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ABSTRACT 

Proteins perform critical roles in a growing list of human-devised applications, and as 

demands for new applications arise, new proteins must be engineered to meet them. Machine 

learning-assisted protein engineering (MLPE) has recently arisen as a new philosophy of 

protein engineering, promising to overcome many of the limitations of existing engineering 

strategies. Despite its promise, however, as a relatively new approach to protein engineering, 

MLPE faces many challenges that hinder its routine application. This thesis is focused on 

addressing a number of them. Chapter 1 provides a theoretical overview of protein 

engineering, introduces the core steps of a typical MLPE pipeline, and discusses the 

challenges that currently hinder MLPE’s advancement. This chapter is written to be 

accessible to all members of the highly multidisciplinary audience that either use or develop 

MLPE tools, in turn providing a resource that eliminates the steep barrier to entry that can 

hinder broader participation in the field. Chapter 2 provides a solution to the challenge of 

applying MLPE to proteins whose fitness landscapes are dominated by “holes” (protein 

variants with zero or extremely low fitness). Using my development of the strategy “focused 

training machine learning-assisted directed evolution (ftMLDE)” as an example, I 

demonstrate how auxiliary information from protein sequence and structure can be used to 

navigate landscapes despite holes, in turn dramatically improving the efficiency of MLPE. 

Chapter 3 explores strategies for reducing the amount of sequence-fitness data needed for 

building MLPE models. Specifically, I detail the motivation behind and development of a 

new model designed to augment limited protein sequence-fitness datasets with information 

extracted from raw protein sequence and structure data. Finally, chapter 4 introduces “every 

variant sequencing” (evSeq), a collection of tools and protocols that enables extremely low-

cost, routine collection of large protein sequence-fitness datasets. Not only does this 

technology drastically improve the financial feasibility of numerous MLPE applications, but 

it also potentiates the construction of a massive database of diverse protein sequence-fitness 

data, the likes of which would revolutionize our ability to engineer proteins with data-driven 

methods. Overall, the work described in this thesis advances both our understanding of 

MLPE and our ability to engineer proteins using it.  
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NOMENCLATURE 

Active Learning: A machine learning strategy where a model is iteratively updated as new 

data become available. A common strategy is to (1) use a model to propose a set of datapoints 

to collect, (2) collect that data, (3) update the model with that data, and then (4) iterate 

through steps 1 – 3 until a desired engineering goal is achieved.  

Amplicon: A fragment of DNA resulting from a PCR. 

Benchmark Task: A standardized task that is used to compare the effectiveness of different 

machine learning models or approaches. Typically, a benchmark task consists of predefined 

sets of training, validation, and testing data. The most valuable benchmark tasks will test the 

practical utility of newly proposed models and approaches for solving real-world problems. 

Contact Disruption: The number of contacts in a protein’s 3D structure that are broken 

upon mutation, where a “contact” is simply an interaction between two amino acids. 

Cross-Validation Error: The mean validation error of all folds tested in k-fold cross-

validation. 

Cross-Validation Indices: An “index” in programming is an integer that gives the position 

of an object in a list-like ordering of data. In this thesis, I use the term “cross-validation 

indices” to refer to a set of indices that give the positions of all datapoints used in each fold 

of k-fold cross-validation. Two experiments using the same cross-validation indices thus split 

the data in the same way for performing k-fold cross-validation. 

Degenerate Oligonucleotide: A pool of short fragments of DNA. Most often, the sequences 

of those short fragments will differ at only a single or a few positions. These are frequently 

used to build protein mutant libraries in a highly multiplexed fashion.  

Directed Evolution: A protein engineering strategy that proceeds through rounds of 

mutagenesis and screening, fixing the most-improved protein mutant at each round to 

greedily arrive at an optimized variant. 

Dataset Shift: A phenomenon where testing data comes from a different (or shifted) 

distribution relative to the training data. This generally leads to deteriorating performance of 

machine learning models. 

Dry Lab: A research environment where experiments are computationally performed. 

Encoding: Machine learning models operate on numerical inputs. As a result, non-numerical 

inputs (e.g., a protein sequence) must first be represented—or, “encoded”—using a set of 

numbers. In this thesis, I use the term “encoding” to refer to (1) the general set of features 

that are used for representing protein sequences, (2) a vector of features that describes a 
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specific protein sequence, or (3) the process of converting a non-numerical input to a 

numerical one. 

Exploration-Exploitation Tradeoff: When searching for optimal solutions with limited 

resources, a decision must be made regarding how to best allocate those resources to balance 

taking advantage of existing knowledge (exploitation) and collecting new knowledge 

(exploration). This balance is known as the exploration-exploitation tradeoff. Exploitation is 

likely to yield many good, yet perhaps suboptimal solutions; exploration, by contrast, will 

yield more varied solutions, but perhaps some that are better than would have otherwise been 

found focusing on exploitation alone. 

Feature: A numerical value that describes some aspect of an input to a machine learning 

model. A set of features makes up an encoding.  

Functional Screen: Any process that evaluates a protein's ability to perform a task.  

Generative Model: A machine learning model that learns an underlying probability 

distribution from data. 

Global Optimum: A function can have multiple optima. The global optimum is the most 

extreme of all optima. On a protein fitness landscape, the global optimum would be defined 

by the sequence with the highest possible fitness. 

Homologous Proteins: Two proteins are “homologous” if they share a common ancestor.  

Kernel (in the context of Gaussian processes): The function used to calculate each entry 

of the covariance matrix of a Gaussian process. 

K-Fold Cross-Validation: The performance of a machine learning model is typically 

described using both a training error and validation error. Training error represents the ability 

of a model to predict the correct values for the training data and is directly used to learn 

model parameters. Validation error represents the ability of the model to predict the correct 

values for data not used to train it. Validation error is used to select the optimal model 

architecture for a task to avoid selecting an architecture that has obtained good training error 

by overfitting to noise or other idiosyncrasies in the training data. When working with limited 

data, however, it is often undesirable to set aside a set of data for validation error calculation, 

as that data will by definition not be used for training. In such a case, k-fold cross-validation 

can be used. In this procedure, data is split into k chunks, or “folds.” Then, a model is trained 

using k-minus-one folds and validation error is calculated on the held-out fold. A new model 

is then instantiated and trained on a different combination of k-minus-one folds, again 

calculating a validation error on the held-out fold. The procedure iterates until all folds have 

been used for calculating validation error and a mean “cross-validation error” is returned. 

Model architectures that achieve good cross-validation error are assumed to be the most 

effective for a given task. 
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Labeled Data: Data that consists of both x- and y-values. The y-value is typically referred 

to as the “label” of the x value. For proteins, for example, labeled data might consist of a set 

of protein sequences with associated fitness scores. The fitness scores would be the labels of 

the sequences. 

Learned Embedding: For the purposes of this thesis, a “learned embedding” is an 

automatically learned encoding derived from unlabeled data.  

Learning Objective: Machine learning models are trained to optimize some loss function 

(e.g., they might be trained to minimize mean-squared error). The loss function chosen for 

optimization is often referred to as the “learning objective” for a given training procedure. 

Local Optimum: A function can have multiple optima. Each of these optima is considered 

a “local optimum” as they are optimal relative to their local environment. On a protein fitness 

landscape, for instance, a local optimum is defined by a sequence from which a single-step 

greedy walker would not be able to leave. 

Machine Learning: A strategy for automatically building computational models from data. 

Machine Learning Model: A mathematical function defined by some set of learnable 

parameters. 

Machine Learning-Assisted Protein Engineering: An approach to protein engineering 

where machine learning strategies are employed to assist with the design or identification of 

new, useful proteins. 

Masked-Token Prediction: A semi-supervised strategy derived from natural language 

processing. In this approach, a subset of items in a sequence of items are obscured 

(“masked”); the identities of these obscured items are then predicted using the context 

provided by the unobscured items.  

Model Architecture: At a high level, the goal of machine learning is to fit a model (a 

function) to a dataset for the purpose of either (1) extracting useful information from that 

data or (2) making predictions on as-yet unseen data. The parameterization of the model (i.e., 

the structure of the formula that defines the model) is known as the “architecture” of that 

model.  

Model Ensemble: A set of models, often with different model architectures.  

Molecular Barcode: A unique DNA sequence element that encodes the identity of a sample 

in a population of DNA sequences. 

Multiplex: To multiplex is to perform multiple operations in parallel. In this thesis, 

“multiplex” is primarily used in the context of molecular biology, where it typically refers to 

performing multiple molecular biology reactions in parallel. 
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Next-Token Prediction: A semi-supervised strategy derived from natural language 

processing. In this approach, the next item in a sequence of items is predicted using only 

information contained in preceding items. 

Oligonucleotide: A short fragment of DNA. 

One-Hot: A simple strategy for encoding categorical data. Each category is assigned an 

index in a vector. At this index, the vector has value “1”; at all other positions, it has value 

“0.” As an example, for a protein of length L, a one-hot encoding would result in a matrix 

with shape L × 20. A given row would consist of 19 values of 0 and a single value of 1; the 

column containing that value of “1” would depend on the identity of the amino acid at the 

position in the protein represented by the row.  

Parameter: A value that defines a mathematical model or function. In machine learning, the 

optimal numerical value for each parameter defining a model is learned from data during 

training. 

Parent Protein: The protein used to initiate a protein engineering study. This is often 

incorrectly conflated with the “wild-type” protein, which has a different definition (see 

below). 

Physicochemical: A concatenation of “physical” and “chemical.” This term is often used as 

an adjective used to describe the physical and chemical nature of something. 

Protein Activity: Depending on the context, this can be a synonym for either protein fitness 

or protein function, though it is most often used to describe fitness. When used as a quantity, 

it describes protein fitness (e.g., “the protein’s activity was measured and found to be high”); 

when used as a quality, it describes protein function (e.g., “this protein’s activity is to catalyze 

that reaction”). 

Protein Engineering: A field of study dedicated to the development of new proteins with 

useful functions. 

Protein Fitness: How well a protein performs a specific function.  

Protein Fitness Landscape: A conceptualization of the relationship between protein 

sequence and protein fitness. This is a surface in a high-dimensional space defined by the 

function f(sequence) = fitness.  

Protein Function: The specific task that a protein performs. 

Protein Library: A set of proteins. Typically, this set consists of protein mutants all derived 

from the same parent protein. 

Protein Sequence: The ordering of amino acids that defines a protein. 
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Protein Variant: A synonym for a protein mutant. That is, a protein with at least one amino 

acid change relative to some parent protein. 

Random Seed: Computers rely on pseudorandom number generators to approximate 

processes of randomness. A random seed can be fed into a random number generator to 

produce reproducible patterns of randomness. In other words, two random processes run with 

the same random seed will yield identical results. 

Rational Design: An approach to protein engineering that aims to build computational 

models of protein fitness and function from physical and chemical principles. These models 

are then used to identify new and useful proteins. 

Representation Learning: A machine learning strategy where useful features 

(representations) are learned from (typically) unlabeled data. This strategy is closely tied to 

self-supervised learning (a strategy often used to drive representation learning) and semi-

supervised learning (where representation learning will typically make up the unsupervised 

stage of the workflow).  

Self-Supervised Learning: A machine learning strategy where labels are automatically 

constructed from unlabeled data and then used to train a model. 

Semi-Supervised Learning: Any machine learning strategy that involves both an 

unsupervised and a supervised learning phase. Most often, this refers to an approach where 

a representation learned from unlabeled data is used in a downstream supervised learning 

problem. 

Sequencing Coverage: The number of returned reads from a next-generation sequencing 

experiment that map to a specific nucleotide on a reference sequence. 

Starting Point Problem: Most protein engineering strategies assume that a protein with 

even the smallest amount of the desired activity is already known. The challenge of finding 

this protein is referred to as the “starting point problem.”  

Supervised Learning: Any machine learning strategy that learns from labeled data. 

Training Data: The data used to train a machine learning model. 

Training Error: A value that represents the ability of a model to predict the correct values 

for the data used to train it. Training error is optimized to learn model parameters during 

model training. 

Training Set: The data used to train a machine learning model. 

Transfer Learning: A machine learning strategy where information learned in one problem 

is used to assist in solving another. In other words, a machine learning strategy where 

information from one problem is transferred to another. 
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Unlabeled Data: Data that consists of x-values alone. For proteins, a dataset consisting of 

protein sequence data alone would be considered unlabeled. 

Unsupervised Learning: Any machine learning strategy that learns from unlabeled data. 

Validation Data: Data that is held aside during training of a machine learning model. After 

training, the validation set is used to calculate a validation error and evaluate how effectively 

the model learned to generalize beyond the training data. 

Validation Error: A value that represents the ability of a model to predict the correct values 

for the data not used to train it.  

Validation Set: Data that is held aside during training of a machine learning model. After 

training, the validation set is used to calculate a validation error and evaluate how effectively 

the model learned to generalize beyond the training data. 

Wet Lab: A research environment where experiments are performed by manipulating 

physical entities. For instance, a protein engineering wet lab will involve working with 

cultures of organisms, running chemical reactions, etc. 

Wild-Type Protein: A protein whose sequence is found in nature. If multiple mutants of a 

protein sequence are found in nature, then the wild type is the typical (dominant) one. A 

wild-type protein can be a parent protein, but not all parent proteins are wild-type proteins.  

Zero-Shot Prediction: For the purposes of this thesis, “zero-shot prediction” refers to a 

prediction made using a model that can be trained or used without the need for additional 

experimental collection of data (i.e., collecting additional labeled data). 
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C h a p t e r  1  

 MACHINE LEARNING-ASSISTED PROTEIN ENGINEERING 

Material from this chapter appears in Wittmann, B. J.; Johnston, K. E.; Wu, Z.; and Arnold, 

F. H. (2021) Advances in Machine Learning for Directed Evolution. Curr. Opin. Struct. Biol. 

69, 11–18. https://doi.org/10.1016/j.sbi.2021.01.008. 

Abstract 

Machine learning can accelerate protein engineering by allowing researchers to move 

expensive laboratory screens in silico. Driven by increased computational power, the 

continued decline in the cost of DNA sequencing, and rapid improvements in laboratory 

screening technologies, machine learning-assisted protein engineering (MLPE) is 

experiencing a rapid growth in popularity and applicability. As a highly multidisciplinary 

approach, interest in MLPE continues to grow from both the broader machine learning and 

broader protein engineering communities; unfortunately, however, because there is rarely 

cross-disciplinary training between these two communities, there can be a steep barrier to 

entry for anyone interested in using, developing, or understanding MLPE methods. The goal 

of this chapter is to eliminate that barrier, introducing the core concepts of MLPE in a way 

that should be accessible to all readers, regardless of academic discipline. I begin with a 

broad overview of protein engineering before moving into a discussion of a typical MLPE 

pipeline; I then end the chapter by highlighting a number of outstanding MLPE challenges. 

Throughout this chapter, I discus concepts from a primarily higher-level intuitive view, 

leaving presentation of most technical details to provided references and instead focusing on 

providing the conceptual framework needed to understand both later chapters of this thesis 

and the field of MLPE as a whole. This chapter should serve as a central resource for anyone 

interested in MLPE.  
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1.1 Proteins and Protein Engineering Philosophies: A Brief Overview 

Life, in all its complexity, is built from the simplest building blocks. DNA encodes the 

information needed to construct all living things, yet it is composed of combinations of just 

four unique nucleotides. Proteins, which result from the instructions of DNA, perform central 

functions in almost all processes of life, yet are almost universally built from just 20 distinct 

amino acids.  

Complexity arises from simple building blocks via the staggering number of combinations 

that can be made from them. For instance, to build a protein, amino acids are connected one 

after the other in a long chain. Considering an average protein with a chain length of 300, 

with 20 amino acid options at each position in the chain there are 20300 ≈ 10390 different 

possible configurations of amino acids, which is approximately 10310 times more possibilities 

than the estimated number of atoms in the observable universe. What (if anything) a protein 

does and how well it does it is, to a first approximation, determined by its configuration 

(“sequence”) of amino acids; given the beyond astronomical number of potential sequences, 

the enormous range of functions performed by proteins in life is perhaps unsurprising.  

The diversity of proteins seen in life today is the result of billions of years of evolution, 

during which time only a negligible fraction of the space of all possible protein sequences 

has been explored (given the size of protein sequence space, full exploration will never be 

accomplished). This suggests a large number of potentially useful protein functions left to be 

discovered, certainly by life, but also by human engineers. Indeed, many of the characteristics 

that make proteins vital to life’s processes make them valuable for human-devised 

applications as well. Due to their selectivity, efficiency, and numerous other advantageous 

traits, proteins now play integral roles in industries ranging from pharmaceuticals to 

consumer products, materials, food, and fuels, and their importance is expected to continue 

to grow.1–4  

Just as life requires effective strategies for producing new proteins (e.g., to respond to 

changing environmental stressors), so too do humans, as new proteins must often be 

developed in response to new or changing demands. Unlike life, however, which sees the 
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arrival of new proteins as a result of evolution over long periods of time, we need strategies—

protein engineering strategies—that can identify proteins with a desired function rapidly and 

efficiently. 

Protein engineering strategies have typically been broadly divided into two complementary 

yet different philosophies: rational design and directed evolution.5–11 Rational design posits 

that chemical and physical laws can be used to intelligently engineer proteins for a target 

function.5–8 When amino acids are chained together in a protein sequence, they will interact 

with each other and the surrounding environment to fold the protein sequence into a 3-

dimensional structure.12 Because the twenty amino acids have distinct physical and chemical 

properties, the precise positioning of the different amino acids within that structure dictates 

the nature and type of interactions the protein can make with other molecules, in turn 

determining its function. Rational design asserts that if we could understand (1) what 3D 

configuration of amino acids is needed to perform a specific function and (2) what amino 

acid sequence will give us that configuration, then we can rapidly identify proteins useful for 

a new task.    

In principle, rational design is the perfect protein engineering strategy, allowing us to create 

new proteins for new tasks at will. In practice, however, and despite a number of success 

stories, it tends to be challenging to implement. For one, it is not always clear what 3D 

configuration of amino acids will yield a desired function; at least some knowledge of the 

chemical mechanism underlying the function is required to propose one, and this information 

is often unavailable, particularly when developing proteins with completely new 

functionality. Additionally, the relationship between sequence and structure is complex; it is 

difficult to precisely predict the structure into which a given sequence will fold, so even if an 

ideal 3D amino acid configuration for a given function is known, identifying a sequence that 

will yield it (if one exists at all) is challenging. As a result of these limitations, particularly 

for protein functions resulting from complex or unknown mechanisms, rational design is 

typically not considered a general-purpose engineering strategy.  
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In contrast to rational design, directed evolution requires no understanding of a system’s 

structure-function relationship to be effective.9–11 It accomplishes this by borrowing the 

protein engineering algorithm of nature: evolution. In life, new protein functions emerge as 

a result of changing environmental pressures. While proteins are generally optimized for a 

specific function, they also often exhibit slight ability to perform others, a trait that is 

commonly called “promiscuity.”13 If, by chance, an existing protein has even the slightest 

level of promiscuous activity for a function that provides even the smallest competitive 

advantage to its host organism in the face of a new environmental pressure—for instance, by 

providing a degree of resistance to some newly introduced toxin—then that organism is more 

likely to survive and propagate than others. In each new generation of organisms, random 

mutations can occur that change the amino acid sequence of that protein, and in turn its ability 

to perform this advantage-granting function. Some changes will diminish or eliminate 

protein function while others will improve it. Those organisms hosting a protein with 

improved function will have a competitive advantage and thus be more likely to propagate 

than others; this “natural selection” will lead to an enrichment of proteins with improved 

function in the next generation. Over many generations of mutation followed by natural 

selection, a new protein will gradually emerge that is optimized for the once-promiscuous 

function. Notably, there was no rational intervention during this evolutionary process. There 

was no need to understand the mechanistic basis for the observed function. Random 

mutations to an existing protein sequence in the presence of an environmental pressure were 

all that was needed. 

Like in natural evolution, a directed evolution workflow proceeds by iterating through cycles 

of mutagenesis and selection for improved function (Figure 1-1A).9–11 The workflow begins 

by identifying a protein with even the slightest ability to perform a desired function. Next, 

mutants (also commonly referred to as “variants”) of this protein are produced and evaluated; 

the mutant with the greatest activity (greatest ability to perform the function) is identified 

and used as the starting point for the next generation, and the process iterates until a protein 

with the desired level of activity is identified. For the same reasons as in natural evolution, 

this process does not require detailed mechanistic understanding of the system being 
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engineered to be effective. Unlike in natural evolution, however, because humans decide 

which protein is used as the starting point (the “parent”) for each new generation, the protein 

function being optimized does not need to be tied in any way to survival of an organism; so 

long as a quantifiable laboratory assay (a “screen”) of protein function can be developed, that 

function can be optimized by directed evolution. Not only, then, is directed evolution simple 

to employ, it also highly generalizable. For both of these reasons, directed evolution is 

typically regarded as the most successful general-purpose protein engineering strategy to 

date, with its wide-reaching contributions to academia, industry, and society as a whole 

recognized by the award of (one-half of) the 2018 Nobel Prize in Chemistry.  

Despite its undeniable success and effectiveness, directed evolution has limitations. For 

instance, it cannot be performed unless a protein with at least some ability to perform the 

desired function is already known—it can only optimize existing, known function. This 

“starting point problem” can present a significant bottleneck to the development of new 

protein functions, as existing strategies for solving it tend to be applicable only in limited 

situations or else are generally unreliable.14 In addition to the starting point problem, directed 

evolution’s reliance on a functional screen necessitates extensive laboratory characterization 

of produced protein variants, making the process time- and resource-intensive and presenting 

a bottleneck for engineering many protein functions where screening more than a few 

hundred or thousand variants would be expensive.  

In an effort to overcome some of the limitations of directed evolution and rational design, 

recent years have seen the arrival of a third philosophy of protein engineering: machine 

learning-assisted protein engineering (MLPE).15–24 From an applications point of view, 

machine learning (ML) can broadly be defined as “a strategy for automatically building 

computational models from data,” where a “model” can be thought of as some function that 

maps an input representation to an output representation.21,25,26 This model will be defined 

by some set of parameters, and the goal of ML is to identify (“learn”) the ideal set of 

parameters for performing that mapping. For instance, a linear transformation (y = Wx + b) 

can act as a simple model, where an input vector x is mapped to an output vector y by 



 

 

6 

parameters contained in matrix W and vector b. If this linear model were used in a machine 

learning application, the goal would be to use known pairs of x and y to learn the parameter 

values that are optimal (though perhaps not perfect) for transforming x to y. These learned 

parameters could then be used to predict the y associated with a previously unseen x. This 

simple ML example with a linear model will likely be familiar to most people—anyone who 

has ever added a line of best fit to a plot (e.g., using Microsoft Excel) of the form y = mx + 

b has performed it, only here the goal would have been to find scalar forms of W and b (“m” 

and “b”) that best transform a scalar x into a scalar y.  

In MLPE applications, the goal is to build a model that can map a protein sequence to its 

ability to perform some function. The model is first constructed using existing protein data, 

then used in place of a laboratory screen to evaluate previously unseen proteins, drastically 

reducing the experimental screening burden (Figure 1-1B). In a way, this approach is similar 

to rational design, as improved proteins are predicted rather than stochastically identified 

through laboratory screening as in directed evolution. Importantly, however, because the 

model is learned from patterns in the data, MLPE does not require any understanding of the 

system to be effective, thus avoiding rational design’s key limitation. MLPE thus has the 

advantages of both rational design and directed evolution: it avoids extensive screening 

burdens (as in rational design) and can also be used to engineer arbitrary protein functions 

(as in directed evolution).  

Despite its potential, as a relatively new approach to protein engineering, there remain 

numerous open questions and practical challenges to applying MLPE. For instance, the 

effectiveness of ML in general depends heavily on the quality and quantity of the data 

available for training models, and the more high-quality data we can collect, the better our 

ML models will perform. Just as laboratory screening capacities act as a bottleneck for 

directed evolution, they also limit our ability to gather data needed to train the models used 

in MLPE. In other words, we will always have a limited budget for gathering new data for 

MLPE. How, then, should we most effectively use this limited screening budget? How do 

we choose which new data to collect that will lead to the most effective MLPE models? How 
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do we most effectively use data that has already been collected? Alternatively, can we 

develop laboratory methods that increase our screening budget? The focus of this thesis is to 

answer these questions.  

 

Figure 1-1. Example workflows of (A) traditional directed evolution and (B) supervised 

machine learning for directed evolution. Both workflows begin by identifying a protein with 

activity for a target function. Once the starting point is identified, diversity is introduced by 

mutagenesis and resulting variants are screened for function. (A) In traditional directed 

evolution, many variants are screened and the best variant is then fixed as the parent for the 

next round of mutagenesis/screening. (B) When applying supervised machine learning to 

directed evolution, fewer variants are screened. Using the resulting sequence-function data, 

a function is fit that relates protein sequence to protein fitness (e.g., for f(x) = y, “x” is the 

protein sequence and “y” is the protein fitness). This function can be used to predict the 

fitnesses of variants not experimentally evaluated or to propose a new set of variants to screen 

in the next round of evolution. 

The remainder of this chapter is dedicated to presenting (1) an overview of the MLPE 

pipeline, highlighting recent advances at each of the key steps and (2) a brief discussion of 

the core challenges currently faced by the MLPE community. This chapter does not need to 

be read to understand later ones, but should provide greater context for the problems 

addressed in them. My goal is that anyone who reads this chapter—regardless of academic 

background—will gain a basic understanding of why ML is applied to protein engineering, 

how ML is applied to protein engineering, the core considerations that must be made at each 

step of an MLPE endeavor, and where MLPE still has room for improvement. It will not 

serve as a manual for applying ML to protein engineering, instead providing more of a high-
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level overview and refraining, where possible, from deep dives into specifics. There are 

already a number of resources published for the interested reader that can serve as manuals 

for applying ML to protein engineering,16,18,21 and I will also provide references throughout 

that give significantly more detail on any of the discussed topics.  

1.2 Machine Learning-Assisted Protein Engineering in Practice 

This section describes the typical steps of an MLPE pipeline, using recent advances to 

highlight the considerations that must be made at each of them. Because this thesis is 

primarily concerned with how we can most effectively use ML to optimize the activity of a 

given protein, that is the lens through which I will present it. However, it is important to note 

that the MLPE considerations introduced in the subsections below are generally relevant to 

all of its applications.  

1.2.1 Training Data Selection for Mapping Protein Fitness Landscapes 

The relationship between a protein’s amino acid sequence and the extent to which it can 

perform a desired function (its “fitness”) is often conceptualized as a surface in high-

dimensional space called a “protein fitness landscape.”27–29 Within this conceptual 

framework, the goal of protein engineering is to search a fitness landscape to identify amino 

acid sequences optimized for performing specific functions—that is, the goal is to identify 

fitness peaks. Exactly how these peaks are found varies by protein engineering strategy. 

Directed evolution, for instance, can be thought of as a greedy uphill walk on a fitness 

landscape: starting from a parent protein low on a fitness peak, it iteratively identifies 

proteins with improved fitness until a fitness optimum is reached. Rational design and MLPE 

take a different approach, building the function f(sequence) = fitness,a then using that 

function as a map to computationally explore a fitness landscape and (in principle) identify 

the global optimum. As discussed in the first section, the key difference between rational 

 
a Strictly speaking, rational design usually attempts to build a function of the form rank(f(sequence)) = rank(fitness), where 

a score correlated to fitness is predicted, not fitness itself. As will be discussed later, many MLPE strategies also attempt 

to build a function of this form. 
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design and MLPE is that while rational design builds the landscape map from chemical and 

physical principles, MLPE builds it from data.  

The data used to build an ML model is called “training data.” In most MLPE applications, 

training data consist of either sequence-annotation pairs, or simply sequences on their own. 

When data are unannotated (e.g., just sequences), then they are considered “unlabeled”; when 

data are annotated (e.g., sequence-annotation pairs), then they are considered “labeled.” The 

exact annotation used in labeled data will vary by application. For instance, if I wanted to 

train an ML model to predict the host organism of proteins, then I would ideally train it using 

a labeled dataset of sequence-organism pairs. If I wanted to build a map of a protein fitness 

landscape for MLPE, then I would ideally gather a labeled training dataset of sequence-

fitness pairs. Gathering a training dataset of sequence-fitness pairs generally involves (1) 

building a set (a “library”) of protein sequences and then (2) experimentally evaluating their 

fitnesses. There are many different strategies for building protein libraries, the details of 

which I will leave to the referenced sources;11,30 the experiment for evaluating protein fitness 

will, of course, depend on the definition of “fitness” for the protein system being studied.  

In general, the data used to train an ML model determines what it learns and, by extension, 

in what situations it can be used to make effective predictions. ML models tend to be more 

effective at interpolation than extrapolation and will thus typically perform best when used 

to make predictions in the same domain as the data used to train them. For general ML 

applications, this typically translates to collecting maximally diverse training data that best 

cover the space being modeled. For MLPE, this means that training data with maximal 

protein sequence diversity will be most informative for modeling a fitness landscape:b the 

more diverse the training sequences are, the more of the fitness landscape that is covered by 

the training data and the less a model must extrapolate to previously unseen regions of 

sequence space. Randomly collecting sequences can thus be a valuable strategy for 

 
b Strictly speaking, training data that maximizes diversity in the encoded sequences will be the most informative. More 

information is provided on protein encoding in Section 1.2.2. 
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constructing an MLPE training dataset, as this will on average result in the collection of 

highly diverse sequences.  

While building a perfect map of a fitness landscape would be ideal for model-guided 

engineering, it is not feasible given our limited ability to collect experimental data. More 

complex fitness landscapes considering larger sections of sequence space require more data 

to model, and a small amount of randomly selected labeled training data may be spread too 

thinly across sequence space to build a comprehensive map.31 For instance, as more 

mutations are made to a protein, the probability that it retains function decreases 

exponentially,32 so fitness landscapes consisting of combinations of mutations at multiple 

positions (“combinatorial landscapes”) tend to be dominated by protein variants with zero or 

extremely low fitness. These variants are commonly referred to as “holes” in the fitness 

landscape as they only provide information on which mutations destroy protein fitness; they 

do not provide information about the extent to which a mutation impacts protein fitness. By 

simple probability, a small, randomly drawn labeled training dataset from a hole-filled 

landscape will itself tend to be dominated by holes and contain limited if any information 

about the relatively rare peaks in the fitness landscape. A model trained on this data will thus 

also lack information about the fitness peaks, which is a problematic result from the point of 

view of protein engineering because the peaks are where we will find protein variants with 

improved fitness and are therefore what we are most interested in mapping.  

In general, the goal of MLPE is to reduce laboratory screening burdens. It is thus desirable 

to develop data-efficient MLPE strategies that maximize our ability to identify improved 

protein variants while minimizing the need for experimental collection of additional training 

data. As part of my thesis work (as detailed in Chapter 2 and in the provided reference), I 

proposed and then demonstrated that, if training data are expensive to collect, it can be 

advantageous to build focused training datasets that are biased toward protein variants 

believed a priori to be higher in fitness rather than to build training datasets from randomly 

selected protein sequences.33 Continuing the example from the previous paragraph, this 

would mean using some source of prior knowledge of the protein fitness landscape being 
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modeled to avoid including holes in the training data. The logic behind this approach is that 

it is more important to be able to identify the highest-fitness variants from the set of high-

fitness variants than the lowest-fitness variants from the set of low-fitness variants; thus, we 

should aim to model (potentially) higher-fitness regions of the protein fitness landscape at 

higher resolution (which is enabled by biasing data collection to these regions) and lower-

fitness regions of the protein fitness landscape at lower resolution (which results from 

collecting less data from these regions). This logic better aligns with the overall goals of 

MLPE, which is not to comprehensively map fitness landscapes, but to use ML to guide 

exploration of fitness landscapes to reach higher-fitness protein variants. 

1.2.2 Protein Encoding Strategies and Semi-Supervised Learning 

ML models work by performing mathematical operations on an input space to map it to an 

output space. For example, a simple linear model given by y = Wx transforms an input vector 

x into an output vector y using the learned weights matrix W. The ideal model for performing 

this mapping will vary by application, as it depends on the nature of the relationship between 

the two spaces. For the sake of keeping this chapter a big-picture introduction to MLPE, I 

will not go into the technical details of how the ideal model for a given problem is chosen, 

leaving that to referenced materials.21,34 In general, however, simple relationships between 

input and output spaces can be described by simple models (those with fewer learnable 

parameters), while more complex relationships require more complex models. Importantly, 

as model complexity increases, the amount of training data needed to learn the relationship 

does as well, so ML is typically more efficient in applications where there is a simple 

relationship between input and output spaces.  

In many ML applications, the input space is not—at least initially—clearly defined. For 

example, say the goal was to build an ML model that could predict the average rating given 

to movies by critics. The output space will clearly be defined by numerical labels like “score 

out of ten,” but movies are inherently non-mathematical objects, so what is the input space? 

To apply ML in cases like this, the input space must first be defined by describing each non-

mathematical object with a set of numerical “features” (a process known as “encoding”). For 
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instance, a movie might be encoded using a set of features like “year of release,” “film 

budget,” etc. In general, it is ideal to choose features that are believed to be highly correlated 

with the target label, as this will set up a simpler relationship between input and output spaces 

and better enable data-efficient learning. We thus might expect “film budget” to be a 

particularly helpful feature for predicting critical ratings; it is unlikely to be as helpful, 

however, if our goal were to instead predict a less correlated label like “filming location.”  

Just like movies, protein sequences are also inherently non-mathematical objects, and must 

be encoded to be fed into ML models. A common encoding strategy applied to proteins is 

“one-hot encoding.” In this strategy, each position in the protein is encoded by a vector; the 

vector will have 20 positions, all filled with “0” except for a single “1” whose position is 

determined by the identity of the amino acid in question. For instance, the amino acid 

“alanine” might be encoded by a vector with “1” in the first position, the amino acid 

“cysteine” might be encoded with “1” in the second position, and so on. While this encoding 

strategy is sufficient for training an ML algorithm, it is clearly uninformative. Amino acids 

exhibit a spectrum of different physical and chemical (“physicochemical”) properties, with 

some more similar to one another than others. Yet, using a one-hot encoding, this information 

is not presented to the ML model. Instead, each amino acid is simply treated as a different 

category, all differing only in the placement of the “1” in their encoded representation.  

Physics and chemistry ultimately determine what a protein does and how well it does it, so 

encoding strategies that better capture the physicochemical similarities and differences of 

amino acids can be expected to be more informative to an ML model. The most obvious way 

to capture such information in a protein encoding is to explicitly use numerical descriptors 

of the different amino acids’ physicochemical properties. Projects such as the AAIndex have 

collected hundreds of such descriptors—some of which result from laboratory measurements 

of amino acid properties and others of which have been manually designed to describe amino 

acid qualities—that can be used in different combinations to create different 

physicochemically grounded protein encodings.35,36 As shown in both Chapter 2 and other 
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works, the additional information provided by physicochemical features can indeed improve 

MLPE performance compared to using one-hot encoding.19,33  

Something notable about both one-hot and physicochemical encoding strategies is that 

neither takes into account the greater context of the protein sequence: every amino acid is 

given the same encoding regardless of its position relative to other amino acids in the 

sequence. The function of each amino acid in a protein is, however, extremely context 

dependent. For instance, a serine in a protein’s active site (the location where a chemical 

reaction occurs in a protein) will likely perform a very different role than a serine at that 

protein’s surface. We might imagine, then, that an encoding scheme where the amino acid 

representation changes based on its context would be even more informative than a 

physicochemical one.  

Unfortunately, it is not immediately clear how to explicitly capture context in the encodings 

of different amino acids. The number of possible contexts in which we can find a particular 

amino acid is only slightly smaller than the space of all possible proteins,c and so, unlike for 

context-independent one-hot or physicochemical encodings, we cannot simply write down a 

set of rules of the form “when amino acid X is in the presence of sequence Y, use encoding 

Z.” Just as the relationship between amino acid sequence and fitness is complex, so too is the 

relationship between amino acid sequence and context-dependent encodings. Fortunately, 

both of these relationships can be mapped in the same way: by using machine learning.  

In recent years, particular interest has arisen around training ML models to automatically 

build protein encodings using information extracted from large unlabeled protein 

datasets.22,37,38 Unlike labeled protein data, unlabeled protein data are extremely inexpensive 

to produce. Indeed, drastic reductions in sequencing costs have led to a deluge of unlabeled 

sequence data, with hundreds of millions of naturally occurring protein sequences identified 

from various organisms now stored in online databases.15,39–42 Importantly, all proteins found 

 
c For a protein sequence of length N, there are 20N possible protein sequences. An amino acid at a single position can be 

found in the context of all other possible amino acid combinations at all other positions. That is, it can be found in 20N-1 

possible contexts. 
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in life today—and thus all proteins found in those databases of sequences—must follow some 

set of biophysical and evolutionary rules that allow them to be produced and carry out a 

biological function; otherwise, they would have been filtered out by evolution. By training 

models, which are often adapted from natural language processing (NLP),43–47 on unlabeled 

protein sequences, the sequence constraints that result from these rules can be learned (Figure 

1-2A, Figure 1-2B).48–55 These models can then be repurposed to generate continuous vector 

representations of proteins known as “embeddings,” which can be used for protein encoding 

(Figure 1-2C, Figure 1-2D). An effective protein embedding will capture information learned 

during pretraining and define the relationships between proteins within the context of learned 

sequence constraints. Whether or not an amino acid obeys a sequence constraint depends on 

its context, so it will have a different encoding depending on its relative location in a protein 

sequence.  

The full process of (1) training an ML model on unlabeled data, (2) using that model to 

encode proteins, and (3) training another model to map between those encoded proteins and 

a useful output (e.g., protein fitness) is known as “semi-supervised learning.” This name 

comes from the fact that the process consists of both an unsupervised learning stage (that is, 

training an ML model on unlabeled data—for instance, on unlabeled protein sequences) and 

a supervised stage (training an ML model on labeled data). The details of how exactly the 

unsupervised stage (where a model is trained on unlabeled protein data to produce 

embeddings) is performed are complicated and vary by strategy.49,51,60,61,52–59 Indeed, how to 

best perform this stage of the semi-supervised pipeline—and even whether the learned 

embeddings produced by existing strategies and models provide a benefit over simpler 

encoding strategies—is still largely debated,33,62–66 and is the focus of the work I present in 

Chapter 3.  
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Figure 1-2. An example semi-supervised learning workflow illustrated using an autoencoder 

as the unsupervised model. (A) In this example, during the unsupervised stage, an 

autoencoder is trained to compress (“encode”) protein sequences to a numerical 

representation and then use that representation to reconstruct (“decode”) the sequences. The 

compression during encoding creates an information bottleneck (the central green layer in 

the figure) that forces the model to extract the most relevant features of protein sequences; 

the more informative the extracted features, the greater the model’s ability to reconstruct 

sequences. (B) Once the unsupervised model is trained, the protein sequence encoder may 

be repurposed by removing the decoder module and taking the bottleneck (“embedding”) 

layer as an encoding. This encoding transfers information learned during unsupervised 

training to a supervised process, in principle decreasing the amount of required labeled data. 

(C) During supervised training, an additional “top” model is trained to relate the encoded 

sequences to their characterized fitness values. The parameters defining the encoder can 

either be frozen (i.e., the encoder is not modified during supervised training) or further fine-

tuned (i.e., the encoder is further trained along with the top model for the specific supervised 

task) during supervised training. (D) As more sequences are drawn from the fitness 

landscape, they are first encoded by the encoder, then passed into the learned function to 

predict the fitness of previously unseen protein variants.  
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1.2.3 Prediction of Protein Fitness with Models Trained on Sequence Data 

So far, I have presented the primary goal of MLPE as using labeled sequence-fitness training 

data to build the function f(sequence) = fitness. However, this is not the only way that MLPE 

can be performed. Because the goal of MLPE is to identify the highest-fitness proteins, we 

do not need to be able to precisely predict the fitness of new protein variants. Indeed, we only 

need to be able to predict the relative fitnesses of different protein variants, and could 

therefore perform MLPE just as effectively using a function of the form rank(f(sequence)) = 

rank(fitness), where we are not predicting fitness itself, but instead something correlated to 

it.  

As discussed in the previous section, all proteins found in modern sequence databases must 

follow some set of biophysical and evolutionary rules that allow them to perform a useful 

biological function, and we can train models to learn the sequence constraints that result from 

those rules. While one use of these models is to produce protein embeddings, many of them 

can also be used to make what are known as “zero-shot” predictions of protein fitness, which 

is defined as “prediction of protein fitness without the need for collection of additional 

labeled data.”33,67,68 Importantly, zero-shot predictors do not output a prediction of protein 

fitness directly but instead some score that is expected to be correlated with it.d The 

effectiveness of a zero-shot predictor is thus determined by the degree of correlation between 

its proposed score and true fitness, where the ideal predictor would generate scores perfectly 

proportional to fitness. While, in principle, any source of data that is believed to contain 

information correlated with protein fitness can be used to build a zero-shot predictor,69 much 

recent effort has focused on the development of sequence-based zero-shot 

predictors.33,57,67,68,70   

In some capacity, any model used for sequence-based zero-shot prediction can be thought of 

as a “generative model,” which is one trained to learn a representation or approximation of 

the underlying distribution of a dataset. Many of the models used for building protein 

 
d As mentioned in an earlier footnote, predicting scores correlated with fitness is typical for rational design strategies. Indeed, 

as discussed in detail in Chapter 2, models used by rational design can be considered to be (and effectively used as) non-

ML zero-shot predictors. 
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embeddings discussed in the previous section can also be considered generative models and 

can be used for both embedding production and zero-shot prediction.55,57,67,68 When these 

models are trained on unlabeled protein sequence data, they learn a representation of the 

distribution of allowed protein sequences that captures the rules governing sequence 

constraints (Figure 1-3A). When these models are used to encode proteins, those rules are 

assumed to be represented in the derived embeddings, thus creating a more informative 

encoding that can be passed into a downstream supervised task (Figure 1-2);64 when these 

models are used for zero-shot prediction, they are used to score candidate proteins based on 

how well they obey the learned rules, with candidates that better obey assumed to be more 

likely to show some degree of a desired fitness than those that do not. From a more 

probabilistic point of view, we can think of scoring proteins in this way as querying the 

likelihood that a new protein sequence was generated from the learned distribution of 

underlying sequences (Figure 1-3B, C). If a sequence is highly likely to belong to the learned 

distribution, then it is more likely to be a functional protein, and vice versa. Of course, all of 

this assumes that the target fitness to be engineered correlates well with evolutionarily 

optimized fitness, but this will not always be the case (Figure 1-3A). As stated earlier, the 

quality of a zero-shot predictor depends entirely on how well its output score correlates with 

the target fitness. 
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Figure 1-3. An illustration of the use of generative models for zero-shot prediction and 

sequence generation. (A) Generative models learn a representation of the distribution of 

allowed protein sequences from those used to train them. This distribution can correlate with 

the fitness landscape (green) for a desired activity, but the two distributions may not 

necessarily overlap. (B) When generative models are used for zero-shot prediction, it is 

assumed that the learned distribution correlates well with the distribution of target activity. 

When used in this capacity, the model is used to find the likelihood for new sequences. 

Sequences with high likelihood can be prioritized for screening under the assumption that a 

higher likelihood corresponds to higher fitness or at least higher probability of maintaining 

some degree of function. (C) When generative models are used for sequence generation, new 

sequences are drawn from the learned distribution. Sequences with higher likelihood are 

more likely to be drawn, so the drawn sequences tend to be functionally similar to those used 

for training.  

1.2.4 Machine Learning-Guided Navigation of Protein Fitness Landscapes 

With a trained model in hand—whether built using unlabeled or labeled data—the protein 

fitness landscape can now be explored computationally to find new, improved proteins. If 

exploring narrow regions of sequence space (e.g., a combinatorial landscape built by 

mutating no more than five or six positions simultaneously), then this is a simple task: the 

model can be used to enumerate the space, predicting the fitness (or a correlated score) for 

all possibilities. Once larger regions of sequence space are considered, however, this “brute 
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force” approach fails, as even though computers can evaluate protein candidates at a rate 

orders-of-magnitude faster than laboratory screening, they are still far too slow for 

comprehensive exploration of even moderately sized regions of sequence space.e  

To keep computational screening burdens low, non-brute force ML-guided exploration of 

large fitness landscapes typically proceeds through rounds of (1) proposing a library of new 

sequences and then (2) using an ML model to computationally evaluate those sequences and 

identify improved ones.23,71 As in directed evolution, screening burdens are lowered by 

iteratively climbing toward improved regions of the fitness landscape rather than trying to 

exhaustively explore it. Unlike directed evolution, however, because these strategies are run 

in a computer, their screening capacity is much higher, allowing for exploration of much 

larger fitness landscapes. 

The various strategies for accomplishing iterative ML-guided exploration of fitness 

landscapes have been covered in recent literature,23,71 so I will not go into detail here, though 

it suffices to say that their main differences are in how they propose the next batch of 

sequences to evaluate. For example, some strategies are direct computational analogues of 

evolution, iteratively building mutant protein sequences in silico, feeding them into a trained 

ML model to assign them a score, then using the most improved mutant (or mutants) as the 

starting point for the next round of computational mutagenesis and evaluation.64,72,73 Other 

strategies instead rely on generative models to propose new batches of proteins, iteratively 

drawing new sequences from the learned distribution of special classes of generative models 

(much like we would draw samples from a normal, binomial, or any other probability 

distribution), using a model to assign those sequences a score, then using the sequences with 

the highest predicted scores to update the generative model, thus biasing it toward producing 

higher fitness variants in the next round.74,75 Yet more strategies directly optimize protein 

fitness in a learned embedding space, iteratively proposing new batches of embedding 

 
e For instance, say we could evaluate 1 billion proteins per second, a fast rate even for a computer. If we were to consider 

just 20 positions at once in a combinatorial library, it would take around 3.3 billion years to evaluate all combinations, 

which is around a quarter the age of the universe. 



 

 

20 

vectors to be passed into a model and scored, then decoding the optimal vectors to identify 

an optimal protein once a sufficiently fit one has been identified.76,77 

Regardless of the ML-guided fitness landscape navigation strategy used, all have the same 

goal: to maximize the breadth of sequence space that can be explored while minimizing the 

need for experimental evaluation of proteins. Despite continued advances in our ability to 

train MLPE models with less data, however,33,64 none of these strategies will ever completely 

eliminate the need for experimental evaluation of proteins. For one, at the end of 

computational exploration, the best predicted sequences will need to be experimentally 

verified; after all, the goal is not to predict fitness, but to identify sequences whose true fitness 

is optimal. Perhaps more importantly, however, as computational exploration proceeds 

further and further away from the region of sequence space occupied by the initial training 

data, the quality of model predictions will deteriorate, necessitating occasional collection of 

additional training data.  

Recall from Section 1.2.1 that the accuracy of an ML model is determined in large part by 

the data used to train it. Specifically, the accuracy of the ML model will deteriorate when it 

is used to make predictions in regions of the input space not captured by its training data, a 

situation known as “dataset shift.” Exploration of protein fitness landscapes inherently 

requires a degree of dataset shift, however, as optimized proteins do not exist in the region 

of sequence space used for training data; otherwise, we would not be performing 

optimization in the first place. As exploration takes a model further from the initial training 

data, the degree of dataset shift will increase and the model’s predictions will steadily 

deteriorate, eventually to the point where they are no longer useful and the model must be 

updated with newly collected training data. Of course, because the goal of MLPE is to both 

identify improved proteins and reduce experimental screening burden, this sets up a tradeoff: 

there is a balance to be found between how much we exploit knowledge from existing 

training data—limiting our search to regions of the fitness landscape where the model is 

believed to still make reasonably accurate predictions—and how much we explore new 
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regions of a fitness landscape—necessitating collection of new training data but also 

potentially identifying better proteins than we would have otherwise found.  

Unfortunately, the ideal solution to this “exploration-exploitation tradeoff” is rarely clear, as 

it depends on factors ranging from the shape of the ground truth fitness landscape to 

experimental screening capacity, the specific goals of the experiment, and the model class 

used for modeling. It is easier to find a balance with some model classes than others, 

however. Gaussian processes, for instance, are among the most popular models used in ML-

guided exploration and will return predictions along with an uncertainty value that is 

correlated with the distance from the points in the training data.78,79 As predictions are made 

further from the training data, the level of uncertainty goes up, providing information that 

can be used to identify both those model predictions that would require collection of more 

training data to be confirmed (exploration) and those that can be immediately trusted based 

on existing data (exploitation). Most other model designs commonly used in MLPE, 

however, do not provide uncertainty estimates, making it challenging to identify how far 

away from the initial training set they can be confidently used. In these cases, a common and 

simple practice is to set a “trust radius,” where model predictions are no longer trusted when 

used to score protein sequences some number of mutations away from the original (un-

engineered) protein sequence.64,73 More statistically grounded methods have been proposed 

as alternates and typically involve either weighting the probability that a protein sequence 

will be proposed for evaluation by its similarity to the distribution of training data or 

weighting the fitness score assigned to an evaluated protein sequence by its similarity to the 

distribution of training data.75,80 In general, the development of optimal strategies for (1) 

building models that can make robust predictions further from training data and (2) bounding 

exploration of input space to regions where models remain trustworthy remains an active 

area of research both within and outside of MLPE. 
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1.3 Thoughts on Ongoing Challenges for Machine Learning-Assisted Protein 

Engineering 

Section 1.2 covered the basic steps in the optimization stage of a typical MLPE pipeline, 

including recent advances in strategies for each of them. In this section, I will focus instead 

on the major challenges currently facing MLPE, regardless of the stage of the pipeline. In 

my view, if these challenges were overcome, they would represent large leaps forward for 

both MLPE and protein engineering as a whole. 

1.3.1 Practical Considerations for the Wet Lab Application of MLPE 

MLPE is a hybrid wet lab-computational strategy—at some point, someone must physically 

perform the experiments to gather training data and evaluate predictions. Throughout this 

chapter, however, I have so far primarily focused on its computational component. Indeed, 

as a community, MLPE researchers often tend to neglect the wet lab considerations, 

essentially assuming that the computational and wet lab components can be decoupled. This 

is, unfortunately, a false assumption, and the wet lab component of MLPE places significant 

restrictions on what can be considered a practically applicable—or at the very least a 

financially competitive—MLPE approach.  

The most obvious wet lab restriction is the limited ability to screen protein candidates, which 

constrains the availability of the labeled sequence-fitness data needed to train the most 

effective MLPE models. Indeed, MLPE researchers are most cognizant of this wet-lab 

limitation, and it is the core driving factor for the development of the zero-shot and semi-

supervised methods discussed in Sections 1.2.2 and 1.2.3; it is also the driving factor behind 

my development of the informed training set selection strategies discussed in Chapter 2. Our 

restricted ability to collect labeled sequence-fitness data is not only caused by bounded 

screening capacity, however; it is also caused by the cost of sequencing protein variants. 

One of the greatest strengths of directed evolution is the simplicity with which it can be 

performed. Among the many traits that make it such a simple process is its lack of 

requirement for sequencing. Indeed, a directed evolution endeavor could be completed 

without ever sequencing a single protein, though in practice a few protein variants will 
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typically be sequenced (purely for informational purposes) during each iteration of 

mutagenesis/screening. This stands in contrast to MLPE methods, which require sequencing 

at least tens but usually hundreds or thousands of variants to build a sufficiently sized labeled 

training dataset. Using the standard sequencing strategy employed by directed evolution—

Sanger sequencing—the cost of gathering labeled training data can easily balloon into the 

thousands of dollars, as I saw in the first project to which I contributed at Caltech.81,82 

Sequencing requirements thus place an additional effort and financial burden on protein 

engineers using MLPE over directed evolution, reducing the practical utility of MLPE 

strategies.  

As part of my thesis work, I developed a suite of tools that eliminates the sequencing burden 

of MLPE, at least when building training sets from specific protein library designs. Detailed 

in Chapter 4, this toolset employs next generation sequencing (NGS) technology—an 

alternate sequencing strategy to Sanger—to drop the cost and effort of sequencing the 

hundreds of variants typically needed to build effective MLPE training datasets down to a 

level similar to the cost of sequencing the few variants typically sequenced per round of 

directed evolution.83,84 This technology should generally make MLPE more practically 

applicable; it should also enable the construction of a large database of protein sequence-

fitness data, the utility of which is discussed in Sections 1.3.3 and 1.3.4. Unfortunately, 

however, the cost of sequencing is not the only wet-lab component that limits the application 

of MLPE. 

The models used in MLPE are rarely accurate enough for an engineer to have the highest 

confidence in their predictions, so typically a set of the predicted-best protein variants are 

built and evaluated. This is done to improve the probability that at least one (but ideally 

multiple) of those variants satisfies the engineering goal. Cost-effectively building these 

designs can be extremely difficult, however, presenting another wet-lab limitation of MLPE.  

Regardless of protein engineering application, when many protein variants must be built, 

they are typically not constructed individually. Instead, to keep costs low, they are 

constructed in the same test tube in a highly multiplexed fashion. I will not go into the details 
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of methods for library construction here, leaving that for the referenced sources;11,30 it is 

important to note, however, that a critical component to many of these methods is 

“degenerate oligonucleotides.” A degenerate oligonucleotide consists of a pool of DNA 

oligonucleotides (short strands of DNA) that have randomized bases at at least some 

positions. For example, a very simple degenerate oligonucleotide might contain the 

sequences ATGGGC and ATGCGA—positions 4 and 6 have randomized bases in this 

example. Importantly, randomization does not need to include all four possible bases, so the 

DNA sequences in the degenerate oligonucleotide can be restricted to encode a specific set 

of protein variants. Unfortunately, however, it is not possible to decouple randomization at 

different positions in the most cost-effective methods for degenerate oligonucleotide 

production; thus, any protein variant library that must be constructed using randomization at 

multiple DNA positions will invariably also include off-target designs.f  

To build a specified library of protein variants, an ideal degenerate oligonucleotide that 

minimizes off-target designs and maximizes on-target designs (while keeping them as 

uniformly represented as possible) must first be identified. This is done by taking advantage 

of the redundancy of the genetic code—multiple different DNA sequences can encode the 

same protein sequence, and depending on the set of protein sequences desired, certain DNA 

sequences will produce fewer off-target variants and better balance the representation of on-

target designs in the final library than others.  

While simple on paper, it is often extremely computationally intensive to identify an 

appropriate degenerate oligonucleotide for building a specified protein variant library, if one 

can be found at all. For directed evolution, this is typically not a challenge. In most 

applications, the target library is the same—one that uniformly represents all 20 amino acids 

at a given position in a protein—and a set of optimized degenerate oligonucleotide designs 

that can build it has already been identified.85 For MLPE, this is more problematic, as a new 

 
f For instance, say I wanted to include the DNA fragments ATG and CTA in my degenerate oligonucleotide. I would thus 

want to randomize the first position to include “A” and “C” and the last position to include “G” and “A.” Because 

randomization at different positions cannot be decoupled, however, in addition to the desired fragments, the final degenerate 

oligonucleotide would also include ATA and CTG in it.  
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degenerate oligonucleotide must be designed for each library of predicted-best variants. Over 

the years, increasingly more effective tools have been developed for performing this 

search;86–90 however, even when these tools can complete the search in a reasonable amount 

of time, there is no guarantee that they will find an appropriate design. Oftentimes, using 

traditional degenerate oligonucleotide construction, it is not possible to actually build designs 

predicted to be optimal by MLPE models. 

Promisingly, in recent years, new approaches to DNA synthesis have made it possible to 

build large, user-specified populations of oligonucleotides, eliminating the major limitations 

of traditional degenerate oligonucleotide design. Twist Bioscience, for instance, offers an 

“Oligo Pool” service that allows users to order pools of DNA oligonucleotides containing 

thousands of uniquely specified DNA sequences. With the ability to specify unique DNA 

sequences, precise libraries of proteins—uniformly represented and containing no off-

targets—can now be constructed. Unfortunately, while strategies like Twist Bioscience’s 

Oligo Pools have already been put to excellent use,91 they can currently be prohibitively 

expensive for regular incorporation in the MLPE workflows of many groups, particularly 

those in academia. Until the cost of these new strategies is lowered—and even after the fact, 

for that matter—there may be value in designing strategies that explicitly consider both 

MLPE model predictions and the practical limitations imposed by degenerate 

oligonucleotide design when choosing the proteins to construct.  

1.3.2 Transfer Learning 

We generally expect that data directly related to the problem we are trying to solve will be 

most valuable. For instance, if I am trying to build an MLPE model to predict some fitness, 

then the most valuable data would be a large dataset relating protein sequence to that fitness. 

Given the beyond-astronomical size of possible protein space, however, we will always be 

working in a comparatively data-limited setting, so it would be valuable to develop strategies 

that can extract helpful information from other sources of data as well.  

To date, most efforts to develop transfer learning strategies for MLPE have focused on 

extracting information from sequences, largely because protein sequences are the most 
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abundant and easily accessible source of protein data. As introduced in Section 1.2.2, some 

of these approaches attempt to augment small, labeled datasets by building informative 

embeddings from protein sequence data. As introduced in Section 1.2.3, other approaches 

attempt to eliminate the need for labeled data entirely, performing zero-shot predictions of 

protein fitness using information extracted from sequence data alone. Of these two general 

strategies, zero-shot predictors have so far proved the most useful for protein fitness 

predictions, though learned embeddings have proven useful in a number of other protein-

related tasks.92–98  

Exactly why learned protein embeddings are not currently so helpful for protein fitness 

prediction is unclear. Early studies using learned embeddings convincingly suggested that 

learned embeddings can reduce our need for labeled data;64 however, the initial excitement 

faded once later studies showed that, in many instances, uninformative encoding strategies 

like one-hot can be just as effective as learned embeddings.62,65 While these initial reports 

suggested that learned embeddings can still be more useful than one-hot in extremely labeled 

data-limited settings, I have found in my own work (as shall be shown in Chapter 2) that this 

is not always the case.33  

To a degree, some of the variability in the conclusions about the effectiveness of learned 

embeddings for protein fitness prediction will come from the variability in the protein fitness 

landscapes to which they are applied. Our protein sequence databases are biased toward the 

representation of certain protein families over others; we thus might expect the embedding 

quality of well-represented proteins to be higher than that of underrepresented ones. It must 

also be noted that most of the models currently used for building learned protein embeddings 

are directly adapted from natural language processing (NLP). While there are certainly some 

similarities between protein sequences and written language, there are also some major 

differences.99 Therefore, we might also expect that models designed to more explicitly 

capture the idiosyncrasies of proteins would be more effective. Indeed, Chapter 3 is focused 

on my efforts to build and evaluate the effectiveness of such a model.   
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1.3.3 The Starting Point Problem 

So far, I have primarily discussed MLPE from the perspective of protein fitness optimization. 

Before optimization can be performed, however, a protein with some degree of the desired 

function—a starting point—must be identified. Unfortunately, solving this “starting point 

problem” is extremely difficult and is the point where most protein engineering projects fail, 

regardless of any engineering strategy that would be used.  

As with optimization approaches, starting point identification strategies must contend with 

the challenges imposed by the beyond-astronomical size of protein sequence space and our 

limited ability to experimentally search it. Generally, any strategy that aims to search 

sequence space must have a way to restrict its search to keep screening burdens practical. 

Optimization strategies like directed evolution and ML-guided navigation accomplish this 

by relying on the fact that functional proteins tend to be clustered together in sequence space; 

thus, they only evaluate protein candidates that are close in sequence space to a known 

functional example (or examples). The same approach cannot be taken for finding a starting 

point, as by definition there are no known proteins with the desired function. Instead, the 

most common approach is to test existing proteins with a related function for some degree of 

promiscuous activity for the desired one, now relying on the fact that proteins that perform 

similar functions often have similar sequences.  

Exactly how candidate promiscuous proteins are identified varies, but they are most 

commonly sourced either from databases of known functions or past engineering projects.14 

Importantly, regardless of candidate source, only existing proteins are typically searched—it 

is very rare for mutants of candidates to be produced and evaluated when looking for a 

starting point. At first, this may seem an odd restriction, as it is not uncommon for new 

promiscuous activities to emerge in protein lineages while they are engineered for different 

tasks and it may indeed be that a few mutations to an existing protein would yield the desired 

activity.100,101 However, even considering one or two mutations to a set of candidates would 

dramatically increase the screening burden for a search, and even though it is possible that 

mutants would exhibit the desired activity, chances are still high that if a given protein does 
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not perform the desired function, a protein a few mutations away will not perform it either. 

Given a limited screening budget, it is thus generally regarded as a waste of laboratory 

resources to build and screen mutants of existing proteins. 

Because computational approaches expand our screening capacity, it seems practical that 

they could be used to screen for starting points in silico, allowing for evaluation of mutants 

of existing candidates. Indeed, it is not wholly uncommon to use rational design strategies to 

screen candidate proteins for a new function, though in most of these cases the target function 

is some form of binding (either to another protein or a small molecule). This is largely 

because binding is among the simplest functions to understand and model; binding functions 

also tend to inhabit wider windows of sequence space than others and can often be found 

even when using somewhat imperfect models to search. Comparatively, it is far more 

difficult to use rational design to find a starting point for more complicated functions that 

arise from more intricate and delicate physical and chemical mechanisms (for instance, 

enzyme catalysis), as even the slightest error in the model can result in erroneous predictions. 

For functions where we have no understanding of the underlying mechanism at all, rational 

design becomes impossible to use for starting point identification. 

Because ML relies on data, not physical understanding, we might expect it to be more 

effective than rational design as a more general-purpose starting point-identification 

approach. To build an MLPE model that is accurate enough for starting point identification, 

extensive sequence-function data must be available, and as the complexity of the mechanism 

underlying the desired function increases, the amount of data needed will increase as well. 

Unfortunately, for many functions there is currently not enough data to build effective 

models, and so, just like rational design, MLPE methods for starting point identification are 

primarily limited to binding.16,79,102–106 There are exceptions, however, and as we might 

expect they are found primarily in protein families that have been extensively studied and for 

which large databases of sequence-function data already exist.107,108  

As already discussed in Section 1.3.1, it has historically been too expensive to gather 

extensive sequence-fitness datasets, and this largely explains why we do not have the data 
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available to train starting point predictors for most protein families and functions. However, 

cost-effective data collection strategies like evSeq and DMS (discussed in Section 1.3.4) 

promise to change this, and it is reasonable to assume that we will see far more sequence-

function data made available in the future, better enabling MLPE-based starting point 

identification.  

1.3.4 Data Availability and Benchmarking for Protein Fitness Prediction 

Large, well curated, publicly available datasets have historically proven critical to the 

advancement of ML applications, regardless of field. For instance, within the broader ML 

community, the database of human-annotated images “ImageNet” is typically credited with 

ushering in a period of rapid advancement in computer vision.109 Likewise within the protein 

engineering community, the recent efforts in protein sequence-based semi-supervised, 

representation, and transfer learning discussed throughout this chapter were only made 

possible by the availability of large protein sequence databases like UniProt, Uniclust, and 

UniRef.22,37–39,41,42,110 Similarly, the recent dramatic advances in ML-based protein structure 

prediction with AlphaFold and RoseTTAFold were largely enabled by the information 

contained in both sequence databases and protein structure databases like the PDB and 

CATH.41,42,95–97,111,112 It stands to reason, then, that a suitably large, organized database of 

protein sequence-fitness information would spawn an era of rapid advancement in protein 

fitness prediction, be that for optimization or solving the starting point problem.  

Unfortunately, there is currently no large, well-maintained database of protein sequence-

fitness information, though the framework for one does exist.113 As is explained in Chapter 

4, this is largely because it has historically been prohibitively expensive to gather sequence-

fitness data. Indeed, those large sequence-fitness datasets that are currently available almost 

exclusively come from experiments using a uniquely cost-effective strategy known as “deep 

mutational scanning” (DMS), which can be used to generate sequence-fitness data for 

hundreds of thousands of protein variants at a total cost of hundreds to thousands of 

dollars.114,115 DMS can only be applied for very specific definitions of fitness, however, and 
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while the datasets produced by it have proven essential for advancing MLPE, they capture a 

very limited range of protein scaffolds and activities. 

In Chapter 4, I discuss a new method that I developed called “every variant sequencing” 

(evSeq) that, unlike DMS, can be used to cost-effectively generate sequence-fitness data 

regardless of the definition of fitness. It was designed to be incorporated into existing directed 

evolution workflows, thus allowing the sequence-fitness information for all protein variants 

produced during an engineering endeavor to be recorded, which is something that is not 

currently done. Widespread adoption of evSeq across the protein engineering community has 

the potential to produce hundreds of thousands—if not millions—of sequence-fitness 

datapoints per year covering a wide range of protein scaffolds and effectively any definition 

of fitness that can be imagined.g  Such volume of data would allow us to rapidly build a 

sequence-fitness database that could be used to support, among many other things, the further 

development of MLPE.  

Importantly, while a database on its own can be enough to advance an ML application, 

progress can be further expedited by the availability of well-designed benchmark tasks. A 

benchmark task is one designed to represent a typical application, providing a metric for how 

well we might expect an ML strategy to perform in the real world; they are designed such 

that newly proposed model architectures, training procedures, etc., can be compared in a fair, 

standardized manner. This standardization effectively enables community-wide 

collaboration toward solving a common problem. It is thus unsurprising that well-designed 

benchmark tasks are often central to some of the most decisive advances in ML. Returning 

to the earlier example of ImageNet, for example, advances in computer vision did not arise 

due to the publication of that dataset alone; the associated competition “ImageNet Large 

Scale Visual Recognition Challenge” (ILSVRC) annually provided a new set of publicly 

available benchmark tasks. Similarly, advances in ML-guided protein structure prediction 

 
g In the Arnold lab, we on average complete around 10 directed evolution endeavors per year. In each of these projects, we 

will screen hundreds to thousands of protein variants for fitness. If we assume that the thousands of other research groups 

performing directed evolution complete projects at a similar rate and scale, then as a community we can produce somewhere 

between 1,000,000 and 10,000,000 sequence-fitness datapoints per year.  
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did not arise solely due to the availability of large sequence and structure databases; the 

biennial competition “Critical Assessment of Structure Prediction” (CASP) provided (and 

continues to provide) standardized protein structure modeling benchmark tasks for over 25 

years before the breakthroughs that were AlphaFold and RoseTTAFold.116  

To date, there is no ILSVRC- or CASP-type competition for protein fitness prediction, 

though efforts have been made to design effective benchmarks. Somewhat unofficially, a 

series of DMS datasets has found itself commonly used to benchmark, in particular, new 

zero-shot prediction methods.67,68,70,117 More concerted efforts to create standardized 

benchmarks exist, however, with “Tasks Assessing Protein Embeddings” (TAPE) providing 

one example.58 The benchmark tasks in TAPE were created to assist in the development of 

new protein encoding schemes and cover a variety of different ML applications to proteins, 

two of which are fitness optimization tasks. The ideal ML strategy for fitness prediction is 

likely to vary by fitness landscape and application, however, so these two tasks are certainly 

not enough to robustly benchmark new fitness optimization approaches. To address this 

problem, I contributed to the development of the “Fitness Landscape Inference for Proteins” 

(FLIP) set of benchmark tasks.118 The fifteen FLIP tasks rely on three protein fitness 

landscapes of varied structure and, importantly, are inspired by a variety of real-world protein 

engineering applications, thus encouraging the community to create MLPE methods that are 

generalizable to a number of different use cases.  

The benchmark tasks in FLIP and TAPE are an excellent start, but they are highly unlikely 

to have the same impact as ILSVRC and CASP. Those two competitions have seen sustained, 

organized, community-wide investment for multiple years (multiple decades in the case of 

CASP), something that neither TAPE nor FLIP will provide. However, with new tools 

coming online for the high-throughput production of sequence-fitness data and ever-growing 

interest in MLPE, perhaps a similar competition can be built for fitness prediction tasks. Such 

an approach would almost certainly lead to rapid advancement of applicable MLPE models 

and strategies.  
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C h a p t e r  2  

 INFORMED TRAINING SET DESIGN ENABLES EFFICIENT 

MACHINE LEARNING-ASSISTED DIRECTED PROTEIN 

EVOLUTION  

Material from this chapter appears in Wittmann, B. J.; Yue, Y.; and Arnold, F. H. (2021) 

Informed Training Set Design Enables Efficient Machine Learning-Assisted Directed 

Protein Evolution. Cell Syst. 12, 1026-1045.e7. https://doi.org/10.1016/j.cels.2021.07.008. 

Abstract 

Directed evolution of proteins often involves a greedy optimization in which the mutation in 

the highest-fitness variant identified in each round of single-site mutagenesis is fixed. The 

efficiency of such a single-step greedy walk depends on the order in which beneficial 

mutations are identified—the process is path-dependent. Here, I investigate and optimize a 

path-independent machine learning-assisted directed evolution (MLDE) protocol that allows 

in silico screening of full combinatorial libraries. In particular, I evaluate the importance of 

different protein encoding strategies, training procedures, models, and training set design 

strategies on MLDE outcome, finding the most important consideration to be the 

implementation of strategies that reduce inclusion of minimally informative “holes” (protein 

variants with zero or extremely low fitness) in training data. When applied to an epistatic, 

hole-filled, four-site combinatorial fitness landscape, my optimized protocol achieved the 

global fitness maximum up to 81-fold more frequently than single-step greedy optimization.  
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2.1 Introduction for Chapter 2 

Enzyme engineering has revolutionized multiple industries by making chemical processes 

cheaper, greener, less wasteful, and overall more efficient. Enzymes and other proteins are 

engineered by searching the protein fitness landscape, a surface in a high-dimensional space 

that relates a desired function (“fitness”) to amino acid sequences.27,29 Exploring this 

landscape is extremely challenging: the search space grows exponentially with the number 

of amino acid positions considered, functional proteins are extremely rare, and experimental 

screening of proteins can be resource-intensive, with researchers often limited to testing a 

few hundred or thousand variants. Directed evolution (DE) can overcome these challenges 

by employing a greedy local search to optimize protein fitness.10 In its lowest-screening-

burden form (hereafter referred to as “traditional DE”), DE starts from a protein having some 

level of the desired function, then iterates through rounds of mutagenesis and screening, 

where in each round single mutations are made (e.g., by site saturation mutagenesis) to create 

a library of variants and the best variant is identified and fixed; iteration continues until a 

suitable level of improvement is achieved (Figure 2-1A).  

By focusing on single mutations rather than combinations of mutations, traditional DE can 

be used to optimize protein fitness with a low screening burden. The process is highly 

effective when the beneficial effects of mutations made at different sequence positions are 

additive; however, focusing on single mutants ignores the codependence of mutations (epi-

stasis).119,120 Epistasis is commonly observed, for example, between residues close together 

in an enzyme active site or protein binding pocket, where mutations often affect function. 

Epistatic effects can decrease the efficiency of DE by altering the shape of the protein fitness 

landscape. Specifically, epistasis can alter gradients on the fitness landscape to make the 

route to a global optimum very long,121 or it can introduce local optima at which traditional 

DE can become trapped (Figure 2-1B). Both lower the average fitness that can be achieved 

for a given screening burden. The only way to account for epistasis during optimization is to 

evaluate and fix combinations of mutations, bypassing the path-dependence of traditional 

DE. Due to limited screening capacity, however, this is intractable for most protein 

engineering projects.  
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Increasingly, machine learning (ML) is being used to ease experimental screening burden by 

evaluating proteins in silico.15–19,22,37,71,110 Data-driven ML models learn a function that 

approximates the protein fitness landscape, and they require little to no physical, chemical, 

or biological knowledge of the problem. Once trained, these models are used to predict the 

fitness of previously unseen protein variants, dramatically increasing screening capacity and 

expanding the scope of the protein fitness landscape that can be explored by replacing 

expensive laboratory experimentation with in silico screening. The first project to which I 

contributed at Caltech demonstrated a machine learning-assisted directed evolution (MLDE) 

strategy for navigating epistatic fitness landscapes that cover a small number of amino acid 

sites.82 MLDE works by training an ML model on a small sample (101–102) of variants from 

a multi-site simultaneous saturation mutagenesis (“combinatorial”) library, each with an 

experimentally determined fitness (i.e., a model is trained using a small sample of sequence 

data labeled by fitness); the model is then used to predict the fitnesses of all remaining 

variants in the combinatorial library (104–105), effectively exploring the full combinatorial 

space. Combinations with the highest predicted fitness are experimentally evaluated, the best 

combination is fixed, and another round of MLDE is started at a new set of positions (Figure 

2-1C). The iterative nature of MLDE is identical to that of traditional DE, but by evaluating 

and fixing multiple cooperative mutations, MLDE avoids some local fitness traps or long 

paths to the global optimum for each combinatorial library.  

The original MLDE work serves as a baseline, as it did not explore the many design 

considerations of MLDE (Figure 2-1C, bold and underlined questions).82 Two notable 

considerations are (1) the choice of encoding strategy and (2) the handling of low-fitness 

variants in combinatorial libraries. Protein sequences must be numerically encoded to be 

used in ML algorithms, and the choice of encoding will affect the outcome of learning. In 

the original implementation, a one-hot encoding scheme was used, which is a simple 

categorical encoding that captures no information about the biochemical similarities and 

differences of amino acids. Mutating an amino acid to a similar one (in terms of size, charge, 

etc.) is less likely to affect protein fitness than mutating it to a very different one, however, 

and this knowledge can be transferred into ML models via the encoding strategy. The 
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effectiveness of an ML model is also determined by the information content of the data used 

to train it, and so the choice of variants to use for the training stage of MLDE is important. 

Combinatorial libraries tend to be enriched in zero- or extremely low-fitness variants, 

particularly when constructed in regions critical to protein function like an enzyme active 

site.28,78,122 These “holes” provide minimal information about the topology of the regions of 

interest in a fitness landscape (i.e., they provide no information about regions with 

functioning proteins and no information about the extent to which different mutations affect 

fitness) and can bias ML models to be more effective at predicting low-fitness variants than 

high-fitness ones, the opposite of the goal. In the original MLDE implementation, high-

sequence-diversity training data was generated by sampling randomly from full 

combinatorial spaces. Because combinatorial landscapes tend to be dominated by holes, 

however, this random draw primarily returned sequences with extremely low or zero fitness, 

resulting in training data that, despite containing diverse sequences, was information poor. 

In this chapter, I evaluate various design considerations by simulating MLDE on the 

empirically determined four-site combinatorial fitness landscape (total theoretical size of 204 

= 160,000 protein variants) of protein G domain B1 (GB1) (Figure 2-1D).123 This landscape 

contains multiple fitness peaks (the routes to which are not always direct) and is heavily 

populated by zero- and low-fitness variants (92% have fitness below 1% of that of the global 

maximum), and thus not only presents an ideal testing ground in which to compare the 

abilities of traditional DE and MLDE to navigate epistatic fitness landscapes, but also serves 

to test the ability of ML methods to navigate hole-filled regions of protein fitness landscapes. 

I begin by evaluating a number of alternate encoding strategies to one-hot, including 

physicochemical encodings (encodings that capture physical and chemical properties of 

different amino acids) and learned embeddings derived from eight different natural language 

processing models (which are encodings extracted from machine learning models that 

represent physicochemical and contextual information about different amino acids—more 

background is provided in the relevant section).51,55,58,61,124 Next, I demonstrate how 

integration of models and training procedures better tailored for protein fitness landscapes 

into the workflow can improve MLDE performance.125–127 I then show the importance of 
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reducing uninformative holes in MLDE training sets and propose integrating a form of zero-

shot prediction (i.e., prediction of variant fitness prior to data collection) into the MLDE 

pipeline to generate more informative training data. I call the general strategy of running 

MLDE with training sets designed to avoid holes “focused training MLDE” (ftMLDE). I 

next evaluate the effectiveness of a number of zero-shot strategies for designing training data 

for ftMLDE applied to GB1, including state-of-the-art strategies that leverage local 

evolutionary information from multiple sequence alignments (MSAs),68,70 a “masked-token 

prediction” strategy that leverages global sequence information derived from large sequence 

databases,51,55,61,128 and predicted ΔΔG of protein stability upon mutation. I then use the 

effective zero-shot predictors to generate information-rich training data. Finally, using this 

training data, I test the effect of training set size, the zero-shot predictor used for training set 

construction, and protein encoding on the outcome of ftMLDE.  

In all, I found that, while using more informative encodings and models better-tailored for 

combinatorial fitness landscapes could improve MLDE outcome, the most important design 

consideration was training set design, with ftMLDE generally showing improved 

identification of the GB1 global fitness maximum compared to MLDE. My most effective 

combination of MLDE design considerations—384 training points chosen using predicted 

ΔΔG as the zero-shot predictor and with sequences encoded using embeddings derived from 

the recently published MSA Transformer—successfully identified the GB1 global maximum 

in 99.70% of 2000 simulated ftMLDE experiments.61 This represents an 81.1-fold 

improvement over traditional DE (which achieved the global maximum 1.23% of the time 

in simulated experiments) and at least a 12.2-fold improvement over the originally published 

method (which achieved the global optimum 8.17% of the time with a screening burden of 

570 total variants—90 more than were used in this work).  

This chapter describes improvements to the original MLDE method. It also highlights (1) the 

importance of considering the unique attributes of fitness landscapes when applying ML to 

protein engineering problems, (2) the importance of informative training set design for 

building effective ML models in protein engineering, and (3) how tools developed across a 



 

 

37 

variety of protein engineering domains can be combined into a cohesive, highly efficient 

engineering pipeline. To improve access to such a pipeline, I introduce the MLDE software 

package, made available on the Arnold Lab GitHub (https://github.com/fhalab/MLDE). 

Designed to be accessible to non-ML and non-computational experts, this repository contains 

Python scripts that allow execution of MLDE and ftMLDE on arbitrary combinatorial fitness 

landscapes, thus enabling wet-lab application.   

2.2 Results for Chapter 2 

2.2.1 MLDE Procedure, Simulated MLDE, and Evaluation Metrics 

MLDE attempts to learn a function that maps protein sequence to protein fitness for a multi-

site simultaneous saturation mutagenesis (“combinatorial”) library (Figure 2-1C). More 

concretely, MLDE attempts to regress a function f(x) = y describing the fitness landscape of 

the combinatorial library where the protein sequence is “x” and the protein fitness (i.e., the 

sequence’s label) is “y.” I provide detailed information about the programmatic 

implementation of MLDE in the methods section (A.3: MLDE Programmatic 

Implementation). Briefly, however, and at a high level, the procedure begins with gathering 

the sequences and fitnesses of a small subsample from the combinatorial library. These 

sequence-fitness pairs are then used to train an ensemble of regressors with varied model 

architecture (roughly, this can be interpreted as fitting a variety of different functions to the 

fitness landscape) (Methods: Inbuilt Models). A variety of models are trained because the 

shape of the fitness landscape is not known a priori; it is thus not possible to confidently 

recommend which model architectures would be most effective prior to evaluating their 

effectiveness on the given landscape. The models are evaluated and ranked based on a 5-fold 

cross-validation error. Predictions from the top-performing trained models in the ensemble 

(those with the lowest cross-validation error) are then averaged to predict fitness values for 

the unsampled (unlabeled) variants that were not in the training set. These variants are ranked 

according to predicted fitness, and the top M are evaluated experimentally to identify the 

best-performing ones.  
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Figure 2-1. Directed evolution strategies and the effects of landscape topology. (A) Directed 

evolution (DE) by single-mutation greedy walk (“Traditional DE”). In this approach, 

mutations are fixed iteratively by walking up the steepest fitness gradient. (B) Smooth (left) 

vs rugged (right) fitness landscapes. A smooth fitness landscape contains a single fitness 

maximum, so traditional DE is guaranteed to eventually reach the global optimum, though 

the number of steps needed will depend on the topology of the peak. A rugged fitness 

landscape contains multiple fitness maxima. Traditional DE is only guaranteed to reach a 

local fitness optimum here; the maximum achieved will depend on the starting protein variant 

and the order in which positions are chosen for mutagenesis and testing. (C) Machine 

learning-assisted directed evolution (MLDE). In this approach, standard molecular biology 

techniques are used to construct a “combinatorial library” by making mutations at multiple 

positions simultaneously (e.g., through use of “NNK” degenerate primers). Samples are 

drawn from this library (e.g., picking colonies from a plate), sequenced, expressed, assayed, 

and then used to train an ensemble of regressors. This ensemble is used to predict which 

combinations not seen in the initial draw will have the highest fitness, which are then 

constructed and tested experimentally. Because the best mutations are fixed simultaneously, 

MLDE operates in a path-independent manner, so the global optimum of a combinatorial 

space can be achieved regardless of the starting point. Once mutations are fixed for a given 

set of positions, a new set is chosen and the procedure is repeated, allowing for larger, more 

efficient steps through sequence space. The MLDE procedure has many design 

considerations, which are highlighted as questions under each step. (D) The simulation 

procedure used throughout this study to evaluate improvements to the MLDE workflow, with 

the tests performed to evaluate the different design considerations given above each step. 
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The simulation procedure is repeated many times using data from the GB1 landscape. The 

effectiveness of a simulated MLDE experiment is determined by (1) evaluating the max and 

mean true fitness of the top M variants according to predicted fitness and (2) calculating the 

normalized discounted cumulative gain (NDCG) over all predictions in the simulation. 

Throughout this chapter, I evaluate design considerations of MLDE through simulation on 

the empirically determined four-site combinatorial fitness landscape of protein G domain B1 

(GB1). Originally reported by Wu et al., this landscape consists of 149,361 experimentally 

determined fitness measurements for 160,000 possible variants, where fitness is defined by 

both the ability of the protein to fold and the ability of the protein to bind human IgG-Fc.123 

To my knowledge, this landscape is the only published one of its kind (i.e., the only almost-

complete combinatorial landscape where fitness is reported as scalar values amenable to 

training the regression models used in MLDE). By imputing the fitnesses of the remaining 

10,639 variants and evaluating the resultant complete landscape, Wu et al. identified 30 local 

optima, the routes to which were often indirect (e.g., if a local optimum was four mutations 

away from a starting point, it would take more than four mutations to travel by single-

mutation greedy walk from the starting point to the optimum). Epistatic interactions are thus 

highly prevalent in the GB1 landscape. The goal of simulated MLDE is to mimic what would 

be observed if thousands of MLDE experiments were performed on GB1. Thus, to ensure 

that the simulations match what would have been observed experimentally had my simulated 

experiments actually been performed, I do not use the variants with imputed fitness in this 

study.  

A simulated MLDE experiment begins with generating training data (Figure 2-1D). Here, a 

small set of variants is drawn from the GB1 landscape (values of 24, 48, or 384 are used 

throughout this study) and their known fitness values are attached (the variants are labeled). 

This stage of the simulation is analogous to building a combinatorial library (e.g., by using 

“NNK” degenerate primers to make mutations at multiple positions simultaneously), picking 

colonies from an agar plate, then sequencing, expressing, and assaying the variants harbored 

by the colonies. The training data are then fed into the MLDE pipeline and the average 

predictions of an ensemble of the top three models are used to rank the unlabeled variants 
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not in the training data (148,977 or more total variants, depending on the number of samples 

in the training data) by predicted fitness. The quality of the returned ordering is evaluated 

using a combination of metrics, including (1) the max fitness of the M-highest-ranked 

variants, (2) the mean fitness of the M-highest-ranked variants and (3) the ranking metric 

“normalized discounted cumulative gain” (NDCG) (A.2.5: Evaluation Metrics).129 

Whenever reported, mean and max fitness achieved are normalized to the highest fitness in 

the unlabeled dataset and so can typically be interpreted as a fraction of the global maximum 

in the GB1 dataset. 

Each evaluation metric summarizes different information about the outcome of an MLDE 

simulation. The max and mean fitness of the M-highest-ranked variants (hereafter also 

referred to as “max fitness achieved” and “mean fitness achieved”) are the most practically 

relevant in terms of laboratory application of MLDE, as they are analogous to the max and 

mean fitness that would be observed if the M protein variants predicted to have highest fitness 

were experimentally evaluated. Consistent realization of high maximum fitness achieved 

over many simulations indicates that an MLDE design condition is typically effective at 

finding at least one high-fitness variant; consistent realization of a high mean fitness 

achieved over many simulations indicates that the design condition is typically effective at 

identifying many high-fitness variants. NDCG does not capture specifics about how MLDE 

can be expected to perform in a laboratory setting, but instead provides a holistic measure of 

how well a given MLDE design condition is able to identify and rank the most fit variants in 

the GB1 landscape without the need to set an arbitrary cutoff such as “the top M” predictions. 

NDCG is commonly used to assess the quality of information retrieval algorithms such as 

search engines, a task that parallels the goal of MLDE.129 To explain, the goal of search 

engines is to return a list of relatively rare, highly relevant documents identified among a 

population of many irrelevant ones; the most relevant documents should be provided at the 

top of the list and the least relevant at the bottom. Because combinatorial fitness landscapes 

tend to be dominated by zero- and low-fitness variants,28,78,122 the goal of MLDE is likewise 

to identify high-fitness (high-relevance) protein variants among a sea of irrelevant ones; the 
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highest-fitness variants should ideally be the ones ranked highest by MLDE. For both search 

engines and MLDE, more weight should be placed on correctly identifying and ranking the 

most-relevant items than the least-relevant as these are the ultimate items of interest. Indeed, 

NDCG provides just this type of implicit weighting, which is clear from the equation used to 

calculate it. The equation for NDCG is 
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𝑓𝑖

l  2 𝑖 +   

𝑁

𝑖 = 1

) (∑
𝑓𝑖

′

l  2 𝑖 +   

𝑁

𝑖 = 1

)  ⁄  Eq. 2-1 

where the numerator gives the sum of the true variant fitnesses (𝑓) divided by a logarithmic 

“discount” based on their predicted ranking and the denominator gives the sum of true variant 

fitnesses divided by a logarithmic discount based on a perfect ranking. A higher value of 

NDCG is thus better, and the maximum NDCG possible is “1.” Variants with low fitness 

contribute minimally to the denominator (both due to having a low “𝑓” and, in a perfect 

ordering, a high logarithmic discount), and so unless they are incorrectly ranked as the very 

top variants, they will have minimal effect on the score. Correct ranking among high-fitness 

variants is thus weighted more strongly than correct ranking among low-fitness variants, but 

incorrect identification of a low-fitness variant as a high-fitness variant is punished. NDCG 

as an MLDE evaluation metric thus provides a more holistic view of how well models are 

able to (1) identify the most fit variants and (2) correctly rank those variants.  

2.2.2 More Informative Encodings Can Improve MLDE Outcome 

Protein sequences must be numerically encoded by a set of features (numerical descriptors 

that describe a protein sequence) to be used in ML algorithms. The previous implementation 

of MLDE used one-hot encoding, an uninformative categorical encoding strategy that 

captures no information about the biochemical relatedness of different amino acids. The 

descriptiveness of the features used for encoding can affect the outcome of learning, 

however, by passing in relevant information to an ML model about the similarities and 

differences between different datapoints. To investigate the effects of more informative 
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encodings on MLDE, I tested encoding using physicochemical parameters as well as learned 

protein embeddings.  

Physicochemical parameters are manually engineered features that describe amino acid 

qualities such as hydrophobicity, volume, mutability, etc. Encoding a protein sequence using 

these features provides an ML model with information on the physicochemical similarities 

and differences between amino acids. For instance, valine and alanine would have a more 

similar “hydrophobicity” score than valine and glutamate. In this work, I used the set of 

physicochemical parameters developed by Georgiev, which is a low-dimensional 

representation of over 500 amino acid indices from the AAIndex database.35,36,124  

Unlike manually crafted physicochemical parameters, learned protein embeddings are 

featurizations of protein sequences that have been automatically learned by machine learning 

models through a strategy known as “representation learning.”22,37,46,110,130 All extant protein 

sequences have been selected by natural evolution to perform a function that is useful for 

their host organism. The goal of representation learning is to directly learn features that 

describe these proteins, thereby capturing a numerical encoding (an embedding) of the 

essence of what defines a functional and useful protein. Exactly how this learning is 

accomplished varies, though most strategies and models currently used are adapted from the 

field of natural language processing and rely on ever-growing protein sequence databases as 

a source of training data.22,37,39,45,110 As with physicochemical parameters, learned protein 

embeddings capture the similarities and differences between specific amino acids; they also, 

however, capture contextual information about amino acid positions in a protein, with the 

exact embedding for a given amino acid changing based on the identities of other amino 

acids in the same protein sequence.48,55 

A number of studies have been performed to train models for the production of learned 

protein embeddings.37 Given a protein sequence, such models output a matrix of values that 

are then used to encode the protein. In this work, I tested the effectiveness of learned protein 

embeddings generated from a variety of models of different sizes and architectures made 

available in the TAPE, ESM, and ProtTrans GitHub repositories.51,55,58,61 The models tested 
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from TAPE were trained using 30 million protein sequences from the Pfam database39 and 

have varied architectures, including a transformer architecture (“TAPE-Transformer”),128,131 

three separate LSTM-based architectures (“LSTM,” “UniRep,” and “Bepler”),52,60,132 and a 

dilated residual network architecture (“ResNet”);133 all models in TAPE are defined by 

around 38 million learnable parameters.  

Larger models than those in TAPE trained on more sequences can potentially learn a richer 

representation of protein sequences.55,134 To test this potential effect of model and training 

set size on the quality of learned embeddings for MLDE, I also investigated embeddings 

generated from the state-of-the-art models “esm1b_t33_650M_UR50S” (hereafter referred 

to as “ESM1b”) from the ESM repository as well as “ProtBert-BFD” from the ProtTrans 

repository. Both of these models have a transformer architecture. ESM1b is a 650-million-

parameter model trained on 27.1 million sequences from the UniRef50 database.42,55 

ProtBert-BFD is a 420-million-parameter model trained on 2.1 billion protein sequences 

from the Big Fat Database (BFD).51,135 A final model investigated for learned embedding 

generation was the MSA Transformer, also made available in the ESM repository.61 Unlike 

the other models, which were all trained on protein sequences, the 100-million-parameter 

MSA Transformer was trained on 26 million protein multiple sequence alignments (MSAs); 

the learned embeddings from the MSA Transformer are thus generated from an MSA of the 

target protein rather than the target protein sequence alone. MSAs more directly represent 

information relevant to protein engineering: specifically, related sequences aligned to a 

reference provide evidence for what mutations are and are not allowed at given positions. I 

included the MSA Transformer to test if the additional information provided by embeddings 

generated from an MSA could lead to an improved MLDE outcome.  

For each encoding considered, I performed 2000 MLDE simulations at three different 

training set sizes. The training data, cross-validation indices (i.e., the different folds used for 

measuring a cross-validation error), and random seeds (values that enable reproducible 

random number generation) were kept the same for each encoding strategy in each 

simulation. For a given simulation, the training data consisted of either 384, 48, or 24 GB1 
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variants drawn at random from the comprehensive (consisting of all 149,361 possible GB1 

variants) landscape—only the choice of encoding and training set size were considered as 

design considerations in these experiments. If 384 variants were used for training, the top 96 

predictions were tested; if 48 variants were used for training, the top 32 predictions were 

tested; if 24 variants were used for training, the top 56 predictions were tested (A.2.4.1: 

Encoding Comparison Simulations). Training using 384 samples and testing 96 predictions 

evaluates simulations on a scale that approximates the typical experimental screening 

burdens for standard DE approaches.82 Because the ultimate goal of using ML in protein 

engineering is to reduce or eliminate the number of protein variants that must be 

experimentally characterized, the ability to train an ML model using limited data is also 

valuable.64 Training using 24 or 48 samples evaluates the effectiveness of each encoding in 

this “low-N” setting. I tested 56 or 32 predictions, respectively, to match the total screening 

burden (80 variants) of an idealized traditional DE pipeline over a four-site landscape where 

all 20 amino acids at each position are deterministically evaluated. I note that, due to the cost 

of synthesizing variants individually, deterministic evaluation of mutations is rarely 

performed, and researchers instead opt to stochastically sample from pools of mutants (thus 

raising the required screening burden above 80). The total screening burden of deterministic 

traditional DE does provide, however, a reasonable “low-N” threshold for MLDE. 

Violin plots showing the results of the simulated MLDE experiments are provided in Figure 

2-2; summary statistics are provided in Data S1 and a pairwise comparison of encoding 

effectiveness over all simulations is provided in Data S2; I also provide additional figures on 

the GitHub repository associated with this work that plot the pairwise encoding comparisons. 

In all, these results show that using a more informative encoding than one-hot can result in 

an improved MLDE outcome, but not always and depending on the metric and screening 

burden used to measure MLDE effectiveness. The only two encoding strategies to 

consistently show at least marginal improvement over the one-hot baseline regardless of 

metric and screening burden were physicochemical (Georgiev) parameters and learned 

embeddings from the MSA Transformer. At a training size of 384, NDCG was the only 

evaluation metric to consistently suggest that more informative encodings improve MLDE 
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outcome. For the max fitness achieved, simulations run using Georgiev parameters and 

learned embeddings from the MSA Transformer tended to achieve marginally higher max 

fitness than those run using one-hot encodings; simulations run using all other learned 

embeddings tended to achieve the same if not a slightly lower one. For the mean fitness 

achieved, simulations run using the embeddings from the Bepler model as an encoding 

strategy slightly underperformed one-hot, those using embeddings from UniRep and 

ProtBert-BFD performed comparably, and those using all other encoding strategies tended 

to achieve a higher mean fitness than one-hot.  

For smaller training set sizes, the effect of different encodings on MLDE outcome was less 

noticeable. Only simulations run using embeddings from the TAPE transformer and the 

MSA Transformer still obtained a higher NDCG than those run using one-hot encoding; 

simulations using other encodings tended to yield comparable to marginally better NDCG 

than those run with one-hot. For the max fitness achieved, all non-MSA Transformer learned 

embeddings arguably gained ground on one-hot and Georgiev encodings, though the results 

are still comparable at best. The opposite was observed for the mean fitness achieved, with 

one-hot typically gaining ground on and even slightly surpassing many learned embeddings.  

My results largely agree with recent work suggesting that training ML models using existing 

learned protein embeddings yields marginal improvement at best compared to using simpler 

encodings such as one-hot or physicochemical parameters.62,63 Unlike previous works, 

however, which found that learned embeddings tended to be superior to simpler strategies in 

the low-N regime,62,64 I found that simpler strategies remained competitive regardless of 

training set size. It is possible that taking an “evotuning” strategy like that of Biswas et al., 

where embedding models are further trained on sequences more closely related to the target 

protein (i.e., GB1), could improve the performance of learned embeddings in the low-N 

regime;64 however, as will be discussed in greater detail in later sections, this possibility is 

currently untestable due to the limited availability of GB1 homologs in existing sequence 

databases.  
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I also found minimal benefit in using embeddings derived from the larger models trained on 

larger corpora of protein sequences. For instance, when trained with 384 samples, 

simulations run using embeddings from ESM1b only slightly outperformed those run using 

embeddings from the TAPE transformer, despite the ESM1b model being ~17-fold larger; 

in the low-N regime, simulations run using embeddings from ESM1b underperformed those 

run using encodings from the TAPE transformer. Likewise, regardless of training set size, 

simulations run using embeddings from ProtBert-BFD often underperformed many of the 

TAPE models, despite ProtBert-BFD being ~11-fold larger and trained using ~70-fold more 

protein sequences. Indeed, the most effective model for generating learned embeddings was 

the MSA Transformer, which is 1/6 the size of ESM1b and 1/4 the size of ProtBert-BFD. As 

mentioned above, the MSA Transformer was trained on—and generates embeddings using—

MSAs rather than protein sequences. It is possible that the additional information provided 

by the MSA yields more effective learned embeddings for MLDE, though this is impossible 

to conclude working off of just the GB1 dataset. It does stand to reason, however, that models 

and data sources that more directly represent information known to be important for protein 

function could lead to embeddings that are more informative for MLDE. Developing such 

data sources and models is a potentially valuable avenue for future research.  
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Figure 2-2. More informative encodings can improve MLDE outcome: results of simulated 

MLDE comparing ten different encoding strategies at three different screening burdens. Note 

that, for the sake of computational efficiency, 19 of the 22 inbuilt MLDE models were in the 

ensemble trained for simulations using the large TAPE transformer-, the MSA    

Transformer-, ESM1b-, ProtBert-BFD-, UniRep-, and LSTM-derived encodings, while 22 

were in the ensemble for all others. Each column of plots gives the results of a different 

screening burden. Each row of plots gives the results for a different summary metric. Rows 

and columns share the same axes. Each violin represents the results of 2000 simulated MLDE 

experiments, and the dashed line represents the median summary value of simulations run 

using one-hot encoding. In general, whether or not an encoding strategy outperformed the 

one-hot baseline depended on the screening burden tested and summary metric evaluated. 

The only two encoding strategies to consistently show at least marginal improvement over 

the one-hot baseline regardless of metric and screening burden were physicochemical 

(Georgiev) parameters and learned embeddings from the MSA Transformer. For summary 

statistics of simulation results, see also Data S1. For pairwise comparisons of simulation 

results, see also Table A-1 – Table A-4, Data S2, and additional figures at the GitHub 

associated with this work. 
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2.2.3 Models/Training Procedures More Tailored for Combinatorial Fitness 

Landscapes Can Improve MLDE Predictive Performance 

Many of the learned embeddings used in the previous section are extremely high 

dimensional, with the largest (LSTM) describing each combination of four amino acids with 

8192 features (Table A-1). To better handle the high dimensionality introduced by learned 

embeddings, in this new implementation of MLDE I added two 1D convolutional neural 

network (CNN) architectures to the ensemble of models trained, one with a single 

convolutional layer and another with two (A.3.1: Inbuilt Models). CNNs apply sliding 

windows (“convolutions”) over structured, high-dimensional data, relying on spatial 

dependencies between elements of the input data to extract the most relevant high-level 

features.136,137 For instance, CNNs are often applied to image processing tasks, where sliding 

2D windows are used to extract high-level features by aggregating information from local 

groupings of pixels. CNNs can also be applied, however, to sequential data such as protein 

and DNA sequences. When applied to proteins, the sliding windows are 1D (hence, “1D 

CNN”) rather than 2D, and are applied over the protein sequence to extract high-level 

features by aggregating information from nearby members of the sequence.19,125,138 The 

practice of using a sliding window to extract or aggregate information from sequences or 

sequence alignments has been used in bioinformatic analyses for decades.139–141 Whereas 

sliding windows have historically been used to extract specific, human-defined information, 

the sliding windows of 1D CNNs automatically learn the aggregate information most 

relevant for relating a sequence to a label (e.g., the high-level features that relate protein 

sequence to fitness). Recent evidence suggests that 1D CNNs are a particularly effective 

model class for protein engineering.19 I found that 1D CNNs could be beneficial for MLDE, 

but that the specific architecture of the 1D CNN and training points used to train it were 

important. For instance, when trained with 384 training points, the two-layer 1D CNN was 

consistently among the top-ranking models in terms of cross-validation error during training, 

particularly for higher-dimensional encodings (Table A-1). The same could not be said, 

however, for the single-layer 1D CNN or the two-layer 1D CNN trained with less data (Table 

A-1 – Table A-2). 
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In addition to 1D CNN architectures, I also integrated XGBoost models trained with the 

Tweedie regression objective to better handle the zero-inflated nature of fitness 

landscapes.126,142,143 XGBoost is a Python package that implements the gradient boosting 

technique, which, at a high level, is a strategy of combining multiple weak predictors 

(multiple weak models) to create a more effective predictor.126 Gradient-boosted Tweedie 

regression was developed to handle regression for datasets with zero-inflated labels.142,143 

Because most mutations are deleterious to activity or stability, as more mutations are made 

to a protein, the probability that it will still fold and function drops.122 The result is that 

combinatorial fitness landscapes tend to be dominated by proteins with zero or extremely 

low fitness,28,78 something that is highlighted by the distribution of fitnesses for GB1 (Figure 

2-3A). Training data drawn from combinatorial fitness landscapes will thus also have an 

over-abundance of zeros, which can bias ML models to be more effective at predicting low-

fitness variants than high-fitness ones. To test if implementing the Tweedie regression 

objective could improve the effectiveness of XGBoost models in MLDE, I included 

XGBoost models trained with both the Tweedie and default (root mean squared) training 

objectives in the ensemble of models trained in the simulations discussed in the previous 

section. I found that models trained with the Tweedie objective on average achieved a higher 

NDCG than models trained with the default objective regardless of base model (the 

architecture of the weak predictors used by XGBoost) and encoding; only models with a tree 

base model on average showed improved max and mean fitness achieved, however (Table 

A-3 – Table A-4). Additional supplemental images plotting a pairwise comparison of the 

results of XGBoost simulations run with each learning objective can also be found at the 

GitHub repository associated with this work.  

2.2.4 The Challenge of Holes in Combinatorial Fitness Landscapes and the 

Importance of Informative Training Data 

Diversity within training data is critical to constructing an effective machine learning model. 

Often, training set diversity is thought of in terms of exploration of the feature space, where 

limited resources are intelligently committed to minimize the amount of extrapolation that 

must be performed when making predictions (Figure 2-3B). For instance, for protein 
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engineering, a researcher would aim to experimentally characterize diverse protein 

sequences when gathering data to train an ML model; a model trained on a restricted set of 

sequences may struggle to generalize to more diverse sequences when used for prediction. 

Equally important to feature diversity, however, is diversity in the labels: patterns in the 

ground truth will not be identified if there are no patterns in the training data (Figure 2-3B). 

The overabundance of “dead” (zero- or very low-fitness) variants in combinatorial fitness 

landscapes thus poses an additional challenge beyond that discussed in the previous section: 

a random draw for the generation of training data is likely to be populated by primarily zero- 

or extremely low-fitness variants. And, while potentially useful for classifying dead vs 

functional proteins, these “holes” provide no information about the extent to which specific 

combinations of mutations benefit or harm fitness—only that fitness is destroyed by a 

combination—and so have limited utility when training the regression models used in 

MLDE.  

I thus proposed a general strategy of running MLDE with training sets designed to contain a 

minimal number of holes. In this strategy, which I call “focused training MLDE” (ftMLDE), 

training data is not randomly drawn from the full combinatorial landscape (which will return 

primarily holes), but is instead drawn from diverse regions of sequence space believed to 

contain functional variants. A training set drawn in this way will consist of a greater 

proportion of functional variants and so will provide more information to an ML model about 

the magnitude of the effects of different mutations on fitness, enabling more effective 

regression of a function to the fitness landscape. 

To demonstrate the concept of ftMLDE and test its effectiveness, I designed training data 

enriched in functional, but not the fittest, protein variants, and then used it to perform 

simulated ftMLDE. Because I had access to the full GB1 dataset, I could choose what data 

to use for training. As such, I built training sets consisting of 384 samples where 50% of the 

variants had fitness greater than or equal to a given threshold of either 0.011, 0.034, 0.057, 

or 0.080 and 50% had fitness below (A.2.4.2: High-Fitness Simulations). A higher fitness 

threshold thus meant greater fitness enrichment in the training data (greater “focus” of the 
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training data on higher-fitness regions of the protein fitness landscape) and vice versa (Figure 

A-1). To avoid “cheating” by inclusion of the highest-fitness variants in the training data, I 

also enforced a requirement that no variant in the training data had fitness greater than 34% 

of the global maximum. By including this upper limit, the highest-fitness variants in the GB1 

landscape could only be identified from model predictions. 

The results of 2000 simulated ftMLDE experiments using training sets from each of the four 

considered thresholds are given in Figure 2-3C-E and Table A-5; also included are the results 

of 2000 simulated standard MLDE experiments where training data were randomly drawn 

from all variants with fitness below 34%. Compared to standard MLDE, the ftMLDE 

simulations show improved NDCG, mean fitness achieved in the top 96 predictions, and max 

fitness achieved in the top 96 predictions. Training data enrichment using even the lowest 

fitness threshold (0.011) led to improvement in evaluation metrics, with NDCG increasing 

~8%, the max fitness achieved improving ~19%, and the mean fitness achieved improving 

~49%. The lowest threshold sits at just above 1% of the fitness of the global maximum, and 

so the improvement observed here suggests that even the weakest degree of enrichment can 

lead to an improvement in engineering outcome. Indeed, while further increasing the fitness 

threshold did further improve outcome, the degree of improvement was not as large. For 

instance, increasing the threshold from 0.011 to 0.080 led to a further ~2% increase in 

NDCG, ~4% increase in max fitness achieved, and ~10% increase in mean fitness achieved, 

roughly 5-fold less overall improvement compared to moving from no threshold to a 

threshold of 0.011. This result suggests that, while achieving a higher mean fitness in the 

training data is beneficial to ftMLDE, the more important factor is elimination of holes. 
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Figure 2-3. The challenge of holes in combinatorial fitness landscapes and the importance 

of informative training data. (A) The distribution of fitness in the GB1 landscape shown as a 

histogram. Most variants in this epistatic landscape have extremely low fitness, and the 

highest-fitness variants are very rare. (B) A demonstration of the importance of diversity in 

both the labels and features of training data for machine learning. Learning detailed topology 

is challenging if the labels are not representative of it, even if sampled from diverse regions 

of feature space. Only local topology can reliably be learned if points are sampled from a 

restricted region of feature space. (C) The maximum fitness achieved for simulated ftMLDE 

using training data designed to be enriched in fit protein variants. Specifically, training sets 

were designed such that 50% of the variants had fitness greater than or equal to a given 

threshold of either 0.011, 0.034, 0.057, or 0.080 and 50% had fitness below. A higher fitness 

threshold enforces a higher mean training fitness. All data is shown as empirical cumulative 

distribution functions (ECDFs); vertical lines on the x-axis give the expectation value of the 

distribution. Each ECDF represents the results of 2000 simulated ftMLDE experiments. (D) 

The mean fitness achieved for simulated ftMLDE using training data enriched in fit variants. 

(E) The NDCG for simulated ftMLDE using training data enriched in fit variants. See also 

Figure A-1 and Table A-5. 
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2.2.5 Zero-Shot Prediction as a Practical Training Set Design Strategy for ftMLDE 

Of course, in practice, the full dataset for a combinatorial library would not be available as it 

is for GB1, otherwise there would be no point in applying MLDE in the first place. Instead, 

the protein variants used to build ftMLDE training data must be chosen prior to knowing 

their fitnesses—practical application of ftMLDE requires at least a weak predictor of protein 

fitness for training set design. One way to accomplish this would be to take an active learning 

approach. That is, using data from a prior round of standard MLDE performed for the same 

combinatorial library, a model could be trained to predict a diverse set of higher-fitness 

variants; these variants could then be experimentally evaluated and used to train models in a 

round of ftMLDE. Indeed, a strategy like this was taken by Romero et al. when evolving for 

improved P450 thermostability, where a classifier trained on data from one round of 

evolution was used to build a training dataset enriched in functional protein variants for the 

next round of evolution.78 While this active learning approach has proven successful, it adds 

an additional round of data collection to the workflow, which is undesirable. I thus chose to 

investigate zero-shot prediction strategies for training set design.  

I define zero-shot prediction strategies as those capable of predicting protein fitness without 

the need for further labeled training data collection, and thus they do not affect the overall 

screening burden of ftMLDE. A number of zero-shot strategies exist for protein functional 

prediction, ranging from scoring protein variants based on evolutionary sequence 

conservation,68,70,144 to generative modeling,57,68,145 and physics-based computational 

modeling (e.g., prediction of ΔΔG upon mutation),146–150 to name a few. The remainder of 

this chapter is devoted to evaluating the effectiveness of different zero-shot strategies for 

designing training data for ftMLDE. Over the next two sections, I evaluate zero-shot 

strategies from each of the aforementioned overarching zero-shot classes for their ability to 

predict GB1 fitness. In the final section, I use the successful zero-shot predictors to 

demonstrate a practical application of ftMLDE to the GB1 landscape. I find that ftMLDE is 

superior to both standard MLDE and traditional DE, with the best ftMLDE condition 

achieving the global maximum in 99.70% of simulated experiments compared to 8.85% for 

the best standard MLDE condition and 1.23% for simulated traditional DE.  
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2.2.6 Leveraging Sequence Data for the Design of Fitness-Enriched Training Data 

Over billions of years, natural evolution has tested countless protein sequences, discarding 

those that were detrimental to a host organism and propagating those that were beneficial. 

The list of extant protein sequences represents those that survived the filters of evolution and 

so implicitly contains information about the evolutionary and biophysical rules that enable 

production of a useful protein. Driven by a combination of increased computational power 

and greater availability of sequence data, recent years have seen renewed effort to extract 

this implicit fitness information contained in sequences and use it to reduce or eliminate the 

amount of experimentally acquired sequence-fitness data needed for reliable prediction of 

protein fitness. All of these strategies assume that a given list of functional protein sequences 

is representative of a distribution of allowed protein sequences and that by learning this 

distribution the fitness of a new protein sequence can be inferred. Specifically, a new 

sequence highly likely to belong to the learned distribution is predicted to have high fitness 

and vice versa.22,68,70 The simplest example of a sequence-based zero-shot strategy, for 

instance, is use of BLOSUM matrices, which score the likelihood of a given amino-acid 

substitution based on observed substitution frequencies in conserved protein families.151 Far 

richer strategies than BLOSUM matrices have been developed, however, and in this section, 

I test the ability of a number of them for zero-shot prediction of GB1 fitness.  

Strategies for sequence-based zero-shot prediction can be broadly classified as relying on 

local or global sequence information. Local strategies attempt to learn the distribution of 

allowed sequences from those related to a target. These strategies first search sequence 

databases to build an MSA against the target, then use that MSA to learn a representation of 

the underlying sequence distribution defining allowed local protein sequences. Global 

strategies, in contrast, attempt to learn the distribution of allowed sequences from large 

databases of unrelated protein sequences. The language models trained to build embeddings 

of protein sequences are examples of global strategies. Indeed, a proposed and assumed 

rationale for the benefit of embeddings derived from natural language processing models is 

that the embedding vectors learned during training should capture the global rules of what 

defines a functional protein.  
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I first tested the local sequence-based zero-shot predictors EVmutation and 

DeepSequence.68,70 Among other requirements, the authors of these tools recommend 

training using an MSA with ≥10L (where “L” is the length of the target protein) redundancy-

reduced sequences (essentially, a measure of the effective number of sequences given the 

diversity of those in the MSA—less diverse MSAs have a lower number of redundancy-

reduced sequences) that cover the positions at which the effects of mutations are to be 

predicted; at least 560 redundancy-reduced sequences are thus the target for 56-amino acid-

long GB1. There are, unfortunately, few recorded sequences that are homologous to GB1, 

and I could at best produce an MSA with 56 redundancy-reduced sequences that covered all 

four positions of interest in the GB1 combinatorial landscape (A.2.1: Alignment Generation 

and EVmutation Model Training). Despite this relatively uninformative MSA, however, 

EVmutation still performed reasonably well as a zero-shot predictor, achieving a Spearman 

rank correlation coefficient (Spearman ρ) of 0.21 (Figure 2-4, Table A-6). DeepSequence, in 

contrast, was less effective, achieving Spearman ρ = 0.05 (Table A-6, A.2.3.1: 

EVmutation/DeepSequence Calculations). These results align with an observation in the 

original DeepSequence publication, where DeepSequence was shown to be more susceptible 

to failure than EVmutation when trained on low-quality MSAs.68 This is not to say that the 

predictions of EVmutation were unaffected by the low-diversity GB1 MSA. The low 

information content of the MSA made it impossible for EVmutation to assign unique 

probabilities of fitness to all GB1 combinations, resulting in the coarse ranking pattern shown 

in Figure 2-4.  

For global sequence-based zero-shot predictors, I tested a mask filling protocol for each of 

the models made available in the ESM GitHub repository as well as the ProtBert and 

ProtBert-BFD models from the ProtTrans GitHub repository.55,56,61 All of these models were 

trained using a protocol known as “masked token prediction.”128 When training using this 

protocol, a model is fed a sequence with the identities of amino acids at a fraction of its 

positions obscured (“masked”). Given the context of the unobscured (“unmasked”) amino 

acids, the objective of the model is to then predict the correct original identities of the masked 

amino acids by modeling the probability 𝑃 𝑠𝑚𝑎𝑠𝑘𝑒𝑑|𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 , where 𝑠 is a sequence of 
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amino acids. By repeating this procedure over millions (or billions, in the case of ProtBert-

BFD) of sequences, the model learns a global sense of the distribution of allowed proteins: 

in particular, it learns the probability that a given combination of amino acids will occur in 

the context of a given sequence background. Using a trained model, masked token prediction 

can be co-opted for zero-shot prediction using a “mask filling protocol.” Specifically, given 

a sequence with positions of interest masked, the model can be used to predict 

𝑃 𝑠𝑚𝑎𝑠𝑘𝑒𝑑|𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑  for all possible combinations of mutations at the masked positions. 

Combinations of mutations with higher probability are then assumed to have higher fitness 

as they more accurately represent the learned distribution of allowed amino acid 

combinations.  

The models in the ESM repository, in combination with ProtBert and ProtBert-BFD, are a 

variety of different sizes and were trained on varying numbers of sequences, allowing me to 

test the effect of model capacity on the mask filling protocol for GB1. Additionally, the ESM 

repository contains the MSA Transformer which, uniquely, was trained using MSAs 

produced for each sequence in the UniRef50 database, making it somewhat of a hybrid 

between a local and global sequence model.42,61 I included the MSA Transformer in the mask 

filling zero-shot predictions to see if the global information captured during training could 

make up for the limited information provided by the small GB1 MSA used for EVmutation 

and DeepSequence predictions.  

For zero-shot prediction with a mask filling protocol, I calculated 𝑃 𝑠𝑚𝑎𝑠𝑘𝑒𝑑|𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑  for 

every combination in the GB1 landscape using either naïve or conditional probability 

(A.2.3.2: Mask Filling Protocol). Note that, for all non-MSA Transformer methods, the 

parent GB1 sequence was used to define 𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑, while for the MSA Transformer, the 

MSA used for EVmutation (with slight additional processing, see Section A.2.3.2 for details) 

was used to define 𝑠𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑. The MSA Transformer thus had access to additional local 

evolutionary information when making mask-filling predictions. The results using both naïve 

and conditional probability protocols for all tested models are provided in Table A-7; the 

results using naïve probability with the MSA Transformer are also depicted in Figure 2-4. In 
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all cases, I found that predictions made using naïve probability to be slightly superior to 

predictions made using conditional probability. The naïve probability prediction procedure 

more closely mimics the masked token prediction procedure used to train the ESM and 

ProtBert models, providing a potential explanation for its slight superiority over the 

conditional prediction procedure, though a conclusive reason for this observation is not 

immediately clear.  

Differences in effectiveness between the naïve and conditional probability predictions 

notwithstanding, for all models except the MSA Transformer, mask filling was an ineffective 

zero-shot prediction strategy. Indeed, the predictions from most models gave a negative 

correlation (Spearman ρ) with GB1 fitness, indicating a prediction that is worse than a 

random guess. Additionally, and perhaps contrary to expectations, smaller models trained on 

the same data with the same training procedure tended to outperform larger ones. 

Specifically, predictions using esm1_t6_43M_UR50S (43 million parameters) outperformed 

those using esm1_t12_85M_UR50S (85 million parameters) which in turn outcompeted 

those using esm1_t34_670M_UR50S (670 million parameters). Correlations between the 

amount of training data and zero-shot prediction performance are less apparent. For instance, 

even though zero-shot predictions using esm1_t34_670M_UR100 (trained on UniRef100) 

outcompeted those using esm1_t34_670M_UR50 (trained on UniRef50, and otherwise 

equivalent to esm1_t34_670M_UR100), predictions using ProtBert-BFD (trained on BFD) 

were more or less as effective as those using ProtBert (trained on UniRef100, and otherwise 

equivalent to ProtBert-BFD).  

The exception to the general failure of mask filling as a zero-shot predictor was those 

predictions generated by the MSA Transformer (Figure 2-4), which achieved a Spearman ρ 

of 0.24 with naïve probability (0.20 with conditional). Even though this Spearman ρ is 

comparable to that achieved using EVmutation, it is notable that the many ties observed in 

the EVmutation predictions are not present in the mask filling zero-shot predictions from the 

MSA Transformer, presumably due to the global information captured by the MSA 

Transformer during training. A mask filling protocol using the MSA Transformer could thus 
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be an attractive zero-shot alternative to EVmutation for proteins for which deep, high-quality 

MSAs cannot be produced. It must, of course, also be asked whether the underrepresentation 

of GB1 homologs in sequence databases leads to the failure of mask filling zero-shot 

prediction by non-MSA Transformer models. Answering this question is impossible using 

just the GB1 landscape alone, however, and would require access to other combinatorial 

landscapes built in proteins with varying degrees of representation in the sequence databases 

used to train the ESM and ProtBert models. 

2.2.7 Predicted ΔΔG of Stabilization for the Design of Fitness-Enriched Training Data 

Just because a sequence motif is not represented in a sequence database does not necessarily 

mean that it would be detrimental to a protein’s function. It is possible, for example, that a 

natural function that would benefit from such a motif does not exist, that evolution has not 

yet explored such a region of sequence space, or simply that humans have not yet sequenced 

a representative protein. The underlying assumption of sequence-based zero-shot strategies 

that evolutionarily optimized fitness correlates to a target fitness may thus not always hold. 

In such cases, using a zero-shot strategy such as predicted ΔΔG of stabilization upon 

mutation may be beneficial.146–150 This approach attempts to calculate the effect of a mutation 

on protein stability from first principles. Based in physics, it is thus not subject to the 

assumption that the target fitness correlates with the fitness of existing proteins, but instead 

that protein stability plays a role in fitness.  

The fitness of GB1 is considered to be, at least in part, a function of stability, suggesting that 

approaches like predicted ΔΔG of protein stability upon mutation might be an effective zero-

shot predictor.123,152 Indeed, I found a correlation between single-mutant fitness data and 

literature GB1 ΔΔG data (|Spearman ρ| = 0.58, Figure A-2A).153 Wu et al. also previously 

presented evidence suggesting that predicted ΔΔG could be correlated to GB1 fitness.123 

To test the effectiveness of ΔΔG predictions as a zero-shot predictor for GB1 fitness, I used 

the Triad protein design software suite (Protabit, Pasadena, CA, USA: 

https://triad.protabit.com/) with a Rosetta energy function to predict the stability of each of 

the 149,361 GB1 variants with measured fitness, then calculated a predicted ΔΔG of 
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stabilization for each variant relative to the parent amino acid sequence (A.2.3.3: ΔΔG 

Calculations). Both fixed backbone and flexible backbone calculations were performed using 

a previously determined GB1 crystal structure (PDB: 2GI9) as a scaffold.154 The predicted 

ΔΔGs from each calculation correlated with literature values of experimentally determined 

ΔΔG values for the single mutants, though the fixed backbone calculations were more 

effective (Spearman ρ = 0.61 for fixed backbone, Spearman ρ = 0.42 for flexible backbone, 

Figure A-2B–C). Despite both approaches having predictive power for single mutant ΔΔG, 

only the fixed backbone calculations were effective at identifying GB1 variants enriched in 

fitness when ranking by predicted ΔΔG (Spearman ρ = 0.27, Figure 2-4, Table A-6, Figure 

A-3). If instead, however, the GB1 variants were ranked by root mean squared deviation 

(RMSD) of variant structures produced during flexible backbone calculations, those variants 

with the lowest RMSD tended to be enriched in fitness, though not as strongly as in the fixed 

backbone calculations (Spearman ρ = 0.06, Table A-6, Figure A-4).  

Structurally conservative mutations are generally less likely to disrupt protein function, and 

so the observation that RMSD can be used for zero-shot prediction is not entirely surprising. 

Because fixed backbone calculations will tend to heavily penalize mutations that would 

require large backbone movements to stabilize, an interesting question arises over the extent 

to which structural conservation or accurate prediction of ΔΔG allows effective fixed 

backbone zero-shot prediction of fitness in GB1. If structural conservation dominates, it is 

possible that Triad could be used for zero-shot prediction with other combinatorial libraries 

in proteins where variant fitness is not related to stability, particularly when the mutated 

residues in question are tightly packed together and/or buried in the protein core as they are 

for the GB1 landscape used in this study (Figure A-5). Answering this question and 

evaluating the generalizability of fixed backbone Triad calculations is beyond the scope of 

this work, but as more fully combinatorial datasets become available this question should be 

investigated further. 
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Figure 2-4. Zero-shot prediction for the design of fitness-enriched training data. All figures 

plot the predicted rank of GB1 variants (where the variants predicted to be most fit have 

lower rank and vice versa) against either fitness (A–C) or an alternate summary metric (D–

E). In A–C, dots are all individual variants while the black line is the sliding median (window 

size = 1000) of fitness. (A) Results of zero-shot prediction using EVmutation. (B) Results of 

zero-shot prediction using a mask filling protocol with the MSA Transformer. (C) Results of 

zero-shot prediction using predicted ΔΔG from Triad with a fixed protein backbone. (D) The 

fraction of all fit variants in the GB1 landscape captured up to and including a given rank. A 

“fit” variant is defined as one with fitness greater than 0.011 (which was the lowest threshold 

tested for the simulations performed with training data designed to be higher in fitness—see 

Figure 2-3). (E) The cumulative fraction of fit variants captured up to and including a given 

rank. See also Table A-6 and Table A-7 and Figure A-2 – Figure A-5. 
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2.2.8 Zero-Shot Predictions for Training Set Design Enable Highly Effective ftMLDE 

on the GB1 Landscape 

As a final demonstration, I evaluated the performance of ftMLDE using GB1 training data 

predicted to be higher in fitness by the three successful zero-shot prediction strategies: 

EVmutation, mask filling using the MSA Transformer, and Triad ΔΔG calculations. To 

begin, I generated training data by randomly sampling 2000 training sets of 24, 48, and 384 

variants from the top 1600 (1.1%), 3200 (2.1%), 6400 (4.3%), 9600 (6.4%), 12,800 (8.6%), 

16,000 (10.7%), and 32,000 (21.4%) variants as ranked by each zero-shot predictor; 

completely random training data (i.e., from the full landscape) were also drawn at each 

sample size so that standard MLDE could be performed as a control. These splits resulted in 

66 total “training data types” to test (three random MLDE training data types plus 21 zero-

shot ftMLDE training data types for each of three zero-shot predictors), each made up of 

2000 training sets. Predictive algorithms (zero-shot predictors included) will tend to predict 

that similar sequences have similar fitness, so sampling from different percentiles of the top 

predictions explores the exploration-exploitation tradeoff of using zero-shot predictions for 

training set design. In other words, sampling from a larger top percentile of the ranked 

variants allows greater sequence diversity in the training data (thus potentially enabling 

exploration of more fitness peaks as depicted in Figure 2-3B) at the expense of confidence 

that the variants will have non-zero fitness (Figure A-6). While I previously used training 

sample sizes of 24 and 48 to test the effectiveness of different encodings in the low-N setting, 

here I included them to enable comparison of ftMLDE (and standard MLDE) with the most 

efficient implementation of traditional DE. As discussed previously in the encoding 

comparison section, traditional DE can in principle be performed on a four-site library by 

deterministically evaluating all 20 amino acids at each position, requiring only 80 

measurements for the GB1 landscape. Again, due to the cost of synthesizing variants 

individually, this approach is rarely taken. However, use of 24- and 48-variant training sets 

(with 56 and 32 tested predictions, respectively) allows for direct comparison of the 

algorithms of ftMLDE and this most efficient implementation of traditional DE. 
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For each of the 66 training data types, simulated MLDE was performed using each training 

set with variants encoded using either one-hot, Georgiev parameters, or learned embeddings 

from the MSA Transformer (which was the most effective of the learned embeddings tested 

earlier) (A.2.4.3 Zero-Shot Simulations). In total, testing all encodings with all training data 

types amounted to 198 “training conditions” (66 training data types  3 encodings/type) and 

396,000 simulated MLDE experiments (198 training conditions  2000 

simulations/condition = 396,000 simulated MLDE experiments). As before, cross-validation 

indices and random seeds were kept the same between simulations using different encodings 

but the same training data. For each simulation, after prediction, only the top-predicted 

unsampled combinations that could be constructed by recombining combinations in the 

training data were evaluated (e.g., if “AAAA” and “CCCC” were the only training examples, 

then only “AAAC,” “AACC,” “CAAA,” etc., could be in the top M proteins chosen for 

fitness evaluation). This approach enforced a confidence threshold on the predictions and 

focused all resources on regions believed to contain the highest-fitness protein variants.  

The distributions of the achieved max and mean fitnesses for all simulations with a training 

sample size of 384 are shown in Figure 2-5 and Figure 2-6, respectively. Distributions of the 

achieved max and mean fitnesses for simulations with smaller training sample sizes of 24 

and 48 are shown in Figure A-7 – Figure A-10 and summary statistics for all simulations are 

provided in Data S3. Both MLDE and ftMLDE using 384 training samples outperformed 

traditional DE regardless of encoding and zero-shot strategy, with the most effective set of 

simulations (ftMLDE run using training data sampled from the top-3200 Triad predictions 

and the MSA Transformer for encoding) achieving the global maximum in 99.70% of 

simulations. By comparison, simulated traditional DE on the GB1 landscape reached the 

global optimum just 1.23% of the time (A.2.4.4: Traditional Directed Evolution 

Simulations). At lower screening burdens, both MLDE and ftMLDE remained competitive 

with traditional DE (in terms of mean- and median- maximum fitness achieved over all 

simulations), though only ftMLDE simulations ever achieved the global optimum more 

frequently than traditional DE. Specifically, ftMLDE simulations using 24 training samples 

achieved the GB1 global optimum more frequently than traditional DE in 40 out of 63 
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ftMLDE training conditions; ftMLDE simulations using 48 training samples achieved the 

GB1 global optimum more frequently than traditional DE in 57 out of 63 training conditions 

tested. Almost all training conditions where ftMLDE did not outcompete traditional DE in 

the low-sample setting used mask filling with the MSA Transformer as the zero-shot 

predictor, with 0 out of 21 such conditions outcompeting traditional DE at a training sample 

size of 24 and 15 out of 21 at a training sample size of 48. It is also notable that training on 

48 samples and testing 32 tended to be a more effective strategy than training on 24 samples 

and testing 56, as this result indicates that, at least for GB1, devoting screening resources to 

the training stage of the MLDE workflow may be more important than the testing phase. 

Indeed, the most effective set of ftMLDE simulations at low screening burden was with 48 

training samples (from the top-3200 Triad predictions and encoded using Georgiev 

parameters), where the global maximum was achieved 9.95% of the time. 

Aside from comparisons to traditional DE, the results of the simulations allow direct 

comparison of ftMLDE and MLDE and show that ftMLDE is generally a more effective 

strategy for navigating the GB1 landscape than MLDE. The optimal MLDE strategy, for 

instance, achieved the global optimum just 8.85% of the time compared to the 99.70% of the 

optimal ftMLDE strategy. Additionally, in almost all training conditions tested, ftMLDE 

tended to achieve higher mean and max fitness than the comparable MLDE control. There 

are some exceptions, however, that suggest that the combination of training set diversity, 

zero-shot strategy, and encoding have an effect on the outcome of ftMLDE. For instance, all 

ftMLDE training conditions tended to achieve a higher max fitness than the relevant MLDE 

control except those using 384 training points derived from the top-1600 Triad samples and 

encoding with one-hot or Georgiev parameters. Similarly, ftMLDE tended to achieve a 

higher mean fitness than the relevant MLDE control in all training conditions tested except 

for a number using learned embeddings from the MSA Transformer for encoding with 384 

training points derived from sequence-based zero-shot predictors (EVmutation and mask 

filling using the MSA Transformer).  
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The reasons for the observed exceptions to ftMLDE’s general superiority over MLDE are 

not immediately clear, though it is interesting to note that (1) the only training condition run 

using 384 training points from the top-1600 Triad samples that achieved higher max fitness 

than MLDE was the one using MSA Transformer encodings and (2) the training conditions 

where ftMLDE achieved a lower mean fitness than MLDE were those trained using data 

encoded with the MSA Transformer that was derived from sequence-based zero-shot 

predictors. During training, the embeddings of the MSA Transformer were developed to be 

able to predict the identity of masked amino acids (See a discussion of the masked-token 

training procedure above in Section 2.2.6: Leveraging Sequence Data for the Design of 

Fitness-Enriched Training Data).61 The embeddings themselves thus contain information 

about what mutations are and are not likely in a given reference protein based on available 

sequence data. Indeed, if they did not, I would be unable to successfully make zero-shot 

predictions using a mask filling protocol with the MSA Transformer model. It is interesting 

to ask, then, if models trained on data derived from zero-shot predictions made by Triad and 

encoded using MSA Transformer embeddings have access to two sets of prior information 

(one derived from the data via physics-based Triad calculations and another from sequence-

conservation captured in the MSA Transformer embeddings), thus making them more 

effective than models trained with encodings that do not capture fitness information from 

sequence. Similarly, it could be asked if models trained on data derived from sequence-based 

zero-shot predictors and encoded by the MSA Transformer become overly restricted by a 

“double-dose” of sequence-based prior information. Such effects could explain both 

observations at the beginning of this paragraph, and, indeed, why the combination of Triad-

derived data and the MSA Transformer was the most effective ftMLDE strategy tested. This 

is, of course, conjecture, and the only clear conclusion that can be derived from these results 

is that there is an interplay between training data makeup and encoding strategy in 

determining ftMLDE outcome.  
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Figure 2-5. Zero-shot prediction for training set design enables highly effective ftMLDE on 

the GB1 landscape, as measured by maximum fitness achieved in simulated experiments. 

Each subplot (A–C) shows the effect of different zero-shot predictors on the maximum 

fitness achieved in simulated ftMLDE experiments. Each violin (except for the grey ones 

corresponding to simulated traditional DE) represents data from 2000 simulated experiments 

where 384 variants were used for training and the top 96 predictions were tested. The major 

groupings of violins within each subplot correspond to different encoding strategies (one-

hot, Georgiev parameters, or learned embeddings from the MSA Transformer). The color of 

each violin corresponds to the zero-shot sampling threshold (i.e., the number of best-ranked 

variants according to a zero-shot predictor from which random samples were drawn to 

generate training data). Results of ftMLDE are compared to the results of simulated 

traditional DE (at the left of each plot, in grey) and standard MLDE (the three pink violins 

in each plot). (A) The maximum fitness achieved by simulated ftMLDE when EVmutation 

was used as the zero-shot predictor for training set design. (B) The maximum fitness 

achieved by simulated ftMLDE when a mask filling protocol using the MSA Transformer 

was used as the zero-shot predictor for training set design. (C) The maximum fitness 

achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-shot predictor for 

training set design. See also, Figure A-6 – Figure A-8 and Data S3. 
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Figure 2-6. Zero-shot prediction for training set design enables highly effective ftMLDE on 

the GB1 landscape, as measured by mean fitness achieved in simulated experiments. Each 

subplot (A–C) shows the effect of different zero-shot predictors on the mean fitness achieved 

in simulated ftMLDE experiments. Each violin represents data from 2000 simulated 

experiments where 384 variants were used for training and the top 96 predictions were tested. 

The major groupings of violins within each subplot correspond to different encoding 

strategies (one-hot, Georgiev parameters, or learned embeddings from the MSA 

Transformer). The color of each violin corresponds to the zero-shot sampling threshold (i.e., 

the number of best-ranked variants according to a zero-shot predictor from which random 

samples were drawn to generate training data). Results of ftMLDE are compared to the 

results of standard MLDE (the three pink violins in each plot). (A) The mean fitness achieved 

by simulated ftMLDE when EVmutation was used as the zero-shot predictor for training set 

design. (B) The mean fitness achieved by simulated ftMLDE when a mask filling protocol 

using the MSA Transformer was used as the zero-shot predictor for training set design. (C) 

The mean fitness achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-

shot predictor for training set design. See also, Figure A-6, Figure A-9, and Figure A-10 and 

Data S3. 
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2.2.9 MLDE Software Enables Wet-Lab Application 

To facilitate further development of ftMLDE, as well as to allow for its practical wet-lab 

application, I developed the MLDE software package, available on the Arnold Lab GitHub 

(https://github.com/fhalab/MLDE). This repository contains Python scripts for (1) 

performing zero-shot calculations using EVmutation, DeepSequence, and mask filling using 

all models from ESM, ProtBert, and ProtBert-BFD; (2) generating encodings for any 

combinatorial library using one-hot, Georgiev parameters, embeddings from any model in 

ESM (including those not used for encoding in this work), and embeddings from ProtBert 

and ProtBert-BFD; and (3) performing ftMLDE as described in this work using any encoding 

strategy (made available by the MLDE repository or otherwise). The software package was 

designed for use by non-computational and non-ML experts and can be executed with a 

simple command line call—all that is required for execution is a fasta file (or an .a2m/.a3m 

file for procedures using MSAs) with the parent protein sequence and a csv file of 

combination-fitness data for training. 

2.3 Discussion for Chapter 2 

I have demonstrated improvements to MLDE that, all together, can make it more efficient 

than the lowest-possible-screening-burden form of DE for navigating an epistatic, hole-filled, 

combinatorial protein fitness landscape. While incorporation of more informative encodings 

and models/regression strategies more amenable to combinatorial protein fitness landscapes 

was shown to improve MLDE outcome somewhat, by far the greatest improvement came 

from training set design. Specifically, I showed that a focused training MLDE (ftMLDE) 

strategy that uses some type of predictor to avoid minimally informative extremely-low-

fitness variants in the training data is typically more capable than standard MLDE at 

identifying the most-fit variants in a combinatorial landscape. From simulated experiments, 

I noted that the predictor used for training set design in ftMLDE does not need to be capable 

of identifying particularly high-fitness variants—in tests run using training data purposefully 

enriched in fitness, eliminating holes had a larger effect on outcome than subsequently 

raising training data mean fitness. The ability of the predictor to identify diverse sequences, 

however, is important for improving the probability of identifying the global maximum of a 
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combinatorial landscape. This concept was best highlighted when using predicted ΔΔG of 

protein stability as a zero-shot strategy for building training sets, where a balance between 

sequence diversity and sequence fitness in the training data proved important for maximizing 

ftMLDE effectiveness (Figure 2-5C, Figure 2-6C, Figure A-6). It is also worth noting that 

there appears to be an interplay between zero-shot and encoding strategies used and ftMLDE 

effectiveness, with some combinations of zero-shot predictor and encoding strategy 

underperforming an MLDE control. 

There is, of course, no guarantee that the zero-shot strategies found to be successful for GB1 

would be effective for other proteins or other functions. The use of a sequence-based zero-

shot strategy, for instance, assumes that the target fitness is well represented by evolutionarily 

optimized fitness, which will not be the case for all protein engineering problems. Likewise, 

use of a strategy like predicted ΔΔG assumes that stability (or, potentially, structural 

conservation) plays a role in fitness determination. In general, the optimal training set design 

strategy will depend on the protein,155 and while I have mainly discussed unsupervised zero-

shot strategies (i.e., those working off protein sequence or structural data alone) in this 

chapter, alternate strategies can be imagined. For instance, if a protein scaffold has been used 

in previous protein engineering studies, a crude non-computational approach would be to 

avoid mutations that previously destroyed protein function. More robustly, a transfer learning 

approach could be taken, where an ML model trained using information from related 

experiments (e.g., evolution of the same protein for a different task, evolution of a different 

protein for the same task, or even data from previous rounds of MLDE at different positions) 

is used to predict the effects of mutations in the present experiment.156 Perhaps even more 

effectively, fitness information from single-site saturation mutagenesis or error-prone PCR 

random mutagenesis libraries could be used to predict the fitness of combinations. Indeed, 

Biswas et al., Hie et al., and Hsu et al. each recently demonstrated approaches where ML 

models trained on single-site or random mutation data were capable of predicting the fitness 

of combinations of those mutations.63,64,79 The use of Gaussian processes in the application 

of Hie et al. is particularly interesting, as it enables use of the upper confidence bound 
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algorithm to explicitly balance exploration and exploitation, thus providing a more principled 

way to inject sequence diversity into training set design while maintaining high fitness.79,157  

Whatever training set design approach is taken, I would expect its impact on the outcome of 

ftMLDE to be specific to the shape and makeup of the fitness landscape. For instance, on a 

non-epistatic landscape, minimalistic traditional DE will deterministically reach the global 

(and only) fitness maximum; in this case, ftMLDE could at best perform as well as traditional 

DE regardless of the training set design strategy used (though it may still be able to do so 

with a lower screening burden). Similarly, as the number of holes in a landscape increases, 

the probability of a random draw returning primarily uninformative zero-fitness variants 

increases, and so implementation of an effective training set design strategy will have a 

greater impact. Thus, the effectiveness of ftMLDE will vary as a function of the shape of the 

landscape, the number of holes in the landscape, and the availability of robust training set 

design strategies. It cannot be expected that ftMLDE will always outcompete traditional DE. 

Thorough evaluation of the effectiveness of ftMLDE will only be possible once more 

combinatorial landscape data beyond that provided by the GB1 landscape become available, 

and since completing this project I have taken part in an effort to build many more of them. 

Until ftMLDE is tested with those landscapes, however, for now it can be concluded that 

ftMLDE can be used on combinatorial landscapes known to be highly epistatic and that either 

contain few holes or else for which confident training set design strategies can be employed. 

The strategies, concepts, and technology presented in this chapter will serve as a foundation 

for further evaluation of the generalizability of different encodings, model architectures, 

regression strategies, and training set design strategies for ftMLDE on combinatorial fitness 

landscapes. By achieving the GB1 global maximum up to 99.70% of the time with a total 

screening burden of 480 protein variants, or up to 9.95% of the time with a screening burden 

of just 80 variants, the ftMLDE protocol presented here outcompeted both traditional DE—

which achieved the global optimum just 1.23% of the time—and the original MLDE 

implementation—which achieved the global optimum 8.17% of the time with a screening 

burden of 570 variants.82 This work thus presents a large advance and is, to the best of my 
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knowledge, the first proven example of a machine learning approach directly outcompeting 

minimalistic DE. Given the degree to which ftMLDE outcompetes traditional DE on the GB1 

landscape, I hope for many more examples to come.   
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C h a p t e r  3  

 AN EXPLORATION OF SEMI-SUPERVISED MACHINE LEARNING-

ASSISTED PROTEIN ENGINEERING STRATEGIES WITH SPICE 

Material from this chapter appears in Wittmann, B. J.; Johnston, K. E.; Wu, Z.; and Arnold, 

F. H. (2021) Advances in Machine Learning for Directed Evolution. Curr. Opin. Struct. Biol. 

69, 11–18. https://doi.org/10.1016/j.sbi.2021.01.008. 

Abstract 

Recent efforts in machine learning-assisted protein engineering (MLPE) have focused on 

developing strategies that can augment small labeled datasets with information extracted 

from large unlabeled ones, a strategy generally known as “semi-supervised learning.” So far, 

semi-supervised strategies have seen mixed effectiveness when used for protein fitness 

prediction. In this chapter, I hypothesize that this limited effectiveness results from the failure 

of current strategies to represent information extracted from unlabeled data in a useful way. 

This hypothesis is then tested in an exploratory study of semi-supervised MLPE using a 

model that I designed to represent information extracted from unlabeled protein data in a way 

that should be explicitly informative for downstream learning. Through extensive evaluation 

using a number of benchmarking tasks, this model, which I call “SPICE” (“Summarizing 

Proteins using Informed-by-Contact Embeddings”), was found to perform comparably to 

existing models in a semi-supervised setting. While this conclusion was disappointing, the 

experiments performed to arrive at it were not for naught, as they strikingly confirmed the 

limited effectiveness of existing semi-supervised strategies for protein fitness prediction. 

Specifically, they showed that existing strategies tend to yield comparable if not worse results 

than fully supervised approaches. Further, barring a single exception when using SPICE, the 

effectiveness of semi-supervised strategies appeared to be only marginally correlated with 

the amount of unlabeled data employed, indicating that information contained in those data 

is not being used effectively. Overall, the work presented in this chapter demonstrates there 

is still much to be learned about how to most effectively perform semi-supervised MLPE.   
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3.1 Background and Motivation for Chapter 3 

Protein engineering has historically been dominated by two philosophies: “rational design,” 

which attempts to predict the most beneficial mutations using a computer model based in 

physical and chemical principles,158 and “directed evolution,” which proceeds through 

rounds of mutagenesis and screening of protein variants in a manner akin to artificial and 

natural selection.9,28 Recent years have seen the rise of a third approach to protein 

engineering—machine learning-assisted protein engineering (MLPE)—that attempts to 

combine the strengths of both directed evolution and rational design.16,17,22,24 Just like rational 

design approaches, the goal of MLPE is to build a predictive model of protein fitness; unlike 

rational design, however, the models are not built from physical and chemical principles but 

instead from patterns found in training data. The use of these “black box” predictive models 

gives MLPE the generalizability of directed evolution while reducing the need for extensive 

laboratory characterization of protein variants because, just like with rational design, the 

models can be used to identify the best variants in silico. 

As with all machine learning (ML) applications, the more high-quality data used to train 

MLPE models, the more effective those models will be in downstream tasks. The most 

effective MLPE models will be trained using labeled protein data (i.e., data consisting of 

protein sequences paired to some measurement of protein fitness);63,67,68,70 however, as 

discussed throughout this thesis, these data are often prohibitively expensive to collect in 

large quantity. In contrast, drastic reductions in sequencing costs have led to a deluge of 

unlabeled sequence data, and hundreds of millions to billions of protein sequences are now 

stored in online databases.15,39–42 As a result, recent research efforts have shifted to 

developing strategies that can augment small labeled datasets with information extracted 

from large unlabeled datasets, a strategy generally known as “semi-supervised 

learning.”22,37,38,46,130  

When used in MLPE, semi-supervised learning consists of an unsupervised learning phase 

where models are trained on unlabeled data followed by a supervised learning phase where 

models are trained on labeled protein-fitness data. At the highest level, the goal of supervised 
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learning is to learn a mapping between an input space (e.g., proteins) and an output space 

(e.g., protein fitness). If the relationship between those two spaces is simple, then this 

mapping can be easily learned using a simple model (a model with few learnable parameters) 

and a small amount of data; however, more complex relationships require more complex 

models and more data. Before a protein can be passed into a supervised ML algorithm, it 

must first be numerically encoded, and the encoding scheme chosen defines the structure of 

the input space. By extension, then, a protein encoding scheme with a simple relationship to 

protein fitness can reduce the data requirements of supervised MLPE. Indeed, the goal of the 

unsupervised stage of the semi-supervised pipeline is to learn a numerical representation of 

protein sequences from unlabeled data that has a simple relationship to protein fitness, thus 

reducing the need for labeled data in the subsequent supervised stage.  

The unsupervised stage of semi-supervised learning—which is also commonly referred to as 

“unsupervised pretraining” because it occurs before the supervised stage—works on the 

assumption that all sequenced proteins follow some set of biophysical and evolutionary rules 

that allow those proteins to be produced and carry out a biological function.22,37,38 The goal 

of unsupervised pretraining is to train models to learn the sequence constraints that result 

from these rules, then represent them in a continuous vector encodings known as “learned 

embeddings.” These learned protein embeddings are assumed to define the relationships 

between proteins within the context of learned sequence constraints, passing valuable 

information about what defines a functional protein into the downstream supervised task and, 

in principle, constituting a highly informative protein encoding scheme.  

An early study using semi-supervised MLPE seemed to suggest that learned protein 

embeddings could be used to drastically reduce the amount of labeled data needed for 

effective supervised learning with protein sequence-fitness data.64 Follow-up work has since 

tempered the initial excitement, however, showing that the effectiveness of learned 

embeddings is highly context specific, with the use of even the simplest encoding strategies 

often providing comparable if not superior results.62,63,65 Indeed, in my own thesis work (see 



 

 

74 

Chapter 2) I have observed that use of learned embeddings will not always improve 

supervised learning performance.33 

Exactly why semi-supervised MLPE is more effective in some situations than others remains 

unclear. One possibility, however, is that the models used for the unsupervised learning phase 

(and the embeddings that they produce) do not capture or else do not clearly represent the 

information critical for predicting protein fitness. With some exceptions,159,160 most models 

and training procedures used for unsupervised pretraining are directly adapted from natural 

language processing (NLP) and have minimal to no biological 

inspiration.49,51,60,61,128,131,161,52–59 For instance, models based around the Bidirectional 

Encoder Representations from Transformers (BERT) architecture—which were originally 

designed for NLP tasks—have so far been the most popular and effective for the 

unsupervised pretraining stage of semi-supervised MLPE.51,55,57,58,61,128,131,161 These large 

models are described by millions (or billions) of parameters and operate by performing 

successive mathematical transformations to input data; when used in MLPE, they are trained 

to reconstruct corrupted protein sequences using either a “masked token prediction” or “next 

token prediction” strategy.47 In masked token prediction, the model is fed protein sequences 

with some percentage of amino acids obscured (“masked”); then, using the context of the 

unmasked amino acids, the model must predict the identities of the masked ones. Next-token 

prediction proceeds similarly, only here the model is fed the beginning (or the end) of a 

protein sequence and tasked with autoregressively predicting the subsequent amino acids. 

Protein embeddings produced from these models are typically derived from the last layer 

(the output of the last mathematical transformation) prior to the output layer (the layer that 

produces predictions of masked amino acids). Because this layer feeds into the output layer, 

it is assumed that embeddings derived from it must represent information about the rules 

dictating which amino acids are and are not allowed at given positions; after all, if that 

information were not present, then the model would be unable to accurately perform next 

token or masked token prediction. Thus, by using this layer for encoding, information 

regarding how well a given protein sequence obeys learned sequence constraints can be 

passed into a downstream task.  
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Notably, the embeddings derived from models trained with masked token and next token 

objectives are not designed to explicitly represent information relevant to protein fitness. 

These training objectives do not require the model to structure the learned embedding space 

such that it has a simple relationship to protein fitness, so even though the rules governing 

sequence constraints must be contained in these embeddings, they may not be easily 

recognizable to a simple supervised model trained on limited data (see Figure 3-1 for an 

example of an embedding space that explicitly represents determinants of protein fitness).  

 

Figure 3-1. A simple example of an explicitly informative embedding space for machine 

learning-assisted protein engineering. Such an embedding space would clearly distinguish 

proteins that will never be functional (i.e., due to being unstable) from those that have the 

potential to be functional. Ideally, such a space would also group proteins with similar fitness 

levels (the ability to perform a given task) near one another. An implicitly informative space 

may contain the same information as this explicitly informative space, but would be 

structured such that extracting that information would be more challenging—the geometric 

relationship between the embedding space and protein fitness would be more complex. 

This chapter is focused on testing whether unsupervised models trained to explicitly capture 

and represent information relevant to protein fitness will produce more effective learned 

embeddings than those produced by the current models trained to implicitly capture and 

represent that information. Specifically, in this chapter I detail a project I performed during 

an internship at Microsoft where I attempted to build an unsupervised model that produced 
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learned embeddings structured to represent known global determinants of protein fitness. In 

the next section, I detail the motivation and architecture of my biologically inspired language 

model, which I call “SPICE” (“Summarizing Proteins using Informed-by-Contact 

Embeddings”). Then, I present and discuss results from a number of benchmarking 

experiments using embeddings derived from it.  

3.2 An Overview of SPICE 

This section prevents a theoretical overview of SPICE, focusing in particular on the strategies 

and data used to encourage it to produce explicitly informative protein embeddings.  

3.2.1 Designing an Explicit Embedding Space with SPICE 

As discussed in the last section, BERT-style transformer models have, to date, been the most 

effective models for semi-supervised MLPE.51,55,57,58,61,128,131,161 When used to produce 

embeddings, these “protein-BERT” models will take a protein sequence as their input and 

output a matrix of amino acid embeddings. For a protein of length L, this means that a 

protein-BERT model will output a matrix of shape L × D, where “D” is the dimensionality 

of the embedding.h Most MLPE tasks are performed on the protein level, however, not the 

amino acid level, so this output matrix must be reduced to a vector before it is used in a 

downstream supervised task. The most common strategy for this reduction is “mean-

pooling,” where the mean of the output matrix is taken over the amino acid axis to produce 

a “global” embedding vector of length D. While simple and easy to apply, this strategy is 

completely biologically uninspired. For instance, we would expect that positions in an 

enzyme active site would be more relevant to representing the determinants of protein fitness 

as a whole, so it may be reasonable to give their associated embeddings more weight when 

pooling to the global vector.  

Recognizing the potential limitations of mean-pooling, alternate strategies have been 

developed that attempt to learn ideal operations for reducing the amino acid-level matrix to 

a protein-level representation, distinctly weighting the contributions of different features and 

 
h The dimensionality of the embedding corresponds to the number of learned features used to represent each amino acid. 
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amino acids when building the global vector. Unfortunately, however, almost all of these 

strategies are applied during the supervised learning stage of the semi-supervised 

workflow.58,162 Considering that the supervised stage of semi-supervised MLPE is often 

performed in the low-N setting (i.e., with limited labeled training data), this approach runs 

the risk of overfitting to the training set and losing generalizability in the downstream 

application. Indeed, Detlefsen et al. have shown that learning a global representation of 

protein sequences during the unsupervised pretraining stage of the semi-supervised 

workflow can be beneficial to downstream supervised learning.66  

Just like the strategy used by Detlefsen et al., the core concept of SPICE is to learn the global 

representation from unlabeled data during unsupervised pretraining. Unlike Detlefsen et al., 

however, who used a pooling strategy that was not biologically inspired,i the SPICE learning 

objective was designed to explicitly represent global determinants of protein fitness in its 

embedding space. A global determinant of protein fitness is a characteristic shared by all 

proteins, regardless of function, that can be used to predict whether a protein will be fit. 

Protein stability is among the most obvious and intuitive such global determinants, as 

proteins that are not stable will not be able to hold the 3D structure that grants a function. 

SPICE is trained such that the distance between two global protein embeddings should be 

correlated with the change in stability between the represented proteins (the ΔΔG of 

stabilization when mutating one to the other), aiming to construct an embedding space where 

unstable proteins are grouped together in one region of embedding space and stable ones are 

grouped in another. Such a layout provides an explicitly informative embedding space like 

that depicted in Figure 3-1 because proteins that are embedded in the “unstable” region can 

be easily assigned a fitness of “0.” All that a downstream supervised model must do is 

identify this unstable region from labeled training data, something that should be simple to 

accomplish with just a few training examples.  

 
i Specifically, the model used by Detlefsen et al. (2022) was trained to reconstruct the original protein sequence from a pooled 

representation, just like in an autoencoder. 
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3.2.2 Contact Disruption Upon Mutation as a Heuristic for ΔΔG of Stabilization 

As discussed in more detail in Section 3.2.3, the core component of the SPICE model is a 43 

million-parameter transformer encoder. A large amount of data is needed to effectively train 

models of this size, so training SPICE to directly represent protein stability in its embedding 

space would require many millions of datapoints capturing ΔΔG of stabilization between 

related protein pairs. Unfortunately, there is no such dataset of this size, and building one 

would be impractical, especially when considering that the goal of SPICE and other semi-

supervised learning strategies is to minimize the need for additional data collection in the 

first place.  

As a heuristic for ΔΔG of stabilization, SPICE instead uses “contact disruption upon 

mutation” (hereafter referred to as “contact disruption”), which is defined here as the number 

of contacts in a protein’s 3D structure that are broken upon mutation, where a “contact” is 

simply an interaction between two amino acids. For instance, if position 31 in a protein 

sequence contains an alanine and this alanine is in contact with positions 45 and 51 in the 3D 

structure, mutating that alanine to any other amino acid would break two contacts (contacts 

31–45 and 31–51). Importantly, all that is needed to calculate contact disruption is a protein 

structure and a list of candidate mutations; from here, it can be computationally derived by 

simply mapping the candidate mutations on to a structure and counting the number of 

contacts broken. As a result, unlike ΔΔG of stabilization, millions of contact disruptions can 

be computed in seconds, producing more than enough data for training SPICE. 

Generally speaking, the more contacts that are broken upon introduction of mutations to a 

protein (the higher the contact disruption), the more destabilizing we expect those mutations 

to be and the less likely the mutated protein is to share a structure with the original. Thus, if 

we train a model to embed proteins such that the distance between global embeddings 

encodes contact disruption, the distance between two embedding vectors will reflect both the 

change in stability between the two proteins they encode as well as how structurally similar 

they are. Because structure ultimately determines protein function, an embedding space that 

orders proteins by structural similarity should also encode local determinants of fitness. 
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Specifically, we would expect that proteins with a smaller contact disruption are more likely 

to show similar fitness levels and vice versa. In many ways, then, a contact disruption-based 

embedding space provides more information than a ΔΔG of stabilization-based embedding 

space by also encoding the degree of functional difference we might expect between two 

stable proteins. Just like in the example of an explicitly informative embedding space 

presented in Figure 3-1, using contact disruption as a heuristic for ΔΔG of stabilization allows 

for construction of an embedding space that captures both global and local determinants of 

protein fitness. 

3.2.3 The SPICE Architecture 

An overview of the SPICE architecture is given in Figure 3-2A. The core of the model is a 

transformer encoder derived from the evolutionary scale modeling (ESM) package.55 After 

the transformer core, a pooling layer based on the attention-weighted mean proposed by Rao 

et al. is used to generate global embeddings.58 Various projection layers map from the global 

embedding to calculate SPICE training losses, all of which are described in Section 3.2.5. It 

is these training losses that encourage SPICE to learn an explicitly informative embedding 

space.  

An alternate form of SPICE—variational SPICE—takes inspiration from variational 

autoencoders (VAEs) to encode global embeddings as multivariate normal distributions 

rather than defined vectors. This alternate model architecture allows for more 

probabilistically grounded comparisons of embedded proteins; it also allows an inherent 

sense of uncertainty to be encoded in the embedding space. Additional details on training 

variational SPICE and its applications are provided in later sections.  

3.2.4 SPICE Training Data and Calculation of Contact Disruption 

Two sources of data are used to train SPICE. The first is a set of ~49 million redundancy-

reduced protein sequences from the UniRef50 database that comprehensively covers the full 

space of known proteins.42 The second is the trRosetta dataset, which consists of ~30,000 

protein structures each paired to a multiple sequence alignment (MSA) of homologous 
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(evolutionarily related) sequences; the MSA paired to each structure was built using that 

structure’s associated sequence as the query sequence.163  

The trRosetta dataset is critical for building the explicit representation of contact disruption 

in the SPICE embedding space. As mentioned earlier, calculation of contact disruption 

requires both a template protein structure and a list of candidate mutant sequences. To build 

the contact disruption dataset needed for training SPICE, the structures in the trRosetta 

dataset serve as template structures and the list of aligned sequences in the MSAs provide 

candidate mutations. Specifically, for each MSA, a group of mutant sequences is built by 

transferring mutations from the aligned sequences to the query sequence, ignoring gap 

characters. The mutant sequences of each group are then mapped on to the structure 

associated with their MSA and the set of amino acid contacts present in the resultant mutant 

structures are determined (where contacting residues are defined as those with any non-

hydrogen atom within 4.5 Å of one another). Within each group of mutant sequences, 

pairwise comparisons are then made to determine the number and type of contacts broken 

and maintained between mutants, providing the information needed for incorporating contact 

disruption into the SPICE training procedure.  

3.2.5 The SPICE Training Procedure 

Unlike most protein-BERT models, which are trained using a single training objective, 

SPICE is trained using a varied set of training objectives, all designed to extract information 

from unlabeled protein data and represent it in a useful way. Training proceeds by alternating 

between objectives based on data derived from UniRef50 and objectives based on contact 

disruption calculations. These objectives include both protein-specific tasks, which are those 

concerned with predicting some characteristic of a protein in isolation, and contrastive tasks, 

which are those concerned with representing some relationship between a pair or more of 

proteins. The motivations behind the different objectives, their specific implementations, and 

the data they use are all detailed in the below list and Figure 3-2: 

1. The first objective is a masked-token prediction protocol that uses the UniRef50 

dataset, just like what was described in the introduction. This is trained using the 
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output for the transformer encoder of SPICE and is a protein-specific, amino acid-

level task. It is included to learn the sequence constraints that determine a functional 

protein. This is the only amino acid-level task; all other tasks are designed to 

encourage the model to pool and organize the information captured at this step to 

build an explicitly informative protein-level representation.  

2. The next objective is a contrastive task comparing the global embedding vectors of a 

pair of mutant protein sequences derived from the trRosetta dataset. This objective 

uses a root-mean-squared error to encourage the Euclidean distance between the two 

global vectors to be equivalent to the fraction of total contacts broken between the 

two sequences they represent. In other words, the model is trained such that the 

distance between the global vectors will reflect the number of contacts broken were 

one of the input sequences to be mutated to the other. Note that, as with all other 

contrastive tasks, only mutant sequences derived from the same MSA and structure 

(see Section 3.2.4 for details) are used for optimizing this objective.  

3. The type of contacts broken upon mutation can be important for determining the 

change to a protein’s structure, stability, and, by extension, fitness. For instance, 

disrupting an alanine–serine contact by mutating the alanine to glycine is less likely 

to drastically alter the protein structure than mutating to a tyrosine. To encourage 

SPICE to include information like this in its learned embeddings, another contrastive 

objective is included that pushes the model to encode the types of contacts broken 

between two mutant proteins (again derived from the trRosetta dataset) in the 

direction of the vector connecting them in embedding space. This is accomplished 

by (1) calculating the global embedding vectors for a pair of mutant protein 

sequences, (2) using the vector difference between the two global embedding vectors 

to predict the distribution of the types of contacts broken when mutating one of the 

input sequences to produce the other, and (3) minimizing the Kullback–Leibler 

divergence (KL divergence) between the predicted distribution of broken contacts 
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and true distribution of broken contacts.j It is important to note that the distribution 

of contacts broken changes depending on the direction of mutation—the contacts 

broken moving from sequence 1 to sequence 2 are different than those broken when 

moving from sequence 2 to sequence 1. To handle this asymmetry, steps two and 

three of this objective are performed twice: once using the difference vector that 

transforms global embedding 1 to global embedding 2 and again using the difference 

vector that transforms global embedding 2 to global embedding 1, changing the target 

distribution of broken contacts as appropriate.  

4. Similarly important to the types of contacts broken upon mutation are those 

maintained. Another contrastive training objective is thus employed that encourages 

the model to encode the types of contacts maintained between two mutant proteins 

in the direction of the vector connecting them in embedding space. This is 

accomplished using the same strategy as in the previous objective, only now 

predicting the distribution of contacts maintained rather than broken.  

5. A final objective used by all SPICE model variations is a protein-specific global loss 

focused on capturing the types of contacts in the global vectors. This objective 

proceeds by (1) calculating the global embedding of a single mutant sequence derived 

from the trRosetta dataset, (2) using that global embedding to predict the distribution 

of the types of contacts in that protein, and (3) minimizing the KL divergence 

between the predicted and true distributions. The motivation for this objective is to 

encourage SPICE to place proteins with similar contact profiles near one another in 

the learned global embedding space. Proteins with similar contact types should share 

similar structures and generally be expected to perform similar functions, so this 

objective serves as a proxy for encouraging the model to group proteins of similar 

function near one another in the learned embedding space.  

 
j KL divergence can be thought of as a measure of how well one distribution captures the information contained in another, 

and so is a natural metric to use when comparing two distributions. 
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There are also a number of optional tasks that were employed to test slight variations of the 

SPICE architecture. The optional tasks are all detailed below: 

1. As mentioned in Section 3.2.3, an alternate SPICE architecture encodes proteins as 

distributions in embedding space rather than points. This “variational SPICE” 

employs the same objectives as regular SPICE but is trained using a protocol inspired 

by that used to train variational autoencoders (VAEs). Specifically, during training, 

a vector of means and log variances is learned that describes a multivariate normal 

distribution. Global embeddings are then drawn from this distribution before being 

used to optimize the objectives used to train the standard SPICE architecture. As with 

VAEs, an additional KL divergence loss term is added that encourages distributions 

learned to be similar to a predefined Gaussian prior.164 Throughout the work 

presented in the rest of this chapter, the Gaussian prior always had a mean of zero but 

the standard deviation was varied.  

2. One final optional objective used during SPICE training—whether using the standard 

or variational SPICE architectures—is a protein-specific objective where an 

additional decoder model is added to SPICE to attempt to reconstruct the original 

protein sequence from the global representation. This is only performed using 

sequences from the UniRef50 dataset; it is not performed using mutant sequences 

derived from the trRosetta dataset. This was the objective used by Detlefsen et al. in 

their work showing that it can be beneficial to learn a global representation during 

unsupervised pretraining.66 When included, it is done so to better enable comparison 

between that work and the work presented in the remainder of this chapter.  
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Figure 3-2. The SPICE architecture and training scheme. A) The SPICE model architecture 

and all possible training tasks. Note that, depending on the model variant, not all training 

tasks are applied and some transformations within the model are skipped—this figure is 

meant to depict all options. The core model consists of a six-layer transformer encoder 

followed by a pooling layer. Optionally, a variational form of the pooling layer is treated as 

a vector of means and log variances—in such a case, SPICE is referred to as “variational 

SPICE.” Global losses for variational SPICE are calculated using samples from the learned 

distributions; global losses for non-variational SPICE are calculated using the pooled layer. 

In other words, resampling is only performed for variational SPICE. B) The SPICE training 

procedure. SPICE is trained with both protein-specific and contrastive tasks. For contrastive 

tasks (as depicted in this figure), pairs of sequences with known contacts are passed through 

SPICE at the same time. Importantly, the model never directly sees the contacts; contrastive 

losses are calculated using the number broken between the two proteins, however. Non-

contrastive tasks are also calculated to train SPICE to capture information relevant to 

individual proteins in addition to capturing information important for comparing proteins. 
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3.3 Semi-Supervised Learning with SPICE 

The previous section gave a theoretical overview of SPICE and presented general strategies 

for training it. In this section, I present the results of experiments designed to test the 

effectiveness of SPICE in semi-supervised MLPE. 

3.3.1 Unsupervised Pretraining of SPICE Variants 

It should be clear from Sections 3.2.3 and 3.2.5 that there are a number of possible variations 

on the core SPICE architecture. Most notable are the differences between SPICE and 

variational SPICE and whether the sequence reconstruction objective is included during 

training. There are more subtle changes that can be made to the architecture as well, however, 

that can be expected to have an effect on the utility of SPICE for semi-supervised MLPE. 

For instance, the dimensionality of the learned global embedding can be tuned to balance the 

descriptiveness and generalizability of the features learned during unsupervised pretraining.k 

Likewise, when training variational SPICE the standard deviation of the Gaussian prior can 

be modulated to encode how functionally similar proteins are expected to be a priori.l  

To test the impact of the various design considerations of SPICE on its downstream 

applicability, I trained nine different model instances following the general training 

procedures detailed in Section 3.2.5. Three of these were non-variational SPICE instances 

that differed in the encoding dimensionality tested (128 or 768) and whether or not the 

reconstruction task was included; the others were all variational SPICE instances that 

differed in the encoding dimensionality tested (again, 128 or 768) and prior standard 

 
k If the dimensionality is high, then the model will have more flexibility in how it represents proteins, allowing it to learn 

richer, more descriptive features, but perhaps limiting its downstream applicability to regions of sequence space not seen 

during unsupervised pretraining. Conversely, if the dimensionality is low, then the model must learn more broadly 

applicable features that, while perhaps not the most descriptive, may be better capable of generalizing to new regions of 

sequence space. 

l As described in detail in Section 3.2.2, the distance between proteins in the SPICE embedding space represents how 

functionally similar they are expected to be. When using variational SPICE, proteins are embedded as distributions rather 

than vectors, so the level of overlap between distributions can be thought of as representing the probability that two proteins 

share the same function. The value of the standard deviation on the SPICE Gaussian prior can thus be intuitively thought 

to encode how similar nearby proteins are expected to be to one another a priori: a low value encourages the model to learn 

narrow distributions that overlap little with others and vice versa.  
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deviation (0.05, 0.1, 0.2, or 1). All variational SPICE model variants included the 

reconstruction loss as an objective. 

The sections that follow compare the effectiveness of SPICE encodings derived from the 

nine different model instances. To clearly distinguish each model, I refer to them using a 

four-component hyphen-delimited naming convention that clearly describes their different 

designs. The first section of each name gives whether or not the model is a variational SPICE 

instance: “Variational” is used for variational instances while “NoVariational” is used for the 

others. The second section gives whether a reconstruction term was applied to the model: 

“Reconstruction” indicates that a reconstruction term was used during training while 

“NoReconstruction” indicates that one was not.  The third section gives the embedding 

dimensionality. The fourth section gives the prior standard deviation used for variational 

models: “s005” means that the prior standard deviation was 0.05, “s01” means that it was 

0.1, “s02” means that it was 0.2, and “s1” means that it was 1. The non-variational instances 

do not consider a prior standard deviation during training, so the last section of the name can 

be ignored for them.  

3.3.2 SPICE Embeddings for Supervised Learning 

Fair comparison of different semi-supervised MLPE approaches requires use of what are 

known as “benchmark tasks.” Designed to reflect real-world MLPE applications, these tasks 

most commonly consist of preset training data (which is used to train the ML model) and 

testing data (which is used to evaluate the performance of the trained model) derived from 

larger labeled datasets; critically, they provide standardized conditions for comparing newly 

proposed semi-supervised models, training procedures, etc. To evaluate the effectiveness of 

embeddings derived from SPICE, I gathered labeled datasets consisting of protein sequence-

fitness data, training indices, and testing indices needed for performing three benchmark 

tasks. Two of these tasks—one to do with predicting fluorescence of green fluorescent 

proteins (GFPs) and another with predicting protein stability—were derived from the TAPE 
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GitHub repository, while the third—to do with predicting the viability of adeno-associated 

virus (AAV) capsid proteinsm—was derived from the FLIP GitHub repository.58,73,118,148,165 

For each of the three collected benchmark tasks I tested three different predictive strategies 

using SPICE embeddings derived from the various model instances described in Section 

3.3.1. The motivation behind each of these strategies along with their implementation details 

are in the list below:  

1. The first strategy trained an unregularized linear model to map learned global 

embeddings to fitness labels. As mentioned multiple times, the goal of SPICE is to 

structure the learned representation space such that there is a simple relationship 

between protein embeddings and protein fitness that can be readily used to inform 

downstream supervised learning. Linear models are the simplest models that are 

commonly used in the supervised stage of semi-supervised MLPE and so act as a 

natural baseline model to include when testing the effectiveness of SPICE. Note that 

the learned vector of mean and log variances was used as the embedding when 

variational SPICE model instances were used for this strategy, not a global vector 

sampled from the distribution defined by it. 

2. Just because a linear model is simple does not necessarily mean that it would be ideal 

for modeling a simple relationship between learned embeddings and fitness—simple 

relationships can be nonlinear. For instance, a situation can be imagined where 

proteins are no longer functional beyond a certain number of broken contacts from 

any functional variant (e.g., due to those functional variants being marginally stable). 

In the idealized SPICE embedding space, such a relationship would manifest as a 

central island of functional sequences surrounded by a hypersphere of nonfunctional 

ones, constituting a highly nonlinear, yet still simple relationship between learned 

embedding space and fitness. Nonlinear relationships like these were accounted for 

 
m The tasks used from the TAPE repository are those presented in its accompanying publication. The task from the FLIP 

repository is, by contrast, from a pre-publication draft of the repository: specifically, “natural task 1” from commit 

“6737e79.” 
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by the second predictive strategy, which was applied to the variational SPICE 

instances. Specifically, for each test set member, a score correlated with fitness was 

calculated as a weighted sum of training set fitnesses where, for each training set 

member, the weight applied was proportional to the degree of overlap between its 

learned distribution and the distribution of the test set member as measured by the 

Bhattacharyya coefficient. Importantly, this “from-distribution” prediction strategy 

has no learnable parameters, making it as simple a model as possible. For it to be 

effective, the determinants of fitness must thus be explicitly represented in the SPICE 

embedding space, with proteins with similar fitness grouped near one another. 

3. The final predictive strategy was a simple voting ensemble where the ranks of each 

test set member predicted by the first two strategies were averaged to build a 

composite score. As with most ensembling strategies, the idea behind this approach 

was to balance the relative strengths and weaknesses of the component models. For 

instance, when the linear and from-distribution approaches agree, we can be more 

confident in the predictions—this confidence is reflected in both models assigning a 

high rank and so the ensemble average returning a high rank. By contrast, when the 

two component models disagree, the average rank returned by the ensemble will fall 

between them, reflecting lower confidence in either of the results.  

The results from applying these predictive strategies to the three benchmark tasks are shown 

in Figure 3-3 – Figure 3-5, where each column in these figures corresponds to the results 

from a different SPICE variant. The y-axes of these plots show predictive performance as 

measured by the Spearman rank correlation coefficient (Spearman ρ) calculated between 

predicted and true values of the test data; the x-axes show the degree of unsupervised 

pretraining, with results at the 0th epoch calculated using embeddings derived from a 

randomly initialized model and results at later epochs calculated using embeddings from 

models trained on subsequently more data. Also present in these figures are two baselines 

calculated using the BERT-style ESM model making up the core of the SPICE architecture: 

the black horizontal line in each figure provides benchmarking results using the published 
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form of this model (i.e. using the weights learned in the work of Rives et al.);55 the additional 

columns present in Figure 3-3 and Figure 3-4 provide benchmarking results using an ESM 

model retrained with a masked-token prediction objective on the exact UniRef50 data used 

to train SPICE. Both ESM baselines were calculated by training a linear model to relate 

mean-pooled learned embeddings to protein fitness, the current most common practice for 

semi-supervised MLPE. Because the ESM model provides the core of SPICE and was 

originally trained with a masked-token prediction objective, it acts as an excellent state-of-

the-art baseline against which SPICE can be compared. 

From Figure 3-3 – Figure 3-5, it is clear that most of the design considerations discussed in 

the previous section appear to have minimal if any impact on the effectiveness of SPICE 

embeddings, at least on the benchmark tasks tested here. Specifically, use of variational 

SPICE versus non-variational SPICE, the choice of the standard deviation for the Gaussian 

prior of variational SPICE, and whether or not a reconstruction term was used all had no 

noticeable effect on predictive performance. Only the embedding dimension appeared to 

have some, albeit minor, impact, with models trained using a larger embedding dimension 

consistently outcompeting otherwise equivalent ones trained with a smaller embedding 

dimension.  

Counter to expectation, and more striking than any of the intended observations, Figure 3-3 

– Figure 3-5 also show that there generally appears to be minimal correlation between the 

extent of unsupervised pretraining and the effectiveness of learned embeddings in 

downstream tasks, regardless of predictive strategy and embedding-generating model 

employed. For instance, using the GFP dataset (Figure 3-3), increased pretraining led to no 

significant gains in embedding effectiveness over the randomly initialized embeddings 

regardless of model or predictive strategy used. Using the AAV dataset (Figure 3-5), 

increased pretraining led to marginal improvements at best, but could actually worsen 

performance for some SPICE model instances. The only exception came from using the 

stability dataset (Figure 3-4), where even though increased pretraining led to inconsistent and 

erratic results using the linear predictive strategy, it did in fact lead to continuously improving 
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performance using the from-distribution predictive strategy. Barring this single exception, 

however, these results suggest that neither SPICE nor ESM are very effective at building 

embeddings useful for fitness prediction tasks. Notably, in all cases, the retrained ESM model 

and at least one SPICE model achieved performance that matched or exceeded both (1) 

previously reported results using the same benchmark tasks but different embedding-

generating models and (2) the results that I calculated using embeddings derived from the 

published ESM model (the black horizontal line in each figure).58 Combined with recent 

work from another team showing a similar result,161 this strongly indicates that the 

unexpected relationship between pretraining and predictive performance is not a result of an 

error made during model training, but instead a genuine (yet surprising) feature of 

unsupervised pretraining in semi-supervised MLPE.  
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It must be noted that semi-supervised learning is expected to be most effective in the low-N 

case where there are limited labeled data available to train a downstream supervised model. 

In each of the benchmark tests performed to build Figure 3-3 – Figure 3-5, however, there 

were abundant labeled training data available for training downstream supervised models. 

To be sure that the observation that unsupervised pretraining was largely ineffective was not 

simply a result of using a large amount of training data for the supervised stage of the 

workflow, I performed additional tests where I subsampled the training split of the AAV 

benchmark to evaluate the effectiveness of SPICE and ESM embeddings. Specifically, I 

drew 200 training sets each of 96, 384, and 1536 datapoints; for each of these training sets, I 

then tested the effectiveness of learned embeddings derived from the nine different SPICE 

model variants at different stages of pretraining, again using the three predictive strategies 

described earlier in this section. The results are shown in Figure 3-6 – Figure 3-8 as boxplots 

over the number of checkpoints rather than the line plots that were used in Figure 3-3 – Figure 

3-5. There is little difference between the results in this low-N case compared to the results 

derived from training downstream supervised models on the full dataset, with the 

effectiveness of embeddings derived from most SPICE variants seeing minimal 

improvement with additional pretraining.  

Of course, all the above results also demonstrate that embeddings derived from SPICE are at 

best as useful for semi-supervised fitness prediction as those derived from ESM. There may 

still be promise in approaches like SPICE, however. As noted earlier, the from-distribution 

prediction strategy on the stability benchmark task provided a single exception to the general 

observation that increased pretraining did not consistently improve embedding effectiveness, 

with the accuracy of the predictions increasing considerably and smoothly with increased 

pretraining. Even though the from-distribution predictions were not as effective on the 

stability task as other predictive strategies, the fact that their accuracy consistently improved 

with increased pretraining is noteworthy, as this suggests a direct relationship between the 

extent to which unsupervised pretraining objectives are met and the effectiveness of the 

embeddings learned. This observation is particularly interesting when considering that the 

from-distribution prediction strategy has no learnable parameters, so any information used 
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to make predictions is derived solely from information contained in the learned embedding 

space and the fitness labels. Of course, of the three benchmark datasets tested, we might 

expect that the embedding space learned by SPICE would be most informative for the 

stability task: contact disruption was chosen to be modeled by SPICE because it can serve as 

a heuristic for stability, so it would be reasonable to assume that an embedding space built to 

represent changes in contact disruption upon mutation would also represent changes in 

stability upon mutation. This is not so much the point, however; rather, it is that these results 

suggest that models and unsupervised pretraining objectives designed to explicitly represent 

determinants of fitness combined with predictive strategies explicitly designed to take 

advantage of a resultant learned representation can indeed lead to predictable results in semi-

supervised MLPE, unlike existing approaches. Thus, even though SPICE may not provide a 

universal solution for the unsupervised stage of semi-supervised MLPE, and even though the 

solution that it provides does not surpass existing strategies, it could provide a template from 

which more effective and predictable semi-supervised MLPE strategies can be developed. 

That being said, this is a single example, and far more investigation than the exploratory 

studies performed here would need to be performed to properly test this hypothesis. 
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3.3.3 Active Learning with Gaussian Processes and SPICE 

If applied in the laboratory, the predictive strategies discussed in the previous section would 

have required only two rounds of data collection: one to gather training data and another to 

evaluate predictions. Because every round of data collection will typically add multiple days 

(if not weeks) of laboratory time to an engineering endeavor, MLPE strategies like these that 

minimize the number of data collection rounds tend to be the most practically applicable. 

That said, there can be an advantage to adding more iterations of model training and 

evaluation to the engineering pipeline, particularly in situations where gathering 

experimental data is extremely expensive or the sequence space to be evaluated is otherwise 

large relative to the availability of labeled training data. Such approaches are typically 

referred to as “active learning,” as the model used to guide exploration of sequence space is 

updated after each round of experimental data collection. When used in MLPE, the goal of 

active learning is to find some optimal protein in as few steps as possible. 

In this section, I investigate the effectiveness of embeddings derived from SPICE and ESM 

for active learning, focusing in particular on their utility for Gaussian process-based 

navigation of protein sequence space. A Gaussian process (GP) is a distribution over 

functions defined by a multivariate normal distribution. At an intuitive level, the goal when 

training a GP is to identify the most probable distribution of functions that explains the 

observed training data; this can then be used to predict a distribution of possible values for 

previously unseen samples. Importantly, because predictions are returned as distributions, 

they provide an inherent sense of model confidence, with broader predicted distributions 

corresponding to less certain predictions and vice versa. Predictions made by GPs are thus 

extremely useful for active learning as they can be used to identify both (1) where the model 

expects optimal samples to reside and (2) where additional training data should be gathered 

to improve model predictive performance. In other words, at each iteration, GPs can be used 

to make an informed decision about what data to collect next.  

To begin the learning process for a GP, an initial distribution of functions—a prior 

distribution—must be defined that informs the types of functions that can be learned; during 
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training, the distribution of functions defined by this prior is narrowed to one that is most 

probable given observed data. Importantly, this prior is also a GP and so is a multivariate 

normal distribution defined entirely by a mean and a covariance matrix. The mean defines 

the most likely function value at any given point prior to seeing any data while the covariance 

matrix defines the pairwise relationship between any pair of points, in turn defining the 

characteristics of the functions described by the GP. In practice, the mean is typically 

assumed to be zero and the covariance matrix is calculated from input data using what is 

known as a kernel function.n Simply put, a kernel function defines the degree of influence 

two points in the input space have on one another; this influence is then reflected in the 

calculated covariance matrix which, as a result, determines the shape of the functions 

described by the GP. While there are many options for kernel functions, most assume that 

points close to one another in the input space have the greatest influence on one another—

that is, they assume that points close in space will have similar labels. Because of this 

assumption, GPs can be expected to perform best on explicitly informative embedding spaces 

where points with similar labels are expected to be near one another. 

Because SPICE was designed to explicitly represent determinants of protein fitness in its 

embedding space, the embeddings produced from it might be expected to be particularly 

amenable to active learning with GPs. To test this hypothesis, I gathered several datasets 

spanning various protein activities73,123,148,152,165–169 then simulated GP-based active learning 

on each dataset using either SPICE embeddings, mean-pooled ESM embeddings, or one-hot 

encoding to represent protein sequences (and so define the layout of the input space). For 

each of these active learning experiments, I started from the parent (unmutated) protein with 

its associated fitness value; using this single point, I trained a GP and used the resultant model 

 
n Before training a GP, the first step is typically to center and scale the labels of the input training data such that their mean 

value is 0 and their standard deviation is 1. This sets up the problem such that the mean of the GP can be set to 0 as it is 

now, by definition, the expected (i.e., average) value across all points.  
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to select the next protein to evaluate using the upper-confidence bound (UCB) algorithm.157,o 

I iteratively retrained the model and used it to select the next point for 1000 rounds or until 

the protein variant with the highest fitness in the dataset had been identified. Each active 

learning experiment was repeated using eleven different kernel functions.  

The results of the active learning experiments are presented below in Figure 3-9. Importantly, 

only the results from the best performing kernel for each dataset and encoding scheme are 

shown, where the best performing kernel is defined as the one that led to the collection of 

datapoints with the highest cumulative mean fitness upon completion of the experiment. 

While, in practice, it would be difficult to determine the best possible kernel for an encoding 

or dataset, here the goal is only to compare the potential of different encoding schemes for 

active learning with Gaussian processes. Thus, manually choosing the best-performing 

kernel is appropriate.  

As in the previous section, the results here show no clear advantage of any encoding strategy 

over the others. Indeed, the best-performing encoding seems to depend strongly on the 

dataset tested. Strikingly, in many cases, one-hot encoding outperforms both semi-supervised 

approaches, again raising questions over the efficacy of existing unsupervised pretraining 

strategies. One-hot encoding will order proteins in the encoding space simply by their 

Hamming distance from one another (i.e., the number of mutations separating them). While 

there will certainly be a correlation between Hamming distance and protein fitness (generally 

speaking, proteins are increasingly less likely to share fitness as they are separated by more 

mutations), the strength of the correlation will depend on the location of mutations in the 

protein structure. For instance, single mutations to the surface of a protein will likely have 

minimal effect on fitness while single mutations to an active site can drastically alter it; the 

degree of correlation will thus be heavily context dependent. Extending this logic, it would 

 
o The upper confidence bound (UCB) algorithm provides a principled way to balance exploration (i.e., gathering data from 

previously unexplored regions of the input space to improve model performance) and exploitation (i.e., gathering data from 

regions predicted to optimize the target objective) in GP-based active learning. The algorithm chooses the point that satisfies 

      x 𝜇 𝑥 + 𝛽𝜎 𝑥  as the next to sample, where 𝑥 is a candidate point, 𝜇 is the mean of the distribution predicted by 

the GP, 𝜎 is the standard deviation predicted by the GP, and 𝛽 is a scaling factor for 𝜎 that sets the balance between 

exploration and exploitation. For the work in this chapter, I used 𝛽    when employing the UCB algorithm. 
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be reasonable to assume that models like SPICE that explicitly capture this context in their 

embedding space would be more effective for GP-based active learning. Unfortunately, this 

is not what is seen here. Instead, these results show that both the SPICE and ESM embedding 

spaces are no more informative for GP-based active learning than one-hot encoding. 
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Figure 3-9. The cumulative max (left column) and mean (right column) achieved by the best 

possible kernel during 1000 rounds of active learning for four different encodings across nine 

different datasets. Orange and blue lines correspond to SPICE variants (both with and 

without the reconstruction loss added on), red lines correspond to one-hot encoding, and 

green lines correspond to encoding using ESM. The shaded grey area gives confidence 

intervals (2.5%, 25%, 50%, 75%, and 97.5%) for the same summary metrics had sampling 

been performed randomly. Each row in the plot corresponds to active learning results on a 

different dataset. In general, it is difficult to claim if any one embedding outperformed the 

others. Note that the last hyphen-delimited section of the SPICE names can be ignored—it 

only provides information about how long the model was trained during unsupervised 

pretraining. 

3.4 Conclusions for Chapter 3 

This project was designed to explore the potential utility of explicitly informative learned 

embeddings for semi-supervised protein fitness prediction. In general, I found that 

embeddings derived from my explicitly informative model—SPICE—provided no 

advantage over embeddings derived from existing state-of-the-art models across a number 

of different datasets and two different engineering strategies. While these conclusions were 

disappointing, the experiments performed to arrive at them also further reinforced an 

increasingly recognized trend: that existing unsupervised pretraining strategies build learned 

embedding spaces that offer little if any advantage over uninformative random or one-hot 

encodings for downstream supervised protein fitness prediction.33,62,63,65   

In Section 3.3.2, I plotted the effectiveness of learned embeddings as a function of the level 

of pretraining, finding that increased unsupervised pretraining tended to have at best 

minimal, but often no, unpredictable, or even detrimental impact on the effectiveness of 

learned embeddings when applied to downstream supervised tasks. As far as I am aware, no 

one had published plots of this type before I performed this study; however, since then, 

another group has published similar results showing that, specifically for fitness prediction 

tasks, unsupervised pretraining appears to have limited if not a detrimental effect on the 

quality of learned embeddings.161 The one exception to this trend in my work was the from-

distribution predictions using variational SPICE embeddings on the stability benchmarking 

dataset, where increased pretraining led to a consistent improvement in downstream 

supervised performance. The determinants of stability should be explicitly represented in the 
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SPICE embedding space and the from-distribution prediction strategy was designed to take 

advantage of such organization. There may thus be value in further investigating strategies 

to develop both (1) explicitly informative embedding spaces and (2) downstream predictive 

strategies specifically designed to use them. That said, this conclusion is based off a single 

result, and the general ineffectiveness of SPICE embeddings when applied to other datasets 

in Section 3.3.2 and the active learning campaigns of Section 3.3.3 should perhaps temper 

such optimism.  

It is important to note that the conclusions made in this chapter are with respect to semi-

supervised fitness prediction only. The effectiveness of learned embeddings for applications 

such as structural prediction or remote homology detection appear to improve with additional 

pretraining, and there have been a number of successful applications of semi-supervised 

learning to these and related tasks.92–98,161 Additionally, the unsupervised pretraining stage 

clearly extracts useful information from unlabeled data—zero-shot prediction (a strategy 

where predictions are made using models trained only on unlabeled data) using models like 

ESM would be impossible if this were not the case.33,67,170 The major challenge in semi-

supervised protein fitness prediction appears to remain, then, exactly how to best transfer the 

information learned during the unsupervised pretraining stage into the downstream 

supervised learning stage. Perhaps the most effective way to do this is to move away from 

embeddings entirely, instead using strategies like those proposed by Hsu et al. where zero-

shot predictions made by unsupervised models are directly used to represent protein 

sequences.63 That said, the effectiveness of learned embeddings in so many other biological 

tasks suggests that there should be a viable strategy for using them in fitness prediction—we 

just have to find it. Whatever the best strategy may be, for now it is clear that there is still 

much to be explored and learned about semi-supervised protein fitness prediction.   
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C h a p t e r  4  

 EVSEQ: COST-EFFECTIVE AMPLICON SEQUENCING OF EVERY 

VARIANT IN A PROTEIN LIBRARY 

Material from this chapter appears in Wittmann, B. J.; Johnston, K. E.; Almhjell, P. J.; and 

Arnold, F. H. (2022) evSeq: Cost-Effective Amplicon Sequencing of Every Variant in a 

Protein Library. ACS Synth. Biol. 11, 1313–1324. https://doi.org/10.1021/acssynbio.

1c00592. 

Abstract 

Widespread availability of protein sequence-fitness data would revolutionize both our 

biochemical understanding of proteins and our ability to engineer them. Unfortunately, even 

though thousands of protein variants are generated and evaluated for fitness during a typical 

protein engineering campaign, most are never sequenced, leaving a wealth of potential 

sequence-fitness information untapped. Primarily, this is because sequencing is unnecessary 

for many protein engineering strategies; the added cost and effort of sequencing is thus 

unjustified. It also results from the fact that, even though many lower-cost sequencing 

strategies have been developed, they often require at least some sequencing or computational 

resources, both of which can be barriers to access. Here, I present every variant sequencing 

(evSeq), a method and collection of tools/standardized components for sequencing a variable 

region within every variant gene produced during a protein engineering campaign at a cost 

of cents per variant. evSeq was designed to democratize low-cost sequencing for protein 

engineers and, indeed, anyone interested in engineering biological systems. Execution of its 

wet-lab component is simple, requires no sequencing experience to perform, relies only on 

resources and services typically available to biology labs, and slots neatly into existing 

protein engineering workflows. Analysis of evSeq data is likewise made simple by its 

accompanying software, which can be run on a personal laptop and was designed to be 

accessible to users with no computational experience. Low-cost and easy to use, evSeq 

makes collection of extensive protein variant sequence-fitness data practical.  
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4.1 Introduction for Chapter 4 

Engineered proteins are valuable tools across the biological and chemical sciences and have 

revolutionized industries ranging from food to fuels, pharmaceuticals, and textiles by 

providing green and efficient protein solutions to challenging chemical problems.1 Over the 

course of a protein engineering campaign, hundreds to thousands or more protein variants 

will be constructed and have their fitnesses (level of, e.g., thermostability, catalytic activity, 

substrate binding, etc.) evaluated. Notably, sequence information is typically not gathered 

alongside the functional information, even though it could provide useful biochemical 

insight.123,171,172 This is largely because many engineering strategies can be applied without 

sequencing. For example, during a typical directed evolution (DE) experiment, often only 

the best-performing variant or variants are sequenced in each round of mutagenesis and 

screening; sequencing every variant is viewed as an unnecessary expense. Given the massive 

amount of functional data gathered during a typical DE campaign, however, if sequencing 

were performed for the variants generated during these experiments, the resultant large 

datasets of sequence-fitness information could be revolutionary for biological, biochemical, 

and biocatalytic research. This is especially true for data-driven protein engineering 

strategies such as machine learning (ML), the development of which has benefitted 

tremendously from large sequence-fitness datasets made available by strategies like deep 

mutational scanning (DMS) and in databases like ProtaBank.15,16,155,173,17,18,22,67,68,70,113,114  

Unfortunately, the standard sequencing strategy employed during DE—Sanger 

sequencing—is too expensive for sequencing all variants tested during a round of 

evolution.81 Sanger sequencing is ubiquitous due to ease of sample preparation and ready 

availability of  sequencing providers. However, the cost of Sanger sequencing scales linearly 

with the number of samples (Figure B-1). Thus, while the cost of sequencing just the top 

variants in a round of DE is minor, sequencing the hundreds or thousands of variants 

generated over the full engineering endeavor is not. Ideally, any new approach to sequencing 

during a protein engineering campaign would be comparable in cost, effort, and accessibility 

to that of sequencing just the top variants by Sanger sequencing. Here I present a collection 

of standardized and accessible protocols, components, and software that accomplishes this 
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goal. This collection, which I call every variant sequencing (evSeq), democratizes barcode 

sequencing strategies and expands on services made available by multiplexed next-

generation sequencing (NGS) providers to allow amplicon sequencing of a region of interest 

within every variant produced during a round of DE at a cost of cents per variant.83,174 Sample 

preparation for evSeq is simple, and the method requires no experience with NGS to perform, 

relies only on resources and services typically available to biology labs, and slots neatly into 

existing protein engineering experimental workflows. The accompanying software for 

analysis of evSeq data (found at github.com/fhalab/evSeq, documentation at 

fhalab.github.io/evSeq) was designed to be accessible to users with no computational 

experience and can be run on a personal laptop.  

In this chapter, I detail the underlying strategies, protocol, and potential applications of 

evSeq. I begin by describing the strategies employed by evSeq to extend multiplexed NGS 

for sequencing protein variant libraries in a way that reduces both cost and effort. I then 

describe the wet-lab protocol of evSeq sample preparation, focusing on how it can be 

completed without disrupting an existing protein engineering workflow. Next, I discuss the 

features of the evSeq software before finally presenting two case studies that highlight 

potential applications of evSeq. In particular, I highlight how (1) the sequence-fitness data 

from evSeq can provide valuable information about the quality of variant libraries and the 

functional screen as well as how mutations modulate protein activity, and how (2) the data 

generated from evSeq can be used to implement ML for protein engineering. I designed 

evSeq for use as a routine procedure in many protein/enzyme assays (especially DE and 

protein engineering experiments leveraging mutagenesis strategies that target specific sites 

or a segment of the sequence). This tool brings cost-effective, easy-to-use sequencing to all 

protein engineers, regardless of experience with NGS and access to sequencing and 

computational resources. I believe that widespread adoption of evSeq—and the resultant 

datasets generated—will be invaluable for future ML-guided protein engineering and will 

help us better understand protein sequence-fitness relationships. 

https://github.com/fhalab/evSeq
https://fhalab.github.io/evSeq
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4.2 Results and Discussion for Chapter 4 

4.2.1 evSeq Uses Inline Barcoding to Expand on Commercially Available Multiplexed 

Next-Generation Sequencing  

Unlike Sanger sequencing, which outputs a single chromatogram that represents the 

population of DNA in a sequenced sample, NGS outputs millions of individual DNA reads 

that represent a random draw from the population of DNA in the sequenced sample.83 

Confidence in NGS sequencing results is largely determined by the sequencing “coverage,” 

which for the purposes of this chapter is defined as the number of returned reads that map to 

a specific nucleotide on a reference sequence. Higher coverage enables more confident 

identification of mutations relative to a reference sequence as the increased redundancy 

allows distinguishing between true sequence mutations and errors that arise during library 

preparation, clustering, or sequencing. 

A single NGS run is roughly three orders of magnitude more expensive than a Sanger 

sequencing run, but because the run outputs millions of reads, this cost can be spread over 

multiple samples using a technique known as “multiplexed NGS” (Figure B-1). In 

multiplexed NGS, each submitted sample is tagged with a “molecular barcode”—a unique 

piece of DNA that encodes the sample’s original identity—before all samples are sequenced 

together in the same NGS run.174–180 Post sequencing, the barcodes are used to assign 

individual reads to individual samples. For instance, barcodes can be used to distinguish 

reads coming from samples belonging to specific plates and wells.181 Importantly, 

multiplexed NGS can be outsourced just like Sanger sequencing (making it accessible to all 

laboratories regardless of sequencing experience), and sequencing providers typically charge 

tens of dollars per sample in a multiplexed sequencing run, yielding on the order of 104–105 

individual sequences per sample (assuming the run is performed on an Illumina MiSeq 

instrument).  

The level of coverage granted by a set number of reads depends on the length of the DNA 

sample being sequenced, the length of the NGS read used to sequence it, and whether those 

reads are paired-end. NGS reads are short (300 bp or less on Illumina systems), and so reads 
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must be spread across a longer sample to sequence it in full. The expected coverage (average 

coverage per nucleotide) obtained for a DNA sample thus depends both on its length and the 

read length used for sequencing. For example, with the ~105 reads returned by a commercial 

MiSeq multiplexed sequencing run, a 3 Mb genome could be sequenced with 150 bp paired-

end reads to an expected coverage of ~10x, whereas a 20 kb plasmid could be sequenced to 

an expected coverage of ~1500x. 

Because shorter samples can be sequenced at higher coverage for a given number of reads, 

it can be advantageous to sequence only the region of interest of a sample. This is exemplified 

by amplicon sequencing, a strategy in which a researcher sequences a PCR product (an 

amplicon) that targets a specific region of interest in the DNA.182 For instance, continuing 

the example from above, with ~105 total 150 bp paired-end reads, a 300 bp PCR product 

could be sequenced to an expected coverage of ~100,000x.  

Many mutagenesis methods employed in protein engineering (e.g., site-saturation183 and tile-

based mutagenesis184 strategies) target mutations to a specific position or region in the 

sequence of a protein, and thus the variants produced can be sequenced with amplicon 

sequencing to high coverage.175 Notably, however, even though increasing coverage yields 

more confident results, it comes with diminishing returns, and it is generally held that 

coverage in the tens is more than sufficient for effective reference-based identification of 

mutations (Figure B-1).185 Indeed, clinical sequencing of human genomes targets 30x 

coverage or greater to minimize false base calls. Given this reference, it is clear that the 

~100,000x coverage that would be returned from a multiplexed sequencing run for a 300 bp 

amplicon is far higher than necessary for effective identification of mutations—2,000 

amplicons could be sequenced in the same run and still yield clinical-grade coverage.  

evSeq achieves cost-effectiveness by relying on the facts that (1) at tens of dollars per sample, 

the cost of sending a single sample to an outsourced multiplexed NGS run is comparable to 

the total cost of Sanger sequencing the top variants in a round of DE, (2) amplicon sequencing 

can be used to identify mutations in protein variants from many protein engineering library 

types, and (3) enough reads are returned for a single sample in a commercial multiplexed 
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NGS run to sequence hundreds of amplicons. Specifically, the evSeq protocol (Figure 4-1, 

B.2.3: evSeq Library Preparation/Data Analysis Protocol) works by focusing all reads of a 

single multiplexed NGS sample to specific regions on hundreds of protein variants, achieving 

sequencing depths of 101–103 at the approximate cost and level of accessibility of using 

Sanger sequencing of just the top variants in a round of DE (Figure B-1).  

The evSeq library preparation protocol begins with PCR amplification of the region of 

interest in each variant (i.e., the position/region where mutations were made) and appending 

inline DNA barcodes to the resultant amplicons that encode their original plate-well position 

(Figure 4-1A).181,186,187 This is a one-pot, two-step, plate-based PCR procedure that uses two 

sets of primer pairs. Each primer in the first set of primers (“inner” primers) consists of a 

user-specified 3’ “seed” region that binds to the regions flanking the region of interest as well 

as a 5’ predefined universal adapter (B.1.6.1: Inner Primer Design). Each primer in the 

second set of primers (“outer” primers) consists of (1) a 3’ region that matches the adapter 

of the inner primers, (2) a central 7-nucleotide barcode where each barcode pair between 

forward and reverse outer primers is unique to a plate-well position, and (3) a 5’ sequence 

matching the Illumina Nextera transposase adapters (B.1.6.2: Outer Primer Design, B.1.6.3: 

Barcode Design, Table B-1, Table B-2). I designed 96 unique forward and 96 unique reverse 

outer primers for evSeq which, because both forward and reverse outer primers contain a 

barcode, can be combined to encode up to 962 = 9,216 possible plate-well positions (B.2.2: 

Preparation of evSeq Barcode Primer Mixes, Table B-3 – Table B-10. Note that a pre-filled 

IDT order form is also provided for the outer primers on the GitHub associated with this 

work—see B.2.1: Ordering Barcode Primers from IDT for details. While it is recommended 

to use these pre-tested barcodes, users can also design their own to, e.g., further expand the 

number of available combinations.). Importantly, this set of outer primers can be used to 

sequence any target region from any gene with evSeq, and so only needs to be ordered once, 

constituting a one-time initial setup cost in the range of around a thousand dollars (the exact 

cost will vary based on oligo provider and any institutional agreements set up with said 

provider). Once outer primers are ordered, only a new inner primer pair is needed for each 

new region of interest to be targeted by evSeq.  
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Once all barcoded amplicons have been produced, they are pooled and sent to a sequencing 

provider, who will then use the transposase adapters installed with the outer primers as a 

handle to perform a third and final PCR to barcode the pool of amplicons once again with a 

pair of sample-specific Illumina indices (Figure 4-1B). At this point each amplicon in the 

pool has one pair of sample-specific Illumina barcodes and one pair of plate-well-specific 

inline evSeq barcodes. This complete evSeq library is sequenced as a single sample in a 

multiplexed NGS run along with samples from other users (whether or not they are also 

evSeq samples). Post sequencing, the sequencing provider uses the sample-specific barcodes 

to identify those sequences belonging to the evSeq pool and returns them to the user (i.e., the 

provider “demultiplexes” the run, separating evSeq sequences from those of other users). 

The user then uses the evSeq software to analyze the returned sequences, assigning them to 

corresponding plate-well positions using the evSeq barcodes and identifying the mutations 

in the variants relative to a reference (Figure 4-1B, Figure 4-1C). 

4.2.2 evSeq Library Preparation Fits Into Existing Protein Engineering and 

Sequencing Workflows and Was Designed to be Resource Efficient  

A typical procedure for evaluating protein variants involves (1) arraying colonies of an 

organism (e.g., Escherichia coli) that harbor a plasmid encoding a protein variant into the 

wells of a (usually 96-well) microplate, (2) growing the resulting cultures to stationary phase 

(colloquially, an “overnight culture”), (3) using the overnight culture to inoculate a fresh 

culture that will be used to express the protein variants, and (4) evaluating the fitnesses of 

expressed protein variants. The expression stage (step 3) typically involves downtime where 

the experimentalist must wait until the culture reaches sufficient density before inducing 

protein expression and then again as expression takes place. evSeq library preparation can 

be performed easily in either of these time windows. The evSeq library preparation protocol 

begins with the barcoding PCR described at the end of the previous section; this one-pot, 

two-step, plate-based PCR was designed to be compatible with outsourced sequencing 

workflows, minimize preparation time, and minimize laboratory resource usage (B.2.3: 

evSeq Library Preparation/Data Analysis Protocol). For instance, use of inline barcodes is a 

known, effective strategy for expanding the number of samples that can be multiplexed 
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without having to modify the Illumina indices used during multiplexed sequencing.186,187 

Because evSeq library preparation uses inline barcodes, it grants the outsourced sequencing 

provider maximal flexibility in choice of Illumina indices. In other words, evSeq library 

preparation is decoupled from preparation of the Illumina library that will eventually be 

sequenced, allowing the evSeq library to be run just as any other sample would be that is 

submitted to a sequencing provider.  

As mentioned in the previous section, use of a two-step PCR reduces the number of primers 

that must be ordered per new sequencing region of interest. Because evSeq relies on 96 

unique forward barcodes and 96 unique reverse barcodes, a single-primer PCR would require 

ordering 192 new barcoding primers for each new target region evaluated in each library. In 

a two-primer protocol, however, the inclusion of a universal adapter on the inner primers 

allows the same 192 outer primers to be used regardless of target position in the variant—

only two unique primers (forward and reverse inner) must be purchased for each new target 

region, and only if existing inner primers from previously targeted regions are not already 

compatible. Additionally, the evSeq PCR directly uses liquid from the overnight culture as a 

source of template DNA (Figure 4-1B, B.2.3: evSeq Library Preparation/Data Analysis 

Protocol); the template DNA is released from lysed cells during the initial heating step of the 

PCR, avoiding a costly and time-intensive DNA isolation/purification step and allowing 

researchers to use materials already prepared as part of the protein expression workflow.187 

The remaining steps of evSeq library preparation were, like the PCR stage, also designed to 

be resource and time efficient. After completion of the PCR, the resulting barcoded 

amplicons are pooled by plate and purified via gel extraction. Pooling prior to purification 

goes against standard practice for multiplexed NGS library preparation, which is to purify 

samples individually, quantify their DNA concentration, then combine them in equimolar 

quantities to ensure more equal read distribution across samples after sequencing.188 

However, because individual plates in protein engineering libraries tend to contain variants 

from the same region of the same protein scaffold (e.g., as would be typical for variants from 

a comprehensive site-saturation library), it is assumed that the variation in PCR reaction yield 
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will be minor within plates and that, as a result, the same plate can be pooled prior to 

quantification with only minor effects on read distribution. Using this “pooling first” 

strategy, only as many purifications as there are plates must be performed as opposed to as 

many as there are variants, thus enabling faster processing of evSeq amplicons while 

reducing resource usage. As will be shown in later sections, the distribution of reads returned 

using pooling first is perfectly acceptable for confidently identifying variant sequences. 

Once all pooled plates have been purified, the concentrations of the individual purified pools 

are measured. The pools are then normalized by molarity and combined into a final evSeq 

library, which is in turn submitted as a single sample to a sequencing provider. As described 

in the previous section, the provider will perform a final PCR on the evSeq library to add 

sample-specific barcodes before sequencing it as a single sample in a multiplexed sequencing 

run. Outsourcing the sequencing stage has two main benefits: First, it allows evSeq to be 

performed by research groups with no prior sequencing experience and no direct access to 

sequencing equipment—groups need only be familiar with PCR, a ubiquitous technology in 

protein engineering laboratories. Second, to be cost effective, multiplexed sequencing should 

be run with tens of samples at least (Figure B-1). By outsourcing the sequencing stage, groups 

that do not frequently produce evSeq libraries need not wait until enough libraries have 

accumulated to run sequencing—a single outsourced submission, for instance, can be run 

along with those of other research groups with a variety of different sequencing needs. 
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Figure 4-1. Overview of evSeq library preparation and processing. (A) In the first stage of 

the PCR, a region of interest is amplified with primers that include a 3’ site-specific region 

(gray) with 5’ adapter sequences (dark blue). The second PCR stage adds molecular barcodes 

(rainbow) with primers that bind to the adapter regions and add adapters for downstream 

NGS processing (light blue). (B) To avoid costly DNA isolation steps, evSeq uses liquid 

cultures of cells harboring mutated DNA (e.g., an “overnight culture” of E. coli) as template 

during the one-pot two-step barcoding PCR described in A. Each plate is pooled individually 

and gel purified. Purified pools are then adjusted for concentration differences and pooled 

together before being sent to a sequencing provider, who then appends another set of 

barcodes as well as sequence elements necessary for Illumina NGS sequencing. This sample 

is now pooled with those of other users and a multiplexed sequencing run is performed. After 

sequencing, the sequencing provider uses the barcodes that they attached to separate 

(“demultiplex”) the evSeq reads from reads of other users; the provider returns evSeq reads 

in .fastq files. (C) The .fastq files returned by the NGS provider are inputs to the evSeq 

software, which uses the evSeq forward/reverse barcode pair to map each read to a specific 

plate and well based on known barcode combinations. The software also processes the 
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mapped reads (see Appendix B and evSeq documentation for more details) to, among other 

things, assign variant identities to each well and return interactive HTML visualizations. 

The final stage of the evSeq workflow is data analysis using the evSeq software 

(github.com/fhalab/evSeq) (Figure 4-1C). Extensive documentation of the software and its 

capabilities is available as a website (fhalab.github.io/evSeq). The software was designed to 

be accessible to users with varying degrees of computational experience and can be run 

through either a graphical user interface (GUI), a command line application, or in a Python 

environment (e.g., a Jupyter notebook). Outputs from the software range from high-level 

overviews of data (e.g., an interactive “Platemap” graphic that displays sequencing coverage 

and identified mutations in each well of each plate; see Figure 4-1C for an example) to low-

level details about the population of reads assigned to each well (e.g., in a well identified as 

polyclonal, the percentage of reads mapping to each of the identified variants). Functional 

data can also be easily associated with identified variants using the evSeq software outputs 

to produce sequence-fitness datasets, and Jupyter notebooks and web pages are provided that 

walk users through the process. 

4.2.3 evSeq Facilitates Library Construction, Validation, and Sequence-Fitness 

Pairing  

To highlight the utility of evSeq for engineering and biochemical experiments, my coworkers 

and I first examined how it could be used to construct high-confidence and informative 

sequence-fitness data. Specifically, my coworkers constructed and screened eight single-site-

saturation libraries of the enzyme Tm9D8*—an engineered β-subunit of tryptophan synthase 

from Thermotoga maritima (TmTrpB)—for tryptophan-forming activity at 30 °C (Figure 

4-2).189 In two of the screened libraries, they targeted two positions distant from the active 

site (A118 and S292) that have been seen to play a role in allosteric regulation of TmTrpB 

enzymes; in the other six libraries, they targeted active-site residues known to modulate the 

activity of TrpB (E105, L162, I166, F184, S228, and Y301) (Figure 4-2A).101,190,191 As 

shown below, this type of sequence-fitness data can be used to assess the quality of a protein 

https://github.com/fhalab/evSeq
https://fhalab.github.io/evSeq
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engineering library, identify improved variants during a round of directed evolution, and give 

insight into the significance of a given residue in catalysis.  

Many factors can introduce bias into a site-saturation mutagenesis experiment, such as 

annealing bias for the native nucleotides during the PCR for library construction or 

contamination with the template plasmid during transformation. Without sequencing all of 

the variants, it is impossible to know that the library is representative of the experimental 

design. Since evSeq reports exactly which variants are contained in a library, researchers can 

leverage this to implement important quality control practices as part of the standard protein 

screening workflow. For instance, of all 153 possible unique variants in the eight single-site-

saturation libraries, we observed 149 of them (Figure 4-2B and Figure 4-2C); only I166A, 

S292C, S292D, and S292H could not be assigned with confidence, where we defined ≥80% 

abundance in a well with ≥10 reads as our confidence threshold. Of the variants identified, 

many were found in replicate (Figure 4-2D) due to oversampling during colony picking, 

which ensures that all protein variants have a chance to be found and screened (All libraries 

were constructed with the 22-codon trick85 and 88 individual colonies were screened for each 

library, so we expected a 98% probability of seeing all variants assuming perfect construction 

of libraries). Conveniently, this oversampling also allowed us to evaluate the noise in our 

functional screen (Figure 4-2E), which further improved the confidence in the quality of data 

gathered. 

Given just the fitness data gathered in this experiment, a protein engineer would identify 50 

wells that are at least 1.2-fold improved over the parent enzyme Tm9D8*. However, with 

the sequence-fitness pairs constructed via evSeq, we know that these 50 wells correspond to 

only 16 unique variants. Depending on how conservative the engineer was as to what should 

be sequenced, a decision to sequence hits with Sanger sequencing could result in anywhere 

from 12 (2-fold improvement) to 50 (1.2-fold improvement) wells sent off for sequencing 

for a total cost of $36 to $150 (using an estimate of $3 per sequence). It would cost ~$2000 

to sequence all eight plates via Sanger. Using evSeq, however, we obtained the sequences of 

all 625 wells of variants for only $100, corresponding to $0.13 per non-control well. In other 
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words, using evSeq, we can produce far more sequence-fitness information than sequencing 

just the top hits using Sanger all for a similar cost. Importantly, although the evSeq defaults 

currently allow only eight plates to be sequenced at once, the number of variants included in 

this experiment could likely have been increased as the median number of reads per well was 

86 (mean: 98), which is above what is needed for reliable sequencing. Assuming that 

doubling the number of plates would halve the number of reads seen for each well, doubling 

the number of plates sequenced would cause only 14 non-control well sequences to drop 

below the confidence threshold.  

The per-variant cost of evSeq may be reduced even further using different services and 

sequencing platforms. For instance, in both this section and the next, the reported number of 

reads and ~$100 total cost are from outsourced MiSeq runs, which returned hundreds of 

thousands of total reads per evSeq library. These numbers are reported because outsourced 

multiplexed MiSeq is a standard service available to all research groups. As an alternative to 

outsourcing, however, Caltech provides multiplexed sequencing (via the Caltech Millard and 

Muriel Jacobs Genetics and Genomics Laboratory) on an Illumina NextSeq platform, 

returning an average of ~10x more reads than the outsourced MiSeq run for a total cost of 

~$10. At 10x more reads and 10x less the total cost, the per-variant evSeq cost could decrease 

100-fold to <$0.01. Indeed, we were able to re-sequence the TrpB libraries at a per-variant 

cost of ~$0.01 with ~2.2 million total reads returned for an average of thousands of reads per 

variant, far higher than what is needed for reliable variant calling. It must be noted, however, 

that analysis of the millions of evSeq reads was no longer practical on a personal laptop, 

requiring a desktop workstation instead. Computational power beyond a laptop will be 

needed when processing more than hundreds of thousands of reads with the existing evSeq 

software.  

Of final note, aside from providing valuable information for protein engineering 

experiments, evSeq can also facilitate investigation into the biochemical relevance of specific 

positions/mutations. Specifically, because all possible variants in a site-saturation library can 

be identified by evSeq, the sequence-fitness information generated can be used to explore 
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the effects of mutations more fully than, for instance, an alanine scanning experiment.192 

Using an example from the TrpB data gathered here, an alanine scanning experiment would 

tell a biochemist that the mutation to the conserved catalytic residue E105A inactivates the 

enzyme, with no information about the effects of other amino acid changes at this position. 

Using site-saturation with evSeq, we instead find that all mutations to E105 except for E105D 

inactivate the enzyme. The fact that glutamate and aspartate are the only amino acids 

containing a carboxylic acid suggests that this functional group is critical for activity (Figure 

4-2E, with inset).  

  



 

 

120 

 

Figure 4-2. evSeq enables low-cost investigation of library quality and sequence-fitness 

pairing in site-saturation mutagenesis libraries. (A) Eight residues (red) known to modulate 

the activity of Tm9D8* were independently targeted with site-saturation mutagenesis: A118 

and S292 (distal residues), E105, L162, I166, F184, S228, and Y301 (active-site residues). 

An active form of the pyridoxal 5’-phosphate cofactor is represented in green, and the 

substrate indole is shown in light blue. (B) Library quality can be investigated by plotting a 

heatmap of the number of times each variant/mutant was identified at each targeted position 

("Counts") from processed evSeq data. Parent amino acids are each marked with an asterisk. 

(C) Likewise, the effect of mutations and mutational “hotspots” can be identified by plotting 

a heatmap of the average activity measurements for each variant/mutation in each library, 

normalized to the average parent activity for that library (“Normalized Rate”), when fitness 

data is combined with evSeq data. (D) An example plot made possible by evSeq visualization 

functions shows the number of times each amino acid was found in a single TrpB library 

(position 105), also accounting for known controls and unidentified wells. (E) Another 

example output of the evSeq software shows activity for a single library (position 105), 

showing biological replicates. The inset displays the role of the mutated residue in this 

library, which is to coordinate the nitrogen of the indole substrate. Note that the circles in 

this plot correspond to individual measurements while the bar plot represents the mean of 

these measurements. If no circles are present for a bar (e.g., E105D), then this is because 

only a single instance of this mutation was observed. Circles are not shown in this case to 

allow distinguishing between a single replicate and a tight distribution of multiple replicates. 
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4.2.4 evSeq Can be Used to Generate Data for Machine Learning-Assisted Protein 

Engineering 

I next wanted to demonstrate the utility of evSeq for advancing and applying machine 

learning-assisted protein engineering (MLPE). In MLPE, models are trained to learn a 

function that relates protein sequence to protein fitness (i.e., they learn f(sequence) = 

fitness).15–18,22 These models are then used for rapid, low-cost in silico prediction of protein 

fitness, avoiding or greatly reducing the need for often-costly laboratory screening of variants 

(Figure 4-3).  

Sequence-fitness data is critical for effective MLPE. Indeed, even though strategies exist that 

can predict protein fitness from sequence alone (e.g., those that use evolutionary data to 

predict protein fitness), their effectiveness is improved with the inclusion of sequence-fitness 

information.63,67,68,70 As a result, the most effective MLPE workflows require that both 

sequence and fitness data be collected, unlike a DE workflow, which requires only fitness 

data.  

The need to collect sequence data in addition to fitness data is an often-overlooked additional 

cost of MLPE strategies compared to standard DE. Take, for instance, the machine learning-

assisted directed evolution (MLDE) strategy described in Chapter 2.33,82 In my first project 

at Caltech, I worked with others to use MLDE to evolve Rhodothermus marinus nitric oxide 

dioxygenase (RmaNOD) for greater enantioselectivity in a carbon–silicon bond-forming 

reaction.82 Over the course of the engineering campaign, we collected six 96-well plates of 

sequence-fitness data for training ML models. In total, sequencing the variants in these plates 

by Sanger sequencing cost ~$1700. High additional sequencing costs like these can make 

MLPE methods far less attractive, even if they are more effective than traditional DE at 

finding high-fitness protein variants.33 However, given that evSeq enables sequencing all 

variants for a cost similar to standard DE methods, it enables use of MLPE without added 

cost. In essence, evSeq eliminates the sequencing burden of MLPE.  

To demonstrate the application of evSeq to MLPE, I used it to sequence five plates of 

RmaNOD variants from a four-site combinatorial library. Coupled with fitness data, the 
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sequences resulting from this run could be used to drive a round of MLDE. Notably, 

sequencing these plates by Sanger sequencing would have cost ~$1400; in contrast, 

sequencing by evSeq using an outsourced multiplexed MiSeq run cost ~$100 for a per-

variant cost of ~$0.21. The median read depth per variant in this run was 463 (mean: 506), 

much higher than is required for accurate sequencing, and so more plates—from either the 

same or a different library—could have reasonably been added to this evSeq run to decrease 

the per-variant sequencing cost even further. Of course, as discussed in the previous section, 

in-house sequencing could have cut sequencing costs an additional ten-fold.  

 

Figure 4-3. evSeq eliminates the sequencing burden of MLPE. Traditional DE only collects 

sequence information for top variants, essentially “throwing away” fitness data from inferior 

variants and learning nothing about the underlying fitness landscape. If, instead, evSeq is 

used to collect sequence information for all variants, MLPE methods, which require 

sequence-fitness pairs for supervised model training, can be implemented. Sampling from a 

fitness landscape, an ML model can be trained to predict the fitnesses of missing sequences 

and reconstruct the missing regions of this landscape. 

The cost of sequencing is most notably a barrier for MLPE strategies that focus on 

developing models for a single protein with a well-defined fitness (e.g., MLDE); however, 

the applicability of evSeq to MLPE is not limited solely to cost-reduction. For instance, ML 

strategies have been developed that, rather than focusing on a specific protein, train models 

on sequence-fitness information across multiple different protein scaffolds.173,193 The goal is 

for these models to learn global determinants of protein fitness, then to use the models as 

general-purpose protein fitness predictors. By enabling the collection of sequence-fitness 

pairs across a wider array of proteins and fitness definitions, evSeq opens these approaches 
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to new and more diverse data sources. Generally speaking, the more sequence-fitness data 

available to train and benchmark these strategies, the better we expect them to perform and 

the more rapidly we expect improvements to be developed.173 It is no coincidence that large 

leaps forward in other ML disciplines have followed increased availability of large, diverse 

datasets, with the rapid advance in computer vision sparked by ImageNet being perhaps the 

most prominent example.109 Widespread adoption of evSeq—and commitment to depositing 

sequence-fitness data in resources such as ProtaBank—would provide such a dataset for 

protein engineering.113 This dataset would span the range of all engineered proteins and all 

target fitnesses, capture examples of sequences with both higher and lower/zero fitness 

relative to a parent (the latter of which is effectively never recorded with current DE 

sequencing practices), and overall enable rapid advancement in MLPE.  

4.2.5 evSeq Detects All Variability in the Sequenced Amplicons  

Although in this chapter I focused on demonstrating applications involving targeted 

mutagenesis strategies, evSeq is also applicable to other mutagenesis methods as the 

associated software can identify both user-specified and unspecified positions of variability 

(Figure 4-4A). This feature not only informs the user of potential unexpected mutations in 

the sequenced amplicon (Table B-11), but also allows it to work effectively with tile-based 

mutagenesis strategies and other semi-targeted mutagenesis strategies (e.g., error-prone PCR 

of specific regions or small genes). All that is required is that the amplicon length and read 

length be able to capture the full region containing mutations. 

It should be noted that evSeq will not detect off-target mutations outside of the constructed 

amplicon as these regions are not sequenced, meaning that it is unable to identify other 

mutations in a larger DNA element that may be contributing to activity. Due to this fact, for 

exceedingly unexpected mutational effects that are not seen in replicate, it is suggested to 

sequence the rest of the DNA element to confirm the presence or absence of any off-target 

mutations. However, this limitation is mitigated by the fact that off-target mutations are rare 

and, importantly, evSeq is agnostic to read length and will work with any length of paired-

end sequencing.194  
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While the current software version is not yet suited for other, long-read sequencing 

technologies (e.g., PacBio or Oxford Nanopore), future versions could be updated and 

validated with these data formats and make full gene-length evSeq experiments more 

straightforward and cost effective. Given this, evSeq is currently best suited and most cost 

effective when all expected mutations exist in the sequenced amplicon, though sequencing 

of multiple overlapping amplicons can readily allow evSeq to be expanded to sequence entire 

genes of variants arrayed in microplates (Figure 4-4B). Care must be taken in such an 

application, however, to account for the fact that aggressive mutation rates could compromise 

the annealing efficiency of inner primers binding in the variable region, as could mutations 

to positions closer to the binding region of the 3’ end of the inner primer. Such situations 

would lead to a higher proportion of wells failing sequencing.  

4.3 Conclusion for Chapter 4 

Hundreds to thousands of protein variants (or more) are constructed and their fitnesses 

evaluated over the course of a standard protein engineering campaign. Without sequencing, 

these fitnesses are next to useless—the time, effort, and resources expended to produce them 

are largely wasted. Comparable in cost to existing protocols, accessible to scientists with no 

or minimal sequencing and computational experience, and easy to implement with existing 

technology, evSeq rescues these fitness data by making the collection of sequence data for 

every variant a practical and highly useful step of the protein engineering pipeline. Given the 

number of research groups working on DE and other protein engineering projects, 

widespread adoption of evSeq would lead to an explosion in the availability of sequence-

fitness information. By sequencing every variant, no laboratory screening effort is wasted, 

and we open the door to advances in both our biochemical understanding of proteins and our 

ability to engineer them with data-driven methods.  
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Figure 4-4. evSeq detects variability and can be expanded for random mutagenesis. (A) 

evSeq does not require that the user specify which position in the amplicon was targeted. 

Instead, the software can identify variable regions by comparing to a reference. (B) evSeq 

can be used to sequence entire genes by designing a set of inner primer pairs which together 

capture the entire gene. Different evSeq barcodes can then be used for each region, and the 

user can reconstruct the entire sequence. 
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A p p e n d i x  A  

 SUPPORTING MATERIAL FOR CHAPTER 2 

A.1 Data and Code Availability 

Data needed to replicate simulations have been deposited at Caltech Data and are publicly 

available. DOIs are listed in Table A-11. The raw simulation data reported in this study 

cannot be deposited in a public repository because it is multiple terabytes in size. To request 

access, contact Bruce Wittmann. In addition, summary statistics describing these raw data 

have been deposited at Caltech Data and are publicly available. DOIs are listed in Table 

A-11. This chapter analyzes existing, publicly available data. The accession numbers for the 

datasets are listed in Table A-11.  

All original code has been deposited at Caltech Data and is publicly available. DOIs are listed 

in Table A-11. 

Any additional information required to reanalyze the data reported in this chapter is available 

from Bruce Wittmann upon request.   

A.2 Method Details 

A.2.1 Alignment Generation and EVmutation Model Training 

The EVcouplings webapp was used to both generate multiple sequence alignments (MSAs) 

as well as train the EVmutation model needed for zero-shot prediction.195 The GB1 sequence 

(See Encoding Preparation, below) was passed into the EVcouplings webapp, and 

alignments were made against the UniRef100 database for bitscore inclusion thresholds of 

0.30, 0.35, 0.40, 0.45, and 0.50. All other EVcouplings parameters were kept at their default 

values (Alignment threshold type = Bitscore; Search iterations = 5; Position filter = 70%; 

Sequence fragment filter = 50%; Removing similar sequences = 90%; Downweighting 

similar sequences = 80%). A bitscore threshold of 0.40 returned an alignment with the most 

redundancy-reduced sequences (56) that covered all variable positions in the GB1 landscape 

at ≥70% coverage (i.e., less than 30% of aligned sequences had gaps at the positions of 

interest). Bitscores of 0.30 and 0.35 returned more redundancy-reduced sequences (2427 and 
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664, respectively), but failed to cover position 54 in the landscape. Bitscores of 0.45 and 0.50 

covered all positions, but returned less redundancy-reduced sequences (30 and 27, 

respectively). I decided to move forward with the alignment and EVmutation model 

generated at a bitscore of 0.40. The alignment (in .a2m format) and the parameters for the 

EVmutation model trained on it (the “.model” file) were downloaded from the EVcouplings 

webapp. The alignment downloaded would also be used to train a DeepSequence VAE as 

well as build encodings and make zero-shot predictions using the MSA Transformer (See 

A.2.2: Encoding Preparation, A.2.3.1: EVmutation/DeepSequence Calculations, and 

A.2.3.2: Mask Filling Protocol, all below). 

A.2.2 Encoding Preparation 

I investigated encoding using three different strategies: one-hot, physicochemical 

parameters, and learned embeddings. One-hot encodings were prepared by first assigning 

each amino acid an index. To encode each GB1 variant, a 4 × 20 (“N amino acids per combo” 

× “N possible amino acids”) matrix filled with 0’s was instantiated where the index of each 

row corresponded to the position index in the variant. Each row of the matrix was then 

populated with a single value of “1” at the index corresponding to the appropriate amino 

acid. Repeating this procedure for all GB1 variants with experimentally measured fitness 

yielded a 149,361 × 4 × 20 tensor representing the complete set of one-hot encodings.  

Physicochemical encodings were prepared using the descriptors originally published by 

Georgiev, using the values found in code published by Ofer & Linial.36,124 To encode all 

variants, a 160,000 × 4 × 19 tensor was instantiated (“N possible combos” × “N amino acids 

per combo” × “N Georgiev parameters”). Every possible variant was encoded using all 19 

Georgiev parameters, and the encodings were stored in the instantiated tensor. The last two 

dimensions of the tensor were then flattened to produce a 160,000 × 76 matrix and each 

column of the matrix was mean-centered and unit-scaled. The final encoding tensor was 

generated by extracting only those rows belonging to GB1 variants with experimentally 

measured fitness, then reshaping the last dimension to produce a 149,361 × 4 × 19 tensor.  
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Learned embeddings were prepared using the pre-trained models published in TAPE, ESM, 

and ProtTrans GitHub repositories.51,52,55,58,60,61 For the non-MSA Transformer models, 

embeddings were generated by first building fasta files containing the full amino acid 

sequences of all 160,000 possible GB1 variants at positions 39, 40, 41, and 54. The template 

sequence used was: 

MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE 

The sequences contained in the fasta file were then embedded using the appropriate code 

provided from each of the repositories. For the TAPE models (“Bepler,” “ResNet,” 

“UniRep,” “TAPE-Transformer,” and “LSTM”) the `tape-embed` command from the 

software associated with the original publication by Rao et al. (https://github.com/songlab-

cal/tape-neurips2019) was used to generate embeddings. For the ESM model 

(esm1b_t33_650M_UR50S), the example code provided in the “Quick Start” section of the 

GitHub repository (https://github.com/facebookresearch/esm#quick-start-) was used to 

generate embeddings. For the ProtTrans model (“ProtBert-BFD”), code from the example 

Jupyter notebook provided on the associated GitHub repository 

(https://github.com/agemagician/ProtTrans/blob/master/Embedding/PyTorch/Advanced/Pr

otBert-BFD.ipynb) was used to generate embeddings. Each of these processes generated 

tensors of shape 160,000  × S  × L (“N possible combos” × “Tokenized Sequence Length” × 

“L latent dimensions”). The value of L varied by encoding used, and is given in Table A-1.  

The tokenized sequence length (S) varied depending on whether or not the embeddings for 

“<cls>” and “<eos>” tokens were returned alongside the embeddings for the different amino 

acids. The value of S was taken into account in the next step, where the embeddings 

corresponding to amino acids varied in the GB1 dataset (Using 0-indexing, this was indices 

38, 39, 40, and 53 of the middle dimension of the output tensor if no <cls> token was added, 

and 39, 40, 41, and 54 if a <cls> token was added) were extracted from the output tensor. 

Using the same procedure as with the physicochemical properties, the resultant 160,000 × 4 

× L tensor was mean-centered and unit-scaled to produce a 160,000 × 4L matrix. Finally, the 

appropriate rows were isolated and the last dimension reshaped to produce a final learned 

embedding encoding tensor of shape 149,361 × 4 × L.   
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Unlike all other models tested, the MSA Transformer takes an MSA as an input rather than 

a sequence. To build variant MSAs, I used the MSA generated by the EVcouplings 

webserver (See A.2.1: Alignment Generation and EVmutation Model Training) as a 

template. To begin, I filtered out all lowercase characters and the “.” character for each 

sequence in the template MSA. Next, I removed any duplicate sequences from the filtered 

MSA. I used this filtered and de-duplicated MSA as a template to build an MSA for each 

mutant in the GB1 landscape. When building mutants, I changed only the GB1 reference 

sequence, keeping all other sequences in the MSA constant. The resultant 160,000-mutant 

MSAs were then streamed through the MSA Transformer, extracting the embeddings for the 

mutant GB1 positions in the first sequence of each alignment (corresponding to the mutant 

GB1 sequence). This procedure resulted in a 160,000 × 4 × 768 tensor (where “768” is the 

number of latent dimensions assigned to each token by the MSA Transformer). This tensor 

was then mean-centered and unit-scaled following the same procedure as for all other 

encodings before being filtered to produce a tensor of shape 149,361 × 4 × 768. 

The encodings generated from the above procedures are made available at Caltech Data. 

Code provided on the MLDE repository enables replication of the encodings generated for 

the GB1 combinatorial landscape.  

A.2.3 Zero-Shot Predictions 

A.2.3.1 EVmutation/DeepSequence Calculations 

EVmutation calculations were run using the model downloaded from the EVcouplings 

webserver (See A.2.1: Alignment Generation and EVmutation Model Training). This model 

had been trained on the MSA of the GB1 reference sequence generated against the 

UniRef100 database with a bitscore inclusion threshold of 0.40. The example code provided 

in the EVcouplings GitHub repository was used as a template for making zero-shot 

predictions of GB1 fitness using the downloaded EVmutation model 

(https://github.com/debbiemarkslab/EVcouplings/blob/develop/notebooks/model_paramete

rs_mutation_effects.ipynb).  Code is provided in the MLDE GitHub repository for 

replicating the predictions made in this chapter, as well as for applying EVmutation to any 

other combinatorial landscape.  
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To perform DeepSequence calculations, the associated variational autoencoder (VAE) first 

needed to be trained. Using the same MSA downloaded along with the EVmutation model, 

I trained the DeepSequence VAE using code from the DeepSequence GitHub repository 

(https://github.com/debbiemarkslab/DeepSequence/blob/master/examples/run_svi.py). The 

code was modified to allow passing in the GB1 MSA. Predictions were subsequently made 

using the trained VAE by following additional example code from the DeepSequence 

GitHub repository (https://github.com/debbiemarkslab/DeepSequence/blob/master

/examples/Mutation%20Effect%20Prediction.ipynb). I used 2000 prediction iterations for 

making predictions. Code for training a DeepSequence VAE on any combinatorial landscape 

is provided in the MLDE GitHub. Code for making predictions using a trained 

DeepSequence VAE is also provided.  

A.2.3.2 Mask Filling Protocol 

Zero-shot predictions using a mask filling protocol were performed for all models provided 

in the ESM GitHub repository as well as the models ProtBert and ProtBert-BFD in the 

ProtTrans GitHub repository.51,55,61 For each of these models, I tested both a naïve and 

conditional mask filling strategy for making zero-shot predictions of GB1 fitness. For GB1, 

both protocols model the probability  

𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡  𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡   Eq. A-1 

where 𝑠𝑐𝑜𝑛𝑠𝑡 is the sequence of the non-varying positions in the combinatorial landscape and 

𝑎𝑎𝑥 gives the identity of the amino acid at position x in combination “combo.” The 

difference between the naïve and conditional probability protocols is how the probability 

𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡  is calculated. Naïve probability assumes that variable 

positions are independent of one another, and so calculates 

𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡  𝑃 𝑎𝑎39|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎40|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎41|𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 . Eq. A-2 

Conditional probability, in contrast, does not assume independence of the variable positions 

and instead directly solves the probability given by Eq. A-1 using the product rule of 

probability. Note that, for all non-MSA Transformer methods, the parent GB1 sequence was 
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used to define 𝑠𝑐𝑜𝑛𝑠𝑡, while for the MSA Transformer, the MSA used for EVmutation (after 

applying the same filtering and de-duplication procedure from Encoding Preparation, above) 

was used to define 𝑠𝑐𝑜𝑛𝑠𝑡. Only the variable positions in the reference sequence of this MSA 

were masked (rather than the full alignment column corresponding to variable positions), so 

the MSA Transformer maintained full access to the information provided by other sequences 

in the MSA.  

The naïve mask filling protocol began by masking all variable positions in the GB1 reference 

sequence. This masked sequence (or masked alignment) was then passed into the model and 

the logits of the masked positions were extracted to yield a 4 × A matrix, where “A” is the 

alphabet size of the model being used. A softmax function was then applied over the alphabet 

dimension to yield the probability of each amino acid (and other special characters included 

in the alphabet, though the probability of these was vanishingly small) occurring at each 

position given the context of the non-varying GB1 sequence (e.g., the probability 

𝑃 𝑎𝑎𝑥|𝑠𝑐𝑜𝑛𝑠𝑡  for x=39,40,41 and 54, where the position along the first axis of the matrix 

corresponds to a given x); the log of the matrix was next taken to convert probability to log-

probability. Finally, log-probability of a combination was calculated using 

𝑙𝑜𝑔(𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡 )   𝑙𝑜𝑔(𝑃 𝑎𝑎39|𝑠𝑐𝑜𝑛𝑠𝑡 ) + 𝑙𝑜𝑔(𝑃 𝑎𝑎40|𝑠𝑐𝑜𝑛𝑠𝑡 ) + 

                                               𝑙𝑜𝑔(𝑃 𝑎𝑎41|𝑠𝑐𝑜𝑛𝑠𝑡 ) + 𝑙𝑜𝑔(𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 )  

where 𝑠𝑐𝑜𝑛𝑠𝑡 is the sequence of the non-varying positions in the combinatorial landscape and 

𝑎𝑎𝑥 gives the identity of the amino acid at position x in combination “combo.”  

The conditional mask filling protocol allowed for dependencies between the amino acid 

identities at the variable positions. I calculated conditional probability by summing all 

possible factorizations of 𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡  using the product rule of probability. For 

instance, one possible factorization using the product rule is 

𝑃 𝑐𝑜𝑚𝑏𝑜|𝑠𝑐𝑜𝑛𝑠𝑡  𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡  

  𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41|𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡  
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  𝑃 𝑎𝑎39𝑎𝑎40|𝑎𝑎41𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎41|𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡  

  𝑃 𝑎𝑎39|𝑎𝑎40𝑎𝑎41𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎40|𝑎𝑎41𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡  

 𝑃 𝑎𝑎41|𝑎𝑎54𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 . 

In words, this factorization translates to (1) the probability of a specific amino acid at position 

54 when all other variable positions are masked multiplied by (2) the probability of a specific 

amino acid at position 41 given the specific amino acid a position 54 but masking positions 

39 and 40 multiplied by (3) the probability of a specific amino acid at position 40 given the 

specific amino acids at positions 41 and 54 but masking position 39 multiplied by (4) the 

probability of a specific amino acid at position 39 given the specific amino acids at positions 

40, 41, and 54; all probabilities are calculated within the context of the remaining GB1 

sequence. Of course, the order of factorization is arbitrary (for instance, in the first step I 

could have instead factored to 𝑃 𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑎𝑎39𝑠𝑐𝑜𝑛𝑠𝑡 𝑃 𝑎𝑎39|𝑠𝑐𝑜𝑛𝑠𝑡  , and any 

ordering of factorization can reconstruct the probability 𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡 . 

There are 24 total factorizations possible (all permutations of the 4 variable positions), and 

the final conditional probability 𝑃 𝑎𝑎39𝑎𝑎40𝑎𝑎41𝑎𝑎54|𝑠𝑐𝑜𝑛𝑠𝑡  was calculated by summing 

them all together.  

Calculation of the conditional probability was much more expensive than the calculation of 

naïve probability. For instance, while determination of naïve probability for GB1 required 

calculating just the variable-position logits of the GB1 sequence with variable positions 

masked (a single pass through a model), calculation of conditional probability required 

calculating the variable-position logits of all 34,481 possible masked combinations. While 

trivial for smaller models, calculating conditional probability using larger models with 

complex transformations (such as the MSA Transformer or ESM1b) could become 

expensive. Regardless, calculation of component probabilities used for calculating the 

overall conditional probably was performed in the same way as for naïve probability. For 

each component probability: (1) appropriate positions in the GB1 sequence were masked, (2) 

a softmax was taken over the alphabet dimension, and (3) the appropriate probabilities were 

extracted from the resultant probability matrix. Note that, unlike for naïve calculation, I did 

not take the log of the calculated probability matrices—the necessity of calculating a sum 
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over the different factorizations precluded this possibility. While such a practice may lead to 

numerical instability for large combinatorial libraries, I observed no such problems for GB1. 

Code for calculating the naïve and conditional probabilities of any combinatorial library 

using any model evaluated in this chapter is provided in the MLDE package.  

A.2.3.3 ΔΔG Calculations 

ΔΔG calculations were performed using a local copy of the Triad software suite (version 

2.1.1, Protabit, Pasadena, CA, USA: https://triad.protabit.com/). To begin, the template 

protein crystal structure (PDB: 2GI9) was prepared for calculations via the below command: 

$ ~/triad-2.1.2/triad.sh ~/triad 2.1.2/apps/preparation/proteinProcess.py  struct 

2GI9.pdb --crosetta 

This command generated two files: 2GI9_process.pdb and 2GI9_prepared.pdb.154 The 

“_process” pdb file is the 2GI9.pdb file prepared for downstream Triad calculations but 

without any structural minimization. The “_prepared” pdb file is the 2GI9.pdb file prepared 

for downstream Triad calculations but with an added constrained minimization. The flexible 

backbone calculations were run using the standard Rosetta scoring function and the 

“_prepared” pdb file. The command line call is below: 

$ ~/triad-2.1.2/tools/openmpi/bin/mpirun  np 96 ~/triad 2.1.2/triad.sh ~/triad 

2.1.2/apps/cleanSequences_BjwMod.py  struct ./2GI9_prepared.pdb  inputSequences 

2GI9.mut  crosetta  calculateRmsd   minDesign  inputSequenceFormat pid   

floatNearbyResidues 2>&1 | tee $OUTPUT 

Note that the cleanSequences_BjwMod.py file is a version of the inbuilt Triad script 

cleanSequences.py modified to also output root mean squared deviation (RMSD) of the 

protein backbone. The ‘inputSequences’ file ‘2GI9.mut’ describes the mutations for all 

149,360 GB1 variants relative to the parent GB1 protein. The fixed backbone calculations 

were run with the “_process” pdb file using a Rosetta scoring function that has a Van der 

Waals term with a softer inner wall, reducing the chance that steric clashes produce overly 

high energies. The command line call for the flexible backbone calculations is below: 
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$ ~/triad-2.1.2/tools/openmpi/bin/mpirun  np 12 ~/triad 2.1.2/triad.sh ~/triad 

2.1.2/apps/cleanSequences.py  struct ../pdbs/2GI9_process.pdb  inputSequences 

../2GI9.mut  rosetta  inputSequenceFormat pid   floatNearbyResidues  soft 2>&1 | 

tee $OUTPUT 

There was no output file directly produced by the cleanSequence.py script, hence the 

captured output. The captured output file generated was parsed to extract ΔG values for each 

protein variant, which were in turn used to calculate ΔΔG values relative to the parent protein. 

In this work, I defined a negative ΔΔG to be stabilizing and a positive ΔΔG to be destabilizing 

relative to the parent protein; this necessitated flipping the sign of the literature ΔΔG values 

when building Figure A-2, as Nisthal et al. defined opposite meanings of the sign of ΔΔG.153 

A.2.4 Simulation Details 

A.2.4.1 Encoding Comparison Simulations  

The simulation procedure for comparing encoding strategies was designed to enable pairwise 

comparison of simulation results using the different encodings. For a given simulation, each 

of the tested encodings shared the same training set (same variant identities), cross-validation 

indices, and random seeds used to initialize models that rely on randomness for training.  

All encoding comparison simulations were run with a randomly drawn training set of 384, 

48, or 24 variants (drawn without replacement) and five-fold cross-validation. Some model 

classes scale poorly with large input spaces, and so, due to computational expense, not all 

inbuilt MLDE models were used when encoding using learned embeddings from the TAPE 

transformer, the MSA Transformer, ESM1b, ProtBert-BFD, UniRep, and the TAPE LSTM. 

For these encoding strategies, when training size was 384, the sklearn 

RandomForestRegressor, sklearn BaggingRegressor, and sklearn KNeighborsRegressor 

classes were omitted from the ensemble of models trained. When training size was 24 or 48, 

the sklearn ARDRegression, sklearn BaggingRegressor, and sklearn KNeighborsRegressor 

classes were omitted from the ensemble of models trained. All other simulations for the other 

encodings were performed using all 22 inbuilt MLDE models (See A.3.1: Inbuilt Models for 

architectures). Trained models were then ranked according to their cross-validation mean 

squared error (MSE) and the predictions of the top three were averaged to predict the fitness 



 

 

136 

of the remaining variants (See A.3: MLDE Programmatic Implementation for details on 

model averaging). The values of NDCG, max achieved fitness, and mean achieved fitness 

reported for this set of simulations are all based on these predictions. 

A.2.4.2 High-Fitness Simulations 

A given training set of designed high-fitness training data was produced by sampling variants 

such that 50% had a fitness greater than or equal to the value of given threshold and 50% had 

fitness below. Additionally, it was enforced that no variant with fitness greater than 0.34 

could be chosen. Threshold values of 0.011, 0.034, 0.057, and 0.080 were used in this study 

to design fitness-enriched training sets.  

To generate multiple training sets for a given threshold, the GB1 dataset was first filtered to 

exclude all variants with fitness greater than 0.34. The remaining data was then split into two 

sets: one set had all variants with fitness greater than or equal to the threshold and the other 

set had all variants with fitness less than the threshold. Equal numbers of samples were then 

drawn at random from the two sets without replacement. Training data for the “no-threshold” 

control discussed in Section 2.2 and presented in Figure 2-3C-E (“100% Training Fitness ≥ 

0”) was generated by sampling at random from the GB1 dataset filtered to exclude variants 

with fitness greater than 0.34. 

For each of the four thresholds and the no-threshold control, 2000 training sets were 

generated, each containing 384 variants (10,000 training sets of 384 variants in total). For 

simulations using 24 or 48 training samples, the first 24 or 48 variants in these training sets, 

respectively, were used for training. Each training set was then fed into the simulated MLDE 

pipeline using Georgiev parameters for variant encoding and 5-fold cross-validation for 

model selection. For the sake of computational efficiency, only CPU-bound models (those 

from scikit-learn and XGBoost) were trained for these simulations. Trained models were 

then ranked according to their cross-validation MSE and the predictions of the top three were 

averaged to predict the fitness of the unlabeled variants. The values of NDCG, max achieved 

fitness, and mean achieved fitness reported for this set of simulations are all based on these 

predictions. 
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A.2.4.3 Zero-Shot Simulations 

To generate training data using a zero-shot predictor, the GB1 dataset was first ranked by the 

zero-shot predictions. Next, the top 1600 variants (i.e., the 1600 variants predicted to have 

the highest fitness) were identified, and 2000 random samples of 384 were drawn at random 

without replacement. This process was repeated for the top-ranked 3200, 6400, 9600, 12,800, 

16,000, and 32,000 variants, resulting in 14,000 total training sets per zero-shot predictor, 

each containing 384 random samples, for 42,000 training sets in total (3 zero-shot strategies 

× 14,000 training sets/zero-shot strategy = 42,000 total training sets).  

For the 384-training-sample simulations, each of the 42,000 training sets was then fed into 

the simulated MLDE pipeline. Again, for the sake of computational efficiency, only CPU-

bound (scikit-learn and XGBoost) models were evaluated. Simulations were performed 

using one-hot, Georgiev parameters, and learned embeddings from the MSA Transformer 

for encoding with 5-fold cross-validation for determining model effectiveness. As with the 

encoding comparison simulations, the models from the sklearn classes 

RandomForestRegressor, BaggingRegressor, and KNeighborsRegressor were omitted when 

encoding using the MSA Transformer due to poor scaling with input feature size. Trained 

models were ranked according to their cross-validation MSE and the predictions of the top 

three were averaged to predict the fitness of the remaining variants. Only the top-predicted 

unsampled combinations that could be constructed by recombining combinations in the 

training data were evaluated, enforcing a confidence threshold on predictions and focusing 

all resources on regions believed to contain the highest-fitness protein variants. The reported 

values of max achieved fitness and mean achieved fitness reported for this set of simulations 

are all derived from this restricted set of evaluated proteins, though the fitness value returned 

is still normalized to the full unsampled set. For a given simulation, the global maximum is 

considered to be achieved if it is present in either the training data or the evaluated 

predictions. The random controls presented in the Section 2.2 and in Figure 2-5 and Figure 

2-6 are derived from the Encoding Comparison Simulations, but only evaluating the CPU 

models and employing the same confidence threshold strategy for evaluating predictions.  
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For the 24- and 48-training-sample simulations, the first 24 and 48 variants in each of the full 

384-sample training sets were used for training, respectively. The models omitted from 

evaluation for MSA Transformer here were given by the sklearn classes ARDRegression, 

BaggingRegressor, and KNeighborsRegressor. Otherwise, the procedure was the same as for 

the 384-training-sample simulations.  

A.2.4.4 Traditional Directed Evolution Simulations 

Traditional DE simulations were performed from every variant in the GB1 landscape with 

non-zero starting fitness. Zero-fitness variants were omitted from these simulations as a 

researcher would never begin a DE study from such a variant. As in the MLDE simulations, 

variants with imputed fitness in the GB1 dataset were ignored for these simulations. 

A greedy walk simulation begins with 4 potential positions to evaluate. One of these 

positions is selected, the fitness values of all amino acids at this position are evaluated, and 

the best mutation is fixed. In the next round, there are three positions to evaluate. One of 

these positions is selected, all mutants are evaluated, and the best mutation is fixed again. 

This process continues until all positions have been evaluated; the fitness of the best variant 

identified in the last round is returned. The results reported for the greedy walk simulations 

consider all possible paths from all non-zero-fitness starting variants (with 24 paths per 

starting variant and 119,814 non-zero fitness starting points, this is 2,877,216 simulated 

greedy walks in total).  

A.2.5 Evaluation Metrics 

The evaluation metrics used in the work from Chapter 2 include (1) the max normalized true 

fitness of the M-highest-ranked variants, (2) the mean normalized true fitness of the M-

highest-ranked variants, and (3) the ranking metric “normalized discounted cumulative gain” 

(NDCG) of all predictions (where “gain” is defined as the normalized fitness of unsampled 

variants). NDCG was calculated using scikit-learn’s `ndcg_score()` function, which uses the 

form 
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where 𝑓 is the true fitness of all (N) unsampled variants ranked by predicted fitness and 𝑓′ 

is the true fitness of all unsampled variants ranked by true fitness (i.e., the ideal ordering). 

When evaluating a single MLDE simulation, the fitness was normalized to the highest-fitness 

variant in the unsampled data. Typically, this was equivalent to normalizing to the highest 

fitness in the entire GB1 dataset, as it was extremely unlikely that the highest-fitness variant 

in the dataset was drawn in the training set. Still, normalizing to the highest unsampled fitness 

allowed me to make more fair comparisons between MLDE simulations in the rare case that 

the highest-fitness value appeared in the training data.   

A.3 MLDE Programmatic Implementation 

The MLDE algorithm takes as input all encodings corresponding to the combinations of 

amino acids found in the training data along with their measured fitness values. During the 

training stage, these sampled combinations are used to train a version of all inbuilt model 

architectures (A.3.1: Inbuilt Models). Specifically, k-fold cross-validation is performed to 

train each model using the default model parameters; mean validation error from the k-fold 

cross-validation (mean squared error) is recorded for each architecture. All model instances 

trained during k-fold cross-validation are also stored for later use. For instance, if evaluating 

all 22 inbuilt model architectures with 5-fold cross-validation, 22 × 5 = 110 total trained 

model instances are recorded. For making predictions, the top N model architectures (those 

with the lowest cross-validation error) are first identified. For each of the top N model 

architectures, predictions are made on the unsampled combinations by averaging the 

predictions of the k × N model instances stored during cross-validation. For instance, if 

testing the top 3 model architectures identified from 5-fold cross-validation, this means that 

the predictions of 3 × 5 = 15 total models (3 architectures × 5 model instances/architecture 

saved during cross-validation) are used for prediction. For all simulations presented in 

Chapter 2, I evaluated model architectures using 5-fold cross-validation and then made 
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predictions using the top 3 (again, meaning that the predictions of 3 × 5 = 15 total models 

were averaged for each simulation). 

A.3.1 Inbuilt Models 

A.3.1.1 Keras 

Five separate neural network architectures were implemented using the Python package 

Keras: three fully connected neural network architectures and two 1D-convolutional neural 

network architectures. The identities and default values of tunable hyperparameters are given 

in Table A-8. All neural networks were trained with a batch size of 32 using the “adam” 

optimizer for at most 1000 epochs with early stopping after 10 epochs with no improvement 

in validation error (calculated against the cross-validation test data).  

The fully connected neural networks differed in the number of hidden layers: zero, one, or 

two. After each hidden layer, a batch normalization layer was employed, followed by an 

exponential linear unit (ELU) nonlinearity. A single dropout layer was used before the output 

layer. The output layer was a scalar value passed through an ELU nonlinearity.  

The convolutional neural networks differed in the number 1D convolutional layers: one or 

two. After each convolutional layer, a batch normalization layer was employed followed by 

an ELU nonlinearity. Following the convolutional layers, the output matrix was flattened 

with a GlobalAveragePooling1D layer. After flattening, a single dropout layer was used 

before the output layer. The output layer was a scalar value passed through an ELU 

nonlinearity.  

A.3.1.2 XGBoost 

Four gradient boosting approaches were implemented in MLDE using the Python package 

XGBoost:126 both tree and linear base models were implemented with both 

“reg:squarederror” and “reg:tweedie” objectives. For reg:tweedie, 

`tweedie_variance_power` was set to 1.5. The identities and default values for tunable 

XGBoost hyperparameters are given in Table A-9. Unless explicitly mentioned in Table A-9, 

all XGBoost parameters were held at their default values as detailed in the official XGBoost 

documentation. The descriptions for all parameters can also be found in the official XGBoost 
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documentation. All XGBoost models used in this work were implemented with early 

stopping: `eval_metric` was set to “rmse” when the “reg:squarederror” objective was used 

and “tweedie-nloglik@1.5” when the “reg:tweedie” objective was used; validation error was 

calculated against the cross-validation test data; training was terminated if validation error 

did not decrease for 10 epochs or 1000 total training epochs had passed.  

A.3.1.3 Scikit-learn 

Only scikit-learn models were used in the original implementation of MLDE.82,196 To remain 

consistent with this first implementation, the regressor models from scikit-learn that were 

procedurally effective (i.e., those that did not consistently error during operation or else take 

a very long time to train) while using default parameters in this previous implementation 

were also used in the version presented in Chapter 2. The identities and default values for 

tunable scikit-learn hyperparameters are given in Table A-10. Unless explicitly mentioned 

in Table A-10, all scikit-learn parameters were held at their default values as detailed in the 

official scikit-learn documentation. The descriptions for all parameters can also be found in 

the official documentation. 

A.4 Compute Environment 

All MLDE code is written in Python using Anaconda as the environment manager. The 

Anaconda environments "mlde.yml" and “mlde2.yml” within the MLDE GitHub page can 

be used to build environments in which MLDE is known to be stable.  

A.5 Computational Hardware Information 

Simulations were performed across three workstations, a local server, and an r5.24xlarge 

Amazon Web Services (AWS) EC2 instance. All three workstations ran on Ubuntu 18.04.3 

LTS. Two of the workstations contained Intel i7-8700 processors with an NVIDIA Titan V 

and NVIDIA GeForce RTX 2070 GPU; the third workstation contained an AMD Ryzen 9 

3900x processor with two NVIDIA RTX 2070 GPUs. The local server ran on Ubuntu 

20.04.02 LTS and contained 2 × Intel Xeon Gold 6248R processors; there were no GPUs in 

the local server. Triad calculations were performed on an Intel-containing desktop (fixed 

backbone) and a c5.24xlarge AWS EC2 instance (flexible backbone). Information regarding 
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which computer ran which specific simulation/computation with which specific piece of 

hardware is available upon request. 

A.6 Supplementary Item Descriptions 

Data S1. Encoding comparison summary metrics, related to Figure 2-2. This file provides 

summary statistics for the encoding comparison simulations from Section 2.2.2. For each 

encoding and training set size tested, I provide the mean, median, and standard deviation of 

five different summary metrics. The summary metrics are the “max fitness achieved,” “mean 

fitness achieved,” “NDCG,” “NDCG-1536,” and “NDCG-384.” The summary metrics 

“NDCG-1536” and “NDCG-384” are the NDCG score calculated using only the 1536 and 

384 highest-ranked samples, respectively. 

Data S2. Pairwise encoding comparison results, related to Figure 2-2. Because the cross-

validation indices, random seeds, and training datasets were kept the same for each encoding 

strategy tested in Section 2.2.2, pairwise comparisons of simulation results can be made. This 

file provides a pairwise comparison of simulation results by summary metric and training set 

size for each encoding tested in the Section 2.2.2. Specifically, it provides the counts and 

frequencies by which a given encoding using a given training set size achieved a higher 

summary metric score for the five different summary metrics provided in Data S1.  

Data S3. Summary statistics for ftMLDE simulations compared to traditional DE simulations 

and MLDE simulations, related to Figure 2-5 and Figure 2-6. Summary statistics are 

provided for every simulation depicted in Figure 2-5 and Figure 2-6 as well as Figure A-7 –  

Figure A-10. Specific summary metrics are the “max fitness achieved,” “mean fitness 

achieved,” “NDCG,” “NDCG-1536,” “NDCG-384,” “GlobalMaxFound,” and 

“UnsampledMaxFound.” The summary metrics “NDCG-1536” and “NDCG-384” are the 

NDCG score calculated using only the 1536 and 384 highest-ranked samples, respectively. 

The summary metric “GlobalMaxFound” is the percent of simulations in which the global 

maximum was identified in either the training data or tested predictions. The summary metric 

“UnsampledMaxFound” is the percent of simulations in which the maximum of the 

unsampled data was identified in the tested predictions. The final column 
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(“BetterThanTrad”) is “TRUE” if the combination of zero-shot strategy, encoding, sampling 

threshold, and training set size achieved the global maximum more frequently than 

traditional DE simulations. 
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A.7 Supplemental Figures 

 
Figure A-1. Summary statistics (shown as empirical cumulative distribution functions) for 

the 2000 training sets (each consisting of 384 samples) designed to be enriched in fit variants, 

related to Figure 2-3. For a given threshold, 50% of variants in the training data have fitness 

greater than or equal to the threshold and the remainder have fitness less than or equal to the 

threshold. When the threshold = 0, 100% of variants in the training data have fitness greater 

than or equal to 0. For all thresholds (including the one with a threshold at 0), the maximum 

allowed fitness in the training data is 0.34. The random sample is equivalent to the data with 

a threshold at 0, but does not have the upper bound on training fitness. (A) Plots of the mean 

fitness of all variants in a training set for all 2000 training sets designed to be enriched in 

fitness. As the fitness threshold increases, the mean fitness rises as expected. (B) Plots of the 

mean pairwise hamming distance between all members of a training set for all 2000 training 

sets designed to be enriched in fitness. A higher mean pairwise hamming distance indicates 

greater sequence diversity in the training data. As the fitness threshold increases, the mean 

pairwise hamming distance decreases. This is because the training data is increasingly 

restricted to the narrow regions of sequence space that contain higher-fitness variants.  



 

 

145 

 
Figure A-2. Experimental ΔΔG versus true fitness and predicted ΔΔG, related to Figure 

2-4. (A) Relationship between experimentally determined ΔΔG and GB1 fitness for single 

mutants at positions V39, D40, G41, and V54; both metrics are ranked from lowest value to 

highest value. I define a lower ΔΔG to be stabilizing and a higher ΔΔG to be destabilizing. 

The fitness of GB1 (at least at the considered positions) is loosely correlated with ΔΔG, but 

is clearly not the only determinant, with some lower-fitness variants having low ΔΔG and 

some higher-fitness variants having high ΔΔG. (B) Comparison of predicted ΔΔG upon 

mutation for GB1 variants using fixed backbone calculations to experimentally measured 

values of ΔΔG for single mutants at positions V39, D40, G41, and V54. (C) Comparison of 

predicted ΔΔG for GB1 variants using flexible backbone calculations to experimentally 

measured values of ΔΔG for single mutants at positions V39, D40, G41, and V54. 
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Figure A-3. Results of zero-shot prediction using flexible backbone Triad ΔΔG calculations, 

related to Figure 2-4. (A) The fitness of all GB1 variants plotted against the rank (from lowest 

to highest ΔΔG) given by Triad calculations. Blue dots are all individual variants while the 

orange line is the sliding mean (window size = 1000) of fitness. (B) The log-fitness of all 

GB1 variants plotted against the rank given by Triad calculations. Blue dots are all individual 

variants while the black line is the sliding median (window size = 1000) of fitness. (C) 

Cumulative fitness metrics for all GB1 variants ranked by Triad score. The blue curve gives 

the percentage of variants ranked up to and including a given Triad rank that have fitness 

greater than 0.011. The orange curve gives the percentage of all “fit” (defined as fitness 

greater than 0.011) variants encompassed in the set up to and including a given Triad rank.  
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Figure A-4. Results of zero-shot prediction using flexible backbone Triad root mean squared 

deviation (RMSD) calculations, related to Figure 2-4. (A) The fitness of all GB1 variants 

plotted against the rank (from lowest to highest RMSD) given by Triad calculations. Blue 

dots are all individual variants while the orange line is the sliding mean (window size = 1000) 

of fitness. (B) The log-fitness of all GB1 variants plotted against the rank given by Triad 

calculations. Blue dots are all individual variants while the black line is the sliding median 

(window size = 1000) of fitness. (C) Cumulative fitness metrics for all GB1 variants ranked 

by Triad score. The blue curve gives the percentage of variants ranked up to and including a 

given Triad rank that have fitness greater than 0.011. The orange curve gives the percentage 

of all “fit” (defined as fitness greater than 0.011) variants encompassed in the set up to and 

including a given Triad rank. 
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Figure A-5. GB1 crystal structure (PDB: 2GI9) with the positions mutated in the GB1 

combinatorial landscape highlighted in red, related to Figure 2-4. 
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Figure A-6. Summary statistics (shown as empirical cumulative distribution functions) for 

the 384-sample training sets generated using all zero-shot predictors, related to Figure 2-5 

and Figure 2-6. For each subplot (A–C), the left panel shows the mean fitness of all variants 

in a training set for all 2000 training sets derived for each sampling threshold; the right panel 

shows the mean pairwise hamming distance between all members of a training set for all 

2000 training sets derived from each sampling threshold. In all subplots, as the threshold 

increases, the mean fitness decreases as more low-fitness variants have the potential to be 

included in the training data. Likewise, as the threshold increases, the mean pairwise 

hamming distance also increases. This is because predictive algorithms will tend to group 

similar sequences as having similar properties, and so sequences close in rank-order (as given 

by the zero-shot predictors) will be similar. By increasing the range of the rank from which 

we sample, the range of sequences sampled is thus also increased. (A) The summary statistics 

for training data derived from EVmutation zero-shot predictions. (B) The summary statistics 

for training data derived from zero-shot predictions made using the MSA Transformer for 

masked token prediction. (C) The summary statistics for training data derived from zero-shot 

predictions made using predicted ΔΔG with a fixed backbone.   
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Figure A-7. Zero-shot prediction for training set design enables highly effective ftMLDE on 

the GB1 landscape, as measured by maximum fitness achieved in simulated experiments, 

related to Figure 2-5. Each subplot (A–C) shows the effect of different zero-shot predictors 

on the maximum fitness achieved in simulated ftMLDE experiments. Each violin (except for 

the grey ones corresponding to simulated traditional DE) represents data from 2000 

simulated experiments where 48 variants were used for training and the top 32 predictions 

were tested. The major groupings of violins within each subplot correspond to different 

encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the MSA 

Transformer). The color of each violin corresponds to the zero-shot sampling threshold (i.e., 

the number of best-ranked variants according to a zero-shot predictor from which random 

samples were drawn to generate training data). Results of ftMLDE are compared to the 

results of simulated traditional DE (at the left of each plot, in grey) and standard MLDE (the 

three pink violins in each plot). (A) The maximum fitness achieved by simulated ftMLDE 

when EVmutation was used as the zero-shot predictor for training set design. (B) The 

maximum fitness achieved by simulated ftMLDE when a mask-filling protocol using the 

MSA Transformer was used as the zero-shot predictor for training set design. (C) The 

maximum fitness achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-

shot predictor for training set design. 
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Figure A-8. Zero-shot prediction for training set design enables highly effective ftMLDE on 

the GB1 landscape, as measured by maximum fitness achieved in simulated experiments, 

related to Figure 2-5. Each subplot (A–C) shows the effect of different zero-shot predictors 

on the maximum fitness achieved in simulated ftMLDE experiments. Each violin (except for 

the grey ones corresponding to simulated traditional DE) represents data from 2000 

simulated experiments where 24 variants were used for training and the top 56 predictions 

were tested. The major groupings of violins within each subplot correspond to different 

encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the MSA 

Transformer). The color of each violin corresponds to the zero-shot sampling threshold (i.e., 

the number of best-ranked variants according to a zero-shot predictor from which random 

samples were drawn to generate training data). Results of ftMLDE are compared to the 

results of simulated traditional DE (at the left of each plot, in grey) and standard MLDE (the 

three pink violins in each plot). (A) The maximum fitness achieved by simulated ftMLDE 

when EVmutation was used as the zero-shot predictor for training set design. (B) The 

maximum fitness achieved by simulated ftMLDE when a mask-filling protocol using the 

MSA Transformer was used as the zero-shot predictor for training set design. (C) The 

maximum fitness achieved by simulated ftMLDE when predicted ΔΔG was used as the zero-

shot predictor for training set design. 
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Figure A-9. Zero-shot prediction for training set design enables highly effective ftMLDE on 

the GB1 landscape, as measured by mean fitness achieved in simulated experiments, related 

to Figure 2-6. Each subplot (A–C) shows the effect of different zero-shot predictors on the 

mean fitness achieved in simulated ftMLDE experiments. Each violin represents data from 

2000 simulated experiments where 48 variants were used for training and the top 32 

predictions were tested. The major groupings of violins within each subplot correspond to 

different encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the 

MSA Transformer). The color of each violin corresponds to the zero-shot sampling threshold 

(i.e., the number of best-ranked variants according to a zero-shot predictor from which 

random samples were drawn to generate training data). Results of ftMLDE are compared to 

the results of standard MLDE (the three pink violins in each plot). (A) The mean fitness 

achieved by simulated ftMLDE when EVmutation was used as the zero-shot predictor for 

training set design. (B) The mean fitness achieved by simulated ftMLDE when a mask-filling 

protocol using the MSA Transformer was used as the zero-shot predictor for training set 

design. (C) The mean fitness achieved by simulated ftMLDE when predicted ΔΔG was used 

as the zero-shot predictor for training set design.  
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Figure A-10. Zero-shot prediction for training set design enables highly effective ftMLDE 

on the GB1 landscape, as measured by mean fitness achieved in simulated experiments, 

related to Figure 2-6. Each subplot (A–C) shows the effect of different zero-shot predictors 

on the mean fitness achieved in simulated ftMLDE experiments. Each violin represents data 

from 2000 simulated experiments where 24 variants were used for training and the top 56 

predictions were tested. The major groupings of violins within each subplot correspond to 

different encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the 

MSA Transformer). The color of each violin corresponds to the zero-shot sampling threshold 

(i.e., the number of best-ranked variants according to a zero-shot predictor from which 

random samples were drawn to generate training data). Results of ftMLDE are compared to 

the results of standard MLDE (the three pink violins in each plot). (A) The mean fitness 

achieved by simulated ftMLDE when EVmutation was used as the zero-shot predictor for 

training set design. (B) The mean fitness achieved by simulated ftMLDE when a mask-filling 

protocol using the MSA Transformer was used as the zero-shot predictor for training set 

design. (C) The mean fitness achieved by simulated ftMLDE when predicted ΔΔG was used 

as the zero-shot predictor for training set design. 
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A.8 Supplemental Tables 

Table A-1. The frequency with which the 2-layer 1D convolutional neural network (1D 

CNN) architecture appeared in the top 3 models (as ranked by cross-validation error) over 

2000 rounds of simulated MLDE for each encoding type by training data size, related to 

Figure 2-2. The 2-layer 1D CNN was particularly effective when trained on 384 points, 

especially for higher-dimensional encodings. The same could not be said for the model when 

trained on 24 or 48 training points.  

Encoding Amino Acid 

Encoding 

Dimensionality 

Percentage 2-

Layer CNN in 

Top 3, 384 

Training Points 

Percentage 2-

Layer CNN in 

Top 3, 48 

Training Points 

Percentage 2-

Layer CNN in 

Top 3, 24 

Training Points 

Georgiev 19 14.55% 2.60% 6.30% 

OneHot 20 20.55% 3.45% 5.45% 

Bepler 100 18.30% 2.15% 3.75% 

ResNet 256 38.05% 6.70% 6.05% 

TAPE-

Transformer 

512 

57.80% 9.35% 7.15% 

MSA 

Transformer 

768 

32.80% 3.70% 4.85% 

ProtBert-BFD 1024 36.85% 3.65% 3.55% 

Esm1b 1280 32.80% 3.00% 4.00% 

UniRep 1900 51.65% 4.55% 5.30% 

LSTM 2048 62.15% 5.20% 5.20% 
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Table A-2. The frequency with which the 1-layer 1D convolutional neural network (1D 

CNN) architecture appeared in the top 3 models (as ranked by cross-validation error) over 

2000 rounds of simulated MLDE for each encoding type by training data size, related to 

Figure 2-2. The 1-layer 1D CNN was generally not as effective as the 2-layer 1D CNN. 

Encoding Amino Acid 

Encoding 

Dimensionality 

Percentage 1-

Layer CNN in 

Top 3, 384 

Training Points 

Percentage 1-

Layer CNN in 

Top 3, 48 

Training Points 

Percentage 1-

Layer CNN in 

Top 3, 24 

Training Points 

Georgiev 19 4.20% 3.85% 6.50% 

OneHot 20 9.05% 3.50% 5.90% 

Bepler 100 1.90% 1.05% 2.40% 

ResNet 256 2.20% 3.80% 4.25% 

TAPE-

Transformer 

512 

19.50% 9.75% 10.75% 

MSA 

Transformer 

768 

11.85% 3.05% 5.45% 

ProtBert-BFD 1024 6.55% 1.85% 4.90% 

Esm1b 1280 11.00% 1.35% 5.90% 

UniRep 1900 5.70% 1.40% 5.75% 

LSTM 2048 7.95% 1.40% 6.50% 
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Table A-3. The frequencies with which XGBoost models with a tree base model and trained 

with the Tweedie regression objective achieved a greater than or equal to MLDE outcome 

than the same models trained with the standard regression objective, related to Figure 2-2. 

MLDE outcome is measured by max fitness achieved, mean fitness achieved, and NDCG. 

Frequencies are calculated over 2000 simulated MLDE experiments for each combination of 

encoding and number of training points. Instances where Tweedie gave a greater than or 

equal to result compared to standard regression are bolded. 

Encoding 
Training 

Points 

Max, Percent 

Tweedie ≥ 

Standard 

Mean, Percent 

Tweedie ≥ 

Standard 

NDCG, Percent 

Tweedie ≥ 

Standard 

Bepler 24 60.85% 63.40% 67.80% 

ESM1b 24 69.50% 74.85% 80.60% 

Georgiev 24 63.40% 67.60% 68.60% 

LSTM 24 69.55% 75.15% 81.15% 

MSA Transformer 24 67.30% 71.70% 75.50% 

OneHot 24 55.30% 51.80% 42.05% 

ProtBert-BFD 24 68.65% 72.95% 77.15% 

ResNet 24 66.95% 69.05% 72.40% 

TAPE-Transformer 24 66.35% 72.00% 78.25% 

UniRep 24 69.90% 73.95% 80.25% 

Bepler 48 69.70% 75.95% 87.90% 

ESM1b 48 77.90% 87.60% 97.60% 

Georgiev 48 71.45% 75.05% 86.05% 

LSTM 48 74.90% 84.15% 96.40% 

MSA Transformer 48 73.35% 84.20% 95.40% 

OneHot 48 65.20% 62.80% 58.05% 

ProtBert-BFD 48 77.50% 87.00% 97.55% 

ResNet 48 71.05% 77.70% 88.85% 

TAPE-Transformer 48 72.75% 82.55% 94.95% 

UniRep 48 79.30% 86.60% 97.45% 

Bepler 384 80.50% 96.55% 100.00% 

ESM1b 384 71.80% 90.40% 99.00% 

Georgiev 384 72.60% 76.05% 98.80% 

LSTM 384 71.70% 88.95% 99.90% 

MSA Transformer 384 68.35% 84.30% 99.20% 

OneHot 384 74.75% 76.15% 94.35% 

ProtBert-BFD 384 75.35% 92.60% 99.50% 

ResNet 384 81.65% 95.05% 99.80% 

TAPE-Transformer 384 73.65% 91.60% 99.65% 

UniRep 384 72.40% 95.50% 100.00% 



 

 

157 

Table A-4. The frequencies with which XGBoost models with a linear base model and 

trained with the Tweedie regression objective achieved a greater than or equal to MLDE 

outcome than the same models trained with the standard regression objective, related to 

Figure 2-2. MLDE outcome is measured by max fitness achieved, mean fitness achieved, 

and NDCG. Frequencies are calculated over 2000 simulated MLDE experiments for each 

combination of encoding and number of training points. Instances where Tweedie gave a 

greater than or equal to result compared to standard regression are bolded. 

Encoding Training 

Points 

Max, Percent 

Tweedie ≥ 

Standard 

Mean, Percent 

Tweedie ≥ 

Standard 

NDCG, Percent 

Tweedie ≥ 

Standard 

Bepler 24 58.85% 50.05% 73.80% 

ESM1b 24 45.40% 44.20% 61.85% 

Georgiev 24 87.70% 63.65% 81.35% 

LSTM 24 42.90% 42.30% 62.60% 

MSA Transformer 24 54.30% 53.55% 73.80% 

OneHot 24 96.00% 55.10% 61.30% 

ProtBert-BFD 24 45.05% 43.85% 62.90% 

ResNet 24 67.60% 59.35% 75.95% 

TAPE-Transformer 24 49.00% 49.10% 66.60% 

UniRep 24 46.90% 43.00% 67.40% 

Bepler 48 52.10% 42.85% 83.50% 

ESM1b 48 40.50% 41.15% 62.80% 

Georgiev 48 80.25% 67.45% 90.75% 

LSTM 48 30.30% 30.95% 50.25% 

MSA Transformer 48 55.50% 54.70% 80.10% 

OneHot 48 94.45% 55.60% 67.00% 

ProtBert-BFD 48 48.35% 47.70% 72.80% 

ResNet 48 69.85% 57.20% 87.80% 

TAPE-Transformer 48 57.70% 52.60% 84.45% 

UniRep 48 35.15% 31.60% 57.95% 

Bepler 384 34.75% 17.30% 70.60% 

ESM1b 384 46.35% 24.80% 96.05% 

Georgiev 384 72.10% 42.90% 96.75% 

LSTM 384 64.10% 70.75% 99.90% 

MSA Transformer 384 69.35% 63.15% 99.95% 

OneHot 384 95.90% 46.95% 90.60% 

ProtBert-BFD 384 43.15% 25.10% 99.50% 

ResNet 384 66.00% 55.70% 92.85% 

TAPE-Transformer 384 65.45% 46.80% 98.00% 

UniRep 384 49.25% 48.40% 99.55% 
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Table A-5. Expected max of the top 96 predictions, mean of the top 96 predictions, and 

normalized discounted cumulative gain (NDCG) for the 2000 ftMLDE simulations 

performed using training data designed to be enriched in fit variants, related to Figure 2-3. 

Thresh Max Fitness 

Achieved 

Mean Fitness 

Achieved 

NDCG 

0.000 0.656 0.210 0.821 

0.011 0.778 0.313 0.885 

0.034 0.795 0.331 0.894 

0.057 0.810 0.343 0.899 

0.080 0.806 0.345 0.901 

 

Table A-6. Effectiveness of zero shot strategies that did not rely on a mask filling protocol, 

related to Figure 2-4. A more positive Spearman ρ indicates a more effective prediction. The 

entry “Triad_FlexibleBb_ΔΔG” refers to zero-shot predictions made using predicted ΔΔG 

with a flexible protein backbone; the entry “Triad_FlexibleBb_RMSD” refers to zero-shot 

predictions made using predicted RMSD with a flexible protein backbone; the entry 

“Triad_FixedBb_ΔΔG” refers to zero-shot predictions made using predicted ΔΔG with a 

fixed protein backbone. 

ZeroShotStrategy Spearman ρ 

Triad_FlexibleBb_ΔΔG -0.02 

DeepSequence 0.05 

Triad_FlexibleBb_RMSD 0.06 

EVmutation 0.21 

Triad_FixedBb_ΔΔG 0.27 
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Table A-7. Effectiveness of different transformer models for zero-shot predictions of GB1 

fitness using a masked token prediction protocol, related to Figure 2-4. A more positive 

Spearman ρ indicates a more effective prediction. All models except the MSA Transformer 

showed poor predictive performance when used for zero-shot prediction; the mask filling 

rankings provided by many models showed negative correlation with GB1 fitness, indicating 

a prediction that was worse than a random guess. 

Model Name Parameters 

(Millions) 

Training Data 

Source 

Conditional 

Spearman ρ 

Naïve 

Spearman ρ 

esm1_t34_670M_UR50S 670 UniRef50 -0.12 -0.09 

esm1_t34_670M_UR50D 670 

UniRef100 

Sampled Evenly 

Across UniRef50 

Clusters 

-0.11 -0.08 

esm1_t12_85M_UR50S 85 UniRef50 -0.08 -0.06 

ESM1b 650 UniRef50 -0.06 -0.03 

esm1_t6_43M_UR50S 43 UniRef50 -0.05 -0.03 

ProtBert-BFD 420 
Big Fat Database 

(BFD) 
-0.05 0.00 

ProtBert 420 UniRef100 -0.02 0.00 

esm1_t34_670M_UR100 670 UniRef100 0.03 0.04 

MSA Transformer 100 

MSAs of Each 

UniRef50 

Sequence Against 

UniClust30 

0.20 0.24 
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Table A-8. The tunable parameters with their default values for the different neural network 

architectures used in MLDE.  
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Table A-9. The tunable parameters with their default values for the base models used in the 

XGBoost models of MLDE. “See XGBoost docs” indicates that the default values provided 

in XGBoost were used. 
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Table A-10. The tunable parameters with their default values for the scikit-learn models used 

in MLDE. “See sklearn docs” indicates that the default values provided in scikit-learn were 

used. 
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Table A-11. Key resources related to Chapter 2. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Protein G Domain B1 (GB1) 

Combinatorial Fitness 

Landscape 

(Wu et al., 2016) DOI: 10.7554/eLife.16965 

Protein G Domain B1 (GB1) 

Structure 

Protein Data Bank 

(PDB) 

PDB: 2GI9 

Encodings, training indices, and 

other information needed for 

replicating this work; simulation 

results by model; summary 

statistics for all simulations  

This Study DOI: 10.22002/D1.1958 

Additional figures too numerous 

to include in the appendices 

This Study https://github.com/fhalab/MLDE/SupplementalFigures; 

https://data.caltech.edu/badge/latestdoi/318607673 

Software and Algorithms 

Triad Protabit, Pasadena, 

CA, USA 

https://triad.protabit.com/ 

Anaconda Package Manager  https://anaconda.org/; Specific package versions used in 

this work are given in the provided mlde.yml and 

mlde2.yml files on the GitHub repository associated 

with this work (https://github.com/fhalab/MLDE); 

especially important packages are listed in subsequent 

entries 

Tasks Assessing Protein 

Embeddings (TAPE) 

(Rao et al., 2019) https://github.com/songlab-cal/tape-neurips2019 

Evolutionary Scale Modeling 

(ESM) 

(Rao et al., 2021; 

Rives et al., 2021) 

https://github.com/facebookresearch/esm 

ProtTrans (Elnaggar et al., 

2020) 

https://github.com/agemagician/ProtTrans 

Machine Learning-Assisted 

Directed Evolution (MLDE) 

This Study https://data.caltech.edu/badge/latestdoi/318607673 

Keras Python Package  https://anaconda.org/conda-forge/keras 

XGBoost Python Package (Chen and Guestrin, 

2016) 

https://anaconda.org/conda-forge/xgboost 

scikit-learn Python Package (Buitinck et al., 

2013) 

https://anaconda.org/anaconda/scikit-learn 

 

https://github.com/fhalab/MLDE/SupplementalFigures
https://anaconda.org/
https://github.com/fhalab/MLDE
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A p p e n d i x  B  

 SUPPORTING MATERIAL FOR CHAPTER 4 

B.1 Materials and Methods 

B.1.1 Single-Site-Saturation Library Generation for TrpB  

Saturation mutagenesis libraries were prepared using a modification of the “22-codon trick” 

described by Kille et al.85 Primers were first designed using the templates given in Table 

B-12. For the forward primers, each sequence of “NNN” in these templates was replaced 

with “NDT,” “VHG,” and “TGG,” resulting in a total of three degenerate primers that could 

then be mixed at a ratio of 12:9:1, respectively. The reverse primers were used without 

changes.  

Primers were also designed that bind within the ampicillin resistance (AmpR) gene in 

pET22b(+) with sequences as given in Table B-13. These primers were designed such that, 

when used in combination with the site-specific primers to run a PCR, two medium-length 

fragments would be created with a break in the AmpR gene. For the forward site-saturation 

primers, a PCR was performed using the reverse AmpR primer, resulting in a fragment from 

~1500–2000 bp long. For the reverse site-saturation primers, a PCR was performed using the 

forward AmpR primer, resulting in a fragment ~4500–5000 bp long.  

Once PCRs finished, 1 µL of DpnI (NEB R0176S) was added to each of the reactions, which 

were then incubated at 37 °C for 1 h to digest the unmutated template plasmid. The presence 

of correctly sized fragments was confirmed via gel electrophoresis and each fragment was 

then excised from the gel and purified with the Zymoclean Gel DNA Recovery Kit (Zymo 

Research D4002). 

Purified fragments were then assembled following the standard Gibson assembly method.197 

After 1 h at 50 °C, the reaction mixtures were desalted with a DNA Clean & Concentrator-5 

kit (Zymo Research D4013) and used to transform electrocompetent E. cloni cells (Lucigen 

60051-1). Libraries were spread onto solid agar selection medium consisting of Luria Broth 

(RPI L24040-5000.0) supplemented with 100 µg/mL carbenicillin (LBcarb) and incubated at 
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37 °C until single colonies were observed. Individual colonies were then transferred into the 

wells of 96-well 2-mL deep-well plates containing 300 µL of LBcarb to isolate monoclonal 

enzyme variants, with 8 wells being reserved for control conditions, giving 4-fold 

oversampling of the 22-codon library. These cultures were grown overnight at 37 °C, 220 

rpm, and 80% humidity in an Infors Multitron HT until they reached stationary phase, at 

which point 100 µL from each well were mixed with an equal volume of 50% glycerol and 

stored at –80 °C for future use. 

For protein expression, 20 µL of the remaining culture were used to inoculate 630 µL of 

Terrific Broth with 100 µg/mL carbenicillin (TBcarb). These were then grown at 37 °C, 220 

rpm, and 80% humidity for 3 hours in an Infors Multitron HT, at which point they were 

placed on ice for 30 minutes. Following this, 50 µL of a 14 mM solution of isopropyl-β-d-

thiogalactoside (IPTG; GoldBio #I2481C100) in TBcarb were added to each well to induce 

protein expression at a final concentration of 1 mM IPTG. Expression proceeded in the same 

Infors Multitron HT shaker as before at 22 °C, 220 rpm for roughly 18 hours. Cells were 

harvested via centrifugation at 4500g for 10 minutes, the supernatant was removed, and the 

plates (now containing pelleted, expressed cells) were placed at –20 °C until needed. 

Once cells had been harvested, cultures for evSeq were prepared. These cultures were started 

from the 96-well plate glycerol stocks prepared prior to moving into the cell expression 

protocol; the cultures were grown overnight (~18hrs) in an Infors Multitron HT (220 rpm, 

37 °C) to saturation in 96-well deep-well plates in 300 µL of LBcarb. These cultures were then 

frozen and stored at –20 °C to be used for sequencing with evSeq. 

A GenBank file detailing the plasmid and primers used in this section is available on the 

evSeq GitHub at https://github.com/fhalab/evSeq/tree/master/genbank_files/tm9d8s.gb. 

B.1.2 Sequencing TrpB Libraries with evSeq  

Frozen overnight cultures (preparation detailed in the previous section) were thawed at room 

temperature. Libraries were then sequenced with the process described in B.2.3; the evSeq 

software was run using all default parameters (average_q_cutoff = 25, bp_q_cutoff = 30, 

https://github.com/fhalab/evSeq/tree/master/genbank_files/tm9d8s.gb
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length_cutoff = 0.9, match_score = 1, mismatch_penalty = 0, gap_open_penalty = 3, 

gap_extension_penalty = 1, variable_thresh = 0.2, variable_count = 10) with the 

“return_alignments” flag thrown. The inner primers used for library preparation are in Table 

B-14. The barcode plates (Table B-3 – Table B-10) were paired to positions as given in Table 

B-15. 

B.1.3 Measuring the Rate of Tryptophan Formation  

Rate of tryptophan formation data was collected with the same procedure described in Rix 

et al. for non-heat-treated lysate preparation in the section “Indole rate measurements” with 

a few modifications: lysis occurred in 300 μL KPi buffer with 100 μM pyridoxal 5’-

phosphate (PLP) supplemented with 1 mg/mL lysozyme, 0.02 mg/mL bovine pancreas 

DNase I, and 0.1x BugBuster; lysis occurred at 37 °C for 1 h.101 

B.1.4 Four-Site-Saturation Library Generation for RmaNOD  

Positions S28, M31, Q52, and L56 of a variant of RmaNOD (RmaNOD Y32G) were targeted 

for comprehensive site-saturation mutagenesis using a variant of the 22-codon trick 

originally described by Kille et al.85 Due to the proximity of positions S28 and M31, it was 

easiest to use the same mutagenesis primers to target them; the same was done for positions 

Q52 and L56. Because the 22-codon trick requires three degenerate codons per position 

targeted, nine individual primers capturing all combinations (3 codons ^ 2 positions/per 

primer = 9 primers) of the degenerate codons had to be ordered for each of the two mutagenic 

primers. Sequences of these primers are given in Table B-16.  

The primers from Table B-16 were all ordered from IDT at 100 μM. Both a “forward” and a 

“reverse” primer mixture were prepared by combining individual forward and reverse 

primers in proportion to the number of individual codons they encoded. A 10 μM forward-

reverse primer mixture was then prepared by adding 10 μL of both the forward and reverse 

primer mixtures to 80 μL ddH2O. Once the forward-reverse primer mixture was prepared, it 

was used in a PCR to build a pool of DNA fragments containing the four-site combinatorial 

libraries. Two fragments that captured the remainder of the RmaNOD gene and host plasmid 
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(pET22b(+)) were also produced by PCR. The primers used for these flanking fragments are 

given in Table B-17. 

After PCR completed 1 μL DpnI (NEB R0176S) was added to each reaction. The reactions 

were then held at 37 °C in a thermalcycler for 1 h. The PCR fragments were then gel-

extracted using a Zymoclean Gel DNA Recovery Kit (D4002). 

Fragments were to eventually be assembled using Gibson assembly.197 Because the 

efficiency of Gibson assembly increases with decreasing numbers of fragments, an assembly 

PCR was performed to combine flanking fragment 1 (see Table B-17 for details) and the 

variant fragment. The resultant assembled fragment was then gel-extracted, again using a 

Zymoclean Gel DNA Recovery Kit (D4002). 

To complete construction of the library of variant plasmids, a Gibson assembly was 

performed to combine the assembled PCR fragment and flanking fragment 0. After Gibson 

assembly, the Gibson reaction was cleaned using a Monarch PCR & DNA Cleanup Kit (NEB 

CAT T1030L). The cleaned Gibson product was next used to transform electrocompetent E. 

cloni BL21 DE3. Transformed cells were spread onto solid agar selection medium consisting 

of Luria Broth (RPI L24040-5000.0) supplemented with 100 µg/mL ampicillin (LBamp) and 

incubated at 37 °C until single colonies were observed. 

To build the 96-well plates of RmaNOD variants used to demonstrate evSeq, 400 μL LB + 

100 μg/mL ampicillin were first added to each well of 5x 96-well deepwell plates. Colonies 

from the agar plates grown overnight were then picked into the wells of the deepwell plates. 

The plates were placed in an Infors Multitron HT at 240 rpm, 37 °C for ~16 h. To glycerol 

stock the now-stationary-phase culture, 100 μL overnight culture were added to 100 μL 50% 

glycerol before being stored at -80 °C until its use in evSeq library preparation. 

A GenBank file detailing the plasmid and primers used in this section is available on the 

evSeq GitHub (https://github.com/fhalab/evSeq/tree/master/genbank_files/rmanod_y32g

.gb). 
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B.1.5 Sequencing RmaNOD Libraries with evSeq 

To begin preparation of culture for evSeq with the RmaNOD variants, cultures in 96-well 

deep-well plates (with 300 µL of LBcarb) were started from the 96-well plate glycerol stocks 

prepared in the previous section. The plates were placed in an Infors Multitron HT at 240 

rpm; the cultures were grown overnight (~18hrs) before being frozen and stored at –20 °C. 

To start the evSeq protocol, frozen overnight cultures were thawed in a room temperature 

water bath. Libraries were then sequenced with the process described in B.2.3; the evSeq 

software was run using the same parameters as for the TrpB data analysis (see Section B.1.2). 

The inner primers used for evSeq library preparation are given in Table B-18. The barcode 

plates (Table B-3 – Table B-10) were paired to positions as given in Table B-19. 

B.1.6 Oligo Design 

B.1.6.1 Inner Primer Design 

The inner primers of evSeq are specific to the region of interest. Each region of interest is 

captured by both a forward and reverse primer. These primers have the below general layout: 

F: 5’ – CACCCAAGACCACTCTCCGGXXXXXXX… – 3’ 

R: 5’ – CGGTGTGCGAAGTAGGTGCXXXXXXXX… – 3’ 

The 5’ region is a universal adapter to which outer primers bind (see Section B.2.2) while 

the 3’ region (denoted by “X” in the primers above) is specific to the region of interest. Note 

that the length of the variable 3’ region will vary depending on the target gene (this is 

indicated by the ellipses at the end of the poly-X region). Note that there is no need for the 

two primers in the pair to be equal length—I show them as such to highlight the fact that the 

forward universal adapter is one base longer than the reverse universal adapter. Detailed 

instructions for effective primer construction are provided on the evSeq wiki 

(https://fhalab.github.io/evSeq/1-lib_prep.html#inner-primer-design). 

  

https://fhalab.github.io/evSeq/1-lib_prep.html#inner-primer-design
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B.1.6.2 Outer Primer Design 

The barcode (outer) primers used in evSeq all follow the below layout: 

F: 5’ – TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGXXXXXXXCACCCAAGACCACTCTCCGG – 3’ 

R: 5’ – GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGXXXXXXXCGGTGTGCGAAGTAGGTGC – 3’ 

Each of these primers consists of (1) a 5’ sequence matching the Illumina Nextera 

transposase adapters, (2) a central unique 7-nucleotide barcode (Table B-1), and (3) a 3’ 

universal seed that matches the 5’ adapter of the inner primers (see Section B.1.6.1). Note 

that only Illumina indices compatible with the Nextera transposase adapters can be used with 

the provided outer primer designs; other indexing systems would require different adapters. 

The full set of outer primers used in this study can be found in Table B-2; they can be ordered 

from IDT by following the instructions provided in B.2.1. 

B.1.6.3 Barcode Design 

evSeq uses 192 unique 7-nucleotide barcodes (Table B-1). The barcodes were designed to 

satisfy the below criteria: 

1. All barcodes must have GC-content of 40–60%. 

2. All barcodes must be at least 3 substitutions apart. This is to prevent misassignment 

of reads due to sequencing errors of the barcodes. 

3. No barcode can have 3 of the same bases in a row. This is to reduce sequencing 

errors.  

4. No barcode can be a sub-sequence of the Nextera transposase adapters or their 

reverse complements (see below). This is to avoid interference with downstream 

Illumina chemistry. 

5. No barcode can be a sub-sequence of the Illumina p5 and p7 flow cell-binding 

sequences or their reverse complements (see below for sequences). Again, this is to 

avoid interference with downstream Illumina chemistry. 
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The Nextera transposase adapter sequences are below: 

5’ – TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG – 3' 

5’ – GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG – 3' 

The p5 and p7 flow cell-binding sequences are below: 

p5: 5’ – AATGATACGGCGACCACCGAGATCTACAC – 3' 

p7: 5’ – CAAGCAGAAGACGGCATACGAGAT – 3’ 

B.2 Protocols 

B.2.1 Ordering Barcode Primers from IDT 

I provide a pre-filled IDT order form for all evSeq primers on the evSeq GitHub repository 

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/IdtOrderForm.xlsx). This order 

form can be used to order evSeq primers in the 96-well plate layout needed to prepare the 

evSeq barcode primer mixes (see Section B.2.2). To order evSeq primers: 

1. Navigate to the IDT DNA oligo ordering page: 

https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-

oligos.  

2. Under “Ordering,” select “Plates.” 

3. From the “Single-stranded DNA” table, select the amount (in nanomoles) of oligo 

you wish to order (denoted in the “Product” column) by clicking “Order” under the 

“96 Well” column. For the work described in Chapter 4, 25 nmole oligos were 

ordered. 

4. On the next page, click “UPLOAD PLATE(S).” Using the pop-up that results, upload 

the “IdtOrderForm.xls” provided on the evSeq GitHub repository. The pop-up should 

recognize two plates—one called “FBC” and the other called “RBC”—each 

https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/IdtOrderForm.xlsx
https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-oligos
https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-oligos
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consisting of 96 wells. Click “ADD PLATES” followed by “CLOSE THIS 

WINDOW” to close the window. 

5. For the “FBC” plate, click “Plate Specifications.” Confirm that the below 

specifications are set as follows: 

a. Purification: Standard Desalting 

b. Plate Type: Deep Well 

c. Ship Option: Wet 

d. Buffer: IDTE 8.0 pH 

e. Normalization Type: Full Yield 

f. Concentration: 100 μM 

Note that the bolded specifications are different from default. While not strictly required, 

it is strongly recommended that primers be ordered wet at 100 μM; reconstituting 

plates of dry primers to 100 μM can be very time-consuming without robotic support. 

6. Once specifications are correctly set for the “FBC” plate, click “APPLY SETTINGS 

TO ALL PLATES” at the bottom of the specifications pop-up, followed by “YES” 

on the window that follows.  Quickly check to make sure that the same settings as 

recommended in step 5 were applied to “RBC” by clicking on the “RBC” “Plate 

Specifications” option. 

7. Add the primers to your order by clicking “ADD TO ORDER,” then follow standard 

IDT procedures for purchasing.  
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B.2.2 Preparation of evSeq Barcode Primer Mixes 

There are 96 unique forward and 96 unique reverse outer primers (Table B-2), corresponding 

to 96 unique forward and 96 unique reverse barcodes (Table B-1). The forward and reverse 

outer primers were ordered following the procedure given above in Section B.2.1.  

Each well sequenced in evSeq is encoded by a different combination of forward and reverse 

barcode. Different primers from the forward and reverse outer primer plates can be mixed 

together to associate a barcode combination with a specific well in a specific plate. Because 

the same outer primers can be used regardless of inner primer, it is convenient to keep plates 

of barcode combinations on hand. Plates of outer primer combinations (hereafter also 

referred to as “barcode plates”) can be stored for long periods of time. 

Throughout the development of evSeq, the same 8 barcode plates were used (consisting of 

768 different combinations of forward and reverse outer primers) to encode plate and well 

locations. Barcode plates are named DI01–DI08, where “DI” stands for “dual-indexed.” The 

exact barcode combinations used by evSeq are given in Table B-3 – Table B-10; these 

combinations can also be found in the “index_map.csv” file on the evSeq GitHub: 

(https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv). By default, the 

evSeq software assumes the barcode plates used for library preparation are laid out in the 

order given in the “index_map.csv” file. To build the barcode plates depicted in Table B-3 – 

Table B-10, the below procedure was followed: 

1. 10-fold dilutions of each of the forward and reverse outer primer plates ordered from 

IDT were prepared by adding 10 μL of each primer stock to 90 μL ddH2O, keeping 

the well layout constant. Dilutions were performed in fully-skirted PCR plates (Bio-

Rad HSP9601). The plates from IDT had a starting concentration of 100 μM, so the 

final concentration of these two diluted plates was 10 μM. 

2. To 8 fully-skirted PCR plates, 80 μL ddH2O were added, followed by 10 μL diluted 

(10 μM) forward barcode plate. The well layout was kept constant for the forward 

barcode primers.  

https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv
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3. To the each of the 8 plates, 10 μL of diluted (10 μM) reverse barcode plate were 

added, shifting the well layout down by 1 row per plate. For instance, row A of the 

reverse plate went into row A of the first barcode plate, row B of the second barcode 

plate, row C of the third barcode plate, and so on; row H of the reverse plate went 

into row H of the first barcode plate, row A of the second barcode plate, row B of the 

third barcode plate, and so on. 

4. When not in use, the 10-fold dilutions prepared in step 1 were stored at –20 °C, while 

the barcode plates (each well of which had a combination of a specific forward and 

reverse primer at a final concentration of 1 μM) were stored at 4 °C. Both the 10 μM 

stock plates and 1 μM barcode plates can be stored for long periods of time—I have 

noticed no drop in effectiveness even after years of storage. 

B.2.3 evSeq Library Preparation/Data Analysis Protocol 

The evSeq library preparation protocol was designed to be as cost-effective as possible. The 

quantities used in the below protocol were chosen to fit within the constraints of the resources 

available to the Arnold Lab (these are the quantities used for all evSeq experiments 

performed in Chapter 4). However, with automation support (e.g., liquid handling robots) 

and higher-capacity molecular biology equipment, the entire protocol could be scaled down 

to lower quantities, further improving cost-effectiveness.  

The list of steps below can be followed to prepare an evSeq library for sequencing using the 

outer primers described in Section B.2.2. Note that when first using a new set of inner 

primers, it is recommended to complete the below protocol for a few wells as a test before 

deploying them for plate-scale reactions.  

The library preparation protocol can be completed with the below steps. Note that provided 

part numbers are for the materials/reagents used while developing this protocol—the same 

components from other providers will almost certainly work as well. This protocol is also 

provided on the evSeq wiki (https://fhalab.github.io/evSeq/1-lib_prep.html#pcr-protocol). 

https://fhalab.github.io/evSeq/1-lib_prep.html#pcr-protocol
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1. Prepare a PCR master mix for the number of wells to be sequenced according to the 

below table. Note that an excel calculator is provided on the evSeq GitHub repository 

for easy calculation of master mix volumes based on the number of plates to be 

sequenced 

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/MastermixCalculator.x

lsx). 

Component Amount per 10 μL rxn (μL) 

Thermopol Buffer (NEB B9004S) 1.00 

10 mM dNTPs (NEB N0447) 0.20 

Taq Polymerase (NEB M0267) 0.05 

ddH2O 5.33 

Mol-Bio Grade DMSO (MP 194819) 0.40 

Inner Primer Mix (10 μM) 0.02 

a. Note that the above table assumes that each evSeq PCR reaction will be 10 

μL—if scaling down, adjust volumes accordingly. 

b. Note that the above table also assumes the same set of inner primers is used 

to prepare all plates. If this is not the case, a separate master mix will need to 

be prepared for each set of inner primers. 

c. The Inner Primer Mix (10 μM) is a combination of forward and reverse inner 

primers at a final concentration of 10 μM each in diH2O (this can be prepared, 

e.g., by adding 10 μL of 100 μM forward inner primer and 10 μL of 100 μM 

reverse inner primer to 80 μL diH2O).  

2. Add 7 μL of master mix to each well of as many half-skirted PCR plates (USA 

Scientific 1402-9700) as will be sequenced. These are referred to as “PCR plates” in 

the remainder of this protocol.  

3. Stamp 1 μL of overnight culture from each plate to be sequenced into the PCR plates. 

https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/MastermixCalculator.xlsx
https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/MastermixCalculator.xlsx
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a. “Stamp” means “apply to all wells, keeping the plate layout consistent.” For 

example, 1 μL of culture from library 01 F02 is moved to PCR plate 01 F02, 

1 μL of culture from library 02 C07 is moved to PCR plate 02 C07, etc. 

b. Note that both fresh culture and previously frozen culture (thawed before use 

as template) will work here. No modifications need to be made to the 

protocol.  

4. Complete the stage 1 PCR using the below thermalcycler conditions. This PCR 

amplifies the fragment of interest from the template DNA contained in the cell 

culture. 

Step Temperature (°C) Time 

1 95 5 min 

2 95 20 s 

3 TD 63-> 54 20 s 

4 68 30 s 

5 Return to 2, 9 x   

6 4 Hold 

a. "TD” above stands for “touchdown.” A touchdown step decrements the 

temperature by 1 °C each cycle. The touchdown in the above PCR starts at 

63 °C and drops to 54 °C by the end.  

b. Note that the extension step (step 4) is long enough to amplify a 500 bp 

fragment. Longer fragments will need a longer extension time. Note, 

however, that you may see reduced sequencing efficiency with fragments that 

are too large.  

c. While developing this protocol, the below thermal cycler models were used: 

i. Eppendorf Mastercycler ep Gradient S Thermal Cycler, Model 5345 

with 96-well universal block 
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ii. Eppendorf Mastercycler pro S vapo.protect 

iii. Eppendorf Mastercycler X50s 96-well silver block thermal cycler 

5. Once PCR has completed, stamp 2 μL of 1 μM barcode primer mix from the barcode 

plates into the PCR plates (see Section B.2.2 for details on preparation of barcode 

plates). Record which barcode plate was stamped into which PCR plate. 

6. Perform the second step PCR using the below conditions: 

Step Temperature (°C) Time 

1 95 20s 

2 68 50 s 

3 Return to 1, 24 x   

4 68 5 min 

5 4 Hold 

a. Again, longer fragments may need a longer extension time. 

7. While the second PCR runs, prepare a 2% agarose gel with SYBR gold added 

(Thermo Fisher Scientific, S11494).  

8. Once the second PCR has completed, for each plate, pool 5 μL of each reaction into 

100 mM EDTA to a final concentration of 20 mM EDTA—this step quenches the 

reactions. Pooling will leave you with as many tubes as you have plates, each 

containing ~600 μL [96 rxns/plate × (5 μL per rxn + 1.25 μL 100mM EDTA per 

reaction)].  

a. Note: The most efficient way to do the pooling varies depending on the 

equipment available. The Arnold Lab relies on 12-channel multichannel 

pipets for this step, and so will accomplish pooling by (1) adding 10 μL 100 

mM EDTA to each well in a single row of a fresh PCR plate, (2) transferring 

5 μL reaction from each row in the plate-to-be-pooled into the single row of 

EDTA, and (3) transferring 40 μL from each well in the single row of pooled 
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reactions using a single-channel pipet (leaving 10 μL dead volume in each 

well) to a microcentrifuge tube. An alternate strategy might be, for instance, 

adding 120 μL 100 mM EDTA to a trough, then pipetting 5 μL of all reactions 

from a plate into this trough. Whatever strategy is taken, what is important in 

pooling is that the ratios of the reactions in the pool remain equal—sacrificing 

some reaction as dead volume is perfectly acceptable to achieve equal mixing 

in this step. 

9. For each tube made in step 8, take 100 μL of pooled reaction and add it to 20 μL 6x 

loading dye (NEB B7025S) in a microcentrifuge tube. It is critical that the loading 

dye does not contain SDS. At this point, the remaining pooled reaction from step 8 

can be stored at –20 °C for future use (i.e., if the later steps of this protocol ever need 

to be redone). 

a. Note that most of the pooled reaction is not moved into later steps with this 

protocol. Again, if relevant automation and molecular biology equipment is 

available, reactions can be scaled down below 10 μL, reducing wasted 

reaction. Current reaction sizes are set to minimize pipetting error. 

10. Load the contents of each tube made in step 9 into the agarose gel prepared in step 7. 

The contents of each tube should be kept separate (i.e., loaded into different lanes in 

the gel). Load a ladder (I typically use 100 bp ladder from NEB, N3231S) in the 

flanking lanes. 

11. Run the agarose gel at 130 V until the bands have sufficiently migrated. Often, you 

will see two bands: the lower band is usually primer dimer and the upper is the target. 

Reference the ladder to identify your product, remembering that the two-step PCR 

adds 120 bp of additional length (from the universal adapter, barcode, and 

transposase adapters) onto the gene fragment of interest. 
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12. Gel-extract the target bands from the agarose gel, again keeping bands from different 

plates separate. I typically use Zymoclean Gel DNA Recovery Kit (Zymo Research, 

D4001) for this step. Elution should be performed at a low volume—I typically elute 

in 10 μL of ddH2O.  

13. After gel extraction, combine the gel-extracted pools from each plate in equimolar 

concentrations. A calculator on the evSeq GitHub repository is provided that can be 

used to normalize equal-length fragments to a pre-specified concentration 

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/LibDilCalculator.xlsx). 

a. Note that the quantification here need not be extremely robust. For all results 

presented in Chapter 4, this step was performed using DNA concentrations 

output by a GE NanoVue Plus. 

b. Tip: It is generally not advised to pool amplicons drastically different in 

length. Shorter fragments are preferentially sequenced in NGS, and so the 

shorter amplicon will dominate the number of reads. Separate submissions 

should be made for libraries with very different lengths. 

14. After the previous step, you should have a single tube of cleaned, normalized DNA 

consisting of all amplicons from all plates to be pooled. This DNA will be submitted 

to your sequencing provider for inclusion in a multiplexed sequencing run. You 

should work with your sequencing provider to ensure that all requirements are met 

to slot into their pipeline. For instance, this protocol assumes that the sequencing 

provider can add Nextera-compatible Illumina indices and flow-cell-binding 

sequences via PCR—it should be confirmed that your sequencing provider can do 

this before submitting your sample. 

a. Note: Throughout the development of evSeq, I used the “Customized PCR 

Amplicon Sequencing” services of Laragen Inc. (http://www.laragen.com/

laragen_nextgen.php). 

https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/LibDilCalculator.xlsx
http://www.laragen.com/laragen_nextgen.php
http://www.laragen.com/laragen_nextgen.php
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b. Also note that, depending on your sequencing provider, it may be possible 

(or even necessary) to add the Illumina indices yourself. Again, you should 

work with your provider to determine the best course of action for submitting 

evSeq libraries. Adding indices simply requires one final PCR on the pooled 

evSeq library. 

15. Once sequencing is complete, your sequencing provider should return two fastq (or 

fastq.gz) files to you. One will contain the forward reads for your pooled samples and 

the other will contain the reverse reads—both files are needed by the evSeq software 

for processing.  

16. Using the files returned in step 15, run the evSeq software to process results and 

assign variants to their original wells. Detailed instructions on how to use the evSeq 

software and interpret its outputs are provided on the evSeq Wiki 

https://fhalab.github.io/evSeq/4-usage.html 

  

https://fhalab.github.io/evSeq/4-usage.html
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B.3 Supplemental Figures 

 

Figure B-1. Comparison of the tradeoff between sequencing depth and cost for Sanger 

sequencing (green), a multiplexed MiSeq run (red), and an evSeq library (blue). The top row 

gives the total cost for sequencing a given number of variants; the bottom row gives the 

expected number of reads per variant for sequencing a given number of variants. Note that 

the x-axes for the left and right columns are different. The limit on the x-axis for the left 

column is set to reflect what is typically the maximum level of multiplexed NGS available 

(384 samples) when outsourcing sequencing. To be consistent with the language used 

throughout Chapter 4, the x-axis labels refer to elements run in a multiplexed NGS run as 

“samples” and elements contained in an evSeq library as “variants.” I assume that the 

elements sequenced in these examples are derived from protein mutant libraries amenable to 

sequencing by evSeq (i.e., the sequenced elements are targeted amplicons). Top Row: We 

see that both multiplexed NGS on a commercial MiSeq run and evSeq have constant cost 

with an increasing number of elements sequenced; Sanger, in contrast, scales linearly with 

the number of elements sequenced. Many elements (669 with the cost estimates used to make 

this figure) need to be added to a multiplexed MiSeq run before it becomes more cost-

effective than Sanger. Even though research groups may frequently meet or exceed 669 

variants in a standard protein engineering experiment, the flat cost of $2000 is far too high 

to justify regular sequencing of every variant. Many fewer variants (34) need to be added to 

an evSeq run before it becomes cost-effective over Sanger. A flat cost of ~$100 is justifiable 

for regularly sequencing all variants. Bottom Row: NGS technologies trade off sequencing 

depth for cost effectiveness. Notably, the per-sample sequencing depth achieved by 

commercially available multiplexed runs is much higher than what is needed for reliable 

sequencing. evSeq, in contrast, more efficiently spreads reads, keeping the expected number 

of reads closer to, yet still above the minimum needed for effective sequencing. Notes on 

Figure Generation: Cost of a single MiSeq run ($2000) is based on an estimate provided by 
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Laragen Inc. Cost of a single Sanger sequencing run ($2.99) is based on a quote from 

MCLAB for sequencing a single 96-well plate. The number of expected reads from a MiSeq 

run (13.5 million) is based on estimates provided by Illumina for a MiSeq Reagent Kit v2 

(note that almost double the number of reads can be achieved using a v3 kit—I used v2 here 

to be conservative with my estimates for NGS/evSeq). The number of expected reads for a 

variant sampled with evSeq assumes the evSeq library was sequenced as 1 of 96 samples on 

a multiplexed sequencing run using a MiSeq Reagent Kit v2. The cost of a single evSeq run 

is based on an estimate provided by Laragen for a single sample in a multiplexed sequencing 

run using a PE150 kit. 
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Figure B-2. Sequencing depths for the TmTrpB9D8* evSeq libraries. Left: A histogram of 

sequencing depths for each TmTrpB9D8* variant contained in the full evSeq library. The 

vertical black line gives the median. Right: Violin plots showing the distribution of read 

depths over the wells in each sequenced plate. Variability between plates likely indicates 

inaccurate quantification of pooled plates prior to final assembly of the evSeq library. 

Notable, libraries 1-5 use different evSeq primers than libraries 6-8.  

 

             

                

 

  

  

  

  

 
 
 
 
  

     

 

   

   

   

   

 
 
   

 
 
 
 
 
  



 

 

183 

 

Figure B-3. Sequencing depths for the RmaNOD evSeq libraries. Left: A histogram of 

sequencing depths for each RmaNOD variant contained in the full evSeq library. The vertical 

black line gives the median. Right: Violin plots showing the distribution of read depths over 

the wells in each sequenced plate. Variability between plates likely indicates inaccurate 

quantification of pooled plates prior to final assembly of the evSeq library.  
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B.4 Barcode and Outer Primer Sequences 

Table B-1. evSeq barcode sequences used in Chapter 4. The “Plate” and “Well” columns 

give the location of these sequences in the IDT order form provided on the evSeq GitHub 

repository (see Ordering Barcode Primers from IDT and Barcode Design, above). Note that 

barcode sequences can also be found in the “index_map.csv” file found on the evSeq GitHub 

repository (https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv); this csv 

file also gives the combinations of barcodes used to define the dual indexing (DI) plates. 

Plate Well Barcode 

FBC A01 GATCATG 
FBC A02 TACATGG 
FBC A03 AAGCACC 
FBC A04 TGGCTCA 
FBC A05 CTTGCTC 
FBC A06 GAAGCGT 
FBC A07 TCTCCAT 
FBC A08 TTGAAGG 
FBC A09 GAATGTC 
FBC A10 ATCTCCA 
FBC A11 GCGTTAT 
FBC A12 TGCACCA 
FBC B01 TGCCTAT 
FBC B02 AGGAATC 
FBC B03 TCCACTG 
FBC B04 TTGTACC 
FBC B05 TTCGAGT 
FBC B06 CTTCAGC 
FBC B07 CAGTGCA 
FBC B08 TGCTGTC 
FBC B09 CGCCATT 
FBC B10 GCCATGA 
FBC B11 CACAACG 
FBC B12 CTTCGCT 
FBC C01 TCGTGAA 
FBC C02 TTATCGG 
FBC C03 AGACCAT 
FBC C04 ACATGAG 
FBC C05 ACGTACT 
FBC C06 CACCTCA 
FBC C07 GTTGGAG 
FBC C08 TGTTCTG 
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FBC C09 CTTACGT 
FBC C10 GAGGTTG 
FBC C11 ATGGACA 
FBC C12 ACACTGA 
FBC D01 ATCTGTG 
FBC D02 AATGTGC 
FBC D03 GAGTTGA 
FBC D04 TTCTCAC 
FBC D05 TGAAGCG 
FBC D06 GCTACAA 
FBC D07 AGAGAAC 
FBC D08 CAGAGTG 
FBC D09 TTCCGAA 
FBC D10 GTACGAC 
FBC D11 ACTCTTG 
FBC D12 CCAACCA 
FBC E01 CTCTAGA 
FBC E02 AATCGGA 
FBC E03 CGTCCTA 
FBC E04 GGAATGT 
FBC E05 TCCAAGC 
FBC E06 GCACCTA 
FBC E07 TTGCGTT 
FBC E08 CAGGATT 
FBC E09 CTGCATA 
FBC E10 CGTTGAG 
FBC E11 TGCTACT 
FBC E12 GTGATCC 
FBC F01 GCATGGT 
FBC F02 GTCGTTA 
FBC F03 CCTGACA 
FBC F04 AGTGTAG 
FBC F05 CGAGCAA 
FBC F06 CTACTCC 
FBC F07 GATGCCA 
FBC F08 GACCGAT 
FBC F09 ACGTTGG 
FBC F10 ATGAGCG 
FBC F11 TACTCCG 
FBC F12 GATTCAC 
FBC G01 ATGACGC 
FBC G02 GGTTGTT 
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FBC G03 GTACTTG 
FBC G04 TAGCAAG 
FBC G05 CTGCCAT 
FBC G06 GAGAACA 
FBC G07 GTATAGC 
FBC G08 TGATGGA 
FBC G09 GGCAGTA 
FBC G10 GAAGAAG 
FBC G11 AGCGGTT 
FBC G12 TAAGGCC 
FBC H01 AACCTGT 
FBC H02 AGTACAC 
FBC H03 CTCGTAG 
FBC H04 CTAGGTG 
FBC H05 CGATACC 
FBC H06 TCGGCTA 
FBC H07 CGGTTGT 
FBC H08 ATTGCCT 
FBC H09 CATTCGA 
FBC H10 GCACAAT 
FBC H11 GCAGTAA 
FBC H12 CCTAATC 
RBC A01 GAACTGC 
RBC A02 ACCAGGT 
RBC A03 TCTAGAG 
RBC A04 CACACAA 
RBC A05 GTGGAAC 
RBC A06 ATATGCC 
RBC A07 GGTCTGA 
RBC A08 GTGAGAT 
RBC A09 TTGGCAG 
RBC A10 ATGCCTG 
RBC A11 TCCGAAG 
RBC A12 GGCTTAC 
RBC B01 AGTTGGC 
RBC B02 AACGATG 
RBC B03 ACTACCG 
RBC B04 GGTGTCT 
RBC B05 CCAGCTT 
RBC B06 TTAGACG 
RBC B07 ACCATAC 
RBC B08 GACGACT 
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RBC B09 GTCACCT 
RBC B10 CGTGATG 
RBC B11 GCTTCCT 
RBC B12 TAGACGT 
RBC C01 CGGACTT 
RBC C02 ACCGGAA 
RBC C03 CCGAAGT 
RBC C04 TCACGCA 
RBC C05 ATCCTCG 
RBC C06 CGAATAG 
RBC C07 TATCCGG 
RBC C08 AGCAAGA 
RBC C09 TGTCGAC 
RBC C10 TTCCATG 
RBC C11 GCAATCG 
RBC C12 TGAGTGG 
RBC D01 TAGGAGA 
RBC D02 AGTCAGT 
RBC D03 GTGCTGT 
RBC D04 CAACAAC 
RBC D05 AATAGCC 
RBC D06 TCTGTGA 
RBC D07 TGTGGTA 
RBC D08 GCGTATG 
RBC D09 AGTTACG 
RBC D10 TTCCTGC 
RBC D11 TATGTCG 
RBC D12 GGAGAGA 
RBC E01 CCTTAGG 
RBC E02 TGTATCC 
RBC E03 CAACCTG 
RBC E04 CTGATGA 
RBC E05 AAGACAG 
RBC E06 AGCTCGT 
RBC E07 GATTGCG 
RBC E08 TCCTTCA 
RBC E09 TCACAGG 
RBC E10 AGAGCTG 
RBC E11 CCTCTGT 
RBC E12 CCTCGAA 
RBC F01 GTGTCTC 
RBC F02 ATTGAGG 
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RBC F03 GACAATC 
RBC F04 CACTTGC 
RBC F05 TGAACGC 
RBC F06 CGTAGCA 
RBC F07 AGGTTCC 
RBC F08 GTACACA 
RBC F09 GATAGGT 
RBC F10 TAGCCTC 
RBC F11 TTCAGCC 
RBC F12 GGATTCA 
RBC G01 TGAGCCT 
RBC G02 AACGCGA 
RBC G03 TCATTGC 
RBC G04 AGCATCT 
RBC G05 TTGGTCT 
RBC G06 CAAGGAT 
RBC G07 AGACGTC 
RBC G08 AGGTCAA 
RBC G09 ATGCTAC 
RBC G10 CTCTGAT 
RBC G11 TCAAGTC 
RBC G12 TCGAGCT 
RBC H01 ACAGTCT 
RBC H02 CAGATAC 
RBC H03 TACGTTC 
RBC H04 ACGGTTC 
RBC H05 CATCGTC 
RBC H06 TACGCAT 
RBC H07 CTTAGAC 
RBC H08 AACTGAC 
RBC H09 ACTTGCA 
RBC H10 ACGCGAT 
RBC H11 TCGACAC 
RBC H12 ACTCAAC 
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Table B-2. Full-length evSeq barcode (outer) primer sequences used in Chapter 4. The 

“Plate” and “Well” columns give the location of these sequences in the IDT order form 

provided on the evSeq GitHub repository (see Ordering Barcode Primers from IDT and 

Preparation of evSeq Barcode Primer Mixes, above). 

Plate Well Sequence 

FBC A01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATCATGCACCCAAGACCACTCTCCGG 

FBC A02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACATGGCACCCAAGACCACTCTCCGG 

FBC A03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAGCACCCACCCAAGACCACTCTCCGG 

FBC A04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGCTCACACCCAAGACCACTCTCCGG 

FBC A05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGCTCCACCCAAGACCACTCTCCGG 

FBC A06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAAGCGTCACCCAAGACCACTCTCCGG 

FBC A07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTCCATCACCCAAGACCACTCTCCGG 

FBC A08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGAAGGCACCCAAGACCACTCTCCGG 

FBC A09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATGTCCACCCAAGACCACTCTCCGG 

FBC A10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCTCCACACCCAAGACCACTCTCCGG 

FBC A11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCGTTATCACCCAAGACCACTCTCCGG 

FBC A12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCACCACACCCAAGACCACTCTCCGG 

FBC B01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCCTATCACCCAAGACCACTCTCCGG 

FBC B02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGGAATCCACCCAAGACCACTCTCCGG 

FBC B03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCACTGCACCCAAGACCACTCTCCGG 

FBC B04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGTACCCACCCAAGACCACTCTCCGG 

FBC B05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCGAGTCACCCAAGACCACTCTCCGG 

FBC B06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTCAGCCACCCAAGACCACTCTCCGG 

FBC B07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGTGCACACCCAAGACCACTCTCCGG 

FBC B08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCTGTCCACCCAAGACCACTCTCCGG 

FBC B09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGCCATTCACCCAAGACCACTCTCCGG 

FBC B10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCCATGACACCCAAGACCACTCTCCGG 

FBC B11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACAACGCACCCAAGACCACTCTCCGG 

FBC B12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTCGCTCACCCAAGACCACTCTCCGG 

FBC C01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGTGAACACCCAAGACCACTCTCCGG 

FBC C02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTATCGGCACCCAAGACCACTCTCCGG 

FBC C03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGACCATCACCCAAGACCACTCTCCGG 

FBC C04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACATGAGCACCCAAGACCACTCTCCGG 

FBC C05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGTACTCACCCAAGACCACTCTCCGG 

FBC C06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACCTCACACCCAAGACCACTCTCCGG 

FBC C07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTGGAGCACCCAAGACCACTCTCCGG 

FBC C08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGTTCTGCACCCAAGACCACTCTCCGG 

FBC C09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTACGTCACCCAAGACCACTCTCCGG 

FBC C10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGGTTGCACCCAAGACCACTCTCCGG 

FBC C11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGGACACACCCAAGACCACTCTCCGG 
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FBC C12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACACTGACACCCAAGACCACTCTCCGG 

FBC D01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCTGTGCACCCAAGACCACTCTCCGG 

FBC D02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATGTGCCACCCAAGACCACTCTCCGG 

FBC D03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTGACACCCAAGACCACTCTCCGG 

FBC D04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCTCACCACCCAAGACCACTCTCCGG 

FBC D05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGAAGCGCACCCAAGACCACTCTCCGG 

FBC D06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTACAACACCCAAGACCACTCTCCGG 

FBC D07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGAACCACCCAAGACCACTCTCCGG 

FBC D08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGAGTGCACCCAAGACCACTCTCCGG 

FBC D09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCCGAACACCCAAGACCACTCTCCGG 

FBC D10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACGACCACCCAAGACCACTCTCCGG 

FBC D11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACTCTTGCACCCAAGACCACTCTCCGG 

FBC D12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAACCACACCCAAGACCACTCTCCGG 

FBC E01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCTAGACACCCAAGACCACTCTCCGG 

FBC E02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATCGGACACCCAAGACCACTCTCCGG 

FBC E03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTCCTACACCCAAGACCACTCTCCGG 

FBC E04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGAATGTCACCCAAGACCACTCTCCGG 

FBC E05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCAAGCCACCCAAGACCACTCTCCGG 

FBC E06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCACCTACACCCAAGACCACTCTCCGG 

FBC E07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGCGTTCACCCAAGACCACTCTCCGG 

FBC E08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGGATTCACCCAAGACCACTCTCCGG 

FBC E09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCATACACCCAAGACCACTCTCCGG 

FBC E10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTTGAGCACCCAAGACCACTCTCCGG 

FBC E11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCTACTCACCCAAGACCACTCTCCGG 

FBC E12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGATCCCACCCAAGACCACTCTCCGG 

FBC F01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCATGGTCACCCAAGACCACTCTCCGG 

FBC F02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTCGTTACACCCAAGACCACTCTCCGG 

FBC F03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTGACACACCCAAGACCACTCTCCGG 

FBC F04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTGTAGCACCCAAGACCACTCTCCGG 

FBC F05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGAGCAACACCCAAGACCACTCTCCGG 

FBC F06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTACTCCCACCCAAGACCACTCTCCGG 

FBC F07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATGCCACACCCAAGACCACTCTCCGG 

FBC F08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGACCGATCACCCAAGACCACTCTCCGG 

FBC F09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGTTGGCACCCAAGACCACTCTCCGG 

FBC F10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGAGCGCACCCAAGACCACTCTCCGG 

FBC F11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACTCCGCACCCAAGACCACTCTCCGG 

FBC F12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATTCACCACCCAAGACCACTCTCCGG 

FBC G01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGACGCCACCCAAGACCACTCTCCGG 

FBC G02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTTGTTCACCCAAGACCACTCTCCGG 

FBC G03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACTTGCACCCAAGACCACTCTCCGG 

FBC G04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGCAAGCACCCAAGACCACTCTCCGG 
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FBC G05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCCATCACCCAAGACCACTCTCCGG 

FBC G06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGAACACACCCAAGACCACTCTCCGG 

FBC G07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTATAGCCACCCAAGACCACTCTCCGG 

FBC G08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGATGGACACCCAAGACCACTCTCCGG 

FBC G09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGCAGTACACCCAAGACCACTCTCCGG 

FBC G10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAAGAAGCACCCAAGACCACTCTCCGG 

FBC G11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCGGTTCACCCAAGACCACTCTCCGG 

FBC G12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAAGGCCCACCCAAGACCACTCTCCGG 

FBC H01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAACCTGTCACCCAAGACCACTCTCCGG 

FBC H02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTACACCACCCAAGACCACTCTCCGG 

FBC H03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCGTAGCACCCAAGACCACTCTCCGG 

FBC H04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTAGGTGCACCCAAGACCACTCTCCGG 

FBC H05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGATACCCACCCAAGACCACTCTCCGG 

FBC H06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGGCTACACCCAAGACCACTCTCCGG 

FBC H07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGGTTGTCACCCAAGACCACTCTCCGG 

FBC H08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGCCTCACCCAAGACCACTCTCCGG 

FBC H09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATTCGACACCCAAGACCACTCTCCGG 

FBC H10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCACAATCACCCAAGACCACTCTCCGG 

FBC H11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCAGTAACACCCAAGACCACTCTCCGG 

FBC H12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTAATCCACCCAAGACCACTCTCCGG 

RBC A01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAACTGCCGGTGTGCGAAGTAGGTGC 

RBC A02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCAGGTCGGTGTGCGAAGTAGGTGC 

RBC A03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTAGAGCGGTGTGCGAAGTAGGTGC 

RBC A04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACACAACGGTGTGCGAAGTAGGTGC 

RBC A05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGGAACCGGTGTGCGAAGTAGGTGC 

RBC A06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATATGCCCGGTGTGCGAAGTAGGTGC 

RBC A07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGTCTGACGGTGTGCGAAGTAGGTGC 

RBC A08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGAGATCGGTGTGCGAAGTAGGTGC 

RBC A09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTGGCAGCGGTGTGCGAAGTAGGTGC 

RBC A10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGCCTGCGGTGTGCGAAGTAGGTGC 

RBC A11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCGAAGCGGTGTGCGAAGTAGGTGC 

RBC A12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGCTTACCGGTGTGCGAAGTAGGTGC 

RBC B01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTTGGCCGGTGTGCGAAGTAGGTGC 

RBC B02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACGATGCGGTGTGCGAAGTAGGTGC 

RBC B03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTACCGCGGTGTGCGAAGTAGGTGC 

RBC B04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGTGTCTCGGTGTGCGAAGTAGGTGC 

RBC B05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCAGCTTCGGTGTGCGAAGTAGGTGC 

RBC B06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTAGACGCGGTGTGCGAAGTAGGTGC 

RBC B07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCATACCGGTGTGCGAAGTAGGTGC 

RBC B08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACGACTCGGTGTGCGAAGTAGGTGC 

RBC B09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCACCTCGGTGTGCGAAGTAGGTGC 



 

 

192 

RBC B10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGTGATGCGGTGTGCGAAGTAGGTGC 

RBC B11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTTCCTCGGTGTGCGAAGTAGGTGC 

RBC B12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGACGTCGGTGTGCGAAGTAGGTGC 

RBC C01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGGACTTCGGTGTGCGAAGTAGGTGC 

RBC C02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCGGAACGGTGTGCGAAGTAGGTGC 

RBC C03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGAAGTCGGTGTGCGAAGTAGGTGC 

RBC C04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCACGCACGGTGTGCGAAGTAGGTGC 

RBC C05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATCCTCGCGGTGTGCGAAGTAGGTGC 

RBC C06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGAATAGCGGTGTGCGAAGTAGGTGC 

RBC C07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTATCCGGCGGTGTGCGAAGTAGGTGC 

RBC C08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCAAGACGGTGTGCGAAGTAGGTGC 

RBC C09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTCGACCGGTGTGCGAAGTAGGTGC 

RBC C10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCCATGCGGTGTGCGAAGTAGGTGC 

RBC C11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAATCGCGGTGTGCGAAGTAGGTGC 

RBC C12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAGTGGCGGTGTGCGAAGTAGGTGC 

RBC D01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGGAGACGGTGTGCGAAGTAGGTGC 

RBC D02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTCAGTCGGTGTGCGAAGTAGGTGC 

RBC D03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGCTGTCGGTGTGCGAAGTAGGTGC 

RBC D04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAACAACCGGTGTGCGAAGTAGGTGC 

RBC D05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATAGCCCGGTGTGCGAAGTAGGTGC 

RBC D06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTGTGACGGTGTGCGAAGTAGGTGC 

RBC D07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTGGTACGGTGTGCGAAGTAGGTGC 

RBC D08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCGTATGCGGTGTGCGAAGTAGGTGC 

RBC D09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTTACGCGGTGTGCGAAGTAGGTGC 

RBC D10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCCTGCCGGTGTGCGAAGTAGGTGC 

RBC D11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTATGTCGCGGTGTGCGAAGTAGGTGC 

RBC D12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGAGAGACGGTGTGCGAAGTAGGTGC 

RBC E01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTTAGGCGGTGTGCGAAGTAGGTGC 

RBC E02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTATCCCGGTGTGCGAAGTAGGTGC 

RBC E03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAACCTGCGGTGTGCGAAGTAGGTGC 

RBC E04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGATGACGGTGTGCGAAGTAGGTGC 

RBC E05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAGACAGCGGTGTGCGAAGTAGGTGC 

RBC E06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCTCGTCGGTGTGCGAAGTAGGTGC 

RBC E07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATTGCGCGGTGTGCGAAGTAGGTGC 

RBC E08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTTCACGGTGTGCGAAGTAGGTGC 

RBC E09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCACAGGCGGTGTGCGAAGTAGGTGC 

RBC E10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGAGCTGCGGTGTGCGAAGTAGGTGC 

RBC E11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCTGTCGGTGTGCGAAGTAGGTGC 

RBC E12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCGAACGGTGTGCGAAGTAGGTGC 

RBC F01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGTCTCCGGTGTGCGAAGTAGGTGC 

RBC F02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTGAGGCGGTGTGCGAAGTAGGTGC 
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RBC F03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACAATCCGGTGTGCGAAGTAGGTGC 

RBC F04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACTTGCCGGTGTGCGAAGTAGGTGC 

RBC F05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAACGCCGGTGTGCGAAGTAGGTGC 

RBC F06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGTAGCACGGTGTGCGAAGTAGGTGC 

RBC F07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGGTTCCCGGTGTGCGAAGTAGGTGC 

RBC F08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTACACACGGTGTGCGAAGTAGGTGC 

RBC F09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATAGGTCGGTGTGCGAAGTAGGTGC 

RBC F10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGCCTCCGGTGTGCGAAGTAGGTGC 

RBC F11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCAGCCCGGTGTGCGAAGTAGGTGC 

RBC F12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGATTCACGGTGTGCGAAGTAGGTGC 

RBC G01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAGCCTCGGTGTGCGAAGTAGGTGC 

RBC G02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACGCGACGGTGTGCGAAGTAGGTGC 

RBC G03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCATTGCCGGTGTGCGAAGTAGGTGC 

RBC G04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCATCTCGGTGTGCGAAGTAGGTGC 

RBC G05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTGGTCTCGGTGTGCGAAGTAGGTGC 

RBC G06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAAGGATCGGTGTGCGAAGTAGGTGC 

RBC G07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGACGTCCGGTGTGCGAAGTAGGTGC 

RBC G08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGGTCAACGGTGTGCGAAGTAGGTGC 

RBC G09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGCTACCGGTGTGCGAAGTAGGTGC 

RBC G10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTCTGATCGGTGTGCGAAGTAGGTGC 

RBC G11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCAAGTCCGGTGTGCGAAGTAGGTGC 

RBC G12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGAGCTCGGTGTGCGAAGTAGGTGC 

RBC H01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACAGTCTCGGTGTGCGAAGTAGGTGC 

RBC H02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAGATACCGGTGTGCGAAGTAGGTGC 

RBC H03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACGTTCCGGTGTGCGAAGTAGGTGC 

RBC H04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGGTTCCGGTGTGCGAAGTAGGTGC 

RBC H05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATCGTCCGGTGTGCGAAGTAGGTGC 

RBC H06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACGCATCGGTGTGCGAAGTAGGTGC 

RBC H07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTAGACCGGTGTGCGAAGTAGGTGC 

RBC H08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACTGACCGGTGTGCGAAGTAGGTGC 

RBC H09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTTGCACGGTGTGCGAAGTAGGTGC 

RBC H10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGCGATCGGTGTGCGAAGTAGGTGC 

RBC H11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGACACCGGTGTGCGAAGTAGGTGC 

RBC H12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTCAACCGGTGTGCGAAGTAGGTGC 
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B.5 Dual-Indexing Platemaps 

This section contains all platemaps for the dual indexing plates (DI plates) used in Chapter 

4. The tables that follow show how the primers from the forward and reverse barcode plates 

(Table B-2) were arrayed to produce the barcode plates. Each entry in the below platemaps 

follows the format “Well-Barcode Plate,” where the “-” delimits the plate and well. An “F” 

after the delimiter indicates that the well preceding the delimiter was from the forward 

barcode plate (“FBC” in Table B-2) and an “R” indicates that the well was from the reverse 

barcode plate (“RBC”). A detailed protocol for how the dual index plates were produced is 

given in Section B.2.2.  
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Table B-3. Platemap for DI01 used in Chapter 4.  
 

1
2
 

A
1

2
-F

, 

A
1

2
-R

 

B
1

2
-F

, 

B
1

2
-R

 

C
1

2
-F

, 

C
1

2
-R

 

D
1

2
-F

, 

D
1

2
-R

 

E
1

2
-F

, 

E
1

2
-R

 

F
1

2
-F

, 

F
1

2
-R

 

G
1

2
-F

, 

G
1

2
-R

 

H
1

2
-F

, 

H
1

2
-R

 

1
1
 

A
1

1
-F

, 

A
1

1
-R

 

B
1

1
-F

, 

B
1

1
-R

 

C
1

1
-F

, 

C
1

1
-R

 

D
1

1
-F

, 

D
1

1
-R

 

E
1

1
-F

, 

E
1

1
-R

 

F
1

1
-F

, 

F
1

1
-R

 

G
1

1
-F

, 

G
1

1
-R

 

H
1

1
-F

, 

H
1

1
-R

 

1
0

 

A
1

0
-F

, 

A
1

0
-R

 

B
1

0
-F

, 

B
1

0
-R

 

C
1

0
-F

, 

C
1

0
-R

 

D
1

0
-F

, 

D
1

0
-R

 

E
1

0
-F

, 

E
1

0
-R

 

F
1

0
-F

, 

F
1

0
-R

 

G
1

0
-F

, 

G
1

0
-R

 

H
1

0
-F

, 

H
1

0
-R

 

9
 

A
0

9
-F

, 

A
0

9
-R

 

B
0

9
-F

, 

B
0

9
-R

 

C
0

9
-F

, 

C
0

9
-R

 

D
0

9
-F

, 

D
0

9
-R

 

E
0

9
-F

, 

E
0

9
-R

 

F
0

9
-F

, 

F
0

9
-R

 

G
0

9
-F

, 

G
0

9
-R

 

H
0

9
-F

, 

H
0

9
-R

 

8
 

A
0

8
-F

, 

A
0
8

-R
 

B
0
8

-F
, 

B
0

8
-R

 

C
0
8

-F
, 

C
0

8
-R

 

D
0

8
-F

, 

D
0
8

-R
 

E
0
8
-F

, 

E
0

8
-R

 

F
0
8
-F

, 

F
0
8
-R

 

G
0

8
-F

, 

G
0
8

-R
 

H
0

8
-F

, 

H
0
8

-R
 

7
 

A
0
7

-F
, 

A
0
7

-R
 

B
0
7

-F
, 

B
0
7

-R
 

C
0
7

-F
, 

C
0
7

-R
 

D
0
7

-F
, 

D
0
7

-R
 

E
0
7
-F

, 

E
0
7
-R

 

F
0
7
-F

, 

F
0
7
-R

 

G
0
7

-F
, 

G
0
7

-R
 

H
0
7

-F
, 

H
0
7

-R
 

6
 

A
0
6

-F
, 

A
0
6

-R
 

B
0
6

-F
, 

B
0
6

-R
 

C
0
6

-F
, 

C
0
6

-R
 

D
0
6

-F
, 

D
0
6

-R
 

E
0
6
-F

, 

E
0
6
-R

 

F
0
6
-F

, 

F
0
6
-R

 

G
0
6

-F
, 

G
0
6

-R
 

H
0
6

-F
, 

H
0
6

-R
 

5
 

A
0
5

-F
, 

A
0
5

-R
 

B
0
5

-F
, 

B
0
5

-R
 

C
0
5

-F
, 

C
0
5

-R
 

D
0
5

-F
, 

D
0
5

-R
 

E
0
5
-F

, 

E
0
5
-R

 

F
0
5
-F

, 

F
0
5
-R

 

G
0
5

-F
, 

G
0
5

-R
 

H
0
5

-F
, 

H
0
5

-R
 

4
 

A
0
4

-F
, 

A
0
4

-R
 

B
0
4

-F
, 

B
0
4

-R
 

C
0
4

-F
, 

C
0
4

-R
 

D
0
4

-F
, 

D
0
4

-R
 

E
0
4
-F

, 

E
0
4
-R

 

F
0
4
-F

, 

F
0
4
-R

 

G
0
4

-F
, 

G
0
4

-R
 

H
0
4

-F
, 

H
0
4

-R
 

3
 

A
0
3

-F
, 

A
0
3

-R
 

B
0
3

-F
, 

B
0
3

-R
 

C
0
3

-F
, 

C
0
3

-R
 

D
0
3

-F
, 

D
0
3

-R
 

E
0
3
-F

, 

E
0
3
-R

 

F
0
3
-F

, 

F
0
3
-R

 

G
0
3

-F
, 

G
0
3

-R
 

H
0
3

-F
, 

H
0
3

-R
 

2
 

A
0
2

-F
, 

A
0
2

-R
 

B
0
2

-F
, 

B
0
2

-R
 

C
0
2

-F
, 

C
0
2

-R
 

D
0
2

-F
, 

D
0
2

-R
 

E
0
2
-F

, 

E
0
2
-R

 

F
0
2
-F

, 

F
0
2
-R

 

G
0
2

-F
, 

G
0
2

-R
 

H
0
2

-F
, 

H
0
2

-R
 

1
 

A
0

1
-F

, 

A
0
1

-R
 

B
0
1

-F
, 

B
0

1
-R

 

C
0
1

-F
, 

C
0

1
-R

 

D
0

1
-F

, 

D
0
1

-R
 

E
0
1
-F

, 

E
0
1
-R

 

F
0

1
-F

, 

F
0
1
-R

 

G
0

1
-F

, 

G
0
1

-R
 

H
0

1
-F

, 

H
0
1

-R
 

D
I0

1
 

A
 

B
 

C
 

D
 

E
 

F
 

G
 

H
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Table B-4. Platemap for DI02 used in Chapter 4. 

1
2

 

A
1

2
-F

, 

H
1

2
-R

 

B
1

2
-F

, 

A
1

2
-R

 

C
1

2
-F

, 

B
1

2
-R

 

D
1

2
-F

, 

C
1

2
-R

 

E
1

2
-F

, 

D
1

2
-R

 

F
1

2
-F

, 

E
1

2
-R

 

G
1

2
-F

, 

F
1

2
-R

 

H
1

2
-F

, 

G
1

2
-R

 

1
1
 

A
1

1
-F

, 

H
1

1
-R

 

B
1

1
-F

, 

A
1

1
-R

 

C
1

1
-F

, 

B
1

1
-R

 

D
1

1
-F

, 

C
1

1
-R

 

E
1

1
-F

, 

D
1

1
-R

 

F
1

1
-F

, 

E
1

1
-R

 

G
1

1
-F

, 

F
1

1
-R

 

H
1

1
-F

, 

G
1

1
-R

 

1
0
 

A
1

0
-F

, 

H
1

0
-R

 

B
1

0
-F

, 

A
1

0
-R

 

C
1

0
-F

, 

B
1

0
-R

 

D
1

0
-F

, 

C
1

0
-R

 

E
1

0
-F

, 

D
1

0
-R

 

F
1

0
-F

, 

E
1

0
-R

 

G
1

0
-F

, 

F
1

0
-R

 

H
1

0
-F

, 

G
1

0
-R

 

9
 

A
0

9
-F

, 

H
0

9
-R

 

B
0

9
-F

, 

A
0

9
-R

 

C
0

9
-F

, 

B
0

9
-R

 

D
0

9
-F

, 

C
0

9
-R

 

E
0

9
-F

, 

D
0

9
-R

 

F
0

9
-F

, 

E
0

9
-R

 

G
0

9
-F

, 

F
0

9
-R

 

H
0

9
-F

, 

G
0

9
-R

 

8
 

A
0
8

-F
, 

H
0
8

-R
 

B
0
8

-F
, 

A
0
8

-R
 

C
0
8

-F
, 

B
0
8

-R
 

D
0
8

-F
, 

C
0
8

-R
 

E
0
8
-F

, 

D
0
8

-R
 

F
0
8
-F

, 

E
0
8
-R

 

G
0
8

-F
, 

F
0
8
-R

 

H
0
8

-F
, 

G
0
8

-R
 

7
 

A
0
7

-F
, 

H
0
7

-R
 

B
0
7

-F
, 

A
0
7

-R
 

C
0
7

-F
, 

B
0
7

-R
 

D
0
7

-F
, 

C
0
7

-R
 

E
0
7
-F

, 

D
0
7

-R
 

F
0
7
-F

, 

E
0
7
-R

 

G
0
7

-F
, 

F
0
7
-R

 

H
0
7

-F
, 

G
0
7

-R
 

6
 

A
0
6

-F
, 

H
0
6

-R
 

B
0
6

-F
, 

A
0
6

-R
 

C
0
6

-F
, 

B
0
6

-R
 

D
0
6

-F
, 

C
0
6

-R
 

E
0
6
-F

, 

D
0
6

-R
 

F
0
6
-F

, 

E
0
6
-R

 

G
0
6

-F
, 

F
0
6
-R

 

H
0
6

-F
, 

G
0
6

-R
 

5
 

A
0
5

-F
, 

H
0
5

-R
 

B
0
5

-F
, 

A
0
5

-R
 

C
0
5

-F
, 

B
0
5

-R
 

D
0
5

-F
, 

C
0
5

-R
 

E
0
5
-F

, 

D
0
5

-R
 

F
0
5
-F

, 

E
0
5
-R

 

G
0
5

-F
, 

F
0
5
-R

 

H
0
5

-F
, 

G
0
5

-R
 

4
 

A
0
4

-F
, 

H
0
4

-R
 

B
0
4

-F
, 

A
0
4

-R
 

C
0
4

-F
, 

B
0
4

-R
 

D
0
4

-F
, 

C
0
4

-R
 

E
0
4
-F

, 

D
0
4

-R
 

F
0
4
-F

, 

E
0
4
-R

 

G
0
4

-F
, 

F
0
4
-R

 

H
0
4

-F
, 

G
0
4

-R
 

3
 

A
0
3

-F
, 

H
0
3

-R
 

B
0
3

-F
, 

A
0
3

-R
 

C
0
3

-F
, 

B
0
3

-R
 

D
0
3

-F
, 

C
0
3

-R
 

E
0
3
-F

, 

D
0
3

-R
 

F
0
3
-F

, 

E
0
3
-R

 

G
0
3

-F
, 

F
0
3
-R

 

H
0
3

-F
, 

G
0
3

-R
 

2
 

A
0
2

-F
, 

H
0
2

-R
 

B
0
2

-F
, 

A
0
2

-R
 

C
0
2

-F
, 

B
0
2

-R
 

D
0
2

-F
, 

C
0
2

-R
 

E
0
2
-F

, 

D
0
2

-R
 

F
0
2
-F

, 

E
0
2
-R

 

G
0
2

-F
, 

F
0
2
-R

 

H
0
2

-F
, 

G
0
2

-R
 

1
 

A
0

1
-F

, 

H
0

1
-R

 

B
0

1
-F

, 

A
0

1
-R

 

C
0

1
-F

, 

B
0

1
-R

 

D
0

1
-F

, 

C
0

1
-R

 

E
0

1
-F

, 

D
0

1
-R

 

F
0

1
-F

, 

E
0

1
-R

 

G
0

1
-F

, 

F
0

1
-R

 

H
0

1
-F

, 

G
0

1
-R

 

D
I0

2
 

A
 

B
 

C
 

D
 

E
 

F
 

G
 

H
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Table B-5. Platemap for DI03 used in Chapter 4. 

1
2

 

A
1

2
-F

, 

G
1

2
-R

 

B
1

2
-F

, 

H
1

2
-R

 

C
1

2
-F

, 

A
1

2
-R

 

D
1

2
-F

, 

B
1

2
-R

 

E
1

2
-F

, 

C
1

2
-R

 

F
1

2
-F

, 

D
1

2
-R

 

G
1

2
-F

, 

E
1

2
-R

 

H
1

2
-F

, 

F
1

2
-R

 

1
1
 

A
1

1
-F

, 

G
1

1
-R

 

B
1

1
-F

, 

H
1

1
-R

 

C
1

1
-F

, 

A
1

1
-R

 

D
1

1
-F

, 

B
1

1
-R

 

E
1

1
-F

, 

C
1

1
-R

 

F
1

1
-F

, 

D
1

1
-R

 

G
1

1
-F

, 

E
1

1
-R

 

H
1

1
-F

, 

F
1

1
-R

 

1
0
 

A
1

0
-F

, 

G
1

0
-R

 

B
1

0
-F

, 

H
1

0
-R

 

C
1

0
-F

, 

A
1

0
-R

 

D
1

0
-F

, 

B
1

0
-R

 

E
1

0
-F

, 

C
1

0
-R

 

F
1

0
-F

, 

D
1

0
-R

 

G
1

0
-F

, 

E
1

0
-R

 

H
1

0
-F

, 

F
1

0
-R

 

9
 

A
0

9
-F

, 

G
0

9
-R

 

B
0

9
-F

, 

H
0

9
-R

 

C
0

9
-F

, 

A
0

9
-R

 

D
0

9
-F

, 

B
0

9
-R

 

E
0

9
-F

, 

C
0

9
-R

 

F
0

9
-F

, 

D
0

9
-R

 

G
0

9
-F

, 

E
0

9
-R

 

H
0

9
-F

, 

F
0

9
-R

 

8
 

A
0
8

-F
, 

G
0
8

-R
 

B
0
8

-F
, 

H
0
8

-R
 

C
0
8

-F
, 

A
0
8

-R
 

D
0
8

-F
, 

B
0
8

-R
 

E
0
8
-F

, 

C
0
8

-R
 

F
0
8
-F

, 

D
0
8

-R
 

G
0
8

-F
, 

E
0
8
-R

 

H
0
8

-F
, 

F
0
8
-R

 

7
 

A
0
7

-F
, 

G
0
7

-R
 

B
0
7

-F
, 

H
0
7

-R
 

C
0
7

-F
, 

A
0
7

-R
 

D
0
7

-F
, 

B
0
7

-R
 

E
0
7
-F

, 

C
0
7

-R
 

F
0
7
-F

, 

D
0
7

-R
 

G
0
7

-F
, 

E
0
7
-R

 

H
0
7

-F
, 

F
0
7
-R

 

6
 

A
0
6

-F
, 

G
0
6

-R
 

B
0
6

-F
, 

H
0
6

-R
 

C
0
6

-F
, 

A
0
6

-R
 

D
0
6

-F
, 

B
0
6

-R
 

E
0
6
-F

, 

C
0
6

-R
 

F
0
6
-F

, 

D
0
6

-R
 

G
0
6

-F
, 

E
0
6
-R

 

H
0
6

-F
, 

F
0
6
-R

 

5
 

A
0
5

-F
, 

G
0
5

-R
 

B
0
5

-F
, 

H
0
5

-R
 

C
0
5

-F
, 

A
0
5

-R
 

D
0
5

-F
, 

B
0
5

-R
 

E
0
5
-F

, 

C
0
5

-R
 

F
0
5
-F

, 

D
0
5

-R
 

G
0
5

-F
, 

E
0
5
-R

 

H
0
5

-F
, 

F
0
5
-R

 

4
 

A
0
4

-F
, 

G
0
4

-R
 

B
0
4

-F
, 

H
0
4

-R
 

C
0
4

-F
, 

A
0
4

-R
 

D
0
4

-F
, 

B
0
4

-R
 

E
0
4
-F

, 

C
0
4

-R
 

F
0
4
-F

, 

D
0
4

-R
 

G
0
4

-F
, 

E
0
4
-R

 

H
0
4

-F
, 

F
0
4
-R

 

3
 

A
0
3

-F
, 

G
0
3

-R
 

B
0
3

-F
, 

H
0
3

-R
 

C
0
3

-F
, 

A
0
3

-R
 

D
0
3

-F
, 

B
0
3

-R
 

E
0
3
-F

, 

C
0
3

-R
 

F
0
3
-F

, 

D
0
3

-R
 

G
0
3

-F
, 

E
0
3
-R

 

H
0
3

-F
, 

F
0
3
-R

 

2
 

A
0
2

-F
, 

G
0
2

-R
 

B
0
2

-F
, 

H
0
2

-R
 

C
0
2

-F
, 

A
0
2

-R
 

D
0
2

-F
, 

B
0
2

-R
 

E
0
2
-F

, 

C
0
2

-R
 

F
0
2
-F

, 

D
0
2

-R
 

G
0
2

-F
, 

E
0
2
-R

 

H
0
2

-F
, 

F
0
2
-R

 

1
 

A
0

1
-F

, 

G
0

1
-R

 

B
0

1
-F

, 

H
0

1
-R

 

C
0

1
-F

, 

A
0

1
-R

 

D
0

1
-F

, 

B
0

1
-R

 

E
0

1
-F

, 

C
0

1
-R

 

F
0

1
-F

, 

D
0

1
-R

 

G
0

1
-F

, 

E
0

1
-R

 

H
0

1
-F

, 

F
0

1
-R

 

D
I0

3
 

A
 

B
 

C
 

D
 

E
 

F
 

G
 

H
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Table B-6. Platemap for DI04 used in Chapter 4. 

1
2

 

A
1

2
-F

, 

F
1

2
-R

 

B
1

2
-F

, 

G
1

2
-R

 

C
1

2
-F

, 

H
1

2
-R

 

D
1

2
-F

, 

A
1

2
-R

 

E
1

2
-F

, 

B
1

2
-R

 

F
1

2
-F

, 

C
1

2
-R

 

G
1

2
-F

, 

D
1

2
-R

 

H
1

2
-F

, 

E
1

2
-R

 

1
1
 

A
1

1
-F

, 

F
1

1
-R

 

B
1

1
-F

, 

G
1

1
-R

 

C
1

1
-F

, 

H
1

1
-R

 

D
1

1
-F

, 

A
1

1
-R

 

E
1

1
-F

, 

B
1

1
-R

 

F
1

1
-F

, 

C
1

1
-R

 

G
1

1
-F

, 

D
1

1
-R

 

H
1

1
-F

, 

E
1

1
-R

 

1
0
 

A
1

0
-F

, 

F
1

0
-R

 

B
1

0
-F

, 

G
1

0
-R

 

C
1

0
-F

, 

H
1

0
-R

 

D
1

0
-F

, 

A
1

0
-R

 

E
1

0
-F

, 

B
1

0
-R

 

F
1

0
-F

, 

C
1

0
-R

 

G
1

0
-F

, 

D
1

0
-R

 

H
1

0
-F

, 

E
1

0
-R

 

9
 

A
0

9
-F

, 

F
0

9
-R

 

B
0

9
-F

, 

G
0

9
-R

 

C
0

9
-F

, 

H
0

9
-R

 

D
0

9
-F

, 

A
0

9
-R

 

E
0

9
-F

, 

B
0

9
-R

 

F
0

9
-F

, 

C
0

9
-R

 

G
0

9
-F

, 

D
0

9
-R

 

H
0

9
-F

, 

E
0

9
-R

 

8
 

A
0
8

-F
, 

F
0
8
-R

 

B
0
8

-F
, 

G
0
8

-R
 

C
0
8

-F
, 

H
0
8

-R
 

D
0
8

-F
, 

A
0
8

-R
 

E
0
8
-F

, 

B
0
8

-R
 

F
0
8
-F

, 

C
0
8

-R
 

G
0
8

-F
, 

D
0
8

-R
 

H
0
8

-F
, 

E
0
8
-R

 

7
 

A
0
7

-F
, 

F
0
7
-R

 

B
0
7

-F
, 

G
0
7

-R
 

C
0
7

-F
, 

H
0
7

-R
 

D
0
7

-F
, 

A
0
7

-R
 

E
0
7
-F

, 

B
0
7

-R
 

F
0
7
-F

, 

C
0
7

-R
 

G
0
7

-F
, 

D
0
7

-R
 

H
0
7

-F
, 

E
0
7
-R

 

6
 

A
0
6

-F
, 

F
0
6
-R

 

B
0
6

-F
, 

G
0
6

-R
 

C
0
6

-F
, 

H
0
6

-R
 

D
0
6

-F
, 

A
0
6

-R
 

E
0
6
-F

, 

B
0
6

-R
 

F
0
6
-F

, 

C
0
6

-R
 

G
0
6

-F
, 

D
0
6

-R
 

H
0
6

-F
, 

E
0
6
-R

 

5
 

A
0
5

-F
, 

F
0
5
-R

 

B
0
5

-F
, 

G
0
5

-R
 

C
0
5

-F
, 

H
0
5

-R
 

D
0
5

-F
, 

A
0
5

-R
 

E
0
5
-F

, 

B
0
5

-R
 

F
0
5
-F

, 

C
0
5

-R
 

G
0
5

-F
, 

D
0
5

-R
 

H
0
5

-F
, 

E
0
5
-R

 

4
 

A
0
4

-F
, 

F
0
4
-R

 

B
0
4

-F
, 

G
0
4

-R
 

C
0
4

-F
, 

H
0
4

-R
 

D
0
4

-F
, 

A
0
4

-R
 

E
0
4
-F

, 

B
0
4

-R
 

F
0
4
-F

, 

C
0
4

-R
 

G
0
4

-F
, 

D
0
4

-R
 

H
0
4

-F
, 

E
0
4
-R

 

3
 

A
0
3

-F
, 

F
0
3
-R

 

B
0
3

-F
, 

G
0
3

-R
 

C
0
3

-F
, 

H
0
3

-R
 

D
0
3

-F
, 

A
0
3

-R
 

E
0
3
-F

, 

B
0
3

-R
 

F
0
3
-F

, 

C
0
3

-R
 

G
0
3

-F
, 

D
0
3

-R
 

H
0
3

-F
, 

E
0
3
-R

 

2
 

A
0
2

-F
, 

F
0
2
-R

 

B
0
2

-F
, 

G
0
2

-R
 

C
0
2

-F
, 

H
0
2

-R
 

D
0
2

-F
, 

A
0
2

-R
 

E
0
2
-F

, 

B
0
2

-R
 

F
0
2
-F

, 

C
0
2

-R
 

G
0
2

-F
, 

D
0
2

-R
 

H
0
2

-F
, 

E
0
2
-R

 

1
 

A
0

1
-F

, 

F
0

1
-R

 

B
0

1
-F

, 

G
0

1
-R

 

C
0

1
-F

, 

H
0

1
-R

 

D
0

1
-F

, 

A
0

1
-R

 

E
0

1
-F

, 

B
0

1
-R

 

F
0

1
-F

, 

C
0

1
-R

 

G
0

1
-F

, 

D
0

1
-R

 

H
0

1
-F

, 

E
0

1
-R

 

D
I0

4
 

A
 

B
 

C
 

D
 

E
 

F
 

G
 

H
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Table B-7. Platemap for DI05 used in Chapter 4. 

1
2

 

A
1

2
-F

, 

E
1

2
-R

 

B
1

2
-F

, 

F
1

2
-R

 

C
1

2
-F

, 

G
1

2
-R

 

D
1

2
-F

, 

H
1

2
-R

 

E
1

2
-F

, 

A
1

2
-R

 

F
1

2
-F

, 

B
1

2
-R

 

G
1

2
-F

, 

C
1

2
-R

 

H
1

2
-F

, 

D
1

2
-R

 

1
1
 

A
1

1
-F

, 

E
1

1
-R

 

B
1

1
-F

, 

F
1

1
-R

 

C
1

1
-F

, 

G
1

1
-R

 

D
1

1
-F

, 

H
1

1
-R

 

E
1

1
-F

, 

A
1

1
-R

 

F
1

1
-F

, 

B
1

1
-R

 

G
1

1
-F

, 

C
1

1
-R

 

H
1

1
-F

, 

D
1

1
-R

 

1
0
 

A
1

0
-F

, 

E
1

0
-R

 

B
1

0
-F

, 

F
1

0
-R

 

C
1

0
-F

, 

G
1

0
-R

 

D
1

0
-F

, 

H
1

0
-R

 

E
1

0
-F

, 

A
1

0
-R

 

F
1

0
-F

, 

B
1

0
-R

 

G
1

0
-F

, 

C
1

0
-R

 

H
1

0
-F

, 

D
1

0
-R

 

9
 

A
0

9
-F

, 

E
0

9
-R

 

B
0

9
-F

, 

F
0

9
-R

 

C
0

9
-F

, 

G
0

9
-R

 

D
0

9
-F

, 

H
0

9
-R

 

E
0

9
-F

, 

A
0

9
-R

 

F
0

9
-F

, 

B
0

9
-R

 

G
0

9
-F

, 

C
0

9
-R

 

H
0

9
-F

, 

D
0

9
-R

 

8
 

A
0
8

-F
, 

E
0
8
-R

 

B
0
8

-F
, 

F
0
8
-R

 

C
0
8

-F
, 

G
0
8

-R
 

D
0
8

-F
, 

H
0
8

-R
 

E
0
8
-F

, 

A
0
8

-R
 

F
0
8
-F

, 

B
0
8

-R
 

G
0
8

-F
, 

C
0
8

-R
 

H
0
8

-F
, 

D
0
8

-R
 

7
 

A
0
7

-F
, 

E
0
7
-R

 

B
0
7

-F
, 

F
0
7
-R

 

C
0
7

-F
, 

G
0
7

-R
 

D
0
7

-F
, 

H
0
7

-R
 

E
0
7
-F

, 

A
0
7

-R
 

F
0
7
-F

, 

B
0
7

-R
 

G
0
7

-F
, 

C
0
7

-R
 

H
0
7

-F
, 

D
0
7

-R
 

6
 

A
0
6

-F
, 

E
0
6
-R

 

B
0
6

-F
, 

F
0
6
-R

 

C
0
6

-F
, 

G
0
6

-R
 

D
0
6

-F
, 

H
0
6

-R
 

E
0
6
-F

, 

A
0
6

-R
 

F
0
6
-F

, 

B
0
6

-R
 

G
0
6

-F
, 

C
0
6

-R
 

H
0
6

-F
, 

D
0
6

-R
 

5
 

A
0
5

-F
, 

E
0
5
-R

 

B
0
5

-F
, 

F
0
5
-R

 

C
0
5

-F
, 

G
0
5

-R
 

D
0
5

-F
, 

H
0
5

-R
 

E
0
5
-F

, 

A
0
5

-R
 

F
0
5
-F

, 

B
0
5

-R
 

G
0
5

-F
, 

C
0
5

-R
 

H
0
5

-F
, 

D
0
5

-R
 

4
 

A
0
4

-F
, 

E
0
4
-R

 

B
0
4

-F
, 

F
0
4
-R

 

C
0
4

-F
, 

G
0
4

-R
 

D
0
4

-F
, 

H
0
4

-R
 

E
0
4
-F

, 

A
0
4

-R
 

F
0
4
-F

, 

B
0
4

-R
 

G
0
4

-F
, 

C
0
4

-R
 

H
0
4

-F
, 

D
0
4

-R
 

3
 

A
0
3

-F
, 

E
0
3
-R

 

B
0
3

-F
, 

F
0
3
-R

 

C
0
3

-F
, 

G
0
3

-R
 

D
0
3

-F
, 

H
0
3

-R
 

E
0
3
-F

, 

A
0
3

-R
 

F
0
3
-F

, 

B
0
3

-R
 

G
0
3

-F
, 

C
0
3

-R
 

H
0
3

-F
, 

D
0
3

-R
 

2
 

A
0
2

-F
, 

E
0
2
-R

 

B
0
2

-F
, 

F
0
2
-R

 

C
0
2

-F
, 

G
0
2

-R
 

D
0
2

-F
, 

H
0
2

-R
 

E
0
2
-F

, 

A
0
2

-R
 

F
0
2
-F

, 

B
0
2

-R
 

G
0
2

-F
, 

C
0
2

-R
 

H
0
2

-F
, 

D
0
2

-R
 

1
 

A
0

1
-F

, 

E
0

1
-R

 

B
0

1
-F

, 

F
0

1
-R

 

C
0

1
-F

, 

G
0

1
-R

 

D
0

1
-F

, 

H
0

1
-R

 

E
0

1
-F

, 

A
0

1
-R

 

F
0

1
-F

, 

B
0

1
-R

 

G
0

1
-F

, 

C
0

1
-R

 

H
0

1
-F

, 

D
0

1
-R

 

D
I0

5
 

A
 

B
 

C
 

D
 

E
 

F
 

G
 

H
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Table B-8. Platemap for DI06 used in Chapter 4. 

1
2

 

A
1

2
-F

, 

D
1

2
-R

 

B
1

2
-F

, 

E
1

2
-R

 

C
1

2
-F

, 

F
1

2
-R

 

D
1

2
-F

, 

G
1

2
-R

 

E
1

2
-F

, 

H
1

2
-R

 

F
1

2
-F

, 

A
1

2
-R

 

G
1

2
-F

, 

B
1

2
-R

 

H
1

2
-F

, 

C
1

2
-R

 

1
1
 

A
1

1
-F

, 

D
1

1
-R

 

B
1

1
-F

, 

E
1

1
-R

 

C
1

1
-F

, 

F
1

1
-R

 

D
1

1
-F

, 

G
1

1
-R

 

E
1

1
-F

, 

H
1

1
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Table B-9. Platemap for DI07 used in Chapter 4. 
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Table B-10. Platemap for DI08 used in Chapter 4. 
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B.6 Supplemental Tables 

Table B-11. evSeq captures off-target mutations. This table is derived from the 

“AminoAcids_Coupled_Max.csv” output file from evSeq for the TrpB run presented in 

Chapter 4, and shows all confident (defined as ≥0.80 alignment frequency and ≥10 total 

reads) unexpected mutations captured by evSeq; some columns have been removed. Note in 

the “VariantCombo” column that the amino acid at the expected mutagenized position has a 

“?” as the original amino acid—this is because the evSeq run generating this data was told 

the variable positions with the “NNN” convention. For unexpected variable positions, both 

the original amino acid and the new amino acid are shown. 

IndexPlate Plate Well VariantCombo AlignmentFrequency WellSeqDepth 

DI02 Lib2_118X E03 ?118V_D164G 0.964286 28 

DI04 Lib4_166X B02 P154S_?166Q 0.977011 87 

DI08 Lib8_301X H11 G250D_?301L 0.99537 216 

 

Table B-12. Primer sequences for TrpB saturation mutagenesis library construction in 

Chapter 4. 

Site Direction Sequence 

105 Forward GGCAAAACCCGTATCATTGCTNNNACGGGTGCTGGTCAGCAC 

105 Reverse AGCAATGATACGGGTTTTGCCCATTAGTTTTGCCAGCAGAACCTGGC 

118 Forward GGCGTAGCAACTGCTACCNNNGCAGCGCTGTTCGGTATGGAATGTGTAATCT
ATATGG 

118 Reverse GGTAGCAGTTGCTACGCCGTGCTGACCAGC 

162 Forward GTAAAATCCGGTAGCCGTACCNNNAAAGACGCAATTGACGAAGCTCTG 

162 Reverse GGTACGGCTACCGGATTTTACCGGTACAACTTTAGCACCCAGCAG 

166 Forward CGTACCCTGAAAGACGCANNNGACGAAGCTCTGCGTGACTGGATTACCAACC 

166 Reverse TGCGTCTTTCAGGGTACGGCTACCGGATTTTACCGG 

184 Forward CTGCAGACCACCTATTACGTGNNNGGCTCTGTGGTTGGTCC 

184 Reverse CACGTAATAGGTGGTCTGCAGGTTGGTAATCCAGTCACGCAGAGCT 

228 Forward TACATCGTTGCGTGCGTGNNNGGTGGTTCTAACGCTGCC 

228 Reverse CACGCACGCAACGATGTAGTCCGGCAGACGGCCTTCT 

292 Forward GATGACTGGGGTCAAGTTCAGGTGNNNCACTCCGTCTCCGCTG 

292 Reverse CACCTGAACTTGACCCCAGTCATCCTGCAGAACGAACGTCTTAGAACCG 

301 Forward TCCGCTGGCCTGGACNNNTCCGGTGTCGGTCCGGA 

301 Reverse GTCCAGGCCAGCGGAGACGGAGTGGCTCACCTGAACT 
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Table B-13. Primers specific to the ampicillin resistance gene of pET22b(+) used in TrpB 

library construction in Chapter 4. 

Site Direction Sequence 

AmpR Forward CCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGC 

AmpR Reverse CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAG 

 

Table B-14. Inner primers used for evSeq library preparation from the TrpB site-saturation 

mutagenesis libraries in Chapter 4. 

Name Direction Sites Sequence 

evSeq_102_f Forward 105, 118, 162, 166, 184 CACCCAAGACCACTCTCCGGGCAAAA
CTAATGGGCAAAACCCG 

evSeq_184_r Reverse 105, 118, 162, 166, 184 CGGTGTGCGAAGTAGGTGCGATGCGG
ACCAACCACAGAG 

evSeq_226_f Forward 228, 292, 301 CACCCAAGACCACTCTCCGGGCCGGA
CTACATCGTTGCG 

evSeq_304_r Reverse 228, 292, 301 CGGTGTGCGAAGTAGGTGCCAATAGG
CGTGTTCCGGACC 

 

Table B-15. The evSeq barcode plates used for sequencing each position of the TrpB site-

saturation mutagenesis libraries in Chapter 4. 

Position 

targeted 

Barcode 

plate 

105 DI01 

118 DI02 

162 DI03 

166 DI04 

184 DI05 

228 DI06 

292 DI07 

301 DI08 
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Table B-16. Mutagenic primers used for the construction of the RmaNOD four-site-

saturation library in Chapter 4. Note that the names of the primers are delimited by “-” and 

that the delimited sections reflect the mutagenized positions, the degenerate codons at those 

positions, and the direction of the primer on the template DNA ([Positions]-[Codon1]-

[Codon2]-[Direction]). 

Name Sequence 

S28M31-NDT-NDT-F AAACACTCAGTCGCTATTNDTGCCACGNDTGGTCGGCTGCTTTTCG 

S28M31-NDT-VHG-F AAACACTCAGTCGCTATTNDTGCCACGVHGGGTCGGCTGCTTTTCG 

S28M31-NDT-TGG-F AAACACTCAGTCGCTATTNDTGCCACGTGGGGTCGGCTGCTTTTCG 

S28M31-VHG-NDT-F AAACACTCAGTCGCTATTVHGGCCACGNDTGGTCGGCTGCTTTTCG 

S28M31-VHG-VHG-F AAACACTCAGTCGCTATTVHGGCCACGVHGGGTCGGCTGCTTTTCG 

S28M31-VHG-TGG-F AAACACTCAGTCGCTATTVHGGCCACGTGGGGTCGGCTGCTTTTCG 

S28M31-TGG-NDT-F AAACACTCAGTCGCTATTTGGGCCACGNDTGGTCGGCTGCTTTTCG 

S28M31-TGG-VHG-F AAACACTCAGTCGCTATTTGGGCCACGVHGGGTCGGCTGCTTTTCG 

S28M31-TGG-TGG-F AAACACTCAGTCGCTATTTGGGCCACGTGGGGTCGGCTGCTTTTCG 

Q52L56-AHN-AHN-R GGCCAACAGGGCCGACGCAHNCTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG 

Q52L56-AHN-CDB-R GGCCAACAGGGCCGACGCAHNCTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG 

Q52L56-AHN-CCA-R GGCCAACAGGGCCGACGCAHNCTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG 

Q52L56-CDB-AHN-R GGCCAACAGGGCCGACGCCDBCTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CDB-CDB-R GGCCAACAGGGCCGACGCCDBCTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CDB-CCA-R GGCCAACAGGGCCGACGCCDBCTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG 

Q52L56-CCA-AHN-R GGCCAACAGGGCCGACGCCCACTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CCA-CDB-R GGCCAACAGGGCCGACGCCCACTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CCA-CCA-R GGCCAACAGGGCCGACGCCCACTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG 
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Table B-17. Additional primers used to build flanking fragments during construction of the 

four-site-saturation RmaNOD library in Chapter 4. 

Flanking 

Fragment 

Primer Type Primer Name Sequence 

0 Forward Universal-F 
CCAACTTACTTCTGACAACGATCGGAG
GACCGAAGGAGCTAACCGCTTTTTTGC 

0 Reverse S28M31_Const-R 
AATAGCGACTGAGTGTTTCTGCAGTGC
AGGCAC 

1 Forward L56_Const-F 
GCGTCGGCCCTGTTGGCCTACGCCCGT
AGTATCGACAACCC 

1 Reverse Universal-R 
CGATCGTTGTCAGAAGTAAGTTGGCCG
CAGTGTTATCACTCATGGTTATGGCAG 

 

Table B-18. Inner primers used for evSeq library preparation from the RmaNOD four-site-

saturation mutagenesis library in Chapter 4. 

Plates Forward primer Reverse Primer 

All plates CACCCAAGACCACTCTCCGGC
ACTGCAGAAACACTCAGTCG 

CGGTGTGCGAAGTAGGTGCAC
TACGGGCGTAGGCCAAC 

 

Table B-19. The evSeq barcode plates used for sequencing each position of the RmaNOD 

four-site-saturation mutagenesis library in Chapter 4. 

Position 

targeted 

Barcode 

plate 

Plate #1 DI01 

Plate #2 DI02 

Plate #3 DI03 

Plate #4 DI04 

Plate #5 DI05 
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