be derived from a collision model of molecules, where reactant molecules move

around randomly and by a small chance collides with each other, in which case the reaction

happens [109]. Generic chemical reactions then can be considered as arbitrary systems

built from such elementary reactions.

In contrast to elementary reactions, reactions in cells are catalysis reactions with negligible

spontaneous rates. These catalysis reactions are not elementary, but can be decomposed

into several elementary steps, namely binding and conversion steps. This reaction happens

via the binding of a catalyst, such as an enzyme, with a substrate, to form an intermediate

complex, which is key for the catalyst’s effect on lowering energy barrier. For example, a

simple enzymatic catalysis reaction in both forward and reverse directions can be written

as

𝐸 + 𝑆
𝑘+

1−⇀↽−
𝑘−

1

𝐶
𝑘+

2−⇀↽−
𝑘−

2

𝐶 ′ 𝑘+
3−⇀↽−

𝑘−
3

𝐸 + 𝑃. (1.1)

Here 𝐸 is enzyme, 𝑆 is substrate, and 𝑃 is product. The enzyme 𝐸 binds with substrate 𝑆

to form intermediate complex 𝐶, which gets converted into the enzyme-product complex

𝐶 ′
. The catalysis reactions here, which record the net change in molecules regardless of

whether it is in free or bound forms, are

𝑡𝑆

𝑘+
2 𝐶

𝑡𝑃 , 𝑡𝑃

𝑘−
2 𝐶′

𝑡𝑆. (1.2)

Here 𝑡𝑆 is the total concentration of the substrate, defined as 𝑡𝑆 = 𝑆 + 𝐶, the sum of free

substrate and the substrate bound in complex 𝐶. Similarly, 𝑡𝑃 is the total concentration

of the product, defined as 𝑡𝑃 = 𝑃 + 𝐶 ′
. Note that we used squiggly arrows here since

catalysis reactions are not elementary and involve more detailed steps of binding reactions.

Indeed, their rates do not follow mass action when written as non-elementary reactions.
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Figure 1.12 The cores structure of biomolecular systems is binding and catalysis.

Instead, their rates follow from mass action on the network of elementary reactions in Eqn

(1.1) and the definitions of the totals. We denote the rates or fluxes of the catalysis reactions

by the symbols on top of the squiggly arrows in Eqn (1.2). For example, 𝑘+
2 𝐶 is the flux of

the substrate to product catalysis reaction. The production rate of product from this flux is

therefore proportional to the concentration of enzyme-substrate complex 𝐶. We often call

this complex 𝐶 the active complex of the substrate to product flux. Similarly, 𝐶 ′
is the active

complex of the product to substrate flux. How the fluxes of these two catalysis reactions are

regulated then corresponds to how the concentration of active complexes depend on the

total concentrations, namely total enzyme, total substrate, and total product. In other words,

the regulatory profile of the catalysis reactions correspond to the functions 𝐶(𝑡𝐸, 𝑡𝑆, 𝑡𝑃 )
and 𝐶 ′(𝑡𝐸, 𝑡𝑆, 𝑡𝑃 ). Here the total enzyme concentration 𝑡𝐸 is defined by 𝑡𝐸 = 𝐸 + 𝐶 + 𝐶 ′

.

These functions are determined by the steady state equations of the binding reactions:

𝐸 + 𝑆
𝑘+

1−⇀↽−
𝑘−

1

𝐶, 𝐸 + 𝑃
𝑘−

3−⇀↽−
𝑘+

3

𝐶 ′. (1.3)

In other words, the regulatory profile of catalysis fluxes are determined by the network

of binding reactions. This motivates the core structure of biomolecular reactions in cells

as consisting of two types of reactions: binding and catalysis (see Figure 1.12). Catalysis

determines the direction of change, as in Eqn (1.2). Binding determines how the catalysis

fluxes are regulated, as in Eqn (1.3). Therefore, characterizing the regulatory profile of

catalysis fluxes, which is the central task of understanding bioactivity, is to characterize the

steady states of binding networks. This is the goal of Chapter 3, with introductions and

examples in Chapter 2.

To recap, like force and mass form the core structure of mechanical components, I have

argued that binding and catalysis form the core structure of biomolecular reactions. So,
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binding and catalysis reactions are the knot in the middle of a bowtie (see Figure 1.12). On

the left, components of biomolecular reactions in any system can be formulated into binding

and catalysis reactions. On the right, analysis and design of biomolecular components

corresponds to analyze and design networks of binding and catalysis.

Before we end our discussion on catalysis, I briefly mention an alternative to our focus on

catalysis fluxes: the focus on catalytic enzymes. The enzyme state transitions formulation

has been popular in biophysics and offers some complimentary insights. The enzyme state

transitions formulation focuses on how the state of the enzyme molecule changes over

time. From a systems theory perspective, the focus on catalysis fluxes considers molecular

concentrations of the whole system, so a biomachine is acts on molecular concentrations

through metabolic fluxes. In contrast, the enzyme state transitions formulation focuses

on just an enzyme molecule, so a biomachine is just an enzyme molecule cycling in

states, ignoring upstream and downstream molecules’ concentrations. This enzyme state

transitions formulation may not appear as natural for a biomolecular system in cells,

but it is the natural view when properties of the enzyme are in focus or when the state

of the enzyme carries important information. For example, performance of molecular

motors such as ATPase and myosin comes from understanding properties of their cycling

through states. For a gene that transition between repressed or activated states, such as in

developmental biology, the state itself may be of major importance. Therefore, the enzyme

state transitions formulation can be considered as looking at a metabolic machines through

magnifying glasses and focusing on each enzyme catalyzing every flux. The properties

and constraints on enzyme state transitions can then be incorporated as constraints on

fluxes in metabolic machines.

As an example, we can take the binding and catalysis system in Eqn (1.1) and write the

following for the enzyme state transitions formulation:

𝐸
𝑘+

1 𝑆−−⇀↽−−
𝑘−

1

𝐶
𝑘+

2−⇀↽−
𝑘−

2

𝐶 ′ 𝑘+
3−−⇀↽−−

𝑘−
3 𝑃

(𝐸). (1.4)

Here the last (𝐸) denotes that this is a repeated state, the same as 𝐸, the free enzyme

state, at the beginning. So this is a 3-state loop. Note two transition steps, namely 𝐸 to

𝐶, and 𝐸 to 𝐶 ′
, have non-constant rates that depend on concentrations of substrate and

product. If we begin with high amounts of substrate and low amounts of product, the

state transitions have a net forward cycling in the direction 𝐸 → 𝐶 → 𝐶 ′ → (𝐸). With

the catalysis in mind, this net cycling converts substrates into product, therefore the rates

change over time, with forward cycling slower and slower, eventually balancing with the

reverse cycling, reaching an equilibrium. Such equilibrium at the state transition level
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satisfy detailed balance. Detailed balance means for each pair of states, the forward and

backward transition fluxes balance out, so there is no net cycling on any loop. To analyze

enzyme state transitions such as Eqn (1.4), it is often formulated as Markov chains with

constant rates, which assumes molecular species other than the enzyme are overabundant

in concentration. Methods solving generic Markov chains can then be applied [53, 76],

although the resulting solution may be too complicated to extract insight. The enzyme

state transitions can also be formulated as a nonequilibrium system with sparse driving at

certain transitions, as is often the case in biology, enabling better analytical insight (see

[72]). Further simplifications, such as assuming the enzyme states are at equilibrium, can

be fruitful for several scenarios, especially transcriptional regulation of gene expression

and enzyme allostery [88].

1.4 Constraints and hard limits from stoichiometry, thermo-
dynamics, and biocontrol on simple autocatalysis

Constraints and hard limits are the perspectives this thesis takes to understand biological

behaviors. In addition, this thesis considers dynamics as the main reason for many

regulatory mechanisms. In particular, homeostasis, one of the hallmarks of biological

behavior, is often achieved only via active regulatory mechanisms, due to the intrinsic

instability of many biological systems. As developing tools that characterize these require

some technical development not important for the discussion here, we illustrate these

perspectives using simple examples with short calculations or intuitive arguments here.

As an example, we consider simple descriptions of autocatalytic reactions. This is quite

worthwhile since catalysis is at the core of biological activity, so autocatalysis is at the core

of biological growth. Regarding constraints and hard limits, we show that stoichiometry

constrains the steady state fluxes, while thermodynamics relate metabolite concentrations

and Gibbs free energies to constraints on flux directions and magnitudes. Regarding

dynamics and hard limits from biocontrol, we show that the intrinsic instability of

autocatalysis makes regulating it a problem similar to balancing a stick, which is hard

from our intuition, and is fundamentally harder than holding a stick downwards. Related

methods for calculations are discussed in detail in Chapter 4.

Simple models of autocatalysis

We can begin formulating simple descriptions of autocatalysis by modelling after autocat-

alytic reactions. One common example of autocatalysis is energy regeneration in glycolysis,
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Figure 1.13 Autocatalysis. (a). Autocatalysis has a positive feedback interaction between two lumped

variables of the system, which is intrinsically unstable. (b). A simple model of glycolysis capturing its

autocatalytic stoichiometry is described by two species, ATP and intermediate (Int), and two reactions,

consuming ATP to produce intermediate by activating glucose, and consuming intermediate to produce

more ATP (2-fold in the figure). (c). Cartoon illustrating balancing a stick. (d). Stick balancing also has a

positive feedback interaction between its state variables, angle 𝜃 and angular velocity 𝜃, therefore intrinsically

unstable, just like autocatalysis.

where ATP is used to activate glucose, with more ATP generated eventually (see (b) of

Figure 1.13). To model this in a minimal way, we can lump detailed reaction steps together

and consider just two reactions, one consuming ATP to activate glucose, resulting in an

intermediate, and the other consuming an intermediate, producing more ATP. We can

denote the two molecular species involved generically as 𝑋1 and 𝑋2, with 𝑋2 denoting the

target species of autocatalysis such as ATP, and 𝑋1 denoting intermediate. If we normalize

the unit of concentration for ATP or energy charge such that the net production through

an autocatalytic cycle generates one unit of 𝑋2, then we have the following dynamics of the

metabolite concentrations:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ −1 1
1 + 𝑞 −𝑞

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤. (1.5)

Here 𝑞 denotes the stoichiometry for the amount of ATP needed to activate glucose to

produce the intermediate. We also added an external flux 𝑤 that consumes ATP. This is

generic for autocatalytic processes, since the target autocatalytic species is always produced

for a consuming goal, such as an energy source or accumulated as part of biomass.

Accumulation into biomass is effectively consuming the species under exponential growth.

Other types of autocatalytic processes can be obtained based on whether the target species

𝑋2 and the intermediate 𝑋1 are catalytic or consumed in the reactions. For example, if we

write a simple lumped equation for ribosomes catalyzing the production of itself, we may

write

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣−𝑞 1

1 0

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤. (1.6)

Here the second reaction is ribosomes 𝑋2 catalyzing the production of its ribosomal parts

or intermediates 𝑋1, and the first reaction is parts assembled into ribosomes. Because
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ribosomes work as catalysts, the stoichiometry matrix 𝑆 has 𝑠22 = 0. The parameter 𝑞

here correspond to the units of intermediates needed to produce one unit of ribosome.

We choose the normalizations so that one autocatalytic cycle still produces one unit of

the target species 𝑋2. Here the external consumption 𝑤 now corresponds to biomass

accumulation or growth.

As another example, we can consider ribosomes as 𝑋2 and RNA polymerases as 𝑋1,

although in this case both may serve as the autocatalytic target. In this case, ribosomes

produce RNA polymerases, while RNA polymerases also produce ribosomes, both through

catalysis. Therefore we obtain

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣0 𝑞

1 0

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤. (1.7)

Here 𝑞 is used to capture the difference in catalytic activities of RNA polymerase and

ribosomes.

Constraints from stoichiometry

With the simple models of autocatalysis defined, we immediately see that the stoichiometry

matrices play an important role in writing the dynamics of the system. Physically, we know

the stoichiometry governs what reactions can happen in this system. However, it seems

unclear whether the stoichiometry constrains what values the metabolite concentrations

(𝑥1, 𝑥2) or the fluxes (𝑣1, 𝑣2) can take in any way.

One way to clearly see the constraint on biological behavior by stoichiometry is to look

at the steady state fluxes. This is the basis for flux balance analysis (FBA), one of the

most popular constraint-based approaches in modeling metbolism [60, 85]. We use the

glycolysis form of autocatalysis to illustrate this. At steady state,
𝑑
𝑑𝑡

𝑥1 = 𝑑
𝑑𝑡

𝑥2 = 0, so Eqn

(1.5) becomes a linear equation, which can be solved in the following way:⎡⎣ −1 1
1 + 𝑞 −𝑞

⎤⎦⎡⎣𝑣*
1

𝑣*
2

⎤⎦ =
⎡⎣0
1

⎤⎦𝑤* =⇒
⎡⎣𝑣*

1

𝑣*
2

⎤⎦ =
⎡⎣ 𝑞 1
1 + 𝑞 1

⎤⎦⎡⎣0
1

⎤⎦𝑤* =
⎡⎣𝑤*

𝑤*

⎤⎦. (1.8)

So we see that the internal fluxes (𝑣1, 𝑣2) are completely determined by the external flux 𝑤.

To be specific, internal fluxes has 2 degrees of freedom, and the constraint from a rank-2

stoichiometry matrix at steady state eliminates 2 degrees of freedom, resulting in a unique

solution. This illustrates how stoichiometry becomes a constraint on how internal and

external steady state fluxes are related. The stoichiometry of the reactions involved, when

known, act as hard constraints on cell behavior, as unassailable as universal laws such as
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conservation of mass. Based on the stoichiometry constraint, we can strongly constrain

internal fluxes based on measurements of external fluxes.

That we obtain a unique solution of internal steady state fluxes here is of course not

common. Extra degrees of freedom on steady state internal fluxes are necessary for the

cell to have “choices” and perform adjustments based on environments at steady state. A

unique solution happens here because we used lumped descriptions, while a more detailed

stoichiometry matrix is often wide, and therefore not full rank. To illustrate what happens

when there are extra degrees of freedom at steady state, consider adding another reaction

with flux 𝑣3. We can term this flux growth, which just consumes ATP, but can be regulated

by the cell, and therefore constitutes an internal flux.

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ −1 1 0
1 + 𝑞 −𝑞 −1

⎤⎦
⎡⎢⎢⎢⎣
𝑣1

𝑣2

𝑣3

⎤⎥⎥⎥⎦+
⎡⎣ 0
−1

⎤⎦𝑤.

Now the cell has an extra knob 𝑣3 to tune. To make the numbers simple, let us take 𝑞 = 1.

The internal steady state fluxes then have one degree of freedom left from the stoichiometry

constraint, which we parameterize as follows.⎡⎢⎢⎢⎣
𝑣*

1

𝑣*
2

𝑣*
3

⎤⎥⎥⎥⎦ = 1
3

⎡⎢⎢⎢⎣
1
1
−2

⎤⎥⎥⎥⎦𝑤* +

⎡⎢⎢⎢⎣
1
1
1

⎤⎥⎥⎥⎦𝑐 =

⎡⎢⎢⎢⎣
1
3𝑤* + 𝑐
1
3𝑤* + 𝑐

−2
3𝑤* + 𝑐

⎤⎥⎥⎥⎦, (1.9)

where 𝑐 is a real constant that parameterizes the solution set. So we see that the steady

state fluxes 𝑣*
𝑖 can be split into two parts: the part determined by external fluxes which

depends on 𝑤*
, and the part regulated internally which depends on 𝑐. In particular, we see

that any internal adjustment to increase growth consumption of ATP 𝑣*
3 will necessarily

require simultaneous increase of ATP and intermediate productions 𝑣*
1 and 𝑣*

2 in the same

amount. This is again hard constraints on all steady state fluxes that can happen, directly

from stoichiometry.

One might argue that while the stoichiometry can work as a strong constraint if it is

known for sure, but in reality it is hard know the stoichiometry for sure since one reaction

stoichiometry we write may actually consists of several detailed steps. This can be studied

by considering how much variation in behaviors can be fundamentally caused by changing

the stoichiometry in certain ways. Given that detailing one reaction into several steps keep

important structures intact, such as the overall autocatalytic structure, some results will

hold independent of the changes. Such results can be studied systematically using control

theory methods that compare responses between different systems. See discussions in

Chapter 4.
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Constraints and hard limits from thermodynamics

One pitfall of just considering stoichiometry is that nothing can be said about metabolite

concentrations. Indeed, all the discussion above are about steady state fluxes. This is

because at steady state the metabolite variables 𝑥𝑖 disappear from the equations. In fact,

steady state metabolite concentrations are determined by how the fluxes are regulated by

detailed mechanisms, such as specified by functions 𝑣𝑖(𝑥), where 𝑥 denote the vector of all

metabolite concentrations in the system.

However, without knowing the detailed mechanisms, we can still constrain metabolite

concentrations by relating them to irreversibility or energy dissipation of the fluxes. Again

taking the glycolysis case to illustrate. Given that ATP at intracellular concentration

provides a very strong driving force, we may confidently state that the flux 𝑣1 is irreversible.

This in turn becomes a requirement that the free energy change of reaction 𝑣1 is negative,

which can be used to bound metabolite concentrations.

For example, we may take reaction 𝑣2 to represent glucose and 2 ATP react to 2 G3P and 2

ADP, the lumped ATP consuming half of glycolysis. We know the free energy change of this

lumped reaction under physiological conditions is Δ𝐺2 = −53.73 kJ mol−1
(for red blood

cell, see page 584 of [48]). Free energy changes vary with concentrations multiplicatively

through 2.3𝑅𝑇 log10 𝑄, where 𝑅 is molar gas constant, 𝑇 is temperature, and 𝑄 is reaction

quotient calculated by fold-change of product and reactant concentrations raised to the

power of their stoichiometry. So in this case, 𝑄 = Δ̃𝑥1(Δ̃𝑥2)−𝑞
, with glucose and ADP

ignored by assuming they are kept at constant concentrations. Here Δ̃𝑥𝑖 means fold-change

of 𝑥𝑖’s concentration compared to the physiological condition. Since 2.3𝑅𝑇 is about 5.7
kJ mol−1

at 25 °C, we have estimated that Δ̃𝑥1(Δ̃𝑥2)−𝑞 ≤ 109
, and that the total variation of

intermediates and ATP away from their physiological concentration (in the right direction)

cannot be more than 6 orders. This is a rather loose bound, although not completely

impossible since ATP to ADP equilibrium ratio is about 10−9
while physiological conditions

often maintain this at 10.

To get tighter bounds, we need to consider where the negative free energies go. When

reactions are kept at negative free energy change Δ𝐺, each net forward reaction dissipates

this much energy. A large portion of it goes into driving the reaction forward at a rate much

faster than equilibrium kinetics. This is necessary since without driving, the reaction would

have an infinitely small net flux. Although not all free energy change is used to drive the

reaction because of other dissipation sinks such as enzyme vibrations, we can consider it as

an upper bound on how fast the reaction can be driven. To relate this to changes in kinetic
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rates out of equilibrium, existing theoretical frameworks take the enzyme view, so that the

forward reaction corresponds to the cycling of the enzyme through its states. The driving

and dissipation relation often used in nonequilibrium statistical physics is 𝑣Δ𝜇 = 𝜎𝑇 ([72],

also see Chapter 4), where Δ𝜇 = 𝑘𝐵𝑇 log 𝑞+

𝑘+ is the chemical potential required to drive the

equilibrium kinetic rate of forward direction 𝑘+
to the out-of-equilibrium rate 𝑞+

. 𝑘𝐵 the

Boltzmann constant is used here because such formula is often used in single enzyme

context. 𝜎 denote entropy dissipation rate. 𝑣 denote the net reaction flux. For glucose

to G6P, while we do not know the equilibrium kinetic rate 𝑘+
, if the catalyzing enzyme

hexokinase does not have any activity when there is almost no ATP (at equilibrium ATP

to ADP ratio is less than 1 to 109
), then we can take the spontaneous degradation rate of

glucose, which is estimated to be per 100 years [115], or 3× 109
seconds. To estimate what

the driven rate 𝑞+
should roughly be, we can use widely a widely observed number that

glucose uptake per gram of dry weight of E. coli is on the order of 10 mmol per hour. Since

1 gram of dry weight has about 1012
cells, this means about 6× 108

molecules per hour per

cell. For a rich glucose concentration of 6 mm, there is about 6× 106
glucose molecules in a

cell. So to achieve 6× 108
molecules per hour per cell, we need conversion of glucose at a

rate of 100 per hour, or about one per 30 seconds. If we take this as 𝑞+
, then this require 108

fold increase from the equilibrium kinetic rates. This correspond to Δ𝜇 = 2.3𝑅𝑇 · 8 = 45.6
kJ mol−1

in molar units. To keep Δ𝐺 above this number, we can vary concentrations away

from physiological conditions without decreasing Δ𝐺 more than 53.7−45.6 = 8.1 kJ mol−1
.

This corresponds to Δ̃𝑥1Δ̃𝑥−𝑞
2 ≤ 10 8.1

5.7 ≈ 26. So the total fold change cannot be more than

26 fold away from the physiological condition. This is a much tighter bound. Conversely,

this very rough estimate can mean deviations of concentrations from the physiological

condition in the worsening direction may drastically influence glucose uptake rate.

Hard limits from biocontrol

Previously, for constraints and hard limits from stoichiometry and thermodynamics, we

have focused on steady state fluxes and metabolite concentrations. However, we simply

assumed steady states exist, without ever checking that they are stable and therefore

achievable. If a steady state is not stable, then despite all the steady state analysis, it cannot

be achieved, and the metabolic system may have oscillatory or unstable behavior such as

some metabolites crashing to zero.

In fact, without active regulations, autocatalytic systems are intrinsically unstable, in the

sense that increase in 𝑥1 above the steady state value will cause increase in 𝑥2, which in

turn cause increase in 𝑥1, thus an upward spiral blowing up to infinity. Alternatively,
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decrease in 𝑥1 below its steady state value will cause decrease in 𝑥2 which in turn cause

decrease in 𝑥1, thus forming a downward spiral crashing to zero. As regulatory motifs, we

can consider 𝑥1 and 𝑥2 positively influence each other, creating a positive feedback loop

(see (a) of Figure 1.13). However, unlike gene regulatory circuits, there is no saturation or

safety valve in metabolism, or cells crash before saturation thresholds are reached.

That autocatalytic systems are intrinsically unstable due to the autocatalytic stoichiometry

poses hard limits on what regulations on them can do. Requiring stability of the steady

state, for example, would pose lower bounds on the steady state error when the demand

flux 𝑤 is varied. More generally, a tradeoff between steady state accuracy and system

robustness is unavoidable for such systems. As a result of this, oscillatory behavior is

unavoidable when regulations are applied to adapt to changing demands, i.e. minimizing

steady state error. This is analyzed in [25] for the case of glycolysis, showing that glycolytic

oscillation is a necessary side effect of this tradeoff.

Instead of delving into the technical details to show these hard limits due to intrinsic

instability of autocatalysis, as is done in [25] and in Chapter 4, here we instead appeal to

the reader’s intuition about a familiar intrinsically unstable system: balancing a stick (see

(c) of Figure 1.13). Indeed, stick balancing has been used as a tutorial example for system

fragility due to intrinsic instability [70]. Below, through standard calculations, we show

that the dynamic equations of balancing a stick have a similar form as the autocatalytic

equations in Eqn (1.5) and Eqn (1.6). As a result, our intuitions about the hardness in

balancing a stick, and the oscillatory movements of hand and stick when disturbed, all

pass down to hard limits on dynamics of autocatalytic metabolism.

Balancing a stick. For the sake of clarity, we derive the local dynamics of balancing a

stick following standard calculations. Balancing a stick by hand is the same problem as

balancing an inverted pendulum on a moving cart. Consider a stick of length ℓ, with mass

𝑚 at the head, and we control the bottom of the stick on a horizontally moving cart (or

hand), which has mass 𝑀 . Let 𝜃 be the angle of the stick, so that 𝜃 = 0 is straight up, and

𝜃 = 𝜋 is straight down.

The equations of motion governing an inverted pendulum on a cart, the same as a hand

balancing a stick, is

(𝑀 + 𝑚)�̈� + 𝑚ℓ(𝜃 cos 𝜃 − 𝜃2 sin 𝜃) = 𝑢,

𝑚(�̈� cos 𝜃 + ℓ𝜃 − 𝑔 sin 𝜃) = 0.

Here 𝑥 is the position of the cart or hand, with positive 𝑥 in direction to the right. 𝑢 is the

force applied to the cart or hand horizontally, also to the right. Linearize this around the
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static upright position, i.e. around 𝜃* = 0, so that 𝜃 = 𝜃* + 𝛿𝜃 for small angle deviation 𝛿𝜃,

and similarly for all time derivatives such as 𝛿𝜃, 𝛿𝜃 and 𝛿�̈�. We obtain

(𝑀 + 𝑚)𝛿�̈� + 𝑚ℓ𝛿𝜃 = 𝑢,

𝛿�̈� + ℓ𝛿𝜃 − 𝑔𝛿𝜃 = 0.

Note the term 𝜃2 sin 𝜃 disappears since it is a higher order term. These can be combined to

form the dynamics for the stick angle 𝜃:

(𝑀 + 𝑚)𝑔 𝛿𝜃 −𝑀ℓ 𝛿𝜃 = 𝑢.

Take the stick angle 𝛿𝜃 and its velocity 𝛿𝜃 as the state variables, we obtain the following

system of equations.

𝑑

𝑑𝑡

⎡⎣𝛿𝜃

𝛿𝜃

⎤⎦ =
⎡⎣ 0 1
(1 + 𝑚

𝑀
)𝑔

ℓ
0

⎤⎦⎡⎣𝛿𝜃

𝛿𝜃

⎤⎦+
⎡⎣ 0
− 1

𝑀ℓ

⎤⎦𝑢. (1.10)

We see that this stick balancing problem has a similar issue of positive feedback causing

downward crashes or blow ups that we anticipated in autocatalysis without active regulation

(see (d) of Figure 1.13). An increase in angle 𝛿𝜃 causes increase in angular velocity 𝛿𝜃,

while an increase in 𝛿𝜃 in turn causes 𝛿𝜃 to increase. Crashes or blowups in stick balancing

corresponds to the stick falling down.

To see the dynamic equation for stick balancing matching with autocatalysis exactly, let

us write out the local dynamics of autocatalytic systems without active regulation. The

passive dynamics of the reaction fluxes 𝑣1 and 𝑣2 come from their naturally increase with

the increase of reactants or catalysts. In other words, the local dynamics of 𝑣1 has positive

derivative in 𝑥1, and similarly 𝑣2 has positive derivative in 𝑥2. Denote these derivatives 𝑘1

and 𝑘2 respectively, we have 𝑣1(𝑥) ≈ 𝑣*
1 + 𝑘1𝛿𝑥1, where 𝑣*

1 is the steady state flux and 𝛿𝑥1 is

small deviation of 𝑥1 from the steady state concentration 𝑥*
1, and similarly 𝑣2(𝑥) ≈ 𝑣*

2 +𝑘2𝛿𝑥2.

So we can write out the local dynamics for the Ribosome-RNAP autocatalytic system in

Eqn (1.7).

𝑑

𝑑𝑡

⎡⎣𝛿𝑥1

𝛿𝑥2

⎤⎦ =
⎡⎣0 𝑞

1 0

⎤⎦⎡⎣𝑘1 0
0 𝑘2

⎤⎦⎡⎣𝛿𝑥1

𝛿𝑥2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝛿𝑤 =
⎡⎣ 0 𝑞𝑘2

𝑘1 0

⎤⎦⎡⎣𝛿𝑥1

𝛿𝑥2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝛿𝑤. (1.11)

We see that the local dynamics is exactly the same as that of the stick balancing system.

The other two autocatalytic systems in Eqn (1.5) and (1.6), have the same form of dynamic

equation after a slight change of variable. For example, the amino acid-ribosome system in

variable 𝛿𝑦1 = 𝛿𝑥1 + 𝑞𝛿𝑥2, 𝛿𝑦2 = 𝛿𝑥2, has the same form as the stick balancing system.
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In summary, we see the dynamics of an autocatalytic system around a steady state has the

same intrinsic instability as balancing a stick around its upright position. Therefore, all the

hardness and limitations we intuitively understand about balancing a stick propagates in

full to regulating an autocatalytic systems. In particular, active regulatory mechanisms

are needed to maintain homeostasis for autocatalysis systems. This is an intuitive and

simple example illustrating how considerations on stability and dynamic regulation from

biocontrol reveal the necessity of regulatory mechanisms, and can impose hard limits on

bioregulation.
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Chapter 2

Polyhedral constraints enable holistic anal-
ysis of bioregulation

Biomolecular processes in cells happen through catalysis by enzymes. To regulate the rate

of these processes, substrates, regulator proteins, cofactors, and other helper molecules

bind with or chemically modify the catalytic enzyme to change its activity. Since state

transformation by chemical modification can be considered a subcase of binding, we lump

them together and call them binding reactions. Understanding the profile of bioregulation

therefore constitutes characterization of all the ways that catalysis, or enzyme activities,

can be regulated by a network of binding reactions. However, quantitative understanding

of how binding regulates catalysis is hard both analytically and computationally, even

in the bulk scale where concentrations rather than molecule counts are considered, and

assuming binding is fast therefore reaches steady state. This is because the steady state

equations from binding reactions relate various bound forms of the enzyme to molecular

concentrations through polynomial equations, with degree increasing proportional to the

number of binding reactions. Thus analytical or computational methods to find the set of

solutions of these systems quickly become infeasible as the binding network increases in

size.

Because of this, assumptions are often made to restrict to specific scenarios where simpli-

fications can be made. Michaelis Menten or Hill type simplifications assume molecular

species other than the enzyme are in high abundance, and therefore do not change in the

binding process. More sophisticated methods to count the single molecule states have also

been developed, such as Monod-Wyman-Changeux (MWC) models or general biophysical

models with hierarchies of interacting single molecules, e.g. transcription factor states
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over gene states. Nevertheless assumptions are made to simplify the problem to counting

molecule states, either by overabundance of other species or by assuming experimental

settings where species are in equilibrium with an environmental bath. These simplifications

have been hugely successful, since many scenarios indeed satisfy the assumptions made.

This is especially true for metabolic enzymes where substrate molecules are small and

therefore abundant.

Recent advances in understanding regulatory circuits in developmental biology and on

RNA and protein level, however, encounter binding regulations that no longer satisfy such

assumptions. This is because the “substrate” could be a macromolecule as well, such

as a protein phosphorylated by kinases. One example of this is combinatorial behavior,

such as in BMP signaling [9], Sox2/Oct4/Sox17 regulation of endodermal differentiation

[103], and synthetic multistable circuits based on this principle [122]. A common theme is

that each species involved can take both high and low concentrations, with combinatorial

regimes corresponding to combinations of high and low concentration of multiple species.

Another example is highly dynamic regulations, such as in protein-level circuits [46] and

engineered perfectly adapting circuits [10, 58]. The common theme is that large transients

from perturbations can push important species out of their typical regimes, such as to a

very low concentration.

These combinatorial or highly dynamic scenarios demand a way to characterize bioregula-

tion profiles of binding networks on catalysis that does not make restrictive assumptions.

In other words, a method to capture the full bioregulation profile for holistic analysis is

needed.

To do so, we need to circumvent the difficult complexity of polynomial equations relating

catalysis rate to concentrations. Instead of focusing on rates, we propose to characterize

bioregulation through reaction orders. We show that the full landscape of bioregulation

in terms of reaction orders can be tractably analyzed and computed for arbitrary binding

networks, without any assumptions or restrictions. The small sacrifice is that reaction

orders only capture the rates up to a multiplicative constant, so we know the fold-change

response of rates to varying concentrations, but not the exact magnitude. This could be

trivially resolved in cases where a reference magnitude can be measured or estimated.

In the following sections, we introduce what reaction orders are and describe how to

calculate them for binding networks. We show that the full regulatory profile can be

captured as polyhedral sets that reaction orders can vary in. These reaction order polyhedra

also serve as constraints on bioregulation from the stoichiometry of binding networks. No

matter concentrations change with large dynamic transients or in a combinatorial fashion,
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bioregulation remain bounded in the polyhedra. We also demonstrate the power of holistic

analysis by showing we can recover hidden adaptive regimes in an existing synthetic

biocircuit.

2.1 Reaction order captures binding’s regulation of catalysis

We illustrate the problem of analyzing binding’s regulation of catalysis through a simple

enzymatic reaction.

𝐸 + 𝑆
𝑘+
−⇀↽−
𝑘−

𝐶
𝑘cat
−−→ 𝐸 + 𝑃. (2.1)

Here 𝐸 is free enzyme, 𝑆 is free substrate, 𝐶 is the complex formed from 𝐸 and 𝑆 binding

together, and 𝑃 is the product molecule formed. We note that we call 𝑆 a substrate only

in the sense that enzyme 𝐸 acts on it, while 𝑆 could be a molecule large or small. More

detailed descriptions of this enzymatic reaction are sometimes used, such as introducing

another intermediate complex 𝐶 ′
representing 𝐸 bound with 𝑃 , or allowing the catalysis

step to be reversible. The principle of the calculations we illustrate below generalize to

these cases in straightforward ways.

The net catalysis in this enzymatic reaction is that one substrate molecule is converted

into a product molecule. The rate or flux of this catalysis is 𝑣 = 𝑘cat𝐶, where 𝐶 here also

denotes the concentration of this species. So we can express the catalysis involved as

𝑡𝑆
𝑘cat𝐶

𝑡𝑃 , (2.2)

where 𝑡𝑆 = 𝑆 + 𝐶 denotes the total concentration of substrate molecules, and 𝑡𝑃 = 𝑃 is

the total concentration of product molecules. The squiggly arrow is used here to denote

catalysis reactions to emphasize that catalysis is not a simple reaction, with more detailed

reaction steps possibly involved such as binding reactions. The reason totals are used here

is because we are considering the net effect of the catalysis reaction going forward once. It

is clear that the total product has a net increase of one molecule, and the total substrate has

the net decrease of one molecule. But because the substrate exists in both bound and free

forms 𝐶 and 𝑆, the consumed substrate molecule could come from either free or bound

form, and therefore does not correspond to the net decrease of one molecule of 𝑆 or 𝐶.

Binding regulates catalysis. Since the catalysis flux is 𝑣 = 𝑘cat𝐶, the regulation of this flux

is varying 𝐶 when the total enzyme and substrate concentrations are varied. Since we

consider the reactions in bulk scale, we write the following deterministic rate equation

governing the concentration of 𝐶 from mass action:

𝑑

𝑑𝑡
𝐶 = 𝑘+𝐸𝑆 − (𝑘− + 𝑘cat)𝐶. (2.3)
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For many scenarios of interest, it is valid to assume that the binding reaction is fast for the

timescale we are interested in, so the dynamics of 𝐶 concentration reach steady state [53,

57, 116]. To add to the argument, we can determine the timescale of binding by looking at

the state transition dynamics of the enzyme. That of the substrate molecule is completely

analogous. Fixing 𝑆, the dynamics of 𝐶 in the above Eqn (2.3) is transition of enzyme

between free state 𝐸 and bound state 𝐶. The rate out of 𝐸 is 𝑘+𝑆, and the rate out of 𝐶 is

𝑘− + 𝑘cat
. So the dynamics can be written as the following using total enzyme 𝑡𝐸 = 𝐸 + 𝐶.

𝑑

𝑑𝑡
𝐶 = 𝑘+𝑆𝑡𝐸 − (𝑘− + 𝑘cat + 𝑘+𝑆)𝐶. (2.4)

Therefore the timescale for enzyme state transition to reach steady state is (𝑘−+𝑘cat+𝑘+𝑆)−1
.

Hence, although the unbinding rate 𝑘−
can be very slow due to a tight binding energy,

the timescale of binding is governed by the sum of the three terms, therefore a small 𝑘−

does not change the timescale. Specifically, 𝑘+𝑆 is often the largest. The diffusion-limited

on rate for enzymes often takes value above 108
m

−1 s−1
[75, 107], so for 𝑆 of 10 molecules

per bacterial cell, i.e. 10 nm, we have the 𝑘+𝑆 is 1 s−1
. So the binding timescale is almost

always seconds or faster, and faster with increasing concentrations. For example, 𝑆 with

µm concentration has timescale in milliseconds. If the phenomenon we want to study has

timescale longer than seconds, then it is plausible to assume binding is at steady state.

With the binding reaction reaching steady state, we have the following system of equations

relating 𝐶 and total concentrations 𝑡𝐸 and 𝑡𝑆 .

𝐶 = 𝐸𝑆

𝐾
, 𝑡𝐸 = 𝐸 + 𝐶, 𝑡𝑆 = 𝐶 + 𝑆, (2.5)

where the first equation is the steady state expression of complex 𝐶, and 𝐾 = 𝑘−+𝑘cat

𝑘+ . The

latter two equations are simply definitions of the total concentrations. These totals are also

quantities conserved by the binding reaction. Again, we focus on how 𝐶 depends on the

total concentrations because once the binding network regulating the catalysis reaction

is given as in Eqn 2.1 so that no other binding can happen, then cells can only adjust

the catalysis rate by producing or degrading the enzyme and substrate molecules. Such

production and degradation results in changes of integer numbers of molecules for the

totals, but not the free or bound concentrations.

To solve for how 𝐶 depends on 𝑡𝐸 and 𝑡𝑆 from Eqn (2.5), we can find the explicit solution in

this case by solving the following quadratic equation, obtained by plugging the definitions

of totals into the steady state equation.

𝐾𝐶 = (𝑡𝐸 − 𝐶)(𝑡𝑆 − 𝐶) =⇒ 𝐶 = 1
2

(︂
𝑡𝐸 + 𝑡𝑆 + 𝐾 −

√︁
(𝑡𝐸 + 𝑡𝑆 + 𝐾)2 − 4𝑡𝐸𝑡𝑆

)︂
. (2.6)
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This expression serves as an example for the full profile of bioregulation. All possible

responses of the catalysis flux in Eqn (2.1) to total concentrations is characterized by

this equation. This is a hard constraint from the binding stoichiometry on how the flux

𝑣 = 𝑘cat𝐶(𝑡𝐸, 𝑡𝑆) can be regulated. As long as the binding network is correct with no

important binding interactions ignored, this expression captures all possible bioregulation

in a holistic fashion. No matter whether or not the cells adjust the concentrations in a

highly dynamic or combinatorial fashion, the resulting behavior follows this Eqn (2.6).

While the holistic description by Eqn (2.6) is highly desirable, we caution that the explicit

solution can be solved here only because we chose a simple case here with just one binding

reaction. With the number of binding reactions increase, the degree of the polynomial

equation to be solved increases proportionally, quickly becomes unsolvable without special

restrictions on the parameter values. Even for just two binding reactions, the explicit

solution is already complicated, while four or more binding reactions results in degree 5

or more, so no algebraic solutions can be found. This hardness propagates to numerical

computations as well. Finding specific solutions of a large system of polynomial equations

is already hard, let alone scanning for how the solutions vary with the total concentrations.

Reaction orders capture binding’s regulation. To circumvent this difficulty, we propose to

focus on reaction orders of the flux to the total concentrations, instead of the flux itself.

To introduce reaction orders in a simple way, let us consider the typical approach to

circumvent the computational difficulty by restricting to specific scenarios. Assuming

either the substrate is much more abundant than the enzyme 𝑡𝑆 ≫ 𝑡𝐸 , or the free substrate

concentration 𝑆 is kept constant by an external bath, we can simplify the binding dynamics

to just state transitions of the enzyme molecule. The steady state equation therefore

becomes 𝐾𝐶 = 𝐸𝑆 = (𝑡𝐸 − 𝐶)(𝑡𝑆 − 𝐶) ≈ (𝑡𝐸 − 𝐶)𝑡𝑆 , because complex concentration is

much less than total substrate by 𝐶 ≤ 𝑡𝐸 ≪ 𝑡𝑆 . Solving for 𝐶 then yields the classical

Michaelis-Menten formula:

𝐶MM
𝐸𝑆 (𝑡𝐸, 𝑡𝑆) = 𝑡𝐸

𝑡𝑆

𝑡𝑆 + 𝐾
. (2.7)

If free substrate 𝑆 is kept constant by an external bath, then we would care about how the

flux varies with free substrate 𝑆 instead of total 𝑡𝑆 , so we have the steady state equation in

similar form 𝐾𝐶 = (𝑡𝐸 −𝐶)𝑆, simply replacing 𝑡𝑆 with 𝑆. The resulting expression of 𝐶 in

𝑡𝐸 and 𝑆 is also of the Michaelis-Menten form. In this simple case, all the methods based

on state counting of the enzyme results in the same expression as Michaelis-Menten. In

order to go beyond this approximation using state counting methods, the state of the whole

system in terms of both enzyme and substrate molecules needs to be counted. But this is

simply the discrete and stochastic version of the full explicit solution in Eqn (2.6), which
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Figure 2.1 Log-log plot of the MM formula (blue and left y-axis) and the its log derivative to total substrate

concentration 𝑡𝑆 (orange and right y-axis). Parameter values are 𝑡𝐸 = 1 and 𝐾 = 1 (red vertical line). The

two extremes of small and large𝑡𝑆 are highlighted to have slopes of 1 and 0 respectively, captured by the log

derivative function.

is even harder to solve than polynomial equations as the number of binding reactions

increases.

To see how the flux is regulated by total concentrations, we plotted the Michaelis-Menten

formula in Figure 2.1 (blue). The response to total enzyme concentration is imply propor-

tional, so 𝑡𝐸 is kept constant in the plot. We see that when 𝑡𝑆 is small compared to 𝐾, i.e.

𝑡𝑆 ≪ 𝐾, the flux increases linearly, or in first order, as seen from the slope in the log-log

plot. When 𝑡𝑆 is large compared to 𝐾, i.e. 𝑡𝑆 ≫ 𝐾, the flux becomes flat and saturates, so

it does not respond to increases in 𝑡𝑆 anymore. This corresponds to a slope of zero in the

log-log plot. We see that there are two regimes in how the flux responds to 𝑡𝑠, a linear or

first order regime when 𝑡𝑆 ≪ 𝐾, and a saturated or zeroth order regime when 𝑡𝑆 ≫ 𝐾. We

can also see this by applying the asymptotic conditions 𝑡𝑆 ≪ 𝐾 or 𝑡𝑆 ≫ 𝐾 to the Michaelis

Menten formula in Eqn (2.7) to obtain the approximate formula in the two regimes:

𝐶MM
𝐸𝑆 (𝑡𝐸, 𝑡𝑆) ≈

⎧⎪⎨⎪⎩
𝑡1
𝑆𝑡1

𝐸

𝐾
, 𝑡𝑆 ≪ 𝐾;

𝑡0
𝑆𝑡1

𝐸, 𝑡𝑆 ≫ 𝐾.
(2.8)

Here we write the order explicitly. We see that the reaction orders, defined as the order or

exponent of the flux to total concentration changes, capture how the two regimes respond

differently. In more detail, the reaction orders capture what fold-change of the flux is

caused by fold-changes in the total concentrations. As a result, any multiplicative constants

are not described by the reaction orders, just like 𝐾 is ignored in the order description

of the two regimes. We note that this is only because we restricted our attention to the
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total concentrations here, while the order in 𝐾 can be naturally kept in reaction order

calculations. See Chapter 3.

Reaction orders, or exponents, nicely capture how the flux responds to concentration

changes in the two regimes at the extremes of small and large total substrate concentration

𝑡𝑆 . Because the approximate expression of Michaelis Menten formula at these two regimes

have monomial form, the exponents naturally correspond to the reaction orders. However,

what happens if we do not have monomial forms. More generally, there is a range between

the two regimes where the flux also responds to changes in concentrations, how can

we describe the reaction orders there? Intuitively, we would think the response should

be in between the linear or order 1 regime and the saturated or order 0 regime, so we

expect the reaction order to smoothly vary from 1 to 0 as 𝑡𝑆 increases. To do so, we

need a continuous analogue of exponents, called log derivatives. As a simple example,

if 𝑓(𝑥) = 𝑘𝑥𝑎
, then

𝜕 log 𝑓(𝑥)
𝜕 log 𝑥

= 𝜕 log 𝑘+𝑎 log 𝑥
𝜕 log 𝑥

= 𝑎, so we see log derivatives indeed obtain the

exponent for monomials. Applying log derivative to the Michaelis-Menten formula, we

can calculate

𝜕 log 𝐶MM
𝐸𝑆

𝜕 log(𝑡𝑆, 𝑡𝐸) =
[︁

𝐾
𝑡𝑆+𝐾

1
]︁
. (2.9)

The log derivative of the 𝐶’s Michaelis-Menten formula to 𝑡𝑆 is plotted in Fig 2.1 (orange

curve). We see that it smoothly decreases from 1 to 0 as 𝑡𝑆 increases, as we desired. The two

regimes correspond to vectors of 𝐶’s reaction order to (𝑡𝑆, 𝑡𝐸): (1, 1) for the linear regime,

and (1, 0) for the saturated regime. When total substrate concentration 𝑡𝑆 smoothly increase,

we obtain a line segment from (1, 1) to (1, 0) in reaction order space (Figure 2.2). Therefore,

log derivative is a differential way to calculate reaction orders beyond the extreme regimes,

so that reaction orders can be characterized for all possible concentrations. This paves the

way to use reaction orders to capture the full bioregulation profile of binding networks. In

particular, the bioregulation profile of the flux restricted to the Michaelis-Menten case is

the (1, 1) to (1, 0) line segment.

Full bioregulation profile as reaction order polyhedra. With the full bioregulation profile

in mind, we recall that the Michaelis-Menten formula is derived from a simplifying

assumption that substrate is much more abundant than enzyme 𝑡𝑆 ≫ 𝑡𝐸 . Compare the

Michaelis-Menten formula Eqn (2.7) with the explicit solution for full bioregulation profile

Eqn (2.6), there are behaviors that the metabolic flux can have that is not captured in the

Michaelis-Menten formula. In particular, while there are two regimes captured by the

Michaelis-Menten formula, we can take asymptotic conditions in the opposite direction of

the 𝑡𝑆 ≫ 𝑡𝐸 assumption to find a third regime not captured by Michaelis-Menten. When

𝑡𝐸 ≫ 𝑡𝑆 , the steady state equation becomes 𝐾𝐶 = 𝑡𝐸(𝑡𝑆 − 𝐶). Solve for 𝐶 we obtain
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𝐶 = 𝑡𝑆
𝑡𝐸

𝑡𝐸+𝐾
. When total enzyme concentration is small, 𝑡𝐸 ≪ 𝐾, we recover the linear

regime in Michaelis-Menten. When total enzyme concentration is large, 𝑡𝐸 ≫ 𝐾, we obtain

a new regime that is first order in substrate but zeroth order in enzyme: 𝐶 ≈ 𝑡𝑆 . We

summarize the three regimes as follows.

𝐶MM
𝐸𝑆 (𝑡𝐸, 𝑡𝑆) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡1
𝑆𝑡1

𝐸

𝐾
, 𝐾 ≫ 𝑡𝑆, 𝑡𝐸;

𝑡0
𝑆𝑡1

𝐸, 𝑡𝑆 ≫ 𝑡𝐸, 𝐾;

𝑡1
𝑆𝑡0

𝐸, 𝑡𝐸 ≫ 𝑡𝑆, 𝐾.

(2.10)

In terms of reaction orders of 𝐶 in (𝑡𝑆, 𝑡𝐸), this means beyond the two regimes with

reaction orders (1, 1) and (0, 1), there is a third regime with order (1, 0). This means the

full bioregulation profile in terms of reaction orders goes beyond the (1, 1) to (0, 1) line

segment of Michaelis-Menten to include points like (1, 0). So we want to see how the full

bioregulation profile is represented in terms of reaction orders.

We could obtain the full set of reaction orders by directly applying log derivatives to

the explicit solution Eqn (2.6). However this procedure will not work in general since

the explicit solution is not available beyond simple cases. In fact, our goal is to show

that reaction orders form intuitive representations of the full bioregulation profile that

can be efficiently computed for large binding networks, therefore serve as much better

representations of bioregulation than the function of flux in terms of concentrations.

Without relying on the explicit solution, we can directly compute the reaction orders from

the steady state equations in Eqn (2.5). To do so, we consider Eqn (2.5) as defining a

three-dimensional manifold constraining the six variables involved: (𝐸, 𝑆, 𝐾, 𝑡𝐸, 𝑡𝑆, 𝐾).
Then reaction orders, which are differential quantities, can be computed through implicit

function theorem (see Chapter 3). The result is the following.[︁
𝜕 log 𝐶
𝜕 log 𝑡𝑆

𝜕 log 𝐶
𝜕 log 𝑡𝐸

𝜕 log 𝐶
𝜕 log 𝐾

]︁
=
[︁

𝐸+𝐾
𝑆+𝐸+𝐾

𝑆+𝐾
𝑆+𝐸+𝐾

− 𝐾
𝑆+𝐸+𝐾

]︁
. (2.11)

We can visualize this by obtaining points of these reaction orders through uniform sampling

of (𝐸, 𝑆, 𝐾) values, and plotting them onto the 2D space of 𝐶’s reaction orders to (𝑡𝑆, 𝑡𝐸).
This is plotted in Figure 2.2.

First, we see the that a triangle with vertices (1, 1), (1, 0) and (0, 1) corresponding to the

three regimes bounds all the points. It can also be shown analytically that the the set of all

possible reaction orders is this triangle by writing Eqn (2.11) into convex combinations (see

Chapter 3). The reaction order in 𝐾 can also be included, which just slants the triangle.

Importantly, this triangle is the set of all possible reaction orders that the flux can respond
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Figure 2.2 The reaction orders of 𝐶 to 𝑡𝑆 and 𝑡𝐸 defined by steady state equations in Eq (2.5). A point in

this space represents a reaction order vector of the catalysis reaction, which defines how the steady-state 𝐶
concentration varies due to changes in the total concentration of 𝐸 and 𝑆. The blue points are sampled from

Eqn (2.11), with 𝑒 = 𝐸
𝐾 and 𝑠 = 𝑆

𝐾 log-uniformly sampled between 10−6
and 106

for 105
points. A triangle

with vertices (1, 1), (1, 0), and (0, 1) bounds all the points. These vertices (red dots) correspond to structural

regimes with approximate expression for 𝐶 written next to them. The edge marked by the red line is the

range of reaction orders covered by the Michaelis-Menten formula.

to varying concentrations for this simple binding network (Eqn (2.1)). This triangle is

therefore the full bioregulation profile of this binding network represented in reaction

orders. This triangle is a constraint on all possible bioregulation of the flux, just like the

explicit solution Eqn (2.6). No matter the total concentrations 𝑡𝑆 and 𝑡𝐸 are dynamically

regulated with large transients or combinatorially varied, the flux’s response in terms of

reaction orders is bounded in this triangle. In fact the result is even stronger: when the

binding constant 𝐾 is varied, maybe by different enzyme-substrate pairs, as long as the

binding network is still the same, the bioregulation profile is still this triangle of reaction

orders.

Next, the triangle is defined by the three vertices, which correspond to the three regimes

we discussed before. Each one of them correspond to a region in the space of total

concentrations (𝑡𝑆, 𝑡𝐸) that satisfies an asymptotic condition, such as 𝑡𝑆 ≫ 𝑡𝐸, 𝐾. This

means, as the total concentrations are varied during regulation, once the concentrations

are pushed to extremes, then the flux automatically falls into one of the regimes, and the

reaction order is pushed into a vertex. This can be seen in Figure 2.2 through the density of

the points as well. We see the points are most dense at the vertices, meaning a large region
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of values in (𝐸, 𝑆, 𝐾) space has a reaction order the same as the vertex. In other words,

varying the concentrations in large regions do not vary the reaction orders when they are

close to the vertices. This is a measure of robustness, that large variations in concentrations

do not change the reaction orders significantly, when the concentrations is already close to

the vertices.

These vertices and their corresponding regimes are also structural. Structural here means

that they are independent of concentrations, binding constants and kinetic rates. Instead,

they are solely determined by the only thing not varied: the stoichiometry or topology

of the binding network. The fact that one enzyme and one substrate binds to form a

complex determines the vertices and the triangular shape of the reaction order polytope.

Therefore we refer to these regimes as structural regimes, to emphasize their independence

of parameters. The significant robustness of structural regimes also promotes a view of

bioregulation as staying inside a structural regime most of the time, so perturbations that

vary concentrations do not change reaction orders. When adjustments need to be done,

then the concentrations are strongly varied to push the reaction orders from one structural

regime to another, again with high robustness. Although there are intermediate reaction

orders between the structural regimes, cells tend to stay in these intermediate regions very

little, because they are not robust, therefore any perturbation would push the cells out of

them into structural regimes. This description may underlie the observation that biology

is robust yet diverse. On one hand, biological systems adapt to large disturbances of all

kinds, so it seems they are in such a stable and robust position that nothing will change.

On the other hand, when desired, biological systems can perform diverse behaviors in

different scenarios. This robust yet diverse property may be rooted in the diverse functions

of structural regimes, and the high robustness of each regime.

Now we recall our discussion about Michaelis-Menten. By making the simplifying

assumption that substrate is much more abundant than enzyme 𝑡𝑆 ≫ 𝑡𝐸 , two structural

regimes are retained, and the reaction orders are restricted to the line segment from (1, 1)
to (0, 1) (see red line segment in Figure 2.2). This geometrically illustrates how the full

bioregulation profile compares to what is allowed by Michaelis-Menten under restricted

scenarios. More importantly, we discover that assumptions in the form of asymptotic

conditions, e.g. 𝑡𝑆 ≫ 𝑡𝐸 , restricts bioregulation profile by projecting to an edge of the

triangle. Restricting further with 𝑡𝑆 ≪ 𝐾 projects the edge onto the (1, 1) vertex. Therefore

more generally we expect asymptotic conditions would project a reaction order polyhedron

to its faces. This is very useful since it provides a clear relation between the geometric objects

in reaction order polyhedra with conditions in molecule concentrations. In particular,
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asymptotic conditions on concentrations correspond to the hierarchical organization of

vertices, edges, and faces in a polyhedron.

This correspondence between asymptotic conditions on concentrations and the geometric

hierarchy of reaction order polyhedra makes simplifying assumptions transparent. To see

this in action, we can consider the edges other than Michaelis-Menten. While the edge

symmetric to the Michaelis-Menten one is simply enzyme is over-abundant compared

to substrate 𝑡𝐸 ≫ 𝑡𝑆 , the diagonal edge between (1, 0) and (0, 1) is more interesting. It

is the tight binding limit, corresponding to asymptotic condition 𝑡𝐸, 𝑡𝑆 ≫ 𝐾, so that

binding is very tight compared to substrate and enzyme concentrations. Restricting further

with 𝑡𝐸 ≫ 𝑡𝑆 or 𝑡𝑆 ≫ 𝑡𝐸 would further project to the (0, 1) and (1, 0) vertices. Like the

edge correspond to a formula in Michaelis-Menten, this edge should also correspond to

a formula. By the vertices this edge connects, we already know what form it takes at

extremes. To find the full formula, we can simply apply the asymptotic condition to the

explicit solution in Eqn (2.6). We obtain that 𝐶TB = min{𝑡𝑆, 𝑡𝐸}, the minimum of enzyme

and substrate. This makes intuitive sense, since tight binding implies any free molecule

should form a complex unless one of enzyme and substrate is all consumed. Although this

tight binding formula is not as popular as Michaelis-Menten, it should be because of its

high biological relevance. In [10], a circuit motif achieving robust perfect adaptation is

proposed that is based on the strong binding of two molecules, such as sense and anti-sense

RNA strands or sigma and anti-sigma factors. This tight binding formula is perfectly

appropriate in this situation, and is used in analyzing the circuit motif in [83]. In [92], this

tight binding formula taking minimum between enzyme and substrate is used to unify

several bacterial growth laws in distinct growth conditions. It is highly likely that the

tight binding formula is used and applied in many scenarios that we do no know, simply

because of the lack of a common name like Michaelis-Menten or Hill to enthrone the tight

binding formula into the canon of quantitative biology.

To summarize, from a simple binding example, we see that binding’s regulation of biology

can be captured by reaction orders. The set of all reaction orders allowed by a binding

network forms a polyhedral set. As a result, this reaction order polyhedra represents the

full bioregulation profile of a binding network. The hierarchical geometry of vertices,

edges, and faces of reaction order polyhedra correspond to asymptotic conditions on

concentrations that are often used as simplifying assumptions in various scenarios. The

vertices, in particular, correspond to structural regimes with approximate monomial

formula that are highly robust to perturbations in concentrations.
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2.2 Reaction order polyhedra can be derived and computed
at scale

We proposed to describe bioregulation through reaction orders because the full bioregu-

lation profile in terms of catalysis rates or fluxes’ dependence on concentrations require

solving high degree polynomial equations, which is intractable analytically and computa-

tionally. While previously we illustrated how reaction orders capture binding’s regulation

of catalysis through a simple binding network where rates can be explicitly solved, in this

section we demonstrate that in contrast to rates and fluxes, reaction orders can be computed

and derived at scale. We show this by first demonstrating a computational sampling

algorithm to obtain reaction order polyhedra through matrix algebra. This is based on a

reaction order formula for arbitrary binding networks, generalizing the procedure we used

to calculate reaction orders in the simple binding network using implicit function theorem.

Then we show that the reaction order polyhedra themselves can also be derived directly

through a method called dominance decomposition tree (DDT), based on rules of calculus

for positive variables.

Computational sampling of reaction order polyhedra. The computational procedure

to sample points of reaction order polyhedra is shown in Figure 2.3. Here we choose

the binding network of an induced activator as an illustration. Here 𝐺 is a gene to be

expressed, 𝑅 is an activating transcriptional regulator, and 𝑆 is an inducer of the regulator.

The two binding reactions are the inducer 𝑆 binds with the activator 𝑅 to form a complex

𝐶𝑅𝑆 , and this induced activator binding with the gene 𝐺 to form a complex 𝐶𝐺𝑅𝑆 . 𝐶𝐺𝑅𝑆

is then the activated gene complex capable of gene expression. So a natural objective for

analysis is to understand how the gene expression is regulated by this binding network. We

characterize the full bioregulation profile of this binding network by obtaining the reaction

order polyhedra, without making any assumption about gene copy number, activator

amount, or inducer concentration, or their binding strengths.

To obtain the reaction order polyhedra, one way is to computationally sample points from it.

This will visually show the polyhedron because the vertices and edges are robust, therefore

naturally have higher density of points. The computational sampling is based on a formula

for reaction orders that hold for arbitrary biological binding networks, shown in step 3

of Figure 2.3. This formula is derived using implicit function theorem, through a similar

process as in the reaction order calculation of the simple binding network (see Chapter 3

for details).
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Figure 2.3 The procedure to computationally sample reaction order polyhedra of a binding network, illustrated

with the binding network of an induced activator. See Chapter 3 for detailed derivations. Step 1, specify a

binding network. Step 2, write down the stoichiometry matrix for the binding reactions. For each binding

reaction, use the stoichiometry in the binding direction. For the order of the species, put the free form of the

species first. These species are called atomic species, with the special property that conserved quantities

represent totals of these species. Step 3, compute the conservation law matrix 𝐿 from the stoichiometry

matrix 𝑁 . Step 4, compute reaction orders using the formula. Here Λ𝑡 denote a diagonal matrix with the

vector of totals 𝑡 on the diagonal. Same for Λ𝑥. Step 5, for a target species whose reaction order is to be

studied, we can sample points of its reaction order polyhedron by taking random values of 𝑥, calculate 𝑡 and

pass through the formula to compute the reaction order, and then plot the points. The figure listed here

shows the reaction order polytope of the induced activator, rotated in four different angles to show the 3D

shape. The arrow around a line denotes in which direction the 3D shape is rotated from the upper left figure.

Sampling of the 𝐶𝐺𝑅𝑆 reaction order polytops is done by log-uniformly sampling the values of each variable

in (𝐺, 𝑅, 𝑆, 𝐶𝑅𝑆 , 𝐶𝐺𝑅𝑆) between 10−6
and 106

with 100000 points in total.

To use the formula, we see it requires the input of the stoichiometry matrix 𝑁 of dimension

𝑟×𝑛 and the conservation law matrix 𝐿 of dimension 𝑑×𝑛, where 𝑛 is the number of species

involved, 𝑟 is the number of binding reactions with linearly independent stoichiometry,

and 𝑑 is the number of conserved quantities or the number of totals. The stoichiometry

matrix can be directly obtained from the binding network once it is specified, as shown in

Step 2 of Figure 2.3. It might occur that there are binding reactions with linearly dependent

stoichiometry vector. In that case, compute the rank 𝑟 of the stoichiometry matrix, and

select 𝑟 of the linearly independent reactions to form the stoichiometry matrix 𝑁 . The

result is independent of which 𝑟 linearly independent reactions are selected. Since binding
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reactions are reversible, as a convention, we choose the stoichiometry vector of the binding

direction to form matrix 𝑁 . When possible, it is helpful if a subset of 𝑑 of the species,

considered atomic species, can be distinguished and arranged first in the ordering of the

species. Atomic species often correspond to the free form of the molecules, so that their

total amount is conserved through the binding reactions.

The conservation law matrix 𝐿, which defines the totals, can be computed from the

stoichiometry matrix 𝑁 (see Step 3 of Figure 2.3 for illustration, and Chapter 3 for

derivation details). If the atomic species are ordered first, then this computation is simple.

We can split 𝐿 into two submatrices: 𝐿 =
[︁
I𝑑 𝐿2

]︁
, with the first submatrix a 𝑑 × 𝑑

identity matrix. Similarly split 𝑁 =
[︁
𝑁1 𝑁2

]︁
, then the submatrix 𝐿2 can be computed as

𝐿2 = (−𝑁−1
2 𝑁1)⊺. Once 𝐿 is obtained, the total 𝑡 of dimension 𝑑 can be defined as 𝑡 = 𝐿𝑥,

where 𝑥, a vector of dimension 𝑛, is the concentrations of all the species involved.

With both the stoichiometry matrix 𝑁 and the conservation law matrix 𝐿 written down, we

can apply the reaction order formula in Step 4 of Figure 2.3. This formula can calculate the

reaction orders for any given concentration vector of the species 𝑥. This allows us to sample

points in the reaction order polyhedra for any species of interest. In Step 5 of Figure 2.3, the

sampling result for reaction order polyhedron of 𝐶𝐺𝑅𝑆 to the total gene 𝑡𝐺, total regulator

𝑡𝑅 and total substrate 𝑡𝑆 is shown. We see a polytope with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (1, 0, 1), and (1, 1, 1), where the order is 𝐶𝐺𝑅𝑆’s reaction order in (𝑡𝐺, 𝑡𝑅, 𝑡𝑆). In

particular, we see the triangle from the simple binding network is contained as a facet in

this polytope. Indeed if inducer concentration is overabundant such that the 𝑅 is always

induced, then the induced activator binding network reduces to 𝐺 + 𝑅* ⇌ 𝐶𝐺𝑅* , where

𝑅*
denote the always induced regulator. This is exactly the same as the simple binding

network. Similarly, if the regulator 𝑅 is overabundant so that the inducer is always bound

to regulators, or if the gene is overabundant so that any induced activator is always bound

to genes, then we also have reduction to simple binding. This explains the three triangular

facets of the polytope. This is another illustration of the geometric hierarchy of reaction

order polyhedra, and its correspondence with asymptotic conditions on concentrations.

Lastly, we note that the computation of reaction orders only involves matrix algebra. The

most costly step is inverting the matrix. This is much less costly compared to solving

polynomial equations. Specifically, inverting a matrix of dimension 𝑛 has computational

complexity 𝑂(𝑛2.3) to 𝑂(𝑛3), so the cost of computationally sample the polyhedron is

𝑂(𝑁𝑛2.3) where 𝑁 is the number of points in the polyhedra to be sampled. In contrast, a

rough complexity for solving systems of polynomial equations is degree to the number

of equations [62]. Assuming the number of (linearly independent) binding reactions
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𝑟 is proportional to the number of species 𝑛, we have computational cost 𝑂(𝑁2𝑛) for

numerically scanning the full regulatory profile by solving the polynomial equations of

binding network steady states. This is indeed much higher cost than sampling reaction

order polyhedra. Furthermore, the matrices involved are very sparse for large binding

networks, which can further speed up computations.

Dominance decomposition tree (DDT) can derive reaction order polyhedra directly.
While the computational sampling algorithm is powerful in obtaining numerical values of

reaction orders for large binding networks, to obtain the geometric shape of the reaction

order polyhedra requires further analysis on top of the sampled result, such as visual

inspection. Here, we describe an analytical procedure that directly obtains the reaction

order polyhedra called dominance decomposition tree (DDT). This procedure also provides

deeper insight into why the polyhedral shape arise in the first place. See Chapter 3 for

details on the relevant concepts and derivations.

In order to obtain the reaction order polyhedra directly, we need to look into why

reaction orders form polyhedral sets in the first place. In Chapter 3, we show that convex

combinations are part of the fundamental rules of calculus for positive variables. To get a

sense of this, we make the following observation, that log derivatives of sums of functions

give rise to convex combinations. Consider 𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥), all are positive functions

and 𝑥 is a positive variable. Then

𝜕 log 𝑓(𝑥)
𝜕 log 𝑥

= 𝑓1

𝑓1 + 𝑓2

𝜕 log 𝑓1(𝑥)
𝜕 log 𝑥

+ 𝑓2

𝑓1 + 𝑓2

𝜕 log 𝑓1(𝑥)
𝜕 log 𝑥

.

We see that for reaction orders, or log derivatives, when terms are summed together,

the sum’s reaction order is the convex combination of each term’s reaction order. In

other words, terms compete for dominance in their orders. If 𝑓𝑖 is large, then the convex

coefficient
𝑓𝑖

𝑓
is closer to 1, so the order of 𝑓𝑖 dominates in 𝑓 ’s order. As an application

of this, the log derivative of polynomials, or ratios of polynomials, form a polytope from

convex combination of each term’s exponents. For example, 𝑓(𝑥) = 𝑘0𝑥𝑎0
𝑘1𝑥𝑎1 +𝑘2𝑥𝑎2 has log

derivative 𝑎0 − (𝜆1𝑎1 + 𝜆2𝑎2), where 𝜆𝑖 are convex coefficients defined by 𝜆1 = 𝑘1𝑥𝑎1
𝑘1𝑥𝑎1 +𝑘2𝑥𝑎2

and 𝜆2 = 𝑘2𝑥𝑎
2

𝑘1𝑥𝑎1 +𝑘2𝑥𝑎2 . Translated into the reaction order context, this means when multiple

processes contribute to a flux, the reaction order of the flux is a convex combination of each

process’s reaction order. Therefore, the flux reaction order takes value in the polytope with

each process’s reaction order as vertices. The flux reaction order is close to the 𝑖th vertex

when the 𝑖th process is dominant over the other processes.

The reader may have noticed that the rule of competition for order dominance, or convex

combinations from sums, is discussed for sums in the quantity to be differentiated. However,
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for reaction orders, the sum if in the coordinate variables. For example, in the simple

binding network, the reaction order of 𝐶 to total substrate is
𝜕 log 𝐶
𝜕 log 𝑡𝑆

= 𝜕 log 𝐶
𝜕 log(𝑆+𝐶) . So this is the

situation of
𝜕 log 𝑓

𝜕 log(𝑥1+𝑥2) , rather than
𝜕 log(𝑓1+𝑓2)

𝜕 log 𝑥
that we discussed above. Without going into

details, here we simply state that this rule of competition for order dominance propagates

to sums in the coordinate variables as well. To be specific, we have

𝜕 log 𝑓

𝜕 log 𝑥1 + 𝑥2
= 𝛼1

𝜕 log 𝑓

𝜕 log 𝑥1
+ 𝛼2

𝜕 log 𝑓

𝜕 log 𝑥2

for some convex coefficients 𝛼1 and 𝛼2 with 𝛼1, 𝛼2 ≥ 0, 𝛼1 + 𝛼2 = 1, and 𝛼1 becomes close

to 1 when 𝑥1 is dominant in the sum 𝑥1 + 𝑥2. Here in order for the log derivatives to make

sense, the positive variables 𝑥1 and 𝑥2 are related to each other so that there is only one

degree of freedom, e.g. 𝑥1 + 𝑥2 = 1 or 𝑥1𝑥2 = 1, and the function 𝑓 is a function of this

one degree of freedom. This internal relation between the coordinate variables is indeed

the case for binding network. For example, the simple binding network has (𝐸, 𝑆, 𝐶)
constrained by the steady state equation to have 2 degrees of freedom, rather than 3.

This rule of competition for dominance is the underlying reason for the polyhedral set of

reaction orders. More importantly, this rule can be applied as a calculation procedure to

directly obtain the reaction order polyhedra. For example, competition for dominance

applied to reaction order of 𝐶 to (𝑡𝑆, 𝑡𝐸) in the simple binding network yields the triangle

straight-forwardly. When 𝐶 is dominant in 𝑡𝑆 = 𝑆 + 𝐶, then 𝑡𝑆 ≈ 𝐶, so the reaction order is

approximately
𝜕 log 𝐶

𝜕 log(𝑡𝑆 ,𝑡𝐸) ≈
𝜕 log 𝐶

𝜕 log(𝐶,𝑡𝐸) . Since 𝐶 appears as a coordinate variable, of course the

fold change of 𝐶 is exactly the same as 𝐶 itself, independent of 𝑡𝐸 when 𝐶 is held constant.

So the reaction order in this dominance condition is
𝜕 log 𝐶

𝜕 log(𝑡𝑆 ,𝑡𝐸) ≈
𝜕 log 𝐶

𝜕 log(𝐶,𝑡𝐸) =
[︁
1 0
]︁
. The

left-over case is when 𝑆 is dominant in 𝑡𝑆 , so
𝜕 log 𝐶

𝜕 log(𝑡𝑆 ,𝑡𝐸) ≈
𝜕 log 𝐶

𝜕 log(𝑆,𝑡𝐸) . Now we can consider

the next dominance condition of 𝑡𝐸 . If 𝐶 is dominant in 𝑡𝐸 , then
𝜕 log 𝐶

𝜕 log(𝑡𝑆 ,𝑡𝐸) ≈
𝜕 log 𝐶

𝜕 log(𝑆,𝐶) , so

again 𝐶 only varies with the 𝑡𝐸 coordinate, resulting in a simple reaction order

[︁
0 1
]︁
. Then

the left over case is 𝐸 is dominant in 𝑡𝐸 , which gives
𝜕 log 𝐶

𝜕 log(𝑡𝑆 ,𝑡𝐸) ≈
𝜕 log 𝐶

𝜕 log(𝑆,𝐸) . Now we recall

the steady state expression that 𝐶 = 𝐾−1𝑆𝐸. So the reaction order for this dominance

condition is

[︁
1 1
]︁
.

From this simple binding network example, we see that applying the rule of competition for

dominance to each coordinate, and ask for which term is dominant, can obtain the vertices

of the reaction order polyhedron. Then taking convex combination of the vertices, we

obtain the polyhedron itself. This decomposing each coordinate into different dominance

conditions reminds us of how the geometric hierarchy of the reaction order polyhedron

corresponds to asymptotic conditions on concentrations. Indeed, this competition for
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Figure 2.4 Illustration of the dominance decomposition tree (DDT) procedure to obtain reaction order

polyhedra directly. The example binding network of an induced activator is used. (1) The binding network for

the induced activator. (2) The definitions of the totals in this binding network. (3) The minimal expressions of

𝐶𝐺𝑅𝑆 in terms of other species through steady state relations. (4) The DDT procedure written out step-by-step

for the reaction order of 𝐶𝐺𝑅𝑆 in (𝑡𝐺, 𝑡𝑅, 𝑡𝑆). The forked lines denote a decomposition step. The variables in

rectangles are coordinates with respect to which the log derivative is to be calculated. The downward black

arrow means evaluation of log derivative. After decomposition has finished, all the resulting reaction orders

are taken convex combination together to obtain the reaction order polyhedra.

dominance is the deeper reason for why this geometry-to-concentration correspondence

can exist.

Putting together the coordinate decomposition steps using the rule of competition for

dominance, we obtain the procedure called dominance decomposition tree (DDT) that can

directly obtain the reaction order polyhedra. In Figure 2.4, we write out the steps of DDT

applied to a more complex example: the binding network of induced activators, whose

reaction order polyhedron is also computationally sampled in Figure 2.3. In the DDT

procedure, We first write out the binding network, how the totals are expressed in terms of

all the species, and the steady state expressions for the target species (parts 1,2 and 3 in

Figure 2.4). This is for book-keeping reasons so we do not loose track when performing the

decomposition steps. The expression for the totals can be obtained either by inspection or

by calculating the conservation law matrix as discussed in the computational sampling

procedure. The steady state expressions should include all the distinct ways that the target

species can be expressed in the other species. These expressions are important in the DDT

procedure to let us know when decomposed coordinates will give a constant reaction

order. For example, from the steady state expression 𝐶𝐺𝑅𝑆 = 𝐺𝐶𝑅𝑆𝐾−1
𝐺𝑅𝑆 , we know if

decomposed coordinates include 𝐺 and 𝐶𝑅𝑆 in them, then we the reaction order of 𝐶𝐺𝑅𝑆 is

constant under this dominance condition.

With these preparations done, in part 4 of Figure 2.4, we begin the decomposition steps for

𝐶𝐺𝑅𝑆 in the induced activator binding network. In each step, we ask whether one of the
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terms in a coordinate is dominant. For example, in the first step, we ask whether 𝐶𝐺𝑅𝑆 is

dominant in total gene 𝑡𝐺 = 𝐶𝐺𝑅𝑆 +𝐺. The branch that 𝐶𝐺𝑅𝑆 is dominant in 𝑡𝐺 immediately

results in a constant reaction order, while the other branch that 𝐺 dominant in 𝐶𝐺𝑅𝑆 need

further decompositions. The decomposition steps continue untill all branches have reached

a case where the reaction order is constant. Then taking the convex combination of all the

resulting constant reaction orders gives us the reaction order polyhedra. Indeed, it can be

checked with the visualization in Figure 2.3 that the constant vectors from DDT here are

the vertices of the polytope.

We caution that the order in the sequence of decomposition steps taken could be very

important. Wrong sequences could build DDT trees with spurious vertices that cannot

be reached by reaction orders of the binding network. When performing the sequence

of decomposition steps, given the coordinates at the current step, we should search for

changes to the coordinates that require fewest number of steps to reach a constant reaction

order. Like in Figure 2.4, we take out 𝐶𝐺𝑅𝑆 from all the coordinates at the first three

steps, because this is guaranteed to have a constant reaction order for 𝐶𝐺𝑅𝑆 itself. We

acknowledge that finding the right sequence of decomposition steps requires a bit of the

art of problem solving, just like many powerful mathematical techniques. Nonetheless,

we have guarantees that any polyhedron we obtain from DDT will always contain the

reachable set of reaction orders in it. So we can only overshoot through DDT, and any

polyhedron we obtain is an outer bound. This can be used to take a variational view to

finding the right sequence of steps in DDT. No matter how we came up with a sequence

of decomposition steps, the sequence that results in the smallest polyhedron is always

closer to truth. Therefore, in the worse case, we can always search all possible sequences of

steps or DDT trees by brute-force computer search. So DDT can be seen as a technique

to derive the reaction order polyhedron directly for general binding networks. A generic

computational complexity for deriving the reaction order polyhedra directly from DDT

is therefore exponential in the number of species, 𝑂(𝑒𝑛). This is perhaps not reducible,

since just finding the finite vertices correspond to enumerating the vertices of a polytope

given its facets (see Section 3.7 of Chapter 3), which has complexity that is exponential

in 𝑛. However, DDT directly obtains the full reaction order polyhedra, so this compares

favorably to numerical scans when 𝑛 is much smaller than 𝑁 the number of points needed

in the scan, either from reaction order formula, which has complexity 𝑂(𝑁𝑛2.3), or from

solving polynomial equations, which has complexity 𝑂(𝑁2𝑛). In practice, it is often the

case that 𝑁 is several orders larger than 2𝑛
so as to sufficiently cover the solution space.
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2.3 Reaction order polyhedra reveal hidden adaptive regimes

We have shown that the power of reaction order polyhedra is that it can characterize the

full bioregulation profile of how binding networks adjust catalysis fluxes. This holistic

characterization make reaction order polyhedra applicable to scenarios previously not

amenable to tractable analysis at scale. In particular, no matter how dynamically a system

is regulated with large transients or combinatorial changes in concentrations, the system’s

behavior stays within the bounds of its reaction order polyhedra, therefore amenable to

analysis.

Beyond their general applicability to the highly dynamic and combinatorial cases, reaction

order polyhedra can also be used for biocircuit designs powered by the holistic nature of

this approach. When we have a desired function and a circuit design in mind, holistic

analysis based on reaction order polyhedra can reveal all the possible regimes that the

function can be achieved. In other words, rather than obtaining sufficient results that a

biocircuit under a particular condition can have the desired behavior, holistic analysis can

yield necessary statements, that any condition producing desired behavior will satisfy the

statements. To illustrate this, we consider an existing biocircuit design from [98] for gene

expression that is plasmid number invariant. We re-analyze this circuit to show that there

are hidden regimes of the circuit achieving plasmid number invariance that was missed

in the paper’s original analysis using classical methods such as Michaelis-Menten type

analysis.

The biocircuit in [98] is basically a repressor on the same plasmid as the gene of interest.

Instead of describing all the detailed parts of the plasmid-number invariance biocircuit

in [98], here we focus on a simple model that captures the core of the plasmid number

invariance function. Consider a gene of interest 𝐺 placed on plasmids. On the same

plasmid, there is also a constitutively expressed repressor gene encoded, which produces

the repressor protein 𝑅. This repressor can bind at the gene’s location on the plasmid

to form a complex 𝐶𝐺𝑅, so that the expression of the gene is suppressed. This forms the

binding network

Binding network: 𝐺 + 𝑅 ⇌ 𝐶𝐺𝑅. (2.12)

The plasmid number, which is the same as the total gene from summing repressed and free

gene, is 𝑡𝐺 = 𝐺 + 𝐶𝐺𝑅. Gene expression is proportional to the un-repressed or free gene, 𝐺.

So the goal of achieving plasmid number invariance is therefore making the steady state of

𝐺 invariant to changes in 𝑡𝐺. This objective can be simply encoded in terms of reaction
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orders as

Plasmid number invariance: 𝐺 ∝ 𝑡0
𝐺, (2.13)

that the reaction order of 𝐺 to 𝑡𝐺 should be zero.

Since the plasmid number invariance function here is considered over the time scale of

gene expression, the catalysis, or production and degradation of biomolecules, need to be

considered. The important dynamics of catalysis here is the production and degradation

of the repressor molecule 𝑡𝑅. Again, total is used here because production and degradation

causes integer changes in the total number of repressor molecules. The equation for

dynamics is

𝑑

𝑑𝑡
𝑡𝑅 = 𝑘𝑡𝐺 − 𝛾𝑡𝑅, (2.14)

where production is proportional to plasmid number 𝑡𝐺 because the repressor is constitu-

tively expressed on the plasmid, and degradation with rate 𝛾 describe dilution from cell

growth. At steady state, we have

Catalysis steady state: 𝑡𝑅 = 𝑘

𝛾
𝑡𝐺. (2.15)

As a result of this the repressor amount is proportional to plasmid number.

Now we have described everything in the system. There are three elements, (1) the binding

regulation, (2) the desired function of plasmid number invariance, and (3) the steady state

relation from catalysis dynamics. All together, they form conditions on reaction orders so

that plasmid number invariance is achieved at steady state if and only if this condition on

reaction orders is satisfied.

The integration of these three elements into constraints on reaction orders is illustrated

in (a) of Figure 2.5. Denote 𝑎𝑅 and 𝑎𝐺 as the reaction orders of 𝐺 to 𝑡𝑅 and 𝑡𝐺. For

intuition and convenience of notation, let us denote that reaction orders roughly mean

𝐺 has proportional relation 𝐺 ∝ 𝑡𝑎𝑅
𝑅 𝑡𝑎𝐺

𝐺 . The constraint from binding regulation is then

that the reaction orders (𝑎𝑅, 𝑎𝐺) are bounded in a polyhedral set 𝒫bind. This reaction

order polyhedra is both derived via DDT, as shown in (b) of Figure 2.5, and visualized by

computer sampling in (d) of Figure 2.5.

Then we incorporate the constraint from catalysis steady state. The steady state relation

implies 𝑡𝑅 ∝ 𝑡𝐺, i.e. the repressor amount is proportional to the plasmid number. Therefore,

we can write its influence on reaction orders by 𝐺 ∝ 𝑡𝑎𝑅
𝑅 𝑡𝑎𝐺

𝐺 ∝ 𝑡𝑎𝐺+𝑎𝑅
𝐺 . Lastly, we incorporate

the constraint from the requirement of plasmid number invariance, that 𝐺 ∝ 𝑡0
𝐺. We see

that this becomes the constraint 𝑎𝐺 + 𝑎𝑅 = 0 in terms of reaction orders. As a result of all
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Figure 2.5 Holistic analysis of the plasmid number invariance circuit from [98] reveals invariance regimes

previous missed. (a) Circuit specifications form constraints on reaction orders. Constraints on reaction orders

(𝑎𝑅, 𝑎𝐺) of gene 𝐺’s to repressor and plasmid number come from all three parts of the system: binding

regulation, catalysis or production-degradation of repressor, and the plasmid number invariance function.

Binding network restricts the reaction orders to the reaction order polyhedron 𝒫bind. The steady state of

catalysis dynamics requires that the repressor concentration is proportional to the plasmid number, so

𝐺 ∝ 𝑡𝑎𝐺

𝐺 𝑡𝑎𝑅

𝑅 = 𝑡𝑎𝐺+𝑎𝑅

𝐺 . These together with the constraint from the desired plasmid number invariance

function results in the constraints on the reaction orders (circled in red). (b) DDT of target species 𝐺. The last

step of decomposition results in a vertex (circled by orange) and a ray. Both the vertex and the ray satisfy

the reaction order constraints, therefore circled in red. The vertex corresponds to the orange region in (c),

and the orange dot in (d). The vertex together with the ray, circled red, corresponds to the region above the

black line in (c) and the red line’s intersection with the polyhedron in (d). Upper right corner of the DDT

lists the binding network, definition of totals, and the steady state expression for the target species 𝐺 for

book-keeping. (c) Variation in 𝐺 caused by varying plasmid number 𝑡𝐺. White means plasmid number

invariance. 𝑦-axis is repressor expression strength 𝑘. The orange region is the invariance regime known in

[98], corresponds to vertex (−1, 1) in reaction orders. The white region above the black line is a previously

missed invariance regime, corresponds to the ray in reaction orders. Above the black line is concentrations

where 𝐶𝐺𝑅 dominate in 𝑡𝐺, so
𝐶𝐺𝑅

𝐺 ≥ 10. The orange region is from the above and that 𝑅 dominates 𝑡𝑅 by

𝑅
𝐶𝐺𝑅

≥ 10. (d) Reaction order polyhedron of 𝐺 obtained by computer sampling, with
𝐺
𝐾 and

𝑅
𝐾 log-uniformly

sampled between 10−6
and 106

with a total of 105
points. The orange dot corresponds to the (−1, 1) vertex in

DDT from (b). The red line is the constraint that 𝛼𝐺 + 𝛼𝑅 = 0 from plasmid number invariance and catalysis

steady state.
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three elements of the system, we have the following necessary and sufficient condition for

plasmid number invariance (see (a) of Figure 2.5).

Plasmid number invariance at steady state ⇐⇒ 𝑎𝑅 + 𝑎𝐺 = 0, (𝑎𝑅, 𝑎𝐺) ∈ 𝒫bind. (2.16)

Visually represented in (d) of Figure 2.5, this is the intersection between the line of

𝑎𝑅 + 𝑎𝐺 = 0 (red) and the polyhedron 𝒫bind. The result is a vertex (−1, 1) with a ray in the

(−1, 1) direction. Looking at the DDT in (c) of Figure 2.5, we see that these two together

correspond to the dominance condition 𝑡𝐺 ≈ 𝐶𝐺𝑅. In other words, most plasmids are

bound.

We emphasize that from this holistic analysis based on combining reaction order polyhedra

with the functional constraints, this dominance condition 𝑡𝐺 ≈ 𝐶𝐺𝑅 that most plasmids are

bound is both necessary and sufficient. As long as this condition is satisfied, then plasmid

number invariance is achieved. Conversely, if plasmid number invariance is achieved,

then this condition is for sure satisfied. This conclusion can only be broken if the system

specification is wrong. Specifically, either the repressor amount is not proportional to

plasmid number at steady state, or the binding network is incorrect that there are other

binding reactions involved.

Now we relate to the analysis in the original paper [98] where this design was proposed and

implemented in bacteria. Their analysis is based on Hill functions and Michaelis-Menten

type assumptions. As a result, they find the (−1, 1) vertex as a functional regime for

plasmid number invariance (circled by orange in (b) and the red dot in (d) of Figure 2.5).

However, this is a regime contained in the more general conditions necessary for plasmid

number invariance, as seen in the DDT (see (c) of Figure 2.5). Specifically, the vertex (−1, 1)
requires two dominance conditions, 𝑡𝐺 ≈ 𝐶𝐺𝑅 and 𝑡𝑅 ≈ 𝑅. In other words, it requires that

both most plasmids are bound, and repressor is overabundant so that most repressors are

free. The regime missed by this analysis is the ray towards (−1, 1) also contained in the

constraint in Eqn (2.16). This hidden regime corresponds to dominance conditions that

most plasmids are bound with repressors, but most repressors are bound as well. In other

words, the regime where repressors bind tightly with the gene on plasmids, while the

repressor amount is low. This means, in addition to the repressor-over-expressed scenario

considered in [98] to achieve plasmid number invariance, we could use a low expression

for the repressor, as long as the repressor is tight.

To show what the hidden regime looks like when concentrations of gene and repressors

are varied, we plotted (c) in Figure 2.5. The invariance regime that is missed previously is
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indeed scenarios where the number of repressors expressed per plasmid is low, while the

binding is tight.

All this together, we have shown via one example how the application of holistic bioregula-

tion analysis based on reaction order polyhedra can be fruitful in biocircuit design. The

power of holistic analysis fundamentally come from its capability to derive necessary and

sufficient conditions, rather than just sufficient ones. This allows it to state all possible

scenarios a desired function can be achieved. Although this capability is only used here to

find a hidden regime, its power in bioengineering is much more profound. Debugging

when a design is not performing as desired is part of the foundation for design-build-test

cycles in engineering. With only sufficient conditions, debugging can only be done with

trial and error. With necessary and sufficient condition for a function in a given circuit

design, we can either find how to improve, or conclude that the current circuit design have

to be modified.

2.4 Physical and microscopic basis of reaction order

Reaction order is the central object of study in this thesis. In the introduction section,

we argue that reaction order should be given high importance because fluxes or rates

have to be given up due to intractable computations, while reaction order captures

bioregulation and is still tractable. However, beyond this practical argument, it is also

worth investigating whether reaction orders are important in themselves, that their high

importance in bioregulation is more intrinsic and fundamental. In fact, we argue in this

section that reaction orders form the basic map between external and internal chemical

potentials of a reaction system.

For this goal, we turn to understanding how reaction orders relate to properties in statistical

physics. The reason is that while reaction orders are defined and well understood in

dynamics of chemistry empirically for their measurement and utility in calculations, their

meaning has remained phenomenonlogical. Work in this thesis is finding reaction orders

to be not only a powerful tool, but also a simplifying concept of biological behaviors across

scales. It is as if reaction orders is part of the natural architecture of biomolecular systems.

This motivates our attempt to find more fundamental physical quantities where reaction

orders stem from.

Here I propose that reaction orders can be considered as the natural calculus for chemical

potentials. More specifically, the reaction orders we use for binding networks is the order

of internal molecular species to variations in total concentrations. These reaction orders are
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transformations from external chemical potentials to internal chemical potentials. When

external variations change the Gibbs free energy of the system, the reaction orders map

this change to changes of internal components of the system. Since chemical potentials

measure the tendency to react for species, reaction orders translate external changes into

their effect on internal species. In fact, since chemical potentials and Gibbs free energy are

quantities more generally defined than log derivatives, e.g. for discrete molecule counts,

this physical interpretation of reaction orders can be used as the definition to begin with,

and log derivatives emerge as the approximate expression in bulk scale.

We first give a general description of how reaction orders and chemical potentials are

related, and then give a concrete example of dimer-monomer mixture to show how the

relation works in calculation.

The generic scenario we are considering is a binding network, or any system in reaction

equilibrium, that exchanges molecules with external environments. We belabor here that

the exchange with the environment is not in equilibrium in general. So in the language of

statistical mechanics, this is a canonical ensemble rather than a grand canonical ensemble.

Although we allow exchange with the environment to change molecule numbers in the

system, this change is slow compared to the system’s equilibration. This is akin to tuning

temperature when obtaining a phase diagram in thermodynamics. For each point, or each

experiment, the temperature is fixed, although the temperature is varied overall.

With this setting of a system that quickly equilibrates while exchanging molecules with

external environments in mind, we can have two perspectives on the system. Internally,

we see 𝑛 molecular species 𝑋1, . . . , 𝑋𝑛 with distinct chemical properties. So the state

of the system can be described by the number of molecules of each species, 𝑁1, . . . , 𝑁𝑛.

The Gibbs free energy is therefore 𝐺(𝑁1, . . . , 𝑁𝑛). Since our system quickly reaches

equilibrium internally, when these numbers change, the Gibbs free energy satisfy 𝑑𝐺 =
𝜇1𝑑𝑁1 + · · ·+ 𝜇𝑛𝑑𝑁𝑛, where 𝜇𝑖 is the chemical potential of 𝑋𝑖. Note that although there are

reactions happening inside the system, we do not need to describe them explicitly, since

chemical reactions simply cause changes in the numbers 𝑁1, . . . , 𝑁𝑛, hence accounted for

in our above description.

Externally, the environment can only distinguish the molecules pushed in or pulled out,

but does not have access to the fast reactions inside the system. Therefore, the external

description of the system consists of only the exchangeable molecular species, which we

denote 𝑁 𝑡
1, . . . , 𝑁 𝑡

𝑑, so there are 𝑑 of them, 𝑑 ≤ 𝑛. Since an exchangeable species can be in

multiple forms inside the system through chemical reactions, these 𝑁 𝑡
𝑖 are total numbers

of a species that accounts for different forms the species is in. For example, a species in
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monomer or dimer form are not distinguished and summed together in the total.

Just knowing the totals cannot determine the state of the system, since reactions inside the

system can change how a given species vary in its various forms. So, to relate the external

variables (𝑁 𝑡
1, . . . , 𝑁 𝑡

𝑑) to the internal variables (𝑁1, . . . , 𝑁𝑛), we need to find other degrees

of freedom to extend (𝑁 𝑡
1, . . . , 𝑁 𝑡

𝑑) so it can describe the state of the system. The degrees of

freedom that cannot be tuned externally are the chemical reaction equilibria inside the

system, captured by reaction equilibrium constants (𝐾1, . . . , 𝐾𝑟), where 𝑟 = 𝑛− 𝑑. There

might be more reactions, but there is always exactly 𝑟 reactions with linearly independent

stoichiometry, so that they determine how the number of species is distributed in its

various forms when the total is held fixed. Hence, the Gibbs free energy described from the

external view is 𝐺(𝑁 𝑡
1, . . . , 𝑁 𝑡

𝑑, 𝐾1, . . . , 𝐾𝑟). Note that although we included 𝐾1, . . . , 𝐾𝑟 in

the description, they cannot be modified externally, and only here to parameterize the states

of the system. So the equilibrium relation of Gibbs free energy to external changes in these

coordinates is 𝑑𝐺 = 𝜇𝑡
1𝑑𝑁 𝑡

1 + · · ·+ 𝜇𝑡
𝑑𝑑𝑁 𝑡

𝑑 + 𝜅1𝑑𝐾1 + · · ·+ 𝜅𝑟𝑑𝐾𝑟, where 𝜇𝑡
𝑖 is the chemical

potential of the 𝑖th total species 𝑁 𝑡
𝑖 , and 𝜅𝑖 is the partial derivative of 𝐺 with respect to 𝐾𝑖.

This nicely splits the part of Gibbs free energy that is adjustable externally, namely the

𝑑𝑁 𝑡
𝑖 ’s, and the part that is not adjustable internally, namely the 𝑑𝐾𝑖’s determining internal

reactions’ equilibrium.

Now we have two view of the Gibbs free energy, or more generally the state of the

system, via internal variables (𝑁1, . . . , 𝑁𝑛) and external variables (𝑁 𝑡
1, . . . , 𝑁 𝑡

𝑑, 𝐾1, . . . , 𝐾𝑟).
How the Gibbs free energy responds to changes in these variables is also characterized

differently: internally by chemical potentials (𝜇1, . . . , 𝜇𝑛), and externally by total chemical

potentials (𝜇𝑡
1, . . . , 𝜇𝑡

𝑑) and (𝜅1, . . . , 𝜅𝑟). Since external exchanges happen through the

external variables, while system properties are expressed in internal variables, we would

like to map external changes to internal changes. We claim that reaction orders does exactly

this, mapping Gibbs free energy changes from external adjustments to internal effects.

We derive this mathematically. Since chemical potentials are partial derivatives of Gibbs

free energy to molecule numbers, we have[︁
𝜇1 · · · 𝜇𝑛

]︁
= 𝜕𝐺

𝜕(𝑁1, · · · , 𝑁𝑛) ,
[︁
𝜇𝑡

1 · · · 𝜇𝑡
𝑑 𝜅1 · · ·𝜅𝑟

]︁
= 𝜕𝐺

𝜕(𝑁 𝑡
1, . . . , 𝑁 𝑡

𝑑, 𝐾1, . . . , 𝐾𝑟)
.

We relate them by a coordinate change:[︁
𝜇𝑡

1 · · · 𝜇𝑡
𝑑 𝜅1 · · ·𝜅𝑟

]︁
= 𝜕𝐺

𝜕(𝑁1, · · · , 𝑁𝑛)
𝜕(𝑁1, · · · , 𝑁𝑛)

𝜕(𝑁 𝑡
1, . . . , 𝑁 𝑡

𝑑, 𝐾1, . . . , 𝐾𝑟)

=
[︁
𝜇1 · · · 𝜇𝑛

]︁ 𝜕(𝑁1, · · · , 𝑁𝑛)
𝜕(𝑁 𝑡

1, . . . , 𝑁 𝑡
𝑑, 𝐾1, . . . , 𝐾𝑟)

.



62

This gives a map between the chemical potentials. However, chemical potentials are per-

molecule changes of Gibbs free energy. Therefore we should multiply chemical potentials

with molecule numbers to yield free energy changes. This exactly gives log derivatives, or

reaction orders.[︁
𝜇𝑡

1𝑁
𝑡
1 · · · 𝜇𝑡

𝑑𝑁 𝑡
𝑑 𝜅1𝐾1 · · ·𝜅𝑟𝐾𝑟

]︁
=
[︁
𝜇1𝑁1 · · · 𝜇𝑛𝑁𝑛

]︁ 𝜕 log(𝑁1, · · · , 𝑁𝑛)
𝜕 log(𝑁 𝑡

1, . . . , 𝑁 𝑡
𝑑, 𝐾1, . . . , 𝐾𝑟)

. (2.17)

Here
𝜕 log 𝑁𝑖

𝜕 log 𝑁𝑡
𝑗

is the log derivatives, or reaction orders, of 𝑋𝑖 to the 𝑗th total, in per-molecule

units. This is the same as
𝜕 log 𝑥𝑖

𝜕 log 𝑡𝑗
in concentration units, where 𝑥𝑖 and 𝑡𝑗 are concentrations of

𝑋𝑖 and 𝑗th total, since the units are ignored in log derivatives, which captures fold changes.

Eqn (2.17) shows that reaction orders, defined as log derivatives, have the natural physical

meaning as conversion between external and internal free energy changes. In fact, since

free energies are well defined when molecule counts are discrete while log derivatives are

not, Eqn (2.17) can be used as a physical definition of reaction orders, and log derivatives

emerge as bulk-scale approximation of this definition.

Now we do the calculation in detail for a simple example to illustrate this. We first begin

with a system consisting of two types of particles, 𝑋1 and 𝑋2 (see (a) of Figure 2.6). The

state of the system is therefore the number of these particles, (𝑁1, 𝑁2). The Gibbs free

energy of the system is described in these coordinates, 𝐺(𝑁1, 𝑁2). To study how the Gibbs

free energy of the system would change, we consider that both types of particles can be

added or removed externally. Once particles are added or removed, the system equilibrates

quickly, so equilibrium relations hold. So we have 𝑑𝐺 = 𝜇1𝑑𝑁1 + 𝜇2𝑑𝑁2, where 𝜇1 and 𝜇2

are the chemical potentials of the two types of particles. In this setting, all changes to the

system are caused by external exchanges. When no particles are added or removed, the

state of the system does not change either, so 𝑑𝑁1 = 𝑑𝑁2 = 0 resulting in 𝑑𝐺 = 0 in a trivial

way.

Next, we allow some internal dynamics to happen through a chemical reaction (see (b)

of Figure 2.6). Namely, we have reaction 2𝑋1 ⇌ 𝑋2, that two 𝑋1 form a 𝑋2. This gives us

the physical notion that 𝑋2 has two units of 𝑋1. To keep this notion separate from that

𝑋1 and 𝑋2 are two distinct types of particles, we denote 𝑋 as the unit particle, so 𝑋1 is a

monomer of 𝑋 , and 𝑋2 is a dimer of 𝑋 . Since the reaction can only happen within the

system and quickly reaches equilibrium, the external distinction of 𝑋1 and 𝑋2 becomes

trivial, since they inter-convert inside the system. Addition and removal of 𝑋1 and 𝑋2

molecules is then the same as just adding or removing 𝑋 . Each addition of 𝑋2 can be

considered as adding two 𝑋 , for example. In other words, externally 𝑋1 and 𝑋2 are simply

one and two 𝑋 molecules respectively, and the difference in their chemical properties is no
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Figure 2.6 Illustration of the biophysical setting considered in connecting chemical potential with reaction

orders. (a) A system consisting of two types of particles, 𝑋1 and 𝑋2, in equilibrium within the system. The

number of these two particles, 𝑁1 and 𝑁2, can be added or removed via exchange with external environments.

Once the particle number changes, the system quickly re-equilibrates. So the Gibbs free energy of the system

is described by 𝐺(𝑁1, 𝑁2) and satisfy the equilibrium relation 𝑑𝐺 = 𝜇1𝑑𝑁1 + 𝜇2𝑑𝑁2, where 𝜇𝑖 is the chemical

potential of particle 𝑋𝑖. (b) A system consisting of two types of particles 𝑋1 and 𝑋2 with internal chemical

reaction 2𝑋1 ⇌ 𝑋2 that two 𝑋1 dimerize to form 𝑋2. To distinguish free monomers 𝑋1 and the monomer

molecules bound in 𝑋2, we denote 𝑋 as the generic monomer, so 𝑋1 is monomer of 𝑋 , and 𝑋2 is dimer

of 𝑋 . The dimerization reaction only happens inside the system, not outside, so we color particles orange

as reaction-capable, while grey is not reaction-capable. The exchange with external environment can add

or remove monomers. But once a monomer is added or removed externally, the internal reaction quickly

equilibrates, therefore causing a net increase or decrease of total monomers, or total 𝑋 , denoted 𝑁𝑡. The

reaction equilibrium internal of the system is therefore 𝑑𝐺 = 0 for fixed 𝑁𝑡, captured by equilibrium constant

𝐾 for dimer dissociation. From an external point of view, where we can only add or remove 𝑋 to change 𝑁𝑡,

but not modify the equilibrium internal to the system, we want 𝐺(𝑁𝑡, 𝐾) expressed in terms of 𝑁𝑡 that can

be externally modified, and 𝐾 that cannot be modified. So the equilibrium relation is 𝑑𝐺 = 𝜇𝑡𝑑𝑁𝑡 + 𝜅𝑑𝐾,

where 𝜇𝑡 is chemical potential for a generic 𝑋 , regardless of monomer or dimer form, and 𝜅 is how 𝐺 changes

with 𝐾.

longer distinguishable, due to the chemical reaction inside the system. Thus the addition

or removal of 𝑋 externally correspond to changing the total number of 𝑋 inside the system,

which we denote 𝑁𝑡 = 𝑁1 + 2𝑁2.

While 𝑁𝑡 can be adjusted externally, the reaction equilibrium inside the system can not.

Since the system equilibrates quickly, 𝑁𝑡 is fixed when reaching towards equilibrium.

The condition is therefore 𝑑𝐺 = 𝜇1𝑑𝑁1 + 𝜇2𝑑𝑁2 = 0 subject to the constraint that 𝑑𝑁𝑡 =
𝑑𝑁1 + 2𝑑𝑁2 = 0. This results in the equilibrium condition 2𝜇1 = 𝜇2. So the system’s state

variables (𝑁1, 𝑁2) are no longer completely free to vary, even if 𝑁𝑡 can be adjusted. For each

value of 𝑁𝑡, 𝑁1 and 𝑁2 are uniquely determined by the equilibrium condition 2𝜇1 = 𝜇2.

To explicitly represent this restriction, we need to relate 𝜇𝑖 with 𝑁𝑖. A simple relation

for ideal or dilute solution is that 𝜇𝑖 = 𝜇0
𝑖 + 𝑘𝐵𝑇 log 𝑥𝑖, where 𝑥𝑖 is the concentration of

𝑋𝑖, proportional to 𝑁𝑖, 𝜇0
𝑖 is a standard chemical potential for 𝑋𝑖, capturing the internal

energies of an 𝑋𝑖 molecule, and 𝑘𝐵 is Boltzmann’s constant. Non-ideal solutions will
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have a more sophisticated relationship between chemical potentials and concentrations,

which can be captured via linearization of 𝜇𝑖 in log 𝑥𝑖 at a certain concentration to obtain

𝜇𝑖 = 𝜇0
𝑖 + 𝑎(𝑥𝑖)𝑘𝐵𝑇 log 𝑥𝑖. So the ideal behavior can be considered as the case when

𝑎(𝑥𝑖) ≡ 1. With this ideal solution formula, we find that the equilibrium condition becomes

2𝜇0
1 +2𝑘𝐵𝑇 log 𝑥1 = 𝜇0

2 +2𝑘𝐵𝑇 log 𝑥2. This allows us to define the binding constant 𝐾 so that

log 𝐾 = log 𝑥2
1

𝑥2
= 1

𝑘𝐵𝑇
(2𝜇0

1 − 𝜇0
2). So the relation 𝐾𝑥2 = 𝑥2

1 is an explicit parameterization

of the restriction on the numbers or concentrations of 𝑋1 and 𝑋2 from the reaction

equilibrium. Note that 𝐾𝑥2 = 𝑥2
1 is the same as what we obtain from the steady state

equation in mass-action kinetics of the binding reaction.

Our discussion above yields an alternative description for the state of the system. Given

fixed 𝑁𝑡 and 𝐾, the internal state variables (𝑁1, 𝑁2) are uniquely determined. In other

words, (𝑁𝑡, 𝐾) is an alternative set of state variables. For example, Gibbs free energy can

also be considered a state function in these state variables 𝐺(𝑁𝑡, 𝐾). This is the natural set

of variables for the external view, since 𝑁𝑡 is exactly what is adjustable externally, while

𝐾 describes the internal equilibrium not externally accessible. When we externally add

or remove 𝑋 molecules, therefore, we are changing the system by 𝑑𝑁𝑡. To relate this to

Gibbs free energy changes, we have equilibrium relation 𝑑𝐺 = 𝜇𝑡𝑑𝑁𝑡 + 𝜅𝑑𝐾, where 𝜇𝑡 is

the chemical potential of an 𝑋 molecule, and 𝜅 is the partial derivative
𝜕𝐺
𝜕𝐾

while keeping

𝑁𝑡 constant. When 𝐾 is not adjustable, as is the case when we are restricted to external

exchanges, we have 𝑑𝐺 = 𝜇𝑡𝑑𝑁𝑡.

In order to see how the external adjustment in terms of 𝑑𝑁𝑡 causes changes in internal

𝜇𝑡 = 𝜕𝐺

𝜕𝑁𝑡

= 𝜕𝐺

𝜕(𝑁1, 𝑁2)
𝜕(𝑁1, 𝑁2)

𝜕𝑁𝑡

=
[︁
𝜇1 𝜇2

]︁𝜕(𝑁1, 𝑁2)
𝜕𝑁𝑡

,

where the partial derivatives with respect to 𝑁𝑡 keeps 𝐾 constant, since (𝑁𝑡, 𝐾) is the

alternative coordinate. To relate to free energy changes, we need to multiply chemical

potentials by molecule numbers, so we have

𝜇𝑡𝑁𝑡 =
[︁
𝜇1𝑁1 𝜇2𝑁2

]︁𝜕 log(𝑁1, 𝑁2)
𝜕 log 𝑁𝑡

= 𝜇1𝑁1
𝜕 log 𝑁1

𝜕 log 𝑁𝑡

+ 𝜇2𝑁2
𝜕 log 𝑁2

𝜕 log 𝑁𝑡

. (2.18)

So we see that log derivatives, or reaction orders, transforms changes in free energy 𝜇𝑡𝑁𝑡

from external adjustments to corresponding changes internally, namely 𝜇1𝑁1 and 𝜇2𝑁2.

Since this example is simple, we can calculate this conversion explicitly to see how the

transformation is done in detail. Write this in terms of concentration variables, 𝑥𝑖 for 𝑁𝑖

and 𝑡 for 𝑁𝑡, we have

𝜇𝑡𝑡 = 𝜇1𝑥1
𝜕 log 𝑥1

𝜕 log 𝑡
+ 𝜇2𝑥2

𝜕 log 𝑥2

𝜕 log 𝑡
. (2.19)
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We can calculate the reaction orders by brute force using the equilibrium relation 𝐾𝑥2 = 𝑥2
1

and the definition of totals 𝑡 = 𝑥1 + 2𝑥2.

𝜕 log 𝑥1

𝜕 log 𝑡
= 𝜕 log 𝑥1

𝜕 log(𝑥1 + 2𝑥2)
=
(︃

𝜕 log(𝑥1 + 2𝑥2)
𝜕 log 𝑥1

)︃−1

=
(︃

𝑥1

𝑥1 + 2𝑥2
· 𝜕 log 𝑥1

𝜕 log 𝑥1
+ 2𝑥2

𝑥1 + 2𝑥2
· 𝜕 log 2𝑥2

𝜕 log 𝑥1

)︃−1

=
(︂

𝑥1

𝑥1 + 2𝑥2
· 1 + 2𝑥2

𝑥1 + 2𝑥2
· 2
)︂−1

=𝑥1 + 2𝑥2

𝑥1 + 4𝑥2
.

We can define 𝜆1 = 𝑥1
𝑥1+4𝑥2

, and 𝜆2 = 4𝑥2
𝑥1+4𝑥2

so that 𝜆1 + 𝜆2 = 1. Then

𝜕 log 𝑥1

𝜕 log 𝑡
= 𝜆1 · 1 + 𝜆2 ·

1
2 ,

𝜕 log 𝑥2

𝜕 log 𝑡
= 2𝜕 log 𝑥1

𝜕 log 𝑡
= 𝜆1 · 2 + 𝜆2 · 1.

So we have

𝜇𝑡𝑡 =
(︂

𝜆1 · 1 + 𝜆2 ·
1
2

)︂
(𝜇1𝑥1 + 2𝜇2𝑥2).

The change in free energy from external adjustments is propagated to internal ones via a

transformation factor 𝜆1 · 1 + 𝜆2 · 1
2 between 1 and

1
2 . When 𝑥1 is dominant, it is close to 1;

when 𝑥2 is dominant, it is close to
1
2 .

In summary, through our generic arguments and this simple example, we see that reaction

orders describe how changes in Gibbs free energy from external addition and removal

of molecules are mapped to free energy changes of internal components. Importantly,

we consider scenarios where a system has internal reactions reaching equilibria that is

not adjustable externally, therefore requiring an internal-external split. Hence, reaction

orders is a fundamental tool when studying regulations of biomolecular systems where

only parts of the species’ concentrations are adjustable, and there exists reactions internal

to the system.
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Chapter 3

Polyhedral Representation of Binding Net-
work Steady States

In earlier chapters, we see that binding reaction networks regulate catalysis reactions. In this

chapter, we show that the regulatory profiles of a binding network can be characterized as

constrained in polyhedral sets in terms of reaction orders (log derivatives). We investigate

the mathematical properties of log derivatives from binding networks. In particular, we

make the following contributions: (1) we define what the set of binding networks is that

makes biological sense; (2) we characterize the manifold of all possible detailed balanced

steady states of a binding network; (3) we derive a formula for log derivatives, which can

be used for computational sampling; and (4) we show that the polyhedral shape of log

derivatives fundamentally comes from decomposition rules of log derivative operators.

This further yields a calculus method to analytically obtain log derivative polyhedra, either

top-down via dominance-decomposition tree (DDT) or bottom-up via summation of matrix

representations.

3.1 Introduction

Biomolecular systems mainly consist of two kinds of reactions: binding and catalysis. Take

the simplest enzymatic reaction for example,

𝐸 + 𝑆
𝑘+

𝐸𝑆−−⇀↽−−
𝑘−

𝐸𝑆

𝐶𝐸𝑆
𝑘cat
−−→ 𝐶𝐸𝑃

𝑘+
𝐸𝑃−−⇀↽−−

𝑘−
𝐸𝑃

𝐸 + 𝑃. (3.1)

Binding reactions are of the form 𝐸 + 𝑆 ⇌ 𝐶𝐸𝑆 , where two molecular species 𝐸 and

𝑆 bind together reversibly to form a complex 𝐶𝐸𝑆 . Catalysis reactions are of the form
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𝐶𝐸𝑆 → 𝐶𝐸𝑃 , where one form of molecules is transformed into another form. Here two

binding reactions and one catalysis reaction describe this enzymatic reaction with product

re-binding. Catalysis governs the direction of net change of the system, namely

(𝑡𝑆, 𝑡𝑃 ) 𝑘cat𝐶𝐸𝑆−−−−−→ (𝑡𝑆 − 1, 𝑡𝑃 + 1), (3.2)

the total amount of substrate molecule 𝑡𝑆 = 𝑆 + 𝐶𝐸𝑆 is decreased by one, while the

total amount of product molecule 𝑡𝑃 = 𝑃 + 𝐶𝐸𝑃 is increased by one. Since the speed

of the product formation (or the catalysis flux) is governed by the concentration of 𝐶𝐸𝑆 ,

understanding the dynamics of biomolecular systems comes down to characterizing how

the active complex 𝐶𝐸𝑆’s concentration is regulated by the total concentrations of enzymes

𝑡𝐸 , substrates 𝑡𝑆 , and product 𝑡𝑃 .

This problem comes down to solving a system of polynomial equations, with the degree

of the problem larger than the number of binding reactions in general. For example, the

binding reactions in Eq (3.1) yield the following system of equations at steady state:

𝐶𝐸𝑆𝐾𝐸𝑆 = 𝐸𝑆, 𝐶𝐸𝑃 𝐾𝐸𝑃 = 𝐸𝑃, 𝑡𝐸 = 𝐸 + 𝐶𝐸𝑆 + 𝐶𝐸𝑃 , 𝑡𝑆 = 𝑆 + 𝐶𝐸𝑆, 𝑡𝑃 = 𝑃 + 𝐶𝐸𝑃 ,

(3.3)

where 𝐾𝐸𝑆 is dissociation constant for the binding of 𝐸 and 𝑆, and 𝐾𝐸𝑃 is that for 𝐸 and

𝑃 . Solving for 𝐶𝐸𝑆 in terms of 𝑡𝐸, 𝑡𝑆, 𝑡𝑃 , 𝐾𝐸𝑆, 𝐾𝐸𝑃 , for example, comes down to solving

the following polynomial equation of degree 3:

𝐶3(𝐾 −𝐾 ′) + 𝐶2(𝐾(𝐾 ′ + 𝑡𝑃 − 𝑡𝑆) + 𝑡𝐸(𝐾 ′ −𝐾) + 2𝐾 ′𝑡𝑆 −𝐾2)− 𝐶𝑡𝑆(𝐾(𝐾 ′ + 𝑡𝑃 )− 𝑡𝐸(𝐾 − 2𝐾 ′) + 𝐾 ′𝑡𝑆) + 𝑡𝐸𝐾 ′𝑡2
𝑆 = 0.

Here to make the equation not overly complicated, we used shorthand 𝐶 and 𝐾 for 𝐶𝐸𝑆 and

𝐾𝐸𝑆 , and 𝐶 ′
and 𝐾 ′

for 𝐶𝐸𝑃 and 𝐾𝐸𝑃 . As the Abel–Ruffini theorem states that polynomial

equations of degree more than 5 do not have explicit solution in terms of elementary

functions, active complex concentrations are not analytically solvable in general with four

or more binding reactions. In fact, even for two binding reactions, the analytical formula

is complicated enough that analytical insights are hard to obtain. More importantly,

although systems of polynomial equations can be numerically solved to an extent, this

is computationally intractable for large systems in general (it is well known to be NP

hard), and relaxations such as sum-of-squares [86] or signomials [78] are needed for even

moderate-size problems.

Existing approximations are limited in applicable scenarios. Tranditionally, based on the

application scenario of interest, approximations are made to trade exactness for tractability.

One such example is the Michaelis-Menten (MM) formula, which was developed by

Michaelis-Menten [63] and rigorized by Briggs-Haldane [23], and has served as the
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foundation of dynamic modeling of biochemical reactions for the past 100 years [31, 57,

65]. Focusing on the case of enzymatic catalysis where substrates are small molecules, the

MM formula assumed the substrate concentration is kept much higher than that of the

enzyme. Assumptions like this allows simple analytical solutions to the enzymatic catalysis

problems. As a result of its powerful simplicity, the MM formula has been fruitfully applied

to many biomolecular scenarios, such as bulk enzymatic catalysis, single molecule catalysis,

transcription-translation, and chemotaxis phosphorylation [116]. However, as the scientific

and engineering study of biomolecular systems ventures forward into more complex and

dynamic systems, such as in developmental biology and in post-translational regulations,

assumptions of the MM type no longer hold. Instead, full regulatory profile without any

assumptions are now needed to understand system behaviors. For example, when the

concentrations of chemicals change significantly over time, such as in metabolic shifts and

gene regulations, especially in vivo, the MM assumption breaks down [2, 28, 108]. Other

recent examples are combinatorial regulations in gene circuits that result in promiscuous

sensing and multistable cell fate regulations [9, 46, 122].

While MM and related approximations come from the bulk assumption of one species’

concentration is much higher than another, another wide class of approximations in

biophysics come from microscopic assumptions where the system of study is just one

molecule in a bath of other molecules, e.g. one receptor in a bath of ligands [35, 88].

Formula taking the form of rational functions can be analytically obtained for such cases

from arguments of thermodynamics [35], statistical mechanics [88, 89], or Markov chain

theory [53, 76]. However, when applying results from this analysis to systems with

more than one molecules, an implicit assumption of mean-field flavor is made that many

molecules’ behavior are independent and identical, and therefore approximated as many

copies of the same one-molecule system. This is known to cause crucial deviations from

experiments in synthetic and systems biology. One term in bioengineering used to describe

such phenomenon is retroactivity [32], where transcription factors bound to promoters of

genes on plasmids reduce the free transcription factors in solution, so that although the

gene regulated is downstream, it “retroactively” acts on its upstream transcription factor.

This is an example where the activity of these genes cannot be considered as independent

and identical copies of single plasmids, as whether this plasmid will have transcription

factors bound depends on whether other plasmids have significantly “absorbed” away

transcription factors in solution.

Yet another approach to simplify is to assume that the scenario of interest is similar to

an experimental setting where we can control the non-total concentrations directly. This
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often holds for “induction curve” experiments, in vitro or in vivo, where concentrations of

small molecules are controlled by a chemical bath, and equilibrium is effectively reached

in experiment if the small molecules can freely exchange between solution bath and

the system of interest. Hence for the purpose of quantitatively modelling the induction

curve obtained, the control variable is the free molecule concentration, instead of total

concentration. Each substitution of free concentration as control variable instead of total

would simplify the polynomial to be solved by one degree. So if each binding reaction

has one species controlled like this, then this reduces to explicit solutions taking rational

function forms just like in single-molecule case. For the system in Eq (3.1), if both free

substrate concentration 𝑆 and free product concentration 𝑃 are controlled via external

baths, then the binding reactions are effectively state transitions, which is amenable to a

single-molecule or Markov chain interpretation, as is often done in biophysics:

𝐸
𝑘+

𝐸𝑆𝑆
−−−⇀↽−−−

𝑘−
𝐸𝑆

𝐶𝐸𝑆
𝑘cat
−−→ 𝐶𝐸𝑃

𝑘+
𝐸𝑃−−−⇀↽−−−

𝑘−
𝐸𝑃 𝑃

𝐸.

Note that the MM assumption that substrate and product concentrations are much more

than the enzyme 𝑡𝑆, 𝑡𝑃 ≫ 𝑡𝐸 produce the same approximation, since the free and the total

are approximately the same that 𝑡𝑆 ≈ 𝑆 and 𝑡𝑃 ≈ 𝑃 in this case. We again see the limitation

of this simplifying approach. On one hand, it is only applicable to experimental scenarios

where system’s internal concentrations are in equilibrium with external bath. On the other

hand, the simplification has limited effect for complex systems with significant internal

dynamics not accessible to external control. For the binding system in Eq (3.1), if only the

free substrate 𝑆 is externally controlled while product 𝑃 is not, then to explain the induction

curve from experiments, we want active complex 𝐶𝐸𝑆 in terms of (𝑆, 𝑡𝐸, 𝑡𝑃 , 𝐾𝐸𝑆, 𝐾𝐸𝑃 ),
yielding the following polynomial.

𝐶2
𝐸𝑆𝐾𝐸𝑆(𝐾𝐸𝑆 + 𝑆) + 𝐶𝐸𝑆𝑆((𝐾𝐸𝑃 + 𝑡𝑃 )𝐾𝐸𝑆 − 𝑡𝐸𝐾𝐸𝑆 + 𝐾𝐸𝑃 𝑆)− 𝑡𝐸𝐾𝐸𝑃 𝑆2 = 0.

This is one degree less than the 𝑡𝑆 case, but still not degree one in 𝐶𝐸𝑆 , therefore not

amenable to rational function solution. If there are more internal binding reactions that

cannot be externally controlled, then the problem is again increasing in degree and becomes

intractable analytically or computationally.

To get a sense for the magnitude of the error made, we consider just one binding reaction

𝐺 + 𝑅
𝑘+
−⇀↽−
𝑘−

𝐺𝑅, where 𝐺 is the concentration or copy number of the gene of interest, and

𝑅 is that of a regulator such as a transcription factor, and 𝐺𝑅 is the complex formed

when the gene and the regulator are bound. For this simple system, the same solution

𝐺𝑅 ≈ 𝑡𝐺
𝑡𝑅

𝐾+𝑡𝑅
with 𝐾 = 𝑘−

𝑘+ , is obtained from the MM approximation that total regulator
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is much higher than gene 𝑡𝑅 ≫ 𝑡𝐺, the single molecule states approximation for gene

molecules 𝐺, and the external bath approximation for a bath of free regulator concentration

𝑅. The explicit solution from solving the quadratic equations from the binding reaction is

2𝐺𝑅 = 𝑡𝐺 + 𝑡𝑅 + 𝐾 −
√︁

(𝑡𝐺 + 𝑡𝑅 + 𝐾)2 − 4𝑡𝐺𝑡𝑅. We can hold 𝑡𝐺 constant and vary 𝑡𝑅 to see

big an error does the approximation make compared to the exact solution. See Figure 3.1.

Whenever the total regulator concentration 𝑡𝑅 gets close to the total gene concentration

𝑡𝐺, we see the exact bound fraction of gene is much less than predicted from approximate

solutions.

Figure 3.1 Comparison of approximate solution (Approx) to exact solution for a simple binding reaction

𝑅 + 𝐺 ⇌ 𝐺𝑅, when different total gene concentration 𝑡𝐺 is held fixed. The units of concentrations are 𝐾 here.

To summarize, MM approximations, single molecule states approximations, and external-

bath approximations produce similar simplifications that yield rational-function solutions

in ideal cases. There are many scenarios that these simplifications apply, yielding fruitful

biological insights. There are also scenarios that go beyond these approximations, such as

combinatorial regulations and highly dynamic shifts. Therefore, we would like a method

of analysis that can tackle the full regulatory behavior for general scenarios without

approximations, and at the same time reduce to simpler cases above when it is reasonable

to do so.

As directly solving for the catalysis rate or the active complex concentration is not tractable,

we need to find other variables to capture the full regulatory profile. In this work, we focus

on the reaction orders, i.e. the order of rates’ dependence on total reactant concentrations.

We show that the full regulatory profile of catalysis rates can be characterized in terms of

polyhedral sets that bound log derivatives, continuous analogues of reaction orders. Since

knowing exact log derivatives implies knowing the catalysis rates up to a multiplicative

constant, we therefore have a way to capture the full regulatory behavior of rates by giving

up the information about exact magnitude, which can often be estimated or measured
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experimentally.

In Section 3.3 we formally define binding reaction networks using chemical reaction

network theory, and characterize a class of binding networks that are biologically plausible.

In Section 3.4 we characterize the manifold of equilibrium or detailed balance steady

states of binding networks, and introduce log derivatives as a transform between different

parameterizations of the manifold. In Section 3.6, we focus on a binding network with just

one binding reaction and fully analyze the reaction orders (one type of log derivatives)

and their biological implications. We observe the polyhedral set bounding the full range

of values the reaction orders can take. In Section 3.7, given the central importance of

vertices of reaction order polyhedra, we characterize the vertices in terms of minimal

support vectors of linear subspaces and develop a computational method to obtain them

at scale. In Section 3.8, we show that polyhedra arise naturally from decomposition of

log derivative operators. Using this, we develop an approach to obtain reaction order

polyhedra analytically.

3.2 Illustrative example

Via the example of an enzymatic reaction with product binding, we walk through how

reaction orders can be used to parameterize the manifold of binding network’s detailed

balanced steady states and analyze binding’s regulation of catalysis. The concepts and

methods developed in this chapter are illustrated by application to this example.

The binding network and catalysis reactions for an enzymatic reaction with product binding

is shown in (a) of Figure 3.2. This is also the example discussed in the introduction (Section

3.1). Enzyme 𝐸 binds with substrate 𝑆 to form a complex 𝐶𝐸𝑆 , catalytically converted into

a enzyme-product complex 𝐶𝐸𝑃 can unbind to release enzyme 𝐸 and product 𝑃 molecule,

or bind from them. The catalysis reaction 𝐶𝐸𝑆 → 𝐶𝐸𝑃 here determines the direction of

change to be one substrate molecule converted into a product molecule, 𝑡𝑆
𝑘cat𝐶𝐸𝑆

𝑡𝑃 ,

where 𝑡𝑆 = 𝑆 + 𝐶𝐸𝑆 is the total amount of substrate and 𝑡𝑃 = 𝑃 + 𝐶𝐸𝑃 is total amount of

prodcut. The catalysis flux is 𝑘cat𝐶𝐸𝑆 , the catalysis rate constant multiplying the amount of

catalytic complex 𝐶𝐸𝑆 . Therefore, the catalysis flux is governed by how 𝐶𝐸𝑆 depends on the

total amounts of species. This in turn is determined by the binding network, 𝐸 + 𝑆 ⇌ 𝐶𝐸𝑆

and 𝐸 + 𝑃 ⇌ 𝐶𝐸𝑃 . To understand the regulation of this catalysis flux, i.e. production flux

of product, therefore corresponds to characterizing the binding network’s regulation.

Some typical trajectories of this catlaysis process is shown in (b) of Figure 3.2, with more

opaque trajectories corresponding to tighter enzyme-product binding. We begin the
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Figure 3.2 Illustration of how methods from this chapter can be used to study the enzymatic reaction

with product binding. (a). The binding network for enzymatic reaction with product binding. 𝐸 is

enzyme, 𝑆 is substrate, they bind to form complex 𝐶𝐸𝑆 , which gets catalyzed to complex 𝐶𝐸𝑃 which can

unbind or bind from 𝐸 and prouduct molecule 𝑃 . The catalysis rate of substrate to product conversion is

therefore proportional to 𝐶𝐸𝑆 , which is the target species here (grey cicle). The squiggly arrow denotes

catalysis reaction. (b). Simulation of this enzymatic reaction with product binding, converting substrates

to products. Blue lines are product fraction, defined as total product over the sum of total product and

substrate
𝑡𝑃

𝑡𝑆+𝑡𝑃
. Orange lines are the concentration of target species 𝐶𝐸𝑆 , proportional to catalysis rate. Three

different parameter settings are run, with increasing enzyme-product binding strength (i.e. decreasing 𝐾𝐸𝑃 ,

graphically represented as increasing opacity). Parameter values are 𝑘cat = 𝐾𝐸𝑆 = 𝑡𝐸 = 1, 𝑡𝑆 + 𝑡𝑃 = 10,

𝐾𝐸𝑃 ∈
{︀

30−1, 1, 10
}︀

(smaller 𝐾𝐸𝑃 is less opaque line). (c). The dominance decomposition tree of the binding

network, showing how the vertices and rays of 𝐶𝐸𝑆 ’s reaction order polyhedron can be obtained analytically.

Upper right corner lists the definition for totals and the steady state expressions of the target species, to help

with keeping track of the decomposition steps. The convex combination of the vertices circled by orange or

green corresponds to the orange or green points in (d). (d). The reaction order polyhedron of 𝐶𝐸𝑆 , the target

species, by computer sampling. The upper left is a 3D view. The other three panels are projection of the 3D

polyhedron to different 2D planes. The green and orange points corresponds to the dominance conditions

and vertices in the DDT in (c). 105
points are taken by log-uniformly sampling (𝐸, 𝑆, 𝑃, 𝐶𝐸𝑆 , 𝐶𝐸𝑃 ) with

values in (10−6, 106). Dominance condition is evaluated for 100-fold difference: orange points is
𝑡𝑆

𝑡𝐸
≥ 100,

green points is 𝑡𝐸 ≫ 𝐶𝐸𝑃 defined by
𝐶𝐸𝑃

𝑡𝐸
≤ 0.01.

process with no product, so we see the fraction of product in the total of substrate and

product continuously increase over time. However, the rate of production decreases as the

product accumulates, with a very nonlinear inhibition effect. While the medium binding

strength, a 10-fold increase to weak binding strength, causes only negligible increase in

the increase of product fraction, the strong binding strength, a 300-fold increase, causes

significant effect. This inhibition effect also unevenly influence production rate at different

stage of the process. Here, a 300-fold increase in binding strength causes a 5.8-fold increase

in time to reach 50% product fraction, but a 20-fold increase in time to reach 90% product
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fraction. Another way to look at the inhibition effect is to look at the trajectory for amount

of 𝐶𝐸𝑆 , which is proportional to the rate of production, as shown in orange in Figure 3.2 (b).

We see 𝐶𝐸𝑆 decreases for all three trajectories as the product fraction increases. However,

for weak binding, the inhibition does not become significant until product fraction is quite

high, while the inhibition kicks in immediately for medium and strong binding. Below, we

show that this nonlinearity of inhibition from product binding can be clearly understood

by inspecting the full regulatory profile characterized by the reaction order polyhedron.

To understand how the production rate varies with the total concentrations as the catalysis

process evolves, we need to characterize the space of regulation on the active complex

𝐶𝐸𝑆 governed by the two binding reactions. As discussed in the introduction (Eqn (3.3)),

solving for 𝐶𝐸𝑆 in terms of the totals here is solving a degree-3 polynomial equation.

This quickly becomes intractable to scan for all possible solutions since the polynomial

degree increases with the number of binding reactions. Therefore, we instead focus on

characterizing the reaction orders of 𝐶𝐸𝑆 in the totals. Reaction orders correspond to log

derivatives, capturing infinitesimal fold-change variation rather than additive difference in

linear derivatives. For monomials, log derivatives yield the exponents, such as 𝑓(𝑥) = 𝑘𝑥𝑎

with
𝜕 log 𝑓
𝜕 log 𝑥

= 𝑎. Reaction orders therefore capture how the catalysis flux varies with total

concentrations in fold-change, determining the flux magnitude up to a multiplicative

constant.

In Section 3.3 and 3.4 we formally define the binding networks studied, and develop a

formula for reaction orders, allowing efficient computational sampling at scale. In (d) of

Figure 3.2, we show the sampling of the reaction order polyhedron of 𝐶𝐸𝑆 determined by

the binding network of this system, enzymatic reaction with product binding. We see that

the set of all possible reaction orders indeed form a polyhedral set. Furthermore, we see

the points condense around edges and vertices, implying those are the reaction orders for

most concentration values. This motivates the idea of structural regimes corresponding to

the vertices. For a large range of concentrations, the reaction orders are kept at one vertex,

therefore the regulatory behavior of the binding network governing catalysis fluxes is the

same. When very large concentration changes happen, the system would quickly move

from one structural regime to another, since the reaction orders would quickly go from

one vertex to another. Therefore, we can consider the catalytic process as evolving in the

reaction order polyhedron, with different stages of the process corresponding to different

regulatory modes in different structural regimes.

To apply the reaction order polyhedron to clearly understand the regulation of the catalysis

process, we also want an explicit correspondence between the structural regimes. We
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Figure 3.3 Trajectories in reaction order space of the three catalytic processes in (b) of Figure 3.2. The

background sampling of the reaction order polyhedron (blue dots) are the same as in (d) of Figure 3.2. The

trajectory of the strong enzyme-product binding strength case (most opaque in (b) of Figure 3.2) is orange

color, that of the medium binding strength case (medium opacity in (b) of Figure 3.2) is in green color, and

that of the weak binding strength (most transparent in (b) of Figure 3.2) is in red. For each trajectory, the

triangle end denotes initial point, and the end with a circle denotes end point.

can ask for which part of the reaction order polyhedron corresponds to which part of the

concentration space via computer sampling. Indeed, the reaction order polyhedron can

be considered as an empowering tool for the classical approach that numerically solves

polynomial equations to study bioregulation. Instead of scanning through parameters in

the numerical solutions for ad-hoc performance criteria, reaction order polyhedra serves

as a structural intermediate between parameters and bioregulatory performance. All

effects of parameter variations show up in reaction order polyhedra before influencing

bioregulation, and conversely, desired behaviors are definable through reaction orders that

can be mapped to parameters.
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While visual inspection or further computation on the sampled points in reaction order

polyhedra can yield fruitful analysis for bioregulation, we also want to directly tackle

the vertices and structural regimes which define the polyhedra and the great majority of

bioregulatory behavior. In Section 3.8, we develop a analytical method called dominance

decomposition tree (DDT) based on fundamental rules of calculus for positive variables

that can directly obtain the vertices of reaction order polyhedra, with corresponding

asymptotic conditions on the concentrations. In (c) of Figure 3.2, we show the DDT for

this example of enzymatic reaction with product binding. Each vertex corresponds to a

dominance condition for the total concentrations, and a structural regime of regulatory

behavior. This allows us to go back and force between at a given concentration, what

is the structural regime, and for a desirable structural regime, what is the concentration

to reach it. These dominance conditions also correspond to faces of the reaction order

polyhedron in a direct way. Comparing (c) and (d) of Figure 3.2, the orange vertices and

dominance conditions correspond to the orange points in the reaction order polyhedron.

This is the classical Michaelis-Menten approximation, where substrate is assumed much

higher than the enzyme and product binding is assumed negligible. Indeed, there are

two structural regimes contained, the (1, 1, 0) regime that is linearly proportional to total

substrate, and the (1, 0, 0) regime that has the enzymes saturated therefore independent

of total substrate. Graphically, this corresponds to a line segment, an edge connecting

two vertices, in the reaction order polyhedron. The Michaelis-Menten assumption that

total substrate is much higher than the enzyme corresponds to the first branching in the

DDT, 𝑡𝑆 ≈ 𝑆, that free substrate dominates total substrates. Relaxing this assumption to

generalize Michaelis-Menten, with only the negligible product binding assumption, we

obtain the green region with three structural regimes. These three vertices together form

a triangle, with the new regime (0, 1, 0) corresponding to the case where enzymes are

overabundant. Lastly, when making no assumption at all, we obtain the full reaction order

polyhedron, with the two new regimes, vertex (1, 1,−1) and ray (1, 0,−1), corresponding to

inhibition by product binding. Indeed, the reaction order in total production is the negative

3rd entry. Interestingly, this inhibition can be hyper-sensitive in the regime corresponding

to the ray towards (1, 0,−1), in the sense that the inhibition effect is more than linear. This

happens under the dominance condition 𝑡𝑃 ≈ 𝐶𝐸𝑃 , when most enzymes and products are

bound together.

With all this together, we can fully understand the various production dynamics as shown

in (b) of Figure 3.2. For weak enzyme-product binding strength, we expect the enzyme-

product complex 𝐶𝐸𝑃 to not dominate total enzymes, therefore mostly restricted to the

green triangular region with the three vertices (1, 0, 0), (0, 1, 0) and (1, 1, 0). Because we
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simulated the case with total substrate 10-fold more than total enzyme, the (0, 1, 0) vertex

cannot be reached, with just (1, 0, 0) and (0, 1, 0) left. The system begins with abundant

substrate, therefore close to the (1, 0, 0) vertex, then as the substrate gets converted into

product, moves towards the (1, 1, 0) vertex. This means the flux would proceed mostly at a

constant speed, and then when the substrate level finally becomes lower than the binding

constant 𝐾𝐸𝑆 , the inhibition due to low substrate starts to kick in, and the flux decreases

proportional to the decrease in substrate concentration. Throughout, the process can be

largely explained by the classical Michaelis-Menten approximation. Indeed, as shown in

the red trajectory in Figure 3.3, we see although the trajectory goes slightly negative in

the order in 𝑡𝑃 , and goes slightly below the (1, 1, 0) vertex, the behavior is not far off the

Michaelis-Menten edge.

As for the case of medium binding strength, where the enzyme has similar binding affinity

to substrate and product molecules, we expect the enzyme to be mostly bound throughout,

simply substituting the substrate with product molecule as the production progresses. In

detail, we begin again with overabundant substrate, so we are at the (1, 0, 0) vertex where

most enzymes are in the form of enzyme-substrate complex 𝐶𝐸𝑆 . As time progresses,

substrate concentration decreases while product concentration increases, but the total of

metabolites, substrate plus product, is the same. This means most enzymes are still bound,

but instead of enzyme-substrate complex 𝐶𝐸𝑆 , more and more enzymes are bound in

enzyme-product complex 𝐶𝐸𝑃 . This means going from the 𝑡𝐸 ≈ 𝐶𝐸𝑆 dominance condition

for the (1, 0, 0) regime, to the 𝑡𝐸 ≈ 𝐶𝐸𝑃 dominance condition for the (1, 1,−1) regime.

Therefore, as the time goes on, we begin with a constant speed of production to decreasing

speed like 𝑡−1
𝑃 and 𝑡1

𝑆 . Indeed, this is what we observe in the green trajectory plotted in

Figure 3.3.

Lastly, we consider the strong binding case. When transitioning from substrate-saturating

regime (1, 0, 0) to the product-binding regime (1, 1,−1), because of strong enzyme-product

binding, the inhibition by product binding requires much less product to be synthesized,

therefore kicks in much earlier. In other words, enzyme-product complexes 𝐶𝐸𝑃 would

occupy most product molecules formed, therefore causing 𝐶𝐸𝑃 to dominate total product

𝑡𝑃 , pushing the system in the regime of ray towards (1, 0,−1). This causes hyper-sensitive

inhibition of the catalysis flux, stronger than first order inhibition. As a result, we see when

binding strength increases, the production rate does not decrease in first order, but faster

than first order. Indeed, as shown in the orange trajectory in Figure 3.3, we see although the

same end-point is reached in this case as the medium binding strength case, the trajectory

reaches into the hypersensitive regime of ray to (1, 0,−1), causing much stronger product
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inhibition.

In summary, we see how reaction order polyhedra can holistically capture the regulatory

profile of binding’s regulation of catalysis fluxes. Hence, we can analyze bioregulatory

dynamics in the space of reaction orders, with different regulatory behavior corresponding

to shifting between structural regimes as vertices in the reaction order polyhedra. The

computational sampling of reaction order polyhedra based on log derivative formula

enables large-scale analysis of polyhedra, connecting concentrations and bioregulatory

behaviors via reaction orders. Complementing this, the dominance decomposition tree

(DDT) relate vertices, or structural regimes of bioregulation, with dominance conditions

in concentration space, enabling intuitive understanding that maps dynamic regulations

with trajectories through structural regimes.

Below, we begin our formulation and analysis of binding networks, detailed balanced

steady states, and their parameterization via reaction orders.

3.3 Binding reaction networks

Here we are concerned with the formal definition of binding reaction networks. We

describe biomolecular circuits using the language of chemical reaction networks (CRNs)

[44]. In particular, we assume mass-action laws for the kinetics of reaction rates, and focus

on the class of binding and catalysis reactions. As binding reactions are fast, we consider

the steady states of binding reaction networks. We then define and characterize binding

networks that are physical, paving the way for later analysis.

Chemical reaction networks

Let 𝒳 be a finite set, denoting the set of molecular species. By assuming a canonical order

on the sets of species, we can identify 𝒳 with {1, . . . , 𝑛}, where 𝑛 = |𝒳 |. A reaction is a

tuple (𝛼, 𝛽, 𝑘) ∈ N𝑛 × N𝑛 × R>0, where 𝛼 and 𝛽 are the counts of reactants and products

of this reaction, respectively, and 𝑘 is its reaction rate constant.

A chemical reaction network (CRN) 𝒞 then is a tuple (𝒳 ,ℛ), where 𝒳 is the set of species

andℛ ⊂ N𝑆 ×N𝒳
is a finite set of reactions. We denote 𝑛 = |𝒳 | the number of species, and

𝑚 = |ℛ| the number of reactions. Then the 𝑗th reaction can be denoted in the following

way:

𝛼𝑗1𝑋1 + · · ·+ 𝛼𝑘𝑛𝑋𝑛
𝑘𝑗−−−−−−−→ 𝛽𝑗1𝑋1 + · · ·+ 𝛽𝑗𝑛𝑋𝑛,

where 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 denote chemical species, 𝑗 = 1, . . . , 𝑚 index reactions, 𝛼𝑗𝑖, 𝛽𝑗𝑖 ∈ N

denote the number of 𝑋𝑖 molecules needed as reactant or produced as product in reaction
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𝑗, and 𝑘𝑗 ∈ R>0 is reaction rate constant of reaction 𝑗. We denote 𝛼𝑗 =
[︁
𝛼𝑗1 · · · 𝛼𝑗𝑛

]︁⊺
as the

reactant stoichiometry vector for reaction 𝑗, and similarly define 𝛽𝑗 for product vector. We

define 𝛾𝑗 = 𝛽𝑗 −𝛼𝑗 as the stoichiometric vector of reaction 𝑗, and Γ =
[︁
𝛾1 · · ·𝛾𝑚

]︁
∈ Z𝑛×𝑚

is the stoichiometric matrix.

The deterministic rate equation of the CRN is

𝑑

𝑑𝑡
𝑥(𝑡) = Γ𝑣(𝑥(𝑡)), (3.4)

where 𝑥𝑖(𝑡) ∈ R≥0 is the concentration of species 𝑋𝑖 at time 𝑡, and 𝑣(𝑥) : R𝑛
≥0 → R𝑚

≥0 denote

the rate of reactions, which depends on the concentrations of species.

The stoichiometric subspace of the network is 𝒮 = colspan Γ. Let 𝑟 be the dimension of the

stoichiometric subspace, i.e. the rank of Γ. Then we can select 𝑟 reactions with linearly

independent stoichiometry vectors to form matrix 𝑁 ∈ R𝑟×𝑛
, where the rows of 𝑁 are

selected columns of Γ. This way, 𝑁 is full row rank, and rowspan 𝑁 = 𝒮 = colspan Γ. We

call 𝑁 the transpose-reduced stoichiometry matrix.

The mass-action law of rate kinetics specifies that 𝑣𝑗(𝑥) = 𝑘𝑗𝑥
𝛼𝑗

, where 𝑥𝛼𝑗 := 𝑥
𝛼𝑗1
1 . . . 𝑥

𝛼𝑗𝑛
𝑛 .

A matrix 𝐿 ∈ R𝑑×𝑛
is a conservation law matrix of the CRN, where 𝑑 = 𝑛− 𝑟, if 𝐿 is full

row rank with rowspan 𝐿 = ker 𝑁 = 𝒮⊥
.

Binding networks

Since our goal is to study how a catalysis rate is regulated by its binding networks in

biomolecular systems, we formally define the binding networks we study. Importantly, we

want to characterize a physical class of binding networks that is relevant to biomolecular

systems.

Intuitively, a binding reaction is of the form 𝑋1 + 𝑋2 ⇌ 𝑋3 or 2𝑋1 ⇌ 𝑋3, where two of the

same or different species bind to form a complex species. A collection of such reactions

then form a binding network.

Definition 3.3.1. A CRN (𝒳 ,ℛ) is a binding network if it satisfies the following.

1. The CRN is reversible.

A reaction (𝛼, 𝛽, 𝑘) ∈ ℛ is reversible if it has a reverse reaction, i.e. there exists

(𝛽, 𝛼, 𝑘′) ∈ ℛ for some 𝑘′
. A CRN is reversible if all of its reactions are reversible.

2. All of its reactions are binding reactions.



80

A reversible reaction is a binding reaction if exactly one of the forward-reverse pair

of reactions satisfies that the product stoichiometry vector 𝛽 has one or two nonzero

entries with ‖𝛽‖1 ≥ 2, the reactant stoichiometry vector 𝛼 = 𝑒𝑖 is unit vector at some

entry 𝑖, and 𝛼 and 𝛽 have different support. This reaction out of the pair is called the

forward reaction, or dissociation reaction.

Since the binding network is reversible and the reactant and product vectors have different

support, we can capture all information of the binding network in the stoichiometry matrix

of just the forward reactions, which we denote Γ𝑓 ∈ R𝑛× 𝑚
2 . Let 𝑟 be the rank of Γ. We

can formulate a transpose-reduced stoichiometry matrix 𝑁 ∈ R𝑟×𝑛
by selecting 𝑟 forward

reactions with linearly independent stoichiometry vectors. In other words, rows of 𝑁 are

selected columns of Γ𝑓
.

Based on our physical intuition, the complexes that form in this binding network should

be composed of a set of the smallest component species. Whether such sets of smallest

component species, or atomic species, exist, constitute the study of atomic CRNs. Below,

we extract relevant notions and results from the literature on atomic CRNs, namely the

works [1, 36, 37, 50]. For clear exposition, we use a unified notation and frame all results

in a linear algebraic fashion, which allows succinct proofs and simple computations. In

particular, we define the various atomic notions through a matrix 𝐷 representing the

atomic decompositions of each species.

Definition 3.3.2 ([37]). A CRN (𝒳 ,ℛ) with stoichiometry matrix Γ ∈ R𝑛×𝑚
and stoichio-

metric subspace 𝒮 ⊂ R𝑛
is primitive atomic if there exists a positive integer 𝑑 and a matrix

𝐷 ∈ N𝑑×𝑛
, such that

1. 𝐷Γ = 0, i.e. rowspan 𝐷 ⊂ 𝒮⊥
, and

2. no rows or columns of 𝐷 are all zero.

A CRN is subset atomic if it is primitive atomic with a 𝐷 that has an ordering of the

columns, called an atom-first ordering, under which

3. 𝐷 =
[︁
I𝑑 𝐷2

]︁
, and

4. each column vector of 𝐷2 has 1-norm ≥ 2.

A CRN is stoichiometry-atomic if it is subset atomic with a 𝐷 in an atom-first ordering

that
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5. �̃� =
⎡⎣𝐷2

−I𝑟

⎤⎦ ∈ R𝑛×𝑟
satisfies colspan �̃� ⊂ 𝒮.

The interpretation behind the definitions are the following. The matrix 𝐷 can be considered

as a map from the set of 𝑛 species 𝒳 to a set of 𝑑 atoms𝒜, so that the 𝑖th species is mapped

to the 𝑖th column vector of 𝐷 representing its decomposition in atoms. Condition 1 requires

that the sum of the atoms are preserved in reaction dynamics, and condition 2 requires

that each atom needs to appear in at least one species and there are no vacuous species

that contain no atoms. These two condition constitute primitive atomic CRNs, which is

shown to be equivalent to mass conservation in the proposition below. For subset atomic,

condition 3 then requires that the atoms 𝒜 need to be distinct species already included in

the reaction network, i.e. 𝒜 ⊂ 𝒳 . This allows the split of species into atoms 𝑋1, . . . , 𝑋𝑑

and non-atoms 𝑋𝑑+1, . . . , 𝑋𝑛. The 𝑗th column of 𝐷 for 𝑗 > 𝑑 can be interpreted as the

atomic decomposition of 𝑋𝑗 into atoms 𝑋1, . . . , 𝑋𝑑. The 𝑖th row of 𝐷, 𝑖 = 1, . . . , 𝑑, then

can be interpreted as the total amount of the 𝑖th atomic species 𝑋𝑖 in atomic or free form

𝑋𝑖, and in non-atomic or bound forms of 𝑋𝑑+1, . . . , 𝑋𝑛. Condition 4 then requires that

the non-atomic species contain more than one atom, i.e. atoms have no isomers. For

stoichiometry-atomic, we ask that given a non-atomic species, whether the stoichiometry

allows the decomposition of the non-atomic species to its atomic compositions. Since the

atomic composition of a non-atomic species is a column of 𝐷2, this comes down to whether

the column vector of �̃� for this species is contained in the stoichiometric subspace 𝒮 . Note

that stoichiometry-atomic only implies that the decomposition from a non-atomic species

to its atoms is allowed by the stoichiometry of the reaction, but does not guarantee there

exists a sequence of reactions to do so. Requiring such a sequence exists constitute the

notion of reachably atomic CRN, which is defined and studied in [37] and is a stronger

condition than stoichiometry-atomic.

Below are a few useful characterizations of the various atomic notions.

Proposition 3.3.3 ([37]). 1. A CRN is primitive atomic if and only if it is mass conserving.

Mass-conserving is defined by there exists a strictly positive vector 𝑚 ∈ R𝑛
>0 such that

Γ⊺𝑚 = 0.

2. For a stoichiometry-atomic CRN, the matrix 𝐷 is unique.

Proof. Proof for 1 is already transparent in [37].

Proof for 2 (adapted from arguments for reachably atomic of [37]). For a stoichiometry-

atomic CRN, we know rowspan 𝐷 ⊂ 𝒮⊥
. Take their orthogonal complements, we have
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𝒮 ⊂ ker 𝐷. We also have colspan �̃� = ker 𝐷 ⊂ 𝒮 (Lemma 3.3.4). So we have 𝒮 = ker 𝐷.

This fixes the dimension of 𝐷 ∈ N𝑑×𝑛
, with 𝑑 = 𝑛− 𝑟, where 𝑟 is the rank of Γ or dimension

of 𝒮.

Furthermore, the matrix 𝐷 itself is unique. We first see that once the set of columns ℐ
that form the identity submatrix is given, then 𝐷 is uniquely determined. Consider an

atom-first ordering such that ℐ = {1, . . . , 𝑑}. So 𝐷 can be written as 𝐷 =
[︁
I𝑑 𝐷2

]︁
. Since

rows of 𝐷 are conservative, we have

𝐷Γ = Γ1 + 𝐷2Γ2 = 0, where Γ =
⎡⎣Γ1

Γ2

⎤⎦, Γ2 ∈ Z𝑟×𝑚,

and Γ2 has full row rank. So 𝐷2 is uniquely determined by 𝐷2 = −Γ1Γ†
2, where Γ†

2 is the

pseudo-inverse of Γ2.

Now we are left to show the set of columns ℐ is unique. Assume there exists two sets of

columns ℐ, ℐ ′ ⊂ {1, . . . , 𝑛} that determine 𝐷 and 𝐷′
respectively. Assume ℐ ≠ ℐ ′

, then

there exists 𝑖* ∈ ℐ∖ℐ ′
or there exists 𝑖* ∈ ℐ ′∖ℐ. Without loss of generality, consider the

former case. The vector 𝜎 = 𝐷⊺1 satisfies 𝜎𝑖 = 1 for 𝑖 ∈ ℐ , and 𝜎𝑖 ≥ 2 for 𝑖 /∈ ℐ . Since 𝑖* ∈ ℐ ,

𝜎𝑖* = 1. Since 𝑖* /∈ ℐ ′
, the 𝑖th column of 𝐷′

is included in 𝐷′
2. Then stoichiometry-atomic

with 𝐷′
implies 𝑑′

𝑖* :=
⎡⎣𝑑′

𝑖*

0

⎤⎦− 𝑒𝑖* ∈ 𝒮. However, since 𝜎 ∈ rowspan 𝐷 = 𝒮⊥
, we should

have 𝜎⊺𝑑*
𝑖 = 0, but we obtain the following contradiction:

𝜎⊺𝑑*
𝑖 = 𝜎⊺

⎛⎝⎡⎣𝑑′
𝑖

0

⎤⎦− 𝑒𝑖

⎞⎠ ≥ 1⊺𝑑′
𝑖 − 𝜎𝑖 = 1⊺𝑑′

𝑖 − 1 ≥ 2− 1 = 1,

where the first inequality we used 𝜎𝑖 ≥ 1 for all 1 ≤ 1 ≤ 𝑛, and the second inequality we

used ‖𝑑′
𝑖‖1 ≥ 2.

Lemma 3.3.4. Given matrix 𝐷 =
[︁
I𝑑 𝐷2

]︁
∈ R𝑑×𝑛

, 𝑑 < 𝑛, define �̃� =
⎡⎣𝐷2

−I𝑟

⎤⎦ ∈ R𝑛×𝑟
, 𝑟 = 𝑛−𝑑.

Then colspan �̃� = ker 𝐷.

Proof. To see this, 𝐷�̃� = 𝐷2 −𝐷2 = 0, so colspan �̃� ⊂ ker 𝐷. Then, since ker 𝐷 is of

dimension 𝑟 = 𝑛 − 𝑑, since 𝐷 is full row rank, while �̃� is rank 𝑟, by dimensionality

colspan �̃� = ker 𝐷.

The above result enables a simple characterization of stoichiometry-atomic CRNs.
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Theorem 3.3.5. Given a CRN with stoichiometry matrix Γ ∈ R𝑛×𝑚
of rank 𝑟, it is stoichiometry-

atomic if and only if there is a collection of 𝑟 linearly independent rows of Γ, indexed by ℐ =
{𝑖1, . . . , 𝑖𝑟} ⊂ {1, . . . , 𝑛}, such that the matrix 𝐿 computed from it, as defined below, satisfies that

(1) its entries are non-negative and (2) the column sums of 𝐿2 are ≥ 2.

𝐿 =
[︁
I𝑑 𝐿2

]︁
, 𝐿⊺

2 := −Γ1Γ†
2, Γ =

⎡⎣Γ1

Γ2

⎤⎦, (3.5)

where the rows of Γ are re-arranged such that the 𝑟 linearly indepedent rows of Γ indexed by

ℐ = {𝑖1, . . . , 𝑖𝑟} now has indices {𝑛− 𝑟 + 1, . . . , 𝑛}, i.e. these rows form the submatrix Γ2 ∈ R𝑟×𝑚

in the expression above.

Proof. The forward direction is trivial by the definition of stoichiometry-atomic CRNs. Just

set 𝐿 := 𝐷 in an atomic ordering. The reverse direction is also clear, and by setting 𝐷 := 𝐿

we then recognize that 𝐿 satisfies all the conditions.

Note that we can also express 𝐿2 in terms of the transpose-reduced stoichiometry matrix

𝑁 ∈ R𝑟×𝑛
. Write 𝑁 =

[︁
𝑁1 𝑁2

]︁
with 𝑁2 ∈ R𝑟×𝑟

a full rank submatrix, then 𝐿⊺
2 = −𝑁−1

2 𝑁1.

The characterization in Theorem 3.3.5 shows that the notion of stoichiometry-atomic CRNs

is very easy to use. To test whether a given CRN is stoichiometry-atomic with species

indexed in ℐ = {𝑖1, . . . , 𝑖𝑟} as atoms, take the stoichiometry matrix and compute 𝐿2 to

check whether it satisfies the two conditions in the theorem. We also know that once

we find a set of atomic species that 𝐿2 satisfies those conditions, then this is the unique

set of atomic species for this CRN, and the columns of 𝐿 matrix represent the atomic

decomposition of each species. On the other hand, to come up with a stoichiometry-atomic

CRN from scratch, write out some 𝐿2 matrix satisfying the two conditions, then any

transpose-reduced stoichiometry matrix 𝑁 satisfying 𝐿⊺
2 = −𝑁−1

2 𝑁1 would specify the

independent reactions of a stoichiometry-atomic CRN. For example, take 𝑁2 as identify

and 𝑁1 = −𝐿⊺
2 would work.

As a side note, we caution that for a stoichiometry-atomic CRN, although the atomic species

are all distinct, the non-atomic species may not have distinct atomic compositions. In other

words, the column vectors of 𝐿2 may not be all distinct. If two columns 𝑗1, 𝑗2 > 𝑑 of 𝐿 are

the same, since colspan �̃� = 𝒮, this corresponds to 𝑒𝑗1 − 𝑒𝑗2 ∈ 𝒮. There is no condition

in stoichiometry-atomic CRN that rules this out. For example, this can happen in the

following binding network. 3𝐸1 ⇌ 𝐸3, 2𝐸1 ⇌ 𝐸2, 𝐸1 + 𝐸3 ⇌ 𝐸4, 2𝐸2 ⇌ 𝐸 ′
4. Here 𝐸4 and

𝐸 ′
4 have the same atomic compositions. It may be appealing from physical intuition that

non-atomic species should have distinct atomic compositions. This can be achieved by
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imposing further conditions beyond stoichiometry-atomic, such that any two species with

the same atomic compositions are identified to be the same species. This would be an

interesting and worthwhile investigation if each species in the CRN indeed correspond

to distinct atoms or molecules in reality. On the other hand, this may become restrictive,

since a common usage of CRN is to use different species to label different states of the same

molecule, such as inside or outside of a compartment, or methylation or phosphorylation

states when methyl and phosphate groups are ignored in the network description. This

highlights that although CRNs can be considered as models of real chemical reactions,

they are generic mathematical objects like Markov chains that can have closer connections

to very different domains of reality when further structures are imposed.

We examine a few examples to build intuition.

Example 1 (not primitive atomic). Consider the following set of reactions:

𝑋1 + 𝑋2 ⇌ 𝐶12,

𝑋3 + 𝑋4 ⇌ 𝐶34,

𝐶12 + 𝐶34 ⇌ 𝐶0,

𝑋2 + 𝑋3 ⇌ 𝐶0.

(3.6)

We see that there are two ways of forming the complex 𝐶0, one via two-step binding as

𝐶12 + 𝐶34, and one via one-step binding as 𝑋2 + 𝑋3. Intuitively, from the two-step binding

we see 𝐶0 is effectively composed of 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4, while 𝐶0 viewed from the one-step

binding is effectively composed of only 𝑋2 + 𝑋3. So the two paths of decomposition results

in different compositions, which is an un-physical result. Indeed, we can show this network

does not conserve mass. Therefore, it is not primitive atomic. △

Example 2 (Phosphorylation). Consider the following set of reactions:

𝑋𝑝 + 𝑌 ⇌ 𝐶 ⇌ 𝑋 + 𝑌𝑝. (3.7)

The biological context is that 𝑋 and 𝑌 are two proteins, with 𝑋𝑝 and 𝑌𝑝 as their phospho-

rylated forms, respectively. The phosphate group can be transferred between 𝑋 and 𝑌

via the binding reactions. This network is primitive atomic since 𝑋 + 𝑋𝑝 + 𝑌 + 𝑌𝑝 + 2𝐶 is

conserved. With species ordering (𝑋, 𝑌, 𝑋𝑝, 𝑌𝑝, 𝐶), this conserved quantity corresponds

to vector (1, 1, 1, 1, 2). To look at whether it has further atomic properties, examine its

transpose-reduced stoichiometry matrix below,

𝑁 =
⎡⎣1 0 0 1 −1
0 1 1 0 −1

⎤⎦.
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This CRN has three conserved quantities since 𝑛 = 5, 𝑟 = 2, so 𝑑 = 𝑛− 𝑟 = 3. One choice

of conservation law matrix is total 𝑋 , total 𝑌 , and total phosphates 𝑡𝑝 = 𝑋𝑝 + 𝐶 + 𝑌𝑝. In

matrix form, this is

𝐿 =

⎡⎢⎢⎢⎣
1 0 1 0 1
0 1 0 1 1
0 0 1 1 1

⎤⎥⎥⎥⎦.

Intuitively we see this CRN is not subset atomic, because there is no species for phosphate

groups. To rigorously show this, we can take all choices of atomic species and check that

the conservation law matrix produced cannot have the 3 columns of the atomic species

form an identity matrix. △

We can add reactions about phosphate groups to make the phosphorylation network above

stoichiometry-atomic.

Example 3 (Phosphorylation, continued). We consider adding the following reactions to the

CRN in equation (3.7).

𝑋 + 𝑝 ⇌ 𝑋𝑝, 𝑌 + 𝑝 ⇌ 𝑌𝑝. (3.8)

With species order (𝑋, 𝑌, 𝑝, 𝑋𝑝, 𝑌𝑝, 𝐶), the transpose of the stoichiometry matrix of this

binding network is

Γ⊺ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1 −1 0 0
0 1 1 0 −1 0
1 0 0 0 1 −1
0 1 0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦. (3.9)

Now, because the stoichiometry matrix has rank 3, this CRN still has 3 conserved quantities.

All of them correspond to conservation of atomic species. The 𝐷 matrix for atomic species

{𝑋, 𝑌, 𝑝} is

𝐷 =

⎡⎢⎢⎢⎣
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 1

⎤⎥⎥⎥⎦. (3.10)

Now this CRN is not only subset atomic, but also stoichiometry-atomic. △

Binding network with state transitions

State transitions correspond to reactions of the form 𝐴 ⇌ 𝐵. This can be interpreted

as molecules having two different states 𝐴 and 𝐵, and transitions between them. This

interpretation also reflects that for systems with such reactions only, viewing the system as
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many independent copies of the same molecule transitioning between states is equivalent

to viewing the system as a collection of molecules doing the reactions. Systems with

only state transitions therefore come under several different names: first-order chemical

reactions, Markov chain dynamics, or Laplacian dynamics on directed graphs. This topic

is nicely reviewed in [76]. There are also other views of this, such as random walks and

electrical circuits [40].

From the perspective of biomolecular reactions, state transitions can arise from the same

biomolecule having multiple states, recording information about location or chemical

modifications. In the binding reaction context, state transition can also arise in some

simplifying limit of dominance conditions. For the binding reaction 𝐸 + 𝑆 ⇌ 𝐶 where

enzyme 𝐸 binds with substrate 𝑆 to form product 𝐶, if substrate molecule is overabundant,

i.e. the free substrate 𝑆 dominates in total substrate 𝑡𝑆 = 𝑆 + 𝐶, then this binding reaction

can be viewed as state transition 𝐸
𝑆−⇀↽− 𝐶.

Due to above reasons, it is desirable to consider binding networks with state transitions, so

that we have a model class closed under reduction by dominance limits. We characterize

this below as a slight generalization of binding networks.

Definition 3.3.6. A CRN (𝒳 ,ℛ) is a binding network with state transitions if it is reversible,

and each pair of forward-backward reactions is either a binding reaction (see Definition

3.3.1), or a state-transition reaction.

A reaction (𝛼, 𝛽, 𝑘) ∈ ℛ is a state-transition reaction if 𝛼 = 𝑒𝑖 and 𝛽 = 𝑒𝑗 for some 𝑖 ̸= 𝑗

and 𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

We also want a physical condition on binding networks with state transitions like the

stoichiometry-atomic condition. We see that for the five conditions of stoichiometry-atomic,

only condition 4 excludes state transitions (see Definition 3.3.2). Since condition 4 can be

interpreted as a no-isomer condition, we give the following definition.

Definition 3.3.7. A CRN is isomer-atomic if it satisfies conditions 1, 2, 3, and 5 but not

necessarily condition 4 in Definition 3.3.2.

As atoms can have isomers (i.e. different states), an isomer-atomic CRN does not have

a unique atomic decomposition 𝐷 matrix, since it may not have a unique set of atoms

to begin with. On the other hand, once a feasible set of atoms are given, then 𝐷 is still

uniquely determined. So we have the following characterization of isomer-atomic CRNs as

a corollary of the theorem for stoichiometry-atomic CRNs.
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Corollary 3.3.8. Given a CRN with stoichiometry matrix Γ ∈ R𝑛×𝑚
of rank 𝑟, it is isomer-atomic

if and only if there is a collection of 𝑟 linearly independent rows of Γ, indexed by ℐ = {𝑖1, . . . , 𝑖𝑟} ⊂
{1, . . . , 𝑛}, such that the matrix 𝐿 computed from it, as defined in Eq 3.5, satisfies that (1) entries

of 𝐿 are non-negative and (2) no columns of 𝐿2 are all zero.

Proof. Forward direction: by definition, an isomer-atomic CRN yields matrix 𝐷 that

satisfies these conditions. Backward direction: by construction, the 𝐿 matrix constructed

from stoichiometry matrix already satisfy condition 3 and 5 of isomer-atomic, and condition

1 and 2 are assumed for 𝐿.

This characterization shows that isomer-atomic CRN simply has less restrictive conditions

on the 𝐿 matrix compared to stoichiometry-atomic. So the condition of isomer-atomic

is even easier to check. One implication of this is that an isomer-atomic CRN may have

multiple choices for sets of atoms, although there are always 𝑑 = 𝑛− 𝑟 atomic species in

each choice. We illustrate this via an example blow.

Example 4 (MWC). MWC model for receptor-ligand binding captures allosteric effects.

Consider a receptor 𝑅 binds with a ligand 𝐿. The receptor has an active state 𝑅𝑎, and an

inactive state 𝑅𝑖, with different binding affinities to the ligand. So the binding network is

𝑅𝑖 + 𝐿 ⇌ 𝐶𝑖, 𝑅𝑎 + 𝐿 ⇌ 𝐶𝑎, 𝑅𝑖 ⇌ 𝑅𝑎.

With species ordering (𝐿, 𝑅𝑖, 𝑅𝑎, 𝐶𝑖, 𝐶𝑎), the stoichiometry matrix is

𝑁 =

⎡⎢⎢⎢⎣
1 1 0 −1 0
1 0 1 0 −1
0 1 −1 0 0

⎤⎥⎥⎥⎦.

There are 2 conserved quantities. We can choose them to be total ligand 𝑡𝐿 = 𝐿 + 𝐶𝑖 + 𝐶𝑎

and total receptor 𝑡𝑅 = 𝑅𝑖 + 𝑅𝑎 + 𝐶𝑖 + 𝐶𝑎. So the conservation matrix is

𝐿 =
⎡⎣1 0 0 1 1
0 1 1 1 1

⎤⎦.

It is easily checked that this 𝐿 is also what is obtained by direct computation from 𝑁 with

𝐿⊺
2 = −𝑁−1

2 𝑁1, where 𝑁2 and 𝐿2 are the last 3 columns of 𝑁 and 𝐿 respectively. This 𝐿

treats 𝐿 and 𝑅𝑖 as atomic species. This is not unique, as we can just as well choose {𝐿, 𝑅𝑎}
as the atomic species. △
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Through this example, we can see intuitively that the decomposition matrix 𝐿 of a

stoichiometry-atomic CRN will have exactly 𝑑 columns with exactly one nonzero entry.

These correspond to the atomic species and the column vectors are 𝑒𝑖R𝑑
for 𝑖 = 1, . . . , 𝑑.

For an isomer-atomic CRN, there could be more than one column taking value 𝑒𝑖. This

correspond to multiple choices for the atomic species.

For convenience, throughout later chapters, unless we explicitly state otherwise, a binding

network refers to a binding network with state transitions, and a binding reaction refers

to both a binding reaction or a state transition reaction, and the forward reaction is the

forward reaction of a binding reaction, or any of the two reactions of a state transition.

The equivalent characterizations of stoichiometry-atomic and isomer-atomic both highlight

the relation between conservation law matrix 𝐿 and the stoichiometry matrix Γ, or its

transpose-reduce 𝑁 . We would like a full description of how conditions on 𝐿 are related

to conditions on 𝑁 . We investigate this next.

Duality between stoichiometry 𝑁 and conservation 𝐿

We see that from atomic requirements on a CRN represented by stoichiometry matrix Γ, or

its transpose-reduce 𝑁 , we obtain conditions on the conservation law matrix 𝐿 ∈ R𝑑×𝑛
,

which is the atomic decomposition matrix in atomic CRN contexts. What is the relationship

between 𝑁 and 𝐿 in general? We can view these two matrices as vector configurations

to see their combinatorial structures, as is done in the literature of convex polytopes and

oriented matroids (see Chapter 6 of [123]).

From this view, 𝐿 ∈ R𝑑×𝑛
is a configuration of 𝑛 column vectors in R𝑑

, and similarly 𝑁 ∈ R𝑟×𝑛

is a configuration of 𝑛 column vectors in R𝑟
. Several structures are associated with a vector

configuration. We use 𝑁 as an example. The linear dependences of 𝑁 is {𝑣 : 𝑁𝑣 = 0} =
ker 𝑁 . The covectors of 𝑁 are sign vectors sgn ker 𝑁 = {v : v𝑖 = sgn 𝑣𝑖, 𝑣 ∈ ker 𝑁} ⊂
{+,−, 0}𝑛

. Here sgn is sign operation, broadcasted to vectors and vector spaces from its

operation on real numbers: sgn(𝑥) = 0 if 𝑥 = 0, + if 𝑥 > 0, and − if 𝑥 < 0, for 𝑥 ∈ R. The

cocircuits of 𝑁 are minimal sign vectors denoted min sgn ker 𝑁 = {min v : v ∈ sgn ker 𝑁}.
Here “minimal” is defined by a partial order on signs broadcasted to sets of sign vectors:

0 < + and 0 < −. So minimal corresponds to having as many zeros as possible without

flipping any sign between + and−. Similarly, the set of value vectors of 𝑁 is {𝑐⊺𝑁 : 𝑐 ∈ R𝑟} =
rowspan 𝑁 . The signed vectors of 𝑁 are sgn rowspan 𝑁 . The signed circuits of 𝑁 are

min sgn rowspan 𝑁 . Now we connect this back to our CRN context.

For a CRN, we begin with stoichiometry matrix Γ ∈ R𝑛×𝑚
, and the stoichiometric subspace
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𝒮 = colspan Γ that species’ concentrations can vary in. Let 𝑟 be the rank of Γ or the

dimension of 𝒮 , then we select 𝑟 linearly independent columns of Γ and transpose them to

form the transpose-reduced stoichiometry matrix 𝑁 ∈ R𝑟×𝑛
. Now 𝒮 = rowspan 𝑁 . The

conserved quantities not changed by reactions correspond to vectors in𝒮⊥ = ker 𝑁 = ker Γ⊺
.

A 𝐿 ∈ R𝑑×𝑛
with 𝑑 = 𝑛 − 𝑟 is the conservation law matrix if its rows span the space of

conserved quantities, i.e. rowspan 𝐿 = 𝒮⊥
. This condition means rowspan 𝐿 = ker 𝑁 ,

and conversely ker 𝐿 = rowspan 𝑁 . In the language of vector configurations, the linear

dependences of 𝐿 are the value vectors of 𝑁 , and vice versa. Configurations satisfying this

are called dual configurations. So 𝐿 and 𝑁 are dual configurations. Dual configurations are

intimately related in their combinatorial structure beyond linear dependences and value

vectors. Namely, the covectors of 𝐿 are vectors of 𝑁 , and the cocircuits of 𝐿 are circuits of

𝑁 , and vice versa. This is an example of oriented matroid duality. Below we focus on the

notion of primitive atomic as an illustration of this relationship.

From our definition of primitive atomic and Proposition 3.3.3, we see that primitive atomic

is equivalent to that the space of conserved quantity has a vector with all entries positive. In

terms of 𝐿, this means there is a strictly positive vector in rowspan 𝐿. This is one definition

for 𝐿 is an acyclic vector configuration. This is equivalent to a dual condition on 𝑁 called

totally cyclic. We write several equivalent conditions in the following, summarizing our

discussion above and results in Chapter 6 of [123] on vector configurations.

Proposition 3.3.9. Let 𝑁 be the transpose-reduced stoichiometry matrix of a CRN. Let 𝐿 be a

conservation matrix. The following are equivalent.

1. This CRN is primitive atomic.

2. This CRN conserves mass.

3. 𝐿 is acyclic. This is defined as ̸ ∃ 𝑦 ∈ R𝑛
, 𝑦 ≥ 0, 𝑦 ̸= 0, 𝐿𝑦 = 0. Another equilvalent

definition is ∃𝑐 ∈ R𝑑
, 𝑐⊺𝐿 > 0, i.e. every entry of 𝑐⊺𝐿 is positive.

4. 𝑁 is totally cyclic. This is defined as ̸ ∃𝑥 ∈ R𝑟
, 𝑁 ⊺𝑥 ≥ 0, 𝑁 ⊺𝑥 ̸= 0. An equivalent

definition is ∃𝑐 ∈ (R𝑛)*
, 𝑐 > 0, 𝑐𝑁 ⊺ = 0.

5. 𝐿 has no positive signed circuit, i.e. no positive vector in min sgn ker 𝐿 = min sgn𝒮 =
min sgn rowspan 𝑁 . This is equivalent to 𝑁 has no positive signed cocircuit.

6. 𝐿 has (++...+) as a signed covector, i.e. it is in sgn rowspan 𝐿 = sgn𝒮⊥ = sgn ker 𝑁 .

This is equivalent to 𝑁 has (++...+) as a signed vector.

7. 𝐿 has every 𝑖 = 1, . . . , 𝑛 contained in a nonnegative cocircuit, i.e. contained in a non-negative

sign vector in min sgn rowspan 𝐿 = min sgn𝒮⊥
.
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The above illustrates the dual relationship between 𝑁 and 𝐿, and how mass-conservation

or primitive-atomic properties of a CRN can be characterized in terms of sign conditions

on the stoichiometry subspace. This provides a quick way to check whether a given

CRN is primitive-atomic, from sign conditions on either its stoichiometry matrix 𝑁 or its

conservation matrix 𝐿. Below we show that the isomer-atomic property can be similarly

characterized as sign conditions on the conserved quantity space 𝒮⊥
, or equivalently

on rowspan 𝐿. It is an interesting question how this sign condition translates into sign

conditions on the stoichiometry subspace 𝒮 or on rowspan 𝑁 .

Proposition 3.3.10. Given a CRN and its stoichiometry subspace 𝒮 , the following are equivalent.

1. The CRN is isomer-atomic with the first 𝑑 species as atoms.

2. sgn𝒮⊥
contains all-positive sign vector (++...+), and in sgn𝒮⊥

there also exists sign

vectors v
(𝑖)

for 𝑖 = 1, . . . , 𝑑, where v
(𝑖)

is non-negative and satisfies v
(𝑖)
𝑖 = +, v

(𝑖)
𝑗 = 0 for

1 ≤ 𝑗 ≤ 𝑑 and 𝑗 ̸= 𝑖.

Proof. (1 =⇒ 2) This direction is obvious since isomer-atomic CRN conserves mass so

(++...+) is in sgn𝒮⊥
, and the sign vector of the 𝑖th row of 𝐿 corresponds to v

(𝑖)
.

(2 =⇒ 1) For each v
(𝑖)

, there exists 𝑣(𝑖) ∈ 𝒮⊥
with sgn 𝑣(𝑖) = v

(𝑖)
. Define 𝑣(𝑖) = (𝑣(𝑖)

𝑖 )−1𝑣(𝑖)
.

Then concatenating 𝑣(𝑖)
as rows vectors yields a matrix 𝑉 ∈ R𝑑×𝑛

, which satisfies the

conditions for 𝐿 in the definition of isomer-atomic.

3.4 Detailed balance steady states of binding networks

Since binding reactions between molecules tend to happen at a faster time scale than the

phenomena we are interested in, e.g. production and degradation of molecules, it is natural

to assume that the binding reactions have reached a steady state. In fact, we can further

assume that the steady states the binding reactions reach are at equilibrium, based on the

intuition that nonequilibrium steady states require continuous energy input at the fast time

scale of binding reactions, which is costly and therefore unlikely. In other words, although

a mathematically specified CRN may not have equilibrium steady states, and may have

steady states that are not at equilibrium, it is physically plausible to assume that a binding

network on a fast time scale should have equilibrium steady states and practically stay in

equilibrium steady states. Therefore, in this work we focus our study of equilibrium steady

states in a way that does not concern whether they exist from mathematical specifications.
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In this section, we describe the manifold of equilibrium steady states, which are also called

detailed balance steady states in chemical reaction network theory.

Let 𝑥 ∈ R𝑛
>0 denote a vector of species concentrations in a binding network. Then detailed

balance steady states are ones that satisfy the condition that the forward (dissociation) and

backward (association) fluxes of each reaction balances out. Let 𝑘𝑗 = 𝑘−
𝑗

𝑘+
𝑗

, the ratio between

the forward (dissociation) and backward (association) reaction rates, be the equilibrium

constant of the 𝑗th binding reaction (in the dissociation direction, so also called dissociation

constants). Assuming mass-action kinetics, then the balancing of forward and backward

fluxes corresponds to 𝑘−
𝑗 𝑥𝛼𝑓

𝑗 = 𝑘+
𝑗 𝑥𝛽𝑓

𝑗 , where 𝛼𝑓
𝑗 , 𝛽𝑓

𝑗 ∈ Z𝑛
are the reactant and product

vectors of the 𝑗th forward (dissociation) reaction. This can be written as 𝑥𝛾𝑓
𝑗 = 𝑘𝑗 , where

𝛾𝑓
𝑗 = 𝛽𝑓

𝑗 −𝛼𝑓
𝑗 ∈ Z𝑛

is the stoichiometry vector of the 𝑗th forward (dissociation) reaction. Let

𝑟 denote the rank of the stoichiometry matrix Γ ∈ R𝑛×𝑚
, which is also the rank of Γ𝑓 ∈ R𝑛× 𝑚

2 ,

the stoichiometry of only the forward reactions. Then we can always select 𝑟 forward

reactions with linearly independent stoichiometry vector to form the transpose-reduced

stoichiometry matrix 𝑁 , whose rows are selected columns of Γ𝑓
. Similarly, we take the

equilibrium constants for the 𝑟 reactions selected to form vector 𝑘 ∈ R𝑟
>0. Taking log and

write in matrix form, we have that the detailed balanced condition becomes

𝑁 log 𝑥 = log 𝑘. (3.11)

Since there are 𝑛 variables and 𝑟 equations, we see the solution log 𝑥 of this equation for a

fixed 𝑘 has 𝑑 = 𝑛− 𝑟 degrees of freedom.

What variables could represent this 𝑑 degrees of freedom for the detailed balance solutions

log 𝑥? One natural choice are the conserved quantities. Let 𝐿 ∈ R𝑑×𝑛
be the conservation

law matrix, then the conserved quantities are defined as 𝑡 = 𝐿𝑥. The conserved quantities

are denoted as 𝑡 for totals since in binding networks they often correspond physically to

the total of some species in various forms. So we see the 𝑑 total concentrations 𝑡 ∈ R𝑑
>0

form a natural representation of the remaining 𝑑 degrees of freedom. If we further require

the binding network to be isomer-atomic, then alternatively we can represent the 𝑑 degrees

of freedom as the concentrations of atomic species. We will see this explicitly as alternative

coordinate charts for the manifold of detailed balance steady states.

Formally, we define the manifold for the detailed balanced solutions of a binding network.

We consider this manifold as the set of all possible values the variables of interest can take

for a given binding network. The variables of interest from our above discussion are the

species concentration 𝑥 ∈ R𝑛
>0, total concentrations 𝑡 ∈ R𝑑

>0, and equilibrium constants
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𝑘 ∈ R𝑟
>0. The manifold is then defined by the constraint on these variables imposed by the

detailed balance condition of a particular binding network.

Definition 3.4.1. Given a binding network with reduced stoichiometry matrix 𝑁 ∈ R𝑟×𝑛
.

Let 𝑘 ∈ R𝑟
>0 be the equilibrium constants for the 𝑟 reactions selected. Let 𝐿 ∈ R𝑑×𝑛

, 𝑑 = 𝑛−𝑟

be the unique conservation law matrix of the network. Then the manifold of detailed
balance steady states of the binding network, also called equilibrium manifold of the

binding network for short, is

ℳ =
{︁
(𝑥, 𝑡, 𝑘) ∈ R2𝑛

>0 : 𝑡 = 𝐿𝑥, 𝑁 log 𝑥 = log 𝑘
}︁
. (3.12)

Note thatℳ is 𝑛-dimensional and immersed in R2𝑛
>0. We denote a point inℳ as vector

𝑝 ∈ R2𝑛
>0. When convenient, we could also consider the log manifold immersed in R2𝑛

.

logℳ :=
{︁
(log 𝑥, log 𝑡, log 𝑘) ∈ R2𝑛 : (𝑥, 𝑡, 𝑘) ∈ℳ

}︁
. (3.13)

We caution that this approach of defining ℳ considers a given binding network as a

detailed-balance constraint on the values (𝑥, 𝑡, 𝑘) can take. The detailed balance condition

takes higher priority than any specification of rates of a CRN. This is different from the

typical approaches in CRN theory where the specification of network stoichiometry and

rates take precedence, and the existence of detailed balance steady state is then determined

later from the CRN specification. Because of our taking detailed balance as higher priority

than CRN specifications, several CRNs can be equivalent to the same detailed balance

behavior. In other words, if detailed balance is guaranteed, then specifying the full CRN

may be redundant. For example, consider 3-state transition 𝐶1 ⇌ 𝐶2 ⇌ 𝐶3 ⇌ 𝐶1. With

detailed balance given, this network is equivalent to the same network with one reaction

deleted. Because of this, any nonequilibrium steady states are also automatically excluded.

Coordinate charts of the equilibrium manifold

With the equilibrium manifoldℳ defined for a given binding networks, we would like to

describe it and characterize its properties. The first thing to do with a smooth manifold

is to specify coordinate charts on it, so that we have a parameterization of points on the

manifold, and can talk about its tangent bundle for how to move around the manifold.

ℳ is an 𝑛-dimensional manifold. It is naturally immersed in 2𝑛-dimensional space, where

each point is specified as 𝑝 = (𝑥, 𝑡, 𝑘) ∈ R2𝑛>0. But these variables are further related by 𝑛

equations, namely 𝑡 = 𝐿𝑥 and 𝑁 log 𝑥 = log 𝑘. So we would like a parameterization ofℳ
that maps its points to R𝑛

in a one-to-one or invertible way, so that the 𝑛 degrees of freedom
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inℳ are now explicitly some variable in R𝑛
. Such parameterizations are called coordinate

charts, and a collection of charts that together cover the whole manifold is called an atlas.

Forℳ, we will see below that the natural choices of atlas we discuss have just one chart.

The most natural choice to begin with is of course the species concentrations log 𝑥. By

slight abuse of notation, this corresponds to the map log 𝑥 : ℳ→ R𝑛
that takes a point

specified as 𝑝 = (𝑥, 𝑡, 𝑘) ∈ℳ and output the log of the first 𝑛 variables log 𝑥. This map is

invertible because given log 𝑥, we can find 𝑡 and 𝑘 uniquely. Also, this chart is an atlas

because every point inℳ can be represented in this way. So instead of using a vector

𝑝 ∈ R2𝑛
>0 to denote a point on ℳ, we could equivalently use 𝑥 ∈ R𝑛

>0. We can use the

diagram below to represent this mapping:

𝑝 = (𝑥, 𝑡, 𝑘) ∈ℳ log 𝑥−−−−−−−−⇀↽−−−−−−−−
(𝑥,𝐿𝑥,𝑁 log 𝑥)

log 𝑥 ∈ R𝑛. (3.14)

We also want alternative charts for different purposes. For example, if we consider changing

the steady states of a given binding network by adjusting the concentrations. In this case,

although 𝑥 varies, the equilibrium constants 𝑘 are not modified by such changes, therefore

should remain constant. So to study changes in concentrations in this case, we would

like 𝑘 to appear explicitly as variables in our parameterization. Another reason we may

want this is to study what changes to the system would be caused by modifying the

equilibrium constants 𝑘, which is natural when asking questions about energy of molecules

or temperature.

To obtain coordinate charts with 𝑘 as variables, we first note that 𝑘 ∈ R𝑟
>0 is of 𝑟 dimensions,

so to parameterize the 𝑛 dimensions ofℳ, we need another 𝑑 variables. A simple choice

that is still close to the log 𝑥 chart is to take 𝑑 of the 𝑥 variables. Assuming our binding

network is isomer-atomic, then one natural choice for this is 𝑥𝑎 ∈ R𝑑
>0, concentrations for

the 𝑑 atomic species. This yields chart (log 𝑥𝑎, log 𝑘).

We can investigate properties of this chart by how it is mapped from the log 𝑥 chart. To

write the map, we re-order the species so that the first 𝑑 species are atomic. So 𝑥 = (𝑥𝑎, 𝑥𝑐)
is split into two parts, the 𝑑 atomic species 𝑥𝑎 ∈ R𝑑

, and 𝑟 complex species 𝑥𝑐 ∈ R𝑟
. Using

detailed balanced condition Eq (3.11), we have⎡⎣log 𝑥𝑎

log 𝑘

⎤⎦ =
⎡⎣ I𝑑 0
𝑁1 𝑁2

⎤⎦ log 𝑥.

Invert this expression and use that 𝐿⊺
2 = −𝑁−1

2 𝑁1 yields an explicit alternative parameter-
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ization of detailed balance steady states:

{log 𝑥 ∈ R𝑛 : 𝑁 log 𝑥 = log 𝑘}

=

⎧⎨⎩log 𝑥 = 𝐿⊺ log 𝑥𝑎 +
⎡⎣ 0
𝑁−1

2

⎤⎦ log 𝑘 : log 𝑥𝑎 ∈ R𝑑, log 𝑘 ∈ R𝑟

⎫⎬⎭
=

⎧⎨⎩log 𝑥 =
⎡⎣ I𝑑 0
𝐿⊺

2 𝑁−1
2

⎤⎦⎡⎣log 𝑥𝑎

log 𝑘

⎤⎦ : log 𝑥𝑎 ∈ R𝑑, log 𝑘 ∈ R𝑟

⎫⎬⎭.

(3.15)

So we see that the map between chart log 𝑥 and chart (log 𝑥𝑎, log 𝑘) is linear, so we represent

this map explicitly as matrices in the following diagram:

log 𝑥

⎡⎣ I𝑑 0
𝑁1 𝑁2

⎤⎦
−−−−−−−−⇀↽−−−−−−−−⎡⎣ I𝑑 0

𝐿⊺
2 𝑁−1

2

⎤⎦
(log 𝑥𝑎, log 𝑘). (3.16)

Since this map is invertible, we know (log 𝑥𝑎, log 𝑘) is also a one-chart atlas forℳ.

Although chart (log 𝑥𝑎, 𝑘) contains 𝑘 as explicit variables, there are still scenarios where

we may want an alternative. For one, we need the isomer-atomic assumption to have the

atomic species. This may not hold in general. More importantly, in many scenarios when

the concentrations in a binding network is adjusted, it is not by adjusting the atomic species’

concentration, but by adjusting the conserved quantities or the totals (see Section 3.1). This

is especially often the case for time-scale separation for binding and catalysis reactions,

where binding reaches equilibrium steady state while catalysis produces or degrades

molecules to change concentrations. Here when a molecule is produced or degraded by

catalysis, whether it is bound or not, or in which state among the state transitions, is not

distinguishable from the slow time scale of catalysis. Once a molecule is produced or

degraded in a particular form or state, the binding network quickly equilibrates and the

net change of one molecule is then on the total, not any particular form or state.

From this reason, we would like to have the chart (log 𝑡, log 𝑘), where 𝑡 = 𝐿𝑥 is the

totals or conserved quantities. To describe the map between this chart and chat log 𝑥 is

more involved, as can be seen from the mixing of linear map 𝑡 = 𝐿𝑥 and log-linear map

log 𝑘 = 𝑁 log 𝑥. We delve into this in the next section.
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3.5 Log derivative as transform between two coordinate charts

We would like to understand how 𝑥 changes with respect to (𝑡, 𝑘) on the manifoldℳ. The

map from 𝑥 to (𝑡, 𝑘) can be explicitly written as (log 𝑡, log 𝑘) = (log 𝐿𝑥, 𝑁 log 𝑥). However,

the inverse map would require us to solve 𝑥 in terms of (𝑡, 𝑘). This comes down to

solve a system of polynomial equations relating (𝑥, 𝑡, 𝑘), which in general is intractable

both analytically and computationally. So we need to characterize the map from (𝑡, 𝑘)
to 𝑥 through other means. One natural approach for a smooth manifold is to instead

characterize how the tangent vectors are mapped between the two charts. This corresponds

to study the derivatives.

To show the map log 𝑥 ↦→ (log 𝑡, log 𝑘) is invertible and study its inverse, we capture the

manifoldℳ as the zero set of the following smooth function:

𝐹 (𝑥, 𝑡, 𝑘) =
⎡⎣𝐹1(𝑥, 𝑡)
𝐹2(𝑥, 𝑘)

⎤⎦ =
⎡⎣ 𝐿𝑥− 𝑡

𝑁 log 𝑥− log 𝑘

⎤⎦. (3.17)

We can then calculate the differentials by implicit function theorem, at any point 𝑥 where

𝜕𝐹
𝜕𝑥

is invertible.

[︁
𝜕𝑥(𝑡,𝑘)

𝜕𝑡
𝜕𝑥(𝑡,𝑘)

𝜕𝑘

]︁
= −

(︃
𝜕𝐹 (𝑥, 𝑡, 𝑘)

𝜕𝑥

)︃−1[︁
𝜕𝐹 (𝑥,𝑡,𝑘)

𝜕𝑡
𝜕𝐹 (𝑥,𝑡,𝑘)

𝜕𝑘

]︁

= −
⎡⎣ 𝜕𝐹1(𝑥,𝑡)

𝜕𝑥
𝜕𝐹2(𝑥,𝑘)

𝜕𝑥

⎤⎦−1⎡⎣ 𝜕𝐹1(𝑥,𝑡)
𝜕𝑡

𝜕𝐹1(𝑥,𝑡)
𝜕𝑘

𝜕𝐹2(𝑥,𝑘)
𝜕𝑡

𝜕𝐹2(𝑥,𝑘)
𝜕𝑘

⎤⎦
= −

⎡⎣ 𝐿

𝑁Λ−1
𝑥

⎤⎦−1⎡⎣−I𝑑 0
0 −Λ−1

𝑘

⎤⎦
=
⎡⎣ 𝐿

Λ𝑘𝑁Λ−1
𝑥

⎤⎦−1

,

(3.18)

where I𝑑 is the identity matrix of dimension 𝑑, and Λ𝑘 denote the diagonal matrix with 𝑘

along the diagonal. As for log derivatives, since
𝜕 log 𝑥
𝜕 log 𝑡

= Λ−1
𝑥

𝜕𝑥
𝜕𝑡

Λ𝑡, we obtain the following

result.

Theorem 3.5.1 (Log derivative formula). Givenℳ⊂ R2𝑛
>0, the equilibrium manifold of a binding

network with transpose-reduced stoichiometry matrix 𝑁 and conservation law matrix 𝐿, at any

point 𝑝 = (𝑥, 𝑡, 𝑘) ∈ℳ, we have

𝜕 log 𝑥

𝜕(log 𝑡, log 𝑘) =
[︁

𝜕 log 𝑥
𝜕 log 𝑡

𝜕 log 𝑥
𝜕 log 𝑘

]︁
=
⎡⎣Λ−1

𝑡 𝐿Λ𝑥

𝑁

⎤⎦−1

=
⎡⎣𝐿Λ𝑥

𝑁

⎤⎦−1⎡⎣Λ𝑡 0
0 I𝑟

⎤⎦, (3.19)

where I𝑟 is the identity matrix of dimension 𝑟.
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Note that although the theorem states that this log derivative
𝜕 log 𝑥

𝜕(log 𝑡,log 𝑘) can always be

calculated at any point 𝑥 in this fashion through matrix inversion, we have not proved

this, as all previous calculations assumed 𝜕𝑥𝐹 is invertible. To show this, we can prove

something stronger, namely the map 𝑓 : log 𝑥 ↦→ (log 𝑡, log 𝑘) is a diffeomorphism. This

map can be explicitly written as follows:

𝑓(𝑧) =
⎡⎣log 𝐿 exp 𝑧

𝑁𝑧

⎤⎦, (3.20)

where the exponential map is applied component wise. We can show this map is a

diffeomorphism from R𝑛
to R𝑛

. By Hadamard-Caccioppoli Theorem, 𝑓 is a diffeomorphism

if 𝑓 is proper and 𝑑𝑓 is bĳective at all points. 𝑓 is proper because for every sequence of 𝑧

escaping to infinity, 𝑓(𝑧) also escapes to infinity, since 𝐿 is non-negative and every column

is nonzero. So it is left to show that 𝑑𝑓 is bĳective at all points, i.e. 𝑑𝑓 , the log derivative

𝜕(log 𝑡,log 𝑘)
𝜕 log 𝑥

is invertible for all 𝑥. From (3.19), we see that this is equivalent to the matrix

𝑀(𝑥; 𝐿) :=
⎡⎣𝐿Λ𝑥

𝑁

⎤⎦ (3.21)

is invertible for all 𝑥. We prove this in the following proposition.

Proposition 3.5.2. 𝑀 (𝑥; 𝐿) is invertible for all 𝑥 ∈ R𝑛
>0.

Proof. Proof by contradiction. If it is not invertible, then there exists a nonzero vector 𝑣 s.t.

𝑀 (𝑥; 𝐿)𝑣 = 0. This implies 𝑁𝑣 = 0, i.e. 𝑣 ∈ rowspan 𝐿, so there exists a nonzero vector 𝑐

s.t. 𝑣 = 𝐿⊺𝑐. So 𝐿Λ𝑥𝑣 = 𝐿Λ𝑥𝐿⊺𝑐 = 0. But this is impossible, since Λ𝑥 is positive definite,

so 𝑐⊺𝐿Λ𝑥𝐿⊺𝑐 > 0.

Hence, 𝑓 : log 𝑥 ↦→ (log 𝑡, log 𝑘) is a diffeomorphism, and the log derivative
𝜕 log 𝑥

𝜕(log 𝑡,log 𝑘) is

well defined on all points inℳ. The formula 3.19 is always applicable.

We can write the relationship of chart log 𝑥 and chart (log 𝑡, log 𝑘) in the following diagram:

log 𝑥
𝑓(log 𝑥)=(log 𝐿𝑥,𝑁 log 𝑥)−−−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−−−

𝑑𝑓−1= 𝜕 log 𝑥
𝜕(log 𝑡,log 𝑘) =

⎡⎣Λ−1
𝑡 𝐿Λ𝑥

𝑁

⎤⎦−1
(log 𝑡, log 𝑘). (3.22)

Now we have established that for a generic equilibrium manifoldℳ of a binding network,

in addition to the natural chart log 𝑥, we have an alternative chart in terms of totals

and equilibrium constants (log 𝑡, log 𝑘), which is also a one-chart atlas. Recall that for

isomer-atomic binding networks, we have another natural chart using atomic species

(log 𝑥𝑎, log 𝑘). We study how this chart relates to the total chart (log 𝑡, log 𝑘) below.
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Log derivatives and chart transform for isomer-atomic binding networks

Recall that from the previous section, we established that if the binding network is isomer-

atomic, then we have another chart using the atomic species, namely (log 𝑥𝑎, log 𝑘), where

𝑥 = (𝑥𝑎, 𝑥𝑐) is split into the atomic species and the complex species. To relate this atomic

chart to the total chart (log 𝑡, log 𝑘), since the equilibrium constants 𝑘) is kept the same,

we just need to study how 𝑥𝑎
is mapped to 𝑡. The chart transform in Eq (3.16) tells us

log 𝑥𝑐 = 𝐿⊺
2 log 𝑥𝑎 + 𝑁−1

2 log 𝑘, so we have

𝑡 = 𝐿𝑥 = 𝑥𝑎 + 𝐿2𝑥
𝑐 = 𝑥𝑎 + 𝐿2 exp(𝐿⊺

2 log 𝑥𝑎 + 𝑁−1
2 log 𝑘).

The inverse map from (log 𝑥𝑎, log 𝑘) to (log 𝑡, log 𝑘) again requires solving an intractible

polynomial system, so we resort to differentials.

Theorem 3.5.3 (Isomer-atomic log derivative formula). Givenℳ⊂ R2𝑛
>0, the equilibrium manifold

of an isomer-atomic binding network with transpose-reduced stoichiometry matrix 𝑁 ∈ R𝑟×𝑛
and

conservation law matrix 𝐿 ∈ R𝑑×𝑛
, with an atom-first ordering so that the first 𝑑 species are atomic

species, i.e. 𝐿 =
[︁
I𝑑 𝐿2

]︁
, 𝐿2 ∈ R𝑑×𝑟

, and 𝑁 =
[︁
𝑁1 𝑁2

]︁
, with 𝐿⊺

2 = −𝑁−1
2 𝑁1. Then at any

point 𝑝 = (𝑥, 𝑡, 𝑘) ∈ℳ, we have

𝜕 log 𝑥𝑎

𝜕(log 𝑡, log 𝑘) =
[︁
(𝐿Λ𝑥𝐿⊺)−1Λ𝑡 −(𝐿Λ𝑥𝐿⊺)−1𝐿2Λ𝑥𝑐𝑁−1

2

]︁
,

𝜕 log 𝑥𝑐

𝜕(log 𝑡, log 𝑘) = 𝐿⊺
2

𝜕 log 𝑥𝑎

𝜕(log 𝑡, log 𝑘) +
[︁
0 𝑁−1

2

]︁
,

(3.23)

where I𝑟 is the identity matrix of dimension 𝑟.

Proof. The second formula is immediately obtained by using chain rule and Eq (3.16):

𝜕 log 𝑥𝑐

𝜕(log 𝑡, log 𝑘) = 𝜕𝐿⊺
2 log 𝑥𝑎 + 𝑁−1

2 log 𝑘

𝜕(log 𝑡, log 𝑘) = 𝐿⊺
2

𝜕 log 𝑥𝑎

𝜕(log 𝑡, log 𝑘) + 𝑁−1
2

[︁
0 I𝑟

]︁
.

The first formula is obtained by block-matrix inversion of Eq (3.19). Block-matrix inversion

satisfies ⎡⎣𝐴 𝐵

𝐶 𝐷

⎤⎦ =
⎡⎣(𝐴−𝐵𝐷−1𝐶)−1 0

0 (𝐷 −𝐶𝐴−1𝐵)−1

⎤⎦⎡⎣ I −𝐵𝐷−1

−𝐶𝐴−1 I

⎤⎦,

if blocks 𝐴 and 𝐷 are both invertible. So[︁
𝐴 𝐵

]︁
= (𝐴−𝐵𝐷−1𝐶)−1

[︁
I −𝐵𝐷−1

]︁
.
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Applying this to our case,

𝜕 log 𝑥𝑎

𝜕(log 𝑡, log 𝑘) =
[︁
I𝑑 0

]︁𝜕(log 𝑥𝑎, log 𝑥𝑐)
𝜕(log 𝑡, log 𝑘) =

[︁
I𝑑 0

]︁⎡⎣Λ𝑥𝑎 𝐿2Λ𝑥𝑐

𝑁1 𝑁2

⎤⎦−1⎡⎣Λ𝑡 0
0 I𝑟

⎤⎦
=(Λ𝑥𝑎 −𝐿2Λ𝑥𝑐𝑁−1

2 𝑁1)−1
[︁
I −𝐿2Λ𝑥𝑐𝑁−1

2

]︁⎡⎣Λ𝑡 0
0 I𝑟

⎤⎦
=(Λ𝑥𝑎 + 𝐿2Λ𝑥𝑐𝐿⊺

2)−1
[︁
Λ𝑡 −𝐿2Λ𝑥𝑐𝑁−1

2

]︁
.

This is the desired formula by recognizing Λ𝑥𝑎 + 𝐿2Λ𝑥𝑐𝐿⊺
2 = 𝐿Λ𝑥𝐿⊺

.

We remark that the atomic log derivative formula in Eq (3.23) highlights an internal

symmetric structure not obviously seen in the more general log derivative formula in Eq

(3.19). In particular, the symmetric positive-semidefinite matrix (𝐿Λ𝑥𝐿⊺)−1
constitute the

core structure from which all the log derivatives arise.

In addition to characterizing how the atomic chart (log 𝑥𝑎, log 𝑘) is mapped from the total

chart (log 𝑡, log 𝑘), Eq (3.23) also implies a simpler way to calculate the log derive
𝜕 log 𝑥

𝜕(log 𝑡,log 𝑘)

for isomer-atomic binding entworks. Namely, we can first calculate just the log derivative of

𝑥𝑎
, then use this to obtain the log derivative of 𝑥𝑐

. For large scale problems, the bottleneck

in log dervative computation would be matrix inversion, which often has 𝑂(𝑛3) complexity

to invert a square matrix with dimension 𝑛 (could be lower by more advanced algorithms,

but still larger than 𝑂(𝑛2.3)). We see that in this formula, we can compute all log derivatives

by inverting only one matrix with dimension 𝑑 and one with dimension 𝑟, instead of

inverting a matrix with dimension 𝑛 in Eq (3.19), so roughly reducing complexity from 𝑛3

to 𝑑3 + 𝑟3
. If we are only interested in the log derivative of 𝑥 with respect to 𝑡, we only

need to compute
𝜕 log 𝑥𝑎

𝜕 log 𝑡
= (𝐿Λ𝑥𝐿⊺)−1Λ𝑡, which only requires to invert a 𝑑× 𝑑 matrix, and

then compute
𝜕 log 𝑥𝑐

𝜕 log 𝑡
= 𝐿⊺

2
𝜕 log 𝑥𝑎

𝜕 log 𝑡
= 𝐿⊺

2(𝐿Λ𝑥𝐿⊺)−1Λ𝑡.

We summarize the three charts studied so far and the transform between them in Figure

3.4.

Other alternative charts

The two alternative charts we have studied so far have equilibrium constants fixed, and

the remaining 𝑑 degrees of freedom are represented as 𝑥𝑎 = 𝐴𝑎𝑥 where 𝐴𝑎 :=
[︁
I𝑑 0

]︁
in

atomic chart, and 𝑡 = 𝐿𝑥 in total chart. This brings the question about what are the other

charts of the form (log 𝐴𝑥, log 𝑘), for some non-negative matrix 𝐴 ∈ R𝑑×𝑛
?

We know (log 𝐴𝑥, log 𝑘) is a chart if and only if the map log 𝑥 ↦→ (log 𝐴𝑥, log 𝑘) is invertible

for all 𝑥. From log derivative formula (3.19), we know this is equivalent to matrix 𝑀 (𝑥; 𝐴)
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Figure 3.4 The three charts of equilibrium manifoldℳ of a binding network, and the transform between

them.

is invertible for all 𝑥. Hence we define 𝒜 =
{︁
𝐴 ∈ R𝑑×𝑛

≥0 : det 𝑀(𝑥; 𝐴) ̸= 0,∀𝑥
}︁
, the set of

𝐴 such that (log 𝐴𝑥, log 𝑘) are charts.

Topologically, since determinant is a continuous function, a matrix 𝐴 ∈ 𝒜 has determinant

of 𝑀(𝑥; 𝐴) either positive for all 𝑥, or negative for all 𝑥. This separates 𝒜 into two

connected components,

𝒜+(𝑁 ) :=
{︁
𝐴 ∈ R𝑑×𝑛

≥0 : det 𝑀(𝑥; 𝐴) > 0,∀𝑥
}︁
, (3.24)

and correspondingly 𝒜−(𝑁 ).

For the atomic chart, det 𝑀(𝑥; 𝐴𝑎) = det 𝑁2. So

[︁
I𝑑 0

]︁
∈ 𝒜+(𝑁 ) if det 𝑁2 > 0. Similarly,

we show below that the total chart’s sign is determined by the same condition for isomer-

atomic CRNs.

Proposition 3.5.4. Assume isomer-atomic, then 𝐿 ∈ 𝒜+(𝑁 ) if and only if det 𝑁2 > 0.

Proof. Calculate⎡⎣𝐿

𝑁

⎤⎦⎡⎣I𝑑 0
0 𝑁 ⊺

2

⎤⎦ =
⎡⎣ I𝑑 −𝑁 ⊺

1 𝑁−⊺
2

𝑁1 𝑁2

⎤⎦⎡⎣I𝑑 0
0 𝑁 ⊺

2

⎤⎦ =
⎡⎣ I −𝑁 ⊺

1

𝑁1 𝑁2𝑁
⊺
2

⎤⎦.

Take determinant of both sides,

det
⎛⎝⎡⎣𝐿

𝑁

⎤⎦⎞⎠ det(𝑁 ⊺
2 ) = det(𝑁2𝑁

⊺
2 + 𝑁1𝑁

⊺
1 ) > 0.

The right hand side is a positive definite matrix, so determinant is positive. Since

det 𝑀(1; 𝐿) > 0 if and only if det 𝑀 (𝑥; 𝐿) > 0 for all 𝑥 ∈ R𝑛
>0 from previous Lemma, we

have the desired result.



100

So we know the atomic chart with matrix 𝐴 = 𝐴𝑎 =
[︁
I𝑑 0

]︁
and the total chart with 𝐴 = 𝐿

both resides in the same connected component of 𝒜. Exactly which one depends on the

choice of which direction is used for the stoichiometry vectors. Thus, without loss of

generality, we assume 𝐴𝑎, 𝐿 ∈ 𝒜+(𝑁 ).

To find other alternative chart, we note that given a 𝐴 ∈ 𝒜+(𝑁 ), then for any 𝑆 ∈ GL+
𝑑 (R)

such that 𝑆𝐴 ∈ R𝑑×𝑛
≥0 , then 𝑆𝐴 ∈ 𝒜+(𝑁 ). Here GL+

𝑑 (R) is the identity component of the

general linear group of 𝑑× 𝑑 matrices, i.e. 𝑑× 𝑑 matrices with positive determinant. This

states that any invertible matrix with positive determinant can be left-multiplied to 𝐴, and

if the resulting matrix is non-negative, then it is in 𝒜+(𝑁 ). There are several elementary

matrices of GL+
𝑑 (R) worth noting. It includes positive scaling Λ𝛼, where 𝛼 ∈ R𝑑

>0 is a

positive vector in R𝑑
. It also includes permutations with positive sign, i.e. consisting of

an even number of transpositions. It also includes row additions I + 𝑎𝐸𝑖𝑗 , where 𝑖 ̸= 𝑗,

𝑖, 𝑗 ∈ {1, . . . , 𝑑}, 𝐸𝑖𝑗 has 1 at (𝑖, 𝑗) entry and zero everywhere else, and 𝑎 ∈ R is a real

number. I + 𝑎𝐸𝑖𝑗 takes the 𝑗th row of 𝐴, multiply by 𝑎, and adds to the 𝑖th row of 𝐴. We

caution that combinations of these elementary operations may go out of GL+
𝑑 (R), and the

resulting matrix may no longer be non-negative.

As for right multiplication, given 𝐴 ∈ 𝒜+(𝑁 ), then 𝐴Λ𝛼 ∈ 𝒜+(𝑁 ) for any positive vector

𝛼 ∈ R𝑛
>0. This is because this multiplication is just a scaling of variables 𝑥, without

changing its domain R𝑛
>0.

These operations give a basic approach to explore other alternative charts ofℳ. It is an

interesting question for further research to characterize the set 𝒜+(𝑁 ).

3.6 Polyhedral shape of log derivatives in one binding reac-
tion

So far we have treated log derivatives as a way to transform between coordinate charts. In

this section, we investigate the biological meaning of log derivatives and what biological

behaviors can be revealed from properties of log derivatives. The particular log derivatives

we investigate is that of some species concentration 𝑥𝑖 with respect to the totals 𝑡 and

equilibrium constants 𝑘, namely
𝜕 log 𝑥𝑖𝑥

𝜕(log 𝑡,log 𝑘) . Because of their biological significance, we give

these log derivatives the special name reaction orders. This is because often one species in

a binding network is the active catalytic complex that determines the rate of a catalysis

reaction. When regulating this reaction rate, the total concentrations of atomic species are

varied by the cell. Therefore, how the rate varies with changes in the total concentrations

determine behaviors from bioregulation. The order of this change is captured by the
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particular log derivative above,
𝜕 log 𝑥𝑖

𝜕(log 𝑡,log 𝑘) , if 𝑥𝑖 is the active catalytic species, hence the

name reaction order. Reaction order can also be equivalently interpreted as infinitesimal

fold change, or the exponents of a local expression of 𝑥𝑖 in terms of 𝑡 and 𝑘.

This does not answer the question of why reaction orders are used to study bioregulation

though. For example, why the linear direction
𝜕𝑥𝑖

𝜕(𝑡,𝑘) is not used? We demonstrate several

useful properties of reaction orders in this section by examining the reaction orders of a

single binding reaction in close detail. The key properties we demonstrate are summarized

here. (1) Constrained by binding network stoichiometry, reaction orders are bounded

within some polyhedral set, with vertices correspond to biologically meaningful regimes.

This is in contrast to linear derivatives, which are unbounded in most directions. (2) The

polyhedral sets has hierarchical structures corresponding to robustness to variations, so

that points concentrate to vertices, edges, and faces under asymptotic limits. This means

reaction orders are robust to variations in rates and concentrations, so it can be controlled

to precise values using noisy and uncertain actuations, and robust behaviors can be built

on top of it.

Explicit reaction order calculation for one binding reaction

We do explicit calculation for one binding reaction to reveal the geometric shape of log

derivatives. For transparency, we calculate the log derivatives directly without using any

of the formula developed in previous section, although they produce the same result.

A binding network consisting of just one binding reaction can be written as follows:

𝐸 + 𝑆
𝑘+
−⇀↽−
𝑘−

𝐶, (3.25)

where component species enzyme 𝐸 and substrate 𝑆 bind to form complex 𝐶, and 𝑘+
and

𝑘−
are forward and backward reaction rate constants. Although we used enzyme and

substrate to denote the two component species out of tradition, we do not assume they

have any special properties, and by symmetry 𝐸 and 𝑆 are equivalent by re-labeling.

This binding reaction has the following deterministic dynamics from the law of mass-action:

𝑑

𝑑𝑡
𝐶(𝑡) = 𝑘+𝐸(𝑡)𝑆(𝑡)− 𝑘−𝐶(𝑡), (3.26)

where by slight abuse of notation, the symbol for a species is also used to denote the

concentration of that species. This system has steady-state equation

𝐸𝑆 = 𝐾𝐶, (3.27)
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where 𝐾 := 𝑘−

𝑘+ is the equilibrium constant in the dissociation direction. As guaranteed,

this corresponds to 𝑁 log 𝑥 = log 𝑘, where 𝑁 =
[︁
−1 −1 1

]︁
, 𝑥 = (𝐸, 𝑆, 𝐶), and 𝑘 = 𝐾.

Note that in this particular case, the steady state necessarily satisfy detailed balance, so we

do not need to begin with detailed balance condition to defineℳ, but instead deriveℳ
from the specified rates.

The conserved quantities of this binding reaction are the total enzyme and total substrate:

𝑡𝑆 :=𝑆 + 𝐶,

𝑡𝐸 :=𝐸 + 𝐶.
(3.28)

This can be written as 𝑡 = 𝐿𝑥 with the conservation matrix below. Here the species

ordering is (𝐸, 𝑆, 𝐶), and the total ordering is (𝑡𝐸, 𝑡𝑆). We also attach the stoichiometry

matrix here for clear comparison.

⎡⎣𝐿

𝑁

⎤⎦ =

⎡⎢⎢⎢⎣
1 0 1
0 1 1
1 1 −1

⎤⎥⎥⎥⎦ (3.29)

This in turn defines the equilibrium manifold:

ℳ =
{︁
(𝑥, 𝑡, 𝑘) ∈ R6

>0 : 𝑁 log 𝑥 = log 𝑘, 𝑡 = 𝐿𝑥
}︁

=
{︁
(𝐸, 𝑆, 𝐶, 𝑡𝐸, 𝑡𝑆, 𝐾) ∈ R6

>0 : 𝐸𝑆 = 𝐾𝐶, 𝑡𝑆 = 𝑆 + 𝐶, 𝑡𝐸 = 𝐸 + 𝐶
}︁
.

(3.30)

In this case, we can explicitly solve for 𝑥 = (𝐸, 𝑆, 𝐶) expressed in (𝑡, 𝑘) = (𝑡𝐸, 𝑡𝑆, 𝐾).
Namely,

2𝐶 = 𝑡𝐸 + 𝑡𝑆 + 𝐾 −
√︁

(𝑡𝐸 + 𝑡𝑆 + 𝐾)2 − 4𝑡𝐸𝑡𝑆, (3.31)

which is then easily used to derive expressions for 𝐸 and 𝑆. This formula can be used as

the exact solution for us to compare with in this case. But for the derivative to follow the

workflow in the general case as described in Section 3.4, we do not rely on this formula.

Instead, we use the implicit function theorem as we did in the general case to calculate the

reaction order, i.e. the log derivative
𝜕 log(𝐸,𝑆,𝐶)

𝜕 log(𝑡𝐸 ,𝑡𝑆 ,𝐾) . Define 𝐹 : R6
>0 → R3

whose zero set is

the equilibrium manifoldℳ:

𝐹 (𝐸, 𝑆, 𝐶, 𝑡𝐸, 𝑡𝑆, 𝐾) =
⎡⎣𝐹1(𝐸, 𝑆, 𝐶, 𝑡𝐸, 𝑡𝑆)

𝐹2(𝐸, 𝑆, 𝐶, 𝐾)

⎤⎦ =

⎡⎢⎢⎢⎣
𝐸 + 𝐶 − 𝑡𝐸

𝑆 + 𝐶 − 𝑡𝑆

𝐸𝑆 − 𝐶𝐾

⎤⎥⎥⎥⎦, (3.32)
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By implicit function theorem,

𝜕(𝐸, 𝑆, 𝐶)
𝜕(𝑡𝐸, 𝑡𝑆, 𝐾) = −

⎡⎢⎢⎢⎣
1 0 1
0 1 1
𝑆 𝐸 −𝐾

⎤⎥⎥⎥⎦
−1⎡⎢⎢⎢⎣
−1 0 0
0 −1 0
0 0 −𝐶

⎤⎥⎥⎥⎦

= 1
𝐸 + 𝑆 + 𝐾

⎡⎢⎢⎢⎣
𝐸 + 𝐾 −𝐸 𝐶

−𝑆 𝑆 + 𝐾 𝐶

𝑆 𝐸 −𝐶

⎤⎥⎥⎥⎦.

Since 𝐶 = 𝐸𝑆
𝐾

, we can express the above in dimensionless quantities 𝑒 := 𝐸
𝐾

and 𝑠 = 𝑆
𝐾

.

𝜕(𝐸, 𝑆, 𝐶)
𝜕(𝑡𝐸, 𝑡𝑆, 𝐾) = 1

1 + 𝑒 + 𝑠

⎡⎢⎢⎢⎣
1 + 𝑒 −𝑒 𝑒𝑠

−𝑠 1 + 𝑠 𝑒𝑠

𝑠 𝑒 −𝑒𝑠

⎤⎥⎥⎥⎦. (3.33)

To calculate log derivative, we note that
𝜕 log 𝑔(𝑥)

𝜕 log 𝑥
= Λ−1

𝑔
𝜕𝑔(𝑥)

𝜕𝑥
Λ𝑥, where Λ𝑣 = diag(𝑣), since

𝜕 log 𝑔𝑖(𝑥)
𝜕 log 𝑥𝑗

= 𝜕𝑔𝑖(𝑥)
𝜕𝑥𝑗

𝑥𝑗

𝑔𝑖(𝑥) . Therefore,

𝜕 log(𝐸, 𝑆, 𝐶)
𝜕 log(𝑡𝐸, 𝑡𝑆, 𝐾) = 1

𝐸 + 𝑆 + 𝐾

⎡⎢⎢⎢⎣
𝐸 0 0
0 𝑆 0
0 0 𝐶

⎤⎥⎥⎥⎦
−1⎡⎢⎢⎢⎣

𝐸 + 𝐾 −𝐸 𝐶

−𝑆 𝑆 + 𝐾 𝐶

𝑆 𝐸 −𝐶

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑡𝐸 0 0
0 𝑡𝑆 0
0 0 𝐾

⎤⎥⎥⎥⎦

= 1
𝐸 + 𝑆 + 𝐾

⎡⎢⎢⎢⎣
(1 + 𝑆

𝐾
)(𝐸 + 𝐾) −𝑡𝑆 𝑆

−𝑡𝐸 (1 + 𝐸
𝐾

)(𝑆 + 𝐾) 𝐸

𝑆 + 𝐾 𝐸 + 𝐾 −𝐾

⎤⎥⎥⎥⎦.

Expressing this in terms of 𝑒 and 𝑠 yields the following result.

Theorem 3.6.1 (Reaction orders of a simple binding reaction). The reaction orders of a simple

binding reaction 𝐸 + 𝑆
𝑘+
−⇀↽−
𝑘−

𝐶 can be expressed as

𝜕 log(𝐸, 𝑆, 𝐶)
𝜕 log(𝑡𝐸, 𝑡𝑆, 𝐾) = 1

1 + 𝑒 + 𝑠

⎡⎢⎢⎢⎣
(1 + 𝑒)(1 + 𝑠) −𝑠(1 + 𝑒) 𝑠

−𝑒(1 + 𝑠) (1 + 𝑠)(1 + 𝑒) 𝑒

1 + 𝑠 1 + 𝑒 −1

⎤⎥⎥⎥⎦, (3.34)

where 𝑒 = 𝐸
𝐾

, 𝑠 = 𝑆
𝐾

, and 𝐾 := 𝑘−

𝑘+ the equilibrium constant of this binding reaction in the

dissociation direction.

Below we re-do the calculation for reaction order using the formula in Eq (3.19) to show

that indeed they yield the same result.
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Example 5 (Simple binding reaction.). 𝐸 + 𝑆 ⇌ 𝐶 with binding constant 𝐾. Let variables be

𝑥 = (𝐸, 𝑆, 𝐶), 𝑡 = (𝑡𝐸, 𝑡𝑆) and 𝑘 = 𝐾. The corresponding stoichiometry matrix (note we

use the forward or dissociation direction), conservation laws, and part of the matrix to be

inverted are

𝑁 =
[︁
1 1 −1

]︁
, 𝐿 =

⎡⎣1 0 1
0 1 1

⎤⎦, Λ−1
𝑡 𝐿Λ𝑥 =

⎡⎣ 𝐸
𝑡𝐸

0 𝐶𝐸𝑆

𝑡𝐸

0 𝑆
𝑡𝑆

𝐶𝐸𝑆

𝑡𝑆

⎤⎦

𝜕 log(𝐸, 𝑆, 𝐶)
𝜕 log(𝑡𝐸, 𝑡𝑆, 𝐾) =

⎡⎢⎢⎢⎣
𝐸
𝑡𝐸

0 𝐶
𝑡𝐸

0 𝑆
𝑡𝑆

𝐶
𝑡𝑆

1 1 −1

⎤⎥⎥⎥⎦
−1

=
(︂

𝐶𝐸 + 𝐶𝑆 + 𝐸𝑆

𝑡𝐸𝑡𝑆

)︂−1

⎡⎢⎢⎢⎣
1 − 𝐶

𝑡𝐸

𝐶𝑆
𝑡𝐸𝑡𝑆

− 𝐶
𝑡𝑆

1 𝐶𝐸
𝑡𝐸𝑡𝑆

𝑆
𝑡𝑆

𝐸
𝑡𝐸
− 𝐸𝑆

𝑡𝐸𝑡𝑆

⎤⎥⎥⎥⎦.

Now we express the above in terms of (𝑒, 𝑠) := ( 𝐸
𝐾

, 𝑆
𝐾

), we get the same result as Eq (3.34).

We can also utilize the stoichiometry-atomic property of this network, with atomic species

𝑥𝑎 = (𝐸, 𝑆). This splits the stoichiometry and the conservation law matrix into atomic and

non-atomic parts:

𝑁 =
[︁
𝑁1 𝑁2

]︁
=
[︁
1 1 −1

]︁
, 𝐿 =

[︁
I2 𝐿2

]︁
=
⎡⎣1 0 1
0 1 1

⎤⎦,

and the core symmetric structure is

(𝐿Λ𝑥𝐿⊺)−1 =
⎡⎣𝐸 + 𝐶 𝐶

𝐶 𝑆 + 𝐶

⎤⎦−1

= 1
𝐸𝑆 + 𝐶𝑆 + 𝑆𝐶

⎡⎣𝑆 + 𝐶 −𝐶

−𝐶 𝐸 + 𝐶

⎤⎦ = 1
1 + 𝑒 + 𝑠

⎡⎣1 + 1
𝑒
−1

−1 1 + 1
𝑠

⎤⎦.

So 𝑁−1
2 = −1, −𝐿2Λ𝑥𝑐𝑁−1

2 =
⎡⎣𝐶

𝐶

⎤⎦. From this we can calculate

𝜕 log(𝐸, 𝑆)
𝜕 log(𝑡𝐸, 𝑡𝑆) = (𝐿Λ𝑥𝐿⊺)−1Λ𝑡 = 1

1 + 𝑒 + 𝑠

⎡⎣(1 + 𝑒)(1 + 𝑠) −𝑠(1 + 𝑒)
−𝑒(1 + 𝑠) (1 + 𝑒)(1 + 𝑠)

⎤⎦,

𝜕 log(𝐸, 𝑆)
𝜕 log 𝐾

= −(𝐿Λ𝑥𝐿⊺)−1𝐿2Λ𝑥𝑐𝑁−1
2 = 1

1 + 𝑒 + 𝑠

⎡⎣𝑠

𝑒

⎤⎦,

𝜕 log 𝐶

𝜕 log(𝑡𝐸, 𝑡𝑆, 𝐾) = 𝐿⊺
2

𝜕 log(𝐸, 𝑆)
𝜕 log(𝑡𝐸, 𝑡𝑆, 𝐾) +

[︁
0 𝑁−1

2

]︁
= 1

1 + 𝑒 + 𝑠

[︁
1 + 𝑠 1 + 𝑒 −1

]︁
.

△

These calculations have yielded an explicit formula for the reaction orders of one binding

reaction (Eq (3.34)). We derived this formula in both ways, one by explicitly step-by-step

calculate through the definition of manifold and implicit function theorem, as an illustration

of the abstract derivations in Section 3.4, and another by directly applying the resulting log
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derivative formula in Eq (3.19) from our general derivations. Below, we use these formula

to investigate what properties the reaction orders have, and how are these properties

related to biological behaviors.

Polyhedral shape of reaction order and its biological implications

We use the formula Eq (3.34) to study the properties of reaction orders and their biological

implications.

We first look at the overall shape of all possible values that the reaction orders can take.

In order to visualize in 2D, we can consider the equilibrium constant 𝐾 as fixed and

normalize all the variables so that 𝐾 is the unit of concentration. This encodes our

biological assumption that we focus on changes to reaction orders caused by varying total

concentrations 𝑡𝐸, 𝑡𝑆 , rather than varying the equilibrium constant 𝐾. This makes sense

when the biomolecules making up the binding network are already fixed, and we are

studying how to regulate it. If instead we are studying what biomolecules to use to achieve

a certain behavior in a binding network, then we should allow 𝐾 to vary and be an explicit

variable in the reaction orders. For this particular example, the value that 𝐾 is fixed at

does not matter because Eq (3.34) shows that the value of the reaction orders can take

only depends on (𝑒, 𝑠), the ratios of 𝐸 and 𝑆 to 𝐾, so the range of values that the reaction

orders can take is independent of what value 𝐾 is fixed at. Now with 𝐾 held fixed and

normalized away, the reaction orders of interest are reaction order of the complex 𝐶 to total

enzyme and total substrate
𝜕 log 𝐶

𝜕 log(𝑡𝐸 ,𝑡𝑆) , and reaction order of free enzyme to total enzyme

and total substrate
𝜕 log 𝐸

𝜕 log(𝑡𝐸 ,𝑡𝑆) . Note that 𝑆 and 𝐸 are symmetric since we have just one

binding reaction. Which species’ reaction order is of interest depends on which species is

catalytically active. For example, if 𝐶 is the active complex for downstream catalysis, such

as a gene bound with an activating transcription factor or the activated form of an enzyme

or receptor, then reaction orders of 𝐶 corresponds to response of biological activity. On the

other hand, if 𝑆 is a repressive ligand or repressing transcription factor, then the free form

𝐸 is catalytically active, so the reaction order of 𝐸 corresponds to biological activity.

We computationally sample the values of reaction orders in Eq (3.34) to obtain Figure

3.5. Several features arise from visual inspection. First, it appears that these sets take a

polyhedral shape. Second, the polyhedral shape suggests it can be formed as combinations

of simpler shapes, e.g. vertices and edges. Third, the points concentrate at the edges

and vertices, suggesting robustness at those locations. Lastly, the reaction order of 𝐸 is

unbounded, going towards infinity in the (−1, 1) direction, suggesting hypersensitivity.

We discuss these features in detail below.
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(a) (b)

Figure 3.5 Sampling of the log derivative of 𝐶 (subfigure (a)) and 𝐸 (subfigure (b)) with respect to 𝑡𝐸 and 𝑡𝑆

for the binding network with just one binding reaction 𝐸 + 𝑆 ⇌ 𝐶. Sampling is via the variables 𝑒 = 𝐸
𝐾 and

𝑠 = 𝑆
𝐾 taking values between 10−6

to 106
, uniformly sampled on the log scale.

Polyhedral shape. The first thing we notice is that the overall shape for both 𝐶 and 𝐸’s

reaction orders are polyhedral. This implies that the full range of reaction orders can be

captured as the convex combination of several extreme cases. This can be seen in an

explicit and analytical way as follows. Take 𝐶’s reaction orders for example. We see from

the sampled shape that it is the convex combination of vertices (1, 0), (0, 1), and (1, 1).
This means any point in the set can be expressed as 𝜆1(1, 0) + 𝜆2(0, 1) + 𝜆3(1, 1) with 𝜆𝑖

non-negative and sum to one

∑︀3
𝑖=1 𝜆𝑖 = 1. We can then compare this expression with the

formula in Eq (3.34) to have the following equation. Note that to be consistent with the

figure, we have taken the order for the totals to be (𝑡𝑆, 𝑡𝐸) instead of (𝑡𝐸, 𝑡𝑆).

𝜕 log 𝐶

𝜕 log(𝑡𝑆, 𝑡𝐸) =
[︁

1+𝑒
1+𝑒+𝑠

1+𝑠
1+𝑒+𝑠

]︁
=
[︁
𝜆1 + 𝜆3 𝜆2 + 𝜆3

]︁
. (3.35)

This together with that 𝜆𝑖’s sum to 1 can be used to formulate the following linear system

of equations for 𝜆𝑖’s: ⎡⎢⎢⎢⎣
1 1 1
1 0 1
0 1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜆1

𝜆2

𝜆3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

𝜕 log 𝐶
𝜕 log 𝑡𝑆

𝜕 log 𝐶
𝜕 log 𝑡𝐸

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

1+𝑒
1+𝑒+𝑠

1+𝑠
1+𝑒+𝑠

⎤⎥⎥⎥⎦. (3.36)
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Solving this linear system of equations yields⎡⎢⎢⎢⎣
𝜆1

𝜆2

𝜆3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 −1
1 −1 0
−1 1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
1+𝑒

1+𝑒+𝑠
1+𝑠

1+𝑒+𝑠

⎤⎥⎥⎥⎦ = 1
1 + 𝑒 + 𝑠

⎡⎢⎢⎢⎣
𝑒

𝑠

1

⎤⎥⎥⎥⎦. (3.37)

This tells us that we can write the reaction orders of 𝐶 in an explicit way as convex

combinations of a set of vertices:

𝜕 log 𝐶

𝜕 log(𝑡𝑆, 𝑡𝐸) = 𝑒

1 + 𝑒 + 𝑠
(1, 0) + 𝑠

1 + 𝑒 + 𝑠
(0, 1) + 1

1 + 𝑒 + 𝑠
(1, 1). (3.38)

As a quick note, although log derivatives are often used to compute “weighted average

of exponents” for polynomials in statistical mechanics, and the log derivatives form a

convex polytope as well, the polytope for 𝐶 above is not obtainable from a polynomial.

For a polynomial 𝑓(𝑥) in variables taking positive values 𝑥 ∈ R𝑛
>0, the log derivatives are

contained in its Newton polytope, which is the polytope formed as a convex combination

of the exponents for each monomial term. For example, if 𝑓(𝑥) = 1 + 𝑥1 + 𝑥2, then the

log derivative
𝜕 log 𝑓

𝜕 log(𝑥1,𝑥2) is contained in polytope with vertices (0, 0), (1, 0), and (0, 1), and

the convex coefficients are
1

1+𝑥1+𝑥2
,

𝑥1
1+𝑥1+𝑥2

, and
𝑥2

1+𝑥1+𝑥2
respectively. We see that although

these coefficients are the same as the coefficients in Eq (3.38), one of the vertices are different.

If we want a polynomial with the (1, 1) vertex and similar coefficients, then the polynomial

can be 𝑓(𝑥) = 𝑥1 + 𝑥2 + 𝑥1𝑥2. But then the coefficient for the (1, 1) vertex is
𝑥1𝑥2

𝑥1+𝑥2+𝑥1𝑥2
,

a different form compared to that in Eq (3.38). So we see polynomials cannot yield the

convex combination in Eq (3.38). Either the vertices are different, or the convex coefficients

(i.e. when the vertices are achieved) are different. Indeed, we know Eq (3.38) comes from

taking the log derivative of the explicit expression in Eq (3.31) which involves square roots.

More generally, reaction order polyhedra come from log derivative of possibly non-analytic

expressions that are roots of systems of polynomial equations.

Employing a similar approach we can parameterize a point in the reaction order polyhedron

for 𝐸 as 𝜆1(0, 1) + 𝜆2(−1, 1) + 𝜏(−1, 1), with 𝜆1, 𝜆2, 𝜏 ≥ 0 and 𝜆1 + 𝜆2 = 1. This expression

uses our observation from Figure 3.5b that the polyhedron is defined by two vertices at

(0, 1) and (−1, 1), and a ray in direction (−1, 1). The equation relating these coefficients to

the reaction order expression in Eq (3.34) is⎡⎢⎢⎢⎣
1 1 0
0 −1 −1
1 1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜆1

𝜆2

𝜏

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

𝜕 log 𝐸
𝜕 log 𝑡𝑆

𝜕 log 𝐸
𝜕 log 𝑡𝐸

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

−𝑠(1+𝑒)
1+𝑒+𝑠

(1+𝑒)(1+𝑠)
1+𝑒+𝑠

⎤⎥⎥⎥⎦ (3.39)
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Solve this system of linear equations yield⎡⎢⎢⎢⎣
𝜆1

𝜆2

𝜏

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 1 1
1 −1 −1
−1 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
−𝑠(1+𝑒)
1+𝑒+𝑠

(1+𝑒)(1+𝑠)
1+𝑒+𝑠

⎤⎥⎥⎥⎦ = 1
1 + 𝑒 + 𝑠

⎡⎢⎢⎢⎣
1 + 𝑒

𝑠

𝑒𝑠

⎤⎥⎥⎥⎦. (3.40)

So we can explicitly write

𝜕 log 𝐸

𝜕 log(𝑡𝑆, 𝑡𝐸) = 1 + 𝑒

1 + 𝑒 + 𝑠
(0, 1) + 𝑠

1 + 𝑒 + 𝑠
(−1, 1) + 𝑒𝑠

1 + 𝑒 + 𝑠
(−1, 1). (3.41)

We can also use the above results to write the reaction orders of all species in the form a

polyhedron. Define 𝜆𝑒 = 𝑒
1+𝑒+𝑠

, 𝜆𝑠 = 𝑠
1+𝑒+𝑠

, 𝜆1 = 1
1+𝑒+𝑠

, and 𝜏 = 𝑒𝑠
1+𝑒+𝑠

. Then

𝜕 log(𝑆, 𝐸, 𝐶)
𝜕 log(𝑡𝑆, 𝑡𝐸, 𝐾) = 𝜆𝑒

⎡⎢⎢⎢⎣
1 −1 1
0 1 0
1 0 0

⎤⎥⎥⎥⎦+ 𝜆𝑠

⎡⎢⎢⎢⎣
1 0 0
−1 1 1
0 1 0

⎤⎥⎥⎥⎦+ 𝜆1

⎡⎢⎢⎢⎣
1 0 0
0 1 0
1 1 −1

⎤⎥⎥⎥⎦+ 𝜏

⎡⎢⎢⎢⎣
1 −1 0
−1 1 0
0 0 0

⎤⎥⎥⎥⎦. (3.42)

From the above, we see both through computational sampling and analytical derivations

that indeed the range of values that reaction orders can take form a polyhedral set. The

mathematical reason for this polyhedral shape is studied in Section 3.8. We investigate the

biological implications of the polyhedral shape below.

Vertices and edges as asymptotic approximations. Roughly speaking, a polyhedral set is

the set formed by the convex combination of vertices (with vertices generalized to include

rays as well). This suggests we can consider the general behavior of a catalysis reaction, i.e.

the reaction order of the active species in a binding network, as the “convex combination”

of the behaviors at the vertices of reaction order polyhedron. If the behavior is simple at

the vertices, then this gives us a way to describe the complicated general behavior through

simple extreme-case behavior at the vertices.

We take the 𝐶 polyhedron to illustrate this. From Eq (3.38), we see each vertex is achieved

at a certain extreme of the (𝑒, 𝑠) variables. Namely, (1, 0) is achieved when 𝑒 ≫ 1, 𝑠 (𝑒 is

much larger than 1 and 𝑠), (0, 1) is achieved when 𝑠 ≫ 1, 𝑒 and (1, 1) is achieved when

1≫ 𝑒, 𝑠. We can relate these vertices’ reaction order to the approximate expressions of 𝐶

in (𝑡𝑆, 𝑡𝐸, 𝐾) at these vertices by applying these asymptotic conditions to the equations

defining the equilibrium manifold in Eq (3.30), or to the explicit solution in Eq (3.31).

Alternatively, we can include the 𝐾 variable in the reaction orders to see the vertices are

𝜕 log 𝐶
𝜕 log(𝑡𝑆 ,𝑡𝐸 ,𝐾) taking values (1, 0, 0), (0, 1, 0), and (1, 1,−1), which we can integrate to get 𝐶
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expressed in (𝑡𝑆, 𝑡𝐸, 𝐾) with a multiplicative constant which we can set to 1. The result is

summarized as follows,

𝐶 ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡𝐸, reaction order (0, 1), 𝑡𝑆 ≫ 𝑡𝐸, 𝐾;
𝑡𝑆𝑡𝐸

𝐾
, reaction order (1, 1), 𝐾 ≫ 𝑡𝐸, 𝑡𝑆;

𝑡𝑆, reaction order (1, 0), 𝑡𝐸 ≫ 𝑡𝑆, 𝐾.

(3.43)

Each vertex corresponds to a biologically meaningful regime that the reaction can operate

in. When the total substrate 𝑡𝑆 is very large, the enzymes are saturated so that the speed of

catalysis is only limited by the enzyme, therefore 𝐶 ≈ 𝑡𝐸 , corresponding to vertex(0, 1).
When it is the other way around and the total enzyme is very large and total substrate

is limiting, 𝐶 ≈ 𝑡𝑆 , corresponding to vertex (1, 0). When enzyme and substrate are not

abundant relative to the binding affinity 𝐾, the speed of catalysis is limited by the formation

of complex 𝐶. In this regime, the complex 𝐶 is low in number compared to total enzyme

and total substrate, and increasing either enzyme and substrate creates more complexes.

Therefore 𝐶 ≈ 𝑡𝑆𝑡𝐸

𝐾
, corresponding to vertex (1, 1). Together, we see that the polyhedral

shape highlights the vertices as the regimes that a catalysis reaction can operate in, which

corresponds to extreme cases of concentrations and equilibrium constants. The asymptotic

conditions of these extreme cases in turn yield asymptotic approximations of the active

species (𝐶 in this case) that are simple monomials and biologically interpretable. The

general complicated behavior can then be considered as varying in between these simple

extreme-case regimes.

The above extreme-case analysis may remind a reader of the Michaelis-Menten formula

(or the Langmuir form more generally), where one asymptotic condition that substrate

is overabundant compared to enzyme 𝑡𝑆 ≫ 𝑡𝐸 is used to derive the formula 𝐶 ≈ 𝑡𝐸
𝑡𝑆

𝑡𝑆+𝐾

that spans two regimes. A common description of this formula is that it is responsive

when substrate concentration is low 𝑡𝑆 ≪ 𝐾, and becomes saturated when substrate

concentration is high 𝑡𝑆 ≫ 𝐾. This can be viewed as the edge connecting vertices (0, 1)
and (1, 1). This is also clear from the asymptotic conditions, as 𝑡𝑆 ≫ 𝑡𝐸 has non-empty

intersection with the conditions for these two vertices. We caution that although the

Michaelis-Menten formula indeed forms an edge connecting the (0, 1) and (1, 1) vertices, it

does not capture all points on the edge. In other words, the Michaelis-Menten assumption

is a sufficient but not necessary condition for the edge. Although the condition 𝑡𝑆 ≫ 𝑡𝐸, 𝐾

for the (0, 1) vertex is contained in the Michaelis-Menten condition 𝑡𝑆 ≫ 𝑡𝐸 , the same

does not hold for the (1, 1) vertex. The condition (𝐾 ≫ 𝑡𝐸, 𝑡𝑆 of the (1, 1) vertex does not

require 𝑡𝑆 ≫ 𝑡𝐸 , e.g. both 𝐾 ≫ 𝑡𝐸 ≫ 𝑡𝑆 and 𝐾 ≫ 𝑡𝑆 ≫ 𝑡𝐸 can achieve vertex (1, 1). The

necessary and sufficient condition for the (0, 1) to (1, 1) edge is 𝐸 ≪ 𝐾 or 𝑡𝐸 ≪ 𝑡𝑆 . This is
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more general than 𝑡𝐸 ≪ 𝑡𝑆 . For example, when 𝑡𝑆 ≪ 𝐾, the (1, 1) vertex is still achieved by

𝑡𝐸 ≪ 𝐾, without assuming 𝑡𝐸 ≪ 𝑡𝑆 .

In summary, the polyhedral set for the full range of reaction orders highlights that the

Michaelis-Menten formula is a sufficient edge-approximation of the overall behavior.

Through one asymptotic condition 𝑡𝑆 ≫ 𝑡𝐸 , it captures a behavior spanning the edge

connecting two regimes corresponding to vertices (0, 1) and (1, 1), and misses the regime

corresponding to vertex (1, 0) and expression 𝐶 ≈ 𝑡𝑆 .

We can then investigate edge-approximation in general, with Michaelis-Menten approxi-

mation (or single molecule states approximations and external-bath approximations, see

Section 3.1) as a special case. In the example of 𝐶’s reaction order, while two asymptotic

conditions yield vertices, one asymptotic condition yield edges. In terms of convex coeffi-

cients in Eq (3.38), we can yield an edge by eliminating one vertex. For example, to obtain

the Michaelis-Menten edge, we can eliminate the (1, 0) vertex by letting coefficient
𝑒

1+𝑒+𝑠

goes to zero, which corresponds to asymptotic condition 𝑒≪ 𝑠 or 𝑒≪ 1. For simplicity,

we follow Michaelis-Menten to use just one of the two conditions to represent an edge

approximation. This yields the following summary for edge approximations of 𝐶, and the

graphical summarize of both edge and vertex approximations in Figure 3.6.

𝐶 ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡𝐸

𝑡𝑆

𝑡𝑆+𝐾
, edge from (0, 1) to (1, 1), 𝑡𝑆 ≫ 𝑡𝐸;

min{𝑡𝑆, 𝑡𝐸}, edge from (0, 1) to (1, 0), 𝐾 ≪ 𝑡𝐸 or 𝐾 ≪ 𝑡𝑆;

𝑡𝑆
𝑡𝐸

𝑡𝐸+𝐾
, edge from (1, 0) to (1, 1), 𝑡𝐸 ≫ 𝑡𝑆.

(3.44)

In addition to the edge that is symmetric reflection of Michaelis-Menten, we also obtain

an edge approximation connecting (0, 1) to (1, 0). Importantly, this is another class

of approximations just as valid as the Michaelis-Menten or single molecule states or

external bath approximations. To derive the formula 𝐶 ≈ min{𝑡𝑆, 𝑡𝐸}, we can apply

the asymptotic condition 𝐾 ≪ 𝑡𝐸 or 𝐾 ≪ 𝑡𝑆 , which implies 𝑡𝐸 + 𝑡𝑆 + 𝐾 ≈ 𝑡𝐸 + 𝑡𝑆 and√︁
(𝑡𝐸 + 𝑡𝑆 + 𝐾)2 − 4𝑡𝐸𝑡𝑆 ≈ |𝑡𝐸 − 𝑡𝑆|, to the exact solution of 𝐶 in Eq (3.31):

𝐶(𝑡𝐸, 𝑡𝑆) ≈ (𝑡𝐸 + 𝑡𝑆)− |𝑡𝐸 − 𝑡𝑆|
2 = min{𝑡𝐸, 𝑡𝑆}.

The condition 𝐾 ≪ 𝑡𝐸 or 𝐾 ≪ 𝑡𝑆 corresponds to tight binding between enzyme and

substrate. One natural scenario where this is true is in strong sequestrations between

molecules, e.g. between sigma and anti-sigma factors, and in nucleic acid circuits. This

edge approximation also plays a central role for antithetic integral control motifs for robust

perfect adaptation proposed in [22]. Importantly, this edge approximation is an alternative



111

Figure 3.6 Visualization of how the reaction order polyhedron captures the holistic regulatory profile, and

how the vertex and edge approximations for 𝐶 in one binding reaction 𝐸 + 𝑆 ⇌ 𝐶 compare to the exact

solution. Upper left is the exact solution of 𝐶 in terms of 𝑡𝐸 and 𝑡𝑆 in Eq (3.31). In the large 𝑡𝑆 limit (close to

𝑡𝑆 axis in the 3D plot), the Michaelis Menten formula (upper middle) is a good approximation of the exact

solution. In the small 𝐾 limit (when 𝑡𝐸 and/or 𝑡𝑆 are large), the minimum formula corresponding to the

diagonal edge is a good approximation of the exact solution.

to the Michaelis-Menten (or single molecule states or external bath) edge approximations of

enzymatic reactions. This edge approximation is valid whenever tight binding is present.

Robustness of vertices and edges. Another prominent feature of the sampling of reaction

orders in Figure 3.5 is that the randomly sampled points concentrate at the edges and

vertices. Since the points are uniformly sampled in log scale on enzyme and substrate

concentrations, if we consider perturbations to the system as multiplicative variations in

these concentrations, then the vertices and edges should be robust to such variations.

We can see why the points concentrate at vertices and edges by looking at the convex

coefficients in Eq (3.38) and Eq (3.41). Because the coefficients of the vertices all take

rational-function form such as
𝑒

1+𝑒+𝑠
, they approach extreme values of 0 or 1 when the

variables (𝑒, 𝑠, 1) are far apart in values. This means the condition for the reaction order

to be in the interior of the polyhedra away from edges and vertices is quite fragile: the

concentrations need to be “finely adjusted” so that they are close to each other. Once these

concentrations drift apart from each other, we are at the vertices and edges.

Another way to describe this is that we can achieve precise values of reaction orders by

very crude control of concentrations. For example, to push the reaction order of 𝐶 toward
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value (1, 0), we just need to drive 𝑒 large in comparison to 𝑠 and 1. Such control only needs

to be done crudely. However rough the control is, such as an increment of 𝑒 that varies

between ten to ten thousand fold, as long as it can make 𝑒 large compared to 𝑠 and 1, the

reaction order of 𝐶 will achieve the precise value (1, 0).

As a way to quantify the robustness or insensitivity at the vertices, we can look at the log

derivative, or fold change, of the reaction orders to the concentration variables, which

captures the sensitivity. This corresponds to the second order log derivatives, or the log

Hessian, of a species’ concentration to totals. For example, by chain rule we can calculate

𝜕2 log 𝐶

𝜕(log 𝑡)(log 𝑡)⊺ =
⎡⎣ 𝜕2 log 𝐶

𝜕(log 𝑡𝐸)2
𝜕2 log 𝐶

𝜕(log 𝑡𝐸)(log 𝑡𝑆)
𝜕2 log 𝐶

𝜕(log 𝑡𝑆)(log 𝑡𝐸)
𝜕2 log 𝐶

𝜕(log 𝑡𝐸)2

⎤⎦ = 𝜕

𝜕 log(𝑡𝐸, 𝑡𝑆)
𝜕 log 𝐶

𝜕 log(𝑡𝐸, 𝑡𝑆)

=
(︃

𝜕 log(𝑒, 𝑠)
𝜕 log(𝑡𝐸, 𝑡𝑆)

)︃(︃
𝜕

𝜕 log(𝑒, 𝑠)
𝜕 log 𝐶

𝜕 log(𝑡𝐸, 𝑡𝑆)

)︃

= 1
(1 + 𝑒 + 𝑠)3

⎡⎣−𝑒2(1 + 𝑠)(1 + 𝑒 + 𝑠 + 2𝑒𝑠) 2𝑒𝑠(1 + 𝑒)(1 + 𝑠)
2𝑒𝑠(1 + 𝑒)(1 + 𝑠) −𝑠(1 + 𝑒)(1 + 𝑒 + 𝑠 + 2𝑒𝑠)

⎤⎦.

Close to the (1, 1) vertex, for example, we have 1≫ 𝑒, 𝑠. Apply this to the above formula,

we have
𝜕2 log 𝐶

𝜕(log 𝑡𝐸)2 ≈ −𝑒,
𝜕2 log 𝐶

𝜕(log 𝑡𝑆)2 ≈ −𝑠, and
𝜕2 log 𝐶

𝜕(log 𝑡𝐸)(log 𝑡𝑆) ≈ 2𝑒𝑠. We see that the closer we are

to the vertex, i.e. the smaller 𝑒 and 𝑠 are compared to 1, then the smaller the sensitivity

to variations in (𝑡𝐸, 𝑡𝑆), therefore more robust. This highlights the following feature of

robustness for edges and vertices in a reaction order polyhedron: the closer we are to a

vertex or edge, the more robust we are to variations.

One implication of this robustness is that when we or a cell want to control biomolecular

circuits to perform precise and robust regulations, but the control actions are sloppy or

noisy or unreliable due to technological limitations or noise and uncertainty in the circuit

and environment, then by crudely pushing the concentrations and equilibrium constants

toward extreme regimes corresponding to vertices and edges or reaction order polyhedra,

we can still achieve precise and robust performance. This motivates analysis and design of

biomolecular system dynamics via reaction orders, as investigated in Chapter 5.

Hypersensitivity in reaction order of 𝐸. One prominent feature from Figure 3.5 is that

while the reaction orders of 𝐶 are bounded, those of 𝐸 are not. In fact, the reaction order

of 𝐸 to 𝑡𝐸 can reach toward +∞, and that of 𝐸 to 𝑡𝑆 can reach toward −∞. A reaction

order higher than 1 corresponds to fold change response sharper than linear, which is

often called hypersensitivity. We provide an analysis below relating the hypersensitivity

we see from computational sampling in Figure 3.5b to the regimes achieving it in terms of

asymptotic conditions on concentrations.
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To analyze the reaction orders of 𝐸, we employ a similar extreme-case analysis as we did

for 𝐶. There are three regimes. (1) If almost all enzymes are bound 𝑡𝐸 ≈ 𝐶, and almost

all substrates are free 𝑡𝑆 ≈ 𝑆, then 𝐸 = 𝐶𝐾
𝑆
≈ 𝑡𝐸𝐾

𝑡𝑆
, with reaction order (−1, 1) in 𝑡𝑆 and 𝑡𝐸 .

(2) If almost all enzymes are unbound 𝑡𝐸 ≈ 𝐸, then 𝐸 ≈ 𝑡𝐸 , with reaction order (0, 1). So

it seems natural that the reaction order would be bounded in the line segment between

(−1, 1) and (0, 1), so that the sensitivity of 𝐸 to 𝑡𝑆 is always between −1 and 0. Indeed, this

corresponds to what we typically obtain from Michaelis-Menten approximation applied to

this case, which is 𝐸 ≈ 𝑡𝐸
𝐾

𝑡𝑆+𝐾
. However, this ignores the third extreme case, (3) when both

enzyme and substrate are mostly in bound form, 𝑡𝐸 ≈ 𝐶 and 𝑡𝑆 ≈ 𝐶. This is a relatively

restrictive scenario and require 𝑡𝐸 and 𝑡𝑆 to be close in addition to tight binding. But this

can happen. As 𝑡𝐸 and 𝑡𝑆 are symmetric, without loss of generality, let us inspect the case

with 𝑡𝑆 ≥ 𝑡𝐺. Using 𝑡𝐸 ≈ 𝐶, we have 𝐸 = 𝐶𝐾
𝑆

= 𝐶𝐾
𝑡𝑆−𝐶

≈ 𝑡𝐸𝐾
𝑡𝑆−𝑡𝐸

. We can calculate the log

derivative of this formula with respect to 𝑡𝐸 and 𝑡𝑆 to obtain the result

𝜕 log 𝐸

𝜕 log(𝑡𝑆, 𝑡𝐸) ≈
[︁
− 𝑡𝑆

𝑡𝑆−𝑡𝐸

𝑡𝑆

𝑡𝑆−𝑡𝐸

]︁
= 𝑡𝑆

𝑡𝑆 − 𝑡𝐸

[︁
−1 1

]︁
.

So as 𝑡𝑆 approach 𝑡𝐸 from above, we see that this goes to infinity in the direction (−1, 1).
We can summarize the three regimes as follows

Reaction order of 𝐸 in (𝑡𝑆, 𝑡𝐸) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1, 1), 𝑡𝐸 ≈ 𝐶, 𝑡𝑆 ≈ 𝑆;

(0, 1), 𝑡𝐸 ≈ 𝐸;

ray towards (−1, 1), 𝑡𝐸 ≈ 𝐶, |𝑡𝐸 − 𝑡𝑆| → 0.

(3.45)

Therefore, in contrast to bound complex 𝐶, the free enzyme 𝐸 can obtain very high

sensitivity to total substrate concentration 𝑡𝑆 . The high sensitivity regime is achieved when

𝑡𝐸 ≈ 𝐶, i.e. binding is tight, and |𝑡𝑆 − 𝑡𝐸| → 0, i.e. total substrate concentration is close to

total enzyme concentration.

One implication of this is in comparing between an activator and a repressor. If 𝑆 is an

activating substrate (or transcription factor), the catalytically active form of the enzyme (or

gene) is 𝐶. We see that the response of 𝐶 to change in total substrate concentration 𝑡𝑆 in

terms of reaction order is bounded between (0, 1) in Figure 3.5a. On the other hand, if 𝑆 is

a repressive substrate, the catalytically active form of the enzyme is 𝐸, the free form. The

response of 𝐸 to change in substrate concentration can become hypersensitive and reach

toward −∞ in the tight-binding regime, where most of enzymes are in respressed (bound)

form 𝐶, and the substrate concentration and enzyme concentration are close in magnitude.

Joint variation in reaction orders. Although our discussion above focuses on the reaction

order polyhedron of individual species, such as 𝐶 or 𝐸, it should be kept in mind that the
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Figure 3.7 Sampling of the reaction order of 𝐶 (orange) and 𝐸 (blue) with respect to total substrate 𝑡𝑆 and

total enzyme 𝑡𝐸 from one binding reaction 𝐸 + 𝑆 ⇌ 𝐶, plotted on the same axis. Different extreme scenarios

are labeled by numbers, with corresponding asymptotic conditions listed on the upper right corner. For

example, in regime 1, 𝐶 is close to vertex (1, 0), while 𝐸 is close to vertex (0, 1).

full reaction order polyhedron is over the matrix of log derivatives (see Eqn (3.42)). This

means, when the reaction order of 𝐶 reaches toward a vertex in its triangular reaction order

polyhedron, that could correlate with 𝐸 reaching toward a vertex in its own polyhedron.

This joint variation in reaction orders is precisely described by Eqn (3.42). To provide a

visual representation relating the vertices of 𝐶 and 𝐸 that we discussed above, see Figure

3.7 where the two polyhedra are plotted together. Such join variations are important to

consider in cases where multiple species are catalytically active, or when we want to design

regulatory behavior on top of a binding network.

Summary

In this section, we computationally sampled and analytically calculated the reaction orders

in one binding reaction. We find that the full range of values that the reaction orders

can take form a polyhedral set. The vertices and edges can be robustly achieved when

concentrations and equilibrium constants take values that are far apart. In turn, vertex-

and edge-approximations can be used as general methods to find simpler approximations
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when asymptotic conditions for the vertices and edges are satisfied, with Michaelis-Menten

approximation and strong-sequestration approximation as examples in the simple case

studied. The vertices and edges are also robust operating regimes for this binding reaction’s

regulation of downstream catalysis. Other than these common features, different species’

reaction orders form different polyhedral sets, revealing their distinct biological activities,

such as hypersensitivity.

Given the central importance of vertices in reaction order polyhedra, we study how to

characterize vertices mathematically in the next chapter.

3.7 Vertices of binding polyhedra as minimal representations

From the previous section’s thorough analysis of one binding reaction, we observed that

one central feature of the range of values that the reaction orders can take is that it forms a

polyhedral set. The polyhedral set has vertices that correspond to constant reaction orders.

Before studying how the polyhedral shape arise in the next section, in this section we

focus on just the vertices. We show that vertices in a species’ reaction order polyhedra

correspond to minimal expressions of a species in terms of others. We then investigate

how these minimal expressions can be found in a systematic way, using zonotopes from

the theory of convex polytopes and oriented matroids (Chapter 6 and 7 of [123]).

Vertices and minimal representations

For reaction orders, we are interested in the log derivative of one species 𝑥𝑗* considered to

be catalytically active, for some 𝑗* ∈ {1, . . . , 𝑛}, with respect to the totals 𝑡 ∈ R𝑑
>0. In the

one binding reaction example 𝐸 + 𝑆 ⇌ 𝐶, if we take the active species 𝑥𝑗* to be 𝐶, then

the reaction order of interest is
𝜕 log 𝐶

𝜕 log(𝑡𝑆 ,𝑡𝐸) . From our investigation of this example, we see

that vertices correspond to extreme cases where one term dominates the totals. The vertex

with reaction order (1, 1) corresponds to approximate expression 𝐶 ≈ 𝑡𝐸𝑡𝑆

𝐾
is achieved

when 𝐾 ≫ 𝐸, 𝑆 so that most of enzyme and substrate are in free form. In other words,

free enzyme 𝐸 dominates total enzyme so that 𝑡𝐸 ≈ 𝐸, and free substrate dominates total

substrate 𝑡𝑆 ≈ 𝑆. In this case, we have approximate expression 𝐶 = 𝐸𝑆
𝐾
≈ 𝑡𝐸𝑡𝑆

𝐾
. Then

the log derivative of
𝑡𝐸𝑡𝑆

𝐾
to (𝑡𝑆, 𝑡𝐸) is just their exponents, namely (1, 1). Let us inspect

another vertex. The vertex (1, 0) corresponds to 𝐶 ≈ 𝑡𝑆 with condition 𝑡𝐸 ≫ 𝑡𝑆, 𝐾. This

is a scenario where enzymes are overabundant so most substrates are bound. So bound

substrate 𝐶 dominates 𝑡𝑆 , i.e. 𝑡𝑆 ≈ 𝐶. Then 𝐶 ≈ 𝑡𝑆 , and of course the log derivative of 𝑡𝑆

to (𝑡𝑆, 𝑡𝐸) is (1, 0).
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This provides a reasoning for what the vertices are. The totals 𝑡 = 𝐿𝑥 come from summing

the concentration of several species in 𝑥. When some of the totals 𝑡 are dominated by

one of the species in the sum and the active species 𝑥𝑗* can be expressed as a monomial

in these species, then the reaction orders are just the exponents of this monomial. Let

us write down exactly what this means. We assume 𝑥*
𝑗 can be written as a monomial in

terms of variables in 𝑥 and 𝑘. This corresponds to 𝑥𝑗* = 𝑥𝑎𝑘𝑏
for some vector 𝑎 ∈ R𝑛

,

𝑏 ∈ R𝑟
. Here the notation 𝑥𝑎

means 𝑥𝑎 = 𝑥𝑎1
1 . . . 𝑥𝑎𝑛

𝑛 = 𝑒𝑎⊺ log 𝑥
. Since the totals 𝑡 has just 𝑑

variables, if the variables in this monomial expression are all from dominant species of

each total, then there can be at most 𝑑 different variables of 𝑥 involved. This corresponds

to the exponent vector 𝑎 has at most 𝑑 nonzero entries, i.e. its support size is no larger than

𝑑. Let 𝒥 ⊂ {1, . . . , 𝑛} denote the support of 𝑎, i.e. 𝒥 = {𝑗 : 𝑎𝑗 ̸= 0}. The support of 𝑎 has

no more than 𝑑 nonzero entries means |𝒥 | ≤ 𝑑. Then if there exists 𝑡𝑖𝑗
for each 𝑗 ∈ 𝒥 such

that 𝑡𝑖𝑗
≈ 𝑥𝑗 , then 𝑥𝑗* = 𝑥𝑎𝑘𝑏 = 𝑘𝑏∏︀

𝑗∈𝒥 𝑥
𝑎𝑗

𝑗 ≈ 𝑘𝑏∏︀
𝑗∈𝒥 (𝑡𝑖𝑗

)𝑎𝑗
. So the log derivative of 𝑥𝑗*

with respect to (𝑡, 𝑘) is just (𝑎, 𝑏).

From this observation, we see finding vertices comes down to finding monomial expressions

of 𝑥𝑗* in terms of 𝑥 and 𝑘 of the form 𝑥𝑗* = 𝑥𝑎𝑘𝑏
, such that 𝑎 has no more than 𝑑 nonzero

entries. Taking log, the monomial expression becomes log 𝑥𝑗* = 𝑎⊺ log 𝑥 + 𝑏⊺ log 𝑘. The

space of such expressions for a binding network is naturally given by the steady state

equations defining the equilibrium manifold 𝑁 log 𝑥 = log 𝑘 (see Eq (3.12)). The condition

on the support of 𝑎 motivates us to find vectors with minimal support yield a monomial

representation. The desire for minimal support is also motivated by the mathematical

reason that all other monomials expressions can be written as linear sums of minimal

support ones (see Lemma 6.7 in [123] for example). Therefore, we would like to find the

minimal representations of 𝑥𝑗* in terms of variables 𝑥 for a given binding network. This is

what we study next.

Minimal representations in binding networks

To begin with, we define precisely what we mean by minimal. In words, a vector 𝑣 ∈ 𝑉 ⊂ R𝑛

is minimal in a set of vectors 𝑉 if there is no nonzero vector in 𝑉 with smaller support

vectors. Support vector is defined as 𝑢 := supp 𝑣 has 𝑢𝑗 = 1 if 𝑣𝑗 ̸= 0, and 𝑢𝑗 = 0 if 𝑣𝑗 = 0.

The partial order on support vectors is the canonical one: 0 < 1 applied component-wise.

For convenience, we slightly abuse notation and use supp 𝑣 to also denote the set of support

indices 𝒥 = {𝑗 = 1, . . . , 𝑛 : 𝑣𝑗 ̸= 0}. This is identifying the space of subsets of {1, . . . , 𝑛}
with space {0, 1}𝑛

.

Definition 3.7.1. Given set of vectors 𝑉 ⊂ R𝑛
. 𝑣* ∈ 𝑉 is a vector of minimal support in 𝑉
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if it is nonzero and there does not exist nonzero vector 𝑣 ∈ 𝑉 , such that supp 𝑣 < supp 𝑣*
.

In other words, for any nonzero 𝑣 ∈ 𝑉 , either supp 𝑣* ≤ supp 𝑣 or they are not comparable.

We denote the set of minimal vectors of a set 𝑉 by MINSUPP(𝑉 ).

We note that if 𝑉 is a vector space, then 𝑣*
has minimal support in 𝑉 implies 𝛼𝑣*

has

minimal support in 𝑉 for all nonzero scalar 𝛼, since they all have the same support.

Now we consider the minimal representations of 𝑥𝑗* in terms of variables 𝑥 for detailed

balanced solutions of an isomer-atomic network, so 𝑥 is in equilibrium manifold (see

Eq (3.12)). A (monomial) representation of 𝑥𝑗* in terms of 𝑥 and 𝑘 can be written as

log 𝑥𝑗* = 𝑎⊺ log 𝑥 + 𝑏⊺ log 𝑘 for some vector 𝑎 ∈ R𝑛
and 𝑏 ∈ R𝑟

. This can be re-written as

(𝑒𝑗* − 𝑎)⊺ log 𝑥 = 𝑏⊺ log 𝑘.

Since 𝑥 and 𝑘 are in equilibrium manifoldℳ, it satisfies 𝑁 log 𝑥 = log 𝑘. So the above

condition can be satisfied for some 𝑏 ∈ R𝑟
if and only if (𝑒𝑗* −𝑎) ∈ rowspan 𝑁 . Indeed, this

condition implies there exists some 𝑏 ∈ R𝑟
such that (𝑒𝑗* − 𝑎) = 𝑏⊺𝑁 , so we can calculate

that (𝑒𝑗* − 𝑎)⊺ log 𝑥 = 𝑏⊺𝑁 log 𝑥 = 𝑏⊺ log 𝑘. In terms of set equivalence,

{ representations of 𝑥𝑗* in 𝑥}

={𝑎 ∈ R𝑛 : there exists 𝑏 ∈ R𝑟, such that (𝑒𝑗* − 𝑎)⊺ log 𝑥 = 𝑏⊺ log 𝑘}

={𝑎 : (𝑒𝑗* − 𝑎) ∈ rowspan 𝑁} = 𝑒𝑗* − rowspan 𝑁 = 𝑒𝑗* + 𝒮.

The last step we used that rowspan 𝑁 = 𝒮 is a linear subspace, so −𝒮 = 𝒮. The minimal

representations of 𝑥𝑗* in terms of all species then comes down to finding the vectors of

minimal support in the affine subspace 𝑒𝑗* + 𝒮. In other words, we define

{minimal representations of 𝑥𝑗* in 𝑥} := MINSUPP(𝑒𝑗* + 𝒮). (3.46)

We would like to express minimal support vectors on the affine subspace 𝑒𝑗* + 𝒮 in terms

of minimal support vectors of linear subspaces. This requires taking 𝑒𝑗* and 𝒮 out of the

minimal support operator. We do so below by inspecting how the minimal support vectors

in 𝑒𝑗* + 𝒮 relate to those in 𝒮.

Proposition 3.7.2.

MINSUPP(𝑒𝑗* + 𝒮) = 𝑒𝑗* + {0} ∪MINSUPP𝑗*(𝒮), (3.47)

where we define MINSUPP𝑗*(𝒮) := {𝑢 ∈ MINSUPP(𝒮) : 𝑢𝑗* = −1}.
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Proof. We first note that 𝑒𝑗* has minimal support in this affine subspace. This is simply

expressing 𝑥𝑗* as itself, corresponding to the zero vector 0 in 𝒮.

Now consider any vector of minimal support 𝑣 ∈ 𝑒𝑗* + 𝒮 that is not 𝑎𝑒𝑗* for some nonzero

constant 𝑎. 𝑣 should have 𝑣𝑗* = 0. This is because if 𝑣𝑗* ̸= 0, then we can always divide

out 𝑥𝑗* to get a vector with smaller support, contradicting that 𝑣 is minimal. Seen in

another way, if 𝑣𝑗* ̸= 0, then supp 𝑒𝑗* < supp 𝑣. Therefore, 𝑣 satisfies 𝑣 = 𝑒𝑗* + 𝑢, 𝑢 ∈ 𝒮
and 𝑢𝑗* = −1. In other words, we have shown

MINSUPP(𝑒𝑗* + 𝒮) ⊂ {𝑒𝑗*}∪̇(𝑒𝑗* + {𝑢 ∈ 𝒮 : 𝑢𝑗* = −1}),

where ∪̇ denote disjoint union, or union of disjoint sets. If this 𝑢 with 𝑢𝑗* = −1 has minimal

support in 𝒮 , then the corresponding 𝑣 = 𝑒𝑗* + 𝑢 has minimal support in 𝑒𝑗* + 𝒮 . This is

because supp 𝑣 = supp 𝑢∖{𝑗*}.

We then show that this is also necessary. If 𝑢 is not of minimal support in 𝒮, then there

exists nonzero vector 𝑢′ ∈ 𝒮 with smaller support than 𝑣. Consider the case 𝑢′
𝑗* = 0. Since

𝑢′
is nonzero, there exists another 𝑗′ ̸= 0 so that 𝑢′

𝑗′ ̸= 0. Since 𝑢′
has smaller support than

𝑢, 𝑢𝑗′ ̸= 0 as well. Now consider

𝑢′′ := 𝑢− 𝑢𝑗′

𝑢′
𝑗′

𝑢′.

This is linear combination of 𝑢 and 𝑢′
, so 𝑢′′ ∈ 𝒮. By construction, 𝑢′′

𝑗′ = 0, so supp 𝑢′′ ⊂
supp 𝑢∖{𝑗′}. Also, since 𝑢′

𝑗* = 0, we have 𝑢′′
𝑗* = 𝑢𝑗* = −1. Therefore, 𝑣′′ := 𝑒𝑗* + 𝑢′′

has

smaller support than 𝑣.

Now consider the case 𝑢′
𝑗* ̸= 0. Since 𝑢′

has smaller support, there exists 𝑗 so that

𝑢′
𝑗 = 0 while 𝑢𝑗 ̸= 0. Define 𝑢′′ = −(𝑢′

𝑗*)−1𝑢′ ∈ 𝒮. Then 𝑢′′
𝑗* = −1, while 𝑢′′

𝑗 = 0. So

supp 𝑢′′ ⊂ supp 𝑢∖{𝑗}, and 𝑣′′ := 𝑢′′ + 𝑒𝑗* has smaller support than 𝑣.

With the above result, we have characterized the vertices of reaction order polyhedra in

terms of minimal vectors of linear subspace. When the binding network gets large, we

would like a way to compute these vertices in a systematic fashion. Below, we use the tool

of zonotopes to compute the minimal vectors of linear subspaces, and therefore vertices of

reaction order polyhedra.

Computation of minimal representations through zonotopes

Vectors of minimal support in 𝒮 can be explicitly computed through zonotopes. For this,

we utilize the theory of polytopes and oriented matroids (see Chapter 6 and 7 of [123]).
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Some of the basic tools below may be well known in the fields of polytopes, oriented

matroids, and matroid theory. But for completeness, exposition, and accessibility to readers

not familiar with those fields, I provide a streamlined development of necessary tools

nonetheless. To begin with, instead of the partial order on vectors’ support, we consider

the partial order on sign vectors, where 0 < + and 0 < − is applied component-wise. Note

that smaller in sign implies smaller in support, but not vice versa in general. For example,

(++) and (+-) are not comparable in the sign order, but their support are both (11), and

therefore equal in support order.

Since we consider vectors in a linear subspace, the correspondence between vectors of

minimal sign and vectors of minimal support is simple.

Lemma 3.7.3. For a vector 𝑣 in linear subspace 𝒱 ⊂ R𝑛
, it is of minimal sign iff it is of minimal

support.

Proof. ( ⇐= ). Contrapositive is not minimal sign implies not minimal support. This is

obvious because smaller in sign order implies smaller in support order.

( =⇒ ). Contrapositive is not minimal support implies not minimal sign. 𝑣 is not minimal

support implies there exists 𝑢 ∈ 𝒱 so that supp 𝑢 < supp 𝑣, so there exists 𝑗0, 𝑢𝑗0 = 0 while

𝑣𝑗0 ̸= 0. Let u and v denote 𝑢 and 𝑣’s sign vectors. Let 𝑆(u, v) = {𝑗 : u𝑗 = −v𝑗 ̸= 0} be

the separation set of u and v. If 𝑆(u, v) = ∅, then u < v. If 𝑆(u, v) ̸= ∅, let 𝑞 = |𝑆(u, v)|.
Take 𝑗1 ∈ 𝑆(u, v). We can eliminate 𝑗1 between u and v to obtain w

1 ∈ sgn𝒱 . By definition,

w
1
𝑗1 = 0, and w

1
𝑗0 = v𝑗0 . Since u has smaller support ahtn v, we also have supp w

1 < supp v,

but now |𝑆(w1, v)| ≤ 𝑞 − 1, since they have the same sign at 𝑗1 now. If |𝑆(w1, v)| > 0, we

take its element 𝑗2 and perform the same process. Then after 𝑞′
steps, 𝑞′ ≤ 𝑞, we reach a sign

vector w
𝑞′ ∈ sgn𝒱 with supp w

𝑞′
< supp v while 𝑆(w𝑞′

, v) = ∅. This implies w
𝑞′

< v.

In fact, the correspondence between vectors of minimal support and minimal sign in a

linear subspace goes even further to have a natural bĳection between pairs of minimal sign

vectors {v,−v} and their support vector supp v.

Lemma 3.7.4. For a linear subspace 𝒱 ⊂ R𝑛
, consider the support map on sign vectors

supp : {+,−, 0}𝑛 → {0, 1}𝑛.

The pre-image of any minimal support vector in supp𝒱 ⊂ {0, 1}𝑛
through the support map is a

pair {v,−v} for some minimal sign vector v in sgn𝒱 ⊂ {+,−, 0}𝑛
.
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Proof. Let supp 𝑣 denote a minimal support vector in supp𝒱 . Let v = sgn 𝑣, and then

supp v = supp(−v) = supp 𝑣. Now we are left to show there are no other sign vectors in

sgn𝒱 with the same support. Let u be any sign vector in sgn𝒱 with the same support,

i.e. supp u = supp v. Because they have the same support, u ∈ {v,−v} is equivalent to

𝑆(u, v) = ∅ or 𝑆(u,−v) = ∅. Assume not, then there exists 𝑗+ ∈ 𝑆(u, v) and 𝑗− ∈ 𝑆(u,−v),
𝑗+ ̸= 𝑗−. This implies u𝑗+ = −v𝑗+ ̸= 0, while u𝑗− = v𝑗− ̸= 0. Then we can form w ∈ sgn𝒱
that eliminates 𝑗+ between u and v. This means supp w ≤ supp u = supp v, while at the

same time, w𝑗+ = 0, so it has strictly smaller support. At the same time, it is not zero,

because w𝑗− = u𝑗− = v𝑗− ̸= 0. This contradicts that u and v are of minimal support.

Now we show how to explicitly construct vectors with minimal sign in the stoichiometry

subspace 𝒮 = rowspan 𝑁 . Consider 𝑁 ∈ R𝑟×𝑛
as a vector configuration of 𝑛 column

vectors {𝑦1, . . . , 𝑦𝑛} in R𝑟
. Then the (centered) zonotope of 𝑁 can be equivalently defined

in the following ways: as combinations of vectors, Minkowski sum of line segments, or

linear image of a cube.

𝑍(𝑁 ) :=
{︃

𝑧 ∈ R𝑟 : 𝑧 =
𝑛∑︁

𝑖=1
𝜆𝑖𝑦𝑖,−1 ≤ 𝜆𝑖 ≤ 1

}︃
= ⊕𝑛

𝑖=1[−𝑦𝑖, 𝑦𝑖] = 𝑁𝐶𝑛,

where ⊕ denote Minkowski sum, [−𝑦𝑖, 𝑦𝑖] denote the line segment between −𝑦𝑖 and 𝑦𝑖,

and 𝐶𝑛 denote the 𝑛-cube.

As shown in Corollary 7.17 of [123], there is a bĳection between the facets of 𝑍(𝑁 ) and

the minimal sign vectors (called cocircuits) in rowspan 𝑁 (also see end of Section 3.3).

Explicitly, any vector 𝑢 in rowspan 𝑁 has unique coefficient vector 𝑐 ∈ R𝑟
so that 𝑁 ⊺𝑐 = 𝑢.

We associate with 𝑐, therefore 𝑢, a face of 𝑍(𝑁 ) defined by

𝑍(𝑁 )𝑐 :=
{︃

𝑧 ∈ 𝑍(𝑁 ) : 𝑐⊺𝑧 = max
𝑧′∈𝑍(𝑁)

𝑐⊺𝑧′
}︃

.

The vector 𝑢 has a minimal sign vector, therefore minimal support, if and only if the face

𝑍(𝑁 )𝑐
is a facet of 𝑍(𝑁 ). This comes from the bĳection between the face lattice of 𝑍(𝑁 )

with the partial order of set inclusion, and the sign vectors of rowspan 𝑁 with the partial

order on sign vectors. See Chapter 7.3 of [123] for details.

We can then obtain the minimal vectors as the vertices of the polar dual of the zonotope:

vert
{︁
𝑍(𝑁 )Δ

}︁
, where Δ denote polar dual, because polar dual maps facets of 𝑍(𝑁 ) to

vertices of 𝑍(𝑁 )Δ
. Indeed, the polar dual of the face 𝑍(𝑁 )𝑐

is defined as

(𝑍(𝑁 )𝑐)◇ := {𝑦 ∈ R𝑟 : 𝑦⊺𝑧 ≤ 1,∀𝑧 ∈ 𝑍(𝑁 ); and 𝑦⊺𝑧 = 1,∀𝑧 ∈ 𝑍(𝑁 )𝑐}.
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We see that

𝑎−1𝑐 ∈ (𝑍(𝑁 )𝑐)◇, 𝑎 := max
𝑧′∈𝑍(𝑁)

𝑐⊺𝑧′.

For the case where 𝑍(𝑁 )𝑐
is a facet, its polar dual (𝑍(𝑁 )𝑐)◇

is a vertex. So it is a singleton

set {𝑎−1𝑐}. Since the vector 𝑎−1𝑐 is proportional to the coefficient vector of the minimal

vector 𝑢 ∈ rowspan 𝑁 , we can explicitly calculate the minimals vectors by

MINSUPP(𝒮) = MINSUPP(rowspan 𝑁 ) = 𝑁 ⊺ vert
{︁
𝑍(𝑁 )Δ

}︁
. (3.48)

Now we combine this result with (3.47) to find minimal representations of 𝑥𝑗* in terms of

𝑥:

MINSUPP(𝑒𝑗* + 𝒮) =𝑒𝑗* + {0} ∪MINSUPP𝑗*(𝒮)

=𝑒𝑗* + {0} ∪
{︁
𝑢 : 𝑢 ∈𝑁 ⊺ vert

{︁
𝑍(𝑁 )Δ

}︁
, 𝑢𝑗* = −1

}︁
.

(3.49)

The above constitute the proof of the following theorem.

Theorem 3.7.5. The minimal representations of 𝑥𝑗* in terms of 𝑥 in the equilibrium manifold

ℳ of a binding network with transpose-reduce stoichiometry matrix 𝑁 ∈ R𝑑×𝑛
can be written as

𝑥𝑗* = 𝑥𝑎𝑘𝑏
, where 𝑎 is contained in the set defined in (3.49), and for a given 𝑎 vector, 𝑏 ∈ R𝑟

can

be computed from (𝑒𝑗* − 𝑎) = 𝑁 ⊺𝑏.

With this result, we can compute minimal representations of a given species simply by

computing the vertices of a zonotope constructed from the transpose-reduced stoichiometry

matrix 𝑁 . This can be implemented via linear programming for example, or using off-the-

shelf packages such as SageMath [94] and the multi-parameteric toolbox [61]. In terms

of computational complexity, we are asking for the vertices of a polytope given its facets,

which has a computational complexity that is exponential in the number of facets (see page

80 of [20] and [14]). Since the polytope of concern here is the zonotope of the stoichiometry

matrix 𝑁 , the number of facets is roughly 𝑛 the number of species, therefore the complexity

is exponential in 𝑛. This is intractable when 𝑛 is large, but is a significant improvement over

numerically scanning all solutions of polynomial systems of equations. A rough generic

computational complexity for solving polynomial systems of equations is 𝑂(degreenum.eqn.),
where degree is the degree of each equation and num.eqn. is the number of equations [62].

If there are 𝑟 binding reactions, each corresponding to a degree 2 polynomial equation,

then this is 𝑂(2𝑟). It is often the case that 𝑟 scales proportionally with 𝑛, so each numerical

solution has exponential in 𝑛 complexity. Let 𝑁 denote the number of points to scan

in the solution space, which satisfy 𝑁 ≫ 2𝑛
always so as to obtain the full regulatory
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profile numerically. Then obtaining the full regulatory profile via numerical solutions

of polynomial equations has complexity 𝑂(𝑁2𝑛). This is costly compared to 𝑂(𝑒𝑛) of

solving for the vertices of the reaction order polyhedra directly using zonotopes. Recall

that inverting a matrix of 𝑛 dimensions has a cost of roughly 𝑂(𝑛2.3). Then numerically

sampling the reaction order polyhedra using the log derivative formula incur a cost of

𝑂(𝑁𝑛2.3). This also improves over numerically solving the polynomial equations.

Minimal representations yield vertices

Recall that for a given (monomial) representation of 𝑥𝑗* in terms of 𝑥 of the form 𝑥𝑗* = 𝑥𝑎𝑘𝑏

to become a vertex, we also need 𝑎 to have no more than 𝑑 nonzero entries. Is this satisfied

for all minimal representations we defined in previous subsections? The answer is yes by

the following lemma for isomer-atomic binding networks.

Lemma 3.7.6. Given an isomer-atomic binding network with 𝑑 atomic species. Vectors of minimal

support in 𝒮 have at most 𝑑 + 1 nonzero entries. The minimal representations of 𝑥𝑗* in terms of 𝑥

have at most 𝑑 nonzero entries.

Proof. Argument via stoichiometrically atomic and then dimensionality counting. The

second statement is implied by the first statement, because if a vector 𝑢 in MINSUPP𝑗*(𝒮)
has 𝑞 nonzero entries, then 𝑒𝑗* + 𝑢 has 𝑞 − 1 nonzero entries, since 𝑢𝑗* = −1. So suffice to

show MINSUPP(𝒮) has at most 𝑑 + 1 nonzero entries.

𝑣 ∈ 𝒮 if and only if 𝐿𝑣 = 0, i.e. 𝑣1 + 𝐿2𝑣
2 = 0, where we split vector 𝑣 ∈ R𝑛

into its first 𝑑

entries 𝑣1 ∈ R𝑑
and its last 𝑟 entries 𝑣2 ∈ R𝑟

. So we have bĳection between R𝑟
and 𝒮 , which

maps 𝑐 ∈ R𝑟
to 𝑣 ∈ 𝒮 defined by 𝑣1 = −𝐿2𝑐 and 𝑣2 = 𝑐. In other words,

𝒮 =

⎧⎨⎩
⎡⎣−𝐿2𝑐

𝑐

⎤⎦ : 𝑐 ∈ R𝑟

⎫⎬⎭.

We specify the zero pattern of a vector 𝑣 ∈ 𝒮 by indices of zeros in 𝑣1
, ℐ = {𝑖 = 1, . . . , 𝑑 : 𝑣1

𝑖 = 0},
and indices of nonzeros in 𝑣2

, 𝒥 =
{︁
𝑗 = 1, . . . , 𝑟 : 𝑣2

𝑗 ̸= 0
}︁
. Enforcing 𝑣1

𝑖 = 0 for 𝑖 ∈ ℐ
then corresponds to 𝑐 satisfying the system of linear equations 0 = 𝐿ℐ

2 𝑐, where 𝐿ℐ
2 is

the submatrix with ℐ rows from 𝐿2. Since 𝑣2 = 𝑐, enforcing the zero pattern 𝑣2
𝑗 = 0 for

𝑗 /∈ 𝒥 then corresponds to restricting 𝑐 to subspaces, so that the linear system of equations

becomes 0 = 𝐿ℐ
2,𝒥 𝑐𝒥 , where 𝐿ℐ

2,𝒥 denote the submatrix of 𝐿2 with ℐ rows and 𝒥 columns,

and 𝑐𝒥 denote the subvector of 𝑐 with 𝒥 entries. This problem has unique solution (𝑐𝒥 = 0)

if 𝐿ℐ
2,𝒥 is full column rank, i.e. |𝒥 |. It has infinitely many solutions, and therefore a nonzero

solution, if 𝐿ℐ
2,𝒥 is not full column rank.
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The above can be summarized into the following statement. There exists nonzero 𝑣 ∈ 𝒮
such that 𝑣1

𝑖 = 0 for 𝑖 ∈ ℐ and 𝑣2
𝑗 = 0 for 𝑗 /∈ 𝒥 if and only if 𝐿ℐ

2,𝒥 is not full column rank.

Note that for any ℐ,𝒥 such that |𝒥 | = |ℐ| + 1, we have more columns than rows, which

guarantees 𝐿ℐ
2,𝒥 is not full column rank, so there exists a nonzero vector 𝑣 ∈ 𝒮 with the

zero patterns specified by ℐ and 𝒥 . Hence, vector 𝑣 ∈ 𝒮 has minimal support implies its ℐ
and 𝒥 satisfy |𝒥 | ≤ |ℐ|+ 1.

For any vector 𝑣 ∈ 𝒮 with zero pattern described by ℐ and 𝒥 , the number of zeros in 𝑣1

is |ℐ|, and the number of zeros in 𝑣2 = 𝑐 is 𝑟 − |𝒥 |. Together, the number of zeros of 𝑣 is

𝑟 + |ℐ| − |𝒥 |. The number of nonzeros of 𝑣 is nnz𝑣 = 𝑑 + |𝒥 | − |ℐ|, by 𝑛 = 𝑟 + 𝑑. If 𝑣 has

minimal support, then |𝒥 | ≤ |ℐ|+ 1, so nnz𝑣 ≤ 𝑑 + 1.

Note that 𝑣 is minimal also implies |𝒥 | = 𝑞 + 1, where 𝑞 is rank of 𝐿ℐ
2,𝒥 . Because if not then

𝑣 is nonzero, which implies |𝒥 | ≥ 𝑞 + 1, so |𝒥 | ≥ 𝑞 + 2. Eliminating a linearly dependent

column yields𝒥 ′
, which together with ℐ corresponds to a vector 𝑣′

that has smaller support

than 𝑣.

Examples

We illustrate our way of finding vertices developed in this section via one example.

Example 6 (two paths).

𝐴 + 𝐵 ⇌ 𝐶AB, 𝐴 + 𝐶 ⇌ 𝐶AC, 𝐶AB + 𝐶AC ⇌ 𝐶2ABC (3.50)

Here 𝐴 participates in the formation of 𝐶2ABC through two paths, one through 𝐶AB, and

another through 𝐶AC.

This network is stoichiometrically atomic. With the following species order, we have the

stoichiometry and conservation law matrices as the following:

𝑥 = (𝐴, 𝐵, 𝐶, 𝐶AB, 𝐶AC, 𝐶2ABC),

⎡⎣𝐿

𝑁

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 2
0 1 0 1 0 1
0 0 1 0 1 1
−1 −1 0 1 0 0
−1 0 −1 0 1 0
0 0 0 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.51)
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Consider species 𝐴 for example. By inspection, we have 𝐴 ∝ 𝐴, 𝐶AB
𝐵

, 𝐶AC
𝐶

,
(︁

𝐶2ABC
𝐵𝐶

)︁1/2
,

𝐶2ABC
𝐶AB𝐶

and
𝐶2ABC
𝐶AC𝐵

. We can find these minimal expressions from zonotope computation. The

following is a implementation of the zonotope computation using SageMath in python.

import numpy as np

from sage.all import *

n_mat=np.array([[-1,-1,0,1,0,0],

[-1,0,-1,0,1,0],

[0,0,0,-1,-1,1]])

d,n=n_mat.shape

P1 = polytopes.parallelotope(n_mat.T)

P1dual = P1.polar()

cs=np.array(P1dual.Vrepresentation())

vs=cs.dot(n_mat)

idx=0 # index of A

ei=np.zeros(n)

ei[idx]=1

vs_idx=[i for i in range(len(vs)) if vs[i,idx]>0]

[ei-vs[i]/vs[i,idx] for i in vs_idx]

This code outputs the following vectors.

[array([ 0. , -0.5, -0.5, 0. , 0. , 0.5]),

array([ 0., -1., 0., 0., -1., 1.]),

array([ 0., -1., 0., 1., 0., 0.]),

array([ 0., 0., -1., -1., 0., 1.]),

array([ 0., 0., -1., 0., 1., 0.])]

We can check that indeed these correspond to the minimal representations we obtained by

inspection. △

Vertices for the matrix of reaction orders

As we see in the analysis for one binding reaction in Section 3.6, especially Eq (3.42), that

instead of studying the reaction order polyhedra of one species of interest for
𝜕 log 𝑥𝑗*

𝜕 log(𝑡,𝑘) , we

can also obtain the reaction order polyhedra on the matrix for all species together for
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𝜕 log 𝑥
𝜕 log(𝑡,𝑘) . We provide a preliminary investigation into this using a similar approach as before.

This problem is worth further investigation.

Similar to the case of reaction order vector of one species, a vertex happen for the reaction

order matrix when 𝑑 species of 𝑥 dominates the totals 𝑡, and there is a monomial relation

of 𝑥 in terms of the dominant 𝑥 and 𝑘. We can represent the condition that 𝑑 species of 𝑥

are dominant in 𝑡 by the expression

𝑃𝑡 log 𝑥 ≈ log 𝑡, (3.52)

where 𝑃𝑡 ∈ R𝑑×𝑛
is a projection matrix, with the 𝑖th row a basis vector 𝑒𝑗𝑖

∈ R𝑛
for some

𝑗𝑖 ∈ {1, . . . , 𝑛} and 𝑖 = 1, . . . , 𝑑. The condition for the monomial relation then can be

written as

log 𝑥 = 𝐴⊺𝑃𝑡 log 𝑥 + 𝐵⊺ log 𝑘, (3.53)

where 𝐴 ∈ R𝑑×𝑛
, and 𝐵 ∈ R𝑟×𝑛

. We see that with these two conditions, we have

𝜕 log 𝑥

𝜕 log(𝑡, 𝑘) = 𝜕 log 𝐴⊺𝑃𝑡 log 𝑥 + 𝐵 log 𝑘

𝜕 log(𝑡, 𝑘) ≈ 𝜕𝐴⊺ log 𝑡 + 𝐵⊺ log 𝑘

𝜕(log 𝑡, log 𝑘) =
[︁
𝐴⊺ 𝐵⊺

]︁
.

So if these two conditions are satisfied, then we obtain a constant log derivative.

So to find vertices for reaction order matrix comes down to restricting what 𝐴 and 𝑃𝑡 can

be. We note that Eq (3.7) can be written as

(I𝑛 −𝐴⊺𝑃𝑡) log 𝑥 = 𝐵⊺ log 𝑘 = 𝐵⊺𝑁 log 𝑥,

where the last step used log 𝑘 = 𝑁 log 𝑥 from conditions of equilibrium manifold. So we

have

I−𝐴⊺𝑃𝑡 = 𝐵⊺𝑁 .

If we denote 𝑉 = 𝐴⊺𝑃𝑡, then there exists some 𝐵 ∈ R𝑟×𝑛
such that 𝑉 = 𝐵⊺𝑁 corresponds

to each row of I− 𝑉 is in rowspan 𝑁 = 𝒮 . In other words,{︁
𝑉 ∈ R𝑛×𝑛 : there exists 𝐵 ∈ R𝑟×𝑛

such that I− 𝑉 = 𝐵⊺𝑁
}︁

=
{︁
𝑉 ∈ R𝑛×𝑛 : 𝑣𝑗 ∈ 𝑒𝑗 + 𝒮, 𝑗 = 1, . . . , 𝑛

}︁
,

where 𝑣𝑗 is the 𝑗th row of 𝑉 .

Now, what is the restriction on 𝑉 from the fact that 𝑉 actually 𝑉 = 𝐴⊺𝑃𝑡 for some choice

of 𝐴 and projection matrix 𝑃 ⊺
𝑡 . Since 𝑃𝑡 is a projection matrix with 𝑖th row taking value 𝑒𝑗𝑖

,

we have 𝐴⊺𝑃𝑡 is just taking the row vectors of 𝐴 and place them as column vectors, namely

the 𝑖th row vector of 𝐴 denoted 𝑎𝑖 is mapped to the 𝑗𝑖th column of 𝐴⊺𝑃𝑡. So there are
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exactly 𝑑 nonzero columns of 𝐴⊺𝑃𝑡. In other words, each row vector of 𝐴⊺𝑃𝑡 has at most

𝑑 nonzero entries, and this choice of 𝑑 columns are the same for all rows. The converse

is also true. If 𝑉 has only 𝑑 nonzero columns, then those columns define the projection

matrix 𝑃𝑡, and the submatrix formed by those columns as row vectors yield 𝐴. So,{︁
𝑉 : I− 𝑉 = 𝐵⊺𝑁 , 𝑉 = 𝐴⊺𝑃𝑡, for some 𝐵 ∈ R𝑟×𝑛, 𝐴 ∈ R𝑑×𝑛, projection 𝑃𝑡 ∈ R𝑑×𝑛

}︁
=
{︁
𝑉 ∈ R𝑛×𝑛 : 𝑉 has ≤ 𝑑 nonzero columns and 𝑣𝑗 ∈ 𝑒𝑗 + 𝒮, 𝑗 = 1, . . . , 𝑛

}︁
.

Since 𝑣𝑗 ∈ 𝑒𝑗 + 𝒮, we can consider choices of 𝑣𝑗 as minimal vectors of 𝑒𝑗 + 𝒮. From the

previous subsections we know how to compute MINSUPP(𝑒𝑗 + 𝒮). From there, we can

computationally search for 𝑉 by trying all possible combinations of the minimal vectors.

As an example, consider the polyhedron from one binding reaction shown in Eq (3.42).

We can find all the matrix vertices from scratch using the method developed here. Note

that in this case MINSUPP𝒮 = (1, 1,−1). So MINSUPP(𝑒1 + 𝒮) = {(1, 0, 0), (0,−1, 1)},
MINSUPP(𝑒2 + 𝒮) = {(0, 1, 0), (−1, 0, 1)}, and MINSUPP(𝑒3 + 𝒮) = {(0, 0, 1), (1, 1, 0)}. So

each row 𝑣𝑖 has two choices, yielding eight possible combinations to form the 𝑉 matrix,

listed below:⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
0 −1 1
0 1 0
0 0 1

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
1 0 0
−1 0 1
0 0 1

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
1 0 0
0 1 0
1 1 0

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
0 −1 1
−1 0 1
0 0 1

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
0 −1 1
0 1 0
1 1 0

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
1 0 0
−1 0 1
1 1 0

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
0 −1 1
−1 0 1
1 1 0

⎤⎥⎥⎥⎦.

Requiring that no more than two columns of 𝑉 are nonzero eliminates all but the 2nd to

4th. These are exactly the vertices in Eq (3.42).

An interesting question worth further studying is whether we can capture the rays as well.

Relation to other problems

Our analysis in this section showed that the problem of finding minimal representations

of a species 𝑥𝑗* in terms of other species on the equilibrium manifold comes down to

finding the minimal (sparsest) vectors of a linear subspace. This problem of finding

sparse vectors of a linear subspace is also studied in numerical linear algebra and other

biological applications such as stoichiometry computation of metabolism. The problem of

finding sparse vectors of a matrix’s null space is studied in [29] and [52]. They studied

the complexity and equivalent formulations of this problem, as well as finding optimal

solutions by greedy algorithms. [19] applied this problem to the study of metabolic

network stoichiometry and computed the solution via mixed integer linear programs. In
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this context, sparse basis vectors of the metabolic stoichiometry matrix can be considered

as biologically meaningful pathways within the network. The general use of pathways in

metabolic analysis is also discussed in Chapters 12, 13 and Part III of [85]. Our analysis in

this section provided new contributions to this problem by linking it to vertices and facets

of zonotopes, therefore revealing the combinatoric and geometric structure underlying

this problem. The zonotopes also provide a direct geometric algorithm to compute such

problems.

3.8 Polyhedra from decomposition of log derivative operators

Here we show that the range of reaction orders in a binding network can be mapped to

relations among log derivative operators, enabling a direct calculus for reaction order

polyhedra. This also reveals that the reason reaction orders take polyhedral shape is deeply

rooted in the calculus rules for positive variables.

Motivation and demonstration through a scalar variable example

To illustrate the main ideas and techniques in the process of calculation done below, here

we first motivate and demonstrate through a simple example in the scalar case.

Consider a dimerization reaction, 2𝑋1 ⇌ 𝑋2, two molecules of 𝑋-monomer, 𝑋1, form a

𝑋-dimer molecule 𝑋2. So the total number of 𝑋 molecules is 𝑡𝑋 = 𝑋1 + 2𝑋2. Assume

the dimer has useful catalytic functions, we would like to study how adding or removing

𝑋 molecules would change the number of 𝑋2 molecules. This could be characterized in

terms of reaction order, or log derivative, or 𝑋2 in 𝑡𝑋 .

Since this is a scalar case, we could calculate this by brute force. Let 𝑘 be the dimerization

binding constant, so the steady state equation from the binding reaction is 𝑘𝑥2 = 𝑥2
1, where

𝑥1 denote the concentration of 𝑋 monomer. Geometrically, this steady state equation

can be considered as restricting the two variables (𝑥1, 𝑥2) on a one-dimensional manifold

parameterized by a variable 𝑥, such that 𝑥1 = 𝑥 and 𝑥2 = 𝑘−1𝑥2
. Apply this parameterization

to the calculation of reaction order, we have

𝑑 log 𝑥2

𝑑 log 𝑡𝑋

= 𝑑 log 𝑘−1𝑥2

𝑑 log(𝑥 + 2𝑘−1𝑥2) = 2 𝑑 log 𝑥

𝑑 log(𝑥 + 2𝑘−1𝑥2) = 2
(︃

𝑑 log(𝑥 + 2𝑘−1𝑥2)
𝑑 log 𝑥

)︃−1

=2
(︃

𝑥

𝑥 + 2𝑘−1𝑥2
𝑑 log 𝑥

𝑑 log 𝑥
+ 2𝑘−1𝑥2

𝑥 + 2𝑘−1𝑥2
𝑑 log 2𝑘−1𝑥2

𝑑 log 𝑥

)︃−1

=2
(︃

𝑥

𝑥 + 2𝑘−1𝑥2 + 2 2𝑘−1𝑥2

𝑥 + 2𝑘−1𝑥2

)︃−1

= 2𝑥 + 2𝑘−1𝑥2

𝑥 + 4𝑘−1𝑥2 .
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We see that as 𝑥 increases from 0 to +∞, this reaction order goes from 2 to 1. This

makes intuitive sense as well. The dimer fraction in this monomer-dimer mixture is

𝑥2
𝑡𝑋

= 𝑘−1𝑥2

𝑥+2𝑘−1𝑥2 = 𝑥
𝑘+2𝑥

, which increases monotonically with 𝑥. So as 𝑥 increases, the dimer

fraction becomes higher. When 𝑥 is very low, almost all of 𝑡𝑋 , the total of 𝑋 molecules, are

in monomer form. Therefore the added 𝑋 molecules almost all goes into monomer form,

with dimer increasing according to the steady state equation 𝑥2 = 𝑘−1𝑥2 ≈ 𝑘−1𝑡2
𝑋 . As a

result, the reaction order is 2, so 10-times higher 𝑡𝑋 causes 100-times higher 𝑥2. When 𝑥

is very high, almost all of 𝑡𝑋 is in dimer form already. So added 𝑋 molecules directly go

into dimer form, resulting in 𝑥2 ≈ 1
2𝑡𝑋 . Hence reaction order is 1, with 10-times higher 𝑡𝑋

causing 10-times higher 𝑥2.

Although we obtained a sensible result after the calculations of the reaction order, we

see that the intuition should be directly representable in the calculation. Even without

knowing the details, we see that reaction order should be in the interval [1, 2], with 2
reached with low dimer fraction, and 1 reached in high dimer fraction, with in-between

dimer fraction reaching in-between reaction order values. In other words, we should be

able to write

𝑑 log 𝑥2

𝑑 log 𝑡𝑋

= 𝑑 log 𝑥2

𝑑 log 𝑥1 + 2𝑥2
= 𝛼1

𝑑 log 𝑥2

𝑑 log 𝑥1
+ 𝛼2

𝑑 log 𝑥2

𝑑 log 𝑥2
= 𝛼1 · 2 + 𝛼2 · 1,

for some convex coefficients 𝛼1 and 𝛼2, with 𝛼1 close to 1 when the mixture is mostly

monomers, and 𝛼2 close to 1 when the mixture is mostly dimers.

In order to accomplish this kind of calculation, we are decomposing a sum in the coordinate

variable to be differentiated with respect to. Namely, in the above case, we want to write a

log derivative with respect to 𝑡𝑋 = 𝑥1 + 2𝑥2 into a convex combination of log derivative to

𝑥1 and log derivative to 𝑥2. This corresponds to a decomposition of log derivative operators. A

decomposition operation like this is different from the typical interaction between sums

and differentiation, where the sum is in the function to be differentiated. For example,

we know derivative exchange with sums by linearity: 𝐷(𝑓1 + 𝑓2) = 𝐷𝑓1 + 𝐷𝑓2, for some

derivative operator 𝐷. We also know for log derivative operators �̃�, we have simple convex

combinations from sums: �̃�(𝑓1+𝑓2) = 𝑓1
𝑓1+𝑓2

�̃�𝑓1+ 𝑓2
𝑓1+𝑓2

�̃�𝑓2. But in the case discussed above,

we are decomposing sums in the coordinate variable instead. For linear derivatives, the

behavior of decomposing functions is drastically different from decomposing coordinates.

For log derivatives, they both results in convex combinations, although with different

convex coefficients. This is discussed in more detail in Theorem 3.8.2 and the following

remarks, where we show how to do this decomposition in multivariate case.
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Here, we continue to think about how to perform this decomposition in this scalar, or

one-dimensional manifold case.

For a positive scalar function 𝑓 on a one dimensional manifold embedded in R2
>0, with 𝑥1

and 𝑥2 as the basis variables for R2
>0, we have

𝜕 log 𝑓

𝜕 log(𝑥1 + 𝑥2)
=
(︃

𝜕 log(𝑥1 + 𝑥2)
𝜕 log 𝑓

)︃−1

=
(︃

𝑥1

𝑥1 + 𝑥2

𝜕 log 𝑥1

𝜕 log 𝑓
+ 𝑥2

𝑥1 + 𝑥2

𝜕 log 𝑥2

𝜕 log 𝑓

)︃−1

.

Denote 𝐻1 = 𝜕 log 𝑓
𝜕 log 𝑥1

and 𝐻2 = 𝜕 log 𝑓
𝜕 log 𝑥2

, 𝜆1 = 𝑥1
𝑥1+𝑥2

and 𝜆2 = 𝑥2
𝑥1+𝑥2

, then

𝜕 log 𝑓

𝜕 log(𝑥1 + 𝑥2)
=
(︁
𝜆1𝐻

−1
1 + 𝜆2𝐻

−1
2

)︁−1
=
(︁
𝐻−1

1 + 𝜆2
(︁
𝐻−1

2 −𝐻−1
1

)︁)︁−1
.

We see from this expression that there is a regularity condition required for the reaction

orders 𝐻1 and 𝐻2 to guarantee our calculation above is valid: they must have the same sign,

so that the 𝐻−1
1 + 𝜆2

(︁
𝐻−1

2 −𝐻−1
1

)︁
can be inverted for all 𝜆2 between 0 and 1. We assume

this for the the discussion here, although this condition is slightly relaxed in our general

result later to include the singular case, which corresponds to reaction order 0 here.

Recall that the goal is to obtain a formula like

𝜕 log 𝑓

𝜕 log(𝑥1 + 𝑥2)
= 𝛼1

𝜕 log 𝑓

𝜕 log 𝑥1
+ 𝛼2

𝜕 log 𝑓

𝜕 log 𝑥2
= 𝛼1𝐻1 + 𝛼2𝐻2.

Therefore we are facing a problem of relating

(︁
𝐻−1

1 + 𝜆2
(︁
𝐻−1

2 −𝐻−1
1

)︁)︁−1
with 𝛼1𝐻1 +𝛼2𝐻2

for some convex coefficients 𝛼1 and 𝛼2. One nice result on this is the Sherman-Morrison

formula, which we use to prove the general case. Here in the scalar case, the formula can

be shown by a simple direct calculation. Denote 𝑏 = 𝐻−1
2 −𝐻−1

1 , then

1
𝐻−1

1 + 𝜆2𝑏
= 𝐻1

1 + 𝜆2𝑏𝐻1
= 𝐻1 + 𝜆2𝑏𝐻

2
1 − 𝜆2𝑏𝐻

2
1

1 + 𝜆2𝑏𝐻1
= 𝐻1 −

𝜆2𝑏𝐻
2
1

1 + 𝜆2𝑏𝐻1
.

Now this is in a form closer to our goal to write it as 𝛼1𝐻1 + 𝛼2𝐻2. Note that when we take

𝜆2 = 1, we have 𝐻2 = (𝐻−1
1 + (𝐻−1

2 − 𝐻−1
1 ))−1 = (𝐻−1

1 + 𝑏)−1 = 𝐻1 − 𝑏𝐻2
1

1+𝑏𝐻1
. Now apply

this to have

𝛼1𝐻1 + 𝛼2𝐻2 = 𝛼1𝐻1 + 𝛼2

(︃
𝐻1 −

𝑏𝐻2
1

1 + 𝑏𝐻1

)︃
= 𝐻1 − 𝛼2

𝑏𝐻2
1

1 + 𝑏𝐻1
,

where we used 𝛼1 and 𝛼2 should be convex coefficients, therefore sum to 1. Now compare

this form to what we just obtained, we see how the coefficients should be related to 𝜆1 and

𝜆2:

𝛼1 = 𝜆1

𝜆1 + 𝜆2
𝐻1
𝐻2

, 𝛼2 = 𝜆2
1 + 𝑏𝐻1

1 + 𝜆2𝑏𝐻1
= 𝜆2(1 + 𝑏𝐻1)

𝜆1 + 𝜆2(1 + 𝑏𝐻1)
=

𝜆2
𝐻1
𝐻2

𝜆1 + 𝜆2
𝐻1
𝐻2

.
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Here we used 1 + 𝑏𝐻1 = 𝐻1
𝐻2

=. This completes our derivation for how to decompose a

log derivative operator, or write
𝜕 log 𝑓

𝜕 log(𝑥1+𝑥2) in terms of a convex combination of
𝜕 log 𝑓
𝜕 log 𝑥1

and

𝜕 log 𝑓
𝜕 log 𝑥2

.

Now we can apply this to the motivating example of monomer-dimer mixture. We have

justified writing the following formula directly,

𝑑 log 𝑥2

𝑑 log 𝑡𝑋

= 𝑑 log 𝑥2

𝑑 log 𝑥1 + 2𝑥2
= 𝛼1

𝑑 log 𝑥2

𝑑 log 𝑥1
+ 𝛼2

𝑑 log 𝑥2

𝑑 log 𝑥2
= 𝛼1 · 2 + 𝛼2 · 1,

with the 𝛼1 and 𝛼2 specified as follows:

𝛼1 = 𝑥1

𝑥1 + 4𝑥2
= 𝑥

𝑥 + 4𝑘−1𝑥2 , 𝛼2 = 4𝑥2

𝑥1 + 4𝑥2
= 4𝑘−1𝑥2

𝑥 + 4𝑘−1𝑥2 ,

by applying the formula we obtained, and recalling that in this monomer-dimer case

𝜆1 = 𝑥1
𝑡𝑋

= 𝑥1
𝑥1+2𝑥2

, and 𝜆2 = 𝑥2
𝑡𝑋

= 2𝑥2
𝑥1+2𝑥2

. A quick check shows that this is indeed a

convex combination expression for the reaction order formula we obtained by brute-force

calculation.

This motivating example shows why we would want to do log derivative operator decom-

position: to directly obtain reaction orders with respect to totals as convex combination of

simpler reaction orders, without complicated calculations. In other words, the goal of log

derivative operator decomposition is to reveal the inherent polyhedral structure in reaction

orders. The decomposition method shown in this scalar case is also a walk-through of the

ideas used to prove the formula in the multivariate case below: using Sherman-Morrison

formula to write inverses as convex combinations. The regularity condition on the reaction

orders also carry through. Recall that we required 𝐻0 and 𝐻1 to have the same sign to make

the reaction order decomposition possible. Indeed, if this is not satisfied, such as when

𝑥1𝑥2 = 1, then the decomposition does not result in a convex combination. Namely, the

coefficient 𝛼1 can become negative. Now we are well prepared to tackle the multivariate

case.

Multivariate case

We begin with one lemma on matrix inversion that shows inverting the line segment

between two invertible matrices that differ by a rank-one change results in a line segment

between the inverse of the two matrices. In the singular case, this results in a ray.

Lemma 3.8.1 (Inverse of a rank-1 change to identity matrix). Consider 𝐴(𝜆) := I + 𝜆𝑢𝑣⊺
for

𝜆 ∈ [0, 1], so 𝐴(0) = I, 𝐴(1) = I + 𝑢𝑣⊺
.
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1. If det 𝐴(1) = 1 + 𝑣⊺𝑢 > 0, then

𝐴(𝜆)−1 = 𝛼0𝐴(0)−1 + 𝛼1𝐴(1)−1, 𝛼0 = 𝜆0

𝜆0 + 𝜆(1 + 𝑣⊺𝑢) , 𝛼0 + 𝛼1 = 1, (3.54)

where 𝜆0 = 1− 𝜆, 𝜆 ∈ [0, 1].

2. If det 𝐴(1) = 1 + 𝑣⊺𝑢 = 0, then

𝐴(𝜆)−1 = 𝐴(0)−1 − 𝛽𝑢𝑣⊺, 𝛽 = 𝜆

1− 𝜆
, (3.55)

where 𝜆 ∈ [0, 1).

Proof. Note that det 𝐴(1) = 1 + 𝑣⊺𝑢 ≥ 0 guarantees det 𝐴(𝜆) = 1 + 𝜆𝑣⊺𝑢 > 0 for all

𝜆 ∈ [0, 1). Therefore for every 𝜆 < 1, the matrix 𝐴(𝜆) is invertible.

For 1. If det 𝐴(1) > 0, we can apply Sherman-Morrison formula to obtain

𝐴(𝜆)−1 = I− 𝜆

1 + 𝜆𝑣⊺𝑢
𝑢𝑣⊺ = 𝛼0I + 𝛼1I−

1
1 + 𝑣⊺𝑢

𝜆(1 + 𝑣⊺𝑢)
𝜆0 + 𝜆(1 + 𝑣⊺𝑢)𝑢𝑣⊺

= 𝛼0I + 𝛼1

(︂
I− 1

1 + 𝑣⊺𝑢
𝑢𝑣⊺

)︂
= 𝛼0I + 𝛼1𝐴(1)−1.

For 2. Again apply Sherman Morrison formula and notice that 1 + 𝜆𝑣⊺𝑢 = (1− 𝜆) + 𝜆(1 +
𝑣⊺𝑢) = 1− 𝜆,

𝐴(𝜆)−1 = I− 𝜆

1 + 𝜆𝑣⊺𝑢
𝑢𝑣⊺ = I− 𝜆

1− 𝜆
𝑢𝑣⊺.

The previous lemma on matrix inversion has immediate implications in terms of change

of coordinates for log derivative operators. For convenience, we denote �̃�𝜉 as the log

derivative operator with respect to positive variables 𝜉. For example, a positive function

𝑓(𝜉)’s log derivative is �̃�𝜉𝑓 := 𝜕 log 𝑓
𝜕 log 𝜉

. We also denote
𝜕
𝜕𝜉

:= 𝜕 log
𝜕 log 𝜉

as the log derivative

operator, same as �̃�𝜉.

Theorem 3.8.2 (Decomposition of log derivative operators). Consider positive variables (𝑎, 𝑏, 𝜉) ∈
R𝑛+1

>0 on a 𝑛-dimensional smooth manifold. Define 𝑐𝑏 = 𝜕𝑏
𝜕𝑎,𝜉

𝑒1, 𝑐𝑎 = 𝜕𝑎
𝜕𝑏,𝜉

𝑒1.

1. If 𝑐𝑏 > 0, then �̃�𝑎+𝑏,𝜉 = 𝛼𝑎�̃�𝑎,𝜉 + 𝛼𝑏�̃�𝑏,𝜉, where 𝛼𝑎 = 𝑎
𝑎+𝑏𝑐𝑏

= 𝑎𝑐𝑎

𝑏+𝑎𝑐𝑎
> 0, 𝛼𝑎 + 𝛼𝑏 = 1.

Also, 𝑐𝑎𝑐𝑏 = 1.

2. If 𝑐𝑏 = 0, then �̃�𝑎+𝑏,𝜉 = �̃�𝑎,𝜉

(︁
I + 𝜏𝑏𝑒1

𝜕𝑎/𝑏

𝜕𝑎,𝜉

)︁
, where 𝜏𝑏 = 𝑏

𝑎
.
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Proof. By chain rule,

�̃�𝑎+𝑏,𝜉 = �̃�𝑎,𝜉

(︃
𝜕𝑎 + 𝑏, 𝜉

𝜕𝑎, 𝜉

)︃−1

= �̃�𝑎,𝜉

(︃
𝑎

𝑎 + 𝑏

𝜕𝑎, 𝜉

𝜕𝑎, 𝜉
+ 𝑏

𝑎 + 𝑏

𝜕𝑏, 𝜉

𝜕𝑎, 𝜉

)︃−1

= �̃�𝑎,𝜉

(︃
I + 𝜆𝑏𝑒1

𝜕𝑏/𝑎

𝜕𝑎, 𝜉

)︃−1

,

where we defined 𝜆𝑏 = 𝑏
𝑎+𝑏

. Consider 𝐴(𝜆𝑏) = I + 𝜆𝑏𝑒1
𝜕𝑏/𝑎

𝜕𝑎,𝜉
, we see 𝑐𝑏 = 1 + 𝜕𝑏/𝑎

𝜕𝑎,𝜉
𝑒1 =

det
(︁
I + 𝑒1

𝜕𝑏/𝑎

𝜕𝑎,𝜉

)︁
. So 𝑐𝑏 > 0 and 𝑐𝑏 = 0 corresponds to the cases in the previous lemma.

Applying the lemma gives the desired result.

Theorem 3.8.2 shows that when the log derivative to the sum of two variables is decomposed

into the log derivative to individual variables, convex combinations naturally arise. This

is a surprising fact that is special about the calculus of positive variables. The variables

are linearly summed, but the derivatives are in log scale. Without this exact combination,

we do not have this nice convex decomposition. In the following remark, we show that

happens if we do this decomposition for linear derivatives.

Remark 3.8.3 (Decomposition of linear derivatives). A similar but less clean decomposition

is possible for linear derivatives.
𝜕𝑎+𝑏,𝜉

𝜕𝑎,𝜉
= I + 𝑒1

𝜕𝑏
𝜕𝑎,𝜉

, so

(︁
𝜕𝑎+𝑏,𝜉

𝜕𝑎,𝜉

)︁−1
= I− 1

1+𝑑
𝑒1

𝜕𝑏
𝜕𝑎,𝜉

, where

𝑑 = 𝜕𝑏
𝜕𝑎,𝜉

𝑒1 is assumed to be positive. Similarly, since
𝜕𝑏,𝜉
𝜕𝑎,𝜉

= 𝜕𝑎+𝑏,𝜉
𝜕𝑎,𝜉

−𝐸11 = I + 𝑒1
(︁

𝜕𝑏
𝜕𝑎,𝜉
− 𝑒1

)︁
,

we obtain

(︁
𝜕𝑏,𝜉
𝜕𝑎,𝜉

)︁−1
= I − 1

𝑑

(︁
𝑒1

𝜕𝑏
𝜕𝑎,𝜉
−𝐸11

)︁
. So

(︁
𝜕𝑎+𝑏,𝜉

𝜕𝑎,𝜉

)︁−1
= 1

1+𝑑
I + 𝑑

1+𝑑

(︁
I− 1

𝑑
𝑒1

𝜕𝑏
𝜕𝑎,𝜉

)︁
=

1
1+𝑑

I + 𝑑
1+𝑑

(︂(︁
𝜕𝑏,𝜉
𝜕𝑎,𝜉

)︁−1
− 1

𝑑
𝐸11

)︂
= 1

1+𝑑
(I−𝐸11) + 𝑑

1+𝑑

(︁
𝜕𝑏,𝜉
𝜕𝑎,𝜉

)︁−1
.

Therefore, the decomposition for linear derivatives is

𝐷𝑎+𝑏,𝜉 = 𝐷𝑎,𝜉

(︃
𝜕𝑎 + 𝑏, 𝜉

𝜕𝑎, 𝜉

)︃−1

= 1
1 + 𝑑

𝐷𝑎,𝜉(I−𝐸11) + 𝑑

1 + 𝑑
𝐷𝑏,𝜉.

So we have the extra term 𝐸11. So linear derivative operators decompose into the convex

combination of component derivative operators with an extra term. △

We apply the decomposition method in Theorem 3.8.2 to the example of one binding

reaction and compare with our previous results in Section 3.6.

Example 7. Consider a binding network consisting of just one binding reaction, labeled

as 𝐸 + 𝑆 ⇌ 𝐶. See Section 3.6 for earlier analysis and more details on this network’s
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behaviors. We apply Theorem 3.8.2 to first decompose 𝑡𝑆 = 𝑆 + 𝐶, then 𝑡𝐸 = 𝐸 + 𝐶.

𝜕𝐶

𝜕𝑡𝐸, 𝑡𝑆, 𝐾
= 𝛼 𝑆

𝑡𝑆

𝜕𝐶

𝜕𝑡𝐸, 𝑆, 𝐾
+ 𝛼 𝐶

𝑡𝑆

𝜕𝐶

𝜕𝑡𝐸, 𝐶, 𝐾

= 𝛼 𝑆
𝑡𝑆

(︃
𝛼 𝐸

𝑡𝐸
, 𝑆

𝑡𝑆

𝜕𝐶

𝜕𝐸, 𝑆, 𝐾
+ 𝛼 𝐶

𝑡𝐸
, 𝑆

𝑡𝑆

𝜕𝐶

𝜕𝐶, 𝑆, 𝐾

)︃
+ 𝛼 𝐶

𝑡𝑆

𝜕𝐶

𝜕𝑡𝐸, 𝐶, 𝐾

= 1
1 + 𝑒 1

1+𝑠

(︂ 1
1 + 𝑠

[︁
1 1 −1

]︁
+ 𝑠

1 + 𝑠

[︁
1 0 0

]︁)︂
+

𝑒 1
1+𝑠

1 + 𝑒 1
1+𝑠

[︁
0 1 0

]︁
,

where the last step used the steady state condition 𝐶 = 𝐸𝑆
𝐾

, 𝛼’s are convex coefficients,

𝛼 𝑆
𝑡𝑆

+ 𝛼 𝐶
𝑡𝑆

= 1, and 𝛼 𝐸
𝑡𝐸

, 𝑆
𝑡𝑆

+
𝛼𝐶𝑡𝐸 , 𝑆

𝑡𝑆

= 1. 𝑐𝑏 for splitting 𝐸 in 𝑡𝐸 is
𝜕𝐶

𝜕𝐸,𝑆,𝑘
𝑒1 = 1; 𝑐𝑏 for splitting

𝑆 in 𝑡𝑆 is
𝜕𝐶

𝜕𝑡𝐸 ,𝑆,𝑘
𝑒2 = 1

1+𝑠
, since 𝐶 = 𝑆/𝑘

1+𝑆/𝑘
𝑡𝐸 .

Similarly, we could decompose the 𝑡𝐸 coordinate first, and then 𝑡𝑆 .

𝜕𝐶

𝜕𝑡𝐸, 𝑡𝑆, 𝐾
= 𝛼 𝐸

𝑡𝐸

𝜕𝐶

𝜕𝐸, 𝑡𝑆, 𝐾
+ 𝛼 𝐶

𝑡𝐸

𝜕𝐶

𝜕𝐶, 𝑡𝑆, 𝐾

= 𝛼 𝐸
𝑡𝐸

(︃
𝛼 𝑆

𝑡𝑆
, 𝐸

𝑡𝐸

𝜕𝐶

𝜕𝐸, 𝑆, 𝐾
+ 𝛼 𝐶

𝑡𝑆
, 𝐸

𝑡𝐸

𝜕𝐶

𝜕𝐸, 𝐶, 𝐾

)︃
+ 𝛼 𝐶

𝑡𝐸

𝜕𝐶

𝜕𝐶, 𝑡𝑆, 𝐾

= 1
1 + 𝑠 1

1+𝑒

(︂ 1
1 + 𝑒

[︁
1 1 −1

]︁
+ 𝑒

1 + 𝑒

[︁
0 1 0

]︁)︂
+

𝑠 1
1+𝑒

1 + 𝑠 1
1+𝑒

[︁
1 0 0

]︁
.

Although the coefficients generated in the process are not necessarily the same, for example

𝛼 𝑆
𝑡𝑆

, 𝐸
𝑡𝐸

̸= 𝛼 𝐸
𝑡𝐸

, 𝑆
𝑡𝑆

, both decomposition processes simplify to the same expression, which is

also the same as Eq (3.38).

𝜕𝐶

𝜕𝑡𝐸, 𝑡𝑆, 𝑘
= 1

1 + 𝑒 + 𝑠

[︁
1 1 −1

]︁
+ 𝑒

1 + 𝑒 + 𝑠

[︁
0 1 0

]︁
+ 𝑠

1 + 𝑒 + 𝑠

[︁
1 0 0

]︁
.

Such decomposition procedures can be interpreted as considering one at a time which

species is dominant in the total. This is graphically illustrated in Figure 3.8. In each step, we

perform a binary split according to Theorem 3.8.2 that considers one species is dominant

in one of the totals, or the rest of the total are dominant. △

More generally, Theorem 3.8.2 enables a procedure to obtain the reaction order polyhedra

through decomposition of log derivative operators. Since each decomposition corresponds

to asking a coordinate variable (𝑎 + 𝑏) whether 𝑎 is dominant or 𝑏 is dominant, we call this

procedure the dominance decomposition tree (DDT). The above example (and Figure 3.8)

is one illustration of the DDT procedure.

Next we illustrate DDT with a more complicated example of two binding reactions.
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Figure 3.8 Graphical illustration of the dominance decomposition tree (DDT) procedure applied to the

binding network of just one binding reaction.

Example 8 (stacked binding.). Consider the following binding network with two binding

reactions.

𝐴 + 𝐵 ⇌ 𝐶𝐴𝐵, 𝐵 + 𝐶 ⇌ 𝐶𝐴𝐵𝐶 .

This network is stoichiometry-atomic. With an atom-first ordering (𝐴, 𝐵, 𝐶, 𝐶𝐴𝐵, 𝐶𝐴𝐵𝐶),
the atomic decomposition matrix 𝐿 and transpose-reduced stoichiometry matrix 𝑁 are

⎡⎣𝐿

𝑁

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1
0 1 0 1 1
0 0 1 0 1
1 1 0 −1 0
0 0 1 1 −1.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can biologically interpret this binding network as an activator’s regulation of a gene. For

example, 𝐴 is a gene, with activating transcription factor 𝐵 binding to it. The activator-gene

complex 𝐶𝐴𝐵 then recruits the RNA polymerase 𝐶 to form transcriptionially active complex

𝐶𝐴𝐵𝐶 . From this interpretation, the active species is 𝐶𝐴𝐵𝐶 , so we would like to know the

reaction order of 𝐶𝐴𝐵𝐶 to totals (𝑡𝐴, 𝑡𝐵, 𝑡𝐶). This can be done via DDT as illustrated in

Figure 2.4 in Chapter 2. △

While the DDT procedure, based on Theorem 3.8.2, guarantees that the polyhedron

obtained from log derivative decompositions always contains the set of reaction orders,
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Figure 3.9 Enzyme allostery. (a) The binding network of this enzyme allostery example. (b) Computational

sampling of the reaction order polyhedron of 𝐸2. The edge colored orange corresponds to points with total

substrate much higher than total enzyme. This edge corresponds to approximations from enzyme state

counting, such as MWC models. (c) The DDT of 𝐸2. The vertices circled by orange corresponds to the orange

edge in (b). (d) The case where the two substrate molecules binds to the enzyme in one step is considered,

with the computational sampling of the reaction order polyhedron of 𝐸2 plotted. We see it is a strict subset

of the reaction order polyhedron in (b). (e) Another subcase, where the same binding network as (a) is

considered, but the binding constants are restricted to be the same. We see the resulting polyhedron is again

a strict subset of (b), with only the ray disappeared. This implies the ray in (b) is only achievable through

allostery, where the two binding constants are different.

it does not guarantee all points in the polyhedron from decomposition are reachable as

reaction order at some point of the equilibrium manifold. In fact, the set of all possible

reaction orders may not have a polyhedral shape to begin with, although it is always

bounded in some polyhedron. We illustrate this with an example motivated by allostery.

Example 9 (allostery). See Figure 3.9 for the binding network (a), sampled reaction order

polyhedra (b), and DDT (c). We see that the system has a ray towards the (1,−1) direction,

but this ray does not extend from the (2, 1) vertex for example, resulting in a “wedge” on

the right side of the (2, 0) and (2, 1) edge that is not achievable. Because of this, the set of

achievable reaction orders is a strict subset of the polyhedron obtained from taking convex

combination of the vertices and rays from DDT. We can gain some intuitive understanding

about this by inspecting the DDT. We see that the ray towards (1,−1) corresponds to the

𝑡𝐸 ≈ 𝐸1 dominance condition, which is the same as the (1, 1) vertex and contradicts with

the (2, 1) vertex. This comes from the fact that the same substrate species 𝑆 is used in
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both binding reactions. If these two are distinct species, then we get back the polyhedron

from the stacked binding, or activator example, which is fully achievable. We therefore

conjecture that if each binding reaction adds a new species, then the achievable reaction

orders form a polyhedral set. △

While the DDT procedure works well for small to medium sized examples, the decom-

position could become complicated very quickly for larger problems. Also, there are

more structures used in our log derivative decomposition than Theorem 3.8.2 included.

Namely, we are decomposing positive linear combinations of the form 𝑡 = 𝐿𝑥, instead of

generic positive variables. Therefore, we would like to include this matrix structure into

the problem to see whether we can solve larger problems.

Log derivative decomposition as a matrix operation

In our context of reaction orders in binding networks, the variables that we take log

derivative with respect to are always positive combinations of chemical concentrations of

the form 𝐴𝑥, where 𝐴 is a matrix with non-negative entries. Therefore we would like a

clear association between log derivative decomposition and matrix operations. First, let us

re-write Theorem 3.8.2 in our matrix context.

Lemma 3.8.4. Given 𝐴 ∈ R𝑑×𝑛
≥0 , 𝑑 < 𝑛, full row rank. Also given a row index 𝑖 ∈ {1, . . . , 𝑑} and

a non-negative nonzero vector 𝑏 ∈ R𝑛
≥0. Then, let 𝑐 = 𝜕𝑏⊺𝑥

𝜕𝐴𝑥
𝑒𝑖.

�̃�(𝐴+𝑒𝑖𝑏⊺)𝑥 =

⎧⎪⎨⎪⎩𝛼�̃�𝐴𝑥 + 𝛼�̃�(𝐴∖𝑖+𝑒𝑖𝑏⊺)𝑥, if 𝑐 > 0;

�̃�𝐴𝑥 + 𝜏
(︁
�̃�𝐴𝑥

)︁
𝑖

(︁
𝑒⊺

𝑖 − 𝜕𝑏⊺𝑥
𝜕𝐴𝑥

)︁
, if 𝑐 = 0,

(3.56)

where 𝜏 = 𝑏⊺𝑖 𝑥

𝑎⊺
𝑖 𝑥

, 𝛼 = 1
1+𝜏𝑐

, 𝛼 = 1− 𝛼, and

(︁
�̃�𝐴𝑥

)︁
𝑖
denote the 𝑖th row of the matrix obtained when

applied to a function.

One issue with the above lemma is that whether 𝑐 > 0 or 𝑐 = 0 seems to depend on 𝑥 in

general. To study when this is independent of 𝑥, we have the following results.

Lemma 3.8.5. Given 𝐴 ∈ R𝑑×𝑛
a non-negative full-row-rank matrix, and 𝑏 a nonzero nonnegative

vector in R𝑛
≥0. For each 𝑥 ∈ R𝑛

>0, assume

⎡⎣𝐴
𝜕𝑘
𝜕𝑥

⎤⎦ is invertible. Then

sgn 𝑐 = sgn det
⎡⎣𝐵

𝜕𝑘
𝜕𝑥

⎤⎦,

where 𝐵 = 𝐴∖𝑖 + 𝑒𝑖𝑏
⊺
.
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Proof. We can calculate that

𝑐 = 𝜕𝑏⊺𝑥

𝜕𝐴𝑥, 𝑘
𝑒𝑖 = 1

𝑏⊺𝑥

𝜕𝑏⊺𝑥

𝜕𝐴𝑥, 𝑘

⎡⎣Λ𝐴𝑥 0𝑑×𝑟

0𝑟×𝑑 Λ𝑘

⎤⎦𝑒𝑖 = 𝑎⊺
𝑖 𝑥

𝑏⊺𝑥
𝑏⊺ 𝜕𝑥

𝜕𝐴𝑥, 𝑘
𝑒𝑖

= 𝑎⊺
𝑖 𝑥

𝑏⊺𝑥
𝑏⊺

⎡⎣𝐴
𝜕𝑘
𝜕𝑥

⎤⎦−1

𝑒𝑖,

because
𝜕𝐴𝑥,𝑘

𝜕𝑥
=
⎡⎣𝐴

𝜕𝑘
𝜕𝑥

⎤⎦. Since 𝑎𝑖 (the 𝑖th row of 𝐴) and 𝑏 are non-negative nonzero,
𝑎⊺

𝑖 𝑥

𝑏⊺𝑥
> 0.

So sgn 𝑐 = sgn 𝑏⊺
𝑖

⎡⎣𝐴
𝜕𝑘
𝜕𝑥

⎤⎦−1

𝑒𝑖.

Now,

⎡⎣𝐵
𝜕𝑘
𝜕𝑥

⎤⎦ =
⎡⎣𝐴

𝜕𝑘
𝜕𝑥

⎤⎦+ 𝑒𝑖(𝑏⊺
𝑖 − 𝑎⊺

𝑖 ), so we have

det
⎡⎣𝐵

𝜕𝑘
𝜕𝑥

⎤⎦ = (𝑏⊺
𝑖 − 𝑎⊺

𝑖 )
⎡⎣𝐴

𝜕𝑘
𝜕𝑥

⎤⎦−1

𝑒𝑖 + 1 = 𝑏⊺
𝑖

⎡⎣𝐴
𝜕𝑘
𝜕𝑥

⎤⎦−1

𝑒𝑖,

by noticing 1 = 𝑒⊺
𝑖

⎡⎣𝐴
𝜕𝑘
𝜕𝑥

⎤⎦⎡⎣𝐴
𝜕𝑘
𝜕𝑥

⎤⎦−1

𝑒𝑖 = 𝑎⊺
𝑖

⎡⎣𝐴
𝜕𝑘
𝜕𝑥

⎤⎦𝑒𝑖.

Lemma 3.8.6. For 𝑥, a point inℳ, the detailed balance steady state manifold of a binding network

with rate constants vector 𝑘,

sgn 𝑐 = sgn det
⎡⎣𝐵Λ𝑥

𝑁

⎤⎦.

Proof. A detailed balance binding network implies 𝑁 log 𝑥 = log 𝑘, so
𝜕𝑘
𝜕𝑥

= 𝑁 . We get

𝜕𝑘
𝜕𝑥

= Λ𝑘
𝜕𝑘
𝜕𝑥

Λ−1
𝑥 = Λ𝑘𝑁Λ−1

𝑥 . So that

⎡⎣𝐵
𝜕𝑘
𝜕𝑥

⎤⎦ =
⎡⎣ 𝐵

Λ𝑘𝑁Λ−1
𝑥

⎤⎦. Since

⎡⎣𝐵
𝜕𝑘
𝜕𝑥

⎤⎦ =
⎡⎣ 𝐵

Λ𝑘𝑁Λ−1
𝑥

⎤⎦ =⎡⎣I 0
0 Λ𝑘

⎤⎦⎡⎣𝐵Λ𝑥

𝑁

⎤⎦Λ−1
𝑥 , we get the desired conclusion.

Now we know whether the sign of 𝑐 is independent of 𝑥 depends on properties of the

matrix 𝐵. Recall from end of Section 3.4 on alternative charts. We see that exactly

sgn 𝑐 = sgn det 𝑀 (𝐵). So sgn 𝑐 = + is equivalent to 𝐵 ∈ 𝒜+(𝑁 ), i.e. 𝐵 could form an

alternative chart ofℳ, on the same connected component as 𝐿.

Recall from end of Section 3.4 on alternative charts that given 𝐴 ∈ 𝒜+(𝑁 ), then any

𝑆 ∈ R𝑑×𝑑
with positive determinant yields 𝑆𝐴 ∈ 𝒜+(𝑁 ) if 𝑆𝐴 is non-negative in all of its



138

entries. Next we show that the matrix operation representing the step of changing one

coordinate in log derivative coordinates are included in this case, so such operations do

not go out of 𝒜+(𝑁 ).

Proposition 3.8.7. Given 𝐴 ∈ 𝒜+(𝑁 ). Define 𝐴′ = 𝐴 + 𝑒𝑖𝑏
⊺
. Consider 𝐵 = 𝐴∖𝑖 + 𝑒𝑖𝑏

⊺
. If 𝐵

is not full row rank, or 𝐵 ∈ 𝒜+(𝑁 ), then 𝐴′ ∈ 𝒜+(𝑁 ).

Proof. For simplicity of notation, let us fix 𝑖 = 1 without loss of generality. If 𝐵 is not full row

rank, i.e. 𝑏⊺ = 𝛼⊺𝐴 for coefficient vector 𝛼 with 𝛼1 = 0, then 𝐴′ = 𝐴 + 𝑒1𝑏
⊺ = (I + 𝑒1𝛼

⊺)𝐴.

Since 𝛼1 = 0, we have det(I + 𝑒1𝛼
⊺) = 1. So 𝐴′ ∈ 𝒜+(𝑁 ).

If 𝐵 ∈ 𝒜+(𝑁 ). Then for each 𝑥, we have coefficient vectors 𝛼(𝑥) ∈ R𝑑
and 𝛽(𝑥) ∈ R𝑟

, so

that 𝑏⊺Λ𝑥 = 𝛼⊺(𝑥)𝐴Λ𝑥 + 𝛽⊺(𝑥)𝑁 . This is because 𝐴 ∈ 𝒜+(𝑁 ), so rows of 𝐴Λ𝑥 and rows

of 𝑁 form a basis of R𝑛
. Since 𝐵 ∈ 𝒜+(𝑁 ), we have 𝛼1(𝑥) > 0 for all 𝑥. Indeed,⎡⎣𝐵Λ𝑥

𝑁

⎤⎦ =
⎡⎣𝐴∖1Λ𝑥 + 𝑒1𝑏

⊺Λ𝑥

𝑁

⎤⎦ = (I−𝐸11 + 𝑒1
[︁
𝛼(𝑥)⊺ 𝛽(𝑥)⊺

]︁
)
⎡⎣𝐴Λ𝑥

𝑁

⎤⎦,

where 𝐴∖1 is the matrix obtained by seting the first row of 𝐴 to zero, and det(I −𝐸11 +
𝑒1
[︁
𝛼(𝑥)⊺ 𝛽(𝑥)⊺

]︁
) = 𝛼1(𝑥).

The condition 𝛼1(𝑥) > 0 for all 𝑥 then implies 𝐴′ ∈ 𝒜+(𝑁 ) with 𝐴′ = 𝐴 + 𝑒1𝑏
⊺

because⎡⎣𝐴′Λ𝑥

𝑁

⎤⎦ =
⎡⎣𝐴Λ𝑥 + 𝑒1𝑏

⊺Λ𝑥

𝑁

⎤⎦ = (I + 𝑒1
[︁
𝛼(𝑥)⊺ 𝛽(𝑥)⊺

]︁
)
⎡⎣𝐴Λ𝑥

𝑁

⎤⎦,

and det(I + 𝑒1
[︁
𝛼(𝑥)⊺ 𝛽(𝑥)⊺

]︁
) = 1 + 𝛼1(𝑥) > 1.

Right multiplications by positive diagonal matrices also leaves 𝒜+(𝑁 ) invariant.

Lemma 3.8.8. 𝐴 ∈ 𝒜𝜎(𝑁 ), then 𝐴Λ𝑣 ∈ 𝒜𝜎(𝑁 ) for any positive diagonal matrix Λ𝑣 with

diagonal vector 𝑣 ∈ R𝑛
>0.

Proof. For each 𝑥, the matrix 𝐴Λ𝑣Λ𝑥 can be expressed as 𝐴Λ𝑥′ , where 𝑥′
𝑗 = 𝑣𝑗𝑥𝑗 > 0.

In summary, operations closed in 𝒜+(𝑁 ) include left multiplication by invertible matrix

with positive determinant and right multiplication by positive diagonal matrices. In

particular, this includes adding a vector from rowspan 𝐴∖𝑖 to the 𝑖th row of 𝐴.

The above decomposition has shown that putting two matrices together in the decomposi-

tion steps preserves the regularity condition 𝑐 > 0 for all 𝑥.
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Lemma 3.8.9. Matrix addition 𝐴 + 𝑒𝑖𝑏 has an equivalent log derivative interpretation. Define

𝑐 = 𝜕𝑏⊺𝑥
𝜕𝐴𝑥

𝑒𝑖, 𝜏 = 𝑏⊺𝑥
𝑎⊺

𝑖 𝑥
, 𝛼 = 1

1+𝜏𝑐
.

1. If 𝐵 ∈ 𝒜+(𝑁 ), then 𝑐 > 0 for all 𝑥, and 𝐴 + 𝑒𝑖𝑏 means

�̃�(𝐴+𝑒𝑖𝑏⊺)𝑥 = 𝛼�̃�𝐴𝑥 + 𝛼�̃�𝐵𝑥. (3.57)

2. If 𝐵 is not full row rank, then 𝑐 = 0 for all 𝑥, and 𝐴 + 𝑒𝑖𝑏 means

�̃�(𝐴+𝑒𝑖𝑏⊺)𝑥 = �̃�𝐴𝑥

(︃
I + 𝜏𝑒𝑖

𝜕𝑎⊺
𝑖 𝑥/𝑏⊺𝑥

𝜕𝐴𝑥

)︃
. (3.58)

3.9 Summary

To build a mathematical foundation for equilibrium steady states of binding networks, we

defined isomer-atomic binding networks that are biologically plausible and characterized

their manifold of equilibrium steady states. When transforming between the different

charts of the equilibrium manifold, we introduced log derivatives, which turned out to

have significant biological meaning. Importantly, reaction orders, i.e. the log derivatives of

active species with respect to totals, are bounded in polyhedral sets, with vertices and edges

corresponding to robust regulatory regimes of catalysis activities. We then characterized

the vertices in terms of vectors with minimal support in the stoichiometry subspace, and

developed a computational method to compute them at scale using zonotopes. Lastly, we

showed that polyhedral sets arise in reaction orders due to the fundamental reason that

decomposition of log derivative operators yield convex combinations. This enables an

analytical method called dominance decomposition tree (DDT) to obtain reaction order

polyhedra.
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Chapter 4

Flux exponent control in metabolism: bio-
logical regulation as control of flux expo-
nents

4.1 Introduction

Microbial communities, from the gut microbiome to the soil rhizosphere, play a critical

role in human health and well-being [67, 74, 82, 100]. In particular, we now understand

that many pathologies are associated with undesired variations in the composition of the

microbiome community [18, 101, 120]. It is therefore important that we understand the

principles governing the dynamics of microbial community structure.

Despite the wealth of information cataloguing the composition of these communities, we

are still far from understanding the governing principles of community dynamics. This is

because the microbiomes relevant to human health and agriculture are extremely complex,

consisting of many interactions across hierarchical spatiotemporal scales [68, 110]. The

combinatorial space of possible interactions is so large that a purely phenomenological

approach cannot succeed without a rigorous theoretical framework in which to interpret

the data. It is therefore unsurprising that many microbiome scientists feel that they are

‘drowning in data’ [95, 114], as there is no unified conceptual framework in which to

contextualize any given observation.

A theoretical framework that aims to provide such a conceptual basis, as well as to make

predictions that can drive further understanding, must span interactions across hierarchical

scales, from the molecular to the cellular to the ecological. In microbial communities,
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Figure 4.1 Diagram showing knowledge of biological systems split into mechanisms and phenotypes, and how

they are mapped to each other. Mechanisms are system properties not varying for the timescale of concern,

while phenotypes are system properties that are varying. From our knowledge about mechanisms, scientific

rules can be summarized, often using the language of mathematics, to capture the core mechanistic structures.

Such core structures can be used to systematically create models from knowledge about mechanisms. By

analysis or simulation of these models we can demonstrate that a given mechanism is sufficient for phenotypes

it exhibits. To map phenotypes back to mechanisms, mathematical abstractions for the class of systems is

needed since phenotypes are behaviors on the system level. Systems theory captures the core structures on

the system level, and derive hard limits or laws for given phenotypes. Such laws can then be used to capture

necessary conditions on mechanisms for given phenotypes, providing a map via necessity in the reverse

direction from phenotypes to mechanisms.

metabolism is the core process that bridges these scales. As an example, Terence Hwa

and coworkers have used simple metabolic models to quantitatively explain dynamical

phenomena in the growth of single-strain populations encountering various types of

nutrient stress [42]. Recently, [66] showed that metabolic interactions can explain a bistable

phenotype in a microbial community. Therefore, aiming towards understanding principles

of microbial communities, we need a theoretical framework to understand the rules of

metabolic regulation in a systematic fashion.

To understand rules of metabolic regulation, we could begin with modeling its dynamics.

Metabolism dynamics is fundamentally hard to describe using the traditional mechanistic

model approach such as Michaelis-Menten, where explicit equations are written down

with many parameters to be identified through experiments. The complication is that

while we can experimentally measure bulk metabolic fluxes at scale and characterize

metabolite stoichiometry robustly, we lack systematic ways to observe the dynamic fluxes

of intermediates in cells which depend on the concentrations of regulatory proteins [7].

To elaborate on the generality of this difficulty, we can consider our knowledge about

biological systems as consisting of two types: mechanisms and phenotypes (see Figure
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4.1), split according to timescale for a problem of concern. Mechanisms are physical

and biochemical knowledge about a system that do not vary at the timescale of concern.

Typical examples are size of a cell, elasticity of a tissue, atomic composition and structure

of a protein molecule, and binding free energy of a receptor-ligand pair. Phenotypes are

behaviors of a particular system in a specific scenario, which varies at the timescale of

concern. Most experimental observations on an overall system is of this type, such as

metabolic flux, metabolite concentration, gene expression profile, and enzyme numbers in a

cell. I quickly emphasize that the split between mechanism and phenotype depends on the

timescale of concern, with varying properties considered as phenotypes and non-varying

ones as mechanisms. For example, cell size is mechanistic information for metabolism on

minutes time scale, but it is a phenotype for cell growth or differentiation on hours to days

time scale.

We usually determine that something about a specific system is understood when a

phenotype can be clearly mapped to some mechanisms, and the mechanisms can clearly

explain phenotypes. In other words, a necessary and sufficient (or if and only if) correspon-

dence between phenotypes and mechanisms is established. Experimental investigations

that connects the mechanisms and phenotypes, as in mechanistic perturbations such as

gene knockouts, can provide a point-to-point correspondence between mechanisms and

phenotypes. But this is all for a particular system, a particular mechanism, and a particular

phenotype. When the mechanism involved has more sophisticated architecture or the

phenotype has a large number of dimensions, this point-to-point mapping is insufficient.

Also, we often want to understand rules governing a class of phenotypes that exists in

many systems. To understand this then requires establishing a set-to-set correspondence

that a set of mechanisms are necessary and sufficient for a class of phenotypes. Typically,

the sufficiency is easier, since it can be obtained from accumulation of point-to-point

investigations, while necessity is much harder, since this constitute statements that for a

class of phenotypes, only certain mechanistic features matter, while all other details can be

ignored.

Classically, set-to-set maps start with sufficient conditions for phenotypes that are obtained

by building models based on mechanisms. Mechanistic knowledge are generalizable

in the sense that it applies when this component is used in arbitrary contexts at the

timescale of concern, even ones not observed before. Therefore, mechanisms can be used

to build models that sufficiently demonstrate certain phenotypes, connecting mechanisms

to phenotypes in the forward direction. To do so, scientific rules about these mechanisms

can be summarized by formalizing the core structures involved, often in a mathematical
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language. For example, biological organisms are often made of interacting cells, force and

mass are core structures of mechanical systems, and stoichiometry and rate laws are core

structures of chemical reactions. These scientific rules then can be viewed as the waist of

an hourglass that systematically convert knowledge about mechanisms on the top into

models on the bottom. Then by simulation or analysis, these models take a mechanism

and demonstrate sufficient conditions for phenotypes this mechanism exhibits.

This forward approach providing sufficient maps from mechanisms to phenotypes via

mechanistic models was often considered the major success in classical scientific research.

This is because mechanistic knowledge is generalizable while phenotypic knowledge

is less so. If they are accumulated at approximately the same rate, then mechanistic

knowledge could yield more predictions and apply to more scenarios than just relying on

phenotypes. However, the general difficulty of experimental investigations nowadays is the

opposite: increasingly large data sets can be obtained for phenotypes by massively parallel

methods, but knowledge about mechanisms accumulate slowly, forming a bottleneck.

This is especially prevalent in biology, where massive screening, various kinds of omics

(transcriptomics, proteomics and metabolomics), and other sequencing and droplets based

methods have become the powerhouse of scientific progress. This makes phenotype data

accumulate several orders faster than mechanism data, which is based on physical and

biochemical approaches that does not yet scale. As a result, there is a shift from placing

higher weight on mapping mechanism data to phenotypes in classical times to placing

higher weight on mapping phenotype data back to understand mechanisms in recent

decades. Another major driving force to this change is engineering. The foundation for

engineering is a set of alternatives, or possible designs, to achieve a given system behavior,

or phenotype. The desire for a large design space therefore places significant priority on the

necessary conditions that mechanisms need to satisfy to achieve a phenotype, which can be

used to bound the design space. However, the reverse direction, mapping phenotypes back

to mechanisms through necessary conditions, requires a system level understanding that

is distinct from the core structures or scientific rules. In particular, since phenotypes are

behaviors on the system level, this requires a systems theory that captures the core system

level structures and formulate hard limits, or laws, on system performance independent of

component level details.

A system theory can be considered as the waist of an hourglass, that connects systems’

phenotypes below to the hard limits and laws on top. One example is mechanical

movements formulated as phenotypes of Hamiltonian or Lagrangian dynamical systems,

deriving conservation of energy, mass, and momentum as hard limits or laws governing



144

these systems. Other examples are message transmission viewed as information channels

with hard limits in terms of channel capacity, computation viewed as Turing machines

with hard limits in terms of complexity and decidability, signal processing viewed as

linear input output systems with hard reconstruction limits by Nyquist theorem, feedback

control viewed as linear control systems with hard limits such as Bode’s conservation of

robustness, and exchange between work and heat viewed as thermal engines with hard

limits such as Carnot’s theorem and entropy maximization. These hard limits, or laws,

obtained by the formulation of a systems theory, connect phenotypes or system behaviors

with mechanisms in the reverse direction. For a given phenotype, the laws explain what

properties of mechanisms are important, and what details do not matter. A phenotype

can also be mapped back to mechanisms by laws to eliminate implausible mechanisms.

In light of the explosion of phenotype data or the demand of engineering, we need more

hard limits and laws to do the reverse mapping of constraining mechanisms based on

phenotypes. This work proposes the scientific rules, or core structures, of biomolecular

systems as binding and catalysis, with catalysis determining the direction of change, and

binding regulating catalysis rates. In this chapter we further formulate a systems theory

for biomolecular systems. Since binding’s regulation of catalysis has reaction orders

constrained in polyhedral sets, a biomolecular system can therefore be considered as a class

of control systems, where the dynamics has fixed catalysis stoichiometry with controllers

adjusting the exponents (or reaction orders) of the catalysis fluxes. This formulates a

systems theory for biomolecular systems as flux exponent control (FEC). By formulating

into a control system, FEC makes engineering hard limits or laws from control theory

applicable to biomolecular dynamics including metabolism, and motivates discovery of

further laws.

Let us now discuss this difficulty of knowing detailed mechanisms in the specific context

of metabolic regulation. To illustrate concretely, let us take a simple enzymatic catalysis as

an example:

𝐸 + 𝑆 ⇌ 𝐶
𝑘−→ 𝐸 + 𝑃.

Here the enzyme 𝐸 catalyzes the conversion of substrate 𝑆 into product 𝑃 . This catalysis

happens via an intermediate complex 𝐶 formed by the enzyme binding with the substrate,

and this binding reaction happens fast, reaching binding equilibrium. Written as a

metabolic reaction, this has the following form:

(𝑆tot, 𝑃tot) 𝑣=𝑘𝐶−−−→ (𝑆tot − 1, 𝑃tot + 1),

so the change caused by this catalysis reaction is one less substrate, and one more product
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molecule, while the rate or flux 𝑣 of this reaction is 𝑣 = 𝑘𝐶, the catalysis rate constant 𝑘

multiplying the concentration of intermediate complex 𝐶.

Given this metabolic network in cells, experimentally we can observe the concentrations

of substrate and product molecules at the end of some duration and see the decrease in

substrate is the same as the increas in product, therefore deducing the stoichiometry of

(−1, +1) for substrate and product molecules. However, the rate of this catalysis reaction

over time, or how the rate depends on substrate and product concentrations, is still

intractible to observe at scale in general. This is because observing this rate requires

observing a time trajectory of substrate and product concentrations. The time trace of

metabolites can be done for a selected few chemicals via isotope tracing or spectrometry,

but time traces of many metabolites require chromotography and mass spectrometry at

every time step, which becomes prohibitively expensive to do at scale. Furthermore, to

have a model on regulation of reaction flux, i.e. how flux 𝑣 depends on substrate and

metabolite concentrations, we would require many time traces that cover a wide range of

metabolite concentrations, which grows exponentially with the number of metabolites

involved. Making the situation worse, the flux 𝑣 also depends on enzyme concentration

𝐸tot, while resolving enzyme concentrations over time requires separate experimental

methods that are still hard to do jointly with metabolite concentration time traces at scale.

Together, these difficulties result in the sparsity of data for metabolic fluxes.

This sparsity then creates difficulty for the typical modeling approach where the mecha-

nisms for catalysis are known or hypothesized and equations such as in Michaelis-Menten

are derived for the rates. This is because for the mechanistic models to describe a system

experimentally observed, we need to fit to data many mechanistic parameters that arise

in the modeling process. But for a nontrivial metabolic network, the number of such

parameters is too large to fit to a sparse set of data that is feasible to obtain experimentally.

This problem of under-determination also makes it hard for the mechanistic model to

generalize to situations different from the ones in fitted data.

In order to resolve the under-determination problem due to sparse data, a constraint-based

approach has been developed to model metabolism. The constraint-based approach

dominated recent progress on computational models of large scale metabolic networks [85].

Constraint-based approach is a mechanistic modeling approach providing sufficient maps

from mechanisms to phenotypes. But instead of relying on knowing all the mechanisms

in a system to demonstrate a given phenotype, i.e. to build a model from a point in

mechanism space to a point in phenotype space, it takes known mechanisms as constraints

and unknown mechanisms as free to vary, and look at the set of all feasible phenotypes.
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This is especially appropriate for metabolism, where data on mechanisms is almost always

sparse. For metabolism, a natural split is between stoichiometry and flux regulations, since

the former is relatively easier to know while mechanisms of the latter is much harder.

Therefore, constraint-based methods take the sparse mechanistic data such as stoichiometry

and supply it as constraints on reaction fluxes. Then, either the set of all feasible fluxes can

be analyzed, or optimization for certain objective functions such as growth maximization

or ATP regeneration can be used to find specific points of interest in flux space (Figure 4.2).

One such approach, dynamic flux balance analysis (dFBA) [60], has been very successful

in modeling large scale metabolic networks. The recent work [66] illustrates that dFBA

could capture complex behaviors of a microbial consortia such as hysteresis in response to

environmental nutrient shifts, which is hypothesized to underlie the switching between

beneficial and detrimental gut microbiome compositions.

Although it holds promise as a general model for metabolism, dFBA has severe limitations in

applying to metabolism dynamics of interacting cells and populations. dFBA cannot model

dynamics intrinsic to metabolic regulations. This is because dFBA assumes the intracellular

metabolic fluxes are faster than external changes such as growth and nutrient shifts.

This makes in and out fluxes of metabolites always balanced and at steady state, which

makes the constraint-based problem computationally solvable. But it also makes dFBA

incapable of capturing potentially important transient dynamics intrinsic to metabolism,

such as overshoots, undershoots, lags, and temporary arrests that can be essential for

cell survival. In short, dFBA considers metabolic changes as static and instantaneous

responses to slow variations in external environments, often on the time scale of hours

to days. In comparison, many significant metabolic dynamics in cell physiology and the

gut microbiome, for example, happens within minutes to hours [3, 33]. In addition, as the

strength of a constraint-based method comes from the set of constraints it could use, dFBA

only incorporates the stoichiometry of metabolic reactions as a constraint, so it could be

considered as overly unconstrained to include un-biological actions such as instantaneous

changes of metabolic flux (see Figure 4.2). This causes predictions of dFBA to be erroneous

without time-consuming hand-tuning and curating by experts with extensive experimental

data on the microbe modeled.

Another approach that tackles metabolic regulation was invented in [25], which uses

glycolytic oscillation as an example to formulate the engineering hard limits or laws to

map phenotypes back to mechanisms in the reverse, or necessary, direction. This approach

builds on well-understood models of the glycolysis metabolic network from extensive

experimental data, and asks what is unavoidable if the metabolic regulation is done by
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arbitrary controllers, instead of the specific biological mechanisms. This could be done for

glycolytic oscillation because it is at the opposite extreme of typical problems in metabolism:

a small network with extensive experimental data and well established mechanistic models.

Indeed, glycolytic oscillation, where metabolite concentrations (e.g. ATP and NADH)

oscillate in the glycolysis pathway, has been widely observed and studied from yeast

to human muscle since 1960s both theoretically and experimentally (e.g. [16, 49, 51]).

The feedbacks of autocatalysis and allosteric control of ATP on the PFK enzyme were

thought necessary and sufficient for glycolytic oscillation, confirmed by mechanistic models,

extensive simulations, and exhaustive experiments. So what was left to be understood

was the deeper “why” questions and the full generality of this oscillation behavior. By

showing that oscillatory behavior was unavoidable even if the metabolic regulation was

performed by arbitrary controllers that maintain a steady flux, the paper [25] showed that

oscillations are necessary side effects of robustness and efficiency tradeoffs. Specifically, it

showed that by combining a law on conservation of robustness in control theory called

Bode’s integral formula with the autocatalytic stoichiometry of glycolysis, a universal rule

of metabolic regulation can be obtained that includes glycolytic oscillation as a subset:

Any regulatory circuit that must robustly maintain metabolite concentrations despite

fluctuations in supply and demand will inevitably have significant oscillations in some

conditions, and autocatalysis as well as efficiency aggravate this.

The approach in [25] based on laws from control theory is a significant success in deriving

rules of metabolic regulation, and mapping phenotypes back to mechanisms in the

necesssary direction. However, the particular problem formulation in [25] began with a

mechanistic model, which required that the metabolic network is small and extensively

studied by experiments and mechanistic modelling. This is rare for metabolic interactions

of interest of microbial communities in human microbiomes or soil rhizospheres. In other

words, the general systems theory that formulates metabolic regulation into a control

system that allows control-theory analysis is not yet understood. In [25], the placement

of the arbitrary controller at the allosteric coefficient is a careful choice motivated by

domain knowledge about the glycolysis pathway and experimentally validated feedback

mechanisms. The severe robustness-efficiency tradeoff will be ameliorated if the controller

is placed at some other parameters, such as the reaction rate constants. Therefore, we would

like to formulate a systems theory for metabolic networks and study rules of regulation

for this system by converting it into a control system. This requires a fundamental

understanding of what class of control systems describe the regulation of metabolic

networks.
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Summarizing our discussion of existing approaches, we would like a theoretical framework

to understand rules of metabolic regulation that has the best of both worlds: it should

be constraint-based like dFBA so that it can incorporate sparse data, and it should be a

systems theory with dynamics formalizing [25] so that it can bridge control theory laws

and hard limits to derive rules and tradeoffs on metabolic regulation.

Figure 4.2 Cartoon illustrating three constraint-based methods. The arrow represents the optimization

objective: e.g. growth. The red set describes the actual set of biological actions that a cell can take. The red

dot then represents the optimal growth rate the cell can achieve. The light blue outer-most set is the set of

actions constrained by FBA. It is only constrained by stoichiometry, therefore includes biological actions as

a strict subset. The yellow dot is the optimal action expected by FBA, which deviates from the biological

action (red dot), and has higher growth rate. The light green set denotes the set of actions constrained by

FEC, a strict super set of biological actions and a strict subset of FBA. The green dot is optimal control action

predicted by FEC, which is closer to the biological action (red dot) compared to FBA (yellow dot).

In this work, we propose one such approach called flux exponent control (FEC). Viewed

as a constraint-based approach, FEC does not make the steady state assumption as in

dFBA, while adding in an additional constraint on how cells control metabolic fluxes (see

Figure 4.2). Namely, FEC is motivated by our understanding that biomolecular systems

consist of binding reactions’ regulation of catalysis, and the full profile of such regulations

is parameterized by polyhedral sets constraining the reaction orders, or flux exponents

(see Chapters 2 and 3). Therefore, it is a fundamental constraint from the binding and

catalysis structure of biomolecular systems that cells control metabolic fluxes by adjusting

their exponents, hence the additional constraint for FEC. As a constraint-based approach,

FEC therefore has tighter constraints than dFBA, which only uses the stoichiometry of

metabolism, yielding regulatory actions closer to biological ones (see Figure 4.2). On

the other hand, FEC can be viewed as a systems theory formalization that scales-up the

hard-limits approach invented in [25] to pose the regulation of any metabolic network
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as a dynamical control problem and integrates naturally with tools from control theory.

In particular, FEC answers why the controllers are placed at allosteric coefficients when

analyzing glycolytic oscillation in [25]. Allosteric coefficients represents reaction orders

in the mechanistic model of glycolysis used in [25], so this is justified by FEC that only

such placements of controllers are biological. Together, FEC improves over dFBA as a

constraint-based method that allows dynamics and studies fundamental tradeoffs and

rules of metabolic regulation. FEC also formalizes the the hard-limits approach in [25]

by posing controller placements at flux exponents as a general rule and systematically

converts regulations of any metabolic network to a control system. As a result, FEC is a

systems theory for metabolic regulations that provides improved necessary and sufficient

maps between mechanisms and phenotypes.

The progression of this chapter goes as follows. Section 4.2 illustrates the main features of

FEC using a simple model of glycolysis. Section 4.3 formulates the general structure of

metabolic dynamics, and how FEC converts it into a control problem. Section 4.4 introduces

some tools from control theory and adapts them to metabolic control problems from FEC.

Control theory can be used to obtain hard limits and laws on that constrain all possible

regulations done on a metabolic system. Section 4.5 poses regulation of metabolic fluxes as

an optimal control problem as a way to explore metabolic dynamics. It discusses how to

computationally solve such optimal control problems using a popular method in control

theory called model predictive control (MPC). Section 4.6 uses optimal controllers solved

by MPC to investigate rules of metabolic regulation in specific examples of metabolic

networks, capturing important biological behaviors such as glycolytic oscillation and cell

growth arrest under stress.

4.2 Glycolysis as an illustrative example of flux exponent
control

In this section, we walk through how to apply flux exponent control (FEC) to a lumped

model of glycolysis to illustrate the main features of FEC.

A simple model of glycolysis is introduced in Section 1.4 of Chapter 1. Also see Figure 1.13.

Instead of considering the detailed steps of reactions in glycolysis, we consider two lumped

reactions that capture the structure of autocatalysis. This yields the following dynamics

for the concentrations of metabolites:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤. (4.1)
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This is of the form
𝑑
𝑑𝑡

𝑥 = 𝑆𝑣 + 𝑆𝑤𝑤, where 𝑥 is the vector of metabolite concentrations,

𝑆 is the metabolic stoichiometry matrix, 𝑣 is the vector of internal metabolic fluxes, and

𝑆𝑤
is the metabolic stoichiometry matrix of external fluxes 𝑤. Here 𝑥2 is ATP, or energy

charge, and 𝑥1 is a lumped intermediate of the glycolysis pathway, such as fructose 1,6-

bisphosphate. The first reaction with flux 𝑣1 consumes 𝑞 units of ATP and produce one

unit of intermediate. We can take 𝑞 to be 1 as a value that match the stoichiometry of

ATP production in glycolysis. This reaction represents the activation of glucose by ATP

to produce glycolysis intermediates. We assume glucose is overabundant, and therefore

does not influence the fluxes. The second reaction with flux 𝑣2 consumes one unit of

intermediate and produces 1 + 𝑞 units of ATP. This reaction represents the net production

part of the glycolysis pathway. Together, looping through the two reactions once results in

a net production of one unit of ATP. We also include an external disturbance with flux 𝑤

that consumes one unit of ATP. This corresponds to the maintenance energy cost of the

cell, which can increase under environmental disturbances such as heat shocks.

When the regulatory mechanisms of the fluxes are known in detail, we can specify exactly

how 𝑣1 and 𝑣2 are regulated, as static functions or dynamic processes that depend on

(𝑥1, 𝑥2). Although we do know some of the mechanisms in this case because glycolysis has

been studied for decades, let us assume we do not have this information to illustrate how

to deal with a generic metabolic network.

One constraint-based approach to make progress is flux control. Since we do not know how

any of the fluxes are regulated, flux control considers all the fluxes as arbitrarily regulated

by the cell. This gives the following formulation:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑢1

𝑢2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤. (4.2)

Here we simply substituted the flux variables (𝑣1, 𝑣2) with control variables (𝑢1, 𝑢2) that the

cell can adjust. Flux control as a constraint-based approach then says that (𝑢1, 𝑢2) can take

arbitrary trajectories as controlled by the cell, if no further information about the fluxes is

given. This often results in systems with trivial behavior. For example, here we can do a

change of variable by defining new control variables 𝑢′
1 = 𝑢1 − 𝑢2, and 𝑢′

2 = (1 + 𝑞)𝑢2 − 𝑞𝑢1

to achieve a trivial dynamics:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣𝑢′

1

𝑢′
2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤. (4.3)

Since the cell can adjust 𝑢′
1 and 𝑢′

2 arbitrarily, the metabolite concentrations (𝑥1, 𝑥2) can

also be made arbitrary. In other words, flux control is often underconstrained to capture

metabolic dynamics.
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One way to make progress despite that flux control is underconstrained is by focusing

on the steady state fluxes. This results in the constraint-based approach of flux balance

analysis (FBA). In this case, we obtain the following at steady state:

0 =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑢*
1

𝑢*
2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤*. (4.4)

Here (𝑢*
1, 𝑢*

2) and 𝑤*
are steady state fluxes. We see that the steady state condition results

in a constraint on the steady state fluxes by metabolic stoichiometry. In this case, the

stoichiometry matrix is invertible, and therefore determines the internal fluxes in terms of

the external flux uniquely at steady state.

This may seem magical, that by looking at steady state fluxes, we have gone from having

no constraints to work with to having strong constraints. The deeper reason is that when

FBA looks at steady state fluxes, it is implicitly assuming that the steady state fluxes are

achieved, which requires the cell to maintain a stable homeostasis. This is not guaranteed

at all when the fluxes are dynamic. For example, the system can be oscillatory without

ever reaching a steady state. It can also crash into a disaster state that the cell dies.

Fundamentally, flux control cannot answer questions about stability because it eliminates

the intrinsic dynamics of metabolism by assuming all fluxes are adjustable. One evidence

of this in the glycolysis case is that glycolytic intermediates oscillate under stress, from yeast

to mouse muscle cells [16, 49, 51]. This is due to the intrinsic instability of autocatalytic

stoichiometry (also see Section 1.4). This implies that metabolic fluxes have intrinsic

dynamics that are not modifiable by cells’ regulation. Mathematically, if the fluxes are

static functions, then this implies the fluxes are not fully controlled (𝑣 = 𝑢), but rather

partially controlled (𝑣 = 𝑣(𝑥, 𝑢)).

Flux exponent control (FEC) exactly formalizes which part is controlled and which part is

not. FEC is based on our previous study on binding’s regulation of catalysis in Chapter 2 and

Chapter 3. Since cells regulate metabolic fluxes through binding reactions, while binding

reactions adjust fluxes’ exponents, or reaction orders, within a constrained polyhedral

set, we conclude that cells regulate fluxes’ exponents. This is the content of the FEC rule.

Mathematically, this means we split each metabolic flux in the following way:

𝑣𝑗 = 𝑣0
𝑗 𝑥

𝐻𝐴
𝑗1

1 · · ·𝑥𝐻𝐴
𝑗𝑛

𝑛 𝑢
𝐻𝐵

𝑗1
1 · · ·𝑢𝐻𝐵

𝑗𝑛𝑢
𝑛𝑢 =: 𝑣0

𝑗 𝑥𝐻𝐴
𝑗 ∘ 𝑢𝐻𝐵

𝑗 = 𝑣0
𝑗 exp

{︁
𝐻𝐴

𝑗 log 𝑥 + 𝐻𝐵
𝑗 log 𝑢

}︁
. (4.5)

The above equation writes the decomposition of the flux of reaction 𝑗 in several different

notations. The first notation writes each term explicitly. The second notation is the most

succinct. The third notation makes it clear that the control actions are on the flux exponents.
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The flux is decomposed into three parts: (1) a constant reference flux magnitude 𝑣0
𝑗 ; (2) the

passive dependence on metabolite concentrations 𝑥
𝐻𝐴

𝑗1
1 · · ·𝑥𝐻𝐴

𝑗𝑛
𝑛 =: 𝑥𝐻𝐴

𝑗 =: exp
{︁
𝐻𝐴

𝑗 log 𝑥
}︁
,

where 𝐻𝐴
𝑗 is the 𝑗th row vector of a matrix 𝐻𝐴

; (3) the active regulation depending on

control actions 𝑢
𝐻𝐵

𝑗1
1 · · ·𝑢𝐻𝐵

𝑗𝑛𝑢
𝑛𝑢 =: 𝑢𝐻𝐵

𝑗 =: exp
{︁
𝐻𝐵

𝑗 log 𝑢
}︁
. Here ∘ denotes component-wise

product between two vectors, and exponential exp is applied component-wise. The matrix

𝐻𝐴
specify the passive exponent or reaction order, capturing how the metabolic reactions

would proceed if there is no regulatory mechanisms in place. The matrix 𝐻𝐵
specify

which control variables 𝑢 influence which fluxes.

Back to the glycolysis example, we may propose the following natural split of the fluxes:

𝑣1 = 𝑣0
1𝑥2𝑢1, 𝑣2 = 𝑣0

2𝑥1𝑢2. (4.6)

This corresponds to having 𝐻𝐵
as identity matrix so that there is one exponent control

variable for each flux, and having 𝐻𝐴
with 𝐻𝐴

12 = 𝐻𝐴
21 = 1 and other entries zero. This is

because reaction 𝑣1 consumes 𝑥2, therefore higher 𝑥2 should naturally increase the flux 𝑣1

without active regulation. Similarly, reaction 𝑣2 consumes 𝑥1, therefore higher 𝑥1 should

naturally increase the flux 𝑣2. We then choose the exponent of this increase to be 1 as a

default choice, simply because first order dependence is the most common. The entries

𝐻𝐴
11 and 𝐻𝐴

22 are zero here because these two reactions are almost always irreversible from

thermodynamic considerations, therefore not inhibited by product molecules.

Together, we have the following FEC formulation of glycolysis fluxes:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣0
1𝑥2𝑢1

𝑣0
2𝑥1𝑢2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤. (4.7)

We see that when the control variables (𝑢1, 𝑢2) are constant, the system has a passive

dynamics that is linear and unstable, since 𝑥1 and 𝑥2 positively influence each other (also

see Section 1.4). So FEC retains the intrinsic dynamics of metabolism by placing control

variables on the exponents. On top of this formulation, further constraints can be added if

more information is known. For example, we may upper bound 𝑢1 by 1 if we know the

maximum flux of 𝑣1 and set it to 𝑣0
1 . We may also constrain the rate of change in the control

variables, if we believe the regulatory mechanisms are slow. We could even require the

control actions to keep 𝑥2 above a certain level, if we consider there exists a minimum level

of ATP concentration needed to keep cells alive.

Given the FEC formulation of a metabolic network, we can perform several types of analysis.

First, since FEC formulates a metabolic network as a control system, we can use control

theory tools to study the hard limits on system performance. This is exemplified by the
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work [25], where Bode’s theorem on conservation of robustness is used to explain glycolytic

oscillations as inevitable side effects of the tradeoff between steady-state error and system

fragility (which causes oscillations). Second, we may be interested in finding particular

regulatory behaviors of the system when the regulation is optimal for a certain objective.

This can help us interpret various regulatory strategies in different scenarios. For example,

we may consider optimizing for keeping the ATP concentration steady at a reference level.

Once an objective is formulated, solving for the optimal control variables and the system

behavior becomes an optimal control problem. This is investigated in Section 4.5 and some

simulation result is discussed in Section 4.6.

A third way to use FEC is to relate control actions with underlying binding networks,

since control of flux exponents biologically correspond to binding networks’ regulation

of catalysis fluxes. We can explicitly illustrate this here since mechanisms of the flux

regulations in glycolysis is well studied, so plausible models of the underlying binding

networks exist. For example, [25] proposed the following simple models of the fluxes based

on knowledge about catalyzing enzymes’ allosteric feedback:

𝑣1 = 𝑣0
1𝑥2𝑢1 = 𝑣0

1𝑥2
1

1 + 𝑥2ℎ
2

, 𝑣2 = 𝑣0
2𝑥1𝑢2 = 𝑣0

2𝑥1
1

1 + 𝑥2𝑔
2

. (4.8)

In other words, both control variables 𝑢1 and 𝑢2 implement negative feedback based on the

ATP concentration 𝑥2, with allosteric coefficients 2ℎ and 2𝑔, respectively. These rational

function forms of 𝑢𝑖 could have mechanistic origins from binding networks. For example,

𝑢1 may come from the following binding network:

2𝑋2 + 𝐸1 ⇌ 𝐸 ′
1, (4.9)

where 𝐸1 is the enzyme catalyzing flux 𝑣1, and 𝐸 ′
1 is an inactive form of the enzyme. When

𝑋2 is overabundant compared to 𝐸1, we have the following expression for the flux of the

first reaction:

𝑣1 = 𝑣0
1𝑥2

1
1 + 𝑥2

𝑘1
2 , (4.10)

where 𝑘1 is the dissociation constant in the above binding reaction of 𝐸1 with two 𝑋2. This

binding network implements the control action in [25] with ℎ = 1. This simple example

illustrates how we can relate control variables with biological mechanisms of binding

networks.

This concludes our illustration of FEC through the glycolysis example. In the next

section, we begin our study of constraint-based methods from the layered architecture of

metabolism.
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Figure 4.3 Cartoon illustrating constraint-based models and hard-limits or laws as two approaches in mapping

between mechanisms and phenotypes. For a class of phenotypes, laws or hard limits can specify a criteria

that many mechanisms can be used to satisfy it. As examples, many codes and hardware can implement

certain channel capacity in communication networks, and many electronic circuits can implement certain

performance criteria of a signal processing input-output map. For a class of mechanisms, described as a

constraint-based model where some mechanisms are fixed and other mechanisms are free to vary, many

phenotypes or system behaviors can be achieved. As an example, cars have some common features fixed as

constraints, with the rest left to vary, resulting in a wide range of mileage, speed, safety, and comfort.

4.3 Metabolic regulation as control of flux exponents

The two approaches to study rules of metabolic regulation, namely constraint-based

approach as in FBA and hard-limits approach as in [25], represent two perspectives on

the space of plausible metabolic regulations. In particular, they represent two different

mappings between the spaces of mechanisms and phenotypes (see Figure 4.3). The hard-

limits approach was motivated by glycolysis, a case extensively studied both experimentally

and computationally, so that mechanisms of regulation are known. Hence the question that

the hard-limits approach focused on was answering “why” the regulatory mechanisms

were made that way, by investigating the space of alternative regulatory mechanisms. In

essence, the control-theory approach is devoted to understanding the “laws”, or universal

properties in terms of hard limits, that any system with certain key structure will obey,

independent of any further details. This constitutes a “necessary” mapping from a point

in phenotype space to a set in mechanism space. Indeed, [25] used the conservation

of robustness as a law that connects autocatalytic stoichiometry on the mechanism side

with the phenotype that severe oscillations are inevitable as a side effect of steady-state

adaptations. Although formulating the case study on glycolysis in [25] using this hard-

limits approach relied on knowing relatively complete mechanistic details, the result was

hard limits that are universal for supply-and-demand adaptations in metabolism.
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The constraint-based approach, on the other hand, was motivated by sparse data available

to characterize metabolism dynamics for whole-cell metabolism modeling, such as for

bacterial growth and human metabolism. Therefore the questions that the constraint-based

approach focused on was how to effectively use the sparse data available to constrain reality,

i.e. constrain the space of plausible metabolic fluxes. This is like a “sufficient” mapping

from a point in mechanism space to a feasible set in phenotype space. For example, given

the known stoichiometry of the glycolysis pathway and some upper and lower bounds

on the fluxes based on rough maximum numbers of enzymes per cell, then flux balance

analysis (FBA), a constraint-based approach, yields a set of possible steady state fluxes the

cell can have, such as ATP production rate, that are constrained by this mechanism. For

a point in the set of feasible fluxes, the glycolysis mechanism is sufficient to allow it to

happen, although whether it can actually happen depends on the details not included in

the constraint-based model, such as actual enzyme numbers and catalysis rates.

Although these two approaches were developed from different motivations, they yield

complimentary insights for the same problem, therefore should be integrated in a cohesive

fashion. In the following, we take the constraint-based approach as the main perspective

to develop our formulation for modeling metabolism dynamics. But once a control

system is formulated, we compliment the story with the hard-limits or laws perspective.

Since constraint-based modeling is fundamentally rooted in the layered architecture of

metabolism, we introduce this next.

Stoichiometry-flux split in layered architecture of metabolism enables flux
control as a constraint-based approach

Layered architecture of metabolism and the stoichiometry-flux split. Constraint-based

modeling splits the mechanisms of a metabolic system into two parts: a slow-varying

known part of which we have solid knowledge, and a fast-varying unknown part of which

we have little knowledge. Then the known part is taken as constraints, and the unknown

part is allowed to vary freely. All feasible behaviors of the system are then the set of

behaviors that the system can achieve by varying the unknown parts, with the known parts

held fixed. Fundamentally, for this split to be effective conceptually and mathematically,

the system of concern needs to have a natural layered architecture so that the lower layer,

the layer that already exists and is to be controlled, is known and fixed, and the higher

layer, the layer controlling the lower layer, is unknown and varies. This split requires both a

time-scale separation of dynamics at each layer, and a corresponding structural split in the

organization of the system into layers. Such layered architectures may be generally viewed
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Figure 4.4 Diagram showing the bowtie shape of metabolite stoichiometry in microbial metabolism. Adapted

from Figure 1 of [13], also reproduced as Figure 2.1 in [59].

as a result of adaptation to achieve optimal system performance at diverse timescales using

components that are limited by severe tradeoffs such as ones on speed-accuracy [38, 79, 80].

Cells use an architecture built on metabolic reactions to achieve diverse behaviors across

several timescales, from consumption and secretion of molecules and response to envi-

ronmental signals, to growth and death, to differentiation and cell-cell communications.

This motivates us to view the metabolic architecture of a cell as interconnected layers with

separating time scales. For the purpose of this work on constraint-based modeling of

metabolism dynamics, we split metabolic regulation into three layers: the bottom metabolic

stoichiometry layer, the middle enzyme regulation layer, and the top gene expression layer.

For the bottom layer, the stoichiometry of metabolic reactions describe the number of

metabolite molecules consumed and produced in each reaction (see Figure 4.4). The

reaction fluxes involved are catalyzed by enzymes with millisecond to second timescale for

catalysis rate. In contrast, the metabolism stoichiometry, i.e. what chemical reactions can

happen in metabolism, varies on a much slower timescale, therefore can be considered

fixed. Indeed, since metabolic reactions in cells happen largely because of the existence of

corresponding enzymes, the timescale for modifying the stoichiometry is the timescale
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Figure 4.5 Diagram showing the layered architecture of microbial metabolism. Metabolism can be roughly

viewed as consisting of three layers, from bottom up. The bottom layer is the stoichiometry of metabolic

reactions, capturing how metabolite amounts are regulated by reaction fluxes. The middle layer is the

proteins’ regulation of metabolic enzymes, capturing how reaction fluxes are regulated by protein binding

(squares) The top layer is transcription translation (TXTL), capturing how protein concentrations are regulated

by production and degradation. The gene expression layer viewed as a controller for the lower layers has

an hourglass shape, connecting diverse genes with diverse proteins via a thin waist of transcription and

translation machinery, which has building blocks such as amino acids and nucleotides supplied by the

bottom layer.

for generating new enzymes catalyzing new reactions or deleting existing enzymes. This

largely come from mutations and evolution. While loss of function can happen on a

timescale of tens of hours in bacteria, gain of function to catalyze new reactions often takes

much longer, limited either by the generation of the right collection of mutations or by

selection pressure to propagate the new function. Exceptions might be horizontal gene

transfers, which can happen on tens of hours timescale similar to loss of function. So we

conclude that the timescale for modifying the stoichiometry layer is more than tens of

hours, with loss of function and horizontal gene transfers on the faster end, but overall

much slower than the timescale for metabolic fluxes. Therefore the stoichiometry layer can

be viewed as having fixed stoichiometry, with quickly varying fluxes regulated by higher

layers (see Figure 4.5 and Figure 4.6).

This separation of timescales between the stoichiometry of bottom layer and fluxes regulated

by higher layers is at the heart of existing constraint-based approaches to metabolism.

Namely, instead of arbitrary dynamics of varying metabolite concentrations in a metabolic

network, this layered architecture motivates a stoichiometry-flux split. Mathematically, the

metabolite concentration dynamics without any further knowledge can be written as a

generic nonlinear dynamical system,

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑤(𝑡)), (4.11)
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Figure 4.6 Illustration of how the two constraint-based approaches, flux control and flux exponent control,

relate to the split in the layered architecture of metabolism. For simplicity, the terms for external exchange

fluxes 𝑤 are omitted.

where 𝑥(𝑡) ∈ R𝑛
>0 is the concentration of metabolite in the cell, 𝑤(𝑡) ∈ R𝑚𝑤

>0 is exchange

fluxes with external environments, and 𝑓 : R𝑛
>0 × R𝑛𝑤

>0 → R𝑛
is the change in metabolite

concentrations. We do not write the system as an autonomous one like
𝑑
𝑑𝑡

𝑥 = 𝑓(𝑥)
because exchange with external environments is often essential to maintain any steady

state of a metabolic system. As an example, for glucose fermentation in bacteria, 𝑥 may

include internal metabolites such as ATP, fructose biphosphate, pyruvate, and internal

glucose, while 𝑤 may include glucose import flux and lactate export flux. See Figure

4.7 for the control diagram describing this general unstructured formulation. With the

stoichiometry-flux split, we can further write

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑤(𝑡)) = 𝑆𝑣(𝑥(𝑡)) + 𝑆𝑤𝑤(𝑡), (4.12)

where 𝑆 ∈ R𝑛×𝑚
is the cell internal metabolism stoichiometry matrix, 𝑚 is the number of

internal metabolic reactions, and 𝑣(𝑥(𝑡)) ∈ R𝑚
>0 is the fluxes of the 𝑚 internal reactions,

varying with metabolite concentrations through regulatory mechanisms such as enzyme

allostery and gene regulation. Here 𝑆𝑤 ∈ R𝑛×𝑚𝑤
is the stoichiometry for the external

exchange fluxes. Note that we required the internal and external fluxes 𝑣 and 𝑤 to

be positive, so for reversible reactions, the forward and reverse fluxes are represented

separately. This is important to fully capture the dynamics in fluxes such as futile cycles,

which cannot be distinguished by just the net fluxes.

Based on timescale separation, this stoichiometry-flux split captures an essential structure of

metabolism that makes experimental measurements and modelling much easier. Without

this split, to write down the metabolite dynamics requires detailed knowledge about 𝑓(𝑥),
i.e. how the change in metabolite concentrations depend on metabolite concentrations.

Without further structures, this require measurements for transient changes with the

metabolic system initiating at all possible metabolite concentrations 𝑥 ∈ R𝑛
>0. This is too
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costly to obtain experimentally. In contrast, with this split, we can obtain knowledge for the

stoichiometry 𝑆 and the flux regulation 𝑣(𝑥) separately. In particular, the stoichiometry

𝑆 can be easily determined based on bulk end-point measurements. The regulation of

flux 𝑣𝑖(𝑥) can also be measured independent of the other fluxes, if this metabolic reaction

can be perturbed and measured in an isolated fashion. Therefore, the stoichiometry-flux

split greatly facilitates mechanistic measurements and modelling by capturing an essential

structure of metabolism, which corresponds to a timescale separation in the layered

architecture of metabolism.

Flux control from stoichiometry-flux split. We can develop a constraint-based modeling

approach based on this stoichiometry-flux split. Naturally, the stoichiometry, which varies

slowly, is taken as constraints, while the fluxes, which vary quickly, are allowed to vary.

So we call this constraint-based approach flux control, since the free-to-vary fluxes can be

considered as control knobs on this metabolic system (see Figure 4.7). Indeed, existing

constraint-based approaches can all be considered as flux control. While further constraints

and relations, such as ones based on thermodynamics or kinetic measurements, may be

added to the fluxes, the variables to vary are always the fluxes. A generic description of

flux control can therefore be written as follows:

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑆𝑢(𝑡) + 𝑆𝑤𝑤(𝑡), 𝑢(0 : 𝑇 ) ∈ 𝒰(0:𝑇 ). (4.13)

Here 𝑢(𝑡) ∈ R𝑚
>0 is the control variable, or the variable to vary, representing metabolic

fluxes. Since the fluxes can vary with time, any constraints we put on the fluxes should

be constraints on time trajectories of fluxes. Here 𝑢(0 : 𝑇 ) denotes the time trajectory of

fluxes in the time interval of concern [0, 𝑇 ], and 𝒰(0:𝑇 ) denotes the constraint on the flux

trajectories, or the set of allowed flux trajectories. Without any knowledge constraining

the fluxes, we would take 𝒰0:𝑇 to be any function mapping [0, 𝑇 ]→ R𝑚
≥0, or some trajectory

space with regularities such as ones with finite 𝐿2 norm.

One powerful aspect of constraint-based approaches is that they allow investigation into

the set of all possible behaviors. We notice that although this flux control formulation

incorporated the stoichiometry-flux split, if we do not have severe constraints on flux

trajectories from 𝒰(0:𝑇 ), then the metabolite trajectories 𝑥(0 : 𝑇 ) can be quite arbitrary.

This is because the stoichiometry matrix 𝑆 ∈ R𝑛×𝑚
is often of wide rectangular shape, i.e.

𝑛 < 𝑚, or the number of metabolite species less than the number of reactions. As a result,

𝑆 almost always has full row rank, which allows the control by fluxes 𝑢 to make arbitrary

trajectories of 𝑥 achievable. More explicitly, we can view Eqn (4.13) as a control system

with trivial plant dynamics, so the system is controllable, i.e. 𝑥 can be controlled by 𝑢
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Figure 4.7 Control diagrams for several formulations of metabolism dynamics. The left is the unstructured

general description of metabolite concentration dynamics, with input as external exchange fluxes 𝑤 and

output as metabolite concentrations 𝑥. The middle one is the flux control formulation, with stoichiometry

explicitly represented, and internal fluxes considered as control variable 𝑢. The state variable 𝑥 has trivial

plant dynamics that is a direct integration of inputs. The right one is the flux exponent control formulation,

with exponents of internal fluxes as control variable 𝑢. The state variable 𝑥 has nontrivial plant dynamics

representing the uncontrolled internal fluxes.

to achieve arbitrary values at arbitrary time, if 𝑆𝑆⊺
is full rank. This is very likely since

𝑆 is wide rectangular. Here plant is a control theory term referring to the uncontrolled

dynamics, or the process to be controlled.

One approach, flux balance analysis (FBA), makes the flux control formulation more useful

by restricting our attention to steady-state fluxes. This assumes steady states exist and are

achieved, which is highly plausible for metabolism as homeostasis is one of the hallmarks of

biological systems. This steady state assumption is applicable whenever the phenomenon

of concern is much slower than cell metabolism, i.e. approximately hours or longer. By

making this steady state assumption, Eqn (4.13) becomes

0 = 𝑆𝑢 + 𝑆𝑤𝑤, 𝑢 ∈ 𝒰ss. (4.14)

This equation comes from Eqn (4.13) simply by setting
𝑑
𝑑𝑡

𝑥 = 0 at steady state. Here

𝑢 ∈ R𝑚
≥0 is the steady state fluxes, 𝑤 is steady state exchange fluxes, and the constraint set

has become static as well, 𝒰ss ⊂ R𝑚
≥0. Another simplification is often used in this steady

state case. In metabolism, often both the forward and reverse directions of a reaction can

happen with nontrivial rates. For dynamics, it is important to keep the forward and reverse

directions separate, as a net flux could correspond to different pairs of forward and reverse

fluxes. This is also important to capture “futile cycles” and energy consumption. However,

focusing on steady state, these issues can no longer be captured, and thus a pair of forward

and reverse reactions can be combined to one reaction without loss of generality, and their

fluxes can be combined to one net flux. This can be captured by writing only one direction

of each forward-reverse pair in the stoichiometry matrix 𝑆, and allowing the fluxes 𝑢 ∈ R𝑚

to be negative. This also makes the constraint set allowing negative fluxes by default,

𝒰 ⊂ R𝑚
.
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Now we look at how the FBA formulation in Eqn 4.14 constrains the set of all possible

steady state fluxes. Since FBA focuses on steady states, we can no longer capture metabolite

concentrations. This is because 𝑥 disappears in Eqn (4.14), as steady state concentrations are

set by flux regulations 𝑣(𝑥), which are assumed to be unknown, or set as control variables

𝑢, in flux control. Instead, the steady state assumption enables a natural constraint relating

steady state internal and external fluxes 𝑢 and 𝑤, that 𝑆𝑢 = −𝑆𝑤𝑤. There are several

ways to view this relation. For example, we can view exchange fluxes 𝑤 as measurable,

therefore fixed and used as constraints on internal fluxes 𝑢. This reduces 𝑢’s degrees of

freedom from 𝑚, the number of reactions, to 𝑚− 𝑟, where 𝑟 is the rank of 𝑆. Indeed, if we

only focus on the linear equation in Eqn 4.14 and ignore the constraint set 𝒰ss for a moment,

we can write the general solution of the linear equation as

𝑢 = −𝑆†𝑆𝑤𝑤 + 𝑢⊥, for any 𝑢⊥ ∈ ker 𝑆.

Here 𝑆†
is the pseudo-inverse of 𝑆, and ker 𝑆 is the kernel of 𝑆, i.e. the space of vectors 𝑢

such that 𝑆𝑢 = 0. If 𝑟 is the rank of 𝑆, then ker 𝑆 has dimension 𝑚− 𝑟. So 𝑢 is constrained

to have the specific solution part 𝑆†𝑆𝑤𝑤 fixed, and only vary the 𝑢⊥
part in ker 𝑆, which is

𝑚− 𝑟 dimensional rather than 𝑚 dimensional that 𝑢 began with. If 𝑚 = 𝑟, which could

happen for small or simplified metabolic systems, then 𝑢 is uniquely determined.

Further constraints on 𝑢 that can be implemented through 𝒰ss would require knowledge

beyond stoichiometry. One example of a general constraint is upper and lower bounds

on the steady state fluxes based on estimates on the maximum number of enzymes per

gram of cell weight, and the maximum enzyme catalysis activity. In fact, 1000 milli-molar

per gram of cell dry weight per hour (mm g−1 h−1
) is widely used as a generic upper

bound on flux magnitude [85]. Similar to this, any knowledge about the fluxes from

experimental measurements, such as upper bounds on rate of certain nutrient uptake, can

be incorporated as constraints through 𝒰ss. Another class of general constraints on fluxes 𝑢

are based on energy dissipation and thermodynamics of the metabolic reactions involved.

This is discussed in more detail in the next subsection. An important class of qualitative

constraints from thermodynamic arguments is the irreversibility or direction of fluxes.

Thermodynamics dictates that only reactions with a negative Gibbs free energy can happen.

The Gibbs free energy of the 𝑗th reaction can be written as Δ𝐺𝑗 = Δ𝐺0
𝑗 + 𝑅𝑇 log 𝑄. Δ𝐺0

𝑗

is the standard free energy change of this reaction under some standard condition such

as pH 7, 1 atmospheric pressure, and 1 molar concentrations, so this part is independent

of concentrations. 𝑄 is the reaction quotient, calculated as the ratio between a numerator

from multiplying product concentrations to exponents of their stoichiometric coefficients,

divided by a denominator from the same procedure for reactants. 𝑅 is molar gas constant,
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𝑇 is temperature, and log is natural log. So Δ𝐺𝑗 is the sum of the standard part independent

of concentrations, and the reaction quotient part that increases with product concentrations

and decreases with reaction concentrations. Therefore, for a given reaction, if Δ𝐺𝑗 is

always negative based on standard free energy and the range of reactant and product

concentrations for scenarios of concern, then we can claim the flux 𝑣𝑗 always flow in the

forward direction, i.e. 𝑣𝑗 > 0. Since the reaction quotient is under log, the influence of

concentrations on the reaction free energy is limited. So if the standard free energy is very

negative, then this usually guarantees the flux is irreversible. Therefore irreversibility of

reactions serve as a general class of easy to obtain constraints on the fluxes.

Altogether, the set of all possible steady state fluxes in FBA formulation (Eqn (4.14)) can be

written as {︁
𝑢 ∈ 𝒰ss ⊂ R𝑚 : 𝑢 = 𝑆†𝑆𝑤𝑤 + 𝑢⊥, 𝑢⊥ ∈ ker 𝑆

}︁
. (4.15)

Then steady state behaviors of interest can be further explored through optimization, such

as fluxes under maximum biomass production in aerobic or anaerobic environments with

different nutrients as carbon sources, or limits on ATP or redox potential regeneration.

With a good curated model of stoichiometry 𝑆 and constraint set 𝒰ss, the FBA formulation

has been successfully applied to whole-metabolism models of a wide range of microbes.

Flux control fails to capture internal dynamics of metabolism. However, there is one

severe restriction in the FBA or the flux control formulation in general: the lack of internal

dynamics. Many important metabolic behaviors and interactions are dynamic or due to

transient dynamics, such as microbial growth arrest under nutrient or environmental shock

and Crabtree or Warburg effects [3]. In turn, essential features of these dynamics are due

to limits from internal dynamics. One essential aspect of steady state behavior is whether

a given steady state is stable, i.e. adapts back from small perturbations. Stability, however,

can only be determined from dynamics. Now looking back at FBA, it is unable to capture

dynamics since the founding assumption of FBA is metabolism has reached a stable steady

state. This is not remedied by going back to the flux control formulation, however. The

reason is that the flux control formulation splits all metabolic fluxes into just two types,

external exchanges and internal controls (see Figure 4.7). In other words, all internal fluxes

are assumed to be controllable, and the metabolite dynamics is simply integrating the

controlled fluxes. As a result, the “plant”, or the metabolic process to be controlled, is

trivial. Therefore metabolism has no internal dynamics, and all dynamics is determined

solely by the controller. If we make an analogy from mechanics, mechanical objects have

internal dynamics which we often call “inertia”. This is because mechanical control actions

are limited to forces, or accelerations, which directly alters speed or moments, but only
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indirectly acts on position. So assuming all internal dynamics are from the controller is

like assuming a mechanical object has no inertia, or the mass or momentum can be directly

controlled as well.

In order to put back the internal dynamics, in addition to the internal-external split of fluxes,

we need to further split the dynamics of internal fluxes into plant dynamics and controller

dynamics. Plant is a control theory term that refers to the part of the system that is intrinsic

and cannot be controlled. In the next subsection, we show that there is significant difficulty

in splitting internal plant and controller dynamics in terms of fluxes, while it is simple

and clear in terms of flux exponents. More fundamentally, the known/unknown split

and timescale separation in the layered architecture of metabolism motivates a further

binding-catalysis split in addition to stoichiometry-flux split. This leads us to the flux

exponent control formulation of metabolism that includes internal dynamics (see Figure

4.7). This is discussed in the subsection after the thermodynamic constraint subsection.

Example 10 (Simple glycolysis). Throughout this section, we use a simplified description of

glycolysis based on [25] to illustrate the concepts and methods introduced. Glycolysis is one

of the most well-studied metabolic pathways and is present in almost all cells. It transforms

glucose to pyruvate, generating ATP and redox potential in the process. In [25], to explain

glycolytic oscillations as a result of hard limits in controlling the glycolysis pathway,

a simplified description of glycolysis is developed. Instead of capturing the detailed

metabolites and enzymatic reactions, [25] focused on ATP or energy charge regeneration,

and simplified the glycolysis pathway to two lumped reactions: one consuming ATP to

activate glucose, producing an intermediate molecule, and one consuming the intermediate

to produce more ATP. In fact, this architecture can serve as a universal lumped description

of all autocatalytic processes [17].

In this lumped description of glycolysis, there are two metabolite species, 𝑋1 and 𝑋2, which

correspond to intermediates and ATP in glycolysis. There are two reactions: 𝑣1 consumes 𝑞

amounts of ATP (𝑋2) and produces one intermediate (𝑋1) through activation of glucose,

and 𝑣2 consumes intermediate and produces 1 + 𝑞 ATP, resulting in a net increase of 1
unit of ATP. Note that in the actual glycolysis pathway, 2 ATP molecules are consumed

to activate glucose, and 4 ATP molecules are regenerated at the end, resulting in a net

increase of 2 ATP molecules. So one unit for ATP here is 2 molecules. Similar normalization

is applied throughout, making this formulation general for all autocatalytic pathways.

There is also external exchanges with the environment, including glucose supply and ATP

consumption by other parts of the cell. Because [25] focused on glycolytic oscillations,

which happens in a glucose rich environment, the glucose supply is assumed abundant. So
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we are left with one exchange flux, the consumption of ATP. Follow the stoichiometry-flux

split in Eqn (4.13), the flux control formulation can be written as

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 𝑞 + 1

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤.

This is the description of the bottom stoichiometry-flux layer when the glycolysis pathway

is considered as a layered architecutre. [25] also gives detailed models of how 𝑣1 and 𝑣2

are regulated by feedback from ATP, based on mechanistic understanding of the relevant

enzymes involved, e.g. phosphofructokinase is allosterically activated by ADP and AMP

and inhibited by ATP. Such information about enzymes and their allosteric regulation

constitute the middle layer. How these enzymes are produced and degraded constitutes

the top layer, which is not considered here or in [25] because the timescale of glycolytic

oscillation is tens of seconds, so the top layer can be considered constant.

To have useful constraints on behavior, we focus on steady states and apply the FBA

formulation. The solution set of FBA in Eqn (4.15) yields⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣*
1

𝑣*
2

⎤⎦ =
⎡⎣0
1

⎤⎦𝑤* =⇒
⎡⎣𝑣*

1

𝑣*
2

⎤⎦ =
⎡⎣1 + 𝑞 1

𝑞 1

⎤⎦⎡⎣0
1

⎤⎦𝑤* =
⎡⎣𝑤*

𝑤*

⎤⎦.

So we see that the internal fluxes (𝑣1, 𝑣2) are completely determined by the external flux

𝑤. To be specific, internal fluxes has 2 degrees of freedom, and the constraint from a

rank-2 stoichiometry matrix at steady state eliminates 2 degrees of freedom, results in

unique solution. This is an illustration of the power of constraint-based modelling. The

stoichiometry of the reactions involved, when known, act as hard constraints on cell

behavior, as unassailable as universal laws such as conservation of mass, so we can strongly

constrain internal fluxes based on measurements of external fluxes.

That we obtain unique solution of internal steady state fluxes here is of course not common.

Extra degrees of freedom on steady state internal fluxes is necessary for the cell to have

“choices” and perform adjustments based on environments at steady state. Unique solution

happens here because we used lumped descriptions, while a more detailed stoichiometry

matrix is often wide, therefore not full rank. To illustrate what happens when there are

extra degrees of freedom at steady state, consider adding another reaction with flux 𝑣3,

which we can term growth, that just consumes ATP, but can be regulated by the cell,

therefore constitute an internal flux.

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1 0
−𝑞 𝑞 + 1 −1

⎤⎦
⎡⎢⎢⎢⎣
𝑣1

𝑣2

𝑣3

⎤⎥⎥⎥⎦+
⎡⎣ 0
−1

⎤⎦𝑤.
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Now the cell has an extra knob 𝑣3 to tune. To make the numbers simple, let us take 𝑞 = 1,

which is the same as the actual stoichiometry of glycolysis that 2 ATP molecules, or 1 unit

of 𝑋2, is consumed in 𝑣1. At steady state, the solution set of FBA in Eqn (4.15) then yields⎡⎢⎢⎢⎣
𝑣*

1

𝑣*
2

𝑣*
3

⎤⎥⎥⎥⎦ = 1
3

⎡⎢⎢⎢⎣
1
1
−2

⎤⎥⎥⎥⎦𝑤* +

⎡⎢⎢⎢⎣
1
1
1

⎤⎥⎥⎥⎦𝑐 =

⎡⎢⎢⎢⎣
1
3𝑤* + 𝑐
1
3𝑤* + 𝑐

−2
3𝑤* + 𝑐

⎤⎥⎥⎥⎦,

where 𝑐 is a real constant that parameterizes the solution set. So we see that the steady

state fluxes 𝑣*
𝑖 can be split into two parts, the part determined by external fluxes which

depend on 𝑤*
, and the part regulated internally which depend on 𝑐. In particular, we see

that any internal adjustment to increase growth consumption of ATP 𝑣*
3 will necessarily

require simultaneous increase of ATP and intermediate productions 𝑣*
1 and 𝑣*

2 in same

amount. This is again hard constraints on all biological actions the cell can take, directly

from stoichiometry.

Just based on the stoichiometry, all the internal fluxes are unbounded since 𝑐 can take any

real number. We can further bound this by adding constraints from knowledge other than

the stoichiometry. First, we can bound 𝑐 to a finite range by specifying upper and lower

bounds of 𝑣𝑗 as 1000 mmol g−1 h−1
, where gram is cell dry weight. Second, we can constrain

𝑣1 to a relatively narrow range if we can measure the intake of glucose for the scenarios of

concern. For example, intake of glucose on the order of 10 mmol g−1 h−1
is often used in

FBA simulations for bacterial growth [60, 85]. Lastly, we can determine the 𝑣1 and 𝑣2 as

positive for physiological ranges of ATP concentration. This is because under physiological

ranges, ATP concentration is about 108
fold higher than equilibrium, therefore serves as a

very strong driving force. This guarantees the free energy of 𝑣1 is very negative always.

Then 𝑣2 is very negative because phosphorylated glucose are high energy compared to

pyruvate, so the free energy again is very negative. Together, these conditions can strongly

constrain the value that 𝑐 can take. △

Thermodynamic constraints on metabolic fluxes

According to thermodynamics, the Gibbs free energy of a reaction establishes a constraint

on whether a reaction can happen on average, independent of kinetic processes [35, 81,

106]. Specifically, the second law of thermodynamics dictates that any process has to cause

a net increase in entropy overall, which becomes a net decrease in Gibbs free energy for

systems with reactions inside under constant pressure and temperature. For metabolic

systems exchanging metabolites with environments, the Gibbs free energy can increase,
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but a similar constraint holds on the cost to do so. Although the second law only holds

on average and allows certain trajectories in an ensemble at a microscopic scale to deviate

from it, since we are mostly concerned with metabolic processes on a bulk scale, the second

law holds in a tight sense.

The reader might also bring up the issue of equilibrium assumption of many thermodynamic

relationships, since it is often argued that biology is far away from equilibrium and therefore

thermodynamic laws do not apply. It should be clarified that thermodynamic quantities,

such as entropy, enthalpy, Gibbs free energy, heat, and temperature are all well-defined on a

bulk scale regardless of equilibrium or not. The thermodynamic relationships that require

equilibrium are mostly the differential ones based on the equilibrium manifold, such as

𝑑𝐺 = 𝑆𝑑𝑇 +𝜇𝑑𝑁 +𝑉 𝑑𝑝 for Gibbs free energy that we often see in textbooks. This is because

such differential relations are well-defined only on the equilibrium manifold, i.e. set of

equilibrium states characterized by entropy maximization. As a result, these differential

relations are only applicable to reversible processes, so that the trajectories stay on the

equilibrium manifold. Nonequilibrium states, i.e. states not on the equilibrium manifold,

are reached by irreversible processes, characterized by positive entropy production. Since

for all states for bulk systems, equilibrium or not, the laws of thermodynamics hold in a

tight sense and the thermodynamic quantities are well defined, we can relate equilibrium

and nonequilibrium states, and bound irreversible processes by reversible ones plus entropy

production. For example, heat from an irreversible process can be split into a reversible

part and an entropy production part,
𝑑𝑄
𝑑𝑡

= �̇�rev + 𝑇𝜎, where 𝜎 denotes entropy production

rate, and �̇�rev is the heat generation rate of this process in a reversible way, therefore we

use ˙ to emphasize this part is on the equilibrium manifold [106].

For our context of a metabolic system with exchange of metabolites with external envi-

ronments under constant temperature and pressure, the Gibbs free energy is the natural

thermodynamic quantity to study. We derive a formula for the dissipation of Gibbs free

energy for irreversible processes in bulk below, which models after Equation 10 in [106].

We begin with entropy change of the system. For a reversible process, Δ𝑆 = 𝑄rev
𝑇

, where

Δ𝑆 is change in entropy, 𝑄rev is the heat produced by the system in a reversible way, and 𝑇

is temperature. Since metabolic systems are open to taking in and secreting out molecules

with the environment, we also need to account for the entropy included in the molecules

in these material exchanges. However, in our existing formulation such as Eqn (4.12), the

metabolite concentrations 𝑥 are all internal metabolites, i.e. metabolites considered as part

of the system. The external metabolites that are taken in or secreted out are not included.

For example, if we consider glucose is abundantly supplied, then it is not included as one of



167

internal metabolites 𝑥, but instead is an external metabolite. Let us denote 𝑥ext ∈ R𝑛𝑒
as the

vector of external metabolite concentrations, and 𝑠ext
𝑖 as the partial molar entropy carried

by the 𝑖th external metabolite, assuming the unit of concentration (and flux) is molar. Since

the fluxes 𝑣 and 𝑤 could include intake or secretion of external metabolites, we denote

𝑆ext
and 𝑆ext,𝑤

as the extended part of their stoichiometry regarding external metabolites.

𝑠ext
𝑖𝑗 is positive means the 𝑗th reaction with flux 𝑣𝑗 assimilates 𝑠ext

𝑖𝑗 numbers of molecules of

external metabolite 𝑋ext
𝑖 . Then the entropy production of the external environment from

intake and secretion of external metabolites by the system is −(𝑠ext)⊺(𝑆ext𝑣 + 𝑆ext,𝑤𝑤).
The negative sign is because influx of metabolites in the system is outflux of metabolites

in the environment, while positive entries of 𝑆ext
means intake by the system. Lastly, we

include the entropy change from entropy production rate 𝜎 due to irreversibility, we have

𝑑𝑆

𝑑𝑡
= �̇�rev

𝑇
− (𝑠ext)⊺

(︁
𝑆ext𝑣 + 𝑆ext,𝑤𝑤

)︁
+ 𝜎. (4.16)

The second law corresponds to 𝜎 ≥ 0, with equality achieved only for reversible processes.

Since Gibbs free energy is defined by 𝐺 = 𝐻 − 𝑇𝑆, where 𝐻 is enthalpy, we also split

entropy change in a similar way based on the first law of thermodynamics:

𝑑𝐻

𝑑𝑡
= �̇� + �̇�rev − (ℎext)⊺

(︁
𝑆ext𝑣 + 𝑆ext,𝑤𝑤

)︁
, (4.17)

where ℎ
ext
𝑖 is the partial molar enthalpy carried by the 𝑖th metabolite, and �̇� is rate of

work or power done on the system. �̇� is nonzero for microbes performing photosynthesis

therefore absorbing significant power from environment. Since our main focus is on

chemotrophs, �̇� is negligible, so we ignore this term. Now subtracting 𝑇 𝑑𝑆
𝑑𝑡

from
𝑑𝐻
𝑑𝑡

yields

our expression for Gibbs free energy change:

𝑑𝐺

𝑑𝑡
= −(𝜇ext)⊺

(︁
𝑆ext𝑣 + 𝑆ext,𝑤𝑤

)︁
− 𝑇𝜎, (4.18)

where 𝜇ext
𝑖 = ℎ

ext
𝑖 + 𝑇𝑠ext

𝑖 is the chemical potential of the 𝑖th external metabolite. Note

that chemical potential 𝜇ext
𝑖 is the same as the molar Gibbs free energy of the 𝑖th external

metabolite species [27]. We can relate this to free energy changes due to internal fluxes

on internal metabolites, since conservation of energy (the first law) dictates that the free

energy change from these external interactions must be the same as that from internal

fluxes. This means

𝑑𝐺

𝑑𝑡
= 𝜇⊺(𝑆𝑣 + 𝑆𝑤𝑤) = −(𝜇ext)⊺

(︁
𝑆ext𝑣 + 𝑆ext,𝑤𝑤

)︁
− 𝑇𝜎. (4.19)

Here 𝜇𝑖 is the chemical potential of the 𝑖th internal metabolite. We can re-write this

equation by considering the free energy change of both internal and external metabolites
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involved. Adding (𝜇ext)⊺(𝑆ext𝑣 + 𝑆ext,𝑤)𝑤 to both sides of the above equation, we obtain

the following inequality:

(𝜇full)⊺
(︁
𝑆full𝑣 + 𝑆full,𝑤𝑤

)︁
:=
⎡⎣ 𝜇

𝜇ext

⎤⎦⊺⎛⎝⎡⎣ 𝑆

𝑆ext

⎤⎦𝑣 +
⎡⎣ 𝑆𝑤

𝑆ext,𝑤

⎤⎦𝑤

⎞⎠ = −𝑇𝜎 ≤ 0. (4.20)

Here the full superscript means both internal and external metabolites are included in

the respective variables. This inequality means that when both internal and external

metabolites are considered for the reactions, the fluxes necessarily dissipates free energy.

Note that Eqn (4.20) holds in general, without steady state assumptions. Therefore this

inequality is a constraint that can be applied to the fluxes even when they vary dynamically.

Later we will apply this to individual reaction fluxes which yields stronger constraints that

relate free energy with direction of fluxes.

Coming back to Eqn (4.19), we can turn it into a constraint on the steady state fluxes. At

steady state, free energy change is zero, so

0 = −𝜇⊺(𝑆𝑣 + 𝑆𝑤𝑤) = −(𝜇ext)⊺
(︁
𝑆ext𝑣 + 𝑆ext,𝑤𝑤

)︁
− 𝑇𝜎. (4.21)

Note that the first equality is also implied by that the internal metabolite dynamics reach

steady state, so that 𝑆𝑣 + 𝑆𝑤𝑤 = 0 (Eqn (4.14)). Since internal metabolite concentrations

tend to vary significantly, we can denote 𝜇 = 𝜇(𝑥) to make explicit the dependence of

chemical potential on concentrations for internal metabolites.

External free energy constraint: (𝜇ext)⊺
(︁
𝑆ext𝑣 + 𝑆ext,𝑤𝑤

)︁
= −𝑇𝜎 ≤ 0. (4.22)

This inequality can be considered as an extra constraint on the internal and external fluxes

at steady state in FBA (Eqn (4.14)). This is useful if the chemical potential of external

metabolites 𝜇ext
is known. If equality is achieved in Equation (4.22), then the metabolic

system is in equilibrium, with reactions happen in a reversible fashion. This means the

fluxes are infinitely slow. This might be desirable when nutrient is poor, but undesirable

when nutrient is available since slow consumption may cause microbes to be out-competed

by other species. On the other hand, a very large entropy production rate 𝜎 would imply

significant free energy is spent on driving the reactions fast, and but not much energy

is stored in the product. This might be desirable when nutrient is overly abundant, but

undesirable when efficiency in nutrient utilization is important (also see [106]).

While Eqn (4.22) can derive a value for entropy production rate 𝜎 based on free energy

dissipation, quantitatively relating 𝜎 to actual speed of the reaction fluxes is hard. This is

because it requires knowing the detailed mechanisms of chemical driving, especially the
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equilibrium kinetic rates of the relevant reaction. For example, if we want to relate entropy

production rate with a reaction driven by ATP coupling, then we need to know the kinetic

rate constant of the catalytic enzyme when there is no ATP in the system. Even when the

kinetic mechanisms are measured and known, analysis of the resulting network of states

is nontrivial, and is still part of cutting edge research in biophysics [72] [Hong Qian etc].

However, any rough estimates from such kinetic considerations of entropy production

would be helpful, since it relates the timescale of reaction fluxes to entropy production rates

in the free energy relations. In particular, the entropy production rate in Eqn (4.22) can be

considered as an upper bound on the available entropy used to accelerate any particular

chemical driving mechanism. So instead of developing an analysis with exact physical

underpinnings, below we introduce the rudimentary ideas in nonequilibrium steady states

analysis and try to obtain coarse relations between flux rates and entropy production rate.

The following are based on methods in [72].

To relate entropy production rate with kinetic mechanisms of molecular reactions, nonequi-

librium steady states analysis often focus on one molecule, and consider reactions as state

transitions of this molecule. This is valid if the other species involved are much more

abundant than the molecule of concern. At equilibrium, the molecule transits between

states with rates that follow detailed balance. Specifically, let 𝑘𝑖𝑗 denote the equilibrium

rate of transition from state 𝑗 to 𝑖, and 𝐺𝑖 the energy of state 𝑖, then 𝑘𝑖𝑗𝑒
−𝐺𝑗 = 𝑘𝑗𝑖𝑒

−𝐺𝑖
.

The equilibrium probabilities of each state therefore are just proportional to negative

exponential of their energies: 𝑝eq
𝑗 ∝ 𝑒−𝐺𝑗

. When there is driving, such as by chemical

coupling, on transition from 𝑗 to 𝑖, then the rate increases from 𝑘𝑖𝑗 by an amount Δ𝑞𝑖𝑗 to

reach the new rate 𝑞𝑖𝑗 = 𝑘𝑖𝑗 + Δ𝑞𝑖𝑗 . The chemical potential required by this driving is de-

fined as Δ𝜇𝑖𝑗 = 𝑘𝐵𝑇 log 𝑞𝑖𝑗

𝑘𝑖𝑗
, where 𝑘𝐵 is Boltzmann constant. Then the entropy production

rate simply caused by driving the transition from 𝑗 to 𝑖 out of equilibrium is defined as

𝜎𝑖𝑗𝑇 = 𝑘𝐵𝑇𝐽𝑖𝑗 log 𝑞𝑖𝑗𝑝𝑗

𝑞𝑗𝑖𝑝𝑖
, where 𝐽𝑖𝑗 = 𝑞𝑖𝑗𝑝𝑗 − 𝑞𝑗𝑖𝑝𝑖 is the probability current or flux of the

molecule through this transition, and 𝑝𝑖 and 𝑝𝑗 are possibly nonequilibrium probabilities

of the molecule in state 𝑖 and 𝑗 respectively. [72] shows that for a transition path 𝛾 through

multiple states, the equilibrium parts cancel out, so that only the driven part remains,

resulting in relation 𝜎𝛾𝑇 = ∑︀
(𝑖𝑗)∈𝛾 𝐽𝑖𝑗Δ𝜇𝑖𝑗 . In particular, for a path with only one driving

step with strength Δ𝜇𝛾 , we have 𝜎𝛾𝑇 = 𝐽𝛾Δ𝜇𝛾 . Now we can relate this to our bulk scale by

changing perspective from single molecules transitioning between states to concentrations

of this species transitioning between different forms. This changes the probability flux

𝐽𝛾 to concentration flux 𝑣𝑗 for metabolic reaction 𝑗, if 𝛾 corresponds to the path of state

transition of a molecule through the 𝑗th reaction, with other reactants and products

assumed abundant. Similarly, Δ𝜇𝛾 becomes Δ𝜇𝑗 , the elevated potential for driving the 𝑗th
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reaction. As a result, we have 𝜎𝑗𝑇 = 𝑣𝑗Δ𝜇𝑗 . This relates the entropy production rate with

the flux 𝑣𝑗 through the potential Δ𝜇𝑗 used in driving. Since Δ𝜇𝑗 is about how equilibrium

kinetic rates are elevated by energy coupling to higher nonequilibrium rates, we now have

a relation between entropy production rates, flux magnitude, and kinetic rate amplification.

If we know the ratio between entropy production rates and flux magnitudes, for example,

then that will bound the kinetic rate amplification, or vice versa. As another example, if

kinetic rate amplifications Δ𝜇𝑗 and total entropy production rate 𝜎𝑇 are known, then this

results in

∑︀
𝑗 𝑣*

𝑗 Δ𝜇𝑗 +∑︀
𝑗 𝑤*

𝑗 Δ𝜇*
𝑗 = 𝜎𝑇 , another constraint on the steady state fluxes.

We can view energy considerations of the fluxes more generally. We can consider the FBA

Eqn (4.14) as the condition for mass balance at steady state, arising from a fundamental

limitation of what cells can do: atoms cannot be created or destroyed. In addition to mass

balance, other balances exist, such as energy, charge, redox (proton), and osmotic pressure

[59]. Then Eqn (4.22) can be considered as the constraint from energy balance, arising from

the fundamental limitation that energy is conserved. While law on energy conservation

is as strict as the law on mass balance, the resulting constraint (Eqn (4.22)) requires more

detailed knowledge, namely chemical potential 𝜇ext(𝑥ext) and entropy production rate 𝜎,

that are harder to measure or bound than the stoichiometry. While chemical potential

𝜇ext(𝑥ext) can be estimated based on formula for ideal solutions, which we describe below,

the entropy production rate requires studies of mechanistic systems in nonequilibrium

steady states that is still cutting edge research [72]. One way to make Eqn (4.22) easier

to apply is to assume the entropy production rate is relatively small, so we just use the

lower bound (𝜇ext)⊺(𝑆ext𝑣 + 𝑆ext,𝑤𝑤) ≥ 0. In a similar fashion, Eqn (4.20) with negligible

𝑇𝜎 implies 𝜇⊺(𝑆𝑣 + 𝑆𝑤𝑤) = (𝜇ext)⊺(𝑆ext𝑣 + 𝑆ext,𝑤𝑤), that the internal and external Gibbs

energy dissipation are equal. This condition is used in [81] as another constraint on steady

state fluxes in FBA formulation with success in explaining the Crabtree effect [3] from an

energy dissipation perspective.

In order to calculate chemical potential 𝜇ext(𝑥ext) to make Eqn (4.22) useful, we need a

formula relating 𝜇ext
to measurable quantities and the metabolite concentrations. One

way to estimate this is to use the formula of chemical potential for ideal solutions or gas:

𝜇ext
𝑖 = 𝜇ext,0

𝑖 + 𝑅𝑇 log 𝑥ext
𝑖 . Here the external metabolite concentration 𝑥ext

𝑖 in the formula

is measured in molar units. 𝑇 is temperature, 𝑅 is the molar gas constant, and log is

natural log. 𝜇ext,0
𝑖 is the chemical potential of the 𝑖th metabolite under a standard condition.

This standard condition is usually chosen to be the one mostly commonly measured in

experiments such as one atm pressure, 25 Celsius, pH 7 or concentrations at 1 molar. Since

chemical potential is molar Gibbs free energy, this standard chemical potential can also
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be estimated by using the standard free energy change of formation of the 𝑖th external

metabolite, often denoted Δ𝑓𝐺𝑖. This is the free energy change from a metabolite’s atomic

components into the molecular form under a standard condition. This estimation process

is rather coarse since it assumes ideal solution and uses free energy of formation which

ignores energy of solvation for example, but it provides a first order estimate that is easy to

obtain and has been successfully used in works applying thermodynamic constraints on

FBA such as [81].

In addition to free energy dissipation for the overall system, Eqn (4.19) and Eqn (4.20)

with the second law can be applied to each reaction flux to determine the reversibility or

direction of (possibly dynamic) fluxes. Eqn (4.20) for Gibbs free energy dissipation for the

𝑗th reaction flux 𝑣𝑗 can be written as

Flux direction constraint:

⎡⎣ 𝜇

𝜇ext

⎤⎦⊺⎡⎣ 𝑆𝑗

𝑆ext
𝑗

⎤⎦𝑣𝑗 =: 𝜇𝑣
𝑗 𝑣𝑗 = −𝑇𝜎𝑗 < 0, (4.23)

where 𝑆𝑗 is the 𝑗th columns of the stoichiometry matrix 𝑆, similarly define 𝑆ext
𝑗 , and

𝜇𝑣
𝑗 = ∑︀𝑛

𝑖=1 𝑠𝑖𝑗𝜇𝑖 + ∑︀𝑛𝑒
𝑖=1 𝑠ext

𝑖𝑗 𝜇ext
𝑖 is the chemical potential of the 𝑗th reaction (the same as

the Gibbs free energy change of the 𝑗th reaction often denoted Δ𝑟𝐺𝑗). 𝜎𝑗 is the entropy

projection rate from the 𝑗th reaction 𝑣𝑗 . By the second law, 𝜎𝑗 > 0 for irreversible processes,

and 𝜎𝑗 = 0 only when the process is reversible, i.e. infinitely slow. Hence, for non-negligible

reaction speed, Eqn (4.23) relates free energy of the reaction with its direction. Since the

reaction potential of this reaction 𝜇𝑣
𝑗 depends on metabolite concentrations, this can be

viewed as a relationship between concentrations, reaction potential, and flux direction.

If the reaction potential is negative, i.e. the products have lower free energy than the

reactants, then the reaction can have a net flux in the forward direction. As a resulting

constraint, if we know that the reaction potential of reaction 𝑗 is always negative in the

scenarios concerned, depending on factors such as the range of metabolite concentrations,

then the steady state flux 𝑣𝑗 can be considered irreversible. In terms of the constraint set 𝒰ss,

the irreversibility of the 𝑗th reaction constrain the flux 𝑢𝑗 to be non-negative, 𝑢𝑗 ≥ 0. On

the other hand, if the scenarios considered could vary the free energy of the 𝑗th reaction

between positive and negative values, then we cannot place sign constraints on 𝑢𝑗 .

It should be cautioned that a positive net flux of a path of reactions does not require the

net flux of every step to be positive. In other words, it should not be a hard constraint that

every step in a metabolic system has positive flux. This is because, for a path of reactions

consisting of multiple steps to have a net forward flux, it is sufficient to have the net forward

steps dominating over the net reverse or net zero steps. As an example, if an intermediate

step 𝐴 ⇌ 𝐵 is at equilibrium, so the net flux is zero, we can still generate net forward flux
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through this reaction by continuously adding in 𝐴 and removing 𝐵, but keeping their ratio

at equilibrium. Therefore, the requirement that certain fluxes are irreversible should only

be applied to key steps of reactions where we know significant driving is applied to make

it irreversible. If no such information is available, irreversibility should be only applied to

overall input-output paths of reactions, based on our knowledge or requirement that there

is an overall input to output net flux.

We could also use Eqn (4.23) in the other direction, to use requirement that 𝑣𝑗 is irreversible

or the driving force of entropy production rate above a certain number to constrain the

metabolite concentrations allowed. For example, using ideal solution relations for chemical

potential 𝜇𝑖 = 𝜇0
𝑖 + 𝑅𝑇 log 𝑥𝑖, we have 𝜇𝑣

𝑗 = 𝜇𝑣,0
𝑗 + 2.3𝑅𝑇 log10

∏︀𝑛
𝑖=1 𝑥

𝑠𝑖𝑗

𝑖

∏︀𝑛
𝑖=1(𝑥ext

𝑖 )𝑠ext
𝑖𝑗 , where

𝜇𝑣0
𝑗 = ∑︀𝑛

𝑖=1 𝑠𝑖𝑗𝜇
0
𝑖 +∑︀𝑛

𝑖=1 𝑠ext
𝑖𝑗 𝜇ext,0

𝑖 . So if we require 𝜇𝑣
𝑗 ≥ 𝑏𝑗 , where 𝑏𝑗 is some lower bound

we set to guarantee sufficient driving force for the 𝑗th reaction, or 𝑏𝑗 = 0 to guarantee at

least the net flux is in the forward direction, we can have

𝑛∏︁
𝑖=1

𝑥
𝑠𝑖𝑗

𝑖

𝑛∏︁
𝑖=1

(𝑥ext
𝑖 )𝑠ext

𝑖𝑗 ≥ 10
𝜇

𝑣,0
𝑗

−𝑏𝑖

2.3𝑅𝑇 .

Here 2.3𝑅𝑇 and base 10 are chosen for convenience with hand calculations. For example,

2.3𝑅𝑇 is about 5.7 kJ mol−1
, which gives a conversion between chemical potential and

concentration fold changes.

Example 11 (Simple glycolysis, continued). Now we consider quantitative constraints from

thermodynamics to further restrict the fluxes from first principles. To account for free

energies, we need to include the external metabolites ignored when describing internal

metabolite dynamics. External metabolites are glucose consumed in 𝑣1, denote as 𝑥ext
1 , and

waste secreted in 𝑣2, denote as 𝑥ext
2 . Let 𝜇ext

1 denote the chemical potential of glucose, and

𝜇ext
2 denote the chemical potential of waste. The exchange flux 𝑤 does not involve external

metabolites, since we consider it as the consumption of ATP or energy charge by the cell.

So the free energy dissipation in Eqn (4.19) for this system is

𝑑𝐺

𝑑𝑡
= −

⎡⎣𝜇ext
1

𝜇ext
2

⎤⎦⊺⎛⎝⎡⎣−1 0
0 1

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣0
0

⎤⎦𝑤

⎞⎠− 𝜎𝑇 = 𝜇ext
1 𝑣1 − 𝜇ext

2 𝑣2 − 𝜎𝑇.

At steady state, this becomes the inequality in Eqn (4.22),

−𝜇ext
1 𝑣*

1 + 𝜇ext
2 𝑣*

2 = −𝜎𝑇 ≤ 0 =⇒ 𝜇ext
1 𝑣*

1 ≥ 𝜇ext
2 𝑣*

2.

To use this to constrain the fluxes, we need to estimate the chemical potentials of glucose

and waste. The standard free energy of formation for glucose is −793.74 kJ mol−1
[26]. If
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we take the waste as two molecules of pyruvate, then the standard free energy of formation

for pyruvate is −420.28 kJ mol−1
. We can take the glucose and pyruvate concentrations

as 1 mm and 100 µm respectively. Since log10 = 2.3 log and 2.3𝑅𝑇 ≈ 5.72 kJ mol−1
, we

estimate 𝜇ext
1 ≈ 𝜇ext,0

1 + 2.3𝑅𝑇 log10 𝑥ext
1 = −793.74 + 5.72 · log10 10−3 = −810.9 kJ mol−1

,

and 𝜇ext
2 ≈ 2 · (−420.28 + 5.72 log10 10−4) = −886.32 kJ mol−1

. This gives our approximate

bound that

𝑣*
1 ≤ 1.09𝑣*

2.

This bound is vacuous when only 𝑣1 and 𝑣2 are the internal fluxes, because in this case

we know 𝑣*
1 = 𝑣*

2 = 𝑤*
from steady state condition. But at least we see the bound and

the steady state solution is consistent, showing that the unique steady state solution is

plausible energetically.

We can use a coarse application of dissipation in nonequilibrium steady states to relate

entropy production rate, flux magnitudes, and kinetic rate amplification. Put in 𝑣*
1 = 𝑣*

2 =
𝑤*

at steady state, we have

𝜎𝑇 = 𝜇ext
1 𝑣*

1 − 𝜇ext
2 𝑣*

2 = (𝜇ext
1 − 𝜇ext

2 )𝑤*.

Also recall our discussion that 𝜎𝑗𝑇 = 𝑣𝑗Δ𝜇𝑗 which relates entropy production rate of

reaction 𝑗 and the driving potential Δ𝜇𝑗 for reaction 𝑗. If we consider only the forward

direction of reaction 𝑗 is driven, which makes sense here because the two reactions are

roughly irreversible based on free energy estimates, we have Δ𝜇𝑗 = 𝑘𝐵𝑇 log 𝑞+
𝑗

𝑘+
𝑗

, where 𝑞+
𝑗

is the nonequilibrium forward reaction rate after driving, and 𝑘+
𝑗 the equilibrium kinetic

rate of this forward step. So we have Δ𝜇𝑗 = 𝜎𝑗𝑇

𝑣𝑗
≤ 𝜎𝑇

𝑣𝑗
, since 𝜎 = ∑︀

𝑗 𝜎𝑗 . To apply these

nonequilibrium formulations to our setting, we need to choose which species we focus on

to represent the reactions as state transitions of molecules of this species. We can choose the

multiple states of this species to be glucose, intermediate, and waste. Let us focus on the

transition from glucose to intermediate. We have
𝜎𝑇
𝑣*

𝑗
= 𝜇ext

1 −𝜇ext
2 , so Δ𝜇𝑗 ≤ 𝜇ext

1 −𝜇ext
2 . Put

in the numerical values in molar units, we see

𝑞+
𝑗

𝑘+
𝑗

≤ exp
{︁

𝜇ext
1 −𝜇ext

2
𝑅𝑇

}︁
≈ 1013

. 𝑘+
𝑗 is equilibrium

rate of transition out of glucose. If we assume the enzymes in glycolysis are not catalytically

active when there is no driving force, e.g. ATP to ADP ratio is about 1 to 108
, then 𝑘+

𝑗 can

be considered as the spontaneous rate of decomposition rate of glucose, which is estimated

to be about per 100 years [115]. 13 orders faster corresponds to about per 0.3 millisecond,

which is on the right orders of magnitude for glycolysis rate. If this relation is applied to

an example where steady state fluxes can vary, then for fixed Δ𝜇𝑗 we can in turn obtain∑︀
𝑗 𝑣*

𝑗 Δ𝜇𝑗 = 𝜎𝑇 as a further constraint on the steady state fluxes. From this rough estimate,
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we see how entropy production rate can relate to nonequilibrium kinetic rates or the flux

magnitudes.

We can also determine directionality of the fluxes by using Eqn (4.23). Namely, we need to

calculate 𝜇𝑣
𝑗 . For 𝑣1, the reaction from glucose and ATP to intermediate (two glyceraldehyde-

3-phosphate, or G3P molecules), has a lumped free energy changed 𝜇𝑣
1 = −53.73 kJ mol−1

.

This is calculated from summing the first fives steps of glycolysis under the physiological

concentrations of red blood cells (see page 584 of [48]). For this default scenario, indeed

𝜇𝑣
1 < 0, and is very negative. Therefore we can confidently consider 𝑣1 to be irreversible

and always positive. We can also consider how variations in metabolite concentrations

are related to directionality. To get a context for the numbers, 2.3𝑅𝑇 is about 5.7 kJ mol−1

at 25°C, so a 10-fold change in metabolite concentrations will change 𝜇𝑣
1 by 5.7 kJ mol−1

.

So to make 𝜇𝑣
1 close to zero, we need to vary metabolite concentrations a total of 109

folds, which is highly unlikely. On the other hand, given our discussion on driving

nonequilibrium steady states, a very negative 𝜇𝑣
1 is necessary to keep the reaction rates in

physiological range, which tends to be much larger than their equilibrium rates for the

steps that phosphorylate sugar. So we may require 𝜇𝑣
1 to be more negative than −51.3

kJ mol−1
, and see how this constrains the variations of concentrations. Here−51.3 is chosen

because this is 9× 2.3𝑅𝑇 , so it gives a driving force equivalent to 109
folds of concentration

difference, or the same folds of kinetic rate changes away from equilibrium. The metabolite

concentrations used in 𝜇𝑣
1 = −53.73 kJ mol−1

that are relevant to this lumped reaction are

glucose at 5.0 mm, G3P at 0.019 mm, and ATP at 1.85 mm. We assume the other metabolites,

such as phosphate group at 1.0 mm and ADP at 1.4 mm, are kept constant. Then the

deviation from 𝜇𝑣
1 = −53.73 kJ mol−1

but still higher than 51.3 leaves a margin of 2.4
kJ mol−1

, which translates to 2.6 fold variation in concentrations in total. So

Δ̃𝑥gluΔ̃𝑥2
atp

Δ̃𝑥2
g3p

≤ 2.6,

where Δ̃ denote the fold-change of corresponding concentrations from their physiological

concentrations mentioned previously, such as Δ̃𝑥glu = [Glucose]
5.0mm

. Such bounds hold for

transient concentrations as well △

Flux exponent control from binding-catalysis split in layered architecture
of metabolism incorporates internal dynamics

As a constraint-based approach, the flux control formulation splits the metabolite con-

centration dynamics into internal fluxes and external fluxes. We began with the model

with external fluxes 𝑤 and internal fluxes 𝑣(𝑥) regulated by metabolites in Eqn (4.12),

and argued that since 𝑣(𝑥) is fast varying and unknown, we could replace it with control
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variables 𝑢 in the flux control formulation in Eqn (4.13). Considered as an open system, i.e.

a system subject to external disturbances 𝑤, the flux control formulation turns an open

system with only internal dynamics 𝑣(𝑥), to an open system with only internal control

actions 𝑢. This has the disadvantage of ignoring any internal uncontrollable dynamics in

metabolism, like inertia in a mechanical system. So we would like to consider metabolism

as an open system with both internal uncontrollable and controllable dynamics.

This is exactly how a system is typically formulated in control theory, so we introduce

some of the relevant terminology. Plant refers to the part of a system that is influenced

by external variable 𝑤 and controlled by internal control variable 𝑢, with state variable

𝑥 as output. In other words, the dynamics of the plant is how the system would evolve

when the control variables take a standard value, therefore representing the “uncontrolled”

behavior of the system. This uncontrolled behavior of the plant with no feedback is also

called the open loop dynamics of the system. Controller refers to how the control variable 𝑢 is

determined based on the state variable 𝑥 of the plant, which is the metabolite concentration

𝑥 in our case. The system, often called the closed loop system to be explicit, is then formed

by interconnecting the plant and the controller, so that the overall system response from

external variable 𝑤 to state variable 𝑥 is different from that of the plant, due to controller

actions. In the context of metabolism, we can write this more explicitly. The plant is

𝑑
𝑑𝑡

𝑥 = 𝑓(𝑥, 𝑢, 𝑤), capturing how metabolite concentrations vary with control action 𝑢 and

external variable 𝑤. The controller is a map from 𝑥 to 𝑢, which we can assume to be a

static function rather than a dynamic process if the controller dynamics is much faster than

the plant dynamics. With slight abuse of notation, we denote this static controller function

𝑢(𝑥). If the control variable 𝑢 does not vary based on state 𝑥, i.e. the controller is not

interconnected with the plant, then the dynamics from 𝑤 to 𝑥 is the open loop dynamics.

The closed loop system dynamics has the controller interconnected with the plant, which

is
𝑑
𝑑𝑡

𝑥 = 𝑓cl(𝑥, 𝑤) = 𝑓(𝑥, 𝑢(𝑥), 𝑤).

Geared with control theory concepts, we see that the flux control formulation has only a

controller in the system, while the plant is trivial, in the sense that it just integrates the

input (see Figure 4.7). Our goal of finding a constraint-based formulation improving over

flux control then corresponds to formulating metabolism dynamics as a control system

with an explicit split between plant and controller, in a way that both the plant and the

controller have nontrivial dynamics. To begin with, we respect the stoichiometry-flux split

while allowing control variables in regulation of internal fluxes. This simply means instead

of 𝑣(𝑥) or 𝑢 as internal fluxes, we write 𝑣(𝑥, 𝑢), to capture that the internal dynamics of

metabolism has a nontrivial plant part from 𝑣’s dependence on 𝑥, while allowing control
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actions by 𝑣’s dependence on 𝑢. This yields the following equation for the plant:

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) = 𝑆𝑣(𝑥(𝑡), 𝑢(𝑡)) + 𝑆𝑤𝑤(𝑡). (4.24)

With this formulation of a plant that is based on the stoichiometry-flux split, if the system

has a static controller 𝑢(𝑥), then the closed loop system is

𝑑

𝑑𝑡
𝑥 = 𝑓cl(𝑥, 𝑤) = 𝑆𝑣cl(𝑥) + 𝑆𝑤𝑤, (4.25)

where 𝑣cl(𝑥) = 𝑣(𝑥, 𝑢(𝑥)). Similar to previous discussions of general control systems,

the assumption of static controller here means the map from 𝑥 to control action 𝑢 is fast

compared to changes in the fluxes. This needs to be carefully argued rather than guaranteed,

since we have not specified the mechanism underlying 𝑢’s regulation of 𝑣. Now to make

Eqn (4.24) into a useful control system formulation of metabolism, the difficulty is in how

to formulate the explicit split between plant’s internal dynamics and controller actions, i.e.

how to construct an explicit split between 𝑣’s dependence on 𝑥 and that on 𝑢.

As a first try in separating plant and controller in regulation of fluxes, we could extend the

flux control formulation. This means we split the fluxes into three parts: external exchange

fluxes 𝑤, internal plant fluxes 𝑣 that are not directly controlled, and internal controller

fluxes 𝑢 that are varied by cells’ regulation. Extending the flux control formulation in Eqn

(4.13), we write

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑆𝐴𝑣(𝑥(𝑡)) + 𝑆𝐵𝑢(𝑡) + 𝑆𝑤𝑤(𝑡). (4.26)

Here the new term that captures internal dynamics of the plant is 𝑆𝐴𝑣(𝑥), where 𝑆𝐴

includes the stoichiometry for reactions that are not directly controlled, and 𝑣(𝑥) is the

vector of fluxes of these reactions, capturing how they are regulated based on metabolite

concentrations. So we can call 𝑣 the plant fluxes, and 𝑢 the controller fluxes.

Although Eqn (4.26) does extend the flux control formulation to include dynamics of

the plant, this split of internal fluxes into plant and controller fluxes is impractical and

unbiological. On one hand, we are again back to facing the experimental difficulty of

characterizing 𝑣(𝑥) that motivated us to do the constraint-based flux control formulation

in the first place. These plant fluxes 𝑣(𝑥) are just as difficult to characterize as any other

fluxes. Namely, we need to climb up the layered architecture of metabolism (see Figure

4.5) through experimental investigations to characterize all the molecular mechanisms

involved. This makes writing down 𝑣(𝑥) in Eqn (4.26) impractical from the perspective of

sparse data in metabolism.

On the other hand, a reaction’s flux often has both a controlled and uncontrolled part

that are not additive, therefore cannot be split into two separate fluxes. From a cell’s
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perspective, the fluxes are catalyzed by enzymes, and regulated by proteins, cofactors and

metabolites binding to the enzymes. This means, “no control” would naturally correspond

to the enzyme not regulated by binding, and “control” means inhibition or activation

through binding. These two parts control the same flux not in an additive way, but rather

complicated and multiplicative in nature. As a simple example, rational functions of

MWC or Hill form are often used to describe allosteric regulation of enzyme activity. Say

𝑣(𝑥) = 𝑣max
1

1+𝑥2 describes how one flux is regulated, with
1

1+𝑥2 capturing the fraction of the

catalyzing enzyme’s activity varying with normalized regulating metabolite concentration

𝑥, forming a second-order inhibition. The uncontrolled flux may be considered as the

flux at 𝑥 = 0, so 𝑣 = 𝑣max, while the controlled flux is multiplying the factor
1

1+𝑥2 to the

uncontrolled flux. This simple example illustrates that the controlled-uncontrolled split in

cells’ regulation of fluxes is not in terms of separate plant and controller fluxes. From the

perspective of constraint-based modeling, 𝑢 represents all the actions that a cell can take

biologically. Therefore a plant and controller split in terms of fluxes is unbiological as a

representation of cells’ actions.

To find a biological representation of cells’ actions with a natural split of plant and controller

dynamics, we need to respect cells’ regulatory architecture of metabolism on a layer higher

than the fluxes and stoichiometry. This motivates us to look back at the layered architecture

of metabolism (see Figure 4.5). On top of the bottom stoichiometry layer, the metabolic

fluxes are catalyzed by enzymes, which in turn are regulated by binding of metabolites,

cofactors, and proteins, or transformation of molecular states by covalent modifications

such as phosphorylation or methylation. Such regulatory actions often happen on a

seconds to minutes timescale. These catalyzing enzymes together with regulation of

these enzymes’ activities by binding form the middle layer (see Figure 4.5). Here we use

binding to describe regulations by binding and state transformations altogether, since state

transformations can be considered as binding in an extreme scenario. This is in accordance

with our definition of binding networks with state transformations in Chapter 3.

The middle enzyme layer is also regulated at a slower timescale, which we designate as

a higher layer, the top gene expression layer, in our coarse description of metabolism

architecture. The gene expression layer regulates protein amount by production and degra-

dation processes, often on the tens of minutes timescale. The production process of this

layer has an hourglass shape with a thin waist of conserved and non-diverse transcription-

translation machinery, connecting diverse genes with diverse proteins produced. This

protein production process is enabled by energy and building blocks such as nucleic acids

and amino acids supplied by the bottom stoichiometry-flux layer, and the fast timescale
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regulatory mechanisms such as transcription factors of the middle enzyme-binding layer.

It is arguable there is a similar hourglass shape for degradation in eukaryotes, where the

ubiquitin-proteosome system serves the thin waist connecting diverse signals to diverse

proteins degraded. But ubiquitin-like systems are not widely present in bacteria.

Now with this description of the higher up layers of flux regulation in metabolism, we

can consider how to capture more structure in the flux regulation 𝑣(𝑥). The flux control

formulation as a constraint-based approach split metabolite concentration dynamics

𝑓(𝑥, 𝑤) into stoichiometry and fluxes 𝑆𝑣(𝑥). In terms of layers in metabolism architecture,

this corresponds to splitting between the bottom stoichiometry-flux layer and the higher

layers regulating the fluxes (see Figure 4.6). Now we can move up the layered architecture

to incorporate more structure in the fluxes 𝑣(𝑥). Respecting the middle layer structure that

the fluxes are catalyzed by enzymes and the enzyme activities are regulated by binding,

we can split the middle layer between catalytic enzymes and their binding regulations,

where latter is from protein activity of the top layer and metabolites of the bottom layer. In

short, we can all this binding-catalysis split, where catalysis refers to the catalytic enzymes

determining the stoichiometry, or directions of change, and binding refers to the regulation

of enzyme activity.

To mathematically formulate the binding-catalysis split in the regulation of fluxes, we

need to parameterize binding’s regulation of catalysis as a set in some appropriate space.

Recall from Chapter 3 that the regulation of enzyme catalysis via binding reactions can be

considered as regulating the reaction orders, or log derivatives, of 𝑣’s dependence on 𝑥,

constrained in a polyhedral set. The polyhedral constraint on reaction orders comes from

the stoichiometry of the binding network, which is part of the slow-varying structures of the

middle layer. So the binding-catalysis split is mathematically parameterized as controlling

reaction orders of catalysis fluxes, with polyhedral constraint on reaction orders from slow

varying part, and dynamic control of reaction orders in the polyhedral set from fast varying

part. This can be posed as a rule of life, that cells regulate metabolic fluxes by adjusting

their exponents, or reaction orders. We call this rule flux exponent control (FEC). Because the

middle binding-catalysis layer also interacts with the bottom stoichiometry-flux layer and

the top macro-molecule production-degradation layer by metabolite feedback and protein

level variation, further slow varying structures arise from these interactions in terms of

which fluxes are controlled and based on concentrations of which metabolites.

Now we try to explicitly incorporate the binding-catalysis split into the control system

formulation of metabolism. Reaction orders are log derivatives, capturing the local behavior

of fluxes at a given metabolite concentration 𝑥. So to conveniently bridge with the FEC
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rule that binding’s regulation of catalysis is parameterized as adjusting reaction orders in a

polyhedral set, we want to log-linearize the system in Eqn (4.24) and Eqn (4.25) around a

reference point (𝑥0, 𝑢0, 𝑤0) to consider the local dynamics. Since the FEC rule that reaction

orders are constrained in a polyhedral set naturally correspond to the closed loop setting,

we log-linearize Eqn (4.25) first.

𝑑

𝑑𝑡
𝛿𝑥 = Λ−1

𝑥0 𝑆Λ𝑣0𝐻cl𝛿𝑥 + Λ−1
𝑥0 𝑆𝑤Λ𝑤0𝛿𝑤 + Λ−1

𝑥0 𝑓 0
cl. (4.27)

Here 𝛿 denotes fold-change variation relative to the reference point, such as 𝛿𝑥𝑖 = 𝛿𝑥𝑖

𝑥0
𝑖

= 𝑥𝑖−𝑥0
𝑖

𝑥0
𝑖

.

This is the same as log-differential in the infinitesimal case, so that 𝛿𝑥𝑖 = 𝑑 log 𝑥𝑖 when

𝑥𝑖 is close to 𝑥0
𝑖 . 𝐻cl

is the log derivative, or reaction order, of closed loop fluxes 𝑣cl to

metabolites 𝑥, so 𝐻cl
𝑖𝑗 = 𝜕 log 𝑣cl,𝑖

𝜕 log 𝑥𝑗
. 𝑓 0

cl := 𝑓cl(𝑥0, 𝑤0) is the change in metabolite concentration

at the reference point in closed loop. Here 𝑥 and 𝑤 are naturally positive variables as they

correspond to concentrations and fluxes, so taking log makes sense. To avoid issue with

taking log of variables with units, we can consider a standard unit for concentrations and

fluxes, and all the concentration and flux variables are numerical values relative to these

standard units.

The FEC rule parameterizing the binding-catalysis split then says that binding regulates

the reaction order 𝐻cl
within some polyhedral set 𝒫 , so 𝐻cl ∈ 𝒫 . In the closed loop

system in Eqn (4.25) or its log-linearization in Eqn (4.27), the binding regulation is already

included in the system, so reaction order 𝐻cl(𝑥) varies with changes in 𝑥, so binding’s

regulation can be considered as a map from 𝑥 to 𝐻cl
. We want to break this open to have

an explicit control variable 𝑢, mapped from 𝑥 via a controller, that adjusts the reaction

order 𝐻cl
. This means breaking the map from 𝑥 to 𝐻cl

into the composition of two maps:

a map from (𝑥, 𝑢) to 𝐻cl
, composed with another map from 𝑢 to 𝑥. This split of the closed

system in Eqn (4.25) should agree with the plant system in Eqn (4.24) at least in terms of

log-linearization. So we can compare their log-linearized expressions for suggestions on

how to do the split. Log-linearize the plant (Eqn (4.24)) yields the following:

𝑑

𝑑𝑡
𝛿𝑥 = Λ−1

𝑥0 𝑆Λ𝑣0

(︁
𝐻𝐴𝛿𝑥 + 𝐻𝐵𝛿𝑢

)︁
+ Λ−1

𝑥0 𝑆𝑤Λ𝑤0𝛿𝑤 + Λ−1
𝑥0 𝑓 0. (4.28)

Here 𝐻𝐴
is the log derivative, or reaction order, of open loop fluxes 𝑣 to 𝑥, so 𝐻𝐴

𝑖𝑗 = 𝜕 log 𝑣𝑖

𝜕 log 𝑥𝑗
.

Similarly, 𝐻𝐵
is the reaction order of 𝑣 to 𝑢. 𝑓 0 := 𝑓(𝑥0, 𝑢0, 𝑤0) is the change in metabolite

concentration at the reference point in open loop. To take log for 𝑢, we temporarily assume

𝑢 is positive as well. Since 𝑢 should eventually represent how reaction orders are adjusted

in a polyhedral set, positive or real are simply two equivalent parameterizations.

A comparison of Eqn (4.27) with Eqn (4.28) shows that the closed loop and open loop

reaction orders are related by 𝐻cl𝛿𝑥 = 𝐻𝐴𝛿𝑥 + 𝐻𝐵𝛿𝑢. Now if we close the loop with a
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controller map from 𝑢 to 𝑥 that is static 𝑢(𝑥), then we can log-linearize the controller map

at 𝑥0
as well to obtain 𝐻𝐾

, the log derivative of 𝑢 to 𝑥: 𝐻𝐾
𝑖𝑗 = 𝜕 log 𝑢𝑖(𝑥0)

𝜕 log 𝑥𝑗
. So the closed loop

reaction orders should relate to the open loop reaction orders under static feedback via

𝐻cl𝛿𝑥 = 𝐻𝐴𝛿𝑥 + 𝐻𝐵𝐻𝐾𝛿𝑥, which is just the following equality on the reaction orders:

𝐻cl = 𝐻𝐴 + 𝐻𝐵𝐻𝐾 . (4.29)

We see that this relationship between closed loop and open loop gains is in complete

analogy to the static feedback in linear systems. Recall that the FEC parameterization of

regulation by binding is reaction orders are varied in response to changing metabolite

concentrations within a polyhedral set 𝐻cl(𝑥) ∈ 𝒫 . We see that the equality between the

reaction orders naturally maps this polyhedral constraint on reaction orders to constraint

on the controller gain 𝐻𝐾
. It is constrained in the set

𝐻𝐾 ∈ 𝒫𝐾 :=
{︁
𝐻𝐾 : 𝐻𝐵𝐻𝐾 ∈ 𝒫 −𝐻𝐴

}︁
. (4.30)

Crucially, the polyhedral constraint on reaction orders that originates from the stoichiometry

of underlying binding reactions is naturally converted to polyhedral constraints on the

controller gain.

The comparison of closed loop and open loop dynamics give us a clear idea for how to split

the control actions and the plant internal dynamics in the log-linearized case. We would

like to bring this split from the local dynamics back to the global dynamics, formulating

a plant-controller split for Eqn (4.24). We can get the full flux regulation back from its

log-linearization via integration. Take a scalar flux in closed loop 𝑣cl
𝑖 (𝑥). It relates to its

reaction orders by
𝜕 log 𝑣cl

𝑖

𝜕 log 𝑥
= 𝐻cl

𝑖 , where 𝐻cl
𝑖 is the 𝑖th row of 𝐻cl

. In other words, 𝐻cl
𝑖 is the

gradient of log 𝑣cl
𝑖 in log 𝑥 coordinates. Consider a path 𝛾 from a reference point 𝑥0

to 𝑥.

Then we can integrate over this path to obtain log 𝑣cl
𝑖 (𝑥)− log 𝑣cl

𝑖 (𝑥0) =
∫︀

𝛾 𝐻cl
𝑖 (𝑥) · 𝑑 log 𝑥.

For the choice of reference point, we can choose it to be the standard concentration units,

so that 𝑥0 = 1, a vector of ones. We denote the standard flux 𝑣cl
std,𝑖 := 𝑣cl

𝑖 (1). So we can

express 𝑣cl
𝑖 (𝑥) = 𝑣cl

std,𝑖𝑒
∫︀

𝛾
𝐻cl

𝑖 ·𝑑 log 𝑥
, where 𝛾 is any path that goes from 1 to 𝑥. Alternatively,

we can choose 𝑥0
to be the saturating concentration, since fluxes in metabolism, like

many biological quantities, eventually saturates out with metabolite concentrations going

towards infinity. This means we can choose 𝑥0
large enough in every coordinate such

that the flux no longer responds to variations in 𝑥, so the reaction order is zero 𝐻cl
𝑖 = 0

and the flux 𝑣cl
𝑖 (𝑥0) no longer changes, taking value of a well-defined saturated flux,

which we denote 𝑣cl
sat,𝑖. With the reference point at saturating concentrations, we have

𝑣cl
𝑖 (𝑥) = 𝑣cl

sat,𝑖𝑒
∫︀

𝛾
𝐻cl

𝑖 ·𝑑 log 𝑥
, where 𝛾 is any path that goes from a saturating concentration to

𝑥.
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We see that in the closed loop case, the result of integrating reaction orders is not simple

because the reaction order 𝐻cl
depends on 𝑥. With the system split into plant and

controller, we know the closed loop reaction order relates to the open loop reaction order

with static controller feedback via 𝐻cl = 𝐻𝐴 + 𝐻𝐵𝐻𝐾
. So we can resolve this issue

in the open loop case by having 𝐻𝐴
and 𝐻𝐵

as constants and delegate all dependence

on 𝑥 into the controller feedback. In other words, with 𝑥 dependence explicit, we want

𝐻cl(𝑥) = 𝐻𝐴 + 𝐻𝐵𝐻𝐾(𝑥). We will later show the interpretation of 𝐻𝐴
and 𝐻𝐵

and how

to determined them so that it makes sense they are constants. Let us for now focus on

mathematically integrate the flux from reaction orders in the open loop case. We know

𝜕 log 𝑣𝑖

𝜕 log(𝑥,𝑢) =
[︁
𝐻𝐴

𝑖 𝐻𝐵
𝑖

]︁
. Integrating over a path from a ference point (𝑥0, 𝑢0) to (𝑥, 𝑢), we

obtain

log 𝑣𝑖(𝑥, 𝑢)− log 𝑣0
𝑖 =

∫︁
𝛾

(︁
𝐻𝐴

𝑖 𝑑 log 𝑥 + 𝐻𝐵
𝑖 𝑑 log 𝑢

)︁
=𝐻𝐴

𝑖 (log 𝑥− log 𝑥0) + 𝐻𝐵
𝑖 (log 𝑢− log 𝑢0),

where 𝑣0
𝑖 := 𝑣𝑖(𝑥0, 𝑢0) is the reference flux. Let us choose the reference concentration

𝑥0
to be the standard unit of concentrations so that 𝑥0 = 1, a vector of ones, and the

reference control action 𝑢0
to be 1 as well. These together define the standard reference

flux 𝑣0
std,𝑖 := 𝑣𝑖(𝑥0, 𝑢0) = 𝑣𝑖(1, 1). This yields

𝑣𝑖(𝑥, 𝑢) = 𝑣0
std,𝑖 exp

{︁
𝐻𝐴

𝑖 log 𝑥 + 𝐻𝐵
𝑖 log 𝑢

}︁
= 𝑣0

std,𝑖𝑥
𝐻𝐴

𝑖 𝑢𝐻𝐵
𝑖 ,

where we use the notation 𝑥𝐻𝐴
𝑖 := 𝑥

𝐻𝐴
𝑖1

1 𝑥
𝐻𝐴

𝑖2
2 . . . 𝑥

𝐻𝐴
𝑖𝑛

𝑛 . In vector form, we have

𝑣(𝑥, 𝑢) = Λ𝑣0
std

exp
{︁
𝐻𝐴 log 𝑥 + 𝐻𝐵 log 𝑢

}︁
= 𝑣0

std ∘ 𝑥𝐻𝐴 ∘ 𝑢𝐻𝐵

. (4.31)

Here exponential is applied component-wise to a vector, and Λ𝑣0
std

is the diagonal matrix

with the standard reference flux 𝑣0
std on the diagonal. The operation ∘ denote Hadamard

or element-wise product. 𝑥𝐻𝐴
denotes the vector with 𝑥𝐻𝐴

𝑖 as the 𝑖th element. 𝑢𝐻𝐵
is

similarly defined. Note that for a static controller with map 𝑢(𝑥), the standard reference

flux in open and closed loop are related by 𝑣0
std = 𝑣(𝑥0, 𝑢0) = 𝑣(𝑥0, 𝑢(𝑥0)) = 𝑣cl(𝑥0) = 𝑣cl

std.

So we can simply use 𝑣0
std to denote the standard reference flux that is well-defined in both

closed loop and open loop cases, whenever a controller is specified.

As a simple example to illustrate this plant-controller split of fluxes in open and closed

loop, consider a flux with all variables scalar: 𝑣cl(𝑥) = 𝑣max
𝑥

𝐾+𝑥
. This is a typical Michaelis-

Menten type behavior of an enzyme catalyzed flux, with 𝑥 the concentration of substrate,

𝐾 the Michaelis constant indicating the half-flux substrate concentration, and 𝑣max the

maximum flux dependent on the number of enzymes. We want to describe this flux as
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the interconnection of a open loop plant with a controller. So we choose 𝐻𝐵 = 1 to allow

control action, and choose the passive, or uncontrolled plant dynamics to be proportional to

substrate, so 𝐻𝐴 = 1. Therefore Eqn (4.31) in this case becomes 𝑣cl(𝑥) = 𝑣0
std𝑥𝑢(𝑥), relating

closed loop and interconnection of open loop with controller. The standard reference flux

in this case is 𝑣0
std = 𝑣(𝑥0, 𝑢0) = 𝑣cl(𝑥0, 𝑢(𝑥0)) = 𝑣max

1+𝐾
. If we change the unit of concentration,

such as taking 𝐾 as the unit, then this is transform 𝑥 ↦→ 𝐾𝑥, so 𝑣cl(𝑥) = 𝑣max
𝑥

1+𝑥
= 𝑣0

std𝑥𝑢(𝑥),
where 𝑢(𝑥) = 1

1+𝑥
and 𝑣0

std = 𝑣max
2 . We see that this gives a natural split between internal

dynamics of the plant and the controller action, so we can break open the closed loop to

ask questions about what if alternative controllers are used. In this case, we simply write

the open loop flux as 𝑣(𝑥, 𝑢) = 𝑣0
std𝑥𝑢, which is the same as the closed loop flux but with

𝑢’s dependence on 𝑥 removed. Then alternative controllers, i.e. static or dynamic maps

from 𝑥 to 𝑢, can be connected to this open loop flux.

Although Eqn (4.31) gives an explicit split between internal dynamics of the plant, i.e.

𝑣’s dependence on 𝑥, and regulation by controller, i.e. 𝑣’s dependence on 𝑢, what is the

biological meaning of the extra structure involved and how can it be determined in a

mechanistic fashion? Just like the stoichiometry matrices 𝑆 and 𝑆𝑤
are the structures of the

bottom stoichiometry-flux layer in the architecture of metabolism (see Figure 4.8 and Figure

4.5), passive reaction orders 𝐻𝐴
, controller placements 𝐻𝐵

, and the controller sparsity

pattern 𝒮𝑥𝑢
are the structures of the middle binding-catalysis layer. These structures of the

middle layer are constant and mechanistic, just like the stoichiometry.

Let us first describe the meaning of the passive reaction order 𝐻𝐴
. Mathematically, since the

local behavior satisfies 𝐻cl = 𝐻𝐴 + 𝐻𝐵𝐻𝐾
, the passive reaction order 𝐻𝐴

is the reaction

order of the fluxes when there is no control regulation, 𝐻𝐾 = 0. Biologically, since the

controller captures regulation of enzyme activity by binding with metabolites (including

the reactants themselves) and proteins, the passive reaction order can be considered as how

the reaction flux would proceed if the catalyzing enzyme is a “pure” or “ideal” catalyst that

has only catalytic activity but no regulation. For example, since an enzyme often consists

of several functional domains that are modular to varying degrees, we can imagine making

it “ideal” by removing the regulatory domains of the catalyzing enzyme, but with the

catalytic activity kept intact. While this is likely very hard to do in reality if at all, we can do

so theoretically in a straight-forward fashion. Since enzymes, as catalysts, only speed up

reactions, the reaction order 𝐻𝐴
should reflect how a reaction’s flux naturally depend on

reactants and products. For a simple reaction, i.e. a reaction with no intermediate steps, this

dependence is exactly captured by the law of mass action. For a reaction with intermediate

steps, which is unavoidable for catalysis, the dependence can be more involved since
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Figure 4.8 A control diagram representation of the layered architecture of metabolism (see Figure 4.5. The

three rectangular boxes correspond to the three layers. 𝑥 is metabolite concentrations, 𝑣 is metabolic reaction

fluxes, 𝐻cl
is closed loop reaction orders or exponents of the fluxes, 𝑢 is binding’s regulation of fluxes

through exponents or reaction orders. That fluxes 𝑣 are regulated through exponents 𝐻cl
is the rule of flux

exponent control (FEC). The middle layer has hard structures 𝐻𝐴
, passive reaction orders, and 𝐻𝐵

, controller

placements, and soft structures (in parenthesis) 𝒮𝑥𝑢
, controller sparsity pattern, and 𝒫𝐾

, constraints on

controller gain.

the enzyme binding with metabolites needs to be considered. But we can imagine that

an ideal catalyst would speed up the reaction without adding any intermediate steps,

therefore the reaction would still proceed with mass action rates. Qualitatively, a reaction’s

passive flux always increases with reactant concentrations, and decreases with product

concentrations. This is unchanged from infinitely slow reactions in the thermodynamic

limit, to fast reactions catalyzed by efficient enzymes. This can be captured in the passive

reaction order 𝐻𝐴
by positive values for reactants, and negative values for products. If

the reaction is largely irreversible based on the thermodynamic relationship between free

energy and metabolite concentrations, then we can let the negative reaction orders for

products be zeros. To assign quantitative values to the reaction orders, mass action says the

value should be the same as the number of molecules consumed or produced as specified

in stoichiometry. This is often 1 for reactants, and −1 for products if reversible; take these

values as default. We caution that since lumped reactions are often used in writing down
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the stoichiometry of metabolism, the reaction orders should be assigned based on the

smallest steps, since mass action only applies to simple reactions. For example, while a

lumped reaction may be 2𝐴→ 𝐵, the individual steps may be 𝐴→ 𝐵′
and 𝐴 + 𝐵′ → 𝐵.

From the lumped reaction, wrongly applying mass action to it would say reaction order

to 𝐴 is 2. But from the individual steps, we see that if 𝐵′
concentration is kept much

lower than 𝐴, so the 𝐴 + 𝐵′ → 𝐵 step is saturated by 𝐴, then the overall reaction order of

𝐵’s production to 𝐴 is 1. The bottom line, of course, is to experimentally investigate the

smallest reaction steps involved in a reaction to obtain how the reaction order depends

on all metabolites involved in the intermediate steps, so that appropriate passive reaction

orders can be assigned at each step. This accumulation of mechanistic knowledge on 𝐻𝐴

is similar to that on stoichiometry 𝑆. 𝐻𝐴
might be hard to obtain in complex cases such as

electron bifurcation in the electron transport chain. So mathematical tools that rigorously

relate reaction orders for lumped and detailed reactions are urgently needed.

The other structures of the middle layer are the controller placements 𝐻𝐵
and controller

sparsity pattern 𝒮𝑥𝑢
. These have to do with how the metabolites 𝑥 are used to regulate the

fluxes 𝑣 through their reaction orders 𝐻cl
. Specifically, 𝑥 is mapped to control action 𝑢

through controller map with sparsity pattern 𝒮𝑥𝑢
, and then 𝑢 is mapped to reaction orders

𝐻cl
with placements according to 𝐻𝐵

. Abstractly in control theory terms, 𝒮𝑥𝑢
is the sensor

sparsity, namely which metabolites are sensed by a control variable 𝑢ℓ, and 𝐻𝐵
is the

actuator pattern, namely a control variable 𝑢ℓ acts on which reaction orders. We can also

interpret this biologically. Since the map from 𝑥 to 𝐻cl
represents how binding regulates

enzyme activity, we can interpret 𝑢 as any intermediate variables in this mapping, if there

is any. The regulation from metabolites to reaction orders can be a direct map without

intermediates, such as in enzyme allostery, or an indirect map with intermediates, such

as through protein binding or phosphorylation and methylation. In the indirect case, 𝑢

can represent the intermediate regulatory proteins. Then the structure in the map from

𝑢 to reaction orders, captured by 𝐻𝐵
, is the interaction structure on which fluxes are

influenced by the same protein. Correspondingly, the structure in the map from 𝑥 to 𝑢 is

captured by the controller sparsity pattern 𝒮𝑥𝑢
, describing which metabolites influence

which regulatory proteins. In the direct case such as enzyme allostery, a metabolite 𝑥𝑖

directly acts on reaction orders of a flux 𝑣𝑗 , so the step of mapping through a control

variable 𝑢ℓ is simply mathematically representing this direct action. Then 𝑢ℓ for this

allostery should only depend on the regulatory metabolite 𝑥𝑖, and 𝑢ℓ should only influence

the reaction order of flux 𝑣𝑗 . Mathematically, this means the controller sparsity 𝒮𝑥𝑢
has

row ℓ with only one nonzero entry at 𝑖, and the ℓth column of 𝐻𝐵
has only one nonzero

entry at 𝑗, which can be 1 by choice.
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Quantitative specification of 𝒮𝑥𝑢
is simple if the controller is static, which we discuss here,

while a dynamic controller would require more sophisticated tools from control theory,

which we defer to next subsection. Although 𝒮𝑥𝑢
does not appear explicitly in Eqn (4.31)

but instead constrain controller maps, it is an important feature for metabolism and a

severe constraint on possible biological actions. It is therefore important to determine the

controller sparsity pattern, especially for large metabolic networks. We discuss how to

incorporate this structure as constraints on metabolism dynamics in the next section, since

dealing with it requires a bit more control theory technicality on distributed control. For

a static controller with map 𝑢(𝑥), 𝒮𝑥𝑢
simply restricts the possible dependences of 𝑢 on

𝑥. So 𝒮𝑥𝑢
is a matrix in {0, 1}𝑛×𝑛𝑢

with all entries zero or one, where 𝑛 is the number of

metabolites and 𝑛𝑢 is the dimension of control variables. This is the same dimension as

derivative
𝜕𝑢
𝜕𝑥

or log derivative
𝜕 log 𝑢
𝜕 log 𝑥

of 𝑢 to 𝑥, and can be seen as a “mask” restriction on

them, that
𝜕 log 𝑥𝑖

𝜕 log 𝑢𝑗
can be nonzero only if 𝒮𝑥𝑢

𝑖𝑗 = 1. For the direct regulation by enzyme

allostery, the row of 𝒮𝑥𝑢
for that control action will have all zeros except a one at the

entry corresponding to the allosteric metabolite. For indirect regulation, the row of 𝒮𝑥𝑢

captures which metabolites influence the regulatory proteins represented by the control

action. Although biologically the direct and indirect cases seem distinct, their mathematical

meaning are the same: the ones in ℓth row of 𝒮𝑥𝑢
captures which metabolites are sensed

and eventually influence the control variable 𝑢ℓ. To apply this sparsity pattern to a dynamic

controller then requires propagation of this sparsity to dynamic trajectories, which is

discussed in the next subsection.

Now we discuss quantitative specification of 𝐻𝐵
. Viewed from Eqn (4.31), the 𝑗th column

of 𝐻𝐵
specifies which fluxes are co-influenced by the 𝑗th control action 𝑢𝑗 . Since 𝐻𝐵

appears as product 𝐻𝐵 log 𝑢, we can multiply each column of 𝐻𝐵
by a scalar and absorb

that scalar into log 𝑢. So if the 𝑗th column of 𝐻𝐵
has only one nonzero entry, say the 𝐻𝐵

𝑖𝑗

entry, we can always make it 𝐻𝐵
𝑖𝑗 = 1, which specifies that 𝑢𝑗 only influences flux 𝑣𝑖. This is

guaranteed for the direct regulation case, since 𝑢𝑗 is just a representation of the allosteric

metabolite acting on the catalyzing enzyme, which is one-to-one coupled by molecular

structure of the enzyme. For the indirect regulation case, it is possible that a column of 𝐻𝐵

may have more than one nonzero entry, so that one control variable 𝑢𝑗 influences two or

more fluxes simultaneously. This means that one regulatory protein can bind with multiple

enzymes for example, with 𝐻𝐵
𝑖𝑗 representing the relative strength of how the binding of

this protein to the enzyme adjusts the reaction orders of the 𝑖th reaction.

Lastly, there is a polyhedral set 𝒫𝐾
constraining the controller gain 𝐻𝐾

, which we

discussed in the static controller case in Eqn (4.30). This polyhedral constraint comes from
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stoichiometry of the underlying binding network that regulates the catalytic enzymes, as

formulated in Chapter 3. Since the stoichiometry of the binding network also varies on a

rather slow timescale, this polyhedral constraint 𝒫𝐾
is also constant and mechanistic.

It might appear that these four structures are a lot to specify or determine. However, just

like for the bottom layer, stoichiometry is always needed to formulate the problem, while

free energy and concentration relations from thermodynamics can enhance the model but

not necessary, these four structures can also be split according to whether they are always

needed. Out of the four structures, passive reaction orders 𝐻𝐴
and controller placements

are hard structures 𝐻𝐵
, in the sense that they are always assumed known in the regulation

of fluxes in Eqn (4.31). If they are not known, some value have to be specified for them to

use Eqn (4.31). On the other hand, the controller sparsity pattern 𝒮𝑥𝑢
and constraint on

controller gain 𝒫𝐾
are soft structures, in the sense that if they are not known, they can be

left out so that no constraints are imposed. If the controller sparsity pattern is not known,

then we allow the controller to be dense so any metabolite can be used to determine any

control variable. If the controller gain constraint is not known, then we can allow the gain

to be unconstrained. To avoid pathology, we can then simply require control actions to

have generic regularities such as smoothness or smaller magnitudes corresponding to

coarse notions of smaller energy cost. There is a deeper reason to the hard-soft split of

the four structures. With the flux dynamics split into plant and controller, we see that the

passive reaction orders and the controller placements are structures of the plant, while

the sparsity pattern and constraints on gain are structures of the controller. To specify a

control problem, we always need to specify the plant, therefore hard, while the controller

is unknown or to be designed, therefore soft. Biologically, the plant corresponds to coarse

information about the metabolic enzymes, namely the stoichiometry of the reactions they

catalyze (for 𝐻𝐴
) and whether they are regulated by binding (for 𝐻𝐵

). The controller, on

the other hand, includes all the complexity in regulation of enzyme activity by binding

from metabolites and proteins, and state transformation such as phosphorylation and

methylation. The processes represented by the controller is less known and harder to

characterize experimentally than those of the plant. For example, to specify 𝒫𝐾
requires

information about the binding network regulating the enzymes. As a result, the soft

constraints 𝒮𝑥𝑢
and 𝒫𝐾

are often difficult to specify compared to the hard constraints 𝐻𝐴

and 𝐻𝐵
. Fortunately, this is consistent with the hard-soft split in this formulation, so that

the soft constraints that are difficult to specify can be left unconstrained.

This completes our discussion of how to formulate the fluxes 𝑣 as control systems with both

internal plant dynamics and controller actions. We did this via the rule of flux exponent
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Figure 4.9 Control diagram comparison between flux control and flux exponent control in closed loop.

control (FEC) based on results from Chapter 3 that binding regulates enzyme activity by

adjusting the reaction orders within a polyhedral set. This results in the control diagram in

Figure 4.8 that fluxes 𝑣 are regulated through a control action 𝑢, mapped from metabolites

𝑥 via a controller, to adjust the reaction orders 𝐻cl
. Mathematically, this is described by

Eqn (4.31), which we derived by comparing closed loop and open loop formulations in

local behaviors. The structures of this regulation from metabolites 𝑥 to reaction orders 𝐻cl

come from the middle binding and catalysis layer in architecture of metabolism (see Figure

4.5 and 4.8), namely passive reaction orders 𝐻𝐴
, controller placements 𝐻𝐵

, controller

sparsity pattern 𝒮𝑥𝑢
, and constraints on controller gain 𝒫𝐾

. These structures are constant,

mechanistic, and can be systematically determined based on their biological meaning, just

like stoichiometry of the bottom layer.

With the fluxes formulated into a control system via FEC, we can now integrate this into

the stoichiometry-flux structure of the bottom layer to have a control system for the full

metabolism dynamics. Plug 𝑣(𝑥, 𝑢) from Eqn (4.31) into the flux control formulation in

Eqn (4.24), we obtain the following:

𝑑

𝑑𝑡
𝑥 = 𝑆Λ𝑣0 exp

{︁
𝐻𝐴 log 𝑥 + 𝐻𝐵 log 𝑢

}︁
+ 𝑆𝑤𝑤, (4.32)

where 𝑣0
is short-hand for the standard reference flux 𝑣0

std, and the controller map from 𝑥

to 𝑢 is constrained by the sparsity pattern 𝒮𝑥𝑢
and the polyhedral constraint on gain 𝒫𝐾

, if

these constraints are available.

This is the full flux exponent control (FEC) formulation of metabolism dynamics as

a constraint-based approach. Compared to the flux control formulation based on the

stoichiometry-flux split of the bottom layer in metabolism architecture, FEC incorporates

the binding-catalysis split of the middle layer as well (see Figure 4.9 and Figure 4.6). In flux

control, the stoichiometry 𝑆 is assumed slow-varying and known, and is therefore taken as

constraints, while fluxes 𝑣 are assumed fast-varying from unknown regulations of higher
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layers, and therefore are taken as control variables. In FEC, further structures in fluxes

𝑣 from the middle layer is incorporated. In addition to stoichiometry, passive reaction

orders 𝐻𝐴
, controller placements 𝐻𝐵

, controller sparsity pattern 𝒮𝑥𝑢
, and constraints

on controller gain 𝒫𝐾
, are further slow-varying structures that can be revealed and

incorporated as constraints on biological actions whenever available. The control variables

𝑢 that are fast-varying by unknown regulation from metabolites and proteins in other

layers on the enzyme activity in the middle layer correspond to regulations on the reaction

orders.

Compared to flux control, FEC as a constraint based approach for metabolism dynamics

is more biological and naturally dynamic. Flux control as a dynamic formulation has

difficulty in finding useful constraints. FEC significantly improves this via the FEC rule,

that flux exponents are controlled, rather than the fluxes themselves. This yield the

exponent-control form that is already restrictive, and further impose structural constraints

such as passive reaction orders 𝐻𝐴
and controller placements 𝐻𝐵

. By adding structural

constraints from the middle layer, the set of control actions allowed in FEC is smaller

compared to that in flux control, therefore closer to the exact set of biological actions,

enabling better predictions overall (see Figure 4.2). So the set of flux trajectories allows

in FEC is more biological than that of flux control. Flux control also ignores all intrinsic

dynamics of metabolism, akin to ignoring inertia in mechanics, because all internal fluxes

are controlled this formulation and the plant just trivially integrates input (see Figure 4.7).

This is resolved by FEC, which is based on an explicit split between internal dynamics and

controller actions in the flux dynamics (Eqn (4.31)). Specifically, the “inertia” of metabolism

is captured in one of the structures of the middle layer: passive reaction orders 𝐻𝐴
that

govern internal dynamics when there is no control action. Therefore compared to flux

control, FEC naturally captures the internal dynamics of metabolism through a dynamic

structural foundation. So FEC qualitatively improves over flux control on dynamics and

biological constraints.

FEC also improves over FBA on steady state analysis. To impose useful constraints, flux

control gives up dynamics and makes the steady state assumption to obtain the FBA

formulation. That flux control has no internal plant dynamics makes FBA fundamentally

about steady state fluxes rather than metabolites, so metabolite concentrations cannot be

obtained from FBA. FEC improves over FBA on this, since setting Eqn (4.32) at steady state

yields an equation relating 𝑥, 𝑢 and 𝑤. So metabolite concentrations at steady state can

be obtained, as well as how they vary with external exchanges and control actions. Static

controllers 𝑢(𝑥) can also be easily incorporated in such analysis to compare different control
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strategies. More importantly, FEC allows us to ask about whether a steady state is stable.

FBA investigates steady states assuming they are stable based on biological common sense

that homeostasis is often reached. However, the proper functioning of dynamic regulatory

mechanisms of metabolism are exactly what makes homeostasis a reality. In other words,

FBA cannot investigate what happens if metabolic systems are perturbed out of proper

functioning regimes where a particular homeostasis is guaranteed. Questions about strong

perturbations that push metabolic systems to their extremes cannot be answered by FBA.

In contrast, because of the dynamic nature of FEC, questions about whether a steady

state is stable or whether metabolism adapts to certain disturbances at steady state can

be formulated and answered systematically. So FEC qualitatively improves over FBA on

steady state analysis as well by making questions about metabolite concentrations and

stability analyzable.

To demonstrate the power of FEC requires us to analyze dynamic properties of systems

of the form in Eqn (4.32). This requires analytical and computational tools from control

theory, which we introduce next.

Before we end, inspection of the FEC formulation in Eqn (4.32) from a mathematical

perspective may motivate a question about why the external interaction variable 𝑤 cannot

act on the internal fluxes in a way similar to controllers 𝑢. In terms of layered architecture,

this corresponds to external interactions not only in the bottom stoichiometry-flux layer, but

also the middle binding-catalysis layer. Biologically, this means concentrations of enzymes,

proteins, cofactors, and other allosteric metabolites in the middle layer can be directly

adjusted externally. This is possible but rare biologically, since most regulatory metabolites

and proteins are kept inside cells, therefore not accessible externally through chemical

means. Other external perturbations that can directly access internal metabolites and

proteins are often uniform and slow-varying, such as temperature and osmotic pressure.

Therefore allowing 𝑤 to act on flux exponents constitute a rather different kind of problem

for metabolism that naturally occur in cells. Viewed as questions to ask theoretically, placing

𝑤 on flux exponents corresponds to asking what if enzyme regulations are perturbed. This

is useful in modelling the effect of mutations on enzymes or regulatory proteins, including

varying binding constants, allosteric activities, and knock-outs. Together, placing 𝑤 at

flux exponents form an interesting class of questions that we do not address here, but is a

fascinating direction worthy of further investigations.

Example 12 (Simple glycolysis, continued). The simple glycolysis in FEC formulation is

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣0
1 0
0 𝑣0

2

⎤⎦ exp

⎧⎨⎩
⎡⎣0 1
1 0

⎤⎦⎡⎣log 𝑥1

log 𝑥2

⎤⎦+
⎡⎣1 0
0 1

⎤⎦⎡⎣log 𝑢1

log 𝑢2

⎤⎦⎫⎬⎭+
⎡⎣ 0
−1

⎤⎦𝑤.



190

This may seen overly complicated. Write the fluxes together, we have a a compact form:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣0
1𝑥2𝑢1

𝑣0
2𝑥1𝑢2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤.

Here 𝑣1 has passive part 𝑥2 because 𝑥2, ATP, is reactant of 𝑣1, and this flux is considered

irreversible because of large driving force. Similarly, 𝑣2 has passive part 𝑥1 because 𝑥1, the

intermediate, is a reactant for the second flux. △

Summary

Constraint-based approach is a powerful method to model metabolism dynamics since

mechanistic data is often sparse. Constraint-based models are inherently based on splits of

structures in the layered architecture of metabolism. Slow-varying structures are usually

known and incorporated into the problem formulation as constraints, and fast-varying

variables are usually unknown and formulated as control actions. Metabolic behaviors are

analyzed by characterizing the set of all possible trajectories from feasible control actions,

or finding points in feasible controls that optimizes certain objectives. Flux control, and

its steady state variant flux balance analysis (FBA), are based on stoichiometry-flux split

in the bottom layer. Stoichiometry is used as constraints, and fluxes are control actions.

Flux control cannot capture dynamic properties of metabolism due to the lack of internal

dynamics not directly controlled. Flux exponent control (FEC) fixes this by incorporating

further structures from the middle binding-catalysis layer. Metabolic fluxes are catalyzed

by enzymes, whose activities are regulated by binding from metabolites and proteins.

Based on Chapter 3, such regulations are parameterized by adjustments of flux exponents,

or reaction orders, in a polyhedral set. This enables a further split of flux dynamics into

control actions and internal dynamics of a plant not directly controlled. Therefore FEC

captures internal dynamics of metabolism and is more biological than flux control by

incorporating further structural constraints, such as passive reaction orders and controller

placements.

To analyze metabolic systems formulated by FEC, we need theoretical tools for dynamics

from control theory. We introduce them and adapt them to the FEC setting in the next

section.

4.4 Tools, hard limits, and laws from control theory

Dynamics and transient behaviors are important to understand and engineer metabolic

systems. However, data on mechanisms is often sparse in metabolism, motivating us
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to move beyond traditional detailed mechanistic models which require full specification

of molecular parts involved, but instead use constraint-based approaches which take

the known mechanisms as constraints and let unknown parts vary freely. In Section

4.3, we proposed a constraint-based approach called flux exponent control (FEC) that

is designed for capturing metabolism dynamics. To make such models useful, we need

tools to analyze dynamic behaviors of metabolic models from FEC. In this section, we

introduce and adapt tools from control theory for this purpose. In addition, as discussed

in Section 4.1, to have knowledge about necessity relating phenotypes back to mechanisms

that is complimentary to sufficiency, we need a systems theory, as well as hard limits

and laws in it. FEC can be considered as a systems theory for metabolism dynamics,

with the space of all possible metabolic systems corresponding to the set of all tuples

(𝑆, 𝑆𝑤, 𝐻𝐴, 𝐻𝐵, Φ𝑥𝑢). The tuple captures possible stoichiometry (𝑆, 𝑆𝑤), passive reaction

orders 𝐻𝐴
and controller placements 𝐻𝐵

, and controllers Φ𝑥𝑢
mapping 𝑥 to 𝑢, as they

appear in Eqn (4.32). This provides a systems theory foundation for us to obtain hard limits

and laws governing the space of all metabolic systems, akin to conservation of energy,

mass and momentum governing mechanical systems. Since models from FEC are control

systems, we naturally hope we can use tools from control theory to derive relevant hard

limits and laws.

With this said, although we have a strong motivation to adapt control theory for metabolic

systems from FEC, it is unfortunate that existing tools from control theory are not tailor-

made for biological systems, and many important biological structures are not respected.

This means although existing control theory tools are useful and important, and can be

fruitfully applied, as we do in this section, there is still a long way to go in inventing

new control theoretical tools that are best suited for biological systems. One example of

biological structure not well respected by existing control theory tools is that biological

variables are positive, and they vary by production and degradations. Due to both

mathematical simplicity and the historical reason that control theory originated from

studying mechanical and electrical systems, most powerful control theory tools are based

on linear systems and real variables. Extending these results to nonlinear systems is

rather complicated, because it heavily relies on the structure of nonlinear systems to be

studied. This mindset of linear systems plus weak nonlinearity worked well in mechanical

and electrical engineering since there is natural linearity in a wide range of the relevant

physics, variables such as position, velocity and voltage naturally take real values, and

deviations from linearity can be actively avoided by engineering the system to perform

in the linear regime. I argue that this is not suitable for biological systems, because the

natural variables such as counts and concentrations are almost always positive, and they
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vary via production and degradation processes with positive fluxes that saturate at high

concentrations. Hence positive variables and nonlinearity with distinct structures play a

fundamental role. In particular, we can not simply consider biological systems as a positive

system from exponentiating a linear system. Indeed, from a linear system
𝑑
𝑑𝑡

𝑧 = 𝐴𝑧,

exponentiation yields
𝑑
𝑑𝑡

𝑥 = Λ𝑥𝐴 log 𝑥 where 𝑧𝑖 = log 𝑥𝑖, and Λ𝑥 denotes a diagonal

matrix with 𝑥 on the diagonal. This is very different from varying 𝑥 by production and

degradation processes, such as
𝑑
𝑑𝑡

𝑥𝑖 = 𝑓+
𝑖 (𝑥)−𝑓−

𝑖 (𝑥), where 𝑓+
𝑖 denote processes producing

𝑥𝑖, and 𝑓−
𝑖 denote processes degrading 𝑥𝑖 (also see Chapter 5). Much work still needs to

be done in developing control theory tools respecting biological structures. The work in

Chapter 5 may be seen as a humble attempt towards this direction, trying to incorporate the

positive variable, production-degradation, and regulation-by-reaction-orders structures

into a dissipative control framework.

Instead of developing new control theory tools respecting structures of metabolism

dynamics, this section aims at introducing existing tools that are relevant and adapting

them to the context of metabolism. In particular, this means we focus on local behaviors

around steady states by log-linearization, to avoid capturing structures in biological

nonlinearities. This is perhaps unsatisfying, but at least this can act as an illustration

of what control theory can bring to the table. We discuss four aspects. (1) Stability:

beyond steady states, the first important property is whether a given steady state is stable.

This concept, extended to control systems with external inputs, also captures adaptation

to disturbances. (2) System responses and internal structures: metabolic systems, like

general control systems, are described both externally in terms of response to inputs,

and internally in terms of system structures. Control theory rigorously relates the two,

therefore allowing comparison of responses between different systems. This may provide

a rigorous foundation to relate lumped and detailed metabolic networks. (3) Hard limits

and laws governing system responses: given a system’s internal structure, often hard

limits and laws on its performance can be determined. We illustrate this by introducing

the conservation of robustness or Bode’s integral formula. (4) Sparsity and controller gain

constraints: as discussed in Section 4.3, metabolic regulations are often localized and satisfy

sparse patterns, since one reaction’s flux is often regulated by just a few key metabolites.

This corresponds to a sparsity constraint on controller responses, which corresponds to

distributed control in control theory. This problem is hard, and becomes feasible to solve

only with a recent breakthrough in control theory called system level synthesis (SLS).

The discussion we provide here is necessarily not comprehensive. So here are a few

excellent books on foundations of control theory. [31] introduces control theory in the
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context of biomolecular circuits. [12] is a standard introduction to control systems. [39]

emphasizes robustness and fundamental limits from frequency-domain analysis and

focuses on single-input-single-output systems. [41] introduces a rigorous foundation

for linear control systems as linear operators, and discusses robust control and relevant

computation through convex optimization.

Structural stability by combining stoichiometry with birth-death structure

When analyzing the behavior of a system, the first behaviors of interest are often the steady

states. This means we consider the system interacting with external environments, and ask

how would the system respond to changes in external inputs through internal regulations

after the transients peter out. In the metabolism context, this means we use the closed loop

formulation as in Eqn (4.12) (reproduced below) so that internal regulations by controllers

are included, and the stoichiometry-flux split is applied. Note that closed loop is explicitly

denoted to emphasize internal regulations are included.

𝑑

𝑑𝑡
𝑥 = 𝑓 cl(𝑥, 𝑤) = 𝑆𝑣cl(𝑥) + 𝑆𝑤𝑤. (4.33)

Here 𝑥 ∈ R𝑛
>0 is the vector of metabolite concentrations, 𝑣 ∈ R𝑚

>0 is the vector of internal

metabolic reaction fluxes, 𝑤 ∈ R𝑚𝑤
is the vector of exchanges fluxes with environment, and

𝑆 ∈ R𝑛×𝑚
, 𝑆𝑤 ∈ R𝑛×𝑚𝑤

are stoichiometry vectors for internal and exchange reactions.

Steady state fluxes. At steady state, metabolites 𝑥 does not vary, so the above equation

yields a relation between internal and external steady state fluxes, just as in the flux balance

analysis (FBA) formulation in Eqn (4.14), with solution set in Eqn (4.15), reproduced below.

𝑆𝑣cl,* = 𝑆𝑤𝑤* =⇒ 𝑣cl,* ∈ 𝒱cl,*(𝑤*) :=
{︁
−𝑆†𝑆𝑤𝑤* + 𝑣cl,⊥ : 𝑣cl,⊥ ∈ ker 𝑆

}︁
. (4.34)

Here * is used to denote these fluxes are at steady state. This gives us a set of steady state

internal fluxes 𝒱cl,*(𝑤*) that is allowed by a given external steady state flux 𝑤*
.

However, this only relates internal and external steady state fluxes, with no mentioning of

metabolite concentrations. Also, these steady state fluxes can happen in reality only if they

are stable, which is assumed rather than studied in the above equation. Whether steady

states are stable corresponds to whether the metabolites 𝑥 come back to a steady state

value 𝑥*
from small perturbations. So we need to study internal flux regulations 𝑣cl(𝑥).

Local stability of fixed points from additive linearization. We denote 𝑥*
as the steady

state metabolite concentrations, and it then satisfies 𝑓 cl(𝑥*, 𝑤*) = 𝑆𝑣cl(𝑥*) + 𝑆𝑤𝑤* = 0.

Since the phrase “steady state” carries a hint that it is also stable, we use the more neutral
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term fixed points to refer to points 𝑥*
that satisfy the above for a given 𝑤*

. Note that because

we have external input 𝑤*
, the fixed point 𝑥*

depends on 𝑤*
implicitly through the above

equation. As a necessary condition for 𝑥*
to be a fixed point, from Eqn (4.34) we require

𝑣cl(𝑥*) to satisfy 𝑣*cl(𝑥*) ∈ 𝒱cl,*(𝑤*). So when considering stability of a fixed point, we

hold 𝑤*
constant.

Stability of this fixed point then refers to whether the system in Equation (4.33) with

𝑤 = 𝑤*
held fixed will evolve back to 𝑥*

when starting at 𝑥 very close to 𝑥*
. This can be

determined from linearization of the system.

𝑑

𝑑𝑡
𝛿𝑥 = 𝐴cl𝛿𝑥 + 𝑆𝑤𝛿𝑤 = 𝑆𝑉 cl𝛿𝑥 + 𝑆𝑤𝛿𝑤, (4.35)

where 𝛿𝑥 = 𝑥 − 𝑥*
is the additive difference around the fixed point 𝑥*

, and similarly

𝛿𝑤 = 𝑤 −𝑤*
. 𝐴cl = 𝑆𝑉 cl ∈ R𝑛×𝑛

is the derivative of 𝑓 with respect to 𝑥 evaluated at 𝑥*
,

and 𝑉 cl(𝑥) ∈ R𝑚×𝑛
is the derivative of 𝑣cl

to 𝑥 evaluated at 𝑥*
.

Stability corresponds to the case when 𝑤 is held fixed at 𝑤*
, so 𝛿𝑤 = 0, and stability

only depends on 𝐴cl
. Nonzero 𝛿𝑤 is used to study how the dynamics of metabolite

concentrations locally respond to exchange fluxes, which is discussed later in system

responses. The relevant result on stability from control theory states that the fixed point

𝑥*
is stable if 𝐴cl

is Hurwitz, i.e. its eigenvalues all have negative real parts. That 𝐴 is

Hurwitz is equivalent to there exists a positive definite matrix 𝑃 such that the following

Lyapunov inequality is satisfied:

𝑃 𝐴cl +
(︁
𝐴cl

)︁⊺
𝑃 < 0,

where < 0 means the matrix is negative definite. This gives an easy-to-compute test for

stability for one fixed point when the numerical values of 𝐴cl
is known. As noise, rate

variations and uncertainty are widely present in metabolism, we also want to test stability

for fixed points from a range of conditions. However, in metabolism, 𝐴cl = 𝑆𝑉 cl
, so while

stoichiometry 𝑆 has a constant numerical value, 𝐴cl
also depends on how the fluxes 𝑥

responds to changes in metabolite concentrations 𝑥 around the fixed point captured in the

derivative matrix 𝑉 cl
, and this matrix varies significantly with details on 𝑣(𝑥) and 𝑥*

. In

other words, it is hard to place useful ranges on the numerical value of derivatives 𝑉 cl
to

systematically test for stability of fixed points in a range of scenarios.

Taking inspiration that the fluxes are regulated by adjusting reaction orders in a polyhedral

set, and the reaction orders are most likely integer values which correspond to vertices (see

Chapter 3), we would like to relate stability to reaction orders. Reaction orders are often

naturally bounded within an interpretable range, so this could give us a way to derive
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stability of fixed points that is invariant to perturbations and rate changes. See Chapter

5 and [117] for this idea applied to generic biomolecular systems with production and

degradation.

Structural stability from fold-change linearization. To relate reaction orders of fluxes to

stability of fixed points, we log-linearize (or fold-change linearize) the system in Eqn (4.33)

since reaction orders are log derivatives. The result is the same as the closed loop local

dynamics in Eqn (4.27) when formulating FEC, except now the reference point is a fixed

point.

𝑑

𝑑𝑡
𝛿𝑥 = Λ−1

𝑥* 𝑆Λ𝑣*𝐻cl𝛿𝑥 + Λ−1
𝑥* 𝑆𝑤Λ𝑤*𝛿𝑤. (4.36)

Here 𝛿𝑥𝑖 = 𝛿𝑥𝑖

𝑥*
𝑖

= 𝑥𝑖−𝑥*
𝑖

𝑥*
𝑖

is the fold-change or multiplicative deviation from 𝑥*
𝑖 , and 𝛿𝑤 is

similarly defined. 𝐻cl = 𝜕 log 𝑣cl

𝜕 log 𝑥
is the reaction order, or log derivative, of 𝑣cl

to 𝑥.

Again, for stability of the fixed point, we hold 𝑤 constant at 𝑤*
, so 𝛿𝑤 = 0. Stability of 𝑥*

therefore only depends on whether Λ−1
𝑥* 𝑆Λ𝑣*𝐻cl

is Hurwitz. We want to relate this to the

reaction orders 𝐻cl
in a more direct fashion, since the reaction orders tend to be structural

like the stoichiometry matrix, but varies slowly in a range.

To use flux reaction orders to determine stability of fixed points requires us to relate fluxes

more directly to net changes of metabolites. In particular, the production-degradation or

birth-death structure in changes of metabolite concentrations is emphasized in Chapter 5.

It is shown that birth and death orders, or reaction orders of production and degradation

processes governing each metabolite, can be used to determine the stability of fixed points

independent of rate details. So we should relate flux reaction orders with birth and death

orders by splitting reactions into ones that produce 𝑥𝑖 and ones that degrade 𝑥𝑖.

We can further split Λ𝑥*𝑆Λ𝑣*𝐻𝑣
at a fixed point by utilizing the birth-death structure.

Split 𝑆 = 𝑆+ − 𝑆−
, so that 𝑆±

are non-negative matrices, with 𝑠+
𝑖𝑗 = 𝑠𝑖𝑗 if 𝑠𝑖𝑗 > 0, else zero,

and 𝑠−
𝑖𝑗 = |𝑠𝑖𝑗| if 𝑠𝑖𝑗 < 0, else zero. Similarly split 𝑆𝑤 = 𝑆𝑤,+−𝑆𝑤,−

. Then the concentration

dynamics of each metabolite species can be written as

𝑑

𝑑𝑡
𝑥 = 𝑓 cl,+(𝑥, 𝑤)− 𝑓 cl,−(𝑥, 𝑤) :=

(︁
𝑆+𝑣(𝑥) + 𝑆𝑤,+𝑤

)︁
−
(︁
𝑆−𝑣(𝑥) + 𝑆𝑤,−𝑤

)︁
,

with 𝑓 cl,±
𝑖 = 𝑆±

𝑖 𝑣 + 𝑆𝑤,±
𝑖 𝑤, where 𝑆±

𝑖 is the 𝑖th row of 𝑆±
, and similarly for 𝑆𝑤,±

. At steady

state, 𝑓 cl,+
𝑖 (𝑥*, 𝑤*) = 𝑓 cl,−

𝑖 (𝑥*, 𝑤*). So we can define the turnover timescales of average life

time of each 𝑥𝑖 molecule as

𝜏 *
𝑖 := 𝑥*

𝑖

𝑓 cl,±
𝑖 (𝑥*, 𝑤*)

.
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We see that for production of degradation process, there are several contributing reaction

fluxes, internal and external:

𝑓 cl,±
𝑖 =

𝑚∑︁
𝑗=1

𝑠±
𝑖𝑗𝑣

cl
𝑗 (𝑥*) +

𝑚𝑤∑︁
𝑗=1

𝑠𝑤,±
𝑖𝑗 𝑤𝑗.

So we can define the fraction of production or degradation changes that each reaction flux

contributes.

𝜃±
𝑖𝑗 :=

𝑠±
𝑖𝑗𝑣

cl
𝑗 (𝑥*)

𝑓 cl,±
𝑖 (𝑥*, 𝑤*)

, 𝜃±
𝑖0 := 1−

𝑚∑︁
𝑗=1

𝜃±
𝑖𝑗 =

∑︀𝑚𝑤
𝑗=1 𝑠𝑤,±

𝑖𝑗 𝑤*
𝑗

𝑓 cl,±
𝑖 (𝑥*, 𝑤*)

.

So 𝜃+
𝑖𝑗 is the fraction of production of 𝑥𝑖 contributed by internal flux 𝑣𝑗 , and 𝜃+

𝑖0 is the faction

of 𝑥𝑖’s production contributed by external exchange fluxes. For each 𝑖 and 𝜎 ∈ {−, +}, the

set of variables

{︁
𝜃𝜎

𝑖𝑗 : 𝑗 = 0, 1, . . . , 𝑚
}︁

are non-negative and sum to one, therefore they are

convex coefficients that parameterize a simplex. We can use the fractions of the internal

fluxes

{︁
𝜃±

𝑖𝑗 : 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚
}︁

to form matrices Θ± ∈ R𝑛×𝑚
, with Θ±

𝑖𝑗 = 𝜃±
𝑖𝑗 . Θ±

captures the fraction of production and degradation fluxes of each metabolite contributed

by each internal flux. Note that since the fractions of external fluxes 𝜃±
𝑖0 are not included in

these matrices, their rows sum to a number less than 1, and could be strictly less than 1.

With these parameterization, we can write

Λ−1
𝑥* 𝑆Λ𝑣*𝐻cl = Λ−1

𝜏 * Θ𝐻cl =: Λ−1
𝜏 * 𝐻bd, (4.37)

where Θ := Θ+ −Θ−
, 𝐻bd := Θ𝐻cl

is the birth-death order determined from flux orders

𝐻cl
and the fractions of fluxes contributed to production and degradation processes. Fixed

point stability is determined by this matrix Λ−1
𝜏 * 𝐻bd

, which consists of two parts, the time

constants Λ𝜏 * and the birth-death orders 𝐻bd
. Like in analysis of generic birth-death

systems in Chapter 5 and [117], this split coincides with a separation of the part that varies

significantly with noise and rates, namely the time constants, and the part that varies

slowly, namely the birth death orders. This motivates us to find a sufficient condition for

stability independent of the time constants, which we call structural stability. A simple

test for this is diagonal stability (see [117] and Chapter 5): there exists a positive diagonal

matrix 𝑃 such that

𝑃 𝐻bd +
(︁
𝐻bd

)︁⊺
𝑃 < 0, (4.38)

where < 0 means the matrix is negative definite. If 𝐻bd
is diagonal stable, then for any

positive vector 𝜏 *
, the matrix Λ−1

𝜏 * 𝐻bd
is Hurwitz, therefore the fixed point is stable. Note

that the inequality for diagonal stability differs from the Lyapunov inequality only in

requiring 𝑃 to be diagonal. Similar to the Lyapunov inequality, the inequality for diagonal

stability is a linear matrix inequality (LMI), which can be computed efficiently at scale.
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Instability can also be found using similar LMIs, but instead of positive diagonal 𝑃 , we ask

for 𝑃 with all but some diagonal entries negative. If there exists any such 𝑃 , then Λ−1
𝜏 * 𝐻bd

is unstable for all 𝜏 *
. See [117] for details.

We emphasize the significance of this sufficient condition in two aspects. First, instead of

dealing with 𝐴cl
and flux derivatives 𝑉 cl

that are hard to parameterize in a range, we can

determine stability based on birth-death orders 𝐻bd
which varies slowly in interpretable

ranges. For more on interpretation of reaction order ranges, see Section 5.1 in Chapter

5. Second, we can determine stability of steady state metabolite concentrations without

knowing the concentrations! This is because 𝐻bd
only depends on steady state fluxes

(which determine Θ±
) and flux reaction orders. Recall that knowledge about steady state

metabolite concentrations require knowing 𝑣(𝑥), which is hard, while knowledge about

steady state fluxes can be significantly constrained from stoichiometry, as in Eqn (4.34). This

is powerful in the sense that it allows a determination of steady state stability regardless of

hard-to-know details, in the spirit of necessity mapping phenotypes to mechanisms.

Beyond the birth-death orders, we see that the local dynamics of a metabolic system is has

more structure than a birth-death system studied in Chapter 5. Namely, the local dynamics

is split into three parts instead of two: the timescales Λ𝜏 * , the flux fractions Θ, and the flux

orders 𝐻cl
. These are determined all by different parts of the system. At steady state, 𝜏 *

is

just the average life-time of the metabolites, which only depends on overall production

and degradation rates and steady state concentrations. Θ is the fraction of production or

degradation of each metabolite contributed by each flux. This does not depend on the total

turn-over rate, and is only nontrivial for entries with more than one flux competing for

the production or degradation of the same metabolite. Lastly, 𝐻cl
is the reaction orders of

each flux, consisting of passive reaction orders and regulations by controllers. So we see

this split clearly separates how the dynamics depends on different parts of the system, on

different timescales, different physical components, and on different layers in the overall

architecture. Motivated by the study of stability independent of timescales, an interesting

questions is the formulation of stability independent of both timescales and flux fractions.

Before we end, we can write the full log-linearized dynamics in this birth-death order as

follows:

𝑑

𝑑𝑡
𝛿𝑥 = Λ−1

𝜏 *

[︁
Θ𝐻cl𝛿𝑥 + Θ𝑤𝛿𝑤

]︁
. (4.39)

Here Θ𝑤,±
are fractions of external exchange fluxes in the production and degradation

processes, with 𝜃𝑤,±
𝑖𝑗 := 𝑠𝑤

𝑖𝑗𝑤*
𝑗

𝑓cl,±
𝑖

, and Θ𝑤 := Θ𝑤,+ − Θ𝑤,−
. Rewriting into this form pro-

ceeds from

(︁
Λ−1

𝑥* 𝑆𝑤Λ𝑤*

)︁
𝑖𝑗

= 𝑠𝑤
𝑖𝑗𝑤*

𝑗

𝑥*
𝑖

= 𝑓cl,±
𝑖

𝑥*
𝑖

𝑠𝑤
𝑖𝑗𝑤*

𝑗

𝑓cl,±
𝑖

= 1
𝜏*

𝑖
𝜃𝑤,±

𝑖𝑗 . Note that

∑︀𝑚𝑤
𝑗=1 𝜃𝑤,±

𝑖𝑗 = 𝜃±
𝑖0, and
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𝑗=1 𝜃𝑤,±

𝑖𝑗 +∑︀𝑚
𝑗=1 𝜃±

𝑖𝑗 = 1.

Example 13 (Simple glycolysis, continued). The simple glycolysis model we have been

discussing so far is part of the glycolytic oscillations minimal model in [25]. In [25], this

simple model is analyzed to demonstrate several points, including a bound on steady state

error from stability, and a general tradeoff between steady-state accuracy and robustness

that explains glycolytic oscillation as a necessary side effect. However, the analysis was

done based on a mechanistic specification of how the fluxes are regulated:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 𝑞 + 1

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤,

⎡⎣𝑣1

𝑣2

⎤⎦ =

⎡⎢⎣ 2𝑥𝑎
2

1+𝑥2ℎ
2

2𝑘𝑥1
1+𝑥2𝑔

2

⎤⎥⎦.

Here 𝑥1 is intermediate, 𝑥2 is ATP, 𝑣1 is the flux from glucose and intermediate to ATP

(involving enzyme PFK), 𝑣2 is the flux from intermediate to ATP and waste (involving

enzyme PK), and 𝑤 is an external disturbance flux that consumes ATP, such as a maintenance

cost. This simple model is the same as what we have been using, except that a detailed

form is specified for 𝑣1(𝑥) and 𝑣2(𝑥), based on information from mechanistic details on

how the catalyzing enzymes, namely PFK and PK, are allosterically regulated.

However, we argue from a constraint-based perspective that all the points made in [25]

do not require this detailed knowledge about how 𝑣1(𝑥) and 𝑣2(𝑥) are regulated. Instead,

from the FEC rule based on general features of layered architectures of metabolism, we

can perform these analysis and obtain the same results but at higher conceptual generality.

FEC, as a constraint-based approach, formalizes the methods in [25] used to analyze

the glycolystic oscillation example, and enables application of such analysis to general

metabolic systems. In particular, no knowledge about how the catalyzing enzymes are

allosterically regulated is necessary for our analysis based on the FEC framework. As a

result, the results in [25], such as the tradeoff between steady state accuracy and system

robustness, recast via our FEC framework, constitutes general rules that hold for lumped

models of arbitrary autocatalytic metabolic processes.

Below, we illustrate how to apply FEC formulation to this example, and show that the

analysis and relevant results in [25] can be done solely based on the FEC formulation,

without knowing anything about 𝑣1(𝑥) and 𝑣2(𝑥).

The flux control formulation without knowing anything about how 𝑣1 and 𝑣2 are regulated

is

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣1

𝑣2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤.
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At steady state, the stoichiometry matrix constrains how internal fluxes are related to

external fluxes. In this case, as shown previously, 𝑣*
1 = 𝑣*

2 = 𝑤*
. This can be obtained just

by the stoichiometry, which is generic for any lumped autocatalytic process.

Preparing for studying stability later on, we can look at how the fluxes relate to the

birth-death dynamics of each species. We see that the only flux producing 𝑥1 is 𝑣1, the only

flux degrading 𝑥1 is 𝑣2, and the only flux producing 𝑥2 is 𝑣2. Both 𝑣1 and 𝑤 degrade 𝑥2, so

𝜃−
21 = 𝑞𝑣*

1
𝑞𝑣*

1+𝑤* = 𝑞
1+𝑞

. So we have

Θ+ =
⎡⎣1 0
0 1

⎤⎦, Θ− =
⎡⎣ 0 1

𝑞
1+𝑞

0

⎤⎦, Θ𝑤,+ =
⎡⎣0
0

⎤⎦, Θ𝑤,− =
⎡⎣ 0

1
1+𝑞

⎤⎦.

So Θ±
, the fractional contribution of each flux to the production and degradation of

metabolites, is determined directly from stoichiometry as well. In more general cases the

steady state fluxes are not uniquely determined, so their values will show up in Θ±
. But

the flux fractions Θ±
are always determined solely by fluxes.

Next, we want to delve into the regulation of the fluxes to study how the system can be

regulated. The first question is, are regulations necessary in the first place? Can we have a

well-performing autocatalytic system without sophisticated feedback regulations?

To study regulations, we apply the FEC formulation to split the flux dynamics into a

plant, or passive part, and a controller. Again, this is completely generic without knowing

anything about 𝑣1(𝑥) and 𝑣2(𝑥).

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ = 𝑆Λ𝑣0 exp
{︁
𝐻𝐴 log 𝑥 + 𝐻𝐵 log 𝑢

}︁
+ 𝑆𝑤𝑤

=
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣0
1 0
0 𝑣0

2

⎤⎦ exp

⎧⎨⎩
⎡⎣ 0 𝑎1

𝑎2 0

⎤⎦⎡⎣log 𝑥1

log 𝑥2

⎤⎦+
⎡⎣1 0
0 1

⎤⎦⎡⎣log 𝑢1

log 𝑢2

⎤⎦⎫⎬⎭+
⎡⎣ 0
−1

⎤⎦𝑤.

The choices for 𝐻𝐴
and 𝐻𝐵

follow from general rules discussed previously, and are

explained later in this example. This looks rather complicated, but appear much simpler

once we put the expression for the fluxes together:

𝑑

𝑑𝑡

⎡⎣𝑥1

𝑥2

⎤⎦ =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦⎡⎣𝑣0
1𝑥𝑎1

2 𝑢1

𝑣0
2𝑥𝑎2

1 𝑢2

⎤⎦+
⎡⎣ 0
−1

⎤⎦𝑤.

Whether a fixed point is stable only depends on the internal dynamics of the plant locally

around the fixed point. The stability is determined by whether the local dynamics matrix

𝐴cl(𝑥*) = Λ−1
𝑥* 𝑆Λ𝑣*𝐻cl

(of the log-linearized of fold-change variable) is Hurwitz. Since

we can split reaction orders into passive ones and controller ones 𝐻cl = 𝐻𝐴 + 𝐻𝐵𝐻𝐾
,
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we can ask what would happen without any control action, so that 𝐻cl = 𝐻𝐴
. Here, the

passive reaction orders satisfy

𝐻𝐴 =
⎡⎣ 0 𝑎1

𝑎2 0

⎤⎦, 𝑎1, 𝑎2 > 0.

Here 𝑎1 is reaction order of 𝑣1 in 𝑥2, and 𝑎2 is reaction order of 𝑣2 in 𝑥1. These are positive

because 𝑥2 is reactant for 𝑣1, while 𝑥1 is reactant for 𝑣2. A typical value for them is

𝑎1 = 𝑎2 = 1. That 𝑣1 does not depend on 𝑥1 and 𝑣2 does not depend on 𝑥2 is because these

two reactions are irreversible due to very negative reaction free energies (see previous

subsection). In [25], it was denoted 𝑎1 = 𝑎 some positive variable, and 𝑎2 = 1.

Now we can study how the system would behave without any control action. We first

follow our approach combining stoichiometry and birth-death structure to conveniently

split the local dynamics matrix into timescales, flux fractions, and reactions orders

by 𝐴cl(𝑥*) = Λ−1
𝑥* 𝑆Λ𝑣*𝐻cl = Λ𝜏 *Θ𝐻cl = Λ𝜏 *𝐻bd

. For the case with no regulation,

𝐻cl = 𝐻𝐴
, so

𝐻bd = Θ𝐻𝑎 =
⎡⎣ 1 −1
− 𝑞

1+𝑞
1

⎤⎦⎡⎣ 0 𝑎1

𝑎2 0

⎤⎦ =
⎡⎣−𝑎2 𝑎1

𝑎2 − 𝑞
1+𝑞

𝑎1

⎤⎦.

A necessary condition for stability by the Routh-Hurwitz criterion in this 2d case is that the

determinant of the dynamics matrix is positive. Since determinant pass through matrix

products, we calculate det Λ𝜏 * > 0, det Θ = 1
1+𝑞

> 0, so det 𝐴cl
has the same sign as det 𝐻cl

.

For no control, 𝐻cl = 𝐻𝐴
, has determinant −𝑎1𝑎2 < 0. So any fixed point is unstable for

all 𝜏 *, 𝑎1, 𝑎2 > 0. Actually we can go even further. Just adding a feedback control action

from 𝑥1 to 𝑣1, or just from 𝑥2 to 𝑣2, do not help with stability, because they do not change

the fact that det 𝐻𝐴 = −𝑎1𝑎2 < 0.

As an answer to the first question, regulations are needed because the passive dynamics of

autocatalysis is unstable. Not only is feedback regulation on the fluxes needed to have stable

steady states at all, we also know such feedback regulations has to modify the diagonals of

reaction order 𝐻cl
simultaneously, or even better, push one of the 𝑎𝑖 to negative.

The next question is, is there any sacrifice we have to make to stabilize the fluxes? More

generally, are there some hard limits on what regulations can do? Are there fundamental

tradeoffs that cannot be sidestepped no matter how delicately the enzymes are allosterically

regulated or methylated based on signaling?

This takes us to analyze what would happen if we add in controller feedback, so 𝐻𝐵𝐻𝐾

is no longer zero. There is not reason to disallow regulation of either of the fluxes, so

we consider 𝐻𝐵 = I2 the identity matrix, to allow allosteric feedback for both enzymes
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catalyzing 𝑣1 and 𝑣2. For feedback regulation, 𝑥1 and 𝑥2 are distinct based on their

position in the stoichiometry or the metabolic network topology. For autocatalysis, 𝑥2 is

the metabolite amplified and consumed for many other purposes, like ATP in glycolysis.

Therefore, feedback regulation from 𝑥2 is important to construct, for purposes beyond this

system, such as coordinating 𝑥2 usage in other systems. As a result, molecular mechanisms

to sense 𝑥2 are likely easier to obtain as well, such as by adapting 𝑥2-allostery domains of

other proteins. So based on this motivation from autocatalytic stoichiometry, we consider

𝑥2 regulates 𝑣1 and 𝑣2, which corresponds to nonzero 𝐻𝐾
12 and 𝐻𝐾

22 entries.

𝐻𝐾 =
⎡⎣0 ℎ𝑘

12

0 ℎ𝑘
22

⎤⎦.

The more general case of allowing all 𝐻𝐾
entries to be nonzero can of course be fruitfully

analyzed, but we avoid that here to keep within the domain of [25]. In [25], mechanistic

information about the enzymes catalyzing the two lumped reactions are used to directly

write down 𝑢1(𝑥2) = 1
1+𝑥2ℎ

2
and 𝑢2(𝑥2) = 1

1+𝑥2𝑔
2

, capturing that PFK and PK are allosterically

regulated by ATP, ADP and/or AMP so that increase in ATP cause decrease in activity. So

−ℎ corresponds to ℎ𝑘
12 in our generic formulation and −𝑔 corresponds to ℎ𝑘

22. While any

such mechanistic information always help formulating control of metabolic fluxes, when

such information is not available, as is almost always the case, we can generate hypothesis

to simplify our considerations based on stoichiometry as our discussion above.

With the feedback regulation we have

𝐻cl =
⎡⎣ 0 𝑎1 + ℎ𝑘

12

𝑎2 ℎ𝑘
22

⎤⎦.

As discussed previously, a necessary condition for stability is (𝑎1 + ℎ𝑘
12)𝑎2 < 0, which

requires 𝑎1 + ℎ𝑘
12 < 0. We can go further to obtain the necessary and sufficient condition

for stability using Routh-Hurwitz criterion, as is done in [25]. This results in 0 > ℎ𝑘
12 + 𝑎1 >

1+𝑞
𝑞

(︁
ℎ𝑘

22 −
𝜏*

2
𝜏*

1
𝑎2
)︁
, therefore a lower bound on 𝑎1 + ℎ𝑘

12. This relates to steady state error. The

steady state fluxes satisfy 𝑣*
1 = 𝑣*

2 = 𝑤*
just by constraints from stoichiometry. Therefore

the steady state concentrations satisfy 𝑤* = 𝑣0
1(𝑥*

2)𝑎1𝑢*
1 = 𝑣0

2(𝑥*
1)𝑎2𝑢*

2. We see how variation

in 𝑤*
will propagate to 𝑥*

1 and 𝑥*
2 depending on how the control actions vary at steady

state since 𝑢*
1 = 𝑢1(𝑥*) and 𝑢*

2 = 𝑢2(𝑥*). In particular, we can perform an infinitesimal

fold-change around the steady states, and we have 𝛿𝑤 = 𝑎1𝛿𝑥2 + 𝛿𝑢1 = 𝑎2𝛿𝑥1 + 𝛿𝑢2. Now

put in the controller gain, that 𝛿𝑢1 = ℎ𝑘
12𝛿𝑥2, and we have 𝛿𝑤 = (𝑎1 + ℎ𝑘

12)𝛿𝑥2. So the

steady state error from disturbance 𝑤 to ATP concentration 𝑥2 in terms of fold-change has

magnitude 𝑎1 + ℎ𝑘
12. This can be directly seen from the closed loop reaction orders, since
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this is exactly equal to 𝐻cl
12. So together, requiring the system to be stable forms a lower

bound on the steady state error that

⃒⃒⃒
𝛿𝑥2
𝛿𝑤

⃒⃒⃒
=
⃒⃒⃒
ℎ𝑘

12 + 𝑎1

⃒⃒⃒−1
≥
⃒⃒⃒

1+𝑞
𝑞

(︁
𝜏*

2
𝜏*

1
𝑎2 − ℎ𝑘

22

)︁⃒⃒⃒−1
. So from the

controller’s perspective, steady state error can be decreased if we increase the controller

gain of 𝑢2, i.e. make ℎ𝑘
22 more negative. We see that we may also desire 𝜏 *

2 , the timescale of

ATP turnover, to be much larger (slower) than 𝜏 *
1 , that of the intermediate. Since the steady

state fluxes are determined by external demand 𝑤*
therefore not adjustable, this means

increasing 𝑥*
2 the ATP pool size so as to increase 𝜏 *

2 . But this might be not feasible to do due

to other limitations such as the energy consumption of maintaining a larger pool. Lastly, it

is also desirable that 𝑞 is smaller, which means finding nutrient sources so that less ATP

molecules are consumed when producing the intermediates. We see that there are multiple

ways to mitigate this lower bound on steady state error, and they corresponds to making

changes at different physical components of the system, which corresponds to different

layers in metabolism architecture and different timescales. If we restrict our regulation to

the top layer for protein production and degradation that can regulate the middle layer,

then only changing 𝜏 *
is feasible. If we allow modifying the middle layer so that controller

gain is modifiable, then ℎ𝑘
22 can be varied. If we allow mutations and enzyme evolution

which happen on a much slower timescale so that totally different reactions can be used,

then 𝑞 and 𝑎2 can be modified.

This result that stability tradeoffs with steady state error is the same as the one obtained in

[25], but in terms of different quantities. However, we did not use any knowledge of 𝑣(𝑥),
i.e. how the fluxes are regulated. One confirmation of this is that we have never stated

what the steady state concentrations 𝑥*
1 and 𝑥*

2 would be, because finding them would

require detailed knowledge of 𝑣(𝑥), which we assumed we do not have. Instead, we are

able to relate 𝑥*
with 𝑢*

, 𝑤*
and 𝑣0

through generic FEC formulations, and as we have

shown the hard limits on steady state error can be obtained just from this. △

Comparison of responses between different metabolic systems

Metabolic systems can be described in terms of both its response to external exchange

fluxes, and the stoichiometry and regulatory structure it is composed of. In other words, a

metabolic system can be described mechanistically by specifying the internal structures,

or by specifying responses to external fluxes in a phenotypic fashion. Relating internal

structures and system response is one universal feature of control system theory. The

internal structure description is called a state space specification in control theory, and

the phenotypic description is called an input output specification. For linear systems, the

relation between state space and input-output descriptions is thoroughly studied (see



203

Chapter 4 in [41]). Since such results relate internal structures such as stoichiometry, passive

reaction orders, and controller placements, with external responses such as responses to

control actions and disturbances, this enables us to compare different metabolic systems in

a rigorous fashion. Existing tools from control theory also allow different metrics to be used

when comparison systems. For example, we can ask about the difference in metabolite

concentrations’ local response to disturbances between a metabolic network with lumped

stoichiometry and one with detailed stoichiometry. The system response is captured as a

linear operator. If we want to compare average responses, then theℋ2 norm on this space

of linear operators can be used. If we want to compare worst case responses, then ℋ∞

norm can be used. If we want to compare how hard are the systems to be stabilized, then

the gap metric can be used. See [39] for an introduction on relevant norms, and [102] and

Chapter 17 of [121] for relevant results. Beyond comparisons, we can capture uncertainty in

model descriptions in robust control, so that results can be obtained for classes of metabolic

systems, rather than exact specifications. This can serve as one step towards results on

necessity.

Conservation of robustness as a hard limit on metabolic system response

Once FEC formulates regulation of metabolism as a control system, theoretical tools

can be used to investigate properties for the set of all possible solutions. Similar to the

FBA case focused on steady state fluxes, the set of all possible solutions is often severely

constrained by structures in metabolism and can be fruitfully analyzed to gain general

insights into metabolic regulation. More importantly, such hard limits or laws on system

behavior constitute results on necessity rather than sufficiency (see Section 4.1), so that

conclusions relating mechanisms and phenotypes can be made independent of details.

The control theoretical tools focusing on properties of all possible controller is usually

termed fundamental limitations or limits of performance. They can be obtained based

on analytical methods [99], or by numerical algorithms [21]. One class of results on

fundamental limitation of particular importance is the conservation of robustness, since

it illustrates a nearly universal tradeoff between accuracy and robustness. This law on

conservation of robustness is also called Bode’s integral formula. It was originally derived

for single-input-single-output systems, and now has generalizations into multiple-input-

multiple-output linear and certain nonlinear systems [99]. In [25], Bode’s integral formula

is used to derive a severe tradeoff between steady state error and fragility to oscillations

that holds for arbitrary regulations to explain how glycolytic oscillations is a necessary side

effect of adapting to changing supply and demand. This tradeoff is made worse by the

autocatalytic stoichiometry of glycolysis in regeneration of ATP, so more severe oscillations
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happen due to adapting to supply and demand. Bode’s integral formula is also used

in [58] to showcase a hard design tradeoff between speed, accuracy, and robustness in

engineering synthetic gene regulatory circuits, especially the antithetic integral controller

conceptualized to achieve robust perfect adaptation and experimentally implemented in

bacterial and mammalian cells [10, 22]. Bode’s integral formula is also considered one

of the core phenomenon in robust control, and simple tutorials have been developed to

illustrate it through stick balancing [70], as well as time-domain explanations [69].

Sparsity in metabolic regulation

FEC has enabled a systematic formulation of problems in metabolism regulation. By

capturing the structures in metabolism, FEC also requires advances in control theoretical

tools to handle these structures in an integrated fashion. Of particular importance is the

sparsity and locality in how the controller, or regulation of fluxes, relate to the states, or

metabolite concentrations. Other constraints that we would also like to include are delay

and noise in communication, and uncertainty and error in models and from data. However,

systems with pre-specified network sparsity and controllers with localized structure are

hard problems that were previously thought intractable. A recent breakthrough called

system level synthesis (SLS) [8] made handling these constraints computationally feasible

at scale. SLS provides a formulation where problems with sparse controllers are convex,

therefore solvable at scale [111, 112]. Furthermore, the localization property of the system

passes down to the optimization problem itself, such that a large problem can be broken

into small pieces and solved in a distributed fashion. The SLS formulation has already been

leveraged for problems in biology and neuroscience [71, 96, 105]. The SLS parametrization

also gives rise to distributed and localized MPC (DLMPC) [4–6].

4.5 Explore behaviors of interest via optimization

As a constraint-based approach, FEC has a powerful application to study the space of all

feasible behaviors by formulating dynamic regulation of metabolism as controller design

in a system. As a systems theory, FEC can utilize control theory tools to derive hard limits

and laws based on structures of metabolic systems that hold for all possible controllers.

However, beyond the general results that are often a bit abstract, we are also interested in

exploring specific biological behaviors under particular scenarios. This would require us

to explore specific points in the space of all feasible behaviors. Hence we utilize the tool of

optimization to pick out particular points of interest.
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Optimization of FBA problems. To pick out points or behaviors of interest by optimization

under a particular scenario constitutes specifying an objective function for what the behavior

should do, and a set of constraints that capture the scenario. This is well-developed for

FBA, so we use it as an illustration. A general formulation of an optimization problem for

FBA, which focuses on steady state internal fluxes 𝑣, is the following:

min
𝑣

𝐿(𝑣)

s.t. 𝑆𝑣 + 𝑆𝑤𝑤 = 0,

𝑣 ∈ 𝒱ss.

(4.40)

Here 𝐿 is the objective function, often called loss or cost so it is minimized. Equivalently,

the optimization can be formulated in terms of gain or reward, so it is maximized. The

variable to be optimized over is the steady state flux 𝑣 ∈ R𝑚
. The first constraint that

𝑆𝑣 + 𝑆𝑤𝑤 = 0 is simply the steady state equation relating the internal and external fluxes

(Eqn (4.14)). The second constraint is a set-constraint on 𝑣, which may cover irreversibility,

maximum and minimum flux magnitudes, or other more sophisticated constraints such as

from thermodynamics or growth laws. The external disturbance flux 𝑤 is at steady state,

and is thus considered a constant coefficient to the problem.

In practice, to make the optimization problem Eqn (4.40) feasible to solve computationally

at scale, linear constraints are used to define 𝒱𝑠𝑠 and linear or quadratic objective functions

𝐿(𝑣) are used. Because the steady state constraint is linear in 𝑣, this keeps the set of

feasible points from constraints linear. Then depending on whether the objective is linear

or quadratic, the optimization problem is a linear program or a quadratic program. Both

can be solved at scale for systems with tens of thousands of fluxes.

We illustrate a few common objectives used in FBA [60, 84, 85]. The most typical one is

biomass production. This is often used to relate FBA predictions with growth rates of

microbial populations in culture. To capture biomass production, an artificial reaction

with stoichiometry 𝑠biomass ∈ R𝑛
and flux 𝑣biomass is added to the stoichiometry matrix 𝑆

and internal fluxes 𝑣. The biomass reaction stoichiometry corresponds to a vector with

positive entry for pretty much every metabolite, with 𝑠biomass,𝑖 as negative of the fractional

weight of the 𝑖th metabolite in a gram of dry weight of the cell. Negative means this

biomass production reaction proceeds to consume these metabolites. Then an objective

𝐿(𝑣) = −𝑐⊺𝑣 = −𝑣biomass can be used, with 𝑐 ∈ R𝑚
such that only the entry corresponding

to biomass production flux 𝑣biomass is 1, and all other entries zero. The negative sign is

because we want to maximize biomass production while the problem is formulated as

minimization. Note that the biomass stoichiometry vector is well-defined as a constant
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vector for steady state growth of a microbial population, while exponential growth may

not be at steady state [64].

Estimates on growth under different nutrient scenarios can then be defined through

constraints. For example, oxygen uptake can be constrained to be below a certain maximum

rate. If the maximum rate is set to be zero, then we have completely anaerobic growth.

Nutrients uptake rate can also be bounded by creating an upper bound on the uptake

flux. This can allow, for example, the study of varying maximum glucose uptake rate on

oxygen consumption, or the other way around on varying maximum oxygen consumption

over maximum glucose uptake rate. Other constraints, when considered relevant, can be

incorporated, such as ATP maintenance cost. This can be considered as a minimum flux

on the ATP regeneration reaction. For example, for simple models of E. coli metabolism, a

minimum ATP maintenance flux of 8.39 mmol g−1 h−1
is often used [60, 84].

Another class of common objectives are maximizing the flux of a single reaction, often

the production of a metabolite, such as maximizing ATP regeneration. This is used to

estimate the capacity for cells to perform certain reactions. For example, by maximizing

the flux corresponding to ATP regeneration ATP + H
2
O −−→ ADP + H

+

+ Pi, we obtain

the potential, or maximum capability, of a cell to regenerate energy in this scenario. Other

common choices of single reactions to maximize for estimation of capacity are redox

balance restoration by maximizing NADH to NAD+ conversion, and target metabolites of

interest when engineering a microbe for fermentation. This is implemented in 𝐿(𝑣) in a

similar way to biomass, with 𝐿(𝑣) = −𝑐⊺𝑣, and 𝑐𝑗 is 1 only for the flux to maximize, and

zero for all other fluxes.

Lastly, the sum of all fluxes’ magnitude is often used as a generic energy cost of the cell.

This can be written as a sum of absolute values

∑︀
𝑗|𝑣𝑗| = ‖𝑣‖1, the ℓ1 norm, or a sum of

squared values

∑︀
𝑗 𝑣2

𝑗 = ‖𝑣‖2, the Euclidean norm. Minimizing 𝐿(𝑣) = −‖𝑣‖ for some

norm then roughly correspond to minimizing the energy cost of the cell, since any net flux

with relevant speed needs to be driven and therefore costs energy. As derivatives to this,

finding efficient production of a metabolite can be formulated as maximizing the target

flux divided by the energy flux, of the form 𝐿(𝑣) = − 𝑣𝑗

‖𝑣‖ .

Optimization of FEC problems. For optimization of dynamic metabolic regulation

problems formulated by FEC, the problem is now dynamic instead of static. Static

problems have natural spaces for the variable to be optimized over. For example, the

variables to be solved in FBA are steady state fluxes that can be nicely formulated as a vector

in R𝑛
. For dynamic problems such as FEC, there is not a definitive space that parameterizes

all the possible control actions 𝑢. The key issue is whether we consider the control actions
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𝑢 as the central object, or the controller that generates the control actions as the central

object. In terms of the optimization problem formulation, it corresponds to whether the

cost function is central, or the dynamic constraints such as stability is central.

If we consider the control actions 𝑢 as central, then the space for the variable to be solved

is the space of dynamic trajectories of the control variable 𝑢 that regulate flux exponents.

Naturally, they are functions mapping the time horizon [0, 𝑇 ], where 𝑇 can be infinite, to

control actions in R𝑛𝑢
. To make them computable, we often represent these trajectories

at time steps with step size Δ𝑡, and 𝑁Δ𝑡 = 𝑇 with 𝑁 the number of steps. So trajectories

𝑢(0 : 𝑁) live in space R𝑛𝑣×𝑁
. The size of the optimization problem is therefore much

larger. With an objective function 𝐿(𝑥(0 : 𝑇 ), 𝑢(0 : 𝑇 )) specified, this becomes an optimal

control problem by defining the value function 𝑉 (𝑥, 𝑡) = min𝑢(0:𝑡) 𝐿(𝑥(0 : 𝑡), 𝑢(0 : 𝑡)). A

formulation that solves this with necessary and sufficient solutions is the Hamilton-Jacobi-

Bellman (HJB) equations. Such problems are hard to solve for large problems since HJB

equation is a partial differential equation. The result is a control action 𝑢 that is specified in

terms of the value function 𝑉 (𝑥, 𝑡). The advantage of this 𝑢- or cost-focused optimal control

approach is that the plant dynamics of 𝑥 considered can be nonlinear. The disadvantage is

that the closed loop dynamics, i.e. dynamics after the controller is incorporated, is not

guaranteed to be stable. Stability guarantees are analyzed after the controller is solved, or

analyzed for particular classes of problems such as linear quadratic regulators (LQR). Even

worse, because the controller is virtualized away as an algorithm that output control action

𝑢 based on the value function 𝑉 (𝑥, 𝑡), any structural constraints on the controller, such as

sparsity, localization and delays, cannot be incorporated.

The other approach that take the controller as the central object resolves these issues by

explicitly representing the controller map 𝐾 from 𝑥 trajectories to 𝑢 trajectories. As a

result, the variable to be optimized over is no longer trajectories of control action 𝑢, but

the controller maps 𝐾. Therefore, a mathematical parameterization of the space of all

controller maps is needed. In particular, the controller is always desired to be stabilizing,

i.e. the closed loop is stable. The parameterization of the space of stabilizing controllers is a

very hard problem for general nonlinear plant dynamics, therefore this approach is mostly

developed for linear systems. While classical methods such as Youla parameterization does

express the space of stabilizing controllers for linear systems, incorporating constraints

such as sparsity, localization and delay is hard in these cases. Namely, the resulting

optimization problem for controller design is highly nonconvex. A recent advance to

resolve these problems, system level synthesis (SLS), parameterizes stabilized closed loop

system response maps from 𝑤 to 𝑥 and from 𝑥 to 𝑢 for a given plant, and backs out a
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controller 𝐾 from these system response maps. This method makes the design of sparse

and localized controllers with delays fully convex and therefore computable at scale.

While SLS makes controller design with structural constraints solvable at scale, it is still

largely restricted to linear problems. FEC problems are fully nonlinear, therefore requiring

nonlinearity to be respected in optimal control formulation. It is true that the nonlinearity

in FEC problems are strongly structured, so that flux 𝑣 in terms of 𝑥 and 𝑢 is a monomial

𝑣 = 𝑣0 ∘ 𝑥𝐻𝐴 ∘ 𝑢𝐻𝐵
like in geometric programs, while the stoichiometry-flux 𝑆𝑣 is like

in linear programs. But this combination of structures is still new, with no existing

optimization frameworks that handle control problems with such structures directly. It

is a fascinating direction of research to find numerical algorithms that handle geometric

programs on top of linear programs in a dynamic control setting. So without a specialized

algorithm, we resort to general optimization frameworks that handles both stability and

sparsity constraints like in controller design while allowing nonlinearity to be respected

like in optimal control.

One candidate that performs this is model predictive control (MPC) [73]. Model predictive

control is an optimal control method, but the control action is solved and applied at each

single step. At every step, based on an approximation (e.g. linearization) of the full model,

an optimal control action is computed for a horizon into the future. Then only the first step

of the predicted control action is applied. At the next step, a new approximate model is

used to compute a new control action, then repeat. MPC has the advantage of optimal

control that it respects the nonlinearity of the plant. It also has the advantages of controller

design that controller constraints from every time step, where a simpler problem (e.g.

linear) is solved so that stability can be guaranteed and structural constraints such as

sparsity and delay can be applied, can be propagated to the overall control trajectory. For

example, recent work on combining MPC and SLS allows MPC computations in a localized

fashion [6].

Hence we formulate FEC problems as optimal control problems, and try to solve them via

MPC methods. The optimal control problem of FEC in continuous time is the following:

min
𝑢(0 : +∞)

∫︁ +∞

0
ℓ(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

s.t. 𝑑

𝑑𝑡
𝑥(𝑡) = 𝑆𝑣0 ∘ 𝑥(𝑡)𝐻𝐴 ∘ 𝑢(𝑡)𝐻𝐵 + 𝑆𝑤𝑤(𝑡), 𝑡 > 0,

𝑥(𝑡) ∈ X, 𝑡 > 0,

𝑢(𝑡) ∈ U, 𝑡 > 0.

(4.41)

Here the time horizon is considered infinite, and the objective function is the integral of a
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per-time loss over this infinite time horizon. The variable to be minimized over is therefore

the control action trajectory 𝑢(0 : +∞). The first constraint is the dynamic equation from

FEC formulation. The second constraint is on metabolite concentrations 𝑥, that it needs to

be in the set X ⊂ R𝑛
>0 for all time. This can include lower bounds on ATP concentration

for example. The third constraint is on control actions 𝑢, that it needs to be in U ⊂ R𝑛𝑢
>0 all

the time. This can capture actuator saturations coming from that binding regulation has

reaction orders bounded in polyhedral sets, which translates into constraints on controller

gains.

Now MPC formulation to solve this problem considers a local problem at each time

step. At time 𝑡, the system has evolved to state 𝑥(𝑡) and applied controlled action 𝑢(𝑡)
and disturbance 𝑤(𝑡). Now to find the next control action by MPC, we study the local

behavior of the system log-linearized around this point (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)). We denote the

log-linearized variables 𝛿𝑥, 𝛿𝑢, 𝛿𝑤. Based on the log-linearized model, we predict what

would happen into a horizon into the future, and based on this horizon we solve for the

desired control action at the next time step. Denote the time horizon predicted into the

future based on the log-linearized model as 𝑇 , and the step size as Δ𝑡, then the number

of time steps in the predicted horizon is 𝑁 with 𝑁Δ𝑡 = 𝑇 . An optimal control problem

for this time horizon based on log-linearized models around (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) is then the

following:

min
𝛿𝑢(0 : 𝑁)

ℓ𝑓 (𝑥pred(𝑁), 𝑢pred(𝑁) +
𝑁∑︁

𝑘=1
ℓ(𝑥pred(𝑘), 𝑢pred(𝑘))

s.t. Λ𝑥(𝑡)
𝛿𝑥(𝑘 + 1)− 𝛿𝑥(𝑘)

Δ𝑡
= 𝑓(𝑡) + 𝑆Λ𝑣(𝑡)

(︁
𝐻𝐴𝛿𝑥 + 𝐻𝐵𝛿𝑢

)︁
, 𝑘 = 0, . . . , 𝑁 − 1,

𝑥pred(𝑘) ∈ X, 𝑘 = 0, . . . , 𝑁 − 1,

𝑢pred(𝑘) ∈ U, 𝑘 = 0, . . . , 𝑁 − 1.

(4.42)

Here ℓ𝑓 is cost of the last point, which may be varied to help with properties such as stability.

𝑥pred
and 𝑢pred

are predicted state and control trajectories based on the log-linearized

variables, defined by 𝑥pred
𝑖 (𝑘) := 𝑥𝑖(𝑡)𝛿𝑥𝑖(𝑘) for 𝑖 = 1, . . . , 𝑛 and 𝑢pred

𝑖 (𝑘) := 𝑢𝑖(𝑡)𝛿𝑢𝑖(𝑘) for

𝑖 = 1, . . . , 𝑛𝑢. Since these predicted variables depend on the predicted control actions used,

they are actually shorthand notation for more explicit expressions: 𝑥pred
𝑖 (𝑘) is shorthand

for 𝑥pred
𝑖 (𝑘; 𝛿𝑢(0 : 𝑁), 𝑡), since it depends on the time 𝑡 we log-linearized around and the

local control 𝛿𝑢(0 : 𝑁) we choose. Similarly, 𝛿𝑥(𝑘) and 𝑢pred
𝑖 (𝑘) are also shorthand for

𝛿𝑥(𝑘; 𝛿𝑢(0 : 𝑁), 𝑡) and 𝑢pred
𝑖 (𝑘; 𝛿𝑢(0 : 𝑁), 𝑡) respectively. The initial state to begin with in

this local problem is 𝛿𝑥(0) = 0, which means 𝑥pred(0) = 𝑥(𝑡). The first constraint is just the
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log-linearized dynamics at the point (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)), where 𝑣(𝑡) = 𝑣0 ∘ 𝑥(𝑡)𝐻𝐴 ∘ 𝑢(𝑡)𝐻𝐵
,

and 𝑓(𝑡) = 𝑆𝑣(𝑡) + 𝑆𝑤𝑤(𝑡). Note that in the local problem in Eqn (4.42), there is no

appearance of local disturbance 𝛿𝑤 because the disturbance cannot be predicted.

We denote the optimal solution to the problem in Eqn (4.42) by 𝛿𝑢𝑡,*(0 : 𝑁), to highlight

that this is from a local problem at time 𝑡. Then the controller action we apply at time 𝑡

is 𝑢(𝑡) = 𝑢 ∘ 𝛿𝑢𝑡,*(0). With this control action, the full system, the first constraint in Eqn

(4.41), is evolved one step forward to 𝑡 + Δ𝑡. Then the local problem log-linearized at 𝑡 + Δ𝑡

is considered to find the control action for this time step.

This completes our discussion of how to use optimal control solved by MPC to explore

interesting metabolism dynamics formulated as FEC problems. Because of the nonlinearity

of FEC problems, the current MPC computation is rather time-consuming because log-

linearization needs to be done at every time step. There are several ways to ameliorate

this. One way is to use explicit MPC [4], where the solution of a local MPC problem can

be solved as an explicit solution, so that iteration at each time step is just plugging in a

formula. This can significantly speed up the computation, but explicit solutions so far only

exist for limited types of local problems. Another way is to combine MPC with SLS, so

that sparsity and locality of metabolic regulation can be utilized. This is indeed a very

promising future, since distributed and localized computation can provide computational

speed up of several orders [5, 6]. Lastly, the structure in FEC problems, namely a geometric

program on top of a linear program, may be fruitfully exploited to avoid linearization in

the first place. In particular, if the FEC problem without state and control action constraints

can be directly solved via optimization, then this can be readily generalized to include

constraints via multi-parameteric programming, similar to how MPC generalizes solutions

of optimal control in linear systems without constraints to ones with constraints.

4.6 Case studies of computational exploration

Glycolytic oscillations. Simple glycolysis, or generic lumped models of autocatalysis,

has been our main example used in illustrating the constraint-based approaches and the

FEC formulation. It also has an interested dynamic phenomenon, glycolytic oscillation,

that is well-studied from a control theory perspective [25]. It is understood that the

system oscillates due to radical control actions, implemented by allosteric regulation of

enzymes, that adapts to changing supply and demands. This minimization of steady

state error causes oscillation when hit by large disturbance, made even more severe by the

autocatalysis stoichiometry that is intrinsically unstable.
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FEC promises that just based on the stoichiometry of this system, we have a parameterization

of all possible regulations the cell can do on glycolysis. Then by simply asking for controllers

that aggressively attenuates steady state error, we should be able to recover oscillatory

response, with no information other than the stoichiometry.

In particular, we consider the following local problem from log-linearization of the FEC

formulation of simple glycolysis at every time step.

min
𝛿𝑢(0 : 𝑁)

𝑁∑︁
𝑘=1

(𝑥pred(𝑘)− 𝑥0)⊺𝑄(𝑥pred(𝑘)− 𝑥0) + 𝛿𝑢(𝑘)⊺𝑅𝛿𝑢(𝑘)

s.t. Λ𝑥(𝑡)
𝛿𝑥(𝑘 + 1)− 𝛿𝑥(𝑘)

Δ𝑡
= 𝑓(𝑡) + 𝑆Λ𝑣(𝑡)

(︁
𝐻𝐴𝛿𝑥 + 𝐻𝐵𝛿𝑢

)︁
, 𝑘 = 0, . . . , 𝑁 − 1,

𝑥pred
2 (𝑘) ≥ 0.6 𝑘 = 0, . . . , 𝑁 − 1.

(4.43)

In the objective we used a typical quadratic cost on the states and control actions. The

cost on states means we want to regulate the fluxes so that the metabolite concentrations

are close to the reference concentration 𝑥0
. The cost on control actions means we want to

minimize the amount of energy we spend in moving the reaction orders and adjusting the

fluxes. Here 𝑥1 is concentration of the intermediate, and 𝑥2 is concentration of ATP. The

relevant matrices are

𝑆 =
⎡⎣ 1 −1
−𝑞 1 + 𝑞

⎤⎦, 𝐻𝐴 =
⎡⎣0 1
1 0

⎤⎦, 𝐻𝐵 = I2, 𝑆𝑤 =
⎡⎣ 0
−1

⎤⎦. (4.44)

We obtain the simulation result in Figure 4.10. First we see that the MPC solutions of

FEC, with only information on the stoichiometry, can capture the hallmark oscillatory

behavior in glycolysis. This is remarkable in the sense that we have supplied no mechanistic

information about the system other than the stoichiometry matrix. In other words,

since glycolytic oscillation is fundamentally due to the intrinsically unstable metabolism

dynamics, FEC can indeed successfully split intrinsic dynamics of the metabolism from

the enzymatic regulations. Next, we compare how the oscillatory behavior changes with

varying parameters. In the mechanistic model plotted on the left from [25], decreasing

feedback gain 𝑔 of ATP on 𝑣2 or 𝑣PK that consumes intermediate to make ATP causes an

increase in oscillations. Decreasing gain should correspond to smaller variations in control

action when metabolites varies, and hence should correspond to increasing controller cost.

Since 𝑢2 regulates 𝑣2, decreasing 𝑔 should have similar effect as increasing 𝑅22. Indeed, we

see that in Figure 4.10, that increasing 𝑅22 cause larger oscillations in trajectories solved

by MPC. Similarly, increasing feedback gain ℎ on 𝑣1 or 𝑣PFK that consumes ATP to make
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Figure 4.10 Comparison of simulations of the mechanistic model proposed in [25] for glycolytic oscillation

(left), the regulatory trajectories from flux exponent control with solved by MPC (right), and the prediction

of steady state fluxes by FBA (orange line). 𝑥ATP is concentration of ATP, also denoted 𝑥2 in the text. 𝑣PK is

flux for the reaction consuming intermediate and producing ATP, also denoted 𝑣2 in the text. The parameter

values used for the mechanistic model, in the notations of [25], are 𝑎 = 1, 𝑞 = 1, 𝑘 = 1.1, 𝑔 = 0.3 and ℎ take

values 2.5, 2.8, 3.1 corresponding to trajectories from dark to light blue, with increasing oscillation magnitude.

The disturbance 𝑤 is 1 from 𝑡 = 0 to 𝑡 = 10, and jumps to 1.1 from 𝑡 = 10 onward. The parameters used

for the flux exponent control are 𝑣0
1 = 2, 𝑣0

2 = 2.2 to match with the mechanistic model steady state fluxes,

Δ𝑡 = 0.03, 𝑇 = 0.6 or 𝑁 = 20, initial states are 𝑥1(0) = 1
1.1 and 𝑥2(0) = 1, and 𝑢1(0) = 𝑢2(0) = −0.695 to

match the steady state values. When 𝑤 is 1, the reference state values 𝑥0
are the same as the initial values.

When 𝑤 jumpts to 1.1, the reference state values are changed to 𝑥0
1 = 0.93 and 𝑥0

2 = 0.98 to match with change

in steady state values of the mechanistic model. The cost parameters are 𝑄 = diag(0.3, 0.08) and 𝑅 take

values diag(0.4, 0.05), diag(0.4, 0.25) and diag(0.4, 0.45) corresponding to the three trajectories from dark to

light blue, i.e. increasing oscillation magnitude. Other parameters such as stoichiometry are given in the text.

intermediate causes increase in oscillation. However, when we decrease 𝑅11 in FEC, which

should relate to increasing ℎ, we observe a decrease in oscillation magnitude instead of

an increase. We posit that this is because ℎ specifically represents how 𝑢1 responds to 𝑥2,

which corresponds to a sparsity constraint on the controller. But this sparsity constraint is

not implemented in our current formulation, and therefore 𝑢1 and 𝑢2 in the MPC solution

may also respond to 𝑥1, causing the difference in the effect of limiting controller gain

between the mechanistic model and MPC solutions. To incorporate the sparsity constraint,

either output-feedback should be used with 𝑥2 considered as output, or SLS needs to be

incorporated into the MPC formulation to restrict controller sparsity.

This glycolytic oscillations example shows that the binding-catalysis split that FEC is based

on can capture the split between intrinsic, or passive, dynamics of metabolic fluxes, and the
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active regulations of binding on enzyme activities. This enables us to describe important

dynamic phenomena of metabolic systems using only very sparse structural information,

such as the stoichiometry matrix.

4.7 Summary and future directions

To study principles and rules governing ecological systems and communities of microbial

species, we need to quantitatively understand metabolism at the core of interactions

within and between cells and populations. Traditional mechanistic modelling methods

require extensive and detailed data on all the mechanisms relevant for a metabolic

phenomenon of interest. While extensive mechanistic data are available for model

organisms, well-studied pathways, and common metabolites, data is highly concentrated

in those cases and becomes extremely sparse outside of the well-studied realms. To resolve

this sparse data issue, constraint-based modeling can be used, where we take the known

mechanisms as constraints, and let unknown mechanisms vary freely. This way, we can

either study the set of all possible behaviors constrained by the known mechanisms, or

study particular behaviors by searching points of interest through optimization. Constraint-

based approaches are fundamentally rooted on the layered architecture of metabolism and

beyond, that structures of each layer are well-separated in time-scales so that slow-varying

parts, also often easier to characterize experimentally, can be taken as constraints, while

fast-varying parts are often unknown and allowed to vary. This is especially successful for

flux control based on stoichiometry-flux split in the bottom layer of metabolism, exemplified

by flux balance analysis (FBA) that focuses on steady states. However, while flux control is

well-suited to study steady state metabolism, it does not capture the intrinsic dynamics

of metabolism. As a result, flux control is unable to study dynamic phenomenon such

as stability of steady state, oscillations, and fragility to large disturbances or shocks. To

split the intrinsic dynamics of metabolism with the regulations of fluxes, we proposed

the binding-catalysis split at the middle layer of metabolism architecture, that fluxes

are catalyzed by enzymes, which are in turn regulated by binding reactions and state

transformations. Such regulations are characterized by their adjustment of reaction orders

of the fluxes constrained in polyhedral sets (see Chapter 3). This formulates the rule of

flux exponent control (FEC), that cells regulate fluxes’ exponents. FEC enabled a natural

split between intrinsic dynamics of metabolic fluxes and their regulation by binding of

catalyzing enzymes. As a constraint-based approach, FEC improves over flux control by

adding in an extra biological constraint on metabolism, that fluxes are regulated through

exponents. This makes FEC strictly more powerful than flux control formulations since it
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can incorporate more constraints. In fact, FEC can be used for steady state analysis just

like FBA, with now can incorporate regulation of fluxes by enzymatic activity. The unique

advantage of FEC to study dynamics of metabolism is demonstrated through the study of

glycolytic oscillations. We show that by supplying just the autocatalytic stoichiometry of

glycolysis, FEC can capture the intrinsically unstable dynamics of the fluxes which results

in the tendency to oscillate. More generally, FEC combined with control theory can serve as

a systems theory for metabolism. Metabolic systems defined by FEC are characterized by

stoichiometry, fluxes’ passive reaction orders, and how flux reaction orders are controlled.

In particular, control theory can be used to analyze hard limits and fundamental tradeoffs

that hold for all possible controllers on a given metabolic system, regardless of details.

This is one example of how hard limits and laws on top of systems theory can be used to

derive necessity relationships between mechanisms and phenotypes.

Beyond metabolism in a single cell, FEC has great potential to study metabolic interactions

across scales in microbial communities and ecosystems. As an example, FBA is successfully

used in [66] to capture the hysteresis in the population interaction between two bacterial

species, connecting intracellular metabolism with inter-population metabolite exchanges.

Given experiments in [66] were done on days timescale to guarantee metabolism reached

steady state, FEC should be able to capture the hystersis phenomenon and further behavior

on faster time scales, including whether the hysteresis states are stable from internal

metabolism, and how the community would respond to sudden shocks in nutrients or

oxygen.

More generally, FEC opens the door to quantitatively reasoning about metabolic behaviors

in a dynamic fashion. This may have far-reaching implications on what we can target

by drugs or engineer in synthetic organisms. For example, if instead of an antibiotic

targeting a protein, we design antibiotics targeting the regulatory architecture of microbes.

Then since the architecture is much harder to evolve and may not be found via the

greedy small steps that evolution often takes, such architecture-targeted antibiotics should

encounter much less antimicrobial resistance. As another example, if instead of inserting

a gene to make a microbe more fit in an static environment, we engineer a regulatory

architecture in the microbe to become more fit in responses to dynamic perturbations in

the environment. Then this microbe could gain a niche in the time domain, and therefore

may persistently survive in an environment without constantly providing the microbe

with growth advantage.

As a conclusion, FEC characterizes a structural split between intrinsic dynamics of

metabolism and flux regulations. This enables both a constraint-based approach to model



215

metabolism dynamics, and a systems theory to study hard limits and laws. There is much

more to be studied both on the FEC formulation itself, and on its application to wide ranges

of metabolic problems across scales.
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Chapter 5

Dynamics and control of production and
degradation via reaction orders

Biomolecular systems are characterized by the fundamental structure that catalysis deter-

mines the direction of change, and catalysis rates are regulated by binding reactions. In

turn, the full regulatory profile of binding reactions can be characterized in terms of reaction

orders bounded in a polyhedral set. Therefore, reaction orders act as a bridge between

regimes of bioregulation at the binding reaction timescale and dynamics of production and

degradation at the catalysis timescale. Given that reaction orders are accessible descriptions

of bioregulation, we want to analyze and design system properties of interest at the catalysis

timescale via reaction orders. While reaction orders from binding networks are studied

in Chapter 3, and several steady-state and local properties such as hypersensitivity, local

stability, and robust perfect adaptation are discussed in Chapter 2 and [117], we focus on

regional and global dynamic properties such as stability, multistability, and oscillations in

this chapter.

Biomolecular systems are nonlinear in general, therefore require tools of nonlinear dynam-

ical and control system theories. Popular approaches tackle nonlinear dynamical systems

with a linear system lens, such as approximating nonlinear systems via (possibly high

dimensional) linear approximations (typical linear stability analysis, Koopman operators),

or bounding complicated general behaviors via linear systems (e.g. differential dissipa-

tivity [45], contraction analysis, integral quadratic constraints). Reaction order polyhedra

promotes an approach for the class of biomolecular dynamical systems that is distinct

from the typical linear view. One structure highlighted by reaction order polyhedra is that

the full behavior can be considered as convex combinations of the vertices. Each vertex
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Figure 5.1 Comparison of the typical approach in treating nonlinear systems via linear systems as the basis

of analysis, and the approach promoted by reaction orders to treat biomolecular systems with simple birth

death systems as the basis of analysis.

corresponds to catalysis rates that are in monomial form. An implication of this is that,

instead of bounding complicated general behaviors via linear systems, it could be more

natural to do so via monomial systems. Indeed, reaction order polyhedra, together with

other structures of biomolecular systems, suggest another class of dynamical systems,

called simple birth death systems, with similar accessible analysis as linear systems, that

can play the role of basis of analysis for a class of nonlinear systems. See Figure 5.1 for a

comparison. We develop the formulation of biomolecular system dynamics and simple

birth death systems in Section 5.1.

With the goal of tackling general biomolecular system dynamics via simple birth death

systems, we need tools that can take a property of the simple birth death systems,

corresponding to vertices of reaction order polyhedra that are valid approximations

in certain regions of state space, and extend it to cover the general system dynamics.

Motivated by the work on differential dissipativity and dominance analysis [45] and

network dissipative systems [11], we take the approach of characterizing dissipative

properties of component systems in terms of storage functions (Lyapunov functions for

input-output behavior), and use component storage functions to cover the general systems

formed as a network of component systems. In particular, we design a class of entropy-like

storage functions and corresponding dissipative framework to tackle the structures of

biomolecular systems, namely that the variables are positive and reaction orders dictate

dissipative properties. We review the background on storage functions and dissipativity

following [77] and [113], with slight generalization to explicitly include the dependence

on the point of reference to suit our need for varying fixed points and multistability, in

the appendix section 5.6. We begin the study of dissipativity in scalar birth death systems

in Section 5.2. Dissipativity for networks of such scalar systems is studied in Section 5.3,

culminating in a test for system dissipativity in terms of certifying the positivity of certain
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entropy-like functions.

5.1 Dynamics of biomolecular systems

The dynamics of biomolecular systems describe how concentrations of molecular species

evolve over time. The natural state variables are therefore the concentrations of species.

These state variables are necessarily positive as they physically correspond to concentrations.

Changes to species’ concentrations happen through chemical reactions with production and

degradation or transport processes such as dilution and transport in or out of compartments.

We begin by describing the dynamics of biomolecular systems in chemical reactions using

the formalization of chemical reaction networks (CRNs), and subsume dynamics from

transport processes into the same description. A published work relevant to the discussion

in this section and local stability and adaptation analysis is [117].

From chemical reaction networks to birth death systems

We begin by introducing the definition of birth death systems. We do so through chemical

reaction networks (CRNs) [44, 55]. We remark that although the CRN formulation used here

is the same as in Chapter 3 for binding networks, the reactions here are catalysis reactions

rather than binding reactions, therefore on a slower timescale, and usually effectively not

reversible. This warrants the use of different notations for most quantities. For example,

the stoichiometry of the catalysis reactions can play a significant role for dynamics, which

is distinct from stoichiometry of binding networks that effectively determine the polyhedral

set bounding reaction orders. The reader should keep in mind that the chemical species on

the catalysis time scale correspond to totals in binding reaction time scale, so each species

at catalysis timescale here is a total of several species in binding timescale. However, to

keep the notation familiar to readers from control and systems theory, we keep the use of

𝑥 as state variables, which correspond to (total) species concentrations here.

A CRN is a collection of reactions of the form,

𝑠−
1𝑗𝑋1 + · · ·+ 𝑠−

𝑛𝑗𝑋𝑛
𝑘𝑗−−−−−−−→ 𝑠+

1𝑗𝑋1 + · · ·+ 𝑠+
𝑛𝑗𝑋𝑛

where 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 denote chemical species, 𝑗 = 1, . . . , 𝑚 index reactions, 𝑠−
𝑖𝑗, 𝑠+

𝑖𝑗 ∈ Z≥0

denote the number of 𝑋𝑖 molecules consumed as reactant or produced as product in reaction

𝑗, and 𝑘𝑗 ∈ R>0 is reaction rate constant of reaction 𝑗. We denote 𝑆−
𝑗 =

[︁
𝑠−

1𝑗 · · · 𝑠−
𝑛𝑗

]︁⊺
as

the reactant vector for reaction 𝑗, and similarly define 𝑆+
𝑗 for product vector. We define

𝑆𝑗 = 𝑆+
𝑗 − 𝑆−

𝑗 as the stoichiometry vector of reaction 𝑗, and collect them as columns to

form the stoichiometry matrix 𝑆 =
[︁
𝑆1 · · ·𝑆𝑚

]︁
∈ Z𝑛×𝑚

.
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An alternative way to write the chemical reactions that highlights the catalysis nature of

the reaction is the following:

𝑋
𝑣𝑗(𝑥)−−−−−−−→𝑋 + 𝑆𝑗, (5.1)

where 𝑋 = (𝑋1, . . . , 𝑋𝑛) is the vector denoting the species, 𝑣(𝑥) : R𝑛
≥0 → R𝑚

≥0 is the rate

vector, with 𝑣𝑗(𝑥) the rate or flux or propensity of reaction 𝑗, capturing how the rate of

reactions depend on concentrations.

The changes caused by the chemical reactions can either be interpreted as discrete jumps

in molecule counts, or continuous variations in molecule concentrations. The deterministic

rate equation of the CRN captures the continuous change in concentrations as follows:

�̇� = 𝑆𝑣(𝑥), (5.2)

where �̇� is short for derivative with respect to time
𝑑
𝑑𝑡

𝑥(𝑡), 𝑥𝑖 ∈ R>0 is the concentration of

species 𝑋𝑖.

A commonly used specification for 𝑣𝑗(𝑥) is the law of mass action, which has been used in

a wide range of scenarios [109]. It says 𝑣𝑗(𝑥) = 𝑘𝑗𝑥
𝛼𝑗

, where we denote 𝑥𝛼𝑗 = ∏︀𝑛
𝑖=1 𝑥

𝛼𝑖𝑗

𝑖

Importantly, if a reaction is an elementary reaction, namely there are no intermediate steps,

then its rate is governed by the law of mass action [cite Ken Dill]. However, since we are

interested in catalysis reactions in a biological context, the presence of intermediates is

almost always significant. The law of mass action can still be valid, but no longer because

the reaction is elementary and there are no intermediates, but rather because the catalysis

reaction is in a regime with effective rate law taking a monomial form like mass action.

For example, in Section 3.6, the non-saturating regime that corresponds to the (1, 1) vertex

yields a catalysis rate taking mass action form. Not all regimes take the form of mass action

of course, so non-mass-action rate laws are often used for catalysis reactions, either derived

with intermediates considered or formulated to empirically capture observed data. Our

previous study of binding reactions is one way of formulating the rate law, via specific

assumptions about the underlying binding reactions regulating the catalysis process. Other

rate laws such as Hill functions and MWC often take the form of rational functions to

account for saturation. These are discussed in more detail in the next subsection.

We can encode more structure into the reaction dynamics in Eq (5.2). Since concentrations

of biomolecules change by production and degradation, we could group the reaction fluxes

in terms of whether they increase or decrease 𝑋𝑖’s concentration:

�̇�𝑖 = 𝑓𝑖(𝑥) =: 𝑓+
𝑖 (𝑥)− 𝑓−

𝑖 (𝑥) (5.3)

:=
∑︁

𝑗:𝑠𝑖𝑗>0
𝑠𝑖𝑗𝑣𝑗(𝑥)−

∑︁
𝑗:𝑠𝑖𝑗<0

|𝑠𝑖𝑗|𝑣𝑗(𝑥), (5.4)
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where we have collected terms from reactions producing 𝑥𝑖 into 𝑓+
𝑖 (𝑥) and terms from

reactions degrading 𝑥𝑖 into 𝑓−
𝑖 (𝑥).

We remark that by collecting the reactions into groups that produce or degrade 𝑋𝑖, and

focus our analysis on production and degradation rates 𝑓±
𝑖 instead of reaction rates 𝑣𝑗 ,

we are effectively ignoring the structure in the stoichiometry matrix 𝑆, or decide it is not

important for the question of concern. Examples of effects encoded in the stoichiometry are

conservation laws (e.g. to produce each 𝐵 molecule, one 𝐴 molecule needs to be consumed),

and dynamical constraints such as coupled production/degradation (e.g. 𝐴 → 𝐵 + 𝐶

so 𝐵 and 𝐶 are always produced simultaneously) and autocatalysis (to produce 𝐴, it

needs to be consumed first). Ignoring stoichiometry is often justified when the question

of concern has little coupling between species or has many ways to perform the same

production or degradation, such as in gene regulation where each gene is often assumed

to be expressed independently (although coupled expression in gene operons and clusters

may still play significant roles in some cases). For metabolism, almost the opposite is true.

Dynamics are fast, coupling is strong as a highly specialized enzyme is used to perform

one type of reaction, and constraints on dynamics such as autocatalysis are at the core

of metabolism regulation. Thus, for metabolism, the effect of stoichiometry should be

emphasized instead of ignored. Indeed, in Chapter 4, we formulate metabolism dynamics

with the stoichiometry at the center. We conclude that by grouping the reactions into

production and degradation fluxes, although this procedure is mathematically valid with

no approximation, we are making a choice to focus on bioregulation in scenarios with little

coupling between species and close to steady states.

The physical interpretation of the variables 𝑥𝑖 as concentrations dictate that they remain

positive, therefore the positive orthant is forward invariant. A necessary and sufficient

condition is 𝑓𝑖(𝑥) > 0 whenever 𝑥𝑖 = 0. It is also natural to assume that each species has

at least one production reaction and at least one degradation reaction. This yields the

following definition for birth-death systems.

Definition 5.1.1. A birth-death system is a dynamical system of the form (5.3) where the

production and degradation rates 𝑓±
𝑖 : R𝑛

>0 → R>0 are analytic and globally positive, and

𝑓𝑖(𝑥) = 𝑓+
𝑖 (𝑥)− 𝑓−

𝑖 (𝑥) > 0 whenever 𝑥 approaches the boundary of the positive orthant,

i.e. there exists 𝑖 such that 𝑥𝑖 → 0+
.

Note that although CRNs are used here to introduce the context, a birth-death system

can be introduced without reference to any CRNs. For example, the birth and death of

a population of bacteria or animals may also be written as a birth-death system, while
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there may not be any mass-action CRN corresponding to it. It is helpful to keep this

generality in mind, even though all the concepts and tools we develop below are motivated

by biomolecular reactions and systems of binding and catalysis in particular.

The definition of a birth-death system above describes a closed dynamical system that

evolves over time by itself. However, many important features and properties of biological

systems have to do with external disturbances, such as adaptation and robustness. Hence

we generalize the definition to birth-death control systems by treating some species or

rates as inputs that are controlled externally.

Definition 5.1.2. A birth-death control system is

�̇� = 𝑓(𝑥, 𝑢) = 𝑓+(𝑥, 𝑤)− 𝑓−(𝑥, 𝑤),

𝑦 = ℎ(𝑥, 𝑤),
(5.5)

where 𝑥 ∈ R𝑛
>0 is state, often concentrations of species internal to the system, 𝑤 ∈ R𝑑

>0 is

disturbance input, often concentrations of species external to the system, and 𝑦 ∈ R𝑝
is

output, encoding objective of control. The analytic functions 𝑓± : R𝑛
>0 × R𝑑

>0 → R𝑛
>0 are

production and degradation rates, and ℎ : R𝑛
>0 × R𝑑

>0 → R𝑝
>0 is output function.

The definition of a birth-death system emphasizes the structure that the concentration of

each species is regulated by two processes, production and degradation. Understanding

the dynamics of a birth-death system then comes down to characterizing how production

and degradation rates 𝑓±
𝑖 (𝑥) depend on the concentrations 𝑥. In the biomolecular systems

context, production and degradations are catalysis reactions regulated by networks of

binding reactions (see Chapter 2 and 3, also the next subsection). This regulation is

characterized by the reaction order, or log derivative, of production and degradation

processes
𝜕 log 𝑓±

𝑖 (𝑥)
𝜕 log 𝑥

that are constrained in polyhedral sets. A polyhedron can be formed

through convex combinations its vertices and rays. Therefore the polyhedral shape of

reaction orders suggests that the full behavior of production and degradation processes 𝑓±
𝑖

could be seen as combinations of the regimes at the vertices and rays. Indeed, when the

corresponding asymptotic conditions for the vertices and rays are satisfied, the behavior of

a production or degradation process is essentially the same as the simple monomials at

the vertices (see Section 3.6). The vertices are of special importance, as they are robustly

valid for a large portion of state space (space of concentrations), and the approximate

expression for production and degradation rates 𝑓±
𝑖 (𝑥) take the simple form of a monomial,

with constant reaction orders or log derivatives. Extending this to all production and

degradation fluxes, we see that a general birth-death system could be seen as having
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several regimes partitioning the state space, each corresponding to a simple system with

production and degradation fluxes taking constant reaction orders and monomial form.

When the state is in a region where a regime is valid, the system dynamics is approximately

one such simple system. When the state is in between regimes, the system dynamics is

roughly an interpolation between neighboring regimes, hence the following definition for

the simple systems for a regime.

Definition 5.1.3. Given a birth death system, the production order of species 𝑋𝑖 with respect

to species 𝑋𝑗 at 𝑥 is defined as 𝐻+
𝑖𝑗 (𝑥) := 𝜕 log 𝑓+

𝑖

𝜕 log 𝑥𝑗
(𝑥). The production order of 𝑋𝑖 refers

to the vector of production orders to all 𝑥, denoted as 𝐻+
𝑖 (𝑥) := 𝜕 log 𝑓+

𝑖

𝜕 log 𝑥
(𝑥), a row vector

in R𝑛
. The production order matrix of the birth death system at 𝑥 refers to the matrix

𝐻+(𝑥) ∈ R𝑛×𝑛
. The degradation orders 𝐻−

𝑖𝑗 , vectors 𝐻−
𝑖 and matrix 𝐻−

are similarly defined

from degradation fluxes 𝑓−
𝑖 . The birth-death order matrix is defined as 𝐻 = 𝐻+ −𝐻−

.

Definition 5.1.4. A simple birth-death system is a birth-death system with constant production

and degradation orders. In other words, the production and degradation rates take the

form 𝑓±
𝑖 (𝑥) = 𝑘±

𝑖 𝑥𝛼±
𝑖 , where 𝛼±

𝑖 ∈ R𝑛
is a constant vector, and 𝑘±

𝑖 > 0 is a positive constant.

Simple birth-death systems have the advantage that the order of their production and

degradation rates can be directly read off from the exponent vector of the rate functions,

since they are monomials. Beyond the simple case, production and degradation orders

often take values in a convex polyhedron. The polyhedral shape can arise in various ways,

from an underlying binding network regulating the flux, the sum of multiple reaction

fluxes, or other modelling assumptions such as rates with saturating behavior and take of

rational-function form. We discuss them next as a general context for the reason underlying

polyhedral sets bounding production and degradation orders.

Reaction orders of production and degradation

Here we consider several scenarios we often encounter in biomolecular systems, and show

in each case the production and degradation orders are bounded in some polyhedral set.

This also provides some intuition in relating reaction orders (log derivatives) to biological

behaviors. As illustration in the following, we use 𝑓+
𝑖 (𝑥), the production rate of 𝑋𝑖, since

the same results hold for degradation fluxes.

Production rate consisting of only one reaction. We first consider the case that the produc-

tion flux 𝑓+
𝑖 consists of just one catalysis reaction. If we denote 𝐽+

𝑖 = {𝑗 = 1, . . . , 𝑚 : 𝑠𝑖𝑗 > 0}
as the set of indices for reactions that increased 𝑋𝑖 concentration, then this case corresponds
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to 𝐽+
𝑖 = {𝑗*} has exactly one element for some 𝑗*

. So 𝑓+
𝑖 = ∑︀

𝑗∈𝐽+
𝑖

𝑠𝑖𝑗𝑣𝑗(𝑥) = 𝑠𝑖𝑗*𝑣𝑗*(𝑥)
consists of just one reaction.

If the only reaction increasing 𝑋𝑖 concentration has a rate of monomial form, i.e. 𝑓+
𝑖 (𝑥) =

𝑘+
𝑗 𝑥𝛼+

𝑗 , then the production order 𝐻+
𝑖ℓ (𝑥) ≡ 𝛼+

𝑗ℓ is constant, ℓ = 1, . . . , 𝑛. In other words, the

production order vector 𝐻+
𝑖 is the exponent vector 𝛼+

𝑗 , independent of the rate constant

𝑘+
𝑗 or concentration 𝑥. This case corresponds to simple birth death system. This case could

happen when 𝑋𝑖 has only one production reaction with rate of mass-action form. Then

𝛼+
𝑗 is the reactant stoichiometry vector for that reaction. Another possibility is that there

is only one dominant regime, so the rate is monomial but not necessarily mass-action.

For example, consider 𝐸 + 𝑆
𝑘−→ 𝐸 + 𝑃 , where the enzyme 𝐸 catalyzes production of 𝑃

from substrate 𝑆. Mass action would say the rate of 𝑃 ’s production is 𝑘𝐸𝑆. But if the

catalysis has a significant intermediate state 𝐶 formed from enzyme binding with substrate

(e.g. from transition state theory [cite Ken Dill]), then from our analysis in Section 3.6

we know when there are overabundant substrates so that the enzymes are saturated, the

catalysis rate could be independent of substrate, with rate 𝑘𝐸, where 𝐸 here denote total

concentration of enzyme. This rate law is not mass action, but still monomial.

Alternatively, the only reaction that increase 𝑋𝑖 concentration may have a rate consisting of

several regimes, so it is more complicated than a monomial. The most important effect that

is missed in a monomial rate and accounted for with several regimes is saturation, that

when a reactant’s concentration is too high, the reaction rate does not vary with changes in

this reactant’s concentration. A wide class of rate laws accounting for this take the form

of rational functions. This can be derived from different models of detailed intermediate

states in the catalysis process, such as in Michaelis-Menten approximations, Langmuir

approximations [cite Ken Dill], single-molecule state counting of statistical mechanics

in biophysics such as MWC [cite Rob and Ken Dill], or Markov chain theory for generic

single-molecule state transitions [cite Gunawardena]. Rate law of rational function form

can also arise from phenomenological modeling that capture observed data empirically,

such as in Hill functions and the Monod model for population growth [cite]. All in all, in

these cases the production rate 𝑓+
𝑖 is often a rational function of the following form:

𝑓+
𝑖 (𝑥) = 𝑘+

𝑖

𝑐′𝑥𝛼′∑︀
𝑞∈𝑄+

𝑖
𝑐𝑞𝑥𝛼𝑞

, (5.6)

where 𝑄+
𝑖 is a finite set indexing the terms summed in the denominator, coefficients 𝑐′

and

𝑐𝑞 are positive. Each term often correspond to a state of the enzyme molecule catalyzing

this reaction, and all but the state corresponding to numerator term are not active. Then

𝑄+
𝑖 is a list of all the states the enzyme molecule can take, and 𝑐𝑞𝑥

𝛼𝑞
is the weight of state 𝑗,
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which is proportional to the probability the enzyme molecule is in that state. The form of

the weight is often motivated by equilibrium arguments such as the Boltzmann distribution

so that 𝑐𝑞 captures the enthalpy contribution and 𝑥𝛼𝑞
captures the entropy contribution

(see [cite Ken Dill and Rob] for more detail). The production order in this case can be

calculated to be

𝐻+
𝑖ℓ (𝑥) =

∑︁
𝑞∈𝑄+

𝑖

𝜆𝑞(𝑥)(𝛼′
ℓ − 𝛼𝑞ℓ), 𝜆𝑞(𝑥) = 𝑐𝑞𝑥

𝛼𝑞∑︀
𝑞∈𝑄+

𝑖
𝑐𝑞𝑥𝛼𝑞

, (5.7)

where 𝜆𝑞 is the relative weight of the 𝑞th term, or probability of the enzyme molecule to be

in state 𝑞. In this case, production order of 𝑋𝑖 is the convex combination of each state’s

reaction order minus the active state’s reaction order:

𝐻+
𝑖 (𝑥) ∈ conv

{︁
𝛼′ −𝛼𝑞 : 𝑞 ∈ 𝑄+

𝑖

}︁
= 𝛼′ − conv

{︁
𝛼𝑞 : 𝑞 ∈ 𝑄+

𝑖

}︁
. (5.8)

The exact position in this polytope is determined by the convex coefficients 𝜆𝑞(𝑥), which

corresponds to the probability to be in each state.

While 𝐻+
𝑖 (𝑥) is bounded in this polytope, can it reach all points in the polytope by adjusting

concentrations 𝑥? Assume 𝛼𝑞 are all vertices of the polytope. If not, then take only vectors

𝛼𝑞 corresponding to vertices. Then 𝐻+
𝑖 (𝑥) can reach all points in the polytope by adjusting

𝑥 if and only if

{︁
𝛼𝑞 : 𝑞 ∈ 𝑄+

𝑖

}︁
is affinely independent. In other words, if the set of vectors{︁

𝛼𝑞 −𝛼𝑞0 : 𝑞 ∈ 𝑄+
𝑖 ∖{𝑞0}

}︁
is linearly independent, where 𝑞0 can be any one element of 𝑄+

𝑖 .

This can be easily seen as follows.
𝜆𝑞

𝜆𝑞0
= 𝑐𝑞

𝑐𝑞0
𝑥𝛼𝑞−𝛼𝑞0 , so log 𝜆𝑞

𝜆𝑞0
− log 𝑐𝑞

𝑐𝑞0
= (𝛼𝑞 −𝛼𝑞0)⊺ log 𝑥.

Collect all

⃒⃒⃒
𝑄+

𝑖

⃒⃒⃒
− 1 such equations, we have a linear system of equation 𝐴 log 𝑥 = 𝑏, where

𝐴 ∈ R(|𝑄+
𝑖 |−1)×𝑛

has 𝛼𝑞−𝛼𝑞0 as row vectors, and 𝑏 has log 𝜆𝑞

𝜆𝑞0
− log 𝑐𝑞

𝑐𝑞0
as entries. For 𝐻+

𝑖 (𝑥)
to reach every point by adjusting 𝑥 means for all possible 𝜆𝑞 > 0,

∑︀
𝑞 𝜆𝑞 = 1, this linear

system of equations has a solution log 𝑥. This linear system of equation has a solution if

and only if 𝑏 is in the column span of 𝐴. Since 𝑏 can range over all R|𝑄
+
𝑖 |−1

by varying 𝜆𝑞,

we need R|𝑄
+
𝑖 |−1

to be the column span of 𝐴. This corresponds to rows of 𝐴, or vectors

𝛼𝑞 −𝛼𝑞0 , are linearly independent. This is also necessary since we are only considering 𝛼𝑞

that correspond to vertices.

We give a couple examples to illustrate this. Consider 𝑓+
𝑖 = 1

1+𝑥+𝑥2 . We see that 𝐻+
𝑖

can reach the full polytope, the interval (−2, 0), by varying 𝑥. But the 𝛼𝑞’s are {0, 1, 2},
not affinely independent. This is because we need to exclude terms that are not vertices

first. This means we should only consider 𝛼𝑞’s in set {0, 2}. This is affinely independent,

and therefore the full polytope is reachable. Let us consider another example where

the full polytope is genuinely not reachable. 𝑓+
𝑖 (𝑥1, 𝑥2) = 1

1+𝑥1+𝑥2+𝑥1𝑥2
. The 𝛼𝑞’s are
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{(0, 0), (0, 1), (1, 0), (1, 1)}, the vertices of a square, not affinely independent. There are

𝜆𝑞’s not reachable for non-negative 𝑥. For example, if we fix 𝜆(0,0) = 𝜆(1,1) = 1
3 , where the

subscript of 𝜆 denote the 𝛼 they correspond to, then we have 𝑥1 + 𝑥2 + 𝑥1𝑥2 = 2, and

𝑥1𝑥2 = 1. So we have 𝑥1𝑥2 = 1 and 𝑥1 + 𝑥2 = 1. This system of equation does not have a

real solution for 𝑥1, 𝑥2, and is therefore not reachable.

We conclude that whether the bounding polyhedron of production order is fully reachable

is nontrivial even in this simple case. If we want to keep reachability simple, we need

to give ourselves more freedom than just varying 𝑥. For example, if we allow 𝑐𝑞 to be

varied in addition to 𝑥, corresponding to adjusting the enthalpy of the states of the enzyme,

then the bounding polytope of the production order is always fully reachable in this case.

Similar statements are true for more sophisticated cases, such as when the reaction rate is

governed by binding reactions or when multiple reactions are involved in production. In

those cases, reachability by adjusting 𝑥 is more complicated to characterize, and often large

portions of the bounding polyhedron are not reachable. Reachability becomes accessible,

however, if we allow more knobs to tune, such as modifying equilibrium constants and

identity of the species involved. Intuitively, if enough knobs are allowed such that each

convex coefficient can be tuned independent of other ones, then reachability is achieved.

It is worth noting that the polytope conv
{︁
𝛼𝑞 : 𝑞 ∈ 𝑄+

𝑖

}︁
is the Newton polytope of the

denominator polynomial of 𝑓+
𝑖 . A polynomial’s Newton polytope has the exponents of

each term in the polynomial as vertices. Newton polytopes are considered to capture

fundamental properties of roots of polynomials in algebraic geometry [cite Sturmfels]. They

are also fruitful tools in analysis and optimization of polynomial equations, dynamical

systems, and CRNs [15, 34, 78].

When there are more than one active state, the numerator contains more than one term.

This can be treated in the same way as the production rate 𝑓+
𝑖 consisting of multiple

reactions, one for each active state. We consider this later in this subsection.

A more general way for multiple regimes to happen in one catalysis reaction is when this

catalysis reaction is regulated by a network of binding reactions. This is studied in detail in

Chapter 3. For binding networks, the production order is also constrained in a polyhedron,

but not necessarily bounded. One simple example is repression. Consider an enzyme

catalyzing the production of 𝑃 from substrate 𝑆, 𝐸 + 𝑆 → 𝐸 + 𝑃 , with rate proportional

to the enzyme 𝐸. Now add a repressive ligand 𝐿 that binds with enzyme 𝐸 to form an

inactive complex 𝐸 ′
, 𝐸 + 𝐿 ⇌ 𝐸 ′

. This binding network with 𝐸 as active species is studied

in Section 3.6, and the reaction order of 𝐸 to total enzyme and total ligand concentrations

are unbounded, although constrained in a stripe-shaped polyhedron (see Eq (3.41)). This
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also illustrates the binding network considers more general cases than rational-function

forms that consider states of the enzyme molecule. In this case, just considering states

of the enzyme molecule assumes ligand concentration as fixed, and enzyme transits in

states 𝐸 and 𝐸 ′
, giving a rational function with two terms in the denominator. But when

ligand binds tightly with the enzyme, and ligand concentration is close to the enzyme

concentration, then the binding and unbinding of enzyme will affect ligand concentration,

so the assumption in enzyme-state model no longer holds. This is when the reaction order

becomes unbounded.

Production rate consisting of multiple reactions. When there are multiple reactions,

i.e. 𝐽+
𝑖 , the set of reactions that produce 𝑋𝑖, has more than one element, we have

𝑓+
𝑖 = ∑︀

𝑗∈𝐽+
𝑖

𝑠𝑖𝑗𝑣𝑗(𝑥). Then generically we can write

𝐻+
𝑖 (𝑥) = 𝜕 log 𝑓+

𝑖

𝜕 log 𝑥
=
∑︁

𝑗∈𝐽+
𝑖

𝜆𝑗(𝑣)𝜕 log 𝑣𝑗(𝑥)
𝜕 log 𝑥

, 𝜆𝑗(𝑣) = 𝑠𝑖𝑗𝑣𝑗(𝑥)∑︀
𝑗∈𝐽+

𝑖
𝑠𝑖𝑗𝑣𝑗(𝑥) . (5.9)

So the production order is a weighted average of the order of each reaction involved, with

the weight determined by the magnitude of the flux 𝑣𝑗 . Therefore, if the order of the 𝑗th

reaction is bounded in a polyhedron 𝑃𝑗 , then production order 𝐻+
𝑖 is bounded in the larger

polyhedron 𝑃 formed via convex combination of these polyhedra 𝑃 = conv
{︁
𝑃𝑗 : 𝑗 ∈ 𝐽+

𝑖

}︁
.

Of course this only guarantees that the polyhedron 𝑃 contains all possible values the

production order 𝐻+
𝑖 can take, while not all points in 𝑃 are necessarily reachable by 𝐻+

𝑖 .

Let us consider several special cases to see how this may play out.

If the flux of each reaction 𝑣𝑗 = 𝑘𝑗𝑥
𝛼𝑗

is a monomial, then 𝑓+
𝑖 is a polynomial in 𝑥 with

positive coefficients: 𝑓+
𝑖 (𝑥) = ∑︀

𝑗∈𝐽𝑖
𝑠𝑖𝑗𝑘𝑗𝑥

𝛼𝑗
. Then

𝐻+
𝑖ℓ (𝑥) =

∑︁
𝑗∈𝐽+

𝑖

𝜆𝑗(𝑥)𝛼𝑗ℓ, 𝜆𝑗(𝑥) = 𝑠𝑖𝑗𝑘𝑗𝑥
𝛼𝑗∑︀

𝑗∈𝐽+
𝑖

𝑠𝑖𝑗𝑘𝑗𝑥𝛼𝑗
. (5.10)

In this case each component reactions’ order is constant 𝛼𝑗 , and 𝐻+
𝑖 is constrained in the

polytope 𝑃 = conv
{︁
𝛼𝑗 : 𝑗 ∈ 𝐽+

𝑖

}︁
, which is also the Newton polytope of the polynomial that

defines 𝑓+
𝑖 . The production order 𝐻+

𝑖 can reach every point in this polytope by adjusting

the concentrations 𝑥 in the positive orthant.

If the flux of each reaction is a rational function with one term in the numerator, we have

𝑣𝑗 = 𝑘𝑗

𝑐𝑗
𝑞𝑥

𝛼′𝑗∑︀
𝑞∈𝑄𝑗

𝑐𝑗
𝑞𝑥𝛼𝑗

𝑞

,
𝜕 log 𝑣𝑗

𝜕 log 𝑥
=
∑︁

𝑞∈𝑄𝑗

𝜆𝑗
𝑞(𝑥)(𝛼′𝑗 −𝛼𝑗

𝑞), 𝜆𝑗
𝑞(𝑥) =

𝑐𝑗
𝑞𝑥

𝛼𝑗
𝑞∑︀

𝑞∈𝑄𝑗
𝑐𝑗

𝑞𝑥𝛼𝑗
𝑞

.

Then the production order can be calculated to be

𝐻+
𝑖 (𝑥) =

∑︁
𝑗∈𝐽+

𝑖

∑︁
𝑞∈𝑄𝑗

𝜆𝑗(𝑣)𝜆𝑗
𝑞(𝑥)(𝛼′𝑗 −𝛼𝑗

𝑞).
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We can constrain production order 𝐻+
𝑖 by the polytope 𝑃 formed from convex combination

of each reaction’s order polytope 𝑃𝑗 = 𝛼′𝑗−conv
{︁
𝛼𝑗

𝑞 : 𝑞 ∈ 𝑄𝑗

}︁
that 𝑃 = conv

{︁
𝑃𝑗 : 𝑗 ∈ 𝐽+

𝑖

}︁
=

conv
{︁
𝛼′𝑗 −𝛼𝑗

𝑞 : 𝑗 ∈ 𝐽+
𝑖 , 𝑞 ∈ 𝑄𝑗

}︁
. We caution, however, that this bounding polytope can

be very conservation, so that large portions of it are not reachable by production order

𝐻+
𝑖 via adjusting concentraions 𝑥. If {𝜆𝑗(𝑣)}𝑗∈𝐽+

𝑖
and

{︁
𝜆𝑗

𝑞(𝑥)
}︁

𝑞∈𝑄𝑗 ,𝑗∈𝐽+
𝑖

can take all values

in their respective simplexes, i.e. they can be adjusted independently, then all points in

this polytope 𝑃 can be reached by 𝐻+
𝑖 . However, this is rather unlikely when some of

the variables 𝑥 are shared across different states in the same reaction in coefficients 𝜆𝑗
𝑞, or

across several reactions in coefficients 𝜆𝑗 , which is necessary for the states and reactions to

interact. As a simple example, consider 𝑓+
𝑖 (𝑥) = 1+𝑥

1+𝑥+𝑥2 . We may treat this as the sum of

two active states,
1

1+𝑥+𝑥2 and
𝑥

1+𝑥+𝑥2 . The polytope for them are intervals (−2, 0) and (−1, 1)
respectively. So with the above procedure, we would conclude the bounding polytope for

the two active states together is (−2, 1). However, we can calculate the log derivative in this

case to be − 𝑥2(2+𝑥)
(1+𝑥+𝑥2)(1+𝑥) , which is bounded in (−1, 0) for positive 𝑥. This is much smaller

than the bounding interval (−2, 1). But a tight bounding polytope does exist. It is (−1, 0).
So we see while the procedure discussed above to define a bounding polytope 𝑃 by convex

combining each reaction’s 𝑃 can work, it is often conservative. Finding a tight polyhedral

set bounding production and degradation orders is important but nontrivial in the general

case. One approach that may not scale well is via computer simulations, utilizing methods

developed in Chapter 3.

In summary, production and degradation orders are often constrained in polyhedral

sets, which can be derived in various modeling scenarios of increasing complexity. For

production and degradation rates taking the form of polynomials and rational functions

or coming from one reaction’s binding network, it is often possible to determine whether

the polyhedral set is reachable by adjusting species concentrations. Reachability is harder

to determine for the general case when multiple reactions are involved in the production

and degradation fluxes. So it is important to check via analysis or computation whether a

polyhedral set bounding the production and degradation orders is overly conservative in

these more complicated cases.

Dynamics from transport processes

Some dynamics of biomolecular systems in cells come from transport processes such as

dilution and transport in and out of a compartment. We provide a basic discussion about

some transport processes here, emphasizing that transport processes can often be treated

as chemical reactions, therefore naturally subsumed into the framework of birth-death
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systems.

Transport in and out of compartments. If a molecular species 𝐴 is transported in and out

of compartments, we can treat 𝐴 inside and outside of the compartment as two separate

species, 𝐴𝑖 and 𝐴𝑜 respectively. Then the transport out of a compartment is catalysis

reaction 𝐴𝑖 → 𝐴𝑜. Transport into the compartment is 𝐴𝑜 → 𝐴𝑖. If the transport processes

are fast and reach steady state, we can treat this as a state transition in binding reaction

𝐴𝑖 ⇌ 𝐴𝑜.

Dilution due to biological growth. Many biomolecular circuits in systems and synthetic

biology do not contain degradation reactions. Instead, the production of molecules are

balanced by dilution due to increase in reaction volume from cell growth. Here we briefly

show that dilution can be captured as a degradation reaction in birth-death systems for a

homogeneous population of cells, but it has distinct structures.

For a homogeneous population of cells where each cell has the same volume and number of

molecules, denote each cell’s volume by 𝑣0, and the number of cells by 𝑁 . Let 𝑋tot
𝑖 = 𝑥𝑖𝑣0𝑁

denote the total number of 𝑋𝑖 molecules in this population, then

�̇�𝑖 = 𝑑

𝑑𝑡

𝑋tot
𝑖

𝑁𝑣0
= 1

𝑁𝑣0
�̇�tot

𝑖 −
𝑋tot

𝑖

𝑣0𝑁2 �̇� . (5.11)

Let 𝑓±
𝑖 denote the production and degradation rates for species 𝑖 in every cell due to

chemical reactions. So the rate of change for the total count of 𝑋𝑖 is �̇�tot
𝑖 = 𝑓𝑖(𝑥)𝑣0𝑁 . Let

𝑓 g(𝑥) denote the growth rate of the population, assumed independent of 𝑁 and 𝑣0, then

�̇� = 𝑓 𝑔(𝑥)𝑁 . Hence,

�̇�𝑖 = 𝑓+
𝑖 (𝑥)− 𝑓−

𝑖 (𝑥)− 𝑓 𝑔(𝑥)𝑥𝑖. (5.12)

We see that this is still a birth-death system, with dilution considered as a term in

degradation. However, dilution has the unique structure that it adds the same term times

𝑥𝑖 for each species 𝑖. So dilution from biological growth with growth rate independent of

population size can be modeled as a degradation reaction 𝑋𝑖 → ∅, and the rate for this

catalysis reaction is the growth rate 𝑓 𝑔(𝑥)𝑥𝑖.

Local stability of birth death systems

We have formulated generic biomolecular processes in terms of birth-death systems. Later

in this chapter we investigate regional and global dynamical properties of birth-death

systems. As a starting point to understand some basic features of birth-death systems, as

well as a reference for comparison with more general results, here we summarize how local

stability of birth death systems relates to the birth-death order matrix. The key message
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is that the local stability property determined by the birth-death order is structural, i.e.

independent of rate constants. A sufficient condition for structural local stability is a linear

matrix inequality (LMI) that can be easily computed given a birth-death order matrix 𝐻 .

This topic is studied in [117]. We review the core results here.

Since local stability of a fixed point in a dynamical system is determined by the linearization

at that fixed point, we relate linearization to production and degradation orders. To do so,

we note the following relation between linear derivatives and log derivatives:

𝜕𝑓±
𝑖 (𝑥)
𝜕𝑥𝑗

= 𝜕 log 𝑓±
𝑖 (𝑥)

𝜕 log 𝑥𝑗

𝑓±
𝑖 (𝑥)
𝑥𝑗

= 𝐻±
𝑖𝑗

𝑓±
𝑖 (𝑥)
𝑥𝑖

𝑥𝑖

𝑥𝑗

= 𝐻±
𝑖𝑗

𝑥𝑖

𝜏±
𝑖 (𝑥)𝑥𝑗

, (5.13)

where 𝜏±
𝑖 (𝑥) := 𝑥𝑖

𝑓±
𝑖 (𝑥) are time-scales of 𝑋𝑖’s production and degradation [87, 118]. In

matrix form, this is

𝜕𝑓(𝑥)
𝜕𝑥

= Λ𝑥

(︁
Λ−1

𝜏 +𝐻+ −Λ−1
𝜏 −𝐻−

)︁
Λ−1

𝑥 , (5.14)

where Λ𝑥* denotes the diagonal matrix with vector 𝑥*
on the diagonal. At a fixed point

𝑥*
, we have 𝑓+(𝑥*) = 𝑓−(𝑥*), so we could define 𝜏 := 𝜏 +(𝑥*) = 𝜏 −(𝑥*) as the vector of

steady-state time-scales at fixed point 𝑥*
. Therefore, we have

𝐴 := 𝜕𝑓

𝜕𝑥
(𝑥*) = Λ𝑥*Λ−1

𝜏 𝐻Λ−1
𝑥* , (5.15)

relating linearized dynamics 𝐴 to birth-death order matrix 𝐻 at the fixed point 𝐻 = 𝐻(𝑥*).

Stability of the fixed point depends on the real part sign of the eigenvalues of 𝐴, that if

they are all negative, a condition called Hurwitz, then the fixed point is stable. We see 𝐴

has the same eigenvalues as Λ−1
𝜏 𝐻 since they are similar. This shows that we have split the

local dynamics at a fixed point 𝐴 into two parts, (1) the birth-death order 𝐻 structurally

constrained from underlying regulatory networks, and (2) the time-scales Λ𝜏 that depends

on rate constants and concentrations. This mirrors the general property of reaction orders

or log derivatives that take a monomial 𝑘𝑥𝛼
and retain the exponent 𝛼 while throwing

away the constant 𝑘.

Therefore, from the birth-death order 𝐻 at the fixed point, we can determine structural

stability, i.e. stability independent of timescales 𝜏 . This means Λ𝜏 𝐻 is Hurwitz for all

positive vectors 𝜏 . A sufficient condition for this that can be easily tested computationally

is for 𝐻 to be diagonally stable. A matrix 𝐻 is diagonally stable if there exists a positive

diagonal matrix 𝑃 such that

𝑃 𝐻 + 𝐻⊺𝑃 < 0, (5.16)

where < 0 for matrices denote negative definiteness.
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The birth-death order can also be used to determine structural instability. One result is

that if 𝐻 has no purely imaginary eigenvalues and there exists a diagonal matrix 𝑃 with

at least one negative entry such that Eq (5.16) holds, then 𝑥*
is structurally unstable, i.e.

Λ𝜏 𝐻 is unstable (not Hurwitz) for all positive vectors 𝜏 .

From these results on determining local stability from birth-death order matrix, we see

several features that hint at general features of analysis based on reaction orders. First, the

property certified by the birth-death order is structural, i.e. independent of rates. This

is seen in the split of linearized dynamics into two parts in Eq (5.15). One interesting

implication of this is that for a given region, stability of a fixed point could be determined

from birth-death order in this region without knowing whether there exists any fixed points

in this region. So the existence of fixed points and their stability are now independent,

and one can be used to asked questions about the other. Second, while production and

degradation processes both play a role in the general dynamics of a birth death system,

the local stability can be determined using only the birth-death order 𝐻 . This means, for

example, �̇� = 𝑥− 𝑥2
and �̇� = 1− 𝑥 are considered the same. Lastly, an easy-to-compute

sufficient test for local stability from birth-death order takes the form of a linear matrix

inequality in Eq (5.16). This test for local property can be related and generalized to tests

in regional and global properties that we study next. With a sense of the typical features of

dynamical properties analyzed from reaction orders, we delve into the study of regional

and global properties through reaction orders using dissipative theory in the next section.

5.2 Dissipativity in positive scalar birth death systems

In dissipative theory, the behavior of a system is encoded in how the system responds to

inputs and outputs captured in terms of storage functions and supply rates (see Section

5.6 for a more detailed overview with generalization to include reference points explicitly

to suit our needs). Motivated by physical theories of thermodynamics and statistical

mechanics, the storage function captures energy stored internally in a system’s states, and

the supply rate captures interaction processes of the system with the external environment

such as work and heat. The notion of dissipativity then tries to capture how the second

law of thermodynamics dictates increasing entropy as a force deriving a thermodynamic

system to equilibrium. An equivalent statement of the second law is that the amount of

work that can be extracted from a system cannot be more than what is put in. This is the

formulation used to define dissipativity of a system, that the amount of energy added to

the storage function cannot be more than that provided from the supply rates. Properties

such as stability or invariant sets can then be determined from dissipativity. Structures
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of system dynamics, physical interpretation of input and output variables, and system

properties to be studied should be reflected in the use of different supply rates and storage

functions. As an example, for dissipativity in mechanical and electrical systems with

canonical physical notions of energy, the input and output variables are chosen to be pairs

of force and potential gradient such as resistance and current, force and velocity, or torque

and angle velocity. The supply rate is the product of input and output to yield power. The

storage function is then quadratic, encoding energy or potential. In this work, we define

storage functions and supply rates of special form that are tailor-made for biomolecular

systems, so as to have a notion of dissipativity.

Another powerful feature of dissipative theory is to allow the study of a large system as

the interconnection of smaller component systems [11, 77]. The dissipative properties can

be characterized for each component system, and then dissipativity of the full system can

be studied by taking into account the interconnections of component systems. Specifically,

the storage function of component systems can be used to formulate the storage function

of the full system, demonstrating dissipativity relative to supply rates of interest for the

full system. Because of this, we can begin our study with the smallest possible component

system: a scalar or one-dimensional birth-death system.

Supply rate for biomolecular systems

To begin with our study of dissipativity for biomolecular systems, we first need to define

the notion of dissipativity in our case, namely what is the supply rate that a system is

dissipative to. Let us focus on the single-input-single-output (SISO) case, where output 𝑦

and input 𝑢 are scalars. We consider the following class of supply rates:

𝑠±(𝑢, 𝑦; 𝜀, 𝑝) = ±𝑝(𝑦)
(︁
𝑢− 𝑦±𝜀

)︁
log 𝑦, (5.17)

where 𝑝 : R>0 → R>0 is a positive function, 𝜀 ∈ R, 𝑢 = 𝑢
𝑢′ , 𝑦 = 𝑦

𝑦′ , and 𝑢′
, 𝑦′

are reference

input output values. We often omit some of the arguments to write 𝑠±(𝑢, 𝑦; 𝜀), 𝑠±(𝑢, 𝑦), or

𝑠±(𝜀) when those arguments are not relevant to the discussion.

There are several parameters in the supply rate. The meaning and importance of these

parameters will become clear in later discussions. We provide an introduction here to

guide the reader. There are two versions of the supply rate, 𝑠+
and 𝑠−

. This is because

birth-death systems have production and degradation terms, so the input can go into

production, or degradation. Where the input enters change the behavior captured by

dissipativity, therefore we provide two versions, 𝑠+
for control in production, and 𝑠−

for

control in degradation, explicitly in the supply rate. The input and output arguments to
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Figure 5.2 Plot showing the restriction of positive supply rate 𝑠(𝑢, 𝑦; 𝜀) ≥ 0 on the values of (𝑢, 𝑦). The grey

region is where this inequality is satisfied, for 𝜀 = 0.5 (Left) and 𝜀 = 1 (Right). The blue line is 𝑢 = 𝑦𝜀
.

the supply rate are 𝑢 and 𝑦, the ratio of actual input and output values relative to some

reference values. The reason ratios instead of exact values are used is because of the

fold-change nature of reaction orders, that reaction orders cannot capture properties due

to exact values or linear changes, but rather fold changes. Implied by this, the default or

no-control input is 𝑢 = 1, rather than 𝑢 = 0 that is typically used in dissipative theory. This

also provides us a way to derive different dissipativity properties in reference to different

points, and talk about regions that allow dissipativity in reference to points in them. This

is useful when studying systems with multistability, for example. The positive function 𝑝

shifts the overall value of the supply rate without changing how the input and output are

related. This is therefore akin to the unit for power. Mathematically, this is often taken to

be a monomial in 𝑦 to certify dissipativity of a suitable scale. The 𝜀 parameter captures the

level of dissipativity encoded in reaction order. Larger 𝜀, more dissipativity, corresponds

the intuition that the system dissipates energy faster. This means, given positive supply

rate 𝑠(𝑢, 𝑦) > 0, the output of a more-dissipative system with higher 𝜀 should be more

restricted. Indeed, this can be seen in Figure 5.2, which illustrates that with non-negative

supply rate 𝑠 ≥ 0, a larger 𝜀 corresponds to more severe restriction on (𝑢, 𝑦) values. As we

will see later, a larger 𝜀 corresponds to stronger dissipativity, therefore more “stabilizing”.

We note that the restriction on (log 𝑢, log 𝑦) space from this supply rate is exactly the same

as the restriction on (𝑢, 𝑦) from the dissipativity notion of output-strict passivity with

supply rate 𝑠(𝑢, 𝑦) = 𝑢𝑦 − 𝜀𝑦2
used for dissipative systems inspired by linear properties

(see Chapter 1 of [11]).

We can also provide a more physical interpretation for the choice of supply rate in Eq (5.17),

although the form of the supply rate was designed purely based on the mathematical need

to capture constraints on dynamics from reaction orders (see Example 14). Supply rate
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is motivated by the physical concept of work or power, i.e. energy’s rate of change. The

supply rates typically used in mechanical and electrical systems are from well-understood

pairs of generalized force and velocity, with the supply rate defined as force times velocity.

Some examples are pressure and change in volume, surface tension and change in area,

torque and angular velocity, voltage and current. Such force and velocity pairs are further

extended in thermodynamics and statistical mechanics to include changes through heat and

molecular concentrations. The pair for heat is temperature and change in entropy, while the

pair for concentrations is chemical potential 𝜇 and change in molecular concentration 𝑐. For

gas and solutions under simplifying ideal assumptions, chemical potential is proportional

to log 𝑐
𝑐0 , where 𝑐0

is some reference concentration. Hence the supply rate for concentration

changes is chemical potential multiplying concentration, of the form log 𝑐
𝑐0 𝑑𝑐, where 𝑑𝑐 is

an infinitesimal change in concentrations. Considering the change in concentrations 𝑑𝑐 as

input 𝑢, and concentration 𝑐 as output 𝑦, then we have a form similar to the supply rate

in Eq (5.17). The parameter 𝜀 can be interpreted as akin to fugacity or thermodynamic

activity coefficients that adjusts the actual energy effect from change in concentrations of a

particular species.

One important property required of supply rate is that it is non-positive with no-control

input, achieving value zero at the point of reference. This corresponds to the intuition that

with no external input, any output of the system deviating from a reference value can only

drain energy (negative supply rate). This is important if we want to use dissipativity to

show stability. We show that the supply rate we just defined satisfies these conditions in

the following lemma.

Lemma 5.2.1. The SISO supply rate function in Eqn (5.17) satisfies 𝑠±(1, 𝑦; 𝜀) ≤ 0 for all 𝑦 > 0
for 𝜀 ≥ 0, with equality only at 𝑦 = 1 if 𝜀 > 0.

Proof. We show it for 𝑠+
, as the case for 𝑠−

is similar. Note that this supply rate can be

rewritten as 𝑠+(𝑢, 𝑦) = (𝑢− 1) log 𝑦 − (𝑦𝜀 − 1) log 𝑦. For 𝜀 > 0, expression (𝑥𝜀 − 1) log 𝑥 ≥ 0
holds for all 𝑥 ≥ 0 with equality only at 𝑥 = 1 (shown below). Therefore, if 𝜀 > 0,

𝑠+(1, 𝑦) ≤ 0 for all 𝑦 > 0, with equality only at 𝑦 = 1.

(more details on (𝑥𝜀 − 1) log 𝑥 ≥ 0): Derivative of (𝑥𝜀 − 1) log 𝑥 is 𝜀𝑥𝜀−1 log 𝑥 + 𝑥𝜀−1 − 𝑥−1 =
𝑥−1(𝑥𝜀 log 𝑥𝜀 + 𝑥𝜀− 1), since 𝑥 log 𝑥 ≥ 𝑥− 1, the derivative is bounded between 2𝑥−1(𝑥𝜀− 1)
and 2𝑥−1𝑥𝜀 log 𝑥𝜀

. For 𝜀 > 0, in both bounds 𝑥 ≤ 1 yields negative values, 𝑥 ≥ 1 yields

positive values, so (𝑥𝜀−1) log 𝑥 decreases in 0 < 𝑥 ≤ 1, increases in 1 ≤ 𝑥. Since (𝑥𝜀−1) log 𝑥

has value 0 at 𝑥 = 1, it is non-negative, with value 0 only at 𝑥 = 1. For 𝜀 = 0, this is true

trivially. So, (𝑥𝜀 − 1) log 𝑥 ≥ 0 for all 𝑥 > 0, with equality only at 𝑥 = 1, if 𝜀 > 0.
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Figure 5.3 Plot for the supply rate 𝑠+
(left) and 𝑠−

(right) with no-control input 𝑢 = 1 and pre-factor 𝑝 = 1,

with varying 𝜀.

With the result of this lemma, we can apply Theorem 5.6.8 (part (1)) to this supply rate.

So if a system is dissipative with respect to supply rate 𝑠±
at 𝑥*

for some 𝜀 > 0, then 𝑥*

is asymptotically stable. We can also see the overall shape of the supply rate function in

Figure 5.3. We see that with increasing 𝜀, the sharpness of the function increases.

Another nice property for this class of supply rates is that we have the following point-wise

inequality showing that supply rates with larger 𝜀 have larger magnitude globally.

𝑠±(𝑢, 𝑦; 𝜀, 𝑝) ≤ 𝑠±(𝑢, 𝑦; 𝜀′, 𝑝), ∀𝑢, 𝑦 ∈ R>0 if 𝜀 ≥ 𝜀′. (5.18)

Next, we take a scalar birth-death control system and show that dissipativity with respect

to supply rates 𝑠±
correspond to conditions on birth-death orders.

Dissipativity in scalar birth-death control systems

In the theory of network dissipative systems, an important structure is that the system

studied is control affine. We follow this and begin with the scalar control affine system of

the following form,

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢, 𝑦 = ℎ(𝑥), (5.19)

where state 𝑥, control input 𝑢, and output 𝑦 are positive, i.e. they take values in R>0. Control

affine means the control input 𝑢 enters in first order. To study dissipativity for biomolecular

systems, we would like to connect the control affine structure with the production and

degradation processes we see in birth death systems (Definition 5.1.2). This motivates the

following definition.

Definition 5.2.2 (Scalar birth-death control affine system). Given a positive scalar control

affine system �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢, 𝑦 = ℎ(𝑥), with 𝑓, 𝑔, ℎ : R>0 → R continuously differentiable,
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and ℎ globally positive and strictly increasing. If in addition, either 𝑓 > 0 and 𝑔 < 0
globally, or 𝑓 < 0 and 𝑔 > 0 globally, we call this system a (scalar) birth-death control
affine system. In particular, we can denote the positive term as 𝑓+

, and negative term as

−𝑓−
. The system is called control in production if it can be written as �̇� = 𝑓+(𝑥)𝑢− 𝑓−(𝑥).

It has control in degradation if it can be written as �̇� = 𝑓+(𝑥)− 𝑓−(𝑥)𝑢.

Note that birth-death control affine system is both a control affine system (Definition 5.19),

and a birth-death control system (Definition 5.1.2).

Remark 5.2.3. One assumption encoded in our definition is that ℎ is strictly increasing in 𝑥.

What is actually important is that the output 𝑦 and 𝑥 have a one-to-one correspondence,

i.e. ℎ is invertible, so that the behavior of the state 𝑥 is always “observable” from the

output 𝑦. As ℎ is a one-dimensional function and continuous, this means ℎ is either strictly

increasing or strictly decreasing. As a convention, we choose ℎ to be strictly increasing,

we ℎ(𝑥) = 𝑥 as a simple default option. There are cases when choosing ℎ to be decreasing

can cause trouble in interconnections (see Example 18). It might be tempting to also ask

about monotonicity of 𝑓±
. Those do not tend to matter, it turns out, which is important to

allow multistability in 1D case. What is important is the monotonicity of a multiplicative

combination of 𝑓+
, 𝑓−

, and ℎ, which determines a sufficient condition for dissipativity (see

Lemma 5.2.8). △

Now we investigate dissipativity of a scalar birth death control affine system with respect to

the supply rate in Eq (5.17). See Section 5.6 for a more detailed introduction to dissipative

control that provides a more comprehensive perspective. As a summary, there are three

elements in what it means for a system to be dissipative. First, the supply rate. For this,

our choice is the one in Eq (5.17), with parameter 𝜀 affecting whether dissiption inequality

holds true. Second, the state region 𝒳 of 𝑥 that the system is dissipative in. For this, as we

are dealing with scalar systems with positive variables, the state region 𝒳 is often an open

interval (𝑥min, 𝑥max) in R>0. Third, the reference point (𝑥′, 𝑢′) that the system is dissipative

relative to. This is perhaps the least common or intuitive, as the reference point is often

assumed to be (0, 0) in dissipative control. However, for our need to study multistability

and capture dissipativity from reaction orders, it is crucial to include the reference points

explicitly. Hence, after we determine the supply rate 𝑠(𝜀) and some interval as the state

region 𝒳 , we still need to determine the reference points (𝑥′, 𝑢′) that are admissible, i.e.

reference points that allow our system to be dissipative with the chosen supply rate 𝑠(𝜀) in

the state interest 𝒳 .

Now we define dissipativity, which relates a system’s dynamics to supply rate via the idea
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of storage functions. We define this now. Let state region 𝒳 be an open interval in R>0.

Fix parameters 𝜀 > 0, and 𝑝 : R>0 → R>0 for the supply rate function 𝑠±
. A continuously

differentiable function 𝑉 : 𝒳 × 𝒳 ′ → R is a virtual storage function with respect to the

supply rate 𝑠±(𝑢, 𝑦; 𝜀, 𝑝) and the reference point (𝑥′, 𝑢′) ∈ R>0 × R>0 if and only if

𝑑

𝑑𝑡
𝑉 (𝑥(𝑡); 𝑥′) ≤ 𝑠±(𝑢, 𝑦; 𝜀, 𝑝), ∀𝑥 ∈ 𝒳 , 𝑢 ∈ R>0, (5.20)

where the quantification over 𝑥 ∈ 𝒳 is understood as affecting 𝑦 = ℎ(𝑥) and 𝑢 = 𝑢
𝑢′ , 𝑦 = 𝑦

𝑦′ ,

𝑦′ = ℎ(𝑥′). This inequality in Eq (5.20) is also called the dissipation inequality. If the

virtual storage function 𝑉 further satisfies that it is non-negative for all 𝑥 ∈ 𝒳 , then it is

called a storage function.

For a given system, it is dissipative with supply rate 𝑠±(𝜀, 𝑝), state region 𝒳 and reference

point (𝑥′, 𝑢′) if there exists function 𝑉 (𝑥, 𝑥′) that is a storage function, i.e. it is non-negative

over 𝑥 ∈ 𝒳 and satisfy inequality (5.20) for supply rate 𝑠±(𝜀, 𝑝) and reference point (𝑥′, 𝑢′).

Let us analyze the dissipation inequality condition in the case of control in production,

where we use 𝑠+
. Writing out the expression for

𝑑
𝑑𝑡

𝑉 and 𝑠±
, we have

𝑑

𝑑𝑡
𝑉 = �̇�

𝜕𝑉 (𝑥; 𝑥′)
𝜕𝑥

=
(︁
𝑓+(𝑥)𝑢− 𝑓−(𝑥)

)︁𝜕𝑉 (𝑥; 𝑥′)
𝜕𝑥

≤ 𝑝(𝑦)(𝑢 log 𝑦 − 𝑦𝜀 log 𝑦). (5.21)

Collect terms in 𝑢, we have(︃
−𝜕𝑉 (𝑥; 𝑥′)

𝜕𝑥
𝑓−(𝑥) + 𝑝(𝑦)𝑦𝜀 log 𝑦

)︃
+ 𝑢

(︁
𝑓+(𝑥)𝑢′ − 𝑝(𝑦) log 𝑦

)︁
≤ 0. (5.22)

Since this inequality needs to hold for all 𝑢 > 0, which corresponds to all 𝑢 = 𝑢
𝑢′ > 0, this

inequality is equivalent to the following two inequalities:

− 𝜕𝑉

𝜕𝑥
𝑓− + 𝑝(𝑦)𝑦𝜀 log 𝑦 ≤ 0,

𝜕𝑉

𝜕𝑥
𝑓+𝑢′ − 𝑝(𝑦) log 𝑦 ≤ 0. (5.23)

Since 𝑓±(𝑥) are positive, this can be expressed as bounds on derivative of 𝑉 :

1
𝑓−(𝑥)𝑝(𝑦)𝑦𝜀 log 𝑦 ≤ 𝜕𝑉 (𝑥; 𝑥′)

𝜕𝑥
≤ 1

𝑓+(𝑥)𝑢′ 𝑝(𝑦) log 𝑦. (5.24)

Therefore, the condition for the existence of a virtual storage function 𝑉 for 𝑥 ∈ 𝒳 then

becomes

𝑓+(𝑥)𝑢′

𝑓−(𝑥) 𝑦𝜀 log 𝑦 ≤ log 𝑦, 𝑥 ∈ 𝒳 . (5.25)

Note that this condition is independent of 𝑝(𝑦). In a moment we show that the same is true

for control in degradation. This means, for a fixed scalar birth-death control affine system,
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if there exists a continuously differentiable virtual storage function 𝑉𝑝(𝑥, 𝑥′) for supply

rate 𝑠±(𝜀, 𝑝) for some positive function 𝑝, then there exists continuously differentiable

virtual storage functions 𝑉𝑝′(𝑥, 𝑥′) for 𝑠±(𝜀, 𝑝′) for all positive functions 𝑝′
. At first blush

this suggests that there is little value in considering supply rates 𝑠±(𝑢, 𝑦; 𝜀, 𝑝) with 𝑝 other

than 𝑝(𝑦) ≡ 1. However we show in Section 5.3 that for suitable compositions of dissipative

scalar birth-death systems, the degree of freedom in choosing 𝑝 can be of great use in

finding Lyapunov functions for the stability of the composed system.

Remark 5.2.4. We used 𝑠+
for control in production, and 𝑠−

for control in degradation.

What happens if we switch them around? If we used 𝑠−
and asked for conditions s.t. control

in production case is dissipative w.r.t 𝑠−
, we will get a virtual storage function 𝑉 with

bounds on its derivative 𝜕𝑥𝑉 s.t. −𝑝(𝑦)𝑦𝜀 log 𝑦
𝑓− ≤ 𝜕𝑥𝑉 ≤ −𝑝(𝑦) log 𝑦

𝑓+ . Note that both upper

and lower bounds are positive for 𝑦 > 1, negative for 𝑦 < 1. Now, since 𝑉 (𝑥′; 𝑥′) = 0 by

definition, this implies 𝑉 is globally non-positive. So 𝑉 cannot be a storage function unless it

is zero everywhere. For a nontrivial 𝑉 , it is a virtual storage function (meaning it dissipates

over time) that is bounded above, with unique maximum at 𝑥′
. Therefore, for constant

input 𝑢 ≡ 𝑢′
, 𝑉 might certify 𝑥′

is unstable. Indeed, for a function 𝑉 (𝑥; 𝑥′) satisfying

𝑉 (𝑥; 𝑥′) ≤ 0 and
𝑑
𝑑𝑡

𝑉 (𝑥(𝑡); 𝑥′) ≤ 0, if for any 𝛼 < 0, sublevel sets 𝑉𝛼 := {𝑥 : 𝑉 (𝑥; 𝑥′) ≤ 𝛼}
have a positive distance from 𝑥′

, then 𝑥′
is not asymptotically stable. If in addition, for

any 𝛿 > 0, there exists 𝜈(𝛿) > 0 s.t.
𝑑
𝑑𝑡

𝑉 (𝑥(𝑡); 𝑥′) ≤ −𝜈(𝛿) < 0 for all trajectories with

‖𝑥(𝑡)− 𝑥′‖ ≥ 𝛿, and for all 𝑟 > 0, there exists 𝛼 < 0 s.t. 𝑉𝛼 contains a point ‖𝑥− 𝑥′‖ > 𝑟,

and this then certifies 𝑥′
is not Lyapunov stable either. This is similarly true if we use 𝑠+

for

control in degradation. △

Now we repeat the above for control in degradation, using 𝑠−
. The differential condition is

𝜕𝑥𝑉 (𝑓+ − 𝑓−𝑢) ≤ 𝑝(𝑦)
(︁
𝑦−𝜀 log 𝑦 − 𝑢 log 𝑦

)︁
, (5.26)

where 𝜕𝑥𝑉 is shorthand for the partial derivative of 𝑉 with respect to 𝑥. Requiring this

condition to be true for all 𝑢 > 0, we have

𝜕𝑥𝑉 𝑓+ − 𝑝(𝑦)𝑦−𝜀 log 𝑦 ≤ 0, −𝜕𝑥𝑉 𝑓−𝑢′ + 𝑝(𝑦) log 𝑦 ≤ 0. (5.27)

Again, this becomes a bound on the derivative of 𝑉 :

1
𝑓−(𝑥)𝑢′ 𝑝(𝑦) log 𝑦 ≤ 𝜕𝑥𝑉 (𝑥; 𝑥′) ≤ 1

𝑓+(𝑥)𝑝(𝑦)𝑦−𝜀 log 𝑦, (5.28)

and the condition for the existence of such virtual storage function becomes

𝑓+(𝑥)
𝑓−(𝑥)𝑢′ 𝑦

𝜀 log 𝑦 ≤ log 𝑦. (5.29)
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We summarize the above into the following proposition.

Theorem 5.2.5 (dissipation inequality). For a scalar birth-death control system, given 𝑥′
and 𝑢′

,

there exists a continuously differentiable virtual storage function in an interval 𝒳 ⊂ R>0 for supply

rate 𝑠±(𝜀, 𝑝) with some positive function 𝑦 ↦→ 𝑝(𝑦) iff it exists for supply rate 𝑠±(𝜀, 𝑝′) with any

positive function 𝑝′
iff the following is true for all 𝑥 ∈ 𝒳 :⎧⎪⎨⎪⎩

𝑓+(𝑥)𝑢′

𝑓−(𝑥) 𝑦𝜀 log 𝑦 ≤ log 𝑦, for control in production, using 𝑠+;
𝑓+(𝑥)

𝑓−(𝑥)𝑢′ 𝑦
𝜀 log 𝑦 ≤ log 𝑦, for control in degradation, using 𝑠−.

(5.30)

Furthermore, for a chosen 𝑝, the virtual storage function satisfies the following bounds on its

derivative for 𝑥 ∈ 𝒳 :⎧⎪⎨⎪⎩
𝑝(𝑦)𝑦𝜀

𝑓−(𝑥) log 𝑦 ≤ 𝜕𝑥𝑉 (𝑥; 𝑥′) ≤ 𝑝(𝑦)
𝑓+(𝑥)𝑢′ log 𝑦, for control in production, using 𝑠+;

𝑝(𝑦)
𝑓−(𝑥)𝑢′ log 𝑦 ≤ 𝜕𝑥𝑉 (𝑥; 𝑥′) ≤ 𝑝(𝑦)𝑦−𝜀

𝑓+(𝑥) log 𝑦, for control in degradation, using 𝑠−.
(5.31)

We emphasize that Theorem 5.2.5 says the choice of 𝑝 : R>0 → R>0 does not affect

dissipativity. In other words, the two parameters in supply rate, 𝜀 and 𝑝, can be considered

in a hierarchical fashion. Dissipativity with respect to 𝑠(𝜀) can be determined independent

of 𝑝, and 𝑝 can be chosen later to find a suitable virtual storage function 𝑉 . There are

important questions (such as stability of a closed-loop interconnected system) which benefit

from the ability to choose the form of 𝑝. We explore such benefits in-depth in Section 5.3.

For a given candidate virtual storage function, Eq (5.31) is equivalent to the dissipation

inequality in Eq (5.20) for this function. Eq (5.30) is equivalent to there exists a virtual

storage function. So Eq (5.30) is more appropriate for our general use of deriving whether

a system is dissipative or not. Therefore, from here on we refer to this equation as the

dissipation inequality.

The dissipation inequality (Eq (5.30)) can be used to constrain what the virtual storage

functions 𝑉 can be, as well as what pairs of reference points (𝑥′, 𝑢′) can take, if the dissipative

inequality is satisfied at 𝑥′
.

Proposition 5.2.6. For a scalar birth-death control affine system satisfying the dissipation inequality

(5.31) for 𝑥 ∈ 𝒳 at 𝑥′
, where 𝒳 ⊂ R>0 is an open interval. If 𝑥′ ∈ 𝒳 , then the following are true.

1. 𝜕𝑥𝑉 (𝑥′; 𝑥′) = 0. Recall we also have 𝑉 (𝑥′; 𝑥′) = 0 by definition.

2. 𝑢′ = 𝑓−(𝑥′)
𝑓+(𝑥′) for control in production, 𝑢′ = 𝑓+(𝑥′)

𝑓−(𝑥′) for control in degradation. This means any

(𝑥′, 𝑢′) pair where 𝑥′ ∈ 𝒳 and the dissipation inequality (5.31) is satisfied has 𝑥′
as a fixed

point with constant input 𝑢 ≡ 𝑢′
.
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3. 𝑉 (𝑥; 𝑥′) is non-negative for 𝑥 ∈ 𝒳 and equal to zero only at 𝑥 = 𝑥′
. This means if 𝑉 is a

storage function.

Proof. 1. By direct evaluation at 𝑥 = 𝑥′
, we see the upper and lower bounds of 𝜕𝑥𝑉 are

both zero.

2. Consider both 𝑥 → 𝑥′−
, approaching 𝑥′

from the negative side, and 𝑥 → 𝑥′+
,

approaching 𝑥′
from the positive side, we see the dissipation inequality (5.31) becomes

an equality. For example, if control in production, 𝑥 < 𝑥′
implies log 𝑦 < 0, since ℎ is

strictly monotonically increasing. So the inequality becomes
1

𝑓−(𝑥)𝑦
𝜀 ≥ 1

𝑓+(𝑥)𝑢′ . Taking

the limit of 𝑥 → 𝑥′−
, we obtain

1
𝑓−(𝑥′) ≥

1
𝑓+(𝑥′)𝑢′ . Similarly, in the 𝑥 > 𝑥′

case taking

the limit 𝑥→ 𝑥′+
obtains

1
𝑓−(𝑥′) ≤

1
𝑓+(𝑥′)𝑢′ . Together, we have 𝑢′ = 𝑓−(𝑥′)

𝑓+(𝑥′) .

3. For 𝑥 in the connected component of𝒳 containing 𝑥′
, 𝑥 can be reached by a continuous

path from 𝑥′
in 𝒳 . So 𝑉 (𝑥; 𝑥′) =

∫︀ 𝑥
𝑥′ 𝜕𝑥𝑉 (𝑠; 𝑥′)𝑑𝑠 ≥ 0, since 𝑉 (𝑥′; 𝑥′) = 0 by definition.

Now, since 𝜕𝑥𝑉 (𝑥; 𝑥′) < 0 for 𝑥 < 𝑥′
, and 𝜕𝑥𝑉 (𝑥; 𝑥′) > 0 for 𝑥 > 𝑥′

, we know

𝑉 (𝑥; 𝑥′) ≥ 𝑉 (𝑥′; 𝑥′) = 0 with equality only when 𝑥 = 𝑥′
.

To get some concrete experience with dissipativity and storage functions, let us look at

what the conditions (5.30) and (5.31) look like for a scalar birth death control affine systems

that are also simple.

Example 14 (simple birth death control affine systems). A scalar simple birth death system is

given by

�̇� = 𝑓+(𝑥)− 𝑓−(𝑥) = 𝑘+𝑥𝛼+ − 𝑘−𝑥𝛼−
.

We make this a control affine system by add in control input 𝑢 and output 𝑦 = ℎ(𝑥) = 𝑥𝛽

for some 𝛽 > 0.

�̇� =

⎧⎪⎨⎪⎩𝑘+𝑥𝛼+
𝑢− 𝑘−𝑥𝛼−

, if control in production;

𝑘+𝑥𝛼+ − 𝑘−𝑥𝛼−
𝑢, if control in degradation.

(5.32)

We consider 𝒳 = R>0, so 𝑥 can take all positive values. With our assumption for 𝑦, we see

𝑦 can also take all values in R>0.

As for points of reference (𝑥′, 𝑢′), for any 𝑥′ ∈ 𝒳 , by Proposition 5.2.6, 𝑢′
satisfies

(𝑢′)𝜎 𝑓+(𝑥′)
𝑓−(𝑥′) = (𝑢′)𝜎 𝑘+

𝑘− 𝑥′𝛼+−𝛼− = 1,
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where 𝜎 = 1 for control in production, 𝜎 = −1 for control in degradation. So for a given 𝑥′
,

the constant coefficients 𝑘+
and 𝑘−

determine 𝑢′
.

With this in mind, the existence condition for a virtual storage function from (5.30) becomes

the same for control in production and control in degradation:

𝑦
𝛼+−𝛼−

𝛽
+𝜀 log 𝑦 ≤ log 𝑦,

where 𝜀 ∈ R is a parameter which partially defines the supply rate associated with the

storage function. Since the above inequality holds for all 𝑦 > 0 if and only if 𝜀 ≤ −𝛼+−𝛼−

𝛽
,

we have the following result.

For 𝑥 ∈ 𝒳 = R>0, the system in Eq (5.32) is dissipative with respect to 𝑠±(𝜀) at some 𝑥′ > 0
if and only if 𝜀 ≤ −𝛼+−𝛼−

𝛽
. Also, that the system is dissipative at one 𝑥′ > 0 implies it is

dissipative for all 𝑥′ > 0.

The bounds on virtual storage functions for a chosen 𝑝(𝑦) = 𝑦𝜀0
from Eqn (5.31) is⎧⎪⎨⎪⎩

𝜏(𝑥′)
𝑥′ 𝑥(𝜀0+𝜀)𝛽−𝛼−

𝛽 log 𝑥 ≤ 𝜕𝑥𝑉 ≤ 𝜏(𝑥′)
𝑥′ 𝑥𝜀0𝛽−𝛼+

𝛽 log 𝑥, for control in production,

𝜏(𝑥′)
𝑥′ 𝑥𝜀0𝛽−𝛼−

𝛽 log 𝑥 ≤ 𝜕𝑥𝑉 ≤ 𝜏(𝑥′)
𝑥′ 𝑥(𝜀0−𝜀)𝛽−𝛼+

𝛽 log 𝑥, for control in degradation.

where we defined timescale constants 𝜏(𝑥′) := 𝑥′

𝑘−𝑥′𝛼− = 𝑥′

𝑢′𝑘+𝑥′𝛼+ for control in production,

𝜏(𝑥′) := 𝑥′

𝑘+𝑥′𝛼+ = 𝑥′

𝑢′𝑘−𝑥′𝛼− for control in degradation.

The biggest 𝜀 we can take is 𝜀 = 𝛼−−𝛼+

𝛽
. Take this choice, then the upper and lower bounds

of 𝜕𝑥𝑉 become equal. So for control in production, we have the following when 𝜀 = 𝛼−−𝛼+

𝛽
.

𝜕𝑥𝑉 = 𝜏(𝑥′)
𝑥′ 𝑥𝜀0𝛽−𝛼+

𝛽 log 𝑥.

Integrating this with 𝑉 (𝑥′; 𝑥′) = 0 yields the following storage function for control in

production. Define 𝑎 = 1 + 𝜀0𝛽 − 𝛼+
, then depending on whether 𝑎 = 0 or not, we have

𝑉 (𝑥; 𝑥′) =

⎧⎪⎨⎪⎩
𝜏(𝑥′)𝛽

𝑎2 (𝑥𝑎 log 𝑥𝑎 − 𝑥𝑎 + 1), 𝑎 = 1 + 𝜀0𝛽 − 𝛼+ ̸= 0;

(𝜏(𝑥′)𝛽) (log 𝑥)2

2 , 𝑎 = 0.
(5.33)

For the case 𝑎 = 1 + 𝜀0𝛽 − 𝛼+ = 0, we have 𝜕𝑥𝑉 = 𝜏(𝑥′)
𝑥′

1
𝑥

log 𝑥, which integrates to

𝜏(𝑥′)𝛽
2 (log 𝑥)2

. Note that we could choose 𝜀0
arbitrarily, so for any given 𝛼±

and 𝛽, we could

choose to avoid 𝑎 = 0 or make exactly 𝑎 = 0 by choosing 𝜀0
.

The storage function has the form of an entropy-like function (see Section 6.6 of [43] for a

discussion in the context of semidefinite programming). Indeed, entropy from microscopic
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Figure 5.4 Plot for storage function in Eq (5.33) with 𝑥′ = 𝑢′ = 𝛽 = 1 for various 𝜀0
. For 𝜀0 < −1, 𝑉 grows to

+∞ as 𝑥→ 0, but is finite as 𝑥→ +∞. For 𝜀0 > −1, 𝑉 is finite at 𝑥→ 0, but grows to infinity as 𝑥→ +∞.

For 𝜀0 = −1, 𝑉 grows to infinity at both limits.

states is defined as log 𝑊 , where 𝑊 is the number of microscopic states. 𝑊 often consists

of factorial factors of the form 𝑁 ! for some positive integer 𝑁 . Approximating the discrete

sum as an integral would yield log 𝑁 ! = ∑︀𝑁
𝑥=1 log 𝑥 ≈

∫︀𝑁
1 log 𝑥𝑑𝑥 = 𝑁 log 𝑁 −𝑁 + 1, with

error of order 𝑂(
√

𝑁) for large 𝑁 . An entropy-like function of the form

∑︀
𝑖 𝑥𝑖 log 𝑥𝑖

𝑥′
𝑖
− 𝑥𝑖

is also used as a Lyapunov functions for detailed balance (or more generally, complex

balanced) chemical reaction networks [44, 119].

Different 𝑎 yield storage functions 𝑉 with different boundary behaviors. If 𝑎 > 0, then

𝑉 (𝑥; 𝑥′)→ 𝜏(𝑥′)𝛽
𝑎2 as 𝑥→ 0, and 𝑉 → +∞ as 𝑥→ +∞. So 𝑉 is finite on 𝑥→ 0 boundary, but

infinite on 𝑥→ +∞ boundary. If 𝑎 < 0, then it is the other way around, that 𝑉 is finite on

the +∞ boundary, but infinite on the 0 boundary. If 𝑎 = 0, then 𝑉 goes to infinity on both

boundaries. So we can choose different 𝜀0
, which in turn change 𝑎 and thus the boundary

behavior of storage function 𝑉 , when we have different goals in mind. For example, if we

want to certify the fixed point 𝑥′
is globally stable when 𝑢 ≡ 𝑢′

, then we need 𝑉 to grow to

infinity on both boundaries, so we should choose 𝜀0 = −1, i.e. 𝑎 = 0.

The storage function 𝑉 above with 𝑥′ = 𝑢′ = 𝛽 = 1 and 𝛼+ = 0, i.e. constant or zeroth

order production, is plotted in Figure 5.4 for several different choices of 𝜀0
. △

From this example, we see that for the case of a scalar simple birth death control affine
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system, dissipativity with respect to 𝑠(𝑝, 𝜀) is independent of prefactor 𝑝(𝑦), and only

depends on how 𝜀 compares to birth-death order 𝐻 = 𝛼+ − 𝛼−
and output order 𝛽. The

storage function obtained in this case has entropy-like form, with properties adjustable by

choosing prefactor 𝑝(𝑦) in supply rate. Now we study how this generalizes to non-simple

scalar systems.

Dissipativity from birth-death order

The motivation for our study of dissipativity is to generalize our local analysis of biomolec-

ular system dynamics using birth-death orders to regional and global analysis. Therefore,

we would like to characterize a condition for a system’s dissipativity determined by the

birth-death order.

To do so, let us first inspect how to relate reaction orders to in the dissipation inequality

in Eq (5.30). We see that the dissipation inequality condition is expressed in terms of

variable 𝑦 = 𝑦
𝑦′ , instead of state 𝑥. Since reaction orders are log derivatives with respect to

𝑥, we would like to establish a clear relationship between 𝑥 and the variable 𝑧 defined as

𝑧 = log 𝑦 = log ℎ(𝑥)
ℎ(𝑥′) , with 𝑥′

and 𝑢′
held fixed.

Lemma 5.2.7 (𝑥 and 𝑧). For fixed 𝑥′, 𝑢′ > 0, define 𝑧 = log 𝑦 = log ℎ(𝑥)
ℎ(𝑥′) for 𝑥 > 0, where

ℎ is positive, continuously differentiable, and strictly increasing. Then 𝑥 can be expressed as

𝑥 = ℎ−1(𝑒𝑧ℎ(𝑥′)), and 𝑥 strictly increases in 𝑧.

Proof. The expression for 𝑥 in terms of 𝑧 is easily derived by 𝑥 = ℎ−1(𝑦) = ℎ−1(𝑦ℎ(𝑥′)) =
ℎ−1(𝑒𝑧ℎ(𝑥′)). To see 𝑥 strictly increases in 𝑧, we apply inverse function theorem to have

𝑑
𝑑𝑧

ℎ−1(𝑒𝑧ℎ(𝑥′)) = (ℎ′(ℎ−1(𝑒𝑧ℎ(𝑥′))))−1
, where ℎ′

denote the derivative of ℎ. Since ℎ is strictly

increasing, ℎ′ > 0 always, so its reciprocal is positive always.

So for fixed (𝑥′, 𝑢′), 𝑥 ∈ R>0 and 𝑧 ∈ R are strictly increasing re-parameterizations of each

other. We can view this as defining 𝑥 = 𝑥(𝑧) as a strictly increasing function of 𝑧, with

𝑥(0) = 𝑥′
. We can also view this as defining a function 𝑧 = 𝑧(𝑥) strictly increasing in 𝑥 with

𝑧(𝑥′) = 0.

Now, with this variable 𝑧, we can express the dissipation inequality in Eq (5.30) in the

following equivalent form

Eq (5.30) hold at 𝑥 > 0 ⇐⇒ 𝑧(𝑥)𝜙(𝑧(𝑥)) ≤ 𝑧(𝑥), (5.34)

where 𝜙(𝑧) is short hand for 𝜙(𝑧; 𝑢′, 𝜀) defined by

𝜙(𝑧; 𝑢′, 𝜀) = (𝑢′)𝜎 𝑓+(𝑥(𝑧))
𝑓−(𝑥(𝑧))𝑒𝜀𝑧, (5.35)



243

where 𝜎 = +1 for control in production and 𝜎 = −1 for control in degradation. We

show that inequality of the form in Eq 5.34 has a sufficient condition from log derivative

properties in the following lemma, paving the way to connect dissipation inequality with

birth-death orders.

Lemma 5.2.8. If 𝜙 : R→ R>0 satisfies 𝜙(0) = 1 and is continuously differentiable, then

𝑑 log 𝜙(𝑧)
𝑑𝑧

≤ 0, ∀𝑧 ∈ R =⇒ 𝑧𝜙(𝑧) ≤ 𝑧,∀𝑧 ∈ R.

Proof. For inequality 𝑧𝜙(𝑧) ≤ 𝑧 to hold for all 𝑧 ∈ R, it is equivalent to 𝜙(𝑧) ≥ 1 for 𝑧 < 0,

𝜙(𝑧) ≤ 1 for 𝑧 > 0. A sufficient condition for this is that 𝜙(𝑧) is monotonically decreasing

for all 𝑧 ∈ R. Since log is a monotonically increasing function, that 𝜙(𝑧) is monotonically

decreasing is equivalent to the derivative of log 𝜙(𝑧) being non-positive, i.e.
𝑑 log 𝜙(𝑧)

𝑑𝑧
≤ 0.

Note that one important assumption in this lemma is that 𝜙(0) = 1. This is valid for 𝜙 if

the reference point 𝑥′
we are interested in is in an interval 𝒳 that the system is dissipative.

From Proposition 5.2.6, if the dissipation inequality is satisfied at 𝑥′
, then the 𝜙 function

has the property 𝜙(0) = (𝑢′)𝜎 𝑓+(𝑥′)
𝑓−(𝑥′) = 1. However, if we are interested in reference points

𝑥′
outside of a dissipative region, then this does not hold. We will see later (Proposition

5.2.12) that we can also characterize dissipativity in that case.

With the sufficient condition from Lemma 5.2.8 in mind, we want to relate derivative

of log 𝜙(𝑧) to birth-death orders. Recall from Definition 5.1.1 that the production and

degradation orders are 𝐻± := 𝑑 log 𝑓±(𝑥)
𝑑 log 𝑥

, and the birth-death order is 𝐻 = 𝐻+ −𝐻−
. We

define the output order as 𝐻𝑜 := 𝑑 log ℎ(𝑥)
𝑑 log 𝑥

. We have the following lemma relating derivative

of log 𝜙 to the birth-death order.

Lemma 5.2.9. Given fixed 𝑥′, 𝑢′ > 0, and function 𝜙(𝑧) = (𝑢′)𝜎 𝑓+(𝑥(𝑧))
𝑓−(𝑥(𝑧))𝑒

𝜀𝑧
, 𝜎 ∈ {+1,−1}. We

have

𝑑 log 𝜙(𝑧)
𝑑𝑧

= 𝜂(𝑥(𝑧)) + 𝜀, (5.36)

where 𝜂 is defined in terms of the birth-death order and the output order:

𝜂(𝑥) =
(︃

𝑑 log 𝑓+(𝑥)
𝑑 log 𝑥

− 𝑑 log 𝑓−(𝑥)
𝑑 log 𝑥

)︃(︃
𝑑 log ℎ(𝑥)

𝑑 log 𝑥

)︃−1

=: 𝐻+ −𝐻−

𝐻𝑜
= 𝐻

𝐻𝑜
, (5.37)

where 𝑥 is used as shorthand for 𝑥(𝑧).
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Proof. We calculate by chain rule

𝑑 log 𝜙(𝑧)
𝑑𝑧

=𝑑𝜎 log 𝑢′

𝑑𝑧
+ 𝑑 log 𝑓+(𝑥(𝑧))

𝑑𝑧
− 𝑑 log 𝑓−(𝑥(𝑧))

𝑑𝑧
+ 𝑑𝜀𝑧

𝑑𝑧

=𝜀 + 𝑑 log 𝑥(𝑧)
𝑑𝑧

(︃
𝑑 log 𝑓+

𝑑 log 𝑥
(𝑥(𝑧))− 𝑑 log 𝑓−

𝑑 log 𝑥
(𝑥(𝑧))

)︃
.

Recall that 𝑥(𝑧) = ℎ−1(𝑦(𝑧)) = ℎ−1(𝑒𝑧ℎ(𝑥′)). We note a few useful facts. If we denote ℎ′
as

the derivative of function ℎ, then (ℎ−1)′(𝑦) = 1
ℎ′(𝑥) where 𝑥 = ℎ−1(𝑦). Also, the derivative

of 𝑦 with respect to 𝑧 is just 𝑦 itself:
𝑑𝑦(𝑧)

𝑑𝑧
= 𝑑𝑒𝑧ℎ(𝑥′)

𝑑𝑧
= 𝑒𝑧ℎ(𝑥′) = 𝑦(𝑧). Lastly, log derivative

and derivative are related by
𝑑 log ℎ(𝑥)

𝑑 log 𝑥
= ℎ(𝑥)

𝑥
𝑑ℎ(𝑥)

𝑑𝑥
= 𝑦

𝑥
𝑑ℎ(𝑥)

𝑑𝑥
. Equipped with these facts, we

calculate

𝑑 log 𝑥(𝑧)
𝑑𝑧

= 1
𝑥

𝑑ℎ−1(𝑦(𝑧))
𝑑𝑧

= 1
𝑥

(︃
𝑑ℎ(𝑥)

𝑑𝑥

)︃−1
𝑑𝑦(𝑧)

𝑑𝑧
= 𝑦

𝑥

(︃
𝑑ℎ(𝑥)

𝑑𝑥

)︃−1

=
(︃

𝑑 log ℎ(𝑥)
𝑑 log 𝑥

)︃−1

,

where we omitted explicit dependence of 𝑥 and 𝑦 on 𝑧 when not necessary.

Put these two lemma together, we obtain a sufficient point-wise condition for the dissipation

inequality to be satisfied based on birth-death order. For a scalar birth-death control

affine system (Definition 5.2.2), if the dissipation inequality (Eq (5.30)) is satisfied at some

reference point 𝑥′
, then for any point 𝑥, point 𝑥 > 0 if

𝜂(𝑥) ≤ −𝜀. (5.38)

This concludes our effort in translating the dissipation inequality characterizing dissipativity

into conditions on reaction orders in the scalar case. The point-wise condition is based on

function 𝜂(𝑥), which is in turn calculated from birth-death orders. This allows us to find

regions where we have some dissipativity condition satisfied. For these regions, we can

then use dissipative conditions to constrain the system’s dynamics on them. This is what

we study next.

Dissipative regions and regional stability and multistability

We have formulated a nice point-wise sufficient condition for a point 𝑥 to satisfy dissipation

inequality with respect to supply rate 𝑠(𝜀) in terms of a function 𝜂 based on birth-death

orders. This condition can then define dissipative regions that we can say something about

a system’s dynamics in them.

Definition 5.2.10 (Dissipative region). Given a scalar birth-death system with control in

either production or degradation (Definition 5.2.2), let 𝜂 be given by (5.37). For 𝜀 > 0, the

𝜀-dissipative region of this system is the set 𝒳𝜀 = {𝑥 : 𝜂(𝑥) ≤ −𝜀}.
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Remark 5.2.11. It should be noted that 𝜂(𝑥) ≤ −𝜀, the condition used to define the

dissipative regions𝒳𝜀, is independent of 𝑥′
and only depends on 𝑥. This is rather surprising

as the dissipation inequality depends on both 𝑥 and 𝑥′
. The reason 𝑥′

dependence

disappears is that the condition 𝜂(𝑥) ≤ −𝜀 is a sufficient condition for the dissipation

inequality (5.30) using Lemma 5.2.8, involving log derivatives. Factors involving 𝑢′
and

𝑥′
disappears in log derivatives because log derivatives only depend on fold change, not

exact magnitude. Again, the intuition is that the log derivative of 𝑓(𝑥) = 𝑘𝑥𝛼
with respect

to 𝑥 yields 𝛼, independent of 𝑘. This property allows us to characterize dissipative regions

without knowing what reference points we want to study. For example, instead of fixing all

the parameters in a system, calculate the fixed point, and then ask whether this fixed point

is stable; we can characterize dissipative regions without knowing any of the parameters,

and specify under what conditions will a fixed point exist in a dissipative region, therefore

stable. This mindset naturally integrates system design with system analysis. △

So the dissipative region 𝒳𝜀 is defined independent of reference points (𝑥′, 𝑢′). But the

definition of dissipativity depends on (𝑥′, 𝑢′). The natural next question to characterize

system dissipativity then is, if we take 𝑠(𝜀) as the supply rate, an open interval (𝑥min, 𝑥max)
contained in 𝒳𝜀 as the state region, then what are the reference points (𝑥′, 𝑢′) that are

admissible? Recall that a reference point is admissible if the system can be dissipative with

this reference point while holding the supply rate and state region fixed as chosen. One

admissible case we are already familiar with from Proposition 5.2.6 is that (𝑥′, 𝑢′) satisfies

𝑥′ ∈ 𝒳𝜀 and 𝜙(0, 𝑢′) = 1, with the latter condition equivalent to 𝑥′
is a fixed point for

constant input 𝑢 ≡ 𝑢′
. In this case, the system is dissipative with respect to 𝑠(𝜀) at (𝑥′, 𝑢′)

in any open interval subset of 𝒳𝜀 that contains 𝑥′
. We make this formal in the following

proposition and include other cases. It turns out, the admissible reference points (𝑥′, 𝑢′)
for state region that is an open interval in 𝒳𝜀 can have 𝑥′

outside of the state region. This

is because 𝒳𝜀 is defined via the the sufficient condition from Lemma 5.2.8 which yield

monotonicity.

Proposition 5.2.12 (Dissipativity in a region). Given a scalar birth-death control affine system

(Definition 5.2.2) with 𝜀-dissipative region 𝒳𝜀. Fix 𝑠(𝑢, 𝑦; 𝜀) as the supply rate, and an open interval

(𝑥min, 𝑥max) subset of 𝒳𝜀 as the state region. Take 𝜙(𝑧; 𝑢′, 𝜀) as the function defined in Eq (5.35). A

reference point (𝑥′, 𝑢′) is admissible, i.e. the system is dissipative in the state region (𝑥min, 𝑥max)
with the fixed supply rate 𝑠(𝜀) and this reference point, if (𝑥′, 𝑢′) satisfies one of the following
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conditions. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥′ ∈ (𝑥min, 𝑥max), 𝜙(𝑧(𝑥′); 𝑢′, 𝜀) = 𝜙(0; 𝑢′) = 1;

𝑥′ ≥ 𝑥max, 𝜙(𝑧(𝑥max); 𝑢′, 𝜀) ≥ 1;

𝑥′ ≤ 𝑥min, 𝜙(𝑧(𝑥min); 𝑢′, 𝜀) ≤ 1.

(5.39)

Proof. We consider 𝜎 = +1, the control in production case, as control in degradation is

entirely analogous.

For 𝑥′ ∈ (𝑥min, 𝑥max), as shown in Proposition 5.2.6, it is necessary to choose 𝑢′ = 𝑓+(𝑥′)
𝑓−(𝑥′) to

satisfy dissipation inequality (Eq (5.30)). For this choice of 𝑢′
, we know 𝜙(𝑧) = 𝑢′ 𝑓+(𝑥(𝑧))

𝑓−(𝑥(𝑧))𝑒
𝜀𝑧

satisfies 𝜙(0) = 1, so it satisfies the assumptions of Lemma 5.2.8. Therefore 𝜕𝑧 log 𝜙(𝑧) ≤ 0
is a sufficient condition for the dissipation inequality in Eq (5.30). Now 𝜕𝑧 log 𝜙(𝑧) ≤ 0 is

equivalent to 𝜂(𝑥) ≤ −𝜀, satisfied in 𝒳𝜀.

Now we consider 𝑥′ ≥ 𝑥max. Since ℎ is strictly increasing, ℎ(𝑥′) > ℎ(𝑥max), so log 𝑦 < 0.

So we can cancel log 𝑦 < 0 on both sides of dissipation inequality (5.30) to arrive at an

equivalent condition,
𝑓+(𝑥)
𝑓−(𝑥)

(︁
ℎ(𝑥)
ℎ(𝑥′)

)︁𝜀
𝑢′ ≥ 1. This is equivalent to 𝜙(𝑧(𝑥)) ≥ 1 in terms of

the variable 𝑧. For any 𝑥 ∈ (𝑥min, 𝑥max), we have 𝜂(𝑥) ≤ −𝜀 < 0, i.e. 𝜕𝑧 log 𝜙(𝑧) ≤ 0, so 𝜙

is decreasing in 𝑧 in this interval, which also means it is decreasing in 𝑥 in this interval

(Lemma 5.2.7). Therefore an equivalent condition for 𝜙(𝑧(𝑥)) ≥ 1 for all 𝑥 ∈ (𝑥min, 𝑥max) is

that 𝜙(𝑧(𝑥max)) ≥ 1.

The case for 𝑥′ ≤ 𝑥min is similar.

From this proposition, we see that once we find the dissipative region 𝒳𝜀 of a system and

choose an interval in it as the state region, there are many admissible reference points

(𝑥′, 𝑢′) that the system is dissipative to. These reference points separates into two cases

by 𝑥′
is in the dissipative region or not. This in turn dictates different dynamic behaviors

in the state region when the input is constant 𝑢 ≡ 𝑢′
. As we show below, if 𝑥′

is in the

dissipative region, then the storage function certifies the stability of 𝑥′
in an interval. If 𝑥′

is

outside of the dissipative region, then the storage function certifies the system will evolve

out of the dissipative region towards 𝑥′
.

Proposition 5.2.13 (Dynamics from dissipative region). For a scalar birth-death control affine

system with 𝜀-dissipative region 𝒳𝜀 with 𝜀 > 0, for any open interval (𝑥min, 𝑥max) ⊂ 𝒳𝜀, the

following are true. Take function 𝜙(𝑧; 𝑢′, 𝜀) defined in Eq 5.35.

1. For (𝑥′, 𝑢′) satisfying 𝑥′ ∈ (𝑥min, 𝑥max) and 𝜙(0; 𝑢′, 𝜀) = 1, for constant input 𝑢 ≡ 𝑢′
, any

trajectory starting in (𝑥min, 𝑥max) asymptotically converges to 𝑥′
.
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2. For (𝑥′, 𝑢′) satisfying 𝑥′ ≥ 𝑥max and 𝜙(𝑧(𝑥max); 𝑢′, 𝜀) ≥ 1, for constant input 𝑢 ≡ 𝑢′
, any

trajectory starting in (𝑥min, 𝑥max) will leave 𝒳 through 𝑥max in finite time.

3. For (𝑥′, 𝑢′) satisfying 𝑥′ ≤ 𝑥min and 𝜙(𝑧(𝑥min; 𝑢′) ≤ 1, for constant input 𝑢 ≡ 𝑢′
, any

trajectory starting in (𝑥min, 𝑥max) will leave 𝒳 through 𝑥min in finite time.

Proof. By Proposition 5.2.12, dissipation inequality Eq 5.30 is satisfied for all 𝑥 ∈ (𝑥min, 𝑥max)
with these reference points (𝑥′, 𝑢′). So there exists a virtual storage function 𝑉 (𝑥; 𝑥′) such

that
𝑑
𝑑𝑡

𝑉 (𝑥(𝑡), 𝑥′) ≤ 𝑠(𝑢, 𝑦; 𝜀) ≤ 0 for all 𝑥 ∈ (𝑥min, 𝑥max) and 𝑢 > 0. This implies different

dynamics for each case.

For case 1, since 𝑥′
is in the state region, by Proposition 5.2.6, the virtual storage function

𝑉 is a storage function, i.e. globally non-negative with 𝑉 (𝑥; 𝑥′) = 0 only when 𝑥 = 𝑥′
. If

the current state 𝑥(𝑡) of the system is inside (𝑥min, 𝑥max), then 𝑉 will decrease over time

converging to the unique lower bound at 𝑥′
. Indeed,

𝑑
𝑑𝑡

𝑉 (𝑥(𝑡), 𝑥′) ≤ 𝑠(1, 𝑦; 𝜀) ≤ 0, with the

equality achieved only when 𝑥 = 𝑥′
for both inequalities, since ℎ is invertible.

For case 2, 𝑥′ ≥ 𝑥max, then 𝑉 (𝑥; 𝑥′) is still be defined for 𝑥 ∈ (𝑥min, 𝑥max), but it involves

complications. By definition, 𝑉 (𝑥′; 𝑥′) = 0, but since 𝑥′
may not be connected to the state

region (𝑥min, 𝑥max), we cannot find the value of 𝑉 (𝑥; 𝑥′) by integrating from 𝑥 = 𝑥′
. On the

other hand, since 𝑦 < 1 for all 𝑥 ∈ (𝑥min, 𝑥max) because ℎ is strictly increasing, by inequality

(5.31), we know 𝜕𝑥𝑉 (𝑥; 𝑥′) < 0 for 𝑥 ∈ (𝑥min, 𝑥max). So starting from 𝑥max, we can find

values of 𝑉 (𝑥; 𝑥′) for all 𝑥 ∈ (𝑥min, 𝑥max) by integrating, which implies 𝑉 (𝑥; 𝑥′) > 𝑉 (𝑥max; 𝑥′)
for all 𝑥 ∈ (𝑥min, 𝑥max). Therefore, 𝑉 decreases over time on the interval (𝑥min, 𝑥max)
means the state trajectory goes toward 𝑥max. Indeed, for constant input 𝑢 ≡ 𝑢′

, we have

𝑑
𝑑𝑡

𝑉 (𝑥(𝑡); 𝑥′) ≤ 𝑠(1, 𝑦; 𝜀) ≤ 𝑠(1, ℎ(𝑥max)
ℎ(𝑥′) ; 𝜀) < 0. This implies any trajectory 𝑥(𝑡) starting in

(𝑥min, 𝑥max) will go toward 𝑥max. Furthermore, (𝑥(𝑡), 𝑥max) is compact and
𝑑
𝑑𝑡

𝑉 is bounded

away from zero with a margin, so 𝑥(𝑡) will reach and go beyond 𝑥max in finite time. The

case for 𝑥′ ≤ 𝑥min is similar.

In summary, this dissipative analysis framework based on birth-death orders describes all

dynamic behaviors a system can have in terms of two things, the 𝜀-dissipative region and

admissible reference points. Given a scalar birth death system, we have split all parameters’

effect on system dynamics into two parts. One part is parameters’ influence on the topology

of 𝜀-dissipative regions 𝒳𝜀. The number of connected components could change, varying

from mono-stability to multi-stability. The other part is parameters’ influence on admissible

reference points (𝑥′, 𝑢′), so that dissipativity certify stability of 𝑥′
in 𝒳𝜀 or certify finite time

escape from 𝒳𝜀 towards 𝑥′
outside of 𝒳𝜀. Let us see how this plays out in a few examples.
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Figure 5.5 Plot for Example 15. �̇� = 𝑓+(𝑥)𝑢′ − 𝑓−(𝑥) (blue) is the time derivative of this control in

production system. 𝜂(𝑥) (orange) is based on birth-death order, which determines the dissipative region

𝒳 = {𝑥 : 𝜂(𝑥) < 0} (orange region) for infinitesimal dissipativity, i.e. 𝜀 → 0+
. Solid blue circle indicates

stable fixed point. Empty blue circle indicates unstable fixed point. (Left) The case when the reference point

(𝑥′, 𝑢′) satisfy 𝑥′ ∈ 𝒳 , so dissipativity certifies stability of 𝑥′
in 𝒳 . (Left) The case when the reference point

(𝑥′, 𝑢′) satisfy 𝑥′ > 𝒳 , so dissipativity certifies system trajectory will leave 𝒳 in finite time. Parameters are

𝛾 = 1, 𝛼 = 2, and 𝑢′ = 1/3 for left, and 𝑢′ = 0.4 for right.

Example 15 (two fixed points, one stable). We consider a scalar birth-death system with

control in production �̇� = (𝛼 + 𝑥2)𝑢 − 𝛾𝑥, ℎ(𝑥) = 𝑥, with constant coefficients 𝛼, 𝛾 > 0.

Here 𝑓−(𝑥) = −𝛾𝑥 and 𝑓+(𝑥) = 𝛼 + 𝑥2
. See Figure 5.5 for graphical illustration of this

system and the following analysis.

Let us first inspect the dissipative regions determined by birth-death orders. The production,

degradation, and output orders are 𝐻+(𝑥) = 2 𝑥2

𝛼+𝑥2 ∈ (0, 2) increasing in 𝑥, and 𝐻− =
𝐻𝑜 = 1. Therefore 𝜂(𝑥) = 𝐻+(𝑥) − 1 ∈ (−1, 1), increasing in 𝑥. So without any further

analysis, we know the 𝜀-dissipative region 𝒳𝜀 for 𝜀 ∈ (0, 1) will be an open interval around

small 𝑥. Indeed, the condition 𝜂(𝑥) ≤ −𝜖 defining 𝜀-dissipative region then is 𝑥2 ≤ 1−𝜀
1+𝜀

𝛼,

so we have 𝒳𝜀 = (0,
√︁

1−𝜀
1+𝜀

𝛼). We see that the topology of 𝒳𝜀 does not change with respect

to parameters. It is always an open interval. Let us consider the limit 𝜀→ 0 corresponding

to supply rate with infinitesimally small 𝜀 > 0. Then the corresponding dissipative region,

which is also our choice of the state region for dissipativity, is 𝒳 = (0,
√

𝛼).

Now we find admissible reference points. For (𝑥′, 𝑢′) such that 𝑥′ ∈ 𝒳 and 𝜙(0, 𝑢′) =
𝑢′ 𝑓+(𝑥′)

𝑓−(𝑥′) = 𝑢′ 𝛼+(𝑥′)2

𝛾𝑥′ = 1, i.e. 𝑢′ = 𝛾𝑥′

𝛼+(𝑥′)2 , our theory states that for constant input 𝑢 ≡ 𝑢′
,

the point 𝑥′
is stable in the interval 𝒳 . The expression of 𝑢′

in terms of 𝑥′
increases in

𝑥′
, so in order for 𝑥′

to be in 𝒳 , i.e. 𝑥′ <
√

𝛼, we need 𝑢′ < 𝛾
2
√

𝛼
. Another we to see this

is by solving 𝑥′
in terms of 𝑢′

, which has real solution if 𝑢′ < 𝛾
2
√

𝛼
, and the solution is

𝑥′
±(𝑢′) = 1

2

(︁
𝛾
𝑢′ ±

√︁
( 𝛾

𝑢′ )2 − 4𝛼
)︁
, with 𝑥′

− <
√

𝛼 always. So we can view in this both ways,

either we begin with 𝑥′
in 𝒳 and find admissible 𝑢′(𝑥′) satisfy 𝑢′(𝑥′) < 𝛾

2
√

𝛼
, or we begin

with 𝑢′ < 𝛾
2
√

𝛼
and find 𝑥′

−(𝑢′) ∈ 𝒳 is admissible. The conclusion is the same, 𝑥′
is a stable
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Figure 5.6 Plot for Example 16. �̇� = 𝑓+(𝑥)𝑢′− 𝑓−(𝑥) (blue) is the time derivative of this control in production

system for constant input 𝑢 ≡ 𝑢′
. Curves with lighter blue color corresponds to �̇� with smaller 𝑢′

. 𝜂(𝑥)
(orange) is based on birth-death order, which determines the dissipative region 𝒳 = {𝑥 : 𝜂(𝑥) < 0} (orange

region) for infinitesimal dissipativity, i.e. 𝜀→ 0+
. (Left) The case when 𝛼 is small, so 𝒳 has two connected

components. (Right) The case when 𝛼 is large, so 𝒳 has one connected component. Parameters are 𝛼 = 0.05,

𝛾 = 10, 𝑢′ ∈ {20, 18.5, 17} for left, and 𝛼 = 0.125, 𝛾 = 10, 𝑢′ ∈ {17.5, 16, 14.5} for right.

fixed point in 𝒳 for constant input 𝑢 ≡ 𝑢′
with a storage function certifying this. We see

that varying parameters 𝛼 and 𝛾 change the location of reference point (𝑥′, 𝑢′) and the

length of state region 𝒳 , but not the qualitative behavior.

For (𝑥′, 𝑢′) with 𝑥′ ≥ 𝑥max =
√

𝛼 and 𝜙(𝑧(𝑥max); 𝑢′, 𝜀 = 0) ≥ 1, our theory states that for

constant input 𝑢 ≡ 𝑢′
, any trajectory starting in 𝒳 = (0,

√
𝛼) would leave through its upper

limit

√
𝛼. The condition for 𝑢′

to be admissible in this case is 𝑢′ ≥ 𝛾
2
√

𝛼
. This corresponds to

there being no fixed point.

So we see that admissible reference points (𝑥′, 𝑢′) for state region 𝒳 = (0,
√

𝛼) has two

cases. (1) 𝑥′ <
√

𝛼 is a stable fixed point for constant input 𝑢 ≡ 𝑢′
satisfying 𝑢′ < 𝛾

2
√

𝛼
. (2)

𝑢′ > 𝛾
2
√

𝛼
is too large so the system has no fixed point, and reference point 𝑥′ ≥

√
𝛼 can be

used to capture that system trajectory would leave the dissipative region 𝒳 = (0,
√

𝛼) from

√
𝛼 in finite time. △

Example 16 (bistable). Consider �̇� = 𝑓+(𝑥)𝑢 − 𝑓−(𝑥) =
(︁
𝛼 + 𝑥2

1+𝑥2

)︁
𝑢 − 𝛾𝑥, a scalar birth-

death system with control in production, and use ℎ(𝑥) = 𝑥, where 𝛾, 𝛼 > 0 are positive

coefficients. See Figure 5.6 for a graphical illustration of this system and the analysis below.

The birth-death orders are 𝐻− = 𝐻𝑜 = 1, while

𝐻+(𝑥) = 2
⎛⎝ 𝑥2

1+𝑥2

𝛼 + 𝑥2

1+𝑥2

⎞⎠(︂ 1
1 + 𝑥2

)︂
∈ (0, 2),

increasing in 𝑥 and then decreasing in 𝑥. So 𝜂(𝑥) = 𝐻+(𝑥)− 1 ∈ (−1, 1), first increasing in

𝑥 then decreasing in 𝑥. Let 𝒳 := {𝑥 : 𝜂(𝑥) < 0} be the dissipative region for infinitesimal
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𝜀→ 0+
. Then 𝒳 has two cases. When 𝛼 is small 𝛼≪ 1, then as 𝑥 increases, 𝜂(𝑥) begins at

−1, increases to a positive value, then decreases back to −1. So 𝒳 has two disconnected

regions. When 𝛼 is large, then 𝜂(𝑥) never reach above 0, so 𝒳 is the whole positive line. In

the small 𝛼 case, there can be two stable fixed points, one in each of the two connected

components of dissipative region 𝒳 . In the large 𝛼 case, there is only one fixed point that

is globally stable. All these conclusions are automatically certified with a storage function

by integration from Eq (5.31).

In the large 𝛼 case, 𝒳 is the full positive real line, and therefore any reference point is a

globally stable fixed point. This excludes the possibility of multiple fixed points. In the

small 𝛼 case, 𝒳 has two components, so if there are two possible reference points 𝑥′
1 and 𝑥′

2

for the same 𝑢′
, each in one of the component of 𝒳 , then we have bistability, and each fixed

point has a storage function certifying its regional stability. However, it is still possible

that there is only one fixed point. For example, see the left of Figure 5.6 for �̇� with the

lightest blue color, corresponding to smaller 𝑢′
. In this case we see although 𝒳 has the

same two components (this is independent of 𝑢′
), the system has shifted from bistability

to monostability, and dissipativity in 𝒳 certifies the fixed point 𝑥′
is stable in the left

component, and trajectories in the right component will go toward left direction. But the

certificate from the storage function is not guaranteed to be valid in the middle segment not

covered by 𝒳 . This is the sacrifice we made by taking a sufficient condition for dissipativity

based on monotonicity and birth-death orders. So our approach has the advantage that

𝜂(𝑥) is easy to obtain, does not depend on all parameters (only 𝛼 here), and give strong

constraints on system behavior in the dissipative region 𝒳𝜀. But the behaviors close to the

intersection of parameter regimes could be too complicated to be fully captured by the

dissipative region, such as the middle segment not included in 𝒳 for the case with small

𝛼 but adjusting 𝑢′
transitions between mono- and bi-stability. This trading exactness for

robustness and simplicity or tractability is a common theme of analysis based on reaction

orders. △

System from self-connection

So far when we want to study the dynamical properties such as stability of a system using

dissipative control, we take the control input to be constant 𝑢 ≡ 𝑢′
to make it a closed

system. An alternative way is to take a control system and connect its output 𝑦 with its

input 𝑢 to obtain a closed system. This works as a prelude to general interconnections.

For scalar systems �̇� = 𝑓(𝑥)+𝑔(𝑥)𝑢, 𝑦 = ℎ(𝑥), we could have self-connection log 𝑢 = 𝑀 log 𝑦

where 𝑀 ∈ R, resulting in closed loop system �̇� = 𝑓(𝑥) + 𝑔(𝑥)ℎ(𝑥)𝑀
. With connection, a
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major difference is that the interpretation of 𝑢 is different. Previously, we consider 𝑢 as an

external input to be specified. Now, by self-connection, we have a particular specification

that 𝑢 = 𝑦𝑀 = ℎ(𝑥)𝑀
. So, conditions on (𝑥′, 𝑢′) pairs now become conditions on (𝑥′, ℎ(𝑥′)𝑀),

so a condition solely on 𝑥′
.

If 𝑉 (𝑥; 𝑥′) is a virtual storage function with respect to supply rate 𝑠(𝑢, 𝑦; 𝜀, 𝑝), then (5.20)

holds for all 𝑢 > 0. By substitution 𝑢← 𝑦𝑀
and that ℎ is strictly increasing, for all 𝑢 > 0

means for all 𝑦 > 0 or for all 𝑥 > 0, so we have the following as the dissipation inequality

in this case.

𝑑

𝑑𝑡
𝑉 ≤ 𝑠(𝑦𝑀 , 𝑦; 𝜀, 𝑝) = 𝑝(𝑦)(𝑦𝑀 − 𝑦𝜀) log 𝑦 ∀𝑥 > 0. (5.40)

If 𝑉 (𝑥; 𝑥′) is a storage function with zero only when 𝑥 = 𝑥′
and if

𝑑
𝑑𝑡

𝑉 = 𝑝(𝑦)(𝑦𝑀−𝑦𝜀) log 𝑦 ≤
0 for all 𝑥 > 0 with zero only when 𝑥 = 𝑥′

, then 𝑉 (𝑥; 𝑥′) is a Lyapunov function for the

closed-loop system �̇� = 𝑓(𝑥) + 𝑔(𝑥)ℎ(𝑥)𝑀
. A sufficient condition for

𝑑
𝑑𝑡

𝑉 ≤ 0 is 𝜀 ≥ 𝑀 ,

although this may not be necessary since 𝑦 could be bounded below 1, for example.

Therefore we could conclude that, given an open interval𝒳 ⊂ 𝒳𝜀, 𝜀 ≥𝑀 , and an admissible

reference point 𝑥′
such that (𝑥′, 𝑢′ = ℎ(𝑥′)𝑀), i.e. satisfies conditions of Proposition 5.2.13,

the corresponding conclusions on system dynamics in 𝒳 hold.

Example 17 (two fixed points, one stable, by self-connection). Consider scalar birth-death

control affine system �̇� = 𝑓+(𝑥)𝑢 − 𝑓−(𝑥) = 𝑢 − 𝛾𝑥, where 𝛾 > 0 is a parameter. We

consider output 𝑦 = ℎ(𝑥) = 𝛼 + 𝑥2
, with 𝛼 > 0 a parameter, and self-connection 𝑀 = 1 so

that 𝑢 = 𝑦. Then the resulting closed system is �̇� = (𝛼 + 𝑥2)𝑢− 𝛾𝑥, exactly the same as the

system studied in Example 15.

The birth-death orders of the open system are 𝐻+ = 0, 𝐻− = 1, and 𝐻𝑜 = 2 𝑥2

𝛼+𝑥2 . So

𝜂(𝑥) = −1
𝐻𝑜 = −1

2( 𝛼
𝑥2−1). We take the smallest 𝜀 needed to guarantee stability, i.e. 𝜀 = 𝑀 = 1,

and find 𝜂(𝑥) ≤ −𝑀 when
𝛼
𝑥2 ≤ 1. So again we obtain the stable region 𝒳 = [0,

√
𝛼),

same as in Example 15. However, it should be noted that the interpretation of this result

is different from that in Example 15. The result here certifies that if there exists 𝑥′ > 0
s.t. 𝛼 + 𝑥′2 − 𝛾𝑥′ = 0, and 𝑥′

is in [0,
√

𝛼), then 𝑥′
is stable in this region. The solution to

𝛼 + 𝑥′2 − 𝛾𝑥′
is 𝑥′

± = 𝛾
2 ±

√︁
(𝛾

2 )2 − 𝛼 if (𝛾
2 )2 − 𝛼 > 0. 𝑥′

− is always in [0,
√

𝛼). Note that there

is no 𝑢′
involved here, in contrast with Example 15. △

We can also use self-connection as a tool to come back and inspect our assumption that ℎ is

increasing in 𝑥 in the definition of scalar birth-death control affine systems. The following

example illustrates what might go wrong if we use ℎ that is decreasing in 𝑥 instead of

increasing.
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Example 18 (self-inhibition). Consider the closed-loop system �̇� = 1
1+𝑥
− 𝑥. We can analyze

stability of this system using our techniques by imagining we obtain this system from

suitable self-connection of an open-loop system. Here are three such possibilities:

1. If 𝑔(𝑥) = 1/(1 + 𝑥), 𝑓(𝑥) = −𝑥, ℎ(𝑥) = 𝑥, and 𝑢 ≡ 1 (𝑀 = 0), then 𝜂(𝑥) = − 𝑥
1+𝑥
− 1.

Therefore 𝜂(𝑥) < −1 < −𝑀 = 0 for all 𝑥, which says the fixed point is globally stable.

2. If we write �̇� = 𝑢−𝑥, 𝑦 = 1/(1 + 𝑥), so that the system is formed by closed loop 𝑢 = 𝑦

(𝑀 = 1), we see that 𝜂(𝑥) = 1 + 𝑥−1
. For self-connection we need 𝜂(𝑥) < −𝑀 , but we

see this is impossible.

3. If instead we choose �̇� = 𝑢− 𝑥, 𝑦 = 1 + 𝑥, and self-connection 𝑢 = 1/𝑦 (i.e. 𝑀 = −1),

then 𝜂(𝑥) = − 𝑥
1+𝑥

and the condition is 𝜂(𝑥) < −𝑀 = 1, which is the same as the

condition without using self-connection.

This example highlights the need to choose 𝑦 = ℎ(𝑥) s.t. its monotonicity is in the right

direction. Often, we should choose ℎ to be strictly increasing in 𝑥. △

To better understand how dissipativity based on birth-death orders encoded in function

𝜂(𝑥) capture dynamics of the system, let us relate 𝜂 to necessary and sufficient conditions

of local stability in the scalar case.

Example 19 (1d local stability). Consider control in production (control in degradation is

similar), i.e. �̇� = 𝑓+(𝑥)𝑢−𝑓−(𝑥), 𝑦 = ℎ(𝑥), where 𝑓±(𝑥), ℎ(𝑥) > 0 for all 𝑥 and ℎ : R>0 → R>0

is strictly monotonically increasing in 𝑥. Consider self-connection 𝑢 = 𝑦𝑀
, so the closed

loop system is �̇� = 𝑓+(𝑥)ℎ(𝑥)𝑀 − 𝑓−(𝑥). Then at a fixed point 𝑥′
we have 𝑓+(𝑥′)ℎ(𝑥′)𝑀 =

𝑓−(𝑥′) := 𝑅. Since this is a scalar system, 𝑥′
is stable iff

𝜕𝑓+ℎ𝑀

𝜕𝑥
(𝑥′) − 𝜕𝑓−

𝜕𝑥
(𝑥′) < 0. Log

derivative and derivative are related by
𝜕 log 𝑓−

𝜕 log 𝑥
(𝑥′) = 𝜕𝑓−

𝜕𝑥
(𝑥′) 𝑥′

𝑓−(𝑥′) = 𝜕𝑓−

𝜕𝑥
(𝑥′)𝜏 , where

𝜏 := 𝑥′

𝑅
> 0. Therefore, 𝑥′

is a stable fixed point iff
𝜕 log 𝑓+ℎ𝑀

𝜕 log 𝑥
(𝑥′) − 𝜕 log 𝑓−

𝜕 log 𝑥
(𝑥′) < 0. This

condition is equivalent to
𝜕 log 𝑓+ℎ𝑀 /𝑓−

𝜕 log 𝑥
= 𝜕 log 𝑓+

𝜕 log 𝑥
+ 𝑀 𝜕 log ℎ

𝜕 log 𝑥
− 𝜕 log 𝑓−

𝜕 log 𝑥
< 0. Since ℎ is strictly

increasing, its log derivative is positive. Multiplying both sides by

(︁
𝜕 log ℎ
𝜕 log 𝑥

(𝑥′)
)︁−1

, we obtain

that the condition is equivalent to

(︁
𝜕 log 𝑓+

𝜕 log 𝑥
(𝑥′)− 𝜕 log 𝑓−

𝜕 log 𝑥
(𝑥′)

)︁(︁
𝜕 log ℎ
𝜕 log 𝑥

(𝑥′)
)︁−1

< −𝑀 . This is

exactly the condition 𝜂(𝑥′) < −𝑀 . So we see for a scalar birth death control system,

the condition based on 𝜂(𝑥′) is a necessary and sufficient condition for 𝑥′
to be locally

stable. △

This example highlights that 𝜂 can be considered both as a function of 𝑥′
and a function of

𝑥. As a function of 𝑥′
, it dictates whether the system is dissipative at 𝑥′

. As a function of
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Figure 5.7 Feedback diagram for multiplicative self-connection of a scalar system. 𝐺 represents the input-

output scalar system, 𝑀 is the feedback gain. Variables are all in log scale, so that the interconnections are

multiplicative.

𝑥, it dictates whether a trajectory starting at 𝑥(0) = 𝑥 will decrease according to a storage

function. This is exactly our two ways of using the dissipative region to capture system

dynamics in Proposition 5.2.13. If 𝑥′
is inside the dissipative region, then we are treating 𝜂

as a function of 𝑥′
. If 𝑥 is outside the dissipative region, then we are treating 𝜂 as a function

of 𝑥(0) inside the region.

Self-connection as static feedback

We can also view self-connection as feedback interconnection for control systems (Figure

5.7). The output 𝑦 is fed-back to the input 𝑢 of the system, so that the new external input is

now 𝑢𝑒 and the input into the scalar control system are related by log 𝑢 = log 𝑢𝑒 + 𝑀 log 𝑦.

From this perspective, the feedback interconnection creates a new input-output system

from the original one, and the new system may have better dissipative properties.

The dissipation inequality for the new system becomes

𝑑

𝑑𝑡
𝑉 ≤ 𝑠(𝑢𝑒𝑦

𝑀 , 𝑦; 𝜀, 𝑝) = 𝑝(𝑦)(𝑢𝑒𝑦
𝑀 − 𝑦𝜀) log 𝑦, ∀𝑢𝑒 > 0. (5.41)

Since the positive faction 𝑝(𝑦) in front does not influence the dissipativity condition for

existence of a storage function, we can factor out 𝑦𝑀
to obtain

𝑑

𝑑𝑡
𝑉 ≤ 𝑝(𝑦)(𝑢𝑒 − 𝑦𝜀−𝑀) log 𝑦.

So any 𝜀-dissipativity condition of the original system 𝐺 translates into (𝜀−𝑀)-dissipativity

condition of the system with feedback. In terms of how feedback influence input-output

behavior, we see positive feedback (𝑀 > 0) reduces dissipativity (smaller 𝜀), while negative

feedback (𝑀 < 0) increases dissipativity (larger 𝜀). This has direct parallel with positive

and negative feedback for linear systems, where it is well known that negative feedback

flattens the slope, which often stabilizes system dynamics, while positive feedback sharpens

the slope, which open amplifies and destabilizes system dynamics.
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5.3 Multiplicative networks of scalar birth-death systems

Assume we are given 𝑛 scalar birth-death control affine systems, either control in production

of the form �̇�𝑖 = 𝑓+
𝑖 (𝑥𝑖)𝑢𝑖 − 𝑓−

𝑖 (𝑥𝑖), or control in degradation of the form �̇�𝑖 = 𝑓+
𝑖 (𝑥𝑖) −

𝑓−
𝑖 (𝑥𝑖)𝑢𝑖. Also assume the 𝑖th system is dissipative w.r.t 𝑠𝜎𝑖(𝑢𝑖, 𝑦𝑖; 𝜀𝑖, 𝑝𝑖), where 𝜎𝑖 ∈ {+,−},

𝜀𝑖 > 0, 𝑝𝑖 is a positive function mapping 𝑦𝑖 ↦→ 𝑝𝑖(𝑦𝑖). We then consider the multiplicative

interconnection of these systems by

log 𝑢 = 𝑀 log 𝑦, (5.42)

where 𝑀 ∈ R𝑛×𝑛
is the interconnection matrix. This forms a closed loop system:⎧⎪⎨⎪⎩�̇�𝑖 = 𝑓+

𝑖 (𝑥𝑖)ℎ(𝑥)𝑀𝑖 − 𝑓−
𝑖 (𝑥𝑖), if control in production;

�̇�𝑖 = 𝑓+
𝑖 (𝑥𝑖)− 𝑓−

𝑖 (𝑥𝑖)ℎ(𝑥)𝑀𝑖 , if control in degradation.
(5.43)

Here 𝑀𝑖 is the 𝑖th row of 𝑀 , and ℎ : R𝑛
>0 → R𝑛

>0 maps states 𝑥 to outputs 𝑦.

Certificates of dissipativity

To certify stability of the interconnected system, we could consider the candidate Lyapunov

function 𝑉 = ∑︀
𝑖 𝑉𝑖(𝑥𝑖; 𝑥′

𝑖), where 𝑉𝑖 is the storage function for the 𝑖th subsystem, i.e. it is

nonnegative and satisfies
𝑑
𝑑𝑡

𝑉𝑖(𝑥𝑖(𝑡); 𝑥′
𝑖) ≤ 𝑠𝜎𝑖(𝑢𝑖, 𝑦𝑖; 𝜀𝑖, 𝑝𝑖).

We want to certify 𝑉 is a Lyapunov function. The following is a sufficient condition:

𝑑

𝑑𝑡
𝑉 =

∑︁
𝑖

𝑑

𝑑𝑡
𝑉𝑖 ≤

∑︁
𝑖

𝑝𝑖(𝑦𝑖)𝜎𝑖(𝑦𝑀𝑖 log 𝑦𝑖 − 𝑦𝜎𝑖𝜀𝑖
𝑖 log 𝑦𝑖)⏟  ⏞  

=𝑠𝜎𝑖 (𝑦𝑀𝑖 ,𝑦𝑖;𝜀𝑖,𝑝𝑖)

≤ 0, ∀𝑥, (5.44)

with equality achieved only at 𝑥 such that 𝑦 = 𝑦′
. We choose 𝑝𝑖 to only depend on 𝑦𝑖 here

to explicitly connect with properties of scalar components. But this can be modified to

more flexible or more restrictive functions. See Section 5.4.

Let 𝑧𝑖 = −𝜎𝑖 log 𝑦𝑖. All 𝑥 ∈ R𝑛
>0 does not necessarily maps onto all 𝑦 ∈ R𝑛

>0 or all 𝑧 ∈ R𝑛
,

since ℎ𝑖 can be bounded, but we can take this as a sufficient condition. So this sufficient

condition for the above inequality is

𝑛∑︁
𝑖=1

𝑝𝑖

(︁
𝑒−(𝜎𝑖𝑧𝑖)

)︁
(𝑒−(𝑀Σ)⊺𝑖 𝑧𝑧𝑖 − 𝑒−𝜀𝑖𝑧𝑖𝑧𝑖) ≥ 0, ∀𝑧 ∈ R𝑛, (5.45)

where equality is only achieved at 𝑧 = 0. Here Σ = diag(𝜎𝑖), and we used Σ’s inverse is

Σ itself, so 𝑧 = −Σ log 𝑦 and log 𝑦 = −Σ𝑧. We can rewrite the above equation in matrix

format:

𝑧⊺𝑃
(︁
𝑒−𝑀Σ𝑧 − 𝑒−𝐸𝑧

)︁
≥ 0, (5.46)
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where 𝑃 := diag(𝑝𝑖(exp(−𝜎𝑖𝑧𝑖))), 𝐸 = diag(𝜀𝑖), and exponentials are applied component

wise. If we take a factor 𝑒𝜀𝑖𝑧𝑖
out of each 𝑝𝑖, then we get

𝑧⊺𝑃
(︁
𝑒𝐴𝑧 − 1

)︁
≥ 0, 𝐴 := 𝐸 −𝑀Σ, (5.47)

where 𝑃 = diag(𝑒−𝜀𝑖𝑧𝑖𝑝𝑖(𝑒−𝜎𝑖𝑧𝑖)). Note that each diagonal element 𝑃𝑖 of 𝑃 is no longer the

same as the positive prefactor 𝑝𝑖 for the supply rate of the 𝑖th component system. However,

since the dissipativity of each component system is independent of the choice of 𝑝𝑖 (see

Theorem 5.2.5), the prefactors 𝑝𝑖 can always be arbitrarily chosen from the set of positive

scalar functions from R>0 to R>0. This is the same for the diagonal elements of 𝑃 , since

multiplying 𝑥−𝜀𝑖
𝑖 leaves the set of positive scalar functions invariant. Therefore, we can

treat 𝑃 as a factor that we can arbitrarily choose in the set of positive diagonal matrix

functions. Once chosen, we can map it back to the prefactors 𝑝𝑖 used in supply rates and

storage functions by considering 𝜀𝑖 and 𝜎𝑖 of each component system.

So, stability of the interconnected system comes down to whether the matrix 𝐴 satisfies

that there exists a positive diagonal matrix function 𝑃 (𝑧) such that the above inequality in

Eq (5.47) is satisfied for all 𝑧 ∈ R𝑛
. In the following proposition, we define the set of 𝐴

matrices that satisfy this, and characterize some operations that leave this set invariant.

Proposition 5.3.1. Let 𝒜 denote the following set of matrices:

𝒜 =
{︁
𝐴 ∈ R𝑛×𝑛 : ∃𝑃 (𝑧) ∈ 𝒫 , s.t. 𝑧⊺𝑃 (𝑧)(𝑒𝐴𝑧 − 1) ≥ 0, ∀𝑧 ∈ R𝑛

}︁
(5.48)

where 𝒫 = {diag(𝑃𝑖(𝑧𝑖)), 𝑃𝑖 : R→ R>0} is the set of positive diagonal functions from R𝑛
to R𝑛×𝑛

.

Then 𝐴 ∈ 𝒜 implies 𝐴Θ + 𝐷 ∈ 𝒜, for all positive diagonal matrices Θ and 𝐷.

Proof. Denote 𝐴′ = 𝐴Θ + 𝐷. We know there exists 𝑃 (𝑧) = diag(𝑝𝑖(𝑧𝑖)), 𝑝𝑖 > 0 s.t.

𝑧⊺𝑃 (𝑧)(𝑒𝐴𝑧 − 1) ≥ 0 for all 𝑧. Change of variable 𝑤 = Θ−1𝑧, and let 𝑃 (𝑤) = diag(𝑝𝑖(𝑤𝑖))
where 𝑝𝑖(𝑤𝑖) = 𝜃𝑖𝑝𝑖𝑒

−𝑑𝑖𝑤𝑖 > 0. Then

𝑤⊺𝑃 (𝑤)(𝑒𝐴′𝑤 − 1) = 𝑧⊺Θ−1Θ𝑃 (𝑧)
(︁
𝑒(𝐴′−𝐷)Θ−1𝑧 − 𝑒−𝐷Θ−1𝑧

)︁
≥ 𝑧⊺𝑃 (𝑧)(𝑒𝐴𝑧 − 1) ≥ 0,

for all 𝑤 ∈ R𝑛
. The second to last inequality we used −𝑑𝑖𝜃

−1
𝑖 < 0, so 𝑧𝑖𝑒

−𝑑𝑖𝜃
−1
𝑖 𝑧𝑖 ≤ 𝑧𝑖.

Remark 5.3.2. Although we motivated our definition of 𝒜 from our goal of studying the

dynamics of a system from interconnecting of scalar birth-death systems, the set 𝒜 is

well-defined in a pure matrix theory sense. This means, we can view the study of matrices

in𝒜 as a fundamental property of matrices, similar to diagonalizability, Hurwitz, diagonal

stability, etc. Any characterization of this fundamental property, either by obtaining specific
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examples or by theorems characterizing internal structures of this set, can be immediately

applied to our goal. This is a result of the network formulation where we considered

Lyapunov functions of the interconnected system as simply the sum of component systems.

This is also the result of our use of birth-death orders that separates more detailed parameter

dependences into reference points. △

Before we delve further into properties of the set 𝒜, let us put all of our constructions so

far into a theorem form for certifying stability of an interconnected system in terms of

dissipativity of component systems. Nothing needs to be proved, since this is just putting

all of our constructions in one setting.

Theorem 5.3.3 (Stability). Given 𝑛 scalar birth-death control affine systems where the 𝑖th system 𝐺𝑖

has dissipative property that, for any reference point (𝑥′
𝑖, 𝑢′

𝑖) ∈ 𝒳 ′×𝒰 ′
, 𝐺𝑖 is dissipative with supply

rate 𝑠𝜎𝑖(𝑢𝑖, 𝑦𝑖; 𝜀𝑖, 𝑝𝑖) and state region 𝒳𝑖, certified by storage function 𝑉𝑖(𝑥𝑖; 𝑥′
𝑖), where 𝜎𝑖 = + if

control in production and 𝜎𝑖 = − if control in degradation. Let 𝐺 denote the system formed by

interconnecting 𝐺𝑖 via interconnection matrix 𝑀 ∈ Z𝑛×𝑛
. If 𝐸 −𝑀Σ ∈ 𝒜, where Σ = diag(𝜎),

𝐸 = diag(𝜀), then for any reference point 𝑥′
that is admissible, i.e. 𝑥′ ∈ 𝒳 ′ = 𝒳 ′

1 × · · · × 𝒳 ′
𝑛 and

𝑢′ ∈ 𝒰 ′ = 𝒰 ′
1 × · · · × 𝒰 ′

𝑛, we have if 𝑥′
is in 𝒳 := 𝒳1 × · · · × 𝒳𝑛, then it is locally stable in the

connected component of𝒳 containing it, certified by Lyapunov function 𝑉 (𝑥; 𝑥′) = ∑︀𝑛
𝑖=1 𝑉𝑖(𝑥𝑖; 𝑥′

𝑖).

So the key of certifying stability of the interconnected system is whether the matrix 𝐴,

capturing the interaction between interconnection and dissipativity, is in𝒜. Let us examine

this set in a bit more detail.

Expanding 𝑧⊺𝑃
(︁
𝑒𝐴𝑧 − 1

)︁
at 𝑧 = 0, its zeroth and first order expansions are all zeros, and its

second order coefficient is 𝑃 0𝐴 + 𝐴⊺𝑃 0
, where 𝑃 0 = diag(𝑃𝑖(0)). So a necessary condition

for inequality (5.47) from this expansion at 𝑧 = 0 is that its second order expansion is

positive definite, i.e.

𝑃 0𝐴 + 𝐴⊺𝑃 0 > 0, (5.49)

where > 0 denotes positive definiteness. So we have the following proposition:

Proposition 5.3.4. 𝒜 ⊂ 𝒜0
, where

𝒜0 :=
{︁
𝐴 ∈ R𝑛×𝑛 : ∃𝑃 ∈ 𝒫0, 𝑠.𝑡.𝑃 𝐴 + 𝐴⊺𝑃 > 0

}︁
,

with 𝒫0
is the set of diagonal matrices with positive constant diagonals.

Remark 5.3.5. The necessary condition in proposition 5.3.4 is one example of a Lyapunov

inequality, widely encountered in matrix analysis and linear systems theory. This inequality
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is a linear matrix inequality (LMI), which can be efficiently computed through convex

optimization packages. This condition is also exactly the structural local stability condition

from reaction orders as discussed at the end of Section 5.1. This necessary condition could

be used to demonstrate several necessary conditions on 𝐴 ∈ 𝒜. For example, 𝐴𝑖𝑖 ≥ 0. This

could be seen by first re-writing the Lyapunov inequality as 𝑃 1/2𝐴𝑃 1/2 + 𝑃 1/2𝐴⊺𝑃 1/2 ≥ 0,

then take 𝑃 ∈ 𝒫0
s.t. 𝑝𝑖 → +∞while 𝑝𝑗 → 0 for 𝑗 ̸= 𝑖. △

Below, for two simple cases of 𝐴 in general dimensions, we show that they are in 𝒜.

Example 20 (Known cases). The following are a list of 𝐴 that we know are in 𝒜.

1. 𝐴 = 11⊺
, where 1 ∈ R𝑛

is a vector of 1’s.

Take 𝑃𝑖 as the constant functions 𝑃𝑖 = 1, then

∑︀
𝑖(𝑥1 − 1) log 𝑥𝑖 = (𝑥1 − 1) log 𝑥1 ≥ 0.

2. 𝐴 = I − Π, where Π is a permutation matrix for permuation map 𝜋 on indices

{1, . . . , 𝑛}.

Take 𝑃𝑖 = 𝑥−1
𝑖 , then

∑︁
𝑖

𝑥−1
𝑖 (𝑥𝑖𝑥

−1
𝜋(𝑖) − 1) log 𝑥𝑖 =

∑︁
𝑖

(𝑥−1
𝑖 − 𝑥−1

𝜋(𝑖)) log 𝑥−1
𝑖 .

If we have a change of variables by 𝑤𝑖 = 𝑥−1
𝑖 , we obtain

∑︁
𝑖

(𝑤𝑖 − 𝑤𝜋(𝑖)) log 𝑤𝑖 =
∑︁

𝑖

𝑤𝑖 log 𝑤𝑖 −
∑︁

𝑖

𝑤𝜋(𝑖) log 𝑤𝑖

=
∑︁

𝑖

𝑤𝜋(𝑖)𝑤𝜋(𝑖) −
∑︁

𝑖

𝑤𝜋(𝑖) log 𝑤𝑖 +
∑︁

𝑖

𝑤𝑖 −
∑︁

𝑖

𝑤𝜋(𝑖)

=
∑︁

𝑖

𝑤𝑖

(︂
𝑤𝜋(𝑖)

𝑤𝑖

log 𝑤𝜋(𝑖)

𝑤𝑖

+ 1− 𝑤𝜋(𝑖)

𝑤𝑖

)︂
≥ 0.

3. 𝐴 = 𝐴𝑖𝑖𝐸𝑖𝑖 + 𝐴𝑗𝑗𝐸𝑗𝑗 + 𝐴𝑖𝑗𝐸𝑖𝑗 + 𝐴𝑗𝑖𝐸𝑗𝑖, 𝑖 ̸= 𝑗, for 𝐴𝑖𝑗𝐴𝑗𝑖 ≤ 𝐴𝑖𝑖𝐴𝑗𝑗 , 𝐴𝑖𝑖, 𝐴𝑗𝑗 ≥ 0, where

𝐸𝑖𝑗 is the matrix with 1 at the (𝑖, 𝑗) entry and zero everywhere else. This claim is

proved in Theorem 5.3.7.

△

Remark 5.3.6. From the statement of the theorem, we see that this dissipative framework

views the dynamics of a large system in terms of cubes 𝒳 = 𝒳1 × · · · ×𝑋𝑛 that is product

of dissipative regions of component systems. Just like in the scalar case, this view separates

parameters’ influence on the system into two parts: the structural part from interconnection

and dissipativity, encoded in 𝐴, and the rate part from whether the reference point 𝑥′
is
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admissible. For admissible reference points 𝑥′
in dissipative cube 𝒳 , we obtain stability

certified by Lyapunov functions. For 𝑥′
outside of the dissipative cube 𝒳 , we can say the

system trajectory starting in the cube will leave the cube in finite time, but no longer sure

which direction will it leave from. This is because energy stored in the storage function

of one component system can be shifted into energy stored in other component systems,

therefore all we know is the value of the overall Lyapunov function 𝑉 will decrease, but

not sure along which coordinate. △

To further explore the set 𝒜, we can try to find classes of matrices in 𝒜 by constructing

certificates of Eq (5.47), as we did in Example 20. This requires technical constructions

utilizing structural properties of the class of entropy-like functions to characterize the

gap between 𝒜 and 𝒜0
. One major success of our effort in this direction is constructions

that prove 𝒜 = 𝒜0
for the 𝑛 = 2 case, i.e. the system is formed by interconnecting two

component systems. The statement is the following proposition, but the proof is deferred

to the appendix in Section 5.5 since it is technically involved. One interesting direction is to

find constructions for classes of 𝐴 matrices in 𝑛 = 3 or more general cases.

Theorem 5.3.7. For 𝑛 = 2, 𝒜 = 𝒜0 = {𝐴 ∈ R2×2 : 𝑎12𝑎21 ≤ 𝑎11𝑎22, 𝑎11, 𝑎22 ≥ 0}.

Proof. This is by explicit construction of 𝑃𝑖(𝑧𝑖) for all the possible cases. See Section 5.5

for the full proof. To give a taste without delving into the technicalities, we illustrate

what the argument is like when 𝑎12 and 𝑎21 have different signs and 𝑎11, 𝑎22 > 0. Without

loss of generality, 𝑎12 < 0 and 𝑎21 > 0. So we can take 𝑝1(𝑥1) = 𝑥−𝑎11
1 (𝑥𝑎21

1 − 1) 1
log 𝑥1

,

𝑝2(𝑥2) = 𝑥−𝑎22
2 (1− 𝑥𝑎12

2 ) 1
log 𝑥2

. Therefore,

𝑝1(𝑥1)(𝑥𝑎11
1 𝑥𝑎12

2 − 1) log 𝑥1 + 𝑝2(𝑥2)(𝑥𝑎21
2 𝑥𝑎22

1 − 1) log 𝑥2

≥𝑝1(𝑥1)(𝑥𝑎11
1 𝑥𝑎12

2 − 𝑥𝑎11
1 ) log 𝑥1 + 𝑝2(𝑥2)(𝑥𝑎21

2 𝑥𝑎22
1 − 𝑥𝑎22

1 ) log 𝑥2

=(𝑥𝑎21
1 − 1)(𝑥𝑎12

2 − 1) + (𝑥𝑎21
1 − 1)(1− 𝑥𝑎12

2 ) = 0.

This theorem gives a complete characterization of 𝒜 for 𝑛 = 2 case. This can be used

to characterize dissipative regions for general two-dimensional dynamical systems with

birth-death structure, as is typically the case in biomolecular systems. We demonstrate the

power of this approach in the following examples.
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Example 21 (2d bistable). Consider the following two component systems, with their signs

and corresponding 𝜂 functions listed.

�̇�1 = 𝑢1 − 𝛾1𝑥1, 𝑦1 =𝛼 + 𝑥2
1

1 + 𝑥2
1
, 𝜎1 = +, 𝜂1(𝑥1) =−

⎛⎜⎝2
𝑥2

1
1+𝑥2

1

𝛼 + 𝑥2
1

1+𝑥2
1

1
1 + 𝑥2

1

⎞⎟⎠
−1

;

�̇�2 = 𝑢2 − 𝛾2𝑥2, 𝑦2 =𝑥2, 𝜎2 = +, 𝜂2(𝑥2) =− 1.

By interconnection 𝑢1 = 𝑦2, 𝑦2 = 𝑢1, encoded in the following interconnection matrix 𝑀 ,

we have the following closed loop system:

𝑀 =
⎡⎣0 1
1 0

⎤⎦,

⎧⎪⎨⎪⎩
�̇�1 = 𝑥2 − 𝛾1𝑥1,

�̇�2 = 𝛼 + 𝑥2
1

1+𝑥2
1
− 𝛾2𝑥2.

The 𝐴 = 𝐸 −𝑀Σ matrix we obtain then is

𝐴 =
⎡⎣𝜀1 0

0 𝜀2

⎤⎦−
⎡⎣0 1
1 0

⎤⎦⎡⎣1 0
0 1

⎤⎦ =
⎡⎣ 𝜀1 −1
−1 𝜀2

⎤⎦.

By Theorem 5.3.7, the condition for 𝐴 ∈ 𝒜 is 𝜀1𝜀2 ≥ 1. The dissipative region for 𝑥2 is

always the full positive real line 𝒳2 = (0, +∞), and the largest value 𝜀2 can take is 1. So

the condition for 𝐴 ∈ 𝒜 is 𝜀1 ≥ 1. This determines the dissipative region for 𝑥1 to be

𝒳1 = {𝑥1 : 𝜂1(𝑥1) < −1}. The condition 𝜂1(𝑥1) < −1, after a quick algebraic check, is exactly

the same as the condition for dissipativity in Example 16 and Figure 5.6. So although this

system is two dimensional with different ways for the parameter 𝛾 to enter, the structural

conditions for dissipativity and multistability determined by birth-death orders are exactly

the same as the scalar bistable system. △

Example 22 (toggle switch). One of the foundational constructions in synthetic biology is a

synthetic toggle switch system achieving bistability [47]. Consider the following simple

model for the toggle switch system. We begin with the two component systems that are

identical, 𝑖 ∈ {1, 2}.

�̇�𝑖 = 𝑢𝑖 − 𝛾𝑖𝑥𝑖, 𝑦𝑖 =
(︃

𝛼𝑖 + 1
1 + 𝑥2

𝑖

)︃−1

, 𝜎𝑖 = +, 𝜂𝑖(𝑥𝑖) =−

⎛⎜⎝2
𝑥2

𝑖

1+𝑥2
𝑖

𝛼𝑖 + 𝑥2
𝑖

1+𝑥2
𝑖

1
1 + 𝑥2

𝑖

⎞⎟⎠
−1

;

By interconnection 𝑢1 = 𝑦−1
2 , 𝑢2 = 𝑦−1

1 , encoded in the following interconnection matrix

𝑀 , we have the following closed loop system:

𝑀 =
⎡⎣ 0 −1
−1 0

⎤⎦,

⎧⎪⎨⎪⎩
�̇�1 = 𝛼2 + 1

1+𝑥2
2
− 𝛾1𝑥1;

�̇�2 = 𝛼1 + 1
1+𝑥2

1
− 𝛾2𝑥2,
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where 𝑥1 and 𝑥2 inhibits each other.

The region of stability corresponds to the region with 𝐴 ∈ 𝒜. In this case,

𝐴 = 𝐸 −𝑀Σ =
⎡⎣𝜀1 1

1 𝜀2

⎤⎦.

By Theorem 5.3.7, the condition for 𝐴 ∈ 𝒜 is 𝜀1𝜀2 ≥ 1. Since 𝜂𝑖(𝑥𝑖) and 𝜀𝑖 are related by

𝜀𝑖(𝑥𝑖) ≤ −𝜀𝑖, we can first fix 𝜀1 and 𝜀2, then determine the dissipative regions for each

component system 𝒳1 = {𝑥1 : 𝜂1(𝑥1) ≤ −𝜀1 < 0}, and 𝒳2 = {𝑥2 : 𝜂2(𝑥2) ≤ −𝜀2 < 0}. Then

the dissipative region for the connected system can be determined as 𝒳1 × 𝒳2, which

consists of rectangles, i.e. products of open intervals. See Figure 5.8 for an example.

Because the rectangles come from fixed 𝜀1 and 𝜀2, the fixed points of interest could easily be

outside of the rectangles. This then require us to find better pairs of (𝜀1, 𝜀2), and therefore

more appropriate rectangles 𝒳1 ×𝒳2, to cover the fixed points of interest.

Alternatively, to avoid fixing 𝜀𝑖, we can take the conditions on 𝜀1 and 𝜀2 jointly and

translate it into a two-dimensional constraint on (𝜂1, 𝜂2) jointly, therefore determining a

two-dimensional dissipative region 𝒳 ⊂ R2
>0, defined by

𝒳 = {(𝑥1, 𝑥2) : 𝜂(𝑥1) < 0, 𝜂(𝑥2) < 0, 𝜂(𝑥1)𝜂(𝑥2) ≥ 1}.

Such dissipative region’s shape is more complicated, but covers a wider area. See the

right panel of Figure 5.8 for an illustration. For any fixed points in this dissipative region,

we automatically know it is locally stable with a storage function certifying its regional

behavior. If we want to know how would the system trajectory evolve beginning at some

point in the dissipative region, then we need to take rectangles containing this point. Then

by plotting the level sets of the storage function, we know the point will go toward lower

level sets when it is in the dissipative region. △

In the toggle switch example, we obtain dissipative regions based on condition of 𝐴(𝜀1, 𝜀2)
matrix formed. However, other systems can form the same 𝐴 matrix, therefore our result

for the toggle switch example can be applied to a class of 2d systems from interconnecting

two components. We illustrate this via two examples below.

Example 23 (toggle switch via degradation). In this example we construct a system with

toggle switch like behavior by components that are control in degradation. Each component

system is of the following form, for 𝑖 ∈ {1, 2}.

�̇�𝑖 = 1− 𝛾𝑖𝑥𝑖𝑢𝑖, 𝑦𝑖 =
(︃

𝛼𝑖 + 1
1 + 𝑥2

𝑖

)︃−1

, 𝜎𝑖 = −, 𝜂𝑖(𝑥𝑖) =−

⎛⎜⎝2
𝑥2

𝑖

1+𝑥2
𝑖

𝛼𝑖 + 𝑥2
𝑖

1+𝑥2
𝑖

1
1 + 𝑥2

𝑖

⎞⎟⎠
−1

.
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Figure 5.8 Plot for Example 22, showing how stability of fixed points relate to dissipative regions (grey).

Blue and orange curves are nullclines for �̇�1 = 0 and �̇�2 = 0, so their intersections are fixed points of the

system. We see three fixed points, with two stable fixed points (solid blue circle) in dissipative regions (grey),

therefore locally stable, and one unstable fixed point (empty blud circle) outside of dissipative regions. (Left)
A dissipative region (grey) that consists of rectangles, i.e. product of two component dissipative regions, of

the form 𝒳 = 𝒳1 × 𝒳2, with 𝒳𝑖 = {𝑥𝑖 : 𝜂𝑖(𝑥𝑖) ≤ −𝜀𝑖}. Here, 𝜀1 and 𝜀2 are chosen to be 1. The green curve

at the bottom is 𝜂1(𝑥1) + 1, which is negative for dissipative region 𝒳1. (Right) A dissipative region (grey)

that corresponds to all (𝑥1, 𝑥2) that allows 𝜀1𝜀2 > 1. The resulting shape is not rectangular, but instead

is a continuous region containing all but a circular region in the middle. Parameters are 𝛼1 = 𝛼2 = 0.05,

𝛾1 = 𝛾2 = 0.1.

Note that 𝜂𝑖(𝑥𝑖) is exactly the same as in the toggle switch example 22, since 𝑓+
𝑖 , 𝑓−

𝑖 and ℎ

are all the same, only where control input 𝑢𝑖 is placed is different.

By interconnection 𝑢1 = 𝑦2, 𝑢2 = 𝑦1, encoded in the following interconnection matrix 𝑀 ,

we have the following closed loop system:

𝑀 =
⎡⎣0 1
1 0

⎤⎦,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̇�1 = 1− 𝛾1𝑥1

𝛼2+ 1
1+𝑥2

2

;

�̇�2 = 1− 𝛾2𝑥2
𝛼1+ 1

1+𝑥2
1

.

So in the full system, the net effect of interaction is the same as in the toggle switch example,

that 𝑥1 and 𝑥2 inhibit each other. In the toggle switch case, the inhibition is via decreasing

production. Here it is via increasing degradation.

We can calculate that the 𝐴 matrix obtained is exactly the same as in the toggle switch

example. Therefore the dissipative regions are exactly the same as in Figure 5.8. We note

that the nullclines are the same as well. △

The following example further illustrates that the same 𝐴 is shared by several different
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Figure 5.9 Plot for Example 24. Same format as Figure 5.8. 𝜀1 = 𝜀2 = 1 for 𝒳 on the left. Parameters are

𝛼1 = 𝛼2 = 0.05, 𝛾1 = 𝛾2 = 0.5.

systems. The following example has two components activating each other instead of

inhibiting each other, so the interaction graph is different from the toggle switch example.

This corresponds to different 𝜂𝑖(𝑥𝑖), but still the same 𝐴(𝜀1, 𝜀2).

Example 24 (mutual activation). We begin with the two component systems that are identical,

𝑖 ∈ {1, 2}.

�̇�𝑖 = 𝑢𝑖 − 𝛾𝑖𝑥𝑖, 𝑦𝑖 =𝛼𝑖 + 𝑥2
𝑖

1 + 𝑥2
𝑖

, 𝜎𝑖 = +, 𝜂𝑖(𝑥𝑖) =− 2
𝑥2

𝑖

1+𝑥2
𝑖

𝛼𝑖 + 𝑥2
𝑖

1+𝑥2
𝑖

1
1 + 𝑥2

𝑖

.

By interconnection 𝑢1 = 𝑦2, 𝑢2 = 𝑦1, encoded in the following interconnection matrix 𝑀 ,

we have the following closed loop system:

𝑀 =
⎡⎣0 1
1 0

⎤⎦,

⎧⎪⎨⎪⎩
�̇�1 = 𝛼2 + 𝑥2

2
1+𝑥2

2
− 𝛾1𝑥1;

�̇�2 = 𝛼1 + 𝑥2
1

1+𝑥2
1
− 𝛾2𝑥2,

where the interaction between 𝑥1 and 𝑥2 has the net effect of activating each other. This

system is also capable of bistability, but instead of the two stable fixed points being one

low and one high for (𝑥1, 𝑥2) in toggle switch, this system has both low and both high. We

illustrate this in Figure 5.9. The dissipative regions are determined via exactly the same

condition as in the toggle switch example, because the 𝐴(𝜀1, 𝜀2) matrix is exactly the same:

𝐴 = 𝐸 −𝑀Σ =
⎡⎣𝜀1 1

1 𝜀2

⎤⎦.

△
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Through these examples, it is clearly illustrated that our dissipative network approach

based on birth-death orders has the advantage of clearly separating changes in system

properties into different layers in the architecture of a system. The highest layer is the 𝐴(𝜀)
matrix, which only cares about the interconnection network. It prescribes the condition

that the dissipativity parameters 𝜀 needs to satisfy in order to have dissipativity or stability

of the full system. A lower layer, the birth-death order layer or the 𝜂𝑖(𝑥𝑖) layer, contains

the structural information about component systems in terms of dissipativity. It connects

conditions on dissipativity parameters 𝜀 to regions in state space 𝑥 of each component. This

layer only cares about parameters in a system that change the topology of dissipative regions

𝒳𝑖. The lowest layer, the reference point (𝑥′, 𝑢′) layer, parameterizes actual trajectories the

system can have. The behavior of these trajectories are described relative to this reference

point, and constrained by dissipativity in the state regions to behave in ways dictated by

the storage functions.

This layered architecture makes this dissipative network approach very powerful when

analyzing properties that are invariant or robust. For example, using only the 𝐴 layer, we

can place constraints on a systems’ behavior without knowing any of its component systems

or actual parameters. Another case is what we have already used in several examples,

where we write down the dissipative region without knowing what the reference points

or fixed points are. In other words, we can discuss properties of all possible fixed points,

instead of analyzing them case by case.

Before we end, let us summarize the workflow of this dissipative network approach.

Summary of workflow

1. For given interconnection pattern 𝑀 , we look for dissipativity parameters 𝜀, one

point or a set of points 𝜀 ∈ ℰ , such that the resulting matrix 𝐴(𝜀) is in 𝒜, i.e. it

satisfies inequality (5.47) for some positive functions 𝑝𝑖. Along the way, we could use

properties of 𝒜 such as Proposition 5.3.1 to enlarge the set of dissipative parameters

ℰ .

2. For each subsystem, which we assume to be a scalar birth-death control affine system,

we use 𝜂𝑖(𝑥𝑖) to relate the set of dissipativity parameters 𝜀 ∈ ℰ to dissipative regions.

This can be done for fixed 𝜀, we obtain𝒳 = 𝒳1×· · ·×𝒳𝑛 with𝒳𝑖 = {𝑥𝑖 : 𝜂𝑖(𝑥𝑖) ≤ −𝜀𝑖},
so 𝒳 consists of open cubes. In this cube 𝒳 , each subsystem is dissipative with

supply rate 𝑠(𝑢𝑖, 𝑦𝑖; 𝜀𝑖). Another type of 𝒳 can be obtained for the set of dissipativity

parameters ℰ , by 𝒳 = {𝑥 : ∃𝜀, 𝜀𝑖 ≤ −𝜂𝑖(𝑥𝑖), 𝜀 ∈ ℰ}. In this 𝒳 , each subsystem is
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dissipative with supply rate 𝑠(𝜀𝑖) such that (𝜀 ∈ ℰ . This 𝒳 can be seen as the union

of all possible cubes from the previous method.

3. For any fixed point in 𝒳 , we know it is locally stable with a Lyapunov function

certifying it, where the Lyapunov function is the sum of storage functions of each

component system. Note that these storage functions are only valid in cube-shaped

regions. So multiple fixed points in𝒳 will be certified by multiple Lyapunov functions,

each valid in a cube-shaped region containing each fix point.

Another approach to study the set 𝒜 is to take an algorithmic approach by finding

procedures that test whether any given matrix 𝐴 arising from a particular example is in

𝒜. This corresponds to computationally certify non-negativity of Eq (5.47), for candidate

choices of 𝑃𝑖(𝑧𝑖). For 𝑃𝑖(𝑧𝑖) chosen as exponentials and polynomials in 𝑧𝑖, the class of

functions to be certified for non-negativity in Eq (5.47) is entropy-like functions. This is

studied in Chapter 6 of [43], for example.

5.4 Summary and future directions

In this chapter, motivated by the polyhedral structure of reaction orders in binding’s

regulation of catalysis, we investigated a general approach to capture dynamical properties

of biomolecular systems by reaction orders, using the framework of dissipative network

systems. We formulated the production-degradation structure of biomolecular systems

(Definition 5.1.1), and defined a supply rate for a notion of dissipativity that naturally

correspond to conditions on reaction orders (Eq (5.17)). This notion of dissipativity allows

us to find dissipative regions independent of reference points (Proposition 5.2.12). For

closed systems, this means stable regions independent of fixed point locations (Proposition

5.2.13). Considering a general system as interconnection of multiple component systems, we

derived general conditions relating component dissipativity conditions with overall system

stability (Eq (5.47)). This yields a class of matrix properties denoted by 𝒜, corresponding

to matrix 𝐴 satisfying a non-negativity condition for entropy-like functions (Proposition

5.3.1).

We discuss some potential directions of future research below.

A hierarchy of scaling factors 𝑝𝑖

When considering a multi-variate system by interconnection of component systems, we

restricted the positive function 𝑝𝑖 in the supply rate 𝑠𝑖 of each component system 𝐺𝑖 to
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depend only on 𝑦𝑖, so that 𝑠𝑖(𝑢𝑖, 𝑦𝑖; 𝜀𝑖, 𝑝𝑖) = 𝑝𝑖(𝑦𝑖)(𝑢𝑖 − 𝑦𝜀𝑖
𝑖 ) log 𝑦𝑖. However, it is arguable

that the positive function 𝑝𝑖 is simply a place holder for any positive scaling, therefore

can depend on other 𝑦𝑗 variables as well. The only restriction is that 𝑝𝑖 is independent

of 𝑢𝑖. This is possible because of Theorem 5.2.5, which showed that we can characterize

each component system’s dissipativity property independent of scaling factors 𝑝𝑖. For any

choice of 𝑝𝑖, the component system’s dissipativity with respect to 𝑠𝜎(𝜀𝑖, 𝑝𝑖) holds, for the

same 𝜀𝑖. Different choices of 𝑝𝑖 only influences the storage function 𝑉𝑖 obtained.

More importantly, we see that different systems in terms of interconnection of dissipative

component systems result in different 𝐴 matrix, and the certificates of stability of 𝐴

showing that 𝐴 ∈ 𝒜 depends on choices of 𝑃𝑖. Since choices of 𝑃𝑖 influence properties of

the component storage functions 𝑉𝑖 and the overall Lyapunov function 𝑉 , larger and smaller

classes of 𝑃𝑖 could correspond to weaker or stronger notions of stability. This prompts us to

consider a hierarchy of scaling factor sets 𝒫 , which define a hierarchy of matrix sets 𝒜(𝒫).
Larger 𝒫 such as 𝑃𝑖(𝑧) can depend on variables other than 𝑧𝑖, corresponding to the weakest

notion of stability, and should have the largest 𝒜 set. More restrictive 𝒫 , such as asking the

resulting Lyapunov function to be unbounded in all directions, should result in smaller 𝒜.

This freedom of choosing a hierarchy of 𝒫 highlights the advantage of the supply rate

and the dissipativity notion developed in this work: that component dissipativity can be

determined with significant flexibility encoded in the choice of 𝑝𝑖 to choose appropriate

storage or Lyapunov functions. For example, by choosing 𝑝𝑖 to depend on variables other

than 𝑧𝑖, we can obtain Lyapunov functions with level sets that are not cubes.

Generalization to non-scalar component systems and multiple-input-multiple-output sup-
ply rates

In this work, we considered component systems that are scalar birth-death control affine

systems. However, as we discussed in Section 5.1, the general birth-death systems have

birth-death orders from networks of binding reactions. But binding reactions are naturally

non-scalar. For example, consider 𝐸 + 𝑆 ⇌ 𝐶 → 𝐸 + 𝑃 , where one enzyme and one

susbtrate binds to form a complex 𝐶. This complex 𝐶 then catalyzes the conversion of a

substrate 𝑆 into a product 𝑃 . The variables for this system is total enzyme concentration

𝑥𝐸 = 𝐸 + 𝐶, total substrate concentration 𝑥𝑆 = 𝑆 + 𝐶, and total product concentration

𝑥𝑃 = 𝑃 . The rate of this production of 𝑥𝑃 , or degradation of 𝑥𝑆 , is proportional to 𝐶, the

concentration of the complexes. But this depends on both 𝑥𝐸 and 𝑥𝑆 (see Section 3.6 in

Chapter 3) in a non-monomial way. In particular, the reaction order of 𝐶 depends on both

𝑥𝐸 and 𝑥𝑆 in a non-separable way. Only under certain simplifying assumptions, such as
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the substrate is much more than the enzyme, we can make this dependence separable,

such as 𝐶 ≈ 𝑥𝐸
𝑥𝑆

𝑥𝑆+𝐾
for some equilibrium constant 𝐾. Then 𝐶’s reaction order varies with

𝑥𝑆 , but not 𝑥𝐸 .

We could capture such non-scalar dependence of reaction orders in our existing framework

by giving up decomposing dissipativity of the full network into individual component

systems. Namely, after we form the full system via interconnections and considering

mapping conditions on dissipativity parameters from stability to dissipative regions via

𝜂𝑖(𝑥𝑖), we need to instead consider 𝜂(𝑥) altogether. The example of simple binding reaction

mentioned above is one case where 𝜂(𝑥𝐸, 𝑥𝑆) cannot be separated into (𝜂𝐸(𝑥𝐸), 𝜂𝑆(𝑥𝑆)), but

instead its two components are 𝜂(𝑥𝐸, 𝑥𝑆) = (𝜂𝐸(𝑥𝐸, 𝑥𝑆), 𝜂𝑆(𝑥𝐸, 𝑥𝑆)), with each component

depending on both variables. This has the advantage that we do not need a new framework,

but the disadvantage is we no longer have meaningful component systems, since these

components’ dissipativity depend on variables from other systems.

If we want to retain the structure of forming a larger system from component systems,

we need a notion of dissipativity for multiple inputs and multiple outputs (MIMO). This

means a MIMO supply rate. For the simple binding example above, we need a dissipativity

notion for this binding reaction with both 𝑥𝐸 and 𝑥𝑆 as output. The negativity of such

supply rate then extends to non-negative relative entropy functions for non-scalar variables.

The relative entropy cone and non-negativity certificates using lifting maps is studied in

Chapter 6.6 of [43]. Obtaining a MIMO supply rate based on non-negative relative entropy

functions should provide a fascinating direction for further research.

5.5 Appendix. Proof for interconnection of two component
systems

Here we delve into the technical inequalities satisfied by entropy-like functions to prove

Theorem 5.3.7. We begin with foundational inequalities for entropy-like functions (also

heavily used in [43]).

Lemma 5.5.1. 𝑥𝑎 log 𝑥 ≥ 𝑥𝑏 log 𝑥 for all 𝑥 > 0 with equality only at 𝑥 = 1 iff 𝑎 > 𝑏.

Proof. It is obvious that 𝑎 and 𝑏 cannot be equal. For 𝑎 ̸= 𝑏, the inequality can be rewritten

as (𝑥𝑎 − 𝑥𝑏) log 𝑥 = 1
𝑎−𝑏

𝑥𝑏(𝑥𝑎−𝑏 − 1) log 𝑥𝑎−𝑏 ≥ 0. Let 𝑦 = 𝑥𝑎−𝑏
and divide by 𝑥𝑏

, this is

simplified to
1

𝑎−𝑏
(𝑦 − 1) log 𝑦 ≥ 0 for 𝑦 > 0. Since (𝑦 − 1) log 𝑦 ≥ 0 with equality only at

𝑦 = 1, i.e. 𝑥 = 1. Now we see this inequality is true iff 𝑎− 𝑏 > 0.
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Lemma 5.5.2. For any 𝑟, 𝑠 ∈ R𝑛
, 𝑥𝑟 log 𝑥𝑟−𝑠 ≥ 𝑥𝑟 − 𝑥𝑠

for all 𝑥 ∈ R𝑛
>0.

In an alternative form, let 𝑠 = 𝑟 − 𝑎, we have 𝑥𝑟 log 𝑥𝑎 ≥ 1
𝛽

(︁
𝑥𝑟 − 𝑥𝑟−𝛽𝑎

)︁
.

These inequalities then allow us to show the following inequality for a class of constructed

𝑝𝑖. This can be used as building blocks to prove cases of Eq (5.47). Consider 𝑎 as one row

of matrix 𝐴, then the following class of 𝑝𝑖 constructed can modify the exponents of the

terms involved in particular ways.

Lemma 5.5.3. Fix 𝑎 ∈ R𝑛
. For any 𝑏𝑖 ≥ 𝑏𝑖, define 𝑏𝑖 := 𝑏𝑖 − 𝑏𝑖 ≥ 0. Let 𝑝𝑖(𝑥𝑖) := 𝑐𝑖

𝑥
𝑏𝑖
𝑖 −𝑥

𝑏𝑖
𝑖

𝑏𝑖 log 𝑥𝑖
,

𝑐𝑖 > 0, so 𝑝𝑖 : R>0 → R>0 is continuous and positive. Then for any 𝜆, 𝛽 ≥ 0 s.t. 𝜆 + 𝛽𝑏𝑖 = 𝑐𝑖, we

have

𝑝𝑖(𝑥𝑖)(𝑥𝑎 − 1) log 𝑥𝑖 ≥
(︁
𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖

)︁
log 𝑥𝜆𝑒𝑖−𝛽𝑎.

Proof.

− 1
𝛽

(︁
𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖

)︁
log 𝑥−𝛽𝑎 = (𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖) log 𝑥𝑎

= 𝑥𝑎+𝑏𝑖𝑒𝑖 log 𝑥𝑎 + 𝑥𝑏𝑖𝑒𝑖 log 𝑥−𝑎

≥ 𝑥𝑎+𝑏𝑖𝑒𝑖 + 𝑥𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖 − 𝑥𝑎+𝑏𝑖𝑒𝑖

= (𝑥𝑎 − 1)(𝑥𝑏𝑖
𝑖 − 𝑥𝑏𝑖

𝑖 )

= −𝑏𝑖
𝑥𝑏𝑖

𝑖 − 𝑥
𝑏𝑖
𝑖

𝑏𝑖 log 𝑥𝑖

(𝑥𝑎 − 1) log 𝑥𝑖.

Therefore

𝛽𝑏𝑖
𝑥𝑏𝑖

𝑖 − 𝑥
𝑏𝑖
𝑖

𝑏𝑖 log 𝑥𝑖

(𝑥𝑎 − 1) log 𝑥𝑖 ≥
(︁
𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖

)︁
log 𝑥−𝛽𝑎.

Similarly,

−1
𝜆

(︁
𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖

)︁
log 𝑥𝜆

𝑖 = 1
𝑏𝑖

(︁
𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖

)︁
log 𝑥𝑏𝑖

𝑖

= 1
𝑏𝑖

(︂
𝑥𝑎+𝑏𝑖𝑒𝑖 log 𝑥

(𝑏𝑖−𝑏𝑖)
𝑖 − 𝑥𝑏𝑖

𝑖 log 𝑥
(𝑏𝑖−𝑏𝑖)
𝑖

)︂
≥ 1

𝑏𝑖

(︁
𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑎+𝑏𝑖𝑒𝑖 + 𝑥𝑏𝑖

𝑖 − 𝑥
𝑏𝑖
𝑖

)︁
= 1

𝑏𝑖

(𝑥𝑎 − 1)(𝑥𝑏𝑖
𝑖 − 𝑥𝑏𝑖

𝑖 )

= −𝑥𝑏𝑖
𝑖 − 𝑥

𝑏𝑖
𝑖

𝑏𝑖 log 𝑥𝑖

(𝑥𝑎 − 1) log 𝑥𝑖.

Therefore,

𝜆
𝑥𝑏𝑖

𝑖 − 𝑥
𝑏𝑖
𝑖

𝑏𝑖 log 𝑥𝑖

(𝑥𝑎 − 1) log 𝑥𝑖 ≥
(︁
𝑥𝑎+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖

)︁
log 𝑥𝜆𝑒𝑖 .
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Summing the two inequalities, we get the desired result.

Remark 5.5.4. We can write 𝑝𝑖(𝑥𝑖) as 𝑐𝑖𝑥
𝑏𝑖
𝑖 ·

𝑥
𝑏𝑖
𝑖 −1

𝑏𝑖 log 𝑥𝑖
, so a monomial multiplying a function

of the form
𝑥

𝑏𝑖
𝑖 −1

𝑏𝑖 log 𝑥𝑖
. Note that for any 𝑥𝑖 ̸= 1, when 𝑏𝑖 → 0,

1
𝑏𝑖

(𝑥𝑏𝑖
𝑖 − 1) = 1

𝑏𝑖
(𝑒𝑏𝑖 log 𝑥𝑖 − 1) →

1
𝑏𝑖

(1 + 𝑏𝑖 log 𝑥𝑖 − 1) = log 𝑥𝑖. Therefore, 𝑝𝑖(𝑥𝑖) = 𝜆𝑥
𝑏𝑖
𝑖 when 𝑏𝑖 = 0. Furthermore,

𝑥
𝑏𝑖
𝑖 −1

𝑏𝑖 log 𝑥𝑖
is

analytic in (𝑥𝑖, 𝑏𝑖) since it is 𝑓 ∘ 𝑔 with 𝑓 : 𝑥 ↦→ 𝑥−1
log 𝑥

and 𝑔 : (𝑥𝑖, 𝑏𝑖) ↦→ 𝑥𝑏𝑖
𝑖 . It is positive for all

𝑥𝑖 > 0 and 𝑏𝑖 ≥ 0, since for 𝑏𝑖 > 0 and 𝑥𝑖 ̸= 1, 𝑥𝑏𝑖
𝑖 − 1 and log 𝑥𝑖 always have the same sign,

while at 𝑥𝑖 → 1 or 𝑏𝑖 → 0, we get value 1. △

Lemma 5.5.3 can then be used to prove inequalities for various cases of 𝐴. In particular, we

focus on when 𝐴 has only two nonzero rows, and each row has only two nonzero entries,

so that the matrix 𝐴 is effectively 2× 2. We begin with relating a diagonal term 𝐴𝑖𝑖 with

another term on the same column 𝐴𝑗𝑖. These cases will all become useful when we prove

Theorem 5.3.7.

Corollary 5.5.5 (Triangular). For any 𝐴𝑖𝑖 > 0, 𝐴𝑗𝑖 ̸= 0, there exists 𝑝𝑖(𝑥𝑖) : R>0 → R>0 s.t.

𝑝𝑖(𝑥𝑖)(𝑥𝐴𝑖𝑖
𝑖 − 1) log 𝑥𝑖 ≥ (1− 𝑥

𝐴𝑗𝑖

𝑖 ) log 𝑥
−𝐴𝑗𝑖

𝑖 = (𝑥𝐴𝑗𝑖

𝑖 − 1) log 𝑥
𝐴𝑗𝑖

𝑖 . Indeed, we can choose⎧⎪⎨⎪⎩𝑝𝑖(𝑥𝑖) = 𝐴𝑗𝑖

𝐴𝑖𝑖
(𝑥𝐴𝑗𝑖

𝑖 − 𝑥−𝐴𝑖𝑖
𝑖 ) 1

log 𝑥𝑖
, 𝐴𝑗𝑖 > 0;

𝑝𝑖(𝑥𝑖) = −𝐴𝑗𝑖

𝐴𝑖𝑖
(1− 𝑥

𝐴𝑗𝑖−𝐴𝑖𝑖

𝑖 ) 1
log 𝑥𝑖

, 𝐴𝑗𝑖 < 0.

⎧⎪⎨⎪⎩𝑝𝑖(𝑥𝑖) = 𝐴𝑗𝑖

𝐴𝑖𝑖−𝐴𝑗𝑖
(1− 𝑥

𝐴𝑗𝑖−𝐴𝑖𝑖

𝑖 ) 1
log 𝑥𝑖

, 𝐴𝑖𝑖 > 𝐴𝑗𝑖 > 0;

𝑝𝑖(𝑥𝑖) = −𝐴𝑗𝑖

𝐴𝑖𝑖+𝐴𝑗𝑖
(𝑥𝐴𝑗𝑖

𝑖 − 𝑥−𝐴𝑖𝑖
𝑖 ) 1

log 𝑥𝑖
, −𝐴𝑖𝑖 < 𝐴𝑗𝑖 < 0.

Proof. Apply Lemma 5.5.3. For 𝐴𝑗𝑖 > 0, in the first case, our choice of 𝑝𝑖 corresponds to

𝜆 = 𝐴𝑗𝑖

𝐴𝑖𝑖
, 𝑏𝑖 = 𝐴𝑗𝑖, 𝑏𝑖 = −𝐴𝑖𝑖.

In the second case. 𝜆(𝑏𝑖−𝑏𝑖) = 𝐴𝑗𝑖, 𝐴𝑖𝑖 +𝑏𝑖 = 𝐴𝑗𝑖, 𝑏𝑖 = 0. This implies 𝑏𝑖 = 𝐴𝑗𝑖−𝐴𝑖𝑖 < 0 = 𝑏𝑖,

and 𝜆 = 𝐴𝑗𝑖

𝐴𝑖𝑖−𝐴𝑗𝑖
. This case poses additional condition that 𝐴𝑗𝑖 < 𝐴𝑖𝑖.

The above corollary can then immediately be used to prove the triangular case, where 𝐴𝑖𝑖,

𝐴𝑗𝑖, and 𝐴𝑗𝑗 are nonzero, while all other terms are zero.

Corollary 5.5.6. For 𝐴 ∈ R𝑛×𝑛
with indices 𝑖 ̸= 𝑗 such that 𝐴𝑖𝑖 > 0, 𝐴𝑗𝑗 > 0, and 𝐴𝑗𝑖 ̸= 0, while

all other terms are zero. Then there exists positive functions 𝑝𝑖, 𝑝𝑗 such that

𝑝𝑖(𝑥𝑖)(𝑥𝐴𝑖 − 1) log 𝑥𝑖 + 𝑝𝑗(𝑥𝑗)(𝑥𝐴𝑗 − 1) log 𝑥𝑗 ≥ 0.
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Proof. Apply Corollary 5.5.5 together with 𝑝𝑗(𝑥𝑗) ≡ 𝐴𝑗𝑗 to get

𝑝𝑖(𝑥𝑖)(𝑥𝐴𝑖 − 1) log 𝑥𝑖 + 𝑝𝑗(𝑥𝑗)(𝑥𝐴𝑗 − 1) log 𝑥𝑗

≥(𝑥𝐴𝑗𝑖

𝑖 − 1) log 𝑥
𝐴𝑗𝑖

𝑖 + (𝑥𝐴𝑗𝑖

𝑖 𝑥
𝐴𝑗𝑗

𝑗 − 1) log 𝑥
𝐴𝑗𝑗

𝑗

=𝑥
𝐴𝑗𝑖

𝑖 log 𝑥
𝐴𝑗𝑖

𝑖 + log 𝑥
−𝐴𝑗𝑖

𝑖 + 𝑥
𝐴𝑗𝑖

𝑖 𝑥
𝐴𝑗𝑗

𝑗 log 𝑥
𝐴𝑗𝑗

𝑗 + log 𝑥
−𝐴𝑗𝑗

𝑗

=𝑥
𝐴𝑗𝑖

𝑖 log 𝑥
𝐴𝑗𝑖

𝑖 + 𝑥
𝐴𝑗𝑖

𝑖 𝑥
𝐴𝑗𝑗

𝑗 log 𝑥
𝐴𝑗𝑗

𝑗 + log 𝑥
−𝐴𝑗𝑖

𝑖 𝑥
−𝐴𝑗𝑗

𝑗

≥𝑥
𝐴𝑗𝑖

𝑖 − 1 + 𝑥
𝐴𝑗𝑖

𝑖 𝑥
𝐴𝑗𝑗

𝑗 − 𝑥
𝐴𝑗𝑖

𝑖 + 1− 𝑥
𝐴𝑗𝑖

𝑖 𝑥
𝐴𝑗𝑗

𝑗 = 0.

For more general cases when considering two rows of 𝐴 to satisfy Eq (5.47), we derive

conditions that the two row vectors 𝐴𝑖 and 𝐴𝑗 need to satisfy in order for some of

construction of 𝑝𝑖 and 𝑝𝑗 following Lemma 5.5.3 to work.

Lemma 5.5.7. For two vectors 𝐴𝑖 and 𝐴𝑗 , if there exists 𝑏𝑖 > 𝑏𝑖, 𝑏𝑗 > 𝑏𝑗 and 𝜆 > 0 s.t.{︁
𝐴𝑖 + 𝑏𝑖𝑒𝑖, 𝑏𝑖𝑒𝑖

}︁
=
{︁
𝐴𝑗 + 𝑏𝑗𝑒𝑗, 𝑏𝑗𝑒− 𝑗

}︁
,{︁

(1 + 𝜆)𝐴𝑖 + 𝑏𝑖𝑒𝑖,−𝜆𝐴𝑖 + 𝑏𝑖𝑒𝑖

}︁
=
{︁
𝐴𝑗 + 𝑏𝑗𝑒𝑗, 𝑏𝑗𝑒𝑗

}︁
,

then taking 𝑝𝑖(𝑥𝑖) = 𝜆(𝑥𝑏𝑖
𝑖 − 𝑥

𝑏𝑖
𝑖 ) 1

log 𝑥𝑖
, 𝑝𝑗(𝑥𝑗) := (𝑥𝑏𝑗

𝑗 − 𝑥
𝑏𝑗

𝑗 ) 1
log 𝑥𝑗

, we have

𝑝𝑖(𝑥𝑖)(𝑥𝐴𝑖 − 1) log 𝑥𝑖 + 𝑝𝑗(𝑥𝑗)(𝑥𝐴𝑗 − 1) ≥ 0.

Proof. The assumption implies

𝑥𝐴𝑖+𝑏𝑖𝑒𝑖 + 𝑥𝑏𝑖𝑒𝑖 − 𝑥(1+𝜆)𝐴𝑖+𝑏𝑖𝑒𝑖 − 𝑥−𝜆𝐴𝑖+𝑏𝑖𝑒𝑖 = −
(︁
𝑥𝐴𝑗+𝑏𝑗𝑒𝑗 + 𝑥𝑏𝑗𝑒𝑗 − 𝑥𝐴𝑗+𝑏𝑗𝑒𝑗 − 𝑥𝑏𝑗𝑒𝑗

)︁
,

for all 𝑥 ∈ R𝑛
>0. Using Lemma 5.5.3, we know 𝑝𝑖(𝑥𝑖)(𝑥𝐴𝑖 − 1) log 𝑥𝑖 ≥ LHS, while plugging

in 𝑝𝑗(𝑥𝑗) yields that LHS is equal to the term in parenthesis in the RHS.

Another type of condition on the two rows is the following.

Lemma 5.5.8. For 𝐴𝑖, 𝐴𝑗 ∈ R𝑛
, if there exists 𝑏𝑖 > 𝑏𝑖, 𝑏𝑗 > 𝑏𝑗 , s.t.{︁

𝐴∖𝑖 + 𝑏𝑖𝑒𝑖, 𝑏𝑖𝑒𝑖

}︁
=
{︁
𝐴∖𝑗 + 𝑏𝑗𝑒𝑗, 𝑏𝑗𝑒𝑗

}︁
{︁
𝐴∖𝑖 + 𝑏𝑖𝑒𝑖, 𝑏𝑖𝑒𝑖

}︁
=
{︁
𝐴∖𝑗 + 𝑏𝑗𝑒𝑗, 𝑏𝑗𝑒𝑗

}︁
,

then for 𝑝𝑖(𝑥𝑖) = 𝑥−𝐴𝑖𝑖
𝑖 (𝑥𝑏𝑖

𝑖 − 𝑥
𝑏𝑖
𝑖 ) 1

log 𝑥𝑖
, 𝑝𝑗(𝑥𝑗) = 𝑥

−𝐴𝑗𝑗

𝑗 (𝑥𝑏𝑗

𝑗 − 𝑥
𝑏𝑗

𝑗 ) 1
log 𝑥𝑗

we have

𝑝𝑖(𝑥𝑖)(𝑥𝐴𝑖 − 1) log 𝑥𝑖 + 𝑝𝑗(𝑥𝑗)(𝑥𝐴𝑗 − 1) ≥ 0, 𝑥 ∈ R𝑛
>0.
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Proof. The assumption implies(︁
𝑥𝐴∖𝑖+𝑏𝑖𝑒𝑖 + 𝑥𝑏𝑖𝑒𝑖 − 𝑥𝐴∖𝑖+𝑏𝑖𝑒𝑖 − 𝑥𝑏𝑖𝑒𝑖

)︁
+
(︁
𝑥𝐴∖𝑗+𝑏𝑗𝑒𝑗 + 𝑥𝑏𝑗𝑒𝑗 − 𝑥𝐴∖𝑗+𝑏𝑗𝑒𝑗 − 𝑥𝑏𝑗𝑒𝑗

)︁
= 0,

for all 𝑥 ∈ R𝑛
>0. The rest of the proof is by direct calculation after plugging in 𝑝𝑖, 𝑝𝑗 .

Now we have enough preparation to cover all the possible cases when 𝐴 is effectively

2× 2, i.e. it has only 𝐴𝑖𝑖, 𝐴𝑖𝑗 , 𝐴𝑗𝑖 and 𝐴𝑗𝑗 as possibly nonzero entries. All the cases in the

following proposition together constitute the proof for Theorem 5.3.7.

Proposition 5.5.9. For two rows of 𝐴, 𝐴𝑖, 𝐴𝑗 ∈ R𝑛
with 𝑖 ̸= 𝑗. Assume 𝐴𝑖ℓ = 𝐴𝑗ℓ = 0 for

ℓ ̸= 𝑖, 𝑗. There exists 𝑝𝑖, 𝑝𝑗 s.t. 𝑝𝑖(𝑥𝑖)(𝑥𝐴𝑖 − 1) log 𝑥𝑖 + 𝑝𝑗(𝑥𝑗)(𝑥𝐴𝑗 − 1) log 𝑥𝑗 ≥ 0 in the following

cases with corresponding choices of 𝑝𝑖, 𝑝𝑗 .

(1) 𝐴𝑖𝑖, 𝐴𝑗𝑗 > 0, 𝐴𝑖𝑗𝐴𝑗𝑖 ≤ 𝐴𝑖𝑖𝐴𝑗𝑗 . The choice of 𝑝𝑖 has the following cases.

(i) 𝐴𝑖𝑗, 𝐴𝑗𝑖 < 0. Consider 0 < 𝑎𝑖𝑖 ≤ 𝐴𝑖𝑖, 0 < 𝑎𝑗𝑗 ≤ 𝐴𝑗𝑗 , s.t. 𝐴𝑖𝑗𝐴𝑗𝑖 = 𝑎𝑖𝑖𝑎𝑗𝑗 , and define

𝜆 := −𝐴𝑗𝑖

𝑎𝑖𝑖
= 𝑎𝑗𝑗

−𝐴𝑖𝑗
> 0. Then take

𝑝𝑖(𝑥𝑖) = 𝜆(1− 𝑥
𝐴𝑗𝑖−𝑎𝑖𝑖

𝑖 ) 1
log 𝑥𝑖

, 𝑝𝑗(𝑥𝑗) = (1− 𝑥
𝐴𝑖𝑗−𝑎𝑗𝑗

𝑗 ) 1
log 𝑥𝑗

;

(ii) 𝐴𝑖𝑗, 𝐴𝑗𝑖 > 0. Consider 0 < 𝑎𝑖𝑖 ≤ 𝐴𝑖𝑖, 0 < 𝑎𝑗𝑗 ≤ 𝐴𝑗𝑗 , s.t. 𝐴𝑖𝑗𝐴𝑗𝑖 = 𝑎𝑖𝑖𝑎𝑗𝑗 , and define

𝜆 := 𝐴𝑗𝑖

𝑎𝑖𝑖
= 𝑎𝑗𝑗

𝐴𝑖𝑗
> 0. Then take

𝑝𝑖(𝑥𝑖) = 𝜆(𝑥𝐴𝑗𝑖

𝑖 − 𝑥−𝑎𝑖𝑖
𝑖 ) 1

log 𝑥𝑖

, 𝑝𝑗(𝑥𝑗) = (𝑥𝐴𝑖𝑗

𝑗 − 𝑥
−𝑎𝑗𝑗

𝑗 ) 1
log 𝑥𝑗

;

(iii) 𝐴𝑖𝑗 < 0, 𝐴𝑗𝑖 > 0. Take

𝑝𝑖(𝑥𝑖) = 𝑥−𝐴𝑖𝑖
𝑖 (𝑥𝐴𝑗𝑖

𝑖 − 1) 1
log 𝑥𝑖

, 𝑝𝑗(𝑥𝑗) = 𝑥
−𝐴𝑗𝑗

𝑗 (1− 𝑥
𝐴𝑖𝑗

𝑗 ) 1
log 𝑥𝑗

;

(iv) 𝐴𝑖𝑗 > 0, 𝐴𝑗𝑖 < 0. Take

𝑝𝑖(𝑥𝑖) = 𝑥−𝐴𝑖𝑖
𝑖 (1− 𝑥

𝐴𝑗𝑖

𝑖 ) 1
log 𝑥𝑖

, 𝑝𝑗(𝑥𝑗) = 𝑥
−𝐴𝑗𝑗

𝑗 (𝑥𝐴𝑖𝑗

𝑗 − 1) 1
log 𝑥𝑗

.

(v) 𝐴𝑖𝑗 = 0. Take 𝑝𝑖 as in Corollary 5.5.5, and 𝑝𝑗 = 𝐴𝑗𝑗 :⎧⎪⎨⎪⎩𝑝𝑖(𝑥𝑖) = 𝐴𝑗𝑖

𝐴𝑖𝑖
(𝑥𝐴𝑗𝑖

𝑖 − 𝑥−𝐴𝑖𝑖
𝑖 ) 1

log 𝑥𝑖
, 𝐴𝑗𝑖 > 0;

𝑝𝑖(𝑥𝑖) = −𝐴𝑗𝑖

𝐴𝑖𝑖
(1− 𝑥

𝐴𝑗𝑖−𝐴𝑖𝑖

𝑖 ) 1
log 𝑥𝑖

, 𝐴𝑗𝑖 < 0.
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(2) 𝐴𝑖𝑖 = 0, 𝐴𝑖𝑗𝐴𝑗𝑖 < 0, 𝐴𝑗𝑗 > |𝐴𝑖𝑗|.⎧⎪⎨⎪⎩𝑝𝑖(𝑥𝑖) = 𝐴𝑗𝑗−𝐴𝑖𝑗

𝐴𝑖𝑗
(1− 𝑥

𝐴𝑗𝑖

𝑖 ) 1
log 𝑥𝑖

, 𝑝𝑗(𝑥𝑗) = (1− 𝑥
𝐴𝑖𝑗−𝑎𝑗𝑗

𝑗 ) 1
log 𝑥𝑗

, 𝐴𝑖𝑗 > 0;

𝑝𝑖(𝑥𝑖) = 𝐴𝑗𝑗+𝐴𝑖𝑗

−𝐴𝑖𝑗
(𝑥𝐴𝑗𝑖

𝑖 − 1) 1
log 𝑥𝑖

, 𝑝𝑗(𝑥𝑗) = (𝑥𝐴𝑖𝑗

𝑗 − 𝑥
−𝑎𝑗𝑗

𝑗 ) 1
log 𝑥𝑗

; 𝐴𝑖𝑗 < 0.

Proof. Let us first consider (1)-(i) and (1)-(ii) and (2). These cases can be found by considering

the condition in Lemma 5.5.7. The condition

{︁
𝐴𝑖 + 𝑏𝑖𝑒𝑖, 𝑏𝑖𝑒𝑖

}︁
=
{︁
𝐴𝑗 + 𝑏𝑗𝑒𝑗, 𝑏𝑗𝑒𝑗

}︁
has two

possibilities.

(a1) 𝐴𝑖 + 𝑏𝑖𝑒𝑖 = 𝐴𝑗 + 𝑏𝑗𝑒𝑗 and 𝑏𝑖𝑒𝑖 = 𝑏𝑗𝑒𝑗 . This implies 𝑏𝑖 = 𝑏𝑗 = 0, 𝑏𝑖 = 𝐴𝑗𝑖 − 𝐴𝑖𝑖,

𝑏𝑗 = 𝐴𝑖𝑗 − 𝐴𝑗𝑗 , and 𝐴𝑖ℓ = 𝐴𝑗ℓ for all ℓ ̸= 𝑖, 𝑗. This corresponds to condition 𝐴𝑖𝑖 > 𝐴𝑗𝑖,

𝐴𝑗𝑗 > 𝐴𝑖𝑗 .

(a2) 𝐴𝑖 + 𝑏𝑖𝑒𝑖 = 𝑏𝑗𝑒𝑗 and 𝑏𝑖𝑒𝑖 = 𝐴𝑗 + 𝑏𝑗𝑒𝑗 . This implies 𝑏𝑖 = −𝐴𝑖𝑖, 𝑏𝑗 = −𝐴𝑗𝑗 , 𝑏𝑗 = 𝐴𝑖𝑗 ,

𝑏𝑖 = 𝐴𝑗𝑖, and 𝐴𝑖ℓ = 𝐴𝑗ℓ = 0 for all ℓ ̸= 𝑖, 𝑗. This corresponds to condition 𝐴𝑗𝑖 + 𝐴𝑖𝑖 > 0,

𝐴𝑖𝑗 + 𝐴𝑗𝑗 > 0.

The second condition

{︁
(1 + 𝜆)𝐴𝑖 + 𝑏𝑖𝑒𝑖,−𝜆𝐴𝑖 + 𝑏𝑖

}︁
=
{︁
𝐴𝑗 + 𝑏𝑗𝑒𝑗, 𝑏𝑗𝑒𝑗

}︁
has two cases as

well.

(b1), (1 + 𝜆)𝐴𝑖 + 𝑏𝑖𝑒𝑖 = 𝐴𝑗 + 𝑏𝑗𝑒𝑗 , −𝜆𝐴𝑖 + 𝑏𝑖𝑒𝑖 = 𝑏𝑗𝑒𝑗 . This implies (1 + 𝜆)𝐴𝑖𝑖 + 𝑏𝑖 = 𝐴𝑗𝑖,

−𝜆𝐴𝑖𝑗 = 𝑏𝑗 , −𝜆𝐴𝑖𝑖 + 𝑏𝑖 = 0, (1 + 𝜆)𝐴𝑖𝑗 = 𝐴𝑗𝑗 + 𝑏𝑗 . For ℓ ̸= 𝑖, 𝑗, then 𝐴𝑖ℓ − 𝐴𝑗ℓ = −𝜆𝐴𝑖ℓ = 0.

This corresponds to condition 𝐴𝑗𝑖 + (1 + 2𝜆)𝐴𝑖𝑖 > 0, and (1 + 2𝜆)𝐴𝑖𝑗 − 𝐴𝑗𝑗 > 0.

(b2), (1 + 𝜆)𝐴𝑖 + 𝑏𝑖𝑒𝑖 = 𝑏𝑗𝑒𝑗 , −𝜆𝐴𝑖 + 𝑏𝑖𝑒𝑖 = 𝐴𝑗 + 𝑏𝑗𝑒𝑗 . This implies (1 + 𝜆)𝐴𝑖𝑖 + 𝑏𝑖 = 0,

(1 + 𝜆)𝐴𝑖𝑗 = 𝑏𝑗 ,−𝜆𝐴𝑖𝑖 + 𝑏𝑖 = 𝐴𝑗𝑖,−𝜆𝐴𝑖𝑗 = 𝐴𝑗𝑗 + 𝑏𝑗 . For ℓ ̸= 𝑖, 𝑗, (1 + 𝜆)𝐴𝑖ℓ = 0,−𝜆𝐴𝑖ℓ = 𝐴𝑗ℓ,

which implies 𝐴𝑖ℓ = 𝐴𝑗ℓ = 0. This corresponds to condition 𝐴𝑗𝑖 + (1 + 2𝜆)𝐴𝑖𝑖 > 0,

−𝐴𝑗𝑗 − (1 + 2𝜆)𝐴𝑖𝑗 > 0.

Now we look at possible combinations for a full cancellation.

For (a1)-(b1), the conditions come down to 𝜆𝐴𝑖𝑖 = 0, (1 + 𝜆)𝐴𝑖𝑗 = 𝐴𝑗𝑗 , and 𝐴𝑖𝑖 > 𝐴𝑗𝑖,

𝐴𝑗𝑗 > 𝐴𝑖𝑗 . 𝜆𝐴𝑖ℓ = 𝜆𝐴𝑗ℓ = 0. Since 𝜆 > 0, this corresponds to 𝐴𝑖𝑖 = 0 > 𝐴𝑗𝑖, 𝐴𝑗𝑗 > 𝐴𝑖𝑗 > 0,

i.e. (2).

For (a1)-(b2), the conditions come down to 𝜆𝐴𝑖𝑖 = −𝐴𝑗𝑖, 𝜆𝐴𝑖𝑗 = −𝐴𝑗𝑗 , and 𝐴𝑖𝑖 > 𝐴𝑗𝑖,

𝐴𝑗𝑗 > 𝐴𝑖𝑗 . (1+𝜆)𝐴𝑖ℓ = (1+𝜆)𝐴𝑗ℓ = 0. This implies 𝐴𝑗𝑖, 𝐴𝑖𝑗 < 0, while 𝐴𝑖𝑖, 𝐴𝑗𝑗 > 0, together

with
𝐴𝑗𝑖

𝐴𝑖𝑖
= 𝐴𝑗𝑗

𝐴𝑖𝑗
= −𝜆 < 0.

Considering the fact that we can use Lemma 5.5.1 to take 𝐴𝑖𝑖 and 𝐴𝑗𝑗 as lower bounds

of actual 𝐴𝑖𝑖 and 𝐴𝑗𝑗 , i.e. the 𝑎𝑖𝑖 and 𝑎𝑗𝑗 as defined in the statement of the lemma.

Therefore, the conditions here can be relaxed to 𝜆𝐴𝑖𝑖 ≥ −𝐴𝑗𝑖, 𝐴𝑗𝑗 ≥ −𝜆𝐴𝑖𝑗 . Therefore

𝜆𝐴𝑖𝑖𝐴𝑗𝑗 ≥ −𝐴𝑗𝑖𝐴𝑗𝑗 ≥ 𝜆𝐴𝑗𝑖𝐴𝑖𝑗 . This corresponds to (1)-(i).
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For (a2)-(b1), the conditions come down to 𝜆𝐴𝑖𝑖 = 𝐴𝑗𝑖, 𝜆𝐴𝑖𝑗 = 𝐴𝑗𝑗 , and 𝐴𝑗𝑖 + 𝐴𝑖𝑖 > 0,

𝐴𝑖𝑗 + 𝐴𝑗𝑗 > 0. This implies 𝐴𝑖𝑖, 𝐴𝑗𝑗, 𝐴𝑖𝑗, 𝐴𝑗𝑖 > 0. Together with
𝐴𝑗𝑖

𝐴𝑖𝑖
= 𝐴𝑗𝑗

𝐴𝑖𝑗
= 𝜆 > 0. This

corresponds to (1)-(ii).

For (a2)-(b2), the conditions come down to 𝜆𝐴𝑖𝑖 = 0, (1 + 𝜆)𝐴𝑖𝑗 + 𝐴𝑗𝑗 = 0, and 𝐴𝑗𝑖 + 𝐴𝑖𝑖 > 0,

𝐴𝑖𝑗 + 𝐴𝑗𝑗 > 0. This implies 𝐴𝑗𝑖 > 𝐴𝑖𝑖 = 0, 𝐴𝑗𝑗 > −𝐴𝑖𝑗 > 0. This corresponds to (2).

The cases (1)-(iii) and (1)-(iv) can be found through conditions in Lemma 5.5.8.

The condition

{︁
𝐴∖𝑖 + 𝑏𝑖𝑒𝑖, 𝑏𝑖𝑒𝑖

}︁
=
{︁
𝐴∖𝑗 + 𝑏𝑗𝑒𝑗, 𝑏𝑗𝑒𝑗

}︁
has two cases.

(c1i). 𝐴∖𝑖 + 𝑏𝑖𝑒𝑖 = 𝐴∖𝑗 + 𝑏𝑗𝑒𝑗 and 𝑏𝑖𝑒𝑖 = 𝑏𝑗𝑒𝑗 . This implies 𝑏𝑖 = 𝑏𝑗 = 0 and 𝑏𝑖 = 𝐴𝑗𝑖, 𝑏𝑗 = 𝐴𝑖𝑗 .

This corresponds to condition 𝐴𝑗𝑖 > 0 while 𝐴𝑖𝑗 < 0. 𝐴𝑖ℓ = 𝐴𝑗ℓ for ℓ ̸= 𝑖, 𝑗.

(c2i). 𝐴∖𝑖 + 𝑏𝑖𝑒𝑖 = 𝑏𝑗𝑒𝑗 , and 𝑏𝑖𝑒𝑖 = 𝐴∖𝑖 + 𝑏𝑗𝑒𝑗 . This implies 𝑏𝑖 = 0, 𝑏𝑗 = 0, 𝑏𝑖 = 𝐴𝑗𝑖, 𝑏𝑗 = 𝐴𝑖𝑗 .

This corresponds to condition 𝐴𝑗𝑖 < 0 and 𝐴𝑖𝑗 > 0. 𝐴𝑖ℓ = 𝐴𝑗ℓ = 0 for ℓ ̸= 𝑖, 𝑗.

Then we have corresponding cases (c1j) and (c2j) for the other condition where indices 𝑖 and

𝑗 are interchanged. (c1j) implies 𝑏𝑗 = 𝑏𝑖 = 0 and 𝑏𝑗 = 𝐴𝑖𝑗 , 𝑏𝑖 = 𝐴𝑗𝑖. (c2j) implies 𝑏𝑗 = 𝑏𝑖 = 0,

𝑏𝑗 = 𝐴𝑖𝑗 , 𝑏𝑖 = 𝐴𝑗𝑖. So we see that the only compatible combinations are (c1i)-(c2j), which

corresponds to (1)-(iii), and (c2i)-(c1j), which corresponds to (1)-(iv).

Case (1)-(v) is proved in Corollary 5.5.6.

5.6 Appendix. Background on storage functions and dissi-
pativity with fixed point dependence.

Due to historical reasons, past dissipativity notions take “a system is dissipative” to mean

“a system is dissipative with respect to this specific storage function the origin”. Our

generalization to use dissipativity for multistability is exactly rooted in observing this,

so multistability could be described as “a system is dissipative with respect to storage

function 𝑠1 and point 𝑥1, and it is dissipative with respect to storage function 𝑠2 and point

𝑥2 as well”. So for us it is important to keep it explicit what point is the system dissipative

to. Therefore, in this section we provide a self-contained summary of the foundation of

dissipativity with this in mind. This is re-doing what is done in [113] and nicely written

in expository format in [77], with only a minor difference that now the reference point is

explicitly written for almost all definitions, from dissipativity to storage functions.

We restrict to time-invariant systems (technically, systems where the state transition map

satisfies causality, initial state consistency, semigroup property, and time invariance).

For example, �̇� = 𝑓(𝑥, 𝑢), 𝑦 = ℎ(𝑥, 𝑢). 𝑢(𝑡) ∈ U input value space, 𝑢 ∈ 𝒰 input signal
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space, 𝑦(𝑡) ∈ Y output value space, 𝑦 ∈ 𝒴 output signal space, and 𝑥(𝑡) ∈ X state

space. For example, 𝒰 ,𝒴 = 𝐿2, X = R𝑛
. For our specific purpose, we may choose

U = R𝑚
>0, Y = R𝑝

>0, X = R𝑛
>0.

We start with the input/output (i/o) view, since dissipation is the natural generalization

of stability from closed systems to open systems. Let 𝐺 denote the i/o map of input

trajectory 𝑢 to output trajectory 𝑦. In order to discuss instability, we need to consider

extended spaces 𝒰𝑒 and 𝒴𝑒, where 𝒰𝑒 = {𝑢 : 𝑃𝑇 𝑢 ∈ 𝒰 , 𝑇 ≥ 0}, 𝑃𝑇 is truncation operator

till time 𝑇 . i/o stable then means bounded input gives bounded output. If we let

𝒦(𝐺) := {𝑢 ∈ 𝒰 : 𝐺𝑢 ∈ 𝒴}, the set of inputs that produce bounded outputs, then i/o

stability is equivalent to 𝒰 = 𝒦(𝐺). The i/o definition of ultimate virtual dissipation
(UVD) w.r.t 𝑠 is 𝐺 satisfy,

∫︀∞
0 𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ 0, for all 𝑢 ∈ 𝒦(𝐺), i.e. for all inputs that give

rise to bounded outputs. 𝐺 is weakly dissipative w.r.t 𝑠 if

∫︀ 𝑇
0 𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ −𝛽 for all 𝑇

and for all 𝑢, for some constant 𝛽. 𝐺 is dissipative if 𝛽 = 0. .

Now we assume knowledge about the system state. It should be noted that we will restrict

state space to a finite-time reachable and controllable set as this makes sense from the

input/state/output (i/s/o) perspective. 𝑥1 is reachable from 𝑥0 if there exists a trajectory

s.t. 𝑥(0) = 𝑥0 and 𝑥(𝑇 ) = 𝑥1 for some 𝑢 and some 𝑇 . 𝑥−1 is controllable to 𝑥0 if there

exists a trajectory s.t. 𝑥(−𝑇 ) = 𝑥−1 and 𝑥(0) = 𝑥0 for some 𝑢 and some 𝑇 . Thus, reachable

to and controllable from forms an equivalence relationship (i.e. denote this by ⇌, then

𝑥 ⇌ 𝑥, 𝑥1 ⇌ 𝑥2 implies 𝑥2 ⇌ 𝑥1, and 𝑥1 ⇌ 𝑥2 ⇌ 𝑥3 implies 𝑥1 ⇌ 𝑥3). Denote [𝑥] as the

equivalence class of states that are reachable from and controllable to 𝑥.

Dissipativity w.r.t. 𝑠 at 𝑥0 is

∫︀ 𝑇
0 𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ 0 along all state trajectories starting

from 𝑥0. Weak dissipativity w.r.t 𝑠 at 𝑥0 is that there is a uniform lower bound for∫︀ 𝑇
0 𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ −𝛽 along any state trajectories starting from 𝑥0.

Note that, in contrast to the i/o definition, dissipativity with state description is relative

to one specific state 𝑥0. This hinders the connection between i/o definitions and state

definitions. i/o notions are unaware of the initial condition of the system. However, given

dissipativity w.r.t one state 𝑥0, we can deduce properties about other states. For example, if

a system 𝐺 is dissipative w.r.t 𝑠 at 𝑥0 then it is weakly dissipative w.r.t 𝑠 at 𝑥 reachable from

𝑥0. This is because all trajectories 𝑥 → * could be considered a segment of 𝑥0 → 𝑥 → *,
where dissipativity implies 𝑆(𝑥→ *) ≥ −𝑆(𝑥0 → 𝑥) =: −𝛽. Here we use 𝑆(𝑥1 → 𝑥2) as a

shorthand to denote the integral of supply rate for a trajectory from 𝑥1 to 𝑥2. So a system is

weakly dissipative w.r.t 𝑠 at 𝑥0 implies it is weakly dissipative w.r.t 𝑠 at any 𝑥 reachable

from 𝑥0. However, it should be noted that the bound 𝛽 is 𝛽(𝑥), which depend on the state

chosen and may not have a uniform lower bound.
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This is a complication that we would like to avoid. The good news is that cyclodissipativity

side-steps this. Definition of cyclodissipativity w.r.t. 𝑠 at 𝑥0 is that

∫︀ 𝑇
0 𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ 0

along any loop state trajectory (𝑥(0) = 𝑥(𝑇 ) = 𝑥0). Let 𝐺(𝑥) denote the i/o system

corresponding to state system 𝐺 with initial state 𝑥0. If 𝐺(𝑥0) is cyclodissipative w.r.t 𝑠,

then 𝐺(𝑥) is cyclodissipative w.r.t 𝑠 for all 𝑥 that is reachable from and controllable to

𝑥0. Since reachable from and controllable to together defines an equivalence relationship,

cyclodissipativity is w.r.t. an equivalence class of states [𝑥0], instead of one state 𝑥. So, if the

state space𝒳 of concern is one equivalence class [𝑥0], then the definition of cyclodissipativity

could be relaxed to simply say a system 𝐺 is cyclodissipative w.r.t 𝑠 if

∫︀ 𝑇
0 𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ 0

along any loop state trajectory s.t. 𝑥(0) = 𝑥(𝑇 ).

Dissipativity and cyclodissipativity could be equivalently described in terms of storage

functions. A virtual storage function w.r.t 𝑥0, 𝑉𝑥0(𝑥), is a scalar-valued function s.t.

𝑉𝑥0(𝑥(𝑡1))− 𝑉𝑥0(𝑥(𝑡0)) ≤
∫︀ 𝑡1

𝑡0
𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 for all trajectories, and 𝑉𝑥0(𝑥0) = 0 (𝑉𝑥0(𝑥0) = 0

is needed as trajectories with 𝑡0 = 𝑡1 has zero supply as supply is integral of zero length. So

this is necessary for required supply and available storage below to be storage functions). A

storage function w.r.t. 𝑥0, 𝑉𝑥0(𝑥), is a virtual storage function with the additional property

that 𝑉𝑥0(𝑥) ≥ 0 for all 𝑥.

Now we define three useful specific (virtual) storage functions. The required supply
𝑉𝑟(𝑥1; 𝑥0) is the smallest supply (inf

∫︀
𝑠𝑑𝑡) over all trajectories that go from state 𝑥0 to state

𝑥1. 𝑉𝑟(𝑥1; 𝑥0) ≤ ∞ for all 𝑥1 reachable from 𝑥0. If we fix 𝑥0, then we have required supply
w.r.t 𝑥0: 𝑉𝑟,𝑥0(𝑥). The virtual available storage 𝑉 *

𝑎 (𝑥−1; 𝑥0) is the largest negative supply

(sup−
∫︀

𝑠𝑑𝑡) to go from 𝑥−1 to 𝑥0. 𝑉 *
𝑎 (𝑥−1; 𝑥0) > −∞ for all 𝑥−1 controllable to 𝑥0. The

available storage 𝑉𝑎(𝑥) is the largest negative supply to go from 𝑥 over all future trajectories

(leaving end state free). Note that 𝑉𝑎(𝑥) has only one argument, so it is not a relative
property but a global property, which can be considered as having a lower bound, or
states with “lowest energy”.

Lemma 5.6.1. Fix supply 𝑠. We have the following characterizations:

(1) An i/s/o system is cyclodissipative at 𝑥0, then 𝑉 *
𝑎 (𝑥0; 𝑥0) = 𝑉𝑟(𝑥0; 𝑥0) = 0, and 𝑉𝑟(𝑥; 𝑥0) ≥

𝑉 *
𝑎 (𝑥; 𝑥0) for all 𝑥 ∈ X. In particular, −∞ < 𝑉 *

𝑎 (𝑥; 𝑥0) ≤ 𝑉𝑟(𝑥; 𝑥0) <∞ for all 𝑥 reachable

to and controllable from 𝑥0.

(2) An i/s/o system is dissipative at 𝑥0, then 𝑉𝑎(𝑥0) = 𝑉𝑟,𝑥0(𝑥0) = 0 and 𝑉𝑟,𝑥0(𝑥) ≥ 𝑉𝑎(𝑥) ≥ 0
for all 𝑥 ∈ X. In particular, 0 ≤ 𝑉𝑎(𝑥) ≤ 𝑉𝑟,𝑥0(𝑥) <∞ for all 𝑥 reachable from 𝑥0.

(3) 𝑉 *
𝑎 (·; 𝑥0), 𝑉𝑟(·; 𝑥0) are virtual storage functions w.r.t 𝑥0 for systems cyclodissipative at 𝑥0.

𝑉𝑎(·) and 𝑉𝑟,𝑥0(·) are storage functions w.r.t. 𝑥0 for systems dissipative w.r.t 𝑥0.
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(4) An i/s/o system is cyclodissipative at 𝑥0 iff it has 𝑉𝑥0(𝑥), a virtual storage functions w.r.t 𝑥0,

s.t. −∞ < 𝑉𝑥0(𝑥) <∞ for all 𝑥 reachable and controllable from 𝑥0. A system is dissipative

w.r.t 𝑥0 iff it has 𝑉𝑥0(𝑥),a storage function w.r.t 𝑥0, s.t. 0 ≤ 𝑉𝑥0(𝑥) <∞ for all reachable 𝑥.

Proof. (1) Consider trajectories 𝑥(𝑡0) = 𝑥0 to 𝑥(𝑡1) = 𝑥1 then back to 𝑥(𝑡2) = 𝑥0, for 𝑥1

reachable from 𝑥0 and controllable to 𝑥0. Cyclodissipative implies

∫︀ 𝑡1
𝑡0

𝑠𝑑𝑡 +
∫︀ 𝑡2

𝑡1
𝑠𝑑𝑡 ≥ 0

for all such trajectories. Take infinimum over such trajectories, i.e. inf𝑥0→𝑥1 and

inf𝑥1→𝑥0 , we get 𝑉𝑟(𝑥1; 𝑥0) − 𝑉 *
𝑎 (𝑥1; 𝑥0) ≥ 0. If we consider 𝑥1 = 𝑥0 and 𝑡0 = 𝑡1 = 𝑡2,

then integral with zero length is zero so 𝑉 *
𝑎 (𝑥0; 𝑥0) = 0 and 𝑉𝑟(𝑥0; 𝑥0) = 0. Now for 𝑥

not reachable from (not controllable to) 𝑥0, simply take 𝑉𝑟(𝑥; 𝑥0) (𝑉 *
𝑎 (𝑥; 𝑥0)) to be +∞

(−∞).

(2) Consider 𝑥1 reachable from 𝑥0, and trajectories 𝑥(𝑡0) = 𝑥0, 𝑥(𝑡1) = 𝑥1, with 𝑥(𝑡2)
arbitrary. Dissipative w.r.t. 𝑥0 implies

∫︀ 𝑡1
𝑡0

𝑠𝑑𝑡 +
∫︀ 𝑡2

𝑡1
𝑠𝑑𝑡 ≥ 0 for all such trajectories.

Take inf over them, i.e. inf𝑥0→𝑥1 and inf𝑥1→⋆, we get 𝑉𝑟(𝑥1; 𝑥0) − 𝑉𝑎(𝑥1) ≥ 0. Now

since 𝑡2 and 𝑥(𝑡2) are arbitrary, we can consider 𝑡2 = 𝑡1. For this trajectory

∫︀ 𝑡2
𝑡1

𝑠𝑑𝑡 = 0,

which implies 𝑉𝑎(𝑥1) ≥ 0 for all 𝑥1 reachable from 𝑥0. Now consider trajectory

𝑡0 = 𝑡1 = 𝑡2 which gives

∫︀ 𝑡1
𝑡0

𝑠𝑑𝑡 = 0, implying 𝑉𝑟(𝑥0; 𝑥0) ≤ 0. Together with

𝑉𝑟(𝑥0; 𝑥0) ≥ 𝑉𝑎(𝑥0) ≥ 0, we have 𝑉𝑟(𝑥0; 𝑥0) = 𝑉𝑎(𝑥0) = 0. For 𝑥 not reachable from 𝑥0,

𝑉𝑟(𝑥; 𝑥0) is +∞, so above are still true.

(3) Let’s first show 𝑉𝑟(·; 𝑥0) is a virtual storage function for 𝑥0 for systems cyclodissipative

w.r.t. 𝑥0. Consider 𝑥1, 𝑥2 reachable by 𝑥0. By definition, 𝑉𝑟(𝑥2; 𝑥0) ≤
∫︀ 𝑡2

𝑡0
𝑠𝑑𝑡 = 𝑆(𝑥0 →

𝑥2) for all trajectories going from 𝑥(𝑡0) = 𝑥0 to 𝑥(𝑡2) = 𝑥2. Consider trajectories

that pass through 𝑥1, we have 𝑉𝑟(𝑥2; 𝑥0) ≤ 𝑆(𝑥0 → 𝑥1) + 𝑆(𝑥1 → 𝑥2). Therefore

𝑆(𝑥0 → 𝑥1) ≥ 𝑉𝑟(𝑥2; 𝑥0)− 𝑆(𝑥1 → 𝑥2). Take inf over the segment 𝑥0 → 𝑥1, we have

𝑉𝑟(𝑥1; 𝑥0) ≥ 𝑉𝑟(𝑥2; 𝑥0) − 𝑆(𝑥1 → 𝑥2), which gives the dissipation inequality. Since

previous paragraphs already showed 𝑉𝑟(𝑥0; 𝑥0) = 0, we are done. Proof for other

cases are similar.

(4) ( =⇒ ) is clear as 𝑉𝑎, 𝑉 *
𝑎 , 𝑉𝑟 works. (⇐= ) If we have storage function w.r.t 𝑥0, then any

trajectory starting from 𝑥0 satisfies

∫︀ 𝑡1
𝑡0

𝑠𝑑𝑡 ≥ 𝑉 (𝑥(𝑡1); 𝑥0)−𝑉 (𝑥0; 𝑥0) = 𝑉 (𝑥(𝑡1); 𝑥0) ≥ 0,

so it is dissipative. If we have virtual storage function w.r.t 𝑥0, then any loop trajectory

starting and ending in 𝑥0 satisfy

∫︀ 𝑡1
𝑡0

𝑠𝑑𝑡 ≥ 𝑉 (𝑥0; 𝑥0)− 𝑉 (𝑥0; 𝑥0) = 0.

Corollary 5.6.2. A system is cyclodissipative w.r.t 𝑠 at 𝑥0 iff it is cyclodissipative w.r.t 𝑠 at [𝑥0].
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Proof. Cyclodissipative at 𝑥0 iff there exists a virtual storage function 𝑉𝑥0(·) s.t. −∞ <

𝑉𝑥0(𝑥) < +∞ for all 𝑥 ∈ [𝑥0]. For all 𝑥1 ∈ [𝑥0], consider loop trajectory starting and ending

in 𝑥1, since 𝑉𝑥0 is a virtual storage function w.r.t 𝑥0, it satisfies 0 = 𝑉𝑥0(𝑥1)−𝑉𝑥0(𝑥1) ≤
∫︀ 𝑡1

𝑡0
𝑠𝑑𝑡,

so cyclodissipative w.r.t 𝑥1.

Remark 5.6.3. Note that since cyclodissipative is w.r.t an equivalence class, we could state

the characterizations in the following way: Let X0 be a reachable-to-controllable-from

equivalence class. A system is cyclodissipative w.r.t X0 then 𝑉 *
𝑎 (𝑥0; 𝑥0) = 𝑉𝑟(𝑥0; 𝑥0) = 0

for all 𝑥0 ∈ X0, and −∞ < 𝑉 *
𝑎 (𝑥; 𝑥0) ≤ 𝑉 *

𝑎 (𝑥; 𝑥0) < +∞ for all 𝑥, 𝑥0 ∈ X0 × X0, and

𝑉 *
𝑎 (·; 𝑥0), 𝑉𝑟(·; 𝑥0) are virtual storage functions w.r.t 𝑥0 for all 𝑥0 ∈ X0.

So virtual storage functions are naturally stated with two arguments comparing two states.

From now on, we define 𝑉 (𝑥; 𝑥′), 𝑉 : X × X → R as a virtual storage function of a state

system if 𝑉 (𝑥; 𝑥) = 0 for all 𝑥, and 𝑉 (𝑥(𝑡1); 𝑥′) − 𝑉 (𝑥(𝑡0); 𝑥′) ≤
∫︀ 𝑡1

𝑡0
𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 for all

system trajectories. Note that the two arguments of a virtual storage function are not

interchangeable, i.e. they are not symmetric. For example, 𝑉 *
𝑎 and 𝑉𝑟 take the two arguments

as start and end points of trajectories. In general, trajectories 𝑥1 → 𝑥2 and 𝑥2 → 𝑥1 do

not have the same properties. As a another example, we know for all trajectories that go

from 𝑥0 to 𝑥1, 𝑉 (𝑥1; 𝑥′) − 𝑉 (𝑥0; 𝑥′) ≤ 𝑆(𝑥0 → 𝑥1). In comparison, 𝑉 (𝑥′; 𝑥1) − 𝑉 (𝑥′; 𝑥0) =
(𝑉 (𝑥′; 𝑥1)− 𝑉 (𝑥1; 𝑥1)) + (𝑉 (𝑥0; 𝑥0)− 𝑉 (𝑥′; 𝑥0)) ≤ 𝑆(𝑥1 → 𝑥′) + 𝑆(𝑥′ → 𝑥0), trajectories

from 𝑥1 to 𝑥0 passing through 𝑥′
. This inequality is not necesssarily true for 𝑆(𝑥1 → 𝑥0).

In particular, if the state space X itself is a reachable-to-controllable-from equivalence

class, then cyclodissipativity is a global property. Furthermore, this state system is

cyclodissipative iff there is a virtual storage function 𝑉 (𝑥; 𝑥′). △

We summarize the above discussion into the following corollary.

Corollary 5.6.4. For a system with controllable and reachable state space X, fix a supply rate 𝑠, the

following are equivalent:

(1) it is cyclodissipative at one point in X,

(2) it is cyclodissipative everywhere in X,

(3) there exists a virtual storage function 𝑉 (𝑥; 𝑥′), 𝑉 : X× X→ R, s.t. −∞ < 𝑉 (𝑥; 𝑥′) < +∞
for all (𝑥, 𝑥′) ∈ X× X.

Remark 5.6.5. Note that the set of virtual storage functions and storage functions form

a convex hull, with 𝑉𝑎, 𝑉𝑟,𝑥0 and 𝑉 *
𝑎 , 𝑉𝑟 as extreme elements. Namely, 𝜆𝑉1 + (1 − 𝜆)𝑉2 is

a (virtual) storage function if 𝑉1, 𝑉2 are, for all 𝜆 ∈ [0, 1]. Also, if 𝑉 : X → R is a storage
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function w.r.t 𝑥0, then 0 ≤ 𝑉𝑎(𝑥) ≤ 𝑉 (𝑥) ≤ 𝑉𝑟,𝑥0(𝑥); if 𝑉 : X × X → R is a virtual storage

function, then 𝑉 *
𝑎 (𝑥; 𝑥′) ≤ 𝑉 (𝑥; 𝑥′) ≤ 𝑉𝑟(𝑥; 𝑥′) for all (𝑥, 𝑥′). △

Remark 5.6.6. Cyclodissipativity is natural for considering multistability, where the whole

state space is cyclodissipative, then we show whether some of the points, or some regions,

are dissipative (which implies stability), or not dissipative (which implies instability). △

The i/o property UVD and the i/s/o property cyclodissipativity are equivalent in some

situations. UVD implies cyclodissipativity if there is a constant input that implies non-

positive supply; in particular, we translate input coordinate to let the constant input be 0.

Cyclodissipativity implies UVD if bounded output implies the state eventually goes back

to the initial state.

Lemma 5.6.7 (UVD and cyclodissipativity). Assume an i/o system 𝐺 has a state representation Σ
with initial condition 𝑥0. Then

(1) If there exists 𝑢*
s.t. 𝑠(𝑢*, 𝑦) ≤ 0 for all 𝑦, we first shift coordinate such that 𝑢* = 0, then

UVD implies cyclodissipativity.

(2) If the initial state is the unique steady state, i.e. Σ satisfies 𝑥(𝑡) → 𝑥0 as 𝑡 → ∞ for all

trajectories with 𝑢 ∈ 𝒦(𝐺), then cyclodissipativity implies UVD.

Proof. (1) UVD means, for all 𝑢 ∈ 𝒦(𝐺),
∫︀∞

𝑡0
𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ 0. Consider any 𝑥(𝑡0) = 𝑥0,

and any 𝑢 that brings 𝑥0 back to 𝑥(𝑡1) = 𝑥0, with 𝑢(𝑡) = 0 for all 𝑡 > 𝑡1, then,∫︀ 𝑡1
𝑡0

𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 =
∫︀∞

𝑡0
𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡−

∫︀∞
𝑡1

𝑠(0, 𝑦(𝑡))𝑑𝑡 ≥
∫︀∞

𝑡0
𝑠(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡 ≥ 0, where

the last inequality is because such 𝑢 has finite support on [𝑡0, 𝑡1] so it is in 𝒦(𝐺), so

UVD property implies the inequality. Since 𝑥0 is arbitrary, any loop satisfies the

above, and therefore the system is cyclodissipative.

(2) Let the state system with initial condition 𝑥0 be the state representation of 𝐺. Then

cyclodissipativity implies

∫︀ 𝑡1
𝑡0

𝑠𝑑𝑡 ≥ 0 for any loop trajectory from 𝑥0 back to 𝑥0.

Consider any trajectory with 𝑢 ∈ 𝒦(𝐺); by assumption we know 𝑥(𝑡1) → 𝑥0 as

𝑡1 →∞, so there are loop trajectories infinitely close to this trajectory, so taking the

limit we get

∫︀ 𝑡1
𝑡0

𝑠𝑑𝑡 ≥ 0, cyclodissipative implies UVD.

Now we are ready to state how stability and instability are related to cyclodissipativity and

dissipativity.
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Theorem 5.6.8 (Cyclodissipative, dissipative and stability). We have the following conclu-

sions.

(1) Assume there exists 𝑢*, 𝑦*
s.t. supply rate 𝑠(𝑢*, 𝑦) < 0 for all 𝑦 ̸= 𝑦*

, and 𝑠(𝑢*, 𝑦*) = 0.

Then i/o system 𝐺 is (weakly) dissipative =⇒ 𝐺 is (weakly) i/o stable (finite gain).

Assume steady state detection (SSD) condition that 𝑦(𝑡) = 𝑦*
for some interval 𝑡 ∈ [𝑡0, 𝑡1]

implies 𝑥(𝑡0) = 𝑥*
. Then i/s/o system 𝐺 is dissipative w.r.t 𝑥* =⇒ 𝑥*

is asymptotically

stable.

(2) Assume supply rate 𝑠(0, 𝑦) ≤ 0. Assume i/o system 𝐺 is causal and UVD.

Then 𝐺 is i/o stable =⇒ 𝐺 is dissipative.

Contrapositive: 𝐺 is not dissipative =⇒ 𝐺 is not i/o stable.

(3) Assume there exists 𝑢*
s.t. supply rate 𝑠(𝑢*, 𝑦) ≤ 0 for all 𝑦. Assume i/s/o system 𝐺 is

cyclodissipative w.r.t [𝑥*].

Then 𝑥*
is asymptotically stable =⇒ 𝐺 is dissipative w.r.t 𝑥*

.

Contrapositive: 𝐺 is not dissipative w.r.t 𝑥* =⇒ 𝑥*
is not asymptotically stable.

Proof. (1) Consider i/s/o system 𝐺, and any trajectory 𝑥(𝑡0) to 𝑥(𝑡1). Dissipative w.r.t 𝑥*

means there exists storage function w.r.t 𝑥*
, 𝑉 , s.t. 𝑉 (𝑥(𝑡1))− 𝑉 (𝑥(𝑡0)) ≤

∫︀ 𝑡1
𝑡0

𝑠(𝑢, 𝑦)𝑑𝑡.

Take 𝑢(𝑡) = 𝑢*
for 𝑡 ≥ 𝑡0, then 𝑉 (𝑥(𝑡1)) − 𝑉 (𝑥(𝑡0)) ≤

∫︀ 𝑡1
𝑡0

𝑠(𝑢*, 𝑦)𝑑𝑡 ≤ 0, so 𝑉 is

non-increasing along any trajectory. Since 𝑉 is a storage function, it is lower bounded,

so it will always go to a limit asymptotically. Let the limit be 𝑉𝑓 , we see that for

trajectory starting in any state 𝑥𝑓 achieving 𝑉 (𝑥𝑓 ) = 𝑉𝑓 , 0 = 𝑉𝑓 −𝑉𝑓 ≤
∫︀ 𝑡1

𝑡0
𝑠(𝑢*, 𝑦(𝑡))𝑑𝑡,

which together with 𝑠(𝑢*, 𝑦) ≤ 0 with equality only achieved at 𝑦*
indicates that

𝑦(𝑡) = 𝑦*
for 𝑡 ≥ 𝑡0. By SSD,this means 𝑥(𝑡0) = 𝑥𝑓 = 𝑥*

.

(2) For all 𝑢 ∈ 𝒰𝑒, 𝑃𝑇 𝑢 ∈ 𝒦(𝐺), where 𝑃𝑇 is truncation operator setting 𝑢(𝑡) = 0 for

𝑡 > 𝑇 . So UVD implies

∫︀∞
0 𝑠(𝑃𝑇 𝑢, 𝐺𝑃𝑇 𝑢)𝑑𝑡 ≥ 0. 𝐺 is causal, i.e. 𝑃𝑇 𝐺𝑃𝑇 = 𝑃𝑇 𝐺, so∫︀ 𝑇

0 𝑠(𝑢, 𝐺𝑢)𝑑𝑡 =
∫︀ 𝑇

0 𝑠(𝑃𝑇 𝑢, 𝑃𝑇 𝐺𝑢)𝑑𝑡 =
∫︀ 𝑇

0 𝑠(𝑃𝑇 𝑢, 𝑃𝑇 𝐺𝑃𝑇 𝑢)𝑑𝑡 =
∫︀ 𝑇

0 𝑠(𝑃𝑇 𝑢, 𝐺𝑃𝑇 𝑢)𝑑𝑡 =∫︀∞
0 𝑠(𝑃𝑇 𝑢, 𝐺𝑃𝑇 𝑢)𝑑𝑡 −

∫︀∞
𝑇 𝑠(0, 𝐺𝑃𝑇 𝑢)𝑑𝑡 ≥

∫︀∞
0 𝑠(𝑃𝑇 𝑢, 𝐺𝑃𝑇 𝑢)𝑑𝑡 ≥ 0, where second to

last inequality is by 𝑠(0, 𝑦) ≤ 0.

(3) Take any trajectory, 𝐺 is cyclodissipative means there exists virtual storage function

𝑉 (𝑥; 𝑥′), s.t. 𝑉 (𝑥(𝑡1); 𝑥′) − 𝑉 (𝑥(𝑡0); 𝑥′) ≤
∫︀ 𝑡1

𝑡0
𝑠(𝑢, 𝑦)𝑑𝑡. Consider 𝑢(𝑡) = 𝑢*

for 𝑡 ≥ 𝑡0,

then 𝑉 (𝑥(𝑡1); 𝑥′) − 𝑉 (𝑥(𝑡0); 𝑥′) ≤
∫︀ 𝑡1

𝑡0
𝑠(𝑢*; 𝑦)𝑑𝑡 ≤ 0, so 𝑉 (𝑥(𝑡); 𝑥′) is non-increasing.

Since 𝑥*
is asymptotically, take 𝑥′ = 𝑥*

and 𝑡1 → ∞, with 𝑉 (𝑥*; 𝑥*) = 0 for virtual

storage functions we get 𝑉 (𝑥(𝑡0); 𝑥*) ≥ 0. Since this is true for any 𝑥(𝑡0), we get that

𝑉 (·; 𝑥*) is a storage function w.r.t 𝑥*
.
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