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ABSTRACT

Robot-Assisted Surgery (RAS) has become increasingly important in modern sur-
gical practice for its many benefits and advantages for both the patient and the
healthcare professionals, as compared to traditional open surgeries and minimally
invasive surgeries such as laparoscopy. Artificial intelligence applications during
RAS and post-operative analysis can provide various surgeon-assisting functional-
ities and could potentially achieve a better surgery outcome. These applications,
ranging from providing surgeons with advisory information during RAS and post-
operative analysis to virtual fixture and supervised autonomous surgical tasks, share
a necessary prerequisite of a comprehensive understanding of the current surgical
scene. This understanding should include the knowledge of the current surgical
task being performed, the surgeon’s actions and gestures, the state of the patient,
etc. Currently, there is yet to be a unified effort to achieve the autonomous temporal
understanding and perception of an RAS at the high accuracy and efficiency required
in the highly safety-critical field of medicine.

This thesis develops novel modelingmethodologies and deep learning-basedmodels
for the autonomous perception and temporal segmentation of the current surgical
scene during an RAS. An RAS procedure is modeled as a hierarchical system
consisting of discrete surgical states at multiple levels of temporal granularity.
These surgical states take the form of surgical tasks, operational steps, fine-grained
surgical actions, etc. A broad range of computational experiments were performed
to develop methods that achieve an accurate, robust, and efficient estimation of these
surgical states. Multiple novel deep learning-based models for feature extraction,
noise elimination, and efficient training were proposed and tested. This thesis
also shows the significant benefits of incorporating multiple types of data streams
recorded by the surgical robotic system to a more accurate surgical state estimation
effort.

Two new RAS datasets that contains real-world RAS procedures and diverse exper-
imental settings were collected and annotated–filling a gap in the data sets available
for the development and testing of of robust surgical state estimation models. The
performance and robustness of models in this thesis work were showcased with these
highly complex and dynamic real-world RAS datasets and compared against state-
of-the-art methods. A significant model performance improvement was observed
in both surgical state estimation accuracy and efficiency. The modeling methodolo-
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gies and deep learning-based models developed in this work have diverse potential
applications to the development of a next-generation surgical robotic systems.
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C h a p t e r 1

INTRODUCTION

Robot-Assisted Surgeries (RAS) procedures usually consists of a relatively consis-
tent series of standardized operational steps such as tissue dissections and suturing.
These steps can, in turn, be further decomposed into finer segments of surgical
states. These states could take the form of surgical actions, maneuvers, and ob-
servations. Thus, many RAS procedures can be viewed in a hierarchical manner.
The autonomous awareness and recognition of the current operational step and
the fine-grained surgical state is a cardinal prerequisite to many surgeon-assisting
functionalities and artificial intelligence (AI) applications in the field of surgical
robotics.

This thesis develops novel methods for the autonomous perception, and understand-
ing of RAS using time series data recorded by a surgical robotic system (endoscopic
video recordings, robot kinematics data, etc.). This new modeling methodology
describes an RAS from a temporal perspective. Past efforts in this area have focused
on the estimation of either the current surgical task/step or fine-grained surgical
states separately and have mostly utilized a single type of time series data [24, 65,
99]. Additionally, state-of-the-art methods of surgical state estimation have mostly
been evaluated only in a bench-top setting due to limitations in data availability, vari-
ability, and quality. Such limitations hindered their applications to the safety-critical
field of medicine especially for learning-based methods.

This thesis proposes a newmodeling strategy that describes an RAS as a hierarchical
system of discrete surgical states. Using this concept, I develop unified approaches
for a comprehensive temporal understanding of the surgical scene during RAS
through the concurrent estimation of these surgical states at multiple levels of
temporal granularity and with various types of data available from the surgical
robotic system. Multiple deep learning-based models were developed and evaluated
for this task.

Two new RAS datasets were also collected in this thesis that contain complex
experimental settings and real-world RAS procedures. The developed surgical state
estimation models were evaluated and compared against state-of-the-art methods
with these more realistic and complex datasets. The performance improvements and
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robustness of our models were shown to a fuller extent through the new datasets.
An accurate and comprehensive understanding of the current surgical scene during
and after an RAS has diverse applications ranging from surgeon skill evaluation and
user interface integration to supervised semi-autonomous or autonomous surgical
tasks. In the long term, the proposed unified surgical state estimation methods could
aid the development of many surgeon-assisting functionalities in the field of surgical
robotics research.

1.1 Motivations
The recovery from a surgical procedure involves various risks such as blood loss,
pain, post-operative complications, and many others. Throughout the history of
surgery, medical professionals and researchers continually strive to provide patients
with better care and a smoother recovery by reducing these risks and complications.
The first minimally invasive surgery (MIS) was performed in the early 19th cen-
tury and has thereafter been widely adopted [72]. As compared to traditional open
surgeries, MIS procedures are less traumatic to patients, and they reported less pain
and blood loss [119]. During a laparoscopic procedure, the surgeons make small
incisions in the patient’s body. A laparoscope and various surgical instruments are
inserted through these openings to perform the surgery (Fig. 2.2). The training
of a laparoscopic surgeon, however, requires a steep learning curve [81]. As the
surgeons operate with laparoscopic instruments and the laparoscope, the directions
of the surgeon’s hand movements are opposite to the directions of the laparoscopic
instruments’ movements inside the patient’s body, which is counter-intuitive. Addi-
tionally, multiple surgeons are needed to operate various laparoscopic instruments
and the laparoscope at the same time. The inevitable hand tremors of the surgeons
during the operation also affect laparoscopic surgeries’ outcomes.

The first robotic surgical system was cleared by the Food and Drug Administration
in 2000, and has since been widely adopted by hospitals and healthcare providers
worldwide for the treatment of a wide range of conditions [11]. Extensive studies
have shown that RAS patients report less pain, less blood loss, lower complication
rates, and quicker recoveries [112] than open surgery and laparoscopic surgery
patients. Additionally, RAS surgeons enjoy the convenience of more precise and
intuitive instrument manipulations [21]. The da Vinci® surgical system is capable of
executing precise surgical actions and gestures teleoperated by RAS surgeons while
eliminating the inevitable hand tremors commonly found in laparoscopic surgeries
[87]. Additionally, robotic surgical systems are controlledmore intuitively and allow
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Figure 1.1: The da Vinci® Xi surgical system. From left to right: surgeon-side
console, vision-side cart, patient-side cart.

a faster learning process compared to laparoscopy [66], as the surgeon’s movements
are reflected as-is from the surgeon-side console to the instruments. More than six
million robotic surgeries have been performed worldwide as of 2019 by da Vinci
surgical systems, according to its developer Intuitive Surgical Inc.; however, RAS
currently still only occupy roughly 4% of MIS procedures such as cholecystectomy,
abdominal hysterectomy, hernia repair, etc. [53].

In the past decade, the rapid development in AI, computer vision, and deep learning
has allowed many models and algorithms to be implemented in various practi-
cal applications. Medicine and healthcare is one of the fields that has benefited
greatly from AI applications, including computer vision-aided diagnostics, predic-
tive analysis, genetics, and many others [80]. Since robotic surgical systems have
the capability to house hardware with high computing power, RAS procedures have
the potential to deploy and greatly benefit from advanced AI applications. Currently,
RAS procedures are performed in a teleoperative manner.

The da Vinci® Xi surgical system (Fig. 1.1), for example, consists of three major
components: the surgeon-side console (SSC), the vision-side cart (VSC), and the
patient-side cart (PSC). During an RAS, the surgeon performs the surgery on the
SSC, and their action movements are mirrored exactly by the manipulators on the
PSC. Details and mechanisms of the da Vinci® Xi surgical system will be discussed
in more detail in the following chapters. All of the data used in this thesis came
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from some generation of a da Vinci surgical robot.

AI applications have the potential of assisting the surgeons in various ways beyond
teleoperation. Surgeon-assisting functionalities include: providing advisory infor-
mation, user interface (UI) integration, executing supervised autonomous surgical
tasks, and many others [15, 21]. Recently, Yang et al. proposed six levels of auton-
omy in medical robotics that ranges from robot assistance while the human has the
continuous control of the surgical system to fully autonomous surgical procedures
[125]. While some preliminary efforts have been made towards robot assistance and
task autonomy, AI methodology will play an indispensable role in such technology
advancements.

An important prerequisite for AI applications in surgical robotics is the awareness of
the current stage and status of the surgery being performed [125]. Such awareness
should be accurate, comprehensive, and detailed, as the safety of the patient is
paramount. The current stage and status of the surgery include many aspects,
such as the current surgery step, the current task within that step, and the current
action performed by the surgeon, etc. For example, during a prostatectomy RAS
procedure, the current surgical step may be an anastomosis. The current task may
be two-handed suturing during anastomosis, and the current action is the process
of passing the needle from one surgical manipulator to another. A comprehensive
understanding of the current surgical scene should include information at multiple
levels of temporal granularity for various applications. Knowing the current surgical
step of anastomosis is useful for surgeon skill evaluation and post-operative analysis.
The awareness of two-handed suturing being performed at its early stage could be
used to initiate supervised autonomous suturing. Recognizing fine-grained actions
by the surgeon permits surgeon-assisting functionalities such as virtual fixtures and
collision prevention.

From a temporal perspective, an RAS can thus be modeled in a hierarchicalmanner.
A surgical procedure is commonly performed following a consistent and standard
series of steps that were researched, studied, and proven to meet the standard of
care for tor the patient [46]. Each of these steps is completed by performing
various surgical tasks and maneuvers such as suturing and tissue dissection. Many
surgical tasks can in turn be further divided into fine-grained surgical states such
as surgeon actions (pushing the needle through the tissue, passing the needle from
one surgical instrument to another, etc.) and environmental observations (bleeding,
etc.) [32, 96]. Details of such hierarchical system and its formal definition will
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be discussed further with examples in Chapter 3. The determination of the current
step, task, fine-grained surgical states during RAS has found numerous and diverse
AI applications in both intraoperative and post-operative settings. The real-time
autonomous awareness of the current step of the surgical procedure, for instance,
aids the operating room scheduling staff about the current stage in the surgery,
which will allow them to better estimate the remaining time of the surgery [73,
116] and better manage the scheduling of operating rooms. The post-operative
temporal segmentation of surgical tasks has found wide applications in surgical
workflow analysis [86] and surgeon skill evaluation [32]. The real-time recognition
of the current fine-grained surgeon actions and surgical states is a prerequisite for
many surgeon-assisting functionalities, such as providing advisory information to
the automation of surgical tasks [104].

Prior work in the field of surgical state estimation and temporal segmentation during
RAShas only focused on the fine-grained state estimationwithin a surgical task or the
surgical phase recognition in separate efforts. They have mostly only used a single
data source (the surgical robot’s kinematics time series data or the endoscopic video
data as seen by the user) to perform the estimation. The recognition of fine-grained
surgical states is particularly challenging due to their short duration and frequent
state transitions. The kinematics data of the surgical robot in RAS datasets such as
the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [115] usually
takes the form of the 3-dimensional Cartesian positions and velocities of the surgical
robot manipulators’ end-effectors. Using the robot kinematics data, fine-grained
surgical state estimation methods have deployed hidden Markov Models (HMM)
[99, 113], in which a surgical task was modeled as a stochastic process. Conditional
Random Fields (CRF)[114] was also applied to extract motion primitives of the
surgical tasks. Zappella et al. proposed multiple models of modeling surgical video
clips for single-action recognition [127]; however this approach does not perform
action segmentation, requiring each video clip to contain one and only one action.
Other authors have also used a Gaussian Mixture Models (GMMs) to model the
time series and segment the series when two consecutive frames belong to different
Gaussian distributions, using the Expectation Maximization algorithm to estimate
the parameters [135]. Based on GMM, van Amsterdam et al. proposed a weakly-
supervised method for action segmentation [6]. The Transition State Clustering
(TSC), which uses a Dirichlet process GMM, provided an unsupervised method for
surgical trajectory segmentation [58].
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More recently, deep learning methods have come to define the state-of-the-art in
fine-grained surgical state estimation. Learning-based methods that exploit the
temporal correlations among adjacent entries in time series data have been proposed
to infer the current fine-grained surgical states and have shown their superiority
over traditional probabilistic methods [24, 63, 86]. These methods aim to capture
temporal features in RAS time series data streams through popular neural network
architectures. Lea et al. proposed the Temporal Convolutional Networks (TCN),
which is a convolutional encoder-decoder network along the temporal axis that
captures the temporal features of the surgical robot’s trajectory when performing
certain actions [65]. Recurrent Neural Network (RNN) methods - a widely-used
learning model for time series data - have also been explored extensively. Due to its
ability to process sequences of data and capture its temporal correlations, Long-Short
TermMemory (LSTM) has beenwidely used in natural language processing and time
series prediction [3, 33, 38, 45]. DiPietro et al. applied LSTM to the segmentation of
surgical gestures and maneuvers through the learning of the temporal dependencies
within the series of robot kinematics data [24, 25]. Menegozzo et al. proposed
the Time Delay Neural Network (TDNN), which has a pyramid structure on the
temporal axis [78].

With the recent improvement of computing power and the rapid development in
computer vision research, applying deep neural network models to analyze video
data for various applications has been one of the most popular topics in the field.
Vision-based action recognition models have been widely used in the classification
of humanmotions [60, 131] aswell as realistic everyday actions [51, 107]. A popular
framework for vision-based frame-wise action recognitionmodels is a Convolutional
Neural Network (CNN). Some models directly use fully-connected layers for action
classification [51]while others useCNNs for feature extractions and other layers such
as LSTM tomodel the temporal dependencies in a video [117]. Such efforts have also
been made for surgical fine-grained state estimation. In an RAS procedure, video
data is readily available from the endoscopic view as seen by the surgeon during the
operation. The endoscopic view provides rich information about the current surgical
scene and has gained more attention in the development of surgical state estimation
models. The segmentation of fine-grained surgical actions has also utilized similar
vision-based action recognition methods as mentioned before. One possible way of
modeling the video sequence is by concatenating spatial features at each frame on
the temporal axis with Spatio-Temporal CNN (ST-CNN) [64]. Methods introduced
in [64] and [49] use a fine-tuned deep CNN model to extract feature vectors from
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frames in the RAS video. The sequences of feature vectors are then concatenated
and serves as the input of an LSTMmodel for temporal segmentation. TCN can also
be applied to vision data for fine-grained action segmentation, taking the encoding
of a spatial CNN as the input [65]. Ding et al. proposed a hybrid TCN-BiLSTM
network that incorporates the encoder component of TCN and bidirectional LSTM
for improved performances [22]. Similar methods as the ones mentioned above
have been applied where the annotated endoscopic videos of surgeries were used
to train a CNN-LSTM model in an end-to-end manner [115]. Jin et al. introduced
the post-processing of predictions using prior knowledge inference [49]. Since the
fully-annotated RAS videos are expensive to obtain, a teacher-student approach of
surgical phase segmentation was proposed using a computationally expensive CNN-
BiLSTM-CRF model as the teacher network and a more light-weight CNN-LSTM
model as the student network that is able to perform real- time inference [126].

As described previously, RAS procedures can often be viewed as the concatenation
of a series of operational steps and surgical phases. Similar to fine-grained surgical
state estimation, the recognition and temporal segmentation of these tasks and phases
also haswide applications. These applications range from surgicalworkflowanalysis
and post-operative analysis to surgeon skill evaluation. Comparing to fine-grained
surgical state estimation, surgical task or phase recognition requires the model to
capture longer-term temporal dependencies in data. LSTM-based models have
therefore been shown to outperform their CNN-based counterparts with fixed-size
sliding windows for surgical task recognition [24]. Multiple CNN-LSTM models
have also been proposed for vision-based surgical phase segmentation [85, 86, 126].
However, these methods also share the weakness of only utilizing one type of input
data, vision or kinematics, for temporal segmentation, which inevitably limits their
performances.

The limitation shared by the aforementioned single-input surgical state estimation
models is the large discrepancy among states’ representative vision and kinematics
features, making them distinguishable through certain types of input data but not
others. For example, the fine-grained surgical action of transferring a needle from
one surgical instrument to another is highly distinguishable through the sequential
opening and closing of instrument grippers (kinematics data). Although several
attempts have been made to incorporate multiple types of input data for surgical
state estimation, they have only focused on using the derived values from one data
source in addition to the other type of input data. JIGSAWS contains synchronized
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endoscopic video and robot kinematics data. Lea et al. measured two scene-based
features from the JIGSAWS suturing videos, which were then used as additional
variables together with the robot kinematics data [62]. Their LC-SC-CRF model
introduces the notion of action primitives, which models each action in JIGSAWS
as a sequence of class-specific temporal filters [63]. The addition of visual features
(the distance to the closest object part from each tool and the relative position of each
tool to the closest object part) offers a richer representation to the relative position
of the surgical tools to the needle points, which leads to a higher frame-wise action
recognition accuracy. Using derived values, however, saddles the development and
training of these methods with additional annotation burdens.

Similar methods have also been implemented for surgical phase segmentation. Mul-
tiple temporal clustering methods have been implemented to perform RAS phase
segmentation, including GMM, aligned cluster analysis, and hierarchical aligned
cluster analysis [132]. The hierarchical aligned cluster analysis aims to decom-
pose a time series into different segments in a manner similar to k-means clustering
[131]. These methods have previously been widely used in humanmotion clustering
[26]. A multi-stage temporal convolutional network [19] and the integration of 2D
and 3D CNNs [23] were proposed for richer temporal feature learning. Zia et al.
collected the robot kinematics and system events data from da Vinci surgeries and
fed both data streams through the temporal clustering methods to perform surgical
phase recognition [135]. It was shown that the frame-wise temporal segmentation
accuracy is considerably improved by incorporating system events data in addition
to robot kinematics data.

In addition to robot actions, a fine-grained surgical state could also be the envi-
ronmental changes observed by the robot. The non-action states were omitted in
popular surgical action segmentation datasets such as JIGSAWS [2] and Cholec80
[115]; however, they are important for applications such as autonomous procedures.
They are also challenging to recognize as some non-action states may not be well-
reflected in a single-source dataset. For instance, bleeding is not as well-represented
by the robot kinematics as the endoscopic vision. Hence, the kinematics-based state
estimation models may not be able to accurately recognize this state.

To the best of my knowledge, there has yet to be an attempt at hierarchical surgi-
cal state estimation in the surgical setting. Existing fine-grained state estimation
methods model a surgical task as a set of states; however, there is not yet an ac-
cepted definition of an RAS procedure from an estimation perspective. Although
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remaining a less explored area comparing to hierarchical semantic or instance seg-
mentation [35, 122], various methods have been developed for hierarchical video
temporal segmentation and content characterization [40, 69]. Gunsel et al. divided
video characteristics such as motion vectors and color histograms into different cat-
egories to segment a video sequence into shots [40]. De Menthon et al. proposed
a spatio-temporal segmentation method based on mean shift analysis by mapping
each frame in the video sequence to a feature vector describing the color and
motion characteristics [20]. Recently, more learning-based hierarchical temporal
segmentation methods, either supervised or unsupervised, have been developed.
Lan et al. proposed an unsupervised spatio-temporal segmentation method that pro-
poses action-related spatial regions with CRF [27], tracks the segments over time,
and clusters fine-grained temporal segments into higher-level segments [61]. The
method uses a linear Support Vector Machine (SVM) classifier as the discriminative
algorithm for classification.

The highly complex and diverse real-world RAS environment calls for a robust
hierarchical surgical state estimation model, which is especially crucial in the field
of medicine. The development of such model, however, is not a trivial task, and
various challenges remain. Among real-world RAS procedures, the endoscope
lighting and viewing angles, the patient’s anatomical structure and health condition,
surgical backgrounds vary considerably. These variations are considered as nuisance
factors in RAS data. Additionally, different surgeons may employ diverse surgical
techniques to perform the same surgical task or fine-grained surgical actions based on
their personal preference, their training, their natural handedness (e.g., right-handed
vs. left-handed), and the patient condition. A robust hierarchical surgical state
estimation model needs to be able to combat such nuisance factors and technique
variations and remains accurate in the highly complex and diverse real-world RAS
environment. While the adverse effect of nuisance factors and surgical technique
variations can be alleviated by a large and diverse annotated realistic RAS dataset
during model training, such datasets are extremely costly to acquire due to factors
such as patient privacy concerns, annotation costs, resource limitations, etc.

Improving model robustness against a highly dynamic and complex environment
remains one of the most challenging obstacles in the field of computer vision and
machine learning that prevents some models from being implemented in real-world
applications. Model robustness is especially important inAI applications forRAS, as
safety is of great importance. The robustness of hierarchical surgical state estimation
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could be boosted from many aspects, however has not been extensively investigated
prior to our work. AI applications in RAS are mostly based on machine learning
techniques, which rely heavily on the dataset used for training and evaluation. Prior
surgical state estimation efforts have suffered from dataset limitations. Additionally,
surgical state estimation robustness could be boosted through model architecture
design.

1.2 Contributions and thesis outline
The remainder of this thesis is structured as follows: Chapter 2 presentsmy efforts on
the development of two new RAS datasets, which include the curation, processing,
and feature extraction of surgical activities and real-world RAS procedures using
two types of da Vinci® surgical systems. The hardware and software components
of the surgical systems used in this thesis work are described along with their data-
recording capability. Comparing to time series datasets in action recognition or
speech recognition such as ActivityNet [14], RAS data enjoys the luxury of having
synchronized endoscopic vision, robot kinematics, and system events data. Past
RAS datasets such as JIGSAWS and Cholec80, however, contained limited data
sources. Additionally, these datasets suffer from a lack of variety in environmental
settings, activity elements, endoscope movements, etc. These disadvantages hin-
dered a thorough examination of surgical state estimation models’ performance and
robustness against a complex surgical environment.

Part of the work described in this thesis therefore curated, annotated, and processed
two new RAS datasets that contains various experimental settings and real-world
RAS procedures for the development, training, and evaluation of our surgical state
estimation methods. The Robotic Intra-Operative Ultrasound (RIOUS+) dataset
contains trials of an ultrasound scanning task that is common among RAS for the
understanding of patient anatomical structures. The HERNIA-40 dataset contains
complete real-world inguinal hernia repair procedures, which is extremely valuable
as it captures the complexity of the real-world surgical environment. These datasets
allowed us to train and evaluate our models to the fullest extent. The details of
these datasets are described in Chapter 2 as well. As this thesis work presents
multiple deep learning-based surgical state estimation efforts, a review of machine
learning models and architectures used was also given in Chapter 2. Due to the
highly complex and dynamic nature of RAS time series data, I developed various
data processing and feature extraction methods prior to the estimation of surgical
states. Different feature extraction strategies were deployed to accommodate the



11

diverse features in the endoscopic video, robot kinematics, and system events data.
These strategies are also discussed in details in this chapter.

Although efforts in standardizing the description of an RAS procedure has been
made, they are far from ideal or suitable for the task of surgical state estimation.
Chapter 3 proposes a strategy that models an RAS procedure from the temporal
awareness perspective, in which an RAS is modeled as a hierarchical system of
discrete surgical states. This system is referred to as the surgical Hierarchical Finite
State Model (HFSM). The formal definitions of surgical states, HFSM, and its
components are given. Additionally, the key differences between our definitions and
a traditional Finite State Machine (FSM) as defined in the field of automata theory
are discussed. Chapter 3 also reviews surgical ontology - the mainstream modeling
strategy for RAS description - and its limitations for surgical state estimation and
AI applications in RAS.

In Chapter 4, a deep learning-based unified approach for fine-grained surgical state
estimation that incorporates multiple types of input data sources is described. To
the best of our knowledge, this was the first surgical state estimation model that
utilizes the endoscopic video, robot kinematics, and system events data available
during an RAS procedure. The proposed model (denoted as Fusion-KVE) improved
state-of-the-art fine-grained surgical state estimation performance by up to 7.3%.
Fusion-KVE was evaluated and compared against prior work using the real-world
RAS datasets that I developed. When a more complex and realistic dataset was used,
our proposed unified model was able to show its robustness to the fullest extend.
Additionally, this chapter discussed the necessity and advantages of incorporating
multiple types of input data. Different types of RAS time series data (endoscopic
video, robot kinematics, system events) represents an RAS procedure from their
respective perspectives and contains different types of features associated with the
current fine-grained surgical state. They therefore have their respective strengths
and weaknesses in the identification of different surgical states. By incorporating
multiple types of RAS data, the proposed unified surgical state estimation approach
was able to learn and utilize features embedded in each type of input data. Richer
information about the current surgical state can therefore be extracted for more
accurate state estimation results.

Many surgeon-assisting functionalities during RAS, ranging from virtual fixture of
the surgical instruments to the supervised autonomy of surgical actions and tasks,
share the prerequisite of surgical instrument trajectory and surgical state predictions.
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Chapter 5 proposed a joint surgical instrument path and state prediction model
during RAS (denoted as daVinciNet). daVinciNet performs multi-step predictions
of the surgical instruments’ end-effectors’ 3DCartesian trajectories in the endoscope
frame along with the future fine-grained surgical states. During the evaluation of
model performance, daVinciNet accurately predicted the end-effector trajectories
and surgical states for up to 2 seconds into the future. Additionally, an ablation study
was performed to confirm the necessity and effectiveness of the feature extraction
methods I developed in Chapter 2 to the surgical state prediction performance.
daVinciNet implements a novel endoscopic video feature extraction method that
goes beyond feature extraction directly from the raw endoscopic video frames. As
the end-effectors’ trajectories and future surgical states are usually associated with
the user’s current action, the area surrounding the surgical instruments’ end-effectors
in an endoscopic video frame should contain more information about their future
trajectories and the procedure’s future surgical states. The visual features within
this region were therefore separately extracted in addition to global visual features
from the entire endoscopic video frame. By incorporating localized endoscopic
vision features to both the trajectory and surgical state predictions, the prediction
performances of both end-effectors’ trajectories and future fine-grained surgical
states were improved. Specifically, the end-effectors’ trajectory prediction accuracy
was improved by up to 8.1%. Fusion-KVE from Chapter 4 was used to produce
the historic surgical state sequence in addition to features extracted from input time
series data to perform fine-grained surgical state prediction. The state prediction
contributions of both the features from the current surgical scene and the historic
surgical state sequence was also shown.

Chapter 6 proposes a method for the invariant representation learning of surgical
states. One of the major roadblocks in the development of an accurate and robust
surgical state estimator is the complex nature of the current surgical scene during an
RAS due to the high variability of surgical background, patient conditions, anatom-
ical structures, lighting conditions, etc. These variations are nuisance factors in
RAS data and hinders an effective feature extraction and state estimation. This
adverse effect is especially troublesome with limited data availability. While the
negative effects of these nuisance factors could be reduced by training the surgi-
cal state estimation model with a large and diverse RAS dataset, such dataset is
costly to acquire. Additionally, in real-world RAS procedures, different surgeons
may employ various surgical techniques and styles to accomplish the same surgical
task/goal. These different surgical techniques have diverse vision and kinematics
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features and further increases the difficulty of training an accurate surgical state es-
timator with limited data availability. A representation of the current surgical scene
that is invariant to such nuisance factors and surgical techniques is therefore highly
desirable. Chapter 6 therefore proposed StiseNet - a surgical state estimation model
with an invariance induction framework that minimizes the effect of nuisance fac-
tors and different surgical techniques. StiseNet achieves such invariance induction
through adversarial training that separates other factors from information pertinent
to surgical state estimation. Through the training and evaluation with real-world
RAS procedures performed by surgeons, StiseNet improved the surgical state esti-
mation accuracy of state-of-the-art methods and our previous work by up to 7%.
The contributions of using an invariant representation of the RAS time series data
features for state estimation was proven through the comparison between StiseNet
and its variation that was not trained in an adversarial manner. The effectiveness
of invariance induction to nuisance factors and the invariance induction to surgical
technique variability was separately shown through an ablation study. Chapter 6 also
demonstrated another endoscopic video feature extraction technique I developed as
described in Chapter 2. To eliminate the negative effect of the highly complex and
dynamic surgical background on endoscopic vision feature extraction, a semantic
segmentation model was implemented to generate a semantic mask of the current
endoscopic video frame. The semantic mask assigns each pixel of the video frame
to one of three scene classes, and was concatenated to the video frame for a more
effective feature extraction.

In Chapter 7, two hierarchical surgical state estimation models are proposed to
concurrently estimate the current surgical stage/task (superstate) and fine-grained
surgical state, which is the first attempt at concurrent hierarchical surgical state
estimation in the field of surgical robotics research. The models, denoted as HESS-
DNN and CHASSEN, were demonstrated through the simultaneous estimation of
surgical states at two levels of temporal granularity using the HERNIA-40 dataset.
Chapter 7 also explored the usage of correlations between surgical states at different
levels of temporal granularity for a more effective hierarchical surgical state estima-
tion method. The current surgical task (superstate) and fine-grained surgical state
are usually highly correlated. Some fine-grained states could only occur during
certain surgical superstates but not others. For example, the fine-grained surgical
state of pushing a needle through tissue can occur during the surgical superstate of
suturing; however, it would not occur during dissection as needles are not used dur-
ing dissection. The knowledge of the current surgical state at one level of temporal
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granularity is therefore valuable for the estimation of surgical state at another level.
To utilize this knowledge, an alternating training schematics was deployed to train a
hierarchical surgical state estimator with both direct data sources (endoscopic video,
robot kinematics, system events) and inferred data sources (surgical state sequence
from another level of temporal granularity). I showed that incorporating the corre-
lations between surgical superstates and fine-grained states improved both the state
estimation accuracy and efficiency through the comparison of model performances
and process times between the two proposed models.

Finally, Chapter 8 summarized the contributions of this thesis work to the field of
robotic surgery research. Future work directions and extensions to current surgical
state estimation model architectures were also suggested.

As mentioned previously, hierarchical surgical state estimation finds diverse appli-
cations both during and after the RAS procedure. To comprehensively evaluate
the surgical state estimation performances of models in this thesis work for both
real-time and post-operative applications, two experimental settings were used to
evaluate the performance of state estimation models in this thesis work: causal and
non-causal. In a causal setting, the models only have knowledge of the current and
preceding time steps. This is to mimic the real-time state estimation application of
our model, in which the robot cannot foresee the future. In a non-causal setting, the
models have access to data from the future time steps. The models’ performance in
a non-causal setting better represents their potentials for post-operative applications
such as surgeon skill evaluation.
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C h a p t e r 2

DATASET COLLECTION AND VISUAL FEATURE
EXTRACTION EFFORTS

The daVinci® surgical system, designed andmanufactured by Intuitive Surgical Inc.,
is the first robotic surgical system approved by the Food and Drug Administration
[21] for human clinical use. Throughout the last two decades, multiple iterations
of da Vinci® surgical systems have been designed and manufactured. Specifically,
two types of robots were used to collect RAS data utilized in this work: the da
Vinci Research Kit (dVRK) and the da Vinci® Xi (dVXi) surgical system. These
surgical robotic systems share the same teleoperation concept: the user operates
two manipulators in front of a console, and their actions are mirrored to surgical
instruments operating on the patient.

Throughout an RAS procedure, these surgical robotic systems are capable of record-
ing various data streams, including the endoscopic video as seen by the operator, the
robot kinematics data, and system events such as the pressing of a button or pedal.
These diverse types of time series data provide a comprehensive understanding of
the RAS procedure and contains rich information for the temporal perception of
the current surgical scene. They are therefore extremely valuable for the estimation
of the current surgical state at various levels of temporal granularity. Due to the
complex and dynamic nature of an RAS, however, these data streams are also high-
dimensional and noisy. While this problem could be alleviated by the collection and
annotation of a large and diverse RAS dataset, such dataset are costly to acquire.
Effective feature extraction methods are therefore necessary for the training of deep
learning-based surgical state estimation models using these data sources.

In the following sections, an overview of two types of da Vinci® surgical systems
used in this work for data collection, including its hardware and software com-
ponents, data availability and recording methods are given. Three RAS datasets,
including two collected as part of this thesis work, were used for model training
and evaluation. These datasets’ features and components are also described in this
chapter. Additionally, an overview of the machine learning models and architectures
used in this thesis work was given.

I also developed various methods for a more effective spatial feature extraction
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Figure 2.1: Components of the da Vinci Research Kit (dVRK). From left to right:
Master ToolManipulator, Patient-SideManipulator, High Resolution Stereo Viewer,
foot petal tray.

from the endoscopic video data prior to surgical state estimation. As mentioned
previously, the combination of limited availability and high diversity of RAS time
series data calls for such effort. In Section 2.3, these methods are described in
details. The work presented in this chapter was described in publications [95, 96].

2.1 Hardware components and data recording capability
Throughout the last two decades, multiple iterations of da Vinci® surgical systems
have been designed andmanufactured. Specifically, two types of robots were used to
collect RAS data utilized in this work: the da Vinci Research Kit (dVRK) and the da
Vinci® Xi (dVXi) surgical system. Whilst dVRK is a popular open-source platform
for surgical robotics research ranging from image-guided surgeries to developing
novel surgical instrumentation [52], the da Vinci® Xi surgical system - a proprietary
product - is the 4th generation robotic surgical system and has served in hospitals
worldwide on millions of patients. These two surgical robotic systems both have
a master-slave design for the teleoperation of RAS. The operator controls multiple
robotic arms from a central console where the endoscopic vision are displayed.
Comparing to laparoscopic surgery, these robotic systems improves the user’s control
and dexterity of both the endoscopic camera and surgical instruments during an
operation. Additionally, the teleoperation design removes the hand tremor effect
that made laparoscopic surgery a challenging task. The movements of the user at
the console are communicated to surgical instruments with flexible wrist design,
which enables a precise control of the instrument that mimics direct hand control
but with a wider range of motion. The teleoperation design also creates a more
comfortable surgical environment, as the surgeon can be seated by the console
while operating. Additionally, as the surgeon is able to control both the endoscopic
camera and surgical instruments from the console, the surgical workflow is more
streamlined as no assistant is needed to move the endoscopic camera during the
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Figure 2.2: Comparison between a laparoscopic procedure and a dVXi procedure.
Left: sample image during a laparoscopic procedure in which the surgeon needs
to stand besides the patient and an assistant is required to operate the endoscopic
camera. Middle and right: sample images during a dVXi surgery in which the
surgeon is seated in front of the SSC.

operation. Sample surgical scenes during a laparoscopic procedure and a dVXi
procedure are shown in Fig. 2.2, which showcases the superiority of an RAS over
other MIS surgeries.

The dVRK is a telesurgical system consisting of firmware, electronics, and software
components based on the first-generation da Vinci system [52]. It contains two
Master Tool Manipulators (MTMs), two Patient-Side Manipulators (PSM), a High
Resolution Stereo Viewer (HRSV), and a foot petal tray (Fig. 2.1). It also includes
the Surgical Assistant Workstation (SAW) package based on the open-source cisst
libraries [50], which provides teleoperation, high-level control, joint-level control,
low-level I/O, and Robot Operating System (ROS) interfaces. dVRK uses propri-
etary mechanical hardware on the da Vinci system, which allowed it to mimic an
RAS environment in an experimental setting. dVRK records the forward and inverse
kinematics of both the MTMs and the PSMs as well as the endoscopic view from
the HRSV.

The da Vinci® Xi surgical system (dVXi) consists of three main hardware compo-
nents (Fig. 1.1): surgeon-side console (SSC), vision-side cart (VSC), and patient-
side cart (PSC). It is a proprietary robotic surgical system. It contains two MTMs
on the SSC and four Universal Patient-Side Manipulators (USMs) on the PSC. The
VSC houses a 3D viewer of the current endoscopic view as well as processors and
energy instruments. The details of MTMs and the endoscopic view displayed on
both the SSC and VSC are shown in Fig. 2.3. dVXi records the kinematics data of
both the MTMs and the USMs and calculates the 3D Cartesian positions and veloc-
ities data of their end-effectors along with the manipulators’ gripper angles. High
resolution endoscopic video was also recorded by the VSC. Additionally, various
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Figure 2.3: Details of the da Vinci® Xi surgical system. Left: MTMs used by an
operator to control the surgical instruments. Right: The endoscopic view as seen
by the operator through the surgeon-side console.

system events occur during an RAS procedure such as the pressing of a button or
foot pedal, clutching of the MTM manipulators, operating energy instruments, etc.
These events are also recorded by dVXi.

2.2 Dataset curation
Both dVRK and dVXi have the capability of generating and recording various types
of time series data when being operated. dVRK has been one of the main platforms
for RAS data curation for surgical robotics research, generating many popular RAS
datasets including the JHU-ISI Gesture and Skill Assessment Working Set (JIG-
SAWS) [32], Colec80 dataset [115], m2cai16-workflow dataset [110], and many
others; however, dVRK records both the endoscopic video and robot kinematics
data at with limited resolution and frame rates. dVXi, on the other hand, is able
to record high-resolution stereo endoscopic video data and high-frequency robot
kinematics data. It also provides an additional data source of system events during
an RAS. Due to proprietary reason, however, there has not been an RAS dataset
collected with it prior to this thesis work. I was able to receive processed en-
doscopic video, robot kinematics, and system events data from Intuitive Surgical
Inc. recorded with dVXi from both a bench-top setting and during real-world RAS
procedures, which allowed us to generate two new RAS datasets.

Three RAS datasets were used in this work: JIGSAWS, RIOUS+, and HERNIA-
40. Whilst JIGSAWS is surgical activity dataset in a bench-top setting, RIOUS+
and HERNIA-40 contains data recorded in a real-world RAS environment. In the
following subsections, each dataset’s content and features are described in details.
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Figure 2.4: Example endoscopic video frames from the JIGSAWS suturing dataset.

JIGSAWS
The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [32] dataset,
collected by The Johns Hopkins University and Intuitive Surgical, Inc., has been
one of the most commonly used surgical activity datasets in the field of surgical
robotics. JIGSAWS includes data on three surgical tasks commonly observed during
RAS training and practice, in a bench-top setting (Fig. 2.4):

• Knot-tying: The user picks up one end of a surgical suture and ties a single
loop knot;

• Suturing: The user picks up a needle, inserts the needle at a dot marked on
one side of a suturing pad and exits on the corresponding dot on the other side.
The needle is then extracted from the suturing pad. This process is repeated
three more times;

• Needle-passing: The user picks up a needle and passes it through four metal
hoops.

Only the suturing dataset of JIGSAWS was used in this thesis. It contains 39 trials
performed by eight users with varying levels of robotic surgical experience, ranging
from novice to expert. Each user repeated the same suturing task four or five times.
JIGSAWS suturing dataset is annotatedmanually with nine atomic surgical activities
referred to as gestures [32], which are treated as fine-grained surgical states. Fig.
2.4 shows sample scenes from the JIGSAWS suturing dataset. Table 2.1 lists these
nine states and their average durations and Fig. 2.5a illustrates some of the state
transitions observed in JIGSAWS suturing dataset.

The JIGSAWS suturing dataset includes the following kinematics and video data.
The kinematics data of dVRK’s two MTMs and two PSMs was recorded using
its SAW at 30 Hz. Each manipulator’s tool tip Cartesian positions (3 variables),
a rotation matrix (9 variables), linear and rotational velocities (6 variables), and
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Figure 2.5: Observed state transitions of the JIGSAWS suturing task (a) and the
RIOUS+ ultrasound imaging task (b). The 0 states are the starting of tasks. The
states with a double circle are the accepting (final) states. The actions in the
JIGSAWS suturing task are represented with gestures (G) and the states in the
RIOUS imaging task are represented with states (S).

gripper angle (1 variable) were released. The stereo video from dVRK’s endoscopic
camera was recorded at a 620 × 480 resolution and 30Hz. The video data was
synchronized with the kinematics data.

Table 2.1: JIGSAWS Suturing Dataset State Descriptions and Duration

Gesture ID Description Duration (s)
G1 Reaching for the needle with right hand 2.2
G2 Positioning the tip of the needle 3.4
G3 Pushing needle through the tissue 9.0
G4 Transferring needle from left to right 4.5
G5 Moving to center with needle in grip 3.0
G6 Pulling suture with left hand 4.8
G7 Orienting needle 7.7
G8 Using right hand to help tighten suture 3.1
G9 Dropping suture and moving to end points 7.3
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Figure 2.6: Example endoscopic video frames from the RIOUS+ dataset.

RIOUS+
While JIGSAWS remains one of the most popular open-source surgical activity
datasets for the past decade, its has obvious limitations. The users were not al-
lowed to move the endoscopic camera while performing the surgical task, which
is unrealistic during real-world RAS, during which endoscopic camera movements
are frequent and spontaneous. Additionally, JIGSAWS’s bench-top experimental
setting also hinders its real-world applicability. With the recent development in ma-
chine learning-based surgical state estimation research, JIGSAWS’ limited dataset
size, lack of trial variety, and unrealistic experimental setting significantly lessens
its effectiveness.

I therefore curated a Robotic Intra-Operative Ultrasound (RIOUS) dataset to address
some of JIGSAWS’ limitations. The usage of a drop-in ultrasound probe to scan the
organs is a technique widely observed in many RAS procedures. It is commonly
practiced by surgeons to localize an organ’s underlying anatomical structures such
as tumors and vasculature. The state estimation of this surgical task would allow us
to develop many surgeon-assisting functionalities during this task ranging from UI
integration to its supervised automation. The RIOUS dataset was later expanded to
RIOUS+ dataset by adding new trials and users.

The RIOUS+ dataset contains 40 trials of the ultrasound scanning surgical task
performed by five users in various experimental settings. 27 trials were performed
on a phantom kidney in a bench-top setting, 9 were performed on porcine kidneys
in an OR setting, and 4 were performed on a cadaver liver performed in an OR
setting. The ultrasound machine used is the bk5000 with a robotic drop-in probe
from BKMedical Holding Company, Inc. During each trial, the user was instructed
to perform the scanning task with actions from a pre-determined list of states, but
had no limitation on transitions between states nor endoscopic camera movement.
Users also had no limitation on trial lengths. The eight surgical states and their
average durations are shown in Table 2.2 with free transitions between them. Fig.
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Table 2.2: RIOUS+ Dataset State Descriptions and Duration

State ID Description Duration (s)
S1 Probe released, out of endoscopic view 6.3
S2 Probe released, in endoscopic view 7.6
S3 Reaching for probe 3.1
S4 Grasping probe 1.1
S5 Lifting probe up 2.4
S6 Carrying probe to tissue surface 2.3
S7 Sweeping 5.1
S8 Releasing probe 1.7

2.6 shows sample scenes from the RIOUS+ dataset. Fig. 2.5b presents sample
state transitions of the ultrasound imaging task observed commonly in the RIOUS+
dataset.

The RIOUS+ dataset includes three types of synchronized time series data available
from a dVXi surgical robot: robot kinematics, endoscopic video, and system events
data. The kinematics data of dVXi’s two MTMs and four USMs were recorded at
120Hz For each manipulator, the same 19 kinematics variables, consisting of the
rotations of each mechanism joint, as the JIGSAWS suturing dataset were included.
The stereo video from the endoscopic camera was recorded at a 1280 × 1024
resolution and 60Hz. In addition to surgical instrument movements and endoscopic
camera movements, the following six binary events are recorded during each RAS:

• surgeon head in/out of the SSC: when the surgeon’s head is out of the console,
instruments are not able to move;

• camera follow: when the camera follow foot pedal on the SSC is pressed, the
MTMs control the USM with the endoscope installed and all other USMs are
not able to move;

• instrument follow: when the camera follow foot pedal on the SSC is not
pressed, the USM holding the endoscope is not able to move;

• master clutch (2 variables): when an MTM is clutched, its movements are not
reflected to the PSMs;

• ultrasound probe activation;

• ultrasound probe in contact with tissue.
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Figure 2.7: Example endoscopic video frames from the HERNIA-40 dataset.

System events are a cardinal component of any surgery, as they contain rich infor-
mation about the current surgical states.

The robot kinematics, endoscopic video, and system events data were synchronized
and downsampled to 30 Hz.

Despite addressing some of JIGSAWS’ limitations, such as a fixed endoscope posi-
tion and limited range of experimental settings, RIOUS+ is a small surgical dataset
that incorporates only a single surgical task, with a limited number of trials, and
a lower surgical complexity. During data collection, the users were instructed to
strictly adhere to a pre-determined list of actions; therefore, the variation among
trials is still limited, as the surgical task was performed in a highly structured and
uniform manner.

HERNIA-40
The JIGSAWSorRIOUS+ surgical trials only includes one surgical task that consists
of fine-grained surgical states. These datasets are therefore not suitable for the
development of a comprehensive RAS state estimation solution that recognizes
the current states of RAS at multiple levels of temporal granularity. Additionally,
their limitations in dataset size and variability, simplistic experimental settings, and
rigid pre-determined lists of allowed fine-grained surgical actions are non-negligible
limitations. As surgical state estimators rely heavily on datasets for model fitting
and training, these limitations are propagated, and possibly even amplified, to affect
the performance of a surgical state estimator designed using this data. For example,
during a bench-top trial in the JIGSAWS suturing dataset, in which suturing is
performed on a marked pad, valuable anatomical background information is missing
from the endoscopic video data, which may lead to insufficient training of a vision-
based surgical state estimation model. Trials performed using the same technique
or following the same predetermined workflow, as they were in JIGSAWS suturing
and RIOUS+ datasets, could cause overfitting of the state estimator model.

A real-world RAS dataset consisting of complete RAS procedures performed by a
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diverse set of surgeons on real patients is therefore highly desirable. To meet such
needs, I collected theHERNIA-40: anRASdataset that contains 40 real-world robot-
assisted transabdominal preperitoneal inguinal hernia repair procedures using the
dVXi surgical system. Thirty of these surgeries are performed in a unilateral fashion
and 10 are bilateral hernia repair procedure. A bilateral hernia repair procedure
targets hernias that occur on both side of the lower abdomen and therefore has the
similar operative steps and workflow as a unilateral hernia repair procedures [46].
Since HERNIA-40 contains real-world robot-assisted-surgeries, patient privacy-
related information such as the surgeon’s identity is not available; therefore, the
number of unique surgeons in HERNIA-40 is also unknown.

Since the HERNIA-40 data set contains both unilateral and bilateral hernia repair
procedures, each trial lasts from 15 to 90 minutes. Unlike the JIGSAWS or RIOUS+
datasets, in which each trial contains a single surgical task with one level of temporal
granularity (fine-grained surgical states that make up the surgical task). All of the
HERNIA-40 trials are annotated with two levels of temporal granularity under the
professional guidance by practicing surgeons. The standard-of-care operative steps
of an inguinal hernia repair surgery are considered the surgical superstates of the
surgical HFSM. Each surgical superstate is, in turn, broken down into fine-grained
surgical states. A complete list of surgical superstates and fine-grained surgical
states within each superstate is shown in Tables 2.3 and 2.4. Fig. 2.7 shows sample
scenes from the HERNIA-40 dataset.

As the trials in HERNIA-40 capture complete surgical procedures, multiple robotic
surgical instruments are involved across all of the trials, and the tools are sometimes
uninstalled/reinstalled onto the USMs during a surgery. Additionally, laparoscopic
instruments were used in all trials. In HERNIA-40, three types of da Vinci surgical

Superstate
ID Inguinal Hernia Repair Percentage of

instances (%)
Mean

duration (s)
SS0 Create peritoneal flap 16.5 74.6
SS1 Dissect mesh pocket 19.7 88.1
SS2 Dissect hernia sac 16.9 136.1
SS3 Deploy mesh 18.0 138.7
SS4 Close peritoneum 16.8 202.3
SS5 Endoloop suture 3.1 131.3
SS6 Anchor mesh 5.3 117.2
SS7 Manipulate gauze 3.7 81.7

Table 2.3: HERNIA-40 superstates descriptions and mean durations.
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Fine-grained Surgical States

Create Peritoneal Flap Mean duration (s)
Cut peritoneum with monopolar scissors 5.7

Stretch peritoneum with left hand 3.1
Adjust endoscope 2.9

Dissect Mesh Pocket Mean duration (s)
Pull tissue with left hand 4.2

Local energized cut 2.8
Push and cut tissue 3.9
Adjust endoscope 3.1
Dissect Hernia Sac Mean duration (s)
Push and cut tissue 4.9
Pull and cut tissue 4.1

Pull tissue with left hand 4.3
Push tissue with left hand 2.6

Adjust endoscope 3.7
Deploy Mesh Mean duration (s)
Unfold mesh 6.6

Push mesh to tissue with left hand 2.9
Push mesh to tissue with right hand 2.6

Pull tissue with left hand 3.8
Pull tissue with right hand 3.4

Manipulate mesh 7.0
Adjust endoscope 2.8
Close Peritoneum Mean duration (s)

Reach for the needle 3.9
Position the tip of the needle 3.3
Push needle through the tissue 4.2

Pull tissue with left hand 3.6
Transfer needle from left to right 3.7

Orient needle 6.6
Pull suture with left hand 5.8
Pull suture with right hand 4.8

Transfer needle from right to left 4.6
Use right hand to tighten suture 4.3

Adjust endoscope 3.8

Table 2.4: HERNIA-40 fine-grained states descriptions and mean durations.
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instruments (ProGrasp™ forceps, a large needle driver, and monopolar curved scis-
sors) and two types of laparoscopic instruments (tack fixation device and suction
irrigator) are used. The HERNIA-40 dataset includes the robot kinematics, endo-
scopic video, and system events data from five different dVXi systems. These time
series data streams were collected and synchronized in the same way in the RIOUS+
dataset. The system events that were collected from the dVXi are, however, different
from those found in RIOUS+. Specific to inguinal hernia repair surgery, with its
higher surgical complexity, six binary system events and four categorical system
events were included:

• binary events

– energy pedal: when the energy foot pedal on the SSC is pressed, a da
Vinci E-100 generator integrated with dVXi executes controlled energy
delivery to the tip of the monopolar curved scissors;

– surgeon head in/out of the SSC;

– camera follow;

– instrument follow;

– master clutch (2 variables).

• categorical events

– Type of instruments installed on USMs (4 variables): the da Vinci
surgical instrument installed on each of the four USMs of dVXi.

Both the JIGSAWS suturing dataset and the RIOUS+ dataset are used in Chapters
4, 5, and 6 for the evaluation of fine-grained surgical state estimation accuracy of
multiple models. The HERNIA-40 dataset is used in Chapters 4, 6, and 7 for the
evaluation of both fine-grained state estimation accuracy and hierarchical surgical
state estimation accuracy.

2.3 Data processing and feature extraction
A real-world RAS is characterized by a highly complex and dynamic operating
environment. As mentioned in previous chapters, numerous nuisance factors and
variations in surgeon techniques further complicates real-world RAS datasets. The
combination of limited data availability and high complexity calls for an effective
and robust method of data processing and feature extraction method, which is
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a fundamental prerequisite for robust hierarchical surgical state estimation. The
datasets used in this work are also high dimensional, since they contain high-
resolution endoscopic video feeds and a large number of kinematics variables as the
surgical robot has high degrees of freedom. Accurate surgical state estimation also
benefits greatly from an effective feature extraction method for these complex time
series data streams. In the following subsections, I first review two basic machine
learning models and their mechanisms. Then, various data processing and feature
extraction methods I developed for the endoscopic video data, robot kinematics
data, and system event data are described. To effectively extract features that are
relevant to hierarchical surgical state estimation, some deep learning-based feature
extraction models should not be trained and frozen separately. I therefore only
describe the feature extraction models’ architectures in this chapter. The training
details of certain feature extraction models will be further discussed in following
chapters.

A review of machine learning models: Convolutional Neural Networks and
Recurrent Neural Networks
Machine learning techniques and models have become the cornerstone of AI appli-
cations among various fields of research, including RAS. This section provides a
brief review of the Convolutional Neural Network (CNN) and the Recurrent Neu-
ral Network (RNN) - two representative and most fundamental building blocks of
learning-based models and techniques used in this work.

Convolutional Neural Network

A CNN is a deep learning algorithm that takes an image as input, assigns an
importance to areas/objects/aspects of the image based on the CNN’s parameters,
and then differentiates one from another. An image is a matrix of pixel intensity
and color values. For small or extremely simple images, simple feature extraction
methods such as flattening the image or principal component analysis might serve
the purpose. However, as images become complicated and have higher dimensions,
a CNN reduces the images to an easier-to-process form without losing features that
are potentially important, as would be done by some dimension reduction methods.

A typical CNN has three types of layers: a convolutional layer, a pooling layer, and
a fully-connected layer [36]. A convolutional layer performs a dot product between
two matrices - a kernel and a region of the receptive field. A kernel consists of
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a set of learnable parameters and is spatially smaller than an image in order to
produce representations of that receptive region - the activation map. This process
is carried out throughout the image with stride ( and padding %, which determines
the sliding size of the kernel and the padding size of the image, respectively. As
Compared to trivial neural network layers, in which every input unit interacts with
every output unit, the convolution operation has sparser interactions between the
input and output. When a large or complicated image is processed with a kernel,
localized and meaningful features and relevant information within a small region
of the image can be detected; therefore, both the model’s memory requirement and
efficiency are improved.

A pooling layer reduces the spatial size of the image representations by calculating
the summary statistics of nearby outputs of the network [36]. Common pooling
operations include max pooling (returns the maximum value of the output region)
and average pooling (returns the mean value of the output region). This operation
further decreases the memory and computational requirements of the model. Unlike
convolutional layers, a pooling layer does not contain any trainable parameter. A
fully-connected (FC) layer, like its name suggests, connects all activationmaps in the
previous layer and is commonly used at the end of a CNN model to consolidate all
features extracted by previous layers and generate the final output (e.g., classification
results). Since convolution is a linear operation and an image - especially a high-
dimensional one - is far from linear, it is a commonpractice to introduce non-linearity
to the outputs following convolutional layers [36]. Popular non-linear functions that
were explored in this work include Sigmoid, Softmax, Tanh, and Rectified Linear
Unit (ReLU) functions. A Sigmoid function q is a logistic function that maps its
input I - values from the neurons of the previous layer - to (0, 1) and is commonly
used to generate an output that is a probability:

q(I) = 1
1 + 4−I , (2.1)

whereas a Softmax function f is used in multi-class classification and outputs the
probability of each class:

f(I8) =
4I8

Σ 94
I 9
. (2.2)

A Tanh function, as its name suggests, maps its input to the range (−1, 1). Since
negative inputs will be mapped to a negative value by the Tanh function, it is
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more commonly used in binary classifications. The ReLU function, 5 , has gained
popularity in deep learning research for its linear behavior, output sparsity, and
simplicity [41]:

'4!* (I) = <0G(0, I), (2.3)

however, the half-rectified ReLU function outputs zero for any negative input, which
may result in insufficient training due to units not being activated initially [71]. A
leaky ReLU function 5;40:H relaxes such constraint:

'4!*;40:H (I) =

I if I > 0

0I otherwise,
(2.4)

where 0 is a small value (usually 0.01).

With the rapid development of deep learning and computer vision research, numer-
ous CNN architectures have been proposed, examined, and improved for various
applications ranging from multi-class classification to pixel-level segmentation [98,
106]. The various state-of-the-art spatial and temporal CNN models that were
explored in this work will be discussed in details in the following chapters.

Recurrent Neural Network

While CNNs remain the most popular class of algorithms for image feature ex-
traction, RNNs are the state-of-the-art type of neural networks for modeling and
processing time series data [33] because of their internal memory, which allow
RNNs to remember important input information as a hidden state (a representation
of previous inputs), and use that information for prediction. Fig. 2.8 illustrates the
difference in information flow between an RNN and a feed-forward neural network:
RNNs apply learnable weights to both the current and previous inputs and also
adjust its internal parameters through backpropagation and gradient descent [36].

One of the outstanding challenges for simpleRNNs is the vanishing gradient problem
[42]. During the training of an RNN, the gradient is the value used to tweak the
networks’ trainable parameters. As each time step in an RNN is treated as a layer,
backpropagating through time could result in an exponential shrink in the gradient
values. The network would thus make extremely small adjustments to its weights,
and therefore would not be trained effectively. Historically, the lack of long-term
memory hindered the development of RNNs until the proposal of the Long-Short
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Figure 2.8: Comparison between the information flow of RNN and feed-forward
neural network.

Memory (LSTM) [43] model. An LSTM unit has three gates to regulate the
information in its cell state: a forget gate, an input gate, and an output gate.

The LSTM unit at time step C first needs to decide what information to discard from
the previous time step C − 1’s hidden state ℎℎℎC−1 and the input at time step C GGGC . This
is done through a forget gate - a sigmoid function:

5C = q(W 5 (ℎℎℎC−1, GGGC) + b 5 ), (2.5)

where W 5 and b 5 are learnable weights and bias parameters of the forget gate. As
a new input is received at time step C, an input gate then decides what information
to use to update its cell state:

8C = q(W8 (ℎℎℎC−1, GGGC) + b8), (2.6)

where 8C is the extracted input information. The cell state at time step C 2C is then
updated from the previous cell state:

2C = 5C ◦ 2C−1 + 8C ◦ tanh(,,,2 (ℎℎℎC−1, GGGC) + b2), (2.7)

where ◦ denotes a point-wise multiplication. Finally, an output gate decides the
hidden state of the LSTM unit at time step C through the learning of what information
to output:

>C = q(W> (ℎℎℎC−1, GGGC) + b>) (2.8)

ℎℎℎC = >C ◦ tanh(2C), (2.9)

where >C represents the output information that was used to calculate the new hidden
state ℎCℎCℎC .
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As deep learning algorithms for sequential data have gained more popularity, a
number of architectural variations have been proposed that significantly improve
the capability of RNNs. In this thesis, the attention mechanism - a revolutionary
improvement for the encoder-decoder LSTMmodel - was extensively applied [118].
Originally proposed for neural machine translation [17], an encoder decoder LSTM
model - as its name suggests, consists of two components. The encoder LSTM
accepts the input sequential data and encode it into a context vector, which is
represented by the last hidden state of that LSTM model. This hidden state is
then passed to the LSTM decoder. An outstanding problem of only using the
last hidden state of the encoder LSTM is that the rapid performance deterioration
as for long sequential data streams due to the exploding/vanishing gradients [17].
Since the model only uses the last hidden state, it lacks long-term memory and
would perform poorly when the input sequential data becomes longer. Additionally,
the context vector represented by the last hidden state does not distinguish the
importance differences among different parts of the input sequential data. The
attention mechanism tackles this problem by incorporating all hidden states in the
encoder LSTMmodel to the context vector instead of only using the last hidden state
[9]. An additive attention mechanism, for example, calculates the context vector at
time step C as a weighted sum of all encoder hidden states of length ;. At time C, the
attention weights UCUCUC ∈ R; are determined from the previous decoder hidden state
333C−1, encoder hidden states ���, and cell state as:

UUU
9
C = softmax(DDD)Utanh(,,,U (333C−1, 222C−1) ++++U��� 9

C )) (2.10)

for 9 ∈ [1, ;] where DDDU,,,,U, and+++U are learnable parameters.

Endoscopic video data
An endoscope becomes the surgeons’ eyes during an RAS. The endoscopic video
data is therefore highly informative to our hierarchical surgical state estimation effort,
and such data is available in all datasets used in this work. The raw endoscopic video
data, however, is high dimensional and contains various nuisance factors ranging
from brightness and viewing angles to highly variable surgical backgrounds and
anatomical structures. As computer vision research advances aggressively, various
methods were implemented to effectively extract features (thereby effecting a data
reduction step) from endoscopic video data prior to surgical state estimation.

As mentioned in previous chapters, CNNs have been used in prior surgical state
estimation research. I used the VGG16 network [106] - a state-of-the-art spatial
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CNN architecture originally developed for image recognition. The VGG16 model
maps a 224 × 224 × 3 RGB image to a vector X ∈ R# where # is the number of
visual features. At time C, The RGB endoscopic video frame I ∈ Rℎ×F×3 where ℎ
and F are the height and width of the frame is resized and the global visual features
from the entire video frame. To effectively extract visual features that are relevant
to hierarchical surgical state estimation, parameters in the VGG16 models were
initialized with ImageNet pre-trained weights [106] and fine-tuned using transfer
learning [121]. The training details will be further discussed in following chapters.

The background environment in real-world RAS contains various nuisance factors,
making it highly complex and varies significantly from one trial to another. While
the adverse effect of such noise can be reduced by training the hierarchical surgical
state estimationmodel with a large annotated real-world RAS dataset, such dataset is
not currently available. Two alternative methods were experimented to address this
challenge during the endoscopic video feature extraction phase. As most surgical
states are associated with the surgeon’s movements and actions on the robotic
surgical system, it is reasonable to assume that the surgical instruments’ end-effectors
and their surrounding areas are especially informative for surgical state estimation.
Localized features from these areas could therefore be an effective addition to
global vision features extracted from the entire endoscopic view. One prerequisite
of this method is the tracking of surgical instruments’ end-effector locations in
the endoscopic view. Following the work of Allan et al. [5], a silhouette-based
instrument tracking model was used for bounding box-based end-effector detection.
The detection model was separately trained with extensive and diverse real-world
RAS images and frozen. A bounding box is referred to as a Region of Interest (RoI)
as it is a localized region in the endoscopic view with potentially more concentrated
information about the current surgical states. Two convolutional layers with ReLU
activation were implemented as the CNN model to extract features from an RoI
instead of a VGG16 network to accommodate the image size difference. Fig.
2.9 illustrates the concatenation of global vision features extracted from the entire
endoscopic view and the localized vision features.

In addition to using localized vision features from RoIs, another effective method
to combat the noises and nuisance factors in the surgical background during RAS
during feature extraction is through semantic image segmentation [28]. The semantic
segmentation of an image refers to the computer vision technique that classifies each
pixel in the image into a category and generates a semantic mask of the image in
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Figure 2.9: An endoscopic vision feature extraction module that incorporates both
the global vision features and localized vision features.

which the pixel value is classified into its category label value. It is achieved
through CNN-based deep learning methods and has rapidly gained popularity in
computer vision research areas including medical imaging [114]. The advantages
of generating the semanticmask of an RAS endoscope view is intuitive. The surgical
background is complex and dynamic with various objects and noises like smoke,
blood, needles, etc. The direct feature extraction of such surgical scene would
then include features of these objects which could be irrelevant to surgical state
estimation. A semantic mask of the surgical background effectively eliminates such
distractions if the only available pixel classes are organs, surgical instruments, and
background. Fig. 2.10 illustrates an example RGB image of an endoscopic view
and its semantic segmentation map with the above three classes.

Semantic segmentation of endoscopic videos of RAS procedure has been one of
the most popular research topics in RAS research [105, 133]. One of the prevailing
surgical scene segmentation models is U-Net: a CNN-based architecture as shown
in Fig. 2.11 [98]. A U-Net model first contract the input image’s features through
a series of convolution and pooling operations for downsampling. An expansive
path then upsamples the feature map and eventually output a segmentation map.
Each pixel location is assigned one of three classes: tissue, surgical instruments,
and others. Following the work of Ronneberger et al. [98] and Allan et al. [5],
the U-Net model was trained with an extensive annotated surgical image dataset
provided by Intuitive Surgical Inc. and frozen.

It is worth noticing that while semantic segmentation eliminates environmental
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Example
Input RGB image

Segmentation map

Figure 2.10: An RGB image of the endoscopic view during RAS and its segmenta-
tion map with three scene classes: surgical instruments (white), tissue (black), and
others (purple).
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Figure 2.11: U-Net architecture for surgical scene semantic segmentation. Blue
boxes represent feature maps with their number of channels. White boxes denote
copied feature maps. Different operations are denoted by colored arrows.
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noises and distractions, it cannot fully replace features extracted from the original
endoscopic view as it is overly simplified at times. To harvest the benefits from both
worlds, the semantic mask of the current endoscopic view could be concatenated
with the original RGB image, forming a four-channel RGB-Mask image as the input
for endoscopic vision feature extraction.

Robot kinematics data
While the endoscopic video data provides a rich representation of the current surgical
scene, it is not the only useful data source for surgical state estimation. The current
surgical stages and actions are also tightly correlated with the movements of the
surgical instruments. The surgical robot’s kinematics time series data is therefore
another valuable data source for hierarchical surgical state estimation. As described
in Sec. 2.2, kinematics data of da Vinci robots’ MTMs and USMs was recorded
and used in this work. Due to proprietary information protection reasons, original
encoder readings from the robotic systems were separately processed by Intuitive
Surgical Inc. and the manipulators’ end-effector data was made available. As
the robot kinematics data is significantly lower in dimensions comparing to the
endoscopic video data, non deep learning-based pre-processing techniques were
applied.

The kinematics variables available in all datasets used in this work include the 3-
dimensional (3D) Cartesian positions (denoted by GHI), a rotational matrix (denoted
by '), 3D linear velocities (denoted by G′H′I′), 3D angular velocities (denoted by
U′V′W′), and the gripper angle (denoted by 0). These variables are available for
dVRK’s two MTMs and two PSMs in the JIGSAWS suturing dataset. For RIOUS+
dataset and HERNIA-40 dataset, the same variables are available for dVXi’s two
MTMs and four USMs. To remove encoder recording errors like "sudden jumps"
and smooth the time series data, outlier values in the kinematics time series data are
removed if they differ considerably from their neighboring values.

System events data
In addition to the endoscopic video and surgical robot kinematics data, the RIOUS+
dataset and HERNIA-40 dataset also contains system events data from dVXi. These
events are either binary or categorical, as described in Sec. 2.2. One-hot encoding
was implemented for categorical system event data such as the surgical instrument
type installed prior to surgical state estimation [130].
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C h a p t e r 3

MODELING ROBOT-ASSISTED SURGERY AS A
HIERARCHICAL SYSTEM OF DISCRETE SURGICAL STATES

The field of medicine and surgery requires the highest level of safety precautions.
Detailed standard-of-care for surgical procedures have therefore been highly stan-
dardized and documented for the training of robotic surgeons. From a temporal
perspective, an RAS procedure can be viewed as a series of pre-determined and
highly uniform surgical tasks and steps that the surgeon performs. For instance,
the inguinal hernia repair surgery can be divided into 8 components as described in
Table 2.3. Each of these components can, in turn, be divided into smaller temporal
segments (as shown in Table 2.4). Just like an RAS procedure being viewed as a col-
lection of surgical tasks and steps, many surgical tasks are also standardized and can
be viewed as a collection of finer surgical actions and environmental observations.
In Chapter 2, the JIGSAWS suturing dataset was described. The surgical task of
suturing, for example, were broken down into actions as listed in Table 2.1. Surgical
tasks in the RIOUS+ dataset and HERNIA-40 dataset also share this feature. This
temporal hierarchy is observed in many RAS procedures.

As described in previous chapters, one crucial prerequisite for highly sought-after
AI applications in RAS is a comprehensive awareness of the current surgical scene
from a temporal perspective. For instance, the surgical system should be aware of
the current surgical task performed for operating room scheduling, as the the current
surgical task indicates the remaining time of the procedure. This level or tempo-
ral awareness can therefore aid applications such as operating room scheduling or
surgeon evaluation [116]. The awareness of the fine-grained current surgical action
such as putting down a needle, on the other hand, aids surgeon-assisting function-
alities such as needle counting. While prior work in the field of surgical ontology
[34] provided a method of standardizing the descriptions of surgical procedures, it
is highly clinically-oriented and is not suitable for AI applications in RAS.

This temporal hierarchy observed during RAS guided us to model an entire RAS
procedure as a hierarchical system of discrete surgical states that I refer to as the
surgical Hierarchical Finite State Model (HFSM). Unlike the traditional definition
of a finite state machine, however, our proposed modeling method is designed for
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the propose of surgical state estimation and focuses within the scope of surgical
applications. In the following sections, I first review the surgical ontology research
efforts and its limitation. The details and definitions of our proposed RAS modeling
strategy are then provided. The work presented in this chapter was described in
publications [92, 93].

3.1 A review of surgical ontology
Anontology is defined as a formal specification of a shared conceptualization [39]. It
is a form to represent knowledge in an interoperable manner [82]. Surgical ontology
[34, 82] is a modeling methodology for surgical procedures. In 2016, the OntoSPM
Collaborative Action was started with the goal of developing the ontology of the
Surgical Process Models (SPM). Since then, surgical ontology development has
standardized the description andmodeling of various surgical procedures, scenarios,
components, and equipment. It promoted a more consistent communications among
researchers in the field of surgery, including RAS. Specifically, surgical ontology
focuses on the construction of a database that standardizes the expressions and
vocabulary of surgery-related information ranging from the surgical devices used
during the procedure and the imaging techniques to the patient’s medical history
and conditions. This database should therefore be as comprehensive and inclusive
as possible to widen surgical ontology’s application. Fig. 3.1 shows a part of the
surgical ontological description of a laparoscopic surgery.

Researchers have devoted enormous efforts to the enrichment of information of this
knowledge base from all aspects of a surgery [34, 82, 97, 111]. Such information
includes the anatomical condition of the patient, the operating room equipment and
personnel, the surgical devices used during the surgery, imaging techniques, and
many others. Ontology development efforts have found diverse applications in the
field of medicine. The documentation and information processing of a surgery,
for example, is ubiquitous throughout all stages of treatment of a patient. Surgical
ontology provides a standardized method for this task, which is extremely valuable
and beneficial for the patient’s care. Surgical ontology also finds applications in the
education and training of healthcare professionals, as it standardizes the languages
and expressions for training and allows a smoother communication.

3.2 Modeling RAS as a hierarchical system of discrete surgical states
While surgical ontology remains an important method of modeling a surgical pro-
cedure, it is heavily clinically oriented for a smoother communication in the field of
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Figure 3.1: An example of a part of surgical ontological descriptions of a laparo-
scopic procedure.

medicine and is less desirable or suitable for AI applications in RAS. The purpose of
surgical ontology is to document a surgery as complete as possible; therefore, high
diversity and inclusiveness is highly desirable. Surgical ontology aims to describe
a surgical procedure as comprehensively as possible, which includes not only the
tasks and steps that occur during a surgical procedure, but all aspects of it. This
includes diverse information ranging from the names of surgical devices used during
the surgery to the pathologies of the patient.

This diversity in information, while extremely valuable in some fields of surgical
research, is unnecessary and cumbersome for the development of AI applications
in RAS. As shown in Fig. 3.1, the ontological description of a surgical procedure
involves equipment details to the level of a power cord, which is unnecessary
for AI applications related to surgical state estimation. Repeated entries are also
frequently observed. For instance, Fig. 3.1 contains multiple entries of electrical
outlets and ground earthing systems as many machines used during the surgery
need them. These repeated entries, while inclusive, are cumbersome for temporal
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perception applications. Additionally, as discussed in previous chapters, many AI-
based surgeon-assisting functionalities requires the temporal awareness at multiple
levels of granularity. While surgical ontology aims to describe the entire procedure
comprehensively, it does not extend into the level of details from the temporal
perspective required by some AI applications. For example, needle counting is a
necessary task at the end of an RAS procedure to ensure that all needles used during
the surgery are accounted for. A potential AI-based application is the autonomous
bookmarking of the endoscopic video recording whenever a needle is released from
the surgical instruments during the procedure such that the operating room staff
could review the bookmarks for needle counting at the end of the procedure. This
application requires the recognition of a fine-grained surgical state of releasing the
needle. Whilst surgical ontology would document the types of needles used in the
surgery, it does not record fine-grained surgical actions that last for seconds such as
releasing the needle. Ontology is therefore not the most ideal modeling strategy for
the AI applications during RAS, especially from a temporal perspective.

I therefore propose a holistic definition specifically designed for an RAS procedure
as a hierarchical system of discrete surgical states at multiple levels of temporal
granularity. I refer to this system as a surgical Hierarchical Finite State Model
(HFSM), which is not to be confused with a traditional Finite State Machine in the
field of automata theory [7]. While the HFSM is motivated by the HMM concept, it
is distinct and simpler. Here, the definitions of a surgical HFSM and its components
within the scope of consideration in this thesis work are provided.

Definition 1. A surgical state is the smallest temporal unit that makes up an RAS
procedure. It is a surgical action, gesture, or environmental observation during an
RAS.

Definition 2. A surgical superstate models coarser divisions of an RAS procedure
into tasks, phases, or operative steps. It consists of surgical states or finer-grained
surgical superstates.

Definition 3. A surgical Finite State Model (FSM) " ((,Σ) is comprised of:

(: a finite non-empty set of surgical states B;

Σ: the input symbols (or data) to the system.

Definition 4. A surgical Hierarchical Finite State Model (HFSM) is comprised
of a finite non-empty set of surgical superstates. These superstates are surgical
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HFSMs themselves consisting of finer-grained surgical (super)states at lower levels
of temporal granularity.

A surgical superstate could therefore be modeled as a surgical HFSM consisting of
finer-grained surgical (super)states. For example, the surgical task of suturing is a
surgical superstate during RAS. It consists of multiple actions and gestures such as
reaching for the needle and pushing the needle through the tissue. Each of these
actions is a surgical state. The suturing task superstate is, in turn, a surgical FSM
that consists of finer-grained surgical states such as the ones mentioned above.

These definitions are similar to a typical (hierarchical) finite state machine; however,
our current study does not incorporate transition dynamics between states. Unlike
a traditional finite state machine, a surgical FSM does not put any constraint on
the transition probabilities between surgical states due to the highly complex and
dynamic nature of an RAS. Hence, a surgical HFSM is akin to a hypergraph [10,
29] that models the relationships between surgical states and hierarchy. Because
our study dataset does not have any forbidden transitions between surgical states, in
this thesis work I do not incorporate the potential impact of forbidden transitions
between surgical states. In Fig. 2.5, the observed state transitions in the JIGSAWS
suturing dataset and the RIOUS+ dataset were shown; however, all transitions are
permitted despite not being observed in a specific dataset.

Comparing to surgical ontology, there are several advantages of modeling an RAS
procedure as anHFSM.Surgical ontology does not include very fine-grained surgical
actions and gestures that last for seconds. The knowledge of these fine-grained
surgical states either during or after the surgery is crucial for applications such
as needle counting and surgeon skill evaluation. Additionally, correlations can
be observed between the estimation of surgical superstates and their finer-grained
components in many cases, as seen in Tables 2.3 and 2.4. For instance, the surgical
superstate of dissecting mesh pocket contains the fine-grained surgical state of a
local energized cut, which is not a surgical state in the superstate of deploying
mesh. The information of the current surgical state estimation result at one level
of temporal granularity should therefore aid the surgical state estimation at other
levels of temporal granularity. The HFSM of an RAS procedure would allow
further explorations of such correlations and improve surgical (super)state estimation
performances. Modeling an RAS procedure as an HFSM also eliminates unrelated
information about the surgery included in surgical ontology, which makes it more
suitable for AI applications in the field of surgical robotics.



41

C h a p t e r 4

RECOGNITION OF FINE-GRAINED SURGICAL STATES WITH
MULTIPLE DATA SOURCES

As defined in Chapter 3, a fine-grained surgical state is considered the smallest unit
that makes up a surgical HFSM. Such surgical states usually last for a few seconds
such as cutting or orienting a needle [24, 63], and could take the form of either a
robot action or an observed change in surgical environment [96]. Tables 2.1, 2.2,
and 2.4 summarized the fine-grained surgical states observed in datasets used in
this work. While several efforts have been devoted to fine-grained surgical state
estimation using diverse methods from probabilistic models to deep learning-based
algorithms, the majority of them only utilized either the robot kinematics data [76,
78, 99, 113] or the endoscopic video data [49, 65] available in RAS datasets alone.

This chapter shows that the incorporation of various data types recorded by the
robotic surgical system is beneficial to the fine-grained surgical state estimation.
Through the development of a unified approach that incorporates various RAS
data sources, I significantly improved both the accuracy and robustness of state-
of-the-art fine-grained surgical state estimation models. As different data sources
contains diverse information about the RAS procedure, they have their respective
strengths and weaknesses in recognizing certain fine-grained surgical states, which
supports the superior performance of our unified approach of state estimation. In the
following sections, I describe in detail a model architecture for recognizing surgical
states, and the components, implementation and training strategies of this model.
The model is also evaluated on surgical data. The work presented in this chapter
was described in the publication [96].

4.1 Model architecture
As both endoscopic video and robot kinematics time series data has respectively
shown its effectiveness in fine-grained surgical state estimation in the past, various
single-source state estimation models were implemented before the incorporation
of state estimation results using these models. Our proposed approach (Fig. 4.1),
denoted as Fusion-KVE, consists of four single-source state estimation models
based on endoscopic vision, robot kinematics, and system events, respectively.
The outputs are fed to a fusion model that makes a comprehensive inference. This
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Figure 4.1: Fusion-KVEcontains four single-input state estimationmodels receiving
three types of input data. A fusion model that receives individual model outputs is
used to make the comprehensive state estimation result.

section discusses each individualmodel as well as the fusionmodel which effectively
combines the outputs of each model.

Spatial feature extraction of endoscopic video
As mentioned in previous chapters, while the endoscopic video time series data is
a powerful and informative source for surgical state estimation that contains rich
information about the current surgical scene, the high dimensionality of raw image
data and the high level of surgical background nuisances requires an effective spatial
feature extraction method prior to surgical state estimation. A VGG16 model was
deployed [106] and maps each 224×224×3 RGB endoscopic video frame ��� C at time
C to a vector -E8B ∈ R#E8B where # is the number of features. The Feature Extraction
component of Fig. 4.1 illustrates this process. The training of the VGG16 feature
extractor started with network weights initialized with ImageNet pre-trained weights
[59]. Guided by transfer learning, the weights were fine-tuned with one FC layer
replacing the original top of the VGG16 model for surgical state estimation.

Temporal Convolutional Network-based state estimation model
A Temporal Convolutional Network (TCN) is a CNN architecture consisting of
1-dimensional (1D) convolutional layers on the temporal axis with the same input
and output lengths [65]. In Fusion-KVE, a TCN is used to extract the temporal
correlations among adjacent entries of time series data for state estimation. An
encoder-decoder TCN framework was implemented, as shown in Fig. 4.2. The
TCN model accepts time series features - whether extracted from endoscopic video
or robot kinematics - as its input. At time step C, the input vector is denoted by -C
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Figure 4.2: The encoder-decoder TCN network architecture with temporal convo-
lutions, pooling, and upsampling operations to produce surgical state estimation .
from input features - .

for 0 < C 6 ) where ) is the length of the time series data vector.

The encoder component of the TCN model consists of ! sets of 1D convolutional
layers with pooling and normalization operations. For the ;Cℎ 1-D convolutional
layer (; ∈ {1, ..., !}), �; filters of kernel size : are applied along the temporal axis in
order to capture the temporal progress of -C . ); is the number of time steps in the ;Cℎ

layer. In each layer, the filters are parameterized by aweight tensor, (;) ∈ R�;×:×�;−1

and a bias vector 1 (;) ∈ R�; . The raw output activation vector for the ;Cℎ layer at
time C, � (;)C , is calculated from the normalized activation matrix from the previous
layer �̂ (;−1) ∈ R�;−1×);−1

�
(;)
C = '4!* (,,, (;) �̂ (;−1)

C:C+:−1 + 111
(;)), (4.1)

where ,,, (;) and 111 (;) are learnable parameters, and the activation function is a
Rectified Linear Unit (ReLU) [84]. A max pooling layer of stride 2 is applied after
each convolutional layer in the encoder part such that ); = );−1

2 . The pooling layer
is followed by a normalization layer, which normalizes the ;Cℎ activation vector at
time t, � (;)C , using its highest value:

�̂
(;)
C =

�
(;)
C

<0G(� (;)C ) + n
(4.2)

where n = 10−5 is a small number to ensure non-zero denominators, and �̂ (;)C is the
normalized output activation vector.
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The decoder component of the TCN model also contains ! layers, but with an
upsampling layer that repeats each data point twice, preceeding each temporal con-
volutional and normalization layer. The output vector is calculated and normalized
in the same manner as the encoder part. The state estimation at time step C is done
by a time-distributed FC layer with Softmax to normalize the logits.

As mentioned in previous chapters, surgical state estimation is analyzed for for both
real-time and post-operative applications in this thesis work. For post-operative
applications, the entire time series data is available to the model. During an RAS
procedure; however, real-time state estimation model can only use the information
from the current and preceding time steps. Data padding was therefore applied for
the TCN model in a causal experimental setting. The temporal input with :

2 zeros
on the left side before the convolutional layer and :

2 data points are cropped on the
right side afterwards.

LSTM-based state estimation model
In addition to a TCN model, an LSTM model was also implemented to extract
temporal features from the robot kinematics data. As introduced in Chapter 3,
an LSTM model has no constraints on learning only from the nearby data on the
temporal axis. Rather, it maintains amemory cell and learnswhen to read/write/reset
the memory [33]. For real-time applications of surgical state estimation (causal
setting), a unidirectional forward LSTM model was implemented, in which the
model does not have access to data from future time steps and stores only the
information from the preceding time steps. A bi-directional LSTM (biLSTM)
model was also tested for post-operative applications of surgical state estimation
(non-causal setting). The biLSTMmodel implemented in this work adds a backward
layer in which information from time step C + 1 is used to calculate the states in the
LSTM unit in time step C. The loss function for the LSTMmodel is the cross entropy
between the ground truth and the predicted labels, and the stochastic gradient descent
(SGD) is used to minimize loss.

Classification algorithm-based state estimation model
System events time series data from the dVXi system are available in the RIOUS+
dataset and HERNIA-40 dataset. These events take the form of either a binary
events or a categorical event. These system events, such as surgeon head in/out and
the usage of foot pedals on the surgical robotic system, are intuitively significantly
lower in occurrence frequency and have extremely high spontaneity (as shown in
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Table 4.1). Additionally, the occurrence frequencies of the same system event could
differ significantly from a bench-top setting (in RIOUS+ dataset) to a real-world
RAS setting (in HERNIA-40 dataset). F

To provide a comprehensive analysis of the proposed approach, various classifica-
tion algorithms were implemented at each time step C that accepts system events at C
as inputs, including Adaboost classifier, decision trees, Random Forest (RF), Ridge
classifier, Support Vector Machine (SVM), and SGD [83]. Grid search over the hy-
perparameters of each model was performed and evaluated using the Area Under the
ReceiverOperatingCharacteristic Curve (ROCAUC) score [13]. The search process
was iterated 200 times, with an early stopping criterion of score improvement under
10−6. At each iteration, the best-performing model with replacement was recorded.
The top three models that were selected most frequently were used in Fusion-KVE
for surgical state estimation, and the final state estimation result is the mean of
each model’s prediction. The three top-performing models for the RIOUS+ dataset

System Events Occurrence Frequencies

RIOUS+ Mean frequency (event/s)
Surgeon head in/out of the SSC 5.1 × 10−3

Camera follow 3.2 × 10−2

Master clutch (left) 8.1 × 10−2

Master clutch (right) 1.0 × 10−2

Ultrasound probe activation 3.4 × 10−3

Ultrasound probe in contact with tissue 4.7 × 10−2

HERNIA-40 Mean frequency (event/s)
Energy pedal 4.7 × 10−6

Surgeon head in/out of the SSC 1.8 × 10−4

Camera follow 1.2 × 10−3

Master clutch (left) 1.9 × 10−2

Master clutch (right) 2.6 × 10−2

Instrument change or install/uninstall (USM1) 8.2 × 10−5

Instrument change or install/uninstall (USM2) 7.4 × 10−4

Instrument change or install/uninstall (USM3) 4.6 × 10−4

Instrument change or install/uninstall (USM4) 9.3 × 10−5

Table 4.1: System events occurrence frequencies in the RIOUS+ dataset and
HERNIA-40 dataset. The type of surgical instruments installed on each of the
USMs of a dVXi is a categorical variable and changes its value when there is an
instrument change on a USM; therefore, its occurrence frequency is the same as
the frequency of instrument change or the installing/uninstalling of the surgical
instrument on that USM.
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are RF (=CA44B=500, min_samples_split=2), SVM (penalty=!2, kernel=linear, _=2),
and RF (=CA44B=400, min_samples_split=3). The three top-performing models for
the HERNIA-40 dataset are RF (=CA44B=200, min_samples_split=3), RF (=CA44B=500,
min_samples_split=3), SVM (penalty=!2, kernel=linear, _=3).

The Random Forest (RF) algorithm implemented in Fusion-KVE, consisting of a
collection of decision trees, is a popular machine learning algorithm for classifica-
tion such as surgical state estimation [83]. During the training of an RF model, data
are drawn randomly to build =CA44B decision trees with its corresponding parameters.
The classification output is based on majority voting of all decision trees. The RF
model is more robust against overfitting and high data dimensionality than deci-
sion tree models, as multiple decision trees were created and fitted independently.
Additionally, not all variables are available to an individual decision tree within
the RF model, which increases randomness to model training. A Support Vector
Machine (SVM) model is also widely used for classification. Tts core mechanism
finds a hyperplane that best divides data into two classes [83]–the One-Versus-Rest
(OVR) strategy was used in the multi-class problem of fine-grained surgical state
estimation. An OVR strategy trains the SVM model to distinguish data from one
category from the rest through the minimization of:

!(+" = _‖W(+" ‖2 +
1

=4E4=CB

=4E4=CB∑
8=1

<0G(0, 1 − Y8 (W)
(+"X8 − b(+")), (4.3)

where W(+" and b(+" are learnable parameters of the hyperplane, _ is the regular-
ization parameter, and =4E4=CB is the number of system events recorded in a dataset.
A linear kernel and L2 loss were found to be most suitable for system event-based
fine-grained surgical state estimation.

Fusion model
As described in previous sections of this chapter, a unified approach that incorpo-
rates various RAS data sources using various fine-grained surgical state estimation
models was proposed. These individual state estimation models have their respec-
tive strengths and weaknesses in recognizing certain states, since different states
have inherent features that make them easier to be recognized by one type of data
than the other(s). For instance, the transferring needle from left to right state in the
JIGSAWS suturing dataset can be distinctly characterized by the sequential open-
ing and closing of the left and right needle drivers which is captured by the robot
kinematics data.
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Aweighted votingmethodwas therefore used as the fusionmodel for all fine-grained
surgical state estimation methods implemented. The fusion model accepts the state
estimation result vector Y from all signal source estimators in order to generate
a comprehensive state estimate. At time step C, let Y(C) ∈ R=<>34;B×=BC0C4B , where
=<>34;B is the number of models and =BC0C4B is the total number of possible states
in a dataset. Row vector Y(C)

8,· is the output vector of the 8Cℎ model at time C and∑=BC0C4B
9=1 YC

8, 9
= 1. The overall probability for the system to be in the 9 Cℎ state at time

C - according to the models - is then

%
(C)
9
=

=<>34;B∑
8=1

U8, 9Y(C)8, 9 (4.4)

where U8, 9 is the weighting factor for the 8Cℎ model predicting the 9 Cℎ state. The
values of U are calculated from the diagnostic odds ratio (OR) derived from the
model’s accuracy in recognizing each state in the training data:

U8, 9 =
)%8, 9 · )#8, 9

�%8, 9 · �#8, 9 + n
(4.5)

where the (8, 9)’s components of TP, TN, FP, FN are the number of true positives,
true negatives, false positives, and false negatives of the 8Cℎ model on recognizing
the 9 Cℎ state, respectively. The parameter n = 10−5 prevents the denominator from
taking a zero value. U is normalized proportionally such that

∑=<>34;B
8=1 U8, 9 = 1. The

comprehensive estimate of state at time C Y(C)
5 DB8>=

is then made by

Y(C)
5 DB8>=

= 0A6<0G 9%
(C)
9
. (4.6)

4.2 Implementation and training strategies
As shown in Fig. 4.1, the proposed model for fine-grained surgical state estimation
contains =<>34;B = 4 single-source estimators based on features extracted from the
endoscopic video XE8B ∈ R#E8B , robot kinematics X:8= ∈ R#:8= , and system events
X4EC ∈ R#4EC . At time step C, each estimator’s output is then Y(C) ∈ R=<>34;B×=BC0C4B ,
which is in turn the input to the fusion model which produced the comprehensive
fine-grained surgical state estimation result Y(C)

5 DB8>=
.

The vision-based state estimation model is a CNN-TCN model with VGG16 being
the spatial CNNmodel. Spatial feature extraction was applied to the raw endoscopic
video data in which a video frame IC was used to extract XE8B

C at time step C.
A grid search over parameters was performed to select hyperparameters in the
CNN-TCN model. #E8B = 1024 was used for all three datasets during spatial
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feature extraction. For the JIGSAWS suturing dataset and the RIOUS+ dataset,
! = 3 with �; = {32, 64, 96} was used in the vision-based TCN model, whereas
! = 4 with �; = {16, 32, 64, 96} were used for the HERNIA-40 dataset. As the
mean duration of fine-grained surgical states in the three datasets varies, different
kernel sizes were used in the vision-based TCN model for each dataset: : = 6 for
the JIGSAWS suturing dataset and : = 3 for the RIOUS+ dataset and HERNIA-
40 dataset, respectively. For training, I used the cross entropy loss with Adam
optimization algorithm [55].

Two kinematics-based fine-grained surgical state estimation models were used: a
TCN model and an LSTMmodel. The incorporation of both models better captures
fine-grained states with various lengths of duration. An LSTM has no constraints
on its ability to learn only from the nearby data on the temporal axis. Rather, it
maintains a memory cell and learns when to read/write/reset the memory [33]. It has
been shown that LSTM-based approaches exceed the state-of-the-art performance in
longer-duration action recognition [24]. I therefore incorporated both TCN, which
applies temporal convolution to learn local temporal dependencies, and LSTM,
which is able to capture longer-term data structures. In the non-causal setting, a
biLSTMmodel was used, whereas a forward LSTMmodel was used when themodel
was evaluated in the causal setting. In the causal setting, data padding of the TCN
model was also applied.

The loss function for the LSTM model is the cross entropy between the ground
truth and the predicted labels, and the stochastic gradient descent (SGD) is used
to minimize this loss. The feature vector for the kinematics data X:8= ∈ R#:8=
contains the Cartesian positions, rotation matrix, linear and angular velocities, and
gripper angle for all PSMs in dVRK and all USMs in dVXi; therefore, #:8= = 38
for the JIGSAWS suturing dataset and #:8= = 76 for the RIOUS+ dataset and the
HERNIA-40 dataset. A grid search over parameters was performed and ! = 2 with
�; = {64, 96} was used for the kinematics-based TCN model for all three datasets.
For the LSTM model, I performed a grid search over the initial learning rate (0.1
to 1.0), the number of hidden layers (1 or 2), the number of hidden units per layer
(256, 512, 1024, or 2048), and the dropout probability (0 or 0.5). The optimized set
of parameters is 1 hidden layer with 1024 hidden units and 0.5 dropout probability
for JIGSAWS, 512 hidden units for the RIOUS+ dataset, and 1024 hidden units for
the HERNIA-40 dataset. The optimized initial learning rate is 0.1.
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4.3 Model evaluation and result discussion
This techniquewas evaluated on both the JIGSAWSsuturing dataset and theRIOUS+
dataset using Leave One User Out [32] in which the model was trained on all but
one user and tested on the remaining users in each split. This method ensures that
the estimation models are not overfitted to specific users. As HERNIA-40 dataset
contains real-world RAS data, the surgeon identity information is not available for
patient privacy protection reasons; therefore, a 5-fold cross validation evaluation
method was used. As mentioned in previous chapters, surgical state estimation
finds applications both during an RAS procedure and in post-operative analysis. I
therefore adapted two experimental settings: causal and non-causal. In a causal
setting, the models only have access to data from the current and preceding time
steps. This approach mimics the real-time state estimation application of our model.
In a non-causal setting, the models have access to data from the future time steps as
well.

Given our goal of performing both real-time and post-operative fine-grained state
estimation of the surgical task, two evaluation metrics were used: the frame-wise
classification accuracy and the edit distance. The frame-wise classification accuracy
is the percentage of correctly-recognized frames, which is measured without taking
temporal consistency into account. This is because themodel has only the knowledge
of the current and preceding data entries in the real-time state estimation setting. The
frame-wise classification accuracy was therefore used in both casual and non-causal
settings. The edit distance, or Levenshtein distance [67], measures the number of
operations needed to transform the inferred sequence of states in the segment level
to the ground truth. The operations include insertion, deletion, and substitution.
For instance, if the ground truth sequence is � = [�������], then the ground
truth sequence in the segment level is �̂ = [���]. An inferred sequence of
states %1 = [�������] would then have an edit distance ! (�, %1) = 0 while
an inferred sequence of states %2 = [�������] would have ! (�, %2) = 1. The
edit distance was normalized, denoted as !̂ (�, %), following [24, 63] using the
maximum number of segment-level models. I computed the edit distance score
using (1 − !̂ (�, %)) · 100. As the calculation of edit distance requires information
from the future time steps, it was only used for model evaluation in the non-causal
experimental setting.

Fusion-KVE was evaluated and compared against the reported performances of sev-
eral state-of-the-art fine-grained surgical state estimationmethods in both causal and
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non-causal experimental settings. When the reported performance is not available
for a particular setting or a dataset was not available, the source code provided by
the authors were used when available. An ablated version of our model (denoted
as Fusion-KV) containing only the vision-based and kinematics-based models were
used for evaluation for the JIGSAWS suturing dataset, as no system event is available
in this dataset.

Table 4.2 compares the performances of the state-of-the-art surgical state estimation
models with our models in the non-causal experimental setting. Table 4.3 assumes
a causal experimental setting and the corresponding padding techniques and LSTM
models were used. Fig. 4.3 shows an example of fine-grained surgical state esti-
mation results of a trial from the RIOUS+ dataset in the causal setting. The state
estimation results of the fusion model as well as their components are included and
compared to the manually annotated ground truth (GT). Fig. 4.4 shows examples
of the weight matrix U distributions used in the fusion models for both JIGSAWS
suturing and RIOUS+ datasets. A large U8, 9 indicates that the 8Cℎ model performs
well in estimating the 9 Cℎ state during training.

In Table 4.2, Fusion-KV achieves a frame-wise estimation accuracy of 86.3% and
an edit distance score of 87.2 for the JIGSAWS suturing dataset, both improving
the reported performances of state-of-the-art surgical state estimation models. The
same improvements were observed for both RIOUS+ dataset and the HERNIA-40
dataset. In a causal setting inwhich themodels only had information from the current
and preceding time steps (Table 4.3), Fusion-KVE achieved a frame-wise accuracy
of 89.4%, with an improvement of 11% comparing to the best-performing single-
input model. Fusion-KV also achieves a higher accuracy comparing to single-input
models.

A closer observation of the inferred state sequences by various models and their
weighting factors as shown in Fig. 4.3 and Fig. 4.4 reveals the key contributions
to the improvements offered by our unified approach and the use of multiple input
data sources. Although kinematics-based state estimation models generally have
a higher frame-wise accuracy comparing to vision-based models (Tables 4.2 and
4.3), which are very sensitive to camera movements, each model has its respective
strengths and weaknesses in recognizing certain surgical states.

For instance, at around 200s of the illustrated sequence from the RIOUS+ dataset
in Fig. 4.3, both kinematics-based models show a consecutive block of errors
where the models fail to recognize the probe released and in endoscopic view
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JIGSAWS Suturing dataset

Method Input data type Accuracy (%) Edit Distance
ST-CNN[64] Vision 71.3 59.9
TCN[65] Vision 79.6 85.8

Forward LSTM[24] Kinematics 80.5 75.3
TCN[65] Kinematics 81.4 83.1
TDNN[78] Kinematics 81.7 -

TricorNet[22] Kinematics 82.9 86.8
biLSTM[24] Kinematics 83.3 81.1

LC-SC-CRF[63] Vision+Kinematics 83.5 76.8
Fusion-KV Vision+Kinematics 86.3 87.2

RIOUS+ dataset

Method Input data type Accuracy (%) Edit Distance
ST-CNN[64] Vision 52.7 46.2
TCN[65] Vision 55.9 41.7

Forward LSTM[24] Kinematics 72.2 68.4
LC-SC-CRF[63] Kinematics 72.8 61.9

TDNN[78] Kinematics 79.1 -
TCN[65] Kinematics 79.2 71.8

biLSTM[24] Kinematics 82.4 71.0
Fusion-KV Vision+Kinematics 85.5 73.8
Fusion-KVE Vision+Kinematics+Events 90.2 77.2

HERNIA-40 dataset

Method Input data type Accuracy (%) Edit Distance
Trivial - 4.3 -
TCN[65] Vision 41.2 37.4
TCN[65] Kinematics 43.5 68.4

Forward LSTM[24] Kinematics 48.8 55.0
biLSTM[24] Kinematics 53.0 55.1
Fusion-KV Vision+Kinematics 54.7 61.2
Fusion-KVE Vision+Kinematic+Events 59.9 65.5

Table 4.2: Model performance comparison in a non-causal experimental setting.
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JIGSAWS suturing dataset

Method Input data type Accuracy (%)
ST-CNN[64] Vision 67.7

LC-SC-CRF[63] Kinematics 68.1
TCN[65] Vision 69.0
TDNN[78] Kinematics 71.1

Forward LSTM[24] Kinematics 74.7
Fusion-KV Vision+Kinematics 77.6

RIOUS+ dataset

Method Input data type Accuracy (%)
ST-CNN[64] Vision 46.3
TCN[65] Vision 54.8

LC-SC-CRF[63] Kinematics 71.5
Forward LSTM[24] Kinematics 72.2

TDNN[78] Kinematics 78.1
TCN[65] Kinematics 78.4
Fusion-KV Vision+Kinematics 82.7
Fusion-KVE Vision+Kinematics+Events 89.4

HERNIA-40 dataset

Method Input data type Accuracy (%)
Trivial - 4.3
TCN[65] Vision 40.4
TCN[65] Kinematics 41.1

Forward LSTM[24] Kinematics 47.5
Fusion-KV Vision+Kinematics 50.2
Fusion-KVE Vision+Kinematic+Events 57.6

Table 4.3: Model performance comparison in a causal experimental setting.
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state. Considering the relatively random robotic motions in this state, this is to be
expected. The low weighting factors for both kinematics-based model in estimating
this state, as shown in Fig. 4.4, also support this observation. On the other hand,
the vision-based model correctly estimates this state, since the state is more visually
distinguishable. When incorporating both vision- and kinematics-based methods,
our fusion models perform weighted voting based on the training accuracy of each
model. In this example, the weighting factor for the vision-based model is higher
than the kinematics-based models; therefore, our fusion models are able to correctly
estimate the current state of the surgical task. In other states where the robotic
motions are more consistent but the vision data is less distinguishable (such as the
transferring needle from left to right state), the kinematics-basedmodels have higher
weighting factors.

The incorporation of system events into the estimation process further improves
the performance of our proposed approach. Comparing Fusion-KV’s and Fusion-
KVE’s performance in Fig. 4.3, fewer errors are observed -many errors are corrected
where U for the event-based model is high, such as states with shorter duration or
frequent camera movements. At around 250s to 300s of the presented sequence of
ultrasound imaging, frequent state transitions can be observed. Fusion-KVE more
accurately estimate the states and shows fewer fluctuations, as compared to other
models. The event-based model is less sensitive to environmental noises, as the
events are collected directly from the surgical system. Additionally, when state
transitions occur frequently, models that solely focus on the temporal dependencies
of input data, such as TCN and LSTM, are less accurate. As the event-based
model does not take temporal correlations into consideration, incorporating such
data sources reduces the fluctuation in state estimation results, especially when the
state transition is frequent or the duration of each state is short.

The average duration of fine-grained surgical states varies significantly, as shown
in Section 2.2. To better capture states with different lengths of duration, two
kinematics-based state estimation models were implemented: TCN and LSTM. Fig.
4.4 supports our decision. When the average duration of a state is long, the LSTM-
based model has a higher weighting factor. The sweeping state (S7) in the RIOUS+
dataset, for example, has the average duration of 5.1s. The LSTM model has a
higher U in the estimation of this state. S4 (Grasping probe), S5 (Lifting probe up),
and S6 (Carrying probe to tissue surface) are more transient surgical states with
shorter durations. The TCN-based model therefore has a higher weighting factor
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70.1

74.5

81.1
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Figure 4.3: Example state estimation results of the vision-based model (Vis) and
the kinematics-based models (Kin-LSTM and Kin-TCN) used in the fusion models,
along with the ablated version of our model (Fusion-KV) and the full model (Fusion-
KVE), comparing to the ground truth (GT). The top row of each block bar shows
the state estimation results, and the frames marked in red in the bottom row are the
discrepancies between the state estimation results and the ground truth.

Figure 4.4: Example distributions of the normalized weighting factor matrix U for
the JIGSAWS suturing task and the RIOUS+ imaging task in a causal setting. A
larger weighting factor indicates that the model performs better at estimating the
corresponding state.

for the estimation of them.

4.4 Conclusions
A unified approach of fine-grained state estimation for various surgical tasks dur-
ing an RAS using multiple data sources improves the state-of-the-art estimation
performance significantly. The model performance benefited significantly from the
use of various data sources and diverse model architectures and algorithms. Eval-
uated on multiple RAS activity datasets including the JIGSAWS suturing dataset,
the RIOUS+ dataset, and the HERNIA-40 dataset, our proposed model proved
its robustness against complex and realistic surgical tasks by achieving a superior
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frame-wise accuracy and edit distance score. The improvement is especially signif-
icant in a causal setting, where the model has knowledge of data obtained only in
the current and preceding time steps. This is valuable for many real-time AI appli-
cations during RAS. Using the real-world RAS data in the HERNIA-40 dataset, I
further showcased the robustness of Fusion-KVE by achieving a 10.1% frame-wise
estimation accuracy improvement comparing to single-source models.

This Chapter showed how different types of input data (endoscopic video, robot
kinematics, and system events) have their respective strengths and weaknesses in
the recognition of fine-grained states. The fine-grained state estimation of surgical
tasks is challenging due to the duration variability of different states and the frequent
state transitions. By incorporating multiple types of input data, richer information
associated with the current fine-grained surgical state can be extracted during the
training process, which ultimately results more accurate estimation. To further
improve the fine-grained state estimation accuracy, the weighting factor matrix can
be used for boosting methods to more efficiently train the unified model.
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C h a p t e r 5

JOINT PREDICTION OF SURGICAL INSTRUMENT MOTIONS
AND SURGICAL STATES

The implementation of autonomy in the field of surgical robotics, from passive
functionalities such as virtual fixtures [103] to autonomous surgical tasks [88, 104],
has attracted the attention of many RAS researchers. Such autonomy can enrich
the manual teleoperation experience in robot-assisted surgeries (RAS) and assist
the surgeons in many ways. Enhancements include automated changes in the user
interface during surgery, additional surgeon-assisting system functionalities, and
shared control or even autonomous tasks [15, 21, 54]. In 2016, Yang et al. proposed
a definition of the levels of autonomy in medical robotics, ranging from mechanical
robot guidance to fully autonomous surgical procedures [125], as shown in Fig. 5.1.
The sensing of the user’s desires plays an integral role, especially in Conditional
autonomy.

One prerequisite for the autonomy applications mentioned above is the ability to
anticipate the surgeon’s intention and the robot’s motions. Prediction of the robotic
surgical instruments’ trajectories, for instance, contributes to collision prediction and
avoidance, including collisions between surgical instruments or with other obstacles
in the proximity, such as delicate organ tissues. The advancement in autonomy
would support applications to safe multi-agent surgical systems in which various
surgical tasks are performed concurrently. Additionally, instrument trajectory pre-
diction aids the process of human-computer interaction during an operation. Weede
et al. presented an instrument trajectory prediction method for the optimal endo-
scope positioning through autonomous endoscopic guidance [120]. This prediction
effort, however, took the form of a classifier with several pre-determined endoscope
positions, which limited its application. The prediction of the future surgical states,
either fine-grained states (picking up a needle) [2] or surgical phases (bladder dis-
section) [135], is useful in many surgeon-assisting features. Examples include the
predictive triggering of cloud-based features or heavy-processing services which
are inherently time consuming. This functionality provides a more seamless opera-
tional workflow. The prediction of the next surgical step or task also allows for more
synchronized collaborations between the surgeons and operating room staff through
workflow recognition [86, 109].



57

Deep learning-based methods for path and action prediction have been used in the
field of computer vision, including path predictions using personal visual features
and Long-Short Term Memory (LSTM) [57, 124] and early recognition of actions
[70, 101]; however, prediction has received little attention in the field of surgical
robotics. Outside of surgical applications, deep learning methods have predicted
human paths and actions seconds in advance. Liang et al. recently proposed a
multi-task model for predicting a person’s future path and activities in videos using
various features, including the person’s position, appearance, and interactions [68].
Compared to human activity datasets (such as ActEV[8]) which are used for human
path and activity predictions, RAS datasets enjoy the privilege of having synchro-
nized robot kinematics, endoscopic vision, and system events as data sources. This
is especially useful in the prediction of surgical states, since different sources of
input data have their respective strengths and weaknesses in representing states with
various kinematics and visual features. However, RAS can only observe a surgeon’s
intent via the movements of the input mechanisms and a few console events.

In Chapter 4, I proposed a unified model for surgical state estimation that incorpo-
rated multiple types of input data and exceeded the state-of-the-art state estimation
performance [96]. Building on this work, the present chapter studies the task of
concurrent instrument path and surgical state prediction via the use of multiple data
streams and the incorporation of historic state transition sequences. This chapter
proposes a model to jointly predict surgical instrument trajectories and fine-grained
surgical states in RAS tasks. The method performs feature extraction and makes
multi-step predictions of both the end-effectors’ trajectories in the endoscopic ref-
erence frame and the future surgical states. I aimed for real-time predictions of
up to 2 seconds in advance. Our model, denoted as daVinciNet, achieves accurate
and robust real-time prediction performances. The following sections describe the
model architecture and components of daVinciNet, its implementation and training
strategies, and an evaluation of its performance. The work presented in this chapter
was described in publications [94, 96].

5.1 Model architecture
An end-to-end joint prediction model (denoted as daVinciNet) that concurrently
predicts the end-effector trajectories and the surgical states during an RAS procedure
is proposed in Fig. 5.2. At time step C, daVinciNet extracts temporal features from
each data source for an observation window with duration )>1B, and uses these
features to make concurrent multi-step predictions of the instruments’ end-effector
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Figure 5.1: Six levels of autonomy in medical robotics. Example applications or
analogies are listed for each level [125].

Figure 5.2: The daVinciNet model architecture. Given synchronized endoscopic
video, robot kinematics and system events data streams, the model uses multiple
encoders and Fusion-KVE to extract visual, kinematics, and states features. The
concatenated feature tensor &&& is used for both instrument trajectories and surgical
state predictions. The state sequence, in addition to &&&, is a part of the input of the
surgical state prediction model. Both prediction tasks rely upon an attention-based
LSTM decoder . The example is shown with data sampled at 10 Hz.

Endoscopic
Vision

Kinematics

State
Sequence

Figure 5.3: Samples of input data sources to daVinciNet.
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3D Cartesian trajectories and a prediction of the fine-grained surgical states from
C + 1 to )?A43 , where )?A43 is the number of prediction steps. More specifically,
endoscopic video and robot kinematics features were used to construct a feature
tensor&&&C for the end-effector trajectory prediction. Fusion-KVE - the fine-grained
state estimation model described in Chapter 4 - was introduced in addition to &&&C
for the fine-grained surgical state prediction. Samples of input data sources are
shown in Figure 5.3. The prediction module resembles the structure of an encoder-
decoder LSTMmodel with an attention mechanism. The following subsections first
describe the feature extraction and prediction modules, and then the training details
and strategies of the model.

Global and local vision feature extractions
The surgical background of endoscopic video data during RAS is complex and
dynamic. While it contains rich information about the current surgical scene, a
high level of noise and nuisance is inevitable; however, as seen in Tables 2.1, 2.2,
and 2.4, most fine-grained surgical states are associated with surgeon actions which
occur around the end-effectors of the surgical instruments in the endoscopic view.
Additionally, the trajectory of the instruments, as seen by the user, should also be
more correlated to the surrounding area of the end-effectors than other areas in the
endoscopic view. It is therefore beneficial to extract both global and local visual
features of the endoscopic video. The local visual features should focus on the
visual areas surrounding the surgical instruments’ end-effectors.

I therefore developed a novel endoscopic video feature extraction module that ex-
tracts visual features at both global and local levels. The global endoscopic vision
feature at time step C was extracted following the same procedure in Section 4.1,
in which a VGG16 model maps ��� C ∈ R224×224×3 to a vector ---6;>10;C ∈ R#6;>10; . As
daVinciNet aims to predict the fine-grained surgical state up to )?A43 time steps into
the future, the VGG16 model initialized with ImageNet pre-trained weights was
fine-tuned with one FC layer for surgical state prediction at time step C + )?A43 − 1.

Local endoscopic video features are extracted from the area in the endoscopic view
around the surgical instruments’ end-effectors. These areas are the Regions of In-
terest (RoIs) of an endoscopic view, and were determined with a silhouette-based
surgical instrument tracking model as described in Section 2.3. The instrument
tracking model was individually trained with an extensive RAS image dataset and
frozen prior to the training of daVincinet. It provided the coordinates of bounding
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boxes surrounding the end-effectors of all surgical instruments in the current en-
doscopic view. These bounding boxes were then the input to the CNN model as
described in Section 2.3, which generates spatial RoI feature vector ---'>�C ∈ R#'>� .

Temporal feature extraction via encoding
Instead of directly using the temporal concatenation of endoscopic vision CNN
features or raw kinematics data as described in [64, 65, 126], I drew inspiration
from vision-based human path prediction [3, 68] and implemented two LSTM-
based encoders to capture the endoscopic video and robot kinematics time series
data’s temporal dependencies.

Two endoscopic video feature encoders extracted the global and local spatial vision
features as described in the previous subsection, respectively. Given CNN features
---
6;>10;
C = (GGG6;>10;

C−)>1B+1, ..., GGG
6;>10;
C ) with GGG6;>10;C ∈ R#6;>10; , a forward LSTM encoder

maps the hidden state ℎℎℎ6;>10;C from GGG
6;>10;
C with:

ℎℎℎ
6;>10;
C = !()" (ℎℎℎ6;>10;

C−1 , GGG
6;>10;
C ), (5.1)

where ℎℎℎ6;>10;C denotes the hidden state, and contains global temporal features from
the endoscopic video at time step C. The concatenated encoder hidden states
���
6;>10;
C = (ℎℎℎ6;>10;

C−)>1B+1, ..., ℎℎℎ
6;>10;
C ) ∈ R)>1B×=6;>10; forms a part of the feature ten-

sor &&&C . The dimension of the hidden states is denoted as =6;>10; . Following the
same method, another LSTM encoder generated ���'>�

C ∈ R)>1B×='>� which contains
RoI temporal features and is also a component of &&&C . The dimension of the RoI
features’ hidden states is ='>� .

To extract kinematics features from various types of surgical instruments’ kinematics
inputs (end-effectors’ translational and rotational positions, etc.), and capture the
long-term data structure, I followed the work of [91] and implemented an LSTM
encoder with input attention to identify the importance of different driving time
series data streams. At time C, the kinematics input to the kinematics LSTM encoder
is --- :8=C = (GGG:8=

C−)>1B+1, ..., GGG
:8=
C ), where GGG:8=C ∈ R; and ; is the number of kinematics

variables. Instead of deriving ℎℎℎ:8=C directly from Eq. (5.1) as was done for the
endoscopic video data, I constructed the input attention mechanism by learning a
multiplier vector that represents the weights of each input series at time C from the
previous hidden state ℎℎℎ:8=

C−1 and the LSTM unit’s cell state 222:8=
C−1:

VVV8C = B> 5 C<0G(D)4 C0=ℎ(,,, 4 (ℎℎℎ:8=C−1, 222
:8=
C−1) ++++ 4GGG

:8=,8)), (5.2)
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where GGG:8=,8 ∈ R)>1B is the i-th kinematics input series (1 ≤ 8 ≤ ;). D4,,,, 4 and +++ 4
are learnable parameters. The weighted kinematics input at time C is then:

G̃GG:8=C =

;∑
8=1

V8CGGG
:8=,8
C , (5.3)

which substitutes GGGC in the kinematics feature encoder. The encoded hidden states
���:8=
C = (ℎℎℎ:8=

C−)>1B+1, ..., ℎℎℎ
:8=
C ) ∈∈ R)>1B×=:8= is the final component of feature tensor&&&C .

Instrument trajectory and surgical state predictions via decoding
After encoding, a feature tensor &&& = (@@@C−)>1B+1, ..., @@@C) ∈ R)>1B×(=6;>10;+='>�+=:8=) is
available. LSTMdecoders were implemented to predict the 3DCartesian instrument
paths in the endoscopic reference frame after up to )?A43 steps ahead (HHHC ∈ R)?A43×3)
and future states (BC ∈ R)?A43 ), respectively.

As described in Section 2.3, despite its improvement from simple RNN models, an
LSTM model still suffers from performance deterioration as the input sequences’
length increases. Temporal attention [9] was introduced to alleviate such deteriora-
tion. The additive attention mechanism described in Section 2.3 was implemented
in daVinciNet’s LSTM decoders. The attention mechanism allows the decoders to
use relevant hidden states among all time-steps from &&& in an adaptive manner. At
time step C, the temporal attention weights UUU ∈ R)>1B was extracted with the method
described in Section 2.3 and Eq. 2.3. The weighted feature @̃@@C =

∑)>1B
9=1 U

9
C @@@

9
C and

the historic target sequences (3-D end-effector path HHH or estimated surgical state B)
from C − )>1B + 1 to C were used to extract the target embedding following [68]:

H̃HHC−1 =,,,3 (@̃@@C−1, HHHC−1) ++++ 3 , (5.4)

where variables,,,3 and+++ 3 are learned. The update of the decoder hidden state 333C
is:

333C = !()" (333C−1, [H̃HHC−1, @̃@@C]), (5.5)

after which the end-effector trajectory predictions ĤHHC are computed by a fully con-
nected (FC) layer.

The probability vector BBB for surgical state prediction can be similarly derived, and
the state prediction B̂C ∈ R)?A43 is the future state sequence, with each state having the
maximum likelihood among all states at each time-step. The historic sequence of
surgical state (BC−)>1B+1) was used in addition to&&&C for the fine-grained surgical state
prediction. Fusion-KVE from Chapter 4 - a unified surgical state estimation model
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- replaced the ground truth (GT) state sequence. This approach enables real-time
applications for daVinciNet.

During an RAS procedure, the surgical state prediction model does not have access
to the manually-labeled historic surgical state sequence; therefore, a state estimation
model must provide the historic state sequence. The accuracy of the state estimation
model therefore affects the fine-grained surgical state prediction performance. By
incorporating Fusion-KVE, which outperformed state-of-the-art fine-grained surgi-
cal state estimation methods, the negative effect on prediction performances caused
by state estimation errors is reduced.

5.2 Implementation and training strategies
The training of the global endoscopic video feature extractor followed the same
strategies as described in Section 4.2, with #6;>10; = 1024 CNN features extracted.
��� C was the input to the instrument tracking model to determine the RoIs (area
surrounding the end-effectors of all surgical instruments) of the current endoscopic
view. Specifically, the CNN architecture for RoI feature extraction consisted of two
convolutional layers with ReLU [84] activation. #'>� = 100 CNN features were
extracted. Both the global vision feature encoder and the local vision encoder had
=6;>10; = ='>� = 32 hidden states. The kinematics encoder had =:8= = 32 hidden
states.

Both the trajectory prediction decoder and the surgical state prediction decoder
were implemented with 96 hidden states after a grid search for parameters. A = 6
variables (3D end-effector paths for two PSMs)were predicted for the JIGSAWSdata
set, while A = 12 variables were predicted for the RIOUS+ dataset (3D end-effector
paths for four USMs). Multi-step predictions were implemented, with )>1B = 20
and <0G()?A43) = 20 for data streaming at 10Hz.

The trajectory loss function is the cumulative !2 loss between the predicted end-
effector trajectory and the ground truth trajectory, summed up from )>1B + 1 to
)?A43:

!CA0 9 =

)?A43∑
C=)>1B+1

(ĤHHC − HHHC)2, (5.6)

which includes the prediction accuracy of multiple time steps into the future. The
state estimation loss function is the cumulative categorical cross-entropy loss that
accounts for the discrepancies between the predicted surgical states and the ground
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truth:

!BC0C4 =

)?A43∑
C=)>1B+1

−;>6( 4 B̂C∑=BC0C4
8=1 4BC ,8

), (5.7)

where =BC0C4 is the total number of fine-grained surgical states. daVinciNet was
trained end-to-end with the goal of minimizing a loss function that accounts for both
the trajectory prediction accuracy and state prediction accuracy:

! = d!CA0 9 + (1 − d)!BC0C4, (5.8)

where d weights the trajectory loss and surgical state loss functions. d = 0.5 was
used during the training of the results described below.

5.3 Model performance and results discussions
daVinciNet’s performance was evaluated with the JIGSAWS suturing dataset [32]
and the RIOUS+ dataset [96] with the Leave One User Out method for validation
[32]. Multi-step end-effector trajectory and fine-grained surgical state predictions
were performed for various time spans in order to realize a comprehensive model
performance evaluation. Specifically, the model performance was evaluated with
)?A43 ranges from 0.1s to 2s with a 0.1s increment. Ablation studies [79] were
also performed to identify the contributions of various types of features used in
both prediction tasks. To the best of our knowledge, there is no current benchmark
for surgical instrument trajectory or surgical state predictions. daVinciNet was
therefore compared with its own ablated versions to showcase its robustness and the
necessity of its architectural and design components. In the following subsections,
the evaluation metrics and model performances are described and discussed.

Evaluation metrics and model performances
The end-effector trajectory predictor and surgical state predictor were evaluated sep-
arately. Three types of metrics were used to evaluate the accuracy of daVinciNet’s
end-effector trajectory prediction: Root Mean Squared Error (RMSE), Mean Abso-
lute Error (MAE), and Mean Absolute Percentage Error (MAPE) [90, 91]:

'"(� =

√∑#
8=1(H8 − Ĥ8)2

#

"�� =

∑#
8=1 |H8 − Ĥ8 |

#

"�%� =

#∑
8=1

���� H8 − Ĥ8H8

���� × 100%.

(5.9)
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Since RMSE and MAE are independent of the variables’ absolute values, they pro-
vide an intuitive comparison among variables in the same dataset. MAPE calculates
the percentage error; therefore, it provides a direct comparison between predic-
tion accuracies across different datasets. To evaluate the surgical state prediction
accuracy, I calculated the percentage of accurately predicted frames in the testing
sequences following [65, 96]. Both trajectory and state predictions are performed in
a multi-step manner for up to 2-second into the future (<0G()?A43) = 20 for 10Hz
data streams). For each prediction time-step, the evaluation metrics are based only
on the prediction at that time-step, without accounting for the errors in previous
prediction steps.

As an example, daVinciNet’s end-effector trajectory prediction and surgical state
prediction performance when the prediction time-step is 1 second ()?A43 = 10) is
shown in Tables 5.1 and 5.2, respectively. Fig.5.4 and Fig.5.5 illustrate how the
model performance changes at various prediction time-steps from 0.1s to 2s. Both
figures and tables also include the performance of ablated versions of daVinciNet
as compared to the performance of the unablated model. Fig. 5.6 shows a sample
surgical state sequence of the ultrasound imaging task in the RIOUS+ dataset.
Surgical state prediction results when )?A43 = 10 using daVinciNet as well as
ablated versions of it were compared to the manually annotated ground truth.

Discussion
Table 5.1 compares the differences in end-effector path prediction accuracy when
daVinciNet uses only kinematics features ���:8=, global endoscopic vision and kine-
matics features {���6;>10; ,���:8=}, and a full feature tensor&&& = {���6;>10; , ���'>� , ���:8=}.
The accuracy of end-effector trajectory prediction in the endoscopic reference frame
was evaluated, along with the end-effector distance 3 =

√
G2 + H2 + I2 from the ori-

gin (camera tip). daVinciNet predictions based on all data streams consistently
achieve up to 20% better performance. Clearly, endoscopic video features con-
tribute to better prediction of the end-effector trajectory in the endoscopic reference
frame. Many instrument movements have advanced visual cues, e.g., suture pulling
usually occurs after the needle tip has appeared on the suturing pad or tissue. Visual
features, such as the distance between the end-effector and nearby tissue, also help
in the prediction of trajectory changes. Therefore, including visual features, espe-
cially RoI information about the surrounding area of end-effectors, is helpful to the
trajectory prediction task.
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JIGSAWS Suturing dataset

x_1 y_1 z_1 d_1 x_2 y_2 z_2 d_2

���:8=

RMSE 2.81 2.42 3.28 4.16 3.8 4.26 4.75 5.92
MAE 2.19 1.95 2.86 3.7 3.42 3.91 4.31 5.34
MAPE 6.8 6.09 7.39 8.93 7.77 8.03 8.2 10.14

{���6;>10; , ���:8=}
RMSE 2.7 2.29 3.25 4.01 3.65 4.01 4.63 5.2
MAE 2.17 1.88 2.79 3.5 3.15 3.7 4.16 4.76
MAPE 6.73 5.88 7.18 8.44 7.05 7.5 7.91 9.27

&&&

RMSE 2.53 1.89 2.96 3.35 3.15 3.5 3.91 4.51
MAE 2.07 1.51 2.46 3.09 2.78 3.06 3.5 4.17
MAPE 6.43 4.72 6.35 7.46 6.13 6.11 6.67 7.95

RIOUS+ dataset

x y z d

���:8=

RMSE 1.67 1.8 1.22 2.3
MAE 1.45 1.62 1.24 2.06
MAPE 1.89 2.62 1.76 2.17

{���6;>10; , ���:8=}
RMSE 1.67 1.7 1.18 2.1
MAE 1.33 1.52 1.12 1.91
MAPE 1.7 2.43 1.57 2.01

&&&

RMSE 1.23 1.41 1.08 1.98
MAE 1.09 1.34 0.97 1.64
MAPE 1.31 2.16 1.1 1.72

Table 5.1: End-effector trajectory prediction performancemeasures when predicting
one second ahead ()?A43 = 10). The prediction performances for the Cartesian end-
effector path in the endoscopic reference frame (G, H, I) and 3 =

√
G2 + H2 + I2

are compared when the trajectory prediction decoder uses only kinematics features
(���:8=), uses global endoscopic video and kinematics features ({���6;>10; ,���:8=}), and
uses global endoscopic video, RoI, and kinematics features (&&&).

Input data JIGSAWS Suturing dataset (%) RIOUS+ dataset (%)
Q only 64.11 65.44

Fusion-KVE only 75.08 76.5
Q+Fusion-KVE 84.3 91.02

Table 5.2: Surgical State Prediction performance when predicting one second ahead
()?A43 = 10). Prediction performance is compared when the state prediction decoder
uses only the feature tensor (&&& only), only the historic state sequence (Fusion-KVE
only), and both (&&&+Fusion-KVE) as its input data source.
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Table 5.2 investigates the surgical state prediction accuracy with only &&&, only
the historic state estimation results, or both as input features. The significant
improvement in state prediction accuracy that arises from the incorporation of both
data sources supports our model design and data selection. As mentioned in the
previous section, daVinciNet does not have access to the manually annotated ground
truth state sequence in real-time prediction. The high prediction accuracy using an
estimated state sequence also shows the robustness of our model in real-time state
prediction. It also serves as evidence of the accurate state estimation performance
of Fusion-KVE.

Fig.5.4 shows how the surgical instruments’ end-effector trajectory prediction ac-
curacy changes with increasing prediction time-steps. I compared the trajectory
prediction MAE when the feature tensor used for trajectory prediction includes only
���:8=, {���6;>10; , ���:8=}, or all three types of features, &&&. For the JIGSAWS suturing
dataset, the MAE of the left (31) and right (32) instruments were averaged and
shown. The use of RoI endoscopic video features consistently decreases the trajec-
tory prediction MAE and improves the model performance. This trend is especially
significant at larger prediction steps. This observation reaffirms the earlier discus-
sion that the visual features and advanced visual cues concentrated in RoIs were
detected by the RoI feature encoder and contributed to the end-effector trajectory
prediction.

Fig.5.5 shows the progress of surgical state prediction accuracy as the predic-
tion time-step increases. For fine-grained surgical state prediction, I compared
daVincinet’s performance when the state prediction decoder is based only on &&&,
only on the historic state sequence estimated by Fusion-KVE, and both. The ab-
lated prediction models were constructed with the @̃@@ or HHH term omitted from Eq.
5.5, respectively. When the feature tensor &&& was the only available data source to
the surgical state prediction decoder, the state prediction accuracy is constantly the
lowest and exponentially decreases as the prediction time-step increases. Due to the
absence of the historic target series (the historic surgical state sequence), the state
prediction model could only rely on predicted state sequences from previous time-
steps to make the next prediction. This caused compounding errors, as previous
prediction errors affected the next state prediction with little correction.

When the state prediction decoder incorporates the historic state estimation sequence
generated by Fusion-KVE, the surgical state prediction accuracy was improved,
especially at large prediction steps, since the target series provided corrections to
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Figure 5.4: Comparisons of model performance as different features are included for
the end-effector trajectory prediction at various prediction time steps. daVinciNet
was constructed with only kinematics features (���:8=), global endoscopic video
features and kinematics features ({���6;>10; , ���:8=}), and global endoscopic video,
RoI, and kinematics features (&&&). <40=("��31+"��32) and"��3 were plotted
for the JIGSAWS suturing dataset and the RIOUS+ dataset, respectively.

previous prediction errors. As shown by the black curve in Fig. 5.5, the surgical state
predictions were performed without advanced visual or kinematic cues that indicate
state changes from the feature tensor&&&. The surgical state predictor could therefore
only depend on the target series with no additional inputs. The improvement in
prediction accuracy was therefore limited. By incorporating both the feature tensor
&&& and the historic surgical state sequence from Fusion-KVE, advanced cues from
visual and kinematics features were used to forecast state changes, and the historic
state sequence provided corrections to prediction errors. The full daVinciNet model
therefore achieves the highest fine-grained surgical state prediction accuracy that is
significantly maintained as prediction time-step increases.

The sample sequence of ultrasound imaging fine-grained surgical state prediction
results seen in Fig. 5.6 further supports the inclusion of both the feature tensor &&&
and Fusion-KVE output for the surgical state prediction. Prediction errors occur
in blocks when only &&& is used for prediction due to uncorrected errors from using
predicted state sequences from previous time-steps. A model using only the historic
state sequence showed fewer errors in consecutive time blocks; however, the missing
input of endoscopic visual or kinematics cues in the feature tensor&&& led to delayed
responses to state changes, or even the missing of states with relatively shorter dura-
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Figure 5.5: Model performance comparison when different features are included for
the surgical state prediction at various prediction time steps. The state prediction
decoder was constructed with only the feature tensor (&&& only), only the historic fine-
grained surgical state sequence (Fusion-KVEonly), and both (&&&+Fusion-KVE)were
plotted for the JIGSAWS suturing dataset and the RIOUS+ dataset, respectively.

79.1

91.3

94.2

67.7

% accurate frames
Q only

Fusion-KVE only

Q+Fusion-KVE

Ground Truth
Annotation

discrepancies

Figure 5.6: A sample surgical state sequence from the RIOUS+ dataset and the
1-second state prediction results using only the feature tensor (QQQ only), only the
historic state sequence (Fusion-KVEonly), both (QQQ+Fusion-KVE), and themanually
annotated ground truth. Each block bar contains the state prediction results when
)?A43 = 10 (top). The discrepancies between the prediction results and the ground
truth are shown in red. The annotation discrepancies row (bottom) shows the
locations of frames where multiple annotators used different state labels, with the
mean matching rate of 94.2% among annotators.
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tion. The model that incorporated both&&& and and the Fusion-KVE estimation result
sequence significantly improved the state prediction accuracy, with the remaining
errors located mostly around state transitions.

Additionally, since the temporal annotations of surgical states were done manually
by humans in both the JIGSAWS suturing dataset and the RIOUS+ dataset, I in-
vestigated the annotation variance in the ground truth state sequence introduced by
human annotators. Five users were asked to annotate the sample sequence in Fig.
5.6 frame-by-frame with fine-grained surgical states in Table 2.2. The discrepancies
among annotations are shown in the bottom row of Fig.5.6, with an average match-
ing rate of 94.2% among annotators. Even human annotators cannot agree perfectly
on a state sequence: their discrepancies occur mostly at state transitions. These
discrepancies are expected, as the transition from one state to another in a surgical
subtask is not abrupt, but gradual. Hence, annotators may identify different video
frames as a state transition. The fine-grained state prediction errors of daVinciNet
can therefore be partially attributed to human annotation errors in identifying the
exact state transition times. Thus, daVinciNet’s robustness is further established by
its high state prediction accuracy even in the presence of noise in the ground truth
data.

5.4 Conclusions
This Chapter focused on the real-time prediction of variables that are crucial to AI
applications in RAS, including the surgical instruments’ end-effector trajectories in
the endoscopic viewing frame and the future fine-grained surgical states. I proposed
daVinciNet: a unified end-to-end joint prediction model that uses synchronized
sequences of robot kinematics, endoscopic vision, and system events data as input
to concurrently predict the surgical instrument trajectories and fine-grained surgical
states. Our model achieves accurate predictions of the end-effector path, with dis-
tance error as low as 1.64mm andMAPE of 1.72% when predicting the end-effector
location 1 second in the future. The surgical state estimation accuracy achieved
by daVinciNet is up to 91.02%, and compares well with human annotator accuracy
of 94.2%. By accurately predicting the end-effector trajectory and surgical states
in datasets with various experimental settings and complex surgical backgrounds,
daVinciNet proved its robustness in realistic RAS tasks.

The necessity and advantages of including multiple data sources for the joint pre-
diction task was illustrated by comparing the performance of the full daVinciNet
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model against versions of it that received only certain types of input data. Improved
performance arises, for instance, because many instrument movements have visual
features and advanced cues that can be captured by daVinciNet’s endoscopic vision
feature extraction module. Including a full feature tensor with the historic fine-
grained surgical state sequence also significantly improves the accuracy of surgical
state prediction,comparing to only using one type of input. Richer information
regarding surgical states can be extracted from multiple encoders, which can lead
to more accurate predictions. I also showed the sizeable contribution of RoI endo-
scopic visual features to both the end-effector trajectory prediction and the surgical
state prediction performances. daVinciNet incorporated a silhouette-based instru-
ment tracking algorithm to identify the RoIs in the current endoscopic view (the
surrounding areas of the surgical instruments’ end-effectors). Additionally, the ap-
plications of existing surgical scene-understanding models (Fusion-KVE) allowed
us to achieve better performances in surgical state prediction.
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C h a p t e r 6

LEARNING INVARIANT REPRESENTATION OF TASKS FOR
ROBUST SURGICAL STATE ESTIMATION

Fine-grained surgical states, with their inherently frequent and spontaneous state
transitions during real-world RAS procedures, are challenging to recognize, espe-
cially in real-time. In previous chapters, it has been shown that the incorporation
of multiple types of input data, including the robot kinematics, endoscopic vision,
and system events, can improve the fine-grained surgical state estimation accuracy.
With the emergence of deep learning-based surgical state estimation models, how-
ever, additional challenges arose as they rely heavily on the datasets for model
fitting/training. Limitations in the dataset can be propagated (and perhaps ampli-
fied) to the estimator, possibly resulting in a lack of robustness and cross-domain
generalizability, which is crucial for the safety-critical field of medicine.

Prior to this thesis work, most currently available RAS datasets were extremely
limited in dataset size and were derived from highly uniform tasks performed using
the same technique in only one setting. The JIGSAWS dataset, for example, contains
the task of suturing obtained only in a bench-top setting with suturing performed on
marked pads. Valuable anatomical background visual information during a surgery
is not present in the training data, which may lead to errors when a fine-grained
surgical state estimator trained on it is applied in real-world surgeries. Another
important factor for a more realistic RAS dataset is the endoscope motion, which
is frequent and spontaneous during real-world RAS. Surgical state estimators that
were trained on datasets devoid of any endoscope motion do not generalize well
to new endoscopic views. Additionally, users in existing surgical activity datasets
typically perform the task with the same technique, or were instructed to follow
a predetermined workflow, which limits the technique variability among trials.
During an RAS, however, different surgeons might have diverse preferred styles and
techniques to perform the same surgical task. These limitations can cause surgical
state estimators to overfit to the techniques presented during training. During the
deployment of the trained system, inaccurate associations between surgical states and
specific instrument placements and visual layout can occur, resulting in significant
errors.
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In real-world RAS, endoscope lighting and angles, surgical backgrounds, and patient
health conditions vary considerably even for the same type of procedures, as do
surgical state transition probabilities. These variations are considered as examples
of potential nuisance factors that increase the training difficulty of a robust surgical
state estimation model. Additionally, surgeons may employ diverse techniques to
perform the same surgical task depending on the patient condition and their own
preferences. The limited size of real-world RAS datasets, coupled with their high
variability, presents significant challenges to the development of data-driven surgical
state estimation methods. While the effects of nuisances and technique variations on
surgical state estimation accuracy can be reduced by training the model with a large
and diverse real-world dataset, such datasets are costly to acquire. The combination
of limited data and high diversity calls for more robust state estimation training
methods, as state-of-the-art methods are not accurate enough for adoption in the
safety-critical field of RAS.

This chapter attacks this problem through Invariant Representation Learning (IRL)
[123], which has been an active research topic in computer vision, where robustness
is achieved through invariance induction [1, 47, 48, 123, 128]. Specifically, I
developed a robust and accurate fine-grained surgical state estimation framework
(denoted as StiseNet) that is largely invariant to nuisances and variations in surgical
techniques. Through an adversarial model design that pits two composite deep
learning models against each other during training, StiseNet yields an invariant
latent representation of the endoscopic video, robot kinematics, and system event
data during RAS for fine-grained surgical state estimation. Through the competitive
training of state estimation and input data reconstruction, and the disentanglement
between essential information for state estimation and nuisance factors, StiseNet
learns a split representation of the input data. The influence of surgeon technique
is excluded by adversarial training between state estimation and the obfuscation
of a latent variable representing the technique type employed. StiseNet’s training
does not require any additional annotation apart from the target variable (surgical
states). In the following sections, the mechanism of invariance induction through
adversarial training, our model design that achieves invariance induction during
RAS, and the model’s performances are discussed. The work presented in this
chapter was described in publications [94, 95].
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6.1 Invariance induction through adversarial training
One of the most popular and commonly seen forms of supervised machine learning
application is the association between data (features) and labels (target variables).
This process involves decomposing the features into factors of variation [47] and
learning its correlations with the target variables. The nuisance factors in the data,
however, may be incorrectly associatedwith the target variables and cause the trained
model to overfit and/or have poor generalizability. For example, when training a
hand-written digit recognition model with pictures of hand-written numbers, the
variation in lighting conditions of the training images is a nuisance factor.

Various techniques have been proposed to combat the problem of nuisance factors, as
such noises are commonly present in the data. Feature selection - either manually or
through model design such as pooling strategies - is an effective method to eliminate
nuisance factors from data [16]. Data augmentation such as re-scaling/rotating
images or adding various types of noises is another popular method widely adapted
in the computer vision and deep learning research community [56]. These relatively
naivemethods, however, require a significant amount of manual efforts or a large and
diverse dataset; therefore, they are less scalable in the current era of deep learning
research. Additionally, these methods only eliminate or reduce the effect or certain
and targeted types of nuisance factors.

Invariance induction was another widely adapted method to reduce the negative
effect of nuisance factors [1, 4, 48]. The invariance induction to nuisance factors is
achieved through the learning of a latent representation of the data that is invariant
to nuisance and does not contain information about these factors. Zemel et al.
proposed a supervised adversarial model to achieve the fair classification under the
two competing goals of encoding the input data correctly and obfuscating the group
to which the data belongs [128]. A regularized loss function using information
bottleneck also induces invariance to nuisance factors [1]. Jaiswal et al. described
an adversarial invariance framework in which nuisance factors are distinguished
through disentanglement [48], and bias in the data that are associated with the target
variable is distinguished through the competition between goal prediction and bias
obfuscation [47]. Previous work on IRL via adversarial invariance in time series
data have focused mostly on speech recognition [44, 89].

RAS data, arising from multiple sources, provides a new domain for IRL of high-
dimensional noisy time series data. Fine-grained surgical state estimation can be
made invariant to irrelevant nuisances and surgeon techniques if the latent represen-
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Notation Description

���
Concatenated endoscopic video, robot kinematics, and event features

��� = {ℎℎℎE8B, ℎℎℎ:8=, ℎℎℎ4EC}
B Surgical state

)>1B Observational window size
4441 All factors pertinent to the estimation of B

4442
All other factors (nuisance factors), which are of

no interest to goal variable estimation [12]
; Latent variable (type of surgical technique)
3 Mean silhouette coefficient quantifying clustering quality
E Encoder encodes ��� into 4441 and 4442
M Estimator infers B from 4441
k Dropout
R Reconstructer attempts to reconstruct ��� from [k(4441), 4442]
f1 Disentangler infers 4442 from 4441
f2 Disentangler infers 4441 from 4442
D Discriminator estimates ; from 4441

Table 6.1: Key variables, concepts, and notations used in StiseNet.

tation of the input data contain minimal information about those factors [123]. To
effectively learn such invariant latent representation, I adopt an adversarial model
design loosely following Jaiswal et al. [47], but with model architectures more suit-
able for time series data. Jaiswal et al.’s adversarial invariance framework for image
classification separates useful information and nuisance factors, such as lighting
conditions, before performing classification. StiseNet extended this idea by separat-
ing learned features from RAS time series data into desired information for surgical
state estimation (4441) and other information (4442). Estimation was then performed
using only 4441 to eliminate the negative effects of nuisances and variations in surgical
techniques. LSTM computational blocks were used for feature extraction and sur-
gical state estimation. An LSTM model learns memory cell parameters that govern
when to forget/read/write the cell state and memory [24]. They therefore better
capture temporal correlations in time series data. In the following subsections, I de-
scribe StiseNet’s model architecture, our invariance induction mechanisms, and our
training strategies. Table 6.1 lists the key concepts and notations that are important
to the understanding of the model’s framework.

Spatial and temporal feature extractions
Fig. 6.1 depicts the extraction and encoding of features from the endoscopic video,
robot kinematics, and system events data in an RAS dataset used in StiseNet. As
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Figure 6.1: Features ℎℎℎE8B, ℎℎℎ:8=, and ℎℎℎ4EC are respectively extracted from endoscopic
vision, robot kinematics, and system events. A semantic mask is appended to the
endoscopic vision data to form an RGB-Mask vision input.

described in Chapter 2, at the stage of endoscopic video spatial feature extraction,
various methods could be applied to reduce the negative effect of environmental
distractions and complexity in the surgical background. In StiseNet, a separately
trained and frozen surgical scene segmentation model based on U-Net [98] was
implemented to extract a pixel-level semantic mask for each endoscopic video
frame. The derivation of the U-Net model was described in Section 2.3. Three
scene classes were used: tissue, surgical instruments, and others. Although a
semantic mask of the current endoscopic video frame eliminates the environmental
variability in the surgical background, it also omits potentially important features
that are important to fine-grained surgical state estimation as each pixel of the video
frame was assigned to one in only three categories. To balance the complexity of
a raw endoscopic image and the simplicity of its semantic mask, I concatenated
the semantic mask to the unmodified endoscope image as a fourth image channel.
This RGB-Mask image ��� C ∈ Rℎ×F×4 was then the input to extract spatial endoscopic
video features GGGE8BC , since a condensed surgical scene representation can be taken
advantage of by adapting U-Net weights of the semantic segmentation model trained
on a large endoscopic image dataset. An LSTMencoder was implemented to capture
the temporal correlations in visual CNN features. This helps the visual processing
system to extract visual features that evolve in time. At time C, a visual latent state,
ℎℎℎE8BC ∈ R=E8B , is extracted with the LSTM model.

At time step C, the robot kinematics temporal features are extracted using an LSTM
encoder with both input attention mechanism [91] and temporal additive attention
mechanism [118] to identify the important kinematics data types [94]. Following
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Figure 6.2: StiseNet’s training architecture. Symbols for the estimator components
%1 = {E,M,R} are red, the adversarial component %2 = {f1, f2,D} is blue, and
training loss calculations are black. %2 implements invariance to nuisance (yellow
shading) and surgical techniques (pink shading). RAS data features ��� are divided
into information essential for state estimation, 4441, and other information 4442. ��� is
reconstructed from k(4441) and 4442, where k is dropout.

the same method as Section 5.1, a multiplier VVVC , whose elements weight each type
of kinematics data, was learned as follows:

VVVC = B> 5 C<0G

{
DDD) C0=ℎ

(
,,, (ℎℎℎ:8=C−1, 222

:8=
C−1) ++++---

:8=
C

)}
, (6.1)

where ℎℎℎ:8=
C−1 is the latent state from the previous frame, 222:8=

C−1 is the LSTM cell state,
and --- :8=C = (GGG:8=

C−)>1B+1, ..., GGG
:8=
C ) denote the kinematic data inputs. DDD, ,,, , and +++ are

learnable parameters. The weighted kinematics data feature vector ℎℎℎ:8=C ∈ R=:8= is
calculated as:

ℎℎℎ:8=C = !()" (ℎℎℎ:8=C−1, VVVC · GGG
:8=
C ). (6.2)

The system event features ℎℎℎ4ECC are extracted via the same method as the robot
kinematics data.

Feature encoder and surgical state estimator
As shown in Fig. 6.2, an encoder E extracts useful information for fine-grained
surgical state estimation from the encoded feature data ���. If we assume that ��� is
composed of a set of factors of variation, then��� is composed of mutually exclusive
subsets:

• 4441: all the factors pertinent to the estimation of the goal variable (in this case,
the current surgical state B);

• 4442: all other factors (nuisance factors), which are of no interest to goal variable
estimation [12].
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Encoder E is a function trained to partition ���: [4441, 4442] = E(���). Specifically, an
FC layer was implemented to map ��� to 4441, and another FC layer to map ��� to 4442.
Once distinguished, the surgical state B at time C is estimated from the concatenation
of time series data of the useful signal {4441,C−)>1B+1, . . . , 4441,C}, where )>1B is the size
of the observation window. The fine-grained surgical state estimation was achieved
with an LSTM decoder with temporal attention mechanism following the same
method as described in Chapter 5. The LSTM decoder is denoted """ . By learning
the parameters in " using {4441,C−)>1B+1, . . . , 4441,C} instead of {���1,C−)>1B+1, . . . , ���1,C},
we avoided learning inaccurate associations between nuisance factors and the goal
variable (fine-grained surgical state B).

Learning an invariant representation
The invariance induction to nuisance and technique factors is learned via compe-
tition and adverseness between model components [37] (yellow and pink shaded
components in Fig. 6.2). While M encourages the pooling of factors relevant to
surgical state estimation in signal 4441, a reconstructor R (a function implemented
as an FC layer) attempts to reconstruct ��� from the separated signals 4441 and 4442.
Dropout k is added to 4441 to make it an unreliable source to reconstruct ��� [48].
This configuration of signals prevents a convergence to the trivial solution where
4441 monopolizes all information, while 4442 contains none. The mutual exclusivity
between 4441 and 4442 is achieved through adversarial training. Two FC layers f1 and
f2 are implemented as disentanglers. f1 attempts to infer 4442 from 4441, while f2 infers
4441 from 4442. To achieve mutual exclusivity, the information in 4441 should not be able
to infer 4442 or vise versa. Hence, the losses of f1 and f2 must be maximized. This
leads to an adversarial training objective [75]. The loss function with invariance to
nuisance factors is:

!=D8B0=24 = U!" (B,M(4441)) + V!' (���,R(4442, k(4441))) (6.3)

+ W
(
! 5 (4441, f1(4442)) + ! 5 (4442, f2(4441))

)
where U, V, and W respectively weight the adversarial loss terms [75] associated with
architectural components " , ', and disentanglers 51 and 52. The training objective
with invariance to nuisance factors is a minimax game [37, 74]:

min
%1

max
%2=D8B0=24

!=D8B0=24 (6.4)

where the loss of component %1 = {E,M,R} is minimized while the loss of
%2=D8B0=24 = {f1, f2} maximized.
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Besides the presence of nuisance factors, variability in ��� could also arise from
variability in surgical techniques. Variations in technique may not be entirely
separable by an invariance to nuisance factors, as they may be correlated to the
surgical state. StiseNet therefore adopts an adversarial debiasing design [129] that
deploys a discriminator D : 4441 → ; for surgical technique invariance. ; represents
the type of technique employed by the surgeon to perform a surgical task. ; is a
trial-level categorical attribute that is inferred by k-means clustering of kinematics
time series training data based on a dynamic time warping distance metric[102].
The clusters represent different surgical techniques used in the training trials. The
optimal number of clusters : is dataset-specific. To determine it, I implemented the
elbow method using inertia [30] and the silhouette method [100].

The inertia is defined as the sum of distances between each cluster member and its
cluster center[30] for all clusters. The inertia of a cluster � &� is:

&� =

#∑
8=1

q(8, 2�), (6.5)

where # is the number of samples in cluster �, q is the dynamic time warping
distance function, and 2� is the center of cluster �. The inertia decreases as :
increases. The elbow point (the point after which the inertia starts to decrease in a
linear fashion) of the inertia-: curve is a relatively optimal : value [30].

To calculate the silhouette coefficient 38 for time series 8 ∈ �� (i in the cluster ��), I
first calculate the mean distance between 8 and all other time series in cluster �� :

08 =
1

|�� | − 1

∑
9∈�� ,8≠ 9

q(8, 9), (6.6)

where |�� | is the number of time series in cluster �� . It is worth noticing that 08 is
a measure of how well 8 is assigned to its cluster [100]. The dissimilarity of time
series 8 to a cluster �� (� ≠ �) is defined as the mean of the distance from 8 to all
time series in �� . We define:

18 = <8=
�≠�

1
|�� |

∑
9∈��

q(8, 9) (6.7)

as the smallest mean distance of time series 8 to all points in the closest cluster. The
operation <8=

�≠�
represents the closest cluster to 8, of which 8 is not a member. The
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silhouette coefficient 38 is then defined as:

38 =


18−08

<0G(08 ,18) if |�� | > 1

0 if |�� | = 1
. (6.8)

I used the mean silhouette coefficient among all time series 3 to select : . 3 is a
measure of how close each data point in one cluster is to data points in the nearest
neighboring cluster. The : with the highest 3 is the optimal number of clusters
[100]. The loss function with invariance to both nuisance and surgical techniques
is then:

! = !=D8B0=24 + X!� (;,D(4441)) (6.9)

where X is the weight associated with the discriminator loss. The term %2 contains
an additional term: %̃2 = {f1, f2,D}:

min
%1

max
%̃2

!. (6.10)

6.2 Implementation and training strategies
The spatial feature extraction component of StiseNet was trained following a similar
strategy as described in Section 4.2. Specifically, the first three channels of the
top layer in U-Net visual feature map were initialized with the weights from the
surgical scene segmentation model that was previously trained and frozen. The
visual input was resized to ℎ = 256 and F = 256. The extracted features have
dimensions =E8B = 40, =:8= = 40, and =4EC = 4, which were determined after
a grid search of parameters. All data sources are synchronized at 10Hz with
)>1B = 20 B0<?;4B = 2B42. The optimal cluster number, : , for the JIGSAWS
suturing dataset, the RIOUS+ dataset, and the HERNIA-40 dataset were 9, 7, and 4,
respectively. The temporal clustering process was repeated to ensure reproducibility
due to the randomness in initialization. Details of the selection of the optimal : is
described in the following subsection.

StiseNet is trained end-to-end with the minimax objectives (Eq.s 6.4 or 6.10). The
categorical cross-entropy loss was used for !" and !� . ! 5 and !' aremean squared
error loss. k is a dropout [108] with the rate of 0.4, 0.1, and 0.4 for JIGSAWS,
RIOUS+, and HERNIA-40, respectively. To effectively train the adversarial model,
I applied a scheduled adversarial optimizer [37], in which a training batch is passed
to either %1 or %2 while the other component’s weights are frozen. The alternating
schedule was found by grid search to be 1:5.
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6.3 Performance evaluation and discussion
StiseNet’s performance was evaluated on the JIGSAWS suturing dataset, the RI-
OUS+ dataset, and the HERNIA-40 dataset. In addition to the comparison between
StiseNet’s performance against state-of-the-art fine-grained surgical state estima-
tion algorithms, ablation studies were performed to understand the necessity and
contributions of StiseNet’s components. In the following subsections, the model
evaluation details, performance, and the effectiveness of the adversarial model de-
sign are discussed.

Model evaluation metrics and ablation study
I used the percentage of accurately identified frames in a test set to evaluate each
model’s surgical state estimation accuracy. Model performance was evaluated in
both non-causal and causal settings. In a non-causal setting, the model can use
information from future time frames, which is suitable for post-operative analyses.
In a causal setting, the model only has access to the current and preceding time
frames. Surgical state estimation is harder in the causal setting; however, it is a
more useful evaluation metric for real-time applications. I used the source code
provided by the authors of the comparison methods when the model performance of
a particular setting or dataset was not available [24, 65] and performed training and
evaluation ourselves. The JIGSAWS suturing and RIOUS+ datasets were evaluated
using Leave One User Out (LOUO) [32], while HERNIA-40 was evaluated using
5-fold cross validation, since each trial’s surgeon ID is not available due to privacy
protection reasons.

The quality of the learned invariant representations of surgical states 4441 and other
information 4442 was visually examined. Arrays of 4441 and 4442 in each state instance
(a consecutive block of time frames of the same fine-grained surgical state) were
embedded in 2D space using the Uniform Manifold Approximation and Projection
(UMAP) algorithm [77] - a widely-adopted dimension reduction and visualization
method that preserves more of the global structure of the data.

StiseNet was also compared against its ablated versions: StiseNet-Non Adversar-
ial (StiseNet-NA), StiseNet-Nuisance Only (StiseNet-NO), and StiseNet-Technique
Only (StiseNet-TO). StiseNet-NA omitted the adversarial component P2 entirely
and uses ��� directly for surgical state estimation. StiseNet-NO separated useful
information and nuisance factors, but excluded the invariance to surgical techniques
(pink-shaded area in Fig. 6.2). StiseNet-TO included the invariance to techniques,
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JIGSAWS suturing RIOUS+ HERNIA-40a. b. c.

Figure 6.3: Normalized inertia (with respect to the maximum value) and mean
silhouette coefficient as functions of the number of clusters : for each dataset.
The vertical dotted line indicates the optimal : (the maximum mean silhouette
coefficient).

State ID Description
S1 Reach for the needle
S2 Position the tip of the needle
S3 Pushing needle through the tissue
S4 Pulling tissue with left hand
S5 Transferring needle from left to right
S6 Orienting needle
S7 Pulling suture with left hand
S8 Pulling suture with right hand
S9 Transferring needle from right to left
S10 Using right hand to tighten suture
S11 Adjusting endoscope

Table 6.2: State IDs and fine-grained surgical state descriptions for the "Close
Peritoneum" superstate in HERNIA-40 dataset.

but omitted the separation between 4441 and 4442. The ablation study demonstrates
the necessity of the adversarial model design and individual contributions of each
model component towards a more accurate fine-grained surgical state estimation.

Model performance and discussion
The determination of the latent variable ; used in StiseNet’s training, which repre-
sents the surgical techniques employed by the user in a trial, was through k-mean
clustering. As mentioned in the previous section, two parameters - the total inertia
and the mean silhouette coefficient 3 - were used to determine the most optimal
number of clusters : for each dataset. Fig. 6.3 plots for each dataset the total inertia
and 3 as functions of the number of clusters : . The optimal number of clusters :



82

Non-causal

Input data JIGSAWS RIOUS+ HERNIA-40
TCN[65] kin 79.6 82.0 72.1
TCN[65] vis 81.4 62.7 61.5

Bidir. LSTM[24] kin 83.3 80.3 73.8
LC-SC-CRF[63] vis+kin 83.5 - -
3D-CNN[31] vis 84.3 - -

Fusion-KVE[96] vis+kin+evt 86.3 93.8 78.0
StiseNet-NA vis+kin+evt 86.5 93.1 80.0
StiseNet-TO vis+kin+evt 88.1 88.9 81.8
StiseNet-NO vis+kin+evt 87.9 90.3 83.2
StiseNet vis+kin+evt 90.2 92.5 84.1

Table 6.3: Fine-grained surgical state estimation performance comparison in a non-
causal experimental setting. The JIGSAWS suturing dataset results did not include
system events.

Causal

Input data JIGSAWS RIOUS+ HERNIA-40
TCN[65] vis 76.8 54.8 58.3
TCN[65] kin 72.4 78.4 68.1

Forward LSTM[24] kin 80.5 72.2 69.8
3D-CNN[31] vis 81.8 - -

Fusion-KVE[96] vis+kin+evt 82.7 89.4 75.7
StiseNet-NA vis+kin+evt 83.4 88.9 77.3
StiseNet-TO vis+kin+evt 84.2 87.1 81.4
StiseNet-NO vis+kin+evt 84.1 88.9 81.0
StiseNet vis+kin+evt 85.6 89.5 82.7

Table 6.4: Fine-grained surgical state estimation performance comparison in a
causal setting. The JIGSAWS suturing dataset results did not include system events.

Mean Silhouette Coefficient

41 42
JIGSAWS suturing 0.43 -0.21

RIOUS+ 0.14 -0.13
HERNIA-40 0.33 -0.41

Table 6.5: The mean silhouette coefficients 3 of 4441 and 4442 of each graph. A larger
mean silhouette coefficient indicates better clustering quality.
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e1

e2

JIGSAWS RIOUS+ HERNIA-40

Figure 6.4: 2D UMAP plots of information enclosed in 4441 and 4442 at each state
instance. Top row: 4441 and 4442 segregates into distinguishable clusters, which
indicates little overlap in information between them. Middle row: Information in 4441
color-coded by surgical states clusters relatively neatly. Bottom row: Information
in 4442 is more intertwined and non-distinguishable by surgical states.

can be estimated from the elbow point of the inertia-: curve, or the : associated
with the maximum mean silhouette coefficient 3. I implemented both methods and
illustrate our choices of : in Fig. 6.3. The optimal : is easily identifiable for both the
JIGSAWS suturing dataset and the HERNIA-40 dataset (Fig. 6.3a and 6.3c), with
the largest 3 occurs near the "elbow" of the inertia-: curve. A peak in the RIOUS+
dataset mean silhouette coefficient curve is less evident (Fig. 6.3b). The optimal
number of clusters need not match the number of operators, as the inter-personal
characteristics are not the only accountable factor for the variations among trials.
Intra-personal variations can affect clustering. For instance, JIGSAWS contains
metadata corresponding to expert ratings of each trial [32]: the ratings fluctuate
among trials performed by the same surgeon. The optimal : determined by kine-
matics data is somewhat robust against patient anatomy; however, a highly unique
patient anatomy can lead surgeons to modify their maneuvers significantly. Such a
trial could fall into a different technique cluster.

Fig. 6.4 shows the UMAP visualizations of 4441 and 4442 for all fine-grained surgical
states in each dataset. Datapoints in Fig. 6.4 are the 2D projections of 4441 and 4442.
The first row shows that 4441 and 4442 separate neatly into two clusters for all datasets,
validating the effectiveness of disentanglers 51 and 52 since 4441 and 4442 contain little
overlapping information. Since 4441 contains useful information for fine-grained
surgical state estimation, while 4442 does not, 4441 should be better segregated into
clusters associated to each state. The second and third rows of Fig. 6.4 (color-coded
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by surgical state) show cleanly segregated clusters for 4441, while the 4442 projections
are not distinguishable by state. The mean silhouette coefficient for each graph
as shown in Table 6.5 also supports this observation. These observations strongly
suggest that each surgical state has a unique representation in 4441, while 4442 contains
little information useful for state estimation.

StiseNet’s surgical state estimation performance in the percentage of accurately
estimated frames was compared against various state-of-the-art fine-grained surgical
state estimationmethods and its ablated versions. Themodel performance are shown
in both non-causal (Table 6.3) and causal (Table 6.4) settings, respectively. StiseNet
yields an improvement in frame-wise surgical state estimation accuracy for the
JIGSAWS suturing dataset (up to 3.9%) and the HERNIA-40 dataset (up to 7%)
under both settings, which shows the necessity and effectiveness of the adversarial
model design.

The non-causal performance of StiseNet on the RIOUS+ dataset, however, is slightly
worse compared to our Fusion-KVE method as described in Chapter 4, which
does not dissociate nuisance or style variables. This result can be explained by
StiseNet’s model design and training scheme. The added robustness of StiseNet
against variations in background, surgical techniques, etc. comes at the cost of the
increased training complexity that is associated with the adversarial loss functions
and the minimax training. Surgeon techniques and styles vary in the JIGSAWS
suturing dataset, andmore significantly in theHERNIA-40 dataset. Nuisance factors
(tissue deformations, endoscopic lighting conditions and viewing angles, etc.) also
vary considerably among trials and users in the HERNIA-40 dataset. However, since
RIOUS+ users were instructed to strictly follow a predetermined workflow, there
are few nuisance and technique factors. The disentanglement between essential
information 4441 and other information 4442 was therefore less effective.

This hypothesis is supported by the observation that the dropout rate required for
StiseNet training convergence is 0.1 for the RIOUS+ dataset, whereas the training
processes with JIGSAWS suturing dataset and the HERNIA-40 dataset converged
with a dropout rate of 0.4, respectively. A lower dropout rate indicates that 4442

contains little information despite the dropout’s effort to avoid the trivial solution.
Additionally, the uniformity across RIOUS+ participants results in a nearly constant
mean silhouette coefficient (Fig. 6.3b). StiseNet’s invariance properties therefore
could not be fully harnessed, explaining its less competitive performance in RIOUS+
as compared to the real-world data of the HERNIA-40 dataset. As mentioned
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before, the superiority of StiseNet originates from its robustness against nuisance
and different styles, which is widely observed and significant in real-world RAS.
Moreover, when a training dataset does not mimic the complicated real-world RAS
scenarios with evident behavioral variations, it cannot take advantage of the full
potential of StiseNet. Rather, the state estimation performance suffers due to a more
complicated training scheme with a limited dataset. These notions explains the
deterioration of performance in the RIOUS+ dataset comparing to Fusion-KVE - a
simpler model.

Fig. 6.5 shows the high variability in HERNIA-40 data through sample sequences
from three technique clusters, each performed in a distinctively different style with
environmental variances. Invariance of StiseNet to nuisances and surgical tech-
niques is shown by its accurate surgical state estimations in the presence of visibly
diverse input data. In real-world RAS, surgeons may use different techniques to
accomplish the same task. Fig. 6.5 shows three sample HERNIA-40 trials with
distinctive suturing geometries: suturing from left to right, from right to left, and
back and forth along a vertical seam. These trials fall into three clusters during the
k-mean clustering process. Images from instances of states S3, S4, S5, S7, and S8 in
each trial (the state IDs and descriptions are shown in Table 6.2) are shown. These
images of different instances of the same state vary greatly not just in technique and
instrument layout, but also in nuisance factors such as brightness and endoscope
angles. Yet, StiseNet accurately estimates the surgical states due to its invariant
latent representation of the input data.

Fig. 6.6 shows a sample state sequence from the HERNIA-40 dataset and the
causal state estimation results using multiple methods, including a forward LSTM
model [24], Fusion-KVE, and the ablated and full versions of StiseNet. Fig. 6.6
demonstrates StiseNet’s robustness during rapid and unpredictable state transitions
in a real-world RAS suturing task. I compare the causal estimation performance
of Forward-LSTM, Fusion-KVE, the ablated, and full versions of StiseNet against
ground truth. Forward-LSTM, which only uses the robot kinematics data, has a
block of errors from 20s to 30s since it cannot recognize the "adjusting endoscope"
state due to a lack of visual and event inputs. When those inputs are added, Fusion-
KVE and StiseNet recognize this state. Fusion-KVE still shows a greater error
rate due to limited training data with high environmental diversity, which reflects
Fusion-KVE’s vulnerability to nuisance and various surgical techniques. StiseNet-
NO shows fewer error blocks, yet it is still affected by different technique types.
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Figure 6.5: Three HERNIA-40 trials from three technique clusters, and StiseNet’s
performances compared to ground truth (GT). Instances of the same state in different
trials are substantially and visibly different; however, StiseNet correctly estimates
them. Variations across trials arise from both nuisances and surgical techniques.
Potential sources of nuisances include but are not limited to lighting conditions,
presence of fat or blood, peritoneum color, endoscope movements, etc.

78.1
81.4
84.8

67.1
% accurate frames

Forward LSTM
Fusion-KVE

StiseNet
Ground Truth

StiseNet-NO

Figure 6.6: Example HERNIA-40 surgical state estimation results by forward LSTM
[24], Fusion-KVE [96], StiseNet-NO, and StiseNet, compared to ground truth. State
estimation results (top) and discrepancies with ground truth in red (bottom) are
shown in each block bar.

The higher estimation accuracy of StiseNet shows its technique-agnostic robustness
in real-world RAS, even with a small training dataset that contains behavioral and
environmental diversity.



87

6.4 Conclusions
This chapter focused on improving the accuracy of fine-grained surgical state es-
timation in complex real-world RAS procedures learned from limited amounts of
data with high behavioral and environmental diversity. This is especially crucial in
the safety-critical field of RAS research. To do so, I employed IRL and adversarial
training strategies to learn a latent representation of fine-grained surgical states that
are largely invariant to nuisance factors and environmental noises during RAS as
well as various surgical techniques employed by surgeons.

I designed StiseNet: an adversarial learning model with an invariant latent repre-
sentation of RAS data. Through the evaluation with real-world RAS dataset that
includes different surgical techniques carried out in highly diverse environments,
StiseNet showed its robustness and improved the state-of-the-art performance by
up to 7%. The improvement is especially significant for the real-world data, which
benefit greatly from invariance to surgical techniques, environments, and patient
anatomy. Ablation studies showed the effectiveness of the adversarial model design
and the necessity of invariance inductions to both nuisance and technique factors.
StiseNet training does not require additional annotations apart from the surgical
states. StiseNet outperforms state-of-the-art surgical state estimation methods and
improves frame-wise state estimation accuracy to 84%. This level of error reduction
is crucial for surgical state estimation to gain adoption in AI applications during
RAS. StiseNet also accurately recognizes actions in a real-world RAS task even
when a specific technique was not present in the training data.
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C h a p t e r 7

CONCURRENT HIERARCHICAL SURGICAL STATE
ESTIMATION THROUGH DEEP NEURAL NETWORKS

While the estimation of the current fine-grained surgical state has various AI ap-
plications in RAS, the recognition of surgical phases and tasks has found diverse
applications ranging from operating room workflow coordination, surgeon skill
evaluation, to workflow analysis [86, 134] as well. As surgical robots can provide
synchronized endoscopic vision, robot kinematics, and surgical system events data,
these data sources provide a rich representation of a surgery [94–96], which can
be taken advantage of for an accurate and comprehensive awareness of the current
stage of the surgery from multiple levels of temporal granularity. In addition to the
fine-grained surgical actions and environmental observations as described in previ-
ous chapters, the recognition of coarser surgical states such as the current surgical
task/phase that consists of fine-grained surgical states is also crucial for a more
comprehensive understanding of the RAS procedure.

As described in Chapter 3, I modeled an RAS procedure as a surgical Hierarchical
Finite State Model (HFSM) (Fig. 7.1) consisting of discrete superstates, where
a superstate is a surgical task or an operative step. Each superstate in turn may
be an FSM consisting of finer-grained states (surgeon actions and observations).
An HFSM model represents at each time step the current surgery state at multi-
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Hernia Sac Endoloop Suture
Manipulate
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Figure 7.1: An example robotic inguinal hernia repair surgery consists of multiple
surgical tasks, which are superstates in an HFSM (top row). A superstate is an FSM
consisting of fine-grained surgical states. An example FSM for the superstate close
peritoneum is shown in the bottom row.
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ple levels of temporal granularity, which better captures the temporal progressions
of surgeries. The simultaneous surgical state estimation at multiple level of tem-
poral granularity therefore benefits from our modeling strategies and provides a
comprehensive understanding of the surgical progress.

As an example, this chapter develops a two-level surgical HFSM and concurrent
surgical state estimation methods that achieve accurate surgical (super)state estima-
tions at both levels of temporal granularity. Specifically, two hierarchical surgical
state estimation models are examined: Hierarchical Estimation of Surgical States
through Deep Neural Networks (HESS-DNN) and Concurrent Hierarchical Au-
tonomous Surgical State Estimation Network (CHASSEN). The following sections
describe the details of both models’ architectures and training strategies that allowed
them to achieve accurate hierarchical surgical state estimation, model performances,
and the effects of surgical state estimation at one level on the temporal granularity
of another level. The work presented in this chapter was described in publications
[92, 93, 95].

7.1 Hierarchical state estimation frameworks and training
HESS-DNN and CHASSEN were implemented to perform surgical (super)state
estimation of a surgical HFSM with two levels of temporal granularity: superstates
that last for minutes and fine-grained states that last for seconds. While many
surgeries will have a deeper hierarchical structure, I focused on a simple hierarchy
as a first step. Two hierarchical surgical state estimation models - HESS-DNN
and CHASSEN - were proposed. HESS-DNN performed the surgical superstate
estimation and the fine-grained state estimation through two separate pathways with
little shared knowledge of each other’s results. CHASSEN’s network architecture,
on the other hand, enabled the communication of the current surgical (super)state
information between two estimators. In the following subsections, both HESS-
DNN’s and CHASSEN’s components and model architectures are described and
compared. The training strategies and implementation details of both models are
also discussed.

Feature extraction and preparation for concurrent surgical state estimation
For a more direct comparison of model performances, HESS-DNN and CHASSEN
shared the same feature extraction method. The RAS input data (endoscopic vision,
robot kinematics, and system events) is processed following Fig. 7.2. Following the
method described in Section 2.3, a semantic mask is extracted from the endoscopic
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Figure 7.2: Schematic of both HESS-DNN’s and CHASSEN’s feature extraction
components. ℎℎℎvis, ℎℎℎkin, and ℎℎℎevt are extracted from endoscopic vision, robot kine-
matics, and system events, respectively.

Figure 7.3: HESS-DNN’s model architecture. The inputs to HESS-DNN include
the endoscopic vision, robot kinematics, and system events. A feature extraction
component embeds information in input data for hierarchical surgical (super)state
estimation. Our previous work StiseNet described in Chapter 6 is implemented for
the fine-grained surgical state estimation.
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Figure 7.4: CHASSEN’s model architecture and its alternating training schematics.
Our previous work StiseNet described in Chapter 6 is implemented for the fine-
grained surgical state estimation.

view to leverage a more efficient visual feature representation. The semantic mask
is generated using a trained and frozen surgical scene segmentation model based
on U-Net[98] and eliminates the background variability in the endoscopic view.
The semantic segmentation model uses three scene classes: surgical instruments,
tissue, and others. At time C, a CNN extracts information GGGvis

C from the semantic
segmentation map of the endoscopic vision. An LSTM encoder was implemented
to embed the temporal correlations among GGGvis from adjacent frames into a latent
representation ℎℎℎvis

C = LSTM(ℎℎℎvis
C−1, GGG

vis
C ) [33]. The latent representation at time C

therefore includes information from prior time steps. The endoscopic video features
are denoted as ℎℎℎvis

C ∈ R=vis .

The robot kinematic features are extracted following the same method as described
in the previous chapters. Since the input kinematics data include multiple robotic
arms’ translations, rotations, and joint angles, I implemented an LSTM encoder with
an input attention mechanism [94] to identify the driving data types. The embedded
latent representation of robot kinematics takes the form ℎℎℎkin

C = LSTM(ℎℎℎkin
C−1, VVVC ·GGG

kin
C ),

where multiplier VVVC is a vector whose elements represent the weights of all input
kinematics data types. An additive temporal attention mechanism was implemented
to capture the temporal correlations among features at adjacent time steps more
effectively as described in Section 2.3. System events data logged from dVXi
was processed and the embedded latent representation of events ℎℎℎevt

C was extracted
following the same method as the robot kinematics data.
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HESS-DNN model architecture
The latent representations, or "features", of the endoscopic vision, robot kinematics,
and system events data were concatenated to form a feature vector���C ∈ R=vis+=kin+=evt .
Data are processed over an observation window, [���C−)>1B , ���C−)>1B+X, ..., ���C], where
)>1B is the window duration and X denotes the sampling interval. Since the durations
of fine-grained states and superstates are significantly different, the values of)>1B and
X are different for surgical superstate estimation and fine-grained state estimation.
For simplicity, )>1B and X are chosen such that the length of the input tensor ; =
)>1B/X + 1 is an integer. The parameter selection will be discussed in further details
in the next subsection. HESS-DNN’s architecture is shown in Fig. 7.3.

HESS-DNN estimates the surgical superstates via an LSTM-based decoder network
that operates on the input data tensor [94]. Cho et al. showed that the performance
of an encoder-decoder network could rapidly deteriorate as the length of the input
data increases [18]. I therefore implemented an additional attention mechanism [91]
to select important latent representations across all time steps in an adaptive manner.
At time C, the attention weights VVVC are determined from the previous decoder hidden
state 333C−1 and cell state as described in Section 2.3. The LSTM decoder is updated
using the weighted feature �̃��C =

∑;
9=1 V

9
C���

9
C .

The estimation of fine-grained surgical states followed the determination of the cur-
rent surgical superstate. HESS-DNN deploys StiseNet as described in Chapter 6
to estimate the fine-grained surgical states within a superstate. StiseNet employs
an adversarial model design, which pits two model components against each other
during training to produce a latent data representation from ���C that is invariant to
nuisances (e.g., anatomical background, brightness, etc.) and variations in surgical
style. StiseNet’s adversarial model architecture was not applied to superstate esti-
mation: the computational complexity of learning temporal correlations across the
long superstate durations (up to 30 minutes) is prohibitive.

Correlations between surgical superstate and fine-grained state estimations
At each time step C, the current surgical superstate and fine-grained state are often
highly correlated. E.g., during tissue dissection, tissue cutting is a commonly
observed fine-grained state; however, it is not observed during suturing. The fine-
grained state of needle manipulation, on the other hand, is frequently observed
during suturing, but not during tissue dissection. Such hierarchical correlations are
commonly present in a surgical HFSM, and can improve the accuracy of surgical
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(super)state estimation. So far, only direct data sources such as the endoscopic
video, robot kinematics, and system events time series data have been used for
surgical (super)state estimations. The surgical (super)state time series are inferred
data sources that have yet to be incorporated into the estimation process at other
levels of temporal granularity to improve estimation accuracy. Since hierarchical
correlations between surgical states are common and informative, the knowledge of
the current surgical superstate can aid the fine-grained surgical state estimation, and
vise versa. In Chapter 5, the historic fine-grained surgical state sequence was used
for state prediction and was shown to improve the surgical state prediction accuracy.
This result further supports the usage of hierarchical correlations among states for
the hierarchical surgical (super)state estimations.

As seen in Fig. 7.3, HESS-DNN conducts the surgical superstate estimation and
fine-grained state estimation through two uncoupled network architectures with little
shared knowledge, CHASSEN serves as an initial attempt to utilize the surgical state
estimation results at one level of temporal granularity to assist the state estimation of
another level of temporal granularity. CHASSEN uses both direct (robot kinematics,
endoscopic vision, system events) and inferred data (current surgical (super)state)
as input sources for concurrent hierarchical surgical (super)state estimations. It
learns the hierarchical correlations between surgical states at two levels of temporal
granularity through an alternating training schematics. HESS-DNN’s architecture
can be further optimized through the incorporation of correlation across states in
the hierarchy. The two different approaches serve to provide a comparison about
how considering the correlation across states can affect hierarchical surgical state
estimation.

CHASSEN includes feature extraction and surgical (super)state estimation modules
and accepts both direct RAS data and inferred data sources as inputs. The surgi-
cal state-related features are extracted from direct RAS data sources via the same
method as HESS-DNN as described in Section 7.1. Hierarchical correlations be-
tween surgical superstates and fine-grained states are captured through CHASSEN’s
training procedure (Fig. 7.4).

Knowledge of the current surgical superstate substantially improves the estimation of
the current fine-grained surgical state, as the likelihood of occurrence and probability
distributions of the fine-grained surgical states are correlated with the current surgi-
cal superstate. Similarly, knowledge of the current fine-grained state improves the
superstate estimation process. I therefore adapted an alternating training schedule
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that learns such hierarchical correlations (Fig. 7.4). CHASSEN initially trains the
superstate estimator only with direct input data. The embedded latent representation
of the direct input data forms a feature tensor over an observation window of the size
)>1B, and an LSTM decoder with an addition attention mechanism [91] was used for
surgical superstate estimation. The trained superstate estimator then generates the
inferred data source - the surgical superstate time series. An LSTM encoder extracts
the temporal correlations between superstates and their corresponding fine-grained
surgical states, which is incorporated for the initial training of the fine-grained state
estimator. This inferred feature tensor was concatenated to the direct feature tensor,
and an LSTMdecoder with an addition attention mechanism [91] was used for surgi-
cal superstate estimation [93]. Like HESS-DNN, CHASSEN implements StiseNet
as described in Chapter 6 for fine-grained surgical state estimation. I then adopt an
alternating training schedule between the fine-grained surgical state estimator and
the surgical superstate estimator: in each training iteration, a previously trained and
frozen estimator is used to generate either the surgical superstate or fine-grained
state estimation result, which is concatenated with direct features to fine-tune the
parameters of the other state estimator. The iteration repeats until convergence of
the surgical (super)state estimation performance.

Implementation details and training strategies
During the feature extraction of direct data sources, the U-Net model for endoscopic
video data semantic segmentation was separately trained on a large surgical image
dataset, following [5]. The trained and frozen model was received from Intuitive
Surgical Inc. The endoscopic vision input was resized to a 640 × 512 RGB image.
I determined the dimensions of extracted features using grid search: =vis = 40,
=kin = 40, and =evt = 4. All direct data inputs were synchronized at 10Hz. For
the surgical superstate estimation, )>1B = 60sec and X = 5. The fine-grained state
estimation parameters, )>1B = 2sec and X = 1, were also determined via a grid
search of parameters. HESS-DNN’s training is guided by the sum of a superstate
estimation loss and StiseNet’s fine-grained state estimation loss:

! = !super + !StiseNet (7.1)

where !super is the categorical cross-entropy loss and !StiseNet is Eq. 6.1. As
discussed in Chapter 6, StiseNet’s training is a minimax game [37]. HESS-DNN
therefore inherits a scheduled adversarial optimizer [37], in which the generative or
the discriminative component trains on a data batch while the other component’s
weights are frozen.



95

For the training process of CHASSEN, an alternating training schedule between
the surgical superstate estimator and the fine-grained surgical state estimator was
implemented as shown in Fig. 7.4. During the initial training of the surgical super-
state estimator, the same training strategy as HESS-DNN was used with the same
hyperparameters and observation window sizes with the loss function being the
categorical cross-entropy loss. The inferred input data (surgical superstate estima-
tion results) was then concatenated to the direct feature tensor for the training of
StiseNet as described in Section 6.2. After the initial training of both the surgical
superstate estimator and the fine-grained surgical state estimator, the alternating
training schedule begins. In each training iteration, a previously trained and frozen
estimator is used to generate either the surgical superstate or fine-grained state esti-
mation result, which is concatenated with direct features to fine-tune the parameters
of the other state estimator. The iteration repeats until the convergence of the sur-
gical (super)state estimation performance, which was determined by an estimation
performance improvement of less than 0.5%.

7.2 Performance evaluation and discussion
The performances of both HESS-DNN and CHASSEN were demonstrated at two
levels of temporal granularity: surgical superstates and fine-grained states. The
HERNIA-40 dataset was used to evaluate both hierarchical surgical state estimators.
The list of surgical superstates and each superstate’s fine-grained surgical states were
listed in table 2.4. The quality of our hierarchical surgical state estimationmodels are
quantified by the percentage of time steps with accurate state estimates in the test set,
as judged by comparison with the ground truth annotation reviewed by experts. An
ablation study investigated how the endoscopic vision, robot kinematics, and system
events inputs contributes to HESS-DNN’s estimation performance, respectively.
Since some autonomy applications require the real-time knowledge of the surgical
(super)states, I evaluated HESS-DNN and CHASSEN performances in both non-
causal and causal settings. In a non-causal setting, the estimator has access to
information from both preceding and future time steps. Accordingly, I implemented
bi-directional LSTM units [33] in the non-causal setting. In the causal setting,
the estimator only has access to data from the current and preceding time steps;
therefore, forward LSTM units were implemented. The dataset was divided into
training and test sets following an 80:20 split (as the surgeon identity is not available)
and a five-fold cross validation was performed.

I also evaluated the contributions of various input data to surgical (super)state es-
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Surgical Superstate Estimation Accuracy (%)

Model/Input data Non-causal Causal
Trivial 12.5 12.5

System events 40.6 ± 17.87 39.4 ± 19.04
Raw endoscopic vision 47.1 ± 10.10 41.4 ± 8.91

Robot kinematics 65.9 ± 8.41 52.3 ± 8.75
Endoscopic vision semantic mask 70.1 ± 5.17 64.5 ± 9.67

HESS-DNN-NU 76.6 ± 4.04 70.6 ± 4.77
HESS-DNN 87.6 ± 3.91 84.1 ± 4.11
CHASSEN 89.8± 5.09 88.4 ± 4.89

Table 7.1: Surgical superstate estimation performance of HESS-DNN, its ablated
versions, and CHASSEN when evaluated on the HERNIA-40 dataset.

timation through an ablation study by removing subsets of input data types and
comparing the ablated models’ performances to the complete estimator. Specifi-
cally, HESS-DNN’s performance with only one type of input data was compared
against its performance with the full input data. Additionally, I examined the ef-
fectiveness of semantic segmentation on visual feature extraction by comparing
HESS-DNN against an ablated version, HESS-DNN-NU, which omits the semantic
segmentation of endoscopic vision and instead extractd features directly from raw
endoscopic videos. The ablation study demonstrated the necessity of each input
data type and validated HESS-DNN’s design. As CHASSEN aims to improve hier-
archical surgical state estimation accuracy through an alternating training schedule
and the correlations between surgical state estimations at different levels of temporal
granularity, no ablation study was applied to it.

Tables 7.1 and 7.2 quantified HESS-DNN’s and CHASSEN’s estimation perfor-
mances in both non-causal and causal settings. State estimation accuracy is shown
for both surgical superstates (tasks) and all fine-grained states in Table 2.4. Table
7.2 also compares the models’ overall fine-grained state estimation performances
against state-of-the-art fine-grained state estimation methods. Fig. 7.5 presents
a state sequence from one HERNIA-40 surgery in order to visualize the surgical
(super)state estimation quality of HESS-DNN and its ablated versions.

Table 7.1, which compares the surgical superstate estimation performance of HESS-
DNN, its ablated versions, and CHASSEN, indicates that each type of input data
contributes to hierarchical surgical state estimations to different degrees. When the
endoscopic video, robot kinematics, and system events input data are all included, the
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Overall Fine-grained State Estimation Accuracy (%)

Model/Input data Non-causal Causal
Trivial 4.3 4.3

TCN (vision) [65] 45.7 ± 10.04 41.9 ± 12.66
TCN (kinematics) [65] 48.9 ± 16.40 43.4 ± 17.40
Forward LSTM [24] 50.1 ± 8.11 49.7 ± 11.54
Bidir. LSTM [24] 54.7 ± 7.97 -
Fusion-KVE[96] 62.0 ± 6.05 59.9 ± 7.17
StiseNet [95] 64.1 ± 8.66 61.4 ± 8.08

HESS-DNN-NU 70.1 ± 6.71 66.9 ± 6.94
HESS-DNN 80.4 ± 5.60 75.7 ± 5.31
CHASSEN 82.4.3 ± 4.37 77.3 ± 5.90

Table 7.2: Overall fine-grained surgical state estimation performance comparison
across all superstates in the HERNIA-40 dataset.
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Figure 7.5: An example HERNIA-40 superstate sequence (top) and the fine-grained
state sequence of the close peritoneum superstate (bottom). The causal estimation
results are compared against themanually annotated ground truth. The discrepancies
between (super)state estimation results and the ground truth are marked in red.
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surgical superstate estimator achieves a superior frame-wise superstate estimation
accuracy in both non-causal and causal settings comparing to single-source models.
The significant improvement in estimation accuracy comparing to HESS-DNNwith
a single type of input (first four rows) further confirms the advantage of including
multiple sources of input data. As suggested in Chapter 4, different fine-grained
surgical states contain different representative features, which may be recognizable
through certain types of input data but not others.

The performance improvement shown in Table 7.1 indicatea the same for surgical
superstate estimation. For instance, the SS4 (Close peritoneum) and SS5 (Endoloop
suture) superstates both involve suturing; therefore, the installed surgical instrument
for both superstates is a large needle driver. The system events data therefore
cannot distinguish between these two superstates; however, the visual and kinematics
features of SS4 and SS5 are significantly different and distinguishable. On the
contrary, the dissection surgical superstates (SS0-SS2) require an energy instrument
for cautery. The system event associated with pressing the energy pedals is therefore
useful in distinguishing SS0-SS2 from other superstates. In comparison to fine-
grained surgical state estimation, there has been less priorwork on surgical superstate
estimation, with little open-source code to facilitate comparisons; however, both of
our models’ accurately performed surgical superstate estimation in a complex real-
world RAS environment with limited data.

The semantic segmentation of endoscopic video data also contributed to better
surgical (super)state estimations, yielding a more effective visual feature extraction.
I analyzed how the extraction of semantic segmentation maps from endoscopic
vision data affects surgical (super)state estimation. HESS-DNN yields up to a
13.5% improvement in superstate estimation accuracy as compared to HESS-DNN-
NU, which omits the U-Net model and extracts visual features directly from raw
endoscopic videos. Two factors contributed to this improvement. The extraction
of a surgical scene semantic segmentation map significantly reduces environmental
distractions and variability. For instance, the surgical mesh implants and gauze
deployed during inguinal hernia repair have various colors and forms, depending
upon their manufacturers. The variation inmesh appearances is irrelevant to surgical
superstate estimation. Through U-Net semantic segmentation, such distractions are
eliminated. Additionally, the U-Net model was separately trained and frozen on an
extensive surgical scene dataset containing 25,000 semantically annotated images
from real-world RAS. The training of a surgical (super)state estimator can therefore
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take advantage of a condensed representation of the endoscopic view provided
by extensive training data for semantic segmentation purposes. This is especially
valuable in real-world RAS datasets, like HERNIA-40, where data is limited and
costly to obtain.

From Tables 7.1 and 7.2, it is clear that the determination of surgical state at one
level of temporal granularity improves the state estimation performance at other
levels of temporal granularity. In Table 7.2, I compared the overall fine-grained
surgical state estimation of our models against state-of-the-art fine-grained state
estimation methods. The fine-grained state estimation methods were trained to
estimate all fine-grained states listed in Table 2.4, with the repeated states treated
as the same class. The high complexity of RAS and limited training data hindered
flat (non-hierarchical) fine-grained state estimation performances, as there were 23
states in total in a highly dynamic and complex RAS setting. Both HESS-DNN
and CHASSEN improved the fine-grained state estimation accuracy significantly
comparing to flat estimation techniques, as the superstate estimation is carried out
prior to fine-grained state estimation and therefore narrowed down the pool of
candidate fine-grained surgical states.

A closer inspection of the surgical (super)state estimation results in Fig. 7.5 further
supports the observations discussed above. In an example HERNIA-40 superstate
sequence, our model can recognize SS0-SS2 from other superstates when it only
has access to system events; however, it is unable to further distinguish among
superstates, resulting in poor estimation results. When the only data source is
the robot kinematics data, HESS-DNN’s ablated version is unable to distinguish
among superstates close peritoneum, endoloop suture, and anchor mesh (25min -
34min). Since these three superstates all involve suturingmaneuvers, distinguishable
kinematics features were difficult to extract. The incorporation of endoscopic vision
data overcame this challenge. Many intermittent errors are observed in HESS-
DNN-NU for both surgical superstate and fine-grained state estimations, which
suggests ineffective visual features are extracted from limited amounts of data. The
frequent fluctuations in state identification, which causes the intermittent pattern of
errors, further indicates the infirmity of HESS-DNN-NU. Clearly, a full hierarchical
surgical state estimator with multiple types of input data achieves the most accurate
estimation given a limited dataset in a complex real-world RAS setting.

Comparing to HESS-DNN’s de-coupled surgical superstate estimation and fine-
grained state estimation process, CHASSEN achieved a surgical superstate estima-
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tion accuracy of 88.4% in the causal setting, a 4.3% improvement over HESS-DNN.
CHASSEN also improved the fine-grained state estimation performance to 77.3%
comparing to HESS-DNN’s 75.7%. CHASSEN’s improvements in both surgical
superstate and fine-grained state estimation accuracy highlighted the importance of
considering correlations between hierarchical surgical states. Additionally, CHAS-
SEN’s lighter network architecture (as compared to HESS-DNN) significantly im-
proved its state estimation processing time. SinceHESS-DNNperforms hierarchical
(super)state estimations in a decoupled manner, it uses multiple deep neural net-
work architectures trained independently. The processing time of HESS-DNN is
7.1 frames per second on a workstation equipped with an NVIDIA GTX 1080 Ti
graphics card, an Intel Core i7-6700 CPU, and 16GB of RAM. CHASSEN esti-
mates both the current surgical superstate and fine-grained states at 9.3fps - a 31%
gain. CHASSEN performs more accurate hierarchical surgical state estimation
with greater efficiency due to its incorporation of hierarchical correlations between
surgical (super)states.

7.3 Conclusions
This chapter presented a first attempt at the hierarchical surgical (super)state estima-
tion process at multiple levels of temporal granularity through a two-level surgical
HFSM constructed from the HERNIA-40 dataset. Each surgical superstate in a sur-
gical HFSM represents a surgical task, and consists of fine-grained surgical actions
and observations. Two hierarchical surgical state estimation models - HESS-DNN
and CHASSEN - were implemented to simultaneously estimate the current surgical
superstate and fine grained state of the inguinal hernia repair robotic surgery using
multiple types of input data. The performances of HESS-DNN and CHASSEN
were illustrated through their application to the HERNIA-40 dataset.

HESS-DNN’s surgical superstate estimation result narrows down the pool of candi-
date fine-grained states and improves the fine-grained state estimation performance
of state-of-the-art methods by up to 16.3% when evaluated on a large set of diverse
surgical states in a real-world RAS setting. Additionally, I showcased the necessity
and contributions of each type of input data to surgical super(state) estimations
through an ablation study. However, HESS-DNN’s architecture and performance
have limitations, as the surgical superstate estimation and fine-grained state esti-
mation were conducted through two uncoupled network architectures with little
shared knowledge. This model structure limited the hierarchical state estimation
performance in both accuracy and efficiency aspects.
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CHASSEN attempts to incorporate the correlations across states in the hierarchy
through an alternating training schematic. Comparing to HESS-DNN, CHASSEN’s
learning and utilization of hierarchical correlations between surgical states at mul-
tiple levels of temporal granularity allowed it to achieve a higher state estimation
accuracy with a more lightweight network architecture and higher estimation speed,
which shows a strong promise for more effective and efficient hierarchical surgical
state estimation ability.
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C h a p t e r 8

CONCLUSIONS

8.1 Summary of thesis contributions
This thesis developed novel methods for the autonomous perception, understanding,
and awareness of robot-assisted surgeries from a temporal perspective. The primary
contributions of this work include the proposal of a new modeling methodology
that describes an RAS, the development of two new datasets containing real-world
RAS procedures, and the development ofmultiple novel deep learning-basedmodels
that achieves an accurate and robust temporal understanding of an RAS procedure.
Specifically, I modeled an RAS procedure as a hierarchical system of discrete
surgical states that I referred to as the surgical Hierarchical Finite State Model
(HFSM). An RAS procedure consists of standardized operational steps and surgical
tasks. These tasks could take the form of suturing, tissue dissections, etc. Each
of these task/step is, in turn, comprised of finer-grained surgical actions, gestures,
and environmental observations that is instantaneous or lasts for seconds such as
picking up a needle, which are referred to as fine-grained surgical states. The
recognition and awareness of the current surgical task being performed as well as
the current fine-grained surgical states is one of the crucial prerequisites for many
AI applications in RAS.

Additionally, two new RAS datasets - RIOUS+ and HERNIA-40 - were collected
and developed as part of this thesis work (Chapter 2). Deep learning research in the
field of RAS has suffered from a lack of real-world RAS datasets, which is necessary
for the training and evaluation of an accurate and robust hierarchical surgical state
estimation model. The two new datasets, unlike previously available RAS activity
datasets such as JIGSAWS, contains endoscopemovements and diverse experimental
settings including dry-lab, cadaveric, and in-vivo trials. Moreover, the HERNIA-40
dataset contains real-world hernia repair RAS procedures performed by surgeons,
which is extremely valuable for learning-based models. The development of these
RAS datasets is instrumental in the field of RAS research.

Chapter 3 proposed to model an RAS procedure as a hierarchical system of discrete
surgical states that was referred to as the surgical Hierarchical Finite State Model
(HFSM). This method views an RAS procedure from a temporal perspective by
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decomposing it into a collection of surgical tasks/steps. Each of these surgical
tasks/steps is further broken down into finer segments of surgical actions and gestures
that were referred to as fine-grained surgical states. Modeling an RAS procedure as
an HFSM allows it to be described more smoothly from a temporal perspective and
prepares us for the development of deep learning-based hierarchical surgical state
estimation models in a more systematic manner.

Chapter 4 proposed a novel deep learning-based model for the estimation fine-
grained surgical states that accepts multiple types of RAS time series data as inputs.
These input data include the endoscopic video, robot kinematics, and system events
dataset from either a dVRK or a dVXi surgical robotic system. The proposed
model (Fusion-KVE) is the first attempt at multi-input fine-grained surgical state
estimation. Through the evaluation using realistic and complex RAS datasets that
I collected, Fusion-KVE showed its superiority over state-of-the-art fine-grained
surgical estimation models that only uses one type of input data. Additionally, it
was shown that richer and more comprehensive information could be extracted by
incorporating various types of input data, as they represents an RAS from diverse
perspectives. Each type of input data therefore has its respective strengths and
weaknesses in the recognition of certain fine-grained surgical states.

Chapter 5 proposed daVinciNet: a deep learning-based model that concurrently
predict in real-time RAS instruments’ end-effector trajectories and future surgical
states for up to 2 seconds into the future. A newmethod for endoscopic video feature
extraction was also proposed and applied. Instead of only extracting vision features
from the raw endoscopic video frame, the Region of Interest (RoI) of the current
endoscopic view (the surrounding areas of the surgical instruments’ end-effectors)
were determined. Regional vision features from the RoIs were used and proven to
improve both the end-effector trajectory prediction and the surgical state prediction
performances. It was shown that richer visual information can be extracted and
utilized from the RoI of an endoscopic video frame, which contains concentrated
information about the current fine-grained surgical states.

Chapter 6 further improved the fine-grain surgical state estimation efforts through
the learning of an invariant latent representation of RAS time series data. Al-
though new and more realistic RAS datasets were collected and used in this thesis
work, deep learning-based surgical state estimator performances still suffer from
the combination of limited data availability and high complexity. Additionally, the
real-world RAS time series data is highly noisy, containing diverse nuisance factors
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and surgical technique variances. The proposedmodel - StiseNet - achieves effective
invariance induction to such factors through a novel adversarial model design and
training schematics. Chapter 6 also further improved the efficiency of the endoscopic
video feature extraction. A semantic mask of the current endoscopic view assigns
each pixel of an endoscopic video frame to three categories, which greatly reduces
the noise and diversity of the complex surgical backgrounds. The incorporation of
such semantic masks to endoscopic video feature extraction reduced noises in the
surgical background and further improved the fine-grained surgical state estimation
performance.

Finally, Chapter 7 explores concurrent hierarchical surgical state estimation at mul-
tiple levels of temporal granularity. Through the incorporation of multiple types
of input data and sophisticated fine-grained surgical state estimators developed in
previous chapters, HESS-DNN and CHASSEN - the proposed models - achieved
significant improvements to state-of-the-art methods in the surgical state estimations
at two levels of temporal granularity when evaluated on the HERNIA-40 dataset. As
the current surgical task/step and the current fine-grained surgical state are highly
correlated, the usage of surgical state estimation results at one level of temporal
granularity on the state estimation process at another level was also explored. The
incorporation of both direct data sources (endoscopic video, robot kinematics, and
system events) and inferred data sources (surgical state estimation results from
other levels of temporal granularity) was shown to further improve the hierarchical
surgical state estimation accuracy.

8.2 Opportunities for future work
While the previous chapters have presented novel contributions to temporal un-
derstanding and perception during an RAS procedure, which is an indispensable
prerequisite for numerous AI applications in RAS, there are three areas of opportu-
nities for future work that would further the contributions of this thesis work.

Over the past decade, enormous efforts have been devoted to computational-heavy
fields of research such as machine learning, computer vision, artificial intelligence,
autonomy, and many others. The field of surgical robotics research could benefit
greatly from techniques, models, and algorithms resulting from the advancement in
the aforementioned fields. This would allow robot-assisted surgeries to go beyond
its current form of teleoperation and improve the quality of healthcare to many.
Specifically, manyAI applications could be developed to assistmedical professionals
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during and after RAS procedures. As mentioned previously, a comprehensive and
accurate temporal awareness of the current surgical scene by the surgical robotic
system is cardinal to many surgeon-assisting functionalities. The accuracy of the
hierarchical surgical state estimation could therefore be further improved through
the incorporation of more sophisticated and innovative deep learning-based model
architectures and training strategies.

While this thesis propose a new hierarchical RAS modeling strategy with discrete
surgical states, this strategy is mostly descriptive and has plenty room for refinement.
Through our first attempt at using the hierarchical correlations between surgical es-
timation results at two levels of temporal granularity to improve the surgical state
estimation performance, it has been shown that that surgical states at different levels
of temporal granularity are highly correlated with each other. Our initial effort
in Chapter 7 has also shown that more efficient hierarchical surgical state estima-
tions could be achieved through the incorporation of such hierarchical correlations.
Currently, however, the incorporation method implemented in this thesis work is
elementary. More sophisticated methods that utilizes the correlations across hier-
archy in a surgical HSFM could greatly benefit the surgical state estimation effort.
The concepts of Graph Convolutional Network and hypergraph neural network have
gained recent attentions in the field of deep learning research [10, 29]. Similar con-
cepts and models, as they are being developed, have the potential of being applied
to a more formal definition of a hierarchical HFSM.

Learning-based surgical state estimation efforts rely heavily on the datasets for
training and evaluation. Although new and more realistic datasets were collected
and used in this thesis work and have shown their significant contributions, their sizes
and level of diversity is still extremely limited. Continuous effort in real-world RAS
data collection, curation, and annotation is highly beneficial for the advancement
in learning-based surgical state estimator development. So far, the only real-world
RAS procedure used for hierarchical surgical state estimation is the hernia repair
surgery. The application and expansion of surgical state estimations to other types
of RAS procedures such as prostatectomy is highly beneficial and evaluates the state
estimators in a more comprehensive manner. This is especially important in the
safety-critical field of RAS research.

Our work has numerous future extensions and applications. The hierarchical surgi-
cal state estimation framework could be applied to diverse applications during and
after an RAS procedure. These applications range from user interface integration,
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to surgeon-assisting functionalities, to supervised semi-autonomous, or even au-
tonomous surgical robotic systems. The future work on improving the hierarchical
surgical state estimation accuracy and efficiency could therefore benefit the field of
robot-assisted surgery greatly.
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