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ABSTRACT

Many out-of-equilibrium systems display collective transitions in the behavior of
particles akin to phase transitions. The field of nonequilibrium statistical mechanics
seeks to develop new theories and methods to characterize these phenomena. In
this thesis, we advance this aim by presenting computational studies of two different
kinds of nonequilibrium transitions: the compact-to-dendritic (CTD) transition in
the deposition of Brownian particles and trajectory phase coexistence (TPC) in
stochastic dynamical systems.

TheCTD transition occurswhenBrownian particles (like ions, colloids, ormisfolded
proteins) deposit from all sides onto a reactive cluster. While the cluster initially
maintains a compact morphology, upon reaching a critical radius, it spontaneously
develops dendritic branches. Although the size of the critical radius depends on the
deposition conditions, this relationship is not well understood at a mechanistic level.
Here, we show that contrary to previous evidence, the critical radius in Brownian
dynamics simulations follows the behavior predicted by a continuum analysis. That
is, dendrites emerge when the cluster circumference exceeds the length that particles
can diffuse in the characteristic reaction timescale. Consequently, our results provide
microscopic validation for continuum methods that are widely applied to study
dendrite formation in electrodeposition and lithium metal batteries.

Trajectory phase coexistence (TPC) arises when qualitatively different trajectory
behaviors interconvert in a stochastic dynamical system. This type of coexistence
plays a central role in theories of glassy dynamics. In this work, we focus on
two different research areas related to TPC. First, we introduce an importance
samplingmethod, Variational Ansatz for RareDynamics (VARD), for characterizing
a system’s rate function. VARD is technically and conceptually straightforward yet
can still sample the large deviations of many-body models found in the literature.
We then examine the meaning of kinks in the scaled cumulant generating function
(SCGF). Although these singularities are often taken to be proof that TPC occurs,
a more precise understanding of the connection between kinks and coexistence
remains lacking. By characterizing the dynamics of two kinds of random walkers,
we show that kinks actually result from diverging timescales in the dynamics and
do not always indicate the presence of TPC.
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C h a p t e r 1

INTRODUCTION

One of the crowning achievements of equilibrium statistical mechanics is that it
can describe any phase transition in terms of a microscopic partition function [1].
Unfortunately, in nonequilibrium systems, the partition function is no longer rel-
evant, even though collective transitions in the behavior of particles remain. For
example, imagine a clear stream of water flowing from a faucet spontaneously be-
coming cloudy with turbulence, or cars on the highway that were speeding along
just seconds ago congealing into a traffic jam without any apparent trigger [2, 3].
Consequently, the field of nonequilibrium statistical mechanics seeks to understand
these kinds of behaviors without the guiding hand of equilibrium theory. In this
thesis, we advance this aim by applying computational methods to characterize two
different collective nonequilibrium transitions: the compact-to-dendritic transition
in the reactive deposition of Brownian particles (Chapter 2) and trajectory phase
coexistence in stochastic dynamical systems (Chapters 3 and 4).

1.1 The Compact-to-Dendritic Transition in Reactive Deposition
The first part of the thesis, consisting of Chapter 2, investigates dendrite formation
in reactive deposition. When Brownian particles—like ions, colloids, or misfolded
proteins—deposit onto a reactive surface, they do not assemble into a uniform
coating [4–6]. Rather, they form fractal branching structures called dendrites. Due
to the beauty of these structures and the fact that they can be recreated using
simple computer models, studying dendrite formation has long been a fundamental
scientific pursuit [7–9]. However, managing dendritic deposition is also critically
important in current and next-generation batteries. When dendrites form inside these
devices, they consume the working metal and the electrolyte and create catastrophic
short circuits [10–12].

One way to understand dendrite formation is by studying the compact-to-dendritic
(CTD) transition. This transition occurs when Brownian particles are allowed to
deposit from all sides onto the a small reactive seed cluster [13–17]. Initially,
the deposition maintains the compact morphology of the seed. However, once the
cluster reaches a certain critical radius, it spontaneously forms dendritic branches.
This transition is illustrated in Fig. 2.1. Note that the critical radius sets the thickness
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2

of the dendritic branches in the large length-scale morphology.

A fundamental feature of the CTD transition is that the critical radius, and there-
fore the branch thickness, depends on the deposition conditions [13, 15, 17]. For
example, a faster reaction leads to thinner branches. Unfortunately, developing a
quantitative theory that describes the critical radius has proven challenging. Con-
tinuum modeling suggests that this radius should be proportional to the ratio of the
surface reaction rate constant to the diffusion constant [13]. However, Brownian
dynamics (BD) simulations of the microscopic evolution of the cluster have not been
found to be fully consistent with this behavior [15, 17]. The discrepancy suggests
that continuum modeling may be missing a key part of the microscopic dendrite
formation dynamics. But this hypothesis is concerning because many studies use
similar continuum models to analyze dendritic growth in the literature, particularly
in the context of lithium-metal batteries [18–25].

Consequently, to clarify the accuracy of these widely used continuum models, we
revisit the discrepancy between the BD simulations and the continuum scale analy-
sis. In particular, we improve on the prior microscopic simulation methodologies in
several ways. We adopt an alternative paradigm for the reaction between the parti-
cles and the reactive surface that allows us to converge our simulations and to work
in terms of experimentally relevant quantities, both of which were previously im-
possible. We also run larger-scale simulations and investigate the three-dimensional
CTD transition for the first time.

1.2 Trajectory Phase Coexistence
The second part of this thesis, consisting of Chapters 3 and 4, investigates a different
kind of collective nonequilibrium transition: trajectory phase coexistence (TPC) in
stochastic dynamical systems. It is convenient to focus on a prototypical system to
introduce this topic. Consider a driven random walker in a box with walls. Each
timestep, the walker hops right with probability %' and left with probability %!
where %' > %! . Since the walker is driven to the right, its average position Ḡ over
any time ) will be close to the right wall of the box. However, the actual value of Ḡ
will vary from measurement to measurement.

While small fluctuations in the average position of the walker follow the central limit
theorem, rare “large” fluctuations far out on the tails of the probability distribution
cannot be described in this manner [26]. The probability density of these events can
instead be framed in the language of the mathematical theory of large deviations.
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That is, under a general set of assumptions often satisfied in practice (see [27]), the
probability density d of measuring a given value j of a time-averaged observable Ḡ
in a stochastic dynamical system decays exponentially according to

d(Ḡ = j,)) ∼ exp(−� (j))) (1.1)

in the long time limit [26]. Here, the function � (j) is called the rate function and is
non-negative. Rather than working with � directly, it is common to use its Legendre
transform instead

_(:) = j(:): − � (j(:)) (1.2)

which encodes equivalent information when � is convex. _ is called the scaled
cumulant generating function (SCGF).

Eq. (1.1) is fascinating because the rate function � characterizes the probability den-
sity of a subset of trajectories (those with Ḡ = j) in the same way that the free energy
dictates the probability of a subset of configurations in equilibrium statistical me-
chanics [1]. This connection between equilibrium and nonequilibrium frameworks
goes far beyond the surface level. It is, in fact, possible for stochastic dynamical sys-
tems to display phase coexistence in trajectory space, much as equilibrium systems
display coexistence at the level of configurations [27].

As an example of such coexistence, consider a large fluctuation in the average
position of the driven walker. Let us say we want to characterize the probability
that we measure Ḡ to be the middle of the box <. That is, we want to know the
value of � (<). To calculate this quantity, we must determine the most likely out of
the possible unlikely ways that the system can achieve the given average position
over a long time ) [26]. The immediately obvious way that the system could realize
this average would be for the walker to hop to the middle of the box and remain
there for the entire time. Alternatively, the same Ḡ could result from having the
walker spend half of the time on the left side of the box and half of the time on the
right side. Amazingly, as shown in Chapter 4, these 50-50 trajectories are the most
probable of all possible choices, and consequently, they determine the value of � (<).
Such “coexistence” between sections of trajectories that favor each side of the box
closely resembles how an Ising strip crystal achieves zero magnetization. Rather
than mixing up and down spins uniformly, the crystal forms alternating spin up and
spin down sections [28]. In addition, just as the phase transitions in thermodynamic
systems are associated with a singularity in the free energy, TPC is associated with
a singularity in the SCGF [27, 29–32].
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Since TPC often only appears during extremely rare fluctuations, it is natural to
ask whether the study of this phenomenon has any practical utility. And many
investigations of TPC are indeed motivated exclusively by the drive to develop a
nonequilibrium framework that mirrors the beauty of equilibrium statistical me-
chanics. However, TPC research is far from being completely disconnected from
practical concerns. TPC plays a central role in the study of glassy dynamics [33].
Furthermore, studies of TPC can also yield insights into the nature of equilibrium
phase transitions [34].

1.3 Sampling the Rate Function
Identifying and characterizing TPC requires sampling the rate function and SCGF
[27]. This process introduces technical challenges that are similar to the challenges
of calculating free energies in equilibrium systems [35]. Specifically, a brute force
calculation of � (j) would require generating many trajectories and finding the
proportion that achieves Ḡ = j. But if j is far away from its typical value—for
example, j = <, the middle of the box, in the case of the driven walker—then such
trajectories will be incredibly rare, and attempting to sample them will be futile.

Instead, a number of enhanced sampling methods have been introduced to calculate
the rate function more efficiently [36–41]. These methods commonly evaluate the
SCGF directly using

_(:) = lim
)→∞

1
)

ln〈exp(−:Ḡ))〉. (1.3)

Sampling _ is more convenient than sampling � because the average in (1.3) does
not have a X function constraint on the value of the observable. This constraint is
implicit in the definition of � in (1.1).

The workhorse method for sampling _ is cloning [36–38]. As the name indicates,
cloning involves duplicating trajectories that achieve large values of the weight
exp(−:Ḡ)). Each time a trajectory is cloned, the stochastic component is reseeded.
Consequently, if ten clones are made of a trajectory, these clones will then branch
out from the same configurations in many different directions. Trajectories with
low values of the weight are also removed (pruned) to keep the total number of
trajectories being propagated at any one time, # , constant. The cloning and pruning
process, therefore, takes advantage of cumulative self-enhancing small fluctuations
of the system to bootstrap to the rare trajectories that contribute maximally to the
average in (1.3). Convergence is achieved when increasing the # no longer changes
the empirical value of _.
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While cloning has proven effective for sampling large deviations, it has several
limitations. To begin with, the method samples the SCGF instead of the rate
function. This feature is usually not a problem since _ can often be transformed
to get �. However, when � is nonconvex, the equivalence of these two functions
breaks down [26]. In addition, the cloning method is highly technical. This has two
consequences. First, setting up a cloning calculation is a significant investment. As
a result, it is not a great choice for exploratory work that may not yield interesting
results. Second, cloning techniques are often unfamiliar to researchers outside of
the field, creating a barrier that prevents the study of large deviations and TPC from
being taken up more widely.

For these reasons, in Chapter 3, we introduce Variational Ansatz for Rare Dynamics
(VARD), the latest iteration in a series of large deviation sampling methods based
on importance sampling [42–44]. VARD computes the rate function directly, is
technically straightforward, and is conceptually familiar since it closely resembles
umbrella sampling in equilibrium statistical mechanics [45]. While importance
sampling has sometimes been included as part of cloning, previous studies have
suggested that it is not powerful enough to calculate large deviations in nontrivial
systems on its own [37, 38, 46]. We show, on the contrary, that VARD is capable
of sampling the rate function in a number of systems in the literature that have been
studied with cloning. As a result, this method provides a previously unrealized
balance of efficacy versus implementation effort. Further, VARD can easily be
extended with cloning if a higher level of accuracy is needed.

1.4 The Meaning of a Kink in the SCGF
In the last chapter, Chapter 4, we examine the meaning of singularities, specifically
kinks, in the SCGF. Kinks are often taken to be proof that TPC occurs. As a
result, the search for these singularities plays a central role in the field [27, 47–51].
However, more formal understanding of what creates a kink is lacking. In particular,
does a kink in the SCGF always imply TPC and vice-versa?

Answering this question is important conceptually for developing a complete un-
derstanding of TPC and practically for ensuring that the current method for locating
coexistence is valid. Consequently, we explore the meaning of kink singularities
by characterizing the behavior of two different random walkers, the driven random
walker introduced in Section 1.2, and an unbiased random walker. Using these
systems, we show that kinks are caused by a diverging timescale in the dynamics,
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which is often but not always indicative of TPC. Similarly, our analysis suggests
that kinks in the free energy in equilibrium statistical mechanics arise due to the
divergence of a length scale, a process that is not always linked to a phase transition.
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C h a p t e r 2

COMPACT-TO-DENDRITIC TRANSITION IN THE REACTIVE
DEPOSITION OF BROWNIAN PARTICLES

Jacobson, D. & Miller III, T. F. Compact-to-Dendritic Transition in the Reactive
Deposition of Brownian Particles. Version 3. arXiv: 2204.01173 [cond-mat].
http://arxiv.org/abs/2204.01173 (Apr. 12, 2022)

Chapter Abstract
When Brownian particles—such as ions, colloids, or misfolded proteins—deposit
onto a reactive cluster, the cluster undergoes a transition from a compact to a
dendritic morphology. Continuum modeling reveals that the critical radius for
this compact-to-dendritic (CTD) transition should be proportional to the particle
diffusivity divided by the surface reaction rate. However, previous studies have
had limited success verifying that the same scaling arises in the continuum limit of
a particle-based deposition model. This discrepancy suggests that the continuum
model may be missing part of the microscopic dendrite formation mechanism,
a concerning hypothesis given that similar models are commonly used to study
dendritic growth in electrodeposition and lithium metal batteries. To clarify the
accuracy of such models, we reexamine the particle-based CTD transition using
larger system sizes, up to hundreds of millions of particles in some cases, and
an improved paradigm for the surface reaction. Specifically, this paradigm allows
us to converge our simulations and to work in terms of experimentally accessible
parameters. With these methods, we show that in both two and three dimensions,
the behavior of the critical radius is consistent with the scaling of the continuum
model. Our results help unify the particle-based and continuum views of the CTD
transition. In each of these cases, dendrites emerge when particles can no longer
diffuse around the cluster within the characteristic reaction timescale. Consequently,
this work implies that continuum methods can effectively capture the microscopic
physics of dendritic deposition.

2.1 Introduction
Many systems that display dendritic growth consist of diffusive particles that deposit
onto a reactive surface. Examples include colloidal aggregation, amyloid formation,
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and electrodeposition [1–3]. One way to understand these systems is by studying
idealized models of reactive deposition [4–9]. These models show that dendrites
emerge due to a feedback loop. Incoming particles preferentially attach to the bumps
of a reactive surface before they have time to diffuse into the valleys [4, 10]. The
preferential deposition causes the bumps to grow faster than the rest of the surface,
which exacerbates the preferential deposition, and so on.

In idealizedmodels, the dendritic feedback loop also produces a deeper phenomenol-
ogy. The thickness of the dendritic branches decreases as the rate of the surface
reaction increases [4, 9]. This relationship is significant because it qualitatively
matches what is observed in electrodeposition experiments [3]. Understanding
branch thickness in idealized models can thus help clarify the mechanism of den-
drite formation in a number of electrodeposition-based applications like batteries.
Currently, dendrite formation in lithium-ion and next-generation alkali metal batter-
ies is one of the primary sources of cell failure as it can deplete the working metal
and the electrolyte, and create catastrophic short circuits [11–13].

In this work, we investigate the factors that determine dendritic branch thickness in
idealized models specifically through the lens of the compact-to-dendritic (CTD)
transition. This transition occurs when a small, compact cluster is embedded in a
concentration field of reactive particles that cause it to growoutwards in all directions
[4–8]. While at first, the cluster continues to display a compact morphology, upon
reaching a critical radius, it splits into a characteristic dendritic pattern1. Illustrations
of the growth process for two and three-dimensional deposition are shown in Fig. 2.1.
Since the critical radius sets the resulting dendritic branch thickness, the CTD
transition offers a convenient way to study the branch structure of the large length-
scale dendritic morphology.

Unfortunately, understanding this transition has proven to be challenging. Previous
studies attempted to analyze the growing cluster by comparing the behavior of two
related models of the deposition dynamics, a discrete model and a continuummodel
[4]. These models differ based on how they represent the concentration field that
surrounds the cluster. In the discrete model, particles in the field are represented
explicitly, and the cluster grows particle-by-particle. In contrast, in the continuum
model, the concentration field itself is taken to be fundamental. Instead of growing

1Meakin suggested that the initial phase of compact depositifon is linked to Eden growth,
reasoning that, when the cluster is small enough, incoming particles equilibrate with its surface and
become equally likely to deposit everywhere [14, 15].
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Figure 2.1: The compact-to-dendritic transition for discrete deposition at log10 Da =
−2.12. Panels (a) and (b) illustrate the two-dimensional deposition process. The #
particles in these panels are rendered with a radius twice that of the actual radius
for clarity. The 8th band of color moving outwards from the center corresponds
to the structure after 8#/5 particles have been deposited. (a) Initially, the cluster
displays a compact morphology. (b) However, upon reaching a critical radius, it
spontaneously forms dendritic branches. (c) During three-dimensional deposition,
a similar dendritic morphology emerges at large length scales. Here, particles are
colored based on their distance from the origin. The inset shows a two-dimensional
slice through the initial compact cluster, # = 1 × 106, with a continuous gradient
color scheme based on the deposition order.
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particle-by-particle, the cluster grows outwards at all points simultaneously with a
velocity proportional to the continuum flux.

The CTD transition in the continuum model can be treated analytically. A linear
stability analysis reveals that for two and three-dimensional growth, the critical
radius '2 scales as

'2 ∼ �/:, (2.1)

where � is the diffusion constant and : is the surface reaction rate constant2 [4,
16]. We will show that �/: scaling is associated with a simple dendrite formation
mechanism.

In comparison, the CTD transition in the discretemodel is significantlymore difficult
to characterize. The behavior of this transition depends on the parameters of the
deposition process through the dimensionless Damköhler number

Da =
:0

�
, (2.2)

where 0 is the particle radius. Physically, Da quantifies the relative rate of reaction
versus diffusion in the system. In the limit as the reaction becomes infinitely fast,
Da → ∞, the model approaches diffusion-limited aggregation (DLA). That is,
particles begin to deposit as soon as they touch the cluster [4, 17]. As a result, the
critical radius for the CTD transition tends towards zero, and the cluster immediately
forms dendritic branches that are a single particle thick.

The limit Da → 0, in contrast, yields a nontrivial critical radius. This limit
corresponds to making the surface reaction infinitely slow. Alternatively, Da → 0
can be thought of as the continuum limit since it can be reached by taking the
particle radius 0 to zero at fixed values of : and �. In either view, when Da → 0,
'2 is expected to converge to the following power-law form based on dimensional
analysis3 [18]

:'2

�
∼ DaW . (2.3)

Here, W is an unknown scaling exponent that encodes the mechanistic details of
CTD transition. This exponent plays a central role in the rest of this article.

Due to its mechanistic importance, a number of authors have previously analyzed W
[4, 6, 8]. In particular, Witten and Sander hypothesized that the continuum limit of

2See also Sec. 2.7.
3Choosing to nondimensionalize the critical radius by the particle radius 0 provides a different,

though equivalent, scaling relationship [4, 6, 8].
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the discrete model (2.3) should reproduce the �/: scaling of the continuum model
(2.1) [4]. Their reasoning implies that, in two and three dimensions, W should be
equal to zero.

However, the W = 0 hypothesis has received only limited empirical support. Refs. [6]
and [8] calculated W using lattice-based and off-lattice 2D Brownian dynamics
simulations and obtained estimates of −0.2 and −0.25 ± 0.3, respectively4. In the
latter case, W = 0 is included at the edge of the error bars, so at a minimum, the
Witten and Sander hypothesis cannot be ruled out. But taken together, these two
results suggest a power-law divergence with W ≈ −0.2.

The lack of agreement between the hypothesized value of W and the value calculated
from simulations is significant for three reasons. To begin with, the evidence that
W ≠ 0 suggests that the continuum model might be missing part of the microscopic
dendrite formation mechanism. This potential limitation is particularly concerning
because similar continuum models have been widely used to study dendrite preven-
tion strategies in lithium metal batteries and other electrodeposition applications
[19–26]. From a theoretical perspective, the value of W also determines the behavior
of the discrete model’s own continuum limit. If W = 0, then this limit is well-defined.
Once the particle radius is small enough, its exact value no longer has any impact
on the critical radius. Conversely, if W ≠ 0, the continuum limit is not physically
meaningful. The critical radius either diverges for W < 0, or goes to zero for W > 0.
The apparent absence of a well-defined continuum limit in the discrete model has
previously led some authors to explore this limit by instead representing deposition
as a random sequence of conformal maps [27]. Finally, the disagreement between
the discrete and continuum descriptions of the CTD transition has prevented both
of these models from being widely embraced experimentally. Neither one has been
tested against the branch thickness phenomenology of real systems.

Given the importance of W for understanding dendrite formation across the micro-
scopic and continuum scales, here, we reexamine this quantity using an updated
Brownian dynamics simulation approach. We improve on past simulation studies in
four ways. First, we use a corrected simulation algorithm [16, 28]. Fixing the prob-
ability that the particle deposits onto the cluster upon contact, as is standard, makes
achieving timestep convergence impossible [8, 9]. Instead, the sticking probability
must be a function of the timestep. Second, we carefully evaluate the convergence of
W as the Damköhler number is taken to zero. Third, we examine the CTD transition

4See also Sections 2.3 and 2.9.
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in two dimensions at much smaller values of the Damköhler number than those used
to study the continuum limit in previous work [6, 8]. As part of this process, we
generate clusters containing hundreds of millions of particles, orders of magnitude
larger than the largest cluster sizes reported so far. Finally, we also investigate, for
the first time, the scaling of the CTD transition in three dimensions.

Apart from the simulation-based study of W, this article contains three additional
contributions. The first is that we review the literature relating to the CTD transition.
The second is that we reorganize this literature into a unified framework based on
the Damköhler number introduced in (2.2). Previously, the sticking probability in
the Brownian dynamics algorithm was used in place of Da because it was taken to
be a fundamental physical parameter [4–8, 15]. However, the sticking probability
is actually a convergence parameter akin to the simulation timestep [16, 28]. The
third contribution is that we show the �/: scaling of the continuum model, (2.1),
has a simple physical interpretation.

The rest of this work is organized as follows. First, in Sec. 2.2, we define the
discrete and continuum growth models. Next, in Sec. 2.3, we describe our Brownian
dynamics algorithm for simulating the discrete model and detail our methods for
calculating the exponent W. Finally, in Sec. 2.4, we evaluate W based on simulation
data and discuss how our results compare to the hypothesis that W = 0.

2.2 Model Definitions
We begin by defining the discrete and continuum reactive deposition models. The
discrete model represents the dynamics of the diffusive particles reacting with the
cluster explicitly and is the main focus of this work. In contrast, the continuum
model coarse-grains the particle dynamics as a concentration field and is included
for comparison.

In the discrete model, the cluster is initially composed of a single reactive particle
with radius 0, fixed at the origin [4]. A diffusive particle, also with radius 0,
is launched from a random point on a circle (or a sphere in 3D) with radius 1
that surrounds the cluster. After the diffusive particle deposits, another particle
is launched, and the process repeats. The launching surface is destructive. If the
diffusive particle ever returns to this surface, it is killed, and a new particle is
introduced. Finally, the launching radius 1 is assumed to be very large; that is, we
take the limit 1 → ∞ (details of how this limit is handled in simulations can be
found in Sec. 2.8).
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Before formalizing these dynamics, we simplify the excluded volume interaction.
Specifically, we treat the incoming particle as a point particle and double the radii of
the particles that compose the cluster, generating what we term the “supercluster."

The deposition process in the model is defined by the growth probability density
d(w), the probability density that the incoming particle attaches to the supercluster
boundary at the point w. d(w) can be expressed in terms of a steady-state concen-
tration field � using the standard Laplacian growth framework [29, 30]. Following
this approach, the field � (x) (for position x) satisfies Laplace’s equation

∇2� = 0 (2.4)

on the domain outside of the supercluster boundary and inside the launching radius.
The launching circle or sphere becomes a particle bath with an arbitrary, fixed
concentration �0

� ( |x | = 1) = �0. (2.5)

And lastly, the reactivity of the supercluster at a point w is included with the
boundary condition

�∇� (w) · n(w) = :� (w). (2.6)

Here, n is the outward unit normal, � is the diffusivity of the incoming particle,
and : is the reaction rate constant. Note that : is a surface rate constant, and so has
units of velocity. The growth probability density d(w) is then proportional to the
flux

d(w) ∝ ∇� (w) · n(w). (2.7)

The discrete model specified by (2.7) has three dimensional parameters : , 0, and �.
These parameters combine to form the Damköhler number, Da in (2.2). The value of
Da sets the ratio of the reaction and diffusion rates in the system. In addition, since
it is the only dimensionless quantity, Da uniquely determines the growth dynamics.

The continuum growth model is similar to the Laplacian growth framing of the
discrete model in that it consists of a reactive cluster, a bath, and a concentration
field [4]. However, the concentration field � is taken to be fundamental instead of
being introduced only as a means of calculating the behavior of discrete particles.
This feature leads to two changes. First, in the continuum model, the cluster is a
closed curve (or a surface in 3D) rather than a collection of particles. Second, the
cluster grows outward at every point along the unit surface normal n simultaneously
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as opposed to growing one particle at a time. Specifically, the growth velocity of a
point on the boundary E(w) is set by the flux

E(w) = `�∇� (w) · n(w). (2.8)

The constant of proportionality in this equation, `, is taken to be small enough
that � is pseudosteady. As a result, � is described by the same set of equations,
(2.4)-(2.6), as in the discrete model.

2.3 Theory and Methods
Brownian Dynamics Algorithm
Propagating the growth dynamics of the discretemodel involves repeatedly sampling
the growth probability density d(w), defined in (2.7), and attaching a new particle
to the cluster at the selected point. We obtain these samples by simulating the
motion of the incoming particle directly using the specialized Brownian dynamics
algorithm from Refs. [16] and [28]. In this subsection, we provide an overview of
the unusual features of this algorithm. Further technical details of our simulations
can be found in Sec. 2.8.

The Brownian dynamics algorithm functions as follows. Each timestep, the position
of the incoming particle is updated using a Gaussian displacement as in standard
methods [31]. If the particle makes contact with the cluster during the update, it
deposits with a given sticking probability % [4, 15]. Otherwise, it reflects off of the
cluster surface.

This algorithm is unusual for two reasons. First, we would like to simulate discrete
deposition for a given value of the rate constant : . However, : does not appear in
the operational parameters of the algorithm, which include the particle radius 0, the
diffusion constant �, the timestep ΔC, and the sticking probability %. Rather, the
value of : is set implicitly by the values of these other parameters. The second reason
the algorithm is unusual is that the implicit equation for : includes the timestep.
Specifically, we have [16, 28]

: = %

√
�

cΔC
. (2.9)

Eq. (2.9) implies that we must approach timestep converge carefully. We still need
to take the limit ΔC → 0 to converge any observables of interest calculated from the
simulations. But taking this limit for a fixed value of the sticking probability % will
cause : to diverge. Instead, to keep : constant, we need to take the timestep and
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the sticking probability to zero simultaneously such that the ratio %/
√
ΔC is fixed.

In other words, to simulate a given : value, we must always set

% = :

√
cΔC

�
(2.10)

as we take ΔC → 0. For this reason, the sticking probability is effectively a
convergence parameter like the timestep rather than a physical parameter like the
rate constant.

We verified the timestep convergence of our simulations by evaluating the critical
radius (defined in Sec. 2.3) at various values of the Damköhler number. More
information about this procedure can be found in Sec. 2.8.

ToyModel: ABrownian Particle in aOne-Dimensional BoxwithReactiveWalls
Since the convergence behavior of the Brownian dynamics algorithm is counterin-
tuitive, we illustrate it here with a toy example. Consider a Brownian point particle
initialized at a random position in a one-dimensional box of length !. The left wall
of the box, wall �, is reactive with surface rate constant :�, while the right wall of
the box, wall �, is absorbing (or equivalently :� = ∞). After nondimensionalizing
with ! and the diffusion constant �, the probability density of the particle b as a
function of position H and time g is described by

mgb = mHHb,

mHb (0, g) = k�b (0, g),
b (1, g) = 0,

b (H, 0) = 1.

(2.11)

Here, k� = :�!/� is a dimensionless rate constant similar to the Damköhler
number in the discrete deposition model.

For this toy system, we focus on the effect of the timestep on the probability that
the particle will react with wall � on the left, Φ�. This quantity can be calculated
analytically as follows. First, we integrate (2.11) and define Ξ =

∫ ∞
0 b3g yielding

Ξ′′(H) = −1

Ξ′(0) = k�Ξ(0),
Ξ(1) = 0.

(2.12)

Φ� is then equal to the integrated flux

Φ� =

∫ ∞

0
mHb (0, g)3g = Ξ′(0) =

k�/2
1 + k�

. (2.13)
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Figure 2.2: The probability that the Brownian particle reacts with wall �, Φ�,
for various values of the timestep ΔC. Red triangles correspond to simulations
run at k� = 1/4 where the sticking probability at wall �, %�, varies according to
(2.10). As ΔC → 0, these simulations approach the analytical result from (2.13),
Φ� = 1/10 (red horizontal line). In contrast, the blue, orange, and green diamonds
were generated from simulations that used the fixed values of the sticking probability
indicated in the upper-right legend. As ΔC → 0, these data approach Φ� = 1/2
(black-dashed line), the infinitely fast reaction limit, following the predictions of
(2.9) and (2.13) (blue, orange, and green curves). All numerical data points were
generated using 104 samples. Error bars constructed fromWald confidence intervals
are smaller than the symbols [32].

When the rate constant k� goes to infinity, we find Φ� → 1/2 as expected from
symmetry.

In Fig. 2.2, we demonstrate the convergence behavior of the Brownian dynamics
algorithm by comparing Φ� in simulations run with variable and fixed values of
%�, the sticking probability at wall �. This figure clearly shows that only a variable
sticking probability, (2.10), is consistent with the goal of simulating a fixed rate
constant in reactive deposition. The simulations run with this method at k� = 1/4
(red triangles) approach the analytical solution Φ� = 1/10 from (2.13) (red line) as
ΔC → 0. In contrast, as predicted by (2.9), the fixed sticking probability simulations
(blue, orange, and green diamonds) all converge to the infinitely fast reaction result,
1/2, (black-dashed line) in the limit ΔC → 0.

Previous Studies Treated the Sticking Probability as a Physical Parameter
We now compare our conceptual framework for discrete reactive deposition, which
is based on the Damköhler number, with the approach used by previous authors,
which is based on the sticking probability. In particular, we focus on off-lattice
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deposition, where the particles move in continuous space. Many authors instead
studied lattice-based systems which we discuss in Sec. 2.9 [4, 6].

Prior studies considered the sticking probability % to be a fundamental physical
parameter of the system that controlled the surface reaction rate rather than a con-
vergence parameter like ΔC [8, 9, 33]. This view of the sticking probability appeared
to be borne out in simulations where different fixed values of % were found to gener-
ate different cluster morphologies [8, 9]. Consequently, Halsey and Leibig proposed
that the critical radius for the CTD transition should scale as a power law with %
in the limit % → 0 and attempted to use simulations to calculate the associated
exponent [8].

Eq. (2.9) and Fig. 2.2, however, illustrate that treating the sticking probability as a
normal physical parameter has a number of conceptual limitations. In particular,
all fixed values of % yield the same infinitely fast reaction dynamics in the limit
ΔC → 0. The reason different % values previously seemed to produce different
cluster morphologies in simulations was due to the incomplete timestep convergence
[8, 9]. In addition, since for any constant %, the morphology always crosses over
immediately to fractal growth, examining the behavior of the critical radius in the
limit as %→ 0 is not physically meaningful.

To resolve these issues, we can recast the simulation results of prior studies into
the rate constant-based framework we have introduced here. Since these studies
happened to use the same timestep for all of their simulations, the effective rate
constant : being simulated, (2.9), is always directly proportional to the sticking
probability % [8, 9]. Consequently, the figures and calculations in these references
can be adapted to our framework if the appropriate value of the Damköhler number
is substituted for each value of %. For example, Halsey and Leibig’s estimate
of the power-law scaling exponent of the critical radius in terms of the sticking
probability can instead be taken as an estimate for the exponent W in (2.3), yielding
W = −0.25 ± 0.35 [8].

There is, however, one caveat with the conversion procedure. After the sticking
probability is replaced with the Damköhler number, the simulation results cannot
be assumed to be converged with respect to the timestep. That is, the only way
to guarantee ΔC convergence to a finite rate constant is to follow the prescription
of (2.9) and take ΔC and % to zero at the same time. But previous authors instead

5Ref. [15] states that Halsey and Leibig’s result in Ref. [8] is consistent with W = 0.2 instead of
W = −0.25. However, we believe this is in error based on Eq. 3.4 in the original reference.
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always treated % as a fixed quantity [8, 9]. Nevertheless, the values of ΔC these
authors happened to choose are comparable to the value of ΔC we selected for our
simulations in this work based on the rigorous convergence procedure described in
Sec. 2.8. Consequently, these studies’ % to Da converted results are likely free of
significant timestep-related artifacts.

The Reaction-Diffusion Length �/:
The ratio of the diffusion constant to the reaction rate constant�/: plays a significant
role in the CTD transition. As a reminder, in the continuum model, (2.1), we have
'2 ∼ �/: directly, and in the discrete model, (2.3), we have '2 ∼ �/: in the
continuum limit if W = 0. In this section, we show how the Brownian dynamics
algorithm helps to clarify the physical meaning of this length scale, offering a new
view of the CTD transition.

The Brownian dynamics algorithm implies that one of the key physical parameters
in the simulation is the ratio of the sticking probability and the square root of the
timestep. This ratio defines a new microscopic rate constant ^

^ =
%
√
ΔC
= :

√
c

�
(2.14)

that can be used in place of the macroscopic rate constant : [16, 28].

Thinking in terms of ^ is helpful for understanding the ratio �/: . Specifically, since
it has units of reciprocal square root of time, ^ clearly indicates that the timescale
for the surface reaction ) is

) ∼ 1/^2 ∼ �/:2. (2.15)

The definition of ) is not immediately apparent based on the macroscopic view of
the system since if we start from the macroscopic rate constant : , we find both 0/:
and �/:2 have units of time. Based on (2.15), we can see that the ratio �/: is the
length a particle can diffuse in the characteristic reaction timescale

√
�) ∼ �/:. (2.16)

Consequently, we call this quantity the “reaction-diffusion length.”

Using the reaction-diffusion length, we can propose a newmechanistic interpretation
of the CTD transition. Specifically, �/: scaling of the critical radius implies that
dendritic growth initiates when particles can no longer diffuse around the circum-
ference of the cluster within the characteristic reaction timescale. This mechanism
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helps explain dendrite formation in the continuum model where '2 ∼ �/: . How-
ever, critically, it also applies to the discrete model if W = 0. If instead, W ≠ 0,
the discrete CTD transition must result from some other physical process that the
continuum perspective fails to adequately capture. Consequently, determining the
value of W is paramount for advancing understanding of dendritic growth and for
potentially unifying this understanding across the discrete and continuum scales.

The Critical Radius '2
In this subsection, we define the critical radius quantitatively so that it can be cal-
culated in simulations. The definition we use is posed in terms of the instantaneous
fractal dimension of the cluster

D� =
3 log10 #

3 log10(:'6/�)
. (2.17)

Here, # is the number of particles in the cluster, and '6 is the cluster’s radius
of gyration. For compact growth, D� approaches the dimension of the space 3
after initial transients decay. In contrast, for dendritic growth, D� plateaus at a
characteristic value less than 3, once again after initial transient behavior. The value
ofD� in this dendritic regime has empirically been found to be 1.71 in 2D and 2.51
in 3D independent of the value of Da [6, 8, 34]. As a result of the two plateaus, plots
of the fractal dimension versus the log of the cluster radius, such as Fig. 2.3(a), are
roughly sigmoidal.

Based on this behavior, we take the critical radius, '2, to be the x-value on the
fractal dimension curve with the most negative slope

'2 = argmin'6
3D�

3 log10(:'6/�)
. (2.18)

We evaluate (2.18) using simulation data by first calculating fractal dimension and
its derivative with finite difference. We then apply cubic splines to fit the resulting
data before taking the argmin.

Calculating the Critical Radius Scaling Exponent W
We now describe how we calculate the critical radius scaling exponent W from
simulation data and contrast our approach with the one taken by previous authors.
We compute W by finding the slope of a log-log plot of the critical radius versus
the Damköhler number in the limit as the latter goes to zero. While conceptually
straightforward, this method requires evaluating the critical radius at very small
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Figure 2.3: Continuum limit scaling analysis of the compact-to-dendritic transition
in two dimensions. All error bars are bootstrapped 95% confidence intervals (CI)
and are sometimes smaller than the lines or symbols. See Table 2.1 for further
trajectory details. (a) The fractal dimensionD� versus the radius of gyration '6 for
various values of the Damköhler number, Da. (b) Absolute value of the derivative
of the fractal dimension |D′

�
|. The peaks define the critical radius at each value of

Da, see (2.18). (c) The critical radius '2 as a function of Damköhler number. (d)
The derivative of panel (c), Γ, which provides an estimate for the scaling exponent
W in (2.3) as Da → 0. The leftmost (blue) point has a value of −0.06 with a
95%CI of [−0.03,−0.09]. At the top of the panel, the black dashed line represents
the hypothesis that W = 0. (e) The maximum value of |D′

�
| (or equivalently |D′

�
|

evaluated at critical radius) versus the Damköhler number. A linear fit to the three
points with the lowest Da values (dash-dot black line) has a slope of −0.15 with a
95%CI of [−0.16,−0.14].

values of Da. This procedure is computationally challenging for two reasons. First,
as Da gets smaller, an increasing number of particles are needed to observe the
fractal transition, especially in 3D. #2, the number of particles in a 3 dimensional
critical cluster, scales as

#2 ∼ ('2/0)3 ∼ Da3 (W−1) , (2.19)

and based on analyses so far, it is clear W < 1 [6, 8]. Second, sinceDa is proportional
to the sticking probability in (2.10), the smaller its value, the longer it takes each
particle to deposit in terms of computational steps.

As described in Sec. 2.8, we used a parallel Brownian dynamics algorithm to
help partially alleviate these two problems. However, calculating W still required
substantial computational effort because the goal was always to probe deeper into the
continuum limit, Da→ 0. In the end, we used large-scale simulations to examineDa
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values where the critical clusters in 2D and 3D contained several hundred million
particles, orders of magnitude more particles than the largest reactive deposition
clusters generated previously [6, 8].

Authors of prior studies calculated W using an alternative strategy. Rather than com-
puting the critical radius directly, these authors instead determined W by exploiting
data collapse6 [6, 8]. As an example of this approach, consider the relationship
between the fractal dimension and the cluster radius in nondimensional form

D� = 5 (
:'6

�
,Da). (2.20)

Taking the continuum limit and using the fact that the cluster starts off compact,
D� = 2, yields

D� = 6(
:'6

DaW�
), (2.21)

where the factor DaW is associated with the critical radius [18]. As a result, it is
possible to evaluate W by probing the collapse of the fractal dimension data in the
low Da limit.

However, such collapse-based methods have several limitations. To begin with,
quantitatively characterizing the extent of a collapse is not straightforward. Previous
authors instead estimated W by judging each potential collapse by eye [6, 8]. In
addition, equations such as (2.21) only apply if the Damköhler number is small
enough. Consequently, it is necessary to leave out the highest Da value, then the
next highest Da value, and so on, to assess convergence. Previous authors, however,
did not investigate convergence in a systematic matter [6, 8]. Finally, checking for
a collapse is susceptible to bias if only partial data is available. For example, at
certain values of Da, we often cannot generate large enough clusters to see the full
fractal plateau. Running a collapse calculation on such data would artificially add
weight to the initial compact piece of the curve that we can successfully compute.

In contrast, directly measuring the critical radius provides a simple way to calculate
W and evaluate convergence. All that is necessary is to examine a log-log plot of
'2 versus Da. Further, direct measurement also avoids introducing any bias due to
partial data.

6Meakin in Ref. [6] actually estimated the equivalent lattice-based scaling exponent a instead of
W, see Sec. 2.9. However, the same data collapse method was used for this a calculation.
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Figure 2.4: Continuum limit scaling of the compact-to-dendritic transition in three
dimensions. Panel axis labels are the same as in Fig. 2.3, but note the difference
in scale between panel (d) and Fig. 2.3(d). The repeated caption is provide for
convenience. See Table 2.2 for further trajectory details. (a) Fractal dimension D�

as a function of the radius of gyration '6 for different Damköhler numbers, Da.
(b) The absolute value of the derivative of panel (a), |D′

�
|. (c) The critical radius

'2 versus Da. (d) Derivative of the log of the critical radius with respect to the
log of the Damköhler number, Γ. The black dashed line corresponds to the W = 0
hypothesis. (e) Height of the peak in panel (b), max |D′

�
|, versus the Damköhler

number.

2.4 Results and Discussion
In this section, we present the results of our two and three-dimensional Brownian
dynamics simulations and evaluate whether these results are consistent with the
W = 0 hypothesis. We also explore the sharpening of the CTD transition in the
continuum limit, a feature of the system that resembles the finite-size scaling of an
equilibrium phase transition.

Simulation results for two-dimensional deposition are shown in Fig. 2.3. Panel (a)
exhibits the characteristic sigmoidal shape of the fractal dimension as a function of
the cluster radius. At smaller values of the Damköhler number, the fractal transition
occurs when the cluster has very few particles. For this reason, the plateau atD� = 2
due to compact growth is not yet fully visible. The lack of this compact plateau
makes calculating the critical radius impossible at log10 Da values larger than−1.26.
Panel (a) also provides further evidence that the fractal dimension of 2D dendritic
growth is approximately 1.71 independent of the value of Da [6, 8].

FromFig. 2.3(a), we can calculate the critical radius, (2.18), and evaluate its behavior
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in the continuum limit. Fig. 2.3(b) shows the magnitude of the derivative of the
fractal dimension. The peaks on this panel define the critical radius '2 for each
Da. Plotting these '2 values directly in Fig. 2.3(c) shows that the critical radius
increases as the Damköhler number gets smaller. To find the exponent W, in panel
(d) we compute the derivative Γ = 3 log10 [:'2/�]

3 log10 Da which converges to W in the limit
Da→ 0. We find that this derivative gets closer to zero as Da gets smaller. Further,
taking the leftmost point on the curve (blue) to approximate W yields an estimate of
−0.06 with a 95%CI of [−0.09,−0.03].

The confidence interval for W must be interpreted carefully in relation to the W =
0 hypothesis. In particular, this interval does not include zero. The remaining
discrepancy can be explained by the magnitude of the Damköhler number. That is,
for smaller values of Da, Γ might follow the trend in Fig. 2.3(d) and move closer
to zero. But this trend is not robust. The bottom of the confidence interval for the
blue point, −0.09, may instead indicate that the final part of the upwards drift in
the data is a numerical artifact covering an underlying plateau at a value of around
−0.1. Such a plateau would be consistent with the position of the preceding orange,
green, and red points.

In spite of this concern about the trend in Γ, we can draw two conclusions from the
results of the 2D simulations. First, previous studies reported that W ≈ −0.2, but
this value does not fit our data [6, 8]. Based on panel (d), it is clear that W ≥ −0.1, a
significant upward revision. Second, while it is not possible to distinguish between
a plateau at around W = −0.1 and a continued trend towards W = 0, the latter is still
entirely consistent with the simulation results. Consequently, the data offers the first
substantial numerical support for the hypothesis that W = 0.

We now turn toward characterizing the critical radius of the CTD transition in 3D.
The results of our 3D simulations are presented in Fig. 2.4 using the same format
as the 2D results. In panel (c), as Da tends towards zero, '2 exhibits an immediate
plateau at a value of around 3�/: . Again using the leftmost point of panel (d), we
find that W = 0.02 with a 95%CI of [−0.27, 0.12]. This confidence interval is very
broad due to the limited number of trajectories generated at log10 Da = −2.55. To
increase the precision, we can instead estimate W using the second-to-last point from
the left (red), which has a value of −0.01 with a 95%CI of [−0.11, 0.02]. However,
by using a larger value of the Damköhler number, we may sacrifice some accuracy
with respect to the Da→ 0 limit.

Using the 3D data to evaluate the W = 0 hypothesis presents its own set of challenges
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because simulations in this dimension are more expensive than in 2D. To begin with,
we could not observe the CTD transition at as wide a range of Damköhler numbers,
and as a result, the convergence to the Da→ 0 limit is not as robust. For example,
unlike in 2D, the plateau that corresponds to the compact growth regime D� = 3 is
not fully developed in Fig. 2.4(a) even for the smallest value of log10 Da = −2.55
(green curve). In addition, since we generated fewer trajectories overall, the error
bars in Fig. 2.4 are wider than in Fig. 2.3. For this reason, although the flattening
trend in the 3D data is clear, it is not possible to rule out plateau at a W value between
zero and −0.1.

Despite these limitations, the estimate for W in 3D is consistent with the 2� estimate,
95%CI [−0.09,−0.03]. Further, taken together, the 2D and 3D data sets offer
significant evidence for the W = 0 hypothesis. Both W confidence intervals are close
to zero, and the remaining differences can be plausibly explained by Damköhler
number and statistical convergence effects.

These findings clarify the behavior of CTD transition in twoways. First, they suggest
that the continuum limit of the discrete model, Da → 0, is well-defined. Once the
particles become small enough, the critical radius rescaled by �/: converges to
a constant. Second, our results help unify the discrete and continuum models
by showing that they exhibit the same dendrite formation mechanism. In both
cases, the dendritic instability develops when the cluster circumference exceeds the
reaction-diffusion length �/: . The ability of the continuum model to reproduce
the microscopic physics of the discrete model is important because it validates the
continuum approach to studying dendritic deposition more generally. In particular,
this agreement provides a stronger microscopic foundation for a number of research
efforts that have used continuummethods to examine electrodeposition applications
including dendrite suppression strategies in lithium metal batteries [19–26]

One last feature of the CTD transition that warrants discussion is its sharpness.
Fig. 2.3(b) shows that, in 2D, the height of the peak in the fractal dimension
derivative, |D′

�
|, appears to diverge in the limit as Da→ 0. This behavior is notable

because as Da gets smaller, the number of particles in the critical cluster, #2 in
(2.19), goes to infinity. The sharpening of the CTD transition is thus reminiscent of
the finite-size scaling of an equilibrium phase transition [35].

This connection motivates us to analyze the transition by following the standard
equilibrium protocol. Specifically, we examine the scale of the divergence and the
associated prefactor [35]. Fig. 2.3(e) shows the height of the peak in the derivative,
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max |D′
�
|, as a function of the Damköhler number. The line of best fit suggests

that this quantity diverges logarithmically with a prefactor of −0.15 (95%CI of
[−0.16,−0.14]). However, since the range of values in the figure is relatively small,
it is not possible to distinguish between a logarithmic and a power-law divergence.
The latter case leads to a best-fit exponent with the same value as the logarithmic
prefactor, −0.15 with a 95%CI of [−0.16,−0.14]. Figs. 2.4(b) and (e) show that the
CTD transition also becomes increasingly sharp in 3D, though we do not yet have
enough points to evaluate the prefactor in this dimension.

Beyond a numerical characterization of the divergence of |D′
�
|, many aspects of the

finite-size scaling of the CTD transition remain unclear. For example, how does this
divergence emerge from the microscopic dynamics? And how does the behavior of
the transition relate to finite-size scaling in equilibrium? We hope to pursue these
questions in the future.

2.5 Conclusion
In thiswork, we examined theCTD transition in reactive deposition to clarify how the
dendritic branch thickness depends on the deposition parameters. Specifically, we
compared the behavior of the CTD transition in an analytically tractable continuum
model and a particle-based (discrete) model. In contrast with previous studies, we
found that Brownian dynamics simulations of the discrete model in the continuum
limit are consistent with the behavior of the continuum model. That is, the critical
radius is proportional to the ratio of the diffusion constant to the reaction rate
constant. This behavior implies that these models share the same mechanism for
dendritic growth. In each case, dendrites emerge when the circumference of the
cluster becomes comparable to the reaction-diffusion length. More broadly, our
findings suggest that continuum formulations of reactive deposition, which are
widely used to study lithium metal batteries and other types of electrodeposition,
are able to accurately reproduce the microscopic features of dendrite formation [19–
26].

Future investigations will test whether the CTD transition displays the same phe-
nomenology in real, as opposed to idealized, systems with the aim of managing
dendritic deposition in applications like batteries. In experiments, the continuum
limit could be accessed by making the reaction rate slower rather than changing the
radius of the microscopic particles. This procedure would be particularly practical
in electrochemistry since the applied voltage directly controls the surface reaction
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kinetics [36]. However, we also expect reaction-diffusion length scaling to apply
to many other systems, including those that feature the deposition of colloids or
misfolded proteins.

Finally, it remains to be seen how theCTD transition interactswithmore complicated
deposition geometries. Here, we examined a cluster that grows outwards in all
directions. This configuration has been the focus of previous computational and
theoretical efforts due to its simplicity [15]. However, another possible choice is to
grow the cluster upwards starting from a reactive surface at the bottom of a box,
a geometry that more closely resembles a standard electrodeposition experiment
[9, 37]. Intriguingly, the confinement provided by the box walls has been shown
to suppress dendritic growth in experiments and continuum scale models [23–25].
We plan to characterize the CTD transition in this type of deposition in a future
publication.
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SUPPLEMENTARY MATERIALS: COMPACT-TO-DENDRITIC
TRANSITION IN THE REACTIVE DEPOSITION OF

BROWNIAN PARTICLES

2.7 Linear Stability Analysis of the Continuum Growth Model
The continuum reactive deposition model was first characterized by Witten and
Sander in Ref. [1]. In this section, we reproduce their analysis using the updated con-
ceptual framework from the main text7. We focus in particular on two-dimensional
(2D) growth. The analysis for three-dimensional growth is similar.

As introduced in Sec. 2.2, the concentration field � that surrounds the cluster in the
continuum model is determined by the diffusion equation and boundary conditions

∇2� = 0,

� ( |x | = 1) = �0,

�∇� (w) · n(w) = :� (w).

(2.22)

Here, x is position, 1 is the bath radius, �0 is the bath concentration, w is a position
on the cluster boundary, � is the diffusion constant, and : is the surface reaction
rate constant. The value of �0 does not affect the analysis of the growth behavior
as long as � is pseudosteady (see Sec. 2.2 of the main text). We are interested
in understanding growth behavior in the limit as 1 → ∞. While it is possible to
analyze the model as written and then take this limit, it is simpler to take the limit
first. The generalization of the bath boundary condition to an infinite domain in 2D
is [3]

� → �1 ln(A/A0) + �2 as A →∞. (2.23)

In this equation, A is the radial polar coordinate, �1 is a known constant that plays
the same role as �0 in (2.22), and the parameters A0 and �2 are linked undetermined
constants.

FollowingWitten and Sander, the growth behavior of the model can be characterized
using a linear stability analysis [1]. This analysis takes the cluster boundary to be
composed of a circle plus a small cosine perturbation with a given wavelength. If the
calculated growth rate of the perturbation is faster than the growth rate of the cluster
radius, then deposition will be unstable. Analyzing a cosine perturbation is enough

7Witten and Sander’s results were originally expressed in terms of the equivalent parameters
from their lattice-based deposition simulations, see Sec. 2.9 and Ref. [2].
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to understand the stability of any small boundary perturbation for two reasons. First,
any perturbation can be decomposed into a Fourier series, and second, the stability
analysis equations are linear.

To begin, we present the equations that describe the perturbed cluster. In polar
coordinates, the boundary of this cluster Z (\) is

Z (\) = Z0 + n< cos(<\). (2.24)

Here, Z0 is the cluster radius, n< is the size of the perturbation and < ∈ {1, 2, 3, ...}.
We then nondimensionalize with

Z̄ = Z/Z0,

n̄< = n</Z0,

∇̄ = Z0∇,

�̄ = �/�1,

Ā = A/Z0,

k =
:Z0

�
.

(2.25)

As a result, (2.24) becomes

Z̄ (\) = 1 + n̄< cos(<\), (2.26)

and the diffusion equation and boundary conditions, (2.22), become

∇̄2�̄ = 0,

�̄ → ln(Ā) + �̄3 as Ā →∞,
∇̄�̄ ( Z̄ (\), \) · n = k�̄ ( Z̄ (\), \),

(2.27)

where �̄3 is a new undetermined constant resulting from the transformation.

Next, we solve for �̄ perturbatively up to first order in the small parameter n̄<.
Specifically, we seek a solution of the form [4]

�̄ (Ā , \) = �̄� (Ā , \) + n̄<�̄� � (Ā , \). (2.28)

To find �̄� , we set n̄< = 0. Since there is no longer any perturbation, �̄� is a function
of Ā only, leading to the solution

�̄� (Ā) = ln(Ā) + k−1. (2.29)

Solving for the second term, �̄� � requires first expanding the reactive boundary
condition at the surface to $ (n̄<). The outward surface unit normal is

n = êA + n̄<< sin(<\) ê\ , (2.30)
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where êA and ê\ are the A and \ unit vectors, respectively. Consequently, the reactive
boundary condition in (2.27) reduces to

mĀ�̄ ( Z̄ (\), \) = k�̄ ( Z̄ (\), \). (2.31)

After expanding each side of this equation at the boundary and gathering $ (n̄<)
terms, we have for the �̄� � problem

∇̄2�̄� � = 0,

�̄� � → 0 as Ā →∞,
mĀ�̄� � (1, \) = k�̄� � (1, \) + cos(<\) (k + 1),

(2.32)

leading to the solution

�̄� � (Ā , \) = −
k + 1
k + <

cos(<\)
Ā<

. (2.33)

We can now evaluate the stability of the growth. First, the (negative) flux at the
surface is

∇̄�̄ ( Z̄ (\), \) · n = 1 + < − 1
1 + <k−1 n̄< cos(<\), (2.34)

so the dimensional growth velocity, from (2.8) in the main text, is

E(\) = `��1

Z2
0

[
Z0 +
(< − 1)n< cos(<\)

1 + < �
:Z0

]
. (2.35)

Comparing this expression with the equation for the boundary (2.24), we see that
the first term expresses the growth velocity of the radius EZ0 while the second term
expresses the growth velocity of the perturbation En< . As a result, the stability
parameter j is [5]

j =
En</n<
EZ0/Z0

=
< − 1

1 + < �
:Z0

. (2.36)

Eq. (2.36) shows that when Z0 � �/: , the growth is unstable, perturbations for
< > 2 grow faster than the radius itself. However, the instability is suppressed when
Z0 � �/: . Based on this analysis, Witten and Sander concluded that the critical
radius for the compact-to-dendritic transition in the continuummodel scales as �/:
[1].
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2.8 Brownian Dynamics Simulations
Brownian Dynamics Algorithm
The basis for our Brownian dynamics algorithm is the standard Gaussian update of
the particle position [6]. However, since the particle is often far from the cluster,
using this kind of update exclusively is inefficient. Instead, we adopt several standard
computational tricks to speed up the simulation of the dynamics [3, 7]. These tricks
involve breaking the incoming particle’s motion into three different types of steps:
small steps, large steps, and first-hit steps. In this subsection, we first describe each
kind of step individually and then show how we combine them to form the full
algorithm. For a summary see Alg. 1.

Small Steps

During a small step, we displace the incoming particle following the standard
Gaussian procedure and check for contacts with particles in the supercluster. We run
the contacts check by treating the displacement as straight-line motion between the
initial and final positions [2, 8]. Then to find the supercluster particles that intersect
this path, we use the line-sphere intersection algorithm [9]. We also constrain the
maximum distance that the particle can move in each dimension during a single step
to be fcut, drawing displacements from a truncated rather than a standard Gaussian
distribution. Bounding the displacement limits the number of possible contacts per
step and allows us to quickly check these contacts using a cell list [6]. Further, the
bias introduced by this constraint is negligible as long as fcut is large.

When the particle does make contact with the supercluster, we draw a random
number and compare it to the sticking probability, (2.10), as described in the main
text. If the particle does not stick, it reflects off the supercluster such that the
incoming and outgoing angles of reflection are equal [2, 8]. After this contact, the
particle continues to travel in a straight line, reflecting off the supercluster again
if necessary. The step ends when either the particle sticks or the lengths of the
particle’s straight-line displacements between reflections sum to the magnitude of
the initial displacement. Note that in the future, we plan to implement the additional
sticking probability correction to this algorithm described in Ref. [10]. With this
correction, the size of the timestep can be increased while maintaining the same
level of accuracy.

Small steps have issues with numerical stability in two rare situations. The first
situation occurs when the final position of the incoming particle is very close to
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the supercluster boundary. Such a configuration can cause the contact checking
algorithm to miss the nearby boundary during the next step. We prevent this
problem by checking if the incoming particle ends upwithin 20+] of any supercluster
particles. Here ] = 1 × 10−80 is a threshold parameter that we use throughout the
algorithm. If so, we treat the particle’s final position as a contact and make a draw
against the sticking probability. We then either attach the particle to the cluster or,
when the draw fails, reject the original move such that x(C +ΔC) = x(C). The second
situation that leads to numerical instability is similar to the first. It arises when the
incoming particle bounces off the supercluster at a cusp within ] of the boundary
of another supercluster particle. In this case, the contact checking algorithm may
once again miss the nearby boundary during the next cycle of motion. We avoid this
problem by rejecting the move rather than continuing to resolve the bounce.

Large Steps

We use the second type of step, large steps, when the particle is far from the
supercluster. During these steps, we first find the distance � from the incoming
particle to the nearest supercluster particle. This operation can be done in $ (ln #)
time using a :-d tree [7, 11]. We then displace the incoming particle by�−20−2] in
a random direction. Such a step size guarantees that no contacts will occur. Note that
we must subtract 2] instead of just ] from displacement since supercluster particles
already have a skin of size ] for collision detection, as mentioned previously.

First-Hit Steps

The final type of step we use in the Brownian dynamics algorithm is the first-
hit step. For this step, we first define a circle (or sphere in 3D) centered at the
origin that bounds the supercluster. Then, if the incoming particle ends up outside
this region, we return it to a point on the bounding surface by integrating the
dynamics analytically [3]. The analytical integration involves calculating the first-
hit distribution, the probability distribution that the particle hits the bounding circle
(or sphere) for the first time at a given point. The 2D first-hit distribution is derived
in Ref. [3] and we derive the 3D first-hit distribution in in Sec. 2.10.

A key feature that makes the first-hit calculation possible is that in the limit as the
bath distance goes to infinity, the effect of the bath can be ignored. In other words,
the analytical first-hit distribution can be calculated in an unbounded domain. To
understand how the unbounded domain approximation works, consider the growth
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dynamics when the bath is in place. In this case, if the diffusive particle makes it
all the way out to the bath, it is killed. The next particle that is launched is then
equally likely to approach the supercluster from any direction. Now consider the
case without a bath. When the particle reaches the bath distance it will continue to
diffuse rather than being killed. However, at this point, the particle is so far from
the supercluster that when it returns, it will also be equally likely to approach from
any direction. Consequently, the systems with a bath and without a bath have the
same first-hit distribution.

Combined Algorithm

Having specified the three different types of steps, we combine them to form the
Brownian dynamics algorithm according to Alg. 1. First, we check the cell list to
see if any supercluster particles are in the incoming particle’s current cell or any
adjacent cells. If so, we choose to take a small step. Otherwise, we take a large
step. Following this choice, if the particle ends up outside the circle or sphere that
bounds the supercluster, we take a first-hit step. Lastly, when the time comes to
launch a new incoming particle, we initialize it from a random point on the same
first-hit bounding surface.

Algorithm 1 Brownian Dynamics Algorithm
while cluster size < desired size do

initialize new incoming particle
while incoming particle not stuck do

if current and adjacent cells empty then
take small step

else
take large step

end if
if outside supercluster bounding circle/sphere then

take first-hit step
end if

end while
end while

Timestep Convergence
The Brownian dynamics algorithm has two convergence parameters, both of which
relate to small steps: the timestep ΔC and the cutoff distance fcut. We set these
parameters based on the root-mean-square displacement (RMSD) of the particle per
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timestep in each dimension
[ =
√

2�ΔC. (2.37)

Note that this is the RMSD for a non-truncated Gaussian distribution. The truncated
Gaussian distribution we use for small steps has a smaller RMSD, but the difference
is negligible if fcut is large. For example, when fcut/[ = 5, these quantities differ
by less than 0.001%. Given [ in one dimension, the total RMSD of the particle
during a small step in 3 dimensions is

√
3[2. Setting the value of this latter quantity

implicitly sets ΔC.

To choose the timestep and cutoff distance for our simulations, we evaluated the
effect of these parameters on the critical radius. Fig. 2.5(a) shows the results of
our calculations for 2D deposition. The overlap of the blue and orange curves
demonstrates that at

√
3[2/0 = 2 and fcut/[ = 5, '2 is converged to within error

bars. We consequently selected these parameters.

We tested the convergence of the critical radius in 3D using the same approach.
In this case, Fig. 2.5(b) shows that the timestep and cutoff convergence is slightly
worse than in 2D. Specifically, the confidence intervals for the orange point on the
right and the associated blue point do not overlap. However, if the timestep is too
small, generating clusters in 3D is prohibitively expensive in the limit as Da → 0.
We consequently selected the same set of parameters as in 2D,

√
3[2/0 = 2 and

fcut/[ = 5, for our simulations to provide a balance of speed and accuracy.

Parallel Algorithm
Even with computational tricks like large steps and first-hit steps, generating large
clusters is still expensive, especially in 3D. Consequently, to further increase the
speed of our simulations, we used a simple parallel algorithm. In this algorithm, the
dynamics of " particles are propagated simultaneously on " different CPUs. To
begin, these particles each take a total of B small or large steps (first-hit steps are also
taken as needed). If a particle sticks to the cluster during this interval, the remaining
steps are forfeited. After these B steps, information about which particles deposited
onto the cluster is shared between the processors, and new incoming particles are
introduced to the system. In rare cases, two incoming particles stick in the same
place, or an incoming particle ends up inside a newly added supercluster particle.
To resolve these issues, we eliminate one of the offending particles. If one particle
is free (versus attached to the cluster), we eliminate that one, otherwise we choose
randomly.
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Figure 2.5: Test of the timestep and parallel algorithm convergence for 2D (a) and
3D (b) Brownian dynamics simulations. Each panel shows the critical radius '2
versus the Damköhler number Da for the serial (blue and orange curves) and parallel
(green curve) algorithms. The serial curves were generated with different values of
the cutoff distance fcut and the root-mean-square-displacement per timestep

√
3[2

(which implicitly sets the value of the timestep ΔC, see (2.37)). Note that to increase
the visibility of individual points, the x-values of the orange and green curves in
both panels are shifted by 0.025 and −0.025, respectively.
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The parallel interval parameter B offers the following trade-off. Using a small value
of B decreases the speed of the algorithm because it increases the amount of inter-
processor communication. However, using a large value of B is inefficient because an
incoming particle may stick early in the cycle. In this case, the associated processor
must wait a long time before it can be occupied with a new incoming particle. A
large value of B also causes a higher fraction of the incoming particles to stick in
each cycle, creating more overlap artifacts. For our simulations, we used B = 100.

While the parallel algorithm speeds up the generation of large clusters, it also biases
the growth morphology. The easiest way to limit this bias is to use the parallel
algorithm for less time by starting from a medium-sized, serially-generated cluster
rather than a single seed particle [12]. Here, if we estimated that the compact-to-
dendritic transitionwould occur at #2 particles, we switched to the parallel algorithm
at #2/2 particles. Reducing " also decreases the algorithm’s bias. However, we
set " = 16 to take advantage of our computer cluster’s architecture.

Fig. 2.5(a) shows an empirical test of the parallel bias for 2D deposition. This figure
compares the critical radius computed with the serial algorithm (blue curve) and the
parallel algorithm (green curve). Though there are only two data points, the bias
appears to be smaller for smaller values of Da.

We used the same setup in Fig. 2.5(b) to test the bias of the parallel algorithm in 3D.
Comparing the serial and parallel algorithms at log10 Da = −2.12 shows that the
bias introduced by the latter at this Damköhler number is negligible. Based on this
data point and the trend of the bias with Da in 2D, we used the parallel algorithm
for our 3D simulations at log10 Da = −2.55. We did not use the parallel algorithm
for our 2D simulations.

Trajectory Details
Tables 2.1 and 2.2 summarize the number of 2D and 3D trajectories (runs) used to
generate the figures in the main text. These tables include two entries for the number
of runs for each value of Da, '2 runs, and extended runs. The '2 runs indicate the
number of trajectories we used to calculate the critical radius. After this calculation,
we continued with a smaller number of runs, extended runs, to map out the rest of
the fractal dimension curve. The switch between the '2 runs and extended runs is
also the reason that the size of the error bars increases substantially in Figs. 2.3(a)
and 2.4(b) in the main text when the cluster radius of gyration exceeds the critical
radius, '6 > '2.
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Table 2.1: Details of the 2D deposition simulations used to generate Fig. 2.3 in the
main text. The first column lists the Damköhler number Da. The second column,
'2 runs, indicates the number of runs used to calculate the critical radius. A smaller
number of runs listed in the next column, extended runs, were extended in some
cases to map out the fractal dimension curve. Finally, the last column indicates
whether we used the parallel or serial algorithm.

log10 Da '2 Runs Extended Runs Parallel
-1.26 400,000 100 No
-1.69 40,000 100 No
-2.12 10,000 100 No
-2.55 1000 100 No
-2.98 400 N/A No
-3.14 400 N/A No

Table 2.2: Descriptions of the 3D simulations used to generate Fig. 2.4 in the main
text. The columns are the same as in Table 2.1.

log10 Da '2 Runs Extended Runs Parallel
-1.26 10,000 100 No
-1.69 30,000 10 No
-2.12 1000 10 No
-2.55 10 N/A Yes

2.9 Reactive Deposition on a Lattice
While the main text focuses on off-lattice formulations of discrete reactive deposi-
tion, a number of authors have also examined deposition on a lattice [1, 13]. In this
section, we briefly review these efforts and discuss their implications for the study
of the compact-to-dendritic transition.

To begin with, we clarify the relationship between off-lattice and lattice-based
simulations. Specifically, it is possible to use a lattice model to propagate the exact
deposition dynamics of an off-lattice system by taking the limit as the lattice constant
; goes to zero while the particle radius 0 remains fixed [2]. Fig. 2.9 demonstrates
that in this limit, particles start to take up more and more lattice sites. But similar
to taking ΔC → 0 in an off-lattice simulation, when taking ; → 0 on a lattice, the
sticking probability % acts as a second convergence parameter. The rate constant :
being simulated depends on ; and % through

: = �%/;. (2.38)

Therefore, to maintain a constant surface reaction rate as ; → 0, the ratio %/; must
be kept fixed.
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Figure 2.6: Illustration of a particle (light blue) with radius 0 represented on square
lattices with varying lattice constants ;. As ; becomes smaller, the particle takes up
in increasing number of lattice sites.

Previous studies that used lattice models, however, did not attempt to simulate the
behavior of an off-lattice system in this manner [1, 13]. Instead, they kept the lattice
constant fixed at the particle diameter, ; = 20, such that each particle fills one lattice
site. This type of approach is well suited for modeling systems where the lattice has
a physical basis, like the aggregation of atoms diffusing across a crystal surface.

Meakin in particular examined the compact-to-dendritic transition on a triangular
lattice [13]. When ; is a fixed value, the sticking probability can be taken to be a
physical parameter rather than a convergence parameter. As a result, the critical
radius for the compact-to-dendritic transition in the limit %→ 0 is expected to scale
as

'2/; ∼ %a (2.39)

with unknown exponent a [13, 14]. Meakin used simulations to estimate that
a = −1.2 [13, 15].

The study of the compact-to-dendritic transition on a lattice raises the question of
whether this phenomenon behaves the same way as it does off-lattice. Previous
authors expected that it would given that, in surface growth models, the on- versus
off-lattice distinction usually has no effect on the large-length scale emergent prop-
erties of the morphology [1, 16]. It is now clear, however, that the features of the
compact-to-dendritic transition do depend on the underlying geometry of the sys-
tem. Specifically, on a lattice, the lattice symmetry introduces persistent anisotropy
into the dendritic structure of the cluster [17, 18]. In spite of this difference, it is still
possible that lattice-based and off-lattice deposition share the same critical radius
scaling. Making use of (2.38), we find that Meakin’s a estimate is consistent with
an off-lattice scaling exponent of W = −0.2.
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Figure 2.7: The particle lies on the I-axis a distance U away from the center of an
absorbing unit sphere. Once released, it diffuses until it escapes off to infinity or
absorbs at polar angle \.

2.10 First-Hit Distribution in Three Dimensions
Here, we calculate the (3D) first-hit distribution for a Brownian particle released
from a point outside of an absorbing sphere. This distribution gives the probability
density that the particle first makes contact with the sphere at a given position on the
surface. Our derivation closely follows the derivation of the 2D first-hit distribution
found in Ref. [3]. We also describe how we sample the 3D first-hit distribution for
our deposition simulations.

To set up the calculation, consider a sphere with a given radius centered at the origin
and a Brownian point particle outside of this sphere as shown in Fig. 2.7. After
nondimensionalizing by the sphere’s radius, the particle position vector is x̄0 = UêI

where U > 1. Since the geometry is symmetric in the azimuthal angle, the first-hit
distribution is a function of the polar angle \ alone.

To determine the first-hit distribution, we start with the dimensionless probability
density of the particle b (x̄, g). This density evolves according to the diffusion
equation

mb

mg
= ∇̄2b. (2.40)

The boundary condition for b on the sphere is

b ( |x̄ | = 1, g) = 0 (2.41)

and the initial condition is

b (x̄, 0) = X(x̄ − x̄0). (2.42)

Instead of solving for b explicitly, we integrate (2.40) with respect to time, yielding

∇̄2
∫ ∞

0
b3g = −X(x̄ − x̄0). (2.43)
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The right-hand side of this equation follows from

b (x̄, g = ∞) = 0 (2.44)

which is justified since the particle probability density eventually either absorbs
or spreads across the infinite domain making b arbitrarily small. After defining
Ξ(x̄) =

∫ ∞
0 b (x̄, g)3g, we have

∇̄2Ξ = −X(x̄ − x̄0) (2.45)

with the boundary condition

Ξ( |x̄ | = 1) = 0. (2.46)

Eqs. (2.45) and (2.46) are equivalent to the problem of a point charge next to a
conducting sphere. Solving these equations using the method of images yields

Ξ(x̄) ∼ 1
|x̄ − x̄0 |

− 1/U
|x̄ − 1

U2 x̄0 |
. (2.47)

Upon switching to spherical coordinates Ā = |x̄ | and Ω = cos(\), we have

Ξ(Ā ,Ω) ∼ 1
√
Ā2 + U2 − 2UĀΩ

−

1
√

1 + U2Ā2 − 2UĀΩ
.

(2.48)

We are now ready to calculate the first-hit distribution @(Ω). This distribution is
proportional to the time integral of the radial flux on the sphere. First, note that the
integrated radial flux in general _(Ā ,Ω) is

_ =

∫ ∞

0

mb

mĀ
3g =

m

mĀ

(∫ ∞

0
b3g

)
=
mΞ

mĀ
. (2.49)

After evaluating _ on the sphere, Ā = 1, and adding a normalizing constant, we have

@(Ω) = U3 − U
2(U2 − 2UΩ + 1)3/2

. (2.50)

Lastly, to get the first-hit cumulative distribution function (CDF)&(Ω) we integrate
from −1 to Ω

&(Ω) =
(U − 1)

(
U + 1 −

√
U2 − 2UΩ + 1

)
2
√
U2 − 2UΩ + 1

. (2.51)
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Although Eq. (2.51) is normalized, we have not yet addressed the transience of
Brownian motion in three dimensions. Unlike in 2D, there is a chance the particle
will escape to infinity before absorbing at the boundary. Specifically, this escape
probability is [19]

Probability(Escape) = 1 − 1
U
. (2.52)

Consequently, sampling the 3D first-hit distribution requires two steps. First, we
must make a draw against the escape probability in (2.52) to see if the particle makes
contact with the sphere at all. If not, we sample (2.51), the CDF, by setting & equal
to a random number taken from [0, 1] and solving for Ω

Ω =
U2 + 1

2U
− (U2 − 1)2

2U(U − 1 + 2&)2
. (2.53)

The azimuthal angle can then be drawn randomly from the interval [0, 2c). When
sampling the first-hit distribution for our 3D deposition simulations, if the particle
escapes in the first step, it is taken to have reached the distant, surrounding bath. As
a result, the particle is killed, and a new diffusive particle is launched.
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DIRECT EVALUATION OF DYNAMICAL LARGE-DEVIATION
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Chapter Abstract
We describe a simple form of importance sampling designed to bound and com-
pute large-deviation rate functions for time-extensive dynamical observables in
continuous-time Markov chains. We start with a model, defined by a set of rates,
and a time-extensive dynamical observable. We construct a reference model, a
variational ansatz for the behavior of the original model conditioned on atypical
values of the observable. Direct simulation of the reference model provides an
upper bound on the large-deviation rate function associated with the original model,
an estimate of the tightness of the bound, and, if the ansatz is chosen well, the exact
rate function. The exact rare behavior of the original model does not need to be
known in advance. We use this method to calculate rate functions for currents and
counting observables in a set of network- and lattice models taken from the liter-
ature. Straightforward ansätze yield bounds that are tighter than bounds obtained
from Level 2.5 of large deviations via approximations that involve uniform scalings
of rates. We show how to correct these bounds in order to recover the rate functions
exactly. Our approach is complementary to more specialized methods, and offers a
physically transparent framework for approximating and calculating the likelihood
of dynamical large deviations.

3.1 Introduction
Dynamical systems, such as chemical networks [1], biochemical and molecular
machines [2–4], and models of driven [5–8] and glassy [9–11] systems, exhibit
fluctuations, departures from typical behavior [12]. Fluctuations of time-extensive
observables – which can be work, entropy production [13, 14], other currents [8,
15, 16], or dynamical activity [11, 17] – characterize the behavior of these systems,
much as fluctuations of size-extensive quantities, such as energy or magnetization,
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characterize the static behavior of equilibrium systems [18, 19]. The probability
distributions that control dynamical fluctuations satisfy certain requirements, known
as fluctuation relations [3, 13, 14, 20–26], which impose constraints on their sym-
metries. The precise form of these distributions, however, must be obtained by
explicit calculation.

Here we focus on calculating probability distributions d) (�) for models with a
discrete state space, for stochastic dynamical trajectories of elapsed time ) and
time-extensive observables �. Time-extensive observables are those that can be
built from a sum of values of individual pieces of a trajectory. For large values of )
these distributions often adopt the large-deviation form [20–25, 27, 28]

d) (�) ≈ e−)� (0) , (3.1)

in which 0 = �/) is the time-intensive value of the observable. � (0) is the
large-deviation rate function, which quantifies the likelihood of observing particular
values of the observable 0 1. The symbol ≈ denotes equality of the logarithms of
both sides of (3.1), to leading order in ) , for all values of 0. In the physics literature,
most numerical methods for calculating � (0) aim to first compute its Legendre
transform, the scaled cumulant-generating function (SCGF) [11, 28, 32–37]. It is
possible to recover � (0) from the SCGF if the former is convex [38]. A common
way to calculate the SCGF is to use cloning methods [32, 39], which duplicate
or eliminate trajectories according to their time-integrated weights. Often cloning
is supplemented by other importance-sampling methods [34–36], some of which
make use of a modified dynamics in order to produce trajectories that more closely
resemble the rare dynamics of the original model.

Determining � (0) solely by reweighting trajectories of amodified dynamics, without
prior knowledge of the rare dynamics of the model of interest, is not widely done
(see, however, Refs. [40–43]). Standard arguments suggest that determining the
probability distribution of 0 within one dynamics by reweighting against a second
dynamics requires, in general, the evaluation of random quantities whose variance is
exponential in the trajectory length [44–47] (see Section 3.2). Such observations are
sometimes taken to mean that trajectory reweighting, without advance knowledge
of the rare dynamics to be sampled, is little better than direct sampling using the
original model [48]. Here we argue that more optimism is warranted, and show

1More directly it quantifies the rate of decay of a fluctuation 0, which depends both on the
likelihood of 0 and the basic timescale governing the establishment and decay of fluctuations. This
latter piece plays a key role for certain models [29–31].
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that the conditions under which meaningful results can be extracted from trajectory
reweighting are much less restrictive than has been recognized. Moreover, trajectory
reweighting presents few technical complications beyond the requirement to simulate
the originalmodelwithmodified rates, and allows the reconstruction of � (0) directly,
without first calculating the SCGF.

To compute the large-deviation rate function � (0) for a given model and dynamical
observable 0, we use a simple form of importance sampling [44–46, 49–52]. We
begin with a modification of the model dynamics. This modified or referencemodel
is a microscopic ansatz for the original model’s behavior, conditioned on particular
values of the observable 0. The ansatz is characterized by a set of parameters whose
values we determine variationally. In practical terms we simply guess a reference
dynamics that is able to generate more or less of 0 than the normal dynamics. Let
the typical value of 0 produced by original and reference models be 00 and 0̃0,
respectively 2. Reweighting trajectories of the reference model produces an upper
bound on the rate function � associated with the original model at the point 0̃0, an
estimate of the tightness of the bound, and, if the ansatz is chosen well, the exact rate
function (to within statistical error). That is, the reference dynamics is a true ansatz,
a guess whose accuracy can be determined by subsequent calculation. Repeating
the calculation for a set of reference models possessing a set of distinct values {0̃0}
allows us to attempt reconstruction of � (0) at the set of points 0 ∈ {0̃0}. In this
respect the procedure is similar to umbrella sampling of equilibrium systems. We
show that the conditions under which the exact rate function can be recovered are
less restrictive than usually assumed.

Any reference dynamics can be reweighted to produce some upper bound on � (0),
simply by making the desired value of 0 typical [53]. Good choices of reference
dynamics, leading to tight bounds, render the fluctuations of the reweighting factor
or likelihood ratio (the ratio of path probability of new and old dynamics) small.
We show here that relatively simple reference-model choices produce meaningful
(i.e. tight) bounds, for a set of models and observables taken from the literature. We
compare the bounds produced by our method with universal bounds on currents [54,
55] and non-decreasing counting variables [56]. Those bounds can be obtained from
Level 2.5 of large deviations [57, 58], the exact rate function for the empirical flow
(jumps between states) andmeasure (state occupation times), via a uniform rescaling

2The “typical” value of a time-integrated observable is the value to which the sample mean of an
unbiased estimator of that quantity converges at long times, provided that a large-deviation principle
exists and that the associated rate function has a unique zero [28].
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of rates. That approach provides important physical insight into the quantities that
constrain fluctuations of time-integrated observables, and also provides numerical
bounds on rate functions. Our approach, which uses a microscopic ansatz within the
exact path integral for the dynamics, produces tighter bounds, particularly far into
the tails of rate functions. The extent to which bounds vary as we change the nature
of the ansatz provides physical insight into how much certain types of microscopic
processes contribute to the rare dynamics of a model. Microscopic ansätze, even
relatively simple ones, are capable of capturing a wide range of behavior, including
regimes of anomalous fluctuations in which the usual central-limit theorem breaks
down [41]. Computing a correction to these bounds, by measuring fluctuations of
the likelihood ratio, allows the recovery of the exact rate function. Importantly,
fluctuations of the likelihood ratio do not need to be zero for � (0) to be calculated

The approach described here is variational, in the sense that we vary the parameters
of the reference model in order to identify the dynamics that best approximates the
rare dynamics of interest. Variational principles underpin the study of large devia-
tions, embodied by the notion that “any large deviation is done in the least unlikely of
all the unlikely ways” [27]. Variational ideas are central to different representations
of rare processes – see e.g. Section 5 of Ref. [33] – and have been widely used in
analytic and numerical work [35, 37, 59–61]. The aim of this paper is to present
a simple, physically-motivated approach to bounding and calculating rate functions
using a variational principle enacted by (only) direct simulations, and to present a
set of convergence criteria, adapted from Ref. [62], that reveal when bounds can be
corrected to produce the exact rate function. We have provided a GitHub script [63]
that computes the correction term automatically, this being the most involved step
of the calculation. These results extend our previous work [41–43] by a) show-
ing how different forms of physically-motivated reference dynamics can be used to
treat different models, and b) by providing a set of criteria that identify when the
exact rate function can be recovered. One point we emphasize is that considerable
progress can be made using physical intuition and basic knowledge of the properties
of a model, without the application of other forms of importance sampling (such
as cloning or transition-path sampling). Our method requires only continuous-time
Monte Carlo simulation, and so can be applied to any set of circumstances in which
that method can be used, including to models with unbounded state spaces [41].
In addition, it can be used to reconstruct families of large-deviation rate functions
from a single set of simulations, using the principle that the dynamics of one model
can be reweighted to examine the dynamics of many others [43]. Reference models
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represent a form of importance sampling similar in spirit but different in detail to
the umbrella potentials used in equilibrium sampling [64, 65].

In Section 3.2 we describe our approach, which we refer to as VARD (for Vari-
ational Ansatz for Rare Dynamics). In general terms there are many forms of
VARD that have been used in the literature (see above); we use the term to convey
the specific notion of doing (only) direct simulations of a family of modified models.
In Section 3.3 we apply the method to four models taken from the literature. We
have chosen models from the literature that display a variety of interesting behav-
ior: two lattice models (the asymmetric simple exclusion process [6, 66] and the
Fredrickson-Andersen model [67]) and two network models, and we sample both
currents and non-decreasing counting variables to show that the method works the
same way for each. In the cases described in Section 3.3–Section 3.3, relatively
simple choices of reference model allow the computation of the exact rate function,
and we gain physical insight into the nature of the dynamics that contributes to par-
ticular pieces of � (0). We also show, in Section 3.3, that bounds that are descriptive
in small systems remain so in larger systems. We conclude in Section 3.4.

3.2 A variational ansatz for rare dynamics
Continuous-time Markov chains and large deviations
Consider a continuous-time dynamics [68] on a set of discrete states, defined by the
master equation

mC%G (C) =
∑
H≠G

,HG%H (C) − 'G%G (C). (3.2)

Here %G (C) is the probability that a system resides in (micro)state G at time C. ,GH is
the rate for passing from state G to state H, and 'G =

∑
H≠G,GH is the escape rate from

G (Table 1 provides a reference for some of the more frequently-used symbols in this
paper). The standard algorithm for simulating the dynamics (3.2) is as follows [69].
From state G, choose a destination state H with probability

?GH =
,GH

'G
. (3.3)

The time increment ΔC required to make this move is a random number drawn from
the exponential distribution with mean 1/'G ,

?G (ΔC) = 'Ge−'GΔC . (3.4)

Given an initial state G0, the dynamics defined by (4.2) and (3.4) generates a trajectory
l = G0 → G1 → · · · → G (l) , which consists of a sequence of  (l) jumps
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G: → G:+1 and associated jump times ΔC: . In this paper we are concerned with
calculating

d) (�) =
∑
l

?(l)X() (l) − ))X(�(l) − �), (3.5)

the probability distribution, taken over all trajectories of elapsed time ) , of a time-
extensive dynamical observable

�(l) =
 (l)−1∑
:=0

UG:G:+1 . (3.6)

Here UGH is the change of the observable � upon moving from G to H, and �(l) is the
sum of these quantities over a single trajectory l. We define 0(l) ≡ �(l)/) (l)
as the time-intensive version of �. ) (l) is the elapsed time of trajectory l, and is
equal to ) when ) (l) ≤ ) < ) (l)+1, where ) (l) =

∑ (l)−1
:=0 ΔC: . The symbol

?(l) is the probability of a trajectory l. Given an initial state, this term is equal to
a product of factors (4.2) and (3.4) for all jumps of the trajectory, multiplied by the
probability of not exiting state G (l) between times ) (l) and ) .

Table 3.1: Glossary of frequently-used symbols

� = 0) path-extensive order parameter
) elapsed time of a trajectory
 number of jumps of a trajectory
UGH change of � upon making the jump G → H

,GH “original” model rates for the jump G → H

'G “original” model escape rate
∑
H≠G,GH

00 typical value of 0 under the original dynamics
� (0) rate function for 0 under the original dynamics
�0(0) upper bound on � (0)
�1(0) correction to the bound: � (0) = �0(0) + �1(0)
,̃GH reference-model rates for jumps G → H

B one parameter of ,̃GH: see (3.8)
VGH remaining parameters of ,̃GH: see (3.8)
'̃G reference-model escape rate

∑
H≠G ,̃GH

_ clock bias: see (3.9)
0̃0 typical value of 0 under the reference dynamics

�0 [{G}] �0(0) determined from a scan of the
reference-model parameter set {G}

In (3.5), the delta functions denote the conditions of fixed � and fixed) that we wish
to impose on the trajectory ensemble. This conditioning defines themicrocanonical
path ensemble [33], of which (3.5) is the normalization constant.
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Figure 3.1: Large deviations from a variational ansatz for rare dynamics (VARD).
(a)We aim to bound or calculate the large-deviation rate function � (0) (black dashed
line) for a given model and observable 0, under the continuous-time dynamics (4.2)
and (3.4). We introduce a reference model (3.7) and (3.9), a variational ansatz for
the rare dynamics of the original model conditioned upon 0. The reference model
has rate function �̃ (0) (gray line; we do not aim to compute this function). The
typical value of 0 generated by the reference model is 0̃0; this is potentially far
from the typical value 00 generated by the original model. Evaluation of (3.17)
from the sample mean of a single trajectory of the reference model produces one
point �0(0̃0) on the blue line, an upper bound on � (0). (b) If we can evaluate the
auxiliary rate function �̃ (X@, 0̃0) at the point X@★ at which its gradient is unity, then
we can calculate the correction term (3.18) and determine one point on the green
curve in panel (a), the exact rate function of the original model. If not, then we gain
information about the quality of the bound �0(0̃0). Variation of the parameters of
the reference model allows reconstruction of the entire blue and (potentially) green
curves in panel (a). VARD thus reduces a single nonlocal problem, the computation
of � (0) arbitrarily far from 00, to a series of local problems, each requiring the
evaluation of an auxiliary rate function �̃ (X@, 0̃0) at the point X@★ at which its
gradient is unity. As we show in this paper, this procedure can be carried out for
models commonly found in the literature using relatively simple choices of reference
model.
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We focus on models for which, for large values of ) , the probability distribution
(3.5) adopts the large-deviation form (3.1). Our aim is to calculate the rate function
� (0) (sometimes the notation � (0) or i(0) is used to denote a rate function [28, 56]).
This function quantifies the rate of decay of atypical values of 0. For many models
� (0) has a unique minimum at a point 0 = 00, where � (00) = 0. This point defines
the typical value of 0: the distribution d) (�) concentrates on 00 in the long-time
limit, an expression of the law of large numbers [27, 28]. In general, a rate function
can have more than one point at which it is zero, defining multiple typical values of
an observable [28, 41, 70]. Often, the rate function is quadratic in the neighborhood
of its minimum, an expression of the central-limit theorem [27, 28]. Exceptions to
this norm occur at phase transitions, where the usual central-limit theorem does not
hold [71]. Far from their minima, rate functions display a variety of behaviors [28].
However, direct simulation of the dynamics (4.2) and (3.4) leads to poor sampling
of � (0) anywhere other than in the neighborhood 0 ≈ 00.

Quantifying rare events
To remedy the sampling problem for values of the observable 0 far from 00, we
introduce a reference model. We wish to reweight the trajectories of the reference
model in order to approximate or calculate � (0) for values of 0 potentially far from
00. The reference model must satisfy certain requirements. It needs to be able
to generate all trajectories possible in the original model, but no trajectories not
possible in the original model (otherwise the reweighting factor, discussed below,
can be infinity or zero). We want the reference model to be able to generate
trajectories possessing values of 0 that are rarely generated by the original model,
which is relatively easy to arrange, but we also need to be able to recover from
reference-model trajectories the probability with which such trajectories would have
been generated by the original model. This second requirement is harder to arrange,
but not prohibitively so. As we show, if the reference model generates trajectories
possessing values of 0 in a manner completely unlike the original model, then we
have to do prohibitively heavy sampling of reference-model trajectories in order to
calculate � (0). If, however, the reference model generates trajectories possessing
values of 0 in a manner similar to the original model, then � (0) can be reconstructed
from trajectories of the reference model with relatively little effort. Importantly, the
method tells us when this is so: we do not need to know in advance the precise
nature of the rare dynamics of the original model in order to recover � (0).

For a trajectory l of the reference model we want to be able to influence how much
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of the dynamical observable is produced per jump, �(l)/ (l), and the number
of jumps per unit time,  (l)/) . To control the former we use a reference-model
dynamics that selects destination states with probability

?̃GH =
,̃GH

'̃G
, (3.7)

where ,̃GH is an effective rate, and '̃G =
∑
H≠G ,̃GH. (The true rates of the reference

model are, from (3.7) and (3.9), ,̃GH ('G +_)/'̃G .) Here we use the parameterization

,̃GH = e−BUGH−VGH,GH, (3.8)

which is a modification of (4.2). The factor e−BUGH is chosen in order to guide
the jump destination according to the change of the observable UGH weighted by a
parameter B. In general such a bias is not sufficient to control �(l)/ (l), and
so we also consider an additional arbitrary bias, VGH. For the models considered
here a simple and physically-motivated guess for what VGH should be is sufficient to
produce a good reference model. We shall return to this point.

To control the number of jumps per unit time,  (l)/) , we draw times between
jumps of the reference model from the distribution

?̃G (ΔC) = ('G + _)e−('G+_)ΔC , (3.9)

where _ > −minG 'G serves to make the jump time from a given state unusually
large or small by the reckoning of the original model. This “clock trick” provides
a simple way of sampling jump times without having those times appear explicitly
in the reweighting factor [43]. (The parameter VGH can also affect jump times
indirectly, if, for example, it is chosen to be proportional to 'H, the escape rate from
the destination state.)

Next observe that the path weight ?(l) in (3.5) can be written ?̃(l)q(l), where
q(l) = ?(l)/?̃(l) is the reweighting factor, the ratio of weights of a trajectoryl in
the original and reference models. q(l) is also known as the likelihood ratio or the
Radon-Nikodym derivative [33, 52]. For a jump G → H in time ΔC, the reweighting
factor is the product of (4.2) and (3.4), divided by the product of (3.7) and (3.9); for
the entire trajectory l we have

q(l) = eB�(l)+_) (l)+)@(l) , (3.10)

where

@(l) = 1
)

 (l)−1∑
:=0

(
VG:G:+1 + ln

'̃G:

'G: + _

)
(3.11)
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is the piece of q that is not fixed by the delta-function constraints in (3.5). (The
time-dependent piece of (3.10) produced by  (l) jumps is e_) (l) ; the contribution
from the final entry in the path weight, the probability of not jumping between time
) (l) and ) (l), leads to the factor of e_) (l) shown in (3.10).)

We can then write (3.5) in the form

d) (�)
d̃) (�)

= eB�+_)
∑
l ?̃(l)e)@(l)X())X(�)∑

l ?̃(l)X())X(�)
, (3.12)

where d̃) (�) ≈ e−) �̃ (0) is the analog of (3.5) for the reference model, and we have
used the shorthand X(-) ≡ X(- (l) − -). Replacing the sums over trajectories with
an integral over trajectory weights gives

d) (�)
d̃) (�)

= eB�+_)
∫

d@ ?̃) (@ |0)e)@, (3.13)

where ?̃) (@ |0) is the normalized probability distribution of @(l) for trajectories of
the reference model that have specified values of 0 and ) . For large ) we assume
that this distribution will obey a large-deviation principle of its own. If so we can
write, using the rules of conditional probability,

?̃) (@ |0) ≈ e−) �̃ (@ |0) = e−) [ �̃ (@,0)−�̃ (0)] , (3.14)

where �̃ (@, 0) is the joint rate function for @ and 0 within the reference model.

We next take the large-) limit in (3.13), replace all probability distributions with
their large-deviation forms, and set 0 = 0̃0, the value typical of the reference model
(such that �̃ (0̃0) = 0). The result, upon taking logarithms, is

� (0̃0) = −B0̃0 − _ − lim
)→∞

)−1 ln
∫

d@ e) [@−�̃ (@,0̃0)] . (3.15)

Finally, we introduce X@ ≡ @− @̃0, where @̃0 is the value of @ typical of the reference
model. This value can be computed from a single reference-model trajectory (for
a given set of parameters B, _, VGH). Extracting e)@̃0 from the exponential in (3.15)
and evaluating the integral using the saddle-point method yields

� (0̃0) = �0(0̃0) + �1(0̃0), (3.16)

where
�0(0̃0) = −B0̃0 − _ − @̃0 (3.17)

and

�1(0̃0) = −max
X@
[X@ − �̃ (X@, 0̃0)] . (3.18)
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Eqs.(3.16)–(3.18) provide an exact representation of the rate function, if the proba-
bility distributions (3.5) and (3.14) adopt large-deviation forms 3. Fig. 3.1 illustrates
the relationship between Equations (3.16), (3.17), and (3.18), which are central to
the sampling scheme discussed in this paper.

We can compute � (0) as the sum of a bound and a correction
The piece �0(0̃0) ≥ � (0̃0), Eq. (3.17), is an upper bound on the rate function at
the point 0 = 0̃0, by Jensen’s inequality applied to (3.13), and can be obtained
from the sample mean of single trajectory of the reference model. It is always
possible to calculate this term. If �̃ (0) is locally quadratic about 0̃0, meaning that
the usual central-limit theorem holds 4, then errors in the computation of 0̃0 go as√
〈(0 − 0̃0)2〉 ∼ )−1/2. The same is true for the computation of @̃0. Thus statistical

errors in the computation of the bound can be made negligible simply by computing
(3.17) for a sufficiently long trajectory.

The term �1(0̃0), Eq. (3.18), is a correction to the bound, and can be calculated by
sampling values of @, Eq. (3.11), of trajectories of the reference model that have
0 = 0̃0. It is possible to calculate this term if the reference model is chosen well,
but not if it is chosen badly.

The two terms in (3.18) describe a competition between the logarithmic weight X@
associated with reference-model trajectories that have atypical values of @, and the
logarithmic probability �̃ (X@, 0̃0) of observing such trajectories. When �̃ (X@, 0̃0) is
differentiable, (3.18) can be written

�1(0̃0) = −X@★ + �̃ (X@★, 0̃0), (3.19)

where
mX@ �̃ (X@, 0̃0) |X@=X@★ = 1. (3.20)

Thus we need to measure the value of �̃ (X@, 0̃0) at the point X@★ at which its
gradient is unity, which will be a unique point when �̃ (X@, 0̃0) is convex. The
sampling problem is now localized: instead of sampling � (0) arbitrarly far from 00

(using the original model), we need only sample a specific piece X@★ of an auxiliary
rate function, �̃ (X@, 0̃0) (using the reference model). This fact, summarized in

3In an abuse of notation we have, for brevity, changed from writing the joint rate function in the
form �̃ (@, 0) in (3.15) to �̃ (X@, 0) in (3.18) and subsequently.

4Note that the reference model can be well behaved in this manner even when the originalmodel
exhibits anomalous fluctuations such that � (0) is not quadratic about its minimum [41].



61

Fig. 3.1, shows why the present scheme has the potential to be much more efficient
than unbiased simulation, if the reference model is chosen well.

This sampling problem is still formidable in general. If the referencemodel is chosen
badly, meaning that its typical trajectories have very different character to trajectories
of the original model that have 0 = 0̃0, then the bound will be slack, meaning that
�0(0̃0) � � (0̃0), and so �1(0̃0) will be large. In this case �̃ (X@, 0̃0) will be broad
around its minimum X@ = 0 (the variance of X@ will be large) and unreasonably
heavy sampling using the reference model will be required to determine the point
X@★ (because this corresponds to a rare event within the reference model).

However, for good choices of the reference model the opposite situation arises: the
bound will be tight, meaning that �0(0̃0) ≈ � (0̃0), and so �1(0̃0) will be small.
In this case the latter can be evaluated with reasonable numerical effort (in the
examples that follow we can gather the required statistics of @ by sub-sampling a
single trajectory of the reference model). If we can reconstruct �̃ (X@★, 0̃0) then we
can calculate �1(0̃0) and we have obtained the exact rate function.

Computing the correction
Given a model and an observable 0, we construct a reference model (3.7) and
(3.9) so as to approximate or calculate � (0). In Section 3.3 we provide a set
of worked examples of this procedure. In general terms we simply guess which
rates of the original model can be modified so as to produce more or less of 0
than usual, and introduce a parameter (B, _, or VGH) able to control the rate in
question. We do not know in advance which combination of these modified rates
best approximates the way in which the original model produces rare values of 0,
but by running short trajectories of the reference model for different values of its
parameters we can identify how this is done within the space of possibilities defined
by the reference model. From the sample mean of each reference-model trajectory
we obtain the values 0̃0 and @̃0; plotting 0̃0 against −B0̃0 − _ − @̃0 for a range of
values of reference-model parameters, and identifying the lower envelope of these
points (conveniently calculated using a union of convex hull constructions), gives
the bound �0(0) associated with that choice of reference model.

This bound is the starting point for our attempt to calculate the correction �1(0). The
correction term can be interpreted as a measure of how close the typical dynamics of
the referencemodel is to the desired rare dynamics of the originalmodel. If �1(0) = 0
then typical trajectories of the reference model correspond exactly to trajectories of
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the original model conditioned on the relevant value 0 of the order parameter. If �1

is small then (slightly) atypical versions of reference-model trajectories correspond
to the desired rare dynamics; and if �1 is large (or cannot be calculated) then it is
the very rare trajectories of the reference model that correspond to the desired rare
dynamics of the original model.

In previous versions of our sampling method [41–43] we used a cumulant expansion
to evaluate the integral in (3.15), giving, in place of (3.18),

�
approx
1 (0̃0) =

)

2
f2

ref +
)2

6
^ref + · · · . (3.21)

Here f2
ref ∝ 1/) is the variance of X@ over typical trajectories of the reference

model (those having 0 = 0̃0), i.e. f2
ref = 〈(X@)

2〉ref , and ^ref = 〈(X@)3〉ref ∝ 1/)2.
Eq. (3.21) can give accurate results for the rate-function correction [41–43], but does
not provide a self-consistent way of determining when the correction is accurate. At
best we can determine that the first omitted term in the expansion (3.21) is small,
but this does not provide a proof of convergence.

In this paper we present an alternative way to calculate the correction term (3.18),
which builds upon methods designed to compute rate functions (or their SCGF
Legendre duals) empirically [62, 72]. This process is more involved than the
computations required to evaluate (3.21), but has the advantage of providing a set of
clear convergence criteria and statistical error bars. This information reveals when
we have converged (3.18), and so have the exact rate function, and when we do
not, thus turning the reference-model guess into a true ansatz. In the remainder of
this section we describe the method we use to compute (3.18). We have provided a
GitHub script [63] for calculating the correction automatically.

To obtain the correction we first assume that �̃ (X@, 0) is differentiable, and so
work with (3.19) instead of (3.18). We then introduce the two-dimensional scaled
cumulant-generating function (SCGF),

\̃ (:X@, :0) ≡ lim
)→∞

)−1 ln〈e) (: X@X@+:00)〉ref , (3.22)

where the angle brackets denote a trajectory ensemble average within the refer-
ence model. The SCGF (3.22) is related to �̃ (X@, 0) through the double Legendre
transform

�̃ (X@, 0) = :X@X@ + :00 − \̃ (:X@, :0), (3.23)

where :X@ and :0 are conjugate to X@ and 0 respectively. As a result, if we want to
calculate �̃ (X@, 0) at a single point, we can calculate the right-hand side of (3.23).
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Doing so is much more efficient than attempting to reconstruct �̃ (X@, 0) directly, for
the reasons given in Section 3.2.

The formula for the correction (3.19) depends on �̃ (X@★, 0̃0), which we can get from
(3.23):

�̃ (X@★, 0̃0) = :X@★X@★ + : 0̃0 0̃0 − \̃ (:X@★, : 0̃0). (3.24)

We can simplify this relationship by combining the implicit definition of :X@ in the
Legendre transform with (3.20) to get

:X@★ = mX@ �̃ (X@, 0̃0) |X@=X@★ = 1. (3.25)

Inserting (3.25) into (3.24) yields

�̃ (X@★, 0̃0) = X@★ + : 0̃0 0̃0 − \̃ (1, : 0̃0). (3.26)

The quantity 0̃0 is the typical value of the observable in the reference model, and
can be obtained from a single reference-model trajectory. The three other unknown
quantities on the right-hand side of (3.26) that are needed for the correction are X@★,
: 0̃0 , and \̃ (1, : 0̃0).

To calculate these quantities we have to compute the value of the two-dimensional
SCGF (3.22) at various points (:X@, :0). We can do this using a simple extension of
existing techniques developed to sample points on 1D SCGFs [62, 72]. Following
Ref. [62] we generate a single long trajectory of the reference model and sub-sample
it into " approximately independent blocks l8 of length ) (l8) = �. Within each
block we record the sample mean of X@ and 0, which we write as X@8 and 08.
\̃ (:X@, :0) can be calculated from this data set using the estimator

ˆ̃\ (:X@, :0) =
1
�

ln

(
1
"

"∑
8=1

e�(: X@X@8+:008)
)
. (3.27)

Eq. (3.27) is guaranteed to converge to the exact value of the SCGF, \̃ (:X@, :0), in
the limit " → ∞ and � → ∞. The convergence properties of this estimator for
finite" and � will be addressed in the next section, 3.2. For nowwe assume that we
can obtain convergence as needed. Finally, note that by changing the values of :X@
and :0 in (3.27) a single data set consisting of values of 08 and X@8, generated from
a single long trajectory, can be used to recover many points (:X@, :0) on \̃ (:X@, :0).

We now turn to the calculation of the three unknowns in (3.26), X@★, : 0̃0 and
\̃ (1, : 0̃0). First we use the relation

0̃0 = m:0 \̃ (:X@★ = 1, :0) |:0=: 0̃0
(3.28)
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to find : 0̃0 . We do so by calculating the SCGF, \̃ (:X@, :0), along a 1D slice
through its 2D domain using the estimator (3.27). This slice is defined by fixing
:X@ = :X@★ = 1 and varying :0. We then use the method of finite differences to get
m:0 \̃ (:X@★ = 1, :0) at each point :0, and find the point that fulfills (3.28). Once we
know the value of : 0̃0 we can calculate \̃ (1, : 0̃0), again using (3.27). Finally we can
compute X@★ using the analog of (3.28) for X@,

X@★ = m: X@ \̃ (:X@, : 0̃0) |: X@=1. (3.29)

Inserting X@★, : 0̃0 , \̃ (1, : 0̃0), and 0̃0 into (3.26) yields �̃ (X@★, 0̃0). The correction
to the bound, �1(0̃0), then follows from (3.19).

Convergence of the SCGF Estimator
When used with only a finite number " of blocks of finite length �, the estimator
ˆ̃\ (:X@, :0), defined in (3.27), can exhibit statistical and systematic errors. In this
section, we analyze these errors to understandwhen the estimate of �1(0̃0) calculated
through the SCGF (3.22)will be accurate. As in the previous subsection, this analysis
closely follows Ref. [62].

To quantify the statistical error associated with our calculated value of �1(0̃0) we
repeat the calculation procedure using ' independent trajectories. Each of these
trajectories is split up into " blocks of length �, and used to calculate �1(0̃0). Our
final estimate for the correction is then

�̂1(0̃0) =
1
'

'∑
9=1

�
( 9)
1 (0̃0), (3.30)

where � ( 9)1 (0̃0) is the value of the correction calculated from the 9 th trajectory. The
statistical error of (3.30) can be estimated using

Err[�̂1(0̃0)] =

√
Var[�̂1(0̃0)]

'
. (3.31)

This statistical error is only meaningful if we know that the systematic error in the
calculation is comparatively small. There are two sources of systematic error that
arise when using (3.27): correlation error and linearization error. Correlation error
results from the fact that the derivation of the estimator assumes that the trajectory
blocks are long enough to be approximately independent. This will be true if
� > )corr where )corr is the correlation time of the reference model. If, however, the
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sub-sampled blocks of a trajectory are correlated, meaning that � < )corr, then we
will not obtain an accurate estimate of \̃ (:X@, :0) even as ", ' →∞.

One way to resolve this correlation issue is to increase the block time �, but this also
increases the magnitude of the other systematic source of error, linearization error.
Linearization error is a manifestation of the fact that trajectories that contribute most
to the average in the SCGF (3.22) for :0, :X@ ≠ 0 have atypical values of X@ and
0. Using larger � creates more self-averaging within a single trajectory and, as
a result, makes sampling these atypical values more difficult. Linearization error
also increases for fixed � with increasing |:0 | and |:X@ |, because larger values of
these parameters weight rare trajectories’ contributions to the SCGF more heavily.
Ref. [62] contains a detailed discussion of these problems. The authors of that
work describe a method for checking to see if linearization error will substantially
influence the estimate of the SCGF at a point (:X@, :0) for some fixed �. We use
this check, modified to account for the fact that our SCGF is two dimensional, as
follows.

First, we calculate the SCGF (3.27) along another 1D slice through its 2D domain.
This slice is defined by fixing :X@ = 0 and increasing :0, starting from :0 = 0 5.
By using finite difference along this slice we can calculate how 0 varies with :0.
To compute the statistical error, we generate ' independent trajectories (usually the
same ' trajectories we used to get (3.31)), split each one into " blocks of length �,
and use each data set to calculate 0(:0) along the slice. Our final estimate for the
value of 0 at each :0 is

0̂(:0) =
1
'

'∑
9=1
0 ( 9) (:0), (3.32)

where 0 ( 9) (:0) is calculated from the 9 th trajectory.

We will not end up using the 0̂(:0) values themselves. Instead, we focus on the
associated values of the statistical error, calculated in the same way as the error of
(3.27),

Err[0̂(:0)] =
√

Var[0̂(:0)]
'

. (3.33)

A plot of Err[0̂(:0)] as a function of :0 will peak at some point :̂′0 (�) and then
decline. Again :X@ = 0 is fixed during this entire calculation. As discussed

5The choice of moving in the positive :0 direction is arbitrary. Moving in the negative :0
direction will yield an equivalent convergence criterion (similarly we can move in either the positive
or negative : X@ directions while holding :0 = 0).



66

in Ref. [62], :̂′0 (�) is an estimate for the maximum value :′0 (�) at which the
calculation of the SCGF will converge without being overwhelmed by linearization
error. :′0 (�) is a decreasing function of �, because linearization error grows as � is
increased.

Next we note that \̃ (:X@ = 0, :′0) corresponds to a point on the rate function �̃ (0′),
via the Legendre transform (3.23). If we can converge the value of �̃ (0′) then we
can, with the same data set, also converge the value of �̃ (X@, 0) at any point for
which

�̃ (X@, 0) < �̃ (0′). (3.34)

This statement is intuitive in the context of probabilities and rate functions. However,
it also applies when working with the SCGF, provided that �̃ (X@, 0) is convex [38].
Thus the value of a point ˆ̃\ (:X@, :0) estimated using (3.27) will be unaffected by
linearization error if the associated point on the rate function, ˆ̃� (X@, 0), satisfies

ˆ̃� (X@, 0) < b ˆ̃� (0′), (3.35)

where b < 1 is an empirical constant (we set b = 0.8). The terms ˆ̃� in (3.35)
are averages over ' independent data sets of the corresponding Legendre transform
(3.23). This formula allows the convergence criteria derived in [62] for estimating
one-dimensional SCGFs and rate functions to be applied in an arbitrary number of
dimensions.

We now discuss the procedure we use to converge the correction (3.19) while
accounting for correlation and linearization errors. For fixed block time � we
first increase " and ' until the error bars for �̂1(0̃0), (3.33), are smaller than a
desired value. We repeat this process for larger and larger � until �̂1(0̃0) becomes
independent of �. This is equivalent to increasing � until it becomes larger than
the reference-model correlation time )corr. If this happens while the convergence
criterion (3.35) holds at �̃ (X@★, 0̃0) then the calculation has succeeded, and we have
computed (to within statistical error) the exact value of the correction �1(0̃0).

If, however, the convergence criterion (3.35) fails to hold in the regime in which
(3.27) still changes rapidly with �, then the bound �0(0̃0) is too far from the exact
answer for us to effectively sample �1(0̃0) using direct simulation of the reference
model. In this case the chosen ansatz is probably missing a crucial piece of the
physics of the rare trajectories of the original model. On several occasions our
failure to converge �1(0̃0) based on an initial guess led us to construct a modified
ansatz from which we could converge the exact correction. In the cases described
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in this paper we were able to reconstruct � (0) using physically transparent ansätze
containing only a modest number of parameters.

A quick way to estimate the scale of the correction is to compute the first term
in (3.21), which requires computing only the variance of X@ within the reference
model. By the central limit theorem we will have �̃ (X@, 0̃0) ≈ (X@)2/(2)f2

ref) close
enough to the origin, where f2

ref ∝ 1/) is the variance of @ within the reference
model. If f2

ref is small (which is the case when the ansatz is very good) then the
correction �1(0̃0) ≈ )f2

ref/2. Thus if )f
2
ref/2 looks small when plotted in the form

of Fig. 3.1 it might be worth attempting to compute the correction (3.18). If not, a
better reference model ansatz is probably required.

Efficiency of the correction calculation
Standard arguments are often used to suggest that computing the exact value of
� (0) is not possible without knowledge of the exact rare dynamics, or the use of
methods such as cloning or transition-path sampling. This claim is based on the
fact that computing � (0) requires computation of the integral in (3.15), and assumes
that because the integrand grows exponentially with ) , the number of trajectories
required to converge this expression as ) → ∞ is prohibitively large. While this
latter statement is correct, it does not speak directly to the task at hand. To compute
the integral we do not need to take ) → ∞. Instead, we need ) & ) ′ where ) ′ is
smallest time at which the large deviation principle applies. Taking ) � ) ′ makes
sampling more difficult and is unnecessary. It is possible for ) ′ to be large, but if
the reference-model dynamics are close enough to the rare dynamics of the original
model then the variance of the @ will be small and it will be possible to converge
this integral term without using an unreasonable number of trajectories.

Moreover, computing the correction is numerically cheaper than inspection of the
integral alone might suggest. If we switch to the SCGF representation, (3.22), we
can instead work with trajectories of length ) = )corr, where )corr is the correlation
time of the reference model (in practice these trajectories are constructed by sub-
sampling a single longer trajectory). Generally, )corr is much smaller than ) ′,
the time required for the large-deviation principle to apply, and so sampling the
moderately rare events required to reconstruct the auxiliary rate function �̃ (X@, 0)
near its minimum is cheaper in the SCGF representation. This property is ideal
for the present method because we have reduced the problem of sampling � (0)
arbitrarily far from its minimum to one of sampling �̃ (X@, 0̃0) (potentially) close to
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its minimum. Working with the SCGF also removes the constraint 0 = 0̃0 present
in (3.18). Finally, we note that we are calculating the SCGF that is Legendre dual to
the correction term (3.18), and not the SCGF that is Legendre dual to the original
rate function � (0). Thus our method can in principle reproduce rate functions � (0)
that are not convex (�0 is not required to be convex).

Summary – A variational ansatz for rare dynamics (VARD)

1. Given a continuous-time dynamics with rates ,GH and a path-extensive dy-
namical observable 0, we wish to determine � (0), the large-deviation rate
function for 0 for trajectories of the model ,GH of fixed time (assuming that
� (0) exists). We use a reference dynamics to calculate � (0) as the sum of
an upper bound �0(0) and a correction �1(0). The bound can always be
calculated, and the correction can be calculated if the criteria described in
Section 3.2 hold. If so then we succeed in calculating � (0); if not, then the
method returns an upper bound �0(0) ≥ � (0).

2. Determine a reference-model dynamics (3.7) and (3.9) able to produce more
or less of 0 than the original model. In this paper we set the arbitrary bias VGH
using physical intuition.

3. Run a set of reference-model trajectories for different values of the reference-
model parameters (B, _, VGH). For each trajectory, evaluate 0̃0 and @̃0, using
Eqs. (3.6) and (3.11), and then use Eq. (3.17) to plot the point (0̃0, � (0̃0)); see
Fig. 3.1(a). The lower envelope of these points over values of the reference-
model parameter set is the tightest upper bound on � (0) associated with the
ansatz chosen in Step 1.

4. Attempt to calculate the correction �1(0) at points on the bound by running
a few (∼ 5) trajectories for each reference model. With the data from each
trajectory, calculate �̃ (X@★, 0̃0), Eq. (3.26), using Eqs. (3.27), (3.28) and
(3.29). Insert the resulting values into Eq. (3.19). Calculate the averaged
correction �̂1(0) and associated statistical error using Eqs. (3.30) and (3.31).

5. To verify convergence, repeat the calculation of Step 3 for increasing values of
the block time �, until the averaged estimate for the correction Eq. (3.30) no
longer changes with �, and the convergence criterion (3.35), with X@ = X@★
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Figure 3.2: Entropy production ratef for the 4-statemodel of Ref. [55], the rates,GH

of which are given by (3.36). (a) Bounds (3.17) for the large-deviation rate function
� (f). Each point on the colored lines results from a reference-model dynamics
[Eqns. (3.7) and (3.9)] obtained by scanning the indicated parameters. The black
dashed line is the exact answer. (b) Bound (blue line) resulting from a scan of the
parameters B and _ compared with the WLR bound of Ref. [55], Eq. (3.37). Inset:
The sum (green line) of the bound and the correction (3.18) equals the exact rate
function, arbitrarily far into its tails. The boxed region in panel (b) indicates the
scale of Fig. 2 of Ref. [55]. Error bars for both axes are smaller than the thickness
of the lines.

and 0 = 0̃0, holds 6. The accompanying GitHub script [63] performs steps 4
and 5 automatically.

3.3 VARD applied to four examples
Summary of the section
We now apply the method to four models taken from the literature. In each case,
a simple and physically-motivated ansatz for the modified dynamics allows com-
putation of the exact rate function � (0). We focus on models whose state space is
small enough that the exact rate function can be computed by standard methods –
Legendre transform of the SCGF calculated using the largest eigenvalue of the tilted
rate matrix [28] – in order to validate our method (at the end of the section we also

6The quantity ˆ̃� (0′) on the right-side of (3.35) is determined from the Legendre transform (3.23)
of ˆ̃\ (: X@ = 0, :0 = :̂ ′0). The quantity :̂ ′0 is calculated by finding the maximum of Err[0̂(:0)],
Eq. (3.33), while starting at the point (: X@ = 0, :0 = 0) on the SCGF and scanning outwards by
increasing :0.



70

use VARD to compute descriptive rate-function bounds for two systems too large
to solve by matrix diagonalization). In figures, the exact rate function is shown as a
black dashed line. Absent the exact answer we would apply the method in exactly
the same way. For a given reference model the fluctuations of the quantity @ reveal
whether the bound �0(0) is tight, and whether we can compute � (0) exactly.

Entropy production in a 4-state model
We start by sampling entropy production in the 4-state model of Ref. [55], shown
in the inset of Fig. 3.2(a). This is a fully-connected network model with transition
rates

,12 = 3, ,13 = 10, ,14 = 9,
,21 = 10, ,23 = 1, ,24 = 2,
,31 = 6, ,32 = 4, ,34 = 1,
,41 = 7, ,42 = 9, ,43 = 5.

(3.36)

These rates do not satisfy detailed balance, and so the model produces nonzero
entropy on average. To quantify the fluctuations of entropy production for trajectories
of fixed time we construct a reference model as follows. The dynamical observable
is 0 = f = )−1 ∑

UGH, where the sum is taken over all jumps G → H of a trajectory,
and UGH = ln(?GH/?HG), where ?GH = ,GH/

∑
H,GH. Our basic reference-model

parameterization is defined by the parameters B and _ appearing in (3.7) and (3.9),
together with any additional set of biases VGH suggested by the physics of the problem
under study. Here we reason that none is necessary: the bias _ is always required,
in order to sample jump times, and the bias B is sufficient to influence the entropy
produced per jump, �/ (a fact that is easy to guess, and to confirm with some
short simulations). We therefore impose no additional bias, and set VGH = 0.

We ran trajectories for a fixed number  = 1.5 × 108 of events, roughly equivalent
to a time of ) = 107 in the unbiased model. We simulate in the constant-event
ensemble for convenience, because there all simulations, regardless of the value
of _, take approximately the same amount of processor time. The equations of
Section 3.2 then allow us to compute the rate function for the original model in
the constant-time ensemble (see Ref. [73] for more on the relationship between the
constant-event and constant-time ensembles).

The bounds �0(0) resulting from a scan of B, for three values of _, are shown
as colored lines in Fig. 3.2(a). In figures we use the compact notation �0 [G] to
indicate the bound �0(0) swept out by scanning the set of parameters {G}. We also
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show the exact rate function (black dashed line), obtained by matrix diagonalization.
Different combinations of B and _ produce the best (lowest) bound at different values
of 0, so indicating the “least unlikely way” of realizing each value of 0 within the
manifold of dynamics accessible to the reference model. The bound produced by
the scan _ = 0 provides the best bound close to the typical value 00, but not far from
it, indicating that very rare values of 0 are produced by the original model using a
combination of rare jump types (B ≠ 0) and rare jump times (_ ≠ 0).

The bound swept out by scanning both B and _ is shown in blue in Fig. 3.2(b). We
used 201 equally spaced B values on the interval [−5, 5], and 51 equally spaced _
values on [0, 50]. This bound lies close to the exact answer, even far into the tails
of the rate function. For comparison we show the weakened linear response (WLR)
universal current bound of Ref. [55] (gray dashed line); the dotted box in the center
of the figure indicates the scale of Fig. 2 of that paper. The WLR bound is

� [WLR] = f0

422
0
(2 − 20)2, (3.37)

where 2 is a current, 20 is its typical value (in the original model), and f0 is the
typical value of the rate of entropy production. 20 and f0 must be determined by
running a single trajectory of the original model, and (3.37) then provides a bound
on the probability of observing an atypical value of 2. The bound is tightest in the
case 2 ∝ f.

The WLR bound can be derived from Level 2.5 of large deviations [57, 58] using a
mean-field ansatz that assumes all currents scale with time in the same way (for both
forward and time-reversed versions of the model). By contrast, the (B, _)-bound
results from a microscopic ansatz, (3.7) and (3.9), inserted into the exact result (3.5)
for the dynamical partition sum, and does not assume that all currents scale in the
same way. Inspection of the tails of the bounds reveals that the microscopic ansatz
captures the rare behavior of the model more accurately than does the homogeneous
ansatz. Thus we learn that the rare behavior of even this very simple model does not
simply resemble a speeded-up or slowed-down version of its typical behavior. The
bound (3.37) is a universal statement about the physics that constrain fluctuations,
and is not designed to be a means of accurate numerical sampling. Nonetheless, it
is meaningful and instructive to compare the bounds produced by different types of
ansätze.

For each of the reference models that lie on the bound �0 [B, _] we calculate the
correction (3.18) using the procedure described in Section 3.2. For all points we
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Figure 3.3: Large-deviation rate function � (2) of particle current, 2, for the version
of the ASEP studied in Ref. [55]; rate constants are given in the text. (a) We show
the exact answer (black), the WLR universal current bound [54, 55] (gray), and
the bound produced using our default (B, _) reference-model parameterization (dark
blue). (b) With additional physical insight used to refine the reference model it is
possible to tighten the bound (compare dark blue and light blue lines). The green
line in (a) is the corrected version of the 6D bound. The boxed region in panel (a)
indicates the scale of Fig. 3 of Ref. [55] (not the scale of Fig. 3.3(b)). Error bars for
both axes are smaller than the thickness of the lines.

obtain convergence of the correction. The result, �0(0) + �1(0), is shown as a green
line in the inset of Fig. 3.2(b), and matches the exact answer (black), obtained by
matrix diagonalization, as it should. We used 104 blocks, each of length of 50)event,
where )event is the time per event for each reference model. The average correction
(3.30) and statistical error are obtained from 10 independent data sets. Error bars
on the rate function are calculated by combining the error from the correction and
the error from the bound according to

Err[�̂ (0̃0)] =
√
(Err[�̂0(0̃0)])2 + (Err[�̂1(0̃0)])2. (3.38)

The error in the bound is estimated by running 10 additional trajectories at each
point and calculating the standard deviation of �0(0̃0). The standard deviation of
0̃0, calculated in the same way, yields error bars for the horizontal axis.

From this example it is clear that VARD is numerically much more efficient than
direct simulation (of the original model): accurate calculation of the rate function
at values of order 100 indicates accurate calculation of probabilities of order e−100) ,
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where ) is the elapsed time of the trajectory. We do not know in advance which
values of reference-model parameters constitute good choices, for particular values
of 0, but it is a simple matter to scan parameters and pick the smallest value of �0

given 0. Additional sampling then allows us to determine if we can calculate the
correction (3.18), and therefore the exact rate function. We were able to do this
here with little additional numerical effort. In this example, the state space of the
model is small enough that its dynamics can be solved by matrix diagonalization,
and so we possess the exact answer in advance. We made this choice because we
wish to benchmark the method. However, our procedure would be identical if we
did not know the exact answer ahead of time: define the reference model, pick the
best bound, and attempt to calculate the correction term. The results of the latter
calculation tell us if we have the exact answer, or, if not, roughly how close we are to
obtaining it. If we are not close at all then we need a better reference-model guess.
Inspection of the bounds produced by different reference models is also physically
instructive, indicating the extent to which certain dynamical mechanisms contribute
to the rate function at particular values of the order parameter.

Current in the ASEP
Wenext sample current in the asymmetric simple exclusion process (ASEP), amodel
of hard particles that hop between lattice sites [6, 66] (an interesting alternativewould
be to consider the symmetric simple exclusion process, which has fewer parameters
but also shows complex scaling behavior [74]). We consider the version of the
model studied in Fig. 3 of [55], shown in Fig. 3.3, with open boundaries and a lattice
of ! = 15 sites. The rate constants are U = 1.25, V = 0.5, W = 0.5, X = 1.5, ? = 1,
and @ = 0.5, placing the model in the high-density region of the ASEP phase
diagram [75, 76]. The dynamical observable is 0 = 2 = )−1 ∑

UGH, where the sum
is taken over all jumps G → H of a trajectory, and UGH = ±1 if the jump G → H sees
a particle move to the right (upper sign) or left (lower sign).

In Fig. 3.3(a) we show the bound swept out by our default (B, _) reference-model
parameterization (dark blue), which provides a meaningful numerical bound on the
exact rate function (black) even far into the tails. We ran trajectories for  = 5×105

events, roughly equivalent to a time ) = 105 in the unbiased model. We scanned 81
equally spaced B values on the interval [−2, 2], and 41 equally spaced _ values on
[0, 10]. Also shown is the WLR universal current bound [54, 55] (gray). The WLR
bound describes accurately the moderately rare behavior of the model, but not the
very rare behavior, which is quantified by the tails of the rate function. Comparison of
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bounds indicates, as in the previous subsection, that very rare currents are generated
by trajectories that do not resemble speeded-up or slowed-down versions of the
forward- or backward-running typical dynamics: the configurations visited in the
tails of the rate function are different to those visited near the center.

While the (B, _)-bound is alreadymeaningful, it is possible to produce tighter numer-
ical bounds by guessing additional ways in which the very rare high- or low-current
behavior might be achieved. Inspection of the way in which B couples to the rate
constants (here any rate involving a hop to the right is multiplied by e−B and any
rate involving a hop to the left is multiplied by eB) reveals that varying B moves
the reference model around the ASEP phase diagram [75, 76]. The original model
sits in the high-density region of phase space, but the reference model need not.
Inspection of the phase diagram indicates that the end rates U, V, W, X, separate from
the bulk rates ? and @, play a key role in determining the ASEP’s typical behavior:
if particles are fed in relatively quickly or slowly then we reside in the high- or
low-density region of phase space, respectively, and if input- and output rates are
balanced then we can access the maximum-current region. Returning to (3.8) we
introduce a set of parameters VGH that couple to the end rates, such that the rate U in
the original model becomes e−DUU in the reference model (DU being a parameter),
and similarly for the three other end rates. We also include a contribution to VGH
that biases trajectories toward or away from creating particle-particle contacts (i.e.
particles on adjacent sites), reasoning that controlling such contacts can help control
the escape rate of visited configurations, so helping cause or prevent traffic jams. A
simple way to do this is to add to VGH a bias −`ΔGH, where ` is a parameter and ΔGH
is the change in the number of particle-particle contacts when moving from G to H.

With the new bias determined we can generate an improved bound for the ASEP.
We split the calculation into two parts and focus separately on the piece of the
rate function for values of the observable greater than the mean, 0 > 00, and
less than the mean, 0 < 00. Since the dynamics in these two different regimes
are qualitatively different, generating an effective set of reference models for each
requires scanning over different regions of the ansatz parameter space. For 0 < 00

we scanned B, _, DW and `. For 0 > 00 we scanned B, _, DU, DV and `, making 6
parameters in total. Combining these calculations produces the 6D bound shown in
light blue in Fig. 3.3(b). This bound is tighter than the default (B, _)-bound. The
6-parameter scan can be carried out with reasonable numerical effort: for a given
set of parameters we need only a short single trajectory to compute the averages
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Figure 3.4: Large-deviation rate function � (0) for the number of jumps 1→ 0 per
unit time, 0, for the 3-state model of Ref. [56]. We compare with the exact answer
(black) the bounds produced by reference models in which we control jump times
(blue), or jump times and jumps from 0 → 1 (green). Error bars for both axes are
smaller than the thickness of the lines. Also shown is the CMP universal activity
bound [56], Eq. (3.39) (gray).

required for the bound, and there is no requirement for communication between
the calculations. On the left side we scanned 11 equally spaced B values on the
interval [0, 2]; 21 equally spaced _ values on the interval [−0.6, 0], and 17 more
on the interval [0, 8]; 29 DW values so that W takes on equally spaced values on the
interval [0.1, 1.5]; and 31 equally spaced ` values on the interval [−1, 0.5]. On the
right side we scanned 11 equally spaced B values on the interval [−2, 0]; 17 equally
spaced _ values on the interval [0, 8]; 21 DU values and 21 DV values so that U and
V each take on values equally spaced on the interval [0.5, 1.25]; and 11 equally
spaced ` values on the interval [0, 0.5]. The lower envelope of the values of (3.17)
constitutes the improved bound.

Correcting the 6D bound by calculating the correction �1 at points along the bound
gives the green line shown in Fig. 3.3(a), which agrees with the exact rate function
even far into the tails. For this calculation we used 104 blocks of length 100)event,
where )event is the time per event in each reference model. Errors are computed as
in Section 3.3.
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Figure 3.5: Large-deviation rate function � (:) for the number of jumps per unit
time, : , for the one-dimensional Fredrickson-Andersen model. (a) We compare
with the exact answer (black) the bounds produced by reference models in which we
control jump times (dark blue) or jump times and the mean up-spin fraction (light
blue). Also shown is the CMP universal activity bound [56], Eq. (3.39) (gray).
(b) The sum (green) of the bound (produced using a reference model in which we
control jump times, mean up-spin fraction, and pair correlations) and the correction
matches the exact answer. Error bars for both axes are smaller than the thickness of
the lines.

Activity in a 3-state model
We consider the three-state model of Fig. 3 of Ref. [56], shown in Fig. 3.4. The
rate constants are W = 1 and ^ = 1/2. Our chosen dynamical observable, 0, is the
number of jumps from states 1 → 0 per unit time. The parameter B in our default
(B, _) reference-model parameterization (3.8) has no role to play here: B controls
the probability of the 1→ 0 process, but once in state 1 there is nowhere to go but
state 0. Thus B cannot influence the number of counted events per jump, �/ , and
so we set B = 0.

At this point we need to apply our physical intuition in order to create a reference-
model ansatz able to control �/ . Inspection of the network reveals that controlling
the jump destination from state 0 is sufficient for this purpose: if we jump 0 → 1
then we must subsequently jump 1→ 0, whereas if we jump 0→ 2 we will return
to 0 without making the counted jump. In Eq. (3.8) we therefore set V01 = [ (a
parameter) such that the reference-model rate for the process 0→ 1 is ,̃01 = e−[W.
We set all other VGH = 0. Scanning [ and _ (our usual jump-time bias) produces
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the bound shown in green in Fig. 3.4. Bounds were calculated using 11 equally
spaced _ values on the interval [−0.5, 0] and 101 values on the interval [0, 25], and
51 equally spaced [ values on the interval [−5, 5]. All trajectories were run for
 = 107 events, roughly equivalent to a time of ) = 107 in the unbiased model.
Error bars are computed as in Section 3.3.

The ([, _)-bound is effectively exact, as we can deduce bymeasuring the fluctuations
of @ (which here are nonexistent). In this case the model is simple enough that each
reference model used to compute the bound enacts the exact rare dynamics of the
original model, conditioned on a particular value of 0. As a result, the correction
term �1 vanishes, and the bound �0 is exact. (This exactness is reasonable on account
of the fact that the system has relatively few ways of realizing values of �/ and
 /) , but it is not obvious in advance that the chosen parameterization would require
no additional correction.) Recall that the correction term can be interpreted as a
measure of how close the typical dynamics of the reference model is to the desired
rare dynamics of the original model; here, typical trajectories of the reference model
correspond exactly to trajectories of the original model conditioned on the relevant
value of the order parameter.

The chosen observable is a non-decreasing counting variable, not a current, and so
the universal bound of Refs. [54, 55] does not apply. One that does apply is the
Conway-Maxwell-Poisson (CMP) bound of Ref. [56],

� [CMP] = :0

00

(
0 ln

0

00
+ 00 − 0

)
, (3.39)

where 0 is the dynamical observable, 00 is its typical value (in the original model),
and :0 is the typical dynamical activity (the total number of events per unit time)
of the original model (note that there is an 0 missing in front of the logarithm in
Eq. (17) of [56]).

The CMP bound is shown in gray in Fig. 3.4. Similar to the universal current bound,
the CMP bound is derived from Level 2.5 of large deviations using an ansatz that
assumes the rare behavior of the system to be a speeded-up or slowed-down version
of its typical behavior. It therefore has similar properties to our _-bound, shown
in blue in Fig. 3.4 (the _ bound is constructed from the pieces of the ([, _)-bound
with [ = 0). Comparison of this bound and the (_, [)-bound shows the extent to
which the very rare behavior of this model is dominated by trajectories comprising
rare jump times and an atypical propensity to jump left from state 0. Analogous
to its current counterpart, the CMP bound is a general statement about the physics
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controlling the fluctuations of counting variables, and is not intended to be a means
of numerical sampling. Nonetheless, comparison of its properties with bounds
obtained by the microscopic ansatz used here is instructive, and addresses the point
raised in Ref. [56]: “It would be interesting to find alternative yet simple variational
ansatzes that can capture [the] strong fluctuation behavior [of the 3-state model]”.

Activity in the FA model
We consider the one-dimensional Fredrickson-Andersen (FA) model with periodic
boundary conditions [67]. This is a lattice model with simple thermodynamics and
with dynamical rules that give rise to slow relaxation and complex spatiotemporal
behavior [77]. On each site of a lattice (here of length ! = 15) lives a spin, which
can be up or down. Up-spins (resp. down-spins) can flip down (resp. up) with rate
1− 2 (resp. 2) if at least one of their neighboring spins is up; if not, then they cannot
flip (the rate 2 here should not be confused with the symbol for current in previous
sections). In Fig. 3.5(a), top, we show an example FA model configuration, with
periodic boundary conditions; the spins in red cannot flip. Our chosen dynamical
observable, 0 = : = )−1 ∑

UGH, is the number of jumps per unit time, where UGH = 1
for all jumps G → H. The large-deviation properties of : have been studied in detail,
and give rise, in certain limits, to singular behavior in the SCGF that is Legendre
dual to � (:) [10, 11].

In Fig. 3.5(a) we show the CMP universal activity bound [56] on � (:) and the bound
produced by our reference-model _-scan. These are of similar character, because
they assume that the rare behavior of the model is a speeded-up or slowed-down
version of its typical behavior. All trajectories were run for  = 3 × 105 events,
roughly equivalent to a time of ) = 105 in the unbiased model. We used 61 equally
spaced _ values on the interval [−0.6, 0], and 61 more on the interval [0, 12]. To
produce a tighter bound we need to assume that the configurations visited by rare
trajectories are different to those visited by typical ones (the CMP bound assumes
that they are the same). The parameter B in our default (B, _) reference-model
parameterization (3.8) again has no role to play, because biasing all jumps equally is
equivalent to biasing none. A simple alternative is to choose the bias VGH so that the
reference model can generate a larger or smaller number of up-spins than is typical
in the original model. We choose the parameters VGH so that the parameter 2 in
the original model becomes e−[2 in the reference model, with [ being a parameter.
A (_, [)-scan of the reference model produces the bound �0 [_, 2] shown in light
blue in Fig. 3.5(a). This bound provides a reasonable approximation of the exact
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Figure 3.6: Large-deviation rate function � (:) for the number of jumps per unit
time, : , for the Fredrickson-Andersen model of Ref. [78] with 2 = 0.1. Lattice sizes
are (a) ! = 40 sites and (b) ! = 100 sites. We compare the matrix product state
(MPS) calculation of Ref. [78] (black) with the three-parameter VARD bound of
Fig. 3.5 (blue). Also shown is the CMP universal activity bound [56], Eq. (3.39)
(gray).

answer over the whole range of : , indicating that much of the physics of rare activity
fluctuations of the FAmodel can be accounted for by considering the typical behavior
of versions of the model with different values of the parameter 2. Here we chose [
so that 2 takes on 100 equally spaced values on the interval [0.02, 2].

It is possible to tighten this bound by reasoning that there must exist spatial corre-
lations between up-spins if we condition trajectories upon activity per unit time : .
For instance, given an up-spin fraction of exactly 1/2, the escape rate (the sum of
rates leading out of a given state, a quantity relevant to the number of jumps per unit
time) is maximized by having pairs of up-spins separated by pairs of down-spins,
and minimized by having up-spins and down-spins alternate. We induce these types
of spatial correlations using the same `-bias used for the ASEP in Section 3.3,
favoring more or fewer contacts between up spins. Scanning 2, [, and ` produces
a bound slightly tighter than �0 [_, [] (not shown). We used 41 equally spaced `
values on the interval [−1, 1]. From this bound we compute the correction �1, and
the sum of the bound and correction matches the exact answer: see Fig. 3.5(b). We
computed the correction by splitting the calculation into two pieces, one on either
side of the mean value 0 = 00. For 0 < 00 we used 104 blocks of length 50)event,
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where )event is the average time per event in each reference model. For 0 > 00

we used 105 blocks of length 600)event. The different block lengths generated by
the convergence procedure (see Section 3.2) for 0 < 00 and 0 > 00 signal that
the correlations present in the dynamics are qualitatively different in each of these
regimes. Understanding the nature of these correlations is of physical interest [11,
77]. Errors are calculated as in Section 3.3.

Toward large-scale calculations
In this paper we have demonstrated proof-of-principle of VARD using network
systems or lattice models whose state space is small enough that their rate functions
can be obtained bymatrix diagonalization, so providing a benchmark for themethod.
VARD can also be applied to systems too large for matrix diagonalization to be
feasible, in order to produce bounds or (if the ansatz is good enough and convergence
of the correction is obtained) exact rate functions. An active line of research is
to study large versions of certain lattice models in order to determine how their
large-deviation properties change with system size [11, 36, 78]. In these regimes,
specialized techniques are necessary. For instance, in Ref. [36], a cloning procedure
combined with feedback control was used to calculate large-deviation functions for
an FA model of ! = 36 sites. In Ref. [78], a matrix product state (MPS) calculation
was used to compute large-deviation functions for an FA model of sizes of order
! = 100 sites (these results show some differences with the results of Ref. [36],
indicating that this is a technically challenging regime). Note that the FA model
of Ref. [78] has open boundaries and slightly different facilitation rules than used
in the previous section: spins facilitated by two spins flip at twice the rate of spins
facilitated by one spin.

In Fig. 3.6 we compare the MPS calculation of Ref. [78] with the three-parameter
VARDbound used in Fig. 3.5 for two lattice sizes that are considered large by current
standards (the parameter 2 = 0.1). In both cases the VARD bound is descriptive,
capturing the main features and the trends with : of the MPS result. The bound
is less tight for the larger system size, suggesting that more terms in the ansatz are
required as the system becomes larger. However, the bound quality, even using an
ansatz containing only 3 parameters, remains reasonable. As for the ASEP, the
natural next step is to include additional parameters in the ansatz in order to tighten
the bound and calculate the correction (compare dark blue and light blue lines in
Fig. 3.3(b)). A natural way to develop improved bounds is to use Monte Carlo
learning procedures in order to optimize reference models containing a potentially
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large number of parameters [79].

3.4 Conclusions
We have described how direct simulation of a variational ansatz for rare dynam-
ics (VARD) can be used to compute bounds for large-deviation rate functions in
continuous-time Markov chains 7. This approach requires only direct simulation of
versions of the original model with modified rates, and so is technically simple and
easy to implement. It is also physically instructive, in the sense that the quality of the
bounds produced by different physical ansätze reveal the extent to which different
types of dynamical processes contribute to the rare behavior of the model of interest.

If the ansatz is chosen well then bounds can be corrected to produce the exact rate
function, arbitrarily far into its tails; in the literature it is often assumed or stated that
such precision is not accessible via direct reweighting of trajectories, and requires
the use of specialized numerical techniques such as cloning or path sampling. For
the models studied in Figs. 3.2–3.5, two network models and two lattice models
taken from the literature, it is possible to calculate the exact rate function using only
simple and approximate guesses about the nature of the rare dynamics. Although
this rare behavior can be complex, we are rarely working in the dark: the model
itself can exhibit different behavior in different parameter regions, and often its rare
behavior at one point in parameter space is similar to its typical behavior at another
point in parameter space. For example, we have studied the ASEP in its high-density
region, where (typically) the lattice is crowded and particlesmove slowly. The ansatz
we used to calculate its current rate function is equivalent to guessing that the rare,
high-current behavior in the high-density region is similar to the typical behavior
in the maximum-current region, where particles move quickly and possess spatial
anticorrelations. Similarly, the FA model is complex, but the likelihood of its rare
behavior at one value of the parameter 2 can be well approximated by looking at
the typical behavior of models at different values of 2. We have also shown that
bounds that are descriptive in small systems remain so in systems too large to solve
by matrix diagonalization; we will discuss this regime further in forthcoming work.

VARD is similar to classical umbrella sampling [64, 65] in the sense that the rate
function �̃ (0) of the reference model can be regarded as a nonequilibrium umbrella
potential, concentrating sampling at a desired point: see Fig. 3.1. It is different,
however, in that VARD does not require overlapping sampling windows – reference

7The method works for Markov chains in discrete time, upon replacing the distributions (3.4)
and (3.9) by X(ΔC − 1); see earlier versions of the method [41–43].
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models are used independently – and we compute an absolute rate-function value
� (0), as opposed to a free-energy difference. This latter distinction results from the
fact that the path weight appearing in (3.5) is known exactly, and at the sampling
point 0̃0 we know that the rate function of the reference model vanishes; by contrast,
in the equilibrium case we know the probability of visiting a certain state only up
to a normalization constant, and we do not know the absolute free energy of the
reference model (unless it is particularly simple [80]).

VARD provides insight into the approaches used to produce universal rate-function
bounds from Level 2.5 of large deviations, via homogeneous ansätze [54–56], by
showing how relaxing such assumptions leads to the tightening of bounds in different
sectors of parameter space. It is also complementary to numerical large-deviation
methods that use path-sampling, cloning, or adaptive methods to calculate the
SCGF 8 that is Legendre dual to � (0) [11, 28, 32–37]. Sometimes path sampling
or cloning are used in isolation, and sometimes they are combined with a modified
dynamics. VARD lies at the other extreme of the methods spectrum in the sense that
it uses only a modified dynamics. The bounds that result provide a natural starting
point for those specialized methods, because the set of reference models that live on
the bounds already resemble the rare dynamics of interest. Indeed, direct sampling
of those reference models is, in the cases described in Figs. 3.2–3.5, sufficient to
recover the statistics (the constituent configurations and jump times) required to
compute � (0) exactly.

There are several possible variants of the present method. The _-scan accesses
roughly the same information as the universal bounds of Refs. [54–56], and one
possible numerical simplification would be to eliminate the _-scan in favor of the
universal bounds (3.37) or (3.39). We have also simply scanned parameters in order
to identify the best bounds associated with a given ansatz, but as the complexity
of an ansatz grows it is be natural to replace the scan with an evolutionary Monte
Carlo procedure [79]. For instance, consider a set of reference models having #
parameters, and construct an initial (B, _)-bound. Take models at various points on
this bound, and define a window Δ0 for the observable. For each model, perturb
the # parameters, generate a short trajectory, and calculate Eq. (3.17). If this value
is less than the current bound (and 0 lies within the designated window) accept the
new reference model; otherwise, retain the original.

8One advantage of bypassing the SCGF and calculating the rate function directly, as we do here,
is the ability to reconstruct rate functions that are not strictly convex [28, 41, 81].
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C h a p t e r 4

VARIED PHENOMENOLOGY OF MODELS DISPLAYING
DYNAMICAL LARGE-DEVIATION SINGULARITIES

Whitelam, S. & Jacobson, D. Varied Phenomenology of Models Displaying Dy-
namical Large-Deviation Singularities. Physical Review E 103, 032152. https:
//link.aps.org/doi/10.1103/PhysRevE.103.032152 (Mar. 29, 2021)

Chapter Abstract
Singularities of dynamical large-deviation functions are often interpreted as the
signal of a dynamical phase transition and the coexistence of distinct dynamical
phases, by analogy with the correspondence between singularities of free energies
and equilibrium phase behavior. Here we study models of driven random walk-
ers on a lattice. These models display large-deviation singularities in the limit of
large lattice size, but the extent to which each model’s phenomenology resembles
a phase transition depends on the details of the driving. We also compare the be-
havior of ergodic and non-ergodic models that present large-deviation singularities.
We argue that dynamical large-deviation singularities indicate the divergence of a
model timescale, but not necessarily one associated with cooperative behavior or
the existence of distinct phases.

4.1 Introduction
Phase transitions are collective phenomena that occur in the limit of large system
size and whose presence can be detected in finite systems [1–3]. Phase transitions
cause singularities in thermodynamic potentials and dynamical large-deviation func-
tions, which quantify the logarithmic probability of observing particular values of
extensive order parameters [4–7]. An important example of this singularity-phase
coexistence correspondence in equilibrium is the 2D Ising model below its critical
temperature [1–3, 8]. In dynamical models, singularities (kinks) of large-deviation
functions develop in certain limits, and can signal the emergence of a dynamical
phase transition and the coexistence of distinct dynamical phases [9–22].

However, large-deviation singularities do not necessarily indicate the existence of
cooperative phenomena or distinct phases. For instance, singular features are seen in
the large-deviation functions of finite systems in the reducible limit, when the con-
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nections between microstates are severed [23–27]. We show here that singularities
can also appear in the limit of large system size of dynamical models, if the model’s
basic timescale (mixing time) diverges with system size. Such singularities appear
whether or not this divergence results from cooperative behavior or is accompanied
by evidence of distinct phases.

We study models of driven random walkers on a lattice, which display dynamical
large-deviation singularities in the limit of large system size. If the walker is
driven in one direction then we see the emergence of dynamical intermittency
within trajectories conditioned to produce particular values of a dynamical order
parameter. The switching time of this intermittency grows with system size. If the
walker is undriven, the singularity results instead from a divergence of the diffusive
mixing time of the model, with no intermittency present in conditioned trajectories
(both behaviors have a thermodynamic realization in terms of a lattice polymer).
We present an argument to rationalize when to expect random-walk models to
exhibit intermittency of their conditioned trajectory ensembles, and show that this
argument correctly predicts the mixed intermittent/non-intermittent character of the
conditioned trajectory ensemble of a random walker whose driving varies with
position. We also comment on the relationship between ergodic and non-ergodic
dynamical systems that exhibit large-deviation singularities.

In Section 4.2 and Section 4.3 we consider two random-walk models that display
large-deviation singularities, but whose conditioned trajectory ensembles are of
different character. In Section 4.4 we present a simple argument to rationalize when
such models display intermittency of their conditioned trajectories. In Section 4.5
we compare the behavior of ergodic and non-ergodic dynamical models that present
large-deviation singularities. We conclude in Section 4.6, arguing that dynamical
large-deviation singularities indicate the divergence of a model timescale, but not
necessarily one associated with cooperative behavior or the existence of distinct
phases.

4.2 Driven random walker
We start with amodel similar to one studied in Ref. [13], a driven randomwalker on a
closed (non-periodic) lattice of ! sites. We choose ! to be odd, and work in discrete
time 1. Let the instantaneous position of the walker be G ∈ {−(! − 1)/2, . . . , (! −
1)/2}. At each time C the walker moves right (G → G + 1) with probability ?(G), or

1We have carried out analogous calculations in continuous time, and draw the same conclusions.
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Figure 4.1: (a–c) Large-deviation functions for the time-averaged position 0 of a
driven discrete random walker on a closed lattice of ! sites. (d) Walker trajectories
showing the instantaneous position G/! under the biased dynamics corresponding to
the point : = :★ of greatest curvature of_(:). These trajectories show intermittency,
with the walker switching between two locations on either side of the lattice. The
timescale for residence in the distinct lattice locations increases with increasing !.
(e) Histograms of the instantaneous position G/! for the trajectories in (d).
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left with probability 1− ?(G). In this section we set ?(G) = 1/4, and so the walker’s
typical location is near the left-hand side of the lattice, G = −(!−1)/2. If the walker
sits at either edge of the lattice then it moves away from the edge with probability 1
(so ?(−(! − 1)/2) = 1 and ?((! − 1)/2) = 0), analogous to reflecting boundaries
in the continuum limit.

The master equation associated with this dynamics is

%G (C + 1) =
∑
G ′
,G ′G%G ′ (C), (4.1)

where %G (C) is the probability that the walker resides at lattice site G at time C, and the
generator,G ′G = ?(G′)XG,G′+1 + (1 − ?(G′))XG,G ′−1 is the probability of the transition
G′→ G.

We take the time-averaged position 0 of the walker as our dynamical observable.
This quantity is

0(l) = ()!)−1
)∑
C=1

GlC , (4.2)

where GlC is the position of the walker at time C = 1, . . . , ) within a trajectory l. We
have normalized 0(l) by the size of the lattice, !. The typical value of 0, which we
call 00, corresponds to the value of (4.2) in the limit of large ) . Because the walker
prefers to sit near the left-hand side of the lattice, 00 ≈ −1/2.

To calculate the probability distribution d) (� = 0)) of the walker’s time-averaged
position, we appeal to the tools of large-deviation theory. The probability distribu-
tion adopts in the long-time limit the large-deviation form

d) (�) ≈ 4−) � (0) , (4.3)

where � (0) is the rate function (on speed )) [4, 5]. � (0) quantifies the probability
with which the walker achieves a specific, and potentially rare, time-averaged posi-
tion. When � (0) is convex, as it is for ergodic Markov chains, it can be recovered
from its Legendre transform, the scaled cumulant-generating function (SCGF) [5],

_(:) = 0(:): − � (0(:)). (4.4)

Here : is a conjugate field, and 0(:) = _′(:) is the value of 0 associated with a
particular value of : . If the lattice is not too large then the SCGF can be calculated
by finding directly the largest eigenvalue of the tilted generator,, :

G ′G = e:G,G ′G . The
rate function can then be obtained by inverting (4.4). We use this standard method
to calculate _(:), 0(:), and � (0).
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Figure 4.2: Analog of Fig. 4.1, now for an undriven walker. (a–c) As for the driven
walker, large-deviation functions show increasingly sharp behavior as ! increases.
(d) Trajectories showing the instantaneous position G/! of the walker at the point of
greatest curvature of _(:), :★ = 0. These trajectories do not exhibit intermittency.
(e) As a result, histograms of the instantaneous position G/! for the trajectories in
(d) are unimodal.
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Figure 4.3: (a–c) The large-deviation functions of Fig. 4.2 (a–c), rescaled by !2 to
account for the timescale associated with diffusion. The resulting collapse indicates
that these systems behave similarly when viewed on the natural timescale )/!2.
The large-deviation singularity in this case results from divergence of the diffusive
timescale.

In Fig. 4.1 we show the large-deviation functions for the time-averaged position
0 of the driven walker. As the lattice size ! increases, the SCGF and 0(:) bend
increasingly sharply, and portions of the rate function become increasingly linear.

In Fig. 4.1(d) we show biased dynamical trajectories of the walker, generated at
the points : = :★ at which the SCGF bends most sharply. We generated these
trajectories using the exact eigenvectors of the tilted generator [28, 29]. Because the
SCGF is convex, biased trajectories generated using field : correspond to trajectories
that produce a value 0(:) = _′(:) of the time-integrated observable 0 [28], and
are the “least unlikely of all the unlikely ways” [4] of achieving the specified time
average. For this model these trajectories are intermittent, with the walker switching
abruptly from one location on the lattice to another. As a result, histograms of the
instantaneous position of the walker are bimodal [panel (e)]. As the lattice size
increases, the residence time at each location increases.

The intermittent behavior has a simple physical origin. The probability per unit time
for the walker to sit at (fluctuate about) its preferred location is greater than that to sit
at any site in the lattice interior, but the latter probability is essentially independent
of position (see Section 4.4). If conditioned to achieve a time-averaged position 0
at (say) the center of the lattice, it could sit for all time at the corresponding lattice
location. But it could also spend half its time at its preferred location, and half its
time near the far end of the lattice. Given that sitting near the far end of the lattice is
not more costly than sitting in the middle, the intermittent strategy is more probable
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than the homogeneous one. This argument holds for time ) much longer than g(!),
the emergent mixing time governing intermittency. The probability of crossing the
lattice in the difficult direction is ∼ ?! , and so the timescale for doing so increases
exponentially with !.

4.3 Undriven random walker
We now consider an undriven walker whose probability of moving right at any site
away from the edges is ?(G) = 1/2. Again we choose the time-averaged position of
the walker as our dynamical observable. As shown in Fig. 4.2, the large-deviation
functions _(:) and 0(:) again show the emergence of sharp features as ! grows,
and � (0) flattens, reminiscent of the free energy for the Ising model below its critical
temperature [2]. These sharp features become singular in the limit ! →∞, with the
kink occurring at :★ = 0 (the untilted generator for a random walker has a spectral
gap that vanishes as !−2).

However, the implication of the emergence of distinct “phases” or dynamic intermit-
tency is at odds with the physics of the system. Because of the model’s symmetry,
the point : = :★ at which the SCGF shows greatest curvature is :★ = 0, correspond-
ing to the unbiased trajectory ensemble. Such trajectories do not display switching
behavior, as shown in panels (d) and (e). We also verified that switching behavior
occurs at no other values of :: histograms of G/! for biased or conditioned tra-
jectory ensembles are always peaked about a single value. Why then the emergent
singularity?

To answer this question we note that the rate function for dynamics controls the
rate at which atypical fluctuations decay, and so measures both the probability and
basic timescale of those fluctuations. Thus � (0) can be small if the fluctuation 0
is almost typical, or if the basic timescale governing the establishment and decay
of a fluctuation 0 is large. For diffusive systems such as the walker, the latter
factor is important. The natural way to compare systems of different ! is at fixed
scaled observation time )! ≡ )/!2, which in large-deviation terms is equivalent to
adopting )! as the new large-deviation speed, such that

d) (�) ≈ e−) � (0) = e−)! �! (0) . (4.5)

The object �! (0) ≡ � (0)!2 is the rate function on this new speed.

In Fig. 4.3 we show the large-deviation functions for the walker in this new frame
of reference. Each panel is a rescaling of the panels shown in Fig. 4.2(a–c). These



96

(a) (b)

0

2

J

0 1
x/L

0

1

J

0 1
x/L

Figure 4.4: Negative log-probability per unit time for the driven walker to achieve
a time-averaged position 0 = G/! in a homogeneous way (blue lines) or a two-state
intermittent way (cyan and red lines). In panel (a) the walker’s driving is constant,
?(G) = 1/4, while in panel (b) the tendency of the walker to move left increases
with rightward distance, ?(G) = [1 − (G/!)2]/4. The lattice size ! = 20. When
the straight lines lie below the blue lines it is more likely for the system to achieve
the time-averaged position 0 corresponding to G/! in an intermittent way. This
construction is consistent with conditioned trajectories of these models (Fig. 4.5), as
long as the trajectory time comfortably exceeds the time on which switching occurs.

rescaled functions show no sharpening of their features as ! increases, and the
collapse of the functions confirms that the long timescale associated with the walker
is the diffusive one. The natural scales for comparison of these systems are )/!2

and :!2, not ) and : .

Therefore in this case it is a divergence of the diffusive mixing time !2 that causes
the singularity, not the emergence of intermittent behavior. One additional issue
resolved by the rescaling is the apparent vanishing of the rate function in the limit
! → ∞. If a large-deviation principle applies then the rate function � (0) has a
unique zero at the point 00 at which the system displays its typical behavior [5].
Given the symmetry of the system, the walker’s typical location in the long-time
limit is 00 = 0. It is clear that Fig. 4.3(c) is consistent with this idea, and the notion
that time is “long”.

In Appendix A we point out that both walker models have a thermodynamic inter-
pretation as lattice polymers, confirming that the existence of a first-order singularity
in a thermodynamic system does not automatically imply phase coexistence.

4.4 When should we expect intermittency?
The previous sections show that intermittent conditioned trajectories can accompany
dynamical large-deviation singularities, but that singularities can result from the
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emergence of a large timescale absent intermittency. We show in this section
that driven walkers on a lattice can display both intermittent and non-intermittent
conditioned dynamics, depending upon the the details of the walker rules and
the timescale of observation. The argument we use is analogous to the classic
equilibrium procedure of comparing the free energies of homogenous and coexisting
phases [1, 2].

Consider again a lattice of ! sites, and let the probability that a walker steps right
from lattice site G ∈ {1, . . . , !} be ?(G) (we have shifted the origin of the lattice
relative to the previous sections). Define @(G) ≡ 1− ?(G). Let the lattice be closed,
so that ?(1) = 1 and ?(!) = 0. The time-integrated position of the walker is
0 = (!))−1 ∑)

C=1 GC , where GC is the walker’s position at discrete time C.

The probability for a walker at an interior site G to fluctuate about that site, i.e. to
step right, left, left, and then right again is ?(G)@(G + 1)@(G)?(G − 1). Thus the
negative logarithmic probability per unit time for the walker to remain localized near
interior site G is the negative logarithm of this quantity divided by 4. Accounting
for the different rates at the edges of the lattice, the negative logarithmic probability
per unit time for the walker to remain localized near site G is

* (G) =


−1

2 ln[?(G)@(G + 1)] G = 1

−1
4 ln[?(G)@(G + 1)@(G)?(G − 1)] 1 < G < !

−1
2 ln[@(G)?(G − 1)] G = !.

(4.6)

The negative logarithmic probability per unit time for a homogeneous trajectory,
one localized at G = 0! for all time, is

�homog = * (G). (4.7)

(The quantity � is not the rate function � (0), which relates to the log-probability by
which the system achieves the value 0 by any means.)

By contrast, the negative logarithmic probability per unit time for an intermittent
trajectory built from sections of trajectory localized at G′ = 0′! for time q) and at
G′′ = 0′′! for time (1 − q)) is

�int = q* (G′) + (1 − q)* (G′′), (4.8)

ignoring switches back and forth between G′ and G′′. For the intermittent trajectory
to achieve the same time average as the homogeneous one requires

qG′ + (1 − q)G′′ = G. (4.9)
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Figure 4.5: Large-deviation rate function � (0) for the time-averaged position of the
driven lattice random walker from Section 4.2 (red), together with that for a super-
driven walker (cyan) for which the probability to move left increases with distance
from the left-hand edge. Shown below are histograms of the instantaneous walker
position from trajectories of the two models conditioned to produce various atypical
values of 0. Consistent with the simple arguments developed in this section, the
driven walker displays intermittency, for most values of 0, involving sites near the
edges of the lattice. By contrast, the super-driven walker shows intermittency for 0
not too far from the typical value 00, involving sites near the middle of the lattice.
For 0 far from 00, its conditioned trajectories are homogeneous. For both models,
! = 20.
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If, for a given value of G = 0!, (4.8) is smaller than (4.7), then intermittent
trajectories are more probable than homogeneous trajectories. There may be other
types of trajectory that are more probable still, but this simple and approximate
argument, which essentially reduces to an assessment of where * (G) is concave,
provides a starting point for understanding when intermittency will appear in the
conditioned dynamics of the walker.

In Fig. 4.4(a) we show the quantities (4.7) and (4.8) for the driven walker of Sec-
tion 4.2, for which ?(G) = 1/4. The negative log-probability per unit time for
homogeneous trajectories, Eq. (4.7), is shown in blue. The most probable intermit-
tent trajectory for any G is the one built from the lattice edges, shown in red in the
figure. This line lies below the homogeneous result for all G away from the edges,
showing that intermittency is the more probable way to achieve a time average in
the interior of the lattice.

In Fig. 4.4(b) we consider a “super-driven” walker whose probability of moving
in one direction increases with distance in the opposite direction, ?(G) = [1 −
(G/!)2]/4. For intermittent trajectories to be more likely than homogeneous ones
we need to be able to draw a straight line between two points on the function * (G)
and have the line lie below * (G). We see that this is possible for some points but
not others, and that the lower-lying line (the more probable intermittent strategy)
connects the typical point G ≈ 1 with a point that is near the middle of the lattice,
not the edge. Based on this picture we expect the conditioned trajectory ensemble
of the super-driven walker to be intermittent for values of 0 near the typical value
00 ≈ 1/!, but not far away, and for the intermittent trajectories to involve locations
on the lattice different to the edges occupied by the driven walker.

In Fig. 4.5 we show that these expectations are borne out. In the main panel we show
the rate functions � (0) for the time-averaged position of the driven walker (red) and
super-driven walker (cyan). Shown below are position histograms for trajectories
conditioned to produce various atypical values of 0. Consistent with the simple
arguments developed in this section, the super-driven walker shows intermittency
near 0 = 00, involving sites near the center of the lattice. For 0 far from 00 its
conditioned trajectories are homogeneous. The driven walker shows intermittency
for a wider range of values of 0, and its intermittency always involves sites near the
edges of the lattice.

To produce Fig. 4.5 we used the VARD method [30] to calculate the conditioned
dynamics of the walker. The unconditioned model has probability ?(G) of moving
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right from lattice site G. We introduce a reference random walker whose probability
of moving right, ?̃(G), is an arbitrary function of G, which we chose to express as a
radial basis function neural network. The network has one input node, which takes
the value G/!, a single hidden layer of 1000 neurons, eachwith Gaussian activations,
and one output node, ?̃(G). For sufficiently long trajectories the optimal dynamics
is Markovian, and can be represented exactly by this ansatz if suitably optimized.

Following Ref. [31] we used neuroevolution of the parameters of the network,
equivalent to gradient descent in the presence of Gaussian white noise [32], to
extremize the sum of values of )−1 ln[ ?̃(G)/?(G)] over a trajectory of ) steps of the
reference randomwalker’s dynamics, subject to its achieving a specified value of the
time-averaged position 0. For ) long enough, i.e. longer than any emergent mixing
time of the reference model, these calculations are equivalent to the eigenvalue
calculations of Section 4.2 and Section 4.3 [33], and we recover the rate function of
the model and its conditioned dynamics at each point on the rate function.

For )/g(!) not large, conditioned trajectories do not resemble their long-time
counterparts. For example, for ) = ! the most probable trajectory whose time-
averaged location is the middle of the box, given free choice of initial conditions,
is the one that starts at the right-hand wall and crosses the box in ! steps. The
histogram d(G/!) associated with that trajectory is flat. For ) � ! the only viable
trajectories respecting the conditioning are those localized near the appropriate value
of G/!.

4.5 Singularities in non-ergodic models
We end by noting that dynamical large-deviation singularities also arise in non-
ergodic models, such as the irreversible growth model of Refs. [15, 16], and that
these singularities are associated with phenomenology of a distinct type to that
exhibited by the walker models.

Briefly, the growth model possesses two types of particle G ∈ {−1, 1}, added to
an urn at discrete timesteps with a relative probability that depends on the quantity
W(0) = e−�0/(2 cosh �0), where � is a parameter. Here 0, the dynamical observable,
is the sum of values of G at each timestep, divided by total time ) . This model can
also be viewed as a two-state switch with a switching probability that depends on
the history of switching [27].

This model undergoes a phase transition, at a value of � = 1, between a regime in
which trajectories display one type of characteristic behavior and a regime in which
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trajectories display two types of characteristic behavior. At the critical point the
trajectory ensemble displays anomalous fluctuations. Associated with this transition
is a change of shape of the model’s large-deviation rate function (see Appendix B),
and a dynamical large-deviation singularity.

Long trajectories of the conditioned driven walker and the growth model show two-
state switching behavior, but in the growth model’s case the probability of switching
depends on the history of switching. As a result, trajectories that adopt one type
of behavior become more likely, as time advances, to remain committed to that
behavior [34]. The result is ergodicity breaking and an ensemble of trajectories that
in the long-time limit spontaneously adopt one of two characteristic behaviors.

The nature of the trajectory ensemble of the growth model and walker models
is summarized in Fig. 4.6. Conditioned trajectories of the driven walker display
intermittency and a bimodal distribution of the instantaneous coordinate G/!, but
the distribution of the time-integrated quantity 0 is unimodal. In the growth model,
the distribution of the time-integrated quantity 0 is bimodal.

Figure 4.6: Summary of the biased trajectory ensembles associated with threemodel
systems, each generated at the point :★ at which the SCGF associated with the time-
integrated observable has largest curvature. For the undriven walker (left) and the
growth model (right) we have :★ = 0, while for the driven walker (center) we have
:★ ≠ 0. The top panels show the instantaneous dynamical observable associated
with a single trajectory (two trajectories in the case of the growth model). The lower
panels show 0, the time-integrated version of G, for an ensemble of 100 trajectories.
The trajectories of the top panels are indicated in the bottom panels by the dark blue
or red lines.
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4.6 Discussion & Conclusions
Phase transitions are collective phenomena that occur in the limit of large system size,
and which influence the behavior of finite systems [1–3]. Phase transitions induce
singularities in thermodynamic potentials and large-deviation functions. However,
similar-looking singularities can arise in the absence of collective phenomena. For
instance, abrupt features are seen in the large-deviation functions of finite systems in
the reducible limit, when the connections between microstates are severed [23–27].
Here we have shown that singularities can also emerge in the limit of large system
size if a model becomes slow as it becomes large, whether or not it exhibits behavior
reminiscent of a phase transition.

The undriven walker of Section 4.3 has a rate function � (0) [Fig. 4.2(c)] that in
the limit ! → ∞ looks similar to that of the 2D Ising model’s magnetization rate
function below )c [2, 5]. Interpreting the walker in this context suggests that it can
be switched between two behaviors (corresponding to walkers localized either size
of the lattice) with an infinitesimal field : . Moreover, because the switching occurs
about the value :★ = 0, a large unbiased version of the system appears poised on
the brink of phase coexistence between these behaviors. However, the conditioned
trajectory ensemble of thewalker shows no evidence of distinct dynamical phases. In
our view amore natural interpretation is that thewalker’s diffusive timescale diverges
as !2. When time ) and field : are rescaled in order to view systems of different
size at fixed )/!2, is clear that the probability distribution of 0 remains regular
(Fig. 4.3). Departures from the typical behavior (a time average in the middle of the
lattice) remain rare. The distinction between large-deviation singularities induced
by cooperative behavior or by dynamics that is simply slow is the idea expressed in
Fig. 1 of Ref. [27].

The driven walker of Section 4.2 displays emergent intermittency when its trajec-
tories are conditioned to produce particular time-averaged positions, provided that
) � g(!), the emergent switching time. In Section 4.4 we show that the details of
the walker’s rules and the value of the imposed time averaged determine whether
intermittency or homogeneity dominates. Other authors have noted the similarity
of dynamical intermittency to magnetization stripes in the Ising strip crystal, if we
associate time with the long Ising box direction and regard the two walker lattice
positions as “phases” [13]. However, if we swap the long and short directions of the
Ising box then the direction of the interface changes, but the identity of the phases
does not. If we do similarly with the walker, and make ! � ) , then its conditioned
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trajectories can no longer be intermittent. This change switches the direction of
the walker’s space-time “interface”, but also alters the identity and number of the
“phases” seen.

The growth model (or two-state switch with memory) discussed in Section 4.5
is unlike the other models discussed in that it possesses only one independent
dimension, that of time ) . It is clearly different in detail to models with spatial
degrees of freedom, but its phenomenology is similar to that of the 2D Ising model
in several important respects, with ) playing the role of system size. The growth
model’s large-deviation function changes from being regular to being singular upon
changing amodel parameter �. In the singular regime the steady-state rate function of
the time-extensive quantity is concave (Section B), reflecting two distinct dynamical
behaviors and an associated ergodicity breaking. The origin of this behavior is
cooperativity, the tendency of the model to favor one behavior the more it exhibits
it.

The scaled cumulant-generating functions (SCGFs) of these models, which display
kinks in certain limits, do not specify which type of dynamics the model exhibits.
It is worth noting that nor do the rate functions to which they are Legendre dual.
For the walker models, the SCGF kinks are related to portions of the rate function
that are linear with zero gradient (the undriven walker) and with nonzero gradient
(the driven walker). The latter is suggestive of intermittency, although linear rate
functions also arise in other types of process, such as relaxation to an absorbing
state [5, 35]. Moreover, simple switching models, which are by design intermittent,
display, as the switching time increases, rate functions that broaden and vanish,
becoming linear with zero gradient [23–25] (see e.g. Fig. 5 of Ref. [27]). Those
rate functions therefore resemble the rate functions of the undrivenwalker, although
the latter shows no intermittency. Explicit calculation of the dynamics that gives
rise to the rate function is necessary to determine how the model realizes its rare
behavior.

All of the models discussed here display kinks of their dynamical large-deviation
functions in certain parameter regimes, but show phase transition-like behavior to
different extents. On this basis we suggest that phenomenology should guide the
classification of singularity-bearing models discussed in the literature.
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A Appendix: Thermodynamic interpretation of walker models
The random walkers of Section 4.2 and Section 4.3 have a thermodynamic interpre-
tation, if we interpret the time dimension of the walker as a second spatial dimension.
Then every trajectory l of the walker becomes a configuration of a lattice polymer.
On each row = ∈ {1, . . . , #} of the lattice (formerly the time direction), the polymer
occupies a single site G= ∈ {−(! − 1)/2, . . . , (! − 1)/2}. The polymer is held at
reciprocal temperature V = (:B))−1, and we define the energy of configuration l
to be

V� (l) = − ln c1(Gl0 ) −
#∑
8=2

ln,Gl
8
Gl
8+1
. (A1)

Here c1(G) is the probability that the polymer has position G on the first row of the
lattice.

The probability that the thermodynamic system has configuration l is equal to the
probability that the dynamical system generates trajectory l. The probability of the
polymer achieving a row-averaged mean position 0 is

d# (0) = 4−V#6# (0) , (A2)

where
V6# (0) = −

1
#

ln
∑

l:0(l)=0
4−V� (l) (A3)

is the reduced free energy per lattice row. In the limit that # becomes large, the
function 6# (0) goes over to an # independent function 6(0), leading to the large
deviation principle

d# (0) ≈ 4−V#6(0) , (A4)

the thermodynamic analog of (4.3). Taking the Legendre transform of 6(0) produces
the function 5 (:) with field : . Then 6(0) = � (0) and 5 (:) = _(:).

As a result, the thermodynamic polymer exhibits the same behavior as the dynamical
walker, but does so in space rather than time. In particular, in the case ? = 1/2 the
correlation length of the polymer diverges as ! diverges, leading to a broadening
of the free energy 6(0) and the emergence of a kink in 5 (:). However, analogous
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to the dynamical case, the probability distribution of polymer positions remains
uniform, and no distinct “phases” accompany the singularity.

B Appendix: Large-deviation functions of the growth model
The irreversible growth model of Refs. [15, 16], summarized in Section 4.5, is
sketched at the top of Fig. B2 in the form of a two-state switch with memory. In that
figure we show trajectories of the model at and at either side of the dynamical critical
point �c = 1. Associated with this phase transition is a large-deviation singularity:
the rate function for 0 becomes non-convex at the critical point, and the associated
SCGF is kinked [15, 16]. The non-convexity in the two-phase region is of different
character to that seen in ergodic models that display dynamical intermittency. In
this appendix we explore this point further.

The black lines in Fig. B2 are the rate-function bound

�0(0) =
1 − 0

2
ln (1 − 0) + 1 + 0

2
ln (1 + 0)

− �02 + ln cosh �0, (B1)

derived in Ref. [16] under the assumption of steady-state growth. We will call
Eq. (B1) the steady-state rate function. It is convex for � < 1 and non-convex
(concave) for � > 1.

The steady-state rate function is consistent with the empirical large-deviation rate
function of the model in the one-phase and two-phase regions. In Fig. B1 we
show empirical rate functions −)−1 ln d) (�) for unbiased trajectories of the growth
model, compared with the form (B1). To measure histograms d) (�) we used of
order 106 trajectories, propagated for the times shown, and sampled 0 using 500
evenly-spaced bins (in Fig. B1(b) we used 5000 bins and simulation times one-fifth
of those in the other panels). Panels are labeled with the value of the coupling
�, and all simulations (except those in Fig. B1(c)) were begun from time )0 = 0,
corresponding to an “unassembled” structure.

For couplings � well below and well above the critical point, the empirical rate
functions are convex and concave, respectively, and are consistent with the steady-
state rate function (B1) (see particularly the enlargement of the right-hand side of the
plot in Fig. B1(b)). Near the critical point, on either side, the relaxation time of the
model is large [15], and empirical rate functions, for the times simulated, depart from
the form (B1). (The distribution d) (�) (not the rate function) at the critical point
�c = 1 is bimodal, similar to the magnetization distribution of the 2D critical Ising
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Figure B1: Empirical rate functions −)−1 ln d) (�) for different values of trajectory
time ) (denoted by symbols) for the irreversible growth model, compared with the
steady-state rate function (B1) (black lines). Panels are labeled by values of the
parameter �. (a) Far from the critical point �c = 1 the empirical rate functions
are convex in the one-phase region (� < 1) and concave in the two-phase region
(� > 1). Close to the critical point the behavior of themodel, on the times simulated,
is influenced by a population of transient trajectories. (b) Enlargement of the right-
hand portion of the plot for � = 3 shows the empirical rate function to be consistent
with the form (B1), indicating steady-state growth. (c) We again consider the case
� = 1.3, but now initiate simulations from a pre-made structure of size )0 = 1000
and composition 0, consistent with the position of the right-hand minimum of the
steady-state rate function (B1). Doing so allows us to effectively access longer
timescales than we could from “unassembled” initial conditions. The empirical rate
function derived from the resulting ensemble of trajectories is again consistent with
the form (B1).
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Figure B2: Time-integrated observable 0 for ensembles of trajectories of the irre-
versible growth model of Refs. [15, 16]. From left to right we show the one-phase
region, the critical point, and the two-phase region. Panels are labeled by the values
of the model parameter �. The black lines are derived from (B1).

Figure B3: In the two-phase regime of the growth model, trajectory ensembles
begun from structures of increasing size )0, having composition 00 = 0 (top row),
become increasingly strongly confined by the unstable dynamical attractor at 0 = 0,
corresponding to the central minimum of the function (B1). By contrast, large
structures of initial composition 00 ≠ 0 not consistent with any of the minima are
driven toward the stable dynamical attractors (in this figure only, the symbol 00
denotes initial composition, and not a typical value of the trajectory ensemble.)
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model in square geometry [36].) In the two-phase regime, close to the critical point,
we can detect by direct simulation a population of transient trajectories that linger
for some time near the unstable fixed point 0 = 0 (see Fig. B3), and later commit to
one of the stable attractors. These trajectories populate the middle portions of the
empirical rate functions close to the critical point. In this regime the empirical rate
function consists of two convex pieces joined by a bar, and in the limit of large )
the height of this bar moves to zero.

This behavior is consistent with Ref. [37], which showed that the rate function
� (0) accounting for steady-state and transient trajectories is zero between the stable
minima in the two-phase regime. However, whether the empirical rate function
is described by this result or by the steady-state rate function bound (B1) depends
strongly upon where in parameter space we operate. Simulations for the times and
couplings used in Ref. [37] (e.g. at the point � = 1.3; see panel in Fig. B1) are
dominated by transient effects, and are not representative of the long-time behavior
of the model in the two-phase regime, contrary to the claim made in [37]. As the
trajectory time ) becomes large, or � is made larger (so reducing the relaxation time
of the model), the number of trajectories required to observe transient trajectories.
For instance, at � = 3 and ) > 105, none of 108 trajectories was of the transient
type. By contrast, trajectories in the vicinity of the stable attractors can be seen at
all times, and the rare trajectories detected by direct simulation result from invasion
from those attractors. As a result, for long times and a large but computationally
feasible number of trajectories, the empirical rate function of the model in the
two-phase region is non-convex (concave), and is consistent with the steady-state
rate function (B1). This concavity reflects ergodicity breaking and the presence of
distinct dynamical phases.

The behavior of the growth model compared to that of the walker models reinforces
the importance of phenomenology to any classification scheme: these models dis-
play similar large-deviation singularities, but support phase transition-like behavior
to different extents.
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