
Strategies and Tools for

Machine Learning-Assisted Protein Engineering

Thesis by

Bruce James Wittmann

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2022

(Defended May 26, 2022)

ii

© 2022

Bruce James Wittmann

ORCID: 0000-0001-8144-9157

iii

ACKNOWLEDGEMENTS

This thesis was only possible because of the immense support I have received both

throughout my scientific career and otherwise. To start, I would like to thank my advisor,

Prof. Frances Arnold, for everything that she provided during my thesis work. Thank you for

your encouragement, input, and support throughout all my projects; the opportunities to

meet, work with, and learn from exceptional scientists; and for overall providing an

environment where I could learn and refine skills to confidently identify, pursue, and answer

important research questions. My time in the Arnold Lab has been formative for me as a

scientist.

I have had the opportunity to work with many fantastic people during my time at Caltech. I

would like to thank in particular Dr. Sabine Brinkmann-Chen for always being available for

a discussion, providing feedback on just about every piece of writing I produced at Caltech

(including this thesis), and being a constant source of support throughout the often-

tumultuous experience that is graduate school. I would also like to thank my direct mentors

from the early stages of graduate school—Dr. Anders Knight, Dr. Jennifer Kan, and Dr. Zach

Wu—who helped to set the stage for everything that was to come. Thank you all for

welcoming me to the group, teaching me essential skills, and engaging in a number of

direction-setting discussions. It was a pleasure collaborating with you on our various

projects.

Speaking of collaborators, I would also like to thank all members of the Arnold Lab machine

learning subgroup—past or present—that I have had the fortune to work with. In particular,

I would like to extend my sincerest thanks to Kadina Johnston and Patrick Almhjell. You

two are not only amazing coworkers, but amazing friends as well. Kadina, it was fantastic to

build the machine learning subgroup up with you. It is quite astounding how far it has come

when I think back to where it all started, and I am excited to see where it goes next. Patrick,

I always appreciated our many discussions regarding data, programming, science in general,

and more. You are one of the first people I met at Caltech, and it has been a pleasure to work

alongside and learn from you these last five years. Both of you, thank you for helping to

build evSeq into what it is and, more so, just making it an overall fun project to work on.

There are a number of people outside of the Arnold Lab—both at Caltech and elsewhere—

who have been critically influential to my graduate school research experience as well. Thank

you, Prof. Yisong Yue for your extremely helpful advice during the development of ftMLDE

and a number of other machine learning projects that have since been created in

collaboration. Thank you, Dr. Eric Horvitz not only for the opportunity to intern at Microsoft,

but also for your encouragement, support, and input while I undertook what became one of

the major projects described in this thesis. Similarly, I must thank everyone else that I worked

with during my time at Microsoft—Dr. Kevin Yang, Umesh Madan, Dr. Ava Soleimany,

Paul Koch, and Sanaa Mansoor—for their support throughout the internship.

iv

Scientific collaborations aside, none of this would have been possible without the amazing

friends I have made along the way. Dr. Austin Dulaney, you could be in both this paragraph

and the previous one. On the practical side, thank you for your help in making the significant

computational upgrades that enabled much of the work described in this thesis; thank you

also for being a sounding board to many of my new machine learning ideas. Outside of work,

our early morning workouts, late night hangouts, and any-time-of-day coffee breaks are

defining of my graduate school experience, and were among the things I enjoyed most during

my time at Caltech. Dr. Nicholas Porter, likewise, you could also show up in either this or

the previous paragraph. Even though the projects we worked on together were far too much

for two people to handle, I had a blast (and I think everyone else in the lab knew we had a

blast too). Thank you for keeping things light and fun through some of the most stressful

times. Patrick Almhjell and Kadina Johnston, again, thank you for your support both in and

outside of the lab. Dr. Ella Watkins-Dulaney, Dr. Anders Knight, and Dr. Silken Jones, thank

you—alongside Austin, Nick, Patrick, and Kadina—for all the good times with our various

get-togethers (virtual or otherwise). To all of you, graduate school would not have been what

it was without you—I am lucky to have met you all and I am grateful to have you as my

friends.

To my family, thank you for always being a constant source of love and support. To my

brothers, Tom and Freddie Wittmann, the two of you keep me going more than you probably

realize. Thank you for always being a grounding presence and for helping me keep a more

balanced perspective on things. To my parents, Kate and Peter Wittmann, a few sentences

could never be enough to thank you appropriately. Thank you for always being available for

a call or a visit; for taking interest in and sharing my papers, projects, and talks; for providing

advice on topics ranging from day-to-day challenges to big-picture career decisions; and for

overall being loving and supportive. I am where I am because of all you have done for me,

and I am who I am because of all you have taught me. Thank you both for everything.

Finally, I would like to thank my partner, Ali Goodyear. Ali, a few sentences could never be

enough to thank you properly either. All the way back in 2014, when we decided that we

would go to graduate school, I do not think that either of us could have imagined everything

that was to come. Throughout all of it—from the highest highs to the lowest lows and

everything in between—thank you for being by my side. Thank you for celebrating with me

when times were good and for keeping on believing in me (and helping me believe in myself)

when times were bad. More so, though, thank you for being you when times were just

times—for the simple, day-to-day moments that made this experience together one I will

always cherish. It has been quite the journey, and I could not have done it without you.

v

ABSTRACT

Proteins perform critical roles in a growing list of human-devised applications, and as

demands for new applications arise, new proteins must be engineered to meet them. Machine

learning-assisted protein engineering (MLPE) has recently arisen as a new philosophy of

protein engineering, promising to overcome many of the limitations of existing engineering

strategies. Despite its promise, however, as a relatively new approach to protein engineering,

MLPE faces many challenges that hinder its routine application. This thesis is focused on

addressing a number of them. Chapter 1 provides a theoretical overview of protein

engineering, introduces the core steps of a typical MLPE pipeline, and discusses the

challenges that currently hinder MLPE’s advancement. This chapter is written to be

accessible to all members of the highly multidisciplinary audience that either use or develop

MLPE tools, in turn providing a resource that eliminates the steep barrier to entry that can

hinder broader participation in the field. Chapter 2 provides a solution to the challenge of

applying MLPE to proteins whose fitness landscapes are dominated by “holes” (protein

variants with zero or extremely low fitness). Using my development of the strategy “focused

training machine learning-assisted directed evolution (ftMLDE)” as an example, I

demonstrate how auxiliary information from protein sequence and structure can be used to

navigate landscapes despite holes, in turn dramatically improving the efficiency of MLPE.

Chapter 3 explores strategies for reducing the amount of sequence-fitness data needed for

building MLPE models. Specifically, I detail the motivation behind and development of a

new model designed to augment limited protein sequence-fitness datasets with information

extracted from raw protein sequence and structure data. Finally, chapter 4 introduces “every

variant sequencing” (evSeq), a collection of tools and protocols that enables extremely low-

cost, routine collection of large protein sequence-fitness datasets. Not only does this

technology drastically improve the financial feasibility of numerous MLPE applications, but

it also potentiates the construction of a massive database of diverse protein sequence-fitness

data, the likes of which would revolutionize our ability to engineer proteins with data-driven

methods. Overall, the work described in this thesis advances both our understanding of

MLPE and our ability to engineer proteins using it.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

1. Wittmann, B. J.; Johnston, K. E.; Wu, Z.; and Arnold, F. H. (2021) Advances in

Machine Learning for Directed Evolution. Curr. Opin. Struct. Biol. 69, 11–18.

https://doi.org/10.1016/j.sbi.2021.01.008.

B.J.W. conceptualized the structure of this review article and performed the necessary

literature review. The article was written with input from all authors.

2. Wittmann, B. J.; Yue, Y.; and Arnold, F. H. (2021) Informed Training Set Design

Enables Efficient Machine Learning-Assisted Directed Protein Evolution. Cell Syst.

12, 1026-1045.e7. https://doi.org/10.1016/j.cels.2021.07.008.

B.J.W. conceptualized the research study, devised methodology for performing the research,

wrote software to enable the research and ensure its reproducibility, validated the software,

performed all experiments reported in the study, analyzed data from those experiments,

validated the results from the experiments, and wrote the manuscript with feedback from

other authors.

3. Wittmann, B. J.; Johnston, K. E.; Almhjell, P. J.; and Arnold, F. H. (2022) evSeq:

Cost-Effective Amplicon Sequencing of Every Variant in a Protein Library. ACS

Synth. Biol. 11, 1313–1324. https://doi.org/10.1021/acssynbio.1c00592.

B.J.W. conceptualized the method reported in this manuscript, wrote software and developed

laboratory protocols to enable use of the method, validated the supporting software, and built

the combinatorial DNA libraries reported in the work. The article was written with input

from all authors.

vii

PUBLISHED CONTENT NOT INCLUDED IN THESIS

† denotes equal contribution

1. Wu, Z.; Kan, S. B. J.; Lewis, R. D.; Wittmann, B. J.; and Arnold, F. H. (2019)

Machine Learning-Assisted Directed Protein Evolution with Combinatorial

Libraries. Proc. Natl. Acad. Sci. 116, 8852–8858. https://doi.org/10.1073/

pnas.1901979116.

B.J.W. built DNA libraries with Z.W. as well as analyzed data with Z.W., S.B.J.K., and

R.D.L. The article was written primarily by Z.W. with feedback provided by all other authors

including B.J.W.

2. Wittmann, B. J.;† Knight, A. M.;† Hofstra, J. L.; Reisman, S. E.; Kan, S. B. J.; and

Arnold, F. H. (2020) Diversity-Oriented Enzymatic Synthesis of Cyclopropane

Building Blocks. ACS Catal. 10, 7112–7116. https://doi.org/10.1021/acscatal

.0c01888.

B.J.W. performed evolution experiments for the engineering of the trans-

cyclopropylboronate lineage, performed the final validation experiments for both lineages,

and isolated the cross-coupling products and confirmed their identities by NMR and mass

spectrometry. B.J.W. and A.M.K. contributed equally to this work, and both authors took

primary responsibility for writing the manuscript with feedback provided by other authors.

3. Dallago, C.; Mou, J.; Johnston, K. E.; Wittmann, B. J.; Bhattacharya, N.; Goldman,

S.; Madani, A.; and Yang, K. K. (2021) FLIP: Benchmark Tasks in Fitness

Landscape Inference for Proteins. bioRxiv. https://doi.org/10.1101/2021.11.09

.467890.

B.J.W. assisted with conceptualization of the work, selection of the appropriate datasets to

use as benchmarks, calculation of baseline results, and writing the manuscript.

viii

TABLE OF CONTENTS

Acknowledgements ... iii
Abstract ... v
Published Content and Contributions .. vi
Published Content Not Included in Thesis ... vii
Table of Contents ... viii

List of Figures .. xi
List of Tables ... xiii
Nomenclature .. xv
Abbreviatons .. xxi

Chapter 1: Machine Learning-Assisted Protein Engineering .. 1
1.1 Proteins and Protein Engineering Philosophies: A Brief Overview 2
1.2 Machine Learning-Assisted Protein Engineering in Practice 8

1.2.1 Training Data Selection for Mapping Protein Fitness Landscapes 8
1.2.2 Protein Encoding Strategies and Semi-Supervised Learning 11

1.2.3 Prediction of Protein Fitness with Models Trained on Sequence Data 16
1.2.4 Machine Learning-Guided Navigation of Protein Fitness Landscapes 18

1.3 Thoughts on Ongoing Challenges for Machine Learning-Assisted Protein

Engineering ... 22
1.3.1 Practical Considerations for the Wet Lab Application of MLPE 22

1.3.2 Transfer Learning .. 25
1.3.3 The Starting Point Problem ... 27

1.3.4 Data Availability and Benchmarking for Protein Fitness Prediction 29
Chapter 2: Informed Training Set Design Enables Efficient Machine Learning-Assisted

Directed Protein Evolution ... 32
2.1 Introduction for Chapter 2 .. 33
2.2 Results for Chapter 2 .. 37

2.2.1 MLDE Procedure, Simulated MLDE, and Evaluation Metrics 37
2.2.2 More Informative Encodings Can Improve MLDE Outcome 41
2.2.3 Models/Training Procedures More Tailored for Combinatorial Fitness

Landscapes Can Improve MLDE Predictive Performance 48
2.2.4 The Challenge of Holes in Combinatorial Fitness Landscapes and the

Importance of Informative Training Data ... 49
2.2.5 Zero-Shot Prediction as a Practical Training Set Design Strategy for ftMLDE

... 53
2.2.6 Leveraging Sequence Data for the Design of Fitness-Enriched Training Data

... 54

2.2.7 Predicted ΔΔG of Stabilization for the Design of Fitness-Enriched Training

Data ... 58
2.2.8 Zero-Shot Predictions for Training Set Design Enable Highly Effective

ftMLDE on the GB1 Landscape .. 61
2.2.9 MLDE Software Enables Wet-Lab Application .. 67

2.3 Discussion for Chapter 2 .. 67

ix

2.4 Financial Support for Chapter 2 ... 70
Chapter 3: An Exploration of Semi-Supervised Machine Learning-Assisted Protein

Engineering Strategies with SPICE.. 71

3.1 Background and Motivation for Chapter 3 .. 72
3.2 An Overview of SPICE .. 76

3.2.1 Designing an Explicit Embedding Space with SPICE 76
3.2.2 Contact Disruption Upon Mutation as a Heuristic for ΔΔG of Stabilization .. 78
3.2.3 The SPICE Architecture ... 79

3.2.4 SPICE Training Data and Calculation of Contact Disruption 79
3.2.5 The SPICE Training Procedure .. 80

3.3 Semi-Supervised Learning with SPICE... 85
3.3.1 Unsupervised Pretraining of SPICE Variants .. 85

3.3.2 SPICE Embeddings for Supervised Learning .. 86
3.3.3 Active Learning with Gaussian Processes and SPICE 98

3.4 Conclusions for Chapter 3 .. 104
Chapter 4: evSeq: Cost-Effective Amplicon Sequencing of Every Variant in a Protein

Library ... 106
4.1 Introduction for Chapter 4 .. 107
4.2 Results and Discussion for Chapter 4 .. 109

4.2.1 evSeq Uses Inline Barcoding to Expand on Commercially Available

Multiplexed Next-Generation Sequencing .. 109

4.2.2 evSeq Library Preparation Fits Into Existing Protein Engineering and

Sequencing Workflows and Was Designed to be Resource Efficient 112
4.2.3 evSeq Facilitates Library Construction, Validation, and Sequence-Fitness

Pairing ... 116

4.2.4 evSeq Can be Used to Generate Data for Machine Learning-Assisted Protein

Engineering... 121
4.2.5 evSeq Detects All Variability in the Sequenced Amplicons 123

4.3 Conclusion for Chapter 4 ... 124
4.4 Financial Support for Chapter 4 ... 125

Appendix A: Supporting Material for Chapter 2 .. 127
A.1 Data and Code Availability ... 127

A.2 Method Details .. 127
A.2.1 Alignment Generation and EVmutation Model Training 127
A.2.2 Encoding Preparation ... 128
A.2.3 Zero-Shot Predictions .. 130

A.2.3.1 EVmutation/DeepSequence Calculations .. 130
A.2.3.2 Mask Filling Protocol ... 131
A.2.3.3 ΔΔG Calculations ... 134

A.2.4 Simulation Details .. 135
A.2.4.1 Encoding Comparison Simulations .. 135
A.2.4.2 High-Fitness Simulations ... 136
A.2.4.3 Zero-Shot Simulations .. 137
A.2.4.4 Traditional Directed Evolution Simulations .. 138

A.2.5 Evaluation Metrics ... 138

x

A.3 MLDE Programmatic Implementation ... 139
A.3.1 Inbuilt Models .. 140

A.3.1.1 Keras .. 140

A.3.1.2 XGBoost .. 140
A.3.1.3 Scikit-learn .. 141

A.4 Compute Environment .. 141
A.5 Computational Hardware Information .. 141
A.6 Supplementary Item Descriptions ... 142

A.7 Supplemental Figures .. 144
A.8 Supplemental Tables ... 154

Appendix B: Supporting Material for Chapter 4 .. 164
B.1 Materials and Methods .. 164

B.1.1 Single-Site-Saturation Library Generation for TrpB..................................... 164
B.1.2 Sequencing TrpB Libraries with evSeq ... 165

B.1.3 Measuring the Rate of Tryptophan Formation .. 166
B.1.4 Four-Site-Saturation Library Generation for RmaNOD 166

B.1.5 Sequencing RmaNOD Libraries with evSeq ... 168
B.1.6 Oligo Design ... 168

B.1.6.1 Inner Primer Design .. 168

B.1.6.2 Outer Primer Design ... 169
B.1.6.3 Barcode Design ... 169

B.2 Protocols... 170
B.2.1 Ordering Barcode Primers from IDT ... 170
B.2.2 Preparation of evSeq Barcode Primer Mixes .. 172

B.2.3 evSeq Library Preparation/Data Analysis Protocol 173

B.3 Supplemental Figures .. 180
B.4 Barcode and Outer Primer Sequences ... 184
B.5 Dual-Indexing Platemaps .. 194

B.6 Supplemental Tables .. 203
References ... 207

xi

LIST OF FIGURES

Figure 1-1 Example workflows of traditional directed evolution and supervised

machine learning for directed evolution.. 7

Figure 1-2 An example semi-supervised learning workflow illustrated using an

autoencoder as the unsupervised model .. 15

Figure 1-3 An illustration of the use of generative models for zero-shot

prediction and sequence generation... 18

Figure 2-1 Directed evolution strategies and the effects of landscape

topology... 38

Figure 2-2 More informative encodings can improve MLDE outcome: results of

simulated MLDE comparing ten different encoding strategies at three

different screening burdens... 47

Figure 2-3 The challenge of holes in combinatorial fitness landscapes and the

importance of informative training data.. 52

Figure 2-4 Zero-shot prediction for the design of fitness-enriched training data.

All figures plot the predicted rank of GB1 variants (where the variants

predicted to be most fit have lower rank and vice versa) against either

fitness or an alternate summary metric.. 60

Figure 2-5 Zero-shot prediction for training set design enables highly effective

ftMLDE on the GB1 landscape, as measured by maximum fitness

achieved in simulated experiments.. 65

Figure 2-6 Zero-shot prediction for training set design enables highly effective

ftMLDE on the GB1 landscape, as measured by mean fitness

achieved in simulated experiments.. 66

Figure 3-1 A simple example of an explicitly informative embedding space for

machine learning-assisted protein engineering..................................... 75

Figure 3-2 The SPICE architecture and training scheme.. 84

Figure 3-3 Performance of 3 downstream prediction strategies on the GFP

dataset as a function of the number of training epochs........................... 91

Figure 3-4 Performance of 3 downstream prediction strategies on the stability

dataset as a function of the number of training epochs........................... 91

Figure 3-5 Performance of 3 downstream prediction strategies on the AAV

dataset as a function of the number of training epochs........................... 92

Figure 3-6 Results comparing downstream supervised processes using either

SPICE embeddings or ESM embeddings when 96 training examples

are used from the AAV dataset.. 95

Figure 3-7 Results comparing downstream supervised processes using either

SPICE embeddings or ESM embeddings when 384 training examples

are used from the AAV dataset.. 96

Figure 3-8 Results comparing downstream supervised processes using either

SPICE embeddings or ESM embeddings when 1536 training

examples are used from the AAV dataset.. 97

xii

Figure 3-9 The cumulative max and mean achieved by the best possible kernel

during 1000 rounds of active learning for four different encodings

across nine different datasets... 104

Figure 4-1 Overview of evSeq library preparation and processing......................... 115

Figure 4-2 evSeq enables low-cost investigation of library quality and sequence-

fitness pairing in site-saturation mutagenesis libraries.......................... 120

Figure 4-3 evSeq eliminates the sequencing burden of MLPE............................... 122

Figure 4-4 evSeq detects variability and can be expanded for random

mutagenesis... 125

Figure A-1 Summary statistics (shown as empirical cumulative distribution

functions) for the 2000 training sets (each consisting of 384 samples)

designed to be enriched in fit variants.. 144

Figure A-2 Relationship between experimentally determined ΔΔG and GB1

fitness for single mutants at positions V39, D40, G41, and V54;

comparison of predicted ΔΔG upon mutation for GB1 variants using

fixed backbone calculations to experimentally measured values of

ΔΔG for single mutants at positions V39, D40, G41, and V54;

comparison of predicted ΔΔG for GB1 variants using flexible

backbone calculations to experimentally measured values of ΔΔG for

single mutants at positions V39, D40, G41, and V54............................ 145

Figure A-3 Results of zero-shot prediction using flexible backbone Triad ΔΔG

calculations.. 146

Figure A-4 Results of zero-shot prediction using flexible backbone Triad root

mean squared deviation (RMSD) calculations...................................... 147

Figure A-5 GB1 crystal structure (PDB: 2GI9) with the positions mutated in the

GB1 combinatorial landscape highlighted in red.................................. 148

Figure A-6 Summary statistics (shown as empirical cumulative distribution

functions) for the 384-sample training sets generated using all zero-

shot predictors.. 149

Figure A-7 Zero-shot prediction for training set design enables highly effective

ftMLDE on the GB1 landscape, as measured by maximum fitness

achieved in simulated experiments.. 150

Figure A-8 Zero-shot prediction for training set design enables highly effective

ftMLDE on the GB1 landscape, as measured by maximum fitness

achieved in simulated experiments.. 151

Figure A-9 Zero-shot prediction for training set design enables highly effective

ftMLDE on the GB1 landscape, as measured by mean fitness

achieved in simulated experiments.. 152

Figure A-10 Zero-shot prediction for training set design enables highly effective

ftMLDE on the GB1 landscape, as measured by mean fitness

achieved in simulated experiments.. 153

Figure B-1 Comparison of the tradeoff between sequencing depth and cost for

Sanger sequencing, a multiplexed MiSeq run, and an evSeq library..... 180

Figure B-2 Sequencing depths for the TmTrpB9D8* evSeq libraries..................... 182

Figure B-3 Sequencing depths for the RmaNOD evSeq libraries............................ 183

xiii

LIST OF TABLES

Table A-1 The frequency with which the 2-layer 1D convolutional neural

network (1D CNN) architecture appeared in the top 3 models (as

ranked by cross-validation error) over 2000 rounds of simulated

MLDE for each encoding type by training data size.............................. 154

Table A-2 The frequency with which the 1-layer 1D convolutional neural

network (1D CNN) architecture appeared in the top 3 models (as

ranked by cross-validation error) over 2000 rounds of simulated

MLDE for each encoding type by training data size.............................. 155

Table A-3 The frequencies with which XGBoost models with a tree base model

and trained with the Tweedie regression objective achieved a greater

than or equal to MLDE outcome than the same models trained with

the standard regression objective... 156

Table A-4 The frequencies with which XGBoost models with a linear base

model and trained with the Tweedie regression objective achieved a

greater than or equal to MLDE outcome than the same models trained

with the standard regression objective... 157

Table A-5 Expected max of the top 96 predictions, mean of the top 96

predictions, and normalized discounted cumulative gain (NDCG) for

the 2000 ftMLDE simulations performed using training data designed

to be enriched in fit variants... 158

Table A-6 Effectiveness of zero shot strategies that did not rely on a mask filling

protocol.. 158

Table A-7 Effectiveness of different transformer models for zero-shot

predictions of GB1 fitness using a masked token prediction protocol... 159

Table A-8 The tunable parameters with their default values for the different

neural network architectures used in MLDE... 160

Table A-9 The tunable parameters with their default values for the base models

used in the XGBoost models of MLDE... 161

Table A-10 The tunable parameters with their default values for the scikit-learn

models used in MLDE... 162

Table A-11 Key resources related to Chapter 2.. 163

Table B-1 evSeq barcode sequences.. 184

Table B-2 Full-length evSeq barcode (outer) primer sequences............................ 189

Table B-3 Platemap for DI01.. 195

Table B-4 Platemap for DI02.. 196

Table B-5 Platemap for DI03.. 197

Table B-6 Platemap for DI04.. 198

Table B-7 Platemap for DI05.. 199

Table B-8 Platemap for DI06.. 200

Table B-9 Platemap for DI07.. 201

Table B-10 Platemap for DI08.. 202

Table B-11 evSeq captures off-target mutations.. 203

xiv

Table B-12 Primer sequences for TrpB saturation mutagenesis library

construction... 203

Table B-13 Primers specific to the ampicillin resistance gene of pET22b(+) used

in TrpB library construction.. 204

Table B-14 Inner primers used for evSeq library preparation from the TrpB site-

saturation mutagenesis libraries.. 204

Table B-15 The evSeq barcode plates used for sequencing each position of the

TrpB site-saturation mutagenesis libraries.. 204

Table B-16 Mutagenic primers used for the construction of the RmaNOD four-

site-saturation library... 205

Table B-17 Additional primers used to build flanking fragments during

construction of the four-site-saturation RmaNOD library..................... 206

Table B-18 Inner primers used for evSeq library preparation from the RmaNOD

four-site-saturation mutagenesis library.. 206

Table B-19 The evSeq barcode plates used for sequencing each position of the

RmaNOD four-site-saturation mutagenesis library............................... 206

xv

NOMENCLATURE

Active Learning: A machine learning strategy where a model is iteratively updated as new

data become available. A common strategy is to (1) use a model to propose a set of datapoints

to collect, (2) collect that data, (3) update the model with that data, and then (4) iterate

through steps 1 – 3 until a desired engineering goal is achieved.

Amplicon: A fragment of DNA resulting from a PCR.

Benchmark Task: A standardized task that is used to compare the effectiveness of different

machine learning models or approaches. Typically, a benchmark task consists of predefined

sets of training, validation, and testing data. The most valuable benchmark tasks will test the

practical utility of newly proposed models and approaches for solving real-world problems.

Contact Disruption: The number of contacts in a protein’s 3D structure that are broken

upon mutation, where a “contact” is simply an interaction between two amino acids.

Cross-Validation Error: The mean validation error of all folds tested in k-fold cross-

validation.

Cross-Validation Indices: An “index” in programming is an integer that gives the position

of an object in a list-like ordering of data. In this thesis, I use the term “cross-validation

indices” to refer to a set of indices that give the positions of all datapoints used in each fold

of k-fold cross-validation. Two experiments using the same cross-validation indices thus split

the data in the same way for performing k-fold cross-validation.

Degenerate Oligonucleotide: A pool of short fragments of DNA. Most often, the sequences

of those short fragments will differ at only a single or a few positions. These are frequently

used to build protein mutant libraries in a highly multiplexed fashion.

Directed Evolution: A protein engineering strategy that proceeds through rounds of

mutagenesis and screening, fixing the most-improved protein mutant at each round to

greedily arrive at an optimized variant.

Dataset Shift: A phenomenon where testing data comes from a different (or shifted)

distribution relative to the training data. This generally leads to deteriorating performance of

machine learning models.

Dry Lab: A research environment where experiments are computationally performed.

Encoding: Machine learning models operate on numerical inputs. As a result, non-numerical

inputs (e.g., a protein sequence) must first be represented—or, “encoded”—using a set of

numbers. In this thesis, I use the term “encoding” to refer to (1) the general set of features

that are used for representing protein sequences, (2) a vector of features that describes a

xvi

specific protein sequence, or (3) the process of converting a non-numerical input to a

numerical one.

Exploration-Exploitation Tradeoff: When searching for optimal solutions with limited

resources, a decision must be made regarding how to best allocate those resources to balance

taking advantage of existing knowledge (exploitation) and collecting new knowledge

(exploration). This balance is known as the exploration-exploitation tradeoff. Exploitation is

likely to yield many good, yet perhaps suboptimal solutions; exploration, by contrast, will

yield more varied solutions, but perhaps some that are better than would have otherwise been

found focusing on exploitation alone.

Feature: A numerical value that describes some aspect of an input to a machine learning

model. A set of features makes up an encoding.

Functional Screen: Any process that evaluates a protein's ability to perform a task.

Generative Model: A machine learning model that learns an underlying probability

distribution from data.

Global Optimum: A function can have multiple optima. The global optimum is the most

extreme of all optima. On a protein fitness landscape, the global optimum would be defined

by the sequence with the highest possible fitness.

Homologous Proteins: Two proteins are “homologous” if they share a common ancestor.

Kernel (in the context of Gaussian processes): The function used to calculate each entry

of the covariance matrix of a Gaussian process.

K-Fold Cross-Validation: The performance of a machine learning model is typically

described using both a training error and validation error. Training error represents the ability

of a model to predict the correct values for the training data and is directly used to learn

model parameters. Validation error represents the ability of the model to predict the correct

values for data not used to train it. Validation error is used to select the optimal model

architecture for a task to avoid selecting an architecture that has obtained good training error

by overfitting to noise or other idiosyncrasies in the training data. When working with limited

data, however, it is often undesirable to set aside a set of data for validation error calculation,

as that data will by definition not be used for training. In such a case, k-fold cross-validation

can be used. In this procedure, data is split into k chunks, or “folds.” Then, a model is trained

using k-minus-one folds and validation error is calculated on the held-out fold. A new model

is then instantiated and trained on a different combination of k-minus-one folds, again

calculating a validation error on the held-out fold. The procedure iterates until all folds have

been used for calculating validation error and a mean “cross-validation error” is returned.

Model architectures that achieve good cross-validation error are assumed to be the most

effective for a given task.

xvii

Labeled Data: Data that consists of both x- and y-values. The y-value is typically referred

to as the “label” of the x value. For proteins, for example, labeled data might consist of a set

of protein sequences with associated fitness scores. The fitness scores would be the labels of

the sequences.

Learned Embedding: For the purposes of this thesis, a “learned embedding” is an

automatically learned encoding derived from unlabeled data.

Learning Objective: Machine learning models are trained to optimize some loss function

(e.g., they might be trained to minimize mean-squared error). The loss function chosen for

optimization is often referred to as the “learning objective” for a given training procedure.

Local Optimum: A function can have multiple optima. Each of these optima is considered

a “local optimum” as they are optimal relative to their local environment. On a protein fitness

landscape, for instance, a local optimum is defined by a sequence from which a single-step

greedy walker would not be able to leave.

Machine Learning: A strategy for automatically building computational models from data.

Machine Learning Model: A mathematical function defined by some set of learnable

parameters.

Machine Learning-Assisted Protein Engineering: An approach to protein engineering

where machine learning strategies are employed to assist with the design or identification of

new, useful proteins.

Masked-Token Prediction: A semi-supervised strategy derived from natural language

processing. In this approach, a subset of items in a sequence of items are obscured

(“masked”); the identities of these obscured items are then predicted using the context

provided by the unobscured items.

Model Architecture: At a high level, the goal of machine learning is to fit a model (a

function) to a dataset for the purpose of either (1) extracting useful information from that

data or (2) making predictions on as-yet unseen data. The parameterization of the model (i.e.,

the structure of the formula that defines the model) is known as the “architecture” of that

model.

Model Ensemble: A set of models, often with different model architectures.

Molecular Barcode: A unique DNA sequence element that encodes the identity of a sample

in a population of DNA sequences.

Multiplex: To multiplex is to perform multiple operations in parallel. In this thesis,

“multiplex” is primarily used in the context of molecular biology, where it typically refers to

performing multiple molecular biology reactions in parallel.

xviii

Next-Token Prediction: A semi-supervised strategy derived from natural language

processing. In this approach, the next item in a sequence of items is predicted using only

information contained in preceding items.

Oligonucleotide: A short fragment of DNA.

One-Hot: A simple strategy for encoding categorical data. Each category is assigned an

index in a vector. At this index, the vector has value “1”; at all other positions, it has value

“0.” As an example, for a protein of length L, a one-hot encoding would result in a matrix

with shape L × 20. A given row would consist of 19 values of 0 and a single value of 1; the

column containing that value of “1” would depend on the identity of the amino acid at the

position in the protein represented by the row.

Parameter: A value that defines a mathematical model or function. In machine learning, the

optimal numerical value for each parameter defining a model is learned from data during

training.

Parent Protein: The protein used to initiate a protein engineering study. This is often

incorrectly conflated with the “wild-type” protein, which has a different definition (see

below).

Physicochemical: A concatenation of “physical” and “chemical.” This term is often used as

an adjective used to describe the physical and chemical nature of something.

Protein Activity: Depending on the context, this can be a synonym for either protein fitness

or protein function, though it is most often used to describe fitness. When used as a quantity,

it describes protein fitness (e.g., “the protein’s activity was measured and found to be high”);

when used as a quality, it describes protein function (e.g., “this protein’s activity is to catalyze

that reaction”).

Protein Engineering: A field of study dedicated to the development of new proteins with

useful functions.

Protein Fitness: How well a protein performs a specific function.

Protein Fitness Landscape: A conceptualization of the relationship between protein

sequence and protein fitness. This is a surface in a high-dimensional space defined by the

function f(sequence) = fitness.

Protein Function: The specific task that a protein performs.

Protein Library: A set of proteins. Typically, this set consists of protein mutants all derived

from the same parent protein.

Protein Sequence: The ordering of amino acids that defines a protein.

xix

Protein Variant: A synonym for a protein mutant. That is, a protein with at least one amino

acid change relative to some parent protein.

Random Seed: Computers rely on pseudorandom number generators to approximate

processes of randomness. A random seed can be fed into a random number generator to

produce reproducible patterns of randomness. In other words, two random processes run with

the same random seed will yield identical results.

Rational Design: An approach to protein engineering that aims to build computational

models of protein fitness and function from physical and chemical principles. These models

are then used to identify new and useful proteins.

Representation Learning: A machine learning strategy where useful features

(representations) are learned from (typically) unlabeled data. This strategy is closely tied to

self-supervised learning (a strategy often used to drive representation learning) and semi-

supervised learning (where representation learning will typically make up the unsupervised

stage of the workflow).

Self-Supervised Learning: A machine learning strategy where labels are automatically

constructed from unlabeled data and then used to train a model.

Semi-Supervised Learning: Any machine learning strategy that involves both an

unsupervised and a supervised learning phase. Most often, this refers to an approach where

a representation learned from unlabeled data is used in a downstream supervised learning

problem.

Sequencing Coverage: The number of returned reads from a next-generation sequencing

experiment that map to a specific nucleotide on a reference sequence.

Starting Point Problem: Most protein engineering strategies assume that a protein with

even the smallest amount of the desired activity is already known. The challenge of finding

this protein is referred to as the “starting point problem.”

Supervised Learning: Any machine learning strategy that learns from labeled data.

Training Data: The data used to train a machine learning model.

Training Error: A value that represents the ability of a model to predict the correct values

for the data used to train it. Training error is optimized to learn model parameters during

model training.

Training Set: The data used to train a machine learning model.

Transfer Learning: A machine learning strategy where information learned in one problem

is used to assist in solving another. In other words, a machine learning strategy where

information from one problem is transferred to another.

xx

Unlabeled Data: Data that consists of x-values alone. For proteins, a dataset consisting of

protein sequence data alone would be considered unlabeled.

Unsupervised Learning: Any machine learning strategy that learns from unlabeled data.

Validation Data: Data that is held aside during training of a machine learning model. After

training, the validation set is used to calculate a validation error and evaluate how effectively

the model learned to generalize beyond the training data.

Validation Error: A value that represents the ability of a model to predict the correct values

for the data not used to train it.

Validation Set: Data that is held aside during training of a machine learning model. After

training, the validation set is used to calculate a validation error and evaluate how effectively

the model learned to generalize beyond the training data.

Wet Lab: A research environment where experiments are performed by manipulating

physical entities. For instance, a protein engineering wet lab will involve working with

cultures of organisms, running chemical reactions, etc.

Wild-Type Protein: A protein whose sequence is found in nature. If multiple mutants of a

protein sequence are found in nature, then the wild type is the typical (dominant) one. A

wild-type protein can be a parent protein, but not all parent proteins are wild-type proteins.

Zero-Shot Prediction: For the purposes of this thesis, “zero-shot prediction” refers to a

prediction made using a model that can be trained or used without the need for additional

experimental collection of data (i.e., collecting additional labeled data).

xxi

ABBREVIATONS

AAV Adeno-Associated Virus

BERT Bidirectional Encoder Representations from Transformers

BFD Big Fat Database

bp Base Pair

CASP Critical Assessment of protein Structure Prediction

CNN Convolutional Neural Network

DE Directed Evolution

DMS Deep Mutational Scanning

DNA Deoxyribonucleic Acid

EDTA Ethylenediaminetetraacetic acid

ESM Evolutionary Scale Modeling

evSeq Every Variant Sequencing

FLIP Fitness Landscape Inference for Proteins

ftMLDE Focused Training Machine Learning-Assisted Directed Evolution

GB1 G Protein Domain B1

GFP Green Fluorescence Protein

GP Gaussian Process

GUI Graphical User Interface

h Hour

hrs Hours

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IPTG Isopropyl-β-D-Thiogalactoside

kb Kilo-bases

KL Divergence Kullback–Leibler Divergence

LB Luria Broth

LSTM Long Short-Term Memory

mg Milligram

ML Machine Learning

mL Milliliter

MLDE Machine Learning-Assisted Directed Evolution

MLPE Machine Learning-Assisted Protein Engineering

mM Millimolar

MSA Multiple Sequence Alignment

MSE Mean Squared Error

NDCG Normalized Discounted Cumulative Gain

NGS Next Generation Sequencing

NLP Natural Language Processing

xxii

nmole Nanomole

PCR Polymerase Chain Reaction

PDB Protein Data Bank

PLP Pyridoxal 5’-Phosphate

ResNet Residual Network

RmaNOD Rhodothermus marinus Nitric Oxide Dioxygenase

RMSD Root-Mean-Squared Deviation

rpm Revolutions Per Minute

rxn Reaction

Spearman ρ Spearman Rank Correlation Coefficient

TAPE Tasks Assessing Protein Embeddings

TB Terrific Broth

TmTrpB Thermotoga maritima Tryptophan Synthase β-Subunit

TrpB Tryptophan Synthase β-Subunit

UCB Upper Confidence Bound

VAE Variational Autoencoder

XGBoost Extreme Gradient Boosting

μg Microgram

μL Microliter

μM Micromolar

1

C h a p t e r 1

 MACHINE LEARNING-ASSISTED PROTEIN ENGINEERING

Material from this chapter appears in Wittmann, B. J.; Johnston, K. E.; Wu, Z.; and Arnold,

F. H. (2021) Advances in Machine Learning for Directed Evolution. Curr. Opin. Struct. Biol.

69, 11–18. https://doi.org/10.1016/j.sbi.2021.01.008.

Abstract

Machine learning can accelerate protein engineering by allowing researchers to move

expensive laboratory screens in silico. Driven by increased computational power, the

continued decline in the cost of DNA sequencing, and rapid improvements in laboratory

screening technologies, machine learning-assisted protein engineering (MLPE) is

experiencing a rapid growth in popularity and applicability. As a highly multidisciplinary

approach, interest in MLPE continues to grow from both the broader machine learning and

broader protein engineering communities; unfortunately, however, because there is rarely

cross-disciplinary training between these two communities, there can be a steep barrier to

entry for anyone interested in using, developing, or understanding MLPE methods. The goal

of this chapter is to eliminate that barrier, introducing the core concepts of MLPE in a way

that should be accessible to all readers, regardless of academic discipline. I begin with a

broad overview of protein engineering before moving into a discussion of a typical MLPE

pipeline; I then end the chapter by highlighting a number of outstanding MLPE challenges.

Throughout this chapter, I discus concepts from a primarily higher-level intuitive view,

leaving presentation of most technical details to provided references and instead focusing on

providing the conceptual framework needed to understand both later chapters of this thesis

and the field of MLPE as a whole. This chapter should serve as a central resource for anyone

interested in MLPE.

2

1.1 Proteins and Protein Engineering Philosophies: A Brief Overview

Life, in all its complexity, is built from the simplest building blocks. DNA encodes the

information needed to construct all living things, yet it is composed of combinations of just

four unique nucleotides. Proteins, which result from the instructions of DNA, perform central

functions in almost all processes of life, yet are almost universally built from just 20 distinct

amino acids.

Complexity arises from simple building blocks via the staggering number of combinations

that can be made from them. For instance, to build a protein, amino acids are connected one

after the other in a long chain. Considering an average protein with a chain length of 300,

with 20 amino acid options at each position in the chain there are 20300 ≈ 10390 different

possible configurations of amino acids, which is approximately 10310 times more possibilities

than the estimated number of atoms in the observable universe. What (if anything) a protein

does and how well it does it is, to a first approximation, determined by its configuration

(“sequence”) of amino acids; given the beyond astronomical number of potential sequences,

the enormous range of functions performed by proteins in life is perhaps unsurprising.

The diversity of proteins seen in life today is the result of billions of years of evolution,

during which time only a negligible fraction of the space of all possible protein sequences

has been explored (given the size of protein sequence space, full exploration will never be

accomplished). This suggests a large number of potentially useful protein functions left to be

discovered, certainly by life, but also by human engineers. Indeed, many of the characteristics

that make proteins vital to life’s processes make them valuable for human-devised

applications as well. Due to their selectivity, efficiency, and numerous other advantageous

traits, proteins now play integral roles in industries ranging from pharmaceuticals to

consumer products, materials, food, and fuels, and their importance is expected to continue

to grow.1–4

Just as life requires effective strategies for producing new proteins (e.g., to respond to

changing environmental stressors), so too do humans, as new proteins must often be

developed in response to new or changing demands. Unlike life, however, which sees the

3

arrival of new proteins as a result of evolution over long periods of time, we need strategies—

protein engineering strategies—that can identify proteins with a desired function rapidly and

efficiently.

Protein engineering strategies have typically been broadly divided into two complementary

yet different philosophies: rational design and directed evolution.5–11 Rational design posits

that chemical and physical laws can be used to intelligently engineer proteins for a target

function.5–8 When amino acids are chained together in a protein sequence, they will interact

with each other and the surrounding environment to fold the protein sequence into a 3-

dimensional structure.12 Because the twenty amino acids have distinct physical and chemical

properties, the precise positioning of the different amino acids within that structure dictates

the nature and type of interactions the protein can make with other molecules, in turn

determining its function. Rational design asserts that if we could understand (1) what 3D

configuration of amino acids is needed to perform a specific function and (2) what amino

acid sequence will give us that configuration, then we can rapidly identify proteins useful for

a new task.

In principle, rational design is the perfect protein engineering strategy, allowing us to create

new proteins for new tasks at will. In practice, however, and despite a number of success

stories, it tends to be challenging to implement. For one, it is not always clear what 3D

configuration of amino acids will yield a desired function; at least some knowledge of the

chemical mechanism underlying the function is required to propose one, and this information

is often unavailable, particularly when developing proteins with completely new

functionality. Additionally, the relationship between sequence and structure is complex; it is

difficult to precisely predict the structure into which a given sequence will fold, so even if an

ideal 3D amino acid configuration for a given function is known, identifying a sequence that

will yield it (if one exists at all) is challenging. As a result of these limitations, particularly

for protein functions resulting from complex or unknown mechanisms, rational design is

typically not considered a general-purpose engineering strategy.

4

In contrast to rational design, directed evolution requires no understanding of a system’s

structure-function relationship to be effective.9–11 It accomplishes this by borrowing the

protein engineering algorithm of nature: evolution. In life, new protein functions emerge as

a result of changing environmental pressures. While proteins are generally optimized for a

specific function, they also often exhibit slight ability to perform others, a trait that is

commonly called “promiscuity.”13 If, by chance, an existing protein has even the slightest

level of promiscuous activity for a function that provides even the smallest competitive

advantage to its host organism in the face of a new environmental pressure—for instance, by

providing a degree of resistance to some newly introduced toxin—then that organism is more

likely to survive and propagate than others. In each new generation of organisms, random

mutations can occur that change the amino acid sequence of that protein, and in turn its ability

to perform this advantage-granting function. Some changes will diminish or eliminate

protein function while others will improve it. Those organisms hosting a protein with

improved function will have a competitive advantage and thus be more likely to propagate

than others; this “natural selection” will lead to an enrichment of proteins with improved

function in the next generation. Over many generations of mutation followed by natural

selection, a new protein will gradually emerge that is optimized for the once-promiscuous

function. Notably, there was no rational intervention during this evolutionary process. There

was no need to understand the mechanistic basis for the observed function. Random

mutations to an existing protein sequence in the presence of an environmental pressure were

all that was needed.

Like in natural evolution, a directed evolution workflow proceeds by iterating through cycles

of mutagenesis and selection for improved function (Figure 1-1A).9–11 The workflow begins

by identifying a protein with even the slightest ability to perform a desired function. Next,

mutants (also commonly referred to as “variants”) of this protein are produced and evaluated;

the mutant with the greatest activity (greatest ability to perform the function) is identified

and used as the starting point for the next generation, and the process iterates until a protein

with the desired level of activity is identified. For the same reasons as in natural evolution,

this process does not require detailed mechanistic understanding of the system being

5

engineered to be effective. Unlike in natural evolution, however, because humans decide

which protein is used as the starting point (the “parent”) for each new generation, the protein

function being optimized does not need to be tied in any way to survival of an organism; so

long as a quantifiable laboratory assay (a “screen”) of protein function can be developed, that

function can be optimized by directed evolution. Not only, then, is directed evolution simple

to employ, it also highly generalizable. For both of these reasons, directed evolution is

typically regarded as the most successful general-purpose protein engineering strategy to

date, with its wide-reaching contributions to academia, industry, and society as a whole

recognized by the award of (one-half of) the 2018 Nobel Prize in Chemistry.

Despite its undeniable success and effectiveness, directed evolution has limitations. For

instance, it cannot be performed unless a protein with at least some ability to perform the

desired function is already known—it can only optimize existing, known function. This

“starting point problem” can present a significant bottleneck to the development of new

protein functions, as existing strategies for solving it tend to be applicable only in limited

situations or else are generally unreliable.14 In addition to the starting point problem, directed

evolution’s reliance on a functional screen necessitates extensive laboratory characterization

of produced protein variants, making the process time- and resource-intensive and presenting

a bottleneck for engineering many protein functions where screening more than a few

hundred or thousand variants would be expensive.

In an effort to overcome some of the limitations of directed evolution and rational design,

recent years have seen the arrival of a third philosophy of protein engineering: machine

learning-assisted protein engineering (MLPE).15–24 From an applications point of view,

machine learning (ML) can broadly be defined as “a strategy for automatically building

computational models from data,” where a “model” can be thought of as some function that

maps an input representation to an output representation.21,25,26 This model will be defined

by some set of parameters, and the goal of ML is to identify (“learn”) the ideal set of

parameters for performing that mapping. For instance, a linear transformation (y = Wx + b)

can act as a simple model, where an input vector x is mapped to an output vector y by

6

parameters contained in matrix W and vector b. If this linear model were used in a machine

learning application, the goal would be to use known pairs of x and y to learn the parameter

values that are optimal (though perhaps not perfect) for transforming x to y. These learned

parameters could then be used to predict the y associated with a previously unseen x. This

simple ML example with a linear model will likely be familiar to most people—anyone who

has ever added a line of best fit to a plot (e.g., using Microsoft Excel) of the form y = mx +

b has performed it, only here the goal would have been to find scalar forms of W and b (“m”

and “b”) that best transform a scalar x into a scalar y.

In MLPE applications, the goal is to build a model that can map a protein sequence to its

ability to perform some function. The model is first constructed using existing protein data,

then used in place of a laboratory screen to evaluate previously unseen proteins, drastically

reducing the experimental screening burden (Figure 1-1B). In a way, this approach is similar

to rational design, as improved proteins are predicted rather than stochastically identified

through laboratory screening as in directed evolution. Importantly, however, because the

model is learned from patterns in the data, MLPE does not require any understanding of the

system to be effective, thus avoiding rational design’s key limitation. MLPE thus has the

advantages of both rational design and directed evolution: it avoids extensive screening

burdens (as in rational design) and can also be used to engineer arbitrary protein functions

(as in directed evolution).

Despite its potential, as a relatively new approach to protein engineering, there remain

numerous open questions and practical challenges to applying MLPE. For instance, the

effectiveness of ML in general depends heavily on the quality and quantity of the data

available for training models, and the more high-quality data we can collect, the better our

ML models will perform. Just as laboratory screening capacities act as a bottleneck for

directed evolution, they also limit our ability to gather data needed to train the models used

in MLPE. In other words, we will always have a limited budget for gathering new data for

MLPE. How, then, should we most effectively use this limited screening budget? How do

we choose which new data to collect that will lead to the most effective MLPE models? How

7

do we most effectively use data that has already been collected? Alternatively, can we

develop laboratory methods that increase our screening budget? The focus of this thesis is to

answer these questions.

Figure 1-1. Example workflows of (A) traditional directed evolution and (B) supervised

machine learning for directed evolution. Both workflows begin by identifying a protein with

activity for a target function. Once the starting point is identified, diversity is introduced by

mutagenesis and resulting variants are screened for function. (A) In traditional directed

evolution, many variants are screened and the best variant is then fixed as the parent for the

next round of mutagenesis/screening. (B) When applying supervised machine learning to

directed evolution, fewer variants are screened. Using the resulting sequence-function data,

a function is fit that relates protein sequence to protein fitness (e.g., for f(x) = y, “x” is the

protein sequence and “y” is the protein fitness). This function can be used to predict the

fitnesses of variants not experimentally evaluated or to propose a new set of variants to screen

in the next round of evolution.

The remainder of this chapter is dedicated to presenting (1) an overview of the MLPE

pipeline, highlighting recent advances at each of the key steps and (2) a brief discussion of

the core challenges currently faced by the MLPE community. This chapter does not need to

be read to understand later ones, but should provide greater context for the problems

addressed in them. My goal is that anyone who reads this chapter—regardless of academic

background—will gain a basic understanding of why ML is applied to protein engineering,

how ML is applied to protein engineering, the core considerations that must be made at each

step of an MLPE endeavor, and where MLPE still has room for improvement. It will not

serve as a manual for applying ML to protein engineering, instead providing more of a high-

8

level overview and refraining, where possible, from deep dives into specifics. There are

already a number of resources published for the interested reader that can serve as manuals

for applying ML to protein engineering,16,18,21 and I will also provide references throughout

that give significantly more detail on any of the discussed topics.

1.2 Machine Learning-Assisted Protein Engineering in Practice

This section describes the typical steps of an MLPE pipeline, using recent advances to

highlight the considerations that must be made at each of them. Because this thesis is

primarily concerned with how we can most effectively use ML to optimize the activity of a

given protein, that is the lens through which I will present it. However, it is important to note

that the MLPE considerations introduced in the subsections below are generally relevant to

all of its applications.

1.2.1 Training Data Selection for Mapping Protein Fitness Landscapes

The relationship between a protein’s amino acid sequence and the extent to which it can

perform a desired function (its “fitness”) is often conceptualized as a surface in high-

dimensional space called a “protein fitness landscape.”27–29 Within this conceptual

framework, the goal of protein engineering is to search a fitness landscape to identify amino

acid sequences optimized for performing specific functions—that is, the goal is to identify

fitness peaks. Exactly how these peaks are found varies by protein engineering strategy.

Directed evolution, for instance, can be thought of as a greedy uphill walk on a fitness

landscape: starting from a parent protein low on a fitness peak, it iteratively identifies

proteins with improved fitness until a fitness optimum is reached. Rational design and MLPE

take a different approach, building the function f(sequence) = fitness,a then using that

function as a map to computationally explore a fitness landscape and (in principle) identify

the global optimum. As discussed in the first section, the key difference between rational

a Strictly speaking, rational design usually attempts to build a function of the form rank(f(sequence)) = rank(fitness), where

a score correlated to fitness is predicted, not fitness itself. As will be discussed later, many MLPE strategies also attempt

to build a function of this form.

9

design and MLPE is that while rational design builds the landscape map from chemical and

physical principles, MLPE builds it from data.

The data used to build an ML model is called “training data.” In most MLPE applications,

training data consist of either sequence-annotation pairs, or simply sequences on their own.

When data are unannotated (e.g., just sequences), then they are considered “unlabeled”; when

data are annotated (e.g., sequence-annotation pairs), then they are considered “labeled.” The

exact annotation used in labeled data will vary by application. For instance, if I wanted to

train an ML model to predict the host organism of proteins, then I would ideally train it using

a labeled dataset of sequence-organism pairs. If I wanted to build a map of a protein fitness

landscape for MLPE, then I would ideally gather a labeled training dataset of sequence-

fitness pairs. Gathering a training dataset of sequence-fitness pairs generally involves (1)

building a set (a “library”) of protein sequences and then (2) experimentally evaluating their

fitnesses. There are many different strategies for building protein libraries, the details of

which I will leave to the referenced sources;11,30 the experiment for evaluating protein fitness

will, of course, depend on the definition of “fitness” for the protein system being studied.

In general, the data used to train an ML model determines what it learns and, by extension,

in what situations it can be used to make effective predictions. ML models tend to be more

effective at interpolation than extrapolation and will thus typically perform best when used

to make predictions in the same domain as the data used to train them. For general ML

applications, this typically translates to collecting maximally diverse training data that best

cover the space being modeled. For MLPE, this means that training data with maximal

protein sequence diversity will be most informative for modeling a fitness landscape:b the

more diverse the training sequences are, the more of the fitness landscape that is covered by

the training data and the less a model must extrapolate to previously unseen regions of

sequence space. Randomly collecting sequences can thus be a valuable strategy for

b Strictly speaking, training data that maximizes diversity in the encoded sequences will be the most informative. More

information is provided on protein encoding in Section 1.2.2.

10

constructing an MLPE training dataset, as this will on average result in the collection of

highly diverse sequences.

While building a perfect map of a fitness landscape would be ideal for model-guided

engineering, it is not feasible given our limited ability to collect experimental data. More

complex fitness landscapes considering larger sections of sequence space require more data

to model, and a small amount of randomly selected labeled training data may be spread too

thinly across sequence space to build a comprehensive map.31 For instance, as more

mutations are made to a protein, the probability that it retains function decreases

exponentially,32 so fitness landscapes consisting of combinations of mutations at multiple

positions (“combinatorial landscapes”) tend to be dominated by protein variants with zero or

extremely low fitness. These variants are commonly referred to as “holes” in the fitness

landscape as they only provide information on which mutations destroy protein fitness; they

do not provide information about the extent to which a mutation impacts protein fitness. By

simple probability, a small, randomly drawn labeled training dataset from a hole-filled

landscape will itself tend to be dominated by holes and contain limited if any information

about the relatively rare peaks in the fitness landscape. A model trained on this data will thus

also lack information about the fitness peaks, which is a problematic result from the point of

view of protein engineering because the peaks are where we will find protein variants with

improved fitness and are therefore what we are most interested in mapping.

In general, the goal of MLPE is to reduce laboratory screening burdens. It is thus desirable

to develop data-efficient MLPE strategies that maximize our ability to identify improved

protein variants while minimizing the need for experimental collection of additional training

data. As part of my thesis work (as detailed in Chapter 2 and in the provided reference), I

proposed and then demonstrated that, if training data are expensive to collect, it can be

advantageous to build focused training datasets that are biased toward protein variants

believed a priori to be higher in fitness rather than to build training datasets from randomly

selected protein sequences.33 Continuing the example from the previous paragraph, this

would mean using some source of prior knowledge of the protein fitness landscape being

11

modeled to avoid including holes in the training data. The logic behind this approach is that

it is more important to be able to identify the highest-fitness variants from the set of high-

fitness variants than the lowest-fitness variants from the set of low-fitness variants; thus, we

should aim to model (potentially) higher-fitness regions of the protein fitness landscape at

higher resolution (which is enabled by biasing data collection to these regions) and lower-

fitness regions of the protein fitness landscape at lower resolution (which results from

collecting less data from these regions). This logic better aligns with the overall goals of

MLPE, which is not to comprehensively map fitness landscapes, but to use ML to guide

exploration of fitness landscapes to reach higher-fitness protein variants.

1.2.2 Protein Encoding Strategies and Semi-Supervised Learning

ML models work by performing mathematical operations on an input space to map it to an

output space. For example, a simple linear model given by y = Wx transforms an input vector

x into an output vector y using the learned weights matrix W. The ideal model for performing

this mapping will vary by application, as it depends on the nature of the relationship between

the two spaces. For the sake of keeping this chapter a big-picture introduction to MLPE, I

will not go into the technical details of how the ideal model for a given problem is chosen,

leaving that to referenced materials.21,34 In general, however, simple relationships between

input and output spaces can be described by simple models (those with fewer learnable

parameters), while more complex relationships require more complex models. Importantly,

as model complexity increases, the amount of training data needed to learn the relationship

does as well, so ML is typically more efficient in applications where there is a simple

relationship between input and output spaces.

In many ML applications, the input space is not—at least initially—clearly defined. For

example, say the goal was to build an ML model that could predict the average rating given

to movies by critics. The output space will clearly be defined by numerical labels like “score

out of ten,” but movies are inherently non-mathematical objects, so what is the input space?

To apply ML in cases like this, the input space must first be defined by describing each non-

mathematical object with a set of numerical “features” (a process known as “encoding”). For

12

instance, a movie might be encoded using a set of features like “year of release,” “film

budget,” etc. In general, it is ideal to choose features that are believed to be highly correlated

with the target label, as this will set up a simpler relationship between input and output spaces

and better enable data-efficient learning. We thus might expect “film budget” to be a

particularly helpful feature for predicting critical ratings; it is unlikely to be as helpful,

however, if our goal were to instead predict a less correlated label like “filming location.”

Just like movies, protein sequences are also inherently non-mathematical objects, and must

be encoded to be fed into ML models. A common encoding strategy applied to proteins is

“one-hot encoding.” In this strategy, each position in the protein is encoded by a vector; the

vector will have 20 positions, all filled with “0” except for a single “1” whose position is

determined by the identity of the amino acid in question. For instance, the amino acid

“alanine” might be encoded by a vector with “1” in the first position, the amino acid

“cysteine” might be encoded with “1” in the second position, and so on. While this encoding

strategy is sufficient for training an ML algorithm, it is clearly uninformative. Amino acids

exhibit a spectrum of different physical and chemical (“physicochemical”) properties, with

some more similar to one another than others. Yet, using a one-hot encoding, this information

is not presented to the ML model. Instead, each amino acid is simply treated as a different

category, all differing only in the placement of the “1” in their encoded representation.

Physics and chemistry ultimately determine what a protein does and how well it does it, so

encoding strategies that better capture the physicochemical similarities and differences of

amino acids can be expected to be more informative to an ML model. The most obvious way

to capture such information in a protein encoding is to explicitly use numerical descriptors

of the different amino acids’ physicochemical properties. Projects such as the AAIndex have

collected hundreds of such descriptors—some of which result from laboratory measurements

of amino acid properties and others of which have been manually designed to describe amino

acid qualities—that can be used in different combinations to create different

physicochemically grounded protein encodings.35,36 As shown in both Chapter 2 and other

13

works, the additional information provided by physicochemical features can indeed improve

MLPE performance compared to using one-hot encoding.19,33

Something notable about both one-hot and physicochemical encoding strategies is that

neither takes into account the greater context of the protein sequence: every amino acid is

given the same encoding regardless of its position relative to other amino acids in the

sequence. The function of each amino acid in a protein is, however, extremely context

dependent. For instance, a serine in a protein’s active site (the location where a chemical

reaction occurs in a protein) will likely perform a very different role than a serine at that

protein’s surface. We might imagine, then, that an encoding scheme where the amino acid

representation changes based on its context would be even more informative than a

physicochemical one.

Unfortunately, it is not immediately clear how to explicitly capture context in the encodings

of different amino acids. The number of possible contexts in which we can find a particular

amino acid is only slightly smaller than the space of all possible proteins,c and so, unlike for

context-independent one-hot or physicochemical encodings, we cannot simply write down a

set of rules of the form “when amino acid X is in the presence of sequence Y, use encoding

Z.” Just as the relationship between amino acid sequence and fitness is complex, so too is the

relationship between amino acid sequence and context-dependent encodings. Fortunately,

both of these relationships can be mapped in the same way: by using machine learning.

In recent years, particular interest has arisen around training ML models to automatically

build protein encodings using information extracted from large unlabeled protein

datasets.22,37,38 Unlike labeled protein data, unlabeled protein data are extremely inexpensive

to produce. Indeed, drastic reductions in sequencing costs have led to a deluge of unlabeled

sequence data, with hundreds of millions of naturally occurring protein sequences identified

from various organisms now stored in online databases.15,39–42 Importantly, all proteins found

c For a protein sequence of length N, there are 20N possible protein sequences. An amino acid at a single position can be

found in the context of all other possible amino acid combinations at all other positions. That is, it can be found in 20N-1

possible contexts.

14

in life today—and thus all proteins found in those databases of sequences—must follow some

set of biophysical and evolutionary rules that allow them to be produced and carry out a

biological function; otherwise, they would have been filtered out by evolution. By training

models, which are often adapted from natural language processing (NLP),43–47 on unlabeled

protein sequences, the sequence constraints that result from these rules can be learned (Figure

1-2A, Figure 1-2B).48–55 These models can then be repurposed to generate continuous vector

representations of proteins known as “embeddings,” which can be used for protein encoding

(Figure 1-2C, Figure 1-2D). An effective protein embedding will capture information learned

during pretraining and define the relationships between proteins within the context of learned

sequence constraints. Whether or not an amino acid obeys a sequence constraint depends on

its context, so it will have a different encoding depending on its relative location in a protein

sequence.

The full process of (1) training an ML model on unlabeled data, (2) using that model to

encode proteins, and (3) training another model to map between those encoded proteins and

a useful output (e.g., protein fitness) is known as “semi-supervised learning.” This name

comes from the fact that the process consists of both an unsupervised learning stage (that is,

training an ML model on unlabeled data—for instance, on unlabeled protein sequences) and

a supervised stage (training an ML model on labeled data). The details of how exactly the

unsupervised stage (where a model is trained on unlabeled protein data to produce

embeddings) is performed are complicated and vary by strategy.49,51,60,61,52–59 Indeed, how to

best perform this stage of the semi-supervised pipeline—and even whether the learned

embeddings produced by existing strategies and models provide a benefit over simpler

encoding strategies—is still largely debated,33,62–66 and is the focus of the work I present in

Chapter 3.

15

Figure 1-2. An example semi-supervised learning workflow illustrated using an autoencoder

as the unsupervised model. (A) In this example, during the unsupervised stage, an

autoencoder is trained to compress (“encode”) protein sequences to a numerical

representation and then use that representation to reconstruct (“decode”) the sequences. The

compression during encoding creates an information bottleneck (the central green layer in

the figure) that forces the model to extract the most relevant features of protein sequences;

the more informative the extracted features, the greater the model’s ability to reconstruct

sequences. (B) Once the unsupervised model is trained, the protein sequence encoder may

be repurposed by removing the decoder module and taking the bottleneck (“embedding”)

layer as an encoding. This encoding transfers information learned during unsupervised

training to a supervised process, in principle decreasing the amount of required labeled data.

(C) During supervised training, an additional “top” model is trained to relate the encoded

sequences to their characterized fitness values. The parameters defining the encoder can

either be frozen (i.e., the encoder is not modified during supervised training) or further fine-

tuned (i.e., the encoder is further trained along with the top model for the specific supervised

task) during supervised training. (D) As more sequences are drawn from the fitness

landscape, they are first encoded by the encoder, then passed into the learned function to

predict the fitness of previously unseen protein variants.

16

1.2.3 Prediction of Protein Fitness with Models Trained on Sequence Data

So far, I have presented the primary goal of MLPE as using labeled sequence-fitness training

data to build the function f(sequence) = fitness. However, this is not the only way that MLPE

can be performed. Because the goal of MLPE is to identify the highest-fitness proteins, we

do not need to be able to precisely predict the fitness of new protein variants. Indeed, we only

need to be able to predict the relative fitnesses of different protein variants, and could

therefore perform MLPE just as effectively using a function of the form rank(f(sequence)) =

rank(fitness), where we are not predicting fitness itself, but instead something correlated to

it.

As discussed in the previous section, all proteins found in modern sequence databases must

follow some set of biophysical and evolutionary rules that allow them to perform a useful

biological function, and we can train models to learn the sequence constraints that result from

those rules. While one use of these models is to produce protein embeddings, many of them

can also be used to make what are known as “zero-shot” predictions of protein fitness, which

is defined as “prediction of protein fitness without the need for collection of additional

labeled data.”33,67,68 Importantly, zero-shot predictors do not output a prediction of protein

fitness directly but instead some score that is expected to be correlated with it.d The

effectiveness of a zero-shot predictor is thus determined by the degree of correlation between

its proposed score and true fitness, where the ideal predictor would generate scores perfectly

proportional to fitness. While, in principle, any source of data that is believed to contain

information correlated with protein fitness can be used to build a zero-shot predictor,69 much

recent effort has focused on the development of sequence-based zero-shot

predictors.33,57,67,68,70

In some capacity, any model used for sequence-based zero-shot prediction can be thought of

as a “generative model,” which is one trained to learn a representation or approximation of

the underlying distribution of a dataset. Many of the models used for building protein

d As mentioned in an earlier footnote, predicting scores correlated with fitness is typical for rational design strategies. Indeed,

as discussed in detail in Chapter 2, models used by rational design can be considered to be (and effectively used as) non-

ML zero-shot predictors.

17

embeddings discussed in the previous section can also be considered generative models and

can be used for both embedding production and zero-shot prediction.55,57,67,68 When these

models are trained on unlabeled protein sequence data, they learn a representation of the

distribution of allowed protein sequences that captures the rules governing sequence

constraints (Figure 1-3A). When these models are used to encode proteins, those rules are

assumed to be represented in the derived embeddings, thus creating a more informative

encoding that can be passed into a downstream supervised task (Figure 1-2);64 when these

models are used for zero-shot prediction, they are used to score candidate proteins based on

how well they obey the learned rules, with candidates that better obey assumed to be more

likely to show some degree of a desired fitness than those that do not. From a more

probabilistic point of view, we can think of scoring proteins in this way as querying the

likelihood that a new protein sequence was generated from the learned distribution of

underlying sequences (Figure 1-3B, C). If a sequence is highly likely to belong to the learned

distribution, then it is more likely to be a functional protein, and vice versa. Of course, all of

this assumes that the target fitness to be engineered correlates well with evolutionarily

optimized fitness, but this will not always be the case (Figure 1-3A). As stated earlier, the

quality of a zero-shot predictor depends entirely on how well its output score correlates with

the target fitness.

18

Figure 1-3. An illustration of the use of generative models for zero-shot prediction and

sequence generation. (A) Generative models learn a representation of the distribution of

allowed protein sequences from those used to train them. This distribution can correlate with

the fitness landscape (green) for a desired activity, but the two distributions may not

necessarily overlap. (B) When generative models are used for zero-shot prediction, it is

assumed that the learned distribution correlates well with the distribution of target activity.

When used in this capacity, the model is used to find the likelihood for new sequences.

Sequences with high likelihood can be prioritized for screening under the assumption that a

higher likelihood corresponds to higher fitness or at least higher probability of maintaining

some degree of function. (C) When generative models are used for sequence generation, new

sequences are drawn from the learned distribution. Sequences with higher likelihood are

more likely to be drawn, so the drawn sequences tend to be functionally similar to those used

for training.

1.2.4 Machine Learning-Guided Navigation of Protein Fitness Landscapes

With a trained model in hand—whether built using unlabeled or labeled data—the protein

fitness landscape can now be explored computationally to find new, improved proteins. If

exploring narrow regions of sequence space (e.g., a combinatorial landscape built by

mutating no more than five or six positions simultaneously), then this is a simple task: the

model can be used to enumerate the space, predicting the fitness (or a correlated score) for

all possibilities. Once larger regions of sequence space are considered, however, this “brute

19

force” approach fails, as even though computers can evaluate protein candidates at a rate

orders-of-magnitude faster than laboratory screening, they are still far too slow for

comprehensive exploration of even moderately sized regions of sequence space.e

To keep computational screening burdens low, non-brute force ML-guided exploration of

large fitness landscapes typically proceeds through rounds of (1) proposing a library of new

sequences and then (2) using an ML model to computationally evaluate those sequences and

identify improved ones.23,71 As in directed evolution, screening burdens are lowered by

iteratively climbing toward improved regions of the fitness landscape rather than trying to

exhaustively explore it. Unlike directed evolution, however, because these strategies are run

in a computer, their screening capacity is much higher, allowing for exploration of much

larger fitness landscapes.

The various strategies for accomplishing iterative ML-guided exploration of fitness

landscapes have been covered in recent literature,23,71 so I will not go into detail here, though

it suffices to say that their main differences are in how they propose the next batch of

sequences to evaluate. For example, some strategies are direct computational analogues of

evolution, iteratively building mutant protein sequences in silico, feeding them into a trained

ML model to assign them a score, then using the most improved mutant (or mutants) as the

starting point for the next round of computational mutagenesis and evaluation.64,72,73 Other

strategies instead rely on generative models to propose new batches of proteins, iteratively

drawing new sequences from the learned distribution of special classes of generative models

(much like we would draw samples from a normal, binomial, or any other probability

distribution), using a model to assign those sequences a score, then using the sequences with

the highest predicted scores to update the generative model, thus biasing it toward producing

higher fitness variants in the next round.74,75 Yet more strategies directly optimize protein

fitness in a learned embedding space, iteratively proposing new batches of embedding

e For instance, say we could evaluate 1 billion proteins per second, a fast rate even for a computer. If we were to consider

just 20 positions at once in a combinatorial library, it would take around 3.3 billion years to evaluate all combinations,

which is around a quarter the age of the universe.

20

vectors to be passed into a model and scored, then decoding the optimal vectors to identify

an optimal protein once a sufficiently fit one has been identified.76,77

Regardless of the ML-guided fitness landscape navigation strategy used, all have the same

goal: to maximize the breadth of sequence space that can be explored while minimizing the

need for experimental evaluation of proteins. Despite continued advances in our ability to

train MLPE models with less data, however,33,64 none of these strategies will ever completely

eliminate the need for experimental evaluation of proteins. For one, at the end of

computational exploration, the best predicted sequences will need to be experimentally

verified; after all, the goal is not to predict fitness, but to identify sequences whose true fitness

is optimal. Perhaps more importantly, however, as computational exploration proceeds

further and further away from the region of sequence space occupied by the initial training

data, the quality of model predictions will deteriorate, necessitating occasional collection of

additional training data.

Recall from Section 1.2.1 that the accuracy of an ML model is determined in large part by

the data used to train it. Specifically, the accuracy of the ML model will deteriorate when it

is used to make predictions in regions of the input space not captured by its training data, a

situation known as “dataset shift.” Exploration of protein fitness landscapes inherently

requires a degree of dataset shift, however, as optimized proteins do not exist in the region

of sequence space used for training data; otherwise, we would not be performing

optimization in the first place. As exploration takes a model further from the initial training

data, the degree of dataset shift will increase and the model’s predictions will steadily

deteriorate, eventually to the point where they are no longer useful and the model must be

updated with newly collected training data. Of course, because the goal of MLPE is to both

identify improved proteins and reduce experimental screening burden, this sets up a tradeoff:

there is a balance to be found between how much we exploit knowledge from existing

training data—limiting our search to regions of the fitness landscape where the model is

believed to still make reasonably accurate predictions—and how much we explore new

21

regions of a fitness landscape—necessitating collection of new training data but also

potentially identifying better proteins than we would have otherwise found.

Unfortunately, the ideal solution to this “exploration-exploitation tradeoff” is rarely clear, as

it depends on factors ranging from the shape of the ground truth fitness landscape to

experimental screening capacity, the specific goals of the experiment, and the model class

used for modeling. It is easier to find a balance with some model classes than others,

however. Gaussian processes, for instance, are among the most popular models used in ML-

guided exploration and will return predictions along with an uncertainty value that is

correlated with the distance from the points in the training data.78,79 As predictions are made

further from the training data, the level of uncertainty goes up, providing information that

can be used to identify both those model predictions that would require collection of more

training data to be confirmed (exploration) and those that can be immediately trusted based

on existing data (exploitation). Most other model designs commonly used in MLPE,

however, do not provide uncertainty estimates, making it challenging to identify how far

away from the initial training set they can be confidently used. In these cases, a common and

simple practice is to set a “trust radius,” where model predictions are no longer trusted when

used to score protein sequences some number of mutations away from the original (un-

engineered) protein sequence.64,73 More statistically grounded methods have been proposed

as alternates and typically involve either weighting the probability that a protein sequence

will be proposed for evaluation by its similarity to the distribution of training data or

weighting the fitness score assigned to an evaluated protein sequence by its similarity to the

distribution of training data.75,80 In general, the development of optimal strategies for (1)

building models that can make robust predictions further from training data and (2) bounding

exploration of input space to regions where models remain trustworthy remains an active

area of research both within and outside of MLPE.

22

1.3 Thoughts on Ongoing Challenges for Machine Learning-Assisted Protein

Engineering

Section 1.2 covered the basic steps in the optimization stage of a typical MLPE pipeline,

including recent advances in strategies for each of them. In this section, I will focus instead

on the major challenges currently facing MLPE, regardless of the stage of the pipeline. In

my view, if these challenges were overcome, they would represent large leaps forward for

both MLPE and protein engineering as a whole.

1.3.1 Practical Considerations for the Wet Lab Application of MLPE

MLPE is a hybrid wet lab-computational strategy—at some point, someone must physically

perform the experiments to gather training data and evaluate predictions. Throughout this

chapter, however, I have so far primarily focused on its computational component. Indeed,

as a community, MLPE researchers often tend to neglect the wet lab considerations,

essentially assuming that the computational and wet lab components can be decoupled. This

is, unfortunately, a false assumption, and the wet lab component of MLPE places significant

restrictions on what can be considered a practically applicable—or at the very least a

financially competitive—MLPE approach.

The most obvious wet lab restriction is the limited ability to screen protein candidates, which

constrains the availability of the labeled sequence-fitness data needed to train the most

effective MLPE models. Indeed, MLPE researchers are most cognizant of this wet-lab

limitation, and it is the core driving factor for the development of the zero-shot and semi-

supervised methods discussed in Sections 1.2.2 and 1.2.3; it is also the driving factor behind

my development of the informed training set selection strategies discussed in Chapter 2. Our

restricted ability to collect labeled sequence-fitness data is not only caused by bounded

screening capacity, however; it is also caused by the cost of sequencing protein variants.

One of the greatest strengths of directed evolution is the simplicity with which it can be

performed. Among the many traits that make it such a simple process is its lack of

requirement for sequencing. Indeed, a directed evolution endeavor could be completed

without ever sequencing a single protein, though in practice a few protein variants will

23

typically be sequenced (purely for informational purposes) during each iteration of

mutagenesis/screening. This stands in contrast to MLPE methods, which require sequencing

at least tens but usually hundreds or thousands of variants to build a sufficiently sized labeled

training dataset. Using the standard sequencing strategy employed by directed evolution—

Sanger sequencing—the cost of gathering labeled training data can easily balloon into the

thousands of dollars, as I saw in the first project to which I contributed at Caltech.81,82

Sequencing requirements thus place an additional effort and financial burden on protein

engineers using MLPE over directed evolution, reducing the practical utility of MLPE

strategies.

As part of my thesis work, I developed a suite of tools that eliminates the sequencing burden

of MLPE, at least when building training sets from specific protein library designs. Detailed

in Chapter 4, this toolset employs next generation sequencing (NGS) technology—an

alternate sequencing strategy to Sanger—to drop the cost and effort of sequencing the

hundreds of variants typically needed to build effective MLPE training datasets down to a

level similar to the cost of sequencing the few variants typically sequenced per round of

directed evolution.83,84 This technology should generally make MLPE more practically

applicable; it should also enable the construction of a large database of protein sequence-

fitness data, the utility of which is discussed in Sections 1.3.3 and 1.3.4. Unfortunately,

however, the cost of sequencing is not the only wet-lab component that limits the application

of MLPE.

The models used in MLPE are rarely accurate enough for an engineer to have the highest

confidence in their predictions, so typically a set of the predicted-best protein variants are

built and evaluated. This is done to improve the probability that at least one (but ideally

multiple) of those variants satisfies the engineering goal. Cost-effectively building these

designs can be extremely difficult, however, presenting another wet-lab limitation of MLPE.

Regardless of protein engineering application, when many protein variants must be built,

they are typically not constructed individually. Instead, to keep costs low, they are

constructed in the same test tube in a highly multiplexed fashion. I will not go into the details

24

of methods for library construction here, leaving that for the referenced sources;11,30 it is

important to note, however, that a critical component to many of these methods is

“degenerate oligonucleotides.” A degenerate oligonucleotide consists of a pool of DNA

oligonucleotides (short strands of DNA) that have randomized bases at at least some

positions. For example, a very simple degenerate oligonucleotide might contain the

sequences ATGGGC and ATGCGA—positions 4 and 6 have randomized bases in this

example. Importantly, randomization does not need to include all four possible bases, so the

DNA sequences in the degenerate oligonucleotide can be restricted to encode a specific set

of protein variants. Unfortunately, however, it is not possible to decouple randomization at

different positions in the most cost-effective methods for degenerate oligonucleotide

production; thus, any protein variant library that must be constructed using randomization at

multiple DNA positions will invariably also include off-target designs.f

To build a specified library of protein variants, an ideal degenerate oligonucleotide that

minimizes off-target designs and maximizes on-target designs (while keeping them as

uniformly represented as possible) must first be identified. This is done by taking advantage

of the redundancy of the genetic code—multiple different DNA sequences can encode the

same protein sequence, and depending on the set of protein sequences desired, certain DNA

sequences will produce fewer off-target variants and better balance the representation of on-

target designs in the final library than others.

While simple on paper, it is often extremely computationally intensive to identify an

appropriate degenerate oligonucleotide for building a specified protein variant library, if one

can be found at all. For directed evolution, this is typically not a challenge. In most

applications, the target library is the same—one that uniformly represents all 20 amino acids

at a given position in a protein—and a set of optimized degenerate oligonucleotide designs

that can build it has already been identified.85 For MLPE, this is more problematic, as a new

f For instance, say I wanted to include the DNA fragments ATG and CTA in my degenerate oligonucleotide. I would thus

want to randomize the first position to include “A” and “C” and the last position to include “G” and “A.” Because

randomization at different positions cannot be decoupled, however, in addition to the desired fragments, the final degenerate

oligonucleotide would also include ATA and CTG in it.

25

degenerate oligonucleotide must be designed for each library of predicted-best variants. Over

the years, increasingly more effective tools have been developed for performing this

search;86–90 however, even when these tools can complete the search in a reasonable amount

of time, there is no guarantee that they will find an appropriate design. Oftentimes, using

traditional degenerate oligonucleotide construction, it is not possible to actually build designs

predicted to be optimal by MLPE models.

Promisingly, in recent years, new approaches to DNA synthesis have made it possible to

build large, user-specified populations of oligonucleotides, eliminating the major limitations

of traditional degenerate oligonucleotide design. Twist Bioscience, for instance, offers an

“Oligo Pool” service that allows users to order pools of DNA oligonucleotides containing

thousands of uniquely specified DNA sequences. With the ability to specify unique DNA

sequences, precise libraries of proteins—uniformly represented and containing no off-

targets—can now be constructed. Unfortunately, while strategies like Twist Bioscience’s

Oligo Pools have already been put to excellent use,91 they can currently be prohibitively

expensive for regular incorporation in the MLPE workflows of many groups, particularly

those in academia. Until the cost of these new strategies is lowered—and even after the fact,

for that matter—there may be value in designing strategies that explicitly consider both

MLPE model predictions and the practical limitations imposed by degenerate

oligonucleotide design when choosing the proteins to construct.

1.3.2 Transfer Learning

We generally expect that data directly related to the problem we are trying to solve will be

most valuable. For instance, if I am trying to build an MLPE model to predict some fitness,

then the most valuable data would be a large dataset relating protein sequence to that fitness.

Given the beyond-astronomical size of possible protein space, however, we will always be

working in a comparatively data-limited setting, so it would be valuable to develop strategies

that can extract helpful information from other sources of data as well.

To date, most efforts to develop transfer learning strategies for MLPE have focused on

extracting information from sequences, largely because protein sequences are the most

26

abundant and easily accessible source of protein data. As introduced in Section 1.2.2, some

of these approaches attempt to augment small, labeled datasets by building informative

embeddings from protein sequence data. As introduced in Section 1.2.3, other approaches

attempt to eliminate the need for labeled data entirely, performing zero-shot predictions of

protein fitness using information extracted from sequence data alone. Of these two general

strategies, zero-shot predictors have so far proved the most useful for protein fitness

predictions, though learned embeddings have proven useful in a number of other protein-

related tasks.92–98

Exactly why learned protein embeddings are not currently so helpful for protein fitness

prediction is unclear. Early studies using learned embeddings convincingly suggested that

learned embeddings can reduce our need for labeled data;64 however, the initial excitement

faded once later studies showed that, in many instances, uninformative encoding strategies

like one-hot can be just as effective as learned embeddings.62,65 While these initial reports

suggested that learned embeddings can still be more useful than one-hot in extremely labeled

data-limited settings, I have found in my own work (as shall be shown in Chapter 2) that this

is not always the case.33

To a degree, some of the variability in the conclusions about the effectiveness of learned

embeddings for protein fitness prediction will come from the variability in the protein fitness

landscapes to which they are applied. Our protein sequence databases are biased toward the

representation of certain protein families over others; we thus might expect the embedding

quality of well-represented proteins to be higher than that of underrepresented ones. It must

also be noted that most of the models currently used for building learned protein embeddings

are directly adapted from natural language processing (NLP). While there are certainly some

similarities between protein sequences and written language, there are also some major

differences.99 Therefore, we might also expect that models designed to more explicitly

capture the idiosyncrasies of proteins would be more effective. Indeed, Chapter 3 is focused

on my efforts to build and evaluate the effectiveness of such a model.

27

1.3.3 The Starting Point Problem

So far, I have primarily discussed MLPE from the perspective of protein fitness optimization.

Before optimization can be performed, however, a protein with some degree of the desired

function—a starting point—must be identified. Unfortunately, solving this “starting point

problem” is extremely difficult and is the point where most protein engineering projects fail,

regardless of any engineering strategy that would be used.

As with optimization approaches, starting point identification strategies must contend with

the challenges imposed by the beyond-astronomical size of protein sequence space and our

limited ability to experimentally search it. Generally, any strategy that aims to search

sequence space must have a way to restrict its search to keep screening burdens practical.

Optimization strategies like directed evolution and ML-guided navigation accomplish this

by relying on the fact that functional proteins tend to be clustered together in sequence space;

thus, they only evaluate protein candidates that are close in sequence space to a known

functional example (or examples). The same approach cannot be taken for finding a starting

point, as by definition there are no known proteins with the desired function. Instead, the

most common approach is to test existing proteins with a related function for some degree of

promiscuous activity for the desired one, now relying on the fact that proteins that perform

similar functions often have similar sequences.

Exactly how candidate promiscuous proteins are identified varies, but they are most

commonly sourced either from databases of known functions or past engineering projects.14

Importantly, regardless of candidate source, only existing proteins are typically searched—it

is very rare for mutants of candidates to be produced and evaluated when looking for a

starting point. At first, this may seem an odd restriction, as it is not uncommon for new

promiscuous activities to emerge in protein lineages while they are engineered for different

tasks and it may indeed be that a few mutations to an existing protein would yield the desired

activity.100,101 However, even considering one or two mutations to a set of candidates would

dramatically increase the screening burden for a search, and even though it is possible that

mutants would exhibit the desired activity, chances are still high that if a given protein does

28

not perform the desired function, a protein a few mutations away will not perform it either.

Given a limited screening budget, it is thus generally regarded as a waste of laboratory

resources to build and screen mutants of existing proteins.

Because computational approaches expand our screening capacity, it seems practical that

they could be used to screen for starting points in silico, allowing for evaluation of mutants

of existing candidates. Indeed, it is not wholly uncommon to use rational design strategies to

screen candidate proteins for a new function, though in most of these cases the target function

is some form of binding (either to another protein or a small molecule). This is largely

because binding is among the simplest functions to understand and model; binding functions

also tend to inhabit wider windows of sequence space than others and can often be found

even when using somewhat imperfect models to search. Comparatively, it is far more

difficult to use rational design to find a starting point for more complicated functions that

arise from more intricate and delicate physical and chemical mechanisms (for instance,

enzyme catalysis), as even the slightest error in the model can result in erroneous predictions.

For functions where we have no understanding of the underlying mechanism at all, rational

design becomes impossible to use for starting point identification.

Because ML relies on data, not physical understanding, we might expect it to be more

effective than rational design as a more general-purpose starting point-identification

approach. To build an MLPE model that is accurate enough for starting point identification,

extensive sequence-function data must be available, and as the complexity of the mechanism

underlying the desired function increases, the amount of data needed will increase as well.

Unfortunately, for many functions there is currently not enough data to build effective

models, and so, just like rational design, MLPE methods for starting point identification are

primarily limited to binding.16,79,102–106 There are exceptions, however, and as we might

expect they are found primarily in protein families that have been extensively studied and for

which large databases of sequence-function data already exist.107,108

As already discussed in Section 1.3.1, it has historically been too expensive to gather

extensive sequence-fitness datasets, and this largely explains why we do not have the data

29

available to train starting point predictors for most protein families and functions. However,

cost-effective data collection strategies like evSeq and DMS (discussed in Section 1.3.4)

promise to change this, and it is reasonable to assume that we will see far more sequence-

function data made available in the future, better enabling MLPE-based starting point

identification.

1.3.4 Data Availability and Benchmarking for Protein Fitness Prediction

Large, well curated, publicly available datasets have historically proven critical to the

advancement of ML applications, regardless of field. For instance, within the broader ML

community, the database of human-annotated images “ImageNet” is typically credited with

ushering in a period of rapid advancement in computer vision.109 Likewise within the protein

engineering community, the recent efforts in protein sequence-based semi-supervised,

representation, and transfer learning discussed throughout this chapter were only made

possible by the availability of large protein sequence databases like UniProt, Uniclust, and

UniRef.22,37–39,41,42,110 Similarly, the recent dramatic advances in ML-based protein structure

prediction with AlphaFold and RoseTTAFold were largely enabled by the information

contained in both sequence databases and protein structure databases like the PDB and

CATH.41,42,95–97,111,112 It stands to reason, then, that a suitably large, organized database of

protein sequence-fitness information would spawn an era of rapid advancement in protein

fitness prediction, be that for optimization or solving the starting point problem.

Unfortunately, there is currently no large, well-maintained database of protein sequence-

fitness information, though the framework for one does exist.113 As is explained in Chapter

4, this is largely because it has historically been prohibitively expensive to gather sequence-

fitness data. Indeed, those large sequence-fitness datasets that are currently available almost

exclusively come from experiments using a uniquely cost-effective strategy known as “deep

mutational scanning” (DMS), which can be used to generate sequence-fitness data for

hundreds of thousands of protein variants at a total cost of hundreds to thousands of

dollars.114,115 DMS can only be applied for very specific definitions of fitness, however, and

30

while the datasets produced by it have proven essential for advancing MLPE, they capture a

very limited range of protein scaffolds and activities.

In Chapter 4, I discuss a new method that I developed called “every variant sequencing”

(evSeq) that, unlike DMS, can be used to cost-effectively generate sequence-fitness data

regardless of the definition of fitness. It was designed to be incorporated into existing directed

evolution workflows, thus allowing the sequence-fitness information for all protein variants

produced during an engineering endeavor to be recorded, which is something that is not

currently done. Widespread adoption of evSeq across the protein engineering community has

the potential to produce hundreds of thousands—if not millions—of sequence-fitness

datapoints per year covering a wide range of protein scaffolds and effectively any definition

of fitness that can be imagined.g Such volume of data would allow us to rapidly build a

sequence-fitness database that could be used to support, among many other things, the further

development of MLPE.

Importantly, while a database on its own can be enough to advance an ML application,

progress can be further expedited by the availability of well-designed benchmark tasks. A

benchmark task is one designed to represent a typical application, providing a metric for how

well we might expect an ML strategy to perform in the real world; they are designed such

that newly proposed model architectures, training procedures, etc., can be compared in a fair,

standardized manner. This standardization effectively enables community-wide

collaboration toward solving a common problem. It is thus unsurprising that well-designed

benchmark tasks are often central to some of the most decisive advances in ML. Returning

to the earlier example of ImageNet, for example, advances in computer vision did not arise

due to the publication of that dataset alone; the associated competition “ImageNet Large

Scale Visual Recognition Challenge” (ILSVRC) annually provided a new set of publicly

available benchmark tasks. Similarly, advances in ML-guided protein structure prediction

g In the Arnold lab, we on average complete around 10 directed evolution endeavors per year. In each of these projects, we

will screen hundreds to thousands of protein variants for fitness. If we assume that the thousands of other research groups

performing directed evolution complete projects at a similar rate and scale, then as a community we can produce somewhere

between 1,000,000 and 10,000,000 sequence-fitness datapoints per year.

31

did not arise solely due to the availability of large sequence and structure databases; the

biennial competition “Critical Assessment of Structure Prediction” (CASP) provided (and

continues to provide) standardized protein structure modeling benchmark tasks for over 25

years before the breakthroughs that were AlphaFold and RoseTTAFold.116

To date, there is no ILSVRC- or CASP-type competition for protein fitness prediction,

though efforts have been made to design effective benchmarks. Somewhat unofficially, a

series of DMS datasets has found itself commonly used to benchmark, in particular, new

zero-shot prediction methods.67,68,70,117 More concerted efforts to create standardized

benchmarks exist, however, with “Tasks Assessing Protein Embeddings” (TAPE) providing

one example.58 The benchmark tasks in TAPE were created to assist in the development of

new protein encoding schemes and cover a variety of different ML applications to proteins,

two of which are fitness optimization tasks. The ideal ML strategy for fitness prediction is

likely to vary by fitness landscape and application, however, so these two tasks are certainly

not enough to robustly benchmark new fitness optimization approaches. To address this

problem, I contributed to the development of the “Fitness Landscape Inference for Proteins”

(FLIP) set of benchmark tasks.118 The fifteen FLIP tasks rely on three protein fitness

landscapes of varied structure and, importantly, are inspired by a variety of real-world protein

engineering applications, thus encouraging the community to create MLPE methods that are

generalizable to a number of different use cases.

The benchmark tasks in FLIP and TAPE are an excellent start, but they are highly unlikely

to have the same impact as ILSVRC and CASP. Those two competitions have seen sustained,

organized, community-wide investment for multiple years (multiple decades in the case of

CASP), something that neither TAPE nor FLIP will provide. However, with new tools

coming online for the high-throughput production of sequence-fitness data and ever-growing

interest in MLPE, perhaps a similar competition can be built for fitness prediction tasks. Such

an approach would almost certainly lead to rapid advancement of applicable MLPE models

and strategies.

32

C h a p t e r 2

 INFORMED TRAINING SET DESIGN ENABLES EFFICIENT

MACHINE LEARNING-ASSISTED DIRECTED PROTEIN

EVOLUTION

Material from this chapter appears in Wittmann, B. J.; Yue, Y.; and Arnold, F. H. (2021)

Informed Training Set Design Enables Efficient Machine Learning-Assisted Directed

Protein Evolution. Cell Syst. 12, 1026-1045.e7. https://doi.org/10.1016/j.cels.2021.07.008.

Abstract

Directed evolution of proteins often involves a greedy optimization in which the mutation in

the highest-fitness variant identified in each round of single-site mutagenesis is fixed. The

efficiency of such a single-step greedy walk depends on the order in which beneficial

mutations are identified—the process is path-dependent. Here, I investigate and optimize a

path-independent machine learning-assisted directed evolution (MLDE) protocol that allows

in silico screening of full combinatorial libraries. In particular, I evaluate the importance of

different protein encoding strategies, training procedures, models, and training set design

strategies on MLDE outcome, finding the most important consideration to be the

implementation of strategies that reduce inclusion of minimally informative “holes” (protein

variants with zero or extremely low fitness) in training data. When applied to an epistatic,

hole-filled, four-site combinatorial fitness landscape, my optimized protocol achieved the

global fitness maximum up to 81-fold more frequently than single-step greedy optimization.

33

2.1 Introduction for Chapter 2

Enzyme engineering has revolutionized multiple industries by making chemical processes

cheaper, greener, less wasteful, and overall more efficient. Enzymes and other proteins are

engineered by searching the protein fitness landscape, a surface in a high-dimensional space

that relates a desired function (“fitness”) to amino acid sequences.27,29 Exploring this

landscape is extremely challenging: the search space grows exponentially with the number

of amino acid positions considered, functional proteins are extremely rare, and experimental

screening of proteins can be resource-intensive, with researchers often limited to testing a

few hundred or thousand variants. Directed evolution (DE) can overcome these challenges

by employing a greedy local search to optimize protein fitness.10 In its lowest-screening-

burden form (hereafter referred to as “traditional DE”), DE starts from a protein having some

level of the desired function, then iterates through rounds of mutagenesis and screening,

where in each round single mutations are made (e.g., by site saturation mutagenesis) to create

a library of variants and the best variant is identified and fixed; iteration continues until a

suitable level of improvement is achieved (Figure 2-1A).

By focusing on single mutations rather than combinations of mutations, traditional DE can

be used to optimize protein fitness with a low screening burden. The process is highly

effective when the beneficial effects of mutations made at different sequence positions are

additive; however, focusing on single mutants ignores the codependence of mutations (epi-

stasis).119,120 Epistasis is commonly observed, for example, between residues close together

in an enzyme active site or protein binding pocket, where mutations often affect function.

Epistatic effects can decrease the efficiency of DE by altering the shape of the protein fitness

landscape. Specifically, epistasis can alter gradients on the fitness landscape to make the

route to a global optimum very long,121 or it can introduce local optima at which traditional

DE can become trapped (Figure 2-1B). Both lower the average fitness that can be achieved

for a given screening burden. The only way to account for epistasis during optimization is to

evaluate and fix combinations of mutations, bypassing the path-dependence of traditional

DE. Due to limited screening capacity, however, this is intractable for most protein

engineering projects.

34

Increasingly, machine learning (ML) is being used to ease experimental screening burden by

evaluating proteins in silico.15–19,22,37,71,110 Data-driven ML models learn a function that

approximates the protein fitness landscape, and they require little to no physical, chemical,

or biological knowledge of the problem. Once trained, these models are used to predict the

fitness of previously unseen protein variants, dramatically increasing screening capacity and

expanding the scope of the protein fitness landscape that can be explored by replacing

expensive laboratory experimentation with in silico screening. The first project to which I

contributed at Caltech demonstrated a machine learning-assisted directed evolution (MLDE)

strategy for navigating epistatic fitness landscapes that cover a small number of amino acid

sites.82 MLDE works by training an ML model on a small sample (101–102) of variants from

a multi-site simultaneous saturation mutagenesis (“combinatorial”) library, each with an

experimentally determined fitness (i.e., a model is trained using a small sample of sequence

data labeled by fitness); the model is then used to predict the fitnesses of all remaining

variants in the combinatorial library (104–105), effectively exploring the full combinatorial

space. Combinations with the highest predicted fitness are experimentally evaluated, the best

combination is fixed, and another round of MLDE is started at a new set of positions (Figure

2-1C). The iterative nature of MLDE is identical to that of traditional DE, but by evaluating

and fixing multiple cooperative mutations, MLDE avoids some local fitness traps or long

paths to the global optimum for each combinatorial library.

The original MLDE work serves as a baseline, as it did not explore the many design

considerations of MLDE (Figure 2-1C, bold and underlined questions).82 Two notable

considerations are (1) the choice of encoding strategy and (2) the handling of low-fitness

variants in combinatorial libraries. Protein sequences must be numerically encoded to be

used in ML algorithms, and the choice of encoding will affect the outcome of learning. In

the original implementation, a one-hot encoding scheme was used, which is a simple

categorical encoding that captures no information about the biochemical similarities and

differences of amino acids. Mutating an amino acid to a similar one (in terms of size, charge,

etc.) is less likely to affect protein fitness than mutating it to a very different one, however,

and this knowledge can be transferred into ML models via the encoding strategy. The

35

effectiveness of an ML model is also determined by the information content of the data used

to train it, and so the choice of variants to use for the training stage of MLDE is important.

Combinatorial libraries tend to be enriched in zero- or extremely low-fitness variants,

particularly when constructed in regions critical to protein function like an enzyme active

site.28,78,122 These “holes” provide minimal information about the topology of the regions of

interest in a fitness landscape (i.e., they provide no information about regions with

functioning proteins and no information about the extent to which different mutations affect

fitness) and can bias ML models to be more effective at predicting low-fitness variants than

high-fitness ones, the opposite of the goal. In the original MLDE implementation, high-

sequence-diversity training data was generated by sampling randomly from full

combinatorial spaces. Because combinatorial landscapes tend to be dominated by holes,

however, this random draw primarily returned sequences with extremely low or zero fitness,

resulting in training data that, despite containing diverse sequences, was information poor.

In this chapter, I evaluate various design considerations by simulating MLDE on the

empirically determined four-site combinatorial fitness landscape (total theoretical size of 204

= 160,000 protein variants) of protein G domain B1 (GB1) (Figure 2-1D).123 This landscape

contains multiple fitness peaks (the routes to which are not always direct) and is heavily

populated by zero- and low-fitness variants (92% have fitness below 1% of that of the global

maximum), and thus not only presents an ideal testing ground in which to compare the

abilities of traditional DE and MLDE to navigate epistatic fitness landscapes, but also serves

to test the ability of ML methods to navigate hole-filled regions of protein fitness landscapes.

I begin by evaluating a number of alternate encoding strategies to one-hot, including

physicochemical encodings (encodings that capture physical and chemical properties of

different amino acids) and learned embeddings derived from eight different natural language

processing models (which are encodings extracted from machine learning models that

represent physicochemical and contextual information about different amino acids—more

background is provided in the relevant section).51,55,58,61,124 Next, I demonstrate how

integration of models and training procedures better tailored for protein fitness landscapes

into the workflow can improve MLDE performance.125–127 I then show the importance of

36

reducing uninformative holes in MLDE training sets and propose integrating a form of zero-

shot prediction (i.e., prediction of variant fitness prior to data collection) into the MLDE

pipeline to generate more informative training data. I call the general strategy of running

MLDE with training sets designed to avoid holes “focused training MLDE” (ftMLDE). I

next evaluate the effectiveness of a number of zero-shot strategies for designing training data

for ftMLDE applied to GB1, including state-of-the-art strategies that leverage local

evolutionary information from multiple sequence alignments (MSAs),68,70 a “masked-token

prediction” strategy that leverages global sequence information derived from large sequence

databases,51,55,61,128 and predicted ΔΔG of protein stability upon mutation. I then use the

effective zero-shot predictors to generate information-rich training data. Finally, using this

training data, I test the effect of training set size, the zero-shot predictor used for training set

construction, and protein encoding on the outcome of ftMLDE.

In all, I found that, while using more informative encodings and models better-tailored for

combinatorial fitness landscapes could improve MLDE outcome, the most important design

consideration was training set design, with ftMLDE generally showing improved

identification of the GB1 global fitness maximum compared to MLDE. My most effective

combination of MLDE design considerations—384 training points chosen using predicted

ΔΔG as the zero-shot predictor and with sequences encoded using embeddings derived from

the recently published MSA Transformer—successfully identified the GB1 global maximum

in 99.70% of 2000 simulated ftMLDE experiments.61 This represents an 81.1-fold

improvement over traditional DE (which achieved the global maximum 1.23% of the time

in simulated experiments) and at least a 12.2-fold improvement over the originally published

method (which achieved the global optimum 8.17% of the time with a screening burden of

570 total variants—90 more than were used in this work).

This chapter describes improvements to the original MLDE method. It also highlights (1) the

importance of considering the unique attributes of fitness landscapes when applying ML to

protein engineering problems, (2) the importance of informative training set design for

building effective ML models in protein engineering, and (3) how tools developed across a

37

variety of protein engineering domains can be combined into a cohesive, highly efficient

engineering pipeline. To improve access to such a pipeline, I introduce the MLDE software

package, made available on the Arnold Lab GitHub (https://github.com/fhalab/MLDE).

Designed to be accessible to non-ML and non-computational experts, this repository contains

Python scripts that allow execution of MLDE and ftMLDE on arbitrary combinatorial fitness

landscapes, thus enabling wet-lab application.

2.2 Results for Chapter 2

2.2.1 MLDE Procedure, Simulated MLDE, and Evaluation Metrics

MLDE attempts to learn a function that maps protein sequence to protein fitness for a multi-

site simultaneous saturation mutagenesis (“combinatorial”) library (Figure 2-1C). More

concretely, MLDE attempts to regress a function f(x) = y describing the fitness landscape of

the combinatorial library where the protein sequence is “x” and the protein fitness (i.e., the

sequence’s label) is “y.” I provide detailed information about the programmatic

implementation of MLDE in the methods section (A.3: MLDE Programmatic

Implementation). Briefly, however, and at a high level, the procedure begins with gathering

the sequences and fitnesses of a small subsample from the combinatorial library. These

sequence-fitness pairs are then used to train an ensemble of regressors with varied model

architecture (roughly, this can be interpreted as fitting a variety of different functions to the

fitness landscape) (Methods: Inbuilt Models). A variety of models are trained because the

shape of the fitness landscape is not known a priori; it is thus not possible to confidently

recommend which model architectures would be most effective prior to evaluating their

effectiveness on the given landscape. The models are evaluated and ranked based on a 5-fold

cross-validation error. Predictions from the top-performing trained models in the ensemble

(those with the lowest cross-validation error) are then averaged to predict fitness values for

the unsampled (unlabeled) variants that were not in the training set. These variants are ranked

according to predicted fitness, and the top M are evaluated experimentally to identify the

best-performing ones.

38

Figure 2-1. Directed evolution strategies and the effects of landscape topology. (A) Directed

evolution (DE) by single-mutation greedy walk (“Traditional DE”). In this approach,

mutations are fixed iteratively by walking up the steepest fitness gradient. (B) Smooth (left)

vs rugged (right) fitness landscapes. A smooth fitness landscape contains a single fitness

maximum, so traditional DE is guaranteed to eventually reach the global optimum, though

the number of steps needed will depend on the topology of the peak. A rugged fitness

landscape contains multiple fitness maxima. Traditional DE is only guaranteed to reach a

local fitness optimum here; the maximum achieved will depend on the starting protein variant

and the order in which positions are chosen for mutagenesis and testing. (C) Machine

learning-assisted directed evolution (MLDE). In this approach, standard molecular biology

techniques are used to construct a “combinatorial library” by making mutations at multiple

positions simultaneously (e.g., through use of “NNK” degenerate primers). Samples are

drawn from this library (e.g., picking colonies from a plate), sequenced, expressed, assayed,

and then used to train an ensemble of regressors. This ensemble is used to predict which

combinations not seen in the initial draw will have the highest fitness, which are then

constructed and tested experimentally. Because the best mutations are fixed simultaneously,

MLDE operates in a path-independent manner, so the global optimum of a combinatorial

space can be achieved regardless of the starting point. Once mutations are fixed for a given

set of positions, a new set is chosen and the procedure is repeated, allowing for larger, more

efficient steps through sequence space. The MLDE procedure has many design

considerations, which are highlighted as questions under each step. (D) The simulation

procedure used throughout this study to evaluate improvements to the MLDE workflow, with

the tests performed to evaluate the different design considerations given above each step.

39

The simulation procedure is repeated many times using data from the GB1 landscape. The

effectiveness of a simulated MLDE experiment is determined by (1) evaluating the max and

mean true fitness of the top M variants according to predicted fitness and (2) calculating the

normalized discounted cumulative gain (NDCG) over all predictions in the simulation.

Throughout this chapter, I evaluate design considerations of MLDE through simulation on

the empirically determined four-site combinatorial fitness landscape of protein G domain B1

(GB1). Originally reported by Wu et al., this landscape consists of 149,361 experimentally

determined fitness measurements for 160,000 possible variants, where fitness is defined by

both the ability of the protein to fold and the ability of the protein to bind human IgG-Fc.123

To my knowledge, this landscape is the only published one of its kind (i.e., the only almost-

complete combinatorial landscape where fitness is reported as scalar values amenable to

training the regression models used in MLDE). By imputing the fitnesses of the remaining

10,639 variants and evaluating the resultant complete landscape, Wu et al. identified 30 local

optima, the routes to which were often indirect (e.g., if a local optimum was four mutations

away from a starting point, it would take more than four mutations to travel by single-

mutation greedy walk from the starting point to the optimum). Epistatic interactions are thus

highly prevalent in the GB1 landscape. The goal of simulated MLDE is to mimic what would

be observed if thousands of MLDE experiments were performed on GB1. Thus, to ensure

that the simulations match what would have been observed experimentally had my simulated

experiments actually been performed, I do not use the variants with imputed fitness in this

study.

A simulated MLDE experiment begins with generating training data (Figure 2-1D). Here, a

small set of variants is drawn from the GB1 landscape (values of 24, 48, or 384 are used

throughout this study) and their known fitness values are attached (the variants are labeled).

This stage of the simulation is analogous to building a combinatorial library (e.g., by using

“NNK” degenerate primers to make mutations at multiple positions simultaneously), picking

colonies from an agar plate, then sequencing, expressing, and assaying the variants harbored

by the colonies. The training data are then fed into the MLDE pipeline and the average

predictions of an ensemble of the top three models are used to rank the unlabeled variants

40

not in the training data (148,977 or more total variants, depending on the number of samples

in the training data) by predicted fitness. The quality of the returned ordering is evaluated

using a combination of metrics, including (1) the max fitness of the M-highest-ranked

variants, (2) the mean fitness of the M-highest-ranked variants and (3) the ranking metric

“normalized discounted cumulative gain” (NDCG) (A.2.5: Evaluation Metrics).129

Whenever reported, mean and max fitness achieved are normalized to the highest fitness in

the unlabeled dataset and so can typically be interpreted as a fraction of the global maximum

in the GB1 dataset.

Each evaluation metric summarizes different information about the outcome of an MLDE

simulation. The max and mean fitness of the M-highest-ranked variants (hereafter also

referred to as “max fitness achieved” and “mean fitness achieved”) are the most practically

relevant in terms of laboratory application of MLDE, as they are analogous to the max and

mean fitness that would be observed if the M protein variants predicted to have highest fitness

were experimentally evaluated. Consistent realization of high maximum fitness achieved

over many simulations indicates that an MLDE design condition is typically effective at

finding at least one high-fitness variant; consistent realization of a high mean fitness

achieved over many simulations indicates that the design condition is typically effective at

identifying many high-fitness variants. NDCG does not capture specifics about how MLDE

can be expected to perform in a laboratory setting, but instead provides a holistic measure of

how well a given MLDE design condition is able to identify and rank the most fit variants in

the GB1 landscape without the need to set an arbitrary cutoff such as “the top M” predictions.

NDCG is commonly used to assess the quality of information retrieval algorithms such as

search engines, a task that parallels the goal of MLDE.129 To explain, the goal of search

engines is to return a list of relatively rare, highly relevant documents identified among a

population of many irrelevant ones; the most relevant documents should be provided at the

top of the list and the least relevant at the bottom. Because combinatorial fitness landscapes

tend to be dominated by zero- and low-fitness variants,28,78,122 the goal of MLDE is likewise

to identify high-fitness (high-relevance) protein variants among a sea of irrelevant ones; the

41

highest-fitness variants should ideally be the ones ranked highest by MLDE. For both search

engines and MLDE, more weight should be placed on correctly identifying and ranking the

most-relevant items than the least-relevant as these are the ultimate items of interest. Indeed,

NDCG provides just this type of implicit weighting, which is clear from the equation used to

calculate it. The equation for NDCG is

𝑁𝐷𝐶𝐺 (∑
𝑓𝑖

l 2 𝑖 +

𝑁

𝑖 = 1

) (∑
𝑓𝑖

′

l 2 𝑖 +

𝑁

𝑖 = 1

) ⁄ Eq. 2-1

where the numerator gives the sum of the true variant fitnesses (𝑓) divided by a logarithmic

“discount” based on their predicted ranking and the denominator gives the sum of true variant

fitnesses divided by a logarithmic discount based on a perfect ranking. A higher value of

NDCG is thus better, and the maximum NDCG possible is “1.” Variants with low fitness

contribute minimally to the denominator (both due to having a low “𝑓” and, in a perfect

ordering, a high logarithmic discount), and so unless they are incorrectly ranked as the very

top variants, they will have minimal effect on the score. Correct ranking among high-fitness

variants is thus weighted more strongly than correct ranking among low-fitness variants, but

incorrect identification of a low-fitness variant as a high-fitness variant is punished. NDCG

as an MLDE evaluation metric thus provides a more holistic view of how well models are

able to (1) identify the most fit variants and (2) correctly rank those variants.

2.2.2 More Informative Encodings Can Improve MLDE Outcome

Protein sequences must be numerically encoded by a set of features (numerical descriptors

that describe a protein sequence) to be used in ML algorithms. The previous implementation

of MLDE used one-hot encoding, an uninformative categorical encoding strategy that

captures no information about the biochemical relatedness of different amino acids. The

descriptiveness of the features used for encoding can affect the outcome of learning,

however, by passing in relevant information to an ML model about the similarities and

differences between different datapoints. To investigate the effects of more informative

42

encodings on MLDE, I tested encoding using physicochemical parameters as well as learned

protein embeddings.

Physicochemical parameters are manually engineered features that describe amino acid

qualities such as hydrophobicity, volume, mutability, etc. Encoding a protein sequence using

these features provides an ML model with information on the physicochemical similarities

and differences between amino acids. For instance, valine and alanine would have a more

similar “hydrophobicity” score than valine and glutamate. In this work, I used the set of

physicochemical parameters developed by Georgiev, which is a low-dimensional

representation of over 500 amino acid indices from the AAIndex database.35,36,124

Unlike manually crafted physicochemical parameters, learned protein embeddings are

featurizations of protein sequences that have been automatically learned by machine learning

models through a strategy known as “representation learning.”22,37,46,110,130 All extant protein

sequences have been selected by natural evolution to perform a function that is useful for

their host organism. The goal of representation learning is to directly learn features that

describe these proteins, thereby capturing a numerical encoding (an embedding) of the

essence of what defines a functional and useful protein. Exactly how this learning is

accomplished varies, though most strategies and models currently used are adapted from the

field of natural language processing and rely on ever-growing protein sequence databases as

a source of training data.22,37,39,45,110 As with physicochemical parameters, learned protein

embeddings capture the similarities and differences between specific amino acids; they also,

however, capture contextual information about amino acid positions in a protein, with the

exact embedding for a given amino acid changing based on the identities of other amino

acids in the same protein sequence.48,55

A number of studies have been performed to train models for the production of learned

protein embeddings.37 Given a protein sequence, such models output a matrix of values that

are then used to encode the protein. In this work, I tested the effectiveness of learned protein

embeddings generated from a variety of models of different sizes and architectures made

available in the TAPE, ESM, and ProtTrans GitHub repositories.51,55,58,61 The models tested

43

from TAPE were trained using 30 million protein sequences from the Pfam database39 and

have varied architectures, including a transformer architecture (“TAPE-Transformer”),128,131

three separate LSTM-based architectures (“LSTM,” “UniRep,” and “Bepler”),52,60,132 and a

dilated residual network architecture (“ResNet”);133 all models in TAPE are defined by

around 38 million learnable parameters.

Larger models than those in TAPE trained on more sequences can potentially learn a richer

representation of protein sequences.55,134 To test this potential effect of model and training

set size on the quality of learned embeddings for MLDE, I also investigated embeddings

generated from the state-of-the-art models “esm1b_t33_650M_UR50S” (hereafter referred

to as “ESM1b”) from the ESM repository as well as “ProtBert-BFD” from the ProtTrans

repository. Both of these models have a transformer architecture. ESM1b is a 650-million-

parameter model trained on 27.1 million sequences from the UniRef50 database.42,55

ProtBert-BFD is a 420-million-parameter model trained on 2.1 billion protein sequences

from the Big Fat Database (BFD).51,135 A final model investigated for learned embedding

generation was the MSA Transformer, also made available in the ESM repository.61 Unlike

the other models, which were all trained on protein sequences, the 100-million-parameter

MSA Transformer was trained on 26 million protein multiple sequence alignments (MSAs);

the learned embeddings from the MSA Transformer are thus generated from an MSA of the

target protein rather than the target protein sequence alone. MSAs more directly represent

information relevant to protein engineering: specifically, related sequences aligned to a

reference provide evidence for what mutations are and are not allowed at given positions. I

included the MSA Transformer to test if the additional information provided by embeddings

generated from an MSA could lead to an improved MLDE outcome.

For each encoding considered, I performed 2000 MLDE simulations at three different

training set sizes. The training data, cross-validation indices (i.e., the different folds used for

measuring a cross-validation error), and random seeds (values that enable reproducible

random number generation) were kept the same for each encoding strategy in each

simulation. For a given simulation, the training data consisted of either 384, 48, or 24 GB1

44

variants drawn at random from the comprehensive (consisting of all 149,361 possible GB1

variants) landscape—only the choice of encoding and training set size were considered as

design considerations in these experiments. If 384 variants were used for training, the top 96

predictions were tested; if 48 variants were used for training, the top 32 predictions were

tested; if 24 variants were used for training, the top 56 predictions were tested (A.2.4.1:

Encoding Comparison Simulations). Training using 384 samples and testing 96 predictions

evaluates simulations on a scale that approximates the typical experimental screening

burdens for standard DE approaches.82 Because the ultimate goal of using ML in protein

engineering is to reduce or eliminate the number of protein variants that must be

experimentally characterized, the ability to train an ML model using limited data is also

valuable.64 Training using 24 or 48 samples evaluates the effectiveness of each encoding in

this “low-N” setting. I tested 56 or 32 predictions, respectively, to match the total screening

burden (80 variants) of an idealized traditional DE pipeline over a four-site landscape where

all 20 amino acids at each position are deterministically evaluated. I note that, due to the cost

of synthesizing variants individually, deterministic evaluation of mutations is rarely

performed, and researchers instead opt to stochastically sample from pools of mutants (thus

raising the required screening burden above 80). The total screening burden of deterministic

traditional DE does provide, however, a reasonable “low-N” threshold for MLDE.

Violin plots showing the results of the simulated MLDE experiments are provided in Figure

2-2; summary statistics are provided in Data S1 and a pairwise comparison of encoding

effectiveness over all simulations is provided in Data S2; I also provide additional figures on

the GitHub repository associated with this work that plot the pairwise encoding comparisons.

In all, these results show that using a more informative encoding than one-hot can result in

an improved MLDE outcome, but not always and depending on the metric and screening

burden used to measure MLDE effectiveness. The only two encoding strategies to

consistently show at least marginal improvement over the one-hot baseline regardless of

metric and screening burden were physicochemical (Georgiev) parameters and learned

embeddings from the MSA Transformer. At a training size of 384, NDCG was the only

evaluation metric to consistently suggest that more informative encodings improve MLDE

45

outcome. For the max fitness achieved, simulations run using Georgiev parameters and

learned embeddings from the MSA Transformer tended to achieve marginally higher max

fitness than those run using one-hot encodings; simulations run using all other learned

embeddings tended to achieve the same if not a slightly lower one. For the mean fitness

achieved, simulations run using the embeddings from the Bepler model as an encoding

strategy slightly underperformed one-hot, those using embeddings from UniRep and

ProtBert-BFD performed comparably, and those using all other encoding strategies tended

to achieve a higher mean fitness than one-hot.

For smaller training set sizes, the effect of different encodings on MLDE outcome was less

noticeable. Only simulations run using embeddings from the TAPE transformer and the

MSA Transformer still obtained a higher NDCG than those run using one-hot encoding;

simulations using other encodings tended to yield comparable to marginally better NDCG

than those run with one-hot. For the max fitness achieved, all non-MSA Transformer learned

embeddings arguably gained ground on one-hot and Georgiev encodings, though the results

are still comparable at best. The opposite was observed for the mean fitness achieved, with

one-hot typically gaining ground on and even slightly surpassing many learned embeddings.

My results largely agree with recent work suggesting that training ML models using existing

learned protein embeddings yields marginal improvement at best compared to using simpler

encodings such as one-hot or physicochemical parameters.62,63 Unlike previous works,

however, which found that learned embeddings tended to be superior to simpler strategies in

the low-N regime,62,64 I found that simpler strategies remained competitive regardless of

training set size. It is possible that taking an “evotuning” strategy like that of Biswas et al.,

where embedding models are further trained on sequences more closely related to the target

protein (i.e., GB1), could improve the performance of learned embeddings in the low-N

regime;64 however, as will be discussed in greater detail in later sections, this possibility is

currently untestable due to the limited availability of GB1 homologs in existing sequence

databases.

46

I also found minimal benefit in using embeddings derived from the larger models trained on

larger corpora of protein sequences. For instance, when trained with 384 samples,

simulations run using embeddings from ESM1b only slightly outperformed those run using

embeddings from the TAPE transformer, despite the ESM1b model being ~17-fold larger;

in the low-N regime, simulations run using embeddings from ESM1b underperformed those

run using encodings from the TAPE transformer. Likewise, regardless of training set size,

simulations run using embeddings from ProtBert-BFD often underperformed many of the

TAPE models, despite ProtBert-BFD being ~11-fold larger and trained using ~70-fold more

protein sequences. Indeed, the most effective model for generating learned embeddings was

the MSA Transformer, which is 1/6 the size of ESM1b and 1/4 the size of ProtBert-BFD. As

mentioned above, the MSA Transformer was trained on—and generates embeddings using—

MSAs rather than protein sequences. It is possible that the additional information provided

by the MSA yields more effective learned embeddings for MLDE, though this is impossible

to conclude working off of just the GB1 dataset. It does stand to reason, however, that models

and data sources that more directly represent information known to be important for protein

function could lead to embeddings that are more informative for MLDE. Developing such

data sources and models is a potentially valuable avenue for future research.

47

Figure 2-2. More informative encodings can improve MLDE outcome: results of simulated

MLDE comparing ten different encoding strategies at three different screening burdens. Note

that, for the sake of computational efficiency, 19 of the 22 inbuilt MLDE models were in the

ensemble trained for simulations using the large TAPE transformer-, the MSA

Transformer-, ESM1b-, ProtBert-BFD-, UniRep-, and LSTM-derived encodings, while 22

were in the ensemble for all others. Each column of plots gives the results of a different

screening burden. Each row of plots gives the results for a different summary metric. Rows

and columns share the same axes. Each violin represents the results of 2000 simulated MLDE

experiments, and the dashed line represents the median summary value of simulations run

using one-hot encoding. In general, whether or not an encoding strategy outperformed the

one-hot baseline depended on the screening burden tested and summary metric evaluated.

The only two encoding strategies to consistently show at least marginal improvement over

the one-hot baseline regardless of metric and screening burden were physicochemical

(Georgiev) parameters and learned embeddings from the MSA Transformer. For summary

statistics of simulation results, see also Data S1. For pairwise comparisons of simulation

results, see also Table A-1 – Table A-4, Data S2, and additional figures at the GitHub

associated with this work.

48

2.2.3 Models/Training Procedures More Tailored for Combinatorial Fitness

Landscapes Can Improve MLDE Predictive Performance

Many of the learned embeddings used in the previous section are extremely high

dimensional, with the largest (LSTM) describing each combination of four amino acids with

8192 features (Table A-1). To better handle the high dimensionality introduced by learned

embeddings, in this new implementation of MLDE I added two 1D convolutional neural

network (CNN) architectures to the ensemble of models trained, one with a single

convolutional layer and another with two (A.3.1: Inbuilt Models). CNNs apply sliding

windows (“convolutions”) over structured, high-dimensional data, relying on spatial

dependencies between elements of the input data to extract the most relevant high-level

features.136,137 For instance, CNNs are often applied to image processing tasks, where sliding

2D windows are used to extract high-level features by aggregating information from local

groupings of pixels. CNNs can also be applied, however, to sequential data such as protein

and DNA sequences. When applied to proteins, the sliding windows are 1D (hence, “1D

CNN”) rather than 2D, and are applied over the protein sequence to extract high-level

features by aggregating information from nearby members of the sequence.19,125,138 The

practice of using a sliding window to extract or aggregate information from sequences or

sequence alignments has been used in bioinformatic analyses for decades.139–141 Whereas

sliding windows have historically been used to extract specific, human-defined information,

the sliding windows of 1D CNNs automatically learn the aggregate information most

relevant for relating a sequence to a label (e.g., the high-level features that relate protein

sequence to fitness). Recent evidence suggests that 1D CNNs are a particularly effective

model class for protein engineering.19 I found that 1D CNNs could be beneficial for MLDE,

but that the specific architecture of the 1D CNN and training points used to train it were

important. For instance, when trained with 384 training points, the two-layer 1D CNN was

consistently among the top-ranking models in terms of cross-validation error during training,

particularly for higher-dimensional encodings (Table A-1). The same could not be said,

however, for the single-layer 1D CNN or the two-layer 1D CNN trained with less data (Table

A-1 – Table A-2).

49

In addition to 1D CNN architectures, I also integrated XGBoost models trained with the

Tweedie regression objective to better handle the zero-inflated nature of fitness

landscapes.126,142,143 XGBoost is a Python package that implements the gradient boosting

technique, which, at a high level, is a strategy of combining multiple weak predictors

(multiple weak models) to create a more effective predictor.126 Gradient-boosted Tweedie

regression was developed to handle regression for datasets with zero-inflated labels.142,143

Because most mutations are deleterious to activity or stability, as more mutations are made

to a protein, the probability that it will still fold and function drops.122 The result is that

combinatorial fitness landscapes tend to be dominated by proteins with zero or extremely

low fitness,28,78 something that is highlighted by the distribution of fitnesses for GB1 (Figure

2-3A). Training data drawn from combinatorial fitness landscapes will thus also have an

over-abundance of zeros, which can bias ML models to be more effective at predicting low-

fitness variants than high-fitness ones. To test if implementing the Tweedie regression

objective could improve the effectiveness of XGBoost models in MLDE, I included

XGBoost models trained with both the Tweedie and default (root mean squared) training

objectives in the ensemble of models trained in the simulations discussed in the previous

section. I found that models trained with the Tweedie objective on average achieved a higher

NDCG than models trained with the default objective regardless of base model (the

architecture of the weak predictors used by XGBoost) and encoding; only models with a tree

base model on average showed improved max and mean fitness achieved, however (Table

A-3 – Table A-4). Additional supplemental images plotting a pairwise comparison of the

results of XGBoost simulations run with each learning objective can also be found at the

GitHub repository associated with this work.

2.2.4 The Challenge of Holes in Combinatorial Fitness Landscapes and the

Importance of Informative Training Data

Diversity within training data is critical to constructing an effective machine learning model.

Often, training set diversity is thought of in terms of exploration of the feature space, where

limited resources are intelligently committed to minimize the amount of extrapolation that

must be performed when making predictions (Figure 2-3B). For instance, for protein

50

engineering, a researcher would aim to experimentally characterize diverse protein

sequences when gathering data to train an ML model; a model trained on a restricted set of

sequences may struggle to generalize to more diverse sequences when used for prediction.

Equally important to feature diversity, however, is diversity in the labels: patterns in the

ground truth will not be identified if there are no patterns in the training data (Figure 2-3B).

The overabundance of “dead” (zero- or very low-fitness) variants in combinatorial fitness

landscapes thus poses an additional challenge beyond that discussed in the previous section:

a random draw for the generation of training data is likely to be populated by primarily zero-

or extremely low-fitness variants. And, while potentially useful for classifying dead vs

functional proteins, these “holes” provide no information about the extent to which specific

combinations of mutations benefit or harm fitness—only that fitness is destroyed by a

combination—and so have limited utility when training the regression models used in

MLDE.

I thus proposed a general strategy of running MLDE with training sets designed to contain a

minimal number of holes. In this strategy, which I call “focused training MLDE” (ftMLDE),

training data is not randomly drawn from the full combinatorial landscape (which will return

primarily holes), but is instead drawn from diverse regions of sequence space believed to

contain functional variants. A training set drawn in this way will consist of a greater

proportion of functional variants and so will provide more information to an ML model about

the magnitude of the effects of different mutations on fitness, enabling more effective

regression of a function to the fitness landscape.

To demonstrate the concept of ftMLDE and test its effectiveness, I designed training data

enriched in functional, but not the fittest, protein variants, and then used it to perform

simulated ftMLDE. Because I had access to the full GB1 dataset, I could choose what data

to use for training. As such, I built training sets consisting of 384 samples where 50% of the

variants had fitness greater than or equal to a given threshold of either 0.011, 0.034, 0.057,

or 0.080 and 50% had fitness below (A.2.4.2: High-Fitness Simulations). A higher fitness

threshold thus meant greater fitness enrichment in the training data (greater “focus” of the

51

training data on higher-fitness regions of the protein fitness landscape) and vice versa (Figure

A-1). To avoid “cheating” by inclusion of the highest-fitness variants in the training data, I

also enforced a requirement that no variant in the training data had fitness greater than 34%

of the global maximum. By including this upper limit, the highest-fitness variants in the GB1

landscape could only be identified from model predictions.

The results of 2000 simulated ftMLDE experiments using training sets from each of the four

considered thresholds are given in Figure 2-3C-E and Table A-5; also included are the results

of 2000 simulated standard MLDE experiments where training data were randomly drawn

from all variants with fitness below 34%. Compared to standard MLDE, the ftMLDE

simulations show improved NDCG, mean fitness achieved in the top 96 predictions, and max

fitness achieved in the top 96 predictions. Training data enrichment using even the lowest

fitness threshold (0.011) led to improvement in evaluation metrics, with NDCG increasing

~8%, the max fitness achieved improving ~19%, and the mean fitness achieved improving

~49%. The lowest threshold sits at just above 1% of the fitness of the global maximum, and

so the improvement observed here suggests that even the weakest degree of enrichment can

lead to an improvement in engineering outcome. Indeed, while further increasing the fitness

threshold did further improve outcome, the degree of improvement was not as large. For

instance, increasing the threshold from 0.011 to 0.080 led to a further ~2% increase in

NDCG, ~4% increase in max fitness achieved, and ~10% increase in mean fitness achieved,

roughly 5-fold less overall improvement compared to moving from no threshold to a

threshold of 0.011. This result suggests that, while achieving a higher mean fitness in the

training data is beneficial to ftMLDE, the more important factor is elimination of holes.

52

Figure 2-3. The challenge of holes in combinatorial fitness landscapes and the importance

of informative training data. (A) The distribution of fitness in the GB1 landscape shown as a

histogram. Most variants in this epistatic landscape have extremely low fitness, and the

highest-fitness variants are very rare. (B) A demonstration of the importance of diversity in

both the labels and features of training data for machine learning. Learning detailed topology

is challenging if the labels are not representative of it, even if sampled from diverse regions

of feature space. Only local topology can reliably be learned if points are sampled from a

restricted region of feature space. (C) The maximum fitness achieved for simulated ftMLDE

using training data designed to be enriched in fit protein variants. Specifically, training sets

were designed such that 50% of the variants had fitness greater than or equal to a given

threshold of either 0.011, 0.034, 0.057, or 0.080 and 50% had fitness below. A higher fitness

threshold enforces a higher mean training fitness. All data is shown as empirical cumulative

distribution functions (ECDFs); vertical lines on the x-axis give the expectation value of the

distribution. Each ECDF represents the results of 2000 simulated ftMLDE experiments. (D)

The mean fitness achieved for simulated ftMLDE using training data enriched in fit variants.

(E) The NDCG for simulated ftMLDE using training data enriched in fit variants. See also

Figure A-1 and Table A-5.

53

2.2.5 Zero-Shot Prediction as a Practical Training Set Design Strategy for ftMLDE

Of course, in practice, the full dataset for a combinatorial library would not be available as it

is for GB1, otherwise there would be no point in applying MLDE in the first place. Instead,

the protein variants used to build ftMLDE training data must be chosen prior to knowing

their fitnesses—practical application of ftMLDE requires at least a weak predictor of protein

fitness for training set design. One way to accomplish this would be to take an active learning

approach. That is, using data from a prior round of standard MLDE performed for the same

combinatorial library, a model could be trained to predict a diverse set of higher-fitness

variants; these variants could then be experimentally evaluated and used to train models in a

round of ftMLDE. Indeed, a strategy like this was taken by Romero et al. when evolving for

improved P450 thermostability, where a classifier trained on data from one round of

evolution was used to build a training dataset enriched in functional protein variants for the

next round of evolution.78 While this active learning approach has proven successful, it adds

an additional round of data collection to the workflow, which is undesirable. I thus chose to

investigate zero-shot prediction strategies for training set design.

I define zero-shot prediction strategies as those capable of predicting protein fitness without

the need for further labeled training data collection, and thus they do not affect the overall

screening burden of ftMLDE. A number of zero-shot strategies exist for protein functional

prediction, ranging from scoring protein variants based on evolutionary sequence

conservation,68,70,144 to generative modeling,57,68,145 and physics-based computational

modeling (e.g., prediction of ΔΔG upon mutation),146–150 to name a few. The remainder of

this chapter is devoted to evaluating the effectiveness of different zero-shot strategies for

designing training data for ftMLDE. Over the next two sections, I evaluate zero-shot

strategies from each of the aforementioned overarching zero-shot classes for their ability to

predict GB1 fitness. In the final section, I use the successful zero-shot predictors to

demonstrate a practical application of ftMLDE to the GB1 landscape. I find that ftMLDE is

superior to both standard MLDE and traditional DE, with the best ftMLDE condition

achieving the global maximum in 99.70% of simulated experiments compared to 8.85% for

the best standard MLDE condition and 1.23% for simulated traditional DE.

54

2.2.6 Leveraging Sequence Data for the Design of Fitness-Enriched Training Data

Over billions of years, natural evolution has tested countless protein sequences, discarding

those that were detrimental to a host organism and propagating those that were beneficial.

The list of extant protein sequences represents those that survived the filters of evolution and

so implicitly contains information about the evolutionary and biophysical rules that enable

production of a useful protein. Driven by a combination of increased computational power

and greater availability of sequence data, recent years have seen renewed effort to extract

this implicit fitness information contained in sequences and use it to reduce or eliminate the

amount of experimentally acquired sequence-fitness data needed for reliable prediction of

protein fitness. All of these strategies assume that a given list of functional protein sequences

is representative of a distribution of allowed protein sequences and that by learning this

distribution the fitness of a new protein sequence can be inferred. Specifically, a new

sequence highly likely to belong to the learned distribution is predicted to have high fitness

and vice versa.22,68,70 The simplest example of a sequence-based zero-shot strategy, for

instance, is use of BLOSUM matrices, which score the likelihood of a given amino-acid

substitution based on observed substitution frequencies in conserved protein families.151 Far

richer strategies than BLOSUM matrices have been developed, however, and in this section,

I test the ability of a number of them for zero-shot prediction of GB1 fitness.

Strategies for sequence-based zero-shot prediction can be broadly classified as relying on

local or global sequence information. Local strategies attempt to learn the distribution of

allowed sequences from those related to a target. These strategies first search sequence

databases to build an MSA against the target, then use that MSA to learn a representation of

the underlying sequence distribution defining allowed local protein sequences. Global

strategies, in contrast, attempt to learn the distribution of allowed sequences from large

databases of unrelated protein sequences. The language models trained to build embeddings

of protein sequences are examples of global strategies. Indeed, a proposed and assumed

rationale for the benefit of embeddings derived from natural language processing models is

that the embedding vectors learned during training should capture the global rules of what

defines a functional protein.

55

I first tested the local sequence-based zero-shot predictors EVmutation and

DeepSequence.68,70 Among other requirements, the authors of these tools recommend

training using an MSA with ≥10L (where “L” is the length of the target protein) redundancy-

reduced sequences (essentially, a measure of the effective number of sequences given the

diversity of those in the MSA—less diverse MSAs have a lower number of redundancy-

reduced sequences) that cover the positions at which the effects of mutations are to be

predicted; at least 560 redundancy-reduced sequences are thus the target for 56-amino acid-

long GB1. There are, unfortunately, few recorded sequences that are homologous to GB1,

and I could at best produce an MSA with 56 redundancy-reduced sequences that covered all

four positions of interest in the GB1 combinatorial landscape (A.2.1: Alignment Generation

and EVmutation Model Training). Despite this relatively uninformative MSA, however,

EVmutation still performed reasonably well as a zero-shot predictor, achieving a Spearman

rank correlation coefficient (Spearman ρ) of 0.21 (Figure 2-4, Table A-6). DeepSequence, in

contrast, was less effective, achieving Spearman ρ = 0.05 (Table A-6, A.2.3.1:

EVmutation/DeepSequence Calculations). These results align with an observation in the

original DeepSequence publication, where DeepSequence was shown to be more susceptible

to failure than EVmutation when trained on low-quality MSAs.68 This is not to say that the

predictions of EVmutation were unaffected by the low-diversity GB1 MSA. The low

information content of the MSA made it impossible for EVmutation to assign unique

probabilities of fitness to all GB1 combinations, resulting in the coarse ranking pattern shown

in Figure 2-4.

For global sequence-based zero-shot predictors, I tested a mask filling protocol for each of

the models made available in the ESM GitHub repository as well as the ProtBert and

ProtBert-BFD models from the ProtTrans GitHub repository.55,56,61 All of these models were

trained using a protocol known as “masked token prediction.”128 When training using this

protocol, a model is fed a sequence with the identities of amino acids at a fraction of its

positions obscured (“masked”). Given the context of the unobscured (“unmasked”) amino

acids, the objective of the model is to then predict the correct original identities of the masked

amino acids by modeling the probability 𝑃 𝑠𝑚𝑎𝑠𝑘𝑒𝑑|𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 , where 𝑠 is a sequence of

56

amino acids. By repeating this procedure over millions (or billions, in the case of ProtBert-

BFD) of sequences, the model learns a global sense of the distribution of allowed proteins:

in particular, it learns the probability that a given combination of amino acids will occur in

the context of a given sequence background. Using a trained model, masked token prediction

can be co-opted for zero-shot prediction using a “mask filling protocol.” Specifically, given

a sequence with positions of interest masked, the model can be used to predict

𝑃 𝑠𝑚𝑎𝑠𝑘𝑒𝑑|𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 for all possible combinations of mutations at the masked positions.

Combinations of mutations with higher probability are then assumed to have higher fitness

as they more accurately represent the learned distribution of allowed amino acid

combinations.

The models in the ESM repository, in combination with ProtBert and ProtBert-BFD, are a

variety of different sizes and were trained on varying numbers of sequences, allowing me to

test the effect of model capacity on the mask filling protocol for GB1. Additionally, the ESM

repository contains the MSA Transformer which, uniquely, was trained using MSAs

produced for each sequence in the UniRef50 database, making it somewhat of a hybrid

between a local and global sequence model.42,61 I included the MSA Transformer in the mask

filling zero-shot predictions to see if the global information captured during training could

make up for the limited information provided by the small GB1 MSA used for EVmutation

and DeepSequence predictions.

For zero-shot prediction with a mask filling protocol, I calculated 𝑃 𝑠𝑚𝑎𝑠𝑘𝑒𝑑|𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 for

every combination in the GB1 landscape using either naïve or conditional probability

(A.2.3.2: Mask Filling Protocol). Note that, for all non-MSA Transformer methods, the

parent GB1 sequence was used to define 𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑, while for the MSA Transformer, the

MSA used for EVmutation (with slight additional processing, see Section A.2.3.2 for details)

was used to define 𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑. The MSA Transformer thus had access to additional local

evolutionary information when making mask-filling predictions. The results using both naïve

and conditional probability protocols for all tested models are provided in Table A-7; the

results using naïve probability with the MSA Transformer are also depicted in Figure 2-4. In

57

all cases, I found that predictions made using naïve probability to be slightly superior to

predictions made using conditional probability. The naïve probability prediction procedure

more closely mimics the masked token prediction procedure used to train the ESM and

ProtBert models, providing a potential explanation for its slight superiority over the

conditional prediction procedure, though a conclusive reason for this observation is not

immediately clear.

Differences in effectiveness between the naïve and conditional probability predictions

notwithstanding, for all models except the MSA Transformer, mask filling was an ineffective

zero-shot prediction strategy. Indeed, the predictions from most models gave a negative

correlation (Spearman ρ) with GB1 fitness, indicating a prediction that is worse than a

random guess. Additionally, and perhaps contrary to expectations, smaller models trained on

the same data with the same training procedure tended to outperform larger ones.

Specifically, predictions using esm1_t6_43M_UR50S (43 million parameters) outperformed

those using esm1_t12_85M_UR50S (85 million parameters) which in turn outcompeted

those using esm1_t34_670M_UR50S (670 million parameters). Correlations between the

amount of training data and zero-shot prediction performance are less apparent. For instance,

even though zero-shot predictions using esm1_t34_670M_UR100 (trained on UniRef100)

outcompeted those using esm1_t34_670M_UR50 (trained on UniRef50, and otherwise

equivalent to esm1_t34_670M_UR100), predictions using ProtBert-BFD (trained on BFD)

were more or less as effective as those using ProtBert (trained on UniRef100, and otherwise

equivalent to ProtBert-BFD).

The exception to the general failure of mask filling as a zero-shot predictor was those

predictions generated by the MSA Transformer (Figure 2-4), which achieved a Spearman ρ

of 0.24 with naïve probability (0.20 with conditional). Even though this Spearman ρ is

comparable to that achieved using EVmutation, it is notable that the many ties observed in

the EVmutation predictions are not present in the mask filling zero-shot predictions from the

MSA Transformer, presumably due to the global information captured by the MSA

Transformer during training. A mask filling protocol using the MSA Transformer could thus

58

be an attractive zero-shot alternative to EVmutation for proteins for which deep, high-quality

MSAs cannot be produced. It must, of course, also be asked whether the underrepresentation

of GB1 homologs in sequence databases leads to the failure of mask filling zero-shot

prediction by non-MSA Transformer models. Answering this question is impossible using

just the GB1 landscape alone, however, and would require access to other combinatorial

landscapes built in proteins with varying degrees of representation in the sequence databases

used to train the ESM and ProtBert models.

2.2.7 Predicted ΔΔG of Stabilization for the Design of Fitness-Enriched Training Data

Just because a sequence motif is not represented in a sequence database does not necessarily

mean that it would be detrimental to a protein’s function. It is possible, for example, that a

natural function that would benefit from such a motif does not exist, that evolution has not

yet explored such a region of sequence space, or simply that humans have not yet sequenced

a representative protein. The underlying assumption of sequence-based zero-shot strategies

that evolutionarily optimized fitness correlates to a target fitness may thus not always hold.

In such cases, using a zero-shot strategy such as predicted ΔΔG of stabilization upon

mutation may be beneficial.146–150 This approach attempts to calculate the effect of a mutation

on protein stability from first principles. Based in physics, it is thus not subject to the

assumption that the target fitness correlates with the fitness of existing proteins, but instead

that protein stability plays a role in fitness.

The fitness of GB1 is considered to be, at least in part, a function of stability, suggesting that

approaches like predicted ΔΔG of protein stability upon mutation might be an effective zero-

shot predictor.123,152 Indeed, I found a correlation between single-mutant fitness data and

literature GB1 ΔΔG data (|Spearman ρ| = 0.58, Figure A-2A).153 Wu et al. also previously

presented evidence suggesting that predicted ΔΔG could be correlated to GB1 fitness.123

To test the effectiveness of ΔΔG predictions as a zero-shot predictor for GB1 fitness, I used

the Triad protein design software suite (Protabit, Pasadena, CA, USA:

https://triad.protabit.com/) with a Rosetta energy function to predict the stability of each of

the 149,361 GB1 variants with measured fitness, then calculated a predicted ΔΔG of

59

stabilization for each variant relative to the parent amino acid sequence (A.2.3.3: ΔΔG

Calculations). Both fixed backbone and flexible backbone calculations were performed using

a previously determined GB1 crystal structure (PDB: 2GI9) as a scaffold.154 The predicted

ΔΔGs from each calculation correlated with literature values of experimentally determined

ΔΔG values for the single mutants, though the fixed backbone calculations were more

effective (Spearman ρ = 0.61 for fixed backbone, Spearman ρ = 0.42 for flexible backbone,

Figure A-2B–C). Despite both approaches having predictive power for single mutant ΔΔG,

only the fixed backbone calculations were effective at identifying GB1 variants enriched in

fitness when ranking by predicted ΔΔG (Spearman ρ = 0.27, Figure 2-4, Table A-6, Figure

A-3). If instead, however, the GB1 variants were ranked by root mean squared deviation

(RMSD) of variant structures produced during flexible backbone calculations, those variants

with the lowest RMSD tended to be enriched in fitness, though not as strongly as in the fixed

backbone calculations (Spearman ρ = 0.06, Table A-6, Figure A-4).

Structurally conservative mutations are generally less likely to disrupt protein function, and

so the observation that RMSD can be used for zero-shot prediction is not entirely surprising.

Because fixed backbone calculations will tend to heavily penalize mutations that would

require large backbone movements to stabilize, an interesting question arises over the extent

to which structural conservation or accurate prediction of ΔΔG allows effective fixed

backbone zero-shot prediction of fitness in GB1. If structural conservation dominates, it is

possible that Triad could be used for zero-shot prediction with other combinatorial libraries

in proteins where variant fitness is not related to stability, particularly when the mutated

residues in question are tightly packed together and/or buried in the protein core as they are

for the GB1 landscape used in this study (Figure A-5). Answering this question and

evaluating the generalizability of fixed backbone Triad calculations is beyond the scope of

this work, but as more fully combinatorial datasets become available this question should be

investigated further.

60

Figure 2-4. Zero-shot prediction for the design of fitness-enriched training data. All figures

plot the predicted rank of GB1 variants (where the variants predicted to be most fit have

lower rank and vice versa) against either fitness (A–C) or an alternate summary metric (D–

E). In A–C, dots are all individual variants while the black line is the sliding median (window

size = 1000) of fitness. (A) Results of zero-shot prediction using EVmutation. (B) Results of

zero-shot prediction using a mask filling protocol with the MSA Transformer. (C) Results of

zero-shot prediction using predicted ΔΔG from Triad with a fixed protein backbone. (D) The

fraction of all fit variants in the GB1 landscape captured up to and including a given rank. A

“fit” variant is defined as one with fitness greater than 0.011 (which was the lowest threshold

tested for the simulations performed with training data designed to be higher in fitness—see

Figure 2-3). (E) The cumulative fraction of fit variants captured up to and including a given

rank. See also Table A-6 and Table A-7 and Figure A-2 – Figure A-5.

61

2.2.8 Zero-Shot Predictions for Training Set Design Enable Highly Effective ftMLDE

on the GB1 Landscape

As a final demonstration, I evaluated the performance of ftMLDE using GB1 training data

predicted to be higher in fitness by the three successful zero-shot prediction strategies:

EVmutation, mask filling using the MSA Transformer, and Triad ΔΔG calculations. To

begin, I generated training data by randomly sampling 2000 training sets of 24, 48, and 384

variants from the top 1600 (1.1%), 3200 (2.1%), 6400 (4.3%), 9600 (6.4%), 12,800 (8.6%),

16,000 (10.7%), and 32,000 (21.4%) variants as ranked by each zero-shot predictor;

completely random training data (i.e., from the full landscape) were also drawn at each

sample size so that standard MLDE could be performed as a control. These splits resulted in

66 total “training data types” to test (three random MLDE training data types plus 21 zero-

shot ftMLDE training data types for each of three zero-shot predictors), each made up of

2000 training sets. Predictive algorithms (zero-shot predictors included) will tend to predict

that similar sequences have similar fitness, so sampling from different percentiles of the top

predictions explores the exploration-exploitation tradeoff of using zero-shot predictions for

training set design. In other words, sampling from a larger top percentile of the ranked

variants allows greater sequence diversity in the training data (thus potentially enabling

exploration of more fitness peaks as depicted in Figure 2-3B) at the expense of confidence

that the variants will have non-zero fitness (Figure A-6). While I previously used training

sample sizes of 24 and 48 to test the effectiveness of different encodings in the low-N setting,

here I included them to enable comparison of ftMLDE (and standard MLDE) with the most

efficient implementation of traditional DE. As discussed previously in the encoding

comparison section, traditional DE can in principle be performed on a four-site library by

deterministically evaluating all 20 amino acids at each position, requiring only 80

measurements for the GB1 landscape. Again, due to the cost of synthesizing variants

individually, this approach is rarely taken. However, use of 24- and 48-variant training sets

(with 56 and 32 tested predictions, respectively) allows for direct comparison of the

algorithms of ftMLDE and this most efficient implementation of traditional DE.

62

For each of the 66 training data types, simulated MLDE was performed using each training

set with variants encoded using either one-hot, Georgiev parameters, or learned embeddings

from the MSA Transformer (which was the most effective of the learned embeddings tested

earlier) (A.2.4.3 Zero-Shot Simulations). In total, testing all encodings with all training data

types amounted to 198 “training conditions” (66 training data types 3 encodings/type) and

396,000 simulated MLDE experiments (198 training conditions 2000

simulations/condition = 396,000 simulated MLDE experiments). As before, cross-validation

indices and random seeds were kept the same between simulations using different encodings

but the same training data. For each simulation, after prediction, only the top-predicted

unsampled combinations that could be constructed by recombining combinations in the

training data were evaluated (e.g., if “AAAA” and “CCCC” were the only training examples,

then only “AAAC,” “AACC,” “CAAA,” etc., could be in the top M proteins chosen for

fitness evaluation). This approach enforced a confidence threshold on the predictions and

focused all resources on regions believed to contain the highest-fitness protein variants.

The distributions of the achieved max and mean fitnesses for all simulations with a training

sample size of 384 are shown in Figure 2-5 and Figure 2-6, respectively. Distributions of the

achieved max and mean fitnesses for simulations with smaller training sample sizes of 24

and 48 are shown in Figure A-7 – Figure A-10 and summary statistics for all simulations are

provided in Data S3. Both MLDE and ftMLDE using 384 training samples outperformed

traditional DE regardless of encoding and zero-shot strategy, with the most effective set of

simulations (ftMLDE run using training data sampled from the top-3200 Triad predictions

and the MSA Transformer for encoding) achieving the global maximum in 99.70% of

simulations. By comparison, simulated traditional DE on the GB1 landscape reached the

global optimum just 1.23% of the time (A.2.4.4: Traditional Directed Evolution

Simulations). At lower screening burdens, both MLDE and ftMLDE remained competitive

with traditional DE (in terms of mean- and median- maximum fitness achieved over all

simulations), though only ftMLDE simulations ever achieved the global optimum more

frequently than traditional DE. Specifically, ftMLDE simulations using 24 training samples

achieved the GB1 global optimum more frequently than traditional DE in 40 out of 63

63

ftMLDE training conditions; ftMLDE simulations using 48 training samples achieved the

GB1 global optimum more frequently than traditional DE in 57 out of 63 training conditions

tested. Almost all training conditions where ftMLDE did not outcompete traditional DE in

the low-sample setting used mask filling with the MSA Transformer as the zero-shot

predictor, with 0 out of 21 such conditions outcompeting traditional DE at a training sample

size of 24 and 15 out of 21 at a training sample size of 48. It is also notable that training on

48 samples and testing 32 tended to be a more effective strategy than training on 24 samples

and testing 56, as this result indicates that, at least for GB1, devoting screening resources to

the training stage of the MLDE workflow may be more important than the testing phase.

Indeed, the most effective set of ftMLDE simulations at low screening burden was with 48

training samples (from the top-3200 Triad predictions and encoded using Georgiev

parameters), where the global maximum was achieved 9.95% of the time.

Aside from comparisons to traditional DE, the results of the simulations allow direct

comparison of ftMLDE and MLDE and show that ftMLDE is generally a more effective

strategy for navigating the GB1 landscape than MLDE. The optimal MLDE strategy, for

instance, achieved the global optimum just 8.85% of the time compared to the 99.70% of the

optimal ftMLDE strategy. Additionally, in almost all training conditions tested, ftMLDE

tended to achieve higher mean and max fitness than the comparable MLDE control. There

are some exceptions, however, that suggest that the combination of training set diversity,

zero-shot strategy, and encoding have an effect on the outcome of ftMLDE. For instance, all

ftMLDE training conditions tended to achieve a higher max fitness than the relevant MLDE

control except those using 384 training points derived from the top-1600 Triad samples and

encoding with one-hot or Georgiev parameters. Similarly, ftMLDE tended to achieve a

higher mean fitness than the relevant MLDE control in all training conditions tested except

for a number using learned embeddings from the MSA Transformer for encoding with 384

training points derived from sequence-based zero-shot predictors (EVmutation and mask

filling using the MSA Transformer).

64

The reasons for the observed exceptions to ftMLDE’s general superiority over MLDE are

not immediately clear, though it is interesting to note that (1) the only training condition run

using 384 training points from the top-1600 Triad samples that achieved higher max fitness

than MLDE was the one using MSA Transformer encodings and (2) the training conditions

where ftMLDE achieved a lower mean fitness than MLDE were those trained using data

encoded with the MSA Transformer that was derived from sequence-based zero-shot

predictors. During training, the embeddings of the MSA Transformer were developed to be

able to predict the identity of masked amino acids (See a discussion of the masked-token

training procedure above in Section 2.2.6: Leveraging Sequence Data for the Design of

Fitness-Enriched Training Data).61 The embeddings themselves thus contain information

about what mutations are and are not likely in a given reference protein based on available

sequence data. Indeed, if they did not, I would be unable to successfully make zero-shot

predictions using a mask filling protocol with the MSA Transformer model. It is interesting

to ask, then, if models trained on data derived from zero-shot predictions made by Triad and

encoded using MSA Transformer embeddings have access to two sets of prior information

(one derived from the data via physics-based Triad calculations and another from sequence-

conservation captured in the MSA Transformer embeddings), thus making them more

effective than models trained with encodings that do not capture fitness information from

sequence. Similarly, it could be asked if models trained on data derived from sequence-based

zero-shot predictors and encoded by the MSA Transformer become overly restricted by a

“double-dose” of sequence-based prior information. Such effects could explain both

observations at the beginning of this paragraph, and, indeed, why the combination of Triad-

derived data and the MSA Transformer was the most effective ftMLDE strategy tested. This

is, of course, conjecture, and the only clear conclusion that can be derived from these results

is that there is an interplay between training data makeup and encoding strategy in

determining ftMLDE outcome.

65

Figure 2-5. Zero-shot prediction for training set design enables highly effective ftMLDE on

the GB1 landscape, as measured by maximum fitness achieved in simulated experiments.

Each subplot (A–C) shows the effect of different zero-shot predictors on the maximum

fitness achieved in simulated ftMLDE experiments. Each violin (except for the grey ones

corresponding to simulated traditional DE) represents data from 2000 simulated experiments

where 384 variants were used for training and the top 96 predictions were tested. The major

groupings of violins within each subplot correspond to different encoding strategies (one-

hot, Georgiev parameters, or learned embeddings from the MSA Transformer). The color of

each violin corresponds to the zero-shot sampling threshold (i.e., the number of best-ranked

variants according to a zero-shot predictor from which random samples were drawn to

generate training data). Results of ftMLDE are compared to the results of simulated

traditional DE (at the left of each plot, in grey) and standard MLDE (the three pink violins

in each plot). (A) The maximum fitness achieved by simulated ftMLDE when EVmutation

was used as the zero-shot predictor for training set design. (B) The maximum fitness

achieved by simulated ftMLDE when a mask filling protocol using the MSA Transformer

was used as the zero-shot predictor for training set design. (C) The maximum fitness

achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-shot predictor for

training set design. See also, Figure A-6 – Figure A-8 and Data S3.

66

Figure 2-6. Zero-shot prediction for training set design enables highly effective ftMLDE on

the GB1 landscape, as measured by mean fitness achieved in simulated experiments. Each

subplot (A–C) shows the effect of different zero-shot predictors on the mean fitness achieved

in simulated ftMLDE experiments. Each violin represents data from 2000 simulated

experiments where 384 variants were used for training and the top 96 predictions were tested.

The major groupings of violins within each subplot correspond to different encoding

strategies (one-hot, Georgiev parameters, or learned embeddings from the MSA

Transformer). The color of each violin corresponds to the zero-shot sampling threshold (i.e.,

the number of best-ranked variants according to a zero-shot predictor from which random

samples were drawn to generate training data). Results of ftMLDE are compared to the

results of standard MLDE (the three pink violins in each plot). (A) The mean fitness achieved

by simulated ftMLDE when EVmutation was used as the zero-shot predictor for training set

design. (B) The mean fitness achieved by simulated ftMLDE when a mask filling protocol

using the MSA Transformer was used as the zero-shot predictor for training set design. (C)

The mean fitness achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-

shot predictor for training set design. See also, Figure A-6, Figure A-9, and Figure A-10 and

Data S3.

67

2.2.9 MLDE Software Enables Wet-Lab Application

To facilitate further development of ftMLDE, as well as to allow for its practical wet-lab

application, I developed the MLDE software package, available on the Arnold Lab GitHub

(https://github.com/fhalab/MLDE). This repository contains Python scripts for (1)

performing zero-shot calculations using EVmutation, DeepSequence, and mask filling using

all models from ESM, ProtBert, and ProtBert-BFD; (2) generating encodings for any

combinatorial library using one-hot, Georgiev parameters, embeddings from any model in

ESM (including those not used for encoding in this work), and embeddings from ProtBert

and ProtBert-BFD; and (3) performing ftMLDE as described in this work using any encoding

strategy (made available by the MLDE repository or otherwise). The software package was

designed for use by non-computational and non-ML experts and can be executed with a

simple command line call—all that is required for execution is a fasta file (or an .a2m/.a3m

file for procedures using MSAs) with the parent protein sequence and a csv file of

combination-fitness data for training.

2.3 Discussion for Chapter 2

I have demonstrated improvements to MLDE that, all together, can make it more efficient

than the lowest-possible-screening-burden form of DE for navigating an epistatic, hole-filled,

combinatorial protein fitness landscape. While incorporation of more informative encodings

and models/regression strategies more amenable to combinatorial protein fitness landscapes

was shown to improve MLDE outcome somewhat, by far the greatest improvement came

from training set design. Specifically, I showed that a focused training MLDE (ftMLDE)

strategy that uses some type of predictor to avoid minimally informative extremely-low-

fitness variants in the training data is typically more capable than standard MLDE at

identifying the most-fit variants in a combinatorial landscape. From simulated experiments,

I noted that the predictor used for training set design in ftMLDE does not need to be capable

of identifying particularly high-fitness variants—in tests run using training data purposefully

enriched in fitness, eliminating holes had a larger effect on outcome than subsequently

raising training data mean fitness. The ability of the predictor to identify diverse sequences,

however, is important for improving the probability of identifying the global maximum of a

68

combinatorial landscape. This concept was best highlighted when using predicted ΔΔG of

protein stability as a zero-shot strategy for building training sets, where a balance between

sequence diversity and sequence fitness in the training data proved important for maximizing

ftMLDE effectiveness (Figure 2-5C, Figure 2-6C, Figure A-6). It is also worth noting that

there appears to be an interplay between zero-shot and encoding strategies used and ftMLDE

effectiveness, with some combinations of zero-shot predictor and encoding strategy

underperforming an MLDE control.

There is, of course, no guarantee that the zero-shot strategies found to be successful for GB1

would be effective for other proteins or other functions. The use of a sequence-based zero-

shot strategy, for instance, assumes that the target fitness is well represented by evolutionarily

optimized fitness, which will not be the case for all protein engineering problems. Likewise,

use of a strategy like predicted ΔΔG assumes that stability (or, potentially, structural

conservation) plays a role in fitness determination. In general, the optimal training set design

strategy will depend on the protein,155 and while I have mainly discussed unsupervised zero-

shot strategies (i.e., those working off protein sequence or structural data alone) in this

chapter, alternate strategies can be imagined. For instance, if a protein scaffold has been used

in previous protein engineering studies, a crude non-computational approach would be to

avoid mutations that previously destroyed protein function. More robustly, a transfer learning

approach could be taken, where an ML model trained using information from related

experiments (e.g., evolution of the same protein for a different task, evolution of a different

protein for the same task, or even data from previous rounds of MLDE at different positions)

is used to predict the effects of mutations in the present experiment.156 Perhaps even more

effectively, fitness information from single-site saturation mutagenesis or error-prone PCR

random mutagenesis libraries could be used to predict the fitness of combinations. Indeed,

Biswas et al., Hie et al., and Hsu et al. each recently demonstrated approaches where ML

models trained on single-site or random mutation data were capable of predicting the fitness

of combinations of those mutations.63,64,79 The use of Gaussian processes in the application

of Hie et al. is particularly interesting, as it enables use of the upper confidence bound

69

algorithm to explicitly balance exploration and exploitation, thus providing a more principled

way to inject sequence diversity into training set design while maintaining high fitness.79,157

Whatever training set design approach is taken, I would expect its impact on the outcome of

ftMLDE to be specific to the shape and makeup of the fitness landscape. For instance, on a

non-epistatic landscape, minimalistic traditional DE will deterministically reach the global

(and only) fitness maximum; in this case, ftMLDE could at best perform as well as traditional

DE regardless of the training set design strategy used (though it may still be able to do so

with a lower screening burden). Similarly, as the number of holes in a landscape increases,

the probability of a random draw returning primarily uninformative zero-fitness variants

increases, and so implementation of an effective training set design strategy will have a

greater impact. Thus, the effectiveness of ftMLDE will vary as a function of the shape of the

landscape, the number of holes in the landscape, and the availability of robust training set

design strategies. It cannot be expected that ftMLDE will always outcompete traditional DE.

Thorough evaluation of the effectiveness of ftMLDE will only be possible once more

combinatorial landscape data beyond that provided by the GB1 landscape become available,

and since completing this project I have taken part in an effort to build many more of them.

Until ftMLDE is tested with those landscapes, however, for now it can be concluded that

ftMLDE can be used on combinatorial landscapes known to be highly epistatic and that either

contain few holes or else for which confident training set design strategies can be employed.

The strategies, concepts, and technology presented in this chapter will serve as a foundation

for further evaluation of the generalizability of different encodings, model architectures,

regression strategies, and training set design strategies for ftMLDE on combinatorial fitness

landscapes. By achieving the GB1 global maximum up to 99.70% of the time with a total

screening burden of 480 protein variants, or up to 9.95% of the time with a screening burden

of just 80 variants, the ftMLDE protocol presented here outcompeted both traditional DE—

which achieved the global optimum just 1.23% of the time—and the original MLDE

implementation—which achieved the global optimum 8.17% of the time with a screening

burden of 570 variants.82 This work thus presents a large advance and is, to the best of my

70

knowledge, the first proven example of a machine learning approach directly outcompeting

minimalistic DE. Given the degree to which ftMLDE outcompetes traditional DE on the GB1

landscape, I hope for many more examples to come.

2.4 Financial Support for Chapter 2

I thank NVIDIA Corporation for donation of two Titan V GPUs used in this work and

Amazon.com Inc. for donation of AWS computing credits. This work was supported by the

NSF Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET

1937902) and by an Amgen Chem-Bio-Engineering Award (CBEA).

71

C h a p t e r 3

 AN EXPLORATION OF SEMI-SUPERVISED MACHINE LEARNING-

ASSISTED PROTEIN ENGINEERING STRATEGIES WITH SPICE

Material from this chapter appears in Wittmann, B. J.; Johnston, K. E.; Wu, Z.; and Arnold,

F. H. (2021) Advances in Machine Learning for Directed Evolution. Curr. Opin. Struct. Biol.

69, 11–18. https://doi.org/10.1016/j.sbi.2021.01.008.

Abstract

Recent efforts in machine learning-assisted protein engineering (MLPE) have focused on

developing strategies that can augment small labeled datasets with information extracted

from large unlabeled ones, a strategy generally known as “semi-supervised learning.” So far,

semi-supervised strategies have seen mixed effectiveness when used for protein fitness

prediction. In this chapter, I hypothesize that this limited effectiveness results from the failure

of current strategies to represent information extracted from unlabeled data in a useful way.

This hypothesis is then tested in an exploratory study of semi-supervised MLPE using a

model that I designed to represent information extracted from unlabeled protein data in a way

that should be explicitly informative for downstream learning. Through extensive evaluation

using a number of benchmarking tasks, this model, which I call “SPICE” (“Summarizing

Proteins using Informed-by-Contact Embeddings”), was found to perform comparably to

existing models in a semi-supervised setting. While this conclusion was disappointing, the

experiments performed to arrive at it were not for naught, as they strikingly confirmed the

limited effectiveness of existing semi-supervised strategies for protein fitness prediction.

Specifically, they showed that existing strategies tend to yield comparable if not worse results

than fully supervised approaches. Further, barring a single exception when using SPICE, the

effectiveness of semi-supervised strategies appeared to be only marginally correlated with

the amount of unlabeled data employed, indicating that information contained in those data

is not being used effectively. Overall, the work presented in this chapter demonstrates there

is still much to be learned about how to most effectively perform semi-supervised MLPE.

72

3.1 Background and Motivation for Chapter 3

Protein engineering has historically been dominated by two philosophies: “rational design,”

which attempts to predict the most beneficial mutations using a computer model based in

physical and chemical principles,158 and “directed evolution,” which proceeds through

rounds of mutagenesis and screening of protein variants in a manner akin to artificial and

natural selection.9,28 Recent years have seen the rise of a third approach to protein

engineering—machine learning-assisted protein engineering (MLPE)—that attempts to

combine the strengths of both directed evolution and rational design.16,17,22,24 Just like rational

design approaches, the goal of MLPE is to build a predictive model of protein fitness; unlike

rational design, however, the models are not built from physical and chemical principles but

instead from patterns found in training data. The use of these “black box” predictive models

gives MLPE the generalizability of directed evolution while reducing the need for extensive

laboratory characterization of protein variants because, just like with rational design, the

models can be used to identify the best variants in silico.

As with all machine learning (ML) applications, the more high-quality data used to train

MLPE models, the more effective those models will be in downstream tasks. The most

effective MLPE models will be trained using labeled protein data (i.e., data consisting of

protein sequences paired to some measurement of protein fitness);63,67,68,70 however, as

discussed throughout this thesis, these data are often prohibitively expensive to collect in

large quantity. In contrast, drastic reductions in sequencing costs have led to a deluge of

unlabeled sequence data, and hundreds of millions to billions of protein sequences are now

stored in online databases.15,39–42 As a result, recent research efforts have shifted to

developing strategies that can augment small labeled datasets with information extracted

from large unlabeled datasets, a strategy generally known as “semi-supervised

learning.”22,37,38,46,130

When used in MLPE, semi-supervised learning consists of an unsupervised learning phase

where models are trained on unlabeled data followed by a supervised learning phase where

models are trained on labeled protein-fitness data. At the highest level, the goal of supervised

73

learning is to learn a mapping between an input space (e.g., proteins) and an output space

(e.g., protein fitness). If the relationship between those two spaces is simple, then this

mapping can be easily learned using a simple model (a model with few learnable parameters)

and a small amount of data; however, more complex relationships require more complex

models and more data. Before a protein can be passed into a supervised ML algorithm, it

must first be numerically encoded, and the encoding scheme chosen defines the structure of

the input space. By extension, then, a protein encoding scheme with a simple relationship to

protein fitness can reduce the data requirements of supervised MLPE. Indeed, the goal of the

unsupervised stage of the semi-supervised pipeline is to learn a numerical representation of

protein sequences from unlabeled data that has a simple relationship to protein fitness, thus

reducing the need for labeled data in the subsequent supervised stage.

The unsupervised stage of semi-supervised learning—which is also commonly referred to as

“unsupervised pretraining” because it occurs before the supervised stage—works on the

assumption that all sequenced proteins follow some set of biophysical and evolutionary rules

that allow those proteins to be produced and carry out a biological function.22,37,38 The goal

of unsupervised pretraining is to train models to learn the sequence constraints that result

from these rules, then represent them in a continuous vector encodings known as “learned

embeddings.” These learned protein embeddings are assumed to define the relationships

between proteins within the context of learned sequence constraints, passing valuable

information about what defines a functional protein into the downstream supervised task and,

in principle, constituting a highly informative protein encoding scheme.

An early study using semi-supervised MLPE seemed to suggest that learned protein

embeddings could be used to drastically reduce the amount of labeled data needed for

effective supervised learning with protein sequence-fitness data.64 Follow-up work has since

tempered the initial excitement, however, showing that the effectiveness of learned

embeddings is highly context specific, with the use of even the simplest encoding strategies

often providing comparable if not superior results.62,63,65 Indeed, in my own thesis work (see

74

Chapter 2) I have observed that use of learned embeddings will not always improve

supervised learning performance.33

Exactly why semi-supervised MLPE is more effective in some situations than others remains

unclear. One possibility, however, is that the models used for the unsupervised learning phase

(and the embeddings that they produce) do not capture or else do not clearly represent the

information critical for predicting protein fitness. With some exceptions,159,160 most models

and training procedures used for unsupervised pretraining are directly adapted from natural

language processing (NLP) and have minimal to no biological

inspiration.49,51,60,61,128,131,161,52–59 For instance, models based around the Bidirectional

Encoder Representations from Transformers (BERT) architecture—which were originally

designed for NLP tasks—have so far been the most popular and effective for the

unsupervised pretraining stage of semi-supervised MLPE.51,55,57,58,61,128,131,161 These large

models are described by millions (or billions) of parameters and operate by performing

successive mathematical transformations to input data; when used in MLPE, they are trained

to reconstruct corrupted protein sequences using either a “masked token prediction” or “next

token prediction” strategy.47 In masked token prediction, the model is fed protein sequences

with some percentage of amino acids obscured (“masked”); then, using the context of the

unmasked amino acids, the model must predict the identities of the masked ones. Next-token

prediction proceeds similarly, only here the model is fed the beginning (or the end) of a

protein sequence and tasked with autoregressively predicting the subsequent amino acids.

Protein embeddings produced from these models are typically derived from the last layer

(the output of the last mathematical transformation) prior to the output layer (the layer that

produces predictions of masked amino acids). Because this layer feeds into the output layer,

it is assumed that embeddings derived from it must represent information about the rules

dictating which amino acids are and are not allowed at given positions; after all, if that

information were not present, then the model would be unable to accurately perform next

token or masked token prediction. Thus, by using this layer for encoding, information

regarding how well a given protein sequence obeys learned sequence constraints can be

passed into a downstream task.

75

Notably, the embeddings derived from models trained with masked token and next token

objectives are not designed to explicitly represent information relevant to protein fitness.

These training objectives do not require the model to structure the learned embedding space

such that it has a simple relationship to protein fitness, so even though the rules governing

sequence constraints must be contained in these embeddings, they may not be easily

recognizable to a simple supervised model trained on limited data (see Figure 3-1 for an

example of an embedding space that explicitly represents determinants of protein fitness).

Figure 3-1. A simple example of an explicitly informative embedding space for machine

learning-assisted protein engineering. Such an embedding space would clearly distinguish

proteins that will never be functional (i.e., due to being unstable) from those that have the

potential to be functional. Ideally, such a space would also group proteins with similar fitness

levels (the ability to perform a given task) near one another. An implicitly informative space

may contain the same information as this explicitly informative space, but would be

structured such that extracting that information would be more challenging—the geometric

relationship between the embedding space and protein fitness would be more complex.

This chapter is focused on testing whether unsupervised models trained to explicitly capture

and represent information relevant to protein fitness will produce more effective learned

embeddings than those produced by the current models trained to implicitly capture and

represent that information. Specifically, in this chapter I detail a project I performed during

an internship at Microsoft where I attempted to build an unsupervised model that produced

76

learned embeddings structured to represent known global determinants of protein fitness. In

the next section, I detail the motivation and architecture of my biologically inspired language

model, which I call “SPICE” (“Summarizing Proteins using Informed-by-Contact

Embeddings”). Then, I present and discuss results from a number of benchmarking

experiments using embeddings derived from it.

3.2 An Overview of SPICE

This section prevents a theoretical overview of SPICE, focusing in particular on the strategies

and data used to encourage it to produce explicitly informative protein embeddings.

3.2.1 Designing an Explicit Embedding Space with SPICE

As discussed in the last section, BERT-style transformer models have, to date, been the most

effective models for semi-supervised MLPE.51,55,57,58,61,128,131,161 When used to produce

embeddings, these “protein-BERT” models will take a protein sequence as their input and

output a matrix of amino acid embeddings. For a protein of length L, this means that a

protein-BERT model will output a matrix of shape L × D, where “D” is the dimensionality

of the embedding.h Most MLPE tasks are performed on the protein level, however, not the

amino acid level, so this output matrix must be reduced to a vector before it is used in a

downstream supervised task. The most common strategy for this reduction is “mean-

pooling,” where the mean of the output matrix is taken over the amino acid axis to produce

a “global” embedding vector of length D. While simple and easy to apply, this strategy is

completely biologically uninspired. For instance, we would expect that positions in an

enzyme active site would be more relevant to representing the determinants of protein fitness

as a whole, so it may be reasonable to give their associated embeddings more weight when

pooling to the global vector.

Recognizing the potential limitations of mean-pooling, alternate strategies have been

developed that attempt to learn ideal operations for reducing the amino acid-level matrix to

a protein-level representation, distinctly weighting the contributions of different features and

h The dimensionality of the embedding corresponds to the number of learned features used to represent each amino acid.

77

amino acids when building the global vector. Unfortunately, however, almost all of these

strategies are applied during the supervised learning stage of the semi-supervised

workflow.58,162 Considering that the supervised stage of semi-supervised MLPE is often

performed in the low-N setting (i.e., with limited labeled training data), this approach runs

the risk of overfitting to the training set and losing generalizability in the downstream

application. Indeed, Detlefsen et al. have shown that learning a global representation of

protein sequences during the unsupervised pretraining stage of the semi-supervised

workflow can be beneficial to downstream supervised learning.66

Just like the strategy used by Detlefsen et al., the core concept of SPICE is to learn the global

representation from unlabeled data during unsupervised pretraining. Unlike Detlefsen et al.,

however, who used a pooling strategy that was not biologically inspired,i the SPICE learning

objective was designed to explicitly represent global determinants of protein fitness in its

embedding space. A global determinant of protein fitness is a characteristic shared by all

proteins, regardless of function, that can be used to predict whether a protein will be fit.

Protein stability is among the most obvious and intuitive such global determinants, as

proteins that are not stable will not be able to hold the 3D structure that grants a function.

SPICE is trained such that the distance between two global protein embeddings should be

correlated with the change in stability between the represented proteins (the ΔΔG of

stabilization when mutating one to the other), aiming to construct an embedding space where

unstable proteins are grouped together in one region of embedding space and stable ones are

grouped in another. Such a layout provides an explicitly informative embedding space like

that depicted in Figure 3-1 because proteins that are embedded in the “unstable” region can

be easily assigned a fitness of “0.” All that a downstream supervised model must do is

identify this unstable region from labeled training data, something that should be simple to

accomplish with just a few training examples.

i Specifically, the model used by Detlefsen et al. (2022) was trained to reconstruct the original protein sequence from a pooled

representation, just like in an autoencoder.

78

3.2.2 Contact Disruption Upon Mutation as a Heuristic for ΔΔG of Stabilization

As discussed in more detail in Section 3.2.3, the core component of the SPICE model is a 43

million-parameter transformer encoder. A large amount of data is needed to effectively train

models of this size, so training SPICE to directly represent protein stability in its embedding

space would require many millions of datapoints capturing ΔΔG of stabilization between

related protein pairs. Unfortunately, there is no such dataset of this size, and building one

would be impractical, especially when considering that the goal of SPICE and other semi-

supervised learning strategies is to minimize the need for additional data collection in the

first place.

As a heuristic for ΔΔG of stabilization, SPICE instead uses “contact disruption upon

mutation” (hereafter referred to as “contact disruption”), which is defined here as the number

of contacts in a protein’s 3D structure that are broken upon mutation, where a “contact” is

simply an interaction between two amino acids. For instance, if position 31 in a protein

sequence contains an alanine and this alanine is in contact with positions 45 and 51 in the 3D

structure, mutating that alanine to any other amino acid would break two contacts (contacts

31–45 and 31–51). Importantly, all that is needed to calculate contact disruption is a protein

structure and a list of candidate mutations; from here, it can be computationally derived by

simply mapping the candidate mutations on to a structure and counting the number of

contacts broken. As a result, unlike ΔΔG of stabilization, millions of contact disruptions can

be computed in seconds, producing more than enough data for training SPICE.

Generally speaking, the more contacts that are broken upon introduction of mutations to a

protein (the higher the contact disruption), the more destabilizing we expect those mutations

to be and the less likely the mutated protein is to share a structure with the original. Thus, if

we train a model to embed proteins such that the distance between global embeddings

encodes contact disruption, the distance between two embedding vectors will reflect both the

change in stability between the two proteins they encode as well as how structurally similar

they are. Because structure ultimately determines protein function, an embedding space that

orders proteins by structural similarity should also encode local determinants of fitness.

79

Specifically, we would expect that proteins with a smaller contact disruption are more likely

to show similar fitness levels and vice versa. In many ways, then, a contact disruption-based

embedding space provides more information than a ΔΔG of stabilization-based embedding

space by also encoding the degree of functional difference we might expect between two

stable proteins. Just like in the example of an explicitly informative embedding space

presented in Figure 3-1, using contact disruption as a heuristic for ΔΔG of stabilization allows

for construction of an embedding space that captures both global and local determinants of

protein fitness.

3.2.3 The SPICE Architecture

An overview of the SPICE architecture is given in Figure 3-2A. The core of the model is a

transformer encoder derived from the evolutionary scale modeling (ESM) package.55 After

the transformer core, a pooling layer based on the attention-weighted mean proposed by Rao

et al. is used to generate global embeddings.58 Various projection layers map from the global

embedding to calculate SPICE training losses, all of which are described in Section 3.2.5. It

is these training losses that encourage SPICE to learn an explicitly informative embedding

space.

An alternate form of SPICE—variational SPICE—takes inspiration from variational

autoencoders (VAEs) to encode global embeddings as multivariate normal distributions

rather than defined vectors. This alternate model architecture allows for more

probabilistically grounded comparisons of embedded proteins; it also allows an inherent

sense of uncertainty to be encoded in the embedding space. Additional details on training

variational SPICE and its applications are provided in later sections.

3.2.4 SPICE Training Data and Calculation of Contact Disruption

Two sources of data are used to train SPICE. The first is a set of ~49 million redundancy-

reduced protein sequences from the UniRef50 database that comprehensively covers the full

space of known proteins.42 The second is the trRosetta dataset, which consists of ~30,000

protein structures each paired to a multiple sequence alignment (MSA) of homologous

80

(evolutionarily related) sequences; the MSA paired to each structure was built using that

structure’s associated sequence as the query sequence.163

The trRosetta dataset is critical for building the explicit representation of contact disruption

in the SPICE embedding space. As mentioned earlier, calculation of contact disruption

requires both a template protein structure and a list of candidate mutant sequences. To build

the contact disruption dataset needed for training SPICE, the structures in the trRosetta

dataset serve as template structures and the list of aligned sequences in the MSAs provide

candidate mutations. Specifically, for each MSA, a group of mutant sequences is built by

transferring mutations from the aligned sequences to the query sequence, ignoring gap

characters. The mutant sequences of each group are then mapped on to the structure

associated with their MSA and the set of amino acid contacts present in the resultant mutant

structures are determined (where contacting residues are defined as those with any non-

hydrogen atom within 4.5 Å of one another). Within each group of mutant sequences,

pairwise comparisons are then made to determine the number and type of contacts broken

and maintained between mutants, providing the information needed for incorporating contact

disruption into the SPICE training procedure.

3.2.5 The SPICE Training Procedure

Unlike most protein-BERT models, which are trained using a single training objective,

SPICE is trained using a varied set of training objectives, all designed to extract information

from unlabeled protein data and represent it in a useful way. Training proceeds by alternating

between objectives based on data derived from UniRef50 and objectives based on contact

disruption calculations. These objectives include both protein-specific tasks, which are those

concerned with predicting some characteristic of a protein in isolation, and contrastive tasks,

which are those concerned with representing some relationship between a pair or more of

proteins. The motivations behind the different objectives, their specific implementations, and

the data they use are all detailed in the below list and Figure 3-2:

1. The first objective is a masked-token prediction protocol that uses the UniRef50

dataset, just like what was described in the introduction. This is trained using the

81

output for the transformer encoder of SPICE and is a protein-specific, amino acid-

level task. It is included to learn the sequence constraints that determine a functional

protein. This is the only amino acid-level task; all other tasks are designed to

encourage the model to pool and organize the information captured at this step to

build an explicitly informative protein-level representation.

2. The next objective is a contrastive task comparing the global embedding vectors of a

pair of mutant protein sequences derived from the trRosetta dataset. This objective

uses a root-mean-squared error to encourage the Euclidean distance between the two

global vectors to be equivalent to the fraction of total contacts broken between the

two sequences they represent. In other words, the model is trained such that the

distance between the global vectors will reflect the number of contacts broken were

one of the input sequences to be mutated to the other. Note that, as with all other

contrastive tasks, only mutant sequences derived from the same MSA and structure

(see Section 3.2.4 for details) are used for optimizing this objective.

3. The type of contacts broken upon mutation can be important for determining the

change to a protein’s structure, stability, and, by extension, fitness. For instance,

disrupting an alanine–serine contact by mutating the alanine to glycine is less likely

to drastically alter the protein structure than mutating to a tyrosine. To encourage

SPICE to include information like this in its learned embeddings, another contrastive

objective is included that pushes the model to encode the types of contacts broken

between two mutant proteins (again derived from the trRosetta dataset) in the

direction of the vector connecting them in embedding space. This is accomplished

by (1) calculating the global embedding vectors for a pair of mutant protein

sequences, (2) using the vector difference between the two global embedding vectors

to predict the distribution of the types of contacts broken when mutating one of the

input sequences to produce the other, and (3) minimizing the Kullback–Leibler

divergence (KL divergence) between the predicted distribution of broken contacts

82

and true distribution of broken contacts.j It is important to note that the distribution

of contacts broken changes depending on the direction of mutation—the contacts

broken moving from sequence 1 to sequence 2 are different than those broken when

moving from sequence 2 to sequence 1. To handle this asymmetry, steps two and

three of this objective are performed twice: once using the difference vector that

transforms global embedding 1 to global embedding 2 and again using the difference

vector that transforms global embedding 2 to global embedding 1, changing the target

distribution of broken contacts as appropriate.

4. Similarly important to the types of contacts broken upon mutation are those

maintained. Another contrastive training objective is thus employed that encourages

the model to encode the types of contacts maintained between two mutant proteins

in the direction of the vector connecting them in embedding space. This is

accomplished using the same strategy as in the previous objective, only now

predicting the distribution of contacts maintained rather than broken.

5. A final objective used by all SPICE model variations is a protein-specific global loss

focused on capturing the types of contacts in the global vectors. This objective

proceeds by (1) calculating the global embedding of a single mutant sequence derived

from the trRosetta dataset, (2) using that global embedding to predict the distribution

of the types of contacts in that protein, and (3) minimizing the KL divergence

between the predicted and true distributions. The motivation for this objective is to

encourage SPICE to place proteins with similar contact profiles near one another in

the learned global embedding space. Proteins with similar contact types should share

similar structures and generally be expected to perform similar functions, so this

objective serves as a proxy for encouraging the model to group proteins of similar

function near one another in the learned embedding space.

j KL divergence can be thought of as a measure of how well one distribution captures the information contained in another,

and so is a natural metric to use when comparing two distributions.

83

There are also a number of optional tasks that were employed to test slight variations of the

SPICE architecture. The optional tasks are all detailed below:

1. As mentioned in Section 3.2.3, an alternate SPICE architecture encodes proteins as

distributions in embedding space rather than points. This “variational SPICE”

employs the same objectives as regular SPICE but is trained using a protocol inspired

by that used to train variational autoencoders (VAEs). Specifically, during training,

a vector of means and log variances is learned that describes a multivariate normal

distribution. Global embeddings are then drawn from this distribution before being

used to optimize the objectives used to train the standard SPICE architecture. As with

VAEs, an additional KL divergence loss term is added that encourages distributions

learned to be similar to a predefined Gaussian prior.164 Throughout the work

presented in the rest of this chapter, the Gaussian prior always had a mean of zero but

the standard deviation was varied.

2. One final optional objective used during SPICE training—whether using the standard

or variational SPICE architectures—is a protein-specific objective where an

additional decoder model is added to SPICE to attempt to reconstruct the original

protein sequence from the global representation. This is only performed using

sequences from the UniRef50 dataset; it is not performed using mutant sequences

derived from the trRosetta dataset. This was the objective used by Detlefsen et al. in

their work showing that it can be beneficial to learn a global representation during

unsupervised pretraining.66 When included, it is done so to better enable comparison

between that work and the work presented in the remainder of this chapter.

84

Figure 3-2. The SPICE architecture and training scheme. A) The SPICE model architecture

and all possible training tasks. Note that, depending on the model variant, not all training

tasks are applied and some transformations within the model are skipped—this figure is

meant to depict all options. The core model consists of a six-layer transformer encoder

followed by a pooling layer. Optionally, a variational form of the pooling layer is treated as

a vector of means and log variances—in such a case, SPICE is referred to as “variational

SPICE.” Global losses for variational SPICE are calculated using samples from the learned

distributions; global losses for non-variational SPICE are calculated using the pooled layer.

In other words, resampling is only performed for variational SPICE. B) The SPICE training

procedure. SPICE is trained with both protein-specific and contrastive tasks. For contrastive

tasks (as depicted in this figure), pairs of sequences with known contacts are passed through

SPICE at the same time. Importantly, the model never directly sees the contacts; contrastive

losses are calculated using the number broken between the two proteins, however. Non-

contrastive tasks are also calculated to train SPICE to capture information relevant to

individual proteins in addition to capturing information important for comparing proteins.

85

3.3 Semi-Supervised Learning with SPICE

The previous section gave a theoretical overview of SPICE and presented general strategies

for training it. In this section, I present the results of experiments designed to test the

effectiveness of SPICE in semi-supervised MLPE.

3.3.1 Unsupervised Pretraining of SPICE Variants

It should be clear from Sections 3.2.3 and 3.2.5 that there are a number of possible variations

on the core SPICE architecture. Most notable are the differences between SPICE and

variational SPICE and whether the sequence reconstruction objective is included during

training. There are more subtle changes that can be made to the architecture as well, however,

that can be expected to have an effect on the utility of SPICE for semi-supervised MLPE.

For instance, the dimensionality of the learned global embedding can be tuned to balance the

descriptiveness and generalizability of the features learned during unsupervised pretraining.k

Likewise, when training variational SPICE the standard deviation of the Gaussian prior can

be modulated to encode how functionally similar proteins are expected to be a priori.l

To test the impact of the various design considerations of SPICE on its downstream

applicability, I trained nine different model instances following the general training

procedures detailed in Section 3.2.5. Three of these were non-variational SPICE instances

that differed in the encoding dimensionality tested (128 or 768) and whether or not the

reconstruction task was included; the others were all variational SPICE instances that

differed in the encoding dimensionality tested (again, 128 or 768) and prior standard

k If the dimensionality is high, then the model will have more flexibility in how it represents proteins, allowing it to learn

richer, more descriptive features, but perhaps limiting its downstream applicability to regions of sequence space not seen

during unsupervised pretraining. Conversely, if the dimensionality is low, then the model must learn more broadly

applicable features that, while perhaps not the most descriptive, may be better capable of generalizing to new regions of

sequence space.

l As described in detail in Section 3.2.2, the distance between proteins in the SPICE embedding space represents how

functionally similar they are expected to be. When using variational SPICE, proteins are embedded as distributions rather

than vectors, so the level of overlap between distributions can be thought of as representing the probability that two proteins

share the same function. The value of the standard deviation on the SPICE Gaussian prior can thus be intuitively thought

to encode how similar nearby proteins are expected to be to one another a priori: a low value encourages the model to learn

narrow distributions that overlap little with others and vice versa.

86

deviation (0.05, 0.1, 0.2, or 1). All variational SPICE model variants included the

reconstruction loss as an objective.

The sections that follow compare the effectiveness of SPICE encodings derived from the

nine different model instances. To clearly distinguish each model, I refer to them using a

four-component hyphen-delimited naming convention that clearly describes their different

designs. The first section of each name gives whether or not the model is a variational SPICE

instance: “Variational” is used for variational instances while “NoVariational” is used for the

others. The second section gives whether a reconstruction term was applied to the model:

“Reconstruction” indicates that a reconstruction term was used during training while

“NoReconstruction” indicates that one was not. The third section gives the embedding

dimensionality. The fourth section gives the prior standard deviation used for variational

models: “s005” means that the prior standard deviation was 0.05, “s01” means that it was

0.1, “s02” means that it was 0.2, and “s1” means that it was 1. The non-variational instances

do not consider a prior standard deviation during training, so the last section of the name can

be ignored for them.

3.3.2 SPICE Embeddings for Supervised Learning

Fair comparison of different semi-supervised MLPE approaches requires use of what are

known as “benchmark tasks.” Designed to reflect real-world MLPE applications, these tasks

most commonly consist of preset training data (which is used to train the ML model) and

testing data (which is used to evaluate the performance of the trained model) derived from

larger labeled datasets; critically, they provide standardized conditions for comparing newly

proposed semi-supervised models, training procedures, etc. To evaluate the effectiveness of

embeddings derived from SPICE, I gathered labeled datasets consisting of protein sequence-

fitness data, training indices, and testing indices needed for performing three benchmark

tasks. Two of these tasks—one to do with predicting fluorescence of green fluorescent

proteins (GFPs) and another with predicting protein stability—were derived from the TAPE

87

GitHub repository, while the third—to do with predicting the viability of adeno-associated

virus (AAV) capsid proteinsm—was derived from the FLIP GitHub repository.58,73,118,148,165

For each of the three collected benchmark tasks I tested three different predictive strategies

using SPICE embeddings derived from the various model instances described in Section

3.3.1. The motivation behind each of these strategies along with their implementation details

are in the list below:

1. The first strategy trained an unregularized linear model to map learned global

embeddings to fitness labels. As mentioned multiple times, the goal of SPICE is to

structure the learned representation space such that there is a simple relationship

between protein embeddings and protein fitness that can be readily used to inform

downstream supervised learning. Linear models are the simplest models that are

commonly used in the supervised stage of semi-supervised MLPE and so act as a

natural baseline model to include when testing the effectiveness of SPICE. Note that

the learned vector of mean and log variances was used as the embedding when

variational SPICE model instances were used for this strategy, not a global vector

sampled from the distribution defined by it.

2. Just because a linear model is simple does not necessarily mean that it would be ideal

for modeling a simple relationship between learned embeddings and fitness—simple

relationships can be nonlinear. For instance, a situation can be imagined where

proteins are no longer functional beyond a certain number of broken contacts from

any functional variant (e.g., due to those functional variants being marginally stable).

In the idealized SPICE embedding space, such a relationship would manifest as a

central island of functional sequences surrounded by a hypersphere of nonfunctional

ones, constituting a highly nonlinear, yet still simple relationship between learned

embedding space and fitness. Nonlinear relationships like these were accounted for

m The tasks used from the TAPE repository are those presented in its accompanying publication. The task from the FLIP

repository is, by contrast, from a pre-publication draft of the repository: specifically, “natural task 1” from commit

“6737e79.”

88

by the second predictive strategy, which was applied to the variational SPICE

instances. Specifically, for each test set member, a score correlated with fitness was

calculated as a weighted sum of training set fitnesses where, for each training set

member, the weight applied was proportional to the degree of overlap between its

learned distribution and the distribution of the test set member as measured by the

Bhattacharyya coefficient. Importantly, this “from-distribution” prediction strategy

has no learnable parameters, making it as simple a model as possible. For it to be

effective, the determinants of fitness must thus be explicitly represented in the SPICE

embedding space, with proteins with similar fitness grouped near one another.

3. The final predictive strategy was a simple voting ensemble where the ranks of each

test set member predicted by the first two strategies were averaged to build a

composite score. As with most ensembling strategies, the idea behind this approach

was to balance the relative strengths and weaknesses of the component models. For

instance, when the linear and from-distribution approaches agree, we can be more

confident in the predictions—this confidence is reflected in both models assigning a

high rank and so the ensemble average returning a high rank. By contrast, when the

two component models disagree, the average rank returned by the ensemble will fall

between them, reflecting lower confidence in either of the results.

The results from applying these predictive strategies to the three benchmark tasks are shown

in Figure 3-3 – Figure 3-5, where each column in these figures corresponds to the results

from a different SPICE variant. The y-axes of these plots show predictive performance as

measured by the Spearman rank correlation coefficient (Spearman ρ) calculated between

predicted and true values of the test data; the x-axes show the degree of unsupervised

pretraining, with results at the 0th epoch calculated using embeddings derived from a

randomly initialized model and results at later epochs calculated using embeddings from

models trained on subsequently more data. Also present in these figures are two baselines

calculated using the BERT-style ESM model making up the core of the SPICE architecture:

the black horizontal line in each figure provides benchmarking results using the published

89

form of this model (i.e. using the weights learned in the work of Rives et al.);55 the additional

columns present in Figure 3-3 and Figure 3-4 provide benchmarking results using an ESM

model retrained with a masked-token prediction objective on the exact UniRef50 data used

to train SPICE. Both ESM baselines were calculated by training a linear model to relate

mean-pooled learned embeddings to protein fitness, the current most common practice for

semi-supervised MLPE. Because the ESM model provides the core of SPICE and was

originally trained with a masked-token prediction objective, it acts as an excellent state-of-

the-art baseline against which SPICE can be compared.

From Figure 3-3 – Figure 3-5, it is clear that most of the design considerations discussed in

the previous section appear to have minimal if any impact on the effectiveness of SPICE

embeddings, at least on the benchmark tasks tested here. Specifically, use of variational

SPICE versus non-variational SPICE, the choice of the standard deviation for the Gaussian

prior of variational SPICE, and whether or not a reconstruction term was used all had no

noticeable effect on predictive performance. Only the embedding dimension appeared to

have some, albeit minor, impact, with models trained using a larger embedding dimension

consistently outcompeting otherwise equivalent ones trained with a smaller embedding

dimension.

Counter to expectation, and more striking than any of the intended observations, Figure 3-3

– Figure 3-5 also show that there generally appears to be minimal correlation between the

extent of unsupervised pretraining and the effectiveness of learned embeddings in

downstream tasks, regardless of predictive strategy and embedding-generating model

employed. For instance, using the GFP dataset (Figure 3-3), increased pretraining led to no

significant gains in embedding effectiveness over the randomly initialized embeddings

regardless of model or predictive strategy used. Using the AAV dataset (Figure 3-5),

increased pretraining led to marginal improvements at best, but could actually worsen

performance for some SPICE model instances. The only exception came from using the

stability dataset (Figure 3-4), where even though increased pretraining led to inconsistent and

erratic results using the linear predictive strategy, it did in fact lead to continuously improving

90

performance using the from-distribution predictive strategy. Barring this single exception,

however, these results suggest that neither SPICE nor ESM are very effective at building

embeddings useful for fitness prediction tasks. Notably, in all cases, the retrained ESM model

and at least one SPICE model achieved performance that matched or exceeded both (1)

previously reported results using the same benchmark tasks but different embedding-

generating models and (2) the results that I calculated using embeddings derived from the

published ESM model (the black horizontal line in each figure).58 Combined with recent

work from another team showing a similar result,161 this strongly indicates that the

unexpected relationship between pretraining and predictive performance is not a result of an

error made during model training, but instead a genuine (yet surprising) feature of

unsupervised pretraining in semi-supervised MLPE.

91

 F
ig

u
re

 3
-3

. P
er

fo
rm

an
ce

 o
f

th
re

e
d
o
w

n
st

re
am

 p
re

d
ic

ti
o
n
 s

tr
at

eg
ie

s
o
n
 t

h
e

G
F

P
 d

at
as

et
 a

s
a

fu
n
ct

io
n
 o

f
th

e
n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s

(i
.e

.,
 t

h
e

am
o
u
n
t

o
f

u
n
su

p
er

v
is

ed
 p

re
tr

ai
n
in

g
).

 T
h
e

y
-a

x
is

 i
n
 e

ac
h
 p

lo
t

is
 S

p
ea

rm
an

 ρ
 a

n
d
 t

h
e

x
-a

x
is

 i
s

th
e

n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s.

R
es

u
lt

s
fo

r
si

x
 d

if
fe

re
n
t

S
P

IC
E

 v
ar

ia
n
ts

 a
n
d
 b

o
th

 a
 p

re
tr

ai
n
ed

 a
n
d
 r

et
ra

in
ed

 E
S

M
 c

o
n
tr

o
l

ar
e

sh
o
w

n
.
T

h
e

re
tr

ai
n
ed

 b
as

el
in

e
is

 s
h
o
w

n
 i
n

th
e

le
ft

m
o
st

 s
u
b
p
lo

t
w

h
il

e
th

e
p
re

tr
ai

n
ed

 b
as

el
in

e
is

 s
h
o
w

n
 a

s
a

b
la

ck
 l

in
e.

 N
o
te

 t
h
at

 t
h

e
fr

o
m

-d
is

tr
ib

u
ti

o
n
 (

b
lu

e)
 a

n
d
 e

n
se

m
b
le

 (
g
re

en
)

ca
lc

u
la

ti
o
n
s

ar
e

o
n
ly

 r
el

ev
an

t
to

 t
h
e

v
ar

ia
ti

o
n
al

 S
P

IC
E

 m
o
d
el

s.
 T

h
e

li
n
es

 c
o
rr

es
p
o
n
d
in

g
 t
o
 t
h
es

e
p
re

d
ic

ti
o
n
 s

tr
at

eg
ie

s
in

 n
o
n
-v

ar
ia

ti
o
n
al

S
P

IC
E

 p
lo

ts
 c

an
 b

e
ig

n
o
re

d
.

 F
ig

u
re

 3
-4

. P
er

fo
rm

an
ce

 o
f

th
re

e
d
o
w

n
st

re
am

 p
re

d
ic

ti
o
n
 s

tr
at

eg
ie

s
o
n
 t
h
e

st
ab

il
it

y
 d

at
as

et
 a

s
a

fu
n
ct

io
n
 o

f
th

e
n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s

(i
.e

.,
 t

h
e

am
o
u
n
t

o
f

u
n
su

p
er

v
is

ed
 p

re
tr

ai
n
in

g
).

 T
h
e

y
-a

x
is

 i
n
 e

ac
h
 p

lo
t

is
 S

p
ea

rm
an

 ρ
 a

n
d
 t

h
e

x
-a

x
is

 i
s

th
e

n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s.

R
es

u
lt

s
fo

r
n
in

e
d
if

fe
re

n
t

S
P

IC
E

 v
ar

ia
n
ts

 a
n
d
 b

o
th

 a
 p

re
tr

ai
n
ed

 a
n
d
 r

et
ra

in
ed

 E
S

M
 c

o
n
tr

o
l

ar
e

sh
o
w

n
.
T

h
e

re
tr

ai
n
ed

 b
as

el
in

e
is

 s
h
o
w

n

in
 t
h
e

le
ft

m
o
st

 s
u
b
p
lo

t
w

h
il

e
th

e
p
re

tr
ai

n
ed

 b
as

el
in

e
is

 s
h
o
w

n
 a

s
a

b
la

ck
 l
in

e.
 N

o
te

 t
h
at

 t
h
e

fr
o
m

-d
is

tr
ib

u
ti

o
n
 (

b
lu

e)
 a

n
d
 e

n
se

m
b
le

 (
g
re

en
)

ca
lc

u
la

ti
o
n
s

ar
e

o
n
ly

 r
el

ev
an

t
to

 t
h
e

v
ar

ia
ti

o
n
al

 S
P

IC
E

 m
o
d
el

s.
 T

h
e

li
n
es

 c
o
rr

es
p
o
n
d
in

g
 t
o
 t
h
es

e
p
re

d
ic

ti
o
n
 s

tr
at

eg
ie

s
in

 n
o
n
-v

ar
ia

ti
o
n
al

S
P

IC
E

 p
lo

ts
 c

an
 b

e
ig

n
o
re

d
.

92

 F
ig

u
re

 3
-5

.
P

er
fo

rm
an

ce
 o

f
th

re
e

d
o
w

n
st

re
am

 p
re

d
ic

ti
o
n
 s

tr
at

eg
ie

s
o
n
 t

h
e

A
A

V
 d

at
as

et
 a

s
a

fu
n
ct

io
n
 o

f
th

e
n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s

(i
.e

.,
 t

h
e

am
o
u
n
t

o
f

u
n
su

p
er

v
is

ed
 p

re
tr

ai
n
in

g
).

 T
h
e

y
-a

x
is

 i
n
 e

ac
h
 p

lo
t

is
 S

p
ea

rm
an

 ρ
 a

n
d
 t

h
e

x
-a

x
is

 i
s

th
e

n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s.

R
es

u
lt

s
fo

r
n
in

e
d
if

fe
re

n
t

S
P

IC
E

 v
ar

ia
n
ts

 a
n
d
 a

 p
re

tr
ai

n
ed

 E
S

M
 c

o
n
tr

o
l

ar
e

sh
o
w

n
.

T
h
e

p
re

tr
ai

n
ed

 b
as

el
in

e
is

 s
h
o
w

n
 a

s
a

b
la

ck
 l

in
e.

N
o
te

 t
h
at

 t
h
e

fr
o
m

-d
is

tr
ib

u
ti

o
n
 (

b
lu

e)
 a

n
d
 e

n
se

m
b
le

 (
g
re

en
)

ca
lc

u
la

ti
o
n
s

ar
e

o
n
ly

 r
el

ev
an

t
to

 t
h
e

v
ar

ia
ti

o
n
al

 S
P

IC
E

 m
o
d
el

s.
 T

h
e

li
n
es

co
rr

es
p
o
n
d
in

g
 t

o
 t

h
es

e
p
re

d
ic

ti
o
n
 s

tr
at

eg
ie

s
in

 n
o
n
-v

ar
ia

ti
o
n
al

 S
P

IC
E

 p
lo

ts
 c

an
 b

e
ig

n
o
re

d
.

93

It must be noted that semi-supervised learning is expected to be most effective in the low-N

case where there are limited labeled data available to train a downstream supervised model.

In each of the benchmark tests performed to build Figure 3-3 – Figure 3-5, however, there

were abundant labeled training data available for training downstream supervised models.

To be sure that the observation that unsupervised pretraining was largely ineffective was not

simply a result of using a large amount of training data for the supervised stage of the

workflow, I performed additional tests where I subsampled the training split of the AAV

benchmark to evaluate the effectiveness of SPICE and ESM embeddings. Specifically, I

drew 200 training sets each of 96, 384, and 1536 datapoints; for each of these training sets, I

then tested the effectiveness of learned embeddings derived from the nine different SPICE

model variants at different stages of pretraining, again using the three predictive strategies

described earlier in this section. The results are shown in Figure 3-6 – Figure 3-8 as boxplots

over the number of checkpoints rather than the line plots that were used in Figure 3-3 – Figure

3-5. There is little difference between the results in this low-N case compared to the results

derived from training downstream supervised models on the full dataset, with the

effectiveness of embeddings derived from most SPICE variants seeing minimal

improvement with additional pretraining.

Of course, all the above results also demonstrate that embeddings derived from SPICE are at

best as useful for semi-supervised fitness prediction as those derived from ESM. There may

still be promise in approaches like SPICE, however. As noted earlier, the from-distribution

prediction strategy on the stability benchmark task provided a single exception to the general

observation that increased pretraining did not consistently improve embedding effectiveness,

with the accuracy of the predictions increasing considerably and smoothly with increased

pretraining. Even though the from-distribution predictions were not as effective on the

stability task as other predictive strategies, the fact that their accuracy consistently improved

with increased pretraining is noteworthy, as this suggests a direct relationship between the

extent to which unsupervised pretraining objectives are met and the effectiveness of the

embeddings learned. This observation is particularly interesting when considering that the

from-distribution prediction strategy has no learnable parameters, so any information used

94

to make predictions is derived solely from information contained in the learned embedding

space and the fitness labels. Of course, of the three benchmark datasets tested, we might

expect that the embedding space learned by SPICE would be most informative for the

stability task: contact disruption was chosen to be modeled by SPICE because it can serve as

a heuristic for stability, so it would be reasonable to assume that an embedding space built to

represent changes in contact disruption upon mutation would also represent changes in

stability upon mutation. This is not so much the point, however; rather, it is that these results

suggest that models and unsupervised pretraining objectives designed to explicitly represent

determinants of fitness combined with predictive strategies explicitly designed to take

advantage of a resultant learned representation can indeed lead to predictable results in semi-

supervised MLPE, unlike existing approaches. Thus, even though SPICE may not provide a

universal solution for the unsupervised stage of semi-supervised MLPE, and even though the

solution that it provides does not surpass existing strategies, it could provide a template from

which more effective and predictable semi-supervised MLPE strategies can be developed.

That being said, this is a single example, and far more investigation than the exploratory

studies performed here would need to be performed to properly test this hypothesis.

95

 F
ig

u
re

 3
-6

. R
es

u
lt

s
co

m
p
ar

in
g
 d

o
w

n
st

re
am

 s
u
p
er

v
is

ed
 p

ro
ce

ss
es

 u
si

n
g
 e

it
h
er

 S
P

IC
E

 e
m

b
ed

d
in

g
s

o
r

E
S

M
 e

m
b
ed

d
in

g
s

w
h
en

 9
6
 t
ra

in
in

g

ex
am

p
le

s
ar

e
u
se

d
 f

ro
m

 t
h
e

A
A

V
 d

at
as

et
.

T
h
e

y
-a

x
is

 i
s

S
p
ea

rm
an

 ρ
 a

n
d
 t

h
e

x
-a

x
is

 i
s

th
e

n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s.
 R

es
u
lt

s
fo

r
n
in

e

v
ar

ia
ti

o
n
s

o
n
 S

P
IC

E
 a

re
 p

re
se

n
te

d
.

T
h
e

o
n
ly

 E
S

M
 r

es
u
lt

 p
re

se
n
te

d
 i

s
fr

o
m

 t
h
e

si
x
-l

ay
er

 p
re

tr
ai

n
ed

 m
o
d
el

 p
ro

v
id

ed
 b

y
 t

h
e

E
S

M

re
p
o
si

to
ry

.
T

h
e

sa
m

e
in

fo
rm

at
io

n
 a

s
in

 F
ig

u
re

 3
-3

 –
 F

ig
u
re

 3
-5

 i
s

p
re

se
n
te

d
 h

er
e;

 o
n
ly

,
ra

th
er

 t
h
an

 s
h
o
w

in
g
 t

h
e

“
fr

o
m

-d
is

tr
ib

u
ti

o
n
,”

“
li

n
ea

r,
”

 a
n
d
 “

en
se

m
b
le

”
 p

re
d
ic

ti
o
n
s

o
n
 t

h
e

sa
m

e
p
lo

t,
 t

h
ey

 a
re

 n
o
w

 e
ac

h
 p

re
se

n
te

d
 i

n
 a

 s
ep

ar
at

e
ro

w
.
T

h
e

fi
rs

t
ro

w
 o

f
p
lo

ts
 g

iv
es

th
e

re
su

lt
s

fr
o
m

-d
is

tr
ib

u
ti

o
n
 p

re
d
ic

ti
o
n
s;

 t
h
e

se
co

n
d
 r

o
w

 i
s

fo
r

th
e

li
n
ea

r
m

o
d
el

;
th

e
th

ir
d
 r

o
w

 i
s

th
e

en
se

m
b
le

.
N

o
te

 t
h
at

 t
h
e

p
lo

ts
 i
n
 t
h

e

fi
rs

t
co

lu
m

n
 a

re
 d

er
iv

ed
 f

ro
m

 a
 l
in

ea
r

m
o
d
el

 a
p
p
li

ed
 t
o
 m

ea
n

-p
o
o
le

d
 e

m
b
ed

d
in

g
s

fr
o
m

 t
h
e

p
re

tr
ai

n
ed

 E
S

M
 m

o
d
el

 f
ro

m
 t
h
e

E
S

M
 G

it
H

u
b

re
p
o
si

to
ry

—
th

es
e

re
su

lt
s

ar
e

o
n
ly

 r
ea

ll
y
 c

o
m

p
ar

ab
le

 t
o
 S

P
IC

E
 r

es
u
lt

s
p
re

se
n
te

d
 i

n
 t

h
e

se
co

n
d
 r

o
w

.
D

ep
en

d
in

g
 o

n
 t

h
e

sp
ec

if
ic

 S
P

IC
E

m
o
d
el

 v
ar

ia
n
t

te
st

ed
,
re

su
lt

s
fr

o
m

 e
m

b
ed

d
in

g
s

d
er

iv
ed

 f
ro

m
 E

S
M

 a
re

 c
o
m

p
ar

ab
le

 o
r

su
p
er

io
r

to
 t

h
o
se

 d
er

iv
ed

 f
ro

m
 S

P
IC

E
.
N

o
te

 a
g
ai

n

th
at

,
ju

st
 l

ik
e

in
 F

ig
u
re

 3
-3

 –
 F

ig
u
re

 3
-5

,
th

e
fr

o
m

-d
is

tr
ib

u
ti

o
n
 (

fi
rs

t
ro

w
)

an
d
 e

n
se

m
b
le

 (
la

st
 r

o
w

)
ca

lc
u
la

ti
o
n
s

ar
e

o
n
ly

 r
el

ev
an

t
to

 t
h
e

v
ar

ia
ti

o
n
al

 S
P

IC
E

 m
o
d
el

s.

96

 F
ig

u
re

 3
-7

.
R

es
u
lt

s
co

m
p
ar

in
g
 d

o
w

n
st

re
am

 s
u
p
er

v
is

ed
 p

ro
ce

ss
es

 u
si

n
g
 e

it
h
er

 S
P

IC
E

 e
m

b
ed

d
in

g
s

o
r

E
S

M
 e

m
b
ed

d
in

g
s

w
h
en

 3
8
4

tr
ai

n
in

g
 e

x
am

p
le

s
ar

e
u
se

d
 f

ro
m

 t
h
e

A
A

V
 d

at
as

et
.

T
h
e

y
-a

x
is

 i
s

S
p
ea

rm
an

 ρ
 a

n
d
 t

h
e

x
-a

x
is

 i
s

th
e

n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s.
 R

es
u
lt

s

fo
r

n
in

e
v
ar

ia
ti

o
n
s

o
n
 S

P
IC

E
 a

re
 p

re
se

n
te

d
.
T

h
e

o
n
ly

 E
S

M
 r

es
u
lt

 p
re

se
n
te

d
 i
s

fr
o
m

 t
h
e

si
x

-l
ay

er
 p

re
tr

ai
n
ed

 m
o
d
el

 p
ro

v
id

ed
 b

y
 t
h
e

E
S

M

re
p
o
si

to
ry

.
T

h
e

sa
m

e
in

fo
rm

at
io

n
 a

s
in

 F
ig

u
re

 3
-3

 –
 F

ig
u
re

 3
-5

 i
s

p
re

se
n
te

d
 h

er
e;

 o
n
ly

,
ra

th
er

 t
h
an

 s
h
o
w

in
g
 t

h
e

“
fr

o
m

-d
is

tr
ib

u
ti

o
n
,”

“
li

n
ea

r,
”

 a
n
d
 “

en
se

m
b
le

”
 p

re
d
ic

ti
o
n
s

o
n
 t

h
e

sa
m

e
p
lo

t,
 t

h
ey

 a
re

 n
o
w

 e
ac

h
 p

re
se

n
te

d
 i

n
 a

 s
ep

ar
at

e
ro

w
.
T

h
e

fi
rs

t
ro

w
 o

f
p
lo

ts
 g

iv
es

th
e

re
su

lt
s

fr
o
m

-d
is

tr
ib

u
ti

o
n
 p

re
d
ic

ti
o
n
s;

 t
h
e

se
co

n
d
 r

o
w

 i
s

fo
r

th
e

li
n
ea

r
m

o
d
el

;
th

e
th

ir
d
 r

o
w

 i
s

th
e

en
se

m
b
le

.
N

o
te

 t
h
at

 t
h
e

p
lo

ts
 i
n
 t
h

e

fi
rs

t
co

lu
m

n
 a

re
 d

er
iv

ed
 f

ro
m

 a
 l
in

ea
r

m
o
d
el

 a
p
p
li

ed
 t
o
 m

ea
n

-p
o
o
le

d
 e

m
b
ed

d
in

g
s

fr
o
m

 t
h
e

p
re

tr
ai

n
ed

 E
S

M
 m

o
d
el

 f
ro

m
 t
h
e

E
S

M
 G

it
H

u
b

re
p
o
si

to
ry

—
th

es
e

re
su

lt
s

ar
e

o
n
ly

 r
ea

ll
y
 c

o
m

p
ar

ab
le

 t
o
 S

P
IC

E
 r

es
u
lt

s
p
re

se
n
te

d
 i

n
 t

h
e

se
co

n
d
 r

o
w

.
D

ep
en

d
in

g
 o

n
 t

h
e

sp
ec

if
ic

 S
P

IC
E

m
o
d
el

 v
ar

ia
n
t

te
st

ed
,
re

su
lt

s
fr

o
m

 e
m

b
ed

d
in

g
s

d
er

iv
ed

 f
ro

m
 E

S
M

 a
re

 c
o
m

p
ar

ab
le

 o
r

su
p
er

io
r

to
 t

h
o
se

 d
er

iv
ed

 f
ro

m
 S

P
IC

E
.
N

o
te

 a
g
ai

n

th
at

,
ju

st
 l

ik
e

in
 F

ig
u
re

 3
-3

 –
 F

ig
u
re

 3
-5

,
th

e
fr

o
m

-d
is

tr
ib

u
ti

o
n
 (

fi
rs

t
ro

w
)

an
d
 e

n
se

m
b
le

 (
la

st
 r

o
w

)
ca

lc
u
la

ti
o
n
s

ar
e

o
n
ly

 r
el

ev
an

t
to

 t
h
e

v
ar

ia
ti

o
n
al

 S
P

IC
E

 m
o
d
el

s.

97

 F
ig

u
re

 3
-8

.
R

es
u
lt

s
co

m
p
ar

in
g
 d

o
w

n
st

re
am

 s
u
p
er

v
is

ed
 p

ro
ce

ss
es

 u
si

n
g
 e

it
h
er

 S
P

IC
E

 e
m

b
ed

d
in

g
s

o
r

E
S

M
 e

m
b
ed

d
in

g
s

w
h
en

 1
5
3
6

tr
ai

n
in

g
 e

x
am

p
le

s
ar

e
u
se

d
 f

ro
m

 t
h
e

A
A

V
 d

at
as

et
.

T
h
e

y
-a

x
is

 i
s

S
p
ea

rm
an

 ρ
 a

n
d
 t

h
e

x
-a

x
is

 i
s

th
e

n
u
m

b
er

 o
f

tr
ai

n
in

g
 e

p
o
ch

s.
 R

es
u
lt

s

fo
r

n
in

e
v
ar

ia
ti

o
n
s

o
n
 S

P
IC

E
 a

re
 p

re
se

n
te

d
.
T

h
e

o
n
ly

 E
S

M
 r

es
u
lt

 p
re

se
n
te

d
 i
s

fr
o
m

 t
h
e

si
x

-l
ay

er
 p

re
tr

ai
n
ed

 m
o
d
el

 p
ro

v
id

ed
 b

y
 t
h
e

E
S

M

re
p
o
si

to
ry

.
T

h
e

sa
m

e
in

fo
rm

at
io

n
 a

s
in

 F
ig

u
re

 3
-3

 –
 F

ig
u
re

 3
-5

 i
s

p
re

se
n
te

d
 h

er
e;

 o
n
ly

,
ra

th
er

 t
h

an
 s

h
o
w

in
g
 t

h
e

“
fr

o
m

-d
is

tr
ib

u
ti

o
n
,”

“
li

n
ea

r,
”

 a
n
d
 “

en
se

m
b
le

”
 p

re
d
ic

ti
o
n
s

o
n
 t

h
e

sa
m

e
p
lo

t,
 t

h
ey

 a
re

 n
o
w

 e
ac

h
 p

re
se

n
te

d
 i

n
 a

 s
ep

ar
at

e
ro

w
.
T

h
e

fi
rs

t
ro

w
 o

f
p
lo

ts
 g

iv
es

th
e

re
su

lt
s

fr
o
m

-d
is

tr
ib

u
ti

o
n
 p

re
d
ic

ti
o
n
s;

 t
h
e

se
co

n
d
 r

o
w

 i
s

fo
r

th
e

li
n
ea

r
m

o
d
el

;
th

e
th

ir
d
 r

o
w

 i
s

th
e

en
se

m
b
le

.
N

o
te

 t
h
at

 t
h
e

p
lo

ts
 i
n
 t
h

e

fi
rs

t
co

lu
m

n
 a

re
 d

er
iv

ed
 f

ro
m

 a
 l
in

ea
r

m
o
d
el

 a
p
p
li

ed
 t
o
 m

ea
n

-p
o
o
le

d
 e

m
b
ed

d
in

g
s

fr
o
m

 t
h
e

p
re

tr
ai

n
ed

 E
S

M
 m

o
d
el

 f
ro

m
 t
h
e

E
S

M
 G

it
H

u
b

re
p
o
si

to
ry

—
th

es
e

re
su

lt
s

ar
e

o
n
ly

 r
ea

ll
y
 c

o
m

p
ar

ab
le

 t
o
 S

P
IC

E
 r

es
u
lt

s
p
re

se
n
te

d
 i

n
 t

h
e

se
co

n
d
 r

o
w

.
D

ep
en

d
in

g
 o

n
 t

h
e

sp
ec

if
ic

 S
P

IC
E

m
o
d
el

 v
ar

ia
n
t

te
st

ed
,
re

su
lt

s
fr

o
m

 e
m

b
ed

d
in

g
s

d
er

iv
ed

 f
ro

m
 E

S
M

 a
re

 c
o
m

p
ar

ab
le

 o
r

su
p
er

io
r

to
 t

h
o
se

 d
er

iv
ed

 f
ro

m
 S

P
IC

E
.
N

o
te

 a
g
ai

n

th
at

,
ju

st
 l

ik
e

in
 F

ig
u
re

 3
-3

 –
 F

ig
u
re

 3
-5

,
th

e
fr

o
m

-d
is

tr
ib

u
ti

o
n
 (

fi
rs

t
ro

w
)

an
d
 e

n
se

m
b
le

 (
la

st
 r

o
w

)
ca

lc
u
la

ti
o
n

s
ar

e
o
n
ly

 r
el

ev
an

t
to

 t
h
e

v
ar

ia
ti

o
n
al

 S
P

IC
E

 m
o
d
el

s.

98

3.3.3 Active Learning with Gaussian Processes and SPICE

If applied in the laboratory, the predictive strategies discussed in the previous section would

have required only two rounds of data collection: one to gather training data and another to

evaluate predictions. Because every round of data collection will typically add multiple days

(if not weeks) of laboratory time to an engineering endeavor, MLPE strategies like these that

minimize the number of data collection rounds tend to be the most practically applicable.

That said, there can be an advantage to adding more iterations of model training and

evaluation to the engineering pipeline, particularly in situations where gathering

experimental data is extremely expensive or the sequence space to be evaluated is otherwise

large relative to the availability of labeled training data. Such approaches are typically

referred to as “active learning,” as the model used to guide exploration of sequence space is

updated after each round of experimental data collection. When used in MLPE, the goal of

active learning is to find some optimal protein in as few steps as possible.

In this section, I investigate the effectiveness of embeddings derived from SPICE and ESM

for active learning, focusing in particular on their utility for Gaussian process-based

navigation of protein sequence space. A Gaussian process (GP) is a distribution over

functions defined by a multivariate normal distribution. At an intuitive level, the goal when

training a GP is to identify the most probable distribution of functions that explains the

observed training data; this can then be used to predict a distribution of possible values for

previously unseen samples. Importantly, because predictions are returned as distributions,

they provide an inherent sense of model confidence, with broader predicted distributions

corresponding to less certain predictions and vice versa. Predictions made by GPs are thus

extremely useful for active learning as they can be used to identify both (1) where the model

expects optimal samples to reside and (2) where additional training data should be gathered

to improve model predictive performance. In other words, at each iteration, GPs can be used

to make an informed decision about what data to collect next.

To begin the learning process for a GP, an initial distribution of functions—a prior

distribution—must be defined that informs the types of functions that can be learned; during

99

training, the distribution of functions defined by this prior is narrowed to one that is most

probable given observed data. Importantly, this prior is also a GP and so is a multivariate

normal distribution defined entirely by a mean and a covariance matrix. The mean defines

the most likely function value at any given point prior to seeing any data while the covariance

matrix defines the pairwise relationship between any pair of points, in turn defining the

characteristics of the functions described by the GP. In practice, the mean is typically

assumed to be zero and the covariance matrix is calculated from input data using what is

known as a kernel function.n Simply put, a kernel function defines the degree of influence

two points in the input space have on one another; this influence is then reflected in the

calculated covariance matrix which, as a result, determines the shape of the functions

described by the GP. While there are many options for kernel functions, most assume that

points close to one another in the input space have the greatest influence on one another—

that is, they assume that points close in space will have similar labels. Because of this

assumption, GPs can be expected to perform best on explicitly informative embedding spaces

where points with similar labels are expected to be near one another.

Because SPICE was designed to explicitly represent determinants of protein fitness in its

embedding space, the embeddings produced from it might be expected to be particularly

amenable to active learning with GPs. To test this hypothesis, I gathered several datasets

spanning various protein activities73,123,148,152,165–169 then simulated GP-based active learning

on each dataset using either SPICE embeddings, mean-pooled ESM embeddings, or one-hot

encoding to represent protein sequences (and so define the layout of the input space). For

each of these active learning experiments, I started from the parent (unmutated) protein with

its associated fitness value; using this single point, I trained a GP and used the resultant model

n Before training a GP, the first step is typically to center and scale the labels of the input training data such that their mean

value is 0 and their standard deviation is 1. This sets up the problem such that the mean of the GP can be set to 0 as it is

now, by definition, the expected (i.e., average) value across all points.

100

to select the next protein to evaluate using the upper-confidence bound (UCB) algorithm.157,o

I iteratively retrained the model and used it to select the next point for 1000 rounds or until

the protein variant with the highest fitness in the dataset had been identified. Each active

learning experiment was repeated using eleven different kernel functions.

The results of the active learning experiments are presented below in Figure 3-9. Importantly,

only the results from the best performing kernel for each dataset and encoding scheme are

shown, where the best performing kernel is defined as the one that led to the collection of

datapoints with the highest cumulative mean fitness upon completion of the experiment.

While, in practice, it would be difficult to determine the best possible kernel for an encoding

or dataset, here the goal is only to compare the potential of different encoding schemes for

active learning with Gaussian processes. Thus, manually choosing the best-performing

kernel is appropriate.

As in the previous section, the results here show no clear advantage of any encoding strategy

over the others. Indeed, the best-performing encoding seems to depend strongly on the

dataset tested. Strikingly, in many cases, one-hot encoding outperforms both semi-supervised

approaches, again raising questions over the efficacy of existing unsupervised pretraining

strategies. One-hot encoding will order proteins in the encoding space simply by their

Hamming distance from one another (i.e., the number of mutations separating them). While

there will certainly be a correlation between Hamming distance and protein fitness (generally

speaking, proteins are increasingly less likely to share fitness as they are separated by more

mutations), the strength of the correlation will depend on the location of mutations in the

protein structure. For instance, single mutations to the surface of a protein will likely have

minimal effect on fitness while single mutations to an active site can drastically alter it; the

degree of correlation will thus be heavily context dependent. Extending this logic, it would

o The upper confidence bound (UCB) algorithm provides a principled way to balance exploration (i.e., gathering data from

previously unexplored regions of the input space to improve model performance) and exploitation (i.e., gathering data from

regions predicted to optimize the target objective) in GP-based active learning. The algorithm chooses the point that satisfies

 x 𝜇 𝑥 + 𝛽𝜎 𝑥 as the next to sample, where 𝑥 is a candidate point, 𝜇 is the mean of the distribution predicted by

the GP, 𝜎 is the standard deviation predicted by the GP, and 𝛽 is a scaling factor for 𝜎 that sets the balance between

exploration and exploitation. For the work in this chapter, I used 𝛽 when employing the UCB algorithm.

101

be reasonable to assume that models like SPICE that explicitly capture this context in their

embedding space would be more effective for GP-based active learning. Unfortunately, this

is not what is seen here. Instead, these results show that both the SPICE and ESM embedding

spaces are no more informative for GP-based active learning than one-hot encoding.

102

103

104

Figure 3-9. The cumulative max (left column) and mean (right column) achieved by the best

possible kernel during 1000 rounds of active learning for four different encodings across nine

different datasets. Orange and blue lines correspond to SPICE variants (both with and

without the reconstruction loss added on), red lines correspond to one-hot encoding, and

green lines correspond to encoding using ESM. The shaded grey area gives confidence

intervals (2.5%, 25%, 50%, 75%, and 97.5%) for the same summary metrics had sampling

been performed randomly. Each row in the plot corresponds to active learning results on a

different dataset. In general, it is difficult to claim if any one embedding outperformed the

others. Note that the last hyphen-delimited section of the SPICE names can be ignored—it

only provides information about how long the model was trained during unsupervised

pretraining.

3.4 Conclusions for Chapter 3

This project was designed to explore the potential utility of explicitly informative learned

embeddings for semi-supervised protein fitness prediction. In general, I found that

embeddings derived from my explicitly informative model—SPICE—provided no

advantage over embeddings derived from existing state-of-the-art models across a number

of different datasets and two different engineering strategies. While these conclusions were

disappointing, the experiments performed to arrive at them also further reinforced an

increasingly recognized trend: that existing unsupervised pretraining strategies build learned

embedding spaces that offer little if any advantage over uninformative random or one-hot

encodings for downstream supervised protein fitness prediction.33,62,63,65

In Section 3.3.2, I plotted the effectiveness of learned embeddings as a function of the level

of pretraining, finding that increased unsupervised pretraining tended to have at best

minimal, but often no, unpredictable, or even detrimental impact on the effectiveness of

learned embeddings when applied to downstream supervised tasks. As far as I am aware, no

one had published plots of this type before I performed this study; however, since then,

another group has published similar results showing that, specifically for fitness prediction

tasks, unsupervised pretraining appears to have limited if not a detrimental effect on the

quality of learned embeddings.161 The one exception to this trend in my work was the from-

distribution predictions using variational SPICE embeddings on the stability benchmarking

dataset, where increased pretraining led to a consistent improvement in downstream

supervised performance. The determinants of stability should be explicitly represented in the

105

SPICE embedding space and the from-distribution prediction strategy was designed to take

advantage of such organization. There may thus be value in further investigating strategies

to develop both (1) explicitly informative embedding spaces and (2) downstream predictive

strategies specifically designed to use them. That said, this conclusion is based off a single

result, and the general ineffectiveness of SPICE embeddings when applied to other datasets

in Section 3.3.2 and the active learning campaigns of Section 3.3.3 should perhaps temper

such optimism.

It is important to note that the conclusions made in this chapter are with respect to semi-

supervised fitness prediction only. The effectiveness of learned embeddings for applications

such as structural prediction or remote homology detection appear to improve with additional

pretraining, and there have been a number of successful applications of semi-supervised

learning to these and related tasks.92–98,161 Additionally, the unsupervised pretraining stage

clearly extracts useful information from unlabeled data—zero-shot prediction (a strategy

where predictions are made using models trained only on unlabeled data) using models like

ESM would be impossible if this were not the case.33,67,170 The major challenge in semi-

supervised protein fitness prediction appears to remain, then, exactly how to best transfer the

information learned during the unsupervised pretraining stage into the downstream

supervised learning stage. Perhaps the most effective way to do this is to move away from

embeddings entirely, instead using strategies like those proposed by Hsu et al. where zero-

shot predictions made by unsupervised models are directly used to represent protein

sequences.63 That said, the effectiveness of learned embeddings in so many other biological

tasks suggests that there should be a viable strategy for using them in fitness prediction—we

just have to find it. Whatever the best strategy may be, for now it is clear that there is still

much to be explored and learned about semi-supervised protein fitness prediction.

106

C h a p t e r 4

 EVSEQ: COST-EFFECTIVE AMPLICON SEQUENCING OF EVERY

VARIANT IN A PROTEIN LIBRARY

Material from this chapter appears in Wittmann, B. J.; Johnston, K. E.; Almhjell, P. J.; and

Arnold, F. H. (2022) evSeq: Cost-Effective Amplicon Sequencing of Every Variant in a

Protein Library. ACS Synth. Biol. 11, 1313–1324. https://doi.org/10.1021/acssynbio.

1c00592.

Abstract

Widespread availability of protein sequence-fitness data would revolutionize both our

biochemical understanding of proteins and our ability to engineer them. Unfortunately, even

though thousands of protein variants are generated and evaluated for fitness during a typical

protein engineering campaign, most are never sequenced, leaving a wealth of potential

sequence-fitness information untapped. Primarily, this is because sequencing is unnecessary

for many protein engineering strategies; the added cost and effort of sequencing is thus

unjustified. It also results from the fact that, even though many lower-cost sequencing

strategies have been developed, they often require at least some sequencing or computational

resources, both of which can be barriers to access. Here, I present every variant sequencing

(evSeq), a method and collection of tools/standardized components for sequencing a variable

region within every variant gene produced during a protein engineering campaign at a cost

of cents per variant. evSeq was designed to democratize low-cost sequencing for protein

engineers and, indeed, anyone interested in engineering biological systems. Execution of its

wet-lab component is simple, requires no sequencing experience to perform, relies only on

resources and services typically available to biology labs, and slots neatly into existing

protein engineering workflows. Analysis of evSeq data is likewise made simple by its

accompanying software, which can be run on a personal laptop and was designed to be

accessible to users with no computational experience. Low-cost and easy to use, evSeq

makes collection of extensive protein variant sequence-fitness data practical.

107

4.1 Introduction for Chapter 4

Engineered proteins are valuable tools across the biological and chemical sciences and have

revolutionized industries ranging from food to fuels, pharmaceuticals, and textiles by

providing green and efficient protein solutions to challenging chemical problems.1 Over the

course of a protein engineering campaign, hundreds to thousands or more protein variants

will be constructed and have their fitnesses (level of, e.g., thermostability, catalytic activity,

substrate binding, etc.) evaluated. Notably, sequence information is typically not gathered

alongside the functional information, even though it could provide useful biochemical

insight.123,171,172 This is largely because many engineering strategies can be applied without

sequencing. For example, during a typical directed evolution (DE) experiment, often only

the best-performing variant or variants are sequenced in each round of mutagenesis and

screening; sequencing every variant is viewed as an unnecessary expense. Given the massive

amount of functional data gathered during a typical DE campaign, however, if sequencing

were performed for the variants generated during these experiments, the resultant large

datasets of sequence-fitness information could be revolutionary for biological, biochemical,

and biocatalytic research. This is especially true for data-driven protein engineering

strategies such as machine learning (ML), the development of which has benefitted

tremendously from large sequence-fitness datasets made available by strategies like deep

mutational scanning (DMS) and in databases like ProtaBank.15,16,155,173,17,18,22,67,68,70,113,114

Unfortunately, the standard sequencing strategy employed during DE—Sanger

sequencing—is too expensive for sequencing all variants tested during a round of

evolution.81 Sanger sequencing is ubiquitous due to ease of sample preparation and ready

availability of sequencing providers. However, the cost of Sanger sequencing scales linearly

with the number of samples (Figure B-1). Thus, while the cost of sequencing just the top

variants in a round of DE is minor, sequencing the hundreds or thousands of variants

generated over the full engineering endeavor is not. Ideally, any new approach to sequencing

during a protein engineering campaign would be comparable in cost, effort, and accessibility

to that of sequencing just the top variants by Sanger sequencing. Here I present a collection

of standardized and accessible protocols, components, and software that accomplishes this

108

goal. This collection, which I call every variant sequencing (evSeq), democratizes barcode

sequencing strategies and expands on services made available by multiplexed next-

generation sequencing (NGS) providers to allow amplicon sequencing of a region of interest

within every variant produced during a round of DE at a cost of cents per variant.83,174 Sample

preparation for evSeq is simple, and the method requires no experience with NGS to perform,

relies only on resources and services typically available to biology labs, and slots neatly into

existing protein engineering experimental workflows. The accompanying software for

analysis of evSeq data (found at github.com/fhalab/evSeq, documentation at

fhalab.github.io/evSeq) was designed to be accessible to users with no computational

experience and can be run on a personal laptop.

In this chapter, I detail the underlying strategies, protocol, and potential applications of

evSeq. I begin by describing the strategies employed by evSeq to extend multiplexed NGS

for sequencing protein variant libraries in a way that reduces both cost and effort. I then

describe the wet-lab protocol of evSeq sample preparation, focusing on how it can be

completed without disrupting an existing protein engineering workflow. Next, I discuss the

features of the evSeq software before finally presenting two case studies that highlight

potential applications of evSeq. In particular, I highlight how (1) the sequence-fitness data

from evSeq can provide valuable information about the quality of variant libraries and the

functional screen as well as how mutations modulate protein activity, and how (2) the data

generated from evSeq can be used to implement ML for protein engineering. I designed

evSeq for use as a routine procedure in many protein/enzyme assays (especially DE and

protein engineering experiments leveraging mutagenesis strategies that target specific sites

or a segment of the sequence). This tool brings cost-effective, easy-to-use sequencing to all

protein engineers, regardless of experience with NGS and access to sequencing and

computational resources. I believe that widespread adoption of evSeq—and the resultant

datasets generated—will be invaluable for future ML-guided protein engineering and will

help us better understand protein sequence-fitness relationships.

https://github.com/fhalab/evSeq
https://fhalab.github.io/evSeq

109

4.2 Results and Discussion for Chapter 4

4.2.1 evSeq Uses Inline Barcoding to Expand on Commercially Available Multiplexed

Next-Generation Sequencing

Unlike Sanger sequencing, which outputs a single chromatogram that represents the

population of DNA in a sequenced sample, NGS outputs millions of individual DNA reads

that represent a random draw from the population of DNA in the sequenced sample.83

Confidence in NGS sequencing results is largely determined by the sequencing “coverage,”

which for the purposes of this chapter is defined as the number of returned reads that map to

a specific nucleotide on a reference sequence. Higher coverage enables more confident

identification of mutations relative to a reference sequence as the increased redundancy

allows distinguishing between true sequence mutations and errors that arise during library

preparation, clustering, or sequencing.

A single NGS run is roughly three orders of magnitude more expensive than a Sanger

sequencing run, but because the run outputs millions of reads, this cost can be spread over

multiple samples using a technique known as “multiplexed NGS” (Figure B-1). In

multiplexed NGS, each submitted sample is tagged with a “molecular barcode”—a unique

piece of DNA that encodes the sample’s original identity—before all samples are sequenced

together in the same NGS run.174–180 Post sequencing, the barcodes are used to assign

individual reads to individual samples. For instance, barcodes can be used to distinguish

reads coming from samples belonging to specific plates and wells.181 Importantly,

multiplexed NGS can be outsourced just like Sanger sequencing (making it accessible to all

laboratories regardless of sequencing experience), and sequencing providers typically charge

tens of dollars per sample in a multiplexed sequencing run, yielding on the order of 104–105

individual sequences per sample (assuming the run is performed on an Illumina MiSeq

instrument).

The level of coverage granted by a set number of reads depends on the length of the DNA

sample being sequenced, the length of the NGS read used to sequence it, and whether those

reads are paired-end. NGS reads are short (300 bp or less on Illumina systems), and so reads

110

must be spread across a longer sample to sequence it in full. The expected coverage (average

coverage per nucleotide) obtained for a DNA sample thus depends both on its length and the

read length used for sequencing. For example, with the ~105 reads returned by a commercial

MiSeq multiplexed sequencing run, a 3 Mb genome could be sequenced with 150 bp paired-

end reads to an expected coverage of ~10x, whereas a 20 kb plasmid could be sequenced to

an expected coverage of ~1500x.

Because shorter samples can be sequenced at higher coverage for a given number of reads,

it can be advantageous to sequence only the region of interest of a sample. This is exemplified

by amplicon sequencing, a strategy in which a researcher sequences a PCR product (an

amplicon) that targets a specific region of interest in the DNA.182 For instance, continuing

the example from above, with ~105 total 150 bp paired-end reads, a 300 bp PCR product

could be sequenced to an expected coverage of ~100,000x.

Many mutagenesis methods employed in protein engineering (e.g., site-saturation183 and tile-

based mutagenesis184 strategies) target mutations to a specific position or region in the

sequence of a protein, and thus the variants produced can be sequenced with amplicon

sequencing to high coverage.175 Notably, however, even though increasing coverage yields

more confident results, it comes with diminishing returns, and it is generally held that

coverage in the tens is more than sufficient for effective reference-based identification of

mutations (Figure B-1).185 Indeed, clinical sequencing of human genomes targets 30x

coverage or greater to minimize false base calls. Given this reference, it is clear that the

~100,000x coverage that would be returned from a multiplexed sequencing run for a 300 bp

amplicon is far higher than necessary for effective identification of mutations—2,000

amplicons could be sequenced in the same run and still yield clinical-grade coverage.

evSeq achieves cost-effectiveness by relying on the facts that (1) at tens of dollars per sample,

the cost of sending a single sample to an outsourced multiplexed NGS run is comparable to

the total cost of Sanger sequencing the top variants in a round of DE, (2) amplicon sequencing

can be used to identify mutations in protein variants from many protein engineering library

types, and (3) enough reads are returned for a single sample in a commercial multiplexed

111

NGS run to sequence hundreds of amplicons. Specifically, the evSeq protocol (Figure 4-1,

B.2.3: evSeq Library Preparation/Data Analysis Protocol) works by focusing all reads of a

single multiplexed NGS sample to specific regions on hundreds of protein variants, achieving

sequencing depths of 101–103 at the approximate cost and level of accessibility of using

Sanger sequencing of just the top variants in a round of DE (Figure B-1).

The evSeq library preparation protocol begins with PCR amplification of the region of

interest in each variant (i.e., the position/region where mutations were made) and appending

inline DNA barcodes to the resultant amplicons that encode their original plate-well position

(Figure 4-1A).181,186,187 This is a one-pot, two-step, plate-based PCR procedure that uses two

sets of primer pairs. Each primer in the first set of primers (“inner” primers) consists of a

user-specified 3’ “seed” region that binds to the regions flanking the region of interest as well

as a 5’ predefined universal adapter (B.1.6.1: Inner Primer Design). Each primer in the

second set of primers (“outer” primers) consists of (1) a 3’ region that matches the adapter

of the inner primers, (2) a central 7-nucleotide barcode where each barcode pair between

forward and reverse outer primers is unique to a plate-well position, and (3) a 5’ sequence

matching the Illumina Nextera transposase adapters (B.1.6.2: Outer Primer Design, B.1.6.3:

Barcode Design, Table B-1, Table B-2). I designed 96 unique forward and 96 unique reverse

outer primers for evSeq which, because both forward and reverse outer primers contain a

barcode, can be combined to encode up to 962 = 9,216 possible plate-well positions (B.2.2:

Preparation of evSeq Barcode Primer Mixes, Table B-3 – Table B-10. Note that a pre-filled

IDT order form is also provided for the outer primers on the GitHub associated with this

work—see B.2.1: Ordering Barcode Primers from IDT for details. While it is recommended

to use these pre-tested barcodes, users can also design their own to, e.g., further expand the

number of available combinations.). Importantly, this set of outer primers can be used to

sequence any target region from any gene with evSeq, and so only needs to be ordered once,

constituting a one-time initial setup cost in the range of around a thousand dollars (the exact

cost will vary based on oligo provider and any institutional agreements set up with said

provider). Once outer primers are ordered, only a new inner primer pair is needed for each

new region of interest to be targeted by evSeq.

112

Once all barcoded amplicons have been produced, they are pooled and sent to a sequencing

provider, who will then use the transposase adapters installed with the outer primers as a

handle to perform a third and final PCR to barcode the pool of amplicons once again with a

pair of sample-specific Illumina indices (Figure 4-1B). At this point each amplicon in the

pool has one pair of sample-specific Illumina barcodes and one pair of plate-well-specific

inline evSeq barcodes. This complete evSeq library is sequenced as a single sample in a

multiplexed NGS run along with samples from other users (whether or not they are also

evSeq samples). Post sequencing, the sequencing provider uses the sample-specific barcodes

to identify those sequences belonging to the evSeq pool and returns them to the user (i.e., the

provider “demultiplexes” the run, separating evSeq sequences from those of other users).

The user then uses the evSeq software to analyze the returned sequences, assigning them to

corresponding plate-well positions using the evSeq barcodes and identifying the mutations

in the variants relative to a reference (Figure 4-1B, Figure 4-1C).

4.2.2 evSeq Library Preparation Fits Into Existing Protein Engineering and

Sequencing Workflows and Was Designed to be Resource Efficient

A typical procedure for evaluating protein variants involves (1) arraying colonies of an

organism (e.g., Escherichia coli) that harbor a plasmid encoding a protein variant into the

wells of a (usually 96-well) microplate, (2) growing the resulting cultures to stationary phase

(colloquially, an “overnight culture”), (3) using the overnight culture to inoculate a fresh

culture that will be used to express the protein variants, and (4) evaluating the fitnesses of

expressed protein variants. The expression stage (step 3) typically involves downtime where

the experimentalist must wait until the culture reaches sufficient density before inducing

protein expression and then again as expression takes place. evSeq library preparation can

be performed easily in either of these time windows. The evSeq library preparation protocol

begins with the barcoding PCR described at the end of the previous section; this one-pot,

two-step, plate-based PCR was designed to be compatible with outsourced sequencing

workflows, minimize preparation time, and minimize laboratory resource usage (B.2.3:

evSeq Library Preparation/Data Analysis Protocol). For instance, use of inline barcodes is a

known, effective strategy for expanding the number of samples that can be multiplexed

113

without having to modify the Illumina indices used during multiplexed sequencing.186,187

Because evSeq library preparation uses inline barcodes, it grants the outsourced sequencing

provider maximal flexibility in choice of Illumina indices. In other words, evSeq library

preparation is decoupled from preparation of the Illumina library that will eventually be

sequenced, allowing the evSeq library to be run just as any other sample would be that is

submitted to a sequencing provider.

As mentioned in the previous section, use of a two-step PCR reduces the number of primers

that must be ordered per new sequencing region of interest. Because evSeq relies on 96

unique forward barcodes and 96 unique reverse barcodes, a single-primer PCR would require

ordering 192 new barcoding primers for each new target region evaluated in each library. In

a two-primer protocol, however, the inclusion of a universal adapter on the inner primers

allows the same 192 outer primers to be used regardless of target position in the variant—

only two unique primers (forward and reverse inner) must be purchased for each new target

region, and only if existing inner primers from previously targeted regions are not already

compatible. Additionally, the evSeq PCR directly uses liquid from the overnight culture as a

source of template DNA (Figure 4-1B, B.2.3: evSeq Library Preparation/Data Analysis

Protocol); the template DNA is released from lysed cells during the initial heating step of the

PCR, avoiding a costly and time-intensive DNA isolation/purification step and allowing

researchers to use materials already prepared as part of the protein expression workflow.187

The remaining steps of evSeq library preparation were, like the PCR stage, also designed to

be resource and time efficient. After completion of the PCR, the resulting barcoded

amplicons are pooled by plate and purified via gel extraction. Pooling prior to purification

goes against standard practice for multiplexed NGS library preparation, which is to purify

samples individually, quantify their DNA concentration, then combine them in equimolar

quantities to ensure more equal read distribution across samples after sequencing.188

However, because individual plates in protein engineering libraries tend to contain variants

from the same region of the same protein scaffold (e.g., as would be typical for variants from

a comprehensive site-saturation library), it is assumed that the variation in PCR reaction yield

114

will be minor within plates and that, as a result, the same plate can be pooled prior to

quantification with only minor effects on read distribution. Using this “pooling first”

strategy, only as many purifications as there are plates must be performed as opposed to as

many as there are variants, thus enabling faster processing of evSeq amplicons while

reducing resource usage. As will be shown in later sections, the distribution of reads returned

using pooling first is perfectly acceptable for confidently identifying variant sequences.

Once all pooled plates have been purified, the concentrations of the individual purified pools

are measured. The pools are then normalized by molarity and combined into a final evSeq

library, which is in turn submitted as a single sample to a sequencing provider. As described

in the previous section, the provider will perform a final PCR on the evSeq library to add

sample-specific barcodes before sequencing it as a single sample in a multiplexed sequencing

run. Outsourcing the sequencing stage has two main benefits: First, it allows evSeq to be

performed by research groups with no prior sequencing experience and no direct access to

sequencing equipment—groups need only be familiar with PCR, a ubiquitous technology in

protein engineering laboratories. Second, to be cost effective, multiplexed sequencing should

be run with tens of samples at least (Figure B-1). By outsourcing the sequencing stage, groups

that do not frequently produce evSeq libraries need not wait until enough libraries have

accumulated to run sequencing—a single outsourced submission, for instance, can be run

along with those of other research groups with a variety of different sequencing needs.

115

Figure 4-1. Overview of evSeq library preparation and processing. (A) In the first stage of

the PCR, a region of interest is amplified with primers that include a 3’ site-specific region

(gray) with 5’ adapter sequences (dark blue). The second PCR stage adds molecular barcodes

(rainbow) with primers that bind to the adapter regions and add adapters for downstream

NGS processing (light blue). (B) To avoid costly DNA isolation steps, evSeq uses liquid

cultures of cells harboring mutated DNA (e.g., an “overnight culture” of E. coli) as template

during the one-pot two-step barcoding PCR described in A. Each plate is pooled individually

and gel purified. Purified pools are then adjusted for concentration differences and pooled

together before being sent to a sequencing provider, who then appends another set of

barcodes as well as sequence elements necessary for Illumina NGS sequencing. This sample

is now pooled with those of other users and a multiplexed sequencing run is performed. After

sequencing, the sequencing provider uses the barcodes that they attached to separate

(“demultiplex”) the evSeq reads from reads of other users; the provider returns evSeq reads

in .fastq files. (C) The .fastq files returned by the NGS provider are inputs to the evSeq

software, which uses the evSeq forward/reverse barcode pair to map each read to a specific

plate and well based on known barcode combinations. The software also processes the

116

mapped reads (see Appendix B and evSeq documentation for more details) to, among other

things, assign variant identities to each well and return interactive HTML visualizations.

The final stage of the evSeq workflow is data analysis using the evSeq software

(github.com/fhalab/evSeq) (Figure 4-1C). Extensive documentation of the software and its

capabilities is available as a website (fhalab.github.io/evSeq). The software was designed to

be accessible to users with varying degrees of computational experience and can be run

through either a graphical user interface (GUI), a command line application, or in a Python

environment (e.g., a Jupyter notebook). Outputs from the software range from high-level

overviews of data (e.g., an interactive “Platemap” graphic that displays sequencing coverage

and identified mutations in each well of each plate; see Figure 4-1C for an example) to low-

level details about the population of reads assigned to each well (e.g., in a well identified as

polyclonal, the percentage of reads mapping to each of the identified variants). Functional

data can also be easily associated with identified variants using the evSeq software outputs

to produce sequence-fitness datasets, and Jupyter notebooks and web pages are provided that

walk users through the process.

4.2.3 evSeq Facilitates Library Construction, Validation, and Sequence-Fitness

Pairing

To highlight the utility of evSeq for engineering and biochemical experiments, my coworkers

and I first examined how it could be used to construct high-confidence and informative

sequence-fitness data. Specifically, my coworkers constructed and screened eight single-site-

saturation libraries of the enzyme Tm9D8*—an engineered β-subunit of tryptophan synthase

from Thermotoga maritima (TmTrpB)—for tryptophan-forming activity at 30 °C (Figure

4-2).189 In two of the screened libraries, they targeted two positions distant from the active

site (A118 and S292) that have been seen to play a role in allosteric regulation of TmTrpB

enzymes; in the other six libraries, they targeted active-site residues known to modulate the

activity of TrpB (E105, L162, I166, F184, S228, and Y301) (Figure 4-2A).101,190,191 As

shown below, this type of sequence-fitness data can be used to assess the quality of a protein

https://github.com/fhalab/evSeq
https://fhalab.github.io/evSeq

117

engineering library, identify improved variants during a round of directed evolution, and give

insight into the significance of a given residue in catalysis.

Many factors can introduce bias into a site-saturation mutagenesis experiment, such as

annealing bias for the native nucleotides during the PCR for library construction or

contamination with the template plasmid during transformation. Without sequencing all of

the variants, it is impossible to know that the library is representative of the experimental

design. Since evSeq reports exactly which variants are contained in a library, researchers can

leverage this to implement important quality control practices as part of the standard protein

screening workflow. For instance, of all 153 possible unique variants in the eight single-site-

saturation libraries, we observed 149 of them (Figure 4-2B and Figure 4-2C); only I166A,

S292C, S292D, and S292H could not be assigned with confidence, where we defined ≥80%

abundance in a well with ≥10 reads as our confidence threshold. Of the variants identified,

many were found in replicate (Figure 4-2D) due to oversampling during colony picking,

which ensures that all protein variants have a chance to be found and screened (All libraries

were constructed with the 22-codon trick85 and 88 individual colonies were screened for each

library, so we expected a 98% probability of seeing all variants assuming perfect construction

of libraries). Conveniently, this oversampling also allowed us to evaluate the noise in our

functional screen (Figure 4-2E), which further improved the confidence in the quality of data

gathered.

Given just the fitness data gathered in this experiment, a protein engineer would identify 50

wells that are at least 1.2-fold improved over the parent enzyme Tm9D8*. However, with

the sequence-fitness pairs constructed via evSeq, we know that these 50 wells correspond to

only 16 unique variants. Depending on how conservative the engineer was as to what should

be sequenced, a decision to sequence hits with Sanger sequencing could result in anywhere

from 12 (2-fold improvement) to 50 (1.2-fold improvement) wells sent off for sequencing

for a total cost of $36 to $150 (using an estimate of $3 per sequence). It would cost ~$2000

to sequence all eight plates via Sanger. Using evSeq, however, we obtained the sequences of

all 625 wells of variants for only $100, corresponding to $0.13 per non-control well. In other

118

words, using evSeq, we can produce far more sequence-fitness information than sequencing

just the top hits using Sanger all for a similar cost. Importantly, although the evSeq defaults

currently allow only eight plates to be sequenced at once, the number of variants included in

this experiment could likely have been increased as the median number of reads per well was

86 (mean: 98), which is above what is needed for reliable sequencing. Assuming that

doubling the number of plates would halve the number of reads seen for each well, doubling

the number of plates sequenced would cause only 14 non-control well sequences to drop

below the confidence threshold.

The per-variant cost of evSeq may be reduced even further using different services and

sequencing platforms. For instance, in both this section and the next, the reported number of

reads and ~$100 total cost are from outsourced MiSeq runs, which returned hundreds of

thousands of total reads per evSeq library. These numbers are reported because outsourced

multiplexed MiSeq is a standard service available to all research groups. As an alternative to

outsourcing, however, Caltech provides multiplexed sequencing (via the Caltech Millard and

Muriel Jacobs Genetics and Genomics Laboratory) on an Illumina NextSeq platform,

returning an average of ~10x more reads than the outsourced MiSeq run for a total cost of

~$10. At 10x more reads and 10x less the total cost, the per-variant evSeq cost could decrease

100-fold to <$0.01. Indeed, we were able to re-sequence the TrpB libraries at a per-variant

cost of ~$0.01 with ~2.2 million total reads returned for an average of thousands of reads per

variant, far higher than what is needed for reliable variant calling. It must be noted, however,

that analysis of the millions of evSeq reads was no longer practical on a personal laptop,

requiring a desktop workstation instead. Computational power beyond a laptop will be

needed when processing more than hundreds of thousands of reads with the existing evSeq

software.

Of final note, aside from providing valuable information for protein engineering

experiments, evSeq can also facilitate investigation into the biochemical relevance of specific

positions/mutations. Specifically, because all possible variants in a site-saturation library can

be identified by evSeq, the sequence-fitness information generated can be used to explore

119

the effects of mutations more fully than, for instance, an alanine scanning experiment.192

Using an example from the TrpB data gathered here, an alanine scanning experiment would

tell a biochemist that the mutation to the conserved catalytic residue E105A inactivates the

enzyme, with no information about the effects of other amino acid changes at this position.

Using site-saturation with evSeq, we instead find that all mutations to E105 except for E105D

inactivate the enzyme. The fact that glutamate and aspartate are the only amino acids

containing a carboxylic acid suggests that this functional group is critical for activity (Figure

4-2E, with inset).

120

Figure 4-2. evSeq enables low-cost investigation of library quality and sequence-fitness

pairing in site-saturation mutagenesis libraries. (A) Eight residues (red) known to modulate

the activity of Tm9D8* were independently targeted with site-saturation mutagenesis: A118

and S292 (distal residues), E105, L162, I166, F184, S228, and Y301 (active-site residues).

An active form of the pyridoxal 5’-phosphate cofactor is represented in green, and the

substrate indole is shown in light blue. (B) Library quality can be investigated by plotting a

heatmap of the number of times each variant/mutant was identified at each targeted position

("Counts") from processed evSeq data. Parent amino acids are each marked with an asterisk.

(C) Likewise, the effect of mutations and mutational “hotspots” can be identified by plotting

a heatmap of the average activity measurements for each variant/mutation in each library,

normalized to the average parent activity for that library (“Normalized Rate”), when fitness

data is combined with evSeq data. (D) An example plot made possible by evSeq visualization

functions shows the number of times each amino acid was found in a single TrpB library

(position 105), also accounting for known controls and unidentified wells. (E) Another

example output of the evSeq software shows activity for a single library (position 105),

showing biological replicates. The inset displays the role of the mutated residue in this

library, which is to coordinate the nitrogen of the indole substrate. Note that the circles in

this plot correspond to individual measurements while the bar plot represents the mean of

these measurements. If no circles are present for a bar (e.g., E105D), then this is because

only a single instance of this mutation was observed. Circles are not shown in this case to

allow distinguishing between a single replicate and a tight distribution of multiple replicates.

121

4.2.4 evSeq Can be Used to Generate Data for Machine Learning-Assisted Protein

Engineering

I next wanted to demonstrate the utility of evSeq for advancing and applying machine

learning-assisted protein engineering (MLPE). In MLPE, models are trained to learn a

function that relates protein sequence to protein fitness (i.e., they learn f(sequence) =

fitness).15–18,22 These models are then used for rapid, low-cost in silico prediction of protein

fitness, avoiding or greatly reducing the need for often-costly laboratory screening of variants

(Figure 4-3).

Sequence-fitness data is critical for effective MLPE. Indeed, even though strategies exist that

can predict protein fitness from sequence alone (e.g., those that use evolutionary data to

predict protein fitness), their effectiveness is improved with the inclusion of sequence-fitness

information.63,67,68,70 As a result, the most effective MLPE workflows require that both

sequence and fitness data be collected, unlike a DE workflow, which requires only fitness

data.

The need to collect sequence data in addition to fitness data is an often-overlooked additional

cost of MLPE strategies compared to standard DE. Take, for instance, the machine learning-

assisted directed evolution (MLDE) strategy described in Chapter 2.33,82 In my first project

at Caltech, I worked with others to use MLDE to evolve Rhodothermus marinus nitric oxide

dioxygenase (RmaNOD) for greater enantioselectivity in a carbon–silicon bond-forming

reaction.82 Over the course of the engineering campaign, we collected six 96-well plates of

sequence-fitness data for training ML models. In total, sequencing the variants in these plates

by Sanger sequencing cost ~$1700. High additional sequencing costs like these can make

MLPE methods far less attractive, even if they are more effective than traditional DE at

finding high-fitness protein variants.33 However, given that evSeq enables sequencing all

variants for a cost similar to standard DE methods, it enables use of MLPE without added

cost. In essence, evSeq eliminates the sequencing burden of MLPE.

To demonstrate the application of evSeq to MLPE, I used it to sequence five plates of

RmaNOD variants from a four-site combinatorial library. Coupled with fitness data, the

122

sequences resulting from this run could be used to drive a round of MLDE. Notably,

sequencing these plates by Sanger sequencing would have cost ~$1400; in contrast,

sequencing by evSeq using an outsourced multiplexed MiSeq run cost ~$100 for a per-

variant cost of ~$0.21. The median read depth per variant in this run was 463 (mean: 506),

much higher than is required for accurate sequencing, and so more plates—from either the

same or a different library—could have reasonably been added to this evSeq run to decrease

the per-variant sequencing cost even further. Of course, as discussed in the previous section,

in-house sequencing could have cut sequencing costs an additional ten-fold.

Figure 4-3. evSeq eliminates the sequencing burden of MLPE. Traditional DE only collects

sequence information for top variants, essentially “throwing away” fitness data from inferior

variants and learning nothing about the underlying fitness landscape. If, instead, evSeq is

used to collect sequence information for all variants, MLPE methods, which require

sequence-fitness pairs for supervised model training, can be implemented. Sampling from a

fitness landscape, an ML model can be trained to predict the fitnesses of missing sequences

and reconstruct the missing regions of this landscape.

The cost of sequencing is most notably a barrier for MLPE strategies that focus on

developing models for a single protein with a well-defined fitness (e.g., MLDE); however,

the applicability of evSeq to MLPE is not limited solely to cost-reduction. For instance, ML

strategies have been developed that, rather than focusing on a specific protein, train models

on sequence-fitness information across multiple different protein scaffolds.173,193 The goal is

for these models to learn global determinants of protein fitness, then to use the models as

general-purpose protein fitness predictors. By enabling the collection of sequence-fitness

pairs across a wider array of proteins and fitness definitions, evSeq opens these approaches

123

to new and more diverse data sources. Generally speaking, the more sequence-fitness data

available to train and benchmark these strategies, the better we expect them to perform and

the more rapidly we expect improvements to be developed.173 It is no coincidence that large

leaps forward in other ML disciplines have followed increased availability of large, diverse

datasets, with the rapid advance in computer vision sparked by ImageNet being perhaps the

most prominent example.109 Widespread adoption of evSeq—and commitment to depositing

sequence-fitness data in resources such as ProtaBank—would provide such a dataset for

protein engineering.113 This dataset would span the range of all engineered proteins and all

target fitnesses, capture examples of sequences with both higher and lower/zero fitness

relative to a parent (the latter of which is effectively never recorded with current DE

sequencing practices), and overall enable rapid advancement in MLPE.

4.2.5 evSeq Detects All Variability in the Sequenced Amplicons

Although in this chapter I focused on demonstrating applications involving targeted

mutagenesis strategies, evSeq is also applicable to other mutagenesis methods as the

associated software can identify both user-specified and unspecified positions of variability

(Figure 4-4A). This feature not only informs the user of potential unexpected mutations in

the sequenced amplicon (Table B-11), but also allows it to work effectively with tile-based

mutagenesis strategies and other semi-targeted mutagenesis strategies (e.g., error-prone PCR

of specific regions or small genes). All that is required is that the amplicon length and read

length be able to capture the full region containing mutations.

It should be noted that evSeq will not detect off-target mutations outside of the constructed

amplicon as these regions are not sequenced, meaning that it is unable to identify other

mutations in a larger DNA element that may be contributing to activity. Due to this fact, for

exceedingly unexpected mutational effects that are not seen in replicate, it is suggested to

sequence the rest of the DNA element to confirm the presence or absence of any off-target

mutations. However, this limitation is mitigated by the fact that off-target mutations are rare

and, importantly, evSeq is agnostic to read length and will work with any length of paired-

end sequencing.194

124

While the current software version is not yet suited for other, long-read sequencing

technologies (e.g., PacBio or Oxford Nanopore), future versions could be updated and

validated with these data formats and make full gene-length evSeq experiments more

straightforward and cost effective. Given this, evSeq is currently best suited and most cost

effective when all expected mutations exist in the sequenced amplicon, though sequencing

of multiple overlapping amplicons can readily allow evSeq to be expanded to sequence entire

genes of variants arrayed in microplates (Figure 4-4B). Care must be taken in such an

application, however, to account for the fact that aggressive mutation rates could compromise

the annealing efficiency of inner primers binding in the variable region, as could mutations

to positions closer to the binding region of the 3’ end of the inner primer. Such situations

would lead to a higher proportion of wells failing sequencing.

4.3 Conclusion for Chapter 4

Hundreds to thousands of protein variants (or more) are constructed and their fitnesses

evaluated over the course of a standard protein engineering campaign. Without sequencing,

these fitnesses are next to useless—the time, effort, and resources expended to produce them

are largely wasted. Comparable in cost to existing protocols, accessible to scientists with no

or minimal sequencing and computational experience, and easy to implement with existing

technology, evSeq rescues these fitness data by making the collection of sequence data for

every variant a practical and highly useful step of the protein engineering pipeline. Given the

number of research groups working on DE and other protein engineering projects,

widespread adoption of evSeq would lead to an explosion in the availability of sequence-

fitness information. By sequencing every variant, no laboratory screening effort is wasted,

and we open the door to advances in both our biochemical understanding of proteins and our

ability to engineer them with data-driven methods.

125

Figure 4-4. evSeq detects variability and can be expanded for random mutagenesis. (A)

evSeq does not require that the user specify which position in the amplicon was targeted.

Instead, the software can identify variable regions by comparing to a reference. (B) evSeq

can be used to sequence entire genes by designing a set of inner primer pairs which together

capture the entire gene. Different evSeq barcodes can then be used for each region, and the

user can reconstruct the entire sequence.

4.4 Financial Support for Chapter 4

This work was supported by an Amgen Chem-Bio-Engineering Award (CBEA). This work

was supported by the NSF Division of Chemical, Bioengineering, Environmental and

Transport Systems (CBET 1937902). This material is based upon work supported by the

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under

Award Number DE-SC0022218. This report was prepared as an account of work sponsored

by an agency of the United States Government. Neither the United States Government nor

any agency thereof, nor any of their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

any information, apparatus, product, or process disclosed, or represents that its use would not

infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

126

Government or any agency thereof. The views and opinions of authors expressed herein do

not necessarily state or reflect those of the United States Government or any agency thereof.

127

A p p e n d i x A

 SUPPORTING MATERIAL FOR CHAPTER 2

A.1 Data and Code Availability

Data needed to replicate simulations have been deposited at Caltech Data and are publicly

available. DOIs are listed in Table A-11. The raw simulation data reported in this study

cannot be deposited in a public repository because it is multiple terabytes in size. To request

access, contact Bruce Wittmann. In addition, summary statistics describing these raw data

have been deposited at Caltech Data and are publicly available. DOIs are listed in Table

A-11. This chapter analyzes existing, publicly available data. The accession numbers for the

datasets are listed in Table A-11.

All original code has been deposited at Caltech Data and is publicly available. DOIs are listed

in Table A-11.

Any additional information required to reanalyze the data reported in this chapter is available

from Bruce Wittmann upon request. 

A.2 Method Details

A.2.1 Alignment Generation and EVmutation Model Training

The EVcouplings webapp was used to both generate multiple sequence alignments (MSAs)

as well as train the EVmutation model needed for zero-shot prediction.195 The GB1 sequence

(See Encoding Preparation, below) was passed into the EVcouplings webapp, and

alignments were made against the UniRef100 database for bitscore inclusion thresholds of

0.30, 0.35, 0.40, 0.45, and 0.50. All other EVcouplings parameters were kept at their default

values (Alignment threshold type = Bitscore; Search iterations = 5; Position filter = 70%;

Sequence fragment filter = 50%; Removing similar sequences = 90%; Downweighting

similar sequences = 80%). A bitscore threshold of 0.40 returned an alignment with the most

redundancy-reduced sequences (56) that covered all variable positions in the GB1 landscape

at ≥70% coverage (i.e., less than 30% of aligned sequences had gaps at the positions of

interest). Bitscores of 0.30 and 0.35 returned more redundancy-reduced sequences (2427 and

128

664, respectively), but failed to cover position 54 in the landscape. Bitscores of 0.45 and 0.50

covered all positions, but returned less redundancy-reduced sequences (30 and 27,

respectively). I decided to move forward with the alignment and EVmutation model

generated at a bitscore of 0.40. The alignment (in .a2m format) and the parameters for the

EVmutation model trained on it (the “.model” file) were downloaded from the EVcouplings

webapp. The alignment downloaded would also be used to train a DeepSequence VAE as

well as build encodings and make zero-shot predictions using the MSA Transformer (See

A.2.2: Encoding Preparation, A.2.3.1: EVmutation/DeepSequence Calculations, and

A.2.3.2: Mask Filling Protocol, all below).

A.2.2 Encoding Preparation

I investigated encoding using three different strategies: one-hot, physicochemical

parameters, and learned embeddings. One-hot encodings were prepared by first assigning

each amino acid an index. To encode each GB1 variant, a 4 × 20 (“N amino acids per combo”

× “N possible amino acids”) matrix filled with 0’s was instantiated where the index of each

row corresponded to the position index in the variant. Each row of the matrix was then

populated with a single value of “1” at the index corresponding to the appropriate amino

acid. Repeating this procedure for all GB1 variants with experimentally measured fitness

yielded a 149,361 × 4 × 20 tensor representing the complete set of one-hot encodings.

Physicochemical encodings were prepared using the descriptors originally published by

Georgiev, using the values found in code published by Ofer & Linial.36,124 To encode all

variants, a 160,000 × 4 × 19 tensor was instantiated (“N possible combos” × “N amino acids

per combo” × “N Georgiev parameters”). Every possible variant was encoded using all 19

Georgiev parameters, and the encodings were stored in the instantiated tensor. The last two

dimensions of the tensor were then flattened to produce a 160,000 × 76 matrix and each

column of the matrix was mean-centered and unit-scaled. The final encoding tensor was

generated by extracting only those rows belonging to GB1 variants with experimentally

measured fitness, then reshaping the last dimension to produce a 149,361 × 4 × 19 tensor.

129

Learned embeddings were prepared using the pre-trained models published in TAPE, ESM,

and ProtTrans GitHub repositories.51,52,55,58,60,61 For the non-MSA Transformer models,

embeddings were generated by first building fasta files containing the full amino acid

sequences of all 160,000 possible GB1 variants at positions 39, 40, 41, and 54. The template

sequence used was:

MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE

The sequences contained in the fasta file were then embedded using the appropriate code

provided from each of the repositories. For the TAPE models (“Bepler,” “ResNet,”

“UniRep,” “TAPE-Transformer,” and “LSTM”) the `tape-embed` command from the

software associated with the original publication by Rao et al. (https://github.com/songlab-

cal/tape-neurips2019) was used to generate embeddings. For the ESM model

(esm1b_t33_650M_UR50S), the example code provided in the “Quick Start” section of the

GitHub repository (https://github.com/facebookresearch/esm#quick-start-) was used to

generate embeddings. For the ProtTrans model (“ProtBert-BFD”), code from the example

Jupyter notebook provided on the associated GitHub repository

(https://github.com/agemagician/ProtTrans/blob/master/Embedding/PyTorch/Advanced/Pr

otBert-BFD.ipynb) was used to generate embeddings. Each of these processes generated

tensors of shape 160,000 × S × L (“N possible combos” × “Tokenized Sequence Length” ×

“L latent dimensions”). The value of L varied by encoding used, and is given in Table A-1.

The tokenized sequence length (S) varied depending on whether or not the embeddings for

“<cls>” and “<eos>” tokens were returned alongside the embeddings for the different amino

acids. The value of S was taken into account in the next step, where the embeddings

corresponding to amino acids varied in the GB1 dataset (Using 0-indexing, this was indices

38, 39, 40, and 53 of the middle dimension of the output tensor if no <cls> token was added,

and 39, 40, 41, and 54 if a <cls> token was added) were extracted from the output tensor.

Using the same procedure as with the physicochemical properties, the resultant 160,000 × 4

× L tensor was mean-centered and unit-scaled to produce a 160,000 × 4L matrix. Finally, the

appropriate rows were isolated and the last dimension reshaped to produce a final learned

embedding encoding tensor of shape 149,361 × 4 × L.

130

Unlike all other models tested, the MSA Transformer takes an MSA as an input rather than

a sequence. To build variant MSAs, I used the MSA generated by the EVcouplings

webserver (See A.2.1: Alignment Generation and EVmutation Model Training) as a

template. To begin, I filtered out all lowercase characters and the “.” character for each

sequence in the template MSA. Next, I removed any duplicate sequences from the filtered

MSA. I used this filtered and de-duplicated MSA as a template to build an MSA for each

mutant in the GB1 landscape. When building mutants, I changed only the GB1 reference

sequence, keeping all other sequences in the MSA constant. The resultant 160,000-mutant

MSAs were then streamed through the MSA Transformer, extracting the embeddings for the

mutant GB1 positions in the first sequence of each alignment (corresponding to the mutant

GB1 sequence). This procedure resulted in a 160,000 × 4 × 768 tensor (where “768” is the

number of latent dimensions assigned to each token by the MSA Transformer). This tensor

was then mean-centered and unit-scaled following the same procedure as for all other

encodings before being filtered to produce a tensor of shape 149,361 × 4 × 768.

The encodings generated from the above procedures are made available at Caltech Data.

Code provided on the MLDE repository enables replication of the encodings generated for

the GB1 combinatorial landscape.

A.2.3 Zero-Shot Predictions

A.2.3.1 EVmutation/DeepSequence Calculations

EVmutation calculations were run using the model downloaded from the EVcouplings

webserver (See A.2.1: Alignment Generation and EVmutation Model Training). This model

had been trained on the MSA of the GB1 reference sequence generated against the

UniRef100 database with a bitscore inclusion threshold of 0.40. The example code provided

in the EVcouplings GitHub repository was used as a template for making zero-shot

predictions of GB1 fitness using the downloaded EVmutation model

(https://github.com/debbiemarkslab/EVcouplings/blob/develop/notebooks/model_paramete

rs_mutation_effects.ipynb). Code is provided in the MLDE GitHub repository for

replicating the predictions made in this chapter, as well as for applying EVmutation to any

other combinatorial landscape.

131

To perform DeepSequence calculations, the associated variational autoencoder (VAE) first

needed to be trained. Using the same MSA downloaded along with the EVmutation model,

I trained the DeepSequence VAE using code from the DeepSequence GitHub repository

(https://github.com/debbiemarkslab/DeepSequence/blob/master/examples/run_svi.py). The

code was modified to allow passing in the GB1 MSA. Predictions were subsequently made

using the trained VAE by following additional example code from the DeepSequence

GitHub repository (https://github.com/debbiemarkslab/DeepSequence/blob/master

/examples/Mutation%20Effect%20Prediction.ipynb). I used 2000 prediction iterations for

making predictions. Code for training a DeepSequence VAE on any combinatorial landscape

is provided in the MLDE GitHub. Code for making predictions using a trained

DeepSequence VAE is also provided.

A.2.3.2 Mask Filling Protocol

Zero-shot predictions using a mask filling protocol were performed for all models provided

in the ESM GitHub repository as well as the models ProtBert and ProtBert-BFD in the

ProtTrans GitHub repository.51,55,61 For each of these models, I tested both a naïve and

conditional mask filling strategy for making zero-shot predictions of GB1 fitness. For GB1,

both protocols model the probability

𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 Eq. A-1

where 𝑠𝑐𝑜𝑛𝑠𝑡 is the sequence of the non-varying positions in the combinatorial landscape and

𝑎𝑎𝑥 gives the identity of the amino acid at position x in combination “combo.” The

difference between the naïve and conditional probability protocols is how the probability

𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 is calculated. Naïve probability assumes that variable

positions are independent of one another, and so calculates

𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎39|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎40|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎41|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 . Eq. A-2

Conditional probability, in contrast, does not assume independence of the variable positions

and instead directly solves the probability given by Eq. A-1 using the product rule of

probability. Note that, for all non-MSA Transformer methods, the parent GB1 sequence was

132

used to define 𝑠𝑐𝑜𝑛𝑠𝑡, while for the MSA Transformer, the MSA used for EVmutation (after

applying the same filtering and de-duplication procedure from Encoding Preparation, above)

was used to define 𝑠𝑐𝑜𝑛𝑠𝑡. Only the variable positions in the reference sequence of this MSA

were masked (rather than the full alignment column corresponding to variable positions), so

the MSA Transformer maintained full access to the information provided by other sequences

in the MSA.

The naïve mask filling protocol began by masking all variable positions in the GB1 reference

sequence. This masked sequence (or masked alignment) was then passed into the model and

the logits of the masked positions were extracted to yield a 4 × A matrix, where “A” is the

alphabet size of the model being used. A softmax function was then applied over the alphabet

dimension to yield the probability of each amino acid (and other special characters included

in the alphabet, though the probability of these was vanishingly small) occurring at each

position given the context of the non-varying GB1 sequence (e.g., the probability

𝑃 𝑎𝑎𝑥|𝑠𝑐𝑜𝑛𝑠𝑡 for x=39,40,41 and 54, where the position along the first axis of the matrix

corresponds to a given x); the log of the matrix was next taken to convert probability to log-

probability. Finally, log-probability of a combination was calculated using

𝑙𝑜𝑔(𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡) 𝑙𝑜𝑔(𝑃 𝑎𝑎39|𝑠𝑐𝑜𝑛𝑠𝑡) + 𝑙𝑜𝑔(𝑃 𝑎𝑎40|𝑠𝑐𝑜𝑛𝑠𝑡) +

 𝑙𝑜𝑔(𝑃 𝑎𝑎41|𝑠𝑐𝑜𝑛𝑠𝑡) + 𝑙𝑜𝑔(𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡)

where 𝑠𝑐𝑜𝑛𝑠𝑡 is the sequence of the non-varying positions in the combinatorial landscape and

𝑎𝑎𝑥 gives the identity of the amino acid at position x in combination “combo.”

The conditional mask filling protocol allowed for dependencies between the amino acid

identities at the variable positions. I calculated conditional probability by summing all

possible factorizations of 𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡 using the product rule of probability. For

instance, one possible factorization using the product rule is

𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡

 𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41|𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡

133

 𝑃 𝑎𝑎39𝑎𝑎40|𝑎𝑎41𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎41|𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡

 𝑃 𝑎𝑎39|𝑎𝑎40𝑎𝑎41𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎40|𝑎𝑎41𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡

 𝑃 𝑎𝑎41|𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 .

In words, this factorization translates to (1) the probability of a specific amino acid at position

54 when all other variable positions are masked multiplied by (2) the probability of a specific

amino acid at position 41 given the specific amino acid a position 54 but masking positions

39 and 40 multiplied by (3) the probability of a specific amino acid at position 40 given the

specific amino acids at positions 41 and 54 but masking position 39 multiplied by (4) the

probability of a specific amino acid at position 39 given the specific amino acids at positions

40, 41, and 54; all probabilities are calculated within the context of the remaining GB1

sequence. Of course, the order of factorization is arbitrary (for instance, in the first step I

could have instead factored to 𝑃 𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑎𝑎39𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎39|𝑠𝑐𝑜𝑛𝑠𝑡 , and any

ordering of factorization can reconstruct the probability 𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 .

There are 24 total factorizations possible (all permutations of the 4 variable positions), and

the final conditional probability 𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 was calculated by summing

them all together.

Calculation of the conditional probability was much more expensive than the calculation of

naïve probability. For instance, while determination of naïve probability for GB1 required

calculating just the variable-position logits of the GB1 sequence with variable positions

masked (a single pass through a model), calculation of conditional probability required

calculating the variable-position logits of all 34,481 possible masked combinations. While

trivial for smaller models, calculating conditional probability using larger models with

complex transformations (such as the MSA Transformer or ESM1b) could become

expensive. Regardless, calculation of component probabilities used for calculating the

overall conditional probably was performed in the same way as for naïve probability. For

each component probability: (1) appropriate positions in the GB1 sequence were masked, (2)

a softmax was taken over the alphabet dimension, and (3) the appropriate probabilities were

extracted from the resultant probability matrix. Note that, unlike for naïve calculation, I did

not take the log of the calculated probability matrices—the necessity of calculating a sum

134

over the different factorizations precluded this possibility. While such a practice may lead to

numerical instability for large combinatorial libraries, I observed no such problems for GB1.

Code for calculating the naïve and conditional probabilities of any combinatorial library

using any model evaluated in this chapter is provided in the MLDE package.

A.2.3.3 ΔΔG Calculations

ΔΔG calculations were performed using a local copy of the Triad software suite (version

2.1.1, Protabit, Pasadena, CA, USA: https://triad.protabit.com/). To begin, the template

protein crystal structure (PDB: 2GI9) was prepared for calculations via the below command:

$ ~/triad-2.1.2/triad.sh ~/triad 2.1.2/apps/preparation/proteinProcess.py struct

2GI9.pdb --crosetta

This command generated two files: 2GI9_process.pdb and 2GI9_prepared.pdb.154 The

“_process” pdb file is the 2GI9.pdb file prepared for downstream Triad calculations but

without any structural minimization. The “_prepared” pdb file is the 2GI9.pdb file prepared

for downstream Triad calculations but with an added constrained minimization. The flexible

backbone calculations were run using the standard Rosetta scoring function and the

“_prepared” pdb file. The command line call is below:

$ ~/triad-2.1.2/tools/openmpi/bin/mpirun np 96 ~/triad 2.1.2/triad.sh ~/triad

2.1.2/apps/cleanSequences_BjwMod.py struct ./2GI9_prepared.pdb inputSequences

2GI9.mut crosetta calculateRmsd minDesign inputSequenceFormat pid

floatNearbyResidues 2>&1 | tee $OUTPUT

Note that the cleanSequences_BjwMod.py file is a version of the inbuilt Triad script

cleanSequences.py modified to also output root mean squared deviation (RMSD) of the

protein backbone. The ‘inputSequences’ file ‘2GI9.mut’ describes the mutations for all

149,360 GB1 variants relative to the parent GB1 protein. The fixed backbone calculations

were run with the “_process” pdb file using a Rosetta scoring function that has a Van der

Waals term with a softer inner wall, reducing the chance that steric clashes produce overly

high energies. The command line call for the flexible backbone calculations is below:

135

$ ~/triad-2.1.2/tools/openmpi/bin/mpirun np 12 ~/triad 2.1.2/triad.sh ~/triad

2.1.2/apps/cleanSequences.py struct ../pdbs/2GI9_process.pdb inputSequences

../2GI9.mut rosetta inputSequenceFormat pid floatNearbyResidues soft 2>&1 |

tee $OUTPUT

There was no output file directly produced by the cleanSequence.py script, hence the

captured output. The captured output file generated was parsed to extract ΔG values for each

protein variant, which were in turn used to calculate ΔΔG values relative to the parent protein.

In this work, I defined a negative ΔΔG to be stabilizing and a positive ΔΔG to be destabilizing

relative to the parent protein; this necessitated flipping the sign of the literature ΔΔG values

when building Figure A-2, as Nisthal et al. defined opposite meanings of the sign of ΔΔG.153

A.2.4 Simulation Details

A.2.4.1 Encoding Comparison Simulations

The simulation procedure for comparing encoding strategies was designed to enable pairwise

comparison of simulation results using the different encodings. For a given simulation, each

of the tested encodings shared the same training set (same variant identities), cross-validation

indices, and random seeds used to initialize models that rely on randomness for training.

All encoding comparison simulations were run with a randomly drawn training set of 384,

48, or 24 variants (drawn without replacement) and five-fold cross-validation. Some model

classes scale poorly with large input spaces, and so, due to computational expense, not all

inbuilt MLDE models were used when encoding using learned embeddings from the TAPE

transformer, the MSA Transformer, ESM1b, ProtBert-BFD, UniRep, and the TAPE LSTM.

For these encoding strategies, when training size was 384, the sklearn

RandomForestRegressor, sklearn BaggingRegressor, and sklearn KNeighborsRegressor

classes were omitted from the ensemble of models trained. When training size was 24 or 48,

the sklearn ARDRegression, sklearn BaggingRegressor, and sklearn KNeighborsRegressor

classes were omitted from the ensemble of models trained. All other simulations for the other

encodings were performed using all 22 inbuilt MLDE models (See A.3.1: Inbuilt Models for

architectures). Trained models were then ranked according to their cross-validation mean

squared error (MSE) and the predictions of the top three were averaged to predict the fitness

136

of the remaining variants (See A.3: MLDE Programmatic Implementation for details on

model averaging). The values of NDCG, max achieved fitness, and mean achieved fitness

reported for this set of simulations are all based on these predictions.

A.2.4.2 High-Fitness Simulations

A given training set of designed high-fitness training data was produced by sampling variants

such that 50% had a fitness greater than or equal to the value of given threshold and 50% had

fitness below. Additionally, it was enforced that no variant with fitness greater than 0.34

could be chosen. Threshold values of 0.011, 0.034, 0.057, and 0.080 were used in this study

to design fitness-enriched training sets.

To generate multiple training sets for a given threshold, the GB1 dataset was first filtered to

exclude all variants with fitness greater than 0.34. The remaining data was then split into two

sets: one set had all variants with fitness greater than or equal to the threshold and the other

set had all variants with fitness less than the threshold. Equal numbers of samples were then

drawn at random from the two sets without replacement. Training data for the “no-threshold”

control discussed in Section 2.2 and presented in Figure 2-3C-E (“100% Training Fitness ≥

0”) was generated by sampling at random from the GB1 dataset filtered to exclude variants

with fitness greater than 0.34.

For each of the four thresholds and the no-threshold control, 2000 training sets were

generated, each containing 384 variants (10,000 training sets of 384 variants in total). For

simulations using 24 or 48 training samples, the first 24 or 48 variants in these training sets,

respectively, were used for training. Each training set was then fed into the simulated MLDE

pipeline using Georgiev parameters for variant encoding and 5-fold cross-validation for

model selection. For the sake of computational efficiency, only CPU-bound models (those

from scikit-learn and XGBoost) were trained for these simulations. Trained models were

then ranked according to their cross-validation MSE and the predictions of the top three were

averaged to predict the fitness of the unlabeled variants. The values of NDCG, max achieved

fitness, and mean achieved fitness reported for this set of simulations are all based on these

predictions.

137

A.2.4.3 Zero-Shot Simulations

To generate training data using a zero-shot predictor, the GB1 dataset was first ranked by the

zero-shot predictions. Next, the top 1600 variants (i.e., the 1600 variants predicted to have

the highest fitness) were identified, and 2000 random samples of 384 were drawn at random

without replacement. This process was repeated for the top-ranked 3200, 6400, 9600, 12,800,

16,000, and 32,000 variants, resulting in 14,000 total training sets per zero-shot predictor,

each containing 384 random samples, for 42,000 training sets in total (3 zero-shot strategies

× 14,000 training sets/zero-shot strategy = 42,000 total training sets).

For the 384-training-sample simulations, each of the 42,000 training sets was then fed into

the simulated MLDE pipeline. Again, for the sake of computational efficiency, only CPU-

bound (scikit-learn and XGBoost) models were evaluated. Simulations were performed

using one-hot, Georgiev parameters, and learned embeddings from the MSA Transformer

for encoding with 5-fold cross-validation for determining model effectiveness. As with the

encoding comparison simulations, the models from the sklearn classes

RandomForestRegressor, BaggingRegressor, and KNeighborsRegressor were omitted when

encoding using the MSA Transformer due to poor scaling with input feature size. Trained

models were ranked according to their cross-validation MSE and the predictions of the top

three were averaged to predict the fitness of the remaining variants. Only the top-predicted

unsampled combinations that could be constructed by recombining combinations in the

training data were evaluated, enforcing a confidence threshold on predictions and focusing

all resources on regions believed to contain the highest-fitness protein variants. The reported

values of max achieved fitness and mean achieved fitness reported for this set of simulations

are all derived from this restricted set of evaluated proteins, though the fitness value returned

is still normalized to the full unsampled set. For a given simulation, the global maximum is

considered to be achieved if it is present in either the training data or the evaluated

predictions. The random controls presented in the Section 2.2 and in Figure 2-5 and Figure

2-6 are derived from the Encoding Comparison Simulations, but only evaluating the CPU

models and employing the same confidence threshold strategy for evaluating predictions.

138

For the 24- and 48-training-sample simulations, the first 24 and 48 variants in each of the full

384-sample training sets were used for training, respectively. The models omitted from

evaluation for MSA Transformer here were given by the sklearn classes ARDRegression,

BaggingRegressor, and KNeighborsRegressor. Otherwise, the procedure was the same as for

the 384-training-sample simulations.

A.2.4.4 Traditional Directed Evolution Simulations

Traditional DE simulations were performed from every variant in the GB1 landscape with

non-zero starting fitness. Zero-fitness variants were omitted from these simulations as a

researcher would never begin a DE study from such a variant. As in the MLDE simulations,

variants with imputed fitness in the GB1 dataset were ignored for these simulations.

A greedy walk simulation begins with 4 potential positions to evaluate. One of these

positions is selected, the fitness values of all amino acids at this position are evaluated, and

the best mutation is fixed. In the next round, there are three positions to evaluate. One of

these positions is selected, all mutants are evaluated, and the best mutation is fixed again.

This process continues until all positions have been evaluated; the fitness of the best variant

identified in the last round is returned. The results reported for the greedy walk simulations

consider all possible paths from all non-zero-fitness starting variants (with 24 paths per

starting variant and 119,814 non-zero fitness starting points, this is 2,877,216 simulated

greedy walks in total).

A.2.5 Evaluation Metrics

The evaluation metrics used in the work from Chapter 2 include (1) the max normalized true

fitness of the M-highest-ranked variants, (2) the mean normalized true fitness of the M-

highest-ranked variants, and (3) the ranking metric “normalized discounted cumulative gain”

(NDCG) of all predictions (where “gain” is defined as the normalized fitness of unsampled

variants). NDCG was calculated using scikit-learn’s `ndcg_score()` function, which uses the

form

139

𝑁𝐷𝐶𝐺
(∑

𝑓𝑖
𝑙𝑜𝑔2 𝑖 +

𝑁
𝑖 = 1)

(∑
𝑓𝑖

′

𝑙𝑜𝑔2 𝑖 +
𝑁
𝑖 = 1)

⁄

where 𝑓 is the true fitness of all (N) unsampled variants ranked by predicted fitness and 𝑓′

is the true fitness of all unsampled variants ranked by true fitness (i.e., the ideal ordering).

When evaluating a single MLDE simulation, the fitness was normalized to the highest-fitness

variant in the unsampled data. Typically, this was equivalent to normalizing to the highest

fitness in the entire GB1 dataset, as it was extremely unlikely that the highest-fitness variant

in the dataset was drawn in the training set. Still, normalizing to the highest unsampled fitness

allowed me to make more fair comparisons between MLDE simulations in the rare case that

the highest-fitness value appeared in the training data.

A.3 MLDE Programmatic Implementation

The MLDE algorithm takes as input all encodings corresponding to the combinations of

amino acids found in the training data along with their measured fitness values. During the

training stage, these sampled combinations are used to train a version of all inbuilt model

architectures (A.3.1: Inbuilt Models). Specifically, k-fold cross-validation is performed to

train each model using the default model parameters; mean validation error from the k-fold

cross-validation (mean squared error) is recorded for each architecture. All model instances

trained during k-fold cross-validation are also stored for later use. For instance, if evaluating

all 22 inbuilt model architectures with 5-fold cross-validation, 22 × 5 = 110 total trained

model instances are recorded. For making predictions, the top N model architectures (those

with the lowest cross-validation error) are first identified. For each of the top N model

architectures, predictions are made on the unsampled combinations by averaging the

predictions of the k × N model instances stored during cross-validation. For instance, if

testing the top 3 model architectures identified from 5-fold cross-validation, this means that

the predictions of 3 × 5 = 15 total models (3 architectures × 5 model instances/architecture

saved during cross-validation) are used for prediction. For all simulations presented in

Chapter 2, I evaluated model architectures using 5-fold cross-validation and then made

140

predictions using the top 3 (again, meaning that the predictions of 3 × 5 = 15 total models

were averaged for each simulation).

A.3.1 Inbuilt Models

A.3.1.1 Keras

Five separate neural network architectures were implemented using the Python package

Keras: three fully connected neural network architectures and two 1D-convolutional neural

network architectures. The identities and default values of tunable hyperparameters are given

in Table A-8. All neural networks were trained with a batch size of 32 using the “adam”

optimizer for at most 1000 epochs with early stopping after 10 epochs with no improvement

in validation error (calculated against the cross-validation test data).

The fully connected neural networks differed in the number of hidden layers: zero, one, or

two. After each hidden layer, a batch normalization layer was employed, followed by an

exponential linear unit (ELU) nonlinearity. A single dropout layer was used before the output

layer. The output layer was a scalar value passed through an ELU nonlinearity.

The convolutional neural networks differed in the number 1D convolutional layers: one or

two. After each convolutional layer, a batch normalization layer was employed followed by

an ELU nonlinearity. Following the convolutional layers, the output matrix was flattened

with a GlobalAveragePooling1D layer. After flattening, a single dropout layer was used

before the output layer. The output layer was a scalar value passed through an ELU

nonlinearity.

A.3.1.2 XGBoost

Four gradient boosting approaches were implemented in MLDE using the Python package

XGBoost:126 both tree and linear base models were implemented with both

“reg:squarederror” and “reg:tweedie” objectives. For reg:tweedie,

`tweedie_variance_power` was set to 1.5. The identities and default values for tunable

XGBoost hyperparameters are given in Table A-9. Unless explicitly mentioned in Table A-9,

all XGBoost parameters were held at their default values as detailed in the official XGBoost

documentation. The descriptions for all parameters can also be found in the official XGBoost

141

documentation. All XGBoost models used in this work were implemented with early

stopping: `eval_metric` was set to “rmse” when the “reg:squarederror” objective was used

and “tweedie-nloglik@1.5” when the “reg:tweedie” objective was used; validation error was

calculated against the cross-validation test data; training was terminated if validation error

did not decrease for 10 epochs or 1000 total training epochs had passed.

A.3.1.3 Scikit-learn

Only scikit-learn models were used in the original implementation of MLDE.82,196 To remain

consistent with this first implementation, the regressor models from scikit-learn that were

procedurally effective (i.e., those that did not consistently error during operation or else take

a very long time to train) while using default parameters in this previous implementation

were also used in the version presented in Chapter 2. The identities and default values for

tunable scikit-learn hyperparameters are given in Table A-10. Unless explicitly mentioned

in Table A-10, all scikit-learn parameters were held at their default values as detailed in the

official scikit-learn documentation. The descriptions for all parameters can also be found in

the official documentation.

A.4 Compute Environment

All MLDE code is written in Python using Anaconda as the environment manager. The

Anaconda environments "mlde.yml" and “mlde2.yml” within the MLDE GitHub page can

be used to build environments in which MLDE is known to be stable.

A.5 Computational Hardware Information

Simulations were performed across three workstations, a local server, and an r5.24xlarge

Amazon Web Services (AWS) EC2 instance. All three workstations ran on Ubuntu 18.04.3

LTS. Two of the workstations contained Intel i7-8700 processors with an NVIDIA Titan V

and NVIDIA GeForce RTX 2070 GPU; the third workstation contained an AMD Ryzen 9

3900x processor with two NVIDIA RTX 2070 GPUs. The local server ran on Ubuntu

20.04.02 LTS and contained 2 × Intel Xeon Gold 6248R processors; there were no GPUs in

the local server. Triad calculations were performed on an Intel-containing desktop (fixed

backbone) and a c5.24xlarge AWS EC2 instance (flexible backbone). Information regarding

142

which computer ran which specific simulation/computation with which specific piece of

hardware is available upon request.

A.6 Supplementary Item Descriptions

Data S1. Encoding comparison summary metrics, related to Figure 2-2. This file provides

summary statistics for the encoding comparison simulations from Section 2.2.2. For each

encoding and training set size tested, I provide the mean, median, and standard deviation of

five different summary metrics. The summary metrics are the “max fitness achieved,” “mean

fitness achieved,” “NDCG,” “NDCG-1536,” and “NDCG-384.” The summary metrics

“NDCG-1536” and “NDCG-384” are the NDCG score calculated using only the 1536 and

384 highest-ranked samples, respectively.

Data S2. Pairwise encoding comparison results, related to Figure 2-2. Because the cross-

validation indices, random seeds, and training datasets were kept the same for each encoding

strategy tested in Section 2.2.2, pairwise comparisons of simulation results can be made. This

file provides a pairwise comparison of simulation results by summary metric and training set

size for each encoding tested in the Section 2.2.2. Specifically, it provides the counts and

frequencies by which a given encoding using a given training set size achieved a higher

summary metric score for the five different summary metrics provided in Data S1.

Data S3. Summary statistics for ftMLDE simulations compared to traditional DE simulations

and MLDE simulations, related to Figure 2-5 and Figure 2-6. Summary statistics are

provided for every simulation depicted in Figure 2-5 and Figure 2-6 as well as Figure A-7 –

Figure A-10. Specific summary metrics are the “max fitness achieved,” “mean fitness

achieved,” “NDCG,” “NDCG-1536,” “NDCG-384,” “GlobalMaxFound,” and

“UnsampledMaxFound.” The summary metrics “NDCG-1536” and “NDCG-384” are the

NDCG score calculated using only the 1536 and 384 highest-ranked samples, respectively.

The summary metric “GlobalMaxFound” is the percent of simulations in which the global

maximum was identified in either the training data or tested predictions. The summary metric

“UnsampledMaxFound” is the percent of simulations in which the maximum of the

unsampled data was identified in the tested predictions. The final column

143

(“BetterThanTrad”) is “TRUE” if the combination of zero-shot strategy, encoding, sampling

threshold, and training set size achieved the global maximum more frequently than

traditional DE simulations.

144

A.7 Supplemental Figures

Figure A-1. Summary statistics (shown as empirical cumulative distribution functions) for

the 2000 training sets (each consisting of 384 samples) designed to be enriched in fit variants,

related to Figure 2-3. For a given threshold, 50% of variants in the training data have fitness

greater than or equal to the threshold and the remainder have fitness less than or equal to the

threshold. When the threshold = 0, 100% of variants in the training data have fitness greater

than or equal to 0. For all thresholds (including the one with a threshold at 0), the maximum

allowed fitness in the training data is 0.34. The random sample is equivalent to the data with

a threshold at 0, but does not have the upper bound on training fitness. (A) Plots of the mean

fitness of all variants in a training set for all 2000 training sets designed to be enriched in

fitness. As the fitness threshold increases, the mean fitness rises as expected. (B) Plots of the

mean pairwise hamming distance between all members of a training set for all 2000 training

sets designed to be enriched in fitness. A higher mean pairwise hamming distance indicates

greater sequence diversity in the training data. As the fitness threshold increases, the mean

pairwise hamming distance decreases. This is because the training data is increasingly

restricted to the narrow regions of sequence space that contain higher-fitness variants.

145

Figure A-2. Experimental ΔΔG versus true fitness and predicted ΔΔG, related to Figure

2-4. (A) Relationship between experimentally determined ΔΔG and GB1 fitness for single

mutants at positions V39, D40, G41, and V54; both metrics are ranked from lowest value to

highest value. I define a lower ΔΔG to be stabilizing and a higher ΔΔG to be destabilizing.

The fitness of GB1 (at least at the considered positions) is loosely correlated with ΔΔG, but

is clearly not the only determinant, with some lower-fitness variants having low ΔΔG and

some higher-fitness variants having high ΔΔG. (B) Comparison of predicted ΔΔG upon

mutation for GB1 variants using fixed backbone calculations to experimentally measured

values of ΔΔG for single mutants at positions V39, D40, G41, and V54. (C) Comparison of

predicted ΔΔG for GB1 variants using flexible backbone calculations to experimentally

measured values of ΔΔG for single mutants at positions V39, D40, G41, and V54.

146

Figure A-3. Results of zero-shot prediction using flexible backbone Triad ΔΔG calculations,

related to Figure 2-4. (A) The fitness of all GB1 variants plotted against the rank (from lowest

to highest ΔΔG) given by Triad calculations. Blue dots are all individual variants while the

orange line is the sliding mean (window size = 1000) of fitness. (B) The log-fitness of all

GB1 variants plotted against the rank given by Triad calculations. Blue dots are all individual

variants while the black line is the sliding median (window size = 1000) of fitness. (C)

Cumulative fitness metrics for all GB1 variants ranked by Triad score. The blue curve gives

the percentage of variants ranked up to and including a given Triad rank that have fitness

greater than 0.011. The orange curve gives the percentage of all “fit” (defined as fitness

greater than 0.011) variants encompassed in the set up to and including a given Triad rank.

147

Figure A-4. Results of zero-shot prediction using flexible backbone Triad root mean squared

deviation (RMSD) calculations, related to Figure 2-4. (A) The fitness of all GB1 variants

plotted against the rank (from lowest to highest RMSD) given by Triad calculations. Blue

dots are all individual variants while the orange line is the sliding mean (window size = 1000)

of fitness. (B) The log-fitness of all GB1 variants plotted against the rank given by Triad

calculations. Blue dots are all individual variants while the black line is the sliding median

(window size = 1000) of fitness. (C) Cumulative fitness metrics for all GB1 variants ranked

by Triad score. The blue curve gives the percentage of variants ranked up to and including a

given Triad rank that have fitness greater than 0.011. The orange curve gives the percentage

of all “fit” (defined as fitness greater than 0.011) variants encompassed in the set up to and

including a given Triad rank.

148

Figure A-5. GB1 crystal structure (PDB: 2GI9) with the positions mutated in the GB1

combinatorial landscape highlighted in red, related to Figure 2-4.

149

Figure A-6. Summary statistics (shown as empirical cumulative distribution functions) for

the 384-sample training sets generated using all zero-shot predictors, related to Figure 2-5

and Figure 2-6. For each subplot (A–C), the left panel shows the mean fitness of all variants

in a training set for all 2000 training sets derived for each sampling threshold; the right panel

shows the mean pairwise hamming distance between all members of a training set for all

2000 training sets derived from each sampling threshold. In all subplots, as the threshold

increases, the mean fitness decreases as more low-fitness variants have the potential to be

included in the training data. Likewise, as the threshold increases, the mean pairwise

hamming distance also increases. This is because predictive algorithms will tend to group

similar sequences as having similar properties, and so sequences close in rank-order (as given

by the zero-shot predictors) will be similar. By increasing the range of the rank from which

we sample, the range of sequences sampled is thus also increased. (A) The summary statistics

for training data derived from EVmutation zero-shot predictions. (B) The summary statistics

for training data derived from zero-shot predictions made using the MSA Transformer for

masked token prediction. (C) The summary statistics for training data derived from zero-shot

predictions made using predicted ΔΔG with a fixed backbone.

150

Figure A-7. Zero-shot prediction for training set design enables highly effective ftMLDE on

the GB1 landscape, as measured by maximum fitness achieved in simulated experiments,

related to Figure 2-5. Each subplot (A–C) shows the effect of different zero-shot predictors

on the maximum fitness achieved in simulated ftMLDE experiments. Each violin (except for

the grey ones corresponding to simulated traditional DE) represents data from 2000

simulated experiments where 48 variants were used for training and the top 32 predictions

were tested. The major groupings of violins within each subplot correspond to different

encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the MSA

Transformer). The color of each violin corresponds to the zero-shot sampling threshold (i.e.,

the number of best-ranked variants according to a zero-shot predictor from which random

samples were drawn to generate training data). Results of ftMLDE are compared to the

results of simulated traditional DE (at the left of each plot, in grey) and standard MLDE (the

three pink violins in each plot). (A) The maximum fitness achieved by simulated ftMLDE

when EVmutation was used as the zero-shot predictor for training set design. (B) The

maximum fitness achieved by simulated ftMLDE when a mask-filling protocol using the

MSA Transformer was used as the zero-shot predictor for training set design. (C) The

maximum fitness achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-

shot predictor for training set design.

151

Figure A-8. Zero-shot prediction for training set design enables highly effective ftMLDE on

the GB1 landscape, as measured by maximum fitness achieved in simulated experiments,

related to Figure 2-5. Each subplot (A–C) shows the effect of different zero-shot predictors

on the maximum fitness achieved in simulated ftMLDE experiments. Each violin (except for

the grey ones corresponding to simulated traditional DE) represents data from 2000

simulated experiments where 24 variants were used for training and the top 56 predictions

were tested. The major groupings of violins within each subplot correspond to different

encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the MSA

Transformer). The color of each violin corresponds to the zero-shot sampling threshold (i.e.,

the number of best-ranked variants according to a zero-shot predictor from which random

samples were drawn to generate training data). Results of ftMLDE are compared to the

results of simulated traditional DE (at the left of each plot, in grey) and standard MLDE (the

three pink violins in each plot). (A) The maximum fitness achieved by simulated ftMLDE

when EVmutation was used as the zero-shot predictor for training set design. (B) The

maximum fitness achieved by simulated ftMLDE when a mask-filling protocol using the

MSA Transformer was used as the zero-shot predictor for training set design. (C) The

maximum fitness achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-

shot predictor for training set design.

152

Figure A-9. Zero-shot prediction for training set design enables highly effective ftMLDE on

the GB1 landscape, as measured by mean fitness achieved in simulated experiments, related

to Figure 2-6. Each subplot (A–C) shows the effect of different zero-shot predictors on the

mean fitness achieved in simulated ftMLDE experiments. Each violin represents data from

2000 simulated experiments where 48 variants were used for training and the top 32

predictions were tested. The major groupings of violins within each subplot correspond to

different encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the

MSA Transformer). The color of each violin corresponds to the zero-shot sampling threshold

(i.e., the number of best-ranked variants according to a zero-shot predictor from which

random samples were drawn to generate training data). Results of ftMLDE are compared to

the results of standard MLDE (the three pink violins in each plot). (A) The mean fitness

achieved by simulated ftMLDE when EVmutation was used as the zero-shot predictor for

training set design. (B) The mean fitness achieved by simulated ftMLDE when a mask-filling

protocol using the MSA Transformer was used as the zero-shot predictor for training set

design. (C) The mean fitness achieved by simulated ftMLDE when predicted ΔΔG was used

as the zero-shot predictor for training set design.

153

Figure A-10. Zero-shot prediction for training set design enables highly effective ftMLDE

on the GB1 landscape, as measured by mean fitness achieved in simulated experiments,

related to Figure 2-6. Each subplot (A–C) shows the effect of different zero-shot predictors

on the mean fitness achieved in simulated ftMLDE experiments. Each violin represents data

from 2000 simulated experiments where 24 variants were used for training and the top 56

predictions were tested. The major groupings of violins within each subplot correspond to

different encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the

MSA Transformer). The color of each violin corresponds to the zero-shot sampling threshold

(i.e., the number of best-ranked variants according to a zero-shot predictor from which

random samples were drawn to generate training data). Results of ftMLDE are compared to

the results of standard MLDE (the three pink violins in each plot). (A) The mean fitness

achieved by simulated ftMLDE when EVmutation was used as the zero-shot predictor for

training set design. (B) The mean fitness achieved by simulated ftMLDE when a mask-filling

protocol using the MSA Transformer was used as the zero-shot predictor for training set

design. (C) The mean fitness achieved by simulated ftMLDE when predicted ΔΔG was used

as the zero-shot predictor for training set design.

154

A.8 Supplemental Tables

Table A-1. The frequency with which the 2-layer 1D convolutional neural network (1D

CNN) architecture appeared in the top 3 models (as ranked by cross-validation error) over

2000 rounds of simulated MLDE for each encoding type by training data size, related to

Figure 2-2. The 2-layer 1D CNN was particularly effective when trained on 384 points,

especially for higher-dimensional encodings. The same could not be said for the model when

trained on 24 or 48 training points.

Encoding Amino Acid

Encoding

Dimensionality

Percentage 2-

Layer CNN in

Top 3, 384

Training Points

Percentage 2-

Layer CNN in

Top 3, 48

Training Points

Percentage 2-

Layer CNN in

Top 3, 24

Training Points

Georgiev 19 14.55% 2.60% 6.30%

OneHot 20 20.55% 3.45% 5.45%

Bepler 100 18.30% 2.15% 3.75%

ResNet 256 38.05% 6.70% 6.05%

TAPE-

Transformer

512

57.80% 9.35% 7.15%

MSA

Transformer

768

32.80% 3.70% 4.85%

ProtBert-BFD 1024 36.85% 3.65% 3.55%

Esm1b 1280 32.80% 3.00% 4.00%

UniRep 1900 51.65% 4.55% 5.30%

LSTM 2048 62.15% 5.20% 5.20%

155

Table A-2. The frequency with which the 1-layer 1D convolutional neural network (1D

CNN) architecture appeared in the top 3 models (as ranked by cross-validation error) over

2000 rounds of simulated MLDE for each encoding type by training data size, related to

Figure 2-2. The 1-layer 1D CNN was generally not as effective as the 2-layer 1D CNN.

Encoding Amino Acid

Encoding

Dimensionality

Percentage 1-

Layer CNN in

Top 3, 384

Training Points

Percentage 1-

Layer CNN in

Top 3, 48

Training Points

Percentage 1-

Layer CNN in

Top 3, 24

Training Points

Georgiev 19 4.20% 3.85% 6.50%

OneHot 20 9.05% 3.50% 5.90%

Bepler 100 1.90% 1.05% 2.40%

ResNet 256 2.20% 3.80% 4.25%

TAPE-

Transformer

512

19.50% 9.75% 10.75%

MSA

Transformer

768

11.85% 3.05% 5.45%

ProtBert-BFD 1024 6.55% 1.85% 4.90%

Esm1b 1280 11.00% 1.35% 5.90%

UniRep 1900 5.70% 1.40% 5.75%

LSTM 2048 7.95% 1.40% 6.50%

156

Table A-3. The frequencies with which XGBoost models with a tree base model and trained

with the Tweedie regression objective achieved a greater than or equal to MLDE outcome

than the same models trained with the standard regression objective, related to Figure 2-2.

MLDE outcome is measured by max fitness achieved, mean fitness achieved, and NDCG.

Frequencies are calculated over 2000 simulated MLDE experiments for each combination of

encoding and number of training points. Instances where Tweedie gave a greater than or

equal to result compared to standard regression are bolded.

Encoding
Training

Points

Max, Percent

Tweedie ≥

Standard

Mean, Percent

Tweedie ≥

Standard

NDCG, Percent

Tweedie ≥

Standard

Bepler 24 60.85% 63.40% 67.80%

ESM1b 24 69.50% 74.85% 80.60%

Georgiev 24 63.40% 67.60% 68.60%

LSTM 24 69.55% 75.15% 81.15%

MSA Transformer 24 67.30% 71.70% 75.50%

OneHot 24 55.30% 51.80% 42.05%

ProtBert-BFD 24 68.65% 72.95% 77.15%

ResNet 24 66.95% 69.05% 72.40%

TAPE-Transformer 24 66.35% 72.00% 78.25%

UniRep 24 69.90% 73.95% 80.25%

Bepler 48 69.70% 75.95% 87.90%

ESM1b 48 77.90% 87.60% 97.60%

Georgiev 48 71.45% 75.05% 86.05%

LSTM 48 74.90% 84.15% 96.40%

MSA Transformer 48 73.35% 84.20% 95.40%

OneHot 48 65.20% 62.80% 58.05%

ProtBert-BFD 48 77.50% 87.00% 97.55%

ResNet 48 71.05% 77.70% 88.85%

TAPE-Transformer 48 72.75% 82.55% 94.95%

UniRep 48 79.30% 86.60% 97.45%

Bepler 384 80.50% 96.55% 100.00%

ESM1b 384 71.80% 90.40% 99.00%

Georgiev 384 72.60% 76.05% 98.80%

LSTM 384 71.70% 88.95% 99.90%

MSA Transformer 384 68.35% 84.30% 99.20%

OneHot 384 74.75% 76.15% 94.35%

ProtBert-BFD 384 75.35% 92.60% 99.50%

ResNet 384 81.65% 95.05% 99.80%

TAPE-Transformer 384 73.65% 91.60% 99.65%

UniRep 384 72.40% 95.50% 100.00%

157

Table A-4. The frequencies with which XGBoost models with a linear base model and

trained with the Tweedie regression objective achieved a greater than or equal to MLDE

outcome than the same models trained with the standard regression objective, related to

Figure 2-2. MLDE outcome is measured by max fitness achieved, mean fitness achieved,

and NDCG. Frequencies are calculated over 2000 simulated MLDE experiments for each

combination of encoding and number of training points. Instances where Tweedie gave a

greater than or equal to result compared to standard regression are bolded.

Encoding Training

Points

Max, Percent

Tweedie ≥

Standard

Mean, Percent

Tweedie ≥

Standard

NDCG, Percent

Tweedie ≥

Standard

Bepler 24 58.85% 50.05% 73.80%

ESM1b 24 45.40% 44.20% 61.85%

Georgiev 24 87.70% 63.65% 81.35%

LSTM 24 42.90% 42.30% 62.60%

MSA Transformer 24 54.30% 53.55% 73.80%

OneHot 24 96.00% 55.10% 61.30%

ProtBert-BFD 24 45.05% 43.85% 62.90%

ResNet 24 67.60% 59.35% 75.95%

TAPE-Transformer 24 49.00% 49.10% 66.60%

UniRep 24 46.90% 43.00% 67.40%

Bepler 48 52.10% 42.85% 83.50%

ESM1b 48 40.50% 41.15% 62.80%

Georgiev 48 80.25% 67.45% 90.75%

LSTM 48 30.30% 30.95% 50.25%

MSA Transformer 48 55.50% 54.70% 80.10%

OneHot 48 94.45% 55.60% 67.00%

ProtBert-BFD 48 48.35% 47.70% 72.80%

ResNet 48 69.85% 57.20% 87.80%

TAPE-Transformer 48 57.70% 52.60% 84.45%

UniRep 48 35.15% 31.60% 57.95%

Bepler 384 34.75% 17.30% 70.60%

ESM1b 384 46.35% 24.80% 96.05%

Georgiev 384 72.10% 42.90% 96.75%

LSTM 384 64.10% 70.75% 99.90%

MSA Transformer 384 69.35% 63.15% 99.95%

OneHot 384 95.90% 46.95% 90.60%

ProtBert-BFD 384 43.15% 25.10% 99.50%

ResNet 384 66.00% 55.70% 92.85%

TAPE-Transformer 384 65.45% 46.80% 98.00%

UniRep 384 49.25% 48.40% 99.55%

158

Table A-5. Expected max of the top 96 predictions, mean of the top 96 predictions, and

normalized discounted cumulative gain (NDCG) for the 2000 ftMLDE simulations

performed using training data designed to be enriched in fit variants, related to Figure 2-3.

Thresh Max Fitness

Achieved

Mean Fitness

Achieved

NDCG

0.000 0.656 0.210 0.821

0.011 0.778 0.313 0.885

0.034 0.795 0.331 0.894

0.057 0.810 0.343 0.899

0.080 0.806 0.345 0.901

Table A-6. Effectiveness of zero shot strategies that did not rely on a mask filling protocol,

related to Figure 2-4. A more positive Spearman ρ indicates a more effective prediction. The

entry “Triad_FlexibleBb_ΔΔG” refers to zero-shot predictions made using predicted ΔΔG

with a flexible protein backbone; the entry “Triad_FlexibleBb_RMSD” refers to zero-shot

predictions made using predicted RMSD with a flexible protein backbone; the entry

“Triad_FixedBb_ΔΔG” refers to zero-shot predictions made using predicted ΔΔG with a

fixed protein backbone.

ZeroShotStrategy Spearman ρ

Triad_FlexibleBb_ΔΔG -0.02

DeepSequence 0.05

Triad_FlexibleBb_RMSD 0.06

EVmutation 0.21

Triad_FixedBb_ΔΔG 0.27

159

Table A-7. Effectiveness of different transformer models for zero-shot predictions of GB1

fitness using a masked token prediction protocol, related to Figure 2-4. A more positive

Spearman ρ indicates a more effective prediction. All models except the MSA Transformer

showed poor predictive performance when used for zero-shot prediction; the mask filling

rankings provided by many models showed negative correlation with GB1 fitness, indicating

a prediction that was worse than a random guess.

Model Name Parameters

(Millions)

Training Data

Source

Conditional

Spearman ρ

Naïve

Spearman ρ

esm1_t34_670M_UR50S 670 UniRef50 -0.12 -0.09

esm1_t34_670M_UR50D 670

UniRef100

Sampled Evenly

Across UniRef50

Clusters

-0.11 -0.08

esm1_t12_85M_UR50S 85 UniRef50 -0.08 -0.06

ESM1b 650 UniRef50 -0.06 -0.03

esm1_t6_43M_UR50S 43 UniRef50 -0.05 -0.03

ProtBert-BFD 420
Big Fat Database

(BFD)
-0.05 0.00

ProtBert 420 UniRef100 -0.02 0.00

esm1_t34_670M_UR100 670 UniRef100 0.03 0.04

MSA Transformer 100

MSAs of Each

UniRef50

Sequence Against

UniClust30

0.20 0.24

160

Table A-8. The tunable parameters with their default values for the different neural network

architectures used in MLDE.

161

Table A-9. The tunable parameters with their default values for the base models used in the

XGBoost models of MLDE. “See XGBoost docs” indicates that the default values provided

in XGBoost were used.

162

Table A-10. The tunable parameters with their default values for the scikit-learn models used

in MLDE. “See sklearn docs” indicates that the default values provided in scikit-learn were

used.

163

Table A-11. Key resources related to Chapter 2.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Protein G Domain B1 (GB1)

Combinatorial Fitness

Landscape

(Wu et al., 2016) DOI: 10.7554/eLife.16965

Protein G Domain B1 (GB1)

Structure

Protein Data Bank

(PDB)

PDB: 2GI9

Encodings, training indices, and

other information needed for

replicating this work; simulation

results by model; summary

statistics for all simulations

This Study DOI: 10.22002/D1.1958

Additional figures too numerous

to include in the appendices

This Study https://github.com/fhalab/MLDE/SupplementalFigures;

https://data.caltech.edu/badge/latestdoi/318607673

Software and Algorithms

Triad Protabit, Pasadena,

CA, USA

https://triad.protabit.com/

Anaconda Package Manager https://anaconda.org/; Specific package versions used in

this work are given in the provided mlde.yml and

mlde2.yml files on the GitHub repository associated

with this work (https://github.com/fhalab/MLDE);

especially important packages are listed in subsequent

entries

Tasks Assessing Protein

Embeddings (TAPE)

(Rao et al., 2019) https://github.com/songlab-cal/tape-neurips2019

Evolutionary Scale Modeling

(ESM)

(Rao et al., 2021;

Rives et al., 2021)

https://github.com/facebookresearch/esm

ProtTrans (Elnaggar et al.,

2020)

https://github.com/agemagician/ProtTrans

Machine Learning-Assisted

Directed Evolution (MLDE)

This Study https://data.caltech.edu/badge/latestdoi/318607673

Keras Python Package https://anaconda.org/conda-forge/keras

XGBoost Python Package (Chen and Guestrin,

2016)

https://anaconda.org/conda-forge/xgboost

scikit-learn Python Package (Buitinck et al.,

2013)

https://anaconda.org/anaconda/scikit-learn

https://github.com/fhalab/MLDE/SupplementalFigures
https://anaconda.org/
https://github.com/fhalab/MLDE

164

A p p e n d i x B

 SUPPORTING MATERIAL FOR CHAPTER 4

B.1 Materials and Methods

B.1.1 Single-Site-Saturation Library Generation for TrpB

Saturation mutagenesis libraries were prepared using a modification of the “22-codon trick”

described by Kille et al.85 Primers were first designed using the templates given in Table

B-12. For the forward primers, each sequence of “NNN” in these templates was replaced

with “NDT,” “VHG,” and “TGG,” resulting in a total of three degenerate primers that could

then be mixed at a ratio of 12:9:1, respectively. The reverse primers were used without

changes.

Primers were also designed that bind within the ampicillin resistance (AmpR) gene in

pET22b(+) with sequences as given in Table B-13. These primers were designed such that,

when used in combination with the site-specific primers to run a PCR, two medium-length

fragments would be created with a break in the AmpR gene. For the forward site-saturation

primers, a PCR was performed using the reverse AmpR primer, resulting in a fragment from

~1500–2000 bp long. For the reverse site-saturation primers, a PCR was performed using the

forward AmpR primer, resulting in a fragment ~4500–5000 bp long.

Once PCRs finished, 1 µL of DpnI (NEB R0176S) was added to each of the reactions, which

were then incubated at 37 °C for 1 h to digest the unmutated template plasmid. The presence

of correctly sized fragments was confirmed via gel electrophoresis and each fragment was

then excised from the gel and purified with the Zymoclean Gel DNA Recovery Kit (Zymo

Research D4002).

Purified fragments were then assembled following the standard Gibson assembly method.197

After 1 h at 50 °C, the reaction mixtures were desalted with a DNA Clean & Concentrator-5

kit (Zymo Research D4013) and used to transform electrocompetent E. cloni cells (Lucigen

60051-1). Libraries were spread onto solid agar selection medium consisting of Luria Broth

(RPI L24040-5000.0) supplemented with 100 µg/mL carbenicillin (LBcarb) and incubated at

165

37 °C until single colonies were observed. Individual colonies were then transferred into the

wells of 96-well 2-mL deep-well plates containing 300 µL of LBcarb to isolate monoclonal

enzyme variants, with 8 wells being reserved for control conditions, giving 4-fold

oversampling of the 22-codon library. These cultures were grown overnight at 37 °C, 220

rpm, and 80% humidity in an Infors Multitron HT until they reached stationary phase, at

which point 100 µL from each well were mixed with an equal volume of 50% glycerol and

stored at –80 °C for future use.

For protein expression, 20 µL of the remaining culture were used to inoculate 630 µL of

Terrific Broth with 100 µg/mL carbenicillin (TBcarb). These were then grown at 37 °C, 220

rpm, and 80% humidity for 3 hours in an Infors Multitron HT, at which point they were

placed on ice for 30 minutes. Following this, 50 µL of a 14 mM solution of isopropyl-β-d-

thiogalactoside (IPTG; GoldBio #I2481C100) in TBcarb were added to each well to induce

protein expression at a final concentration of 1 mM IPTG. Expression proceeded in the same

Infors Multitron HT shaker as before at 22 °C, 220 rpm for roughly 18 hours. Cells were

harvested via centrifugation at 4500g for 10 minutes, the supernatant was removed, and the

plates (now containing pelleted, expressed cells) were placed at –20 °C until needed.

Once cells had been harvested, cultures for evSeq were prepared. These cultures were started

from the 96-well plate glycerol stocks prepared prior to moving into the cell expression

protocol; the cultures were grown overnight (~18hrs) in an Infors Multitron HT (220 rpm,

37 °C) to saturation in 96-well deep-well plates in 300 µL of LBcarb. These cultures were then

frozen and stored at –20 °C to be used for sequencing with evSeq.

A GenBank file detailing the plasmid and primers used in this section is available on the

evSeq GitHub at https://github.com/fhalab/evSeq/tree/master/genbank_files/tm9d8s.gb.

B.1.2 Sequencing TrpB Libraries with evSeq

Frozen overnight cultures (preparation detailed in the previous section) were thawed at room

temperature. Libraries were then sequenced with the process described in B.2.3; the evSeq

software was run using all default parameters (average_q_cutoff = 25, bp_q_cutoff = 30,

https://github.com/fhalab/evSeq/tree/master/genbank_files/tm9d8s.gb

166

length_cutoff = 0.9, match_score = 1, mismatch_penalty = 0, gap_open_penalty = 3,

gap_extension_penalty = 1, variable_thresh = 0.2, variable_count = 10) with the

“return_alignments” flag thrown. The inner primers used for library preparation are in Table

B-14. The barcode plates (Table B-3 – Table B-10) were paired to positions as given in Table

B-15.

B.1.3 Measuring the Rate of Tryptophan Formation

Rate of tryptophan formation data was collected with the same procedure described in Rix

et al. for non-heat-treated lysate preparation in the section “Indole rate measurements” with

a few modifications: lysis occurred in 300 μL KPi buffer with 100 μM pyridoxal 5’-

phosphate (PLP) supplemented with 1 mg/mL lysozyme, 0.02 mg/mL bovine pancreas

DNase I, and 0.1x BugBuster; lysis occurred at 37 °C for 1 h.101

B.1.4 Four-Site-Saturation Library Generation for RmaNOD

Positions S28, M31, Q52, and L56 of a variant of RmaNOD (RmaNOD Y32G) were targeted

for comprehensive site-saturation mutagenesis using a variant of the 22-codon trick

originally described by Kille et al.85 Due to the proximity of positions S28 and M31, it was

easiest to use the same mutagenesis primers to target them; the same was done for positions

Q52 and L56. Because the 22-codon trick requires three degenerate codons per position

targeted, nine individual primers capturing all combinations (3 codons ^ 2 positions/per

primer = 9 primers) of the degenerate codons had to be ordered for each of the two mutagenic

primers. Sequences of these primers are given in Table B-16.

The primers from Table B-16 were all ordered from IDT at 100 μM. Both a “forward” and a

“reverse” primer mixture were prepared by combining individual forward and reverse

primers in proportion to the number of individual codons they encoded. A 10 μM forward-

reverse primer mixture was then prepared by adding 10 μL of both the forward and reverse

primer mixtures to 80 μL ddH2O. Once the forward-reverse primer mixture was prepared, it

was used in a PCR to build a pool of DNA fragments containing the four-site combinatorial

libraries. Two fragments that captured the remainder of the RmaNOD gene and host plasmid

167

(pET22b(+)) were also produced by PCR. The primers used for these flanking fragments are

given in Table B-17.

After PCR completed 1 μL DpnI (NEB R0176S) was added to each reaction. The reactions

were then held at 37 °C in a thermalcycler for 1 h. The PCR fragments were then gel-

extracted using a Zymoclean Gel DNA Recovery Kit (D4002).

Fragments were to eventually be assembled using Gibson assembly.197 Because the

efficiency of Gibson assembly increases with decreasing numbers of fragments, an assembly

PCR was performed to combine flanking fragment 1 (see Table B-17 for details) and the

variant fragment. The resultant assembled fragment was then gel-extracted, again using a

Zymoclean Gel DNA Recovery Kit (D4002).

To complete construction of the library of variant plasmids, a Gibson assembly was

performed to combine the assembled PCR fragment and flanking fragment 0. After Gibson

assembly, the Gibson reaction was cleaned using a Monarch PCR & DNA Cleanup Kit (NEB

CAT T1030L). The cleaned Gibson product was next used to transform electrocompetent E.

cloni BL21 DE3. Transformed cells were spread onto solid agar selection medium consisting

of Luria Broth (RPI L24040-5000.0) supplemented with 100 µg/mL ampicillin (LBamp) and

incubated at 37 °C until single colonies were observed.

To build the 96-well plates of RmaNOD variants used to demonstrate evSeq, 400 μL LB +

100 μg/mL ampicillin were first added to each well of 5x 96-well deepwell plates. Colonies

from the agar plates grown overnight were then picked into the wells of the deepwell plates.

The plates were placed in an Infors Multitron HT at 240 rpm, 37 °C for ~16 h. To glycerol

stock the now-stationary-phase culture, 100 μL overnight culture were added to 100 μL 50%

glycerol before being stored at -80 °C until its use in evSeq library preparation.

A GenBank file detailing the plasmid and primers used in this section is available on the

evSeq GitHub (https://github.com/fhalab/evSeq/tree/master/genbank_files/rmanod_y32g

.gb).

168

B.1.5 Sequencing RmaNOD Libraries with evSeq

To begin preparation of culture for evSeq with the RmaNOD variants, cultures in 96-well

deep-well plates (with 300 µL of LBcarb) were started from the 96-well plate glycerol stocks

prepared in the previous section. The plates were placed in an Infors Multitron HT at 240

rpm; the cultures were grown overnight (~18hrs) before being frozen and stored at –20 °C.

To start the evSeq protocol, frozen overnight cultures were thawed in a room temperature

water bath. Libraries were then sequenced with the process described in B.2.3; the evSeq

software was run using the same parameters as for the TrpB data analysis (see Section B.1.2).

The inner primers used for evSeq library preparation are given in Table B-18. The barcode

plates (Table B-3 – Table B-10) were paired to positions as given in Table B-19.

B.1.6 Oligo Design

B.1.6.1 Inner Primer Design

The inner primers of evSeq are specific to the region of interest. Each region of interest is

captured by both a forward and reverse primer. These primers have the below general layout:

F: 5’ – CACCCAAGACCACTCTCCGGXXXXXXX… – 3’

R: 5’ – CGGTGTGCGAAGTAGGTGCXXXXXXXX… – 3’

The 5’ region is a universal adapter to which outer primers bind (see Section B.2.2) while

the 3’ region (denoted by “X” in the primers above) is specific to the region of interest. Note

that the length of the variable 3’ region will vary depending on the target gene (this is

indicated by the ellipses at the end of the poly-X region). Note that there is no need for the

two primers in the pair to be equal length—I show them as such to highlight the fact that the

forward universal adapter is one base longer than the reverse universal adapter. Detailed

instructions for effective primer construction are provided on the evSeq wiki

(https://fhalab.github.io/evSeq/1-lib_prep.html#inner-primer-design).

https://fhalab.github.io/evSeq/1-lib_prep.html#inner-primer-design

169

B.1.6.2 Outer Primer Design

The barcode (outer) primers used in evSeq all follow the below layout:

F: 5’ – TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGXXXXXXXCACCCAAGACCACTCTCCGG – 3’

R: 5’ – GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGXXXXXXXCGGTGTGCGAAGTAGGTGC – 3’

Each of these primers consists of (1) a 5’ sequence matching the Illumina Nextera

transposase adapters, (2) a central unique 7-nucleotide barcode (Table B-1), and (3) a 3’

universal seed that matches the 5’ adapter of the inner primers (see Section B.1.6.1). Note

that only Illumina indices compatible with the Nextera transposase adapters can be used with

the provided outer primer designs; other indexing systems would require different adapters.

The full set of outer primers used in this study can be found in Table B-2; they can be ordered

from IDT by following the instructions provided in B.2.1.

B.1.6.3 Barcode Design

evSeq uses 192 unique 7-nucleotide barcodes (Table B-1). The barcodes were designed to

satisfy the below criteria:

1. All barcodes must have GC-content of 40–60%.

2. All barcodes must be at least 3 substitutions apart. This is to prevent misassignment

of reads due to sequencing errors of the barcodes.

3. No barcode can have 3 of the same bases in a row. This is to reduce sequencing

errors.

4. No barcode can be a sub-sequence of the Nextera transposase adapters or their

reverse complements (see below). This is to avoid interference with downstream

Illumina chemistry.

5. No barcode can be a sub-sequence of the Illumina p5 and p7 flow cell-binding

sequences or their reverse complements (see below for sequences). Again, this is to

avoid interference with downstream Illumina chemistry.

170

The Nextera transposase adapter sequences are below:

5’ – TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG – 3'

5’ – GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG – 3'

The p5 and p7 flow cell-binding sequences are below:

p5: 5’ – AATGATACGGCGACCACCGAGATCTACAC – 3'

p7: 5’ – CAAGCAGAAGACGGCATACGAGAT – 3’

B.2 Protocols

B.2.1 Ordering Barcode Primers from IDT

I provide a pre-filled IDT order form for all evSeq primers on the evSeq GitHub repository

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/IdtOrderForm.xlsx). This order

form can be used to order evSeq primers in the 96-well plate layout needed to prepare the

evSeq barcode primer mixes (see Section B.2.2). To order evSeq primers:

1. Navigate to the IDT DNA oligo ordering page:

https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-

oligos.

2. Under “Ordering,” select “Plates.”

3. From the “Single-stranded DNA” table, select the amount (in nanomoles) of oligo

you wish to order (denoted in the “Product” column) by clicking “Order” under the

“96 Well” column. For the work described in Chapter 4, 25 nmole oligos were

ordered.

4. On the next page, click “UPLOAD PLATE(S).” Using the pop-up that results, upload

the “IdtOrderForm.xls” provided on the evSeq GitHub repository. The pop-up should

recognize two plates—one called “FBC” and the other called “RBC”—each

https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/IdtOrderForm.xlsx
https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-oligos
https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-oligos

171

consisting of 96 wells. Click “ADD PLATES” followed by “CLOSE THIS

WINDOW” to close the window.

5. For the “FBC” plate, click “Plate Specifications.” Confirm that the below

specifications are set as follows:

a. Purification: Standard Desalting

b. Plate Type: Deep Well

c. Ship Option: Wet

d. Buffer: IDTE 8.0 pH

e. Normalization Type: Full Yield

f. Concentration: 100 μM

Note that the bolded specifications are different from default. While not strictly required,

it is strongly recommended that primers be ordered wet at 100 μM; reconstituting

plates of dry primers to 100 μM can be very time-consuming without robotic support.

6. Once specifications are correctly set for the “FBC” plate, click “APPLY SETTINGS

TO ALL PLATES” at the bottom of the specifications pop-up, followed by “YES”

on the window that follows. Quickly check to make sure that the same settings as

recommended in step 5 were applied to “RBC” by clicking on the “RBC” “Plate

Specifications” option.

7. Add the primers to your order by clicking “ADD TO ORDER,” then follow standard

IDT procedures for purchasing.

172

B.2.2 Preparation of evSeq Barcode Primer Mixes

There are 96 unique forward and 96 unique reverse outer primers (Table B-2), corresponding

to 96 unique forward and 96 unique reverse barcodes (Table B-1). The forward and reverse

outer primers were ordered following the procedure given above in Section B.2.1.

Each well sequenced in evSeq is encoded by a different combination of forward and reverse

barcode. Different primers from the forward and reverse outer primer plates can be mixed

together to associate a barcode combination with a specific well in a specific plate. Because

the same outer primers can be used regardless of inner primer, it is convenient to keep plates

of barcode combinations on hand. Plates of outer primer combinations (hereafter also

referred to as “barcode plates”) can be stored for long periods of time.

Throughout the development of evSeq, the same 8 barcode plates were used (consisting of

768 different combinations of forward and reverse outer primers) to encode plate and well

locations. Barcode plates are named DI01–DI08, where “DI” stands for “dual-indexed.” The

exact barcode combinations used by evSeq are given in Table B-3 – Table B-10; these

combinations can also be found in the “index_map.csv” file on the evSeq GitHub:

(https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv). By default, the

evSeq software assumes the barcode plates used for library preparation are laid out in the

order given in the “index_map.csv” file. To build the barcode plates depicted in Table B-3 –

Table B-10, the below procedure was followed:

1. 10-fold dilutions of each of the forward and reverse outer primer plates ordered from

IDT were prepared by adding 10 μL of each primer stock to 90 μL ddH2O, keeping

the well layout constant. Dilutions were performed in fully-skirted PCR plates (Bio-

Rad HSP9601). The plates from IDT had a starting concentration of 100 μM, so the

final concentration of these two diluted plates was 10 μM.

2. To 8 fully-skirted PCR plates, 80 μL ddH2O were added, followed by 10 μL diluted

(10 μM) forward barcode plate. The well layout was kept constant for the forward

barcode primers.

https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv

173

3. To the each of the 8 plates, 10 μL of diluted (10 μM) reverse barcode plate were

added, shifting the well layout down by 1 row per plate. For instance, row A of the

reverse plate went into row A of the first barcode plate, row B of the second barcode

plate, row C of the third barcode plate, and so on; row H of the reverse plate went

into row H of the first barcode plate, row A of the second barcode plate, row B of the

third barcode plate, and so on.

4. When not in use, the 10-fold dilutions prepared in step 1 were stored at –20 °C, while

the barcode plates (each well of which had a combination of a specific forward and

reverse primer at a final concentration of 1 μM) were stored at 4 °C. Both the 10 μM

stock plates and 1 μM barcode plates can be stored for long periods of time—I have

noticed no drop in effectiveness even after years of storage.

B.2.3 evSeq Library Preparation/Data Analysis Protocol

The evSeq library preparation protocol was designed to be as cost-effective as possible. The

quantities used in the below protocol were chosen to fit within the constraints of the resources

available to the Arnold Lab (these are the quantities used for all evSeq experiments

performed in Chapter 4). However, with automation support (e.g., liquid handling robots)

and higher-capacity molecular biology equipment, the entire protocol could be scaled down

to lower quantities, further improving cost-effectiveness.

The list of steps below can be followed to prepare an evSeq library for sequencing using the

outer primers described in Section B.2.2. Note that when first using a new set of inner

primers, it is recommended to complete the below protocol for a few wells as a test before

deploying them for plate-scale reactions.

The library preparation protocol can be completed with the below steps. Note that provided

part numbers are for the materials/reagents used while developing this protocol—the same

components from other providers will almost certainly work as well. This protocol is also

provided on the evSeq wiki (https://fhalab.github.io/evSeq/1-lib_prep.html#pcr-protocol).

https://fhalab.github.io/evSeq/1-lib_prep.html#pcr-protocol

174

1. Prepare a PCR master mix for the number of wells to be sequenced according to the

below table. Note that an excel calculator is provided on the evSeq GitHub repository

for easy calculation of master mix volumes based on the number of plates to be

sequenced

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/MastermixCalculator.x

lsx).

Component Amount per 10 μL rxn (μL)

Thermopol Buffer (NEB B9004S) 1.00

10 mM dNTPs (NEB N0447) 0.20

Taq Polymerase (NEB M0267) 0.05

ddH2O 5.33

Mol-Bio Grade DMSO (MP 194819) 0.40

Inner Primer Mix (10 μM) 0.02

a. Note that the above table assumes that each evSeq PCR reaction will be 10

μL—if scaling down, adjust volumes accordingly.

b. Note that the above table also assumes the same set of inner primers is used

to prepare all plates. If this is not the case, a separate master mix will need to

be prepared for each set of inner primers.

c. The Inner Primer Mix (10 μM) is a combination of forward and reverse inner

primers at a final concentration of 10 μM each in diH2O (this can be prepared,

e.g., by adding 10 μL of 100 μM forward inner primer and 10 μL of 100 μM

reverse inner primer to 80 μL diH2O).

2. Add 7 μL of master mix to each well of as many half-skirted PCR plates (USA

Scientific 1402-9700) as will be sequenced. These are referred to as “PCR plates” in

the remainder of this protocol.

3. Stamp 1 μL of overnight culture from each plate to be sequenced into the PCR plates.

https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/MastermixCalculator.xlsx
https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/MastermixCalculator.xlsx

175

a. “Stamp” means “apply to all wells, keeping the plate layout consistent.” For

example, 1 μL of culture from library 01 F02 is moved to PCR plate 01 F02,

1 μL of culture from library 02 C07 is moved to PCR plate 02 C07, etc.

b. Note that both fresh culture and previously frozen culture (thawed before use

as template) will work here. No modifications need to be made to the

protocol.

4. Complete the stage 1 PCR using the below thermalcycler conditions. This PCR

amplifies the fragment of interest from the template DNA contained in the cell

culture.

Step Temperature (°C) Time

1 95 5 min

2 95 20 s

3 TD 63-> 54 20 s

4 68 30 s

5 Return to 2, 9 x

6 4 Hold

a. "TD” above stands for “touchdown.” A touchdown step decrements the

temperature by 1 °C each cycle. The touchdown in the above PCR starts at

63 °C and drops to 54 °C by the end.

b. Note that the extension step (step 4) is long enough to amplify a 500 bp

fragment. Longer fragments will need a longer extension time. Note,

however, that you may see reduced sequencing efficiency with fragments that

are too large.

c. While developing this protocol, the below thermal cycler models were used:

i. Eppendorf Mastercycler ep Gradient S Thermal Cycler, Model 5345

with 96-well universal block

176

ii. Eppendorf Mastercycler pro S vapo.protect

iii. Eppendorf Mastercycler X50s 96-well silver block thermal cycler

5. Once PCR has completed, stamp 2 μL of 1 μM barcode primer mix from the barcode

plates into the PCR plates (see Section B.2.2 for details on preparation of barcode

plates). Record which barcode plate was stamped into which PCR plate.

6. Perform the second step PCR using the below conditions:

Step Temperature (°C) Time

1 95 20s

2 68 50 s

3 Return to 1, 24 x

4 68 5 min

5 4 Hold

a. Again, longer fragments may need a longer extension time.

7. While the second PCR runs, prepare a 2% agarose gel with SYBR gold added

(Thermo Fisher Scientific, S11494).

8. Once the second PCR has completed, for each plate, pool 5 μL of each reaction into

100 mM EDTA to a final concentration of 20 mM EDTA—this step quenches the

reactions. Pooling will leave you with as many tubes as you have plates, each

containing ~600 μL [96 rxns/plate × (5 μL per rxn + 1.25 μL 100mM EDTA per

reaction)].

a. Note: The most efficient way to do the pooling varies depending on the

equipment available. The Arnold Lab relies on 12-channel multichannel

pipets for this step, and so will accomplish pooling by (1) adding 10 μL 100

mM EDTA to each well in a single row of a fresh PCR plate, (2) transferring

5 μL reaction from each row in the plate-to-be-pooled into the single row of

EDTA, and (3) transferring 40 μL from each well in the single row of pooled

177

reactions using a single-channel pipet (leaving 10 μL dead volume in each

well) to a microcentrifuge tube. An alternate strategy might be, for instance,

adding 120 μL 100 mM EDTA to a trough, then pipetting 5 μL of all reactions

from a plate into this trough. Whatever strategy is taken, what is important in

pooling is that the ratios of the reactions in the pool remain equal—sacrificing

some reaction as dead volume is perfectly acceptable to achieve equal mixing

in this step.

9. For each tube made in step 8, take 100 μL of pooled reaction and add it to 20 μL 6x

loading dye (NEB B7025S) in a microcentrifuge tube. It is critical that the loading

dye does not contain SDS. At this point, the remaining pooled reaction from step 8

can be stored at –20 °C for future use (i.e., if the later steps of this protocol ever need

to be redone).

a. Note that most of the pooled reaction is not moved into later steps with this

protocol. Again, if relevant automation and molecular biology equipment is

available, reactions can be scaled down below 10 μL, reducing wasted

reaction. Current reaction sizes are set to minimize pipetting error.

10. Load the contents of each tube made in step 9 into the agarose gel prepared in step 7.

The contents of each tube should be kept separate (i.e., loaded into different lanes in

the gel). Load a ladder (I typically use 100 bp ladder from NEB, N3231S) in the

flanking lanes.

11. Run the agarose gel at 130 V until the bands have sufficiently migrated. Often, you

will see two bands: the lower band is usually primer dimer and the upper is the target.

Reference the ladder to identify your product, remembering that the two-step PCR

adds 120 bp of additional length (from the universal adapter, barcode, and

transposase adapters) onto the gene fragment of interest.

178

12. Gel-extract the target bands from the agarose gel, again keeping bands from different

plates separate. I typically use Zymoclean Gel DNA Recovery Kit (Zymo Research,

D4001) for this step. Elution should be performed at a low volume—I typically elute

in 10 μL of ddH2O.

13. After gel extraction, combine the gel-extracted pools from each plate in equimolar

concentrations. A calculator on the evSeq GitHub repository is provided that can be

used to normalize equal-length fragments to a pre-specified concentration

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/LibDilCalculator.xlsx).

a. Note that the quantification here need not be extremely robust. For all results

presented in Chapter 4, this step was performed using DNA concentrations

output by a GE NanoVue Plus.

b. Tip: It is generally not advised to pool amplicons drastically different in

length. Shorter fragments are preferentially sequenced in NGS, and so the

shorter amplicon will dominate the number of reads. Separate submissions

should be made for libraries with very different lengths.

14. After the previous step, you should have a single tube of cleaned, normalized DNA

consisting of all amplicons from all plates to be pooled. This DNA will be submitted

to your sequencing provider for inclusion in a multiplexed sequencing run. You

should work with your sequencing provider to ensure that all requirements are met

to slot into their pipeline. For instance, this protocol assumes that the sequencing

provider can add Nextera-compatible Illumina indices and flow-cell-binding

sequences via PCR—it should be confirmed that your sequencing provider can do

this before submitting your sample.

a. Note: Throughout the development of evSeq, I used the “Customized PCR

Amplicon Sequencing” services of Laragen Inc. (http://www.laragen.com/

laragen_nextgen.php).

https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/LibDilCalculator.xlsx
http://www.laragen.com/laragen_nextgen.php
http://www.laragen.com/laragen_nextgen.php

179

b. Also note that, depending on your sequencing provider, it may be possible

(or even necessary) to add the Illumina indices yourself. Again, you should

work with your provider to determine the best course of action for submitting

evSeq libraries. Adding indices simply requires one final PCR on the pooled

evSeq library.

15. Once sequencing is complete, your sequencing provider should return two fastq (or

fastq.gz) files to you. One will contain the forward reads for your pooled samples and

the other will contain the reverse reads—both files are needed by the evSeq software

for processing.

16. Using the files returned in step 15, run the evSeq software to process results and

assign variants to their original wells. Detailed instructions on how to use the evSeq

software and interpret its outputs are provided on the evSeq Wiki

https://fhalab.github.io/evSeq/4-usage.html

https://fhalab.github.io/evSeq/4-usage.html

180

B.3 Supplemental Figures

Figure B-1. Comparison of the tradeoff between sequencing depth and cost for Sanger

sequencing (green), a multiplexed MiSeq run (red), and an evSeq library (blue). The top row

gives the total cost for sequencing a given number of variants; the bottom row gives the

expected number of reads per variant for sequencing a given number of variants. Note that

the x-axes for the left and right columns are different. The limit on the x-axis for the left

column is set to reflect what is typically the maximum level of multiplexed NGS available

(384 samples) when outsourcing sequencing. To be consistent with the language used

throughout Chapter 4, the x-axis labels refer to elements run in a multiplexed NGS run as

“samples” and elements contained in an evSeq library as “variants.” I assume that the

elements sequenced in these examples are derived from protein mutant libraries amenable to

sequencing by evSeq (i.e., the sequenced elements are targeted amplicons). Top Row: We

see that both multiplexed NGS on a commercial MiSeq run and evSeq have constant cost

with an increasing number of elements sequenced; Sanger, in contrast, scales linearly with

the number of elements sequenced. Many elements (669 with the cost estimates used to make

this figure) need to be added to a multiplexed MiSeq run before it becomes more cost-

effective than Sanger. Even though research groups may frequently meet or exceed 669

variants in a standard protein engineering experiment, the flat cost of $2000 is far too high

to justify regular sequencing of every variant. Many fewer variants (34) need to be added to

an evSeq run before it becomes cost-effective over Sanger. A flat cost of ~$100 is justifiable

for regularly sequencing all variants. Bottom Row: NGS technologies trade off sequencing

depth for cost effectiveness. Notably, the per-sample sequencing depth achieved by

commercially available multiplexed runs is much higher than what is needed for reliable

sequencing. evSeq, in contrast, more efficiently spreads reads, keeping the expected number

of reads closer to, yet still above the minimum needed for effective sequencing. Notes on

Figure Generation: Cost of a single MiSeq run ($2000) is based on an estimate provided by

181

Laragen Inc. Cost of a single Sanger sequencing run ($2.99) is based on a quote from

MCLAB for sequencing a single 96-well plate. The number of expected reads from a MiSeq

run (13.5 million) is based on estimates provided by Illumina for a MiSeq Reagent Kit v2

(note that almost double the number of reads can be achieved using a v3 kit—I used v2 here

to be conservative with my estimates for NGS/evSeq). The number of expected reads for a

variant sampled with evSeq assumes the evSeq library was sequenced as 1 of 96 samples on

a multiplexed sequencing run using a MiSeq Reagent Kit v2. The cost of a single evSeq run

is based on an estimate provided by Laragen for a single sample in a multiplexed sequencing

run using a PE150 kit.

182

Figure B-2. Sequencing depths for the TmTrpB9D8* evSeq libraries. Left: A histogram of

sequencing depths for each TmTrpB9D8* variant contained in the full evSeq library. The

vertical black line gives the median. Right: Violin plots showing the distribution of read

depths over the wells in each sequenced plate. Variability between plates likely indicates

inaccurate quantification of pooled plates prior to final assembly of the evSeq library.

Notable, libraries 1-5 use different evSeq primers than libraries 6-8.

183

Figure B-3. Sequencing depths for the RmaNOD evSeq libraries. Left: A histogram of

sequencing depths for each RmaNOD variant contained in the full evSeq library. The vertical

black line gives the median. Right: Violin plots showing the distribution of read depths over

the wells in each sequenced plate. Variability between plates likely indicates inaccurate

quantification of pooled plates prior to final assembly of the evSeq library.

184

B.4 Barcode and Outer Primer Sequences

Table B-1. evSeq barcode sequences used in Chapter 4. The “Plate” and “Well” columns

give the location of these sequences in the IDT order form provided on the evSeq GitHub

repository (see Ordering Barcode Primers from IDT and Barcode Design, above). Note that

barcode sequences can also be found in the “index_map.csv” file found on the evSeq GitHub

repository (https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv); this csv

file also gives the combinations of barcodes used to define the dual indexing (DI) plates.

Plate Well Barcode

FBC A01 GATCATG
FBC A02 TACATGG
FBC A03 AAGCACC
FBC A04 TGGCTCA
FBC A05 CTTGCTC
FBC A06 GAAGCGT
FBC A07 TCTCCAT
FBC A08 TTGAAGG
FBC A09 GAATGTC
FBC A10 ATCTCCA
FBC A11 GCGTTAT
FBC A12 TGCACCA
FBC B01 TGCCTAT
FBC B02 AGGAATC
FBC B03 TCCACTG
FBC B04 TTGTACC
FBC B05 TTCGAGT
FBC B06 CTTCAGC
FBC B07 CAGTGCA
FBC B08 TGCTGTC
FBC B09 CGCCATT
FBC B10 GCCATGA
FBC B11 CACAACG
FBC B12 CTTCGCT
FBC C01 TCGTGAA
FBC C02 TTATCGG
FBC C03 AGACCAT
FBC C04 ACATGAG
FBC C05 ACGTACT
FBC C06 CACCTCA
FBC C07 GTTGGAG
FBC C08 TGTTCTG

185

FBC C09 CTTACGT
FBC C10 GAGGTTG
FBC C11 ATGGACA
FBC C12 ACACTGA
FBC D01 ATCTGTG
FBC D02 AATGTGC
FBC D03 GAGTTGA
FBC D04 TTCTCAC
FBC D05 TGAAGCG
FBC D06 GCTACAA
FBC D07 AGAGAAC
FBC D08 CAGAGTG
FBC D09 TTCCGAA
FBC D10 GTACGAC
FBC D11 ACTCTTG
FBC D12 CCAACCA
FBC E01 CTCTAGA
FBC E02 AATCGGA
FBC E03 CGTCCTA
FBC E04 GGAATGT
FBC E05 TCCAAGC
FBC E06 GCACCTA
FBC E07 TTGCGTT
FBC E08 CAGGATT
FBC E09 CTGCATA
FBC E10 CGTTGAG
FBC E11 TGCTACT
FBC E12 GTGATCC
FBC F01 GCATGGT
FBC F02 GTCGTTA
FBC F03 CCTGACA
FBC F04 AGTGTAG
FBC F05 CGAGCAA
FBC F06 CTACTCC
FBC F07 GATGCCA
FBC F08 GACCGAT
FBC F09 ACGTTGG
FBC F10 ATGAGCG
FBC F11 TACTCCG
FBC F12 GATTCAC
FBC G01 ATGACGC
FBC G02 GGTTGTT

186

FBC G03 GTACTTG
FBC G04 TAGCAAG
FBC G05 CTGCCAT
FBC G06 GAGAACA
FBC G07 GTATAGC
FBC G08 TGATGGA
FBC G09 GGCAGTA
FBC G10 GAAGAAG
FBC G11 AGCGGTT
FBC G12 TAAGGCC
FBC H01 AACCTGT
FBC H02 AGTACAC
FBC H03 CTCGTAG
FBC H04 CTAGGTG
FBC H05 CGATACC
FBC H06 TCGGCTA
FBC H07 CGGTTGT
FBC H08 ATTGCCT
FBC H09 CATTCGA
FBC H10 GCACAAT
FBC H11 GCAGTAA
FBC H12 CCTAATC
RBC A01 GAACTGC
RBC A02 ACCAGGT
RBC A03 TCTAGAG
RBC A04 CACACAA
RBC A05 GTGGAAC
RBC A06 ATATGCC
RBC A07 GGTCTGA
RBC A08 GTGAGAT
RBC A09 TTGGCAG
RBC A10 ATGCCTG
RBC A11 TCCGAAG
RBC A12 GGCTTAC
RBC B01 AGTTGGC
RBC B02 AACGATG
RBC B03 ACTACCG
RBC B04 GGTGTCT
RBC B05 CCAGCTT
RBC B06 TTAGACG
RBC B07 ACCATAC
RBC B08 GACGACT

187

RBC B09 GTCACCT
RBC B10 CGTGATG
RBC B11 GCTTCCT
RBC B12 TAGACGT
RBC C01 CGGACTT
RBC C02 ACCGGAA
RBC C03 CCGAAGT
RBC C04 TCACGCA
RBC C05 ATCCTCG
RBC C06 CGAATAG
RBC C07 TATCCGG
RBC C08 AGCAAGA
RBC C09 TGTCGAC
RBC C10 TTCCATG
RBC C11 GCAATCG
RBC C12 TGAGTGG
RBC D01 TAGGAGA
RBC D02 AGTCAGT
RBC D03 GTGCTGT
RBC D04 CAACAAC
RBC D05 AATAGCC
RBC D06 TCTGTGA
RBC D07 TGTGGTA
RBC D08 GCGTATG
RBC D09 AGTTACG
RBC D10 TTCCTGC
RBC D11 TATGTCG
RBC D12 GGAGAGA
RBC E01 CCTTAGG
RBC E02 TGTATCC
RBC E03 CAACCTG
RBC E04 CTGATGA
RBC E05 AAGACAG
RBC E06 AGCTCGT
RBC E07 GATTGCG
RBC E08 TCCTTCA
RBC E09 TCACAGG
RBC E10 AGAGCTG
RBC E11 CCTCTGT
RBC E12 CCTCGAA
RBC F01 GTGTCTC
RBC F02 ATTGAGG

188

RBC F03 GACAATC
RBC F04 CACTTGC
RBC F05 TGAACGC
RBC F06 CGTAGCA
RBC F07 AGGTTCC
RBC F08 GTACACA
RBC F09 GATAGGT
RBC F10 TAGCCTC
RBC F11 TTCAGCC
RBC F12 GGATTCA
RBC G01 TGAGCCT
RBC G02 AACGCGA
RBC G03 TCATTGC
RBC G04 AGCATCT
RBC G05 TTGGTCT
RBC G06 CAAGGAT
RBC G07 AGACGTC
RBC G08 AGGTCAA
RBC G09 ATGCTAC
RBC G10 CTCTGAT
RBC G11 TCAAGTC
RBC G12 TCGAGCT
RBC H01 ACAGTCT
RBC H02 CAGATAC
RBC H03 TACGTTC
RBC H04 ACGGTTC
RBC H05 CATCGTC
RBC H06 TACGCAT
RBC H07 CTTAGAC
RBC H08 AACTGAC
RBC H09 ACTTGCA
RBC H10 ACGCGAT
RBC H11 TCGACAC
RBC H12 ACTCAAC

189

Table B-2. Full-length evSeq barcode (outer) primer sequences used in Chapter 4. The

“Plate” and “Well” columns give the location of these sequences in the IDT order form

provided on the evSeq GitHub repository (see Ordering Barcode Primers from IDT and

Preparation of evSeq Barcode Primer Mixes, above).

Plate Well Sequence

FBC A01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATCATGCACCCAAGACCACTCTCCGG

FBC A02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACATGGCACCCAAGACCACTCTCCGG

FBC A03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAGCACCCACCCAAGACCACTCTCCGG

FBC A04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGCTCACACCCAAGACCACTCTCCGG

FBC A05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGCTCCACCCAAGACCACTCTCCGG

FBC A06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAAGCGTCACCCAAGACCACTCTCCGG

FBC A07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTCCATCACCCAAGACCACTCTCCGG

FBC A08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGAAGGCACCCAAGACCACTCTCCGG

FBC A09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATGTCCACCCAAGACCACTCTCCGG

FBC A10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCTCCACACCCAAGACCACTCTCCGG

FBC A11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCGTTATCACCCAAGACCACTCTCCGG

FBC A12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCACCACACCCAAGACCACTCTCCGG

FBC B01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCCTATCACCCAAGACCACTCTCCGG

FBC B02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGGAATCCACCCAAGACCACTCTCCGG

FBC B03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCACTGCACCCAAGACCACTCTCCGG

FBC B04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGTACCCACCCAAGACCACTCTCCGG

FBC B05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCGAGTCACCCAAGACCACTCTCCGG

FBC B06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTCAGCCACCCAAGACCACTCTCCGG

FBC B07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGTGCACACCCAAGACCACTCTCCGG

FBC B08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCTGTCCACCCAAGACCACTCTCCGG

FBC B09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGCCATTCACCCAAGACCACTCTCCGG

FBC B10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCCATGACACCCAAGACCACTCTCCGG

FBC B11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACAACGCACCCAAGACCACTCTCCGG

FBC B12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTCGCTCACCCAAGACCACTCTCCGG

FBC C01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGTGAACACCCAAGACCACTCTCCGG

FBC C02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTATCGGCACCCAAGACCACTCTCCGG

FBC C03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGACCATCACCCAAGACCACTCTCCGG

FBC C04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACATGAGCACCCAAGACCACTCTCCGG

FBC C05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGTACTCACCCAAGACCACTCTCCGG

FBC C06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACCTCACACCCAAGACCACTCTCCGG

FBC C07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTGGAGCACCCAAGACCACTCTCCGG

FBC C08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGTTCTGCACCCAAGACCACTCTCCGG

FBC C09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTACGTCACCCAAGACCACTCTCCGG

FBC C10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGGTTGCACCCAAGACCACTCTCCGG

FBC C11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGGACACACCCAAGACCACTCTCCGG

190

FBC C12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACACTGACACCCAAGACCACTCTCCGG

FBC D01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCTGTGCACCCAAGACCACTCTCCGG

FBC D02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATGTGCCACCCAAGACCACTCTCCGG

FBC D03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTGACACCCAAGACCACTCTCCGG

FBC D04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCTCACCACCCAAGACCACTCTCCGG

FBC D05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGAAGCGCACCCAAGACCACTCTCCGG

FBC D06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTACAACACCCAAGACCACTCTCCGG

FBC D07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGAACCACCCAAGACCACTCTCCGG

FBC D08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGAGTGCACCCAAGACCACTCTCCGG

FBC D09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCCGAACACCCAAGACCACTCTCCGG

FBC D10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACGACCACCCAAGACCACTCTCCGG

FBC D11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACTCTTGCACCCAAGACCACTCTCCGG

FBC D12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAACCACACCCAAGACCACTCTCCGG

FBC E01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCTAGACACCCAAGACCACTCTCCGG

FBC E02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATCGGACACCCAAGACCACTCTCCGG

FBC E03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTCCTACACCCAAGACCACTCTCCGG

FBC E04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGAATGTCACCCAAGACCACTCTCCGG

FBC E05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCAAGCCACCCAAGACCACTCTCCGG

FBC E06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCACCTACACCCAAGACCACTCTCCGG

FBC E07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGCGTTCACCCAAGACCACTCTCCGG

FBC E08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGGATTCACCCAAGACCACTCTCCGG

FBC E09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCATACACCCAAGACCACTCTCCGG

FBC E10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTTGAGCACCCAAGACCACTCTCCGG

FBC E11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCTACTCACCCAAGACCACTCTCCGG

FBC E12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGATCCCACCCAAGACCACTCTCCGG

FBC F01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCATGGTCACCCAAGACCACTCTCCGG

FBC F02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTCGTTACACCCAAGACCACTCTCCGG

FBC F03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTGACACACCCAAGACCACTCTCCGG

FBC F04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTGTAGCACCCAAGACCACTCTCCGG

FBC F05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGAGCAACACCCAAGACCACTCTCCGG

FBC F06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTACTCCCACCCAAGACCACTCTCCGG

FBC F07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATGCCACACCCAAGACCACTCTCCGG

FBC F08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGACCGATCACCCAAGACCACTCTCCGG

FBC F09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGTTGGCACCCAAGACCACTCTCCGG

FBC F10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGAGCGCACCCAAGACCACTCTCCGG

FBC F11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACTCCGCACCCAAGACCACTCTCCGG

FBC F12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATTCACCACCCAAGACCACTCTCCGG

FBC G01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGACGCCACCCAAGACCACTCTCCGG

FBC G02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTTGTTCACCCAAGACCACTCTCCGG

FBC G03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACTTGCACCCAAGACCACTCTCCGG

FBC G04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGCAAGCACCCAAGACCACTCTCCGG

191

FBC G05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCCATCACCCAAGACCACTCTCCGG

FBC G06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGAACACACCCAAGACCACTCTCCGG

FBC G07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTATAGCCACCCAAGACCACTCTCCGG

FBC G08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGATGGACACCCAAGACCACTCTCCGG

FBC G09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGCAGTACACCCAAGACCACTCTCCGG

FBC G10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAAGAAGCACCCAAGACCACTCTCCGG

FBC G11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCGGTTCACCCAAGACCACTCTCCGG

FBC G12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAAGGCCCACCCAAGACCACTCTCCGG

FBC H01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAACCTGTCACCCAAGACCACTCTCCGG

FBC H02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTACACCACCCAAGACCACTCTCCGG

FBC H03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCGTAGCACCCAAGACCACTCTCCGG

FBC H04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTAGGTGCACCCAAGACCACTCTCCGG

FBC H05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGATACCCACCCAAGACCACTCTCCGG

FBC H06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGGCTACACCCAAGACCACTCTCCGG

FBC H07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGGTTGTCACCCAAGACCACTCTCCGG

FBC H08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGCCTCACCCAAGACCACTCTCCGG

FBC H09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATTCGACACCCAAGACCACTCTCCGG

FBC H10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCACAATCACCCAAGACCACTCTCCGG

FBC H11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCAGTAACACCCAAGACCACTCTCCGG

FBC H12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTAATCCACCCAAGACCACTCTCCGG

RBC A01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAACTGCCGGTGTGCGAAGTAGGTGC

RBC A02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCAGGTCGGTGTGCGAAGTAGGTGC

RBC A03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTAGAGCGGTGTGCGAAGTAGGTGC

RBC A04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACACAACGGTGTGCGAAGTAGGTGC

RBC A05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGGAACCGGTGTGCGAAGTAGGTGC

RBC A06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATATGCCCGGTGTGCGAAGTAGGTGC

RBC A07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGTCTGACGGTGTGCGAAGTAGGTGC

RBC A08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGAGATCGGTGTGCGAAGTAGGTGC

RBC A09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTGGCAGCGGTGTGCGAAGTAGGTGC

RBC A10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGCCTGCGGTGTGCGAAGTAGGTGC

RBC A11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCGAAGCGGTGTGCGAAGTAGGTGC

RBC A12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGCTTACCGGTGTGCGAAGTAGGTGC

RBC B01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTTGGCCGGTGTGCGAAGTAGGTGC

RBC B02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACGATGCGGTGTGCGAAGTAGGTGC

RBC B03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTACCGCGGTGTGCGAAGTAGGTGC

RBC B04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGTGTCTCGGTGTGCGAAGTAGGTGC

RBC B05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCAGCTTCGGTGTGCGAAGTAGGTGC

RBC B06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTAGACGCGGTGTGCGAAGTAGGTGC

RBC B07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCATACCGGTGTGCGAAGTAGGTGC

RBC B08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACGACTCGGTGTGCGAAGTAGGTGC

RBC B09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCACCTCGGTGTGCGAAGTAGGTGC

192

RBC B10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGTGATGCGGTGTGCGAAGTAGGTGC

RBC B11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTTCCTCGGTGTGCGAAGTAGGTGC

RBC B12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGACGTCGGTGTGCGAAGTAGGTGC

RBC C01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGGACTTCGGTGTGCGAAGTAGGTGC

RBC C02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCGGAACGGTGTGCGAAGTAGGTGC

RBC C03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGAAGTCGGTGTGCGAAGTAGGTGC

RBC C04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCACGCACGGTGTGCGAAGTAGGTGC

RBC C05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATCCTCGCGGTGTGCGAAGTAGGTGC

RBC C06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGAATAGCGGTGTGCGAAGTAGGTGC

RBC C07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTATCCGGCGGTGTGCGAAGTAGGTGC

RBC C08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCAAGACGGTGTGCGAAGTAGGTGC

RBC C09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTCGACCGGTGTGCGAAGTAGGTGC

RBC C10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCCATGCGGTGTGCGAAGTAGGTGC

RBC C11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAATCGCGGTGTGCGAAGTAGGTGC

RBC C12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAGTGGCGGTGTGCGAAGTAGGTGC

RBC D01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGGAGACGGTGTGCGAAGTAGGTGC

RBC D02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTCAGTCGGTGTGCGAAGTAGGTGC

RBC D03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGCTGTCGGTGTGCGAAGTAGGTGC

RBC D04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAACAACCGGTGTGCGAAGTAGGTGC

RBC D05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATAGCCCGGTGTGCGAAGTAGGTGC

RBC D06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTGTGACGGTGTGCGAAGTAGGTGC

RBC D07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTGGTACGGTGTGCGAAGTAGGTGC

RBC D08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCGTATGCGGTGTGCGAAGTAGGTGC

RBC D09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTTACGCGGTGTGCGAAGTAGGTGC

RBC D10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCCTGCCGGTGTGCGAAGTAGGTGC

RBC D11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTATGTCGCGGTGTGCGAAGTAGGTGC

RBC D12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGAGAGACGGTGTGCGAAGTAGGTGC

RBC E01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTTAGGCGGTGTGCGAAGTAGGTGC

RBC E02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTATCCCGGTGTGCGAAGTAGGTGC

RBC E03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAACCTGCGGTGTGCGAAGTAGGTGC

RBC E04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGATGACGGTGTGCGAAGTAGGTGC

RBC E05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAGACAGCGGTGTGCGAAGTAGGTGC

RBC E06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCTCGTCGGTGTGCGAAGTAGGTGC

RBC E07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATTGCGCGGTGTGCGAAGTAGGTGC

RBC E08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTTCACGGTGTGCGAAGTAGGTGC

RBC E09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCACAGGCGGTGTGCGAAGTAGGTGC

RBC E10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGAGCTGCGGTGTGCGAAGTAGGTGC

RBC E11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCTGTCGGTGTGCGAAGTAGGTGC

RBC E12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCGAACGGTGTGCGAAGTAGGTGC

RBC F01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGTCTCCGGTGTGCGAAGTAGGTGC

RBC F02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTGAGGCGGTGTGCGAAGTAGGTGC

193

RBC F03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACAATCCGGTGTGCGAAGTAGGTGC

RBC F04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACTTGCCGGTGTGCGAAGTAGGTGC

RBC F05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAACGCCGGTGTGCGAAGTAGGTGC

RBC F06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGTAGCACGGTGTGCGAAGTAGGTGC

RBC F07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGGTTCCCGGTGTGCGAAGTAGGTGC

RBC F08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTACACACGGTGTGCGAAGTAGGTGC

RBC F09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATAGGTCGGTGTGCGAAGTAGGTGC

RBC F10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGCCTCCGGTGTGCGAAGTAGGTGC

RBC F11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCAGCCCGGTGTGCGAAGTAGGTGC

RBC F12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGATTCACGGTGTGCGAAGTAGGTGC

RBC G01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAGCCTCGGTGTGCGAAGTAGGTGC

RBC G02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACGCGACGGTGTGCGAAGTAGGTGC

RBC G03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCATTGCCGGTGTGCGAAGTAGGTGC

RBC G04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCATCTCGGTGTGCGAAGTAGGTGC

RBC G05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTGGTCTCGGTGTGCGAAGTAGGTGC

RBC G06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAAGGATCGGTGTGCGAAGTAGGTGC

RBC G07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGACGTCCGGTGTGCGAAGTAGGTGC

RBC G08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGGTCAACGGTGTGCGAAGTAGGTGC

RBC G09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGCTACCGGTGTGCGAAGTAGGTGC

RBC G10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTCTGATCGGTGTGCGAAGTAGGTGC

RBC G11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCAAGTCCGGTGTGCGAAGTAGGTGC

RBC G12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGAGCTCGGTGTGCGAAGTAGGTGC

RBC H01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACAGTCTCGGTGTGCGAAGTAGGTGC

RBC H02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAGATACCGGTGTGCGAAGTAGGTGC

RBC H03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACGTTCCGGTGTGCGAAGTAGGTGC

RBC H04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGGTTCCGGTGTGCGAAGTAGGTGC

RBC H05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATCGTCCGGTGTGCGAAGTAGGTGC

RBC H06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACGCATCGGTGTGCGAAGTAGGTGC

RBC H07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTAGACCGGTGTGCGAAGTAGGTGC

RBC H08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACTGACCGGTGTGCGAAGTAGGTGC

RBC H09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTTGCACGGTGTGCGAAGTAGGTGC

RBC H10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGCGATCGGTGTGCGAAGTAGGTGC

RBC H11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGACACCGGTGTGCGAAGTAGGTGC

RBC H12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTCAACCGGTGTGCGAAGTAGGTGC

194

B.5 Dual-Indexing Platemaps

This section contains all platemaps for the dual indexing plates (DI plates) used in Chapter

4. The tables that follow show how the primers from the forward and reverse barcode plates

(Table B-2) were arrayed to produce the barcode plates. Each entry in the below platemaps

follows the format “Well-Barcode Plate,” where the “-” delimits the plate and well. An “F”

after the delimiter indicates that the well preceding the delimiter was from the forward

barcode plate (“FBC” in Table B-2) and an “R” indicates that the well was from the reverse

barcode plate (“RBC”). A detailed protocol for how the dual index plates were produced is

given in Section B.2.2.

195

Table B-3. Platemap for DI01 used in Chapter 4.

1
2

A
1

2
-F

,

A
1

2
-R

B
1

2
-F

,

B
1

2
-R

C
1

2
-F

,

C
1

2
-R

D
1

2
-F

,

D
1

2
-R

E
1

2
-F

,

E
1

2
-R

F
1

2
-F

,

F
1

2
-R

G
1

2
-F

,

G
1

2
-R

H
1

2
-F

,

H
1

2
-R

1
1

A
1

1
-F

,

A
1

1
-R

B
1

1
-F

,

B
1

1
-R

C
1

1
-F

,

C
1

1
-R

D
1

1
-F

,

D
1

1
-R

E
1

1
-F

,

E
1

1
-R

F
1

1
-F

,

F
1

1
-R

G
1

1
-F

,

G
1

1
-R

H
1

1
-F

,

H
1

1
-R

1
0

A
1

0
-F

,

A
1

0
-R

B
1

0
-F

,

B
1

0
-R

C
1

0
-F

,

C
1

0
-R

D
1

0
-F

,

D
1

0
-R

E
1

0
-F

,

E
1

0
-R

F
1

0
-F

,

F
1

0
-R

G
1

0
-F

,

G
1

0
-R

H
1

0
-F

,

H
1

0
-R

9

A
0

9
-F

,

A
0

9
-R

B
0

9
-F

,

B
0

9
-R

C
0

9
-F

,

C
0

9
-R

D
0

9
-F

,

D
0

9
-R

E
0

9
-F

,

E
0

9
-R

F
0

9
-F

,

F
0

9
-R

G
0

9
-F

,

G
0

9
-R

H
0

9
-F

,

H
0

9
-R

8

A
0

8
-F

,

A
0
8

-R

B
0
8

-F
,

B
0

8
-R

C
0
8

-F
,

C
0

8
-R

D
0

8
-F

,

D
0
8

-R

E
0
8
-F

,

E
0

8
-R

F
0
8
-F

,

F
0
8
-R

G
0

8
-F

,

G
0
8

-R

H
0

8
-F

,

H
0
8

-R

7

A
0
7

-F
,

A
0
7

-R

B
0
7

-F
,

B
0
7

-R

C
0
7

-F
,

C
0
7

-R

D
0
7

-F
,

D
0
7

-R

E
0
7
-F

,

E
0
7
-R

F
0
7
-F

,

F
0
7
-R

G
0
7

-F
,

G
0
7

-R

H
0
7

-F
,

H
0
7

-R

6

A
0
6

-F
,

A
0
6

-R

B
0
6

-F
,

B
0
6

-R

C
0
6

-F
,

C
0
6

-R

D
0
6

-F
,

D
0
6

-R

E
0
6
-F

,

E
0
6
-R

F
0
6
-F

,

F
0
6
-R

G
0
6

-F
,

G
0
6

-R

H
0
6

-F
,

H
0
6

-R

5

A
0
5

-F
,

A
0
5

-R

B
0
5

-F
,

B
0
5

-R

C
0
5

-F
,

C
0
5

-R

D
0
5

-F
,

D
0
5

-R

E
0
5
-F

,

E
0
5
-R

F
0
5
-F

,

F
0
5
-R

G
0
5

-F
,

G
0
5

-R

H
0
5

-F
,

H
0
5

-R

4

A
0
4

-F
,

A
0
4

-R

B
0
4

-F
,

B
0
4

-R

C
0
4

-F
,

C
0
4

-R

D
0
4

-F
,

D
0
4

-R

E
0
4
-F

,

E
0
4
-R

F
0
4
-F

,

F
0
4
-R

G
0
4

-F
,

G
0
4

-R

H
0
4

-F
,

H
0
4

-R

3

A
0
3

-F
,

A
0
3

-R

B
0
3

-F
,

B
0
3

-R

C
0
3

-F
,

C
0
3

-R

D
0
3

-F
,

D
0
3

-R

E
0
3
-F

,

E
0
3
-R

F
0
3
-F

,

F
0
3
-R

G
0
3

-F
,

G
0
3

-R

H
0
3

-F
,

H
0
3

-R

2

A
0
2

-F
,

A
0
2

-R

B
0
2

-F
,

B
0
2

-R

C
0
2

-F
,

C
0
2

-R

D
0
2

-F
,

D
0
2

-R

E
0
2
-F

,

E
0
2
-R

F
0
2
-F

,

F
0
2
-R

G
0
2

-F
,

G
0
2

-R

H
0
2

-F
,

H
0
2

-R

1

A
0

1
-F

,

A
0
1

-R

B
0
1

-F
,

B
0

1
-R

C
0
1

-F
,

C
0

1
-R

D
0

1
-F

,

D
0
1

-R

E
0
1
-F

,

E
0
1
-R

F
0

1
-F

,

F
0
1
-R

G
0

1
-F

,

G
0
1

-R

H
0

1
-F

,

H
0
1

-R

D
I0

1

A

B

C

D

E

F

G

H

196

Table B-4. Platemap for DI02 used in Chapter 4.

1
2

A
1

2
-F

,

H
1

2
-R

B
1

2
-F

,

A
1

2
-R

C
1

2
-F

,

B
1

2
-R

D
1

2
-F

,

C
1

2
-R

E
1

2
-F

,

D
1

2
-R

F
1

2
-F

,

E
1

2
-R

G
1

2
-F

,

F
1

2
-R

H
1

2
-F

,

G
1

2
-R

1
1

A
1

1
-F

,

H
1

1
-R

B
1

1
-F

,

A
1

1
-R

C
1

1
-F

,

B
1

1
-R

D
1

1
-F

,

C
1

1
-R

E
1

1
-F

,

D
1

1
-R

F
1

1
-F

,

E
1

1
-R

G
1

1
-F

,

F
1

1
-R

H
1

1
-F

,

G
1

1
-R

1
0

A
1

0
-F

,

H
1

0
-R

B
1

0
-F

,

A
1

0
-R

C
1

0
-F

,

B
1

0
-R

D
1

0
-F

,

C
1

0
-R

E
1

0
-F

,

D
1

0
-R

F
1

0
-F

,

E
1

0
-R

G
1

0
-F

,

F
1

0
-R

H
1

0
-F

,

G
1

0
-R

9

A
0

9
-F

,

H
0

9
-R

B
0

9
-F

,

A
0

9
-R

C
0

9
-F

,

B
0

9
-R

D
0

9
-F

,

C
0

9
-R

E
0

9
-F

,

D
0

9
-R

F
0

9
-F

,

E
0

9
-R

G
0

9
-F

,

F
0

9
-R

H
0

9
-F

,

G
0

9
-R

8

A
0
8

-F
,

H
0
8

-R

B
0
8

-F
,

A
0
8

-R

C
0
8

-F
,

B
0
8

-R

D
0
8

-F
,

C
0
8

-R

E
0
8
-F

,

D
0
8

-R

F
0
8
-F

,

E
0
8
-R

G
0
8

-F
,

F
0
8
-R

H
0
8

-F
,

G
0
8

-R

7

A
0
7

-F
,

H
0
7

-R

B
0
7

-F
,

A
0
7

-R

C
0
7

-F
,

B
0
7

-R

D
0
7

-F
,

C
0
7

-R

E
0
7
-F

,

D
0
7

-R

F
0
7
-F

,

E
0
7
-R

G
0
7

-F
,

F
0
7
-R

H
0
7

-F
,

G
0
7

-R

6

A
0
6

-F
,

H
0
6

-R

B
0
6

-F
,

A
0
6

-R

C
0
6

-F
,

B
0
6

-R

D
0
6

-F
,

C
0
6

-R

E
0
6
-F

,

D
0
6

-R

F
0
6
-F

,

E
0
6
-R

G
0
6

-F
,

F
0
6
-R

H
0
6

-F
,

G
0
6

-R

5

A
0
5

-F
,

H
0
5

-R

B
0
5

-F
,

A
0
5

-R

C
0
5

-F
,

B
0
5

-R

D
0
5

-F
,

C
0
5

-R

E
0
5
-F

,

D
0
5

-R

F
0
5
-F

,

E
0
5
-R

G
0
5

-F
,

F
0
5
-R

H
0
5

-F
,

G
0
5

-R

4

A
0
4

-F
,

H
0
4

-R

B
0
4

-F
,

A
0
4

-R

C
0
4

-F
,

B
0
4

-R

D
0
4

-F
,

C
0
4

-R

E
0
4
-F

,

D
0
4

-R

F
0
4
-F

,

E
0
4
-R

G
0
4

-F
,

F
0
4
-R

H
0
4

-F
,

G
0
4

-R

3

A
0
3

-F
,

H
0
3

-R

B
0
3

-F
,

A
0
3

-R

C
0
3

-F
,

B
0
3

-R

D
0
3

-F
,

C
0
3

-R

E
0
3
-F

,

D
0
3

-R

F
0
3
-F

,

E
0
3
-R

G
0
3

-F
,

F
0
3
-R

H
0
3

-F
,

G
0
3

-R

2

A
0
2

-F
,

H
0
2

-R

B
0
2

-F
,

A
0
2

-R

C
0
2

-F
,

B
0
2

-R

D
0
2

-F
,

C
0
2

-R

E
0
2
-F

,

D
0
2

-R

F
0
2
-F

,

E
0
2
-R

G
0
2

-F
,

F
0
2
-R

H
0
2

-F
,

G
0
2

-R

1

A
0

1
-F

,

H
0

1
-R

B
0

1
-F

,

A
0

1
-R

C
0

1
-F

,

B
0

1
-R

D
0

1
-F

,

C
0

1
-R

E
0

1
-F

,

D
0

1
-R

F
0

1
-F

,

E
0

1
-R

G
0

1
-F

,

F
0

1
-R

H
0

1
-F

,

G
0

1
-R

D
I0

2

A

B

C

D

E

F

G

H

197

Table B-5. Platemap for DI03 used in Chapter 4.

1
2

A
1

2
-F

,

G
1

2
-R

B
1

2
-F

,

H
1

2
-R

C
1

2
-F

,

A
1

2
-R

D
1

2
-F

,

B
1

2
-R

E
1

2
-F

,

C
1

2
-R

F
1

2
-F

,

D
1

2
-R

G
1

2
-F

,

E
1

2
-R

H
1

2
-F

,

F
1

2
-R

1
1

A
1

1
-F

,

G
1

1
-R

B
1

1
-F

,

H
1

1
-R

C
1

1
-F

,

A
1

1
-R

D
1

1
-F

,

B
1

1
-R

E
1

1
-F

,

C
1

1
-R

F
1

1
-F

,

D
1

1
-R

G
1

1
-F

,

E
1

1
-R

H
1

1
-F

,

F
1

1
-R

1
0

A
1

0
-F

,

G
1

0
-R

B
1

0
-F

,

H
1

0
-R

C
1

0
-F

,

A
1

0
-R

D
1

0
-F

,

B
1

0
-R

E
1

0
-F

,

C
1

0
-R

F
1

0
-F

,

D
1

0
-R

G
1

0
-F

,

E
1

0
-R

H
1

0
-F

,

F
1

0
-R

9

A
0

9
-F

,

G
0

9
-R

B
0

9
-F

,

H
0

9
-R

C
0

9
-F

,

A
0

9
-R

D
0

9
-F

,

B
0

9
-R

E
0

9
-F

,

C
0

9
-R

F
0

9
-F

,

D
0

9
-R

G
0

9
-F

,

E
0

9
-R

H
0

9
-F

,

F
0

9
-R

8

A
0
8

-F
,

G
0
8

-R

B
0
8

-F
,

H
0
8

-R

C
0
8

-F
,

A
0
8

-R

D
0
8

-F
,

B
0
8

-R

E
0
8
-F

,

C
0
8

-R

F
0
8
-F

,

D
0
8

-R

G
0
8

-F
,

E
0
8
-R

H
0
8

-F
,

F
0
8
-R

7

A
0
7

-F
,

G
0
7

-R

B
0
7

-F
,

H
0
7

-R

C
0
7

-F
,

A
0
7

-R

D
0
7

-F
,

B
0
7

-R

E
0
7
-F

,

C
0
7

-R

F
0
7
-F

,

D
0
7

-R

G
0
7

-F
,

E
0
7
-R

H
0
7

-F
,

F
0
7
-R

6

A
0
6

-F
,

G
0
6

-R

B
0
6

-F
,

H
0
6

-R

C
0
6

-F
,

A
0
6

-R

D
0
6

-F
,

B
0
6

-R

E
0
6
-F

,

C
0
6

-R

F
0
6
-F

,

D
0
6

-R

G
0
6

-F
,

E
0
6
-R

H
0
6

-F
,

F
0
6
-R

5

A
0
5

-F
,

G
0
5

-R

B
0
5

-F
,

H
0
5

-R

C
0
5

-F
,

A
0
5

-R

D
0
5

-F
,

B
0
5

-R

E
0
5
-F

,

C
0
5

-R

F
0
5
-F

,

D
0
5

-R

G
0
5

-F
,

E
0
5
-R

H
0
5

-F
,

F
0
5
-R

4

A
0
4

-F
,

G
0
4

-R

B
0
4

-F
,

H
0
4

-R

C
0
4

-F
,

A
0
4

-R

D
0
4

-F
,

B
0
4

-R

E
0
4
-F

,

C
0
4

-R

F
0
4
-F

,

D
0
4

-R

G
0
4

-F
,

E
0
4
-R

H
0
4

-F
,

F
0
4
-R

3

A
0
3

-F
,

G
0
3

-R

B
0
3

-F
,

H
0
3

-R

C
0
3

-F
,

A
0
3

-R

D
0
3

-F
,

B
0
3

-R

E
0
3
-F

,

C
0
3

-R

F
0
3
-F

,

D
0
3

-R

G
0
3

-F
,

E
0
3
-R

H
0
3

-F
,

F
0
3
-R

2

A
0
2

-F
,

G
0
2

-R

B
0
2

-F
,

H
0
2

-R

C
0
2

-F
,

A
0
2

-R

D
0
2

-F
,

B
0
2

-R

E
0
2
-F

,

C
0
2

-R

F
0
2
-F

,

D
0
2

-R

G
0
2

-F
,

E
0
2
-R

H
0
2

-F
,

F
0
2
-R

1

A
0

1
-F

,

G
0

1
-R

B
0

1
-F

,

H
0

1
-R

C
0

1
-F

,

A
0

1
-R

D
0

1
-F

,

B
0

1
-R

E
0

1
-F

,

C
0

1
-R

F
0

1
-F

,

D
0

1
-R

G
0

1
-F

,

E
0

1
-R

H
0

1
-F

,

F
0

1
-R

D
I0

3

A

B

C

D

E

F

G

H

198

Table B-6. Platemap for DI04 used in Chapter 4.

1
2

A
1

2
-F

,

F
1

2
-R

B
1

2
-F

,

G
1

2
-R

C
1

2
-F

,

H
1

2
-R

D
1

2
-F

,

A
1

2
-R

E
1

2
-F

,

B
1

2
-R

F
1

2
-F

,

C
1

2
-R

G
1

2
-F

,

D
1

2
-R

H
1

2
-F

,

E
1

2
-R

1
1

A
1

1
-F

,

F
1

1
-R

B
1

1
-F

,

G
1

1
-R

C
1

1
-F

,

H
1

1
-R

D
1

1
-F

,

A
1

1
-R

E
1

1
-F

,

B
1

1
-R

F
1

1
-F

,

C
1

1
-R

G
1

1
-F

,

D
1

1
-R

H
1

1
-F

,

E
1

1
-R

1
0

A
1

0
-F

,

F
1

0
-R

B
1

0
-F

,

G
1

0
-R

C
1

0
-F

,

H
1

0
-R

D
1

0
-F

,

A
1

0
-R

E
1

0
-F

,

B
1

0
-R

F
1

0
-F

,

C
1

0
-R

G
1

0
-F

,

D
1

0
-R

H
1

0
-F

,

E
1

0
-R

9

A
0

9
-F

,

F
0

9
-R

B
0

9
-F

,

G
0

9
-R

C
0

9
-F

,

H
0

9
-R

D
0

9
-F

,

A
0

9
-R

E
0

9
-F

,

B
0

9
-R

F
0

9
-F

,

C
0

9
-R

G
0

9
-F

,

D
0

9
-R

H
0

9
-F

,

E
0

9
-R

8

A
0
8

-F
,

F
0
8
-R

B
0
8

-F
,

G
0
8

-R

C
0
8

-F
,

H
0
8

-R

D
0
8

-F
,

A
0
8

-R

E
0
8
-F

,

B
0
8

-R

F
0
8
-F

,

C
0
8

-R

G
0
8

-F
,

D
0
8

-R

H
0
8

-F
,

E
0
8
-R

7

A
0
7

-F
,

F
0
7
-R

B
0
7

-F
,

G
0
7

-R

C
0
7

-F
,

H
0
7

-R

D
0
7

-F
,

A
0
7

-R

E
0
7
-F

,

B
0
7

-R

F
0
7
-F

,

C
0
7

-R

G
0
7

-F
,

D
0
7

-R

H
0
7

-F
,

E
0
7
-R

6

A
0
6

-F
,

F
0
6
-R

B
0
6

-F
,

G
0
6

-R

C
0
6

-F
,

H
0
6

-R

D
0
6

-F
,

A
0
6

-R

E
0
6
-F

,

B
0
6

-R

F
0
6
-F

,

C
0
6

-R

G
0
6

-F
,

D
0
6

-R

H
0
6

-F
,

E
0
6
-R

5

A
0
5

-F
,

F
0
5
-R

B
0
5

-F
,

G
0
5

-R

C
0
5

-F
,

H
0
5

-R

D
0
5

-F
,

A
0
5

-R

E
0
5
-F

,

B
0
5

-R

F
0
5
-F

,

C
0
5

-R

G
0
5

-F
,

D
0
5

-R

H
0
5

-F
,

E
0
5
-R

4

A
0
4

-F
,

F
0
4
-R

B
0
4

-F
,

G
0
4

-R

C
0
4

-F
,

H
0
4

-R

D
0
4

-F
,

A
0
4

-R

E
0
4
-F

,

B
0
4

-R

F
0
4
-F

,

C
0
4

-R

G
0
4

-F
,

D
0
4

-R

H
0
4

-F
,

E
0
4
-R

3

A
0
3

-F
,

F
0
3
-R

B
0
3

-F
,

G
0
3

-R

C
0
3

-F
,

H
0
3

-R

D
0
3

-F
,

A
0
3

-R

E
0
3
-F

,

B
0
3

-R

F
0
3
-F

,

C
0
3

-R

G
0
3

-F
,

D
0
3

-R

H
0
3

-F
,

E
0
3
-R

2

A
0
2

-F
,

F
0
2
-R

B
0
2

-F
,

G
0
2

-R

C
0
2

-F
,

H
0
2

-R

D
0
2

-F
,

A
0
2

-R

E
0
2
-F

,

B
0
2

-R

F
0
2
-F

,

C
0
2

-R

G
0
2

-F
,

D
0
2

-R

H
0
2

-F
,

E
0
2
-R

1

A
0

1
-F

,

F
0

1
-R

B
0

1
-F

,

G
0

1
-R

C
0

1
-F

,

H
0

1
-R

D
0

1
-F

,

A
0

1
-R

E
0

1
-F

,

B
0

1
-R

F
0

1
-F

,

C
0

1
-R

G
0

1
-F

,

D
0

1
-R

H
0

1
-F

,

E
0

1
-R

D
I0

4

A

B

C

D

E

F

G

H

199

Table B-7. Platemap for DI05 used in Chapter 4.

1
2

A
1

2
-F

,

E
1

2
-R

B
1

2
-F

,

F
1

2
-R

C
1

2
-F

,

G
1

2
-R

D
1

2
-F

,

H
1

2
-R

E
1

2
-F

,

A
1

2
-R

F
1

2
-F

,

B
1

2
-R

G
1

2
-F

,

C
1

2
-R

H
1

2
-F

,

D
1

2
-R

1
1

A
1

1
-F

,

E
1

1
-R

B
1

1
-F

,

F
1

1
-R

C
1

1
-F

,

G
1

1
-R

D
1

1
-F

,

H
1

1
-R

E
1

1
-F

,

A
1

1
-R

F
1

1
-F

,

B
1

1
-R

G
1

1
-F

,

C
1

1
-R

H
1

1
-F

,

D
1

1
-R

1
0

A
1

0
-F

,

E
1

0
-R

B
1

0
-F

,

F
1

0
-R

C
1

0
-F

,

G
1

0
-R

D
1

0
-F

,

H
1

0
-R

E
1

0
-F

,

A
1

0
-R

F
1

0
-F

,

B
1

0
-R

G
1

0
-F

,

C
1

0
-R

H
1

0
-F

,

D
1

0
-R

9

A
0

9
-F

,

E
0

9
-R

B
0

9
-F

,

F
0

9
-R

C
0

9
-F

,

G
0

9
-R

D
0

9
-F

,

H
0

9
-R

E
0

9
-F

,

A
0

9
-R

F
0

9
-F

,

B
0

9
-R

G
0

9
-F

,

C
0

9
-R

H
0

9
-F

,

D
0

9
-R

8

A
0
8

-F
,

E
0
8
-R

B
0
8

-F
,

F
0
8
-R

C
0
8

-F
,

G
0
8

-R

D
0
8

-F
,

H
0
8

-R

E
0
8
-F

,

A
0
8

-R

F
0
8
-F

,

B
0
8

-R

G
0
8

-F
,

C
0
8

-R

H
0
8

-F
,

D
0
8

-R

7

A
0
7

-F
,

E
0
7
-R

B
0
7

-F
,

F
0
7
-R

C
0
7

-F
,

G
0
7

-R

D
0
7

-F
,

H
0
7

-R

E
0
7
-F

,

A
0
7

-R

F
0
7
-F

,

B
0
7

-R

G
0
7

-F
,

C
0
7

-R

H
0
7

-F
,

D
0
7

-R

6

A
0
6

-F
,

E
0
6
-R

B
0
6

-F
,

F
0
6
-R

C
0
6

-F
,

G
0
6

-R

D
0
6

-F
,

H
0
6

-R

E
0
6
-F

,

A
0
6

-R

F
0
6
-F

,

B
0
6

-R

G
0
6

-F
,

C
0
6

-R

H
0
6

-F
,

D
0
6

-R

5

A
0
5

-F
,

E
0
5
-R

B
0
5

-F
,

F
0
5
-R

C
0
5

-F
,

G
0
5

-R

D
0
5

-F
,

H
0
5

-R

E
0
5
-F

,

A
0
5

-R

F
0
5
-F

,

B
0
5

-R

G
0
5

-F
,

C
0
5

-R

H
0
5

-F
,

D
0
5

-R

4

A
0
4

-F
,

E
0
4
-R

B
0
4

-F
,

F
0
4
-R

C
0
4

-F
,

G
0
4

-R

D
0
4

-F
,

H
0
4

-R

E
0
4
-F

,

A
0
4

-R

F
0
4
-F

,

B
0
4

-R

G
0
4

-F
,

C
0
4

-R

H
0
4

-F
,

D
0
4

-R

3

A
0
3

-F
,

E
0
3
-R

B
0
3

-F
,

F
0
3
-R

C
0
3

-F
,

G
0
3

-R

D
0
3

-F
,

H
0
3

-R

E
0
3
-F

,

A
0
3

-R

F
0
3
-F

,

B
0
3

-R

G
0
3

-F
,

C
0
3

-R

H
0
3

-F
,

D
0
3

-R

2

A
0
2

-F
,

E
0
2
-R

B
0
2

-F
,

F
0
2
-R

C
0
2

-F
,

G
0
2

-R

D
0
2

-F
,

H
0
2

-R

E
0
2
-F

,

A
0
2

-R

F
0
2
-F

,

B
0
2

-R

G
0
2

-F
,

C
0
2

-R

H
0
2

-F
,

D
0
2

-R

1

A
0

1
-F

,

E
0

1
-R

B
0

1
-F

,

F
0

1
-R

C
0

1
-F

,

G
0

1
-R

D
0

1
-F

,

H
0

1
-R

E
0

1
-F

,

A
0

1
-R

F
0

1
-F

,

B
0

1
-R

G
0

1
-F

,

C
0

1
-R

H
0

1
-F

,

D
0

1
-R

D
I0

5

A

B

C

D

E

F

G

H

200

Table B-8. Platemap for DI06 used in Chapter 4.

1
2

A
1

2
-F

,

D
1

2
-R

B
1

2
-F

,

E
1

2
-R

C
1

2
-F

,

F
1

2
-R

D
1

2
-F

,

G
1

2
-R

E
1

2
-F

,

H
1

2
-R

F
1

2
-F

,

A
1

2
-R

G
1

2
-F

,

B
1

2
-R

H
1

2
-F

,

C
1

2
-R

1
1

A
1

1
-F

,

D
1

1
-R

B
1

1
-F

,

E
1

1
-R

C
1

1
-F

,

F
1

1
-R

D
1

1
-F

,

G
1

1
-R

E
1

1
-F

,

H
1

1
-R

F
1

1
-F

,

A
1

1
-R

G
1

1
-F

,

B
1

1
-R

H
1

1
-F

,

C
1

1
-R

1
0

A
1

0
-F

,

D
1

0
-R

B
1

0
-F

,

E
1

0
-R

C
1

0
-F

,

F
1

0
-R

D
1

0
-F

,

G
1

0
-R

E
1

0
-F

,

H
1

0
-R

F
1

0
-F

,

A
1

0
-R

G
1

0
-F

,

B
1

0
-R

H
1

0
-F

,

C
1

0
-R

9

A
0

9
-F

,

D
0

9
-R

B
0

9
-F

,

E
0

9
-R

C
0

9
-F

,

F
0

9
-R

D
0

9
-F

,

G
0

9
-R

E
0

9
-F

,

H
0

9
-R

F
0

9
-F

,

A
0

9
-R

G
0

9
-F

,

B
0

9
-R

H
0

9
-F

,

C
0

9
-R

8

A
0
8

-F
,

D
0
8

-R

B
0
8

-F
,

E
0
8
-R

C
0
8

-F
,

F
0
8
-R

D
0
8

-F
,

G
0
8

-R

E
0
8
-F

,

H
0
8

-R

F
0
8
-F

,

A
0
8

-R

G
0
8

-F
,

B
0
8

-R

H
0
8

-F
,

C
0
8

-R

7

A
0
7

-F
,

D
0
7

-R

B
0
7

-F
,

E
0
7
-R

C
0
7

-F
,

F
0
7
-R

D
0
7

-F
,

G
0
7

-R

E
0
7
-F

,

H
0
7

-R

F
0
7
-F

,

A
0
7

-R

G
0
7

-F
,

B
0
7

-R

H
0
7

-F
,

C
0
7

-R

6

A
0
6

-F
,

D
0
6

-R

B
0
6

-F
,

E
0
6
-R

C
0
6

-F
,

F
0
6
-R

D
0
6

-F
,

G
0
6

-R

E
0
6
-F

,

H
0
6

-R

F
0
6
-F

,

A
0
6

-R

G
0
6

-F
,

B
0
6

-R

H
0
6

-F
,

C
0
6

-R

5

A
0
5

-F
,

D
0
5

-R

B
0
5

-F
,

E
0
5
-R

C
0
5

-F
,

F
0
5
-R

D
0
5

-F
,

G
0
5

-R

E
0
5
-F

,

H
0
5

-R

F
0
5
-F

,

A
0
5

-R

G
0
5

-F
,

B
0
5

-R

H
0
5

-F
,

C
0
5

-R

4

A
0
4

-F
,

D
0
4

-R

B
0
4

-F
,

E
0
4
-R

C
0
4

-F
,

F
0
4
-R

D
0
4

-F
,

G
0
4

-R

E
0
4
-F

,

H
0
4

-R

F
0
4
-F

,

A
0
4

-R

G
0
4

-F
,

B
0
4

-R

H
0
4

-F
,

C
0
4

-R

3

A
0
3

-F
,

D
0
3

-R

B
0
3

-F
,

E
0
3
-R

C
0
3

-F
,

F
0
3
-R

D
0
3

-F
,

G
0
3

-R

E
0
3
-F

,

H
0
3

-R

F
0
3
-F

,

A
0
3

-R

G
0
3

-F
,

B
0
3

-R

H
0
3

-F
,

C
0
3

-R

2

A
0
2

-F
,

D
0
2

-R

B
0
2

-F
,

E
0
2
-R

C
0
2

-F
,

F
0
2
-R

D
0
2

-F
,

G
0
2

-R

E
0
2
-F

,

H
0
2

-R

F
0
2
-F

,

A
0
2

-R

G
0
2

-F
,

B
0
2

-R

H
0
2

-F
,

C
0
2

-R

1

A
0

1
-F

,

D
0

1
-R

B
0

1
-F

,

E
0

1
-R

C
0

1
-F

,

F
0

1
-R

D
0

1
-F

,

G
0

1
-R

E
0

1
-F

,

H
0

1
-R

F
0

1
-F

,

A
0

1
-R

G
0

1
-F

,

B
0

1
-R

H
0

1
-F

,

C
0

1
-R

D
I0

6

A

B

C

D

E

F

G

H

201

Table B-9. Platemap for DI07 used in Chapter 4.

1
2

A
1

2
-F

,

C
1

2
-R

B
1

2
-F

,

D
1

2
-R

C
1

2
-F

,

E
1

2
-R

D
1

2
-F

,

F
1

2
-R

E
1

2
-F

,

G
1

2
-R

F
1

2
-F

,

H
1

2
-R

G
1

2
-F

,

A
1

2
-R

H
1

2
-F

,

B
1

2
-R

1
1

A
1

1
-F

,

C
1

1
-R

B
1

1
-F

,

D
1

1
-R

C
1

1
-F

,

E
1

1
-R

D
1

1
-F

,

F
1

1
-R

E
1

1
-F

,

G
1

1
-R

F
1

1
-F

,

H
1

1
-R

G
1

1
-F

,

A
1

1
-R

H
1

1
-F

,

B
1

1
-R

1
0

A
1

0
-F

,

C
1

0
-R

B
1

0
-F

,

D
1

0
-R

C
1

0
-F

,

E
1

0
-R

D
1

0
-F

,

F
1

0
-R

E
1

0
-F

,

G
1

0
-R

F
1

0
-F

,

H
1

0
-R

G
1

0
-F

,

A
1

0
-R

H
1

0
-F

,

B
1

0
-R

9

A
0

9
-F

,

C
0

9
-R

B
0

9
-F

,

D
0

9
-R

C
0

9
-F

,

E
0

9
-R

D
0

9
-F

,

F
0

9
-R

E
0

9
-F

,

G
0

9
-R

F
0

9
-F

,

H
0

9
-R

G
0

9
-F

,

A
0

9
-R

H
0

9
-F

,

B
0

9
-R

8

A
0
8

-F
,

C
0
8

-R

B
0
8

-F
,

D
0
8

-R

C
0
8

-F
,

E
0
8
-R

D
0
8

-F
,

F
0
8
-R

E
0
8
-F

,

G
0
8

-R

F
0
8
-F

,

H
0
8

-R

G
0
8

-F
,

A
0
8

-R

H
0
8

-F
,

B
0
8

-R

7

A
0
7

-F
,

C
0
7

-R

B
0
7

-F
,

D
0
7

-R

C
0
7

-F
,

E
0
7
-R

D
0
7

-F
,

F
0
7
-R

E
0
7
-F

,

G
0
7

-R

F
0
7
-F

,

H
0
7

-R

G
0
7

-F
,

A
0
7

-R

H
0
7

-F
,

B
0
7

-R

6

A
0
6

-F
,

C
0
6

-R

B
0
6

-F
,

D
0
6

-R

C
0
6

-F
,

E
0
6
-R

D
0
6

-F
,

F
0
6
-R

E
0
6
-F

,

G
0
6

-R

F
0
6
-F

,

H
0
6

-R

G
0
6

-F
,

A
0
6

-R

H
0
6

-F
,

B
0
6

-R

5

A
0
5

-F
,

C
0
5

-R

B
0
5

-F
,

D
0
5

-R

C
0
5

-F
,

E
0
5
-R

D
0
5

-F
,

F
0
5
-R

E
0
5
-F

,

G
0
5

-R

F
0
5
-F

,

H
0
5

-R

G
0
5

-F
,

A
0
5

-R

H
0
5

-F
,

B
0
5

-R

4

A
0
4

-F
,

C
0
4

-R

B
0
4

-F
,

D
0
4

-R

C
0
4

-F
,

E
0
4
-R

D
0
4

-F
,

F
0
4
-R

E
0
4
-F

,

G
0
4

-R

F
0
4
-F

,

H
0
4

-R

G
0
4

-F
,

A
0
4

-R

H
0
4

-F
,

B
0
4

-R

3

A
0
3

-F
,

C
0
3

-R

B
0
3

-F
,

D
0
3

-R

C
0
3

-F
,

E
0
3
-R

D
0
3

-F
,

F
0
3
-R

E
0
3
-F

,

G
0
3

-R

F
0
3
-F

,

H
0
3

-R

G
0
3

-F
,

A
0
3

-R

H
0
3

-F
,

B
0
3

-R

2

A
0
2

-F
,

C
0
2

-R

B
0
2

-F
,

D
0
2

-R

C
0
2

-F
,

E
0
2
-R

D
0
2

-F
,

F
0
2
-R

E
0
2
-F

,

G
0
2

-R

F
0
2
-F

,

H
0
2

-R

G
0
2

-F
,

A
0
2

-R

H
0
2

-F
,

B
0
2

-R

1

A
0

1
-F

,

C
0

1
-R

B
0

1
-F

,

D
0

1
-R

C
0

1
-F

,

E
0

1
-R

D
0

1
-F

,

F
0

1
-R

E
0

1
-F

,

G
0

1
-R

F
0

1
-F

,

H
0

1
-R

G
0

1
-F

,

A
0

1
-R

H
0

1
-F

,

B
0

1
-R

D
I0

7

A

B

C

D

E

F

G

H

202

Table B-10. Platemap for DI08 used in Chapter 4.

1
2

A
1

2
-F

,

B
1

2
-R

B
1

2
-F

,

C
1

2
-R

C
1

2
-F

,

D
1

2
-R

D
1

2
-F

,

E
1

2
-R

E
1

2
-F

,

F
1

2
-R

F
1

2
-F

,

G
1

2
-R

G
1

2
-F

,

H
1

2
-R

H
1

2
-F

,

A
1

2
-R

1
1

A
1

1
-F

,

B
1

1
-R

B
1

1
-F

,

C
1

1
-R

C
1

1
-F

,

D
1

1
-R

D
1

1
-F

,

E
1

1
-R

E
1

1
-F

,

F
1

1
-R

F
1

1
-F

,

G
1

1
-R

G
1

1
-F

,

H
1

1
-R

H
1

1
-F

,

A
1

1
-R

1
0

A
1

0
-F

,

B
1

0
-R

B
1

0
-F

,

C
1

0
-R

C
1

0
-F

,

D
1

0
-R

D
1

0
-F

,

E
1

0
-R

E
1

0
-F

,

F
1

0
-R

F
1

0
-F

,

G
1

0
-R

G
1

0
-F

,

H
1

0
-R

H
1

0
-F

,

A
1

0
-R

9

A
0

9
-F

,

B
0

9
-R

B
0

9
-F

,

C
0

9
-R

C
0

9
-F

,

D
0

9
-R

D
0

9
-F

,

E
0

9
-R

E
0

9
-F

,

F
0

9
-R

F
0

9
-F

,

G
0

9
-R

G
0

9
-F

,

H
0

9
-R

H
0

9
-F

,

A
0

9
-R

8

A
0
8

-F
,

B
0
8

-R

B
0
8

-F
,

C
0
8

-R

C
0
8

-F
,

D
0
8

-R

D
0
8

-F
,

E
0
8
-R

E
0
8
-F

,

F
0
8
-R

F
0
8
-F

,

G
0
8

-R

G
0
8

-F
,

H
0
8

-R

H
0
8

-F
,

A
0
8

-R

7

A
0
7

-F
,

B
0
7

-R

B
0
7

-F
,

C
0
7

-R

C
0
7

-F
,

D
0
7

-R

D
0
7

-F
,

E
0
7
-R

E
0
7
-F

,

F
0
7
-R

F
0
7
-F

,

G
0
7

-R

G
0
7

-F
,

H
0
7

-R

H
0
7

-F
,

A
0
7

-R

6

A
0
6

-F
,

B
0
6

-R

B
0
6

-F
,

C
0
6

-R

C
0
6

-F
,

D
0
6

-R

D
0
6

-F
,

E
0
6
-R

E
0
6
-F

,

F
0
6
-R

F
0
6
-F

,

G
0
6

-R

G
0
6

-F
,

H
0
6

-R

H
0
6

-F
,

A
0
6

-R

5

A
0
5

-F
,

B
0
5

-R

B
0
5

-F
,

C
0
5

-R

C
0
5

-F
,

D
0
5

-R

D
0
5

-F
,

E
0
5
-R

E
0
5
-F

,

F
0
5
-R

F
0
5
-F

,

G
0
5

-R

G
0
5

-F
,

H
0
5

-R

H
0
5

-F
,

A
0
5

-R

4

A
0
4

-F
,

B
0
4

-R

B
0
4

-F
,

C
0
4

-R

C
0
4

-F
,

D
0
4

-R

D
0
4

-F
,

E
0
4
-R

E
0
4
-F

,

F
0
4
-R

F
0
4
-F

,

G
0
4

-R

G
0
4

-F
,

H
0
4

-R

H
0
4

-F
,

A
0
4

-R

3

A
0
3

-F
,

B
0
3

-R

B
0
3

-F
,

C
0
3

-R

C
0
3

-F
,

D
0
3

-R

D
0
3

-F
,

E
0
3
-R

E
0
3
-F

,

F
0
3
-R

F
0
3
-F

,

G
0
3

-R

G
0
3

-F
,

H
0
3

-R

H
0
3

-F
,

A
0
3

-R

2

A
0
2

-F
,

B
0
2

-R

B
0
2

-F
,

C
0
2

-R

C
0
2

-F
,

D
0
2

-R

D
0
2

-F
,

E
0
2
-R

E
0
2
-F

,

F
0
2
-R

F
0
2
-F

,

G
0
2

-R

G
0
2

-F
,

H
0
2

-R

H
0
2

-F
,

A
0
2

-R

1

A
0

1
-F

,

B
0

1
-R

B
0

1
-F

,

C
0

1
-R

C
0

1
-F

,

D
0

1
-R

D
0

1
-F

,

E
0

1
-R

E
0

1
-F

,

F
0

1
-R

F
0

1
-F

,

G
0

1
-R

G
0

1
-F

,

H
0

1
-R

H
0

1
-F

,

A
0

1
-R

D
I0

8

A

B

C

D

E

F

G

H

203

B.6 Supplemental Tables

Table B-11. evSeq captures off-target mutations. This table is derived from the

“AminoAcids_Coupled_Max.csv” output file from evSeq for the TrpB run presented in

Chapter 4, and shows all confident (defined as ≥0.80 alignment frequency and ≥10 total

reads) unexpected mutations captured by evSeq; some columns have been removed. Note in

the “VariantCombo” column that the amino acid at the expected mutagenized position has a

“?” as the original amino acid—this is because the evSeq run generating this data was told

the variable positions with the “NNN” convention. For unexpected variable positions, both

the original amino acid and the new amino acid are shown.

IndexPlate Plate Well VariantCombo AlignmentFrequency WellSeqDepth

DI02 Lib2_118X E03 ?118V_D164G 0.964286 28

DI04 Lib4_166X B02 P154S_?166Q 0.977011 87

DI08 Lib8_301X H11 G250D_?301L 0.99537 216

Table B-12. Primer sequences for TrpB saturation mutagenesis library construction in

Chapter 4.

Site Direction Sequence

105 Forward GGCAAAACCCGTATCATTGCTNNNACGGGTGCTGGTCAGCAC

105 Reverse AGCAATGATACGGGTTTTGCCCATTAGTTTTGCCAGCAGAACCTGGC

118 Forward GGCGTAGCAACTGCTACCNNNGCAGCGCTGTTCGGTATGGAATGTGTAATCT
ATATGG

118 Reverse GGTAGCAGTTGCTACGCCGTGCTGACCAGC

162 Forward GTAAAATCCGGTAGCCGTACCNNNAAAGACGCAATTGACGAAGCTCTG

162 Reverse GGTACGGCTACCGGATTTTACCGGTACAACTTTAGCACCCAGCAG

166 Forward CGTACCCTGAAAGACGCANNNGACGAAGCTCTGCGTGACTGGATTACCAACC

166 Reverse TGCGTCTTTCAGGGTACGGCTACCGGATTTTACCGG

184 Forward CTGCAGACCACCTATTACGTGNNNGGCTCTGTGGTTGGTCC

184 Reverse CACGTAATAGGTGGTCTGCAGGTTGGTAATCCAGTCACGCAGAGCT

228 Forward TACATCGTTGCGTGCGTGNNNGGTGGTTCTAACGCTGCC

228 Reverse CACGCACGCAACGATGTAGTCCGGCAGACGGCCTTCT

292 Forward GATGACTGGGGTCAAGTTCAGGTGNNNCACTCCGTCTCCGCTG

292 Reverse CACCTGAACTTGACCCCAGTCATCCTGCAGAACGAACGTCTTAGAACCG

301 Forward TCCGCTGGCCTGGACNNNTCCGGTGTCGGTCCGGA

301 Reverse GTCCAGGCCAGCGGAGACGGAGTGGCTCACCTGAACT

204

Table B-13. Primers specific to the ampicillin resistance gene of pET22b(+) used in TrpB

library construction in Chapter 4.

Site Direction Sequence

AmpR Forward CCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGC

AmpR Reverse CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAG

Table B-14. Inner primers used for evSeq library preparation from the TrpB site-saturation

mutagenesis libraries in Chapter 4.

Name Direction Sites Sequence

evSeq_102_f Forward 105, 118, 162, 166, 184 CACCCAAGACCACTCTCCGGGCAAAA
CTAATGGGCAAAACCCG

evSeq_184_r Reverse 105, 118, 162, 166, 184 CGGTGTGCGAAGTAGGTGCGATGCGG
ACCAACCACAGAG

evSeq_226_f Forward 228, 292, 301 CACCCAAGACCACTCTCCGGGCCGGA
CTACATCGTTGCG

evSeq_304_r Reverse 228, 292, 301 CGGTGTGCGAAGTAGGTGCCAATAGG
CGTGTTCCGGACC

Table B-15. The evSeq barcode plates used for sequencing each position of the TrpB site-

saturation mutagenesis libraries in Chapter 4.

Position

targeted

Barcode

plate

105 DI01

118 DI02

162 DI03

166 DI04

184 DI05

228 DI06

292 DI07

301 DI08

205

Table B-16. Mutagenic primers used for the construction of the RmaNOD four-site-

saturation library in Chapter 4. Note that the names of the primers are delimited by “-” and

that the delimited sections reflect the mutagenized positions, the degenerate codons at those

positions, and the direction of the primer on the template DNA ([Positions]-[Codon1]-

[Codon2]-[Direction]).

Name Sequence

S28M31-NDT-NDT-F AAACACTCAGTCGCTATTNDTGCCACGNDTGGTCGGCTGCTTTTCG

S28M31-NDT-VHG-F AAACACTCAGTCGCTATTNDTGCCACGVHGGGTCGGCTGCTTTTCG

S28M31-NDT-TGG-F AAACACTCAGTCGCTATTNDTGCCACGTGGGGTCGGCTGCTTTTCG

S28M31-VHG-NDT-F AAACACTCAGTCGCTATTVHGGCCACGNDTGGTCGGCTGCTTTTCG

S28M31-VHG-VHG-F AAACACTCAGTCGCTATTVHGGCCACGVHGGGTCGGCTGCTTTTCG

S28M31-VHG-TGG-F AAACACTCAGTCGCTATTVHGGCCACGTGGGGTCGGCTGCTTTTCG

S28M31-TGG-NDT-F AAACACTCAGTCGCTATTTGGGCCACGNDTGGTCGGCTGCTTTTCG

S28M31-TGG-VHG-F AAACACTCAGTCGCTATTTGGGCCACGVHGGGTCGGCTGCTTTTCG

S28M31-TGG-TGG-F AAACACTCAGTCGCTATTTGGGCCACGTGGGGTCGGCTGCTTTTCG

Q52L56-AHN-AHN-R GGCCAACAGGGCCGACGCAHNCTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG

Q52L56-AHN-CDB-R GGCCAACAGGGCCGACGCAHNCTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG

Q52L56-AHN-CCA-R GGCCAACAGGGCCGACGCAHNCTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG

Q52L56-CDB-AHN-R GGCCAACAGGGCCGACGCCDBCTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG

Q52L56-CDB-CDB-R GGCCAACAGGGCCGACGCCDBCTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG

Q52L56-CDB-CCA-R GGCCAACAGGGCCGACGCCDBCTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG

Q52L56-CCA-AHN-R GGCCAACAGGGCCGACGCCCACTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG

Q52L56-CCA-CDB-R GGCCAACAGGGCCGACGCCCACTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG

Q52L56-CCA-CCA-R GGCCAACAGGGCCGACGCCCACTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG

206

Table B-17. Additional primers used to build flanking fragments during construction of the

four-site-saturation RmaNOD library in Chapter 4.

Flanking

Fragment

Primer Type Primer Name Sequence

0 Forward Universal-F
CCAACTTACTTCTGACAACGATCGGAG
GACCGAAGGAGCTAACCGCTTTTTTGC

0 Reverse S28M31_Const-R
AATAGCGACTGAGTGTTTCTGCAGTGC
AGGCAC

1 Forward L56_Const-F
GCGTCGGCCCTGTTGGCCTACGCCCGT
AGTATCGACAACCC

1 Reverse Universal-R
CGATCGTTGTCAGAAGTAAGTTGGCCG
CAGTGTTATCACTCATGGTTATGGCAG

Table B-18. Inner primers used for evSeq library preparation from the RmaNOD four-site-

saturation mutagenesis library in Chapter 4.

Plates Forward primer Reverse Primer

All plates CACCCAAGACCACTCTCCGGC
ACTGCAGAAACACTCAGTCG

CGGTGTGCGAAGTAGGTGCAC
TACGGGCGTAGGCCAAC

Table B-19. The evSeq barcode plates used for sequencing each position of the RmaNOD

four-site-saturation mutagenesis library in Chapter 4.

Position

targeted

Barcode

plate

Plate #1 DI01

Plate #2 DI02

Plate #3 DI03

Plate #4 DI04

Plate #5 DI05

207

REFERENCES

(1) BCC Research Staff. Global Markets for Enzymes in Industrial Applications; BCC

Research, 2018.

(2) Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins,

K. Engineering the Third Wave of Biocatalysis. Nature 2012, 485 (7397), 185–194.

https://doi.org/10.1038/nature11117.

(3) Blamey, J. M.; Fischer, F.; Meyer, H.-P.; Sarmiento, F.; Zinn, M. Enzymatic

Biocatalysis in Chemical Transformations. In Biotechnology of Microbial Enzymes;

Elsevier, 2017; pp 347–403. https://doi.org/10.1016/B978-0-12-803725-6.00014-5.

(4) Sheldon, R. A.; Woodley, J. M. Role of Biocatalysis in Sustainable Chemistry. Chem.

Rev. 2018, 118 (2), 801–838. https://doi.org/10.1021/acs.chemrev.7b00203.

(5) Baker, D. An Exciting but Challenging Road Ahead for Computational Enzyme

Design. Protein Sci. 2010, 19 (10), 1817–1819. https://doi.org/10.1002/pro.481.

(6) Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.; Thompson, J.; Jacak, R.;

Kaufman, K. W.; Renfrew, P. D.; Smith, C. A.; Sheffler, W.; et al. Rosetta3: An

Object-Oriented Software Suite for the Simulation and Design of Macromolecules. In

Methods in Enzymology; 2011; Vol. 487, pp 545–574. https://doi.org/10.1016/B978-

0-12-381270-4.00019-6.

(7) Huang, P.-S.; Boyken, S. E.; Baker, D. The Coming of Age of de Novo Protein

Design. Nature 2016, 537 (7620), 320–327. https://doi.org/10.1038/nature19946.

(8) Garcia-Borràs, M.; Houk, K. N.; Jiménez-Osés, G. Chapter 4. Computational Design

of Protein Function. In Computational Tools for Chemical Biology; The Royal Society

of Chemistry, 2018; pp 87–107. https://doi.org/10.1039/9781788010139-00087.

(9) Fasan, R.; Jennifer Kan, S. B.; Zhao, H. A Continuing Career in Biocatalysis: Frances

H. Arnold. ACS Catal. 2019, 9 (11), 9775–9788.

https://doi.org/10.1021/acscatal.9b02737.

(10) Arnold, F. H. Directed Evolution: Bringing New Chemistry to Life. Angew. Chemie

Int. Ed. 2018, 57 (16), 4143–4148. https://doi.org/10.1002/anie.201708408.

208

(11) Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S. T.; Zhao, H. Directed Evolution:

Methodologies and Applications. Chem. Rev. 2021, 121 (20), 12384–12444.

https://doi.org/10.1021/acs.chemrev.1c00260.

(12) Anfinsen, C. B.; Haber, E.; Sela, M.; White, F. H. The Kinetics of Formation of Native

Ribonuclease During Oxidation of the Reduced Polypeptide Chain. Proc. Natl. Acad.

Sci. 1961, 47 (9), 1309–1314. https://doi.org/10.1073/pnas.47.9.1309.

(13) Khersonsky, O.; Tawfik, D. S. Enzyme Promiscuity: A Mechanistic and Evolutionary

Perspective. Annu. Rev. Biochem. 2010, 79, 471–505.

https://doi.org/10.1146/annurev-biochem-030409-143718.

(14) Trudeau, D. L.; Tawfik, D. S. Protein Engineers Turned Evolutionists—the Quest for

the Optimal Starting Point. Curr. Opin. Biotechnol. 2019, 60, 46–52.

https://doi.org/10.1016/j.copbio.2018.12.002.

(15) Mazurenko, S.; Prokop, Z.; Damborsky, J. Machine Learning in Enzyme Engineering.

ACS Catal. 2020, 10 (2), 1210–1223. https://doi.org/10.1021/acscatal.9b04321.

(16) Yang, K. K.; Wu, Z.; Arnold, F. H. Machine-Learning-Guided Directed Evolution for

Protein Engineering. Nat. Methods 2019, 16 (8), 687–694.

https://doi.org/10.1038/s41592-019-0496-6.

(17) Li, G.; Dong, Y.; Reetz, M. T. Can Machine Learning Revolutionize Directed

Evolution of Selective Enzymes? Adv. Synth. Catal. 2019, 361 (11), 2377–2386.

https://doi.org/10.1002/adsc.201900149.

(18) Siedhoff, N. E.; Schwaneberg, U.; Davari, M. D. Machine Learning-Assisted Enzyme

Engineering. In Methods in Enzymology; Elsevier Inc., 2020; Vol. 643, pp 281–315.

https://doi.org/10.1016/bs.mie.2020.05.005.

(19) Xu, Y.; Verma, D.; Sheridan, R. P.; Liaw, A.; Ma, J.; Marshall, N. M.; McIntosh, J.;

Sherer, E. C.; Svetnik, V.; Johnston, J. M. Deep Dive into Machine Learning Models

for Protein Engineering. J. Chem. Inf. Model. 2020, 60 (6), 2773–2790.

https://doi.org/10.1021/acs.jcim.0c00073.

(20) AlQuraishi, M.; Sorger, P. K. Differentiable Biology: Using Deep Learning for

Biophysics-Based and Data-Driven Modeling of Molecular Mechanisms. Nat.

Methods 2021, 18 (10), 1169–1180. https://doi.org/10.1038/s41592-021-01283-4.

209

(21) Greener, J. G.; Kandathil, S. M.; Moffat, L.; Jones, D. T. A Guide to Machine

Learning for Biologists. Nat. Rev. Mol. Cell Biol. 2022, 23 (1), 40–55.

https://doi.org/10.1038/s41580-021-00407-0.

(22) Wittmann, B. J.; Johnston, K. E.; Wu, Z.; Arnold, F. H. Advances in Machine

Learning for Directed Evolution. Curr. Opin. Struct. Biol. 2021, 69, 11–18.

https://doi.org/10.1016/j.sbi.2021.01.008.

(23) Hie, B. L.; Yang, K. K. Adaptive Machine Learning for Protein Engineering. Curr.

Opin. Struct. Biol. 2022, 72, 145–152. https://doi.org/10.1016/j.sbi.2021.11.002.

(24) Wu, Z.; Johnston, K. E.; Arnold, F. H.; Yang, K. K. Protein Sequence Design with

Deep Generative Models. Curr. Opin. Chem. Biol. 2021, 65, 18–27.

https://doi.org/10.1016/j.cbpa.2021.04.004.

(25) Domingos, P. A Few Useful Things to Know about Machine Learning. Commun.

ACM 2012, 55 (10), 78–87. https://doi.org/10.1145/2347736.2347755.

(26) Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory

to Algorithms; Cambridge University Press: Cambridge, 2014; Vol. 128.

https://doi.org/10.1017/CBO9781107298019.

(27) Maynard Smith, J. Natural Selection and the Concept of a Protein Space. Nature 1970,

225 (5232), 563–564. https://doi.org/10.1038/225563a0.

(28) Arnold, F. H. The Library of Maynard-Smith: My Search for Meaning in the Protein

Universe. Microbe Mag. 2011, 6 (7), 316–318.

https://doi.org/10.1128/microbe.6.316.1.

(29) Romero, P. A.; Arnold, F. H. Exploring Protein Fitness Landscapes by Directed

Evolution. Nat. Rev. Mol. Cell Biol. 2009, 10 (12), 866–876.

https://doi.org/10.1038/nrm2805.

(30) Packer, M. S.; Liu, D. R. Methods for the Directed Evolution of Proteins. Nat. Rev.

Genet. 2015, 16 (7), 379–394. https://doi.org/10.1038/nrg3927.

(31) Brookes, D. H.; Aghazadeh, A.; Listgarten, J. On the Sparsity of Fitness Functions

and Implications for Learning. Proc. Natl. Acad. Sci. 2022, 119 (1).

https://doi.org/10.1073/pnas.2109649118.

210

(32) Bloom, J. D.; Labthavikul, S. T.; Otey, C. R.; Arnold, F. H. Protein Stability Promotes

Evolvability. Proc. Natl. Acad. Sci. 2006, 103 (15), 5869–5874.

https://doi.org/10.1073/pnas.0510098103.

(33) Wittmann, B. J.; Yue, Y.; Arnold, F. H. Informed Training Set Design Enables

Efficient Machine Learning-Assisted Directed Protein Evolution. Cell Syst. 2021, 12

(11), 1026-1045.e7. https://doi.org/10.1016/j.cels.2021.07.008.

(34) Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine

Learning. arXiv 2018. https://doi.org/10.48550/arXiv.1811.12808.

(35) Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.;

Kanehisa, M. AAindex: Amino Acid Index Database, Progress Report 2008. Nucleic

Acids Res. 2007, 36 (Database), D202–D205. https://doi.org/10.1093/nar/gkm998.

(36) Ofer, D.; Linial, M. ProFET: Feature Engineering Captures High-Level Protein

Functions. Bioinformatics 2015, 31 (21), 3429–3436.

https://doi.org/10.1093/bioinformatics/btv345.

(37) Iuchi, H.; Matsutani, T.; Yamada, K.; Iwano, N.; Sumi, S.; Hosoda, S.; Zhao, S.;

Fukunaga, T.; Hamada, M. Representation Learning Applications in Biological

Sequence Analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3198–3208.

https://doi.org/10.1016/j.csbj.2021.05.039.

(38) Ibtehaz, N.; Kihara, D. Application of Sequence Embedding in Protein Sequence-

Based Predictions. arXiv 2021. https://doi.org/10.48550/arXiv.2110.07609.

(39) Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G. A.; Sonnhammer,

E. L. L.; Tosatto, S. C. E.; Paladin, L.; Raj, S.; Richardson, L. J.; et al. Pfam: The

Protein Families Database in 2021. Nucleic Acids Res. 2021, 49 (D1), D412–D419.

https://doi.org/10.1093/nar/gkaa913.

(40) Mitchell, A. L.; Almeida, A.; Beracochea, M.; Boland, M.; Burgin, J.; Cochrane, G.;

Crusoe, M. R.; Kale, V.; Potter, S. C.; Richardson, L. J.; et al. MGnify: The

Microbiome Analysis Resource in 2020. Nucleic Acids Res. 2020, 48 (D1), D570–

D578. https://doi.org/10.1093/nar/gkz1035.

211

(41) Mirdita, M.; von den Driesch, L.; Galiez, C.; Martin, M. J.; Söding, J.; Steinegger, M.

Uniclust Databases of Clustered and Deeply Annotated Protein Sequences and

Alignments. Nucleic Acids Res. 2017, 45 (D1), D170–D176.

https://doi.org/10.1093/nar/gkw1081.

(42) Bateman, A.; Martin, M. J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.;

Alpi, E.; Bowler-Barnett, E. H.; Britto, R.; Bursteinas, B.; et al. UniProt: The

Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49 (D1), D480–

D489. https://doi.org/10.1093/nar/gkaa1100.

(43) Liu, Z.; Lin, Y.; Sun, M. Representation Learning for Natural Language Processing;

Springer Singapore: Singapore, 2020. https://doi.org/10.1007/978-981-15-5573-2.

(44) Galanis, N.-I.; Vafiadis, P.; Mirzaev, K.-G.; Papakostas, G. A. Machine Learning

Meets Natural Language Processing -- The Story so Far. arXiv 2021.

https://doi.org/10.48550/arXiv.2104.10213.

(45) Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning

Based Natural Language Processing. IEEE Comput. Intell. Mag. 2018, 13 (3), 55–75.

https://doi.org/10.1109/MCI.2018.2840738.

(46) Ericsson, L.; Gouk, H.; Loy, C. C.; Hospedales, T. M. Self-Supervised Representation

Learning: Introduction, Advances and Challenges. arXiv 2021.

https://doi.org/10.48550/arXiv.2110.09327.

(47) Di Liello, L.; Gabburo, M.; Moschitti, A. Efficient Pre-Training Objectives for

Transformers. arXiv 2021. https://doi.org/10.48550/arXiv.2104.09694.

(48) Vig, J.; Madani, A.; Varshney, L. R.; Xiong, C.; Socher, R.; Rajani, N. F. BERTology

Meets Biology: Interpreting Attention in Protein Language Models. arXiv 2020.

https://doi.org/10.48550/arXiv.2006.15222.

(49) Melidis, D. P.; Nejdl, W. Capturing Protein Domain Structure and Function Using

Self-Supervision on Domain Architectures. Algorithms 2021, 14 (1), 28.

https://doi.org/10.3390/a14010028.

(50) Ding, X.; Zou, Z.; Brooks III, C. L. Deciphering Protein Evolution and Fitness

Landscapes with Latent Space Models. Nat. Commun. 2019, 10 (1), 5644.

https://doi.org/10.1038/s41467-019-13633-0.

212

(51) Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs,

T.; Feher, T.; Angerer, C.; Steinegger, M.; et al. ProtTrans: Towards Cracking the

Language of Lifes Code Through Self-Supervised Deep Learning and High

Performance Computing. IEEE Trans. Pattern Anal. Mach. Intell. 2021.

https://doi.org/10.1109/TPAMI.2021.3095381.

(52) Alley, E. C.; Khimulya, G.; Biswas, S.; AlQuraishi, M.; Church, G. M. Unified

Rational Protein Engineering with Sequence-Based Deep Representation Learning.

Nat. Methods 2019, 16 (12), 1315–1322. https://doi.org/10.1038/s41592-019-0598-1.

(53) Yang, K. K.; Wu, Z.; Bedbrook, C. N.; Arnold, F. H. Learned Protein Embeddings for

Machine Learning. Bioinformatics 2018, 34 (15), 2642–2648.

https://doi.org/10.1093/bioinformatics/bty178.

(54) Asgari, E.; Mofrad, M. R. K. Continuous Distributed Representation of Biological

Sequences for Deep Proteomics and Genomics. PLoS One 2015, 10 (11), e0141287.

https://doi.org/10.1371/journal.pone.0141287.

(55) Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick,

C. L.; Ma, J.; et al. Biological Structure and Function Emerge from Scaling

Unsupervised Learning to 250 Million Protein Sequences. Proc. Natl. Acad. Sci. 2021,

118 (15). https://doi.org/10.1073/pnas.2016239118.

(56) Heinzinger, M.; Elnaggar, A.; Wang, Y.; Dallago, C.; Nechaev, D.; Matthes, F.; Rost,

B. Modeling Aspects of the Language of Life through Transfer-Learning Protein

Sequences. BMC Bioinformatics 2019, 20 (1), 723. https://doi.org/10.1186/s12859-

019-3220-8.

(57) Madani, A.; McCann, B.; Naik, N.; Keskar, N. S.; Anand, N.; Eguchi, R. R.; Huang,

P.-S.; Socher, R. ProGen: Language Modeling for Protein Generation. arXiv 2020.

https://doi.org/10.48550/arXiv.2004.03497.

(58) Rao, R.; Bhattacharya, N.; Thomas, N.; Duan, Y.; Chen, X.; Canny, J.; Abbeel, P.;

Song, Y. S. Evaluating Protein Transfer Learning with TAPE. arXiv 2019.

https://doi.org/10.48550/arXiv.1906.08230.

(59) Kimothi, D.; Soni, A.; Biyani, P.; Hogan, J. M. Distributed Representations for

Biological Sequence Analysis. arXiv 2016.

https://doi.org/10.48550/arXiv.1608.05949.

213

(60) Bepler, T.; Berger, B. Learning Protein Sequence Embeddings Using Information

from Structure. arXiv 2019. https://doi.org/10.48550/arXiv.1902.08661.

(61) Rao, R.; Liu, J.; Verkuil, R.; Meier, J.; Canny, J. F.; Abbeel, P.; Sercu, T.; Rives, A.

MSA Transformer. bioRxiv 2021. https://doi.org/10.1101/2021.02.12.430858.

(62) Shanehsazzadeh, A.; Belanger, D.; Dohan, D. Is Transfer Learning Necessary for

Protein Landscape Prediction? arXiv 2020.

https://doi.org/10.48550/arXiv.2011.03443.

(63) Hsu, C.; Nisonoff, H.; Fannjiang, C.; Listgarten, J. Learning Protein Fitness Models

from Evolutionary and Assay-Labeled Data. Nat. Biotechnol. 2022.

https://doi.org/10.1038/s41587-021-01146-5.

(64) Biswas, S.; Khimulya, G.; Alley, E. C.; Esvelt, K. M.; Church, G. M. Low-N Protein

Engineering with Data-Efficient Deep Learning. Nat. Methods 2021, 18 (4), 389–396.

https://doi.org/10.1038/s41592-021-01100-y.

(65) Lu, T.; Lu, A. X.; Moses, A. M. Random Embeddings and Linear Regression Can

Predict Protein Function. arXiv 2021. https://doi.org/10.48550/arXiv.2104.14661.

(66) Detlefsen, N. S.; Hauberg, S.; Boomsma, W. Learning Meaningful Representations of

Protein Sequences. Nat. Commun. 2022, 13 (1), 1914. https://doi.org/10.1038/s41467-

022-29443-w.

(67) Meier, J.; Rao, R.; Verkuil, R.; Liu, J.; Sercu, T.; Rives, A. Language Models Enable

Zero-Shot Prediction of the Effects of Mutations on Protein Function. bioRxiv 2021.

https://doi.org/10.1101/2021.07.09.450648.

(68) Riesselman, A. J.; Ingraham, J. B.; Marks, D. S. Deep Generative Models of Genetic

Variation Capture the Effects of Mutations. Nat. Methods 2018, 15 (10), 816–822.

https://doi.org/10.1038/s41592-018-0138-4.

(69) Khersonsky, O.; Lipsh, R.; Avizemer, Z.; Ashani, Y.; Goldsmith, M.; Leader, H.;

Dym, O.; Rogotner, S.; Trudeau, D. L.; Prilusky, J.; et al. Automated Design of

Efficient and Functionally Diverse Enzyme Repertoires. Mol. Cell 2018, 72 (1), 178-

186.e5. https://doi.org/10.1016/j.molcel.2018.08.033.

214

(70) Hopf, T. A.; Ingraham, J. B.; Poelwijk, F. J.; Schärfe, C. P. I.; Springer, M.; Sander,

C.; Marks, D. S. Mutation Effects Predicted from Sequence Co-Variation. Nat.

Biotechnol. 2017, 35 (2), 128–135. https://doi.org/10.1038/nbt.3769.

(71) Sinai, S.; Kelsic, E. A Primer on Model-Guided Exploration of Fitness Landscapes

for Biological Sequence Design. arXiv 2020.

https://doi.org/10.48550/arXiv.2010.10614.

(72) Sinai, S.; Wang, R.; Whatley, A.; Slocum, S.; Locane, E.; Kelsic, E. D. AdaLead: A

Simple and Robust Adaptive Greedy Search Algorithm for Sequence Design. arXiv

2020. https://doi.org/10.48550/arXiv.2010.02141.

(73) Bryant, D. H.; Bashir, A.; Sinai, S.; Jain, N. K.; Ogden, P. J.; Riley, P. F.; Church, G.

M.; Colwell, L. J.; Kelsic, E. D. Deep Diversification of an AAV Capsid Protein by

Machine Learning. Nat. Biotechnol. 2021, 39 (6), 691–696.

https://doi.org/10.1038/s41587-020-00793-4.

(74) Brookes, D. H.; Listgarten, J. Design by Adaptive Sampling. arXiv 2018.

https://doi.org/10.48550/arXiv.1810.03714.

(75) Brookes, D. H.; Park, H.; Listgarten, J. Conditioning by Adaptive Sampling for

Robust Design. arXiv 2020. https://doi.org/10.48550/arXiv.1901.10060.

(76) Sinai, S.; Jain, N.; Church, G. M.; Kelsic, E. D. Generative AAV Capsid

Diversification by Latent Interpolation. bioRxiv 2021.

https://doi.org/10.1101/2021.04.16.440236.

(77) Castro, E.; Godavarthi, A.; Rubinfien, J.; Givechian, K. B.; Bhaskar, D.;

Krishnaswamy, S. Guided Generative Protein Design Using Regularized

Transformers. arXiv 2022. https://doi.org/10.48550/arXiv.2201.09948.

(78) Romero, P. A.; Krause, A.; Arnold, F. H. Navigating the Protein Fitness Landscape

with Gaussian Processes. Proc. Natl. Acad. Sci. 2013, 110 (3), E193–E201.

https://doi.org/10.1073/pnas.1215251110.

(79) Hie, B.; Bryson, B. D.; Berger, B. Leveraging Uncertainty in Machine Learning

Accelerates Biological Discovery and Design. Cell Syst. 2020, 11 (5), 461-477.e9.

https://doi.org/10.1016/j.cels.2020.09.007.

215

(80) Linder, J.; Bogard, N.; Rosenberg, A. B.; Seelig, G. A Generative Neural Network for

Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences. Cell

Syst. 2020, 11 (1), 49-62.e16. https://doi.org/10.1016/j.cels.2020.05.007.

(81) Sanger, F.; Coulson, A. R. A Rapid Method for Determining Sequences in DNA by

Primed Synthesis with DNA Polymerase. J. Mol. Biol. 1975, 94 (3), 441–448.

https://doi.org/10.1016/0022-2836(75)90213-2.

(82) Wu, Z.; Kan, S. B. J.; Lewis, R. D.; Wittmann, B. J.; Arnold, F. H. Machine Learning-

Assisted Directed Protein Evolution with Combinatorial Libraries. Proc. Natl. Acad.

Sci. 2019, 116 (18), 8852–8858. https://doi.org/10.1073/pnas.1901979116.

(83) Metzker, M. L. Sequencing Technologies — the next Generation. Nat. Rev. Genet.

2010, 11 (1), 31–46. https://doi.org/10.1038/nrg2626.

(84) Wittmann, B. J.; Johnston, K. E.; Almhjell, P. J.; Arnold, F. H. EvSeq: Cost-Effective

Amplicon Sequencing of Every Variant in a Protein Library. ACS Synth. Biol. 2022,

11 (3), 1313–1324. https://doi.org/10.1021/acssynbio.1c00592.

(85) Kille, S.; Acevedo-Rocha, C. G.; Parra, L. P.; Zhang, Z.-G.; Opperman, D. J.; Reetz,

M. T.; Acevedo, J. P. Reducing Codon Redundancy and Screening Effort of

Combinatorial Protein Libraries Created by Saturation Mutagenesis. ACS Synth. Biol.

2013, 2 (2), 83–92. https://doi.org/10.1021/sb300037w.

(86) Jacobs, T. M.; Yumerefendi, H.; Kuhlman, B.; Leaver-Fay, A. SwiftLib: Rapid

Degenerate-Codon-Library Optimization through Dynamic Programming. Nucleic

Acids Res. 2015, 43 (5), e34. https://doi.org/10.1093/nar/gku1323.

(87) Shimko, T. C.; Fordyce, P. M.; Orenstein, Y. DeCoDe: Degenerate Codon Design for

Complete Protein-Coding DNA Libraries. Bioinformatics 2020, 36 (11), 3357–3364.

https://doi.org/10.1093/bioinformatics/btaa162.

(88) Tretyachenko, V.; Voráček, V.; Souček, R.; Fujishima, K.; Hlouchová, K. CoLiDe:

Combinatorial Library Design Tool for Probing Protein Sequence Space.

Bioinformatics 2021, 37 (4), 482–489.

https://doi.org/10.1093/bioinformatics/btaa804.

(89) David, B. M.; Wyllie, R. M.; Harouaka, R.; Jensen, P. A. A Reinforcement Learning

Framework for Pooled Oligonucleotide Design. Bioinformatics 2022, 38 (8), 2219–

2225. https://doi.org/10.1093/bioinformatics/btac073.

216

(90) Weinstein, E. N.; Amin, A. N.; Grathwohl, W.; Kassler, D.; Disset, J.; Marks, D. S.

Optimal Design of Stochastic DNA Synthesis Protocols Based on Generative

Sequence Models. bioRxiv 2021. https://doi.org/10.1101/2021.10.28.466307.

(91) Cao, L.; Goreshnik, I.; Coventry, B.; Case, J. B.; Miller, L.; Kozodoy, L.; Chen, R.

E.; Carter, L.; Walls, A. C.; Park, Y.-J.; et al. De Novo Design of Picomolar SARS-

CoV-2 Miniprotein Inhibitors. Science 2020, 370 (6515), 426–431.

https://doi.org/10.1126/science.abd9909.

(92) Villegas-Morcillo, A.; Makrodimitris, S.; van Ham, R. C. H. J.; Gomez, A. M.;

Sanchez, V.; Reinders, M. J. T. Unsupervised Protein Embeddings Outperform Hand-

Crafted Sequence and Structure Features at Predicting Molecular Function.

Bioinformatics 2021, 37 (2), 162–170.

https://doi.org/10.1093/bioinformatics/btaa701.

(93) Heinzinger, M.; Littmann, M.; Sillitoe, I.; Bordin, N.; Orengo, C.; Rost, B. Contrastive

Learning on Protein Embeddings Enlightens Midnight Zone at Lightning Speed.

bioRxiv 2021. https://doi.org/10.1101/2021.11.14.468528.

(94) Stärk, H.; Dallago, C.; Heinzinger, M.; Rost, B. Light Attention Predicts Protein

Location from the Language of Life. Bioinforma. Adv. 2021, 1 (1), vbab035.

https://doi.org/10.1093/bioadv/vbab035.

(95) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.;

Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate

Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589.

https://doi.org/10.1038/s41586-021-03819-2.

(96) Senior, A. W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.;

Žídek, A.; Nelson, A. W. R.; Bridgland, A.; et al. Improved Protein Structure

Prediction Using Potentials from Deep Learning. Nature 2020, 577 (7792), 706–710.

https://doi.org/10.1038/s41586-019-1923-7.

(97) Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G. R.;

Wang, J.; Cong, Q.; Kinch, L. N.; Schaeffer, R. D.; et al. Accurate Prediction of

Protein Structures and Interactions Using a Three-Track Neural Network. Science

2021, 373 (6557), 871–876. https://doi.org/10.1126/science.abj8754.

217

(98) Hie, B. L.; Yang, K. K.; Kim, P. S. Evolutionary Velocity with Protein Language

Models Predicts Evolutionary Dynamics of Diverse Proteins. Cell Syst. 2022, 13 (4),

274-285.e6. https://doi.org/10.1016/j.cels.2022.01.003.

(99) Ferruz, N.; Höcker, B. Towards Controllable Protein Design with Conditional

Transformers. arXiv 2022. https://doi.org/10.48550/arXiv.2201.07338.

(100) Yang, Y.; Arnold, F. H. Navigating the Unnatural Reaction Space: Directed Evolution

of Heme Proteins for Selective Carbene and Nitrene Transfer. Acc. Chem. Res. 2021,

54 (5), 1209–1225. https://doi.org/10.1021/acs.accounts.0c00591.

(101) Rix, G.; Watkins-Dulaney, E. J.; Almhjell, P. J.; Boville, C. E.; Arnold, F. H.; Liu, C.

C. Scalable Continuous Evolution for the Generation of Diverse Enzyme Variants

Encompassing Promiscuous Activities. Nat. Commun. 2020, 11 (1), 5644.

https://doi.org/10.1038/s41467-020-19539-6.

(102) Mazzaferro, C. Predicting Protein Binding Affinity With Word Embeddings and

Recurrent Neural Networks. bioRxiv 2017. https://doi.org/10.1101/128223.

(103) Nguyen, T.; Le, H.; Quinn, T. P.; Nguyen, T.; Le, T. D.; Venkatesh, S. GraphDTA:

Predicting Drug–Target Binding Affinity with Graph Neural Networks.

Bioinformatics 2021, 37 (8), 1140–1147.

https://doi.org/10.1093/bioinformatics/btaa921.

(104) Morrone, J. A.; Weber, J. K.; Huynh, T.; Luo, H.; Cornell, W. D. Combining Docking

Pose Rank and Structure with Deep Learning Improves Protein–Ligand Binding

Mode Prediction over a Baseline Docking Approach. J. Chem. Inf. Model. 2020, 60

(9), 4170–4179. https://doi.org/10.1021/acs.jcim.9b00927.

(105) Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Nets as a

Method for Quantitative Structure–Activity Relationships. J. Chem. Inf. Model. 2015,

55 (2), 263–274. https://doi.org/10.1021/ci500747n.

(106) Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V.

Massively Multitask Networks for Drug Discovery. arXiv 2015.

https://doi.org/10.48550/arXiv.1502.02072.

218

(107) Šícho, M.; de Bruyn Kops, C.; Stork, C.; Svozil, D.; Kirchmair, J. FAME 2: Simple

and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. J.

Chem. Inf. Model. 2017, 57 (8), 1832–1846.

https://doi.org/10.1021/acs.jcim.7b00250.

(108) Xiong, Y.; Qiao, Y.; Kihara, D.; Zhang, H.-Y.; Zhu, X.; Wei, D.-Q. Survey of

Machine Learning Techniques for Prediction of the Isoform Specificity of

Cytochrome P450 Substrates. Curr. Drug Metab. 2019, 20 (3), 229–235.

https://doi.org/10.2174/1389200219666181019094526.

(109) Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.;

Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual

Recognition Challenge. Int. J. Comput. Vis. 2015, 115 (3), 211–252.

https://doi.org/10.1007/s11263-015-0816-y.

(110) Li, M. M.; Huang, K.; Zitnik, M. Representation Learning for Networks in Biology

and Medicine: Advancements, Challenges, and Opportunities. arXiv 2021.

https://doi.org/10.48550/arXiv.2104.04883.

(111) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;

Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28

(1), 235–242. https://doi.org/10.1093/nar/28.1.235.

(112) Sillitoe, I.; Bordin, N.; Dawson, N.; Waman, V. P.; Ashford, P.; Scholes, H. M.; Pang,

C. S. M.; Woodridge, L.; Rauer, C.; Sen, N.; et al. CATH: Increased Structural

Coverage of Functional Space. Nucleic Acids Res. 2021, 49 (D1), D266–D273.

https://doi.org/10.1093/nar/gkaa1079.

(113) Wang, C. Y.; Chang, P. M.; Ary, M. L.; Allen, B. D.; Chica, R. A.; Mayo, S. L.;

Olafson, B. D. ProtaBank: A Repository for Protein Design and Engineering Data.

Protein Sci. 2018, 27 (6), 1113–1124. https://doi.org/10.1002/pro.3406.

(114) Fowler, D. M.; Fields, S. Deep Mutational Scanning: A New Style of Protein Science.

Nat. Methods 2014, 11 (8), 801–807. https://doi.org/10.1038/nmeth.3027.

(115) Fowler, D. M.; Stephany, J. J.; Fields, S. Measuring the Activity of Protein Variants

on a Large Scale Using Deep Mutational Scanning. Nat. Protoc. 2014, 9 (9), 2267–

2284. https://doi.org/10.1038/nprot.2014.153.

219

(116) Moult, J.; Fidelis, K.; Kryshtafovych, A.; Schwede, T.; Tramontano, A. Critical

Assessment of Methods of Protein Structure Prediction (CASP) - Round X. Proteins

Struct. Funct. Bioinforma. 2014, 82 (SUPPL.2), 1–6.

https://doi.org/10.1002/prot.24452.

(117) Ram, S.; Bepler, T. Few Shot Protein Generation. arXiv 2022.

https://doi.org/10.48550/arXiv.2204.01168.

(118) Dallago, C.; Mou, J.; Johnston, K. E.; Wittmann, B. J.; Bhattacharya, N.; Goldman,

S.; Madani, A.; Yang, K. K. FLIP: Benchmark Tasks in Fitness Landscape Inference

for Proteins. bioRxiv 2021. https://doi.org/10.1101/2021.11.09.467890.

(119) Miton, C. M.; Tokuriki, N. How Mutational Epistasis Impairs Predictability in Protein

Evolution and Design. Protein Sci. 2016, 25 (7), 1260–1272.

https://doi.org/10.1002/pro.2876.

(120) Starr, T. N.; Thornton, J. W. Exploring Protein Sequence–Function Landscapes. Nat.

Biotechnol. 2017, 35 (2), 125–126. https://doi.org/10.1038/nbt.3786.

(121) Kaznatcheev, A. Computational Complexity as an Ultimate Constraint on Evolution.

Genetics 2019, 212 (1), 245–265. https://doi.org/10.1534/genetics.119.302000.

(122) Bloom, J. D.; Silberg, J. J.; Wilke, C. O.; Drummond, D. A.; Adami, C.; Arnold, F.

H. Thermodynamic Prediction of Protein Neutrality. Proc. Natl. Acad. Sci. 2005, 102

(3), 606–611. https://doi.org/10.1073/pnas.0406744102.

(123) Wu, N. C.; Dai, L.; Olson, C. A.; Lloyd-Smith, J. O.; Sun, R. Adaptation in Protein

Fitness Landscapes Is Facilitated by Indirect Paths. Elife 2016, 5, e16965.

https://doi.org/10.7554/eLife.16965.

(124) Georgiev, A. G. Interpretable Numerical Descriptors of Amino Acid Space. J.

Comput. Biol. 2009, 16 (5), 703–723. https://doi.org/10.1089/cmb.2008.0173.

(125) Bai, S.; Kolter, J. Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional

and Recurrent Networks for Sequence Modeling. arXiv 2018.

https://doi.org/10.48550/arXiv.1803.01271.

(126) Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining; ACM: New

York, NY, USA, 2016; pp 785–794. https://doi.org/10.1145/2939672.2939785.

220

(127) Zhang, Y.; Zhou, X.; Cai, X. Predicting Gene Expression from DNA Sequence Using

Residual Neural Network. bioRxiv 2020. https://doi.org/10.1101/2020.06.21.163956.

(128) Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep

Bidirectional Transformers for Language Understanding. arXiv 2018.

https://doi.org/10.48550/arXiv.1810.04805.

(129) Järvelin, K.; Kekäläinen, J. Cumulated Gain-Based Evaluation of IR Techniques.

ACM Trans. Inf. Syst. 2002, 20 (4), 422–446. https://doi.org/10.1145/582415.582418.

(130) Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New

Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35 (8), 1798–1828.

https://doi.org/10.1109/TPAMI.2013.50.

(131) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser,

Ł.; Polosukhin, I. Attention Is All You Need. arXiv 2017.

https://doi.org/10.48550/arXiv.1706.03762.

(132) Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9

(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

(133) Yu, F.; Koltun, V.; Funkhouser, T. Dilated Residual Networks. arXiv 2017.

https://doi.org/10.48550/arXiv.1705.09914.

(134) Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.;

Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models Are Few-

Shot Learners. arXiv 2020. https://doi.org/10.48550/arXiv.2005.14165.

(135) Steinegger, M.; Söding, J. Clustering Huge Protein Sequence Sets in Linear Time.

Nat. Commun. 2018, 9 (1), 2542. https://doi.org/10.1038/s41467-018-04964-5.

(136) Jiang, S.; Zavala, V. M. Convolutional Neural Nets in Chemical Engineering:

Foundations, Computations, and Applications. AIChE J. 2021, 67 (9), e17282.

https://doi.org/10.1002/aic.17282.

(137) Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification:

A Comprehensive Review. Neural Comput. 2017, 29 (9), 2352–2449.

https://doi.org/10.1162/neco_a_00990.

221

(138) Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J. F.; Darbandi, S. F.;

Knowles, D.; Li, Y. I.; Kosmicki, J. A.; Arbelaez, J.; Cui, W.; Schwartz, G. B.; et al.

Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176 (3),

535-548.e24. https://doi.org/10.1016/j.cell.2018.12.015.

(139) Proutski, V.; Holmes, E. SWAN: Sliding Window Analysis of Nucleotide Sequence

Variability. Bioinformatics 1998, 14 (5), 467–468.

https://doi.org/10.1093/bioinformatics/14.5.467.

(140) Tajima, F. Determination of Window Size for Analyzing DNA Sequences. J. Mol.

Evol. 1991, 33 (5), 470–473. https://doi.org/10.1007/BF02103140.

(141) Zhu, Z.; Wang, Y.; Zhou, X.; Yang, L.; Meng, G.; Zhang, Z. SWAV: A Web-Based

Visualization Browser for Sliding Window Analysis. Sci. Rep. 2020, 10 (1), 149.

https://doi.org/10.1038/s41598-019-57038-x.

(142) Yang, Y.; Qian, W.; Zou, H. Insurance Premium Prediction via Gradient Tree-

Boosted Tweedie Compound Poisson Models. J. Bus. Econ. Stat. 2018, 36 (3), 456–

470. https://doi.org/10.1080/07350015.2016.1200981.

(143) Zhou, H.; Qian, W.; Yang, Y. Tweedie Gradient Boosting for Extremely Unbalanced

Zero-Inflated Data. Commun. Stat. - Simul. Comput. 2020.

https://doi.org/10.1080/03610918.2020.1772302.

(144) Ng, P. C. SIFT: Predicting Amino Acid Changes That Affect Protein Function.

Nucleic Acids Res. 2003, 31 (13), 3812–3814. https://doi.org/10.1093/nar/gkg509.

(145) Riesselman, A.; Shin, J.-E.; Kollasch, A.; McMahon, C.; Simon, E.; Sander, C.;

Manglik, A.; Kruse, A.; Marks, D. Accelerating Protein Design Using Autoregressive

Generative Models. bioRxiv 2019. https://doi.org/10.1101/757252.

(146) Firnberg, E.; Labonte, J. W.; Gray, J. J.; Ostermeier, M. A Comprehensive, High-

Resolution Map of a Gene’s Fitness Landscape. Mol. Biol. Evol. 2014, 31 (6), 1581–

1592. https://doi.org/10.1093/molbev/msu081.

(147) Jacquier, H.; Birgy, A.; Le Nagard, H.; Mechulam, Y.; Schmitt, E.; Glodt, J.; Bercot,

B.; Petit, E.; Poulain, J.; Barnaud, G.; et al. Capturing the Mutational Landscape of

the Beta-Lactamase TEM-1. Proc. Natl. Acad. Sci. 2013, 110 (32), 13067–13072.

https://doi.org/10.1073/pnas.1215206110.

222

(148) Sarkisyan, K. S.; Bolotin, D. A.; Meer, M. V.; Usmanova, D. R.; Mishin, A. S.;

Sharonov, G. V.; Ivankov, D. N.; Bozhanova, N. G.; Baranov, M. S.; Soylemez, O.;

et al. Local Fitness Landscape of the Green Fluorescent Protein. Nature 2016, 533

(7603), 397–401. https://doi.org/10.1038/nature17995.

(149) Sirin, S.; Apgar, J. R.; Bennett, E. M.; Keating, A. E. AB‐Bind: Antibody Binding

Mutational Database for Computational Affinity Predictions. Protein Sci. 2016, 25

(2), 393–409. https://doi.org/10.1002/pro.2829.

(150) Yang, J.; Naik, N.; Patel, J. S.; Wylie, C. S.; Gu, W.; Huang, J.; Ytreberg, F. M.; Naik,

M. T.; Weinreich, D. M.; Rubenstein, B. M. Predicting the Viability of Beta-

Lactamase: How Folding and Binding Free Energies Correlate with Beta-Lactamase

Fitness. PLoS One 2020, 15 (5), e0233509.

https://doi.org/10.1371/journal.pone.0233509.

(151) Henikoff, S.; Henikoff, J. G. Amino Acid Substitution Matrices from Protein Blocks.

Proc. Natl. Acad. Sci. 1992, 89 (22), 10915–10919.

https://doi.org/10.1073/pnas.89.22.10915.

(152) Olson, C. A.; Wu, N. C.; Sun, R. A Comprehensive Biophysical Description of

Pairwise Epistasis throughout an Entire Protein Domain. Curr. Biol. 2014, 24 (22),

2643–2651. https://doi.org/10.1016/j.cub.2014.09.072.

(153) Nisthal, A.; Wang, C. Y.; Ary, M. L.; Mayo, S. L. Protein Stability Engineering

Insights Revealed by Domain-Wide Comprehensive Mutagenesis. Proc. Natl. Acad.

Sci. 2019, 116 (33), 16367–16377. https://doi.org/10.1073/pnas.1903888116.

(154) Franks, W. T.; Wylie, B. J.; Stellfox, S. A.; Rienstra, C. M. Backbone Conformational

Constraints in a Microcrystalline U- 15 N-Labeled Protein by 3D Dipolar-Shift Solid-

State NMR Spectroscopy. J. Am. Chem. Soc. 2006, 128 (10), 3154–3155.

https://doi.org/10.1021/ja058292x.

(155) Livesey, B. J.; Marsh, J. A. Using Deep Mutational Scanning to Benchmark Variant

Effect Predictors and Identify Disease Mutations. Mol. Syst. Biol. 2020, 16 (7), e9380.

https://doi.org/10.15252/msb.20199380.

(156) Shamsi, Z.; Chan, M.; Shukla, D. TLmutation: Predicting the Effects of Mutations

Using Transfer Learning. J. Phys. Chem. B 2020, 124 (19), 3845–3854.

https://doi.org/10.1021/acs.jpcb.0c00197.

223

(157) Srinivas, N.; Krause, A.; Kakade, S. M.; Seeger, M. W. Information-Theoretic Regret

Bounds for Gaussian Process Optimization in the Bandit Setting. IEEE Trans. Inf.

Theory 2012, 58 (5), 3250–3265. https://doi.org/10.1109/TIT.2011.2182033.

(158) Ebert, M. C.; Pelletier, J. N. Computational Tools for Enzyme Improvement: Why

Everyone Can – and Should – Use Them. Curr. Opin. Chem. Biol. 2017, 37, 89–96.

https://doi.org/10.1016/j.cbpa.2017.01.021.

(159) Lu, A. X.; Lu, A. X.; Moses, A. Evolution Is All You Need: Phylogenetic

Augmentation for Contrastive Learning. arXiv 2020.

https://doi.org/10.48550/arXiv.2012.13475.

(160) Lu, A. X.; Zhang, H.; Ghassemi, M.; Moses, A. Self-Supervised Contrastive Learning

of Protein Representations By Mutual Information Maximization. bioRxiv 2020.

https://doi.org/10.1101/2020.09.04.283929.

(161) Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A Universal

Deep-Learning Model of Protein Sequence and Function. Bioinformatics 2022, 38 (8),

2102–2110. https://doi.org/10.1093/bioinformatics/btac020.

(162) Shanehsazzadeh, A.; Belanger, D.; Dohan, D. Fixed-Length Protein Embeddings

Using Contextual Lenses. arXiv 2020. https://doi.org/10.48550/arXiv.2010.15065.

(163) Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved

Protein Structure Prediction Using Predicted Interresidue Orientations. Proc. Natl.

Acad. Sci. 2020, 117 (3), 1496–1503. https://doi.org/10.1073/pnas.1914677117.

(164) Odaibo, S. Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss

Function. arXiv 2019. https://doi.org/10.48550/arXiv.1907.08956.

(165) Rocklin, G. J.; Chidyausiku, T. M.; Goreshnik, I.; Ford, A.; Houliston, S.; Lemak, A.;

Carter, L.; Ravichandran, R.; Mulligan, V. K.; Chevalier, A.; et al. Global Analysis of

Protein Folding Using Massively Parallel Design, Synthesis, and Testing. Science

2017, 357 (6347), 168–175. https://doi.org/10.1126/science.aan0693.

(166) Pokusaeva, V. O.; Usmanova, D. R.; Putintseva, E. V.; Espinar, L.; Sarkisyan, K. S.;

Mishin, A. S.; Bogatyreva, N. S.; Ivankov, D. N.; Akopyan, A. V.; Avvakumov, S.

Y.; et al. An Experimental Assay of the Interactions of Amino Acids from

Orthologous Sequences Shaping a Complex Fitness Landscape. PLOS Genet. 2019,

15 (4), e1008079. https://doi.org/10.1371/journal.pgen.1008079.

224

(167) Aakre, C. D.; Herrou, J.; Phung, T. N.; Perchuk, B. S.; Crosson, S.; Laub, M. T.

Evolving New Protein-Protein Interaction Specificity through Promiscuous

Intermediates. Cell 2015, 163 (3), 594–606.

https://doi.org/10.1016/j.cell.2015.09.055.

(168) Starita, L. M.; Pruneda, J. N.; Lo, R. S.; Fowler, D. M.; Kim, H. J.; Hiatt, J. B.;

Shendure, J.; Brzovic, P. S.; Fields, S.; Klevit, R. E. Activity-Enhancing Mutations in

an E3 Ubiquitin Ligase Identified by High-Throughput Mutagenesis. Proc. Natl.

Acad. Sci. U. S. A. 2013, 110 (14), E1263–E1272.

https://doi.org/10.1073/pnas.1303309110.

(169) Fowler, D. M.; Araya, C. L.; Fleishman, S. J.; Kellogg, E. H.; Stephany, J. J.; Baker,

D.; Fields, S. High-Resolution Mapping of Protein Sequence-Function Relationships.

Nat. Methods 2010, 7 (9), 741–746. https://doi.org/10.1038/nmeth.1492.

(170) Sgarbossa, D.; Lupo, U.; Bitbol, A.-F. Generative Power of a Protein Language Model

Trained on Multiple Sequence Alignments. arXiv 2022.

https://doi.org/10.48550/arXiv.2204.07110.

(171) Podgornaia, A. I.; Laub, M. T. Pervasive Degeneracy and Epistasis in a Protein-

Protein Interface. Science 2015, 347 (6222), 673–677.

https://doi.org/10.1126/science.1257360.

(172) Faure, A. J.; Domingo, J.; Schmiedel, J. M.; Hidalgo-Carcedo, C.; Diss, G.; Lehner,

B. Mapping the Energetic and Allosteric Landscapes of Protein Binding Domains.

Nature 2022, 604 (7904), 175–183. https://doi.org/10.1038/s41586-022-04586-4.

(173) Gray, V. E.; Hause, R. J.; Luebeck, J.; Shendure, J.; Fowler, D. M. Quantitative

Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data. Cell Syst.

2018, 6 (1), 116-124.e3. https://doi.org/10.1016/j.cels.2017.11.003.

(174) Smith, A. M.; Heisler, L. E.; St.Onge, R. P.; Farias-Hesson, E.; Wallace, I. M.;

Bodeau, J.; Harris, A. N.; Perry, K. M.; Giaever, G.; Pourmand, N.; et al. Highly-

Multiplexed Barcode Sequencing: An Efficient Method for Parallel Analysis of

Pooled Samples. Nucleic Acids Res. 2010, 38 (13), e142.

https://doi.org/10.1093/nar/gkq368.

225

(175) Appel, M. J.; Longwell, S. A.; Morri, M.; Neff, N.; Herschlag, D.; Fordyce, P. M.

UPIC–M: Efficient and Scalable Preparation of Clonal Single Mutant Libraries for

High-Throughput Protein Biochemistry. ACS Omega 2021, 6 (45), 30542–30554.

https://doi.org/10.1021/acsomega.1c04180.

(176) Srivathsan, A.; Lee, L.; Katoh, K.; Hartop, E.; Kutty, S. N.; Wong, J.; Yeo, D.; Meier,

R. ONTbarcoder and MinION Barcodes Aid Biodiversity Discovery and

Identification by Everyone, for Everyone. BMC Biol. 2021, 19 (1), 217.

https://doi.org/10.1186/s12915-021-01141-x.

(177) Glenn, T. C.; Nilsen, R. A.; Kieran, T. J.; Sanders, J. G.; Bayona-Vásquez, N. J.;

Finger, J. W.; Pierson, T. W.; Bentley, K. E.; Hoffberg, S. L.; Louha, S.; et al.

Adapterama I: Universal Stubs and Primers for 384 Unique Dual-Indexed or 147,456

Combinatorially-Indexed Illumina Libraries (ITru & INext). PeerJ 2019, 7, e7755.

https://doi.org/10.7717/peerj.7755.

(178) Wierbowski, S. D.; Vo, T. V; Falter-Braun, P.; Jobe, T. O.; Kruse, L. H.; Wei, X.;

Liang, J.; Meyer, M. J.; Akturk, N.; Rivera-Erick, C. A.; et al. A Massively Parallel

Barcoded Sequencing Pipeline Enables Generation of the First ORFeome and

Interactome Map for Rice. Proc. Natl. Acad. Sci. 2020, 117 (21), 11836–11842.

https://doi.org/10.1073/pnas.1918068117.

(179) Chubiz, L. M.; Lee, M.-C.; Delaney, N. F.; Marx, C. J. FREQ-Seq: A Rapid, Cost-

Effective, Sequencing-Based Method to Determine Allele Frequencies Directly from

Mixed Populations. PLoS One 2012, 7 (10), e47959.

https://doi.org/10.1371/journal.pone.0047959.

(180) Weile, J.; Sun, S.; Cote, A. G.; Knapp, J.; Verby, M.; Mellor, J. C.; Wu, Y.; Pons, C.;

Wong, C.; Lieshout, N.; et al. A Framework for Exhaustively Mapping Functional

Missense Variants. Mol. Syst. Biol. 2017, 13 (12), 957.

https://doi.org/10.15252/msb.20177908.

(181) Campbell, N. R.; Harmon, S. A.; Narum, S. R. Genotyping‐in‐Thousands by

Sequencing (GT‐seq): A Cost Effective SNP Genotyping Method Based on Custom

Amplicon Sequencing. Mol. Ecol. Resour. 2015, 15 (4), 855–867.

https://doi.org/10.1111/1755-0998.12357.

226

(182) Wen, C.; Wu, L.; Qin, Y.; Van Nostrand, J. D.; Ning, D.; Sun, B.; Xue, K.; Liu, F.;

Deng, Y.; Liang, Y.; et al. Evaluation of the Reproducibility of Amplicon Sequencing

with Illumina MiSeq Platform. PLoS One 2017, 12 (4), e0176716.

https://doi.org/10.1371/journal.pone.0176716.

(183) Siloto, R. M. P.; Weselake, R. J. Site Saturation Mutagenesis: Methods and

Applications in Protein Engineering. Biocatal. Agric. Biotechnol. 2012, 1 (3), 181–

189. https://doi.org/10.1016/j.bcab.2012.03.010.

(184) Melnikov, A.; Rogov, P.; Wang, L.; Gnirke, A.; Mikkelsen, T. S. Comprehensive

Mutational Scanning of a Kinase in Vivo Reveals Substrate-Dependent Fitness

Landscapes. Nucleic Acids Res. 2014, 42 (14), e112.

https://doi.org/10.1093/nar/gku511.

(185) Sims, D.; Sudbery, I.; Ilott, N. E.; Heger, A.; Ponting, C. P. Sequencing Depth and

Coverage: Key Considerations in Genomic Analyses. Nat. Rev. Genet. 2014, 15 (2),

121–132. https://doi.org/10.1038/nrg3642.

(186) de Muinck, E. J.; Trosvik, P.; Gilfillan, G. D.; Hov, J. R.; Sundaram, A. Y. M. A Novel

Ultra High-Throughput 16S RRNA Gene Amplicon Sequencing Library Preparation

Method for the Illumina HiSeq Platform. Microbiome 2017, 5 (1), 68.

https://doi.org/10.1186/s40168-017-0279-1.

(187) Tresnak, D. T.; Hackel, B. J. Mining and Statistical Modeling of Natural and Variant

Class IIa Bacteriocins Elucidate Activity and Selectivity Profiles across Species. Appl.

Environ. Microbiol. 2020, 86 (22). https://doi.org/10.1128/AEM.01646-20.

(188) Illumina. Nextera XT DNA Library Prep Reference Guide. 2019.

(189) Boville, C. E.; Romney, D. K.; Almhjell, P. J.; Sieben, M.; Arnold, F. H. Improved

Synthesis of 4-Cyanotryptophan and Other Tryptophan Analogues in Aqueous

Solvent Using Variants of TrpB from Thermotoga Maritima. J. Org. Chem. 2018, 83

(14), 7447–7452. https://doi.org/10.1021/acs.joc.8b00517.

(190) Romney, D. K.; Murciano-Calles, J.; Wehrmüller, J. E.; Arnold, F. H. Unlocking

Reactivity of TrpB: A General Biocatalytic Platform for Synthesis of Tryptophan

Analogues. J. Am. Chem. Soc. 2017, 139 (31), 10769–10776.

https://doi.org/10.1021/jacs.7b05007.

227

(191) Buller, A. R.; Brinkmann-Chen, S.; Romney, D. K.; Herger, M.; Murciano-Calles, J.;

Arnold, F. H. Directed Evolution of the Tryptophan Synthase β-Subunit for Stand-

Alone Function Recapitulates Allosteric Activation. Proc. Natl. Acad. Sci. 2015, 112

(47), 14599–14604. https://doi.org/10.1073/pnas.1516401112.

(192) Morrison, K. L.; Weiss, G. A. Combinatorial Alanine-Scanning. Curr. Opin. Chem.

Biol. 2001, 5 (3), 302–307. https://doi.org/10.1016/S1367-5931(00)00206-4.

(193) Alieva, A.; Aceves, A.; Song, J.; Mayo, S.; Yue, Y.; Chen, Y. Learning to Make

Decisions via Submodular Regularization. ICLR 2021.

(194) McInerney, P.; Adams, P.; Hadi, M. Z. Error Rate Comparison during Polymerase

Chain Reaction by DNA Polymerase. Mol. Biol. Int. 2014, 2014.

https://doi.org/10.1155/2014/287430.

(195) Hopf, T. A.; Green, A. G.; Schubert, B.; Mersmann, S.; Schärfe, C. P. I.; Ingraham, J.

B.; Toth-Petroczy, A.; Brock, K.; Riesselman, A. J.; Palmedo, P.; et al. The

EVcouplings Python Framework for Coevolutionary Sequence Analysis.

Bioinformatics 2019, 35 (9), 1582–1584.

https://doi.org/10.1093/bioinformatics/bty862.

(196) Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae,

V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API Design for Machine Learning

Software: Experiences from the Scikit-Learn Project. arXiv 2013.

https://doi.org/10.48550/arXiv.1309.0238.

(197) Gibson, D. G.; Young, L.; Chuang, R.-Y.; Venter, J. C.; Hutchison, C. A.; Smith, H.

O. Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases. Nat.

Methods 2009, 6 (5), 343–345. https://doi.org/10.1038/nmeth.1318.

