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ABSTRACT

Hippocampal ripples are transient population bursts that structure cortico-hippocampal
communication and play a central role in memory processing. However, the mech-
anisms controlling ripple initiation in behaving animals remain poorly understood.
Here we combine multisite extracellular and whole cell recordings in awake mice
to contrast the brain state and ripple modulation of subthreshold dynamics across
hippocampal subfields. We find that entorhinal input to DG exhibits UP and DOWN
dynamics with ripples occurring exclusively in UP states. While elevated cortical
input in UP states generates depolarization in DG and CA1, it produces persistent
hyperpolarization in CA3 neurons. Furthermore, growing inhibition is evident in
CA3 throughout the course of the ripple buildup, while DG and CA1 neurons ex-
hibit depolarization transients 100ms before and during ripples. These observations
highlight the importance of CA3 inhibition for ripple generation, while pre-ripple
responses indicate a long and orchestrated ripple initiation process in the awake
state.
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C h a p t e r 1

INTRODUCTION

Memory is one of the key cognitive processes underlying intelligent behavior. In-
vestigation of the hippocampus, the memory center of the brain, provides critical
insights into intelligence (Scoville and Milner, 1957; Squire, 1992). Among the
hippocampal subfields, CA3 region has attracted attention for its role in mem-
ory processes because of the characteristic architecture: CA3 pyramidal cells excite
other pyramidal cells and interneurons, and the axons of CA3 pyramidal cells spread
throughout most of the region (Lorente de Nó, 1934; Ishizuka, W. M. Cowan, and
Amaral, 1995). This recurrent circuit is proposed to work as an attractor net-
work, in which associative memories are stored and recalled (“pattern completion”)
(Hopfield, 1982; Marr, 1971; Nakazawa et al., 2002; Kesner and Rolls, 2015). Fur-
thermore, recurrent networks have been known for their richer, high-dimensional
dynamics than feedforward networks (Dayan and Laurence F Abbott, 2003; Hochre-
iter and Schmidhuber, 1997). However, they are also difficult to control and design
network connectivity that generates desired dynamics and computation (Sompolin-
sky, Crisanti, and Sommers, 1988; Sussillo and Larry F Abbott, 2009; Werbos,
1990). Therefore, understanding how the biological recurrent networks operate is
an intriguing research topic.

In this study, we investigated the membrane potential dynamics of CA3 pyramidal
neurons, as well as dentate gyrus (DG) granule cells and CA1 pyramidal cells
in awake mice, from two aspects: 1) how do the hippocampal neurons behave
corresponding to the input to hippocampus, i.e. entorhinal cortical (EC) input; and
2) how do the hippocampal neurons behave during attractor-like activity pattern
known as “ripple”.

Neurons communicate with each other via action potentials. An action potential
is generated if the total input arriving at the soma exceeds a certain threshold.
To understand mechanisms underlying neural network dynamics, the simultaneous
measurement of subthreshold activity and neural population activity is critical.

At first, Chapter 2 describes the experimental approach that achieves this aim. Basic
properties of recorded neurons are also shown.

Cortico-hippocampal interaction is believed to play a key role in memory consol-
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idation (Squire, 1992), however the influence of cortical inputs on hippocampal
dynamics in wakefulness is not well understood. Anatomical structure has been
classically defined as a trisynaptic excitatory loop that processes higher order sen-
sory information arriving from EC through DG, CA3 and CA1 (Amaral and Witter,
1989), and it is natural to predict that hippocampal neurons follow the EC activity
with small delays. At the same time, hippocampus (especially CA3) is expected to
exhibit internally-generated autonomous activity beyond input-driven activity (e.g.
pattern completion (Kesner and Rolls, 2015), ripples (Buzsáki, 2015), and place
cells (Hafting et al., 2005; O’Keefe, 1976)). Addressing how cortical inputs mod-
ulate hippocampal dynamics in wakefulness is thus an important step to advancing
our understanding of hippocampal information processing.

To this end, Chapter 3 describes the definition of EC input, and characterizes the
relationships between EC input and hippocampal activity. These analyses reveal
that EC inputs modulate slow membrane potential shifts of hippocampal neurons,
and that membrane potential of CA3 pyramidal neurons is modulated by cortical
inputs in a way that is largely opposite to the modulation of DG granule cells and
CA1 pyramidal neurons.

Ripples are brief (50-100 ms), high-frequency oscillations (80-250 Hz) associated
with population bursts in CA1 that play a prominent role in memory consolidation.
The prevailing hypothesis is that CA1 ripples are generated by the excitatory input
provided by a population burst spontaneously initiated within CA3 excitatory re-
current network. (Buzsáki, 1986; Buzsáki, 2015; Miles and Wong, 1983; Ylinen
et al., 1995). However, recent in vitro studies have also emphasized the importance
of inhibitory neurons in ripple generation process (Bazelot, Teleńczuk, and Miles,
2016; Ellender et al., 2010; Schlingloff et al., 2014), and investigating the subthresh-
old dynamics of CA3 pyramidal neurons during ripples in awake animals provides
insights into biological memory processes.

Therefore, Chapter 4 characterizes the subthreshold activity of hippocampal neurons
during ripples. This demonstrates that on average, CA3 pyramidal neuron receives
hyperpolarizing input during ripples, and the implications for circuit models of
ripple generation are discussed.



3

C h a p t e r 2

SIMULTANEOUS MULTISITE EXTRACELLULAR AND
WHOLE-CELL RECORDINGS ACROSS HIPPOCAMPAL

SUBFIELDS

Electrophysiological recordings from behaving animals provide an unparalleled
view of neuronal information processing. While recent progress in optical imaging
has shown its utility in studying large-scale neural ensemble dynamics (Kim and
Schnitzer, 2022; Nieh et al., 2021; Ziv et al., 2013), electrphysiological recording
is superior in terms of temporal resolution and is therefore more suitable to study
fast, transient events, such as ripples.
Extracellular recording picks up two distinct classes of neuronal signals: spikes,
the high frequency (> 0.5 kHz) signal: and the local field potential (LFP), the
low frequency (< 200 Hz) signal. The current view is that LFP is generated by
synchronized synaptic currents (Buzsáki, Anastassiou, and Koch, 2012; Katzner
et al., 2009; Mitzdorf, 1985), and different LFP patterns are observed over different
behavioral states (Siapas and M. A. Wilson, 1998; Siapas, Lubenov, and M. A.
Wilson, 2005; Vanderwolf, 1969).
Intracellular recording allows direct measurement of the membrane potential and
currents of individual neurons. The patch-clamp technique, initially developed to
record currents from single membrane channels (Neher and Sakmann, 1976), has
been applied to study whole-cell membrane potential and currents (Edwards et al.,
1989; Hamill et al., 1981). Furthermore, it has recently become possible to achieve
whole-cell patch-clamp recordings in behaving animals, offering new insights into
the cellular and circuit mechanisms underlying neural activity in behaving animals
(Aksay et al., 2001; Crochet et al., 2011; Harvey et al., 2009; Hulse, Moreaux, et al.,
2016; Hulse, Lubenov, and Siapas, 2017).
Given these different measured signal modalities, the combination of intracellular
and extracellular recording enables us to study the brain across multiple levels, from
single neuron to circuit to behavior.

Here, we combined whole-cell recordings of principal neurons across DG (22 cells),
CA3 (32 cells), and CA1 (32 cells) with multisite extracellular LFP recordings
spanning the radial extent of dorsal CA1 and DG in awake head-fixed mice that
were free to run on a spherical treadmill (Figure 2.1). The location, morphology,
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and membrane properties of the recorded cells are described in Figure 2.2 - 2.4).

Experimental Procedures
Head fixation surgery
The methods used were the same as those described in our previous publications
(Hulse, Moreaux, et al., 2016; Hulse, Lubenov, and Siapas, 2017). Briefly, male
C57Bl/6 mice (Charles River Laboratories) were surgically implanted with a light-
weight, stainless steel ring using dental cement. A stainless steel reference wire
was implanted over the cerebellum for LFP silicon probe recordings. The locations
of future craniotomies for probe and whole-cell recordings were marked. Probe
recording coordinates were anterioposterior (AP)/mediolateral (ML): -1.7/1.75 in
the left hemisphere for DG; AP/ML: -1.7/2.0 in the left hemisphere for CA1, and
AP/ML: -2.15/0.84 in the right hemisphere for CA3. Whole-cell recording coordi-
nates were AP/ML: -1.7/0.65 in the left hemisphere for DG; AP/ML: -1.9/1.5 in the
left hemisphere for CA1, andAP/ML: -2.15/3.1 in the right hemisphere for CA3. All
coordinates are reported in mm, and all AP and ML coordinates are with respect to
bregma. Following surgery, mice were returned to their home cage, maintained on
a 12 hour light/dark cycle, and given access to food and water ad libitum. Ibuprofen
(0.2 mg/mL) was added to the water as a long-term analgesic. Mice were given at
least 48 hours to recover before the day of the experiment.

Exposure surgery
On the day of the recording, while mice (4-8 weeks old) were anesthetized with
1% isoflurane and head-fixed in the stereotaxic apparatus, two small craniotomies
(200-500 µm) were made at the previously marked locations and the dura was
resected over these locations. For two mice this procedure was carried out three
days before the recordings and the mice were habituated to head-fixation on the
spherical treadmill for two days to confirm that the short anesthesia on the day of the
recordings does not affect the results. A recording chamber was secured on top of
the head-fixation device and filled with pre-oxygenated (95% O2, 5% CO2), filtered
(0.22 µm) artificial cerebrospinal fluid (aCSF) containing (in mM): 125 NaCl, 26.2
NaHCO3, 10 Dextrose, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4, 1.0 NaH2PO4.

Awake, in vivo recordings
Awake, in vivo electrophysiological recordings were carried out following pre-
viously described methods (Hulse, Moreaux, et al., 2016; Hulse, Lubenov, and
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Figure 2.1: Simultaneous Multisite Extracellular and Whole-Cell Recordings
Across Hippocampal Subfields.
(A) Schematic of setup for simultaneous intracellular and extracellular recordings
from awake head-fixed mice free to run on a spherical treadmill.
(B) Typical penetration paths of multisite probe for LFP recordings andmicropipette
(targeting CA3 in this example for the neuron shown in D) for whole cell record-
ings. Histological sections were stained for biocytin (green), calbindin (blue), and
parvalbumin (red).
(C) Examples of histology and recordings. Top: Recorded DG granule cells are
labeled with biocytin and their location and morphology is visualized with fluo-
rescence microscopy. Bottom: Membrane potential (Vm) of a DG granule cell
together with simultaneous LFP recordings spanning both CA1 and DG. The blue
trace marks the pyramidal cell layer of CA1 where ripples are detected and marked
by the gray vertical shading. Notice that the cell fires right before the onset of
a ripple. The magenta bars indicate 200 ms and 20 mV, and the baseline Vm is
reported next to the trace (-60 mV). The vertical spacing between LFP traces is 100
µm.
(D) Same as C, but for a pyramidal neuron in CA3. Notice that the cell is hyperpo-
larized following the ripple onset.
(E) Same as C, but for a pyramidal neuron in CA1. Notice that the cell fires inside
one of two nearby ripples.
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Figure 2.2: Proximodistal Locations of Recorded Neurons.
Colored lines illustrate the principal cell layers in DG, CA3, and CA1 through a
coronal section. Each cell is assigned a normalized proximodistal location with
0 corresponding to the proximal end and 1 to the distal end of each subfield (as
indicated by the numbers) and then plotted as a dot. This is only a schematic since
not all cells were recorded from the same dorsoventral level.
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Figure 2.3: Properties of Recorded Cells.
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Figure 2.3: (continued)
(A) Scatter plot shows the input resistance and resting potential for all recorded
neurons (markers), color-coded by subfield (DG-blue, CA3-red, CA1-yellow). The
example neurons from Figure 2.4 are plotted as diamonds, while the remaining cells
are plotted as dots. Notice that the morphologically identified cells (diamonds) have
similar properties as the rest of the cells from the respective subfield (dots). There
were no significant differences between the two groups (p > 0.05 t-test; p > 0.05
Wilcoxon rank sum test).
(B) Same as A showing the burst index and average number of spikes per burst for all
recorded neurons. The burst index is the fraction of spikes that are part of complex
spike bursts. Complex spike bursts are defined as groups of 3 or more spikes with
interspike intervals shorter than 20 ms and decreasing spike amplitudes for at least
the first 3 spikes in the burst. There were no significant differences between the two
groups (p > 0.05 t-test; p > 0.05 Wilcoxon rank sum test).

Siapas, 2017). Mice were head-fixed on a spherical treadmill secured on an air
table (TMC).To measure pupil diameter and whisker movements, the mouse was
illuminated with an infrared (850 nm) LED (M85OL3, Thorlabs) and imaged with
a CCD camera (scA640-70fm, Basler; with a Nikon AFMicro-Nikkor 105mm f/2.8
lens) positioned 60 degrees from the midline (mouse’s left) and 30 degrees down
from the horizontal plane (Sakatani and Isa, 2004).
A single-shank, 32-site silicon probe (NeuroNexus) with 100 µm site spacing was
inserted in the coronal plane ( 15 degree angle pointing away from the midline) to a
depth of 2600-3400m andwas adjusted for reliably recording LFP ripple oscillations
in CA1. To find the rough target depth of whole-cell recording, at first juxtacellular
recordings (Pinault, 1996) were performed with pipettes filled with artificial cere-
brospinal spinal fluid (aCSF). Whole-cell patch-clamp recordings were performed
with a blind-patch approach (Pinault, 1996; Margrie, Brecht, and Sakmann, 2002)
in current clamp mode after the target depth had been identified. Pipettes had a
resistance of 5-8 MΩ and were filled with an internal solution containing (in mM)
115 K-Gluconate, 10 KCl, 10 NaCl, 10 Hepes, 0.1 EGTA, 10 Tris-phosphocreatine,
5 KOH, 13.4 Biocytin, 5 Mg-ATP, 0.3 Tris-GTP. The internal solution had an osmo-
larity of 300 mOsm and a pH of 7.27 at room temperature. Pipettes are pulled from
borosilicate capillaries (OD: 1.0 mm, ID: 0.58 mm; Sutter Instrument Company)
using a Model P-2000 puller (Sutter Instrument Company) and inserted into the
brain in the coronal plane with a 15 degree angle pointing towards the midline.
Recordings were made using a Multiclamp 700B amplifier (Molecular Devices).
The Vm was not corrected for liquid junction potential. Capacitance neutralization
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was set prior to establishing the GΩ seal.
The input resistance was estimated by subtracting the access resistance from the ratio
of the change in Vm produced by the current step over the magnitude of injected
current.

Signal acquisition
All electrophysiological signal acquisition was performed with Labview (National
Instruments). Electrophysiological signals were sampled simultaneously at 25 kHz
with 24 bit resolution using AC (PXI-4498, internal gain: 30 dB, range: +/- 316mV)
or DC-coupled (PXIe-4492, internal gain: 0 dB, range: +/- 10 V) analog-to-digital
data acquisition cards (National instruments) with built-in anti-aliasing filters for
extracellular and intracellular/juxtacellular recordings, respectively.

Histology and imaging
To identify the recorded neurons, histology and imaging were performed, as pre-
viously described (Horikawa and Armstrong, 1988; Hulse, Moreaux, et al., 2016;
Hulse, Lubenov, and Siapas, 2017). Following the experiment, mice were deeply
anesthetized with 5% isoflurane, decapitated, and the brain extracted to 4% PFA.
Brains were fixed at 4° C in 4% paraformaldehyde overnight and transferred to 0.01
M (300 mOsm) phosphate buffered saline (PBS) the next day. Up to one week
later, brains were sectioned coronally (100 m) on a vibrating microtome (Leica),
permeabilized with 1% Triton X-100 (v/v) in PBS for 1-2 h, and incubated for
more than 3 h at room temperature in PBS containing avidin-fluorescein (1:200,
Vector Laboratories), 5% (v/v) normal horse serum (NHS), and 0.1% Triton X-100.
Sections were rinsed in PBS between each step. The next day, sections containing
biocytin stained neurons were identified on an inverted epifluorescent microscope
(Olympius IX51) for further immunohistochemical processing. Sections under-
went immunohistochemical staining against calbindin (CB) and parvalbumin (PV)
to aid in locating the recorded neurons in the hippocampus. Sections containing
biocytin-stained neurons were first incubated in blocking solution containing 5%
NHS, 0.25%Triton X-100, and 0.02% (wt/v) sodium azide in PBS. Next, slices were
incubated in PBS containing primary antibodies against CB (Rabbit anti-Calbindin
D-28k, 1:2000, Swant) and PV (Goat anti-parvalbumin, 1:2000, Swant) overnight.
After thorough rinsing in PBS, slices were incubated in PBS containing secondary
antibodies CF543 donkey anti-rabbit (1:500, Biotium) and CF633 donkey anti-goat
(1:500, Biotium). Processed slices were rinsed and mounted in antifading mounting
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A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

C1 C2 C3 C4 C5 C6

Figure 2.4: Morphology of Recorded Neurons.
Histological sections show neurons patched in DG (A1-A6), CA3 (B1-B6), and
CA1 (C1-C6). Patched cells were filled with biocytin (green) and sections were
also stained for calbindin (blue) and parvalbumin (red). Calbindin labels DG axons,
seen as a blue band above the pyramidal cell layer in CA3. Notice that in some
experiments multiple neurons are patched and labeled. Their identities can still
be confirmed when all labeled neurons belong to the same morphological class as
illustrated here.

medium (EverBrite, Biotium). Stained slices were imaged on an inverted confocal
laser-scanning microscope (LSM 710 LSM 880, Zeiss).
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C h a p t e r 3

ENTORHINAL INPUT DIFFERENTIALLY MODULATES SLOW
MEMBRANE POTENTIAL SHIFTS ACROSS HIPPOCAMPAL

SUBFIELDS

Bidirectional interactions between the hippocampus and neocortical areas are be-
lieved to play a key role in memory consolidation (Squire, 1992). Hippocampal
ripples are deemed essential for this process because the associated population ac-
tivity reflects prior experience (Foster, 2017; Kudrimoti, Barnes, and McNaughton,
1999; Lee and M. A. Wilson, 2002; M. A. Wilson and McNaughton, 1994) and
ripple disruption results in memory deficits (Ego-Stengel and M. A. Wilson, 2010;
Girardeau et al., 2009; Jadhav et al., 2012). Ripples provide synchronous volleys that
drive cortical targets and cooccur with distinct cortical network patterns (Battaglia,
Sutherland, and McNaughton, 2004; Jiang, Gonzalez-Martinez, and Halgren, 2019;
Ji andM. A.Wilson, 2007; Logothetis et al., 2012; Mölle et al., 2006; Shein-Idelson
et al., 2016; Siapas and M. A. Wilson, 1998; Wierzynski et al., 2009). In particular,
ripples normally occur during slow-wave sleep (SWS) and quiet wakefulness when
hippocampal local field potentials (LFPs) display large-amplitude irregular activity
(LIA) (Buzsáki, 1986; Jarosiewicz and Skaggs, 2004; Kay et al., 2016; O’Keefe,
1976; Vanderwolf, 1969), whereas neocortical dynamics are marked by the pres-
ence of UP and DOWN states (UDS), alternating periods of elevated and depressed
network activity that can also be observed under anesthesia (R. L. Cowan and C. J.
Wilson, 1994; Steriade, Nunez, and Amzica, 1993b; Steriade, Nunez, and Amzica,
1993a). Neocortical and hippocampal dynamics can be coordinated via the entorhi-
nal cortex (EC), the main gateway between neocortical areas and the hippocampus,
which provides direct input to the dentate gyrus (DG), and areas CA3 and CA1
(Amaral andWitter, 1989). Experiments in sleeping and anesthetized animals show
that the EC also exhibits UDS that modulate activity across hippocampal subfields
(Hahn, McFarland, et al., 2012; Isomura et al., 2006). However, the influence of
cortical UDS on hippocampal dynamics and ripple generation in wakefulness are
not well understood.

Belowwe show that entorhinal inputs toDG exhibit UP andDOWNdynamics during
quiet wakefulness, with ripples occurring exclusively in the UP state. Analysis of
how these brain states influence membrane potential dynamics reveals that CA3
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neurons hyperpolarize in the UP state when ripples occur, in contrast to neurons in
DG and CA1.

3.1 Entorhinal Inputs to DG Exhibit UP and DOWNDynamics During Quiet
Wakefulness

Based on LFP dynamics, the network state of the hippocampus can be classified
as large irregular activity (LIA), small irregular activity (SIA), or theta rhythmic,
with LIA and SIA being the predominant states during quiet wakefulness (Buzsáki,
1986; Jarosiewicz and Skaggs, 2004; Kay et al., 2016; O’Keefe, 1976; Vanderwolf,
1969). Since this classification is typically based on a single hippocampal LFP,
it does not consider the origin of the observed field fluctuations, but only their
amplitude and frequency content. As a consequence, synaptic currents due to
inputs from the entorhinal cortex (EC) as well as other hippocampal subfields are
reflected in the local field and cannot be dissociated. In order to address this, we
used multisite LFP recordings and computed the laminar current source density
(CSD) (Mitzdorf, 1985; Pettersen et al., 2006) throughout CA1 and DG, which in
combination with the known circuit anatomy allowed us to infer the spatiotemporal
pattern of synaptic activity. An example estimate of this laminar CSD is illustrated
in Figure 3.1, which shows several sharp wave-ripples (SWRs) associated with
pronounced current sinks in stratum radiatum (sr) of CA1 due to CA3 synaptic input,
occurring against a background of synaptic activity in DG. On a longer timescale the
CSD clearly reveals alternating periods of high and low rates of transient synaptic
activity lasting several seconds (Figure 3.1B) that are particularly prominent within
the DG. Strikingly, these alternating periods appear to coincide with slow shifts
in the membrane potential of an example CA3 pyramidal neuron (Figure 3.1B). To
quantify the level of cortical input to the hippocampus, we averaged the rectifiedCSD
over the molecular layer of DG (Figure 3.1). This measure reflects the magnitude
and rate of transient synaptic currents due to inputs from layer II of the lateral and
medial EC arriving at the outer two thirds of the dentate molecular layer (Steward,
Cotman, and Lynch, 1976; Sullivan et al., 2011; Tamamaki and Nojyo, 1993), as
well as associational and return currents flowing in the inner third. Confirming our
observations, the rectified DG CSD magnitude showed strong coherence with the
subthreshold membrane potential of the example CA3 neuron for frequencies below
1 Hz (Figure 3.11AB). This result was consistent across DG, CA3, and CA1 cells
(Figure 3.11B-D).

The distribution of DG CSD magnitude values is fit well by a binary Gaussian
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Figure 3.1: UP and DOWN States Modulate Slow Vm Shifts and Ripple Occur-
rence.
(A) Image of current source density (CSD) derived from the LFP traces (gray).
Ripples, high-frequency oscillations indicated by the black arrows, are associated
with current sinks (red) in stratum radiatum (sr) below the pyramidal cell layer (sp).
The bottom third of the image shows large current sources (blue) and sinks (red)
within the molecular layers (mol) of DG.
(B) Top: Image of the CSD on a longer timescale reveals alternating periods of high
and low CSD activity. The two interrupted black lines mark the vertical extent of the
suprapyramidal molecular layer of DG. The Vm of a CA3 neuron is superimposed
in green. Notice that periods of low DG CSD activity (light colors) are associated
with Vm depolarization. Bottom: DG CSD activity (black), quantified by averaging
the rectified CSD over the molecular layer of DG and smoothing, normalized to a
z-score. Subthreshold Vm (gray) for the CA3 neuron and its slow component (red)
plotted as z-scores. Notice that the black and red traces are anti-correlated. The
green stairstep trace marks epochs of elevated DG CSD activity (UP states) and
decreased DG CSD activity (DOWN states). Ripples (blue dots) occur in the UP
state.
(C) Distribution of DG CSD activity fitted with a two component Gaussian mixture.
DG CSD activity at ripples (blue dots) and eye blinks (magenta), show preferential
association with the UP and DOWN components, respectively.
(D) Hidden Markov model (HMM) state detection based on DG CSD activity
(black). DG CSD activity is high in the UP state (gray stripes), while the pupil
(diameter in magenta) dilates at the onset of the DOWN state and then gradually
constricts in the course of the UP state. Ripples and eye blinks are marked by blue
and magenta dots, respectively. Horizontal scale bar is 3 seconds long.



13

Figure 3.1: (continued)
(E)(Top) Population average probability density of ripple occurrence as a function of
UDS phase. Notice that ripples occur almost exclusively in the UP state. (Bottom)
Rows in the pseudocolor image show the density of ripple occurrence for each
dataset (n=86). Densities are replotted over two UDS cycles.
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Figure 3.2: UP and DOWN Epoch Durations.
(A) Median DOWN epoch duration plotted against median UP epoch duration for
each dataset color-coded by subfield of whole-cell target. Population averages are
marked by the interrupted lines (UP=2.43 sec, DOWN= 2.37 sec). Open circles
mark the datasets for which dura resection occurred 3 days before the experiment
(no same day anesthesia, UP = 2.24 sec, DOWN = 2.25 sec). The medians of these
4 marked datasets were not significantly different from the rest (Wilcoxon rank sum
test, p > 0.05 )
(B) Distributions of DOWN (black) and UP (gray) epoch durations pooled across
all datasets. Epochs are detected with 250 ms resolution, so the curves at durations
shorter than that are affected. Distributions are nearly exponential with similar
means (UP = 3.06 sec, DOWN = 3.25 sec) and standard deviations (UP = 3.57
sec, DOWN= 3.48 sec). Outliers (15/13053 UP and 2/13139 DOWN epochs with
durations longer than 60 seconds) were excluded. The blue and red lines show
the distributions for datasets with no same day anesthesia (means: UP = 2.11 sec,
DOWN = 3.15; standard deviations: UP = 1.95 sec, DOWN = 3.11 sec).
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mixture (Figure 3.1C) consistent with synaptic activity switching between high
and low level regimes. Since EC inputs are responsible for much of the dentate
synaptic currents, we identify these regimes as corresponding to entorhinal UP
and DOWN states (UDS). Since UDS in EC are coordinated with UDS in other
cortical and thalamic areas, we reasoned that the DG CSD contains information
about widespread brain state modulation and would therefore be correlated to other
brain state signatures and behavioral metrics. Indeed we found that ripples tended to
occur almost exclusively when the DGCSDwas high (UP state), while eyeblinks had
the opposite relationship and occurred when the DG CSD was low (DOWN state)
(Figure 3.1C-E, Figure 3.11. Furthermore, the DG CSD showed a strong coherence
with the slow changes (below 1 Hz) in pupil diameter (Figure 3.1D, Figure 3.11B).

In order to investigate these effects further we developed an unsupervised method
for extracting UP and DOWN states from the DG CSD based on a hidden Markov
model (HMM) (Figure 3.1C-D). In addition to identifying state transition points,
the segmentation allows the translation of the time axis into a circular UDS phase,
so that event distributions can be computed with respect to the UP-DOWN phase.
This analysis demonstrates that essentially all ripples occur within the UP state and
the rate of ripple occurrence ramps up to a steady state value in the course of the UP
state itself and abruptly terminates upon transition to a DOWN state (Figure 3.1E).
It also shows that upon transition to the DOWN state the pupil quickly dilates,
signaling increased arousal, and then gradually constricts through the course of the
UP state, indicating a progressive reduction of arousal and attention to external
stimuli through the course of the UP state (Figure 3.15D). Both UP and DOWN
epoch durations were distributed approximately exponentially with means of 3.06
sec (UP) and 3.25 sec (DOWN) and these values were consistent across recording
sessions (Figure 3.2). These observations show that quiet wakefulness can be reli-
ably decomposed into UP and DOWN states that reflect increased and decreased EC
inputs, respectively. This UDS classification reflects the dynamics of the cortical
input to the hippocampus, in contrast to LIA/SIA segmentation that is influenced
by the states of the hippocampal subfields themselves, which as we describe below
are not necessarily coherent. Nevertheless LIA→SIA transitions mapped closely
to UP→DOWN transitions, with SIA→LIA transitions also concentrated around
DOWN→UP transitions (Figure 3.3). These observations are consistent with UP
states broadly overlapping with LIA and DOWN states with SIA.
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Figure 3.3: Comparison of LIA/SIA and UP/DOWN transitions. LIA and SIA
states and transitions were extracted based on CA1 LFPs as previously described
(Hulse, Lubenov, and Siapas, 2017).
(A) (Top) Average probability of SIA→LIA transition over the UDS cycle. (Bottom)
Each row shows the probability of SIA→LIA transition for a given dataset. Notice
that SIA→LIA transitions are more likely near DOWN→UP transitions.
(B) Probability of LIA→SIA transition over the UDS cycle. Notice that LIA→SIA
transitions are very tightly concentrated near the UP→DOWN transition.

3.2 CA3 Membrane Potential Shifts are Negatively Correlated with Entorhi-
nal Inputs to DG

What is the impact of entorhinal inputs on the activity of hippocampal neurons?
The subthreshold membrane potential of the example CA3 neuron in Figure 3.1B is
clearly related to the DG CSD and consequently to UP-DOWN states. Importantly,
the relation is evident in the slow shifts in Vm and not in the superimposed faster
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Figure 3.3: (continued)
(C) Expected state centered on SIA→LIA transitions. DOWN states are represented
by 0 andUP states by 1, so the expected state is equivalent to the UP state probability.
Notice that the UP state probability is depressed before and elevated after the
SIA→LIA transition.
(D) Expected state centered on LIA→SIA transitions. Notice that the UP state
probability is over 90% before the LIA→SIA transition and drops to 0 right after.
These observations are consistent with UP states broadly overlapping with LIA and
DOWN states with SIA.

fluctuations. This is confirmed by the fact that all significant coherence between
Vm and DG CSD occurs below 1 Hz (Figure 3.11). We therefore separated the fast
from the slow dynamics of the subthreshold membrane potential (Vm) fluctuations
with a cutoff frequency of approximately 1 Hz (Figure 3.9).

Surprisingly, the Vm of the CA3 pyramidal neuron in Figure 3.1B is more hy-
perpolarized when DG CSD and hence the excitatory EC input rate is high and,
conversely, more depolarized when EC input rate is low. Does EC input impact
subthreshold activity in other hippocampal subfields in a similar way? To address
this, we computed the cross-covariance between DG CSD activity and the slow Vm
component of cells in DG, CA3, and CA1 (Figure 3.4). The majority of DG and
CA1 cells (21/22) displayed a strong positive correlation to EC inputs, the majority
of CA3 neurons (26/32) exhibited a negative correlation, while CA1 neurons were
split in half. In other words, while the slow Vm fluctuations in DG and CA1 are
nearly in sync with the DG CSD (Figure 3.4A, 3.4C), they are anticorrelated in CA3
(Figure 3.4B). Furthermore, a closer look at the lag associated with peak absolute
correlation reveals that while DG neurons follow the DG CSD very closely (37 ms
median lag), the significantly correlated CA1 neurons actually lead the DG CSD
(-225 ms median lag), while the trough of the CA3 negative correlation follows the
DG CSD (296 ms median lag) (Figure 3.12). This subfield ordering is inconsistent
with a simple feedforward activation along the trisynaptic circuit in the awake state.

How well can we estimate the slow Vm component of hippocampal neurons from
the DG CSD? All hippocampal subfields receive direct input from the entorhinal
cortex (EC), and yet the pattern of modulation by the UP-DOWN state cycle varies
across subfields. In order to understand how EC inputs influence hippocampal
neurons we used the measured DG CSD as a proxy of EC input and estimated linear
transfer models for each cell treating DG CSD activity as input and the cell’s slow
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Figure 3.4: Entorhinal Input to DG is Negatively Correlated with Slow Vm
Shifts in CA3 in Contrast to DG and CA1.
(A1) DG CSD activity (black) and slow component (< 1 Hz) of subthreshold Vm
(red) for an example DG granule cell. Gray vertical stripes and green stairstep trace
mark periods classified as UP states. Ripples are marked by the blue dots. Notice
that the Vm slow component is modulated in lockstep with the DG CSD.
(A2) (Top) Cross-covariance between the slow Vm component of the example cell
above and DG CSD activity. (Bottom) Cross-covariances are computed over 30 sec
sliding windows and displayed as a pseudocolor image.
(A3) (Top) Population average cross-covariance of all recorded DG granule cells.
Bands around the mean curves show the standard error of the mean (SEM). Dots
mark the peak (red) or trough (blue) lag and amplitude of individual cells’ cross-
covariance extrema. (Bottom) Cross-covariances for all DG granule cells stacked
vertically and displayed as a pseudocolor image. Notice that most traces are peaked
near zero lag. In all figures cells are ordered by their ripple-triggered average
response (RTA) rank (Figure 4.1), unless stated otherwise.
(B) Same as A, but for CA3 pyramidal neurons. Notice that the example cell in
(B1, B2) and the population overall (B3) have membrane potentials that are anti-
correlated with DG CSD activity.
(C) Same as A and B, but for CA1 pyramidal neurons. The Vm of many CA1
neurons is positively correlated with DG CSD activity, but the Vm (red) leads the
DG CSD (black) as in C1, so correlation peaks occur at negative lags (C3). A subset
of CA1 neurons exhibits negative correlations at positive lags.
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Figure 3.5: Entorhinal Input Differentially Modulates Slow Vm Shifts Across
Hippocampal Subfields.
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Figure 3.5: (continued)
(A1) Each row of the pseudocolor image shows the step response of a linear transfer
model describing the effect of DG CSD activity on the slow Vm component for a
given DG cell. The vertical interrupted line marks the onset of the input step.
(A2) Each row shows the impulse responses of the correspondingmodels in A1. The
vertical interrupted line marks the onset of the impulse. Notice that the majority of
DG cells exhibit causal behavior, i.e. the impulse response is near zero for negative
lags.
(B) Same as A, but for CA3 pyramidal neurons. Notice that the majority of CA3
neurons hyperpolarize in response to EC input and some cells exhibit non-causal
impulse responses, i.e. some impulse responses have non-zero (positive) values at
negative lags.
(C) Same as A and B, but for CA1 pyramidal neurons. Notice that some CA1 cells
also exhibit non-causal impulse responses.
(D) Area-specific population average step response (D1) and impulse response (D2)
color-coded by brain area. Bands around the mean curves show the SEM. Notice
the distinct responses across hippocampal subfields.

Vm component as the model output (Figure 3.5). We considered a class of finite
impulse response (FIR) models allowing for non-zero filter values at negative lags
and hence for a non-causal influence of the input on the output. The estimated
impulse responses (Figure 3.5A2-D2) revealed that while DG granule cells had
causal responses, many CA3 and CA1 cells showed positive filter values at negative
lags (up to -250 ms) signaling a non-causal relation between DG CSD and Vm.
This was consistent with the positive/negative peak correlation lags observed for
DG/CA1 cells (Figure 3.12A-B), but revealed a non-causal effect in CA3 which was
not evident in the cross-covariance analysis. At positive lags the impulse responses
for the majority of DG and CA1 cells were positive, while they were negative
(inhibitory) for the majority of CA3 pyramidal neurons. The estimated models
allowed us to simulate the step responses of hippocampal neurons (Figure 3.5A1-
D1) and showed that as a populationDG andCA3 exhibited persistent depolarization
and hyperpolarization in response to sustained EC input, respectively, while CA1
showed a transient depolarizing response that decayed within 1 second. We also
simulated the slow Vm components of hippocampal neurons from DG CSD and
found good qualitative agreement with the experimental observations (Figure 3.6),
confirming that the transfer models provide a succinct description of the behavior
of hippocampal neurons in response to changing EC input levels.
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Figure 3.6: Linear Prediction of Slow Vm Component from DG CSD Activity.
(A1) Data from an example DG granule cell. Vm (with spikes removed) is shown
in gray and its slow component in red. DG CSD activity is plotted in black and
the UP states are marked by the light gray stripes in the background. All traces are
converted to z-scores in order to be compared.
(A2) Same as A1, but the DG CSD trace is omitted and replaced by a linear model
prediction of Vm slow (blue) from DG CSD activity.
(B) Same as A, but for an example CA3 pyramidal cell.
(C) Same as A and B, but for an example CA1 pyramidal cell.

3.3 CA3 Pyramidal Neurons Hyperpolarize During UP States
The slow Vm component and firing rate of hippocampal neurons were modulated
at UP and DOWN transitions (Figure 3.13) in a way that was consistent with the
transfer model predictions (Figure 3.14). To understand their behavior through the
course of the UDS cycle, we analyzed the subthreshold membrane potential and
spiking of hippocampal neurons as a function of the UDS phase (Figure 3.7). In
particular, we computed the distribution of Vm values conditioned on the phase
of the UDS cycle. These distributions displayed phase-dependent Vm means for
the majority (82/86) of hippocampal neurons (Figure 3.7A1-D1) and many cells
(42/86) also exhibited phase-dependent fast Vm component variance (Figure 3.7A2-
D2). Several important differences between the hippocampal subfields were evident.
Dentate granule cells were quite homogeneous in their behavior through the course
of the UP-DOWN state and all but one cell showed sustained Vm depolarization
which was maintained through the course of the UP state and was mirrored by
a persistent hyperpolarization throughout the DOWN phase (Figure 3.7A1). In
contrast, about a third (9/32) of CA3 neurons exhibited the exact opposite behavior:
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sustained Vm hyperpolarization through the UP state and depolarization through the
DOWN state (Figure 3.7B1). The remaining population exhibited a more transient
depolarization with a peak slightly preceding or coincident with the UP transition
point (Figure 3.7B1). The CA1 pyramidal cell population displayed a level of
diversity that was intermediate to that of DG and CA3. About 40% of CA1 neurons
(13/32) were depolarized in the UP state and hyperpolarized in the DOWN state, but
the responses weremore transient than inDG,with depolarization/hyperpolarization
decaying through the course of the UP/DOWN state, respectively (Figure 3.7C1).
The behavior of the remaining CA1 neurons appeared similar to that of the CA3
population. With respect to Vm fluctuations, DG granule cells exhibited the highest
variability, exceeding that in CA3 and CA1 (Figure 3.8A1-D1). With respect to
overall Vm fluctuations only CA1 neurons displayed state-dependent modulation
of Vm variability (Figure 3.8D1), with the UP state being associated with more
variable Vm. Focusing on the fast Vm component alone, both CA1 neurons (14/32)
and DG granule cells (9/22) showed a significant jump in variability during the UP
state with no granule cells and only 3 CA1 neurons having the opposite trend (Figure
3.7A2-D2). In contrast, CA3 pyramidal neurons exhibited both jumps and drops and
at the population level had a nearly constant level of Vm variability throughout the
UP-DOWN state cycle, which equaled that of CA1 in the UP state, but exceeded it in
the DOWN phase (Figure 3.7B2, 3.7D2, Figure 3.8D1). Interestingly, with respect
to spiking two thirds of the population of DG (15/22) and CA1 (22/32) neurons
exhibited similar behavior, a significant increase in firing rate that persisted through
the course of the UP phase (Figure 3.7A3-D3). In contrast, the firing behavior of
CA3 neurons largely mirrored the behavior of the Vm mean, with about a half of
CA3 neurons (17/32) exhibiting a significant increase in firing rate in the DOWN
state and the remaining population showing a transient increase peaking near the
UP transition point (Figure 3.7B3, 3.7D3). Thus CA3 neurons were maximally
hyperpolarized and had lowest firing probability at the end of the UP phase when
the rate of ripple occurrence was highest (Figure 3.1E).

Figure 3.7: Hippocampal Subfields Exhibit Distinct Activity Profiles over the
UDS Cycle. (A1) Vm mean as a function of UDS phase for each DG granule
cell displayed as a row in the pseudocolor image. Cells are ordered by the first
principal component coefficient of the image matrix (UDS rank). (A2) Fast Vm
component standard deviation as a function ofUDS phase for DGgranule cells. (A3)
Observed spiking probability for all DG granule cells displayed as a pseudocolor
image. Grayed out rows correspond to cells that fired fewer than 100 spikes.
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Figure 3.7: Hippocampal Subfields Exhibit Distinct Activity Profiles over the
UDS Cycle. (continued)
(B) Same as A, but for CA3 pyramidal neurons. Notice that CA3 neurons are
maximally hyperpolarized and have lowest firing probability at the end of the UP
phase when the rate of ripple occurrence is highest (Figure 3.1E).
(C) Same as A and B, but for CA1 pyramidal neurons.
(D) Area-specific population averages and examples color-coded by brain area.
(D1) Population average Vm means.
(D2) Population average fast Vm component standard deviations.
(D3) Population average spiking probability. Bands around the mean curves show
the SEM.
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Figure 3.8: UDS Modulation of Vm fluctuations.
(A1) Vm standard deviation (s.d.) as a function of UDS phase for DG granule cells.
Vertical interrupted lines mark state transitions and in all panels data are replotted
over two UDS cycles. Cells are ordered according to UDS rank as in Figure 3.7.
(A2) Slow Vm component s.d. as a function of UDS phase for DG granule cells.
(A3) Fast Vm component s.d. as a function of UDS phase for DG granule cells.
(B) Same as A, but for CA3 pyramidal neurons.
(C) Same as A and B, but for CA1 pyramidal neurons.
(D) Area-specific population averages color-coded by brain area. (D1) Population
average Vm s.d. (D2) Population average slow Vm component s.d. (D3) Population
average fast Vm component s.d.
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3.4 Discussion
Neocortical dynamics during NREM sleep and anesthesia show intrinsic alternation
between periods of elevated activity (UP states) and relative quiescence (DOWN
states) (R. L. Cowan and C. J. Wilson, 1994; Steriade, McCormick, and Sejnowski,
1993). The entorhinal cortex is the major gateway linking the neocortex with the
hippocampal formation and has been shown to exhibit UP and DOWN states (UDS)
associated with bimodal membrane potential distributions of EC neurons (Isomura
et al., 2006). Despite an absence of bimodality, the subthreshold activity and
the spiking of hippocampal neurons is modulated by cortical UDS in a subfield-
specific manner both in sleep and under anesthesia (Hahn, Sakmann, and Mehta,
2007; Isomura et al., 2006; Sullivan et al., 2011). We found that DG molecular
layer currents exhibit UP-DOWN dynamics indicating that the EC undergoes UDS
transitions in quiet wakefulness as well that modulate activity across hippocampal
subfields.

Our results regarding UDS modulation in quiet wakefulness are largely consistent
with corresponding observations in NREM sleep and under anesthesia, but there
were also some notable differences that we highlight below. We observed pro-
nounced modulation of both subthreshold activity and spiking at the DOWN→UP
transition in all hippocampal subfields including a 50% increase in the baseline
firing rate of CA3 neurons preceding the DOWN→UP transition, consistent with
(Isomura et al., 2006) and in contrast to previous reports which found no modula-
tion of CA3 unit activity in sleep/waking immobility (Sullivan et al., 2011) or weak
and mixed modulation in anesthetized animals (Hahn, Sakmann, and Mehta, 2007).
We also find that awake ripples occur essentially exclusively during the UP state,
and not merely with an increased probability relative to the DOWN state (Sullivan
et al., 2011). Furthermore, awake ripples occurred throughout the UP state and
were not concentrated near the DOWN→UP transitions (Battaglia, Sutherland, and
McNaughton, 2004). Finally, in our data the vast majority of CA1 neurons were
depolarized on the DOWN→UP transition and had elevated firing rates in the UP
state in contrast to previous observations under anesthesia (Hahn, Sakmann, and
Mehta, 2007; Isomura et al., 2006).

While the majority of recorded neurons were influenced by UDS, the nature of the
modulation is subfield-specific. Granule cells in DG by and large follow the EC
inputs and show sustained depolarization and firing rate increase throughout the
UP state mirrored by relative hyperpolarization and reduced firing in the DOWN
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state. Although CA3 follows DG in the trisynaptic loop, DG activity is more similar
to that in CA1 than in CA3. In particular, CA1 pyramidal neurons in CA1 also
depolarize and fire more on the DOWN→UP transition, but these responses are
more transient than in DG. Consequently, the expected membrane potential across
the CA1 population has a triangular wave shape as a function of UDS phase, unlike
the square wave shape characteristic of the DG population. This triangular wave
shape is almost symmetric with respect to DOWN→UP transition and as a result
the Vm conditional means in the UP and DOWN states are very similar, despite
the clear Vm modulation by UDS phase. The CA1 population starts depolarizing
before the DOWN→UP transition and the DG granule cells. This is reflected in
the non-causal transfer model impulse response of CA1 pyramidal cells, which is
consistent with the presence of a feedback loop via the CA1→EC connection, but
also suggests the presence of another excitatory source, such as CA3, that leads EC
activity.

How can activity in CA3 lead given that CA3 is downstream of both the EC and
the DG? The majority of CA3 pyramidal neurons are negatively correlated to DG
molecular layer currents, which is surprising since CA3 and DG they receive essen-
tially the same excitatory input from layer 2 of the EC as DG granule cells, while
the mossy fibers (DG→CA3) form powerful excitatory “detonator” synapses on the
proximal dendrites of CA3 pyramidal neurons. Despite this anatomical organization
suggesting that CA3 activity should follow that in EC and DG, CA3 pyramidal cells
in fact show peak depolarization and elevated firing before the DOWN→UP transi-
tion, thus leading both CA1 and DG. Furthermore, a third of the CA3 population is
more depolarized in the DOWN state, while the rest exhibit transient depolarization
right before the DOWN→UP transition. This is reflected in the negative impulse
response of the CA3 transfer model with sustained negative step response. The
modulation of the population firing rate in CA3 by UDS is consistent with CA3
being responsible for the CA1 lead over DG activity.

What mechanisms may account for the CA3 behavior? One possibility is that
DG and/or EC inputs provide powerful feedforward inhibition to CA3 pyramidal
neurons. Indeed mossy fibers (DG→CA3) not only form large mossy terminals
on CA3 pyramidal cells but also contact interneurons via filopodial extensions,
providing an anatomical substrate for feedforward inhibition (Acsady et al., 1998).
The balance between feedforward excitation and inhibition depends on the pattern
of granule cell activity: low frequency activation of the mossy fibers results in
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powerful slow inhibition of CA3 pyramidal neurons while at higher frequencies
an initial depolarization precedes the inhibition (Zucca et al., 2017). Through this
mechanism the elevated DG activity in the UP state may induce a concomitant
suppression in the majority of CA3 pyramidal neurons during the UP state. As
granule cells reduce their firing in the DOWN state, the CA3 circuit is released
from the DG-mediated feedforward inhibition and the recurrent CA3 connections
may support a sustained increase in population activity. This recurrent excitation
is controlled by the strong feedback inhibition present in CA3. The non-causal
positive component of the CA3 transfer model impulse response and the timing of
CA3 firing relative to the DOWN→UP transition indicate that CA3 may play an
important role in ushering the subsequent UP state by providing excitation to EC
via CA1. These observations are inconsistent with a feedforward activation of the
trisynaptic pathway, suggesting a more complex interplay of intrahippocampal and
perforant pathways.

3.5 Methods
Vm decomposition
Spikes were detected by identifying local maxima in the broadband membrane
potential with peak prominence of at least 15 mV and width of at most 10 ms. Cells
with spike thresholds exceeding -37 mV were considered to be possibly damaged
and were therefore excluded from subsequent analyses. The subthreshold membrane
potential (Vm) was computed by interpolating the membrane potential over periods
with an action potential starting from 3 ms before to 5 ms after the spike peak.
The subthreshold Vm signal was then low-pass filtered (Parks-McClellan optimal
equiripple FIR filter, 250-350 Hz transition band) and downsampled to 2083 Hz.
The Vm signal was decomposed into fast, slow, and drift components as follows.
First, the slow Vm component (Vm,slow) was obtained by median filtering Vm with
a 1-second window. Next, the fast Vm component (Vm,fast) was obtained as the
residual Vm after subtraction of Vm,slow. A drift component (Vm,drift) was obtained
by smoothingVm,slow with a 60-second boxcar kernel. Finally, Vm,slow was detrended
by subtracting Vm,drift, which included the resting membrane potential as well as
any Vm changes on the timescale of minutes (Figure 3.9). By construction Vm =
Vm,fast + Vm,slow + Vm,drift and the components contain different frequency bands of
the subthreshold membrane potential.
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Figure 3.9: Decomposing Membrane Potential Traces into Slow and Fast Com-
ponents.
(A) Membrane potential Vm of a CA3 pyramidal cell (blue) decomposed into slow
(Vm,slow + Vm,drift in yellow) and fast (Vm,fast in red) components. After spikes are
removed from the membrane potential, Vm,slow + Vm,drift is obtained by filtering
Vm with a median filter with 1 sec window, and Vm,fast = Vm - (Vm,slow + Vm,drift).
The 1 Hz cutoff frequency for the decomposition is dictated by the fact that Vm
is coherent with brain state indicators up to 1 Hz (Figure 3.11B). Vm,drift contains
the resting membrane potential and Vm changes on the timescale of minutes, so it
only adds a DC offset in the panels above. The short segment indicated by the gray
vertical bar is shown in (B).
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Figure 3.10: Contributions of Slow and Fast Components to Vm Variability.
(A) Standard deviations (S.D.) of slow and fast components for each cell (dots)
color-coded by subfield. Notice that fast components have more variability than
slow components (most dots below the diagonal), but for many CA3 cells (red dots)
the variability is comparable between the two components.
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Figure 3.10: (continued) (B) Component standard deviation (S.D.) grouped by
subfield and component. Horizontal bars indicate significant pairwise differences
(p < 0.001). The Vm of DG cells is most variable both overall and by component.
CA1 and CA3 have similar overall and fast component variability, but CA3 has more
slow component variability than CA1.
(C) Percentage of total membrane potential variability concentrated in the slow com-
ponent across hippocampal subfields. CA3 cells have significantly more variability
concentrated in the slow component compared to DG and CA1 (p < 0.01). The
medians for each subfield are DG (28%), CA3 (42%), and CA1 (25%).

Current source density estimation
Local field potentials (LFPs) were recorded from a 32-site silicon probe with 100
µm site spacing positioned so that sites spanned all of neocortex, area CA1, the
dentate gyrus, and parts of the thalamus. LFPs were bandpass filtered between 1 Hz
and 1 KHz and downsampled to 2083 Hz. Channels with recording artifacts were
excluded from the CSD analysis. Laminar current source densities were estimated
with 17 µm resolution using a robust version of the one-dimensional inverse CSD
spline method (Pettersen et al., 2006). In particular, the forward matrix (relating
CSDs to LFPs) was computed as usual, but the inverse matrix (relating LFPs to
CSDs) was computed using ridge regression with a regularization parameter set
by a cross-validation procedure. The spatial smoothness of the CSD estimate was
automatically controlled by the regularization parameter and therefore no further
spatial smoothing was applied. The anatomical laminae in CA1 and DG were
determined using a combination of histological reconstruction of the probe track,
electrophysiological markers (ripples, sharp waves, dentate spikes, etc.), and the
CSD covariance structure. DG CSD activity was computed by first averaging the
rectified CSD signals from the vertical extent ( 200 µm) of the suprapyramidal
molecular layer of DG (giving the “rectified DG CSD”), then smoothing with a
1-second median filter, and finally converting to a z-score. By construction DG
CSD activity only reflects the rate and magnitude of transient synaptic activity and
not any slow-varying (< 1 Hz) transmembrane currents.

Transfer model estimation
Linear transfer models were estimated after taking the z-scored DG CSD activity as
model input and the slow Vm component of the subthreshold membrane potential
of a given cell as output. The finite impulse response (FIR) was estimated from
the input-output data using a regularized nonparametric procedure (impulseest in
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Figure 3.11: Coherence between rectified DG CSD and Vm.
(A)Magnitude-squared coherence of subthresholdVmand rectifiedDGCSD (black)
or pupil diameter (magenta) for the recording in Figure 3.1. Coherence of DG CSD
and pupil diameter is shown in gray. Magnitude-squared coherence values range
between 0 (uncorrelated) to 1 (perfectly correlated) and measure the strength, not
the direction, of the correlation at a given frequency. Notice that the signals are
coherent below 1 Hz.
(B) (Bottom) Each row in the pseudocolor image shows the magnitude-squared
coherence of subthresholdVmand rectifiedDGCSD for aDG cell. (Top) Population
average coherence across all DG cells.
(C-D) Same as (B), but for all CA3 (C) and CA1 (D) neurons.
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Figure 3.12: Strength and Direction of the Correlation between Vm Slow Com-
ponent and DG CSD Activity.
(A) Lag and amplitude at the absolute peak of the cross-covariance between Vm
slow and DGCSD activity. Each dot represents a cell and is color-coded by subfield.
Notice that for significantly correlated cells (p < 0.05 and |r| > 0.3: DG 18/22, CA3
18/32, CA1 16/32) most DG (17/18) and CA1 (13/16) cells have a positive peak
correlation, while CA3 cells (15/18) have a negative peak correlation. Notice that
the peak correlation for many CA1 cells (14/16) occurs at a negative lag (Vm slow
leading DG CSD activity).
(B) Distribution of peak lags for each subfield. Median lags for cells with significant
correlation (p < 0.05 and |r| > 0.3) for each subfield were DG (37 ms), CA3 (296
ms), and CA1 (-225 ms).
(C) Fraction of Vm slow component variance accounted for by its linear correlation
to DG CSD activity. The medians are DG (20%), CA3 (9%), and CA1 (9%).
(D) Fraction of Vm slow component variance that can be explained by an impulse
response transfer model with DGCSD activity as input. Themedians are DG (36%),
CA3 (9%), and CA1 (25%).
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Matlab System Identification Toolbox with tuned and correlated ’TC’ kernel used
for regularization) (Chen, Ohlsson, and Ljung, 2012). The input-output data were
first downsampled to 20 Hz and the order of the FIR was set to 75, corresponding to
3.6 second duration. The procedure automatically estimated FIR values at negative
delays (up to -0.86 sec) and non-zero filter values at negative delays indicated that
the slow Vm component led DG CSD activity. Once the impulse responses were
estimated the corresponding step responses were simulated by feeding the model
with a step input. Low order ARX models were also estimated in a similar manner
and led to qualitatively similar results as the FIR models (data not shown).

UP and DOWN state segmentation
UP and DOWN states (UDS) were identified from the z-scored DG molecular layer
CSD activity using a hidden Markov model (HMM) (McFarland, Hahn, and Mehta,
2011). First, a binary Gaussian mixture was fit to the distribution of DG CSD
values (Figure 3.1C). Next, the mixture components were used to initialize the
emission probability distributions of a two state (UP and DOWN) HMM and then
the state transition and emission probabilities were estimated from the DGCSD time
series data. Finally, the most likely sequence of states given the observed DG CSD
time series, downsampled to 4 Hz, were computed with the Viterbi algorithm. The
resulting Viterbi path was used to assign a UDS phase to each time point based on its
position relative to the nearest UDS transition times. The method was unsupervised
and did not require user tuning of any model parameters.
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Figure 3.13: Vm and Spiking Responses to UDS Transitions Reveal Ordering
in Subfield Activation.
(A1) Mean slow Vm component (Vm,slow) triggered on DOWN→UP transitions
for each DG granule cell displayed as a row in the pseudocolor image. Cells are
ordered by UDS rank as in Figure 3.7. Notice that the Vm of most DG granule
cells shifts from hyperpolarized (blue) to depolarized (red) at the UP transition
(interrupted vertical line). Color limits in all Vm panels are ±2.5 mV.
(A2) Same as A1, but triggered on UP→DOWN transitions. Notice that in DG
the Vm responses to DOWN state transitions are mostly mirror symmetric to the
responses to UP transitions.
(A3) Spiking responses to DOWN→UP state transitions for all DG granule cells.
The perievent time histogram (PETH) for each neuron is normalized to a baseline
rate of 1 Hz, so the colors represent the relative modulation of each cell’s baseline
firing rate. Notice that firing in the DG is depressed before (blue) and elevated
following (yellow) the UP state transition. Grayed out rows correspond to cells with
insufficient firing to compute a meaningful PETH.
(A4) Same as A3, but triggered on UP→DOWN transitions. Notice the sharp
decrease of firing right at the onset of the DOWN state.
(B) Same as A, but for CA3 pyramidal neurons. Notice that many CA3 cells are
already depolarized and have increased firing before the onset of the UP transition.
(C) Same as A and B, but for CA1 pyramidal neurons.
(D) Area-specific population average Vm responses to UP state transitions (D1),
DOWN state transitions (D2), and spiking responses to UP transitions (D3) and
DOWN transitions (D4). Bands around the mean curves show the standard error of
the mean. Black traces show the average state at each lag with the DOWN and UP
states represented by -1 and 1 in D1-2; 0.5 and 1.5 in D3-4.
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Figure 3.14: Vm and Transfer Model Responses at UP and DOWN State Tran-
sitions.
(A1-D1) Observed Vm responses at DOWN→UP transitions. Data are replotted
from Figure 3.13 for comparison, but reordered according to the UP Vm responses.
All other panels follow this same ordering. In all panels cells are ordered by UDS
rank is in Figure 3.7.
(A2-D2) Transfer model responses at DOWN→UP transitions simulated from the
observed DG CSD activitymagnitude.
(A3-D3) Observed Vm responses at UP→DOWN transitions (replotted from Figure
3.13 for comparison).
(A4-D4) Transfer model responses at UP→DOWN transitions simulated from the
observed DG CSD activitymagnitude.
Bands around the mean curves show the SEM.
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Figure 3.15: Pupil Diameter around UP and DOWN transitions.
(A-D) Examples of pupil tracking. Eight points around the pupil edgewere labeled in
a subset of frames, and in the remaining frames corresponding points were extracted
with DeepLabCut (yellow). The pupil diameter was estimated by fitting a circle
(orange) to the extracted points.
(E-F) Mean pupil diameter per dataset (bottom) and average across datasets (top)
centered on DOWN→UP (E) and UP→DOWN (F) transitions. Notice that the pupil
starts dilating at the onset of the DOWN state (F) and is in the process of constricting
at the onset of the UP state (E).

Pupil Analysis
Pupil videos were analyzed using DeepLabCut (Mathis et al., 2018). A subset of
frames were manually labeled with 8 points around the pupil and these points were
subsequently extracted with DeepLabCut for the remaining frames. A core set of
points with likelihood > 0.7 was detected for each frame and a circle was fit using
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the Taubin SVD-based method for frames with more than 3 core points (Taubin,
1991). Blinks were detected as abrupt drops in likelihood across the detected points.
Datasets with mean likelihood across detected points above 0.95 and with more than
97% valid frames were selected for analysis. Proper extraction of pupil diameter
and blinks was confirmed by visual inspection.
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C h a p t e r 4

INHIBITION IS THE HALLMARK OF CA3 INTRACELLULAR
DYNAMICS AROUND AWAKE RIPPLES

Ripples are believed to be the product of excitatory buildup in the recurrent CA3
network, culminating in a population burst that drives CA1 spiking organized by
the transient ripple oscillation (Buzsáki, 1986; Miles and Wong, 1983; Stark et al.,
2014; Traub and Miles, 1991).This suggests that CA3 neurons should get progres-
sively depolarized and come closer to firing threshold through the course of the
ripple buildup. Separate from the buildup itself, the processes controlling ripple
initiation and termination are not fully understood. In vitro experiments indicate
that ripples are initiated once stochastic fluctuations in the population firing rate of
CA3 pyramidal cells exceed a threshold level (Prida et al., 2006; Schlingloff et al.,
2014), implying that an increase in the firing of CA3 neurons should result in a
corresponding increase in the rate of ripple occurrence. Recent in vitro studies have
also emphasized the importance of inhibitory neurons in ripple initiation (Bazelot,
Teleńczuk, and Miles, 2016; Ellender et al., 2010; Schlingloff et al., 2014), while
other studies suggested that area CA2 and a special class of CA3 cells play a key
role in ripple initiation (Hunt et al., 2018; Oliva et al., 2016). Furthermore, there
is growing evidence that the functional role of ripples as well as the mechanism of
their initiationmay differ across the awake and sleep states (Middleton andMcHugh,
2020; Oliva et al., 2016; Roumis and Frank, 2015; Tang and Jadhav, 2019). Whole
cell recordings in awake animals have opened a window to understanding the inter-
play between collective network activity and Vm dynamics of hippocampal neurons
which can reveal the nature and timing of synaptic inputs and subthreshold changes
that are invisible to extracellular recordings. While recent efforts have examined the
Vm of CA1 neurons around ripples (English et al., 2014; Hulse, Moreaux, et al.,
2016) and the Vm modulation by brain state across hippocampal subfields (Hulse,
Lubenov, and Siapas, 2017; Malezieux, Kees, and Mulle, 2020), the subthreshold
dynamics of CA3 pyramidal cells around ripples and the impact of cortical inputs
on Vm behavior in CA3 remain unknown.

Below, we focus on characterizing how brain state is reflected in slow Vm trends
around ripples. Then, we analyze ripple triggeredmodulation of fast Vmfluctuations
which reveals a prevalence of inhibition in CA3 which grows through the ripple
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buildup. In contrast DG and CA1 neurons exhibit transient depolarization not only
after ripple onset but also 100 ms earlier.

4.1 Inhibition Dominates CA3 Subthreshold Behavior Near Awake Ripples
It has long been appreciated that awake ripples preferentially occur during periods
of quiet wakefulness and LIA. Furthermore, here we showed that when quiet wake-
fulness is segmented into periods of UP and DOWN states, essentially all ripples
occur in the EC UP state (Figure 3.1E). The prevailing view is that ripples are the
result of self-organized population bursts of activity that build within the recurrent
CA3 network and then are transmitted to and further patterned by the CA1 network,
where the ripple oscillation itself is readily observable in the local field near the
pyramidal cell layer (Figure 3.1A) (Miles and Wong, 1983; Buzsáki, 1986; Traub
andMiles, 1991; Stark et al., 2014). How do neurons across the different hippocam-
pal subfields participate in this process? To address this question we detected ripple
onset times from the CA1 local field near the pyramidal cell layer and determined
the ripple-triggered average (RTA) Vm and firing rate modulation for each recorded
cell (Figure 4.1). Since the RTA of the Vm is the sum of the RTAs of the fast
and slow Vm components, we determined these average responses separately for
each cell and component (Figure 4.1A1-D1, 4.1A3-D3). The RTAs of the slow
Vm component showed pronounced depolarization in DG with a peak before the
ripple onset, a hyperpolarization in CA3 with a trough following the ripple onset,
and mixed responses in CA1 (Figure 4.1A1-D1). Since ripples occurred exclu-
sively during the UP state and the slow Vm component of hippocampal neurons
was strongly influenced by state, we hypothesized that the RTA slow Vm response
depended strongly on the pattern of EC input and how each cell was impacted by it.
We therefore simulated the slow Vm component for each cell using the linear trans-
fer models we had estimated (Figure 3.5) and computed the ripple-triggered average
of the simulated slow Vm response (Figure 4.1A2-D2). The RTAs of the observed
and simulated slow Vm components showed good qualitative agreement indicating
that on the timescale of seconds Vm trends near ripples are strongly influenced by
the pattern of EC UDS transitions.

In contrast, the mean of the fast Vm component is very weakly influenced by state
and therefore its RTA should reflect synaptic activity consistently timed with respect
to the ripple onset. Consistent with previous studies, we found that the fast RTA Vm
waveform for most CA1 pyramidal neurons had a sharp prominent peak following
the ripple onset, followed by a steep return to baseline or hyperpolarization within
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Figure 4.1: InhibitionMarks Slow and Fast VmResponses near Ripples in CA3,
Unlike DG or CA1.
(A1) Mean slow Vm component triggered on ripple onset for each DG granule cell
displayed as a row in the pseudocolor image. Interrupted vertical line marks ripple
onset.
(A2) Transfer model predicted ripple-triggered slow Vm component as in A1.
(A3) Mean fast Vm components triggered on ripple onset and displayed as in A1.
Notice the two depolarizing peaks at -100 ms and right after ripple onset. Cells in
panels A1-3 are ordered by the first principal component coefficient of the A3 image
matrix (RTA rank).
(A4) Spiking response to ripple onset for DG cells normalized by baseline firing
rate.
(B) Same as A, but for CA3 pyramidal neurons. Notice the prominent hyperpo-
larization for most CA3 neurons present in both the slow and fast Vm component
responses.
(C) Same as A and B, but for CA1 pyramidal neurons. Notice the prominent depo-
larization for most CA1 neurons.
(D) Area-specific population average slow Vm response (D1), transfer model pre-
dicted slow Vm responses (D2), fast Vm response (D3), and spiking response (D4)
color-coded by brain area. Bands around the mean curves show the SEM. Notice
that modulation by UDS accounts for the shape of the ripple-triggered Vm response
on the timescale of seconds (compare D1 and D2).
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a 100 ms (Figure 4.1C3) (Hulse et al. 2016). This behavior was mirrored in the
firing rate modulation of CA1 cells (Figure 4.1D3) and is consistent with the notion
that CA1 exhibits a highly synchronous population burst associated with ripple
oscillations.

Since the population event in CA1 is presumably due to a self-organized popula-
tion burst in CA3, one might expect that the fast RTA waveforms in CA3 should
resemble those in CA1, but this was not the case (Figure 4.1B3). While a minority
CA3 neurons (9/32) exhibited a small depolarizing peak near the ripple-onset, the
most consistent feature of the fast RTA Vm waveform in CA3 was the prominent
hyperpolarization that reached a trough roughly 100 ms following ripple onset and
recovered within 300 ms. The population average response shows that the decrease
in Vm had begun as early as 150 ms prior to the ripple onset (Figure 4.1D3). Sim-
ilarly, while several CA3 neurons showed an increase in firing rate just prior to the
ripple onset, about a third of the CA3 population exhibited a reduction in firing rate
before and especially following the ripple onset (Figure 4.1B4, 4.1D4). These data
demonstrate that extensive inhibition, rather than excitation, is the hallmark of CA3
subthreshold activity before and after ripple bursts. Further analysis of the CA3
cells with a depolarizing peak near the ripple onset (9/32 cells) revealed that they do
not have significantly different resting Vm, spike threshold, burst index, or spikes
per burst compared to the rest of the CA3 population (data not shown). However,
these CA3 cells had lower firing probability in the DOWN state and lower overall
firing rates than the remaining CA3 population. It is worth noting that most neurons,
even with hyperpolarizing average response, experienced depolarization and firing
during a subset of ripples, consistent with a sparse activation of CA3 during ripples
(Figure 4.2).

Finally, while the dentate gyrus has not been traditionally considered to be instru-
mental to the process of ripple generation, the fast RTA Vm waveforms of granule
cells showed clear modulation with about half of the population exhibiting a depo-
larization peak following ripple onset with a similar time course to that seen in CA1
(Figure 4.1A3). Interestingly, about half of DG granule cells also showed another
depolarization peak occurring 100 ms prior to ripple onset (Figure 4.1A3, 4.1D3).
Upon closer examination a similarly timed depolarizing peak could be seen in the
CA1 response prior to ripple onset, although of much smaller magnitude in compar-
ison to the post-ripple depolarization. Similarly, a sharp wave of smaller amplitude
is also consistently observed 100 ms before ripple onset (Hulse, Moreaux, et al.,
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Figure 4.2: Membrane Potential Dynamics of CA3 Pyramidal Neuron during
Single Ripples.
(A1) (Top) Mean fast Vm component of one example CA3 pyramidal cell triggered
on ripple onset. (Bottom) Fast Vm components of CA3 pyramidal cell triggered on
ripples. Each row corresponds to a single ripple. Notice that, even with hyperpo-
larizing average response, the neuron experienced depolarization during a subset of
ripples.
(A2) Examples of fast Vm component triggered on ripple onset chosen from A1
Bottom. Vertical dashed line mark the time of the ripple onset. Notice the variable
fast Vm activities.
(B1) Same as A1, but for the neuron with depolarizing average response. Notice
that, even with depolarizing average response, the neuron experienced hyperpolar-
ization during a subset of ripples.
(B2) Same as A2, but for the neuron with depolarizing average response. Notice the
variable fast Vm activities.

2016).

Since ripples can occur in close succession at intervals close to 100ms, wewondered
if such ripple bursts could contribute to the observed pre-ripple depolarization. To
test this hypothesis we compared the fast RTA Vm aligned to the onset of isolated
single ripples with that the average Vm aligned to the onset of ripple doublets.
The pre-ripple depolarization in DG and CA1 was similar for isolated ripples and
ripple doublets arguing against the hypothesis that pre-ripple responses were due to
a reflection of ripple bursts (Figure 4.3). These data indicate that DG should not be
viewed as a passive bystander in the awake ripple generation process and that the
ripple proper is preceded by coordinated activity not only in CA3, but also in CA1
and DG.
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Figure 4.3: Subthreshold Ripple Modulation around Isolated Ripples and Rip-
ple Doublets.
(A1) Mean fast Vm components of DG granule cells triggered on isolated ripples
(no ripples occurring within 250 ms from ripple onset). (A2) Mean fast Vm com-
ponents of DG granule cells triggered on the onset of first ripple of a ripple doublets
(with a second ripple occurring within 250 ms from the start of the first).

4.2 Feedback Inhibition Hyperpolarizes CA3 Neurons During Ripples
What circuit mechanisms may be responsible for the observed subthreshold activity
around ripples? Since CA3 is considered to play a key role in the process of
ripple generation, we reasoned that influences on subthreshold activity originating
in CA3 should scale in proportion to the CA3 population burst size. We inferred this
size indirectly from the amplitude of the ripple-associated sharp wave in stratum
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Figure 4.3: (continued)
(A3) Comparison of the DG population averages for isolated ripples (darker hue)
vs. ripple doublets (lighter hue). Significant differences are highlighted in black.
Notice that DG responses are almost identical and the depolarization peak at -100
ms is present before the onset of both isolated ripples and ripple doublets.
(B) Same as A but for CA3 pyramidal neurons. Notice that while there is signifi-
cantly more pronounced depolarization preceding ripple doublets, the CA3 response
through the course of the first ripple in the doublet matches that seen during isolated
ripples. Responses diverge again 200 ms following the onset of the first ripple and
an additional hyperpolarization trough is evident at 250 ms due to the second ripple.
(C) Same as A,B but for CA1 pyramidal neurons. Notice that the secondary de-
polarization peak in CA1 in response to ripple doublets occurs at 150 ms, halfway
between the two hyperpolarization troughs seen in CA3.
(D) Area-specific population average responses to isolated ripples (D1) and ripple
doublets (D2). (D3) Horizontal bars mark the onset and duration of significant
differences between responses to isolated ripples and ripple doublets.

radiatum of CA1 or equivalently by the magnitude of the underlying synaptic current
due to Schaffer collateral activation (Mizunuma et al., 2014). We then divided
the ripples from each recording session in two halves, big and small, depending
on whether they were associated with above-median or below-median CA3 burst
size. Finally, we computed the fast RTA Vm waveform separately for big and
small CA3 events and compared the results (Figure 4.4). The size of the CA3
burst had little effect on the DG RTA waveform, apart from a slight increase in
hyperpolarization about 100 ms following ripple onset that was associated with the
bigger events (Figure 4.4A1-A3). In contrast, subthreshold activity in CA3 clearly
reflected the size of the CA3 population event (Figure 4.4B1-B3). Larger CA3
events were associated with more sustained depolarization up to 300 ms prior to
the ripple onset and deeper hyperpolarization following (Figure 4.4B3). In CA1,
bigger CA3 events were associated with slightly more depolarization up to 250
ms prior to the ripple onset and during the post-ripple peak, but the most notable
difference was the increased hyperpolarization about 100 ms following the ripple
onset (Figure 4.4C1-C3). These data indicate that feedback inhibition within CA3
is most likely responsible for the subthreshold hyperpolarization seen in the fast
Vm component around ripples in CA3. Consistent with our previous study, it also
suggests that feedforward inhibition from CA3 to CA1 may play an important role
in controlling the population event size in CA1 and may contribute to the post-ripple
hyperpolarization (Hulse, Moreaux, et al., 2016).
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Figure 4.4: Fast Vm Inhibitory Responses to Ripples Scale with CA3 Population
Burst Size.
(A1) Mean fast Vm components of DG granule cells triggered on ripples with small
(below average) sharp-wave (SPW) amplitudes.
(A2) Same as A1, but for ripples with big (above average) SPW amplitudes.
(A3) Comparison of the DG population average response to small and big SPW
ripples. Bands around the mean curves show the SEM. Responses to big ripples
are shown in darker blue and overlap the responses to small ripples for most time
lags. For significant differences the responses to big ripples are highlighted in black
(paired t-test, p<0.01).
(B) Same as A, but for CA3 pyramidal neurons.
(C) Same as A and B, but for CA1 pyramidal neurons.
(D) Area-specific population average responses to small (D1) and big (D2) SPW
ripples. Bands around the mean curves show the SEM. (D3) Horizontal bars mark
the onset and duration of significant differences between responses to small and big
SPW ripples within each area (paired t-test, p<0.01).
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4.3 Discussion
The recurrent circuit of CA3 has long been hypothesized to function as an autoas-
sociative memory network (Marr, 1971) and to support the buildup of population
activity underlying the ripple generation process (Buzsáki, 2015). Indeed, acute
silencing of Schaffer collaterals during wakefulness abolishes ripples (Davoudi and
Foster, 2019; Yamamoto and Tonegawa, 2017). While the membrane potential of
CA1 pyramidal neurons near ripples has been shown to exhibit a gradual ramping
and a transient depolarization followed by a prolonged inhibition (Hulse, Moreaux,
et al., 2016), the subthreshold dynamics of DG granule cells and CA3 pyramidal
neurons near ripples in awake animals had not been fully characterized.

We observed that the ripple-triggered membrane potential of hippocampal neurons
is modulated on a timescale of seconds, with DG granule cells showing depolariza-
tion, CA3 pyramidal neurons hyperpolarization, and CA1 cells exhibiting weaker
modulation. Since ripples occur almost exclusively in the UP state and the slow
Vm dynamics of hippocampal cells are modulated by UDS in a subfield-specific
fashion, we hypothesized and confirmed that the slow Vm responses near ripples
can be qualitatively accounted for by the UDS influence on hippocampal cells.

How does UDS influence hippocampal network excitability? It has been proposed
that during NREM sleep hippocampal dynamics exhibit a stable, but excitable
quiescent state, such that activity fluctuations can produce a transient population
excitation representing a ripple (Levenstein, Buzsáki, and Rinzel, 2019). Our data
indicate that in quiet wakefulness UDS modify hippocampal network excitability
because no ripples are produced in the DOWN state. We illustrate this behavior
in a mean firing rate model in the framework described in (Levenstein, Buzsáki,
and Rinzel, 2019), featuring two (EC and CA3) adapting recurrent neural popu-
lations (Figure 3.14). In the model the EC population influences CA3 activity by
providing a net inhibitory input as well as by modulating the strength of the CA3
recurrent excitation (Figure 4.5). In the real circuit the latter influence may be due
to UDS-dependent changes in neuromodulatory inputs, such as cholinergic tone, as
exhibited, for example, by pedunculopontine cholinergic neurons (Mena-Segovia
et al., 2008). The majority of the cholinergic input to the hippocampus originates
in the medial septum and optogenetic stimulation of septal ChAT-positive neurons
suppresses ripple generation (Hunt et al., 2018; Vandecasteele et al., 2014). Acetyl-
choline is known to inhibit the efficacy of recurrent synaptic transmission in CA3 by
acting on presynaptic muscarinic receptors in the associational–commissural fiber
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system (Hasselmo, Schnell, and Barkai, 1995; Hasselmo and Schnell, 1994; Vogt
and Regehr, 2001) and cholinergic tone is presumably at its lowest during ripple gen-
eration in the EC UP state. Thus the efficacy of CA3 recurrent connections together
with dentate and entorhinal input to CA3 and the associated feedforward inhibition
can act as bifurcation parameters for the CA3 network dynamics that change network
excitability thereby preventing ripple occurrence during the cortical DOWN state
(Figure 4.5E-F). This is counterintuitive because many CA3 neurons are more ac-
tive and depolarized in the DOWN state or near the DOWN→UP transition and so,
according to the stochastic-refractory model of ripple initiation (Schlingloff et al.,
2014) the rate of ripple occurrence should coincide with the modulation of CA3
activity by UDS, which is contradicted by the fact that ripples occur in the UP state.
In our model, CA3 network excitability is shown to be restricted to the EC UP state
when the mean CA3 rate is lower compared to the DOWN state (Figure 4.5B-C).
This is possible because of the push-pull influences of the net inhibitory input which
lowers CA3 network excitability, and the CA3 recurrent strength potentiation which
increases it. Hence, in the UP state the CA3 network is inhibited but excitable, while
in the DOWN state it is disinhibited but not excitable (Figure 4.5).

These data suggest that increased inhibition in CA3 may be a prerequisite for ripple
initiation. This is consistent with in vitro work showing that reducing GABAA-
mediated inhibition in hippocampal slices abolishes spontaneously occurring sharp
wave-ripple events in CA3 (Bazelot, Teleńczuk, and Miles, 2016; Ellender et al.,
2010; Schlingloff et al., 2014). The relative hyperpolarization in CA3 during the
UP state may reflect the role of certain local (Katona et al., 2014; Viney et al.,
2013) or long-range projecting interneurons (Basu et al., 2016; Unal et al., 2018)
in suppressing the initiation of ripples. According to one view, ripple generation
may be the result of disinhibition, however our data does not offer clear evidence
for widespread disinhibition in CA3 preceding the population burst (Evangelista
et al., 2020). Importantly, ripple generation by disinhibition does not account
for the lack of ripples in the DOWN state, despite the elevated neuronal activity in
CA3. Its origin notwithstanding, membrane hyperpolarization inCA3may influence
ripple initiation by affecting voltage-gated conductances and thereby changing the
excitability of CA3 neurons to make them more likely to fire or burst in response
to transient depolarizing input. Changes in inhibition across the CA3 network may
shift the region of ripple initiation, allowing for reactivation of diverse memory
traces stored within the CA3 network.
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On a faster timescale, the average Vm responses near ripples reveal two consistent
features. First, the majority of CA3 neurons exhibit a brief ( 300 ms) hyperpolar-
ization locked to the ripple onset in addition to the broad ( 3 sec) UDS-mediated
hyperpolarization. This brief hyperpolarization grows with the size of the CA3 pop-
ulation burst, quantified by the associated sharp wave amplitude, therefore pointing
to feedback inhibition as its source. This suggests that feedback inhibition is a
consistent feature of the buildup process in CA3. This inhibition likely arises from
several classes of interneurons that have been shown to exhibit elevated firing around
ripples in both CA3 and CA1 (Klausberger et al., 2003; Somogyi et al., 2014; Tukker
et al., 2013). However, the distinct Vm responses we observed around ripples in-
dicate that inhibition is tuned differently in CA3 and CA1. In particular, in CA1
inhibition imposes oscillatory patterning on the Vm that rides on a wave of depolar-
ization, while in CA3 inhibition summates to produce a net hyperpolarization. In
both areas however, fast fluctuations in the membrane potential persist throughout
the ripple period allowing CA3 neurons to fire despite the net hyperpolarization.
These results suggest that the relative gain of feedback inhibition is greater than that
of recurrent excitation for the majority of the CA3 neurons and hence the population
burst can only build up by recruiting the CA3 neurons most strongly connected to a
sparse active subset. This may reflect a winner-take-all mechanism for controlling
both the sparsity and the specificity of the neuronal sequences activated in CA3
during a ripple. The growing inhibition during the course of a ripple also provides
a mechanism for ripple termination.

Second, DG granule cells exhibit two transient depolarizations of comparable ampli-
tude 100 ms before and immediately after the ripple onset. Similarly timed features
are present in the Vm of CA1 pyramidal neurons, albeit the pre-ripple depolarization
is significantly smaller than the post-ripple one. In CA1, both depolarizations are
associated with sharp waves of proportional magnitudes in stratum radiatum (Figure
4A in (Hulse, Moreaux, et al., 2016)), implicating CA3 as the source for both. The
DG activation is consistent with the presence of a backprojection from CA3 to DG
(Scharfman, 2007; Szabo et al., 2017) and can influence ripple-associated CA3
activity, consistent with previous lesion studies (Sasaki et al., 2018). These results
indicate a long and orchestrated ripple initiation process in the awake state, extend-
ing beyond the roughly 50 ms period of excitatory activity buildup that proceeds
ripples in vitro (Schlingloff et al., 2014).

While there are consistent features within each subfield with respect to UDS and
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ripple modulation, there is also variability of responses across cells. The resting
Vm and location of the cell within the cell layer and along the proximodistal axis
could be factors influencing the UDS and ripple modulation. Indeed, previous
studies have shown a gradient of connectivity and intrinsic cell properties along the
proximodistal axis in CA3 (Q. Sun et al., 2017), and differential responses of CA1
neurons in deep and superficial layers of CA1 (Valero, Cid, et al., 2015; Valero
and Prida, 2018). Analysis of the resting Vm and proximodistal location of each
cell as a function of UP-DOWN modulation, as well as ripple modulation, did not
reveal any significant trends, except for the fact that the most depolarized CA3 cells
tend to hyperpolarize most during ripples, consistent with the fact that these cells
are furthest away from the GABAA reversal potential (data not shown). However,
our recordings do not span the full proximodistal axis and may hence not be ideally
suited to test the dependence of our results on proximodistal location. Furthermore,
we record from multiple neurons in each experiment (Figure 2.4) which does not
allow us to unequivocally identify the location of each neuron within the cell layer.
Future experiments can provide more conclusive evidence concerning the factors
that explain the variability of subthreshold modulation by UDS and ripples across
the hippocampal subfields.

These results provide novel insights into the processes of ripple initiation, build
up, and termination in awake animals. Ripples occur exclusively in UP states
characterized by increased entorhinal inputs to DG and associated with pronounced
hyperpolarization of CA3 pyramidal cells. This suggests that broad inhibition in
CA3may be a prerequisite for ripple initiation. Furthermore, DG andCA1 pre-ripple
responses suggest that ripples are not initiated as isolated events within CA3, but are
the culmination of extended interplay acrossmultiple areas. This may reflect the role
of cortical inputs in influencing the neuronal patterns replayed by the hippocampus
during awake ripples, consistent with their role in spatial decision making. Finally,
growing hyperpolarization in CA3 throughout the course of a ripple suggests that
feedback inhibition is a key feature of ripple buildup aswell as termination. Thismay
reflect a winner-take-all mechanism, by which a few neurons that fire overcoming
a background of inhibition in UP states further suppress all other neurons via
feedback inhibition, ensuring sparseness and selectivity of transient network pattern
activation.
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4.4 Methods
Ripple detection
Ripples were detected as transient increases in power in the ripple frequency band
of the LFP from the probe site located in the CA1 pyramidal cell layer. Ripple
power was estimated by band-pass filtering the LFP trace (80-250 Hz), smoothing
its square with a Gaussian kernel (10 ms), and taking the square root. Candidate
ripple events were identified as segments for which the ripple power was more than
3 s.d. above the mean. Segments that were less than 55 ms apart were merged, and
after the merging step segments of length less than 20 ms were rejected as artifacts.
A reference recording site away from the CA1 cell layer that does not exhibit ripples
was identified and the same procedure was applied for ripple detection on this
reference channel. Events detected in both the CA1 and the reference LFP trace
were rejected as artifacts.

Adapting recurrent neural population model
When uncoupled, the EC and CA3 population dynamics follow the Wilson-Cowan
type r-a model studied in detail in (Levenstein, Buzsáki, and Rinzel, 2019). Briefly,
the mean firing rate of the EC population (rec) evolves under activity-driven adap-
tation (aec) according to the equations:

gA
3A

3C
= −A + '∞(FA − 10 + � + b (C)) (4.1)

g0
3A

3C
= −0 + �∞(A) (4.2)

with sigmoid activation functions '∞(G) and �∞(G) given by the logistic curve

5 (G) = 1
1 + 4−: (G−G0)

(4.3)

where : = 1, G0 = 5 for '∞(G) and : = 15, G0 = 0.5 for �∞(G). The time constants
gA = 1 and g0 = 25 are dimensionless and set the arbitrary units (AU) of the time
axis. For the EC population the strength of recurrent excitation (F), adaptation
weight (1), and the tonic drive (�) are all constant parameters with the following
values: F = 6.8, 1 = 1, � = 2.1. The model is excited by stochastic fluctuations b (C)
given by an Ornstein–Uhlenbeck process

3bC = \bC3C + f
√

2\3,C (4.4)

with parameters \ = 0.05 and f = 0.1, corresponding to a time constant of 20 and
steady-state standard deviation of f. The mean firing rate of the CA3 population
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evolves under the same equations (4.1-4.4), but the drive is now a linear function of
EC activity

� (C) = �0 − �6A�� (C) (4.5)

with �0 = 2.5 and �6 = 0.6, so that elevated EC activity generates a net inhibitory
drive to CA3. The strength of recurrent excitation in CA3 is also a linear function
of the EC adaptation parameter

F(C) = F0 + F60�� (C) (4.6)

with F0 = 3.5 and F6 = 2.5, so that the EC UP state leads to an increase in the
strength of CA3 recurrent excitation. The stochastic fluctuations exciting the CA3
model have f = 0.25 and are unrelated to those in EC.
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Figure 4.5: Model of UDS Control of CA3 Network Excitability.
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Figure 4.5: (continued)
(A) Idealized model of EC and CA3 adapting recurrent neural populations. EC
activity provides net inhibition to the CA3 population via I(rec), possibly due to
feedforward inhibition or indirect influence via DG, and modulates the strength of
CA3 recurrent excitation via w(aac), modeling the effects of UDS-dependent shifts
in cholinergic tone on CA3 synaptic transmission.
(B) Probability density of the simulated CA3 population rate rca3 during ECUP and
DOWN states. Notice that the median CA3 population rate is higher in the DOWN
than the UP state (black and orange dots) despite the presence of population bursts
(rate values near 1) restricted only to the UP state.
(C) Example model simulation demonstrating that the EC population exhibits UP
and DOWN dynamics while the CA3 population produces transient population
bursts (“ripples”) restricted to the UP state (gray segments). The slow component
of the CA3 rate is magnified in the middle to show that mean CA3 activity is higher
during the DOWN state and lower during the UP state when population bursts occur.
(D-F) Phase plane plots of the model dynamics. The model evolution is governed
by the velocity fields displayed as arrows. The model stable (filled circles) and
unstable (open circles) fixed points occur at the intersections of the population rate
(black) and adaptation (blue) nullclines. Model trajectories are plotted in purple
and orange.
(D) EC dynamics exhibit two stable fixed points (black circles) corresponding to the
UP and DOWN states with noise fluctuations driving transitions between them.
(E) CA3 dynamics in the EC DOWN state exhibit a single stable fixed point (black
circle) and are not excitable, i.e. noise fluctuations cannot trigger a spike in the
population rate.
(F) CA3 dynamics in the ECUP state exhibit a single stable fixed point (black circle)
at a lower population rate level than in the DOWN state (E), but are excitable, i.e.
noise fluctuations can trigger population spikes (“ripples”).
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