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ABSTRACT

Single-cell RNA-sequencing is an experimental technique for studying cellular gene

expression, with a multitude of engineering challenges. These challenges transcend the

boundaries of traditional academic disciplines and the field of mechanical engineering,

that aims to address roadblocks in critical technologies towards engineering our

environment, is central to this endeavor.

This thesis addresses three engineering challenges that must be met in order to realize the

goal of bringing single-cell RNA sequencing to the clinic. The first is scalable cellular

isolation and sampling. Chapter 2 describes the poseidon and colosseum instruments that

enable massive scale single-cell isolation and collection. They each have novel design

elements that reduce cost and enable modularity, at a similar accuracy to expensive

commercial alternatives.

The second challenge is the rapid preprocessing of single-cell RNA-sequencing data.

Chapter 3 describes the kallisto | bustools command-line tools that make scalable

scRNAseq analysis fast and efficient. These tools implement novel algorithms for

sequence read-alignment, barcode error correction, and molecular counting that helps

resolve ambiguities in sequence mapping.

The third challenge is refining gene expression data to the isoform level. This refinement

is crucial for understanding transcriptional regulation and the effects of alternative

splicing in biological processes. Towards that end, I have extended the kallisto | bustools

workflow to process full-length scRNAseq data taking advantage of expectation

maximization algorithm to disambiguate sequence alignments. Chapter 4 describes how I

used these tools to assemble the first ever spatially-resolved single-cell isoform atlas, and

in particular one of great interest in the neuroscience community (the mouse primary

motor cortex) with data generated with three RNA-sequencing assays.
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1
Chapter 1

INTRODUCTION

Section 1: Overview of single-cell RNA sequencing

Single-cell RNA sequencing  (scRNA-seq) is a collection of technologies for quantifying
the amount of RNA molecules inside individual cells using DNA sequencing as a
readout. Methods to perform RNA-seq first require cell dissociation from tissue of
interest, or cell membrane permeabilization, making RNA from individual cells
accessible for molecular barcoding with DNA, Figure 1 (Haque et al. 2017; J. Cao et al.
2017; Rosenberg et al. 2018; Gehring et al. 2020). To ensure that all RNA molecules
within a cell are tagged with the same DNA barcode, cells are isolated into individual
chambers. Commonly used isolated reaction chambers are water-in-oil droplets,
generated by microfluidics (Zilionis et al. 2017), or individual wells inside of microwell
plates (Picelli et al. 2014). Within these reaction chambers, RNAs are tagged with DNA
barcodes and then sequenced. Alternative methods, that do not isolate individual cells,
take advantage of the cell’s permeabilized membrane where collections of cells are
grouped, split, and tagged with different DNA barcodes by diffusion transport across the
cell membrane (Cheng et al. 2021). This multi-round splitting-and-pooling operation
allows for greater numbers of cells to be assayed than with standard isolation procedures,
but at the cost of procedural complexity. Regardless of method, distinct DNA barcodes
must tag RNA molecules inside of a cell.

In order to combinatorially tag RNA molecules with distinct molecular barcodes,
synthetic DNA sequences are designed that have three important properties (Tambe and
Pachter 2019; Bystrykh 2012). The first is barcode uniqueness. A DNA barcode consists
of a sequence of four nucleotide bases (A,T,G,C) that is built into a molecule of length
(L) allowing up to 4L possible unique barcodes. Barcodes vary in length with 16 base
pairs being used in the most common scRNA-seq assay, 10x Genomics Chromium
(Zheng et al. 2017). A 16 base synthetic DNA sequence allows for 4,294,967,296
possible unique barcodes where multiple copies of one barcode can be used to tag all of
the molecules in one cell. In practice, not all distinct barcodes are used or even desirable.
Barcode errors or short barcode lengths can result in identifier collisions making it
challenging to resolve RNA sequences from different cells which happen to have been
tagged with the same barcode (Hashimshony et al. 2016; X. Zhang et al. 2019).

https://paperpile.com/c/SmA3JH/Xh5Q+nCPo+kZpJ+ot4A
https://paperpile.com/c/SmA3JH/Xh5Q+nCPo+kZpJ+ot4A
https://paperpile.com/c/SmA3JH/af1v
https://paperpile.com/c/SmA3JH/ejY5
https://paperpile.com/c/SmA3JH/mbHE
https://paperpile.com/c/SmA3JH/ebYN+hOWJ
https://paperpile.com/c/SmA3JH/ebYN+hOWJ
https://paperpile.com/c/SmA3JH/ISH4
https://paperpile.com/c/SmA3JH/flv4+gkjt
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Figure 1: Overview of a single-cell RNA-sequencing. Cells are resected and dissociated
prior to cell isolation and RNA barcoding. The resultant library is sequenced. The
sequencing reads are aligned to a known reference and quantified to generate a cell by
gene count matrix.

The second property for combinatorially tagging cellular RNA is barcode composition.
DNA barcodes can be extended and composed so that different subsequences of the
barcode identify different entities such as cells, molecules, or biological samples (Binan,
Drobetsky, and Costantino 2019). For example, a 12 base pair barcode is appended to the
aforementioned 16 base cell barcode, the former allowing multiple copies of the same
RNA to be disambiguated, within one cell, and the latter allowing sets of molecules
belonging to one cell to be distinct from another cell (Islam et al. 2014). Further
composition is possible and enables greater “multiplexing”. Samples, experimental
conditions, or even CRISPR perturbations can be tagged and subsequently identified
(McGinnis et al. 2019; Stoeckius et al. 2018; Dixit et al. 2016).

The third, and crucial property of synthetic DNA barcodes is the presence of a
DNA-RNA binding region. Once cells have been isolated and their RNAs made
accessible, either by cell isolation and cell rupture or by membrane permeabilization,
RNA molecules anneal to the DNA barcodes at the DNA-RNA binding region (Figure 2).
The most widely used DNA-RNA binding region is a long stretch of T bases that bind,
complementarily, to the long stretch of A bases in messenger RNA’s (mRNA)
poly-adenylated (polyA) “tail”. The polyA tail is a desirable region to target since it is
added to all mRNA molecules after RNA production. Other RNAs with long stretches of
polyA sequence, like long non-coding RNAs, are often also captured (Sage et al. 2020)
and frequently removed from downstream analysis. Alternative methods for RNA

https://paperpile.com/c/SmA3JH/cMdT
https://paperpile.com/c/SmA3JH/cMdT
https://paperpile.com/c/SmA3JH/RLDy
https://paperpile.com/c/SmA3JH/TmaN+6ZpP+BCFw
https://paperpile.com/c/SmA3JH/dMuF
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capture, which focus on only selected a subset of RNA, use a modified DNA-RNA
binding region that is specific to a designed gene panel These methods have been
developed and used for example in targeted CRISPR screens where only a handful of
RNA’s are known to be affected by a CRISPR perturbation (Pokhilko et al. 2021;
Schraivogel et al. 2020).

A “library” of molecules comprising of RNAs that have been captured and tagged with a
composite cell-specific and molecule-specific barcode are then sequenced on a standard
DNA
Sequencer to produce a text file called a FASTQ file. Each entry, known as a “read”, in
the FASTQ file contains sequences of A,T,G, and Cs that correspond to a molecule in the
library that was detected by the sequencer. In theory, every RNA molecule in each cell is
tagged, captured, and sequenced so that the corresponding textual representation of the
combined cellular, molecular, and RNA sequence is present in the FASTQ file. In
practice, about 60% cells, and ~15% of unique RNAs from each cell are assayed per
experiment with improvements being developed (“What Fraction of mRNA Transcripts
Are Captured per Cell?” n.d.; M. Zhang et al. 2020; Yamawaki et al. 2021).

Figure 2: Cell encapsulation and RNA barcoding. Cells are encapsulated into isolation
chambers and their poly-adenylated RNA are tagged with synthetic DNA barcodes that
are unique to the cell and molecule.

Sequencing reads are then transformed into a matrix of sequence counts. Computing
these cell by gene matrices requires counting the number of RNA’s in the FASTQ file that

https://paperpile.com/c/SmA3JH/oThm+ASif
https://paperpile.com/c/SmA3JH/oThm+ASif
https://paperpile.com/c/SmA3JH/9NyD+BaaV+EpVs
https://paperpile.com/c/SmA3JH/9NyD+BaaV+EpVs
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arise from different genes, per cell. This happens in three steps. The first is aligning the
text sequences corresponding to RNA molecules to a known reference. Substantial effort
has gone into curating references of known sequences and their corresponding genes, for
hundreds of species (Cunningham et al. 2022). These references provide annotations for
genomic features, such as genes or isoforms, on top of sequence information. For
example the BRCA1 gene which aids in DNA repair, is located on Chromosome 17
position 43,044,295 to 43,170,245 on the reverse strand (“BRCA Gene Mutations:
Cancer Risk and Genetic Testing Fact Sheet” 2020, “Gene: BRCA1
(ENSG00000012048) - Summary - Homo_sapiens - Ensembl Genome Browser 106”
n.d.).

These references are known as genomic references and contain information about all
genes including introns, exons, and other genomic elements. Often a subset of this
genomic reference, known as a transcript reference, is used that comprises transcript
sequences many of which result in proteins. Common computational approaches for
processing FASTQ files use references to find appropriate alignments for all reads.
Methods like STAR, for example, use the entire genomic reference, and transcript splice
junctions, whereas methods like kallisto (Bray et al. 2016) use the transcriptome
reference (Dobin et al. 2013; Bray et al. 2016). The choice about which reference to use
must take into consideration the experimental approach that generated the sequencing
data. Most common scRNAseq assays capture cytoplasmic mRNA, or mRNA without
introns, making the transcriptome a sufficient choice for read alignment. Newer assays
capture nuclear RNA, or RNA containing introns, making it necessary to use a reference
containing introns for read alignment (Lake et al. 2019).

After aligning reads to genes, the second step is using the cell barcode to disambiguate
cells from each other. Cell barcodes can have sequence errors that are the result of
improper base calling on the sequencer (Stoler and Nekrutenko 2021). Proper barcode
grouping requires first correcting those errors. Some single-cell technologies such as 10x
Genomics have a list of expected barcodes, known as a whitelist, which can be used to
correct errors. Once barcodes have been corrected, subsequent molecular-barcode
counting can then be performed on a cell-by-cell basis.

The third step is using the molecular barcode to disambiguate copies of RNA molecules
within a cell, from each other. Since RNA content captured from a cell is small, PCR
amplification is used to increase the copy number of each molecule. In order to
distinguish between molecules that have been synthetically duplicated by PCR vs
molecules that occur in high copy number in the cell, molecular barcodes known as
“Unique molecular identifiers” (UMIs) are appended to the cellular barcode. Practically

https://paperpile.com/c/SmA3JH/g2gc
https://paperpile.com/c/SmA3JH/0eJb+ySGZ
https://paperpile.com/c/SmA3JH/0eJb+ySGZ
https://paperpile.com/c/SmA3JH/0eJb+ySGZ
https://paperpile.com/c/SmA3JH/0eJb+ySGZ
https://paperpile.com/c/SmA3JH/N4oS
https://paperpile.com/c/SmA3JH/7t58+N4oS
https://paperpile.com/c/SmA3JH/5s2r
https://paperpile.com/c/SmA3JH/p79Z
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speaking, UMIs are random sequences of synthetic DNA (Islam et al. 2014). Not all
single-cell assays use molecular identifiers. For example, SMART-seq isolates cells into
individual wells and adds only a cell barcode to the well. Since individual RNA’s cannot
be disambiguated with a molecular barcode to get an absolute count of molecules,
statistical methods like the expectation-maximization algorithm are required to produce
read counts.

The result is a matrix of positive integer counts where each row corresponds to a cell and
each column corresponds to a gene. The value in the cell by gene entry corresponds to the
number of unique molecular barcodes, that tagged molecules mapping to that gene, in the
cell corresponding to that cell barcode. Often in scRNAseq multiple matrices are
generated for different biological samples, conditions, and treatments. Statistical analysis
and machine learning techniques are used to cluster cells that share similar gene
expression patterns and determine sets of genes that differ between samples, conditions,
and treatments. Once computed, cell type gene expression signatures can be associated
with physical cells in order to map the gene expression to the cell type of origin. This
map provides biologists with additional cell-type specific data that can be used to identify
gene targets in malignant cells (Yeo et al. 2022) and identify cell type expression changes
as a possible diagnostic tool (Ramírez-Sánchez et al. 2022). These techniques are
ultimately useful for identifying shifts in cell type abundance and changes in gene
expression that are biologically relevant or clinically actionable.

To enable statistical analysis of this matrix, such as the identification of cells that exhibit
similar gene expression, matrix filtering and normalization must be performed.
Normalization procedures aim to transform data in a way that obeys the assumptions of
downstream analysis. Commonly used methods apply variance stabilizing
transformations in an attempt to remove the gene mean-variance relationship, a
relationship which is assumed technical (Ahlmann-Eltze and Huber 2021). Other
methods attempt to normalize cell depth and stabilize gene stabilization (Choudhary and
Satija 2022).

After normalization, unsupervised clustering schemes are performed in order to identify
sets of cells that exhibit similar gene expression. Techniques like Leiden and Louvain
identify communities from a K-Nearest Neighbor graph that is built from the cell by cell
distance matrix (Blondel et al. 2008; Traag, Waltman, and van Eck 2019). Prior literature
and expert knowledge is then required to map clusters derived from unsupervised
clustering to known cell types that have been identified with orthogonal observations
such as morphological, histological, or chemical methods (Y. Cao, Wang, and Peng
2020). Mapping cells to cell types requires performing statistical tests such as a t-test or

https://paperpile.com/c/SmA3JH/RLDy
https://paperpile.com/c/SmA3JH/zAl3
https://paperpile.com/c/SmA3JH/doE4
https://paperpile.com/c/SmA3JH/839o
https://paperpile.com/c/SmA3JH/KG24
https://paperpile.com/c/SmA3JH/KG24
https://paperpile.com/c/SmA3JH/blR1+TH9j
https://paperpile.com/c/SmA3JH/J2aN
https://paperpile.com/c/SmA3JH/J2aN
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Wilcoxon rank-sum on genes between a cluster and its complement. These differential
expression techniques are often employed on the normalized count matrix to find
statistically significant upregulated genes that correspond to previously identified marker
genes. In more complex experiments that perform scRNA-seq on multiple conditions,
statistical tests can identify genes that change between conditions.

The challenges posed by scRNAseq span multiple disciplines of science and engineering.
A background in mechanical engineering, fluidic dynamics, design, manufacturing,
electrical engineering and controls is useful to tackle the challenges of cell encapsulation
and sampling. Statistics, computation and machine learning help to analyze the large
volumes of data generated by the complex assay. Ultimately it is the confluence of
multiple disciplines and techniques that enable clinically relevant biological insights to be
derived from massive amounts of single cells.

Section 2: Practical outcomes of single-cell RNA sequencing
A large number of single-cell protocols and analysis methods have been recently
published  enabling single-cell medical diagnosis and interventions (Gawel et al. 2019).
Though with ever increasing amounts of data and cells to assay, new challenges arise.
First, experiments are costly. A standard scRNA-seq experiment costs about $1.70 per
cell with a 1.1% multiplet rate, making a standard scRNAseq experiment of 10k cells cost
$17,000 (“Cost Per Cell” n.d.). The cost is primarily driven by reagent costs and costs to
prepare a sequencing library followed by the hardware needed to perform cell isolation.
Additionally, processes for cell isolation and library preparation are time consuming
(“Pricing Overview” n.d.) and closed-source. Second, data preprocessing and analysis
can be time consuming and resource intensive. For example, a standard experiment and
analysis can generate terabytes of data and naïve preprocessing tools for read alignment
then require days of compute time and large amounts of memory (Melsted et al. 2021).
These computational challenges place additional constraints on the scale of analysis
matching the scale of data production. Third, subsequent data processing and statistical
methods like PCA, clustering, and differential expression often are restricted to
gene-level analysis. Expression count data, where isoform counts are aggregated to the
gene level, can miss isoform differences between cell types (Booeshaghi et al. 2021).

Ultimately, single-cell RNA-sequencing experiments present numerous engineering
challenges. Hardware for performing scRNAseq is often closed-source, costly, and
time-consuming. Additionally, the lack of transparency and modularity makes diagnosing
data-quality issues associated with novel experimentation difficult. These challenges
extend to software to analyze scRNAseq data. Inefficient and poorly characterized
methods make evaluating data quality and generating biological insight difficult. The

https://paperpile.com/c/SmA3JH/enmz
https://paperpile.com/c/SmA3JH/JiQA
https://paperpile.com/c/SmA3JH/87uT
https://paperpile.com/c/SmA3JH/M3RX
https://paperpile.com/c/SmA3JH/VhJO
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interplay between methods and hardware requires a short feedback loop whereby
experimental data generated with scRNAseq hardware can be analyzed with fast
algorithms to understand the biological problem of interest but also to better understand
and improve the device. The resultant data from the improved device can then be used to
better understand and improve the methods.

Figure 3: Cost and generation of sequencing data.

To overcome the experimental limitations imposed by cost, I developed two open source
devices. The first device, described in Chapter 2.1, is a 3D-printed syringe pump system,
that replaces current commercial syringe pumps, to generate single-cell isolation
chambers (Booeshaghi et al. 2019). The device, named poseidon, can be built for under
$100 and assembled in under an hour. poseidon can be used with open-source single-cell
microfluidic chips to produce beads for RNA capture and can also be used to encapsulate
single cells in droplets (Macosko et al. 2015). The second device, described in 2.2, is a
3D-printed fraction collector that enables long-time course single-cell experimentation.
The device, named colosseum, can be built for $67 and assembled in under an hour and
can be used to collect single-cell fractions from microfluidic chips without user
intervention. Taken together, these devices enable scalable scRNAseq data generation.

Fast and memory-efficient computational tools are necessary to parse the increasing
amounts of data (Figure 3) generated by scRNAseq. Chapter 2 describes algorithms and
computational tools, as well as statistical methods to decrease the time and memory to
perform scRNAseq analysis. These preprocessing algorithms transform sequencing reads
into a count matrix and are implemented in a command line utility called bustools and are

https://paperpile.com/c/SmA3JH/uinp
https://paperpile.com/c/SmA3JH/Hf3v
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used in conjunction with another tool called kallisto to form the kallisto | bustools
workflow for preprocessing scRNAseq data (Melsted et al. 2021). Subsequent processing
of the count matrix is required to effectively normalize the data for further statistical
analysis (Booeshaghi and Pachter 2021). These preprocessing steps are fundamental for
the application of statistical models to understand changes in cell-type composition and
gene expression.

Chapter three discusses applications of these tools and extensions that enable the study of
the mouse primary motor cortex (MOp) at isoform resolution.  I use previously developed
methods to analyze 286,487 cells from the MOp and I propose and validate a
computational framework for the co-analysis of multiple different RNA sampling
strategies and apply it to develop the first ever spatially-resolved isoform atlas of the
mouse MOp.

Taken together, my thesis addresses fundamental engineering challenges for the
generation, processing, and analysis of single-cell RNA sequence data that must be met
in order to realize the goal of bringing single-cell RNA sequencing to the clinic.

https://paperpile.com/c/SmA3JH/M3RX
https://paperpile.com/c/SmA3JH/YoO8
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Chapter 2

HARDWARE

Section 1: Principles of open source bioinstrumentation applied to the poseidon syringe
pump system

Preamble
Current open-source single-cell RNA-sequencing experiments are limited by the cost of
reagents and hardware. The poseidon syringe pump system is a novel device for
performing large-scale microfluidics experiments that overcomes these cost limitations.
It uses a two-component 3D printed plastic body and stepper motor to drive a variety of
syringe sizes to pump liquid into microfluidic devices. By employing off-the-shelf
components, poseidon is substantially cheaper than commercial alternatives at the same
level of flow precision. This device overcomes a roadblock in a critical technology for
performing large-scale scRNAseq experiments. The low cost enables many pumps to be
deployed to perform multiple cell encapsulation procedures in parallel. Additionally,
poseidon enables further study of microfluidic geometries and material properties to
overcome the stochastic nature of cell encapsulation– a task that is challenging with
current closed-source devices.

Summary
The poseidon syringe pump and microscope system is an open source alternative to
commercial systems. It costs less than $400 and can be assembled in under an hour using
the instructions and source files available at https://pachterlab.github.io/poseidon. We
describe the poseidon system and use it to illustrate design principles that can facilitate
the adoption and development of open source bioinstruments. The principles are
functionality, robustness, safety, simplicity, modularity, benchmarking, and
documentation.

Introduction
Open source hardware projects (Gibb, n.d.) have become increasingly popular in recent
years due in part to the rapid evolution of desktop 3D printers and an ecosystem of open
source electronic boards like the Arduino and Raspberry Pi systems (Arduino Project
2018; Raspberry Pi Foundation 2018). These developments have spurred growing interest
in laboratory instrument open source projects (Pearce 2012; Wijnen et al. 2014; André
Maia Chagas 2018) including syringe pumps (Wijnen et al. 2014; UNC Greensboro n.d.),

https://paperpile.com/c/gzBjpT/pqyu
https://paperpile.com/c/gzBjpT/lq6O+rRW1
https://paperpile.com/c/gzBjpT/lq6O+rRW1
https://paperpile.com/c/gzBjpT/VL8I+s1LA+cpin
https://paperpile.com/c/gzBjpT/VL8I+s1LA+cpin
https://paperpile.com/c/gzBjpT/s1LA+cTHZ
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microscopes (Andre Maia Chagas et al. 2017), fluorescence imaging devices (Nuñez et
al. 2017), micro-dispensers (Forman et al. 2017) and single-cell transcriptomics
technologies (Stephenson et al. 2018). While cost savings can be an important reason for
development of open source hardware (Dolgin 2018), the ability to customize designs for
specific applications gives open source projects a unique advantage over commercial
solutions. In addition, expanding libraries of designs, software, and commonly used
off-the-shelf parts can be shared and adapted across projects, meaning developers are
never starting from scratch, even when designing a new instrument. For example, the
RepRap project 3D printers borrowed heavily from standard software and hardware
Computer Numeric Control (CNC) tools used in machining. As open source designs,
electronics boards, software, and parts for 3D printers were continually published and
improved, cheap and interchangeable open source hardware and software intended for 3D
printing began to be repurposed for new bioinstruments such as liquid handlers
(Opentrons Inc 2018), vial handlers and food dispensers (Wayland and Landgraf 2018),
autosamplers (Carvalho and Murray 2018; Carvalho, Sanders, and Holloway 2018), and
bioprinters (Banović and Vihar 2018; Fitzsimmons et al. 2018).

Our laboratory has a general interest in developing new methods for high-throughput
single-cell applications such as Drop-seq (Macosko et al. 2015) and inDrops (Zilionis et
al. 2017) which rely on precise flow rate control to operate microfluidic devices. The
unpredictable landscape of single-cell genomics technology puts a high priority on
flexible hardware and software that can be adapted and re-purposed as experiments
evolve. The inflexible software interface and functionality offered by commercial
systems, and the array of do-it-yourself electronics and instrumentation projects powered
by open source hardware, inspired us to develop our own open source multi-syringe
pump array and microscope system for low cost microfluidics experiments. The resulting
system, which we call poseidon, is based on published open source syringe pumps
(Wijnen et al. 2014) and microscope microfluidics stations (Stephenson et al. 2018) but
introduces a number of innovations and adapts common 3D printer hardware and
software to control the system. Requiring only off-the-shelf components and 3D printed
parts, the entire poseidon system including microscope and three syringe pumps can be
assembled in less than an hour for less than $400. The poseidon syringe pump array and
microscope system is an open source alternative to commercial systems (Fig. 1). The
pumps and microscope can be used together for microfluidics experiments, or the pumps
can be connected to a computer and used independently. For scientists with tight budgets,
the microscope system, which is stand-alone, is an effective solution for basic light
microscopy.

https://paperpile.com/c/gzBjpT/e3jz
https://paperpile.com/c/gzBjpT/1MFD
https://paperpile.com/c/gzBjpT/1MFD
https://paperpile.com/c/gzBjpT/11G6
https://paperpile.com/c/gzBjpT/i5A4
https://paperpile.com/c/gzBjpT/TDOf
https://paperpile.com/c/gzBjpT/ElAG
https://paperpile.com/c/gzBjpT/3X1g
https://paperpile.com/c/gzBjpT/q8YI+yZ3l
https://paperpile.com/c/gzBjpT/Lq8s+rDwP
https://paperpile.com/c/gzBjpT/AQJW
https://paperpile.com/c/gzBjpT/Bydu
https://paperpile.com/c/gzBjpT/Bydu
https://paperpile.com/c/gzBjpT/s1LA
https://paperpile.com/c/gzBjpT/i5A4
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Figure 1: Model of the poseidon system. (a) CAD rendering of the microscope station
and (b) a single syringe pump loaded with a 60 mL syringe. (c) Exploded view of all the
components needed for assembling three pumps.

The poseidon system uses a Raspberry Pi and touchscreen for the microscope and an
Arduino board with a CNC shield to operate up to four pumps simultaneously. Each
pump has a stepper motor that drives a lead screw, which in turn moves a sled (mounted
on linear bearings) that pushes (infuses) or pulls (aspirates) the syringe plunger. The
microscope camera and Arduino use USB connections to connect to the Raspberry Pi or
desktop computer (Fig. 2). The system was developed using readily available tools:
Autodesk Fusion 360 for CAD, Python 3 and PyQT for software, 3D printers for
fabricating custom hardware pieces, and off the shelf electronics and hardware parts.
(Fig. 3).
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Figure 2: Using the poseidon system. Configuration of the poseidon system for running
an emulsion generation microfluidics experiment where only two pumps are used. (a)
Side view (b) angled view (c) top view.

The poseidon system repository is available under a BSD 2-clause license at
https://github.com/pachterlab/poseidon. For reproducibility and ease of adoption we
included direct links to the specific parts used for poseidon, in the GitHub repository. The
following components are available:

1. 3D models and Computer Aided Design (CAD) files of the 3D printed
components.

2. Pump controller and Graphical User Interface (GUI) software to control the
Arduino.

3. Arduino firmware to relay commands via USB to drive the motors.

As we invested more time into poseidon, we realized that the impact of many open source
bioinstruments is limited by unintentionally restrictive design decisions and inadequate
documentation that discourages adoption by others. This is perhaps unsurprising as most
projects are conceived and realized by non-expert developers who are themselves end
users. It is with this community in mind that we present a set of guiding design principles
specifically tailored to open source bioinstruments. The principles are a synthesis of our
experiences designing the poseidon system from the ground up with ease of adoption as
our goal. It is our intention that future developers can apply these principles from
inception through testing to produce more robust, flexible systems that are more likely to
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be adopted, modified, and improved by the broader community. Here we detail these
design principles using the poseidon system as an illustrated example.

Results

Design principles
We strove to produce a bioinstrument that could be readily implemented and modified by
others: users and designers who could improve and expand on the system. We considered
that bioinstrument users generally fall into two categories: i) those who want to adopt a
design and use it in a straightforward manner, and ii) those who want to tweak, improve,
and adapt designs to their needs, utilizing the instrument for new use cases. While cost is
one motivation for developing and using open source instruments, low cost alone cannot
drive the adoption of a project for these two groups. A successful open source instrument
appeals to the needs of basic and advanced users by adhering to a set of clear design
principles: functionality, robustness, safety, simplicity, modularity, benchmarking, and
documentation. Adhering to these principles from the beginning of the design-build-test
cycle will result in improved bioinstruments ready for further development and use by
others.

Functionality: Developing for an application
In engineering, a functional requirement defines a specific metric that a hardware or
software system must achieve. The idea of being “good enough” attempts to capture the
many design decisions that can be made during the design-build-test cycle as developers
consider the tradeoffs between utility, precision, accuracy, speed, cost, and complexity
that are acceptable given the application. The poseidon system needed to achieve the
following functional requirements for use in microfluidic applications:

1. The syringe pumps needed to be precise enough to make monodisperse emulsions
on droplet generation microfluidics chips, with flow rates on the order of 1 mL/hr.

2. The microscope needed to have sufficient magnification to examine the emulsions
and view the microfluidic device during operation.

3. The hardware and control software needed to be able to run at least three pumps
independently.

4. The software interface needed to be simple and allow users to easily change flow
rates, select syringe type or diameter, and perform gradient pumping.

5. The software needed to operate the microscope.

These were the minimum requirements that were specified before we began developing
poseidon. A similar list of specific requirements is a necessary starting point for any
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bioinstrumentation project. After designing hardware that should be able to meet these
objectives, we ensured the pumps operated reliably with flow rates ranging from a few
hundred microliters per hour up to several hundred milliliters per minute and we selected
an inexpensive USB microscope that reliably imaged our microfluidic device. The 0.3
MP microscope uses a CMOS sensor and has eight dimmable LEDs; the microscope can
be readily swapped with any USB compatible microscope. Representative images are in
S2.

Figure 3: Overview of the tools used for developing the poseidon system. (a) The GUI
was created using Qt Designer (The Qt Company n.d.), an open source drag and drop
application for organizing buttons that allows users to easily change the GUI interface
when adding new functionalities. (b) The GUI interfaces with a Python script that
controls both the microscope and Arduino via USB. The Arduino controls the stepper
motors on each pump using the CNC shield and stepper motor drivers. (c) The system’s
3D printed components were designed using Fusion 360 (Autodesk n.d.), a cloud enabled
CAD software that streamlines collaboration and offers free licenses for academics,
hobbyists and small businesses. To modify the 3D models users can either work with
Fusion 360 or any other CAD software. (d) The 3D printed components can be fabricated
on any fused filament fabrication (FFF) 3D printer.

https://paperpile.com/c/gzBjpT/LyAG
https://paperpile.com/c/gzBjpT/mAUd
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Robustness: Designing with variation in mind
Robustness encompasses not only mitigating the possibility of failure during operation
but also ensuring a construction process that tolerates variability in the components. This
is particularly important in biology applications where instruments must frequently work
in varying physical conditions and with variable input. Ensuring robustness took
considerable time, demanding attention to small details and repeated testing. For
example, much open source hardware relies on 3D printed components that can introduce
variability when printed on different printers. Mechanical tolerance was built into the 3D
printed parts over the course of many design-build-test cycles, for example by modifying
the print settings to allow for a press fit of the syringe into the pump. During testing, we
discovered an unforeseen hardware issue: when there was too much sliding resistance on
the carriage, the linear rods displaced and the printed plastic body bent. To stop the
bending, we designed a reinforced body and secured the linear rods with set screws. This
level of refinement is to be expected for any bioinstrument, and potential developers
should be prepared for several design cycles to create an adoptable device.

On the software side, robustness demands testing to minimize user operation error and to
ensure correct functionality. The software must be installed and tested on multiple
operating systems to verify operation is as expected. In parallel, internet-capable devices
such as the Raspberry Pi should be appropriately set up to avoid internet-based attacks.
Once the poseidon pumps were being used for experiments in our lab and others,
usability issues became apparent. For example, one version of the software configured
the stepper motors to use a different microstepping than the hardware had configured, an
error which the users encountered during their experiments by observing incorrect flow
rates. Using the software during an experiment also revealed small usability issues that
had to be corrected, such as using a drop-down menu for choosing the flow direction
instead of using a + or -' sign in the displacement amount box. These improvements are
relatively minor on their own, but we believe the sum total of such small modifications
has an outsized impact on potential adopters testing out an unfamiliar system for the first
time.

Safety: Communicating hazards to users
Safety is critically important for robust device operation and must be carefully considered
in a laboratory context. When designing an open source bioinstrument one should always
be aware of the health, fire, chemical, and biological hazards present in the laboratory,
and other hazards that could arise during instrument construction, normal operation, and
possible malfunction. The US Occupational Safety and Health Administration (OSHA)
provides guidelines on hazards present in the laboratory environment (Osha n.d.) and

https://paperpile.com/c/gzBjpT/stY6
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those arising from mechanical equipment operation (Osha n.d.). Additionally, the
International Organization for Standardization (ISO) has developed comprehensive
standards on machinery safety (Iso n.d.). Material Safety and Data Sheets should be used
in tandem with these guidelines to design instruments that are robust to hazardous
conditions, keeping the user safe.

Certain hazards can arise during the operation of the poseidon syringe pump system that
are similar to those encountered when operating other equivalent devices. These include
electrical shocks, clogged lines creating pressurized liquids, and material compatibility.

The poseidon syringe pump system uses 3D printed PLA plastic and standard off the
shelf components which do not pose a health hazard if handled correctly. Improper
handling of plastics however can pose major safety concerns. Designers should consider
how their instrument operates when used under elevated temperatures exceeding the
melting point of the plastic or under high stress exceeding the yield strength of the
plastic. Initial tests of the poseidon syringe pump showed excessive bending of the
syringe pump body which we mitigated by reinforcing the body with set screws and a
thicker base. We also considered forces induced on the syringe pump due to clogging. To
mitigate the possibility of catastrophic failure we set the reference voltage on the motor
controller such that the motor would stall when the pressure in a 1 mL syringe reaches 4
MPa, prior to any failure occurring (“Pololu - DRV8825 Stepper Motor Driver Carrier,
High Current” n.d.), and well below the ultimate tensile strength of the PLA plastic used
in the current design (“MatWeb - Overview of Materials for Polylactic Acid (PLA)
Biopolymer” n.d.).

The chemical properties of the materials used in designing instrument parts should be
considered (Appropedia n.d.) if one is designing an instrument that could come in contact
with organic solvents. We note that the PLA plastic used is compatible with most solvents
(“Rosemount Analytical - Chemical Resistance Chart” n.d.). One benefit of open source
3D printable designs is that there are a number of 3D printing materials that are
chemically compatible with many types of standard wet lab environmental conditions and
hazards (Stratasys Inc 1989; “SLS Materials: Nylon Based Powders for Building Robust
Plastic Parts” 2017, “Rosemount Analytical - Chemical Resistance Chart” n.d.).

Finally, in the development of any open source bioinstrument, after identifying safety
requirements it is important that hazards and safe operating procedures be clearly
communicated. We describe the safety aspects of the poseidon system on the project
Github page.

https://paperpile.com/c/gzBjpT/HfCe
https://paperpile.com/c/gzBjpT/a2I7
https://paperpile.com/c/gzBjpT/y5hE
https://paperpile.com/c/gzBjpT/y5hE
https://paperpile.com/c/gzBjpT/gTnl
https://paperpile.com/c/gzBjpT/gTnl
https://paperpile.com/c/gzBjpT/1dtz
https://paperpile.com/c/gzBjpT/3DLO
https://paperpile.com/c/gzBjpT/y5mx+IENL+3DLO
https://paperpile.com/c/gzBjpT/y5mx+IENL+3DLO
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Simplicity: Making it easy to source, build, and operate
Simplicity and ease-of-use are essential for the adoption of bioinstruments. Sourcing
components for a design should be as easy as possible, prioritizing off-the-shelf
components during development and incorporating harder to find parts only if necessary
for the application at hand. An accurate and up-to-date bill of materials (BOM), with
ideally more than one vendor for each part, simplifies purchasing and leads to easier
adoption. For the poseidon system, we ensured that users would be able to purchase all
the components from Amazon. During assembly, it is important to recognize that using
specialized equipment - even soldering a circuit board - may be a barrier to adoption.
While such specialized assembly processes are sometimes unavoidable, simplicity is
paramount. An excellent way to assess the difficulty of assembly is to have people
unfamiliar with the project perform the assembly using only the documentation available.
With the poseidon system it was possible to design around most of these constraints, and
we verified that assembly of a single pump by a new user following the instruction video
takes less than 15 minutes, requiring only pliers and screwdrivers.

Simplicity considerations also apply to software. For example, minimizing dependency
on external software libraries simplifies installation and avoids versioning issues. From a
user’s perspective, having a single executable file for the software is ideal. We compiled
the Python scripts into single-click executable files for Mac, Windows, and Linux. After
testing we realized that a flexible user interface design was critical to develop software
that minimized user error. The original rigid custom GUI code did not allow us to easily
resize buttons, change button layout, or add new functionalities. Using Qt Designer, a
drag and drop GUI creator, we could overcome these challenges and create a basic,
functional user interface that is touch-screen and click-button compatible. Additionally,
the GUI can easily be adapted and modified for the needs of future adopters. The custom
poseidon Arduino firmware needs to be loaded onto the Arduino Uno board following
simple instructions. If users wish to use a Raspberry Pi to operate poseidon, installation
requires flashing an SD card with the official version of the Raspbian OS image.

Modularity: Building independent and individual units
Because some users will want to adapt a design to new use cases, it is important to
consider how easily a design can be taken apart, tweaked, and re-purposed. A modular
design with independent components that can be interfaced with each other is easier to
re-purpose and improve on than a tightly integrated device. When a design is not
modular, developing new features may require a complete redesign. This is the problem
that led us to develop poseidon in the first place – our commercial, highly integrated
system was too rigid to meet our changing needs. The software could not be improved or
modified, and the small integrated touchscreen interface, marketed as an advantage
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(“PHD ULTRA\texttrademark Syringe Pumps” n.d.), was a hindrance to routine
operation. In the case of poseidon, some users might want to add additional features to
the pumps such as an electronic end stop. The modularity of the Arduino board makes
this change straightforward and simple to implement.

A design is also easier to modify when common and standardized parts and connectors
are used.  Standardization is ubiquitous in both open source hardware and software
projects. Open source 3D printers use a common set of screws, rods, extruding nozzles,
and electronics. Often these printers are variations of a few common, popular, and proven
designs. The standardization of 3D printer parts means that they, in turn, can be readily
adapted for new use cases. Almost all of the components used in the poseidon system can
be found in open source desktop 3D printers.

Figure 4: Benchmarking the poseidon system against the Harvard Apparatus
system. Using a droplet generation chip we compared the droplet diameters between two
systems. (a) A droplet size of 58 µm in diameter is expected for the given flow rates. The
variance in the sizes of the droplets created with the two systems is comparable. (b) A
microfluidic droplet generation chip imaged using the poseidon microscope. (c) Example

https://paperpile.com/c/gzBjpT/aVmH
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of a monodisperse emulsion produced by the poseidon system and imaged with a Motic
AE31 Trinocular Inverted microscope.

Benchmarking: Validating with standard protocols
Users need to know the degree to which an instrument design is applicable to the problem
at hand. Thus it is important to describe protocols where instruments have been applied
and provide benchmarking results. Open source instruments may not always perform as
well as commercial systems, but may still be good enough for many applications. Direct
comparison with commercial instruments and clear identification of device shortcomings,
or features still in development, is important to instill confidence in the device.

The poseidon system has been successfully used in generating monodisperse emulsions
using the inDrops droplet generation device (Fig. 4). We achieved targeted droplet size
with small variance in droplet diameter. Importantly, we directly compared poseidon with
the commercial array from Harvard Apparatus (catalog numbers 2401-408 and 70-3406),
demonstrating comparable variance in droplet diameter. The poseidon system can be
operated at a range of flow rates (Table S1). By physically adding or removing the
microstepping jumpers on the CNC shield board users can access an even wider range of
flow rates, so that the same system can be used for high-precision microfluidics
experiments and high flow rate applications such as protein purification.

Documentation: Describing the design completely
Clear instructions and documentation are essential to facilitate rapid and painless
assembly. Videos, photographs and written descriptions are fundamental for showcasing a
design and ensuring adoption. For assemblies, videos are often the most helpful
documentation for users and do not take much time and effort to produce. Videos also
clearly convey how much effort and time users should expect to invest in assembly.
Documentation enables faster and easier understanding of design.

Users who want to modify a design will additionally benefit from understanding design
decisions – both those motivated by technical considerations and those motivated by user
feedback. How to implement each feature is the result of thought and iteration from the
designer, but what is learned may not be readily apparent in the final designs.
Documentation of lessons learned, and insight into why design features were
implemented a certain way is important; sometimes modifications that seem to be an
improvement will create a failure mode that is not readily apparent.

For the poseidon system, multiple build videos are available on YouTube showing the
entire assembly process. In making the poseidon documentation website, we also strove
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to use clearly labeled photos of the hardware with short written instructions, as this
makes it easier for prospective users to grasp the design and expected time investment at
a glance. The development and documentation of open source projects benefits
tremendously from making use of version control repositories, which streamlines remote
collaboration and development tracking. For the poseidon system, we used the online
repository GitHub, which allows for version control and documentation of each change
made and makes it simple to create user guides and device documentation as can be seen
at https://github.com/pachterlab/poseidon.

Figure 5: Summary of the design principles for open source bioinstrumentation.

Discussion
Success and adoption of open source software demonstrates that reliable and powerful
technologies can be realized through community development and improvement. We
have developed a modular, highly customizable syringe pump array and USB microscope
system, poseidon, with potential for broad application across the biological and chemical
sciences. Syringe pumps can be used to operate microfluidic chips, control the chemical
environment of a bioreactor, purify proteins, precisely add reagents to chemical reactions
over time, or dispense specific amounts of fluid for any number of applications that
require precise control of fluid flow. We have benchmarked the system against a
commercial alternative in a demanding application: microfluidic emulsion generation. In
developing the poseidon system as an open source hardware device we have illustrated
seven design principles that we hope can facilitate successful development of open source
hardware devices (Fig. 5.) Adhering to these principles from the outset of a project will
maximize the chance of community adoption and spur further improvements.

Methods
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Testing data is available at https://github.com/pachterlab/poseidon.
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Supplementary Material

Supplementary Table 1: Maximum rates for given syringe and microstepping:
Maximum flow rates [mL/hr] for a single pump for a given microstepping and Becton
Dickinson (BD) syringe size. At lower flow rates, higher microstepping is desirable for a
smoother flow.

Supplementary Table 2: Stepper motor performance: Precision was calculated based
on the steps per revolution and the pitch of the lead screw (0.8 mm/revolution). The
maximum speed of the carriage was measured and an error of 5.5% ± 1.5% s.d. of the set
speed was observed (n = 52).
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Supplementary Figure 1: \label{fig:sfig2} Representative images taken with the
poseidon microscope. Images (a) - (c) are of the calibration slip supplied with the
microscope system and image (d) is of the Incyto Hemocytomer DHC-B02 (Burker Turk)
(http://www.incyto.com/shop/item.php?it_id=3).
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Supplementary Figure 2: CAD renderings of the poseidon syringe pump. Multiple
views and major dimensions are shown.
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Supplementary Figure 3: Parts list and exploded view of the poseidon syringe pump.
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Supplementary Figure 4: CAD renderings of the poseidon microscope. Multiple views
and major dimensions are shown.
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Supplementary Figure 5: Parts list and exploded view of the microscope.
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Section 2: colosseum fraction collector

Preamble
Current devices for performing liquid sampling are costly and require complicated
control schemes. The colosseum fraction collection is a novel bioinstrument for
performing long-time series fluid sampling that performs as well as the state-of-the-art at
a fraction of the cost. It uses a cam-follower mechanism that requires only one motor
instead of the standard two. This lowers the device cost, overcoming a roadblock in a
critical technology for performing long-time scale single-cell RNA-sequencing. By
automating fluid collection in an inexpensive and scalable manner, massive amounts of
scRNAseq data can be generated.

Summary
We present colosseum, a low-cost, modular, and automated fluid sampling device for
scalable fluidic applications. The colosseum fraction collector uses a single motor, can be
built for less than $100 using off-the-shelf and 3D-printed components, and can be
assembled in less than an hour. Build Instructions and source files are available at
https://doi.org/10.5281/zenodo.4677604.

Introduction
Fraction collectors that sample from a microfluidic stream [1], are preferable to manual
collection that can be tedious and introduce human error [2]. Commonly used in fast
protein liquid chromatography (FPLC), typical fraction collectors consist of a rotating
rack loaded with containers and a distributing arm for collecting fixed volumes of fluid
[3,4]. Most laboratories currently rely on commercial fraction collectors, which are
expensive and difficult to customize (Supplementary Table 1). To reduce cost and
facilitate custom applications, a number of open-source fraction collectors have been
developed, e.g. [5,6]. These devices, while less expensive, continue to rely on complex
engineering designs and parts that may be difficult to source and manufacture, thus
driving costs higher, lengthening the assembly process, and complicating operation.

We have designed and built a simple, low-cost, and modular fraction collector that is easy
to assemble and use. This open-source fraction collector, which we call colosseum, is
based on design principles for modular, robust, open-source hardware [7], and offers
advantages to commercial systems by virtue of being significantly less expensive and
easily customizable.

https://doi.org/10.5281/zenodo.4677604
https://sciwheel.com/work/citation?ids=7836873&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7333815&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7881033,10206238&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10169419,10205073&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7479937&pre=&suf=&sa=0
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Figure 1: (a) The colosseum fraction collector (left) is controlled by a single motor. A
motor controller shield (red) is connected to an Arduino Uno (blue) and drives the motor.
The computer’s Graphical User Interface (right) and Python backend sends motor
movement instructions to the Arduino. The Arduino-motor controller then sends those
instructions to the motor. A motor located in the base turns the shaft of the tube rack.
Grooves in the bottom of the fraction collector constrain the dispenser arm to rotate in
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tandem. (b) Angled view, (c) top view, (d) bottom view of mechanical coupling between
the dispenser arm and tube rack, (e) side view of mechanical coupling of motor and tube
rack.

The colosseum fraction collector can be assembled in less than an hour and costs $67.02.
Unlike the micrIO [6], which is built from parts of a salvaged Illumina Genome Analyzer
that costs $1500, the colosseum fraction collector uses off-the-shelf and 3D-printed parts
(Supplementary Table 2). The LEGO MINDSTORM fraction collector [5] costs $500,
and while it uses more commonly available components, it still requires cutting and
bending of steel C-channel. Furthermore, most fraction collectors require the use of
multiple axes to position a dispenser head over a reservoir. Control of such a system can
require communicating with and driving up to three separate motors in tandem. The
colosseum fraction collector is based on a simpler design where a mechanical coupling
between the motor, the tube rack, and the dispenser arm enables rotation of the rack and
position of the arm with only one motor. Designing around a single motor simplifies
operation, and reduces cost, complexity, and assembly time.

Results

The colosseum fraction collector consists of four 3D-printed components, two rotary
shafts, five rubber feet, one stepper motor, an Arduino, and a motor controller (Figure
1a,b). We chose the spiral tube layout (Figure 1c) instead of the rectangular tube layout of
previously published fraction collectors as it enables serial fraction collection with only
one motor. By coupling the dispenser arm to the tube rack with a slot-cam mechanical
coupling (Figure 1d) we constrained the rotation of the tube rack and movement of the
dispenser arm to rotation of a single stepper motor located in the base of the fraction
collector (Figure 1e).

Hardware name colosseum

Subject area
·         Engineering and Material Science
·         Chemistry and Biochemistry
·         Biological Sciences (e.g. Microbiology and
Biochemistry)

Hardware type
·         Biological sample handling and preparation
·         Mechanical engineering and materials science

https://sciwheel.com/work/citation?ids=10205073&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10169419&pre=&suf=&sa=0
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Open Source License BSD-2

Cost of Hardware $67.02

Source File Repository https://doi.org/10.5281/zenodo.4677604

colosseum Project
Repository

https://github.com/pachterlab/colosseum

Table 1: Specifications

The device is modular: each component can be developed, tested, and fabricated
separately using mutually compatible interfaces. The tube rack fits 1.5 mL Eppendorf
tubes and can easily be modified to accept tubes of varying sizes under the constraint that
they follow the spiral pattern (Figure 2a). The tube rack fits 88 tubes with a packing
efficiency of 60.2% relative to the optimal packing of 146 tubes on a circular disk of the
same size as the tube rack (Supplementary Figure 1; [8]). In addition, the dispenser arm
can be modified to accept connectors and tubing of various sizes to enable parallel
dispensing.

The device is controlled by a graphical user interface (GUI) that communicates with an
Arduino, CNC motor shield, stepper motor driver, and software adapted from the
poseidon syringe pump (Supplementary Figure 2a,b); [7]. Experiment parameters such as
flow rate, total volume, total time, volume per fraction, and number of fractions are input
by the user in the GUI (Supplementary Table 3) and the Python or JavaScript back-end
structures and sends Arduino-interpretable commands to the Arduino for execution. The
GUI can be installed with the pip package-management tool and run with a single
command on Mac, Linux, or Windows, or it can be run directly in a web browser at
https://pachterlab.github.io/colosseum/.. The web-browser implementation takes
advantage of the web serial specification [9] and the browser-serial API [10] to read and
write from the serial port within a web browser environment.

https://sciwheel.com/work/citation?ids=10361260&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7479937&pre=&suf=&sa=0
https://pachterlab.github.io/colosseum/
https://sciwheel.com/work/citation?ids=10850787&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10850779&pre=&suf=&sa=0
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Figure 2: (a) Tube placement on the colosseum is defined by an Archimedean spiral with
tubes distributed 13 mm apart along the spiral and with 17.39 mm distance between
subsequent arms of the spiral. The dotted-line innermost circle corresponds to the area on
the tube rack designated for the set screws on the center shaft. The larger dotted-line
circle corresponds to the area available for tubes. The solid outer circle corresponds to the
tube rack boundary. (b) The tubes are placed uniformly along the spiral where the arc
length between any two tubes is constant, but the rotational displacement between any
two tubes is nonconstant. (c) Iterative approximation to the tube locations is similar to the
measured tube locations. (d) The error in the fraction size for 88 samples across a range
of flow rates. (e) The fraction size increases with increasing dwell time for a constant
flow rate and the Spearman correlation of the means is 0.997. (f) Multiple fraction
collectors enable parallel collection which drastically decreases experimental time at a
marginal increase in cost. [Code a,b,c
(https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipy
nb), Code d
(https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/varying_flowrate.ipynb
), Code e
(https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/constant_flowrate.ipyn
b), Code f
(https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/scalability.ipynb)]

https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipynb
https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipynb
https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/varying_flowrate.ipynb
https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/constant_flowrate.ipynb
https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/constant_flowrate.ipynb
https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/scalability.ipynb
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To ensure that commands set by the GUI correctly align the dispenser arm with each
collection tube, we measured and converted the angle between pairs of tubes to motor
steps, and programmed this list of angular displacements into the control software
(Methods). We also used a simple iterative scheme to approximate the position of equally
spaced points along an Archimedean spiral and compared it to our measurements. We
found high concordance in the angular displacements (Figure 2b,c). This allows us to
programmatically generate arbitrary spiral motor displacements based on the distances
between successive tubes and distances between successive arms of the spiral.

In order to characterize collection errors across a range of flow rates commonly used in
microfluidics and FPLC [11,12], we sampled 180 fractions over six flow rates ranging
from 22.5 mL/hr to 720 mL/hr. We found that the collection errors were within ±6.5%,
with one sample having -10.6% error due it being the first fraction collected. These data
suggest that the use of the colosseum system with the poseidon syringe pump results in
accurately collected fractions (Figure 2d). Next, we sought to assess the fraction
collecting performance over an increasing amount of sample volume, as is commonly
performed in gradient elution series [4]. For a fixed flow rate, we collected 20 fractions
with 12-second increments in collection time per tube over the course of 42 minutes in
three replicates (Figure 2e). We found that the collected fractions closely followed the
expected fraction amount with a Spearman correlation of 0.997, showing that the
colosseum fraction collector can be used to accurately collect gradient elution series.

Discussion

We have demonstrated a low-cost, modular, and automated fraction collector that uses
3D-printed parts and off-the-shelf components, can be built in an hour, and is simple to
run. We show how colosseum samples fluid accurately over a wide-range of flow rates
making it useful for microfluidics experiments and FPLC. The low cost of our device
could enable several instruments to run in parallel. For example a single control board
can in principle run multiple fraction collectors and syringe pumps thus facilitating
large-scale experiments (Figure 2f). We have also thoroughly documented the build
process with instructional README’s and videos (Supplementary Figure 3), and we
have made all of the results described in this paper reproducible on Google Colab.

Methods

We designed the colosseum fraction collector by following basic principles of
open-source hardware design [7].

https://sciwheel.com/work/citation?ids=10361554,10361374&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10206238&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7479937&pre=&suf=&sa=0
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Part design
The fraction collector consists of four 3D-printed parts: a base, base plate, dispenser arm,
and tube rack. The base holds the base plate, dispenser arm, and tube rack in place with
additional hardware. The base plate acts as a horizontal support for the main rotary shaft,
with rotational bearings that support the shaft in two places. The dispenser arm consists
of two connected parts: the top part of the arm holds the fluid tubing and the bottom part
acts as a cam follower that follows the spiral track on the bottom of the tube rack.
Collection tubes are placed in the tube rack and are organized in a spiral pattern that
mirrors the pattern the dispenser arm follows during rotation. The tube rack is constrained
to the shaft with a flange coupling set screw and is mechanically coupled to the motor
with a timing belt so that rotation of the motor results in rotation of the tube rack and the
dispenser arm.

After numerous sketch iterations, we used Fusion 360 [13] to generate a 3D model of the
device and added dimensional tolerances of +3-5% to all parts to account for variance in
3D printing.

Part fabrication
STL files were generated using the 3D part models from Fusion 360. To prepare the
appropriate files for 3D printing, Simplify3D [14] was used to slice the STL model and
generate GCode with 10% infill and 0.2 mm layer height. Parts were printed on a Prusa i3
Mk3 3D printer [15]. GCode was loaded onto an SD card and the parts were printed
using 1.75 mm diameter PLA filament with a nozzle temperature of 215 °C and a bed
temperature of 60 °C. All parts were printed at 10% infill. STL files for all parts can be
found in the GitHub repository (https://doi.org/10.5281/zenodo.4677604). The time to
print all parts separately was approximately 73 hours, but may vary depending on the
printer model used and the print settings (Supplementary Table 2). All parts required to
assemble the colosseum fraction collector can be found in the bill of materials
(https://doi.org/10.5281/zenodo.4677604).

Device assembly
A complete guide on how to assemble the colosseum fraction collector can be found on
YouTube (https://www.youtube.com/watch?v=yG7ECh5GO0o) (Supplementary Figure
3). A step-by-step assembly guide is also available on protocols.io [16].

The assembly of the device starts with the base. Five rubber feet are screwed onto the
bottom of the base to stabilize the device and to ensure that the timing pulleys on the
motor and the tube rack shaft are elevated and free of obstruction. A timing belt pulley is
secured to the shaft of a NEMA 17 motor and the motor is then screwed onto the floor of

https://sciwheel.com/work/citation?ids=7881040&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10194488&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10194490&pre=&suf=&sa=0
https://doi.org/10.5281/zenodo.4677604
https://doi.org/10.5281/zenodo.4677604
https://www.youtube.com/watch?v=yG7ECh5GO0o
https://sciwheel.com/work/citation?ids=10849686&pre=&suf=&sa=0
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the base. The tube-rack shaft is also inserted into the floor of the base along with a
bearing that acts to stabilize the shaft. A timing belt pulley is secured to the shaft and
couples its rotation with that of the motor. The motor and the shaft are connected by a
timing belt of length 120 mm. The mounting holes in the base for the motor are designed
so that the user can adjust the distance between the two timing pulleys in order to prevent
slippage of the timing belt. Additionally, washers are inserted in between the base floor
and the screws holding the motors so that the plastic of the base does not get worn out
over time.The base plate is then screwed onto the floor of the base using M5 screws and
nuts.

The dispenser arm, which is secured to a shaft with an M3 set screw, is placed into the
base plate along with a bearing. A torsion spring is placed on the shaft, between the
dispenser arm and the base plate to lessen slack between the dispenser cam follower and
the tube rack spiral groove. The tube rack shaft is then inserted into the tube rack and
secured in place with a flange coupling set screw.

The motor cables are routed through the side of the base and connected to the Arduino.
The Arduino is connected to a CNC shield and DRV8825 Pololu motor controller [17].
The Arduino is also connected to a computer. This allows the user to send and receive
signals to the motor via serial commands. Power is supplied to the stepper motor driver
via terminals on the CNC motor shield. We supply the stepper motor driver with 12 V DC
at 3.0 A. The DRV8825 has a maximum current rating of 2.2 A per phase and the bipolar
NEMA 17 stepper motor has a rated current of 2.0 A per phase. The stepper motor driver
limits the amount of current that can be delivered to the stepper motor via a
potentiometer.

User Interface
The GUI translates the parameters set by the user into motor commands sent to the
Arduino. The Arduino runs our custom firmware, pegasus
https://github.com/pachterlab/pegasus, which sends command strings to the motor
controller which in turn sends pulse-width-modulated signals to the motor. The GUI is
written in Python using Qt, an open-source, cross-platform GUI framework
(Supplementary Figure 2a). All packages related to the GUI are pip-installable and the
GUI can be launched with a single command from the command line. The web-browser
GUI is written in JavaScript, requires no installation, and can be run by simply navigating
to a website (Supplementary Figure 2b). The GUI consists of two parts: parameter inputs
and a status monitor, the latter of which displays the total volume dispensed, time
elapsed, and current tube location. Upon opening the GUI, users are prompted to connect
to an Arduino. To run the colosseum fraction collector, users must specify three

https://sciwheel.com/work/citation?ids=10783776&pre=&suf=&sa=0
https://github.com/pachterlab/pegasus
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parameters: the flow rate, total time or total volume, and volume per fraction or number
of fractions (Supplementary Table 3). The remaining parameters are calculated using the
ones provided. In addition to these parameters, users must also specify the tube size to
ensure that the fraction size will not be greater than the capacity of the tube. Users can
operate the colosseum by pressing the run, pause, resume, and stop buttons in the GUI.
All software required to run the colosseum fraction collector is freely available on Github
under an open source BSD-2-Clause License.

Python 3.6 and JavaScript code is used on the back end to interpret user input from the
GUI and send custom commands to the Arduino, accordingly. The Python
implementation uses the pyserial package [18] to interface with the serial port and the
web-browser implementation uses the browser-serial package [10]. Parameters from the
GUI are translated into dwell time per tube and number of tubes to fill. The angle
between each tube in the spiral was measured on Fusion 360 using the Inspect tool, saved
as a csv file (Supplementary Table 4), and  specified in the Python backend. These angles
are then converted into the number of steps the motor must rotate. The motor stops
rotating at each tube location for a specified amount of time in order to dispense the fluid
into the tube. The motor then moves a set number of steps to reach the next tube. The
status monitor displays the amount of total volume dispensed, how much time has
elapsed since the start of the experiment and which tube the fraction is being dispensed
into.

Testing and Validation
We tested the functionality of the device with numerous experiments where tap water is
flown in at a set flow rate, or varying flow rate. We used the poseidon syringe pump, a 60
mL syringe, microfluidic tygon tubing and 1.5 mL Eppendorf tubes to pump fluid to the
colosseum. The poseidon syringe pump was controlled with the pegasus software. For a
varying number of flow rates and a set dwell time per tube for each flow rate
(Supplementary Table 5), we collected 30 fractions and compared the fraction sizes to the
predicted fraction size of 1 mL by weighing each tube before and after collection (Figure
2d). We used a 200x 1 mg analytical scale manufactured by Yae First Trading Co., ltd
part number TEK-AB-0392 to measure the amount of collected fluid. In order to properly
fit the Eppendorf tubes on the tube rack, we cut off the caps from the Eppendorf tubes
before collecting fractions in them and put them back on for the final measurement
making sure that the cap corresponded to the tube from which it was removed.

In follow up experiments we fixed the flow rate and linearly increased the collection
time. For a fixed flow rate of 22.5 mL/hr and 20 fractions with 12-second increments in
collection time per tube, we collected fractions and compared the observed fraction sizes

https://sciwheel.com/work/citation?ids=10850903&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10850779&pre=&suf=&sa=0
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to the predicted fraction sizes (Figure 2e). We used pegasus to run the colosseum with
varying dwell times per tube.
We estimated the cost and time for using k fraction collectors to show that these devices,
when used in parallel, can reduce the experimentation time. For example, if we collect n
fractions on each of k fraction collectors with a volume per fraction v and a constant flow
rate f per collector then the time it takes to run this collection is t = n/k*v/f.

To test the accuracy of the measured angles between two successive tubes we used an
iterative scheme to estimate the radius and angular position based of the polar form of
Archimedean spiral of r=b*θ for a constant b. The radius and the arc length are used to
update the angular position and then the angular position is used to update the radius.

Optimal packing was calculated with the “best known packings of equal circles in a
circle” online tool [8] with the outermost disk corresponding to the diameter of the area
available for tube placement and the packing disks corresponding to the distance between
tubes along the arc.

Data analysis
All data analysis was performed with Python 3.7. Jupyter notebooks that run in Google
Colab and all experimental data to reproduce Figure 2 can be found on our GitHub
repository https://github.com/pachterlab/BKMGP_2021.

Design files

Design file name File type Open source
license

Location of the file

colosseum_arm CAD file BSD-2 Available in repository

colosseum_base CAD file BSD-2 Available in repository

colosseum_baseplate CAD file BSD-2 Available in repository

colosseum_tubebed CAD file BSD-2 Available in repository

https://sciwheel.com/work/citation?ids=10361260&pre=&suf=&sa=0
https://github.com/pachterlab/BKMGP_2021
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Bill of materials
The bill of materials can be found in the GitHub repository.

Build Instructions
Please refer to Device Assembly under the Methods section in Hardware description.

Operation instructions
Please refer to User Interface under the Methods section in Hardware description. A
video guide to operating the device can also be found in this YouTube video
(https://www.youtube.com/watch?v=yG7ECh5GO0o).

Validation and Characterization
Please refer to Testing and Validation under the Methods section in Hardware
description.
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Supplementary Material

Supplementary Figure 1: Optimal packing of disks of diameter 13.5 mm (11 mm tube
hole size plus 2.5 margin) in a disk of diameter 180 mm. The solid line corresponds to the
outer diameter of the tube rack, the smaller dashed line corresponds to the effective area
available for placing tubes, and the smallest dashed line corresponds to the empty area on
the colosseum tube rack where no tubes can be placed. [Code
(https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipy
nb)]

https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipynb
https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipynb
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Supplementary Figure 2: (a) The Python-based graphical user interface (GUI) and (b)
the web-based JavaScript GUI. In both GUI’s left panel displays input boxes for flow rate
and collection parameters and the right panel displays experiment progress.
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Supplementary Figure 3: Assembly video of colosseum. This video guides the user
step-by-step through the entire assembly process. The video is linked to in the GitHub
repository https://github.com/pachterlab/colosseum.

https://github.com/pachterlab/colosseum
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Model Capacity (# tubes) Price (USD)

Cytiva Frac30 [1] 30 1,615.00

Eldex UFC [2] 135 or 160 3,971.80

Spectrum Spectra FC [3] 174 3,393.00

Buchi C-660 [4] 12, 30, or 60 13,630.11

Open-source Customizable <100

Supplementary Table 1: Costs and capacity of commercial fraction collectors. The costs
are based on new, unused models. The capacity of each fraction collector is given by how
many tubes the device can hold.

https://sciwheel.com/work/citation?ids=10365085&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10365088&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10365092&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10365098&pre=&suf=&sa=0
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Part name Filament weight [length] Print time Supports

Tube Rack 433.80 g [144.281 m] 31 h 16 min N

Dispenser Arm 18.53 g [6.162 m] 1 h 34 min Y

Base 271.45 g [90.285 m] 19 h 4 min Y

Base Plate 174.70 g [58.105 m] 11 h 26 min N

Total 898.48 g [298.833 m] 73 h 30 min

Supplementary Table 2: Parts that require 3D printing, including, for each part, the
amount of filament (weight and length) required to print, the print time, and whether
support is required.



53

Parameter 1 Flow rate

Parameter 2 Total time OR Total volume

Parameter 3 Volume per fraction OR Number of fractions

Supplementary Table 3: Table of input parameters for the GUI. The user must input
three parameters: flow rate; total time or total volume; and volume per fraction or number
of fractions. The user is limited to three parameters to avoid overconstraining the system.
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Tube # # of 1/4 steps

0 84

1 78

2 75

3 70

4
...

64
...

Supplementary Table 4: The first five rows of the angles between each tube in the tube
rack. The angular distances are reported as quarter-steps of the stepper motor. [Data
(https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipy
nb)]

https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipynb
https://github.com/pachterlab/BKMGP_2021/blob/main/analysis/archimedian_spiral.ipynb
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Flow rate (mL/hr) Dwell time (s)

720 5

360 10

180 20

90 40

45 80

22.5 160

Supplementary Table 5: Dwell time for each flow rate. To keep the expected fraction
volume at 1 mL the flow rate is halved when the dwell time is doubled.
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Chapter 3

SOFTWARE

Section 1: kallisto | bustools sequencing preprocessing

Preamble
Single-cell RNA-sequencing data must be aligned and aggregated in order to generate a
cell by gene matrix for downstream analysis. Current state-of-the-art tools require costly
compute resources greatly limiting the scale of processing and reproducible analysis. The
kallisto | bustools command-line tools implement novel counting algorithms for
transforming scRNAseq data into cell by gene count matrices in a fast and
memory-efficient manner. These algorithms offer tradeoffs between speed and accuracy
that have been benchmarked and validated. Specifically, tradeoffs in degree of barcode
error correction, and speed, as well as tradeoffs between ambiguities in sequence
alignment, and speed, enable fast, memory efficient, and accurate-enough barcode
counting algorithms that outperform the state-of-the–art. These tools overcome a
roadblock in a critical step of scRNAseq data preprocessing, a step that precedes all
downstream analysis. By developing and validating memory and time-efficient
algorithms for sequencing counting, scalable and fast-turnaround scRNAseq experiments
can be performed with minimal compute cost.

Summary
We describe a workflow for pre-processing of single-cell RNA-seq data that balances
efficiency and accuracy. Our workflow is based on the kallisto and bustools programs,
and is near-optimal in speed with a constant memory requirement providing scalability
for arbitrarily large datasets. The workflow is modular, and we demonstrate its flexibility
by showing how it can be used for RNA velocity analyses.

Introduction
The quantification of transcript or gene abundances in individual cells from a single-cell
RNA-seq (scRNA-seq) experiment is a task referred to as pre-processing1. The
pre-processing steps for scRNA-seq bear some resemblance to those used for bulk
RNA-seq2 and are in principle straightforward: cDNA reads originating from transcripts
must be partitioned into groups according to cells of origin, aligned to reference genomes
or transcriptomes to determine molecules of origin, and reads originating from
PCR-duplicated molecules must be “collapsed” so they are counted only once during

http://sciwheel.com/work/citation?ids=5673300&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1187203&pre=&suf=&sa=0
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quantification. The collapsing step can be facilitated with unique molecular identifiers
(UMIs), which are sequences that serve as barcodes for molecules3. The challenges in
pre-processing single-cell RNA-seq lie in the tradeoffs that must be considered in
determining choices for how, and in which order, to execute the various steps. For
example, in droplet-based scRNA-seq protocols, collapsing UMIs to account for PCR
duplication can be performed naïvely by associating all reads that align to the same gene,
with the same UMI, to a single molecule4. This computationally efficient procedure is
based on an assumption that all reads with identical UMIs that align to the same gene
arise via PCR duplication of a single molecule. Alternatively, this assumption can be
relaxed, resulting in a problem formulation that is NP-complete, i.e. computationally
intractable to solve optimally5.

Another challenge in scRNA-seq pre-processing is the amount of data that must be
processed. A single cell experiment can generate 106 - 1010 reads from 103 - 106 cells6.
This is leading to bottlenecks in analysis: for example, the current standard program for
pre-processing 10x Genomics Chromium scRNA-seq, the Cell Ranger software7, requires
approximately 22 hours to process 784M reads5 using 1.5 Tb of disk space
(Supplementary Table 1). For this reason, a number of new, faster workflows for
scRNA-seq pre-processing based on pseudoalignment8 have recently been developed5,9.
However, despite improvements in running time, current workflows have memory
requirements that increase with data size5, a situation that is untenable given the pace of
improvement in technology and the corresponding increase in data volume.

http://sciwheel.com/work/citation?ids=180130&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5486610&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6855675&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=4962070&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3003288&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6855675&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1345325&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6855675,3263873&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=6855675&pre=&suf=&sa=0
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Figure 1: The kallisto bustools workflow. (A) Error correction of barcodes 1 mismatch
away from barcodes in a whitelist. (B) Analysis of barcode fidelity n the benchmark
panel (20 datasets) showing barcodes matching the whitelist (“retained”, white), barcodes
that are Hamming distance 1 away from the whitelist that were corrected (black) and
uncorrected barcodes (gray). (C) UMI collapsing within genes. (D) Fraction of UMIs lost
per gene across cells in the benchmark panel due to over-collapsing. The average number
of intra-gene collisions resulting in lost counts due to naive collapsing for the 10 most
highly expressed genes across 10xv2 datasets is 0.4% and for 10xv3 datasets 0.17%. The
average loss for average expressed genes is about 0.003% (E) Running time of kallisto
(orange), Cell Ranger (blue), Alevin (black), and STARsolo (green) for pre-processing
the benchmark panel. (F) Memory usage of kallisto (orange), Cell Ranger (blue), Alevin
(black) and STARsolo (green) for pre-processing the benchmark panel.

In recent work we introduced a format for single-cell RNA-seq data that makes possible
the development of efficient workflows by virtue of decoupling the computationally
demanding step of associating reads to transcripts and genes (alignment), from the other
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steps required for scRNA-seq pre-processing10. This format, called BUS (Barcode, UMI,
Set), can be produced by pseudoalignment, and rapidly manipulated by a suite of tools
called BUStools (Supplementary Table 2). To illustrate the utility, efficiency, and
flexibility of this approach for scRNA-seq pre-processing, we describe a Chromium
pre-processing workflow based on reasoned choices for the key pre-processing steps.
While we focus on Chromium, our workflow is general and can be used with other
technologies. We show that our pre-processing workflow is faster and has lower memory
requirements than existing methods, and we demonstrate the power of modular
processing with the BUS format by developing a fast RNA velocity analysis workflow11.
We also validate the design decisions underlying the Cell Ranger workflow. Our
benchmarking and testing is comprehensive, comprising analysis of almost two dozen
datasets and surpassing the scale of testing that has been performed for current
workflows. Documentation and tutorials for the kallisto | bustools workflow are available
at https://www.kallistobus.tools/.

Results
In designing a scRNA-seq pre-processing workflow, we began by investigating each
required step: correction of barcodes, collapsing of UMIs, and assignment of reads to
genes. To achieve single-cell resolution, the Chromium technology produces barcode
sequences that are used to associate cDNA reads to individual cells. We began by
considering the efficiency-accuracy tradeoffs involved in grouping reads with the same,
or similar, barcodes to define the contents of individual cells. The Chromium barcodes
arise from a “whitelist”, a set of pre-defined sequences that are included with the Cell
Ranger software. Grouping reads by barcode is therefore straightforward, except for the
fact that barcodes may contain sequencing errors. The Cell Ranger workflow corrects all
barcodes that are one base-pair change away (Hamming distance 1) from barcodes in the
whitelist. An examination of a benchmark panel of 20 datasets revealed that this error
correction approach can be expected to rescue, on average, 0.8% of the reads in an
experiment (Figure 1a,b), a calculation based on an inferred error rate per base for each
dataset (Methods, Supplementary Table 3). Thus, correction of barcodes Hamming
distance 2 away from whitelist barcodes would rescue, on average, a negligible number
(0.0038%) of reads (Methods). We therefore implemented a Hamming distance 1
correction method in our workflow via the bustools correct command.

Next, in considering how to count UMIs to generate count matrices we first investigated
the extent to which “collisions” occur, i.e. cases where the same UMI occurs in reads
originating from two different molecules12(Figure 1c). While inter-gene collisions can be
directly measured, intra-gene collisions cannot be distinguished from molecules that are
PCR duplicates. To estimate the intra-gene collision rate we first calculated, for each cell

http://sciwheel.com/work/citation?ids=6995279&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5636602&pre=&suf=&sa=0
https://www.kallistobus.tools/
http://sciwheel.com/work/citation?ids=5496399&pre=&suf=&sa=0
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in the benchmark panel, the effective number of UMIs in each of the associated droplets
(Supplementary Figure 1, Supplementary Note). This estimate, along with the number of
inter-gene collisions and distinct UMIs observed, allowed us to estimate the extent of
intra-gene collision, and therefore the counts lost due to naïve collapsing of UMIs by
gene (Methods, Supplementary Note). We found that the average number of intra-gene
collisions resulting in lost counts due to naive collapsing for the 10 most highly expressed
genes across the 10xv2 datasets is 0.4%, and 0.17% for the 10xv3 datasets. The average
percentage of lost counts per gene per cell due to naïve collapsing was less than 0.003%
for v2 chemistry and 0.000048% for v3 chemistry (Figure 1d). Thus, we decided to apply
naïve collapsing as it is computationally efficient and effective based on empirical
evidence. This was implemented in the bustools count command. Notably, the recently
published Alevin collapsing algorithm5 will overestimate gene counts because reads with
the same UMI pseudoaligned to the same gene are very likely to be from the same
molecule even if they pseudoalign to distinct transcripts. Such situations likely result
from missing or incorrect annotation13 rather than from collisions of two distinct
molecules labeled with the same UMI.

One implication of the UMI collapsing analysis is that UMI error correction is possible
because UMIs with only one base-pair change away from an abundant UMI are likely to
have resulted from sequencing error. To examine the benefit of such a correction we
computed the expected number of UMIs that would be corrected with Hamming distance
1 correction, and found that for 10bp and 12bp UMIs only 0.5% and 0.6% of reads would
be recovered, respectively, at the error rates observed in published datasets (Methods,
Supplementary Figure 2). Moreover, such error correction would require identification of
abundant UMIs in lieu of a whitelist, adding time and complexity to the workflow. While
we believe such error correction may be warranted in the case of longer UMIs
(Supplementary Figure 2), we did not include it in our workflow.

http://sciwheel.com/work/citation?ids=6855675&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1432938&pre=&suf=&sa=0
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Figure 2: 10x Genomics Mus Musculus benchmark comparison. Darker points\lines
are retained barcodes and lighter points\lines are discarded barcodes.  (A) “Knee plots”
for kallisto and Cell Ranger showing, for a given UMI count (x-axis), the number of cells
that contain at least that many UMI counts (y-axis). The dashed lines correspond to the
Cell Ranger filtered cells. (B) Correspondence in the number of distinct UMIs per cell
between the workflows. (C) Genes detected by kallisto and Cell Ranger as a function of
distinct UMI counts per cell. (D) Pearson correlation between gene counts as a function
of the distinct UMI counts per cell. (E) The distance between gene abundances for
each kallisto cell and its nearest neighbor plotted against each kallisto cell and its
corresponding Cell Ranger cell (orange) and the distance between the gene abundances
for each Cell Ranger cell and its nearest neighbor plotted against each Cell Ranger cell
and its corresponding kallisto cell (orange). Marginal distributions show that each kallisto
cell is closest to its corresponding Cell Ranger cell and that each Cell Ranger cell is
closest to its corresponding kallisto cell. (F.1) kallisto t-SNE from the first 10 principal
components. (F.2) Cell Ranger t-SNE from the first 10 principal components. (G) QQ
plot comparing the distribution of observed distribution of p-values of GSEA, after
Bonferroni correction for multiple testing across ontologies and datasets, with the
expected distribution of a uniform distribution between 0 and 1. If the observed
distribution does not significantly deviate from the expected distribution, then the points
should lie close to the diagonal line, . The gray ribbon around the line is the 95%
confidence interval. Here most GO terms have adjusted , meaning that most GO
terms are very depleted of genes “differentially expressed (DE)” between the kallisto and
Cell Ranger matrices. GO terms above are labeled. Generally, GO terms
significantly enriched among “DE” genes are related to ribosomal proteins, specifically
the GO terms 1, 2, 3 correspond to structural constituent of ribosome, cytosolic large
ribosomal subunit, and cytosolic small ribosomal subunit. The points are colored by
ontology: biological processes (BP), cellular components (CC), and molecular functions
(MF).

In most scRNA-seq pre-processing workflows, assignment of cDNAs to genes utilizes
genome alignment4,14,15. Since detailed base-pair alignment is not necessary to generate a
count matrix, pseudoalignment to a reference transcriptome8 suffices. Moreover,
pseudoalignment has been shown to be highly concordant with alignment for the
purposes of quantification in bulk RNA-seq16. To test this hypothesis we compared counts
obtained by pseudoalignment using the kallisto program8 with counts produced via Cell
Ranger which is based on the STAR aligner17. Analysis of a Mus Musculus scRNA-seq
dataset (Figure 2), confirms that there is a high correlation between pseudoalignment and
alignment based counting (see Supplementary Figure 3 for other datasets), however in
one dataset (pbmc10k_v3, Supplementary Figure 3.19) we found that pseudoalignment
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produced more counts than alignment. Specifically, in the FGF23 (ENSG00000118972)
gene, Cell Ranger had many fewer counts than kallisto. We hypothesized that the reason
for this discrepancy was the presence of reads from unspliced transcripts crossing splice
junction boundaries, and therefore being erroneously pseudoaligned to the transcriptome.
To test this, we created a modified index that included a 90 base-pair overlap into the
exon and the intron (one base-pair less than the length of the reads) to capture such reads
and confirmed that it resolved the discrepancy (Supplementary Figure 4). We observed
this problem to be rare and therefore did not deem it to be essential in a standard
processing workflow. It may be that consideration of such reads will be crucial for
nuclear scRNA-seq analyses18, when the abundance of such intronic junction reads will
be problematic for naïve pseudoalignment.

http://sciwheel.com/work/citation?ids=4114189&pre=&suf=&sa=0
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Figure 3: RNA velocity. (A) A kallisto and bustools based RNA velocity analysis of the
ten stage scRNA-seq retina neurogenesis data from Clark et al. 201932. (B) Clusters
annotated by cell type according to Clark et al. (C) Markov diffusion process analysis
highlighting source and sink cells and demonstrating that the velocity vector field is
consistent with the cells’ developmental trajectory.

http://sciwheel.com/work/citation?ids=7028304&pre=&suf=&sa=0
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Thus, our workflow consists of pseudoalignment of reads to a reference transcriptome to
generate a BUS (barcode, UMI, set) file, and subsequent processing to correct barcode
errors and produce a count matrix (Supplementary Figure 5). To ensure that memory
usage is constant in the number of reads, the BUS files are sorted by barcode prior to
counting using the bustools sort command (Supplementary Note).

While this workflow is very similar to that of Cell Ranger, it is not identical. Since Cell
Ranger is widely used, we investigated the extent to which the Cell Ranger results are
concordant with our workflow. We processed 20 datasets (Supplementary Table 3),
chosen to contain a range of reads depths (from 8,860,361 to 721,180,737 reads per
sample and 2,243 to 201,952 reads per cell) and to represent scRNA-seq from a range of
tissues and species (Arabidopsis thaliania19, Caenorhabditis elegans20, Danio rerio21,
Drosophila melanogaster22, Homo sapiens23,24, Mus musculus25–29, Rattus norvegicus29).
We found a high degree of concordance with respect to quality control metrics (Figure
2a—g, Supplementary Figure S3). Crucially, in all datasets, in a joint analysis of kallisto
and Cell Ranger counts, the closest cell to a kallisto cell was its associated Cell Ranger
cell, i.e. the Cell Ranger cell with the same barcode sequence. Furthermore, gene count
correlations between individual cells passing Cell Ranger filtering criteria were almost
always above 0.90, and frequently as high as 0.99.

To assess the extent to which differences between Cell Ranger and kallisto affect
biological inferences, we also compared Cell Ranger to kallisto results in a downstream
analysis of the 10x Genomics E18 mouse 10k brain cells dataset. We found that
pseudotime trajectory inference for neuronal precursor cells produced highly concordant
results between Cell Ranger and kallisto, with the same trajectory topology and similar
pseudotime values along the trajectory (Supplementary Figure 6). This result is consistent
with other analysis comparisons. Projections of Cell Ranger and kallisto cells to the first
two principal components (PCs) and to two dimensions of tSNE are very similar
(Supplementary Figure 7.1). The results of Leiden clustering30 are also similar between
the two pre-processing workflows (Supplementary Figure 7.2). We performed differential
expression (DE) analysis to identify marker genes of the clusters, and then performed
gene set enrichment analysis (GSEA) on the marker genes for cell type annotation
(Supplementary Figure 7.3). The marker genes and their corresponding gene sets were
highly correlated between the workflows. In both Cell Ranger and kallisto results, most
clusters are neuronal, and the clusters for erythrocytes (cluster 16 in both), endothelial
cells (cluster 21 in kallisto, cluster 19 in Cell Ranger), and immune cells (clusters 20 and
22 in kallisto cluster 17 in Cell Ranger) can be clearly identified based on marker genes
(Supplementary Figure 7.3). Correlation between the same barcodes in kallisto and Cell
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Ranger with the top cluster marker genes is very high, with both the Pearson and
Spearman correlation coefficient above 0.9 for the vast majority of cells (Supplementary
Figure 7.4). In a separate mixed species dataset, the number and proportion of UMIs from
human and mouse cells are similar between Cell Ranger and kallisto (Supplementary
Figure 8). Overall, these results suggest that the Cell Ranger workflow produces results
consistent with our method, not only at the level of dataset summary statistics, but also in
downstream analyses.

The modularity of our approach makes possible the rapid implementation of alternative
workflows. To illustrate this, we developed an RNA velocity workflow. By including
intron sequences in the index for pseudoalignment we were able to identify reads
originating from unspliced transcripts, and, using the bustools capture command,
created the spliced and unspliced matrices needed for RNA velocity. Our RNA velocity
workflow, which is 13 times faster than velocyto11 analysis of the same dataset, is suitable
for large datasets that were previously challenging to pre-process. To illustrate this we
computed RNA velocity vectors for recently published data from the developing mouse
retina31 consisting of 113,917 cells (Figure 3). We found that six pseudotime marker
genes highlighted in Clark et al. 201932 (Crx, Nrl, Otx2, Pax6, Rbpms, Rlbp1) displayed
patterns consistent with the RNA velocity vectors, and with the pseudotime analysis of
Clark et al.32 (Supplementary Figure 9). The velocity analysis reveals new information,
namely it identifies developmental states when RNA velocity is changing
(Supplementary Figure 9 middle column). We verified the fidelity of our workflow by
computing RNA velocity vectors on a dataset from La Manno et al. 201811 and
comparing our results to those of the paper (Methods, Supplementary Figure 10).
Furthermore, the spliced count matrix agreed with the count matrix obtained in our
standard gene expression workflow (Supplementary Figure 11). Despite identifying many
more unspliced counts, our resultant velocity figure was concordant with that of La
Manno et al.11.

Our scRNA-seq workflow is up to 51 times faster than Cell Ranger and up to 4.75 times
faster than Alevin. It is also up to 3.5 times faster than STARsolo: a recent version of the
STAR aligner adapted for scRNA-seq (Figure 1e, Supplementary Table 1). In
benchmarks on the panel described in this paper, kallisto bustools running time was
comparable to that of the word count (wc) command applied to the FASTQ files,
suggesting that the kallisto bustools workflow is near-optimal in efficiency
(Supplementary Figure 12). Unlike Alevin, our workflow requires a small fixed amount
of constant memory that is independent of the number of reads being pre-processed
(Figure 1f). The limiting memory constraint is therefore the size of the reference index,
which is under 4Gb of RAM for the human transcriptome, and thus our method is
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suitable for low-cost and environmentally conscious cloud computing. In cases where it
is necessary to work with very large indices on small memory instances, memory needs
can be reduced using an index splitting strategy (Supplementary Note), albeit with fewer
resulting read counts (Supplementary Figures 13 and 14). Our speed and constant
memory requirements make RNA velocity tractable for datasets of any size for the first
time.

Our UMI collapsing analysis suggests that UMI sequences can be short; even just 6
base-pairs of sequence can suffice for identifying most molecules thanks to the cell
barcode and gene identification for each read serving as auxiliary barcodes
(Supplementary Figure 15). Furthermore, the fact that identical UMIs associated with
distinct reads from the same gene are almost certainly reads from the same molecule
(Figure 1d), makes it possible, in principle, to design assignment algorithms for
multi-mapping reads. Reads could be assigned with an expectation-maximization
algorithm which is based on estimating the copy number of each molecule in the library
using a model as described in the Supplementary Note, and this is a promising direction
for future work. An initial attempt at such assignment5 appears to improve concordance
between single-cell RNA-seq gene abundance estimates and those from bulk RNA-seq.
The current implementation of our approach can produce transcript compatibility counts
which have information about read ambiguity prior to assignment of multi-mapping
reads, and can therefore be used to identify isoform-specific changes across cells and cell
clusters 33.

Discussion
While we have focused on a workflow for 10x Chromium data, the bustoools commands
we implemented are generic and will work with any BUS file, generated with data from
any scRNA-seq technology. Distinct technologies encode barcode and UMI information
differently, but the kallisto bus command can accept custom formatting rules. While the
pre-processing steps for error correction and counting may need to be optimized for the
distinguishing characteristics of different technologies, the modularity of the bustools
based workflow makes such customization possible and easy.

Methods

Data Availability
A diverse set of 20 datasets was compiled for the purpose of benchmarking
pre-processing workflows. Datasets produced and distributed by 10x Genomics were
downloaded from the 10x Genomics data downloads page:
https://support.10xgenomics.com/single-cell-gene-expression/datasets. Six v3 chemistry
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datasets and two v2 chemistry datasets were downloaded and processed (Supplementary
Table 3). Another 12 datasets were obtained from either the SRA or the ENA; all were
produced with 10x Genomics v2 chemistry. For six of the datasets (SRR6956073,
SRR6998058, SRR7299563, SRR8206317, SRR8327928, SRR8524760) the BAM files
were downloaded and the Cell Ranger utility bamtofastq was run to produce fastq files
for pre-processing from Cell Ranger structured BAM files. FASTQ files were
downloaded directly for the datasets EMTAB7320, SRR8257100, SRR8513910,
SRR8599150, SRR8611943, SRR8639063.

Details of all datasets and their accession numbers can be found in Supplementary Table
3. All genome annotations and reference transcriptomes can be found here
http://dx.doi.org/10.22002/D1.1876.

Code Availability
The software versions used for the results in the paper were: Alevin v0.13.1, bustools
v0.39.1, Cell Ranger v3.0.0, DropletUtils v1.6.1, kallisto v0.46.0, python 3.7, R v3.5.2,
Scanpy v1.4.1, scvelo 0.1.17, Seurat v3.0, snakemake v5.3.0, STARsolo v2.7.0e,
velocyto v0.17.17, wc v8.22 (GNU coreutils), and zcat v1.5 (gzip). All programs were
run with default options unless otherwise specified. The code to reproduce this paper is
available at https://github.com/pachterlab/MBLGLMBHGP_2021/, kallisto is available at
https://github.com/pachterlab/kallisto/ and bustools is available at
https://github.com/BUStools/bustools/. Documentation and tutorials for using the kallisto
| bus single-cell RNA-seq workflow are available at https://www.kallistobus.tools/.

Hardware
All the benchmarks were carried out on a Supermicro server computer (2xXeon® Gold
6152 22-Core 2.1, 3.7GHz Turbo, 12 x 64GB Quad-Rank DDR4 2666MHz memory, 16
x 12TB Ultrastar He12 HUH721212ALE600, 7200 RPM, SATA 6Gb/s HDD) with
CentOS7 operating system installed. The running time of all programs were evaluated
using eight threads.

Transcriptome indices
Reference transcriptomes were constructed by processing datasets with Cell Ranger,
downloading the constructed Cell Ranger GTF file, and then producing a transcriptome
from it and the relevant genome using GFFread
(http://cole-trapnell-lab.github.io/cufflinks/file_formats/#the-gffread-utility).

Inference of per-base sequencing error rate and correctable barcodes
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For each dataset, the per-base error rate was estimated by the formula

,

where and are realizations of random variables and , was the number of
barcodes matching the whitelist, the number of barcodes hamming distance 1 away
from a whitelist barcode, and 16 is the length of 10xv2 and 10xv3 barcodes. Letting ,

, and be random variables representing the number of barcodes matching the
whitelist, the number of barcodes hamming distance one from the whitelist, and the
effective total number of barcodes respectively, the previous equation was derived by
solving for using

.

To estimate the proportion of barcodes Hamming distance 2 or greater away from a
whitelist barcode, we computed

for each dataset, using the estimated per-base error rate .

UMI collision estimates
A UMI associated with a read from a cell is said to have “collided” if it appears in two or
more reads originating from different molecules. To estimate UMI collision rates, two
types of information were used. First, reads in the same cell that originate from different
genes must have originated from different molecules, and therefore the sharing of a UMI
between two such reads was used as an indicator of a collision. Second, for each gene,
the number of distinct UMIs associated within it was measured from the data. Based on
the assumption that UMIs were sampled uniformly at random from beads, this data was
used to estimate the number of intra-gene collisions (see Supplementary Note). The
assumption was verified by examining the distribution of UMI counts across cells; the
empirical distribution was near-uniform with the exception of a handful of UMIs
(Supplementary Note Figure 2).

Comparative analysis of the benchmark panel datasets
The benchmark panel datasets (Supplementary Table 3) were processed uniformly as
follows:

For each dataset a “knee plot”34 was constructed for both Cell Ranger and kallisto by
plotting, for each cell, the number of distinct UMIs in the cell vs. the number of barcodes
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with at least that number of UMIs. Then, the distinct number of UMIs for kallisto and
Cell Ranger were plotted against each other. Subsequently, for each cell, the number of
distinct UMIs was plotted against the number of genes detected. Finally, the Pearson
correlation was computed between the gene counts of kallisto and Cell Ranger for each
cell.

To investigate the similarity of Cell Ranger to kallisto, the distance between each
corresponding kallisto and Cell Ranger cell was computed. The distance to the nearest
kallisto cell was also measured. To visualize the Cell Ranger and kallisto count matrices,
t-SNE was performed on the data projected to the 10 principal components computed for
each dataset using the opentSNE package (https://github.com/pavlin-policar/openTSNE/)
with perplexity=30, metric=”Euclidean”, random_state=42, n_iter=750.

To check for systematic differences in the quantification of certain genes between Cell
Ranger and kallisto, a differential expression analysis was performed on the matrices
produced by the two workflows. First, the matrices were concatenated using the genes
determined to be expressed in both methods. Then the counts were normalized using
Seurat. DE was performed with logistic regression. Next GSEA with the R package
topGO on all marker genes with adjusted p-value less than 0.05, to identify classes of
genes more likely to be affected by the different workflows. Parameters of topGO are
statistic = “fisher”, algorithm = “weight01”, and the gene universe is all genes detected in
both the kallisto and the Cell Ranger matrices. For mixed species datasets (mouse and
human), the gene universe used to test mouse GO terms was all mouse genes observed in
both kallisto and Cell Ranger matrices, and the gene universe for human GO terms was
all human genes observed in both matrices. For each dataset, the ontologies biological
processes (BP), cellular components (CC), and molecular function (MF) were tested
separately. According to the vignette of topGO, the test for each of the ontology with
correction of network topology should be considered to be unaffected by multiple testing,
as different GO terms are not independent. However, since the tests for different
ontologies and datasets were independent, we applied Bonferroni correction to adjust the
p-values for this.  Since each single species dataset (17 in total) was tested for 3
ontologies, and each mixed species dataset (3 in total) was tested for 6 ontologies, the
p-values were multiplied by 69 for 69 independent tests on ontologies performed.

Comparative analysis of the 10x Genomics E18 Mouse dataset
Analysis of the Cell Ranger and kallisto pre-processed datasets was performed in R. The
DropletUtils package35,36 was used to remove empty droplets from the kallisto gene count
matrix. For Cell Ranger, the filtered matrix was used. After filtering, genes not detected
in any remaining Cell Ranger or kallisto barcode were removed. Seurat was used for
basic analysis. First, data was normalized by dividing the UMI count of each gene in each
cell by the total UMI counts of that cell, multiplied this number by 10000. Then a
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pseudocount of 1 was added, and the natural log transform was applied. Subsequently, the
normalized data was scaled so the distribution of the expression of each gene would have
mean of 0 and standard deviation of 1. Subsequently, 3,000 highly variable genes were
selected with the vst method in Seurat. Then principal component analysis was performed
on the highly variable genes in the scaled data with the R package irlba called by Seurat.
The first 40 principal components were used for tSNE, which was done with the R
package Rtsne called by Seurat. Clustering was performed with the Leiden algorithm 30

on the kallisto and Cell Ranger matrices. The clustering parameters were 20 nearest
neighbors and resolution 1. Differential expression analysis was performed with the
logistic regression method described in Ntranos et al.33 as implemented in Seurat and
applied to the normalized (unscaled) data. Spearman and Pearson correlations were
computed for the top 15 cluster marker genes. Gene Set Enrichment Analysis(GSEA)
was performed on cluster marker genes with adjusted p < 0.05 using the R package
topGO37 with the gene ontology (GO)38,39 annotations provided by Bioconductor 3.10.
SingleR40 was used to annotate cell types based on correlation profiles with bulk
RNA-seq from41. Then, the neuronal cell types were used for pseudotime analysis.
Pseudotime analysis was done with slingshot42 via the Docker container from dyno43.

Species mixing
The 10x Genomics 10k 1:1 Mixture of Fresh Frozen Human (HEK293T) and Mouse
(NIH3T3) Cells dataset was analyzed with kallisto and Cell Ranger for the purpose of
comparing the resultant banyard plots44. Human and mouse genes were identified with
their ENSEMBL identifiers. The total number of UMIs mapped to the human and mouse
genes in each barcode was calculated with the unfiltered matrices. In Supplementary
Figure 8b,c only barcodes present in both the kallisto and Cell Ranger unfiltered matrices
were used.

RNA velocity
A human reference transcriptome FASTA file of exonic transcripts and a reference
genome fasta were obtained from the UCSC Genome Browser, build Dec. 2013 GRCh38.
A BED file of intronic transcripts, with an ( = read length) flanking sequence
added to each end, was also obtained from the UCSC Genome Browser. A unique
number was appended to the end of each intronic transcript in the BED file. The genome
fasta and the intronic BED file were used with bedtools getfasta to construct an intronic
fasta file. The intronic and exonic fasta files were combined and an index was built with
kallisto index. The reads were aligned to the index using kallisto bus. The barcodes in
the resultant BUS file were error corrected with bustools correct and then sorted with
bustools sort. To isolate the intronic counts and exonic counts for each barcode, bustools
capture was ran twice: once using the list of intronic transcripts and once using the list of
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exonic transcripts. The spliced count matrices were made by using bustools count on the
intron-captured split.bus file, and the unspliced count matrices were made by using
bustools count on the exon-captured split.bus file. Both matrices were loaded into an
annotated data frame in a jupyter notebook for downstream analysis.

To perform the comparison to the La Manno et al. 2018 dataset (Supplementary Figures
10, 11), the data was first downloaded from the SRA (SRP129388). The cell barcodes
were filtered by those in La Manno et al. 201811. The data was pre-processed with the
kallisto | bustools workflow. The matrices were loaded into python. The cluster labels
were then transferred from La Manno et  al. 2018. The velocyto notebook provided with
the paper was used to reproduce the results based on the Cell Ranger\Velocyto matrices
and the kallisto | bustools matrices.

For the Clark et al. 2019 RNA velocity analysis (Figure 3, Supplementary Figure 9), the
data was downloaded from the SRA (GSE118614).  First the cell barcodes were filtered
by those in Clark et al. 2019. The cluster labels were then transferred from Clark et al.
2019 32 and the standard velocity pipeline from scvelo was run using the kallisto spliced
and unspliced matrices.

Reproducibility
Tutorials for performing multiple types of single-cell analysis are available at
https://www.kallistobus.tools/tutorials in the form of Google Colab notebooks. Users can
run many different types of single-cell RNA-seq workflows from standard count matrix
generation to RNA velocity. Google Colab serves a jupyter notebook that runs on free
cloud compute infrastructure allowing anyone with a Google account to run the
notebooks. The efficiency and low memory requirements of the kallisto bustools pipeline
make it possible to run on this infrastructure, and this is not possible with other
single-cell RNA-seq pre-processing programs due to their higher computational
requirements.
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Supplementary Material

Supplementary Figure 1.1: Estimates of the effective number of UMIs per bead for
each of the benchmark panel datasets, determined from observed collisions of UMIs
across unique genes and assuming UMIs are sampled uniformly with replacement (see
Supplementary Note for further details). The dashed red line is the theoretical maximum
for the number of UMIs on a v2 chemistry bead (410=1,048,576) and the red line is the
theoretical maximum for the number of UMIs on a v3 chemistry bead (412=16,777,216).
The datasets are ordered by number of reads. UMI pools from 10x Chromium v2 and v3
chemistry are found to be highly complex, with the effective number of UMIs
approaching the theoretical maximum in many cases. Our estimates for UMI complexity
vary across experiments; this could be due to batch effects, or model misspecification.
Sequencing chimeras could also affect UMI complexity estimates, specifically estimates
would be increased with more chimeras. This would reduce the estimates of intra-gene
collisions due to naïve collapsing.
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Supplementary Figure 1.2: Fraction of UMIs lost per gene across cells in the
benchmark panel due to over-collapsing. The inset figure is a magnified view of the
violin plot demonstrating that the fraction of counts lost due to UMI collapsing at the
gene level is on the order of 0.0002.
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Supplementary Figure 2: The expected percentage of Barcodes (or UMIs) that will have
one error and can therefore be corrected with a Hamming distance 1 correction algorithm.
The y-axis displays the value of the function where ,
and where is the per base sequencing error probability estimated by averaging the error
estimates across all the datasets in the benchmark panel (Supplementary Table 2).

https://www.codecogs.com/eqnedit.php?latex=f(L)%0
https://www.codecogs.com/eqnedit.php?latex=f(L)%20%3D%20100%20%5Ccdot%20L%5Chat%7Bp%7D(1-%5Chat%7Bp%7D)%5E%7BL-1%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bp%7D%0
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All Supplementary Figure 3 benchmark panels are configured as follows: (A) “Knee
plots” for kallisto and Cell Ranger showing, for a given UMI count (x-axis), the number
of cells that contain at least that many UMI counts (y-axis). The dashed lines correspond
to the Cell Ranger filtered cells. (B) Correspondence in the number of distinct UMIs per
cell between the workflows. (C) Genes detected by kallisto and Cell Ranger as a function
of distinct UMI counts per cell. (D) Pearson correlation between gene counts as a
function of the distinct UMI counts per cell. (E.1) The distance between gene
abundances for each kallisto cell and its nearest neighbor plotted against each kallisto cell
and its corresponding Cell Ranger cell (orange) and the distance between the gene
abundances for each Cell Ranger cell and its nearest neighbor plotted against each Cell
Ranger cell and its corresponding kallisto cell (orange). Marginal distributions show that
each kallisto cell is closest to its corresponding Cell Ranger cell and that each Cell
Ranger cell is closest to its corresponding kallisto cell. (E.2) distance between kallisto
and Cell Ranger cells as a function of UMI counts. (F.1) kallisto t-SNE from the first 10
principal components. (F.2) Cell Ranger t-SNE from the first 10 principal components.
(G.1) MA plot for all genes between kallisto and Cell Ranger. Most of the genes have a

(G.2) QQ plot comparing the distribution of observed distribution of
p-values of GSEA, after Bonferroni correction for multiple testing across ontologies and
datasets, with the expected distribution of a uniform distribution between 0 and 1. If the
observed distribution does not significantly deviate from the expected distribution, then
the points should lie close to the diagonal line, . The gray ribbon around the line is
the 95% confidence interval. Here most GO terms have adjusted , meaning that
most GO terms are very depleted of genes “differentially expressed (DE)” between the
kallisto and Cell Ranger matrices. GO terms above are labeled. Generally, GO
terms significantly enriched among “DE” genes are related to ribosomal proteins and are
labeled by numbers corresponding to GO terms in the figure caption. The points are also
colored by ontology: biological processes (BP), cellular components (CC), and molecular
functions (MF). (H) Significant differential gene sets between Cell Ranger and kallisto.

https://www.codecogs.com/eqnedit.php?latex=l_1%0
https://www.codecogs.com/eqnedit.php?latex=l_1%0
https://www.codecogs.com/eqnedit.php?latex=l_1%0
https://www.codecogs.com/eqnedit.php?latex=log_2(FC)%5Cleq0.25%0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%20x%0
https://www.codecogs.com/eqnedit.php?latex=p%20%3D%201%0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%20x%0
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Supplementary Figure 3.1: Benchmark panel of data from O’Koren et al. 2019
(O’Koren et al., 2019) (SRR8599150). Enriched GO terms are 1-structural constituent of
ribosome, 2-cytosolic small ribosomal subunit, 3-cytosolic large ribosomal subunit.

http://f1000.com/work/citation?ids=6666826&pre=&suf=&sa=0
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Supplementary Figure 3.2: Benchmark panel of data from Packer et al. 2019 (Packer et
al., 2019) (SRR8611943).

http://f1000.com/work/citation?ids=6548872&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6548872&pre=&suf=&sa=0
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Supplementary Figure 3.3: Benchmark panel of data from Jin et al. 2018 (Jin et al.,
2018) (SRR6998058).

http://f1000.com/work/citation?ids=6872191&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6872191&pre=&suf=&sa=0
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Supplementary Figure 3.4: Benchmark panel of the 10x Genomics hgmm1k_v3 dataset.
Enriched GO terms are 1-nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, 2-SRP-dependent cotranslational protein targeting to
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membrane, 3-translational initiation, 4-structural constituent of ribosome, 5-viral
transcription.

Supplementary Figure 3.5: Benchmark panel of the 10x Genomics pbmc1k_v3 dataset.
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Supplementary Figure 3.6: Benchmark panel of the 10x Genomics hgmm1k_v2 dataset.
Enriched GO terms are 1-nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, 2-SRP-dependent cotranslational protein targeting to
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membrane, 3-translational initiation, 4-structural constituent of ribosome, 5-viral
transcription.

Supplementary Figure 3.7: Benchmark panel of the 10x Genomics heart1k_v3 dataset.
Enriched GO terms are 1-cytosolic large ribosomal subunit.
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Supplementary Figure 3.8: Benchmark panel of data from Miller et al. 2019 (Miller et
al., 2019) (SRR8206317). Enriched GO terms are 1-structural constituent of ribosome,
2-cytosolic large ribosomal subunit.

http://f1000.com/work/citation?ids=6469658&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6469658&pre=&suf=&sa=0
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Supplementary Figure 3.9: Benchmark panel of the 10x Genomics heart1k_v2 dataset.
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Supplementary Figure 3.10: Benchmark panel of data from Carosso et al. 2019
(Carosso et al., 2018) (SRR8524760).

http://f1000.com/work/citation?ids=7071250&pre=&suf=&sa=0
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Supplementary Figure 3.11: Benchmark panel of data from Mays et al. 2018 (Mays et
al., 2018) (SRR7299563). Enriched GO terms are 1-cytosolic large ribosomal subunit,
2-translation, 3-cytosolic small ribosomal subunit, 4-cytoplasmic translation, 5-polysomal
ribosome.

http://f1000.com/work/citation?ids=6856526&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6856526&pre=&suf=&sa=0
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Supplementary Figure 3.12: Benchmark panel of data from the gene expression
omnibus(Mahadevaraju et al., 2019) (SRR8513910).

http://f1000.com/work/citation?ids=7071251&pre=&suf=&sa=0
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Supplementary Figure 3.13: Benchmark panel of data from Farrell et al. 2018(Farrell et
al., 2018) (SRR6956073).

http://f1000.com/work/citation?ids=5172851&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5172851&pre=&suf=&sa=0
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Supplementary Figure 3.14: Benchmark panel of data from Ryu et al. 2019(Ryu et al.,
2019) (SRR8257100).

http://f1000.com/work/citation?ids=6463742&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6463742&pre=&suf=&sa=0
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Supplementary Figure 3.15: Benchmark panel of data from Merino et al. 2019(Merino
et al., 2019) (SRR8327928).

http://f1000.com/work/citation?ids=6461790&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6461790&pre=&suf=&sa=0
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Supplementary Figure 3.16: Benchmark panel of data from Delile et al. 2019(Delile et
al., 2019) (EMTAB7320). Enriched GO terms are 1-cytosolic large ribosomal subunit,
2-structural constituent of ribosome, 3-cytosolic small ribosomal subunit.

http://f1000.com/work/citation?ids=6861245&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6861245&pre=&suf=&sa=0
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Supplementary Figure 3.17: Benchmark panel of the 10x Genomics neuron10k_v3
dataset. Enriched GO terms are 1-structural constituent of ribosome, 2-cytosolic large
ribosomal subunit, 3-cytosolic small ribosomal subunit.
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Supplementary Figure 3.18: Benchmark panel of data from Guo et al. 2019 (Guo et al.,
2019) (SRR8639063). Note that the FASTQ files distributed with this experiment
contained only retained barcodes. Enriched GO terms are 1-structural constituent of

http://f1000.com/work/citation?ids=6466988&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6466988&pre=&suf=&sa=0
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ribosome, 2- cytosolic large ribosomal subunit, 3-cytosolic small ribosomal subunit,
4-cytoplasmic translation, 5-polysomal ribosome.

Supplementary Figure 3.19: Benchmark panel of the 10x Genomics pbmc10k_v3
dataset.



100

Supplementary Figure 3.20: Benchmark panel of the 10x Genomics hgmm10k_v3
dataset. Enriched GO terms are 1-SRP-dependent cotranslational protein targeting to
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membrane, 2-nuclear-transcribed mRNA catabolic process, nonsense-mediated decay,
3-translational initiation, 4-structural constituent of ribosome, 5-viral transcription.
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Supplementary Figure 4: Violin plots displaying distribution of counts for the FGF23
(ENSG00000118972) gene in all cells in the pbmc_10k_v3 dataset using different
alignment methods. (A) Transcriptome pseudoalignment with kallisto using a standard
index constructed from ENSEMBL transcripts. (B)  Transcriptome pseudoalignment with
kallisto using a modified index that includes, separately, sequences from splice junctions
to capture unspliced junction reads. (C) Genome alignment with Cell Ranger. The gene
was selected as an example as it was an outlier in discrepancy between kallisto and Cell
Ranger when quantification was done with the standard index.
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Supplementary Figure 5: Overview of the kallisto | bustools workflow. First an index
for kallisto is built from a set of transcript sequences using the kallisto index command.
Then kallisto bus is run on the FASTQ files; this generates a BUS file that contains
records corresponding to reads, with data on the cell barcode, UMI, and transcript
compatibility of each read. The barcodes are then corrected by processing the BUS file
with the bustools correct command, after which the BUS file is sorted with bustools
sort. Here, duplicate reads (those reads sharing an identical cell barcode, UMI, and
equivalence class triplet) are collapsed into a single record and their abundance saved as a
new metadata column in the BUS file named “multiplicity”. Finally, bustoools count
produces cells x features count matrices. If kallisto bus is run with an index containing
intron sequences, the bustools capture command can be used to produce spliced and
unspliced matrices for RNA velocity after sorting and before counting.
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Supplementary Figure 6: Pseudotime trajectories. (A) Lineage inference of
neuron10k_v3 dataset with slingshot projected to the first 2 principal components, with
cells colored by cell type inferred by SingleR. aNSCs stands for active neuronal stem
cells. NPCs stands for neuronal precursor cells. qNSCs stands for quiescent neuronal
stem cells. (B) Coloring by pseudotime values from slingshot.
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Supplementary Figure 7.1: (A) Elbow plot of standard deviation explained by each
principal component of the gene count matrix from kallisto and Cell Ranger. (B) Cell
embedding in the first 2 principal components colored by cluster. (C) Cell embedding in
tSNE colored by cluster.
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Supplementary Figure 7.2: (A) Number of cells assigned to each cluster by kallisto and
Cell Ranger and the correspondence between the clusters. (B) Jaccard indices between
each kallisto cluster and each Cell Ranger cluster.



107

Supplementary Figure 7.3: Number of marker genes with log fold change of at least
0.75 and adjusted p < 0.05 in each cluster. (B) Log fold change of marker genes in each
cluster. (C) Top 5 enriched GO terms of marker genes (adjusted p < 0.05) each cluster.
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Supplementary Figure 7.4: (A) Histograms of Spearman and Pearson correlation
coefficients between barcodes from kallisto and the same barcodes from Cell Ranger for
the top 15 marker genes (by log fold change) of each cluster. (B) Spearman and Pearson
correlation coefficients, as in (A), for cells in each kallisto cluster. Here cluster 16
corresponds to erythrocytes, while most other cells are neuronal precursor cells.
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Supplementary Figure 8: Comparison of Cell Ranger to kallisto on the 10x Genomics
hgmm10k_v3 species mixing experiment. (A) Barnyard plot with droplets colored
according to species of origin: human (red), mouse (blue) and mixed (green). Mixed
droplets correspond to cell doublets. (B) The number of total counts per barcode in Cell
Ranger and kallisto. (C) The proportion of UMIs in each droplet originating from human.
The cluster of droplets in the lower left corner correspond to mouse cells. The cluster of
cells in the upper right corner to human cells. The middle band of droplets are doublets.
Droplets are shaded according to the number of distinct UMIs they contain.
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Supplementary Figure 9: Phase diagrams and expression/velocity for six marker genes
studied in Clark et al. 2019. The expression results are concordant with pseudotime
analysis.
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Supplementary Figure 10: (A) RNA velocity based on spliced and unspliced matrices
from a dataset of 1,720 human glutamatergic neuron differentiation cells at
post-conception week 10. The colors correspond to cell types and intermediate states and
a principal “velocity curve” is shown in bold. (A) RNA velocity analysis based on spliced
and unspliced matrices computed with kallisto and bustools. B) RNA velocity based on
the spliced and unspliced matrices computed with velocyto. Colors correspond to clusters
as assigned by the velocyto notebook.
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Supplementary Figure 11: Comparison of Cell Ranger and velocyto to kallisto in an
RNA velocity analysis of human glutamatergic neuron differentiation cells at
post-conception week 10. (A) Number of distinct UMIs from spliced vs. unspliced
transcripts from kallisto (orange). (B) Number of distinct UMIs from spliced vs.
unspliced transcripts from Cell Ranger (blue). Cell Ranger has similar numbers of spliced
counts but fewer unspliced counts. (C) Phase diagrams from the kallisto RNA velocity
analysis for 3 genes highlighted in La Manno et al. 2018. (D)  Corresponding phase
diagrams from the Cell Ranger RNA velocity analysis showing agreement with the
kallisto results.
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Supplementary Figure 12: Comparison of kallisto runtimes with those of the Unix word
count (wc) command. Each point corresponds to a different dataset.
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Supplementary Figure 13: The runtime to process 50 million reads as a function of the
number of indices. The reference transcriptome was split into two, four, eight, and ten
parts and the time to align all of the reads to each of the set of indices was recorded.
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Supplementary Figure 14: The counts per cell, summed across all genes, when
pseudoaligning 50 million single cell reads against the full spliced and unspliced indices
and the 2-way split index for spliced and unspliced count matrices. The BUS files
generated for the 2-way split index were merged together using bustools mash followed
by bustools sort and bustools merge.
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Supplementary Figure 15: The number of counts lost due to naïve collapsing of UMIs
as a function of the length of the UMIs for a gene with 100 counts. The calculation, based
on Supplementary Note equation (11), assumes that the effective number of UMIs is
when UMIs are of length .

https://www.codecogs.com/eqnedit.php?latex=4%5EL%0
https://www.codecogs.com/eqnedit.php?latex=L%0
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Supplementary Table 1: Runtime, memory, and cost
(supplementary_table_S1_runtime_mem_cost.xlsx).

bustools Description Enables

capture Capture records from a BUS file RNA Velocity

correct Error correct a BUS file Barcode Error correction

count Generate count matrices from a BUS file
Gene count or transcript count
matrices

extract
Extract FASTQ reads corresponding to reads
in BUS file FASTQ sampling

inspect Produce a report summarizing a BUS file Summary statistics

linker Remove section of barcodes in BUS files
Excise sections of barcode for
custom technologies

mash
Combine BUS records and match EC to the
same reference

Combining BUS files from different
indices

merge Merge kmer alignments for a single read Low memory alignment

project Project a BUS file to gene sets
Change coordinate system from
transcripts to genes

sort Sort a BUS file by barcodes and UMIs Constant memory sorting

text
Convert a binary BUS file to a tab-delimited
text file Custom BUS file parsing

whitelist Generate a whitelist from a BUS file Technologies without a whitelist

Supplementary Table 2: All of the bustools commands that have been developed and
the types of analyses they enable.

Supplementary Table 3: Benchmark panel summary (supplementary_table_S3
_benchmark_panel_summary.xlsx).



118

Supplementary References

Carosso, G.A., Boukas, L., Augustin, J.J., Nguyen, H.N., Winer, B.L., Cannon, G.H.,
Robertson, J.D., Zhang, L., Hansen, K.D., Goff, L.A., et al. (2018). Transcriptional
suppression from KMT2D loss disrupts cell cycle and hypoxic responses in
neurodevelopmental models of Kabuki syndrome: BioRxiv.

Delile, J., Rayon, T., Melchionda, M., Edwards, A., Briscoe, J., and Sagner, A. (2019).
Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in
the developing mouse spinal cord. Development 146.

Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., and Schier, A.F. (2018).
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Science 360.

Guo, L., Lin, L., Wang, X., Gao, M., Cao, S., Mai, Y., Wu, F., Kuang, J., Liu, H., Yang,
J., et al. (2019). Resolving Cell Fate Decisions during Somatic Cell Reprogramming by
Single-Cell RNA-Seq. Mol. Cell 73, 815-829.e7.

Jin, R.M., Warunek, J., and Wohlfert, E.A. (2018). Chronic infection stunts macrophage
heterogeneity and disrupts immune-mediated myogenesis. JCI Insight 3.

Mahadevaraju, S., Fear, J.M., and Oliver, B. (2019). GEO Accession viewer.

Mays, J.C., Kelly, M.C., Coon, S.L., Holtzclaw, L., Rath, M.F., Kelley, M.W., and Klein,
D.C. (2018). Single-cell RNA sequencing of the mammalian pineal gland identifies two
pinealocyte subtypes and cell type-specific daily patterns of gene expression. PLoS ONE
13, e0205883.

Merino, D., Weber, T.S., Serrano, A., Vaillant, F., Liu, K., Pal, B., Di Stefano, L.,
Schreuder, J., Lin, D., Chen, Y., et al. (2019). Barcoding reveals complex clonal behavior
in patient-derived xenografts of metastatic triple negative breast cancer. Nat. Commun.
10, 766.

Miller, B.C., Sen, D.R., Al Abosy, R., Bi, K., Virkud, Y.V., LaFleur, M.W., Yates, K.B.,
Lako, A., Felt, K., Naik, G.S., et al. (2019). Subsets of exhausted CD8+ T cells
differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol.
20, 326–336.

O’Koren, E.G., Yu, C., Klingeborn, M., Wong, A.Y.W., Prigge, C.L., Mathew, R.,
Kalnitsky, J., Msallam, R.A., Silvin, A., Kay, J.N., et al. (2019). Microglial Function Is
Distinct in Different Anatomical Locations during Retinal Homeostasis and
Degeneration. Immunity 50, 723-737.e7.

http://f1000.com/work/bibliography/7071250
http://f1000.com/work/bibliography/7071250
http://f1000.com/work/bibliography/7071250
http://f1000.com/work/bibliography/7071250
http://f1000.com/work/bibliography/6861245
http://f1000.com/work/bibliography/6861245
http://f1000.com/work/bibliography/6861245
http://f1000.com/work/bibliography/5172851
http://f1000.com/work/bibliography/5172851
http://f1000.com/work/bibliography/5172851
http://f1000.com/work/bibliography/6466988
http://f1000.com/work/bibliography/6466988
http://f1000.com/work/bibliography/6466988
http://f1000.com/work/bibliography/6872191
http://f1000.com/work/bibliography/6872191
http://f1000.com/work/bibliography/7071251
http://f1000.com/work/bibliography/6856526
http://f1000.com/work/bibliography/6856526
http://f1000.com/work/bibliography/6856526
http://f1000.com/work/bibliography/6856526
http://f1000.com/work/bibliography/6461790
http://f1000.com/work/bibliography/6461790
http://f1000.com/work/bibliography/6461790
http://f1000.com/work/bibliography/6461790
http://f1000.com/work/bibliography/6469658
http://f1000.com/work/bibliography/6469658
http://f1000.com/work/bibliography/6469658
http://f1000.com/work/bibliography/6469658
http://f1000.com/work/bibliography/6666826
http://f1000.com/work/bibliography/6666826
http://f1000.com/work/bibliography/6666826
http://f1000.com/work/bibliography/6666826


119
Packer, J.S., Zhu, Q., Huynh, C., Sivaramakrishnan, P., Preston, E., Dueck, H., Stefanik,
D., Tan, K., Trapnell, C., Kim, J., et al. (2019). A lineage-resolved molecular atlas of C.
elegans embryogenesis at single cell resolution. BioRxiv.

Ryu, K.H., Huang, L., Kang, H.M., and Schiefelbein, J. (2019). Single-Cell RNA
Sequencing Resolves Molecular Relationships Among Individual Plant Cells. Plant
Physiol. 179, 1444–1456.

http://f1000.com/work/bibliography/6548872
http://f1000.com/work/bibliography/6548872
http://f1000.com/work/bibliography/6548872
http://f1000.com/work/bibliography/6463742
http://f1000.com/work/bibliography/6463742
http://f1000.com/work/bibliography/6463742


120

Supplementary Note

Preliminaries

Figure 1: Diagram of sets associated with a cell in a single-cell RNA-seq sequencing
experiment.

A single-cell RNA-seq experiment can be described as follows: the goal of the
experiment is to identify the ensemble of RNA molecules in multiple cells; in Figure 1
the ensemble of RNA molecules contained within a single cell is denoted by R. To
investigate R a library (L) is constructed from the set of molecules captured from R (the
set C). Typically, L is the result of various fragmentation and amplification steps
performed on C, meaning each element of C may be observed in L with some
multiplicity. Thus, there is an inclusion map from C to L, and an injection from C to R.
The library is interrogated via sequencing of some of the molecules in L, resulting in a set
F of fragments. Subsequently, the set F is aligned or pseudoaligned to create a set B,
which in this paper is a BUS file (Melsted, Ntranos, and Pachter 2019). Not every
fragment F is represented in B, hence the injection, rather than bijection, from B to F, and
similarly from F to L The set T consists of transcripts that correspond to molecules in C
that were represented in B. Note that |R| >= |C| >= |T|. Separately, the set U consists of the
UMIs on the bead that the cell was trapped with, and I is a multiset of UMIs associated
with transcripts in C and UMIs in U that are in B (Table 1).

https://paperpile.com/c/BA8pyM/Mdav
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R : multiset of all RNAs in a cell.
L : multiset of all molecules in the library.
F : multiset of reads.
B : multiset of {barcode, UMI, equivalence class} triplets.
C : multiset of captured RNA molecules represented in the library.
T : multiset of transcripts represented in B corresponding to molecules in C.
U : set of UMIs on a bead.
I : multiset of UMIs represented in B corresponding to molecules in U.

Table 1: Notation for description of a single-cell experiment

The data in a single-cell experiment consists of the sets F for each cell. In our workflow,
a combined BUS file (merge of the sets B) is generated using kallisto (Bray et al. 2016).
While the multiset I is not directly measured, its support supp(I) (the set of distinct UMIs)
can be extracted from the BUS file. The goal of single-cell RNA-seq pre-processing is to
infer the multiset T. What we describe in this note is an approach to estimating two
different quantities: the effective size |U| of the set of UMIs associated with each bead,
and the number of captured molecules represented in the BUS file, i.e. |I| or equivalently
|T|. Specifically, we are interested in the restriction of the latter to individual genes in
cells, for the purpose of estimating the error in the number of counts that can be
introduced when naïvely collapsing UMIs by gene. The reason for estimating |U| is that it
is necessary to estimate |I|.

Modeling an experiment
The number of distinct UMIs on one bead is at most 4^L where L is the number of UMI
bases (10xv2 technology uses L=10 and 10xv3 technology L=12). For a bead captured
along with a cell in a droplet, we denote the number of UMIs on the bead by n=|U|. We
model the process by which UMIs are associated with molecules as follows: each UMI is
selected by sampling uniformly at random from the set of UMIs U. In other words, the
molecules are labeled with UMIs by sampling with replacement. This model has been
used previously (Grün, Kester, and van Oudenaarden 2014), and is justified by
distributions of UMIs seen empirically (Figure 2). If k=|I| is the number of UMIs
represented in B corresponding to molecules in U derived from a single droplet then the
assumption of uniform random sampling of UMIs from the bead implies that the
probability that a specific UMI is observed zero times is (1-1/n)^k. Therefore the
expected number of UMIs observed at least once, i.e. the expected number of distinct
UMIs in a cell, is

https://paperpile.com/c/BA8pyM/mhtz
https://paperpile.com/c/BA8pyM/9Lc1
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Figure 2: Distribution of UMIs across cells. With the exception of a handful of artifacts,
UMIs are uniformly distributed across cells.

Estimating the effective number of UMIs
To estimate n (=|U|) we utilize two observations:

1. Reads that originated from different genes correspond to distinct molecules, so if
they share the same UMI then the UMI was sampled more than once (i.e. the UMI
is not duplicated due to PCR).

2. While the number of sampled UMIs k is unknown, the number of distinct UMIs
can be measured directly.

We say that a UMI that has been sampled more than once has a collision (Figure 3), and
we denote the number of UMIs that appear in more than one gene by random variable
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(r.v.) X (see Figure 3). We denote the number of distinct UMIs sequenced, i.e. |supp(I)|,
by a r.v. D, and the number of distinct UMIs observed to be from a gene g by r.v. D_g.
We denote the number of sampled molecules originating from a gene g by k_g. Note that
⅀g E[dg] >= E[d].

We obtain method-of-moment estimates for the parameters k,k_g and n (k_hat,k_g_hat
and n_hat) by relating them to realizations of the r.v. D_g, D, and X. First, from equation
(1) (see also (Grün, Kester, and van Oudenaarden 2014)), we have that

at the gene level,

The number of UMIs that occur in more than one gene can be found by knowing the
number of UMIs that are seen zero times in all genes, and that the number of UMIs that
are seen in only one gene is given by the number of unique UMIs in gene g and only gene
g, summed across all genes. This gives an estimate for the number of UMIs that collide
between genes:

From equations (2) and (3) and using the realizations of the r.v. D and D_g, i.e. d and
d_g, we have that

and at the gene level

Therefore, substituting equations (5), (6) into equation (4) we obtain

https://paperpile.com/c/BA8pyM/9Lc1


124

Since d, d_g (for all g) and x are known the number of UMIs, n_hat, can be estimated.

Figure 3: Collisions of UMIs. Each small circle represents a distinct UMI. Each medium
sized circle is a gene, and the enclosing circle is the set of all distinct UMIs. UMIs that
have collided are shown in orange. Inter-gene collisions consist of UMIs present in two
or more genes. An intra-gene collision is also shown.

Estimating counts lost for each gene
Returning to equation (3), we see that

With n_hat, and measurement of d_g, we evaluate the number of molecules captured per
gene, k_g_hat. The loss of counts due to collapsing of UMIs by gene is
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where 12 is found by Taylor expanding 11.

Constant and low memory processing
The kallisto bustools workflow enables constant and low memory single-cell RNA-seq
pre-processing by using small pseudoalignment reference indices, and streaming all
processing of BUS records which is possible after a constant memory sort of the initial
BUS file produced in an analysis. In order to pseudoalign reads, kallisto first loads up a
small index file constructed from a reference transcriptome. The size of this index is not
dependent on the number of reads that will be processed. Reads are pseudoaligned by
streaming through FASTQ files, and BUS records are incrementally added to as reads are
processed. The bustools  commands operate on BUS files and are used to perform many
required operations on BUS files in order to generate count matrices. These operations
include sorting the BUS file, correcting barcodes, and counting UMIs among many
others; all operations are performed in constant memory in the number of reads being
processed. The first step in working with BUS files is sorting. Sorting the BUS file
allows all other bustools to operate on the BUS file in a stream-wise fashion thus keeping
memory constant and low. The `bustools sort` command operates in constant memory by
utilizing disk when necessary.

While pseudoalignment of reads and processing of BUS files to perform RNA-velocity
has only constant memory requirements (in terms of the number of reads) with the
kallisto bustools workflow, the indices involved can be large due to the intronic
sequences that must be indexed. The modularity of bustools makes possible, in principle,
a reduction in absolute memory requirements by virtue of splitting the target sequences
prior to indexing, pseudoalignment to the separate indices, and finally merging of the
resultant BUS files. We implemented this strategy, which required modifying the kallisto
bustools workflow to first align reads to a transcriptome that has been split into an
arbitrary number (n) of parts and then merging the alignments by interval set intersection.
Splitting the transcriptome into n parts yields smaller indices to be loaded into memory
and requires n alignments of the reads which comes with a run-time trade-off
(Supplementary Figure 13). For each read that aligns, we record the interval of kmer start
positions from the read such that the kmers contained within this interval align to an
associated equivalence class. A single read of length L, with a kmer size of k can have at



126
most L-k+1 possible kmer alignments where each possible kmer in that read aligns to a
different equivalence class. We then merge these intervals appropriately in order to assign
an equivalence class to the read.

By way of example, suppose that we split an index into three parts and perform
pseudoalignment three times. Additionally, suppose that a single read has only two kmers
that align, k_1 and k_2. k_1 aligns to an equivalence class which contains transcripts one
and two (EC_1={T_1, T_2}) in index one and k_1 also aligns to EC_2={T_7, T_9}. The
second kmer k_2 aligns to EC_4={T_5, T_6, T_7} of index two and EC_5={T_10, T_11)
of index three.

In the case of a full transcriptome, EC_1 and EC_2 would have been indexed together
since they share the same kmer, EC_1,2 = {T_1, T_2, T_7, T_9} and k_1 would have
aligned to this equivalence class. Similarly, in the case of a full transcriptome, EC_4 and
EC_5 would have have been indexed together since they share the same kmer, EC_4,5 =
{T_5, T_6, T_7,T_10, T_11} and k_2 would have aligned to this  equivalence class. The
read would then have been assigned the equivalence class EC= EC_1,2 ∩ EC_7,9 = T_7.

In the case of the split indices, in order to accurately assign the read to this equivalence
class we must:

1. determine all of the kmer alignments for a single read from each index,
2. appropriately merge overlapping kmer alignments and equivalence classes,
3. determine the set of elementary intervals (note: Given a list of intervals where for

any interval the left endpoint is smaller than the right endpoint, an elementary
interval is defined as any interval from the set of intervals constructed by taking
every adjacent pair of points from a sorted list of unique endpoints. E.g. I={[3, 5),
[0, 4), [4, 9)} and E={[0, 3), [3,4), [4, 5), [5, 9)}}) and the set of equivalence
classes contained within those intervals,

4. and intersect all of the elementary intervals.

A single read can have multiple kmers align to multiple equivalence classes in each of the
n split indices. To keep track of these alignments we store a 0-indexed interval with
endpoints corresponding to kmer start positions on the read and the equivalence class
corresponding to that interval. Note that the interval is closed on the left and open on the
right.

After n separate alignments, we combine all of the n BUS files into one BUS file by
simply remapping the equivalence class so that the set of transcripts defined by an
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equivalence is based on the combined transcripts from all n splits instead of just the
transcripts from each separate split.

For all of the BUS records corresponding to a single read, we find the set of elementary
intervals and the set of transcripts  corresponding to each interval, and then intersect the
intervals to ultimately assign an equivalence class to the read.

The example above for the split indices would then result in the following alignment
(superscript corresponds to the index number that the equivalence class is from):

1. Find split alignments. k_1: EC_1^1={T_1, T_2}, EC_2^2={T_7, T_9} and k_2:
EC_4^2={T_5, T_6, T_7}, EC_5^3={T_{10}, T_{11})

2. Merge. k_1: EC_1^1 ∪ EC_2^2 =  EC_1,2 = {T_1, T_2, T_7, T_9} and k_2:
EC_4^2∪ EC_5^3 = EC_4,5 = {T_5, T_6, T_7,T_10, T_11}

3. Intersect. EC = EC_1,2 ∩ EC_7,9 = {T_7}

To validate this approach, we split the human polyadenylated transcriptome, as well as an
intronic sequences used for RNA velocity into two parts respectively and indexed each
part. We then aligned 50 million reads to the four indices and merged the resultant BUS
files as described above. Additionally we aligned the reads to the full indices. We then
computed the cell-count correlation between the quantification generated with the full
indices and the quantification generated with the separate indices and found the results to
be highly concordant (r^2=0.97 for counts from the polyadenylated transcriptome and
r^2=0.90 for counts from the intronic sequences, Supplementary Figure 14).

The results obtained from merging BUS records that were pseudoaligned to split indices
will not necessarily exactly recapitulate the results obtained from pseudoaligning to the
full index. This is due to the ambiguity introduced when kmers from a single read map to
multiple transcripts. When reducing the number of transcripts in the index in each split
index, there are fewer sets of shared k-mers between transcripts. Given a k-mer alignment
to an equivalence class in a read, the strategy in kallisto is to skip ahead in the index
graph and check if the final k-mer in the read maps to the same equivalence class, a
different equivalence class, or none at all. This skip ahead strategy, while appropriate for
the full index, can skip intermediate k-mer alignments that only result from an
equivalence class in the full transcriptome, thereby resulting in fewer alignments and a
slight loss in pseudoalignments when splitting indices and subsequently merging results
(Supplementary Figure 14).
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Section 2: count data normalization with log(x+1)* and log(1+x)*

* These formulae contributed equally to the title

Preamble
Methods to perform single-cell RNA-sequencing analysis often apply variance stabilizing
transformations in order to reduce unwanted technical variation. We show, for the first time, that
one such technique, log1p, can disproportionately weight genes with low counts and produce
misleading results in analysis of SARS-CoV-2 scRNAseq data.

Summary
Single-cell RNA-seq technologies have been successfully employed over the past decade to
generate many high resolution cell atlases. These have proved invaluable in recent efforts aimed
at understanding the cell type specificity of host genes involved in SARS-CoV-2 infections.
While single-cell atlases are based on well-sampled highly-expressed genes, many of the genes of
interest for understanding SARS-CoV-2 can be expressed at very low levels. Common
assumptions underlying standard single-cell analyses don’t hold when examining low-expressed
genes, with the result that standard workflows can produce misleading results.

Introduction
The ACE2 receptor, which facilitates entry of SARS-Cov-2 into cells (Zhang et al., 2020), has
become one of the most studied genes in the history of genomics over the past two months. There
are already hundreds of preprints about the gene (Google Scholar), and it is currently the default
gene displayed on the UCSC genome browser (Lee et al., 2020). Several studies have reported on
the expression of ACE2 at single-cell resolution, and papers have been rife with speculation about
implications of differential ACE2 mRNA abundance for severity of disease. As is common in
single-cell RNA-seq, the expression estimates of ACE2 are derived from counts that are filtered
and normalized.

Results
Figure 1a shows an analysis of ACE2 mRNA in mice lungs (data from (Angelidis et al., 2019)).
The expression is computed from cells containing at least one copy of the gene. To understand the
implication of this restriction, suppose the counts are modeled by a Poisson random variable
with parameter . Application of the filter amounts to computing

While this is approximately when is large, it is close to 1 when is small (de L’Hospital,
1768). Figure 1b shows the fraction of cells containing at least one copy of ACE2 (Booeshaghi
and Pachter, 2020). Evidently, Figure 1a creates a misleading impression. In fact, ACE2 has
significantly lower mRNA expression in the lungs of aged mice than young mice.

https://paperpile.com/c/jhIjL5/RqIX
https://paperpile.com/c/jhIjL5/IjpM
https://paperpile.com/c/jhIjL5/fn2n
https://www.codecogs.com/eqnedit.php?latex=X#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://paperpile.com/c/jhIjL5/4wlb
https://paperpile.com/c/jhIjL5/4wlb
https://paperpile.com/c/jhIjL5/I01B
https://paperpile.com/c/jhIjL5/I01B
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Figure 1: a) Changes in ACE2 expression in the lungs of eight 3-month old mice and seven
24-month old mice after log1p transformation of the raw counts on the cells with non-zero ACE2
expression. The p-value was computed using a t-test. b) Changes in ACE2 expression as
determined by the fraction of ACE2 positive cells. The p-value was computed using a t-test. c) A
comparison of the naïve estimate of the expectation of log1p (red) to the Taylor approximation of
the expectation of log1p (blue). The code to produce the panels in the figure is available here.

The fraction of cells with nonzero expression of a gene has a useful statistical interpretation.
We leave it as an exercise for the reader to show that the the following estimator for the Poisson
rate is consistent:

.
Since is approximately equal to this expression when is small, this provides an interpretation
of the fraction of cells with at least one copy of a low-abundance gene as an estimate of the rate
parameter in a Poisson distribution.

Another mistake that we’ve found to be common in reporting ACE2 expression has to do with the
log transformation, frequently used as part of a normalization of counts. Counts are log
transformed for two reasons: the first is to stabilize the variance, as the log transform has the
property that it stabilizes the variance for random variables whose variance is quadratic in the
mean (Bartlett, 1947). The rationale of this step for single-cell RNA-seq is manifold: first when
performing PCA on the gene expression matrix to find a reduced-dimensional representation that
captures the variance, it is desirable that all genes contribute equally. The second rationale for the
log transform is that it converts multiplicative relative changes to additive differences. In the
context of PCA, this allows for interpreting the projection axes in terms of relative, rather than
absolute, abundances of genes.

A seemingly minor technical issue in log transforming counts is that zero counts cannot be
“logged”, as log(0) is undefined. To circumvent this problem, it is customary to add a
“pseudocount”, e.g. +1, to each gene count prior to log transforming the data. We denote this by
log1p (see units of Figure 1a), in accordance with nomenclature standard in scientific computing
(Liu, 1988). For a gene with an average of counts where is large, it is intuitive that the
average of the log1p transformed counts is approximately log( ). However, this is not true for

https://github.com/pachterlab/BP_2020_2/blob/master/notebooks/log1p.ipynb
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Clambda%7D%20%3D%20-%5Clog(1-f)#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://paperpile.com/c/jhIjL5/dsuH
https://paperpile.com/c/jhIjL5/t3Dm
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
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small . An understanding of the result of applying the log1p transform begins with the
observation that for a random variable X, is not, in general, equal to . For𝐸[𝑓(𝑋)]  𝑓(𝐸[𝑋])
example, if X is a Poisson random variable with parameter , it is not true that

. By Taylor approximation,𝐸[𝑙𝑜𝑔(1 + 𝑋)] =  𝑙𝑜𝑔(λ + 1)

,

.
This shows that for low-expressed genes, the average log1p expression differs considerably from
log( ) (see Figure 1c). Thus, while a 2-fold change for large translates to a log(2) difference
after log1p, that is not the case for small .

Discussion
In summary, while single-cell RNA-seq atlases offer detailed information about the
transcriptomic profiles of distinct cell types, their use to examine specific genes, as has been done
recently in the study of SARS-CoV-2 infection related genes, requires care. Methods should not
be used unless their limitations are understood. For example, while it doesn’t matter whether one
uses log(x+1) or log(1+x), the filtering and normalization applied to counts can affect
comparative estimates in non-intuitive ways. Moreover, there are subtle problems that arise when
working with small counts that transcend the elementary issues we have raised (Warton, 2018;
Lun, 2018). These matters are not theoretical; we leave the identification of published preprints
and papers that have ignored the issues we’ve raised, and hence reported misleading results, as
another exercise for the reader.

Methods
Code and data to reproduce all analysis in this paper can be found on the GitHub repository:
https://github.com/pachterlab/BP_2021_2.
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Chapter 4

ANALYSIS OF THE MOUSE PRIMARY MOTOR CORTEX

Preamble
Current single-cell RNA-sequencing processing produces matrices that aggregate counts
at the gene level. To date, atlas-scale isoform-level scRNAseq analysis is lacking
primarily because tools to generate isoform-level quantifications are lacking. I have
extended the kallisto | bustools workflow to process full-length single-cell
RNA-sequencing taking advantage of expectation maximization algorithm to
disambiguate ambiguous sequence alignments. I demonstrate a framework for inferring
spatially resolved isoform expression using the newly computed cell by isoform matrices,
along with data from two other single-cell RNA-sequencing technologies, and
demonstrate the application of this framework to develop the first ever spatially resolved
single-cell isoform atlas of the mouse primary motor cortex.

Summary
Full-length SMART-Seq1 single-cell RNA-seq can be used to measure gene expression at
isoform resolution, making possible the identification of isoform markers for cell types
and for an isoform atlas. Used in conjunction with spatial RNA capture and gene tagging
methods, spatially resolved cell type isoform expression can be inferred. In a
comprehensive analysis of 6,160 mouse primary motor cortex cells assayed with
SMART-Seq, 280,327 cells assayed with MERFISH2, and 94,162 cells assayed with 10x
Genomics3, we find examples of isoform specificity in cell types, including isoform shifts
between cell types that are masked in gene-level analysis as well as examples of
transcriptional regulation. Additionally, we show that isoform specificity helps to refine
cell types, and that a multi-platform analysis of single-cell transcriptomic data leveraging
multiple measurements provides a comprehensive atlas of transcription in the mouse
primary motor cortex that eclipses what is possible with any single technology.

Introduction
Transcriptional and post-transcriptional control of individual isoforms of genes is crucial
for neuronal differentiation4–8, and isoforms of genes have been shown to be specific to
cell types in mouse and human brains9–14. It is therefore not surprising that dysregulation
of splicing has been shown to be associated with several neurodevelopmental and
neuropsychiatric diseases6,15,16. As such, it is of interest to study gene expression in the
brain at single-cell and isoform resolution.
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Nevertheless, current single-cell studies aiming to characterize cell types in the brain via
single-cell RNA-seq (scRNA-seq) have relied mostly on gene-level analysis. This is, in
part, due to the nature of the data produced by the highest throughput single-cell methods.
Popular high-throughput assays such as Drop-seq 17, 10x Genomics’ Chromium 3, and
inDrops 18, produce 3’-end reads which are, in initial pre-processing, collated by gene to
produce per-cell gene counts. The SMART-Seq scRNA-seq method introduced in 201219

is a full-length scRNA-seq method, allowing for quantification of individual isoforms of
genes with the expectation-maximization algorithm20. However, such increased resolution
comes at the cost of throughput; SMART-Seq requires cells to be deposited in wells, thus
limiting the throughput of the assay. In addition, SMART-Seq requires more sequencing
per cell 21.

The tradeoffs are evident in analysis of scRNA-seq data from the primary motor cortex
(MOp) produced by the BRAIN Initiative Cell Census Network22. We examined 6,160
(filtered) SMART-Seq v4 cells and 94,162 (filtered) 10x Genomics Chromium (10xv3)
cells (Extended Data Fig. 1 and Figure 2a,b) and found that while 10xv3 and
SMART-Seq are equivalent in defining broad classes of cell types, 3’-end technology that
can assay more cells can identify some rare cell types that are missed at lower cell
coverage  (Extended Data Fig. 2a). Overall 56 clusters with gene markers could be
identified in the 10xv3 data but not in the SMART-Seq data while only 39 clusters with
gene markers could be identified in the SMART-Seq data and not the 10xv3 data, and this
differential is consistent with previously reported comparisons of 10x Genomics
Chromium and SMART-Seq clusters23 21. However, while SMART-Seq has lower
throughput than some other technologies, it has a significant advantage: by virtue of
probing transcripts across their full length, SMART-Seq makes possible isoform
quantification and the detection of isoform markers for cell types that cannot be detected
with 3’-end technologies (Extended Data Figs. 2b,c) . Moreover, the uniformity of read
coverage of SMART-Seq data 1 and its quantification with state-of-the-art tools 24 yields
higher sensitivity than other methods, which can make possible refined cell type
classification.
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Figure 1: Measuring RNA with multiple platforms. RNA is measured using gene
tagging techniques such as the 10x Chromium single-cell RNA-seq protocol, isoform
sequencing techniques such as SMART-Seq, and spatial RNA capture techniques such as
MERFISH. High cell-throughput gene tagging enables cell type identification with
marker genes and deep full-length isoform sequencing enables cell type marker
refinement with isoform markers. Spatial RNA capture coupled with gene tagging and
isoform sequencing enables spatially resolved cell type specific isoform markers. The
multimethod procedure for sampling RNA enables spatially resolved cell type specific
isoform inference that no single technology could achieve independently 51.

https://sciwheel.com/work/citation?ids=10076069&pre=&suf=&sa=0
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Figure 2: Isoform specificity in the absence of gene specificity. a) Overview of data
analyzed. The clustering method used by the BICCN consortium generates three
hierarchies of cells: classes, subclasses, and clusters. b) A t-SNE of 10 neighborhood
components of 6,160 SMART-Seq cells colored according to subclass. c) Example of a
gene with an isoform specific to the Glutamatergic class. The Oxr1-204 isoform
distribution in log1p(Transcripts per million (TPM)) across cells (left) painted on the
t-SNE of the cells. The cells belonging to the Glutamatergic class are circled. The violin
plots of the gene and isoform distributions show that the gene is not differential but the
isoform is (right). d) Example of a gene with an isoform specific to the L6b subclass. The
Snap25-202 isoform distribution across cells (left) painted on the t-SNE of the cells. The
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cells belonging to the L6b subclass are circled. The violin plots of the gene and isoform
distributions show that the gene is not differential but the isoform is (right). e) Example
of a gene with an isoform specific to the L6b Ror1_1 cluster. The Stxbp2-207 isoform
distribution in log1p(TPM) across cells (left) painted on the t-SNE of the cells. The cells
belonging to the  L6b Ror1_1 cluster are circled. The violin plots of the gene and isoform
distributions show that the gene is not differential but the isoform is (right).  A * indicates
statistically significant difference p<0.01 between the group and its complement. The
white circles within the violin plots represent the mean and the white bars represent + / -
one standard deviation. [Code a, Code b, Code c, Code d, Code e]

To take advantage of the complementary strengths of these different platforms, we
introduce an approach to scRNA-seq that links the SMART-seq resolved isoforms to the
10x Chromium defined cell types, and in addition merges this information with spatial
transcriptomic measurements obtained by MERFISH 25 (Figure 1). In addition to
revealing extensive isoform diversity and cell type specificity in the MOp, we find
evidence for previously missed transcriptionally distinct cell subtypes in the MOp. Our
results extend the notion of a single-cell database beyond a list of gene markers, and we
produce a gene-isoform-space single-cell atlas for the MOp using the 10xv3, SMART-seq
and MERFISH data together. Our methods are open-source, reproducible, easy-to-use
and constitute an effective workflow for leveraging full-length scRNA-seq data in
combination with data from other technologies.

Results
Isoforms markers for cell types
To identify isoform markers of cell types, we first sought to visualize our SMART-Seq
data using gene derived cluster labels from the BICCN analysis (see Methods). Rather
than layering cluster labels on cells mapped to 2-D with an unsupervised dimensionality
reduction technique such as t-SNE26 or UMAP27, we utilized a supervised learning
approach to project cells so that they are best separated according to BICCN consortium22

annotations using neighborhood component analysis (NCA). This method produces
meaningful representation of the global structure of the data (Figure 2b), without
overfitting (Supplementary Fig. 1a). Analysis of the projections revealed batch effect in
the 10xv3 data, which we addressed by restricting analysis to a single batch and minimal
evidence of batch effect in the MERFISH data (see Methods, Supplementary Fig. 2a,b).

Next, motivated by the discovery of genes exhibiting differential exon usage between
glutamatergic and GABAergic neurons in the primary visual cortex14, we performed a
differential analysis between these two classes of neurons. We searched for significant
shifts in isoform abundances in genes whose expression was stable across cell types (for
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details see Methods). We discovered 398 such isoform markers belonging to 310 genes
(Supplementary Table 1, [Code]). Figure 2c shows an example of such an isoform from
the Oxidative resistance 1 (Oxr1) gene which is known to be essential for protection
against oxidative stress-induced neurodegeneration 28,29. While we see no change in gene
expression of Oxr1 between these two neuron types, we find that among the 16 isoforms
of the gene, one of them, Oxr1-204, is highly expressed in glutamatergic neurons. The
Oxr1 gene undergoes an isoform shift in GABAergic neurons where the expression of the
Oxr1-204 isoform is significantly lower, suggesting distinct subcellular isoform
localization in the two neuron types 30. A gene-level analysis is blind to this isoform shift
(Figure 2c rightmost panel, top).

We hypothesized that there exists genes exhibiting cell type isoform specificity at all
levels of the MOp cell ontology. However, detection of such genes and their associated
isoforms requires meaningful cell type assignments and accurate isoform quantifications.
To assess the reliability of the SMART-Seq clusters produced by the BICCN31, we
examined the correlation in gene expression by cluster with an orthogonal single-cell
RNA-seq technology, the 10xv3 3’-end assay. 94,162 10xv3 cells, also derived from the
MOp, were clustered using the same method as the SMART-Seq cells (see Methods). The
clustering method generates three hierarchies of cells: classes, subclasses, and clusters.
The SMART-Seq data has 2 major classes (Glutamatergic, GABAergic), 18 subclasses
that subdivide the classes, and 62 clusters that subdivide the subclasses. The 10x data
similarly contains three hierarchies of cells: two major classes (Glutamatergic,
GABAergic), 21 subclasses, and 85 clusters. We found high correlation of gene
expression between the two assays at the subclass and cluster levels (Extended Data Fig.
3).

Next, we assessed the accuracy of  the SMART-Seq isoform quantification and its
concordance with 10xv3 quantifications of isoforms. Since not all isoforms can be
quantified from 10xv3 3’-end data, we examined only isoforms containing some unique
3’ UTR sequence. This allowed for a validation of our isoform quantifications with a
different technology (see Methods). To extract isoform quantifications from 10xv3 data
in cases where there was a unique 3’ sequence, we relied on transcript compatibility
counts32 produced by pseudoalignment with kallisto24. We were able to validate the
SMART-Seq isoform shift predictions at both the subclass and cluster levels (Extended
Data Fig. 4). The isoform abundance correlations are slightly lower than those of gene
abundance estimates (Extended Data Fig. 3), but sufficiently accurate to identify
significant isoform shifts, consistent with benchmarks showing that isoforms can be
quantified accurately from full-length bulk RNA-seq33.
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Having validated the cluster assignments and isoform abundance estimates, we tested for
isoform switches for 16 cell subclasses excluding Low Quality cells (example in Figure
2d), and then for 48 distinct clusters for subclasses that have more than one cluster
(example in Figure 2e) and more than 5 cells per cluster; see Methods. At the higher level
of 16 cell subclasses, we found a total of 654 isoforms from 550 genes within the
glutamatergic class and 381 isoforms from 332 genes within the GABAergic class
exhibiting isoform shifts among the 16 cell subclasses despite constant gene abundance
(Supplementary Table 2a,b, [Code a, Code b]). There are several intriguing examples of
isoform shifts at this level. For example, we find a shift in the Snap25-202 isoform,
whose expression has been specifically shown to be correlated with age and to
differentially regulate synaptic transmission and synaptic plasticity at central synapses
34,35. This isoform marks the L6b subclass Figure 2d. At the cluster level, we found 923
isoforms from 823 genes exhibiting isoform shifts among the 48 clusters passing filter
despite constant gene abundance (Supplementary Table 3, [Code]). One particularly
intriguing isoform that marks the L6b Ror1_ 1 cluster, a subset of cells in the L6b
subclass, is the Stxbp2-207 isoform whose gene Stxbp2 has been previously detected in
the subthalamic nucleus and the posterior hypothalamus 36.

Assaying both males and females allowed us to look at sex specific effects in all
subclasses except for the L5 IT which was excluded due to batch effect (Supplementary
Fig. 4). In total these subclasses exhibited 418 sex specific isoforms averging 40 isoforms
per subclass (Supplementary Table 7, [Code]). Unlike a recent study 37 which found a
sex-specific cell type in the ventromedial nucleus of the hypothalamus, we do not find
any sex-specific subclasses. We did however find a handful of sex-differential autosomal
isoforms. Among these, we find that the Shank1-203 isoform is differential in Vip
neurons, a finding that refines previous data showing that Shank1, which has been shown
to localize in Purkinje cells in the cortex 38, is a sex specific gene who’s expression is
regulated by sex hormones 39.

We also looked for instances where clusters could be refined according to isoform
expression. After re-clustering each 10xv3 derived cluster using SMART-seq isoform
quantifications (see Methods), we found 12 clusters can be split by isoforms. Examining
the L6 CT Grp_1 cluster we find that the average effect size for differential isoforms that
split the cluster into two sub clusters is higher than that for genes (Extended Data Fig. 5).
One isoform in particular, that splits the L6 CT Grp_1 cluster, is a protein coding isoform
of the Amyloid Precursor Protein App. Dysregulation of splicing for isoforms of App
have been found to be associated with disease pathogenesis in Alzheimer disease models
40. Our findings show that isoform level expression can help refine cell types in the mouse
primary motor cortex beyond what is possible only with gene-level expression estimates.
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Figure 3: Isoform atlas. Spatial isoform atlas for the MOp. The scatter plots in the
leftmost column show the location of the cells (black points) in the subclass (row) within
a single representative slice of the mouse primary motor cortex as assayed by MERFISH.
To the right of the scatter plot, each column corresponds to a marker gene in the
MERFISH dataset for the subclass (row) where one of the marker genes’  underlying
isoform (labeled on the diagonal)  was differential in the SMART-Seq dataset for that
subclass. This spatial isoform inference links isoform expression from the SMART-Seq
data with physical location of the cells expressing that isoform from the MERFISH data.
The normalized gene expression values are plotted for each subclass-gene pair in TPM
units. The isoform that is differential for each subclass is displayed in bold on the
corresponding violin plot. The white circles within the violin plots represent the mean
and the white bars represent + / - one standard deviation. [Code]

Along with isoforms detectable as differential between cell types without change in gene
abundance, we identified isoform markers for the classes, subclasses, and clusters in the
MOp ontology that are differential regardless of gene expression. We found 5,658
isoforms belonging to 3,132 genes that are specific to the glutamatergic and GABAergic
classes (Figure 3, Supplementary Table 4, [Code]), 7,588 isoforms belonging to 4,171
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genes within the glutamatergic class and 4,359 isoforms belonging to 2,614 genes within
the GABAergic class  exhibiting isoform shifts specific to subclasses (Supplementary
Table 5a,b, [Code a, Code b]), and for the 48 clusters passing filter 3,171 isoforms
belonging to 2,461 genes exhibiting isoform shifts in clusters (Supplementary Table 6,
[Code]). Together, these form an isoform catalog for the MOp (Supplementary Fig. 5a,b).

Figure 4: Spatial extrapolation of isoform expression. a) Expression of the Pvalb-201
isoform and b) expression of the Pvalb-202 isoform in log1p(TPM) units for each cell
painted on the NCA-tSNE, as assayed by SMART-Seq. c) Spatial expression of the
Pvalb-201 isoform across 64 slices from the MOp, as extrapolated from probes for the
Pvalb gene assayed by MERFISH. Each MERFISH cell is colored by its expression of
Pvalb in log1p(TPM) units. [Code a, Code b, Code c]

Spatial isoform specificity
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While spatial single-cell RNA-seq methods are not currently well-suited to directly
probing isoforms of genes due to the number and lengths of probes required, spatial
analysis at the gene-level can be refined to yield isoform-level results by extrapolating
SMART-Seq isoform quantifications (Figure 3, Supplementary Fig. 5c).

Figure 4a,b shows an example of a gene, Pvalb, where the SMART-Seq quantifications
reveal that of the two isoforms of the gene, only one, Pvalb-201, is expressed.  Moreover
it can be seen to be specific to the Pvalb cell subclass (Figure 3). In an examination of
MERFISH spatial single-cell RNA-seq, derived from 64 slices from the MOp region
(Extended Data Fig. 6a), the Pvalb subclass, of which the Pvalb gene is a marker, can be
seen to be dispersed throughout the motor cortex spanning all layers (Extended Data Fig.
6b). While the MERFISH probes only measure abundance of Pvalb at the gene level
(Figure 4c), extrapolation from the SMART-Seq quantifications can be used to refine the
MERFISH result to reveal the spatial expression pattern of the Pvalb-201 isoform.

This extrapolation can be done systematically. To build a spatial isoform atlas of the
MOp, we identified differentially expressed genes from the MERFISH data
(Supplementary Table 8a,b, [Code a, Code b]) and for each of them checked whether
there were SMART-seq isoform markers (from Supplementary Table 5a,b, [Code a, Code
b]). An example of the result is shown in Figure 3, which displays one gene for each
cluster, together with the isoform label specific to that cluster and the spatial location of
the specific cluster within a slice of the mouse primary motor cortex.

We hypothesized that the mouse primary motor cortex may exhibit changes in isoform
expression associated with physical location of cells 41,42. To determine whether there are
isoforms that increase or decrease in expression along the depth of the motor cortex we
first estimated the position of the various layers in the Glutamatergic subclasses
(Methods, Extended Data Fig. 7a) and then performed weighted least squares regression
on the centroids of the subclasses and inferred isoform expression from the SMART-Seq
data. While we find many isoforms that exhibit a significant change in expression across
the depth (Extended Data Fig. 7b,c, Supplementary Table 8c, [Code]), none of them that
pass our filter exhibit a monotonic change with respect to the mean. This suggests that
non-linear models may be better suited to study isoform variability across the depth of the
mouse primary motor cortex.

While direct measurement of isoform abundance may be possible with spatial RNA-seq
technologies such as SEQFISH37 or MERFISH2, such resolution would require dozens of
probes to be assayed per gene (Supplementary Fig. 6), each of which is typically tens of
base-pairs in length. Thus, while isoforms can in theory be detected in cases where they
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contain large stretches of unique sequence, the technology is currently prohibitive for
assaying most isoforms, making the extrapolation procedure described here of practical
relevance (Supplementary Table 9, [Source]).

Splicing markers
Isoform quantification of RNA-seq can be used to distinguish shifts in expression
between transcripts that share transcriptional start sites, and shifts due to the use of
distinct transcription start sites. Investigating such differences can, in principle, shed light
on transcriptional versus post-transcriptional regulation of detected isoform shifts43,44.
Extended Data Fig. 8 shows an example of a gene, Ptk2b (Extended Data Fig. 8a), in the
Glutamatergic class that exhibits differential expression of transcripts between start sites
(Extended Data Fig. 8b). This gene is known to be associated with Alzheimer’s disease
and its transcript usage is mediated by genetic variation 45. Interestingly, we find that
isoforms sharing the preferential start site exhibit no discernible difference in expression
(Extended Data Fig. 8c), suggesting the observed differences result from cell-type
specific transcriptional, rather than post-transcriptional regulation. We identified 1,971
isoforms from 128 groups of transcription start sites where the transcription start sites are
preferentially expressed in either GABAergic, glutamatergic and Non-Neuronal classes,
even when the expression of isoforms contained within the transcription start site is
constant (Supplementary Table 10a,c,d, [Code a, Code c, Code d]). Such cases are likely
instances where the transcription start site shifts between cell types are a result of
differential splicing, i.e. the result of a post-transcriptional program.

We also looked at post-transcriptional programs (Supplementary Table 10b, [Code],
instances where transcription start sites are not differential between classes but where
there are isoform shifts within transcription start sites between classes. We find 31
isoforms from 28 transcription start site groups that are differential between classes when
the transcription start site group is not. One such example is expression of isoforms
Rtn1-201 and Rtn1-203 which share the same transcription start site in the Rtn1 gene. The
glutamatergic class exhibits preferential expression of Rtn1-201, previously shown to be
expressed in grey matter46, whereas the GABAergic class does not (Extended Data Fig.
9). These cases are likely instances where isoform shifts between cell types are a result of
differential splicing, i.e. the result of a post-transcriptional program.

Discussion
Our mouse primary motor cortex spatially resolved isoform atlas expands on previously
identified gene markers in the MOp, greatly expanding the catalog to isoform markers for
cell types characterized by the BICCN 22. Our approach leverages distinct strengths of
different technologies, utilizing the isoform resolution of SMART-seq in conjunction with
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the complementary cell depth obtainable with 10X Genomics’ technology and the spatial
resolution produced with MERFISH to spatially place cell-type isoform markers. This
validated approach, in which we leverage technologies that are broadly consistent
(Extended Data Fig. 10) yet complementary in their strengths, is important because with
additional morphological data, isoform specificity could  help to explain morphological
differences. For example Pvalb cells observed in hippocampal Pvalb interneurons cannot
be distinguished morphologically based only on gene level analysis 9,47,48.

Spatial isoform markers also enable more targeted assays for "automatic expression
histology", for example using new genetic tools such as recently developed paired guide
RNAs for alternative exon removal (pgFARM) 49. Finally, the next step after assembling a
single-cell isoform atlas is to probe the functional significance of cell type isoform
specificity. Recently developed experimental methods for this purpose, e.g. isoforms
screens49, are a promising direction and will be key to understanding the significance of
the vast isoform diversity in the brain50.

Methods

All of the results and figures in the paper are reproducible starting with the raw reads
using scripts and code downloadable from
https://github.com/pachterlab/BYVSTZP_2020. The repository makes the method
choices completely transparent, including all parameters and thresholds used. All
p-values were corrected using Bonferroni correction and all error bars denote +/- one
standard deviation from the mean.

Tissue collection and isolation of cells

Mouse breeding and husbandry: All procedures were carried out in accordance with
Institutional Animal Care and Use Committee protocols at the Allen Institute for Brain
Science. Mice were provided food and water ad libitum and were maintained on a regular
12-h day/night cycle at no more than five adult animals per cage. For this study, we
enriched for neurons by using Snap25-IRES2-Cre mice52 (MGI:J:220523) crossed to
Ai1453 (MGI: J:220523), which were maintained on the C57BL/6J background
(RRID:IMSR_JAX:000664). Animals were euthanized at 53−59 days of postnatal age.
Tissue was collected from both males and females (scRNA SMART, scRNA 10x v3).

Single-cell isolation: We isolated single cells by adapting previously described
procedures14,31. The brain was dissected, submerged in ACSF31, embedded in 2% agarose,
and sliced into 250-μm (SMART-Seq) or 350-μm (10x Genomics) coronal sections on a
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compresstome (Precisionary Instruments). The Allen Mouse Brain Common Coordinate
Framework version 3 (CCFv3, RRID:SCR_002978)54 ontology was used to define MOp
for dissections.

For SMART-Seq, MOp was microdissected from the slices and dissociated into single
cells with 1 mg/ml pronase (Sigma P6911-1G) and processed as previously described 31.
For 10x Genomics, tissue pieces were digested with 30 U/ml papain (Worthington PAP2)
in ACSF for 30 mins at 30 °C. Enzymatic digestion was quenched by exchanging the
papain solution three times with quenching buffer (ACSF with 1% FBS and 0.2% BSA).
The tissue pieces in the quenching buffer were triturated through a fire-polished pipette
with 600-µm diameter opening approximately 20 times. The solution was allowed to
settle and supernatant containing single cells was transferred to a new tube. Fresh
quenching buffer was added to the settled tissue pieces, and trituration and supernatant
transfer were repeated using 300-µm and 150-µm fire polished pipettes. The single cell
suspension was passed through a 70-µm filter into a 15-ml conical tube with 500 ul of
high BSA buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help cushion the
cells during centrifugation at 100xg in a swinging bucket centrifuge for 10 minutes. The
supernatant was discarded, and the cell pellet was resuspended in quenching buffer.

All cells were collected by fluorescence-activated cell sorting (FACS, BD Aria II, RRID:
SCR_018091) using a 130-μm nozzle. Cells were prepared for sorting by passing the
suspension through a 70-µm filter and adding DAPI (to the final concentration of 2
ng/ml). Sorting strategy was as previously described31, with most cells collected using the
tdTomato-positive label. For SMART-Seq, single cells were sorted into individual wells
of 8-well PCR strips containing lysis buffer from the SMART-Seq v4 Ultra Low Input
RNA Kit for Sequencing (Takara 634894) with RNase inhibitor (0.17 U/μl), immediately
frozen on dry ice, and stored at −80 °C. For 10x Genomics, 30,000 cells were sorted
within 10 minutes into a tube containing 500 µl of quenching buffer. Each aliquot of
30,000 sorted cells was gently layered on top of 200 µl of high BSA buffer and
immediately centrifuged at 230xg for 10 minutes in a swinging bucket centrifuge.
Supernatant was removed and 35 µl of buffer was left behind, in which the cell pellet was
resuspended. The cell concentration was quantified, and immediately loaded onto the 10x
Genomics Chromium controller.

Genomic library preparation and sequencing

For SMART-Seq library preparation, we performed the procedures with positive and
negative controls as previously described31. The SMART-Seq v4 (SSv4) Ultra Low Input
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RNA Kit for Sequencing (Takara Cat# 634894) was used to reverse transcribe poly(A)
RNA and amplify full-length cDNA. Samples were amplified for 18 cycles in 8-well
strips, in sets of 12–24 strips at a time. All samples proceeded through Nextera XT DNA
Library Preparation (Illumina Cat# FC-131-1096) using Nextera XT Index Kit V2
(Illumina Cat# FC-131-2001) and a custom index set (Integrated DNA Technologies).
Nextera XT DNA Library prep was performed according to manufacturer’s instructions,
with a modification to reduce the volumes of all reagents and cDNA input to 0.4x or 0.5x
of the original protocol.

For 10x v3 library preparation, we used the Chromium Single Cell 3’ Reagent Kit v3
(10x Genomics Cat# 1000075). We followed the manufacturer’s instructions for cell
capture, barcoding, reverse transcription, cDNA amplification, and library construction.
We targeted sequencing depth of 120,000 reads per cell.

Sequencing of SMART-Seq v4 libraries was performed as described previously31. Briefly,
libraries were sequenced on an Illumina HiSeq2500 platform (paired-end with read
lengths of 50 bp). 10x v3 libraries were sequenced on Illumina NovaSeq 6000
(RRID:SCR_016387).

Pre-processing single-cell RNA-seq data

The 6,295 SMART-Seq cells were processed using kallisto with the `kallisto pseudo`
command24. The 94,162 10x Genomics v3 cells were pre-processed with kallisto and
bustools55. Gene count matrices were made by using the --genecounts flag and TCC
matrices were made by omitting it. The mouse transcriptome reference used was
GRCm38.p3 (mm10) RefSeq annotation gff file retrieved from NCBI on 18 January 2016
(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/), for consistency with the
reference used by the BICCN consortium22.

The GTF and the GRCm38 genome fasta [Source to both], provided by the consortium,
were used to create a transcriptome fasta, transcripts to genes map [Source], and kallisto
index using kb ref -i index.idx, -g t2g.txt -f1 transcriptome.fa genome.fa genes.gtf. To
validate the SMART-Seq isoform quantifications we first examined the robustness of the
quantifications to gene annotation, and found an average correlation at the isoform level
of 0.965 between the BICCN derived quantifications we used in our analysis 22 and the
mouse GENCODE M25 derived quantifications (Supplementary Fig. 3). The GENCODE
M25 mouse transcriptome reference [Source] and the kallisto index was built using
kallisto index -i index.idx gencode.vM25.transcripts.fa.gz .
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Isoform and gene count matrices were generated for the Smart-seq2 data using the
kallisto pseudo command. Cluster assignments were associated with cells using cluster
labels generated by the BICCN consortium22. The labels are organized in a hierarchy of
three levels: classes, subclasses and clusters. The cluster labels for the cells can be
downloaded from https://github.com/pachterlab/BYVSTZP_2020.

Clustering and cell type assignment

Our analyses utilized SMART-seq cell labels produced by the BICCN 22. Briefly, the
assignment of cell types to the SMARTSeq cells was based on an extension of the cluster
merging algorithm in the scrattch.hicat package 31. The clustering method generates three
hierarchies of cells: classes, subsets of cells within classes called subclasses, and subsets
of cells within subclasses called clusters.
To build a common adjacency matrix incorporating samples from all the datasets, first a
subset of datasets was chosen (“reference datasets”).   The 10x v2 single cell dataset from
Allen (scRNA 10x v2 A) and 10x v3 single nucleus dataset from Broad (snRNA 10x v3
B) were used as references.

The key steps of the pipeline are as follows: 1. Perform single-dataset clustering, 2. select
anchor cells for each reference dataset, 3. select highly variable genes (HVG), 4. compute
K nearest neighbors (KNN), 5. compute the Jaccard similarity, 6. perform louvain
clustering, 7. merge clusters, 8. cluster iteratively, 9. compile and merge clusters.
For further details please see 22.

Normalization and filtering of SMART-Seq data

Isoform counts were first divided by the length of transcript to obtain abundance
estimates proportional to molecule copy numbers. Since reads can come from anywhere
in the transcriptome, it is likely that longer isoforms are enriched. Therefore normalizing
isoform abundances by length is crucial to accurately estimating mRNA copy number.
This has been shown in numerous studies on the accurate estimate of isoform abundance
56,57.

After normalizing by length, we then removed isoforms that had fewer than one count
and that were in fewer than one cell. We also removed genes and their corresponding
isoforms that had a dispersion of less than 0.001.

To generate the cell by gene matrix we summed the isoforms that correspond to the same
gene. Cells with less than 250 gene counts and with greater than 10% mitochondrial
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content were removed. Cells were normalized to transcripts per million (TPM) by
dividing the counts in each cell by the sum of the counts for that cell, then multiplying by
1,000,000. The count matrices were then transformed with log1p and the columns scaled
to unit variance and zero mean. The resulting gene and isoform matrix contained 6,160
cells and 19,190 genes corresponding to 69,172 isoforms.

Highly variable isoforms and genes were identified by first computing the dispersion for
each feature, and then binning all of the features into 20 bins. The dispersion for each
feature was normalized by subtracting the mean dispersion and dividing by the variance
of the dispersions within each bin. Then the top 5000 features were retained based on the
normalized dispersion. This was computed by using the scanpy.pp.highly_variable_genes
with n_top_genes = 5000, flavor=seurat, and n_bins=2058.

Normalization and filtering of 10xv3 data

To generate the cell by gene matrix we used ‘bustools count --genecounts’. The cell by
isoform matrix was generated using ‘bustools count’ and restricting to the equivalence
classes that contained only one isoform thus generating a cell by isoform matrix. Both
matrices were loaded into python using kb python. Cells with less than 250 gene counts
and with greater than 21.5% mitochondrial content were removed. Cells were normalized
to counts per million (CPM) by dividing the counts in each cell by the sum of the counts
for that cell, then multiplying by 1,000,000. The count matrices were then transformed
with log1p and the columns scaled to unit variance and zero mean. The resulting gene
matrix contained 94,162 cells and 24,575 genes. We removed the cells that were
identified as Low Quality by the BICCN consortium. We identified batch effect among
cells assayed on different dates so we restricted our analysis to only the cells assayed on
the same date and selected the date with the most number of cells (Supplementary Fig. 2).
Additionally we performed pairwise comparison of gene counts for each of the 4 10xv3
batches and found the Pearson correlation to be very high for all pairs, with a mean of
0.9979 indicating limited batch effect between batches assayed on the same date.

Highly variable isoforms and genes were identified by first computing the dispersion for
each feature, and then binning all of the features into 20 bins. The dispersion for each
feature was normalized by subtracting the mean dispersion and dividing by the variance
of the dispersions within each bin. Then the top 5000 features were retained based on the
normalized dispersion. This was computed by using the scanpy.pp.highly_variable_genes
with n_top_genes = 5000, flavor=seurat, and n_bins=2058.
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Dimensionality reduction and visualization

In order to visualize the SMART-Seq data with predefined cluster labels produced via a
joint analysis with many other data types we performed neighborhood component
analysis59 (NCA) on the full scaled log(TPM +1) matrix using the subcluster labels, to ten
components. t-distributed stochastic neighbor embedding (t-SNE)26 was then performed
on the 10 NCA components. NCA takes as input not just a collection of cells with their
associated abundances, but also cluster labels for those cells, and seeks to find a
projection that minimizes leave-one-out k-nearest neighbor error59. Moreover, t-SNE
applied to PCA (Supplementary Fig. 1b) scrambles the proximity of glutamatergic and
GABAergic cell types, while t-SNE of NCA appears to respect global structure of the
cells. While UMAP applied to PCA of the data (Supplementary Fig. 1c) appears to be
better than t-SNE in terms of preserving global structure, it still does not separate out the
cell types as well as NCA (Supplementary Fig. 1d). t-SNE was computed using
sklearn.manifold. t-SNE was generated with default parameters and random state 42.
Similarly uniform manifold approximation was performed on the 10 NCA components
and the 50 truncated SVD components. Uniform Manifold Approximation and Projection
(UMAP)27 was computed with the umap package with default parameters.

To ensure that NCA was not overfitting cells to their corresponding subclasses, we
randomly permuted all of the subclasses labels and reran the NCA to t-SNE
dimensionality reduction method. We observed uniform mixing of the permuted subclass
labels, indicating that NCA was not overfitting the cells to their corresponding
subclasses.

Sample Size

No explicit calculations were performed to determine sample size. We analyzed 6,160
mouse primary motor cortex cells assayed with SMART-Seq, 280,327 cells assayed with
MERFISH, and 94,162 cells assayed with 10x Genomics Chromium v3. We analyzed
both male and female mice to understand differences in gene and isoform expression. The
sample size for differential expression was set to be such that 90% of cells in a cluster
have a non-zero expression of the tested gene. The smallest cluster size contained 7 cells
with all cells having non-zero expression of the tested genes. We computed error bars for
all tests to ensure that sample sizes were sufficient.

Batch effects

After finding a meaningful projection that appears to respect global structure of the cells
we searched for possible sources of batch effect within the datasets. We found evidence
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of batch effect in the 10xv3 data by assay date (Supplementary Fig. 2a). To ensure that
our findings were not confounded by this batch effect we selected the set of cells from
only one assay date and picked the set with the largest number of cells and the one with
cells present in all clusters. We then looked at the MERFISH data and found minimal
evidence of batch effect across samples based on the distribution of batch labels across
clusters where the observed fraction of cells per batch in each cluster was almost exactly
the expected fraction of cells per batch assuming uniform mixing (Supplementary Fig.
2b).

In further examining the single 10xv3 batch we settled on, we noted a low correlation in
one case, the L5 IT subclass. The low correlation was also observed in a comparison
between SMART-Seq and MERFISH gene expression data (Extended Data Fig. 10a), and
10xv3 and MERFISH data (Extended Data Fig. 10b). We hypothesized that this low
correlation stems from a subclass specific sex effect within the L5 IT where those cells
differ drastically in their overall expression compared to other subclasses. The L5 IT
subclass contains seven clusters in the SMART-Seq data, four clusters in the 10xv3 data,
and four clusters in the MERFISH data.

To determine the source of the low correlation within the L5 IT between SMART-Seq,
10x, and MERFISH we looked at differential genes between male and female cells within
each subclass. We found that cells within the L5 IT of the 10x and SMART-Seq data
exhibited sex specfic segregation (Supplementary Fig. 4a,b). After performing
differential expression between male and female cells within all subclasses we found that
the L5 IT had the highest amount of uniquely differential genes (Supplementary Fig. 4c)
and that the SMART-Seq and 10x data had 37 common genes that were differentially
expressed (Supplementary Fig. 4d). The other subclasses, however, did not exhibit
sex-based segregation. Without being able to rule out that the low correlation for L5 IT
cells across the technologies was due to confounding between batch and sex in the
dataset, we decided to excluded the subclass from our analyses.

Measuring number of isoforms per gene

We parsed the transcripts to genes map, grouping together transcripts that had the same
end site that were in the same gene. We then counted the number of these end site sets
within a gene and plotted them against the number of isoforms within that gene.

Cross-technology cluster correlation

The correlation between 10xv3-Smart-seq, 10xv3-MERFISH, and
SMART-Seq-MERFISH, was performed at the gene level and between cells grouped by
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subclasses for all three pairs of technologies, and at the isoform level and between cells
grouped by cluster for only the 10xv3 and SMART-Seq. For each pair we started with
two raw matrices and restricted to the set of genes/isoforms common to the two. Then we
normalized the counts for each matrix per cell to one million, log1p transformed the
entire matrix, and scaled the features to zero mean and unit variance. Within each cluster
we restricted the features to those present in at least 50% of the cells. We then found the
mean cell within the respective clusters in the two matrices, and computed the Pearson
correlation between them. These methods were implemented for Extended Data Figs. 3,
4, and 10. In terms of accuracy of different technologies, we found good agreement
between quantifications from SMART-Seq, 10xv3 and MERFISH (Extended Data Fig.
10).

Comparisons of different scRNA-seq technologies have tended to focus on throughput,
cost, and gene-level accuracy60 in a winner-takes-all competition. Our results shed some
light on the matter: it has been previously shown that quantification of isoform
abundance is necessary for accurate gene-level estimates61, and we found that it matters
in practice (Supplementary Fig. 7, Supplementary Table 11a,b, [Code a, Code b] and
Supplementary Table 12a,b, [Code a, Code b]). This highlights the importance of proper
isoform quantification of SMART-Seq data, even for gene-centric analysis 56,60–63, when
used in conjunction with 10x Genomics and MERFISH data.

Isoform atlas

For each level of clustering: class, subclass, cluster, we performed a t-test for each
gene/isoform between the cluster and its complement, on the log1p counts. To identify
isoform enrichment that is masked at a gene level analysis, we looked for isoforms that
were upregulated by checking that the gene containing that isoform was not significantly
expressed in that cluster, relative to the complement of that cluster. Isoforms that were
expressed in less than 90% of the cells in that cluster were ignored. All t-tests used a
significance level of 0.01 and all p-values were corrected for multiple testing using
Bonferroni correction.

MERFISH isoform extrapolation

First we identified the genes that mark the specific subclass within the MERFISH data.
The Pvalb gene is a marker for the Pvalb subclass. Then we performed differential
analysis on the SMART-Seq data at the isoform level on the subclasses to identify the
isoforms that mark each of the SMART-Seq subclasses. Only one of the two isoforms for
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Pvalb marked the Pvalb cluster. This allowed us to extrapolate the fact that the specific
Pvalb isoform is being detected in the MERFISH data.

Additionally, we identified all of the genes that mark the specific subclasses in the
MERFISH data through differential analysis and checked if their underlying isoforms
were also differentially expressed. We then noted which isoforms were differentially
expressed for the spatial isoform atlas.

Weighted least squares regression

First we selected a representative slice of the MOp. Then we found the outer hull of the
MOp by using scipy.spatial.ConvexHull. We selected the points that defined the upper
boundary of the MOp then performed linear regression to fit a line to those points using
sklearn.linear_model.LinearRegression(). For each subclass in the Glutamatergic class of
cells we identified the centroid of the subclass and determined the perpendicular distance
of the centroid to the MOp boundary line. We normalized the set of distances by dividing
by the centroid with the largest distance to the boundary.

We look at the isoforms for which all of the subclasses had non-zero expression in at least
90% of cells.For each isoform we performed weighted least squares for all of the
subclasses with the weights equal to the variance of isoform expression for each subclass.
We used the statsmodel.api.sm.WLS function. All WLS tests used a significance level of
0.01 and all F-score p-values were corrected for multiple testing using Bonferroni
correction. Monotonicity was checked for isoforms with an absolute value slope greater
than 1.5.

Grouping transcripts by start site

Using the transcripts to genes map and the filtered isoform matrix generated before, we
grouped isoforms by their transcription start site into TSS classes and summed the raw
counts for the isoforms within each TSS class to create a cell x TSS matrix. Differential
analysis was then performed in exactly the same way as above. For each cluster and each
TSS/isoform, a t-test was performed between the cells in that cluster and the cells in the
complement of that cluster. All statistical tests used a significance level of 0.01 and all
p-values were corrected for multiple testing using Bonferroni correction.
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Comparison of naïve and EM quantification

Naïve gene count matrices were constructed from the SMART-Seq data by summing the
counts corresponding to a single gene. Gene count matrices quantified by the EM
algorithm and normalized appropriately were made with SMART-Seq by first dividing
isoform abundances by the length of their transcripts, and then summing the abundances
of isoforms by gene. Differential analysis was performed independently on these two
gene count matrices and the resultant differential genes were compared. Differential
expression was then performed on all of the genes for both the EM and naïve gene
quantifications. All statistical tests used a significance level of 0.01 and all p-values were
corrected for multiple testing using Bonferroni correction.

Software versions

Anndata 0.7.1
bustools 0.39.4
awk (GNU awk) 4.1.4
grep (GNU grep) 3.1
kallisto 0.46.1
kb_python 0.24.4
Matplotlib 3.0.3
Numpy 1.18.1
Pandas 0.25.3
Scanpy 1.4.5.post3
Scipy 1.4.1
sed (GNU sed) 4.4
sklearn 0.22.1
statsmodels 0.12.1
tar (GNU tar) 1.29
umap 0.3.10
Methods References

Data Availability

The single-cell RNA-seq data used in this study was generated as part of the BICCN
consortium22. The 10xv3 and SMART-Seq data can be downloaded from
http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/scell/. The MERFISH data is
available at https://caltech.box.com/shared/static/dzqt6ryytmjbgyai356s1z0phtnsbaol.gz.

https://github.com/theislab/anndata
https://github.com/BUStools/bustools/
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/grep/manual/grep.html
https://github.com/pachterlab/kallisto
https://github.com/pachterlab/kb_python
https://github.com/matplotlib/matplotlib
https://github.com/numpy/numpy
https://github.com/pandas-dev/pandas
https://github.com/theislab/scanpy
https://github.com/scipy/scipy
https://www.gnu.org/software/sed/
https://github.com/scikit-learn/scikit-learn
https://github.com/statsmodels/statsmodels
https://www.gnu.org/software/tar/
https://github.com/lmcinnes/umap
https://sciwheel.com/work/citation?ids=8332908&pre=&suf=&sa=0
http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/scell/
https://caltech.box.com/shared/static/dzqt6ryytmjbgyai356s1z0phtnsbaol.gz
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All cell annotations and cluster labels are available at
https://github.com/pachterlab/BYVSTZP_2020/tree/master/reference.

Software Availability

The software used to generate the results and figures of the paper is available at
https://github.com/pachterlab/BYVSTZP_2020.
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Supplementary Material

Extended Data Figure 1: 10xv3 neighborhood component analysis. Neighborhood
component analysis (NCA) to 10 dimensions followed by t-distributed stochastic
neighbor embedding (t-SNE) of 26,845 10xv3 cells from the mouse primary motor cortex
annotated with cell subclass assignments. The number of cells in each subclass is
displayed next to the subclass label. [Code]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/10xv3/final-10x_tsne.ipynb
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Extended Data Figure 2: Cell type identification and isoform summary statistics. a)
Comparison of subclass identification for 10xv3 and SMART-Seq. Each technology
identified subclasses separately, but with the same method. 56 clusters with gene markers
were identified in the 10xv3 data but not in the SMART-Seq data while 39 clusters with
gene markers were identified in the SMART-Seq data and not the Chromium data. b) The
distribution of the number of isoforms per gene within each of 18 subclasses, computed
from the top 998 most highly expressed genes in the SMART-Seq dataset. The number
associated with each class indicates the fraction of genes for which there are more than
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one isoform. c) Extent of isoform diversity in groups of transcripts sharing a 3’ end. Each
point displays the density of the number of groups (y-axis) containing a given number of
isoforms (x-axis) for a single gene. Points along the line y = x correspond to genes where
all transcripts contained within the gene have unique 3’ ends. [Code a, Code b, Code c]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_identified_clusters_10x_smartseq.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/reference/final-isoforms_per_gene.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/reference/final-end_sites.ipynb
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Extended Data Figure 3: Gene level subclass validation with 10xv3 and
SMART-Seq. a) Pearson correlation by subclass of the mean gene expression in 10xv3
and the mean gene expression in SMART-Seq, against the size of the subclass, for genes
that are expressed in at least 50% of cells in that subclass.  b) Scatter plot by subclass of
the mean gene expression in 10xv3 vs the mean gene expression in SMART-Seq for
genes that are expressed in at least 50% of cells in that subclass. The subclass sizes and
Pearson correlation values are also reported. c) Pearson correlation for common clusters
in the 10xv3 and SMART-seq datasets, computed for each cluster with respect to genes
expressed in at least 50% of cells of the cluster. d) Scatter plot by cluster of the mean
gene expression in 10xv3 vs the mean gene expression in SMART-Seq, for genes that are
expressed in at least 50% of cells. The cluster sizes and Pearson correlation values are
also reported. [Code a, Code b, Code c, Code d]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_gene.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_gene.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_gene.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_gene.ipynb
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Extended Data Figure 4: Isoform level subclass validation with 10xv3 and
SMART-Seq. a) Pearson correlation by subclass of the mean isoform expression in
10xv3 and the mean isoform expression in SMART-Seq, against the size of the subclass,
for isoforms that are expressed in at least 50% of cells in that subclass. b) Scatter plot by
subclass of the mean isoform expression in 10xv3 vs the mean isoform expression in
SMART-Seq, for isoforms that are expressed in at least 50% of cells in that subclass. The
subclass sizes and Pearson correlation values are also reported. c) Pearson correlation by
cluster of the mean isoform expression in 10xv3 and the mean isoform expression in
SMART-Seq, against the size of the cluster, for isoforms that are expressed in at least
50% of cells in that cluster for clusters that are common to both the SMART-Seq and 10x
datasets. d) Scatter plot by cluster of the mean isoform expression in 10xv3 vs the mean
isoform expression in SMART-Seq for isoforms that are expressed in at least 50% of cells
in that cluster. The cluster sizes and Pearson correlation values are also reported. [Code a,
Code b, Code c, Code d]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_isoform.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_isoform.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_isoform.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_smartseq_10x_isoform.ipynb
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Extended Data Figure 5: Splitting clusters with k-means clustering on isoforms. a)
Effect sizes for isoforms that split the L6 CT Grp_1 cluster into two parts is higher on
average than that for genes. b) The App-205 isoform splits the L6 CT Grp_1 cluster into
two parts where one part has a higher expression of the isoform whereas both halves have
similar App gene expression. The white circles within the violin plots represent the mean
and the white bars represent + / - one standard deviation. c) Each point is a cell and is
painted by the log1p(TPM) expression of the App gene (left) and App-205 isoform
(middle). K-means clustering splits the L6 CT Grp_1 cluster into two distinct halves
marked by expression of App-205. The white circles within the violin plots represent the
mean and the white bars represent + / - one standard deviation. [Code a, Code b, Code c]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-split_cluster_in_two.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-split_cluster_in_two.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-split_cluster_in_two.ipynb
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Extended Data Figure 6: Spatial localization of cell types in the mouse primary
motor cortex. a) The location of the mouse primary motor cortex, outlined in pink and
pointed to by a black arrow. The sagittal view (left) and coronal view (right) are shown.
Image credit: Allen Institute. b) Spatial location of cells in all subclasses across 64 slices
from the MOp assayed with MERFISH, the Pvalb cells are represented by a black star.
[Source a, Code b]

http://atlas.brain-map.org/atlas?atlas=1&structure=985#atlas=1&structure=985&resolution=15.51&x=4871.742983217592&y=3792.104311342592&zoom=-3&plate=100960324
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/merfish/final-merfish_subclass_loc.ipynb
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Extended Data Figure 7: Analysis of isoform expression gradients. a) A
representative slice of the mouse primary motor cortex, as assayed by MERFISH, where
each dot indicates the position of a cell from the corresponding subclass (black). The red
point indicates the position of the centroid of those cells within the colored subclass with
a line connecting the centroid to the boundary of the brain slice; the distance from the
centroid to the slice boundary is indicated by the red line. b) Volcano plot of the set of
isoforms found to be differentially expressed across the depth of the mouse primary
motor cortex found using weighted least squares regression. The isoforms with a
bonferroni corrected p-value less than 0.01 and regression slope greater than 1.5 are
colored red. c) An example of an isoform that is colored red in plot (b). The expression of
Tubb2a-201 appears to increase across the depth of the motor cortex on average. [Code a,
Code b, Code c]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/merfish/final-merfish_subclass_regression.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/merfish/final-merfish_subclass_regression.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/merfish/final-merfish_subclass_regression.ipynb
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Extended Data Figure 8: Isoform shifts reflecting transcriptional changes. a) The
eight isoforms of the Ptk2b gene. The 1st and 3rd isoforms from the top have the same
transcription start site at the 5’ end of the transcript.  b) Expression patterns of groups of
transcript sharing the same transcript start site (TSS) from the protein tyrosine kinase 2
(Ptk2b) gene. c) Expression patterns of isoforms within TSS groups from the Ptk2b gene.
The white circles within the violin plots represent the mean and the white bars represent
+ / - one standard deviation. [Source Pkt2b, Code b, Code c]

https://uswest.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000059456;r=14:66153257-66281052
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/differential_expression/tss/final-tss_DE.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/differential_expression/tss/final-tss_DE.ipynb
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Extended Data Figure 9: Isoform shifts reflecting post-transcriptional changes. a)
The six isoforms of the Rtn1 gene. The 3rd and 4th isoforms from the top have the same
transcription start site at the 5’ end of the transcript. b) Expression patterns of groups of
transcript sharing the same TSS from the reticulon 1 (Rtn1) gene. c) Expression patterns
of isoforms within TSS groups from the Rtn1 gene. The white circles within the violin
plots represent the mean and the white bars represent + / - one standard deviation.
[Source a, Code b, Code c]

https://uswest.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000021087;r=12:72211752-72409054
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/differential_expression/tss/final-tss_DE-POST.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/differential_expression/tss/final-tss_DE-POST.ipynb
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Extended Data Figure 10: Gene level subclass validation with SMART-Seq, 10xv3,
and MERFISH. a) Pearson correlation by subclass of the mean gene expression in
MERFISH and the mean gene expression in SMART-Seq, against the size of the subclass,
for all 254 genes in the MERFISH data . b) Pearson correlation by subclass of the mean
gene expression in MERFISH and the mean gene expression in 10xv3, against the size of
the subclass, for all 254 genes in the MERFISH data. c) Comparison of gene correlations
by cell type between 10xv3 and MERFISH, and SMART-Seq and MERFISH computed
using the 254 genes assayed in the MERFISH dataset. [Code a, Code b, Code c]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_merfish_smartseq_gene_subclass.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-cmp_merfish_v_10x.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/assay_comparison/final-merfish_v_all_correlation.ipynb
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Supplementary Figure 1: a) NCA on the scaled log1p normalized SMART-Seq gene
matrix with the subclass labels permuted randomly to ten components, followed by
t-SNE to dimension two. The lack of separation of cells by label demonstrates that the
NCA procedure is not overfitting the data. b) Truncated singular value decomposition
(TSVD) on the scaled log1p normalized SMART-Seq gene matrix to 50 components
followed by t-SNE to two dimensions. The numbers next to each subclass label indicate
the number of cells in the subclass. c) TSVD on the scaled log1p normalized
SMART-Seq gene matrix to 50 components followed by uniform manifold approximation
and projection (UMAP) to two dimensions. The numbers next to each subclass label
indicate the number of cells in the subclass. d) Ten components of the NCA on the scaled
log1p normalized SMART-Seq gene matrix followed by UMAP to two dimensions. The
numbers next to each subclass label indicate the number of cells in the subclass. [Code a,
Code b, Code c, Code d]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-NCA_validation.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-basic_plots.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-basic_plots.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-basic_plots.ipynb


171

Supplementary Figure 2: a) Fraction of cells per cluster in the 10xv3 dataset originating
from a specific processing date. 24,348 male cells were assayed on 11/29/2018, 32,145
female cells were assayed on 12/7/2018, and 18,140 male cells and 15,398 female cells
were assayed on 4/26/2019. The accompanying TSVD to 50 components followed by
t-SNE to two dimensions of the 10xv3 data shows each cell painted by the date it was
assayed. The separation by date indicates a strong batch effect by date. b) t-SNE to two
components of the MERFISH dataset where each cell is painted by the sample it
originated from, alongside the fraction of cells per cluster in the MERFISH dataset
originating from a specific sample. [Code a, Code b]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/10xv3/final-sex_10x.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/merfish/final-merfish_tsne.ipynb
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Supplementary Figure 3: Comparison of isoform quantifications obtained with respect
to the Gencode M25 and BICCN annotations. The average Pearson correlation across
107,639 isoforms was 0.965. Code

Supplementary Figure 4: a) TSVD followed by t-SNE of all of the 10xv3 data. The
clusters segregate by sex. The inset graph shows NCA followed by t-SNE on a subset of
the 10xv3 data. The subset graph is showing only the cells assayed on 4/26/2019. The
clusters do not appear to segregate by sex. b) NCA followed by t-SNE of the
SMART-Seq dataset. Each cell is painted by the sex of the animal it originated from. The

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/reference/final-compare_gencode_biccn.ipynb
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L5 IT subclass is enclosed with a dotted red ellipse. c) Upset plot showing the number of
isoforms that are unique and shared between subclasses after differential expression
based on sex within each subclass for the SMART-Seq dataset. d) Venn diagram of the
number of differential genes shared between the SMART-Seq and 10xv3 quantifications
for the L5 IT subclass. [Code a (subset), Code b, Code c, Code d]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/10xv3/final-sex_10x.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/10xv3/final-10x_tsne.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-sex_smartseq.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/differential_expression/subclass/final-sex_smartseq_gene_subclass_DE.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/differential_expression/subclass/final-sex_smartseq_gene_subclass_DE.ipynb
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Supplementary Figure 5: a) A sample from an isoform atlas displaying isoform markers
differential with respect to subclasses. Each row corresponds to one subclass, and each
column corresponds to one isoform. SMART-Seq isoform abundance estimates are in
TPM units, and each column is scaled so that the maximum TPM is 4 times the mean of
the isoform specific for that row’s cluster. The white circles within the violin plots
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represent the mean and the white bars represent + / - one standard deviation. b) A sample
from an isoform atlas displaying isoform markers differential with respect to subclasses.
Each row corresponds to one subclass, and each column corresponds to one isoform.
SMART-Seq isoform abundance estimates are in TPM units, and each row is scaled by
the sum of the mean expressions of each isoform for all cells in that subclass. c) A sample
from a spatial-isoform atlas inferring spatial isoform markers for cell types with known
spatial locations and known gene markers. Each row corresponds to one subclass, and
each column corresponds to one gene with the inferred differential isoform from that
gene, determined by the SMART-Seq data, along the diagonal. SMART-Seq isoform
abundance estimates are in TPM units, and each row is scaled by the sum of the mean
expressions of each gene for all cells in that subclass. [Code a, Code b, Code c]

Supplementary Figure 6: The distribution of the number of isoforms per gene for all of
the genes in the MERFISH dataset. 88% of genes in the MERFISH dataset have more
than one isoform. Code

Supplementary Figure 7: a) Distribution of read depth per SMART-seq cell showing
sufficient depth for accurate quantification with the expectation-maximization (EM)

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/final-spatial_isoform_atlas.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/final-spatial_isoform_atlas.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/final-spatial_isoform_atlas.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/merfish/final-merfish.ipynb
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algorithm. b) Comparison of two quantifications approaches: EM gene quantification
where isoform abundances are estimated, and then added up to obtain a gene abundance
estimate, versus naive quantification in which read counts are collated by gene locus (*
indicates statistically significant difference p<0.01). In this case naïve quantification
introduces a possibly incorrect gene marker for the Pvalb subclass. c) In this case naïve
quantification does not identify a gene marker for the L6 CT subclass. The white circles
within the violin plots represent the mean and the white bars represent + / - one standard
deviation. [Code a, Code b,c]

https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-reads_per_cluster.ipynb
https://github.com/pachterlab/BYVSTZP_2020/blob/master/analysis/notebooks/smartseq/final-EM_v_naive_gene.ipynb
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Chapter 5

CONCLUSION & OUTLOOK

Conclusion
In this thesis I’ve demonstrated how mechanical engineering and bioinformatics solutions
can work hand-in-hand to address challenges that must be met in order to realize the goal
of bringing single-cell RNA sequencing to the clinic (Owen et al. 2021). I’ve
demonstrated both how to open-source and reduce cost of key devices, and how to
facilitate sequence processing and analysis using novel ideas in scientific computation.

The poseidon and colosseum devices, presented in Chapter 2, are instruments that enable
massive scale single-cell isolation and collection. They each have novel design elements
that reduce cost and enable modularity, at a similar accuracy to expensive commercial
alternatives. They are open-source tools that are readily modifiable and extensible as
proven by their rapid adoption by multiple groups around the world that have used,
studied, benchmarked, and modified these devices (Akkoyun and Özçelı̇k 2020; Shin and
Choi 2021; Prof and Smit 2021; Carbonell Rubio, Weber, and Klotzsch 2022; Bharadwaj
and Verma 2021; Iannone et al. 2022).

The kallisto | bustools command-line tools, presented in Chapter 3, make scalable
scRNAseq analysis fast and efficient. They implement novel algorithms for sequence
read-alignment, barcode error correction, and molecular counting that helps resolve
ambiguities in sequence mapping. These algorithms offer tradeoffs between speed and
accuracy that I have benchmarked and documented (Melsted et al. 2021). For example,
alignment using exact subsequence matching against a de-Bruijn graph representation of
the reference makes read alignment fast but returns possibly ambiguous read alignments.
The bustools barcode error correction and molecular counting use the uniqueness of
molecular and cellular barcodes to help resolve these sequence alignment ambiguities.
Stream-wise processing of the sequencing reads make the kallisto | bustools workflow
memory-efficient, a crucial property for low-cost computing, and, crucially, facilitating
adoption of single-cell RNA-seq in the clinic. These novel algorithmic tools and software
engineering choices have enabled novel data analysis. Using the kallisto | bustools
workflow, I produced the largest RNA velocity analysis at the time of publication. I was
able to infer transcriptional rates for each of 27,740 genes in 113,917 cells undergoing
neurogenesis in the mouse retina. Computing transcriptional rates for genes is crucial for

https://paperpile.com/c/vUtkYS/tJxT
https://paperpile.com/c/vUtkYS/dbSv+0aYy+QvuO+CgT8+iudP+t3FW
https://paperpile.com/c/vUtkYS/dbSv+0aYy+QvuO+CgT8+iudP+t3FW
https://paperpile.com/c/vUtkYS/dbSv+0aYy+QvuO+CgT8+iudP+t3FW
https://paperpile.com/c/vUtkYS/qtEL
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the development of biomolecular feedback circuits where speed and robust responses to
input signals are desired (Pandey and Murray 2022).

Refining gene expression data to the isoform level is crucial for understanding
transcriptional regulation and the effects of alternative splicing in biological processes.
Towards that end, I have extended the kallisto | bustools workflow to process full-length
single-cell RNA-sequencing taking advantage of expectation maximization algorithm to
disambiguate ambiguous sequence alignments. Using these tools I assembled the first
ever spatially-resolved single-cell isoform atlas, and in particular one of great interest in
the neuroscience community (the mouse primary motor cortex) with data generated with
three RNA-sequencing assays, as described in Chapter 4. Additionally, I proposed a
novel framework for using data generated from multiple modalities of RNA sampling in
order to infer spatial isoform expression of cell types (Booeshaghi et al. 2021).

Taken together, these tools make technical advancement in instrumentation and
algorithmic methods for large-scale data analysis, as well as biological discovery.
Engineering hardware and software tools under speed and cost constraints addresses
fundamental issues that represent roadblocks in critical technologies for engineering our
biophysical environment. Furthermore, they offer a first-step towards enabling
translational research to better understand health and human disease.

Outlook
There are multiple fundamental engineering challenges that remain to be addressed in
order to fully translate single-cell RNA-sequencing from a research tool to a routine
biomedical readout in the clinic. First, scRNAseq requires cell isolation, and this process
is limited by the rate of cell encapsulation. Microfluidics and microwells are two such
ways to put one cell and one bead into a single isolated chamber but they have inherent
limits. Technological limitations of Poisson loading mean there are many isolation
chambers without a cell or without a bead or both(Collins et al. 2015). Coupled with a
throughput of 500 cells per minute, encapsulating millions or billions of cells is currently
impractical. These throughput limits are imposed by the stochastic nature of
particle-in-chamber loading and necessitate further research into nanoscale device design
to overcome these limits. Techniques towards this direction take advantage of the elastic
nature of the hydrogel beads used in scRNAseq in order to gain sub-poisson loading of
droplets (Abate et al. 2009), other technologies deform PDMS microwells to trap
individual cells (Bose et al. 2015), and others use acoustics (Link et al. 2021). This
increased scale of experimentation is necessary if we are to transcriptomically profile all
37.2 trillion cells in a human’s body, routinely profile hundreds of thousands of blood
cells from patients undergoing blood tests, or assay the tumor cells of cancer patients as

https://paperpile.com/c/vUtkYS/xQRT
https://paperpile.com/c/vUtkYS/h468
https://paperpile.com/c/vUtkYS/uEA4
https://paperpile.com/c/vUtkYS/8Ic5
https://paperpile.com/c/vUtkYS/CUdz
https://paperpile.com/c/vUtkYS/aOlk


179
they undergo treatment. The poseidon syringe pump system and colosseum fraction
collector are first attempts at tackling the cost of current microfluidic-based
cell-encapsulation technologies in order to understand and overcome the inherent
technological limitations that prevent massive scale experiments.

Second, scRNAseq data analysis requires constitutive models that govern RNA
production and degradation. With such models, scRNAseq data can be used to infer
maximum likelihood estimates on transcription rate parameters that offer an interpretable
view of the physical processes within a cell. Parameter inference, on the increasing
amounts of scRNAseq data, will require further development of scalable and efficient
algorithms where the speed-accuracy tradeoffs are understood and documented (Gorin
and Pachter 2020; Vastola et al. 2021) Towards this goal I’ve started collaborating with
colleagues to understand how this inference procedure can be performed and how the
estimated rate parameters can be analyzed.

Third, an interdisciplinary approach must be taken to close the device-to-analysis
feedback loop whereby data generated informs analysis methods and methods informs
the design, improvement, and modification of data generating devices.

Lastly, I’m excited about monitoring the impact of anthropogenic climate change on
species health, using the individual species as an “analog sensor” and scRNAseq as a data
acquisition sampling procedure on that sensor. Species' health is impacted by
environmental changes. For example, increasing temperatures are associated with smaller
body sizes in North American migratory birds (Weeks et al. 2020) and reduced fitness of
beetles to freezing soils, due to shallower snow depths (Harris, Rodenhouse, and Holmes
2019). However, tools to model the diverse set of ways in which perturbed habitats
impact species molecular health are currently lacking. Additionally, exponentially
increasing amounts of sensor and genomic data require correspondingly scalable
methods. These methods will help us better understand how cells engineer the physical
environment that makes up the bodies of those organisms and how these internal
environments interact with the external one.

The challenges of single-cell RNA sequencing transcend the boundaries of traditional
academic disciplines, and the field of mechanical engineering that aims to address
roadblocks in critical technologies towards engineering our environment, is central to this
endeavor. My hope is that the work in this thesis is valuable not only for the technical
addressing key challenges to pressing problems in single-cell genomics, but also that the
coupling between hardware and software for a key biomedical application demonstrates
the centrality of mechanical engineering for emerging technologies in biology.

https://paperpile.com/c/vUtkYS/TulZ+IAGC
https://paperpile.com/c/vUtkYS/TulZ+IAGC
https://paperpile.com/c/vUtkYS/5Q9hw
https://paperpile.com/c/vUtkYS/EhFuP
https://paperpile.com/c/vUtkYS/EhFuP
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