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Abstract

We study various aspects of the representation theory of loop groups, all with the

aim of giving geometric constructions, parameterized by conjugacy classes of the Weyl

group, of the basic representation of the a�ne Lie algebras associated to a simply laced

simple Lie algebra as a restriction isomorphism on dual sections of the level 1 line

bundle on the a�ne Grassmannian. Along the way, we obtain various results on the

structure of loop tori, the de�nition of a notion of a Heisenberg Central extension as an

alternative for twisted modules over the lattice vertex algebra and the determination

of their representation theory, some computations on central extensions of a torus

over a �eld by K2, and a new proof of the classi�cation of the conjugacy classes of

the Weyl group by parabolic induction.
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Chapter 1

Introduction

This thesis gives a geometric realization of the representation-theoretic determination

of the structure of the basic representation V of the a�ne Lie algebra ĝ associated to

a simple Lie algebra g of type ADE in [KP85], where a di�erent construction is given

for each conjugacy class of the Weyl group W of g. In the case of E8, that is 112 con-

structions, hence the name of the paper [KP85]. We call the representation-theoretic

work the `twisted FKS isomorphism'. The classical (non-twisted) FKS isomorphism

refers to the work of [FK81, Seg81] that do this for the conjugacy class {1} ⊆ W .

There are two parts to the thesis. The twisted FKS isomorphism was constructed

in [KP85] using representation-theoretic methods of twisted vertex operators, one

family for each conjugacy class c ofW . In the �rst part of the project, we give a group-

theoretic interpretation, where we replace the use of twisted vertex operators with

a central extension, which we call the (twisted) Heisenberg central extension,

L̂T of the algebraic loop group LT of the torus T over F = C((t)) de�ned by Galois

descent by the action of w ∈ W on the character lattice. We determine the group

theoretic structure of L̂T and in doing so, deduce its category of representations, in a

way somewhat resembling some Lie-theoretic works of [BK04, Lep85]. The study of

L̂T passes through the study of central extensions of T by the sheafK2 of [BD01] and

we make some independent homological algebra computations of central extensions

of T byK2. Along the way, we completely deduce the structure of an arbitrary loop

torus LT , in particular proving a basic fact that the Kottwitz map to the group of

connected components admits a homomorphic section.



2

In the second part of the thesis, we apply our results on representations of Heisen-

berg central extensions to give a geometric construction of the twisted FKS isomor-

phism. Suppose G is the simply connected group of type ADE with Lie algebra g.

There exists a line bundle L on the a�ne Grassmannian GrG whose dual global sec-

tions is identi�ed with the basic representation V of ĝ. We construct for every w ∈ W

and lift σ ∈ G of w, a subspace S(σ) ⊆ GrG with the property that the dual global

sections of the restriction Γ(S(σ),L|S(σ))∨ has the structure of an L̂T module and

the dual restriction map Γ(S(σ),L|S(σ))∨ → Γ(GrG,L)∨ is an isomorphism.

The proof we give is completely geometric for many conjugacy classes of W , those

we call homogeneous. They include 9 out of 30 elliptic conjugacy classes in E8 and

all of the conjugacy classes of w ∈ W that Lie in a subgroup of type A. For the

non-homogeneous conjugacy classes, we needed to use some representation theoretic

results of [KP85]. A fully geometric proof for all conjugacy classes of W is reduced to

an explicit computation on the number of torsion points of the connected components

�ag variety of the integral closure of a torus in T in G×C F whose conjugacy class is

classi�ed by the conjugacy class of W .

In the original paper [Zhu09] motivating this problem, it was not known what is a

correct subspace to use to obtain a twisted version of the geometric FKS isomorphism.

It was only conjectured that for the a geometric twisted FKS isomorphism, an a�ne

Springer �ber in GrG could be used instead of S(σ) to obtain a dual restriction

isomorphism of dual global sections of L. We did not end up pursuing the investigation

of a�ne Springer �bers, because we have found S(σ) to be a more natural space to

study for the nature of the problem. However we know that S(σ) is contained in an

a�ne Springer �ber, although this discussion is omitted from the thesis.

Along the way, we found a new, geometric, proof of the classi�cation of conju-

gacy classes of W by parabolic induction of [GP00] that originally used combinatorial

methods. The conjugacy classes of W have also been studied by di�erent combina-

torial methods in the original paper [Car72] that was used in the paper constructing

the twisted FKS isomorphism in [KP85].
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Chapter 2

Twisted Heisenberg Central

Extensions

2.1 Lie Algebra Preliminaries and Summary of Main

Results

2.1.1 Motivation and Summary of Main Results

For a simple and simply connected complex group G with Lie algebra g, there exists

a Gm-central extension L̂GF of the loop group of the base change of G to F = C((t)),

such that Lie ˆLGF is (formal version of) the a�ne Lie algebra ĝ associated to g. We

elaborate this in 3.

We eventually wish to study a representation of ˆLGF by restricting the action to

the sub-central extension L̂T for a maximal torus T ⊆ GF that may not be split.

The purpose of this chapter is to describe axiomatically de�ne what kind of central

extension L̂T is and determine its representation theory. We call such central exten-

sions (twisted) Heisenberg central extensions. We determine the group theoretic

structure of L̂T and in doing so, deduce its representation theory. We �nd that the

category of representations is semisimple, with every irreducible object induced from

a certain distinguished �nite subgroup Σ̂ ⊆ L̂T which we call the principal �nite

Heisenberg subgroup. It is obtained by restricting the central extension to an

embedding of the torsion subgroup Galois coinvariants of Σ := X∗(T )Gal(F ),tor into
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LT . All of these generalize the study of the case when T is split in [Bei06].

The de�nition is indirect, passing through some computations of study of central

extension of tori over a �eld by the sheaf K2 in the sense of [BD01]. The motivation is

that there exists a central extension E of GF by K2 such that the C points ˆLGF (C)

is obtained by taking F points E(F ) and then the pushout by the tame symbol

K2(F )→ C×. We de�ne a Heisenberg central extension L̂T of an arbitrary torus T

over F as one whose C points is obtained in the same way from a central extension

of T by K2, but further require the Lie algebra to be (a formal version of) the

Heisenberg Lie algebra studied in the representation theory literature, e.g., [FLM88,

Kac90, KP85, BK04, Lep85].

We begin with preliminaries on certain Heisenberg Lie algebras and their repre-

sentations, loop groups and intermediate models that will be also assumed in the

entire remainder of the work. Along the way, we completely determine the structure

of LT for an arbitrary torus T over F as a direct product of various other kinds

of abelian groups objects, e.g., non-reduced, unipotent, discreet, torus. It involves

showing a new basic fact that likely has many other applications, that the Kottwitz

homomorphism from LT to the group of connected components admits a homomor-

phic section even when T is not necessarily split nor an induced torus. Finally, we

also present some explicit computations about central extensions of T by K2 we use

to compute L̂T .

2.1.2 Heisenberg Lie Algebras and Fock Space

We set some de�nitions regarding Heisenberg Lie algebras and their formal comple-

tions, and review their representation theory.

De�nition 2.1: [FLM88, 1.7 ] A Heisenberg type Lie algebra is a Lie algebra l

with an one-dimensional center that is equal to its derived subalgebra, i.e.,

Z(l) = l′ = [l, l] = CK

for some nonzero K ∈ l. If a speci�c choice of K is speci�ed, we call it the canonical
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central element.

The Heisenberg type Lie algebras that we study are usually given explicitly in

terms of generators and relations. They all turn out to be isomorphic and have the

same representation theory. For a Z-graded Lie algebra l = ⊕i∈Zli, de�ne the positive

part l+ = ⊕i≥1li and negative part l− = ⊕i≤−1li.

Theorem 2.1: [FLM88, 1.7] Suppose l is a Heisenberg type Lie algebra of countable

dimension admitting a Z-grading with �nite dimensional components. De�ne the Lie

algebra H, de�ned by a basis {ei, fi, K : i ≥ 1} with relations

[ei, fi] = K for i ≥ 1

[ei, ej] = [fi, fj] = [K, ei] = [K, ej] = 0 for i ̸= j, i ≥ 1, j ≥ 1

Equip H with the grading H0 := CK,Hi = Cei and H−i = Cfi, i ≥ 1. Then there is an

isomorphism of Lie algebras l ≊ H preserving the positive and negative graded parts.

De�nition 2.2: A Heisenberg Lie algebra is a countable dimensional Heisenberg

type Lie algebra Lie algebra l that admits a Z grading with �nite dimensional compo-

nents, together with a decomposition l = l−⊕Z(l)⊕l+ into the positive, central, and

negative parts, respectively, and a choice of a canonical central element K ∈ Z(l).

Corollary 2.1: of 2.1. Let l be the Heisenberg Lie Algebra. Then the commutator

map

l+ ⊕ l− → Z(l)

(X, Y ) 7→ [X, Y ]

is a perfect pairing, when we identify Z(l) = CK ≊ C by K 7→ 1.

For any decomposition l+ = ⊕i≥1li into �nite dimensional components as a vector

space, there is a canonical induced decomposition l− = ⊕i≥1l−i such that li, l−i are in
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perfect pairing by the commutator. This gives rise to a well-de�ned Lie bracket:

l− ⊕
∏
i≥1

li → Z(l)

extending the Lie bracket l−⊕l+ → Z(l), since any X ∈ l− is a �nite sum of X−i ∈ l−i.

De�nition 2.3: A formal completion of a Heisenberg Lie algebra l is de�ned to

be

l := l− ⊕ Z(l)⊕
∏
i≥1

li

for some decomposition l+ = ⊕i≥1li as a vector space with Lie bracket induced from

that in l, i.e., Z(l) is central,
∏

i≥1li is abelian and the bracket l− ⊕
∏

i≥1 li → Z(l)

canonically extends that on l− ⊕ l+ → Z(l).

De�ne the negative, neutral, and positive parts of l, respectively:

l− := l−

l0 := Z(l)

l+ :=
∏
i≥1

li

A formal Heisenberg Lie algebra is the formal completion of a Heisenberg Lie

algebra, together with the data of the decomposition into its negative, neutral, and

positive parts.

De�nition 2.4: A �nite dimensional representation of l+ is a �nite dimensional

representation that factors through the quotient l+ → ⊕N
i=1li for some N .

Remark 2.1: Under this notion of a �nite dimensional representation of l+, re-

striction by the inclusion l+ ↪→ l+ induces an equivalence between �nite dimensional

representations of l+ and �nite dimensional representations of l+. This is because

any �nite dimensional representation of l+ factors through some �nite dimensional

quotient of the form ⊕N
i=1li for some N , and thus canonically extends to an action of

l+ by having
∏

i≥N+1 li act trivially.
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De�nition 2.5: Let l be a Heisenberg Lie algebra and l the formal completion. For

p ∈ C with p ̸= 0, a level p representation of l, resp l, is a representation V of l, resp.

l, such that:

1. The canonical central element K ∈ l acts by multiplication by p.

2. V = ∪iVi restricts to a countable union of �nite dimensional representations

Vi of l+, resp l+.

Remark 2.2: Since our notion of a �nite dimensional representation ensures l+ and

l+ have the �nite dimensional representations, l and l have the same level p represen-

tations, i.e., every level p representation of l has an induced canonical structure of a

level p representation of l and vice versa.

De�nition 2.6: The level p Fock space πp is the representation of l de�ned by

πp := Indl
CK⊕l+C

where l+ acts trivially and K acts by multiplication by 1.

Recall from every Heisenberg Lie algebra is isomorphic to the Heisenberg Lie

algebra H = (⊕i≥1Cfi)⊕CK ⊕ (⊕i≥1Cei) in 2.1 as a Lie algebra by an isomorphism

preserving the positive and negative parts. We have the following characterization of

the level p representations of H:

Theorem 2.2: [Kac90, 9.13] Suppose V is representation of H with the property that

K acts by multiplication by p for p ̸= 0 and for every v ∈ V , there exists N > 0 such

that any tensor product of N or more elements of ei : i ≥ 1 in U(H+) = Sym(H+) =

C[ei : i ≥ 1] acts trivially. Then V is isomorphic to a direct sum of πp.

This allows us to determine the level p representation of l:

Theorem 2.3: Let l be a Heisenberg Lie algebra. Fix a presentation l ≊ H preserving

the positive and negative parts. Any level p representation of l, when considered as a

representation of H, satis�es the condition of 2.2. Therefore the category of level p
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representations of l, resp, l, is semisimple with exactly one unique irreducible object

πp up to isomorphism. We conclude that there is an equivalence of abelian categories

Level 1 representations of l ≊ vector spaces

V 7→ Ω(V ) := V l+

Indl
CK⊕l+M ←[ M

where Ω(V ) is denoted the vacuum space and K acts on M by multiplication by p.

Proof: Let V be a level p representation of l. Let v ∈ V . Then there exists W ⊆ V

a �nite dimensional H+-stable subspace such that v ∈ W . Since H+ is commutative,

Sym(H+) = C[ei : i ≥ 1]. Write the action of H+ on W as an algebra homomorphism

Sym(H+)
ρ→ EndW .

Since W is �nite dimensional over C, so is EndW and Sym(H+)/kerρ. Let J ⊆

Sym(H+) be a �nite set of linearly independent polynomials such that

Sym(H+) = ⟨J⟩ ⊕ kerρ

as a vector space. Let

N = max{deg f : f ∈ J}

where deg f is the number of variables in the term of f , as a polynomial in C[ei :

i ≥ 1], that is the product of the largest number of variables. Whenever n > N , any

monomial f product of n terms in {ei : i ≥ 1} will be linearly independent to J and

thus f = g + h for g ∈ ⟨J⟩, h ∈ ker ρ and h ̸= 0. Since f is a monomial, g = 0, and

we conclude that f ∈ ker ρ. The result follows. ■

Remark 2.3: For us, the main focus will be on the case level p = 1 representations

of a Heisenberg Lie algebra.
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2.2 De�nition and Representation Theory

2.2.1 Weil Restriction, Loop groups, Jet Groups, Integral Mod-

els

Let us �x some notation and recall basic facts. Let T ′ → T be a morphism of schemes.

For a functor X ′ over (Sch/T ′)op, the restriction of scalars, denoted by ResT ′/TX
′

is the functor (Sch/T )op → Set given by

ResT ′/TX
′(S) = X ′(S ×T T ′) = X ′(ST ′)

for every scheme S → T over T . When T ′ → T is a morphism of a�ne schemes given

by a ring map A→ B, de�ne

ResB/AX
′ := ResSpecB/SpecAX

′.

The assignment X ′ 7→ ResT ′/TX
′ is functorial in X ′. If G is a group valued functor

over T ′, then ResT ′/TG is canonically a group-valued functor over T . We often wish to

apply the construction to the case when X ′ is an algebro-geometric object. In some

special cases, the functor ResT ′/TX
′(S) is also representable by an algebro-geometric

object. For example, we have

Example 2.1: Suppose T ′ → T is �nite locally free and X ′ is quasi-projective over

T ′. Then by [BLR90, 7.6/4], ResT ′/TX
′ is representable by a scheme over T . If

furthermore X ′, T ′, T are a�ne with X ′ �nite type over T ′ then ResT ′/TX
′ is a�ne

and �nite type over T , [CGP15, Proposition A.5.2].

For us, the main examples of the type above are when T ′ → T is �nite étale. In

this chapter, we are primarily concerned with the case when T ′ → T is given by a

�nite extension of �elds E/F . In this case, ResE/FX
′ called the Weil restriction.

In chapter 3, we also consider the case when T ′ → T is a �nite étale cover of curves.
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De�nition 2.7: Let k be a �eld, O = k[[t]] and F = k((t)). Let X+ be a scheme

over O and X be a scheme over F . De�ne the jet space as the functor for every

k-algebra R

L+X+(R) := X+(R[[t]])

and the loop space as

LX := X (R((t))).

If X+ = G+, resp. X = G, are group schemes over O, resp. F , we call L+G+, resp.

LG the jet group, resp. the loop group.

Remark 2.4: It is not the case that L+X+ = ResO/kX+ nor LX = ResF/kX , because

for example R[[t]] is the topological tensor product R⊗̂kO and not R⊗kO and similarly

so for R((t)).

We have the following facts about L+X+ and LX from [PR08, Section 1]:

1. Both L+X+ and LX are k-spaces, i.e., sheaves of sets for the fpqc topology on

the category of k-algebras.

2. If X+ = Spec(A) is a�ne and �nite type over O, L+X+ is representable by an

a�ne scheme over k.

3. If X = Spec(B) is a�ne over F , LX is representable by a strict ind-scheme over

k, i.e., an ind-scheme where the transition morphisms are closed embeddings.

In particular, LG is a group ind-scheme, i.e., a group object in the category of ind-

schemes over k. Warning however LG is not necessarily representable by inductive

limit of group schemes over k. When P ,G satisfy various properties, e.g., a�ne,

reductive or semisimple, L+P and LG will satisfy additional various other properties

that will be recalled as necessary from [PR08].

De�nition 2.8: [Yu15, 2.1] Suppose G is an a�ne group scheme over F of �nite

type. We say a scheme G+ over O is an integral model of G over O if G+ is a�ne

�nite type over O with generic �ber equal to G.
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A smooth integral model is an integral model that is also smooth over O. For

convenience, we record some key facts about integral models from [Yu15, 2.2, 2.3, 2.6,

2.7] that we may refer to by name and not by direct citation:

1. (Uniqueness principle): Suppose X is smooth over F . If X+,X+′
are two smooth

integral models of X with the same O-points, then X+ = X+′
.

2. (Closure principle): Let X+ be an integral model of X and Z ⊆ X a closed

subscheme. Then the scheme theoretic closure Z ⊆ X+ is an integral model

of Z uniquely characterized by the property that it represents the following

functor on the category of �at O-algebras:

R 7→ Z(R⊗O F ) ∩ X+(R).

3. (Extension principle): Suppose X+,Y+ are integral models of X ,Y , respectively,

with X+ is smooth. Then any morphism X → Y over F mapping the image of

X+(O) in X (F ) to the image of Y+(O) in Y(F ) extends uniquely to a morphism

X+ → Y+ over O.

We say a group scheme G+ over O is an integral model of a group scheme G over F

if G+ is an integral model of G and the multiplication map G+ × G+ → G+ over O

extends the multiplication map G × G → G over F . The following basic lemma is

used:

Lemma 2.1: Suppose G+ is a smooth group scheme over O and is an integral model

of a group scheme G over F , and H ⊆ G is a closed subgroup scheme. Then the

scheme theoretic closure H ⊆ G+ of H in G+ is a subgroup scheme of G+.

Proof: Applying the functor of points characterization of H in the closure principle

with R = O gives the subgroup structure on O-points, with H(O) = H(F )∩ G+(O).

By the extension principle, it extends to a unique multiplication map of schemes

H×H → H. The uniqueness in the extension principle applied to the compositions

H×H → G+ × G+ → G+ and H×H → H → G+ give compatibility of H×H → H

with the multiplication map G+ × G+ → G+. ■



12

In studying loop groups, we frequently appeal to the Lie algebra to study the

connected component. It is de�ned as follows.

De�nition 2.9: Let G be a group functor over k. The Lie algebra is the k-vector

space de�ned by

LieG := ker(G(k[ε])→ G(k))

where k[ε] = k[t]/t2 is the ring of dual numbers and the map k[ε]→ k is ε 7→ 0.

Example 2.2: Let E = k((u)) be a cyclic extension of F with um = t, m invertible

in k. Then

LieLResE/FGm,E = {f ∈ C[ε]((t)) : f =
∑

aiεu
i} = C((u)).

The identi�cation of LieLResE/FGm,E with C((u)) is canonical with ε 7→ 1. In gen-

eral, LieLResE/FTE = t((u)) for a split torus T over k with Lie algebra t.

2.2.2 Integral Models and Structure of their Loop Groups of

Tori

We recall geometry of loop groups of tori and the jet groups of their integral models,

prove a lemma about the epimorphism property of the norm map, and a fundamental

new fact that the Kottwitz map from the loop group of an arbitrary torus to the

group of connected components admits a homomorphic section. This allows us to

determine the structure of the loop group of a torus.

For this subsection, let k be algebraically closed, F = k((t)) and OF = k[[t]].

Fix torus T over F . Let E/F be an extension such that TE is split of rank d. Put

E = k((u)) for some um = t where m = [E : F ]. Put OE = k[[u]]. Let Γ = Gal(E/F )

be the �nite cyclic Galois group with ν ∈ Γ a choice of a generator. Then TE has an

action of Γ over E. Let Y = X∗(T ) = Hom(Gm,E, TE) be the absolute cocharacter

lattice of Y , equipped with the action of Γ. Recall the action of Γ on Y is given by
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for all λ ∈ Y , γ ∈ Γ and x ∈ Gm,E(R)

γ.λ(x) := γ(λ(γ−1(x))).

By Galois descent, we have

T = (ResE/FTE)Γ.

De�nition 2.10: [Ngo10, 3.8] The Néron model T ♭ of T is the smooth integral

model of T such that T ♭(OF ) is the maximal bounded subgroup of T (F ).

By the uniqueness principle of integral models, T ♭ exists and is unique up to

unique isomorphism. The Néron model is constructed in [Ngo10, 3.8] as follows. Fix

an identi�cation TE ≊ TE for a split torus T over Z. Consider the integral model

ResOE/OF
TOE

of ResE/FTE, which is smooth by [BLR90, 7.6 Prop 5]. By the extension

principle, the action of Γ on ResE/FTE over F extends to an action on ResOE/OF
TOE

over O. Then

T ♭ = (ResOE/OF
TOE

)Γ.

Since T ♭ is a closed subscheme of an a�ne scheme over OF , it is a�ne over OF . By

[Edi92, 2.2], ResOE/OF
TE is smooth and by [Edi92, 3.4], T ♭ is smooth.

De�nition 2.11: 1. The connected Néron model T ♭,0 is the neutral component

of T ♭ in the sense of [Yu15, 1.2], i.e., the open subscheme of T ♭ consisting of the

generic �ber and the connected component of the special �ber.

2. An intermediate integral model T # is an open subgroup scheme of T ♭

containing T ♭,0.

All intermediate integral models of T are smooth over OF .

Lemma 2.2: Any intermediate integral model of T is a�ne over F .

Proof: Let T # be an intermediate integral model of T . Let s be the special point

of SpecOF and Z = T ♯
s . Then Z consists of (�nite) union of connected components
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of T ♭
s , which is a�ne because T ♭

s is, and therefore Z is a�ne. By the uniqueness

principle and the description of the dilation in [Yu15, 2.7], T # is the dilation of Z

in T ♭. Also according to [Yu15, 2.7], the dilation on an a�ne scheme is a�ne. The

result follows. ■

The torus ResE/FTE has an action of Γ over F coming from the action of Γ on

TE. There is also a norm map N : ResE/FTE → T given by x 7→
∑

γ∈Γ γ.x for all

x ∈ ResE/FTE(R) for every F -algebra R.

Lemma 2.3: The categorical quotient ResE/FTE/Γ is canonically a torus and canon-

ically identi�ed with T . The categorical quotient map ResE/FTE → T of schemes over

F factors as

ResE/FTE
N→ (ResE/FTE)Γ = T

and the norm map N : ResE/FTE → T is surjective.

Proof: The functor

{F - diagonalizable groups} → {Γ-modules �nite over Z}op

S 7→ X∗(S)

is an equivalence of abelian categories by [Poo17, 5.5.10]. On the other hand, the

functor

{Γ-modules �nite over Z}op → {Γ-modules �nite overZ}

M 7→M∨ := HomΓ(M,Z)

restricts to an additive equivalence on the subcategory {Γ-modules �nite and free over Z}op

of {Γ-modules �nite over Z}op. Therefore the restriction of the composition is

{F−tori} → {Γ-modules �nite and free over Z}.

S 7→ X∗(S)
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is an additive equivalence of categories and is exact on short exact sequences of tori.

An inverse isM 7→ HomF (M
∨
F ,Gm,F )

Γ where AF denotes the constant group scheme

over F associated to the abstract group A.

Let us �rst show ResE/FTE/Γ = T . Let Y = X∗(T ) be the Γ-module correspond-

ing to T . The F -torus ResE/FTE is an induced torus, meaning that the cocharacter

lattice has a Z basis permuted by Γ, in fact X∗(ResE/FTE) = Y ⊗ZZ[Γ] as Γ-modules.

We warn that X∗(ResE/FTE) has two actions of Γ. There is one latent action by the

virtue that ResE/FTE is an F -torus, and there is a second Γ action intertwining with

the �rst coming from the action of Γ on ResE/FTE over F by group homomorphisms.

The categorical quotient of Y ⊗Z Z[Γ] in the category of �nite Z[Γ]-modules for the

second action of Γ (where Γ acts on the Z[Γ] factor canonically and trivially on Y ) is

Y with the quotient map Y ⊗Z Z[Γ] → Y given by the augmentation map ε(γ) = 1

for all γ ∈ Γ. We get a corresponding categorical quotient map ResE/FTE → T for Γ

in the category of diagonalizable group schemes over F . Since Γ acts on ResE/FTE by

group homomorphisms, ResE/FTE/Γ, which exists as an F -scheme, has the canonical

structure of a group scheme. Since ResE/FTE is diagonalizable, so is ResE/FTE/Γ.

We conclude that ResE/FTE → T is also the quotient by Γ in the larger category of

schemes over F .

Now we show the categorical quotient map factors as ResE/FTE
N→ (ResE/FTE)Γ →

T . Let n =
∑

γ∈Γ γ ∈ Z[Γ] be the norm element. There is a factorization of the

augmentation map ε : Y ⊗Z Z[Γ]→ Y as

Y ⊗Z Z[Γ]
N→ Y ⊗Z Zn = (Y ⊗Z Z[Γ])Γ = Y

where the �rst map is the norm map λ 7→
∑

γ∈Γ γ.λ which is seen to be equal to the

map de�ned by for all λ ∈ Y and γ ∈ Γ,

λ⊗ γ 7→ λ⊗ n.

The second equality Y ⊗Z Zn = (Y ⊗Z Z[Γ])Γ is given by the vanishing Hi(Γ, Y ⊗Z
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Z[Γ]) = 0 for all i > 0, which is shown by tensoring the periodic resolution of Z as

the trivial Γ-module

· · · N→ Z[Γ] ν−1→ Z[Γ] ε→ Z→ 0

with the free, thus projective, Z[Γ]-module Y ⊗Z Z[Γ], see [Bro94, III.1. example 2,

ex 1.c].

The third identi�cation map Y = Y ⊗Z Zn, which is induced by the universal

property of Y as the Γ-quotient, is given by λ 7→ λ⊗ n. The torus corresponding to

(Y ⊗Z Z[Γ])Γ is (ResE/FTE)Γ = T because it is the image of N and all terms of the

short exact sequence

1→ KerN → Y ⊗Z Z[Γ] N→ (Y ⊗Z Z[Γ])Γ → 0

are free as Z modules. This also shows N : ResE/FTE → T is surjective. ■

Remark 2.5: Consider TE as a group scheme over F by the composition of the pro-

jection TE → T with T → SpecF . Then TE also has a Γ-action with categorical

quotient map TE → T . However, TE ̸= ResE/FTE. For example, ResE/FTE is di-

mension m · rank(T ) = md while TE has the same underlying topological space as T .

Moreover, if E/F is not �nite, ResE/FTE may not be representable by scheme over F

while TE will always be a scheme over F .

This gives us the following lemma that will be foundational to our computations.

Lemma 2.4: Suppose m = [E : F ] is invertible in k. Then the norm map N :

LResE/FTE → LT is both surjective and surjective on k points.

Proof: Applying [PR08, 1.a.3] to the Artinian k-algebra R = k, taking k-points

of loop groups of the surjection N : ResE/FTE → T gives that the k points of the

norm map N : LResE/FTE(k)→ LT (k) is surjective. According to [PR08, 5.1], each

connected component of LT contains a k point. Hence to show N is surjective, it

su�ces to show N is surjective on the neutral component LT 0. This can be done by
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showing surjectivity on the Lie algebras. Let l = LieLResE/FTE be the Lie algebra

over k. Then LieLT = lΓ. The induced norm map on Lie algebras is

N : l→ lΓ

X 7→
∑
γ∈Γ

γ.X.

Since m is invertible in k and a section lΓ → l is given by X 7→ 1
m
X. The result

follows. ■

Lemma 2.5: A surjective morphism of group-valued sheaves f : G→ H on a site is

an epimorphism in the category of sheaves of sets.

Proof: To be precise, let K be the kernel of f as a group valued functor, so f

is automatically a sheaf. Since g is surjective it induces a canonical isomorphism

between G and the shea��cation of the presheaf G/K de�ned by

R 7→ G(R)/K(R).

The induced map of sheaves f : G → G/K is surjective on R points, and hence is

an epimorphism. Let A be a sheaf, g, g′ : H → A be morphisms of sheaves such that

g ◦ f = g′ ◦ f . Consider the commutative diagram

G/K

↗
f

↓φ

G →
f

H
g

⇒
g′

A

where φ is the canonical map to the shea��cation. By the epimorphism property of

f : G → G/K, g ◦ φ = g′ ◦ φ. Taking shea��cation of g ◦ φ, g′ ◦ φ, we obtain g = g′

as desired. ■

For a Γ-module A, denote AΓ to be the quotient module of coinvariants. The

valuation map k((u))× → Z extends to a morphism of group ind schemes valE :
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LGm,E → Z, [PR08, 5.1]. De�ne a map

LResE/FTE
π′
0→ Y

by �xing an identi�cation TE ≊ Gd
m,E, which induces identi�cations LResE/FTE =

LTE ≊ LGd
m,E and Y ≊ Zd, and composing with (valE)

d : LGd
m,E → Zd.

De�nition 2.12: Using that N is an epimorphism, the Kottwitz homomorphism

π0 : LT → YΓ is the morphism of group ind schemes de�ned to be the unique map

making the diagram of Γ-equivariant maps commute:

LResE/FTE
π′
0→ Y

N ↓ ↓

LT π0→ YΓ

where Y → YΓ is the canonical projection.

Remark 2.6: This de�nition of the Kottwitz homomorphism di�ers from the original

one in [Kot97] on k-points, but it agrees with a remark given by a referee at the end

of the paper.

Since valE is surjective, π0 is surjective. We have the following property of the

Kottwitz homomorphism, which explains the choice of notation π0:

Theorem 2.4: [PR08, 5.1] Both π0 and π′0 are locally constant for the Zariski topol-

ogy of and induces an isomorphism of the target with the group ind scheme of con-

nected components of the source, i.e., kerπ′0 = (LResE/FTE)0 and kerπ0 = LT 0.

Remark 2.7: If T = ResE/FTE is an induced torus, then π0 can be constructed

directly as π′0, i.e., as (valE)
d.

To study LT , and central extensions of LT , we study their Lie algebra and con-

nected components. We have the following fundamental theorem. Let T be the split

torus over k with the same absolute character lattice of T , so that T ⊆ LResE/FTE.
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Lemma 2.6: 1. For every f ∈ Gm,k(E) = k((u))× of valuation 1, the Kottwitz

homomorphism has a section over Y , i.e., there exists a map evf : Y → LResE/FTE,

called the evaluation map, such that π0 ◦ N ◦ evf is the projection Y → YΓ. In

particular, N ◦ evf : Y → LT hits every connected component of LT .

2. For λ ∈ Y , putting f = u gives

N ◦ evu((1− ν)λ) = (N.λ)(ζ−1).

3. There exists a map υ : Y → T Γ,0 ⊆ L+T ♭,0 such that evu · υ is trivial on

(1− ν)Y , and therefore descends to a homomorphic section

su := evu · υ : YΓ → LT

for π0. Consequently it induces a direct product decomposition

LT ≊ LT 0 × YΓ.

Remark 2.8: The section evf over Y is known to exist and a common tool, for

example, in [Zhu14, 3.4]. However, it does not seem to be known that an honest

homomorphic section YΓ → LT exists, or at least the author has not found a reference.

The determination LT ≊ LT 0×YΓ for an arbitrary torus T over F is a fundamental

fact that should have many other applications.

Proof: Since Y is discreet, it su�ces to de�ne evf on k points. By de�nition of π′0,

for each λ ∈ Y = Hom(Gm,E, TE), the element λ(f) ∈ LResE/FTE(k) lies above the

connected component of LResE/FTE corresponding to λ. Then de�ne the homomor-

phic section for π′0 as

evf : Y → LResE/FTE(k)

λ 7→ λ(f)

This shows (1).
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We compute for λ ∈ Y and x ∈ Gm,E(k),

(N ◦ su)((1− ν)λ) = N((1− ν)λ(f))

=
m∏
i=1

νiλ(ζ−iu)

νi+1λ(ζ−iu)

=
νλ(ζ−1u) · · · νmλ(ζ−mu)

ν2λ(ζ−1u) · · · νm+1λ(ζ−mu)

=
νλ(ζ−1u) · · · νmλ(ζ−mu)

νλ(u) · · · νmλ(ζ−(m−1)u)

= νλ(ζ−1) · · · νmλ(ζ−1)

= (N.λ)(ζ−1)

This shows (2).

Now remark that the element (N.λ)(ζ−1) lies in T Γ,0 because the image of the

norm map N : T → T Γ must be connected as T is. Choose a retraction r : T → T Γ,0

for the injection T Γ,0 ↪→ T . It exists because it corresponds to a section for the

surjection X∗(T ) ↠ X∗(T Γ,0) that exists because X∗(T Γ,0) is free. Put υ as

Y → T Γ,0

λ 7→ r((
m∑
i=1

iνi.λ)(ζ)).

Then

υ(1− ν).λ = r((
m∑
i=1

iνi.λ−
m∑
i=1

iνi+1.λ)(ζ)).

Since
m∑
i=1

iνi.λ−
m∑
i=1

iνi+1.λ =

= ν.λ+ 2ν2.λ+ · · ·+ (m− 1)νm−1.λ+mνm.λ

−(ν2.λ+ 2ν3.λ+ · · ·+ (m− 1)νm.λ+mνm+1.λ)
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= N.λ−mν.λ,

we have

υ(1− ν).λ = r((N.λ)(ζ)/(mν.λ)(ζ)) = r((N.λ)(ζ)) = (N.λ)(ζ)

because (mν.λ)(ζ) = 1 and (N.λ)(ζ) already lies in T Γ,0. Thus

evu((1− ν).λ) · υ((1− ν).λ) = (N.λ)(ζ−1)(N.λ)(ζ) = 1.

This shows (3) and the result follows. ■

The group structure and geometry of LT and the subgroup L+T ♯ can be studied

explicitly. Let us de�ne certain special subgroups of LT other than L+T ♯. Begin

with the loop group of the multiplicative group. We have from [OZ16, 2.1] a group

theoretic decomposition

LGm,E ≊ Ŵ×Gm,C × Z×W

where W is the groups scheme of big Witt vectors de�ned by

W(R) = {1 +
∞∑
i=1

biti : b ∈ R}

and Ŵis the group ind-scheme of formal Witt vectors. It is de�ned by

Ŵ(R) = {1 +
−n∑

i=−1

cit
i : n ∈ Z>0, ci ∈ R and is nilpotent}

Ŵ(R) = lim
→{ϵi}

SpecZ[c−1, c2 · · · ]/I{ϵi}

with the limit taken over {ϵi} in the countable direct sum N⊕N and I{εi} is the ideal

generated by cϵi+1
i : i < 0.

Remark 2.9: The underlying topological space of Ŵ is a single point.
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We have that W is a projective limit a�ne spaces, identi�ed as

W ≊ lim
←i

Ai

1 +
∞∑
i=1

biti 7→ lim
←i

(b1, · · · , bi).

The decomposition LGm,E ≊ Ŵ × Gm,k × Z × W is obtained as follows. For R

such that SpecR is connected, for each f ∈ LGm,E(R) = R((u))×, there is a unique

decomposition, for some integer N > 0,

f =
i>−N∏
i<0

(1− aiu
i) · a0 · uvE(f) ·

∞∏
i>0

(1− aiu
i)

where ai : i < 0 are nilpotent in R, a0 ∈ R× and ai : i > 0 are arbitrary in R. De�ne

f− :=
i>−N∏
i<0

(1− aiu
i)

f0 = a0 · uvE(f)

f+ =
∞∏
i>0

(1− aiu
i).

Then the map LGm,E(R)
≊→ Ŵ(R)×Gm,k(R)×Z×W(R) (note SpecR is connected,

so Z = Z(R)) is given by

f 7→ (f−, a0, v(f), f+)

From the description, we also have

(LGm,E)red = L+Gm,OE
= Gm,C × Z×W.

De�nition 2.13: For the split torus TE identi�ed with Gd
m,E over E, so T ♭ = T ♭,0

and L+T ♭,0 = Gd
m,k ×Wd, put

L−TE = Ŵd
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L++T ♭,0
E = Wd ⊆ L+T ♭,0

E

L++,−T ♭,0
E = L++T ♭,0

E × L−TE.

Lemma 2.7: The subspaces T , L++T ♭,0
E , and L−TE are stable under Γ. We conclude

that there is a Γ-equivariant decomposition of the neutral component

LT 0
E = L−TE × T × L++T ♭,0.

Proof: The space L++T ♭,0
E is Γ invariant because it is the kernel of the Γ-equivariant

morphism L+T ♭,0
E → T induced by applying T ♭,0

E to the evaluation map R[[u]] 7→ R

given by u 7→ 0. The space T is Γ-invariant because T (R) = T ♭,0
E (R) ⊆ T ♭,0

E (R[[u]]).

Finally to show L−TE is Γ-invariant, de�ne the R subalgebra

NR = R[(c− aiu
i) : c ∈ R, ai ∈ R is nilpotent, i < 0] ⊆ R((t)).

Then L−TE(R) ⊆ TE(NR). Then the result follows by observing that L−TE(R) ⊂

TE(NR) is the kernel of the map TE(NR)→ T (R) induced by u−1 7→ 0. ■

Lemma 2.8: We have a decomposition

LT 0 ≊ L−T Γ
E × T Γ × L++T Γ

E

and

L+T ♭,0 = T Γ,0 × L++T Γ
E

and for any intermediate integral T ♯ of T , there exists a subgroup H ⊆ T Γ containing

T Γ,0 such that

L+T ♯ = H × L++T Γ
E .

Proof: This follows by the uniqueness principle of integral models, the character-

ization of T ♭,0, the fact that T Γ,0 × L++T Γ
E (k) is the maximal connected bounded

subgroup of LT (k), and the fact that L+T ♯ contains L+T ♭,0. ■
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De�nition 2.14: Put

L−T = L−T Γ
E

L++T ♯ = H × L++T Γ
E

where T Γ,0 ⊆ H ⊆ T Γ is as in the above lemma, and

L++,−T ♯ = L++T ♯ × L−T .

For a subgroup ind scheme P ⊆ LT , the maximal semisimple subgroup S is

the minimal S such that the reduced locus of the quotient group ind scheme [P/S] is

pro-unipotent. The maximal torus is the connected component of P .

From the above characterizations of LT , resp. L+T ♯, the maximal torus of L+T ♯

or LT is T Γ,0 and the maximal semisimple subgroup is H, resp. T Γ.

In summary, we have:

Corollary 2.2: The section su from 2.6 induces a decomposition of group ind schemes:

LT ≊ L−T × T Γ,0 × L+T ♭,0 × YΓ

where L−T , T Γ,0, L++T ♭,0, YΓ is the nilpotent part, torus part, pro-unipotent part,

and discreet part respectively.

This recalls a similar decomposition for commutative �nite type group schemes

over k, except there is no nilpotent part.

2.2.3 Quillen K-groups and Tame Symbol

Let us �x some notation and review concepts regarding algebraic K theory.

De�nition 2.15: [BD01, ch. 0] For every integer i ≥ 0, let Ki be the functor from

commutative rings to abelian groups, where Ki(R) is the ith Quillen K-group, as

constructed in [Wei13]. Let K∗ be the direct sum of Ki, where each K∗(R) is a graded
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abelian group with grading induced by i. For a �xed base scheme S regular of �nite

type over a �eld, let Ki,S, resp. K∗,S, be the shea��cation the presheaf Ki, resp.

K∗, on the big Zariski site SZar of S. When S is a�ne, let Ki,S, resp K∗,S be the

restriction of Ki, resp. K∗ to the category of S-algebras, and we may replace S with

A = Γ(S,OS) in the subscripts.

Example 2.3: [BD01, 1.4] For i = 0, the sheaf Ki,S is the constant group scheme Z.

For i = 1, the sheaf Ki,S is O× mapping each scheme U → S over S to Γ(U,OU)
×,

the units of the ring of global sections of U .

There is the structure of a (non-commutative) ring on K∗(R) respecting the grad-

ing via the K-theory pairing, denoted by ·. For us, the focus is on i = 0, 1, 2 and the

restriction of · to Ki ×Kj → Ki+j for i+ j ≤ 2.

By [Wei13, III.1.1.1], for any ring R, R× is a direct summand of K1(R).

De�nition 2.16: For r, s ∈ R× denote by {r, s} := r · s ∈ K2(R), i.e., {−,−} is the

restriction of · to the image of R× × R× in K∗(R) × K∗(R). It is skew-symmetric,

[Wei13, 5.12.1].

For a ring homomorphism R → S, the functoriality of Ki give homomorphisms

Ki(R)→ Ki(S). If furthermore S is �nitely generated and projective as an R-module,

there exists a transfer map demoted by tr : Ki(S)→ Ki(R), [Wei13, IV.6.3.2]. Here

are some basic examples:

1. [Wei13, II,III] Suppose R = F is a �eld. Then

K0(F ) = Z

K1(F ) = F×

K2(F ) = F× ⊗Z F
×/⟨a⊗ (1− a) : a ∈ F\{1, 0}⟩

the relations a⊗ (1− a) = 1 are called the Steinberg relations.
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2. [Wei13, III. 1.7.1] Suppose E/F is a �nite �eld extension. Then the transfer

map tr : K1(E) → K1(F ) is the norm map N : E× → F×, where we recall

that for E/F not necessarily Galois, N(x) is de�ned as the determinant of the

F -linear map of multiplication by x on E.

3. [Wei13, III.6.1.3] For any �eld extension E/F , the kernel of the map K2(F )→

K2(E) is torsion. If E/F is �nite, then the kernel of K2(F ) → K2(E) is

annihilated by m = [E : F ].

4. [Wei13, III.6.1.2] Let F be a �eld and X be a smooth geometrically irreducible

variety over F with a F -rational point. Then K2(F ) injects into K2(F (X)) as

a direct summand [BD01, 2.1].

Let F be a �eld with a discreet valuation v : F× → Z and residue �eld k. For

a ∈ R := v−1(0), de�ne a to be the image of a in k.

De�nition 2.17: The tame symbol is a map {−,−}tameF : F××F× → k× de�ned

as follows:

{r, s}tameF = (−1)v(r)v(s)(s
v(r)

rv(s)
)

where we note that the term sv(r)

rv(s)
lies in R because it has valuation v(s)v(r)−v(r)v(s) =

0. According to [Wei13, III.6.3], {−,−}tameF is bimultiplicative and satis�es the

Steinberg relations, and thus descends to a unique map

K2(F )→ k×.

Denote this map by {−}tameF .

Remark 2.10: The transpose (r, s) 7→ {s, r}tameF of the tame symbol also satis�es

the Steinberg relations because the set of symbols {a ⊗ (1 − a) : a ∈ F×\{0, 1}} is

stable under transposition. We may also denote it by {r, s}tameF .

Example 2.4: If F = k((t)) with the valuation induced by powers of t, the tame

symbol is given as follows. For f, g ∈ F×, write f = a0t
v(f) ·

∏∞
i≥1(1 − ait

i) and
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g = b0t
v(f) ·

∏∞
i≥1(1− bit

i) with ai, bi ∈ k as in [OZ16, 2.7]. Then

{f, g}tameF = (−1)v(f)v(g)a
v(g)
0

b
v(f)
0

.

Let E = k((u)) be the cyclic extension of F with um = t with valuation over F

induced by powers of u. Then for f, g ∈ F× ⊆ E×, we can either take the tame

symbol by considering f, g as elements of F or take the tame symbol by considering

f, g as elements of E. Letting vF be the valuation for F and vE be the valuation for

E. We have for f, g ∈ F×,

vE(f) = vF (f)
m.

Using the fact that m2 ≡ m mod 2 for any integer m, we have

{f, g}tameE = {f, g}mtameF

2.2.4 De�nition of Heisenberg Central Extensions, Bilinear

Forms, Commutator Pairing

For this subsection, let k = C, F = k((t)) and T be a torus over F . Let E/F be

an extension such that TE is split of rank d. Put E = k((u)) for some um = t where

m = [E : F ]. Let Γ = Gal(E/F ) be the �nite cyclic Galois group with ν a choice of

generator. Let X = HomE(TE,Gm,E), resp Y = HomE(Gm,E, TE), be the (absolute)

character lattice, resp (absolute) cocharacter lattice. Let N =
∑

γ∈Γ γ.(−) be the

norm map on an abelian group or sheaf with a Γ-action. For a base scheme S regular

of �nite type over a �eld, recall from 2.2.3 the presheaf K2,S and the sheaf K2,S

of abelian groups on the big Zariski site of S. For Z a set or presheaf of sets, let

τ : Z × Z → Z × Z be the transposition map (y1, y2) 7→ (y2y1), and pri : Z
n → Z

be the projection to the ith-coordinate, for i = 1, · · · , n. If Z is a group-valued, let

µ : Z × Z → Z be the multiplication map.

In this subsection, we de�ne the notion of a Heisenberg central extension L̂T of LT

byGm,k. Our de�nition is indirect, passing through the notion of a central extension of
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T by K2,F studied in [BD01]. However, we are able to deduce an explicit formula for

the k-points of the commutator for L̂T , by explicitly describing the commutator for a

central extension of T by K2,F . The commutator is enough to study group-theoretic

structure and representation theory of L̂T in 2.2.5. Some computations about central

extensions of T byK2,F are deferred to the later subsection 2.3 because the techniques

are disjoint from the main application here. In the case when T is split, we show our

de�nition of a Heisenberg central extension agrees with the de�nition in [Bei06, 1.4].

De�nition 2.18: 1. Let ˜T (F ) be a central extension of T (F ) by K2(F ) as an ab-

stract group:

1→ K2(F )→ ˜T (F )→ T (F )→ 1.

Pushing out by the tame symbol {−}tameF : K2(F ) → k× 2.4, we obtain a central

extension

1→ k× → ˜T (F )→ T (F )→ 1

which we denote by ˜T (F )
tameF

.

2. A central extension of a sheaf G of groups on SZar by a sheaf A of abelian

groups on SZar is a group-valued sheaf E on SZar �tting in to a short exact sequence

1→ A→ E → G→ 1

in the category of group valued sheaves on SZar such that A lies in the center of E.

Remark 2.11: If G is abelian, then there is a well-de�ned commutator map G×G→

A and it is bimultiplicative for Z, de�ned by gluing local set-theoretic commutators as

in [BD01, 0.N.4].

According to [BD01, 1.4], when A = K2,S and S is the spectrum of a �eld and G

to is a group scheme of �nite type over F , taking S points preserves exactness give

rise to central extension of G(S) by K2(S) as abstract groups:

1→ K2(S)→ E(S)→ G(S)→ 1.
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Recall from 2.14 the subgroup L++,−T ♭,0 ⊆ LT that is the product of the pro-

unipotent part and the nilpotent part of LT .

De�nition 2.19: A Heisenberg central extension L̂T is a Gm,k-central extension of

LT such that:

1. The induced central extension of Lie algebras of the restriction ˆL++,−T ♭,0.

0→ C→ Lie ˆL++,−T ♭,0 → LieL++,0T ♭,0 → 0

is a formal Heisenberg Lie algebra with positive part LieL+T ♭,0, i.e., the center of

ˆL++,−T ♭,0 is Gm,k and equals the commutator.

2. De�ne the connected Heisenberg subgroup of L̂T to be ˆL++,−T ♭,0.

3. There exists a central extension E of T by K2,F such that the commutator of

L̂T (k) is the commutator of E(F )tame,F , i.e., the commutator of the k points of L̂T

is obtained by pushout by the tame symbol of the commutator of the F -points of a

central extension of T by K2,F .

Remark 2.12: In private communication, Xinwen Zhu has informed the author of

their unpublished work that gives a way to intrinsically de�ne a Heisenberg central

extension without using algebraic K-theory. We did not know how to pursue this

approach because our study relies heavily on the work of [BD01].

Since Gm,k is a scheme, any Heisenberg central extension L̂T is group ind scheme

by pullback of a group ind scheme structure on LT . We also have that the projection

L̂T → LT induces an isomorphism π0( ˆLT ) ≊ π0(LT ) on connected components.

Remark 2.13: So far we have only de�ned the notion of a Heisenberg central ex-

tension, but have not demonstrated their existence. Suppose G is a split, simple, and

simply-connected group over F . By [BD01, 12.10], for such G there exists a central

extension E of G by K2,F such that L̂G(k) = E(F )tameF . It is shown in chapter 3 that

for any possibly non-split maximal torus T ⊆ G, the restriction L̂T is a Heisenberg

central extension. This is the intended application.
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The rest of this subsection will describe the commutator pairing of a central exten-

sion E of T by K2,F . Such extensions were proven to satisfy Galois descent properties

in [BD01, sec. 7], although the commutator pairing was not explicitly given.

Suppose S is a �eld and Z is an irreducible a�ne variety over S. Elements

C ∈ K2(S(Z)) give rise to partially de�ned morphisms Z(S) × Z(S) → K2(S) as

follows. Write C in terms of Steinberg symbols C =
∑
{fi, gi} where fi, gi are units

in the function �eld S(Z). Each fi, gi is invertible on some open maximal open domain

of de�nition Ui ⊆ Z and de�ne maps Ui → Gm,S. Taking the intersection U of the

Ui, C de�nes a map U × U → K2,S where for every F -algebra R, the map is

U(R)× U(R)→ K2(R)

(x, y) 7→
∏
{f(xi), g(yi)}.

When C is taken to satisfy a cocycle condition, such partial maps Z × Z → K2,S

are called generic cocycles in [BD01, 0.4]. When C lies inside the image of the

multiplication map O×Z ⊗ZO×Z = Hom(Z,Gm,S)⊗Z Hom(Z,Gm,S)→ K2(S(Z)), each

fi, gi are globally de�ned on Z and C de�nes global maps

Z × Z → K2,S.

De�nition 2.20: For a ∈ O×Z ⊗Z O×Z , the associated map φa : Z2 → K2,S is the

morphism Z × Z → K2,S de�ned as above.

Remark 2.14: [BD01, 1.4] Suppose Z is any scheme over S, identi�ed with the

representable functor hZ = HomSZar
(−, Z) into sets. By the Yoneda Lemma, for any

presheaf A on SZar, there is a natural isomorphism

HomS(Z,A) = H0(Z,A) = AZ(Z).

In particular, if Z = SpecB is a�ne, morphisms Z → K2,S correspond to elements

of the group K2(B).
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Let Bilin(Y ) be the set of bilinear forms on Y , Alt(Y ) ⊆ Bilin(Y ) be the subset

of alternating bilinear forms, and ESBilin ⊆ X ⊗Z X the subset of even symmetric

bilinear forms.

Lemma 2.9: The following sequence is short exact

0→ Alt(Y ) ↪→ Bilin(Y )
Id+τ∗Id→ ESBilin(Y )→ 0

where the �rst map is the canonical inclusion.

Proof: The map Id+ τ ∗id : Bilin(Y )→ ESBilin(Y ) has kernel precisely Alt(Y ) by

the de�nition of Alt(Y ). It su�ces to show that it is surjective. Recall the following

identi�cations as in [BD01, 3.5].

X ⊗Z X ≊ Bilin(Y )

x1 ⊗ x2 7→ {(y1, y2) 7→ x1(y1)x2(y2)}

X ∧X ≊ Alt(Y )

x1 ∧ x2 7→ {(y1, y2) 7→ x2(y1)x1(y2)− x1(y1)x2(y2)}

Under the above identi�cation, the short exact sequence

0→ X ∧X
x1∧x2 7→x2⊗x1−x1⊗x2→ X ⊗Z X

x1⊗x2 7→x1x2→ Sym2X → 0

becomes a short exact sequence

0→ Alt(Y ) ↪→ Bilin(Y )→ Sym2X → 0

where the �rst map is the canonical inclusion. In particular, it induces an isomorphism

Sym2X≊ ESBilin(Y ). The result follows. ■

Remark 2.15: The canonical inclusion ESBilin(Y ) ↪→ Bilin(Y ) is not a section

for Bilin(Y )
Id+τ∗Id→ ESBilin(Y ). The composition ESBilin(Y ) ↪→ Bilin(Y )

Id+τ∗Id→
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ESBilin(Y ) is multiplication by 2. However, since Sym2X ⊆ SymX = Z[X], Sym2X

is torsion free and �nite over Z and hence free, so some section exists.

Remark 2.16: This constructed identi�cation Sym2X ≊ ESBilin(Y ) is given by

x1x2 7→ {(y1, y2) 7→ x1(y1)x2(y2) + x2(y1)x1(y2)} and agrees with composing the usual

identi�cations in [BD01, 3.5] as follows. Let Quad(Y ) be the group of quadratic

forms Y → Z. The identi�cation Sym2X
≊→ ESBilin(Y ) induced by the above is the

composition of the classical identi�cations

Sym2X ≊ Quad(Y )

x1x2 7→ {y 7→ x1(y)x2(y)}

Quad(Y ) ≊ ESBilin(Y )

q 7→ {(y1, y2) 7→ q(y1 + y2)− q(y1)− q(y2)}

De�nition 2.21: Let Z,A be presheaves of sets on a site and suppose A takes values

in groups. f : Z × Z → A is a morphism. The commutator of f is the map

(z1, z2) 7→ f(z1, z2)f(z2, z1)
−1

,i.e., the map f + (τ ∗f)−1.

The de�nition above applied to the cocycle map of a central extension of an abelian

sheaf by another abelian sheaf coincides with the usual de�nition of the commutator.

Lemma 2.10: Let S be a �eld, Z be an irreducible a�ne variety over S, and X =

Hom(Z,Gm,S). Let Ψ be the composition

X ⊗Z X
pr∗1⊗pr∗2→ X2 ⊗Z X

2 ↪→ O×Z2 ⊗Z O×Z2 .

Let C ∈ X ⊗Z X and B = C + τ ∗C. Then the commutator of the associated map

φΨ(C) : Z
2 → K2,S to Ψ(C) is the same as the associated map φΨ(B) : Z

2 → K2,S to

Ψ(B).
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Proof: It su�ces to show this when C = x1 ⊗ x2 for x1, x2 ∈ X. By unwinding the

de�nition of Ψ and the associated map, the associated map Z2 → K2,S of Ψ(x1⊗ x2)

is de�ned by the property that for (z1, z2) ∈ Z(R)× Z(R),

(z1, z2) 7→ {x1(z1), x2(z2)} ∈ K2(R).

Using the antisymmetric property of the Steinberg symbol, the commutator is de�ned

by

(z1, z2) 7→ {x1(z1), x2(z2)}{x1(z2), x2(z1)}−1 = {x1(z1), x2(z2)}{x2(z1), x1(z2)}.

On the other hand, the associated map Z2 → K2 to Ψ(x1 ⊗ x2 + τ ∗(x1 ⊗ x2)) =

Ψ(x1 ⊗ x2 + x2 ⊗ x1) is de�ned by

(z1, z2) 7→ {x1(z1), x2(z2)}{x2(z1), x1(z2)}.

The two are the same. ■

Now we can state the computation of the cocycle and for central extension of a

split torus by K2,F and the classi�cation in [BD01, 3.9.3, 3.14].

Theorem 2.5: Suppose S is a �eld and T is a split torus over S with character lattice

X. Then for any central extension E of T by K2, there exists C ∈ X ⊗Z X such that

E is equivalent to the central extension of T by K2,S de�ned by the cocycle φΨ(C) :

T × T → K2,S (with values already lying in the presheaf K2,S instead of the sheaf

K2,S) associated to the image of C, with Ψ as in 2.10.Two elements C,C ′ ∈ X ⊗X

give equivalent central extensions of T by K2,S i� they map to the same element under

the map X ⊗Z X → Sym2X.

Combining this with the interpretation of the mapX⊗ZX → Sym2X as Bilin(Y )
Id+τ∗Id→

ESBilin(Y ) in the proof of 2.9 and with 2.10, we re-phrase the classi�cation to derive

an explicit expression for the commutator:
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Corollary 2.3: Preserve the notation of the above. The isomorphism class of a cen-

tral extension of T by K2,S is determined by its commutator and the set of isomor-

phism classes is in canonical bijection with ESBilin(Y ) as follows. Identify X ⊗X ≊

Bilin(Y ) naturally and consider ESBilin(Y ) naturally as a subset of Bilin(Y ) as in

2.9. For an even symmetric bilinear form B, a representative central extension is

constructed by the cocycle φΨ(C) : T
2 → K2,S associated to Ψ(C) for any C such that

C + τ ∗C = B and its commutator is φΨ(B).

Remark 2.17: The evaluation map Gm,S × Y → T de�ned by (f, λ) 7→ λ(S) is

surjective, hence an epimorphism. Hence a given morphism T → F to another sheaf

F is determined by its pre-composition with the evaluation map Gm,S × Y → T , i.e.,

by testing at all the one-parameter subgroups.

De�nition 2.22: For λ ∈ Y and f ∈ Gm,S(R), denote by λ ⊗ f for the element

λ(f) ∈ T (R).

Lemma 2.11: Preserve the notation of above. Let C ∈ X⊗ZX, identi�ed canonically

with a bilinear form on Y as in 2.9. Then the map φΨ(C) : T
2 → K2,S associated to

Ψ(C) is uniquely de�ned by property that for every λ, µ ∈ Y , the pre-composition

Gm,S ×Gm,S
λ×µ→ T × T → K2,S

is de�ned by for all f, g ∈ Gm,S(R),

(f, g) 7→ (λ(f), µ(g)) 7→ {f, g}C(λ,µ) ∈ K2(R).

Proof: Let I be a set with |I| = d, the rank of T . Let {yi : i ∈ I} be a basis for

Y over Z and {xi : i ∈ I} be the dual basis for X, considered as the set of group

homomorphisms T → Gm,S. Write C =
∑

i,j∈I ci,jxi⊗xj. Denote ⟨−,−⟩ : X×Y → Z

for the canonical pairing. We compute the composition above for each λ, µ ∈ Y ,
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f, g ∈ Gm,S(R):

(f, g) 7→
∏
i,j∈I

ci,j.{(xi ◦ pr1)(λ(f), µ(g)), (xj ◦ pr2)(λ(f), µ(g))}

=
∏
i,j∈I

ci,j.{f ⟨xi,λ⟩, g⟨xj ,µ⟩}

= {f, g}
∑

i,j∈I ci,j⟨xi,λ⟩⟨xj ,µ⟩

= {f, g}C(λ,µ).

The result follows. ■

De�nition 2.23: Let Z be a scheme over S and e : S → Z a distinguished section.

Let A be a presheaf of abelian groups on SZar. A morphism f : Z → A of presheaves

is normalized at e if the f ◦ e is the trivial map S → A. If the point e is clear,

we may simply say f is normalized. For any subset M ⊆ H0(Z,A) we denote by

Mnorm the subset of normalized elements of M .

Remark 2.18: If M ⊆ H0(Z,A) is a subgroup, Mnorm is also a subgroup given as

the kernel of the evaluation map

M → H0(S,A)

f 7→ f ◦ e.

We have a Galois descent property of normalized global sections for K2,F :

Lemma 2.12: Let X be a smooth geometrically irreducible variety over F with a

distinguished F -rational point e, also considered as a Γ-invariant E-rational point.

The base change map induces an isomorphism

H0(X,K2,F )
norm ≊→ H0(XE,K2,E)

norm,Γ := (H0(XE,K2,E)
norm)Γ.

Consequently if a normalized morphism fE : XE → K2,E is Γ-invariant, it descends

uniquely to a normalized morphism f : X →K2,F .
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Remark 2.19: The meaning of unique descent of fE to f is the following. For a

map f : X →K2,F , consider the commutative square

ResE/FXE
f |E→ ResE/FK2,E

↑ ↑

X
f→ K2,F

obtained by for every F -algebra R evaluation the map X
f→ K2,F at the ring map

R→ R⊗F E. Then the statement of 2.12 is that there is a unique normalized f such

that f |E = fE.

Proof: By [BD01, 2.4.(i)] We have that the base change map induces an isomor-

phism

H0(X,K2,F )/K2(F )
≊→ (H0(XE,K2,E)/K2(E))Γ

where K2(F ) → H0(X,K2,F ) embeds as the subgroup of constant global sections

and similarly so for K2(E) → H0(XE,K2,E). Evaluation at e gives a section for

each of these embeddings. Since e ∈ X(E) is Γ-stable, the canonical isomorphism

H0(XE,K2,E)
norm → H0(XE,K2,E)/K2(E) is a map of Γ-modules. The result then

follows by considering the commutative diagram

H0(X,K2,F )
norm → H0(XE,K2,E)

norm

↓ ↓

H0(X,K2,F )/K2(F ) → H0(XE,K2,E)/K2(E)

where the horizontal maps are base change, and the vertical maps are the canonical

isomorphisms. ■

De�nition 2.24: Let E be a central extension of a group G over F by K2,F , consid-

ered as a multiplicative K2,F -torsor, and p : GE → G be the projection map. Pulling

back E to GE gives central extension of GE by p∗K2,F . Then taking the pushout by

the map p∗K2,F → K2,E gives a central extension of GE by K2,E. We denote it by

EE, called the base change E to E. The operation of base change is functorial.
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We are now equipped to state the main computation of this subsection, of the

commutator for a central extension of the torus T over F by K2.

Theorem 2.6: For any central extension of T by K2,F over F , there exists an in-

variant even symmetric bilinear form B ∈ ESBilin(Y )Γ ⊆ X⊗X such that the central

extension is equivalent to a central extension E with commutator CE : T 2 → K2,F

(with values lying in the presheaf K2,F ) satisfying:

1. The base change EE has commutator CEE (with values lying in the presheaf

K2,E) equal to φΨ(B) to Ψ(B), where Ψ is the composition

X ⊗Z X
pr∗1⊗pr∗2→ X2 ⊗Z X

2 ↪→ O×T 2
E
⊗Z O×T 2

E

from 2.10. Furthermore, φΨ(B) is Γ-equivariant and the resulting map T → K2,F

given by applying the descent for normalized global sections in 2.12 is precisely the

commutator for E.

2. As a morphism T 2 → K2,F whose restriction to the category of E-algebras is

CEE , CE is uniquely determined by the composition

ResE/FT 2
E

N×N→ T 2 CE→K2,F → ResE/FK2,E

where N denotes the norm map. The above composition is computed by: for λ, µ ∈ Y

and f, g ∈ Gm,E , the element

(λ⊗ f, µ⊗ g) ∈ ResE/FT 2
E

maps to the mage of the element

m∏
i,j=1

{νi.f, νj.g}B(νi.λ,νjµ) ∈ ResE/FK2,E

in ResE/FK2,E.

Remark 2.20: Any commutator for a central extension of an abelian sheaf by an-
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other is automatically normalized. In particular CE(e) = 1 ∈ K2(F ) at the unit

e ∈ T 2(F ).

Proof: Let us discuss (1). The existence of such a Γ-invariant even symmetric

bilinear for B ∈ Sym2X determining the commutator for EE is proved in the later

Section 2.11. Now observe that for any Γ-invariant bilinear form B, the element

Ψ(B) ∈ K2(T 2
E ) is Γ-invariant. This shows that φΨ(B) ∈ H0(TE,K2,E)

norm is Γ-

invariant and the descent lemma of 2.12 applies to φΨ(B). The fact that the resulting

normalized map T 2 → K2,F is precisely the commutator CE is proven in later 2.22

using 2.13 that shows this is true generically. This shows (1).

Let us prove (2). Observe that Ψ(X ⊗Z X) consists of elements normalized at e;

this follows by applying the computation 2.11 to f, g = 1 any any λ, µ ∈ Y . Therefore

Ψ((X ⊗Z X)Γ) maps to (K2(E(T 2
E )

reg,norm)Γ. In particular, φΨ(B) is normalized and

Γ-invariant. By the descent lemma 2.12, for all B ∈ (X ⊗Z X)Γ, the commutator

CE , as a morphism TE → K2,F , is uniquely determined by the property that it is

normalized and �ts into the commutative diagram

ResE/FT 2
E

φΨ(B)→ ResE/FK2,E → ResE/FK2,E

↑ ↑

T 2 CE→ K2,F

Since CE is a commutator and already normalized, the normalization condition is re-

dundant. Since the norm mapN : ResE/FTE → T is an epimorphism, the composition

T 2 → ResE/FK2,E from the bottom left to top right is uniquely determined by its pre-

composition with ResE/FT 2
E

N×N→ T 2. It remains to compute it. We have for λ, µ ∈ Y

and f, g ∈ Gm,E, (λ⊗ f, µ⊗ g) ∈ ResE/FT 2
E maps to φΨ(B)(N(λ⊗ f), N(µ⊗ g)). By

2.11 and bimultiplicative property φΨ(B), we have

φΨ(B)(N(λ⊗ f), N(µ⊗ g)) =
N∏

i,j=1

φΨ(B)(ν
i.λ⊗ νi.f, νj.µ⊗ νj.g)



39

=
N∏

i,j=1

{νi.f, νj.g}B(νi.λ,νjµ).

Then (2) is proved. ■

Let us conclude by showing our de�nition of a Heisenberg central extension is

consistent with the de�nition of a Heisenberg central extension of a split torus given

in [Bei06, 1.4]. The tame symbol F× × F× → k× extends to a morphism of group

ind-schemes

{−,−}c.c.LGm,F × LGm,F → Gm,k

de�ned in [OZ16, 2.2] called the Contou-Carrer�å symbol. It descends to a map

LK2,F × LK2,F → Gm,k. By [OZ16, 2.4], it has the property that the induced map

on tangent spaces at 1 is the map

C((t))⊕ C((t))→ C

(f, g) 7→ res(fdg).

De�nition 2.25: Let T be a (split) torus over k and B an even symmetric bilinear

form on Y . A Heisenberg Central extension L̂T F in the sense of [Bei06, 1.4] associ-

ated to B is a Gm,k-central extension equipped with a splitting L+TF → L̂T F with the

property that the commutator satis�es for all λ, µ ∈ Y , f, g ∈ LGm,F ,

(λ⊗ f, µ⊗ g) 7→ {λ(f), µ(g)}B(λ,µ)
c.c. .

Lemma 2.13: Suppose B is non-degenerate. Then a Heisenberg central extension of

LTF in the sense of [Bei06, 1.4] associated to B is a Heisenberg central extension as

in 2.19.

Proof: Let ˆLTF be a Heisenberg central extension in the sense of [Bei06, 1.4]. Since

the Contou-Carrer�å symbol extends the tame symbol on k-points, by 2.10 the compu-

tation of the formula of the commutator for a central extension of T by K2 associated
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to B, it remains only to show that if B is non-singular, then the induced central ex-

tension ˆ
LieL++,−T ♭,0

F = ˆLieL++,−TOF
is a formal Heisenberg Lie algebra with positive

part t[[t]] where t = LieT , identi�ed with Y ⊗Z C. Extend B to a bilinear form on

t by C-bilinearity. By [Bei06, 1.5(ii)] t̂ := ˆ
LieL++,−T ♭,0

F is isomorphic to the formal

completion of the central extension of t+,−[t
±1] := t−1h[t−1]⊕ th[t] presented as

0→ CK → t̂→ t+,−[t
±1]→ 0

where K ∈ Z (̂t) is some central element, with commutator

(X ⊗ f, Y ⊗ g) 7→ B(X, Y )ResfdgK.

Since B is nonzero, the commutator pairing is nontrivial. Since B is non-degenerate,

the center of t̂ is CK. We conclude that the center of t̂ is one-dimensional and equal

to its commutator. The result follows. ■

2.2.5 Group-Theoretic Decomposition of Heisenberg Central

Extensions

In this section, we determine the group theoretic structure of a Heisenberg central

extension, using the decomposition of a loop torus in 2.2.

Let k = C, F = k((t)) and T be a torus over F . Let E/F be an extension such

that TE is split of rank d. Put E = k((u)) for some um = t where m = [E : F ]. Let

Γ = Gal(E/F ) be the �nite cyclic Galois group with ν a choice of generator. Fix a

primitivemth root of unity ζ de�ned by the property that ν(u)/u = ζm. Let µr denote

the group of rth roots of unity in k× for each integer r ≥ 1. LetX = HomE(TE,Gm,E),

resp. Y = HomE(Gm,E, TE), be the (absolute) character, resp. cocharacter, lattices

with their canonical Γ action. Let N =
∑

γ∈Γ γ.(−) be the norm map on an abelian

group or sheaf with a Γ action. For a central extension P of an abelian group, resp.

presheaf by another abelian group, resp. presheaf, denote CP the commutator map.

Let T be the split torus over k with character lattice X.
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For this section, �x L̂T to be a Heisenberg central extension, de�ned in 2.19. Let

E be a central extension of T by K2 such that CL̂T (k) = CE(k)tame,F is pushout of E(k)

by the tame symbol over F . Let B be the Γ-invariant even symmetric bilinear form

determining the commutator for E in 2.6.

De�nition 2.26: For a morphism H → LT of group functors, de�ne Ĥ to be the

restriction of the central extension to H.

The purpose of this subsection is to establish two theorems regarding the group-

theoretic structure of L̂T which will be used to determine the representation theory

of L̂T in the next subsection 2.2.6:

Theorem 2.7: There exists a splitting L+T ♭,0 → L̂T .

Now recall the decomposition from 2.2:

LT = L−T Γ
E × T Γ,0 × L++T Γ

E × YΓ

where T Γ,0 is the maximal torus of L+T ♭,0.

Theorem 2.8: Suppose B is non-degenerate. For a �xed splitting L+T ♭,0 → L̂T ,

there exists an isomorphism (given the choice of homomorphic section su : YΓ →

LT (k) for the Kottwitz homomorphism):

L̂T ≊ ˆ(L++,−T ♭,0 × (ŶΓ ⋊ T Γ,0))/Gm,k

where

1.The restriction ŶΓ of L̂T to YΓ by su has cocycle taking values in the group µr

roots of unity for some integer r ≥ 0.

2. The embedding Gm,k → ˆL++,−T ♭,0 × (ŶΓ ⋊ T Γ,0) is given by the diagonal

x 7→ (x, x−1)

into the product of the central Gm,k of ˆL++,−T ♭,0 and the central Gm,k of ŶΓ.
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3. ˆL++T ♭,0 is trivial as a central extension, i.e., ˆL++T ♭,0(k) ≊ Gm,k × L++T ♭,0

We use the morphism su = (N ◦ evu) · υ : YΓ → LT (k) 2.6. Recall N is the norm

map, evu is de�ned by the property that λ 7→ λ(u) ∈ LTE(k), and υ is some map

YΓ → T Γ,0.

De�nition 2.27: For a central extension Â of A by some other group or group-

valued sheaf, for x ∈ Â denote by x the image of x in A. In the case when A is a

group and Â → A is surjective, for a ∈ A denote by â any lift of a in Â.

Proposition 2.1: There exists a surjection ŶΓ ⋊ ˆLT 0 → L̂T , where and the action

of ˆLT 0 on Ŷ is de�ned by for r ∈ ˆLT 0, s ∈ Ŷ ,

r.s = rsu(s)r
−1 = CL̂T (r, su(s)).ŝ

where CL̂T (r, su(s)) ∈ Gm,k is considered an element of the central Gm,k of Ŷ .

Remark 2.21: In fact, for any subgroups H,P ⊆ LT , multiplication by the commu-

tator as above gives a well-de�ned action of P on Ĥ. This action lifts the conjugation

action of P̂ on Ĥ.

Proof: Since LT is abelian, conjugation by ˆLT 0 preserves Ĥ for any subgroup

H ⊆ LT . Put H = su(YΓ). The action above is then the pullback of the conjugation

action of ˆLT 0 on H by the map and thus well-de�ned.

The morphism ŶΓ ⋊ ˆLT 0 → L̂T is de�ned as follows. Forgetting the group

structure, the underlying in-scheme space of ŶΓ ⋊ ˆLT 0 is ŶΓ ⋊ ˆLT 0. Then de�ne

ˆLT 0 ⋊ Ŷ → L̂T as the composition

ŶΓ ⋊ ˆLT 0 su×ι→ L̂T × L̂T µ→ L̂T

where ι : ˆLT 0 → L̂T is the canonical inclusion, and µ is the multiplication map. Such

a map is �at as a morphism of ind-schemes. It is a group homomorphism because the

restriction to ŶΓ × 1 and 1× ˆLT 0 both are group homomorphisms and the de�nition
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action of ˆLT 0 on ŶΓ is such that ŶΓ = 1× ŶΓ acts by its image under µ◦ ((N ◦su)× ι)

. To check that the map is surjective, it su�ces to check surjection on the neutral

component ˆLT 0 and that it hits every connected component of L̂T . The �rst follows

because it restricts to an isomorphism on ˆLT 0 × 1. The second follows by the fact

that su is a section for the Kottwitz homomorphism 2.6. The proposition is proved.■

The main theorems 2.7 and 2.8 of this subsection are proven by re�ning the

surjection ŶΓ ⋊ ˆLT 0 → L̂T by showing the following:

1. 2.2 The commutator CL̂T is trivial on L+T ♭,0 × L+T ♭,0 and ˆL++T ♭,0 is a direct

sum ˆL++T ♭,0(k) ≊ Gm,k × L++T ♭,0. Hence a splitting L+T ♭,0 → L̂T exists.

2. 2.3 For any splitting L+T ♭,0 → LT , we have ˆLT 0 = ˆL++,−T ♭,0 × T Γ,0 and

L++,−T ♭,0 acts trivially on ŶΓ. The splitting induces a canonical isomorphism

ŶΓ ⋊ ˆLT 0 ˆ= L++,−T ♭,0 × (ŶΓ ⋊ T Γ,0).

3. 2.4. The action of T Γ,0 on ŶΓ is computed and found identical to the one in

[BK04, sec. 4.3] and lifts to an action of T Γ,0 on Ŷ , where Ŷ is the restriction

of ŶΓby the projection Y → YΓ. Explicitly, the action of exph ∈ T Γ,0 for h ∈ tΓ

on λ̂ ∈ Ŷ for λ ∈ Y is

exp(h).λ̂ = eB(h,λ).λ̂

where exp : tΓ → T Γ,0 is the exponential map and e(−) : C → Gm,k is the

exponential function.

4. 2.5 The kernel of ŶΓ ⋊ ˆLT 0 → L̂T is the diagonal embedding x → (x, x−1) of

Gm,k into the product of the central Gm,k of ˆLT 0 and the central Gm,k of ŶΓ.

5. 2.19 Up to equivalence of central extensions, the restriction ŶΓ of L̂T to YΓ by

su has cocycle taking values in the group µr roots of unity for some integer

r ≥ 0.

Remark 2.22: A central µ2m extension of the discreet group YΓ and its commutator

also features as foundational in the work of [Lep85]. In [Lep85, BK04], that central
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extension is de�ned as an axiomatic starting point for Lie-theoretic computations. In

contrast, we interpret ŶΓ geometrically as coming from a section for the projection of

LT to the group of connected components. We expect that ŶΓ should agree with the

µ2m-central extension of YΓ in [Lep85, BK04] possibly after modifying the section su,

but have not investigated this. This is because we did not need to explicitly compute

ŶΓ to deduce similar looking results on the representation theory of L̂T in 2.2.6.

Let us �rst make some preparations that reduce these computations to computa-

tions about the k-points.

De�nition 2.28: A pro-scheme is a projective limit of schemes together with limit

structure. An ind-pro scheme is an inductive limit of pro-schemes together with

its limit structure. Let H = lim←i Hi, H ′ = lim←i H
′
i be a pro-schemes over k. A

pro-morphism f : H → H ′ is a morphism over k that factors through morphisms

fi : Hi → H ′i. Now suppose H = lim→i Hi, H ′ = lim→i H
′
i are ind-pro-schemes where

Hi, H
′
i are pro-schemes. A ind-pro-morphism is a map f : H → H ′ that factors

through morphisms fi : Hi → H ′i that are pro-morphisms.

Lemma 2.14: Suppose H,H ′ are projective limits of �nite type and reduced a�ne

schemes and f : H → H ′ is a pro-morphism. Then f is determined by the induced

map on k points f : H(k)→ H ′(k).

Proof: Let H = lim←i Hi, H ′ = lim←i H
′
i where Hi and H ′i are �nite type, reduced

and a�ne. Then H,H ′ are a�ne and since each Hi, H
′
i are a�ne, H(k) = lim←i Hi(k)

and H ′(k) = lim←H ′i(k). The result then follows from the well known fact that over

an algebraically closed �eld, the functor of taking k points on the category reduced

and �nite type schemes is faithful. ■

Lemma 2.15: Suppose f is an ind-pro automorphism of ˆL++,−T ♭,0 that �xes the

central Gm and restricts to the identity on k-points. Then f is trivial.

Proof: Since ˆL++,−T ♭,0 is connected, it su�ces to show Lief is trivial. Since f

restricts to the identity on k points, f restricts to the identity on the L++T ♭,0, which
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is a projective limit of �nite type reduced a�ne schemes, by 2.14. Thus Lief restricts

to the identity on LieL++T ♭,0. Now let l ⊆ Lie ˆL++,−T ♭,0 be the Heisenberg Lie

algebra such that Lie ˆL++,−T ♭,0 is the formal completion of l, where the positive part

l+ lies in LieL++T ♭,0. Since l− and l+ are in perfect pairing by the commutator by

2.1, Lief is a Lie algebra morphism and Lief �xes both the center Z(l) and l+, we

conclude that Lief �xes l− as well, and therefore also l. The result follows as Lief is

continuous. ■

Now let us make some reductions that allow us to evaluate the commutator of

E(k) over E instead of F on connected sub ind pro groups of LT (k).

De�nition 2.29: De�ne CE(k),tameE to be the composition

T (F )× T (F )
CE(k)→ K2(F )→ K2(E)

tameE→ k×.

Lemma 2.16: We have as maps LT (k)× LT (k)→ k×,

CE(k),tameE = Cm
L̂T (k)

,i.e., CE(k),tameE is the mth multiple of the commutator for L̂T (k).

Proof: We have from 2.4 a commutative diagram

F× ⊗Z F
× tameF→ k×

↓ ↓(−)m

E× ⊗Z E
× tameE→ k×

where (−)m denotes the map of raising to the mth power. Since the tame symbol

satis�es the Steinberg relations, it descends to the commutative diagram

T (F )× T (F )
CE(k)→ K2(F )

tameF→ k×

↓ ↓(−)m

K2(E)
tameE→ k×
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the result follows. ■

Now recall LT 0
red = L+T ♭,0 from 2.14.

Lemma 2.17: Suppose H ⊆ LT 0(k) = L+T (k) is a connected sub (ind) pro group

and r ∈ LT (k). If CE(k),tameE(H, r) = {1}, then C ˆLT (k)(H, r) = {1}, i.e., if the

pushout of the commutator over E with r is trivial on H, then the commutator of the

pushout over F with r is trivial on H.

Proof: Suppose CE(k),tameE(H, r) = {1}. Using the above lemma that CE(k),tameE =

Cm
L̂T (k), we have that CL̂T (k)(H, r) takes values in the group µm, which is discreet.

Since x 7→ CL̂T (k)(x, r) is continuous and sends the identity element in H to 1, it

follows that it must send H to {1}. ■

Now apply the computation of commutator main theorem from 2.6 to the F -points.

We obtain

CE(k),tameE(N(λ⊗ f), N(µ⊗ g)) =
m∏

i,j=1

{νi.f, νj.g}B(νi.λ,νjµ)
tameE

∈ k×.

Proposition 2.2: 2.7 The commutator CL̂T is trivial on L+T ♭,0 × L+T ♭,0 ⊆ LT ,

and there exists a partial splitting L+T ♭,0 → L̂T of L̂T as a central extension over

L+T ♭,0 ⊆ LT .

Proof: Since the restriction of CL̂T to L+T ♭,0 × L+T ♭,0 is a pro-morphism, by 2.14

it su�ces to show that CL̂T is trivial on the k-points of L+T ♭,0 × L+T ♭,0. Applying

2.17 to the connected subgroup H = L+T ♭,0(k) with r ranging over elements of H, it

su�ces to show that CE(k),tameE is trivial on L+T ♭,0(k)× L+T ♭,0(k).

To this end, recall from 2.4 that the norm map N : LTE(k)→ LT (k) is surjective

on k points. By the properties of the Kottwitz homomorphism 2.6, N restricts to a

surjection

(1− ν)Y ⊗ (LGm,E)(k)
N→ (LT 0)(k) = LT ♭,0(k)

(1− ν)λ⊗ f 7→ N((1− ν)λ⊗ f)
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where the equality on the right hand side is given by 2.14. For λ, µ ∈ Y and f, g ∈

LGm,E(k), it su�ces to compute the following quantity and show that it is equal to

1:

CE(k),tameE(NE/F ((1−ν)λ⊗f), NE/F ((1−ν)µ⊗g)) =
m∏

i,j=1

{νi.f, νj.g}B(νi(1−ν).λ,νj(1−ν).µ)
tameE

.

Put f = a0u
vE(f) · f+ and g = b0u

vE(g) · g+ for f+, g+ ∈ L++T ♭,0(k) as in 2.14. Then

using the formula for the tame symbol 2.4,

{νi.f, νj.g}tameE = {a0ζ iuvE(f), b0ζ
juvE(g)}tameE

= (−1)vE(f)vE(g)a
vE(g)
0 ζ ivE(f)vE(g)

b
vE(g)
0 ζjvE(f)vE(g)

= (−1)vE(f)vE(g)a
vE(g)
0

b
vE(g)
0

ζ(i−j)vE(f)vE(g).

Plugging in to the formula for CE(k),tameE , we obtain

CE(k),tameE(NE/F ((1− ν)λ⊗ f), NE/F ((1− ν)µ⊗ g)) =

m∏
i,j=1

((−1)vE(f)vE(g)a
vE(g)
0

b
vE(g)
0

ζ(i−j)vE(f)vE(g))B(νi(1−ν).λ,νj(1−ν).µ).

By Γ-invariance of B, this is

=
m∏

i,j=1

((−1)vE(f)vE(g)a
vE(g)
0

b
vE(g)
0

ζ(i−j)vE(f)vE(g))B(νi−j(1−ν).λ,(1−ν).µ).

Rearrange the double product
∏m

i,j=1 to a product
∏m

k=1

∏
i−j≡k mod m. Since for every

k, there are exactly m pairs (i, j) with i, j ∈ {0, · · · ,m− 1} with i − j ≡ k mod m,

the above quantity is

=
m∏
k=1

((−1)vE(f)vE(g)a
vE(g)
0

b
vE(g)
0

ζkvE(f)vE(g))mB(νk(1−ν).λ,(1−ν).µ).
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The ζ-factor is annihilated by the multiple of m, giving

=
m∏
k=1

((−1)vE(f)vE(g)a
vE(g)
0

b
vE(g)
0

)mB(νk(1−ν).λ,(1−ν).µ)

= ((−1)vE(f)vE(g)a
vE(g)
0

b
vE(g)
0

)m
∑m

k=1 B(νk(1−ν).λ,(1−ν).µ).

By bilinearity of B,

= ((−1)vE(f)vE(g)a
vE(g)
0

b
vE(g)
0

)mB(
∑m

k=1 ν
k(1−ν).λ,(1−ν).µ).

Since the element
∑m

k=1 ν
k(1−ν).λ ∈ Y is Γ-invariant andB is Γ-invariant, B(

∑m
k=1 ν

k(1−

ν).λ, (1−ν).µ) = 0, and the above term is 1. Hence ˆL++T ♭,0 is abelian. Since L++T ♭,0

is pro-unipotent while Gm,k is semisimple, ˆL++T ♭,0 is split and the result follows. ■

Lemma 2.18: ˆL++T ♭,0(k) lies in the center of ˆLT (k).

Proof: Since L++T ♭,0(k) is connected, 2.17, it su�ces to show for each r ∈ LT (k)

and s ∈ L++T ♭,0 that CE(k),tameE(s, r) = 1.

From the Γ-invariant decomposition

L+T ♭,0
E = T × L++TE

L+T ♭,0 = T Γ,0 × L++T Γ
E

as in 2.14, we have that L++T ♭,0(k) is precisely the image of L++TE(k) under the

norm map. According to the decomposition of LTE in 2.2.2, elements of L++T ♭,0
E (k)

are precisely of the form µ ⊗ g for µ ∈ Y and g ∈ L++Gm,E(k). According to the

properties of the Kottwitz homomorphism 2.6, elements of L++T ♭,0(k) are precisely

of the form N((1 − ν)µ ⊗ g) for µ ∈ Y and g ∈ L++Gm,E(k). By the description of

L++Gm,E in 2.2.2, for all such g, vE(g) = 0. Hence it su�ces to show CE(k),tameE(N(λ⊗
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f), N((1− ν)µ⊗ g)) = 1 for λ, µ ∈ Y , f ∈ LGm,E(k) and g ∈ L++Gm,E. We have

CE(k),tameE(N(λ⊗ f), N((1− ν)µ⊗ g)) =
m∏

i,j=1

{νif, νj.g}B(νi.λ,νj(1−ν)µ)
tameE

.

Since vE(g) = 0, we have

{νif, νj.g} = (−1)vE(f)vE(g) a
vE(g)
0

1vE(f)
= 1

where f = a0 · uvE(f) · f+ as in 2.2.2. The result follows. ■

Proposition 2.3: L++,−T ♭,0 acts trivially on ŶΓ and T Γ,0 acts trivially on ˆL++,−T ♭,0.

We conclude that for every choice of splitting L++T ♭,0 → L̂T inducing an inclusion

T Γ,0 → ˆLT 0,

ˆLT 0 = ˆL++,−T ♭,0 × T Γ,0

and

ŶΓ ⋊ ˆLT 0 ˆ= L++,−T ♭,0 × (ŶΓ ⋊ T Γ,0)

Proof: The result follows from 2.15 and the above lemma 2.18 that L++T ♭,0(k) lies

in the center of ˆLT (k). ■

Proposition 2.4: The action of T Γ,0 on ŶΓ lifts to an action on Ŷ . For h ∈ tΓ =

LieT Γ,0 and λ ∈ Y , we have

CL̂T (exp(h), λ) = eB(h,λ)

where exp : tΓ → T Γ,0 is the exponential map, and e : C → Gm,k is the exponential

function. Hence the action of T Γ,0 on Ŷ is identical to the one in [BK04, sec. 4.3].

Proof: By the description of the section su from 2.6, su((1 − ν)Y ) ⊆ T Γ,0. Since

ˆL+T ♭,0 is split from 2.7 and T Γ,0 ⊆ L+T ♭,0, CL̂T is trivial on T Γ,0× su((1− ν)Y ) and

therefore lifts to an action of T Γ,0 on Ŷ by

x.λ := x.su(λ)
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where we consider su as a map Y → LT by pre-composition with the projection

Y → YΓ.

Now �x λ ∈ Y and recall su = (N ◦evu) ·υ for some map υ : Y → T Γ,0. Since CL̂T

is trivial on T Γ,0 × T Γ,0, for λ ∈ Y the action of T Γ,0 on su(λ) equals the action of

T Γ,0 on (N ◦ evu)(λ). The map x 7→ CL̂T (X, (N ◦ evu)(λ)) is a group homomorphism

between the connected groups T Γ,0 → Gm,k and thus is determined by the induced

map on Lie algebras tΓ → C. In particular, it su�ces to compute the mth multiple

of T Γ,0 → Gm,k and show that it gives exp(h) 7→ emB(h,λ), by dividing the induced

map on Lie algebras by m. To this end, write hΓ = Y Γ ⊗Z C and h = λ⊗ log(a) for

λ ∈ Y Γ and a ∈ Gm,k so exp(h) = λ⊗ a = λ(a) ∈ T Γ,0. Then for µ ∈ Y , by 2.16,

m.CL̂T (exp(h), (N ◦ evu)(λ)) = CE(k),tameE(exp(h), N(evu(µ)))

= CE(k),tameE(λ⊗ a,N(µ⊗ u))

= {a, ζ iu}
∑m

i=1 B(λ,ν ı̀.µ)
tameE

.

Since λ is Γ-invariant and B is Γ-invariant,
∑m

i=1B(λ, νi.µ) =
∑m

i=1 B(λ, µ) =

mB(λ, µ). We also have {a, ζ iu}tameE = a
1
= a. Since eB(λ⊗log(a),µ) = aB(λ,µ), the

result follows. ■

Proposition 2.5: The surjection ŶΓ ⋊ ˆLT 0 → LT has kernel precisely the image of

Gm ↪→ ˆLT 0 ⋊ ŶΓ under the map x 7→ (x, x−1) into the product of the central Gm,k of

ŶΓ and the central Gm,k of ˆLT 0 .

Proof: The kernel of ˆLT 0 ⋊ ŶΓ → LT lies in the neutral component ˆLT 0 × Gm,k.

Since the map is multiplication, it the kernel is precisely the set

{(x, y) ∈ Gm,k ×Gm,k : xy = 1}

where the left Gm,k is the central Gm,k of L̂T and the right Gm,k is the central Gm,k

of ŶΓ. This is the injective image of Gm,k as described. ■
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Lemma 2.19: Up to equivalence as central extensions, the image of the cocycle for

ŶΓ lies in µr for some r ≥ 0.

Proof: As a central extension, ŶΓ is determined by the pullback Ŷ from the projec-

tion Y → YΓ. By the [Bro94, V.6 ex. 5], there is a short exact sequence

0→ Ext(Y, µr)→ H2(Y, µr)→ Hom(∧2Y, µr)→ 0

where the �rst map is the inclusion of abelian central extensions into all central

extensions and the second map takes a cocycle for a central extension to the associated

commutator. Since Ext(Y,A) = 0 for any abelian group A as Y is free,

H2(Y, µr) = Hom(∧2Y, µr)

and the central extension Ŷ is in fact completely determined by its commutator. The

image of the commutator for Ŷ in Gm,k must be �nitely generated because Y ⊗ Y is.

Hence the cocycle for Ŷ lies in µr for some integer r ≥ 0, therefore the cocycle for YΓ

satis�es the same. ■

Remark 2.23: Constructions in [BK04, Lep85, sec. 4.5, resp. 4] required the choice

of a cocycle for the commutator for Ŷ , and they turn out to be immaterial.

We conclude that by 2.3 that su : YΓ → LT (k) and a choice of splitting L+T ♭,0 →

L̂T de�nes a presentation:

ŶΓ ⋊ ˆLT 0 = ˆL++,−T ♭,0 × (ŶΓ ⋊ T Γ,0)

Taking the quotient by Gm,k in the embedding 2.5, we thus have proved the main

result of this subsection 2.8.

2.2.6 Representations of Heisenberg Central Extensions

We de�ne the notion of a representation of a Heisenberg central extension L̂T . We

show the category of representations is semisimple and describe the irreducible objects
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in terms of representations of a distinguished �nite subgroup of L̂T .

Let k = C, F = k((t)) and T be a torus over F . Let E/F be an extension such

that TE is split of rank d. Put E = k((u)) for some um = t where m = [E : F ]. Let

Γ = Gal(E/F ) be the �nite cyclic Galois group with ν a choice of generator. Fix a

primitive mth root of unity ζ de�ned by the property that ν(u)/u = ζ. Let µr denote

the group of rth roots of unity in k× for each integer r ≥ 1. LetX = HomE(TE,Gm,E),

resp. Y = HomE(Gm,E, TE), be the (absolute) character, resp. cocharacter, lattices

with their canonical Γ action.

Let L̂T be a Heisenberg central extension, as de�ned in 2.19. Let B be the

Γ-invariant even symmetric bilinear form associated to L̂T in 2.6. Fix a choice of

splitting L+T ♭,0 → L̂T from 2.7, and obtain the induced decomposition

L̂T ≊ ˆ(L++,−T ♭,0 × (ŶΓ ⋊ T Γ,0))/Gm,k

from 2.8. Recall from de�nition that l := Lie ˆL++,−T ♭,0 is a formal Heisenberg Lie

algebra, the formal completion of a Heisenberg Lie algebra l that has positive part l+

with l+ = LieL++T ♭,0. For each p ∈ C\{0}, recall the notion of a level p representation

of a Heisenberg Lie algebra in 2.3 and the fact that the category of level p Heisenberg

Lie algebras as semisimple with exactly one irreducible object up to isomorphism

πp = Indl
C⊕l+C

where l+ acts by 0 and C acts by 1.

De�nition 2.30: A level p representation of ŶΓ ⋊ T Γ,0 is a representation V such

that the central Gm,k of ŶΓ acts on V by the character x 7→ xp and the action of T Γ,0

on V is diagonalizable, i.e., V splits into a direct sum of weight spaces for T Γ,0.

For the remainder of this subsection, we will be most interested in the case p = 1.

De�nition 2.31: A representation of a Heisenberg Central extension L̂T equipped

with a splitting L+T ♭,0 → L̂T is a representation V such that:
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1. The induced representation of the formal Heisenberg Lie algebra l = LieL̂T is

a level 1 representation in the sense of 2.3.

2. Under the decomposition induced by the splitting L+T ♭,0 → L̂T ,

L̂T ≊ ˆ(L++,−T ♭,0 × (ŶΓ ⋊ T Γ,0))/Gm,k

the induced action of ŶΓ⋊T Γ,0 on V is a level p representation for p = 1 in the sense

of 2.30.

It will turn out that a representation V of L̂T is determined by a distinguished

subspace Ω(V ) de�ned as follows.

De�nition 2.32: The vacuum space Ω(V ) of a representation V of L̂T relative to

a splitting L+T ♭,0 → L̂T is the �xed point space

Ω(V ) = V L++T ♭,0

.

Hence Ω(V ) is functorial in V .

Recall from 2.19 ŶΓ has cocycle with values in µr for some integer r ≥ 0. Hence

ŶΓ is the pushout by the inclusion µr ↪→ Gm,k of a µr-central extension of ŶΓ that

is also a canonically sub-central extension of ŶΓ by the inclusion µr ↪→ Gm. Let us

introduce the associated distinguished �nite subgroup:

De�nition 2.33: Let Σ := YΓ,tor. The principal �nite Heisenberg group Σ̂ of

ŶΓ is the restriction to Σ of the µr sub-central extension of ŶΓ. For an integer p ≥ 0

level p representation for Σ̂ is a representation such that the central µr acts by the

character x 7→ xp.

Remark 2.24: Σ̂ does not depend on a choice of splitting L+T ♭,0 → L̂T but may

depend on the choice of section YΓ → L̂T to the Kottwitz homomorphism.

Lemma 2.20: (analogous to [BK04, sec. 4.4]) Let Σ̂ be the �nite Heisenberg sub-

group of ŶΓ. Suppose B is nondegenerate. Then the centralizer of T Γ,0 in ŶΓ ⋊ T Γ,0
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is

Σ̂× T Γ,0 ⊆ ŶΓ ⋊ T Γ,0

In particular T Γ,0 acts trivially on Σ̂.

Proof: Let Ŷ be the restriction of ŶΓ by Y → YΓ. Recall from 2.4 that for h ∈ hν

and λ ∈ Y , the action of T Γ,0 on Ŷ is de�ned by the commutator

CL̂T (exp(h), λ) = eB(h,λ)

Since B is nondegenerate, it induces a perfect pairing hΓ×hΓ → C. The result follows

from the fact that the preimage of Yw,tor = Σ in Y lies in the orthogonal complement

(hΓ)⊥ de�ned by B. ■

Remark 2.25: A representation of Σ̂ × T Γ,0, where the restriction to Σ̂ is a level p

representation and the restriction to T Γ,0 is diagonalizable, is the same thing as an

X∗(T Γ,0)-graded level p representation of Σ̂.

Representations of groups, such as Σ̂, that are central extensions of �nite abelian

groups are well understood and classi�ed by characters of the center. We record the

result here:

Lemma 2.21: [BK04, 4.5.3] The category of level 1 representations of Σ̂ is semisim-

ple with �nitely many irreducible objects classi�ed by characters of the center. They

all have the same dimension d satisfying

d2 = |Σ̂/Z(Σ̂)|

De�nition 2.34: The defect value of of L̂T is the number d as above; the dimension

of an irreducible representation of the principal �nite Heisenberg group Σ̂ associated

to L̂T .

We �rst reduce the problem of determining the representation theory of L̂T to

that of level 1 representations of ŶΓ ⋊ T Γ,0.
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Theorem 2.9: Fix a splitting L++T ♭,0 → L̂T . Then Ω(V ) is stable under ŶΓ ⋊ T Γ,0

and there is a canonical equivalence of categories

Representations of L̂T → Level 1 representations of ŶΓ ⋊ T Γ,0

V 7→ Ω(V )

with an inverse given by

IndL̂T
( ˆL++T ♭,0×(ŶΓ⋊TΓ,0))/Gm,k

M ←[ M

where L++T ♭,0 ↪→ ˆL++T ♭,0 acts on U trivially and the central Gm,k of ˆL++T ♭,0 acts

by the identity character.

Proof: The fact that Ω(V ) is stable under ŶΓ ⋊ T Γ,0 follows because ˆL++T ♭,0 com-

mutes with ŶΓ ⋊ T Γ,0. Hence the functors in both directions are well-de�ned. It

su�ces to show they are mutual inverse.

A representation of L̂T is canonically equivalent to a representation of ˆL++,−T ♭,0×

(ŶΓ⋊T Γ,0) where both the central Gm,k of ˆLT 0 and the central Gm,k of ŶΓ act by the

identity character. Let l be the Heisenberg Lie algebra whose formal completion is

l = ˆLieL++,−T ♭,0. Now let π = π1 be the level p = 1 Fock space from 2.2 as a module

for l. Then

π = Lie(Ind
ˆLieL++,−T ♭,0

ˆL++T ♭,0
C)

,i.e., π is integrable, where the central Gm,k of ˆL++T ♭,0 acts by the identity character

and L++T ♭,0 acts trivially. Observe that also

π = Lie(Ind
L++,−T ♭,0×(ŶΓ⋊TΓ,0)

ˆL++T ♭,0×(ŶΓ⋊TΓ,0)
C)

where ŶΓ ⋊ T Γ,0 acts trivially on C. Therefore the canonical functorial isomorphism

from 2.2

LieV ≊ Lie(Ind
ˆL++,−T ♭,0×(ŶΓ⋊TΓ,0)

ˆL++T ♭,0×(ŶΓ⋊TΓ,0)
Ω(V )) ≊ π ⊗ Ω(V )
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M ≊ Ω(Ind
ˆLieL++,−T ♭,0×(ŶΓ⋊TΓ,0)

Lie ˆL++T ♭,0×(ŶΓ⋊TΓ,0)
M)

as l-modules, where l acts on π and ŶΓ ⋊ T Γ,0 also acts on Ω(V ), integrates to a

canonical functorial equivalence of ˆL++,−T ♭,0 × (ŶΓ ⋊ T Γ,0) modules

V ≊ Ind
ˆL++,−T ♭,0×(ŶΓ⋊TΓ,0)

ˆL++T ♭,0×(ŶΓ⋊TΓ,0)
Ω(V )

M ≊ Ω(Ind
ˆL++,−T ♭,0×(ŶΓ⋊TΓ,0)

ˆL++T ♭,0×(ŶΓ⋊TΓ,0)
M).

The result follows. ■

Theorem 2.10: Suppose B is non-degenerate, inducing an injection B : X∗(T Γ,0) ↪→

X∗(T Γ,0)∨ ≊ X∗(T Γ,0) with the second isomorphism being canonical. The category of

level 1 representations of ŶΓ ⋊ T Γ,0 is semisimple, and any such representation is

induced from a representation of Σ̂× T Γ,0 and is an equivalence of categories

Level 1 representations of ŶΓ⋊T Γ,0 ≊ X∗(T Γ,0)/B(X∗(T Γ,0))-graded level 1 representations of Σ̂

⊕λ∈B(X∗(TΓ,0))Uλ0 ⊗ Cλ = IndŶΓ⋊TΓ,0

Σ̂×TΓ,0
Uα ←[ Uα+B(X∗(TΓ,0))

for α ∈ X∗(T Γ,0).

Proof: This proof follows [BK04, 4.4] where ŶΓ was replaced by some other central

extension given explicitly terms of a formula. We only check here the same proof goes

through without needing to know the exact commutator for ŶΓ and that 2.4 and 2.20

are enough.

Since B is nondegenerate, it induces an injection of the quotient of by torsion of

the coinvariants YΓ,cotor ↪→ YΓ,cotor ⊗ C = tΓ
B
↪→ tΓ,∨. Let Ω be a representation of

ŶΓ ⋊ T Γ,0. For α ∈ X∗(T Γ,0) let Ωα denote the α-weight space. For λ ∈ YΓ denote λ

the image in YΓ,cotor and λ̂ any lift in ŶΓ.

We �rst claim the following auxiliary properties. Fix α ∈ X∗(T Γ,0) such that Ωα

is nonzero.
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(i) For λ ∈ YΓ,

λ̂.Ωα = ΩB(λ)+α.

In particular, each weight space Ωα is stable under Σ̂.

(ii) The space

ŶΓ.Ωα = ⊕λ∈YΓ,cotor
ΩB(λ)+α = IndŶΓ⋊TΓ,0

Σ̂×TΓ,0
Uα ⊆ Ω

is stable under ŶΓ ⋊ T Γ,0.

(iii) The submoduleŶΓ.Ωα of ŶΓ ⋊ T Γ,0 is irreducible i� each or any ΩB(λ)+α is

irreducible for Σ̂.

Let's prove (i), (ii), (iii). For (i), the result follows form the computation of

the commutator action of T Γ,0 on ŶΓ of 2.4. For (ii), it is enough to observe that

ŶΓ.Ωα is stable under the subgroupsŶΓ and T Γ,0 that together generate ŶΓ ⋊ T Γ,0.

For (iii), suppose some ΩB(λ)+α is irreducible for Σ̂. Then by (i) and the fact that

all representations of Σ̂ have the same dimension, every ΩB(λ)+α is irreducible for Σ̂.

Any submodule V ⊆ ŶΓ.Ωα must have a compatible weight space decomposition, each

weight space a submodule for Σ̂. Since every ΩB(λ)+α is irreducible for Σ̂, V = ŶΓ.Ωα.

Conversely suppose ŶΓ.Ωα is irreducible for ŶΓ ⋊ T Γ,0. Let v, w ∈ ΩB(λ)+α be nonzero

vectors. By assumption there exists x ∈ ŶΓ ⋊ T Γ,0 such that xv = w and it su�ces

to show the �rst co-ordinate of x lies in Σ̂. This follows from (i).

Let's now use (i), (ii), (iii) to prove the theorem. Let us show Ω is completely

reducible. For any α ∈ X∗(T Γ,0) such that Ωα is nonzero, by (iii) the sub-module

ŶΓ.Ωα is completely reducible because each ΩB(λ)+α is completely reducible for Σ̂.

Choosing α among a set of representatives of X∗(T Γ,0)/B(X∗(T Γ,0)), we conclude

that Ω is completely reducible. This shows the category of level 1 representations

of ŶΓ ⋊ T Γ,0 is semisimple. The fact the functor given above is an equivalence of

categories follows from (ii) and (ii) since every irreducible component of Ω must be

stable under ŶΓ. The result follows. ■

Remark 2.26: 2.10 is a generalization of [Bei06, 1.9] which classi�es the represen-
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tations of L̂T in the case when T is split, so T Γ,0 = T , Σ̂ is the trivial group, and the

category of X∗(T Γ,0)-graded representaions of Σ̂ becomes the category of Y ∨/B(Y )-

graded vector spaces.

Remark 2.27: Two di�erent choices of splitting L+T ♭,0 → L̂T are determined by

a morphism L+T ♭,0 → Gm,k, by dividing the two splittings. Since L++T ♭,0 is pro-

unipotent, such a morphism is determined by the restriction to T Γ,0, i.e., by a charac-

ter for T Γ,0. Since the T Γ,0-weight spaces for an irreducible representation of L̂T , the

defect d has an intrinsic de�nition as the dimension of a single weight space of the

vacuum space of any irreducible representation of L̂T for the inclusion T Γ,0 ↪→ L̂T

induced by any choice of splitting L+T ♭,0 → L̂T . In particular d is independent of

the choice of splitting L+T ♭,0 → L̂T .

According to 2.10, representations of L̂T induced from a representation of Σ̂ that

is a single weight space for T Γ,0 are especially easy to understand and they are the

intended application for the next chapter 3. We record the corollary here:

Corollary 2.4: Suppose an X∗(T Γ,0)/B(X∗(T Γ,0))-graded representation U of Σ̂ has

only one graded component. Then

U ≊
⊕

λ∈X∗(TΓ,0)

Uλ

where for each λ, T Γ,0 acts on Uλ by B(λ) ∈ X∗(T Γ,0) and Uλ is stable under Σ̂. In

particular, if a given representation V of L̂T is given as

V ≊
⊕

λ∈X∗(TΓ,0)

π ⊗ Uλ

where ˆL++,−T ♭,0 acts on π, T Γ,0 acts on Uλ by B(λ) and each Uλ is stable under Σ̂,

then we have a characterization of the vacuum space

Ω(V ) =
⊕

λ∈X∗(TΓ,0)

Uλ
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and V is irreducible under L̂T i� any Uλ is irreducible as a Σ̂ representation i� every

Uλ is irreducible as a Σ̂ representation.

Furthermore any morphism V → W where W is another L̂T representation is

injective i� it is injective on any of the Uλ.

2.3 Classi�cation and Generic Cocycles for Central

Extensions of a Torus by K2

Let F be any �eld, not necessarily C((t)), and T be a torus over F . Let E/F be

a Galois extension such that TE is split. This section concerns some computations

about the category of central extensions of T by K2,F . We essentially reproduce the

techniques in [BD01] but slightly modify them to give us the explicit computations.

The techniques are disjoint from the remainder of this paper and only the results

will be used. The results are listed below and the proof is given in later subsections.

Suppose T is a torus over F and E/F is a Galois extension where TE is split. Let Γ =

Gal(E/F ). Let X = Hom(TE,Gm,E), resp. Y = Hom(Gm,E, TE), be the (absolute)

character, resp. cocharacter lattice, both as Γ-modules.

Recall the sheaf K2,F and the presheaf K2,F on the big Zariski site Spec(F )Zar

from 2.2.3. For a group scheme G over S and an abelian sheaf A on S, let CExt(G,A)

be the Picard category of central extensions of G by A.

We have the following characterization of the group of isomorphism classes of

CExt(T ,K2,F ), where the group structure is induced by the sum of cocycles.

Theorem 2.11: We have a short exact sequence of abelian groups

0→ H1(Γ, X ⊗Z E
×)

ι→ π0CExt(T ,K2,F )
ρ→ AdmSym2XΓ → 0

where AdmSym2X ⊆ Sym2X is a certain subset of `admissible' quadratic forms,

realized as the kernel of a connecting morphism in a long exact sequence

Sym2XΓ → H2(Γ, X ⊗Z E×)
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where:

1. For E ∈ π0CExt(T ,K2,F ), the map ρ gives the commutator for the base change

EE as in 2.3.

2. The group H1(Γ, X ⊗Z E×) consists of Galois descent data for the trivial mul-

tiplicative K2,E torsor E0,E on TE, where X ⊗Z E
× is identi�ed with Aut(E0,E).

We also have the following description of the generic cocycle for a central extension

of T by K2,F . The statement of the computation uses a Galois descent property for

K2,F of function �elds:

Theorem 2.12: [CT83, Theorem B] in characteristic 0, [Sus87] in any character-

istic, for a geometrically integral F -variety Z with F -rational point and a Galois

extension E/F ,

H1(Γ, K2(E(Z))/K2(E)) = 0

and the natural map K2(F (Z))→ K2(E(Z)) induces an isomorphism

K2(F (Z))/K2(F ) ≊ K2(E(Z))/K2(E).

Theorem 2.13: Let E be a central extension of T by K2,F and EE the base change to

E. Let c ∈ H0(T 2
E ,K2,E)

norm be a cocycle for EE and {fγ}γ∈Γ ∈ C1(Γ,H0(TE,K2,E)
norm)

be a 1-cochain (where each fγ ∈ H0(TE,K2,E)
norm) that de�nes the descent datum for

EE. Let d be the image in K2(E(T 2
E ))/K2(E) of the restriction of c to the generic point

of T 2
E . Using H

1(Γ, K2(E(TE)/K2(E)) = 0 from 2.12, we have that d is a coboundary

determined by some n ∈ K2(E(TE)/K2(E). Then the element

d− (pr∗1 − µ∗ + pr∗2)(n) ∈ K2(E(TE)/K2(E)

is Γ-invariant and gives the corresponding generic cocycle for E under the isomor-

phism K2(F (T ))/K2(F ) ≊ K2(E(TE))/K2(E) from 2.12.

This implies the following fact that we have used in the proof of 2.6:
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Lemma 2.22: The commutator CE : T 2 →K2,F a central extension E of T by K2,F

factors through the presheaf K2,F and is φΨ(B) as in 2.3 where B is the bilinear form

ρ([E ]) from 2.11.

Remark 2.28: This allows us to directly de�ne a Heisenberg central extension L̂T ,

without reference to the Heisenberg Lie algebra Lie ˆL++,−T ♭,0, by starting with the cen-

tral extension of T by the presheaf K2,F and taking the pushout of the induced central

extension of LT by LK2,F via the Contou-Carrer�å symbol [OZ16, 2.2] LK2,F → Gm,F .

Proof: Suppose EE has commutator φΨ(B). Let C ∈ X⊗X such that B = C+ τ ∗C

such that the d in 2.13 is given by the image of Ψ(C) in K2(E(T 2
E ))/K2(E), where

Ψ is as in 2.3. Now observe that the element (pr∗1 − µ∗ + pr∗2)(n) is invariant under

transposition because τ ∗µ = µ (because T is abelian) and τ ∗pr1 = pr∗2, τ
∗pr2 = pr1.

Hence the commutator associated to d− (pr∗1 − µ∗ + pr∗2)(n) is d− τ ∗d. By 2.10, the

generic commutator for E is also given by d + τ ∗d and thus also Ψ(B) . According

to [BD01, 8.8], a 2-cocycle T 2 →K2,F is determined by its restriction to the generic

point. Since any commutator associated to a cocycle is also a 2-cocycle, as proved

in the lemma 2.23 below, this shows that CE is the composition of Ψ(B) with the

natural map K2,F →K2,F . This is what was desired. ■

Lemma 2.23: Let H, A be presheaves of abelian groups and c : H2 → A a 2-cocycle.

Then −τ ∗c is also a two-cocycle and therefore so is the commutator c−τ ∗c associated

to c.

Proof: We recall that the cocycle condition is that for all b1, b2, b3 in H,

c(b2, b3)− c(b1b2, b3) + c(b1, b2b3)− c(b1, b2) = 0 for all b2, b2, b3.

Substituting c for −τ ∗c gives

−(c(b3, b2)− c(b3, b1b2) + c(b2b3, b1)− c(b2, b1))

= c(b2, b1)− c(b2b3, b1) + c(b3, b1b2)− c(b3, b2).
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Applying the transformation (b1, b2, b3) 7→ (b3, b2, b1) and commutativity of H gives

us that the above element is equal to

= c(b2, b3)− c(b1b2, b3) + c(b1, b2b3)− c(b1, b2)

for all b1, b2, b3 ∈ H. The above element is zero since c is a 2-cocycle. The result

follows. ■

2.3.1 Multiplicative Torsors, Galois Descent, Homological Al-

gebra

We review some of the foundations in [BD01, sec. 1] and re-frame them in terms of

derived categories for our computations. The main purpose is a rephrasing of [BD01,

1.9.(2)] and [BD01, 2.4], which were both only stated for the case of K2,F torsors over

a scheme X over S, in a more general setting of group actions on chain complexes.

This allows us to apply them to the setting of central extensions of T by K2,F .

De�nition 2.35: A Picard groupoid is a symmetric monoidal category where every

object is invertible. Let C be a Picard groupoid and β the symmetry constraint. We

say a Picard groupoid C is strictly commutative if for all X ∈ C, the symmetry

constraint βX,X : X ⊗ X ≊ X ⊗ X is the identity map. A Picard functor is a

morphism between Picard groupoids preserving the tensor structure.

Let S be a base scheme. Let A be a sheaf of abelian groups on the big Zariski

site SZar. Denote by AX the restriction of A to X. Let X be a scheme over S.

De�nition 2.36: By an A-torsor on X we mean an AX-torsor on X. The strictly

commutative groupoid of A-torsors on X is denoted by

Tors(X,A)

The tensor structure is denoted by + called the sum of torsors, where for P ,Q ∈

Tors(X,A), P+Q is de�ned to be the pushout of the A⊕A torsor P⊕Q under the sum
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map A⊕A → A. The trivial A-torsor on X is denoted E0,X . The commutativity

and associativity constraints are inherited from those for the operation ⊕.

Remark 2.29: The reason that Tors(X,A) is strictly commutative is that given

P ,Q ∈ Tors(X,A) with a cover U → X trivializing P ,Q, we have that (P + Q)|U
is the shea��cation of the sheaf of sections of P|U ⊕ Q|U quotiented by the relation

(r, s) = (r′, s′) if r + s = s+ r. Hence the symmetry constraint, induced by swapping

the order of addition, P + Q ≊ Q + P is the identity and there is a direct equality

P +Q = Q+ P as A-torsors over X. This condition is actually stronger than strict

commutativity, which requires this to hold only for Q = P.

Suppose now X has a distinguished section e : S → X.

De�nition 2.37: The strictly commutative Picard groupoid of pointed A-torsors on

X is denoted by

Torse(X,A)

and is the category of pairs (P , β) where P ∈ Tors(X,A) and β : e∗P ≊ E0,S is

a trivialization. A morphism of pointed torsors between (P , β) → (Q, η) is a

morphism of A-torsors P → Q inducing a commutative triangle

e∗P → e∗Q

β ↓ ↙η

E0,S

The sum structure + on Torse(X,A) is de�ned by (P , β) + (Q, η) := (P +Q, β + η)

using the canonical isomorphism E0,S + E0,S ≊ E0,S.

Now suppose X = G is a group scheme over S with multiplication map µ :

G × G → G over S and e : S → G is the unit section. Let pri : G
n → G be the

projection to the ith co-ordinate, for i = 1, · · · , n.



64

De�nition 2.38: The strictly commutative Picard groupoid of multiplicative A-

torsors on G, or central extensions of G by A is denoted by

CExt(G,A)

and is de�ned to be the category of pairs (P , β) where P ∈ Tors(A, G) and

β : pr∗1P + pr∗2P ≊ µ∗P

is an isomorphism. We refer to β as the multiplicative structure of the central

extension P. A morphism (P , β) → (Q, η) is de�ned to be a morphism P → Q in

Tors(A, G) inducing a commutative diagram

pr∗1P + pr∗2P
β→ µ∗P

↓ ↓

pr∗1Q+ pr∗2Q
η→ µ∗Q

of A-torsors on G × G. The sum of two central extensions is de�ned to be (P , β) +

(Q, η) := (P+Q, β+η) where it is checked that β+η de�nes a multiplicative structure

on P +Q. According to [BD01, 1.5] a multiplicative structure of an A-torsor on G

gives rise, by restriction to e, a canonical pointed structure with respect to e, i.e.,

there is a canonical forgetful map

CExt(G,A)→ Torse(G,A).

We call the image of a central extension (P , β) of G by A under this map to be

the underlying pointed torsor, and similarly we call P so for the underlying A-

torsor.

Remark 2.30: The correspondence between central extensions of G by A as group-

values sheaves on SZar and multiplicative A torsors on G is spelled out in [BD01,

1.4].
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Let us now recall a theorem [AGV+73, tome 3, XVIII] that allows us to study

small strictly commutative Picard categories using homological algebra:

Theorem 2.14: The category of small strictly commutative Picard categories, with

morphisms Picard functors, is equivalent to D[0,1](Ab), the derived category of chain

complexes of abelian groups with cohomology supported in degrees 0 and 1. An equiv-

alence is given by restriction of the following morphism

D(Ab)→ small strictly commutative Picard categories

by D[0,1](Ab)→ D(Ab). It associates a chain complex K∗ a small strictly commuta-

tive Picard category C(K∗) is de�ned as follows:

1. The objects of C(K∗) are Z(K1); the 1-cycles.

2. For a, b ∈ Z(K1), a morphism f : a → b is an element f ∈ K0 such that

df = b− a, where d is the di�erential map of K∗.

3. The composition of morphisms in C(K∗) is induced by the group structure on

K0.

4. The addition bifunctor in C(K∗) is induced by the addition structures on K1

and in K0.

5. The associativity and symmetry constraints are trivial, induced by the abelian

group identities of elements of K1 and of K0.

De�nition 2.39: Suppose C is a strictly commutative Picard category and C = C(K∗)

for a chain complex K∗ as above. We say C is presented by K∗.

In particular, a quasi-isomorphism K∗
quis
≊ L∗ between two chain complexes K∗

and L∗ induces an equivalence of categories C(K∗) ≊ C(L∗).

De�nition 2.40: Suppose C is a small strictly commutative Picard category and K∗

is a chain complex of abelian groups.

1. We say K∗ incarnates C if there is a chain complex K∗ and an equivalence

of Picard categories C ≊ C(K∗).
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2. The group of isomorphism classes of C is de�ned to be the set π0C with

group structure induced by the sum in C.

3. The automorphisms of the trivial object is denoted by π1C.

Hence by de�nition, of C = C(K∗), then π0C = H1(K∗) and π1C = H0(K∗).

Observe that the 0s and 1s are switched. For all P ∈ C, the functor (−)⊗P induces

an isomorphism π1C ≊ AutC(P).

Remark 2.31: Given a chain complex incarnating Tors(X,A), it is described in

[BD01, 1.9] how to obtain another chain complex incarnating Torse(X,A) and CExt(G,A)

when X = G.

Let us now study the notion of descent of a strictly commutative Picard category

by action of a group and connections with group cohomology.

De�nition 2.41: Suppose C is a category and Γ a group. A right Γ-action on C is

an anti-homomorphism of monoids

Γ→ End(C)

γ 7→ γ∗

So in for example, e∗ = IdC and (γδ)∗ = δ∗ ◦ γ∗ for γ, δ ∈ Γ and the identity e ∈ Γ.

Remark 2.32: Usually the requirement is not that (γδ)∗ = δ∗ ◦ γ∗ holds as a strict

equality, but instead one asks for a system of natural isomorphisms of functors (γδ)∗ ≊

δ∗ ◦ γ∗ for γ, δ ∈ Γ satisfying some compatibility constraints. However, for our ap-

plications we are only concerned with categories of the form C(K∗) for some chain

complex K∗ of Γ-modules and the Γ-action on C is inherited from the Γ action on

K∗. For such Γ-actions, the identi�cation (γδ)∗ = δ∗ ◦ γ∗ is a strict equality.

Example 2.5: 1. Suppose Γ ⊆ Aut(X). The category Tors(X,A) has a right Γ-

action by γ 7→ γ∗ where γ∗ is the usual pullback of torsors by γ.
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2. If e ∈ X is a distinguished S-point and Γ preserves e, i.e., γ ◦ e = e for

all γ ∈ Γ, then Γ acts canonically on Torse(X,A) by pullback of torsors and the

trivialization at e.

3. If X = G is a group scheme over S with unit e and Γ acts on G by group

automorphisms, then Γ acts canonically on CExt(G,A) by pullback of torsors and

the multiplicative structure.

Suppose C is a category equipped with a right action of Γ.

De�nition 2.42: The category CΓ of Γ-descent datum, or homotopy �xed points,

is the category of pairs

(P , {fγ,P}γ∈Γ)

where P ∈ C and {fγ,P}γ∈Γ, called the descent datum for P, is a family of isomor-

phisms

fγ,P : P ≊→ γ∗P

that satisfy the cocycle condition: For all γ, δ ∈ Γ and P ∈ C,

fγδ,P = δ∗fγ,P ◦ fδ,P

as maps

P
fδ,P→ δ∗P

δ∗fγ,P→ δ∗γ∗P = (γδ)∗P .

A morphism (P , {fγ,P}γ∈Γ) → (Q, {gγ,Q}γ∈Γ) is a morphism P → Q inducing a

commutative diagram

P fγ→ γ∗P

↓ ↓

Q gγ→ γ∗Q

for each γ ∈ Γ.

Remark 2.33: If C is a strictly commutative Picard category with sum + and Γ acts

on C by Picard functors, then CΓ is also a strictly commutative Picard category with
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sum

(P , {fγ,P}γ∈Γ) + (Q, {gγ,Q}γ∈Γ) = (P +Q, {fγ,P + gγ,Q}γ∈Γ)

where it is observed that {fγ,P + gγ,Q}γ∈Γ is a descent datum for P +Q.

Example 2.6: Suppose S = SpecF is a �eld and E/F is a �eld extension and Γ ⊆

Aut(E/F ). For C being either of Tors(X,A), Torse(X,A), or CExt(G,A). Then Γ

acts on C by pullback by Picard functors and CΓ is the usual category of descent datum

over E.

Suppose Γ is a group and K∗ ∈ D(mod − Γ), where mod − Γ is the category of

right Γ-modules. Then C(K∗) has a canonical right Γ-action induced by the action of

Γ on K∗.

The following theorem [BD01, 1.9.(2)] was stated and proved for the special case

of a chain complex K∗ incarnating Tors(X,A). However, the same proof goes forward

for general K∗. We present it below for completeness.

Theorem 2.15: The category of descent data C(K∗)Γ is incarnated by the total Hom

complex RHom∗∗(Z[0], K) ∈ D(Ab) where Z[0] is the complex concentrated in degree

0 with term Z equipped with the trivial Γ-action. To be precise, there is a canonical

equivalence of Picard categories

C(K∗)Γ ≊ C(RHom∗∗(Z[0], K)).

In particular, π1C(K∗) ≊ H0(Γ, K∗) and π0C(K∗) ≊ H1(Γ, K∗) where Hi(Γ,−) are

the ith hypercohomology groups.

Proof: Let us compute C(RHom∗∗(Z[0], K)) and see that it is canonically equivalent

to C(K∗)Γ. Let BZ∗ → Z be the bar resolution as Γ-modules and apply the derived

functor RHom(−, K∗) : D(mod− Γ)→ D(Ab) to BZ∗. We obtain the total complex

of the double complex Hom∗∗(BZ, K) = {Cq(Γ, Kp)}pq where Cq(Γ,−) is the group
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homology q-cochains. The �rst few terms of Hom∗∗(BZ, K) are

... · · ·

d01v
↑ ...

C1(Γ, K0)
d01h→ C1(Γ, K1) · · ·

d00v
↑ −d10v ↑

...

K0
d00h→ K1

d10h→ · · ·

Unraveling the de�nitions, C(RHom∗∗(Z[0], K)) is de�ned to be the category of pairs

({fγ}γ∈Γ, E) where E ∈ K1 and {fγ}γ∈Γ ∈ C1(Γ, K0) such that:

1. d10
h (E) = 0⇔ E ∈ Z1(L): this is the condition precisely that E is an object of

C(K∗).

2. d01
h ({fγ}γ∈Γ)−d10

v (E) = 0 where d01
h ({fγ}γ∈Γ) is the 1-cocycle γ 7→ d00

h (fγ) and

d10
v (E) is the 1-cocycle γ 7→ γ∗E − E. This condition is precisely that for γ ∈ Γ, fγ

is an arrow E → γ∗E.

3. d01
v ({fγ}γ∈Γ) = 0 where d01

v ({fγ}γ∈Γ) is the 2-cocycle

(γ, δ) 7→ δ∗fγ − fγδ + fδ.

Given part (2) above, this is precisely the condition that fγδ : E → (γδ)∗E = δ∗γ∗E

is equal to the composition

E
fδ→ δ∗E

δ∗fγ→ δ∗γ∗E.

This de�nes an association between objects of C(RHom∗∗(Z[0], K)) and objects of

C(K∗)Γ.

Let us de�ne the association between morphisms. A morphism in C(RHom∗∗(Z[0], K))

between ({fγ}γ∈Γ, E) and ({gγ}γ∈Γ, F ) is by de�nition an element a ∈ K0 such that

d00
h a = F −E and d00

v a = {gγ}γ∈Γ−{fγ}γ∈Γ where d00
v a is the 1 cocycle γ 7→ γ∗a− a.

The �rst condition is that a is a morphism E → F in C(K∗). The second condition
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is precisely that for all γ ∈ Γ, the square commutes

E
a→ F

fγ ↓ gγ ↓

γ∗E
γ∗a→ γ∗F

This is the condition that the map a in C(K∗) respects the descent datum for E

and F . This de�nes the association between morphisms of C(RHom∗∗(Z[0], K)) and

morphisms of C(K∗)Γ.

Finally, the sum stricture on C(RHom∗∗(Z[0], K)) comes from that inK1⊕C1(Γ, K0)

and thus coincides with that of C(K∗)Γ. The result follows. ■

De�nition 2.43: The neutral component of a Picard groupoid C, denoted C0, is

de�ned to be the full subcategory of objects isomorphic to the unit.

Suppose C is a strictly commutative Picard category with sum +. Suppose Γ is

a group acting on C on the right by Picard functors. There is a canonical induced

action of Γ on π0C and π1C and the action of Γ on C restricts to an action on C0.

Lemma 2.24: 1. The forgetful map CΓ → C induces a group homomorphism π0(CΓ)→

π0(C)Γ.

2. There is a short exact sequence

0→ π0(C0,Γ)→ π0(CΓ)→ Q→ 0

where C0,Γ := (C0)Γ and Q is the image of π0(CΓ)→ π0(C)Γ.

Proof: For all P ∈ C under the image of the forgetful map CΓ → C, we have for

all γ ∈ Γ, there exists an isomorphism P ≊ γ∗P . Therefore the class [P ] ∈ π0C is

Γ-invariant. This proves 1.

The kernel of π0(CΓ) → π0(C)Γ consists of classes of pairs (P , {fγ}γ∈Γ) such that

[P ] = 0 in π0(C), i.e., such that (P , {fγ}γ∈Γ) ∈ (C0)Γ. This shows 2. ■
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Suppose C = C(K∗) for some chain complex K∗ equipped with a right Γ-action.

We obtain the following homological algebra interpretation of the above lemma and

generalization of [BD01, 2.4]:

Theorem 2.16: Suppose C = C(K∗) is presented by a chain complexK∗ ∈ D[0,1](mod−

Γ) where K∗ as no nonzero negative degree terms. Equip C with the right Γ-action

induced by the action of Γ on K∗. Let Q be the image of the induced map π0(CΓ)→

π0(C)Γ. Then:

1.In the derived category, K∗ �ts into a distinguished triangle

π1C[0]→ K∗ → π0C[−1]→ .

where for an abelian group A we mean by A[n] the complex concentrated in degree n

with term A.

2. The short exact sequence

0→ π0(C0,Γ)→ π0(CΓ)→ Q→ 0

is canonically identi�ed as a truncation of a long exact sequence of hypercohomology

of the distinguished triangle of (1), and Q is isomorphic to the kernel of a connecting

morphism in a long exact sequence.

Proof: 1. Since K∗ is concentrated in nonnegative degrees, there is an injection of

chain complexes

ι : Z(K0)[0] ↪→ K∗

where Z(K0) = H0(K∗) = π1C is the group of 0-cycles of K∗. Taking the mapping

cone C(ι) of the above morphism, we obtain a distinguished triangle

π1C[0]→ K∗ → C(ι)→

The long exact sequence of cohomology groups gives C(ι)
quis
≊ π0C[−1].
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2. Apply the characterization 2.15 and take the long exact sequence H∗(Γ,−) of

hypercohomology groups on the distinguished triangle π1C[0] → K∗ → π0C[−1] →.

Since H0(Γ, C(ι)) = 0, we obtain

(π1C)Γ = H0(Γ, K∗) ≊ π1(CΓ)

and an exact sequence of abelian groups

0→ H1(Γ, π1C)→ H1(Γ, K∗) ≊ π0(CΓ)→ H1(Γ, π0C[−1])] ≊ (π0C)Γ
∂→

where ∂ is the connecting morphism

H1(Γ, π0C[−1])]
∂→ H1(Γ, π1C).

The de�nition of the map π1C[0] → K∗ as inclusions of automorphisms of the zero

element identi�es π0(C0,Γ) ≊ H1(Γ, π1C) and identi�es the �rst map with the injection

π0(C0,Γ)→ π0(CΓ). It follows that Q is identi�ed as the kernel of ∂. ■

2.3.2 Applications to Central Extensions of T by K2,F

Let F be a �eld and T be a torus over F . Let E/F be a Galois extension such that TE
is split. We now apply the results of the previous subsection to make explicit compu-

tations about CExt(T ,K2,F ). We adopt the convention that actions on schemes are

left actions, and actions on rings are right actions. For example for Γ ⊆ Aut(E/F )

acting on E, we use the right action a.γ := γ−1(a) for γ ∈ Γ and a ∈ E. For an

a�ne scheme Z = SpecA, write Ki(Z) := Ki(A). Let Y = HomE(Gm,E, TE) be the

(absolute) cocharacter lattice and X = HomE(TE,Gm,E) be the (absolute) character

lattice, and consider X ⊆ Γ(TE,OTE). Hence OTE = E[X] as a ring.

We have the following explicit description of H0(TE,Ki,E) for i = 0, 1, 2, given

by combining [BD01, 3.3.1] with the fundamental theorems in [Wei13, 6.3] relating

Ki(R) with Ki(R[t±1]) for all i for a regular noetherian ring:
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Lemma 2.25: We have:

0. The map E → OTE ≊ E[X] induces an isomorphism

H0(TE,K0,E) = K0(TE) = Z.

1. The inclusion X ⊗ E× ↪→ E[X]× ↪→ K1(TE) is an isomorphism, hence

H0(TE,K1,E) = K1(TE) = X ⊗Z E
×.

2. Let {−} : R× ⊗ R× → K2(R) the Steinberg symbol map a ⊗ b 7→ {a, b}. Then

we have

H0(TE,K2,E) = K2(TE) = K2E ⊕ ⟨{X ⊗Z E
×}, {X ⊗Z X}⟩

where {−} restricts to an injection X⊗ZE
× → K2(T2) and the only further relations

are {x, x} = {x,−1} for all x ∈ X.

Remark 2.34: In particular, a morphism TE → Ki,E is completely determined by its

composition with the natural map Ki,E →Ki,E.

Example 2.7: Recall the notion of a normalized morphism T i
E → ,K2,E from 2.23.

We have for all i ≥ 0, and explicit description of the normalized global sections

H0(T i
E,K2,E)

norm = ⟨{X i ⊗Z E
×}, {X i ⊗Z X i}⟩ ⊆ H0(TE, K2,E)

where ⟨{X i⊗ZE
×}, {X i⊗ZX

i}⟩ is the subgroup given by replacing T with T i in 2.25.

We have the following theorem about incarnating the category CExt(TE,K2,E)

from [BD01, sec. 3]:

Theorem 2.17: 1. Hi(TE,Kj,E) = 0 for i > 0 and j ≥ 0. Consequently by [BD01,

1.9.(i)] every E ∈ CExt(TE,K2,E) has underlying trivial K2,E-torsor.

2. Combined with [BD01, 1.9.vii], the category CExt(TE,K2,E) is incarnated by

the normalized global sections complex

D∗ := H0(T ∗E ,K2,F )[−1] = K2(T ∗E )norm[−1]
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(we use [−1] to denote the left shift) and the di�erentials are obtained as follows.

Consider the simplicial scheme

BTE := {· · · T 3
E

→· · ·
→
T 2
E
→−→
→
TE → e}

with face maps ∂i. Then apply the functor H0(−,K2,F )[−1] and take the alternating

sum
∑

i(−1)i∂i of the face maps. Explicitly, for p = 1, the di�erential is

pr∗1 − µ∗ + pr∗2 : K2(TE)norm → K2(T 2
E )

norm

f 7→ {(x, y) 7→ f(x)− f(xy) + f(y)}.

Furthermore, the incarnation is Γ-equivariant, i.e., there exists a Γ-equivariant equiv-

alence of categories CExt(TE,K2,E) ≊ C(D∗).

3. We have canonically

π1CExt(TE,K2,E) ≊ X ⊗Z E×

by the canonical association between the automorphism group of the trivial torsor with

the global sections H0(TE,K2,E) and the inclusion {−} : X ⊗Z E× → H0(TE,K2,E)

from 2.25.

The isomorphism classes of CExt(TE,K2,E) are given by

π0CExt(TE,K2,E) ≊ Sym2X

classi�ed by the commutator TE →K2,E as in 2.3.

We now apply the results of 2.16 to compute π0CExt(T ,K2,F ) and the generic

cocycle T 2 → K2,F . Let D∗ be the normalized global sections complex from 2.17.

For each i ≥ 0, the neutral point e ∈ T i
E(E) is Γ-invariant for the diagonal action.

Consequently Γ acts by pullback on Di = H0(T i
E,K2,E)

norm = K2(T i
E)

norm and also

on C(D∗).
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Remark 2.35: As Γ-chain complexes, D∗ is isomorphic to H0(T i+1
E , K2,E)/K2(E).

Let E be a central extension of a group G over F by K2,F . The base change EE
inherits a canonical descent data from p∗E that we denote {fcan,γ}γ∈Γ. By [BD01, sec.

7], for any reductive group G over F , CExt(G,K2,F ) satis�es Galois descent, i.e., the

base change functor

CExt(G,K2,F )→ CExt(GE,K2,E)
Γ

(E , β) 7→ (EE, βE, {fcan,γ}γ∈Γ)

is an equivalence of Picard categories. We have a proof of the �rst main theorem:

Proof: [of 2.11] Apply the theorem 2.16 to the normalized global sections chain com-

plexD∗. Use CExt(T ,K2,F ) ≊ CExt(TE,K2,E)
Γ together with C(D∗) ≊ CExt(TE,K2,E)

and obtain the precise short exact sequence as required, where Q = AdmSym2X is

the kernel of the connecting morphism. The descriptions of ι and ρ come from the

categorical interpretations in 2.16 of Q as the image of

π0(CExt(TE,K2,E)
Γ)→ π0(CExt(TE,K2,E))

Γ = (Sym2X)Γ

and H1(Γ, X ⊗Z E
×) as the kernel. ■

Let us now move to computing the generic cocycle for a central extension E of T

by K2,F :

Proof: [of 2.13] LetD∗ be the complex of normalized co-chains incarnating CExt(TE,K2,E)

from 2.17. LetD∗gen be the complex obtained by restricting each termDi to the generic

point and then taking mod K2(E), i.e.,

Di
gen = K2L(T i+1

E )/K2E.

According to [BD01, 8.6], the restriction map D∗ → D∗gen is a quasi-isomorphism.
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Now consider D∗ → D∗gen as a morphism of complex of right Γ-modules, and apply

the functor RHom(BZ∗,−) to D∗ → D∗gen. Let E
pq
r be the spectral sequence for the

double complex Hom∗∗(BZ, Dgen) associated to the column �ltration. The zero page

Epq
0 is

↑ ↑

C1(Γ, K2E(TE)/K2E) → C1(Γ, K2E(T 2
E )/K2E) →

d00v
↑ ↑

K2L(TE)/K2E
−d00h→ K2L(T 2

E )/K2E
...

where d00
h = pr∗1 − µ∗ + pr∗2. Using H1(Γ, K2E(T i

E)/K2E) = 0 for all i ≥ 0 of 2.12,

taking vertical cohomology gives the �rst page Epq
1 :

· · · · · ·

0 → 0 →

(K2L(TE)/K2E)Γ → (K2L(T 2
E )/K2E)Γ →

We see Epq
1 already achieves the limit of Epq

r . Hence by [BD01, cor. 8.8] the category

CExt(T ,K2,F ) is incarnated by the bottom row which is also DΓ,∗
gen, the sub-complex

of Γ invariant elements of D∗gen.

Let E be a central extension of T by K2,F and EE the base change. Let c ∈

H0(T 2
E ,K2,E)

norm be a cocycle for EE ∈ CExt(TE,K2,E) and {fγ}γ∈Γ ∈ C1(Γ,H0(TE,K2,E)
norm)

be a 1-cochain that de�nes the descent datum for EE. Let {gγ}γ∈Γ be the image of

the restriction of {fγ}γ∈Γ to η in C1(Γ, K2E(TE)/K2E) and d be the image of the

restriction of c|η2 in K2L(T 2
E )/K2E. Hence the pair ({gγ}γ∈Γ, d) lies in the �rst anti-

diagonal of Epq
0 maps to 0 in C1(Γ, K2E(T 2

E )/K2E). Let n ∈ K2L(TE)/K2E be be

such that d00
v (n) = {gγ}γ∈Γ. Commutativity of the bottom left square of Epq

0 ensures

that the element

d− d00
h (n) = d− (pr∗1 − µ∗ + pr∗2)(n) ∈ K2L(T 2

E )/K2E

also maps to 0 in C1(Γ, K2E(T 2
E )/K2E) and thus lies in (K2L(T 2

E )/K2E)Γ, i.e.,
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d−(pr∗1−µ∗+pr∗2)(n) i Γ-invariant. Applying the horizontal di�erential kills the d
00
h (n)

term and shows d−d00
h (n) also satis�es the cocycle condition. The statement of conver-

gence Epq
r ⇒ RHom(BZ∗, D∗gen) gives that the natural map D∗gen → RHom(BZ∗, D∗gen)

is a quasi-isomorphism, and shows d− d00
h (n) is the generic cocycle for E . ■
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Chapter 3

From Conjugacy Classes in the Weyl

Group to Geometric Constructions of

the A�ne ADE Basic Representation

3.1 The Split Geometric FKS Isomorphism and State-

ment of Main Results

Let us motivate the problem and state the results. First let us recall the classical

(split) FKS isomorphism and its geometric realization in terms of vertex algebras.

Vertex algebras and (twisted modules) for vertex algebras never appear mathemat-

ically in the mathematics of our work, sine we replace them with representations

of Heisenberg central extensions, but it helps to mention them for illustration and

motivation.

Let G be a simple algebraic group over C with Lie algebra g, equipped with the

normalized invariant bilinear form B. Let ĝ be the a�ne Lie algebra associated to

g, e.g., as de�ned in [Zhu09, 0.1]. It is an in�nite dimensional Lie algebra, given

as a one dimensional central extension of the loop algebra g[t±1] of g. There is a

distinguished representation, called the basic representation, V 1 of ĝ that is the study

of the representation theoretic literature [FK81, Seg81, Lep85]. It is the quotient of a

Verma module V1 of ĝ. The space V1 has the structure of a vertex algebra, constructed

in [FBZ04, 1.3] such that V 1 is a quotient vertex algebra. The motivation to study the

vertex algebra structure is that there is a natural equivalence of categories between
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vertex algebra modules for V1 and Lie algebra representations of ĝ [FBZ04, 5.6].

The classical FKS isomorphism of [FK81, Seg81] is the determination of the vertex

algebra structure of V 1 when g is simply laced, i.e., type ADE, in terms of a simpler

vertex algebra that can be described explicitly. It is as follows. Assume G is simply

connected and T ⊆ G is a maximal torus. Let Y = X∗(T ) be the cocharacter lattice,

equal to the coroot lattice and t = LieT . Let t̂ be the restriction of the central

extension ĝ to t[t±1] ⊆ g[t±1]. Then t̂ has a unique level 1 representation πλ for

each λ ∈ t∨, called the Fock space with highest weight λ for t. The restriction of B

to Y is an even nondegenerate integer valued bilinear form inducing an embedding

B : Y ↪→ Y ∨ = X∗(T ) and associated to the data (B, Y, ĥ) is a vertex algebra VY

called the Lattice vertex algebra, with underlying ĥ module

VY = ⊕λ∈Y πB(λ).

The vertex algebra structure on VY is known and explicitly described in [FBZ04, 5.4].

The classical FKS isomorphism is:

Theorem 3.1: [FK81, Seg81] When g is type ADE, there exists an isomorphism of

vertex algebras

V 1(ĝ) ≊ VY .

This isomorphism V 1(ĝ) ≊ VY was de�ned Lie-theoretically. However, it has been

geometrically realized in [Zhu09] as a restriction problem about line bundles on an

in�nite dimensional variety. It is as follows. On one hand, there is a Borel-Weil type

theorem for Kac-Moody groups [Kum02, 8.3.12] which states there is a certain line

bundle L on the a�ne Grassmannian GrG and an isomorphism of ĝ modules

V 1(ĝ) ≊ Γ(GrG,L)∨.

It is an a�ne analogue for the �nite type Borel-Weil theorem replacing ĝ with a �nite

dimensional reductive Lie algebra and L with a line bundle on the �nite dimensional

�ag variety. On the other hand, the space GrT ⊆ GrG is zero dimensional, non re-
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duced, with connected components in bijection with Y , and all connected components

isomorphic. The dual ring of regular functions of the component corresponding to λ

is naturally identi�ed with πB(λ), giving rise to an identi�cation

Γ(GrT ,L|GrT )
∨ ≊ ⊕λ∈Y πB(λ)

which has the same shape of the lattice vertex algebra VY . Indeed a vertex alge-

bra structure on Γ(GrT ,L|GrT )
∨ and on Γ(GrG,L)∨ was constructed geometrically in

[Zhu09] using Beilinson and Drinfeld's correspondence between vertex algebras and

chiral algebras, which are algebro-geometric objects. The geometric FKS isomorphism

theorem is thus:

Theorem 3.2: [Zhu09] For G of type ADE, the natural restriction induces an iso-

morphism

Γ(GrT ,L|GrT )
∨ ≊ Γ(GrG,L)∨.

Our goal here is to prove a geometric realization of a twisted version of the FKS

isomorphism in [KP85] that generalizes the classical FKS isomorphism. The twisted

FKS isomorphism is as follows.

Instead of ordinary modules for vertex algebras, we consider twisted modules. Let

w ∈ W be a Weyl group element, acting on Y , giving rise to an automorphism of VY .

A certain twisted module, M(w) is de�ned for VY whose underlying vector space is

described [Lep85] as follows. The map B induces an injection of the quotient of by

torsion of the coinvariants Yw,cotor ↪→ Yw,cotor ⊗ C = tw
B
↪→ tw,∨. Then

M(w) = ⊕λ∈Yw,cotorπ(w)B(λ) ⊗ U

where π(w)B(λ) is a twisted version of the Fock space and the unique irreducible

module for a twisted version ˆt(w) of t̂ containing tw, such that tw acts by B(λ).

Furthermore, U is �nite dimensional and a representation for a �nite group Σ̂ that

is a central extension of the torsion subgroup Σ = Yw,tor by some roots of unity. The

twisted module structure on M(w) for VY is explicitly described in [KP85]. Remark
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that such a decomposition is similar to the decomposition of representations of a

Heisenberg central extension we proved in 2.2.6.

On the other hand, a lift σ of w acting on g is chosen and used to de�ned a twisted

module structure on V 1(ĝ) for the vertex algebra VY . The twisted FKS isomorphism

theorem is:

Theorem 3.3: When G is type ADE, there is an isomorphism of twisted modules

for VY :

M(w) = ⊕λ∈Yw,cotorπ(w)B(λ) ⊗ U ≊ V 1(ĝ).

Our primary project is to realize the twisted FKS isomorphism as another restric-

tion problem of sections of the line bundle L on GrG. To be precise, for any lift σ of

w in Gad, we de�ne a subspace space S(σ) ⊆ GrG that is a replacement for GrT in

the classical FKS isomorphism, such that:

Theorem 3.4: Suppose G is type ADE. The restriction induces an isomorphism

Γ(S(σ),L|S(σ))∨ ≊ Γ(GrG,LGrG)
∨.

The space Γ(S(σ),L|S(σ))∨ is identi�ed with M(w) in the following sense. The

space S(σ) has connected components in bijection with Yw,cotor and all components

are isomorphic. Each component has underlying reduced locus a �nite dimensional

�ag variety of a connected reductive group, namely the �xed points Mσ where M =

ZG(T
w,0) is the centralizer of the connected component of the torus �xed points. The

space U is identi�ed

U = Γ(S(σ)0red,L|S(σ)0red)
∨

having an action of both the �nite group Σ̂ and the algebraic group Mσ, in fact is

a minuscule representation for Mσ. Finally, the nilpotent thickenings of S(σ)0red in

S(σ)0 is controlled by an in�nitesimal thickening of a single point whose dual regular

functions is identi�ed with π(w)B(λ). This gives an identi�cation Γ(S(σ),L|S(σ))∨ ≊

⊕λ∈Yw,cotorπ(w)B(λ) ⊗ U . To do this, we also �nd a maximal torus T ⊆ GF such that
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both Γ(GrG,LGrG)
∨ and Γ(S(σ),L|S(σ))∨ is also a representation for a Heisenberg cen-

tral extension L̂T of LT . We then study the map Γ(S(σ),L|S(σ))∨ → Γ(GrG,LGrG)
∨

using the representation theory of Heisenberg central extensions we developed 2.2.6.

In this way, we replaced the use of twisted modules for VY with representations of

L̂T .

Some notable features of our study are:

1. We only show Γ(S(σ),L|S(σ))∨ ↪→ Γ(GrG,LGrG)
∨ is injective in general for all

w ∈ W and all types for G, but use preexisting representation theoretic results

in [KP85] that Γ(GrG,LGrG)
∨ is irreducible for L̂T in type ADE to deduce the

isomorphism. Nonetheless, it demonstrates correct identi�cation of the subspace

S(σ) is given, where previously it was not known what suitable subspace is for

a restriction problem in the twisted case, only that the a�ne Springer �bers

were proposed [Zhu09].

2. But a fully geometric proof of Γ(S(σ),L|S(σ))∨ ≊ Γ(GrG,LGrG)
∨ is given for

many w ∈ W without the representation theoretic results of [KP85]. These

w ∈ W are precisely the homogeneous elements, de�ned in 3.7, and do occupy

many of the elements, including all of the elements in type A and more generally

whenever w lies in a parabolic subgroup of type A.

3. A conditional proof of Γ(S(σ),L|S(σ))∨ ≊ Γ(GrG,LGrG)
∨ in the remaining cases

is given, on a precise numerical computation regarding the closure T ♯ over GOF

of a certain maximal torus T ⊆ GF associated to w and a lift σ of w, namely

that the number of torsion elements of π0FT ♯ equals the defect d([w]), a quantity

also introduced explicitly in [KP85, 10.1] and recalled in 2.34, that depends only

on the action of w on Y and on B. Computer assisted computations have shown

it to be true in type D6, D8, but they are omitted from this thesis and we leave

this computation as an open problem.

4. The subspace S(σ) contains FT ♯ . Conditional on the above computation, we

show that Γ(FT ♯ ,L|FT ♯
)∨ ≊ Γ(GrG,LGrG)

∨ which gives another candidate sub-
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space the geometric twisted FKS isomorphism, and in fact a more elegant for-

mulation: for every conjugacy class of maximal tori in GF , there exists a rep-

resentative T such that the inclusion of the image of LT in GrG induces an

isomorphism on global sections of L.

5. As an auxiliary result, a new, geometric, proof of the classi�cation of the conju-

gacy classes of W by parabolic induction is given, where before in [GP00] it was

done using combinatorial methods and Coxeter theory when W is generalized

to any �nite Coxeter group.

3.2 Closure of Maximal Tori in GF Over GOF

For an element σ of a group, we say σ is order m if σm = 1 and do not require m

to be minimal. The minimal order of σ is denoted |σ|. The image of i ∈ Z under

the map Z → Z/mZ will be denoted i. For a group G, let Gad denote the adjoint

group of G, de�ned to be the image of G under the adjoint morphism G→ Autk(G)

or G/Z(G). For any subgroup H ⊆ G where G is unambiguously present, we denote

by Had the image of H in Gad and not the adjoint group of H.

3.2.1 Parahoric Group Schemes and A�ne Flag Varieties

Let us recall some notions, introduce the relevant examples, and prove some basic lem-

mas regarding parahoric subgroups, parahoric group schemes. Let H be a connected

reductive group over F = C[[t]] and put k = C. By a parahoric subgroup of H(F ),

we mean in the sense of [Yu15, 7.1], i.e., the connected component of the stabilizer

of a facet in the Bruhat-Tits building B(Had(K)) of the adjoint group. There is a

metric on H(F ) and Parahoric subgroups are all bounded. In a similar fashion to the

theory of parabolic subgroups in a reductive group over k, every parahoric subgroup

is H(K)-conjugate standard parahoric subgroup de�ned by the choice of an al-

cove in B(Had(K)). Each standard parahoric subgroup is associated a strict subset

of the a�ne Dynkin diagram Ia� of G in an inclusion preserving manner. A minimal
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parahoric subgroup is called an Iwahori subgroup, which is the a�ne analogue of

the Borel subgroup of a reductive group over k. Each standard parahoric subgroup

strictly containing the standard Iwahori subgroup is associated to a subset S ⊆ Ia�

is generated by the parahoric subgroups associated to a collection V of subsets of Ia�

that union to S. In particular, there is a �nite set of minimal standard parahoric

subgroups that strictly contain the standard Iwahori subgroup. Each is generated by

the standard Iwahori subgroup and a standard a�ne root subgroup.

De�nition 3.1: Let P be an a�ne group scheme over OF with connected generic

�ber. The neutral component of P is the open subgroup scheme consisting of the

generic �ber and the neutral component of the special �ber.

We do not use the details of Bruhat-Tits theory, and are only concerned with

one particular example of parahoric subgroups explicitly described below. Suppose

G is connected reductive over k with base change GF and σ is an automorphism of

G of order m. Let E/F be the degree m extension with E = k((u)), um = t. Let

ν ∈ Γ := Gal(E/F ) be a choice of generator and ζ a primitive mth root of unity such

that ν(u)/u = ζ. Put OE = k[[u]] so Γ preserves OE. Set

H = ResE/F (G× E)σ×ν
−1

.

Then H is a reductive group over F obtained by Galois descent on the group GE over

E with ν ∈ Γ acting by σ × ν−1. Then as in the argument of [PR08, 7.a] combined

with the main results [PY02] that follow through for an arbitrary σ ∈ Autk(G), the

neutral component of the group

(G×OE)
σ×ν−1

(OE) ⊆ (G× E)σ×ν
−1

(E) = H(F )

is a parahoric subgroup of H(F ). For us, we are primarily concerned with the case

when σ ∈ Gad is an inner automorphism.

Let us prove a basic lemma that when the derived subgroup G′ = [G,G] is simply

connected, and σ is inner, we do not need to take the connected component.
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Lemma 3.1: Suppose G′ is simply connected and σ is inner. Then the OF points of

the OF -group scheme

P := ResOE/OF
(G×OE)

σ×ν−1

is connected.

Proof: First we claim Gσ is connected. LetH = Z(G)0 be the connected component

of the center so G = HG′ where H is a torus and G′ is simply connected. Let

h ∈ H, g ∈ G′ and suppose hg ∈ Gσ. Since σ is inner and centralizes H,

σ(hg) = h(σ.g) = hg

⇒ g ∈ G′,σ

so Gσ ⊆ HG′,σ. The other direction is trivial, and we have a presentation

Gσ = HG′,σ.

,By a theorem of Steinberg, [OV90, 4.8.9], since G′ is simply connected, G′,σ is con-

nected reductive. We conclude that the continuous multiplication map H×G′,σ → Gσ

is surjective with connected source, and thus Gσ is connected.

Now to show P(OF ) = G(OE)
σ×ν−1

is connected, consider the reduction map

mod u, OE → k, where the uniformizer u is an eigenvector for ν with eigenvalue

ζ. Therefore the reduction map is invariant for Γ. Then the induced reduction map

G(OE)→ G(k) is equivariant for the action on the left by σ× ν−1 and the action on

the right by σ and hence restricts to a surjection

G(OE)
σ×ν−1 → Gσ.

Since the image is connected and the kernel is pro-unipotent (and hence connected)

we conclude that the source G(OE)
σ×ν−1

is connected. The result follows. ■

For every parahoric subgroup P of H(F ), there exits a smooth integral model P of
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H over OF with the property that P(OF ) = P ; the construction is reviewed in [Yu15,

sec. 7]. By the uniqueness principle of smooth integral models, P is unique with

respect to this property. For example, if H,G, σ is as in above, the parahoric group

scheme associated to the parahoric subgroup (G × OE)
σ×ν−1

(OE) is the connected

component of ResOE/OF
(G×OE)

σ×ν−1
. Such a model of H over OF is indeed smooth

by [Edi92, 2.2] and [Edi92, 3.4].

Example 3.1: If σ = IdG is trivial, then P = GOF
is the standard hyperspecial

parahoric group scheme associated to the subset subset I ⊆ Iaff consisting of the �nite

Dynkin diagram of G.

Example 3.2: If G = T is a torus so H := T is a torus over F , then P = T ♭,0, the

connected Néron model. In fact, this is the only parahoric group scheme of T .

Now let us �x notation and recall the basic theory of a�ne �ag varieties following

[PR08]. For an a�ne �nite type �at group scheme G over OF with generic �ber H,

the a�ne �ag variety is the fpqc sheaf

FG := [LH/L+G].

If G is smooth over OF , then FG is representable by an ind-scheme over k that is

ind-�nite type, [PR08, 1.4]. The examples of G that we are concerned with are

parahoric group schemes associated to a reductive group over F and intermediate

integral models T ♯ of of a torus T over F . Some basic properties of a�ne �ag

varieties are recalled below from [PR08, sec.0, 1], [Zhu17, 1.2.11]:

1. If G is connected, then L+G is connected. If G is smooth over OF then L+G is re-

duced. The map LH → FG induces an isomorphism on connected components,

and there is an isomorphism induced by the Kottwitz homomorphism

π0(LH) ≊ π1(H)I

where π1(H) is the algebraic fundamental group of G over the separable closure

of F , equipped with the Galois action of I := Gal(F sep/F ). In particular, if
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H is simply connected, then LH and the �ag variety of any parahoric group

scheme of H is connected.

2. If H is semisimple, then both LH and FH are reduced.

3. Suppose H = T is a torus split over E with the Γ-module Y = Hom(Gm,E, TE).

Suppose G = T ♯ is an intermediate integral model. By our study of subgroups

of LT in 2.2.2, LT ♯ and FT ♯ are both not reduced. We also have FT ♯ is discreet,

with the Kottwitz homomorphism inducing an identi�cation of π0(FT ♯) with a

quotient of YΓ = π1(LT ).

4. If P is smooth �berwise connected a�ne group scheme over OF then the a�ne

�ag variety FP is ind-projective i� P is a parahoric group scheme of H. This

recalls the classical de�nition of a parabolic subgroup of a reductive group as

one where the associated (non-a�ne) �ag variety is projective.

Now suppose H = GF is the base change of a reductive group G already de�ned over

k and P = GOF
. This special case is important and is given a name to match the

literature, e.g., [Zhu09].

De�nition 3.2: The a�ne Grassmannian of a reductive group G over k is

GrG := FGOF
.

Additionally, for simplicity, de�ne

LG := LGF

L+G := L+GOF
.

We refer to G(OF ) as the canonical standard hyperspecial parahoric subgroup

and GOF
as the canonical standard hyperspecial parahoric group scheme.
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3.2.2 Conjugacy Classes of W and Conjugacy Classes of Max-

imal Tori in GF

Fix k = C and F = C((t)) and OF = C[[t]]. Let G be a connected reductive group

over k (not over F ) and T ⊆ G a �xed choice of a (split) maximal torus over k. Let

W = NG(T )/ZG(T ) denote the Weyl group of G and [W ] the set of conjugacy classes.

Tori over F in the base change GF may not necessarily be split; we denote them by

T . Let g = LieG and t = LieT .

The set [W ] is of independent interest and has been studied by combinatorial

methods in [Car72] and [GP00, 3.2.12], the latter in the more when W is replaced

with any �nite Coxeter group. Recently, many interesting geometric object have

come to be parameterized by [W ] and fundamental questions were asked on how to

lift elements of W to NG(T ), for example in [AH17, AHN20]. The set [W ] has even

appeared in the original study of the twisted FKS isomorphism in [KP85]. In this

subsection we study the relation between GF -conjugacy classes of maximal tori in GF

and [W ]. We �rst review the correspondence between conjugacy classes of maximal

tori in GF and [W ]. We review the notion of an elliptic conjugacy class (of both

Weyl group elements and Tori in GF ), and introduce the notion of the principal

Levi subgroup of G associated to w ∈ W . Using the principal Levi and and the

conjugacy classes of tori, we give a new and geometric, proof of the classi�cation of

conjugacy classes of W by parabolic induction in [GP00, 3.2.12] in the case when

the Coxeter group is a Weyl group of a reductive group. Our study of [W ] and of

lifting elements of W to NG(T ) prepares for the study of choosing representatives of

conjugacy classes of maximal tori in GF in following subsections.

The following theorem was proved in [KL88, sec. 1].

Theorem 3.5: The set [W ] is in natural bijection with conjugacy classes of maximal

tori in GF .

De�nition 3.3: For a class c ∈ [W ] we say a maximal tori T ⊆ GF is of type c if

the conjugacy class of T corresponds to c.
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For illustration, we give another proof.

Proof: For w ∈ W , a maximal torus of type [w] ∈ [W ] is described as follows. Let

σ ∈ NG(T ) be a �nite order lift of order m. The fact that a �nite order lift exists

with minimal order |w| or 2|w| is proven in [AH17, Theorem C], with an explicit

description when which case of occurs. Let E/F be the degree m extension with

E = C((u)) , um = t and ν ∈ Γ := Gal(E/F ) a chosen generator and ζ a primitive

mth root of unity such that ν(u)/u = ζ. Then a maximal torus T of type [w] together

with its embedding into GF is de�ned as the composition

T := (ResE/FT ×k E)w×ν
−1

⊆ (ResEFG×k E)σ×ν
−1 f

≊ GF

where f is some �xed chosen isomorphism. It exists due to a theorem of Steinberg

[Ste65, 1.9] that H1(R,H) = 0 whenever R is a perfect �eld of cohomological dimen-

sion ≤ 1 and H is connected and a�ne over R so there are no inner forms of HR over

R.

A map from conjugacy classes of maximal tori in GF to [W ] is given as in [SS70,

2.7] as follows. Let T ⊆ GF be a maximal torus split over E with Γ = Gal(E/F ), ν

as above acting on GE. Since both TE and TE are split in GE, they are conjugate by

some g ∈ G(E), i.e.,

g.TE = TE.

Then the element

σ := g−1ν(g)

normalizes TE and this lies in NGE
(TE). Then the class [w] ∈ [W ] associated to the

conjugacy class of T is the image of σ in

(NGE
(TE)/ZGE

(TE))(E)

⊆ (NG(T )/ZG(T ))(F ) = (NG(T )/ZG(T ))(k)
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where F is any algebraically closed �eld containing E. The bottom equality follows

from the fact that the Weyl group is constant as a group scheme. The map is well-

de�ned to be constant on the conjugacy class of T by [SS70, 2.7].

These two operations are inverse to each other. ■

Remark 3.1: The isomorphism

(ResEFG×k E)σ×ν
−1 f

≊ GF

in the proof above is not given explicitly, but the main point of our computations is

to provide such an explicit isomorphism.

Now let us classify the conjugacy classes of [W ] by parabolic induction using the

interpretation of [W ] as the set of conjugacy classes of maximal tori of GF . Let

Ψ = Ψ(G, T ) be the root system of G with respect to T and ∆ be a chosen base

of simple roots and B be the corresponding choice of Borel subgroup. Let S ⊆ W ,

S = S(∆) be the set of simple re�ections corresponding relative to the choice of ∆.

So (W,S) forms a Coxeter system.

De�nition 3.4: For J ⊆ S, the parabolic subgroup of W corresponding to J is

the subgroup WJ ⊆ W generated by J .

The reason for the terminology is that WJ is the Weyl group of the Levi factor of

the parabolic subgroup PJ ⊆ G corresponding the roots J , or to be precise the image

of a Levi factor of a cover of PJ .

De�nition 3.5: An element w ∈ W is called elliptic if either of the equivalent

conditions hold:

1. [GP00, 3.1.1] For every proper subset J ⊆ S, w does not lie in WJ .

2. For some (or for all) semisimple group G with maximal torus T such that

W (G, T ) = W , the group

Tw = SpecC[X∗(T )w]

is �nite, or equivalently X∗(T )w is �nite, or equivalently tw = 0, where t = LieT .
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A conjugacy class c ∈ [W ] is called an elliptic class if any (or equivalently if all)

w ∈ c is elliptic. A maximal torus, resp. conjugacy class of maximal tori, T ⊆ GF is

called an elliptic torus if the type of T , resp. any torus in the class, in [W ] is an

elliptic class.

Lemma 3.2: Suppose G is semisimple. Then a conjugacy class of W is elliptic i�

the corresponding conjugacy class of tori in GF by 3.5 consists of anisotropic tori.

Proof: A torus T over a �eld F has no split subtori over F i� X∗(T ) has no quotient

modules for the Galois group Γ that are positive rank over Z. This happens i� X∗(T )Γ
is �nite. Apply our case the case F = C((t)) and Γ is topologically generated by one

element ν acting on X∗(T ) by w. This happens i� Tw = Spec(C[X∗(T ]Γ) is �nite.

The result follows. ■

The notions of a parabolic subgroup of W and an elliptic conjugacy class are

identical when (W,S) is generalized to with a �nite Coxeter system. Elliptic classes

of W are of special interest, because they allow for an inductive classi�cation of [W ].

Roughly speaking, every maximal torus is elliptic for a parabolic subgroup of W .

Theorem 3.6: [GP00, 3.2.12] combined with [GP00, 3.2.11]: Suppose (W,S) is a

�nite Coxeter system. Let P be the set of pairs (J, d) where J ⊆ S and d is an elliptic

conjugacy class for the parabolic subgroup WJ . Let ∼ be the equivalence relation on P

de�ned by the property that (J, d) ∼ (J ′, d′) i� there exist x ∈ W such that x.J = J ′

and x.d = d′. Then the following map gives a well-de�ned bijection

P/ ∼ ≊→ [W ]

(J, d) 7→ W.d

where W.d denotes the orbit of the subset d ⊆ WJ ⊆ W under the action of W .

Remark 3.2: The actual map given in [GP00, 3.2.12] is in the other direction [W ]→

P/ ∼ and more complicated but combining with [GP00, 3.2.11], we obtain the inverse

map given above in 3.6.



92

Let us now give an alternative proof of 3.6 in the case when W is a Weyl group.

De�nition 3.6: For w ∈ W , the principal Levi is

Mw := ZG(T
w,0) ⊆ G

where Tw,0 ⊆ Tw is the neutral component, i.e the maximal torus, of Tw.

Example 3.3: Suppose G is semisimple.

1. If w = 1, Mw = {e} is the trivial subgroup of G.

2. If w ∈ W is elliptic, thenMw = G.

Some basic properties of the principal Levi are:

Remark 3.3: Fix w ∈ W = NG(T )/ZG(T ). We have the following basic properties:

1. Mw contains all possible lifts of w to NG(T ).

2. For every sub-torus T ′ ⊆ Tw,0, we have Mw ⊆ ZG(T
′).

3. Mw is minimal in the sense that if T ′ ⊆ M is a torus and Tw,0 ⊊ T ′ then

ZG(T
′) ⊊ M contains no lift of w.

3. T ′ is strictly contained in Tw,0, then ZG(T
′) does not contain any lift of w.

4. Conjugating w by W gives a NG(T ) conjugate of Mw. Conversely conjugating

Mw by NG(T ) gives the principal Levi of a W -conjugate of w.

Now interpret [W ] as the conjugacy classes of maximal tori in GF as in 3.5. De�ne

the map

Ψ : [W ]→ P

as follows. Let T ⊆ GF be a maximal torus, T a the maximal anisotropic subtorus

and T s the maximal split subtorus. Then the cocharacter lattice is the quotient by

torsion

X∗(T s) = X∗(T )w,tor = X∗(Tw,0).

It follows that T s = (Tw,0)F and thus the centralizer ZGF
(T s) = Mw,F := (Mw)F is
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the base change of the principal Levi. Put

M := Mw.

We furthermore have T ⊆ ZGF
(T s) and by 3.5 the conjugacy class of T in MF is

in bijection with a conjugacy class of the subgroup W (MF , TF ) = W (M,T ) ⊆ W .

Let J ⊆ S be any subset such that M is G-conjugate to the standard Levi subgroup

MJ ⊆ G. Such a conjugation must send the maximal torus T ⊆ M to the maximal

torus T ⊆ MJ and we conclude that M is NG(T )-conjugate MJ . This induces a W -

conjugation W (M,T ) to WJ . De�ne d to be the conjugacy class of WJ associated to

the conjugacy class of W (M,T ) associated to T and put

Ψ([T ]) = (J, d).

The following steps show that Ψ induces a well-de�ned bijection [W ] ≊ P/ ∼, giving

a proof of 3.6 in the case when W is a Weyl group.

Lemma 3.3: d is elliptic for WJ .

Proof: We have

T = T aT s.

Since MF is the centralizer of T s in GF , T s = Z(MF )
0 is the connected component

of the center. Therefore (T a)ad ⊂ (MF )ad is the maximal torus of (MF )ad = (Mad)F .

The map M →Mad induces a natural bijection W (M,T )→ W (Mad, Tad) so d ⊆ WJ

is associated to a G-conjugate of the maximal torus (T a)ad in Mad. Since (T a)ad is

still anisotropic, the lemma boils down to showing the correspondence 3.5 maps a

conjugacy class of anisotropic tori to an elliptic conjugacy class of the Weyl group.

This is shown in 3.2. ■

Lemma 3.4: Ψ is well-de�ned as a map [W ] → P/ ∼, i.e., the equivalence class of

(J, d) is independent of the choice of representative of [T ].
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Proof: Let T , T ′ be conjugate tori in GF by some g ∈ G(F ). Let J , resp. J ′, be

subsets of S such that MJ , resp. MJ ′ , is conjugate to ZGF
(T s), resp. ZGF

(T ′s). Then

g restricts to a conjugation sending T s to T ′s, and therefore also sends ZGF
(T s) to

ZGF
(T ′s). It follows that MJ,F is conjugate to MJ ′,F by some h ∈ G(F ). By the main

theorem [Sol20, 1.b], h can be chosen to normalize the split maximal torus TF of GF .

Letting w be the image of h in W = W (GF , TF ) = W (G, T ). Then w.J is a choice of

a set of simple re�ections for WJ ′ . Hence there exists w2 ∈ WJ ′ ⊆ W such that

w2w, J = J ′.

Let d ∈ [WJ ], resp. d′ ∈ [WJ ′ ] correspond to the conjugacy class of the torus T , resp.

T ′, in MJ,F , resp. MJ ′,F . Since w restricts to an isomorphism WJ ≊ WJ ′ , w.d is a

single conjugacy class in W ′
J . Hence

w2(w.d) = w.d.

Furthermore, w.d = d′ because h maps [T ] to [T ′]. It follows that

w2w.d = d′

and therefore (J, d) is equivalent to (J ′, d′) by the element w2w ∈ W under the

de�nition of the equivalence relation ∼ on P . The result follows. ■

Lemma 3.5: Ψ is bijective; in fact we explicitly describe an inverse.

Proof: The inverse map Φ : (P/ ∼)→ [W ] is de�ned as follows. Let us de�ne it on

P and show it factors through ∼. Let (J, d) ∈ P . Then d corresponds to a conjugacy

class of maximal torus T in MJ,F such that Tad ⊆MJ,F,ad is anisotropic by3.2. De�ne

Φ((J, d)) = [T ]

to be the conjugacy class of W associated to the conjugacy class of T , but considered

as a maximal torus of GF (it remains maximal in GF because recall any Levi subgroup
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has the same rank as the original group). Φ factors through ∼ because if (J, d) ∼

(J ′, d′), then by de�nition d ⊆ WJ , d
′ ⊆ WJ ′ are subsets of the same W -conjugacy

class in W and the MJ,F -conjugacy class of tori in MJ,F associated to d is G(F )-

conjugate to the associated MJ ′,F -conjugacy class of tori in MJ ′,F associated to d′.

The composition [W ]
Ψ→ (P/ ∼) Φ→ [W ] is the identity by the construction of the

maps. Let us show (P/ ∼) Φ→ [W ]
Ψ→ (P/ ∼) is the identity. Let J ⊆ S and d ∈ [WJ ]

be elliptic for WJ and corresponds to a class of anisotropic tori in MJ by 3.2. We can

write

MJ = ZG(H)

where the (split) torus H ⊆ G is the neutral component of the center of M . Let

T ⊆ (MJ)F be any maximal torus. Then HF ⊆ T s and Tad is a quotient of T by a

diagonalizable group with neutral component containing HF . Hence Tad is generated

by a quotient of T a by a �nite subgroup and a quotient of T s. Hence Tad is anisotropic

i� T s maps to the trivial subgroup in Tad. This holds i�HF = T s andMJ = ZGF
(T s).

This shows (P/ ∼) Φ→ [W ]
Ψ→ (P/ ∼) is the identity. The result follows. ■

3.2.3 Representatives of Conjugacy Classes of Maximal Tori

in GF with Large Closure in GOF

In this subsection, we study the problem of choosing representatives T ofGF -conjugacy

classes of maximal tori in GF with the property the Zariski closure T of T in GOF
has

large OF -points, in the sense that T (OF ) contains the maximal connected bounded

subgroup of T (F ). This means precisely that T is an intermediate integral model

of T , i.e., it contains the connected Néron model. We de�ne the notion of a homo-

geneous conjugacy class of W , which include all conjugacy classes of a parabolic

subgroup of type A, that have the property that T can be chosen such that T (OF )

is even larger to be the maximal bounded subgroup of T (F ), i.e., T = T ♭. Homo-

geneous conjugacy classes are import for later study because restriction to their case

simpli�es the geometric FKS isomorphism. It turns out that in order to study this

problem, it is necessary to study the problem of lifting elements of W to NG(T ), and
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we review some results about this from [AHN20] that we use.

For a triple (G,B,H) where G is a reductive group over k, H a choice of maximal

torus, and B a Borel subgroup containing H, let us set the notation and recall some

notions regarding the spherical building of (G,B,H), for example from [OV90, ch.

4]:

1. g = LieG, b = LieB, h = LieH.

2. The exponential map is denoted exp : h→ H.

3. The adjoint action of Gad on itself is denoted Ad, the action of Gad on g is

denoted ad.

4. d is the rank of Gad, and of the derived subgroup of G.

5. Ψ = Ψ(G,H) the root system of G relative to H.

6. ∆ = ∆(G,B,H) ⊆ Ψ the choice of simple roots induced by B. For a �xed

ordering of ∆, denote the elements ∆ = {α1, · · · , αd}. We may write Ψ =

Ψ(G,B,H) to mean the roots system including the choice of ∆.

7. A = A(G,B,H) ⊆ had, is the (closed) fundamental alcove of the triple

(Gad, Bad, Had). Note we use had instead of h. The general literature uses

the interior of A formally de�ned as the intersection of the dominant halves

α−1(R+) of had for all α ∈ Ψ, but for our convention, we include the walls.

8. When Gad is simple, let θ ∈ Ψ be the highest root.

9. Equip h with a normalized invariant bilinear form ⟨−,−⟩ so that the length of

the highest root for each simple factor of g is 2.

10. ω∨1 , · · · , ω∨d ⊆ h are the fundamental co-weights relative to ∆ and ⟨−,−⟩. Iden-

tify the fundamental coweights with the vertices I of the Dynkin diagram of

Gad.
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11. Let P = Z⟨ω∨1 , · · · , ω∨d ⟩ be the co-weight lattice. For any point v ∈ P , there is

a unique P -translate of v in A that lies inside Iaff . Call this element the type

of v.

12. Iaff is the set of vertices of the a�ne Dynkin diagram of G. In particular, if G

is simple, then Iaff = I ∪ {ω∨0 } consists of the �nite Dynkin diagram and one

extra vertex ω∨0 ∈ A denoted the a�ne vertex. For general reductive G, Ia�,

resp, I, is a disjoint union of the vertices of the a�ne Dynkin diagram, resp.

Dynkin diagram, of each simple component of G′ or Gad.

13. The set A has the structure of a simplex with vertices Iaff .

14. π1(G) = P/Q where Q is the coroot lattice, and in the natural map Iaff → π1(G)

is a bijection. It induces an action of π1(G) on Iaff by translation. A vertex

v ∈ Iaff is called hyperspecial if it lies in the orbit of some a�ne vertex under

the action of π1(G). For example, if G is type A, every vertex is hyperspecial.

In general, the set of hyperspecial vertices of Iaff is the union of the hyperspecial

vertices of each connected component of Iaff .

15. gαi
is the root space of g corresponding to αi.

The main tool we use, recalled below, is Kac's numerical classi�cation conjugacy

classes of �nite order inner automorphisms of a simple Lie algebra, or equivalently

conjugacy classes of �nite order elements of Gad when G is simple. Let σ ∈ Gad

be an inner automorphism G of order m. Let E/F be the degree m extension with

E = k((u)), um = t. Let ν ∈ Γ := Gal(E/F ) be a choice of generator and ζ a

primitive mth root of unity such that ν(u)/u = ζ. Put OE = k[[u]] so Γ preserves

OE.

Theorem 3.7: [Kac90, 8.1] and [OV90, 4.7.8] Suppose G is simple of rank d. Let

H ⊆ Gadbe a maximal torus containing σ, h = LieH and B ⊆ Gad a Borel subgroup

such that σ = exp(λ) for some λ ∈ A(Gad, B,H). Write

θ = a1α1 + · · ·+ adαd
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where ai ≥ 0 and unique with respect to this property. Then we have the following:

1. There exists a unique sequence of non-negative relatively prime integers (s0, · · · , sn),

called the Kac labels of σ where each si labels ω∨i ∈ Iaff , such that

s0 + s1a1 + · · ·+ sdad = m

and

mλ = s1ω
∨
1 + · · ·+ sdω

∨
d .

In particular, for all i, X ∈ gαi
, the action of σ on X is given by

ad(σ).x = ζsx.

2. Conjugacy classes of �nite order elements of Gad are classi�ed by the sequences

of integers s0, · · · , sd as above up to the permutation of π1(Gad) induced by the action

on Iaff .

We can use 3.7 to give the explicit isomorphism (ResEFG ×k E)σ×ν
−1 ≊ GF

promised in 3.5 for a connected reductive G. Let us begin with the case when G

is simple. Recall that for a maximal torus H of G, the exponential map induces a

natural identi�cation of center of G with P/X∗(T ). So in particular if G is adjoint

type, every coweight is a cocharacter.

For a k-algebra R, de�ne gR = g⊗k R.

Lemma 3.6: Let G be simple and σ = exp(λ) ∈ Gad be an order m inner auto-

morphism of the form described in 3.7 together with the choice of maximal torus

H and Borel subgroup B. De�ne the loop umλ ∈ Had(E) by considering mλ =

s1ω
∨
1 + · · · + snω

∨
n as an element of X∗(Tad) = Hom(Gm, Had) and u ∈ Gm(OE)

and de�ning

umλ := (mλ)(u).

Then the morphism of group schemes over E given by Ad(umλ) : GE → GE induces
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an isomorphism

GF = ResE/F (G×k E)1×ν
−1 Ad(umλ)

→ (G×k E)σ×ν
−1

.

Proof: The �rst equality is from Galois descent. Both sides are connected because

they are isomorphic a posteriori by Steinberg's theorem [Ste65, 1.9] that H1(F,G) =

0. Therefore it su�ces to check ad(umλ) : gE → gE restricts to a bijection of the

respective Lie algebras. The remainder of the following computation is similar to

[Kac90, 8.5]. Decompose

g = ⊕α∈Ψgα

into roots spaces relative to h. By the description of the action of σ on gα in 3.7, the

eigenspace decomposition g = ⊕i∈Z/mZgi for ad(σ) is compatible with the root space

decomposition in the sense that

gi = ⊕α∈Ψ:⟨mλ,α⟩=igα.

Decompose E = ⊕i∈Z/mZu
iF as an F -vector space spanned by 1, u, u2, · · · . By in-

spection of the de�nition of the root subgroups of GE, the action of ad(umλ) on

gE = ⊕i∈Z/mZg⊗ uiF restricts to an isomorphism

gα ⊗ ui ≊→ gα ⊗ ui+⟨mλ,α⟩

X ⊗ ui 7→ X ⊗ ui+⟨mλ,α⟩.

Since ν−1(u)/u = ζ−1,

LieF (ResE/F (G×k E)1×ν
−1

) = (g⊗k E)ad(σ⊗ν
−1) = ⊕i∈Z/mZgi ⊗ uiF.

Putting the above two together, it follows that ad(umλ) restricts to an isomorphism

LieFGF = g⊗ F
ad(umλ)→ ⊕i∈Z/mZgi ⊗ uiF = LieF (ResE/F (G×k E)1×ν

−1

).
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The result follows. ■

We extend the above lemma to the case when G is connected reductive below.

Remark that if G′ =
∏

i Gi is a decomposition of the derived subgroup into simple

factors, there is an induced decomposition of the adjoint group Gad =
∏

Gi,ad as the

product of the adjoint groups of each simple factor.

Lemma 3.7: Let G be connected reductive and G′ =
∏

i Gi be a decomposition of the

derived subgroup into simple factors. Let σ ∈ Gad with σ =
∏

σi and σi ∈ Gi,ad acting

only on Gi. Suppose for each i, σi = exp(λi) for λi ∈ hi in the from described in 3.7

together with the choice of a maximal torus Hi and Borel subgroup Bi containing Hi

in Gi,ad. Then the loop x :=
∏

umλi ∈
∏

Hi(E) where each umλi is as de�ned in 3.6

as the property that Ad(x) : GE → GE induces an isomorphism

GF = (G×k E)1×ν
−1 ≊ (G×k E)σ×ν

−1

.

Proof: Both sides are connected because H1(F,G) = 0, so it su�ces to show that

the adjoint action on the Lie algebras over F is an isomorphism. Let H = Z(G)0 be

the connected component of the center. Then we have g = h⊕
⊕

giand thus

gE = hE
⊕

gi,E

where ad(x) acts by 1 ⊗ ν−1 on hE and by ad(umλi) separately on each factor gi,E.

We thus have

g
ad(σ×ν−1)
E = hF ⊕

⊕
g
ad(σ×ν−1)
i,E .

Applying 3.6 to each simple factor gi gives that ad(x) induces an isomorphism gi,F ≊

g
ad(σ×ν−1)
i,E separately on each factor. The result follows. ■

Our study uses some results on lifting Weyl group elements and their relation to

Kac labels. Namely given w ∈ W , a choice of a �nite order lift σ ∈ NG(T ) gives rise

to Kac labels determining the conjugacy class of σad ∈ Gad by 3.7. This operation is

independent of conjugacy class of w for an elliptic w, up to π1(Gad):



101

Theorem 3.8: [AHN20, 1.1.3 and 6.8] Suppose G is semisimple and w ∈ W =

W (G, T ) is elliptic. Then:

1. Any two lifts of w to NGad
(Tad) are conjugate in Gad. Consequently there is

a well-de�ned association from elliptic conjugacy classes of W with Kac labels of Iaff

given as in 3.7 by taking the Kac co-ordinates of each simple factor of the conjugacy

class of a lift.

2. If a given lift σ ∈ Gad of w is of the form exp(mλ) for mλ ∈ A(Gad, B,H)

for maximal torus H ⊆ Gad (not necessarily equal to T ) and a choice of Borel B

containing H as in 3.7, then mλ ∈ Pad, as an element of the coweight lattice of

Gad relative to Had, is invariant under the action of π1(Gad). Therefore there is a

well-de�ned Kac labeling of [w].

This allows us to de�ne a special kind of conjugacy class ofW that is an important

special case of later study:

De�nition 3.7: Suppose G is semisimple, T ⊆ G a maximal torus, and W =

W (G, T ).

1. A �nite order element σ ∈ Gad is homogeneous if the Kac labels of σ from

3.7 have value ̸= 0 on every hyperspecial vertex of Iaff . An elliptic element w ∈ W is

de�ned to be homogeneous i� any lift is. An elliptic class if homogeneous i� any lift

is. This is well-de�ned by 3.8.

2. Suppose c ∈ [W ] is not necessarily elliptic. By the classi�cation 3.6 of [W ] by

parabolic induction, there exists a choice of simple re�ections S and J ⊆ S such that

w ∈ WJ is elliptic as an element of WJ . De�ne the Kac labels of c to be the Kac

labels on the a�ne Dynkin diagram IJ,aff of WJ (not of Iaff) of c as an elliptic class

of [WJ ]. Such an operation is also well-de�ned by [AHN20, 8.3].

3. A (not necessarily elliptic) element w ∈ W homogeneous if for any choice

of simple re�ections S ⊆ W and J ⊆ S such that w ∈ WJ is elliptic for WJ , w is

homogeneous as an element of WJ . A class c ∈ [W ] is homogeneous if any lift is.

Example 3.4: Let G be simple and (s0, · · · , sd) be the Kac labels of σ ∈ Gad as in

3.7. Recall s0 is the label of the a�ne vertex, so if σ is homogeneous, then s0 ̸= 0.
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The converse is usually not true as there are usually more hyperspecial vertices than

the a�ne vertex.

The principal Levi, or rather its adjoint group, plays a role in visualizing the Kac

labels of a not necessarily elliptic class c ∈ W , consistent with the above de�nition.

It is as follows. Let G be semisimple with maximal torus T and W = W (G, T ). Let

c ∈ [W ] and w ∈ c. Let M := Mw = ZG((T
w,0)) be the principal Levi, which contains

all lifts of w. Let σ ∈M be an arbitrary lift. Then σad ∈Mad is elliptic for its action

on Tad in the sense that the �xed points are �nite since Tw,0 ⊆ Z(M). Then the Kac

labels of c is the Kac label of σad in Mad and c is homogeneous i� σad is.

Some numerical examples are collected below :

1. For any Weyl group W , the Coxeter class cox ∈ [W ], de�ned as the conjugacy

class consisting of the products of any chosen set of simple re�ections in any

order, is elliptic. The Kac labels of cox are si = 1 for any vertex of Iaff , as shown

in computations of the various cases for classical groups in [RLYG12] and for

all of the exceptional groups in [AHN20, sec. 9]. Hence cox is homogeneous.

2. When W is type A, cox is the only elliptic class, e.g., [AHN20, sec. 6]. Since

every element of W is elliptic for some parabolic subgroup and every parabolic

subgroup of a type A group is also type A, if w ∈ W is contained in any

parabolic subgroup of type A, then w is automatically homogeneous.

3. There exists many non-Coxeter homogeneous classes, even if we require fur-

thermore them to be elliptic. But the homogeneous conjugacy classes occupy a

signi�cant portion of all conjugacy classes. For example, according to the com-

puter computations of Kac co-ordinates for the exceptional groups in [AHN20,

sec. 9], as tabulated in the table below:

Remark 3.4: An interesting coincidence is the following: the number of elliptic ho-

mogeneous conjugacy classes in type E agree with the number of `primitive' classes in

the study of the twisted FKS isomorphism in [KP85, sec. 10]. Primitive classes are
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Group G2 F4 E6 E7 E8

Homogeneous Elliptic classes 2 5 3 5 9
Elliptic Classes 3 9 5 12 30

Table 3.1: Number of Homogeneous Elliptic Conjugacy Classes in the Exceptional
Types

of those w such that det(1−w) = detA where A is the Cartan matrix of W and det

is taken for the action of w on had. The author wonders whether primitive conjugacy

classes are the same as elliptic homogeneous classes, but has not investigated this

question further.

Let us prepare with some discussion of graded structures on Lie algebras. For Lie

algebra l and a set I, an I-graded structure on l is a vector space decomposition

l = ⊕i∈I li where li ⊆ l are subspaces. A graded subalgebra m ⊆ l is a subalgebra

of the form m = ⊕i∈Imi where each mi ⊆ li is a subspace.

De�nition 3.8: For a Z-grading on l and i0 ∈ Z, set

l>i0 := ⊕i>i0li

l<i0 := ⊕i<i0li

and similarly so for l≥i0, resp l≤i0, where the >, resp. <, is replaced with ≥, resp. ≤,

in the above sum.

Remark 3.5: Usually I is required to have a commutative sum structure and the

grading of l is required to be compatible with the sum on I in the sense that [li, lj] ⊆

li+j. But we do not impose it on I here.

For a Lie algebra p over k and a power series �eld M = k((s)), it is not convenient

to put a graded structure on the (formal) loop algebra pM = g ⊗M according to

powers to s because the inclusion
⊕

i p⊗ si ⊆ pM = p⊗ k((s)) is strict. But the sub-

algebra
⊕

i p⊗ si, called the polynomial loop algebra, is dense in pE, and we can
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directly de�ne the grading on it. Indeed, polynomial loop algebras are a replacement

for formal loop algebras in the representation theory literature [Lep85, KP85, BK04].

De�nition 3.9: For an indeterminate s over k, denote the polynomial loop alge-

bra by lk[s±1] with Z-grading de�ned by

lk[s±1],i = l⊗ si

and Lie bracket induced by the bracket in lk((s)), i.e., [X ⊗ f, Y ⊗ g] = [X, Y ]⊗ fg.

The previous computations in 3.7 on formal loop algebras also hold for polynomial

loop algebras as below. Suppose G, σ is as in 3.7.

1. The Galois group Γ preserves k[u±1] ⊆ E. The �xed point algebra g
ad(σ×ν−1)

k[u±1] is⊕
i gi ⊗ ui.

2. For any Z-graded subalgebra p ⊆ gk[t±1], the image of p under the map ad(umλ)

is a Z-graded subalgebra of gE. But ad(umλ) does not preserve the grading, for

example the image of the zero-degree part g⊗ t0 can have components in many

di�erent degrees.

3. The subalgebra gk[t] ⊆ gk[u±1] has closure gOF
in gF where gOF

= LieL+G is the

Lie algebra positive loop group of the parahoric group scheme GOF
associated

to the hyperspecial parahoric subgroup G(OF ) ⊆ G(F ). We will use the subal-

gebra gk[t] to compute the closure of maximal tori T ⊆ GF in GOF
.

De�nition 3.10: Let H ⊆ G be a maximal torus and B ⊆ G a Borel subgroup, with

Lie algebras h and b, respectively. The (polynomial) standard Iwahori subalge-

bra of gk[t±1]is the Z graded subalgebra

I(gk[u±1]) := b⊗ t0 ⊕
⊕
i>0

g⊗ ti

with grading de�ned by

I(gk[u±1])i = 0 for i < 0
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I(gk[u±1])0 = b⊗ t0

I(gk[u±1])i = g⊗ ti for i > 0.

Remark 3.6: The closure of I(gRF
) in gF is LieL+I where I is the smooth integral

model of GF corresponding to the standard Iwahori subgroup of G(F ). We have that

LieL+I = b⊗ t0 ⊕
∏
i>0

g⊗ ti

is the preimage of b under the reduction map gOF
→ g given by t 7→ 0,since the

corresponding statement at the level of groups is true for L+I at the level of groups

[Zhu17, ex 1.2.9]. Therefore

I(gRF
) = LieL+I ∩ gk[u±1]

and it I(gk[u±1]) is also the preimage of b under the reduction map gk[u] → g.

Suppose G is simple. Suppose H ⊆ G is a maximal torus and B ⊆ G is a Borel

subgroup containing G. Let

g = g− ⊕ h⊕ g+

be the induced Cartan decomposition, where h = LieH and b := h⊕ g+ = LieB. So

g+,resp. g−, is the sum of the root spaces of the positive roots, resp. negative roots

and h = g0 is the weight space for the zero vector 0 ∈ h∨. Let Ψ = Ψ(G,H) be the

root system of G relative to H.

De�nition 3.11: Suppose G is simple. Let σ be a �nite order inner automorphism of

G of the form exp(λ) of 3.7 together with maximal torus H ⊆ Gad and Borel subgroup

B containing H. The re�ned eigenspace grading on g to be the �nitely supported

Z-grading de�ned by

gi = ⊕α∈Ψ∪{0}:⟨α,mλ⟩=igα.

It re�nes the eigenspace grading of g = ⊕i∈Z/mZgi in the sense that gi ⊆ gi.
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The subalgebras g− and g+ are graded subalgebra for both gradings. Furthermore,

since mλ is dominant, i.e., a positive combination of fundamental coweights, the

re�ned eigenspace grading on g+, resp. g−, is supported in positive, resp. negative

degrees. We have the following about the relationship between the eigenspace grading

on g, g+ and g−:

g<0 = g−<0

g0 = g−0 ⊕ h⊕ g+0

g>0 = g+>0.

The motivation for the notion of a homogeneous conjugacy class comes from

the following more detailed relationship between the eigenspace grading and re�ned

eigenspace grading, which depends on the value of Kac label s0 of the a�ne vertex.

Lemma 3.8: Suppose G is simple with Lie algebra g and σ ∈ Gad, λ ∈ A be of the

form in 3.7 together with the choice of maximal torus H ⊆ Gad containing σ and

Borel subgroup B containing H. Then

gi = g−i−m ⊕ g+i for i ̸= 0

g0 = g−−m ⊕ g0 ⊕ g+m = g−−m ⊕ g−0 ⊕ h⊕ g+0 ⊕ g+m

where g−−m and g+m are both nontrivial i� s0 = 0.

Proof: Let Ψ = Ψ+ ⊔ Ψ− be the induced decomposition of the roots of (g, h) into

the positive roots Ψ+ and negative roots Ψ−. Let α1, · · · , αd be the set of simple

roots and θ be the highest root. Since mλ is dominant, for every α ∈ Ψ, ⟨mλ,α⟩ ≥ 0

i� α ∈ Ψ+ and ⟨mλ,α⟩ ≤ 0 i� α ∈ Ψ− and ⟨mλ,α⟩ attains its maximum, resp.

minimum, value on θ, resp. −θ. By the relations

mλ = s1ω
∨
1 + · · ·+ sdω

∨
d
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θ = a1α1 + · · ·+ sdαd

s0 + s1a1 + · · · sdad = m where si ≥ 0

we have

⟨mλ, θ⟩ = s1a1 + · · ·+ sdad ≤ m

with equality holding i� the Kac co-ordinate s0 of σ at the a�ne vertex equals 0.

This occurs i� σ is homogeneous. Therefore for all α ∈ Ψ,

−m ≤ ⟨mλ,α⟩ ≤ m

⟨mλ,Ψ+⟩ ≥ 0

⟨mλ,Ψ−⟩ ≤ 0.

The result follows. ■

The following computes the image of the standard Iwahori subalgebra of gk[t±1]

and the subalgebra gk[t] under the automorphisms umλ of gE the form described in

3.7.

Theorem 3.9: Suppose G is simple with Lie algebra g and σ ∈ Gad, λ ∈ A be of

the form in 3.7 together with the choice of maximal torus H ⊆ Gad containing σ and

Borel subgroup B containing H. Let g = ⊕i∈Z/mZgi be the eigenspace grading for σ

and g = ⊕i∈Zgi be the re�ned eigenspace grading for σ. We have:

1. The subalgebra I ′ := ad(umλ)(I(gF )) of gad(σ×ν
−1)

E with Z-grading induced by

the grading on gE has graded components described as follows:

I ′i = 0 for i < 0

I ′0 = (h⊕ g+0 ⊕ g−−m)⊗ u0 ⊆ g0 ⊗ u0

I ′i = gi ⊗ ui for i > 0.

2. The image g′k[t] := ad(umλ)(gk[t]) of gad(σ×ν
−1)

E with Z-grading induced by the
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grading on gE is described as follows:

g′k[t],i = g−i ⊗ ui for i < 0

g′k[t],0 = (g0 ⊕ g−−m)⊗ u0

g′k[t],i = gi ⊗ ui for i > 0.

Proof: Apply the computation of the map ad(umλ) in the proof of 3.6 and the

relationship between the eigenspace grading and re�ned eigenspace grading 3.8. We

obtain that for each i, ad(umλ)(g⊗ ui) is supported in degrees i−m, · · · , i+m and

ad(umλ)(h⊗ ui) = h⊗ ui

ad(umλ)(g+ ⊗ ui) =
m⊕
j=0

g+j ⊗ ui+j

ad(umλ)(g− ⊗ ui) =
m⊕
j=0

g−j ⊗ ui−j

Applying these observations allows us to compute I ′ and g′OF
directly as follows.

1. Since ad(umλ)(I(gF )0) = ad(umλ)(g≥0 ⊗ u0) is supported in degrees 0, · · · ,m

and for i > 0, ad(umλ)(I(gF )im) is supported in degrees i ≥ 0, we have

I ′i = 0 for i < 0.

The degree 0 part of I ′ must lie in the image of the degrees 0,m part of I(gF ) since

for i ≥ 2 , the support of ad(umλ)(I(gF )im) lies in degrees ≥ 1. We �nd

I ′0 = ad(umλ)(I(gF )0 ⊗ u0 ⊕ g−−m ⊗ um)

= (h⊕ g+0 ⊕ g−−m)⊗ u0 ⊆ g0 ⊗ u0

as desired. By a similar reasoning, for i ≥ 1, the degree im part of I ′ lies in the image
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of the degrees (i− 1)m, im, (i+ 1)m part of I(gF ). Hence for such i,

I ′im = ad(umλ)(g+m ⊗ u(i−1)m ⊕ g0 ⊗ uim ⊕ g−−m ⊗ u(i+1)m)

= g0 ⊗ uim.

Now let j = 1, · · · ,m − 1 and i ≥ 0. The degree im + j part of I ′ lies in the image

of the degree im, (i+ 1)m part of I(gF ). For such i, j

I ′im+j = ad(umλ)(g+j ⊗ uim ⊕ g−j−m ⊗ u(i+1)m)

= gj ⊗ uim+j.

This completes the description for all the graded pieces of I ′.

2. The computation for g′k[t] is similar. For i < 0, g′k[t],i must lie in the image

under ad(umλ) of gk[t],0, which gives us for such i,

g′k[t],i = g−i ⊗ ui

as desired. Next, g′k[t],0 must lie in the image of the degree 0,m part of gk[t], which

gives us

gk[t],0 = ad(umλ)(g0 ⊗ u0 ⊕ g−−m ⊗ u−1) = (g0 ⊕ g−−m)⊗ u0

as desired. Finally, the case for g′k[t],i for i > 0 is identical to that of I ′i because for

such i, gk[t],i = I(gF )i. The result follows. ■

We now state the main result of this section.

Theorem 3.10: Suppose G is simply connected (not necessarily simple). Let c ∈ [W ]

be a conjugacy class, w ∈ c a representative, and M = ZG(T
w,0) the principal Levi.

Then for each order m lift σ of w in Mad, there exists a torus T of type c in GF ,

and a choice of maximal torus H ⊆M (di�erent from T ) and Borel subgroup B ⊆M

containing H, such that
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1. For any standard Parahoric group scheme P of MF , the Zariski closure of T in

P is an intermediate integral model T # containing the connected Néron model T ♭,0.

2. Furthermore, there exists a standard parahoric group scheme P(σ,M) of MF

such that the closure of T in P(σ,M) is the full Néron model.

3. If furthermore c is homogeneous, then σ can be chosen so that P(σ,M) =

MOF
⊆ GOF

is the canonical standard hyperspecial parahoric group scheme of MF .

De�nition 3.12: The maximal torus T associated to the lift σ of w ∈ W is called a

principal maximal torus of type [w] (it is not unique with respect to [w] or even

w, but it is uniquely de�ned by σ) and the parahoric group scheme P(σ,M) is called

the principal parahoric associated to σ, or a principal parahoric associated to [w] or

w. Put P (σ,M) = P(σ,M) and call it the principal parahoric subgroup.

The proof occupies the remainder of this subsection. We �rst quickly de�ne the

principal maximal torus and the principal parahoric and then show that they satisfy

the required properties.

For the remainder of this section, suppose G is simply connected, let c ∈ W , w ∈ c,

M = Mw be the principal Levi, and σ ∈ Mad be a �nite order lift of order m. Let

H ⊆ Gad be a maximal torus and B ⊆ Gad be a Borel subgroup containing H such

that σ ∈ H is expλ for some λ ∈ A(Gad, B,H), the fundamental alcove. Let E/F be

the degree m extension with uniformizer u ∈ E with um = t and ν ∈ Γ := Gal(E/F )

a chosen generator and ζ a primitive mth root of unity such that ν(u)/u = ζ.

A principal maximal torus T of type c together with its embedding in MF is

de�ned to be

T := ResE/F (T ×k E)w×ν
−1

↪→ ResE/F (M ×k E)σ×ν
−1 Ad(u−mλ)→ MF

where the element umλ ∈ ME is as in 3.7, where it was shown that Ad(u−mλ) is an

isomorphism. This is identical to the step of the proof 3.5 mapping a conjugacy class

of W to conjugacy classes of maximal tori in a reductive group, except now the map

Ad(u−mλ) is given explicitly.
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The principal parahoric group scheme is de�ned as follows. According to [Con14,

6.5.2.IV], the derived group of a Levi subgroup of a complex simply connected group

is simply connected. Therefore M has simply connected derived subgroup. There-

fore by 3.1 P := ResOE/OF
(M × OE)

σ×ν−1
has connected OF -points and is a para-

horic group scheme of ResE/F (M ×k E)σ×ν
−1
. Since Ad(u−mλ) is an isomorphism,

Ad(u−mλ)(P(OE)) ⊆ M(F ) is a parahoric subgroup of M(F ). De�ne the principal

parahoric group scheme P(σ,M) to be the parahoric group scheme corresponding to

Ad(u−mλ)(P(OE)). By the extension principle, Ad(u−mλ) extends to a unique iso-

morphism Ad(u−mλ) : P → P(σ,M) over OF . When c is homogeneous, i.e., if c ∈ W

is a homogeneous class and σ is an arbitrary lift of any w ∈ c, we show in 3.11 below

that property (2) of 3.10 will still hold if we rede�ne P(c,M) := MOF
.

It remains to show that for these de�nitions of T and P (σ,M), the 3 conditions

of 3.10 are satis�ed. This is done in the following 3 lemmas. Let m = LieM and

t = LieT .

To set notation, let t = ⊕i∈Z/mZti be the eigenspace decomposition for ad(w)

acting on t. Let Mad =
∏

Mi be a decomposition into simple components Mi and

mi = LieMi. We have

m = t0
⊕

mi

and write σ =
∏

σi where σi ∈ Mi. Then each ad(σi) acts separately on mi and

trivially on t0. The triple (Mad, T, B) induces by intersection triples (Mi, Ti, Bi) where

Ti ⊆ Mi is a maximal torus and Ti ⊆ Bi ⊆ Mi is a Borel subgroup. Let λ =
∏

λi

where λi ∈ A(Mi, Ti, Bi). Then ad(u−mλ) = ⊕ad(u−mλi).

Lemma 3.9: For the standard Parahoric group scheme P of MF , the Zariski closure

of T in P is an intermediate integral model T # containing the connected Néron model

T ♭,0.

Proof: Let I(MF ) be the standard Iwahori subgroup of MF relative to T,B. Since

it is contained in every standard parahoric subgroup of MF , it su�ces to check

T ♭,0(OF ) = L+T ♭,0(k) ⊆ I(MF ) = LMF (k). Since L+T ♭,0 is connected by prop-

erties of the Kottwitz homomorphism, it su�ces to check the containment on Lie
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algebras.

We have that LieL+T ♭,0 is the image of LieL+T
ad(w×ν−1)
OE

under ad(u−mλ) in mF .

Since tad(w×ν
−1)

k[u] is dense in LieL+T ♭,0, it su�ces to show ad(u−mλ) sends tad(w×ν
−1)

k[u] to

the polynomial standard Iwahori subalgebra I(mF ) of mF . We have a decomposition

I(mF ) = t0,k[t]
⊕

I(mi,F ).

The map ad(u−mλ) acts trivially on t0,k[t], which already lies in I(mF ). It then su�ces

to show that each ad(u−mλi) sends t
ad(w×ν−1)
i,k[t] to I(mi,F ), or equivalently ad(umλi)

sends I(mi,F ) to a subalgebra containing t
ad(w×ν−1)
i,k[t] .

Now �x i and for convenience put p = mi, l = ti. We have as in the proof of 3.7,

l
ad(w×ν−1)
k[t] =

⊕
i≥0

li ⊗ ui

while for j > 0,

ad(umλi)(I(mi,F ))j = pj ⊗ ui.

Hence for j > 0, lad(w×ν
−1)

k[t],j ⊆ ad(umλi)(I(mi,F ))j. It remains to show the same for the

case j = 0. This follows from the fact that

l0 = 0

because w is elliptic when considered as an element ofW (Mad, Tad) ⊆ W , as explained

in the classi�cation 3.6 of conjugacy classes of W by parabolic induction.

The result follows. ■

Lemma 3.10: The closure of T in P(σ,M) is the full Néron model T ♭ of T , i.e., by

the closure principle it su�ces to show T ♭(OF ) = P (σ,M) ∩ T (F ).

Proof: By the construction of the Néron model, we have T ♭ is the image under

Ad(u−mλ) of

ResOE/OF
(T ×k OE)

w×ν−1

.
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On the other hand, by de�nition P(σ,M) is the image of Ad(u−mλ) of

ResOE/OF
(M ×k OE)

w×ν−1

.

Hence T ♭(OF ) ⊆ P (σ,M). We have that T ♭(OF ) ⊆ T (F ) is automatic. The fact

that the containment T ♭(OF ) ⊆ P (σ,M)∩T (F ) is actually equality follows from the

fact that P (σ,M) bounded in M(F ) while T ♭(OF ) is the maximal bounded subgroup

of T (F ). ■

Lemma 3.11: If σ ∈Mad is homogeneous, we have

P (σ,M) ⊆M(OF )

and we still have T ♭(OF ) = M(OF ) ∩ T (F ). Consequently by the closure principal,

P(σ,M) can be replaced with MOF
and 3.9 will still hold.

Proof: First we claim that showing P (σ,M) ⊆ M(OF ) is su�cient. We have al-

ready shown in 3.10 T ♭(OF ) = P (σ,M) ∩ T (F ), hence T ♭(OF ) ⊆ M(OF ) ∩ T (F ).

The containment is then an equality because M(OF ) is also bounded in M(F ) while

T ♭(OF ) is the maximal bounded subgroup of T (F ).

To show L+P(σ,M)(k) = P (σ,M) ⊆ M(OF ) = L+M(k), it su�ces to check the

containment on Lie algebras LieL+P(σ,M) ⊆ LieL+M since L+P(σ,M) is connected.

We have that LieL+P(σ,M) is the image under ad(u−mλ) of LieL+Mσ×ν−1

OE
. Since

m
ad(σ×ν−1)
k[u] is dense in LieL+Mσ×ν−1

OE
, it su�ces to show that ad(u−mλ)(m

ad(σ×ν−1)
k[u] ) ⊆

mk[t], or equivalently m
ad(σ×ν−1)
k[u] ⊆ ad(umλ)(mk[t]). We have

mk[t] = t0,k[t]
⊕

mi,k[t]

mσ×ν−1

k[u] = t
ad(1×ν−1)

0,k[u]

⊕
m

ad(σi×ν−1)
i,k[u] = t0,k[t]

⊕
m

ad(σi×ν−1)
i,k[u] .

Since ad(umλ) acts trivially on t0,k[t], it su�ces to show thatmad(σi×ν−1)
i,k[u] ⊆ ad(umλi)(mi,k[t]).

Fix i and for convenience put p = mi for the simple factor and µ = λi. Let
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p = ⊕i∈Z/mZpi be the eigenspace decomposition of p for σ. We have

m
ad(σi×ν−1)
i,k[u] =

⊕
i≥0

pi ⊗ ui.

By the computation for the case of a simple Lie algebra 3.9, for i > 0

ad(umκ)(pk[t])i =
⊕
i≥0

pi ⊗ ui.

Therefore it su�ces to show that p0 ⊗ u0 ⊆ ad(umµ)(pk[t])0. We have by 3.9,

ad(umµ)(pk[t])0 = (p0 ⊕ p−−m)⊗ u0.

On the other hand, by the relations between the eigenspace and re�ned eigenspace

gradings 3.8,

p0 ⊗ u0 = (p+m ⊕ p0 ⊕ p−−m)⊗ u0.

Here is the crucial part where the homogeneity of σ is used. By de�nition σ =
∏

σi is

homogeneous i� each σi is homogeneous. Let θ be the highest root of Ψ(Mad, Bi, Ti).

Homogeneity of σi means precisely in that the Kac label of σi has s0 = 0. From the

proof of 3.8, and it holds i� the inequality ⟨mλ, θ⟩ ≤ m is strict. Since |⟨mλ,α⟩| for

α ∈ Ψ achieves its maximum at α = θ, it follows that p+m = p−−m = 0. We conclude

that p0 ⊗ u0 = ad(umµ)(pk[t])0.

The result follows. ■

Remark 3.7: In the proof of 3.11, we have shown that for i ≥ 0

ad(umµ)(pk[t])i = (p
ad(κ×ν−1)
k[u] )i.

But it is not necessarily the case that ad(umµ)(pk[t]) = p
ad(µ×ν−1)
k[u] because the right

hand side has no negative graded components, while by the computation 3.9, the left

hand side has for i < 0:

ad(umκ)(pk[t])i = p−i ⊗ ui.
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3.3 The Geometric Twisted FKS Isomorphism

For this entire section, let G be a simple and simply connected algebraic group over

k = C. Sometimes we may restrict further to the case when G is type ADE. Fix a

maximal torus T ⊆ G and put the Weyl group W = W (G, T ). Put F = k((t)) and

OF = k[[t]]. Put Y = X∗(T ) and X = X∗(T ).

Let B be the normalized invariant bilinear form on g. The restriction of B to

Y ⊆ t = Y ⊗Z C has the property that the length of a long coroot is
√
2. Since

G is semisimple, B is nondegenerate. When G is simply-laced, i.e., type ADE, i.e.,

every coroot is the same length, they are all long by convention. Since G is simply

connected, Y equals the coroot lattice as G. Therefore when G is type ADE, B is

even on Y .

3.3.1 A�ne Lie Algebras and Representations, A�ne Borel-

Weil Theorem, Statement of Results

De�nition 3.13: The (formal) a�ne Lie algebra ĝF is the one-dimensional cen-

tral extension

0→ CK → ĝF → gF → 0

where K is a �xed choice of a nonzero central element and the commutator is

(X ⊗ f, Y ⊗ g) 7→ B(X, Y )ResfdgK.

The (polynomial) a�ne Lie algebra is the restriction ˆgk[t±1] of the central extension

to the polynomial loop group gk[t±1].

By the formula for the commutator, the central extension ĝF is split over gOF
.

We have that

gF = lim
→i∈Z≤0

gtik[[t]] = lim
→i∈Z≤0

lim
←j∈N

gtik[t]/(tj)

is an ind-pro vector space where the Lie bracket gF×gF → gF is an ind-pro morphism

of vector spaces. Taking pullback, the same is true for ĝF .
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De�nition 3.14: Put R = k((t)) or R = k[t±1]. A representation of ĝR is a rep-

resentation on a countable dimensional vector space V such that there exists an ind-

structure V =
⋃

i∈N Vi where

1. Vi is �nite dimensional and stable under ĝR.

2. For each i ∈ N and j ∈ Z≤0, the vector space map ˆgtjR → End(Vi) factors

through gtjR/(tl) → End(Vi) for some l ∈ N.

The restriction of a representation of ĝF to ĝk[t±1] gives a representation V = ∪Vi

of ĝk[t±1]. Conversely every representation V =
⋃

i∈N Vi of ˆgk[t±1] extends uniquely to

a representation of ĝF , using the fact that gtjR/(tl) is the same regardless if R = k[t±1]

or R = F .

Remark 3.8: The representation theoretic literature uses ˆgk[t±1] in studying their

representations, while the Lie algebras of the algebro-geometric objects we study are

ĝF . Since they have the same representations, we no longer take the care to separate

them in citations of the literature.

De�nition 3.15: For l ∈ C, the level l vacuum representation of ĝF is

Vl(ĝF ) = IndĝF
gOF
⊕CKC

where K acts by multiplication by l and gOF
acts trivially. When l ∈ Z+, Vl( ˆgF )

has a unique irreducible quotient [Zhu09, 0.1.1] that we call the level l integrable

representation and denote by V l(ĝF ).

Suppose e ∈ GrG(k) be any point, usually taken to be the point corresponding to

the identity coset of L+G. The Picard groupoid Pice(GrG) of line bundles rigidi�ed

at e is de�ned to be the Picard groupoid of pairs (L, φ) where L is a line bundle on

GrG and φ : e∗L ≊ k is a trivialization at e. It is known that since G is simple and

simply connected, Pice(GrG) ≊ Z is discreet [Zhu09, 2.4.2].

De�nition 3.16: The level 1 line bundle LG or O(1) on GrG is the line bundle

corresponding to the ample generator of Pice(GrG). For any morphism of ind schemes
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S → GrG, denote the restriction

LS := LG|S

line bundle on S. Now recall that LG acts on GrG, induced from the left action of

LG on itself.

As in [Zhu17, 2.5.1], there is a well-de�ned central extension, called the (formal)

Kac-Moody central extension

1→ Gm → L̂G→ LG→ 1

where for every k-algebra R,

L̂G(R) ˆ= {(g, φ) : g ∈ LG(R) and φ : g∗LG ≊ LG}

Then L̂G acts on LG and also on GrG by projection to LG, such that LG is an

equivariant line bundle on GrG for L̂G.

Theorem 3.11: [Zhu17, 2.5.2] and [Kum02, ch. 8] We have

LieL̂G = ĝF .

Therefore the (topological) dual global sections Γ(GrG,L⊗kG )∨ is a representation

of ĝF for every k ∈ Z. We have the following starting point: the a�ne Borel-

Weil theorem, which connects the problem of the (twisted) FKS isomorphism with

algebraic geometry of LG on GrG:

Theorem 3.12: [Zhu17, 2.5.5] and [Kum02, 8.3.12]: For every k ∈ Z>0 there is an

isomorphism of L̂G-modules

Γ(GrG,L⊗kG )∨ ≊ V k(ĝF ).

Remark 3.9: The original formulation in [Kum02, 8.3.12] is a priori di�erent from
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the one above, given in terms of the theory of Kac-Moody groups, more closely related

to ˆgk[t±1] than ĝF , and their �ag varieties. However, the two notions of �ag varieties

for a�ne Kac-Moody groups and a�ne �ag varieties for formal loop groups are shown

to coincide in [PR08].

Let us now formally state our results. The original geometric FKS isomorphism

of [Zhu09, 0.2.2] is that the dual restriction map Γ(GrT ,LT )
∨ → Γ(GrG,LG)

∨ is an

isomorphism. The question asked in [Zhu09, 0.3.3] is whether or not the same is

true when GrT is replaced by an a�ne Springer �ber, something which GrT is one

example of. We do not investigate a�ne Springer �bers, but instead we answer the

question for an alternative subspace that replaces the a�ne Springer �ber. To be

precise, construct subspaces S(σ) ⊆ GrG for each lift σ of an element of a conjugacy

class c ∈ [W ] such that Γ(S(σ),LS(σ))∨ → Γ(GrG,LG)
∨ is an isomorphism.

Let c ∈ [W ], w ∈ c and M = ZG(T
w,0) be the principal Levi, and σ ∈ M a lift

of w that is �nite order with order m. Let T ⊆ GF be the principal representative

maximal torus of type c and P(c,M) the principal parahoric group scheme containing

T ♭ from 3.9. So in particular, we set by de�nition when c is homogeneous 3.7 that

P(c,M) = MOF
. By 3.9 there is a choice of Borel subgroup BM ⊆ M (not to be

confused with the bilinear form B) such that we have that T ♭,0(OF ) ⊆ I(MF , BM)

is the Iwahori subgroup of MF relative to BM . Let I(MF , BM) be the corresponding

Iwahori group scheme of MF . Since

LieL+I(MF , BM) = LieBM ⊗ t0
⊕
i≥1

m⊗ ti ⊆ gOF
,

we have that I(MF , BM) ⊆ G(OF ). Therefore T ♭,0(OF ) ⊆ G(OF ).

De�nition 3.17: For a maximal torus Z ⊆ GF , de�ne Z# to be the closure of Z in

GOF
. So by the closure principle, Z♯ is characterized by the property that

Z♯(OF ) = G(OF ) ∩ Z(F )

and when Z♭,0(OF ) ⊆ G(OF ), for example if Z is a principal maximal torus of type
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c ∈ W , then Z♯ is an intermediate integral model of Z.

By the extension principle for smooth integral models, there is an induced canon-

ical map T ♯ → GOF
over OF . Then the inclusion LT → LG induces an inclusion of

�ag varieties FT ♯ ↪→ GrG as the scheme theoretic image.

De�nition 3.18: For c, w, σ as above, the principal subspace

S(σ) ⊆ GrG

is the image of the orbit

O := LT .L+P(σ,M) ⊆ LG

of LT under the right action of L+P(σ,M) on LG de�ned by the composition of the

inclusions L+P(c,M) ↪→ LM ↪→ LG, i.e., it is the fpqc quotient

S(σ) = [O/(L+G ∩ O)] ⊆ GrG.

Remark 3.10: If c is a homogeneous conjugacy class, then P(σ,M) = MOF
, T ♯ =

T ♭ and

S(σ) = FT ♯ = FT ♭

simpli�es to the image of LT in GrG.

Observe that since T ♭(OF ) = P (σ,M) ∩ T (F ) as in the proof of 3.10, the map

LT → LM induces a natural inclusion FT ♯ ↪→ S(σ). So S(σ) is stable under the left

action of LT . For any subspace stable under the left action of LT , the space of dual

sections of the restriction of LG has an action of the restriction L̂T of L̂G to LT .

This applies to FT ♯ and S(σ).

Our main result of this section is:

Theorem 3.13: Suppose G is not necessarily of type ADE but still simple and simply
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connected. Consider the maps of L̂T modules

Γ(FT ♯ ,LFT ♯
)∨ → Γ(S(σ),LS(σ))∨ → Γ(GrG,LG)

∨.

Then the �rst map is nonzero and the second map is injective.

The proof is given in the next subsection. This gives the geometric twisted FKS

isomorphism, but conditional on the representation-theoretic result of [KP85, 11]:

Corollary 3.1: Using the main theorem [KP85, 11] and the Borel-Weil theorem that

if G is furthermore type ADE then Γ(GrG,LG)
∨ ≊ V 1(ĝF ) is irreducible for L̂T ⊆ L̂G,

we conclude that the map

Γ(S(σ),LS(σ))∨ → Γ(GrG,LG)
∨

is an isomorphism.

Even though we do not give fully geometric proof, this already veri�es that the

principal subspace S(σ) is a correct candidate for a geometric realization of the twisted

FKS isomorphism, where before it was not known what subspaces to consider and it

was only conjectured that an a�ne Springer �ber is another possible candidate. We

give a fully geometric proof when c is a homogeneous conjugacy class in 3.4.

It follows from the following statement that we prove in the next section 3.4 by

deducing from the split case of c = [1], σ = 1 and T = TF by cohomology and base

change and global methods. For µ ∈ Y = Hom(Gm, T ) evaluate µ on F -points and

let sµ be the image in GrG of the element µ(t) ∈ G(F ). Let GrG,µ ⊆ GrG be the

left L+G orbit of sµ ∈ GrG and GrG,µ. Such an orbit closure is called a Schubert

Variety. Then we have by [Zhu09, 2.3.5] that

Γ(GrG,LG)
∨ =

⋃
µ∈Y

Γ(GrG,µ,LGrG,µ
)∨.

We prove in the next section 3.4:
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Theorem 3.14: Suppose G is type ADE. Assume the nontrivial premise that the

map

Γ(FT ♯ ,LFT ♯
)∨ → Γ(GrG,LG)

∨

is injective. (By 3.13 this holds when S(σ) = FT ♯, such as when c is homogeneous).

Then there exists a collection of subspaces FT ♯,µ ⊆ FT ♯ for µ ∈ Y such that for each

µ ∈ Y ,

Γ(FT ♯,µ,LFT ♯,µ
)∨ → Γ(GrG,µ,LGrG,µ

)∨

is an isomorphism and

Γ(FT ♯ ,LFT ♯
)∨ =

⋃
µ∈Y

Γ(FT ♯,µ,LFT ♯,µ
)∨.

We conclude that

Γ(FT ♯ ,LFT ♯
)∨

≊→ Γ(GrG,LG)
∨

is also surjective (i.e., an isomorphism using 3.13) and both maps

Γ(FT ♯ ,LFT ♯
)∨ → Γ(S(σ),LS(σ))∨ → Γ(GrG,LG)

∨

are isomorphisms.

If such a statement is true for all the conjugacy classes c, for some lift σ of some

element w ∈ c and the principal maximal tori T , it will provide two candidate

subspaces for the geometric twisted FKS isomorphism, namely both FT ♯ and S(σ).

The two spaces are the same when c is homogeneous, although from the examples

discussed in 3.2.3, the homogeneous conjugacy classes are a signi�cant number in

type E and are all the classes when w lies in a parabolic subgroup of type A.

We are able to provide an exact numerical condition on the number of torsion

points of π0FT ♯ that would imply Γ(FT ♯ ,LFT ♯
)∨ → Γ(GrG,LG)

∨ is injective, namely:

Theorem 3.15: If π0FT ♯,tor = d(c), where d(c) is the defect of c as de�ned 2.34 (a

quantity depending only on G and c) then Γ(FT ♯ ,LFT ♯
)∨ → Γ(GrG,LG)

∨ is injective.
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This is explained in the next section. If we can �nd w ∈ c and a lift σ of w such

that π0FT ♯,tor = d(c), this would also give a full geometric proof of the geometric

twisted FKS isomorphism without relying on the representation theoretic result of

[KP85, 11]. We leave this as an open problem. Computer assisted computations

have shown it to be true in type D6, D8, but they are omitted from this thesis.

It gives the following more elegant formulation of the geometric FKS isomorphism,

which we presently only know for homogeneous conjugacy classes:

Proposition 3.1: (this is a conjecture we propose, not proven) Suppose G

is simple, simply connected, and simply laced. For an arbitrary conjugacy class of

maximal tori in GF , there exists a representative T such that the inclusion of the

image of LT in GrG induces an isomorphism on global sections of LG.

Remark 3.11: We will show that L̂T is a Heisenberg central extension in the sense

of 2.19. Fix a splitting L+T ♭,0 → L̂T , which exists by 2.7, although we show L̂G

actually splits over L+G and choose a compatible splitting for L+T ♭,0 by restriction

from L+T ♭,0 ↪→ L+G. The principal part of the vacuum space

U = (Γ(GrG,LG)
∨)L

+T ♭,0,Tw,0

determines Γ(GrG,LG)
∨ as a representation of L̂T an a priori is only known to be

representation of the principal �nite Heisenberg group Σ̂ ⊆ L̂T , from our study of

the representation theory of L̂T 2.2.6. However, we �nd furthermore that U also is a

minuscule representation an algebraic group,Mσ. This is a priori consistent with the

remark [KP85, 15.E] which states that U is a trivial or minuscule representation of

the larger group Gσ, when σ is chosen to be some speci�c lift of w. However, the set

of possible dimensions of minuscule representation of Gσ should not be the same as

the set of possible dimensions of minuscule representations of Mσ, and we think Mσ

is the correct group to consider.
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3.3.2 Proof of Main Theorem

Preserve all setups and notation of the previous section.

Let BM ⊆ M be the choice of Borel subgroup containing σ given by 3.7. Extend

BM to a Borel subgroup BG of G. This is not to be confused with the bilinear form B.

For H = M or G, let IH ⊆ H(F ) be the corresponding standard Iwahori subgroup

of H(F ) and IH the corresponding Iwahori group scheme for HF . By a standard

parahoric subgroup, we mean one containing this chosen standard Iwahori subgroup.

Remark that neither BM nor BG necessarily contain T . We have IM = IG ∩M(F ).

The main feature of our proof is to pull back L to the full �ag variety FIG and

consider the preimage of S(c) in FIG .

Let us �rst prove two basic lemmas.

Lemma 3.12: There exist a splitting L+G→ L̂G.

Proof: We have LieL+G = gOF
= g ⊕ gtOF

as Lie algebras where gtOF
is pro-

unipotent. Since G is simply connected, this upgrades to an isomorphism L+G ≊

G × L++G. By the formula 3.7, ĝF is split over gOF
. Since g is simple and gtOF

is

pro-unipotent, we conclude that ˆgOF
≊ C ⊕ g ⊕ gtOF

. Therefore L̂G is isogeneous

to Gm × G × L++G. Since L++G and G are both simply-connected, the kernel of

an isogeny Gm × G × L++G → L̂G must lie in Gm. Any isogeny from Gm is Gm

itself, by a quotient by some group of rth roots of unity for some r. We conclude that

L̂G ≊ Gm ×G× L++G and the result follows. ■

For the remainder of this subsection, �x a choice of splitting L+G → L̂G. This

restricts by L+T ♭,0 ↪→ L+G to a choice of splitting L+T ♭,0 → L̂T . Additionally �x

the choice of section su : YΓ → LT for the Kottwitz homomorphism 2.6, giving us

the full structure theory and representation theory of L̂T in 2.2.5 and 2.2.6.

De�nition 3.19: Set

ˆtF (σ) := Lie ˆL++,−T ♭,0.

The second basic lemma:
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Lemma 3.13: The central extension L̂T is a Heisenberg central extension in the

sense of 2.19. Here T ⊆ GF can be any maximal torus, not necessarily a principal

maximal torus.

Proof: By [BD01, 12.10], there exists a central extension E of G by K2,F such that

L̂G(k) = E(F )tameF . In fact E is determined by the bilinear form B on Y . It follows

that

L̂T (k) = E|T (F )tameF .

It remains to check the other condition that L̂T needs to satisfy in the de�nition 2.19,

namely that ˆtF (σ) is a Heisenberg Lie algebra, i.e., the center is one dimensional and

equals the commutator. To this end, it su�ces to check any nonzero multiple of ˆtF (σ)

as a central extension is a Heisenberg Lie algebra. For a central extension l̂ of a Lie

algebra by C, denote the mth multiple by m · l̂. Let E/F be a degree m extension

such that TE is split and ν ∈ Gal(E/F ) a generator and ζ a chosen primitive mth

root of unity so that ν(u)/u = ζ. Recall T is the image of

Z := ResE/F (T ×k E)w×ν
−1 ⊆ ResE/FGE

under Ad(u−mλ) where λ is the Kac labels of σ as in the proof of 3.10, where u−mλ ∈

G(E). Let ĝE be the a�ne Lie algebra as in 3.13 with F replaced with E. Let

t = ⊕i∈Z/mZti is the eigenspace decomposition of t for w. Then the restriction of ĝE

to gF ↪→ gE is m · ĝF . The adjoint action by the commutator LG on L̂G is an action

by automorphisms as Gm-central extensions. Therefore m · ˆtF (σ) is isomorphic to the

restriction of ĝE to

LieL++,−Z♭,0 = ⊕i ̸=0ti ⊗ ui

where the computation of LieL++,−Z♭,0 is as in the proof of 3.6. By the formula 3.13,

and the g-invariance of B, ˆLieL++,−Z♭,0 is given by the presentation for i, j ̸= 0 and

X ∈ ti, Y ∈ tj,

(X ⊗ ui, Y ⊗ uj) 7→ B(X, Y )ResuidujK
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= B(X, Y )iδi+j,0K

where 1(−)denotes the Boolean indicator symbol for the expression (−). Since B is

w-invariant, for i, j ∈ Z and X ∈ ti, Y ∈ tj,

B(X, Y ) = B(w.X,w.Y ) = ζ i+jB(X, Y ).

This shows that the restriction of B to ti⊕ tj is zero unless i+ j = 0. Since B is also

non-degenerate, the restriction of B to ti⊕t−i is a perfect pairing for every i ∈ Z/mZ.

This implies that the center is CK, i.e, one dimensional and equal to the commutator.

The result follows. ■

Remark 3.12: The argument that B restricts to a perfect pairing ti ⊕ t−i → C is

similar to [Kac90, 8.1.a].

This shows that our results on the representation theory of L̂T in 2.2.6 apply to

help us understand the maps 3.13.

Since P (σ,M)∩T (F ) = T ♭,0(OF ) and L+P(c,M) is reduced, we have L+P(σ,M)∩

LT = L+T ♭ and

FT ♭ = [(LT .L+P(c,M))/L+P(σ,M)]

is expressed as the quotient of the orbit of LT under the right action of L+P(c,M).

Consider the quotient by the smaller space L+IM

X (σ) = [(LT .L+P(c,M))/L+IM ].

We have two projection maps p, π:

FT ♭

p← X (σ) π→ S(σ).

De�ne the intersection

Q(σ,M) := P (σ,M) ∩G(OF )
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.Using P (σ,M) ⊆M(F ), we have

Q(σ,M) = P (σ,M) ∩G(OF ) ∩M(F )

= P (σ,M) ∩M(OF ).

So Q(σ,M) is the intersection of two standard parahoric subgroups of MF , and

therefore itself is also a standard parahoric subgroup. Let Q(σ,M) be the corre-

sponding parahoric group scheme of MF over OF . Then both p, π are �at and pro-

jective with �bers isomorphic to the (projective) Schubert varieties P (c,M)/IM and

P (c,M)/Q(c,M), respectively.

Lemma 3.14: The natural map is an isomorphism

LS(σ) ≊ π∗LX (σ).

we thus obtain a natural isomorphism

Γ(X (σ),LX (σ))
∨ ≊ Γ(S(σ),LS(σ))∨.

Proof: The ind scheme S(σ) is ind �nite type because it is a closed sub ind scheme

of GrG. Therefore π is ind-proper because it is the pullback of FIG → GrG, which is

ind-proper by [PR08, 8.e.1], by the closed embedding S(σ) ↪→ GrG.

Write S(σ) = lim→i S(σ)i as the limit of �nite type closed subschemes S(σ)i and

let X (σ) = lim→iX (σ)i be the induced presentation of �nite type closed subschemes

X (σ)i by pullback. Then it su�ces to show that the natural maps are isomorphisms

LS(σ)i ≊ π∗LX (σ)i .

This follows from the fact that X (σ)i → S(σ)i is proper, �at, �nite type whose

geometric �bers are isomorphic to P (σ,M)/Q(σ,M), which is connected and reduced,

and [Vak17, ex. 28.1.I and 28.1.H].
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Let Σ̂ ⊆ L̂T be the principal �nite Heisenberg subgroup de�ned in 2.33 with Σ =

Yw,tor. The Kottwitz homomorphism LT → Yw induces a bijection π0(L
+T ♭)→ Yw,tor

because the latter is the maximal compact subgroup of Yw. Therefore Σ̂ ⊆ ˆL+T ♭ ⊆
ˆL+P(σ,M) and the subspaces P (σ,M)/IM ⊆ X (σ) and P (σ,M)/Q(σ,M) ⊆ S(σ)

are both stable under the right action of Σ. ■

De�nition 3.20: To save notation in the following proofs, put

P = P (σ,M),P = P(σ,M)

Q = Q(σ,M),Q = Q(σ,M).

Therefore the dual sections

Γ(P/Q,LP/Q)
∨

Γ(P/IM ,LP/IM )∨

have a natural action of Σ̂.

Lemma 3.15: The dimensions of Γ(P/Q,LP/Q)
∨ and Γ(P/IM ,LP/IM )∨ are each a

positive multiple of the defect d(c) as de�ned in 2.34.

Proof: Follows from the characterization of representations of Σ̂ 2.34. ■

Lemma 3.16: The natural map Mσ ↪→ M ↪→ M(F ) induces an isomorphism be-

tween the space P/IM with the (�nite type) full �ag variety of the connected reductive

group Mσ (connectedness of Mσ follows from 3.1 and [Con14, 6.5.2.IV]). Thus by

the �nite type Borel-Weil theorem, Γ(P/IM ,LP/IM )∨ is an irreducible representation

of Mσ by Mσ ↪→ LG ↪→ L̂G, and Tw,0 ⊆ Z(Mw) acts on it by a character.

Furthermore, this representation is minuscule, i.e., corresponds to a hyperspecial

vertex of the Dynkin diagram of Mσ.
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Proof: The map ad(u−mλ) of 3.7 identi�es the Levi factor of LieL+P with m0, so

the reductive quotient of the reduction of P at t = 0 is Mσ. Since IM is the Iwahori

subgroup of P , P/IM must be full �nite �ag variety Mσ/B of Mσ.

Now the line bundle LFIG
is characterized by the property that the restriction

to the copy of P1 given by the image of a standard a�ne root subgroup is O(1) for

the a�ne root subgroup and trivial for the others [PR08, 10.1]. Restricting the maps

P/IM ⊆ FIM ⊆ FIG , that P1 that corresponds to the a�ne root of G maps to the P1

corresponding to a hyperspecial vertex of Mσ. The result follows. ■

Now recall the decomposition

L̂T = ˆ(L++,−T ♭,0 × (ŶΓ ⋊ Tw,0))/Gm,k

from 2.8 given L+T ♭,0 → L̂T and su : YΓ → LT , where Σ̂ ↪→ L̂T factors through

Σ̂ ↪→ ŶΓ, Tw,0 acts trivially on Σ̂, and the centralizer of Tw,0 in ŶΓ⋊Tw,0 is Σ̂×Tw,0.

Lemma 3.17: As a representation of L̂T , we have

Γ(FT ♭ , p∗LX (σ))
∨ ≊ IndL̂T

ˆ(L++T ♭,0×(Σ̂×Tw,0))/µr
U

in the classi�cation of representations of L̂T from 2.2.6 where

U = Γ(P/IM ,LP/IM )∨

is equipped with the action of Σ̂ ⊆ Ŷw, forms a single weight space for Tw,0, ˆL++T ♭,0 =

Gm × L++T ♭,0 has the Gm factor acting by the identity character, and L++T ♭,0 acts

trivially.

Proof: We �rst claim p∗LX (σ) is free and �nite rank as a quasicoherent sheaf on FT ♭ .

The map p is the pullback by the inclusion FT ♭ ↪→ FP of the map FIM → FP , which

is ind-proper by [PR08, 8.e.1]. Therefore p is ind-proper. Let FT ♭ = lim→iFT ♭,i be a

presentation as an ind-scheme of closed sub-schemes FT ♭,i and X (σ) = lim→iX (σ)i be
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the induced presentation as an ind-scheme of closed subschemes X (σ)i by pullback.

Let pi : X (σ)i → FT ♭,i be the restriction of p to X (σ)i. Since each FT ♭,i is zero-

dimensional by properties of the Kottwitz homomorphism, it su�ces to show that

pi,∗LX (σ)i is locally free of �nite rank where the rank is independent of i. Each pi is

�at and thus LX (σ)i is �at over FT ♭,i by [Sta18, Tag 01U6]. The geometric �bers of

pi are all isomorphic to the Schubert variety P/IM , which by 3.14 has the property

that

H1(P/IM ,LP/IM ) = 0

because the line bundle LP/IM is ample on the Schubert variety P/IM and by [Kum02,

8.1.8]. By cohomology and base change, [Gro63, 3.2.1], pi,∗LX (σ)i is locally free with

rank equal to the dimension Γ(P/IM ,LP/IM ). This is independent of i as required.

The characterization

Γ(FT ♭ , p∗LX (σ))
∨ ≊ IndL̂T

ˆ(L++T ♭,0×(Σ̂×Tw,0))/µr
U

follows from the fact that each geometric �ber of p is isomorphic to P/IM and the

map FT ♭,0 → FT ♭ is �nite and free of �nite rank, and so induces an isomorphism on

connected components. Since the action of L+T ♭,0 on LS(σ) is trivial, so is its action

on p∗LS(c). The fact that U is one single weight space for Tw,0 follows from 3.16. ■

Combining 3.17 and 3.14, we obtain

Corollary 3.2: As a representation of L̂T , we have

Γ(S(σ),LS(σ))∨ ≊ IndL̂T
ˆ(L++T ♭,0×(Σ̂×Tw,0))/µr

U

where

U = Γ(P/Q,LP/Q)
∨

is a single weight pace for Tw,0.

We remark that the space P/Q is still a �nite �ag variety for Mσ. It happens

that LP/IM and LP/Q have the same global sections.
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Remark 3.13: In terms of the representation theory of L̂T ≊ ˆ(L++,−T ♭,0 × (ŶΓ ⋊

Tw,0))/Gm,k of 2.2.6, we have a vector space decomposition

Γ(S(c),LS(c))∨ ≊ π(w)⊗ C[Yw,cotor]⊗ U

where ˆL++,−T ♭,0 acts by its Heisenberg Lie algebra on the Fock space π(w), identi-

�ed with the dual ring of regular functions of the connected component F0
T ♭,0. The

composition

Yw → Yw ⊗ C = tw
B→ tw,∨

with the second map is X 7→ B(X,−), induces an embedding

Yw,cotor ↪→ tw,∨

which we denote by λ 7→ λ. Then tw,0 acts on C[Yw,cotor] = ⊕λ∈Yw,cotorCλ as a direct

sum of the corresponding weight spaces, as shown in [BK04, 4.7].

We now can prove the main theorem of this section.

Proof: (of 3.13) Apply the characterization 3.2 and 3.13. To show that Γ(S(σ),LS(σ))∨ →

Γ(GrG,LG)
∨ is injective, by the representation theory of L̂T 2.9 applied to those in-

duced from representations of Σ̂ that form a single weight space for T Γ,0 3.16, it

su�ces to show injectivity of the induced map on the vacuum spaces

IndŶΓ⋊Tw,0

Σ̂×Tw,0
U = C[Yw,cotor]⊗ U → Γ(GrG,LG)

∨

where U = Γ(P/Q,LP/Q)
∨. Now crucially since U is one distinct weight space for tw,

each summand of

U ⊗ C[Yw,cotor] = ⊕λ∈Yw,cotorCλ ⊗ U

is a single weight space for tw with the weights of di�erent summands are distinct.

Thus it su�ces to show that the induced map on each summand

Cλ ⊗ U → Γ(GrG,LG)
∨
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is injective, for the images of di�erent summands will have trivial intersection. Since

both U ⊗ C[Yw,cotor] and Γ(GrG,LG)
∨ are equivariant for Ŷw, it su�ces to show in-

jectivity for one factor and assume λ = 0. We thus �nally reduce to showing the

map

U → Γ(GrG,LG)
∨

is injective. By [Kum02, 8.1.23] and [PR08, 8.8, 8.1] this is shown if we can show that

P/Q is closed under the left action of IG, for it would realize U as an a�ne Demazure

submodule of Γ(GrG,LG)
∨ ≊ V 1(ĝ).

To show P/Q that is closed under the left action of IG, recall the Cartan decom-

position as follows. According to [PR08, 8.a, 8.1], the inclusion MF ↪→ GF induces

an inclusion of a�ne Weyl groups WM,aff ↪→ WG,aff that is compatibly identi�ed with

the map of double cosets

IM\M(F )/IM → IG\G(F )/IG.

therefore IM\M(F )/IM → IG\G(F )/IG is injective. Therefore left IM orbitsM(F )/IM ⊆

GF/IG are closed under the left action of IG. Therefore the IM orbit P/Q is closed

under the left action of IG as desired.

Finally, the map Γ(FT ♯ ,LT ♯)∨ → −(S(σ),LS(σ))∨ is nonzero, because the one

dimensional subspace of dual sections Γ(e,Le)
∨ corresponding to the neutral point

e ∈ FT ♯(k) is the Demazure submodule of Γ(GrG,LG)
∨ ≊ V 1(ĝ) associated to the

Schubert variety of the neutral point of GrG. ■

3.4 Global Flag Varieties and Geometric Proof for

Homogeneous Conjugacy Classes

The main purpose of this �nal section is to prove 3.14. The method is to deduce it

from the case when T = TF of [Zhu09] by cohomology and base change in a family

over the curve C = A1 whose completed local ring at 0 is OF . Similar kinds of ideas
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have appeared in [BH20] when the split group GF over F is replaced by a rami�ed

group but, T is a torus corresponding to a purely outer automorphism of the base

change of the group to the algebraic closure. We expect our techniques to directly

follow through for the setting of [BH20], under an analogous notion of a principal

tori in a rami�ed group and an analogous notion of homogeneous conjugacy classes

for twisted Weyl groups. Indeed, the results of [AHN20] we used were already fully

extended to the case of twisted Weyl groups.

This section is designed to be read after the previous one. Preserve all of the

notation and setup of the previous Section 3.3. Recall the maps

Γ(FT ♯ ,LFT ♯
)∨ → Γ(S(σ),LS(σ))∨ → Γ(GrG,LG)

∨

of 3.14. Since T ♯ is an intermediate integral model of T , FT ♯ , is zero-dimensional and

the Kottwitz homomorphism induces an identi�cation of the reduced locus with the

connected components

FT ♯,red ≊ π0(FT ♯).

Identify π0(FT ♯)tor, which happens to be the maximal compact subgroup of π0(FT ♯),

with its preimage in FT ♯,red. The Kottwitz homomorphism identi�es π0(FT ♭,0) ≊ Yw

and thus also identi�es π0(FT ♯)tor with the quotient Yw,tor = Σ by the connected

components of Q(c,M)∩T (F ). Similar to the proof of 3.17, there is a characterization

as L̂T -modules.

Γ(FT ♯ ,LFT ♯
)∨ = IndL̂T

ˆ(L++T ♭,0×(Σ̂×Tw,0))/µr
U

where

U = Γ(π0(FT ♯)tor,Lπ0(FT ♯,tor
))
∨

is a representation of Σ̂ because π0(FT ♯)tor is stable under the action of Σ. Further-

more U is a single weight space for Tw,0 because it maps to Γ(P/IM ,LP/IM )∨ which

is a single weight space for Tw,0 as proven in 3.17. We have also already shown in the

proof of 3.13 that U → Γ(GrG,LG)
∨ is nonzero.

Therefore according to the representation theory of L̂T in 2.2.6 and as in the proof
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of 3.17, the nonzero map Γ(FT ♯ ,LFT ♯
)∨ → Γ(GrG,LG)

∨ is injective i� U is irreducible

as a representation of Σ̂ i� dimU = d(c), the defect of 2.34. This proves 3.15, the full

consequence we put here for convenience:

Theorem 3.16: Suppose for each conjugacy class c ∈ [W ] there exists w ∈ W and

a lift σ of W such that π0(FT ♯)tor = π1(P (σ,M)/Q(σ,M)) equals the defect d(c) of

c, which is given explicitly in 2.34 in terms of only the lattice action of the conjugacy

class of w and the bilinear form B. Then both dual restriction maps

Γ(FT ♯ ,LFT ♯
)∨ → Γ(S(σ),LS(σ))∨ → Γ(GrG,LG)

∨

are isomorphisms of L̂T modules.

As explained in the previous Section 3.3, we presently only know this for homo-

geneous c.

3.4.1 Global Analogues of the Tori, Loop Groups, Flag Vari-

eties, Schubert Varieties and the Line bundle

Let us introduce global versions of T ,GrG, L, etc. Brie�y recall the setup as in

[Zhu14] as below. Let C be a smooth curve over k, although we will only use A1 or

A1\{0}. Let GC be a smooth a�ne group scheme over C, where we use the subscript

C to emphasize the global nature. Let R be a k-algebra and y : SpecR → C be an

R-point. Denote by Γy ⊆ CR the closed subscheme of the graph of y. Let Γ̂y be the

a�ne scheme given by the relative spectrum of the ring of regular functions along

the formal completion of CR along Γy. Let Γ̂◦y denote the complement of the natural

closed immersion Γy ↪→ Γ̂y.

De�nition 3.21: The global jet group, or global positive loop group, is the

functor

L+GC(R) = {(y, β) : y ∈ C(R), β ∈ GC(Γ̂g)}.
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The global loop group is the functor

LGC(R) = {(y, β) : y ∈ C(R), β ∈ GC(Γ̂◦y)}.

The global �ag variety is the fpqc quotient

FGC = [LGC/L+GC ].

When GC = GC = G×k C, put

GrGC
:= FGC

and call it the global a�ne Grassmannian.

They are all functors on k-algebras.

Remark that unlike their local counterparts, the global loop groups are not de�ned

by Weil restriction. It is known by [Zhu14, 3.1, 3.3] that L+GC is a formally smooth

but not necessarily �nite type scheme over C and LGC ,FGC are formally smooth ind

schemes over C where FGC is ind-proper. The �bers of L+GC , LGC , and FGC at closed

points x ∈ C are their local counterparts. To be precise, let Ox be the completed

local ring at x and Fx the fraction �eld. Then there are natural isomorphisms

(LGC)x ≊ L(GC,Fx)

(L+GC)x ≊ L+(GC,Ox)

(FGC )x ≊ F(GC,Ox)

where for an R-point of C, GC,R means the restriction of GC by SpecR→ C.

Now for the remainder of this section, put C = A1 = Speck[t] and
◦
C = C\{0}.

Let us extend T ♯ to a global group scheme T ♯
C whose �ber at O0 is T ♯ and �ber at

Ox for x ̸= 0 is non-canonically isomorphic to Tx. First, let us extend 3.7 to a global

version replacing F with
◦
C:

Theorem 3.17: Preserve the notation of σ, λ,Bad, Had of 3.7. Let
◦̃
C = Speck[u±1]
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be the degree m Galois cover with Galois group Γ where we canonically extend ν to

an automorphism of
◦̃
C. Consider mλ ∈ X∗(Had) = Hom(Gm, Had) and let umλ ∈

Had(k[u
±1]) = Had(

◦̃
C) be the image of u ∈ k[u±1]× = Gm(k[u

±1]) under mλ. Then

the map Ad(umλ) : M ◦̃
C
→ M ◦̃

C
induces an isomorphism of closed subgroup schemes

of Res ◦̃
C
M ◦̃

C
over

◦
C:

M ◦
C
= (Res ◦̃

C/
◦
C
M ×k

◦̃
C)id×ν

−1 Ad(umλ)→ (Res ◦̃
C/

◦
C
M ×k

◦̃
C)σ×ν

−1

.

Proof: First we show it over the generic �ber η = Spec(k(t)). Then it follows

identically to the proof of 3.7 with the �eld F = k((t)) replaced with k(t); all of the

steps remain valid.

It remains to show why it is su�cient to check on the generic �ber. To this end,

since M ◦
C
and (Res ◦̃

C/
◦
C
M ×k

◦̃
C)σ×ν

−1
are closed sub group schemes of Res ◦̃

C/
◦
C
M ×k

◦̃
C,

it su�ces to show that the generic �bers are dense. According to [Edi92, 3.4], both

are smooth, so in particular reduced. Therefore by [Sta18, Tag 0CC1] it su�ces to

show that each is irreducible. It su�ces to show that each is connected in addition

to being smooth. This follows from the fact that both are �ber bundles over the

connected base
◦
C with connected �bers that are each isomorphic to M . ■

The extension of T ♯ to C is now as follows. Notably for our work here, we do

not use a global version of P(σ,M), i.e., a group scheme over C whose �ber at the

completed local ring at x = 0 is P(σ,M) and at x ̸= 0 is isomorphic MOF
, but it

could also be de�ned if desired.

Theorem 3.18: There exists a subgroup scheme T #
C ⊆ GC over C such that for each

closed point x ∈ C, we have the �ber at the completed local ring Ox is given as follows.

Let Fx be the fraction �eld of Ox.

1. For x = 0,

(T ♯
C)Ox = T ♯.

2. For x ̸= 0, (T ♯
C)Ox is a split maximal torus of GOx.
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Proof: The idea is to de�ne on the open curve and glue with T #. De�ne the torus

T ◦
C
⊂ G ◦

C
to be the composition

T ◦
C
:= (Res ◦̃

C/
◦
C
T ×k

◦̃
C)w×ν

−1

↪→ (Res ◦̃
C/

◦
C
M ×k

◦
C)σ×ν

−1

Ad(u−mλ)→ M ◦
C
↪→ G ◦

C

where Ad(u−mλ) is the isomorphism from 3.17. Then for all closed points x ∈
◦
C,

(T ◦
C
)Ox is a split maximal torus of G ◦

C
.

Restricting T ◦
C
to F = k((t)) ⊃ k(t) gives the torus of type T of 3.10. Finally, ap-

plying the descent lemma [Hei10, lem. 5] along the fpqc cover C =
◦
C∪Spec(OF ) gives

the desired global group scheme T ♯
C and a glued morphism T ♯

C → GC . Consequently,

T ♯
C can also be described as the Zariski closure of T ◦

C
in GC . ■

Applying the functors L(−), L+(−),F(−), we obtain subgroup schemes LTC ↪→

LGC , L+TC ↪→ L+GC and a morphism FT ♯
C
→ GrGC

.

Lemma 3.18: The map FT ♯
C
→ GrGC

is a closed embedding.

Proof: It is a monomorphism by [Sta18, tag 01L1], the fact that the pullback to

each point of C is a monomorphism and the fact that every point of FT ♯
C
lies over

either the closed point or generic point of C. The result follows from the fact that

both sides are ind-proper over C. ■

In conclusion, we have constructed a closed embedding of global �ag varieties

FT ♯
C
→ GrGC

such that the �bers over closed points x ∈ C are described by:

� For x = 0, (FT ♯
C
)x → (GrGC

)x is equal to the embedding of local �ag varieties

FT ♯ ↪→ GrG of 3.13.

� For x ̸= 0, after �xing an identi�cation (GrGC
)x ≊ GrG and using the conjugacy

of maximal split tori in G(F ), the map (FT ♯
C
)x → (GrGC

)x is LG(k)-conjugate

to the inclusion GrT ↪→ GrG.
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Let us now de�ne the global level 1 line bundle LC , global Schubert varieties of GrGC

and recall a re�nement of the geometric split FKS isomorphism of [Zhu09] in terms

of the global Schubert varieties.

Let L be a line bundle on GrGC
. Then for each closed point x ∈ C, the restriction

of L to (GrGC
)x is isomorphic to some integer c power of the ample generator of

Pic((GrGC
)x) ≊ Z. It is proven in [Zhu14, 4.1] that c is constant as function of x, and

it is called the central charge of L.

The group scheme GC has the property that all �bers at x ∈ C are semisimple.

Therefore by [Zhu14, 4.1.1], the relative Picard group Pic(GrGC
/C) is a constant

étale sheaf on C isomorphic to Z. By [Zhu09, 1.1.9], we can choose a generator and a

representative line bundle LGC
with central charge 1, and we call it the global level

1 line bundle on GrGC
. In particular, the restriction of LGC

to each closed point

x ∈ C is the level 1 line bundle on (GrGC
)x. Consider the global split torus TC ⊆ GC

and naturally identify the cocharacter lattices at each point X∗((TC)Fx) ≊ Y using

the structure map k ↪→ Kx. Then according to [Zhu14, 3.4], for each µ ∈ Y , there

exists a section sµ : C → LTC with the property that for any closed point x ∈ C,

sµ(x) ∈ (LTC)x(k) = T (Fx) maps to µ under the Kottwitz homomorphism LTC → Y .

De�nition 3.22: The left L+GC orbit of sµ in GrGC
is denoted GrGC ,µ. The closure

GrGC ,µ is called the global Schubert variety associated to µ.

Then the �ber at 0 of GrGC ,µ, resp. GrGC ,µ, is the local version GrG,µ, resp.

GrG,µ. By [Zhu14, theorem 3], the �bers of GrGC ,µ at each closed point x ∈ C (not

just at x = 0) are isomorphic to GrG,µ. Two Schubert varieties (either global or local)

associated to λ, µ ∈ Y are the same i� they lie in the same W -orbit and the Schubert

varieties give rise to all the positive loop group orbit closures [Zhu09, 1.1.7]. A set

of representative µ for each orbit can be chosen by taking the subset Y+ ⊆ Y of

dominant cocharacters with respect to some choice of Borel subgroup BG of G.

Fix such a choice BG. We have the following from [Zhu09, 1.1.4]. λ ≤ µ in Y i�

GrG,λ ⊆ GrG,µ . De�ne

GrT,µ := GrG,µ ∩GrT .
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Then also

GrG =
⋃
µ∈Y

GrG,µ

GrT =
⋃
µ∈Y

GrT,µ.

By [Zhu09, 2.3.5] for λ ≤ µ, the map Γ(GrG,λ,LGrG,µ
)∨ → Γ(GrG,µ,LGrG,µ

)∨ is in-

jective. Thus the map Γ(GrT,λ,LGrT,λ
)∨ → Γ(GrT,µ,LGrT,µ

)∨ is also injective because

GrT,λ,GrT,µ are zero dimensional. We therefore have

Γ(GrG,LG)
∨ =

⋃
µ∈Y

Γ(GrG,µ,LGrG,µ
)∨

Γ(GrT ,LT )
∨ =

⋃
µ∈Y

Γ(GrT,µ,LGrT,µ
)∨.

We record the main theorem [Zhu09, 0.0.2]:

Theorem 3.19: For all µ ∈ Y , the map

Γ(GrT,µ,LGrT,µ
)∨ → Γ(GrG,µ,LGrG,µ

)∨

is an isomorphism. In particular, both have the same dimension.

Consequently, Γ(GrT ,LT )
∨ → Γ(GrG,LG)

∨ is also an isomorphism, which recovers

the geometric FKS isomorphism for T = T .

3.4.2 Proof of Main Theorem

We prove 3.14. Preserve the setup of the global objects of the previous subsection.

Put

FT◦
C
,µ := FT◦

C

∩GrGC ,µ.

De�ne the global closed subscheme FT ♯
C ,µ ⊆ FT ♯

C
to be the scheme theoretic closure

FT ♯
C ,µ

:= FT◦
C
,µ ⊆ FT ♯

C
.
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It factors through GrGC ,µ. Since FT ♯
C
⊆ GrGC

is closed embedding, FT ♯
C ,µ is a �nite

type closed subscheme of GrGC
over C. Then for a closed point x ∈ C, the �ber at

x ̸= 0 of FT ♯
C ,µ is LG(k)-conjugate to the inclusion GrT,µ ⊆ GrG and factors through

GrG,µ.

De�ne the space FT ♯,µ ⊆ FT ♯ ⊆ GrG as required in 3.14 to be the �ber at 0:

FT ♯,µ = (FT ♯
C ,µ)0.

Lemma 3.19: The schemes FT ♯,µ and GrG,µ are �at over C.

Proof: Apply [Zhu14, 6.1.4] and obtain that GrG,µ is Cohen-Macaulay. Since C is

regular and GrG,µ → C is proper, thus closed, it is also �at by equidimensionality of

the �bers and miracle �atness [Gro65, 6.1.5].

The �nite type scheme FT◦
C
,µ is zero dimensional over

◦
C. Therefore all closed points

of FT◦
C
are zero dimensional and by [Sta18, Tag 021N], FT◦

C
,µ is Cohen-Macaulay. By

the equidimensionality of the �bers, FT◦
C
,µ is �at over

◦
C. Since

◦
C = Speck[t±1] is a

PID, we can use the �atness criterion of [Eis95, 6.3]. The closure FT ♯
C ,µ in the �at

GrGC ,µ scheme over C is the spectrum of an algebra over k[t±1] that is torsion-free.

The result follows. ■

We now give the �nal proof:

Proof: (of 3.14). Since both FT ♯,µ and GrG,µ are �at over C, the line bundles LFT ♯,µ

and LGrG,µ
are both �at over C, by [Sta18, Tag 01U2]. Fix a closed point x ∈ C.

Since (FT ♯,µ)x is zero dimensional, L(FT ♯,µ
)x is trivial and

H1((FT ♯
C ,µ)x,L(F

T ♯
C

,µ
)x) = 0

Since L(GrGC,µ)x
is ample and (GrGC ,µ)x is a Schubert variety, by [Kum02, 8.1.8],

H1((GrGC ,µ)x,L(GrGC,µ)x
) = 0.

By upper semi-continuity, we conclude that there is the same vanishing of H1 for
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both when x is the generic point of C as well. By cohomology and base change,

the dimensions dimΓ((FT ♯
C ,µ)x,L(F

T ♯
C

,µ
)x) and dimΓ((GrGC ,µ)x,L(GrGC,µ)x

) are each

independent of x ∈ C. By the split case 3.19, and the L̂G equivariance of LG, their

dimensions coincide when x ̸= 0. Therefore the dimensions coincide at x = 0 as well.

Therefore taking the �ber at 0 and the dual, the map

Γ(FT ♯,µ,LFT ♯,µ
)∨ → Γ(GrGµ ,LGrGµ

)∨

is a map of vector spaces of the same dimension. For λ ≤ µ, FT ♯,λ ⊆ FT ♯,µ. Since both

are zero dimensional, the maps Γ(FT ♯,λ,LFT ♯,λ
)∨ → Γ(FT ♯,µ,LFT ♯,µ

)∨ are injective.

Since Γ(FT ♯ ,LFT ♯
)∨ → Γ(GrG,LGrG)

∨ is injective by assumption, we conclude that

Γ(FT ♯,µ,LFT ♯,µ
)∨ → Γ(GrGµ ,LGrGµ

)∨ is also injective, and therefore an isomorphism.

Now put X =
⋃

µ∈Y Γ(FT ♯,µ,LFT ♯,µ
)∨ and consider the composition

Γ(X,LX)
∨ → Γ(FT ♯ ,LFT ♯

)∨ → Γ(GrG,LGrG)
∨.

The composition is an isomorphism because Γ(GrT ,LT )
∨ =

⋃
µ∈Y Γ(GrT,µ,LGrT,µ

)∨.

Therefore the same is true for both left and right arrows. We conclude that Γ(FT ♯ ,LFT ♯
)∨ →

Γ(GrG,LGrG)
∨ is an isomorphism as desired. ■

Remark 3.14: By showing that Γ(FT ♯ ,LFT ♯
)∨ =

⋃
µ∈Y Γ(FT ♯,µ,LFT ♯,µ

)∨, we have

shown that FT ♯ =
⋃

µ∈Y FT ♯,µ (since they are zero dimensional) and thus FT ♯
C

=⋃
µ∈Y FT ♯

C ,µ. This gives a highly indirect proof, conditional factors known only when

T is a principal torus of the type of a homogeneous conjugacy class in a group GF

when G is type ADE, that:

Corollary 3.3: Assume the hypothesis of 3.14. Then FT ♯
C
is ind-�at over C.

Remark 3.15: Ind-�atness of a global �ag variety seems like a basic property that

should not need such an indirect proof. We wonder to what extent ind-�atness of

FT ♯
C
holds when T ♯

C is more general group scheme over C, perhaps a Bruhat-Tits

group scheme in the sense that it is generically reductive and the restriction to each
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completed local ring at a closed point is a parahoric group scheme of the further

restriction to the fraction �eld of the completed local ring.
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