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ABSTRACT

We study the optimization problem of finding closed convex sets Γ ⊆ R𝑑 containing
the origin that minimize

F (Γ) =
𝑘∑︁
𝑖=1

𝑤𝑖

���𝜃𝑖2 − 𝑝Γ (𝜃𝑖)���2,
where 𝑤1, . . . , 𝑤𝑘 > 0, 𝜃1, . . . , 𝜃𝑘 ∈ R𝑑 are given, and 𝑝Γ (𝜃𝑖) are the closest points
in Γ to 𝜃𝑖, 𝑖 = 1, . . . , 𝑘 . This problem is motivated by the topic of delegated portfolio
management in finance. In Chapter 2, we will explore this connection. To approach
the problem, we first prove existence of a solution for the general problem. To further
study properties of the solution, we next introduce the semidefinite programming
relaxation, for which we have a first-order characterization of optimality. We then
explore the question of exactness of this relaxation, which turns out to be equivalent
to the notion of localizability: the shape optimization problem embedded in higher
dimensions must have solutions in the original dimension. Finally, we present
special cases for which localizability holds.
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C h a p t e r 1

INTRODUCTION

In this paper we study the following optimization problem. Let 𝜃1, . . . , 𝜃𝑘 be points
in Euclidean space R𝑑 . Given a closed convex set Γ and a point 𝜃 ∈ R𝑑 , let 𝑝Γ (𝜃)
be the unique closest point in Γ to 𝜃. One wishes to find, among all closed convex
sets containing the origin, one that minimizes the objective functional

F (Γ) =
𝑘∑︁
𝑖=1

𝑤𝑖

���𝜃𝑖2 − 𝑝Γ (𝜃𝑖)���2,
where 𝑤𝑖 > 0 are positive weights. Optimization problems of this type, where the
decision variable is a set, is often known as shape optimization. Examples of such
problems can be found in [2], [7], and [10].

Our approach to the problem consists of three steps. First, we establish a general
existence theorem for optimality via techniques analogous to the direct method of
calculus of variations. Actually characterizing the solution, on the other hand, is
nontrivial. To the best of our knowledge, there is no applicable theory such as
“shape calculus” that permits a first-order characterization of the optimal solution.
This difficulty necessitates our second step. We switch the decision variable from
the convex set Γ to the closest points 𝑝𝑖 in Γ to 𝜃𝑖. The geometric constraints of
the shape optimization problem will be recast as a family of quadratic inequalities
involving 𝑝𝑖. The problem now simplifies to a quadratic program with quadratic con-
straints (QCQP). Unfortunately, the constraints are nonconvex, making the problem
intractable. In the third step, we convexify the problem using semidefinite program-
ming (SDP) relaxation. This relaxed problem is much more tractable. In particular,
it is possible to obtain a first-order characterization of solutions, as well as compute
a numerical solution to arbitrary accuracy in polynomial time. This SDP relaxation
provides a non-trivial lower bound for the optimal value of the complete problem.
The issue that remains is whether the relaxation can recover an exact solution to the
original quadratic program. This question turns out to be equivalent to the following
problem about localizability. It asks whether the solution to the optimization prob-
lem would change when 𝜃1, . . . , 𝜃𝑘 are embedded in a higher dimensional space
R𝑑
′, and Γ is allowed to vary over all closed convex sets in R𝑑 ′ containing the origin.

We establish localizability in certain special cases, including (i) when 𝜃1, . . . , 𝜃𝑘 are
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linearly independent, and (ii) when 𝜃1, . . . , 𝜃𝑘 lie on a line and are sufficiently far
from the origin. The general problem, however, remains open.

Our optimization problem has its roots in the finance of delegated portfolio man-
agement. Specifically, consider a mutual fund facing a set {1, . . . , 𝑘} of potential
investors. The mutual fund is a monopoly: investors do not have to invest their
money, but if they choose to, they must invest through the mutual fund. The market
consists of several risky assets, and all investors have the same mean-variance utility
function with the same risk aversion. Investors are heterogeneous, characterized by
their initial endowment in the risky assets (henceforth referred to as types, denoted
𝜃). Knowing the distribution of investor types, the mutual fund designs a menu of
funds to be offered, each of which charges a fee. Here, we assume fees are linear,
and that investors are free to allocate their wealth across multiple funds. Thus, if
fund 𝑥1 is available with fee 𝜋1, 𝑥2 is available with fee 𝜋2, then for 𝑞1, 𝑞2 ≥ 0.
𝑞1𝑥1 + 𝑞2𝑥2 must be available with fee 𝑞1𝜋1 + 𝑞2𝜋2. The mutual fund’s problem is
to decide the set of funds to offer and their associated fees in a way that maximizes
the aggregate fee collected. This is the optimal fund menus problem (OFM). As it
turns out, OFM is equivalent to minimizing F (Γ). In Chapter 1, we will prove a
correspondence theorem that establishes the precise relation between the two prob-
lems. Under this formulation, the aforementioned notion of localizability also has
important implications. Financially, if the mutual fund is allowed to introduce assets
with new sources of risk, would the optimal menu entail investors (whose goal is to
hedge their original risk exposures) taking on these new risks? The answer is “no”
if and only if localizability holds.

Our paper contributes to the literature of mathematical programming, especially
semidefinite programming (SDP). Semidefinite programming is a subclass of con-
vex optimization problems which generalizes linear programming. It is widely
applicable to problems in engineering and applied sciences. Many nonconvex prob-
lems admit an SDP relaxation, which produces an approximate optimal solution of
the original problem, and in some cases, an exact solution. The classic example
is [8], where SDP relaxation is used to find a near optimal solution to the max cut
problem. Examples of SDP relaxation providing an exact solution to the original
problem can be found in [15], [9], [4], [3] and [14]. In particular, certain techniques
in our paper are inspired by [14] in which the authors study the sensor network
localization (SNL) problem. The problem involves finding a feasible configuration
of points in a Euclidean space of a given dimension, subject to constraints on the
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pairwise distances. The authors relax certain constraints of SNL to form an SDP,
and show that this relaxation is exact if and only if adding additional dimensions
does not change the optimal configuration. In our paper, we use SDP to relax the
optimal fund menu problem, and show that the relaxation is exact if and only if
adding zero-return assets to which the investors have no exposure does not change
the optimal menu. However, we currently do not know if SDP relaxation always
provides an exact solution to the optimal fund menus problem. There is no general
criterion in mathematical programming that guarantees exactness. The aforemen-
tioned examples all exploit very special structures in their respective problems. At
this point, we can only establish exactness for our problem for special cases. On
the other hand, numerical experiments suggest that exactness might hold in general,
prompting further work in this direction.

Our paper also contributes to the literature of screening and asset bundling. It can
be seen as a generalization of the model proposed in [6], where a monopolistic
mutual fund manager faces investors with different beliefs in the return of one asset.
In their paper, the dual approach is used. That is, rather than optimize directly
over fund menus, they optimize over the space of indirect utility functions induced
by all possible fund menus. Such indirect utility functions are not arbitrary, and
must satisfy certain incentive compatibility constraints. To solve the optimization
problem, the authors temporarily drop the incentive compatibility constraints on the
indirect utility function, solve a calculus of variations problem, and show that at
optimum, the constraint does not bind. In contrast, the heterogeneity of investors
in our paper involves differing initial exposures to possibly more than one asset.
While we also adopt the general dual approach by considering all indirect utility
functions induced by menus, our method of study is significantly different. For
our model, incentive compatibility requires that an indirect utility function be of
the form squared distance to a convex region. The exclusion of this constraint
will, in general, not give a feasible solution to the complete problem. Our model
also provides a linear pricing analog to the ones studied in [11], [12], and [5], in
which a monopoly is allowed to use nonlinear pricing to screen customers with
heterogeneous preferences across one or multiple dimensions. In these models,
the space of all feasible indirect utility functions forms a convex cone, making the
problem amenable to conic optimization techniques. In contrast, the linear pricing
constraint in our paper gives rise to a nonconvex problem. Hence, the techniques
developed in the aforementioned papers do not directly apply here.
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The structure of this paper is as follows. Chapter 2 describes the problem, the
financial model that motivates it, and establishes a precise correspondence between
the two. Chapter 3 adapts the direct method of calculus of variations to prove general
existence of an optimal solution. Chapter 4 seeks to characterize the solution. In
Section 4.1, we derive the quadratic programming formulation of the problem. In
Section 4.2, we study the SDP relaxation and its associated properties. Section 4.3
studies the relation between the relaxation and the complete problem, which leads
to the notion of localizability. Finally, Section 4.4 explores particular cases in which
the SDP relaxation provides an exact solution to the complete problem.
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C h a p t e r 2

PROBLEM FORMULATION

2.1 The Shape Optimization Problem
Consider a finite set of points 𝜃1, . . . , 𝜃𝑘 in Euclidean spaceR𝑑 , and let𝑤1, . . . , 𝑤𝑘 >

0 be positive weights. For any closed convex set Γ and any point 𝜃 ∈ R𝑑 , there
exists a unique point in Γ that is closest to 𝜃, which we denote by 𝑝Γ (𝜃). Among all
closed convex sets Γ containing the origin, we wish to find one that minimizes

F (Γ) =
𝑘∑︁
𝑖=1

𝑤𝑖

���𝜃𝑖2 − 𝑝Γ (𝜃𝑖)���2.
While we are mainly concerned with the case of finitely many points, the problem
can be formulated more generally. Given a subset Ω of R𝑑 and a finite measure 𝜇
on Ω, one may consider the problem

maximizeΓ F (Γ) :=
∫
Ω

���𝜃2 − 𝑝Γ (𝜃)���2𝑑𝜇(𝜃)
s.t. Γ ⊆ R𝑑 closed and convex, 0 ∈ Γ.

(2.1)

Note that for the finite case, Ω = {𝜃1, . . . , 𝜃𝑘 }, and 𝜇 =
∑𝑘
𝑖=1 𝑤𝑖𝛿𝜃𝑖 .

Our central question concerns localizability, which we define now.

Definition. We say that (Ω, 𝜇) is localizable if it satisfies the following condition:

Let 𝑑′ ≥ 𝑑 be arbitrary, and let Γ be a closed convex set in R𝑑 ′ with 0 ∈ Γ. Let
𝑝(𝜃) = 𝑝Γ (𝜃) be the closest point to 𝜃 in Γ. If

∫
Ω

�� 𝜃
2 − 𝑝Γ (𝜃)

��2𝑑𝜇(𝜃) = 𝑠∗, where 𝑠∗

is the optimal value for Problem (2.1) then 𝑝Γ (𝜃) ∈ R𝑑 for all 𝜃 ∈ Ω.

Essentially, localizability guarantees that the optimal solution does not change when
the problem is embedded in higher dimensions. As will be discussed in Chapter 3,
this property is key to establishing uniqueness and first-order characterization of the
solution.

For the remainder of this chapter, we will describe the financial problem of optimal
fund menus that motivated the study of (2.1) and establish their correspondence.



6

2.2 The Financial Model
We consider a one-period model. The market consists of the riskless asset with
return 𝑟, and 𝑑 risky assets with excess return (over the risk-free rate) 𝜖 ∈ R𝑑 . The
excess return 𝜖 = (𝜖1, . . . , 𝜖𝑑) is a random vector. The coordinates 𝜖1, . . . , 𝜖𝑑 are
independent, each having variance 1. We let 𝜁 = (𝜁1, . . . , 𝜁𝑑) := E[𝜖].

The market is populated by a monopolistic risk-neutral mutual fund manager and
heterogeneous risk-averse investors. Each investor is associated with a type 𝜃 ∈ R𝑑 .
An investor with type 𝜃 = (𝜃1, . . . , 𝜃𝑑) initially owns 𝜃𝑖 dollars worth of the 𝑖-th
risky asset. All investors have mean-variance utility given by

E[𝑤1] −
1
2

var[𝑤1],

where 𝑤1 is the terminal wealth. The set of all investor types is Ω ⊆ R𝑑 , and the
distribution of types is 𝜇—a finite measure on Ω. We assume 𝜇 is known to the
mutual fund manager.

A monopolistic mutual fund manager can offer a menu of funds. Each fund is
described by (𝑥, 𝜋), where 𝑥 = (𝑥1, . . . , 𝑥𝑑), 𝑥𝑖 indicating the dollar amount invested
in the 𝑖-th risky asset, and 𝜋 is the fee charged to investors. We assume that investors
are free to allocate their wealth to multiple funds, and that the fees are subject to linear
pricing. It’s not possible, however, to take short position in a fund. Hence, if funds
(𝑥1, 𝜋1) and (𝑥2, 𝜋2) are available, then for 𝑞1, 𝑞2 ≥ 0, (𝑞1𝑥1 + 𝑞2𝑥2, 𝑞1𝜋1 + 𝑞2𝜋2)
must also be available. To capture these properties, we define a fund menu as
follows.

Definition. A fund menu is a closed convex cone inM ⊆ R𝑑 × R+ that is closed
upward.

Consider an investor of type 𝜃 = (𝜃1, . . . , 𝜃𝑑). Suppose, in addition to the risky
assets, she owns an additional 𝐶 amount of cash (this amount turns out to be
irrelevant for utility maximization purpose). Thus, her initial wealth is 𝑤0 = 𝐶 +
𝜃1 + · · · + 𝜃𝑑 . If she buys one unit of fund (𝑥, 𝜋), her terminal wealth is

𝑤1 = 𝑤0(1 + 𝑟) + (𝜃 + 𝑥) · 𝜖 − 𝜋.
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She derives utility

E[𝑤1] −
1
2

var[𝑤1] = E[𝑤0(1 + 𝑟) + (𝜃 + 𝑥) · 𝜖 − 𝜋] −
1
2

var[𝑤0(1 + 𝑟) + (𝜃 + 𝑥) · 𝜖 − 𝜋]

= 𝑤0(1 + 𝑟) + (𝜃 + 𝑥) · 𝜁 − 𝜋 −
1
2
|𝜃 + 𝑥 |2

=

(
𝑤0(1 + 𝑟) + 𝜃 · 𝜁 −

1
2
|𝜃 |2

)
+

(
𝑥 · 𝜁 − 𝜋 − 1

2
|𝑥 |2 − 𝑥 · 𝜃

)
.

The investor’s goal is to choose a fund (𝑥, 𝜋) in the menu that maximizes E[𝑤1] −
1
2var[𝑤1]. Note that only the part 𝑥 · 𝜁 − 𝜋 − 1

2 |𝑥 |
2 − 𝑥 · 𝜃 is relevant for the

investor’s utility maximization problem. Henceforth, we shall write 𝑈𝜃 (𝑥, 𝜋) =
𝑥 · 𝜁 − 𝜋 − 1

2 |𝑥 |
2 − 𝑥 · 𝜃. With this notation, the type 𝜃 investor’s problem is

maximize(𝑥,𝜋)∈M 𝑈𝜃 (𝑥, 𝜋). (2.2)

Now we consider the fund manager’s problem. Loosely, the manager seeks to design
a fund menu that maximizes the aggregate fee collected across all investors. More
precisely, let (𝑥M (𝜃), 𝜋M (𝜃)) ∈ arg max(𝑥,𝜋)∈M𝑈𝜃 (𝑥, 𝜋). We will show in the next
section that the maximizer is unique. Thus, the manager’s fee collected from type 𝜃
is well-defined, given by 𝜋M (𝜃). The aggregate fee collected across all investors is∫
M 𝜋M (𝜃)𝑑𝜇(𝜃). Thus the manager’s problem is

maximizeM
∫
Ω

𝜋M (𝜃)𝑑𝜇(𝜃). (2.3)

Remark 1. We impose the assumption that the asset returns are independent with
unit variance to simplify computation. In general, suppose there are 𝑘 risky assets
𝑥1, . . . , 𝑥𝑑 whose returns have covariance matrix Σ. Let Σ = 𝑍𝑍𝑇 be the Cholesky
decomposition. Provided Σ is nonsingular, we may create 𝑑 new assets 𝑦1, . . . , 𝑦𝑑

with uncorrelated, unit variance returns, given by 𝑦𝑖 =
∑𝑑
𝑗=1 𝑎𝑖 𝑗𝑥 𝑗 , where 𝐴 = 𝑍−1.

A fund investing (𝑞1, . . . , 𝑞𝑑) in (𝑥1, . . . , 𝑥𝑑) at fee rate 𝜋 is equivalent to one

investing (𝑝1, . . . , 𝑝𝑑) in (𝜉1, . . . , 𝜉𝑑) with the same fee, where
©­­­«
𝑝1
...

𝑝𝑑

ª®®®¬ = 𝑍𝑇
©­­­«
𝑞1
...

𝑞𝑑

ª®®®¬.

Remark 2. Instead of differing in initial risk exposure, we can also consider a model
in which investor type is characterized by his subjective evaluations of the assets’
expected returns 𝜂 = (𝜂1, . . . , 𝜂𝑑) ∈ R𝑑 . The utility of an investor with type 𝜂
investing quantity 𝑥 at fee 𝜋 is

𝜂 · 𝑥 − 𝜋 − 1
2
|𝑥 |2.
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The manager’s problem is to design a menuM that maximizes∫
Ω

𝜋M (𝜂)𝑑𝜇(𝜂),

where (𝑥(𝜂), 𝜋(𝜂)) ∈ arg max(𝑥,𝜋)∈M
{
𝜂 · 𝑥 − 𝜋 − 1

2 |𝑥 |
2
}
. In particular, the model

of [6] is of this form, with 𝜇 being the uniform distribution on the line segment
{(𝜂1, 𝜂2) ∈ R2 | 𝜂1 = 𝜉, 0 ≤ 𝜂2 ≤ 𝜃𝐻}, where 𝜉 and 𝜃𝐻 are constants. Here, 𝜉 is
the true mean return rate of the index asset, and 𝜃𝐻 is the most optimistic investor’s
subjective estimate of the non-index asset’s return.

This is mathematically equivalent to the main model where the heterogeneity is
initial risk exposure. They are related by a change of variable 𝜃 = 𝜁 − 𝜂. The model
of [6] corresponds to uniform distribution on the segment {(𝜃1, 𝜃2) ∈ R2 | 𝜃1 =

𝜁1 − 𝜉, 𝜁2 − 𝜃𝐻 ≤ 𝜃2 ≤ 𝜁2}.

Remark 3. One could try to apply the method of [6] to the model of the present
paper. Define the indirect utility function

𝑢M (𝜃) := sup
(𝑥,𝜋)∈M

{
𝑥 · 𝜁 − 𝜋 − 1

2
|𝑥 |2 − 𝑥 · 𝜃

}
.

By a direct calculation, we can express the manager’s aggregate fee collected as∫
Ω

{−𝑢M (𝜃) −
1
2
|∇𝑢M (𝜃) |2 + (𝜃 − 𝜁) · ∇𝑢M (𝜃)}𝑑𝜇(𝜃). (2.4)

Moreover, 𝑢M is convex, and satisfies the eikonal equation 2𝑢M (𝜃) = |∇𝑢M (𝜃) |2.
The aggregate fee can be rewritten as∫

Ω

{−|∇𝑢M (𝜃) |2 + (𝜃 − 𝜁) · ∇𝑢M (𝜃)}𝑑𝜇(𝜃). (2.5)

In the special case when 𝑑 = 2, 𝜃1 is constant, and 𝜃2 is uniformly distributed in
[𝜃𝐿 , 𝜃𝐻], let 𝑣M (𝜃2) = 𝑢M (𝜃1, 𝜃2). From the eikonal equation, we find 𝜕𝑢M

𝜕𝜃1
=√︁

2𝑣M (𝜃2) − [ ¤𝑣M (𝜃2)]2. The aggregate fee is

1
𝜃𝐻 − 𝜃𝐿

∫ 𝜃𝐻

𝜃𝐿

{(𝜃2− 𝜁2) ¤𝑣M (𝜃2) −2𝑣M (𝜃2) + (𝜃1− 𝜁1)
√︁

2𝑣M (𝜃2) − [ ¤𝑣M (𝜃2)]2}𝑑𝜃.

This coincides with the manager’s value function appearing in [6], after making a
change of variable (see Remark 2). In this special case, we may proceed by calculus
of variations over all possible functions 𝑣M .

In the general case, however, we cannot use calculus of variations to maximize
(2.5). Calculus of variations does not take into account the eikonal constraint
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2𝑢M (𝜃) = |∇𝑢M (𝜃) |2. One cannot temporarily drop this constraint, and hope that
the optimal solution of the relaxed problem automatically satisfies it. In fact, this is
never true.

−|∇𝑢M (𝜃) |2 + (𝜃 − 𝜁) · ∇𝑢M (𝜃) = −
���∇𝑢M (𝜃) − 𝜃 − 𝜁2

���2 + |𝜃 − 𝜁 |24

so (2.5) is maximized when ∇𝑢M (𝜃) = 𝜃−𝜁
2 . This implies 𝑢M (𝜃) = |𝜃−𝜁 |

2

4 +𝐶, which
does not satisfy 2𝑢M (𝜃) = |∇𝑢M (𝜃) |2.

2.3 The Correspondence between Shape Optimization and Optimal Fund
Menus

In this section, we give a characterization of fund menus in terms of their non-
participation regions. This reduces the problem of finding the optimal menuM to
one of finding an optimal convex region.

Definition. Given a fund (𝑥, 𝜋) ∈ R𝑑 × R+, we define its non-participation half-
space by H(𝑥, 𝜋) = {𝜃 ∈ R𝑑 | (𝜁 − 𝜃) · 𝑥 − 𝜋 ≤ 0}. More generally, given a fund
menuM ⊆ R𝑑 × R+, we define the non-participation region induced by this menu
to be 𝜑(M) = ⋂

(𝑥,𝜋)∈M H(𝑥, 𝜋).

Remark 4. H(𝑥, 𝜋) is a closed half-space in R𝑑 containing 𝜁 (unless 𝑥 = 0, in which
case, H(𝑥, 𝜋) = R𝑑). Since 𝜑(M) is an intersection of closed half-spaces, all of
which containing 𝜁 , 𝜑(M) is a closed convex set in R𝑑 containing the point 𝜁 .

The non-participation region is so-called because it represents all types 𝜃 ∈ R𝑑 for
which it is optimal to not invest in the fund menu.

Theorem 1. There is a bijection

{fund menusM} ↔ {closed convex sets Γ ⊆ R𝑑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝜁 }

given by

M
𝜑
−→

⋂
(𝑥,𝜋)∈M

H(𝑥, 𝜋)

{(𝑥, 𝜋) ∈ R𝑑 × R+ | Γ ⊆ H(𝑥, 𝜋)}
𝜓
←− Γ.

Moreover, given a fund menuM, letΓ = 𝜑(M). (𝑥M (𝜃), 𝜋M (𝜃)) = arg max(𝑥,𝜋)∈M𝑈𝜃 (𝑥, 𝜋)
is unique, given by

𝑥M (𝜃) = 𝑝Γ (𝜃) − 𝜃
𝜋M (𝜃) = (𝜁 − 𝑝Γ (𝜃)) · (𝑝Γ (𝜃) − 𝜃),

where 𝑝Γ (𝜃) denotes the (unique) closest point to 𝜃 in Γ.
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Lemma 2. Let Γ =
⋂
(𝑥,𝜋)∈M H(𝑥, 𝜋). If (𝑥, 𝜋) satisfies Γ ⊆ H(𝑥, 𝜋), then (𝑥, 𝜋) ∈

M.

Proof. LetN = {(𝑥, 𝜋) ∈ R𝑑 ×R | Γ ⊆ H(𝑥, 𝜋)}. It’s clear thatM ⊆ N . It remains
to show that N ⊆ M.

Suppose (𝑥, 𝜋) ∈ N\M. SinceM is a closed convex cone, there exists a nonzero
(𝑣,−𝑡) ∈ R𝑑 ×R such that (𝑣,−𝑡) · (𝑥, 𝜋) > 0 ≥ sup(𝑥 ′,𝜋′)∈M (𝑣,−𝑡) · (𝑥′, 𝜋′). Since
M is closed upward, we must have 𝑡 ≥ 0. (Otherwise, (𝑣,−𝑡) · (𝑥′, 𝜋′) → +∞ when
we take 𝜋′ → +∞.) If 𝑡 > 0, then let 𝑣̃ = 𝑣

𝑡
, 𝜃̃ = 𝜁 − 𝑣̃. Then (𝑣̃,−1) · (𝑥, 𝜋) > 0 ≥

sup(𝑥 ′,𝜋′)∈M (𝑣̃,−1) · (𝑥′, 𝜋′). We deduce that 𝜃̃ ∈ Γ, and (𝑥, 𝜋) ∉ N . If 𝑡 = 0, then
𝑣 ≠ 0, and 𝑣 · 𝑥 > 0 ≥ sup(𝑥 ′,𝜋′)∈M 𝑣 · 𝑥′. Let 𝑣̃ = 𝛼𝑣, where 𝛼 > 0 is large so that
𝑣̃ · 𝑥 > 𝜋. SinceM ⊆ R𝑑 ×R+, 𝑣̃ · 𝑥 − 𝜋 > 0 ≥ sup(𝑥 ′,𝜋′) 𝑣̃ · 𝑥′ ≥ sup(𝑥 ′,𝜋′) 𝑣̃ · 𝑥′ − 𝜋′.
Once again, put 𝜃̃ = 𝜁 − 𝑣̃, and we see that 𝜃̃ ∈ Γ, but (𝑥, 𝜋) ∉ N . □

Lemma 3. If a subset Γ of R𝑑 is closed, convex, and contains 𝜁 , then there exists a
fund menuM such that Γ =

⋂
(𝑥,𝜋)∈M H(𝑥, 𝜋).

Proof. Suppose Γ is closed, convex, and contains 𝜁 . Let M = {(𝑥, 𝜋) ∈ R𝑑 ×
R | Γ ⊆ H(𝑥, 𝜋)}. It’s clear thatM satisfies the requirements of a fund menu, and
Γ ⊆ ⋂

(𝑥,𝜋)∈M H(𝑥, 𝜋). To show that Γ =
⋂
(𝑥,𝜋)∈M H(𝑥, 𝜋), suppose 𝜃0 ∉ Γ. Then

𝜁 − 𝜃0 and 𝜁 − Γ are disjoint. By the separating hyperplane theorem, there exists
(𝑥0, 𝜋0) ∈ R𝑑 × R such that

sup
𝜃∈Γ
(𝜁 − 𝜃) · 𝑥0 − 𝜋0 ≤ 0 < (𝜁 − 𝜃0) · 𝑥0 − 𝜋0.

This implies (𝑥0, 𝜋0) ∈ M, and 𝜃0 ∉ H(𝑥0, 𝜋0). Consequently, 𝜃0 ∉
⋂
(𝑥,𝜋)∈M H(𝑥, 𝜋).

□

Lemma 4. Let 𝜃0 ∈ R𝑑 . Then [(𝜁−𝜃0)·𝑥−𝜋]+
|𝑥 | is the distance from 𝜃0 to H(𝑥, 𝜋),

provided 𝑥 ≠ 0.

Proof. If (𝜁 − 𝜃0) · 𝑥 − 𝜋 ≤ 0, then 𝜃0 ∈ H(𝑥, 𝜋), and the distance to H(𝑥, 𝜋) is zero.
In this case, we have [(𝜁−𝜃0)·𝑥−𝜋]+

|𝑥 | = 0, as desired.

Consider the case (𝜁 − 𝜃0) · 𝑥 − 𝜋 > 0. We find the closest point 𝑝 in H(𝑥, 𝜋) to 𝜃0.
It is clear that 𝑝 must be on the boundary of H(𝑥, 𝜋). Consider the problem

minimize |𝑝 − 𝜃0 |2

s.t. (𝜁 − 𝑝) · 𝑥 − 𝜋 = 0.
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Solving the Lagrange multiplier system

2(𝑝 − 𝜃0) = 𝜆𝑥
(𝜁 − 𝑝) · 𝑥 − 𝜋 = 0,

we find solution 𝑝 = 𝜃0 + (𝜁−𝜃0)·𝑥−𝜋
|𝑥 |2 𝑥. The distance from 𝜃0 to H(𝑥, 𝜋) is |𝜃0 − 𝑝 | =

| (𝜁−𝜃0)·𝑥−𝜋 |
|𝑥 | =

[(𝜁−𝜃0)·𝑥−𝜋]+
|𝑥 | . □

Lemma 5. LetM be a fund menu. Then sup(𝑥,𝜋)∈M
[(𝜁−𝜃)·𝑥−𝜋]+

|𝑥 | = dist(𝜃, Γ), where
Γ =

⋂
H(𝑥, 𝜋). Moreover, if dist(𝜃, Γ) > 0, then there is a unique (𝑥∗, 𝜋∗) (up to

scalar multiple) such that dist(𝜃, Γ) = dist(𝜃,H(𝑥∗, 𝜋∗)).

Proof. If dist(𝜃, Γ) = 0, then 𝜃 ∈ Γ = Γ. For any (𝑥, 𝜋) ∈ M, 𝜃 ∈ Γ ⊆ H(𝑥, 𝜋), so
dist(𝜃,H(𝑥, 𝜋)) = 0.

If dist(𝜃, Γ) > 0, let 𝑝∗ be the unique closest point in Γ to 𝜃. Let 𝑥∗ = 𝑝∗ − 𝜃,
𝜋∗ = (𝜁 − 𝑝∗) · (𝑝∗ − 𝜃). Then H(𝑥∗, 𝑝∗) is the supporting halfspace of Γ at 𝑝∗ with
outward normal 𝜃 − 𝑝∗. It’s clear that Γ ⊆ H(𝑥∗, 𝜋∗). By Lemma 2, (𝑥∗, 𝜋∗) ∈ M.
For any (𝑥, 𝜋) ∈ M, 𝑝∗ ∈ H(𝑥, 𝜋), so dist(𝜃, Γ) = |𝜃 − 𝑝∗ | ≥ dist(𝜃,H(𝑥, 𝜋)).
Moreover, the inequality is strict unless H(𝑥, 𝜋) = H(𝑥∗, 𝜋∗). □

Proof of theorem 1. It’s clear that 𝜓(𝜑(M)) ⊇ M. By Lemma 2, 𝜓(𝜑(M)) ⊆ M,
so 𝜓 ◦ 𝜑 = id. In particular, 𝜑 is injective. Lemma 3 shows that 𝜑 is surjective.
Consequently, 𝜑, 𝜓 establish a bijection.

Now fix a type 𝜃, and consider Problem (2.2). If 𝜃 ∈ Γ, then (𝜁 − 𝜃) · 𝑥 − 𝜋 ≤ 0 for
all (𝑥, 𝜋) ∈ M, and

𝑈𝜃 (𝑥, 𝜋) = (𝜁 − 𝜃) · 𝑥 − 𝜋 −
1
2
|𝑥 |2 ≤ 0 for all (𝑥, 𝜋) ∈ M,

with equality if and only if 𝑥 = 0 and 𝜋 = 0. In this case, the unique maximizer is
𝑥 = 0, 𝜋 = 0.

If 𝜃 ∉ Γ, put 𝑉𝜃 (𝑥, 𝜋) = [(𝜁−𝜃)·𝑥−𝜋]2+
2|𝑥 |2 . We claim that 𝑈𝜃 (𝑥, 𝜋) ≤ 𝑉𝜃 (𝑥, 𝜋), with

equality if and only if [(𝜁 − 𝜃) · 𝑥 − 𝜋]+ = |𝑥 |2. Indeed,

𝑈𝜃 (𝑥, 𝜋) ≤ max
𝑞≥0

𝑈𝜃 (𝑞𝑥, 𝑞𝜋)

= max
𝑞≥0

{
𝑞(𝜁 − 𝜃) · 𝑥 − 𝑞𝜋 − 1

2
𝑞2 |𝑥 |2

}
=
[(𝜁 − 𝜃) · 𝑥 − 𝜋]2+

2|𝑥 |2

= 𝑉𝜃 (𝑥, 𝜋).
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Maximum on the right-hand side is achieved if and only if 𝑞 =
[(𝜁−𝜃)·𝑥−𝜋]+

|𝑥 |2 . But
equality holds if and only if the right-hand maximizer is 𝑞 = 1. Hence, we have
proven the claim.

Note that (𝑥, 𝜋) ∈ M maximizes 𝑉𝜃 (𝑥, 𝜋) if and only if it maximizes
√︁

2𝑉𝜃 (𝑥, 𝜋) =
[(𝜁−𝜃)·𝑥−𝜋]+

|𝑥 | . By Lemma 4 and Lemma 5,

arg max(𝑥,𝜋)∈M𝑉𝜃 (𝑥, 𝜋) = arg max(𝑥,𝜋)∈M
[(𝜁 − 𝜃) · 𝑥 − 𝜋]+

|𝑥 | = {𝛼(𝑥∗, 𝜋∗) | 𝛼 > 0},

where 𝑥∗ = 𝑝Γ (𝜃) − 𝜃, 𝜋∗ = (𝜁 − 𝑝Γ (𝜃)) · (𝑝Γ (𝜃) − 𝜃). Finally,

arg max(𝑥,𝜋)∈M𝑈𝜃 (𝑥, 𝜋)
= arg max(𝑥,𝜋)∈M𝑉𝜃 (𝑥, 𝜋) ∩ {(𝑥, 𝜋) ∈ M | [(𝜁 − 𝜃) · 𝑥 − 𝜋]+ = |𝑥 |2}
= {(𝑥∗, 𝜋∗)}.

□

Theorem 1 allows us reformulate the manager’s problem (2.3) into the following
shape optimization problem:

maximizeΓ
∫
Ω

(𝜁 − 𝑝Γ (𝜃)) · (𝑝Γ (𝜃) − 𝜃)𝑑𝜇(𝜃)

s.t. Γ ⊆ R𝑑 closed and convex, 𝜁 ∈ Γ.
(2.6)

Without loss of generality, by shifting the origin of R𝑑 to 𝜁 if necessary, we may
assume that 𝜁 = 0 and focus on the problem

maximizeΓ F (Γ) :=
∫
Ω

(−𝑝Γ (𝜃)) · (𝑝Γ (𝜃) − 𝜃)𝑑𝜇(𝜃)

s.t. Γ ⊆ R𝑑 closed and convex, 0 ∈ Γ.
(2.7)

Note that −𝑝Γ (𝜃) · (𝑝Γ (𝜃) − 𝜃) = −
��� 𝜃2 − 𝑝Γ (𝜃)���2 + |𝜃 |24 , so (2.7) is equivalent to

minimizeΓ
∫
Ω

���𝜃2 − 𝑝Γ (𝜃)���2𝑑𝜇(𝜃)
s.t. Γ ⊆ R𝑑 closed and convex, 0 ∈ Γ.

(2.8)



13

C h a p t e r 3

EXISTENCE OF SOLUTION

Proposition 6. Assume Ω is bounded. Then there exists a closed convex set Γ
containing the origin such that F (Γ) is minimized.

Proof. Let 𝑝∗ = infΓ closed convex,0∈ΓF (Γ). Then there exists a sequence of closed
convex sets Γ𝑛 containing 0 such that F (Γ𝑛) → 𝑝∗. Since 0 ∈ Γ𝑛, we must have
(𝜃 − 𝑝Γ𝑛 (𝜃)) · (0 − 𝑝Γ𝑛 (𝜃)) ≤ 0. Hence,

|𝑝Γ𝑛 (𝜃) |2 = |𝑝Γ𝑛 (𝜃) |2 − 𝑝Γ𝑛 (𝜃) · 𝜃 + 𝑝Γ𝑛 (𝜃) · 𝜃
= 𝑝Γ𝑛 (𝜃) · (𝑝Γ𝑛 (𝜃) − 𝜃) + 𝑝Γ𝑛 (𝜃) · 𝜃
≤ |𝑝Γ𝑛 (𝜃) | |𝜃 |.

We see that |𝑝Γ𝑛 (𝜃) | ≤ |𝜃 |. Now let 𝑅 = sup𝜃∈Ω |𝜃 |, and 𝐾𝑛 = Γ𝑛 ∩ 𝐵(0, 𝑅).
Then each 𝐾𝑛 is a closed convex set containing 0, 𝑝Γ𝑛 (𝜃) = 𝑝𝐾𝑛

(𝜃) for all 𝜃, hence
F (𝐾𝑛) → 𝑝∗. By the Blaschke selection theorem, there exists a subsequence
𝐾𝑛𝑘 and a closed convex set 𝐾 such that Δ𝐻 (𝐾𝑛𝑘 , 𝐾) → 0. Here, Δ𝐻 (𝑋,𝑌 ) =
max{sup𝑥∈𝑋 dist(𝑥,𝑌 ), sup𝑦∈𝑌 dist(𝑦, 𝑋)} is the Hausdorff distance. By passing to
subsequence, we may assume Δ𝐻 (𝐾𝑛, 𝐾) → 0.

Claim 1: 0 ∈ 𝐾 .

Proof. 0 ∈ 𝐾𝑛 for each 𝑘 , so dist(0, 𝐾) ≤ Δ𝐻 (𝐾𝑛, 𝐾). We find dist(0, 𝐾) = 0.
Since 𝐾 is closed, 0 ∈ 𝐾 . □

Claim 2: For any 𝜃 ∈ R𝑑 , dist(𝜃, 𝐾𝑛) → dist(𝜃, 𝐾).

Proof. There exists a 𝑝𝑛 ∈ 𝐾𝑛 such that |𝑝𝑛 − 𝑝𝐾 (𝜃) | ≤ Δ𝐻 (𝐾𝑛, 𝐾). So

dist(𝜃, 𝐾𝑛) ≤ |𝜃 − 𝑝𝑛 |
≤ |𝜃 − 𝑝𝐾 (𝜃) | + |𝑝𝐾 (𝜃) − 𝑝𝑛 |
≤ dist(𝜃, 𝐾) + Δ𝐻 (𝐾𝑛, 𝐾).
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On the other hand, for each 𝑛 there exists 𝑞𝑛 ∈ 𝐾 such that |𝑞𝑛 − 𝑝𝐾𝑛
(𝜃) | ≤

Δ𝐻 (𝐾𝑛, 𝐾). So

dist(𝜃, 𝐾) ≤ |𝜃 − 𝑞𝑛 |
≤ |𝜃 − 𝑝𝐾𝑛

(𝜃) | − |𝑝𝐾𝑛
(𝜃) − 𝑞𝑛 |

≤ dist(𝜃, 𝐾𝑛) + Δ𝐻 (𝐾𝑛, 𝐾).

We find
|dist(𝜃, 𝐾𝑛) − dist(𝜃, 𝐾) | ≤ Δ𝐻 (𝐾𝑛, 𝐾) → 0.

□

Claim 3: For any 𝜃 ∈ R𝑛, 𝑝𝐾𝑛
(𝜃) → 𝑝𝐾 (𝜃).

Proof. Suppose, for contradiction, this does not hold. Then there exists some
𝜀 > 0 such that |𝑝𝐾𝑛

(𝜃) − 𝑝𝐾 (𝜃) | ≥ 𝜀, after passing to some subsequence. If
𝜃 ∈ 𝐾 , then 𝑝𝐾 (𝜃) = 𝜃. Since |𝑝𝐾𝑛

(𝜃) − 𝜃 | > 𝜀, 𝐾𝑛 ∩ 𝐵(𝜃, 𝜀) = ∅. But then
Δ𝐻 (𝐾𝑛, 𝐾) ≥ dist(𝑝𝐾 (𝜃), 𝐾𝑛) ≥ 𝜀. If 𝜃 ∉ 𝐾 , then 𝑝𝐾 (𝜃) ≠ 𝜃.

(𝜃 − 𝑝𝐾 (𝜃)) · (𝑝𝐾𝑛
(𝜃) − 𝑝𝐾 (𝜃))

=
1
2
|𝑝𝐾 (𝜃) − 𝑝𝐾𝑛

(𝜃) |2 − 1
2

(
|𝜃 − 𝑝𝐾𝑛

(𝜃) |2 − |𝜃 − 𝑝𝐾 (𝜃) |2
)

≥ 𝜀
2

2
− 1

2

(
dist(𝜃, 𝐾𝑛) − dist(𝜃, 𝐾)

)
.

Since dist(𝜃, 𝐾𝑛) → dist(𝜃, 𝐾), 1
2 |dist(𝜃, 𝐾𝑛) − dist(𝜃, 𝐾) | < 𝜀2/4 for sufficiently

large 𝑛. Hence,

(𝜃 − 𝑝𝐾 (𝜃)) · (𝑝𝐾𝑛
(𝜃) − 𝑝𝐾 (𝜃)) ≥

𝜀2

4
for sufficiently large 𝑛. LetH be the supporting halfspace of 𝐾 at 𝑝𝐾 (𝜃) with normal
𝜃 − 𝑝𝐾 (𝜃). We find

Δ𝐻 (𝐾𝑛, 𝐾) ≥ dist(𝑝𝐾𝑛
(𝜃), 𝐾) ≥ dist(𝑝𝐾𝑛

(𝜃),H) ≥ 𝜀2

4|𝜃 − 𝑝𝐾 (𝜃) |
.

This is a contradiction. □

Finally, we now know that
�� 𝜃
2 − 𝑝𝐾𝑛

(𝜃)
��2 → �� 𝜃

2 − 𝑝𝐾 (𝜃)
��2 pointwise. Moreover,

|𝑝𝐾𝑛
(𝜃) | ≤ 𝑅, and |𝜃 | ≤ 𝑅. So

�� 𝜃
2 − 𝑝𝐾𝑛

(𝜃)
��2 ≤ 9

4𝑅
2. Since 𝜇(Ω) < +∞, we

conclude

𝑝∗ = lim
∫
Ω

���𝜃2 − 𝑝𝐾𝑛
(𝜃)

���2𝑑𝜇(𝜃) = ∫
Ω

���𝜃2 − 𝑝𝐾 (𝜃)���2𝑑𝜇(𝜃)
by the dominated convergence theorem. □
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The proof of Proposition 6 can be extended to unbounded regions Ω, provided 𝜇
decays sufficiently fast.

Theorem 7. Let Ω ⊆ R𝑑 be arbitrary, and assume 𝜇 is a measure on Ω such that∫
Ω
|𝜃 |2𝑑𝜇(𝜃) < +∞. Then there exists a closed convex set Γ containing the origin

such that F (Γ) is minimized.

Proof. Let 𝑝∗ = infΓ closed convex,0∈Γ F (Γ). Then there exists a sequence of closed
convex sets Γ𝑛 containing 0 such that F (Γ) → 𝑝∗. Since {Γ𝑛 ∩ 𝐵(0, 1)}∞𝑛=1 is
a bounded sequence of convex sets containing 0, the Blaschke selection theorem
implies that there exists a subsequence 𝑛1,1, 𝑛1,2, 𝑛1,3, . . . such that Γ𝑛1, 𝑗 ∩𝐵(0, 1) →
𝐾1,∞ in Hausdorff distance, where 𝐾1,∞ is a closed convex set containing 0, and
contained in 𝐵(0, 1). Since {Γ𝑛1, 𝑗 ∩ 𝐵(0, 2)}∞𝑗=1 is a bounded sequence of con-
vex sets containing 0, using the Blaschke selection theorem again, we obtain
a further subsequence 𝑛2,1, 𝑛2,2, 𝑛2,3, . . . such that Γ𝑛2, 𝑗 ∩ 𝐵(0, 1) → 𝐾1,∞ and
Γ𝑛2, 𝑗 ∩ 𝐵(0, 2) → 𝐾2,∞, where 𝐾2,∞ is a closed convex set containing 0, and con-
tained in 𝐵(0, 2). By the Cantor diagonalization method, we find a subsequence 𝑛𝑖,𝑖
such that Γ𝑛𝑖,𝑖 ∩ 𝐵(0, 𝑗) → 𝐾 𝑗 ,∞ for all 𝑗 = 1, 2, 3, . . . .

Claim 1: Suppose 𝑋 , 𝑌 are compact convex sets containing 0, and Δ𝐻 (𝑋,𝑌 ) ≤ 𝜀.
Then for any 𝑖 > 0, Δ𝐻 (𝑋 ∩ 𝐵(0, 𝑖), 𝑌 ∩ 𝐵(0, 𝑖)) ≤ 2𝜀.

Proof. Let 𝑥 ∈ 𝑋 ∩ 𝐵(0, 𝑖), and let 𝑦 ∈ 𝑌 so that |𝑥 − 𝑦 | = dist(𝑥,𝑌 ). If 𝑦 ∈ 𝐵(0, 𝑖),
then dist(𝑥,𝑌 ∩ 𝐵(0, 𝑖)) ≤ 𝜀. Consider the case 𝑦 ∉ 𝐵(0, 𝑖). Then 𝜀 ≥ |𝑥 − 𝑦 | ≥
|𝑦 | − |𝑥 |, so |𝑦 | ≤ |𝑥 | + 𝜀 ≤ 𝑖 + 𝜀. Put 𝑦 = 𝑦′ + ℎ, where 𝑦′ = 𝑖 𝑦|𝑦 | , and ℎ = 𝑦 − 𝑦′.
Then |ℎ| ≤ 𝜀, and |𝑦′| = 𝑖. Note that since 0 ∈ 𝑌 ∩ 𝐵(0, 𝑖) and 𝑌 ∩ 𝐵(0, 𝑖) is
convex, 𝑦′ ∈ 𝑌 ∩ 𝐵(0, 𝑖). So |𝑥 − 𝑦′| ≤ |𝑥 − 𝑦 | + |ℎ | ≤ 2𝜀. In either case, we find
sup

𝑥∈𝑋∩𝐵(0,𝑖) dist(𝑥,𝑌 ∩ 𝐵(0, 𝑖)) ≤ 2𝜀. Switching the roles of 𝑋 and𝑌 , we conclude
that Δ𝐻 (𝑋 ∩ 𝐵(0, 𝑖), 𝑌 ∩ 𝐵(0, 𝑖)) ≤ 2𝜀. □

Claim 2: 𝐾𝑖,∞ = 𝐾 𝑗 ,∞ ∩ 𝐵(0, 𝑖) for all 𝑖 < 𝑗 .

Proof. We know that Γ𝑛𝑘,𝑘 ∩ 𝐵(0, 𝑗) → 𝐾 𝑗 ,∞. By Claim 1, Γ𝑛𝑘,𝑘 ∩ 𝐵(0, 𝑗) ∩
𝐵(0, 𝑖) → 𝐾 𝑗 ,∞ ∩ 𝐵(0, 𝑖). But Γ𝑛𝑘,𝑘 ∩ 𝐵(0, 𝑗) ∩ 𝐵(0, 𝑖) = Γ𝑛𝑘,𝑘 ∩ 𝐵(0, 𝑖) → 𝐾𝑖,∞.
So 𝐾𝑖,∞ = 𝐾 𝑗 ,∞ ∩ 𝐵(0, 𝑖). □

Claim 3: Let 𝐾∞ =
⋃∞
𝑖=1 𝐾𝑖,∞. Then 𝐾∞ is closed, convex, and contains 0.
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Proof. It’s clear that 𝐾∞ is convex and contains 0. To show that 𝐾∞ is closed,
suppose {𝑝𝑖}∞𝑖=1 is a sequence in 𝐾∞ and 𝑝𝑖 → 𝑝∞. Without loss of generality,
we may assume that 𝑝1, 𝑝2, 𝑝3, . . . , 𝑝∞ ∈ 𝐵(0, 𝑛) for some 𝑛. Since 𝐾𝑛,∞ =

𝐾∞ ∩ 𝐵(0, 𝑛), we must have 𝑝𝑖 ∈ 𝐾𝑛,∞. But 𝐾𝑛,∞ is closed, so the limit 𝑝∞ ∈
𝐾𝑛,∞ ⊆ 𝐾∞. □

Claim 4: Denote 𝑓Γ (𝜃) =
�� 𝜃
2 − 𝑝Γ (𝜃)

��2. Then 𝑓Γ𝑖,𝑖 (𝜃) → 𝑓𝐾∞ (𝜃) pointwise.

Proof. Fix 𝜃. For any closed convex set Γ containing 0, we must have |𝑝Γ (𝜃) | ≤ |𝜃 |.
Therefore, for sufficiently large 𝑛, 𝑝

Γ𝑛𝑖,𝑖∩𝐵(0,𝑛)
(𝜃) = 𝑝Γ𝑛𝑖,𝑖 (𝜃) for all 𝑖 = 1, 2, 3, . . . ,

and 𝑝𝐾𝑛,∞ (𝜃) = 𝑝𝐾∞ (𝜃). Since Γ𝑛𝑖,𝑖 ∩ 𝐵(0, 𝑛) → 𝐾𝑛,∞, we have

𝑓Γ𝑛𝑖,𝑖 (𝜃) = 𝑓
Γ𝑛𝑖,𝑖∩𝐵(0,𝑛)

(𝜃) → 𝑓𝐾𝑛,∞ (𝜃) = 𝑓𝐾∞ (𝜃).

□

Finally, | 𝑓Γ𝑛𝑖,𝑖 (𝜃) | ≤
9
4 |𝜃 |

2. By the dominated convergence theorem,

𝑝∗ = lim
𝑖→∞

∫
Ω

𝑓Γ𝑛𝑖,𝑖 (𝜃)𝑑𝜇(𝜃) =
∫
Ω

𝑓𝐾∞ (𝜃)𝑑𝜇(𝜃).

□
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C h a p t e r 4

MATHEMATICAL OPTIMIZATION FOR THE DISCRETE
PROBLEM

4.1 The Quadratically Constrained Quadratic Program
To the best of our knowledge, no existing theory is applicable to the specific shape
optimization problem (2.8). To make the problem more tractable, we convert it into
a quadratically constrained quadratic program. The key to this conversion is the
following result:

Proposition 8. Let {𝜃𝑖}𝑖∈𝐼 , {𝑝𝑖}𝑖∈𝐼 be two collections of points in R𝑑 , where 𝐼 is an
arbitrary index set. There exists a closed convex set Γ ⊆ R𝑑 containing 0 such that
𝑝𝑖 = 𝑝Γ (𝜃𝑖) for all 𝑖 ∈ 𝐼 if and only if

(𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0 for all 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 ,

(𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0 for all 𝑖 ∈ 𝐼 .

Proof. (⇐) Suppose for all 𝑖, 𝑗 ∈ 𝐼, we have (𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0, and
(𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0. For each 𝑖 ∈ 𝐼, define

H𝑖 = {𝜃 ∈ R𝑑 | (𝜃𝑖 − 𝑝𝑖) · (𝜃 − 𝑝𝑖) ≤ 0}.

This is a halfspace with normal vector 𝜃𝑖 − 𝑝𝑖 (or the full space R𝑑 in the case
𝑝𝑖 = 𝜃𝑖). It’s clear that dist(𝜃𝑖,H𝑖) = |𝜃𝑖 − 𝑝𝑖 |. Since (𝜃𝑖 − 𝑝𝑖) · (0 − 𝑝𝑖) ≤ 0, we
deduce that 0 ∈ H𝑖.

Let Γ :=
⋂
𝑖∈𝐼 H𝑖. This is a closed convex set that contains 0. It remains to show that

for each 𝑖 ∈ 𝐼, 𝑝𝑖 = 𝑝Γ (𝜃𝑖). Fix 𝑖 ∈ 𝐼. Then for any 𝑗 ≠ 𝑖, (𝜃 𝑗 − 𝑝 𝑗 ) · (𝑝𝑖 − 𝑝 𝑗 ) ≤ 0.
This implies that 𝑝𝑖 ∈ H 𝑗 . Since 𝑗 is arbitrary, 𝑝𝑖 ∈

⋂
𝑗∈𝐼 H 𝑗 = Γ. We find

dist(𝜃𝑖, Γ) ≤ |𝜃𝑖 − 𝑝𝑖 |
= dist(𝜃𝑖,H𝑖)
≤ dist(𝜃𝑖, Γ).

All inequalities above become equalities, and we deduce that dist(𝜃𝑖, Γ) = |𝜃𝑖 − 𝑝𝑖 |.
Since 𝑝𝑖 ∈ Γ, 𝑝𝑖 is the closest point in Γ to 𝜃𝑖. That is, 𝑝𝑖 = 𝑝Γ (𝜃𝑖).
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(⇒) Assume Γ is a closed convex set containing 0 such that 𝑝𝑖 = 𝑝Γ (𝜃𝑖) for 𝑖 ∈ 𝐼.
Since 0 ∈ Γ, (𝜃𝑖 − 𝑝𝑖) · (0− 𝑝𝑖) ≤ 0, hence (𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0. Next, fix a pair 𝑖, 𝑗
with 𝑖 ≠ 𝑗 . Since 𝑝𝑖 = 𝑝Γ (𝜃𝑖), it must be that for any 𝑞 ∈ Γ, (𝜃𝑖 − 𝑝𝑖) · (𝑞 − 𝑝𝑖) ≤ 0.
In particular, since 𝑝 𝑗 = 𝑝Γ (𝜃 𝑗 ) ∈ Γ, we have (𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0. □

Thus, rather than seek an optimal convex set Γ, we merely need to find the optimal
points 𝑝𝑖 corresponding to each 𝜃𝑖 ∈ Ω. Our shape optimization Problem (2.8)
becomes

minimize𝑝:Ω→R𝑑

∫
Ω

���𝜃2 − 𝑝(𝜃)���2𝑑𝜇(𝜃)
s.t. (𝜃 − 𝑝(𝜃)) · (𝑝(𝜃′) − 𝑝(𝜃)) ≤ 0 for all 𝜃, 𝜃′ ∈ Ω,

(𝜃 − 𝑝(𝜃)) · (−𝑝(𝜃)) ≤ 0 for all 𝜃 ∈ Ω.

(4.1)

As a corollary, we identify a class of problems for which Problem (2.7) has trivial
solution.

Corollary 9. If Ω is a subset of a sphere in R𝑑 centered at 0 with some radius 𝑟 > 0,
then the optimal value of Problem (2.8) is 0.

Proof. Let 𝑝(𝜃) = 𝜃
2 for 𝜃 ∈ Ω. Then 𝜃−𝑝(𝜃) = 𝜃

2 . (𝜃−𝑝(𝜃)) · (−𝑝(𝜃)) = − |𝜃 |
2

4 ≤ 0.
For any 𝜃′ ∈ Ω,

(𝜃 − 𝑝(𝜃)) · (𝑝(𝜃′) − 𝑝(𝜃)) = 1
4
𝜃 · (𝜃′ − 𝜃)

≤ 1
4
[|𝜃 | |𝜃′| − |𝜃 |2]

= 0.

We see that 𝑝(𝜃) = 𝜃
2 is feasible, and

∫
Ω

�� 𝜃
2 − 𝑝(𝜃)

��2𝑑𝜇(𝜃) = 0. □

Henceforth, we will restrict attention to the case when 𝜇 is finitely supported (that
is, Ω = {𝜃1, . . . , 𝜃𝑘 } ⊆ R𝑑 , 𝜇 =

∑𝑘
𝑖=1 𝑤𝑖𝛿𝜃𝑖 , 𝑤𝑖 > 0). In this case, Problem (4.1)

takes the following form:

minimize𝑝1,...,𝑝𝑘∈R𝑑
𝑘∑︁
𝑖=1

𝑤𝑖

���𝜃𝑖2 − 𝑝𝑖���2
s.t. (𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ≠ 𝑗 ,

(𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0, 𝑖 = 1, . . . , 𝑘 .

(4.2)
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Quadratically constrained quadratic programs (QCQPs) are widely studied in the
optimization literature. Unfortunately, a general nonconvex QCQP is NP-hard.
Problem (4.2), in particular, is nonconvex. This is because a constraint of the form
(𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0 is nonconvex in 𝑝1, . . . , 𝑝𝑘 . For nonconvex QCQPs,
relaxation methods exist to obtain approximate solutions, as well as provide bounds
on the optimal value.

In the next section, we will study the semidefinite programming relaxation problem
(4.2). To motivate this relaxation, we convert problem (4.2) into matrix form.

For two 𝑛×𝑛matrices 𝐴, 𝐵, we define the Frobenius inner product 𝐴•𝐵 = tr(𝐴𝑇𝐵) =∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖 𝑗𝑏𝑖 𝑗 .

Let 𝑋 =

(
𝑝1 . . . 𝑝𝑘

)
∈ R𝑑×𝑘 . Let e𝑖 =

©­­­­­­­­«

0
...

−1
...

0

ª®®®®®®®®¬
∈ R𝑘 , where −1 appears at the

𝑖-th entry, and let e𝑖 𝑗 =

©­­­­­­­­­­­­­­«

0
...

−1
...

1
...

0

ª®®®®®®®®®®®®®®¬
∈ R𝑘 , where −1 appears at the 𝑖-th entry, and 1

appears at the 𝑗-th entry. Then 𝜃𝑖 − 𝑝𝑖 =
(
𝐼 𝑋

) (
𝜃𝑖

e𝑖

)
, 𝑝 𝑗 − 𝑝𝑖 =

(
𝐼 𝑋

) (
0
e𝑖 𝑗

)
,
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−𝑝𝑖 =
(
𝐼 𝑋

) (
0
e𝑖

)
, 𝜃𝑖2 − 𝑝𝑖 =

(
𝐼 𝑋

) (
𝜃𝑖
2
e𝑖

)
. We have

(𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) =
( (
𝐼 𝑋

) (
𝜃𝑖

e𝑖

) )𝑇 (
𝐼 𝑋

) (
0
e𝑖 𝑗

)
=

(
𝜃𝑇
𝑖

e𝑇
𝑖

) (
𝐼

𝑋𝑇

) (
𝐼 𝑋

) (
0
e𝑖 𝑗

)
=

(
𝜃𝑇
𝑖

e𝑇
𝑖

) (
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

) (
0
e𝑖 𝑗

)
=

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
•

( (
𝜃𝑖

e𝑖

) (
0 e𝑇

𝑖 𝑗

) )
.

Similarly,

(𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) =
(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
•

( (
𝜃𝑖

e𝑖

) (
0 e𝑇

𝑖

) )
,

and
𝑘∑︁
𝑖=1

𝑤𝑖

���𝜃𝑖2 − 𝑝𝑖���2 =

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
•

( 𝑘∑︁
𝑖=1

𝑤𝑖

(
𝜃𝑖
2
e𝑖

) (
𝜃𝑇
𝑖

2 e𝑇
𝑖

) )
.

Problem (4.2) may now be written as

minimize𝑋∈R𝑑×𝑘

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
•

( 𝑘∑︁
𝑖=1

𝑤𝑖

(
𝜃𝑖
2
e𝑖

) (
𝜃𝑇
𝑖

2 e𝑇
𝑖

) )
s.t.

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
•

( (
𝜃𝑖

e𝑖

) (
0 e𝑇

𝑖 𝑗

) )
≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ≠ 𝑗 ,(

𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
•

( (
𝜃𝑖

e𝑖

) (
0 e𝑇

𝑖

) )
≤ 0, 𝑖 = 1, . . . , 𝑘 .

(4.3)

Put 𝐶 =
∑𝑘
𝑖=1 𝑤𝑖

(
𝜃𝑖
2
e𝑖

) (
𝜃𝑇
𝑖

2 e𝑇
𝑖

)
, 𝐴𝑖 𝑗 =

(
𝜃𝑖

e𝑖

) (
0 e𝑇

𝑖 𝑗

)
, 𝐵𝑖 =

(
𝜃𝑖

e𝑖

) (
0 e𝑇

𝑖

)
, 𝑌 =(

𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
. Since𝑌 is symmetric,𝑌 • 𝐴𝑖 𝑗 = 𝑌 •

(
𝐴𝑖 𝑗+𝐴𝑇𝑖 𝑗

2

)
,𝑌 •𝐵𝑖 = 𝑌 •

(
𝐵𝑖+𝐵𝑇𝑖

2

)
, 𝑌 •

𝐶 = 𝑌 •
(
𝐶+𝐶𝑇

2

)
. Let 𝐴𝑖 𝑗 =

𝐴𝑖 𝑗+𝐴𝑇𝑖 𝑗
2 , 𝐵𝑖 =

𝐵𝑖+𝐵𝑇𝑖
2 , 𝐶 = 𝐶+𝐶𝑇

2 . In semidefinite pro-
gramming, it is customary to symmetrize the coefficient matrices. Hence, we write
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(4.3) in equivalent symmetric form:

minimize𝑋∈R𝑑×𝑘

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
• 𝐶

s.t.

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
• 𝐴𝑖 𝑗 ≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ≠ 𝑗 ,(

𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
• 𝐵𝑖 ≤ 0, 𝑖 = 1, . . . , 𝑘 .

(4.4)

A direct calculation shows that 𝐶, 𝐴𝑖 𝑗 , 𝐵𝑖 have the following forms:

𝐶 =

©­­­­­­­­­­­­«

∑𝑘
𝑖=1 𝑤𝑖

𝜃𝑖𝜃
𝑇
𝑖

4 −𝑤1
𝜃1
2 . . . −𝑤𝑖 𝜃𝑖2 . . . −𝑤𝑘 𝜃𝑘2

−𝑤1
𝜃𝑇1
2 𝑤1

...
. . .

−𝑤𝑖
𝜃𝑇
𝑖

2 𝑤𝑖
...

. . .

−𝑤𝑘
𝜃𝑇
𝑘

2 𝑤𝑘

ª®®®®®®®®®®®®¬
,

where
∑𝑘
𝑖=1 𝑤𝑖

𝜃𝑖𝜃
𝑇
𝑖

4 is 𝑑 × 𝑑, −𝑤𝑖 𝜃𝑖2 appears in the (𝑑 + 𝑖)-th column, −𝑤𝑖
𝜃𝑇
𝑖

2 appears
in the (𝑑 + 𝑖)-th row.

𝐴𝑖 𝑗 =

©­­­­­­­­­­­«

0𝑑×𝑑 . . . − 𝜃𝑖2 . . .
𝜃 𝑗
2 . . .

...

− 𝜃
𝑇
𝑖

2 1 −1
2

...
𝜃 𝑗
2 −1

2 0
...

ª®®®®®®®®®®®¬
,

where − 𝜃𝑖2 appears in the (𝑑 + 𝑖)-th column, 𝜃 𝑗
2 appears in the (𝑑 + 𝑗)-th column,

− 𝜃
𝑇
𝑖

2 appears in the (𝑑 + 𝑖)-th row, and
𝜃𝑇
𝑗

2 appears in the (𝑑 + 𝑗)-th row.

𝐵𝑖 =

©­­­­­­«
0𝑑×𝑑 . . . − 𝜃𝑖2 . . .
...

− 𝜃
𝑇
𝑖

2 1
...

ª®®®®®®¬
,

where − 𝜃𝑖2 appears in the (𝑑 + 𝑖)-th column, and − 𝜃
𝑇
𝑖

2 appears in the (𝑑 + 𝑖)-th row.
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4.2 The SDP Relaxation
For any 𝑛 > 0, let 𝑆𝑛 be the set of real symmetric 𝑛 × 𝑛 matrices. For a symmetric
matrix 𝑌 , we write 𝑌 ⪰ 0 if 𝑌 is positive semidefinite, and 𝑌 ≻ 0 if it is positive
definite.

Recall from the last section that we reformulated (2.1) as (4.4):

minimize𝑍∈𝑆𝑑+𝑘 𝑍 • 𝐶
s.t. 𝑍 • 𝐴𝑖 𝑗 ≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ≠ 𝑗 ,

𝑍 • 𝐵𝑖 ≤ 0, 𝑖 = 1, . . . , 𝑘,

𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
.

Observe that 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
is a positive semidefinite matrix of rank 𝑑. In fact,

we have the following equvalence:

Proposition 10. Let 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌

)
∈ 𝑆𝑑+𝑘 , with 𝑍 ⪰ 0. Then 𝑍 has rank 𝑑 if and

only if 𝑌 = 𝑋𝑇𝑋 .

Proof. If 𝑌 = 𝑋𝑇𝑋 , then 𝑍 = 𝑈𝑇𝑈, where𝑈 =

(
𝐼 𝑋

)
. Since𝑈 has 𝑑 independent

rows, rank𝑈 = 𝑑. Hence, rank𝑈𝑇𝑈 = rank𝑈 = 𝑑.

Conversely, assume 𝑍 ⪰ 0 has rank 𝑑. Then 𝑍 admits decomposition of the form
𝑍 = 𝑈𝑇𝑈, where 𝑈 ∈ R𝑑×(𝑑+𝑘) . Write 𝑈 =

(
𝑀 𝑁

)
, where 𝑀 ∈ R𝑑×𝑑 , 𝑁 ∈ R𝑑×𝑘 .

Then (
𝐼 𝑋

𝑋𝑇 𝑌

)
= 𝑍 = 𝑈𝑇𝑈 =

(
𝑀𝑇𝑀 𝑀𝑇𝑁

𝑁𝑇𝑀 𝑁𝑇𝑁

)
.

In particular, 𝑀𝑇𝑀 = 𝐼, so 𝑀 is an orthogonal matrix. Also, 𝑋 = 𝑀𝑇𝑁 , 𝑌 = 𝑁𝑇𝑁 .
It follows that

𝑌 = 𝑁𝑇𝑁 = 𝑁𝑇𝑀𝑀𝑇𝑁 = (𝑀𝑇𝑁)𝑇 (𝑀𝑇𝑁) = 𝑋𝑇𝑋.

□

From Proposition 10, we see that the condition 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
is equivalent to

𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌

)
⪰ 0 for some𝑌 ∈ 𝑆𝑘 , and rank 𝑍 = 𝑑. The semidefinite programming
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relaxation of QCQP is obtained by removing the rank constraint:

minimize𝑍∈𝑆𝑑+𝑘 𝑍 • 𝐶
s.t. 𝑍 • 𝐴𝑖 𝑗 ≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ≠ 𝑗 ,

𝑍 • 𝐵𝑖 ≤ 0, 𝑖 = 1, . . . , 𝑘,

𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌

)
⪰ 0.

(4.5)

Since (4.5) is a relaxation of (4.4), the optimal value of (4.5) is a lower bound for
the optimal value of (4.4).

We sometimes need to specify the dependence of problem (4.5) on the input data
𝜃 = (𝜃1, . . . , 𝜃𝑘 ) and 𝑤 = (𝑤1, . . . , 𝑤𝑘 ). We will refer to it as Problem (4.5) with
parameters (𝜃, 𝑤).

In the next section, we will explore further relation between (4.5) and the (4.4). For
the remainder of this section, we will discuss some known facts about semidefinite
programming in general.

Preliminaries on Semidefinite Programming
Semidefinite programming is a generalization of linear programming. It has become
a popular method in optimization due to two reasons: 1. A wide range of engineering
problems can be formulated in terms of semidefinite programming. 2. Methods exist
to solve this class of problems, both theoretically (strong duality) and numerically
(interior point method).

We will briefly discuss duality theory for semidefinite programming. The standard
form of semidefinite program (SDP) is

𝑠∗ = inf
𝑋∈𝑆𝑛

𝑋 • 𝐶

s.t. 𝑋 • 𝐴𝑖 = 𝑎𝑖, 𝑖 = 1, . . . , 𝑚,

𝑋 ⪰ 0,

(4.6)

where 𝐶, 𝐴𝑖 ∈ 𝑆𝑛. The dual problem is

𝑑∗ = sup
𝑦1,...,𝑦𝑚∈R

𝑚∑︁
𝑖=1

𝑦𝑖𝑎𝑖

s.t. 𝐶 −
𝑚∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 0.
(4.7)

The following theorem concerning strong duality of SDP can be found in [1].
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Theorem 11. Assume there exists 𝑋 feasible for (4.6) such that 𝑋 ≻ 0, and that
there exist 𝑦1, . . . , 𝑦𝑚 ∈ R such that 𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 ≻ 0. Then both (4.6) and (4.7)
attain their optimal values, and 𝑠∗ = 𝑑∗. Moreover, a feasible primal dual pair
(𝑋, 𝑦) is optimal if and only if 𝑋 • (𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖) = 0.

Our problem (4.5) is not in standard form because it contains inequality constraints.
We need to adapt the preceding strong duality theorem to our case of interest.

Corollary 12. Consider a semidefinite program with both equality and inequality
constraints:

𝑠∗ = inf
𝑋∈𝑆𝑛

𝑋 • 𝐶

s.t. 𝑋 • 𝐴𝑖 = 𝑎𝑖, 𝑖 = 1, . . . , 𝑚,

𝑋 • 𝐵 𝑗 ≤ 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑘,

𝑋 ⪰ 0,

(4.8)

and its dual problem

𝑑∗ = sup
𝑦1,...,𝑦𝑚∈R,𝑧1,...,𝑧𝑘≤0

𝑚∑︁
𝑖=1

𝑦𝑖𝑎𝑖 +
𝑘∑︁
𝑗=1

𝑧 𝑗𝑏 𝑗

s.t. 𝐶 −
𝑚∑︁
𝑖=1

𝑦𝑖𝐴𝑖 −
𝑘∑︁
𝑗=1

𝑧 𝑗𝐵 𝑗 ⪰ 0.

(4.9)

Assume there exists 𝑋 ≻ 0 such that 𝑋 • 𝐴𝑖 = 𝑎𝑖, 𝑋 • 𝐵 𝑗 < 𝑏 𝑗 , and there exist
𝑦1, . . . , 𝑦𝑚 ∈ R, 𝑧1, . . . , 𝑧𝑘 < 0 such that 𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 −
∑𝑘
𝑗=1 𝑧 𝑗𝐵 𝑗 ≻ 0. Then both

(4.8) and (4.9) attain their optimal values, and 𝑠∗ = 𝑑∗. Moreover, a feasible primal
dual pair (𝑋, 𝑦, 𝑧) is optimal if and only if 𝑋 • (𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 −
∑𝑘
𝑗=1 𝑧 𝑗𝐵 𝑗 ) = 0 and∑𝑘

𝑗=1 𝑧 𝑗 (𝑏 𝑗 − 𝑋 • 𝐵 𝑗 ) = 0.

Proof. Put 𝐶 =

(
𝐶 0
0 0

)
, 𝐴𝑖 =

(
𝐴𝑖 0
0 0

)
, 𝐵 𝑗 =

(
𝐵 𝑗 0
0 𝐸 𝑗

)
∈ 𝑆𝑛+𝑘 , where 𝐸 𝑗 is 𝑘 × 𝑘

with 1 at the 𝑗 𝑗-th entry, zero everywhere else.

𝑠∗ = inf
𝑋∈𝑆𝑛+𝑘

𝑋 • 𝐶

s.t. 𝑋 • 𝐴𝑖 = 𝑎𝑖, 𝑖 = 1, . . . , 𝑚,

𝑋 • 𝐵 𝑗 = 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑘,

𝑋 =

(
𝑋 0
0 diag(𝑡1, . . . , 𝑡𝑘 )

)
⪰ 0.

(4.10)
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The requirement that certain off-diagonal entries of 𝑋 be zero can be stated as
equality constraints: 𝑋 • 𝐹𝑖 𝑗 = 0, where 𝐹𝑖 𝑗 =

𝐹𝑖 𝑗+𝐹𝑇
𝑖 𝑗

2 , and 𝐹𝑖 𝑗 has a 1 at the 𝑖 𝑗 th
entry, zero everywhere else. Hence, (4.10) is an SDP in standard form. Observe that

𝑋∗ is optimal for problem (4.8) if and only if

(
𝑋∗ 0
0 diag(𝑡∗1, . . . , 𝑡

∗
𝑘
)

)
⪰ 0, where

𝑡∗
𝑗
= 𝑏 𝑗 − 𝑋∗ • 𝐵 𝑗 , is optimal for (4.10).

The dual of (4.10) is

𝑑∗ = sup
𝑦1,...,𝑦𝑚,𝑧1,...,𝑧𝑘 , 𝑓𝑖 𝑗∈R

𝑚∑︁
𝑖=1

𝑦𝑖𝑎𝑖 +
𝑘∑︁
𝑗=1

𝑧 𝑗𝑏 𝑗

s.t.

(
𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 −
∑𝑘
𝑗=1 𝑧 𝑗𝐵 𝑗 0

0 diag(−𝑧1, . . . ,−𝑧𝑘 )

)
−

∑︁
𝑖, 𝑗

𝑓𝑖 𝑗𝐹𝑖 𝑗 ⪰ 0.

(4.11)

Observe that (𝑦∗, 𝑧∗) is optimal for (4.9) if and only if there exist 𝑓 ∗
𝑖 𝑗
∈ R such that

(𝑦∗, 𝑧∗, 𝑓 ∗) is optimal for (4.11).

By assumption, there exists 𝑋 ≻ 0 such that 𝑋 • 𝐴𝑖 = 𝑎𝑖, 𝑋 • 𝐵 𝑗 < 𝑏 𝑗 . Let

𝑡 𝑗 = 𝑏 𝑗 − 𝑋 • 𝐵 𝑗 . Then 𝑋 =

(
𝑋 0
0 diag(𝑡1, . . . , 𝑡𝑘 )

)
≻ 0, and 𝑋 • 𝐴𝑖 = 𝑎𝑖,

𝑋 • 𝐵 𝑗 = 𝑏 𝑗 . Also by assumption, there exist 𝑦1, . . . , 𝑦𝑚 ∈ R, 𝑧1, . . . , 𝑧𝑘 < 0
such that 𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 −
∑𝑘
𝑗=1 𝑧 𝑗𝐵 𝑗 ≻ 0. Letting 𝑓𝑖 𝑗 = 0, we obtain (𝑦, 𝑧, 𝑓 ) such

that

(
𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 −
∑𝑘
𝑗=1 𝑧 𝑗𝐵 𝑗 0

0 diag(−𝑧1, . . . ,−𝑧𝑘 )

)
−∑

𝑓𝑖 𝑗𝐹𝑖 𝑗 ≻ 0. By theorem

11, (4.10) and (4.11) satisfy strong duality. Moreover, a feasible primal dual pair
(𝑋, 𝑦, 𝑧, 𝑓 ) is optimal if and only if(
𝑋 0
0 diag(𝑡1, . . . , 𝑡𝑘 )

)
•

{ (
𝐶 −∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 −
∑𝑘
𝑗=1 𝑧 𝑗𝐵 𝑗 0

0 diag(−𝑧1, . . . ,−𝑧𝑘 )

)
−

∑︁
𝑓𝑖 𝑗𝐹𝑖 𝑗

}
= 0

or equivalently, 𝑋 • (𝐶 −∑𝑚
𝑖=1 𝑦𝑖𝐴𝑖 −

∑𝑘
𝑗=1 𝑧 𝑗𝐵 𝑗 ) = 0 and

∑𝑘
𝑗=1 𝑧 𝑗 𝑡 𝑗 = 0. □

Strong Duality of (4.5)
The dual of (4.5) is

maximize tr(𝑉)

s.t. 𝐶 −
∑︁
𝑖≠ 𝑗

𝑦𝑖 𝑗 𝐴𝑖 𝑗 −
𝑘∑︁
𝑖=1

𝑧𝑖𝐵𝑖 −
(
𝑉 0
0 0

)
⪰ 0,

𝑦𝑖 𝑗 ≤ 0, 𝑧𝑖 ≤ 0, 𝑉 ∈ 𝑆𝑑 .

(4.12)
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Lemma 13. Problem (4.12) is strictly feasible. That is, there exist 𝑦𝑖 𝑗 < 0, 𝑧𝑖 < 0

and 𝑉 ∈ 𝑆𝑑 such that 𝐶 −∑
𝑖≠ 𝑗 𝑦𝑖 𝑗 𝐴𝑖 𝑗 −

∑𝑘
𝑖=1 𝑧𝑖𝐵𝑖 −

(
𝑉 0
0 0

)
≻ 0.

Proof. For any 𝑉 ∈ 𝑆𝑑 ,

𝐶 −
(
𝑉 0
0 0

)
=

(∑𝑘
𝑖=1 𝑤𝑖

𝜃𝑖𝜃
𝑇
𝑖

4 −𝑉 Ξ

Ξ𝑇 diag(𝑤1, . . . , 𝑤𝑘 )

)

where Ξ =

(
−𝑤1

𝜃1
2 . . . −𝑤𝑘 𝜃𝑘2

)
. Let 𝑉 = −∑𝑘

𝑖=1
𝜃𝑖𝜃

𝑇
𝑖

4 − 𝜇𝐼, so 𝐶 −
(
𝑉 0
0 0

)
=(

𝜇𝐼 Ξ

Ξ𝑇 diag(𝑤1, . . . , 𝑤𝑘 )

)
. For sufficiently large 𝜇, 𝜇𝐼 − Ξdiag(𝑤−1

1 , . . . , 𝑤
−1
𝑘
)Ξ𝑇 ≻

0. By the Schur complement criterion, 𝐶 −
(
𝑉 0
0 0

)
≻ 0. For sufficiently small 𝜀,

−𝜀 < 𝑦𝑖 𝑗 , 𝑧𝑖 < 0 guarantees 𝐶 −
(
𝑉 0
0 0

)
−∑

𝑖≠ 𝑗 𝑦𝑖 𝑗 𝐴𝑖 𝑗 −
∑𝑘
𝑖=1 𝑧𝑖𝐵𝑖 ≻ 0. □

Lemma 14. Assume 0 ∉ {𝜃1, . . . , 𝜃𝑘 }. Then problem (4.5) is strictly feasible. That

is, there exists 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌

)
≻ 0 such that 𝑍 • 𝐴𝑖 𝑗 < 0, 𝑍 • 𝐵𝑖 < 0 for all 𝑖, 𝑗 .

Proof. In R𝑑+1, let Γ be the ball centered at (0, . . . , 0, 1)𝑇 with radius 1. Γ is a
closed convex set in R𝑑+1 containing 0. Let (𝑝𝑖, 𝑞𝑖) = 𝑝Γ (𝜃𝑖), where 𝑝𝑖 ∈ R𝑑 ,
𝑞𝑖 ∈ R.

Let 𝑋 =

(
𝑝1 . . . 𝑝𝑘

)
, 𝑋′ =

(
𝑞1 . . . 𝑞𝑘

)
, 𝑌 = 𝑋𝑇𝑋 + (𝑋′)𝑇𝑋′, 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌

)
.

Then 𝑍 • 𝐴𝑖 𝑗 = ((𝜃𝑖, 0) − (𝑝𝑖, 𝑞𝑖)) · ((𝑝 𝑗 , 𝑞 𝑗 ) − (𝑝𝑖, 𝑞𝑖)), 𝑍 •𝐵𝑖 = ((𝜃𝑖, 0) − (𝑝𝑖, 𝑞𝑖)) ·
(−(𝑝𝑖, 𝑞𝑖)). Let 𝑧 = (0, . . . , 0, 1), 𝑣𝑖 = (𝜃𝑖, 0) − 𝑧. It’s clear from geometry that
(𝑝𝑖, 𝑞𝑖) = 𝑧 + 𝑣𝑖

|𝑣𝑖 | , and |𝑣𝑖 | = | (𝜃𝑖, 1) | > 1. Moreover,

((𝜃𝑖, 0) − (𝑝𝑖, 𝑞𝑖)) · ((𝑝 𝑗 , 𝑞 𝑗 ) − (𝑝𝑖, 𝑞𝑖))

=

(
𝑧 + 𝑣𝑖 −

(
𝑧 + 𝑣𝑖

|𝑣𝑖 |

))
·
(
𝑧 +

𝑣 𝑗

|𝑣 𝑗 |
−

(
𝑧 + 𝑣𝑖

|𝑣𝑖 |

))
= ( |𝑣𝑖 | − 1) 𝑣𝑖|𝑣𝑖 |

·
( 𝑣 𝑗
|𝑣 𝑗 |
− 𝑣𝑖

|𝑣𝑖 |

)
= ( |𝑣𝑖 | − 1)

( 𝑣𝑖 · 𝑣 𝑗
|𝑣𝑖 | |𝑣 𝑗 |

− 1
)
.
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By Cauchy-Schwarz, 𝑣𝑖 · 𝑣 𝑗 ≤ |𝑣𝑖 | |𝑣 𝑗 |. Moreover, 𝑣𝑖, 𝑣 𝑗 are not collinear. Indeed, if
𝑣𝑖 = 𝛼𝑣 𝑗 , then (𝜃𝑖 − 𝛼𝜃 𝑗 , 0) = (1 − 𝛼)𝑧. For the last coordinate to be zero, we must
have 𝛼 = 1. But then 𝜃𝑖 − 𝜃 𝑗 = 0, which is a contradiction. Thus, 𝑣𝑖 · 𝑣 𝑗 < |𝑣𝑖 | |𝑣 𝑗 |.
We deduce that

((𝜃𝑖, 0) − (𝑝𝑖, 𝑞𝑖)) · ((𝑝 𝑗 , 𝑞 𝑗 ) − (𝑝𝑖, 𝑞𝑖)) = ( |𝑣𝑖 | − 1)
( 𝑣𝑖 · 𝑣 𝑗
|𝑣𝑖 | |𝑣 𝑗 |

− 1
)
< 0.

Similarly,

((𝜃𝑖, 0) − (𝑝𝑖, 𝑞𝑖)) · (0 − (𝑝𝑖, 𝑞𝑖)) =
(
𝑧 + 𝑣𝑖 −

(
𝑧 + 𝑣𝑖

|𝑣𝑖 |

))
·
(
0 −

(
𝑧 + 𝑣𝑖

|𝑣𝑖 |

))
= ( |𝑣𝑖 | − 1) 𝑣𝑖|𝑣𝑖 |

·
(
− 𝑧 − 𝑣𝑖

|𝑣𝑖 |

)
< ( |𝑣𝑖 | − 1)

(
|𝑧 | − 1

)
= 0.

We conclude that 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌

)
⪰ 0, with 𝑍 • 𝐴𝑖 𝑗 < 0, 𝑍 • 𝐵𝑖 < 0 for all 𝑖, 𝑗 . By

the Schur complement criterion, 𝑌 − 𝑋𝑇𝑋 ⪰ 0. Put 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌 + 𝜀𝐼

)
. Then for

sufficiently small 𝜀, 𝑍 • 𝐴𝑖 𝑗 < 0, 𝑍 •𝐵𝑖 < 0 for all 𝑖, 𝑗 . Moreover,𝑌 +𝜀𝐼 −𝑋𝑇𝑋 ≻ 0,
so 𝑍 ≻ 0. □

Remark 5. Any feasible value of the dual problem (4.12) is a lower bound for the
optimal value of Problem (4.4).

4.3 Relation between SDP and QCQP
In this section, we investigate the question of when the solution of the relaxed
problem (4.5) gives a solution of the complete problem (4.4). In the case when
relaxation fails to solve the complete problem, we provide an economic interpretation
for this relaxation gap.

Recall that (4.5) relaxes (4.4) by dropping the constraint 𝑌 = 𝑋𝑇𝑋 , or equivalently

(by Proposition 10), the rank

(
𝐼 𝑋

𝑋𝑇 𝑌

)
= 𝑑 constraint. We say that Problem (4.5)

with parameters (𝜃, 𝑤) is exact if every optimal solution 𝑍 =

(
𝐼 𝑋

𝑋𝑇 𝑌

)
satisfies

rank 𝑍 = 𝑑.

Theorem 15. PutΩ = {𝜃1, . . . , 𝜃𝑘 }, 𝜇 =
∑𝑘
𝑖=1 𝑤𝑖𝛿𝜃𝑖 . Problem (4.5) with parameters

(𝜃, 𝑤) is exact if and only if (Ω, 𝜇) is localizable.
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Proof. Suppose (Ω, 𝜇) is localizable. Consider 𝑍 =

(
𝐼𝑑 𝑋

𝑋𝑇 𝑌

)
optimal for (4.5),

with rank 𝑍 = 𝑑 + 𝑟 > 𝑑. Since 𝑍 ⪰ 0, 𝑌 − 𝑋𝑇𝑋 ⪰ 0. Moreover, since
rank 𝑍 > 𝑑,𝑌−𝑋𝑇𝑋 ≠ 0. In fact, by the Guttman rank additivity formula (see [16]),
rank (𝑌 − 𝑋𝑇𝑋) = 𝑟. Hence, there exists 𝑋′ ∈ R𝑟×𝑘 such that 𝑌 = 𝑋𝑇𝑋 + (𝑋′)𝑇𝑋′.

Put 𝑋 = (𝑝1, . . . , 𝑝𝑘 ), 𝑋′ = (𝑝′1, . . . , 𝑝
′
𝑘
), and let 𝑝𝑖 =

(
𝑝𝑖

𝑝′
𝑖

)
, 𝜃̃𝑖 =

(
𝜃𝑖

0

)
. Then

(𝜃̃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) = (𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) + (−𝑝′𝑖) · (𝑝′𝑗 − 𝑝′𝑖)
= 𝜃𝑇𝑖 (𝑝 𝑗 − 𝑝𝑖) + e𝑇𝑖 𝑋

𝑇𝑋e𝑖 𝑗 + e𝑇𝑖 (𝑋′)𝑇𝑋′e𝑖 𝑗
= 𝜃𝑇𝑖 𝑋e𝑖 𝑗 + e𝑇𝑖 𝑌e𝑖 𝑗

= 𝑍 •
( (

0
e𝑖 𝑗

) (
𝜃𝑇
𝑖

e𝑇
𝑖

) )
= 𝑍 • 𝐴𝑖 𝑗
≤ 0,

(𝜃̃𝑖 − 𝑝𝑖) · (−𝑝𝑖) = (𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) + |𝑝′𝑖 |2

= 𝜃𝑇𝑖 (−𝑝𝑖) + e𝑇𝑖 𝑋
𝑇𝑋e𝑖 + e𝑇𝑖 (𝑋′)𝑇𝑋′e𝑖

= 𝜃𝑇𝑖 𝑋e𝑖 + e𝑇𝑖 𝑌e𝑖

= 𝑍 •
( (

0
e𝑖

) (
𝜃𝑇
𝑖

e𝑇
𝑖

) )
= 𝑍 • 𝐵𝑖
≤ 0,
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and
𝑘∑︁
𝑖=1

𝑤𝑖

��� 𝜃̃𝑖2 − 𝑝𝑖���2 =

𝑘∑︁
𝑖=1

𝑤𝑖

(���𝜃𝑖2 − 𝑝𝑖���2 + |𝑝′𝑖 |2)
=

𝑘∑︁
𝑖=1

𝑤𝑖

( |𝜃𝑖 |2
4
− 2

𝜃𝑇
𝑖

2
𝑝𝑖 + |𝑝𝑖 |2 + |𝑝′𝑖 |2

)
=

𝑘∑︁
𝑖=1

𝑤𝑖

( |𝜃𝑖 |2
4
− 2

𝜃𝑇
𝑖

2
𝑋e𝑖 + e𝑇𝑖 𝑋

𝑇𝑋e𝑖 + e𝑇𝑖 (𝑋′)𝑇𝑋′e𝑖
)

=

𝑘∑︁
𝑖=1

𝑤𝑖

( |𝜃𝑖 |2
4
− 2

𝜃𝑇
𝑖

2
𝑋e𝑖 + e𝑇𝑖 𝑌e𝑖

)
=

𝑘∑︁
𝑖=1

𝑍 • 𝑤𝑖
( (

𝜃𝑖
2
e𝑖

) (
𝜃𝑇
𝑖

2 ; e𝑇
𝑖

) )
= 𝑍 • 𝐶.

By Proposition 8, there exists a convex set Γ inR𝑑+𝑟 such that 0 ∈ Γ, and 𝑝𝑖 = 𝑝Γ (𝜃̃𝑖).
By localizability, 𝑝𝑖 ∈ R𝑑 , so 𝑝′

𝑖
= 0. But this implies 𝑋′ = 0, and rank 𝑍 = 𝑑,

contradiction.

Conversely, assume (4.5) is exact. Consider a higher dimension 𝑑′ = 𝑑 + 𝑟 > 𝑑,

and a convex region Γ ⊆ R𝑑 ′ containing 0. Put 𝜃̃𝑖 =

(
𝜃𝑖

0

)
. Let 𝑝𝑖 = 𝑝Γ (𝜃̃𝑖) =

(
𝑝𝑖

𝑝′
𝑖

)
,

where 𝑝𝑖 ∈ R𝑑 , 𝑝′𝑖 ∈ R𝑟 . Assume Γ is optimal:

𝑘∑︁
𝑖=1

𝑤𝑖

��� 𝜃̃𝑖2 − 𝑝𝑖���2 = 𝑠∗.

Let 𝑋 =

(
𝑝1 . . . 𝑝𝑘

)
, 𝑋′ =

(
𝑝′1 . . . 𝑝′

𝑘

)
, and 𝑌 = 𝑋𝑇𝑋 + (𝑋′)𝑇𝑋′, 𝑍 =(

𝐼𝑑 𝑋

𝑋𝑇 𝑌

)
. As before, a direct calculation shows that 𝑍 is feasible for (4.5), with

𝑍 • 𝐶 =
∑𝑘
𝑖=1 𝑤𝑖

��� 𝜃̃𝑖2 − 𝑝𝑖���2 = 𝑠∗. Since (4.5) is exact, rank 𝑍 = 𝑑. It follows that
𝑌 = 𝑋𝑇𝑋 , and 𝑋′ = 0. We conclude 𝑝𝑖 = 𝑝Γ (𝜃𝑖) ∈ R𝑑 . □

Remark 6. Theorem 15 provides an interpretation of the relaxation gap when Prob-
lem (4.5) fails to be exact. When such a gap exists, one can exceed the optimal
value of problem (2.8) by embedding the problem in higher dimensions. 𝑌 − 𝑋𝑇𝑋
is accounted for by the last 𝑑′ − 𝑑 coordinates of 𝑝Γ (𝜃1), . . . , 𝑝Γ (𝜃𝑘 ) of the higher-
dimensional optimum.
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Remark 7. We may also view the nonexactness of Problem (4.5) in terms of the
original optimal fund menus problem. Suppose, in addition to the 𝑑 existing assets,
the fund manager is able to offer 𝑟 additional artificial assets whose returns (in
excess of the risk free rate) are independent with mean 0, and that investors have no
exposure to these additional assets. The corresponding shape optimization problem
is precisely

minimizeΓ
𝑘∑︁
𝑖=1

𝑤𝑖

���𝜃𝑖2 − 𝑝Γ (𝜃𝑖)���2
s.t. Γ ⊆ R𝑑+𝑟 closed and convex, 0 ∈ Γ.

(4.13)

When exactness/localizability fails, the optimal 𝑝Γ (𝜃1), . . . , 𝑝Γ (𝜃𝑘 ) do not lie in
R𝑑 . The last 𝑟 coordinates of 𝑝Γ (𝜃𝑖) represent the amount invested in the 𝑟 artificial
assets by type 𝜃𝑖.

Since investors have no initial exposure to them, the zero mean return artificial assets
can only decrease their utility. If all assets were offered separately, no one would
invest in the artificial ones. Thus, failure of regularity represents an opportunity for
the fund manager to extract more profit by bundling assets that are of no value to
investors.

We conclude this section with a sufficient condition for uniqueness of Problem (4.4).

Proposition 16. If Problem (4.5) with parameters (𝜃, 𝑤) is exact, then both (4.5)
and (4.4) have a unique solution.

Proof. Since (4.5) is exact, by Theorem (15), any optimal solution has rank 𝑑, and

is of the form 𝑍 =

(
𝐼𝑑 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
. Let 𝑍1 =

(
𝐼𝑑 𝑋1

𝑋𝑇1 𝑋𝑇1 𝑋1

)
, 𝑍2 =

(
𝐼𝑑 𝑋2

𝑋𝑇2 𝑋𝑇2 𝑋2

)
be

two solutions. Since (4.5) is a convex problem, 1
2𝑍1 + 1

2𝑍2 is also optimal. By
assumption,

1
2
𝑍1 +

1
2
𝑍2 =

(
𝐼𝑑

1
2𝑋1 + 1

2𝑋2
1
2𝑋

𝑇
1 +

1
2𝑋

𝑇
2

1
2𝑋

𝑇
1 𝑋1 + 1

2𝑋
𝑇
2 𝑋2

)
has rank 𝑑. Consequently,

1
2
𝑋𝑇1 𝑋1 +

1
2
𝑋𝑇2 𝑋2 = (1

2
𝑋1 +

1
2
𝑋2)𝑇 (

1
2
𝑋1 +

1
2
𝑋2)

=
1
4
𝑋𝑇1 𝑋1 +

1
4
𝑋𝑇1 𝑋2 +

1
4
𝑋𝑇2 𝑋1 +

1
4
𝑋𝑇2 𝑋2.
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Subtracting 1
2𝑋

𝑇
1 𝑋1 + 1

2𝑋
𝑇
2 𝑋2 from both sides, we find

0 = −1
4
𝑋𝑇1 𝑋1 +

1
4
𝑋𝑇1 𝑋2 +

1
4
𝑋𝑇2 𝑋1 −

1
4
𝑋𝑇2 𝑋2

= −1
4
(𝑋1 − 𝑋2)𝑇 (𝑋1 − 𝑋2).

This implies 𝑋1 = 𝑋2. Hence, the solution of (4.5) is unique.

Due to exactness, any solution 𝑝1, . . . , 𝑝𝑘 of (4.4) corresponds to an optimal solution

𝑍 =

(
𝐼𝑑 𝑋

𝑋𝑇 𝑋𝑇𝑋

)
of (4.5) via 𝑋 =

(
𝑝1 . . . 𝑝𝑘

)
. Consequently, the solution of

(4.4) is also unique. □

4.4 Special Cases
The following proposition shows that when there is only one asset, and all investors
share similar level of exposure to it, then the type distribution is regular.

Proposition 17. Assume 0 < 𝜃1 < · · · < 𝜃𝑘 ∈ R, and 𝜃𝑘
2 ≤ 𝜃1. Then for any

𝑤1, . . . , 𝑤𝑘 > 0, ({𝜃1, . . . , 𝜃𝑘 },
∑𝑘
𝑖=1 𝑤𝑖𝛿𝜃𝑖 ) is localizable.

Proof. For convenience, put 𝜁𝑖 = 𝜃𝑖
2 . Suppose Γ is a convex region containing 0 such

that 𝜃1, . . . , 𝜃𝑘 are projected to 𝑝1, . . . , 𝑝𝑘 ∈ R𝑑 , with 𝑝1, . . . , 𝑝𝑟−1 ∈ R, 𝑝𝑟 ∉ R.
Since dim span(R ∪ {𝑝𝑟}) = 2, we may assume (after change of coordinates) that
𝑝𝑟 = (𝑝′𝑟 , 𝑞𝑟) ∈ R2, where 𝑞𝑟 ≠ 0. Note that by Proposition 8, 𝑝1, . . . , 𝑝𝑘 satisfy

(𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0 for all 𝑖 ≠ 𝑗 ,

(𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0 for all 𝑖.

Let H𝑟 = {𝑥 ∈ R𝑑 | (𝑥 − 𝑝𝑟) · (𝜃𝑟 − 𝑝𝑟) ≤ 0}. Then 𝑝1, . . . , 𝑝𝑘 ∈ Γ ⊆ H𝑟 . Let
𝐵𝑖 =

{
𝑥 ∈ R𝑑

��� ���𝑥 − 𝑝𝑟+𝜃𝑖
2

��� ≤ ��� 𝑝𝑟−𝜃𝑖2

���} be the Euclidean ball in R𝑑 with diameter
[𝑝𝑟 , 𝜃𝑖]. Since (𝑝𝑟 − 𝑝𝑖) · (𝜃𝑖 − 𝑝𝑖) ≤ 0, we must have 𝑝𝑖 ∈ 𝐵𝑖. Indeed,���𝑝𝑖 − 𝑝𝑟 + 𝜃𝑖2

���2 = |𝑝𝑖 |2 − 𝑝𝑖 · (𝑝𝑟 + 𝜃𝑖) +
��� 𝑝𝑟 + 𝜃𝑖2

���2
= |𝑝𝑖 |2 − 𝑝𝑖 · 𝑝𝑟 − 𝑝𝑖 · 𝜃𝑖 +

��� 𝑝𝑟 + 𝜃𝑖2

���2
=

(
|𝑝𝑖 |2 − 𝑝𝑖 · 𝑝𝑟 − 𝑝𝑖 · 𝜃𝑖 + 𝑝𝑟𝜃𝑖

)
+

(
− 𝑝𝑟𝜃𝑖 +

��� 𝑝𝑟 + 𝜃𝑖2

���2)
= (𝑝𝑟 − 𝑝𝑖) · (𝜃𝑖 − 𝑝𝑖) +

��� 𝑝𝑟 − 𝜃𝑖2

���2
≤

��� 𝑝𝑟 − 𝜃𝑖2

���2.
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We have shown that 𝑝𝑖 ∈ H𝑟 ∩ 𝐵𝑖 for 𝑖 > 𝑟.

We claim that |𝜁𝑖− 𝑝𝑖 | ≥ inf𝑧∈H𝑟∩𝐵𝑖 |𝜁𝑖− 𝑧 | = |𝜁𝑖− 𝑝𝑟 | for 𝑖 > 𝑟. To see this, consider
the problem

minimize |𝜁𝑖 − 𝑧 |2

s.t.
���𝑧 − 𝑝𝑟 + 𝜃𝑖2

���2 ≤ ��� 𝑝𝑟 − 𝜃𝑖2

���2,
(𝜃𝑟 − 𝑝𝑟) · (𝑧 − 𝑝𝑟) ≤ 0.

The Lagrangian is

𝐿 (𝑧, 𝜆1, 𝜆2)

= |𝜁𝑖 − 𝑧 |2 + 𝜆1

(���𝑧 − 𝑝𝑟 + 𝜃𝑖2

���2 − ��� 𝑝𝑟 − 𝜃𝑖2

���2) + 𝜆2(𝜃𝑟 − 𝑝𝑟) · (𝑧 − 𝑝𝑟)

= |𝜁𝑖 − 𝑧 |2 + 𝜆1(𝑝𝑟 − 𝑧) (𝜃𝑖 − 𝑧) + 𝜆2(𝜃𝑟 − 𝑝𝑟) · (𝑧 − 𝑝𝑟)

= (1 + 𝜆1) |𝑧 |2 +
(
− 2𝜁1 − 𝜆1(𝑝𝑟 + 𝜃𝑖) + 𝜆2(𝜃𝑟 − 𝑝𝑟)

)
· 𝑧

+ |𝜁𝑖 |2 + 𝜆1𝑝𝑟 · 𝜃𝑖 − 𝜆2𝜃𝑟 · 𝑝𝑟 ,

where 𝜆1, 𝜆2 ≥ 0.

∇𝑧𝐿 (𝑧, 𝜆1, 𝜆2) = 𝜆1 (−𝑝𝑟 − 𝜃𝑖 + 2𝑧) + 𝜆2 (−𝑝𝑟 + 𝜃𝑟) + 2𝑧 − 2𝜁𝑖 .

It’s easy to verify that 𝑧 = 𝑝𝑟 , 𝜆1 =
2(𝜃𝑟−𝜁𝑖)
𝜃𝑖−𝜃𝑟 , 𝜆2 =

2(𝜃𝑖−𝜁𝑖)
𝜃𝑖−𝜃𝑟 satisfy ∇𝑧𝐿 (𝑧, 𝜆1, 𝜆2) = 0.

Note that 𝑧 = 𝑝𝑟 is primal feasible. Also, since 𝜁𝑖 ≤ 𝜃𝑟 < 𝜃𝑖, 𝜆1, 𝜆2 ≥ 0 must
be dual feasible. We found a primal-dual pair satisfying the Karush-Kuhn-Tucker
condition. Hence, 𝑝𝑟 is the minimizer.

Define 𝑝1, . . . , 𝑝𝑘 by 𝑝𝑖 = 𝑝𝑖 for 𝑖 = 1, . . . , 𝑟 − 1, and 𝑝𝑖 = 𝑝𝑟 for 𝑖 = 𝑟, . . . , 𝑘 . We
claim that they satisfy

(𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0 for all 𝑖 ≠ 𝑗 ,

(𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0 for all 𝑖.

By construction, it suffices to check

(𝜃 𝑗 − 𝑝𝑟) · (𝑝𝑖 − 𝑝𝑟) ≤ 0 for 𝑖 < 𝑟 < 𝑗,

(𝜃 𝑗 − 𝑝𝑟) · (−𝑝𝑟) ≤ 0 for 𝑗 > 𝑟.

To prove the first inequality, fix 𝑖 < 𝑟 < 𝑗 . First note that 𝑝𝑖 ≤ 𝜃𝑖. This follows
directly from (𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0. Next, we have 𝑝𝑖 ≤ 𝑝′𝑟 (recall that 𝑝′𝑟 is the
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first coordinate of 𝑝𝑟 ∈ R2). Indeed, suppose, to the contrary, 𝑝𝑖 > 𝑝′𝑟 . Then
𝑝′𝑟 < 𝑝𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑟 , and |𝜃𝑟 − 𝑝𝑟 |2 = |𝜃𝑟 − 𝑝′𝑟 |2 + |𝑞𝑟 |2 > |𝜃𝑟 − 𝑝𝑖 |2. 𝑝𝑖 would be a
closer point in Γ to 𝜃𝑟 than 𝑝𝑟 , contradiction. Since 𝑖 < 𝑟 < 𝑗 , 𝑝𝑖 ≤ 𝑝′𝑟 , 𝜃𝑟 ≤ 𝜃 𝑗 ,
and

(𝜃 𝑗 − 𝜃𝑟) · (𝑝𝑖 − 𝑝𝑟) = (𝜃 𝑗 − 𝜃𝑟) (𝑝𝑖 − 𝑝′𝑟) ≤ 0.

We already know
(𝜃𝑟 − 𝑝𝑟) · (𝑝𝑖 − 𝑝𝑟) ≤ 0,

so adding the two inequalities gives

(𝜃 𝑗 − 𝑝𝑟) · (𝑝𝑖 − 𝑝𝑟) ≤ 0.

For the second inequality, fix 𝑗 > 𝑟 . We know that (𝜃𝑟 − 𝑝𝑟) · (−𝑝𝑟) = (𝜃𝑟 −
𝑝′𝑟) (−𝑝′𝑟) + |𝑞𝑟 |2 ≤ 0. From this, we deduce that 𝑝′𝑟 ≥ 0 (if 𝑝′𝑟 < 0, then from
(𝜃𝑟 − 𝑝′𝑟) (−𝑝′𝑟) ≤ 0 we find 𝜃𝑟 − 𝑝′𝑟 ≤ 0, so 0 ≤ 𝜃𝑟 ≤ 𝑝′𝑟 < 0, contradiction). Since
𝜃 𝑗 ≥ 𝜃𝑟 and 𝑝′𝑟 ≥ 0,

(𝜃 𝑗 − 𝜃𝑟) · (−𝑝𝑟) ≤ 0.

We already know
(𝜃𝑟 − 𝑝𝑟) · (−𝑝𝑟) ≤ 0,

so adding the two inequalities gives

(𝜃 𝑗 − 𝑝𝑟) · (−𝑝𝑟) ≤ 0.

Now define 𝑝1, . . . , 𝑝𝑘 as follows: 𝑝𝑖 = 𝑝𝑖 = 𝑝𝑖 for 𝑖 < 𝑟, 𝑝𝑖 =

(
𝑝′𝑟
0

)
for 𝑖 ≥ 𝑟. It’s

easy to verify that they satisfy

(𝜃𝑖 − 𝑝𝑖) · (𝑝 𝑗 − 𝑝𝑖) ≤ 0 for all 𝑖 ≠ 𝑗 ,

(𝜃𝑖 − 𝑝𝑖) · (−𝑝𝑖) ≤ 0 for all 𝑖.

By Proposition 8, there exists a convex region Γ ⊆ R𝑑 containing 0 such that
𝑝𝑖 = 𝑝Γ (𝜃𝑖) for 𝑖 = 1, . . . , 𝑘 . Moreover,

𝑘∑︁
𝑖=1

𝑤𝑖 |𝜁𝑖 − 𝑝𝑖 |2 ≥
𝑟−1∑︁
𝑖=1

𝑤𝑖 |𝜁𝑖 − 𝑝𝑖 |2 +
𝑘∑︁
𝑖=𝑟

𝑤𝑖 |𝜁𝑖 − 𝑝𝑟 |2

>

𝑘∑︁
𝑖=1

𝑤𝑖 |𝜁𝑖 − 𝑝𝑖 |2.

It follows that the convex set Γ we started with cannot be optimal. □
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The situation covered by Proposition 17 is one-dimensional. We next study a special
case that goes beyond one dimension. We show that when 𝜃1, . . . , 𝜃𝑘 are linearly
independent, (4.5) is exact. It results from the convenient structure of the dual
problem (4.12). We will use the following lemma:

Lemma 18. Suppose 𝑦∗
𝑖 𝑗
, 𝑧∗
𝑖
, 𝑉∗ are optimal for the dual problem (4.12). Let 𝑆∗ =

𝐶 −∑
𝑖≠ 𝑗 𝑦

∗
𝑖 𝑗
𝐴𝑖 𝑗 −

∑𝑘
𝑖=1 𝑧

∗
𝑖
𝐵𝑖 −

(
𝑉 0
0 0

)
. If rank 𝑆∗ ≥ 𝑘 , then (4.5) is exact.

Proof. Suppose 𝑍∗ is optimal for (4.5). Then 𝑍∗ • 𝑆∗ = 0. Since 𝑍∗, 𝑆∗ are
both positive semidefinite, we have the matrix product 𝑍∗𝑆∗ = 0. Since 𝑍∗, 𝑆∗ are
(𝑑 + 𝑘) × (𝑑 + 𝑘), rank 𝑍∗ + rank 𝑆∗ ≤ 𝑑 + 𝑘 . Since rank 𝑆∗ ≥ 𝑘 , it must be that
rank 𝑍∗ ≤ 𝑑. By Proposition 10, Problem (4.5) is exact. □

With Lemma 18, it suffices to show that rank 𝑆∗ ≥ 𝑘 whenever we wish to show
that the SDP relaxation is exact. We now present the special case of interest.

Proposition 19. Suppose 𝜃1, . . . , 𝜃𝑘 are linearly independent. Then for any𝑤1, . . . , 𝑤𝑘 >

0, problem (4.5) with parameters (𝜃, 𝑤) is exact.

Proof. Suppose 𝑦∗
𝑖 𝑗
, 𝑧∗
𝑖
, 𝑉∗ are optimal for (4.12). Let 𝑆∗ = 𝐶 − ∑

𝑖≠ 𝑗 𝑦
∗
𝑖 𝑗
𝐴𝑖 𝑗 −∑𝑘

𝑖=1 𝑧
∗
𝑖
𝐵𝑖 −

(
𝑉 0
0 0

)
. Then 𝑆∗ takes the form

𝑆∗ =

©­­­­­­­­«

∑𝑘
𝑖=1 𝑤𝑖

𝜃𝑖𝜃
𝑇
𝑖

4 −𝑉
∗ 𝑓1 𝑓2 . . . 𝑓𝑘

𝑓 𝑇1 𝑒11 𝑒12 . . . 𝑒1𝑘

𝑓 𝑇2 𝑒21 𝑒22 . . . 𝑒2𝑘
...

...
...

. . .
...

𝑓 𝑇
𝑘

𝑒𝑘1 𝑒𝑘2 . . . 𝑒𝑘𝑘

ª®®®®®®®®¬
,

where

𝑓𝑖 = −𝑤𝑖
𝜃𝑖

2
+

∑︁
𝑗≠𝑖

𝑦∗𝑖 𝑗
𝜃𝑖

2
+ 𝑧∗𝑖

𝜃𝑖

2
−

∑︁
𝑗≠𝑖

𝑦∗𝑗𝑖
𝜃 𝑗

2
, 𝑖 = 1, . . . , 𝑘,

𝑒𝑖𝑖 = 𝑤𝑖 −
∑︁
𝑗≠𝑖

𝑦∗𝑖 𝑗 − 𝑧∗𝑖 , 𝑖 = 1, . . . , 𝑘,

𝑒𝑖 𝑗 = −
1
2
𝑦∗𝑖 𝑗 −

1
2
𝑦∗𝑗𝑖, 𝑖 ≠ 𝑗 .
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We show that 𝑓1, 𝑓2, . . . , 𝑓𝑘 are linearly independent. Write

𝑓𝑖 =

(
− 𝑤𝑖 +

∑︁
𝑗≠𝑖

𝑦∗𝑖 𝑗 + 𝑧∗𝑖
) 𝜃𝑖

2
−

∑︁
𝑗≠𝑖

𝑦∗𝑗𝑖
𝜃 𝑗

2
.

Since 𝜃1, . . . , 𝜃𝑘 are linearly independent, it suffices to show that

©­­­­­­«
−𝑤1 +

∑
𝑗≠1 𝑦

∗
1 𝑗 + 𝑧

∗
1 −𝑦∗12 . . . −𝑦∗1𝑘

−𝑦∗21 −𝑤2 +
∑
𝑗≠2 𝑦

∗
2 𝑗 + 𝑧

∗
2 . . . −𝑦∗2𝑘

...
...

. . .
...

−𝑦∗
𝑘1 −𝑦∗

𝑘2 . . . −𝑤𝑘 +
∑
𝑗≠𝑘 𝑦

∗
𝑘 𝑗
+ 𝑧∗

𝑘

ª®®®®®®¬
is nonsingular. Since 𝑦∗

𝑖 𝑗
≤ 0, 𝑧∗

𝑖
≤ 0, this matrix is strictly diagonally dominant,

hence indeed nonsingular.

Having established linear independence of 𝑓1, . . . , 𝑓𝑘 , we have shown that rank 𝑆∗ ≥
𝑘 . By Lemma 18, Problem (4.5) is exact. □

This result can be partially extended to the case when 𝑑 ≥ 𝑘 .

Lemma 20. Let 𝑣(𝜃, 𝑤) be the optimal value of problem (4.5) with parameters
(𝜃, 𝑤). Then for any pair 𝜃, 𝜃′ ∈ R𝑑×𝑘 ,

|𝑣(𝜃, 𝑤) − 𝑣(𝜃′, 𝑤) | ≤ 9
4

𝑘∑︁
𝑖=1

𝑤𝑖 [2 max{|𝜃𝑖 |, |𝜃′𝑖 |}|𝜃𝑖 − 𝜃′𝑖 | + |𝜃𝑖 − 𝜃′𝑖 |2] . (4.14)

In particular, if 𝜃𝑙 ∈ R𝑑×𝑘 converges to 𝜃, then lim𝑙→∞ 𝑣(𝜃𝑙 , 𝑤) = 𝑣(𝜃, 𝑤).

Proof. Put 𝜁𝑖 =
𝜃𝑖
2 . By Theorem 15, there exists 𝑟 ≥ 0 and a closed convex

set Γ ⊆ R𝑑+𝑟 such that 0 ∈ Γ and 𝑣(𝜃, 𝑤) = ∑𝑘
𝑖=1 𝑤𝑖 |𝜁𝑖 − 𝑝Γ (𝜃𝑖) |2. The map

𝑝Γ : R𝑑 → R𝑑 is contractive, that is, |𝑝Γ (𝑥) − 𝑝Γ (𝑦) | ≤ |𝑥 − 𝑦 | (see [13]).
Consequently,

|𝜁 ′𝑖 − 𝑝Γ (𝜃′𝑖) | = |𝜁𝑖 − 𝑝Γ (𝜃𝑖) − [𝜁𝑖 − 𝑝Γ (𝜃𝑖)] + [𝜁 ′𝑖 − 𝑝Γ (𝜃′𝑖)] |
≤ |𝜁𝑖 − 𝑝Γ (𝜃𝑖) | + |𝜁𝑖 − 𝜁 ′𝑖 | + |𝑝Γ (𝜃𝑖) − 𝑝Γ (𝜃′𝑖) |

≤ |𝜁𝑖 − 𝑝Γ (𝜃𝑖) | +
1
2
|𝜃𝑖 − 𝜃′𝑖 | + |𝜃𝑖 − 𝜃′𝑖 |,

and

|𝜁 ′𝑖 − 𝑝Γ (𝜃′𝑖) |2

≤ |𝜁𝑖 − 𝑝Γ (𝜃𝑖) |2 + 3|𝜁𝑖 − 𝑝Γ (𝜃𝑖) | |𝜃𝑖 − 𝜃′𝑖 | +
9
4
|𝜃𝑖 − 𝜃′𝑖 |2

≤ |𝜁𝑖 − 𝑝Γ (𝜃𝑖) |2 +
9
2
|𝜃𝑖 | |𝜃𝑖 − 𝜃′𝑖 | +

9
4
|𝜃𝑖 − 𝜃′𝑖 |2.
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Upon summation over 𝑖, we find

𝑣(𝜃′, 𝑤) ≤
𝑘∑︁
𝑖=1

𝑤𝑖 |𝜁 ′𝑖 − 𝑝Γ (𝜃′𝑖) |2

≤ 𝑣(𝜃, 𝑤) + 9
4

𝑘∑︁
𝑖=1

𝑤𝑖 [2|𝜃𝑖 | |𝜃𝑖 − 𝜃′𝑖 | + |𝜃𝑖 − 𝜃′𝑖 |2] .

Inequality (4.14) follows from reversing the roles of 𝜃 and 𝜃′. □

Corollary 21. When 𝑑 ≥ 𝑘 , Problem (4.5) admits a solution of rank 𝑑.

Proof. Since 𝑑 ≥ 𝑘 , there exists a sequence (𝜃𝑙1, . . . , 𝜃
𝑙
𝑘
) → (𝜃1, . . . , 𝜃𝑘 ) such that

for each 𝑙, 𝜃𝑙1, . . . , 𝜃
𝑙
𝑘

are linearly independent. Let 𝐶 𝑙 , 𝐴𝑙
𝑖 𝑗

, 𝐵𝑙
𝑖

be the coefficient
matrices for Problem (4.5) with input (𝜃𝑙1, . . . , 𝜃

𝑙
𝑘
).

Let 𝑍 𝑙 =

©­­­­­«
𝐼𝑑 𝑝𝑙1 . . . 𝑝𝑙

𝑘

(𝑝𝑙1)
𝑇 𝑦𝑙11 . . . 𝑦𝑙1𝑘

...
...

. . .
...

(𝑝𝑙
𝑘
)𝑇 𝑦𝑙

𝑘1 . . . 𝑦𝑙
𝑘 𝑘

ª®®®®®¬
be the optimal solution for Problem (4.5) with

input 𝜃𝑙 . By Proposition 19, rank 𝑍 𝑙 = 𝑑, and there exists a closed convex set
Γ𝑙 ⊆ R𝑑 such that 0 ∈ Γ𝑙 , and 𝑝𝑙

𝑖
= 𝑝Γ𝑙 (𝜃𝑙𝑖 ). We know that |𝑝𝑙

𝑖
| ≤ |𝜃𝑙

𝑖
|. Moreover,

since rank 𝑍 𝑙 = 𝑑, we must have |𝑦𝑙
𝑖 𝑗
| = |𝑝𝑙

𝑖
· 𝑝𝑙

𝑗
| ≤ |𝜃𝑙

𝑖
| |𝜃𝑙

𝑗
|. This analysis shows

that the sequence {𝑍 𝑙}∞
𝑙=1 is bounded. After passing to a subsequence, 𝑍 𝑙 converges

to some matrix 𝑍 . Note that 𝑍 is feasible for Problem (4.5) with input 𝜃, and that
rank 𝑍 = 𝑑. Also, lim𝑙→∞ 𝑍 𝑙 • 𝐶 𝑙 = 𝑍 • 𝐶. By Lemma 20, 𝑍 is optimal.

□

Remark 8. This result is weaker than Proposition 19 because it does not imply
uniqueness of solution for (4.5). It guarantees that an optimal solution of rank 𝑑
exists, but there may be additional solutions with higher rank.

Stated in terms of the fund menu problem, if there are at least as many assets as
the number of types, then the manager cannot (strictly) increase aggregate fee by
introducing additional independent assets with zero mean return.
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A p p e n d i x A

GAMMA CONVERGENCE

We provide justification for focusing on the finite case of minimizing
∑𝑘
𝑖=1 𝑤𝑖

�� 𝜃𝑖
2 −

𝑝Γ (𝜃𝑖)
��2.

Consider a bounded region Ω ⊆ R𝑑 and a finite measure 𝜇. We may discretize 𝜇 by
partitioning R𝑑 into dyadic cubes and forming a weighted sum of point-masses at
the centers. Formally, let D𝑛 be the collection of dyadic cubes in R𝑑 of length 2−𝑛.
For each 𝑄𝑖 ∈ D𝑛, let 𝜃𝑖 be the center of 𝑄𝑖. Define

𝜇𝑛 :=
∑︁
𝑄𝑖∈D𝑛

𝜇(Ω ∩𝑄𝑖)𝛿𝜃𝑖 (A.1)

Let C be the collection of closed convex subsets of R𝑑 containing the origin, and
let F𝑛 (Γ) :=

∫ �� 𝜃
2 − 𝑝Γ (𝜃)

��2𝑑𝜇𝑛. Loosely speaking, as the dyadic cube partition
gets finer, the discretized problem minimizeΓ∈CF𝑛 (Γ) “approximates” the target
problem minimizeΓ∈CF (Γ) better. The precise formulation of such approximation
(often known as gamma-convergence in calculus of variations) is given by the
following result:

Proposition 22. Suppose Ω ⊆ R𝑑 is bounded, and 𝜇 is a finite measure on Ω.
Define 𝜇𝑛 as in (A.1). Then there exists a sequence of minimizers {Γ𝑛} for prob-
lems minimizeΓ∈CF𝑛 (Γ) having an accumulation point in Δ𝐻 . Moreover, any such
accumulation point is an optimal solution of minimizeΓ∈CF (Γ).

Lemma 23. Suppose {Γ𝑛} is a sequence in C such that Γ𝑛 → Γ in Δ𝐻 . Then
F𝑛 (Γ𝑛) → F (Γ).

Proof. |F𝑛 (Γ𝑛) − F (Γ) | ≤ |F𝑛 (Γ𝑛) − F (Γ𝑛) | + |F (Γ𝑛) − F (Γ) |. By Proposition 6,
the second term on the right tends to 0 as 𝑛→∞.

Now consider the first term. On each dyadic cube 𝑄𝑖,
∫
𝑄𝑖

�� 𝜃
2 − 𝑝Γ𝑛 (𝜃)

��2𝑑𝜇𝑛 =∫
𝑄𝑖

�� 𝜃𝑖
2 − 𝑝Γ𝑛 (𝜃𝑖)

��2𝑑𝜇. Since |𝑝Γ𝑛 (𝜃) | ≤ |𝜃 |, and |𝑝Γ𝑛 (𝜃𝑖) − 𝑝Γ𝑛 (𝜃) | ≤ |𝜃𝑖 − 𝜃 |,��� ∫
𝑄𝑖

���𝜃𝑖2 − 𝑝Γ𝑛 (𝜃𝑖)���2𝑑𝜇 − ∫
𝑄𝑖

���𝜃2 − 𝑝Γ𝑛 (𝜃)���2𝑑𝜇��� ≲ ∫
𝑄𝑖

( |𝜃𝑖 | + |𝜃 |) |𝜃𝑖 − 𝜃 |𝑑𝜇.

By the dominated convergence theorem, as 𝑛 → ∞,
∑
𝑄𝑖∈D𝑛

∫
𝑄𝑖
( |𝜃𝑖 | + |𝜃 |) |𝜃𝑖 −

𝜃 |𝑑𝜇→ 0. □
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Proof of Proposition 22. Since Ω is bounded, all 𝜇𝑛 are supported in a large enough
ball, and we may assume that Γ𝑛 are contained in this ball. By the Blaschke selection
theorem, we may assume that {Γ𝑛} contains a subsequence that converges in the
Hausdorff distance. Suppose Γ is any accumulation point of {Γ𝑛}. By Lemma 23,
F𝑛 (Γ𝑛) → F (Γ). Moreover, if Γ′ ∈ C, then

F (Γ′) = limF𝑛 (Γ′) ≥ limF𝑛 (Γ𝑛) = F (Γ).

Consequently, Γ is a minimizer of F (·). □
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A p p e n d i x B

NUMERICAL RESULTS

We examine the numerical solutions of Problem (4.5) in several cases of interest.
Each case consists of points 𝜃1, . . . , 𝜃𝑘 inR2 with uniform weight𝑤1 = · · · = 𝑤𝑘 = 1.
We plot the types 𝜃1, . . . , 𝜃𝑘 (blue), the optimal convex set Γ (shaded region), as
well as the projection points 𝑝Γ (𝜃1), . . . , 𝑝Γ (𝜃𝑘 ).

In addition to the plots, we will be interested in the numerical value of 𝜆𝑑+1(𝑆∗)—the
(𝑑 + 1)-st smallest eigenvalue of the optimal dual slack matrix

𝑆∗ = 𝐶 −
∑︁
𝑖≠ 𝑗

𝑦∗𝑖 𝑗 𝐴𝑖 𝑗 −
𝑘∑︁
𝑖=1

𝑧∗𝑖 𝐵𝑖 −
(
𝑉∗ 0
0 0

)
for Problem (4.12). A strictly positive value implies rank 𝑆∗ ≥ 𝑘 . By Lemma (18),
it allows us to verify, a posteriori, that the SDP numerical solution is exact for the
complete problem (4.4).

The numerical solution is implemented with Python package CVXPY.
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(a) random, 𝜆3(𝑆∗) = 0.27 (b) random, 𝜆3(𝑆∗) = 0.30

(c) grid, 𝜆3(𝑆∗) = 0.54 (d) radial, 𝜆3(𝑆∗) = 0.55

Figure B.1: Numerical solutions for random/nonrandom types


