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ABSTRACT

Traditional spacecraft design paradigms rely on stiff structures with comparatively
flexible appendages. More recent trends, however, trade deployed stiffness for pack-
aging efficiency to stow increasingly large-area apertures inside existing launch
vehicles. By leveraging recent advances in materials and structures, these ultralight,
packageable, and deployable spacecraft, hereafter referred to as ultralight flexible
spacecraft, are up to several orders of magnitude lighter and more flexible than
the current state-of-the-art. They promise to deliver higher performance for a wide
range of applications, but this comes at a cost, in this case, due to their very low-
frequency structural dynamics. Structural dynamics can negatively interact with
spacecraft attitude control systems and degrade pointing performance. These de-
velopments motivate the main objective of this thesis: to demonstrate the feasibility
and limitations of maneuvering next-generation ultralight flexible spacecraft.

The thesis first proposes a framework that uses reduced-order modal models to de-
termine structure-based performance limits for flexible spacecraft slew maneuvers.
The framework fuses space mission requirements with the dynamic properties of
a structure to produce slew time estimates tailored for specific missions and ap-
plications, leading to higher-performance, less-conservative spacecraft and mission
designs. This aims to provide spacecraft designers with a preliminary design tool
capable of answering the question of how fast flexible spacecraft can be slewed
without excessive vibrations.

The thesis then turns to the development of a flexible multibody dynamics finite
element model of a representative ultralight flexible spacecraft. The representative
spacecraft uses the modular and scalable structural architecture developed by the
Caltech Space Solar Power Project (SSPP). The SSPP architecture consists of slen-
der, thin-shell structures, called strips, attached to diagonal booms via joints and
assembled into a square aperture. For increased computational tractability, each strip
is replaced with an equivalent beam model derived using an energy-equivalence-
based homogenization procedure. The booms and strips are discretized using ge-
ometrically exact beam finite elements. Unlike many conventional elements, these
elements are based on a quaternion parameterization of rotations and a spatial dis-
cretization that preserves the physical structure of the 1D continuum strainmeasures.
This leads to an objective finite element formulation, i.e., a formulation invariant
to superposed rigid body motions. Objectivity is important for simulating the large
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rotations that occur during slew maneuvers. The same spatial discretization is then
used to develop a quaternion variational integrator for the dynamics of geometri-
cally exact beams in flexible multibody systems in order to take advantage of its
structure-preserving properties in slew maneuver simulations. A procedure for de-
signing booms for the expected slew maneuver loads is discussed, and a parametric
modal analysis is used to investigate how structural design parameters affect the
spacecraft’s dynamic properties at different length scales.

A reduced-ordermodalmodel is subsequently derived from the flexible spacecraft fi-
nite elementmodel and used to estimate structure-based slewmaneuver performance
limits. These estimates are validated using geometrically nonlinear simulations of
slew maneuver dynamics with the full finite element model. Two integrators are
used: a Lie group generalized-Umethod representative of standard structural dynam-
ics integrators and a variational integrator. The results are somewhat unexpected:
the generalized-U method exhibits better numerical stability than the variational
integrator, even for long-duration slew maneuvers. The results also demonstrate
that contrary to common assumptions, other constraints impose more restrictive
limits on slew performance than the dynamics of the structure. Using attitude con-
trol system performance as an example, they show that the available momentum
and torque are often significantly more limiting than the structure. Consequently,
these results have significant implications for spacecraft design. In particular, they
suggest that spacecraft structures can either be (i) maneuvered significantly faster,
assuming suitable actuators are available, or (ii) built using lighter-weight, less-stiff,
and lower-cost construction that moves the structure-based slew performance limits
closer to those of the rest of the system. Thus, there is a significant opportunity to
design less-conservative, higher-performance space systems.
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C h a p t e r 1

INTRODUCTION

1.1 Background and Motivation
Since the dawn of the Space Age, structural dynamics has been an important consid-
eration in the design and operation of spacecraft, particularly for spacecraft stability
and control. In 1958, the Jet Propulsion Laboratory at the California Institute of
Technology flew Explorer 1, the first American satellite to reach low Earth orbit.
Explorer 1 was intended to be passively spin-stabilized about its minimum axis of
inertia. Unbeknownst at the time, this minor axis spin proved to be unstable due to
the neglected effects of structural compliance in its whip antennas, specifically the
energy dissipated by structural damping [1, 2]. Although Explorer 1 was widely
regarded as a success, its anomalous attitude dynamics were a warning for future
space missions.

Sixty years later, a dominant trend in spacecraft design trades deployed struc-
tural stiffness against packaging efficiency to facilitate the construction of higher-
performing, lighter-weight, and lower-cost spacecraft with structures that unfurl into
increasingly large-area apertures. In particular, advances in materials and structures
are leading to the development of aggressive new structural architectures with very
low areal mass densities that can best be characterized as ultralight, packageable, and
(self-)deployable.1. Such spacecraft are hereafter referred to as ultralight flexible
spacecraft. Whereas traditional spacecraft design philosophies rely on architectures
with a stiff bus and comparatively flexible appendages, ultralight flexible spacecraft
are inherently very flexible to allow increasingly large apertures to stow within the
confines of existing launch vehicles. This leads to first natural frequencies that
may be up to several orders of magnitude lower than the current state-of-the-art
and introduces new spacecraft dynamics and control challenges. Ultralight flexible
spacecraft are currently envisioned for a variety of applications, ranging from solar
system exploration [10] and space science [11] to communications, power transfer,
remote sensing [12], and space solar power [13].

1Self-deployable refers to spacecraft structures that deploy from a packaged configuration via
strain energy release (see e.g., [3–6]), as opposed to via mechanical actuation. Ultralight flexible
spacecraft typically deploy via either strain energy release or a hybrid scheme (see e.g., [7, 8]),
although there are exceptions, e.g., solar sails [9].
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Spacecraft require maneuvers to change their orbits and orientations. A slew ma-
neuver normally refers to any maneuver that changes a spacecraft’s orientation.
Large-angle slew maneuvers in particular are common, e.g., for reorienting high-
gain antennas, solar arrays, and thrust vectors. Unlike a rigid spacecraft, i.e., a
spacecraft that can be modeled as a rigid body, maneuvering a flexible spacecraft
excites structural dynamics which can perturb its motion, interact with its attitude
control system, and degrade its pointing performance. In some cases, structural
dynamics can even lead to instabilities and loss-of-control.

Classical approaches for mitigating the effects of structural dynamics usually involve
either maneuvering the spacecraft sufficiently “slowly” to reduce the excitation, or
delaying operations with stringent pointing requirements until structural damping
dissipates any vibrations. Both become increasingly difficult as the spacecraft’s
flexibility increases because the associated maneuvering and settling times also
increase. This decreases the time available to a spacecraft for actually performing
functions in support of its mission objectives. In particular, for sufficiently flexible
spacecraft, the maneuvering and settling times may become prohibitively long. This
emphasizes the importance of characterizing the dynamics of these spacecraft and
developing new approaches for their subsequent mitigation. However, large space
structures are notoriously difficult to test in representative 0-g environments before
launch [14–18]. As a result, computational approaches play an outsize role in
characterizing their structural dynamics and demonstrating that they are stable and
controllable throughout their expected flight envelopes.

Modeling and simulation of flexible spacecraft dynamics are perennial problems
plaguing spacecraft designers. Unsurprisingly, these modeling and simulation prob-
lems increase in difficulty as both the spacecraft size and flexibility increase. Several
characteristics of ultralight flexible spacecraft further compound these challenges.
For example, large size, low stiffness, and symmetry lead to very low (potentially
sub-millihertz) natural frequencies with many closely spaced vibration modes. The
resulting low-frequency structural dynamics can couple with the spacecraft’s rigid
body dynamics. Low stiffness can likewise lead to geometrically nonlinear elastic
deformations due to environmental and inertial loads. Altogether, these challenges
dictate the use of large-scale, geometrically nonlinear finite element models with
sufficient fidelity to capture dynamic effects at multiple length and temporal scales.

Due to the importance of structural dynamics in spacecraft design, flexible space-
craft dynamics have been extensively studied in the literature; see e.g., [1, 19–22].
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However, ultralight flexible spacecraft are largely new territory. As a result, this
thesis aims to address several open problems related to the dynamics of ultralight
flexible spacecraft.

1.2 Research Objectives
The main objective of this thesis is to demonstrate the feasibility and limitations
of maneuvering next-generation ultralight flexible spacecraft. To that end, this
thesis develops computational tools with varying degrees of fidelity for modeling
ultralight flexible spacecraft dynamics. The computational tools span a breadth of
applications, from preliminary design and analysis all the way to on-orbit operations
and slew maneuvers. As a case study, the thesis focuses on the slew maneuver
dynamics of a representative ultralight flexible spacecraft based on the Caltech
Space Solar Power Project (SSPP) structural architecture [13].

This thesis specifically addresses the following four research objectives:

1. Development and validation of a framework for quantifying minimum slew times

A common assumption about flexible spacecraft is that their structures limit how
fast they can be slewed. For highly compliant structures, very long slew times can
make an otherwise promising mission infeasible. As a result, it is important to
demonstrate the feasibility of slewing large flexible spacecraft early in the design
process. However, there is no standard framework for rigorously quantifying how
fast flexible spacecraft can be slewed. The most common heuristic states that the
minimum slew time must be at least ten times the structure’s lowest natural period.
Such a heuristic is convenient but may lead to overly conservative, and in some
cases, prohibitively conservative spacecraft designs and mission scenarios.

For these reasons, an important goal of this thesis is to propose and validate a
framework for rigorously quantifying minimum slew times at the beginning of
the space mission design cycle. For such a framework to be useful, it must use
quantitative performance metrics rooted in a space mission’s requirements and
account for the dynamic properties of a spacecraft’s structure, not simply its natural
frequencies. It likewise must be sufficiently simple to use during preliminary design
and sufficiently scalable to take advantage of the higher-fidelity finite elementmodels
available at later stages of the design cycle. Lastly, it must be applicable to a wide
range of space mission concepts, from large conventional spacecraft with flexible
appendages all the way to next-generation ultralight flexible spacecraft. Ultimately,
fusing space mission requirements with the dynamic properties of a structure yields
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slew time estimates that are tailored for specific missions and applications, leading
to higher-performance, less-conservative spacecraft and mission designs. These
slew time estimates are likely to be valuable for identifying the flexible spacecraft
architectures most suitable for specific mission concepts and vice versa.

2. Tradeoffs between structural design and structural dynamic properties

It is well known that large space structures tend to have very low natural frequencies
and many closely spaced vibration modes [23]. This can can make it difficult to
ascertain which modes are the most dynamically significant, because, contrary to
intuition, the most dynamically significant modes are not necessarily the lowest
frequency ones. It is less well known that scaling a space structure from a smaller
scale to a larger one may change which types of modes are the most dynamically
significant. In other words, what is dynamically significant at smaller scales may
not necessarily be representative of what happens at larger ones. This highlights an
important practical challenge, namely that it is difficult to extrapolate the dynamic
properties of smaller-scale test articles to those of a full-scale flight system. Thus,
as spacecraft become larger and more flexible, it becomes increasingly important to
understand how their structural designs influence their dynamic properties.

Unlike many other ultralight flexible spacecraft concepts, the SSPP architecture
studied in this thesis uses bending-stiff elements to support the integration of func-
tional elements. For this reason, the SSPP architecture is characteristic of a class of
ultralight flexible spacecraft referred to as bending architectures [24], i.e., spacecraft
structural architectures that derive their load carrying capacities from bending stiff-
ness. While commonly used for large solar array wings on conventional spacecraft,
bending architectures tend to be outliers among ultralight flexible spacecraft con-
cepts. Consequently, their dynamic properties are not well understood. Motivated
by these deficiencies, an objective of this thesis is to investigate the relationship
between three important structural design parameters for the SSPP architecture —
boom stiffness, areal density, and spacecraft size — to both improve the under-
standing of how its structural design affects its dynamic properties and to reveal
potentially useful design insights for other similar structural concepts.

3. Prediction of slew maneuver dynamics using finite element models

Verification and validation of ultralight flexible spacecraft dynamics requires high-
fidelity finite element models, both to counterbalance the difficulties associated with
ground testing large space structures [14–18] and to reduce the risks associated with
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high-performance maneuvers and complex on-orbit operations. In particular, fi-
nite element models capable of accurately predicting ultralight flexible spacecraft
dynamics can reduce conservatism in mission planning by mitigating the uncer-
tainties associated with higher-performance, i.e., faster, slew maneuvers. However,
these simulations pose challenges due to the low stiffnesses, very low-frequency
dynamics, and long time scales involved.

These challenges motivate the use of geometrically nonlinear finite element models
that accurately describe large linear-elastic deformations and coupling between rigid
body andflexible dynamics. They likewise suggest a requirement for time integration
methods that exhibit excellent long-duration numerical stability. For these reasons,
the thesis aims to demonstrate the use of geometrically nonlinear finite element
models to predict the slew maneuver dynamics of a representative ultralight flexible
spacecraft. It specifically focuses on moderate-fidelity simulations that are useful as
both a proof-of-concept and for preliminary design trade studies, but the fundamental
ideas are scalable to the higher-fidelities required for actual flight systems.

4. Demonstration of structure-preserving integrators for larger-scale finite element
models

Structure-preserving integrators refer to numerical methods that respect the under-
lying physics of a problem. Most standard structural dynamics integrators, e.g., the
generalized-U method [25], are not structure-preserving. Instead, they introduce
artificial numerical dissipation to damp the high-frequency oscillations that often
appear in the solution of numerically stiff differential equations. While this tends to
increase the integrator’s stability, it can also introduce pathological behaviors into
a simulation, e.g., non-physical energy decay. Unlike standard structural dynamics
integrators, structure-preserving ones are often able to achieve both stability and
excellent long-term energy behavior without numerical dissipation.

Applications that require high-fidelity simulations of complex, nonlinear phenomena
are increasingly turning to structure-preserving integrators. However, a recent
review paper [26] stresses that most of the applications of structure-preserving
integrators revolve around small-scale benchmark problems. Hence, it is unclear
if and when structure-preserving integrators are useful for larger-scale engineering
problems. Moreover, structure-preserving integrators often only preserve a subset
of the physical properties of a system. For example, fixed-time step integrators are
either symplectic-momentum conserving or energy-momentum conserving, but not
both [27]. For this reason, it is often likewise unclear which properties of a physical
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system are the most important to preserve with the integrator.

Simulating the low-frequency dynamics of ultralight flexible spacecraft inherently
requires long-duration finite element simulations. As a result, ultralight flexible
spacecraft dynamics are a possible engineering application that may benefit from
the use of structure-preserving integrators. With this in mind, this thesis applies
a specific type of structure-preserving integrator, a variational integrator [28, 29],
to finite element simulations of ultralight flexible spacecraft dynamics. Variational
integrators are a type of symplectic-momentum conserving integrator that inherit the
structure of the underlying physical system and generally exhibit excellent long-term
energy behavior. To evaluate the efficacy of these integrators, the thesis compares the
performance of a variational integrator with a more traditional structural dynamics
integrator for simulating flexible spacecraft slew maneuvers.

1.3 Outline of Thesis
The remainder of this thesis is organized into the eight chapters outlined below:

Chapter 2 presents a motivating example that emphasizes the often contradictory
design requirements for ultralight flexible spacecraft. In particular, it describes a
space solar power concept that requires ultralight flexible spacecraft with fast slew
maneuver capabilities.

Chapter 3 proposes a framework for calculating slew times for flexible spacecraft.
The chapter discusses canonical modeling approaches for flexible spacecraft dy-
namics, along with mode selection and the use of the Craig-Bampton method [30,
31] to transform complex finite element models into reduced-order modal models
suitable for slew time calculations and attitude control system (ACS) analysis and
design. Implementing and validating this framework requires a finite element model
of a flexible spacecraft. Much of the remainder of the thesis is devoted to the devel-
opment of such a model for a representative ultralight flexible spacecraft based on
the Caltech SSPP architecture [13].

Chapters 4, 5, and 6 describe the geometrically exact beam finite elements and
associated numerical methods implemented in the finite element model of the repre-
sentative ultralight flexible spacecraft. Together, these chapters are self-contained,
and hence, can be read independently of the rest of the thesis. Chapter 4 specifi-
cally reviews the quaternion parameterization of the 3D rotation group SO(3) and
Reissner-Simo geometrically exact beam theory (GEBT) [32–34]. This provides
the requisite background for Chapters 5 and 6. From there, Chapter 5 develops a
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new quaternion-based geometrically exact beam finite element based on a structure-
preserving spatial discretization. The spatial discretization accounts for the Lie
group structure of SO(3) and leads to a strain-invariant finite element formulation,
i.e., a formulation invariant to superposed rigid body motions. This is important for
simulating the large rotations involved in flexible spacecraft slew maneuvers. Chap-
ter 6 then uses this spatial discretization to derive a quaternion-based variational
integrator for simulating the dynamics of geometrically exact beams.

Chapters 7 and 8 return to the problem of ultralight flexible spacecraft dynamics.
Chapter 7 specifically describes the development and implementation of a flexible
multibody dynamics finite element model of a representative ultralight flexible
spacecraft based on the Caltech SSPP architecture. In doing so, it derives equivalent
beam models for the thin-shell, ladder-like “strips” [35] that are a building block
of the SSPP architecture. It then designs the booms that support the strips for the
expected inertial loads during slew maneuvers. The equivalent beam models and
boom designs feed into a parametric modal analysis that seeks to understand how
the spacecraft’s structural design influences its dynamic properties as functions of
its size, areal mass density, and boom stiffness.

Chapter 8 studies the slewmaneuver dynamics of the representative ultralight flexible
spacecraft. It combines the framework from Chapter 3 with the modal analysis from
Chapter 7 to estimate slew times for the reference spacecraft at different length scales.
Comparisons are then made with slew time limits derived from representative ACS
capabilities. From there, geometrically nonlinear finite element simulations validate
the slew time predictions and reveal important insights into the spacecraft’s slew
maneuver dynamics. Finally, the chapter uses the slew maneuver simulations to
compare the performance of a more traditional structural dynamics integrator, the
Lie group generalized-U method [36–38], with the performance of the variational
integrator from Chapter 6.

Lastly, Chapter 9 summarizes the important conclusions from the thesis and outlines
possible directions for future research.

1.4 Note on Notation
Throughout this thesis, the prefix X denotes infinitesimal variations. Gradients use
the numerator-layout (Jacobian) convention; i.e., for a function 5 (x) : R= → R,
m 5 /mx ∈ R1×=. The symbols I=×= and 0<×= denote the identity and null matrices in
R=×= and R<×=, respectively. In general, prime notation denotes (scalar) derivatives



8

of a function with respect to its argument; e.g., 5 ′(G) = d 5 /dG for a function
5 (G) : R→ R. Likewise, dot notation denotes derivatives with respect to the time
variable C; e.g., ¤G = dG/dC for G ∈ R. Boldface letters signify vectors and matrices.



9

C h a p t e r 2

A MOTIVATING EXAMPLE: SPACE SOLAR POWER

The work presented in this chapter is based on the following publications:

M. A. Marshall, A. Goel, and S. Pellegrino, “Attitude maneuver design for planar
space solar power satellites,” in 29th AAS/AIAA Space Flight Mechanics Meeting,
AAS 19-287, Ka’anapali, Maui, Hawaii, 2019.

M. A. Marshall, A. Goel, and S. Pellegrino, “Power-Optimal Guidance for Planar
Space Solar Power Satellites,” Journal of Guidance, Control, andDynamics, vol. 43,
no. 3, pp. 518–535, 2020. doi: 10.2514/1.G004643.

2.1 Introduction
The purpose of this chapter is to describe a space mission concept that requires
ultralight flexible space vehicles with fast slew maneuver capabilities. The space
mission concept is the novel space solar power station architecture originally in-
troduced by the Caltech Space Solar Power Project (SSPP)1 in [13]. Preliminary
studies of formation flying for this concept [41, 42] identify the requirement for a
fast slew maneuver capability, whereas more recent works [39, 40] present detailed
studies of these maneuvers and how they influence overall system efficiency.

Space solar power involves collecting solar power in space and wirelessly transmit-
ting it to Earth. Compared to terrestrial solar power, it is advantageous because (i)
it separates power generation from both terrestrial weather and diurnal and seasonal
cycles, and (ii) it can dispatch power to almost any location on Earth at any time.

The original idea for space solar power dates to 1941 and is the stuff of science fiction
[43]. Two decades passed before P. E. Glaser proposed what is widely regarded as
the first engineering concept for a space solar power satellite [44]. In subsequent
years, the engineering community proposed a variety of space solar power concepts
(see e.g., [45–47]), most of which can be considered variations of Glaser’s original
concept. The defining characteristics of these “classical” concepts are the use of
large, monolithic spacecraft and either mechanically steerable solar arrays, antennas,
or reflectors that decouple antenna steering from sun pointing.

1https://www.spacesolar.caltech.edu/

https://doi.org/10.2514/1.G004643
https://www.spacesolar.caltech.edu/
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In 2016, under the leadership of Professors Harry Atwater, Ali Hajimiri, and Sergio
Pellegrino, the Caltech SSPP proposed a fundamentally different approach to space
solar power [13]. The SSPP concept replaces the complex, monolithic satellites
characteristic of classical concepts with a formation-flying phased array of ultralight
flexible spacecraft, multiple of which can be packaged for launch in a single launch
vehicle and self-deployed in space. By doing so, it aims to achieve economic
viability by reducing the mass, cost, and complexity of the space-based power
station by upwards of an order of magnitude compared to more classical concepts.
This entails the use of simple structural architectures constructed out of ultralight,
thin shells with low deployed stiffness.

A defining feature of the SSPP structural architecture is that it is plate-like (planar).
Planarity facilitates efficient packaging [13]. However, it also couples the problems
of orienting the photovoltaics towards the Sun and pointing the radio frequency (RF)
beam towards the Earth. This coupling motivates the requirement for a fast slew
maneuver capability. More specifically, this coupling results in a requirement for
power-optimal guidance [40], i.e., orientation trajectories that maximize the power
transmitted by the space solar power station. The power-optimal guidance solutions
reveal that a fast slewmaneuver capability maximizes the average transmitted power.

The modular, scalable space solar power architecture proposed by the Caltech SSPP
is depicted in Fig. 2.1. The fundamental unit in the SSPP concept is referred to as a
“tile” [12, 48, 49]. Each tile is an approximately 10 cm×10 cm, multi-layer, flexible
sandwich structure that integrates photovoltaic (PV) cells, direct current (DC) to RF
converters, and microwave antennas — all the equipment required to independently
collect sunlight and transmit it to Earth. Tiles are integrated into approximately
1 m-wide supporting structures called “strips” [35], which are then incorporated
into a nominally 60 m× 60 m spacecraft (the “module”). The power station consists
of a constellation of formation flying spacecraft operating as a single phased array
[41, 42]. To eliminate PV shadowing by adjacent spacecraft, the spacecraft maintain
their positions and orientations in a fixed plane [41, 42]. Thus, the power station in
aggregate shares the same orientation as the individual spacecraft.

The baseline tile from the original SSPP concept [13] consists of two main layers:
a top PV layer that converts sunlight into DC electrical power, and a bottom RF
layer that converts DC electrical power into RF power radiated by patch antennas.
This baseline tile architecture is referred to as single-sided PV, single-sided RF
(PV1RF1). The performance of a power station with PV1RF1 tiles is constrained by
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Module

Strip

Tile

Figure 2.1: Overview of Caltech Space Solar Power Project concept originally
introduced in [13].

the orbit geometry [40]. Hence, higher performance requires the use of a dual-sided
tile. One possible dual-sided tile adds a layer of RF-transparent PV cells to the RF
layer of the baseline tile. This modified tile is referred to as dual-sided PV, single-
sided RF (PV2RF1). Dual-sided tiles facilitate uninterrupted power transfer when
the receiving station falls between the Sun and the power station. Consequently, the
use of a dual-sided tile can increase the overall system efficiency by upwards of 50%
[40]. The two tile architectures are sketched in Fig. 2.2. Due to its higher efficiency,
this chapter exclusively considers a PV2RF1 tile.

The goal of the remainder of this chapter is to demonstrate why the Caltech SSPP
concept requires a fast slewmaneuver capability. To that end, it calculates the power-
optimal guidance for a representative mission scenario, that of a single power station
in a geostationary Earth orbit (GEO) transmitting to a single receiving station. The
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PV RF RF-transparent PV

PV 1

RF 1

(a)

PV 1

RF 1, PV 2

(b)

Figure 2.2: Tile layering schematics for (a) single-sided PV, single-sided RF
(PV1RF1) and (b) dual-sided PV, single-sided RF (PV2RF1).

chapter is organized as follows: Sec. 2.2 describes the orbit geometry and the power
transmission model. Sec. 2.3 calculates the power-optimal guidance. Sec. 2.4 then
briefly summarizes the chapter and how it fits into the rest of the thesis.

2.2 Problem Geometry and Power Transmission Model
This section describes the simplified geometric framework and power transmission
model used for the power-optimal guidance calculations in Sec. 2.3. Unlike previous
studies [39, 40], this section models the nonlinear power input-output relationship
for a representative RF integrated circuit (RFIC) responsible for converting DC
electrical power from the PV cells into RF output power.

The power-optimal guidance considers a power station in a circular, equatorial,
geostationary Earth orbit (GEO) transmitting to an equatorial receiving station; see
Fig. 2.3. In GEO, the power station’s angular rate around the Earth equals the
Earth’s rotation rate about its axis (15 deg/hour). As a result, the power station’s
position appears fixed with respect to the receiving station. For simplicity, the
power and receiving stations are located at the same longitude. Following [39, 40],
Fig. 2.3 assumes that the Earth’s orbital position around the Sun is fixed at the vernal
equinox. This allows the Sun’s apparent motion to be neglected and reduces the
general 3D orbit geometry to 2D where the Earth’s equatorial plane is coplanar with
a great circle of the Sun. Due to the fixed Earth-Sun geometry, an Earth-Centered
Inertial (ECI) reference frame can be defined with its origin at the center of the
Earth and the orthonormal basis vectors {x̂, ŷ, ẑ}. With these assumptions, x̂ points
towards the Sun, i.e., parallel to the unit sun vector ŝ, ẑ is parallel to Earth’s axis,
and ŷ = ẑ × x̂. Since the Earth’s equatorial plane is coplanar with the ecliptic, the
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Local Horizon

Figure 2.3: Problem geometry for a planar space solar power station in GEO. The
power station’s angular rate around the Earth is 15 deg/hour in GEO.

transmitted power is independent of Earth’s axial tilt.

In 2D, the outward normal vector n̂ fully specifies the orientation of the power
station. n̂ points outward from the power station’s PV1 surface and is used to
define the sun angle V and squint angle q. V and q are respectively the positive
counterclockwise angles from ŝ to n̂ and from−n̂ to the slant vector pointing towards
the receiving station.

Since the power station and receiving station are located at the same longitude, the
angular position \ fully describes both of their positions in the ECI frame. Using
the assumptions in this chapter, the relationship between V, q, and \ is [40]

V + q = \ (2.1)

which is useful for writing the power-optimal guidance problem in Sec. 2.3 as a
single-variable optimization problem.

Unlike previous studies [39, 40], this study neglects eclipsing. In GEO, eclipsing
only occurs in the vicinities of the vernal and autumnal equinoxes. This assump-
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tion contradicts the coplanarity assumption and results in an upper bound on the
efficiency of the power station.

The power-optimal guidance calculations in Sec. 2.3 require an expression for the
total transmitted power as a function of the orbital geometry, i.e., as a function V and
q. The total transmitted power is modified from [40] to account for the nonlinear
power input-output relationship for the RFICs. These modifications result in the
following expression for the total power transmitted by a single tile:

%C (V, q) = IC
(
,SF�PV[PV PV(V)

)
RF(q) AF(q) (2.2)

where

• ,SF is 1, 361 W/m2 solar insolation (irradiance);

• �PV is the effective PV area of a single tile (in this case, 72 mm × 72 mm);

• [PV is the optical-to-electrical power conversion efficiency of the PV cells
(assumed to be 25%, a value comparable to the current state-of-the-art for
lightweight, low-cost space photovoltaics2);

• PV(V) = |cos(V) | is the PV cell efficiency as a function of the sun angle for
planar PV cells with unrestricted fields-of-view;

• IC(%in) is the power input-output relationship for the RFICs (Fig. 2.4a);

• RF(q) is the efficiency of a single antenna in the phased array as a function
of the squint angle (Fig. 2.4b); and

• AF(q) = |cos(q) | is the phased array factor that accounts for the interactions
between the antennas in the phased array [59, p. 283–333].

Here, the antenna efficiency RF(q) includes squint angle limits on the RF surface
due to each antenna’s limited field-of-view (the maximum squint angle in Fig. 2.4b
is 76 deg) and the absolute values in PV(V) and AF(q) guarantee that %C ≥ 0.

2III-V multi-junction solar cells with efficiencies in excess of 30% are the current state-of-
the-art for space photovoltaics [50]. However, III-V cells are expensive to manufacture [50] and
require shielding to protect them from the high-energy particles responsible for radiation damage
[51]. Moreover, despite the use of thin-film substrates (see e.g., [52]), the mass of the shielding
fundamentally limits the specific power (i.e., the power per unit mass) achievable with III-V cells.
Decreasing the cost per watt and increasing the specific power both require the use of lightweight
photovoltaics, like perovskite [53–55] and nano-wire [56, 57] solar cells, that trade high efficiency
for low cost and intrinsic radiation tolerance. State-of-the-art perovskite solar cells, for example,
typically achieve maximum efficiencies on the order of 25% [55]. The economic viability of space
solar power depends on low-cost, high specific power solar cells[58]
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Figure 2.4: (a) idealized power input/output relationship for high-performance
RFICs and (b) antenna efficiency as a function of squint angle for near-isotropic
patch antennas described in [48]. In (a), the RFICs turn on and saturate at input
powers of 0.195 W and 3.795 W, respectively. In (b), the maximum allowable squint
angle is 76 deg. These figures were produced using data provided by Dr. Austin
Fikes and Professor Ali Hajimiri at Caltech.

To simplify Eq. (2.2) and the subsequent power-optimal guidance calculations, V is
taken as the independent orientation variable and Eq. (2.1) is used to eliminate q.
Hence, the total transmitted power can be rewritten as

%C (V) = IC
(
,SF�PV[PV PV(V)

)
RF(\ − V) AF(\ − V). (2.3)

The instantaneous power transmission efficiency, i.e., the fraction of the total incident
solar power,SF�PV transmitted as RF output power, is then given by

[C (V) =
%C (V)
,SF�PV

(2.4)

which is an input to the power-optimal guidance calculations in Sec. 2.3. Said another
way, given 1 W of incident solar power, the power station transmits [C (V) W.

2.3 Power-Optimal Guidance
This section introduces and solves the power-optimal guidance problem for a power
station in GEO.

The power-optimal guidance problem determines the optimal orientation trajectory
V∗(\) that maximizes the power transmitted to a receiving station. It is specifically
defined as follows [40]:

max
V(\)

[C (V(\)) (2.5)
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Figure 2.5: Power-optimal guidance for a PV2RF1 power station inGEO: (a) optimal
orientation trajectory V∗(\) and (b) power transmission efficiencies [Eq. (2.4)].

where [C (V(\)) is the orbit-averaged power transmission efficiency

[C =
1

2c

∫ 2c

0
[C (V(\)) d\ (2.6)

and [C (V(\)) is the instantaneous power transmission efficiency [Eq. (2.4)]. Maxi-
mizing [C maximizes [C (V(\)) and the transmitted power [Eq. (2.3)].

Equation (2.5) is solved for a PV2RF1 power station in GEO using transcription and
local optimization, as discussed in [40]. Transcription approximates the integral
in Eq. (2.6) as a weighted sum over # discrete angular positions \: ∈ [0, 2c) for
: = 0, . . . , # − 1 using a quadrature rule (in this case, a left Riemann sum).
For each \: , the local optimizer then uses a grid search to identify the interval(s)
containing the maximizer(s) of [C , after which a gradient-free optimizer (a golden
section search [60]) solves for the sun angle V∗

:
that maximizes [C . The gradient-free

optimizer is necessary because [C does not have continuous first derivatives.

Figures 2.5a and 2.5b depict the optimal orientation trajectory V∗(\) and the cor-
responding power transmission efficiencies for the GEO-based power station. The
optimal orientation trajectory consists of a single-axis slew maneuver at constant
angular velocity punctuated by sharp, approximately 90 deg reorientation maneu-
vers twice per orbit. These reorientation maneuvers change the sun-pointed PV
surface to minimize the local sun and squint angles, thereby maximizing the total
transmitted power; see Fig. 2.6. The optimal orbit-averaged power transmission
efficiency [∗C for this scenario is 8.98%. This is comparable to previously published
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Figure 2.6: Illustration of the optimal orientation trajectory V∗(\) for a PV2RF1
power station in GEO.

estimates; e.g., with [PV = 18%, a constant RFIC efficiency of 33%, and V = q = 0,
[61] estimates that approximately 6% of the incident sunlight is transmitted to the
receiving station and 3% is ultimately delivered to the electrical grid.

Ideally, the reorientation maneuvers occur instantaneously. This maximizes the
overall system efficiency by minimizing the time spent operating in the vicinities of
the local minima in Fig. 2.5b. However, instantaneous slewmaneuvers are infeasible
for a real system. For this reason, sub-optimal scenarios where the reorientation ma-
neuvers occur over finite lengths of time are also considered. Figure 2.7a compares
a sub-optimal orientation trajectory with maneuvers that occur over Δ\ = 45 deg
of angular position (3 hours) with the optimal orientation trajectory from Fig. 2.5a.
If an instantaneous reorientation maneuver nominally occurs at \̄, then the finite
duration reorientation maneuvers are obtained by linearly interpolating the optimal
orientation trajectory from \̄−Δ\/2 to \̄+Δ\/2. Figure 2.7b plots the corresponding
power transmission efficiencies.

Reorientation maneuvers occur in the vicinities of the local minima of the power
transmission efficiency. For this reason, increasing the durations of the reorientation
maneuvers decreases [C . Figure 2.8 quantifies [C as a function of the maneuver
duration for reorientation maneuvers that each occur over an angular position Δ\.
For example, if each maneuver occurs over an angular position of 30 deg, i.e., each
maneuver takes 2 hours, then [C decreases to 8.59%. This is an approximately
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Figure 2.7: (a) sub-optimal orientation trajectory V(\) and (b) power transmission
efficiencies [Eq. (2.4)] for a PV2RF1 power station in GEO.
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Figure 2.8: Orbit-averaged power transmission efficiency [C [Eq. (2.6)] as a function
of the reorientation maneuver duration (expressed in terms of the angular position
Δ\ subtended during each maneuver).

4.3% decrease relative to the case with instantaneous maneuvers. To put this in
perspective, the increase in [C associated with decreasing the duration of each
orientation maneuver from 2 hours to 10 minutes is comparable to increasing the
PV cell efficiency from 25% to 26%. In short, the faster the slew maneuvers, the
higher the overall system efficiency.

2.4 Discussion
This chapter has described a novel concept for space solar power proposed by
the Caltech Space Solar Power Project (SSPP) [13] that requires ultralight flexible
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space vehicles with fast slew maneuver capabilities. An idealized power-optimal
guidance calculation for a dual-sided PV, single-sided RF space solar power station
demonstrates that instantaneous single-axis slew maneuvers maximize the total
transmitted power. These maneuvers occur twice per orbit, each of which reorients
the power station by approximately 90 deg. The main takeaway is that faster slew
maneuvers increase the overall system efficiency, which in turn increases both the
power delivered to the electrical grid and the system’s economic viability.

The Caltech SSPP architecture is representative of a class of spacecraft structural
architectures referred to as bending architectures [24]. Bending architectures en-
compass spacecraft structural concepts that derive their load carrying capabilities
from bending stiffness. This makes them compatible with the integration of func-
tional tiles. While the focus in this chapter is on space solar power, the tile concept
can be generalized to other high-performance applications, e.g., high-power com-
munications and radar imaging. For these reasons, the SSPP structural architecture
is the focus of the case studies in Chapters 7 and 8. Notably, the baseline 90 deg,
single-axis slew maneuver used for the dynamic simulations in Chapter 8 is inspired
by the 90 deg, single-axis reorientation maneuvers required to maximize the power
transmitted by a space solar power station.
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C h a p t e r 3

FLEXIBLE SPACECRAFT SLEW MANEUVER
REQUIREMENTS

3.1 Introduction
Many current and future space missions involve increasingly large and flexible
spacecraft. These spacecraft sacrifice structural stiffness in order to achieve higher
performance (e.g., by increasing the size of solar arrays and antennas) or unlock
new capabilities (e.g., solar sailing). As a result, they are envisioned for a variety
of applications including planetary [62] and solar system exploration [10]; space
science [11]; communications, power transfer, and sensing [12]; and space solar
power [13]. Each application requires attitude slew maneuvers, e.g., to reorient
sensors and antennas or a thrust vector. Slew maneuvers are required overhead, i.e.,
they are critical for achieving mission objectives, but are generally time lost in the
sense that the spacecraft is not actively performing a useful function (remote sensing,
data downlinking, etc.). For this reason, minimizing slew times has significant
practical implications for space mission design. In particular, slewing faster leaves
more useful time available for executing a spacecraft’s intended mission.

Given the proliferation of applications for flexible spacecraft, a common question
during mission concept development and preliminary design pertains to how fast
these spacecraft can be slewed. In some cases, a rapid slew capability may even be
a prerequisite for feasibility. For example, space solar power requires two approx-
imately 90 deg slews per orbit [40]. Here, slew time is tied to economic viability.
As demonstrated in Chapter 2, system efficiency decreases as slew time increases,
from which it follows that slower slew times result in the transmission of less energy
to an electrical grid. Hence, as the trend of fielding increasingly large and flexible
spacecraft continues, so too does the importance of slew time as a design driver.

Motivated by the goal of achieving agility despite structural flexibility, this chapter
proposes a framework for the prediction of minimum slew times for flexible space-
craft. The framework relies on the canonical model for flexible spacecraft attitude
control system (ACS) analysis and design [63, 64], a simple linear system with both
a rigid body and a flexible mode. The methods in this chapter are classical and
primarily draw from linear systems theory and modal analysis, leading to simple
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analytical and quasi-analytical results suitable for concept development and require-
ments definition. Ultimately, this chapter lays the groundwork for studying the slew
maneuver dynamics of ultralight flexible spacecraft in subsequent chapters. While
the focus here is on attitude maneuvers, the analysis and results are applicable to
both translational and rotational maneuvers.

The remainder of this chapter is organized as follows: Sec. 3.2 introduces the
canonical model for flexible spacecraft ACS analysis and design. Sec. 3.3 demon-
strates the use of the Craig-Bampton method [30, 31] to reduce an arbitrary flexible
spacecraft finite element model into a form analogous to the canonical model from
Sec. 3.2. Sec. 3.4 then studies slew maneuver requirements based on both settling
times and the peak amplitude of the disturbance due to the flexible dynamics. The
former motivates the proposal of a criterion based on the amplitude of the residual
elastic velocity for estimating minimum slew times. The chapter concludes with a
discussion of the results and their implications in Sec. 3.5.

3.2 Canonical Flexible Spacecraft Model
The classical approach for ACS analysis and design reduces complex flexible space-
craft dynamics into three decoupled, single-axis modal models, one for rotation
about each axis [63, 64]. Each model includes a single rigid body mode and one
or more dynamically significant elastic modes. Preliminary analysis and design
in particular often rely on single-axis modal models with a single retained elastic
mode, so-called single-mode models. This is the simplest structural dynamic model
that includes both rigid body and flexible modes, and hence, is the canonical model
for flexible spacecraft dynamics [63, 64]. The canonical model takes the form of
the unrestrained spring-mass-damper system with two degrees of freedom (DOFs)
depicted in Fig. 3.1 and applies for either rotational or translational motion.

Figure 3.1: The canonical model of a flexible spacecraft is a floating spring-mass-
damper system with two degrees of freedom.
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The equations of motion for the canonical model in Fig. 3.1 take the form[
<1 0
0 <2

] [
¥G1

¥G2

]
+

[
2 −2
−2 2

] [
¤G1

¤G2

]
+

[
: −:
−: :

] [
G1

G2

]
=

[
D1

0

]
(3.1)

where <1 denotes the mass of the spacecraft “bus” with position G1, <2 is the
mass of the flexible “appendage” with position G2, : is the spring stiffness, 2 is
the viscous damping coefficient, D1 is the control input on <1, and dot notation
denotes differentiation with respect to time C. In practice, G1 is the bus orientation,
G2 is the modal coordinate corresponding to the dominant flexible mode (which is
not necessarily the lowest frequency mode), and D1 is the attitude control torque.
The remaining parameters are related to the rigid and flexible body properties of
the spacecraft. Sec. 3.3 shows how to reduce arbitrary finite element models into
single-axis modal models, and by doing so, derives expressions for these parameters.

The classical ACS analysis and design approach treats flexibility as a disturbance
acting on the spacecraft bus. Thus, the parameter of interest for ACS design and
analysis is the influence of <2 on <1, not the motion of <2 itself. To eliminate the
motion of <2, the standard approach is to rewrite Eq. (3.1) in the Laplace domain
and evaluate the transfer function from D1 to G1. Taking the Laplace transform of
Eq. (3.1) (with zero initial conditions, as is standard for the evaluation of a transfer
function [65, Ch. 4]) gives

<1B
2-1(B) + 2B (-1(B) − -2(B)) + : (-1(B) − -2(B)) = *1(B), (3.2)

<2B
2-2(B) + 2B (-2(B) − -1(B)) + : (-2(B) − -1(B)) = 0 (3.3)

where -1(B) = L(G1(C)), -2(B) = L(G2(C)), *1(B) = L(D1(C)), and L(·) denotes
the Laplace transform that converts a function of time C to a function of the complex
frequency B. Rearranging Eq. (3.3) renders the following expression for the transfer
function -2(B)/-1(B):

-2(B)
-1(B)

=
2B + :

<2B2 + 2B + :
. (3.4)

Substituting -2(B)/-1(B) into Eq. (3.2), taking a partial fraction expansion, and
simplifying then yields

-1(B)
*′1(B)

=
1
B2 +

<2/<1

B2 + 2 (1 + <2/<1) Zl=B + (1 + <2/<1) l2
=

(3.5)

wherel= =
√
:/<2 is the fixed-base natural frequency, Z = 2/

(
2
√
:<2

)
is the fixed-

base damping ratio (fraction of critical damping), and D′1 is the acceleration input to
the system, i.e., D1 = (<1 + <2) D′1 [equivalently,*1(B) = (<1 + <2)*′1(B)].
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Equation (3.5) consists of two terms, the rigid body translation of <1 and a pertur-
bation due to the motion of <2, i.e., due to flexibility. To make this more explicit,
let -1(B) = -1,A (B) + -1, 5 (B) where the subscripts A and 5 denote the rigid body and
flexible terms with corresponding transfer functions

-1,A (B)
*′1(B)

=
1
B2 , (3.6)

-1, 5 (B)
*′1(B)

=
<2/<1

B2 + 2 (1 + <2/<1) Zl=B + (1 + <2/<1) l2
=

. (3.7)

Taking the inverse Laplace transforms of Eqs. (3.6) and (3.7) then gives

¥G1,A = D
′
1, (3.8)

¥G1, 5 + 2
(
1 + <2

<1

)
Zl= ¤G1, 5 +

(
1 + <2

<1

)
l2
=G1, 5 =

<2
<1
D′1. (3.9)

From Eq. (3.9), the perturbation due to flexibility (i.e., the flexible dynamics) can
be modeled as a damped harmonic oscillator with increased natural frequency
l=

√
1 + <2/<1 and damping ratio Z

√
1 + <2/<1 relative to the fixed-base case.

The shifted natural frequencyl=
√

1 + <2/<1 corresponds with the free-free natural
frequency of Eq. (3.5).

Classical approaches for flexible spacecraft ACS analysis and design are predicated
on minimizing the magnitude of any disturbances induced by flexibility, i.e., by
making the magnitude of G1, 5 small. This entails moving the system sufficiently
“slowly” to prevent significant excitation of the flexible mode(s). For example, the
standard practice for ACS design is to require that the closed-loop bandwidth of the
control system is at least an order of magnitude below the system natural frequency
l=

√
1 + <2/<1 [63].1 In this case, the control system reacts on a time scale at

least an order of magnitude longer than the natural time scale of the system’s
dynamics. Practically speaking, this means that it is often possible to neglect
flexibility altogether in control system design, and instead simply design a control
system for the rigid body motion, as is done, e.g., in [66].

A similar philosophy is usually adopted for designing slew maneuvers. A common
heuristic is that the duration of a slew maneuver must be an order of magnitude or

1In practice, this depends on the spacing of the structural modes. For a system with a few
distantly spaced modes, it is possible to achieve higher bandwidth linear control systems by filtering
the structural modes (see e.g., [64] and the references therein). However, this becomes difficult, if
not impossible for large space structures with many closely spaced modes (see e.g., [66]), in which
case the aforementioned requirement on closed-loop bandwidth becomes imperative.
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more longer than the system’s natural period, although as shown in Sec. 3.4, such
a requirement is often misguided. In particular, “slow” is relative, and depends on
both the “shape” of the forcing applied to the system and the ratio )/)= between the
slew maneuver duration ) and the natural period )= = 2c/l= of the flexible mode.
These issues are returned to in Sec. 3.4. In the interim, the discussion turns to the
derivation of single-axis modal models from arbitrary finite element models.

3.3 Derivation of Single-Axis Modal Models
Using the canonical model of Sec. 3.2 in practice requires relating its parameters<1,
<2, and l= to a flexible spacecraft finite element model. To that end, this section
presents a rigorous derivation based on the Craig-Bampton method [30, 31] of how
to transform general unrestrained (free-free) finite element models into single-axis
modal models. Along the way, it reinforces that the correct set of vibration modes
for ACS analysis and design are the fixed-interface normal modes inherent to the
Craig-Bampton method. The Craig-Bampton method generalizes the notion of a
“bus” with a flexible “appendage” to an arbitrarily complex flexible spacecraft.

3.3.1 General Modal Models
The derivation of the general modal model starts from the standard equation of
motion for a free-free linear finite element model:

M¥x + C¤x +Kx = Bu. (3.10)

Here, x ∈ R= contains the nodal displacement DOFs, u ∈ R< contains the external
forces and moments, M ∈ R=×= is the symmetric positive definite mass matrix,
C ∈ R=×= is the symmetric positive semi-definite damping matrix, K ∈ R=×= is the
symmetric positive semi-definite stiffness matrix, and B ∈ R=×< maps the external
forces and moments to the nodal DOFs. In general, each node in the finite element
model has six DOFs, three translations and three rotations, fromwhich it follows that
Eq. (3.10) admits up to six rigid body modes. The damping model (e.g., Rayleigh
or modal) determines the rank deficiency of C, whereas the number of rigid body
modes corresponds to the rank deficiency of K.

Per the standard procedure for the Craig-Bampton method [30, 31], Eq. (3.10) is
partitioned into =� interior (�) and =� boundary (�) coordinates, as follows:[

M� � M��

M�� M��

] [
¥x�
¥x�

]
+
[

C� � C��

C�� C��

] [
¤x�
¤x�

]
+
[

K� � K��

K�� K��

] [
x�
x�

]
=

[
0=�×1

u�

]
(3.11)
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where = = =� + =�. Typically, the �-set contains DOFs either shared with adjacent
components (when the Craig-Bampton substructure is a component of a larger struc-
tural dynamic model) or loaded by external forces or moments; the remaining DOFs
belong to the �-set [31]. For a flexible spacecraft, the �-set coordinates correspond
with the six rigid body DOFs of the bus, and hence, are the generalization of G1

from the canonical model [Eq. (3.1)]. The �-set coordinates (or the corresponding
modal coordinates) are then analogous to G2 in Eq. (3.1). With the �-set coordi-
nates defined in this way, K� � is the full-rank stiffness matrix corresponding to fixed
(clamped) boundary conditions at the bus. u� then contains the forces (e.g., due to
thrusters) and moments (e.g., due to the ACS) acting on the bus. Equation (3.11) is
simply a permutation of the rows and columns of Eq. (3.10).

The partitioned finite element model [Eq. (3.11)] is a special case of the nodal-
fixed [67] finite element floating frame of reference (FFR) formulations (see e.g.,
[68, Ch. 5–6] and [69]) often used in flexible multibody dynamics for simulating
structural dynamicswith large rigid bodymotions. This can be shown by substituting
the coordinate transformation[

x�
x�

]
=

[
I=�×=� −K−1

� �
K��

0=�×=� I=�×=�

] [
x�
x�

]
(3.12)

into Eq. (3.11). Here, x� contains the elastic displacements of the �-set coordinates
relative to the �-set and the last =� columns of the transformation matrix contain the
rigid body modes of K [31]. In this case, the �-set coordinates correspond with the
rigid body translations and rotations of the FFR. With a general FFR formulation,
nonlinearities arise due to (i) 3D rotations, (ii) coupling between translations and
rotations, (iii) inertia changes due to elastic deformations, and (iv) gyroscopic forces
(velocity-squared terms). An expression equivalent to Eq. (3.11) results when (iii)
and (iv) are negligible and either the angular displacements are small or the only rigid
body motion of the FFR is rotation about a single axis. If the angular displacements
are small, Eq. (3.11) can simulate arbitrarily large translations. Likewise, if the
only rigid body motion of the FFR is rotation about a single axis, then Eq. (3.11)
can simulate arbitrarily large rotations about that axis. Thus, Eq. (3.11) is a useful
representation for simulating flexible spacecraft dynamics during, e.g., single-axis
slews, fine pointing (attitude stabilization), and propulsive maneuvers.

Following Sec. 3.2, the immediate goal is to derive the transfer function G(B) that
relates a force or moment on the bus (�) to the corresponding translations and rota-
tions, i.e., to find G(B) such that G(B)X� (B) = U� (B) where X� (B) = L(x� (C)) and
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U� (B) = L(u� (C)). G(B) is subsequently simplified for the special case of a single-
axis slew and inverted to obtain an expression analogous to Eq. (3.5). The derivation
of G(B) closely follows the procedure in [70, Sec. 8.1] for the undamped sinusoidal
(steady-state) transfer function G( 9l) (referred to as “mechanical impedance” in
[70]) where 92 = −1 and l is the frequency of the harmonic forcing.

The derivation of G(B) continues by taking the Laplace transform of Eq. (3.11)
(again with zero initial conditions) which yields(
B2

[
M� � M��

M�� M��

]
+ B

[
C� � C��

C�� C��

]
+

[
K� � K��

K�� K��

]) [
X� (B)
X� (B)

]
=

[
0=�×1

U� (B)

]
(3.13)

where X� (B) = L(x� (C)). Eliminating the first equation in Eq. (3.13) then results in
the following exact expression relating X� (B) and X� (B):

X� (B) = −
(
B2M� � + BC� � +K� �

)−1 (
B2M�� + BC�� +K��

)
X� (B) (3.14)

from which it follows that

G(B) = B2M�� + BC�� +K�� − Z�� (B)Z−1
� � (B)Z�� (B) (3.15)

where Z:; (B) = B2M:; + BC:; + K:; . While exact, Eq. (3.15) is not always useful
because it masks themodal properties of the structure. Hence, Eq. (3.15) is rewritten
explicitly in terms of mode shapes and natural frequencies in what follows. Trun-
cating the resulting modal expansion ultimately yields a single-axis modal model.

The fixed-interface normal modes, i.e., the eigenmodes corresponding to a clamped
boundary, are the solutions to the following generalized eigenproblem [30, 31]:

K� �58 = l
2
8 M� �58 (3.16)

where the fixed-interface normal modes q8 for 8 = 1, . . . , =� are orthogonal to
M� � and normalized such that 5)8 M� �5 9 = X8 9 .2 The =� solutions to Eq. (3.16) can
equivalently be written in the form

K� �� = M� ��
2 (3.17)

where � =
(
51, . . . , 5=�

)
is the orthogonal matrix corresponding to the =� general-

ized eigenvectors and 
2 = diag
{
l2

1, . . . , l
2
=�

}
. It follows that

�)M� �� = I=�×=� , (3.18)

�)K� �� = 
2. (3.19)

2X8 9 is the Kronecker delta symbol defined such that X8 9 = 1 for 8 = 9 and X8 9 = 0 otherwise.
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Additionally, subsequent developments assume that

�)C� �� = 2Z
 (3.20)

whereZ = diag
{
Z1, . . . , Z=�

}
is the matrix of modal damping coefficients and Z8 ≥ 0

for all 8 = 1, . . . , =� .

The =� generalized eigenvectors are linearly independent, i.e., � is invertible. As a
result, inverting Eqs. (3.18), (3.19), and (3.20) results in the following identities:

M� � = �−)�−1, (3.21)

K� � = �−)
2�−1, (3.22)

C� � = 2�−)Z
�−1. (3.23)

Inverting the expressions forM� � andK� � then yields the followingmodal expansions
[70, Sec. 8.1]:

M−1
� � = ��) =

=�∑
8=1

585
)
8 , (3.24)

K−1
� � = �
−2�) =

=�∑
8=1

585
)
8

l2
8

(3.25)

from which it readily follows that

K−1
� � M� �K−1

� � = �
−4�) =

=�∑
8=1

585
)
8

l4
8

. (3.26)

By analogy with Eq. (3.26),

K−1
� � C� �K−1

� � = 2�
−2Z

−2�) =

=�∑
8=1

58 (2Z8l8) 5)8
l4
8

. (3.27)

Together, Eqs. (3.21), (3.22), and (3.23) render the identity

Z−1
� � (B) =

(
B2�−)�−1 + 2B�−)Z
�−1 +�−)
2�−1

)−1
(3.28)

which factorises and simplifies to

Z−1
� � (B) = �

(
B2I=�×=� + 2BZ
 +
2

)−1
�) =

=�∑
8=1

585
)
8

B2 + 2Z8l8B + l2
8

. (3.29)

Further simplifications require the identities [70, Sec. 8.1]

1
B2 + l2

8

=
1
l2
8

− B2

l2
8

(
B2 + l2

8

) = 1
l2
8

− B2

l4
8

+ B4

l4
8

(
B2 + l2

8

) (3.30)
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and the substitution B2 → B2+2Z8l8B. The second identity results from applying the
first identity to itself. Using the second part of Eq. (3.30) to expand the denominator
in Eq. (3.29) then gives

Z−1
� � (B) =

=�∑
8=1

{
585

)
8

l2
8

− B2585
)
8

l4
8

− B
58 (2Z8l8) 5)8

l4
8

+
58

(
B2 + 2Z8l8B

)2
5)8

l4
8

(
B2 + 2Z8l8B + l2

8

) }
(3.31)

= K−1
� � − B2K−1

� � M� �K−1
� � − BK−1

� � C� �K−1
� � +

=�∑
8=1

58
(
B2 + 2Z8l8B

)2
5)8

l4
8

(
B2 + 2Z8l8B + l2

8

)
(3.32)

where the last step requires Eqs. (3.25), (3.26), and (3.27).

Substituting Eq. (3.32) into Eq. (3.15) and simplifying ultimately result in the
following expression for G(B):

G(B) = B2M∗�� + BC∗�� +K∗�� − B2
=�∑
8=1

(g8 + Bh8) (g8 + Bh8))

l4
8

(
B2 + 2Z8l8B + l2

8

) (3.33)

where g8 =
(
2Z8l8K�� − l2

8
C��

)
58 and h8 =

(
K�� − l2

8
M��

)
58 are modal vectors

and

M∗�� = M�� −M��K−1
� � K�� −K��K−1

� � M�� +K��K−1
� � M� �K−1

� � K��, (3.34)

K∗�� = K�� −K��K−1
� � K��, (3.35)

C∗�� = C�� − C��K−1
� � K�� −K��K−1

� � C�� +K��K−1
� � C� �K−1

� � K��. (3.36)

The derivation of Eq. (3.33) is conceptually straightforward, but the details are
involved. It specifically entails (i) substituting Eq. (3.32) into Eq. (3.15) and ex-
panding the product; (ii) identifying the terms that contribute to Eqs. (3.34), (3.35),
and (3.36); (iii) expanding the remaining terms using the modal expansions for K−1

� �
,

K−1
� �

M� �K−1
� �
, and K−1

� �
C� �K−1

� �
[Eqs. (3.25), (3.26), and (3.27)]; and (iv) combin-

ing terms and simplifying. Equation (3.33) is readily verified for simple systems,
e.g., the canonical model from Sec. 3.2. In practice, it is advantageous to precom-
pute g8 and h8. This avoids unnecessary calculations of computationally expensive
matrix-vector products during repeated evaluations of Eq. (3.33).

In Eq. (3.33), M∗
��

and K∗
��

are the statically reduced mass and stiffness matrices
[70, Sec. 8.1]. By analogy, C∗

��
is the statically reduced damping matrix. If the

structure has =� rigid body modes and the =� boundary coordinates fully restrain
those modes, then K∗

��
is the projection of the unrestrained stiffness matrix onto
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the rigid body modes, i.e., K∗
��

= 0=�×=� (otherwise, K∗
��

is singular but non-
zero). The properties of C∗

��
depend on the damping model. For example, with

stiffness-proportional damping, C = VK where V = 2Z1/l1, l1 is the first-mode
natural frequency, and Z1 is the fraction of critical damping in the first mode.
Higher-frequency modes are more heavily damped; specifically, Z8 = Z1(l8/l1) for
8 = 1, . . . , =� . With these assumptions, C∗

��
= 0=�×=� and g8 = 0=�×1. Thus,

Eq. (3.33) reduces to

G(B) = B2M∗�� − B4
=�∑
8=1

h8h)8
l4
8

(
B2 + 2Z8l8B + l2

8

) . (3.37)

and M∗
��

is the rigid body mass matrix of the unrestrained structure. Assuming the
�-set coordinates coincide with a node at the structure’s undeformed center of mass
and the global finite element reference frame coincides with principal inertial axes,
thenM∗

��
is diagonal. Themodal participation vector h8 then represents the dynamic

reaction of the 8th mode on � due to an external force or moment on � [70, Sec. 8.1].
The corresponding modal mass matrix M8 = h8h)8 /l4

8
determines the flexible body

accelerations required to dynamically react an external force or moment on � and
how those accelerations are distributed throughout the eigenmodes. Equation (3.37)
emphasizes that a force or moment on � induces both rigid body and elastic motions.

3.3.2 Mode Selection Criteria
As outlined in [70, Sec. 8.2], Eq. (3.37) shows how to select “dominant” eigenmodes
for reduced-ordermodels, i.e., whichmodes to retain in a truncatedmodal expansion.
Specifically, h8 is a measure of the modal participation of mode 8 [70, Sec. 8.1]. The
larger the magnitude of h8, the larger the dynamic reaction on �, the larger the modal
mass, and the more dominant the mode. For this reason, [70, Sec. 8.2] suggests
using the following criterion to rank modes from most dominant to least dominant:

?8 = | |h8/l2
8 | |22 (3.38)

where | |·| |2 denotes the Euclidean norm and larger values correspond to more
dominant modes. Equation (3.38) is the magnitude of the 8th term in the modal
expansion [Eq. (3.37)] and equals the trace of the modal mass matrix M8. The l4

8

in the denominator implies that dominant modes tend to be lower-frequency modes,
but in general, the dominant mode is not necessarily the lowest-frequency mode.

Due to unit discrepancies, Eq. (3.38) is ill-defined for structures with both nodal
translational and rotational DOFs. To remedy this, the coordinate partition from [71]
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is used to develop a modified mode selection criterion. Specifically, h8 is partitioned
into translational ()) and rotational (') DOFs such that h)

8
=

(
h)
8,)
, h)
8,'

)
. Modes

are then sorted according to the following criterion:

?8 =
1
2

©­­­­­«
| |h8,)/l2

8
| |22

=�∑
8=1
| |h8,)/l2

8 | |22

+
||h8,'/l2

8
| |22

=�∑
8=1
| |h8,'/l2

8 | |22

ª®®®®®¬
(3.39)

where h8,)h)
8,)
/l4

8
and h8,'h)

8,'
/l4

8
are the translational and rotational blocks of

the modal mass matrix M8 and again larger values correspond to more dominant
modes. Equation (3.39) is the average of the translational modal mass (normalized
by the total modal mass) and rotational modal inertia (normalized by the total modal
inertia). Equivalently, it is a normalized measure of the 8th mode’s dynamic reaction
on �. For finite element models with either translational DOFs or rotational DOFs,
but not both, Eq. (3.39) reduces to a normalized version of Eq. (3.38).

Equation (3.39) is equivalent to the effective interface mass introduced by Kammer
and Triller [71]. Specifically, M8 is equivalent to the matrix [M8] from [71]. This is
straightforward to show by expanding [M8], substituting Eq. (3.25), and using the
orthogonality of � [Eq. (3.18)]. According to [72], effective interface mass, and
by extension, Eq. (3.39), also measures the relative controllability and observability
[73] of each fixed-interface mode. The higher the value of Eq. (3.39), the more
controllable and observable the mode. Moreover, effective interface mass is closely
related to the balanced singular values [74] from the balanced truncation method
of model reduction [75]. For undamped free vibrations, balanced truncation yields
normal vibration modes [76, 77].

Standard eigenproblem solvers used in structural mechanics, particularly those suit-
able for large-scale problems, only solve for a subset of the eigenmodes [78]. When
only a subset of the eigenmodes are available, the denominators in Eq. (3.39) are
instead calculated from the cumulative modal mass matrix
=�∑
8=1

M8 = K��K−1
� � M� �K−1

� � K)
��−K��K−1

� � M)
��−M��K−1

� � K)
��+M��M−1

� � M)
�� (3.40)

which is derived from the definition of M8 and Eqs. (3.24), (3.25), and (3.26).
Equation (3.40) is only a function of the finite element mass and stiffness matrices,
i.e., it is independent of the computed eigenmodes.
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Importantly, both Eqs. (3.38) and (3.39), and hence, the resulting mode sortings, are
invariant to reference frame transformations.

For single-axis modal models, the dominant mode is the mode with the maximum
modalmass or inertia per axis, i.e., themaximumabsolute value in the corresponding
DOF in h8. In general, different modes are dominant for translational and rotational
motions about different axes.

Lastly, many flexible spacecraft, including solar sails [9] and the Caltech Space
Solar Power Project satellite [13], nominally feature structural symmetries. It is
well known that symmetric structures have natural frequencies (eigenvalues) with
multiplicities greater than one; the actual multiplicity of a given eigenvalue depends
on a structure’s specific symmetries [79]. Due to the limitations of floating point
computations and the accumulation of round-off errors, it is often difficult to dis-
tinguish between symmetric modes with repeated eigenvalues and merely closely
spaced modes. Conveniently, the same criteria used to sort modes can also be used
to identify repeated eigenvalues. In particular, both the magnitude of the modal
participation vector | |h8 | |2 and the trace of the modal mass matrix M8 are invariant
to the operations of a symmetry group. Hence, these quantities are both invariant for
symmetric modes, meaning symmetric modes have the same values (to within close
numerical tolerances) of both Eq. (3.38) and Eq. (3.39). Closely spaced modes,
on the other hand, typically have distinct values of both Eq. (3.38) and Eq. (3.39).
This has important implications for the development of single-axis modal models
for symmetric structures, something discussed further in Sec. 3.3.4.

3.3.3 Single-Axis Modal Models
Several additional simplifying assumptions are required to reduce Eq. (3.37) to an
expression analogous to the canonical model [Eq. (3.5)]. Before applying these
assumptions, Eq. (3.37) is rewritten by substituting the modal mass matrix M8 =

h8h)8 /l4
8
and expressing the control input as an acceleration, i.e., substituting u� =

M∗
��

u′
�
[equivalently, U� (B) = M∗

��
U′
�
(B)], which yields(

B2M∗�� − B4
=�∑
8=1

M8

B2 + 2Z8l8B + l2
8

)
X� (B) = M∗��U′� (B). (3.41)

For a single-axis modal model, the control input on the right side of Eq. (3.41) is
restricted to a force or moment about a single axis, in which case(

B2M∗�� − B4
=�∑
8=1

M8

B2 + 2Z8l8B + l2
8

)
X� (B) = M∗��e 9*′�, 9 (B) (3.42)
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where*′
�, 9
(B) is the 9 th scalar control input and e 9 for 9 = 1, . . . , =� is a standard

unit basis vector in R=� . In principle, inverting the transfer function matrix on the
left side of Eq. (3.42) immediately results in a single-axis modal model, but this is
not analytically tractable in the general case due to couplings between all =� DOFs.

Subsequent assumptions are aimed at eliminating these couplings. In particular,
it is assumed that (i) the �-set coordinates correspond to a node located at the
structure’s undeformed center of mass, (ii) the global finite element reference frame
coincides with principal inertial axes, and (iii) off-diagonal terms in each of the M8

are negligible. Together, (i) and (ii) diagonalize M∗
��
; (iii) then diagonalizes each

of the M8, at least for practical purposes. Moreover, only a small subset of the =�
eigenmodes are typically retained in the modal expansion, in this case, the =� ≤ =�
most dominant eigenmodes. Under these assumptions, the dynamics take the form(

B2"∗��, 9 9 − B4
=�∑
8=1

"8, 9 9

B2 + 2Z8l8B + l2
8

)
-�, 9 (B) = "∗��, 9 9*′�, 9 (B) (3.43)

where the subscript 9 9 denotes the 9 th main diagonal entry of the corresponding
matrix. Transforming Eq. (3.43) into a form analogous to Eq. (3.5) then entails
retaining the most-dominant eigenmode (=� = 1), solving for -�, 9 (B)/*′�, 9 (B), and
expanding with partial fractions, the result of which is

-�, 9 (B)
*′
�, 9
(B) =

1
B2 +

[ 9 9

B2 + 2
(
1 + [ 9 9

)
Z1l1 +

(
1 + [ 9 9

)
l2

1
(3.44)

where
[ 9 9 =

"1, 9 9

"∗
��, 9 9

− "1, 9 9
(3.45)

is the mass ratio. Comparing Eqs. (3.44) and (3.5) shows that <1 = "
∗
��, 9 9

−"1, 9 9 ,
i.e., the difference between the rigid body mass and the modal mass, not the rigid
body mass itself; <2 = "1, 9 9 ; Z = Z1; and l= = l1. In other words, the parameters
in the canonical model are related to the rigid body mass and the dominant fixed-
interface mode’s modal mass, damping ratio, and natural frequency where “mass”
is to be interpreted in the general sense of either translational or rotational inertia.

3.3.4 Single-Axis Modal Models for Symmetric Structures
The derivation of single-axis modal models for flexible spacecraft with structural
symmetries requires special considerations when the dominant eigenmode corre-
sponds to a repeated eigenvalue. This is particularly important for flexible spacecraft
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with 4-fold symmetric, plate-like structural architectures, like solar sails [9] and the
Caltech Space Solar Power Project satellite [13].

When the dominant eigenmode corresponds to a repeated eigenvalue, Eq. (3.44)
underpredicts the magnitude of the elastic disturbance on the spacecraft bus. Instead
of truncating the modal expansion after the dominant mode, the correct truncation
includes both the dominant mode and any associated symmetric modes. In this
case, the summation in Eq. (3.43) now includes all =� modes at the dominant mode
frequency l1. Assuming these modes also share the same damping ratio Z1, then(

B2"∗��, 9 9 −
B4

B2 + 2Z1l1B + l2
1

=�∑
8=1

"8, 9 9

)
-�, 9 (B) = "∗��, 9 9*′�, 9 (B) (3.46)

from which it follows that replacing "1, 9 9 in Eq. (3.44) with Σ" 9 9 =
∑=�
8=1 "8, 9 9

results in the correct expression for the transfer function:

-�, 9 (B)
*′
�, 9
(B) =

1
B2 +

[ 9 9

B2 + 2
(
1 + [ 9 9

)
Z1l1 +

(
1 + [ 9 9

)
l2

1
(3.47)

where the mass ratio [ 9 9 now takes the form

[ 9 9 =
Σ" 9 9

"∗
��, 9 9

− Σ" 9 9

. (3.48)

Equation (3.47) is equivalent to

-�, 9 (B)
*′
�, 9
(B) =

1
B2 +

=�∑
8=1

"8, 9 9

"1, 9 9

"1, 9 9

"∗
��, 9 9

− Σ" 9 9

(
1

B2 + 2
(
1 + [ 9 9

)
Z1l1 +

(
1 + [ 9 9

)
l2

1

)
(3.49)

which shows that the elastic disturbance due to each symmetric mode is proportional
to the ratio of its modal mass "8, 9 9 to the dominant mode’s modal mass "1, 9 9 .

3.4 Slew Maneuver Requirements
The canonical flexible spacecraft model from Sec. 3.2 provides a useful tool for
developing quantitative insights into slew maneuver requirements. The emphasis
here is on structure-based requirements, specifically requirements on the ratio )/)=
between the slew duration ) and the fixed-base natural period )= as a function of
the mass ratio <2/<1 from Eq. (3.5).

Using a baseline bang-bang slew maneuver (Sec. 3.4.1), the analysis demonstrates
that settling time is a poor metric for determining slew maneuver requirements
(Sec. 3.4.2), in large part due to the very low damping of flexible spacecraft.
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This motivates an alternate metric for determining slew maneuver requirements
(Sec. 3.4.3). A smooth slew maneuver then highlights how tailoring the “shape”
of the slew profile can decrease the excitation of the flexible mode relative to the
baseline bang-bang case (Sec. 3.4.4). The latter is a fairly well-known result in
general (see e.g., [80–84]) and is the premise underlying the use of input shaping
for reducing residual vibrations (see e.g., [85–88] and the references therein), but
seems less well-known (or at the very least, less well-used) in the definition of
flexible spacecraft slew maneuver requirements.

The focus of this section is on attitude slew maneuvers. To emphasize this, the
following changes are made to the notation from Sec. 3.2: G1 → \1, G2 → \2,
D1 → ¥\, <1 → �1, and <2 → �2. \1 and \2 denote the orientations of the “bus” and
flexible “appendage” with rotational inertias �1 and �2, respectively, and ¥\ denotes
the angular acceleration input to the system.

3.4.1 Baseline Slew Maneuver
The baseline slew maneuver considered in this section is the bang-bang slew ma-
neuver through an angle Δ\ in time ) depicted in Fig. 3.2. A bang-bang slew is
the time-optimal, rest-to-rest, single-axis reorientation maneuver for a rigid body
with angular acceleration (torque) constraints [89]. Each “bang” is a step angular
acceleration input of magnitude

¥\max =
4Δ\
)2 (3.50)

and duration )/2, as depicted in Fig. 3.2a. For a rigid body, the initial “bang”
linearly accelerates the system from rest to a peak angular velocity of

¤\max =
¥\max)

2
=

2Δ\
)

(3.51)

at time C = )/2. The final “bang” then linearly decelerates the system back to rest;
see Fig. 3.2b. The constant magnitude angular acceleration results in the quadratic
variation in the slew angle shown in Fig. 3.2c.

Figure 3.2 depicts the response of a rigid spacecraft during a bang-bang slew. To
highlight the differences between a rigid spacecraft and a flexible one, Fig. 3.3 de-
picts several representative responses of an undamped canonical flexible spacecraft
[Eq. (3.1)] with �1 = �2 to a bang-bang slew. The general trend is that the magnitude
of the disturbance due to the flexible dynamics decreases as the duration of the slew
increases, i.e., as the ratio )/)= increases. In other words, as )/)= increases, the
response approaches the response of the rigid spacecraft from Fig. 3.2.
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(a)

(b)

(c)

Figure 3.2: Rest-to-rest bang-bang slew maneuver profile for a rigid spacecraft: (a)
slew acceleration, (b) slew rate, and (c) slew angle.

Step inputs are broadband, and hence, they lead to the excitation of every flexible
mode in the system. As a result, a bang-bang slew is the worst-case from the
standpoint of flexible mode excitation. Standard practice usually involves more
benign slewmaneuvers, e.g., something analogous to a bang-off-bang slewwhere the
intermediate “off” corresponds to a coasting period of significantly longer duration
than either “bang”. Nevertheless, a bang-bang slew remains useful for preliminary
analysis and requirements definition because it leads to simple analytical results.
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(a) (b)

(c) (d)

Figure 3.3: Non-dimensionalized transient responses of an undamped canonical
flexible spacecraft [Eq. (3.1)] with �1 = �2 to a bang-bang slew maneuver of
duration ) . (a) orientation of the spacecraft bus �1; (b) orientation of the flexible
appendage �2; (c) angular velocity of the spacecraft bus �1; (d) angular velocity of
the flexible appendage �2.

3.4.2 Slew Maneuver Requirements Based on Settling Times
The settling time, i.e., the time it takes for the amplitude of oscillation to subside
below some specified threshold, is a natural way to specify the minimum slew time
for a flexible spacecraft. For second-order linear systems, it is common to use either
2% or 5% of the final (steady-state) response to a specified input [65, Ch. 10]. The
choice is largely arbitrary, so 2% is used in what follows.

Figure 3.4 plots the 2% settling time )B versus the damping ratio Z = 2/
(
2
√
:<

)
for a unit step input applied to the damped 1-DOF harmonic oscillator with natural
period)= = 2c/

√
:/< depicted in Fig. 3.5. The solid blue line is calculated from the
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Figure 3.4: 2% settling time )B for a damped 1-DOF harmonic oscillator with
undamped natural period )=. 2/(cZ) is an upper bound on the 2% settling time.

Figure 3.5: Damped harmonic oscillator with mass <, damping coefficient 2, stiff-
ness : , and external force D.

analytical response; the dashed green line is an approximation from [65, Ch. 10] that
is an upper bound for the range of considered damping ratios. The approximation
provides a marginally more conservative and significantly simpler estimate for )B,
and hence, is preferred here. The main takeaways from Fig. 3.4 are that )B increases
inversely proportionally to the damping ratio and that the very low damping ratios
(Z � 1%) characteristic of flexible spacecraft [90] imply settling times that are
roughly 100 to 1000 times the natural period.

For a bang-bang slew, the minimum slew time ) is twice the settling time )B, i.e.,
) = 2)B. In this way, there is sufficient time for the response to settle from both the
first “bang” before applying the second “bang” and from the second “bang” before
the end of the slew. It follows that the minimum slew time for the canonical flexible
spacecraft [Eq. (3.5)] takes the form

)

)=
=

4
cZ (1 + �2/�1)

(3.52)

where)= and Z are again its fixed-base natural period and damping ratio. The deriva-
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tion of Eq. (3.52) involves substituting) = 2)B and the natural period)=
/√

1 + �2/�1

and damping ratio Z
√

1 + �2/�1 for the canonical flexible spacecraft from Eq. (3.9)
into the settling time estimate)B/)= = 2/(cZ) from Fig. 3.4. With a settled response,
the spacecraft can immediately resume operations like science data collection post-
slew, something with important practical implications for space mission design.

Figure 3.6: Minimum bang-bang slew time ) derived from the 2% settling time for
the canonical flexible spacecraft [Eq. (3.1)] with fixed-base natural period )=.

Figure 3.6 plots Eq. (3.52) as a function of both the inertia ratio �2/�1 and the
damping ratio Z . The figures shows that minimum slew times are typically on the
order of 100 to 1000 times the fixed-base natural period for large flexible spacecraft
(�2 > �1) with low modal damping (Z < 1%). For example, with a dominant
mode of 0.1 Hz, �2 = �1, and 0.5% modal damping, the minimum slew time is
approximately 22 min, something comparable to the slew maneuver durations for
existing exploration-class spacecraft (e.g., Juno or Europa Clipper) and smaller
solar sails [91, 92]. The situation, however, progressively deteriorates as flexibility
decreases and damping increases. With a dominant mode frequency of 1 mHz
(reminiscent of some proposed flexible spacecraft concepts, e.g. [13]), �2 = �1, and
0.2% modal damping, the minimum slew time from Eq. (3.52) increases to over
88 h! This is obviously not practical. In short, if settling time drives slew maneuver
requirements, the spacecraft engineer may be led to believe that slewing very large
flexible spacecraft is impossible. This is not the case, as explained next.

3.4.3 Proposed Performance Metric
For a bang-bang slew, the settling time [Eq. (3.52)] is independent of the magnitude
of the step inputs. However, in light of Fig. 3.3, the magnitude of the disturbance
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due to the flexible dynamics decreases as the slew time increases. As a result, for a
sufficiently slow slew, themagnitude of this disturbance can be considered negligible
even though Eq. (3.52) predicts a very long slew time. This implies that a more
suitable criterion for determining flexible spacecraft slew maneuver requirements
is a metric based on the magnitude of the disturbance due to the flexible dynamics.
In other words, instead of relying on damping to dissipate the flexible dynamics, it
is preferable to slew the spacecraft in a way that maintains the disturbance due to
the flexible dynamics at or below a tolerable level. The metric for defining what is
tolerable depends on the application. The sequel proposes a metric that prioritizes
spacecraft pointing performance, but other metrics may be more suitable for other
applications, e.g., ones that prioritize shape accuracy.

A nominally rest-to-rest slew maneuver for a rigid spacecraft leads to residual
structural vibrations for a flexible one. In light of Eq. (3.5), the spacecraft bus
perceives these structural vibrations as angular position and velocity errors, the
magnitudes of which are often included in ACS pointing error budgets (see e.g.,
[93]) and are a proxy for pointing stability and jitter. Here, jitter refers to the
classical definition of unwanted mechanical vibrations, as opposed to more nuanced
definitions typically used for space-borne optical systems [94, 95]. A flexible
spacecraft ACS with its closed-loop bandwidth set an order of magnitude below
the flexible mode frequency is incapable of rejecting jitter. Thus, minimizing jitter
is imperative for pointing accuracy and stability. Likewise, an ACS can more
easily tolerate angular position errors than angular velocity ones. Unlike angular
position errors, even small angular velocity errors can lead to unwanted effects, e.g.,
smearing in optical sensors, that are difficult to correct a posteriori. With this in
mind, the proposed performance metric for determining slew times is the amplitude
of the residual angular velocity after a slew from Eq. (3.9). For a given slew profile,
specifying a requirement on the maximum amplitude indirectly specifies a minimum
slew time. Hedgepeth [96] uses similar arguments to determine a first-mode natural
frequency requirement for slewing flexible spacecraft; for additional details, see
Appendix A.

Slew maneuver loads are generally impulsive, i.e., they are applied over (relatively)
short time scales. A structure’s peak, i.e., worst-case, response to an impulsive
load is usually reached before damping can dissipate significant energy [97, Ch. 6].
Additionally, spacecraft structures are usually extremely lightly damped to begin
with; 0.5% modal damping is typical [90]. For these reasons, it is reasonable to
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neglect damping for preliminary slew maneuver analysis (although the same cannot
necessarily be said for preliminary ACS analysis and design). The underlying
assumption here is that slew times are only going to decrease with damping. Said
another way, the undamped response provides a conservative slew time estimate.

Figure 3.7: Amplitude of the residual angular velocity [Eq. (3.54)] for a bang-bang
slew maneuver.

For a bang-bang slew maneuver of the canonical flexible spacecraft, the amplitude
of the residual angular velocity is

| ¤\1, 5 |
(Δ\/)) =

8
c

�2/�1√
1 + �2/�1

(
)

)=

)−1
sin2

(
c

2
√

1 + �2/�1

(
)

)=

))
(3.53)

with upper bound
| ¤\1, 5 |
(Δ\/)) ≤

8
c

�2/�1√
1 + �2/�1

(
)

)=

)−1
. (3.54)

Equations (3.53) and (3.54) are straightforward to derive from the forced vibration
of Eq. (3.9) using, e.g., the methods in [98, Ch. 2]. Figure 3.7 then plots the
upper bound [Eq. (3.54)] as a function of both )/)= and �2/�1. Not surprisingly,
lower inertia ratios and higher slew times result in lower residual angular velocities.
Figure 3.7 is useful because it charts the design space of possible values for )/)=
and �2/�1 that meet a specified requirement on the residual angular velocity. In
practice, of course, this requires both a model of the spacecraft (to calculate )= and
�2/�1) and the slew angle Δ\. Thus, the main utility of Fig. 3.7 is for comparing the
flexible excitations due to different slew profiles.
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3.4.4 Reducing Flexible Excitation with a Smooth Slew
As previously mentioned, both the “shape” of a slew profile and the ratio )/)=
between the slew maneuver duration ) and the natural period )= determine the
disturbance due to the flexible dynamics. To illustrate this, an example smooth slew
maneuver is compared to the baseline bang-bang slew maneuver from Sec 3.4.1.
The specific smooth slew maneuver discussed here is not necessarily realistic for
implementation on an actual spacecraft (e.g., due to the limitations associated with
the use of real angular momentum devices [84] or thrusters [99, p. 272–275] for slew
actuation). Rather, this discussion is merely intended to demonstrate the advantages
of using even a simple smooth slew maneuver to reduce the flexible excitation.

Table 3.1: Non-zero polynomial coefficients for smooth slew maneuver profile

Coefficient Value
07 −20Δ\/)7

06 70Δ\/)6

05 −84Δ\/)5

04 35Δ\/)4

Following [80], the smooth slew maneuver considered in this section is based on a
higher-order (in this case, 7th-order) polynomial for the slew angle \:

\ (C) = 07C
7 + 06C

6 + 05C
5 + 04C

4 + 03C
3 + 02C

2 + 01C + 00. (3.55)

This is the lowest-order polynomial that can simultaneous satisfy boundary condi-
tions on \ and its velocity, acceleration, and jerk (the time derivative of acceleration).
Jerk boundary conditions lead to flattening of the acceleration curve in the vicinities
of the start and end points. In general, reducing jerk (in this case, via the boundary
conditions) reduces the amplitude of the flexible excitations [80–84]. Additionally,
momentum control systems are usually jerk-limited [84], and hence, operational
considerations may also motivate the use of low-jerk slew trajectories. Table 3.1
lists the non-zero polynomial coefficients derived from these boundary conditions
for a slew through an angle Δ\ in time ) . Figure 3.8 then depicts the corresponding
accelerations, velocities, and slew angles as functions of time for a rigid body. All
told, the polynomial slew smoothly accelerates and then decelerates a nominally
rigid spacecraft from rest-to-rest.

Compared to the baseline bang-bang slew, the polynomial slew requires higher peak
angular accelerations to achieve the same total slew angle in the same time. In this



42

(a)

(b)

(c)

Figure 3.8: Rest-to-rest polynomial slew maneuver profile for a rigid spacecraft: (a)
slew acceleration, (b) slew rate, and (c) slew angle.

case, the peak angular acceleration is

¥\max =
84
√

5Δ\
25)2 (3.56)

which occurs at times C = (5 ∓
√

5))/10. The peak acceleration is approximately
1.9 times higher than the peak acceleration for the bang-bang slew and leads to
proportionally higher peak structural loads. Larger accelerations also lead to larger
angular velocities. The peak angular velocity occurs at C = )/2 and is given by

¤\max =
35Δ\
16)

. (3.57)
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This is approximately 1.1 times higher than the peak velocity for the bang-bang
slew. Thus, for a given slew time ) , the smooth slew also requires a higher average
acceleration than the bang-bang slew, which in turn results in proportionally higher
average structural loads.

(a) (b)

(c) (d)

Figure 3.9: Non-dimensionalized transient responses of an undamped canonical
flexible spacecraft [Eq. (3.1)] with �1 = �2 to a polynomial slew maneuver of
duration ) . (a) orientation of the spacecraft bus �1; (b) orientation of the flexible
appendage �2; (c) angular velocity of the spacecraft bus �1; (d) angular velocity of
the flexible appendage �2.

Figure 3.8 depicts the response of a rigid spacecraft during a smooth polynomial
slew. To again highlight the differences between a rigid spacecraft and a flexible
one, Fig. 3.9 depicts several representative responses of an undamped canonical
flexible spacecraft [Eq. (3.1)] with �1 = �2 to a polynomial slew. Similar to
Fig. 3.3, the general trend is that the magnitude of the disturbance due to the flexible
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dynamics again decreases as the duration of the slew increases, i.e., as the ratio
)/)= increases. In particular, with )/)= = 4, the response of the flexible spacecraft
closely approximates the response of the rigid spacecraft from Fig. 3.8. Compared
to the responses to a bang-bang slew from Fig. 3.3, the larger peak accelerations
during the polynomial slew result in larger-amplitude transient oscillations for small
values of )/)=, e.g., for )/)= = 1. However, as )/)= increases, the amplitude
of these oscillations decreases faster for the polynomial slew than it does for the
bang-bang slew. This implies that there is a critical value of )/)= beyond which
the disturbance due to the flexible dynamics is always smaller for a polynomial slew
than it is for a bang-bang slew.

Figure 3.10: Amplitude of the residual angular velocity for the smooth polynomial
slew maneuver.

Analogous to Fig. 3.7, Fig. 3.10 plots an upper bound for the quantity | ¤\1, 5 |/(Δ\/))
as a function of both )/)= and �2/�1 for the polynomial slew. For )/)= > 1,
Fig. 3.10 demonstrates that the polynomial slew often reduces the amplitude of the
residual angular velocity by upwards of two orders of magnitude compared to the
reference bang-bang slew. In other words, the polynomial slew significantly lowers
the excitation of the flexible mode despite its higher peak velocity and acceleration.
Thus, for a given requirement on the amplitude of the residual angular velocity, the
polynomial slew achieves significantly faster slews than its bang-bang counterpart.

3.5 Discussion
This chapter has described standard modeling approaches for flexible spacecraft,
specifically those that pertain to attitude dynamics and control, and the subsequent
definition of slew maneuver requirements. The chapter started with a description of
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the canonical model for flexible spacecraft attitude dynamics and control, a 2-DOF
floating oscillator, and then showed how to rigorously derive the canonical model
from an arbitrary finite element model using the Craig-Bamptonmethod. Besides its
consistency with the canonical model, the Craig-Bampton method is advantageous
because it facilitates the systematic selection of dominant modes for various types
of flexible spacecraft dynamics models.

The chapter then analyzed slewmaneuver requirements for flexible spacecraft. There
are two important results from this analysis. The first is that settling time is a poor
metric for quantifying slew times. Instead, a more suitable metric is proposed based
on the magnitude of the disturbance due to the flexible dynamics. The second is
that the ratio between the slew duration and natural period and the shape of the slew
profile together determine the magnitude of this disturbance. To emphasize this, it
is shown that a 7th-order polynomial slew maneuver reduces the amplitude of the
disturbance due to the flexible dynamics by upwards of two orders of magnitude
relative to a baseline bang-bang slew.

The analysis of slew maneuver requirements has demonstrated that flexible space-
craft can achieve significantly faster slew times by using a properly shaped slew
maneuver profile. Consequently, there is a significant opportunity to extend modern
computational optimal control methods to improve flexible spacecraft slew perfor-
mance. In particular, modern robust optimal control methods [100–103] can design
slew maneuvers that are simultaneously robust to the uncertainties inherent to flex-
ible spacecraft structures, minimize the magnitude of the flexible excitation either
during or after the maneuver, and satisfy any constraints on the system, e.g., on
maximum angular velocity or torque. The uncertainties are driven, at least in part,
by the inability to test these structures in representative 0-g environments before
launch [14–18]. Perhaps most importantly, using a tailored slew profile to minimize
structural excitations does not necessarily require changes to a spacecraft’s attitude
control system (ACS). Thus, these maneuvers can be flown using an ACS designed
with classical control methods [63, 64], ultimately reducing risk for their eventual
flight implementation. This is left to future work.
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C h a p t e r 4

REVIEW OF GEOMETRICALLY EXACT BEAM THEORY

4.1 Introduction
Beam theories are widely used for the nonlinear analysis of slender structures in
applications ranging from very flexible aircraft wings [104, 105], helicopter rotors
[106–108], and wind turbine blades [109, 110] to robotic manipulators [111, 112]
(especially soft robotic manipulators [113, 114]), flexible multibody systems [115,
116], and even DNA [117]. Slender structures have a single dominant dimension
which makes them dimensionally reducible, i.e., they can be accurately and effi-
ciently modeled as 1D. Many ultralight flexible spacecraft, including heliogryos
[118], solar sails [9], and space solar power satellites [13], are assembled from
slender structural components. As a result, beam theories provide computationally
efficient tools for the preliminary design, analysis, and optimization of these space-
craft. In fact, many developments in the history of beam theory have been spurred
by problems associated with the modeling (and to some extent, control) of flexible
spacecraft and their structural components; see e.g., [119–122]. This trend is likely
to continue.

Recent years have seen a proliferation of nonlinear beam theories and their finite
element implementations in the literature. Examples include Reissner-Simo geo-
metrically exact beam theory (GEBT) [32–34], the corotational method [123], the
absolute nodal coordinate formulation [68, Ch. 7], and the intrinsic formulation [105,
124, 125], among others; for a detailed discussion of the advantages and disadvan-
tages of some of these theories, see e.g., [126–128] and the references therein. Of
these, Reissner-Simo GEBT (hereafter referred to as GEBT) is generally regarded
as one of the highest performing (and certainly one of the most well-developed)
nonlinear beam theories. As a result, GEBT is the nonlinear beam theory of choice
in what follows. GEBT is a nonlinear generalization of classical Timoshenko beam
theory featuring axial, shearing, bending, and torsional deformationmodes. Various
authors sometimes refer to GEBT as the Cosserat theory of rods.1

1In structural mechanics, nonlinear generalizations of linear, small-deflection beam theories are
typically referred to as rod theories. Confusingly, however, much of the existing literature on the finite
element implementations of these rod theories describes the resulting finite elements as beam finite
elements. For this reason, the term “beam” is preferred in this and subsequent chapters, although
generally speaking, “beam” and “rod” can be used interchangeably.
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What makes a beam theory “geometrically exact”? In the present context, geomet-
rical exactness is interpreted in the sense of Simo [34]. Paraphrasing [34], Crisfield
and Jelenić [129] state that a beam theory is considered geometrically exact when

. . . the relationships between the configuration and the strain measures
are consistent with the virtual work principle and the equilibrium equa-
tions at a deformed state regardless of the magnitude of displacements,
rotations, and strains.

In other words, geometrical exactness implies that a beam theory is capable of
modeling arbitrarily large elastic deformations, including those associatedwith finite
strains. In practice, however, existing GEBTs are usually limited to linear-elastic
deformations by their lack of appropriate finite strain constitutive models [129].
As a result, these theories can typically only model arbitrarily large deformations
provided the local stresses/strains at each point in the beam remain linear-elastic.
Nonlinearities due to large, linear-elastic deformations are referred to as geometric
nonlinearities. In the sequel, geometrical exactness is to be understood in the context
of these geometric nonlinearities.

The remainder of this chapter provides the theoretical foundation for the quaternion-
based geometrically exact beam finite elements developed in Chapters 5 and 6. To
that end, Secs. 4.2 and 4.3 briefly review finite rotations and the quaternion parame-
terization of rotations. For more exhaustive treatments, see e.g., [70, 130–133]. To
avoid any potential ambiguities, Secs. 4.2 and 4.3 also rigorously define the rotation
and quaternion conventions used throughout the thesis. A finite rotation parameter-
ization, like the quaternion, describes the orientation of the beam’s reference axis in
GEBT. Consequently, these results are used extensively throughout Chapters 5 and
6. Sec. 4.4 then reviews the kinematics of Reissner-Simo GEBT. This discussion
closely follows [129]. Sec. 4.5 introduces the geometrically exact material strain
measures and defines the strain energy. From there, Secs. 4.6 and 4.7 evaluate the
kinetic energy and external virtual work. The strain energy, kinetic energy, and
external virtual work are the inputs to the variational principle in Sec. 4.8, which in
turn is the starting point for the derivations of the continuous-time and discrete-time
equations of motion in Chapters 5 and 6, respectively.
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4.2 Finite Rotations
Two reference frames are considered: a spatial (inertial) reference frame and a
material (body) reference frame. The material frame coincides with the initial (un-
deformed) configuration of an elastic body and can be considered a local corotational
frame. An arbitrary material vector X ∈ R3, i.e., a vector expressed in the material
frame, is related to the corresponding spatial vector x ∈ R3 by

x = �X (4.1)

where � ∈ SO(3) is the matrix of the passive rotation (reference frame transfor-
mation) from the material frame to the spatial frame. Physically, � can also be
interpreted as the active rotation that aligns the axes of the spatial frame with those
of the material frame, although the passive rotation convention is preferred here. A
detailed discussion of the differences between active and passive rotations is out-
side the scope of this thesis; instead, see [131, 133, 134]. Alternatively, � can be
understood as the deformation gradient of spherical motion, i.e., the motion of a
rigid body about a spatially fixed point. The notation SO(3) denotes the special
orthogonal group, i.e., the 3D rotation group defined such that

SO(3) =
{
� ∈ R3×3 : �)� = ��) = I3×3, det(�) = 1

}
. (4.2)

The orthogonality condition in Eq. (4.2) implies that �, and hence, SO(3), can be
parameterized by three independent variables, a so-called three-parameter rotation
representation. SO(3) is a Lie group; for an introduction to Lie groups, see e.g.,
[135, Secs. 9.1–9.2].

Infinitesimal rotations are required for the variational formulations in Chapters 5
and 6. The remainder of this section derives the infinitesimal material and spatial
rotations corresponding to a finite rotation. These developments largely follow [70,
Sec. 3.5.1].

From Eq. (4.1), the infinitesimal spatial vector Xx can be expressed as

Xx = X�X = X��)x = [X)]×x (4.3)

whereX is assumed to be constant in thematerial frame, [X)]× = X��) is thematrix
of infinitesimal spatial rotations, and [v]× denotes the skew-symmetric matrix

[v]× =


0 −E3 E2

E3 0 −E1

−E2 E1 0

 (4.4)



49

corresponding to an arbitrary vector v ∈ R3. The skew-symmetry of [X)]× follows
from the orthogonality of �. The coefficients of the axial vector X) corresponding
to [X)]× are the infinitesimal angular displacements expressed in the spatial frame.
Similarly, the infinitesimal material vector X satisfies the identity Xx = �XX, which
together with Eq. (4.3) implies that

XX = �)X�X = [X�]×X (4.5)

where [X�]× = �)X� is the matrix of infinitesimal material rotations. The skew-
symmetry again follows from the orthogonality of �. The coefficients of the axial
vector X� corresponding to [X�]× are the infinitesimal angular displacements ex-
pressed in the material frame.

The set of skew-symmetric matrices in R3×3 forms the Lie algebra of SO(3), de-
noted so(3), which is isomorphic toR3 via Eq. (4.4). Importantly, so(3) is the space
tangent to SO(3); [X)]× and [X�]× are respectively tangent to SO(3) at the current
rotation � and at identity, i.e, in the undeformed configuration. Defining varia-
tional principles with respect to infinitesimal spatial and material rotations results
in Updated and Total Lagrangian formulations, respectively [121].

From Eqs. (4.3) and (4.5), [X)]× and [X�]× are related by�[X�]× = [X)]×�, from
which it follows that the corresponding vectors are related by

X) = �X�. (4.6)

Equations (4.3) and (4.5) demonstrate that infinitesimal rotations must be three-
dimensional, which is intuitive because any physical rotation can be parameterized
by three independent variables. Due to the Lie group structure of SO(3), neither
X) nor X� are directly integrable to obtain a suitable three-parameter rotation
representation, i.e., � ≠ �()) and � ≠ �(�).

4.3 Unit Quaternions
A quaternion p ∈ H is a linear operator isomorphic to R4, i.e., a quaternion can
be explicitly represented as a vector p ∈ R4. In this thesis, quaternions follow the
Hamiltonian convention [133], i.e., they are right-handed (so-called right quater-
nions [134]) and define a passive rotation (reference frame transformation) from a
local (material) frame to a global (spatial) one, with the caveat that the scalar part



50

of the quaternion appears last.2 Hence, a quaternion is written as

p) =
[

p)E ?B

]
(4.7)

where pE ∈ R3 and ?B ∈ R are respectively referred to as its vector and scalar parts.
A detailed discussion of the various quaternion conventions is outside the scope
of this thesis; interested readers are instead referred to [133, 136]. In general, a
quaternion p ∈ H can have an arbitrary magnitude.

It is well known that the set of unit quaternions

H1 =
{
p ∈ H : p)p − 1 = 0

}
⊂ H (4.8)

defines a double cover for SO(3); i.e., a unit quaternion defines a four-parameter
representation of SO(3) such that both p and −p represent the same physical rota-
tion [133]. The double cover can be observed by considering the rotation matrix
�(p) ∈ SO(3) parameterized by a unit quaternion p ∈ H1 [133]:

�(p) =
(
?2
B − p)EpE

)
I3×3 + 2?B [pE]× + 2pEp)E . (4.9)

Since �(p) is quadratic in p, �(p) = �(−p). Due to the unit norm constraint, H1

defines the unit three-sphere S3, i.e., a hypersphere in R4. Various algorithms exist
for extracting quaternions from rotation matrices; see e.g., [137, 138].

In the sequel, the terms quaternion and unit quaternion are used interchangeably,
and unless otherwise stated, both terms should be understood to refer to a unit
quaternion. Unit quaternions are also variously referred to as Euler-Rodrigues
symmetric parameters [131], or more simply, as Euler parameters [70, Ch. 4] in the
literature, but again, the term quaternion is preferred here.

4.3.1 Quaternion Algebra
The quaternion product, denoted ⊗, is used to implement rotations. Given quater-
nions p1, p2 ∈ H1, the quaternion product is defined as

p2 ⊗ p1 = L(p2)p1 = R(p1)p2 (4.10)

where L(p), R(p) ∈ R4×4 are the orthogonal matrices

L(p) =
[

G(p) p
]
, (4.11)

R(p) =
[

H(p) p
]

(4.12)

2The quaternions defined herein are mathematically equivalent to quaternions that are right-
handed and define the active rotation that aligns the axes of the global (spatial) frame with the local
(material) one [133]. This latter interpretation is often preferred in structural mechanics.
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with G(p), H(p) ∈ R4×3 given by

G(p) =
[
?BI3×3 + [pE]×
−p)E

]
, (4.13)

H(p) =
[
?BI3×3 − [pE]×

−p)E

]
. (4.14)

The matrices L(p) and R(p) are rotation matrices for H1. However, unlike rotation
matrices for R3, L(p) and R(p) commute, i.e., L(p1)R(p2) = R(p2)L(p1) and
L(p1)R) (p2) = R) (p2)L(p1). It is straightforward to show that G(p) and H(p)
satisfy the following useful identities:

G(p))G(p) = H(p))H(p) = I3×3, (4.15)

G(p)G) (p) = H(p)H) (p) = I4×4 − pp) , (4.16)

G) (p)p = H) (p)p = 03×1. (4.17)

Using Eqs. (4.9) and (4.10), it can then be shown that the quaternion product satisfies
the identity

�(p2 ⊗ p1) = �(p2)�(p1). (4.18)

Hence, the quaternion product represents successive rotations, meaning it is asso-
ciative but not commutative.

Every unit quaternion p has an inverse p−1 equal to its conjugate [133]; i.e., p−1 = p∗.
The conjugate p∗ represents the opposite rotation and is obtained by negating the
vector part of the quaternion; i.e.,

p∗ =

[
−pE
?B

]
=

[
−I3×3 03×1

01×3 1

] [
pE
?B

]
= Zp. (4.19)

The matrix Z is referred to as the quaternion conjugator. The conjugate quaternion
satisfies the identity

p ⊗ p∗ = p∗ ⊗ p =

[
03×1

1

]
= I? (4.20)

where I? is the identity quaternion. Likewise, any vector v ∈ R3 can be expressed
as an equivalent (non-unit) quaternion in H with zero scalar part, as follows:

v̂ =

[
v
0

]
=

[
I3×3

01×3

]
v = Tv (4.21)
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where T)T = I3×3. Using Eqs. (4.11) to (4.14), it is straightforward to prove the
following identities:

L(Zp) = L) (p), (4.22)

R(Zp) = R) (p), (4.23)

L(p)T = G(p), (4.24)

R(p)T = H(p) (4.25)

which hold for p ∈ H.

Equations (4.19) and (4.21) facilitate the rotation of vectors using the quaternion
product. Specifically, the pure rotation x = �(p)X is equivalent to

Tx = p ⊗ TX ⊗ p∗ (4.26)

which can be simplified using Eq. (4.10), the commutativity of L(p) and R(p), and
Eqs. (4.22) to (4.25) to obtain

x = T)L(p)R) (p)TX = T)R) (p)L(p)TX = H) (p)G(p)X = �(p)X. (4.27)

Equation (4.27) contains several useful quaternion identities.

4.3.2 Infinitesimal Quaternions
Any variational principle involving a quaternion independent variable p requires an
expression for the infinitesimal quaternion Xp. This requires a mapping from the
space tangent to H1 to so(3), which is developed next.

Equation (4.26) provides the starting point for the derivations of the mappings
from X) and X� to Xp. These relationships are fundamental to understanding the
quaternion representation of SO(3). The derivation requires the identity

Xp)p = 0 (4.28)

which follows directly from the unit norm constraint [Eq. (4.8)]. Thus, Xp and p are
orthogonal, which implies that Xp occupies the 3D hyperplane tangent to H1 at p.

Using Eq. (4.26), the infinitesimal spatial vector Xx can be expressed in terms of the
infinitesimal quaternion Xp as follows:

TXx = Xp ⊗ TX ⊗ p∗ + p ⊗ TX ⊗ Xp∗ (4.29)

which is analogous toEq. (4.3). The definition of the quaternion product [Eq. (4.10)],
Eqs. (4.23) through (4.25), and the commutativity of L(p) and R(p) are then used
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to simplify Eq. (4.29). Substituting X = �) (p)x and comparing the resulting
expression with Eq. (4.3) reveals that the quaternion representation of [X)]× is

[X)]× =
(
H) (Xp)G(p) +H) (p)G(Xp)

)
�) (p). (4.30)

The matrix of infinitesimal material rotations then follows from Eq. (4.6) as

[X�]× = �) (p)
(
H) (Xp)G(p) +H) (p)G(Xp)

)
. (4.31)

The corresponding vectors are given by

X) = 2H) (p)Xp, (4.32)

X� = 2G) (p)Xp (4.33)

where Eqs. (4.30) and (4.31) are simplified into Eqs. (4.32) and (4.33), respectively,
using p)p = 1 and Eq. (4.28). Equivalently,

Xp =
1
2

H(p)X) = 1
2

G(p)X� (4.34)

which is straightforward to show using Eqs. (4.16) and (4.28).

Based on Eq. (4.34), the matrices G(p) and H(p) map infinitesimal rotations in
so(3) to the 3D hyperplane tangent to H1. Alternatively, they can be interpreted as
rotation Jacobians that allow infinitesimal quaternions to be corrected a posteriori
for the Lie group structure of H1 [139]. In this way, a variational principle can
treat a quaternion independent variable p as a vector in R4, and then subsequently
use Eq. (4.34) to correct for the Lie group structure of H1. Thus, Eq. (4.34) allows
quaternion Lie group formulations to be developed without differential geometry.

While useful for theoretical developments, Eq. (4.34) does not respect the quaternion
unit norm constraint. Consequently, using Eq. (4.34) to evaluate the infinitesimal (or
incremental) quaternion corresponding to an infinitesimal (or incremental) rotation
in practical applications is ill-advised. Following [139], infinitesimal quaternions
are instead related to the corresponding infinitesimal rotation by

Xp = cay(X)/2) = cay(X�/2) (4.35)

where the function cay(·) is known as the Cayley map [131, p. 62]. The Cayley map
relates a Rodrigues parameter [131, 132] (also sometimes referred to as a Gibbs
vector) $ to the corresponding quaternion p, as follows:

p = cay($) = 1√
1 + $)$

[
$

1

]
(4.36)
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which has unit norm and the inverse

$ = cay−1(p) = pE
?B
. (4.37)

With material (spatial) rotations, Eq. (4.35) right-multiplies (left-multiplies) the
corresponding quaternion p.

Rodrigues parameters are a computationally efficient three-parameter rotation rep-
resentation which projects H1 onto a 3D plane. To second-order, an infinitesimal
rotation is equal to twice the corresponding infinitesimal Rodrigues vector; e.g., for
material rotations, X� = 2X$ [132, p. 59]. This property makes the Cayley map
useful for updating quaternions.3

4.4 Kinematic Description
GEBT uses the kinematic assumptions of Timoshenko beam theory to reduce a
slender 3D continuum to a space curve in R3 with cross-sectional stiffness and
inertia properties. With Timoshenko beam kinematics, each cross-section is rigid
in its plane, meaning the cross-sections remain plane but not necessarily normal to
the beam’s deformed reference axis. This implies that the shear stresses and strains
are constants over each plane of the cross-section. The space curve coincides with
the beam’s reference axis. The most convenient choice for the reference axis is
the locus of cross-sectional centroids, which for homogeneous, isotropic materials
corresponds with both the elastic (neutral) axis and the locus of cross-sectional mass
centers. However, in general, other choices are possible, and for non-homogeneous
cross-sections, the reference axis may not coincide with either the neutral axis or
the locus of cross-sectional mass centers. The space curve is located in an inertial
(spatial) reference frame described by the standard unit basis vectors

e1 =


1
0
0

 , e2 =


0
1
0

 , e3 =


0
0
1

 .
Two configurations are considered: an initial (undeformed) configuration and a de-
formed configuration; see Fig. 4.1. The initial position of the beam’s reference axis
is described by the space curve B → x0(B) ∈ R3 of length ℓ which is parameterized

3Alternatives to the Cayley map include the quaternion exponential map [133, 140] andModified
Rodrigues parameters [131, 132]. The quaternion exponentialmap is popular in nonlinearmechanics,
although evaluating the requisite trigonometric functions makes it more computationally expensive
than the Cayley map. For practical purposes, these three methods are equivalent.



55

undeformed configuration

deformed configuration

Figure 4.1: Kinematic description of an initially straight Reissner-Simo geometri-
cally exact beam.

by the arc length coordinate B ∈ [0, ℓ]. The corresponding cross-sectional orien-
tations are given by the orientations of the local body (material) reference frame
with orthonormal unit basis vectors B → E0,1(B), E0,2(B), E0,3(B) ∈ R3. These
orthonormal basis vectors are commonly referred to as directors in the literature;
see e.g., [141–143].

Throughout this thesis, the convention is that E0,1(B) and E0,2(B) are in the plane of
the cross-section at B and E0,3(B) is tangent to the reference axis, i.e.,

E0,3(B) = x′0(B). (4.38)

E0,1(B) and E0,2(B) are commonly directed parallel to the cross-section’s principal
axes of inertia, although again, other choices are possible. E0,1(B), E0,2(B), and
E0,3(B) define the transformation

B→ �0(B) =
[

E0,1(B) E0,2(B) E0,3(B)
])
∈ SO(3) (4.39)

from the material reference frame to the spatial one; i.e., e8 = �0(B)E0,8 (B) for
8 = 1, 2, 3. The beam’s initial configuration is fully described by the position of the
reference axis and the corresponding cross-sectional orientation at B. Given some
initial configuration B → (x0(B),�0(B)) ∈ R3 × SO(3), known forcing, and initial
conditions (if applicable), the goal of GEBT is to determine the beam’s subsequent
deformed configuration(s).
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The beam’s deformed configuration is defined analogously. Specifically, the de-
formed reference axis is described by the space curve B → x(B) ∈ R3, although
in this case, the space curve is not necessarily of length ℓ to allow stretching of
the reference axis. Likewise, the cross-sectional orientations are represented by
the orthonormal unit basis vectors B → E1(B), E2(B), E3(B) ∈ R3, which together
define the transformation

B→ �(B) =
[

E1(B) E2(B) E3(B)
])
∈ SO(3) (4.40)

from the deformed material reference frame to the spatial one; i.e., e8 = �(B)E8 (B)
for 8 = 1, 2, 3. E1(B) and E2(B) are again in the plane of the cross-section B. This
plane, which is perpendicular to the reference axis in the undeformed configuration,
remains undeformed in the deformed configuration, consistent with the assumptions
of Timoshenko beam theory. However, in the deformed configuration, E3(B) is not
necessarily tangent to the reference axis to allow for shearing deformations, i.e.,
E3(B) ≠ x′(B). The beam’s deformed configuration B→ (x(B),�(B)) ∈ R3 ×SO(3)
is fully described by the position of the reference axis and the corresponding cross-
sectional orientation at B.

The kinematic description of GEBT is independent of the parameterization of the 3D
rotation group SO(3). To that end, GEBT has been reformulated using rotation vec-
tors [121, 144], Clifford algebra [145], directors [141–143], quaternions [146–148],
and the special Euclidean group SE(3) [149], among others. Quaternions represent
the most compact singularity-free parameterization of SO(3) [150]. For this and
other reasons discussed in Chapter 5, quaternions are preferred here. Equation (4.9)
relates a quaternion p(B) ∈ H1 to the corresponding transformation matrix �(B).

4.5 Strain Energy and Strain Measures
This section introduces the geometrically exact strain measures that describe the
local changes between the undeformed and deformed configurations.

In GEBT, the material stress resultant N and material moment resultant M are
respectively work-conjugate to the material translational strain measure � and the
material rotational strain measure K. The strain energy for an initially straight beam
takes the form

U =

∫ ℓ

0

1
2

S)E dB (4.41)

where S) =
(
N) ,M)

)
, and E) =

(
�) ,K)

)
. Assuming that the beam is isotropic

linear-elastic with its reference axis coincident with the neutral axis, then the internal
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stress resultants are related to the corresponding strain measures by

S = CE (4.42)

whereC = diag {��1, ��2, � �, � �1, � �2, ��} is the sectional stiffness matrix that
contains the translational and rotational stiffnesses. Specifically,

• ��1 and ��2 are the shear stiffnesses along the e1 and e2 axes;4

• �� is the axial stiffness;

• ��1 and ��2 are the bending stiffnesses about the e1 and e2 axes; and

• �� is the torsional stiffness.

These sectional material properties are defined analogously to those in standard
Timoshenko beam theory. As an aside, it is straightforward to modify GEBT for
composite materials by appropriately redefining C, in which case C is no longer
diagonal.

The geometrically exact material strain measures for an initially straight beam are
given by [129]

� = �)x′ −


0
0
1

 (4.43)

[K]× = �)�′ − �)0�
′
0 (4.44)

where [·]× refers to the skew-symmetric matrix defined by Eq. (4.4), (·)′ denotes
differentiation with respect to the undeformed arc length coordinate B, and the sub-
script 0 denotes the initial (undeformed) configuration. � and K represent the
translational strain and curvature, respectively, between the initial and current con-
figurations. Both strain measures are objective, i.e., they are invariant to superposed
rigid body motions [129, 153, 154], from which it follows thatU is also objective.
The first two components of � represent the shear strains in the e1 and e2 directions,

4The assumption that plane cross-sections remain plane after deformation implies that the shear
stresses and strains are constant over each plane of the cross-section. This is an approximation of
the actual cross-sectional shear stress and strain distributions. As a result, ��1 and ��2 typically
include Timoshenko shear correction factors [151, 152] so that the strain energy associated with
shearing in the beam equals the strain energy associated with the actual shear stress and strain
distributions in the corresponding 3D solid.
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respectively. The third component represents the axial strain, i.e., the stretching of
the reference axis. Likewise, the first two components of K represent the bending
curvatures about the e1 and e2 axes, respectively. The third component represents
the twist (torsion) of the cross-section about the e3 axis.

Strictly speaking, Eqs. (4.43) and (4.44) are also applicable for initially curved
beams. In particular, for an initially straight beam, Eq. (4.44) simplifies to

[K]× = �)�′ (4.45)

because there are no cross-sectional variations along the beam’s axis in the un-
deformed configuration. However, it has been observed in practice that using
Eq. (4.44) instead of Eq. (4.45) in the finite element implementation can reduce the
accumulation of round-off errors. Hence, Eq. (4.44) is preferred in what follows.

Subsequent developments require reparameterizing Eqs. (4.43) and (4.44) as func-
tions of the quaternion p describing the cross-sectional orientation, which is done
next. Using Eq. (4.9), � can be expressed as

� = �) (p)x′ −


0
0
1

 (4.46)

with variation
X� = �) (p)Xx′ − 2G) (p)L) (Tx′)Xp (4.47)

which follows from the identity X(�) (p)v) = −2G) (p)L) (Tv)Xp for a constant
vector v ∈ R3. Similarly, starting from Eq. (4.9) and using the identities p)p = 1
and p)p′ = 0 allows K to be written as

K = 2
(
G) (p)p′ −G) (p0)p′0

)
. (4.48)

For a detailed derivation of Eq. (4.48) and additional discussion, see [147]. The
variation of K requires the identity G) (p)p′ = −G) (p′)p and is given by

XK = 2G) (p)Xp′ − 2G) (p′)Xp. (4.49)

Together, Eqs. (4.47) and (4.49) can be written in matrix form as

XE =

[
�) (p) 03×4 −2G) (p)L) (Tx′)
03×3 2G) (p) −2G) (p′)

] 
Xx′

Xp′

Xp

 (4.50)

which appears in the finite element formulations in Chapters 5 and 6.
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4.6 Kinetic Energy
Due to the in-plane rigidity of the beam’s cross-sections, the total kinetic energy is
simply the sum of the translational and rotational kinetic energies of the reference
axis. Thus,

T = 1
2

∫ ℓ

0

(
d� ¤x) ¤x +
)J


)
dB (4.51)

where 
 ∈ R3 ↔ [
]× ∈ so(3) is the material angular velocity, i.e., the angular
velocity of the material frame with respect to the spatial frame expressed in the
coordinates of the material frame, and is given by

[
]× = �) ¤�. (4.52)

Here, d is the volumetric mass density, � is the cross-sectional area, and J =

d diag {�1, �2, �} is the sectional moment of inertia matrix. �1 and �2 are the second
moments of area about the e1 and e2 axes; � = �1 + �2 is the polar moment of area.
Equation (4.51) assumes that the reference axis is coincident with the cross-sectional
mass centers and that the axes e1 and e2 are parallel to the cross-sectional principal
inertia directions. These assumptions can be relaxed by appropriately redefining the
sectional inertia properties to introduce coupling between translations and rotations.
Due to the similarities between Eq. (4.44) and Eq. (4.52), the material curvature K
can be considered the spatial analogue of 
.

The decision to use spatial translations but material rotations in Eq. (4.51) is moti-
vated by the observation that the sectional moment of inertia matrix in the material
frame is constant [121]. For spatial rotations, the correct form of the inertia matrix
to use in the kinetic energy is j = �J�) , which is clearly configuration-dependent.

Following Sec. 4.5, Eq. (4.52) is rewritten as a function of the quaternion p describ-
ing the cross-sectional orientation. By analogy with Eq. (4.48), the quaternionic
expression for 
 is


 = 2G) (p) ¤p (4.53)

from which it follows that its variation can be expressed as

X
 = 2G) (p)X ¤p − 2G) ( ¤p)Xp. (4.54)

Equation (4.54) is used in the finite element formulation in Chapter 5.
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4.7 Virtual Work of External Forces
Following [121], the virtual work done by the external forces is

XWext =

∫ ℓ

0

(
Xx)n + X))m

)
dB

=

∫ ℓ

0

(
Xx)n + X�)M

)
dB

(4.55)

where n and m are the external forces and moments per unit length expressed in the
spatial frame and M = �)m is the corresponding material moment per unit length,
i.e., the spatial moment expressed in the coordinates of the material frame. For
brevity, Eq. (4.55) only considers a continuous distribution of applied forces and
moments. Point forces and moments can be treated within this framework using the
sifting property of the Dirac delta function [155, p. 241–243].

No assumptions are made regarding the origins of n and m, and hence, they can
be considered non-conservative. For finite rotations, constant spatial moments,
i.e., moments about fixed spatial axes, are known to be non-conservative, and
consequently, conservative moments are necessarily configuration-dependent [156].
In general, conservative moments are moments induced by conservative forces.

For consistency with previous developments, material rotation variables are used in
what follows. Expressing the spatial moment in material coordinates yields

XWext =

∫ ℓ

0

(
Xx)n + X�)�) (p)m

)
dB (4.56)

which can be rewritten in terms of the quaternion variation Xp using Eqs. (4.27) and
(4.33) to obtain

XWext =

∫ ℓ

0

(
Xx)n + Xp) (2H(p)m)

)
dB. (4.57)

The quantity m? = 2H(p)m is the spatial representation of the quaternion moment,
i.e., the generalized force induced by a spatial moment on the quaternion degrees of
freedom. The material quaternion moment M? is obtained by replacing the spatial
moment m with the corresponding material moment M = �) (p)m and simplifying;
i.e., M? = 2G(p)M. The quaternion moment is conservative if and only if m is also
conservative. Since the quaternion is neither a spatial variable nor a material one,
Eq. (4.57) results if either convention is used as a starting point.

Left-multiplying m? and M? by H) (p) and G) (p), respectively, and simplifying
then allows the spatial and material moments to be written in terms of the corre-
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sponding quaternion moments, i.e.,

m =
1
2

H) (p)m?, (4.58)

M =
1
2

G) (p)M? . (4.59)

Thus, a non-zero quaternion moment produces zero physical moment provided that
the quaternion moment lies in the null space of the corresponding tangent matrix;
see Eq. (4.17). Since both tangent matrices share the same null space, zero spatial
moment corresponds with zero material moment and vice versa.

4.8 Variational Principle
In GEBT, the nonlinear strain measures are consistent with the force and moment
resultant forms of the differential equations of equilibrium [129]. As a result, the
resultant forms of the kinetic energy, strain energy, and external virtual work can
be inserted directly into a standard variational principle, in this case, the Lagrange-
d’Alembert principle, to derive the weak form of the equations of motion. For a
geometrically exact beam, the continuous-time Lagrange-d’Alembert principle takes
the form [135, Sec. 7.8]:

X

∫ )

0
L(q, ¤q) dC +

∫ )

0
XWext(C, q, ¤q) dC = 0 (4.60)

where L(q, ¤q) = T (q, ¤q) − U(q) is the Lagrangian, T (q, ¤q) is the configuration-
dependent kinetic energy [Eq. (4.51)], U(q) is the strain energy [Eq. (4.41)],
XWext(C, q, ¤q) is the virtual work done by the external and/or non-conservative
generalized forces [Eq. (4.57)], q contains the generalized coordinates (in this case,
the translation x(B) and quaternion p(B) describing the position and orientation of
the reference axis), and ) is an arbitrary final time. Equation (4.60), or alternatively,
its constrained form (see e.g., [135, Secs. 7.8 and 8.3]), is the starting point for the
derivations of the continuous-time and discrete-time finite elements in Chapters 5
and 6, respectively.
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C h a p t e r 5

OBJECTIVE QUATERNION-BASED GEOMETRICALLY
EXACT BEAM FINITE ELEMENT

5.1 Introduction
This chapter presents a new quaternion-based finite element implementation of the
Reissner-Simo geometrically exact beam theory (GEBT) [32–34]. The development
and implementation of 3D finite elements based on GEBT are challenging due to
the nonlinear structure of the 3D rotation group SO(3). As a result, finite element
implementations of GEBT typically use differential geometry to account for the Lie
group structure of SO(3), as is done, e.g., in [34, 121, 157, 158]. This chapter takes a
different approach, instead leveraging several recent results from quaternion calculus
[139] to develop an objective, two-node, quaternion-based beam finite element that
is derivable using only standard mathematical tools from vector calculus and linear
algebra. For this reason, the proposed beam element is more straightforward to
derive than many of the comparable elements in the literature.

The proposed beam element is a quaternion-based reparameterization of the Total
Lagrangian beam element originally proposed by Cardona and Géradin [121] (see
also [70, Ch. 6]), which itself is a finite element implementation of Simo’s original
GEBT [34]. Compared to [121], the present formulation replaces rotation vectors
with quaternions to describe nodal rotations and uses spherical linear interpolation
(slerp) [133, 140] instead of standard linear interpolation to interpolate the nodal
rotations along the element’s reference axis. Slerp results in an objective finite
element discretization, i.e., the discrete strain measures preserve the objectivity of
the corresponding 1D continuum-beam strain measures. In this context, objectivity
refers to invariance to superposed rigid body motions. Generally speaking, the
finite element discretization of an objective continuum strain measure is itself non-
objective [129, 153, 154], something known to lead to the accumulation of errors
and non-physical path-dependence in the solution process. These problems are
exacerbated for coarse meshes and large rigid body motions, like those that occur
during the tumbling motions of flexible spacecraft. Unlike some other objective
finite element interpolations, slerp guarantees objectivity at every point along the
reference axis of the beam, not just at the nodes. Objectivity also eliminates any
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requirement to use local element reference frames during the finite element assembly
step. This is advantageous because it allows complex models to be assembled in a
single global reference frame. Several objective finite element implementations of
GEBT are currently available in the literature, including [141–144, 146, 158, 159].

The use of quaternions to describe nodal rotations inGEBT is not new. Many existing
formulations are quaternion-based, including [146–148, 159–166], among others.
The proliferation of quaternion-based formulations is largely due to their advantages
over implementations based on other parameterizations of SO(3), including:

1. Quaternions are the most compact singularity-free parameterization of SO(3)
[150]. This leads to many computational benefits. For example, it is simpler
and more efficient to guarantee that a quaternion is of unit length than it is to
guarantee the orthogonality of a rotation matrix. In fact, quaternions are often
used as intermediaries for orthogonalizing rotation matrices; see e.g, [138].
Unlike rotation-vector-based formulations (e.g., [158, 167]), quaternions do
not require reparameterizations of SO(3) for rotations in excess of 180 deg.

2. The consistent use of a single singularity-free rotation parameterization sim-
plifies theoretical developments and the subsequent implementation. Many
existing formulations are cumbersome because they use multiple rotation pa-
rameterizations throughout the solution process. References [144, 158], for
example, both employ three parameterizations: the rotation matrix, rotation
vector, and quaternion (which appears via Spurrier’s algorithm [137] dur-
ing the extraction of a rotation vector from a rotation matrix). Even some
quaternion-based implementations suffer from this problem; e.g., [146] uses
rotation vectors to describe nodal rotations, which are then mapped to quater-
nions for interpolation.

3. Since quaternions lie on the unit three-sphere, they are intuitive to interpo-
late without destroying their Lie group structure. Specifically, their geodesic
interpolation (slerp) traces an arc of a great circle on the unit three-sphere.
Hence, slerp can be defined from purely geometrical arguments [133, 140],
whereas the equivalent constructs for other parameterizations of SO(3) typi-
cally require tools from differential geometry, like the exponential map [133].

Despite their advantages, quaternions are not without their challenges. A major
downside is that quaternions are a double cover for SO(3), i.e., two quaternions
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describe each rotation in 3D space. In some applications, this can lead to undesirable
properties like unwinding, where a solution may start arbitrarily close to its final
orientation and yet still traverse large rotations before settling there [168, 169].
For finite elements, however, these concerns are usually unfounded as long as
the relative rotations across individual elements are much smaller than 180 deg,
something typically required for mesh convergence anyway.

Altogether, the proposed beam finite element represents an incremental improve-
ment over the current state-of-the-art for geometrically exact beam finite elements.
Compared to existing quaternion-based elements [146, 147, 159, 160, 163–166],
the present formulation has several advantages. References [160] and [164], for
example, are vector space formulations that use Lagrange multipliers to explicitly
enforce the quaternion unit norm constraint. Despite its conceptual simplicity, this
approach is prone to experiencing numerical difficulties due to the interpolation of
the Lagrange multipliers. The present work avoids this pitfall with a Lie group
formulation that implicitly enforces the quaternion unit norm constraint and results
in governing equations of minimal dimension. Many of the remaining formulations,
including [146, 147, 159, 166], are limited to statics, making them of no utility for
the dynamic problems studied in this thesis. Likewise, the proposed element consis-
tently uses a single singularity-free rotation parameterization throughout the entire
solution process, and by doing so, it can accommodate arbitrarily large rotations
without switching between rotation parameterizations.

For the purposes of this thesis, the proposed beam element is the continuous-time
limit of the discrete-mechanics-based formulation of GEBT subsequently developed
in Chapter 6. Both formulations share many of the same mathematical details; e.g.,
the continuous-time mass matrix developed here relates the discrete generalized
momenta in Chapter 6 to the corresponding discrete generalized velocities. Impor-
tantly, the element developed in this chapter also provides a reference solution for
verifying the variational integrator in Chapter 6.

The remainder of this chapter is organized as follows: Sec. 5.2 starts from the
continuous-time Lagrange-d’Alembert principle to derive the weak form of the
equations of motion. Sec. 5.3 implements the finite element discretization and
obtains expressions for the elemental elastic and inertia forces. This section shares
some similarities with [121] and [70, Ch. 6], but replaces rotation vectors with
quaternions and employs a structure-preserving spatial discretization. Sec. 5.4
presents several numerical examples. Sec. 5.5 then concludes the chapter.
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This chapter assumes familiarity with the material in Chapter 4.

5.2 Variational Principle
The finite element formulation starts from the constrained Lagrange-d’Alembert
principle in continuous-time (see e.g., [135, Secs. 7.8 and 8.3]):

X

∫ )

0
(L(q, ¤q) − c(q, ,)) dC +

∫ )

0
XWext(C, q) dC = 0 (5.1)

where L(q, ¤q) = T (q, ¤q) − U(q) is the Lagrangian; T (q, ¤q) is the configuration-
dependent kinetic energy;U(q) is the strain energy; XWext(C, q) is the virtual work
done by the external and/or non-conservative forces and moments; q contains the
generalized coordinates, in this case, q) =

(
x) , p)

)
; and ) is an arbitrary final

time. The function c(q, ,) contains the constraints conjugated to the independent
Lagrange multipliers , and is given by [142, 143, 160, 164]

c(q, ,) =
∫ ℓ

0
5) (q), dB (5.2)

where 5(q) is the vector of holonomic constraints. In the general case, Eq. (5.2) can
enforce distributed constraints along the beam’s reference axis, like the unit norm
constraints associated with quaternion vector space [160, 164] or director-based
[142, 143] formulations. The Lie group formulation developed here, however,
implicitly satisfies the quaternion unit norm constraint. Hence, 5(q) exclusively
enforces external constraints at the finite element nodes, e.g., the joint constraints
in flexible multibody systems. This entails the use of Dirac delta functions to
interpolate the Lagrange multipliers in the spatial discretization.

Next, expressions for the kinetic energy [Eq. (4.51)], strain energy [Eq. (4.41)],
virtual work done by the external forces [Eq. (4.57)], and constraints [Eq. (5.2)] are
substituted into Eq. (5.1) to obtain

X

∫ )

0

∫ ℓ

0

1
2

(
d� ¤x) ¤x +
)J
 − S)E − 25) (q),

)
dB dC

+
∫ )

0

∫ ℓ

0

(
Xx)n + Xp) (2H(p)m)

)
dB dC = 0. (5.3)

This is the constrained variational principle for a geometrically exact beam. From
here, the finite element formulation entails evaluating the variations in Eq. (5.3),
followed by the substitution of an appropriate spatial discretization.

In Eq. (5.3) and what follows, variations with respect to the quaternion p are inten-
tionally evaluated without explicitly considering the associated unit norm constraint.



66

In other words, variations with respect to p assume that its four components are in-
dependent. This assumption is corrected to account for the group structure of
quaternions using the structure-preserving spatial discretization in Sec. 5.3.

5.2.1 Variation of the Strain Energy
The variation of the strain energy follows directly from Eq. (4.41) as

XU =

∫ ℓ

0
XE)S dB (5.4)

where S) =
(
N) ,M)

)
is the vector of internal force and moment resultants and XE

is given by Eq. (4.50). Substituting XE and simplifying then gives

XU =

∫ ℓ

0

[
Xx′)�(p)N + 2Xp′)G(p)M − 2Xp) (L(Tx′)G(p)N +G(p′)M)

]
dB
(5.5)

where x′(B), p′(B), and p(B) are taken as independent variables. The internal force
and moment resultants are functions of the generalized strains � and K [Eqs. (4.46)
and (4.48)] through the constitutive relation S = CE [Eq. (4.42)]. Equation (5.5) is
equal to the virtual work done by the internal elastic forces, i.e, XWint = XU.

5.2.2 Variation of the Kinetic Energy
The variation of the kinetic energy is evaluated from Eq. (4.51), as follows:

XT =
∫ ℓ

0

(
X ¤x) (d�¤x) + X
)J


)
dB (5.6)

=

∫ ℓ

0

[
X ¤x) (d�¤x) + 4

(
X ¤p)G(p) − Xp)G( ¤p)

)
JG) (p) ¤p

]
dB (5.7)

where Eqs. (4.53) and (4.54) are used to eliminate the dependencies on 
 and X

and ¤x, ¤p, and p are taken as independent variables.

From here, the standard procedure is to evaluate the integral
∫ )

0 XT dC using inte-
gration by parts in time with the assumption that Xx and Xp both vanish at times
C = 0 and C = ) , i.e., Xx(0) = Xx()) = 03×1 and Xp(0) = Xp()) = 04×1. This results
in the following: ∫ )

0
XT dC = −

∫ )

0
XWiner dC (5.8)

where XWiner is the virtual work of the inertia forces, given by

XWiner =

∫ ℓ

0

[
Xx) (d�¥x) + Xp)

(
4G(p)JG) (p) ¥p + 8G( ¤p)JG) (p) ¤p

) ]
dB. (5.9)
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The integration by parts eliminates X ¤p. The first term in the integrand of Eq. (5.9)
contains the configuration-independent translational inertia forces. The second term
contains the configuration-dependent rotational inertia forces. The rotational inertia
forces share the same form as their counterparts from quaternion-based formulations
of rigid body dynamics; see e.g., [170].

5.2.3 Variation of the Constraints
The variation of the constraints is straightforward to evaluate from Eq. (5.2). Taking
q) =

(
x) , p)

)
and , as the independent variables in the evaluation of the variation

gives

Xc =
∫ ℓ

0

(
X,)5(q) + Xq)

(
m5

mq

))
,

)
dB (5.10)

where m5/mq is the constraint gradient matrix.

5.2.4 Weak Form of the Equations of Motion
To evaluate the weak form of the equations of motion, the variations of the strain
energy [Eq. (5.5)], kinetic energy [Eq. (5.8)], and constraints [Eq. (5.10)] are substi-
tuted into the constrained variational principle [Eq. (5.3)]. After some rearranging,
the constrained variational principle takes the form∫ )

0

[
XWiner + XWint +

∫ ℓ

0

(
X,)5(q) + Xq)

(
m5

mq

))
,

)
dB − XWext

]
dC = 0

(5.11)
where XWiner is the virtual work of the inertia forces [Eq. (5.9)], XWint is the virtual
work of the internal elastic forces [Eq. (5.5)], and XWext is the virtual work done
by the external forces [Eq. (4.57)]. The variational principle then implies that

XWiner + XWint +
∫ ℓ

0

(
X,)5(q) + Xq)

(
m5

mq

))
,

)
dB − XWext = 0 (5.12)

for all admissible variations Xx, Xx′, Xp, and Xp′. Equation (5.12) is the weak
form of the equations of motion. It is subsequently discretized in space using a
structure-preserving finite element method.

5.3 Finite Element Discretization
The spatial discretization via the finite element method considers a two-node beam
element of length ℓ. Each node has 7 degrees of freedom (DOFs), 3 translations
and a quaternion, for a total of 14 DOFs per element. Due to the quaternion unit
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norm constraint, only 12 of these are independent. The subscripts 1 and 2 denote
the nodes at the left and right ends of the element. The beam element is prismatic,
homogeneous, and isotropic linear-elastic with the sectional stiffness matrix C from
Sec. 4.5 and the linear mass density d� and sectional moment of inertia matrix
J from Sec. 4.6. Following the standard approach for geometrically exact beam
finite elements, the spatial discretization assumes independent position and rotation
(quaternion) fields.

In the sequel, the derivation considers a single element. The corresponding system-
level quantities are then assembled using a standard finite element assembly step.
Likewise, the terms interpolated and discretized/discrete are used interchangeably
and should be understood as referring to a quantity after spatial discretization via
the finite element method. The superscript ℎ denotes an interpolated quantity.

5.3.1 Interpolation of Positions
The spatial discretization linearly interpolates the reference axis position x(B). Thus,
x(B) is related to the nodal positions x1 and x2 by

x(B) � xℎ (B) = "1(B)x1 + "2(B)x2 (5.13)

where the symbol � denotes that x(B) is approximated by the interpolated quantity
xℎ (B), "1(B) = 1 − B/ℓ, and "2(B) = B/ℓ. Linear interpolation of vector space
quantities like position is objective [129]. Due to the objectivity of both the strain
measures and the finite element interpolation, the spatial discretization can directly
interpolate the nodal positions instead of the corresponding nodal displacements.

The discrete translational velocity and acceleration are the first and second time
derivatives of Eq. (5.13):

¤x(B) � ¤xℎ (B) = "1(B) ¤x1 + "2(B) ¤x2, (5.14)

¥x(B) � ¥xℎ (B) = "1(B) ¥x1 + "2(B) ¥x2. (5.15)

Thefinite element implementation also requires the first spatial derivative ofEq. (5.13),

x′(B) � xℎ′(B) = "1(B)x′1 + "2(B)x′2, (5.16)

and the discretizations of both Xx and Xx′:

Xx(B) � Xxℎ (B) = "1(B)Xx1 + "2(B)Xx2, (5.17)

Xx′(B) � Xxℎ′(B) = "′1(B)Xx1 + "′2(B)Xx2. (5.18)
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5.3.2 Interpolation of Quaternions
Unlike positions, quaternions are defined on a Lie group: the unit three-sphere
H1. It follows that standard linear interpolation does not preserve their Lie group
structure. This is straightforward to show by calculating the length of a quaternion
interpolated analogously to Eq. (5.13); the interpolated quaternion only satisfies the
unit norm constraint at the two endpoints. As a result, the linear interpolation of
quaternions is non-objective, leading to non-objective discrete strain measures.

Figure 5.1: Quaternion spherical linear interpolation (slerp) on the 4D unit
hypersphere H1 (the unit three-sphere). The solid arc subtending the angle
\ = cos−1 (

p)1 p2
)
∈ [0, c] in the plane spanned by p1 and p2 denotes the shortest

path from p1 to p2.

Spherical linear interpolation (slerp) [133, 140] is analogous to standard linear
interpolation on H1. Unlike linear interpolation, slerp traces the arc of the great
circle on H1 connecting two quaternions p1 and p2; see Fig. 5.1. Hence, slerp is a
geodesic interpolation from p1 to p2. By construction, the interpolated quaternion
belongs to H1, i.e., slerp preserves the Lie group structure of H1. Consequently,
the substitution of slerp into the nonlinear beam strain measures [Eqs. (4.46) and
(4.48)] leads to objective discrete strain measures [146, 154]. As discussed in [154],
slerp is the quaternion equivalent of the objective interpolation from [129], with
the added advantage that slerp can directly interpolate the total nodal rotations (via
the corresponding quaternions) as opposed to the incremental ones [146]. Note
that slerp is considered a constant “angular velocity” interpolation because each
infinitesimal arc length segment subtends the same infinitesimal angle.

As depicted in Fig. 5.1, there are two paths between any two quaternions on H1.
These paths correspond to the subtended angles \ ∈ [0, c] and 2c − \ where

cos(\) = p)2 p1. (5.19)
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Physically, the existence of two paths between any two quaternions corresponds to
the observation that there are two constant “angular velocity” rotation sequences
between any two orientations in 3D space. These two paths are unrelated to the
double cover of SO(3). Rather, since two quaternions describe each orientation in
3D space, there are actually eight possible paths on H1 between any two physical
orientations. An additional complication, however, does arise due to the double
cover. When \ > c/2, the angle between p1 and the antipode −p2 is less than c/2
[133]. In this case, the shortest path corresponds to the interpolation from p1 to −p2.
In most applications (including finite element ones), the shortest path between the
two quaternions is preferred. These issues are not salient for beam finite elements.
Because \ measures the angle between the two nodal quaternions, it typically must
be small (e.g., less than 15 deg) for mesh convergence. With a sufficiently dense
mesh, so long as the two nodal quaternions are close to each other in the initial
configuration, they generally remain close in the deformed configuration. Hence,
the finite element discretization assumes \ < c/2.

The slerp formula is straightforward to derive using vector algebra on H1. The
derivation is omitted for brevity; instead, see [133, 140]. Given two nodal quater-
nions p1 and p2, their slerp is given by

p(B) � pℎ (B) = #1(B)p1 + #2(B)p2 (5.20)

where

#1(B) = sin
((

1 − B
ℓ

)
\

)
csc(\), (5.21)

#2(B) = sin
( B
ℓ
\

)
csc(\), (5.22)

and \ is the angle between p1 and p2 [Eq. (5.19)]. When p1 = p2, i.e., when \ = 0,
slerp reduces to standard linear interpolation:

lim
\→0

#8 (B) = "8 (B) (5.23)

for 8 = 1, 2. The limit indicates that the approximate geometric tangent stiffness
matrix developed in Sec. 5.3.7 is exact in the inital (undeformed) configuration.
Unlike standard finite element interpolations, slerp is a nonlinear function of its
endpoints. This complicates the finite element discretization.

The formulation of the internal forces requires the first spatial derivative of pℎ (B):

p′(B) � pℎ (B) = #′1(B)p1 + #′2(B)p2 (5.24)
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where

−#′1(B) =
\

ℓ
cos

((
1 − B

ℓ

)
\

)
csc(\), (5.25)

#′2(B) =
\

ℓ
cos

( B
ℓ
\

)
csc(\). (5.26)

The finite element discretization also requires the first and second temporal deriva-
tives of pℎ (B) (for the formulation of the inertia forces) and the discretizations of
both Xp and Xp′. For brevity, only the latter are included here; the remaining terms
are listed in Appendix B.

Evaluating the discrete variations Xpℎ (B) and Xpℎ′(B) is more complicated. As-
suming that the components of p1 and p2 are independent yields the following
expressions for Xpℎ (B) and Xpℎ′(B):

Xp(B) � Xpℎ (B) = mpℎ (B)
mp1

Xp1 +
mpℎ (B)
mp2

Xp2, (5.27)

Xp′(B) � Xpℎ′(B) = mpℎ′(B)
mp1

Xp1 +
mpℎ′(B)
mp2

Xp2. (5.28)

The Jacobians of pℎ (B) and pℎ′(B) with respect to p1 and p2 are listed in Appendix B.
As is, Eqs. (5.27) and (5.28) are not structure-preserving because they are derived
without taking into account the group structure of H1. To rectify this, Xp1 and
Xp2 are projected into their associated material tangent spaces using Eq. (4.34)
(reproduced below):

Xp8 =
1
2

G(p8)X�8 (5.29)

which holds for 8 = 1, 2. As discussed in Sec. 4.3.2, Eq. (5.29) a posteriori
corrects for the group structure ofH1, analogous to the “conversion factor” approach
introduced in [139] that allows standard results from vector calculus and linear
algebra to be applied to H1. Introducing Eq. (5.29) into Eqs. (5.27) and (5.28) then
results in the following structure-preserving discretizations for Xpℎ (B) and Xpℎ′(B):

Xpℎ (B) = 1
2

(
mpℎ (B)
mp1

G(p1)X�1 +
mpℎ (B)
mp2

G(p2)X�2

)
, (5.30)

Xpℎ′(B) = 1
2

(
mpℎ′(B)
mp1

G(p1)X�1 +
mpℎ′(B)
mp2

G(p2)X�2

)
. (5.31)

While nontrivial, it can be shown that

Xpℎ) (B)pℎ (B) = 0 (5.32)
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for all B ∈ [0, ℓ], as expected for the variation of a quaternion. Since G ∈ R4×3

[Eq. (4.13)], the elemental elastic and inertia forces derived in Secs. 5.3.3 and 5.3.4,
respectively, are of minimal dimension, i.e., they have three forces and moments
per node. To simplify the notation, the explicit dependence on B is subsequently
dropped.

5.3.3 Elastic Forces
The elemental elastic forces Fint are derived by substituting expressions for Xxℎ′,
Xpℎ′, Xpℎ, and the appropriate interpolated position and quaternion variables into
either Eq. (5.4) or Eq. (5.5). In matrix form, Xxℎ′, Xpℎ′, and Xpℎ are related to the
variations of the nodal coordinates by

Xxℎ′

Xpℎ′

Xpℎ

 = PXg (5.33)

where P ∈ R11×12 is the shape interpolation matrix

P =



"′1I3×3 03×3 "′2I3×3 03×3

04×3
1
2
mpℎ′

mp1
G(p1) 04×3

1
2
mpℎ′

mp2
G(p2)

04×3
1
2
mpℎ

mp1
G(p1) 04×3

1
2
mpℎ

mp2
G(p2)


(5.34)

assembled from the structure-preserving spatial discretizations from Secs. 5.3.1 and
5.3.2 and

Xg) =
[
Xx)1 X�)

1 Xx)2 X�)
2

]
. (5.35)

The discrete strain gradient matrix B ∈ R6×12 is then defined such that

XEℎ = BXg. (5.36)

Using Eqs. (4.50) and Eq. (5.33), it follows that

B =

[
�) (pℎ) 03×4 −2G) (pℎ)L) (Txℎ′)

03×3 2G) (pℎ) −2G) (pℎ′)

]
P. (5.37)

In turn, Eq. (5.5) can be written as

XWint = Xg)
∫ ℓ

0
B)Sℎ dB = Xg)Fint (5.38)
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where Fint ∈ R12 is the vector of elemental internal elastic forces, Sℎ = CEℎ contains
the interpolated internal force and moment resultants, and Eℎ is the interpolated
strain vector. The integral in Eq. (5.38) is approximated using a quadrature rule.

The components of the discrete strain vector are evaluated by substituting xℎ′, pℎ′,
and pℎ into Eqs. (4.46) and (4.48). With slerp, it can be shown that the discrete
material curvature Kℎ is a constant for all B ∈ [0, ℓ] given by

K � Kℎ =
2
ℓ

(
\

sin(\)

)
G) (p1)p2 (5.39)

which is only a function of the relative rotation between the two nodes of the
element. Since Kℎ is constant with B, one-point Gaussian quadrature (the midpoint
rule) is exact for evaluating the corresponding contributions to the strain energy
and elemental elastic forces. Likewise, it is expected that the coefficients of B
corresponding to the discrete curvature gradients mKℎ/mp1 and mKℎ/mp2 are also
independent of B. This is in fact the case, but the proof is involved and best left to a
symbolic algebra software. Alternatively, these gradients can be directly evaluated
from Eq. (5.39).

5.3.4 Inertia Forces
The elemental inertia forces are derived analogously to the elemental elastic ones.
Specifically, Xxℎ and Xpℎ are expressed in terms of the variations of the nodal
coordinates such that [

Xxℎ

Xpℎ

]
= QXg (5.40)

where Q ∈ R7×12 is the shape interpolation matrix

Q =


"1I3×3 03×3 "2I3×3 03×3

04×3
1
2
mpℎ

mp1
G(p1) 04×3

1
2
mpℎ

mp2
G(p2)

 . (5.41)

Equation (5.40) is then substituted into Eq. (5.9) along with the appropriate inter-
polated position and quaternion variables to obtain

XWiner = Xg)
∫ ℓ

0
Q)

[
d�¥xℎ

4G(pℎ)JG) (pℎ) ¥pℎ + 8G( ¤pℎ)JG) (pℎ) ¤pℎ

]
dB (5.42)

from which it follows that
XWiner = Xg)Finer (5.43)
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where Finer ∈ R12 is the vector of elemental inertia forces. The translational inertia
forces in Eq. (5.42) are linear functions of the nodal accelerations. Hence, they can
be integrated exactly. The rotational inertia forces in Eq. (5.42) are approximated
with a quadrature rule.

5.3.5 Constraints
In the absence of internal constraints, the Lagrange multipliers in the weak form
[Eq. (5.12)] exclusively enforce external constraints between finite element nodes.
Hence, following [142], the Lagrange multipliers and their variations are interpo-
lated using Dirac delta functions X(·), as follows:

,(B) � ,ℎ (B) = X(B/ℓ),1 + X(1 − B/ℓ),2, (5.44)

X,(B) � X,ℎ (B) = X(B/ℓ)X,1 + X(1 − B/ℓ)X,2. (5.45)

Substituting Eqs. (5.44) and (5.45) into the variation of the constraints [Eq. (5.10)]
and evaluating the integral via the sifting property of the Dirac delta function [155,
p. 241–243] gives

Xc = X,)151(q1) + X,)252(q2) + Xq)1
(
m51
mq1

))
,1 + Xq)2

(
m52
mq2

))
,2 (5.46)

where q)
8
=

(
x)
8
, p)
8

)
and 58 ∈ R=

(8)
2 contains the =(8)2 constraints at node 8, both for

8 = 1, 2. Correcting for the Lie group structure of H1 using Eq. (5.29) then yields

Xc = X,)�(g) + Xg)
(
m�
mg

))
, (5.47)

where g) =
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q)1 , q

)
2
)
is the vector of nodal coordinates, ,) =

(
,)1 , ,

)
2

)
is the vector

of Lagrange multipliers, �) =
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5)1 , 5

)
2
)
is the constraint function, and
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 (5.48)

is the constraint gradient matrix for a single element. While a slight abuse of
notation, the meaning of , should be clear from its context.

5.3.6 External Forces
The external forces are derived from the external virtual work [Eq. (4.57)] using
Eq. (5.40):

XWext = Xg)
∫ ℓ

0
Q)

[
n

2H(pℎ)m

]
dB (5.49)
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from which it follows that
XWext = Xg)Fext (5.50)

where Fext ∈ R12 is the vector of external forces. The integral in Eq. (5.49) is
approximated using a quadrature rule. Since rotations are expressed in the material
frame, external moments specified in the spatial frame result in configuration-
dependent external forces. When external forces and moments are only applied at
the nodes, Fext simplifies to

Fext =


n1

�) (p1)m1

n2

�) (p2)m2


(5.51)

where n8 and m8 are the external forces and moments, respectively, at nodes 8 = 1, 2.
This can be derived by writing the distribution of external forces and moments in
terms of the Dirac delta function, tantamount to how the Lagrange multipliers are
interpolated in Sec. 5.3.5.

5.3.7 Dynamic Equilibrium and Linearization
The spatial discretization of the weak form [Eq. (5.12)] leads to the following
holonomically-constrained dynamic equilibrium equations for the beam element:

Finer(g, ¤g, ¥g) + Fint(g) +
(
m�
mg

))
, = Fext(g)

�(g) = 0=2×1

(5.52)

where =2 = =(1)2 + =(2)2 is the total number of holonomic constraints. The dynamic
equilibrium equations for =4 ≥ 1 elements take the same general form after a
standard finite element assembly step.

Due to the nodal quaternion DOFs, solving Eq. (5.52) requires a quaternion-based
generalization of a Lie group time integrator, e.g., the Lie group generalized-U
method [36–38], which is a generalization of the standard generalized-U method
[25]. The Lie group generalized-U method includes Lie group generalizations of
the HHT-U [171] and Newmark-V [172] methods as special cases.

Implicit solution procedures, including the Lie group generalized-Umethod, require
the linearization of Eq. (5.52) to evaluate the dynamic tangent matrix at each iter-
ation of a Newton-Raphson-type solution scheme. For brevity, only expressions
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for the tangent stiffness matrix K) and mass matrix M are developed here. The
remaining tangent matrices usually have small contributions to the dynamic tangent
matrix, and hence, can generally be neglected [70, Ch. 6], with the caveat that the
dynamic tangent matrix should account for the load stiffness [173] associated with
any deformation-dependent (follower) forces and/or moments.

The tangent stiffness matrixK) is the linearization of the internal forces with respect
to the configuration g. Substituting the constitutive relation Sℎ = CEℎ [Eq. (4.42)]
into Eq. (5.38) and differentiatingwith respect to g results in the following expression
for the tangent stiffness matrix:

K) =
mF8=C
mg

=

∫ ℓ

0

(
B)CB + mB)

mg
Sℎ

)
dB (5.53)

which can be recast in the equivalent form

K) = K" +K� (5.54)

where K" and K� are the material and geometric tangent stiffness matrices:

K" =

∫ ℓ

0
B)CB dB, (5.55)

K� =

∫ ℓ

0

mB)

mg
Sℎ dB. (5.56)

An approximation for the geometric tangent stiffnessmatrix is derived inAppendixC
which assumes that the angle \ is constant, i.e., any stiffness due to the nonlinearities
in the slerp is negligible compared to the changes in the internal force and moment
resultants. The material tangent stiffness matrix is exact.

Lastly, the mass matrix M is derived from the linearization of the inertia forces
[Eq. (5.42)] with respect to the generalized acceleration ¥q, the result of which is

M =
mFiner
m ¥g =

∫ ℓ

0
Q) (B)

[
d�I3×3 03×4

04×3 4G(pℎ)JG) (pℎ)

]
Q(B) dB. (5.57)

The mass matrix consists of a constant translational part and a configuration-
dependent rotational part.

5.4 Numerical Examples
A MATLAB® implementation of the finite element formulation is used to evaluate
several standard benchmark problems from the literature. The example problems
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specifically demonstrate the formulation’s (i) susceptibility to shear locking and
its subsequent correction (Sec. 5.4.1), (ii) path-independence (Sec. 5.4.2), and (iii)
objectivity (Sec. 5.4.3). All three examples in this section are static. For complete-
ness, however, this section also details the numerical implementation of the dynamic
finite element formulation used in subsequent chapters. Chapter 6 studies several
dynamic examples to facilitate comparisons between the Lie group generalized-U
method [36–38] and a structure-preserving variational integrator.

MATLAB® is a vectorized programming language. To bypass the use of for loops
and improve computational efficiency, the MATLAB® implementation features a
vectorized finite element assembly step inspired by [174–176] that uses 4D arrays.
The first two dimensions represent an elemental vector or matrix quantity, like the
elemental elastic forces. The third dimension represents the quadrature points for
the numerical integration. The fourth dimension represents the individual elements
in the finite element model. Each two-node element has six generalized forces (three
forces and three moments) per node. Thus, 4D arrays of dimensions 12×1×=@ ×=4
and 12 × 12 × =@ × =4 represent element force and matrix quantities where =@ and
=4 are respectively the number of quadrature points and elements. The computer
implementation evaluates the nonlinear element forces and tangent matrices for all
elements at each quadrature point simultaneously, and then uses a single summation
step (implemented by summing over all the quadrature points, followed by array
indexing and the application of the sparse function) to assemble the complete finite
element model.

The examples in Secs. 5.4.1, 5.4.2, and 5.4.3 are evaluated using a nonlinear static
solver based on a quaternion Lie group generalization of the standard Newton-
Raphson method [139, 177]. Similarly, the dynamic problems in subsequent chap-
ters use a quaternion-based implementation of the Lie group generalized-U method
[36–38]. The Lie group generalized-U method is second-order accurate for un-
constrained linear systems and includes numerical dissipation (specified via the
spectral radius at infinity) that damps any high-frequency numerical oscillations
and stabilizes the weak numerical instabilities associated with any constraints [178].
For improved numerical conditioning, it is implemented using the scaling approach
from [179]. Both solution procedures use the Cayley map for updating quaternion
DOFs; see Sec. 4.3.2. Additionally, both procedures use the approximate geometric
tangent stiffness matrix [Eq. (5.56)] and neglect terms with small contributions to
the total tangent matrix, as discussed in Sec. 5.3.7. This results in quasi-Newton
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methods with typically less-than-quadratic convergence. The dynamic solution pro-
cedure also neglects the tangent gyroscopic damping and stiffness matrices. Finally,
both solution procedures use the absolute convergence criterion

| |rg | |∞ ≤ g ∧ ||r, | |∞ ≤ g (5.58)

where rg is the generalized force residual, r, is the constraint residual (if applicable),
| |·| |∞ denotes the infinity norm, ∧ denotes logical and, and g is the convergence
tolerance. The infinity norm of a vector is equal to the magnitude of its coefficient
with the maximum absolute value. In this chapter, g = 10−6.

In each example, boundary conditions and any additional constraints are enforced
via the method of Lagrange multipliers, as is common in multibody dynamics;
see e.g., [180]. The method of Lagrange multipliers does not result in the most
computationally efficient constraint enforcement. Instead, its usage here is moti-
vated by its simplicity above all else, although it is also convenient for problems
requiring the explicit evaluation of reaction forces and/or moments. Other methods
of constraint enforcement, including standard Boolean identification and so-called
“master-slave” relationships [181, 182], typically yield more computationally effi-
cient implementations. Due to the implicit satisfaction of the quaternion unit norm
constraint, constraints on the rotational DOFs are only applied to the vector part of
the quaternion. This guarantees that the tangent matrix is full-rank.

Unless otherwise specified, the examples in this section use 1-point reduced inte-
gration for the elastic forces and tangent stiffness matrix.

5.4.1 Example 1: Shear Locking Test
It is well known that certain finite element discretizations of the classical (i.e., linear-
elastic, small-deflection) Timoshenko beam theory are prone to shear locking. In
particular, initially straight Timoshenko beam finite elements based on the linear
interpolation of independent displacement and rotation fields (often referred to as
�0 beam elements) suffer from two types of shear locking. These occur during (i)
constant curvature deformation (Type 1 locking) and (ii) linear curvature deforma-
tion (Type 2 locking) [183]. The standard approach for eliminating Type 1 locking
is reduced integration, specifically 1-point Gaussian quadrature (the midpoint rule),
which decouples constant curvature bending from shear [183]. Alleviating Type 2
locking is more nuanced, but for isotropic�0 beam elements, it can be accomplished
by scaling the shear stiffnesses; [183] demonstrates that the correct scale factor for
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isotropic�0 beam elements is MacNeal’s residual bending flexibility (RBF) correc-
tion [184]. For an isotropic �0 beam element of length ℓ, the RBF correction scales
the shear stiffnesses ��1 and ��2, as follows:

��1 →
��1

1 + ��1ℓ2/(12��2)
, (5.59)

��2 →
��2

1 + ��2ℓ2/(12��1)
(5.60)

so that the finite element stiffness matrix matches the analytically computed stiffness
matrix [183]. Given that GEBT is a large-deformation generalization of Timoshenko
beam theory and that slerp is analogous to linear interpolation on H1, it is natural to
expect that the proposed quaternion-based geometrically exact beam finite elements
are also prone to both Type 1 and Type 2 locking. This turns out to be the case, as
demonstrated next.

Figure 5.2: Cantilever beam subject to a transverse tip load % in the e2-direction for
shear locking test. The local (material) frame in the initial configuration coincides
with the global {e1, e2, e3} frame.

Table 5.1: Geometric and material properties from [147] for shear locking test

Parameter Value
1 0.1 m
ℎ 0.1 m – 1 m
� 10 MPa
� 107 MPa
ℓ 1 m

To demonstrate the shear locking susceptibility of the proposed beam finite ele-
ments, this example studies the simple shear locking test introduced in [147]. The
test considers the deflection of an isotropic cantilever beam with length ℓ and rect-
angular cross-section of breadth 1 and height ℎ due to a small transverse tip load %
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(Fig. 5.2). Table 5.1 lists the corresponding geometric andmaterial properties. Since
increasing the shear modulus� exacerbates shear locking, the test intentionally uses
a large (and non-physical) value for �. Likewise, decreasing the slenderness ra-
tio (i.e., increasing ℎ) and the number of elements both exacerbate shear locking.
Consequently, the test varies ℎ from 0.1 m to 10 m and considers finite element
discretizations with between 1 and 20 elements. Despite the use of non-physical
properties to emphasize shear locking, shear locking (especially Type 1 locking) is
often problematic in finite element models of real systems. Note that the computed
shear stiffnesses use a Timoshenko shear correction factor of 5/6 [151].

To overcome numerical ill-conditioning of the tangent stiffness matrix due to ex-
trapolation locking [185, 186] for ℎ > 1 m, the nonlinear static solver uses a
quaternion-based Lie group implementation of the mixed integration point (MIP)
Newton-Raphson method [187]. Extrapolation locking occurs due to large mis-
matches between terms in the tangent stiffness matrix, like those that occur in
geometrically exact beam formulations due to their stiffer (axial, shearing) and
softer (bending, torsional) DOFs. It is worse for larger stiffness mismatches.

The shear locking test limits the deflections to the geometrically linear regime in
order to compare the tip deflection D2(ℓ) with the corresponding analytical solution
from classical Timoshenko beam theory:

D2,ref(ℓ) = %
(
ℓ3

3��1
+ ℓ

��2

)
. (5.61)

Shear locking decreases as D2(ℓ)/D2,ref(ℓ) → 1. Figures 5.3a, 5.3b, and 5.3c plot
D2(ℓ)/D2,ref(ℓ) as a function of�ℓ2/�ℎ2 where the elastic forces are evaluated using
5-point Gaussian quadrature (as a substitute for full integration), 1-point reduced
integration, and 1-point reduced integration with MacNeal’s RBF correction. For
an isotropic beam with a rectangular cross-section, �ℓ2/�ℎ2 is proportional to the
ratio of ℓ3/3��1 to ℓ/��2, i.e., the ratio of the tip deflection due to bending and the
tip deflection due to shear. Hence, �ℓ2/�ℎ2 is a proxy for slenderness. Decreasing
values of �ℓ2/�ℎ2 correspond to increasing values of ℎ; log10(�ℓ2/�ℎ2) = 8 and
log10(�ℓ2/�ℎ2) = 4 respectively correspond to ℎ = 0.1 m and ℎ = 10 m.

The main takeaway from Figs. 5.3a and 5.3b is that shear locking occurs using
both 5-point Gaussian quadrature and 1-point reduced integration, indicating that
reduced integration alone is insufficient to fully alleviate shear locking in the present
formulation. However, 1-point reduced integration with a sufficiently dense mesh
mitigates the dominant locking effect. Additionally, it is apparent from Fig. 5.3a that
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(a) (b)

(c)

Figure 5.3: Normalized tip displacements in the e2-direction using (a) 5-point Gaus-
sian quadrature, (b) 1-point reduced integration (the midpoint rule), and (c) 1-point
reduced integration with MacNeal’s residual bending flexibility (RBF) correction.
Shear locking decreases as D2(ℓ)/D2,ref(ℓ) → 1.

locking increases as slenderness decreases, i.e., as ℎ increases (moving left on the
horizontal axis), as expected. Figures 5.3a and 5.3b likewise show that increasing
the number of elements decreases locking, again as expected. The application of
MacNeal’s RBF correction then fully corrects for shear locking; see Fig. 5.3c. For a
cantilever beam loaded by a transverse tip force, Fig. 5.3c demonstrates that the tip
displacements calculated with the combination of 1-point reduced integration and
the RBF correction are independent of the mesh density.

By analogy with the �0 element case, it is apparent that the proposed slerp-based
geometrically exact beamfinite elements suffer from both Type 1 and Type 2 locking.
This has ramifications for many of the existing geometrically exact beam finite
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elements formulations in the literature. Specifically, many of these formulations
are based on either linear interpolation of translations and rotations (see e.g, [121])
or an analogous Lie group interpolation (see e.g., the objective interpolations from
[144] and [146]). As a result, these formulations are also likely prone to both types
of locking. Many existing formulations, including [121, 141, 143, 158], exclusively
address Type 1 locking; the consideration of Type 2 locking is absent from much of
the existing literature, with limited exceptions (see e.g, [70, Ch. 6]). Importantly,
this discussion only applies to initially straight beam finite elements; locking in
initially curved elements is more complicated and discussed elsewhere (see e.g.,
[188]).

A final note of caution: MacNeal’s RBF correction is not generally applicable
to arbitrary (i.e., anisotropic) �0 beam elements. It is straightforward to show,
for example, that the application of the RBF correction to the linear analysis of
an anisotropic �0 beam element can lead to a negative (semi-) definite stiffness
matrix. To the author’s knowledge, a generalization ofMacNeal’sRBF correction for
anisotropic beams does not currently exist in the literature. As a result, the requisite
numerical tools for eliminating Type 2 locking in anisotropic geometrically exact
beam finite elements based on either linear interpolation or analogous interpolations
for SO(3) also do not currently exist. This is a possible area for future research.

5.4.2 Example 2: Path-Independence Test
This example uses the 45 deg cantilever bend from [189] to demonstrate the path-
independence of the proposed finite element formulation under different load incre-
mentation schemes. Path-independence requires that the final deformed configu-
ration is independent of the load incrementation scheme. Since its introduction in
[189], the 45 deg cantilever bend has become a standard test problem for geometri-
cally exact beam finite elements because it combines axial, shearing, torsional, and
bending deformations; representative references include [121, 141, 142, 144, 146,
153, 157, 158], among others. References [142, 144, 146, 153] specifically use it to
investigate path-independence.

The 45 deg cantilever bend consists of an initially curved beam of radius ' that
subtends an angle of 45 deg along a circular arc and is loaded by a vertical force
% at its free end; see Fig. 5.4a. The present finite element formulation assumes
initially straight beam finite elements. As a result, the finite element implementation
approximates the initially curved beam with a series of straight line segments.
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(a)

continuous

discrete

tangent vector

(b)

Figure 5.4: (a) Initially curved cantilever beam subject to a transverse tip load %
in the e2-direction. (b) Top view of discretization using =4 = 2 initially straight
geometrically exact beam finite elements. In both (a) and (b), the local (material)
frame in the initial (undeformed) configuration is defined such that E3 is tangent to
the beam’s axis, E2 = e2, and E1 = E2 × E3.

Figure 5.4b illustrates this discretization using a coarse mesh with =4 = 2 initially
straight beam finite elements, but following [189] and others, the beam is discretized
using =4 = 8 elements in what follows. Due to the discretization, the material frames
for adjacent elements do not coincide. This leads to quaternion constraints at the
nodes connecting adjacent elements of the form

G) (p(8+1)1 )L(p(8)2 )Δp(8) = 03×1 (5.62)

where the subscripts 1 and 2 denote each element’s first and second node (the second
node on element 8 overlaps the first node on element 8+1) and Δp(8) = L) (p(8)0 )p

(8+1)
0

for 8 = 1, . . . , =4 − 1 is the quaternion describing the orientation of the material
frame of element 8+1 relative to the material frame of element 8 in the beam’s initial
configuration.

Table 5.2: Geometric and material properties in the local (material) frame from
[144] for 45 deg cantilever bend

Parameter Value
��1, ��2 5 × 106 N
�� 107 N
��1, ��2, �� 107/12 N m2

' 100 m
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Table 5.2 lists the geometric and material properties from [144] for the 45 deg can-
tilever bend. The finite element implementation applies MacNeal’s RBF correction
[184] to the shear stiffnesses (see the discussion in Sec. 5.4.1), but numerical ex-
periments show that neglecting the RBF correction in this example has a negligible
effect on the computed deflections.

Four load incrementation schemes are considered: (i) a single load increment, (ii)
3 equal load increments, (iii) 3 unequal load increments, and (iv) 100 equal load
increments. Case (iii) specifically considers the load increments %/2, %/4, and %/4,
in that order. Case (iv) provides a reference solution.

(a) (b)

Figure 5.5: 45 deg cantilever bend: comparisons of (a) initial (undeformed) and final
(deformed) configurations and (b) tip displacements as a function of load increment
from 4 different load incrementation schemes. In (a), the arrows denote the direction
of the load and there is no magnification of the deformation. In (b), ℓ = 25c m.

Figure 5.5a compares the initial and final configurations of the cantilever to empha-
size the 3D nature of the deformation. Figure 5.5b then plots the components of
the tip displacement as a function of the load increment for cases (i)–(iii); the con-
tinuous lines depict case (iv). Figure 5.5b depicts the expected result, namely that
the tip displacements converge to the same final values irrespective of the load in-
crementation scheme. This confirms the path-independence. To further emphasize
the path-independence, Table 5.3 compares the final tip displacements from cases
(i)–(iv); in each case, the results are numerically identical to engineering accuracy.
The table also lists two reference solutions from the literature to demonstrate that
these results are in good agreement with those from other geometrically exact beam
finite element formulations.
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Table 5.3: Comparison of tip displacements from 45 deg cantilever bend (Fig. 5.4a)
using 4 different load incrementation schemes. The tip displacements are compared
to those from the path-independent formulations from [144] and [153]

Formulation
Tip Displacements, m
D1C D2C D3C

Present (i) 13.5739 53.5248 −23.5338
Present (ii) 13.5739 53.5248 −23.5338
Present (iii) 13.5739 53.5248 −23.5338
Present (iv) 13.5739 53.5248 −23.5338
Total Lagrangian [144] 13.4834 53.3712 −23.4791
Incremental rotation vector [153] 13.490 53.370 −23.477

5.4.3 Example 3: Objectivity Test
This final example studies the objectivity of the proposed finite element formula-
tion using the right-angle cantilever beam introduced in [144]. This problem has
subsequently become a standard objectivity test for geometrically exact beam finite
elements; see e.g., [146, 153, 159]. In practice, objectivity means that rigid body
rotations of a deformed configuration do not result in the accumulation of errors, i.e.,
the errors remain below the convergence tolerance of the Newton-Raphson solver.
Thus, to test objectivity, successive rotations can be applied to the deformed con-
figuration of a structure, and after each complete rotation, the current configuration
can be compared with the initial deformed configuration, as is done next.

Figure 5.6: Right-angle cantilever beam subject to an out-of-plane force % at its tip
and prescribed base rotation (U, V, or W) introduced in [144] for objectivity test. The
local (material) frame in the initial (undeformed) configuration is defined such that
E3 is tangent to the beam’s axis, E2 = e2, and E1 = E2 × E3.

The right-angle cantilever beam is depicted in Fig. 5.6 and consists of two initially
straight beam segments of length ℓ connected at a right angle and clamped at the
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Table 5.4: Geometric and material properties in the local (material) frame for
right-angle cantilever beam in objectivity test

Parameter Value
��1, ��2, �� 106 N
��1, ��2, �� 103 N m2

ℓ 10 m

root. Its geometric and material properties are listed in Table 5.4. Unless otherwise
specified, each segment is discretized with 5 equal-length beam elements.

Figure 5.7: Comparison of initial (undeformed) configuration with deformed con-
figuration after application of out-of-plane force at the beam’s tip. The arrows
denote the direction of the load. There is no magnification of the deformation.

Table 5.5: Tip displacements for right-angle cantilever beam subject to free-end
out-of-plane force % = 5 N (Fig. 5.6)

Formulation
Tip Displacements, m
D1C D2C D3C

Present (1 element/segment) −1.6325 −6.2159 −0.2926
Present (5 elements/segment) −1.7463 −6.7468 −0.4211
Present (20 elements/segment) −1.7509 −6.7671 −0.4265
2-node orthogonal tensor [153] −1.7368 −6.7329 −0.43081
3-node orthogonal tensor [153] −1.4618 −6.2755 −0.44565
Rotation vector [153] −1.7367 −6.7330 −0.43080
[146] (5 elements/segment) −1.7511 −6.7468 −0.4126
[146] (20 elements/segment) −1.7512 −6.7671 −0.4259
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The cantilever is loaded by a vertical force % = 5 N at its free end and prescribed
base rotations U, V, and W about the spatially fixed e1, e2, and e3 axes, respectively.
The direction of the vertical force is constant with respect to the global {e1, e2, e3}
frame. The objectivity test consists of two nonlinear static steps. In step (1), the
vertical force is applied using five uniform load increments. This results in the
deformed configuration depicted in Fig. 5.7. As a check, Table 5.5 compares the
tip displacements obtained using 1, 5, and 20 elements per segment with published
results. Based on the table, the present results obtained with 5 or more elements
per segment are in good agreement with those from the literature. In steps (2a)
through (2d), the following successive prescribed base rotations are then applied:
(2a) rotation about the e1 axis through an angle U; (2b) rotation about the e2 axis
through an angle V; (2c) rotation about the e3 axis through an angle W; and (2d)
rotation about the e3 − e1 axis through an angle X (not shown in Fig. 5.6). (2d) is
used to demonstrate that objectivity is independent of the choice of the rotation axis.

For each of steps (2a) through (2d), the cantilever is rotated through 100 complete
turns about the corresponding axis using 4000 rotation increments, each through an
angle of 9 deg. Objectivity (or lack thereof) is ascertained from the accumulation of
errors after each complete turn. Nominally, the deformed configurations after each
complete turn should exactly match the reference deformed configuration obtained
after step (1).

(a) (b)

Figure 5.8: (a) Tip displacements and (b) strain energy as a function of the number
of complete turns for steps (2a) through (2d). Turn 0 corresponds to the deformed
configuration after step (1), turns 1-100 correspond to step (2a), turns 101-200
correspond to step (2b), and so on.
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Figure 5.8a plots the three components of the tip displacement after each complete
turn from steps (2a) through (2d). The figure demonstrates that the tip displacements
are constant, irrespective of the number of turns or the choice of the rotation axis.
In other words, there is no appreciable error accumulation in the computed tip
displacement, as expected for an objective finite element formulation.

Figure 5.8b then uses the strain energy evaluated after each complete turn as a global
configuration error metric. The figure depicts “jumps” in the strain energy between
each step. Each jump corresponds to the re-equilibration of the resultant forces and
moments after a change of the rotation axis; subsequent rotations about a single
axis otherwise show no change in the strain energy. The maximum absolute strain
energy error |U −Uref | between the current configuration with strain energyU and
the configuration obtained from step (1) with strain energy U1 is on the order of
10−8 J, i.e., the absolute errors are approximately two orders of magnitude below
the convergence tolerance of the Newton-Raphson solver. Thus, the jumps in the
strain energy are consistent with the finite element formulation’s objectivity.

Table 5.6: Tip displacements and relative displacement errors for right-angle can-
tilever beam subject to free-end out-of-plane force % = 5 N (Fig. 5.6). Relative errors
are calculated with respect to the corresponding tip displacements from Table 5.5

Elements/
Segment

Tip Displacements, m Relative Errors, %
D1C D2C D3C D1C D2C D3C

1 0.6660 −5.3456 −1.4042 −140.80 −14.001 379.84
5 −1.7498 −6.7531 −0.4219 0.1962 0.0926 0.1887
20 −1.7511 −6.7675 −0.4265 0.0123 0.0058 0.0118

Lastly, to quantify the numerical advantages of the objective finite element formu-
lation, the objectivity test is re-evaluated using a non-objective formulation that
replaces slerp with standard linear (vector space) interpolation of the nodal quater-
nions. Table 5.6 lists the tip displacements computed during step (1) with 1, 5,
and 20 elements per segment and evaluates the relative displacement errors with
respect to those from the objective formulation in Table 5.5. The table demonstrates
that the non-objective formulation exhibits very poor accuracy with a coarse mesh
(1 element per segment) and that the relative errors decrease as the mesh density
increases. Intuitively, the discretization errors due to non-objectivity are related to
the relative rotations across each element. For a given load, the relative rotations
decrease as the mesh density increases, which in turn decreases the discretization
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errors [144]. Physically, the discretization errors are at least in part due to the un-
derprediction of the elemental curvatures. This results in a phenomenon analogous
to locking. For a deformed element of length ℓ with nodal quaternions p1 and p2,

Kℎ

;




2

Kℎ




2
=

sin(\)
\
≤ 1 (5.63)

where Kℎ
;
= (2/ℓ)G) (p1)p2 is the discrete material curvature obtained using linear

interpolation; Kℎ is the discrete material curvature evaluated with slerp [Eq. (5.39)];
| |·| |2 denotes the Euclidean norm; \ ∈ [0, c] [Eq. (5.19)]; and the equality only occurs
in the limit as \ → 0, i.e., in the undeformed configuration. Based on Eq. (5.63),
since \ decreases as the relative rotation across the element decreases, so too does
the error between Kℎ

;
and Kℎ.

In step (1), the equilibrium iterations for each load increment converge despite the
lack of objectivity. The same cannot be said in step (2). In particular, with the same
rotation increment size (9 deg per increment), the non-objective formulation only
convergences for the first 22 rotation increments (198 deg of rotation) in step (2a).
The accumulation of discretization errors due to non-objectivity culminates in a
numerical instability associated with ill-conditioning of the tangent stiffness matrix.
Halving the rotation increment size merely postpones the onset of this instability.
In this case, the equilibrium iterations stop converging in step (2c). Conversely,
the objective formulation does not experience any numerical problems, i.e., it can
use larger load (or rotation) increments and is more numerically stable for problems
with large rotations. Altogether, the objective formulation achieves faster spatial
convergence and exhibits both improved numerical stability and accuracy relative
to the non-objective one.

5.5 Discussion
The main contribution of this chapter is the development of a new quaternion-based
geometrically exact beam finite element in the Total Lagrangian description using
only standard mathematical tools from vector calculus and linear algebra. Conven-
tional geometrically exact beam finite elements rely on the mathematical machinery
of differential geometry to account for the nonlinear structure of the 3D rotation
group SO(3). Here, the quaternion-based approach achieves an equivalent end re-
sult from a significantly simpler conceptual framework. The new element is based on
a Lie group formulation that implicitly enforces the quaternion unit norm constraint
and uses spherical linear interpolation (slerp) to preserve the rigid body invariance
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(i.e., the objectivity) of the 1D continuum strain measures. It likewise remedies
several cumbersome characteristics of comparable elements from the literature. In
particular, it uses a single rotation parameterization throughout the computer im-
plementation and does not require switching between rotation parameterizations to
handle large rotations.

Several numerical examples then illustrated salient aspects of the new element, in-
cluding its susceptibility to shear locking and its subsequent correction, its path
independence, and its objectivity. The objectivity test also demonstrated that slerp
results in a formulation that is more numerically stable and achieves faster spatial
convergence than an analogous formulation with linear interpolation of the nodal
quaternions. All three numerical examples were static. Numerical examples for dy-
namics appear as reference solutions for the discrete-mechanics-based formulation
of geometrically exact beam theory developed in Chapter 6.
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C h a p t e r 6

QUATERNION VARIATIONAL INTEGRATOR FOR SPATIAL
BEAM DYNAMICS

6.1 Introduction
The goal of this chapter is to apply discrete mechanics to flexible multibody systems
described by geometrically exact beams using a quaternion parameterization of the
rotational degrees of freedom (DOFs). This results in a quaternion-based Lie group
variational integrator for simulating the dynamics of holonomically constrained
geometrically exact beams.

Traditionally, continuous-time (differential) equations of motion for mechanical
systems are derived from continuous-time variational principles and then discretized
in time using standard integrators; see e.g., [70]. Discrete mechanics [28, 29]
inverts this paradigm, instead discretizing the governing variational principle in time
before evaluating any variations. The resulting discrete-time (algebraic) equations
of motion are referred to as a variational integrator. Discrete mechanics provides a
systematic framework for deriving variational integrators of arbitrary accuracy for
mechanical systems [28, 29].

Most standard integrators do not preserve the structure of the underlying physical
system. As a consequence, these integrators can exhibit pathological, i.e., non-
physical, behaviors that lead to spurious solutions, regardless of the spatial or
temporal grid sizes used to discretize the physical system [190]. For example,
standard integrators for mechanical systems, like the generalized-U method [25],
introduce numerical dissipation to annihilate the high-frequency oscillations that can
arise in the solution of numerically stiff differential equations. Excessive numerical
dissipation, however, can spill over into the low-frequency dynamics, leading to non-
physical energy decay. In general, these integrators neither preserve the structure
nor any other invariants (e.g., energy or momentum) of the physical system.

Variational integrators, on the other hand, have several characteristics that make
them particularly advantageous for simulating mechanical systems. In particular,
they are symplectic, inherit the structure of the underlying physical system (in-
cluding their stability characteristics), conserve momentum, and exhibit excellent
energy stability, even for exponentially long simulation times. “Symplecticity” is a
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conserved property of the solutions of Hamiltonian systems, a detailed discussion
of which is outside the scope of this chapter; interested readers are instead referred
to [191, 192] for concise introductions and [135] for a rigorous exposition. With
that being said, some intuition into the notion of symplecticity can be developed by
way of a simple example: the free vibration of a simple harmonic oscillator.1 The
practical significance of symplecticity is that unlike standard integrators, variational
integrators converge to the exact continuous-time equations of motion as the time
step size approaches zero. Variational integrators and other symplectic-momentum
conserving integrators, however, have a significant disadvantage: they are prone to
numerical instabilities driven by temporally unresolved high-frequency oscillations
that can appear in the simulation of numerically stiff dynamical systems [193–198].
These instabilities are exacerbated for large time steps and highlight how structure
preservation alone does not guarantee integration accuracy.

The standard structure-preserving alternative to symplectic-momentum integrators
are energy-momentum ones. Fixed time step structure-preserving integrators are ei-
ther symplectic-momentum conserving or energy-momentum conserving, not both
[27]. Compared to symplectic-momentum methods, energy-momentum methods
are advantageous because they are immune to instabilities associated with unre-
solved high-frequency oscillations [194, 196]. As a result, they are potentially more
robust (but not necessarily more accurate) than symplectic-momentum methods for

1The free vibration of a simple harmonic oscillator with natural frequency l= is the solution to
the differential equation

¥G(C) + l2
=G(C) = 0 (6.1)

with initial conditions G(0) = G0 and ¤G(0) = ¤G0. In position-momentum form, the solution to Eq. (6.1)
can be written as

z(C) = �(C)z0 (6.2)

where z) (C) = (G(C), ?(C)) is the state vector with momentum ?(C) = ¤G(C) and

�(C) =
[

cos(l=C) sin(l=C)/l=
−l= sin(l=C) cos(l=C)

]
. (6.3)

Following [191, 192], the map �(C) is then said to be symplectic because

�) (C)��(C) = � (6.4)

for all C ≥ 0 where � is the skew-symmetric symplectic matrix

� =

[
0 1
−1 0

]
. (6.5)

The symplectic form [Eq. (6.4)] is a conserved property of the solutions to Eq. (6.1) and implies
that �(C) is an area-preserving transformation for all C ≥ 0 [191, 192]. This area is also a conserved
quantity. An integrator is symplectic when it conserves a symplectic form analogous to Eq. (6.4).
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simulating complex nonlinear phenomena in mechanical systems. However, as dis-
cussed in [199], energy-momentummethodsmay poorly approximate low-frequency
oscillations for systems with multiple temporal scales, i.e., natural frequencies. This
can lead to incorrect distributions of energy across the modes of a system. Likewise,
for symplectic-momentum methods, non-conservation of energy is an obvious red
flag indicative of poor solution accuracy [199]. In other words, energy conserva-
tion implies accuracy, even in the nonlinear setting. The same is not necessarily
true for energy-momentum methods. In particular, it is well known that energy
conservation alone is insufficient to guarantee either accuracy or stability [200].
Symplectic-energy-momentum preserving methods (see e.g., [201, 202]) based on
time step adaptation may circumvent some or all of these shortcomings, but com-
pared to fixed time step methods, these methods are still in their infancies [26]. For
these reasons, a fixed time step, symplectic-momentum method for simulating the
dynamics of geometrically exact beams is preferred here.

The beam formulation in this chapter uses the quaternion-based parameterization
of the Reissner-Simo geometrically exact beam theory (GEBT) [32–34] from Chap-
ter 5. To preserve the Lie group structure of GEBT, the temporal discretization of
the variational principle uses a quaternion-based Lie group generalization of the
standard midpoint rule. Here, quaternions are advantageous because they result in
an intuitive geometric derivation of the midpoint quaternion based on vector algebra
on the unit three-sphere. The subsequent spatial discretization via the finite element
method then proceeds analogously to Chapter 5 using spherical linear interpolation
(slerp) [133, 140] to interpolate the nodal quaternions along the reference axis of the
beam. Unlike standard linear interpolation, slerp preserves the geometric structure
of the 1D continuum strain measures. Thus, the spatial discretization is objective
[129, 153, 154], meaning the discrete strain measures inherit their invariance to
superposed rigid body motions from their continuum counterparts. Non-objective
formulations lead to the accumulation of errors and solutions with non-physical
path-dependence. Discretizing in time, then space leads to simpler algebraic equa-
tions of motion that reuse several key results from Chapter 5. Importantly, the initial
temporal discretization circumvents any requirement to interpolate quaternion rates
and accelerations using temporal derivatives of slerp. The resulting Lie group vari-
ational integrator implicitly satisfies the quaternion unit norm constraint using a
conceptually straightforward quaternion-based approach rooted in vector calculus
and linear algebra [139], as opposed to more classical approaches developed with
differential geometry. The discrete mechanics framework used to derive the varia-
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tional integrator is largely based on the theory of discrete mechanics for constrained
mechanical systems from [197].

Structure-preserving integrators in general and variational integrators in particular
are becoming increasingly common for numerical simulations in a range of applica-
tions; see [26] and the references therein. However, to the author’s knowledge, there
are only two contemporary applications of discrete mechanics to geometrically exact
beam dynamics in the literature [203, 204]. In both cases, the variational principle
is discretized in space, then time before evaluating any variations. The opposite
is done here. Both [203, 204] likewise use the trapezoidal rule for the temporal
discretization of the variational principle. This results in hybrid implicit-explicit
integration schemes: an implicit step for updating the nodal rotations, followed by
an explicit step for updating the nodal translations. In contrast, the scheme devel-
oped here uses a temporal midpoint discretization of the variational principle that
requires a fully implicit solution scheme. Each iteration in the fully implicit scheme
has a higher computational cost than the hybrid one. However, the fully implicit
scheme may benefit from a larger minimum stable time increment to offset its higher
computational cost.

In the context of this thesis, the quaternion Lie group variational integrator devel-
oped in this chapter is a discrete-time analog of the continuous-time beam element
presented in Chapter 5. The variational integrator provides a structure-preserving
numerical method for simulating the slew maneuver dynamics of an ultralight flex-
ible spacecraft in Chapter 8.

This chapter is organized as follows: Sec. 6.2 derives a quaternion Lie group
variational integrator for a free rigid body using a Lie group generalization of
the standard midpoint rule. Due to the similarities between rigid body dynamics
and GEBT, these results are directly applicable to the subsequent derivation of the
variational integrator for geometrically exact beams. Sec. 6.3 uses the temporal
discretization from Sec. 6.2 and a structure-preserving finite element discretization
to derive the variational integrator for geometrically exact beams. Sec. 6.4 then
applies the variational integrator from Sec. 6.3 to several benchmark problems that
illustrate its excellent long-duration energy stability. Finally, Sec. 6.5 discusses the
chapter’s conclusions.

Like the preceding chapter, this chapter assumes familiarity with the material in
Chapter 4. Additionally, it reuses several results from Chapter 5, particularly those
related to the spatial discretization via the finite element method.
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6.2 Quaternion Variational Integrator for a Free Rigid Body
The quaternion variational integrator for geometrically exact beams is based on a
temporal midpoint discretization of the continuous-time variational principle. Due
to the parallels between GEBT and rigid body dynamics [121], a quaternion varia-
tional integrator for the unforced motion of a free rigid body is derived to provide
insights into the temporal midpoint discretization. Manchester and Peck [205]
present a similar derivation based on a temporal discretization with the rectangle
rule (specifically, a left Riemann sum), which results in a first-order accurate im-
plicit variational integrator. In contrast, the midpoint rule used here results in a
second-order accurate implicit variational integrator. Symmetric quadrature rules
like the midpoint rule always result in variational integrators of even order [28, 29].

6.2.1 Discrete Variational Principle
Following [205], the derivation starts from the continuous-time variational principle,
in this case Hamilton’s principle. For the unforced motion of a free rigid body, the
Lagrangian is simply the kinetic energy. Thus, Hamilton’s principle takes the form

X

∫ )

0

1
2

)J
 dC = 0 (6.6)

where 
 ∈ R3 ↔ [
]× ∈ so(3) is the material angular velocity, i.e., the angular
velocity of the material frame with respect to the spatial frame; J ∈ R3×3 is the
moment of inertia matrix about the center of mass; and ) is an arbitrary final time.
Both 
 and J are expressed in the material frame. Next, the integral in Eq. (6.6) is
divided into # − 1 time steps of length ℎ such that

X

#−1∑
:=0

∫ C:+1

C:

1
2

)J
 dC = 0 (6.7)

where # = )/ℎ + 1; C0 = 0; C# = ) ; and C:+1 = C: + ℎ. Up until this point, no
approximations have been introduced, i.e., Eq. (6.7) is exact.

From here, the standard procedure for deriving a variational integrator is to approxi-
mate the integral in Eq. (6.7) using a quadrature rule [28, 29]. However, since the set
of quaternions H1 defines a Lie group, standard quadrature rules like the midpoint
rule used here must be modified to account for the group properties. This is done
next. For a more general discussion of Lie group midpoint rules in the context of
variational integrators, see [206].
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For the 3D rotation group SO(3), the midpoint orientation �:+1/2 ∈ SO(3) halfway
between two orientations �: , �:+1 ∈ SO(3) is defined as [70, p. 309–311]

�:+1/2 = �:F: = �:+1F): (6.8)

where F: ∈ SO(3) is the incremental rotation. From Eq. (6.8), F: satisfies

�:+1 = �:F2
: . (6.9)

Thus, the rotation from �: to �:+1 is equivalent to two successive rotations by F: .
Per Euler’s theorem, any rotation can be described as a rotation about some axis
fixed in space. The two successive rotations by F: both occur about the same axis.

Analogous to Eq. (6.8), the midpoint quaternion halfway between p: ∈ H1 and
p:+1 ∈ H1 is

p:+1/2 = L(p: )f: = L(p:+1)f∗: (6.10)

where f: ∈H1 is the incremental quaternion describing the successive rotations from
p: to p:+1/2 and from p:+1/2 to p:+1, i.e.,

p:+1 = L(p: )L(f: )f: . (6.11)

Figure 6.1: Geometric interpretation of the mid-quaternion p:+1/2 on the 4D unit
hypersphere (the unit three-sphere) H1. The incremental quaternion f: defines the
incremental rotations from p: to p:+1/2 and from p:+1/2 to p:+1, both through the
angle q = \/2 where \ = cos−1 (

p)
:
p:+1

)
.

It is straightforward to develop an expression for f: by considering the geometry
of H1, the unit hypersphere in R4; see Fig. 6.1. Since the two successive rotations
f: occur about the same axis, p:+1/2 must lie in the plane spanned by p: and p:+1.
Thus, p:+1/2 is the unit vector in this plane that bisects p: and p:+1, meaning it is
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the unit vector parallel to line segment OB in Fig. 6.1. The vectors parallel to line
segments AC and AB in Fig. 6.1 are p:+1 − p: and (p:+1 − p: ) /2, respectively.
Thus, the vector parallel to OB is (p: + p:+1) /2, which is normalized to obtain the
following expression for p:+1/2:

p:+1/2 =
p: + p:+1√

2
(
1 + p)

:
p:+1

) . (6.12)

By substituting Eq. (6.12) into Eq. (6.10) and rearranging, it follows that

f: =
Ip + L) (p: )p:+1√

2
(
1 + p)

:
p:+1

) . (6.13)

Equation (6.12) is not unique; equivalent expressions can be developed, e.g., us-
ing slerp [133, 140]. However, the geometric interpretation given by Eq. (6.12) is
advantageous because it avoids the use of trigonometric functions, thereby simpli-
fying subsequent theoretical developments. Likewise, the geometric interpretation
simplifies the numerical implementation since p:+1/2 can be evaluated by simply
normalizing the sum p: + p:+1. f: can then be evaluated directly from Eq. (6.10).

The incremental quaternion f: appears in the discrete midpoint approximation of the
material angular velocity 
. If p ∈ H1 is the quaternion describing the orientation
of the rigid body (the material frame) with respect to the spatial frame, then 
 is
given by the well-known kinematic relationship [133]


 = 2G) (p) ¤p (6.14)

where ¤p is the time derivative of p. To approximate Eq. (6.14) at the midpoint, i.e.,
to evaluate 
:+1/2, p is replaced with p:+1/2 and ¤p is approximated with a finite
difference over the interval C:+1 = C: + ℎ to obtain


:+1/2 = 2G) (p:+1/2)
(p:+1 − p:

ℎ

)
. (6.15)

Since ¤p is an element of the vector space tangent toH1, i.e., the Lie algebra ofH1, not
the Lie groupH1, its finite difference can be defined in the standardway. Substituting
Eq. (6.12) and using Eq. (4.24) and the identity G) (p1)p2 + G) (p2)p1 = 03×1 for
p1, p2 ∈ H1 then yields the remarkably simple relationship


:+1/2 =
4
ℎ

T) f: . (6.16)
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Thus, the angular velocity
:+1/2 at themidpoint is only a function of the incremental
quaternion f: . Using Eq. (6.16), the midpoint approximation of the continuous-time
variational principle [Eq. (6.7)] takes the form

X( = X

#−1∑
:=0

8
ℎ

f): TJT) f: = 0. (6.17)

This is the discrete variational principle for a free rigid body.

6.2.2 Quaternion Variational Integrator
The quaternion variational integrator for a free rigid body is derived by evaluating
the discrete variational principle [Eq. (6.17)]. Taking the variation of the discrete
action sum, i.e., evaluating the variation of the summation in Eq. (6.17), yields

X( =

#−1∑
:=0

16
ℎ

[
Xp):

(
mf:
mp:

))
TJT) f: + Xp):+1

(
mf:
mp:+1

))
TJT) f:

]
=

#−1∑
:=1

16
ℎ
Xp):

[(
mf:−1
mp:

))
TJT) f:−1 +

(
mf:
mp:

))
TJT) f:

] (6.18)

where Xf: = (mf:/mp: ) Xp: + (mf:/mp:+1) Xp:+1. The second equality follows from
discrete integration by parts (summation by parts) with Xp0 = Xp# = 04×1 (since p0

and p# are assumed to be fixed).

Thus far, the evaluation of Eq. (6.17) neglects the group structure of H1. To account
for this, Xp: is referenced to the material tangent space using Eq. (4.34) to obtain

X( =

#−1∑
:=1

8
ℎ
X�)

:G
) (p: )

[(
mf:−1
mp:

))
TJT) f:−1 +

(
mf:
mp:

))
TJT) f:

]
. (6.19)

This is analogous to the “conversion factor” approach introduced in [139] that allows
standard results from vector calculus and linear algebra to be applied to H1. Per
the standard procedure [28, 29], the variation of the discrete action sum X( is then
required to be zero for any X�: . This yields the discrete Euler-Lagrange equations:

8
ℎ

G) (p: )
(
mf:−1
mp:

))
TJT) f:−1 +

8
ℎ

G) (p: )
(
mf:
mp:

))
TJT) f: = 03×1 (6.20)

which must hold for any : . The discrete Euler-Lagrange equations are commonly
referred to as a variational integrator. Given p:−1 and p: , Eq. (6.20) is a nonlinear
implicit equation for p:+1. Equation (6.20) is the discrete-time analogue of Euler’s
equations for the dynamics of a free rigid body.
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The two terms in Eq. (6.20) are equivalent expressions for the discrete angular
momentum h: at time step : [28, 29]; i.e.,

h: =
8
ℎ

G) (p: )
(
mf:−1
mp:

))
TJT) f:−1 = −

8
ℎ

G) (p: )
(
mf:
mp:

))
TJT) f: . (6.21)

It follows that Eq. (6.20) can be written in the equivalent position-momentum form

h: = −
8
ℎ

G) (p: )
(
mf:
mp:

))
TJT) f: , (6.22)

h:+1 =
8
ℎ

G) (p:+1)
(
mf:
mp:+1

))
TJT) f: . (6.23)

Hence, Eq. (6.20) can be interpreted as a discrete momentum balance between
adjacent time steps. Additionally, since h: = J
: , Eq. (6.21) can be used to
initialize the integrator (if p0 and 
0 are known) or to solve for 
: (if either p:−1

andp: orp: andp:+1 are known) [205]. Similar expressions appear in the variational
integrator for geometrically exact beams developed in Sec. 6.3.

The linearization of Eq. (6.20) [or equivalently, Eq. (6.22)] results in an equation
for the incremental material rotation Δ�:+1 that advances the solution from p: to
p:+1, not p:+1 itself. As a result, solving Eq. (6.20) requires a Lie group solver,
like the Lie group generalization of the Newton-Raphson method [139, 177], with
an appropriate quaternion update (like the Cayley map described in Sec. 4.3.2) to
determine p:+1 from p: and Δ�:+1. The solution algorithm for Eq. (6.20) using
a quaternion-based Lie group generalization of the Newton-Raphson method is
described in Algorithm 1. In Algorithm 1, the second argument in the function
norm(·, ·) specifies the type of norm, either 2 for the Euclidean norm or ∞ for the
infinity norm.

Initializing Algorithm 1 requires the quaternion p0 ∈ H1 corresponding to the initial
orientation �0 ∈ SO(3) and the material angular velocity 
0, both at C = 0. The
initial angular momentum then follows from h0 = J
0. The time step ℎ, the
maximum number of iterations per time step 8max, and the convergence tolerance g
must also be specified.

Implementing the Newton-Raphson method in Algorithm 1 requires an expression
for the Jacobian matrix. The analytical expression for the Jacobian matrix is in-
volved, and hence, omitted here for brevity. It can be obtained by differentiating
Eq. (6.20) (or equivalently, h: ) with respect to p:+1, and then right-multiplying by
G(p:+1)/2, in accordance with Eq. (4.34). This replaces the infinitesimal quantities
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Algorithm 1 [p:+1, h:+1] = rigidBodyStep(p: , h: )
Δ�:+1 ≔ 03×1
for 8 = 1 to 8max do

p:+1 ≔ L(p: ) cay(Δ�:+1/2) [see Eqs. (4.35) and (4.36)]
p:+1/2 ≔ (p: + p:+1) /norm (p: + p:+1, 2)
f: ≔ L) (p: )p:+1/2
h(8)
:
≔ −(8/ℎ)G) (p: ) (mf:/mp: )) TJT) f:

r ≔ h(8)
:
− h:

if norm (r,∞) ≤ g then
break

end if

Δ�:+1 ≔ Δ�:+1 −
[(
mh(8)

:
/mp:+1

)
G(p:+1)/2

]−1
r

end for
h:+1 ≔ (8/ℎ)G) (p:+1) (mf:/mp:+1)) TJT) f:

in Eq. (4.34) with the corresponding small (incremental) quantities so that each
Newton-Raphson iteration solves for the incremental material rotation Δ�:+1.

6.3 Quaternion Variational Integrator for Geometrically Exact Beams
The derivation of the quaternion variational integrator for geometrically exact beams
mirrors that of the quaternion variational integrator for the free rigid body from
Sec. 6.2, but with additional complications due to the finite element discretization.

Like the beam element developed in Chapter 5, the derivation starts from the con-
strained Lagrange-d’Alembert principle in continuous-time (see e.g., [135, Secs. 7.8
and 8.3]):

X

∫ )

0
(L(q, ¤q) − c(q, ,)) dC +

∫ )

0
XWext(C, q) dC = 0 (6.24)

where L(q, ¤q) = T (q, ¤q) − U(q) is the Lagrangian; T (q, ¤q) is the configuration-
dependent kinetic energy;U(q) is the strain energy; XWext(C, q) is the virtual work
done by the external and/or non-conservative forces and moments; q) =

(
x) , p)

)
contains the generalized coordinates; and ) is an arbitrary final time. The function
c(q, ,) conjugates the constraints to the independent Lagrange multipliers , and is
given by [142, 143, 160, 164]

c(q, ,) =
∫ ℓ

0
5) (q), dB (6.25)

where 5(q) is the vector of holonomic constraints. Equation (6.25) can enforce
distributed constraints along the beam’s reference axis, like the unit norm constraints
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associated with quaternion vector space [160, 164] or director-based [142, 143]
formulations. However, since the Lie group formulation developed here implicitly
satisfies the quaternion unit norm constraint, 5(q) is exclusively used to enforce
external constraints at the finite element nodes, e.g., the joint constraints in flexible
multibody systems. This entails the use of Dirac delta functions to interpolate the
Lagrange multipliers in the spatial discretization. From here, the derivation diverges
from that of the continuous-time beam element presented in Chapter 5.

Following Sec. 6.2.1, the integrals with respect to time in Eq. (6.24) are subdivided
into # − 1 time steps, each of length ℎ, which gives

X

#−1∑
:=0

∫ C:+1

C:

(L(q, ¤q) − c(q, ,)) dC +
#−1∑
:=0

∫ C:+1

C:

XWext(C, q) dC = 0 (6.26)

where # = )/ℎ+1; C0 = 0; C# = ) ; and C:+1 = C: +ℎ. Like Eq. (6.7), Eq. (6.26) is ex-
act. Next, expressions for the kinetic energy [Eq. (4.51)], strain energy [Eq. (4.41)],
virtual work done by the external forces [Eq. (4.57)], and constraints [Eq. (6.25)]
are substituted into Eq. (6.26) to obtain

X

#−1∑
:=0

∫ C:+1

C:

∫ ℓ

0

1
2

(
d� ¤x) ¤x +
)J
 − S)E − 25) (q),

)
dB dC

+
#−1∑
:=0

∫ C:+1

C:

∫ ℓ

0

(
Xx)n + Xp) (2H(p)m)

)
dB dC = 0. (6.27)

Energy and work per unit length are both integrable, and consequently, Fubini’s
theorem implies that the integrals in Eq. (6.27) can be evaluated in any order. This
suggests two options for deriving the variational integrator. Specifically, Eq. (6.27)
can either be discretized in time and then interpolated in space, or vice versa.
Discretization and interpolation are not commutative, but both options converge to
the continuous-time case as ℎ→ 0. In continuummechanics, the standard approach
is spatial discretization followed by temporal discretization. This results in a system
of ordinary differential equations that are often amenable to temporal discretizations
(at least in the finite element case) using standard integrators like the generalized-
U method [25]. Not surprisingly, this is also a common approach for deriving
variational integrators in continuum mechanics; see e.g., [29, 203, 204, 207]. Here,
however, the converse approach of discretizing in time, then interpolating in space
is adopted because it results in simpler equations of motion. While not especially
common, this approach is used elsewhere in mechanics, e.g., in [128, 144].
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Like Chapter 5, variations with respect to the quaternion p initially assume that its
four components are independent, in violation of the unit norm constraint. This
assumption is subsequently corrected to account for the group structure of H1 using
the structure-preserving spatial discretization in Sec. 6.3.2.

6.3.1 Discrete Variational Principle
After exchanging the order of integration in Eq. (6.27), the temporal discretization
of the variational principle [Eq. (6.27)] involves defining finite differences for the
velocities and applying quadrature rules to approximate the temporal integrals. The
following approximations are specifically introduced:

• ¤x and
 are approximated by ¤x ≈ (x:+1 − x: ) /ℎ and Eq. (6.16), respectively;

• the kinetic and strain energy integrals are approximated using the appro-
priate midpoint rules, i.e., x:+1/2 and p:+1/2 are approximated by x:+1/2 ≈
(x: + x:+1) /2 and Eq. (6.12), respectively;

• the constraint integral is approximated using the trapezoid rule [197], i.e.,∫ C:+1

C:

∫ ℓ

0
5) (q), dB dC ≈ ℎ

2

∫ ℓ

0

(
5):,: + 5

)
:+1,:+1

)
dB (6.28)

where 5: = 5(q: ); and

• the virtual work integral is replaced by left and right discrete forces [28, 29]
approximated using the trapezoid rule, i.e.,∫ C:+1

C:

∫ ℓ

0

(
Xx)n + Xp) (2H(p)m)

)
dB dC

≈ ℎ
4

∫ ℓ

0

[
Xx: + Xx:+1
Xp: + Xp:+1

]) [
n: + n:+1

2H:m: + 2H:+1m:+1

]
dB (6.29)

where H: = H(p: ).

These approximations result in the discrete variational principle

X ((iner − (int − (con) + X(ext = 0 (6.30)
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where (iner, (int, (con, and X(ext are the discrete action sums associated with the
kinetic energy, the strain energy, the constraints, and the external virtual work:

(iner =

#−1∑
:=0

∫ ℓ

0

1
2

(
d�

ℎ
(x:+1 − x: )) (x:+1 − x: ) +

16
ℎ

f): TJT) f:
)

dB, (6.31)

(int =

#−1∑
:=0

ℎ

2

∫ ℓ

0
S)
:+1/2E:+1/2 dB, (6.32)

(con =

#−1∑
:=0

ℎ

2

∫ ℓ

0

(
5):,: + 5

)
:+1,:+1

)
dB, (6.33)

X(ext =

#−1∑
:=0

ℎ

4

∫ ℓ

0

[
Xx: + Xx:+1
Xp: + Xp:+1

]) [
n: + n:+1

2H:m: + 2H:+1m:+1

]
dB. (6.34)

The trapezoidal approximations simplify the resulting discrete-time propagation
equations by eliminating midpoint evaluations of the forces and constraints. Ad-
ditionally, the trapezoidal approximation of the constraint term yields discrete La-
grange multipliers consistent with their continuous-time counterparts [197].

6.3.2 Quaternion Variational Integrator
Following [28, 29], the variational integrator is derived by taking the variations
of the discrete action sums [Eqs. (6.31) to (6.33)] with fixed boundary conditions
(Xx0 = Xx# = 03×1 and Xp0 = Xp# = 04×1) and then applying discrete integration
by parts (summation by parts) to the discrete variational principle [Eq. (6.30)]. The
structure-preserving spatial discretization follows using the methods from Sec. 5.3.
The spatial discretization assumes that the position and rotation (quaternion) fields
in the element are independent, as is standard for geometrically exact beam finite
elements. Like Sec. 5.3, it considers a single two-node beam element of length ℓ
with 7 DOFs per node, three translations and a quaternion, for a total of 14 DOFs
per element. Of these, only 12 are independent due to the quaternion unit norm
constraint. In what follows, the superscripts (1) and (2) denote the nodes at the left
and right ends of the element. The superscript ℎ likewise denotes an interpolated
quantity in the spatial discretization. The complete finite elementmodel is ultimately
assembled using a standard finite element step.

The steps outlined above are carried out individually for Eqs. (6.31) to (6.34)
next, and the results are subsequently aggregated into the discrete Euler-Lagrange
equations for the geometrically exact beam.
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Discrete Inertia Forces

The discrete inertia forces are derived by evaluating the variation of (iner [Eq. (6.31)],
using discrete integration by parts, and discretizing in space. Evaluating the variation
of (iner gives

X(iner =

#−1∑
:=0

∫ ℓ

0

[
d�

ℎ

(
Xx):+1 (x:+1 − x: ) − Xx): (x:+1 − x: )

)
+ 16
ℎ

(
Xp):

(
mf:
mp:

))
TJT) f: + Xp):+1

(
mf:
mp:+1

))
TJT) f:

) ]
dB. (6.35)

Discrete integration by parts with Xx0 = Xx# = 03×1 and Xp0 = Xp# = 04×1 then
yields

X(iner =

#−1∑
:=1

∫ ℓ

0

[
− d�

ℎ
Xx): (x:+1 − 2x: + x:−1)

+ 16
ℎ
Xp):

((
mf:−1
mp:

))
TJT) f:−1 +

(
mf:
mp:

))
TJT) f:

) ]
dB (6.36)

which simply manipulates the indices in the summation. Due to the assumption that
plane cross-sections of a geometrically exact beam remain plane and undeformed,
the quaternion terms in Eqs. (6.35) and (6.36) are analogous to those for the free
rigid body; see Eq. (6.18).

The structure-preserving spatial discretization approximates the configurations at
times C:−1, C: , and C:+1 using linear interpolation [Eq. (5.13)] and slerp [Eq. (5.20)]
for the position and orientation of the reference axis. The discretization likewise
replaces Xx: and Xp: with their spatial approximations, Eqs. (5.17) and (5.30). Using
Eqs. (5.17) and (5.30), Xx: and Xp: are written in terms of the shape interpolation
matrix Q: ∈ R7×12 [Eq. (5.41)] defined such that[

Xxℎ
:

Xpℎ
:

]
= Q:Xg: (6.37)

where Xg)
:
=

(
Xx(1))

:
, X�(1))

:
, Xx(2))

:
, X�(2))

:

)
is the variation of the element’s nodal

coordinates. The spatial discretization results in the following expression for the
variation of the discrete action sum:

X(iner =

#−1∑
:=1

Xg):
∫ ℓ

0
Q)
:


−d�
ℎ

(
xℎ:+1 − 2xℎ: + xℎ:−1

)
16
ℎ

((
mf:−1
mp:

)ℎ)
TJT) fℎ:−1 +

(
mf:
mp:

)ℎ)
TJT) fℎ:

) 
dB

(6.38)
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which can equivalently be written as

X(iner = −
#−1∑
:=1

Xg):
(
h (+): − h (−):

)
(6.39)

where h (−): and h (+): are left and right discrete “momenta-like” quantities given by

h (−): =
1
ℎ

∫ ℓ

0
Q)
:


d�

(
xℎ: − xℎ:−1

)
16

(
mf:−1
mp:

)ℎ)
TJT) fℎ:−1

 dB, (6.40)

h (+): =
1
ℎ

∫ ℓ

0
Q)
:


d�

(
xℎ:+1 − xℎ:

)
−16

(
mf:
mp:

)ℎ)
TJT) fℎ:

 dB. (6.41)

In the absence of strain energy, constraints, and external forcing, h (−): and h (+):

are equivalent expressions for the discrete generalized momenta h: at time step
C: . For practical purposes, h (−): and h (+): can be considered discrete inertia forces
associated with the time intervals from C:−1 to C: and from C: to C:+1. Since the
translational terms in h (−): and h (+): are linear functions of the nodal translations,
they can be integrated exactly.

Discrete Elastic Forces

Unlike the discrete inertia forces, the discrete elastic forces are derived by evaluating
the variation of (int [Eq. (6.32)] and then discretizing in space before discretely
integrating by parts. Taking the variation of (int gives

X(int =

#−1∑
:=0

ℎ

∫ ℓ

0
XE)

:+1/2S:+1/2 dB (6.42)

where XE:+1/2 is the variation of thematerial strainmeasures [Eq. (4.50), reproduced
below]

XE =

[
�) (p) 03×4 −2G) (p)L) (Tx′)
03×3 2G) (p) −2G) (p′)

] 
Xx′

Xp′

Xp

 (6.43)

evaluated at time C:+1/2. The spatial discretization then relates Xx′, Xp′, and Xp to
the variations of the nodal coordinates as follows:

Xxℎ′

Xpℎ′

Xpℎ

 = PXḡ (6.44)
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where P ∈ R11×12 is the shape interpolation matrix

P =



"′1I3×3 03×4 "′2I3×3 03×4

04×3
mpℎ′

mp1
04×3

mpℎ′

mp2

04×3
mpℎ

mp1
04×3

mpℎ

mp2


(6.45)

and Xḡ) =
(
Xx(1)) , Xp(1)) , Xx(2)) , Xp(2))

)
is the variation of the independent nodal

coordinates (i.e., the definition of Xḡ assumes that the quaternion components are
independent). In turn, a discrete strain gradient matrix B ∈ R6×14 can be defined as

XEℎ = BXḡ, (6.46)

from which it follows that

B =

[
�) (pℎ) 03×4 −2G) (pℎ)L) (Txℎ′)

03×3 2G) (pℎ) −2G) (pℎ′)

]
P. (6.47)

Thus, the spatial discretization of X(int can be written as

X(int =

#−1∑
:=0

ℎ

(
Xḡ)

:+1/2Fint(g:+1/2)
)

(6.48)

where g) =
(
x(1)) , p(1)) , x(2)) , p(2))

)
is the vector of nodal coordinates and

Fint(g) =
∫ ℓ

0
B)Sℎ dB. (6.49)

Importantly, Fint(g) ∈ R14 because it has not been corrected for the Lie group
structure of H1. Hence, the moments in Fint(g) correspond to 4D quaternion
moments, as opposed to 3D physical ones; for additional details, see Sec. (4.7).

Evaluating the discrete variational principle requires rewriting Xḡ:+1/2 in Eq. (6.48)
as a function of Xg: and Xg:+1. Since the midpoint quaternion p:+1/2 is a function
of both p: and p:+1,

Xp:+1/2 =
mp:+1/2
mp:

Xp: +
mp:+1/2
mp:+1

Xp:+1 (6.50)

=
1
2
mp:+1/2
mp:

G(p: )X�: +
1
2
mp:+1/2
mp:+1

G(p:+1)X�:+1 (6.51)

where the second equality results from projecting Xp: and Xp:+1 into their associated
material tangent spaces using Eq. (4.34). This corrects for the Lie group structure
of H1 [139] so that Xp):+1/2p:+1/2 = 0. In turn, Xḡ:+1/2 can be written as

Xḡ:+1/2 =A:Xg: +B:Xg:+1 (6.52)



107

whereA: , B: ∈ R14×12 are defined as

A: =
1
2

diag
I3×3,

mp(1)
:+1/2

mp(1)
:

G
(
p(1)
:

)
, I3×3,

mp(2)
:+1/2

mp(2)
:

G
(
p(2)
:

) , (6.53)

B: =
1
2

diag
I3×3,

mp(1)
:+1/2

mp(1)
:+1

G
(
p(1)
:+1

)
, I3×3,

mp(2)
:+1/2

mp(2)
:+1

G
(
p(2)
:+1

) . (6.54)

By substituting Xḡ:+1/2 into Eq. (6.48), it readily follows that

X(int =

#−1∑
:=0

ℎ

(
Xg):A

)
: + Xg

)
:+1B

)
:

)
Fint(g:+1/2). (6.55)

The subsequent application of discrete integration by parts with Xg0 = Xg# = 012×1

(which is a consequence of Xx0 = Xx# = 03×1 and Xp0 = Xp# = 04×1) then results
in the following expression for the variation of the discrete action sum:

X(int =

#−1∑
:=1

Xg):
(
ℎA)

:Fint(g:+1/2) + ℎB)
:−1Fint(g:−1/2)

)
(6.56)

where ℎB)
:−1Fint(g:−1/2) and ℎA)

:
Fint(g:+1/2) are the left and right discrete elastic

forces associated with the time intervals from C:−1 to C: and from C: to C:+1.

Discrete Constraint Forces

Evaluating the variation of the discrete action sum (con [Eq. (6.33)] is straightforward
and yields

X(con =

#−1∑
:=0

ℎ

2

∫ ℓ

0

(
Xq):

(
m5:
mq:

))
,: + X,):5:

+ Xq):+1
(
m5:+1
mq:+1

))
,:+1 + X,):+15:+1

)
dB. (6.57)

Discrete integration by parts with Xq: and X,: equal to zero at the endpoints C0 and
C# then gives

X(con =

#−1∑
:=1

ℎ

∫ ℓ

0

(
Xq):

(
m5:
mq:

))
,: + X,):5:

)
dB. (6.58)

In the absence of internal constraints along the element’s reference axis, the Lagrange
multipliers exclusively enforce constraints between finite element nodes. To reflect
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this, ,: and X,: are discretized using Dirac delta functions. Specifically, ,: and X,:
are approximated using Eqs. (5.44) and (5.45); for additional details, see Sec. 5.3.5
and [142]. After discretizing ,: and X,: , the integral is evaluated using the sifting
property of the Dirac delta function [155, p. 241–243], the result of which is

X(con =

#−1∑
:=1

ℎ

(
Xq(1))

:

(
m5(1)

:

mq(1)
:

))
,(1)
:
+ Xq(2))

:

(
m5(2)

:

mq(2)
:

))
,(2)
:

+ X,(1))
:

5(1)
:
+ X,(2))

:
5(2)
:

)
(6.59)

where q(8)) =
(
x(8)) , p(8))

)
and 5(8) ∈ R=

(8)
2 contains the =(8)2 constraints at node 8,

both for 8 = 1, 2. By correcting for the Lie group structure of H1 using Eq. (4.34)
[139], defining the vector of Lagrange multipliers ,) =

(
,(1)) , ,(2))

)
, and defining

the constraint function �) =

(
5(1)) , 5(2))

)
, X(con can then be written as

X(con =

#−1∑
:=1

ℎ

(
Xg):

(
m�:

mg:

))
,: + X,):�:

)
(6.60)

where the product ℎ (m�:/mg: )) ,: is the discrete generalized force due to the
constraints and m�/mg is the constraint gradient matrix [Eq. (5.48)]. While a slight
abuse of notation, subsequent uses of , are to be understood as referring to the
definition ,) =

(
,(1)) , ,(2))

)
.

Discrete External Forces

The discrete generalized forces are derived by discretely integrating X(ext by parts
[Eq. (6.34)] with Xx: and Xp: set to zero at the endpoints C0 and C# , the result of
which is

X(ext =

#−1∑
:=1

ℎ

4

∫ ℓ

0

[
Xx:
Xp:

]) [
n:−1 + 2n: + n:+1

2H:−1m:−1 + 4H:m: + 2H:+1m:+1

]
dB. (6.61)

Substituting the shape interpolation matrix Q: defined by Eq. (6.37) into this ex-
pression and defining Hℎ

:
= H(pℎ

:
) then yields

X(ext =

#−1∑
:=1

Xg): (F:−1 + 2F: + F:+1) (6.62)
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where F:−1, F: , and F:+1 are the discrete generalized forces

F:−1 =
ℎ

4

∫ ℓ

0
Q)
:

[
n:−1

2Hℎ
:−1m:−1

]
dB, (6.63)

F: =
ℎ

4

∫ ℓ

0
Q)
:

[
n:

2Hℎ
:
m:

]
dB, (6.64)

F:+1 =
ℎ

4

∫ ℓ

0
Q)
:

[
n:+1

2Hℎ
:+1m:+1

]
dB. (6.65)

Discrete Euler-Lagrange Equations

The discrete Euler-Lagrange equations for the geometrically exact beam are derived
by substituting the variations of the spatially discretized discrete action sums asso-
ciated with the kinetic energy [Eq. (6.39)], strain energy [Eq. (6.56)], constraints
[Eq. (6.60)], and external virtual work [Eq. (6.62)] into the discrete variational
principle [Eq. (6.30)] to obtain:

#−1∑
:=1

{
Xg):

[ (
h (+): − h (−):

)
+ ℎ

(
A
)
:Fint(g:+1/2) +B)

:−1Fint(g:−1/2)
)

+ ℎ
(
m�:

mg:

))
,: − (F:−1 + 2F: + F:+1)

]
+ ℎX,):�:

}
= 0. (6.66)

Equation (6.66) must hold for all admissible variations Xg: and X,: . This results in
the following discrete Euler-Lagrange equations:

h (+): − h (−): +ℎ
(
A
)
:Fint(g:+1/2) +B)

:−1Fint(g:−1/2) +
(
m�:

mg:

))
,:

)
= F:−1 + 2F: + F:+1,

(6.67)

�:+1 = 0=2×1 (6.68)

where �:+1 = �(g:+1) and =2 = =(1)2 + =(2)2 is the total number of holonomic con-
straints. Equations (6.67) and (6.68) define the variational integrator. Given the
configurations g:−1 and g: , Eqs. (6.67) and (6.68) are a set of nonlinear implicit
equations for g:+1 and ,: . Since the time-stepping scheme requires that g:−1 and
g: satisfy the constraints, the variational integrator evaluates the constraints corre-
sponding to the unknown configuration g:+1. These discrete Euler-Lagrange equa-
tions are analogous to the continuous-time finite element equations from Sec. 5.3.7.
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The discrete Euler-Lagrange equations propagate the dynamics of a single element.
For systems discretized with =4 ≥ 1 elements, a standard finite element assembly
step results in similar discrete-time propagation equations for the complete model.

Equation (6.67) can be interpreted as a balance of discrete generalized momenta
between adjacent time steps [28, 29], i.e.,

h: = h (−): − ℎB)
:−1Fint(g:−1/2) −

ℎ

2

(
m�:

mg:

))
,: + F:−1 + F:

= h (+): + ℎA)
:Fint(g:+1/2) +

ℎ

2

(
m�:

mg:

))
,: − F:+1 − F:

(6.69)

where h: is the discrete generalized momenta at time step C: . This results in the
following equivalent position-momentum form:

h: = h (+): + ℎA)
:Fint(g:+1/2) +

ℎ

2

(
m�:

mg:

))
,: − F:+1 − F: , (6.70)

h:+1 = h (−):+1 − ℎB)
:Fint(g:+1/2) −

ℎ

2

(
m�:+1
mg:+1

))
,:+1 + F: + F:+1. (6.71)

These are the discrete Legendre transforms for the system. In the absence of
constraints, Eqs. (6.70) and (6.71) provide a recipe for updating the configuration of
the system. Given g: and h: , Eq. (6.70) is solved for g:+1, which is then substituted
into Eq. (6.71) to calculate h:+1. This process can be repeated indefinitely.

For constrained systems, however, the generalized momenta h:+1 cannot be cal-
culated directly due to the term (m�:+1/mg:+1)) ,:+1 in the discrete Legendre
transform. Even though Eqs. (6.68) and (6.70) can be solved simultaneously for
g:+1 and ,: , ,:+1 remains unknown until the next time step. To remedy this, a mod-
ified position-momentum form is proposed for the numerical solution procedure. In
particular, the balance of discrete generalized momenta [Eq. (6.69)] is rewritten as

h∗: = h (−): − ℎB)
:−1Fint(g:−1/2) + F:−1 + F:

= h (+): + ℎA)
:Fint(g:+1/2) + ℎ

(
m�:

mg:

))
,: − F:+1 − F:

(6.72)

where the generalized momenta h: and h:+1 are replaced by the “pseudo-momenta”
h∗
:
andh∗

:+1. This pseudo-momenta balance implies the followingmodified position-
momentum form for updating the configuration of the system:

h∗: = h (+): + ℎA)
:Fint(g:+1/2) + ℎ

(
m�:

mg:

))
,: − F:+1 − F: , (6.73)

h∗:+1 = h (−):+1 − ℎB)
:Fint(g:+1/2) + F: + F:+1. (6.74)
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Equations (6.68) and (6.73) can now be used to calculate g:+1 and ,: , which can
then be substituted into Eq. (6.74) to calculate h∗

:+1 before proceeding to the next
time step. A post-processing step is required to convert the pseudo-momenta to the
corresponding discrete generalized momenta.

When paired with a Lie group solver (e.g., the Lie group generalization of the
Newton-Raphsonmethod [139, 177]) and an appropriate quaternion update (e.g., the
Cayleymap described in Sec. 4.3.2), Eqs. (6.68), (6.73), and (6.74) result in a discrete
time-stepping algorithm for propagating the dynamics of a geometrically exact
beam. Pseudo-code for this algorithm is included in Algorithm 2. Implementing
the algorithm requires the specification of the time step ℎ, the maximum number of
Newton iterations per time step 8max, and the convergence tolerance g.

Algorithm 2 [g:+1, h∗:+1, h: , ,: ] = beamStep(g: , h∗: )
g:+1 ≔ g:
Δ�:+1 ≔ 03×1
,: ≔ 0=2×1
for 8 = 1 to 8max do

g:+1 ≔ groupUpdate(g:+1,Δ�:+1)
g:+1/2 ≔ groupMidpoint(g: , g:+1)

h(8)
:
≔ h (+): + ℎA)

:
Fint(g:+1/2) + ℎ

(
m�:

mg:

))
,: − F:+1 − F:

rg ≔ h(8)
:
− h∗

:

r, ≔ �(g:+1)
if norm

(
rg,∞

)
≤ g and norm (r,,∞) ≤ g then

break
end if

K ≔

[
ℎm

(
h(+): + ℎA)

:
Fint(g:+1/2)

)
/mg:+1 ℎ2 (m�:/mg: ))

m�:+1/mg:+1 0=2×=2

]
[
Δ�:+1
Δ,:

]
≔ −K−1

[
ℎrg
r,

]
,: ≔ ,: + Δ,:

end for
h∗
:+1 ≔ h (−):+1 − ℎB)

:Fint(g:+1/2) + F: + F:+1

h: ≔ h∗
:
− ℎ

2

(
m�:

mg:

))
,:
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In Algorithm 2, note the following:

• the function groupUpdate additively and multiplicatively updates the transla-
tional and quaternion DOFs, respectively (see Algorithm 3, which describes
the generalized coordinate updating procedure for a single element);

• the function groupMidpoint calculates the temporal midpoint for the trans-
lational and quaternion DOFs using x:+1/2 = (x: + x:+1) 2/ and Eq. (6.12),
respectively;

• the calculation of the tangent matrix ℎm
(
h(+): + ℎA)

:
Fint(g:+1/2)

)
/mg:+1 in-

volves post-multiplications by Eq. (4.34) to correct for the Lie group structure
of the quaternion DOFs; and

• the algorithm is initialized with the configuration g0 and generalized momenta
h0. h0 is calculated from the nodal velocities at time C0 using the configuration-
dependent mass matrix M(g) [Eq. (5.57)].

The derivation of the tangent matrix ℎm

(
h(+): + ℎA)

:
Fint(g:+1/2)

)
/mg:+1 is in-

volved, and hence, omitted for brevity.

Algorithm 3 [g] = groupUpdate(g,Δ�)
g(1 : 3) ≔ g(1 : 3) + Δ�(1 : 3)
g(8 : 11) ≔ g(8 : 11) + Δ�(7 : 9)
g(4 : 7) ≔ L(g(4 : 7)) cay(Δ�(4 : 6)/2)
g(4 : 7) ≔ g(4 : 7)/norm(g(4 : 7), 2)
g(11 : 14) ≔ L(g(11 : 14)) cay(Δ�(4 : 6)/2)
g(11 : 14) ≔ g(11 : 14)/norm(g(11 : 14), 2)

6.4 Numerical Examples
Results for several standard benchmark problems demonstrate the application of the
variational integrator from Sec. 6.3 to problems with (i) large overall motions and
large elastic deformations (Sec. 6.4.1); (ii) large amplitude, geometrically nonlinear
vibrations (Sec. 6.4.2); and (iii) viscoelastic damping (Sec. 6.4.3). Each example
compares the variational integrator with a more traditional structural dynamics inte-
grator, the Lie group generalized-Umethod [36–38], pairedwith the continuous-time
geometrically exact beam finite elements from Chapter 5. These finite elements are
the continuous-time limit of the variational integrator, and hence, provide relevant
reference solutions. The first two examples specifically highlight the variational
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integrator’s excellent long-duration energy behavior. The defining features of all
three examples are present in the slew maneuver simulations in Chapter 8.

Each example is solved using MATLAB® implementations of the variational inte-
grator and the Lie group generalized-U method. For computational efficiency, these
implementations use a vectorized finite element assembly step inspired by [174–
176] to assemble the complete finite element model, as opposed tomore standard ap-
proaches based on for loops; for additional details, see Sec. 5.4. Additionally, both
procedures use approximate geometric tangent stiffness matrices and neglect terms
with small contributions to their total tangent matrices, resulting in quasi-Newton
methods with typically less-than-quadratic convergence. Finally, both procedures
use an absolute convergence criterion [Eq. (5.58)] with tolerance g = 10−8.

For improved numerical conditioning, the generalized-U method uses the scaling
approach from [179]. In each example, its spectral radius at infinity is set to 0.7.
This results in a low-to-moderate amount of high-frequency numerical dissipation.

The boundary conditions and joints for examples (ii) and (iii) are implemented as
constraints via the method of Lagrange multipliers. Due to the implicit satisfaction
of the quaternion unit norm constraint, constraints on rotational DOFs are only
applied to the vector part of the quaternion to guarantee that the tangent matrix in
the Newton-Raphson scheme is full-rank. The discrete null spacemethod [208–210]
is then used to eliminate the constraint forces in the variational integrator and reduce
the size of the system. The null space matrices are evaluated numerically at each
time step from the constraint gradient matrix. In addition to the size reduction, the
discrete null space method is known to alleviate numerical conditioning problems
in the time-integration of constrained mechanical systems [208].

The variational integrator’s kinetic energy at time step C: is calculated from the
corresponding discrete generalized momenta h: using T: = h)

:
M−1(g: )h:/2 where

M(g) is the configuration-dependent mass matrix [Eq. (5.57)].

All three examples use full integration for the translational inertia forces, 5-point
Gaussian quadrature for the rotational inertia forces, and 1-point reduced integration
for the elastic forces. The latter alleviates shear locking during constant curvature
deformations, as discussed in Sec. 5.4.1.

6.4.1 Example 1: Free-Free Flexible Beam
This example studies the free-free flexible beam originally introduced in [211]
to demonstrate the variational integrator’s excellent long-duration energy behavior
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despite large overall motions and large elastic deformations. The free-free flexible
beam has since become a standard problem for comparing numerical methods for
geometrically exact beams; see e.g., [163, 165, 195, 212], among others.

(a) (b)

Figure 6.2: (a) Free-free flexible beam subject to external force %1(C) and moments
"2(C), "3(C) and (b) corresponding load history "3(C). The local (material)
frame in the initial (undeformed) configuration is defined such that E2 = e3, E3 =
4e2/5 − 3e1/5, and E1 = E2 × E3.

Table 6.1: Geometric and material properties in the local (material) frame for
free-free flexible beam

Parameter Value
d� 1 kg m−1

d�1, d�2, d� 10 kg m2

��1, ��2, �� 104 N
��1, ��2, �� 500 N m2

ℓ 10 m

The free-free flexible beam of length ℓ is initially at rest and inclined relative to the
spatial {e1, e2, e3} reference frame, as depicted in Fig. 6.2a. The beam is loaded
by a force %1e1 and spatially fixed moments "2 and "3 about the e2 and e3 axes,
respectively. The load history for"3 is depicted in Fig. 6.2bwhere"max = 200 N m,
C1 = C2/2, and C2 = 5 s. The external force %1 and moment "2 are then given by

%1(C) = "3(C)/10 m, (6.75)

"2(C) = "3(C)/2. (6.76)

The spatially fixed moments must be mapped from the spatial frame to the local
(material) frame, resulting in configuration-dependent external generalized forces.
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The force causes the beam to translate in the e1 direction. Similarly, the moments
induce large rotations about the e2 and e3 axes, resulting in complex 3D motion.
Since there are no external forces in the e2 or e3 directions and no external moment
about the e1 axis, the corresponding linear and angular momenta integrated over
the length of the beam are zero for all time. Likewise, after the external force
and moments revert to zero at C2 = 5 s, the total mechanical (kinetic plus strain)
energy, total linear momenta, and total angular momenta are conserved. The beam
is discretized using 10 geometrically exact beam finite elements with the geometric
and material properties from Table 6.1.

To compare the long-duration energy behavior of the two integrators, the motion is
simulated for 60 min using a time step size of 0.01 s. At each time step, the total
mechanical energy, total linear momenta, and total angular momenta are evaluated.

Figure 6.3: Total mechanical (kinetic plus strain) energy for free-free flexible beam.
The inset highlights the decay in the total mechanical energy due to the numerical
dissipation in the generalized-U method.

Figure 6.3 compares the total mechanical energies for the variational integrator
(labeled “VI”) and the generalized-U method (labeled “GU”). The initial ramps in
the energy coincide with the presence of the external forces in the first 5 s of the
simulations, after which the beam is unforced (and undamped). Hence, the total
mechanical energy should be constant for C > 5 s, as is the case for the variational
integrator. In contrast, the total mechanical energy from the generalized-U method
decreases linearly with time due to its numerical dissipation. This behavior is non-
physical. Even though the magnitude of this energy decrease is small, small energy
errors are subsequently shown to result in significant configuration errors relative to
the variational integrator.
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(a) (b)

Figure 6.4: Total angular momentum in the spatial frame for directions (a) e2 and
(b) e3. The angular momentum in direction e1 is negligible. The insets highlight the
decay in the magnitude of the angular momentum due to the numerical dissipation
in the generalized-U method.

Figure 6.5: Total linear momentum in the e1 direction for free-free flexible beam.
The other linear momentum components are zero.

The total angular momentum behaves similarly. Figures 6.4a and 6.4b compare the
non-zero components of the angular momentum about the e2 and e3 axes computed
relative to the origin of the spatial frame. Like the total mechanical energy, the
numerical dissipation in the generalized-U method results in non-physical behavior
whereby the magnitude of the angular momentum decreases linearly with time, i.e.,
the components of the angular momentum approach zero. Small angular momentum
errors are likewise shown to correspond to significant configuration errors relative
to the variational integrator. Interestingly, however, both integrators actually show
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nearly perfect conservation of linear momentum in the e1 direction; see Fig. 6.5.
The reason for this is not entirely clear.

(a)

(b)

Figure 6.6: Deformed configurations plotted in 1 s intervals during (a) initial 15 s
and (b) final 15 s of a 60 min simulation of the dynamics of the free-free flexible
beam. Initially, the deformed configurations from the generalized-U method and
variational integrator are indistinguishable, but the deformed configurations diverge
as the simulations progress.

To emphasize that even small energy and momentum errors can lead to significant
configuration errors, Figs. 6.6a and 6.6b compare snapshots of the deformed con-
figurations from the variational integrator and generalized-U method at 1 s intervals
during the first 15 s (Fig. 6.6a) and the last 15 s of the 60 min-long simulations. The
dashed lines trace the motions of the ends of the beams. Figure 6.6a is in excel-
lent agreement with results published elsewhere, e.g., [211]. During the first 15 s,
Fig. 6.6a shows that the responses are nearly indistinguishable, but as time increases,
so do the configuration errors. By the end of the simulations, Fig. 6.6b depicts sig-
nificant discrepancies between the deformed configurations. These configuration
errors coincide with the non-physical decreases in both the total mechanical energy
and angular momentum. Altogether, these results demonstrate the importance of
structure preservation for accurately predicting the response of finite elementmodels
during long-duration simulations.

6.4.2 Example 2: Right-Angle Cantilever
The right-angle cantilever is a standard dynamic test problem for geometrically exact
beam finite elements that has been extensively studied in the literature, e.g., in [144,
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149, 158, 163, 165, 211], among others. Here, it provides an additional example
that demonstrates the long-duration energy stability of the variational integrator.

(a) (b)

Figure 6.7: (a) Right-angle cantilever beam subject to an out-of-plane force %(C)
and (b) corresponding load history %(C). The local (material) frame in the initial
(undeformed) configuration is defined such that E3 is tangent to the beam’s axis,
E2 = e2, and E1 = E2 × E3.

Table 6.2: Geometric and material properties in the local (material) frame for
right-angle cantilever beam

Parameter Value
d� 1 kg m−1

d�1, d�2 10 kg m2

d� 20 kg m2

��1, ��2, �� 106 N
��1, ��2, �� 103 N m2

ℓ 10 m

The right-angle cantilever beam consists of two initially straight beam segments,
both of length ℓ, connected at a right angle (the “elbow”) and clamped at the root,
as depicted in Fig. 6.7a. At C = 0, a triangular pulse %(C) in the e2 direction with
peak magnitude %max = 50 N is applied at the elbow. The load history is plotted in
Fig. 6.7b where C1 = C2/2 and C2 = 2 s. For C ≥ 2 s, the cantilever undergoes free
vibrations, and hence, its total mechanical (kinetic plus strain) energy is conserved.
Each beam segment is discretized using 10 geometrically exact beam finite elements
with the geometric and material properties from Table 6.2.

The response is simulated with each integrator for C 5 = 60 min using a time step
size of 0.02 s. Due to its exaggerated cross-sectional inertia properties, the response
consists of large amplitude deformations with coupled bending and torsion. At each
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time step, the total mechanical energy is calculated, along with the displacements
in the e2 direction at both the elbow and tip.

Figure 6.8: Right-angle cantilever beam: total mechanical (kinetic plus strain)
energy.

To evaluate the variational integrator’s long-duration energy stability, Fig. 6.8 com-
pares its total mechanical energy (labeled “VI”) with the total mechanical energy
from the generalized-U method (labeled “GU”). After removing the external force,
i.e., for C ≥ C2, the variational integrator demonstrates near-perfect conservation of
energy. In contrast, the numerical dissipation in the generalized-U method leads
to a stark non-physical decrease in the total mechanical energy. Specifically, the
relative change in the total mechanical energy from time C2 to time C 5 is 0.48%
for the variational integrator and −24.61% for the generalized-U method. Like the
previous example, these non-physical energy errors are subsequently shown to result
in significant configuration errors relative to the variational integrator.

As proxies for the global configuration errors, Figs. 6.9 and 6.10 compare the elbow
and tip displacements in the e2 direction during the first and last 30 s of the 60 min-
long simulations. Both Figs. 6.9a and 6.10a are in excellent agreement with results
published elsewhere, e.g., [149, 163, 165, 211]. Like the previous example, both the
variational integrator and the generalized-U method predict the same displacements
during the first 30 s of motion. However, as the energy errors accumulate, so do the
configuration errors. This leads to markedly different responses during the final 30 s
of the motion, as depicted in Figs. 6.9b and 6.10b. These results again highlight the
importance of structure preservation for achieving accuracy in long-duration finite
element simulations.
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(a) (b)

Figure 6.9: Right-angle cantilever beam: elbow displacements along direction e2 in
time intervals (a) C ∈ [0, 30] s and (b) C ∈ [3570, 3600] s.

(a) (b)

Figure 6.10: Right-angle cantilever beam: tip displacements along direction e2 in
time intervals (a) C ∈ [0, 30] s and (b) C ∈ [3570, 3600] s.

6.4.3 Example 3: Swinging Flexible Pendulum
This final example studies the swinging flexible pendulum from [148] to demonstrate
the use of a viscoelastic, Kelvin-Voigt-type damping formulation in the variational
integrator. Viscoelastic damping can be used for either numerical or physical
damping [148, 213]; in this example, it is used for both. More than critically damping
the axial and shear DOFs is analogous to numerical damping of the associated high-
frequency oscillations. Lightly damping the remaining DOFs then slowly dissipates
the transverse (bending) oscillations excited during the pendulum’s motion. In both
cases, adding damping helps stabilize the simulation and improve its convergence.
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Figure 6.11: Initial (undeformed) configuration of swinging flexible pendulum.
The local (material) frame in the initial configuration coincides with the global
{e1, e2, e3} frame. The gravitational field applied at C = 0 acts in the −e1 direction.

The pendulum is initially straight in its undeformed configuration with its reference
axis aligned with the e3 axis and a revolute joint at its left end; see Fig. 6.11.
The pendulum is modeled as a prismatic, homogeneous, and isotropic linear-elastic
beam with a circular cross-section of radius A = 5 mm and length ℓ = 1 m. It is
discretized using 10 geometrically exact beam finite elements. At C = 0, a uniform
gravitational force with acceleration 9.81 m/s2 in the −e1 direction is applied to the
pendulum.

Following [148], the Kelvin-Voigt damping model introduces viscoelastic dissi-
pation that is linearly proportional to the generalized strain rates. It specifically
incorporates viscoelastic dissipation by modifying the internal force resultant N and
moment resultant M for a geometrically exact beam as follows:

S = CE + D ¤E (6.77)

where S) =
(
N) ,M)

)
; E) =

(
�) ,K)

)
; ¤� and ¤K are the strain and curvature rates

corresponding to the time derivatives of Eqs. (4.46) and (4.48); C is the sectional
stiffness matrix; and D = diag {�11, �22, �33, �44, �55, �66} is the matrix of
viscoelastic damping coefficients. Here, �11, �22, �33 are the damping coefficients
for the two shear and the axial DOFs. Likewise, �44, �55, �66 are the damping
coefficients for the two bending and the torsional DOFs. Unlike more classical
damping models, e.g., Rayleigh damping, the Kelvin-Voigt model is introduced at
an element level. When coupled with a structure-preserving spatial discretization, it
results in a damping formulation that is invariant to superposed rigid body motions.
This means that rigid body translations and rotations do not result in the dissipation
of energy, i.e., only the elastic motion is damped. The same cannot generally be
said about more classical damping formulations.

The viscoelastic damping model is incorporated into the geometrically exact beam
finite elements fromChapter 5 and the variational integrator by replacing the internal
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force and moment resultants in each element with Eq. (6.77). The subsequent
linearization involves modifications to the tangent stiffness matrix and introduces
a tangent damping matrix. The variational integrator approximates the quaternion
rates in ¤� and ¤K via finite differences before the spatial discretization.

Table 6.3: Geometric and material properties in the local (material) frame from
[148] for swinging flexible pendulum

Parameter Value
A 5.0 × 10−3 m
� 5.0 × 106 N/m2

a 0.5
� �/(2(1 + a))
d 1.1 × 103 kg/m3

^1, ^2 1
ℓ 1.0 m
�11, �22 2.0 × 10−1 kg m
�33 4.0 × 102 kg m
�44, �55 4.0 × 10−4 kg m3

�66 1.6 × 10−5 kg m3

The pendulum ismade out of rubber with the geometric andmaterial properties from
Table 6.3. The shear stiffnesses ^��1 and ^��2 where � = cA2 are scaled using
MacNeal’s residual bending flexibility correction [184] to avoid shear locking during
linear curvature deformations; see Sec. 5.4.1. The damping coefficients �11 and
�22 for shearing and �33 for extension are chosen to overdamp the corresponding
oscillations [148]. Thus, the transient oscillations in the response are primarily due
to bending. Note that the damping coefficients in Table 6.3 differ from those in
[148] by a factor of 2 due to the different conventions used to define the internal
force and moment resultants.

The pendulum’s dynamics are simulated using both integrators for 20 s with 1 ms
time steps. Snapshots of the deformations at 0.1 s intervals are compared in
Figs. 6.12a and 6.12b. These snapshots show excellent agreement with both each
other and the results from [148]. The total mechanical (kinetic plus strain plus grav-
itational potential) energy and the work done by the viscoelastic dissipation for each
simulation are then compared in Figs. 6.13a and 6.13b. Unsurprisingly, the total
mechanical energies steadily decrease due to the viscoelastic dissipation. Moreover,
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(a) (b)

Figure 6.12: Snapshots of the initial (undeformed) configuration and first 10 de-
formed configurations of swinging flexible pendulum at 0.1 s intervals using (a) the
generalized-U method and (b) the variational integrator. The black lines denote the
orientations of the E1 unit vectors in the plane of the cross-section at each node.
Configurations are undistorted.

(a) (b)

Figure 6.13: Swinging flexible pendulum: (a) total mechanical (kinetic plus strain
plus gravitational potential) energy and (b) work done by viscoelastic dissipation.

since the total viscoelastic dissipation is proportional to the strain rate, the energy
decay rate also gradually decreases as the kinetic energy decreases. Both integrators
have essentially the same energy behaviors for the short time scales considered here.

6.5 Discussion
This chapter has presented a second-order accurate quaternion variational integra-
tor for simulating the dynamics of Reissner-Simo geometrically exact beams in
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flexible multibody systems. The discrete mechanics framework used to derive the
variational integrator employs a temporal discretization of the variational princi-
ple based on a quaternion Lie group generalization of the standard midpoint rule
and a structure-preserving finite element discretization based on spherical linear
interpolation (slerp). This temporal discretization is general, and consequently, can
be applied to develop quaternion-based Lie group variational integrators for other
applications, e.g., plate or shell finite elements. The quaternion parameterization
of rotations leads to a Lie group formulation of minimal dimension that implicitly
enforces the quaternion unit norm constraint. Modified internal force and moment
resultants account for viscoelastic damping via a Kelvin-Voigt formulation.

The variational integrator was subsequently applied to several standard benchmark
problems: a free-free flexible beam, a right-angle cantilever, and a swinging flex-
ible pendulum with Kelvin-Voigt damping. In each case, comparisons were made
between amore traditional structural dynamics integrator, the Lie group generalized-
U method, and the variational integrator. In the first two examples, the variational
integrator showed nearly perfect energy behavior, even for very long simulation
durations, whereas the numerical dissipation in the generalized-U method led to
non-physical energy behavior. The two integrators performed nearly identically in
the third example, perhaps due to either the short time scales involved or the vis-
coelastic damping masking the effects of the numerical dissipation. Altogether, the
performance of the variational integrator appears advantageous for simulating more
complex flexible multibody systems, like the finite element model of an ultralight
flexible spacecraft studied in Chapter 8.
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C h a p t e r 7

PARAMETRIC MODAL ANALYSIS OF A PLATE-LIKE
FLEXIBLE SPACECRAFT

7.1 Introduction
A recent paradigm in spacecraft design trades deployed structural rigidity against
packaging efficiency to build higher-performing, lighter-weight, and lower-cost
spacecraft with larger deployed apertures that can still stow within the confines
of existing launch vehicles. Tightly packaging large apertures into small volumes
typically necessitates the use of plate-like (planar) structural architectures, exam-
ples of which include solar sails [9], deployable reflectarray antennas [214], and
space solar power satellites [13]. As the size of these structures increases, it be-
comes increasingly difficult to characterize their dynamic properties via ground
tests, particularly those in a representative, i.e., gravity-offloaded environment, and
to extrapolate the dynamic properties of small-scale test articles to full-scale flight
systems. Thus, every step of the design process requires computational models to
characterize these structures’ dynamic properties.

In 2016, the Caltech Space Solar Power Project (SSPP) proposed a novel ultralight,
packageable, and self-deployable spacecraft structural architecture for space solar
power applications [13]; see Fig. 7.1. In the years since, a significant research enter-
prise has focused on understanding the complex behavior of the SSPP architecture’s
constituent structural components [35, 215–217] and on demonstrating the reliabil-
ity, repeatability, and robustness of its deployment scheme [7, 8], all in support of
an in-space deployment demonstration planned for 2022 or 2023 [218].

The SSPP architecture and its derivatives (see e.g., [214]) are representative of a
class of spacecraft structures referred to as bending architectures [24], i.e., structural
concepts that derive their load carrying capabilities from bending stiffness. Hence,
the SSPP concept occupies a middle ground in terms of stiffness and areal density
between membrane-based deployable structures concepts, e.g., solar sails [9], and
more traditional spacecraft with deployable solar arrays and antennas. Bending
stiffness facilitates the integration of the multi-functional elements [12, 48, 49] that
transform the passive structure into a lightweight photovoltaic-powered phased array
capable of beaming solar energy to Earth.
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SpacecraftTile

Strip

Figure 7.1: Caltech Space Solar Power Project spacecraft structural architecture
originally introduced in [13].

The SSPP in-space deployment demonstration [218] uses an approximately 1.7 m×
1.7 m structure assembled from components (specifically longerons [7]) sized for a
nominally 60 m× 60 m spacecraft. This results in an overly stiff structure compared
to the full-scale flight system, i.e., the dynamic properties of this structure are not
representative of those of a larger system. As a result, understanding the dynamic
properties of these structures requires computational tools capable of exploring
their design tradeoffs and sensitivities. With this in mind, this chapter develops
and implements a nonlinear flexible multibody dynamics finite element model of
an SSPP-like spacecraft suitable for preliminary design and analysis. In particular,
the model is useful for modal analyses and calculating static and dynamic responses
in both the linear and geometrically nonlinear regimes. To make the simulation of
large SSPP-like spacecraft more computationally tractable, the model replaces the
slender, thin-shell “strip” structures [35] from Fig. 7.1 with equivalent beammodels
derived using an energy-equivalence principle [219, Ch. 4]. This limits the model
to the simulation of macroscale structural dynamic phenomena. Chapter 8 uses this
model to simulate slew maneuver dynamics.

Besides the finite elementmodel, themain contribution of this chapter is a parametric
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modal analysis that explores the sensitivities of the dynamic properties of an SSPP-
like spacecraft to boom stiffness, strip areal density, and size in order to develop
useful insights into their design and dynamics.

This chapter is organized as follows: Sec. 7.2 reviews the Caltech SSPP structural
architecture and discusses the simplifying assumptions inherent to the numerical
model. Sec. 7.3 derives an equivalent Timoshenko beam model for the strips in the
SSPP architecture. Sec. 7.4 describes the implementation of the flexible multibody
dynamics finite element model. Sec. 7.5 designs booms for the expected slew
maneuver loads and determines an empirical scaling relationship for their radius as
a function of spacecraft size. Sec. 7.6 uses a parametric modal analysis to study
the relationship between boom stiffness, areal density, and the structure’s vibration
characteristics. Sec. 7.7 summarizes the chapter’s results and implications.

7.2 Spacecraft Structural Architecture
The spacecraft structural architecture considered here is a derivative of the ultralight,
packageable, and self-deployable architecture originally proposed by the Caltech
SSPP for space solar power satellites in [13] and depicted in Fig. 7.1. The structural
architecture is planar to facilitate packaging and deployment using a kirigami-
inspired folding scheme and is designed to be both modular and scalable, allowing
the same basic structural components to be used for spacecraft designed for different
applications at different length scales.

The smallest modular unit in the SSPP architecture is referred to as a tile. Each
tile is a multi-layer and multi-functional flexible sandwich structure with typical
maximum dimensions on the order of 10 cm. Tiles are flattenable to facilitate
efficient packaging. For space solar power, each tile integrates photovoltaics, DC-
RF converters, and microwave radiators capable of collecting incident solar power
and transmitting it to a receiving station [12, 48, 49]. To-date, several research
groups have developed and demonstrated integrated tiles for space solar power [12,
48, 49, 220, 221]. However, the modularity of the tile concept is general. Hence,
tiles can be conceived for other applications, including power generation; direct-
drive solar-electric propulsion [222–225]; and communications, power transfer, and
remote sensing [12]. For simplicity, the stiffness properties of the tiles are neglected.
Their mass properties are modeled using a uniform areal density added to the strips.

Tiles are mounted on slender thin-ply composite structures called strips [35]. The
strips are ultralight, ladder-like structures assembled from two longerons connected
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batten
TRAC longeron

tiles

Figure 7.2: Strip architecture and cross-sectional geometry of a TRAC longeron
parameterized by the web width F, flange radius A, and flange opening angle \.

by transverse battens; see Fig. 7.2. Each longeron is a triangular rollable and
collapsible (TRAC) boom [226, 227] with cross-sectional geometry parameterized
by its web width F, flange radius A, and flange opening angle \. The longerons
contribute bending and shear stiffnesses to the strip. Each batten is then modeled
as an isotropic beam with a rectangular cross-section of breadth 1 and height ℎ, as
is done in [6, 24]. The battens contribute lateral bending stiffness and support the
tiles. The strips are stiff in torsion due to the combination of longerons and battens.

Table 7.1: Non-zero coefficients of experimentally determined flange and web ABD
matrices from [215]

Coefficient Units Flange Web
�11 N m−1 5432 × 103 11369 × 103

�12 N m−1 619 × 103 1512 × 103

�22 N m−1 942 × 103 2269 × 103

�33 N m−1 737 × 103 1727 × 103

�11 N m 1.076 × 10−3 28.20 × 10−3

�12 N m 0.482 × 10−3 4.32 × 10−3

�22 N m 0.781 × 10−3 7.44 × 10−3

�33 N m 0.459 × 10−3 4.93 × 10−3

For simplicity, the material and geometric properties for the strips are taken from
the numerical model used in a recent study of their deployment dynamics [6],
which in turn is based on a recent experimental characterization of the TRAC
longerons [215]. The strips from [6] trace their heritage back to the original Caltech
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SSPP design study [13] and are sized for the expected solar radiation pressure
(SRP) load on a 60 m × 60 m spacecraft. Like [6], the longerons use the nominal
cross-sectional geometry studied in [215]: web width F = 8.0 mm, flange radius
A = 12.7 mm, and flange opening angle \ = 90 deg. The flange and web material
properties are based on measurements of coupons with [±45GFPW/0CF/±45GFPW]
and [±45GFPW/0CF/±453,GFPW/0CF/±45GFPW] laminates, respectively, where GFPW
and CF refer to glass fiber plain-weave and carbon fiber. The web laminate consists
of the laminates for the two flanges plus an extra [±45GFPW] ply for the bond. The
experimentally determined flange and web ABD matrices are listed in Table 7.1;
B = 03×3 for both laminates because they are symmetric. Each flange has a nominal
thickness C 5 = 80 µm and density d 5 = 1381 kg/m3. The web has a nominal
thickness CF = 185 µm and density dF = 1396 kg/m3. The densities d 5 and dF are
calculated from the densities and thicknesses of the plies of GFPW and CF.

(a)

(b)

Figure 7.3: Batten spacings for strips of length (a) 3ℓ1 and (b) 6ℓ1 where ℓ1 = 1
length unit.

The battens are modeled as isotropic beams of length ℓ1 = 1 m with rectangular
cross-sections of breadth 1 = 3 mm (in the plane of the strip), height ℎ = 0.6 mm
(normal to the plane of the strip), elastic modulus �1 = 137 GPa, Poisson’s ratio
a1 = 0.3, and density d1 = 1610 kg/m3. These material properties correspond to
pultruded carbon fiber (which is anisotropic). The battens are spaced 1 m apart,
starting from either the center of the strip or points 0.5 m from the center of the
strip, depending on whether the strip has a length that rounds to an odd or even
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integer; see Fig. 7.3. A batten of length ℓ1 = 1 m leads to an overall strip width
of ℓ1 + 2(F + A) = 1.0414 m. To simplify subsequent developments, the overall
strip width is rounded down to 1 m in numerical calculations. By doing so, an
integer length outer dimension can produce a fully-filled aperture with no spacing
between adjacent strips. The only remaining parameter required to fully specify the
properties of a strip is its length ℓB, which depends on the deployed aperture size
and its location in the aperture.

In the original SSPP concept [13], each strip is attached to cords running parallel to
the four deployable booms to facilitate deployment [7, 8, 13]. The booms tension
the cords in the deployed configuration. To simplify the structural architecture,
however, the numerical model eliminates the cords by directly fastening each strip
to two diagonal booms via revolute (hinge) joints [180] with axes of rotation parallel
to the booms. Importantly, attaching the strips directly to the booms prohibits
deployment, something deemed acceptable here due to the emphasis on simulating
the deployed spacecraft’s macroscale structural dynamics. The amount of tension
determines the effects of the cords on the macroscale structural dynamics. As
discussed in [13], there is an optimal pre-tension that maximizes the structure’s
stiffness; too much pre-tension ultimately softens the structure. Assuming the pre-
tension is optimal (or nearly so), then eliminating the cords is expected to decrease
the structure’s stiffness and lower its first-mode frequency. Eliminating the cords
likewise removes the associated vibration modes, including any due to cord-strip
interactions, and decreases the damping in the system (the cord dynamics provide
an additional mechanism for dissipating energy). Despite all this, eliminating the
cords is not expected to significantly affect the spacecraft’s macroscale structural
dynamics, although evaluating this assumption is outside the scope of this thesis and
left to future work. Due to this simplification, the spacecraft studied here is often
referred to as SSPP-like. Note that there are no direct connections between any two
strips, i.e., the strips can only interact through the booms.

Four booms, each of length ℓ� = ℓ=/
√

2, are arranged with angular spacings of
90 deg. The areas between two adjacent booms define identical quadrants, each of
which contains = rectangular strips of equal width ℓ1 uniformly spaced Δℓ1 apart;
see Fig. 7.4. Together, the length of the outermost strip ℓ= and ℓ1 determine the
geometry of the quadrant. Specifically, the number of strips is

= =

⌊
(ℓ=/2)
ℓ1

⌋
(7.1)
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strips

diagonal boom

Figure 7.4: Geometry of a quadrant of a complete SSPP-like spacecraft. The corners
of each rectangular strip overlap the strips in adjacent quadrants.

where b·c denotes rounding down to the nearest integer. Equation (7.1) assumes that
the distance from the center of the aperture to the edge of the innermost strip is ℓ1/2
and that the outermost strip is attached to the ends of the corresponding booms. The
spacing Δℓ1 between the strips and the length ℓ8 of the 8th strip (for 8 = 1, . . . , =)
then follow as

Δℓ1 = (ℓ=/2 − =ℓ1) /(= − 1) (7.2)

ℓ8 = 2 (8ℓ1 + (8 − 1)Δℓ1) (7.3)

where 8 = 1 and 8 = = denote the innermost and outermost strips, respectively. In
accordance with [24], the innermost strip is of length ℓ1 = 2ℓ1, leaving a square
hole of dimensions ℓ1 × ℓ1 at the center of the aperture for the spacecraft bus and
deployment mechanism. Due to overlap between the corners of strips in adjacent
quadrants, an outermost strip of length ℓ= simulates an aperture of size ℓ × ℓ, i.e.,
ℓ= = ℓ − 2ℓ1. In the numerical model, each strip is idealized as a beam with its
reference axis coincident with its centerline; Fig. 7.4 denotes each centerline by a
dashed line.

Following [24], the trapezoidal strips in the SSPP architecture [7, 13] are replaced
with rectangles ones. This simplifies the derivation of an equivalent beam model
in Sec. 7.3. Specifically, rectangular strips are prismatic, i.e., they have symmetric
cross-sections along their lengths. In contrast, a trapezoidal strip is non-prismatic
due to the variations of the cross-section in the vicinities of the ends.

Like [24], the diagonal booms aremodeled as hollow, thin-walled cylindrical tubes of
radius ' and thickness C with elastic modulus �� = 70 GPa, Poisson’s ratio a� = 0.3,
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shear modulus �� = ��/(2(1 + a�)), and density d� = 1610 kg/m3. The resulting
sectional shear stiffnesses are rescaled using the Timoshenko shear correction factor
for a hollow circular cross-section from [152] linearized for the case when C/' � 1.
The thin-walled circular cross-section and isotropic material properties are intended
to approximate the expected stiffness properties of the deployable, closed cross-
section composite booms likely to be used on an actual spacecraft. The optimal
boom size is a function of the loading, spacecraft size, structural limits (e.g., due
to buckling), and deflection limits [24], i.e., the proportion of the deflection in the
strips versus the booms. For a given loading and deflection limit, the general trend
is that the boom size increases as the spacecraft size increases. Reference [24],
however, only considers uniform transverse pressure loads, like those due to SRP.
Slewmaneuvers, on the other hand, generate linearly-varying transverse loads due to
Euler acceleration. For this reason, Sec. 7.5 uses a parametric analysis to determine
a relationship between boom size (specifically, the radius A and thickness C) and
spacecraft size for this loading condition.

The combination of the tiles, strips, booms, and central hub constitute the spacecraft.
The central hub includes the deployment mechanism and spacecraft bus, the latter
of which provides the requisite spacecraft functions like attitude determination
and control, command and data handling, propulsion, and communications. The
deployment mechanism is modeled as a lumped mass of 40.4 kg at the central
hub. This estimate is based on scaling the measured mass plus contingencies
of the engineering model of the DOLCE deployment mechanism [218] which is
designed for an SSPP structure with 0.2 m-wide strips. As an initial approximation,
scaling themechanism entails simply increasing its height to accommodate 1 m-wide
strips. In turn, the masses of the individual components in the as-built mechanism
scale accordingly, in this case linearly or nearly linearly with increasing height.
The scaling assumes that no additional mechanism structure is required to support
wider strips or larger apertures during stowage or deployment. Since the DOLCE
deployment mechanism is not mass-optimized, the total mass is then decreased by
a factor of 40% to account for future mass optimization, resulting in the estimated
mechanism mass of 40.4 kg. Following [228], the spacecraft bus is modeled as a
lumped mass of 80 kg. This is an estimate based on state-of-the-art small satellite
technology. In reality, the bus mass may vary widely depending on the specifics of
a given mission and the masses of the attitude control actuators, propulsion system,
etc. Additionally, the bus moments of inertia are expected to be small compared to
the moments of inertia of the deployed structure, and hence, are neglected.
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7.3 Equivalent Beam Model for a Strip
Both individual TRAC booms [215, 227] and assembled strips [24, 217] are sus-
ceptible to localized buckling and folding due to geometrically nonlinear effects
associated with cross-sectional deformations. Capturing localized geometrically
nonlinear effects requires high-fidelity finite element models with very fine meshes,
making the dynamic analysis of SSPP-like spacecraft at best impractical and at
worst computationally intractable. However, in the absence of localized geomet-
rical nonlinearities, long strips behave similarly to beams; their internal bending
moments predict the onset of localization and buckling [217]. Provided these inter-
nal bending moments do not exceed some critical bending moment, it is reasonable
to replace the thin-shell strips with equivalent beams tomodel macro-scale structural
deformations, as is done, e.g., in [24].

The flexible multibody dynamics model developed in Sec. 7.4 discretizes the booms
and strips using the geometrically exact beam finite elements from Chapter 5.
Geometrically exact beam finite elements, in turn, require sectional inertia and
stiffness matrices (denoted by J1 and C, respectively). Since the booms are thin-
walled cylindrical tubes, these matrices are straightforward to derive from standard
beam theory. The strips, on the other hand, are complex thin-shell structures,
motivating the use of a numerical approach for calculating J and C. The resulting
numerical estimates for J and C are variously referred to as either equivalent or
homogenized beam models.

Geometrically exact beam theory is a nonlinear generalization of Timoshenko beam
theory. Hence, the equivalent sectional stiffness matrix includes axial, shear, tor-
sional, and bending terms. Shear forces induce both bending and shear deformations
that can complicate the development of equivalent beam models [229], especially
compared to approaches based on Euler-Bernoulli beam assumptions. Since rect-
angular strips have both geometrically and materially symmetric cross-sections,
the appropriate equivalent beam model is a prismatic, homogeneous, and isotropic
Timoshenko beam with its reference axis coincident with the centerline of the strip.

The equivalent beam modeling approach described in the sequel primarily draws
inspiration from the “stick” modeling approach pervasive in the aeroelasticity lit-
erature; see e.g., [230–234] and the references therein. Stick models approximate

1In previous chapters, J refers to the 3 × 3 sectional moment of inertia matrix used to calculate
the rotational kinetic energy per unit length; see Sec. 4.6. Here, J instead refers to the 6× 6 sectional
inertia matrix used to calculate the total kinetic energy per unit length.
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complex slender structures like aircraft wings [230, 232, 234] and complete air-
craft configurations [231, 233] with skeletal frames modeled as beams to make
nonlinear aeroelastic analyses more computationally tractable. Similar approaches
are commonly used elsewhere, including for modeling wind turbine blades [235]
and complex, slender spacecraft structures [236–239]. Existing methods typically
compute equivalent beam elements from high-fidelity finite element models, and
then as necessary use a post-processing step to extract the equivalent sectional in-
ertia and stiffness matrices [235]. To simplify the homogenization procedure, the
present approach directly computes the sectional inertia and stiffness matrices from
high-fidelity finite element models.

There is some debate over the best approach for homogenizing complex slender
structures. Reference [240], for instance, highlights difficulties with finite-element-
based homogenization methods, including boundary layer effects near the applied
load(s), the determination of the elastic axis, and potentially the size of the unit
cell. For these reasons, [240] instead argues in favor of cross-sectional analysis
tools like Variational Asymptotic Beam Sectional Analysis (VABS) [241, 242], as
opposed to finite-element-based methods [230, 232, 234, 235]. However, finite-
element-based methods are advantageous because they can account for 3D effects
like cross-sectional tapering and warping in the resulting 1D beam properties [235].
They can even be extended to capture nonlinear effects, although this is outside the
scope of the present work. Additionally, it is not immediately clear how to directly
apply a cross-sectional homogenization method like VABS to a ladder-like strip. As
a result, a finite-element-based homogenization method is preferred here.

Likewise, there is a question about what part or parts of the structure to homogenize.
The approach taken here is global in the sense that each strip is homogenized into a
single equivalent beam. This significantly reduces the number of elements required
to model each strip, but it also limits both the number and types of admissible
deformation modes. For these reasons, a more local homogenization approach may
be advantageous for applications requiring higher (but still not full) fidelity. As
an example, such an approach can instead homogenize the segments of the TRAC
longerons located between the battens into equivalent beams either analytically (e.g.,
using classical lamination and thin-walled beam theories) or numerically (e.g., using
VABS). Unsurprisingly, however, more local homogenization approaches increase
the number of modeled degrees of freedom (DOFs). This leads to a commensurate
increase in computational cost and is deemed prohibitive for the long-duration time-
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domain simulations subsequently studied in Chapter 8.

The homogenization method developed in what follows is similar to [235], at least
as far as the equivalent stiffness properties are concerned, but uses a displacement-
based approach instead of a force-based one for improved numerical conditioning.
The end cross-sections of the strip are rigidly constrained to simplify the applica-
tion of the external loads and the specification of the equivalent beam’s reference
axis. The determination of the equivalent inertia properties then uses a convex-
optimization-based approach inspired by [243].

The equivalent beam model is developed using two steps, one each for the sectional
inertia matrix J and the sectional stiffness matrixC. Both steps are based on the idea
of energy equivalence commonly used to determine inertia and stiffness properties
of discrete structural elements from continua; see e.g., [219, Ch. 4]. Here, energy
equivalence relates the kinetic and strain energies of a high-fidelity model of an
appropriate unit cell, the full-order model (FOM), with those of the equivalent
Timoshenko beam model, the reduced-order model (ROM), to solve for J and C. In
general, both J and C are sensitive to the length of the unit cell [240].

7.3.1 Equivalent Inertia Properties
The equivalent sectional inertia matrix J is determined from the solution to a convex-
optimization problem that minimizes the kinetic energy error between the FOM and
the equivalent Timoshenko beammodel. Following [243], the optimization problem
explicitly enforces physics-based constraints on J. An optimization-based approach
is necessary because the sectional inertia properties of a prismatic, homogeneous,
and isotropic Timoshenko beam cannot exactly match the mass and inertia distribu-
tions of arbitrary structures.

Rigid Body Model

The kinetic energy of the FOM of a strip unit cell is calculated using a sim-
ple finite element model based on linear �0 beam elements and implemented in
MATLAB®. Figure 7.5 depicts a representative FOM. �0 beam elements are lin-
ear, small-deflection 3D Timoshenko beam finite elements with linear interpolation
of displacements and rotations [183] that exactly model the rigid body inertia of
initially straight beams, independent of the number of elements. Since the FOM is
effectively composed of two types of beam segments, TRAC longerons and battens,
the finite element model exactly models the rigid body inertia so long as its sectional
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inertia properties are correctly specified. Longerons and battens are both meshed
using two elements per meter. This places a node at the center of each batten.

Figure 7.5: Representative full-order model, in this case, of a 10 m-long strip with
1 m-long battens spaced 1 m apart, used for determining equivalent sectional inertia
properties. The origin of the reference frame is at the strip’s center of mass.

Table 7.2: Non-zero coefficients of sectional inertia matrices for a TRAC longeron
and batten calculated with VABS [241, 242]

Coefficient Units TRAC Longeron Batten
�11, �22, �33 kg m−1 6.232 × 10−3 2.898 × 10−3

�15 kg −1.327 × 10−12 –
�16 kg 4.848 × 10−5 –
�24 kg 1.327 × 10−12 –
�34 kg −4.848 × 10−5 –
�44 kg m 7.701 × 10−7 2.260 × 10−9

�55 kg m 1.379 × 10−7 8.694 × 10−11

�56 kg m −5.310 × 10−15 –
�66 kg m 6.322 × 10−7 2.174 × 10−9

The sectional inertia properties for both the TRAC longerons and battens are evalu-
ated using VABS [241, 242] with the PreVABS input processor and the geometrical
and material properties from Sec. 7.2. Table 7.2 lists the resulting sectional inertia
matrices for the cross-sectional axes defined in Fig. 7.6. The sectional inertia matrix
for the TRAC longeron is evaluated about the geometric center of the web, not the
centroid. The geometric center defines the location of the attachment point between
the TRAC longerons and battens in the finite element model. Since most of the
inertia is due to the mass of the longerons, the exact location of the attachment point
has a negligible effect on the total inertia.
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TRAC batten

Figure 7.6: Definitions of cross-sectional axes for TRAC longeron and batten. E1
points out of the page.

Equivalent Beam Sectional Inertia Matrix and Kinetic Energy

The sectional inertia matrix relates the velocities at each point along the reference
axis of a beam to the kinetic energy per unit length. Its structure determines the
physics-based constraints enforced in the optimization problem that evaluates the
equivalent beam model. A derivation of the sectional inertia matrix is provided to
highlight this structure.

Consider a Timoshenko beam of length ℓ with volumetric mass density d, a cross-
section of arbitrary shape, and a reference axis non-collocated with the cross-
sectional mass centroid. Since each cross-section is assumed rigid in its own plane,
the velocity of any material point in the cross-section is simply

v = vref + 8 × r (7.4)

where vref is the velocity of the reference axis,8 is the angular velocity of the cross-
section, and r) = (0, G2, G3). The kinetic energy per unit volume is d

(
¤v)v

)
/2, from

which it follows that the total kinetic energy is

T = 1
2

∫ ℓ

0

∫
�

d

(
¤v)v

)
d� dG (7.5)

where � denotes integration over the cross-sectional area. Equation (7.5) can then
be written in the equivalent form

T = 1
2

∫ ℓ

0
¤u)J ¤u dG (7.6)
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where u) =
(
v)ref,8

)
)
and J is the sectional inertia matrix

J =



d� 0 0 0 d�G3 −d�G2

d� 0 −d�G3 0 0
d� d�G2 0 0

d�2 + d�3 0 0
d�2 d�23

sym d�3


. (7.7)

The integrand of Eq. (7.6) is the kinetic energy per unit length. In Eq. (7.7), d� is the
mass per unit length; d�2 =

∫
�
dG2

3 d� and d�3 =
∫
�
dG2

2 d� are the cross-sectional
area moments of inertia; d�23 = −

∫
�
dG2G3 d� is the cross-sectional product of

inertia; d�2 + d�3 is the polar area moment of inertia; and d�G2 =
∫
�
dG2 d�

and d�G3 =
∫
�
dG3 d� are the mass-weighted centroidal coordinates. When the

mass density over the cross-section is uniform, G2 and G3 denote the location of
the geometric centroid. For a beam with a geometrically and materially symmetric
cross-section and a reference axis collocated with its centroid, J is diagonal. In
general, J is a function of position along the reference axis of the beam, but it is
constant for prismatic and homogeneous beams.

The structure of the sectional inertia matrix refers to both the sparsity pattern (i.e.,
zeros) and properties of Eq. (7.7). Since the kinetic energy per unit length is strictly
positive for non-zero ¤u, J is a symmetric positive definite matrix, i.e., J > 0.
Additionally, the coefficients of J must satisfy the following identities:

�11 = �22 = �33, (7.8)

�44 = �55 + �66, (7.9)

�15 = −�24, (7.10)

�16 = −�34, (7.11)

�12 = �13 = �14 = �23 = �25 = �26 = �35 = �36 = �45 = �46 = 0. (7.12)

Optimization Problem

The kinetic energy [Eq. (7.6)] can be evaluated in closed-form if ¤u is known along the
length of the beam. This implies a method for determining the equivalent sectional
inertia properties. Specifically, if the same velocity distribution is applied to both
the FOM and the equivalent beam, then coefficients of J can be determined that
minimize the error between the two corresponding kinetic energies.
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When J is diagonal, at least four equations are required to solve for the four un-
known sectional inertia coefficients. This requires at least four independent velocity
distributions. These velocity distributions are not unique. A simple choice is a set
of velocity distributions that span each structure’s rigid body modes. For the strip
depicted in Fig. 7.5, these correspond to a pure translation in either the e1, e2, or e3

directions plus rotations about these three axes. In practice, it is preferable to specify
pure translations in all three directions to allow the same computer implementation
to be reused for cases when J is non-diagonal.

When J is non-diagonal, additional independent velocity distributions are required.
Again, these velocity distributions are not unique, but a possible choice is the set
that spans the combinations of any two independent rigid body modes.

Given # independent velocity distributions, the corresponding kinetic energies for
the FOM and equivalent beam model can be stacked in the vectors

b =
[
T (FE)1 . . . T (FE)

8
. . . T (FE)

#

])
, (7.13)

Aj =
[
T (eq)1 . . . T (eq)

8
. . . T (eq)

#

])
(7.14)

where 8 = 1, . . . , # and the superscripts FE and eq denote the full-order finite
element and equivalent beam models, respectively. The kinetic energy for the
equivalent beam [Eq. (7.6)] is a quadratic function of ¤u but a linear function of J.
As a result, the vector of equivalent beam kinetic energies can be written as the
product Aj where A ∈ R#×21 is a velocity-dependent coefficient matrix and j ∈ R21

is the vectorization of the upper-triangular block of J.

The equivalent sectional inertia matrix is then obtained from the solution to the
following optimization problem:

minimize
j

‖Aj − b‖2 (7.15)

subject to J − nI6×6 ≥ 0 and Eqs. (7.8) to (7.12). The notation ‖ · ‖2 and ≥ denote
the Euclidean norm and positive semidefiniteness, respectively. The small positive
constant n � 1 guarantees that J is strictly positive definite. Equation 7.15 is
a convex program with a single linear matrix inequality constraint and 15 linear
equality constraints with a unique, globally optimal solution. The optimization
problem is solved using CVX [244, 245] with the SDPT3 solver [246, 247]. Note
that when J is diagonal, additional constraints are required in Eq. (7.15) to set the
off-diagonal entries to zero.
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Results

To demonstrate the homogenization approach, equivalent sectional inertia properties
are evaluated from Eq. (7.15) for strips with integer lengths between 5 m and 50 m.
For each strip, the equivalent beammodel is a prismatic, homogeneous, and isotropic
Timoshenko beam with its reference axis aligned with the strip’s centerline. Hence,
the equivalent sectional inertia matrices for the strips are diagonal.

To assess the accuracy of the equivalent beam models, their masses and moments
of inertia are compared to the actual masses and moments of inertia calculated from
the corresponding FOMs of the strips. Moments of inertia for each equivalent beam
and strip are evaluated relative to the appropriate centers of mass. In terms of the
coefficients of the equivalent sectional inertia matrix J, the mass and moments of
inertia of the equivalent beam are

< (eq) = �11ℓ, (7.16)

�
(eq)
11 = �44ℓ, (7.17)

�
(eq)
22 = �55ℓ + �33ℓ

3/12, (7.18)

�
(eq)
33 = �66ℓ + �22ℓ

3/12. (7.19)

(a) (b)

Figure 7.7: (a) mass calculated from equivalent sectional inertia properties
[Eq. (7.16)]. (b) error relative to FOM.

Figure 7.7a plots the equivalent beam’s mass [Eq. (7.16)] as a function of strip
length. Unsurprisingly, the mass increases linearly with length, reflecting that the
linear mass density calculated from Eq. (7.16) is independent of length. Figure 7.7b
then plots the relative error

(
<eq − <FE) /<FE between the equivalent beam’s mass
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and the FOM’smass. The general trend is that the errors decrease as length increases,
although even for short (5 m-long) strips, the errors are acceptable for preliminary
analysis and design. The discrepancies between the equivalent beam model and the
FOM reflect that the equivalent beam cannot exactly model the mass and inertia
distributions of the strips.

(a) (b)

Figure 7.8: (a) moments of inertia calculated from equivalent sectional inertia
properties [Eqs. (7.17), (7.18), and (7.19)]. (b) errors relative to FOM.

Figure 7.8a plots the equivalent beam’s moments of inertia [Eqs. (7.17), (7.18),
and (7.19)] as a function of strip length. Figure 7.8b then plots the corresponding
relative errors

(
�eq − �FE

)
/�FE between the moments of inertia for the equivalent

beam and the FOM. Again, the general trend is that the errors decrease as length
increases, indicating that the inertia properties of the strips become progressively
more “beam-like” as their lengths increase. Altogether, even though the equivalent
beams cannot exactlymodel themass and inertia distributions of the strips, Figs. 7.7b
and Fig. 7.8b demonstrate that they still accurately approximate each strip’s mass
and inertia properties.

7.3.2 Equivalent Stiffness Properties
The equivalent sectional stiffness matrixC is determined from a system of equations
that relate the strain energies of the FOMand the equivalent Timoshenko beammodel
due to a set of prescribed displacements. Since the sectional stiffness properties
are properties of the cross-section, they are independent of the boundary conditions
applied to the equivalent beam. As a result, the homogenization can use any bound-
ary conditions that eliminate the equivalent beam’s rigid body DOFs and uniquely
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define its displacement field. For simplicity, the homogenization uses clamped-free
boundary conditions with the displacements �) = (D1, D2, D3, \1, \2, \3) prescribed
at the free end, as depicted in Fig. 7.9.

Figure 7.9: Prescribed displacements�) = (D1, D2, D3, \1, \2, \3) and corresponding
external forces and moments P) = (%1, %2, %3, "1, "2, "3) at the free end of the
clamped-free equivalent beam.

High-Fidelity Finite Element Model

The FOM of a strip used in the stiffness homogenization is adapted from the Simulia
Abaqus 2020 finite element model developed in [6]. An example finite element
model of a 10 m-long strip with ten 1 m-long battens spaced 1 m apart is depicted
in Fig. 7.10. The main changes from [6] are the removal of the membrane (used as a
surrogate for the tiles) and the suspension system. Each TRAC longeron is modeled
using reduced-integration general-purpose shell elements with hourglass control and
finite membrane strains (S4R elements). Their stiffness properties are defined via
the flange and web ABD matrices from Table 7.1. The battens are modeled using
B31 linear beam elements with rectangular cross-sections and isotropic material
properties, as discussed in Sec. 7.2. The longeron-batten connectors are modeled
as kinematic coupling constraints between the batten end nodes and a small area
of the longeron web. Each longeron is uniformly meshed using approximately
2 mm × 2 mm elements, resulting in approximately 12000 elements/meter. Each
1 m-long batten is meshed using 500 elements. The model is fully parametric
to facilitate the simulation of strips with arbitrary geometry (batten length, batten
spacing, and longeron length) and TRAC booms of arbitrary cross-section (web
width, flange radius, and flange opening angle).

To replicate the boundary conditions on the equivalent beam (Fig. 7.9), kinematic
coupling constraints are used to rigidize the cross-sections at both ends of the strip.
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RP−1

RP−2

Figure 7.10: Simulia Abaqus 2020 finite element model of a 10 m-long strip with
1 m-long battens spaced 1 m apart. RP-1 and RP-2 are reference points along the
strip’s centerline in the plane of the end cross-sections.

As a result, there is no cross-sectional deformation at the ends. Two references
points, RP-1 and RP-2, are embedded along the strip’s centerline in the planes
of the end cross-sections. RP-1 is clamped; the prescribed displacements for the
homogenization are then applied at RP-2.

Strain Energy for Equivalent Beam

Evaluating the equivalent Timoshenko beam model requires writing the strain
energy U in terms of the to-be-determined equivalent sectional stiffness matrix
C = diag {�11, �22, �33, �44, �55, �66} and the prescribed free-end displacements
�) = (D1, D2, D3, \1, \2, \3). Here, �11 and �22 are the shear stiffnesses; �33 is the
axial stiffness; �44 and �55 are the bending stiffnesses about the e1 and e2 axes; and
�66 is the torsional stiffness. The strain energy for the isotropic clamped-free beam
depicted in Fig. 7.9 is

U =
1
2
�)K� (7.20)
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where K ∈ R6×6 is the stiffness matrix [219, Ch. 5]

K =



�11
ℓ

0 0 0 0 0
12�22�66

�22ℓ3+12�66ℓ
0 0 0 − 6�22�66

�22ℓ2+12�66
12�33�55

�33ℓ3+12�55ℓ
0 6�33�55

�33ℓ2+12�55
0

�44
ℓ

0 0
4�55(�33ℓ

2+3�55)
�33ℓ3+12�55ℓ

0

sym 4�66(�22ℓ
2+3�66)

�22ℓ3+12�66ℓ


(7.21)

that relates the free-end displacements and rotations to the corresponding free-
end forces and moments. If the equivalent beam model is instead chosen to be
anisotropic, an analogous expression forK can be derived by inverting the flexibility
matrix that relates the free-end forces and moments to the corresponding free-end
displacements and rotations. This flexibility matrix can be calculated in closed-form
using Castigliano’s Second Theorem [219, Ch. 3].

Solution Procedure

To calculate the six coefficients of the sectional stiffness matrixC, the strain energies
of both the FOM and the equivalent beam model [Eq. (7.20)] are evaluated for six
independent prescribed displacements �8 for 8 = 1, . . . , 6. Here, the prescribed
displacements are displacements and rotations proportional to the six standard unit
basis vectors in R6. The sectional stiffness coefficients are then obtained from the
solution to the nonlinear system of equations

y = F(c) (7.22)

where c) = (�11, �22, �33, �44, �55, �66) is the main diagonal of C and

y) =
[
U (FE)1 . . . U (FE)6

]
, (7.23)

F) (c) =
[
U (eq)1 . . . U (eq)6

]
. (7.24)

In Eqs. (7.23) and (7.24), the superscripts FE and eq denote the full-order finite
element and equivalent beam models, respectively. For the given independent
prescribed displacements, Eq. (7.22) can be solved in closed-form.

For an anisotropic beam, i.e., when C is non-diagonal, additional prescribed dis-
placements are required. These can be obtained from linear combinations of any
two of the six original prescribed displacements.
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Results

Figure 7.11 plots the homogenized sectional stiffness coefficients from Eq. (7.22)
for strips with integer lengths between 1 m and 50 m. Based on Fig. 7.11, the axial
stiffness (�33) and bending stiffnesses (�44 and �55) are constant with length. �33

and �44 in particular are almost exactly equal to twice the corresponding stiffnesses
of a singleTRAC longeron. The shear stiffnesses (�11 and�22) and torsional stiffness
(�66), on the other hand, exhibit length-dependencies due to shear-warping. The
boundary conditions in the FOM restrain warping, leading to shear boundary layers
in the vicinities of the ends of the strips. �11, �22, and �66 are therefore effective
sectional stiffness terms that include contributions from shear warping.

(a) (b)

Figure 7.11: Sectional stiffness coefficients for (a) shearing (�11 and �22) and axial
(�33) DOFs and (b) bending (�44 and �55) and torsional (�66) DOFs.

7.4 Flexible Multibody Dynamics Model
The flexible multibody dynamics finite element model of the Caltech SSPP-like
spacecraft is implemented in MATLAB® using the equivalent beam models from
Sec. 7.3 to define the sectional inertia and stiffness properties of the strips. A uniform
areal density is then added to the strips to account for the mass of the tiles. The
booms and strips are meshed using the geometrically exact beam finite elements
from Chapter 5. The translational and rotational inertia forces are respectively
integrated using full integration and 5-point Gaussian quadrature. To alleviate shear
locking (see Sec. 5.4.1), the sectional shear stiffnesses are modified usingMacNeal’s
residual bending flexibility correction [184] and the elastic forces are evaluated with
1-point reduced integration. Boom-strip interfaces aremodeled using revolute joints
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Figure 7.12: Representative finite element mesh of an SSPP-like spacecraft with
24 m-long outermost strips and 12 strips per quadrant. Black dots denote finite
element nodes. Different colors denote strips of different lengths with different
stiffness properties.

with rotation axes parallel to the booms. Mathematically, the flexible multibody
dynamics model is a system of nonlinear differential algebraic equations (DAEs)
with holonomic constraints [68, 70].

This chapter only considers spacecraft with integer-length outermost strips. If the
length ℓ= of the outermost strip is even, there are = = ℓ=/2 strips per quadrant and
no spaces between adjacent strips. However, if ℓ= is odd, there are = = (ℓ= − 1)/2
strips per quadrant which leads to spaces between adjacent strips.

Two parameters define the mesh density in the model: (i) the minimum number
of elements per boom =1 and (ii) the number of elements per outermost strip =B.
Elements are added to the booms as needed to place nodes at the locations of the
boom-strip interfaces. As a result, booms are typically meshed with more than =1
elements. Interior strips are meshed with elements of approximately the same length
as those of the outermost strips. Strips are always meshed using an even number of
elements to place a node at their midpoints. A representative mesh for a 24 m×24 m
spacecraft with = = 12 strips per quadrant and =B = =1 = 24 is depicted in Fig. 7.12.

With 1-point reduced integration, the internal forces and moments in each element
are constant. This leads to internal force and moment discontinuities between
elements. Mesh convergence requires a reasonably smooth variation in the internal
force and moment distributions across the structure. To quantify the required mesh
density, a mesh convergence study calculated the natural frequencies of the first
50 modes of a linearized model of the structure as a function of the seed size
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B = =1 = =B and the length ℓ=. The natural frequencies are a proxy for strain energy,
which itself is a cumulative measure of the internal forces and moments in the
structure. Convergence occurs when increasing the mesh size negligibly changes
the strain energy. The results of this analysis indicated that convergence occurs
with maximum element lengths on the order of 1 m, irrespective of the size of the
structure. Hence, in subsequent analyses it was assumed that =1 = =B = ℓ=.

7.5 Boom Design
Unlike the strips, there is no generally agreed upon design for the booms. For
mass-efficiency, the booms must not be overly stiff, i.e., they must be sized for the
expected loads. The inertial loads induced by slewmaneuvers increase as spacecraft
size increases, leading to a general requirement for stiffer booms on larger spacecraft.
The optimal boom size depends on the loading, spacecraft size, structural limits,
and deflection limits [24], i.e., the proportion of the maximum deflection carried
by the booms and strips. With this in mind, this section uses linear static finite
element analyses to estimate boom and strip deflections during a representative slew
maneuver as a function of boom radius and spacecraft size. The imposition of
deflection limits then results in relationships that scale the size of representative
“stiff” and “soft” booms with spacecraft size. Since the emphasis in this chapter
is on developing insights into the dynamic behavior of SSPP-like spacecraft, this
analysis does not account for structural limits on either the booms (e.g., due to Euler
or shell buckling [24]) or the strips (e.g., due to localization and folding [24, 217]);
for additional details on possible failure modes, see [24].

As discussed in Sec. 7.2, the booms are hollow, thin-walled cylindrical tubes of
radius ' and thickness C with isotropic material properties (elastic modulus �� =
70 GPa, Poisson’s ratio a� = 0.3, shear modulus �� = ��/(2(1 + a�)), and density
d� = 1610 kg/m3). To constrain the design space, the thickness-to-radius ratio
C/' is set to 0.03. This represents a reasonable lower limit for manufacturable
booms. Additionally, the analysis uses a single-axis slew maneuver, in this case, the
7th order polynomial slew maneuver from Chapter 3 (Fig. 3.8), and a slew angle
of 90 deg to define the peak inertial loading (angular acceleration) as a function
of slew time. However, the choice of the slew maneuver profile here is arbitrary;
different slew maneuvers simply result in different slew times for a given peak
angular acceleration. A 90 deg, single-axis slew maneuver is representative of the
expected pitch axis maneuvers for a Caltech SSPP space solar power satellite [39,
40].
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7.5.1 Inertial Loads due to Slew Maneuvers
In general, slew maneuvers induce inertial loads on a structure due to centripetal
acceleration, Euler acceleration, and Coriolis acceleration. Coriolis acceleration
is velocity-dependent, i.e., zero for a static analysis. For a plate-like spacecraft,
the centripetal and Euler accelerations induce in-plane and out-of-plane (normal)
“pressure” loads, respectively. Since the deflections due to the in-plane inertial
pressure are expected to be negligible for the SSPP-like spacecraft, the normal
pressure is the design load case.

(a) (b)

Figure 7.13: (a) normal and (b) average normal pressures exerted by inertial loads
during a single-axis slew maneuver. The normal pressure varies linearly from the
rotation axis. The dashed line and curved arrows denote the rotation axis and
direction of the angular acceleration.

Figure 7.13a depicts the normal pressure

%⊥ = d� ¥\max3 (7.25)

exerted by the Euler acceleration on a square plate-like spacecraft during a single-
axis slew maneuver. Here, d� is the areal density, ¥\max is the maximum angular
acceleration, and 3 is the perpendicular distance from the rotation axis (3 changes
sign at the rotation axis). The magnitude of %⊥ increases linearly from the rotation
axis. For an SSPP-like spacecraft, this implies that the peak bending deflections
occur at the midpoints of the outermost strips (denoted by a red × in Fig. 7.13). Due
to symmetry, these deflections have equal magnitudes and opposite directions on
opposite sides of the spacecraft. There is zero deflection along the rotation axis.

To develop some intuition into the magnitude of the slew maneuver loads, Fig. 7.14
plots the average normal pressure on a square plate-like spacecraft with an areal
density of 100 g/m2 as functions of length and slew time. The average normal
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Figure 7.14: Average normal pressure exerted by inertial loads during a single-axis
slew maneuver as a function of length and slew time. The black lines are lines of
constant pressure. Assumes an areal density of 100 g/m2.

pressure is depicted in Fig. 7.13b and given by

%⊥,avg =
1
4
d� ¥\max! (7.26)

where ! is the side length and � = !2 is the total area. The average normal pressure
is the average value of Eq. (7.25) over the area of the plate to one side side of the
rotation axis. The peak normal pressure is twice the average normal pressure.

In Fig. 7.14, the black lines are isobars, i.e., lines of constant normal pressure.
9.07× 10−6 Pa is the magnitude of the SRP on a perfectly reflecting surface at 1 AU
(1361 W/m2 incident solar flux). This corresponds to the worst-case SRP load. For
fast slew maneuvers (slew times less than approximately 10 min) and large length
scales, the inertial loads dominate the SRP load. Outside of low Earth orbit, the
SRP load is the dominant environmental load [13]. Thus, the inertial loads are the
critical load case during fast slews and the design load case for the booms.

7.5.2 Analysis and Results
The boom design process uses linear static finite element analyses to evaluate the
boom tip and strip midpoint deflections due to the slew maneuver load depicted
in Fig. 7.13a as a function of boom radii between 3.33 mm and 100 mm. The
minimum boom radius corresponds to a minimum wall thickness of 0.1 mm. The
resulting deflection versus radii curves lead to boom designs that meet deflection
specifications. For a linear analysis, the fractions of the deflections due to the
contributions of the booms and strips are independent of the magnitude of the load.
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Thus, the boom design that meets a given deflection specification is also independent
of the magnitude of the load.

Figure 7.15: Percentage of maximum deflection carried by booms and outermost
strips as a function of boom radius for a 24 m × 24 m SSPP-like spacecraft with an
areal density of 100 g/m2.

Figure 7.15 plots a representative deflection versus radii curve for a 24 m × 24 m
spacecraft with an areal density of 100 g/m2. In the figure, the solid blue and dashed
green lines respectively denote the percentages of the maximum deflection at the
boom tips and the midpoints of the outermost strips. The latter are the locations of
the maximum deflections on the structure. Due to symmetry, all four booms have the
same deflections. Likewise, strips on opposite sides of the structure have deflections
equal in magnitude but opposite in direction. Since the boom stiffness increases as
radius increases, the contribution of the outermost strip to the maximum deflection
also increases as the radius increases. The strip midpoint deflections are calculated
relative to the boom tips; hence, the total deflection for each radius equals 100%.

The deflection versus radii curves in Fig. 7.15 provide a methodology for design.
For example, if the booms are to be designed such that both the booms and strips
are responsible for 50% of the maximum deflection, then Fig. 7.15 shows that
the correct boom radius is 14.46 mm. Two reference boom designs are used for
subsequent analyses: “stiff” booms responsible for 10% of the maximum deflection,
and “soft” booms responsible for 40%. From Fig. 7.15, the corresponding boom
radii are 25.85 mm and 16.07 mm. This analysis is then repeated for spacecraft
with dimensions between 5 m and 50 m and strip areal densities of 100 g/m2

and 1 kg/m2. Figures 7.16, 7.17, and 7.18 respectively plot the resulting boom
radii, linear mass densities, and bending stiffnesses as a function of spacecraft size.
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(a) (b)

Figure 7.16: Radii for (a) stiff and (b) soft booms.

(a) (b)

Figure 7.17: Linear mass densities for (a) stiff and (b) soft booms.

Each boom design is compared to a boom designed to meet the same deflection
specifications under a uniform pressure loading. In every case, the uniform pressure
load results in stiffer, more massive booms. The calculated boom radii, linear mass
densities, and bending stiffnesses are comparable to those from other large flexible
spacecraft concepts; see e.g., [248, 249]. Note that the “scalloping” in the figures
is an artifact of the modeling assumptions. Specifically, with 1 m-wide strips, a
spacecraft with odd integer side lengths has large gaps between strips. This has the
effect of decreasing the spacecraft’s average areal density, which in turn decreases
the slew maneuver loads on the structure.

The boom design procedure does not mention the magnitude of the slew maneuver
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(a) (b)

Figure 7.18: Bending stiffnesses for (a) stiff and (b) soft booms with thin-walled
circular cross-sections.

deflections. To remedy this, Figs. 7.19 and 7.20 plot the boom tip and strip midpoint
deflections as a function of spacecraft size and slew time for areal densities of
100 g/m2 and 1 kg/m2. In each figure, the boom tip and strip midpoint deflections
are normalized by the appropriate boom and strip lengths. Deflections greater than
10% are assumed to violate the linearity assumption, and hence, are discarded. The
figures highlight the rationale behind the design of the soft booms; in particular, the
normalized deflections in the booms and strips are approximately equal, leading to
mass-efficient boom designs. A comparison of Figs. 7.19 and 7.20 then illustrates
the unsurprising result that increasing the areal density increases the inertial loads
on the structure, and hence, the deflections. Thus, all else being equal, higher areal
densities results in higher slew times.

In practice, the maximum dynamic deflections are a more useful performance met-
ric than the maximum static ones. Therefore, it is useful to study the dynamic
amplification of the static deflections from Figs. 7.19 and 7.20. The dynamic load
factor (DLF) is the ratio between the maximum dynamic deflection and the static
deflection corresponding to the maximum magnitude dynamic load [98, Ch. 2]. For
preliminary analysis and design, the DLF can be evaluated from the response of
a forced harmonic oscillator (Fig. 7.21) to the inertial loads induced by the slew
maneuver. The resulting DLFs are plotted as a function of the ratio between the
slew time ) and natural period )= = 2c/

√
:/< in Fig. 7.22. In the absence of modal

data, there are two important takeaways from Fig. 7.22: (i) the worst-case DLF is
approximately 3.2, and (ii) when )/)= > 8, the dynamic deflections are effectively
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(a) (b)

(c)

Figure 7.19: Static boom tip and strip midpoint deflections (relative to boom tip)
due to maximum slew maneuver loads with a 100 g/m2 areal density. (a) boom tip
deflections with stiff booms. (b) boom tip deflections with soft booms. (c) strip
midpoint deflections. Strip midpoint are independent of boom stiffness.

the same as the static ones. Slew times for flexible spacecraft are typically ten or
more times longer than their first-mode periods, i.e., )/)= > 10. Hence, assuming
the linearity assumption is valid, Figs. 7.19 and 7.20 are likely reasonable estimates
of the dynamic deflections during slew maneuvers.

7.6 Parametric Modal Analysis
A parametric modal analysis investigates how boom stiffness and strip areal density
affect the dynamic properties of the SSPP-like spacecraft at different length scales.
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(a) (b)

(c)

Figure 7.20: Static boom tip and strip midpoint deflections (relative to boom tip)
due to maximum slew maneuver loads with a 1 kg/m2 areal density. (a) boom tip
deflections with stiff booms. (b) boom tip deflections with soft booms. (c) strip
midpoint deflections. Strip deflections are independent of boom stiffness.

Figure 7.21: Harmonic oscillator with mass <, stiffness : , and external force D.

7.6.1 Preliminaries
A standard modal analysis requires a linear structural model, not the system of
nonlinear DAEs describing the flexible multibody dynamics model of the SSPP-like
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Figure 7.22: Dynamic load factor as a function of the ratio between the slew time )
and natural period )= for the polynomial slew maneuver from Fig. 3.8.

spacecraft. DAEs are not directly amenable to modal analysis [250–253] and hence,
require a conversion to a more suitable form. For a nonlinear flexible multibody
dynamics model with holonomic constraints, this involves some combination of
linearization and either constraint elimination [250, 253] or augmentation [252]
(sometimes followed by elimination [251]). The preferred approach here is lin-
earization followed by constraint elimination using a null space projection, i.e., a
Galerkin projection of the equations of motion onto the null space of the constraint
gradient matrix. This results in linearized mass and stiffness matrices of reduced
dimensions (due to the elimination of the redundant DOFs associated with the con-
straints via the null space projection) that are compatible with any standard modal
analysis procedure. The dimension of the reduced mass and stiffness matrices
are equal to the number of independent DOFs in the original flexible multibody
dynamics model.

The null space of the constraint gradient matrix is generally not unique. Thus,
the independent DOFs associated with the reduced mass and stiffness matrices do
not necessarily correspond directly to the independent physical DOFs in the flexible
multibody dynamicsmodel. Instead, they are linear combinations of the independent
physical DOFs. As a result, an additional linear transformation is often required to
map these DOFs to the independent physical DOFs. This is necessary, for example,
to apply boundary conditions to the reduced model, as is done in the Craig-Bampton
method (see Sec. 3.3.1).

Ordinarily, the reduced mass and stiffness matrices can be directly input into any
standard generalized eigensolver [78] to obtain the natural frequencies and vibra-



156

tion modes of the structure. The Caltech SSPP structure, however, features 4-fold
symmetry, and hence, symmetric modes with repeated eigenvalues, i.e., natural
frequencies with multiplicities greater than one. This introduces numerical chal-
lenges for standard eigensolvers. Specifically, due to the limits of machine precision
and the accumulation of round-off errors, it is often difficult to distinguish be-
tween closely spaced eigenvalues and repeated eigenvalues (although as discussed
in Sec. 3.3.2, modal participation can often be used to categorize closely spaced
eigenvalues). Eigenvalue errors correspond to errors in the calculated eigenmodes
and vice versa. These errors are generally exacerbated by eigensolvers that con-
vert the generalized eigenproblem to standard form, e.g., using the inverse of the
Cholesky decomposition. Evaluating the inverse amplifies small numerical errors
and can lead to significantly degraded solution accuracy [254, Ch. 10]. As a result,
even if the modes can be correctly categorized into symmetric modes with repeated
eigenvalues and otherwise, the calculated eigenmodes are not necessarily accurate.

The difficulties associated with eigenanalyses of symmetric structures motivate
the use of a two-step eigensolution scheme. In the first step, a standard generalized
eigensolver (in this case, the eigs function inMATLAB®) calculates the eigenmodes
corresponding to a perturbed mass matrix and an unperturbed stiffness matrix. The
number of calculated eigenmodes depends on the number of desired eigenmodes at
the end of the second step. Specifically, to calculate the first ? eigenmodes, the first
stepmust at least calculate the first @ = max {2?, ? + 8} perturbed eigenmodes [255].
There are two requirements on the mass matrix perturbation: (i) it must preserve the
mass matrix’s symmetric positive-definiteness, and (ii) it must break the structure’s
(in this case, 4-fold) symmetry. Here, the mass matrix is perturbed by adding a
small fraction of the translational entries on the main diagonal to themselves (before
the null space projection). The small fraction is a uniformly distributed random
number in the interval from 0 to 0.01. The second step then uses the perturbed
eigenmodes from the first step to initialize the subspace iteration algorithm [78]
with the unperturbed mass and stiffness matrices. Each subspace iteration requires
the solution of a low-dimensional generalized eigenproblem, which in this case is
solved using the generalized Jacobi method [78]. In essence, the subspace iteration
algorithm corrects the perturbed eigenmodes to obtain accurate eigenvalues and
eigenmodes for the symmetric structure.
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7.6.2 Results
The parametric modal analysis evaluates the first 100 modes of the SSPP-like space-
craft at integer length scales between 5 m and 50 m using the “stiff” and “soft”
booms from Fig. 7.16. The stiff (resp. soft) booms are designed to contribute 10%
(resp. 40%) of the maximum bending deflection during slew maneuvers. More-
over, the analysis considers two areal densities, 1 kg/m2 and 100 g/m2, which are
representative of current and future states-of-the-art for strips with integrated power
collection and transmission systems for space solar power.

The modal analysis calculates the structure’s fixed-interface modes, i.e., the modes
corresponding to a fully restrained node at the central hub. Dominant modes are
then identified by sorting the modes in descending order according to their modal
participation factors [Eq. (3.39)]. The dominant mode provides the highest average
dynamic reaction forces and moments on the central bus.

Figure 7.23 plots the natural frequencies of the first 100 modes for the SSPP-like
spacecraft at length scales of ℓ = 10 m, ℓ = 24 m, and ℓ = 50 m. The figure
illustrates two expected results, namely that natural frequencies decrease as both
size and areal density increase. Due to the structure’s 4-fold symmetry, it features
many very closely spaced or repeated eigenvalues; these correspond to line segments
that appear horizontal or nearly so. A comparison of either Figs. 7.23a and 7.23c
or Figs. 7.23b and 7.23d then demonstrates that the boom stiffness has a very small
effect on the computed natural frequencies. However, the boom stiffness turns out
to have a significant effect on modal participation. This is explored more in what
follows. Despite the large number of low-frequency modes, a small number of
modes (typically less than 10) contain the overwhelmingly majority of the modal
participation [Eq. (3.39)]; see Fig. 7.24. For this reason, the remainder of this
section focuses on only the lowest frequency and most dominant modes.

Figure 7.25 depicts the natural frequencies for the first (lowest frequency) mode and
most dominant mode as a function of the spacecraft’s size, boom stiffness, and areal
density. For completeness, Fig. 7.26 then plots the corresponding natural periods.
At the most relevant length scales (20 m plus), the first-mode periods are typically
on the order of 1 to 10 min. In both figures, the first mode and dominant mode are
compared to the first bending mode of a pinned-pinned beam with the same bending
stiffness as the outermost strip. With stiff booms, the first pinned-pinned beammode
is an excellent approximation for the first natural frequency, but the accuracy of this
approximation deteriorates as the boom stiffness decreases.
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(a) (b)

(c) (d)

Figure 7.23: Comparisons of 1st 100 natural frequencies at various length scales
with (a) 100 g/m2 areal density, stiff booms; (b) 1 kg/m2 areal density, stiff booms;
(c) 100 g/m2 areal density, soft booms; and (d) 1 kg/m2 areal density, soft booms.

To gain some intuition into why the first mode of a pinned-pinned beam accurately
approximates the spacecraft’s first natural frequency, Fig. 7.27 depicts the first
modes for representative 24 m×24 m spacecraft with both stiff (Fig. 7.27a) and soft
(Fig. 7.27b) booms. Qualitatively, the first mode shows little sensitivity to the areal
density. Hence, Fig. 7.27 only depicts modes for spacecraft with areal densities of
100 g/m2. The first mode primarily consists of strip bending. With stiff booms, the
vibrations of the outermost strips are decoupled from the vibrations of the booms
and interior strips. Softer booms introduce more coupling between the booms and
strips which decreases the accuracy of the pinned-pinned beam approximation and
increases the effective modal mass in the first mode.

Whereas the first mode is characterized by bending vibrations of the outermost
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(a) (b)

(c) (d)

Figure 7.24: Comparisons of modal participation factors [Eq. (3.39)] for 1st 100
modes at various length scales with (a) 100 g/m2 areal density, stiff booms; (b)
1 kg/m2 areal density, stiff booms; (c) 100 g/m2 areal density, soft booms; and (d)
1 kg/m2 areal density, soft booms.

strips, the dominant mode is characterized by in-plane boom bending; see Fig. 7.28.
In-plane boom bending leads to the excitation of every strip in the structure and a
correspondingly high modal participation. This type of mode is normally referred
to as a “pinwheel” mode, and like the lowest frequency mode, it is qualitatively
insensitive to the areal density. Hence, it is sufficient to only consider modes
corresponding to a single areal density in Fig. 7.28. Unlike the first mode, though,
the dominant mode exhibits the same behavior irrespective of the boom stiffness.
The mode number of the first pinwheel mode depends on the boom stiffness and the
spacecraft size. At small length scales, the pinwheel mode appears in the interval
from modes 5 to 10, but at larger scales, it may be past mode 30.
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(a) (b)

(c) (d)

Figure 7.25: Comparisons of 1st mode, dominant mode, and 1st pinned-pinned
beam mode frequencies with (a) 100 g/m2 areal density, stiff booms; (b) 1 kg/m2

areal density, stiff booms; (c) 100 g/m2 areal density, soft booms; and (d) 1 kg/m2

areal density, soft booms.

Altogether, these results highlight an important design trade-off. In particular, while
softer booms are lighter, and hence, more mass efficient (see Fig. 7.17), they also
more tightly couple the dynamics of the booms and strips. This has significant
ramifications for spacecraft design and dynamics. For example, softer booms lead
to higher effective modal mass in the lowest frequency modes, which in turn leads
to larger reaction forces and moments on the spacecraft bus. Softer booms likewise
lead to less precise structures and may locally increase the stresses on any functional
elements integrated into the strips. For these reasons, more fully understanding how
the boom stiffness influences the spacecraft’s design and dynamics is an important
area for future research.



161

(a) (b)

(c) (d)

Figure 7.26: Comparisons of 1st mode, dominant mode, and 1st pinned-pinned
beam mode periods with (a) 100 g/m2 areal density, stiff booms; (b) 1 kg/m2 areal
density, stiff booms; (c) 100 g/m2 areal density, soft booms; and (d) 1 kg/m2 areal
density, soft booms.

7.7 Discussion
This chapter has described the development and implementation of a parametric
flexible multibody dynamics finite element model for an SSPP-like ultralight flexible
spacecraft. The numerical model eliminates the cords that attach the strips to the
booms in the baseline Caltech SSPP structural architecture [13]. Instead, revolute
joints were used connect the strips to the booms. The implicit assumption here is that
the cords are not significant contributors to the spacecraft’s macroscale structural
dynamics. Relaxing this assumption is left to future work.

The flexible multibody dynamics model discretizes both the booms and strips in
the Caltech SSPP architecture with geometrically exact beam finite elements. This



162

(a) (b)

Figure 7.27: 1st modes for a 24 m×24 m SSPP-like spacecraft with an areal density
of 100 g/m2 and (a) stiff booms and (b) soft booms.

(a) (b)

Figure 7.28: Dominant modes for a 24 m× 24 m SSPP-like spacecraft with an areal
density of 100 g/m2 and (a) stiff booms (mode 25) and (b) soft booms (mode 14).
For clarity, each figure only depicts the in-plane modal deformations.

requires equivalent beam models for the thin-shell strips. These equivalent beam
models take the form of sectional inertia and stiffness matrices derived using energy-
equivalence-based approaches. The equivalent sectional inertia matrices accurately
model each strip’s inertia properties. The equivalent sectional stiffness properties
are more difficult to validate. The sectional axial and bending stiffnesses are in
excellent agreement with estimates from standard beam theory, and accordingly, are
effectively independent of the length of the strip. The sectional shear and torsional
stiffnesses, however, show significant variations with length. These variations are
due to shear warping effects introduced by the rigidly constrained end cross-sections
in the high-fidelity finite element model. The equivalent beam models are inher-
ently limited to the regime where the internal bending moments do not exceed the
corresponding strip’s critical bending moment that marks the onset of localization
and buckling. As a result, quantifying the maximum internal bending moments
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during slew maneuvers is an important objective of the dynamic analyses in Chap-
ter 8. These maximum internal bending moments impose a structural limit on the
minimum feasible slew time.

For a given slew maneuver, the dynamic loads increase as spacecraft size increases.
As a result, larger SSPP-like spacecraft require stiffer booms. Linear static analyses
calculated the deflection of the booms and outermost strips as a function of boom
radius and spacecraft size under a worst-case slew maneuver load. The subsequent
modal analysis studied the dynamic characteristics of the spacecraft as a function
of its size and areal density with two boom designs: a “stiff” boom designed
to contribute 10% of the maximum deflection, and a more mass-efficient “soft”
boom designed to contribute 40%. The modal analysis shows that a small number
of modes, typically less than 10, are responsible for the majority of the modal
participation, i.e., they dominate the dynamic reaction forces and moments on the
bus. The modal analysis also emphasizes that the boom stiffness determines the
spacecraft’s dynamic characteristics. In particular, as the boom stiffness decreases,
the vibrations of the booms and strips become more tightly coupled, which in turn
increases the effective modal mass in the lowest frequency modes.
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C h a p t e r 8

SLEW MANEUVER DYNAMICS

8.1 Introduction
This final chapter studies the slew maneuver dynamics of ultralight flexible space-
craft. Its goals are threefold: (i) to predict slew times using the reduced-order
modal models and the slew performance metric proposed in Chapter 3; (ii) to
demonstrate the use of geometrically nonlinear finite element models for simulating
flexible spacecraft attitude dynamics during slew maneuvers; and (iii) to compare a
more traditional structural dynamics integrator with the variational integrator from
Chapter 6 for simulating flexible spacecraft slew maneuvers.

Slew time predictions are important for establishing the feasibility of slewing ultra-
light flexible spacecraft during the early stages of space mission design. Verification
and validation then require higher-fidelity analysis tools, like geometrically nonlin-
ear finite element simulations. Even though there are examples of these types of
simulations in the open literature (see e.g., [256, 257]), these tools are by no means
standard for simulating flexible spacecraft dynamics. As a result, the geometrically
nonlinear finite element simulations in this chapter are both useful for develop-
ing insights into the slew maneuver dynamics of ultralight flexible spacecraft and
as a proof-of-concept for promoting their more widespread adoption in spacecraft
engineering practice.

Due to the long durations involved in simulating flexible spacecraft slew maneuvers,
there is a question about the accuracy and stability of traditional time integra-
tors. Traditional time integrators, like the generalized-U method [25], often use
numerical dissipation to improve their stability, something which can potentially
introduce non-physical behaviors into simulations. Variational integrators are a
type of symplectic-momentum conserving integrator which usually exhibit excel-
lent long-duration energy behavior [28, 29] and achieve stability without numerical
dissipation. For these reasons, they may be advantageous for simulating slew ma-
neuver dynamics. To that end, this chapter compares the variational integrator from
Chapter 6 with a Lie group implementation of the generalized-U method [36–38]
in order to assess the efficacy of using variational integrators for slew maneuver
simulations.
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Figure 8.1: Rotation axes for slew maneuver about y′ axis. The {x, y, z} reference
frame results from a 45 deg counterclockwise rotation about the z = z′ axis.

Like Chapter 7, this chapter studies a representative ultralight flexible spacecraft
based on the Caltech Space Solar Power Project (SSPP) architecture [13] with
integer length scales between 5 m and 50 m. However, much of the focus of this
chapter is on a 24 m × 24 m spacecraft. Such a spacecraft has significant flexible
dynamics, especially compared to smaller length scales (on the order of 10 m or
less), but is less complex and lower risk to design, build, and fly than a full-scale
flight system. As a result, a 24 m× 24 m spacecraft is envisioned as an intermediate
step for demonstrating the requisite attitude dynamics and control technologies prior
to launching a full-scale flight system. The chapter models each spacecraft using the
flexible multibody dynamics finite element model with the “soft” booms developed
inChapter 7 and assumes that the strips have an areal density of 100 g/m2. Moreover,
the chapter baselines a 90 deg, single-axis slew maneuver about the y′ axis depicted
in Fig. 8.1 with the “smooth” slew profile from Chapter 3 (Fig. 3.8). The maneuver
rotates the spacecraft about the y′ axis from an initial orientation of 0 deg to a final
one of 90 deg.

This chapter is organized as follows: Sec. 8.2 derives a reduced-order modal model
for the reference spacecraft and uses it to estimate minimum slew times for the
baseline slew maneuver. Sec. 8.3 presents an optimization-based approach for
determining viscoelastic Kelvin-Voigt damping coefficients for geometrically exact
finite element models. Determining appropriate damping coefficients is important
for replicating the very low modal damping characteristic of large space structures
[90] in the ensuing slew maneuver simulations. Sec. 8.4 describes the results of the
slew maneuver simulations obtained using the full finite element model with the Lie
group generalized-U method. These results validate the reduced-order model and
the slew time predictions from Sec. 8.2. Sec. 8.5 compares the efficacies of the Lie
group generalized-U method and the variational integrator from Chapter 6 for slew
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maneuver simulations. Sec. 8.6 discusses the important findings from the chapter.

This chapter assumes familiarity with the material in Chapter 3.

8.2 Minimum Slew Times
This section initially derives reduced-order modal models of the SSPP-like space-
craft at integer length scales between 5 m and 50 m. It subsequently uses these
reduced-order models to predict minimum slew times using the residual angular
velocity slew performance metric proposed in Chapter 3.

Figure 8.2: Principal moments of inertia for Caltech SSPP-like spacecraft versus
size. Due to symmetry, �G ′G ′ = �H′H′.

Evaluating the slew performance metric requires reducing the full finite element
model (linearized at rest in its undeformed configuration) into the canonical flexible
spacecraft model from Chapter 3 (Fig. 3.1). The canonical model nominally retains
a single rigid body mode and a single flexible mode, making it the simplest modal
representation of a flexible spacecraft. As discussed in Sec. 3.3, the canonical
model requires three inputs: the rigid body moment of inertia about the slew axis,
the dominant-mode frequency, and the correspondingmodal inertia. For each length
scale, the rigid body moments of inertia are calculated directly from the mass matrix
of the corresponding full finite element model. The rigid body moments of inertia
are depicted as functions of length scale in Fig. 8.2.

Each dominant-mode frequency and modal inertia are determined from a modal
analysis of the corresponding full finite element model. For a single axis slew, the
so-called dominant mode is the mode with the highest modal inertia about the slew
axis. The modal inertia is the main diagonal entry corresponding to the slew axis in
the modal mass matrix from Sec. 3.3. Figures 8.3a and 8.3b compare the first-mode
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(a) (b)

Figure 8.3: Comparison of first mode and dominant mode (a) natural frequencies
and (b) natural periods. The dominant mode for the slew maneuver has the highest
modal inertia.

and dominant-mode natural frequencies and periods as functions of the spacecraft
size. Based on Fig. 8.3a, the lowest natural frequency of the 24 m× 24 m spacecraft
is approximately 25 mHz. The figures also emphasize that the first mode is not
the dominant mode for a single-axis slew. The dominant mode instead corresponds
with either mode 2 or mode 3.

(a) (b) (c)

Figure 8.4: (a) 1st mode, (b) dominant mode, and (c) symmetric mode at dominant-
mode frequency for the 24 m × 24 m SSPP-like spacecraft.

Modes 2 and 3 are symmetric, meaning they share the same natural frequency.
Moreover, mode 3 is the same as mode 2 after a transformation by the appropriate
symmetry operation. To see this, Fig. 8.4 depicts the first three vibration modes for
the 24 m × 24 m spacecraft. These modes are representative of the modes across
the full range of length scales, from 5 m to 50 m. The first mode (Fig. 8.4a) excites
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symmetric bending deflections across all four quadrants. In contrast, modes 2 and
3 excite antisymmetric bending deflections; mode 2 is the same as mode 3 after a
90 deg counterclockwise rotation about the spacecraft’s out-of-plane axis. Since
modes 2 and 3 are symmetric, each reduced-order modal model must include the
total modal inertia in modes 2 and 3. Thus, the reduced-order models take the form
of Eq. (3.47). Due to symmetry, these models have two degrees of freedom but
include three modes: a rigid body mode and two symmetric flexible modes.

The reduced-order modal models are used to predict slew times for the SSPP-like
flexible spacecraft with integer length scales between 5 m and 50 m. The slew time
calculations require two additional inputs: a slew maneuver and a slew performance
metric. In this case, the slewmaneuver is the 90 deg smooth slew fromChapter 3 (see
Fig. 3.8). Likewise, the slew performance metric is a requirement on the maximum
amplitude of the residual angular velocity, also from Chapter 3 (see Sec. 3.4, and in
particular, Sec. 3.4.4). The amplitude of the residual angular velocity is a measure
of the residual flexible dynamics after the completion of the slew. Two requirements
on the residual angular velocity are considered, 0.01 deg/sec and 0.001 deg/sec,
which respectively correspond to relatively coarse and fine pointing requirements.
The minimum slew time corresponds to the fastest slew that guarantees that the
residual angular velocity is always less than or equal to the specified requirement.
In what follows, the resulting slew times are referred to as the structure-based slew
performance limits.

The structure-based slew performance limits are also compared to slew performance
limits associated with the available momentum and torque of reaction wheels for
representative attitude control systems. Two reaction wheels are considered. The
first is a baseline wheel with a maximum torque of 0.2 N m and a 100 N m s angular
momentum storage capacity. This is representative of large, commercially available
reaction wheels. The second is a reaction wheel with five times the maximum torque
andmomentum of the baseline wheel. This is larger than typical reactionwheels, but
still likely within the realm of feasibility. Additionally, it is assumed that only 60%
of the total momentum and torque are available for slews. Momentum and torque
are allocated with margins for different attitude control system functions, including
feedforward control (slews), feedback control, and to account for wheel friction and
gyroscopic effects. As a result, only a fraction of the total momentum and torque
are ever available for slews. For example, the Cassini spacecraft allocated 12.5%
of its total torque for slews [258]; more agile spacecraft require higher momentum
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(a) (b)

(c) (d)

Figure 8.5: Comparison of minimum slew times for smooth slew maneuver. (a)
baseline reaction wheel, 0.01 deg/sec; (b) 5× baseline reaction wheel, 0.01 deg/sec;
(c) baseline reaction wheel, 0.001 deg/sec; (d) 5× baseline reaction wheel,
0.001 deg/sec.

and torque allocations for slews. However, 60% is likely overly generous because
increasing the available angular momentum storage for a slew requires increasing
its depth of desaturation before the slew, which for large spacecraft usually drives
a requirement for more propellant. For a given slew maneuver and spacecraft, i.e.,
moment of inertia, the momentum and torque limits constrain the maximum angular
velocity and acceleration, which in turn constrain the minimum slew time.

Figure 8.5 depicts the minimum slew times as a function of the spacecraft size.
In each sub-figure, the top-most curve is the most-restrictive constraint on slew
performance, and hence, specifies the minimum slew time. With the baseline
reaction wheel, Figs. 8.5a and 8.5c demonstrate that the slew performance limit
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is due to either the available torque or momentum, not the structure, regardless of
the requirement on the residual angular velocity. Similarly, with the larger reaction
wheel and the coarser pointing requirement, Fig. 8.5b shows that the available
torque again drives the minimum slew time. The only exception is the case with
the larger reaction wheels and the finer pointing requirement; see Fig. 8.5d. In this
case, the structure-based performance limit constrains the minimum slew time for
spacecraft at length scales below approximately 40 m. Above 40 m, the slew times
are again torque-constrained. Even so, below the crossover point, the structure-based
performance limit results in minimum slew times on the same order of magnitude
as those from the torque limit.

Decreasing either the fraction of the momentum and torque available for slews or
the maximum momentum and torque shifts the corresponding curves in Fig. 8.5
up. Similarly, decreasing the requirement on the amplitude of the residual angular
velocity also shifts the corresponding curves in Fig. 8.5 up. Increasing themaximum
momentum and torque is likely to require replacing reaction wheels with control
moment gyroscopes.

Based on Fig. 8.5, the capabilities of each spacecraft’s attitude control system are
often significantly more limiting than the dynamics of the structure. When this is
the case, the results suggest that a lighter-weight, less-stiff, and lower-cost structure
can be used to shift the structure-based performance limit closer to that of the
attitude control system, at least as far as slewing is concerned. The figure likewise
emphasizes that SSPP-like flexible spacecraft can likely achieve slew times on the
order of 10 min or less for 90 deg, single-axis maneuvers at length scales as large
as 50 m. If this is indeed the case, these slew times are realistically an order of
magnitude or more faster than the existing state-of-practice. To gain confidence in
these results, Sec. 8.4 compares the predictions from the reduced-order model for
the 24 m × 24 m spacecraft with those from geometrically nonlinear simulations of
the corresponding full finite element model. In the interim, Sec. 8.3 develops the
optimization approach for determining the viscoelastic damping coefficients that are
inputs to the full finite element model.

8.3 Determination of Kelvin-Voigt Damping Coefficients
The goal of this section is to generalize standard linear damping models, e.g., modal
damping or Rayleigh damping, to geometrically exact finite element formulations.
This allowsmodal damping to be reproduced in the geometrically exact finite element
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simulations in Sec. 8.4.

Unlike linear finite element formulations, where it is straightforward to determine
a global damping matrix, geometrically exact finite element formulations require
modifications at the element level to guarantee that the damping formulation is in-
variant to superposed rigid body motions. Invariant damping formulations only di-
rectly dissipate energy associated with the elastic motion. A recent numerical study
demonstrates that these formulations are important for correctly modeling damping
effects in large-deformation simulations [259]. However, these damping models are
often troublesome due to the difficulties associated with determining appropriate
damping coefficients [260]. To that end, this section proposes an optimization-based
approach for determining these coefficients. Even though this section focuses on
geometrically exact beam finite elements, the approach readily generalizes to other
types of geometrically exact finite elements (e.g., plates or shells) by appropriately
modifying the tangent damping matrix.

The simplest damping model for geometrically exact finite elements is referred to
as Kelvin-Voigt damping. For geometrically exact beams, Kelvin-Voigt damping
augments the constitutive relation [Eq. (4.42)] for the force resultant N and moment
resultant M with terms proportional to the material strain rate ¤� and the material
curvature rate ¤K [148]. In other words,

S = CE + D ¤E (8.1)

where S) =
(
N) ,M)

)
, E) =

(
�) ,K)

)
, C ∈ R6×6 is the sectional stiffness matrix,

and D ∈ R6×6 is the matrix of to-be-determined sectional damping coefficients.
To the author’s knowledge, there are two systematic approaches in the literature
for determining D, although most studies instead tend to use “reasonable guesses”
[213] or sensitivity studies. The first approach [261] derives closed-form expres-
sions for the damping coefficients for geometrically exact beams with homogeneous,
isotropic material properties. However, these expressions assume the availability
of viscoelastic material properties, specifically the viscoelastic bulk and shear vis-
cosities. These material properties are unavailable for the equivalent beam models
of the strips, and hence, this approach is not applicable here. The second approach
[213] applies modal analysis to the linearized partial differential equations govern-
ing the dynamics of geometrically exact beams with simple boundary conditions
to derive expressions for the unknown damping coefficients. The optimization-
based approach developed here generalizes this approach to finite element models
of arbitrary complexity.
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The formulation of the optimization problem starts from the dynamic equilibrium
equations for a nonlinear finite element model:

Finer(g, ¤g, ¥g) + Fint(g, ¤g) = Fext (8.2)

where g ∈ R= is the vector of generalized coordinates, Finer(g, ¤g, ¥g) ∈ R= is the vector
of generalized inertia forces, Fint(g, ¤g) ∈ R= is the vector of generalized viscoelastic
forces, and Fext ∈ R= is the vector of generalized external forces. The tangent
damping matrix C) ∈ R=×= then follows as

C) (g) =
mFint(g, ¤g)

m ¤g . (8.3)

For simplicity (andwithout any loss of generality), these developments only consider
generalized coordinates in a vector space and neglect external constraints, e.g., due
to the joints in flexible multibody systems. The treatment of generalized coordinates
in a Lie group entails straightforward modifications to Eq. (8.3) and what follows.
The formulation is independent of any external constraints on the system.

The tangent damping matrix C) for a finite element model with =4 elements is
defined by a standard finite assembly step. Thus,

C) (g) =
=4∑
4=1

L)4C4
) (L4g)L4 (8.4)

where 4 ∈ {1, 2, . . . , =4}; L4 ∈R=
4
2×= is the Booleanmatrix that indexes the element

nodal coordinates g4 ∈ R=
4
2 from the generalized coordinates g, i.e., g4 = L4g; and

C4
)
∈ R=42×=42 is the elemental tangent damping matrix. For a geometrically exact

beam element of length ℓ4, C4
)
is given by

C4
) (g4) =

∫ ℓ4

0
B) (g4, B)D4B(g4, B) dB (8.5)

where B ∈ R6×12 is the discrete strain gradient matrix [Eq. (5.48)], D4 ∈ R6×6 is the
unknown matrix of viscoelastic damping coefficients for element 4, and B is the arc
length coordinate along the element’s reference axis. The integral in Eq. (8.5) is
normally approximated by a quadrature rule with =@ weights F8 at arc lengths B8. It
follows that

C) (g) =
=4∑
4=1

L)4

(
ℓ4

2

=@∑
8=1

F8B) (L4g, B8)D4B(L4g, B8)
)

L4 (8.6)

which is a linear function of D4.
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From here, an optimization problem determines the =4 unknown matrices of ele-
mental damping coefficients D4 that minimize the error between the global tangent
damping matrix C) and a reference damping matrix Cref. In doing so, the finite
element model inherits the damping characteristics of Cref in the specified config-
uration (here, the initial configuration). A particularly simple choice for Cref is
stiffness-proportional damping; i.e.,

Cref = VK) (8.7)

where V = 2Z1/l1,l1 is the first-mode natural frequency, Z1 is the desired fraction of
critical damping in the first mode, and K) = mFint/mg is the tangent stiffness matrix.
With stiffness-proportional damping, successive modes are more heavily damped.
Specifically, the fraction of critical damping in the 8th mode is Z8 = Z1(l8/l1) where
l8 is the 8th mode’s natural frequency; 8 = 1, . . . , =; and = is the number of modes.
In the undeformed configuration, only the material tangent stiffness [Eq. (5.55)]
contributes to K) , from which it follows that C) and K) share the same matrix
structure (sparsity pattern). This implies that there is an optimal set of elemental
damping coefficients that results in negligible errors between C) and Cref. For this
reason, stiffness-proportional damping is used to determine the elemental damping
coefficients for the dynamic simulations in Sec. 8.4.

Following Sec. 7.3.1 and [243], the optimization problem enforces constraints on
the structure of D4. In general, D4 is a symmetric positive definite matrix, i.e.,
D4 > 0 [148, 261, 262]. For simplicity, however, D4 is taken to be diagonal, i.e.,
D4 = diag {d4}, where the coefficients of d4 are strictly positive. With diagonal D4,
the optimization problem takes the form

minimize
d4 ∀ 4 ∈ {1, 2, ..., =4}

‖C) (g0, d4) − Cref‖� (8.8)

subject to d4 > 06×1. Here,

C) (g0, d4) =
=4∑
4=1

L)4

(
ℓ4

2

=@∑
8=1

F8B) (L4g0, B8) diag {d4}B(L4g0, B8)
)

L4, (8.9)

the subscript 0 denotes the initial (undeformed) configuration, and � denotes the
Frobenius norm.

To solve Eq. (8.8), the constraint d4 > 06×1 is relaxed from strictly positive to simply
nonnegative, i.e., d4 − n16×1 > 06×1 where 16×1 is a vector of ones and n � 1 is
a small positive scalar. This results in a convex program with a unique, globally
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optimal solution. Since C) (g0, d4) is linear in d4, the convex program can then be
manipulated into the more standard form of a constrained least squares problem,
i.e., an optimization problem of the form

minimize
d

‖Ad − b‖� (8.10)

subject to d − n16=4×1 > 06=4×1 where d) =
(
d)1 , . . . , d)4

)
∈ R6=4 . Equation (8.10)

is solved numerically using convex programming, in this case implemented using
CVX [244, 245] with the SDPT3 solver [246, 247].

8.4 Dynamic Simulations of Reference Slew Maneuver
This section uses the full finite element model and the Lie group generalized-U
method [36–38] to simulate the spacecraft’s dynamics during a nominally rest-to-
rest slew maneuver through an angle of 90 deg about the y′ axis depicted in Fig. 8.1.
Secs. 8.4.1 and 8.4.2 respectively describe the approach to and results from these
simulations.

8.4.1 Approach to Dynamic Simulations
The slew maneuver simulations consider the 24 m × 24 m SSPP-like flexible
spacecraft with the “soft” booms from Chapter 7. The booms and strips are both
discretized using the objective, quaternion-based geometrically exact beam finite
elements from Chapter 5. The boom-strip interface constraints are then modeled
using revolute joints [180] and enforced via the method of Lagrange multipliers.
This results in a holonomically-constrained flexiblemultibody dynamicsmodel. The
structure is unrestrained to simulate a free-flying spacecraft. Viscoelastic Kelvin-
Voigt damping [148] is incorporated to replicate the very low modal damping
characteristic of large space structures [90]. The Kelvin-Voigt damping coefficients
are calculated for stiffness-proportional damping with 0.25% of critical damping in
the lowest frequency mode using the optimization-based approach from Sec. 8.3.
For additional details regarding the spacecraft model and its finite element imple-
mentation, see Chapters 5 and 7.

The dynamic simulations integrate the full finite element model using a quaternion-
based implementation of the Lie group generalized-U method [36–38]. As is stan-
dard, the integrator evaluates the response at the discrete time steps C:+1 = C: + ℎ
for all : ∈ {0, 1, . . . , # − 1} where C0 = 0 is the initial time, C 5 = C#−1 is the final
time, ℎ = 0.01 s is the time step size, and # = C 5 /ℎ + 1 is the number of discrete
solution points. Larger time steps lead to numerical instabilities for faster slew ma-
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neuvers. The solver uses the infinity-norm-based convergence criterion [Eq. (5.58)]
with an absolute convergence tolerance of 10−6 for both the generalized force and
constraint residuals. To avoid numerical ill-conditioning, the integrator implements
the optimal scaling strategy from [179].

rp1

rp2

rp3

rp4

rp5

rp6

Figure 8.6: Reference point locations for displacements. rp1 through rp4 are located
at the tips of the booms. rp5 and rp6 are located at the midpoints of the outermost
strips parallel to the rotation axis y′.

The slew maneuver simulations are subdivided into three steps:

1. for C < 0, the spacecraft is at rest in its undeformed configuration;

2. for 0 ≤ C < ) , the spacecraft is actuated by an external moment "H′ applied
at its central node; and

3. for C ≥ ) , the spacecraft is unforced and undergoes damped free vibrations
due to the residual energy remaining from the slew.

The external moment "H′ about the y′ axis from Fig. 8.1 is materially-fixed (i.e.,
fixed in the spacecraft’s body frame) and given by

"H′ (C) = �H′H′ ¥\ (C) (8.11)

where �H′H′ is the spacecraft’s rigid body inertia about the y′ axis from Fig. 8.2 and
¥\ (C) is the angular acceleration for the smooth slew maneuver from Chapter 3 (see
Fig. 3.8). The simulations terminate at some time C 5 > ) to study the residual flexible
dynamics after the completion of the slew. At each time step C: , the simulations
output the displacements at the 6 reference points labeled in Fig. 8.6, along with the
internal bending moments in the strips and the energy. The simulations consider
90 deg, single-axis slew maneuvers with durations ranging from 1 min to 20 min.
A 1 min slew is comparable to the fundamental period of the 24 m× 24 m structure;
see Fig. 8.3b.
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The Lie group generalized-U method includes numerical dissipation specified by
the spectral radius at infinity d∞ ∈ [0, 1] [25]. For flexible multibody systems,
this numerical dissipation (i) eliminates the high-frequency numerical oscillations
associated with the solution of numerically stiff differential equations and (ii) stabi-
lizes the weak numerical instability attributed to the constraints [178]. Physically
accurate simulations often require both physical (in this case, viscoelastic) damping
to attenuate low frequencies and numerical damping to attenuate higher ones [263].
Since physical damping dominates at lower frequencies [263], the small amount of
viscoelastic damping in the finite element model desensitizes the simulations to d∞.
For this reason, the simulations use d∞ = 0.7. This results in a low-to-moderate
amount of high-frequency numerical dissipation and is sufficient to stabilize the
simulations, even for fast slew maneuvers.

As noted in Chapter 6, numerical dissipation can introduce non-physical energy
decay. For this reason, conservation of energy is used as a proxy for accuracy [70].
In particular, the more exactly energy is conserved during the simulations, the more
accurate the simulations. The total energy � at time C: is

E(C: ) = T (C: ) + U(C: ) +Wvisc(C: ) −Wext(C: ) (8.12)

where T is the kinetic energy, U is the strain energy, Wvisc is the work done
by the Kelvin-Voigt damping, and Wext is the external work. Wvisc and Wext

are both evaluated using quadrature rules consistent with the Newmark-V formulas
used for the time-discretization in the generalized-U method. Since the spacecraft
is initially at rest and undeformed, energy conservation implies E(C: ) = 0 for all
: ∈ {0, 1, . . . , #−1}, but numerical dissipation and the accumulation of numerical
errors both contribute to non-conservation of energy.

8.4.2 Simulation Results
Dynamic simulations with the full finite element model are used to develop insights
into the slew maneuver dynamics of the reference spacecraft and to validate the slew
time calculations from the reduced-order modal models in Sec. 8.2. The simulations
consider 90 deg, single-axis slew maneuvers with durations from 1 min to 20 min.
Initially, the results in this section focus on the most aggressive slew maneuver: the
90 deg slew in 1 min. This maneuver features the highest structural loads and the
fastest dynamics of all the simulated maneuvers, and hence, is the most dynamically
interesting. The results then consider a wider range of slew times to validate some
of the slew time calculations from Sec. 8.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.7: Elastic deformations in spacecraft body frame for 90 deg, single-axis
slew maneuver. (a) C = 0 s, (b) C = 12 s, (c) C = 24 s, (d) C = 36 s, (e) C = 48 s, and
(f) C = 60 s.

The 1 min slew is initially used to develop intuition into the slewmaneuver dynamics.
Figure 8.7 depicts snapshots of the deformed configurations of the spacecraft in the
body frame at 12 s intervals. The origin of the body frame is at the center of the
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spacecraft. Initially, the spacecraft is at rest and undeformed (Fig. 8.7a) with an
orientation of 0 deg about the rotation axis. For 0 s ≤ C < 30 s, the spacecraft
is accelerating to its peak angular velocity. The peak angular acceleration occurs
at approximately C = 16.6 s, which implies that the peak displacements occur
shortly after the second snapshot (Fig. 8.7b) taken at C = 12 s. The displacements
subsequently decrease (Fig. 8.7c) as the angular acceleration decreases to zero at
C = 30 s. The angular acceleration retraces its steps in reverse for 30 s ≤ C < 60 s.
Hence, the deformed configurations at times C = 36 s (Fig. 8.7d) and C = 48 s
(Fig. 8.7e) are comparable to those at times C = 24 s and C = 12 s, respectively. Peak
deceleration occurs at approximately C = 43.4 s. At C = 60 s, the spacecraft has
small residual elastic displacements due to its flexible dynamics. Due to symmetry,
there are no deformations along the rotation axis. For longer slew maneuvers, the
deformed configurations in the body frame are comparable to those in Fig. 8.7,
except the peak displacements decrease as the slew time increases.

Figure 8.8 depicts the individual contributions to the energy balance [Eq. (8.12)]
during the 90 deg slew in 1 min. Altogether, these results are as expected. In
particular, both the kinetic energy (Fig. 8.8a) and external work (Fig. 8.8c) peak
at about the same time the slew angular velocity peaks (in this case, C = 30 s).
Likewise, the strain energy (Fig. 8.8b) peaks at approximately the same times as the
angular acceleration, i.e., in the vicinities of C = 16.6 s and C = 43.4 s. The second
strain energy peak is lower than the first, likely due to the viscoelastic dissipation.
The work done by the viscoelastic forces (Fig. 8.8d) continuously dissipates strain
energy. The energy behavior is similar for longer slew maneuvers, except the peak
kinetic and strain energies decrease as the slew time increases.

As a proxy for simulation accuracy, Fig. 8.9 studies the energy balance [Eq. (8.12)]
during the 90 deg, 1 min slew. Since the spacecraft is initially at rest in its undeformed
configuration, E(0) = 0. Conservation of energy then requires E(C: ) = 0 for all
: ∈ {0, 1, . . . , #−1}; any deviations fromzero correspond to errors, the significance
of which depends on the magnitude. Typically, accuracy requires the errors to be
at least several orders of magnitude smaller than the individual energy terms. In
Fig. 8.9, the energy errors peak at approximately 40 s, then decrease in magnitude
to a steady-state on the order of approximately 10−6 J. The peak energy error is
approximately four orders of magnitude smaller than the smallest term in the energy
balance (the viscoelastic dissipation, Fig. 8.8d). Hence, this simulation is likely
accurate, at least for most engineering applications. Unsurprisingly, the energy
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(a) (b)

(c) (d)

Figure 8.8: (a) kinetic energy, (b) strain energy, (c) external work, and (d) viscoelas-
tic dissipation for a 90 deg slew maneuver in 1 min.

errors decrease as the slew time increases; e.g., for the 90 deg slew in 20 min, the
peak energy error is on the order of 10−11 J. In other words, accuracy increases
as the slew time increases due to the smaller structural loads and slower dynamics.
Negative values of the energy balance imply that small amounts of energy are lost
converting the external work into kinetic and strain energy.

The discussion now turns to several structural parameters of practical interest: the
boom tip displacements (Fig. 8.10a), the strip midpoint displacements (Fig. 8.10b),
and the peak out-of-plane bending moments in the strips (Fig. 8.11). In Fig. 8.10a,
the displacements are measured relative to the center of the spacecraft. Due to
symmetry, the displacements at reference points rp2 and rp3 are equal in magnitude
but opposite in direction to those at rp1 and rp4; see Fig. 8.6. Similarly, the
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Figure 8.9: Energy balance [Eq. (8.12)] for a 90 deg slew maneuver in 1 min.

(a) (b)

Figure 8.10: Displacements at (a) boom tips and (b) strip midpoints during a 90 deg
slewmaneuver of the 24 m×24 m SSPP-like spacecraft in 1 min. The strip midpoint
displacements are measured relative to the boom tips.

displacements at rp6 are equal in magnitude but opposite in direction to those at
rp5. The peak displacements at the boom tip are approximately 0.8 m. The strip
midpoint displacements in Fig. 8.10b are measured relative to the tips of the booms.
Thus, while the peak relative displacements at the midpoints of the strips are only
approximately 0.35 m, the total displacements are approximately 1.15 m.

Figure 8.11 depicts the peak out-of-plane bending moments in the strips. The
bending moments in the strips determine the onset of localization and buckling
[24, 217]. The critical out-of-plane buckling moment for the TRAC longerons
in the strips is approximately 0.1 N m [215]. Assuming that the critical buckling
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Figure 8.11: Peak out-of-plane internal bending moments for strips during a 90 deg
slew maneuver in 1 min.

moment for a strip is approximately twice the critical buckling moment for the
individual longerons, then it can be concluded that the strips likely do not buckle
out-of-plane. Thus, the assumptions implicit in the equivalent beam models for the
strips are likely reasonable, at least for the sake of preliminary design and analysis.
In-plane buckling, however, is more complex due to the additional bending stiffness
contributed by the battens. Consequently, it is difficult to draw any meaningful
conclusions about in-plane localization and buckling. Additionally, the strips may
experience premature localization and buckling due to the combination of both in-
plane and out-of-plane moments. As a result, a more detailed study of localization
and buckling during slew maneuvers is warranted. This is left to future work.

Due to symmetry, the peak bending moments occur at the midpoints of the strips
parallel to the rotation axes, i.e., on the line connecting reference points rp5 and
rp6. The peak bending moments are a function of both the inertial loads and the
deflections of the booms. For these reasons, the simulations predict that the peak
bending moments do not necessarily occur in the outermost strips.

Lastly, the geometrically nonlinear finite element simulations are used to validate the
slew time calculations from Sec. 8.2. This involves comparing the amplitudes of the
residual angular velocities predicted by the reduced-order model for the 24 m×24 m
spacecraft with the predictions from the full finite element model as a function of
slew time. For the full finite element model, the amplitude of the residual angular
velocity, denoted Ω, is calculated from

T ()) + U()) = 1
2
�H′H′Ω

2 (8.13)
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Figure 8.12: Amplitude of the residual spacecraft bus angular velocity as a function
of slew time.

where ) is the slew time and �H′H′ is the moment of inertia about the slew axis from
Fig. 8.2. In other words, Ω is the angular velocity that results from converting all
the residual strain energy in the structure into kinetic energy about the slew axis.
Figure 8.12 compares the results. Based on the figure, the predictions from the
reduced-order model show excellent agreement with the full finite element model,
especially considering that the reduced-order model only includes two symmetric
flexible modes and is undamped. However, some caution is warranted here. Even
though the reduced-order model provides accurate predictions of the residual angu-
lar velocity, this by no means guarantees that the reduced-order model is also going
to provide accurate predictions of other figures of merit, e.g., the internal forces and
moments in the structure. Regardless, these results suggest that the elastic deforma-
tions stay within the small-deflection regime despite the large rigid body rotation
during the slew maneuver. Moreover, since the reduced-order model consistently
overestimates Ω, the results demonstrate that its predictions are both accurate and
conservative, at least at the 24 m × 24 m scale. Thus, it appears feasible to slew
a 24 m × 24 m flexible spacecraft with a first-mode frequency of approximately
25 mHz 90 deg about a single-axis in 10 min or less. This is significantly faster than
the current state-of-practice.

8.5 Application of Variational Integrator to Slew Maneuver Dynamics
This last section repeats the simulations fromSec. 8.4 using the variational integrator
from Chapter 6. This facilitates comparisons of the accuracy and energy behavior
of the more traditional structural dynamics integrator, the Lie group generalized-
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U method [36–38], with the variational integrator for a larger-scale engineering
problem. Unlike the Lie group generalized-U method, the variational integrator
achieves stability without numerical dissipation for the simulated slew maneuvers.
For brevity, this section focuses on the most numerically challenging slew maneuver
simulation, the 1 min slew, which features the highest structural loads and the fastest
dynamics of the simulated maneuvers.

(a) (b)

Figure 8.13: Comparison of (a) boom tip displacements at rp1 and (b) strip midpoint
displacements at rp5 from generalized-U method (GU) and variational integrator
(VI). Due to symmetry, the displacements at rp4 are the same as rp1.

Figures 8.13a and 8.13b compare the displacements calculated from the generalized-
U method and the variational integrator at reference points rp1 (the boom tip) and
rp5 (the strip midpoint); see Fig. 8.6. Due to symmetry, the displacements at rp4
are the same as those at rp1. Likewise, the displacements at rp2, rp3, and rp6
are the negatives of those at rp1, rp4, and rp5. Both integrators predict virtually
the same boom tip and strip midpoint displacements throughout the simulation.
The displacement predictions at other points on the structure show similarly good
agreement. Thus, both integrators exhibit comparable accuracies, at least as far as
the displacements are concerned.

As an initial comparison of the energy behavior, Fig. 8.14 compares the kinetic
energy (Fig. 8.14a), strain energy (Fig. 8.14b), external work (Fig. 8.14c), and
viscous work (Fig. 8.14d) for the generalized-U method and the variational integra-
tor. Here, the kinetic energy at C: for the variational integrator is evaluated from
the discrete generalized momenta h: using T: = h)

:
M−1(g: )h:/2 where M(g) is
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(a) (b)

(c) (d)

Figure 8.14: Comparison of (a) kinetic energy, (b) strain energy, (c) external work,
and (d) viscous work from generalized-U method (GU) and variational integrator
(VI).

the configuration-dependent mass matrix [Eq. (5.57)]. In each case, the energy
predictions from both integrators are virtually identical.

To highlight the discrepancies between each integrator’s energy behavior, Fig. 8.15
compares their energy balances [Eq. (8.12)]. Since the spacecraft initially starts at
rest in its undeformed configuration, perfect energy conservation implies E(C: ) = 0
for all : ∈ {0, 1, . . . , # − 1}. For the generalized-U method, the errors in the
energy balance are on the order of 10−6 J, which is approximately four orders of
magnitude smaller than the viscous work and five or six orders of magnitude smaller
than the other energy components. In contrast, the errors in the energy balance for
the variational integrator are on the order of 10−2 J, i.e., they are of the same order
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Figure 8.15: Comparison of energy balance [Eq. (8.12)] from generalized-Umethod
(GU) and variational integrator (VI).

of magnitude as the viscous work. Hence, the energy errors associated with the
variational integrator are not negligible.

These results emphasize the disconnect between the fundamental theory of discrete
mechanics underlying the variational integrator and its practical implementation.
The theory demonstrates that the long-duration energy behavior of a variational
integrator usually remains small and bounded [28]. However, theoretical guaran-
tees are just that, theoretical, and are by no means immune to practical numerical
problems. Here, the variational integrator’s inferior energy behavior is likely due
to its worse numerical conditioning than the generalized-U method. For implicit
integrators, conditioning refers to the value of the condition number of the dy-
namic tangent matrix inverted during each Newton-Raphson iteration. With the
generalized-U method, these condition numbers are typically on the order of 109,
whereas with the variational integrator, they are typically on the order of 1013. The
higher the condition number, the worse the accuracy of the configuration update
calculated from each matrix inversion. As a result, it is not surprising that the vari-
ational integrator’s four order of magnitude increase in condition number translates
into a proportional increase in its energy error. Similar relative errors between the
generalized-U method and the variational integrator are observed across the range
of simulated slew maneuvers. For a detailed discussion of related issues pertain-
ing to the solvability of each Newton-Raphson iteration for Lie group variational
integrators in rigid body dynamics, see [264].

As a final remark, the comparison of these two integrators is not entirely fair. The
implementation of the Lie group generalized-U method uses the optimal precondi-
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tioner from [179]. The variational integrator, on the other hand, does not benefit
from any sort of preconditioner (aside from a multiplication of the linearized mo-
mentum balance by the time step ℎ), let alone an optimal one, for the simple reason
that an optimal preconditioner is currently unavailable in the literature. For that
matter, the author is unaware of any examples in the literature of preconditioners for
variational integrators. For these reasons, the results in this section do not invalidate
the variational integrator. Instead, they emphasize that there are important practi-
cal developments required for variational integrators to reach the requisite level of
maturity for wide-scale adoption in engineering.

8.6 Discussion
This chapter has studied the dynamics of ultralight flexible spacecraft during slew
maneuvers. It first derived reduced-order modal models for a representative ultra-
light flexible spacecraft based on the Caltech Space Solar Power Project (SSPP)
architecture with length scales between 5 m and 50 m. It subsequently used these
reduced-order models to predict feasible slew times for a 90 deg, single-axis slew
maneuver. These results compared the structure-based slew performance limits
with those due to the available momentum and torque from the spacecraft’s attitude
control system. Consequently, they suggest that the attitude control system often
imposes more restrictive slew limits than the structure. When the structure is not the
limit, spacecraft can potentially fly lighter-weight, less-stiff, and lower-cost struc-
tures that result in structure-based performance limits closer to those of the rest of
the system.

The chapter then demonstrated the feasibility of using geometrically nonlinear finite
element models for simulating flexible spacecraft attitude dynamics during slewma-
neuvers. To facilitate these simulations, the chapter proposed a systematic approach
for determining viscoelastic damping coefficients for geometrically exact finite el-
ement models. Simulations for a 24 m × 24 m SSPP spacecraft slewing 90 deg in
as fast as 1 min showed that the peak deflections at the tips of the booms do not
exceed 1 m. Similarly, the maximum out-of-plane bending moments in the strips do
not exceed 0.15 N m, a value likely comparable to their critical buckling moments.
Thus, the critical buckling moment imposes a lower bound on the slew time. Simu-
lations for 90 deg slewmaneuvers with durations from 1 min to 20 min subsequently
established that the slew time predictions from the reduced-order models are both
accurate and conservative. The excellent agreement between the reduced-order
model and the full finite element model implies that the elastic deformations remain
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in the small-deflection regime despite the large overall motions.

Taken together, these results indicate that a 24 m × 24 m flexible spacecraft with an
approximately 25 mHz first mode can be slewed 90 deg in 10 min or less. This is one
to two orders of magnitude faster than the current state-of-practice. For this reason,
existing spacecraft designs are likely overly stiff with overly conservative design
margins, which suggests that there are opportunities to either slew flexible spacecraft
faster or fly less-conservative, lighter-weight spacecraft structures. Nevertheless,
efforts to fly these structures must acknowledge the reality that many other design
drivers (e.g., launch loads and propulsive maneuvers) also impose constraints on the
structural design. These constraintsmay ultimately limit the achievable performance
gains.

Lastly, the chapter has compared the performance of a more traditional structural
dynamics integrator, the Lie group generalized-U method [36–38], with the varia-
tional integrator from Chapter 6 for simulating slew maneuver dynamics. Structure-
preserving integrators like variational integrators initially appeared promising for
these simulations due to their usually excellent long-duration energy behavior. How-
ever, contrary to expectations (and the results in Chapter 6), the variational integrator
actually exhibited inferior energy behavior during the slew maneuver simulations.
This is likely a numerical artifact associated with the variational integrator’s com-
paratively poor numerical conditioning, which suggests that there are important
practical considerations currently limiting the utility of variational integrators for
some larger-scale engineering problems.
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C h a p t e r 9

CONCLUSION

9.1 Summary and Contributions
This thesis has studied the feasibility and limitations of slewing next-generation, ul-
tralight flexible spacecraft with natural frequencies up to several orders of magnitude
lower than the current state-of-the-art. The results demonstrate that contrary to com-
mon assumptions, structure-based slew performance limits are often less-restrictive
than those associated with other constraints on the spacecraft. In particular, they
show that the available momentum and torque capacities of the spacecraft’s atti-
tude control system are often significantly more limiting than the structure. This
suggests that current spacecraft structural designs for many applications are overly
stiff with overly conservative design margins. Thus, the results emphasize that flex-
ible spacecraft can either be maneuvered faster (if sufficiently capable actuators are
available) or be constructed with lighter-weight, less-stiff, and lower-cost structures
that achieve structure-based performance limits closer to those of the rest of the
system. Ultimately, geometrically nonlinear finite element simulations illustrate
how a 24 m × 24 m flexible spacecraft with a first-mode frequency of approxi-
mately 25 mHz can be slewed 90 deg about a single axis in 10 min or less. This is
significantly faster than the current state-of-practice.

The specific contributions of each chapter of the thesis are as follows:

Chapter 2 provided a motivating example for much of the rest of the thesis: the
Caltech Space Solar Power Project (SSPP) [13]. The Caltech SSPP concept is
predicated on the use of ultralight flexible spacecraft to achieve an order ofmagnitude
reduction in mass, and hence, cost, compared to more traditional space solar power
concepts. However, maximizing the transmitted power requires two approximately
90 deg, single-axis slew maneuvers per orbit [40]. The results emphasize that the
slew time has a significant effect on the average power transmission efficiency, with
faster slew maneuvers being more efficient. For example, decreasing the slew time
from 2 h to 10 min is found to be comparable to increasing the photovoltaic cell
efficiency from 25% to 26%.

Chapter 3 demonstrated the use of the Craig-Bampton method [30, 31] to rigorously
derive low-order modal models for flexible spacecraft and addressed issues pertain-
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ing to mode selection and model reduction for symmetric structures. The chapter
then showed that settling time is a poor metric for determining flexible spacecraft
slew maneuver requirements. This is because settling times can lead to slew times
that are hundreds of times or more longer than the spacecraft’s fundamental natural
period. Instead, the chapter proposed using a new performance metric based on
the amplitude of the residual angular velocity after a slew for determining slew
maneuver requirements. The fundamental idea underlying this metric is that it is
more advantageous to maintain any residual flexible dynamics to a tolerable level
than it is to wait for them to dissipate. Finally, the results emphasized that both
the “shape” of a slew maneuver and the ratio )/)= between the slew time ) and
fundamental natural period )= drive the dynamics during and after a slew. As an
example, it illustrated how a simple “smooth” slew can reduce the amplitude of
the residual angular velocity by several orders of magnitude compared to a more
standard “bang-bang” one.

Chapters 4, 5, and 6 proposed two novel quaternion-based geometrically exact beam
finite elements. Chapter 5 specifically proposed a continuous-time, quaternion-
based reparameterization of the geometrically exact beam finite element from [121].
The quaternion parameterization yields a finite element with several incremental im-
provements over much of the existing state-of-the-art. Chapter 6 then proposed a
quaternion-based variational integrator for simulating the dynamics of geometrically
exact beams. The derivation used a structure-preserving temporal discretization of
the continuous-time variational principle based on a geometric interpretation of the
midpoint quaternion. Both formulations are objective [129, 153, 154], i.e., their
spatial discretizations (which in this case are based on spherical linear interpolation
[133, 140]) preserve the invariance of the 1D continuum strain measures to super-
posed rigid body motions. This invariance is important for accurately simulating
the dynamics of flexible spacecraft during large-rotation slew maneuvers. The vari-
ational integrator exhibited near-perfect energy conservation during long-duration
simulations of several standard benchmark problems, whereas a more traditional
structural dynamics integrator, the Lie group generalized-U method [36–38], exhib-
ited significant non-physical energy decay. A major feature of both formulations
is their use of recent results from quaternion calculus [139] to account for the Lie
group structure of the rotational degrees of freedom. The mathematical approach is
conceptually much simpler than more traditional approaches rooted in differential
geometry, and hence, intended to be more straightforward to derive and implement
than many existing geometrically exact beam finite elements.
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Chapter 7 used the finite elements from Chapter 5 to develop and implement a
flexible multibody dynamics finite element model of a representative ultralight
flexible spacecraft based on the Caltech SSPP structural architecture [13]. To
increase its computational tractability, the model replaced the thin-shell, ladder-like
structures called strips [35] from the original SSPP architecture with equivalent
beams. A modal analysis of the complete finite element model then showed that
the boom stiffness drives the dynamic properties of the structure. In particular,
decreasing the boom stiffness increases the coupling between the vibrations of the
booms and strips. Additionally, the modal analysis demonstrated that despite the
structure’s complexity, only a small number of modes (typically less than 10) are still
responsible for the majority of the modal participation. This justified the subsequent
use of reduced-order modal models in Chapter 8.

Chapter 8 described the most important results of the thesis. The chapter first used
the methods from Chapter 3 and the finite element model from Chapter 7 to derive
reduced-order modal models of the representative ultralight flexible spacecraft.
These reduced-order models were then used to evaluate the slew performance metric
from Chapter 3 and predict minimum slew times. Comparisons with the slew
performance limits imposed by the capabilities of the spacecraft’s attitude control
system stressed that the structure is often not the limit on slew performance. Instead,
the available momentum and torque were shown to often be significantly more
limiting than the structure. The chapter then demonstrated the use of geometrically
nonlinear finite element models for simulating flexible spacecraft attitude dynamics.
These simulations revealed insights into the spacecraft’s slew maneuver dynamics
and confirmed both the accuracy and conservatism of the reduced-order models.
Based on these results, it was concluded that a 24 m × 24 m flexible spacecraft
with an approximately 25 mHz first mode can feasibly be slewed 90 deg about a
single axis in 10 min or less. This is significantly faster than the current state-of-
practice. Finally, the chapter applied the variational integrator from Chapter 6 to
the slew maneuver problem and compared the results with those from the Lie group
generalized-U method. The results were unexpected. The variational integrator
exhibited similar displacement accuracies but inferior energy behavior due to its
comparatively poor numerical conditioning. This provides the motivation for some
of the future work in Sec. 9.2.

Collectively, the results in Chapter 8 emphasize that existing spacecraft designs are
likely overly stiff and overly conservative, opening the door to the deployment of
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lighter-weight, less-stiff, lower-cost, and higher-performance spacecraft structures.
However, any attempts to improve structural performance must acknowledge the
reality that slewing is just one of many important structural design drivers. The
constraints associated with other structural design drivers (e.g., launch loads and
propulsive maneuvers) may ultimately limit the achievable performance gains.

9.2 Future Research Directions
This thesis is a proof of concept for demonstrating the feasibility of slewing larger and
more flexible spacecraft faster. However, there is substantial future work required to
advance the requisite technologies towards flight. To that end, possible directions
for future research are outlined below.

1. Design for dynamics

Much of the work in this thesis emphasizes the close relationship between structural
design and dynamic performance. Achieving higher performance likely requires
more careful consideration of the interactions between the structural design and its
dynamics. A recent study by Lee and Pellegrino [24] proposes a framework for the
optimal quasi-static design of ultralight spacecraft structural architectures. Thus,
a possible avenue for future work involves extending their design framework to
include dynamic effects, e.g., how the boom stiffness determines the peak internal
bending moments in the strips. Ideally, any such design framework should also
include slew maneuver performance, and potentially even the slew maneuver itself,
as design variables in the optimization. Ultimately, more tightly coupling the
structure, dynamic, and slew maneuver designs is likely to result in more efficient,
higher-performing space systems.

2. Robust slew maneuvers

Chapter 3 demonstrates that even simple “smooth” slewmaneuvers can significantly
reduce the impact of the residual flexible dynamics, in this case, by several orders of
magnitude relative to a baseline “bang-bang” slew. This result suggests that there
is an opportunity to use modern robust optimal control methods [100–103] (likely
in conjunction with the types of reduced-order models discussed in this thesis) to
design slewmaneuvers that are simultaneously robust to the uncertainties inherent to
flexible spacecraft structures, minimize the impact of the residual flexible dynamics,
and satisfy any constraints on the system. Importantly, thesemaneuvers can likely be
flown using existing spacecraft attitude control systems, making them a potentially
low-risk approach for improving the performance of flexible spacecraft.



192

3. Dynamics and control experiments

There are considerable difficulties associated with doing representative, laboratory-
scale experiments of ultralight flexible spacecraft dynamics. It is particularly difficult
to replicate both their low-frequency flexible dynamics and the absence of gravity.
For example, even though the Caltech SSPP has developed several laboratory-scale
prototypes of their spacecraft structural architecture [7, 218], these prototypes are
too stiff to use in representative experiments of the full-scale flight system. For
these reasons, the work in this thesis is purely computational. However, the costs
and complexities associated with in-space technology demonstrations motivate the
development of experiments to support technology maturation and risk reduction.
Several recent studies [265, 266] are proofs of concept for the requisite experiments,
albeit with structural dynamics several orders of magnitude higher in frequency
than those studied here. Initial experiments should focus on model development,
validation, and uncertainty quantification for simple slewmaneuvers of very flexible
structures. Subsequent experiments can study more complex slew maneuvers and
structures, like those susceptible to localized nonlinearities [217], and should include
the requisite hardware and software for closed-loop attitude control. Additionally,
these experiments can demonstrate the use of reduced-order models during the
design, analysis, and real-time implementation of complex slew maneuvers and
optimal controllers for ultralight flexible spacecraft.

4. Computational modeling

Due to the difficulties associated with testing large, flexible spacecraft in represen-
tative 0-g environments before launch [14–18], computational modeling is likely to
play an outsize role in their verification, validation, and risk reduction. As a result,
efficient, high-fidelity simulations are expected to be paramount throughout the de-
sign and operation of these spacecraft. Since high-fidelity finite element models are
traditionally used for analysis, not design, increasing their computational efficiency
has the potential to promote their more widespread use throughout the spacecraft
design life cycle.

The numerical methods developed in this thesis are limited to the prediction of
macroscale structural phenomena, and hence, are unable to capture the small-scale
nonlinearities like localization and buckling that are characteristic of ultralight com-
posite spacecraft structures [24, 215, 217, 227]. High-fidelity models are important
for accurately predicting the structural dynamic effects of these localized nonlin-
earities, for expanding a spacecraft’s flight envelope to include more aggressive
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on-orbit maneuvers, and for validating reduced-order models. Nonlinear model or-
der reduction techniques, like those based on nonlinear Galerkin projections [267]
and hyper-reduction [268], are potentially promising for efficiently modeling these
localized nonlinearities, although these techniques are predicated on the availability
of a sufficiently high-fidelity finite element model. An alternative approach is to
incorporate localized nonlinearities into geometrically exact beam finite element
formulations, e.g., by using a Carrera-type formulation that models cross-sectional
deformations [122] or by using nonlinear homogenization techniques to derive non-
linear, deformation-dependent constitutive relations.

Additionally, the results in this thesis highlight several limitations of existing
structure-preserving numerical methods. Current structure-preserving spatial dis-
cretizations for rotational degrees of freedom, like spherical linear interpolation
[133, 140], are analogous to linear interpolation on a Lie group. This leads to low-
order finite element formulations. Higher-order Lie group interpolationmethods can
improve both the accuracy and efficiency of the resulting finite elements. Similarly,
the quaternion-based variational integrator for geometrically exact beams devel-
oped in Chapter 6 exhibits poor numerical conditioning for larger-scale problems.
This emphasizes the importance of addressing the numerous practical considera-
tions required for these types of integrators to reach sufficient maturity for their
more widespread adoption in engineering. Here, possible lines of inquiry include
the development of optimal preconditioners to reduce problems associated with ill-
conditioning and a study of the relationship between the temporal discretization of
the variational principle and the numerical properties of the resulting discrete-time
propagation equations.
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A p p e n d i x A

HEDGEPETH’S SLEW MANEUVER REQUIREMENT

The goals of this appendix are twofold: (i) to derive the first-mode natural frequency
requirement for a slewing flexible spacecraft presented in Hedgepeth [96], and (ii)
to compare this requirement with the requirements from Sec. 3.4.3. The derivations
in this appendix are based on the canonical flexible spacecraft model [Eq. (3.1)]
with the notation and conventions for attitude slew maneuvers from Sec. 3.4. For
these reasons, this appendix assumes familiarity with the material from Chapter 3.

Per [96], the relationship between the fixed-base natural frequency 5= (in hertz) and
the peak slew acceleration ¥\ for the canonical flexible spacecraft is

5= =

√
1

2c2
�2/�1

1 + �2/�1

¥\
|\1, 5 |

(A.1)

where �1 and �2 respectively denote the rotational inertias of the “bus” and flexible
“appendage” and |\1, 5 | is the amplitude of the residual angular position disturbance
on the bus due to the motion of the appendage. Equation (A.1) is derived from the
undamped solution to Eq. (3.1) with the initial conditions

\1(0) = 0, (A.2)
¤\1(0) = 0, (A.3)

\2(0) = ¥\
/ (

4c2 5 2
=

)
, (A.4)

¤\2(0) = 0. (A.5)

These initial conditions correspond to a spacecraft initially at rest with an elastically
deformed appendage. The initial elastic deformation \2(0) is the peak quasi-static
deformation of the appendage due to an inertial load with acceleration ¥\; for a
general derivation of Eq. (A.4) for a structure with an arbitrary number of modes,
see [269, 270]. Importantly, Eq. (A.1) does not explicitly account for the dynamics
of the slew maneuver. Instead, it assumes that the residual bus motion \1(C) after
the slew is entirely due to the maximum deflection of the appendage during the slew.
The derivation of Eq. (A.1) does not explicitly consider the appendage motion \2(C).
Hence, only the solution to Eq. (3.1) for \1(C) appears in what follows.



220

The solution to Eq. (3.1) for the bus motion \1(C) with the initial conditions
[Eqs. (A.2)–(A.5)] is

\1(C) =
�2/�1

1 + �2/�1

¥\
4c2 5 2

=

[
1 − cos

(
2c

√
1 + �2/�1 5=C

)]
. (A.6)

The amplitude of \1(C) then follows as

|\1, 5 | =
�2/�1

1 + �2/�1

¥\
2c2 5 2

=

(A.7)

where the subscript 5 emphasizes that themotion of the spacecraft bus is entirely due
to the flexibility of the appendage. Solving Eq. (A.7) for 5= results in Hedgepeth’s
requirement [Eq. (A.1)]. Equation (A.1) defines the minimum natural frequency
5= such that the maximum disturbance on the spacecraft bus due to an initial static
appendage deflection \2(0) is guaranteed to be less than or equal to |\1, 5 |.

The slew maneuver requirements developed in Chapter 3 are based on the amplitude
of the residual angular velocity | ¤\1, 5 |, not |\1, 5 |. To facilitate comparisons with
Chapter 3, Hedgepeth’s approach is also used to derive an expression analogous to
Eq. (A.1) in terms of | ¤\1, 5 |. The time derivative of \1(C) is

¤\1(C) =
�2/�1√

1 + �2/�1

¥\
2c 5=

sin
(
2c

√
1 + �2/�1 5=C

)
, (A.8)

from which it follows that the amplitude of ¤\1(C) is

| ¤\1, 5 | =
�2/�1√

1 + �2/�1

¥\
2c 5=

. (A.9)

Solving Eq. (A.9) for 5= then yields

5= =
1

2c
�2/�1√

1 + �2/�1

¥\
| ¤\1, 5 |

(A.10)

which is analogous to Eq. (A.1). Of note is that in Eq. (A.1), 5= is proportional to
¥\1/2, whereas here, 5= is proportional to ¥\.

For a bang-bang slew (see Fig. 3.2), the peak acceleration for a maneuver through
an angle Δ\ in time ) is ¥\ = 4Δ\/)2 [Eq. (3.50)]. It follows that for a bang-bang
slew, Eq. (A.10) takes the form

| ¤\1, 5 |
(Δ\/)) =

2
c

�2/�1√
1 + �2/�1

(
)

)=

)−1
(A.11)
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where )= = 1/ 5= is the natural period. Comparing Eq. (A.11) with the analogous
expression for a bang-bang slew from Chapter 3 [Eq. (3.54)] then reveals that

)�

)��
=

1
2

(A.12)

where the superscripts � and �� denote the slew times from Eqs. (A.11) and (3.54),
respectively. Thus, given a requirement on | ¤\1, 5 |, Hedgepeth’s approach predicts a
slew time two times faster for a bang-bang slew than the analysis from Chapter 3.
Said another way, for a fixed slew time) , Hedgepeth’s approach underpredicts | ¤\1, 5 |
by a factor of four. The takeaway is that it is insufficient to simply consider the peak
quasi-static inertial loads during the definition of structure-based slew maneuver
requirements. Instead, any analysis of these requirements must take into account
both the modal properties of the structure and the slew maneuver profile.
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A p p e n d i x B

SPHERICAL LINEAR INTERPOLATION

The purpose of this appendix is to catalog identities related to the spherical linear
interpolation (slerp) [133, 140] of the quaternion degrees of freedom in the finite
element formulations from Chapters 5 and 6. All the derivatives and Jacobians in
this appendix are straightforward (albeit often tedious) to derive, and hence, are
stated without proof. They likewise assume that \ ≤ c/2, i.e.., the interpolation
traces the shortest arc between two quaternions p1 and p2. Due to its geometrical
interpretation on the unit three-sphere, slerp and the formulas compiled here are
independent of the chosen quaternion conventions.

The set of unit quaternions is equivalent to the unit three-sphere. The simplest
interpolation on the unit three-sphere is along the arc of a great circle (a geodesic)
at a constant angular rate. This corresponds to linear interpolation on the unit three-
sphere, meaning it is the quaternion analogue of linear interpolation in Euclidean
space. Hence, it is referred to as spherical linear interpolation. The slerp formula
reads [133, 140]

p(f) = #1(f)p1 + #2(f)p2 (B.1)

where f ∈ [0, 1] parameterizes the arc of the great circle, p(f) is the interpolated
quaternion, and #1(f) and #2(f) are given by

#1(f) = sin ((1 − f)\) csc(\), (B.2)

#2(f) = sin (f\) csc(\). (B.3)

The parameter \ is the angle between p1 and p2 on the unit three-sphere, i.e.,

cos(\) = p)2 p1. (B.4)

A detailed derivation of slerp is outside the scope of this appendix; instead, interested
readers are referred to the existing literature, e.g., [133, 140] and the references
therein. For the initially straight beam finite elements studied in Chapters 5 and 6,
p1 and p2 define the element’s nodal orientations and f = B/ℓ where B is the arc
length along the element’s longitudinal axis of length ℓ.
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For plane rotations, slerp is equivalent to linear interpolation. This is straightforward
to show by substituting

p1 = (0, 0, 0, 1)) ,
p2 = (0, 0, sin(q/2), cos(q/2)))

into Eq. (B.1) and simplifying, which corresponds to the interpolation of the relative
rotation q between the two quaternions. Similarly, in the limit as \ → 0,

lim
\→0

#1(f) = 1 − f, (B.5)

lim
\→0

#2(f) = f. (B.6)

Thus, slerp reduces to standard linear interpolation when \ = 0, as occurs, e.g., in
the initial (undeformed) configuration of an initially straight beam.

In what follows, gradients are expressed using the numerator-layout (Jacobian)
convention; i.e., for a function 5 (x) : R= → R, m 5 /mx ∈ R1×=. The symbol I=×=
denotes the identity matrix in R=×=. Dot and prime notation are respectively used
to denote derivatives with respect to time C and space f. Since spatial derivatives
are evaluated with respect to f, not B, the corresponding derivatives with respect to
B can be recovered from the chain rule, i.e.,

m

mB
=

m

mf

mf

mB
=

1
ℓ

m

mf
. (B.7)

To simplify notation, explicit dependencies on f are dropped in what follows.

B.1 Spatial Derivative
The spatial derivative of Eq. (B.1) is

p′ = #′1p1 + #′2p2 (B.8)

where #′1 = −\ csc(\) cos ((1 − f)\) and #′2 = \ csc(\) cos (f\).

B.2 Temporal Derivatives
The temporal derivatives of Eq. (B.1) are

¤p = ¤#1p1 + #1 ¤p1 + ¤#2p2 + #2 ¤p2, (B.9)

¥p = ¥#1p1 + 2 ¤#1 ¤p1 + #1 ¥p1 + ¥#2p2 + 2 ¤#2 ¤p2 + #2 ¥p2 (B.10)
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where

¤#8 = ¤\
m#8

m\
, (B.11)

¥#8 = ¥\
m#8

m\
+ ¤\2 m

2#8

m\2 (B.12)

for 8 = 1, 2 and the temporal derivatives of \ are given by

¤\ = − csc(\)
(
¤p)2 p1 + p)2 ¤p1

)
, (B.13)

¥\ = − cot(\) ¤\2 − csc(\)
(
¥p)2 p1 + 2 ¤p)2 ¤p1 + p)2 ¥p1

)
. (B.14)

Likewise, the derivatives of #1 and #2 with respect to \ are

m#8

m\
= csc(\) (f8 cos (f8\) − cot(\) sin (f8\)) , (B.15)

m2#8

m\2 = csc(\)
((

cot2(\) + csc2(\) − f2
8

)
sin (f8\) − 2f8 cot(\) cos (f8\)

)
(B.16)

which hold for 8 = 1, 2. Here, f1 = 1 − f and f2 = f.

B.3 Jacobians
The following Jacobians appear in the linearization of slerp and its derivatives:

mp
mp1

=
m ¤p
m ¤p1

=
m ¥p
m ¥p1

= p1
m#1
mp1
+ p2

m#2
mp1
+ #1I4×4, (B.17)

mp
mp2

=
m ¤p
m ¤p2

=
m ¥p
m ¥p2

= p1
m#1
mp2
+ p2

m#2
mp2
+ #2I4×4, (B.18)

mp′

mp1
= p1

m#′1
mp1
+ p2

m#′2
mp1
+ #′1I4×4, (B.19)

mp′

mp2
= p1

m#′1
mp2
+ p2

m#′2
mp2
+ #′2I4×4 (B.20)

where the corresponding Jacobians of #1 and #2 are

m#1
mp1

=
m ¤#1
m ¤p1

=
m ¥#1
m ¥p1

= − csc(\) m#1
m\

p)2 , (B.21)

m#1
mp2

=
m ¤#1
m ¤p2

=
m ¥#1
m ¥p2

= − csc(\) m#1
m\

p)1 , (B.22)

m#2
mp1

=
m ¤#2
m ¤p1

=
m ¥#2
m ¥p1

= − csc(\) m#2
m\

p)2 , (B.23)

m#2
mp2

=
m ¤#2
m ¤p2

=
m ¥#2
m ¥p2

= − csc(\) m#2
m\

p)1 . (B.24)
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Similarly, the Jacobians of #′1 and #
′
2 are

m#′1
mp1

= − csc(\)
m#′1
m\

p)2 , (B.25)

m#′1
mp2

= − csc(\)
m#′1
m\

p)1 , (B.26)

m#′2
mp1

= − csc(\)
m#′2
m\

p)2 , (B.27)

m#′2
mp2

= − csc(\)
m#′2
m\

p)1 (B.28)

where

m#′
8

m\
= (−1)8−1 csc(\) ((\ cot(\) − 1) cos (f8\) + f8\ sin (f8\)) (B.29)

for 8 = 1, 2.
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A p p e n d i x C

GEOMETRIC TANGENT STIFFNESS MATRIX

This appendix derives the geometric tangent stiffness matrix K� for the geomet-
rically exact beam finite element developed in Chapter 5. The geometric tangent
stiffness matrix is defined by Eq. (5.56) (reproduced below):

K� =

∫ ℓ

0

mB)

mg
Sℎ dB (C.1)

whereB is the discrete strain gradientmatrix [Eq. (5.37)] andSℎ contains the discrete
internal force and moment resultants. Equivalently, since S) =

(
N) ,M)

)
,

K� =

∫ ℓ

0

mB)

mg

[
Nℎ

Mℎ

]
dB. (C.2)

To simplify notation, the superscript ℎ is dropped in what follows, i.e., Nℎ → N and
Mℎ →M.

The quantity mB)/mg is a third-order tensor. To simplify its evaluation, a matrix W
is defined such that

W =
mB)

mg

[
N
M

]
=
m

mg

(
B)

[
N
M

])
(C.3)

where N and M are treated as constants with respect to the differentiation. Hence,

K� =

∫ ℓ

0
W dB. (C.4)

Substituting B [Eq. (5.37)] into Eq. (C.3) then gives

W =
m

mg
©­­«P)


�(p)N

2G(p)M
−2L(Tx′)G(p)N − 2G(p′)M


ª®®®¬ (C.5)

where the strain interpolation matrix P [Eq. (5.34)] depends on g through the slerp
shape functions. Assuming mP)/mg is negligible, i.e., that the geometric stiffness
is insensitive to small changes in \ = cos−1 (

p)1 p2
)
, then W becomes

W = P)
m

mg


�(p)N

2G(p)M
−2L(Tx′)G(p)N − 2G(p′)M

 . (C.6)
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Further simplifications of W require the following identities involving a quaternion
p ∈ H1 and a vector v ∈ R3:

R(Tv) = −R) (Tv), (C.7)

G(p)v = R(Tv)p, (C.8)

H) (p)v = L(Tv)p, (C.9)

L(Tv1)G(p)v2 = R(Tv2)H) (p)v1, (C.10)

X(�(p)v) = −2H) (p)R) (Tv)Xp. (C.11)

From these identities, it is straightforward to derive the variations

X (�(p)N) = 2H) (p)R(TN)Xp, (C.12)

X (G(p)M) = R(TM)Xp, (C.13)

X (L(Tx′)G(p)N) = −R) (TN)H) (p)Xx′ − R) (TN)L(Tx′)Xp, (C.14)

X (G(p′)M) = −R) (TM)Xp′. (C.15)

Using these variations and Eq. (5.33) then results in the following expression for W:

W = 2P)


03×3 03×4 H) (p)R(TN)
04×3 04×4 R(TM)

R) (TN)H) (p) R) (TM) R) (TN)L(Tx′)

 P. (C.16)

Since R) (Tv1)L(Tv2) = L) (Tv2)R(Tv1) for all v1, v2 ∈ R3, W is symmetric. Thus,
K� is also symmetric.
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