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Abstract

We study various aspects of the representation theory of loop groups, all with the
aim of giving geometric constructions, parameterized by conjugacy classes of the Weyl
group, of the basic representation of the affine Lie algebras associated to a simply laced
simple Lie algebra as a restriction isomorphism on dual sections of the level 1 line
bundle on the affine Grassmannian. Along the way, we obtain various results on the
structure of loop tori, the definition of a notion of a Heisenberg Central extension as an
alternative for twisted modules over the lattice vertex algebra and the determination
of their representation theory, some computations on central extensions of a torus
over a field by K5, and a new proof of the classification of the conjugacy classes of

the Weyl group by parabolic induction.
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Chapter 1

Introduction

This thesis gives a geometric realization of the representation-theoretic determination
of the structure of the basic representation V' of the affine Lie algebra g associated to
a simple Lie algebra g of type ADE in [KP85|, where a different construction is given
for each conjugacy class of the Weyl group W of g. In the case of ES8, that is 112 con-
structions, hence the name of the paper [KP85]. We call the representation-theoretic
work the ‘twisted FKS isomorphism’. The classical (non-twisted) FKS isomorphism
refers to the work of [FK81, [Seg81| that do this for the conjugacy class {1} C W.
There are two parts to the thesis. The twisted FKS isomorphism was constructed
in [KP85| using representation-theoretic methods of twisted vertex operators, one
family for each conjugacy class c of W. In the first part of the project, we give a group-
theoretic interpretation, where we replace the use of twisted vertex operators with
a central extension, which we call the (twisted) Heisenberg central extension,
LT of the algebraic loop group LT of the torus T over F = C((t)) defined by Galois
descent by the action of w € W on the character lattice. We determine the group
theoretic structure of L7 and in doing so, deduce its category of representations, in a
way somewhat resembling some Lie-theoretic works of [BK04] Lep85|. The study of
LT passes through the study of central extensions of 7 by the sheaf K of [BD01] and
we make some independent homological algebra computations of central extensions
of T byK,. Along the way, we completely deduce the structure of an arbitrary loop
torus LT, in particular proving a basic fact that the Kottwitz map to the group of

connected components admits a homomorphic section.
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In the second part of the thesis, we apply our results on representations of Heisen-
berg central extensions to give a geometric construction of the twisted FKS isomor-
phism. Suppose G is the simply connected group of type ADE with Lie algebra g.
There exists a line bundle £ on the affine Grassmannian Grg whose dual global sec-
tions is identified with the basic representation V' of g. We construct for every w € W
and lift o € G of w, a subspace S(o) C Grg with the property that the dual global
sections of the restriction T'(S(0), L]s())Y has the structure of an L7 module and
the dual restriction map I'(S(0), £|s())" — I'(Grg, £)" is an isomorphism.

The proof we give is completely geometric for many conjugacy classes of W, those
we call homogeneous. They include 9 out of 30 elliptic conjugacy classes in £8 and
all of the conjugacy classes of w € W that Lie in a subgroup of type A. For the
non-homogeneous conjugacy classes, we needed to use some representation theoretic
results of [KP85|. A fully geometric proof for all conjugacy classes of W is reduced to
an explicit computation on the number of torsion points of the connected components
flag variety of the integral closure of a torus in 7 in G x¢ F' whose conjugacy class is
classified by the conjugacy class of W.

In the original paper [Zhu09] motivating this problem, it was not known what is a
correct subspace to use to obtain a twisted version of the geometric FKS isomorphism.
It was only conjectured that for the a geometric twisted FKS isomorphism, an affine
Springer fiber in Grg could be used instead of S(o) to obtain a dual restriction
isomorphism of dual global sections of £. We did not end up pursuing the investigation
of affine Springer fibers, because we have found S(o) to be a more natural space to
study for the nature of the problem. However we know that S(o) is contained in an
affine Springer fiber, although this discussion is omitted from the thesis.

Along the way, we found a new, geometric, proof of the classification of conju-
gacy classes of W by parabolic induction of [GP00] that originally used combinatorial
methods. The conjugacy classes of W have also been studied by different combina-
torial methods in the original paper [Car72| that was used in the paper constructing

the twisted FKS isomorphism in [KP85].



Chapter 2

Twisted Heisenberg Central
Extensions

2.1 Lie Algebra Preliminaries and Summary of Main

Results

2.1.1 Motivation and Summary of Main Results

For a simple and simply connected complex group GG with Lie algebra g, there exists
a G,,-central extension LG of the loop group of the base change of G to F' = C((t)),
such that LieLGp is (formal version of) the affine Lie algebra g associated to g. We
elaborate this in [3l

We eventually wish to study a representation of LGp by restricting the action to
the sub-central extension LT for a maximal torus 7 C Gp that may not be split.
The purpose of this chapter is to describe axiomatically define what kind of central
extension L7 is and determine its representation theory. We call such central exten-
sions (twisted) Heisenberg central extensions. We determine the group theoretic
structure of LT and in doing so, deduce its representation theory. We find that the
category of representations is semisimple, with every irreducible object induced from
a certain distinguished finite subgroup S C LT which we call the principal finite
Heisenberg subgroup. It is obtained by restricting the central extension to an

embedding of the torsion subgroup Galois coinvariants of ¥ = X*(T)Gal(p),mr into
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LT. All of these generalize the study of the case when T is split in [Bei06].

The definition is indirect, passing through some computations of study of central
extension of tori over a field by the sheaf K in the sense of [BD01]. The motivation is
that there exists a central extension £ of Gr by K5 such that the C points L@F(C)
is obtained by taking F' points £(F) and then the pushout by the tame symbol
K,(F) — C*. We define a Heisenberg central extension L7 of an arbitrary torus 7~
over I’ as one whose C points is obtained in the same way from a central extension
of T by Ko, but further require the Lie algebra to be (a formal version of) the
Heisenberg Lie algebra studied in the representation theory literature, e.g., [FLMS88|
Kac90, [KP85, BK04, Lep85).

We begin with preliminaries on certain Heisenberg Lie algebras and their repre-
sentations, loop groups and intermediate models that will be also assumed in the
entire remainder of the work. Along the way, we completely determine the structure
of LT for an arbitrary torus 7 over F as a direct product of various other kinds
of abelian groups objects, e.g., non-reduced, unipotent, discreet, torus. It involves
showing a new basic fact that likely has many other applications, that the Kottwitz
homomorphism from L7 to the group of connected components admits a homomor-
phic section even when 7T is not necessarily split nor an induced torus. Finally, we
also present some explicit computations about central extensions of 7 by K, we use

to compute LT.

2.1.2 Heisenberg Lie Algebras and Fock Space

We set some definitions regarding Heisenberg Lie algebras and their formal comple-

tions, and review their representation theory.

Definition 2.1: [FLM88, 1.7 | A Heisenberg type Lie algebra is a Lie algebra |

with an one-dimensional center that is equal to its derived subalgebra, i.e.,
Zh=I=[,1]=CK

for some nonzero K € . If a specific choice of K is specified, we call it the canonical



central element.

The Heisenberg type Lie algebras that we study are usually given explicitly in
terms of generators and relations. They all turn out to be isomorphic and have the
same representation theory. For a Z-graded Lie algebra [ = @;cz[;, define the positive

part [+ = @121[@' and negative part [ = @Z‘S_l[i.

Theorem 2.1: [FLM88, 1.7] Suppose | is a Heisenberg type Lie algebra of countable
dimension admitting a Z-grading with finite dimensional components. Define the Lie

algebra $), defined by a basis {e;, fi, K : 1 > 1} with relations

lei, fi] = K fori>1

[eiaej] - [fz>fj] = [K>€i] = [Kvej] =0 fOT'i 7&]72 Z 17] 2 1
Equip $ with the grading $Ho .= CK.9H; = Ce; and H_; = Cf;, i > 1. Then there is an

isomorphism of Lie algebras | = §) preserving the positive and negative graded parts.

Definition 2.2: A Heisenberg Lie algebra is a countable dimensional Heisenberg
type Lie algebra Lie algebra | that admits a Z grading with finite dimensional compo-
nents, together with a decomposition | = [_®Z([)®L into the positive, central, and

negative parts, respectively, and a choice of a canonical central element K € Z(1).

Corollary 2.1: of [2.1 Let [ be the Heisenberg Lie Algebra. Then the commutator
map

Lol — Z(1)
(X,Y) = [X,Y]
is a perfect pairing, when we identify Z(I) = CK = C by K — 1.

For any decomposition [, = @;>1]; into finite dimensional components as a vector

space, there is a canonical induced decomposition [_ = @;>;[_; such that [;, [_; are in
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perfect pairing by the commutator. This gives rise to a well-defined Lie bracket:

Lo]Ju— 2@

i>1
extending the Lie bracket [_ &, — Z(I), since any X € [_ is a finite sum of X_; € [_,.

Definition 2.3: A formal completion of a Heisenberg Lie algebra | is defined to
be

=Lezhe]]

i>1

for some decomposition [ = @®;>1l; as a vector space with Lie bracket induced from
that in I, i.e., Z(I) is central, [Ti>1li is abelian and the bracket I & [[o, i — Z(1)
canonically extends that on [_ & 1, — Z(I).

Define the negative, neutral, and positive parts of |, respectively:

[, == Z(1)
i>1

A formal Heisenberg Lie algebra is the formal completion of a Heisenberg Lie
algebra, together with the data of the decomposition into its negative, neutral, and

positive parts.

Definition 2.4: A finite dimensional representation of I, is a finite dimensional

representation that factors through the quotient [, — @®N |I; for some N.

Remark 2.1: Under this notion of a finite dimensional representation of I, re-
striction by the inclusion [, < [, induces an equivalence between finite dimensional
representations of . and finite dimensional representations of . This is because
any finite dimensional representation of [, factors through some finite dimensional
quotient of the form ®N ,l; for some N, and thus canonically extends to an action of

[ by having [Lisnyi i act trivially.
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Definition 2.5: Let [ be a Heisenberg Lie algebra and | the formal completion. For
p € C with p # 0, a level p representation of |, resp |, is a representation V of |, resp.
[, such that:
1. The canonical central element K € | acts by multiplication by p.
2. V. = U;V; restricts to a countable union of finite dimensional representations

Vi of Ly, resp (.

Remark 2.2: Since our notion of a finite dimensional representation ensures Iy and
[ have the finite dimensional representations, | and | have the same level p represen-
tations, i.e., every level p representation of | has an induced canonical structure of a

level p representation of | and vice versa.

Definition 2.6: The level p Fock space 7, is the representation of | defined by
7Tp = IIld([CK@[+C

where [ acts trivially and K acts by multiplication by 1.

Recall from every Heisenberg Lie algebra is isomorphic to the Heisenberg Lie
algebra $ = (9;51Cf;) ® CK & (d;>1Ce;) in[2.1] as a Lie algebra by an isomorphism
preserving the positive and negative parts. We have the following characterization of

the level p representations of $:

Theorem 2.2: [Kac90, 9.13] Suppose V is representation of $) with the property that
K acts by multiplication by p for p # 0 and for every v € V, there exists N > 0 such
that any tensor product of N or more elements of e; : i > 1 in U($H;) = Sym(H) =

Cle; - i > 1] acts trivially. Then V' is isomorphic to a direct sum of m,.

This allows us to determine the level p representation of [:

Theorem 2.3: Let [ be a Heisenberg Lie algebra. Fix a presentation | = §) preserving
the positive and negative parts. Any level p representation of [, when considered as a

representation of ), satisfies the condition of (2.9, Therefore the category of level p
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representations of |, resp, |, is semisimple with exactly one unique irreducible object

mp up to isomorphism. We conclude that there is an equivalence of abelian categories

Level 1 representations of | = vector spaces

Vis Q(V) =Vh
Indg g, M < M

where Q(V') is denoted the vacuum space and K acts on M by multiplication by p.

PROOF: Let V be a level p representation of [. Let v € V. Then there exists W C V
a finite dimensional £, -stable subspace such that v € W. Since $), is commutative,

Sym($,) = Cle; : ¢ > 1]. Write the action of $§, on W as an algebra homomorphism
Sym($4) > EndW.

Since W is finite dimensional over C, so is EndW and Sym($),)/kerp. Let J C

Sym($),) be a finite set of linearly independent polynomials such that
Sym($+) = (J) @ kerp

as a vector space. Let

N =max{deg f: f € J}

where deg f is the number of variables in the term of f, as a polynomial in Cle; :
i > 1], that is the product of the largest number of variables. Whenever n > N, any
monomial f product of n terms in {e; : ¢ > 1} will be linearly independent to J and
thus f = g+ h for g € (J), h € kerp and h # 0. Since f is a monomial, g = 0, and

we conclude that f € ker p. The result follows. n

Remark 2.3: For us, the main focus will be on the case level p = 1 representations

of a Heisenberg Lie algebra.
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2.2 Definition and Representation Theory

2.2.1 Weil Restriction, Loop groups, Jet Groups, Integral Mod-

els

Let us fix some notation and recall basic facts. Let 7" — T be a morphism of schemes.
For a functor X’ over (Sch/7")°?, the restriction of scalars, denoted by Resy/p X’

is the functor (Sch/T")°? — Set given by
ResT//TX'(S) = X/(S X T/) = X/(ST/)

for every scheme S — T over T. When T" — T is a morphism of affine schemes given

by a ring map A — B, define
1:{eSB/A)(/ = 1:{eSSpecB/SpecA)(/-

The assignment X' — Resy/p X' is functorial in X', If G is a group valued functor
over 1", then Res7 /G is canonically a group-valued functor over T'. We often wish to
apply the construction to the case when X' is an algebro-geometric object. In some
special cases, the functor Resy ;7 X'(S) is also representable by an algebro-geometric

object. For example, we have

Example 2.1: Suppose T" — T is finite locally free and X' is quasi-projective over
T'. Then by [BLRI0, 7.6/4], Respr X' is representable by a scheme over T. If
furthermore X', T'. T are affine with X' finite type over T" then Resrr X' is affine
and finite type over T, [CGP15, Proposition A.5.2].

For us, the main examples of the type above are when 17" — T is finite étale. In
this chapter, we are primarily concerned with the case when 77 — T is given by a
finite extension of fields E/F. In this case, Resg/p X’ called the Weil restriction.

In chapter 3] we also consider the case when T — T is a finite étale cover of curves.
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Definition 2.7: Let k be a field, O = k[[t]] and F = k((t)). Let Xt be a scheme
over O and X be a scheme over F. Define the jet space as the functor for every
k-algebra R
LTXT(R) = X (R[[]))

and the loop space as

LX = X(R((1))).

If XT =G", resp. X =G, are group schemes over O, resp. F, we call LTG", resp.
LG the jet group, resp. the loop group.

Remark 2.4: It is not the case that L™ X" = Resp Xt nor LX = Resp, X, because

for example R[[t]] is the topological tensor product R®;O and not R®,O and similarly
so for R((t)).

We have the following facts about LTX" and LX from [PRO8, Section 1|:

1. Both LTX" and LX are k-spaces, i.e., sheaves of sets for the fpqgc topology on
the category of k-algebras.

2. If X = Spec(A) is affine and finite type over O, LTX™ is representable by an

affine scheme over k.

3. If X = Spec(B) is affine over F, LX is representable by a strict ind-scheme over

k, i.e., an ind-scheme where the transition morphisms are closed embeddings.

In particular, LG is a group ind-scheme, i.e., a group object in the category of ind-
schemes over k. Warning however LG is not necessarily representable by inductive
limit of group schemes over k. When P, G satisfy various properties, e.g., affine,
reductive or semisimple, L*P and LG will satisfy additional various other properties

that will be recalled as necessary from [PROS].

Definition 2.8: [Yull, 2.1] Suppose G is an affine group scheme over F of finite
type. We say a scheme G over O is an integral model of G over O if G is affine
finite type over O with generic fiber equal to G.
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A smooth integral model is an integral model that is also smooth over O. For
convenience, we record some key facts about integral models from [Yuldl 2.2, 2.3, 2.6,

2.7] that we may refer to by name and not by direct citation:

1. (Uniqueness principle): Suppose X is smooth over F. If ¥, X+ are two smooth

integral models of X with the same O-points, then Xt = X',

2. (Closure principle): Let X" be an integral model of X and Z C X a closed
subscheme. Then the scheme theoretic closure Z C X7 is an integral model
of Z uniquely characterized by the property that it represents the following
functor on the category of flat (O-algebras:

R— Z(R®o F)NXT(R).

3. (Extension principle): Suppose X', YT are integral models of X', Y, respectively,
with X't is smooth. Then any morphism X — ) over F' mapping the image of
XT(O) in X(F) to the image of Y*(O) in Y(F) extends uniquely to a morphism

Xt = Yt over O.

We say a group scheme G* over O is an integral model of a group scheme G over F'
if GT is an integral model of G and the multiplication map Gt x Gt — G* over O
extends the multiplication map G x G — G over F. The following basic lemma is

used:

Lemma 2.1: Suppose G1 is a smooth group scheme over O and is an integral model
of a group scheme G over F', and H C G is a closed subgroup scheme. Then the

scheme theoretic closure H C G* of H in GT is a subgroup scheme of G*.

PROOF: Applying the functor of points characterization of # in the closure principle
with R = O gives the subgroup structure on O-points, with H(0) = H(F)NG*(0O).
By the extension principle, it extends to a unique multiplication map of schemes
H x H — H. The uniqueness in the extension principle applied to the compositions
HxH—=G"xGH =G and H x H — H — GF give compatibility of H x H — H

with the multiplication map Gt x G+ — G™. -
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In studying loop groups, we frequently appeal to the Lie algebra to study the

connected component. It is defined as follows.

Definition 2.9: Let G be a group functor over k. The Lie algebra is the k-vector
space defined by
LieG := ker(G(kle]) — G(k))

where kle] = k[t]/t? is the ring of dual numbers and the map klg] — k is e — 0.

Example 2.2: Let E = k((u)) be a cyclic extension of F' with u™ = t, m invertible
in k. Then

LieLResp pGpp = {f € CJ((t)) : f = aeu'} = C((u)).

The identification of LieLResg/pGy, g with C((u)) is canonical with € — 1. In gen-

eral, LieLResg/pTr = t((u)) for a split torus T' over k with Lie algebra t.

2.2.2 Integral Models and Structure of their Loop Groups of

Tor1

We recall geometry of loop groups of tori and the jet groups of their integral models,
prove a lemma about the epimorphism property of the norm map, and a fundamental
new fact that the Kottwitz map from the loop group of an arbitrary torus to the
group of connected components admits a homomorphic section. This allows us to
determine the structure of the loop group of a torus.

For this subsection, let k& be algebraically closed, F' = k((t)) and Op = kl[[t]].
Fix torus 7 over F. Let E/F be an extension such that 7 is split of rank d. Put
E = k((u)) for some u™ =t where m = [E : F|. Put Op = k[[u]]. Let I' = Gal(E/F)
be the finite cyclic Galois group with v € I" a choice of a generator. Then Ty has an
action of I' over E. Let Y = X, (T) = Hom(G,, g, Tg) be the absolute cocharacter

lattice of Y, equipped with the action of I'. Recall the action of I" on Y is given by
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forall A e Y,y el and z € G,, g(R)

By Galois descent, we have
T = (RGSE/FE)F.

Definition 2.10: [Ngoi0, 3.8] The Néron model T° of T is the smooth integral
model of T such that T°(Or) is the mazimal bounded subgroup of T (F).

By the uniqueness principle of integral models, 7” exists and is unique up to
unique isomorphism. The Néron model is constructed in [Ngol0] 3.8] as follows. Fix
an identification Tz = Tg for a split torus T over Z. Consider the integral model
Reso, /0,10, of Resg/rTE, which is smooth by [BLRI0, 7.6 Prop 5|. By the extension
principle, the action of I on Resg/rTg over F' extends to an action on Resp, /0,10,
over 0. Then

T’ = (Resog/0pTos)" -

Since 77 is a closed subscheme of an affine scheme over Op, it is affine over Op. By

[Edi92, 2.2], Reso, /0, Tk is smooth and by [Edi92) 3.4], T is smooth.

Definition 2.11: 1. The connected Néron model T is the neutral component
of T° in the sense of [Yuld, 1.2/, i.e., the open subscheme of T’ consisting of the
generic fiber and the connected component of the special fiber.

2. An intermediate integral model T# is an open subgroup scheme of T’

containing T*°.
All intermediate integral models of T are smooth over Op.

Lemma 2.2: Any intermediate integral model of T is affine over F.

PROOF: Let T# be an intermediate integral model of 7. Let s be the special point

of SpecOp and Z = T}. Then Z consists of (finite) union of connected components
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of T2, which is affine because T is, and therefore Z is affine. By the uniqueness
principle and the description of the dilation in [Yul3, 2.7], 7# is the dilation of Z
in 7°. Also according to [Yul5, 2.7, the dilation on an affine scheme is affine. The

result follows. -

The torus Resg,/r7Tr has an action of I' over F' coming from the action of I' on

Te. There is also a norm map N : Resg/pTp — T given by x — > 7.« for all

vyel’
x € Resg/rTe(R) for every F-algebra R.

Lemma 2.3: The categorical quotient Resp/pTe /T is canonically a torus and canon-
ically identified with T. The categorical quotient map Resg/rTp — T of schemes over
F' factors as

RGSE/FE E) (RGSE/FE)F = T

and the norm map N : Resg/pTp — T is surjective.

PROOF: The functor
{F- diagonalizable groups} — {I-modules finite over Z}°P

S — X*(S)

is an equivalence of abelian categories by |[Pool7, 5.5.10]. On the other hand, the
functor

{I’-modules finite over Z}°®* — {I'-modules finite overZ}
M +— MY := Homrp (M, Z)

restricts to an additive equivalence on the subcategory {I'-modules finite and free over Z}°P

of {I-modules finite over Z}°P. Therefore the restriction of the composition is
{F—tori} — {I'-modules finite and free over Z}.

S — X, (S)
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is an additive equivalence of categories and is exact on short exact sequences of tori.
An inverse is M — Homp (MY, G, )" where Ay denotes the constant group scheme
over F' associated to the abstract group A.

Let us first show Resg/pTg/I' = T. Let Y = X,(T) be the I'-module correspond-
ing to 7. The F-torus Resg/r7Tg is an induced torus, meaning that the cocharacter
lattice has a Z basis permuted by I', in fact X, (Resg/pTg) = Y ®zZ[I'] as I'-modules.
We warn that X*(ResE/F’TE) has two actions of I'. There is one latent action by the
virtue that Resg/r7Tg is an F-torus, and there is a second I' action intertwining with
the first coming from the action of I' on Resg/r7Tg over F' by group homomorphisms.
The categorical quotient of Y ®z Z[I'] in the category of finite Z[I']-modules for the
second action of I (where I' acts on the Z[I'] factor canonically and trivially on Y') is
Y with the quotient map Y ®z Z[I'] — Y given by the augmentation map () = 1
for all v € I'. We get a corresponding categorical quotient map Resg/pTg — T for I'
in the category of diagonalizable group schemes over F. Since I' acts on Resg,rTg by
group homomorphisms, Resg,pTg /I, which exists as an F-scheme, has the canonical
structure of a group scheme. Since Resg/r7g is diagonalizable, so is Resg/pTg/T.
We conclude that Resg/rTg — T is also the quotient by I' in the larger category of
schemes over F'.

Now we show the categorical quotient map factors as Resg/r7Tg N (ResE/Fﬂg)F —
T. Let n =) v € Z[I'] be the norm element. There is a factorization of the

augmentation map € : Y ®z Z[I'] — Y as
Y@z ZI0 DY @z Zn= (Y @2 Z[1)F =Y

where the first map is the norm map A — E'yel‘ ~.A which is seen to be equal to the

map defined by for all A € Y and v € T,
ARy > ARn.

The second equality Y ®z Zn = (Y ®z Z[['])! is given by the vanishing H/(T', Y ®z
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Z[I']) = 0 for all 4 > 0, which is shown by tensoring the periodic resolution of Z as

the trivial I-module

A Zn'S zr Sz -0

with the free, thus projective, Z[I']-module Y ®gz Z[T'], see |[Bro94, III.1. example 2,
ex l.c|.

The third identification map Y = Y ®z Zn, which is induced by the universal
property of Y as the I'-quotient, is given by A — A ® n. The torus corresponding to
(Y ®z Z[T))" is (Resp/rTe)" = T because it is the image of N and all terms of the

short exact sequence
1 = KerN = Y @5 Z[I] 5 (Y @2 Z[I))T = 0

are free as Z modules. This also shows N : Resg/rTg — T is surjective. -

Remark 2.5: Consider Tg as a group scheme over F' by the composition of the pro-
jection Tg — T with T — SpecF. Then Tg also has a I'-action with categorical
quotient map Tp — T. However, Ty # Resg/pTg. For example, Resg/rTg is di-
mension m - rank(7T) = md while Tg has the same underlying topological space as T .
Moreover, if E/F is not finite, Resp/rTr may not be representable by scheme over F

while Tg will always be a scheme over F.

This gives us the following lemma that will be foundational to our computations.

Lemma 2.4: Suppose m = [E : F| is invertible in k. Then the norm map N :

LResg/rTg — LT is both surjective and surjective on k points.

PROOF: Applying [PRO8, 1.a.3] to the Artinian k-algebra R = k, taking k-points
of loop groups of the surjection N : Resg/pTp — T gives that the k points of the
norm map N : LResp pTg(k) — LT (k) is surjective. According to [PROS, 5.1], each
connected component of LT contains a k£ point. Hence to show N is surjective, it

suffices to show N is surjective on the neutral component L7T°. This can be done by
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showing surjectivity on the Lie algebras. Let [ = LieLResg,r7g be the Lie algebra

over k. Then LieLT = [''. The induced norm map on Lie algebras is
N:l—1"

XY 7.X

~yel
Since m is invertible in k and a section [ — [is given by X %X. The result

follows. -

Lemma 2.5: A surjective morphism of group-valued sheaves f : G — H on a site is

an epimorphism in the category of sheaves of sets.

PRrROOF: To be precise, let K be the kernel of f as a group valued functor, so f

is automatically a sheaf. Since g is surjective it induces a canonical isomorphism

between G and the sheafification of the presheaf G/K defined by
R— G(R)/K(R).

The induced map of sheaves f : G — G/K is surjective on R points, and hence is
an epimorphism. Let A be a sheaf, g, ¢’ : H — A be morphisms of sheaves such that

go f=4¢ of. Consider the commutative diagram

G/K
Ly

9
H = A

g/

/
f
G —
!
where ¢ is the canonical map to the sheafification. By the epimorphism property of
f:G— G/K, goy =g op. Taking sheafification of g o ¢, ¢’ o ¢, we obtain g = ¢’

as desired. -

For a I'-module A, denote Ar to be the quotient module of coinvariants. The

X

valuation map k((u))* — Z extends to a morphism of group ind schemes valg :
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LG, g — Z, [PRO8, 5.1]. Define a map

LResp/pTp 3 Y

by fixing an identification Tz = Gfm g» which induces identifications LResg/rTp =

LTs = LGY, p and Y = Z%, and composing with (valg)? : LG, ; — Z%.

Definition 2.12: Using that N is an epimorphism, the Kottwitz homomorphism
mo : LT — Yr is the morphism of group ind schemes defined to be the unique map

making the diagram of I'-equivariant maps commute:

LRQSE/FIEE 3 Y

N \
LT B v

where Y — Yr is the canonical projection.

Remark 2.6: This definition of the Kottwitz homomorphism differs from the original
one in [Kot97] on k-points, but it agrees with a remark given by a referee at the end

of the paper.

Since valg is surjective, mg is surjective. We have the following property of the

Kottwitz homomorphism, which explains the choice of notation 7y:

Theorem 2.4: [PR08, 5.1] Both my and 7}y are locally constant for the Zariski topol-
ogy of and induces an isomorphism of the target with the group ind scheme of con-

nected components of the source, i.e., kerm( = (LResg,rTg)" and kermg = LT,

Remark 2.7: If T = Resg/pTEr is an induced torus, then my can be constructed

directly as 7}, i.e., as (valg)?.

To study LT, and central extensions of LT, we study their Lie algebra and con-
nected components. We have the following fundamental theorem. Let T" be the split

torus over k with the same absolute character lattice of 7, so that T' C LResg/r7g.
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Lemma 2.6: 1. For every f € Gui(E) = k((w)* of valuation 1, the Kottwitz
homomorphism has a section over'Y, i.c., there exists a map evy : Y — LResg/rTg,
called the evaluation map, such that mo o N oevy is the projection Y — Yr. In
particular, N oevy Y — LT hits every connected component of LT .

2. For A €Y, putting f = u gives

N oevy((1—v)A) = (NA)(CD).

3. There exists a map v : Y — TV0 C LtT?Y such that ev, - v is trivial on

(1 —v)Y, and therefore descends to a homomorphic section

Sy =evy,-v:Yr — LT

for my. Consequently it induces a direct product decomposition

LT = LT° x Yr.

Remark 2.8: The section evy over Y is known to exist and a common tool, for
example, in [Zhulj, 8.4]. However, it does not seem to be known that an honest
homomorphic section Yr — LT exists, or at least the author has not found a reference.
The determination LT = LT x Yr for an arbitrary torus T over F is a fundamental

fact that should have many other applications.

PROOF: Since Y is discreet, it suffices to define evy on k points. By definition of ,
for each A € Y = Hom(G,, g, Tg), the element A(f) € LResg/rTg(k) lies above the
connected component of LResg/pTg corresponding to A. Then define the homomor-
phic section for 7, as

evy: Y — LResg/pTp(k)
A= A(f)

This shows (1).
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We compute for A € Y and z € G,,, g(k),

(N osu)((1=w)A) = N((1 = v)A(f))

B T V()
-1y

v VAT )
A ) - A )

) A
vA(u) - - - v A (¢ M=)

=vA(CT) VG

= (N2

This shows (2).

Now remark that the element (N.\)((™!) lies in 7Y because the image of the
norm map N : T'— T' must be connected as T is. Choose a retraction r : T — T*0
for the injection 710 «— T. Tt exists because it corresponds to a section for the

surjection X*(7') — X*(TT0) that exists because X*(T70) is free. Put v as

Then

Since

m m
E wh — g ittt =
i=1

=1

=v A+ 20 A+ (m— D™ A+ ™

_(y2.)\ + 21/3.)\ 4+ (m _ 1)Vm)\ + mym+1.)\>
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= N.A—muv.A,

we have

o(1=v) A =r((NA)Q)/(mr-A)(C)) = r((N-A)(C)) = (N-A)(C)

because (mv.\)(¢) = 1 and (N.)\)(¢) already lies in T"°. Thus
evy((1—v).A) - o((1—2v).A) = (NA)(CHINVN)(C) = 1.

This shows (3) and the result follows. n

The group structure and geometry of LT and the subgroup L*7T* can be studied
explicitly. Let us define certain special subgroups of L7 other than L*7*% Begin
with the loop group of the multiplicative group. We have from [OZ16, 2.1] a group

theoretic decomposition
LGmE&WxGm,@ X 7 x W
where W is the groups scheme of big Witt vectors defined by
W(R) = {1+ib,~ti :be R}
i=1
and Wis the group ind-scheme of formal Witt vectors. It is defined by

W(R) = {1+ Z cit' :m € Zwo,c; € R and is nilpotent}

i=—1

W(R) = lim SpecZ[c_q, ¢y - - /ey

—{e}

with the limit taken over {¢;} in the countable direct sum N®N and Iy, is the ideal

€;+1

generated by ¢;'" 17 < 0.

Remark 2.9: The underlying topological space ofW s a single point.



22

We have that W is a projective limit affine spaces, identified as

W 2 lim A"
—1

i=1
The decomposition LG, p = W x G X Z x W is obtained as follows. For R
such that SpecR is connected, for each f € LG, g(R) = R((u))*, there is a unique

decomposition, for some integer N > 0,

i>—N 00
f= H (1 —au’) - ag - u"#Y) . H(l — a;u’)
i<0 >0

where a; : i < 0 are nilpotent in R, ag € R* and a; : ¢ > 0 are arbitrary in R. Define

i>—N

fo = H (1 — au")

1<0

fo=ap- uvE)

f+= H(l — a;u').

>0
Then the map LG, g(R) = W(R) X G, x(R) x Z x W(R) (note SpecR is connected,
so Z = Z(R)) is given by

f = (f_,CL(),U(f),f+)

From the description, we also have
(LGm,E>red = L+Gm,(9E = Gm,((j X 7 x W.

Definition 2.13: For the split torus Tg identified with GZ%E over B, so T = T
and LYT70 = G4, . x W, put
LT = W¢
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L7 =wi € 17,0

L T20 = LHT20 % LT

Lemma 2.7: The subspaces T, L++7'g’0, and L~ Tg are stable under I'. We conclude

that there is a I'-equivariant decomposition of the neutral component
LT =L Tg xT x LTT770,

PRrROOF: The space L**TE{”O is I' invariant because it is the kernel of the I'-equivariant
morphism L72° — T induced by applying T2 to the evaluation map R[[u]] — R
given by u — 0. The space T'is T-invariant because T(R) = To*(R) € T2 (R[[u])).
Finally to show L~ 7Tg is I'-invariant, define the R subalgebra

NR = R[(c—au'): c € R,a; € R is nilpotent,i < 0] C R((t)).

Then L™Tg(R) C Te(NR). Then the result follows by observing that L™ Tg(R) C
Te(NR) is the kernel of the map Tg(NR) — T(R) induced by u~! — 0. -

Lemma 2.8: We have a decomposition
LT = LT x TV x LTFTE

and

LHT20 = 71O & p++77

and for any intermediate integral T* of T, there exists a subgroup H C T containing
TV such that
LYT =Hx L™ T},

PrOOF: This follows by the uniqueness principle of integral models, the character-
ization of 7°°, the fact that 77" x LT+TL (k) is the maximal connected bounded

subgroup of LT (k), and the fact that L*7% contains L*7°°. -
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Definition 2.14: Put
L T=LTx

L—H—Tﬁ — H x L++7’EF

where TV C H C TV is as in the above lemma, and
LY T =L T LT,

For a subgroup ind scheme P C LT, the mazrimal semisimple subgroup S is
the minimal S such that the reduced locus of the quotient group ind scheme [P/S] is

pro-unipotent. The maximal torus is the connected component of P.

From the above characterizations of LT, resp. L*T*, the maximal torus of L*7*
or LT is T"? and the maximal semisimple subgroup is H, resp. T".

In summary, we have:

Corollary 2.2: The section s, from[2.6induces a decomposition of group ind schemes:
LTRL T xT x LT x V¢

where L=T, TUO, LY+T%0 Yr is the nilpotent part, torus part, pro-unipotent part,

and discreet part respectively.

This recalls a similar decomposition for commutative finite type group schemes

over k, except there is no nilpotent part.

2.2.3 Quillen K-groups and Tame Symbol

Let us fix some notation and review concepts regarding algebraic K theory.

Definition 2.15: [BD01, ch. 0] For every integer i > 0, let K; be the functor from
commutative rings to abelian groups, where K;(R) is the ith Quillen K-group, as

constructed in [Weil3[. Let K, be the direct sum of K;, where each K.(R) is a graded
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abelian group with grading induced by i. For a fized base scheme S reqular of finite
type over a field, let K, g, resp. K, g, be the sheafification the presheaf K;, resp.
K., on the big Zariski site Sza of S. When S is affine, let K; g, resp K, g be the
restriction of K;, resp. K, to the category of S-algebras, and we may replace S with

A =T(5,0g) in the subscripts.

Example 2.3: [BD01, 1.4/ Fori =0, the sheaf K; s is the constant group scheme Z.
For i =1, the sheaf K, g is O* mapping each scheme U — S over S to I'(U, Oy)*,

the units of the ring of global sections of U.

There is the structure of a (non-commutative) ring on K,(R) respecting the grad-
ing via the K-theory pairing, denoted by -. For us, the focus is on ¢ = 0, 1,2 and the
restriction of - to K; x K; — K,y for i +j < 2.

By [Weil3], II1.1.1.1], for any ring R, R* is a direct summand of K;(R).

Definition 2.16: For r,s € R* denote by {r,s} :=r-s € Ky(R), i.e., {—,—} is the
restriction of - to the image of R* x R* in K.(R) x K.(R). It is skew-symmetric,
[Weild, 5.12.1].

For a ring homomorphism R — S, the functoriality of K; give homomorphisms
K;(R) — K;(S). If furthermore S is finitely generated and projective as an R-module,
there exists a transfer map demoted by tr : K;(S) — K;(R), [Weil3l IV.6.3.2]. Here

are some basic examples:

1. [Weil3, ILIIT] Suppose R = F is a field. Then

Ko(F) =7

K, (F) = F*
Ko(F) = F* @7 F*/{la® (1 —a) : a € F\{1,0})

the relations a ® (1 — a) = 1 are called the Steinberg relations.
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2. |[Weil3], III. 1.7.1] Suppose E/F is a finite field extension. Then the transfer
map tr : Ky(F) — K;(F) is the norm map N : EX — F*, where we recall
that for E//F not necessarily Galois, N(x) is defined as the determinant of the

F-linear map of multiplication by x on FE.

3. |Weil3| I11.6.1.3] For any field extension E/F, the kernel of the map Ky(F) —
Ky (F) is torsion. If E/F is finite, then the kernel of Ky(F) — Ky (E) is
annihilated by m = [E : F.

4. [Weil3| 111.6.1.2] Let F' be a field and X be a smooth geometrically irreducible
variety over F' with a F-rational point. Then K,(F') injects into Ky(F(X)) as
a direct summand [BDO1, 2.1].

Let F be a field with a discreet valuation v : F* — Z and residue field k. For

a € R:=v"1(0), define @ to be the image of a in k.

Definition 2.17: The tame symbol is a map {—, — tamep : F* X F* — k™ defined

as follows:

{r, s}tamer = (_1)U(T)U(S)(

sv
rv

where we note that the term E;; lies in R because it has valuation v(s)v(r)—v(r)v(s) =

0. According to [Weil3, I11.6.3], {—, —}tamep 15 bimultiplicative and satisfies the

Steinberg relations, and thus descends to a unique map
Ky(F) — k™.

Denote this map by {—}tamep -

Remark 2.10: The transpose (r,s) — {S,7}amep 0f the tame symbol also satisfies
the Steinberg relations because the set of symbols {a @ (1 —a) : a € F*\{0,1}} is

stable under transposition. We may also denote it by {r, s}tamep-

Example 2.4: If F' = k((t)) with the valuation induced by powers of t, the tame
symbol is given as follows. For f,qg € F*, write f = aot*) - H?;(l — a;t") and
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g = bt*F) . [1:5,(1 = bit?) with a;, b; € k as in [OZ16, 2.7]. Then

v(g)

a
{/f: 9 tamer = (_1)y(f)v(g) S(f)'
bO

Let E = k((u)) be the cyclic extension of F with v™ = t with valuation over F
induced by powers of u. Then for f,g € F* C E*, we can either take the tame
symbol by considering f,g as elements of F' or take the tame symbol by considering

f,qg as elements of E. Letting vr be the valuation for F' and vg be the valuation for

E. We have for f,g € F*,

Using the fact that m*> = m mod 2 for any integer m, we have
{f7 g}tameE = {f7 g}gmeF

2.2.4 Definition of Heisenberg Central Extensions, Bilinear

Forms, Commutator Pairing

For this subsection, let k = C, F' = k((t)) and T be a torus over F. Let E/F be
an extension such that Tg is split of rank d. Put £ = k((u)) for some u™ = ¢ where
m = [E : F]. Let I' = Gal(E/F) be the finite cyclic Galois group with v a choice of
generator. Let X = Hompg(7Tg, G, ), resp Y = Hompg(G,, g, Tg), be the (absolute)
character lattice, resp (absolute) cocharacter lattice. Let N = 3°__.v.(—) be the
norm map on an abelian group or sheaf with a I'-action. For a base scheme S regular
of finite type over a field, recall from the presheaf K, g and the sheaf K¢
of abelian groups on the big Zariski site of S. For Z a set or presheaf of sets, let
T:Z X Z — Z x Z be the transposition map (y1,y2) — (y2y1), and pr; : Z" — Z
be the projection to the ith-coordinate, for ¢« = 1,--- ,n. If Z is a group-valued, let
W Z X Z — Z be the multiplication map.

In this subsection, we define the notion of a Heisenberg central extension LT of LT

by G, . Our definition is indirect, passing through the notion of a central extension of
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T by K r studied in [BD01]. However, we are able to deduce an explicit formula for
the k-points of the commutator for LT, by explicitly describing the commutator for a
central extension of 7 by K . The commutator is enough to study group-theoretic
structure and representation theory of LT in Some computations about central
extensions of 7 by K p are deferred to the later subsection because the techniques
are disjoint from the main application here. In the case when 7T is split, we show our

definition of a Heisenberg central extension agrees with the definition in [Bei06l 1.4].

Definition 2.18: 1. Let T(F) be a central extension of T(F) by Ky(F) as an ab-

stract group:

1= Ky(F)—>T(F)—T(F)—1.

Pushing out by the tame symbol {—}tamep @ Ko(F) — kX we obtain a central

extension

1=k >TF)->TF)—1

~ __tamep

which we denote by T (F)
2. A central extension of a sheaf G of groups on Sz.. by a sheaf A of abelian

groups on Szar 1S a group-valued sheaf £ on Sy, fitting in to a short exact sequence
l-A—=-E—-G—1

in the category of group valued sheaves on Syza, such that A lies in the center of £.

Remark 2.11: If GG is abelian, then there is a well-defined commutator map G X G —

A and it is bimultiplicative for Z, defined by gluing local set-theoretic commutators as

in [BDOT, 0.N.4].

According to [BDOI, 1.4], when A = K5 g and S is the spectrum of a field and G
to is a group scheme of finite type over F', taking S points preserves exactness give

rise to central extension of G(S) by K5(S) as abstract groups:

1 — Ky(S)— &(S) = G(S) — 1.
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Recall from the subgroup LTT~7>0 C LT that is the product of the pro-
unipotent part and the nilpotent part of LT .

Definition 2.19: A Heisenberg central extension LT is a Gy i-central extension of
LT such that:

1. The induced central extension of Lie algebras of the restriction LH+=T0,
0 — C — LieL++—770 — LieL 070 — 0

is a formal Heisenberg Lie algebra with positive part LieLtT?0, i.e., the center of
L++7A_7'1’70 is G,k and equals the commutator.

2. Define the connected Heisenberg subgroup of LT to be L7700,

3. There exists a central extension € of T by Ko p such that the commutator of
LT (k) is the commutator of E(F)™F  j.e., the commutator of the k points of LT
15 obtained by pushout by the tame symbol of the commutator of the F-points of a

central extension of T by Ko p.

Remark 2.12: In private communication, Xinwen Zhu has informed the author of
their unpublished work that gives a way to intrinsically define a Heisenberg central
extension without using algebraic K-theory. We did not know how to pursue this

approach because our study relies heavily on the work of [BD01).

Since G, ;, is a scheme, any Heisenberg central extension LT is group ind scheme
by pullback of a group ind scheme structure on L7. We also have that the projection

LT — LT induces an isomorphism mo(LT) & mo(LT) on connected components.

Remark 2.13: So far we have only defined the notion of a Heisenberg central ez-
tension, but have not demonstrated their existence. Suppose G is a split, simple, and
simply-connected group over F. By [BDO01, 12.10], for such G there ezists a central
extension € of G by Ko such that LG(k) = E(F)™°r . It is shown in chapter@ that
for any possibly non-split maximal torus T C G, the restriction LT is a Heisenberg

central extension. This is the intended application.
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The rest of this subsection will describe the commutator pairing of a central exten-
sion £ of T by K . Such extensions were proven to satisfy Galois descent properties
in [BDOI, sec. 7|, although the commutator pairing was not explicitly given.

Suppose S is a field and Z is an irreducible affine variety over S. Elements
C € Ky(S(Z)) give rise to partially defined morphisms Z(S) x Z(S) — Ky(S) as
follows. Write C' in terms of Steinberg symbols C' = > {f;, g:} where f;, g; are units
in the function field S(Z). Each f;, g; is invertible on some open maximal open domain
of definition U; C Z and define maps U; — G,, 5. Taking the intersection U of the

Ui, C defines a map U x U — Kj g where for every F-algebra R, the map is
U(R) x U(R) — Ky(R)

When C' is taken to satisfy a cocycle condition, such partial maps Z x Z — Ksg
are called generic cocycles in [BDO1, 0.4]. When C lies inside the image of the
multiplication map O} ®z Oy = Hom(Z, G, ) ®z Hom(Z, G, s) = K»(5(Z)), each
fi, g; are globally defined on Z and C defines global maps

7% 7 — Kyg.

Definition 2.20: For a € O} @z Oy, the associated map p, : Z? — Ky g is the

morphism Z x Z — Ky g defined as above.

Remark 2.14: [BD01, 1.4] Suppose Z is any scheme over S, identified with the
representable functor hy = Homg, (—,Z) into sets. By the Yoneda Lemma, for any

presheaf A on Sy.., there is a natural isomorphism
Homg(Z, A) = H(Z, A) = Az (Z).

In particular, if Z = SpecB is affine, morphisms Z — Ky g correspond to elements

of the group Ks(B).
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Let Bilin(Y') be the set of bilinear forms on Y, Alt(Y") C Bilin(Y) be the subset
of alternating bilinear forms, and ESBilin C X ®z X the subset of even symmetric

bilinear forms.

Lemma 2.9: The following sequence is short exact
0 — Alt(Y) < Bilin(Y) "5 ESBilin(Y) — 0

where the first map is the canonical inclusion.

PROOF: The map Id 4+ 7*id : Bilin(Y") — ESBilin(Y") has kernel precisely Alt(Y") by
the definition of Alt(Y). It suffices to show that it is surjective. Recall the following
identifications as in [BDO1) 3.5].

X ®z X = Bilin(Y)
T1 @ o = {(y1,¥2) > w1(y1)T2(y2) }
X ANX = Al(YY)
x1 A o = {(y1, y2) = 2a(y1) 21 (y2) — 21 (y1)za(ye) }
Under the above identification, the short exact sequence
0= X AX TImmmEnTmen x e, X YRR Gum?X ()
becomes a short exact sequence
0 — Alt(Y) < Bilin(Y) — Sym*X — 0

where the first map is the canonical inclusion. In particular, it induces an isomorphism

Sym?X = ESBilin(Y). The result follows. n

Remark 2.15: The canonical inclusion ESBilin(Y) — Bilin(Y) is not a section

Id+7*1d

for Bilin(Y) " — " ESBIilin(Y). The composition ESBilin(Y) — Bilin(Y) fam e
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ESBilin(Y') is multiplication by 2. However, since Sym*X C SymX = Z[X], Sym*X

15 torsion free and finite over Z and hence free, so some section exists.

Remark 2.16: This constructed identification Sym*X = ESBilin(Y) is given by
129 — {(y1,y2) = 1(y1)x2(ya) + x2(y1)x1(y2) } and agrees with composing the usual
identifications in [BDO1l, 3.5] as follows. Let Quad(Y') be the group of quadratic
forms Y — Z. The identification Sym>X 5 ESBilin(Y') induced by the above is the

composition of the classical identifications
Sym?X & Quad(Y)

2122 = {y = 21(y)22(y) }
Quad(Y) = ESBilin(Y)

q = Ly, y2) = qyr +12) — qlyr) — q(y2)}

Definition 2.21: Let Z, A be presheaves of sets on a site and suppose A takes values

in groups. [ Z X Z — A is a morphism. The commutator of f is the map

(21,22) ¥ f(21,22) f (22, 21) 7"

Ji.e., the map f+ (7°f)~L.
The definition above applied to the cocycle map of a central extension of an abelian

sheaf by another abelian sheaf coincides with the usual definition of the commutator.

Lemma 2.10: Let S be a field, Z be an irreducible affine variety over S, and X =
Hom(Z,G,,s). Let U be the composition

X @, X " X2 0, X2 < 0F, @2, 0.

Let C € X ®z X and B = C 4+ 7*C. Then the commutator of the associated map
Yuc) : Z* = Kag to U(C) is the same as the associated map py(p) : 22 — Kag to
U(B).
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PRrROOF: It suffices to show this when C' = 1 ® x5 for 1,29 € X. By unwinding the

definition of ¥ and the associated map, the associated map Z? — Ky g of ¥(x ® x)

is defined by the property that for (z1,29) € Z(R) x Z(R),

(21, 22) = {x1(21), 22(20) } € K2(R).

Using the antisymmetric property of the Steinberg symbol, the commutator is defined

by

(21, 22) {1’1(21)7I2(22)}{131(Z2)>I2(21)}71 = {71(21), 22(22) H{w2(21), ¥1(22) }.

On the other hand, the associated map Z2 — Ky to ¥(z; @ 9 + 7%(11 @ x9)) =
U(z) ® T3 + x2 ® x1) is defined by

(21, 22) = {m1(21), 22(22) Hza(21), 21(22) }-
The two are the same. -

Now we can state the computation of the cocycle and for central extension of a

split torus by Ko r and the classification in [BDO01], 3.9.3, 3.14].

Theorem 2.5: Suppose S is a field and T s a split torus over S with character lattice
X. Then for any central extension € of T by Ko, there exists C € X ®z X such that
& 1is equivalent to the central extension of T by Ko g defined by the cocycle oy (cy :
T xT — Kyg (with values already lying in the presheaf Ko g instead of the sheaf
K 5) associated to the image of C, with ¥ as in . Two elements C,C" € X @ X
give equivalent central extensions of T' by Ko g iff they map to the same element under

the map X ®z X — Sym?X.

Combining this with the interpretation of the map X®zX — Sym?X as Bilin(Y") ldtrd

ESBilin(Y) in the proof of 2.9 and with we re-phrase the classification to derive

an explicit expression for the commutator:
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Corollary 2.3: Preserve the notation of the above. The isomorphism class of a cen-
tral extension of T' by Ko g is determined by its commutator and the set of isomor-
phism classes is in canonical bijection with ESBilin(Y') as follows. Identify X @ X =
Bilin(Y") naturally and consider ESBilin(Y') naturally as a subset of Bilin(Y') as in
2.9 For an even symmetric bilinear form B, a representative central extension is
constructed by the cocycle pycy : T? — Ky g associated to W(C) for any C such that
C +7°C = B and its commutator is Yy (p).

Remark 2.17: The evaluation map G, s X Y — T defined by (f,\) — A(S) is
surjective, hence an epimorphism. Hence a given morphism T — F to another sheaf
F is determined by its pre-composition with the evaluation map G,, ¢ XY =T, i.e.,

by testing at all the one-parameter subgroups.

Definition 2.22: For A € Y and f € G,,s(R), denote by A\ @ f for the element
A f) € T(R).

Lemma 2.11: Preserve the notation of above. Let C' € X®7zX, identified canonically
with a bilinear form on'Y as in . Then the map py(c) : T? — Ky g associated to

U (C) is uniquely defined by property that for every A\, € Y, the pre-composition

AX
Gm’g X Gmﬂ —)’u TxT — K27S

is defined by for all f,g € G, 5(R),

(f.9) = A 1(9)) = {f. 9} M € Ka(R).

PROOF: Let I be a set with |I| = d, the rank of T. Let {y; : i € I} be a basis for
Y over Z and {z; : i € I} be the dual basis for X, considered as the set of group
homomorphisms 7" — Gy, 5. Write C' = 3°, i ; ¢; jz;@x;. Denote (—, —) : X XY — Z

for the canonical pairing. We compute the composition above for each A\, € Y,
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f,9 € G s(R):

(f.9) = [T cig-{(@iopr) (M), 1(9)), (0 pra) (A(F), 1(9))}

i,7€1
= T e s g
1,7€1

=1/, g}zi’ja ci (@i A) (@)

= {f, gy

The result follows. ]

Definition 2.23: Let Z be a scheme over S and e : S — Z a distinguished section.
Let A be a presheaf of abelian groups on Sz... A morphism f:Z — A of presheaves
is normalized at e if the f o e is the trivial map S — A. If the point e is clear,
we may simply say f is normalized. For any subset M C H°(Z, A) we denote by

Mme™ the subset of normalized elements of M.

Remark 2.18: If M C H%(Z, A) is a subgroup, M™™ is also a subgroup given as

the kernel of the evaluation map
M — H°(S, A)

f—= foe.
We have a Galois descent property of normalized global sections for Ko p:

Lemma 2.12: Let X be a smooth geometrically irreducible variety over F with a
distinguished F'-rational point e, also considered as a I'-invariant E-rational point.

The base change map induces an isomorphism
HO(X, K27F)norm E} HO(XE, K2’E)n0rm,1—‘ — (HO(XE, K27E)norm)1".

Consequently if a normalized morphism fr : Xgp — Ko is I'-invariant, it descends

uniquely to a normalized morphism f: X — Ky p.
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Remark 2.19: The meaning of unique descent of fg to f is the following. For a

map [ : X = Ko p, consider the commutative square

ResE/FXE JiE) ReSE/FKQ,E

) )
X ER Kor

obtained by for every F'-algebra R evaluation the map X ER K r at the ring map
R — R®p E. Then the statement of[2.19 is that there is a unique normalized f such

that flg = f&.

ProOOF: By [BDOIl, 2.4.(i)] We have that the base change map induces an isomor-
phism
HO(X, Ko )/ Ka(F) 5 (H(Xp, Ko ) Ko ()T

where Ky(F) — H°(X, K, ) embeds as the subgroup of constant global sections
and similarly so for Ky(F) — H°(Xg, Ko ). Evaluation at e gives a section for
each of these embeddings. Since e € X(F) is I'-stable, the canonical isomorphism
HY(Xg, Ko g)™™ — H(Xp, Ko p)/K2(F) is a map of I'-modules. The result then

follows by considering the commutative diagram

HO(X, K27F)norm N HO (XEa KZE)norm

\J \J
HO(X, K27F>/K2(F) — HO(XE7K2,E>/K2(E)

where the horizontal maps are base change, and the vertical maps are the canonical

isomorphisms. [

Definition 2.24: Let £ be a central extension of a group G over F' by K, consid-
ered as a multiplicative Ko p-torsor, and p : Gg — G be the projection map. Pulling
back € to G gives central extension of Gg by p* Ko p. Then taking the pushout by
the map p*Kop — Ky g gives a central extension of Gg by Ko . We denote it by
Ep, called the base change &£ to E. The operation of base change is functorial.
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We are now equipped to state the main computation of this subsection, of the

commutator for a central extension of the torus 7 over F' by K.

Theorem 2.6: For any central extension of T by Ko p over F, there exists an in-
variant even symmetric bilinear form B € ESBilin(Y)!' C X ® X such that the central
extension is equivalent to a central extension € with commutator Cg @ T? — K;r
(with values lying in the presheaf Ko p) satisfying:

1. The base change Eg has commutator Cg, (with values lying in the presheaf
Ky k) equal to py(py to W(B), where ¥ is the composition

X @ X " X2 0 X2 0, 2205,

from . Furthermore, py(p) s I'-equivariant and the resulting map T — Kjp
given by applying the descent for normalized global sections in [2.19 is precisely the
commutator for &.

2. As a morphism T? — K, p whose restriction to the category of E-algebras is

Ce,, Cg is uniquely determined by the composilion

ResE/FTEQ NAN 7-2 % KQ’F — ReSE/FK2,E

where N denotes the norm map. The above composition is computed by: for A, u € Y

and f,g € Gy, g , the element
(A® f,n®g) € Resp/r Ty

maps to the mage of the element

H {v'.f, Vj-g}B(Vi'/\’Vj”) € Resg/rKoE

3,j=1

m RGSE/FKQ,E.

Remark 2.20: Any commutator for a central extension of an abelian sheaf by an-
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other is automatically normalized. In particular Ce(e) = 1 € Ko(F) at the unit
e € T*(F).

PROOF: Let us discuss (1). The existence of such a I'-invariant even symmetric
bilinear for B € Sym?X determining the commutator for £ is proved in the later
Section 2.I1] Now observe that for any I-invariant bilinear form B, the element
U(B) € K,(TZ) is I'-invariant. This shows that gy € HY(Tg, Ko p)"™ is I-
invariant and the descent lemma of applies to ¢y (py. The fact that the resulting
normalized map 72 — Ko  is precisely the commutator Cg is proven in later m
using that shows this is true generically. This shows (1).

Let us prove (2). Observe that U(X ®z X)) consists of elements normalized at e;
this follows by applying the computation 2.11]to f,g = 1 any any A\, u € Y. Therefore
U((X ®z X)') maps to (Ky(E(TZ)*s™)F. In particular, ¢y (p) is normalized and
[-invariant. By the descent lemma for all B € (X ®z X)'', the commutator
Cg¢, as a morphism T — K p, is uniquely determined by the property that it is

normalized and fits into the commutative diagram

IZ{GSE/F'TE2 Lp%B) ReSE/FKQ,E — ReSE/FngE

) )
T2 % Koy

Since Cg is a commutator and already normalized, the normalization condition is re-
dundant. Since the norm map N : Resg/rTg — 7T is an epimorphism, the composition
T? — Resg/r K> p from the bottom left to top right is uniquely determined by its pre-
composition with Resg /F’TE2 XY T2 Tt remains to compute it. We have for \, p € Y
and f,g € Gpp, A® f, 11 ®g) € ResgyrTi maps to pum)(N(A® f), N(p®g)). By

and bimultiplicative property @y (p), we have

N
puB)(NA® f),N(p®g)) = H pum VAV .V u@ 1 .g)

i,j=1
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N
= [L ' .7 gyoeem.
ij=1

Then (2) is proved. -

Let us conclude by showing our definition of a Heisenberg central extension is
consistent with the definition of a Heisenberg central extension of a split torus given
in [Bei06l 1.4]. The tame symbol F* x F* — k* extends to a morphism of group
ind-schemes

{_7 _}C.C.LGm,F X LGm,F — Gm,k

defined in [OZ16, 2.2] called the Contou-Carreré symbol. It descends to a map
LKy p x LKy p — Gy . By [OZ16], 2.4], it has the property that the induced map

on tangent spaces at 1 is the map
C((t) e C((t)) = C

(f,g) = res(fdg).

Definition 2.25: Let T' be a (split) torus over k and B an even symmetric bilinear
form on'Y. A Heisenberg Central extension LTy in the sense of [Beilb, 1.4] associ-
ated to B is a G, i-central extension equipped with a splitting L™ Tr — LTy with the
property that the commutator satisfies for all \,p €Y, f,g € LGy, F,

A® fu® g) = {NS), ulg) 2.

Lemma 2.13: Suppose B is non-degenerate. Then a Heisenberg central extension of

LTg in the sense of [Beil6, 1.4] associated to B is a Heisenberg central extension as

inl[2.19.

PROOF: Let LTy be a Heisenberg central extension in the sense of [Bei06, 1.4]. Since
the Contou-Carrere symbol extends the tame symbol on k-points, by the compu-

tation of the formula of the commutator for a central extension of 7" by K associated
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to B, it remains only to show that if B is non-singular, then the induced central ex-
tension LieLJF:ﬁ—Tfp’0 — LieL++~Tp, is a formal Heisenberg Lie algebra with positive
part t[[t]] where t = LieT, identified with Y ®; C. Extend B to a bilinear form on
t by C-bilinearity. By [Bei06, 1.5(ii)| t = LieL+;’—T;’O is isomorphic to the formal

completion of the central extension of t, _[t*!] = t~'h[t 1] & th[t] presented as
0—-CK —=t—t, [t =0
where K € Z(t) is some central element, with commutator
(X ® f,Y ®g) = B(X,Y)ResfdgK.

Since B is nonzero, the commutator pairing is nontrivial. Since B is non-degenerate,
the center of t is CK. We conclude that the center of t is one-dimensional and equal

to its commutator. The result follows. =

2.2.5 Group-Theoretic Decomposition of Heisenberg Central

Extensions

In this section, we determine the group theoretic structure of a Heisenberg central
extension, using the decomposition of a loop torus in

Let k = C, FF=k((t)) and T be a torus over F. Let E/F be an extension such
that 7Tz is split of rank d. Put F = k((u)) for some u™ =t where m = [E : F|. Let
I' = Gal(E/F) be the finite cyclic Galois group with v a choice of generator. Fix a
primitive mth root of unity ¢ defined by the property that v(u)/u = (,,. Let p, denote
the group of rth roots of unity in k> for each integer r > 1. Let X = Homg(7Tg, G, k),
resp. Y = Hompg(G,, g, Tg), be the (absolute) character, resp. cocharacter, lattices
with their canonical I' action. Let N =3___.~.(—) be the norm map on an abelian
group or sheaf with a I action. For a central extension P of an abelian group, resp.
presheaf by another abelian group, resp. presheaf, denote Cp the commutator map.

Let T be the split torus over k with character lattice X.
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For this section, fix LT to be a Heisenberg central extension, defined in Let
& be a central extension of 7 by K such that Cpr ) = Cg(gjrame.ris pushout of E(k)
by the tame symbol over F. Let B be the I'-invariant even symmetric bilinear form

determining the commutator for £ in 2.6

Definition 2.26: For a morphism H — LT of group functors, define H to be the

restriction of the central extension to H.

The purpose of this subsection is to establish two theorems regarding the group-

theoretic structure of L7 which will be used to determine the representation theory

of LT in the next subsection :

Theorem 2.7: There exists a splitting LTT7° — LT.

Now recall the decomposition from
LT =L T xT" x LY T x Yrp

where T is the maximal torus of L7790,

Theorem 2.8: Suppose B is non-degenerate. For a fized splitting LTT°° — LAT,
there exists an isomorphism (given the choice of homomorphic section s, : Yp —

LT (k) for the Kottwitz homomorphism):

~

LT & (LT x (Vi x T"%)) /G

where
1.The restriction Yy of LT to Yy by s, has cocycle taking values in the group p,
roots of unity for some integer r > 0.

2. The embedding G, — LH+=T0 x (?p x TH0) is given by the diagonal
z > (z,07")

into the product of the central G,, ) of LJFJ“A—TV0 and the central G, of Yp.
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9. L++T0 is trivial as a central extension, i.e., L*+T70(k) & G,, ), x LTH770

We use the morphism s, = (N oev,)-v:Yp — LT (k) 2.6 Recall N is the norm
map, ev, is defined by the property that A — A(u) € LTg(k), and v is some map

YF — T,

Definition 2.27: For a central extension A of A by some other group or group-
valued sheaf, for x € A denote by T the image of x in A. In the case when A is a

group and A — A is surjective, for a € A denote by a any lift of a in A.

Proposition 2.1: There exists a surjection Vi % LTO — LAT, where and the action

of LTO on'Y is defined by forr € LT°, s €Y,
r.s =rs,(3)r " = Cpr(T, 5u(3)).3

where C (T, 54(5)) € Gy, is considered an element of the central Gy, of Y.

Remark 2.21: In fact, for any subgroups H, P C LT, multiplication by the commu-
tator as above gives a well-defined action of P on H. This action lifts the conjugation

action ofp on H.

PROOF: Since LT is abelian, conjugation by LTO preserves H for any subgroup
H C LT. Put H = s,(Yr). The action above is then the pullback of the conjugation
action of LT° on H by the map and thus well-defined.

The morphism Yr x LTO — LT is defined as follows. Forgetting the group
structure, the underlying in-scheme space of Yr x LT9 is Yp x LTO. Then define
LTO%Y — LT as the composition

Yo LTOS LT x LT 5 1T

where ¢ : LT® — LT is the canonical inclusion, and p is the multiplication map. Such
a map is flat as a morphism of ind-schemes. It is a group homomorphism because the

restriction to Yp x 1 and 1 x L%U both are group homomorphisms and the definition
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action of LT° on Yy is such that Y7 = 1 x Yp acts by its image under o ((Nos,) X ¢)
. To check that the map is surjective, it suffices to check surjection on the neutral
component LT° and that it hits every connected component of LT. The first follows
because it restricts to an isomorphism on LT° x 1. The second follows by the fact

that s, is a section for the Kottwitz homomorphism The proposition is proved.m

The main theorems and of this subsection are proven by refining the
surjection Y x LT0 — LT by showing the following:

1. The commutator C' is trivial on LT 5 L7709 and LH+7290 is a direct
sum LH+T20(k) 2 Gy p x LTHT70. Hence a splitting LTT0 — LT exists.

2. For any splitting L*7T*° — LT, we have LT = L++-T%0 x TT0 and
LH=T79 acts trivially on Yp. The splitting induces a canonical isomorphism

}A/F X L%O: L—&--it,—’Tb,O X ()A/F X TF’O).

3. The action of T7° on Yi is computed and found identical to the one in
[BKO4, sec. 4.3] and lifts to an action of 77 on Y, where Y is the restriction
of Ypby the projection Y — Yp. Explicitly, the action of exph € TV for h € ¢
on \€Y for A\ €Y is

exp(h).A = PN )

where exp : t' — T™0 is the exponential map and e(~) : C — G, is the

exponential function.

4. The kernel of Y x LT9 — LT is the diagonal embedding x — (x,27') of
Gy, into the product of the central G, of LT° and the central Gy e of Yp.

D. Up to equivalence of central extensions, the restriction Yy of LT to Yr by
sy has cocycle taking values in the group p, roots of unity for some integer

r > 0.

Remark 2.22: A central ps, extension of the discreet group Yr and its commutator

also features as foundational in the work of [Lep85). In [Lep85, |BK04), that central
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extension s defined as an axiomatic starting point for Lie-theoretic computations. In
contrast, we interpret Yy geometrically as coming from a section for the projection of
LT to the group of connected components. We expect that Yr should agree with the
tam-central extension of Yr in [Lep83, [BKOJ| possibly after modifying the section s,
but have not investigated this. This is because we did not need to explicitly compute

Yr to deduce similar looking results on the representation theory of LT in .

Let us first make some preparations that reduce these computations to computa-

tions about the k-points.

Definition 2.28: A pro-scheme is a projective limit of schemes together with limit
structure. An ind-pro scheme is an inductive limit of pro-schemes together with
its limit structure. Let H = lim, ; H;, H = lim.; H] be a pro-schemes over k. A
pro-morphism [ : H — H' is a morphism over k that factors through morphisms
fi: H; = H[. Now suppose H = lim_,; H;, H' = lim_,; H] are ind-pro-schemes where
H;, H! are pro-schemes. A ind-pro-morphism is a map f : H — H' that factors

through morphisms f; : H; — H! that are pro-morphisms.

Lemma 2.14: Suppose H, H' are projective limits of finite type and reduced affine
schemes and f : H — H' is a pro-morphism. Then f is determined by the induced

map on k points f : H(k) — H'(k).

PrROOF: Let H = lim, ; H;, H' = lim, ; H] where H; and H/ are finite type, reduced
and affine. Then H, H' are affine and since each H;, H are affine, H (k) = lim.; H;(k)
and H'(k) = lim. H/(k). The result then follows from the well known fact that over
an algebraically closed field, the functor of taking k£ points on the category reduced

and finite type schemes is faithful. n

Lemma 2.15: Suppose f is an ind-pro automorphism of LH+=T20 that fixes the

central G,, and restricts to the identity on k-points. Then f is trivial.

PROOF: Since L++-T%0 is connected, it suffices to show Lief is trivial. Since f

restricts to the identity on k points, f restricts to the identity on the L*+79, which
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is a projective limit of finite type reduced affine schemes, by [2.14] Thus Lief restricts
to the identity on LieL™+7?%. Now let | C LieL++~770 be the Heisenberg Lie
algebra such that LieL**v:T*’vO is the formal completion of [, where the positive part
[, lies in LieL**+77% Since [_ and [, are in perfect pairing by the commutator by
Lief is a Lie algebra morphism and Lief fixes both the center Z(I) and [, we
conclude that Lief fixes [_ as well, and therefore also [. The result follows as Lief is

continuous. -

Now let us make some reductions that allow us to evaluate the commutator of

E(k) over E instead of F' on connected sub ind pro groups of LT (k).

Definition 2.29: Define Cg)tamep t0 be the composition
C ame
TF) x T(F) & Ky(F) = Ky(E) "5 k.
Lemma 2.16: We have as maps LT (k) x LT (k) — k*,

Cg(k) Jfamep — OZ}T(]{?)

Ji-e., Cg()tamep 95 the mth multiple of the commutator for LAT(/{:)

PROOF: We have from [2.4] a commutative diagram

FX @y F* "I px
3 Fym
E* @y B MIF X

where (—)™ denotes the map of raising to the mth power. Since the tame symbol

satisfies the Steinberg relations, it descends to the commutative diagram

T(F)x T(F) 9 Ky(F) ™07 px
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the result follows. -

Now recall LT, = L7 from

Lemma 2.17: Suppose H C LT°(k) = LTT (k) is a connected sub (ind) pro group
and v € LT(k). If Cetames(H,7) = {1}, then C, 1 k)(H, r) = {1}, i.e., if the
pushout of the commutator over E with r is trivial on H, then the commutator of the

pushout over F with r s trivial on H.

PROOF: Suppose Cg i) tame, (H,7) = {1}. Using the above lemma that Cg k) tame, =
CZLT(k we have that CL%(k)(Ha r) takes values in the group p,,, which is discreet.
Since x +— Cpr (2, 7) is continuous and sends the identity element in H to 1, it

follows that it must send H to {1}. -

Now apply the computation of commutator main theorem from[2.6]to the F-points.

We obtain

Cek) tames (NA @ f), N(1 ® g)) H (V) gl e k.
i,7=1
Proposition 2.2: The commutator Cpor is trivial on LTT*0 x LYT"0 C LT,
and there exists a partial splitting LT — LT of LT as a central extension over
LTT CLT.

PROOF: Since the restriction of C}z to LYT"% x LTT"0 is a pro-morphism, by
it suffices to show that Cp is trivial on the k-points of L7 x L*7"%. Applying
to the connected subgroup H = LT7”%(k) with r ranging over elements of H, it
suffices to show that Cg() tame, is trivial on LET0(k) x LYT°0(k).

To this end, recall from [2.4] that the norm map N : LTg(k) — LT (k) is surjective
on k points. By the properties of the Kottwitz homomorphism N restricts to a

surjection

(1= )Y @ (LGyp)(k) 2 (LTO) (k) = LT (k)

1-vIARf—»N((1—-v)A\® f)
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where the equality on the right hand side is given by For \,u € Y and f,g €

LG, i(k), it suffices to compute the following quantity and show that it is equal to
1:

Ce)tamer (Ne/p(1=1)ARf), Ng/r((1-1v)p®g)) H{’/ o gl A,

1,j=1

Put f = apu’#) - f, and g = byu"#9) - g, for f., g, € L*TT°(k) as in Then
using the formula for the tame symbol

{I/i.f, Vj-g}tameE — {aogiqu(f)’ bOCjqu(g)}tameE

_ (—1)Eee) @ e

B br ) v (f)on ()
vE(9)

_ ve(fve(e) 0 G- Nve(fve(g)
=(=1) g)C

bo

Plugging in to the formula for Cg) tamey,, We obtain

Ce (k) tames (Ne/p(1 = V)A @ f), Ng/p((1 —v)p® g)) =

m E(g) )
H ((— 1>vE(f)vE(g) ¢l=vslf )vE(g)) @ (A=v) A7 (1=v).p)
ij=1 by” £)
By I'-invariance of B, this is
m e o
H Joe(s(e) 20___ - (=j)vs(f)s(9)) B (1-0) A (0-0)4)
- bSE(g)

Rearrange the double product []}",_, to a product JT;~, I] Since for every

i—j=k mod m"*
k, there are exactly m pairs (i,j) with i,7 € {0,--- ,m — 1} with i — j = k mod m,

the above quantity is

m a'UE(Q)

H Q0___pkop(Pes(e)ymBEH1-)A0-0).p)
bUE(g) )
k=1 0
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The (-factor is annihilated by the multiple of m, giving

m vE(9)
_ H((_l)vE(f)vE(g)i

)mB(Vk(lfu).)\,(lfu).u)
va(g)
k=1 0

vE(9)
_ ((_1)vE<f>vE<g>%_())mzz;1 Bk (1-v) A, (1=v).1)
ng g9

By bilinearity of B,

ve(g)
_ ((_1)”E(f)vE(g)a’0_)mB(Z;€”:1Vk(l—l/))\,(l—l/)‘,u,).

bSE(!])
Since the element Y ", v*(1—v).\ € Y is I-invariant and B is [-invariant, B(>_,, v*(1—
v).\, (1—=v).u) = 0, and the above term is 1. Hence L+T%9 is abelian. Since L++77°

is pro-unipotent while G,,, 5, is semisimple, L++A7'1770 is split and the result follows. g
Lemma 2.18: L++7:1’70(k) lies in the center of LT (k).

PROOF: Since L*+T77%(k) is connected, it suffices to show for each r € LT (k)
and s € LTT770 that Ce (k) tamep (5,7) = 1.

From the I'-invariant decomposition
L+7}”0 —Tx L++7—E

L0 — 70 o L++7;;F

as in [2.14] we have that LT+T7*0(k) is precisely the image of L**75(k) under the
norm map. According to the decomposition of L7y in elements of L++7’Eb’o(k:)
are precisely of the form y® g for 4 € Y and g € LG, g(k). According to the
properties of the Kottwitz homomorphism elements of LT+770(k) are precisely
of the form N((1 —v)u® g) for p € Y and g € LT"G,,, g(k). By the description of
L™ Gnp in for all such g, vg(g) = 0. Hence it suffices to show Ce(x) tame (N (A®
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fN(1=-v)p®g)=1for \\p€Y, f € LG, pg(k) and g € L**G,, p. We have

Cg(k),tameE(N()\®f),N(<1 — VU [L@g H{y f ]/J g}tanl:e]jyj (1- V):U«).

ij=1
Since vg(g) = 0, we have
vE(9)
(Wif g} = (_1)”E(f)”E(g)% —1
where f = ag-u’?() . f, asin . The result follows. n

Proposition 2.3: LT+—T"0 acts trivially on Yy and T™C acts trivially on L++—T?9.
We conclude that for every choice of splitting L*+7°0 — LT inducing an inclusion
T — L0,

LTO = [++-770 x 70

and

}A/F X L%OZ L+—;’_7-b70 X (Y/r X TF’O)

PROOF: The result follows from and the above lemma that Lt+7T70(k) lies
in the center of L’f(k) n

Proposition 2.4: The action of T on Yr lifts to an action on Y. For h € £ =
LieT™? and A € Y, we have

Cyr(exp(h), A) = P
where exp : t© — TT0 is the exponential map, and e : C — G, is the exponential
function. Hence the action of T"° on Y is identical to the one in |BK04, sec. 4.3].

PROOF: By the description of the section s, from [2.6] s,((1 —»)Y) C TT°. Since
L+770 is split from [2.7and TT0 C L+770, Cpr is trivial on T x s, ((1 —v)Y) and

therefore lifts to an action of 770 on Y by

T = 2.8,(A)
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where we consider s, as a map Y — LT by pre-composition with the projection
Y — Yr.

Now fix A € Y and recall s, = (Noev,)-v for some map v : Y — T, Since C-
is trivial on 779 x TT0 for A € Y the action of T on s,()\) equals the action of
7" on (N oev,)(A). The map x — Cp(X, (N oev,)())) is a group homomorphism
between the connected groups T7° — G, x and thus is determined by the induced
map on Lie algebras & — C. In particular, it suffices to compute the mth multiple
of T — G, and show that it gives exp(h) — ™" by dividing the induced
map on Lie algebras by m. To this end, write h!' = YT @, C and h = A ® log(a) for
A€ YT and a € Gy 50 exp(h) = A® a = A(a) € T"0. Then for p € Y, by [2.16]

m.Cpr(exp(h), (N 0 evy)(A)) = Cew tamer (exp(h), N(evu(p)))

= Cg(k),tameE()\ ® a, N(,U (%9 U)>

i\ ie1 BOW.p)
= {av Czu}tamelE o .

Since A is I-invariant and B is [-invariant, >~ B\, v'.p) = Y0 B\ p) =
mB(\, p). We also have {a, (U} tame, = ¢ = a. Since eBO@log(a)p) — B the

result follows. -

Proposition 2.5: The surjection Vi 3 LTO = LT has kernel precisely the image of
G, — LT x Yy under the map x — (x,271) into the product of the central G, ). of
Yy and the central G of LTO .

PROOF: The kernel of LT0 x Y¢ — LT lies in the neutral component LT x G k-

Since the map is multiplication, it the kernel is precisely the set
{(z,y) € G X G - xy = 1}

where the left G, is the central G, of LT and the right G, ; is the central G,

of Yi. This is the injective image of G, ; as described. n
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Lemma 2.19: Up to equivalence as central extensions, the image of the cocycle for

}A/p lies in . for some r > 0.

PROOF: As a central extension, Yr is determined by the pullback Y from the projec-

tion Y — Yr. By the [Bro94, V.6 ex. 5|, there is a short exact sequence
0 — Ext(Y, i) — H*(Y, i) — Hom(A?Y, p1,) — 0

where the first map is the inclusion of abelian central extensions into all central
extensions and the second map takes a cocycle for a central extension to the associated

commutator. Since Ext(Y, A) = 0 for any abelian group A as Y is free,
H2(Y, p1,) = Hom(A?Y, p,.)

and the central extension Y is in fact completely determined by its commutator. The
image of the commutator for Y in Gy, must be finitely generated because Y ® Y is.
Hence the cocycle for Y lies in (- for some integer r > 0, therefore the cocycle for Yr

satisfies the same. -

Remark 2.23: Constructions in [BK04, [Lep85, sec. 4.5, resp. 4] required the choice

of a cocycle for the commutator for SA/, and they turn out to be immaterial.

We conclude that by [2.3|that s, : Y — LT (k) and a choice of splitting LT7 —

LT defines a presentation:
YF X L'A7—O = L++’A_T17’O X (YF X TF’O)

Taking the quotient by Gy, in the embedding 2.5 we thus have proved the main
result of this subsection 2.8

2.2.6 Representations of Heisenberg Central Extensions

We define the notion of a representation of a Heisenberg central extension LT. We

show the category of representations is semisimple and describe the irreducible objects
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in terms of representations of a distinguished finite subgroup of LT.

Let k =C, FF=k((t)) and T be a torus over F. Let E/F be an extension such
that Tg is split of rank d. Put F = k((u)) for some u™ =t where m = [E : F|. Let
[' = Gal(E/F) be the finite cyclic Galois group with v a choice of generator. Fix a
primitive mth root of unity ¢ defined by the property that v(u)/u = (. Let u, denote
the group of rth roots of unity in k> for each integer r > 1. Let X = Homg(7Tg, G, k),
resp. Y = Hompg(G,, g, Tg), be the (absolute) character, resp. cocharacter, lattices
with their canonical I" action.

Let LT be a Heisenberg central extension, as defined in . Let B be the
D-invariant even symmetric bilinear form associated to L7Tin Fix a choice of

splitting LT770 — LT from and obtain the induced decomposition

~

LT 2 (LT x (Y x T™)) /G

from Recall from definition that T := LieL++~7790 is a formal Heisenberg Lie
algebra, the formal completion of a Heisenberg Lie algebra [ that has positive part [,
with [ = LieL*+77°. For each p € C\{0}, recall the notion of a level p representation
of a Heisenberg Lie algebra in and the fact that the category of level p Heisenberg

Lie algebras as semisimple with exactly one irreducible object up to isomorphism
T = Indfc@u(c

where [ acts by 0 and C acts by 1.

Definition 2.30: A level p representation of Yr x TT0 is a representation V such
that the central G, 1 of Yr acts on V by the character x v+ P and the action of T'°

on V is diagonalizable, i.e., V splits into a direct sum of weight spaces for T .

For the remainder of this subsection, we will be most interested in the case p = 1.

Definition 2.31: A representation of a Heisenberg Central extension LT equipped
with a splitting LTT° — LT isa representation V' such that:
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1. The induced representation of the formal Heisenberg Lie algebra [ = LieLT is
a level 1 representation in the sense of [2.5
2. Under the decomposition induced by the splitting LTT"° — LAT,

~

LT = (L+-T70 x (Y x TT9) /G s

the induced action of Yex T onVois a level p representation for p =1 in the sense

of [2.30.

It will turn out that a representation V of LTis determined by a distinguished
subspace Q(V') defined as follows.

Definition 2.32: The vacuum space Q(V') of a representation V' of LT relative to
a splitting LY7°0 — LT is the fized point space

QV) =VETTY,

Hence Q(V') is functorial in V.

Recall from Y has cocycle with values in p, for some integer » > 0. Hence
?p is the pushout by the inclusion p, — G, of a p,-central extension of Yp that
is also a canonically sub-central extension of Yp by the inclusion p, — G,,. Let us

introduce the associated distinguished finite subgroup:

Definition 2.33: Let ¥ := Yrior. The principal finite Heisenberg group ) of
Yr is the restriction to % of the u, sub-central extension of Yr. For an integer p > 0
level p representation for S is a representation such that the central Wy acts by the

character x — xP.

Remark 2.24: 3 does not depend on a choice of splitting LTT°0 — LT but may

depend on the choice of section Yr — LT to the Kottwitz homomorphism.

Lemma 2.20: (analogous to [BKOJ, sec. 4.4]) Let ¥ be the finite Heisenberg sub-

group of Yr. Suppose B is nondegenerate. Then the centralizer of T in Vi x TT0
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18
N x T C Yp x TH0

In particular T™C acts trivially on 3.

PROOF: Let Y be the restriction of i by Y — Y¢. Recall from that for h € h”
and \ € Y, the action of 770 on Y is defined by the commutator

Coop(exp(h), A) = eP0)

Since B is nondegenerate, it induces a perfect pairing h' x b — C. The result follows
from the fact that the preimage of Y,, o, = X in Y lies in the orthogonal complement

(h")* defined by B. -

Remark 2.25: A representation of S x TTO where the restriction to S is a level D
representation and the restriction to TV is diagonalizable, is the same thing as an

X, (TT0)-graded level p representation of 3

Representations of groups, such as 2, that are central extensions of finite abelian
groups are well understood and classified by characters of the center. We record the

result here:

Lemma 2.21: [BK04, 4.5.3] The category of level 1 representations offl 18 Semisim-
ple with finitely many irreducible objects classified by characters of the center. They

all have the same dimension d satisfying
& =12/Z(5)

Definition 2.34: The defect value of of LT is the number d as above; the dimension
of an irreducible representation of the principal finite Heisenberg group S associated

to LT.

We first reduce the problem of determining the representation theory of LT to

that of level 1 representations of Yy x 770,
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Theorem 2.9: Fiz a splitting L+ 7% — LT. Then Q(V) is stable under Yy x TT0

and there is a canonical equivalence of categories
Representations of LT — Level 1 representations of Viox 70

V= Q)

with an inverse given by

LT
Ind(L++ATb»0X(YFNTF’O))/Gm’kM < M

where LT < L+T70 qcts on U trivially and the central G, of LHT%0 acts

by the identity character.

PROOF: The fact that Q(V/) is stable under Y7 x TT0 follows because L++770 com-
mutes with Y x TT°. Hence the functors in both directions are well-defined. It
suffices to show they are mutual inverse.

A representation of LT is canonically equivalent to a representation of LHH—Tr0x
(f/p x TT%) where both the central G, ;. of LT and the central G, of Yr act by the
identity character. Let [ be the Heisenberg Lie algebra whose formal completion is
[ = LieL++~779. Now let 7 = 7, be the level p = 1 Fock space from [2.2| as a module
for [. Then

7 LieL++—7%0
m = Lie(Ind "7 7 C)

Ji.e., m is integrable, where the central G,, ; of LHT0 acts by the identity character

and LT+70 acts trivially. Observe that also

LHH=T2:0 5 (YpxTT0) )
LT+T:0% (YpxTT:0)

7 = Lie(Ind

where Yi x TT0 acts trivially on C. Therefore the canonical functorial isomorphism

from 2.2

U AT L+ =T20x (YpxTT0) ~
LieV &~ Lle(IndL""FAT"’OX(YFXTRO) QV) =rQ(V)
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Li L-H:,— 2,0 5 (Y- TE>0
M = Q(Ind¥er T OTAT ) ypy
LieL++T7%.0x (Yp xTT:0)

as [-modules, where [ acts on m and Yp x M0 also acts on Q(V), integrates to a
canonical functorial equivalence of L7750 x (Yr »x TT0) modules

V NI dL++ TbOX(YpNTFO) (V)
LH+T2:0%x (YpxTT:0)

LA+ = T5.0 5 (P xTT-0
M = Q(Ind" 70O Dy,
LHA+T20x (YrxTT:0)

The result follows. n

Theorem 2.10: Suppose B is non-degenerate, inducing an injection B : X, (TH0) —
X, (THO)Y = X*(THO) with the second isomorphism being canonical. The category of
level 1 representations of Vi x TTO s semisimple, and any such representation is

induced from a representation of X x TV and is an equivalence of categories

Level 1 representations of Yo T &= X*(TT0) /B(X,(T"°))-graded level 1 representations of %

@/\GB(X*(TF,O))U)\O X (CA = IndYFNT U — U, a+B(X.(TT»0))

x7T7T,0
for a € X*(TM).

PROOF: This proof follows [BK04, 4.4] where Vi was replaced by some other central
extension given explicitly terms of a formula. We only check here the same proof goes
through without needing to know the exact commutator for Y and that [2.4]and
are enough.

Since B is nondegenerate, it induces an injection of the quotient of by torsion of
the coinvariants YT cotor = YT cotor ©® C = tr £> t'V. Let Q be a representation of
Yr X T™0. For a € X,(T™0) let €, denote the a-weight space. For A € Yi denote
the image in YT cotor and A any lift in Yp.

We first claim the following auxiliary properties. Fix a € X*(TT%) such that €,

1S nonzero.
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(i) For A € Yp,
Ao =y o

In particular, each weight space €2, is stable under 3.
(ii) The space

> YpxTT:0
YF~Qa = @XEYF,MMQB(XHOC = Indngm Ua C Q

is stable under Yy x TT0.
(iii) The submoduleYr.Q,, of Yy x TTO is irreducible iff each or any QB(X)

irreducible for 3.

4o 18

Let’s prove (i), (ii), (iii). For (i), the result follows form the computation of
the commutator action of T on Yi of . For (ii), it is enough to observe that
Yr.Qa is stable under the subgroupsYr and 70 that together generate Yy x 170
For (iii), suppose some Qp),, is irreducible for 5. Then by (i) and the fact that

all representations of 3 have the same dimension, every {2 B( is irreducible for 3.

N)+a
Any submodule V' C Yr.£2, must have a compatible weight space decomposition, each
weight space a submodule for Y. Since every Qp(3)+a Is irreducible for 3,V =Y.
Conversely suppose Yr.Q,, is irreducible for Yy x 770, Let v,w € QB(X)Jm be nonzero
vectors. By assumption there exists x € Yr x TT0 such that zv = w and it suffices
to show the first co-ordinate of z lies in 3. This follows from (i).

Let’s now use (i), (ii), (ili) to prove the theorem. Let us show € is completely
reducible. For any a € X*(TT%) such that €, is nonzero, by (iii) the sub-module

Ve, is completely reducible because each €2 B(N+a 15 completely reducible for 3.

+a
Choosing a among a set of representatives of X*(T1°)/B(X,.(T")), we conclude
that € is completely reducible. This shows the category of level 1 representations
of Y x TT0 is semisimple. The fact the functor given above is an equivalence of

categories follows from (ii) and (ii) since every irreducible component of € must be

stable under Yp. The result follows. -

Remark 2.26: is a generalization of [Bei06), 1.9] which classifies the represen-
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tations of LT in the case when T is split, so TV =T, S is the trivial group, and the
category of X*(T'0)-graded representaions of © becomes the category of YV/B(Y)-

graded vector spaces.

Remark 2.27: Two different choices of splitting LTT°0 — LT are determined by
a morphism L*T"° — G, 4, by dividing the two splittings. Since L*+T*° is pro-
unipotent, such a morphism is determined by the restriction to T'°, i.e., by a charac-
ter for T™O. Since the T™C-weight spaces for an irreducible representation of LT, the
defect d has an intrinsic definition as the dimension of a single weight space of the
vacuum space of any irreducible representation of LT for the inclusion T — LT
induced by any choice of splitting LTT"° — LT. In particular d is independent of
the choice of splitting LT™T° — LT.

According to representations of L7 induced from a representation of 3 that
is a single weight space for 77 are especially easy to understand and they are the

intended application for the next chapter [3| We record the corollary here:

Corollary 2.4: Suppose an X*(T9)/B(X.(T"9))-graded representation U of S has

only one graded component. Then

U

12

D v
AeX, (TT0)

where for each X, T acts on Uy by B(\) € X*(T™°) and Uy is stable under 3. In

particular, if a given representation V. of LT is given as

@ 7T®U)\

AEX, (TT0)

v

12

where LT+=T70 acts on w, T™ acts on Uy by B(X) and each Uy is stable under 3,

then we have a characterization of the vacuum space

Q)= @ U

AEX, (TT.0)
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and V is irreducible under LT iff any Uy 1s irreducible as a S representation iff every
U, is irreducible as a 3 representation.
Furthermore any morphism V. — W where W is another LT representation 1S

injective iff it is injective on any of the U,.

2.3 Classification and Generic Cocycles for Central
Extensions of a Torus by K,

Let F' be any field, not necessarily C((¢)), and 7 be a torus over F. Let E/F be
a Galois extension such that 7Tz is split. This section concerns some computations
about the category of central extensions of 7 by Ko p. We essentially reproduce the
techniques in [BDO1]| but slightly modify them to give us the explicit computations.
The techniques are disjoint from the remainder of this paper and only the results
will be used. The results are listed below and the proof is given in later subsections.
Suppose T is a torus over F' and E/F is a Galois extension where Tz is split. Let I' =
Gal(E/F). Let X = Hom(7g, G, g), resp. Y = Hom(G,,, g, Tr), be the (absolute)
character, resp. cocharacter lattice, both as I'-modules.

Recall the sheaf Ko and the presheaf K, on the big Zariski site Spec(F)zar
from[2.2.3] For a group scheme G over S and an abelian sheaf A on S, let CExt(G, A)
be the Picard category of central extensions of G by A.

We have the following characterization of the group of isomorphism classes of

CExt(T, K ), where the group structure is induced by the sum of cocycles.

Theorem 2.11: We have a short exact sequence of abelian groups
0 — HYT, X @z B*) % moCExt(T, Ky r) % AdmSym*XT — 0

where AdmSym?X C Sym?X is a certain subset of ‘admissible’ quadratic forms,

realized as the kernel of a connecting morphism in a long exact sequence

Sym?*X" — H*(T, X ® EX)
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where:
1. For & € myCExt(T, Ko, r), the map p gives the commutator for the base change
Er as in[2.3
2. The group HY(T', X @z E) consists of Galois descent data for the trivial mul-
tiplicative Ko g torsor Ey g on Tp, where X @z E* is identified with Aut(& g).

We also have the following description of the generic cocycle for a central extension
of T by Ky p. The statement of the computation uses a Galois descent property for
K,  of function fields:

Theorem 2.12: [CT83, Theorem B] in characteristic 0, [Sus87| in any character-
istic, for a geometrically integral F-variety Z with F-rational point and a Galois
extension E/F,

HY(T, K2(E(Z))/K»(E)) =0

and the natural map Ko(F(Z)) — Ko(E(Z)) induces an isomorphism
Ky (F(Z))/Ka(F) = Ky(E(Z))/ Ko (E).

Theorem 2.13: Let £ be a central extension of Tby Ko p and Eg the base change to
E. Letc € H'(TZ, K5 )™ be a cocycle for Eg and { f,}er € CHT,HY (T, Ko p)"™)
be a 1-cochain (where each f, € H(Tg, Ko p)"™ ) that defines the descent datum for
Ep. Let d be the image in Ko( E(TZ))/ K2 (E) of the restriction of c to the generic point
of TZ. Using H'(T, Ky(E(Tg)/K2(E)) = 0 from[2.13, we have that d is a coboundary
determined by some n € Ky(E(Tg)/Ko(E). Then the element

d = (prj — p* +pr3)(n) € Ky(E(Te)/ Ky (E)

s [-invariant and gives the corresponding generic cocycle for £ under the isomor-

phism K(F(T))/K2(F) = Ko(E(Tg))/K2(E) from[2.13

This implies the following fact that we have used in the proof of
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Lemma 2.22: The commutator Ce : T? — K r a central extension € of T by Ko p
factors through the presheaf Ko p and is py(p) as m where B s the bilinear form

p((€]) from 11

Remark 2.28: This allows us to directly define a Heisenberg central extension LT,
without reference to the Heisenberg Lie algebra LZeLJf*v:T"vO, by starting with the cen-
tral extension of T by the presheaf Ko p and taking the pushout of the induced central
extension of LT by LKs  via the Contou-Carreré symbol [0Z16, 2.2] LKy p — Gy, .

PROOF: Suppose &g has commutator py(p). Let C € X ® X such that B = C+7°C
such that the d in is given by the image of U(C) in Ky(F(T2))/K2(E), where
VU is as in Now observe that the element (pr{ — p* + prj)(n) is invariant under
transposition because 7" = p (because T is abelian) and 7*pr; = prj, 7*pr, = pr;.
Hence the commutator associated to d — (prj — p* + pr3)(n) is d — 7*d. By [2.10] the
generic commutator for £ is also given by d 4+ 7*d and thus also U(B) . According
to [BDO1, 8.8], a 2-cocycle T? — K is determined by its restriction to the generic
point. Since any commutator associated to a cocycle is also a 2-cocycle, as proved
in the lemma below, this shows that Cg is the composition of W(B) with the

natural map K, p — K p. This is what was desired. n

Lemma 2.23: Let H, A be presheaves of abelian groups and c - H*> — A a 2-cocycle.
Then —7*c is also a two-cocycle and therefore so is the commutator c — ¢ associated

to c.

PROOF: We recall that the cocycle condition is that for all by, by, b3 in H,
c(ba, bg) — c(b1bg, bs) + c(by, babs) — c(by, by) = 0 for all by, by, bs.
Substituting ¢ for —7*c gives
—(c(bs, ba) — c(bs, biba) + c(babs, br) — c(bz, br))

= C(bg, bl) — C(bgbg, bl) + C(bg, blbg) — C(bg, bg)
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Applying the transformation (by, by, b3) — (bs, by, by) and commutativity of H gives

us that the above element is equal to

= C(bg, bg) — C(blbg, bg) + C(bl7 b2b3) — C(bl7 bg)

for all by,by,b5 € H. The above element is zero since c is a 2-cocycle. The result

follows. ]

2.3.1 Multiplicative Torsors, Galois Descent, Homological Al-
gebra

We review some of the foundations in [BDO1) sec. 1| and re-frame them in terms of
derived categories for our computations. The main purpose is a rephrasing of [BD01.
1.9.(2)] and |[BDO1) 2.4], which were both only stated for the case of K5 g torsors over
a scheme X over S, in a more general setting of group actions on chain complexes.

This allows us to apply them to the setting of central extensions of 7 by K p.

Definition 2.35: A Picard groupoid is a symmetric monoidal category where every
object is invertible. Let C be a Picard groupoid and [ the symmetry constraint. We
say a Picard groupoid C is strictly commutative if for all X € C, the symmetry
constrammt fxx : X ® X = X ® X s the identity map. A Picard functor is a

morphism between Picard groupoids preserving the tensor structure.

Let S be a base scheme. Let A be a sheaf of abelian groups on the big Zariski
site Sz... Denote by Ax the restriction of A to X. Let X be a scheme over S.

Definition 2.36: By an A-torsor on X we mean an Ax-torsor on X. The strictly

commutative groupoid of A-torsors on X is denoted by
Tors(X,.A)

The tensor structure is denoted by + called the sum of torsors, where for P,Q €

Tors(X,.A), P+Q is defined to be the pushout of the ADA torsor P®Q under the sum
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map A® A — A. The trivial A-torsor on X is denoted & x. The commutativity

and associativity constraints are inherited from those for the operation @.

Remark 2.29: The reason that Tors(X, A) is strictly commutative is that given
P, Q € Tors(X, A) with a cover U — X trivializing P, Q, we have that (P + Q)|u
is the sheafification of the sheaf of sections of Ply @ Qlu quotiented by the relation
(r,s) = (r",8") if r+s=s+r. Hence the symmetry constraint, induced by swapping
the order of addition, P+ Q = Q + P s the identity and there is a direct equality
P+ Q=09Q+P as A-torsors over X. This condition is actually stronger than strict

commutativity, which requires this to hold only for Q = P.

Suppose now X has a distinguished section e : S — X.

Definition 2.37: The strictly commutative Picard groupoid of pointed A-torsors on
X s denoted by
Tors. (X, .A)

and is the category of pairs (P,B) where P € Tors(X, A) and 8 : e*P = & is
a trivialization. A morphism of pointed torsors between (P,) — (Q,n) is a

morphism of A-torsors P — Q inducing a commutative triangle

eP — e*0
B i \/77
&o.s

The sum structure + on Tors.(X, A) is defined by (P,3) + (Q,n) = (P + Q,B+n)

using the canonical isomorphism &y s + s = Ep .

Now suppose X = (G is a group scheme over S with multiplication map u :
G x G — G over S and e : § — G is the unit section. Let pr, : G" — G be the

projection to the ith co-ordinate, for i =1,---  n.
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Definition 2.38: The strictly commutative Picard groupoid of multiplicative A-

torsors on GG, or central extensions of G by A is denoted by
CExt(G, A)
and is defined to be the category of pairs (P, ) where P € Tors(A, G) and
B priP +pryP = 1P

15 an isomorphism. We refer to 5 as the multiplicative structure of the central
extension P. A morphism (P, ) — (Q,n) is defined to be a morphism P — Q in

Tors(A, G) inducing a commutative diagram

prP 4P S P

{ {
priQ + pr3Q 5 owQ

of A-torsors on G x G. The sum of two central extensions is defined to be (P, ) +
(Q,n) = (P+Q, 5+n) where it is checked that B+n defines a multiplicative structure
on P+ Q. According to [BDO1, 1.5] a multiplicative structure of an A-torsor on G
gives rise, by restriction to e, a canonical pointed structure with respect to e, i.e.,

there is a canonical forgetful map
CExt(G, A) — Tors. (G, A).

We call the image of a central extension (P,B) of G by A under this map to be
the underlying pointed torsor, and similarly we call P so for the underlying A-

torsor.

Remark 2.30: The correspondence between central extensions of G by A as group-

values sheaves on Sz, and multiplicative A torsors on G is spelled out in [BDO0I,

1.4].
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Let us now recall a theorem [AGV™73, tome 3, XVIII] that allows us to study

small strictly commutative Picard categories using homological algebra:

Theorem 2.14: The category of small strictly commutative Picard categories, with
morphisms Picard functors, is equivalent to DI%VU(AD), the derived category of chain
complexes of abelian groups with cohomology supported in degrees 0 and 1. An equiv-

alence s given by restriction of the following morphism
D(Ab) — small strictly commutative Picard categories

by DI%U(ADb) — D(AD). It associates a chain compler K* a small strictly commuta-
tive Picard category C(K*) is defined as follows:

1. The objects of C(K*) are Z(K"); the 1-cycles.

2. For a,b € Z(K'), a morphism f : a — b is an element f € K° such that
df =b— a, where d s the differential map of K*.

3. The composition of morphisms in C(K™*) is induced by the group structure on
K°.

4. The addition bifunctor in C(K*) is induced by the addition structures on K'
and in K°.

5. The associativity and symmetry constraints are trivial, induced by the abelian

group identities of elements of K' and of K°.

Definition 2.39: Suppose C is a strictly commutative Picard category and C = C(K*)

for a chain complex K* as above. We say C is presented by K*.

qui
~

S
In particular, a quasi-isomorphism K* = L* between two chain complexes K*

and L* induces an equivalence of categories C(K*) = C(L*).

Definition 2.40: Suppose C is a small strictly commutative Picard category and K*
15 a chain complex of abelian groups.
1. We say K* wncarnates C if there is a chain compler K* and an equivalence

of Picard categories C = C(K™).
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2. The group of isomorphism classes of C is defined to be the set moC with
group structure induced by the sum in C.

3. The automorphisms of the trivial object is denoted by mC.

Hence by definition, of C = C(K*), then moC = H'(K*) and mC = HO(K*).
Observe that the Os and 1s are switched. For all P € C, the functor (—) ® P induces

an isomorphism mC = Autc(P).

Remark 2.31: Given a chain compler incarnating Tors(X, A), it is described in
[BD01, 1.9] how to obtain another chain complex incarnating Tors.(X,.A) and CExt(G, A)
when X = G.

Let us now study the notion of descent of a strictly commutative Picard category

by action of a group and connections with group cohomology.

Definition 2.41: Suppose C is a category and ' a group. A right I'-action on C is

an anti-homomorphism of monoids

So in for example, e* = 1d¢ and (70)* = §* oy* for 7,6 € I' and the identity e € T.

Remark 2.32: Usually the requirement is not that (v0)* = 0* o v* holds as a strict
equality, but instead one asks for a system of natural isomorphisms of functors (79)* =
0 o* for v,6 € I satisfying some compatibility constraints. However, for our ap-
plications we are only concerned with categories of the form C(K™*) for some chain
complex K* of I'-modules and the I'-action on C is inherited from the I' action on

K*. For such T'-actions, the identification (yd)* = 0* o v* is a strict equality.

Example 2.5: 1. Suppose I' C Aut(X). The category Tors(X,.A) has a right T'-

action by v +— ~v* where v* is the usual pullback of torsors by ~.



67
2. If e € X is a distinguished S-point and 1" preserves e, i.e., yoe = e for
all v € T, then T acts canonically on Tors.(X,.A) by pullback of torsors and the
trivialization at e.
3. If X = G is a group scheme over S with unit e and I' acts on G by group
automorphisms, then I acts canonically on CExt(G,.A) by pullback of torsors and

the multiplicative structure.

Suppose C is a category equipped with a right action of I'.

Definition 2.42: The category C' of I'-descent datum, or homotopy fized points,

is the category of pairs

(P7 {f'y,P}veF)

where P € C and {f,p}er, called the descent datum for P, is a family of isomor-
phisms

fop PSP

that satisfy the cocycle condition: For all v,6 € I" and P € C,

frop =0"fypo fsp

as maps

P 5P LT 5P = (o).

A morphism (P,{fyp}rer) — (Q,{¢y.0}er) is a morphism P — Q inducing a
commutative diagram
Eit v*P
!
% Q

O «~ 3

for each v € T

Remark 2.33: IfC is a strictly commutative Picard category with sum + and ' acts

on C by Picard functors, then C' is also a strictly commutative Picard category with
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sum

(P, {f%P}’YEF) +(Q, {g%Q}veF) =(P+Q, {f%P + g%Q}VEF)

where it is observed that {fyp + gy.0}yer is a descent datum for P+ Q.

Example 2.6: Suppose S = SpecF is a field and E/F is a field extension and I' C
Aut(E/F). For C being either of Tors(X,.A), Tors.(X, A), or CExt(G,.A). Then I’
acts on C by pullback by Picard functors and C* is the usual category of descent datum

over E.

Suppose I" is a group and K* € D(mod — I'), where mod — I' is the category of
right I'-modules. Then C(K*) has a canonical right I'-action induced by the action of
[ on K*.

The following theorem [BD01, 1.9.(2)] was stated and proved for the special case
of a chain complex K* incarnating Tors(X,.4). However, the same proof goes forward

for general K*. We present it below for completeness.

Theorem 2.15: The category of descent data C(K*)' is incarnaled by the total Hom
complex RHom™ (Z[0], K') € D(Ab) where Z|[0] is the complex concentrated in degree
0 with term Z equipped with the trivial I'-action. To be precise, there is a canonical

equivalence of Picard categories
C(K*)' = C(RHom*™ (Z[0], K)).

In particular, mC(K*) = HY(T, K*) and moC(K*) = HY(T, K*) where H'(T',—) are

the ith hypercohomology groups.

PROOF: Let us compute C(RHom™ (Z[0], K)) and see that it is canonically equivalent
to C(K*)'. Let BZ, — Z be the bar resolution as [-modules and apply the derived
functor RHom(—, K*) : D(mod —I') — D(Ab) to BZ,.. We obtain the total complex
of the double complex Hom™ (BZ, K) = {C(I", K?)},, where C%(I', —) is the group
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homology g-cochains. The first few terms of Hom™*(BZ, K) are

ag T
oNr, K% B ovr, K
o T —ap T

o 8 w4

Unraveling the definitions, C(RHom™ (Z[0], K)) is defined to be the category of pairs
({fy},er, E) where E € K' and {f,},er € CY(T', K°) such that:

1. 4%(F) =0« E € Z'(L): this is the condition precisely that E is an object of
C(K™).

2. dY({f,}er) —dP(E) = 0 where dY* ({f, },er) is the 1-cocycle v — d%(f,) and
d°(E) is the 1-cocycle v — ~*E — E. This condition is precisely that for v € T, f,
is an arrow E — y*E.

3. A ({f, }her) = 0 where A% ({f, },er) is the 2-cocycle

(7,0) = 0" fy — fro + fs.

Given part (2) above, this is precisely the condition that f,s : £ — (v0)*E = §*v*E
is equal to the composition

EB 5B R,

This defines an association between objects of C(RHom™(Z[0], K')) and objects of
C(K*)T.

Let us define the association between morphisms. A morphism in C(RHom™(Z[0], K))
between ({f,},er, F) and ({g,},er, F') is by definition an element a € K° such that
d% = F — F and d%a = {g, }..er — {f5 }yer where d2a is the 1 cocycle v — v a — a.

The first condition is that a is a morphism £ — F in C(K*). The second condition
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is precisely that for all v € I, the square commutes

E 5% F
Iy \L 9y l/
v*E v_g v*F

This is the condition that the map a in C(K™) respects the descent datum for E
and F. This defines the association between morphisms of C(RHom™(Z[0], K')) and
morphisms of C(K*)T.

Finally, the sum stricture on C(RHom**(Z[0], K')) comes from that in K'&C! (T, K°)
and thus coincides with that of C(K*)'. The result follows. n

Definition 2.43: The neutral component of a Picard groupoid C, denoted C°, is
defined to be the full subcategory of objects isomorphic to the unit.

Suppose C is a strictly commutative Picard category with sum +. Suppose I is
a group acting on C on the right by Picard functors. There is a canonical induced

action of I" on myC and 7;C and the action of I" on C restricts to an action on C°.

Lemma 2.24: 1. The forgetful map C* — C induces a group homomorphism mo(CT) —
7T0(C)F.

2. There 1s a short exact sequence
0 — m(C®") = m(Ch) = Q =0

where COT == (CO) and Q is the image of (C') — mo(C)F.

PROOF: For all P € C under the image of the forgetful map C!' — C, we have for
all v € T, there exists an isomorphism P = *P. Therefore the class [P] € moC is
I'-invariant. This proves 1.

The kernel of mo(C") — m(C)' consists of classes of pairs (P, {f,},er) such that
[P] =0 in mo(C), i.e., such that (P,{f,},er) € (C°)F. This shows 2. -
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Suppose C = C(K*) for some chain complex K* equipped with a right T'-action.
We obtain the following homological algebra interpretation of the above lemma and

generalization of [BDO1] 2.4]:

Theorem 2.16: Suppose C = C(K*) is presented by a chain compler K* € DI®(mod—
[') where K* as no nonzero negative degree terms. Equip C with the right T'-action
induced by the action of T' on K*. Let Q be the image of the induced map mo(CY) —
mo(C)F. Then:

1.In the derived category, K* fits into a distinguished triangle

7(10[0} — K" — WoC[—l] — .

where for an abelian group A we mean by A[n] the complex concentrated in degree n
with term A.

2. The short exact sequence
0 — m(C™) — m(Ct) - Q — 0

15 canonically identified as a truncation of a long exact sequence of hypercohomology
of the distinguished triangle of (1), and Q is isomorphic to the kernel of a connecting

morphism in a long exact sequence.

PRrROOF: 1. Since K* is concentrated in nonnegative degrees, there is an injection of

chain complexes

L Z(K%)[0] = K*
where Z(K°) = HY(K*) = m,C is the group of 0-cycles of K*. Taking the mapping
cone C(¢) of the above morphism, we obtain a distinguished triangle
mC[0] - K* — C(1) —

The long exact sequence of cohomology groups gives C'(1) ~ moC[—1].

Q0
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2. Apply the characterization and take the long exact sequence H*(T', —) of

hypercohomology groups on the distinguished triangle mC[0] — K* — mC[—1] —.
Since H(T', C'(+)) = 0, we obtain

(mC)" = HYT, K*) = m (C")
and an exact sequence of abelian groups
0 — HY(T, mC) — HYT, K*) & m(C") — HY(T, moC[—1])] & (moC)" 2
where 0 is the connecting morphism
HY(T, mC[—1])] > HY(T', mC).

The definition of the map mC[0] — K* as inclusions of automorphisms of the zero
element identifies mo(C*T) & H'(T', 7,C) and identifies the first map with the injection

To(COY) — mo(CY). Tt follows that @ is identified as the kernel of 9. -

2.3.2 Applications to Central Extensions of 7 by K r

Let F' be a field and T be a torus over F'. Let E/F be a Galois extension such that Tg
is split. We now apply the results of the previous subsection to make explicit compu-
tations about CExt(7, Ky ). We adopt the convention that actions on schemes are
left actions, and actions on rings are right actions. For example for I' C Aut(E/F)
acting on E, we use the right action a.y := v '(a) for v € T and a € E. For an
affine scheme Z = SpecA, write K;(Z) = K;(A). Let Y = Homg(G,, g, Tg) be the
(absolute) cocharacter lattice and X = Hompg(7Tg, G,, g) be the (absolute) character
lattice, and consider X C I'(Tg, Ory,). Hence Or, = F[X] as a ring.

We have the following explicit description of HY(7g, K, g) for i = 0,1,2, given
by combining [BDO1, 3.3.1] with the fundamental theorems in [Weil3, 6.3| relating
K;(R) with K;(R[t*!]) for all i for a regular noetherian ring:
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Lemma 2.25: We have:

0. The map E — O, = E[X] induces an isomorphism
H (75, Ko p) = Ko(Ts) = Z.
1. The inclusion X @ E* — E[X]* — K1(Tg) is an isomorphism, hence
H(Tw, K15) = Ki(Ti) = X @3 EX.

2. Let {—} : R* ® R* — Ky(R) the Steinberg symbol map a @ b — {a,b}. Then
we have

H(Te, Ko.p) = Ko(Ti) = K2E @ ({X @7 B*}, {X ®2 X})
where {—} restricts to an injection X @z E* — Ks(T3) and the only further relations
are {z,z} = {x,—1} for all x € X.

Remark 2.34: In particular, a morphism Tg — K, g is completely determined by its

composition with the natural map K, p — K, g.

Example 2.7: Recall the notion of a normalized morphism Ti — , Kaog from|2.23.

We have for all i > 0, and explicit description of the normalized global sections
HO (T, Ko p)™™ = ({X' @z B*}, {X' @z X"}) € H)(Tg, Ko o)

where ({ X' @z E*}, {X'®7 X'}) is the subgroup given by replacing T with T* in[2.25
We have the following theorem about incarnating the category CExt(7g, Ko g)
from [BDO1, sec. 3]:

Theorem 2.17: 1. H(T7g, K;r) =0 for i >0 and j > 0. Consequently by [BD0I,
1.9.(i)] every € € CExt(Tg, K2 g) has underlying trivial Ko g-torsor.
2. Combined with [BDOI1, 1.9.vii], the category CExt(Tg, Ko ) is incarnated by

the normalized global sections complex

D* =H(Tg, Ky r)[~1] = K2(Tg)""™ 1]
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(we use [—1] to denote the left shift) and the differentials are obtained as follows.

Consider the simplicial scheme
— —

with face maps d;. Then apply the functor H°(—, Ko r)[—1] and take the alternating
sum Y ,(=1)'0; of the face maps. Explicitly, for p =1, the differential is

pff . H* _i_prz . K2(7-E)n0rm N KQ(rTg)norm

Al y) = f@) = flzy) + fy)}-

Furthermore, the incarnation is I'-equivariant, i.e., there exists a I'-equivariant equiv-
alence of categories CExt(Tg, Ko ) = C(D*).

3. We have canonically
7T10EX13(7'E, KQ’E> ~ X Kz EX

by the canonical association between the automorphism group of the trivial torsor with

the global sections H(Tg, Ko ) and the inclusion {—} : X ®z E* — H(Tg, Ko.k)

from [2.25
The isomorphism classes of CExt(Tg, Ko ) are given by

moCExt(Tg, Kop) = Sym?*X

classified by the commutator Tg — Ko as in[2.3

We now apply the results of to compute moCExt(7, Ky r) and the generic
cocycle T2 — Ko . Let D* be the normalized global sections complex from m
For each i > 0, the neutral point e € TA(E) is T-invariant for the diagonal action.
Consequently T' acts by pullback on D' = HY(T}, Ko p)"™ = Ky(T;)™™ and also
on C(D*).
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Remark 2.35: As I'-chain complezes, D* is isomorphic to HO(TA, Ko p) /Ko (E).

Let £ be a central extension of a group G over F' by Ko . The base change &g
inherits a canonical descent data from p*€ that we denote { fcan }yer. By [BDOL, sec.
7], for any reductive group G over F, CExt(G, K i) satisfies Galois descent, i.e., the

base change functor
CEXt(G, KQVF) — CEXt(GE, KQ’E>F

(5, 6) — (gEa ﬁEa {fcan,v}wEF)

is an equivalence of Picard categories. We have a proof of the first main theorem:

PROOF: [of Apply the theoremto the normalized global sections chain com-
plex D*. Use CExt(T, Ko r) & CExt(7g, K2.g)" together with C(D*) & CExt(Tg, Ko.r)
and obtain the precise short exact sequence as required, where ) = AdmSym?X is
the kernel of the connecting morphism. The descriptions of ¢ and p come from the

categorical interpretations in of @ as the image of
To(CExt(Tg, Kop)") — mo(CExt(Tg, Kop))" = (Sym?X)"

and HY(T', X ®z E*) as the kernel. -

Let us now move to computing the generic cocycle for a central extension £ of T

by K27FZ

PROOF: [of2.13] Let D* be the complex of normalized co-chains incarnating CExt(7x, Ko g)
from Let D7, be the complex obtained by restricting each term D? to the generic

gen

point and then taking mod K»(F), i.e.,

Di == K2L<7—Elv+1)/K2E

gen

According to [BDO1) 8.6], the restriction map D* — D?  is a quasi-isomorphism.

gen
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Now consider D* — D?*_ as a morphism of complex of right I'-modules, and apply

gen

the functor RHom(BZ,, —) to D* — D

gen-

Let EP? be the spectral sequence for the
double complex Hom™ (BZ, D) associated to the column filtration. The zero page

E{is

T T
Cl(F,KQE(E)/KQE) — CI(F,K2E<7_§)/K2E) —
ao T T
LT/ KE S K L(TR)KE

where d° = prt — u* + pri. Using HY(T', Ko, E(T})/K2E) = 0 for all i > 0 of

taking vertical cohomology gives the first page E}:

(KoL(Te)/ Ko E)Y —  (KoL(TE)/KoE)' —

We see E7? already achieves the limit of E??. Hence by [BDO1, cor. 8.8] the category
CExt(T, Kor) is incarnated by the bottom row which is also DL, the sub-complex

gen>

of I' invariant elements of Dy, .
Let £ be a central extension of Tby Ky r and &g the base change. Let ¢ €

HO(TZ, Ko )"™ be a cocycle for Ep € CExt(Tg, Ko g) and {f, },er € CH(T,H (T, Ko g)™™)

be a l-cochain that defines the descent datum for €. Let {g,},er be the image of

the restriction of {f,},er to n in CYT', Ko E(Tg)/K2E) and d be the image of the

restriction of ¢|,2 in KoL(72)/K>E. Hence the pair ({g,},er,d) lies in the first anti-

diagonal of EL? maps to 0 in CY(T', Ko E(T2)/K2E). Let n € KoL(Tg)/K2E be be

such that d%(n) = {g,},er. Commutativity of the bottom left square of Ej? ensures

that the element
d—dy’(n) =d— (pry — p* +pr3)(n) € Ko L(T3) /Ko E

also maps to 0 in CYT, Ko E(T2)/K>E) and thus lies in (KyL(T2)/KoE)', ie.,
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d—(pr; —p*+pr3)(n) i T-invariant. Applying the horizontal differential kills the d%°(n)
term and shows d—d¥°(n) also satisfies the cocycle condition. The statement of conver-
gence B = RHom(BZ., Dy, ) gives that the natural map Dy, — RHom(BZ., Dj,)

is a quasi-isomorphism, and shows d — d%(n) is the generic cocycle for &. =
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Chapter 3

From Conjugacy Classes in the Weyl
Group to Geometric Constructions of
the Affine ADE Basic Representation

3.1 The Split Geometric FKS Isomorphism and State-
ment of Main Results

Let us motivate the problem and state the results. First let us recall the classical
(split) FKS isomorphism and its geometric realization in terms of vertex algebras.
Vertex algebras and (twisted modules) for vertex algebras never appear mathemat-
ically in the mathematics of our work, sine we replace them with representations
of Heisenberg central extensions, but it helps to mention them for illustration and
motivation.

Let G be a simple algebraic group over C with Lie algebra g, equipped with the
normalized invariant bilinear form B. Let g be the affine Lie algebra associated to
g, e.g., as defined in [Zhu09, 0.1]. Tt is an infinite dimensional Lie algebra, given
as a one dimensional central extension of the loop algebra g[t*!] of g. There is a
distinguished representation, called the basic representation, V! of g that is the study
of the representation theoretic literature [FK81l [Seg81], Lep85|. It is the quotient of a
Verma module V] of g. The space V] has the structure of a vertex algebra, constructed
in [FBZ04, 1.3] such that V! is a quotient vertex algebra. The motivation to study the

vertex algebra structure is that there is a natural equivalence of categories between
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vertex algebra modules for V] and Lie algebra representations of g [FBZ04, 5.6].

The classical FKS isomorphism of [FIK&]1 [Seg81] is the determination of the vertex
algebra structure of V! when g is simply laced, i.e., type ADE, in terms of a simpler
vertex algebra that can be described explicitly. It is as follows. Assume G is simply
connected and 7' C G is a maximal torus. Let Y = X, (7) be the cocharacter lattice,
equal to the coroot lattice and t = LieT. Let t be the restriction of the central
extension g to t[t*!] C g[t*']. Then t has a unique level 1 representation 7y for
each \ € t¥, called the Fock space with highest weight A for t. The restriction of B
to Y is an even nondegenerate integer valued bilinear form inducing an embedding
B:Y — YV = X,(T) and associated to the data (B,Y,h) is a vertex algebra Vi

called the Lattice vertex algebra, with underlying 6 module
Vy = @acyTB(\)-

The vertex algebra structure on Vy is known and explicitly described in [FBZ04, 5.4].

The classical FKS isomorphism is:

Theorem 3.1: [['K81|, [Seq81] When g is type ADE, there exists an isomorphism of
vertex algebras

Vig) = .

This isomorphism V!(§) & V4 was defined Lie-theoretically. However, it has been
geometrically realized in [Zhu09] as a restriction problem about line bundles on an
infinite dimensional variety. It is as follows. On one hand, there is a Borel-Weil type
theorem for Kac-Moody groups [Kum02, 8.3.12] which states there is a certain line

bundle £ on the affine Grassmannian Grg and an isomorphism of g modules
Vi(§) = T(Grg, L£)Y.

It is an affine analogue for the finite type Borel-Weil theorem replacing g with a finite
dimensional reductive Lie algebra and £ with a line bundle on the finite dimensional

flag variety. On the other hand, the space Grr C Grg is zero dimensional, non re-
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duced, with connected components in bijection with Y, and all connected components
isomorphic. The dual ring of regular functions of the component corresponding to A

is naturally identified with mp(y), giving rise to an identification
[(Grr, Llar,) " = Saey o

which has the same shape of the lattice vertex algebra V4. Indeed a vertex alge-
bra structure on I'(Gry, L], )" and on I'(Grg, £)¥ was constructed geometrically in
[Zhu(9] using Beilinson and Drinfeld’s correspondence between vertex algebras and
chiral algebras, which are algebro-geometric objects. The geometric FKS isomorphism

theorem is thus:

Theorem 3.2: [Zhu09] For G of type ADE, the natural restriction induces an iso-
morphism

F(GI"T, £|GrT)V =~ F(GI"G, E)v

Our goal here is to prove a geometric realization of a twisted version of the FKS
isomorphism in [KP85| that generalizes the classical FKS isomorphism. The twisted
FKS isomorphism is as follows.

Instead of ordinary modules for vertex algebras, we consider twisted modules. Let
w € W be a Weyl group element, acting on Y, giving rise to an automorphism of Vy .
A certain twisted module, M (w) is defined for V4 whose underlying vector space is
described [Lep85] as follows. The map B induces an injection of the quotient of by

. i . B
torsion of the coinvariants Yy, cotor < Yu.cotor ® C = t* < V. Then
M(w) = @Aemu,cotorﬂ-(w)B(A) ® U

where m(w)p(y) is a twisted version of the Fock space and the unique irreducible
module for a twisted version t({u) of t containing t*, such that t acts by B()).
Furthermore, U is finite dimensional and a representation for a finite group S that
is a central extension of the torsion subgroup X =Y, 1o, by some roots of unity. The

twisted module structure on M (w) for Vi is explicitly described in [KP85|. Remark
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that such a decomposition is similar to the decomposition of representations of a
Heisenberg central extension we proved in [2.2.6]
On the other hand, a lift o of w acting on g is chosen and used to defined a twisted
module structure on V1(g) for the vertex algebra Vy. The twisted FKS isomorphism

theorem 1is:

Theorem 3.3: When G is type ADE, there is an isomorphism of twisted modules
for Vy:
M(w) = Orevy oo T(W) By @ U = V(g).

Our primary project is to realize the twisted FKS isomorphism as another restric-
tion problem of sections of the line bundle £ on Grg. To be precise, for any lift o of
w in G,q, we define a subspace space S(o) C Grg that is a replacement for Gry in

the classical FKS isomorphism, such that:

Theorem 3.4: Suppose G is type ADE. The restriction induces an isomorphism
F(S(J)a ‘C|S(U))V = F(GrGa ‘CGr(;)V-

The space I'(S(0), L]s(s))" is identified with M (w) in the following sense. The
space S(o) has connected components in bijection with Yy, cotor and all components
are isomorphic. Each component has underlying reduced locus a finite dimensional
flag variety of a connected reductive group, namely the fixed points M? where M =
Za(T"Y) is the centralizer of the connected component of the torus fixed points. The
space U is identified

U =T(S(0)%eas Lls(ope,,)”

red

having an action of both the finite group S and the algebraic group M7, in fact is
a minuscule representation for M?. Finally, the nilpotent thickenings of S(0)%,, in
S(0)? is controlled by an infinitesimal thickening of a single point whose dual regular
functions is identified with 7(w)p(y). This gives an identification I'(S(0), £]s(»))" =

BAEYi core T(W) B2y ® U. To do this, we also find a maximal torus 7 C G such that
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both I'(Grg, Lar,)” and I'(S(0), L]s(s)) " is also a representation for a Heisenberg cen-
tral extension LT of LT. We then study the map I'(S(0), L]s())" — ['(Gre, Larg)"
using the representation theory of Heisenberg central extensions we developed
In this way, we replaced the use of twisted modules for V3 with representations of
LT.
Some notable features of our study are:
1. We only show I'(S(0), L|s(s))" = I'(Grg, Lar,)" is injective in general for all
w € W and all types for GG, but use preexisting representation theoretic results
in [KP85| that I'(Gre, Lar, )Y is irreducible for LT in type ADE to deduce the
isomorphism. Nonetheless, it demonstrates correct identification of the subspace
S(o) is given, where previously it was not known what suitable subspace is for
a restriction problem in the twisted case, only that the affine Springer fibers

were proposed [Zhu(9].

2. But a fully geometric proof of I'(S(0), L|s())" = I'(Grg, Lar, )" is given for
many w € W without the representation theoretic results of [KP85]. These
w € W are precisely the homogeneous elements, defined in and do occupy
many of the elements, including all of the elements in type A and more generally

whenever w lies in a parabolic subgroup of type A.

3. A conditional proof of I'(S(0), £L|s(s))" = I'(Gra, Lar)" in the remaining cases
is given, on a precise numerical computation regarding the closure 7* over Go,.
of a certain maximal torus 7 C G associated to w and a lift o of w, namely
that the number of torsion elements of 7o F7: equals the defect d([w]), a quantity
also introduced explicitly in [KP85, 10.1] and recalled in[2.34] that depends only
on the action of w on Y and on B. Computer assisted computations have shown
it to be true in type Dg, Dg, but they are omitted from this thesis and we leave

this computation as an open problem.

4. The subspace S(o) contains Fr¢. Conditional on the above computation, we

show that I'(Frs, L]7 )" 2 ['(Grg, Lax,)" which gives another candidate sub-
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space the geometric twisted FKS isomorphism, and in fact a more elegant for-
mulation: for every conjugacy class of maximal tori in G, there exists a rep-
resentative 7 such that the inclusion of the image of LT in Grg induces an

isomorphism on global sections of L.

5. As an auxiliary result, a new, geometric, proof of the classification of the conju-
gacy classes of W by parabolic induction is given, where before in [GP00] it was
done using combinatorial methods and Coxeter theory when W is generalized

to any finite Coxeter group.

3.2 Closure of Maximal Tori in Gy Over Gp,

For an element o of a group, we say o is order m if ¢ = 1 and do not require m
to be minimal. The minimal order of o is denoted |o|. The image of i € Z under
the map Z — Z/mZ will be denoted i. For a group G, let G,q denote the adjoint
group of G, defined to be the image of G under the adjoint morphism G — Autg(G)
or G/Z(G). For any subgroup H C G where G is unambiguously present, we denote
by H,q the image of H in GG,q and not the adjoint group of H.

3.2.1 Parahoric Group Schemes and Affine Flag Varieties

Let us recall some notions, introduce the relevant examples, and prove some basic lem-
mas regarding parahoric subgroups, parahoric group schemes. Let H be a connected
reductive group over ' = C[[t]] and put k = C. By a parahoric subgroup of H(F),
we mean in the sense of [Yulbl 7.1], i.e., the connected component of the stabilizer
of a facet in the Bruhat-Tits building B(H.q(/)) of the adjoint group. There is a
metric on H(F') and Parahoric subgroups are all bounded. In a similar fashion to the
theory of parabolic subgroups in a reductive group over k, every parahoric subgroup
is H(K)-conjugate standard parahoric subgroup defined by the choice of an al-
cove in B(H,q(K)). Each standard parahoric subgroup is associated a strict subset

of the affine Dynkin diagram I, of G in an inclusion preserving manner. A minimal
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parahoric subgroup is called an Iwahori subgroup, which is the affine analogue of
the Borel subgroup of a reductive group over k. Each standard parahoric subgroup
strictly containing the standard Iwahori subgroup is associated to a subset S C I,g
is generated by the parahoric subgroups associated to a collection V of subsets of g
that union to S. In particular, there is a finite set of minimal standard parahoric
subgroups that strictly contain the standard Iwahori subgroup. Each is generated by

the standard Iwahori subgroup and a standard affine root subgroup.

Definition 3.1: Let P be an affine group scheme over Op with connected generic
fiber. The neutral component of P is the open subgroup scheme consisting of the

generic fiber and the neutral component of the special fiber.

We do not use the details of Bruhat-Tits theory, and are only concerned with
one particular example of parahoric subgroups explicitly described below. Suppose
G is connected reductive over k with base change Gy and o is an automorphism of
G of order m. Let E/F be the degree m extension with F = k((u)), u™ = t. Let
v € I':= Gal(E/F) be a choice of generator and ¢ a primitive mth root of unity such
that v(u)/u = (. Put O = k[[u]] so I preserves Op. Set

H = Resg p(G x B)™"".

Then H is a reductive group over F obtained by Galois descent on the group G over
E with v € T acting by o x v~1. Then as in the argument of [PR0S|, 7.a] combined
with the main results [PY02] that follow through for an arbitrary o € Auty(G), the

neutral component of the group
(G x O)™ (OF) C (G x E)™ (E) = H(F)

is a parahoric subgroup of H(F). For us, we are primarily concerned with the case
when o € G,q is an inner automorphism.
Let us prove a basic lemma that when the derived subgroup G’ = [G, G] is simply

connected, and ¢ is inner, we do not need to take the connected component.



85

Lemma 3.1: Suppose G’ is simply connected and o is inner. Then the O points of

the Op-group scheme
P = ReS@E/@F(G X OE)UXV71

18 connected.

PROOF: First we claim G7 is connected. Let H = Z(G)° be the connected component
of the center so G = HG' where H is a torus and G’ is simply connected. Let

h € H,g € G" and suppose hg € G°. Since o is inner and centralizes H,

o(hg) = h(o.g) = hg

=geG"’

so G° C HG"?. The other direction is trivial, and we have a presentation
G° = HG'.

,By a theorem of Steinberg, [OV90, 4.8.9|, since G’ is simply connected, G"“ is con-
nected reductive. We conclude that the continuous multiplication map H x G"7 — G°
is surjective with connected source, and thus G is connected.

Now to show P(Op) = G(Op)"** " is connected, consider the reduction map
mod u, Op — k, where the uniformizer v is an eigenvector for v with eigenvalue
(. Therefore the reduction map is invariant for I'. Then the induced reduction map
G(Og) — G(k) is equivariant for the action on the left by o x v~ and the action on

the right by ¢ and hence restricts to a surjection
GO = G°.

Since the image is connected and the kernel is pro-unipotent (and hence connected)

we conclude that the source G(Og)?*""" is connected. The result follows. n

For every parahoric subgroup P of H(F'), there exits a smooth integral model P of
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H over Of with the property that P(Op) = P; the construction is reviewed in [Yul5!
sec. 7]. By the uniqueness principle of smooth integral models, P is unique with
respect to this property. For example, if H, G, o is as in above, the parahoric group
scheme associated to the parahoric subgroup (G x Og)7** ' (Og) is the connected
component of Resop, /0, (G X Op)* . Such a model of H over Op is indeed smooth
by [Edi92, 2.2 and [Edi92] 3.4].

Example 3.1: If 0 = Idg s trivial, then P = Go, s the standard hyperspecial
parahoric group scheme associated to the subset subset I C Ig consisting of the finite

Dynkin diagram of G.

Example 3.2: If G =T is a torus so H =T is a torus over F, then P = T°°, the

connected Néron model. In fact, this is the only parahoric group scheme of T.

Now let us fix notation and recall the basic theory of affine flag varieties following
[PROS|. For an affine finite type flat group scheme G over O with generic fiber H,
the affine flag variety is the fpqc sheaf

Fg = [LH/L*G).

If G is smooth over Op, then Fg is representable by an ind-scheme over k that is
ind-finite type, [PRO8, 1.4]. The examples of G that we are concerned with are
parahoric group schemes associated to a reductive group over F' and intermediate
integral models 7% of of a torus 7 over F. Some basic properties of affine flag

varieties are recalled below from [PROS8, sec.0, 1|, [Zhul7, 1.2.11]:

1. If G is connected, then L*G is connected. If G is smooth over O then L*G is re-
duced. The map LH — Fg induces an isomorphism on connected components,

and there is an isomorphism induced by the Kottwitz homomorphism
7T0(LH) =~ 7Tl<H)[

where 7, (H) is the algebraic fundamental group of G over the separable closure

of F, equipped with the Galois action of I := Gal(F*P/F). In particular, if
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H is simply connected, then LH and the flag variety of any parahoric group

scheme of H is connected.
2. If H is semisimple, then both LH and Fp are reduced.

3. Suppose H = T is a torus split over E with the I''module Y = Hom(G,, g, Tg)-
Suppose G = T* is an intermediate integral model. By our study of subgroups
of LT in2.2.2) LT* and F7: are both not reduced. We also have Fr+ is discreet,
with the Kottwitz homomorphism inducing an identification of mo(F7:) with a

quotient of Yp = 7y (LT).

4. Tf P is smooth fiberwise connected affine group scheme over O then the affine
flag variety Fp is ind-projective iff P is a parahoric group scheme of H. This
recalls the classical definition of a parabolic subgroup of a reductive group as

one where the associated (non-affine) flag variety is projective.

Now suppose H = G is the base change of a reductive group G already defined over
k and P = Gp,. This special case is important and is given a name to match the

literature, e.g., [Zhu09].

Definition 3.2: The affine Grassmannian of a reductive group G over k is

Grg = FGop-
Additionally, for simplicity, define
LG = LGp
L*YG = L"Go,.

We refer to G(Op) as the canonical standard hyperspecial parahoric subgroup

and Go,. as the canonical standard hyperspecial parahoric group scheme.
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3.2.2 Conjugacy Classes of I and Conjugacy Classes of Max-

imal Tori in G

Fix k = C and F = C((f)) and Op = C[[t]]. Let G be a connected reductive group
over k (not over F') and T' C G a fixed choice of a (split) maximal torus over k. Let
W = Ng(T')/Zc(T) denote the Weyl group of G and [IW] the set of conjugacy classes.
Tori over F in the base change G may not necessarily be split; we denote them by
T. Let g = LieG and t = LieT".

The set [W] is of independent interest and has been studied by combinatorial
methods in [Car72] and [GP00, 3.2.12], the latter in the more when W is replaced
with any finite Coxeter group. Recently, many interesting geometric object have
come to be parameterized by [W] and fundamental questions were asked on how to
lift elements of W to Ng(T'), for example in [AHI7, [AHN20]. The set [W] has even
appeared in the original study of the twisted FKS isomorphism in [KP85|. In this
subsection we study the relation between G'p-conjugacy classes of maximal tori in G
and [WW]. We first review the correspondence between conjugacy classes of maximal
tori in G and [W]. We review the notion of an elliptic conjugacy class (of both
Weyl group elements and Tori in Gr), and introduce the notion of the principal
Levi subgroup of G associated to w € W. Using the principal Levi and and the
conjugacy classes of tori, we give a new and geometric, proof of the classification of
conjugacy classes of W by parabolic induction in [GP00, 3.2.12] in the case when
the Coxeter group is a Weyl group of a reductive group. Our study of [W] and of
lifting elements of W to Ng(T') prepares for the study of choosing representatives of
conjugacy classes of maximal tori in G in following subsections.

The following theorem was proved in |[KL88| sec. 1].

Theorem 3.5: The set [W] is in natural bijection with conjugacy classes of mazimal

tori in Gr.

Definition 3.3: For a class ¢ € [W] we say a mazimal tori T C Gp is of type c if

the conjugacy class of T corresponds to c.
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For illustration, we give another proof.

PROOF: For w € W, a maximal torus of type [w] € [W] is described as follows. Let
o0 € Ng(T) be a finite order lift of order m. The fact that a finite order lift exists
with minimal order |w| or 2|w| is proven in [AHI7, Theorem C], with an explicit
description when which case of occurs. Let E/F be the degree m extension with
E=C((w),u™=tand v € T := Gal(E/F) a chosen generator and ¢ a primitive
mth root of unity such that v(u)/u = (. Then a maximal torus T of type [w] together

with its embedding into G is defined as the composition

1

T = (R,QSE/FT Xk E)wxuf

1

1 f
- (RGSEFG X E)UXV ~ Gp

where f is some fixed chosen isomorphism. It exists due to a theorem of Steinberg
[Ste65], 1.9] that H'(R, H) = 0 whenever R is a perfect field of cohomological dimen-
sion <1 and H is connected and affine over R so there are no inner forms of Hp over
R.

A map from conjugacy classes of maximal tori in G to [W] is given as in [SS70,
2.7| as follows. Let 7 C G be a maximal torus split over £ with I' = Gal(E/F),v
as above acting on Gg. Since both Ty and Tg are split in G g, they are conjugate by
some g € G(E), i.e.,

9.1 = Tg.

Then the element

normalizes Ty and this lies in Ng,(Tg). Then the class [w] € [W] associated to the

conjugacy class of T is the image of ¢ in
(New(Te)/Zay(Te))(E)

C (Na(T)/Za(T))(F) = (Na(T)/Za(T)) (k)
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where F' is any algebraically closed field containing £. The bottom equality follows
from the fact that the Weyl group is constant as a group scheme. The map is well-
defined to be constant on the conjugacy class of T by [SS70, 2.7].

These two operations are inverse to each other. =
Remark 3.1: The isomorphism

¥

(ReSEFG Xk E)GXIF ~ GF

in the proof above is not given explicitly, but the main point of our computations is

to provide such an explicit isomorphism.

Now let us classify the conjugacy classes of [W] by parabolic induction using the
interpretation of [W] as the set of conjugacy classes of maximal tori of Gp. Let
U = U(G,T) be the root system of G with respect to 7" and A be a chosen base
of simple roots and B be the corresponding choice of Borel subgroup. Let S C W,
S = S(A) be the set of simple reflections corresponding relative to the choice of A.
So (W, S) forms a Coxeter system.

Definition 3.4: For J C S, the parabolic subgroup of W corresponding to J is
the subgroup W; C W generated by J.

The reason for the terminology is that W is the Weyl group of the Levi factor of
the parabolic subgroup P; C G corresponding the roots J, or to be precise the image

of a Levi factor of a cover of Pj.

Definition 3.5: An element w € W is called elliptic if either of the equivalent
conditions hold:
1. [GP00, 5.1.1] For every proper subset J C S, w does not lie in W.
2. For some (or for all) semisimple group G with mazimal torus T such that
W(G,T) =W, the group
T = SpecC[X*(T).)

is finite, or equivalently X*(T)),, is finite, or equivalently t* = 0, where t = LieT .
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A conjugacy class ¢ € [W] is called an elliptic class if any (or equivalently if all)
w € c s elliptic. A mazximal torus, resp. conjugacy class of maximal tori, T C G is
called an elliptic torus if the type of T, resp. any torus in the class, in [W] is an

elliptic class.

Lemma 3.2: Suppose G is semisimple. Then a conjugacy class of W is elliptic iff

the corresponding conjugacy class of tori in G by[3.8 consists of anisotropic tori.

PROOF: A torus T over a field F' has no split subtori over F' iff X*(7") has no quotient
modules for the Galois group I" that are positive rank over Z. This happens iff X*(7)r
is finite. Apply our case the case F' = C((t)) and T is topologically generated by one
element v acting on X*(7) by w. This happens iff 7% = Spec(C[X*(T]r) is finite.

The result follows. n

The notions of a parabolic subgroup of W and an elliptic conjugacy class are
identical when (W, S) is generalized to with a finite Coxeter system. Elliptic classes
of W are of special interest, because they allow for an inductive classification of [W].

Roughly speaking, every maximal torus is elliptic for a parabolic subgroup of W.

Theorem 3.6: [GP00, 3.2.12] combined with [GPO0, 3.2.11]: Suppose (W, S) is a
finite Cozeter system. Let P be the set of pairs (J,d) where J C S and d is an elliptic
conjugacy class for the parabolic subgroup W ;. Let ~ be the equivalence relation on P
defined by the property that (J,d) ~ (J',d') iff there exist v € W such that z.J = J'
and x.d = d'. Then the following map gives a well-defined bijection

(J,d) — W.d
where W.d denotes the orbit of the subset d C W; C W under the action of W.

Remark 3.2: The actual map given in [GP00, 3.2.12] is in the other direction [W]| —

P/ ~ and more complicated but combining with [GPO0, 3.2.11], we obtain the inverse
map given above in[3.6,
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Let us now give an alternative proof of [3.6]in the case when W is a Weyl group.

Definition 3.6: For w € W, the principal Levi is
Mw = Zg<Tw’0) - G

where TW° C T is the neutral component, i.e the mazimal torus, of T™.

Example 3.3: Suppose G is semisimple.
1. If w=1, M, = {e} is the trivial subgroup of G.
2. If w e W is elliptic, thenM,, = G.

Some basic properties of the principal Levi are:

Remark 3.3: Fizw € W = Ng(T)/Z(T). We have the following basic properties:

1. M, contains all possible lifts of w to Ng(T).

2. For every sub-torus T' C T, we have M, C Za(T").

3. M, is minimal in the sense that if T' C M is a torus and T C T’ then
Za(T") € M contains no lift of w.

3. T' is strictly contained in T, then Zg(T') does not contain any lift of w.

4. Conjugating w by W gives a Ng(T') conjugate of M,. Conversely conjugating
M, by Ng(T') gives the principal Levi of a W-conjugate of w.

Now interpret [W] as the conjugacy classes of mazimal tori in G as in . Define
the map

v [W]—P

as follows. Let T C Gp be a mazrimal torus, T the mazimal anisotropic subtorus
and T* the marimal split subtorus. Then the cocharacter lattice is the quotient by
torsion

X* (Ts) — X*(T)w,tor — X*(/va,O).

It follows that T° = (T and thus the centralizer Zg,(T*) = My r = (My)r is

)
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the base change of the principal Levi. Put
M = M,.

We furthermore have T C Zg,.(T*) and by the conjugacy class of T in Mp is
in bijection with a conjugacy class of the subgroup W (Mp,Tr) = W(M,T) C W.
Let J C S be any subset such that M is G-conjugate to the standard Levi subgroup
Mj; C G. Such a conjugation must send the mazimal torus T C M to the mazximal
torus T'C M; and we conclude that M is Ng(T)-conjugate M;. This induces a W -
conjugation W (M, T) to W;. Define d to be the conjugacy class of W associated to
the conjugacy class of W (M, T) associated to T and put

v([T]) = (J,d).

The following steps show that W induces a well-defined bijection [W| = P/ ~, giving
a proof of [3.6] in the case when W is a Weyl group.

Lemma 3.3: d is elliptic for W;.

PrOOF: We have
T=TT".

Since M is the centralizer of T° in Gp, T° = Z(Mp)° is the connected component
of the center. Therefore (7%)aq C (Mp)aq is the maximal torus of (Mpg)aq = (Maq)r-
The map M — M,q induces a natural bijection W (M, T) — W (M,q, Taq) so d C W
is associated to a G-conjugate of the maximal torus (7%).q in M,q. Since (T%)aq is
still anisotropic, the lemma boils down to showing the correspondence maps a
conjugacy class of anisotropic tori to an elliptic conjugacy class of the Weyl group.

This is shown in -

Lemma 3.4: V¥ is well-defined as a map [W| — P/ ~, i.e., the equivalence class of

(J,d) is independent of the choice of representative of [T].
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PROOF: Let 7,7’ be conjugate tori in Gr by some g € G(F). Let J, resp. J', be
subsets of S such that M, resp. M, is conjugate to Zg,.(T°), resp. Zg,(T'®). Then
g restricts to a conjugation sending 7° to 7'%, and therefore also sends Zg,(7°) to
Zap(T"). It follows that M, p is conjugate to My g by some h € G(F'). By the main
theorem [Sol20, 1.b], A can be chosen to normalize the split maximal torus Tr of G.
Letting w be the image of hin W = W(Gp,Tp) = W(G,T). Then w.J is a choice of

a set of simple reflections for Wj,. Hence there exists wy € W C W such that
wow, J = J'.

Let d € [Wy], resp. d’ € [W] correspond to the conjugacy class of the torus T, resp.
T',in Mg, resp. My p. Since w restricts to an isomorphism W; =& Wy, w.d is a

single conjugacy class in /. Hence
wo(w.d) = w.d.
Furthermore, w.d = d’ because h maps [T] to [T’]. It follows that
wow.d = d'

and therefore (J,d) is equivalent to (J',d’) by the element wsw € W under the

definition of the equivalence relation ~ on P. The result follows. n
Lemma 3.5: VU is bijective; in fact we explicitly describe an inverse.

PROOF: The inverse map @ : (P/ ~) — [W] is defined as follows. Let us define it on
P and show it factors through ~. Let (J,d) € P. Then d corresponds to a conjugacy
class of maximal torus 7 in M r such that T,q € M paq is anisotropic by3.2l Define

o((/,d)) = [T]

to be the conjugacy class of W associated to the conjugacy class of T, but considered

as a maximal torus of G (it remains maximal in G ¢ because recall any Levi subgroup
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has the same rank as the original group). ® factors through ~ because if (J,d) ~
(J',d"), then by definition d C W;,d C W, are subsets of the same W-conjugacy
class in W and the M p-conjugacy class of tori in M, p associated to d is G(F)-
conjugate to the associated M p-conjugacy class of tori in M p associated to d'.
The composition [W] = (P/ ~) = [W] is the identity by the construction of the
maps. Let us show (P/ ~) 2 (W] & (P/ ~) is the identity. Let J C S and d € [W}]
be elliptic for W; and corresponds to a class of anisotropic tori in M; by We can
write

My = Zg(H)

where the (split) torus H C G is the neutral component of the center of M. Let
T C (Mj)r be any maximal torus. Then Hr C 7% and T,q is a quotient of 7 by a
diagonalizable group with neutral component containing Hr. Hence T,q is generated
by a quotient of 7* by a finite subgroup and a quotient of 7°. Hence 7,4 is anisotropic
iff 7 maps to the trivial subgroup in T,q. This holds iff Hp = 7*® and M; = Zg,.(T°).
This shows (P/ ~) 2 (W] A (P/ ~) is the identity. The result follows. n

3.2.3 Representatives of Conjugacy Classes of Maximal Tori

in Gy with Large Closure in Gp,

In this subsection, we study the problem of choosing representatives T of GG p-conjugacy
classes of maximal tori in G with the property the Zariski closure 7 of 7 in Go, has
large Op-points, in the sense that 7 (Op) contains the maximal connected bounded
subgroup of T(F). This means precisely that T is an intermediate integral model
of T, i.e., it contains the connected Néron model. We define the notion of a homo-
geneous conjugacy class of W, which include all conjugacy classes of a parabolic
subgroup of type A, that have the property that 7 can be chosen such that 7 (OF)
is even larger to be the maximal bounded subgroup of T(F), i.e., T = 7°. Homo-
geneous conjugacy classes are import for later study because restriction to their case
simplifies the geometric FKS isomorphism. It turns out that in order to study this

problem, it is necessary to study the problem of lifting elements of W to N (T'), and
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we review some results about this from [AHN20] that we use.

For a triple (G, B, H) where G is a reductive group over k, H a choice of maximal

torus, and B a Borel subgroup containing H, let us set the notation and recall some

notions regarding the spherical building of (G, B, H), for example from [OV90, ch.

4]:

10.

. g = LieG, b = LieB, h = LieH.
. The exponential map is denoted exp : h — H.

. The adjoint action of G,q on itself is denoted Ad, the action of G,q on g is

denoted ad.
d is the rank of G,q4, and of the derived subgroup of G.
U = U(G, H) the root system of G relative to H.

A = A(G,B,H) C VU the choice of simple roots induced by B. For a fixed
ordering of A, denote the elements A = {ay,---,aq}. We may write ¥ =

U(G, B, H) to mean the roots system including the choice of A.

. A = A(G,B,H) C b,q, is the (closed) fundamental alcove of the triple

(Gad, Bad, Haa). Note we use h,q instead of h. The general literature uses
the interior of A formally defined as the intersection of the dominant halves

a1 (R,) of haq for all & € U, but for our convention, we include the walls.

. When G,q is simple, let § € ¥ be the highest root.

Equip h with a normalized invariant bilinear form (—, —) so that the length of

the highest root for each simple factor of g is 2.

wy, -+ ,wy C b are the fundamental co-weights relative to A and (—, —). Iden-
tify the fundamental coweights with the vertices I of the Dynkin diagram of
Gaq-
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Let P = Z{wy,--- ,wy) be the co-weight lattice. For any point v € P, there is
a unique P-translate of v in A that lies inside I,g. Call this element the type

of v.

L is the set of vertices of the affine Dynkin diagram of G. In particular, if G
is simple, then Lg = I U {wy} consists of the finite Dynkin diagram and one
extra vertex wy € A denoted the affine vertex. For general reductive G, L,
resp, I, is a disjoint union of the vertices of the affine Dynkin diagram, resp.

Dynkin diagram, of each simple component of G' or Gq.
The set A has the structure of a simplex with vertices I.g.

m(G) = P/Q where @ is the coroot lattice, and in the natural map Lg — m1(G)
is a bijection. It induces an action of m;(G) on Iz by translation. A vertex
v € g is called hyperspecial if it lies in the orbit of some affine vertex under
the action of 7 (G). For example, if G is type A, every vertex is hyperspecial.
In general, the set of hyperspecial vertices of I,g is the union of the hyperspecial

vertices of each connected component of I.g.

0o, 1s the root space of g corresponding to «;.

The main tool we use, recalled below, is Kac’s numerical classification conjugacy

classes of finite order inner automorphisms of a simple Lie algebra, or equivalently

conjugacy classes of finite order elements of G.q when G is simple. Let 0 € Gaq

be an inner automorphism G of order m. Let E/F be the degree m extension with

E = k((u)), u™ = t. Let v € T := Gal(E/F) be a choice of generator and ( a

primitive mth root of unity such that v(u)/u = (. Put O = k[[u]] so I" preserves

Og.

Theorem 3.7: [Kac90, 8.1] and [OVI0, 4.7.8] Suppose G is simple of rank d. Let

H C Gagbe a maximal torus containing o, h = LieH and B C G,q a Borel subgroup

such that o = exp(\) for some A € A(Gaq, B, H). Write

0=a100 + -+ agoy
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where a; > 0 and unique with respect to this property. Then we have the following:
1. There exists a unique sequence of non-negative relatively prime integers (so, -+ , Sn),

called the Kac labels of o where each s; labels w, € L g, such that
So + s1a1 + - -+ Sqaq =M

and

mA = syw) + -+ + Sqwy -

In particular, for all i, X € g,,, the action of o on X is given by
ad(o).x = (.

2. Conjugacy classes of finite order elements of G.q are classified by the sequences
of integers sg, -+, Sq as above up to the permutation of m(Gaq) induced by the action

on L.

We can use to give the explicit isomorphism (ResprG X E)"X”_1

12

Gr
promised in for a connected reductive GG. Let us begin with the case when G
is simple. Recall that for a maximal torus H of GG, the exponential map induces a
natural identification of center of G with P/X.(T'). So in particular if G is adjoint
type, every coweight is a cocharacter.

For a k-algebra R, define gp = g ® R.

Lemma 3.6: Let G be simple and 0 = exp(\) € Gaq be an order m inner auto-
morphism of the form described in together with the choice of maximal torus
H and Borel subgroup B. Define the loop u™ € Hag(E) by considering m\ =
sy + o+ spw,y as an element of X, (Tha) = Hom(G,,, Hag) and u € G,,(Op)
and defining

u™ = (m\)(u).

Then the morphism of group schemes over E given by Ad(u™) : Gg — G induces
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an isomorphism

1xp—1 Ad(i)mM

Gr = Resg/r(G %1, E) (G xy, B)™",

PrOOF: The first equality is from Galois descent. Both sides are connected because
they are isomorphic a posteriori by Steinberg’s theorem [Ste65, 1.9] that H'(F,G) =
0. Therefore it suffices to check ad(u™) : gp — gg restricts to a bijection of the
respective Lie algebras. The remainder of the following computation is similar to
[Kac90, 8.5]. Decompose

9 = Dacvfa

into roots spaces relative to h. By the description of the action of ¢ on g, in the
eigenspace decomposition g = ®;cz,,,707 for ad(o) is compatible with the root space

decomposition in the sense that

9 = 69ozE‘I/: (mA,a) —i9a-

Decompose E = @;ez/mzuiF as an F-vector space spanned by 1,u,u?, ---. By in-
spection of the definition of the root subgroups of G, the action of ad(u™) on

95 = Djcz/mz8 @ u'F restricts to an isomorphism

~
=~

Jo ® uzT 5 0. ® ui-‘r(m)\,oa)

X® uf — X ® ui-i—(m/\,oa)‘

Since v (u)/u = (71,
LleF(RGSE/F(G Xk E)lxyil) = (g R E)ad(0®l’71) — @EEZ/mZg{‘@) UZF
Putting the above two together, it follows that ad(u™") restricts to an isomorphism

(um)\

. ad 7 . -1
LiepGrp=g®@ F — ) Bicz/mz0; @ u'F = Liep(Resg/r(G Xy EYPv),
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The result follows. -

We extend the above lemma to the case when G is connected reductive below.
Remark that if G’ = [[, G, is a decomposition of the derived subgroup into simple
factors, there is an induced decomposition of the adjoint group G.q = [[ Gi.aa as the

product of the adjoint groups of each simple factor.

Lemma 3.7: Let G be connected reductive and G' = [, G; be a decomposition of the
derived subgroup into simple factors. Let o € Guq with 0 = [[ 0; and 0; € G, q acting
only on G;. Suppose for each i, o; = exp(N\;) for A\; € b; in the from described in
together with the choice of a mazximal torus H; and Borel subgroup B; containing H;
in Giaqa. Then the loop x = [[u™ € ] H;(E) where each u™ is as defined in

as the property that Ad(z) : Gg — Gg induces an isomorphism

GF = (G Xk E)IXV71 =~ (G Xk E)axyil.
PROOF: Both sides are connected because H'(F, G) = 0, so it suffices to show that
the adjoint action on the Lie algebras over F is an isomorphism. Let H = Z(G)° be

the connected component of the center. Then we have g = h @ @ giand thus

oz =bs P oir

where ad(z) acts by 1 ® v~ ! on hg and by ad(u™) separately on each factor g; g.

We thus have
ad(oxv~1 ad(oxv—1
gE ( . ) = hF @ @QLE( * )

Applying [3.6] to each simple factor g; gives that ad(x) induces an isomorphism g; r &

g?’%””fl) separately on each factor. The result follows. n

Our study uses some results on lifting Weyl group elements and their relation to
Kac labels. Namely given w € W, a choice of a finite order lift o € Ng(T') gives rise
to Kac labels determining the conjugacy class of 0,4 € G.q by This operation is

independent of conjugacy class of w for an elliptic w, up to m(Gaq):
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Theorem 3.8: [AHN2(, 1.1.3 and 6.8] Suppose G is semisimple and w € W =
W(G,T) is elliptic. Then:

1. Any two lifts of w to Ng,,(Tha) are conjugate in Gaq. Consequently there is
a well-defined association from elliptic conjugacy classes of W with Kac labels of L.g
given as in[3.7 by taking the Kac co-ordinates of each simple factor of the conjugacy
class of a lift.

2. If a given lift 0 € Gaq of w is of the form exp(mA) for m\ € A(G.q, B, H)
for mazimal torus H C Gaq (not necessarily equal to T) and a choice of Borel B
containing H as in then mA\ € P,q, as an element of the coweight lattice of
Gaa relative to Huq, is invariant under the action of m1(Gaa). Therefore there is a

well-defined Kac labeling of [w].

This allows us to define a special kind of conjugacy class of W that is an important

special case of later study:

Definition 3.7: Suppose G is semusimple, T C G a mazximal torus, and W =
W(G,T).

1. A finite order element 0 € (Guq s homogeneous if the Kac labels of o from
have value # 0 on every hyperspecial vertex of Lg. An elliptic element w € W is
defined to be homogeneous iff any lift is. An elliptic class if homogeneous iff any lift
is. This is well-defined by [3.8

2. Suppose ¢ € [W] is not necessarily elliptic. By the classification of [W] by
parabolic induction, there exists a choice of simple reflections S and J C S such that
w € Wy is elliptic as an element of W;. Define the Kac labels of ¢ to be the Kac
labels on the affine Dynkin diagram Ij.g of Wj (not of Lg) of ¢ as an elliptic class
of [Wy]. Such an operation is also well-defined by [AHN20, 8.3].

3. A (not necessarily elliptic) element w € W homogeneous if for any choice
of simple reflections S C W and J C S such that w € W s elliptic for Wy, w is

homogeneous as an element of W;. A class ¢ € [W] is homogeneous if any lift is.

Example 3.4: Let G be simple and (sg,- -+ ,Sq) be the Kac labels of 0 € Gaq as in
[3.7 Recall sy is the label of the affine vertex, so if o is homogeneous, then sy # 0.
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The converse is usually not true as there are usually more hyperspecial vertices than

the affine vertex.

The principal Levi, or rather its adjoint group, plays a role in visualizing the Kac
labels of a not necessarily elliptic class ¢ € W, consistent with the above definition.
It is as follows. Let G be semisimple with maximal torus 7" and W = W(G,T). Let
c € [W]and w € c. Let M := M,, = Zg((T*")) be the principal Levi, which contains
all lifts of w. Let 0 € M be an arbitrary lift. Then 0,4 € M,q is elliptic for its action
on T,q in the sense that the fixed points are finite since 7%° C Z(M). Then the Kac
labels of ¢ is the Kac label of 0.4 in M,q and c¢ is homogeneous iff 7,4 is.

Some numerical examples are collected below :

1. For any Weyl group W, the Coxeter class cox € [W], defined as the conjugacy
class consisting of the products of any chosen set of simple reflections in any
order, is elliptic. The Kac labels of cox are s; = 1 for any vertex of I,¢, as shown
in computations of the various cases for classical groups in [RLYG12| and for

all of the exceptional groups in [AHN20, sec. 9]. Hence cox is homogeneous.

2. When W is type A, cox is the only elliptic class, e.g., [AHN20, sec. 6]. Since
every element of W is elliptic for some parabolic subgroup and every parabolic
subgroup of a type A group is also type A, if w € W is contained in any

parabolic subgroup of type A, then w is automatically homogeneous.

3. There exists many non-Coxeter homogeneous classes, even if we require fur-
thermore them to be elliptic. But the homogeneous conjugacy classes occupy a
significant portion of all conjugacy classes. For example, according to the com-
puter computations of Kac co-ordinates for the exceptional groups in [AHN20,

sec. 9], as tabulated in the table below:

Remark 3.4: An interesting coincidence is the following: the number of elliptic ho-
mogeneous conjugacy classes in type E agree with the number of ‘primitive’ classes in

the study of the twisted FKS isomorphism in [KP83, sec. 10]. Primitive classes are
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Group Gy Fy Es E; Eg
Homogeneous Elliptic classes 2 5 3 5 9
Elliptic Classes 3 9 5 12 30

Table 3.1: Number of Homogeneous Elliptic Conjugacy Classes in the Exceptional
Types

of those w such that det(1 — w) = det A where A is the Cartan matriz of W and det
s taken for the action of w on bhaq. The author wonders whether primitive conjugacy
classes are the same as elliptic homogeneous classes, but has not investigated this

question further.

Let us prepare with some discussion of graded structures on Lie algebras. For Lie
algebra [ and a set I, an [-graded structure on [ is a vector space decomposition
[ = @jerl; where [; C [ are subspaces. A graded subalgebra m C [ is a subalgebra

of the form m = ®;c;m; where each m; C [; is a subspace.

Definition 3.8: For a Z-grading on  and ig € Z, set

ip = Disigli

l<ip = Di<ipli

and similarly so for I, resp l<;,, where the >, resp. <, is replaced with >, resp. <,

in the above sum.

Remark 3.5: Usually I is required to have a commutative sum structure and the
grading of | is required to be compatible with the sum on I in the sense that [I;,1;] C

liy;. But we do not impose it on I here.

For a Lie algebra p over k and a power series field M = k((s)), it is not convenient
to put a graded structure on the (formal) loop algebra py = g ® M according to
powers to s because the inclusion @, p @ s* C pyy = p @ k((s)) is strict. But the sub-

algebra @, p ® ', called the polynomial loop algebra, is dense in pg, and we can
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directly define the grading on it. Indeed, polynomial loop algebras are a replacement

for formal loop algebras in the representation theory literature [Lep85| [KP85| [BIK04].

Definition 3.9: For an indeterminate s over k, denote the polynomsial loop alge-

bra by lyj+1) with Z-grading defined by
[k[sﬂ]yi =(®s

and Lie bracket induced by the bracket in lys)), i.e., [ X @ f,Y ® g] = [X,Y]® fg.

The previous computations in on formal loop algebras also hold for polynomial
loop algebras as below. Suppose G, o is as in

ad(oxv~1)

1. The Galois group I" preserves k[u*!] C E. The fixed point algebra Oppurr) 18
@i 1Py u'.

2. For any Z-graded subalgebra p C gj;+1), the image of p under the map ad(u™)
is a Z-graded subalgebra of gz. But ad(u™) does not preserve the grading, for
example the image of the zero-degree part g ®t° can have components in many

different degrees.

3. The subalgebra giy € grpu+1 has closure go,, in gp where go, = LieL*G is the
Lie algebra positive loop group of the parahoric group scheme Gy, associated
to the hyperspecial parahoric subgroup G(Or) C G(F). We will use the subal-

gebra gy to compute the closure of maximal tori 7 C G in Go,.

Definition 3.10: Let H C G be a mazimal torus and B C G a Borel subgroup, with
Lie algebras b and b, respectively. The (polynomzial) standard Iwahori subalge-
bra of gyy=1yis the Z graded subalgebra

I(gius) =bot" o Poat
>0

with grading defined by
](gk[uil])z =0 fOT’ 1 <0
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I(gkput1)o = b @ ¢°

I(gkput1)i = 9 ® t' for i > 0.

Remark 3.6: The closure of I(ggr,) in gr is LieL™Z where T is the smooth integral
model of Gg corresponding to the standard Iwahori subgroup of G(F). We have that

LieL'ZT=b@t’® oot

>0

is the preimage of b under the reduction map go, — ¢ given by t — 0,since the
corresponding statement at the level of groups is true for LT at the level of groups

[Zhul’l, ex 1.2.9]. Therefore
I(gRF) = LieL™Z N Ok[ut]

and it I(ggp+1)) s also the preimage of b under the reduction map gy — 9.

Suppose G is simple. Suppose H C (G is a maximal torus and B C G is a Borel

subgroup containing G. Let

g=g ®hog"

be the induced Cartan decomposition, where h = LieH and b := h @ gt = LieB. So
gt ,resp. g, is the sum of the root spaces of the positive roots, resp. negative roots
and h = go is the weight space for the zero vector 0 € hY. Let W = U(G, H) be the

root system of G relative to H.

Definition 3.11: Suppose G is simple. Let o be a finite order inner automorphism of
G of the form exp(\) of together with maximal torus H C G.q and Borel subgroup
B containing H. The refined eigenspace grading on g to be the finitely supported
Z-grading defined by

gi = EBaEWU{O}:(a,m/\):iga-

It refines the ergenspace grading of § = @iy ,,z8; i the sense that g; C g;.



106
The subalgebras g~ and g* are graded subalgebra for both gradings. Furthermore,
since mA is dominant, i.e., a positive combination of fundamental coweights, the
refined eigenspace grading on g*, resp. g, is supported in positive, resp. negative
degrees. We have the following about the relationship between the eigenspace grading

ong,g" and g~:

g<0 =09

go=0y Dh@ gy
9>0:9J>ro-

The motivation for the notion of a homogeneous conjugacy class comes from
the following more detailed relationship between the eigenspace grading and refined

eigenspace grading, which depends on the value of Kac label sy of the affine vertex.

Lemma 3.8: Suppose G is simple with Lie algebra g and o € Gaq, A € A be of the
form n together with the choice of maximal torus H C G,q containing o and

Borel subgroup B containing H. Then
g =0, Do fori#0
G =0_,D0Dg, =0_,Dg ©hDgg Dy,
where g_,,, and g are both nontrivial iff sy = 0.

PROOF: Let W = Ut 11U~ be the induced decomposition of the roots of (g, h) into
the positive roots U+ and negative roots W~. Let «ay,---, a4 be the set of simple
roots and 6 be the highest root. Since mA is dominant, for every a € ¥, (mA, a) >0
iff € UF and (mA,a) < 0iff @« € U~ and (mA, ) attains its maximum, resp.

minimum, value on 6, resp. —f. By the relations

mA = sjwy + -+ Sqwy
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0:a1a1+--~+sdad
So + s1aq + - - - Sgaqg = m where s; > 0

we have

(mA,0) = s1a1 + -+ + sqaq < m
with equality holding iff the Kac co-ordinate sy of o at the affine vertex equals 0.
This occurs iff o is homogeneous. Therefore for all o € U,

—m < (mA,a) <m

(mA, ¥7) >0
(mA, ™) <0.
The result follows. ]

The following computes the image of the standard Iwahori subalgebra of g1

and the subalgebra g under the automorphisms u™ of gp the form described in

B.7

Theorem 3.9: Suppose G is simple with Lie algebra g and 0 € Gaq, N € A be of
the form in[3.7 together with the choice of maximal torus H C Gaq containing o and
Borel subgroup B containing H. Let § = ®jez/29; be the eigenspace grading for o
and g = ®;cz@; be the refined eigenspace grading for o. We have:

1. The subalgebra I' = ad(u™)(I(gr)) of g?;(awil) with Z-grading induced by

the grading on gg has graded components described as follows:
I!=0 fori<0

L=(hog ®g-,)®@u’ Cgu’
Il =g; @u’ fori> 0.

ad(oxv~1!

2. The image g;[t} = ad(u"™)(gry) of 9% ) with Z-grading induced by the
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grading on gg 1s described as follows:

G = 8; ®u' fori <0

Grpo = (G0 D 9-,,) @ U

g;c[t],i =g® u’ fori>0.

PROOF: Apply the computation of the map ad(u™) in the proof of and the
relationship between the eigenspace grading and refined eigenspace grading [3.8f We

obtain that for each i, ad(u™")(g ® u’) is supported in degrees i — m,--- i +m and
ad(u™)(h@u') =h®u’
ad(u™)(g" @ u') = @gj ® u'td
=0

ad(w™)(g~ @ u') = P g; @'
=0

Applying these observations allows us to compute I' and gy, . directly as follows.
1. Since ad(u™)(I(gr)o) = ad(u™)(g>o @ u°) is supported in degrees 0,--- ,m

and for i > 0, ad(u™)(I(gr)im) is supported in degrees i > 0, we have
I! =0 fori<0.

The degree 0 part of I’ must lie in the image of the degrees 0, m part of I(gr) since
for i > 2, the support of ad(u™)(I(gr)im) lies in degrees > 1. We find

Iy =ad(u™)(I(gr)o @u’ @ g~,, @ u™)

=(h@gy dg_,) ®u’ Cgg®u’

as desired. By a similar reasoning, for ¢ > 1, the degree im part of I’ lies in the image
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of the degrees (i — 1)m,im, (i + 1)m part of I(gr). Hence for such ¢,
Ly, = ad(u™) (g, @ ut ™" @ go @ u'™ @ g, @ ul ")

= gy u™.
Now let j =1,--- ,m —1 and i > 0. The degree im + j part of I’ lies in the image
of the degree im, (i + 1)m part of I(gr). For such 4, j

Ly = ad(u™)(gf @ u™ @ g;_, @ um)

yi .

This completes the description for all the graded pieces of I'.

2. The computation for g;m is similar. For i < 0, g;ﬂ must lie in the image

t),i

under ad(u™) of gk[,0, which gives us for such ¢,

g;f[t],i =9 ©® u’

as desired. Next, g}c[tw must lie in the image of the degree 0,m part of gy, which
gives us

k.0 = ad(u™) (go @ v’ B g-,, ® u™) = (go B 9_,,) ® u°

as desired. Finally, the case for g;[t]ﬂ. for ¢ > 0 is identical to that of I! because for

such 4, gryg; = 1(gr);. The result follows. -

We now state the main result of this section.

Theorem 3.10: Suppose G is simply connected (not necessarily simple). Let ¢ € [W]

be a conjugacy class, w € ¢ a representative, and M = Zg(T*°) the principal Levi.
Then for each order m lift o of w in M,q, there exists a torus T of type ¢ in Gp,

and a choice of mazimal torus H C M (different from T ) and Borel subgroup B C M

containing H, such that
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1. For any standard Parahoric group scheme P of Mg, the Zariski closure of T in
P is an intermediate integral model T# containing the connected Néron model T*°.
2. Furthermore, there ezists a standard parahoric group scheme P(o, M) of Mg
such that the closure of T in P(o, M) is the full Néron model.
3. If furthermore c is homogeneous, then o can be chosen so that P(o, M) =

Mo, C Go, is the canonical standard hyperspecial parahoric group scheme of Mp.

Definition 3.12: The mazimal torus T associated to the lift o of w € W is called a
principal mazimal torus of type [w] (it is not unique with respect to [w] or even
w, but it is uniquely defined by o) and the parahoric group scheme P(o, M) is called
the principal parahoric associated to o, or a principal parahoric associated to [w] or

w. Put P(o, M) =P(o, M) and call it the principal parahoric subgroup.

The proof occupies the remainder of this subsection. We first quickly define the
principal maximal torus and the principal parahoric and then show that they satisfy
the required properties.

For the remainder of this section, suppose G is simply connected, let c € W, w € c,
M = M, be the principal Levi, and ¢ € M,q be a finite order lift of order m. Let
H C G,q be a maximal torus and B C G,q be a Borel subgroup containing H such
that o € H is expA for some A\ € A(G,q, B, H), the fundamental alcove. Let E/F be
the degree m extension with uniformizer u € E with «™ =t and v € I" := Gal(E/F)
a chosen generator and ¢ a primitive mth root of unity such that v(u)/u = (.

A principal maximal torus 7 of type ¢ together with its embedding in Mg is
defined to be
1

T = RGSE/F(T Xk E)w><1/*

—1 Ad(u—™*
(% )

;)RGSE/F(M Xk E)UXV MF

where the element u™ € My is as in where it was shown that Ad(u="™) is an
isomorphism. This is identical to the step of the proof mapping a conjugacy class
of W to conjugacy classes of maximal tori in a reductive group, except now the map

Ad(u=™) is given explicitly.
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The principal parahoric group scheme is defined as follows. According to [Conl4l
6.5.2.1V], the derived group of a Levi subgroup of a complex simply connected group
is simply connected. Therefore M has simply connected derived subgroup. There-
fore by P = Reso, /0. (M x (’)E)"Xfl has connected Op-points and is a para-

—1 . _ . . .
=" Since Ad(u™™") is an isomorphism,

horic group scheme of Resg/p(M X E)
Ad(u=™*)(P(Og)) € M(F) is a parahoric subgroup of M(F). Define the principal
parahoric group scheme P(o, M) to be the parahoric group scheme corresponding to
Ad(u=™*)(P(Og)). By the extension principle, Ad(u"™") extends to a unique iso-
morphism Ad(u="}) : P — P(o, M) over Op. When ¢ is homogeneous, i.e., if ¢ € W
is a homogeneous class and o is an arbitrary lift of any w € ¢, we show in below
that property (2) of [3.10] will still hold if we redefine P(c, M) == Mo,.

It remains to show that for these definitions of 7 and P(o, M), the 3 conditions
of are satisfied. This is done in the following 3 lemmas. Let m = LieM and
t = LieT.

To set notation, let t = @;cz,,z1; be the eigenspace decomposition for ad(w)

acting on t. Let M,q = [[ M; be a decomposition into simple components M; and

m; = LieM,;. We have

m= tg@mi
and write 0 = [Jo; where o; € M;. Then each ad(c;) acts separately on m; and
trivially on t5. The triple (M,q, T, B) induces by intersection triples (M;, T;, B;) where
T; C M; is a maximal torus and T; C B; C M, is a Borel subgroup. Let A = [[ \;
where \; € A(M;, T;, B;). Then ad(u=™) = @ad(u"™").

Lemma 3.9: For the standard Parahoric group scheme P of Mg, the Zariski closure

of T in P is an intermediate integral model T# containing the connected Néron model

Tb,o

PROOF: Let I(Mp) be the standard Iwahori subgroup of Mp relative to T, B. Since
it is contained in every standard parahoric subgroup of Mp, it suffices to check
T0(Op) = L*T"°(k) C I(Mp) = LMp(k). Since L*7T°Y is connected by prop-

erties of the Kottwitz homomorphism, it suffices to check the containment on Lie
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algebras.
We have that LieL*70 is the image of LieL*Tgi(wxyfl) under ad(u™™) in mp.
Since ta?(]wx'j Y is dense in LieL+ 7?2, it suffices to show ad(u~"") sends tz([iqf]wxyfl) to
the polynomial standard Iwahori subalgebra I(mg) of mp. We have a decomposition

I(mp) = tg 0 €D I(mip).

The map ad(u~"™*) acts trivially on t ,(,, which already lies in I(mp). Tt then suffices
to show that each ad(u~™) sends te.‘i([;‘]’wil) to I(m; ), or equivalently ad(u™)
ad(wxv™1)

sends I(m; ) to a subalgebra containing t;,

Now fix 7 and for convenience put p = m;, [ = ;. We have as in the proof of [3.7]

adw><zz @[@U

>0

while for j > 0,
ad (™) (I(m, 1)), = p; &1

Hence for j > 0, liﬁ(ww D¢ ad(u™)(I(m; r));. It remains to show the same for the

case 7 = 0. This follows from the fact that
=0

because w is elliptic when considered as an element of W (M,q, Toq) C W, as explained
in the classification of conjugacy classes of W by parabolic induction.

The result follows. -

Lemma 3.10: The closure of T in P(o, M) is the full Néron model T° of T, i.e., by
the closure principle it suffices to show T*(Or) = P(o, M) N T (F).

PROOF: By the construction of the Néron model, we have 77 is the image under
Ad(u=m*) of

-1

ReS(’)E/(’)F (T Xk OE)MXV
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On the other hand, by definition P (o, M) is the image of Ad(u="*) of

ReSOE/OF (M Xk OE)U)XV_I

Hence 7°(Or) C P(o,M). We have that 7°(Or) C T(F) is automatic. The fact
that the containment 7°(Or) C P(o, M)NT (F) is actually equality follows from the
fact that P(o, M) bounded in M (F) while 7°(Op) is the maximal bounded subgroup
of T(F). ]

Lemma 3.11: If 0 € M,q is homogeneous, we have

and we still have T°(Or) = M(Op) N T(F). Consequently by the closure principal,
P(o, M) can be replaced with Mo, cmd will still hold.

PROOF: First we claim that showing P(o, M) C M(Op) is sufficient. We have al-
ready shown in T(Op) = P(o, M) N T(F), hence T*(Op) € M(Op) N T(F).
The containment is then an equality because M (Op) is also bounded in M (F') while
T°(OF) is the maximal bounded subgroup of T (F).

To show LTP (o, M)(k) = P(o, M) C M(Or) = LT M(k), it suffices to check the
containment on Lie algebras LieLtP (o, M) C LieL* M since L*P(o, M) is connected.
We have that LieLTP(o, M) is the image under ad(u="™) of LieL*Mg;”fl. Since
mzc[iéfx”_l) is dense in LieL*J\/["X”fl, it suffices to show that ad(u_mk)(ng]””_l)) -

Mg, or equivalently mzc[l(]o ) ¢ ad(u™)(myy). We have

My = L5k @mi,k[t}

o ad Ixv— ad(o;xv~1 ad(o;xv—
mk[Z}V 0 Je[u] @ mz Jk[u) tO Jk[¢] @ mz Jk[u]
Since ad(u™") acts trivially on 5, it suffices to show that m?i([g]lw C ad(u™ ) (m; k)

Fix ¢ and for convenience put p = m; for the simple factor and u = \;. Let



114
p = Djez/mzP7 be the eigenspace decomposition of p for o. We have

d(o; xv—
?k(u]x @pl@u

>0

By the computation for the case of a simple Lie algebra [3.9] for i > 0

ad( pk[t @pz®u

>0

Therefore it suffices to show that py ® u® C ad(u™")(pky)o. We have by

ad (u™) (pr)o = (Po & p,,) @ u’.

On the other hand, by the relations between the eigenspace and refined eigenspace
gradings |3.8|
g @ u’ = (pf, ®po®p_,,) ®u’.

Here is the crucial part where the homogeneity of o is used. By definition o =[] o; is
homogeneous iff each o; is homogeneous. Let 6 be the highest root of V(M,q, By, T;).
Homogeneity of o; means precisely in that the Kac label of g; has sg = 0. From the
proof of 3.8 and it holds iff the inequality (m\,8) < m is strict. Since |[(m), a)| for
a € ¥ achieves its maximum at o = 6, it follows that p = p-,, = 0. We conclude
that pg ® v = ad(u™")(pxiy)o-

The result follows. n

Remark 3.7: In the proof of|3.11, we have shown that for i > 0

ad(u™) (prgn)i = (i

But it is not necessarily the case that ad(u™")(pry) = pz([iu“xy

because the right
hand side has no negative graded components, while by the computation [3.9, the left

hand side has for i < 0:
ad(u™) (pr)i = p; @ u'.
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3.3 The Geometric Twisted FKS Isomorphism

For this entire section, let G be a simple and simply connected algebraic group over
k = C. Sometimes we may restrict further to the case when G is type ADE. Fix a
maximal torus 7 C G and put the Weyl group W = W(G,T). Put F = k((t)) and
Or = K[[t]]. Put Y =X, (T) and X = X*(T).

Let B be the normalized invariant bilinear form on g. The restriction of B to
Y C t = Y ®; C has the property that the length of a long coroot is v/2. Since
(G is semisimple, B is nondegenerate. When G is simply-laced, i.e., type ADE, i.e.,
every coroot is the same length, they are all long by convention. Since G is simply
connected, Y equals the coroot lattice as G. Therefore when G is type ADE, B is

even on Y.

3.3.1 Affine Lie Algebras and Representations, Affine Borel-
Weil Theorem, Statement of Results

Definition 3.13: The (formal) affine Lie algebra gy is the one-dimensional cen-
tral extension

0—>CK—=>gr—gr—0

where K is a fired choice of a nonzero central element and the commutator is
(X® [, Y ®g)— B(X,Y)ResfdgK.

The (polynomial) affine Lie algebra is the restriction gyp+y of the central extension

to the polynomial loop group gp=1).

By the formula for the commutator, the central extension g is split over go,.

We have that

is an ind-pro vector space where the Lie bracket gr X gz — gp is an ind-pro morphism

of vector spaces. Taking pullback, the same is true for gp.
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Definition 3.14: Put R = k((t)) or R = k[t*']. A representation of gr is a rep-
resentation on a countable dimensional vector space V' such that there exists an ind-
structure V = |,y Vi where
1. V; is finite dimensional and stable under ggr.
2. For each i € N and j € Z<o, the vector space map gur — End(V;) factors
through @, gy — End(V;) for some l € N,

The restriction of a representation of gr to ggy+1 gives a representation V = UV
of gip=1). Conversely every representation V' = (J,cy Vi of gpp+1) extends uniquely to
a representation of gp, using the fact that gy /) is the same regardless if R = K[t=!]

or R=F.

Remark 3.8: The representation theoretic literature uses grp=1) in studying their
representations, while the Lie algebras of the algebro-geometric objects we study are
gr. Since they have the same representations, we no longer take the care to separate

them in citations of the literature.

Definition 3.15: For [ € C, the level | vacuum representation of gr is
Vi(gr) = IHdSZF@CK@

where K acts by multiplication by | and go, acts trivially. When | € Z,, Vl(g;)
has a unique irreducible quotient [Zhu09, 0.1.1] that we call the level | integrable

representation and denote by V'(gr).

Suppose e € Grg(k) be any point, usually taken to be the point corresponding to
the identity coset of LTG. The Picard groupoid Pic?(Grg) of line bundles rigidified
at e is defined to be the Picard groupoid of pairs (£, ¢) where £ is a line bundle on
Grg and ¢ : e*L = k is a trivialization at e. It is known that since G is simple and

simply connected, Pic®(Grg) = Z is discreet [Zhu09, 2.4.2].

Definition 3.16: The level 1 line bundle L or O(1) on Grg is the line bundle

corresponding to the ample generator of Pic®(Grg). For any morphism of ind schemes
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S — Grg, denote the restriction
£3 = £G|S

line bundle on S. Now recall that LG acts on Grg, induced from the left action of
LG on itself.
As in [Zhul, 2.5.1], there is a well-defined central extension, called the (formal)

Kac-Moody central extension
1—>Gm%LAG%LG—>1
where for every k-algebra R,
LG(R)={(9.¢) : 9 € LG(R) and ¢ : g"Le; = Lo}

Then LG acts on L and also on Grg by projection to LG, such that Lg is an

equivariant line bundle on Grg for LG.

Theorem 3.11: [Zhul7, 2.5.2] and [Kum02, ch. 8] We have
LieLG = gp.

Therefore the (topological) dual global sections I'(Grg, £L&%)Y is a representation
of gr for every kK € Z. We have the following starting point: the affine Borel-
Weil theorem, which connects the problem of the (twisted) FKS isomorphism with

algebraic geometry of L4 on Grg:

Theorem 3.12: [Zhul?, 2.5.5] and [Kum02, 8.3.12]: For every k € Z~ there is an

isomorphism of LG-modules
D(Gre, L&) = V*(gr)-

Remark 3.9: The original formulation in [Kum02, 8.3.12] is a priori different from
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the one above, given in terms of the theory of Kac-Moody groups, more closely related
to gp=1) than gr, and their flag varieties. However, the two notions of flag varieties

for affine Kac-Moody groups and affine flag varieties for formal loop groups are shown

to coincide in [PROS].

Let us now formally state our results. The original geometric FKS isomorphism
of [Zhu09, 0.2.2] is that the dual restriction map I'(Grr, L7)Y — T'(Grg, Lg)Y is an
isomorphism. The question asked in [Zhu09, 0.3.3] is whether or not the same is
true when Grp is replaced by an affine Springer fiber, something which Gry is one
example of. We do not investigate affine Springer fibers, but instead we answer the
question for an alternative subspace that replaces the affine Springer fiber. To be
precise, construct subspaces S(o) C Grg for each lift o of an element of a conjugacy
class ¢ € [W] such that I'(S(0), Ls())" — I'(Grg, L)Y is an isomorphism.

Let c € [W], w € cand M = Zg(T"°) be the principal Levi, and 0 € M a lift
of w that is finite order with order m. Let 7 C Gr be the principal representative
maximal torus of type ¢ and P(c, M) the principal parahoric group scheme containing
T’ from So in particular, we set by definition when ¢ is homogeneous that
P(e, M) = Mo,.. By there is a choice of Borel subgroup By, € M (not to be
confused with the bilinear form B) such that we have that 7°°(Or) C I(Mp, By)
is the Iwahori subgroup of My relative to Bys. Let Z(Mp, Byy) be the corresponding

Iwahori group scheme of Mp. Since

LieL"Z(Mp, By) = LieBy @ t* @Pm @ t' C go,,

i>1

we have that I(Mg, By) € G(Op). Therefore T°°(Or) C G(OF).

Definition 3.17: For a mazimal torus Z C G, define Z% to be the closure of Z in

Go,. So by the closure principle, Z* is characterized by the property that
ZHOp) = G(Op) N Z(F)

and when 2°°(Op) C G(Op), for ezample if Z is a principal mazimal torus of type
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c € W, then Z* is an intermediate integral model of Z.

By the extension principle for smooth integral models, there is an induced canon-
ical map T* — Go, over Op. Then the inclusion LT — LG induces an inclusion of

flag varieties F+ < Grg as the scheme theoretic image.

Definition 3.18: For c,w, o as above, the principal subspace
S(o) C Grg
is the tmage of the orbit
O :=LT.L"P(o, M) C LG

of LT under the right action of L™ P(o, M) on LG defined by the composition of the
inclusions LYP(c, M) — LM — LG, i.e., it is the fpgc quotient

S(0) = [0/(L*GN )] C Crg.

Remark 3.10: If ¢ is a homogeneous conjugacy class, then P(o, M) = Mo,., T* =

T and
S(o)=Fr = Fp

simplifies to the image of LT in Grg.

Observe that since 7°(Or) = P(o, M) N T(F) as in the proof of , the map
LT — LM induces a natural inclusion 4 < S(0). So S(o) is stable under the left
action of LT. For any subspace stable under the left action of L7, the space of dual
sections of the restriction of Lo has an action of the restriction LT of LG to LT.
This applies to Fr+ and S(o).

Our main result of this section is:

Theorem 3.13: Suppose G is not necessarily of type ADE but still simple and simply
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connected. Consider the maps of LT modules
I'(Fre, 'C]"Tn)v — I'(S(0), Ls@))" = T(Grg, Le)".

Then the first map is nonzero and the second map is injective.

The proof is given in the next subsection. This gives the geometric twisted FKS

isomorphism, but conditional on the representation-theoretic result of [KP85l 11]:

Corollary 3.1: Using the main theorem [KP85, 11] and the Borel-Weil theorem that
if G 1s furthermore type ADE thenT(Grg, L)Y = V(gr) is irreducible for LT C LG,

we conclude that the map
F(«S(O’), LS(U))V — F(Gr(;, EG)\/

1 an 1somorphism.

Even though we do not give fully geometric proof, this already verifies that the
principal subspace S(0) is a correct candidate for a geometric realization of the twisted
FKS isomorphism, where before it was not known what subspaces to consider and it
was only conjectured that an affine Springer fiber is another possible candidate. We
give a fully geometric proof when ¢ is a homogeneous conjugacy class in

It follows from the following statement that we prove in the next section by
deducing from the split case of ¢ = [1],0 = 1 and T = T by cohomology and base
change and global methods. For p € Y = Hom(G,,,T) evaluate u on F-points and
let s, be the image in Grg of the element u(t) € G(F). Let Grg, € Grg be the
left L*G orbit of s, € Grg and Gr—Gu Such an orbit closure is called a Schubert

Variety. Then we have by [Zhu09, 2.3.5] that

[(Gre, £e) = | T(Grayn, Larsr)-

peY

We prove in the next section
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Theorem 3.14: Suppose G is type ADE. Assume the nontrivial premise that the

map

D(Fre, L7,)" — T(Gra, L)

is injective. (Byl[3.13 this holds when S(c) = Frs, such as when ¢ is homogeneous).
Then there exists a collection of subspaces Frs:,, C Fru for p € Y such that for each
pey,

D(Frip Ly ) — D(Grapu, Larg)"

1 an 1somorphism and

F<fTﬁ7£]:Tn)v - U F(‘/—-’Tﬁ,u7£}—7—ﬁﬂu)v'

neYy

We conclude that

is also surjective (i.e., an isomorphism usmg and both maps
F(fTu, ﬁ]:Tu)V — F(S(O’), ES(O‘)>\/ — F(GI‘(;, Lg)v

are 1somorphisms.

If such a statement is true for all the conjugacy classes ¢, for some lift o of some
element w € ¢ and the principal maximal tori 7, it will provide two candidate
subspaces for the geometric twisted FKS isomorphism, namely both F7; and S(o).
The two spaces are the same when c¢ is homogeneous, although from the examples
discussed in [3.2.3] the homogeneous conjugacy classes are a significant number in
type E and are all the classes when w lies in a parabolic subgroup of type A.

We are able to provide an exact numerical condition on the number of torsion

points of moF7+ that would imply I'(Frs, L7, )" — T'(Grg, Lg)" is injective, namely:

Theorem 3.15: If 7o F 7t 1or = d(c), where d(c) is the defect of ¢ as defined (a
quantity depending only on G and c) then U'(Frs, Lr_,)" — I'(Gra, L) is injective.
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This is explained in the next section. If we can find w € ¢ and a lift o of w such
that moF7: o = d(c), this would also give a full geometric proof of the geometric
twisted FKS isomorphism without relying on the representation theoretic result of
[K P85,11]. We leave this as an open problem. Computer assisted computations
have shown it to be true in type Dg, Dg, but they are omitted from this thesis.
It gives the following more elegant formulation of the geometric FKS isomorphism,

which we presently only know for homogeneous conjugacy classes:

Proposition 3.1: (this is a conjecture we propose, not proven) Suppose G
is simple, simply connected, and simply laced. For an arbitrary conjugacy class of
mazimal tori in Gg, there exists a representative T such that the inclusion of the

image of LT in Grg induces an isomorphism on global sections of Lq.

Remark 3.11: We will show that LT is a Heisenberg central extension in the sense
of . Fiz a splitting LTT"° — LT, which exists by although we show LG
actually splits over LT G and choose a compatible splitting for LYT*0 by restriction

from LYT"° < L*G. The principal part of the vacuum space
U = (I'(Grg, Lg)")» 70T

determines T'(Grg, L)Y as a representation of LT an a priori is only known to be
representation of the principal finite Heisenberg group 3 C LT, from our study of
the representation theory of LT . However, we find furthermore that U also is a
minuscule representation an algebraic group, M. This is a priori consistent with the
remark [KP83, 15.E] which states that U is a trivial or minuscule representation of
the larger group G, when o s chosen to be some specific lift of w. However, the set
of possible dimensions of minuscule representation of G° should not be the same as
the set of possible dimensions of minuscule representations of M?, and we think M?

15 the correct group to consider.
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3.3.2 Proof of Main Theorem

Preserve all setups and notation of the previous section.

Let By € M be the choice of Borel subgroup containing o given by [3.7 Extend
By to a Borel subgroup B¢ of G. This is not to be confused with the bilinear form B.
For H = M or G, let Iy C H(F) be the corresponding standard Iwahori subgroup
of H(F') and Zy the corresponding Iwahori group scheme for Hp. By a standard
parahoric subgroup, we mean one containing this chosen standard Iwahori subgroup.
Remark that neither By, nor Bg necessarily contain 7. We have I, = I N M (F).

The main feature of our proof is to pull back £ to the full flag variety Fz, and
consider the preimage of S(c) in Fr,.

Let us first prove two basic lemmas.

Lemma 3.12: There exist a splitting LTG — LG.

PROOF: We have LieL™G = go, = g @ gio, as Lie algebras where g0, is pro-
unipotent. Since G is simply connected, this upgrades to an isomorphism LTG =
G x LTG. By the formula 3.7, gp is split over go,. Since g is simple and g0, is
pro-unipotent, we conclude that go, = C ® g ® gi0,. Therefore LG is isogeneous
to G,, x G x LT™@G. Since LT*G and G are both simply-connected, the kernel of
an isogeny G,, x G x L**G — LG must lie in G,,. Any isogeny from G,, is Gy,
itself, by a quotient by some group of rth roots of unity for some r. We conclude that

LG~ G,, x G x L**G and the result follows. =

For the remainder of this subsection, fix a choice of splitting LG — LG. This
restricts by LT770 < L*@ to a choice of splitting LT7"° — LT. Additionally fix
the choice of section s, : Yr — LT for the Kottwitz homomorphism [2.6] giving us

the full structure theory and representation theory of LT in |2.2.5| and |2.2.6|.

Definition 3.19: Set
tr(0) = LieL++—T%0,

The second basic lemma:
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Lemma 3.13: The central extension LT is a Heisenberg central extension in the
sense of[2.19 Here T C Gp can be any mazimal torus, not necessarily a principal

mazximal torus.

PrOOF: By [BDO01l, 12.10], there exists a central extension £ of G by K r such that
LG(k) = E(F)%mer  In fact £ is determined by the bilinear form B on Y. It follows
that
LT (k) = E|7(F)tmer,

It remains to check the other condition that L7 needs to satisfy in the definition m
namely that tFA(a) is a Heisenberg Lie algebra, i.e., the center is one dimensional and
equals the commutator. To this end, it suffices to check any nonzero multiple of tFA(a)
as a central extension is a Heisenberg Lie algebra. For a central extension [ of a Lie
algebra by C, denote the mth multiple by m - [. Let E/F be a degree m extension
such that T is split and v € Gal(E/F) a generator and ¢ a chosen primitive mth

root of unity so that v(u)/u = (. Recall T is the image of
Z = RGSE/F(T Xk E)wxy71 - RGSE/FGE

under Ad(u~"*) where X is the Kac labels of o as in the proof of [3.10] where u=™* €
G(E). Let gg be the affine Lie algebra as in with F' replaced with E. Let
t = @iy /mzt; is the eigenspace decomposition of t for w. Then the restriction of gp
to gr < gg is m - gr. The adjoint action by the commutator LG on LG is an action
by automorphisms as G,,-central extensions. Therefore m - tFA(a) is isomorphic to the

restriction of gg to

LieLt" 2" = @ @ o

where the computation of LieL**~ 2"0 is as in the proof of 3.6, By the formula [3.13)
and the g-invariance of B, LieL++~ 220 is given by the presentation for 7,7 # 0 and
X et Y et,

(X ®u" Y ®@u’) — B(X,Y)Resu'du/ K
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= B(X,Y)idis;0K

where 1_)denotes the Boolean indicator symbol for the expression (—). Since B is

w-invariant, for 7,7 € Z and X € t;,Y € t;,
B(X,Y) = B(w.X,wY)=("B(X,Y).

This shows that the restriction of B to t; © t; is zero unless ¢ + 7 = 0. Since B is also
non-degenerate, the restriction of B to t;®t_; is a perfect pairing for every i € Z/mZ.
This implies that the center is CK, i.e, one dimensional and equal to the commutator.

The result follows. -

Remark 3.12: The argument that B restricts to a perfect pairing t; & t_; — C s
similar to [Kac90, 8.1.q/.

This shows that our results on the representation theory of LT in apply to
help us understand the maps [3.13
Since P(a, M)NT (F) = T"°(O) and L*P(c, M) is reduced, we have L*P (o, M)N
LT = L*T" and
Fro = [(LT.L*P(c, M))/L*P(c, M)]

is expressed as the quotient of the orbit of L7 under the right action of LTP (¢, M).

Consider the quotient by the smaller space L™Z),
X(o)=[(LT.LTP(c, M))/L*Ty,].
We have two projection maps p, 7:
Fr & X(0) S S(0).

Define the intersection

Q(o, M) = P(o, M) N G(OF)
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.Using P(o, M) C M(F), we have

Q(0, M) = P(a, M) N G(Op) N M(F)

— P(o, M) " M(OF).

So Q(o, M) is the intersection of two standard parahoric subgroups of Mg, and
therefore itself is also a standard parahoric subgroup. Let Q(o, M) be the corre-
sponding parahoric group scheme of My over Op. Then both p, 7 are flat and pro-
jective with fibers isomorphic to the (projective) Schubert varieties P(c, M)/Iy and
P(c, M)/Q(c, M), respectively.

Lemma 3.14: The natural map is an isomorphism
Lso) = T Lx(s)-
we thus obtain a natural isomorphism
D(X(0), Lxw) = T(S(0), Lsi)"

PROOF: The ind scheme S(0) is ind finite type because it is a closed sub ind scheme
of Grg. Therefore 7 is ind-proper because it is the pullback of Fz, — Grg, which is
ind-proper by [PR08, 8.e.1], by the closed embedding S(o) < Grg.

Write S(0) = lim_,; S(0); as the limit of finite type closed subschemes S(o); and
let X(0) = lim_,; X'(0); be the induced presentation of finite type closed subschemes

X (0); by pullback. Then it suffices to show that the natural maps are isomorphisms
,Cg(g)i ~ W*EX(O')Z"

This follows from the fact that X(0); — S(o); is proper, flat, finite type whose
geometric fibers are isomorphic to P(o, M)/Q(o, M), which is connected and reduced,
and [Vak17, ex. 28.1.1 and 28.1.H].
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Let 3 C LT be the principal finite Heisenberg subgroup defined in with ¥ =
Yy tor- The Kottwitz homomorphism LT — Y,, induces a bijection mo(L*7T?) — Yy tor

because the latter is the maximal compact subgroup of Y,,. Therefore )y C L+ T C

~

L+P(o, M) and the subspaces P(o, M)/Iyy € X(o) and P(o, M)/Q(co, M) C S(o)
are both stable under the right action of X. n

Definition 3.20: To save notation in the following proofs, put
P=P(o,M),P="P(c, M)

Q=Q(o, M), Q= Q(0,M).

Therefore the dual sections
I'(P/Q, Lpq)"

F(P/IM7 EP/IM>V
have a natural action of 3.

Lemma 3.15: The dimensions of I'(P/Q, Lp)q)" and I'(P/In, Lpyr,,)" are each a
positive multiple of the defect d(c) as defined in[2.34

PROOF: Follows from the characterization of representations of 3 [2.34] n

Lemma 3.16: The natural map M° — M — M(F) induces an isomorphism be-
tween the space P/Iy with the (finite type) full flag variety of the connected reductive
group M? (connectedness of M? follows from and [Conl{, 6.5.2.1V]). Thus by
the finite type Borel-Weil theorem, I'(P/In, Lp)1,,)" is an irreducible representation
of M? by M° < LG < LG, and T%° C Z(M™) acts on it by a character.
Furthermore, this representation is minuscule, i.e., corresponds to a hyperspecial

vertex of the Dynkin diagram of M°.
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PROOF: The map ad(u™™) of [3.7] identifies the Levi factor of LieL™P with mg, so
the reductive quotient of the reduction of P at t = 0 is M?. Since I, is the Iwahori
subgroup of P, P/Iy; must be full finite flag variety M?/B of M.

Now the line bundle E;IG is characterized by the property that the restriction
to the copy of P! given by the image of a standard affine root subgroup is O(1) for
the affine root subgroup and trivial for the others [PR08|, 10.1]. Restricting the maps
P/Iy C Fr,, C Fz,, that P! that corresponds to the affine root of G maps to the P!

corresponding to a hyperspecial vertex of M?. The result follows. =

Now recall the decomposition

~

LT = (LT x (Yp % T%)) /Gy
from given LTT"0 — LT and s, : Yp — LT, where ¥ < LT factors through
IS Y}, T%0 acts trivially on ﬁ), and the centralizer of 7% in Y x T%0 is 3 x T,

Lemma 3.17: As a representation of LT, we have

F(}_Tb,p*ﬁx(g))v ~ Ind“7

(LHHT20x (SXTw0)) /puy

in the classification of representations of LT fmm where
U= F(P/IMﬂ ‘CP/IM>\/

18 equipped with the action off] - Yw, forms a single weight space for T%Y, LHT0 =
Gy X LTHT70 has the G, factor acting by the identity character, and L*+T°0 acts

trivially.

PRrOOF: We first claim p,Lx(,) is free and finite rank as a quasicoherent sheaf on F.
The map p is the pullback by the inclusion F7» — Fp of the map F7z,, — Fp, which
is ind-proper by [PRO8, 8.e.1]. Therefore p is ind-proper. Let Fr» = lim_,; s ; be a

presentation as an ind-scheme of closed sub-schemes Fr» ; and X'(0) = lim_,; X'(0); be
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the induced presentation as an ind-scheme of closed subschemes X'(o); by pullback.
Let p; : X(0); — Fp»,; be the restriction of p to X'(0);. Since each Fp ; is zero-
dimensional by properties of the Kottwitz homomorphism, it suffices to show that
PixLx(s), is locally free of finite rank where the rank is independent of 7. Each p; is
flat and thus Ly(,), is flat over Fr ; by [Stal8, Tag 01U6]. The geometric fibers of
p; are all isomorphic to the Schubert variety P/I,;, which by has the property
that
HY(P/In, Lpy1,) =0

because the line bundle Lp/;,, is ample on the Schubert variety P/, and by [Kum02,
8.1.8]. By cohomology and base change, [Gro63, 3.2.1]|, p; «Lx(s), is locally free with
rank equal to the dimension I'(P/Iys, Lp)r,,). This is independent of 7 as required.

The characterization

~ LT
P(FpopeLaie)” I o s many U

follows from the fact that each geometric fiber of p is isomorphic to P/I); and the
map Fr»o0 — Fp» is finite and free of finite rank, and so induces an isomorphism on
connected components. Since the action of LT7”° on Ls(s) is trivial, so is its action

on p.Ls). The fact that U is one single weight space for 7" follows from -

Combining and |3.14] we obtain

Corollary 3.2: As a representation of LAT, we have

I(S8(0), Ls()” & Ind"7 U

(LHHT20x (X Tw0)) /iy

where
U=T(P/Q,Lpq)"
is a single weight pace for TP,

We remark that the space P/Q is still a finite flag variety for M?. It happens

that Lp/;,, and Lp,g have the same global sections.
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Remark 3.13: In terms of the representation theory of LT = (LJF*:*'T*”O X (Yp X
%)) /Gy 0f [2.2.6, we have a vector space decomposition

F(S(C), LS(C))V = 7T(U}> & C[Yw,cotor] QU

where LH+=T0 qcts by its Heisenberg Lie algebra on the Fock space m(w), identi-
fied with the dual ring of reqular functions of the connected component .7-—%0. The
composition

Y, Y, oC = & v

with the second map is X — B(X, —), induces an embedding
Yw,cotor — tw,V

which we denote by A — X. Then t“° acts on C[Ya,cotor] = Previy .o Cx @5 a direct

sum of the corresponding weight spaces, as shown in [BK0J, 4.7].

We now can prove the main theorem of this section.

PROOF: (of[3.13) Apply the Characterizationand To show that I'(S(0), Ls(r))" —
['(Grg, L)Y is injective, by the representation theory of LAT applied to those in-

duced from representations of 3 that form a single weight space for 770 m, it

suffices to show injectivity of the induced map on the vacuum spaces

Ind;/FXTw’OU = C[Yw,cotor] ® U— F(GI‘G, ‘CG)V

xTw,0

where U =T'(P/Q, Lp)q)". Now crucially since U is one distinct weight space for ¥,
each summand of

U ® C[Yw7C0t0r] - GBAE}/w,cotor('jx ® U

is a single weight space for t* with the weights of different summands are distinct.

Thus it suffices to show that the induced map on each summand

(CX & U— F(Grg, ﬁg)v
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is injective, for the images of different summands will have trivial intersection. Since
both U @ C[Yycotor] and I'(Grg, L)Y are equivariant for Y,,, it suffices to show in-
jectivity for one factor and assume A = 0. We thus finally reduce to showing the

map

U— F(Grg, ,C(;)v

is injective. By [Kum02l 8.1.23] and [PROS8| 8.8, 8.1] this is shown if we can show that
P/Q is closed under the left action of I, for it would realize U as an affine Demazure
submodule of T'(Grg, Lg)Y = V1(g).

To show P/Q that is closed under the left action of I, recall the Cartan decom-
position as follows. According to [PROS8, 8.a, 8.1, the inclusion Mp < Gf induces
an inclusion of affine Weyl groups Wi, .5 < W as that is compatibly identified with

the map of double cosets
I\M(F)/Iy — I\G(F)/Is.

therefore I \M (F) /Iy — Ic\G(F)/1¢ is injective. Therefore left Iy, orbits M (F') /Iy C
Gr/Is are closed under the left action of /. Therefore the I orbit P/Q is closed
under the left action of I as desired.

Finally, the map I'(Fr:, L1:)" — —(S(0),Ls())" is nonzero, because the one

\

dimensional subspace of dual sections I'(e, L.)" corresponding to the neutral point

e € Fri(k) is the Demazure submodule of T'(Grg, L)Y & V1(§) associated to the

Schubert variety of the neutral point of Grg. =

3.4 Global Flag Varieties and Geometric Proof for
Homogeneous Conjugacy Classes

The main purpose of this final section is to prove The method is to deduce it
from the case when T = T of [Zhu09] by cohomology and base change in a family

over the curve C' = A! whose completed local ring at 0 is Op. Similar kinds of ideas
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have appeared in [BH20] when the split group G'r over F is replaced by a ramified
group but, 7 is a torus corresponding to a purely outer automorphism of the base
change of the group to the algebraic closure. We expect our techniques to directly
follow through for the setting of [BH20|, under an analogous notion of a principal
tori in a ramified group and an analogous notion of homogeneous conjugacy classes
for twisted Weyl groups. Indeed, the results of [AHN20]| we used were already fully

extended to the case of twisted Weyl groups.
This section is designed to be read after the previous one. Preserve all of the

notation and setup of the previous Section [3.3] Recall the maps
F(]:Tﬁ, ‘C]:Tﬁ)v — F(S(O‘), ,Cg(o))v — F(Gr@ ﬁg)v

of |3.14} Since 7*is an intermediate integral model of T, Fr+, is zero-dimensional and
the Kottwitz homomorphism induces an identification of the reduced locus with the
connected components

fTﬁ,red = WO(‘FTU'

Identify mo(F7+)ior, which happens to be the maximal compact subgroup of 7o (Fr+),
with its preimage in Fr:,0q. The Kottwitz homomorphism identifies mo(F0) = Y,
and thus also identifies mo(F7t)ior With the quotient Y, o, = X by the connected
components of Q(c, M)NT (F). Similar to the proof of [3.17] there is a characterization
as LT-modules.

(Frs,Lr,)" = Ind""

(LHT20x (SXTw0)) /pur

where

U = F(’ﬂ'()(f’]‘ﬁ)tor) ‘CTFO(]'—TIi,mr))V

is a representation of ¥ because my(Fy+)ior is stable under the action of . Further-
more U is a single weight space for 7% because it maps to I'(P/Ip;, Lp/r,,)" which
is a single weight space for 7% as proven in . We have also already shown in the
proof of 3.13| that U — I'(Gre, L¢)" is nonzero.

Therefore according to the representation theory of LT in and as in the proof
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of 3.17} the nonzero map I'(Fr+, L7 )" — I'(Grg, Lg)" is injective iff U is irreducible
as a representation of 3 iff dim U = d(c), the defect of This proves [3.15] the full

consequence we put here for convenience:

Theorem 3.16: Suppose for each conjugacy class ¢ € [W] there exists w € W and
a lift o of W such that mo(Fri)sor = m1(P(o, M)/Q (0, M)) equals the defect d(c) of
¢, which s given explicitly in in terms of only the lattice action of the conjugacy

class of w and the bilinear form B. Then both dual restriction maps
[(Frs, Efrn)v —T(8(0), Ls))” — I'(Grg, Lg)"

are isomorphisms of LT modules.

As explained in the previous Section we presently only know this for homo-

geneous c.

3.4.1 Global Analogues of the Tori, Loop Groups, Flag Vari-

eties, Schubert Varieties and the Line bundle

Let us introduce global versions of T, Grg, £, etc. Briefly recall the setup as in
[Zhul4] as below. Let C be a smooth curve over k, although we will only use A! or
AN{0}. Let Go be a smooth affine group scheme over C, where we use the subscript
C to emphasize the global nature. Let R be a k-algebra and y : SpecR — C' be an
R-point. Denote by I', € Cg the closed subscheme of the graph of y. Let fy be the
affine scheme given by the relative spectrum of the ring of regular functions along
the formal completion of C along I',. Let f; denote the complement of the natural

closed immersion I'y < I'y.

Definition 3.21: The global jet group, or global positive loop group, is the

functor

L*Ge(R) = {(y.B8) : y € C(R), B € Go(Ty)}.



134

The global loop group is the functor
LGc(R) ={(y.8) - y € C(R), B € Go(I)}.
The global flag variety is the fpgc quotient
Foe = [LGe/LTGel.

When Goc = Go = G %, C, put
GTGC = FGC

and call it the global affine Grassmannian.

They are all functors on k-algebras.

Remark that unlike their local counterparts, the global loop groups are not defined
by Weil restriction. Tt is known by [Zhul4l 3.1, 3.3] that L™ G¢ is a formally smooth
but not necessarily finite type scheme over C' and LG¢, Fg, are formally smooth ind
schemes over C' where Fg_, is ind-proper. The fibers of L*G¢, LG, and Fg,. at closed
points x € C' are their local counterparts. To be precise, let O, be the completed

local ring at x and F} the fraction field. Then there are natural isomorphisms
(LGc). = L(Ge,r,)

(L*Ge). = LY (Ge0,)
(‘Fgc)x =~ ‘F(QC,OI)

where for an R-point of C, G¢ r means the restriction of Go by SpecR — C.

Now for the remainder of this section, put C = A' = Speck][t] and O = C\{0}.
Let us extend 7* to a global group scheme 7'0*d whose fiber at Oy is T* and fiber at
O, for x # 0 is non-canonically isomorphic to T}. First, let us extend to a global

version replacing F' with C:

Theorem 3.17: Preserve the notation of o, \, Baq, Haq of. Let C' = Speck[u*!]
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be the degree m Galois cover with Galois group I' where we canonically extend v to
an automorphism of C. Consider m\ € X,(Haq) = Hom(G,,, Haa) and let um €

Hoa(k[u*']) = H,q(C) be the image of u € k[uT'|* = G,,(k[u*']) under mA. Then

the map Ad(u™) : M; — M; induces an isomorphism of closed subgroup schemes
c c

[e)
of Res; M ; over C':
c C

um)\ g _
P A )(ReSg M x, O)7<

Mo = (Res; , M x;, C)>V"
c c/c c/c

PROOF: First we show it over the generic fiber n = Spec(k(t)). Then it follows
identically to the proof of [3.7] with the field F' = k((t)) replaced with k(t); all of the
steps remain valid.

It remains to show why it is sufficient to check on the generic fiber. To this end,
since M and (Resg/éM Xk, 6)””_1 are closed sub group schemes of Resé/éM Xk é,
it suffices to show that the generic fibers are dense. According to [Edi92, 3.4], both
are smooth, so in particular reduced. Therefore by [Stal8| Tag 0CC1] it suffices to
show that each is irreducible. It suffices to show that each is connected in addition

to being smooth. This follows from the fact that both are fiber bundles over the

connected base C' with connected fibers that are each isomorphic to M. n

The extension of 7% to C' is now as follows. Notably for our work here, we do
not use a global version of P(c, M), i.e., a group scheme over C' whose fiber at the
completed local ring at x = 0 is P(o, M) and at x # 0 is isomorphic Mo,., but it
could also be defined if desired.

Theorem 3.18: There exists a subgroup scheme Tc# C G¢ over C such that for each
closed point x € C, we have the fiber at the completed local ring O, is given as follows.
Let F, be the fraction field of O,.
1. For x =0,
(Té)o. = T*.

2. For x #0, (T})o, is a split mazimal torus of Go, .
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PRroOF: The idea is to define on the open curve and glue with 7#. Define the torus

Té C Gé to be the composition

To = (Res; ,T Xy C’)wal — (Res; , M x4 C)nyil
c c/C c/c

Ad u—mk
(—> ) Mo — Go
C C

where Ad(u™™") is the isomorphism from [3.17 Then for all closed points = € C,

(7—5)(% is a split maximal torus of G(c}.

Restricting T& to F' = k((t)) D k(t) gives the torus of type T OE Finally, ap-
plying the descent lemma [HeilOl lem. 5] along the fpqc cover C' = C'USpec(OpF) gives
the desired global group scheme 723 and a glued morphism 725 — G¢. Consequently,

72'1 can also be described as the Zariski closure of 7; in G¢. =

Applying the functors L(—), L*(—), F(—), we obtain subgroup schemes L7z —

LGo, L™ 7o — LTG¢ and a morphism FTC” — Grg,..
Lemma 3.18: The map ]—"Tcu — Grg,, 5 a closed embedding.

PROOF: It is a monomorphism by [Stal8, tag 01L1], the fact that the pullback to
each point of C' is a monomorphism and the fact that every point of ]:7'5 lies over
either the closed point or generic point of C. The result follows from the fact that

both sides are ind-proper over C'. =

In conclusion, we have constructed a closed embedding of global flag varieties

]—"Tcu — Grg,. such that the fibers over closed points x € C are described by:

e For x =0, (]—'Tcn)x — (Grge )z is equal to the embedding of local flag varieties
Fre < Cre of 13,

e For z # 0, after fixing an identification (Grg, ), & Grg and using the conjugacy
of maximal split tori in G(F'), the map (]—"Tcu)x — (Grg,)s 18 LG(k)-conjugate

to the inclusion Grp — Grg.
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Let us now define the global level 1 line bundle L¢, global Schubert varieties of Grg,,
and recall a refinement of the geometric split FKS isomorphism of [Zhu09] in terms
of the global Schubert varieties.

Let £ be a line bundle on Grg,.. Then for each closed point € C, the restriction
of £ to (Grg. ). is isomorphic to some integer ¢ power of the ample generator of
Pic((Grg,.).) = Z. It is proven in [Zhuld, 4.1] that ¢ is constant as function of =, and
it is called the central charge of L.

The group scheme G¢ has the property that all fibers at x € C' are semisimple.
Therefore by [Zhuld, 4.1.1], the relative Picard group Pic(Grg,./C) is a constant
étale sheaf on C isomorphic to Z. By [Zhu09, 1.1.9], we can choose a generator and a
representative line bundle L with central charge 1, and we call it the global level
1 line bundle on Grg,. In particular, the restriction of L, to each closed point
x € C' is the level 1 line bundle on (Grg,.),. Consider the global split torus T C G¢
and naturally identify the cocharacter lattices at each point X, ((7¢)r,) & Y using
the structure map k — K,. Then according to [Zhuldl 3.4], for each pu € Y, there
exists a section s, : C' = LT with the property that for any closed point z € C,
su(z) € (LT¢)y(k) = T'(F,) maps to p under the Kottwitz homomorphism LT — Y.

Definition 3.22: The left L*G¢ orbit of s, in Grg,, is denoted Grg,, . The closure

Grg,,u 15 called the global Schubert variety associated to pu.

Then the fiber at 0 of Grg, ,, resp. m, is the local version Grg,,, resp.
Grg,,. By [Zhuldl theorem 3], the fibers of Grg, , at each closed point x € C' (not
just at z = 0) are isomorphic to Grg,,. Two Schubert varieties (either global or local)
associated to A, u € Y are the same iff they lie in the same W-orbit and the Schubert
varieties give rise to all the positive loop group orbit closures [ZhuQ9, 1.1.7]. A set
of representative p for each orbit can be chosen by taking the subset Y, C Y of
dominant cocharacters with respect to some choice of Borel subgroup B of G.

Fix such a choice Bg. We have the following from [Zhu09l 1.1.4]. A < p in Y iff

Grgy € Grg,, .- Define

Grr,, = Grg,, N Gry.
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Then also
GI"G = U GI“G#
ney
GI‘T = U GI‘T#.
neY

By [Zhu09) 2.3.5] for A < p, the map F(GI’G}\,EGI«G’M)V — F(GrG#,EGrG,M)V is in-
jective. Thus the map I'(Grra, Lary, )" — T'(Grry, Lary, )" is also injective because

Gr7,z, Grry, are zero dimensional. We therefore have

F(Grg,ﬁc)v = U F(GIG#?L@)v

BEY

F(GrT,LT)V = U F<GrT,w£GrT,u)v'
HeY

We record the main theorem [Zhu09, 0.0.2]:

Theorem 3.19: For all p €Y, the map
L(Grrp, Larr,,)” = T(Grau, Lag)”

15 an 1somorphism. In particular, both have the same dimension.

Consequently, I'(Grr, L)Y — T'(Grg, L)V is also an isomorphism, which recovers

the geometric FKS isomorphism for 7 = T.

3.4.2 Proof of Main Theorem

We prove Preserve the setup of the global objects of the previous subsection.
Put
Fr, o= Fr, N GrGCaH'
c c

Define the global closed subscheme ]:Tc’{ i C .FT(I/{ to be the scheme theoretic closure

= - .
Fran = T1on © I
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It factors through WCH Since fTC” C Grg,is closed embedding, }'Té “ is a finite
type closed subscheme of Grg, over C. Then for a closed point x € C, the fiber at
x #0 of .7-"75# is LG(k)-conjugate to the inclusion Gry, C Grg and factors through

GrG,u-

Define the space F7s, C Fr: C Grg as required in to be the fiber at 0:

-FTﬁ# — (]:TCQ,M)O'

Lemma 3.19: The schemes Fr:, and Grg,, are flat over C.

PrROOF: Apply [Zhul4l 6.1.4] and obtain that Grg, is Cohen-Macaulay. Since C' is
regular and Gr—Gu — (' is proper, thus closed, it is also flat by equidimensionality of
the fibers and miracle flatness [Gro65l 6.1.5].

The finite type scheme ng _u 1s zero dimensional over COZ' . Therefore all closed points

of Fr, are zero dimensional and by [Stal8, Tag 021N], F7, , is Cohen-Macaulay. By
C C

the equidimensionality of the fibers, Fr, , is flat over C. Since C' = Speck[t*!] is a
C

PID, we can use the flatness criterion of [Eis93, 6.3]. The closure F_ in the flat

]
Cvu
Grg,, scheme over C' is the spectrum of an algebra over k[t*!] that is torsion-free.

The result follows. n

We now give the final proof:

PROOF: (of|3.14). Since both F7; , and Grg,, are flat over C, the line bundles L, }

and L are both flat over C, by [Stal8, Tag 01U2|. Fix a closed point = € C.

Gra,u

Since (F7: ), is zero dimensional, L, ). is trivial and

Hl((”FTCﬁ,u)m’E(FTﬁ )z) =0

foRlad

Since £ . is ample and (Grg, ). is a Schubert variety, by [Kum02, 8.1.8],

Gch,H

Hl((Gchvu)% 'C(m)z) = 0.

By upper semi-continuity, we conclude that there is the same vanishing of H! for
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both when z is the generic point of C' as well. By cohomology and base change,
the dimensions dim F((]-Tcm)wﬁ(;%#)z) and dimF((GrGC’M)x,E(m)I) are each
independent of z € C. By the split case , and the LG equivariance of Lg, their
dimensions coincide when x # 0. Therefore the dimensions coincide at x = 0 as well.

Therefore taking the fiber at 0 and the dual, the map
(-FTﬁ ,C]-‘ T ) — F(GI"GW,C@)V

is a map of vector spaces of the same dimension. For A < pu, Frs \ € Fps . Since both
are zero dimensional, the maps F(]—"Tu,)\,E;Tm)V — F(F’]‘K#,;C}‘Tu’u)v are injective.
Since F(.FTﬁ,ﬁ]-‘Tu)v — I'(Grg, Lar, )Y is injective by assumption, we conclude that
L(Fre s E;TM)V — I'(Grg,,, E@)V is also injective, and therefore an isomorphism.

Now put X = ey U'(Frs . L7, #)V and consider the composition
(X, Lx)" = T(Frs, L7 )" = T(Grg, Larg)"

The composition is an isomorphism because I'(Gry, Lr)Y = UueY D(Groy, Larr,)Y
Therefore the same is true for both left and right arrows. We conclude that I'(Frs, L7, )" —

I'(Grg, Lare)Y is an isomorphism as desired. n

Remark 3.14: By showing that I'(Fr:, Lr_,)" = U,y ' Freu: L7, )V, we have
shown that Fr: = |J

wey Friy (since they are zero dimensional) cmd thus }"Tcn =

Uuey ]:Tcu e This gives a highly indirect proof, conditional factors known only when

T is a principal torus of the type of a homogeneous conjugacy class in a group Gg

when G is type ADE, that:
Corollary 3.3: Assume the hypothesis of . Then ‘FTC” is ind-flat over C.

Remark 3.15: Ind-flatness of a global flag variety seems like a basic property that
should not need such an indirect proof. We wonder to what extent ind-flatness of
]:Tcu holds when 7’3 1s more general group scheme over C, perhaps a Bruhat-Tits

group scheme in the sense that it is generically reductive and the restriction to each
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completed local ring at a closed point is a parahoric group scheme of the further

restriction to the fraction field of the completed local ring.
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