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ABSTRACT

This thesis discusses recent contributions to the theory of gapped fracton phases of

matter, utilizing exactly solvable Hamiltonian models as the primary tool of study.

A large component of the work revolves around the notion of a foliation structure,

which is a defining feature of the long-range entanglement in certain gapped fracton

states. We introduce this concept, identify its presence in a handful of prominent

fracton models, and explore its consequences in terms of entanglement entropy and

fractional excitations. A second major theme of the thesis is the characterization

of gapped fracton states via emergent gauge theories based on discrete subsystem

symmetries. We introduce a variety of novel fractonic gauge theories including

twisted and fermionic variants, identify their emergence in a bevy of well-known

models, and classify them with the use of novel topological invariants. We also

establish a link between subsystem symmetry and entanglement renormalization

group flow in fractal spin liquids.
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C h a p t e r 1

INTRODUCTION

The characterization and classification of phases of matter is a fundamental goal

of condensed matter physics. For multiple decades it was believed that the Landau

theory of spontaneous symmetry breaking [5, 12] was capable of describing all

equilibrium phases of matter and the phase transitions between them. However,

the discovery of the fractional quantum Hall e�ect in 1982 [13, 26] pointed to

the existence of quantum states of matter that lie outside the Landau paradigm,

and the concept of topological order was conceived [30] to explain this novel

phenomenon. Whereas symmetry-breaking phases of matter are characterized by

long-range correlations of an order parameter, those harboring topological order

are characterized by the long-range structure of entanglement in the ground state

wavefunction [3].

Significant progress has been made in the understanding of gapped topological

phases of matter such as the fractional quantum Hall states. Such phases are

characterized by a ground state degeneracy on nontrivial spatial manifolds, as well

as the existence of fractional quasiparticles that cannot be individually created or

annihilated [11, 30]. In 2D, these excitations are anyons [31], quasiparticles that

obey a generalized notion of particle statistics (neither Fermi nor Bose), featuring

long-range interactions between pairs of anyons braiding around one another in their

two-dimensional plane of existence [11]. The rigidity of such systems, owing to the

existence of an energy gap above the many-body ground state, allows for a sharp

classification in terms of the structure of anyonic excitations. Distinct topological

orders give rise to di�erent kinds of anyons, and the set of anyons arising in a

particular topological phase form a mathematical structure known as a unitary

modular tensor category [11]. The unique characteristics of topological phases,

including the existence of anyons, originate microscopically due to the nontrivial

structure of long-range entanglement (LRE) in the ground state wavefunction [3].

The study of gapped topological phases has reached a stage of relative maturity. The

use of exactly solvable, commuting projector Hamiltonian models has proven to be

a particularly powerful tool, starting with the introduction of the toric code in 1997

by Kitaev [10]. Although such models are not physically realistic, exact solubility
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renders transparent the universal properties of a given phase of matter, for instance

the exchange and braiding statistics of the anyonic quasiparticles. Therefore they are

an invaluable instrument for classifying and characterizing gapped phases of matter

[14].

In 2005, an exactly solvable three-dimensional spin Hamiltonian was conceived in

a paper by Chamon that indelibly changed the landscape of gapped quantum phases

[2]. A later work by Bravyi, Leemhuis, and Terhal [1] uncovered several fascinating

properties of the Chamon model. First, they discovered that when periodic boundary

conditions are imposed on the model, it harbors a ground state degeneracy that grows

exponentially with linear system size. Moreover, they found that the excitations of

the model are fractional, but they are not fully deconfined. Unlike ordinary particles

that have freedom to move through space, the excitations of the Chamon model have

intrinsic constraints on their mobility. In fact, the model harbors three distinct types

of fractional excitation: planons, which can move within a plane, lineons, which can

move along a line, and fractons, which are fundamentally immobile as individual

particles. Fascinatingly, these constraints are not energetic in nature but rather arise

due to the nontrivial structure of ground state entanglement. Only by destroying the

phase of matter by closing the bulk gap can these constraints be overcome.

In 2011, another exactly solvable spin Hamiltonian was discovered by Haah [6]

that further broadened the horizon of gapped quantum phases. This model, dubbed

the Haah code, has the intriguing property that all of its fractional excitations are

fractons. As a result its degenerate ground space does not admit any string-like

logical operators, granting it the status of a partial self-correcting quantum memory.

While individual fractons are pinned in space, fractons may move in coordination

as the corners of a tetrahedron. This geometric constraint results in the striking

emergence of a complex fractal geometry in the structure of fractional excitations

and ground state entanglement.

These early discoveries ignited a new chapter in the study of quantum phases

of matter. In the following years, a bevy of novel, exactly solvable 3D gapped

Hamiltonian models were discovered [7, 9, 15, 25, 27, 28, 32] sharing the essential

properties of 1) a ground state degeneracy (GSD) that scales exponentially with linear

system size, 2) the existence of fractional excitations with constrained mobility, and

3) a subextensive correction to the area law of entanglement entropy that scales

linearly with subregion length [8, 16, 17]. A particularly notable pair of works by

VÚay, Haah, and Fu [27, 28] introduced a trio of models that sparked much interest
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due to their relative simplicity — the X-cube model, the checkerboard model, and the

Majorana checkerboard model. These models among others collectively represent a

new kind of gapped quantum order called fracton order; quantum phases possessing

this type of order are called fracton phases of matter. Broadly speaking, fracton

orders can be divided into two classes depending on the nature of the quasiparticle

mobility constraints [28]: Type II orders are those exhibiting an emergent fractal

geometry (for instance the Haah code), whereas Type I orders are those that do not

(the Chamon model for example). A decoupled stack of 2D topological orders can

be regarded as the simplest, albeit somewhat trivial, kind of Type I fracton order.

Originally, fracton phases of matter were regarded as having topological order, which

is reflected in the nomenclature of the early papers on the subject. This owes to the

fact that they share many important properties such as long-range entanglement in

the ground state, the existence of fractional excitations, and ground state degeneracy

on nontrivial manifolds. However, it makes logical sense to regard topological and

fracton phases of matter as distinct, unified classes under the umbrella of gapped LRE

phases of matter. Topological phases of matter are those whose long wavelength,

low energy properties are succinctly described by a topological quantum field theory

(TQFT). On the other hand, fracton phases of matter are those whose universal

properties are intrinsically intertwined with the underlying lattice geometry, and

therefore do not admit a TQFT description.

A natural question to ask is how disparate fracton orders can be systematically

understood within a common framework. For instance, how can we ascertain that

two models belong to the same or di�erent fracton phase? Is it possible to enumerate

the di�erent kinds of fracton phases that could exist in principle? The theory of

fracton order is in its relative infancy; these models defy the conventional wisdom

of many-body physics, and there is much yet to discovered. The purpose of this

thesis is to help fill the void in our knowledge of gapped fracton phases of matter. As

has been discussed, the earliest known models of fracton order are exactly solvable

in nature. The work described in this thesis delves into the heart of specific lattice

models, uncovering properties that evade a cursory investigation and synthesizing

them into a deepened understanding of the fracton order phenomenon. The contents

of this thesis are as follows.

Chapter 2 explains the discovery of what we have dubbed a foliation structure in

the paradigmatic Type I fracton model, the X-cube model. A foliation structure

is a defining aspect of the pattern of long-range entanglement in a gapped ground
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state. It implies the existence of local unitary transformations that exfoliate layers of

two-dimensional topological orders from the bulk of a fracton state. These foliation

layers are commensurate with the underlying lattice, forming a sca�olding of the

entanglement structure. Fracton models possessing such a structure are said to

have foliated fracton order. In the case of the X-cube model, the foliation layers

lie in the three cubic lattice directions, and layers of the 2D Kitaev toric code are

exfoliated from the bulk. The notion of foliation structure also provides an answer

to the question of how Type I fracton models can be defined on nontrivial spatial

manifolds [24].

Chapter 3 explores the structure of entanglement entropy in Type I fracton models.

Previously it has been shown that the topological entanglement entropy (TEE) of

such models grows linearly with the length of a given set of subregions. In this

chapter we demonstrate that a number of Type I fracton orders also have a universal

constant component of the entanglement entropy, which is invariant under exfoliation

of 2D topological layers. We devise specific geometric configurations for computing

TEE that isolate these universal entanglement signatures in various foliated fracton

phases. In each case the subregion geometry is informed by the foliation structure

of the fracton model, such that the TEE is invariant under exfoliation [23].

Chapter 4 discusses the notion of obtaining foliated fracton orders by gauging

planar subsystem symmetries, which are on-site unitary symmetries that act on all

the degrees of freedom within a planar subregion of a three-dimensional bulk. The

main purposes of this work are to describe the most general such gauging procedure,

and to explain the principle that mobility constraints of fractonic gauge charge arise

from the conservation of planar subsystem symmetry [19].

Chapter 5 analyzes the structure of fractional excitations in foliated fracton phases,

introducing the notion of quotient superselection sectors (QSS). The idea behind

QSS is to regard anyons of exfoliatable topological layers as trivial because they

can be fully disentangled from the bulk system. Doing so defines a quotient group

of the total group of superselection sectors by modding out all planon excitations,

hence defining the group of QSS. For all of the foliated fracton orders we study,

the group of QSS is a nontrivial finite group. The structure of QSS could serve as

the starting point of a discrete mathematical structure that is analogous to unitary

modular tensor categories in the study of 2D topological phases [21].

Chapters 6, 7, and 8 respectively dissect the checkerboard model, the Majorana

checkerboard model, and the Chamon model. It is discovered that each of these
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models possesses a foliation structure built from layers of 2D toric code, and can

be described as some kind of discrete fractonic gauge theory. We argue the latter

by demonstrating phase relations between each of the models and some variant

of the X-cube model. In particular, we find that the checkerboard model, the

Majorana checkerboard model, and the Chamon model respectively belong to the

same phase as two copies of the X-cube model, the semionic X-cube model, and a

novel semionic-fermionic variant of a 4-foliated X-cube model [18, 20, 29].

Chapter 9 extends the notion of foliated fracton order by introducing a pair of novel

twisted foliated fracton phases. These models are twisted in the sense that they

are obtained by gauging planar subsystem symmetries of a subsystem symmetry-

protected topological state, manifesting in nontrivial exchange and braiding statistics

in the gauge flux excitation sector. The result of these nontrivial statistics is that the

2D topological layers comprising the foliation structures are themselves 2D twisted

gauge theories. Therefore we demonstrate that the notion of foliated fracton order

generalizes beyond stabilizer codes and toric code layers [22].

Chapter 10 approaches the question of classification of Type I fracton phases by

mapping it via gauge duality to the related problem of classification of subsystem

symmetry-protected topological (SSPT) phases. This works achieves a partial clas-

sification of such phases in the case where all excitations of the gauged fracton order

are abelian, in the process introducing a set of novel SSPT states dubbed strong

SSPTs. We define strong SSPTs as those that cannot be obtained by stacking lower-

dimensional global SPTs onto the planar subsystem symmetries of a 3D system.

Upon gauging such phases are dual to novel twisted fracton phases, characterized

by particular ‘global’ features of the statistical interactions within the gauge flux

excitation sector [4].
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C h a p t e r 2

FRACTON MODELS ON GENERAL THREE-MANIFOLDS

2.1 Introduction

Characterization and classification of quantum phases of matter is a

fundamental problem of physics. Spectacular progress has been made in the

last decade for topological phases of matter, especially those with short-range

entanglement and with long-range entanglement in two spatial dimensions.

Topological quantum field theory (TQFT) is the framework in which the

regnant theories of these topological phases are formulated. Recently, an

intriguing class of gapped Hamiltonians, referred to as fracton models in this

paper, have been proposed as potential new topological phases of matter

[2, 4, 12, 13, 16, 20, 22, 35–38, 42]. These models appear in three

spatial dimensions and have ground states exhibiting long-range entanglement.

Certain topological features [7, 15, 21, 23, 29, 30, 40] such as robust ground

state degeneracy and fractional excitations rear their heads in fracton models.

But these models clearly do not fit into the standard TQFT framework since

their ground state degeneracies (GSD) are not topologically invariant, which

is a salient feature of current TQFTs. In this paper, we investigate the nature

of the underlying physics in these fracton models: topological, geometric, or

something yet else?

Quantum field theory (QFT) provides powerful descriptions of many-body

quantum physics. Phases of matter with intrinsic topological order can be

characterized either by the existence of a low energy TQFT limit or by an

anyon model that captures the algebraic structure of fractional excitations in

the plane. We are thus motivated to ask whether fracton models have low

energy descriptions that resemble TQFTs. (A QFT description of the X-cube

model with a cut-o↵ is proposed in [31].)

A TQFT assigns a Hilbert space V (Y ) to each spatial manifold Y satisfying

some formal properties of a QFT; the Hilbert space V (Y ) is the ground

state manifold. An intrinsic topological order manifests itself in the robust

ground state degeneracy V (Y ) that depends only on the topology of the spatial

manifold Y . Fracton models do not fit into this framework because their GSD
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is not solely determined by the topology of the spatial manifold Y . Thus, we

are interested in a modification such that the ground state manifold V (Y, s)

will depend not only on the topology of Y but also some extra structure s of

Y analogous to a G-bundle in gauge theory or a spin structure for fermions.

A condensed matter system on a closed (compact without boundary) spatial

manifold Y is defined through a Hamiltonian on a lattice � in Y , which is a

cellulation of Y mathematically. In traditional topological phases, the ground

state manifold V (Y,�) is independent of the lattice�, while in fracton models,

V (Y,�) depends on the lattice � in intricate ways. One hope is that for a

judiciously chosen sequence of lattices �i, the ground state manifolds V (Y,�i)

converge to a well-defined limit V (Y, s), presumably infinitely dimensional, and

their dependence on lattices �i reduces to the well-defined structure s of Y .

Then according to the structure s being regarded as topological, geometric,

or something yet else, we will classify the fracton models as phases possessing

such a character.

In this paper, a first step is made towards such a generalized TQFT for the

X-cube model. As explained in the concluding section, we conjecture that the

extra structure is a singular compact total foliation, inspired by the notion of

total foliation of a 3-manifold [14]. Since a foliation of a 3-manifold is regarded

as a topological structure, we suggest that theX-cube model can be considered

to be a new kind of generalized topological order.

In particular, we show that the X-cube model [38], originally defined on the

three-dimensional torus, can be defined on other closed 3-manifolds as well.

To do so, we employ a singular compact total foliation of a 3-manifold, which

partitions the manifold into three sets of transversely intersecting parallel

surfaces in the complement of a (possibly empty) singular subset consisting

of singular leaves. The ground state degeneracy (and its size-independent

correction) depends on the topology of these leaves and the intersections of the

leaves. We show that the relation between the ground state degeneracy and the

foliation can be easily understood in terms of an entanglement renormalization

group transformation of the X-cube model where system size can be increased

or decreased by adding or removing 2D layers of toric code topological states.

The total foliation structure is well-suited for the potential construction of a

continuous limit description of the phase. Additionally, we give a spherical leaf

construction of the X-cube model for any 3-manifold. Remarkably, we find
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that the X-cube model in the spherical leaf construction reduces to the 3D

toric code model with traditional topological order of a discrete vector gauge

theory.

The paper is structured as follows: In Sec. 2.2, we review the X-cube model on

the 3-torus T 3. In Sec. 2.3-2.4, we extend the X-cube model to other closed 3-

manifolds: the spherical leaf construction in Sec. 2.3 and the singular compact

total foliation construction in Sec. 2.4. In Sec. 2.5, we present the entanglement

renormalization procedure for the X-cube model. In Sec. 2.7, we show that

these results can be generalized to the ZN version of the X-cube model.

2.2 Review of X-cube model on three-torus

The X-cube model, as first discussed in [38], is defined on a cubic lattice with

qubit degrees of freedom on the edges. The Hamiltonian

H = �
X

v

(Ax
v + A

y
v + A

z
v)�

X

c

Bc (2.1)

contains two types of terms: cube terms Bc which are products of the twelve

Pauli X operators around a cube c, and cross terms A
µ
v which are products

of the four Pauli Z operators at a vertex v in the plane normal to the µ-

direction where µ = x, y, or z (Fig. 2.1). These terms mutually commute

and their energies can be minimized simultaneously. Moreover, they can be

viewed as stabilizer generators for a quantum error-correcting stabilizer code

[10] whose code space coincides with the Hamiltonian ground space. One

particular ground state is given by | i =
Q

c(1 + Bc) |0i, where |0i refers to

the tensor product of the qubit state |0i on each edge.

Consider an Lx ⇥ Ly ⇥ Lz cubic lattice with periodic boundary conditions.

While there are 3LxLyLz qubits in the system and 4LxLyLz local terms in

the Hamiltonian, the ground state is far from unique. In fact, the ground

state degeneracy (GSD) scales linearly with the size of the system in all three

directions:

log2 GSD = 2Lx + 2Ly + 2Lz � 3. (2.2)

There are hence a large number of ‘logical operators’ that commute with all

of the terms in the Hamiltonian and map one ground state to another [15,

31]. An over-complete set of X-type logical operators is given by the set of

closed string-like operators W
µ
ij, which is a product of X operators over all
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Figure 2.1: Cube and cross operators of the X-cube Hamiltonian on a cubic
lattice.

µ-oriented edges with coordinates (i, j) in the plane normal to µ (see Fig. 2.2).

This set is over-complete in the sense that products of the form W
µ
ijW

µ
ilW

µ
klW

µ
kj

are equal to a product of some Bc cube operators, and thus act trivially on

the ground state manifold (here the four sets of coordinates lie at the corners

of a rectangle in the plane normal to µ, as shown in Fig. 2.2). There are

LxLy + LyLz + LzLx � 2Lx � 2Ly � 2Lz + 3 such relations corresponding

to unique products of cube operators, thus implying Eq. (2.2). Moreover, it

was found that for each ground state, the entanglement entropy of a region R

satisfies an area law with subleading corrections linear in the length of R, which

has a similar origin as the subextensive scaling of ground state degeneracy [15,

21].

Logical operators correspond to processes where particle anti-particle pairs are

created out of the vacuum, wound around the torus, and then annihilated.

Straight open string operators W
µ
ij (µ1, µ2) anti-commute with the vertex

Hamiltonian terms at the endpoints µ1 and µ2, corresponding to excitations

which live on the vertices of the lattice. Here W
µ
ij (µ1, µ2) is defined to be the

product of X operators over µ-oriented edges between µ = µ1 and µ = µ2

with coordinate (i, j) in the plane normal to µ (see Fig. 2.3). Conversely,

acting with bent string operators introduces additional energetic costs at the

corners. Therefore the particles living at the endpoints of straight open strings

are energetically confined to live on a line; in this sense, they are dimension-

1 particles [38]. These particles obey an unconventional fusion rule: triples

of particles living along x-, y-, and z-oriented lines may annihilate into the

vacuum. On the other hand, acting with a closed string operator around

a rectangle creates an excitation at each corner of the rectangle. A pair of

particles at adjacent corners may be viewed as a single dipole-like object which

is itself a dimension-2 particle and is mobile in the plane normal to the edges
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Figure 2.2: Visualization of logical operators. The green string corresponds to
W

z
mn. The product of the four operators corresponding to the blue strings is

equal to the identity, as described in the main text.

Figure 2.3: Visualization of particle creation operators. The red links
correspond to a membrane geometry on the dual lattice. The product of
Z operators over these edges excites the (darkened) cube operators at the
corners. The product of X operators over the links comprising the straight
open blue string creates excitations at its endpoints (black dots).

connecting the two corners.

In addition to these string-like operators, there are membrane-like operators

which are products of Z operators over qubits corresponding to a membrane

geometry on the dual lattice (see Fig. 2.3). A rectangular membrane operator

anti-commutes with the cube Hamiltonian terms at its corners. A pair of

adjacent corner excitations created by a rectangular membrane operator is

likewise a dimension-2 dipolar particle, free to move in a plane perpendicular

to its moment. A process whereby a pair of such membrane dipoles is created,

separated, wound around the torus and annihilated, corresponds to a string-

like Z-type logical operator.
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2.3 X-cube Model on Generic Lattices

The 3D toric code model, which represents the traditional 3D Z2 gauge theory

topological order, can be defined on any lattice on any manifold. For the

X-cube model, however, it is not clear if this is possible. In this section, we

explain how to define theX-cube model on a special class of lattices, which will

enable constructions on general spatial 3-manifolds in the subsequent section.

2.3.1 Intersecting leaves

We construct a lattice by embedding a large number of transversely

intersecting surfaces, referred to as leaves, into the 3-manifold M . Vertices of

the resulting cellulation lie at triple intersection points of leaves, while edges

lie along the intersections of pairs of leaves; a qubit is placed on each edge.

We assume that the location of the leaves are generic enough such that no

three leaves intersect along the same line. The cubic lattice on the 3-torus

can be viewed in this way as three orthogonal stacks of toroidal leaves—the

xy, yz, and xz planes of T 3 = R3
/Z3. Unlike the cubic lattice, the general

construction may result in some number of non-cubical 3-cells. Crucially,

however, every vertex in this type of cellulation is locally isomorphic to a

cubic lattice vertex. This fact allows the X-cube Hamiltonian to be defined

as per Eq. (2.1). Similar to the cubic lattice, the three cross operators A
µ
v

are products of Z operators over the four edges emanating from v in the leaf

labeled by µ. The Bc operator is in general a product of X operators over all

edges of the 3-cell c. The cellulation geometry ensures that the terms in the

Hamiltonian are mutually commuting.

The structure of the excitation types and fusion properties carries over from the

cubic lattice version of the X-cube model. However, the notion of dimension-1

and dimension-2 particles is revised in a natural way. In the general lattice

construction, dimension-1 particles created at the ends of open string operators

are freely mobile along the intersection lines of pairs of cellulating surfaces.

Furthermore, dimension-2 particles, such as fracton dipoles, are free to move

along leaves that are orthogonal to the direction of the dipole moment. In the

general setting, logical operators correspond to processes where particle pairs

are created, wound around the intersection circle of two surfaces, and then

annihilated. Unlike the three-torus, for general manifolds these circles may be

contractible.
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2.3.2 Spherical leaf construction and 3+1D Z2 gauge theory

Before we turn to the notion of total foliation, we first note the existence of

a somewhat anomalous lattice construction that defines an X-cube model on

any 3-manifold M . We choose the leaves of the cellulation to be contractible

small spheres placed randomly or periodically throughout M . As explained

above, a lattice is formed by placing vertices at the intersection of three spheres

and edges along the intersection of two spheres. As long as the spheres are

packed closely enough that each sphere intersects with several other spheres,

this construction defines a lattice in M . The X-cube Hamiltonian on this

lattice generalizes Eq. (2.1), with three cross terms at each vertex v and a Bc

term for each 3-cell. The operator Bc is a product of X operators over the

edges of the 3-cell c.

This construction allows the X-cube model to be defined on any manifold.

However, the resulting model can have fully mobile deconfined point

excitations, and a constant GSD of 8 on the 3-torus. Thus we conclude that

the model can exhibit conventional 3+1D Z2 gauge theory topological order

rather than fracton order. We have numerically verified a GSD of 8 for a 3-

torus covered with spherical leaves of radius 0.46 centered at points of an FCC

lattice (see Fig. 2.4(a-b)). We used the method equivalent to the one described

in Appendix B of [20]. The unit cell in this configuration contains 48 links. By

enumerating the 48 links in a unit cell and inputting the complicated stabilizer

Hamiltonian into the algorithm, we identify a ground state degeneracy of 8.

The 8-fold GSD can be understood by considering the string and membrane

logical operators acting on the topologically protected ground space. A

membrane and string operator are shown in Fig. 2.4(d-e). The membrane

operator is a product of X operators on the blue edges, whereas the string

operator is a product of Z operators on the red edges. These operators

commute with the Hamiltonian, but anticommute with each other, and

therefore describe one qubit in the degenerate ground state Hilbert space.

90 degree rotation gives the two other pairs of these operators.

The deconfined point-like charges of the model correspond to 3-cell excitations

lying at the ends of open string operators (as in Fig. 2.4(b)). These particles

are fully mobile because the corresponding string operators can bend without

creating additional excitations. This is a surprising result, as excitations of

the 3-cell operators on a cubic lattice are immobile fractons. Conversely,
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(a) (b)

(c)

(d) (e)

Figure 2.4: A construction with periodically placed spheres. (Sec. 2.3.2). (a-b)
We place spheres of radius 0.46 on an face-centered cubic (FCC) lattice. The
spheres in (b) are located at the blue points of the FCC lattice in (a). When
the X-cube model is defined on the resulting lattice, the phase is equivalent
to the 3D toric code. (b) The toric code charges reside on small cubes. These
charges can hop e.g. between the two blue cubes via a string of Z operators
on the two red edges. (c) The elementary 3-cells of the cellulation. (d-e)
Membrane and string operators. The membrane operator is a product of X
operators on the blue edges, whereas the string operator is a product of Z
operators on the red edges.

violations of the cross operators lie along the boundary of open membrane

operators (shown in blue in Fig. 2.4(d-e)). These excitations correspond to

flux loops of the 3+1D Z2 gauge theory. Hence, we see that both the fractional

excitations and logical operators match those of 3+1D Z2 gauge theory. Other

arrangements of spheres may also result in the 3+1D Z2 gauge theory.

Thus, a di↵erent approach must be considered to construct lattices whose X-

cube constructions realize fracton order. Since dimension-1 and dimension-2

particles are constrained to move within individual leaves, extended dimension-
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1 and dimension-2 particles and a robust ground state degeneracy that scales

subextensively with system size can be realized only in the presence of leaves

that are non-locally embedded in the 3-manifold. This consideration motivates

the following section.

2.4 X-cube model on general manifolds via total foliation

In this section, we consider cellulations of a 3-manifold M constructed by

embedding into M three transversely intersecting stacks of parallel surfaces,

which are assigned x, y, and z labels and are composed of Lx, Ly, and

Lz layers, respectively. Each stack of surfaces may be viewed as a discrete

sample of compact leaves of a (possibly singular)1 two-dimensional foliation

of M . (A p-dimensional foliation of a manifold M is an infinite partition

of M into a collection of disjoint parallel p-dimensional submanifolds of M

with infinitesimal separation. The submanifolds are referred to as leaves.)

This approach is reminiscent of the mathematical notion of total foliation. 2

However, our construction di↵ers in that we allow the foliations to be singular

(containing leaves that are of a di↵erent dimension) but require that the leaves

are compact so that the resulting lattice has a finite number of edges. The

discrete foliations are required to obey the following transversality conditions,

which can always be satisfied by an appropriate choice of leaves: pairs of

foliating surfaces must intersect transversely (i.e. not tangentially), and triples

of surfaces must intersect at points. These generalized cellulations retain a

notion of continuum limit, as they can be arbitrarily refined by adding leaves

to any of the three constituent foliations.

We find that the ground state degeneracy of the generalized X-cube model

obeys the formula

log2 GSD = bxLx + byLy + bzLz � c (2.3)

where bµ is the first Betti number with Z2 coe�cients of the surfaces comprising

the µ-oriented foliation3, and c is a constant sensitive to the topology of

the intersections of the three foliations. As we will discuss in Sec. 2.5, the

1
In a singular foliation, leaves at singularities may di↵er in dimension (i.e. dimension

less than two in the case of 3-manifolds).
2
A total foliation of an n-dimensional manifold consists of n sets of (n� 1)-dimensional

foliations that are transverse at every point.
3
If the surfaces in the µ-oriented foliation have di↵erent Betti numbers, then one should

instead multiply by the corresponding Betti number for each surface.
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Half-twist

Half-twist

(a) (c)

K2 ⇥ S1

K2⇥S1

(b) (d)

(e)

Figure 2.5: (a) A spherical cross-section of a cellulation of S
2 ⇥ S

1 with
Lx = Ly = 8. (b) The t = 0 equator of S3 defined as the locus of points
in R4 satisfying x

2 + y
2 + z

2 + t
2 = 1. In this example, S3 is foliated by 8

spherical leaves of constant x, y, and z, which are colored red, green, and
blue. Although the sphere drawn in (a) is a leaf, the sphere drawn in (b) is
not a leaf; it is merely a convenient cross-section. (c) The half-twist manifold,
constructed by identifying opposite faces of a cube. The front and back faces
are glued after a 180� twist. The dashed red and green squares are outlines
of embedded Klein bottles. The pair of solid red (or green) squares outline a
single torus, as does the blue square. (d) The 3-manifold K

2 ⇥ S
1, viewed as

a cube with opposite faces identified; front and back faces are identified after
a reflection across the vertical bisector. The pair of solid red squares outlines
a single embedded torus, as do the dashed red square and solid blue square.
The solid green square outlines an embedded Klein bottle. (e) Figure courtesy
of [18]. A ⌃2 cross-section of a cellulation of ⌃2 ⇥ S

1. The red and blue lines
correspond to leaves of respective singular foliations. The singularities are
indicated by the black lines.
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3-manifold x-leaves y-leaves z-leaves log2 GSD c
T 3 Lx ⇥ T 2 Ly ⇥ T 2 Lz ⇥ T 2 2Lx + 2Ly + 2Lz � 3 3

S2 ⇥ S1 Lx ⇥ T 2 Ly ⇥ T 2 Lz ⇥ S2 2Lx + 2Ly � 1 ⇤ 1
S3 Lx ⇥ S2 Ly ⇥ S2 Lz ⇥ S2 0 0

half-twist Lx ⇥ T 2 Ly ⇥ T 2 Lz ⇥ T 2 2Lx + 2Ly + 2Lz 0
half-twist (Lx � 1)⇥ T 2 +K2 Ly ⇥ T 2 Lz ⇥ T 2 2Lx + 2Ly + 2Lz � 2 2
half-twist (Lx � 1)⇥ T 2 +K2 (Ly � 1)⇥ T 2 +K2 Lz ⇥ T 2 2Lx + 2Ly + 2Lz � 3 3
K2 ⇥ S1 Lx ⇥ T 2 Ly ⇥ T 2 Lz ⇥K2 2Lx + 2Ly + 2Lz � 2 2
⌃g ⇥ S1 Lx ⇥ T 2 Ly ⇥ T 2 Lz ⇥ ⌃g 2Lx + 2Ly + 2gLz � 3g 3g

Table 2.1: A summary of the ground state degeneracy (GSD) of the X-cube
model on various 3-manifolds with the foliations described in Sec. 2.4. *The
logical operators with support near foliation singularities are not protected
against local perturbations; see Sec. 2.4.1.

presence of the first three terms can be understood in terms of an entanglement

renormalization transformation which grows the system size by adding layers

of toric code states, which have log2 GSD = b.

We stress that the degenerate ground space is sensitive to the foliation

structure imposed on the 3-manifold as well as its topology, and that it is

possible to endow the same 3-manifold with di↵ering foliation structures (for

example in the case of the half-twist manifold discussed below). Furthermore,

we note that singularities in the foliation structure may result in partial

splitting of the GSD (in the presence of local perturbations) due to the

existence of logical operators with local support. This occurs, for instance

in the case of S2 ⇥ S
1, in which two of the foliations have point singularities.

Conversely, in the case of ⌃2⇥S
1 depicted in Fig. 2.5(e), the foliations exhibit

codimension-1 singularities, but the resulting models do not contain logical

operators with local support.

We now turn to some examples. The results are summarized in Table 2.1. We

have numerically verified the expressions for GSD using a method equivalent

to the one described in Appendix B of [20].

2.4.1 2-sphere times 1-sphere

First, consider the manifold S
2 ⇥ S

1. It admits a non-singular foliation

consisting of layered copies of S2, as well as singular foliations of tori whose

projections onto S
2 latitudinally foliate the sphere with singularities at the

poles. Our construction takes one stack of Lz parallel spheres and two

such stacks of Lx and Ly layers of tori, respectively (see Fig. 2.5(a)). The
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ground state degeneracy of the X-cube model on this lattice obeys the formula

log2 GSD = 2Lx + 2Ly � 1.

It is important to note that the Wilson loops (which are a product of

X operators around a red or green loop in Fig. 2.5(a)) near the foliation

singularities have local support. Thus, the logical qubits corresponding to

these loops are not topologically protected, and the ground state degeneracy

would be partially split by local perturbations.

2.4.2 3-sphere

The 3-sphere S3 admits latitudinal foliations with polar singularities. Viewing

S
3 as a subspace of R4 defined by the equation x

2 + y
2 + z

2 + w
2 = 1, a

leaf of an x-oriented latitudinal foliation is a 2-sphere defined by the equation

x
2
0 + y

2 + z
2 + w

2 = 1 for fixed x0. Taking three such foliations in the x, y,

and z directions yields a suitable cellulation of S3 (Fig. 2.5(b)). The resulting

X-cube model exhibits a unique ground state.

2.4.3 Half-twist manifold

The half-twist manifold is an orientable Euclidean 3-manifold constructed by

identifying opposite faces of a cube. The y (top and bottom) and x (left and

right) faces are identified in the standard way, but the z (front and back) faces

are identified after a rotation of 180 degrees relative to one another. It admits

a total foliation with three sets of compact toroidal leaves. A sampling of Lx,

Ly, and Lz toroidal leaves corresponds to embedding a 2Lx ⇥ 2Ly ⇥ Lz cubic

lattice in the original cube. The factors of 2 are due to the twist in the gluing

process (see Fig. 2.5(c)). The ground state degeneracy of the X-cube model

defined on this lattice is given by log2 GSD = 2Lx + 2Ly + 2Lz.

It is also possible to include one or more Klein bottles in the cellulation.

Including one Klein bottle belonging to the x foliation corresponds to

embedding a cubic lattice of size 2Lx � 1 in the x direction, and changes

the ground state degeneracy such that c = 2. Including an additional Klein

bottle in the y foliation further increases c to 3. Thus the constant c is not an

invariant of M , but rather is sensitive to the choice of cellulation.

2.4.4 Klein bottle times

The manifold K
2 ⇥ S

1 is a simple example of a non-orientable 3-manifold,

where K
2 is a Klein bottle. It admits a total foliation consisting of one set of
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Klein bottle leaves and two sets of toroidal leaves. Cellulating K
2 ⇥S

1 in this

fashion (with Lx, Ly, and Lz leaves) is equivalent to embedding a 2Lx⇥2Ly⇥Lz

cubic lattice into K
2 ⇥ S

1. See Fig. 2.5(d) for details. As on the torus, the

toric code on the Klein bottle has a fourfold ground state degeneracy. The

ground state degeneracy of the X-cube model on K
2 ⇥S

1 (with this foliation)

obeys log2 GSD = 2Lx + 2Ly + 2Lz � 2.

2.4.5 Genus g surface times 1-sphere

The product manifold ⌃g⇥S
1 admits a natural foliation of ⌃g leaves, where ⌃g

is the 2D oriented topological manifold with genus g. We can supplement this

with two singular foliations of tori which intersect ⌃g slices in circles. These

circles represent leaves of ameasured foliation of ⌃g with trivalent singularities,

which can be constructed for any genus by gluing together foliated pairs of

pants [3]. A cross-section of a cellulation of ⌃2 ⇥ S
1 is shown in Fig. 2.5(e).

The ground state degeneracy of the X-cube model on this class of manifolds

is given by log2 GSD = 2gLz + 2Lx + 2Ly � 3g.

2.5 Entanglement renormalization for X-cube model

In this section, we introduce a procedure that transforms between X-cube

ground states on coarsened or refined cellulations of a 3-manifold M . Given a

cellulation composed of leaves of a triple foliation of M , the procedure allows

leaves to be added or removed by adding or removing toric code states that

live on the individual layers. This transformation sheds light on the structure

of the ground state degeneracy in Eq. (2.3). Moreover, the procedure can be

interpreted as an entanglement renormalization group (RG) transformation

[34] for which the X-cube Hamiltonian is a fixed point. This interpretation

motivates us to propose a definition of type-I fracton phase based on ground

state entanglement structure (in Sec. 2.6).

2.5.1 RG transformation

To begin, we consider a transformation on an X-cube ground state | XCi
that adds a single layer to one of the constituent stacks of a given 3-

manifold cellulation. This new layer bisects the edges and 3-cells it intersects.

Accordingly, for each edge i piercing the new layer, the qubit on this edge is

split into two qubits on edges i
0 and j

0. We then substitute Zi ! Zi0 and

Xi ! Xi0Xj0 in the X-cube Hamiltonian, and add a Zi0Zj0 stabilizer to the
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Figure 2.6: (a) Adding an xy-layer to the X-cube model on T
3. The large cube

represents a unit cell of the original X-cube model, while the bold (blue) square
is an elementary plaquette of the new layer ↵. The original z-oriented edges are
split into two by the new layer. The local unitary S is a translation-invariant
composition of commuting CNOT gates; a unit cell is pictured here. Arrows
point from control qubit to target qubit. (b) Action of the unitary S on the
qubits of a hexagonal prism 3-cell. The lower hexagonal plaquette belongs to
the new z layer ↵. Bold (blue) edges are transverse to the y foliation, whereas
double (green) edges are tranverse to the x foliation.

Hamiltonian. 4 The resulting ground state is labeled | XCi0. Next, we take the
tensor product | XCi0⌦ | TCi of the modified X-cube ground state with a toric

code ground state on the new layer, and apply a local unitary transformation

S to sew the two wave functions together into a larger X-cube wave function

|̂ XCi = S
�
| XCi0 ⌦ | TCi

�
. This procedure can be reversed or iterated to

arbitrarily change the system size.

The unitary S is a product of CNOT gates whose control qubits belong to

the new layer; the precise form depends on the geometry of the cellulation. In

the simplest case, the intersection of the new layer ↵ with the two transverse

foliations is isomorphic to that of one of the adjacent layers �. Suppose ↵ and

� are z leaves. The region between ↵ and � is divided by the x and y foliations

into 3-cell prisms whose base polygons have an even number of sides alternating

between edges transverse to the x and y foliations. The unitary S contains

4
More formally, the edge can be split by initializing the new qubit j0 in the state |0i

and applying a CNOT with control i0 and target j0.
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a CNOT gate for each edge (the control qubit) in ↵, whose target qubit lies

on the corresponding edge in �. Additionally, for each edge transverse to the

y foliation in ↵, there are two additional CNOT gates whose targets are the

adjacent edges transverse to ↵ (oriented in the z direction) and connected to

�. The transformation for a cubic lattice is illustrated in Fig. 2.6(a), and for

the edges in a hexagonal prism 3-cell in (b). CNOT acts by conjugation as:

ZI ! ZI IZ $ ZZ

XI $ XX IX ! IX,

(2.4)

where the first and second qubits are the control and target qubits, respectively.

From this follows the action of S on the generators of the stabilizer group of

| XCi0 ⌦ | TCi, i.e. the modified X-cube Hamiltonian terms combined with

toric code Hamiltonian terms on the new layer. This action is described for a

cubic lattice in Fig. 2.7. The prism geometry ensures that S maps the original

stabilizer generators to a set of stabilizer generators corresponding to a larger

X-cube model. It follows that |̂ XCi is indeed an X-cube ground state on the

enlarged lattice.

In general, the leaves adjacent to the new layer ↵ may not have isomorphic

intersections with the other foliations, in which case the local unitary S which

sews ↵ into the cellulation may take a complicated form. However, we believe

that such an operator generically exists. In Appendix 2.9 we present examples

of explicit transformations to add generic leaves to the total foliations of S2⇥S
1

and S
3 discussed in Sec. 2.4. For the other manifolds discussed, the even-faced

prism construction is su�cient to freely change the system size.

2.5.2 Ground state degeneracy

Because the toric code ground space is degenerate (on topologically non-trivial

surfaces), a branching structure is present in the renormalization process. For

every surface added to a cellulation, there are 2b possible toric code ground

states which can be used as inputs for the RG transformation (where b is

the Z2 Betti number of the added surface); each of these choices corresponds

to a di↵erent sector of X-cube ground states. Thus, the entanglement

renormalization picture naturally explains the subextensive growth of the X-

cube ground space described by Eq. (2.2) and (2.3): the scaling of the ground

space degeneracy on a manifold M arises from the non-trivial homology of the

leaves that foliate M .
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Figure 2.7: Adjoint action of S on stabilizers of | XCi0⌦ | TCi. As in Fig. 2.6,
bold (blue) lines correspond to edges of the new layer. Terms not pictured are
unchanged.

The constant c in Eq. (2.3) can be understood by considering the minimal

cellulation (e.g. Lx = Ly = Lz = 1) and viewing larger systems as

entanglement RG outgrowths of this seed system. (For the case of ⌃g ⇥ S
1

and cellulations of the half-twist manifold that contain at least one Klein

bottle, the minimal cellulation obtainable from disentangling toric code layers

contains more than 3 leaves.) The X-cube Hilbert space can be viewed as the

physical subspace of an extended Hilbert space which is a tensor product of

toric code Hilbert spaces on each leaf, corresponding to two qubits per edge.

X-cube ground states can be written as | XCi =
Q

e Pe

N
` | `

TCi, where ` runs
over leaves, e runs over edges, | `

TCi is a toric code ground state on leaf `,

and Pe = 1 + ZiZj where i and j are the two qubits on edge e. The product
Q

e Pe projects onto the physical subspace, and maps products of coinciding

Wilson loops to the identity operator. Thus, for the seed system, c counts the

redundancies in logical qubits of the minimal leaves, or in other words, the
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number of leaf intersections which correspond to non-trivial first homology

classes of both leaves. Thus, c is sensitive to the foliating structure on M , and

in particular to the way the foliations intersect. These considerations can be

used to compute the values of c shown in Table 2.1 and explain the dependence

of c for the half-twist manifold on the presence or absence of Klein bottles in

the cellulation, as discussed in Sec. 2.4.3.

2.5.3 Relation to the Haah code

The RG transformation presented here is related to a similar transformation for

the Haah code studied in [11]. The Haah code is a type-II fracton model defined

on a torus with non-trivial ground-state degeneracy, fractal-like excitation

structure, and no string-like logical operators. The procedure of [11] employs a

local unitary transformation U to decouple the Haah code Hamiltonian HA on

a cubic lattice of size 2L into two Hamiltonians HA and HB acting separately

on interlacing sublattices of size L. Similar to the Haah code, HB is a type-II

fracton model with fractal-like excitations. Conversely however, HB admits

an RG transformation in which the model on a lattice of size 2L is related via

a local unitary transformation V to two copies of itself on interwoven size L

sublattices. This information is summarized as follows:

UHA(2L)U
† ⇠= HA(L) +HB(L) (2.5)

V HB(2L)V
† ⇠= HB(L) +HB(L),

where H ⇠= H
0 implies that H and H

0 have coinciding ground spaces

corresponding to identical stabilizer groups. The X-cube RG transformation

can be cast in the same light: HA is the X-cube Hamiltonian, whereas HB

corresponds to three mutually perpendicular decoupled stacks of toric codes.

We note that the branching structure of Eq. (2.5) indicates that X-cube ground

states bear exact representations as branching MERA tensor networks [8, 9].

2.5.4 Entanglement structure

Moreover, the existence of this RG transformation underlies the entanglement

structure of the X-cube ground states. Because local unitary transformations

do not modify the long-range entanglement structure, the entanglement

entropy of a region R can be heuristically understood as a combination

of contributions from underlying toric code layers. The subleading linear

correction to entanglement entropy for the X-cube model thus corresponds
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to a combination of the constant topological corrections present in toric code

ground states [17, 19]. Interestingly, the Haah code also exhibits subleading

linear corrections to entanglement entropy [15, 21]. Whether these corrections

for the Haah code can be similarly understood from the entanglement RG

perspective is not clear.

2.6 Type-I fracton phases

A paradigmatic understanding of 2D quantum phases in the absence of

symmetry was reached by the authors of [6]. In this framework, quantum

phases are characterized by the pattern of long-range entanglement exhibited

by their ground states, and correspond to unique 2D topological orders

[39]. Two ground states are considered to represent the same quantum

phase of matter if they are related by a generalized local unitary (gLU)

transformation, which is a finite-depth quantum circuit augmented with free

addition or removal of product states. System size can thus be altered by

adding or removing product states and performing an appropriate local unitary

transformation. In this sense, unentangled product states can be viewed as

free ‘resources’ for 2D quantum phases. However, in 3D, the gLU paradigm

is unsatisfactory because it over-refines the space of ground states. While

conventional 3D topological orders such as discrete gauge theories represent

gLU equivalence classes, exotic fracton models such as the X-cube model and

the Haah code (along with simple decoupled stacks of 2D topological orders)

do not represent unique equivalence classes because ground states of di↵erent

system sizes are not gLU-equivalent. The gLU framework is hence inadequate

in 3D as it does not allow for a notion of thermodynamic limit.

For this reason we are motivated to propose a definition of type-I fracton phase

which incorporates the RG perspective of the X-cube model. In particular, we

define a type-I fracton phase as a class of models exhibiting a thermodynamic

limit whose ground state manifolds can be transformed into one another via

tensor product with an arbitrary number of 2D topological ground states

followed by the action of a finite-depth quantum circuit. In other words, we

consider 2D topological orders as free resources for 3D fracton phases. In this

sense, the X-cube model is a zero-correlation length fixed-point Hamiltonian

under the entanglement RG transformation, and a representative model of a

type-I fracton phase.
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We note that the definition proposed here classifies decoupled stacks of 2D

topological phases as trivial 3D phases. Moreover, it unifies the notions of

type-I fracton order and conventional 3D topological order, where product

state resources may be viewed as trivial 2D topological orders. The definition

we propose is closely related to and inspired by the s-sourcery framework

introduced in [33], which employs a more general notion of ‘resource’ state

and proposes a classification of all long-range entangled 3D quantum matter.

The X-cube model provides a new example of a phase with matrix-valued s.

2.7

The ZN version of the X-cube model, as first discussed in [31], is defined using

the generalized Pauli operators Z |pi = !
p |pi and X |pi = |p+ 1 mod Ni,

which act on dimension-N local Hilbert spaces on each edge and obey the

relations ZX = !XZ and Z
†
X = !

�1
XZ

† where ! = e
2⇡i/N . In this

section, we extend the ZN model to general 3-manifolds cellulated by sets

of transversely intersecting foliations, as in Sec. 2.4. To define the model it is

necessary to orient each edge; reversing the orientation of an edge corresponds

to inversion in ZN , given by Z $ Z
† and X $ X

†. The Hamiltonian on any

compact 3-manifold M takes the form

H = �
X

v

(Ax
v + A

y
v + A

z
v + h.c.)�

X

c

�
Bc +B

†
c

�
. (2.6)

As in the Z2 case, Aµ
v is a cross-shaped operator at vertex v whereas Bc is

a product of operators over the edges of the 3-cell c. The action of Aµ
v on

an edge adjacent to v is determined by the orientation and direction (x, y

or z) of the edge. A
x
v acts as Z (Z†) on z-directed (y-directed) edges whose

orientations point towards v, and as Z
† (Z) on y-directed (z-directed) edges

whose orientations point away from v, and likewise for cyclic permutations of x,

y, and z. This is shown in Fig. 2.8(a) for a particular choice of orientations. On

the other hand, to define the 3-cell term Bc, the vertices of c are first given an

A-B bipartition. A given 3-cell c is guaranteed to be bipartite as a graph since

all faces of c have edges which sequentially alternate between two directions µ

and ⌫ (due to the foliating structure of the cellulation). Bc is defined to act as

X on edges oriented from A to B vertices, and as X† on edges oriented from

B to A vertices (see Fig. 2.8(b)). The Hamiltonian terms mutually commute

and constitute stabilizer generators for a dimension-N qudit stabilizer code.

The physics of the Z2 model generalizes in a straightforward fashion to the
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Figure 2.8: (a) Action of 3-cell operator Bc in ZN X-cube Hamiltonian on a
cubic 3-cell. Vertices of the cube have been given an A-B bipartition. (b)
Cross-shaped operators Aµ

v of the ZN X-cube model Hamiltonian.

Figure 2.9: Adding a layer to the ZN X-cube model on a torus, as in Fig. 2.6.
For the ZN case, S is a translation-invariant product of commuting C and C

†

operators; shown here is a unit cell. Arrows point from control qudit to target
qudit; a single shaft indicates C whereas a double shaft corresponds to C

†.
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ZN setting, in which there are N species of string and membrane operators

obeying respective ZN fusion rules. For prime N , the ground state degeneracy

behaves identically, except that logical qubits are replaced with dimension-N

logical qudits. In particular, Eq. (2.3) generalizes to the rule

logN GSD = bxLx + byLy + bzLz � c (2.7)

where bµ is the first Betti number with ZN coe�cients [1]. For composite

(non-prime) N , the formula for ground state degeneracy is more complicated

in general [5], since the ground space is not necessarily a tensor product of

logical qudit Hilbert spaces.

In general, the scaling of the GSD can be understood in terms of an

entanglement RG transformation which generalizes the discussion of Sec. 2.5.

For the ZN X-cube model, generalized ZN toric code states serve as two-

dimensional resource states in the procedure (each contributing b logical qudits

for N prime). Such transformations exist for all of the foliations we have

discussed. As in the Z2 case, to add a layer we first split the qudits on edges

i intersecting the new layer into pairs of qudits i0 and j
0, and add Z

†
i0Zj0 and

Zi0Z
†
j0 stabilizer terms to the Hamiltonian and modify it as Zi ! Zi0 and

Xi ! Xi0Xj0 . We then take the tensor product of the resulting ZN X-cube

state with a ZN toric code state on the new layer, and apply a local unitary

S. The operator S is constructed from 2-qudit gates C and C
† (see Fig. 2.9

for the cubic lattice case), which are generalizations of the CNOT gate and

act as C |p, qi = |p, q + pi and C
† |p, qi = |p, q � pi. The adjoint action of C

is given by

ZI ! ZI IZ ! Z
†
Z

XI ! XX IX ! IX

(2.8)

whereas for C† by

ZI ! ZI IZ ! ZZ

XI ! XX
†

IX ! IX.

(2.9)

It can be checked that S maps the tensor product state to an enlarged ZN

X-cube ground state.

2.8 Discussion

Our work on the X-cube model suggests that fracton physics could be

regarded as a new kind of topological physics generalizing the traditional liquid
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topological order [43, 44]. We conjecture the existence of the following X-cube

TQFT.

A singular compact total foliation (SCTF) ⇤ of a 3-manifold M consists

of singular subsets Kµ, µ = x, y, z (possibly empty) and three transversely

intersecting sets of closed surfaces {⇤x,⇤y,⇤z} foliating the respective

complements M\Kµ. K consists of singular leaves that are either finitely

many points, a link, 5 or some G ⇥ S
1 where G is a trivalent graph. Two

SCTFs ⇤(1) and ⇤(2) on M are considered to be equivalent if there exists a

di↵eomorphism f of M that sends ⇤(1) to ⇤(2) compatible with the singular

leaves and the RG moves that define the fracton phase. We believe every

orientable closed 3-manifold M has an SCTF. Given an SCTF ⇤ on a 3-

manifold M , a finite (Lx, Ly, Lz)-version of ⇤ is a choice of Lx, Ly, and Lz

many leaves from the three stacks {⇤x,⇤y,⇤z}, respectively, where Lx,Ly, and

Lz are natural numbers. 6

An SCTF-TQFT will assign to each pair (M,⇤), where ⇤ is an SCTF on

the three manifold M , an infinite-dimensional Hilbert space V (M,⇤) that

is constructed as the limit of a sequence of finite versions of ⇤. Moreover,

the GSD on the finite version (Lx, Ly, Lz) depends only on the topology of

M , the topology of the leaf surfaces, and the topology of the intersections

of the leaves. The collection of Hilbert spaces V (M,⇤) should satisfy some

generalization of the usual TQFT axioms, and V (M,⇤) is a representation

of all di↵eomorphisms of M that preserve the SCTF ⇤. We will leave the

construction of such an SCTF-TQFT for the X-cube model to the future.

As comparison, the authors of [32] advocate that fracton models should be

regarded as representing geometric orders. Their approach was to consider

how lattice geometry a↵ects the low-energy physics and phase of matter as

defined by generalized local unitary (gLU) equivalence.

It would be interesting to understand which components of this discussion

generalize to other fracton models. For some of the type-I fracton models, a

similar RG procedure can be identified; thus the SCTF structure may apply

to these fracton models as well. On the other hand, type-II fracton models

such as the Haah code do not fall within this framework. Moreover there is

5
A link is an embedding of a finite number of circles into a 3-manifold, which may not

intersect but may be linked or knotted.
6
One could also consider 3+1D models with more or fewer than three sets of leaves.
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Figure 2.10: Stereographically projected spherical cross-section of the local
unitary operator S, which sews the dark-blue toric code layer into the X-cube
lattice, as used in the RG transformation for S2⇥S

1. S is a product of CNOT
gates corresponding to the arrows, which point from a control qubit to a target
qubit. The arrows on the edges indicate gates that act on the edges oriented
into (and out of) the plane and located at the adjacent vertices. Most of
the CNOT gates are acting within cubes (depicated as curved sqaures above);
within these cubes S is the same as in Fig. 2.6(a). The toric code plaquette
operators extending out of the plane from the dashed blue lines are mapped
to composite 3-cell operators on the 3-cells extending out of the plane from
the shaded light-blue region.

a class of gapless U(1) fracton models [24–28, 41]. It would be interesting to

identify a substitute for the SCTF structure on general 3-manifolds for these

related models.

2.9 Appendix: Entanglement renormalization for 3-sphere and

In this appendix we present examples of explicit transformations that add

layers of toric code states to the X-cube model defined on S
2 ⇥ S

1 and S
3. In

Fig. 2.10 we depict a unitary transformation that sews a toroidal layer into the

cellulation of S2 ⇥ S
1 (Sec. 2.4.1).

In Fig. 2.11 we illustrate the unitary transformation S that sews a
spherical layer into the cellulation of S

3 (Sec. 2.4.2). Below we list all
of the gates comprising S that act on the qubits shown in Fig. 2.11(b-c):
CNOT1,45, CNOT2,46, CNOT3,47, CNOT4,48, CNOT5,49, CNOT6,50, CNOT7,51, CNOT8,52,
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(a) (b) (c)

Figure 2.11: (a) The equatorial cross-section of S
3 from Fig. 2.5(b). We

emphasize that the sphere drawn in (a) is not a leaf; it is merely a convenient
cross-section. (b-c) Stereographic projections of spherical leaves embedded in
S
3. (b) and (c) intersect the equator (i.e. the spherical cross-section shown in

(a)) at the solid and dashed red lines in (a), respectively. The green and blue
lines represent links of the cellulation lying along the respective red-colored
leaves in (a). The numbered vertices correspond to links that connect the two
leaves, and thus share an index in (b) and (c). The unitary S sews a toric
code state (on the dashed red leaf) into the X-cube model on S

3. S consists
of a product of CNOT gates, and maps toric code plaquette operators on the
dashed red layer to composite 3-cell operators lying between the two leaves.
Some of the faces of these composite operators have been shaded in the figures
as example. Plaquettes in (b) and (c) with corresponding colors indicate faces
that belong to the same composite 3-cell.

CNOT9,53, CNOT10,54, CNOT11,55, CNOT12,56, CNOT13,57, CNOT14,58, CNOT15,59,

CNOT16,60, CNOT17,61, CNOT17,81, CNOT18,62, CNOT18,84, CNOT19,63, CNOT19,83,

CNOT20,64, CNOT20,86, CNOT21,65, CNOT21,87, CNOT22,66, CNOT22,90, CNOT23,67,

CNOT23,89, CNOT24,68, CNOT24,92, CNOT25,69, CNOT25,93, CNOT26,70, CNOT26,96,

CNOT27,71, CNOT27,95, CNOT28,72, CNOT28,98, CNOT29,73, CNOT29,99, CNOT30,74,

CNOT30,102, CNOT31,75, CNOT31,101, CNOT32,76, CNOT32,104, CNOT1,33, CNOT1,36,

CNOT3,34, CNOT3,35, CNOT5,37, CNOT5,44, CNOT7,33, CNOT7,38, CNOT9,34, CNOT9,39,

CNOT11,40, CNOT11,41, CNOT13,35, CNOT13,42, CNOT15,36, CNOT15,43, CNOT18,37,

CNOT18,105, CNOT20,38, CNOT20,106, CNOT21,39, CNOT21,107, CNOT23,40, CNOT23,108,

CNOT26,41, CNOT26,109, CNOT28,42, CNOT28,110, CNOT29,43, CNOT29,111, CNOT31,44,

and CNOT31,112.
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C h a p t e r 3

UNIVERSAL ENTANGLEMENT SIGNATURES IN
FOLIATED FRACTON PHASES

3.1 Introduction

Fracton models, a collection of gapped three-dimensional lattice models [1,

5, 14, 15, 18, 26, 28, 41, 43–47, 53], are known to exhibit a range of exotic

properties [2, 7, 17, 27, 29, 37, 38, 42, 50, 54]. First, they harbor a ground

state degeneracy (GSD) that is stable against arbitrary local perturbations

and increases exponentially with linear system size. More strikingly, fracton

models contain quasi-particle excitations whose motion is restricted to a sub-

dimensional manifold (a plane or a line) or which cannot move individually

at all [1, 14, 46]. Due to these constraints on quasi-particle mobility, the

models have unusually slow dynamics even in the absence of disorder [2, 29].

Furthermore, for the ground states of these models, the entanglement entropy

of a region in the bulk contains a term that scales linearly with the size of the

region, in addition to the dominant area law term which scales quadratically

[17, 27, 38].

Among these properties, which ones are universal characteristics of fracton

topological phases? This is an important question because the study of fracton

phases thus far has been mostly focused on specific exactly solvable models.

Once we move away from the exactly solvable points, we want to know which

sets of properties remain and are indicative of the underlying fracton order.

Moreover, given two generic interacting many-body models, we want to be

able to determine whether or not they belong to the same fracton phase by

comparing their universal properties.

For conventional (gapped) topological phases in 2D and 3D, such as fractional

quantum Hall systems and discrete gauge theories, an understanding of the

universal properties is more or less complete. These properties include the

fractional quasi-particle content and their self- and mutual braiding statistics

[20], the (finite) ground state degeneracy as a function of the topology of the

spatial manifold[48, 49], the perimeter scaling law of Wilson loop operators

in the ground state[51], the topological entanglement entropy[12, 21, 22] etc.
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At the same time, it is also clear that some properties of specific models

are merely accidental and are not universal to the phase. Such accidental

properties include—assuming there is no extra symmetry requirement on the

models—a uniform Berry curvature in quantum Hall systems, the fact that

electric and magnetic charges have the same energy in discrete gauge theories,

an expectation value of unity for Wilson loops in the ground state, etc.

Fracton models lie beyond the conventional framework of gapped topological

phases, which is made clear by the fact that their ground state degeneracy

increases with system size. To extend the idea of universality to fracton

models, we must first define the notion of a fracton phase. In [40], we

generalized the notion of gapped topological phases to encompass fractons

by allowing the addition of gapped two-dimensional resource layers when

smoothly evolving between two three-dimensional gapped models. According

to this definition, a stack of decoupled layers of 2D topological orders belongs

to a trivial phase whereas the X-cube model belongs to a non-trivial phase [40].

It can be shown that the kagome lattice X-cube model[43], the checkerboard

model[47], and the 3D toric code model (with trivial foliation structure) belong

to non-trivial phases according to this definition as well. Due to the deep

connection of this definition with the foliation structure of the underlying

spatial manifold, we will refer to such phases as foliated fracton phases.

In accordance with this definition, in this paper we identify certain universal

properties of these phases that remain invariant as one moves throughout

each phase. We propose a multi-partite entanglement quantity (Fig. 3.3)

calculated from the ground state wave function, generalizing the proposal

of topological entanglement entropy [12, 21, 22] to characterize conventional

topological orders. We argue for the universality of this quantity and show

that it attains positive constant value (Table 3.1) in non-trivial phases that

contain the X-cube model [47] on cubic and stacked-kagome lattices [43],

the checkerboard model [47], the Chamon model [5], and the 3D toric code

model [4] respectively. The multi-partite entanglement quantity we design is

in general non-topological in the sense that its value can change if the shape

of the regions involved changes in an arbitrary way. However it does remain

invariant provided it follows the foliation structure of the fracton model, which

can be determined from simpler entanglement quantities calculated from the

ground state wave function.
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The paper is structured as follows. In Sec. 3.2, we review the definition of

foliated fracton phases and explain its motivation and applicability. Based

on this definition, in Sec. 3.3, we state the criteria that must be satisfied by

an entanglement quantity in order to be universal. In Sec. 3.4, we present a

scheme for calculating such a quantity and the calculation results for a handful

of relevant models. We conclude with a discussion of open questions in section

Sec. 3.5.

3.2 Foliated fracton phases

Foliated fracton phases are defined in [40] as follows: Two gapped three

dimensional Hamiltonians H1 and H2 are in the same foliated fracton

phase if by adding layers of two-dimensional gapped Hamiltonians H2D
1 to

H1, and layers of (potentially di↵erent) two-dimensional gapped Hamiltonians

H2D
2 to H2, it is possible to adiabatically evolve from H1 +H2D

1 to H2 +H2D
2

without closing the gap.
1

Written as a formula, we have

Foliated fracton phase: H1 +H2D
1

Adiabatic evolution(==========) H2 +H2D
2 (3.1)

Here, adiabatic evolution refers to a smooth deformation of the Hamiltonian

that preserves the energy gap, i.e. an evolution that does not pass through

a critical point or an intervening gapless phase. Equivalently, because we are

considering gapped systems, this relation can be stated in terms of the ground

space. Denote by GS1 and GS2 the gapped ground spaces of H1 and H2,

and GS2D
1 and GS2D

2 the gapped ground spaces of layers of 2D Hamiltonians.

Then H1 and H2 are in the same foliated fracton phase if GS1 ⌦ GS2D
1 and

GS2⌦GS2D
2 can be mapped into each other through finite depth local unitary

transformations. 1

Foliated fracton phase: GS1 ⌦GS2D
1

Finite depth local(============)
unitary transformation

GS2 ⌦GS2D
2 (3.2)

That is, although the finite depth local unitary acts on the entire Hilbert space,

it must map ground states GS1 ⌦GS2D
1 into grounds states GS2 ⌦GS2D

2 .

In comparison, the conventional definition of gapped phases only allows the

addition of decoupled degrees of freedom in the form of a product state in

1Before performing the adiabatic evolution (or local unitary transformations), we have
the freedom to match locality and identify local degrees of freedom in the two models.
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the process of adiabatic evolution. That is, the conventional definition can be

expressed as:

Conventional gapped phase: H1 +H0D
1

Adiabatic evolution(==========) H2 +H0D
2 (3.3)

where H0D
1 and H0D

2 are Hamiltonians with direct product ground states. In

terms of the ground space, the definition is given as

Conventional gapped phase: GS1 ⌦GS0D
1

Finite depth local(============)
unitary transformation

GS2 ⌦GS0D
2

(3.4)

where G0D
1 and G0D

2 are non-degenerate (one-dimensional as a Hilbert space)

spaces spanned by respective product states. GS1 and GS2 are said to be

connected by a ‘generalized local unitary’ (gLU) transformation[6].

A major di↵erence between these two definitions of phases of matter is that

systems in the same conventional gapped phase always have the same GSD

while systems in the same foliated fracton phase can have varying ground state

degeneracy owing to the additional 2D layers. This simple observation is the

chief motivation to propose this new definition as it is known that the GSD of

fracton models can change with system size.

In [40], we showed that the X-cube model belongs to such a foliated fracton

phase. The X-cube model is actually the fixed point of the phase that remains

invariant under the renormalization group transformation: the X-cube model

defined on a Lx ⇥ Ly ⇥ Lz cubic lattice can be mapped to the X-cube model

defined on a Lx ⇥Ly ⇥ (Lz +1) cubic lattice by adding a layer of the 2D toric

code in the xy plane and applying local unitary transformations to sew this

new layer into the original X-cube model. Similar procedures can be applied

to increase the system size in the x and y directions as well. Therefore, the

foliation structure of the X-cube model is composed of layers in the xy, yz

and zx planes. Such a foliation structure provides a natural explanation for

the linear scaling of the entanglement entropy and the logarithm of the GSD

in the X-cube model. Similar RG transformations and foliation structures can

be identified [39] in the kagome X-cube model[43] and the checkerboard model

[47].

On the other hand, not all fracton models are captured by this notion of

foliated fracton phase. Type-II fracton models such as the Haah code are

evidently not encompassed by this definition as they do not contain two
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dimensional quasi-particles that can move freely in a plane. How to generalize

these definitions to describe such fractal spin liquids remains an open question.

3.3 Signatures of long-range entanglement

Given the definition of foliated fracton phases, we can now pose the question

of what universal properties characterize such phases and represent the

corresponding foliated fracton order. In other words, we aim to identify

properties of fracton models that remain invariant not only under smooth

deformations of the Hamiltonian, but also under the addition or removal of

gapped 2D layers.

As a first consideration, one can ask whether the ground state degeneracy

(GSD) on a 3D torus plays such a role. In a conventional topological phase, the

finite GSD (as a function of spatial topology) is indeed a universal quantity.

Conversely, for foliated fracton phases, the GSD is no longer constant, but

instead increases exponentially with linear system size and takes the generic

form

logGSD = aL+ b. (3.5)

This scaling form loses meaning in systems lacking a regular lattice structure

(e.g. a general triangulation), for which it is not obvious how to measure

L. Therefore, the GSD cannot serve as a universal quantity in the most

general case. When translation symmetry is preserved, the constant b is

an invariant of the phase while a does not have an absolute meaning as it

can be arbitrarily changed by changing the unit of length. In the presence

of translation invariance, b can potentially be used to distinguish between

di↵erent foliated fracton phases, although it only applies when the system

exists on a three-torus and depends sensitively on the periodic boundary

conditions.

We note that one aspect is in need of clarification: in Ref.[40], we discussed

the scaling of the GSD (in the form of Eq. 3.5) of the X-cube model on

various spatial 3-manifolds, and how its dependence can be interpreted as

a consequence of the topology of the foliating leaves and the topology of their

intersections. This discussion applies to the fixed point models studied in

Ref.[40]. Away from the fixed point, however, both constants a and b may

lose their meaning: a becomes ill-defined due to the arbitrariness in choosing

the unit of length, whereas b is not well-defined due to the existence of ‘small’
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logical operators near singularities which do not have an infinite size in an

infinite system.2

Alternatively, we aim to identify universal quantities that do not depend on

boundary conditions or translation invariance. For conventional topological

phases, the topological entanglement entropy [12, 21, 22] is known to be such

a quantity, and can be calculated from a local region in a ground state wave

function. In this paper, we seek to characterize foliated fracton phases using

a similar quantity. In the following subsections, we first briefly review the

notion of topological entanglement entropy and then specify explicit criteria

that must be satisfied by an entanglement quantity in order to universally

characterize foliated fracton order. In section 3.4, we present such a quantity.

3.3.1 Review of topological entanglement entropy

Recall that the entanglement entropy of a state | i with respect to a region

R is defined as the von Neumann entropy

SR = �tr (⇢R log ⇢R) (3.6)

of the reduced density operator ⇢R = trR | i h | where the subsystem R, the

complement of R, has been traced out. Because the model Hamiltonians we

discuss are Z2 stabilizer codes, it is convenient to take logarithms with respect

to base 2 throughout the paper. For ground states of gapped 2D systems, the

entanglement entropy takes the generic form

SR = ↵L� c� + . . . , (3.7)

where L is the length of the boundary @R, c is the number of connected

components of @R, ↵ is a non-universal constant, and the region R is assumed

to have a smooth boundary relative to the correlation length of the system [8,

16]. (The ellipsis represents contributions that vanish when L is large and @R

is smooth.) Whereas the dominant area law term is sensitive to the microscopic

details of the model, the topological contribution �c� is a universal feature of

generic topologically ordered ground states, and is referred to as the topological

entanglement entropy. Here � = logD whereD is the total quantum dimension

of the 2D topological order [21, 22]. For non-chiral orders, the origin of this

term has a simple interpretation in terms of the string-net condensate picture

2These ‘small’ logical operators occur in, for example, the foliation of S2 x S1 considered
in [40].
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[23] of 2D topological ground state wavefunctions: the net topological charge

of all strings crossing a component of @R must be trivial, resulting in non-local

correlations that correspondingly reduce the entropy of entanglement [22].

(a) (b)

Figure 3.1: (a) Square I(A;B;C) and (b) annular I(A;B|C) schemes to isolate
topological entanglement entropy in 2D.

It is possible to isolate the topological entanglement entropy �c� by taking

additive combinations of entanglement entropies of varying regions suitably

chosen to cancel the area law terms as well as local contributions that may arise

from sharp corners in the boundary of a region [21, 22]. Two such schemes for

extracting the topological term are depicted in Fig. 3.1. In each, three compact

regions (A, B, and C) with partially shared boundary are carved out of the

planar medium. For the square scheme (Fig. 3.1(a)), the quantum tripartite

information

I(A;B;C) ⌘ SA + SB + SC � SAB � SBC � SAC + SABC (3.8)

is used. AB denotes the composite of regions A and B. Each region’s entropy

contributes a single �� term, so in total I(A;B;C) = �� [21]. In the

annular scheme (Fig. 3.1(b)), the tripartite information reduces to the simpler

expression for the quantum conditional mutual information

I(A;B|C) ⌘ SAC + SBC � SC � SABC . (3.9)

Since the boundaries of regions C and ABC each have two components, it

follows that I(A;B|C) = 2� [21, 22]. Crucially, these entanglement quantities

remain unchanged under generalized local unitary (gLU) transformations

(Eq. 3.4) of the ground state. In this sense, they represent universal signatures

of the long-range entanglement structure of 2D topological orders, and can be

used to detect the order present in generic ground state wavefunctions away

from the RG fixed-point. Moreover, these quantities are topological invariants;
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i.e. they depend solely on the connectivity of the regions and not on their

geometry.

For ground states of gapped phases in 3D, the entanglement entropy of a region

R takes the generic form

SR = ↵A+ �L+ � + . . . , (3.10)

where in addition to the area law term ↵A (↵ is a non-universal constant and

A is the area of the boundary @R), a subleading correction, �L, linear in the

length L of the region may be present [13, 55]. The constant term � contains

both universal corrections as well as non-universal local contributions due to

the curvature of @R (manifesting in a correction proportional to �, the Euler

characteristic of @R) [10, 12]. For conventional gapped topological phases in

3D, the linear corrections vanish, and suitable generalizations of the 2D ABC

schemes serve as entanglement signatures of the topological order [4, 12].

3.3.2 Subleading linear corrections and foliation structure

Conversely, for foliated fracton phases (as well as simple decoupled stacks of

2D topological orders) the subleading linear corrections can not be ignored.

Previous work has employed similar schemes (Fig. 3.2) to isolate these linear

contributions from the dominant area law term [27, 38].

y

xz

(a) (b)

Figure 3.2: (a) 3D cube I(A;B;C) and (b) solid torus I(A;B|C) schemes.
In both cases the regions are contained within an overall cube of side length
L.

The results of these prescriptions are elucidated by the underlying foliation

structure of the fracton models; the surviving linear quantity is an additive

combination of topological entanglement entropies from the individual foliating

layers. For example, applying the cube and solid torus schemes (Fig. 3.2) to the

X-cube model yields the quantities I(A;B;C) = �L and I(A;B|C) = 2L+1,
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respectively [27]. The linear components arise from the toric code foliating

layers parallel to the xy plane, which intersect the cube and solid torus

schemes in the respective 2D square and annular schemes (Fig. 3.1), and thus

contribute �1 and 2 per unit length to these quantities respectively (as the

total quantum dimension of the toric code topological order is D = 2). The

foliation perspective of fracton phases therefore suggests that the linear term

in entanglement entropy is itself a non-universal feature of specific models,

as it absorbs the topological entanglement entropies of added layers of 2D

topological orders. Thus, we argue that these sub-extensive entanglement

quantities are not universal. (The constant component, excluding the

curvature contribution, is not universal either, which was pointed out in [27].)

These schemes can, however, be used to diagnose the underlying foliation

structure. Consider a model with underlying foliations labelled i = 1, 2, . . . , n,

where foliation i is composed of parallel leaves with separation 1/|Fi| and
orthogonal to the vector Fi. Each leaf is composed of a 2D topological order

with topological entanglement entropy �i = logDi. Then consider a tripartite

cube scheme (Fig. 3.2(a)) described by a vector L. For this scheme the overall

cube has side length |L|, and the front face is normal to L. Then

I(A;B;C) = �
X

i

�i|L · Fi|+O(1). (3.11)

Due to the non-linearity of this expression, the orientations of the underlying

foliations can be deduced by considering several such tripartite cubic schemes

with varying overall orientation.

For instance, consider the X-cube model. As discussed, a cubic scheme of size

L with the front face oriented normal to the x, y, or z direction will result in

a tripartite information of I(A;B;C) = �L. However, rotating the regions

such that the front face of the cube is normal to the (1, 1, 1) direction yields

I(A;B;C) ⇠ �L
p
3. These results are consistent with a foliation structure

aligned parallel to the xy, yz, and xz planes. (In order to rule out all other

possible foliation structures, schemes with additional orientations would have

to be examined in order to check consistency.) Conversely, for the X-cube

model on the stacked kagome lattice, there are four underlying foliations. The

stacked kagome lattice is built out of a stacked triangular Bravais lattice with

basis vectors x̂, ẑ, and ↵ =
�
1/2,

p
3/2, 0

�
. A cube scheme with the front face

normal to the z direction yields I(A;B;C) = �L, whereas schemes with the
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front face parallel to the planes spanned by ẑ and x̂, ẑ and ↵, or ẑ and ↵� x̂

will each yield I(A;B;C) ⇠ �2L/
p
3.

3.3.3 Criteria for universal entanglement quantity

In pursuit of universal characteristics, we are motivated to take an additional

step and identify an entanglement quantity I that satisfies the following

criteria:

1. All area law and local contributions to I cancel.

2. All contributions to I from the foliating layers must cancel. (This would

otherwise result in contributions that scale linearly with subsystem size.)

3. I attains non-zero value for non-trivial foliated fracton phases (including

conventional topological phases).

We note that the first and second criteria together are equivalent to demanding

that I vanishes for arbitrary product states as well as simple decoupled

stacks of 2D topological states. Thus, in accordance with the definition of

foliated fracton phases discussed in the previous section, these criteria merely

codify the requirement of a universal quantity that it is invariant under gLU

transformations augmented with the free addition or removal of 2D topological

resource states.

3.4 Universal schemes for foliated fracton phases

In this section we introduce a family of novel entanglement schemes with the

above criteria in mind, and apply these prescriptions to a handful of stabilizer

code models, revealing universal signatures of foliated fracton order.

3.4.1 Wireframe schemes

These prescriptions employ a set of regions whose union forms a solid

wireframe region which is aligned with the foliating layers and supports closed

branching string operators in the shape of the wireframe. The quantities

considered are the quantum conditional mutual information I(A;B|C)

and the quantum conditional four-partite information I(A;B;C;D|E) for

choices of regions depicted in Fig. 3.3. By definition, I(A;B;C;D|E) =

I(A;B;C;D)�I(A;B;C;D;E) where I(A;B;C;D) and I(A;B;C;D;E) are
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(a) Cubic
I(A;B|C)

(b) Cubic
I(A;B;C;D|E)

(c) Triangular
prism I(A;B|C)

(d) Tetrahedral
I(A;B|C)

Figure 3.3: (a) Cubic I(A;B|C), (b) cubic I(A;B;C;D|E), (c) triangular
prism I(A;B|C), and (d) tetrahedral I(A;B|C) entanglement schemes for
foliated fracton phases. (d) Stabilizer for the Chamon model defined on a
cubic lattice with one qubit per vertex (inset).

the quantum four-partite and five-partite information respectively. Explicitly,

I(A;B;C;D|E) ⌘ �SE + SAE + SBE + SCE + SDE

� SABE � SBCE � SCDE � SACE � SBDE � SADE (3.12)

+ SABCE + SABDE + SACDE + SBCDE � SABCDE.

I(A;B|C) is defined in (3.9). Following the arguments of Refs. [21, 22], these

schemes directly cancel the area law and local contributions of each boundary

region. As discussed in the previous section, to ensure the cancellation of the

subleading linear corrections, it is su�cient to guarantee that no foliating

layer contributes a non-zero topological entropy. Each of our schemes is

designed such that no layer intersects all regions of the scheme, ensuring

that the contributions of each foliating layer, to the quantities I(A;B|C) and

I(A;B;C;D|E), vanish. These quantities thus capture a universal feature of

the long-range entanglement structure.

We have computed their values numerically for the stabilizer code models

listed using the methods introduced in [9]. (Details of these computations are

contained in Appendix 3.6; a review of the models considered is contained in

Appendix 3.7.) The results are summarized in Table 3.1. As can be seen, the

tetrahedral and triangular-prism schemes yield non-zero values only for the

Chamon model and the stacked kagome X-cube model respectively, owing to

their unique foliation structures.

For the 3D toric code, these values can be understood in terms of the

string condensate picture of the ground state wavefunction. Given a region
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Cubic Cubic Triangular Tetrahedral
I(A;B|C) I(A;B;C;D|E) prism I(A;B|C) I(A;B|C)

2D toric code stack 0 0 0 0
3D toric code 0 1 0 0
X-cube model 1 1 0 0

Kagome X-cube† 1 1 1 0
Checkerboard model 2 2 0 0

Chamon model‡ 1 1 0 1

Table 3.1: Entanglement quantities for the wireframe schemes discussed
(Fig. 3.3). Logarithms (in Eq. (3.6)) are calculated in base 2. Models are
reviewed in Appendix 3.7. †In order to attain a non-zero value for the kagome
lattice X-cube model [43], the regions must be slanted in accordance with the
foliation structures so that the wireframe actually forms a parallelepiped (see
Fig. 3.4(c)). ‡Here we have modified the Chamon model so that it is defined on
a cubic lattice with one qubit per vertex. The lone stabilizer term is depicted
in Fig. 3.3(d).

(a) (b)
(c)

Figure 3.4: A side-view of the cubic entanglement regions (green)
from Fig. 3.3(a-b) for di↵erent possible orientations with respect to the
foliating layers (red). (a) Proper alignment on a cubic lattice, yielding
the values Table 3.1. (b) Improper alignment, for which entanglement
quantities I(A;B|C) = I(A;B;C;D|E) = 0. (c) Top-down view of a
properly aligned solid wireframe on a stacked-kagome lattice, which yields
I(A;B|C) = I(A;B;C;D|E) = 1 for the kagome X-cube model [43] as per
Table 3.1.
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R, each component of @R must be pierced by an even number of strings,

which decreases the Schmidt number of the reduced density operator ⇢R by

1 and thus contributes �1 to SR per boundary component. The three-region

wireframe schemes each contain four positive and four negative topological

contributions, and hence I(A;B|C) vanishes, whereas in the five-region scheme

I(A;B;C;D|E) = 1 due to nine positive contributions and eight negative

contributions.

Intriguingly, for the foliated fracton models, this relation no longer holds,

implying that the universal contribution to the entanglement entropy of a

region is not simply proportional to the number of boundary components.

Moreover, we find that I(A;B|C) and I(A;B;C;D|E) are not invariants of the

region topology, but rather depend intimately on their geometry; for example,

simply rotating the overall figures such that the wireframes do not align with

the axes of the foliation structure causes both quantities to vanish for all of

the foliated fracton models considered (see Fig. 3.4). However, the quantities

are invariant under changes in the overall size and thickness of the wireframe

as well as generic ‘small’ deformations of the regions.

3.4.2 Lower bounds on conditional mutual information

The existence of closed branching string operators supported by the solid

wireframe shape can be used to establish a lower bound on the conditional

mutual information I(A;B|C) via the methods introduced in [38]. These

bounds are saturated by the values reported in Table 3.1. In particular, given

the existence of unitary operators Ui, Udef
i , and Wi (for i = 1, . . . , n) that

satisfy the following conditions:

Ui ⇢ AC Ui | i = Udef
i | i UiWi = �WiUi

Udef
i ⇢ BC Wi | i = | i UiWj = WjUi if i 6= j (3.13)

Wi ⇢ ABC,

where | i is a ground state of the model and Ui ⇢ AC indicates that Ui has

support in AC, the following inequality is satisfied [38]:

I(A;B|C) � n. (3.14)

For the fracton models considered under our schemes, Wi can be chosen to

be a closed branching string operator in the shape of the wireframe, piercing
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(a) (b)

Figure 3.5: Operators satisfying the conditions of Eq. (3.13) which can be
used to bound I(A;B|C) for the cubic scheme depicted in Fig. 3.3(a). (a)
For the X-cube model (Fig. 3.7(c)), I(A;B|C) � 1 is obtained by taking W1

to be a product of X operators along the blue lines, and U1 and Udef
1 to be

products of Z operators over all links that penetrate the red and yellow regions,
respectively. For the checkerboard model (Fig. 3.7(d)), I(A;B|C) � 2 can be
obtained by taking W1 (W2) to be a product of X (Z) operators along the blue
lines, and U1 and Udef

1 (U2 and Udef
2 ) to be products of Z (X) operators over the

red and yellow surfaces, respectively. I(A;B|C) � 1 can similarly be obtained
for the Chamon model (Fig. 3.7(e)) using a tetrahedal-shaped geometry, but
each operator will contain a mix of X, Y , and Z Pauli operators. (b) Another
view with subsystem C (green) hidden for clarity.

open membrane operators Ui and Udef
i , which create fractonic excitations in

identical locations. As an example, in Fig. 3.5 we depict unitary operators

that apply to the cubic entanglement scheme for the X-cube, checkerboard,

and Chamon models.

3.5 Discussion

In this paper, we have identified multi-partite entanglement quantities that

represent universal signatures of zero-temperature foliated fracton order, and

thus characterize the corresponding foliated fracton phases. These schemes

are borne of the observation that layers of 2D topological orders serve as

resources in the RG transformations for certain fracton models. These layers

constitute an underlying foliation structure which is, by design, invisible to the

entanglement quantities we consider. The non-zero values they attain for the

X-cube, kagome lattice X-cube, and checkerboard models are a manifestation

of the non-trivial long-range entanglement structure present in the ground
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states of these exotic phases of matter. Nonetheless, an understanding of the

universal properties of these phases is still far from complete. Whereas for

conventional topological orders a complete picture of universal characteristics

is described in terms of quasiparticle sectors and their braiding statistics,

elegantly packaged in the framework of topological quantum field theory

(TQFT), it remains unclear which set of properties fully characterize foliated

fracton orders, and what mathematical framework underlies the classification

of these phases.

On the other hand, the related fractal spin liquids, i.e. type-II fracton

models, remain largely enigmatic. To begin with, it is not clear in what

sense these models even represent phases of matter. What is apparent is

that, like conventional topological orders and foliated fracton orders, the

ground states of fractal spin liquids exhibit highly non-trivial patterns of long-

range entanglement. It remains an open question whether the entanglement

structure present in these models can be captured by similar universal

quantities. The foliated fracton models are also related (via Higgs and partial

confinement mechanisms [3, 24]) to higher-rank U(1) gauge theories with

fractonic charge excitations [11, 25, 30–32, 34–36, 52]. The entanglement

structure of these gapless models[33] is another potentially interesting avenue

of future research.

3.6 Appendix: Numerical calculations

In this appendix, we briefly discuss details of the numerical calculations used

to obtain the results of Table 3.1. Each model considered is a stabilizer code

model, i.e. the Hamiltonians are sums of products of Pauli matrices where

each term commutes with all other terms and has eigenvalue �1 in the ground

state. For this class of exactly solvable models, entanglement entropies can be

computed numerically (in polynomial time with subsystem size) using the

methods introduced in [9]. Fig. 3.6 illustrates the lattice geometries that

realize the entanglement subsystems in Fig. 3.3. For the toric code and X-

cube models, multiple edges are grouped together appropriately to form unit

cells.

As discussed in the main text, it is crucial that the subsystems are aligned with

the foliating layers (see Fig. 3.4). For the X-cube and checkerboard models, the

foliating layers are the xy, xz, and yz planes; therefore the cubic entanglement
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.6: Geometries used to check Table 3.1 on a computer. Each point
represents a unit cell of the lattice model that is included in the subsystem
of the given color. (a-c) Lattice implementations of the cubic I(A;B;C;D|E)
scheme for three di↵erent sizes of subregions. The cubic and triangular-prism
I(A;B|C) scheme implementations are similar. (d-f) Lattice implementations
of the tetrahedral I(A;B|C) scheme. Since we used stabilizer models, no entry
in Table 3.1 depended on the subsystem sizes.

schemes must be aligned with these axes (as per Fig. 3.4(a-b)). For the X-cube

model on the stacked kagome lattice, the cubic wireframe must be tilted so that

it is actually a parallelepiped in order to yield a non-zero value (see Fig. 3.4(c)),

and similarly the triangular prism must be aligned with the underlying stacked

triangular Bravais lattice. For the Chamon model, it is actually convenient to

redefine the model on a cubic lattice (as in Fig. 3.3(d)). For liquid topological

models, such as the 3D toric code, there is no (non-trivial) foliation structure

and thus the orientation of the subsystems does not matter.

3.7 Appendix: Model Hamiltonians

This appendix contains a review of the models discussed in the paper. Each

of these models is a qubit stabilizer code, meaning that the Hamiltonian is

composed of mutually commuting products of Pauli operators.

The 2D toric code, originally introduced in [19], is defined on a square lattice
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Figure 3.7: Hamiltonian terms for the stabilizer code models discussed.

with one qubit per edge, and has Hamiltonian

H = �
X

v

Av �
X

p

Bp (3.15)

where v runs over all vertices and p runs over all elementary plaquettes, Av

is a product of Pauli Z operators over the edges adjacent to v, and Bp is a

product of Pauli X operators over the edges of p (see Fig. 3.7(a)). As a natural

generalization, the 3D toric code has one qubit degree of freedom on each edge

of a cubic lattice. The Hamiltonian is defined similarly, except there are three

orientations of plaquettes, and the Av term is modified to a six-spin interaction

(as shown in Fig. 3.7(b)).

The X-cube model is likewise defined on a cubic lattice with one qubit per
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edge. The Hamiltonian takes the form

H = �
X

v

(Axy
v + Ayz

v + Azx
v )�

X

c

Bc (3.16)

where v runs over vertices and c runs over elementary cubes. Here Axy
v is a

product of Z operators over the edges adjacent to v in the x and y directions,

whereas Bc is a product of X operators over all edges of c (see Fig. 3.7(c)).

As discussed in [43], it is possible to generalize the X-cube model to a stacked

kagome lattice (as well as other lattice geometries), again with one qubit per

edge. As each vertex of the stacked kagome lattice is locally isomorphic to a

cubic lattice vertex, in the generalized model there remain three vertex terms

which are fourfold products of Z operators. However, the cube terms are

replaced by generalized 3-cell terms for each elementary volume of the lattice

(triangular and hexagonal prisms), which are likewise products of X operators

over all edges of the 3-cell.

Finally, the checkerboard and Chamon models are both defined on a cubic

lattice with one qubit per vertex. For the checkerboard model, the elementary

cubes are divided into 3D checkerboard A-B sublattices. The Hamiltonian is

composed of two terms for each cube in the A sublattice: the first is a product

of Pauli X operators over all vertices of the cube, whereas the second is a

product of Pauli Z operators over all vertices of the cube (see Fig. 3.7(d)). For

the Chamon model, there is one stabilizer term per unit cell, as depicted in

Fig. 3.7(e).
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C h a p t e r 4

FOLIATED FRACTON ORDER FROM GAUGING
SUBSYSTEM SYMMETRIES

4.1 Introduction

Gauging is a powerful tool in the study of gapped quantum phases with

global symmetry. When gauging the global symmetry of a system, gauge

fields corresponding to the symmetry group are added to the system so

that the global symmetry can be enhanced to a local symmetry. It is

useful to consider such a procedure because di↵erent phases under global

symmetry map into di↵erent phases of the gauge theory. Symmetric (e.g.

paramagnetic) phases map into deconfined gauge theories while symmetry

breaking phases map into a Higgsed gauge theory. Di↵erent symmetry

protected topological (SPT)/symmetry enriched topological (SET) phases

map into di↵erent deconfined gauge theories with di↵erent statistics among

the gauge fluxes (see, e.g., Refs. [15, 18]).

Recently, it has been realized that a similar gauging procedure can be applied

to systems with subsystem symmetries as well [8, 17, 46, 50, 51, 54, 55].

Subsystem symmetries are symmetries with generators that act non-trivially

only on a sub-manifold of the system. After gauging, the system is mapped to

a model with ‘fracton order’ [1, 2, 4, 6, 7, 9, 11–14, 21–23, 25–28, 36–39, 42–44,

47–50, 53]. This relation has been demonstrated for various classical/quantum

spin models, stabilizer codes, domain-frame condensate models, etc. In this

paper, we summarize and make explicit the general gauging procedure. That

is, we describe explicitly a systematic procedure for gauging models with

subsystem symmetries which can be applied to any local quantum model with

such symmetry. In particular, the gauge fields are added at the center of

‘minimal’ coupling terms which are not on-site symmetric and which generate

all other non-on-site-symmetric coupling terms. A modified Hamiltonian can

then be written with enhanced local symmetry and with dynamical terms for

the gauge field, which defines the gauge theory. We focus on abelian symmetry

groups only in this paper.

The next key question is: what is the relation between the ungauged order
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under subsystem symmetry and the gauged fracton order? To address this

question, we study the mapping between ungauged and gauged phases (several

of these examples have been studied in the previous literature[8, 17, 46,

50, 51, 54, 55]) and propose a way to interpret the correspondence. In 2D

and 3D, gauging linear subsystem symmetries (which act on 1D lines) maps

paramagnetic (trivially symmetric) phases and symmetry breaking phases

into one another, while subsystem symmetry protected topological (SPT)

phases[54] may map into themselves. This is similar to the case of global

symmetries in 1D, where paramagnets are mapped into symmetry breaking

phases, and SPT phases can map into SPTs. In 3D, gauging planar subsystem

symmetries leads to foliated fracton order, as defined in Refs. [38, 39]. In

particular, symmetry charges that transform under planar symmetries in one,

two or three directions map directly to planon, lineon and fracton charge

excitations, which are restricted to move only in a plane, along a line, or

which cannot move at all. The restricted motion of the charge excitations in

the fracton model hence originates from the requirement to preserve subsystem

symmetries in the ungauged model. By counting the species of symmetry

charges in the ungauged model, we can make direct connection to the foliated

fracton order after gauging. For example, it was shown in Ref. [50] that gauging

the (paramagnet phase of) the plaquette Ising model and the tetrahedral Ising

model results in the X-cube and the checkerboard model respectively. By

counting symmetry charges, we can see that the checkerboard model should

be equivalent to two copies of the X-cube model. We present the mapping

between the two in Ref. [40] and in section 4.4, we explain how counting

symmetry charges leads to the same conclusion.

Figure 4.1: Correspondence of foliation structure in 3D systems with planar
subsystem symmetry and 3D foliated fracton models.

Given the analogous foliation (or layered) structure in 3D models with planar
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subsystem symmetry and 3D foliated fracton phases, there is a natural

correspondence. As shown in Fig. 4.1, for 3D models with planar subsystem

symmetry, to increase the system size by one lattice spacing in the direction

of one set of planar subsystem symmetries, it is necessary to add degrees of

freedom (DOFs) on an entire plane and increase the number of generators of

subsystem symmetries by one. The added planar subsystem symmetry acts as

a global symmetry on the added plane. On the other hand, as we discussed in

Ref. [38, 39], for 3D foliated fracton phases, to increase the system size by one

lattice spacing along one of the foliation axes, it is necessary to add a layer

containing a gapped 2D topological state as a resource. Thus, it is natural

that subsystem symmetry symmetric states gauge into foliated fracton models

since the added layer gauges into a deconfined 2D gauge theory with gapped

topological order.

The paper is organized as follows: In section 4.2, we briefly review

the procedure of gauging global symmetries using as an example the 2D

paramagnetic state. Section 4.3 then discusses the generalized gauging

procedure that can be applied to systems with subsystem symmetries in a

systematic way. Multiple examples (including examples that have appeared

in the previous literature) are discussed to show how the procedure works in

di↵erent situations. Section 4.4 studies the correspondence between phases

with subsystem symmetries and the phases of their gauged theories through

multiple examples and the result is summarized in Table 4.1 in section 4.5.

4.2 Review: Gauging global symmetry

First, we give a brief review of the procedure for gauging global symmetries

(for more careful discussions see, e.g., Refs. [16, 18]). We consider the simplest

example: the transverse field Ising model with global Z2 symmetry, coupled

to a Z2 gauge field. The Hamiltonian takes the simple form of

H = �Jx
X

v

�x
v � Jz

X

hvwi

�z
v�

z
w (4.1)

where the �’s are Pauli matrices on each lattice site (blue dots in Fig. 4.2) and

hvwi denotes nearest neighbor pairs. The system has a global Z2 symmetry

of U =
Q

v �
x
v . To couple the model to a Z2 gauge field, we introduce gauge

field degrees of freedom ⌧ on each link of the lattice (green dots in Fig.4.2).

⌧x corresponds to (the exponential eiE of) the ‘electric field’ of the gauge field

and ⌧ z corresponds to (the exponential of) the ‘vector potential’ of the gauge
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field. The local symmetry, or the Gauss’s law, is given by Av = �x
v

Q
e3v ⌧

x
e

where the product is over all edges e with v as one end point.

Figure 4.2: Gauging global Z2 symmetry in 2D. (a) Vertex Av = �x
v

Q
e3v ⌧

x
e

and plaquette Bp =
Q

e2p ⌧
z
e terms that appear in Eq. (4.2). (b-c) String

operators.

Next, we couple H to the gauge fields such that the new Hamiltonian is

invariant under the local symmetry transformations Av. The transverse field

terms �x
i are already invariant under the local symmetries, so we do not need

to modify them and simply include them in the new Hamiltonian. The Ising

coupling terms �z
i �

z
j need to be replaced with �z

i ⌧
z
ij�

z
j in order to be gauge

invariant (i.e. commute with the Av term). Besides that we add the vertex

term Av = �x
v

Q
e3v ⌧

x
e at every vertex v to enforce gauge symmetry (Gauss’s

law) and Bp =
Q

e2p ⌧
z
e , where the product is over all edges around a plaquette

p, to enforce the zero flux constraint on every plaquette. The total Hamiltonian

then reads

Hg = �Jx
X

v

�x
v � Jz

X

hvwi

�z
v⌧

z
vw�

z
w � Jv

X

v

�x
v

Y

e3v
⌧xe � Jp

X

p

Y

e2p
⌧ ze . (4.2)

When Jz = 0, the Ising model H is in the symmetric paramagnetic phase.

After gauging, it maps to the deconfined phase of the Z2 gauge theory. This

can be seen by noticing that when the energy of the
P

v �
x
v term is minimized,

the gauged Hamiltonian reduces to

HTC = �Jv
X

v

Y

e3v
⌧xe � Jp

X

p

Y

e2p
⌧ ze (4.3)

which is exactly the toric code Hamiltonian representing the deconfined phase

of the Z2 gauge theory. The low energy excitations include a bosonic gauge

flux, which corresponds to the violation of one
Q

e2p ⌧
z
e term, and a bosonic

gauge charge, which corresponds to the violation of one
Q

e3v ⌧
x
e term. These
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two excitations can be created with string operators shown in Fig. 4.2b-c. They

braid with each other with a phase factor of �1, which is the Aharonov-Bohm

phase factor in the Z2 case.

When Jx = 0, the Ising model H is in the symmetry breaking ferromagnetic

phase. After gauging, it maps to the Higgsed phase which lacks non-trivial

topological order. This can be seen by noticing that when Jx = 0, Hg has a

unique ground state and no fractional excitations.

This gauging procedure can be applied to any local quantum Hamiltonian

on any lattice satisfying a global symmetry G by introducing gauge fields on

the links of the lattice, enforcing gauge symmetry (Gauss’s law), modifying

interaction terms to be gauge invariant, and finally including a flux term for

the gauge field. By doing so, we obtain a gauge theory of group G. The

properties of the gauge theory can be determined from the ungauged model

in the following ways:

1. If the symmetry is spontaneously broken in the ungauged model, then

the gauge theory is Higgsed with trivial topological order.

2. Otherwise, the deconfined gauge charge comes from the symmetry

charge. The deconfined charges are either bosonic or fermionic,

depending on whether the symmetry charges in the ungauged model

are bosonic or fermionic.

3. The deconfined gauge flux comes from the symmetry flux, except it is

dynamical. The statistics of the gauge flux depends on the particular

order (SPT/SET) of the ungauged model. Some interesting examples

include: gauging the Z2 fermion parity symmetry in the 2D chiral

p + ip superconductor results in a non-abelian flux; also, gauging the

2D bosonic SPT with Z2 symmetry results in a semionic flux.

4. The braiding statistics between a gauge charge and a gauge flux is

independent of the original order; it is given by the Aharonov-Bohm

phase factor, which is determined by the symmetry group. For example,

in a ZN gauge theory, the phase factor between an elementary charge

and an elementary flux is ei2⇡/N .

5. In 1D, gauge theories are not topologically ordered. Symmetry breaking

and trivial SPT phases map into each other upon gauging. Non-trivial
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SPT phases can map to themselves upon gauging. (We briefly review

the gauging of 1D phases in appendix 4.6.)

4.3 Gauging subsystem symmetry: general procedure

How do we gauge models with subsystem symmetries? The simplest example

of a system with subsystem symmetry is an Ising paramagnet on a cubic

lattice (corresponding to the plaquette Ising model in Ref. [50]). Consider a

cubic lattice with spin 1/2 degrees of freedom at each lattice site (blue dots in

Fig. 4.3). The Hamiltonian is simply given by H =
P

v �
x
v . This Hamiltonian

is invariant under planar subsystem symmetries

UXY
n =

Y

v2PXY
n

�x
v UY Z

n =
Y

v2PY Z
m

�x
v UZX

n =
Y

v2PZX
n

�x
v . (4.4)

where PXY
n labels the XY plane with Z direction coordinate n and similarly

for P Y Z
n and PZX

n . Throughout this paper, we use X, Y , Z to label spatial

directions and x, y, z to label spin directions.

(a) (b) (c)

Figure 4.3: Gauging planar symmetry on a cubic lattice. (a) The minimal
symmetric coupling term: a product of four �z around a plaquette (of the
cubic lattice of blue spheres). A gauge field ⌧ (green sphere) is therefore
placed at the center of the plaquette, and all other plaquettes. The gray lines
form the dual lattice. (b) The red vertex is involved in the twelve minimal
coupling terms highlighted by red squares. The gauge symmetry term is a
product of a �x at the red sphere and twelve ⌧x on the green spheres. (c) The
product of four minimal coupling terms around the four blue plaquettes is the
identity. The corresponding flux term is a product of four ⌧ z on the green
spheres.

This model (with additional plaquette terms) was originally considered in

Ref. [50]; however, we are not including the Ising coupling term here for

simplicity of discussion. To gauge it, Ref. [50] proposed to add a gauge degree
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of freedom ⌧ at each face-center of the cubic lattice (green dots in Fig. 4.3).

The gauge symmetry is then given by

Av = �x
v

Y

f3v

⌧xf (4.5)

which is the product of a symmetry charge �x
v at a site v and the (twelve)

electric gauge fields ⌧xf on the neighboring faces f . The gauge flux terms, which

are minimal pure vector potential terms that satisfy the gauge symmetry, now

involve the product of four ⌧ z’s as shown in Fig. 4.3. The gauged Hamiltonian

takes the form

Hg = �
X

v

�x
v �

X

v

Av �
X

c

�
BXY

c +BY Z
c +BZX

c

�
(4.6)

Since the symmetry charges are fixed by the transverse field �x (in the

ground state), the zero temperature phase of the gauged Hamiltonian becomes

equivalent to that of the X-cube model [50].

However, for generic systems with subsystem symmetry the degrees of freedom

may be located at di↵erent places in the lattice and may transform under the

subsystem symmetry in di↵erent ways. For example, in Ref. [50], an example

was discussed where the ungauged model contains DOFs at the vertices and

at the face centers of a cubic lattice, where the subsystem symmetry acts on

planes with integer and half integer coordinates (in units of the cubic lattice

constant). Ref. [55] discussed an example where the DOFs lives both at the

vertices and body centers; the ones at vertices transform under subsystem

symmetry in one direction only. For a generic configuration of lattice structure

and DOFs, where should the gauge fields be added and how should the gauge

symmetry of the gauged model be defined?

4.3.1 General procedure

We will now outline a gauging procedure that is consistent with the gauging

procedure for global symmetry[16, 18] and various previous works for gauging

subsystem symmetries. The input to the procedure is a lattice of degrees

of freedom (in a Hilbert space), a set of symmetry operators, and a model

H =
P

h that is symmetric under the symmetry. We will focus on abelian

groups only in this paper.

Suppose that the on-site symmetry charge at each site is measured by �x
v (in
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general the charge does not have to be a Z2 charge, although we use the �

notation without loss of generality). The procedure is as follows:

1. Find the minimum coupling terms c that a) are not on-site symmetric; b)

are a tensor product of operators carrying elementary symmetry charges

at each site; and which, c) together with on-site symmetric terms, can

be composed into any coupling term satisfying the symmetry. (Note

that these minimum coupling terms are not necessarily included in the

Hamiltonian; they are used only to locate the gauge degree of freedom

in the next step.)

2. Assign a gauge degree of freedom ⌧c at the center of each minimum

coupling term. (⌧xc can be thought of as the exponential eiE of the

electric field E, while ⌧ zc is the exponential of the vector potential. ⌧ can

be a general gauge field, not just a Z2 one.)

3. The gauge symmetry is given by Av = �x
v

Q
c3v ⌧

x
c , where the product is

over all minimum coupling terms c that contain v.

4. All symmetric coupling terms h can then be made into gauge symmetric

terms hg by multiplying each minimal coupling factor in h by a ⌧ zc .

5. The minimum coupling terms will usually not be independent of each

other. Or sometimes, gauge fields are added for non-minimum coupling

terms as well. In such cases, we then find independent minimum sets

C of coupling terms c 2 C whose product is either the identify or a

product of on-site symmetric terms �x.1 Correspondingly, the product

BC =
Q

c2C ⌧
z
c becomes the flux term of the gauge field if it is a local

term.

In this way, we can gauge a model H =
P

h with global or subsystem

symmetry into a gauge theory Hg =
P

h0 �
P

v Av �
P

C BC. Let us consider

some examples to see how this works.

1
Products of on-site symmetric terms can result for example when choices of minimal

couplings terms contain �x
.
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4.3.2 Example: global symmetry

For global symmetry, the minimum symmetric coupling term is a nearest

neighbor two-body term of the form OiO0
j where Oi carries charge e and O0

j

carries charge �e. Other symmetric coupling terms, including non-nearest-

neighbor two-body terms and multi-body terms, can all be constructed as

composites of the nearest-neighbor two-body terms and on-site symmetric

terms. Therefore, the gauge DOFs are assigned to each link of the lattice.

The gauge symmetry term involves one lattice site and all the emanating

links. The set of two-body terms around the same plaquette combine into

on-site symmetric terms; therefore we have one flux term per plaquette. This

is exactly the gauging procedure we reviewed in Sec. 4.2. Changing the lattice

structure corresponds to choosing a di↵erent set of minimum coupling terms,

which does not a↵ect the nature of the gauge theory obtained.

4.3.3 Example: 3D planar symmetry on a cubic lattice

For the subsystem symmetry example discussed above (DOFs at vertices of

cubic lattice, transforming under planar symmetry in three directions), the

minimum symmetric coupling term is the four-body plaquette term
Q

v2p �
z
v ,

as shown in Fig. 4.3a. All other symmetric coupling terms can be obtained as

composites of such plaquette terms and on-site symmetric terms. Therefore, as

suggested in Ref. [50], we can add one gauge field per plaquette. Each vertex is

involved in 12 minimum coupling terms; therefore the gauge symmetry term is

a product of one �x and twelve ⌧x (Fig. 4.3b). Four minimum coupling terms

around the same cube combine into identity as shown in Fig. 4.3c; therefore

we have the corresponding flux terms. This is exactly the gauging procedure

we reviewed at the beginning of this section [Sec. 4.3].

4.3.4 Example: 3D planar symmetry on a FCC lattice

Consider the situation corresponding to the tetrahedral Ising model discussed

in Ref. [50], as shown in Fig. 4.4. Besides the DOF �v at vertices of the

cubic lattice, there are DOF �f at the faces of the cubic lattice. Subsystem

symmetry acts on each XY , Y Z and ZX direction plane either with integer
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or half integer coordinates.:

UXY
n =

Y

v,f2PXY
n

�x
v�

x
f ,

UY Z
n =

Y

v,f2PY Z
n

�x
v�

x
f ,

UZX
n =

Y

v,f2PZX
n

�x
v�

x
f

UXY
n+1/2 =

Y

f2PXY
n+1/2

�x
f ,

UY Z
n+1/2 =

Y

f2PY Z
n+1/2

�x
f ,

UZX
n+1/2 =

Y

f2PZX
n

�x
f .

(4.7)

The minimum coupling terms, as shown in Fig. 4.4a, are the tetrahedral terms

involving one �z
v and three �z

f ’s. All other symmetric coupling terms, including

four-body terms of �z
v ’s and four-body terms of �z

f , can all be constructed from

this minimum coupling term. Therefore, as discuss in Ref. [50], one gauge DOF

⌧ is to be assigned to each tetrahedron. The gauge symmetry terms are the

product of one �x together with the eight ⌧x’s in the surrounding tetrahedrons

(Fig. 4.4b). The product of the same eight tetrahedron minimum coupling

terms also happens to be the identity; therefore, we have the product of eight

⌧ z’s as the flux term (Fig. 4.4b). If the � DOF are all polarized by ��x, the

gauged model becomes exactly the same as the checkerboard model.

4.3.5 Example: 3D planar symmetry on a BCC lattice

Now consider the situation described in Ref. [55], where there is one DOF

�0 at each cube center and three DOFs �a, �b, �c at each vertex, as shown

in Fig. 4.5. �0 transforms under subsystem planar symmetries in all three

directions while �a, �b, and �c transform only under symmetries in XY , Y Z,

and ZX planes, respectively. An XY -plane subsystem symmetry generator

is a product of all �x
0 in a particular XY plane (PXY

m+1/2) with Z coordinate

m + 1/2 and all �x
a in the two neighboring XY planes (PXY

m and PXY
m+1) with

Z coordinate m and m+ 1:

UXY
m+1/2 =

Y

i2PXY
m+1/2

�x
0,i

Y

j2PXY
m

�x
a,j

Y

k2PXY
m+1

�x
a,k (4.8)
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(a) (b)

Figure 4.4: Gauging planar symmetry on FCC lattice. (a) A minimal
symmetric coupling term: a product of four �z at the corners of the red
tetrahedron. A gauge field ⌧ (green sphere) is placed at the center of
tetrahedron. Within the above cube, there are eight tetrahedra (one for each
corner of the cube) and gauge fields. The gray lines form the dual lattice. (b)
The red vertex is involved in the eight minimal coupling tetrahedron terms
centered at the green spheres. The gauge symmetry term is thus a product of
a �x at the red sphere and eight ⌧x on the green spheres. The product of the
eight minimal coupling tetrahedron terms is the identity. The corresponding
flux term is a product of eight ⌧ z on the green spheres.

UY Z and UZX are defined in similar ways. The minimum coupling terms are

the triangular terms shown in Fig. 4.5a. All other symmetric coupling terms

can be composed from these minimum coupling terms. Therefore, to gauge the

model, we need to assign one gauge DOF ⌧ per triangle. The gauge symmetry

terms are then the product of one �x
0 with 24 ⌧x’s around it (Fig. 4.5b), and

the product of one �x
a (or �x

b , �
x
c ) with four ⌧x’s around it (Fig. 4.5c). The

product of four triangular coupling terms is the identity, therefore we have the

product of the corresponding four ⌧ z’s as the flux term (Fig. 4.5d). This is the

minimum gauging scheme for such a distribution of symmetry charges.

We could add gauge fields corresponding to non-minimum coupling terms as

well. This is what was done in Ref. [55], where a gauge field is added for each

four-body plaquette coupling term of the �0’s. Since this four-body term can

be obtained by composing two triangular terms, this results in one more type

of gauge flux term corresponding to the product of the ⌧ z associated with these

three coupling terms (one plaquette and two triangular terms).

4.3.6 Example: 3D scalar charge tensor gauge theory

The previous examples have considered gauging various gapped qubit models

with planar symmetries. However, the gauging procedure in Sec. 4.3.1 can



71

(a) (b) (c) (d)

Figure 4.5: Gauging planar symmetry on BCC lattice. (a) A minimal
symmetric coupling term: a product of two �z

0 and one �z
c . The black lines

form the cubic lattice, while the gray lines form the dual lattice. There are 12
minimal coupling terms within the shown dual-lattice cube: one for each gray
edge of the cube. For the other terms, the �z

c at the center becomes a �z
a or

�z
b when the two �z

0 are displaced in the x or y direction, respectively. (b) The
body-center is involved in 4 ⇥ 6 minimal coupling terms, which are centered
at the green spheres, which lie on the faces of the black cube. (The orange
lines are guides for the eye.) The gauge symmetry term is therefore a product
of a �x at the center and 24 ⌧x on the green spheres. (c) The �z

c operator in
the center is involved in 4 minimal coupling terms (highlighted in red). The
gauge symmetry term is therefore a product of a �x

c at the center and four ⌧x

on the green spheres. (d) The product of the four minimal coupling triangular
terms is the identity. The corresponding flux term is a product of four ⌧ z on
the four green spheres.

also be used to obtain the gapless U(1) tensor gauge theory models [10, 20,

24, 29–35, 52], which also have fractons, lineons, and planons. In this case, the

gauging procedure is very closely related to the Higgs mechanisms discussed in

[5, 19]. In these U(1) models, one can gauge a disordered field theory that has

various kinds of global charge conservations laws. Similar to the previously

discussed models, the conservation laws for the U(1) models also result in

mobility restrictions [33].

As an example, in this section we will consider gauging the following matter

Hamiltonian

H =

Z
⇡2 +

X

ab

(@a@b�)
2 (4.9)

which has a global symmetry that results in a conserved dipole moment

P a =

Z
xa ⇡ (4.10)

since [H,P a] = 0, where � and ⇡ are conjugate fields: [�(x), ⇡(x0)] =

i �3(x � x0). In this section, Latin letters a, b, i, j = 1, 2, 3 denote spatial

indices. Repeated indices are implicitly summed.
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We will now follow the general gauging procedure. For clarity, we will number

the steps to match those in Sec. 4.3.1.

1) The minimal coupling operators that respect the symmetry are

@a@b� (4.11)

That is, [@a@b�, P c] = 0, and all other local terms that commute with P a can

be written as a polynomial in @a@b� and ⇡.

2) Since the minimal coupling operator is a symmetric tensor, we introduce a

symmetric tensor gauge field Aab, which is conjugate to an electric field Eab:

[Aab(x), Eij(x0)] = � i
2(�

i
a�

j
b + �ja�

i
b)�

3(x� x0).

3) The gauge symmetry at x is ⇡(x) minus an electric field in place of every

minimal coupling term that contains �(x). The resulting expression can be

calculated as follows

⇡(x) + i

Z

x0
[@a@b�(x), ⇡(x

0)]Eab(x0) = ⇡(x)� @a@bE
ab(x). (4.12)

4) The minimal coupling term can be made gauge symmetric by coupling it

to a gauge field: @a@b� ! @a@b�� Aab.

5) We now need to find linear combinations of the minimal coupling terms

@a@b� that result in zero. Equivalently, we want to find linear combinations of

derivatives of Aab that are invariant under the replacement Aab ! Aab+@a@b�,

which is often referred to as a gauge transformation. Thus, we want to find

the smallest possible basis of gauge invariant operators, which is given by the

magnetic tensor Bi
j = ✏iab@aAbj [33].

Therefore, gauging the matter Hamiltonian [Eq. (4.9)] results in the following

gauged Hamiltonian

H =

Z
⇡2 +

X

ab

(@a@b��Aab)
2 + (⇡� @a@bE

ab)2 +
X

ij

(✏iab@aAbj)
2 +
X

ab

(Eab)2

(4.13)

(Eab)2 is added at the end since the above model is a gapless gauge theory.

Traditionally, the (⇡ � @a@bEab)2 is not explicitly written, but is instead

imposed as a gauge constraint or is considered irrelevant (under RG) at long

length scales.
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4.4 Correspondence before and after gauging

Using the general gauging procedure, in this section we are going to explore the

correspondence between models with subsystem symmetry (before gauging)

and the gauged model with foliated fracton order, which we refer to as the

‘gauging correspondence’ in the following.

In Ref. [41], we proposed to characterize fractional excitations in foliated

fracton phases using the notion of quotient superselection sectors (QSS). In

particular, two fractional excitations are considered as equivalent (i.e. they

belong to the same QSS class) if they di↵er only by local excitation and planons

– a fractional excitation that moves in a 2D plane. Among the foliated fracton

phases that we have studied, there are two types of QSS: 1) fracton sectors

where the fractional excitation is fully immobile as an individual quasiparticle,

and 2) lineon sectors where the excitation can only move along a straight line.

Figure 4.6: Symmetry charges transforming under planar symmetries in three,
two, one directions are fractons (cannot move), lineons (can move only along
a line), and planons (can move only in a plane) respectively.

In terms of the gauging correspondence, it is easy to see how the fracton/lineon

QSS can emerge after gauging subsystem symmetries. Before gauging, if

a symmetry charge transforms under planar subsystem symmetries in three

directions, then to preserve subsystem symmetry, this charge cannot move

freely in any direction. It is pinned at the intersection point of the three

planes, as shown in Fig. 4.6, and such fracton symmetry charges have to

be created four at a time. Upon gauging, they become the fracton gauge

charges. If a symmetry charge transforms under planar symmetries in two

directions, then this charge can move but only along the intersection line

of the two planes. Such lineon symmetry charges become the lineon gauge

charge upon gauging. Finally, if a symmetry charge transforms under planar

symmetries in one direction only, then this charge can move along the plane.
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Such planon symmetry charges become the planon gauge charge upon gauging.

Composites of fracton charges can become lineon or planon charges. For

example, composing two fracton charges in the same plane and displaced by

a diagonal direction results in a lineon charge because the composite carries

nontrivial symmetry charge in the two orthogonal planes only. By analyzing

how the symmetry charges and their composites transform under subsystem

symmetry, we can see how the gauging correspondence emerges. Let us see

how this works through the following examples.

4.4.1 3D paramagnet with planar symmetry in one direction

We start with a simple and almost trivial case where the subsystem symmetry

acts only in XY planes. Consider again the cubic lattice with DOF at vertices

and the paramagnetic model H = �
P

v �
x
v . The subsystem symmetry is given

by

UXY
m =

Y

v2PXY
m

�x
v (4.14)

Upon gauging, this model should naturally map to a stack of 2D (untwisted)

deconfined gauge theories in theXY plane. The symmetry charges become the

planon gauge charges in each 2D layer. The gauged theory is a trivial foliated

fracton phase. Of course, this result does not depend sensitively on the lattice

structure or details of the Hamiltonian, as long as the planar symmetries are

preserved.

4.4.2 3D paramagnet with planar symmetry in two directions

A less trivial example is the 3D paramagnet H = �
P

v �
x
v with two sets of

planar symmetries

UXZ
m =

Y

v2PXZ
m

�x
v , UY Z

n =
Y

v2PY Z
n

�x
v (4.15)

Each symmetry charge transforms under planar symmetries in two directions

and hence becomes a lineon gauge charge upon gauging. The combination

of two symmetry charges separated in the X or Y directions transform under

planar symmetry in one direction only and hence is a planon. The combination

of two symmetry charges separated in the Z direction does not transform

under subsystem symmetry at all and hence is a not a fractional excitation.

Therefore, in the gauged theory, we expect only one lineon QSS in the charge

sector.
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This can be seen explicitly by applying the gauging procedure described in

section 4.3. The two minimum coupling terms are 1) four �z’s around a

plaquette in the same XY plane (Fig. 4.7a), and 2) two �z’s along the Z

axis (Fig. 4.7b). Correspondingly, gauge fields are placed in each XY plane

plaquette and on each link in the Z direction. The gauge symmetry term

involves the product of one �x
v , four ⌧

x
XY ’s and two ⌧xZ ’s, as shown in Fig. 4.7c.

The product of two plaquette coupling terms and four link coupling terms is

identity, giving rise to the flux term as shown in Fig. 4.7d. The gauge charge,

which corresponds to the violation of the gauge symmetry term, is a lineon

that moves in the Z direction. It turns out that the flux excitation is also a

lineon that moves in the Z direction. This is the anisotropic model introduced

in Ref. [41].

(a) (b) (c) (d)

Figure 4.7: Gauging planar symmetry in XZ and Y Z directions only. (a-b)
Minimal coupling terms. (c) The red vertex term in the center is included in
four plaquette minimal coupling terms (red plaquettes) and two Z-axis terms
(red edges). Therefore, the gauge symmetry term is a product of a �x at the
center (red sphere) and six ⌧x at the green spheres. (d) The flux term is a
product of six ⌧ z at the green spheres.

4.4.3 3D paramagnet with planar symmetry in three directions

Now let us consider the case where the planar subsystem symmetries lie along

three directions. We have discussed the gauging procedure of three di↵erent

cases (with di↵erent distributions of symmetry charges) in section 4.3. Now

we will examine how the symmetry charge becomes a gauge charge through

the gauging process and how the corresponding foliated fracton order emerges

after gauging.
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4.4.3.1 Cubic lattice

In the case discussed in section 4.3.3, where symmetry charges live at the

vertices of a 3D cubic lattice and transform under planar symmetries in all

three directions, each symmetry charge is a fracton and cannot move (since

the charge is conserved on every plane). If two symmetry charges separated in

the X, Y or Z direction are combined, then the composite transforms under

planar symmetry in one direction only and hence is a planon. Therefore, upon

gauging, the gauge charge sector of the gauge theory should contain only one

quotient superselection sector – a fracton QSS. This is indeed the case for the

corresponding gauge theory of X-cube model. As discussed in Ref. [41], the X-

cube model contains three elementary QSSs: one fracton QSS and two lineon

QSS. The one fracton QSS is the gauge charge sector of the gauge theory while

the two lineon QSSs are the gauge flux sector of the gauge theory.

4.4.3.2 Cubic lattice: dual model

In fact, the X-cube model can be obtained through gauging a di↵erent model.

Consider a 3D cubic lattice with two DOFs �r and �b (red and blue) at each

lattice site. The red �r transform under planar symmetry in XY and Y Z

directions; the blue �b transform under planar symmetry in Y Z and ZX

directions; and their composite at each lattice site transforms under planar

symmetry in ZX and XY directions. That is, the symmetries act as

UXY
m =

Y

v2PXY
m

�x
v,r, UY Z

m =
Y

v2PY Z
m

�x
v,r�

x
v,b, UZX

n =
Y

v2PZX
n

�x
v,b. (4.16)

The minimum coupling terms are two-body terms �z
v,r�

z
v+ŷ,r in the Y

direction, two-body terms �z
v,b�

z
v+ẑ,b in the Z direction, and four-body terms

�z
v,r�

z
v,b�

z
v+x̂,r�

z
v+x̂,r in the X direction, as shown in Fig. 4.8a. Therefore,

according to the general procedure, a gauge field is added to each link of the

cubic lattice. The gauge symmetry term is the product of �x
v,r (�

x
v,b) with four

⌧x on neighboring links in the XY plane (ZX plane), as shown in Fig. 4.8b-c.

The combination of twelve minimum coupling terms around a cube is identity,

therefore the flux term is the product of twelve ⌧ z around a cube as shown in

Fig. 4.8d.

If the � spins are all polarized by Hamiltonian H = �
P

v

�
�x
v,r + �x

v,b

�
, then

the gauged model is exactly the X-cube model, but as the electromagnetic
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dual of the previous case. The symmetry charges transform under two planar

symmetries, and therefore gauge into two independent lineon gauge charges

(that move in the Y and Z directions). Their combination is a lineon charge

that transforms under theXY andXZ planar symmetries and therefore moves

only in the X direction. If two red charges separated in the X, Y , or Z

directions are combined, then they form either a planon or a local excitation,

and similarly for the blue charges. Therefore, the gauge charge sector contains

two independent lineon QSSs. The gauge flux in this case makes up the fracton

QSS.

(a) (b) (c) (d)

Figure 4.8: Gauging planar symmetry on the cubic lattice with lineon charges.
(a) The three minimal coupling terms, which are each a product of �z operators
across one of the red links. (b) A �z

b operator at the center is included in four
minimal coupling terms on the red links. The corresponding gauge symmetry
term is a product of a �x

b at the center and ⌧x operators on the green spheres.
(c) Same as (b), but for �z

r . (d) The flux term is a product of ⌧ z on the twelve
green spheres.

4.4.3.3 FCC lattice

In the second case discussed in section 4.3.4, symmetry charges live both at

vertices and face centers and transform under planar symmetry in all three

directions. Again, each symmetry charge (both the vertex and face-center

charges) is a fracton and cannot move. The combination of two vertex charges

separated in X, Y , or Z directions transforms under planar symmetry in one

direction only, and hence is a planon. Therefore, the vertex charge alone

makes one fracton QSS after gauging. The combination of a vertex charge and

a face-center charge separated by half of a face diagonal transforms under

two planar symmetries and are hence lineons. Similarly, the combination

of two face-center charges separated by half of a face diagonal (out of the

plane of the face) are also lineons. Taking into account neutral excitations
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– excitations carrying no symmetry charges – involving one vertex charge

and three face-center charges, we can see that there are all together two

independent lineon sectors. Therefore, upon gauging, the charge sector should

contain one independent fracton QSS and two independent lineon QSSs. This

corresponds exactly to the combination of the original and dual cubic lattice

examples discussed above. Therefore, the gauged theory – the checkerboard

model[50] – should be equivalent to two copies of X-cube model combined in

a electromagnetic dual way. This is exactly what we show in Ref. [40].

4.4.3.4 BCC lattice

Now we come to the case discussed in section 4.3.5, where symmetry charges at

cube center transform in three directions while symmetry charges at vertices

transform in one direction only. The vertex charges are planon charges so they

can be omitted when counting QSSs. The cube center charge is a fracton. Two

fracton charges separated in the X, Y or Z direction combine into a planon.

Therefore, upon gauging, the gauge charge sector contains only one fracton

QSS. If the ungauged Hamiltonian is in the trivial phase (given for example

by H = �
P

i �
x
0,i�

P
j �

x
a,j �

P
k �

x
b,k �

P
l �

x
c,l), then the gauged model would

belong to the same foliated fracton phase as the X-cube model.

In Ref. [55], a twisted version of the ungauged Hamiltonian is discussed. Upon

gauging, the charge sector remains the same, while the flux sector may have

di↵erent statistics compared to the X-cube model. Ref. [55] discussed the

di↵erence in statistics in terms of the self rotation of lineons. In Ref. [41], we

show that this di↵erence can be removed if 2D layers of twisted gauge theories

are added to the 3D fracton model. Therefore, the gauged model has the same

foliated fracton order as the X-cube model. Correspondingly, the di↵erence

between the twisted and non-twisted versions of the ungauged Hamiltonian

can be removed by adding 2D layers of twisted SPTs. Therefore, the twisted

ungauged model is equivalent to a ‘weak SSPT’, i.e. a stack of 2D SPTs, as

defined in Ref. [54].

4.4.4 3D paramagnet with planar symmetry in 4 directions

It is also possible to construct a paramagnet in which every DOF transforms

under a planar subsystem symmetry in 4 di↵erent directions. The model is

constructed as follows: first, a lattice is constructed out of a fourfold foliation
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structure. To be precise, given four stacks of parallel planes such that no four

planes intersect at a single point, a natural cellulation structure is defined in

which each elementary 3-cell is a polyhedron bounded by these planes. Then,

a � DOF is placed in each 3-cell. The planar subsystem symmetries act on all

3-cells between neighboring parallel planes. The minimal symmetric coupling

terms are the four-body terms
Q

v2p �
z
v with a �z operator on each of the four

3-cells adjacent to a given edge (which is along the intersection between two

planes). In the dual cellulation (or lattice), this edge is dual to a quadrilateral

plaquette p, and the 3-cells are dual to vertices v. Upon gauging, the subsystem

symmetric paramagnet defined on this type of lattice yields a generalized X-

cube model as discussed in [44]. For example, using this type of construction,

one can obtain the stacked kagome lattice X-cube model.

4.4.5 3D symmetry breaking state with planar symmetry

In all previous examples, for the ungauged model, we considered the simplest

symmetric Hamiltonian of the form H = �
P

v �
x
v where the ground state is

symmetric under all subsystem symmetries. For global symmetry, it is known

that when the matter field undergoes spontaneous symmetry breaking, the

gauge field is Higgsed and the gauge theory become non-topological. For

subsystem symmetry, a similar Higgs mechanism applies, as first discussed in

Ref. [50]. Let us repeat the exercise and see how Higgsing occurs in the cubic

lattice example of section 4.3.3.

The minimum Ising coupling term that can be added to the system is the

plaquette term involving four �z’s (Fig. 4.3a). To make the term gauge

invariant, we attach a ⌧ z term in the middle of the plaquette. The total

gauged Hamiltonian hence takes the form

Hg = �
X

p

⌧ zp
Y

v2p
�z
v �

X

v

Av �
X

c

�
BXY

c +BY Z
c +BZX

c

�
(4.17)

The Bc terms are actually redundant for determining ground state because

they can be composed out of the plaquette terms. Therefore, the Hamiltonian

can be simplified into

Hg = �
X

p

⌧ zp
Y

v2p
�z
v �

X

v

�x
v

Y

v2p
⌧xp (4.18)

This is a cluster state[3] Hamiltonian where the � and ⌧ DOFs are connected

through face diagonals. It has a unique ground state, and hence no topological

or fracton order.
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4.4.6 2D paramagnet/symmetry breaking state with linear sym-

metry

It is possible for 2D systems to have linear subsystem symmetries. As we

will see, gauging 2D systems with linear subsystem symmetries bears great

similarity to gauging global symmetries in 1D. In particular, in both cases,

trivial paramagnet and symmetry breaking phases are dual to each other

through gauging. Consider a 2D square lattice with a � DOF at each vertex.

The subsystem symmetries acts along each row LX
m and each column LY

n of

the square lattice:

UX
m =

Y

v2LX
m

�x
v , UY

n =
Y

v2LY
n

�x
v . (4.19)

The minimum coupling term satisfying these symmetries is a product of four

�z around a plaquette. Consider the ungauged Hamiltonian

H = �Bx

X

v

�x
v � J

X

p

Y

v2p
�z
v (4.20)

To gauge this model, we place one gauge DOF ⌧p on each plaquette so that

the gauge symmetry is given by Av = �x
v

Q
p3v ⌧

x
p . No local flux term satisfies

all of the gauge symmetries; the only allowed flux terms are products along an

entire row or a column:

BX
m,m+1 =

Y

p2LX
m,m+1

⌧ zp , BY
n,n+1 =

Y

p2LY
n,n+1

⌧ zp . (4.21)

Thus, the flux terms become subsystem symmetries of the gauged theory.

The Hamiltonian after gauging takes the form

Hg = �Bx

X

v

�x
v � J

X

p

⌧ zp
Y

v2p
�z
v � Jv

X

v

�x
v

Y

v2p
⌧xp . (4.22)

When Bx = 0, corresponding to the symmetry breaking phase before gauging,

the gauged model is

Hg = �J
X

p

⌧ zp
Y

v2p
�z
v � Jv

X

v

�x
v

Y

v2p
⌧xp (4.23)

which is a 2D cluster state model with unique ground state that is symmetric

under the subsystem symmetries BX and BY . Moreover, this state can be

mapped to a symmetric product state through a symmetric local unitary
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transformation, indicating that it is equivalent to a trivial paramagnet. The

symmetric local unitary is given by

V =
Y

v

 
Y

v2p
CvXp

!
Y

v

Hv

Y

v

 
Y

v2p
CvXp

!
(4.24)

where CvXp =
1
2(1 + �z

v) ⌦ ⌧ 0p + 1
2(1 � �z

v) ⌦ ⌧xp is the controlled-X operation

from a vertex spin to its neighboring gauge field and the Hadamard operator

H =

 
1 1

1 �1

!
maps between �x and �z.

When J = 0, corresponding to the trivial paramagnet phase before gauging,

the gauged model is

Hg = �Bx

X

v

�x
v � Jv

X

v

�x
v

Y

v2p
⌧xp (4.25)

which can be reduced to

Hg = �Jv
X

v

Y

v2p
⌧xp (4.26)

if the �Bx�x
v terms are all satisfied. This corresponds to the symmetry

breaking phase of the gauge field under subsystem symmetries BX and BY .

4.4.7 2D linear symmetry protected topological model

We now discuss an example of a 2D model with linear SSPT order, which is

self-dual under gauging the subsystem symmetries. The system contains a �

DOF at each vertex of two interlocking square lattices labelled ↵ and �. The

linear symmetries act on all spins in a given row or column of either the ↵ or

� lattice. Explicity, the symmetry generators are

UX,↵
m =

Y

v2LX,↵
m

�x
v , UY,↵

n =
Y

v2LY,↵
n

�x
v , UX,�

p =
Y

v2LX,�
p

�x
v , UY,�

q =
Y

v2LY,�
q

�x
v .

(4.27)

As discussed in [54], the 2D cluster state model is a strong SSPT, which

exhibits a protected edge degeneracy that grows exponentially with the length

of the boundary. The Hamiltonian (also shown in Fig. 4.9) is

H = �
X

a2↵
�z
i(a)�

z
j(a)�

z
k(a)�

z
l(a)�

x
a �

X

b2�

�z
i(b)�

z
j(b)�

z
k(b)�

z
l(b)�

x
b , (4.28)
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σz

σx

σz

σx

σz

σx

σz

σx

σx

σz

Figure 4.9: The 2D cluster state model. The two stabilizer terms in Eq. (4.28)
are circled in green above. The black and gray lattices are the ↵ and � lattices.
After gauging, gauge fields ⌧ are placed on both the red and blue vertices.

where i(a), j(a), k(a), and l(a) refer to the four � lattice vertices neighboring

vertex a, and vice versa for i(b), j(b), k(b), and l(b).

The minimal coupling terms satisfying the subsystem symmetry are the four-

body terms around each elementary plaquette of either the ↵ or � lattice.

Thus, to gauge the model, gauge fields ⌧v are placed at every vertex v of both

the ↵ and � lattices (on top of each matter DOF), as shown in Fig. 4.9. The

gauge symmetries then take the form Av = �x
v ⌧

x
i(v)⌧

x
j(v)⌧

x
k(v)⌧

x
l(v). As in the

previous example, there are no local gauge-symmetric flux operators; the only

allowed flux terms act along an entire row or column:

BX,↵
m =

Y

v2LX,↵
m

⌧ zv , BX,�
n =

Y

v2LX,�
n

⌧ zv , BY,↵
p =

Y

v2LY,↵
p

⌧ zv , BY,�
q =

Y

v2LY,�
q

⌧ zv .

(4.29)

These operators correspond to symmetry generators of the gauge theory.

Upon gauging the Hamiltonian takes the form

Hg = �
X

a2↵
⌧ za�

z
i(a)�

z
j(a)�

z
k(a)�

z
l(a)�

x
a �

X

b2�

⌧ zb �
z
i(b)�

z
j(b)�

z
k(b)�

z
l(b)�

x
b � Jv

X

v2↵,�

Av.

(4.30)

This gauged model is actually a linear SSPT and is dual to the original SSPT.

To see this, note that the matter DOFs can be decoupled from the gauge DOFs

via the symmetric local unitary operator

V =
Y

v2↵,�

C�vX⌧i(v) C�vX⌧j(v) C�vX⌧k(v) C�vX⌧l(v) , (4.31)
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where as before, C�V⌧ is the controlled-X gate from the vertex spin � to an

adjacent gauge field ⌧ . Then

V HgV
† ⇠= �

X

a2↵
⌧xi(a)⌧

x
j(a)⌧

x
k(a)⌧

x
l(a)⌧

z
a �

X

b2�

⌧xi(b)⌧
x
j(b)⌧

x
k(b)⌧

x
l(b)⌧

z
b �

X

v2↵,�

�x
v , (4.32)

which is a 2D cluster state model residing on the gauge DOFs. Here the

relation H ⇠= H 0 indicates that H and H 0 have coinciding ground spaces and

thus represent the same gapped phase.

4.4.8 3D models with linear subsystem symmetry

It is also possible for 3D systems to have linear subsystem symmetries. For

example, suppose a system has a � DOF at every vertex of a cubic lattice and

symmetries which act along lines of spins along the X, Y , or Z direction. In

this case, the minimal coupling terms that commute with the symmetries are

eight-body terms
Q

v2c �
z
v involving the 8 qubits at the corners of a cube c.

Therefore, to gauge such models, gauge fields are placed at the centers of each

cube.

The correspondence before and after gauging of linear subystem symmetries

in 3D bears similarities to the case of linear symmetries in 2D and global

symmetries in 1D. For instance, the cubic Ising Hamiltonian

H = �
X

v

�x
v � �

X

c

Y

v2c
�z
v (4.33)

is self-dual under gauging: the weak-coupling paramagnetic phase maps

into the strong-coupling subsystem symmetry breaking phase and vice

versa. Furthermore, the linear SSPT given by the the 3D cluster state

Hamiltonian[54] is self-dual under gauging, in analogy with the 2D cluster

state linear SSPT and the 1D cluster state global SPT.

4.5 Discussion

The gauging correspondence revealed in the previous examples is summarized

in the table below. Fracton charges are acted upon by planar symmetry in

three directions, whereas lineon charges are acted upon by planar symmetry in

two directions. The fracton and lineon charges in the table are counted up to

the attachment of planon charges, which are acted upon by planar symmetry

in one direction only.

Therefore, by counting the types of symmetry charges before gauging, we

can determine the gauge charge and correspondingly gauge flux quotient
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Before Gauging After Gauging

Planar One fracton charge X-cube with lineon flux

symmetry Lineon charges in X, Y , Z directions X-cube with fracton flux

in 3D One lineon charge in Z direction Anisotropic model with lineon flux

Linear Trivial paramagnet Symmetry breaking

symmetry Symmetry breaking Trivial paramagnet

in 2D/3D Non-trivial SSPT Non-trivial SSPT

Table 4.1: Correspondence between phases with subsystem symmetries and
gauge theory phases. The X-cube and anisotropic model listed refer to the
corresponding foliated fracton phase, not to the specific model.

superselection sectors in the gauge theory. A highly interesting and open

question is whether there are non-trivial SPT phases with planar subsystem

symmetry in 3D. The model discussed in Ref. [55] we now know to be

equivalent to a weak SSPT. Hence upon gauging, it gives the same foliated

fracton order as the X-cube model[41]. For a truly non-trivial SSPT, upon

gauging, we expect the gauge charge and gauge flux to correspond to the same

quotient superselection sectors while the gauge flux has non-trivial statistics

compared to the X-cube model.

4.6 Appendix: Gauging global symmetry in 1D systems

In this section, we review the process of gauging 1D symmetric, symmetry

breaking and SPT phases and see how symmetric and symmetry breaking

phases map into each other upon gauging while SPT phases can map into

themselves.

Consider the 1D transverse field Ising model with Hamiltonian

H = �Bx

X

i

�x
i � J

X

i

�z
i �

z
i+1 (4.34)

and global symmetry U =
Q

i �
x
i . To gauge the model, we put gauge fields ⌧

on every link. The gauge symmetry term is Ai = ⌧xi�1,i�
x
i ⌧

x
i,i+1. The only flux

term that satisfies all the gauge symmetries is a global term B =
Q

i ⌧
z
i,i+1.

Therefore, the flux term e↵ectively becomes a Z2 global symmetry of the

gauged model.

Coupling H to the gauge field, we obtain the gauged Hamiltonian

Hg = �Bx

X

i

�x
i � J

X

i

�z
i ⌧

z
i,i+1�

z
i+1 � Jv

X

i

⌧xi�1,i�
x
i ⌧

x
i,i+1 (4.35)
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When J = 0, in the ground state, all the � spins are polarized in the X

direction and the gauge fields couple e↵ectively through ⌧xi�1,i⌧
x
i,i+1. With

respect to the e↵ective global symmetry of B =
Q

i ⌧
z
i,i+1, the gauge field

ground state spontaneously breaks the symmetry.

On the other hand, if Bx = 0, the Hamiltonian becomes a 1D cluster

state[3] model with unique ground state which is symmetric under the global

B =
Q

i ⌧
z
i,i+1 symmetry.

Now let us discuss an SPT example. Consider the 1D cluster state model

H = �
X

i

ho
2i�1 �

X

i

he
2i = �

X

i

�z
2i�2�

x
2i�1�

z
2i �

X

i

�z
2i�1�

x
2i�

z
2i+1. (4.36)

This model has a global Z2 ⇥ Z2 symmetry generated by

g1 =
Y

i

�x
2i, g2 =

Y

i

�x
2i�1 (4.37)

and the model has symmetry protected topological order under this

symmetry[45].

To gauge the Z2 ⇥ Z2 symmetry, we put gauge fields ⌧ between neighboring

gauge charges. That is, we place one gauge DOF per site. The ones on the

even sites are gauge fields of g2. The ones on the odd sites are gauge fields of

g1. The Gauss law terms are

c2i = ⌧x2i�1�
x
2i⌧

x
2i+1, c2i+1 = ⌧x2i�

x
2i+1⌧

x
2i+2. (4.38)

The flux terms, which are pure gauge terms that satisfy the Gauss law, are

f1 =
Y

i

⌧ z2i�1, f2 =
Y

i

⌧ z2i. (4.39)

They become the global Z2 ⇥ Z2 symmetry of the gauged model.

To make the original Hamiltonian terms gauge invariant, we modify them to

be

ho
2i�1 = �z

2i�2�
x
2i�1⌧

z
2i�1�

z
2i, he

2i = �z
2i�1�

x
2i⌧

z
2i�

z
2i+1. (4.40)

Now the total Hamiltonian is

Hg = �
X

i

�
⌧x2i�1�

x
2i⌧

x
2i+1 + ⌧x2i�

x
2i+1⌧

x
2i+2 + �z

2i�2�
x
2i�1⌧

z
2i�1�

z
2i + �z

2i�1�
x
2i⌧

z
2i�

z
2i+1.

�

(4.41)
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All the terms commute, are independent, and are symmetric under the global

symmetry. Therefore, on a closed ring, the ground state is unique. On an

open chain, the terms

�x
1⌧

x
2 , ⌧

x
2N�1�

x
2N (4.42)

no longer commute with the symmetry and need to be removed, leaving a two

fold degeneracy at the edge as the symmetry protected edge state.
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C h a p t e r 5

FRACTIONAL EXCITATIONS IN FOLIATED FRACTON
PHASES

5.1 Introduction

Gapped topological phases are characterized by their fractional excitations

and the universal braiding statistics amongst them. For example, the

⌫ = 1/3 fractional quantum Hall state contains e/3 fractional charges;

exchanging two fractional charges results in a phase factor of ⇡/3 [1, 53].

In two-dimensional gapped topological phases, possible sets of fractional

excitations and their fusion rules and braiding statistics are captured by the

mathematical framework of unitary modular tensor categories [17]. In three

spatial dimensions (3D), there are loop-like excitations in addition to point-

like excitations. For example, a discrete gauge theory in 3D contains both

point-like gauge charges and loop-like gauge fluxes; the exchange of gauge

charges, the braiding of a gauge charge around a gauge flux, and the three-loop

braiding of (linked) gauge fluxes [16, 49, 51] give rise to universal statistics. In

general, it is expected that the set of fractional excitations together with their

exchange and braiding statistics provide a complete characterization of the

underlying topological order. In other words, if two gapped systems have the

same fractional excitations, then they belong to the same topological phase

and can be deformed into one another without undergoing a phase transition.

The recent discovery of fracton models [2, 4, 6, 9, 12, 13, 15, 21, 23, 25,

26, 39, 41–48, 56, 58] introduces new possibilities [3, 8, 10, 14, 18, 22, 27,

28, 36–38, 54, 57] and at the same time poses new challenges to this means

of characterization. It was found that in these 3D gapped lattice models,

point-like excitations have restricted motion (whereas point-like excitations

of topological phases can move freely throughout the entire 3D space). Some

excitations, which we will refer to as lineons, can only move along a line; others,

which we call planons, can only move within a plane; the so-called fractons are

fully immobile as individual particles – however they may move in coordination

as the corners of an expanding or shrinking rectangle or tetrahedron. The

excitations are fractional in the sense that they cannot be individually created
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or destroyed by local operations. (We do not assume any global symmetry

in these models and are not using the word ‘fractional’ in the sense that the

excitations carry fractional symmetry representations such as fractional charge

or spin).

It is not obvious how to properly describe these excitations. Point-like

excitations in conventional topological phases are grouped into superselection

sectors: two excitations belong to the same superselection sector if they can

be mapped into each other via local operations [17]. If we utilize the same

notion to describe fractional excitations in fracton phases, the number of

superselection sectors is unbounded and grows exponentially with the total

system size. Moreover, due to the restricted mobility of the excitations, it is

not clear what constitutes a universal quasiparticle ‘braiding’ process. Given

such di�culties, it is not clear how to use fractional excitations to characterize

and compare the non-trivial orders in di↵erent fracton models.

In this paper, we introduce a way of characterizing fractional excitations and

their statistics for a sub-class of fracton phases – the ‘foliated fracton phases’

which we defined in Ref. [39] and Ref. [38]. We observed that a large class of

fracton models contain a foliation structure – the system size can be increased

by adding two dimensional topological layers and smoothly fusing them in –

such that their non-trivial properties can in large part be attributed to these

underlying layers.1 Such properties include the sub-extensive scaling of the

logarithm of the ground state degeneracy with system size (linear in the length

of the system), and a sub-leading correction to the area law term in the ground

state entanglement entropy of a region that scales linearly with the diameter

of the region. To unmask the intrinsic 3D nature of the order in these models,

we consider models that di↵er by gapped 2D layers to be equivalent. That

is, we define two gapped fracton models to be in the same foliated fracton

phase if they can be smoothly deformed into one another (without closing

the energy gap to excited states) upon the addition of gapped 2D layers.

This definition subsequently points to the natural way to properly describe

fractional excitations in foliated fracton phases – by modding out the planons.

More specifically, we generalize the notion of superselection sectors to that

of quotient superselection sectors (QSS) so that two point-like excitations are
1Gapless U(1) fracton models [5, 11, 19, 20, 24, 29–35, 55] and type-II fracton models

(for which excitations are created at corners of fractal operators) [12, 56] are not foliated
fracton phases, and will not be considered in this work.
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considered as equivalent not only if they can be related by local operations, but

also if they can be related by attaching a planon (i.e. an excitation that can

only move in two dimensions). Under this generalized notion of equivalence,

the number of sectors becomes finite, which greatly simplifies the counting.

Correspondingly, when we subsequently define quasiparticle statistics using

interferometric detection, we only consider processes which are indi↵erent to

the attachment of planons.

This way of describing fractional excitations provides a powerful tool for

comparing foliated fracton order in di↵erent models. In particular, we show

that the X-cube model [48] and the semionic X-cube model [21] have the same

fractional excitations and statistics according to this definition, despite the

fact that their statistics appear very di↵erent prior to taking the quotient.

This suggests that these two models may have the same foliated fracton order

and indeed we present an exact mapping from one to another that involves

the addition of 2D topological layers to each model.

This paper is organized as follows: in section 5.2, we briefly review

the X-cube model, in particular its fractional excitations and foliation

structure. Section 5.3 defines the quotient superselection sectors (QSS) and the

subsequent section 5.4 discusses a a way of characterizing their statistics using

interferometric detection. Both sections use the X-cube model as an example

to explain the idea. In section 5.5, several other fracton models are studied,

including a novel anisotropic lineon model in section 5.5.7. Their fractional

excitation content is found to belong to several classes, as summarized in the

table in the concluding section 5.8. The explicit mapping between the semionic

X-cube model to the X-cube model is given in section 5.6. In section 5.7, we

briefly extend the discussion to encompass loop excitations of 3D topological

orders.

5.2 The X-cube model

In this section we briefly review the X-cube model, its hierarchy of

subdimensional fractional excitations, and the RG transformation for the

model which utilizes 2D toric code layers as resource states. As originally

discussed in [48], the model is defined on a cubic lattice with a qubit degree

of freedom placed on each lattice link. The Hamiltonian is a frustration-free
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Figure 5.1: (a) Cube and (b) cross terms of the X-cube Hamiltonian.

sum of mutually commuting operators (shown in Fig. 5.1):

H = �
X

v

(Axy

v
+ Axz

v
+ Ayz

v
)�

X

c

Bc, (5.1)

where the first sum is overall vertices v of the lattice, and the second sum is

over all elementary cubes c. The vertex term Axy

v
is equal to a product of Pauli

Z operators over the four links emanating adjacent to v within the xy plane

(and likewise for Axz

v
and Ayz

v
). Conversely, the cube term Bc is equal to a

product of Pauli X operators over the twelve edges of the cube c. The ground

state wavefunction under open boundary conditions may be written as

| 0i =
Y

c

(1 +Bc) |0i (5.2)

where |0i is the simultaneous +1 eigenstate of the Pauli Z operators on all

links. It can be helpful to conceptualize this wavefunction as a condensate of

extended objects with rectangular prism geometry.

Figure 5.2: (a) A rigid string operators in the X-cube model. Lineons,
represented as red dots, are created at the endpoints and corner. (b) A flexible
string operator. Lineon dipoles, which are free to move in a 2D plane, are
created at the endpoints.
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The fractional excitations of the model can be naturally grouped into ‘electric’

and ‘magnetic’ sectors, whose quasiparticles are violations of the cross and

cube terms respectively. The electric sector contains three types of lineons

(1D particles), which are created at the ends of open rigid string operators and

move in the x, y, or z direction (as shown in Fig. 5.2(a)). These objects obey

a triple fusion rule, in which three lineons moving in di↵erent directions may

collectively annihilate to the vacuum if they meet at a point. Moreover, pairs

of adjacent lineons may be viewed as dipolar objects which are themselves

fractional planon excitations (2D particles). For example, a pair of lineons

mobile in the x direction and separated in the z direction may move within

the xy plane via the action of flexible string operators (see Fig. 5.2(b)). On

the other hand, the magnetic sector hosts fracton excitations which occur at

the corners of open membrane operators. These membrane operators are most

naturally thought of in the dual lattice picture in which qubits are attached

to elementary plaquettes of the lattice, which are grouped together to form

membranes (as shown in Fig. 5.3(a)). Pairs of fractons created at adjacent

corners of a membrane operator may be viewed as dipolar planons in their own

right, which become mobile within a plane via the action of thin membrane

operators which we will call ribbon operators (see Fig. 5.3(b)). These ribbon

operators along with the flexible string operators can be thought of as 2D

string operators which create planons out of the vacuum at their endpoints.

Figure 5.3: (a) A membrane operator. It resides on the plaquettes of the dual
lattice, whose edges are depicted as dashed lines. Fractons, represented as
green dots, are created at the corners. b) A ribbon operator, which is a type
of membrane operator. The fracton dipoles created at its endpoints are free
to move in a 2D plane.

The X-cube model has vanishing correlation length, and is actually a fixed

point model under a renormalization group (RG) procedure which refines or
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coarsens the underlying lattice by sewing and un-sewing toric code layers

into the system via quantum circuits of finite depth [39]. The elementary

transformation disentangles a single toric code layer from an Lx ⇥ Ly ⇥ Lz

size X-cube model to yield a reduced X-cube model on a lattice of dimensions

Lx ⇥Ly ⇥ (Lz � 1). This is realized as a finite depth quantum circuit S which

satisfies

SHXCS
† ⇠= H 0

XC +HTC +H0, (5.3)

where HXC is the original X-cube Hamiltonian, H 0
XC is the reduced X-cube

Hamiltonian, HTC is the Hamiltonian of the decoupled toric code layer, and

H0 is a trivial Hamiltonian corresponding to ancillary product state degrees of

freedom. Here the relation H ⇠= H 0 indicates that H and H 0 have coinciding

ground spaces and thus correspond to the same phase of matter. The unitary

operator S can be written as the composition S = S1S2. Here S1 and S2 are

commuting tensor products of controlled-NOT 2-qubit gates and are depicted

graphically in Fig. 5.4.

Figure 5.4: A graphical representation of the unitary operators (a) S1 and (b)
S2. In this figure only a single unit cell is depicted, although S1 and S2 act
uniformly along an xy plane. The finite depth quantum circuit S = S1S2

disentangles the blue xy layer from the bulk X-cube system. The qubits
represented by dashed edges in (b) are decoupled ancilla qubits stabilized by
H0 of Eq. (5.3).

5.3 Quotient superselection sectors

5.3.1 Review: superselection sectors

Before defining the notion of quotient superselection sectors, we will begin by

reviewing the notion of ordinary superselection sectors, which correspond to

the elementary quasiparticle types of a topological phase. First, let us carve a

small, ball-shaped region R out of a three-dimensional gapped bulk. Suppose
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that the medium is of infinite spatial extent, and consider the set of all excited

states | si that are locally indistinguishable from the ground state outside

of R, but may contain excitations within R. An ordinary superselection

sector is a universality class of such states which are related to one another

via local unitary operators. To be precise, two normalized states | pi and

| qi are said to belong to the same superselection sector if there exists a

local unitary operator U with support in R such that | pi = U | qi. The

superselection sector may be subsequently viewed as the subspace spanned by

all such equivalent excited states.

Actually, because the system has been posited to have infinite spatial

extent, this heuristic discussion does not have a solid footing since there are

ambiguities when comparing wavefunctions of infinite extent. However, it can

be made rigorous by imagining that we take a finite macroscopic sample M of

the system surrounding R, and map wavefunctions into the space of density

matrices on the subsystem M. An arbitrary wavefunction | i corresponds

to the reduced density matrix ⇢ = trM | i h |, where the degrees of freedom

outside M have been traced out. Two density matrices ⇢p and ⇢q are then

considered equivalent if there is a unitary U such that ⇢p = U⇢qU †. The use of

density matrices is implicit in the definitions that follow; however we will omit

mention of them as to do otherwise would obfuscate the physical intuition,

and in all cases it is a straightforward task to make the definitions rigorous by

incorporating their use.

The vacuum sector consists of states containing only local excitations,

whereas the non-trivial sectors correspond to fractional excitations of the

medium, which cannot be annihilated via local processes. For conventional

3D topological orders, there are a finite number of superselection sectors,

corresponding to the point-like topological charges of the phase which are

created at the endpoints of open Wilson strings. For example, for a

3+1D discrete gauge theory based on a finite group G, the superselection

sectors (for a ball-shaped region) correspond to irreducible representations

of G. Conversely, for foliated fracton phases, the fundamental constraints

on quasiparticle mobility give rise to an exponential growth of the number

of superselection sectors as the diameter of the region R is increased,

corresponding to an infinite number of fractional excitation types. However,

as we will see, by ‘modding out’ the fractional excitations that correspond to
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anyonic quasiparticles of the underlying foliation layers, i.e. the planon sectors

of the phase, the resulting quotient superselection sectors are finite in number

and independent of the size of R.

5.3.2 Definition: Quotient superselection sectors

The RG picture of foliated fracton phases, in which layers of 2D topological

orders can be systematically disentangled from the rest of the system, can be

used to make the intuition mentioned above precise. For simplicity, consider a

state | ⇢i containing only a single planon, labeled ⇢, in region R, whose plane

of mobility is denoted by P . The planon can be ‘disentangled’ from the rest

of the system via an RG transformation, i.e. a finite depth quantum circuit V

such that V | ⇢i = | 0
0i ⌦ | 2D

↵
i. Here | 0

0i is the ground state of a modified

system with inhomogeneities in the vicinity of P , and | 2D
↵
i is an excited state

of a 2D topologically ordered phase living in plane P , containing an anyonic

excitation ↵ in the region R \ P .2 The planon ⇢ can thus be thought of as a

fractional excitation belonging to layer P of the underlying foliation structure.

It is instructive to understand how the disentangling of planons can be achieved

in the X-cube model. As discussed, there are two types of planons in the X-

cube model: fracton dipoles, and lineon dipoles. Consider a path �, with

endpoints, lying along the direct lattice edges in the z = z0 plane. Denote

by W"(�) a flexible string operator lying alongside � adjacent to the z = z0

plane, for example as shown in Fig. 5.5. W"(�) creates lineon dipoles at its

endpoints, which are elementary in the sense that they are separated by a single

lattice spacing in the z direction. Likewise, consider a ribbon � composed

of dual lattice plaquettes which are dual to x and y links in the z = z0

plane, and let Wµ(�) denote the membrane operator corresponding to �, which

creates elementary fracton dipoles (i.e. pairs of fractons separated by a single

lattice spacing) at its endpoints (see Fig. 5.5). Now consider the action of the

operator S, introduced in the discussion of the X-cube RG transformation in

the previous section, which disentangles a toric code layer along z = z0 from

the rest of the system. It can be seen that

SW"(�)S
† = We(�) (5.4)

SWµ(�)S
† = Wm(�) (5.5)

2The local unitary V , viewed as a quantum circuit, has a minimum depth which scales
with the spatial extent of ⇢. For instance, in the case of a dipolar planon composed of two
fractons, the depth scales as the distance between the fractons.
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Figure 5.5: (a) A flexible string operator W"(�) and a ribbon operator Wµ(�)
of the X-cube model, which are mapped under conjugation by the finite-depth
circuit S to (b) electric and magnetic string operatorsWe(�) andWm(�) acting
on a decoupled toric code layer lying along the z = z0 plane, which is the
back plane pictured in (a). These operators are respectively defined as tensor
products of PauliX operators over the yellow edges and Pauli Z operators over
the blue edges. � and � are paths on the direct and dual lattices respectively
of the z = z0 plane. The red dots represent X-cube lineons in (a) and Z2

charges in (b). Conversely, the shaded green cubes in (a) represent fractons,
whereas the green squares in (b) represent Z2 fluxes.

where We(�) is an open electric string operator along the path �, residing

in the disentangled toric code layer along the z = z0 plane, and likewise

Wm(�) is an open magnetic string operator in the toric code layer which

lies along � (the dual lattice plaquettes comprising � become dual lattice

links when restricted to the planar square lattice). We(�) creates Z2 charges

at the endpoints of � whereas Wm(�) creates Z2 fluxes at the endpoints of

�. From Eq. (5.4) it follows that S | "i = | 0
0i ⌦ | TC

e
i where | 0

0i is the

ground state of the reduced X-cube Hamiltonian H 0
XC, and | "i and | TC

e
i are

excited states of the (original) X-cube and toric code Hamiltonians respectively

containing an elementary lineon dipole and a Z2 gauge charge. Similarly,

S | µi = | 0
0i ⌦ | TC

m
i. The above discussion addresses elementary dipoles

of lineons and fractons. For dipolar planons which a larger spatial extent,

similar disentangling circuits can be constructed; however, the depth of the

circuit scales linearly with the length of the dipole.

With this motivation in mind, we define two (normalized) excited states | pi
and | qi to belong to the same quotient superselection sector (QSS) if there
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exists a unitary operator U with support in R and a finite depth quantum

circuit V that satisfy

U | 0
p
i = | 0

q
i

V | pi = | 0
p
i ⌦ | 2D

↵1
i ⌦ · · ·⌦ | 2D

↵n
i (5.6)

V | qi = | 0
q
i ⌦ | 2D

�1
i ⌦ · · ·⌦ | 2D

�n
i ,

where | 0
p
i and | 0

q
i are modified excited states, and | 2D

↵i
i and | 2D

�i
i are 2D

topologically ordered states living along plane Pi and respectively harboring

(possibly vacuous) anyonic excitations ↵i and �i in the region R \ Pi. The

operator V naturally decomposes into a product, V =
Q

i
Vi, where Vi are

operators that subsequently disentangle 2D layers along Pi. According to

this definition, it immediately follows that superselection sectors containing

only planons belong to the vacuum quotient sector, since the planons can be

mapped into a | 2Di state, as exemplified in Fig. 5.5. In this sense, the planon

sectors are factored out, and the resulting quotient sectors may be viewed

as fractional quasiparticle species modulo anyons of the underlying foliation

layers. Factoring out the planons in this manner consistently results in a finite

set A of QSS. If a quasiparticle state belongs to a particular quotient sector

a 2 A, let us say that such an excitation carries quotient charge a. States

within a given sector may be viewed as belonging to a Hilbert space Ha.

In foliated fracton models, the above definition is equivalent to a more

transparent formulation which more closely parallels the definition of ordinary

superselection sectors. A planon creation operator W⇢ is a unitary operator

that has planar support and creates a planon ⇢ at its endpoint in region R,

and extends to spatial infinity at the other end. Then, two states | pi and | qi
are defined to represent the same quotient superselection sector if there exist

planon creation operators W⇢j (j = 1, . . . ,m) and a local unitary operator U

such that  
U
Y

j

W⇢j

!
| pi = | qi . (5.7)

In other words, an equivalence relation on excited states is imposed which

a↵ords the freedom to arbitrarily create and annihilate planons, in addition to

local excitations, within R.
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Figure 5.6: (a, b) Representative states of the `y quotient superselection sector
of the X-cube model. These states are the result of acting on the ground state
with the yellow rigid string operators, which create lineons at their endpoints
(red dots) in R. (c) A state containing a planon free to move in a yz plane.
The flexible string operator that creates this planon is an e↵ective hopping
operator between the lineon states in (a) and (b).

5.3.3 Example: X-cube model

As an example, let us apply this definition to the X-cube model. First consider

the lineon excitations of the model, which can move within a straight line via

the action of rigid string segment (unitary) operators. The key observation

is that lineon dipoles, where the dipolar axis is normal to the direction of

mobility, are themselves fractional planon excitations. Thus, the action of

the flexible string operators that create these dipolar planons can e↵ectively

translate lineon excitations parallel to their dipolar axes (see Fig. 5.6 for an

example). However, there are no such operators capable of transmuting say,

an x direction lineon into a y direction lineon. Similarly, the planon creation

operators that create fracton dipoles (of any axial orientation x, y, or z),

i.e. half-open ribbon operators, are e↵ective hopping operators for individual

fractons. Moreover, since these operators nucleate fracton dipoles out of the

vacuum, only the total fracton parity of a given state is relevant in determining

the quotient superselection sector to which that state belongs. Likewise, only

the parities of the number of x, y, and z direction lineons come into play.

However, due to the triple lineon fusion rule, one of these parities is actually

redundant; hence, there are a total of 8 quotient sectors for the X-cube model.

Let us label the quotient superselection sector with odd fracton parity and

even lineon parities as f , and the sector with odd parity of direction-� lineons

(� = x, y, z) and all other parities even as `�. Note that due to the triple

fusion rule, the sector `z corresponds also to odd parity of x and y direction

lineons and even parity of fractons and z direction lineons. Finally, sectors
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with odd fracton parity, odd parity of � direction lineons, and even parity of

the other two types of lineons will be labeled `�f . The 8 quotient sectors in

A are thus the vacuum sector 1, the fracton sector f , the lineon sectors `x, `y,

and `z, and the composite sectors `xf , `yf , `zf . In Fig. 5.7 we have illustrated

representative states of each quotient sector.

Figure 5.7: The 8 quotient superselection sectors of the X-cube model. The `x,
`y, and `z lineons (red) are created by string operators (orange) along the x,
y, and z direction, respectively. The fracton (green) is created by a membrane
operator (blue).

The set of quotient superselection sectors for abelian phases has a natural

abelian group structure in which the group multiplication corresponds to fusion

of quotient sectors, and the vacuum sector represents the identity. To make

this precise, we can consider two nearby non-overlapping regions R1 and R2

which are encompassed by a larger region R. Suppose R1 contains excitations

of total quotient charge a, and R2 of total quotient charge b. Then a and b fuse

into c, written as a ⇥ b = c, if the encompassing region R has total quotient

charge c. For the X-cube model, the non-trivial fusion rules are a⇥ a = 1 for

all a 2 A, secondly `�⇥f = `�f (where � = x, y, z), and finally `x⇥`y⇥`z = 1.

Hence the fusion group is Z2 ⇥ Z2 ⇥ Z2 with generators `x, `y, and f .

5.4 Quasiparticle statistics

In this section, we develop a notion of interferometric detection of quotient

superselection sectors, which will serve as the foliated fracton phase analog of

quasiparticle braiding statistics in abelian topological phases. The basic idea

is to consider equivalence classes of operators which interferometrically detect
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the presence of excitations in a given quotient sector via Aharonov-Bohm-like

phases. Whereas for 2D topological phases, these operators correspond to

processes in which one quasiparticle is wound around another, for foliated

fracton phases these interferometry operators lack any sort of topological

interpretation. Instead, as we will see, they have a geometric character that

is inherited from the geometry of the foliation structure.

5.4.1 Interferometric detection

As discussed above, each quotient superselection sector a 2 A corresponds to

a subspace Ha of states containing fractional excitations of quotient charge

a within a fixed region R. To formulate a notion of universal quasiparticle

statistics for foliated fracton phases, we consider the set O of interferometric

operators, which are defined with reference to the regionR. An interferometric

operator is a local unitary operatorO that (1) commutes with the Hamiltonian,

(2) has compact support in R, the complement of R, (3) acts as a pure phase

ei✓a(O) within each subspace Ha (O |ai = ei✓a(O) |ai for all |ai 2 Ha), and

(4) acts as the identity on the ground state (O | 0i = | 0i). We note that

condition (3) strongly restricts the set of interferometric operators, because

states in a given subspaceHa may di↵er by the presence of planons inR; hence

interferometric operators must be indi↵erent to these excitations. Condition

(4) merely specifies the overall phase of operators in O.

The set O may be naturally partitioned into a finite set of classes Oi (i 2 I

where I is a finite set), according to equivalence of the statistical phase angles

✓a(O). That is, if ✓a(O) = ✓ai for all a 2 A, then O 2 Oi ⇢ O, where

the ✓ai have been introduced as statistical angles which depend only on the

interferometry class i and the quotient sector a.

These phase factors are the foliated fracton analog of long-range Aharonov-

Bohm interactions in abelian 2D topological orders. They arise due to

the non-trivial commutation relations between interferometric operators O

and operators Wa which create fractional excitations of quotient charge a

out of the vacuum: OWa = ei✓aiWaO for all O 2 Oi and Wa such that

Wa | 0i 2 Ha. (More precisely, these operators bring excitations of quotient

charge a from spatial infinity to the region R.) The statistical phase angles

✓ai are well-defined for generic gapped models, and robust under adiabatic

deformation of the Hamiltonian. They are thus universal quantities which
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partially characterize the foliated fracton phase surrounding a generic model.

We note that the set I naturally forms an abelian group with the trivial class

as the identity element, and the addition operation coming from operator

composition. The maps i 7! ei✓ai are homomorphisms from I ! U(1).

It is interesting to note that in all the models we have considered, the

interferometric operators can be thought of as processes in which a dipolar

planon of macroscopic dipole length is braided in a 2D plane around the region

R. Moreover, we find in all cases that the number of interferometric classes

is equal to the number of QSS. Thus, it is natural to arrange the statistical

phases in matrix form: Sai = ei✓ai . In fact, the resulting S matrix is a direct

generalization of the topological S matrix in the theory of 2D topological

orders, in the sense that the equivalent definitions applied to 2D topological

phases yield the topological S matrix. However, the S matrix for foliated

fracton phases di↵ers from the topological S matrix in that there is no inherent

symmetry between the row and column indices, whereas for the topological S

matrix both indices correspond to anyon species and it generically holds that

Sab = S⇤
ba
.

Figure 5.8: An example of a wireframe operator O (defined as the tensor
product of Pauli X operators along the yellow edges) which violates condition
(3) discussed in the main text. This operator anti-commutes with the blue
ribbon operator pictured, which creates a planon (i.e. a fracton dipole) in
region R. Hence O acts as +1 on some states and �1 on other states in the
trivial quotient superselection sector, and so O /2 O.

5.4.2 Example: X-cube model

Let us continue to consider the X-cube model as a primary example. First, we

need to determine the set of interferometric operators O with reference to a

particular region R of an X-cube system. Since the X-cube Hamiltonian is a

stabilizer code, the algebra of observables that commute with the Hamiltonian
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is generated by the Hamiltonian terms themselves. Of the operators that

commute with H and have compact support in R, condition (3) further

restricts this set, because a rigid string operator lying in a plane that intersects

R will anti-commute with certain ribbon operators that create fracton dipoles

in R. An example of an operator which satisfies conditions (1) and (2) but

not (3) is shown in Fig. 5.8. It can then be seen by careful inspection that the

set O contains 8 inequivalent classes of interferometric operators (including

the trivial class).

Figure 5.9: (a) An example of a wireframe interferometric operator belonging
to the F class, defined as the product of Pauli X operators over the yellow
edges. The region R is located at the center of the wireframe. This operator
detects the presence of a fracton (green dot) due to the anti-commutation
relation with the blue membrane operator. (b) Cylindrical membrane
operators representing, from left to right, the X, Y and Z interferometry
classes, of which only 2 are independent. In each case R resides at the center
of the prism.

The first non-trivial class, denoted by the label F , contains wireframe string

operators that measure the fracton parity in region R, and are insensitive

to the presence of lineons. An example is shown in Fig. 5.9(a). In other

words, ✓f,F = ✓`xf,F = ✓`yf,F = ✓`zf,F = ⇡, whereas the remaining phase

factors are trivial. The ei⇡ phase factors arise due to the anti-commutation

relation between these wireframe operators and the membrane operators that

create fractons in R at their corners. Conversely, the next three non-trivial

classes, denoted by the labels X, Y , and Z, detect lineon parity and are

insensitive to the fracton sector. They obey the relation OXOYOZ = O1. The

X class contains large membrane operators with cylindrical topology which

wrap around R around the x axis, and likewise for the Y and Z classes. These

membrane operators anti-commute with the half-open rigid string operators

that create lineons of quotient charge `y and `z in R, while commuting with
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those that create lineons of charge `x. Therefore, ✓`y ,X = ✓`z ,X = ⇡ whereas

✓`x,X = 1, and similarly for the fracton-lineon composite sectors (and likewise

for cyclic permutations of the indices). Examples of these cylindrical operators

are shown in Fig. 5.9(b). It is instructive to note that the four interferometric

classes indexed by X, Y , Z, and F , respectively detect violations of the Ayz

v
,

Axz

v
, Axy

v
, and Bc terms of the X-cube Hamiltonian in Eq. (5.1) (or rather,

odd numbers of violations). The remaining three classes, given the labels

XF , Y F , and ZF , contain compositions of operators in the other classes.

The group structure on the classes of interferometric operators for the X-cube

model is therefore Z2 ⇥ Z2 ⇥ Z2 with generators X, Y , and F . The statistics

are summarized in the following S matrix, in which the rows correspond to

QSS in the order {1, `x, `y, `z, f, `xf, `yf, `zf}, and the columns correspond to

interferometric classes in the order {1, X, Y, Z, F,XF, Y F, ZF}:

S =

0

BBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1

1 1 �1 �1 1 1 �1 �1

1 �1 1 �1 1 �1 1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 �1 �1 1 1

1 �1 1 �1 �1 1 �1 1

1 �1 �1 1 �1 1 1 �1

1

CCCCCCCCCCCCCCA

. (5.8)

5.5 More examples

In this section we examine the quotient superselection sectors, fusion rules,

and classes of interferometric operators and statistical phases for a handful

of exactly solvable models, which may be viewed as RG fixed point

representatives of corresponding foliated fracton phases. In Sec. 5.5.7 we

introduce a novel anisotropic foliated fracton model which exhibits fractional

lineon and planon excitations but no fractons.

5.5.1 Stack of 2D topological orders

A simple decoupled stack of 2D topological orders, viewed as a 3D model,

belongs to the trivial foliated fracton phase according to the definition

proposed in Ref. [39]. This is reflected in the structure of excitations in such

models: since all fractional excitations are anyons of the constituent layers,

there is only one quotient superselection sector, that of the vacuum.
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5.5.2 Semionic X-cube model

(c)

X X

X X

S

S

S

S
Z
Z Z
Av
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<latexit sha1_base64="Blb5NqyOPXVoxjpHGYLqgdlo0aY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdSLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD41BMihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvqp5b9e6vK/VGHkcRzuAcLsGDGtThDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPxjojak=</latexit><latexit sha1_base64="Blb5NqyOPXVoxjpHGYLqgdlo0aY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdSLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD41BMihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvqp5b9e6vK/VGHkcRzuAcLsGDGtThDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPxjojak=</latexit><latexit sha1_base64="Blb5NqyOPXVoxjpHGYLqgdlo0aY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdSLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD41BMihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvqp5b9e6vK/VGHkcRzuAcLsGDGtThDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPxjojak=</latexit><latexit sha1_base64="Blb5NqyOPXVoxjpHGYLqgdlo0aY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdSLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD41BMihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvqp5b9e6vK/VGHkcRzuAcLsGDGtThDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPxjojak=</latexit>

(d) (e)

X

S

Cc
<latexit sha1_base64="DW/DLiFWDOUwiM/TSluGXS1FnSo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdiLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00BiwQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqudWvfvrSv02j6MIZ3AOl+BBDepwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwa6jZ0=</latexit><latexit sha1_base64="DW/DLiFWDOUwiM/TSluGXS1FnSo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdiLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00BiwQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqudWvfvrSv02j6MIZ3AOl+BBDepwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwa6jZ0=</latexit><latexit sha1_base64="DW/DLiFWDOUwiM/TSluGXS1FnSo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdiLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00BiwQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqudWvfvrSv02j6MIZ3AOl+BBDepwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwa6jZ0=</latexit><latexit sha1_base64="DW/DLiFWDOUwiM/TSluGXS1FnSo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMdiLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00BiwQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqudWvfvrSv02j6MIZ3AOl+BBDepwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwa6jZ0=</latexit>

Figure 5.10: (a) A trivalent 2D lattice obtained by decorating a 2D square
lattice with diamond plaquettes at each vertex. (b) Stacks of such trivalent
lattices in the xy, yz, and zx planes; the edges in x, y and z directions overlap
in pairs. (c) The vertex term, (d) the diamond plaquette term, and (e) the
cube term of the semionic X-cube Hamiltonian. Here, X and Z are Pauli
operators and S = diag(1, i). In the cube term (e), there is one X on each
qubit on the solid edges and one S on each qubit on the dashed edges. For
clarity, we only draw one of each.

The semionic X-cube model was discussed in Ref. [21] as a semionic

generalization of the original X-cube model. The model is defined on a

variation of the cubic lattice which can be obtained as the union of three

stacks of 2D decorated square lattices parallel to the xy, yz and zx planes

(Fig. 5.10(b)). In each 2D plane, a small diamond shape is added at each

vertex of the square lattice so that in the new lattice each vertex has degree

three (Fig. 5.10(a)). The Hamiltonian contains three types of terms: a vertex

term Av at each of the trivalent vertices in the xy, yz and zx planes as shown

in Fig. 5.10(c), a plaquette term Bp at each diamond plaquette in the planes

as shown in Fig. 5.10(d), and a cube term Cc at each cubic cell as shown in

Fig. 5.10(e):

H1 = �
X

v

A(1)
v

�
X

p

B(1)
p

�
X

c

C(1)
c

. (5.9)

For comparison, we can also define the X-cube model on the decorated lattice:

H0 = �
X

v

A(0)
v

�
X

p

B(0)
p

�
X

c

C(0)
c

(5.10)

The Hamiltonian also takes the form shown in Fig. 5.10(c-e) but di↵ers from

H1 in that the operator S is absent from the dashed lines. As explained in

Ref. [21], the X-cube and semionic X-cube model on the decorated lattice

can be obtained by taking toric code or double semion layers respectively
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in each xy, yz and zx plane and coupling them together. The Av and Bp

terms come directly from the vertex and plaquette terms of the toric code and

double semion models. The Cc term is a combination of six plaquette terms

on neighboring planes.

The quotient superselection sectors and the S matrix of the X-cube model on

the decorated lattice is the same as those on the original cubic lattice. To see

this, we note that on the decorated lattice, violations of the Av and Cc terms

correspond to the lineon and fracton excitations as before while violations

of the Bp term are a new type of planon. Interferometric operators take the

same form as before (wireframe, cylinder and their composition) except for the

decoration at each vertex. There are still eight quotient superselection sectors

and eight interferometric operators which give rise to the same S matrix as in

Eq. 5.8.

Similarly, the semionic X-cube model on the decorated cubic lattice has eight

quotient superselection sectors generated by a fracton and two lineons as

discussed in Ref. [21]. To detect these sectors interferometrically, we can use

a wireframe shaped operator which is a composition of all Cc operators inside

the wireframe. There are also cylinder shaped interferometric operators and

they take the same form as in the X-cube model. Direct calculation shows

that the S matrix of the semionic X-cube model is the same as that of the

X-cube model (Eq. 5.8).

5.5.3 Stacked kagome lattice X-cube model

As discussed in Ref. [43], it is possible to define the X-cube model on

generalized lattices which arise as the triple intersection points of three or

more stacks of parallel planes. This class includes the stacked kagome lattice,

which is formed from 4 underlying stacks. These stacks are normal to the

(0, 1, 0),
�p

3/2, 1/2, 0
�
,
�
�
p
3/2, 1/2, 0

�
, and (0, 0, 1) directions respectively.

The fourth stack, whose layers are parallel to the xy plane, contains embedded

2D kagome lattices. Actually, these stacks represent an underlying foliation

structure whose leaves correspond to 2D toric code layers; hence the stacked

kagome X-cube model constitutes a foliated fracton model composed of 4

foliations. As in the normal X-cube model, qubits are placed on each edge

of the lattice, and the Hamiltonian takes the form

H = �
X

v

(A1
v
+ A2

v
+ A3

v
)�

X

c

Bc. (5.11)
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In this case, v runs over all vertices, and the operators Ai

v
are tensor products

of Pauli Z operators over four coplanar edges adjacent to v, one for each of

the 3 foliating planes containing v. Here, c indexes the elementary 3-cells of

the lattice, which are all either triangular or hexagonal prisms, and Bc is a

tensor product of Pauli X operators over the edges of c.

Figure 5.11: The three sublattices of the kagome lattice, indicated by red
circles, blue squares, and yellow diamonds. In the stacked kagome X-
cube model, there are three types of z-direction (out of the plane) lineons,
corresponding to the three sublattices.

The excitation structure of the stacked kagome X-cube model is quite similar

in spirit to that of the original X-cube model: violations of the vertex

Hamiltonian terms are lineons, whereas violations of the 3-cell terms are

fractons. However, there are four possible directions of mobility for lineons:

a =
�
�1/2,

p
3/2, 0

�
, b =

�
1/2,

p
3/2, 0

�
, c = (1, 0, 0) and ẑ = (0, 0, 1). (The

first 3 directions lie within the 2D kagome layers, whereas the fourth is normal

to them). In all cases, the lineons are mobile along the line of intersection

of two of the underlying foliation leaves. Pairs of a, b, or c direction lineons

separated along the z axis or within the xy plane constitute fractional planon

excitations. Thus the lineons mobile in each of these 3 directions constitute

their own quotient superselection sectors, which we will label `a, `b, and `c. On

the other hand, the z direction lineons can be divided into three sublattices

as shown in Fig. 5.11; lineon dipoles may be free to move in a 2D plane only

if the two lineons belong to the same sublattice. Thus, each of these three

types of z direction lineons represents a quotient superselection sector as well,

labeled `R, `Y , and `B. However, due to the triple fusion rules, each of these

quotient sectors is the result of fusion of two of the sectors `a, `b, and `c. In
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particular, the fusion rules are

`R = `b ⇥ `c

`Y = `a ⇥ `c

`B = `a ⇥ `b.

Therefore, there are only 3 independent lineon quotient sectors. The last non-

trivial lineon QSS is given by the fusion result `a ⇥ `b ⇥ `c.

As in the cubic lattice X-cube model, dipoles of adjacent fractons are

themselves planons, and thus all fractons belong to the same quotient

superselection sector. In total there are therefore 24 = 16 quotient

superselection sectors in the stacked kagome X-cube model. The group of

interferometric operators that detect these sectors are generated by a class

F of wireframe operators which detects fractons, as well as 3 independent

classes of membrane operators A, B, and C which detect the presence of

lineons. These operators are membrane-like in the sense that they have support

along the surface of a polyhedron, which can be chosen to be a hexagonal (or

triangular) prism (see Fig. 5.12). The remaining classes of membrane operators

are AB = A⇥ B, BC = B ⇥ C, AC = A⇥ C, and Z = A⇥ B ⇥ C.

Since the fracton and lineon sectors are independent of each other in this

model, it is instructive to construct an abbreviated S̃ matrix which contains

the interferometric statistics between the lineon QSS and membrane operators

alone. Indexing the rows in the order {1, `a, `b, `c, `a ⇥ `b ⇥ `c, `R, `Y , `B} and

the columns in the order {1, A,B,C, Z,BC,AC,AB}, this matrix takes the

form

S̃ =

0

BBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1

1 �1 1 1 �1 1 �1 �1

1 1 �1 1 �1 �1 1 �1

1 1 1 �1 �1 �1 �1 1

1 �1 �1 �1 �1 1 1 1

1 1 �1 �1 1 1 �1 �1

1 �1 1 �1 1 �1 1 �1

1 �1 �1 1 1 �1 �1 1

1

CCCCCCCCCCCCCCA

. (5.12)

The full S matrix including the fracton QSS and wireframe interferometric

operators then takes the form

S =

 
1 1

1 �1

!
⌦ S̃. (5.13)
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Figure 5.12: Representative operators of the interferometric classes in the
stacked kagome X-cube model. The top left figure depicts a wireframe operator
which is a tensor product of Pauli X operators over the qubits along the edges.
The remaining figures depict membrane operators which are tensor products of
Pauli Z operators over the dual lattice plaquettes drawn in the figures. These
operators may also be chosen to be in the shape of a triangular prism.

5.5.4 Hyperkagome lattice X-cube model

Figure 5.13: The hyperkagome lattice. The elementary 3-cells are small
tetrahedra (green and purple) and large truncated tetrahedra (turquoise and
blue).

Using an analogous construction to the previous example, it is possible to

define a version of the X-cube model where the qubits reside on the edges

of a hyperkagome lattice (also known as a quarter cubic honeycomb lattice).
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The hyperkagome lattice arises as the set of triple intersection points of planes

belonging to the 4 discrete foliations defined by the equations �x+ y+ z = k,

+x� y + z = k, +x+ y� z = k, and +x+ y + z = k+ 1/2 for all k 2 Z. The
Hamiltonian for this version of the X-cube model takes the same form as in

Eq. (5.11); for the hyperkagome lattice, the elementary 3-cells consist of small

tetrahedra and large truncated tetrahedra, as shown in Fig. 5.13.

In this geometry, there are 6 species of lineons which move along the

a = (1, 1, 0), b = (1, 0, 1), c = (0, 1,�1), d = (1,�1, 0), e = (1, 0,�1),

and f = (0, 1, 1) directions, corresponding to lines of intersection of the

foliating planes (see Fig. 5.14(a)). As in the other X-cube models, pairs of

lineons moving in the same direction may combine to form dipolar planon

excitations. Thus, all lineons mobile in the � direction belong to a single

quotient superselection sector `�. Moreover, there are four triple fusion rules:

`a ⇥ `b ⇥ `f = 1

`b ⇥ `c ⇥ `d = 1

`a ⇥ `c ⇥ `e = 1

`d ⇥ `e ⇥ `f = 1.

Therefore, there are exactly 3 independent lineon quotient sectors, which can

be chosen to be, for instance, a, b, and c. The fusion result `a ⇥ `b ⇥ `c

constitutes a 7th non-trivial lineon sector. On the other hand, there is just

a single fracton sector f since neighboring fractons combine to form planons

as in the cubic and stacked kagome lattice X-cube models. Hence there are a

total of 24 = 16 QSS.

As in the stacked kagome X-cube model, in the hyperkagome X-cube model

there is one class of wireframe interferometric operators which detects fracton

parity, and 3 classes of independent membrane operators which are sensitive

to the lineon content of the region R. The membrane operators can be chosen

to have support over the surface of a rhombic dodecahedron which is aligned

with the Wigner-Seitz cell of the underlying fcc Bravais lattice (itself a rhombic

dodecahedron). They can be constructed in the following way. First, note that

the cross-shaped Hamiltonian terms correspond to intersections of pairs of lines

of lineon mobility, and may be divided into 12 groups and labeled according to

the directions of these two lines. For example, if vertex v lies at the intersection
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Figure 5.14: (a) The six possible directions of mobility of lineons in the
hyperkagome X-cube model. (b) A rhombic dodecahedron. Each face of the
dodecahedron is normal to one of the 6 directions of lineon mobility.

of lines oriented in the a, c, and e directions, then the vertex terms associated

with v are Aac

v
, Ace

v
, and Aae

v
.

The membrane operators are then constructed as a product of vertex terms

within a large rhombic dodecahedral region D. The microscopic region R lies

at the center of this dodecahedron. In particular, we define

OABC =
Y

v2D

Aab

v
Abc

v
Aac

v
(5.14)

and likewise for OAEF , OBDF , and OCDE. Moreover,

OBCEF = OABCOAEF

OACDF = OABCOBDF

OABDE = OABCOCDE.

A rigid string operator that creates a lineon in region R must pierce the

center of one of the 12 faces of D (see Fig. 5.14b). The interferometric

operators are constructed such that they anti-commute with rigid string

operators passing through some, but not all of these faces. For instance,

the operator OABC anti-commutes with rigid string operators oriented in

the a, b, and c directions. Thus, the abbreviated S̃ matrix, which

contains the statistics of the lineon QSS and membrane interferometry

operators, with respect to the bases {1, `a, `b, `c, `a ⇥ `b ⇥ `c, `d, `e, `f} and
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{1, AEF,BDF,CDE,ABC,BCEF,ACDF,ABDE}, takes the form

S̃ =

0

BBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1

1 �1 1 1 �1 1 �1 �1

1 1 �1 1 �1 �1 1 �1

1 1 1 �1 �1 �1 �1 1

1 �1 �1 �1 �1 1 1 1

1 1 �1 �1 1 1 �1 �1

1 �1 1 �1 1 �1 1 �1

1 �1 �1 1 1 �1 �1 1

1

CCCCCCCCCCCCCCA

. (5.15)

and the full S matrix is given by

S =

 
1 1

1 �1

!
⌦ S̃. (5.16)

Interestingly, the QSS and quasiparticle statistics of the hyperkagome and

stacked kagome X-cube models have identical algebraic structure; the models

di↵er only in the geometry of their foliation structures.

5.5.5 ZN X-cube model

Figure 5.15: (a) Cube term Bc of the ZN X-cube Hamiltonian, defined as the
tensor product of generalized Z operators over the solid yellow edges and Z†

operators over the dotted yellow edges. (b) Cross stabilizers Axy

v
, Axz

v
, and

Ayz

v
. They act as generalized X on the solid blue edges and X† on the dotted

blue edges.

The X-cube model is also readily generalized to a family of abelian rotor

models, in which each edge of a cubic lattice contains a ZN rotor degree of

freedom spanned by basis states |0i , . . . , |N � 1i. The Hamiltonian is defined

in terms of clock and shift operators X and Z which act as Z |mi = !m |mi
and X |mi = |m+ 1 mod Ni, where ! = e2⇡i/N , and satisfy the commutation

relations ZX = !XZ and Z†X = !�1XZ†. The Hamiltonian takes the form

H = �
X

v

(Axy

v
+ Ayz

v
+ Axz

v
+ h.c.)�

X

c

�
Bc +B†

c

�
(5.17)
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where per usual v and c run over the vertices and elementary cubes of the

lattice, respectively. The operators Axy

v
, Ayz

v
, Axz

v
, and Bc are depicted in

Fig. 5.15.

Figure 5.16: A flexible string operator for the ZN X-cube model. It is defined
as the tensor product of generalized Z operators over the solid yellow edges
and Z† operators over the dotted yellow edges, and creates pairs of lineons,
represented as red dots, at its endpoints.

Like the original Z2 version, the ZN X-cube Hamiltonian is exactly solvable,

and exhibits lineon excitations created at the endpoints of rigid string

operators, and fracton excitations created at the corners of membrane

operators. However, in the rotor model these excitations obey ZN fusion

rules, and the lineons obey generalized triple fusion rules. Moreover, pairs of

adjacent fractons form composite dipolar planons free to move in a 2D plane,

as do pairs of adjacent lineons (for example, see Fig. 5.16). As a result, the

quotient superselection sectors for the ZN X-cube model represent the group

ZN ⇥ ZN ⇥ ZN , with generators `x, `y, and f . The classes of interferometric

operators likewise form the group ZN ⇥ ZN ⇥ ZN , with generators X, Y , and

F , where X and Y are cylindrical membrane operators along the x and y-axes,

and F is a rigid wireframe operator. The precise form of the interferometric

operators can be computed as a composition of Hamiltonian terms within

a region encompassing R. They exhibit the non-trivial statistical phases

S`x,Y = S`y ,X = Sf,F = !.

5.5.6 Checkerboard model

The checkerboard model, as introduced in Ref. [48], is a stabilizer code

model defined on a cubic lattice with one qubit degree of freedom per site.

The elementary cubes of the lattice are bipartitioned into A-B checkerboard
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Figure 5.17: The A checkerboard sublattice is further subdivided into R, G,
B, and Y sublattices.

sublattices, and the Hamiltonian is defined as follows:

H = �
X

c2A

Xc �
X

c2A

Zc (5.18)

where c 2 A denotes the set of all cubes in sublattice A. The stabilizer

generator Xc (Zc) is a product of Pauli X (Z) operators over the vertices of

cube c.

Figure 5.18: Examples of (a) fracton excitations at the corners of membrane
operators, (b) lineon excitations at the endpoints and corners of rigid string
operators, and (c) planon excitations at the ends of flexible string operators
in the checkerboard model. In all cases, the operators are products of Pauli
X or Z over the red qubits.

To analyze the structure of fractional excitations in the model, it is convenient

to regard a 2 ⇥ 2 ⇥ 2 box as the elementary unit cell of the system, and to

further subdivide the A sublattice into R, G, B, and Y sublattices, as pictured

in Fig. 5.17. The model exhibits an ‘electric-magnetic’ duality realized by

Hadamard rotation which greatly simplifies the analysis. Let us first focus on

the elementary electric excitations, which correspond to violations of individual

Zc cube operators. They are immobile fractons that can only be created at the

corners of membrane operators. Pairs of neighboring (i.e. sharing an edge)
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fracton excitations in di↵ering sublattices (e.g. R and G) are free to move

along a line, and are thus lineons, whereas pairs of neighboring fractons in

the same sublattice are planons with mobility in a 2D plane (see Fig. 5.18).

Consequently, all the electric fractons in a single sublattice belong to the same

QSS. However, fractons residing in di↵erent sublattices correspond to distinct

quotient sectors, which are given labels fZ

R
, fZ

G
, fZ

B
, and fZ

Y
. Finally, because

a composite of four adjacent electric fractons, one in each of the R, G, B,

and Y sublattices, is a local excitation (created by the action of a Pauli X

operator on a single qubit), each of these sectors is the result of fusion of the

other three. In other words,

fZ

R
⇥ fZ

G
⇥ fZ

B
⇥ fZ

Y
= 1. (5.19)

Therefore, the electric excitations comprise 3 independent QSS. Likewise, there

are 3 independent quotient sectors corresponding to magnetic quasiparticles,

for a total of 26 = 64 quotient sectors.

FX/Z MX/Z

BY
MX/Z

GY
MX/Z

GB

Figure 5.19: Examples of (a) a wireframe operator and (b) membrane
operators in the checkerboard model. The operators are tensor products of
Pauli X or Z over the red qubits. Shaded cubes belong to the A sublattice.

Due to the self-duality, the interferometric operators of the checkerboard

model may also be split according to whether they detect electric or magnetic

excitations. Like the X-cube model, the checkerboard model has wireframe

operators which correspond to processes in which lineons travel along the

edges of the wireframe and fuse into the vacuum at the corners, as well as

cylindrical membrane operators wrapping around one of three coordinate axes

(for instance, as shown in Fig. 5.19). The operators are tensor products of

Pauli X or Z over the red qubits. The wireframe operators can be obtained

as a product of all the Xc or Zc cube operators inside the wireframe and are

labeled as FX or FZ , respectively. The membrane operators can be obtained as
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a product of all the cube operators in every other layer inside the overall cube.

Depending on the orientation of the membrane operators, we label them as

MX

BY
, MX

GY
, and MX

GB
or as MZ

BY
, MZ

GY
, and MZ

GB
. The superscript denotes

whether it is a tensor product of Pauli X or Z, and the subscript specifies

which layers of cubes; for instance, MZ

BY
is a product of Zc over all B and Y

cubes.

The structure of fractional excitations of the checkerboard model is identical

to that of two copies of the X-cube model. In other words, there is a

mapping between quotient superselection sectors and interferometric operators

of the two models which preserves the fusion rules and quasiparticle statistics,

suggesting that the two models represent the same foliated fracton phase. In

a separate work, we show that these models are in fact equivalent up to a

generalized local unitary transformation [40]. The correspondence between

non-trivial QSS and interferometric operators (IO) of the checkerboard model

and two copies of the X-cube model is as follows:

Checkerboard QSS QSS of 2 X-cube Checkerboard IO IO of 2 X-cube

fZ

R
f 2 FZ F 2

fZ

G
`1
x
⇥ f 2 MZ

BY
X1

fZ

Y
`1
y
⇥ f 2 MZ

GB
Y 1

fZ

B
`1
z
⇥ f 2 MZ

GY
Z1

fZ

R
⇥ fZ

G
`1
x

FZMZ

BY
F 2X1

fZ

R
⇥ fZ

Y
`1
y

FZMZ

GB
F 2Y 1

fZ

R
⇥ fZ

B
`1
z

FZMZ

GY
F 2Z1

fX

R
f 1 FX F 1

fX

G
`2
x
⇥ f 1 MX

BY
X2

fX

Y
`2
y
⇥ f 1 MX

GB
Y 2

fX

B
`2
z
⇥ f 1 MX

GY
Z2

fX

R
⇥ fX

G
`2
x

FXMX

BY
F 1X2

fX

R
⇥ fX

Y
`2
y

FXMX

GB
F 2Y 2

fX

R
⇥ fX

B
`2
z

FXMX

GY
F 2Z2

The superscripts in the X-cube columns indicate whether the sector or operator

corresponds to the first or second X-cube copy. Note that there is an ambiguity



119

in the correspondence due to the four-fold permutation symmetry of the R, G,

B, and Y sublattices; for example, we could have chosen f 2 (f 1) to correspond

to fZ

G
(fX

G
) instead of fZ

R
(fX

R
), in which case R and G would be swapped in

the above table.

5.5.7 An anisotropic model with lineons and planons

Figure 5.20: The Hamiltonian terms of the anisotropic model. Qubits lie on
the red edges and blue plaquettes.

In this section we discuss a novel stabilizer code Hamiltonian. In fact, it arises

as a particular example of the polynomial formalism for translation-invariant

stabilizer codes developed by Yoshida in Ref. [56]. The model is defined on

a cubic lattice, with one qubit attached to each z-oriented link and one qubit

attached to each xy plaquette. The Hamiltonian takes the simple form

Haniso = �
X

v

Av �
X

c

Bc (5.20)

where v runs over all vertices of the lattice, and c runs over all elementary

cubes. Here Av is defined as the product of Pauli Z operators over the

4 plaquettes and 2 links adjacent to v, whereas Bc is a product of Pauli

X operators over the 2 plaquettes and 4 links surrounding c (as shown

in Fig. 5.20). The model exhibits a self-duality realized by duality of the

underlying lattice composed with Hadamard rotation. It represents a foliated

fracton phase with 2 foliations composed of toric code layers along the xz

and yz planes. A fixed-point RG transformation for the model is discussed in

Appendix 5.9. The model also admits a simple field theory description which

is derived in Appendix 5.10.

There are two varieties of fractional excitations in this model: ‘electric’ lineons,

and ‘magnetic’ lineons. The electric quasiparticles are created at the corners of

membrane operators, which are tensor products of Pauli X operators over the
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Figure 5.21: (a) An open ribbon operator given by the tensor product of
Pauli X operators over the pictured qubits. Individual black dots represent
lineons; the dipolar composites are planons. (b) An interferometric operator
for the anisotropic model belonging to the M class, given by the product of
X operators over the pictured qubits. The microscopic region R lies at the
center of the prism.

plaquettes in a region of a single xy plane, and also at the ends of rigid string

operators, which are tensor products of X operators over the edges along a line

segment oriented in the z direction. These particles are individually only free

to move in the z direction, and are hence lineons. However, pairs of adjacent

lineons are free to move in a 2D plane via the action of ribbon operators, and

are thus fractional planon excitations in their own right. Therefore, all electric

lineon excitations belong to the same quotient superselection sector, which we

label as e. An example of such a ribbon operator is depicted in Fig. 5.21(a).

Analogously, the magnetic excitations are created at the corners of membrane

operators and the ends of string operators which are defined on the dual lattice

and are tensor products of Pauli Z operators. These quasiparticles are likewise

z direction lineons, and pair to form dipolar planons. Thus the magnetic

lineons represent a second non-trivial quotient superselection sector, labeled

m. Finally, the composite of an electric and a magnetic lineon is a ‘dyonic’

lineon which represents a non-trivial quotient sector labeled by ✏. The quotient

sectors obey the simple fusion rules e⇥ e = m⇥m = 1, and e⇥m = ✏.

The interferometric operators of this model correspond to compositions of

Hamiltonian terms within some macroscopic region. Products of the cube

terms, denoted as the class M since such operators correspond to tunneling

processes of magnetic lineons, detect the parity of electric lineons, whereas

products of the vertex terms, denoted E, detect the parity of magnetic lineons.

An example of an interferometric operator belonging to theM class is shown in

Fig. 5.21(b). Composite operators belonging to the class ⌃ detect both types
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of lineons. The S matrix, with respect to bases {1, e,m, ✏} and {1, E,M,⌃},
is as follows:

S =

0

BBBB@

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1

CCCCA
. (5.21)

5.6 Mapping the semionic X-cube model to the X-cube model

As discussed in section 5.5.2, the semionic X-cube model has the same quotient

superselection sectors and interferometric statistics as the X-cube model,

indicating that they may belong to the same foliated fracton phase. In

this section, we show that this is indeed the case by presenting an explicit

mapping between the two. Note that, as discussed in Ref. [21], the two models

appear to be very di↵erent because in the X-cube model string operators

of lineons always commute with each other, while in the semionic X-cube

model string operators of lineons may anti-commute with each other (if they

lie in orthogonal directions and intersect one another). However, as we see

below, this di↵erence is merely superficial and can be removed by considering

the general equivalence relation used to define foliated fracton phases. In

fact, to map between the two models, we must first add stacks of 2D double

semion layers in the xy, yz, and zx planes to both models before applying

local unitary transformations. In the presence of such layers, the two models

become equivalent. One way to see this equivalence is to realize that with

these layers, we can bind the 2D semions from the layers to the lineons in the

model, hence changing the string operators of the lineons from commuting to

anti-commuting or vice versa. Therefore, in the presence of the double semion

layers, the two models are no longer distinct.

The mapping goes as follows. We add to the decorated cubic lattice three

stacks of double semion layers in the xy, yz, and zx planes, as shown in

Fig. 5.22(a). The double semion models are defined on decorated square

lattices as shown in Fig. 5.10(a). With this addition, the two models take

the form

H 0
n
= �

X

v

Av �
X

p

B(n)
p

�
X

c

C(n)
c

�
X

L

 
X

s2L

As +
X

d2L

B(1)
d

+
X

o2L

B(1)
o

!
,

(5.22)

where n = 0 for the X-cube model and n = 1 for the semionic X-cube model.
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Figure 5.22: (a) Inserting stacks of double semion layers (blue planes) along
the xy, yz and zx planes into the X-cube and semionic X-cube models. The
layers overlap with the xy, yz, and zx planes of the decorated cubic lattice. For
clarity, the decoration (which is shown in Fig. 5.10) in the cubic lattice is not
shown and only one layer is shown for each stack. (b) The vertex and plaquette
Hamiltonian terms of the 2D toric code model (n = 0) and 2D double semion
model (n = 1) on the decorated square lattice. In the Bo term, there is one
X operator on each solid edge and one Sn operator on each dashed edge. For
clarity, only two of these operators in the right-most figure are shown.

The Av, B
(n)
p , C(n)

c terms are given in Fig. 5.10(c-e). The As (vertex), B(1)
d

(diamond plaquette), B(1)
o (octagon plaquette) terms belong to each double

semion layer labeled by L and take the form as shown in Fig. 5.22(b). The

di↵erence between the two models lies in the Bp, Cc terms while all other

terms are the same. Each Bp term overlaps with one B1
d
term in the double

semion layers while each side surface of the Cc term overlaps with one B(1)
o

term in these layers. Therefore, to map between the two models, it su�ces to

show that the combination of the Bp, B
(1)
d

terms and the combination of the

Cc, B
(1)
o terms can be mapped from one model to the other without a↵ecting

the other terms.

To establish this mapping, first we consider a 2D problem of mapping from

one 2D toric code model plus one 2D double semion model to two copies of

the 2D double semion model. The Hamiltonian of the first system is given by

Ha =
X

s12L1

As1+
X

d12L1

B(0)
d1

+
X

o12L1

B(0)
o1

+
X

s22L2

As2+
X

d22L2

B(1)
d2

+
X

o22L2

B(1)
o2
. (5.23)

Here L1 and L2 are two separate layers. The Hamiltonian for the second

system is given by

Hb =
X

s12L1

As1+
X

d12L1

B(1)
d1

+
X

o12L1

B(1)
o1

+
X

s22L2

As2+
X

d22L2

B(1)
d2

+
X

o22L2

B(1)
o2
. (5.24)
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It is possible to map between these two models with local unitary

transformations because they have the same topological order. This can be

seen by observing that both models represent Z2⇥Z2 gauge theories containing

two independent gauge charges c1, c2 and two independent gauge fluxes f1, f2.

The statistics of the two models are similar in the following ways:

tc1 = 1, tc2 = 1, sc1f1 = �1, sc2,f2 = �1,

sc1,c2 = 1, sf1,f2 = 1, sc1,f2 = 1, sc2,f1 = 1 (5.25)

where t denotes topological spin, and s denotes the braiding statistics. The

two models are di↵erent in the topological spin for the two fluxes. In model a:

tf1 = 1, tf2 = i (5.26)

In model b:

tf1 = i, tf2 = i (5.27)

But this di↵erence is only superficial because we can reorganize the

quasiparticles of model a so that they have the same statistics as model b.

In particular, if we redefine the quasiparticles in model a as

c01 = c1, c02 = c1c2, f 0
1 = c1f1c2f2, f 0

2 = f2, (5.28)

then they have the same statistics as model b. Therefore, there exists a local

unitary transformation mapping the ground state of model a to the ground

state of model b. At the same time, it maps c1 in model a to c1 in model b,

c1c2 to c2, c1f1c2f2 to f1, f2 to f2. Correspondingly, it maps the Hamiltonian

terms, which are also loop operators of the quasiparticles, as follows

As1 ! As1 , As1As2 ! As2 , B(0)
d1
B(1)

d2
! B(1)

d1
,

B(1)
d2

! B(1)
d2
, B(0)

o1
B(1)

o2
! B(1)

o1
, B(1)

o2
! B(1)

o2
(5.29)

More explicitly, the local unitary transformation involves a controlled-X

operator from every qubit in L1 to its counterpart qubit in L2, followed by

a unitary on the six qubits around each pair of corresponding vertices in the

two layers. The unitary is diagonal in the computational basis of the six

qubits U =
P

a,b,c
↵(a, b, c)|a, b, ciha, b, c|. Here a, b, c = 0, 1, 2, 3 label the
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(0, 0), (0, 1), (1, 0), (1, 1) state of each pair of corresponding qubits in the two

layers. ↵(a, b, c) is given as follows:

↵(0, 0, 0) = 1, ↵(1, 3, 2) = �1,

↵(1, 1, 0) = ↵(2, 2, 0) = ↵(3, 3, 0) = ↵(1, 2, 3) = i.
(5.30)

↵ is invariant under cyclic permutations of a, b, c. All other terms of ↵ are 1.

The equivalence between Ha and Hb [Eqns. (5.23) and (5.24)] can also be

understood in the K-matrix formalism. These models have a Chern-Simons

description [52] given by the following Lagrangian and respective K-matrices,

where aI
µ
is a compact gauge field:

L =
1

4⇡
KIJ✏

µ⌫⇢aI
µ
@⌫a

J

⇢
(5.31)

Ka =

0

BBBB@

0 2 0 0

2 0 0 0

0 0 2 0

0 0 0 �2

1

CCCCA
(5.32)

Kb =

0

BBBB@

2 0 0 0

0 �2 0 0

0 0 2 0

0 0 0 �2

1

CCCCA
. (5.33)

However, the K-matrix for a Chern-Simons Lagrangian is not unique. A

change of variables can be performed by transforming the gauge fields

according to aI
µ
! a0I

0
µ

= W I
0

I
aI
µ
where W 2 GL(n,Z) is an n ⇥ n matrix

(with n = 4 for Ka and Kb) with integer coe�cients and determinant equal

to 1. This transformation can then be absorbed into the K-matrix via

KIJ ! K 0
I0J 0 = W I

I0KIJW J

J 0 = (W TKW )I0J 0 . The following matrix W can

then be used to relate the above two K-matrices:

W =

0

BBBB@

0 �1 +1 0

+1 +1 0 0

�1 �1 +1 0

0 0 0 +1

1

CCCCA
. (5.34)

In particular, Kb = W TKaW . This shows that Ha and Hb represent the same

phase.
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Using such a local unitary transformation it is possible to map between the

X-cube model and the semionic X-cube model when both are augmented

with double semion layers. This is because we can apply the local unitary

transformation between a double semion layer and the Hamiltonian terms in

the overlapping layer of the X-cube model and map from

Av ! Av, AvAs ! As, B(0)
p
B(1)

d
! B(1)

p
,

B(1)
d

! B(1)
d
, C(0)

c

�
B(1)

o

�⌦6 ! C(1)
c

, B(1)
o

! B(1)
o
. (5.35)

Of course, the X-cube and semionic X-cube models are di↵erent from simple

decoupled stacks of toric code and double semion models, so there are some

subtleties involved in applying the mapping in Eq. 5.29. In particular, the X-

cube and semionic X-cube models are ‘coupled’ toric codes and double semions

such that loop configurations on the side surfaces of the same cube should exist

at the same time. While performing the mapping, care must be taken that this

constraint is not violated. Indeed this is the case because in mapping between

Ha and Hb, f1 maps to f1f2 and f1f2 to f1, therefore the loop configuration

in the first layer is always preserved. Applying the same mapping to the X-

cube or semionic X-cube models together with double semion stacks, the loop

configurations in these models are also always preserved.

In this way, it is possible to map the ground state of the X-cube model to

the ground state of the semionic X-cube model after inserting three stacks

of double semion layers in the xy, yz, zx directions respectively. Ref. [57]

discussed an ungauged version of the semionic X-cube model as a symmetry

protected topological (SPT) phase with subsystem symmetry. Using a similar

transformation, one can show that the ungauged model is equivalent (with the

addition of 2D Z2 SPT layers) to a ‘weak’ subsystem SPT model which is a

stack of 2D SPTs.

5.7 Loop excitations

In three dimensions, gapped topological phases harbor fractional loop-like

excitations in addition to point-like particles. Moreover, these loop-shaped

excitations may exhibit non-trivial braiding statistics with point particles,

as well as from three-loop braiding processes in which two loops are wound

around one another while simultaneously linked to a third loop [16, 49,

51]. In conventional 3D topological phases (discrete gauge theories), the set

of fractional particle and loop excitations, the braiding statistics between
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particles and loops, along with the three-loop braiding statistics, fully

characterize the topological order (see, for example, Refs. [7, 50]). In this

section, we demonstrate that the framework developed in the prior sections can

be extended to accommodate the universal data pertaining to loop excitations

of conventional topological orders. This is of note because conventional 3D

topological orders are themselves a subset of the foliated fracton orders (with

trivial foliation structure). Since the notions of ordinary superselection sector

and quotient superselection sector coincide for these phases, there is no need

to distinguish between them here.

The conventional notion of superselection sector does not capture loop-like

excitations of gapped phases, because loop excitations contained in a ball-

shaped region R can be shrunk to a point and annihilated via the action of

a local operator with support in R. However, it is possible to incorporate

a description of these excitations by modifying the topology of the region.

Instead of a ball-shaped region R, consider a region S with the topology of

a solid torus. We assume that the diameter of S (but not necessarily the

thickness) is large compared to the correlation length of the gapped medium.

The superselection sectors defined with reference to such a region S include

the original sectors corresponding to fractional point particles, as well as new

sectors which correspond to fractional loop excitations. For example, for the

3+1D Z2 gauge theory, there are four such superselection sectors: the vacuum,

an electric point charge e, a magnetic flux loop m, and a dyonic loop ✏, which

is a composite of e and m excitations and carries both charge and flux. The

interferometric operators for these sectors correspond to processes in which a

charge is wound around a flux loop, or in which a flux loop is nucleated from

the vacuum, stretched and pulled around a charge, and annihilated into the

vacuum on the other side. It is also possible to capture the notion of three-loop

braiding by extending the notion of superselection sector to regions with the

topology of Hopf-linked solid tori. We will not elaborate further here.

5.8 Discussion

In this paper, we have proposed a way to characterize fractional excitations in

fracton models that reflects the universal properties of the underlying foliated

fracton order. A foliated fracton phase is defined to be the equivalence class

of 3D gapped fracton models up to the addition of 2D gapped topological

layers and adiabatic deformation. Correspondingly, we propose to characterize
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fractional excitations in fracton models by modding out the contributions

from the 2D layers. We define a quotient superselection sector (QSS),

coarsening the notion of superselection sectors, as an equivalence class of point

excitations that can be related to one another by adding or removing both local

excitations and 2D quasiparticles. Moreover, we define their ‘statistics’ in an

interferometric way that is indi↵erent to statistics arising from the exchange

or braiding of 2D quasi-particles in the system. Using this approach, we can

characterize the universal features of fractional excitations in a foliated fracton

phase using a finite data set and compare this structure between models. The

examples we studied fall into three classes, as summarized in the following

table. (From our preliminary studies, the Chamon model [2, 6] belongs to

the class of X-cube model with 4 foliations. Details about this model will be

presented in future work.)

Class
Independent Independent

Models
Fracton QSS Lineon QSS

X-cube

3-foliation
1 2

X-cube, semionic X-cube,

ZN X-cube,

Checkerboard (2 copies)

X-cube

4-foliation
1 3

Kagome X-cube

Hyperkagome X-cube

Chamon model

Anisotropic
0 2 Anisotropic model

2-foliation

Within each class, the quasiparticle statistics given by interferometric

detection also take the same form. Of course, this is not meant to be a complete

list. It will be interesting to study the fractional excitations in the Majorana

checkerboard model [47], the non-abelian fracton models [46], the twisted

fracton models [44], the cage-net models [26], and so forth. Compared to the

systematic characterization of 2D fractional excitations in terms of unitary

modular tensor categories, our understanding of fractional excitations in 3D

fracton models is very limited. To achieve a more complete understanding, we

must collect more data and determine what types of quotient superselection

sectors can exist and what kinds of quasiparticle statistics are possible.
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Figure 5.23: Terms of (a) the anisotropic model Hamiltonian Haniso, (b) the
2D toric code Hamiltonian HTC, which acts on qubits in the x = 0 layer, and
(c) the Hamiltonian H0, which acts on the z = 0 layer.

5.9 Appendix: Renormalization group transformation for the

anisotropic model

In this appendix, we discuss the renormalization group transformation for the

anisotropic model introduced in Sec. 5.5.7. The procedure utilizes 2D toric

code resource states to grow the system size in the x or y directions, and

product state ancilla degrees of freedom to grow the system in the z direction.

Hence the model has foliated fracton order with 2 underlying foliations. To

describe these transformations, it is convenient to re-arrange the qubits so that

two qubits lie at each vertex of a cubic lattice. They may then be referred to

by labels (x, y, z,↵ = 1, 2). In this geometry the Hamiltonian terms take the

form pictured in Fig. 5.23(a).

To disentangle the layer x = 0 from the rest of the system, we act with the

local unitary operator

S =
Y

y,z

CNOT(�1,y,z,2),(0,y,z,2)CNOT(0,y,z,1),(1,y,z,1), (5.36)

which satisfies SHanisoS† ⇠= H 0
aniso + HTC. Here, Haniso is the original

Hamiltonian for the anisotropic model, H 0
aniso is the Hamiltonian for the model

with the x = 0 layer missing, and HTC is the toric code Hamiltonian on the

x = 0 layer, whose stabilizer terms are depicted in Fig. 5.23(b). An analogous

transformation can be used to disentangle 2D toric code layers along xz planes.

In order to grow the system size, this procedure is simply reversed: 2D toric

code resource states are added to the 3D system then sewn into the bulk by
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the circuit S (note that S = S�1).

On the other hand, to disentangle the z = 0 layer from the other system, we

perform the operation

S =
Y

x,y

CNOT(x,y,1,1),(x,y,0,1)CNOT(x,y,0,2),(x,y,�1,2), (5.37)

which acts as SHanisoS† ⇠= H 0
aniso+H0. The decoupled Hamiltonian H0, acting

on the z = 0 layer, is a sum of terms depicted in Fig. 5.23(c). This Hamiltonian

has trivial topological order with a product state ground state. Therefore,

the anisotropic model has an underlying foliation structure composed of 2

foliations of 2D topologically ordered gapped states parallel to the xz and yz

planes.

5.10 Appendix: Field theory of the anisotropic model

In this appendix we derive a quantum field theory (QFT) for the anisotropic

model introduced in Sec. 5.5.7. The QFT and its derivation are analogous to

that of the X-cube model in [42].

We will consider the ZN generalization of the anisotropic model. The stabilizer

terms in the Hamiltonian [Eq. (5.20)] are shown in Fig. 5.24. The ZN rotor

degrees of freedom (X and Z) are defined the same way as in Sec. 5.5.5.

Figure 5.24: The Hamiltonian terms of the ZN anisotropic model. Rotor
degrees of freedom lie on the red edges and blue plaquettes.

In order to connect the lattice model to a field theory, we rewrite the lattice

operators as exponents of fields (Ab and Bb with b = 1, 2):

Zp(x)(t) ⇠ exp

 
i

Z
x+a/2

x�a/2

dx0
Z

y+a/2

y�a/2

dy0A1(t, x
0, y0, z)

!

Ze(x)(t) ⇠ exp

 
i

Z
z+a/2

z�a/2

dz0A2(t, x, y, z
0)

!
.

(5.38)
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The X operators are related to the B fields by replacing Z ! X and A ! B

above. Zp(x)(t) denotes a Z(t) operator (in the Heisenberg representation) at

the xy plane plaquette p(x), which is centered at x, while Ze(x)(t) denotes a

Z(t) operator at the z axis edge e(x). If a is the cubic lattice spacing, then

the Z (or X) operators are related to the exponent of small integrals of the

gauge field A (or B) over plaquettes or lines of length a. The A and B fields

should not be confused with the stabilizer operators Av and Bc appearing in

the Hamiltonian [Eq. (5.20)].

The field theory is then derived by first rewriting the stabilizer terms in

the Hamiltonian in terms of the field variables. To do this, we express the

stabilizers, Fig. 5.24(a) and (b), as exponents of current densities, eiI
0
and

eiJ
0
, respectively. The current densities are

I0 =
N

2⇡
(@x@yA1 + @zA2)

J0 =
N

2⇡
(@x@yB1 + @zB2) .

(5.39)

It helps to think of the lattice operators in Fig. 5.24 as discretized versions

of the above current densities, which can be made more precise by the

correspondence in Eq. (5.38).

The Lagrangian is

L =
N

2⇡
(A1@tB2 + A2@tB1) + B0

N

2⇡
(@x@yA1 + @zA2)

| {z }
I0

+ A0
N

2⇡
(@x@yB1 + @zB2)

| {z }
J0

�
X

a=0,1,2

(AaJ
a +BaI

a).
(5.40)

There are six fields in total: Aa and Ba for a = 0, 1, 2. The first term results

because A and B are conjugate fields. In the next two terms, B0 and A0 act

as Lagrange multipliers, which project into the ground state Hilbert space by

projecting out excitations. The final term couples A and B to source fields J

and A. Similar to the lattice model, the field theory also exhibits a self-duality

given by

Aa $ Ba

Ja $ Ia.
(5.41)
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By construction, and the fact that the Hamiltonian terms commute, the

Lagrangian exhibits a gauge invariance due to the vanishing Poisson bracket

{I0(t,x), J0(t,x0)} = 0 (5.42)

where

{A1(t,x), B2(t,x
0)} = {A2(t,x), B1(t,x

0)} =
2⇡

N
�3(x� x

0)

{A1(t,x), B1(t,x
0)} = {A1(t,x), B2(t,x

0)} = 0.
(5.43)

The vanishing Poisson bracket is the field theory analog of the fact that the

terms in the lattice model commute. The gauge transformation for A1 and A2

can be derived from

8a=1,2 : Aa(t,x) !Aa(t,x)�
Z

x0

⇢
Aa(t,x),

N

2⇡

⇥
@0
x
@0
y
B1(t,x

0) + @0
z
B2(t,x

0)
⇤

| {z }
J0(t,x0)

�
⇣(t,x0).

(5.44)

The transformation for A0 is then found by requiring that the Lagrangian

is invariant under the transformation (ignoring the source field J for now).

We then find that the Lagrangian is invariant under the following gauge

transformation:

A0 ! A0 � @t⇣

A1 ! A1 + @z⇣

A2 ! A2 + @x@y⇣.

(5.45)

As required by the duality (Eq. (5.41)), the Lagrangian is also invariant by a

similar transformation of the B field. In order for the Lagrangian to be gauge

invariant in the presence of the source fields, the source fields must obey the

following conserved current constraints:

@tJ
0 � @zJ

1 � @x@yJ
2 = 0

@tI
0 � @zI

1 � @x@yI
2 = 0.

(5.46)

The field theory is invariant under the following form of spacetime

transformations:

t ! t̃(t) x ! x̃(x) y ! ỹ(y) z ! z̃(z) (5.47)
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where t̃(t), x̃(x), ỹ(y), and z̃(z) are smooth and monotonic functions. The

gauge fields transform under the spacetime transformation as

A0(x
µ) ! dt̃

dt
A0(x̃

µ)

A1(x
µ) ! dz̃

dz
A1(x̃

µ)

A2(x
µ) ! dx̃

dx

dỹ

dy
A2(x̃

µ).

(5.48)
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C h a p t e r 6

FOLIATED FRACTON ORDER IN THE CHECKERBOARD
MODEL

6.1 Introduction

Fracton models [2, 6, 10, 13, 14, 16, 22, 24, 26, 29, 41, 42, 44, 45, 47–50, 53,

55] are a collection of gapped three-dimensional lattice models that share a

range of exotic properties [3, 4, 8, 9, 18, 27, 30, 37, 39, 43, 51, 54]. Most

saliently, they contain quasiparticle excitations with constrained mobility and

exhibit a ground state degeneracy that scales exponentially with linear system

size [2, 49]. Moreover, the entanglement entropy of a region contains a sub-

leading correction to the area law that is proportional to the diameter of

the region [15, 23, 38, 40]. At the same time, each model appears to di↵er

drastically from other models. Most strikingly, some fracton models contain

string-like operators as logical operators on the ground space while others do

not [13, 53]. Furthermore, the quasiparticle content in varying models di↵er

in number, allowed movement pattern, and statistics [39]. Broadly speaking,

the models fall into two classes: type-I models, whose quasiparticles live at

points, along lines, or within planes of the ambient space, and type-II models,

i.e. fractal spin liquids [13, 53], in which the quasiparticles may only move

in coordination as the corners of fractal-like objects. The scaling constants in

the ground state degeneracy and entanglement entropy vary between models

as well [50].

A natural question to ask is whether the ‘fracton order’ in various models is

the same or di↵erent. In other words, we want to know whether the di↵erences

between a given pair of models are merely superficial or if they reflect a

fundamental distinction between the two models in terms of their universal

properties. This question has been di�cult to answer in the absence of a

clear definition of ‘fracton order’ and a clear distinction between universal and

non-universal properties of fracton models.

In [41], we addressed this question by presenting an explicit definition of the

so-called foliated fracton phases (FFP), which covers a large subset of type-I
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fracton models.1 Based on this definition, in Refs. [39] and [40] we discussed

universal properties of FFPs pertaining to their entanglement entropy and

fractional excitation types and statistics. Consideration of these properties

subsequently enables us to compare the foliated fracton order in di↵erent

models.

The basic idea behind the definition of FFP is that we are concerned only

with the non-trivial behavior intrinsic to three dimensions, and hence we

should ‘mod out’ the topological behavior arising from the 2D layers of the

underlying foliation structure. That is, when determining the FFP equivalence

relation between 3D fracton models, 2D models should be considered as free

resources. Thus, two 3D models are considered as equivalent if they can be

smoothly connected after the addition of gapped 2D layers. This drastically

changes the usual notion of gapped topological phase as two models in the

same FFP can have di↵erent ground state degeneracy and di↵erent numbers of

fractional excitations since the 2D resources can carry non-trivial ground state

degeneracy and fractional excitations themselves. By modding out features

coming from 2D layers, the universal properties of the foliated fracton models

can be characterized by a much simpler and robust set of data which can then

be compared between models.

In particular, we demonstrated in [41] that the X-cube model [50] belongs to a

FFP. Its universal properties can be analyzed as discussed in Refs. [39, 40]. In

fact, we showed that the X-cube model is a renormalization group fixed point

in the FFP as the system size can be increased (or decreased) by adding (or

removing) layers of 2D toric codes and applying local unitary transformations.

In this paper, we show that the checkerboard model [50] is also a fixed point of

a FFP. By comparing the universal properties of the X-cube and checkerboard

models and by establishing carefully an exact mapping, we actually show that

the checkerboard model is equivalent to two copies of the X-cube model up to

a generalized local unitary transformation [7].

The paper is organized as follows: In section 6.2, we briefly review the

definition of the model and some simple properties. In section 6.3, the RG

transformation for the model is presented which utilizes 2D toric code bilayers

as resources. In section 6.4, we show that the model can be defined on general
1Gapless U(1) fracton models [5, 12, 20, 21, 25, 28, 31–36, 52] and type-II fracton models

(in which excitations are created at corners of fractal operators) [13, 53] are not captured
by the notion of foliated fracton phases.
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Figure 6.1: (a) A-B checkerboard bipartition of cubic lattice cells. The
darkened cells belong to the A sublattice. Black dots represent qubits. (b)
Xc and Zc Hamiltonian terms. Here,

Q
X (

Q
Z) denotes a product of X (Z)

operators over the depicted qubits.

three-manifolds equipped with a total foliation structure and derive the general

formula for ground state degeneracy. In section 6.5, entanglement entropy

in the ground state wave function is studied using the scheme proposed in

Ref. [40]. In section 6.6, the fractional excitations of the model are studied

using the framework developed in Ref. [39]. This analysis collectively points to

the fact that the checkerboard model is equivalent to two copies of the X-cube

model as a foliated fracton phase. We present an explicit mapping between the

two in section 6.7. Finally we conclude with a brief discussion in section 6.8.

6.2 The checkerboard model

The checkerboard model, as first discussed in [50], is defined on a cubic lattice

with one qubit degree of freedom per vertex. The elementary cubes of the

lattice are bipartitioned into A and B 3D checkerboard sublattices, and the

Hamiltonian is defined as follows:

H = �
X

c2A

Xc �
X

c2A

Zc, (6.1)

where in both sums, c indexes all cubes in the A sublattice, and Xc (Zc) is

defined as the product of Pauli X (Z) operators over the vertices of the cube c

(see Fig. 6.1). The model constitutes a stabilizer code Hamiltonian [11]; i.e. it

is a sum of commuting frustration-free products of Pauli operators, and hence

is exactly solvable.

Although there is exactly one Hamiltonian term per qubit, when periodic
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boundary conditions are imposed, these terms collectively satisfy certain

relations which result in a non-trivial ground state degeneracy (GSD).

(Note that all three dimensions of the lattice must be even in order for

the checkerboard sublattice structure to exist under periodic boundary

conditions.) In particular, for each xy, yz, and xz layer of elementary cubes

L, we have the following relation:

Y

c2L\A

Xc = 1, (6.2)

and likewise for Zc. For a lattice of size 2Lx ⇥ 2Ly ⇥ 2Lz, there are thus

4(Lx + Ly + Lz) such relations, of which 6 are generated by the remaining

relations and hence are redundant [50]. The GSD therefore obeys the formula

log2 GSD = 4Lx + 4Ly + 4Lz � 6. (6.3)

A simple observation is that the number of logical qubits (i.e. log2 GSD) is

exactly double that of the X-cube model defined on an Lx⇥Ly⇥Lz size lattice,

which has a code space of 2Lx +2Ly +2Lz � 3 qubits. The characteristic sub-

extensive scaling of the GSD can be understood in terms of the renormalization

group (RG) transformation discussed in the next section. Therein, two toric

code layers are added in order to increase the system size by 2 lattice spacings

in one direction, corresponding to an increase in GSD by a factor of 16.

The logical operators of the model, which map between ground states,

correspond to processes in which particle-antiparticle pairs are created out

of the vacuum, wound around the spatial manifold, and then annihilated. A

salient feature of the model is that these fractional excitations exist within

a hierarchy of subdimensional mobility: planons are free to move within a

plane but cannot leave the plane; lineons can move freely along a straight line;

whereas fractons are fully immobile and cannot be moved whatsoever without

creating additional excitations. Moreover, the model has a simple self-duality

realized by Hadamard rotation, which is reflected naturally in the particle

content. The full structure of excitations is examined more closely in Sec. 6.6.

6.3 Entanglement renormalization

In this section, we discuss an entanglement renormalization group transforma-

tion [1, 7, 19, 46] for the checkerboard model which utilizes toric code bilayers

as 2D resources of long-range entanglement, thus establishing the model as a
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Figure 6.2: Qubits involved in the RG transformation for the checkerboard
model. A single unit cell of the original 2Lx⇥2Ly⇥2Lz cubic lattice is depicted
here. The black qubits belong to the original checkerboard model. The red and
blue qubits comprise the toric code bilayer used as an entanglement resource
in the RG procedure and are placed at the vertices of square lattices which
are respectively embedded in the z = a and z = b planes. The shaded cube
belongs to the A sublattice of the checkerboard bipartition.

fixed-point representative of a foliated fracton phase. The procedure presented

here can be compared to the corresponding procedure for the X-cube model

[41], which uses single toric code layers as 2D resource states. To realize the

RG transformation, we construct a local unitary operator S which sews a sin-

gle toric code bilayer ground state (i.e. two copies of the toric code) into a

2Lx ⇥ 2Ly ⇥ 2Lz checkerboard ground state to yield a 2Lx ⇥ 2Ly ⇥ 2 (Lz + 1)

checkerboard ground state. (Since all lattice dimensions must be even, this is

the minimal re-sizing allowed.) Arbitrary re-scaling of the model may then be

achieved by reversing or iterating this transformation.2

To describe the exact transformation, it is helpful to refer to Fig. 6.2.

We label vertices of the original lattice by integrals vectors (x, y, z) where

x = 1, 2, . . . , 2Lx and equivalently for y and z. We then consider the tensor

product | CBi ⌦ | a
TCi ⌦ | b

TCi of the 2Lx ⇥ 2Ly ⇥ 2Lz checkerboard ground

state | CBi with a toric code bilayer ground state | a
TCi ⌦ | b

TCi living on

augmenting z = a and z = b planes lying between the original z = z0 and

z = z0 + 1 lattice layers (z0 < a < b < z0 + 1). The states | a
TCi and | b

TCi
are defined as ground states of Hamiltonians Ha

TC and H
b
TC on square lattices

commensurate with the original cubic lattice. The toric code bilayer qubits, in

2This is possible because the model is a zero-correlation length fixed point of the RG
flow.
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Figure 6.3: Action of the local unitary S on the stabilizer generators of the
composite ground state | CBi ⌦ | a

TCi ⌦ | b
TCi. Here

Q
X (

Q
Z) denotes the

product of Pauli X (Z) operators over all depicted qubits. On the left side,
the shaded cells correspond to the original A sublattice, whereas on the right
side shaded cells correspond to the enlarged A sublattice.
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Figure 6.4: Modified checkerboard sublattice structure after the red and blue
qubit layers have been incorporated into the model via the RG transformation.
The new A sublattice corresponds to the shaded cells.

addition to the original checkerboard model qubits, therefore lie at the vertices

of an enlarged 2Lx ⇥ 2Ly ⇥ 2 (Lz + 1) cubic lattice. Ha
TC and H

b
TC are defined

as

H
a
TC = �

X

p2A

Zp �
X

p2B

Xp

H
b
TC = �

X

p2A

Xp �
X

p2B

Zp

(6.4)

where p runs over all plaquettes in the A or B sublattice and Xp (Zp) is the

product of Pauli X (Z) operators over the vertices of plaquette p. A plaquette

p is in sublattice A (B) if it is contained within an A (B) sublattice cube in

the original 2Lx ⇥ 2Ly ⇥ 2Lz checkerboard lattice. (These Hamiltonians are

identical to Kitaev’s toric code [17], except that the underlying square lattice is

equivalent to the medial lattice of the square lattice in Kitaev’s construction.)

This information is summarized on the left hand side of Fig. 6.3, which depicts

the stabilizer generators of the composite state | CBi ⌦ | a
TCi ⌦ | b

TCi.

To complete the RG procedure, we apply a local unitary operator S

in order to yield the enlarged checkerboard ground state | CBi0 =

S
�
| CBi ⌦ | a

TCi ⌦ | b
TCi

�
. Here,

S =
Y

(x,y)

CX(x,y,a)
(x,y,b)

Y

(x,y)

CX(x,y,z0)
(x,y,a) CX

(x,y,b)
(x,y,z0+1) (6.5)

where
Q

(x,y) =
Q2Lx

x=1

Q2Ly

y=1 and CX(x,y,a)
(x,y,b) is defined as the controlled X (i.e.

controlled NOT) quantum gate with control qubit (x, y, a) and target qubit
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(x, y, b). Note that CX(x,y,z0)
(x,y,a) and CX(x,y,b)

(x,y,z0+1) commute with one another but

not with CX(x,y,a)
(x,y,b) . To see that S correctly maps the composite tensor product

state to the enlarged checkerboard ground state | CBi0 one can examine the

conjugate action of S on the original stabilizer generators. This is shown

graphically in Fig. 6.3, recalling that CX acts by conjugation as

ZI ! ZI IZ $ ZZ

XI $ XX IX ! IX.

(6.6)

In particular,

S
�
H +H

a
TC +H

b
TC

�
S
† ⇠= H

0 (6.7)

whereH is the original Hamiltonian andH
0 is the enlarged 2Lx⇥2Ly⇥2(Lz+1)

Hamiltonian, and the ⇠= operator denotes that the two operators have identical

ground spaces. The enlarged A sublattice is depicted in Fig. 6.4.

6.4 General three-manifolds

In this section, we employ the notion of singular compact total foliation

(SCTF), discussed also in [41], to generalize the checkerboard model to

compact 3-manifolds other than the 3-torus. An SCTF is a discrete sample

of compact leaves of three transversely intersecting (possibly singular) two-

dimensional foliations of a 3-manifold M , labelled x, y, and z respectively.

For example, the xy, yz, and xz planes of a cubic lattice embedded in a three-

torus may be viewed as the leaves of an SCTF.

For the checkerboard model, each foliating leaf can be thought of as a bilayer

of the underlying lattice of qubits. Thus, to generalize the model we take an

SCTF of a 3-manifold M and split each leaf into a bilayer of closely-spaced

adjacent parallel leaves. These bilayers constitute a refined SCTF which forms

the sca↵olding of the embedded lattice. Qubits are placed at triple intersection

points of foliating leaves. The elementary 3-cells of the resulting cellulation are

then bipartitioned into A-B subsets according to the following rule: a 3-cell c

belongs to A if it lies within 0 or 2 bilayers, whereas c belongs to B if it lies

within 1 or 3 bilayers. See Fig. 6.5 for an example of such a structure for the

3-manifold S
2 ⇥ S

1.

The Hamiltonian of Eq. (6.1) is then readily applied to this generalized

checkerboard lattice structure, where in this setting, the Xc (Zc) operator

corresponds to products of Pauli X (Z) operators over the vertices of 3-cell c.
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Figure 6.5: An example of a checkerboard lattice structure embedded in
S
2 ⇥ S

1. Depicted here is an S
2 cross-section. The closely-spaced adjacent

circles represent bilayers, and the shaded cells belong to the A sublattice.

As for the checkerboard bipartition of cubic lattice cells, by construction the

generalized A-B bipartition has the property that all 3-cells of a given partition

have an even number of vertices and share an even number of vertices with

one another. The Hamiltonian defined in this way is therefore guaranteed to

contain mutually commuting terms.

The RG procecedure for the checkerboard model introduced in Sec. 6.3 can be

readily generalized to the model defined via an SCTF on a general 3-manifold.

The formula for the GSD in Eq. (6.3) therefore generalizes to the form

log2 GSD = 4gxLx + 4gyLy + 4gzLz � c (6.8)

where Lµ is the number of leaves in foliation µ, and gµ is the genus.3 The

constant c can be computed by using the RG procedure to increasingly coarsen

the lattice until the minimal lattice embedding is achieved. We consistently

find that c = 2cXC, where cXC is the corresponding constant correction to the

GSD of the X-cube model defined on the same manifold with the same SCTF

(see Table 1 of [41]). In all cases the total GSD of the checkerboard model is

therefore exactly twice the GSD of the corresponding X-cube model.

6.5 Entanglement entropy schemes

Entanglement entropy is a useful way to characterize fracton models [15, 23,

38, 40]. In this section, we briefly discuss the structure of entanglement entropy

in the checkerboard model.

3For non-orientable manifolds, a modified formula is satisfied instead [41]
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Figure 6.6: (a) 3D solid torus I(A;B|C) scheme and (b) 3D wire-frame
I(A;B|C) scheme. In both cases the regions are contained within an overall
cube of side length L.

Fig. 6.6 shows two schemes that can be used to characterize the entanglement

structure in the checkerboard model. In both schemes, the quantity to be

calculated is

I(A;B|C) = SAB + SBC � SC � SABC (6.9)

Applying scheme (a), as proposed in Ref. [23, 38], to the checkerboard model,

we find that

Ia(A;B|C) = 4L+ 2 (6.10)

when the overall cubic shape is of linear size L and is aligned with the cubic

lattice of the model. L is measured in units of twice the lattice constant of the

underlying cubic lattice. As discussed in Ref. [40], the 4L term in Ia helps to

identify the triple foliation structure revealed by the RG scheme in section 6.3,

since it corresponds to a sum of the topological entanglement entropies of the

underlying toric code bilayers.

As discussed in Ref. [40], to characterize foliated topological order beyond

the existence of foliation structure, we can use the scheme in Fig. 6.6 (b).

The foliating layers do not contribute to Ib(A;B|C) in this case and a

nonzero Ib(A;B|C) hence represents nontrivial foliated fracton order. Direct

calculation shows that

Ib(A;B|C) = 2 (6.11)

for the checkerboard model. This is exactly twice the value calculated for

the X-cube model. It is also interesting to note that Ia for the checkerboard

model is also exactly twice the value of Ia for the X-cube model, which must

be the case in light of the generalized local unitary equivalence demonstrated

in Sec. 6.7.
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6.6 Fractional excitations

In Ref. [39], we propose to characterize fractional excitations in foliated fracton

phases using quotient superselection sectors and their statistics. In particular,

a quotient superselection sector (QSS) is defined as a class of fractional

excitations that can be mapped into each other through local operations or

by attaching 2D point-like excitations (planons). The universal quasiparticle

statistics of a QSS is then captured by applying a set of interferometric

operators to the surrounding region of an isolated excitation such that the

resulting statistics is the same for excitations in the same QSS.

Applying these general principles to the checkerboard model, we find that

there are six elementary QSS generators, giving rise to a total of 26 = 64 QSS

sectors. It is intructive to take a 2⇥ 2⇥ 2 cell of the underlying cubic lattice

as shown in Fig. 6.8 and to divide the A checkerboard sublattice into four

further sublattices R, G, B, and Y . The six QSS generators can be taken to

be fracton excitations corresponding to a violation of the Xc or Zc term in

the R, G, and B sublattice cubes respectively, which we label as fX
R , fX

G , fX
B ,

f
Z
R , f

Z
G , and f

Z
B . Two neighboring fracton excitations in the same sublattice

combine into a planon while two neighboring fracton excitations in di↵erent

sublattices combine into a lineon. Because of this, we could also choose the

generating set of QSS to contain two fractons fX
R , fZ

R and four lineons fX
R f

X
G ,

f
X
R f

X
B , fZ

Rf
Z
G , and f

Z
Rf

Z
B . As explained in Ref. [39], when compared to the X-

cube model, we see that this is exactly double the QSS content of the X-cube

model.

Figure 6.7: Examples of (a) a wireframe operator and (b) membrane operators
in the checkerboard model. The operators are tensor products of Pauli X or
Z over the red qubits. Shaded cubes belong to the A sublattice.

To detect the quotient charge of an isolated point excitation (i.e. which QSS

it belongs to), we can apply interferometric operators as shown in Fig. 6.7.
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The operators are tensor products of Pauli X or Z over the red qubits. The

wireframe operator can be obtained as a product of all the Xc or Zc cube

operators inside the wireframe. The membrane operators can be obtained as

a product of all the cube operators in every other layer inside the overall cube.

The number of independent interferometric operators is twice that of the X-

cube model and, as shown in Ref. [39], there is a mapping between quotient

superselection sectors and interferometric operators of the two models which

preserves the fusion rules and quasi-particle statistics.

6.7 Relation to two copies of the X-cube model

In this section, we exhibit an exact local unitary mapping between the

checkerboard model ground space on a 2Lx ⇥ 2Ly ⇥ 2Lz lattice (denoted

GCB) and the ground space of two copies of the X-cube model tensored with

product state ancilla qubits on an Lx ⇥ Ly ⇥ Lz lattice (denoted G2XC). The

mapping is not a full equivalence of Hamiltonians as it rearranges the energy

levels of excitations, but the Hamiltonians are shown to be equivalent as

stabilizer codes, and thus have coinciding ground spaces. The X-cube model,

as originally discussed in [50], is defined on a cubic lattice with one qubit per

edge, and Hamiltonian

HXC = �
X

v

(Axy
v + A

yz
v + A

xz
v )�

X

c

Bc, (6.12)

where v runs over all vertices of the lattice and c runs over all elementary

cubes of the lattice. The operator A
xy
v is defined as the product of Pauli Z

operators over the four edges adjacent to vertex v along the xy plane, while

Bc is given by the product of Pauli X operators over the edges of the cube c.

To match the degrees of freedom of the two systems, we start with an

Lx ⇥ Ly ⇥ Lz cubic lattice whose points are labelled by vectors (x, y, z) and

belong to the set ⇤ (x = 1, 2, . . . , Lx and equivalently for y and z). We

then place one set of qubits on the edges of the lattice, corresponding to one

copy of the X-cube model with Hamiltonian H
1
XC, and another set of qubits

on the edges of the dual lattice (i.e. the plaquettes of the direct lattice),

corresponding to the second copy of the X-cube model, whose Hamiltonian

H
2
XC is transformed relative to Eq. (6.12) via a global Hadamard rotation

(X $ Z). Finally, ancilla qubits are placed at the vertices and body-centers

of the lattice, and initialized in +1 eigenstates of the Pauli Z and X operators

respectively. As shown in Fig. 6.8, all the qubits together constitute a cubic
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Figure 6.8: Matching of qubits between the checkerboard model and two copies
of the X-cube model tensored with ancilla qubits. A 2 ⇥ 2 ⇥ 2 cell of the
checkerboard model cubic lattice is shown here, corresponding to a single unit
cell of ⇤, whose vertices lie at the green points. Shaded cubes belong to
sublattice A of the checkerboard bipartition. The red and blue qubits located
respectively on the direct lattice (solid lines) and dual lattice edges (dashed
lines) belong to the two X-cube copies, whereas the green and purple qubits
at the vertices and body-center are ancilla degrees of freedom. The numbers
label the qubits of a single unit cell of ⇤.

lattice of dimensions 2Lx⇥2Ly⇥2Lz and half the lattice spacing of the original

model. There are thus 8 qubits in each unit cell of ⇤, which are numbered

according to the scheme in Fig. 6.8.

To demonstrate equivalence of the two ground spaces, consider the local

unitary operator U = U2U1 where

U1 =
Y

v2⇤

CXv,2
v,1CX

v,4
v,1CX

v,5
v,1CX

v,7
v,3CX

v,7
v,6CX

v,7
v,8

and
U2 =

Y

v2⇤

CXv,7
v,1⇥

CXv,3
v,2CX

v,3
v�ŷ,4CX

v,6
v,2CX

v,6
v�ŷ,5CX

v,8
v,4CX

v,8
v,5⇥

CXv,8
v,1CX

v+ŷ,3
v,1 CXv+ŷ,6

v,1 CXv,7
v,2CX

v,7
v�ŷ,4CX

v,7
v�ŷ,5.

Here CXv,a
u,b denotes a controlled X gate with control qubit a at point v 2 ⇤

and target qubit b at point u 2 ⇤. The conjugate action of U on the stabilizer

generators of the code space G2XC is shown graphically in Fig. 6.9. Note

that, because two of the three vertex stabilizers generate the third, it is

su�cient to consider the action on just two vertex terms. The image stabilizers

on the right-hand side are products of stabilizer terms for the checkerboard

model, and generate a stabilizer code identical to that of the checkerboard

Hamiltonian. In particular,

UHCBU
† ⇠= H

0 +H
1
XC +H

2
XC (6.13)
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Figure 6.9: Action of U on the stabilizer generators of G2XC. Here
Q

X

(
Q

Z) denotes the product of Pauli X (Z) operators over all depicted
qubits. Solid lines correspond to direct lattice edges, whereas dashed lines
correspond to dual lattice edges. From top to bottom, the image terms equate
to XRXGXBXY , XRXG, XRXB, XR, ZRZGZBZY , ZRZG, ZRZB, and ZR

operators in the checkerboard model (Eq. (6.1)) respectively, where R, G,
B, and Y refer to the red, green, blue, and yellow cubes.



151

where HCB is the checkerboard Hamiltonian and H
0 acts on the ancilla degrees

of freedom.

6.8 Discussion

In this paper we show that the checkerboard model (first discussed in [50])

belongs to a foliated fracton phase, as defined in [41]. Moreover, we identify

the foliated fracton order in the checkerboard model to be equivalent to that

of two copies of the X-cube model (also introduced in [50]). This is, in a sense,

similar to the equivalence between the 2D color code and two copies of the 2D

toric code as conventional topological order.

The existence of such an equivalence is far from obvious as the two models in

their original form appear to have significant di↵erences. The checkerboard

model has elementary (with minimum energy) lineons whose string operators

may anti-commute with each other, which is not the case for the elementary

lineons of the X-cube model. Moreover, in the checkerboard model an

elementary lineon is the composite of two elementary fractons, which is not

the case in the X-cube model. Such di↵erences may seem significant, but they

are actually superficial as they depend sensitively on which excitations are

considered the ‘elementary’ ones, which is not a universal property of a phase.

The explicit mapping (Fig. 6.3) between the two models allows us to see that

an elementary fracton in the checkerboard model is related to a composite

fracton in the pair of X-cube models, which is a bound state of elementary X-

cube fractons and lineons (along with a possible ancillary bosonic excitation).

The elementary lineon in the checkerboard model, which is a bound state

of two elementary fractons, is then related to a composite lineon in the X-

cube models, which is a bound state of two composite fractons: i.e. a bound

state of fracton dipoles (2D particles) and elementary lineons in the X-cube

models. Because these composite lineons are made of conjugate fracton dipoles

and lineons, their string operators may anti-commute, similar to the string

operators in the checkerboard model. This resolves the apparent di↵erences

between the checkerboard and pair of X-cube models discussed in the previous

paragraph.

While the superficial di↵erences can obscure the intrinsic relation between

the fracton orders in di↵erent fracton models, by considering their universal

properties such as the foliation-free entanglement entropy and fractional
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statistics, we are able to see clearly the equivalence between the checkerboard

model and two copies of the X-cube. Note that the mapping we found between

the two models is special in that we only need to add product state ancillas

before doing local unitary transformations. In general, if two models have the

same foliated fracton universal properties, then to connect them we may need

to add two dimensional gapped states as resource before applying local unitary

operations. In [39], we present such an example (between the X-cube model

and the semionic X-cube model).

With the definition given in [41] and the universal properties defined in

Refs. [40] and [39], we have a established a useful set of tools to study foliated

fracton order. It would be interesting to explore various other models and

identify di↵erent types of foliated fracton order, from which a more systematic

understanding of the phenomenon may be established.
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C h a p t e r 7

FOLIATED FRACTON ORDER IN THE MAJORANA
CHECKERBOARD MODEL

7.1 Introduction

Gapped quantum systems, such as discrete gauge theories and fractional

quantum Hall states, can reside in non-trivial phases in the absence of

symmetry if they are ‘topological’ [41]. Such systems have low-energy e↵ective

descriptions given by topological quantum field theory (TQFT) [2, 23, 43].

However, a class of recently discovered three-dimensional gapped lattice

models known as fracton models belong to non-trivial phases but defy such a

characterization [3, 6, 9–11, 13, 18, 20, 22, 31–35, 37–39, 44, 45]. Their most

salient, unifying properties are the presence of point-like fractional excitations

with fundamentally constrained mobility and a degenerate ground space which

grows exponentially with linear system size. These features preclude a TQFT

description.

A particularly exotic class of fracton models are the fractal spin liquids,

in which the operators that transport point-like fractional excitations are

constrained to have certain fractal geometries [9, 10, 44]. This class includes so-

called Type-II models such as the Haah code [10] whose fractional excitations

are all fully immobile as individual particles. On the other hand, so-called

Type-I models may contain mobile fractional excitations.1 A large subclass

of Type-I models exhibit three categories of point-like excitations: fractons,

which are fully immobile, lineons, which can move along a line, and planons,

which are mobile within a plane [3, 38]. The concept of foliated fracton

order was introduced recently in an attempt to systematize the study of these

models [25–27, 29, 30]. This notion builds on the observation that many

of these models have a foliated structure of long-range entanglement, in the

sense that layers of 2D topological orders can be disentangled from the bulk

via local unitary operations, i.e. under entanglement renormalization group

flow. The identification of this structure has shed light on the scaling of

1It should be noted that the Type-I family includes certain fractal spin liquids with string
operators [44] as well as models with fully mobile point excitations and loop excitations
interacting non-trivially with fractonic excitations [5, 21]
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ground space growth, the structure of fractional excitations in such models,

and entanglement entropic signatures discussed previously in the literature [12,

19, 24, 29]. Furthermore, a more coarse notion of gapped phases of matter

is motivated by this observation: in particular, a foliated fracton phase is

defined as an equivalence class of Hamiltonians under adiabatic deformation

augmented with the possible addition of layers of 2D topological orders.

It remains unclear to what extent this framework captures known Type-I

fracton models. Partial progress has been made toward understanding the

phase relations between these models [26, 27], but the picture is far from

complete. Moreover, all examples of foliated fracton order that have been

studied thus far are in models with bosonic degrees of freedom, and it is not

yet clear whether the notion can be extended to fermionic models.

In this paper we address these questions by demonstrating that a prototypical

example, the Majorana checkerboard model introduced in Ref. [38], exhibits

foliated fracton order. In fact, we find that this model is actually a fermionic

version of a previously known fractonic spin model called the semionic X-cube

model, which was originally described via the coupled layers construction of

Ref. [18]. As it has been shown that the semionic X-cube model has the same

foliated fracton order as the X-cube model [27], the Majorana checkerboard

model thus has the same order as well.

The paper’s contents are as follows: in Sec. 7.2, we briefly review the Majorana

checkerboard model. In Sec. 7.3, we describe a renormalization group (RG)

transformation for the model which utilizes layers of toric code as resources of

entanglement, hence establishing that it possesses foliated fracton order. In

Sec. 7.4 we discuss entanglement entropic signatures of the foliated fracton

order in the model, and in Sec. 7.5 we discuss the structure of quotient

superselection sectors (QSS). In the following Sec. 7.6, we describe a mapping

from the Majorana checkerboard model to a spin Hamiltonian (plus decoupled

fermions), and in Sec. 7.7 a mapping from this stabilizer code spin Hamiltonian

to the semionic X-cube model, hence establishing its equivalence to the X-cube

model as a foliated fracton order. Finally we conclude with a discussion in Sec.

7.8.
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Figure 7.1: Bipartition of a cubic lattice into A (shaded) and B (unshaded)
checkerboard sublattices. Majorana fermions are placed at the vertices of the
lattice. The operator Oc acts on cubes c in the A sublattice and is defined as
the product of the 8 Majoranas at the corners of cube c.

7.2 The Majorana Checkerboard Model

The Majorana checkerboard model was first introduced in Ref. [38] as a

Majorana stabilizer code with one Majorana fermion on each vertex of a

cubic lattice. The elementary cubes are bipartitioned into A-B checkerboard

sublattices (as shown in Fig. 7.1), and the Hamiltonian is given by

H = �
X

c2A

Oc (7.1)

where Oc =
Q

i2c �i is the product of the eight Majorana operators at

the corners of cube c. The Hamiltonian terms mutually commute as they

share either zero or two Majorana operators, and their energies can be

simultaneously minimized. The model exhibits a ground state degeneracy

(GSD) on a 2Lx⇥ 2Ly ⇥ 2Lz cubic lattice under periodic boundary conditions

which satisfies [38]

log2 GSD = 2Lx + 2Ly + 2Lz � 3. (7.2)

Note that the number of logical qubits in the ground space is half that of the

spin checkerboard model on the same lattice [39], as per the doubling lemma

of Ref. [4].

As discussed in detail in Ref. [38], the model exhibits point-like excitations

with a dimensional hierarchy of constrained mobility as depicted in Fig. 7.2.

Fractons, which are fundamentally immobile, are created at the corners of

rectangular membrane operators. Lineons, which can move along a line only,

are created at the endpoints of rigid string operators and can be thought of as

composites of two fractons. Finally, planons, which are free to move within a
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Figure 7.2: Point-like excitations in the Majorana checkerboard model. The
colored cubes correspond to stabilizer terms which are violated by a given
excitation. The operator which creates a given excitation is denoted by the
product of the red Majoranas depicted. (a) A lineon created at the end of
a rigid string operator (green). (b) A planon created at the end of a flexible
string operator. (c) A fracton created at the corner of a rectangular membrane
operator (green).

plane, can be thought of as composites of two lineons, or as composites of two

fractons in their own right. In Sec. 7.5, we discuss how the notion of quotient

superselection sectors can be used to analyze the fractional excitations of the

model.

7.3 Entanglement renormalization

Entanglement renormalization group (RG) flow is a powerful tool to study

the long-range entanglement structure of gapped systems [1, 7, 16, 36].

The essential idea is to coarse-grain the underlying lattice via local unitary

transformations on the ground space of a given model.2 In this section, we

discuss an entanglement RG transformation for the Majorana checkerboard

model, which utilizes copies of the toric code as 2D resource layers. The

2It should be noted that entanglement, or wavefunction, RG is related to but distinct
from the Wilsonian RG (see references).
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Figure 7.3: Degrees of freedom in (left) the original Majorana checkerboard
model (black dots represent Majorana fermions) augmented with one copy
of the toric code (green diamonds represent qubits), and (right) the enlarged
Majorana checkerboard model, in which the red and blue dots represent added
Majoranas along z = a and z = b and the black dots correspond to the original
Majoranas.

existence of this transformation establishes the presence of foliated fracton

order in the model. It can be compared to the analogous RG procedure

for the X-cube model [30]. The transformation consists of a fermion parity-

preserving local unitary map S between the Majorana checkerboard model on

a 2Lx ⇥ 2Ly ⇥ 2Lz cubic lattice (described by Hamiltonian H0), augmented

with one copy of the toric code (H2D), and the Majorana checkerboard model

on a 2Lx ⇥ 2Ly ⇥ 2(Lz + 1) size lattice (H1):

S(H0 +H2D)S
† ⇠= H1. (7.3)

Here the relation ⇠= denotes that the two Hamiltonians are equivalent as

stabilizer codes and thus have identical ground spaces. We call the 2D

topological layers the “resource layers” for the RG transformation. An

equivalent transformation applies in the x and y directions as well.

In particular, suppose the toric code layer is inserted between layers z0 and

z0 + 1 of the original lattice. Its degrees of freedom consist of qubits placed

between the lattice sites of these two layers, as shown in Fig. 7.3. Its

Hamiltonian is given as

H2D = �
X

p2A

Y

i2p

Zi �
X

p2B

Y

i2p

Xi. (7.4)

Here, the 2D A-B checkerboard sublattices coincide with the 3D A-B

checkerboard sublattices. The unitary S maps the combined Majorana and

spin degrees of freedom to a pure Majorana system with two additional
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Figure 7.4: Mapping of Hamiltonian stabilizers under the local unitary
transformation S.

Majoranas on the links between z0 and z0 + 1. The latter system constitutes

an enlarged 2Lx ⇥ 2Ly ⇥ 2(Lz + 1) size cubic lattice of Majorana fermions.

The two systems have identical Hilbert spaces. To see this, for each (x, y)

coordinate, denote the Majorana at z = z0 by �0, the Majorana at z = z1

by �1, and the added Majoranas by �a and �b (as in Fig. 7.3). On the left

hand side of Fig. 7.3, the combination of �0, �1, and the spin forms a four-

dimensional Hilbert space whose operator algebra is generated by �0, �1, X,

and Z. On the right hand side of Fig. 7.3, the combination of �0, �a, �b, and

�1 also forms a four-dimensional Hilbert space. The two sides can be mapped

into each other under the following correspondence of operators:

X ! �a�b, Z ! �0�a, �0 ! �0�a�b, �1 ! �1. (7.5)

This mapping preserves the commutation relations of the local operator

algebra at each (x, y) coordinate as well as the global fermionic parity, hence it

describes a parity-preserving local unitary transformation. In fact, it is exactly

the local unitary map S that is needed to implement the RG transformation.

Fig. 7.4 illustrates the mapping of Hamiltonian stabilizers under this unitary.
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Evidently, the resultant Hamiltonian generates the same stabilizer group as the

enlarged Majorana checkerboard Hamiltonian. In other words, we find that

the ground space of the original model tensored with the added toric code

ground space is local unitarily equivalent to the ground space of the enlarged

Majorana checkerboard model.

7.4 Entanglement Signatures

Figure 7.5: (Left) Solid torus and (right) wireframe entanglement entropy
schemes.

In this section we briefly discuss entanglement entropic signatures of the

foliated fracton order in the Majorana checkerboard model. The results

suggest that the model may lie in the X-cube foliated fracton phase. Two

entanglement schemes, solid torus and wireframe, among others, have proven

useful in characterizing such orders [19, 24, 29]. In each scheme the quantity

to be computed is the conditional mutual information

I(A;B|C) = SAC + SBC � SC � SABC (7.6)

where SR refers to the entanglement entropy of region R. The geometries

of the A, B, and C regions for the two schemes are depicted in Fig. 7.5.

These schemes generalize the notion of topological entanglement entropy in

two dimensions [14, 15].

A simple technique for computing the ground state entanglement entropy of

generic Majorana stabilizer codes is discussed in Appendix 7.9. Applied to the

Majorana checkerboard model, one finds that I(A;B|C) = 2L+1 for the solid

torus scheme where L is the length of the overall cubic region measured in

twice the lattice constant, and I(A;B|C) = 1 for the wireframe scheme. For

both schemes these results hold provided the overall cubic region is aligned

with the axes of the cubic lattice. (In fact, the entanglement entropy of the
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Majorana checkerboard model for a given region is exactly half of that for the

equivalent region of the spin checkerboard model [29]).

As discussed in Ref. [29], the solid torus scheme serves as a diagnostic of

the underlying foliation structure, and indeed the result is consistent with the

triple foliation structure composed of 2D toric code layers identified in the

RG transformation of the section prior. On the other hand, the wireframe

scheme is engineered such that the contributions from the foliating layers

completely cancel, resulting in a constant value which characterizes the foliated

fracton phase. In the case of the Majorana checkerboard model, the result

I(A;B|C) = 1 is consistent with our finding that the model belongs to the

X-cube foliated fracton phase, as discussed in Sections 7.6 and 7.7.

7.5 Quotient Superselection Sectors

In Ref. [27], the notion of quotient superselection sectors was introduced as a

way to universally characterize fractional excitations in a given foliated fracton

phase. A quotient superselection sector (QSS) is defined as an equivalence class

of ordinary superselection sectors modulo the planon superselection sectors

that come from the resource layers used in the RG procedure. In other words,

two point-like fractional excitations belong to the same QSS if they are related

to each other through local operations and the addition or removal of planon

excitations that are unitarily equivalent to anyons in the resource layers. In

the Majorana checkerboard model, all planons are transformed into toric code

anyons under the inverse RG transformation of Sec. 7.3. To see this, note that

the planon string operators are mapped into toric code string operators under

the inverse RG transformation S†.

To describe the QSS of the Majorana checkerboard model, it is helpful to

further partition the A checkerboard sublattice into 4 sublattices labelled R,

G, B, and Y , as in Fig. 7.7. Excited states may be labelled according to

which Hamiltonian stabilizers they violate (e.g. the error syndrome). Planon

excitations violate two stabilizers corresponding to adjacent sites of either the

R, G, B, or Y sublattice. For instance, the planon depicted in Fig. 7.2

violates two adjacent B sublattice Hamiltonian terms. Thus, the addition of

planons on a given sublattice acts as a pair creation/annihilation, or hopping,

operator for excitations of the stabilizers on that sublattice. As a result, we

find that the QSS are characterized by the parity of the error syndrome on each
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sublattice, and can be labelled accordingly. For instance, the lineon depicted

in Fig. 7.2 belongs to the RB QSS because the state violates one R stabilizer

and one B stabilizer. However, since a local fermionic excitation corresponds

to a violation of one stabilizer of each of the R, G, B, and Y sublattices, the

RGBY QSS is in fact identified with the vacuum sector (and RB is identified

with GY , and so forth). Therefore, a complete list of the 8 QSS is given in

the first column of Table I.

Figure 7.6: Interferometric operators in the Majorana checkerboard, which
correspond to products of Majoranas over the red sites. RGBY wireframe
operator (top left), and BY , GB, and GY cylindrical membrane operators
(top right, bottom left, bottom right).

In fact, in terms of the mobility of the excitations and their fusion rules, there

is an exact correspondence between the QSS of the Majorana checkerboard

model and those of the X-cube foliated fracton phase, given in the table. In

particular, the three lineon sectors of the X-cube model correspond to the

BY , GB, and GY lineon sectors of the Majorana checkerboard model, which

likewise obey a triple fusion rule. On the other hand, the R, G (RBY ),

B (RGY ), and Y (RGB) fracton sectors correspond to the fractonic sectors

f , f ⇥ `x, f ⇥ `y, and f ⇥ `z of the X-cube model. Of course, there is an

ambiguity as to which of the Majorana checkerboard fracton sectors is chosen

to correspond to the f sector. In our case we have chosen the R sector. As

we will see in the following sections, this correspondence must exist due to the
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Majorana QSS X-cube QSS Majorana IOs X-cube IOs
1 1 1 1
R f RGBY F
BY `x BY X
GB `y GB Y
GY `z GY Z
RBY `x ⇥ f RG XF
RGB `y ⇥ f RY Y F
RGY `z ⇥ f RB ZF

Table 7.1: Correspondences between the quotient superselection sectors (QSS)
and interferometric operators (IOs) of the Majorana checkerboard and X-cube
models.

local unitary equivalence of the model with a fermionic version of the semionic

X-cube model, which is known to lie in the X-cube foliated fracton phase.

Ref. [27] also introduced the notion of interferometric operators, which are

classes of unitary operators that detect the QSS content of a given region

but are insensitive to the planon content of the region. The equivalence of

the foliated fracton order in the Majorana checkerboard model with that of

the X-cube model manifests not only as a correspondence between QSS, but

furthermore as a correspondence between the interferometric operators of the

two models. As discussed in Ref. [27], there are 8 classes of interferometric

operators for the X-cube model, which include a wireframe operator F and

three cylinder membrane operators X, Y , and Z (whose axes lie along the

x, y, and z directions), and the composites XF , Y F , and ZF . Each of these

classes corresponds to a class of operators in the Majorana checkerboard model

whose regions of support have the identical geometry (wireframe or cylinder

with axis along the x, y, or z direction) and whose interferometric statistics

agree exactly with the corresponding statistics of the X-cube model.

These interferometric operators can be written as products of Hamiltonian

terms within a large cubic region. In particular, we will denote by RGBY

the product of all R, G, B, and Y cube terms within the large cubic region,

by BY the product of all B and Y cube terms, and so on and so forth. In

this notation, the wireframe operator corresponds to RGBY whereas the 3

cylindrical membrane operators correspond to BY , GB, and GY respectively.

These operators are illustrated in Fig. 7.6, and the full correspondence is

given in the table above. As an example, the X membrane operator yields
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a ⇡ phase when it acts on a state with quotient charge `y, `z, f`y, or f`z.

Correspondingly, the BY membrane operator has a ⇡ statistic with the GB,

GY , RGB, and RGY quotient sectors.

7.6 Mapping the Majorana Checkerboard Model to a Spin Model

7.6.1 Mapping to a spin model

In this section, we describe a local unitary transformation from the Majorana

checkerboard model to a bosonic stabilizer code augmented with decoupled

fermionic degrees of freedom. A mapping of the same spirit between the

Majorana color code on the square-octagon lattice [4, 40] and the Wen

plaquette model plus decoupled fermions on a square lattice [42] is briefly

discussed in Appendix 7.10.

Figure 7.7: (Left) Unit cell of the Majorana checkerboard model with the
Majorana degrees of freedom labelled from 1 to 8. The unit cell contains one
cube of each of the R, G, B, and Y sublattices. (Right) Unit cell of the spin
model containing a qubit degree of freedom on the green edges labelled x, y
and z.

For our purposes we consider a unit cell of the Majorana checkerboard model

as a 2⇥ 2⇥ 2 cell of the underlying cubic lattice, which contains one cube of

each of the R, G, B, and Y sublattices and 8 Majorana fermion degrees of

freedom, labelled as shown in Fig. 7.7(a). The spin model we consider has one

qubit degree of freedom on each edge of a cubic lattice, and thus has 3 qubits

per unit cell, which are labelled according to the direction of the edge as in Fig.

7.7(b). This bosonic Hilbert space augmented with 2 Majorana fermions per

unit cell, labelled �A and �B, is identical to the Hilbert space of the Majorana

checkerboard model (each being 16-dimensional in a unit cell). We describe

a parity-preserving local unitary transformation U † from the composite spin

and Majorana Hilbert space to the pure Majorana Hilbert space via its action

on the generators of the operator algebra. In particular, within each unit cell,
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U † maps

Xx ! �1�5, Zx ! �5�6�7�8 (7.7)

Xy ! �3�4, Zy ! �2�3�6�7 (7.8)

Xz ! �6�7, Zz ! �3�4�7�8 (7.9)

�A ! �2�3�4, �B ! �1�5�6�7�8. (7.10)

Note that the commutation relations of the algebra are preserved as well as

the global fermionic parity.

Figure 7.8: Mapping from the green, blue, and yellow sublattice cube terms of
the Majorana checkerboard Hamiltonian to the stabilizer terms of the new
spin Hamiltonian H0

spin. The spin stabilizers are tensor products of Pauli
operators acting on the qubits on the colored edges: blue for Pauli X, green
for �iY = XZ, and orange for Z. The first step is the unitary U , whereas the
second step is the unitary V . A unit cell of V is depicted in the inset, where
an arrow between two qubits represents the gate H(CZ)H. The final step of
the transformation is simply a redefinition of the unit cell.

The G, B, and Y sublattice stabilizer terms of the Majorana checkerboard

model are transformed under U to the bosonic stabilizers shown in Fig. 7.8,

whereas the R sublattice terms map to the local parity check �A�B. Therefore

U decouples the system into a bosonic stabilizer code and a trivial Majorana

stabilizer code.

The bosonic code can be further massaged into a more amenable form. In
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particular, consider the local unitary operator

V = H

 
Y

i

CZi,z
i,yCZi,z

i+x̂,y

!
H, (7.11)

where the index i runs over all unit cells of the underlying cubic lattice, the

operator CZi,µ
j,⌫ is the controlled-Z operator acting on the µ-oriented edge of

unit cell i and the ⌫-oriented edge of unit cell j, and H is a global Hadamard

rotation. The unitary V is depicted graphically in Fig. 7.8. Under conjugation

by H(CZ)H, the two-qubit Pauli operators transform as follows:

XI ! XI, IX ! IX,

ZI ! ZX, IZ ! XZ.
(7.12)

Hence, the stabilizers of the qubit stabilizer code are transformed under V as

shown in Fig. 7.8. Finally, it is convenient to redefine the unit cell by shifting

the vertical edges by one unit to the right, thus yielding the stabilizer terms

on the far right side of Fig. 7.8. Let us denote the Hamiltonian corresponding

to these stabilizers as H0
spin. In summary, we find that

(UV )H(UV )† ⇠= H0
spin +Hf , (7.13)

where H is the Majorana checkerboard Hamiltonian and Hf = �i
P
�A�B

stabilizes the ancillary Majorana degrees of freedom. Here the relation ⇠=
denotes that the two Hamiltonians have identical ground spaces.

7.6.2 Analysis of the spin model

It is instructive to consider a Hamiltonian Hspin which is equivalent as a

stabilizer code to H0
spin, but whose form is analogous to that of the X-cube

model [39]. This representation will highlight the di↵erences between this spin

model and the X-cube model; as we will see in the next section, the model

is in fact a stabilizer code realization of the semionic X-cube model [18]. In

particular, we define

Hspin = �
X

v

(Ax
v + Ay

v + Az
v)�

X

c

Bspin
c (7.14)

where v runs over all vertices and c over all elementary cubes. Here Aµ
v are

vertex terms and Bspin
c is a cube term, as depicted in Fig. 7.9. Note that

Bspin
c can be decomposed as a product of Pauli Z operators followed by the

product of Pauli X operators over the 12 edges of the cube c. The vertex
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terms are identical to those of the X-cube model, whereas the cube term

di↵ers inasmuch as it contain factors of Z operators in addition to the product

of X operators. Note that Hspin indeed generates the same stabilizer group as

H0
spin: the additional vertex term is generated by the other two vertex terms

and hence redundant, whereas Bspin
c is generated by the stabilizer in the top

right corner of Fig. 7.8 along with two nearby vertex terms. The fractional

excitations of the model can be organized into fracton and lineon sectors, which

respectively correspond to violations of the cube and vertex terms.

Figure 7.9: Cube (Bspin
c , left) and vertex (Aµ

v , right) terms of the stabilizer
code Hamiltonian Hspin. The stabilizers are tensor products of Pauli operators
acting on the qubits on the colored edges: blue for Pauli X, green for
�iY = XZ, and orange for Z.

The fracton sector of Hspin is identical to the fracton sector of the X-cube

model. In particular, fractons are created at the corners of rectangular

membrane operators, which are products of Pauli Z operators and hence

commute with all vertex terms but anti-commute with the cube stabilizers at

the corners of the membrane. Moreover, fracton dipoles, which are composites

of adjacent fracton excitations, are planons, as in the X-cube model.

Conversely, the lineon sector of the model is subtly di↵erent from that of

the X-cube model. As in the X-cube model, the product of all cube terms

Bspin
c within a large cubic region yields a large operator with support near

the wireframe of the large cubic region, as depicted in Fig. 7.10. (It is for

this reason that we have chosen the particular form of Bspin
c ). In fact, this

wireframe operator corresponds to a physical process in which lineons travel

along all of the edges of the cube, fusing and splitting at the corners according

to triple fusion rules in which a lineon in each of the x, y, and z directions

come together and annihilate into the vacuum. Thus, the rigid string operators

which transport lineons in this model have the same form as the edges of the

wireframe operator.
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Figure 7.10: Wireframe operator of the spin model Hspin, which is equal to the
product of cube terms Bspin

c within the large cubic region.

From this observation, it becomes clear by inspecting the wireframe operator

in Fig. 7.10 that pairs of perpendicularly-moving lineons which are involved

in a triple fusion rule have a mutual ‘semionic braiding’ statistic, in the sense

that the rigid string operators which create these lineons anti-commute with

each other. This property lies in stark contrast to the X-cube model where

lineons satisfying a triple fusion rule always have trivial mutual ‘braiding’.

In fact, this characteristic is the only essential di↵erence between the X-cube

model and the spin model here.

The structure of non-local excitations in Hspin is highly reminiscent of the

discussion of quasiparticles in the semionic X-cube model of Ref. [18]. Indeed,

it was shown that that model di↵ers fundamentally from the X-cube model

only insofar as lineons satisfying a triple fusion rule have mutually anti-

commuting, as opposed to commuting, string operators. Therefore, we see that

in fact the semionic X-cube model and our spin Hamiltonian have isomorphic

structures of non-local excitations in terms of fusion and braiding. It is thus

natural to expect that they are in fact equivalent models under local unitary

transformation. We will see in the next section an explicit description of such

a transformation.

7.7 Mapping the Spin Model to the Semionic X-Cube Model

In this section, we describe a local unitary transformation between the ground

spaces of the semionic X-cube model and the stabilizer code spin model Hspin
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obtained in the previous section.

7.7.1 Semionic X-cube model

The semionic X-cube model, as first discussed in Ref. [18] is obtained by

coupling together three mutually perpendicular interpenetrating stacks of 2D

double semion models [16] on the square-octagon lattice. For our purposes, it

is more convenient to work with a microscopic realization of the double semion

model whose degrees of freedom are qubits on a square lattice (see Appendix

7.11). The Hamiltonian takes the form

HDS = �
X

v

Av �
X

p

B̃p (7.15)

where v runs over all vertices of the square lattice and p runs over all plaquettes.

The vertex term Av is defined as the product of Pauli Z operators over the

edges adjacent to v, whereas the plaquette term Bp is defined as follows:

B̃p = Bp

Y

v2p

1 + Av

2
, (7.16)

where v runs over the vertices surrounding plaquette p and Bp is a unitary

operator which is depicted graphically in Fig. 7.11(a). Explicitly,

Bp = X1X2X3X4S1S2S3S4S5S6S7S8CZ14CZ23 (7.17)

where the qubits are numbered as in Fig. 7.11(a). Here CZij denotes the

controlled-Z gate between qubits i and j and S = i
1�Z
2 = diag(1, i)).

To obtain the semionic X-cube model, we consider three stacks of double

semion layers in the x, y, and z directions, whose edges coincide with the

edges of a cubic lattice. The layers in the stack are oriented as illustrated in

Fig. 7.11(b). Each edge thus lies at the intersection of two double semion

layers, and contains two qubit degrees of freedom. The two qubits on each

edge are subsequently subjected to a ZZ coupling. To be precise, we consider

the following Hamiltonian:

H =
X

L

HL
DS � J

X

e

Zµ1
e Zµ2

e , (7.18)

where L indexes the layers of all three stacks, e runs over all edges of the cubic

lattice, HL
DS is the double semion Hamiltonian in layer L, and Z1

µ1
and Z1

µ2

are Pauli operators acting on the two qubits on edge e. In the strong coupling
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(a) (b)

Figure 7.11: (a) The component Bp of the double semion model plaquette

term B̃p. Here, dashed orange edges represent the phase gate S = i
1�Z
2 , blue-

orange dashed edges represent the operator XS and the red arcs represents the
controlled-Z gate between the two linked edges. The action of the CZ gates
precede the action of the XS operators. (b) The orientations of the double
semion layers in the three stacks prior to coupling.

Figure 7.12: Graphical depictions of the operators (a) Ba
c , (b) B

b
c , (c) B

c
c , (d)

Bd
c , and (e) Be

c . Operators Bc
c , B

d
c , and Be

c are simply tensor products of Pauli
operators acting on the qubits on the colored edges: blue for Pauli X, green
for �iY = XZ, and orange for Z. Conversely, Ba

c and Bb
c are each composed

of two pieces: first, the tensor product of the controlled-Z two-qubit gates
depicted as red arcs linking the two qubits. Second, the tensor product of
single-qubit gates illustrated: blue, orange, and green for the Pauli operators,
dashed orange for the phase gate S, and light green edges for the operator
XSZ. The gray edges are simply placeholders.
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limit J ! 1, the two qubits on each edge e↵ectively combine into one degree

of freedom. The e↵ective Hamiltonian to leading order in 1/J is given by

Hsem = �
X

v

(Ax
v + Ay

v + Az
v)�

X

c

B̃sem
c , (7.19)

where the vertex terms Aµ
v are the same as those of the X-cube model and

Hspin. In fact, note that this Hamiltonian is identical to Hspin apart from the

cube term B̃sem
c . The cube term B̃sem

c can be written as

B̃sem
c = Ba

c

Y

v2c

Y

µ=x,y,z

1 + Aµ
v

2
. (7.20)

Here the factors on the right-hand side project into the subspace satisfying

the vertex constraints at the corners of the cube c. The unitary operator Ba
c

is depicted graphically in Fig. 7.12(a). It can be decomposed as a unitary

operator diagonal in the Pauli Z basis followed by a product of the Pauli X

operators around the 12 edges of the cube c.

7.7.2 Mapping to Hspin

First, let us define a modified spin Hamiltonian H̃spin which is identical to

Hspin except for the replacement Bspin
c ! B̃spin

c where

B̃spin
c = Bspin

c

Y

v2c

Y

µ=x,y,z

1 + Aµ
v

2
. (7.21)

Here v runs over the corners of the cube c. Since the additional factors on the

right-hand side simply project into the subspace satisfying all of the vertex

constraints around c, it is clear that H̃spin has the same ground space as the

stabilizer code Hspin. We will now describe a local unitary operator W such

that W †HsemW = H̃spin, demonstrating that Hspin is in fact a stabilizer code

realization of the semionic X-cube model.

The operatorW can be decomposed asW = W2W1 whereW1 and W2 are both

unitary. Consider as a unit cell the three edges depicted on the right-hand side

of Fig. 7.7(b). The first factor W1 is defined as

W1 =
Y

i

�
CSi,x

i,y ⇥ CSi,y
i,z ⇥ CSi,z

i,x

�
(7.22)

where CSi,µ
j,⌫ is a controlled-phase gate between the µ-oriented edge in unit cell

i and the ⌫-oriented edge in unit cell j, and the index i runs over all unit cells
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Figure 7.13: Illustration of a unit cell of the unitary operators W1 (left) and
W2 (right). Here the dashed arrows represent controlled-phase gates between
the two endpoints, whereas the solid arrows represent controlled-Z gates.

(see Fig. 7.13). In matrix form, CS = diag(1, 1, 1, i). The action of CS by

conjugation is given by

X1 ! X1S2CZ12 (7.23)

X2 ! X2S1CZ12 (7.24)

where CZ12 is the controlled-Z gate acting on qubits 1 and 2, and S1 (X1)

and S2 (X2) are the S (X) operators acting on qubits 1 and 2 respectively.

It hence follows that W †
1B

a
cW1 = Bb

c , where Bb
c is the operator depicted in

Fig. 7.12(b). Furthermore, since Bb
c is equivalent to Bc

c within the subspace

satisfying the vertex constraints around c (see Fig. 7.14), it follows that

W †
1 B̃

sem
c W1 = Bc

c

Y

v2c

Y

µ=x,y,z

1 + Aµ
v

2
. (7.25)

Here Bc
c is the operator depicted in Fig. 7.12(c).

Figure 7.14: Operator relations that hold within the subspace satisfying
the vertex constraints. These relations can be used to equate Bb

c and Bc
c

within this subspace. Here, the red arcs represent controlled-Z gates, solid
orange represents Z, dashed orange represents S, and dotted orange represents
S† = SZ.

The second factor W2 is defined as (see Fig. 7.13)

W2 =
Y

i

�
CZi,x

i+x̂,x ⇥ CZi,y
i+ŷ,y ⇥ CZi,z

i+ẑ,z ⇥ CZi,x
i,z

�
(7.26)

where CZi,µ
j,⌫ is a controlled-Z gate between the µ-oriented edge in unit cell i

and the ⌫-oriented edge in unit cell j, and the index i runs over all unit cells.
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Since CZ acts by conjugation as

XI ! XZ, IX ! ZX,

ZI ! ZI, IZ ! IZ.
(7.27)

it follows thatW †
2B

c
cW2 = Bd

c , where B
d
c is depicted graphically in Fig. 7.12(d).

Finally, this yields the result

W †B̃sem
c W = Be

c

Y

v2c

Y

µ=x,y,z

1 + Aµ
v

2
(7.28)

due to the equivalence of Bd
c and Be

c within the projected subspace. The

unitary Be
c is depicted in Fig. 7.12(e). Since Be

c=Bspin
c , it thus follows that

W †B̃sem
c W = B̃spin

c . Since W is diagonal in the Z basis, it leaves the vertex

terms una↵ected, and hence altogether W †HsemW = H̃spin.

We have therefore verified the intuitive correspondence between the Majorana

checkerboard model and the semionic X-cube model (plus decoupled fermionic

modes) by explicitly describing a local unitary transformation between the

two models. As an intermediate step we have demonstrated how to decouple

the fermionic degrees of freedom of the Majorana checkerboard model from a

hidden bosonic stabilizer code representation of the semionic X-cube model.

Indeed, in light of the exact correspondence between the structure of non-local

excitations of Hspin and Hsem, the existence of such a local unitary equivalence

is to be expected.

In a previous work, it was demonstrated that the semionic X-cube model lies

in the same foliated fracton phase as the X-cube model [27]. Indeed, the

anti-commutation of string operators which satisfy a triple fusion rule in the

semionic X-cube model can be completely cancelled by the addition of three

mutually perpendicular stacks of 2D double semion layers. Consequently, the

result of the current work implies that the Majorana checkerboard model too

lies in the X-cube foliated fracton phase.

7.8 Discussion

To summarize, we have shown in this paper that the Majorana checkerboard

model, first introduced in Ref. [38], has foliated fracton order as defined

in Ref. [29, 30]. That is, 2D topological states are extracted from the

bulk when renormalization group transformations are applied to the ground

state wavefunction to reduce the total system size. Moreover, we show
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through explicit mapping that the Majorana checkerboard model has the same

foliated fracton order as the X-cube model. This equivalence may not be

straightforward to see given the many di↵erences between the two models: The

Majorana checkerboard model is fermionic while the X-cube model is bosonic;

moreover, the Majorana checkerboard model has a ‘dimensional hierarchy’ of

quasiparticle fusion while this does not seem to be the case in the X-cube

model. By calculating the universal properties of foliated fracton phases as

discussed in Ref. [25–27, 29], we see that the two models could actually be in

the same foliated fracton phase, and the explicit mapping discussed in section

7.6 and section 7.7 further confirms this result.

So far we have found, using the same procedure as in this paper, phase

relations between several type I fracton models including the X-cube model,

the checkerboard model (as two copies of X-cube) [26], the semionic X-cube

model [27] and the Majorana checkerboard model. These models all belong

to the same foliated fracton phase. On the other hand, other types of foliated

fracton phase can also exist. We have found that some Type-I fracton models

have foliated fracton order distinct from that of the X-cube model. These

results will be presented in a separate work [28].

7.9 Appendix: Entanglement entropy in Majorana codes

In this appendix, we show that the entanglement entropy of a subregion of a

Majorana code is equal to half that of the corresponding ‘doubled’ CSS code.

This self-dual CSS code is constructed by replacing each Majorana fermion

with a qubit, and each Majorana stabilizer by one X type qubit stabilizer and

one Z type qubit stabilizer [4]. For instance, the spin checkerboard model

arises as the ‘double’ of the Majorana checkerboard model. The method of

calculation straightforwardly generalizes that of qubit stabilizer codes [8].

Consider a Majorana code with stabilizer group S generated by n independent

commuting Majorana stabilizer operators g1, . . . , gn on a Hilbert space of 2n

Majorana modes. The stabilizers are of the form gi =
Q

j2Si
i1/2�j, where Si

labels the support of gi. To calculate the ground state entanglement entropy

of a subregion A, the ground state density matrix ⇢ = | i h | may be written

as

⇢ =
1

22n

X

g2S

g. (7.29)

The reduced density matrix ⇢A = TrĀ ⇢ can be evaluated by taking the partial
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trace over individual stabilizer group elements.

If the support of g intersects with Ā, then g may be expressed as

g = �1 . . . �m ⌦ h where h has support exclusively in A. Since the first factor

has vanishing trace, it follows that TrĀ g = 0. Thus

⇢A =
1

22n

X

g2S

TrĀg =
1

22nA

X

g2SA

g (7.30)

where nA is the number of Majorana modes in A and SA is the stabilizer

subgroup generated by elements g with support exclusively in A. This operator

is proportional to the projector on to the subspace stabilized by SA, which has

dimension 2(nA�|SA|) where |SA| is the number of independent generators of

SA. The entanglement entropy is therefore

EA = �Tr⇢A log ⇢A = nA � |SA|. (7.31)

The corresponding ‘doubled’ CSS code has 2n qubits, n independent X type

stabilizer generators, and n independent Z type generators. The entanglement

entropy of region A is [8]

ECSS
A = 2nA � |SCSS

A | = 2nA � 2|SA| = 2EA. (7.32)

7.10 Appendix: Mapping the Majorana color code to the toric

code

In this appendix, we briefly discuss a unitary mapping which decouples the

fermionic modes of the Majorana color code on the square-octagon lattice [4,

17, 40] from its underlying toric code topological order.

In this model, one Majorana fermion lies at each vertex of the square-octagon

lattice (Fig. 7.15). The Hamiltonian has the form

H = �
X

p

Op (7.33)

where p runs over all plaquettes, square or octagonal, and Op takes the form

Op ⌘
Y

v2p
i1/2�v. (7.34)

Since the square-octagon lattice is three-colorable, the plaquette terms are

mutually commuting and unfrustrated.
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Figure 7.15: (Left) Square-octagon lattice of the Majorana color code,
containing one Majorana fermion at each vertex. The 4 Majoranas around
each green plaquette are labelled ⌘, �x, �y and �z. (Right) Square lattice of
the Wen plaquette model, containing a qubit and two ancillary Majoranas �A
and �B at each vertex.

To decouple the fermionic modes, we identify the 4 Majorana Hilbert space

around each green square plaquette with the Hilbert space of one qubit and

2 Majoranas. Denote the 4 Majoranas by ⌘, �x, �y, and �z (as shown in Fig.

7.16), and the Pauli operators and 2 Majoranas of the latter space by X, Z,

�A, and �B. We can unitarily map between these two Hilbert spaces according

to the following transformation of operators:

⌘ ! �A, �x ! �BX, �y ! �BY, �z ! �BZ (7.35)

where Y = iXZ is the Pauli operator. This local mapping preserves the

commutation relations and the fermionic parity, hence it represents a parity-

preserving local unitary operator.

The plaquette terms of the Majorana color code Hamiltonian transform

according to Fig. 7.16. In particular, the green square terms �⌘�x�y�z are

mapped into stabilizer generators for the ancillary fermionic modes, �i�A�B,

whereas the red and blue octagon terms are mapped into stabilizer generators

XiZi+x̂Xi+x̂+ŷZi+ŷ of the Wen plaquette model [42] (modulo two nearby

fermionic stabilizers), which is local unitarily equivalent to the toric code.

7.11 Appendix: Double semion model on a square lattice

In this appendix, we briefly discuss a local unitary transformation that allows

one to write the double semion model, originally defined on the honeycomb

lattice [16], as a model of qubits on the edges of a square lattice.

The double semion model contains one qubit on each edge of the honeycomb



181

Figure 7.16: Transformation of plaquette stabilizers under the unitary
mapping defined by (7.35).

lattice, and has Hamiltonian

H = �
X

v

Av �
X

p

B̃h (7.36)

where v indexes vertices and h indexes hexagonal plaquettes. The vertex

constraint is Av = Z1Z2Z3 acting on the 3 adjacent edges, and the hexagon

term is

B̃h = Bh

Y

v2p

1 + Av

2
,

Bh =
Y

e2h

Xe

Y

l2h

Sl.
(7.37)

Here e runs over the 6 edges of hexagon h, whereas l runs over the 6 legs

external to h, as shown in Fig. 7.17(a). S = i
1�Z
2 is the phase gate.

It is possible to disentangle the qubits lying on the short edges of the

honeycomb lattice from the rest of the system, leaving behind a square lattice.

In particular, the unitary operator U accomplishes this task, which is a

translation-invariant array of CX gates as shown in Fig. 7.17(b). To be

precise,

U †HU ⇠= H 0 +H0 (7.38)

where H0 stabilizes the ancillary qubits and H 0 is the double semion

Hamiltonian on the square lattice:

H 0 = �
X

v

Av �
X

p

B̃p. (7.39)

Here Av = Z1Z2Z3Z4, acting on the 4 adjacent edges, and

B̃p = Bp

Y

v2p

1 + Av

2
, (7.40)
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(a) (b) (c)

(d)

(e) (f)

Figure 7.17: (a) The component Bh of the double semion plaquette term on the
honeycomb lattice. (b) A unit cell of the local unitary U which disentangles the
short edge qubits from the rest of the system. The arrow represents the CX
gate with control at the tail and target at the head. (c) The image operator
B0

h = U †BhU (here, the W gates precede the X gates, and act on the 3 edges
adjacent to the magenta vertices). (d) The component Bp of the plaquette
term on the square lattice (here, the CZ gates precede the XS gates). (e)
Mapping of vertex constraints under conjugation by U . The top constraints
become terms in the ancillary HamiltonianH0, whereas the bottom constraints
(product of two vertex constraints) become the vertex terms of the square
lattice Hamiltonian. (f) Operator relations which hold within the subspace
satisfying the vertex (and ancillary) constraints.
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where Bp is depicted graphically in Fig. 7.17(d). The relation ⇠= indicates

that the two sides have identical ground spaces.

To see this, note that S3 ! W123 under conjugation by CX13CX23, where

we have defined W123 = i
1�Z1Z2Z3

2 , and thus Bh is mapped to the operator

B0
h shown in Fig. 7.17(c). Moreover, U maps the original vertex constraints

according to Fig. 7.17(e), yielding the vertex terms on the square lattice as

well as the ancillary terms comprising H0. Finally, B0
h is equivalent to Bp in

the subspace satisfying the vertex constraints, due to the relations shown in

Fig. 7.17(f).
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C h a p t e r 8

EMERGENT FERMIONIC GAUGE THEORY AND
FOLIATED FRACTON ORDER IN THE CHAMON MODEL

8.1 Introduction

Gapped quantum systems can form nontrivial phases of matter in the absence
of symmetry if they exhibit long-range entanglement in the many-body ground
state [10]. The traditional examples of long-range entangled phases are those
with intrinsic topological order such as fractional quantum Hall states [33, 67]
and discrete gauge theories [30, 41], which are characterized at low energy by
topological quantum field theories [69]. In 2005, Chamon discovered a three-
dimensional exactly solvable lattice model [9] that represents the first example
of a new kind of long-range entangled order known as fractonic order [61, 62].

Quantum phases with fractonic order cannot be described by topological
quantum field theory due to an intertwining of universal properties with lattice
geometry [18, 52, 61, 62]. In particular, fractonic orders are characterized by
a ground state degeneracy that scales exponentially with linear system size,
and the existence of fractional excitations with constrained mobility [3, 20–22,
62]. The Chamon model, for instance, harbors three kinds of quasiparticles:
planons, which are mobile within a plane, lineons, which can move along a line,
and fractons, which are fundamentally immobile as individual particles [3]. In
recent years, a wide range of fracton orders have been discovered theoretically,
each exhibiting a di�erent manifestation of constrained quasiparticle mobility
and subextensive ground state degeneracy [1, 2, 4–8, 11, 12, 19–21, 23, 24,
26–29, 36, 37, 39, 40, 42, 43, 50–52, 54, 57, 59–62, 64, 65, 71–73, 75]. Notable
examples include the Haah cubic code [23] and the X-cube model [62]. It
is natural to ask how the variety of fractonic orders can be systematically
characterized within a common theoretical framework.

Many fractonic orders have a unified characterization as emergent gauge
theories of discrete subsystem symmetries, which have either planar or fractal
geometry [32, 45, 62, 68]. For example, the X-cube model is obtained by
gauging three orthogonal sets of planar Ising symmetries of a cubic lattice
spin-1/2 paramagnet (referred to as a 3-foliated gauge theory) [62]. The
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gauging procedure has been extended to fermion parity subsystem symmetries
in fermionic systems, whose gauging yields gapped fractonic gauge theories
with emergent fermionic charges [44, 56]. On one hand, a large class of
fractonic orders, including those belonging to the class of Calderbank-Shor-
Steane (CSS) stabilizer codes, can be obtained via this procedure [32]. On
the other hand, it remains unclear how, or if, certain fracton models including
the Chamon model, can be obtained by gauging and hence characterized by
emergent gauge theory.

In a parallel development, the concept of foliated fracton order (FFO) was
recently introduced in an e�ort to systematically characterize fractonic orders
with planon excitations [45, 49]. A lattice model is said to have FFO if the
lattice size can be systematically reduced by removing, or exfoliating, layers
of 2D topological orders from the bulk 3D system via a finite-depth quantum
circuit. Such a transformation maps a subset of the bulk planon excitations
into anyons of the exfoliated 2D orders. For instance, for the X-cube model, it
is possible to exfoliate layers of 2D toric code normal to the three cubic lattice
directions, hence the X-cube model is said to have a 3-foliation structure. The
notion of FFO has been shown to apply to a large class of models beyond
the X-cube model [46, 48, 63]. However, thus far it has remained unknown
whether the fractonic order of the Chamon model is foliated.

The purpose of this paper is to fill the gaps in the fracton literature by
presenting two new results on the Chamon model. First, we show that the
model is characterized by a 4-foliated gauge theory coupled to a fermionic
subsystem symmetry-protected topological (SSPT) state. In other words, it
can be obtained by gauging four sets of planar Z2 symmetries that protect a
non-trivial SSPT state [74, 75] in a fermionic lattice system, then performing
a local unitary transformation. This is a surprising result because there is no
a priori clear division of fractional excitations into gauge charge and gauge
flux sectors (as is the case for CSS codes). Instead, it is necessary to expand
the unit cell and divide the excitations into charge and flux sectors according
to the sublattice on which they reside. This is reminiscent of the gauge theory
description of the much simpler 2D Wen plaquette model [66].

Second, we show that the Chamon model exhibits FFO with a 4-foliation
structure composed of 2D toric code resource layers. In particular, we describe
an entanglement renormalization group transformation [15, 19, 58] that maps
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a copy of the Chamon model on a 3L ◊ 3L ◊ 3L cubic lattice to a coarse-
grained Chamon model on an L ◊ L ◊ L lattice tensored with four decoupled
stacks of 2D toric codes. This 4-foliation structure is consistent with the four
orientations of planons in the Chamon model, and is most easily described
in terms of its action on the planon excitations. We have also obtained an
explicit translation-invariant Cli�ord circuit realizing this transformation.

The paper is organized as follows. In Sec. 8.2, we review the Chamon model
and its essential properties. In Sec. 8.3, we explain the characterization of
the Chamon model in terms of emergent fermionic gauge theory. In Sec. 8.4,
we describe the FFO exhibited by the Chamon model. We conclude with a
discussion in Sec. 8.5.

8.2 The Chamon model

The Chamon model was originally defined on an FCC lattice with one qubit
per site [3, 9], exhibiting the tetrahedral point group symmetry of the lattice.
For our purposes it will be more convenient to place the model on a cubic
lattice with one qubit per site, by performing an isometry of R3 defined by

1
0, 1

2 , 1
2

2
æ (1, 0, 0)

1
1
2 , 0, 1

2

2
æ (0, 1, 0)

1
1
2 , 1

2 , 0
2

æ (0, 0, 1).

(8.1)

In this formulation the Hamiltonian has the form

HC = ≠
ÿ

c

Oc (8.2)

where c indexes the elementary cubes of the lattices and Oc is the six-body
Pauli operator depicted in Fig. 8.1(a). For any pair of cubes c, cÕ, it holds that
[Oc, OcÕ ] = 0, thus HC is an exactly solvable stabilizer code Hamiltonian [70].
The ground state degeneracy (GSD) of the model on an Lx ◊ Ly ◊ Lz periodic
cubic lattice has the form

log2 GSD = Lx + Ly + Lz + gcd(Lx, Ly, Lz) ≠ 3, (8.3)

The linear component of this formula arises from the following relations
between stabilizer generators:

Ÿ

cœP

Oc = 1 (8.4)
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Figure 8.1: (a) The operator Oc, which is a tensor product of the six Pauli
operators. (b) A tetrahedral wireframe operator, which is equal to a product of
Oc operators inside the tetrahedron. (c) A stabilizer operator bounding a cubic
region. (d) A loop operator for an elementary planon of the Chamon model,
which is a product of Oc operators within the loop. (e-g) Three planon string
operators W3, W2, and W1 forming a T-junction (the bold edge represents
the same edge in each subfigure). The fermionic exchange statistic of the
elementary planon is given by W3W

†
2 W1W

†
3 W2W

†
1 = ≠1.

where P is any dual lattice plane normal to the x, y z, or w = (1, 1, 1)
directions. This gives a total of Lx + Ly + Lz + Lw relations, where
Lw = gcd(Lx, Ly, Lz) is the number of planes normal to w under periodic
boundary conditions. It is straightforward to confirm the constant correction
numerically.

The model hosts fractional excitations of all mobility types: fractons, lineons,
and planons. The excitation structure can be understood by examining
the form of stabilizer operators corresponding to processes of quasiparticle
creation, movement, and re-annihilation. These operators are given by certain
products of Oc terms, of which are there are two types. The first type of
operator is a wireframe operator, which is a product of all Oc terms within a
polyhedral region bounded by x, y, z, and w planes. Due to the relations in
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(8.4), such operators are supported on the edges of the polyhedron, for instance
the tetrahedral wireframe operator pictured in Fig. 8.1(b). Lineon excitations
are created at the endpoints of truncated wireframe operators. There are
six kinds of lineons, with mobility in the x, y, z, (0, 1, ≠1, ), (≠1, 0, 1), and
(1, ≠1, 0) directions, respectively. The lineons obey triple fusion rules in
which three distinctly oriented lineons fuse together into the vacuum, which is
possible when their respective string operators form the corner of a wireframe
operator. For example, x, y, z, and (1, ≠1, 0), (0, 1, ≠1), z lineon triples fuse
into the vacuum, whereas x, y, (1, ≠1, 0) and x, y, (≠1, 0, 1) triples do not.

The second kind of operator is slightly more complicated: it is given by the
product of all Oc terms lying in even dual lattice planes normal to a particular
direction µ = x, y, z, w within a polyhedral region bounded by x, y, z, and w

planes. Such operators are supported on all surfaces of the polyhedron except
those normal to µ. An example of such an operator bounding a cubic region
is shown in Fig. 8.1(c). Truncating to a single face gives a membrane operator
which creates fracton excitations at its corners.

There are four types of planons mobile within planes normal to the x, y, z,
and w directions respectively. For each direction, there is one independent
species of planon per lattice spacing, referred to as an elementary planon.
The loop operator for an elementary planon can be obtained by taking the
product of all Oc operators in a large region within a single x, y, z, or w

plane, for instance as depicted in Fig. 8.1(d). These elementary planons
can be viewed as either lineon dipoles or as fracton dipoles, i.e. composite
excitations of a pair of adjacent lineons or fractons, since the loop operator
can be viewed as either the first or second kind of operator described in the
previous paragraph. Hence, any lineon or fracton can be regarded as a semi-
infinite stack of planons, so the exchange and braiding statistics of fractional
excitations in the model are entirely characterized by the planon statistics.
There are two important features: first, each of the elementary planons have
fermionic exchange statistics. Second, adjacent parallel planons have a mutual
fi braiding statistic. These facts can be verified by examining the structure of
the planon string operators as shown in Fig. 8.1(e-g). Since the elementary
planons can be regarded as lineon dipoles, this also implies that intersecting
lineons have a mutual fi braiding statistic.
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8.3 Emergent fermionic gauge theory

In this section we demonstrate that the Chamon model is equivalent under
a generalized local unitary transformation [10] to a fractonic gauge theory
coupled to a fermionic subsystem symmetry-protected topological (SSPT)
state [74, 75]. We begin with the SSPT matter Hamiltonian HM , which is
symmetric under four stacks of Z2 planar symmetries. We then gauge the
symmetry to obtain a spin model HG. Finally, we transform HG into the
Chamon model HC via a generalized local unitary.

We also sketch an argument that HM is a weak SSPT in the sense of Refs. [13,
14].

8.3.1 Matter Hamiltonian

First we describe the matter Hamiltonian HM . We consider a cellulation of
R3 obtained by slicing along lattice planes of integer spacing normal to the
x, y, z, and w = (1, 1, 1) directions. The x, y, and z planes divide R3 into
unit volume elementary cubes, and each cube is further sliced into three 3-cells
by the w planes: two types of tetrahedra and one octahedron, as pictured in
Fig. 8.2. The Hilbert space of HM is composed of one fermionic orbital per
tetrahedron and one qubit per octahedron. The Hamiltonian has the form

HM = ≠
ÿ

t

i“t“
Õ
t ≠

ÿ

o

Xo (8.5)

where t indexes tetrahedra and o octahedra, and

Xo © Xo

1Ÿ

a=0

1Ÿ

b=0

1Ÿ

c=0

1Ÿ

d=0
Zo+aŷ≠bẑ+c(1,≠1,0)+d(≠1,0,1) (8.6)

where o + r̨ represents the octahedron displaced from o by r̨ (see Fig. 8.3(a)).
The terms of HM mutually commute, hence the model is exactly solvable.

HM is symmetric under four stacks of unitary Z2 planar subsystem symmetries,
normal to the x, y, z, and w directions. Each symmetry generator is associated
with a dual lattice plane of the tetrahedral-octahedral honeycomb. Let P

denote the set of all 3-cells lying in a dual lattice plane. Then the corresponding
symmetry of HM is

SP =
Ÿ

tœP

i“t“
Õ
t

Ÿ

oœP

Xo. (8.7)

There is one symmetry generator for every such P . To see that the Xo terms
commute with all of these symmetries, note that each of the x, y, z, and w

planes contains at least one of the ŷ, ẑ, (1, ≠1, 0), or (≠1, 0, 1) vectors.
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Figure 8.2: The tetrahedral-octahedral honeycomb. Each cube of a cubic
lattice is split into two tetrahedra and one octahedron by (1, 1, 1) planes
(shaded).

We note that the subsystem symmetries obey the global relations
Ÿ

Px

SPx =
Ÿ

Py

SPy =
Ÿ

Pz

SPz =
Ÿ

Pw

SPw (8.8)

where the products are over all dual lattice planes Pµ normal to µ. Importantly,
we also note that the product of symmetries over all even dual lattice planes
in all four directions is equal to the global fermion parity ZF

2 , which is thus
generated by the subsystem symmetry group. Therefore, a bosonic system will
be obtained upon gauging the symmetries.

8.3.2 Gauging

We now discuss the gauging of symmetries according to the general
prescription [34, 44, 45, 56]. The first step is to identify a set of ‘minimal
couplings’ that generate of the algebra of symmetric operators together with
the on-site symmetry representations (Pauli X on qubits and i““Õ on fermion
orbitals). There is one minimal coupling for each edge e of the tetrahedral-
octahedral honeycomb, acting on the degrees of freedom associated with the
four 3-cells adjacent to e (two octahedra o and oÕ and two oppositely oriented
tetrahedra t and tÕ), which we choose to be

Me © ZoZoÕ“t“tÕ . (8.9)

The second step is to introduce a gauge qubit degree of freedom for each
minimal coupling, hence one per edge. We simultaneously restrict the Hilbert
space by introducing generalized Gauss’s law constraints for each matter degree
of freedom. The constraints have the form

Xo

Ÿ

eœo

Xe = 1, i“t“
Õ
t

Ÿ

eœt

Xe = 1 (8.10)
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Figure 8.3: (a) Depiction of the operator Xo. Each Pauli operator acts on an
octahedral qubit, whose center-points form a cubic lattice. The octahedron o is
indicated by subscript. (b) The set of edges Eo with respect to the octahedron
o, whose vertices are the six dots.

for each octahedron o and tetrahedron t.

The third step is to couple the gauge and matter degrees of freedom
by introducing a gauged Hamiltonian that preserves the constraints. In
particular, in the gauged Hamiltonian the minimal coupling for each edge
e is composed with the gauge qubit operator Ze:

Me æ MeZe. (8.11)

This modification is non-unique, since there are multiple ways to express the
operator Xo in terms of the minimal couplings. We choose the expression

Xo = Xo

Ÿ

eœEo

Me (8.12)

where Eo is the set of edges depicted in Fig. 8.3(b). Hence

Xo æ Xo

Ÿ

eœEo

MeZe. (8.13)

The final step is to add a set of terms Bv,µ for each vertex v to the gauged
Hamiltonian in order to gap out the gauge flux excitations. Here µ = x, y, z, w

and Bv,µ is defined as the tensor product of Pauli Z operators over the six
links adjacent to v in the plane normal to µ. Thus, the gauged Hamiltonian
takes the form

H̃M = ≠
ÿ

t

i“t“
Õ
t ≠

ÿ

o

Xo

Ÿ

eœEo

MeZe ≠
ÿ

v,µ

Bv,µ, (8.14)
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subject to the constraints (8.10).

The matter degrees of freedom can be eliminated via the unitary

Xo æ Xo

Ÿ

eœo

Xe Zo æ Zo

“t æ “t

Ÿ

eœt

Xe “Õ
t æ “Õ

t

Xe æ Xe Ze æ MeZe,

(8.15)

which maps the constraints of (8.10) to Xo = 1 and i“t“Õ
t = 1 respectively.

The Ze operators are defined in Fig. 8.4 such that Ze and ZeÕ anticommute
if e and eÕ belong to the same tetrahedron, and commute otherwise. In the
constrained space, H̃M is mapped to a bosonic Hamiltonian HG acting on the
pure gauge qubit Hilbert space:

HG = ≠
ÿ

c

Ac ≠
ÿ

v,µ

Bv,µ, (8.16)

where
At ©

Ÿ

eœc

Xe, Ao ©
Ÿ

eœo

Xe

Ÿ

eœEo

Ze, (8.17)

and Bv,µ is the image of Bv,µ under the unitary (8.15). The terms of HG

mutually commute, hence they define a Pauli stabilizer code.

8.3.3 Excitation content and ground state degeneracy of the

gauged Hamiltonian

To analyze the properties of HG, it is helpful to express the Hamiltonian
in terms of operators Xe and Ze associated with edge e of the tetrahedral-
octahedral honeycomb. These operators are defined in Fig.8.4. We have
already used the Ze operators in the unitary (8.15). In particular,

Ac =
Ÿ

eœc

Xe, Bv,µ =
Ÿ

v–e‹µ

Ze (8.18)

where the second product is over the six edges e adjacent to v in the plane
normal to µ. These operators are defined in Fig. 8.4 and satisfy the relations

X
2
e = Z

2
e = 1,

;
Xe, Ze

<
=

5
Xe, ZeÕ

6
= 0 (8.19)

where e and eÕ are distinct edges. On the other hand, if e and eÕ are nearby,
then it is generically the case that

5
Xe, XeÕ

6
”= 0,

5
Ze, ZeÕ

6
”= 0. (8.20)
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Figure 8.4: Definitions of the Pauli operators introduced in this section. The
operators Xv,i and Zv,i acting on HG for i = 1, . . . , 6 are defined in the table
on the left, which are equivalent to the Xe and Ze operators for the bold edge
e. Red, green, and blue edges respectively represent the action of Pauli Z, Y ,
and X. The operators „Xv,i and ‚Zv,i acting on HC for i = 1, . . . , 8 are defined in
the tables on the left, with v given by the enlarged magenta dot in each figure
(an unlabelled enlarged dot has no Pauli action). The 3-cell operators At, AtÕ ,
and Ao, and vertex operators Bv,µ of HG are defined in the tables on the right.
The vertices of octahedron o are indicated by black dots, whereas the vertex
v for each Bv,µ operator is the central vertex. The operators ‚At, ‚AtÕ , ‚Ao, ‚Bv,x,
‚Bv,y, and ‚Bv,z acting on HC are likewise defined in the tables on the right.
These operators, together with ‚Zv,7 and ‚Zv,8, generate the stabilizer group of
HC . The shaded cubes indicate that a given operators is equal to a product
of the corresponding cube terms of HC (the color of each cube corresponds to
the vertex of minimum x, y, and z coordinates).
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Figure 8.5: Three fracton dipole string operators W3, W2, and W1
forming a T-junction (the bold edge represents the same edge in each
subfigure). The fermionic exchange statistic of the fracton dipole is given
by W3W

†
2 W1W

†
3 W2W

†
1 = ≠1. The red, green and blue edges represent Pauli

operators Z, Y and X. The bold gray edge has no Pauli action.

It is instructive to note that due to (8.18), there is a formal relation between
HG and a certain 4-foliated version of the X-cube model, H4XC , described in
Appendix 8.6. Roughly speaking, HG is obtained from H4XC by replacing
Xe æ Xe and Ze æ Ze.

HG has six qubits and six stabilizer generators per unit cell (since one of the
four Bv,µ terms is redundant). The stabilizer generators obey the following
relations:

Ÿ

cœP

Ac = 1,
Ÿ

vœP Õ
Bv,µ = 1, (8.21)

where c œ P indexes all 3-cells in a dual lattice plane P , and v œ P Õ indexes
all vertices belonging to a direct lattice plane P . However, three of these
relations are redundant, hence the ground state degeneracy (GSD) of HG on
an Lx ◊ Ly ◊ Lz lattice with periodic boundary conditions satisfies

log2 GSD = 2Lx + 2Ly + 2Lz + 2 gcd(Lx, Ly, Lz) ≠ 3. (8.22)

The fractional excitations of HG can be split into two sectors, which we refer to
as electric charges and magnetic fluxes. The magnetic sector consists of lineons
created at the endpoints of rigid string operators, which are finite segments of
wireframe operators equal to the product of all Ac terms within a polyhedral
region bounded by x, y, z, and w planes. Rigid string operators are equal to
the product of Xe operators over all edges of the string, which follows from
the first expression of (8.18). There are six species of lineons, corresponding
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to the six orientations of edges in the tetrahedral-octahedral honeycomb: x,
y, z, (1, ≠1, 0), (0, 1, ≠1), and (≠1, 0, 1). Triples of lineons meeting at a single
vertex fuse into the vacuum if their string operators belong to the corner of a
wireframe operator. For example, x, y, z, and (1, ≠1, 0), (0, 1, ≠1), z lineon
triples fuse into the vacuum, whereas x, y, (1, ≠1, 0) and x, y, (≠1, 0, 1) triples
do not. Due to these triple fusion rules, composite excitations of two adjacent
parallel lineons, i.e. lineon dipoles, are planons. There are four species of
lineon dipoles in the model: those mobile in planes normal to the x, y, z, or w

directions. The loop operators for lineon dipoles are wireframe operators with
a slab geometry.

The electric sector consists of fractons created at the corners of dual lattice
membrane operators composed of a product of Ze operators over all dual
lattice faces comprising the membrane (each dual lattice face corresponds to a
direct lattice edge e). Each fracton excitation is associated with a 3-cell of the
tetrahedral-octahedral honeycomb. Fracton dipoles composed of a tetrahedral
fracton and an adjacent octahedral fracton, are planons. There are four species
of fracton dipoles in the model: those mobile in planes normal to the x, y, z,
or w directions.

The charge and flux sectors of HG interact via generalized long-range
Aharanov-Bohm statistical interactions. In particular, a phase of ≠1 is
obtained when a lineon dipole flux encircles a fractonic charge, and likewise
when a fracton dipole charge encircles a lineonic flux. These interactions arise
from the commutation relations of (8.19).

There are also nontrivial statistical interactions within both the electric and
magnetic sectors, due to the nontrivial commutation relations of (8.20). In the
electric sector, the tetrahedral fractons are fermionic, whereas the octahedral
fractons are bosonic. Therefore, each of the fracton dipoles is a fermion.
This self-exchange statistic can be explicitly computed using the formula
◊ = W3W

†
2 W1W

†
3 W2W

†
1 where Wi are three fracton dipole string operators

with a common endpoint [31, 35], as in Fig. 8.5.

In the magnetic sector, the lineons exhibit nontrivial exchange statistics and
nontrivial braiding statistics with other lineons. In particular, any pair of
lineons intersecting in an x, y, z, or w plane has a mutual fi braiding statistic,
arising from the anticommutation of intersecting lineon string operators. This
can be observed from the form of the wireframe operators, an example of which
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Figure 8.6: A tetrahedral wireframe operator for HG, given by a product of
Ac terms over 3-cells inside the tetrahedron. The red, green and blue edges
represent Pauli operators Z, Y and X.

is shown in Fig. 8.6. As a result, lineon dipoles in adjacent planes likewise have
a fi braiding statistic. Moreover, each lineon dipole is a fermion.

8.3.4 Mapping to the Chamon model

We now describe a generalized local unitary (gLU) transformation that maps
the ground space of HG to that of the Chamon model HC . Based on the
expressions (8.3) and (8.22) for the ground state degeneracy of these models, it
is clear that for this transformation to work, a unit cell of HG must correspond
to a 2 ◊ 2 ◊ 2 cell of HC . Therefore, in this section we will place the Chamon
model qubits on the sites of a cubic lattice with half-integer coordinates. With
respect to the integer cubic lattice, the Chamon model has eight qubits and
eight stabilizer generators per unit cell, forming a Hilbert space HC as shown
in Fig. 8.7. We label the qubits with a double subscript v, i with i = 1, . . . , 8
and v the vertex of the integer lattice coinciding with qubit 1.
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Figure 8.7: A 2 ◊ 2 ◊ 2 cell of the Chamon model, regarded as a unit cell in
the transformation between HC and HG. There are eight qubits in the unit
cell, each represented by a dot of a distinct color.

On the other hand, the gauged model HG has only six qubits per unit cell (one
per edge of the tetrahedral-octahedral honeycomb). To match the degrees of
freedom, we add two ancillary qubits per unit cell to the Hilbert space of HG,
forming a Hilbert space HG which has eight qubits per unit cell and can thus be
identified with HC . Each of the eight qubits is likewise labelled with a double
subscript v, i with i = 1, . . . , 8. Qubits 1 through 6 are those associated with
the edges emanating from v in the x, y, z, (0, 1, ≠1), (≠1, 0, 1), and (1, ≠1, 0)
directions, respectively, and 7 and 8 are the two ancillary qubits. We also add
two additional terms Zv,7 © Zv,7 and Zv,8 © Zv,8 for each vertex v to HG,
defining an augmented Hamiltonian H Õ

G.

To facilitate the transformation, in Fig. 8.4 we define operators „Xv,i and ‚Zv,i

on HC that obey relations identical to Xv,i and Zv,i for i = 1, . . . , 8:

[[„Xv,i, „XvÕ,j]] = [[Xv,i, XvÕ,j]],
„X2

v,i = ‚Z2
v,i = 1, [[„Xv,i, ‚ZvÕ,j]] = [[Xv,i, ZvÕ,j]],

[[ ‚Zv,i, ‚ZvÕ,j]] = [[Zv,i, ZvÕ,j]].

(8.23)

where [[A, B]] © A≠1B≠1AB. (Each of these group commutators is a ±1
phase). Due to these relations, and the fact that Zv,i and Xv,i generate
the operator algebra of HG, it follows that there exists an operator algebra
automorphism V mapping

Xv,i æ „Xv,i, Zv,i æ ‚Zv,i. (8.24)

Moreover, as shown in Fig. 8.4, V maps the terms of H Õ
G to a set of stabilizers

Ó
‚At, ‚AtÕ , ‚Ao, ‚Bv,x, ‚Bv,y, ‚Bv,z, ‚Zv,7, ‚Zv,8

Ô
(8.25)

that generates the stabilizer group of HC . Therefore,

V H Õ
GV †

≥ HC (8.26)
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where ≥ denotes equality of ground spaces. In the supplementary
Mathematica file we demonstrate that V is in fact a finite-depth Cli�ord
circuit. Thus, we have arrived at the first main result of the paper: the Chamon
model HC is generalized local unitary equivalent to the gauged Hamiltonian
HG. Appendix 8.7 provides an alternative description of this transformation
in terms of the polynomial description of translation invariant Pauli stabilizer
codes.

To better understand this equivalence, we consider how the transformation
acts on the fractional excitation superselection sectors. First, we note that
the wireframe operators of HG are mapped by V into wireframe operators
(with even-length edges) of the Chamon model HC . Therefore, the lineons of
HG become the lineons of HC under the transformation. This is consistent
with the fact that both models exhibit a mutual fi braiding statistic between
intersecting lineons sharing an x, y, z, or w plane. Second, we note that the
loop operators for fracton dipoles of HG are transformed into loop operators for
the elementary planons of the Chamon model lying in even dual lattice planes.
In other words, adjacent fracton dipoles are mapped into pairs of elementary
planons of HC separated by two lattice spacings. This is consistent with the
fact that the fracton dipoles of HG have fermionic exchange statistics but
trivial mutual braiding statistics, as the elementary planons in the Chamon
model are fermions that braid non-trivially with their nearest neighbors only.

8.3.5 Weak SSPT

In this section we argue based on the excitation content of HG that the matter
Hamiltonian HM represents a weak subsystem symmetry-protected topological
(SSPT) state. A weak SSPT is defined as one that can be obtained by
stacking 2D SPTs onto a trivial state in such a way that all planar symmetries
are preserved [13, 14]. In the presence of fermionic degrees of freedom, this
definition can be extended to allow for stacking of non-invertible 2D topological
states. In particular, we consider starting with a completely trivial state (Ising
paramagnet plus atomic insulator) on the matter Hilbert space of HM . We
then stack alternating layers of invertible topological orders corresponding to
the ‹ = 4 and ‹ = ≠4 states of the Kitaev 16-fold way [31] onto each plane
of the tetrahedral-octahedral honeycomb. Finally, each of the SP symmetry
generators is modified such that it is the product of the original SP with the
total fermion parities of the two Kitaev states adjacent to P . It is easy to see
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that this modification preserves all the relations of the symmetry group. We
conjecture that this state belongs to the same universality class as the model
HM .

To see why this is reasonable, it is helpful to consider the same construction on
the gauged level, which should yield a model gLU-equivalent to the Chamon
model. In the gauged system, the stacking of Kitaev states is equivalent
to stacking alternating layers of fermion parity-gauged ‹ = 4 and ‹ = ≠4
states, i.e. semion-fermion and anti-semion-fermion topological orders, onto
an untwisted fermionic gauge theory (equivalent to the model described by
polynomial matrix T� of Appendix 8.6). After stacking, bound states of
the emergent fermion and the fracton dipole living in the same plane are
condensed, confining all of the original lineons in the model but leaving
deconfined bound states formed out of a lineon fused with the a semion (or
anti-semion) in each of the two parallel planes. This step is equivalent to
modifying the symmetry generators SP on the ungauged level. It is clear that
this procedure results in the correct braiding statistics of gauge flux planons,
i.e. a mutual semionic statistic between adjacent lineon dipoles. Each of
these bound-state lineons can be mapped to a (possibly dyonic) lineon of
the Chamon model, therefore the condensed model has the same fractional
excitation content as the Chamon model.

8.4 Foliated fracton order

A model is said to have foliated fracton order (FFO) if its system size
can be systematically reduced by disentangling, or exfoliating, layers of 2D
topological orders from the bulk system via generalized local unitary (gLU)
transformation [49]. If there are n di�erent orientations of such 2D states, the
model is said to have an n-foliation structure. The first known example of
FFO was the X-cube model, which has a 3-foliation structure, followed by a
handful of other examples including 1-, 2-, and 3-foliated models [46–48, 63].

In this section we demonstrate that the Chamon model hosts 4-foliated fracton
order, with foliation layers normal to the x, y, z, and w = (1, 1, 1) directions.
In particular, we show that the system size can be decreased by a constant
factor m by exfoliating stacks of 2D toric codes [30] in four directions from the
bulk system, where m is any odd integer. This result consistent with previous
studies on entanglement signatures [17] and compactification [16] of the model.
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HC is defined on a cubic lattice, which we will take to have integer coordinates
in this section and refer to as �. The combination of Hamiltonian and its
underlying lattice is denoted HC(�). We also define coarse-grained cubic
lattices m� whose lattice constants are the integer m. For a given odd m,
we posit the existence of a Cli�ord circuit U satisfying

UHC(�)U †
≥ HC(m�) + H2D(m�) (8.27)

where ≥ denotes equality of ground spaces, and the Hamiltonian H2D describes
four stacks of decoupled 2D toric codes normal to the x, y, z, and w directions
respectively, each with m≠1

2 toric codes per lattice spacing. We construct such
a circuit explicitly in the supplementary Mathematica file in the m = 3, 5
cases. In the case of general m, we show in Appendix 8.8 the unitary U exists,
although we do not explicitly equate the model H2D(m�) to stacks of toric
codes. In the following discussion, we explain the Chamon model’s foliation
structure (8.27) on the level of its fractional excitations.

In general, gapped long-range entangled phases are characterized by the
structure of fractional excitations above the ground state. In FFOs, exfoliation
of a set of 2D topological states corresponds to a factorization of the fusion
group A of quasiparticle superselection sectors into two subgroups AÕ ⇥ A2D.
Here, we use ⇥ to denote a product of fusion groups such that there are no
nontrivial mutual statistics between the two factors. AÕ is the fusion group of
the coarse-grained fracton order, and A2D is the fusion group of planons in the
exfoliated topological layers.

In the case of the Chamon model, we find that the fusion group AC(�) on
lattice � obeys the following property:

AC(�) ≥= AC(m�) ⇥ A2D(m�) (8.28)

where
A2D = Ax

2D ⇥ Ay
2D ⇥ Az

2D ⇥ Aw
2D (8.29)

and Ax
2D, Ay

2D, Az
2D, and Aw

2D are the fusion groups of stacks of 2D toric codes
in the x, y, z, and w directions respectively, each with m≠1

2 toric codes per
lattice spacing. Here ≥= denotes a locality-preserving isomorphism.

To see this, note that by the transformation of the previous section, the
fusion rules of HC(�) are identical to those of the 4-foliated X-cube model
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Figure 8.8: Planon diagrams depicting coarse-grained bases of µ-normal
planons in a given direction µ = x, y, z, w for the (a) m = 3 and (b) m = 5
cases. Each basis is translation-invariant with respect to the enlarged unit cell
of 2m�. Each vertical line is commensurate with a µ-normal lattice plane,
hence the numbers 0 to 2m represent dual lattice coordinates. A box lying in
column k represents a planon living in that dual lattice plane. On the other
hand, each horizontal row represents a single generator of our chosen basis,
equal to the fusion product of all elementary planons in the row. Since each
unit cell contains 2m basis planons, A and G (K) belong to di�erent unit cells
for the m = 3 (m = 5) case. The planon bases are partitioned into m subsets
of two generators per unit cell, such that they have pairwise trivial mutual
braiding statistics. (Recall that adjacent planons of the Chamon model have
a mutual fi braiding statistic). For m = 3, the subsets are colored black
(ADG), red (BC), and blue (EF), whereas for m = 5 they are colored black
(AFK), green (BE), red (CD), purple (GJ), and blue (HI). The black planons
are excitations of the coarse-grained Chamon model HC(m�), as they are
fermions (being composed of an odd number of fermions with trivial mutual
statistics) with a mutual fi braiding statistic between adjacent pairs. On the
other hand, each of the remaining m≠1 pairs of planons generates a decoupled
layer of 2D toric code. These diagrams verify the relation (8.33).

H4XC(2�) discussed in Appendix 8.6 (since HC is gLU equivalent to HG whose
fusion rules are the same as H4XC). The fusion group of H4XC is known to
have the form A4XC = Q4XC ◊ P4XC where P4XC is the subgroup consisting
of all planon excitations [47], and Q4XC is a (non-unique) finite subgroup
generated by one fracton and three lineons. As an aside, this observation
forms the basis of the notion of quotient superselection sectors (QSS), which
are defined as equivalence classes of superselection sectors modulo planons [47].
According to this definition the group of QSS of H4XC (and hence of HC) is
A4XC/P4XC

≥= Q4XC .

Hence, we have that AC = QC ◊ PC where QC is an order 16 subgroup and
PC = P x

C ⇥ P y
C ⇥ P z

C ⇥ P w
C is the subgroup of all planons. The decomposition

of (8.28) is implied by the following decomposition of P :

PC(�) ≥= PC(m�) ⇥ A2D(m�), (8.30)

since QC can always be chosen such that QC and A2D(m�) have no nontrivial
mutual statistics, i.e.

AC(�) ≥= [QC ◊ PC(m�)] ⇥ A2D(m�). (8.31)
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The equivalence (8.30) can in turn be factored by direction:

P µ
C(�) ≥= P µ

C(m�) ⇥ Aµ
2D(m�). (8.32)

Thus, we can focus on the group of planons in a single direction, P µ
C(�). Recall

from Sec. 8.2 that for a given direction, there is one independent planon per
lattice spacing whose loop operator is given by the product of Oc terms in a
particular dual lattice plane. The total group is generated by the set of all such
elementary planons. Each elementary planon has fermionic exchange statistics.
Moreover, neighboring planons have mutual semionic braiding statistics.

To demonstrate (8.30), we need to find an alternative set of generating planons
that splits into two parts: one that generates P µ

C(m�) and one that generates
Aµ

2D(m�). Actually, we will show the following equivalent relation:1

P µ
C(�) ≥= P µ

C(m�) ⇥ Aµ
2D(2m�) ⇥ Aµ

2D(2m�). (8.33)

Factorization of this form for m = 3 and m = 5 are depicted in the planon
diagrams of Fig. ??, demonstrating that the fractional excitation structure
of HC indeed exhibits the decomposition of (8.28). It is straightforward to
generalize these diagrams for larger m. Thus, we conclude that the Chamon
model exhibits a 4-foliation structure of 2D toric code layers in the x, y, z,
and w directions.

8.5 Discussion

In this work, we have carried out a comprehensive investigation of the Chamon
model, which is historically significant as the first fracton model to appear
in the literature. Specifically, we have demonstrated two results: first, its
characterization as a twisted 4-foliated gauge theory with emergent fermionic
charge. Second, we have found that it has a 4-foliation structure composed of
2D toric code layers. The foliation structure is consistent with a conjecture
of Ref. [15], which outlines conditions under which a copy of 2D toric code
can be extracted from a 3D stabilizer code model under a local unitary. The
emergent gauge theory structure found in this paper, has been used by two of
the authors to write a topological defect network for the Chamon model [55].

The transformation between the Chamon model and the 4-foliated X-cube
variant HG is reminiscent of previous findings about the checkerboard

1The additional coarse-graining by a factor of two is necessary to pair up 3-fermion
states so they can be transformed into pairs of toric codes.
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model [46] and the Majorana checkerboard model [61], which were respectively
shown to be equivalent to two copies of the (3-foliated) X-cube model,
and to the semionic X-cube model [63] (plus transparent fermions), each
of which has a clear gauge theory description. It is similarly reminiscent
of the equivalence between the Wen plaquette model [66] and the 2D toric
code [31]. These transformations all have in common that the original
model, e.g. Chamon, has an enhanced translation symmetry compared with
the transformed model, e.g. HG. Therefore, the respective gauge theory
descriptions are enriched by translation symmetry via a nontrivial permutation
on the fractonic superselection sectors. We leave a detailed exploration of this
topic to future studies.

While it is known that CSS stabilizer codes can generically be characterized via
emergent gauge theory, our results raise the question of how generally non-CSS
codes in three dimensions admit such a description. It seems plausible that
all stabilizer codes possess a gauge theory description and hence it could be
enlightening to study more examples. For instance, one could check whether a
gauge theory description, analogous to the Chamon model, is possible for the
fracton models in Ref. [25]. Another question raised by this work is that of
strong subsystem symmetry-protected topological (SPT) states in fermionic
systems, whose classification is an open problem. We have argued that the
Chamon model is dual to a weak subsystem SPT.

More generally, it is an open question to what extent the framework of
emergent gauge theory has utility in the classification of fractonic phases
of matter. To our knowledge, among the class of exactly solvable lattice
models, there are no examples that are explicitly known to not admit a gauge
theory description. It would be interesting to either find such an example,
or demonstrate that none exist. On the other hand, there are examples of
fractonic orders with excitations of infinite order which are unlikely to have any
characterization in terms of finite gauge groups (although they arise naturally
as infinite-component U(1) Chern-Simons gauge theories [38]).

Finally, it is worthwhile to note that the some of the fractonic excitations
in the Chamon model exhibit non-bosonic self-exchange statistics [53]. For
the present analysis it has been su�cient to consider in detail the statistics
of planon excitations. A systematic investigation of fracton self-statistics in
n-foliated models is left to future work.
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8.6 Appendix: Relation between HG and the 4-foliated X-cube

model

In this section we introduce the 4-foliated X-cube model H4XC and describe its
relation to HG. The fusion structure of excitations of H4XC is identical to that
of HG. However, the models di�er in terms of the self and mutual statistics of
the excitations. In this section we will use the Z2[x, y, z, 1/x, 1/y, 1/z] Laurent
polynomial ring formalism for describing translation-invariant Pauli stabilizer
codes [20]. In this formalism, Pauli operators in a cubic lattice system with n

qubits per site are represented by length 2n column vectors whose entries are
elements of Z2[x, y, z, 1/x, 1/y, 1/z]. The first n entries represent the Pauli X

components, and the last n entries the Pauli Z components.

The Hilbert space of H4XC is the same as that of HG. It is composed of one
qubit on each edge of the tetrahedral-octahedral honeycomb. The Hamiltonian
has the form

H4XC = ≠
ÿ

c

Ac ≠
ÿ

v,µ

Bv,µ (8.34)

where c runs over all 3-cells of the honeycomb, v all vertices, µ = x, y, z, w,
and

Ac =
Ÿ

eœc

Xe, Bv,µ =
Ÿ

v–e‹µ

Ze. (8.35)

This model is described by the polynomial matrix

� =
Q

aA 0
0 B

R

b (8.36)

where

A =

Q

cccccccccccca

1 yz y + z

1 zx z + x

1 xy x + y

1 x x + 1
1 y y + 1
1 z z + 1

R

ddddddddddddb

, B =

Q

cccccccccccca

0 1 + 1
x 1 + 1

x

1 + 1
y 0 1 + 1

y

1 + 1
z 1 + 1

z 0
1
y + 1

z 0 0
0 1

x + 1
z 0

0 0 1
x + 1

y

R

ddddddddddddb

. (8.37)

The columns of A represents the 3-cell terms At, AtÕ and Ao, whereas the
columns of A represent the vertex terms Bv,x, Bv,y, and Bv,z, which together
generate Bv,w. Note that �†�6� = 0 where † represents transposition

combined with spatial inversion, �k =
Q

a 0 Ik

Ik 0

R

b is the 2k ◊ 2k symplectic
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Figure 8.9: The terms At, AtÕ , Ao, Bv,x, Bv,y, Bv,z and Bv,w of H4XC , where t
and tÕ are oppositely oriented tetrahedral cells and o an octahedral cell. Here
blue represents Pauli X and red Pauli Z. Each term is a tensor product of the
depicted Pauli operators.

form, and Ik the k ◊ k identity matrix. Thus, the terms of H4XC are mutually
commuting.

HG can be obtained from H4XC via a pair of locality-preserving, invertible but
non-isomorphic transformations of the Pauli group P :

W : P æ P , T : P æ P . (8.38)

In the polynomial formalism, these transformations correspond to multiplica-
tion by invertible but non-symplectic matrices:

W =
Q

aI6 0
ÊW I6

R

b , T =
Q

aI6 ÂT

0 I6

R

b (8.39)

where

ÊW =

Q

ccccccccccca

1 1 0 z z 0
0 0 0 0 0 0
1 1 0 z z 0
1
y

1
y 0 z

y
z
y 0

0 0 0 0 0 0
1
y

1
y 0 z

y
z
y 0

R

dddddddddddb

, ÂT =

Q

ccccccccccca

0 1 + y
x 0 0 z + 1 0

0 0 0 0 0 0
1 + x

z 1 + y
z 0 0 x + 1 0

1 + x
yz 1 + 1

z 1 + 1
y 0 1 + x

y 0
0 1 + y

xz 0 0 0 0
1 + 1

y 1 + 1
x 1 + z

xy 1 + z
x 1 + z

y 0

R

dddddddddddb

.

(8.40)
Note that T 2 = W 2 = 1. It holds that

Ac = T (W (Ac)), Bv,µ = T (W (Bv,µ)). (8.41)

Therefore, the Hamiltonian HG is represented by the polynomial matrix
� = TW�. Since �†�6� = 0, the terms of HG mutually commute hence
defining a stabilizer code. Note that

TW =
Q

aI6 + T̃ W̃ T̃

W̃ I6

R

b . (8.42)
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The T and W transformations can also be used to define two other non-CSS
stabilizer code Hamiltonians, represented by the polynomial matrices W� and
T� satisfying �†W †�6W� = 0 and �†T †�6T� = 0. The Hamiltonians
represented by �, �, W�, and T� can each be obtained via a gauging
procedure of four stacks of planar Z2 symmetries. The procedure was described
explicitly for HG, represented by �, in Sec. 8.3.2. On the other hand, �,
W�, and T� can be obtained by gauging the following matter Hamiltonians,
respectively:

H(1)
M = ≠

ÿ

t

Xt ≠
ÿ

o

Xo, (8.43)

H(2)
M = ≠

ÿ

t

Xt ≠
ÿ

o

Xo, (8.44)

H(3)
M = ≠

ÿ

t

i“t“
Õ
t ≠

ÿ

o

Xo. (8.45)

The Hilbert space of H(3)
M is the same as that of HM , whereas those of H(1)

M and
H(2)

M di�er in that the fermionic orbital on each tetrahedral 3-cell is replaced
by a qubit. The symmetries of H(3)

M are the same as those of HM , whereas for
H(1)

M and H(2)
M they are simply a product of Pauli X operators over all 3-cells

in a given dual lattice plane.

Therefore, each of the models �, �, W�, and T� represents a distinct kind
of fractonic gauge theory. � is coupled to a trivial bosonic paramagnet, T�
to a trivial atomic insulator/paramagnet state, W� to a bosonic SSPT state,
and � to a fermionic SSPT. The fusion rules of all four models are identical;
moreover the generalized Aharanov-Bohm statistics between gauge charge and
flux sectors have identical form. However, the models di�er in terms of the
statistics within the charge and flux sectors. Acting on �, the W matrix
represents a twist of the gauge flux statistics, whereas the T matrix represents
a transmutation of the gauge charge statistics. This can be seen from the
equations

W †�6W =
Q

a
ÊW + ÊW † I6

I6 0

R

b , T †�6T =
Q

a 0 I6

I6 ÂT + ÂT †

R

b ,

W †T †�6TW =
Q

a
ÊW + ÊW † I6

I6 ÂT + ÂT †

R

b .

(8.46)

The o�-diagonal components represent the Aharanov-Bohm interactions
whereas the diagonal components represent the statistics within the charge
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and flux sectors. Therefore, � and W� have purely bosonic gauge charge
statistics, whereas the tetrahedral fractonic charges of � and T� are fermionic.
On the other hand, � and W� have purely bosonic gauge flux lineons, whereas
intersecting lineons of � and W� have a mutual semionic braiding statistic.

8.7 Appendix: Polynomial representation of the transformation

from HG to HC

In this appendix we express the transformation from the gauge theory
Hamiltonian HG to the Chamon model HC in terms of the Laurent polynomial
formalism. Regarding a 2 ◊ 2 ◊ 2 cell as the unit cell with qubits labelled as
in Fig. 8.7, HC is represented by the 16 ◊ 8 stabilizer map

‚� =

Q

cccccccccccccccccccccccccccccccccccccccccca

0 x y 0 0 xz yz 0
1 0 0 y z 0 0 yz

1 0 0 x z 0 0 xz

0 1 1 0 0 z z 0
0 x y 0 0 x y 0
1 0 0 y 1 0 0 y

1 0 0 x 1 0 0 x

0 1 1 0 0 1 1 0
0 0 y xy z xz 0 0
0 0 y y z z 0 0
1 x 0 0 0 0 z xz

1 1 0 0 0 0 z z

1 x 0 0 0 0 y xy

1 1 0 0 0 0 y y

0 0 1 x 1 x 0 0
0 0 1 1 1 1 0 0

R

ddddddddddddddddddddddddddddddddddddddddddb

. (8.47)
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We define a matrix C whose first (last) 8 columns represent the operators „Xv,i

( ‚Zv,i) for i = 1, . . . , 8:

C =

Q

ccccccccccccccccccccccccccca

1 1 0 z z 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 1 + y

x
z
x

yz
x z y 0 0

0 1 0 0 0 0 0 0 0 0 z
y z xz

y 0 0 1 + x
y

0 0 0 0 0 0 0 1
y 0 0 0 0 0 1 1

y 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1

y 1 1 1 0 1 + x
y 1 0 1

z + x
yz

0 0 0 0 0 0 0 0 0 0 1
y 0 0 1 1

y 0
0 1 1 y + z z y 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 z

y z xz
y 0 0 x

y

0 0 0 0 0 1 1
y

1
y 1 + 1

y 1 + 1
x 1 + z

xy 1 + z
x 1 + z

y 1 0 1
y

0 0 1 0 0 0 1 1 0 1 1 0 x 0 0 x
z

0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1
z

0 0 0 0 0 0 0 1
y 0 0 0 1 0 0 1

y
1
z

0 0 0 0 0 0 1
y 0 1

y 0 0 1 0 0 1
y

1
z

R

dddddddddddddddddddddddddddb

.

(8.48)

In this section, we will redefine the matrices W and T from the previous
appendix such that they accommodate the two ancillary qubits. In particular,

W =
Q

a I8 0
ÊW ü I2 I8

R

b , T =
Q

aI8 ÂT ü I2

0 I8

R

b (8.49)

Then, we define a matrix U = CWT satisfying U †�8U = �8 and UTW = C.
Therefore U is a Cli�ord QCA that maps Xv,i æ „Xv,i and Zv,i æ ‚Zv,i.
Moreover,

U� = ‚�V (8.50)

where V is the invertible matrix

V =

Q

cccccccccccccccccca

1 0 0 1
y 0 1

y 0 0
0 0 1 0 0 1

x 0 0
0 0 1 1

y
1
y

1
y

1
y 0

0 0 1 0 1
xy

1
xy 0 0

0 0 1 1
z 0 0 0 1

z

0 0 1 0 0 0 0 0
0 0 1 1

yz
1

yz 0 0 0
0 1 0 0 1

yz 0 0 1
yz

R

ddddddddddddddddddb

. (8.51)

Therefore, U maps the ground space of HG to that of HC . In the supplementary
Mathematica file, we demonstrate that U is actually a finite-depth Cli�ord
circuit (i.e., it can be decomposed into a product of elementary symplectic
transformations). This demonstrates that HG and HC are gLU equivalent.
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8.8 Appendix: Entanglement renormalization of the Chamon

model

In this section, we study the entanglement renormalization (ER) on the
Chamon model using the polynomial formalism [19, 20]. The stabilizer map
‡ and the excitation map ‘ for the Chamon model can be written as

‡ =
Q

a (1 + x≠1)(y≠1 + z≠1)
(1 + y≠1)(x≠1 + z≠1)

R

b (8.52)

and

‘ = ‡†�1 =
1

(1 + y)(x + z) (1 + x)(y + z)
2

. (8.53)

respectively [20]. Our approach to doing ER involves going to a basis of
stabilizer terms such that the associated basis excitations include the bosonic
planon charges. Then we write the creation operators or movers of these
bosonic charges and apply translation invariant gates (up to coarse-graining)
to reduce them into a canonical form of unit vectors. The excitations that
form the bosonic planons and the relative positions between them are shown
in Fig. ??. Before stating an explicit ER result for the Chamon model, we
first prove that a coarse-grained copy of itself can be extracted under ER of
the Chamon model. In particular, we have the following theorem.

Theorem 8.8.1. For any odd m, there exists a Cli�ord circuit U such that

UHC(�)U †
≥ HC(m�) + HB(m�), (8.54)

for some Pauli Hamiltonian HB. Here ≥ denotes equality of ground spaces.

Proof. We first write down two fracton creation operators,

s1 = xm≠1(1 + y + ... + ym≠1)(1 + z/x + ... + (z/x)m≠1)(1, 0)T

and

s2 = ym≠1(1 + x + ... + xm≠1)(1 + z/y + ... + (z/y)m≠1)(0, 1)T ,

which create fracton excitations at the sites corresponding to the polynomials
(1+ym)(xm +zm) and (1+xm)(ym +zm) respectively. Note that s1 and s2 are
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related via permutation of x and y. In other words, the action of the excitation
map as defined in Eq. 8.53 on operators s1 and s2 is given by

‘s1 = (1 + ym)(xm + zm)

‘s2 = (1 + xm)(ym + zm).

Under coarse-graining of the lattice, the translation group is reduced such that
the translation variables modify to xÕ = xm, yÕ = ym, zÕ = zm. On the coarse-
grained lattice, the representation of the creation operators s1 and s2 is given
by s(m)

1 and s(m)
2 respectively. Namely, „m

#(s1) = s(m)
1 and „m

#(s2) = s(m)
2 where

„m
# is the map that implements coarse-graining by a factor of m. We now state

two lemmas about s(m)
1 and s(m)

2 , one about the commutation relation and the
other about reducing them to a canonical form via elementary symplectic
transformations. The proofs are these lemmas are given after this proof.

Lemma 8.8.1. For odd m, s(m)†
1 �ms(m)

2 = 1 where �m =
Q

a0
0

R

b is a 2m◊2m

symplectic form and is an m ◊ m Identity matrix.

Lemma 8.8.2. For odd m, the creation operators s(m)
1 and s(m)

2 can be mapped
to

s(m)
1 =

1
1 0 · · · 0 | 0 · · · 0

2T
,

s(m)
2 =

1
0 0 · · · 0 | 1 · · · 0

2T
(8.55)

via translation invariant elementary symplectic transformations. Here, as
shown, s(m)

1 and s(m)
2 , respectively, have only one nonzero entry at the 1st

and (m3+1)-th vector components.

The excitation represented as a singleton element, (1) before coarse-graining,
is represented by the unit vector e1 = (1, 0, 0, ..., 0)T with m entries after coarse
graining. Considering the action of ‘ on the creation operators s(m)

1 , s(m)
2 yields

‘s(m)
1 = (1 + yÕ)(xÕ + zÕ)e1 and ‘s(m)

2 = (1 + xÕ)(yÕ + zÕ)e1, the excitation map
becomes

‘ =

Q

cccccca

(1 + y)(x + z) ı ı · · · ı (1 + x)(y + z) ı ı · · · ı

0 ı ı · · · ı 0 ı ı · · · ı
... ... ... ... ... ...
0 ı ı · · · ı 0 ı ı · · · ı

R

ddddddb
(8.56)
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where we suppressed the Õ in the coarse-grained translation variables and where
ı indicates unknown entries. Since
1
(1 + x≠1)(y≠1 + z≠1) 0 0 · · · 0 (1 + y≠1)(x≠1 + z≠1) 0 0 · · · 0

2T
œ ker ‘,

the topological order condition ker ‘ = im‡ = im�q‘† implies that the rows of
‘ must generate

1
(1 + y)(x + z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0

2T
.

This implies that we can insert this as a row in the excitation map as follows,

‘ =

Q

ccccccccca

(1 + y)(x + z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0
(1 + y)(x + z) ı ı · · · ı (1 + x)(y + z) ı ı · · · ı

0 ı ı · · · ı 0 ı ı · · · ı
... ... ... ... ... ...
0 ı ı · · · ı 0 ı ı · · · ı

R

dddddddddb

. (8.57)

On applying appropriate row operations, we get

‘ =

Q

ccccccccca

(1 + y)(x + z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0
0 ı ı · · · ı 0 ı ı · · · ı

0 ı ı · · · ı 0 ı ı · · · ı
... ... ... ... ... ...
0 ı ı · · · ı 0 ı ı · · · ı

R

dddddddddb

. (8.58)

Thus, we have extracted a copy of the Chamon model.

We now give proofs of the two lemmas that were used in proving Theorem
8.8.1.

Proof of Lemma 8.8.1. The polynomial given by s†
1�1s2 encodes the commu-

tation of translates of s1 and s2. Here, �m =
Q

a0
0

R

b is an 2m◊2m symplectic

form and is an m ◊ m Identity matrix. Let us denote the coe�cient of g in
the polynomial s†

1�1s2 as (s†
1�1s2)g. We note that two Pauli operators a and

b commute if (a†�qb)1 = 0.

Note that s1 and s2 can be expressed as follows,

s1 = (1 + y + ... + ym≠1)(xm≠1 + zxm≠2 + ... + zm≠1)(1, 0)T
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and
s2 = (1 + x + ... + xm≠1)(ym≠1 + zym≠2 + ... + zm≠1)(0, 1)T .

Since all powers of translation variables are less than m, under coarse-graining
by a factor of m in each direction, we are left with 2m-dimensional vectors
for s1 and s2 with only 1s and 0s. For s1, the 1s appear in the first half and
for s2, in the second half. Due to this form, s(m)†

1 �ms(m)
2 = (s(m)†

1 �ms(m)
2 )1 i.e.

only the coe�cient of 1 contributes and there are no monomials. Since the
commutation relation between the operators s1 and s2 i.e. (s†

1�1s2)1 is not
a�ected by coarse-graining, we get

s(m)†
1 �ms(m)

2

= (s(m)†
1 �ms(m)

2 )1

= (s†
1�1s2)1

= m mod 2 (8.59)

Thus, s(m)†
1 �ms(m)

2 = 1 when m is odd.

Proof of Lemma 8.8.2. For both s1 and s2, the degrees of translation variables
x, y and z range from 0 to m ≠ 1. Thus, after coarse-graining, s(m)

1 and s(m)
2

are both supported on at only one unit cell (at location 1). In particular,
s(m)

1 is a Laurent polynomial vector over F2[1], satisfying s(m)†
1 �ms(m)

1 = 0.
Since F2[1] is a principal ideal domain, we can find an elementary symplectic
transformation E1 composed of CNOT gates that turns s1 into a vector with
a single nonzero component, say, g at the first entry. Since the only nonzero
component in F2[1] is 1, g = 1.

Since the transformation E1 acts only at the origin, E1s
(m)
2 still acts only

at location 1 and thus is a Laurent polynomial vector over F2[1]. Since
s(m)†

1 �ms(m)
2 = 1, the (m3 +1)-th component of E1s

(m)
2 must be 1. Since E1s

(m)
2

can have non-zero entries i.e. 1s only in the second half of the vector, they can
all be cancelled out via CNOT gates without a�ecting the form of s(m)

1 . Thus,
the we get the form of s(m)

1 and s(m)
2 as desired.
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8.8.1 Explicit ER circuit

In the supplementary Mathematica file, we have constructed a circuit U which
carries out an explicit ER of the Chamon model given as follows:

UHC(�)U †
≥ HC(3�) + H2D(6�) + H2D(6�),

H2D = H toric
x + H toric

y + H toric
z + H toric

w . (8.60)

Here, H toric
µ is a stack of 2D toric codes along the µ direction with one layer

per lattice spacing.
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C h a p t e r 9

TWISTED FOLIATED FRACTON PHASES

9.1 Introduction

The discovery of various “fracton” models [3, 6, 7, 11, 22, 23, 25, 33, 35, 40,

41, 56, 58, 62–67, 77, 79] has greatly expanded our understanding of gapped

phases in three-dimensional systems. A salient feature characterizing this set

of models is the existence of gapped fractional point excitations with restricted

mobility. Gapped fracton models1 are divided into two major classes according

to how the motion of point excitations is constrained: type I and type II. In

type II models, fractional point excitations can only move in coordination as a

set and individually they cannot move at all. These excitations are said to be

immobile and are called ‘fractons’. In type I models, on the other hand, apart

from fracton excitations, there can also exist lineons and planons – fractional

excitations which can move by themselves within a plane or along a line. The

restricted mobility of the point excitations leads to various new features in the

fracton models: a slow thermalization process [4, 37–39, 48], stable extensive

ground state degeneracy, unusual entanglement scaling [24, 34, 49, 53], etc.

[5, 9, 27, 36, 74, 75, 78].

Among the type I fracton models, we have found that many of them have a

hidden ‘foliation’ structure and are said to have ‘foliated fracton order’ (FFO)

[53, 54]. That is, starting from a model with a larger system size, we can apply

a finite depth local unitary transformation and map the model to a smaller

system size together with decoupled layers of 2D gapped states, as illustrated

in Fig. 9.1(a). As there should be no fundamental change in the order of the

system simply due to the change in system size, we should think of the 2D

gapped states as free resources in the study of these 3D fracton models even

though the 2D gapped states can have highly nontrivial topological order of

their own. Correspondingly, we define two foliated fracton models to have the

same ‘foliated fracton order’ if they can be related through a finite depth local

unitary transformation upon the addition of decoupled stacks of 2D layers of

gapped states, as shown in Fig. 9.1(b).

1There are also gapless U(1) fracton models which will not be addressed in this work
(see Refs. [8, 21, 28, 32, 42–47, 59, 73, 76]).
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(a)

(b)

Figure 9.1: Foliated fracton order: (a) In a model with FFO, di↵erent system
sizes are related through the addition or removal of 2D layers and finite depth
local unitary transformations. (b) Two models have the same FFO if they are
related through the addition of decoupled stacks of 2D layers and finite depth
local unitary transformation.

Using this definition, we have found that many of the type I fracton models

with a foliation structure actually have the same foliated fracton order. In

particular, we have shown explicitly that the spin checkerboard model, the

Majorana checkerboard model, and the semionic X-cube model all have the

same FFO as the X-cube model (or multiple copies of it) [51, 52, 69]. The

untwisted string-membrane-net model discussed in Ref. [55] was also shown

to be equivalent to the X-cube model. As the X-cube model [67] can be

obtained by gauging the intersecting planar subsystem symmetries of a trivial

3D paramagnet [50, 67], the X-cube FFO is considered to be untwisted. It is

similar to the toric code model as an untwisted Z2 gauge theory which can

be obtained by gauging the global Z2 symmetry of a trivial 2D paramagnet.

It is known that 2D Z2 gauge theory can also be ‘twisted’ where the gauge

flux becomes a semionic excitation. It can be obtained from gauging the 2D

symmetry protected topological order with Z2 symmetry as shown in Ref. [30].

It is then natural to ask whether there exists twisted FFO.

In this paper, we identify three-dimensional fracton models with a ‘twisted’

FFO. That is, these models have an FFO that is di↵erent from that of the

X-cube model. Moreover, they can be obtained by gauging a 3D model with

subsystem planar symmetries that is not a trivial paramagnet. In other words,

the ungauged model has (strong) symmetry protected topological order with
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subsystem planar symmetries. Note that although twisted fracton models have

already appeared in the literature [15, 60, 81], they have not been studied in

terms of their foliated fracton order. We discuss two (sets of) examples in

detail. One is 3-foliated, meaning that we can decouple 2D topological layers

in three di↵erent directions using finite depth local unitary transformations.

The X-cube model is also 3-foliated in this sense and we can consider this new

model as the twisted version of two copies of the X-cube model. The other

example is 1-foliated, meaning that we can only decouple 2D topological layers

in one direction from the model. The untwisted version of a 1-foliated model

with Z2 symmetries would simply be a decoupled stack of 2D toric codes.

The paper is organized as follows: In section 9.2, we discuss the 3-foliated

model by presenting the construction of the model, demonstrating its foliation

structure and then showing that its FFO is di↵erent from that of the X-cube

model. In section 9.3, we do the same for the 1-foliated model. We discuss in

section 9.4 how to ‘ungauge’ the models into models with subsystem symmetry

protected topological order before summarizing in section 9.5.

9.2 Twisted 3-Foliated Model

In this section, we describe a model that is foliated in the x, y, and z directions

by layers of a twisted 2D Z2 ⇥ Z2 gauge theory. We will see that its foliated

fracton order (FFO) is twisted in the sense that its FFO is distinct from that of

the X-cube model or copies of it. (A brief review of the X-cube model is given

in Appendix 9.6.) Ungauging this fracton model results in a paramagnetic

model with (strong) subsystem symmetry protected topological (SSPT) order

under 3 sets of intersecting planar subsystem symmetries.

The model is constructed by strongly coupling intersecting layers of a set of

3 perpendicular stacks of twisted 2D Z2 ⇥ Z2 gauge theories, in a manner

akin to the construction of the X-cube and semionic X-cube models from

stacks of 2D toric code layers and 2D double semion layers respectively. These

constructions are discussed in Refs. [33] and [64]. Like the semionic X-cube

model, the 3-foliated model constructed in this section belongs to the class

of exactly solvable twisted fracton models considered in Ref. [60]. Here, we

are able to extend our understanding by studying the model through the lens

of the coupled layer construction and as an FFO. Unlike the semionic X-cube

model, this Z2⇥Z2 model has twisted FFO; thus, there is a distinction between
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a fracton model being twisted in the sense of Ref. [60], and a model having

twisted FFO.

9.2.1 Model Construction

9.2.1.1 2D Z2 ⇥ Z2 twisted gauge theory

First, we briefly review the properties of Z2 ⇥ Z2 twisted gauge theories in

2D, and describe an exactly solvable model for one such theory. Twisted

gauge theories may be thought of as Hamiltonian realizations of 2+1d

Dijkgraaf-Witten models [16], or as the result of gauging global symmetries

in paramagnets with non-trivial symmetry-protected topological (SPT) order

[30]. For Z2 ⇥ Z2 symmetry, there are 23 = 8 distinct SPT phases in

2D, corresponding to the 8 elements of H3(Z2 ⇥ Z2, U(1)) [12]. They are

characterized by the topological invariants N1, N2, and N12, each of which

takes values 0 or 1. Upon gauging, the exchange statistics of the gauge fluxes

are given by iN1 and iN2 , whereas the braiding statistics between the two fluxes

is iN12 . In all cases the statistics between gauge charge and corresponding

gauge flux is �1 [68].

Here, we will focus on the twisted gauge theory obtained from the SPT phase

with N12 = 1 and N1 = N2 = 0. In this case, the elementary gauge charges eA

and eB and bosonic gauge fluxes mA and mB obey the following fusion rules:

e2A = e2B = 1 m2
A = eB m2

B = eA. (9.1)

Thus, as an intrinsic topological order, this theory is equivalent to the Z4 toric

code, with mA and mB mapping onto the ẽ and m̃ Z4 anyons of the Z4 toric

code, respectively.

There is a convenient isomorphism between the Z4 clock and shift algebra and

the two qubit operator algebra, Z̃ ! XASB, X̃ ! XBCZAB, where Z̃ and X̃

are the clock and shift generators of the Z4 operator algebra with Z̃X̃ = iX̃Z̃,

Z and X are the clock and shift (Pauli) operators of the Z2 algebra, S is

the one-qubit phase gate diag(1, i), CZ is the two-qubit controlled-Z operator

diag(1, 1, 1,�1), and A and B label the two qubits. Applied to the Z4 toric

code degrees of freedom, this mapping naturally allows one to write the Z2⇥Z2

twisted gauge theory as a Z2⇥Z2 string-net model, such that the gauge charges

correspond to violations of the plaquette terms.
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(a)

(b)

Figure 9.2: (a) Transformation from Z4 qudit degrees of freedom to two Z2

qubit degrees of freedom. (b) Operators Av, Bp, OA
p , and OB

p . In the bottom
figures, blue represents XA, red represents XB, dashed yellow represents SB,
dotted yellow represents (SB)†, green represents ZA, and the black arrows
represent CZAB from A to B. The action of Z, S, and CZ gates precede the
action of the X gates.
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In particular, consider the Z4 toric code Hamiltonian on a square lattice:

HTC = �
X

v

�
Av + A2

v + A3
v

�
�
X

p

�
Bp +B2

p +B3
p

�
(9.2)

where Av = Z̃†
1Z̃

†
5Z̃6Z̃2 and Bp = X̃1X̃2X̃

†
3X̃

†
4 per Fig. 9.2. The A2

v and

B2
p terms are redundant, but we keep them in the Hamiltonian so that the

transformed Hamiltonian has a convenient correspondence with the string-net

formulation [31].

After mapping to qubit degrees of freedom and shifting qubit A downward and

to the left by half a lattice spacing [as shown in Fig. 9.2(a)], HTC is transformed

into the Z2 ⇥ Z2 twisted gauge theory Hamiltonian

H2D = �
X

v

�
QA

v +QB
v

�
�

X

p

�
OA

p +OB
p + h.c.

�
, (9.3)

where Qµ
v =

Q
l2v Z

µ
l , and (see Fig. 9.2)

OA
p = XA

1 X
A
2 X

A
3 X

A
4

�
SB
1

�† �
SB
5

�†
SB
6 S

B
2 , (9.4)

OB
p = XB

1 X
B
2 X

B
3 X

B
4 CZAB

32 CZAB
41 CZAB

73 CZAB
84 ZA

7 Z
A
8 .

In particular, Av ! OA
p , A

3
v !

�
OA

p

�†
, Bp ! OB

p , B
3
p !

�
OB

p

�†
, A2

v ! QA
v ,

and B2
p ! QB

v . Note that
�
XBCZAB

�†
= XBCZABZA.

As this transformation is an exact mapping, it is obviously possible to carry

through the following construction in terms of the original Z4 degrees of

freedom. As we will see however, the Z2 ⇥ Z2 degrees of freedom provide

a more natural language to analyze the emergent fracton order.

9.2.1.2 Coupled layers construction

The construction of the 3-foliated fracton model is a straightforward

generalization of the construction of the X-cube and semionic X-cube models

in Refs. [33]. We first start with 3 mutually perpendicular intersecting stacks

of the Z2⇥Z2 twisted gauge theory model H2D, oriented as in Fig. 9.3. Recall

that H2D contains 2 qubit degrees of freedom (A and B) on each edge of a

square lattice. Each edge of the 2D layers coincides with another edge from an

orthogonal layer to form a cubic lattice, with each edge containing 4 qubits.

Then, couplings of the form ZAZA and ZBZB between qubits on the same

edge are added to the Hamiltonian.
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Figure 9.3: Cube operators of H3D. Here, blue represents XA, red represents
XB, dashed yellow represents SB, dotted yellow represents (SB)†, green
represents ZA, and the black arrows represent CZAB from A to B. The action
of Z, S, and CZ gates precede the action of the X gates.

In the strong coupling limit, the four qubits at each edge merge into two. The

following e↵ective Hamiltonian emerges at lowest order in perturbation theory:

H3D =�
X

v

X

�=x,y,z

�
QA

v,� +QB
v,�

�

�
X

c

�
OA

c +OB
c + h.c.

�
,

(9.5)

where v runs over vertices of the cubic lattice and c runs over the elementary

cubes. Qµ
v,� are vertex terms equal to products of Pauli Zµ operators over

the links adjacent to v in the plane normal to �. The cube operators OA
c

and OB
c are depicted graphically in Fig. 9.3. The terms of H3D are mutually

commuting and unfrustrated and thus the model is exactly solvable. It bears

striking similarity to (two copies of) the X-cube model: the vertex terms are

identical, and the cube terms are similar in that they involve products of Pauli

X operators over the edges of the cube. However, they contain additional phase

factors not present in the X-cube terms.

As in the X-cube model, excitations of the vertex constraints are lineons

whereas excitations of the cube terms are fractons. Lineons are created at

the endpoints of open rigid string operators, whereas fractons are created at

the corners of membrane operators. Examples of these operators are given in

the discussion of interferometric operators in Sec. 9.2.3.2. Like the X-cube

model, planons also exist as fracton dipoles and lineon dipoles, as will be
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discussed in detail below.

9.2.2 Fractional excitations

In the intermediate coupling regime, the transition to the strong-coupling

phase can be thought of as a condensation of A and B type charge loops;

correspondingly the ground state of H3D may be viewed as a condensate of

charge loops. This mechanism has been studied in detail and dubbed p-string

condensation in Ref. [33]. The structure of excitations in the condensed phase

can be understood in terms of the degrees of freedom of the pre-condensed

stacks of twisted Z2 ⇥ Z2 gauge theories. Similar to the case of the X-cube

model discussed in Refs. [33], the 2D gauge charges of the original decoupled

stacks fractionalize into fracton dipoles (a pair of adjacent fractons whose axis

is normal to the 2D layer), and remain as Z2 planons. These planons will

be labelled eAµ⌫,i and eBµ⌫,i where µ⌫, i refers to the plane of mobility (µ and ⌫

the planar axes and i the coordinate in the normal direction). In the charge

loop picture, individual fractons correspond to endpoints of open charge strings

above the condensate. They will be denoted as fA
ijk and fB

ijk, where ijk denotes

spatial location, and likewise inherit Z2 fusion rules:

�
fA
ijk

�2
=

�
fB
ijk

�2
=

�
eAµ⌫,i

�2
=

�
eBµ⌫,i

�2
= 1. (9.6)

As in the X-cube coupled layers construction, individual gauge fluxes of

the original stacks are confined upon condensation due to their statistical

interaction with the charge loops. However, composites of an A (B) flux and

an A (B) anti-flux in orthogonal planes have trivial statistics with the charge

loops, and thus survive the condensation. These composites become A and B

type lineons of the condensed phase, labelled as lAµ,ij and lBµ,ij with µ the axis of

mobility and i and j the normal coordinates. By convention lAµ,ij (l
B
µ,ij) consists

of a flux in the µ⌫ plane and an anti-flux in the ⇢µ plane. They inherit the

fusion rules from the 2D gauge fluxes, and therefore obey:

�
lAµ,ij

�2
= eBµ⌫,i ⇥ eB⇢µ,j

�
lBµ,ij

�2
= eAµ⌫,i ⇥ eA⇢µ,j

�
lAµ,ij

�4
=

�
lBµ,ij

�4
= 1.

(9.7)

In these equations, the fracton dipoles’ planes of mobility intersect along the

lineon axis. There are also triple fusion rules between intersecting lineons
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along orthogonal axes (coordinate labels have been suppressed):

lAx ⇥ lAy ⇥ lAz = lBx ⇥ lBy ⇥ lBz = 1. (9.8)

Whereas individual lineons are restricted to move along a line, adjacent lineon

anti-lineon pairs, called lineon dipoles, are free to move in a plane normal to

the axis of separation, and are hence planons. This is because lineons arise

as bound states of flux anti-flux pairs in orthogonal planes. A lineon dipole

therefore contains four original flux (or anti-flux) excitations. However, the

flux anti-flux pair in the plane shared by the two lineons annihilate one another,

leaving behind a flux anti-flux pair in adjacent parallel planes. Lineon dipoles

will be denoted mA
µ⌫,i,i+1 and mB

µ⌫,i,i+1 where µ⌫ refers to the plane of mobility

and i and i+1 are the coordinates in the normal direction of the parallel planes

containing the flux and anti-flux respectively. The following fusion rules hold

by definition:

mA
µ⌫,i,i+1 = lAµ,ij ⇥ l̄Aµ,i+1,j = lA⌫,ki ⇥ l̄A⌫,k,i+1

mB
µ⌫,i,i+1 = lBµ,ij ⇥ l̄Bµ,i+1,j = lB⌫,ki ⇥ l̄B⌫,k,i+1,

(9.9)

where l̄ refers to the anti-lineon of l. Combining Eq. (9.7) and Eq. (9.9) yields

the rules
�
mA

µ⌫,i,i+1

�2
= eBµ⌫,i ⇥ eBµ⌫,i+1

�
mB

µ⌫,i,i+1

�2
= eAµ⌫,i ⇥ eAµ⌫,i+1.

(9.10)

The statistics of excitations in the condensed phase can also be inferred from

the anyon statistics of the decoupled stacks. In particular, the fracton dipole

eAµ⌫,i (e
B
µ⌫,i) exhibits a �1 braiding statistic when wound around type A (B)

lineons mobile within the dipole’s plane of movement. In particular, these

lineons are lA⌫,ij (lB⌫,ij) and lAµ,ji (l
B
µ,ji). Moreover, coplanar lineons of opposite

species lAµ,ij and lB⌫,ki inherit the i braiding statistic between gauge fluxes mA

and mB; thus they exhibit an i statistical phase upon crossing. This property,

along with the lineon fusion rules, are the essential features that distinguish

the twisted 3-foliated model from the untwisted version, i.e. two copies of the

X-cube model.

9.2.3 Foliation structure

In this section, we first show that the model described in the last section indeed

has a foliated fracton order. That is, one can decouple 2D topological layers out
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of the model while shrinking the system size as shown in Fig. 9.1 (a). Then we

are going to look at some of the universal quantities of foliated fracton orders,

including the quotient super-selection sectors and the entanglement signatures

that we discussed in Refs. [52] and [53]. It turns out that this model is trivial

(the same as two copies of the X-cube model) in both aspects. However, it is

not equivalent to two copies of the X-cube model as an FFO, which we will

show in Sec. 9.2.4.

9.2.3.1 Resource layers

In this section, we demonstrate the 3-foliated structure of the model. We show

that resource layers consisting of bilayer 2D Z2⇥Z2 twisted gauge theories can

be decoupled from the model in all three directions. Rather than finding an

exact local unitary transformation, we arrive at this conclusion by examining

the structure of fractional excitations in an Lx ⇥ Ly ⇥ Lz size 3D model, and

find that it can be decomposed into two parts: one corresponding to a reduced

Lx⇥Ly⇥ (Lz�2) size 3D model, and the other corresponding to two layers of

the twisted gauge theory described by H2D. That is, the superselection sectors

of the larger 3D model are identical to those of the smaller 3D model together

with the decoupled 2D layers. We may then conclude the presence of such a

foliation structure.

In gapped abelian phases, the superselection sectors form an abelian group

under fusion. Decomposing this structure therefore amounts to finding a

generating set of the fusion group which can be bipartitioned into sets A

and B such that there are no statistical interactions between sectors of A and

sectors of B.

For the model in question, S contains fractons, lineons, and planons. However,

the elementary planons are either fracton dipoles or lineon dipoles (lineon

anti-lineon pairs). Therefore, fusion with the appropriate planon e↵ectively

transports lineons or fractons in their directions of immobility. Hence, a

generating set of S need only one lineon of each type in each direction, one

fracton of each type, and a generating set of the planon subgroup P  S (i.e.

the subgroup of S generated by the set of all planons), which decomposes

as P = Pxy ⇥ Pyz ⇥ Pzx for the three di↵erent planes of mobility. This

phenomenon also occurs in all of the stabilizer code models with FFO that

have been previously studied. In fact, this observation is the basis of the notion
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of quotient superselection sectors (QSS), which are elements of the quotient

group Q = S/P to be discussed below.

Suppose we wish to disentangle a resource layer in the z direction

from the twisted 3-foliated model. Due to the above observation, a

decomposition S = S2D ⇥ S 0, where S2D represents a single 2D resource

layer and S 0 is the reduced 3D model, amounts to a decomposition

P = P2D ⇥ P 0 =
�
P2D ⇥ P 0

xy

�
⇥ Pyz ⇥ Pzx, such that P2D has no statistical

interaction with P 0. Moreover, P2D must have trivial interactions with the

generating lineons and fractons. However, these generators can always be

chosen to lie away from the support of the P2D string operators; thus, this

latter condition is essentially vacuous.

Let us now consider Pxy, the subgroup of S consisting of planons mobile in the

x and y directions. A generating set of Pxy is given by the set of elementary

(minimally separated) fracton and lineon dipoles with z-oriented dipolar axis.

It is possible to find an equivalent generating set that decouples into two

subsets: one generates P 0
xy, a reduced version of Pxy; the other generates

P2D, which corresponds to two copies of the 2D Z2 ⇥Z2 twisted gauge theory

modeled by H2D. To illustrate this decomposition, it is convenient to use a

graphical notation, as shown in Fig. 9.4. In Fig. 9.4(a), (part of) the generating

set of elementary dipoles is depicted. Fig. 9.4(b) contains an equivalent but

di↵erent generating set. In this set, the quasiparticles represented by rows 5-12

are completely decoupled from the remaining planons, in the sense that they

form a closed group under fusion and have trivial braiding statistics with the

other planons. These quasiparticles represent a generating set of the anyon

sectors of two copies of the Z2 ⇥ Z2 twisted gauge theory, i.e. a bilayer (rows

5-8 and rows 9-12). The remaining planons constitute a reduced version of the

original planon group with two fewer lattice spacings in the z direction.

Importantly, this mapping of generating planons preserves the locality of the

excitations in the z direction. In other words, each element of the generating

set moves within a finite region in z before and after the mapping. Therefore,

we expect that this mapping of excitations can be realized by a finite depth

local unitary transformation with support in the vicinity of the decoupled

resource bilayer.

Having established the foliation structure in the 3-foliated model, we now ask

if it has the same FFO as the X-cube model (or copies of it). As defined
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Figure 9.4: Disentangling an xy-plane Z2 ⇥ Z2 twisted gauge theory resource
bilayer from the twisted 3-foliated model, in terms of a generating set of
the planon excitations. In this notation, the z axis lies along the horizontal
direction, with the grid representing the lattice spacing. Each row represents
one planon in the generating set. Lineon dipoles mA

xy,i,i+1 and mB
xy,i,i+1 are

represented as respectively blue and red boxes spanning between z-coordinates
i and i + 1, with a solid edge to represent the lineon and a triple edge
to represent the anti-lineon. Conversely, fracton dipoles eAxy,i and eBxy,i are
represented as blue and red dots at coordinate i. Figure (a) depicts a
generating set consisting of all elementary fracton dipoles and lineon dipoles.
The generating set of (b) is decomposed into two copies of the Z2⇥Z2 twisted
gauge theory between the dashed lines and a reduced generating set for the
remaining planons outside the lines, which constitutes a smaller version of the
original planon group. Note that there are no non-trivial braiding statistics
between the three components.
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in Refs. [54] and [53], two gapped models have the same foliated fracton

order (FFO) if they can be related by a local unitary transformation upon

the possible addition of 2D topological order resource states. While this is a

rather coarse equivalence relation, previous works have identified the structure

of QSS and interferometric statistics, as well as the entanglement signatures

discussed prior, as universal characteristics of FFO [52, 53]. As we are going to

see in section 9.2.3.2 and 9.2.3.3, based on these properties alone it is plausible

that the 3-foliated model has the same FFO as two copies of the X-cube model.

However, as we are going to show in section 9.2.4, the 3-foliated model actually

has a di↵erent FFO from two copies of the X-cube model. The QSS and

entanglement signature hence provide an insu�cient characterization of the

universal properties of a foliated fracton phase.

9.2.3.2 Quotient superselection sectors and interferometric

statistics

Consider the QSS fusion group Q = S/P . To reiterate, the essential idea

behind QSS is that by modding out the planon subgroup P , we obtain a finite

group which is characteristic of the foliated fracton order of a given model.

Since lineon and fracton dipole sectors belong to P for the twisted 3-foliated

model, it follows that all lineon superselection sectors lAµ,ij (l
B
µ,ij) belong to one

quotient sector, denoted lAµ (lBµ ). Moreover all fracton sectors fA
ijk (f

B
ijk) belong

to a single quotient sector, denoted fA (fB). These quotient sectors generate

the entire group Q.

However, lineon and fracton quotient sectors also obey some relations. First,

since eAµ⌫,i ⇥ eA⇢µ,j and eBµ⌫,i ⇥ eB⇢µ,j belong to P , the lineon fusion rules (9.7)

imply that
�
lAµ
�2

=
�
lBµ
�2

= 1 as quotient sectors. In other words, the lineon

quotient sectors obey Z2 fusion rules while the lineon superselection sectors

obey Z4 fusion rules. Second, the lineon triple fusion rules are inherited by

the quotient group as

lAx ⇥ lAy ⇥ lAz = lBx ⇥ lBy ⇥ lBz = 1.

Finally, the fractons sectors obey
�
fA

�2
=

�
fB

�2
= 1. Therefore, altogether

Q ⇠= (Z2)
⇥6, with the generators fA, fB, lAx , l

B
x , l

A
y , and lBy . This QSS structure

is isomorphic (in terms of fusion and particle mobility) to that of two copies

of the X-cube model, one corresponding to each of the A and B sectors of Q.
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Recall that the X-cube model has QSS group (Z2)
⇥3 with generators f , lx, and

ly, and triple fusion rule lx ⇥ ly ⇥ lz = 1.

Interferometric operators for foliated orders, as introduced in Ref. [52], are

unitary operators with support outside the region R, where a point excitation

is located, that yield nontrivial statistical phases when acting on excitations

belonging to nontrivial elements of Q, but act as the identity on excitations

in P . As discussed in Ref. [52], for the X-cube model, there are 8 classes of

such operators, which have a Z2 ⇥ Z2 ⇥ Z2 group structure. They include a

wireframe operator W which yields a �1 phase on the quotient sector f , and

cylindrical membrane operators Mx, My, and Mz. The operator Mx yields a

�1 phase on the ly and lz sectors, and similarily for My and Mz.

In the twisted 3-foliated model, the structure of interferometric operators is

identical to that of two copies of the X-cube model, in terms of the geometry

of the operators and their statistical interactions with the QSS. In particular,

there are operators WA, WB, MA
x , MB

x , MA
y , MB

y , MA
z , and MB

z . The

microscopic form of these operators may be computed by taking products

of all the Hamiltonian terms of one kind within a large cubic region: the

wireframe operators WA and WB correspond to products of cube operators

OA
c and OB

c , whereas the membrane operators correspond to products of the

vertex terms. Thus, the membrane operators are simply products of Pauli ZA

or ZB operators over the support of the membrane, as in (two copies of) the

X-cube model, whereas the wireframe operators are more complicated.

The rigid string and membrane operators, which create and transport lineons

and fractons, have the identical form as these interferometric operators away

from the excitations. The statistical interactions between interferometric

operators and QSS can be verified by considering the commutation relations of

these microscopic operators. One may also view the interferometric operators

as planon loop operators for lineon or fracton dipoles with a macroscopic

dipolar length.

9.2.3.3 Ground state degeneracy and entanglement signatures

To e�ciently calculate the entanglement properties of the 3-foliated model,

we consider a Z4 Calderbank-Shor-Steane (CSS) stabilizer code formulation of

the model. That is, the Hamiltonian can be expressed as a sum of products of

either Z̃ (the clock operator) or X̃ (the shift operator) where all terms in the
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Figure 9.5: A graphical depiction of the terms in the CSS stabilizer version
of the 3-foliated model in Eq. (9.5). Each picture above denotes a term in the
stabilizer Hamiltonian. There are two Z4 qudits on each edge, which will be
denoted by two (out of three) di↵erent colors. Straight colored lines denote
Z̃ clock operators, while zig-zag colored lines denote X̃ shift operators. A
conjugate-transpose is taken for operators on edges with arrows that point in
the negative x, y, or z direction. Double lines denote a Z̃2 or X̃2 operator.
Above each column of pictures, we write the product of operators involved.

Hamiltonian commute with each other and each term has eigenvalue �1 in the

ground state. This form of Hamiltonian is useful for doing computations, and

will allow us to e�ciently calculate ground state degeneracy and entanglement

entropy. In Appendix 9.8, we will also express this model in the string-

membrane-net and foliated field theory formulations.

To obtain a CSS version of the model, we can repeat the coupled layer

construction from Sec. 9.2.1.2, but continue using the Z4 clock and shift

operators instead of mapping to pairs of qubits. The coupled layer construction

was performed by adding Pauli ZAZA and ZBZB terms to couple the Z2⇥Z2

twisted gauge theory layers together. The ZA and ZB operators are written

in terms of Z̃2 and X̃2, as in Fig. 9.2(a). Thus, the ZAZA term that couples

Z2 ⇥Z2 twisted gauge theory layers is mapped back to a Z̃2Z̃2 term to couple

Z4 toric code layers together. Unmapping the ZBZB term is similar, although

note that the X̃2 operator is not on the same edge as the ZB operator.
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Figure 9.6: The wireframe geometries used to calculate the entanglement
quantities in Eq. (9.12).

Therefore, the ZBZB term is mapped back to a X̃2X̃2 operator, but where

each X̃2 is on a di↵erent link. The strong coupling limit is described by the

CSS code Hamiltonian in Fig. 9.5.

Since the model is a stabilizer code, we can e�ciently calculate its ground

state degeneracy and entanglement entropy (see Appendix 9.7 for details). The

ground state degeneracy of an Lx ⇥ Ly ⇥ Lz system with periodic boundary

conditions is

GSD = 24Lx+4Ly+4Lz�6. (9.11)

Two-dimensional topological orders can be characterized by their topological

entanglement entropy [26, 29]. Ref. [53] discussed a generalization for

foliated fracton orders given by the entanglement quantities I(A;B|C) and

I(A;B;C;D|E) computed from subsystems with the wireframe geometries

shown in Fig. 9.6. For the 3-foliated Hamiltonian (Eq. (9.5)), we find that

I(A;B|C) = I(A;B;C;D|E) = log(4). (9.12)

These entanglement signatures, as well as the ground state degeneracy, are

equivalent to that of two copies of the X-cube model.2

9.2.4 Twisted foliated fracton order

While the 3-foliated model appears the same as two copies of the X-cube model

in terms of QSS and entanglement signatures, they actually have di↵erent

FFO. In this section we will demonstrate this di↵erence in two separate ways.

2In [53], logarithms were evaluated in base 2. With this convention, the entanglement
quantities in Eq. (9.12) are I(A;B|C) = I(A;B;C;D|E) = log2(4) = 2. The X-cube model
has I(A;B|C) = I(A;B;C;D|E) = log2(2) = 1.
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9.2.4.1 Lineon fusion rules

First, we will show that the Z4 fusion rules of the lineon superselection

sectors preclude a transformation to two copies of the X-cube model through

local unitary and addition of 2D layers. It will be helpful to establish some

terminology. A superselection sector that is a fusion product of planons in

orthogonal planes, such that the mobility is restricted to the line of intersection

of the two planes, will be referred to as a superficial lineon. Conversely, a lineon

sector that cannot be decomposed as the fusion product of two planons, is

referred to as an intrinsic lineon [41]. While intersecting stacks of decoupled

2D topological orders exhibit superifical lineon superselection sectors, only

truly fractonic models host intrinsic lineon excitations.

The key to the argument is that all of the intrinsic lineons in the twisted 3-

foliated model are order 4 under fusion (although they square to superficial

lineons hence the QSS has order 2), whereas the X-cube model contains

intrinsic lineons of order 2. By adding stacks of 2D topological orders, it

possible to modify the superselection sector group to include new intrinsic

lineons of a higher order than the already existing intrinsic lineons. However,

the fusion rules of the original intrinsic lineons are immutable, and moreover it

is not possible to create a new intrinsic lineon of a lower order than the already

existing sectors. Therefore, even after the free addition of 2D topological order

resource states, the twisted 3-foliated model can never contain intrinsic lineons

of order 2. Conversely, the X-cube model, and any number of copies of it, will

always retain such a intrinsic lineon. Thus, the two models must have di↵erent

FFO.

9.2.4.2 Redundancies among planons

Another way to see that the FFO of the 3-foliated model is di↵erent from that

of two copies of the X-cube model is by looking at the planons. In fact, this can

be a useful and generic way to study foliated fracton models. In the following,

we are going to show that by examining the planons, we can deduce, first, that

the X-cube model is di↵erent from a stack of 2D layers and secondly, that the

3-foliated model is di↵erent from the X-cube model (or 2 copies of it).

Consider a dimensional reduction procedure from a 3D model to a 2D model

where the x and y directions remain infinite while the z direction is made finite.

Such a ‘compactification’ process has been used in Ref. [17] to study fracton
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models. We consider the situation where the system has periodic boundary

condition in all three directions. As the model is now finite in the z direction,

any string operator that extends around the z direction becomes finite and can

be added to the Hamiltonian. The ground state degeneracy is reduced and

the model becomes a 2D model with anyons moving in the 2D plane. Here, we

consider what happens upon this compactification process in three di↵erent

fracton models: a decoupled stack of 2D layers, the X-cube model and the

3-foliated model.

We start with a decoupled stack of 2D layers in the xy plane. In the 3D

model, there is no string operator in the z direction, therefore after dimensional

reduction no extra term can be added. All the planons in the xy planes survive

the dimensional reduction. The number of planons grows exponentially with

the height of the system in the z direction. We can choose a generating set of

all the planons by choosing a generating set for each plane. Such a generating

set satisfies the following properties:

• Each element in the generating set is constrained to move within a finite

segment in z as they come from the 2D layers. We say that the generator

planons are ‘local’.

• All other planons that are local can be generated by a subset of the

generators that are within a finite distance in z. We say that the

generating set is ‘locally complete’.

• Moreover, we can make sure the full generating set is not redundant.

That is, no element in the generating set (or copies of it) can be generated

by other elements in the generating set.

For the X-cube model and the 3-foliated model, these properties can no longer

be satisfied at the same time.

Now we consider the X-cube model. A brief review of the X-cube model is

given in Appendix 9.6. Upon dimensional reduction in the z direction, the

string operators in the z direction can be added to the Hamiltonian. Among

all the fractional excitations, only the planons in the xy planes survive the

dimensional reduction procedure and we can choose a generating set for them

consisting of the fracton dipoles ei centered around plane i and the lineon

dipoles mi,i+1 living across planes i and i + 1. Such a generating set is local
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and locally complete as we defined above. However, it is redundant as the

product of all fracton dipoles and the product of all lineon dipoles are both

trivial anyons. Y

i

ei = 1,
Y

i

mi,i+1 = 1 (9.13)

That is, there exists global constraints among the planons. These global

constraints cannot be removed without violating the ‘locally complete’

condition. If we remove e1 and m1 from the generating set, the set is no

longer redundant, but e1 and m1 can not be locally generated. Therefore, the

X-cube model is di↵erent from a stack of 2D layers.

Finally we turn to the 3-foliated model and see how it is di↵erent from both

the stack of 2D layers and the X-cube model. Upon dimensional reduction, all

other superselection sectors are removed except planons in the xy plane, which

are the fracton dipoles eA,B
i and lineon dipoles mA,B

i,i+1. The eA,B
i ’s and mA,B

i,i+1

sectors form a locally complete generating set, but it is highly redundant.

First, there are local redundancies of the form

⇣
mA,B

i,i+1

⌘2

= eB,A
i ⇥ eB,A

i+1 (9.14)

Moreover, there are global redundancies of the form

Y

i

mB,A
i,i+1 =

Y

i

eA,B
i = 1 (9.15)

The global redundancies are similar to that of the X-cube, but the local ones

show that the 3-foliated model is di↵erent from the X-cube. Note that it

is possible to have local redundancy in a locally complete generating set of

the X-cube model. For example, if besides all the eis and and mi,i+1s we add

 i = ei⇥mi,i+1 to the generating set, it will have a local redundancy. However,

such local redundancies can be locally removed. That is, if we use the relation

 i = ei ⇥mi,i+1 and eliminate  i from the generating set, we can remove the

redundancy. On the other hand, this is not true for the local redundancies in

the 3-foliated model. In the 3-foliated model, we can start from the redundancy

relation
⇣
mA,B

1,2

⌘2

= eB,A
1 ⇥ eB,A

2 and remove it by eliminating eB,A
2 from the

generating set. Next, we move on to eliminate eB,A
3 from the generating set

using the redundancy relation
⇣
mA,B

1,2 ⇥mA,B
2,3

⌘2

= eB,A
1 ⇥ eB,A

3 . We can keep

doing this, but the redundancy relation that we need to use involves more and

more m sectors, and eventually it becomes a non-local relation. We say that
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the local redundancy relations cannot be locally removed. In fact, a locally

complete generating set always has to contain a finite density of e particles

and all the m particles, therefore it is always redundant and the redundancy

cannot be removed locally. Because of the existence of redundancy relations,

especially local redundancy relations that cannot be locally removed, the 3-

foliated model is di↵erent from both the stack of 2D layers and the X-cube

model.

9.3 Twisted 1-foliated model

In this section, we discuss a model which is non-trivially 1-foliated. That is,

growing the model in the z direction requires the addition of 2D topological

order resource layers (Z2 ⇥ Z2 twisted gauge theories for the model we

study), whereas growing the model in the x or y directions simply requires

product state resources. At the same time, the model is not local unitarily

equivalent to a decoupled stack of 2D topological orders. Nonetheless, all of

the fractional excitations of the model are planons, which are mobile in the xy

directions; upon compactification in the z direction,3 the model reduces to a

‘giant’ 2D topological order where the number of superselection sectors grows

exponentially with the original height in the z direction.

9.3.1 Model construction

9.3.1.1 Boson condensation

The model is constructed by condensing bosons in a decoupled stack of 2D

Z2 ⇥ Z2 twisted gauge theories (equivalently a stack of Z4 toric codes, as

discussed in Sec. 9.2.1.1), stacked in the z direction. The quasiparticle sectors

of the stack consist of Z2 ⇥ Z2 gauge charges eAi and eBi and gauge fluxes mA
i

and mB
i . Composites of gauge charges in neighboring layers, eAi e

B
i�1, are then

condensed to yield a new phase, whose fractional excitations can be understood

in the conventional framework of 2D boson condensation in topological phases

[2, 10].

In particular, charges eAi and eBi�1 are identified as a new sector ei. Moreover,

individual fluxes are confined due to their non-trivial statistics with the

condensed bosons, but flux pairs mA
i m

B
i�1 survive the condensation as sectors

labelled mi. Sectors ei and mi have a mutual �1 braiding statistic, and

3I.e., a dimensional reduction from a 3D system to a 2D system with a large unit cell.



245

adjacent fluxes mi and mi+1 inherit the i braiding statistic. Therefore, the

fluxes obey the fusion rules

m2
i = ei�1 ⇥ ei+1. (9.16)

Upon compactification, the model may be thought of as a 2D
QL

i=1 Z2 twisted

gauge theory with type-II twists between adjacent fluxes.

9.3.1.2 Giant K-matrix

In 2D, abelian topological orders can be generically understood in terms of

the K matrix Chern-Simons formalism [70]. In this description, N species of

U(1) gauge fields, aI with I = 1, . . . , N , are governed by the Lagrangian

L =
1

4⇡
KIJ✏

µ⌫⇢aIµ@⌫a
J
⇢ , (9.17)

where K is an N ⇥N symmetric integer matrix, with even integers along the

diagonal for bosonic systems. The quasiparticles are represented by integer

vectors l = (l1, . . . , lN) 2 ZN , and have exchange statistics

✓l = ⇡lTK�1l, (9.18)

whereas their mutual braiding statistics are given by

✓ll0 = 2⇡lTK�1l0. (9.19)

Quasiparticles of the form Kl for l 2 ZN have trivial statistics with all other

quasiparticles and thus correspond to local excitations. It is important to

note that two K matrices, K and K 0, are physically equivalent if there is a

unimodular matrix W (i.e. with detW = 1) such that K 0 = W TKW . Such a

transformation corresponds to a change of quasiparticle basis.

Here, we will employ theK matrix formalism to describe the excitation content

of the 3D condensed phase of the prior section. In particular, the structure of

planons is captured by a ‘giant’ N⇥N K-matrix, whose dimension is extensive

in the height of the system, and in which spatial locality of excitations in the

z direction is encoded in the indices of the vector l. In other words, the

quasiparticle represented by l = (. . . , 0, 1, 0, . . .), with nonzero value at index

I, is a planon constrained to move near the xy plane with z coordinate equal

to I units of the lattice spacing.
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We consider the K matrix with the following form in the bulk (where we have

labeled the columns in the anyon basis)

K =

0

BBBBBBBBBBBBBBBB@

e1 m1 e2 m2 e3 m3 e4
. . .

0 2 -1

2 0

-1 0 2 -1

2 0

-1 0 2 -1

2 0

-1 0
. . .

1

CCCCCCCCCCCCCCCCA

. (9.20)

The inverse matrix K�1 has the following form:

K�1 =
1

4

0

BBBBBBBBBBBBBBBB@

m0 e1 m1 e2 m2 e3 m3

. . .

0 1

0 2

1 2 0 1

0 2

1 2 0 1

0 2

1 2 0
. . .

1

CCCCCCCCCCCCCCCCA

. (9.21)

The quasiparticle statistics can be read o↵ from K�1. Denoting by lI the unit

vector with all entries equal to 0 except the entry at index I, the giant K

matrix corresponds precisely to the excitation content of the boson-condensed

phase under the assignment l2i�1 = ei and l2i = mi. In Appendix 9.8.3, we

describe a lattice model realization of the above K-matrix.

9.3.2 Foliation structure

The foliation structure of the model can be easily understood in the K-matrix

formalism. A single layer of Z2⇥Z2 twisted gauge theory may be disentangled

from the bulk via a local unitary transformation represented by the following
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W matrix, which maps the ei and mi anyon basis to a new ẽi and m̃i basis:

W =

0

BBBBBBBBBBBBBBBBBBBBB@

ẽ1 m̃1 ẽA m̃A ẽB m̃B ẽ2 m̃2 ẽ3
. . .

e1 1

m1 1 1

e2 1 -1

m2 1

e3 -1 1

m3 1

e4 1

m4 -1 1 1

e5 1
. . .

1

CCCCCCCCCCCCCCCCCCCCCA

. (9.22)

This W matrix transforms the K-matrix as follows:

W TKW =

0

BBBBBBBBBBBBBBBBBBBBB@

ẽ1 m̃1 ẽA m̃A ẽB m̃B ẽ2 m̃2 ẽ3
. . .

0 2 -1

2 0

0 2 -1 0

2 0 0 0

-1 0 0 2

0 0 2 0

-1 0 2 -1

2 0

-1 0
. . .

1

CCCCCCCCCCCCCCCCCCCCCA

.

Evidently, the transformed K-matrix is block diagonal. The 4 ⇥ 4 block (for

anyons ẽA through m̃B), which we will call K2D, represents a disentangled

copy of 2D Z2 ⇥ Z2 twisted gauge theory. To see that this is the case, note

that K2D has inverse

K�1
2D =

1

4

0

BBBB@

ẽA m̃A ẽB m̃B

0 2 0 0

2 0 0 1

0 0 0 2

0 1 2 0

1

CCCCA
. (9.23)
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On the other hand, it can easily be seen that the remaining rows and columns

represent a smaller version of the original 3D model.

Because the ground state degeneracy of the system only grows with linear

system size in the z direction but not in the x and y direction, the model is

1-foliated. That is, growing the model in the z direction requires the addition

of 2D topological order resource layers, whereas growing the model in the x or

y directions simply requires product state resources.

9.3.3 Nontrivial foliated fracton order

By examining the structure of the planon fusion group, we will demonstrate

in this section that the 1-foliated model is not local unitarily equivalent to any

decoupled stack of 2D topological orders, nor can it be made equivalent by

adding any number of 2D topological order resource layers. In other words,

the model represents a non-trivial foliated fracton phase. It is twisted in the

sense that ungauging the model yields a nontrivial SSPT phase with 1 set of

planar subsystem symmetries.

The situation is very similar to that of the 3-foliated model after dimension

reduction. We can choose a locally complete generating set for the planons as

{ei,mi, i = 1, ..., L}. This generating set is redundant with local redundancy

relations

m2
i = ei�1 ⇥ ei+1 (9.24)

We can start to remove the redundancy relations by eliminating the e’s from

the generating set. However, the redundancy relations necessarily gets longer

into the form (m2 ⇥m4 ⇥ ...⇥m2n)
2 = e1⇥ e2n+1. Therefore, the redundancy

relations cannot be locally removed and we conclude that the 1-foliated model

is not equivalent to a stack of 2D layers and is hence ‘twisted’.

9.4 Mapping to subsystem SPT phases

The 3-foliated and 1-foliated model introduced in the previous two sections

can be ‘ungauged’ into subsystem symmetry protected topological (SSPT)

models [14, 61, 80]. As the fracton models have twisted foliated fracton

order, correspondingly the ungauged model has nontrivial SSPT order. In

this section, we first demonstrate how the mapping works, then explain in

detail our definition of SSPT order, especially a subtle di↵erence from that

given in Ref. [14, 80].
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9.4.1 The mapping

As the 3-foliated model has a ‘cage-net’ type construction [41] as discussed in

section 9.2.1, it can be ‘ungauged’ through a duality transformation similar to

that described in Ref. [81] (see also Refs. [67, 72]). In particular, the ‘matter’

degrees of freedom �A and �B live at the center of the cubes in the cubic lattice.

The �s can be chosen as spin 1/2 degrees of freedom with on-site symmetry

generated by �A
x and �B

x . Upon ‘ungauging’, the fracton Hamiltonian in Eq. 9.5

gets mapped to a model of the �s with planar subsystem symmetry. The

Hamiltonian is

HSSPT = �
X

c

⇣
ÕA

c + ÕB
c + h.c.

⌘
(9.25)

where ÕA
c and ÕB

c are obtained from OA
c and OB

c of Eq. 9.5 in the following

way: (1) Replace the tensor product of 12 XA (XB) on the edges around

the cube c in OA
c (OB

c ) with the matter DOF �A
x,c (�B

x,c) at the center of the

cube. (2) Replace ZA
e (ZB

e ) on each edge with the tensor product of 4 �A
z,c’s

(�B
z,c’s) in the cubes containing the edge. Note that the phase factors in the OA

and OB terms can always be expanded in the basis of ZA and ZB operators.4

Therefore, these replacement steps completely determine the Õ terms from

the O terms. Moreover, as the �A
z and �B

z terms always appear as the tensor

product of four around each edge, the new Hamiltonian terms are invariant

under subsystem planar symmetries

U↵
Pµ⌫

=
Y

c2Pµ⌫

�↵
x,c with

↵ = A,B

µ⌫ = xy, yz, zx
(9.26)

where Pxy, Pyz, Pzx denote planes in the xy, yz, zx direction respectively.

For the 1-foliated model, which is obtained by condensing eBi�1e
A
i charge pairs

in a stack of Z2⇥Z2 twisted gauge theory models, the corresponding SSPT can

be obtained from a stack of Z2⇥Z2 twisted SPT [12, 68] by condensing eBi�1e
A
i

charge pairs. In the SSPT model, condensing charge pairs simply means that

the ZB
2 symmetry of the (i � 1)th layer is combined with ZA

2 symmetry of

the ith layer into a single symmetry generator. That is, the Hamiltonian of

the system is the same as that of a decoupled stack of Z2 ⇥ Z2 twisted SPT,

while the planar symmetry generators are tensor products of planar symmetry

generators of the B part in layer i� 1 and the A part in layer i.

4For example, S = 1+i
2 + 1�i

2 Z and CZ = 1
2 (1⌦ 1 + Z ⌦ 1 + 1⌦ Z � Z ⌦ Z).



250

9.4.2 Definition of SSPT order

As the SSPT models are obtained by ‘ungauging’ twisted fracton models, we

expect the SSPT to be ‘twisted’ as well. To be more precise, a 3D system is

said to have planar subsystem symmetry protected topological (SSPT) order if

Definition 1 The model has a unique symmetric gapped ground state on any

closed 3D manifold, which in the absence of symmetry can be mapped to a

product state using a finite depth quantum circuit.

Two SSPT models with the same subsystem symmetry are said to have the

same SSPT order if

Definition 2 The two models can be mapped to each other by adding 2D

SPT layers with independent planar symmetries to each model and applying a

symmetric finite depth quantum circuit.

Note that there is some subtlety in comparing the subsystem symmetry group

of two models as the total symmetry group depends on system size. We

consider two subsystem symmetry groups to be the same if they can be made

the same by adding independent planar symmetry generators to either side.

Accordingly,

Definition 3 An SSPT model has nontrivial or ‘twisted’ SSPT order if it does

not have the same SSPT order as a trivial paramagnet (a product state) with

the same subsystem symmetry.

It is easy to see that once the planar symmetries are gauged, this definition

of SSPT order matches the definition of foliated fracton order illustrated

in Fig. 9.1. This definition can be generalized to models and subsystem

symmetries in other dimensions in a straight forward way.

Our definition is similar but also di↵erent from that in Ref. [14, 80]. The

definition of Ref. [14, 80] makes use of a ‘linearly symmetric local unitary

circuit’ while we use only symmetric finite depth circuits but allow the addition

of SPT layers. That is, we require each unitary gate in the circuit to be

symmetric while the definition in Ref. [14, 80] allows the individual gates to

break symmetry and requires only a subsystem (linear or planar) composite of
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them to be symmetric. A common consequence of these two definitions is that

a pure stack of lower dimensional SPTs, where the subsystem symmetry acts

as a global symmetry on each of them, is considered to be a trivial SSPT. On

the other hand, the ‘linearly symmetric local unitary’ equivalence is stronger.

In particular, in our definition we require the added SPT to come with their

own independent symmetry generators. After they are added to the total

system, the total subsystem symmetry group is always enlarged. The e↵ect

of the ‘linearly symmetric local unitary’ can also be interpreted as allowing

the addition of subsystem SPTs. But once added, the symmetry generator

of the SPT can be identified with one of the original symmetry generators of

the system, hence directly changing the SPT signature associated with that

generator. Our definition of equivalence is weaker (e.g. our definition classifies

more models as nontrivial) and we have chosen it so that it matches with our

definition of foliated fracton order once the subsystem symmetries are gauged.

Upon gauging, the equivalence condition in Ref. [14, 80] is di↵erent from the

foliated fracton equivalence we used in this paper. Compared to the foliated

fracton equivalence, it amounts to allowing charge condensation in fracton

models, because prior to gauging the symmetry group does not necessarily

become larger when SPT layers are added. Both the 1-foliated and 3-foliated

model discussed above are trivial SSPTs phase under their definition [13],

while they are nontrivial under our definition.

9.5 Summary

To summarize, in this paper we demonstrate the existence of twisted foliated

fracton order, i.e. 3D gapped fracton models with a foliation structure but

which are inequivalent to (copies of) the X-cube model. In particular, we

discussed a 3-foliated model in section 9.2 and a 1-foliated model in section 9.3.

We demonstrated the nontriviality of the models by studying the fractional

excitations – the lineons and the planons – of the models. In particular, we used

a dimensional reduction procedure to reduce the 3D model to a 2D model while

keeping track of the locality of the planons along the reduced dimension. By

studying the group structure of the local planons, we can discern the di↵erences

between stacks of 2D layers, the X-cube model and the twisted models. By

using an ungauging procedure, we further mapped the twisted fracton models

to nontrivial subsystem symmetry protected topological models.



252

Figure 9.7: Cube and cross operators of the X-cube model Hamiltonian on a
cubic lattice.

An interesting future direction is to understand the anyon condensation

procedure in layers of 2D topological orders in more generality. For example,

given such a condensation transition, how can one determine what the

emergent phase is? More coarsely, one can ask if the phase is equivalent to a

decoupled stack of 2D models, a liquid 3D topological order, or a nontrivial

planon model. This question can be asked more generally in the context of

topological defect network constructions [1, 71].

9.6 Appendix: The X-cube model

The X-cube model, as first discussed in Ref. [67], is defined on a cubic lattice

with qubit degrees of freedom on the edges. The Hamiltonian

H = �
X

v

(Ax
v + Ay

v + Az
v)�

X

c

Bc (9.27)

contains two types of terms: cube terms Bc which are products of the twelve

Pauli X operators around a cube c, and cross terms Aµ
v which are products of

the four Pauli Z operators at a vertex v in the plane normal to the µ-direction

where µ = x, y, or z (Fig. 9.7).

Consider an Lx⇥Ly⇥Lz cubic lattice with periodic boundary conditions. The

ground state degeneracy (GSD) scales linearly with the size of the system in

all three directions:

log2 GSD = 2Lx + 2Ly + 2Lz � 3. (9.28)

There are hence a large number of ‘logical operators’ that commute with all

of the terms in the Hamiltonian and map one ground state to another [24,

57]. An over-complete set of X-type logical operators is given by the set of

closed string-like operators W µ
ij, which is a product of X operators over all

µ-oriented edges with coordinates (i, j) in the plane normal to µ (see Fig. 9.8).
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Figure 9.8: Visualization of logical operators in the X-cube model. The green
string corresponds to W z

mn. The product of the four operators corresponding
to the blue strings is equal to the identity, as described in the main text.

This set is over-complete in the sense that products of the form W µ
ijW

µ
ilW

µ
klW

µ
kj

are equal to a product of some Bc cube operators, and thus act trivially on the

ground state manifold (here the four sets of coordinates lie ahbt the corners

of a rectangle in the plane normal to µ, as shown in Fig. 9.8). There are

LxLy + LyLz + LzLx � 2Lx � 2Ly � 2Lz + 3 such relations corresponding to

unique products of cube operators, thus implying Eq. (9.28).

Logical operators correspond to processes where particle anti-particle pairs are

created out of the vacuum, wound around the torus, and then annihilated.

Straight open string operators W µ
ij (µ1, µ2) anti-commute with the vertex

Hamiltonian terms at the endpoints µ1 and µ2, corresponding to excitations

which live on the vertices of the lattice. Here W µ
ij (µ1, µ2) is defined to be the

product of X operators over µ-oriented edges between µ = µ1 and µ = µ2

with coordinate (i, j) in the plane normal to µ (see Fig. 9.9). Conversely,

acting with bent string operators introduces additional energetic costs at the

corners. Therefore the particles living at the endpoints of straight open strings

are energetically confined to live on a line; in this sense, they are dimension-

1 particles [67]. These particles obey an unconventional fusion rule: triples

of particles living along x-, y-, and z-oriented lines may annihilate into the

vacuum. On the other hand, acting with a closed string operator around

a rectangle creates an excitation at each corner of the rectangle. A pair of

particles at adjacent corners may be viewed as a single dipole-like object which

is itself a dimension-2 particle and is mobile in the plane normal to the edges

connecting the two corners.
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Figure 9.9: Visualization of particle creation operators in the X-cube model.
The red links correspond to a membrane geometry on the dual lattice. The
product of Z operators over these edges excites the (darkened) cube operators
at the corners. The product of X operators over the links comprising the
straight open blue string creates excitations at its endpoints (black dots).

In addition to these string-like operators, there are membrane-like operators

which are products of Z operators over qubits corresponding to a membrane

geometry on the dual lattice (see Fig. 9.9). A rectangular membrane operator

anti-commutes with the cube Hamiltonian terms at its corners. A pair of

adjacent corner excitations created by a rectangular membrane operator is

likewise a dimension-2 dipolar particle, free to move in a plane perpendicular

to its moment. A process whereby a pair of such membrane dipoles is created,

separated, wound around the torus and annihilated, corresponds to a string-

like Z-type logical operator.

9.7 Appendix: Ground state degeneracy

In this appendix, we review algorithms to compute the ground state degeneracy

and entanglement entropy of a ZD qudit stabilizer code [18–20].

Consider a stabilizer code of the form

H = �
kX

↵=1

(s↵ + s†↵), (9.29)

s↵ = !p↵

nY

i=1

X
S↵,i

i Z
S↵,i+n

i . (9.30)

Each s↵ is a product of ZD clock and shift operators Z and X where

ZX = !XZ and ! = e2⇡i/D. Note that H is completely determined by

the k-component integer vector p↵ and k ⇥ 2n integer matrix S. Since we
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require that H is a stabilizer code, any product of s↵ that results in a multiple

of the identity operator must be the identity operator exactly; i.e. H must be

frustration-free.

Multiplying one stabilizer by another or applying unitary Cli↵ord operators

to H roughly corresponds to multiplying S on the left or right by an invertible

integer matrix, along with some additional modifications to p↵. Analogous

to the singular value decomposition, the Smith decomposition diagonalizes an

integer matrix using invertible integer matrices. Therefore, we can compute

the Smith normal form of S to obtain a new integer matrix S 0 which is

diagonal, and the Hamiltonian H 0 defined by S 0 will have the same ground

state degeneracy as H. Since S 0 is diagonal, H 0 consists of decoupled qudits,

and the ground state degeneracy of H 0 is trivial to calculate (and the new

phases !p0↵ do not a↵ect the degeneracy). For the special case of ZD qudits

with D prime, the degeneracy can instead be calculated from the rank of S

over the field ZD.

An algorithm to compute the entanglement of a qubit stabilizer code is

discussed in [18]. Similar to the ground state degeneracy calculation, the

entanglement entropy is computed in terms of the rank of a matrix SAB

over the field ZD when the qudit dimension D is prime. For non-prime

D, the algorithm generalizes similarly to the degeneracy calculation and the

entanglement entropy is calculated from the Smith diagonals of the same

matrix.

9.8 Appendix: String-membrane-net realization

The 3-foliated model in Sec. 9.2.3.3 can also be written as a string-membrane-

net (SMN) [55] or topological defect network [1, 71]. The string-membrane-net

consists of two 3D Z2 toric codes coupled to 2D Z4 toric code (TC) layers. The

coupling modifies the set of local excitations along the 2D layers, which in turn

modifies the mobility of the excitations:

1. When a pair of charges e(1)3D (e(2)3D) of the first (or second) 3D TC is created

across a layer, a pair of charge 2e2D (flux 2m2D) excitations is also created

on the 2D TC layer.

2. When a pair of oppositely-charged Z4 charge ±e2D (or flux ±m2D)

excitations is created on a 2D TC layer, an open ⇡ flux string excitation
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(2)

+e2D -e2D

π flux of 2nd 3D TC

+m2D -m2D

π flux of 1st 3D TCe3D
(2)

Figure 9.10: The four kinds of excitations (circled in green) that can be
created locally in the 3-foliated string-membrane-net.

of the second (first) 3D TC is also created with endpoints on the two

oppositely-charged 2D excitations.

See Fig. 9.10 for pictures of these local excitations.

Note that the mobility of particles is determined by the set of local excitations

since charges can move by creating and annihilating local excitations, such

as a pair of slightly displaced excitations of opposite charge. However, exotic

sets of local excitations lead to more interesting mobility rules. For example,

due to the first e↵ect above, the 3D toric code (TC) charges (e(1)3D and e(2)3D)

are fractons since they must leave behind 2D TC excitations when they pass

through layers. The second e↵ect implies that an odd number of 2D TC

charges (e(2D)) or fluxes (m(2D)) must be attached to the endpoints of 3D TC

flux strings, which implies that an odd number of 2D TC charges or fluxes

are linearly confined. However, a pair of 2D TC charges (or fluxes) from two

intersecting layers is a lineon because this pair is confined to the intersection

of the two layers by the 3D TC flux strings.

The Hamiltonian of the string-membrane-net can be written down on very

general lattices. In particular, it is possible to consider lattices where there

are many qubits between the toric code layers so that one can indeed think of

the Hamiltonian as 2D toric codes coupled to two 3D toric codes. In Fig. 9.11,

we depict the simplest example where the Hamiltonian is defined on a cubic

lattice in which the toric code layers are placed a single lattice spacing apart

from one another.

9.8.1 Unitary Mapping

To show that the string-membrane-net Hamiltonian (Fig. 9.11) is equivalent

to the cage-net Hamiltonian in Fig. 9.5, we will show that there is a unitary
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Figure 9.11: A depiction of the terms in the string-membrane-net Hamiltonian
H = �

P
e A

(SMN)
e �

P
p B

(SMN)
p �

P
e C

(SMN)
e �

P
p D

(SMN)
p �

P
v E

(SMN)
v �

P
c F

(SMN)
c . The Hamiltonian consists of three stacks of Z4 2D toric codes

coupled to two Z2 3D toric codes. The 2D toric codes consist of Z4 qudits on
the edges of stacks of 2D square lattices. The operators of the 2D toric codes on
the xy, yz, and zx planes will be colored red, green, and blue. A straight red,
green, or blue line denotes a Z4 clock operator Z̃, while a zig-zag line denotes
a Z4 shift operator X̃ with the algebra Z̃X̃ = iX̃Z̃. When e.g. two red lines
appear on the same edge, this denotes a Z̃2 operator. A conjugate-transpose is
taken for operators on edges with arrows that point in the negative x, y, or z
direction. The first 3D toric code consists of Z2 qubits on the plaquettes of the
cubic lattice, for which purple and orange plaquettes denote Z2 Pauli �z and
�x operators, respectively. The second 3D toric code consists of Z2 qubits on
the links of the cubic lattice, which are denoted by dashed back lines; again,
straight and zig-zag lines denote Pauli ⌧ z and ⌧x operators. Thus, there are
two Z4 qudits and one Z2 qubit on each edge, and a single Z2 qubit on each
plaquette. The Hamiltonian consists of these 14 di↵erent operators, along with
their Hermitian conjugates. Above each column of operators, are written the
name of the corresponding excitation and the individual Pauli, clock, and shift
operators that the operators are composed of.
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mapping between the ground spaces of the two Hamiltonians (augmented with

some extra decoupled degrees of freedom).

To begin, it is convenient to replace the Z2 qubits of the two 3D toric codes with

Z4 qudits. This will be achieved by making the following operator replacement

in the string-membrane-net Hamiltonian (Fig. 9.11):

�z
p ! (�̃z

p)
2 �x

p ! �̃x
p (9.31)

⌧xe ! (⌧̃xe )
2 ⌧ ze ! ⌧̃ ze

and adding the following terms to the Hamiltonian:

�
X

p

(�̃x
p )

2 �
X

e

(⌧̃ ze )
2 (9.32)

We have replaced the Pauli operators �µ and ⌧µ with clock and shift operators

�̃µ and ⌧̃µ, which have the algebra �̃z�̃x = i�̃x�̃z and ⌧̃ z ⌧̃x = i⌧̃x⌧̃ z. The above

replacement does not change the ground state since the new terms in the

Hamiltonian will enforce �̃ = ±1 and ⌧̃ = ±1, and the modified Hamiltonian

does not have any �z or ⌧x operators, only (�̃z)2 and (⌧̃x)2 operators. Thus,

its ground state is still e↵ectively described by qubits.

The next step is to act with the unitary shown in Fig. 9.12, which is composed

of the Z4 controlled-X operators:

CX =
1

4

3X

a=0

3X

b=0

iabZa ⌦Xb, (9.33)

CX(Z ⌦ 1)CX† = Z ⌦ 1, CX(X ⌦ 1)CX† = X ⌦X�1

CX(1⌦ Z)CX† = Z ⌦ Z, CX(1⌦X)CX† = 1⌦X.

The replacement in Eq. (9.31) and unitary in Fig. 9.12 map the operators

of the string-membrane-net Hamiltonian (Fig. 9.11) to those of the cage-net

Hamiltonian (Fig. 9.5) as follows

A(SMN)
e ! ⌧ ze , C(SMN)

e ! C(cage)
e , E(SMN)

v ! E(cage)
p

B(SMN)
p ! �x

p , D(SMN)
p ! D(cage)

p , F (SMN)
v ! F (cage)

v . (9.34)

The A(SMN)
e and B(SMN)

p operators are mapped to ⌧ ze and �x
p . This sets

⌧ ze = �x
p = 1 in the ground state of the new Hamiltonian. We also had to



259

Figure 9.12: After applying the mapping in Eq. (9.31), the unitary depicted
above maps the string-membrane-net model in Fig. 9.11 to the cage-net
Hamiltonian in Fig. 9.5. The unitary is given by the composition of a unitary
operator at each edge (left) and plaquette (right). These smaller unitary
operators commute with each other. The operators on the left are products of
four controlled-X operators (one for each line, defined in Eq. (9.33)) that are
controlled by the 2D toric code qudit of the appropriate color at the colored
dot, and act on the 3D toric code qudit at the end of the black arrow. The
operators on the right are controlled-X operators that are controlled by the
3D toric code qudit at the center of the plaquette, and act on the 2D toric
code qudit of the appropriate color at the end of the arrow.

add two new terms to the Hamiltonian in Eq. (9.32). These new terms are

mapped to

(⌧̃ ze )
2 ! (⌧̃ ze )

2A(cage)
e (�̃x

p )
2 ! (�̃x

p )
2B(cage)

p (9.35)

But since ⌧ ze = �x
p = 1 in the ground state, the new terms are

e↵ectively mapped to A(cage)
e and B(cage)

p . Therefore, the string-membrane-

net Hamiltonian (Fig. 9.11) and cage-net Hamiltonian (Fig. 9.5) both have the

same ground state (up to trivial decoupled degrees of freedom).

9.8.2 Field theory

It is also possible to describe this model using a foliated field theory. Foliated

field theories, which were introduced in [55], are field theories that explicitly

couple to a foliation structure via foliation fields ekµ.
5

5The X-cube field theory in [57] was written as a foliated field theory in [55].
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The Lagrangian is

L =

2D Z4 TC layersz }| {
4

2⇡

X

k

ek ^ Bk ^ dAk +

2⇥ 3D Z2 TCz }| {
2

2⇡
b ^ da+

2

2⇡
b0 ^ da0

� 4

2⇡

X

k

ek ^ (b ^ Ak + a0 ^ Bk)

| {z }
coupling

(9.36)

where Ak, Bk, a, and b0 are 1-form gauge fields, b and a0 are 2-form gauge

fields, ek are static foliation fields that describe the geometry of the foliations,

and k = 1, 2, .., nf indexes the di↵erent foliation layers. The nf = 3 foliation

structure of a cubic lattice is described by ekµ = ��kµ where µ = 0, 1, 2, 3 indexes

the spacetime indices and � is the density of foliation layers.

The Lagrangian has the following gauge invariance

Ak ! Ak + d⇣k + ↵0 Bk ! Bk + d�k + �

+ µkek + ⌫kek (9.37)

a ! a+ d↵�
X

k

2⇣kek b ! b+ d�

a0 ! a0 + d↵0 b0 ! b0 + d�0 �
X

k

2�kek

where ⇣k, �k, µk ⌫k, ↵, and �0 are arbitrary scalars and � and ↵0 are arbitrary

1-forms. The Lagrangian is also self-dual under

Ak $ Bk a $ b0 a0 $ b. (9.38)

This self-duality interchanges the two 3D toric codes and interchanges the 2D

toric code charge and flux sectors.

9.8.3 1-foliated model

In this appendix, we write down a CSS code lattice model that can describe

the twisted 1-foliated K-matrix model in Eq. (9.20). One option would be to

consider the 1-foliated version of the string-membrane-net model in Fig. 9.11.

This appears to work, but the second toric code does not have any a↵ect in

this 1-foliated case. Thus, we will consider the simpler case of a stack of 2D

Z4 toric codes coupled to a 3D Z2 toric code. This model is a special case of

the generalized string-membrane-net model in Appendix A of [55]. The model

is summarized in Fig. 9.13.



261

Figure 9.13: A depiction of the terms in the string-membrane-net Hamiltonian
realization of the 1-foliated K-matrix in Eq. (9.20). The Hamiltonian consists
of a single stack of Z4 toric codes coupled to a Z2 3D toric code. The 2D toric
codes consist of Z4 qudits on the edges of a stack of 2D square lattices. The
pictoral notation is similar to that of Fig. 9.11. A straight red line denotes a Z4

clock operator Z̃, while a zig-zag line denotes a Z4 shift operator X̃ with the
algebra Z̃X̃ = iX̃Z̃. The 3D toric code consists of Z2 qubits on the plaquettes
of the cubic lattice, for which purple and orange operators denote Z2 Pauli �z

and �x operators, respectively. Thus, there are two Z4 qudits on each x-axis
or y-axis edge, no qudits on the z-axis edges, and a single Z2 qubit on each
plaquette.

The anyon labels in Eq. (9.20) have the following correspondence with the

excitations of the 1-foliated string-membrane-net:

K-matrix anyon string-membrane-net

e2z+1 pair of 2D fluxes

m2z+1 2D charge

e2z+2 3D charge

m2z+2 2D fluxes - 3D flux - 2D flux

The anyon m2z+2 is equivalent to a pair of 2D fluxes on neighboring layers

where the fluxes are attached to two ends of a 3D flux string. It is

straightforward to check that the above anyons have the same braiding

statistics as those defined in the K�1 matrix in Eq. (9.21). Therefore, the

lattice model in Fig. 9.13 is a lattice realization of the K-matrix in Eq. (9.20).
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C h a p t e r 10

STRONG PLANAR SUBSYSTEM
SYMMETRY-PROTECTED TOPOLOGICAL PHASES AND

THEIR DUAL FRACTON ORDERS

10.1 Introduction

Global symmetries, such as the Z2 spin-flip symmetry of the Ising model,

act throughout the bulk of a system. Recently, there has been an emerg-

ing interest in symmetries that act on only part of a system. These include

higher-form symmetries which act on deformable lower-dimensional manifolds

of a system [1], as well as subsystem symmetries [2, 3, 4], which act on rigid

lower-dimensional subsystems. It has also been realized that such subsystem

symmetries may protect non-trivial symmetry-protected topological (SPT)

phases [5, 6, 7, 8]: gapped, disordered, short-range entangled phases which

cannot be adiabatically connected to the trivial disordered phase in the pres-

ence of symmetry, but can be if the symmetry is not enforced. Examples

of subsystem symmetries include those which act along linear [9, 10], pla-

nar [11, 12], or even fractal [13, 14, 15, 16, 17, 18] subsystems. Such phases

have been aptly named subsystem SPT (SSPT) phases, and this paper con-

cerns their classification.

In 2+1D, such systems have gained interest due to the discovery that non-

trivial SSPT phases may serve as a resource for universal measurement-based

quantum computation (MBQC) [19, 20, 21, 22, 23, 24] and also due to their

unusual patterns of quantum entanglement [25, 10, 26, 27, 28]. In attempting

to classify 2+1D linear SSPTs, one is faced with the issue that there are

uncountably infinitely many distinct phases. This is due to the presence of

weak phases: SSPT phases which can be constructed by stacking (a process

which we will define) 1+1D SPTs along the subsystems, whose nontriviality

are simply a manifestation of lower dimensional physics. Ref. [10] defined an

equivalence relation between phases wherein two phases that di↵er by stacking

1+1D SPTs belong to the same equivalence class. Phases not in the trivial

equivalence class are, by definition, strong SSPTs. It was found that there are a

small number of equivalence classes, which provided a sensible classification for
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the uncountably infinite phases. In contrast, note that for 2+1D fractal SSPTs,

weak phases do not exist and the number of phases is countably infinite [15].

This paper is the natural extension of Ref. [10] to planar symmetries in 3+1D

(henceforth, simply 3D).

Systems with planar subsystem symmetries have also received intense interest

recently due to the discovery that, under a generalized ‘gauging’ duality [11, 16,

29], they map on to long-range entangled models exhibiting fracton topological

order [30, 31, 32, 13, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

An example of such a system is the plaquette Ising model [49, 11, 50], whose

paramagnetic phase is dual to the X-cube model of fracton topological or-

der [11]. Fracton phases are characterized by a subextensive topological ground

state degeneracy growing exponentially with L, and quasiparticle excitations

with limited mobility. The classification of such fracton phases is an active

topic of research [51, 52, 53, 54, 55, 56, 57, 58, 59]. In this paper, we focus on

classification of SSPT phases which are dual to abelian fracton phases, thus

also providing a useful means of categorizing such fracton phases.

The brief history of 3D planar SSPT phases begins with Ref. [12], which con-

structed a non-trivial 3D planar SSPT model. However, it was later discovered

that its fracton dual belonged to the same foliated fracton phase as the X-cube

model [60], implying that it is weak. More recently, fracton phases were con-

structed in Ref. [58] which possess ‘twisted’ foliated fracton orders, raising the

question as to the nature of their SSPT duals. We find that these phases, too,

are weak. This prompts the question: do any strong planar SSPTs exist? We

answer this in the a�rmative. We explicitly construct strong SSPT phases,

which are dual to novel strong fracton phases with unusual braiding statistics

that cannot be obtained by coupling 2D theories. In this sense these statistical

interactions are “intrinsically” three-dimensional.

We will first show how to construct weak 3D planar SSPT phases via a stacking

process of 2D SPTs. We then ask whether there are SSPT phases which cannot

be realized by this process. We identify mechanisms by which an SSPT may

be strong, leading to a classification of such phases, and construct exactly

solvable, zero-correlation length models realizing these phases. In the fracton

dual picture, this construction corresponds to one in which 2D topological

orders are stacked on to and strongly coupled to an existing fracton model [58].

The duals of our strong SSPTs are novel fracton phases which cannot be
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attained via such a procedure, also implying that they cannot be realized by

a p-string condensation transition [46, 61], as we will show.

10.2 Planar subsystem symmetries

Throughout we will consider a system with degrees of freedom on each site of a

cubic lattice. Each site r transforms under the finite abelian on-site symmetry

group G under a unitary representation ur(g), where g 2 G. An xy planar

symmetry acting on plane z acts as S
xy(z; g) =

Q
x,y ur=(x,y,z)(g) for g 2 G.

Similarly, we may define Syz(x; g) and S
zx(y; g), which act on yz and zx planes

respectively. Importantly, individual sites transform under the same on-site

representation regardless of the orientation of the planar symmetry — there

is therefore a redundancy: the product of all xy symmetries is identical to the

product of all yz or all zx symmetries. We will refer to models which respect

only one orientation of planar symmetry as 1-foliated, those with two as 2-

foliated, and those with all three as 3-foliated. To construct explicit models,

we choose the on-site degrees of freedom to be G-valued, |gri, which transform

under the on-site symmetry as ur(g) |gri = |ggri.

10.3 Construction of weak SSPT phases

It is possible to construct non-trivial SSPT phases from known 2D global

SPTs, as we will show in this section. Phases obtained in this way are ‘weak’,

by definition, whose nontrivial properties are in some sense a manifestation

of lower-dimensional physics. We emphasize here that we do not assume any

translation invariance in our system. Hence, our definition is di↵erent (but

similar in spirit) to weak crystalline SPTs with global symmetries, which are

stacks of lower dimensional SPTs protected by translation symmetry.

First, we briefly review the group cohomological classification of 2D bosonic

SPTs with global symmetry group G [7, 62]. For the purpose of being self-

contained, we also include a more detailed review in the Supplementary Ma-

terial [63]. The classification of such phases [7, 64] is given by the third co-

homology group H
3[G,U(1)]. For simplicity, we may consider G = (ZN)n, in

which case an element of H3[G,U(1)] is specified by integers, piI (i 2 [1, n]),

p
ij
II (i < j), and p

ijk
III (i < j < k), all modulo N , called type-I, II, and III cocy-

cles respectively. We will specify p
i
I and p

ij
II compactly in a single symmetric

n ⇥ n integer matrix M with Mii = 2piI and Mij = Mji = p
ij
II . Upon gaug-

ing the global symmetries of a 2D SPT, one obtains a topologically ordered
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Figure 10.1: (Left) Examples of our construction of 1-foliated or weak 2 or
3-foliated models, for G = ZN ⇥ ZN , in the graphical notation. 2D SPTs to
be stacked, are shown in the blue boxes, and the large arrow points to the
resulting SSPT after stacking. The color of the edges connecting two vertices
indicate its weight modulo N . (Right) Examples of M matrices that cannot
be obtained by stacking 2D phases onto 2 or 3-foliated models. The Type 1
phase is only strong for even N , and Type 2 strong phases can only be realized
for 2-foliated symmetries.

system with fractional quasiparticles carrying gauge charge or flux (or both).

Nontrivial type-III cocycles give rise to non-abelian topological order, [65, 66]

which we will not consider here. A generating set of quasiparticles are the

“electric” excitations (gauge charges) {ei} and “magnetic” excitations (gauge

fluxes) {mi}. Each ei has a e
2⇡i/N braiding statistic with mi and trivial statis-

tics with all other generators. The elements of M characterize the self and

mutual statistics of gauge flux excitations [62]. In particular, the type-I co-

cycles give rise to a self exchange statistic e
⇡iMii/N2

of the gauge flux mi, and

type-II cocycles lead to a mutual braiding statistic of e2⇡iMij/N2
between mi

and mj. Note that these phases are only well defined modulo e
2⇡i/N , since

flux is only well defined up to attachment of charge, mi ! miej. Finally, we

note that abelian topological orders in 2D can all be described by K matrix

Chern-Simons theories. [67, 68] The topological orders we have discussed have

a 2n⇥ 2n K matrix description with

K = N

"
� 1

NM 1

1 0

#
, K�1 =

1

N

"
0 1

1 1
NM

#
(10.1)

where the indices labeling quasiparticles are ordered as {e1, . . . , en,m1, . . . ,mn}.
Quasiparticles are described by an integer vector ` in this basis, and have self-

exchange statistic e
⇡i`T ·K�1·` and mutual braiding statistics e2⇡i`

T
1 ·K�1·`2 .

It is always possible to view a 3D planar SSPT as a quasi-2D system in the

xy plane with a subextensively large symmetry group G
L by compactifying
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the z direction. We may then proceed to compute its classification in terms

of H3[GL
, U(1)], which is characterized by a subextensively large M matrix.

We note that it is possible to define M matrices corresponding to yz or zx

as well, but for reasons that will become clear we will always consider the xy

symmetries only. It is useful to introduce a graphical notation for M, which is

used in Fig. 10.1. The ↵th generator of G in a plane z is denoted by a vertex

ai=(↵,z). Two vertices i and j are connected by an undirected edge with weight

Mij, and a vertex i is connected to itself via a self-loop with weight Mii/2,

where weights are defined modulo N .

Consider the 2D global symmetry group G2D = G
K for an integer K. For

appropriate choice of the pure phase function f2D, the wavefunction | i2D =
P

{gr} f2D({gr}) |{gr}i2D on a 2D square lattice is a zero-correlation length

ground state of a commuting Hamiltonian with SPT order [63]. All phases in

the group cohomology classification can be realized in this way [69, 66, 70].

Suppose we start with the trivial disordered wavefunction | 0i =
P

{gr} |{gr}i
on the 3D cubic lattice. We can construct a nontrivial 1-foliated SSPT by

identifying each factor of G in G2D in the function f2D({gr}) with a planar

G symmetry in an arbitrary collection of planes z1, . . . , zK (where zk are all

within some finite range to ensure locality). The wavefunction | i1-fol = U | 0i
with U =

P
{gr} f2D({gr}rz2{zk}) |{gr}i h{gr}| is the ground state of a 1-foliated

3D SSPT, which is nontrivial only near the planes zk. We may then repeat this

procedure arbitrarily many times, each time acting on the previous state with

U for di↵erent choices of f2D and {zk}. We will call this procedure “stacking”

the 2D SPT | i2D onto the planes {zk} of a 1-foliated SSPT.

More generally, we may define a stacking operation between two SSPTs in

which the two systems, with on-site symmetry representations u
(1)
r (g) and

u
(2)
r (g), are placed on top of each other to create a new SSPT with on-site

representation ur(g) = u
(1)
r (g)⌦ u

(2)
r (g). The group structure of the standard

SPT classification is realized under such a stacking operation. Stacking a 2D

SPT onto a 3D SSPT can be viewed as stacking two 3D SSPTs, in which the

first is only nontrivial in the vicinity of a number of planes {zk}. We define

any phase realizable by stacking 2D SPTs in this way to be weak. In the case

of our 1-foliated SSPT construction, each additional stacked 2D SPT simply

adds to the corresponding elements of M, shown graphically in Fig. 10.1. For

1-foliated symmetries, it is thus possible to realize any M by stacking 2D
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SPTs; hence all phases are weak.

On the other hand, for 2- or 3-foliated models, this procedure may not work

because | i1-fol is not guaranteed to be symmetric under the orthogonal planar

symmetries (if it is, we can simply follow the same procedure). Instead, let us

define variables dr = gr+zg
�1
r , which transform under xy planar symmetries

but are invariant under all orthogonal symmetries. We may then define non-

trivial SSPT wavefunctions as before, but in terms of dr instead using the

unitary

U =
X

{gr}

f2D({dr}rz2{zk}) |{gr}i h{gr}| , (10.2)

which is explicitly invariant under the orthogonal symmetries. However, in

this case the M matrix of the 2D SPT does not map directly onto that of

the SSPT — instead one should view the 2D SPT as living “in between” the

planes of the SSPT, at {zk + 1/2}. To obtain the M matrix of the SSPT,

one can compute the appropriate type-I and II cocycles of the 2D SPT in the

basis of the xy planar symmetries [63]. This process is shown in Fig. 10.1. As

will be discussed in the next section, unlike for 1-foliated symmetries, there

are now allowable phases which cannot be realized by stacking any number of

2D SPT.

Note that in this discussion we have implicitly ignored nontrivial SSPTs that

have trivial M matrices. Such phases do exist [63]. However, we conjecture

that all such phases are weak (they can be realized by stacking 2D linear

SSPTs [10]) and therefore irrelevant in the classification of strong phases.

10.4 General constraints and invariants

In the presence of orthogonal symmetries, there are general constraints that

must be satisfied by M. Conceptually, these arise due to the aforementioned

redundancy: the global symmetry Sglob(g) =
Q

z S
(xy)(z; g) =

Q
x S

(yz)(x; g).

Since yz symmetries do not contribute to M, the generator Sglob(g) must

therefore manifest trivially in M. This leads to two types of constraints on

the elements of M: the global symmetry must have trivial type-II cocycle with

any other symmetry and trivial type-I cocycle with itself. We prove that these

constraints must hold generally [63]. Let us label the ↵th generator of G on

the zth plane by i = (↵, z). Then, the two constraints are expressed as
X

z0

M(↵,z),(�,z0) ⌘ 0 mod N, 8↵, z, � (10.3)
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and

1

2

X

z,z0

M(↵,z),(↵,z0) ⌘ 0 mod N, 8↵ (10.4)

These constraints define a restricted subgroup of H3[GL
, U(1)] in which 2- or

3-foliated SSPTs must reside. As we will show, there are now allowed phases

which cannot be realized by stacking any number of 2D SPTs — these are

precisely the strong phases we are searching for. This motivates us to define

two types of strong invariants, F1 and F2, which cannot be changed by stacking

with 2D SPTs.

10.5 Strong SSPTs: Type 1

Consider G = Z2N . Then Mzz0 is an L⇥L matrix. Pick an arbitrary cut that

divides the system into two halves z < z0 and z � z0. Then,

F1 ⌘
X

z<z0

X

z0�z0

Mzz0 mod 2 (10.5)

is a Z2-valued global invariant. To see why, view Mzz0 mod 2 as a Z2 “flux”

flowing from vertex z to z
0 in the graphical representation. Then, Eq. 10.3

is a divergence-free constraint at each vertex. The invariant F1 is simply the

total Z2 flux flowing through a cut at z0. It is therefore clear that F1 does not

depend on the choice of cut z0, nor can it be modified by stacking a 2D SPT

which amounts to adding closed flux loops locally.

10.6 Type 2

Consider G = ZN ⇥ ZN , so that M(↵,z),(�,z0) is a 2L ⇥ 2L matrix. Again pick

a cut z0. Then,

F2 ⌘
X

z<z0

X

z0�z0

�
M(1,z),(2,z0) �M(2,z),(1,z0)

�
mod N (10.6)

is a ZN -valued global invariant. To see how this arises, interpret M(1,z),(2,z0)

as a ZN “flux” flowing from vertex (1, z) to (2, z0). Like before, Eq. 10.3 is a

divergence-free constraint on this flux and F2 measures the total flux flowing

across a cut, which therefore does not depend on z0 nor can it be modified by

stacking with 2D SPTs.

In the Supplementary Material [63], we prove three important statements.

First, that the invariant F1 or F2 is the same regardless of whether we con-

sider the M matrix obtained from xy symmetries or that obtained from yz



276

(or zx) symmetries. Secondly, 3-foliated systems must have trivial F2 = 0.

Thirdly, the set of F1 and F2 (which we also define for general G) completely

classify M modulo stacking with 2D SPTs. Finally, we also provide an ex-

plicit construction of a 3-foliated model which realizes a non-trivial type 1

strong phase F1 = 1, and a 2-foliated model which realizes arbitrary F1 and

F2, thereby demonstrating the existence of such strong phases. Examples of

M matrices with non-trivial F1 and F2 are shown in Fig. 10.1 (right).

Let us define a ‘strong’ equivalence relation between SSPTs, under which two

phases belong to the same equivalence class if they can be connected with one

another by stacking of 2D phases (along with, of course, symmetric local uni-

tary transformations and addition/removal of disentangled degrees of freedom

transforming as an on-site linear representation of G [71]). For an arbitrary

finite abelian group G, the set of equivalence classes is given by

C3-fol[G] =
Y

i

Zgcd(2,Ni) (10.7)

C2-fol[G] =
Y

i

Zgcd(2,Ni) ⇥
Y

i<j

Zgcd(Ni,Nj) (10.8)

for 3-foliated and 2-foliated models respectively. The group structure is real-

ized via the stacking operation between two SSPTs. We note that this equiva-

lence relation can be naturally formulated in terms of planar-symmetric local

unitary circuits, generalizing the definition of Ref. [10]. Indeed the unitaries

U used to construct weak SSPTs are examples of such circuits.

10.7 Fracton duals

It is well known that, under a generalized gauge duality [11, 16, 29], SSPT

phases map onto models of fracton topological order [12, 58]. The simplest and

most well-studied fracton model is the X-cube model [11], which is obtained by

gauging the planar symmetries of the plaquette Ising paramagnet, and hosts

fractional quasiparticle excitations with limited mobility including immobile

fractons, lineons mobile along lines, and planons mobile within planes (which

are either fracton dipoles or lineon dipoles). For our discussion, we will assume

that the reader has a rudimentary understanding of the X-cube fracton model

and its quasiparticle excitations (see Ref. [34] for a review).

Let us begin with 3-foliated SSPTs, which are dual to ‘twisted’ X-cube fracton

topological orders with fractonic charge [58]. The gauge flux m(g,z) of an
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element g on the plane z is a planon: a composite excitation composed of a

lineon anti-lineon pair on the planes z+1/2 and z�1/2, i.e. a lineon dipole. A

single lineon can be regarded as a semi-infinite stack of lineon dipoles mobile

in the x and y directions. For a more nuanced discussion of the mobility of

such excitations, see Supplementary Material.

The constraints on the matrixM have a simple interpretation in this language:

the infinite stack of lineon dipoles, which belongs to the vacuum superselection

sector [72], must have trivial braiding statistics with all other lineon dipoles,

and a trivial exchange statistic with itself. The invariant F1 also has a simple

interpretation in this picture: the quantity e
2⇡iF1/N2

corresponds to the braid-

ing (or crossing [46]) statistic of a lineon and its anti-lineon on the same plane,

modulo e
4⇡i/N2

.

It is possible to construct fracton topological orders by strongly coupling in-

tersecting stacks of topologically ordered 2D discrete gauge theories oriented

along the xy, yz, and zx planes, inducing a type of transition called p-string

condensation [46, 61]. More generally, these stacks of 2D gauge theories can

be replaced by arbitrary 1-foliated gauge theories [58]. The twisted X-cube

models that emerge from this construction are dual to weak 3-foliated SSPTs

constructed via the planar-symmetric local unitaries U in Eq. 10.2. We walk

through this correspondence in more detail in the Supplementary Material [63].

Equivalently, twisted X-Cube models dual to weak SSPTs may be obtained

by e↵ectively “binding” 2D anyons to existing planons in the fracton model.

As an example, consider placing one layer of the doubled semion topological

order (with bosonic e and semionic m) onto a plane z0 of the X-Cube model,

and condensing pairs of e and fracton dipoles in the plane z0. The end result

is that x or y mobile lineons on plane z0 and m become confined, but the

bound state of the two remain deconfined and form the new lineon excitations.

Since m is a semion, the new lineons now also inherit their semionic statistics.

This procedure can be extended to general twisted quantum doubles living on

multiple planes {zk}, thereby binding more general 2D anyons to the lineons;

this process is exactly dual to stacking a 2D SPT according to Eq. 10.2.

Conversely, strong 3-foliated SSPTs are dual to fracton models that cannot

be realized through such a construction. This correspondence sheds light on

the F1 strong invariant — in p-string condensation, lineon crossing statistics

are inherited from the self-braiding statistics of fluxes in the 1-foliated gauge
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Figure 10.2: The commuting (but non-projector) Hamiltonian describing the
fracton dual of the Z2 strong model is shown. Qubit degrees of freedom live
on the links. The Hamiltonian is a sum over all cubes c of the term Bc, shown,
which consists of Pauli X, Z, S = diag(1, i), and CZ12 = (�1)(Z1�1)(Z2�1)/4

operators between qubits on links of di↵erent orientations as shown by the
colored lines. In addition, the Hamiltonian also has the usual cross terms Aµ⌫

v

from the X-Cube which is the product of four Z operators lying in the µ⌫

plane touching a vertex v. Thus, H = �
P

c Bc �
P

v(A
xy
v + A

yz
v + A

zx
v ).

theories, and are therefore the square of a flux exchange statistic, i.e. a multiple

of e
4⇡i/N2

for G = ZN with N even. In a strong phase, F1 = 1 implies

that this statistic is o↵set by e
2⇡i/N2

. The fracton dual of the Type 1 strong

G = Z2 model [63] is an example of a novel such fracton order in which lineons

satisfying a triple fusion rule have ±i mutual crossing statistic, and therefore

cannot be realized via p-string condensation. A Hamiltonian realizing this

phase is shown in Fig 10.2.

One can also consider the fracton duals of 2-foliated SSPTs, which are novel

‘twisted’ versions of the 2-foliated lineon-planon model introduced in Ref. [60].

Furthermore, the X-cube model may be ungauged in two di↵erent ways, by

regarding either the fracton sector or the lineon sector as gauge charge. The

former procedure results in a paramagnet with G-valued degrees of freedom

transforming under all 3 sets of planar symmetries as before, whereas the

latter yields a model with two G-valued degrees of freedom per site, the first

transforming under xy and yz planar symmetries, and the second under yz

and zx planar symmetries. The classification of the latter system is given by

(C2-fol)2. Thus, both Type 1 and Type 2 strong SSPTs, as well as arbitrary

weak SSPTs, may be constructed. Their fracton duals are novel variants of the

X-cube model whose fracton dipoles exhibit non-trivial braiding and exchange

statistics.
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A Type 2 strong SSPT can also be diagnosed through the statistical phases of

quasiparticles of the gauged dual. Although fractons are immobile particles,

we may still define a braiding statistic between two fractons by regarding a

single fracton as a semi-infinite stack of fracton dipoles mobile in the xy plane.

Consider a G = ZN ⇥ ZN model which has two flavors of fractons. Then, let

e
i✓ab be the statistical phase obtained by braiding two such fractons of flavors

a and b on plane z0, where the first argument is a semi-infinite stack in the

z ! 1 direction, and the second argument in the z ! �1 direction. The

Type 2 strong invariant is then obtained by e
iF2/N = e

iN(✓ab�✓ba). This makes

it clear why this strong phase with F2 6= 0 cannot be obtained by binding 2D

anyons to the fractons, since braiding of 2D anyons is manifestly symmetric

with respect to its two arguments.

10.8 Conclusions

We have formulated a classification of strong 3D planar SSPTs. Each phase

falls into one of a finite set of equivalence classes modulo stacking with 2D

phases, which we have fully enumerated. For 1-foliated systems, all SSPT

phases are weak. For 2-foliated systems, there are two mechanisms by which

a phase may be strong, characterized by Type 1 and Type 2 invariants. For

3-foliated systems, only Type 1 strong phases exist. Under a generalized gauge

duality, our classification has a natural interpretation in terms of p-string con-

densation [46], and we have explicitly constructed strong SSPT models which

are dual to fracton phases that cannot be realized via this mechanism. The

fractional quasiparticles in these strong phases thus have novel statistical in-

teractions which cannot be interpreted as the statistics of 2D anyonic bound

states.

There are various natural extensions of our work. A relevant and open question

regards the structure of entanglement in strong SSPT phases [25, 26, 27, 28,

59]. Another is the addition of non-trivial type-III cocycles, which leads to

non-abelian fracton topological orders. Finally, it would be interesting to study

the foliation structure of the fracton duals.
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