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ABSTRACT

This thesis is dedicated to the study of certain building blocks of scattering amplitudes in
(3+1)d Minkowskian spacetime and that of topological field theory in (1+1)d, together
with the constraints which result from the properties of these building blocks.

The first part of the thesis is concerned with the introduction of an on-shell formalism
for massless and massive particles. We identify all possible three-point tensor structures
compatible with the little group symmetry and overall mass dimension, and use them
to arrive at a new description of various scattering amplitudes through unitarity and
locality. One of the objects that result from this construction, the spinning polynomial,
is then fed into the dispersion relation to derive a convex hull constraining the EFT
coefficients. We further investigate the intersection of the convex hull resulting from the
positive expansion of residue and the half moment curve.

In the second part, we turn our attention to topological defect lines in (1 + 1)d topolog-
ical field theory with Haagerup fusion ring. We first solve for the F-symbols of fusion
categories in the Haagerup-Izumi family under the assumption of transparency. The
purpose of transparency is twofold: it allows for a simple formula for F-symbols while
at the same time tremendously simplifies the diagrammatic calculus with topological
defect lines. Finally, we construct a topological field theory with 15 pointlike operators
and demonstrate that it satisfies the four-point crossing constraints and torus one-point
modular invariance constraints.
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C h a p t e r 1

INTRODUCTION

Symmetry has been a very powerful organizing principle throughout the history of modern
physics. Whenever a physical system possesses certain symmetries, it serves as a hint
at extra degrees of freedoms as well as a constraint on the possible degrees of freedoms
the system can have. At a more fundamental level, symmetries constrain the forms of
basic building blocks in a theory. Whether these constraints manifest themselves in the
physics they describe is an interesting and important question, and will be the central
focus of this thesis.

This thesis consists of two parts. In the first part, which consists of Chapter 2 and
Chapter 3, we will be concerned with physics in 3+1d Minkowskian spacetime. Through
the lens of little group symmetry, we will construct an on-shell formalism to describe
the local structure of massive and massless particles with arbitrary spins. Since the
ingredients of the construction will be solely from physical quantities, local structures that
are not constructable using the formalism will be forbidden in a physical theory under
our assumptions, reproducing various no-go theorems in the literature. Together with
unitarity and locality, this determines the structure of residues for any tree-level 2 → 2

scattering process. Finally, properties encoded in these singularities can be translated
into statements about low energy observables in effective field theories using dispersion
relations.

In the second part, we will look at extended objects living in 1 + 1d topological field
theory. These objects carry a particular algebraic structure known as the fusion cate-
gory, which endows them with the ability to fuse together to form new objects like a
ordinary symmetry operator, but without the requirement that it must be invertible. We
will be interested in a particular family of fusion categories: the Haagerup-Izumi fusion
categories. In Chapter 4, we describe the algebraic data specifying the Haagerup-Izumi
fusion categories, and we introduce the notion of a transparent fusion category. The
property of transparency greatly facilitates the process of solving for the categorical data
of those fusion categories. Finally, in Chapter 5, we formulate a 1 + 1d topological field
theory with local operators and topological defect lines whose fusion structure are given
by the H3 fusion category in the Haagerup-Izumi family.
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1.1 On-shell formalism for (3 + 1)d Quantum Field Theory

Quantum Field Theory(QFT) describes the interactions of local and extended objects
via quantum fields. When the QFT is invariant under a spacetime symmetry, we can
classify the states by the irreducible representations of that symmetry. In the case where
the spacetime is (3 + 1)d Minkowskian spacetime, we have the Lorentz group O(1, 3). If
we include translations as well, this becomes the Poincare group.

Irreducible representations of Poincare group are given in Wigner’s classification [173],
in which one labels a particle by the eigenvalues of the square of energy-momentum four
vector and that of the Pauli-Lubanski vector. In the fixed momentum subspace, the
action of the Pauli-Lubanski vector forms a Lie algebra whose corresponding Lie group
is called the little group. For massless representations, this little group is ISO(2). For
massive ones, it is SO(3).

To describe particles with more than one degree of freedom, we use multiple quantum
fields that together form Lorentz covariant vectors/tensors. However, there is a dis-
crepancy in degrees of freedom between a physical particle and Lorentz covariant vec-
tor/tensor, which leads to the introduction of redundancies in the gauge theory descrip-
tion of particles with spins.

To calculate a scattering process using these gauge fields, one needs to introduce a set
of polarization vectors in the plane wave expansion, which should contain the physical
degrees of freedom of the particles involved in the scattering while at the same time
account for the aforementioned discrepancy. For a massless spin-1 particle with four
momentum pµ, this is implemented by taking the equivalence classes

{ϵµ|ϵµ ∼ ϵµ + apµ} (1.1)

as the polarization vectors.

On the other hand, we can exploit the isomorphism between the restricted Lorentz group
SO+(1, 3) and PSL(2,C) to map any four-vector pµ to

(σµpµ)aḃ =

(
−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
aḃ

. (1.2)

The determinant of this matrix is the square of the four vector pµ, and so for massless
pµ the matrix is singular. We can then introduce spinor helicity variables

{λa, λ̃ȧ}, (1.3)
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such that
λaλ̃ḃ = (σµpµ)aḃ. (1.4)

These objects are Weyl spinors which individually transform under the U(1) part of the
massless little group. They have unit charge with opposite under this transformation,
so their contributions cancel in the above formula, as is expected for a function of four
momentum.

Using these variables, one can form tensors with desired little group scaling for massless
particles straightforwardly. Suppose we fix the convention so that λi has charge −1 for
particle i. A tensor like

λ21λ2λ̃3 (1.5)

will then have little group charges (−2,−1,+1). Using these variables, the process of
determining physical tensor structures gets rid of gauge redundancies completely: any
structure one can write down is free of gauge redundancy.

One important property to make the most of the on-shell formalism is that of unitarity.
In the standard QFT treatment, we separate the trivial part and the interacting part in
a scattering matrix S = 1 + iT . Unitarity of the scattering process then requires

(1 + iT )(1− iT †) = SS† = 1⇒ T − T † = iTT †. (1.6)

For initial state |i⟩ and final |f⟩, this reads

⟨f |T − T †|i⟩ = i⟨f |TT †|i⟩ =
∑
ψ

i⟨f |T |ψ⟩⟨ψ|T †|i⟩. (1.7)

In the last identity, we inserted a complete basis in the Hilbert space. To tree level in
perturbation theory, this can be replaced by a complete basis of one particle states.

Thus, the residues at the simple poles of a tree-level scattering amplitude will be deter-
mined by its factorization into lower-point amplitudes. That is, amplitudes involving less
particles. In the case of a four point amplitude, since we know the three point amplitudes
completely—they are just the tensor structures formed by the on-shell variables—we will
be able to construct the residues directly if we know about the one particle state |ψ⟩ that
contributes to the above sum.

Here, locality comes into play. In terms of scattering amplitudes, it means that the
amplitude, considered as a complex function, will only have singularities when sum of
the momenta of a subset of particles participating in this scattering becomes on-shell.

Combining the inputs from unitarity and locality, we know the locations of the simple
poles of tree-level 2 → 2 scattering amplitudes and the form of residue on this pole in
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terms of three point amplitudes. The knowledge of all possible three point amplitudes
through the on-shell formalism then provides us with a way to build/constrain the original
2→ 2 scattering amplitudes.

1.2 1 + 1d topological quantum field theory

Topological quantum field theories, or TQFTs, are QFTs with some special properties.
In short, correlation functions of operators in TQFT do not depend on the geometry of
the manifold on which it is defined. Early examples include [175] and [151]. For a more
recent exposition on the classification of TQFTs, see [124].

An axiomatic formulation is developed for TQFTs by Michael Atiyah [15] based on an
earlier set of proposed axioms by Graeme Segal. In order to describe it, we need to
introduce the notion of cobordisms: a cobordism between two manifolds X and Y is a
manifold which is one dimension higher and has disjoint boundaries X and Y .

Roughly speaking, an n dimensional TQFT assigns a vector space to each closed oriented
n− 1 dimensional manifold, and a linear map between vector spaces to each cobordism
between closed oriented n − 1 dimensional manifolds. The linear map will be subject
to some axioms. This assignment is mathematically known as a symmetric monoidal
functor from the category of cobordisms to the category of vector spaces.

For TQFTs on two dimensional manifolds, one can construct all cobordisms using the
fundamental cobordisms:

, , , , . (1.8)

More complicated cobordisms can be obtained by composing these fundamental cobor-
disms, and the resulting image under TQFT are just compositions of the respective linear
maps. It turns out that the structure described by these cobordisms is equivalent to that

of a commutative Frobenius algebra: the composition of and gives a pairing

f : A× A→ k between algebra on vector space assigned to S1 that satisfies

f(ab, c) = f(a, bc)

f(a, b) = f(b, a).
(1.9)
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Together with the existence of a unit through , this defines a commutative Frobenius
algebra, completing the description for a 1 + 1d TQFT without any topological defect
lines.

1.3 Monoidal structure of topological defect lines in 1 + 1d

Topological defect lines are extended objects that can be thought of as generalizations
of ordinary symmetry operators. Therefore, we will review the basic properties of the
ordinary symmetry operators. For a continuous global symmetry transformation G with
Noether current jµ, we can define the extended operator

Q[Σ] =

∫
Σ

dnµjµ. (1.10)

When inserted into a correlation function, we can continuously deform the support of
the operator Σ without changing the value of the correlation function, as long as we do
not pass any local operator charged under the symmetry. When there is a non-vanishing
contribution, it will come from the part of Σ that surrounds the charged local operator.

Since the extended operators are defined with respect to elements of a symmetry group,
we can fuse two symmetry operators labeled by f and g together to form a new operator
that implements transformation fg. Finally, there will be a trivial line operator that
does nothing and commutes with everything.

Sometimes the operations implemented by topological lines do not have inverses. We
still require there to be a fusion structure associated with the lines. Algebraically, this
fusion structure can be captured by a monoidal category.1

A category C consists a collection of objects X, Y, · · · and sets of morphisms HomC(X, Y )

associated with pairs of objects (X, Y ). For every element in the set HomC(X, Y ), X is
called the domain of the morphism and Y the codomain. If the domain of a morphism is
the same as the codomain of another morphism, we can define a new morphism through
composition. The composition of morphisms is associative. Finally, there is an identity
morphism 1X for every object X that composes trivially with any morphism involving
X.

In order to add more structure to a category, we will need to define a functor. A functor
F from category C to D assigns an object F (X) ∈ Obj(D) to every X ∈ Obj(C). The

1To properly define the algebraic structure associated with the topological defect lines, we need to
be able to take duals, which are interpreted as orientation reversal of lines. This makes a category rigid.
With some finiteness properties of lines and fusion results, we arrive at the full definition of a fusion
category as a rigid semisimple linear monoidal category with finitely many isomorphism classes of simple
objects and a simple unit.
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simplest example of a functor is an identity functor 1C , defined for every category C: it
sends objects and morphisms to themselves.

A monoidal category is a category C together with a unit object I, a functor ⊗ from
C×C to C, and three families of natural isomorphisms that are subject to certain axioms.
Being a functor from C × C to C, ⊗ specifies the following binary operations:

⊗ : Ob(C)×Ob(C)→ Ob(C)

⊗ : HomC(X1, Y1)× HomC(X2, Y2)→ HomC(X1 ⊗X2, Y1 ⊗ Y2).
(1.11)

The identity object and ⊗ functor categorizes the notion of identity and product in a
monoid. In the language of topological line operators, the ⊗ functor represents fusion,
while the identity object corresponds to the trivial line. The natural isomorphisms are

• The left(right) unitor assigns an isomorphism from functor X → I⊗X(X → X⊗I)
to the identity functor for each X ∈ Ob(C).

• The associator assigns an isomorphism from functor⊗(⊗×1C) to functor⊗(1C×⊗).

These definitions need to be supplemented by two constraints: the triangle axiom, which
requires the commutativity of

(X ⊗ 1)⊗X X ⊗ (1⊗ Y )

X ⊗ Y

, (1.12)

and the pentagon axiom, which requires the commutativity of

((X ⊗ Y )⊗ Z)⊗W

(X ⊗ (Y ⊗ Z))⊗W (X ⊗ Y )⊗ (Z ⊗W )

X ⊗ ((Y ⊗ Z)⊗W ) X ⊗ (Y ⊗ (Z ⊗W ))

. (1.13)

The arrows in the diagrams are constructed using the associator, the unitors, and the
identity functor. Mac Lane’s coherence theorem [125] guarantees that every diagram
consists of moves assembled from the natural isomorphisms commutes if these axioms
are satisfied.
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C h a p t e r 2

SCATTERING AMPLITUDES FOR ALL MASSES AND SPINS

1

2.1 Scattering Amplitudes in the Real World

Recent years have seen an explosion of progress in our understanding of scattering am-
plitudes in gauge theories and gravity. Infinite classes of amplitudes, whose computation
would have seemed unthinkable even ten years ago, can now be derived with pen and
paper on the back of an envelope using a set of ideas broadly referred to as "on-shell
methods" [30–32, 34, 35, 39, 40, 42, 44]. This has enabled the determination of scat-
tering amplitudes of direct interest to collider physics experiments, while at the same
time opening up novel directions of theoretical research into the foundations of quantum
field theory, amongst other things revealing surprising and deep connections of this basic
physics with areas of mathematics ranging from algebraic geometry to combinatorics to
number theory.

Almost all of the major progress in this field has been in understanding scattering am-
plitudes for massless particles. There are seemingly good reasons for this, both tech-
nically and conceptually. Technically, almost all treatments of the subject, especially
in four dimensions, involve the introduction of special variables (such as spinor-helicity,
twistor or momentum-twistor variables) to trivialise the kinematical on-shell constraints
for massless particles (see [62, 69, 99] for a comprehensive review). And conceptually,
while it is clear that the conventional field-theoretic description of massless particles with
spin, which involves the introduction of huge gauge redundancy, leaves ample room for
improvement—provided by on-shell methods that directly describe particles, eliminat-
ing any reference to quantum fields and their attendant redundancies—the advantage of
"on-shell physics" seems to disappear for the case of massive particles where no gauge
redundancies are needed.

As we will see, the technical issue about massless kinematics is just that—the transition
to describing massive particles is a triviality—while the conceptual issue is not an obstacle
but rather an invitation to understand the both the physics of "infrared deformation"

1This chapter is adapted from Nima Arkani-Hamed, Tzu-Chen Huang, and Yu-tin Huang. “Scatter-
ing amplitudes for all masses and spins”. In: JHEP 11 (2021), p. 070. doi: 10.1007/JHEP11(2021)070.
arXiv: 1709.04891 [hep-th].

https://doi.org/10.1007/JHEP11(2021)070
https://arxiv.org/abs/1709.04891
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of massless theories (by the Higgs mechanism and confinement), as well that of UV
completion (such as with perturbative string theory), from a new on-shell perspective
(see sec.2.6).

But before getting too far ahead of ourselves it suffices to remember that the only exactly
massless particles we know of in the real world are photons and gravitons; even the spec-
tacular success of on-shell methods applied to collider physics are for high energy gluon
collisions, which are ultimately confined into massive hadrons at long distances. Even
if we consider the weakly coupled scattering amplitudes for Standard Model particles
above the QCD scale, almost all the particles are massive. If the amazing structures un-
earthed in the study of gauge and gravity scattering amplitudes are indeed an indication
of a radical new way of thinking about quantum particle interactions in space-time, they
must naturally extend beyond photons, gravitons and gluons to electrons, W,Z particles
and top quarks as well.

Keeping this central motivation in mind, in this paper we initiate a systematic exploration
of the physics of scattering amplitudes in four dimensions, for particles of general masses
and spins. We proceed in sec.2.2 with an on-shell formalism where the amplitude is
manifestly covariant under the massive SU(2) little group. This approach allows us to
cleanly categorize all distinct three-couplings for a given set of helicities or masses and
spins. When constructing four-point amplitudes, this formalism sharply pinpoints the
tension between locality and consistent factorization, which, in turn provides a portal into
the difficulty of having higher-spin massive particles that is fundamental. As we will see,
everything that is typically taught in an introductory courses on QFT and the Standard
Model—including classic computations of the electron (g − 2) and the QCD β function
(sec.2.7)—can be transparently reproduced from an on-shell perspective directly following
from the physics of Poincare invariance, locality and unitarity, without ever encountering
quantum fields, Lagrangians, gauge and diff invariance, or Feynman rules.

There are a number of other motivations for developing this formalism. For instance,
much of the remarkable progress in our understanding of the dynamics of supersymmetric
gauge theories came from exploring their moduli spaces of vacua [7]. From this point of
view the study of massless scattering amplitudes has been stuck on a desert island at
the origin of moduli space; we should now be able to study how the S-matrix varies on
moduli space in general supersymmetric theories, especially beginning with the Coulomb
branch of N = 4 SYM in the planar limit (see [57] for early surveys).

Another motivation, alluded to above, is the physics of UV completion for gravity scat-
tering amplitudes. It is easy to show on general grounds that any weakly coupled UV
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completion for gravity amplitudes must involve an infinite tower of particles with in-
finitely increasing spins (as of course seen in string theory) [9]. This raises the possibility
that string theory might be derivable from the bottom-up, as the unique weakly-coupled
UV completion of gravity. But it has become clear that consistency conditions for mass-
less graviton scattering alone are not enough to uniquely fix amplitudes—deformations
of the graviton scattering amplitudes compatible with all the standard rules have been
identified ( eq.(12.6) in [9]). This is not surprising, since the most extreme tension in
this physics is the coexistence of gravitons with massive higher-spin particles. Indeed
(as we will review in 2.3 from an on-shell perspective) the presence of gravity makes the
existence of massless higher-spin particles impossible. We should therefore expect the
strongest consistency conditions on perturbative UV completion to involve the scattering
of massless gravitons and massive higher-spin particles, the study of which calls for a
good general formalism for treating amplitudes for general mass and spin.

Finally, an understanding of amplitudes for general mass and spin removes the distinction
between "on-shell" observables like scattering amplitudes and "off-shell" observables like
correlation functions [71]. After all, loosely speaking the way experimentalists actually
measure correlation functions of some system is to weakly couple the system to massive
detectors, and effectively measure the scattering amplitudes for the detectors thought of
as massive particles with general mass and spin! More precisely, as we demonstrate in
sex.2.8, to compute the correlation functions for (say) the stress tensor (in momentum-
space), we need only imagine weakly coupling a continuum of massive spin 2 particle
to the system with a universal (and arbitrarily weak) coupling; the leading scattering
amplitudes for these massive particles is then literally the correlation function for the
stress tensor in momentum space. This should allow us to explore both on- and off-shell
physics in a uniform "on-shell" way.

2.2 The Little Group

Much of the non-trivial physics of scattering amplitudes traces back to the simple ques-
tion
—"what is a particle?"—and the attendant concept of Wigner’s "little group" governing
the kinematics of particle scattering. Let us review this standard story. Following Wigner
(and Weinberg’s exposition and notation) [20, 171, 173], we think of "particles" as ir-
reducible unitary representations of the Poincare group. We diagonalize the translation
operator by labelling particles with their momentum pµ; any other labels a particle state
can carry are labelled by σ. In order to systematically label all one-particle states, we
start with some reference momentum kµ and the states |k, σ⟩. Now, we can write any mo-
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mentum p as a specified Lorentz-transformation L(p; k) acting on k, i.e. pµ = Lνµ(p; k)kν .
Note that L(p; k) is not unique since there are clearly Lorentz transformations that leave
p invariant—these "little group" transformations will figure prominently in what follows,
for now we simply emphasize that we pick some specific L(p; k) for which p = L(p; k)k.
We also assume that we have a unitary representation of the Lorentz group, i.e. for every
Lorentz transformation Λ there is an associated unitary operator U(Λ) acting on the
Hilbert space, such that U(Λ1Λ2) = U(Λ1)U(Λ2). Then we simply define one-particle
states |p, σ⟩ as

|p, σ⟩ ≡ U(L(p; k))|k, σ⟩ . (2.1)

Note that the σ index is the same on the left and the right, this is the sense in which we
are defining |p, σ⟩. Having made this definition, we can ask how |p, σ⟩ transforms under
a general Lorentz transformation

U(Λ)|p, σ⟩ = U(Λ)U(L(p; k))|k, σ⟩ = U(L(Λp; k))U(L−1(Λp; k)ΛL(p; k))|k, σ⟩ . (2.2)

Now, W (Λ, p, k) = L−1(Λp; k)ΛL(p; k) is not in general a trivial Lorentz transformation,
it is only a transformation that leave k invariant since clearly (Wk) = k. This subgroup
of the Lorentz group is the "little group". Thus, we must have that

U(W (Λ, p; k))|k, σ⟩ = Dσσ′(W (Λ, p; k))|k, σ′⟩ , (2.3)

where Dσσ′(W ) is a representation of the little group. We have therefore found the
desired transformation property

U(Λ)|p, σ⟩ = Dσσ′(W (Λ, p; k))|Λp, σ′⟩ . (2.4)

We conclude that a particle is labeled by its momentum and transforms under some
representation of the little group.

Scattering amplitudes for n particles are thus labeled by (pa, σa) for a = 1, · · · , n. The
Poincare invariance of the S-matrix —translation and Lorentz invariance—then tells us
that

M(pa, σa) = δD(pµa1 + · · · p
µ
an)M(pa, σa)

MΛ(pa, σa) =
∏
a

(
Dσaσ′

a
(W )

)
M((Λp)a, σ

′
a) . (2.5)

In D spacetime dimensions, the little group for massive particles is SO(D−1). For
massless particles the little group is the the group of Euclidean symmetries in (D−2)
dimensions, which is SO(D−2) augmented by (D−2) translations. Finite-dimensional
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representations require choosing all states to have vanishing eigenvalues under these trans-
lations, and hence the little group is just SO(D−2).

So much for the basic kinematics of particle scattering amplitudes. It is when we come
to dynamics, and in particular to the crucial question of guaranteeing that the physics of
particle interactions is compatible with the most minimal notion of locality encoded in the
principle of cluster decomposition, that a fateful decision is made to choose a particular
description of particle scattering, thereby introducing the idea of quantum fields. Beyond
particles of spin zero (and their associated scalar fields), there is a basic kinematical
awkwardness associated with introducing fields: fields are manifestly "off-shell", and
transform as Lorentz tensors (or spinors), while particle states transform instead under
the little group. The objects we compute directly with Feynman diagrams in quantum
field theory, which are Lorentz tensors, have the wrong transformation properties to be
called "amplitudes". This is why we introduce the idea of "polarisation vectors", that
are meant to transform as bi-fundamentals under the Lorentz and little group, to convert
"Feynman amplitudes" to the actual "scattering amplitudes". For instance in the case of
spin 1 particles, we introduce ϵµσ(p), with the property that ϵµσ(Λp) = Λµν ϵ

ν
σ′(p)Dσσ′(W ),

so that ϵµσ(p)Mµ(p, · · · ) transforms properly. For massive particles, such polarization
vectors certainly exist, though they have to satisfy constraints. For instance we must
have pµϵµσ = 0 for massive spin 1, or for massive spin 1/2, we use a Dirac spinor ΨA

σ with
(Γµpµ−m)ABΨ

B = 0. These constraints are an artifact of using fields as auxiliary objects
to describe the interactions of the more fundamental particles. For massless particles
with spin ≥ 1 the situation is worse, since "polarisation vectors" transforming as bi-
fundamentals under the Lorentz and little groups don’t exist. Say for massless particles
in four dimensions, if we make some choice for the ϵµ± for photons of helicity ±1, we find
that for Lorentz transformations (Λp) = p, (Λϵ±)µ = e±iθϵµ± + α(Λ, p)pµ. So polarisation
vectors don’t genuinely transform as vectors under Lorentz transformations, only the
"gauge equivalence class" {ϵµ±|ϵ

µ
±+αp

µ} is invariant under Lorentz transformations. This
infinite redundancy is hard-wired into the usual field-theoretic description of scattering
amplitudes for gauge bosons and gravitons, and is largely responsible for the apparent
enormous complexity of amplitudes in these theories, obscuring the remarkable simplicity
and hidden infinite-dimensional symmetries actually found in the physics.

The modern on-shell approach to scattering amplitudes departs from the conventional
approach to field theory already at this early kinematical stage, by directly working with
objects that transform properly under the little group (and so at least kinematically
deserve to be called "scattering amplitudes") from the get-go. Auxiliary objects such
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as "quantum fields" are never introduced and no polarization vectors are needed. It is
maximally easy to do this in the D = 4 spacetime dimensions of our world, where the
kinematics is as simple as possible. Here the little groups are SO(2) = U(1) for massless
particles, and SO(3) = SU(2) for massive particles, which are the simplest and most
familiar Lie groups.

In four dimensions, we label massless particles by their helicity h. Massive particles
transform as some spin S representation of SU(2). The conventional way of labelling
spin states familiar from introductory quantum mechanics is by picking a spin axis ẑ.
and giving the eigenvalue of Jz in that direction. This is inconvenient for our purposes,
since the introduction of the reference direction ẑ breaks manifest rotational (not to speak
of Lorentz) invariance. We will find it more convenient instead to label states of spin S

as a symmetric tensor of SU(2) with rank 2S; this entirely elementary group theory is
reviewed in appendix A.2. Let’s illustrate the labelling of states by considering a four-
particle amplitudes where particles 1, 2 are massive with spin 1/2 and 2, and particles
3, 4 are massless with helicities +3/2 and −1. This would be represented as an object

M{I1},{J1,J2,J3,J4},{+ 3
2
},{−1}(p1, p2, p3, p4) (2.6)

where {I1}, {Ji} are the little group indices of particle 1 and 2 respectively, and the
amplitude transforms as

M{I1},{J1,J2,J3,J4},{+ 3
2
},{−1} → (W I1

1K1
)(W J1

2L1
· · ·W J4

2L4
)(w3)

3(w4)
−2M{K1},{L1,L2,L3,L4},{+ 3

2
},{−1}, (2.7)

where the W matrices are SU(2) transformation in the spin 1/2 representation and
w = eiθ is the massless little group phase factor for helicity +1/2.

Massless and Massive Spinor-Helicity Variables

Our next item of business is to find variables for the kinematics that hardwire these
little group transformation laws, this will be simultaneously associated with convenient
representations of the on-shell momenta. As usual we will use the σµαα̇ matrices to convert
between four-momenta pµ and the 2 × 2 matrix pαα̇ = pµσ

µ
αα̇

2. Note that detpαα̇ = m2,
so that there is an obvious difference between massless and massive particles.

For massless particles, we have detpαα̇ = 0 and thus the matrix pαα̇ has rank 1. Thus we
can write it as the direct product of two, 2-vectors λ, λ̃ as [28, 60, 95, 177]

pαα̇ = λαλ̃α̇. (2.8)
2For our conventions of signature and spinor indices, see appendix A.1.
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For general complex momenta the λα, λ̃α̇ are independent two-dimensional complex vec-
tors. For real momenta in Minkowski space pαα̇ is Hermitian and so we have λ̃α̇ = ±(λα)∗,
(with the sign determined by whether the energy is taken to be positive or negative).

Often the introduction of these "spinor-helicity" variables is motivated by the desire to
explicitly represent the (on-shell constrained) four-momentum pαα̇ by the unconstrained
λα, λ̃α̇. But the spinor-helicity variables also have another conceptually important role
to play: they are the objects that transform nicely under both the Lorentz and Little
groups. Thus while amplitudes for massless particles are not functions of momenta and
polarization vectors (or better yet, are only redundantly represented in this way), they
are directly functions of spinor-helicity variables.

The relation to the little group is clearly suggested by the fact that it is impossi-
ble to uniquely associate a pair λα, λ̃α̇ with some pαα̇, since we can always rescale
λα → w−1λα, λ̃α̇ → wλ̃α̇ keeping pαα̇ invariant. The connection can be made com-
pletely explicit by attempting to give some specific prescription for picking λ

(p)
α , λ̃

(p)
α̇ ,

which leads us through an exercise completely parallel to our discussion of the little
group. We first choose some reference massless momentum kαα̇ and also choose some
fixed λ

(k)
α , λ̃

(k)
α̇ so that kαα̇ = λ

(k)
α λ̃

(k)
α̇ . For every other null momentum, we choose a

Lorentz transformation L(p; k)βα, L̃(p; k)
β̇
α̇ such that pαα̇ = L(p; k)βαL̃(p; k)

β̇
α̇kββ̇, and we

then define λ(p)α ≡ L(p; k)βαλ
(k)
β , λ̃

(p)
α̇ ≡ L̃(p; k)

β̇
α̇λ̃

(k)

β̇
. Having now picked a way of associat-

ing some λ(p)α , λ̃
(p)
α̇ with pαα̇, we can ask for the relationship between, for example, λ(Λp)α

and λ(p)α for some Lorentz transformation Λ; what we find is

λ(Λp)α = w−1(Λ, p, k) Λβαλ
(p)
β . (2.9)

For general complex momenta w is simply a complex number and we have the action
of GL(1), for real Lorentzian momenta we must have w−1 = ±(w)∗ so w = eiθ is a
phase representing the U(1) little group. Most obviously we can perform a Lorentz
transformation W for which Wk = k, we simply find λ→ w−1λ. To be explicit, let

kαα̇ =

(
2E 0

0 0

)
, λα =

√
2E

(
1

0

)
, λ̃α̇ =

√
2E

(
1

0

)
(2.10)

represent a massless momentum in the z direction. Then a rotation around the z axis
(which leaves k invariant) is

Λβα =

(
eiϕ/2 0

0 e−iϕ/2

)
, Λ̃β̇α̇ =

(
e−iϕ/2 0

0 eiϕ/2

)
(2.11)

under which obviously λα → eiϕ/2λα, λ̃α̇ → e−iϕ/2λ̃α̇.
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To summarize, amplitudes for massless particles are Lorentz-invariant functions of λα, λ̃α̇
with the correct little-group helicity weights,

M(w−1λ,wλ̃) = w2hM(λ, λ̃). (2.12)

We now turn to the case of massive particles. There is no essential difference with the
massless case; we simply have that pαα̇ has rank two instead of rank one, and so can be
written as the sum of two rank one matrices as

pαα̇ = λIαλ̃α̇I . (2.13)

where I = 1, 2. Note that

p2 = m2 → detλ× detλ̃ = m2. (2.14)

We can use this to set detλ = M, detλ̃ = M̃ with MM̃ = m2. It is sometimes useful
to keep the distinction between M, M̃ , but for our purposes in this paper we will simply
take M = M̃ = m. Of course λI , λ̃I can’t uniquely be associated with a given p, we
can perform an SL(2) transformation λI → W I

Jλ
J , λ̃I → (W−1)JI λ̃J . Note that we could

extend this SL(2) to a GL(2) if we also allowed (opposite) rephrasings of the mass
parameters M, M̃ , but by making the choice M = M̃ = m does not allow this. This is
not a disadvantage for our purposes, since the object M/M̃ transforms only under the
GL(1) part of the GL(2) and can be used to uplift any SL(2) invariant into a GL(2)

invariant if desired.

For real Lorentzian momenta we have W should be in the SU(2) subgroup of SL(2) and
gives us the action of the little group. We can make the connection explicit just as we
did for the massless case, by defining λIα, λ̃α̇I for a reference momentum kαα̇ and boosting
to define them for all momenta. A summary of this elementary kinematics is given in
appendix B.

We conclude that that the amplitudes for massive particles are Lorentz-invariant func-
tions for λI , λ̃I which are symmetric rank 2S tensors {I1, · · · , I2S} for spin S particles.
Note that we can obviously use ϵIJ , ϵIJ to raise and lower indices so that we can, for
example, write pαα̇ = λIαλ̃

J
α̇ϵIJ . Also note that clearly

pαα̇λ̃
α̇I = mλIα , pαα̇λ

αI = −mλ̃Iα̇. (2.15)

If we combine (λIα, λ̃α̇I) into a Dirac spinor ΨI
A, this is of course the Dirac equation (Γµpµ−

m)BAΨ
I
B = 0. But there is no particular reason for doing this in our formalism: even the
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usual (good) reason for introducing Dirac spinors—making parity manifest in theories
which have a parity symmetry—can be more easily accomplished without using Dirac
spinors in our approach. We will thus not encounter any Γ matrices in our discussion.
Note also that using (pαα̇/m) allows to freely convert between λIα and λ̃Iα̇ variables. We
will sometimes find it useful, especially in the context of the systematic classification of
amplitude structures, to use this freedom in order to use e.g. only λIα to describe a given
massive particle. Then we can write the symmetric tensor as

M{I1···I2S} = λI1α1
· · ·λI2Sα2S

M{α1···α2S} (2.16)

where M{α1···α2S} is totally symmetric in the α indices.3

Let us illustrate our notation for writing amplitudes by returning to the example of a
four-particle amplitude with (1, 2) being massive with spin (1/2, 2), and (3, 4) massless
with helicity (+3/2) and (−1). Let’s give examples of "legal" expressions for these
amplitudes, that is objects with the correct little group transformation properties. Two
possible terms are

[2J13][2J23][2J33]
(
κ⟨1I12J4⟩⟨4|(p1p2)|4⟩+ κ′⟨41I1⟩⟨2J44⟩

)
+ symmetrize in {J1,2,3,4}.

(2.17)

It would clearly be notationally cumbersome to have our formulas littered with explicit
SU(2) little group indices; fortunately it is also entirely un-necessary to do so. We will
simply denote the massive spinor helicity variables in BOLD, and suppress the SU(2)
little group indices. Since these indices are completely symmetrized, putting them back
in is completely trivial and unambiguous. In this way, we re-write the above expressions
as

[23]3 (κ⟨12⟩⟨4|p1p2|4⟩+ κ′⟨41⟩⟨42⟩) . (2.18)

We stress again that there is no notion of the usual "helicity weight" little group for
the massive particles; we can freely have expressions (as in the above) that from the
viewpoint of massless amplitudes look like they are "illegally" combining terms with
different helicity weight. As we will later see this reflects a beautiful feature of this
formalism, making it trivial to see how massive amplitudes decompose into the massless
helicity amplitudes at very high energies.

We pause to note the relation between our discussion here and a route to massive
spinor-helicity variables taken by a number of other authors [17, 18, 97, 112, 113,

3The amplitude as a function of massive spinors can be viewed as a natural consequence of choosing
the space-cone gauge Feynman rules [48].
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141, 152, 153]. This approach begins by noting that we can always represent pαα̇ =

λαλ̃α̇−(m2/⟨λη⟩[λ̃η̃])ηαη̃α̇, for some reference spinors η, η̃.4 The states are then labelled
by giving the spin in the direction picked out by the lightlike directon ηη̃. Of course
this corresponds to a particular choice for our (λIα, λ̃

I
α̇), but making this choice at the

very outset obscures the Lorentz and little group transformation properties of the am-
plitude. Practically speaking, given some formula written in terms of the λ, λ̃, η, η̃, this
makes it difficult to ascertain whether or not it is kinematically a legal expression for an
amplitude, and thus the program of systematically classifying and constructing on-shell
amplitudes is difficult to pursue in this formalism.

Let us further illustrate our notation by presenting some classic scattering amplitudes
in these variables. We will simply state the results here and derive them from first-
principles later in the paper; here we are only illustrating the notation and its utility
for understanding the physics. Consider for instance the result for tree-level Compton
scattering (12−3+4) where particles 2, 3 are photons of helicity (−,+) while 1, 4 are
charged massive particles of spin 0, 1/2, 1. The amplitudes are given by

M(12−3+4) =
g2

(s−m2)(u−m2)
×


⟨2|(p1 − p4)|3]2 [spin 0]

⟨2|(p1 − p4)|3] (⟨12⟩[43] + ⟨42⟩[13]) [spin 1
2
]

(⟨12⟩[43] + ⟨42⟩[13])2 [spin 1]

 .

(2.19)
Note the absence of γ matrices for the spin 1/2 case—the common complaint amongst
students first doing these computations—"why are we dragging around four-component
objects when the electron has only two spin degrees of freedom?"—is entirely absent here.
Similarly for the spin 1 case there are no polarization vectors. Indeed these expressions
are the most compact representation for these amplitudes possible, directly in terms of
the physical degrees of freedom of the actual particles, with no reference to fields as
auxiliary objects.

The high-energy limit

It is very easy to relate the massive and massless spinor-helicity variables, and especially
to take the high-energy limit of scattering amplitudes and see how massive amplitudes
for particles with spin decompose into the different helicity components. To do so, we
note that it is convenient to expand λIα in a basis of two-dimensional vectors ζ±I in the

4The formalism here obviously have some parallels with the 6D spinor-helicity formalism [33, 52],
but here the little group is a single SU(2) instead of SU(2)×SU(2) as in six-dimensions, and thus there
are no "unnecessary" symmetries.
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little-group space. In other words, we can expand

λIα = λαζ
−I + ηαζ

+I

λ̃Iα̇ = λ̃α̇ζ
+I + η̃α̇ζ

−I , (2.20)

where
ϵIJζ

+Iζ−J = 1, ⟨λη⟩ = m, [λ̃η̃] = m. (2.21)

Note, as explicitly given in the kinematics Appendix C, in a given frame we naturally have
ζ±I as the eigenstates of spin 1/2 in the direction of the spatial momentum p⃗, and we can
identify λα =

√
E + pζ+α , ηα =

√
E − pζ−α and similarly λ̃α̇ =

√
E + pζ̃−α̇ , η̃α̇ =

√
E − pζ̃+α̇ .

Clearly, in the high energy limit
√
E + p→

√
2E while

√
E − p→ m/

√
2E, so that both

η, η̃ are proportional to m and vanish relative to λ, λ̃. Said in a more Lorentz-invariant
way, to take the high-energy limit we take

ηα = mη̂α, η̃α̇ = mˆ̃ηα̇; with ⟨λη̂⟩ = [λ̃˜̂η] = 1 (2.22)

with all dimensionless ratios of the form
m

⟨λaλb⟩
,

m

[λ̃aλ̃b]
→ 0. (2.23)

Note that any scattering amplitude naturally decomposes into different spins states in
the spatial direction of motion, via

M I1···I2S =
∑
h

(
(ζ+)S+h(ζ−)S−h

)I1···I2S Mh(λ, λ̃; η, η̃), (2.24)

where trivially
Mh(w

−1λ,wλ̃;wη,w−1η̃) = w2hMh(λ, λ̃; η, η̃). (2.25)

Thus, the different helicity components in the high-energy limit are just given by

Helicity h component = Limm→0Mh(λ, λ̃; η = mη̂, η̃ = mˆ̃η). (2.26)

As a simple exercise for taking the high-energy limit, let’s consider the coupling of a
massive vector to two massless scalars. This amplitude is simply

⟨31⟩⟨32⟩
⟨21⟩

. (2.27)

Let us consider the high-energy limit of this amplitude. Substituting eq.(2.20), the
(−, 0,+) component of the vector are separately given as

− :
⟨31⟩⟨32⟩
⟨21⟩

H.E.−−−−−−→
⟨31⟩⟨32⟩
⟨21⟩

0 :
⟨31⟩⟨32⟩
⟨21⟩

H.E.−−−−−−→
(⟨η31⟩⟨32⟩+ ⟨η32⟩⟨31⟩)

2⟨21⟩

+ :
⟨31⟩⟨32⟩
⟨21⟩

H.E.−−−−−−→
⟨η31⟩⟨η32⟩
⟨21⟩

=
[3|p2|1⟩[3|p1|2⟩

m2⟨21⟩
=

[32][31]

[21]
. (2.28)
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We see that only the plus and minus helicity amplitude survives, and as η3 scales as m,
the longitudinal mode is sub-leading in m.5

Especially in the context of the rather degenerate kinematics of three particle amplitudes,
simply setting the η, η̃ → 0 can give rise to 0/0 ambiguities, and this proper definition of
the high-energy limit we have specified should be used. But for more generic situations,
and for any expressions that is manifestly smooth as m→ 0, we can simply set η, η̃ → 0

to take the high-energy limit. There is an especially easy way of doing this with the
"BOLD" notation we have introduced above, that shortcuts the need for any explicit
expansion in terms of ζ±I as we have indicated above. We simply unbold the characters!6

Let us illustrate how this works for the case of Compton scattering of a charged spin one
particle in eq.(2.19), and see how the massive amplitude decomposes into its helicity
constituents. Expanding out the square of the numerators we find

⟨12⟩2[34]2 + ⟨42⟩2[31]2 + 2⟨12⟩[34]⟨42⟩[31]
(1, 4) have hel.(−1,+1) (1, 4) have hel.(+1,−1) (1, 4) have hel.(0, 0)

(2.31)

Note that as helicity amplitudes "adding" the components in this way would be illegal,
but this is exactly how we can pick out the different pieces of the massive amplitude that
unifies the different helicity amplitudes together into a single object, in the high-energy
limit! Note also that quite nicely the (0, 0) helicity components reproduce the HE limit
of the scalar Compton amplitude, reflecting the fact that the longitudinal component of
the charged massive spin 1 particle is just a charged scalar at high energies.

2.3 Massless Three- and Four-Particle Amplitudes

Having dispensed with kinematics, we now move on to determining dynamics. We will
follow a familiar strategy, starting by determining the structure of all possible three-
particle amplitudes:

5These results can also be obtained by converting the conventional polarization vector representation
of the three particle amplitude to the massive spinor helicity basis. First, being a Lorentz vector and a
symmetric tensor in SU(2), the on-shell form of the polarization vector is fixed to (see also [94])

ϵαα̇ =
λ
{I1
α λ̃

I2}
α̇

m
. (2.29)

Contracting with the momenta then converts the polarization vector to pure chiral indices, ϵαβ = ϵαα̇
pα̇

β

m .
Taking the high energy limit, one straight forwardly obtains the three helicity sectors:

ϵ−αβ =
λαλβ

m
, ϵ0αβ =

λαηβ + ηαλβ

2m
, ϵ+αβ =

ηαηβ
m

, (2.30)

in the chiral representation.
6This is analogous to the replacement of k → k♭ in the massive spinor helicity formalism of [116].
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sh
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2 2

1

3

1 (2.32)

When many species Ns,m of particle of the identical mass and spin/helicity, we will label
them with an index ”a”.We will always think of these as real particles, and assume
that the "free propagation" does not change the a index, i.e. that free propagation has
an SO(Ns,m) symmetry. This choice is hardwiring the most basic physics of unitarity.
Note that it is trivial to have (non-unitary) Lagrangian theories that violate this rule,
for instance we can have grassmann scalar fields ψa with free action Jab∂µψa∂

µψb with
antisymmetric Jab. Here the free propagation is proportional to J−1

ab which vanishes for
a = b, and the free theory has an Sp(N) rather than SO(N) symmetry.

Moving beyond three particles, the central constraint on higher-point tree amplitudes
is unitarity, in the form of consistent factorization. For massless or massive internal
particles goes on shell, spin s goes on-shell, we must have

M → Ma h
L Ma−h

R

P 2
[massless], M →

M
a {I1···I2s}
L Ma

R {I1···I2s}

P 2 −M2
[massive] . (2.33)

We will impose this consistency condition at 4 points, which must factorize onto a product
of three-particle amplitudes.

As is by now well-known, these conditions are incredibly restrictive for massless particles.
The kinematics of three-particle momentum conservation forces either λ1, λ2, λ3 to be all
proportional, or λ̃1, λ̃2, λ̃3 to all be proportional. Thus the three-particle amplitudes must
either be of the form [12]a[23]b[31]c or ⟨12⟩a⟨23⟩b⟨31⟩c in these two cases respectively, and
the powers are fixed by the helicities of the three particles. The amplitudes are given by

Mh1h2h3 =
g̃[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 when h1 + h2 + h3 > 0

g⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1 when h1 + h2 + h3 < 0
. (2.34)

Note that only by symmetries we could use either of the two expression regardless of the
sign of h1 + h2 + h3, but we also demand that the amplitudes have a smooth limit in
Minkowski signature where the brackets also go to zero. We see that, up to the overall
couplings g, g̃, the three-particle amplitudes are entirely fixed by Poincare symmetry.

We now move on to determining four-particle amplitudes from consistent factorization.
The obvious strategy for doing this is to simply compute the residue in, for example,
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the s-channel by gluing together the three particle amplitudes on the two sides of the
channel; then multiply this residue by 1/s. Adding over the channels should then give
us an object that factors correctly in all the channels. This trivially works for ϕ3 theory
where the coupling is simply a constant g, and the residue in each channel is simply g2.
Then an object with the correct poles in all channels is g2(1/s+1/t+1/u). Of course in
addition to this we may have contact terms with no poles at all, and whose form is not
fixed by the three-particle amplitudes. But we will only be concerning ourselves with the
parts of the four particle amplitudes that are forced to exist by consistent factorization
given the three-particle amplitudes.

Let’s repeat this exercise for the slightly more interesting case of Yukawa theory, where
the three-particle amplitude for fermions 1,2 of helicity −1/2 to a scalar 3 is simply y⟨12⟩.
Let us compute the s-channel

1

2 3

4

+

+

, Rs = ⟨1I⟩[I4] = ⟨1|pI |4] , (2.35)

where here and in what follows we will suppress the trivial coupling constant dependence.
This can be simplified using that pI = p1 + p2 = −p3 − p4, to ⟨1|p2|4] = −⟨1|p3|4] =
1
2
⟨1|(p2 − p3)|4]. The residue in the u channel is the same swapping 2, 3. So finally the

consistently factorizing amplitude is

⟨1|(p2 − p3)|4]
s

+
⟨1|(p3 − p2)|4]

u
. (2.36)

Self-interactions

Let’s now try a different example: consider a theory of a single self-interacting particle
of spin s. The three particle amplitude for (1−s2−s3+s) is ⟨12⟩3s

⟨13⟩s⟨23⟩s . Note a remarkable
feature of this expression, which we did not encounter in either the ϕ3 or Yukawa theory
cases: already the 3 particle amplitude appears to have poles! Thus in a sense these
amplitudes are not as "local" as we might have expected. Now of course this peculiarity
is un-noticed in the usual Minkowski space, since the three-particle amplitude vanishes
in the Lorentzian limit. It is not a coincidence that this subtle sort of "non-locality"
appears for precisely the same theories that, in a conventional Lagrangian description,
must introduce gauge redundancies for consistency. But returning to our problem of
determining four-particle amplitudes by imposing consistent factorization, this feature
introduces an important obstruction. The strategy of computing the residue in the s-
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channel, multiplying by 1/s, then summing over channels, is no longer guaranteed to
work; as we will see because of the poles in the three-particle amplitudes, the residue in
the s channel will itself have poles in the the other channels, making it non-trivial to be
able to find an object that consistently factorizes in all channels. Indeed, while we can
define massless three-particle amplitudes for any helicities, it will be impossible to find
consistent four-point amplitudes for all but the familiar interacting theories of massless
spin 0, 1/2, 1, 3/2 and 2 particles. This exercise has been carried out in systematically in
[25, 128], here we highlight some aspects of this story before moving on to carrying out
the similar analysis with massive particles.

Let us return to the theory of self-interacting massless particles of spin s; we will consider
the four-particle amplitude (1−s2+s3−s4+s). The residue in the s-channel, reached when
[12]→ 0 and ⟨34⟩ → 0, is

−s
1

2
+s

3

4

−s

+s

+−
, Rs =

(
⟨I1⟩3

⟨12⟩⟨2I⟩

)s(
[4I]3

[I3][34]

)s

=

(
⟨13⟩2[24]2

t

)s

(2.37)

which, again using that e.g. ⟨1I⟩[I4] = ⟨12⟩[24] = −⟨13⟩[34], can be simplified to
( ⟨13⟩

2[24]2

t
)s. We can similarly compute the t, u channel residues, and we find

Rs =

(
⟨13⟩2[24]2

t

)s

, Rt =

(
⟨13⟩2[24]2

s

)s

, Ru =

(
⟨13⟩2[24]2

t

)s

(2.38)

For s ≥ 1, we encountered the challenge alluded to above: the residue in one channel
itself has a pole in another channel. Let us start with s = 1. Given the structure of the
residues, any consistent amplitude must have the form

⟨13⟩2[24]2
(
A

st
+
B

tu
+
C

us

)
. (2.39)

Note that as s→ 0, we have t = −u, e.g. the residue in s is A/t+ C/u = (A− C)/t. In
this way, we find that matching the residues in s, t, u demands that (A−C) = 1, (B−A) =
−1, (B − C) = 1, which is impossible since the sum of the three terms would have to
vanish. We conclude that it is impossible to a single self-interacting massless spin 1
particle! But suppose we have many of these particles labelled by the index a; thus
the self-interaction of a1, a2, a3 is further proportional to a coupling constant fa1a2a3 .
Note that for s = 1 the three particle amplitude (1−12−13+1) = ⟨12⟩3

⟨13⟩⟨23⟩ is anti-symmetric
in exchanging 1 ↔ 2, implying fa1a2a3 taking on the same property. Extending to all
helicity configurations one can conclude that fa1a2a3 must be totally anti-symmetric.
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Next consider the four particle amplitude with labels a1, a2, a3, a4, the residues in the
s, t, u channels have additional factors of fa1a2ef ea3a4 and similarly in the t, u channels.
Now the ansatz for the four-particle amplitude has the form

⟨13⟩2[24]2
(
Aa1a2a3a4

st
+
Ba1a2a3a4

tu
+
Ca1a2a3a4

us

)
(2.40)

and matching the residues in s, t, u tells us that

Ca1a2a3a4 − Aa1a2a3a4 = fa1a2ef ea3a4

Aa1a2a3a4 −Ba1a2a3a4 = fa2a3ef ea4a1

Ba1a2a3a4 − Ca1a2a3a4 = fa1a3ef ea4a2 (2.41)

and now, we can solve for Aa1a2a3a4 , Ba1a2a3a4 , Ca1a2a3a4 if and only if the fa1a2a3 satisfies
the Jacobi identity

fa1a2ef ea3a4 + fa2a3ef ea1a4 + fa1a3ef ea4a2 = 0. (2.42)

Let’s now move on to a single particle with s = 2. Naively, since the residue in the
s−channel is proportional to 1/u2, we might think that it is impossible for the four-
particle amplitude to have crucial properties of having only single poles! However, this
1/u2 is the residue just as s → 0, and so it could also be represented as − 1

tu
. Thus

there is a unique possibility for the four-particle amplitude for a single massless spin two
particle:

− ⟨13⟩
4[24]4

stu
(2.43)

which evidently has all the correct residues in all three channels! We can further in-
vestigate the possibility on several massless spin two particles, with a coupling constant
ga1a2a3 ; the same analysis as for spin one then gives us quadratic constraints on the
ga1a2a3 that are solved only by g’s that, up to change of basis, are only non-vanishing for
a1 = a2 = a3, i.e. which are mutually non-interacting.

We have thus seen that the only consistently interacting massless spin one particles must
have a Yang-Mills structure, and the only consistent massless spin 2 particles does not
non-trivially allow more than one such particle, and gives us the standard gravity ampli-
tude. Of course we have done more than simply show the amplitudes are consistent—we
have computed them!

For spin s > 2, the residue in the s-channel is at least 1/u3, and so there is no way to have
a consistent four particle amplitude with only simple poles in s, t, u. We thus conclude
that there are no consistent theories of self-interacting massless particles of spin higher
than two.
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Interactions with other particles

Let’s move on to determine what sorts of self-consistent interactions other particles can
have with massless spin 1, 2 particles. Let’s start with the coupling of a spin s particles
to spin one particle, for which the three particle amplitude is ⟨12⟩2s+1⟨23⟩1−2s⟨13⟩−1. Let
us now consider the residues for the (1−s2+3−4+s) amplitude; we get residues in the s
and u channels from gluing these three-particle amplitudes together. These residues are
trivially computed to be

Rs =
1

u
(⟨13⟩[24])2s[2|(p1 − p4)|3⟩2−2s, Ru =

1

s
(⟨13⟩[24])2s[2|(p1 − p4)|3⟩2−2s. (2.44)

We see there is a qualitative difference between s ≤ 1 and s ≥ 3/2. For s = 0, 1/2, 1,
while the residues in one channel have poles in the other, we can write down a consistently
factorizing four-particle amplitude:

(⟨13⟩[24])2s[2|(p1 − p4)|3⟩2−2s

su
. (2.45)

But for s ≥ 3/2, the residues have (increasing powers of) the spurious pole in [2|(p4 −
p1)|3⟩, and so no consistent four particle amplitude is possible. Thus we recover the cor-
rect Compton-scattering expressions for particles of spin 0, 1/2, 1 scattering off photons,
while also seeing that it is impossible to have a consistent theory of massless charged
particles with spin ≥ 3/2.

When there are several species of spin s particles i coupling with several spin one particles
a, we attach an extra coupling T aij to the vertex. Consider (1−i 2+a 3

−
b 4

+
j ) scattering; writing

the residues R in any channel as R = (⟨13⟩[24])2s[2|p1|3⟩2−2s × r, we have

k k

+ a
−b

− i + j

k k

− i + j

+ a −b

, rs =
1

u
(T aT b)ij, ru =

1

s
(T bT a)ij , (2.46)

where (rs, ru) satisfies s = 0 and u = 0 kinematics respectively. Note that if (T aT b)ij =
(T bT a)ij, or the commutator [T a, T b] vanishes, we can get a consistent amplitude as with
our Compton scattering example, with poles only in these s and u channels, but this is
not possible if [T a, T b] ̸= 0. This means that the 1/u in rs and the 1/s in ru must secretly
be 1/t instead, i.e. must also include a pole in the t channel. Of course fortunately we
can have a residue in the t channel, using the cubic self-interaction for gluons. Quite
nicely the same kinematical factor appears in Rt, and we find (writing this residue in an
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s, u symmetric way):

− i + j

a b

c

c
, rt = (

1

s
)× fabcT cij. (2.47)

Thus, if we have
fabcT cij = [T a, T b]ij (2.48)

and using the fact that when t = 0, s = −u, we find that the following amplitude indeed
consistently factorizes in all channels:

(⟨13⟩[24])2s[2|p1|3⟩2−2s ×
(
(T aT b)ij

ts
+
(T bT a)ij

tu

)
. (2.49)

This agrees with the result in [106]. Also, clearly once again no consistent amplitudes are
possible for spin s ≥ 3/2. Thus we have discovered the familiar structure of Yang-Mills
theories for particles of spin 0, 1/2, 1.

The same sort of analysis extends to gravity, since the details are virtually identical we
will leave them as enjoyable exercises for the reader. We can consider the coupling of two
particles of spin s to a graviton, with strength g. The residues in the s, u channels are
no longer equal, and the only way to make a consistent four-particle amplitude is to also
have a pole in the t channel, using the graviton self-interaction κ = 1

MPl
. Thus once again

the poles for the amplitude are forced to come in the combination 1/stu. This implies
that the coupling constant appearing in the spin-s exchange channel must be identified
with that of the graviton exchange. That is, consistency between the three factorization
channel forces the universality of couplings to gravity, g = κ, with the following form for
Compton scattering:

κ2
(⟨13⟩[24])2s[2|(p1 − p4)|3⟩4−2s

stu
. (2.50)

Now we see that for s ≥ 2 one again develops a spurious pole, and one reaches the
conclusion that for spin greater than 2, the particle cannot consistently couple to gravity.
In other words, even if higher spin particles are non self-interacting and free, the moment
one turns on gravity it ceases to be consistent in flat space. Thus we find that the only
possible consistent theories that can couple to gravity can only have spins (0, 1/2, 1, 3/2).7

7As we remarked in our discussion above on self-interacting spin 2, via a basis change it is always
possible to say that the spin 2 particles are effectively in different universes with no mutual interactions;
in each one of these decoupled sectors the gravitons can be coupled to their own spectrum of particles
with spin (0, 1/2, 1, 3/2).
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We can also discover the need for supersymmetry when massless particles of spin 3/2

are present. Consider for simplicity the case with a single spin 3/2 particle ψ. Now
let’s imagine we also have a massless scalar ϕ. Both of these particles have a universal
coupling to gravity, so there is inevitably an amplitude for ψ1ψ1ϕ2ϕ2 scattering mediated
by gravity. We can again compute the residue in the s-channel, and find that it has a
pole in the t channel. But since there is no (ψ, ϕ, graviton) coupling (amplitudes must be
grassmann even), we can’t have any t-channel poles, and so this theory is inconsistent.
The only way to have a consistent amplitude is if we also introduce a massless fermion
χ, now we can have a (ψ, ϕ, χ) interaction with the same gravitational strength 1/MPl,
which provides the needed pole in the t-channel. The full amplitude is then given as:

(1, 2, 3−
3
2 , 4+

3
2 ) = κ2

⟨3|(p1−p2)|4]3

st
. (2.51)

Thus we see that we must have a bose-fermi degenerate spectrum, with the couplings of
the "gravitino" ψ to particles and their superpartners of universal gravitational strength.

We have given a lightning tour of some of the arguments leading to the determination
of all consistent theories of massless particles via the "four-particle scattering" test. It
is remarkable to see the architecture of fundamental physics emerge from these concrete
algebraic consistency conditions in such a simple way. A more complete and systematic
treatment can be found in [25, 128].

Before moving on to considering massive amplitudes, let us briefly comment the
(in)consistency of theories with three-particle amplitudes for helicities satisfying h1+h2+
h3 = 0. Apart from the case of all scalars h1 = h2 = h3 = 0, we have "phase" singularities
in the couplings, for instance we have a coupling of the form ⟨13⟩/⟨12⟩ or [12]/[13] for
a spin zero particle 1 to particles 2, 3 of helicity ±1/2. This peculiar interaction is
unfamiliar, and does not arise from Lagrangian couplings. But, as expected, it is also
impossible to find a correctly factorizing four-particle amplitude with these couplings [25,
128], so consistency forces the couplings to vanish.

2.4 General Three Particle Amplitudes

In this section we will categorize the most general three-point amplitude with arbitrary
masses. As discussed in section 2.2, the amplitude will be labeled by the spin-S repre-
sentation of the SU(2) little group for massive legs and helicities for the massless legs.
For amplitudes involving massive legs, it will be convenient to expand in terms of λIα,
since any dependence on λ̃Iα̇ can be converted using eq.(2.15). For example for a general
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one massive two massless amplitude, with leg 3 being a massive spin-S state, we have:

M
{I1···I2S},h1,h2
3 = λI13,α1

· · ·λI2S3,α2S
M

{α1···α2S},h1,h2
3 , (2.52)

where (h1, h2) are the helicity. We will be interested in the most general form of the
stripped M

{α1···α2S},h2,h3
3 , which is now a tensor in the SL(2, C) Lorentz indices. The

problem thus reduces to finding two linear independent 2-component spinors that span
this space, which we will denote as (vα, uα). The convenient choice of (vα, uα) will depend
on the number of massive legs in a given set up and we will analyze each case separately.
We note that a similar classification of three-point interactions using a different basis can
be found in [55, 56].

Two-massless one-massive

Let’s first begin with the two massless and one massive interaction:

1 2S

h1

h2

Mh1h2
{α1α2···α2S}.

Since both legs 1, 2 are massless, their spinors can serve as a natural basis:

(vα, uα) = (λ1α, λ2α). (2.53)

The helicity weight (h1, h2) then completely fixes the degree-2S polynomial in λ1, λ2 up
to an overall coupling constant:

Mh1h2
{α1α2···α2S} =

g

m2S+h1+h2−1

(
λS+h2−h11 λS+h1−h22

)
{α1α2···α2S}

[12]S+h1+h2 , (2.54)

where with appropriate factors of m such that it has the correct mass-dimension. Note
that we can trade [12] for ⟨12⟩ using [12] = m2

⟨21⟩ . When the massive leg is a fermion, i.e.
S ∈ 1

2
Z, we must then require precisely one of the massless legs to be a fermion as well.

The fact that the structure of this three-point amplitude is unique implies no go theorems
for certain interactions. For example, for identical helicities the factor [12]S+2h1 will
attain an extra factor of (−1)1+2h1 under 1, 2 exchange for odd spins. This will result
in the wrong spin-statistics, thus a particle of odd spin S cannot decay to identical
particles with the same helicity. Now suppose the particles have opposite helicity, namely
h1 = −h2 = h. If we take into account that the exponents of λ1 and λ2 must both be
positive, we conclude that the amplitude vanishes if |h| > S/2. For massive spin one
states, this is Yang’s theorem—that a massive spin one particle cannot decay to a pair
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of photons. We also learn that a massive spin three particle cannot decay to a pair of
gravitons. Note that we have invoked spin-statistics without giving its on-shell origin.
As we will see in the coming subsection 2.4, when considering the three-point amplitude
of identical massive spin-S states to gravity, spin-statistics is immediately forced upon
us.

One-massless two-massive

For two massive legs, the three-point amplitude is now labeled by (h, S1, S2)

1 2S

1 2S1

2

h

Mh
{α1α2···α2S1

}, {β1β2···β2S2
} (2.55)

The analysis depends on whether or not the masses are identical. For equal mass, the
kinematics becomes degenerate and one expects some form of superficial non-locality. The
reason is that the equal mass kinematics occurs precisely for minimal coupling, where
its massless limit contain inverse power of spinor brackets as discussed in the previous
section. As we will see, for this case we need to introduce a new variable x that encodes
this non-locality.

Unequal mass

For unequal mass, one of the basis spinor can be λ of the massless leg, while the remaining
can be chosen to be λ̃ contracted with one of the massive momentum. For example one
can choose

(vα, uα) =

(
λα,

p1αβ̇
m1

λ̃β̇
)
. (2.56)

Unlike the one massive case, here the amplitude is not unique. The helicity constraint
only fixes the polynomial degree in u and v to differ by 2h. For S1 ̸= S2 there are then a
total of C = S1+S2−|S1−S2|+1 different tensor structures, and the general three-point
amplitude is given by:

Mh
{α1α2···α2S1

}, {β1β2···β2S2
} =

C∑
i=1

gi(u
S1+S2+hvS1+S2−h)

(i)
{α1α2···α2S1

},{β1β2···β2S2
}, (2.57)

where i labels the different structure and gi is the coupling constant for the different
tensor structures. Note that the number of possible tensor structures is determined by
the lowest spin. For example for one S1 = 1 S2 = 2, we have three tensor structures. For
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a minus helicity photon these are given by

(vvvv)(uu), (vvvu)(vu), (vvuu)(vv) , (2.58)

where the parenthesis indicates the grouping of the symmetrized SU(2) little group index.
One can also compare this with a Feynman diagram vertex F3,µνϵ

νρ
2 ∂ρϵ

µ
1 , where ϵ1, ϵ2 are

the polarization vectors for the massive particles. Again, substituting the on-shell form
of the massless polarization vectors ϵ−i = |i⟩[µ̃|

[iµ̃]
, ϵ+i = |µ⟩[i|

⟨µi⟩ , where |µ̃], |µ⟩ are reference
spinors, and massive ones in eq.(2.29), one finds

M3{α1α2}{β1β2β3β4} =
m2

1

m4
2

1

m2
1−m2

2

[
m1(uu){α1α2}(uuvv){β1β2β3β4}

− m2(uv){α1α2}(uuuv){β1β2β3β4}
]
. (2.59)

Indeed the three-point amplitude for the vertex can be expanded on the basis in eq.(2.58),
as it should.

Equal mass: the x-factor

If the masses are identical, then u and v are no longer independent, since

vαuα =
⟨3|p1|3]
m

= 0 . (2.60)

Thus (uα, vα) are parallel to each other and pick out just one direction in the SL(2,C)
space. There is however a crucial piece of additional data in the constant of proportion-
ality between u and v, which we will call "x":

xλ3α =
p1αα̇
m

λ̃α̇3 ,
λ̃α̇3
x

=
pα̇α1 λ3α
m

. (2.61)

Note that x carries +1 little group weight of the massless leg. Furthermore, x cannot be
expressed in a manifestly local way. Indeed contracting both sides of the above equation
with a reference spinor ζ yields

x =
⟨ζ|p1|3]
m⟨ζ3⟩

, (2.62)

so while x is independent of ζ, any concrete expression for it has an apparent, spurious
pole in ζ. In the next section, as we glue the three-point amplitudes to get the four-point,
it will be convenient to choose ζ to be the spinor of the external legs on the other side.
The denominator then yields a pole in other channels! This yields non-trivial constraint
for the four-point amplitude to have consistent factorisation in all channels.
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Now the only objects we have carrying SL(2,C) indices are λ3, as well as the the anti-
symmetric tensor εαβ.8 We can then express the three-point amplitude as

Mh
{α1α2···α2S1

}, {β1β2···β2S2
} =

(S1+S2)∑
i=|S1−S2|

gix
h+i(λ2i

3 εS1+S2−i){α1α2···α2S1
},{β1β2···β2S2

}

=

(S1+S2)∑
i=|S1−S2|

gi x
h

[
λi
3

(
p1λ̃3

m

)i

εS1+S2−i

]
{α1α2···α2S1

},{β1β2···β2S2
}

,

(2.63)

where the superscript on λ, ε, pλ̃/m indicates its power. For later purpose we present it
in two equivalent representations.

Minimal Coupling for Photons, Gluons, Gravitons

We have seen that while there is a unique structure for massless three-particle amplitudes
once the helicities are specified, for couplings of, for example, two equal mass particles
of spin S to a massless particle there are (2S+1) independent structures, each term with
n factors of ε with n = 0, · · · , 2S. Let us take the massless particle to be a graviton.
Note that ε is antisymmetric with respect to the exchange 1↔ 2. Furthermore while the
definition of x in eq.(2.61) implies that it picks up a minus sign under the 1 ↔ 2, this
is irrelevant for gravitational couplings which are proportional to x2. Thus we see that
one gravitation two identical spin S amplitude will have a factor of (−)2S+1 under the
exchange of the spin-S states. This is nothing but the spin-statistic theorem!

Now one of the (2S+1) structures is special, and corresponds to what we usually think of
as "minimal coupling" to photons, gluons and gravitons. The defining characteristic of
"minimal coupling" is physically very clear. For massless particles, the mass dimension
of the couplings is given by 1− |h1 + h2 + h3|, and so the leading low-energy interactions
with photons, gluons and gravitons—those with dimensionless gauge couplings e, g or
gravitational coupling 1/MPl, involve massless particles of opposite helicity. The defi-
nition of "minimal coupling" for massive particles is then simply the interaction whose
leading high-energy limit is dominated by precisely this helicity configuration. As we will
see the remaining (2S+1)−1 = 2S interactions represent the various multipole-moment
couplings (such as the magnetic dipole moment in the coupling to photons.)

In our undotted SL(2,C) basis, the amplitude with a positive helicity state can be viewed
as an expansion in λ. The leading piece in this expansion, namely that where the SL(2,C)

8Note in the unequal mass case, since u, v provided a basis, we didn’t need to separately introduce
εαβ since (uαvβ − uβvα) = ⟨uv⟩εαβ . However as m1 → m2 these invariants vanish. This also shows the
absence of a singularity in eq.(2.59) as m1 → m2.
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indices are completely carried by the Levi-Cevita tensors, precisely corresponds to mini-
mal coupling! It is instructive to see why this is the case. Using the simplest example, a
photon coupled to two fermions, we find:

xmεα1α2 → x⟨12⟩ = ⟨12⟩⟨ζ|p1|3]
m⟨ζ3⟩

=
⟨2ζ⟩[31] + ⟨1ζ⟩[32]

⟨ζ3⟩
. (2.64)

Taking the high energy limit, we see that the leading term indeed correspond two possible
pairs of opposite helicity fermion,

⟨2ζ⟩[31] + ⟨1ζ⟩[32]
⟨ζ3⟩

H.E.−−−−−−→
[13]2

[12]
+

[23]2

[12]
+O(m) . (2.65)

In general the the minimal coupling between photon and two spin-S states is simply:

Mmin,+1
{α1···α2S},{β1···β2S} = xm

(
2S∏
i=1

εαiβi + sym

)
,

Mmin,−1
{α̇1···α̇2S},{β̇1···β̇2S} =

m

x

(
2S∏
i=1

εα̇iβ̇i
+ sym

)
, (2.66)

where we’ve also included the negative helicity photon in its simplest dotted representa-
tion. The proper amplitude (with little group indices) is then given as:

Mmin,+1 = x
⟨12⟩2S

m2S−1
, Mmin,−1 =

1

x

[12]2S

m2S−1
. (2.67)

For gravitons, we simply introduce an extra power of m
Mpl

x. The fact that in this formal-
ism, minimal coupling is as simple as λϕ3 heralds its potential for simplification. It is
also instructive to see how such simple representation emerges from the usual vertices in
Feynman rules. Here we present examples for scalar, spinor, and vector at three points:

Scalars :

+

ϵ3 · p1 =
⟨ξ|p1|3]
⟨3ξ⟩

= −mx , (2.68)

where we’ve used the identity xmλ3 = p1|3]. Similarly for spin-1
2

and 1, we have:

Fermions :

+

1

2 ū1 ̸ϵ3v2 =

(
pγ̇α2

2

m
, δα2
γ

) 0
λ̃3γ̇ξβ
⟨3ξ⟩

− λ̃β̇3 ξ
γ

⟨3ξ⟩ 0

( p2β̇
α1

m

εα1β

)

= xεα1α2 (2.69)
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Vectors :

+

11

22

pβ1α̇1

1

m
[ϵ3 · p1εα1α2εα̇1α̇2 + p2α1α̇1ϵ3α2α̇2 − p1α2α̇2ϵ3α1α̇1 ]

pβ2α̇2

2

m

= −mx
(
εα1α2εβ1β2 + sym(α↔ β)

)
. (2.70)

The fact that minimal coupling is literally the "minimal" interaction in the undotted
SL(2,C) representation indicates the λ expansion should directly correspond to the pres-
ence of couplings through higher-dimensional operators. These precisely are the magnetic
and electric moments. Let us begin with the magnetic dipole moment. Since this corre-
sponds to a coupling of the particle with F µν , it can only occur for particles with spin.
Thus we can extract the electric dipole moment by separating the minimal coupling into
a piece that is universal, and pieces that only exists for spinning particles.

Recall that the field strength in momentum space becomes Fµν → λαλβεα̇β̇ + λ̃α̇λ̃β̇εαβ.
This implies that couplings through the field strength will be transparent in the undotted
frame for negative helicity photon, and dotted frame for the positive photon. With this
in mind we convert the minimal coupling for spin-1

2
and negative helicity photon into the

dotted frame:
pαα̇1
m

(m
x
εα̇β̇

) pββ̇2
m

=
m

x

(
εαβ+x

λα3λ
β
3

m

)
. (2.71)

Here the piece m
x
εαβ is the same as that for scalars, sans the εαβ factor which is necessary

to carry the SL(2,C) indices, and thus a universal term. The extra piece λα3λ
β
3 then

represents the magnetic moment coupling, with the amplitude given by

⟨13⟩⟨32⟩
m

. (2.72)

Thus we immediately see that g = 2 for the magnetic dipole moment.9 Thus for minus
helicity photon, the general spin-1

2
amplitude has the simple expansion:

M−1
α̇1α̇2 =

1

x
mεα̇1α̇2−

(g−2)
4

(λ̃3λ̃3)α̇1α̇2

x2
, (2.73)

where we’ve manifestly separated the minimal coupling and the (g − 2) part of the
magnetic dipole moment. It is straight forward to see that (λ̃3λ̃3)α̇1α̇2

x2
in the undotted

9As a comparison, for the positive helicity and insisting on the undotted frame, we can make the
separation after contracting λIs. More precisely:

xεαβ → x
⟨12⟩
m

=
1

m

(
x[12]smatrix/+

[13][32]

m

)
.
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frame is simply λ3λ3. For the plus helicity, one has:

M+1
α1α2 = mxεα1α2+

(g−2)
4

x2(λ3λ3)α1α2 . (2.74)

One can trivially extend this to higher spin. For example for spin-1, the minimal coupling
now contains both the magnetic dipole moment and electric quadrupole moment. The
minimal coupling yields:

m

x

(
εα1α2 − xλ

α1
3 λ

α2
3

m

)(
εβ1β2 − xλ

β1
3 λ

β2
3

m

)
+ (α1 ↔ β1)

= −m
x
εα1{α2εβ2}β1 − εα1{α2λ

β2}
3 λβ13 − εβ1{β2λ

α2}
3 λα1

3 + 2x
λα1
3 λ

α2
3 λ

β1
3 λ

β2
3

m
.

(2.75)

We again see that the first term is the universal piece, and the terms quadratic in λ is
the dipole moment where as the terms quartic in λ is the electric quadrupole moment.
Thus the general three-point amplitude for the charged vector and a photon is:

M−1
{α̇1β̇1}{α̇2β̇2} =

1

x
mε{α̇1α̇2εβ̇1}β̇2 + (g−2)

(
εα̇1{α̇2λ̃3β̇2}λ̃3β̇1

x2
+
εβ̇1{β̇2λ̃3α̇2}λ̃3α̇1

x2

)

+ 2(g′ + 1)
λ̃3α̇1λ̃3α̇2λ̃3β̇1λ̃3β̇1

mx3
, (2.76)

where (g − 2) and (g′ + 1) is the anomalous magnetic dipole and electric quadrupole
moment respectively.

Three massive

For all massive legs, we no longer have massless spinors to span the SL(2, C) space. This
implies that the space has to be spanned by tensors instead. The fundamental building
blocks are now

Oαβ = p1{αβ̇p2β}
β̇, εαβ . (2.77)

Note that since OαβOγδ − OγβOαδ ∼ εαγεβδ, pairs of εαβ can be traded for products of
Oαβ. The general form of the three-point amplitude is:

1 2S
2

1 2S
3

1 2S
1

Mα1···α2S1
,β1···β2S2

,γ1···γ2S3
=

1∑
i=0

∑
σi

gσi
(
OS1+S2+S3−iεi

)σi
{α1···α2S1

},{β1···β2S2
},{γ1···γ2S3

} ,

(2.78)
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where i = 0, 1 represents the number of εs and σi labels all distinct ways the SU(2)
indices can be distributed on Os and should be summed over. It will be interesting to see
whether the higher spin interactions from string theory(see [79] for recent results) span
the space of all interaction allowed.

2.5 Four Particle Amplitudes For Massive Particles

Now that we have determined the structure of all possible three-particle interactions, we
would like to proceed to investigating the consistency of four-particle amplitudes. Just
as we did for all massless particles, we ask: given a spectrum of particles, and a set of
three-particle interactions, is it possible to find a four-particle amplitude that consistently
factorizes in all possible channels? We stress that this is a completely sharply defined
and straightforward algebraic problem. To be maximally pedantic, suppose we have a set
of particles with masses (zero or non-zero) given by mi. Then the most general ansatz
for the four-particle amplitude has the form

N∏
i(s−m2

i )(t−m2
i )(u−m2

i )
(2.79)

and we simply wish to determine whether there is a consistent numerator N that allows
this function to factorize correctly in the s, t, u channels10

M →
Ma

L, {I1···I2s}ε
I1J1 · · · εI2sJ2sMa

R {J1···J2s}

P 2 −M2
. (2.80)

As we’ve shown before, it is convenient to expand the amplitude on the λIα basis, in which
case the contraction of little group indices now translates to the contraction of undotted
SL(2,C) indices:

λIαλ
J
β

m
εIJ = εαβ . (2.81)

To make contact with the usual Feynman rules, the numerator of the vector propagator
is Gµν ≡ ηµν − pµpν

m2 , which in SL(2,C) undotted representation is:

Gαα̇,ββ̇ = 2εαβεα̇β̇ −
pαα̇pββ̇
m2

→
pα̇γp

β̇
δ

m2
Gαα̇,ββ̇ = εα{βεγδ} , (2.82)

as expected. This is not surprising, as we’ve discussed in the introduction, the transverse
traceless-ness, which determines the numerator of the propagator, simply translates to
symmetrization of the SL(2,C) indices.

10Of course the amplitude cannot be uniquely determined in this way, since we can always simply
have contact terms that are simply polynomials with no poles at all (corresponding to piece in N that
cancels all the poles). To avoid clutter, we will suppress the possible contact terms in what follows.
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In practice, we don’t need to work with this slavishly systematic ansatz for the amplitude
with the giant denominator consisting of all possible simple poles. Instead, following
the same steps as in the all massless case, given the spectrum and the three-particle
amplitudes, we will first simply compute the residues R(i)s, R(i)t, R(i)u in the s, t, u

channels from the exchange of the i’th particle. If these residues are local, we are trivially
done, since the object

∑
i

(
R

(i)
s

s−m2
i

+
R

(i)
t

t−m2
i

+
R

(i)
u

u−m2
i

)
(2.83)

manifestly matches the poles in all the channels. This is the case for the massive gϕ3

theory where these residues are all simply Rs = Rt = Ru = g2. But as we already
saw in the massless case, there are more interesting cases where the residues in one
channel themselves have poles in another channel. With massive particles this will occur
whenever we have minimal coupling and the ”x” factor. In this case an ansatz separately
summing the channels cannot work, and we must use building blocks that have simple
poles in more than one channel. For massless particles, the requirement of four-particle
consistency was so strong as to simply make certain theories (of high-enough spin charged
or gravitating massless particles) impossible. It also enforced universality of the couplings
to gravitons and the usual Yang-Mills structure for coupling to photons and gluons. We
will see the analogue of these statements for massive amplitudes. Once again, consistent
factorization will demand the standard couplings to photons, gluons and gravitons, will
also see that any self-interactions have to be invariant under the (global part) of the gauge
symmetry. But with these restriction met, it is possible to find consistently factorizing
four-particle amplitudes for any masses and spins. This is of course expected, since almost
all interesting objects in the real world are massive particles of high spin! But of course as
we will also see, the impossibility of consistent amplitudes for massless particles of high
spin shows up in a singularity of the massive high spin amplitudes in the high-energy
(or m→ 0) limit, giving a very concrete sense in which particles of high spin cannot be
"elementary".

Manifest local gluing

We first begin with the construction of amplitudes without any x-factor non-localities.
Let’s begin with Yukawa amplitude, i.e. one massless scalar two massive fermion ampli-
tude. The three-point amplitude is simply

g

mf

⟨13⟩[23] + g′

mf

⟨23⟩[13]. (2.84)
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where mf is the mass of the fermion. The gluing in the s- and u-channel yields:

1

2 3

4 1

3 2

4

=
g2⟨12⟩⟨34⟩[32] + g′g[12]⟨43⟩⟨2|p4|3] + c.c.

mf (s−m2
f )

+ (2↔ 3) , (2.85)

where by c.c. we are exchanging λ↔ λ̃ and g ↔ g′. As one can see, since the three-point
amplitude was local, the resulting four-point amplitude can be written in a manifest local
way with two separate channels.

A "slightly" more complicated example would be the process γ− + t → gra+ + t, via a
massive spin-3

2
exchange:

t t

T
3/2

1

2 3

4

gra

. (2.86)

Here, t1,4 are the massive top quarks with their mass denoted by mt. The three-point
amplitude on both sides are:

VL =
g

m3
t

⟨p2⟩3[12] + g′

m3
t

⟨12⟩⟨p2⟩2[p2],

VR =
g′′

m3
t

[43][p3]3 . (2.87)

There are two tensor structures for VL, reflecting the two distinct way the SL(2,C) indices
can distribute. The resulting four-point amplitude is then,

gg′′[43][21]⟨2|p4|3]3 + g′g′′[43]⟨12⟩⟨2|p4|3]2[32]mt

(s−m2
T )m

6
t

+ (2↔ 3) , (2.88)

where mT is the mass of the spin-3/2 particle.

In the above examples, the residues are manifestly local as it is inherited from the three-
point amplitude. The only place potential non-locality can occur is when factors of x
appear for the three-point amplitude, for example the minimal coupling. Thus in the
next section we will focus on minimal coupling for massless spin-1 and 2 particles.
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Minimal Coupling

In this subsection we will consider the gluing of minimally coupled higher spin particles.
We will first begin with charged particles, which entails the three-point coupling of two
massive spin-S state and a positive or negative helicity photon. The three point amplitude
is given in eq.(2.66), and after dressing with external spinors the complete amplitude is:

M+h
S = xh

⟨12⟩2S

m2S−1
, M−h

S =
1

xh
[12]2S

m2S−1
. (2.89)

Compton Scattering For S ≤ 1

Let us begin with scalar. Here one simply has:

41

p p
2

+1 3
−1

∼ m2x12
x34

. (2.90)

Here the subscripts on x serve to distinguish between different three point vertices. Now
since

x12λ2 =
p1|2]
m
→ x12 =

⟨3|p1|2]
⟨32⟩m

,
p4|3⟩
m

=
λ̃3
x34
→ 1

x34
=
⟨3|p4|2]
[23]m

, (2.91)

we see that the residue is given by:

m2x12
x34

= −⟨3|p1|2]
2

t
. (2.92)

Again the s-channel residue is non-local and must be interpreted as a pole from the other
channel! We now have a choice, it can either be interpreted as a massless particle in the
t-channel, or an u-channel massive particle since −t = u −m2 when s = m2. For there
to be a t-channel massless pole, the vectors must be gluons instead of photons, and we
leave this possibility to the later part of this subsection. For the case where one has a
u-channel massive pole, the amplitude is simply:

M(ϕ1γ
+
2 γ

−
3 ϕ4) =

⟨3|p1 − p4|2]2

4(s−m2)(u−m2)
, (2.93)

As the amplitude is symmetric under 1 ↔ 4 exchange, it is guaranteed to be consistent
with the u-channel factorisation. It is straight forward to see that at H.E. one obtains
the usual two adjoint-scalar two gluon, and two charged scalar two photon amplitude.

Let us now consider Compton scattering for general spin. The s-channel gluing yields,

1

p p
2

+1 3
−1

4

∼ 1

m2(S−1)

x12
x34

(⟨1P I⟩[PI4])2S . (2.94)
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Recall that x12
x34
m2 = −⟨3|p1|2]2/t, if we rewrite t as u −m2 and put back the s-channel

propagator, this has the property that it is symmetric under 1 ↔ 4 (it is the scalar
amplitude after all). This means that if P 2S

m2S matches to the u-channel residue then we
are done! Finally using the identity:11

⟨1|PI |4]
m

= m
⟨43⟩[12] + ⟨13⟩[42]

⟨3|p1|2]
, (2.97)

one derives the following ansatz for the four-point amplitude of minimally coupled general
spin-S amplitude:

⟨3|p1|2]2−2S

(s−m2)(u−m2)
(⟨43⟩[12] + ⟨13⟩[42])2S . (2.98)

Note that the final result has an extra (−)2S sign for spin-S under 1 ↔ 4 exchange.
This tells us that charged half integer spins must be fermions, while integer spins are
bosons. Thus we’ve recovered spin-statistics from the principles of Poincare symmetry
and unitarity. The result in eq.(2.98) contains spurious singularities which cancel for
S ≤ 1. This signals that there is something fundamentally different for charged particles
of S ≤ 1 and S > 1. For S = 1/2, 1 we recover the Compton scattering:

M(1
1
2 , γ+1

2 , γ−1
3 ,4

1
2 ) =

⟨3|p1−p4|2]
2(s−m2)(u−m2)

(⟨43⟩[12] + ⟨13⟩[42])

M(11, γ+1
2 , γ−1

3 ,41) =
(⟨43⟩[12] + ⟨13⟩[42])2

(s−m2)(u−m2)
. (2.99)

In appendix A.4 we reproduce this result using Feynman diagrams for fermions. By
studying the H. E. limit, one can easily verify that this is correct. At H.E. for S = 1

one obtains three terms, two of which are contributions where legs 1 and 4 are opposite
helicity gluons, and a final one which is when they are both scalars, which are the
Goldstone bosons that were eaten in the Higgs mechanism! Note that this is telling us
that the Higgs mechanism provides a way to "unify" the independent massless amplitudes
in the IR. We will discuss this phenomenon in more detail in section 2.6.

Now in the above discussion the result from the s-channel gluing can be matched to
the u-channel if we have a single species of spin-S. If there are multiple species, then

11This identity can be derived as follows: |P I⟩[PI | is the internal momentum that satisfies the s-
channel on-shell constraint,

Pαα̇λ̃
α̇
2 = −mx12λ2α, Pαα̇λ̃

α̇
3 = mx34λ3α, P 2 = m2 (2.95)

The solution is given by:

Pαα̇ =
−m2λ3αλ̃2α̇ + (p1αβ̇λ̃

β̇
2 )(p4α̇β⟨

β
3 )

⟨3|p1|2]
. (2.96)

Contracting with λI
4 and λ̃I

1 yields eq.(2.97).
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similar to the massless discussion in section 2.3, we should assign a matrix T aij to each
vertex, and due to [T a, T b] ̸= 0, the matching to the u-channel will be off by a piece
that is proportional to fabcT cij. This mismatch is a sign that the t-channel pole from the
s-channel factorisation should be assigned into a physical massless pole, i.e. revealing the
presence of an non-abelian vector. For this to hold we should show that the s-channel
residue admits this interpretation. Indeed taking a scalar for example, ⟨3|p1|2]2/(s−m2)t

can be matched to the t-channel residue since

p

1 4

3
−1

−1

2
+1

p+1

x14
⟨3P ⟩3

⟨P2⟩⟨23⟩
= −fab cT c

⟨3|p1|3]⟨3|p1|P ]
x14m⟨P2⟩

= ⟨3|p1|2]2
(
T aT b

s−m2
+

T bT a

u−m2

)
.

(2.100)
The last equality utilizes the fact that when t = 0, s−m2 = −(u−m2). Thus the final
amplitude is given by:

⟨3|p1|2]2−2S (⟨43⟩[12]smatrix/+⟨13⟩[42])2S 1

t

[
(T aT b)ij
s−m2

+
(T bT a)ij
u−m2

]
.

(2.101)

Compton scattering for S > 1

The ansatz for general minimal coupling in eq.(2.98) appears to contain non-physical poles
for S > 1. Of course this cannot be the final story since there’s an abundance of charged
higher spin-states in nature, and although we know that they are not fundamental, it has
no bearing on the existence of S-matrix for low energy scattering. In deriving eq.(2.98),
we started from the s-channel residue and analytically continued PI to a form that is
manifestly 2↔ 3 and +↔ − symmetric, and thus can be directly matched to u-channel
residues. This is not entirely necessary, since the full amplitude can contain terms that
only contain s and not u-channel pole. Thus the very fact that eq.(2.98) gives us non-
physical poles for S > 1 is precisely telling us that such terms must be present.

To see this subtlety in detail, let’s consider minimal coupling for spin-3/2, for which the
gluing from s-channel yields:

− ⟨3|p1|2]
2

t

(
⟨43⟩[12] + ⟨13⟩[42]

⟨3|p1|2]

)3

. (2.102)
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First note that by using eq.(2.15) one can rewrite the internal propagator in a mostly
local form:
⟨43⟩[12] + ⟨13⟩[42]

⟨3|p1|2]
=

(
[14]

m
+
⟨42⟩[21]− ⟨12⟩[24]

2m2

)
+

t[21]⟨34⟩
2m2⟨3|p1|2]

≡ A+B (2.103)

The first two terms, denoted as A, are local at the expense of introducing extra inverse
powers of m and are anti-symmetric under 1 ↔ 4, inheriting the symmetry properties
of its parent. This guarantees that the local terms can be combined with the pre-factor
and reproduce the correct residue on the u-channel pole. The last term, denoted as B,
while being spurious, does not contribute to the u-channel residue and thus we are free
to rewrite it in a local form using s-channel kinematics:

t[21]⟨34⟩
2m2⟨3|p1|2]

∣∣∣∣
s=m2

= −⟨43⟩[32]⟨21⟩
2m3

. (2.104)

Now expanding (A+B)3, only the A3 term will contribute to both s- and u- propagators,
while terms with B will contribute solely to s-channel propagators. Putting everything
together, one finds the following local form for the amplitude:

M(1
3
2 , γ+1

2 , γ−1
3 ,4

3
2 ) =

⟨3|p1|2]2

(u−m2)(s−m2)
A3 −

{
⟨3|p1|2][21]⟨34⟩
2m2(s−m2)

×(
3A2 − 3A

⟨43⟩[32]⟨21⟩
2m3

+
⟨43⟩2[32]2⟨21⟩2

4m6

)
+ (1↔ 4)

}
.

(2.105)

We now see that in the final local form, all terms contain 1/m factors and becomes
singular in the H.E. limit. In other words, the obstruction of taking m → 0 reflects the
absence of a consistent massless high energy amplitude. For example the leading term in
1/m that will contribute to M(1+

3
2 , γ+1

2 , γ−1
3 , 4+

3
2 ) at high energies is given by:

⟨3|p1|2]2

(u−m2)(s−m2)

[14]3

m3
→ ⟨31⟩

2[12]2

us

[14]3

m3
. (2.106)

As we will elaborate below, this is the concrete sense in which charged particles with
spin S ≥ 3/2 cannot be "elementary", the same conclusion holds for any particles at all
of spin S ≥ 5/2 that can consistently couple to gravity.

Graviton Compton Scattering

Let us again begin with scalars, with the massive scalars are on legs 1, 4, a positive and
negative helicity graviton on legs 2, 3 respectively. The s-channel residue is given as:

m4

M2
pl

x212
x234

=
⟨3|p1|2]4

t2M2
pl

, (2.107)
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where Mpl is the Plank mass. As with the massless discussion we now have double pole
in t, which can be identified as the massive pole 1/(u − m2) and a massless 1/t pole.
Thus the four-point amplitude is simply

− ⟨3|p1|2]4

(s−m2)(u−m2)tM2
pl

. (2.108)

It is instructive to verify that the massless pole is correct. Let us take the residue at
t = 0, in the kinematics where ⟨ij⟩ = 0. The residue of eq.(2.108) is

− ⟨3|p1|2]4

⟨3|p1|3]⟨2|p1|2]M2
pl

. (2.109)

Since ⟨ij⟩ = 0, the massless three-point amplitude should be MHV , and one has

1 4

+
2 3

P
[2P ]6

[23]2[3P ]2
1

x214M
2
pl

=
[2P ]4[2|p1|P ⟩2

[23]2[3P ]2m2M2
pl

=
[2P ]2[2|p1|3⟩2

[3P ]2M2
pl

, (2.110)

where P is the massless internal momenta. Finally using the identity

[2P ]2

[3P ]2
=

[2P ][2|p1|P ⟩
[3P ][3|p1|P ⟩

= − [2|p1|3⟩2

[3|p1|2⟩[2|p1|3⟩
= − [2|p1|3⟩2

⟨3|p1|3]⟨2|p1|2]
, (2.111)

where in the last line, we’ve applied Schouten on the denominator, keeping in mind that
⟨23⟩ = 0. Thus we see that eq.(2.108) yields correct factorization in all channels.

For massive higher-spin particles, we again use the mixed representation. The s-channel
residue yields:

+
2 3

1
S

4
S

x212
x234

m4

M2
pl

(
P 2S
I

m2S

)
α1···α2S ,α̇1···α̇2S

. (2.112)

Using the explicit form for PI in eq.(2.96), we find that the residue, after contracting
with the external (λI1, λI4) is simply

⟨3|p1|2]4

t2M2
pl

(
⟨43⟩[12] + ⟨13⟩[42]

⟨3|p1|2]

)2S

. (2.113)

Thus for S ≤ 2 we find a perfectly local four-point amplitude given by:

− ⟨3|p1|2]4

(s−m2)(u−m2)tM2
pl

(
⟨43⟩[12] + ⟨13⟩[42]

⟨3|p1|2]

)2S

. (2.114)

For S > 2, we see that the formula ceases to be local. Similar to our photon coupling
analysis, this indicates that the residue of s-channel must be separated into pieces that
will combine with other channels and pieces that don’t.
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Massive higher spins cannot be elementary

We have seen that Compton scattering amplitudes for particles of high enough spin do
not have a healthy high-energy limit, growing as powers of (p/m). Of course so long
as the gauge/gravitational couplings are small, these amplitudes do not become O(1)
till energies parametrically above the particle mass m, so in that sense no inconsistency
is encountered in the effective theory of a single massive higher spin particle till a cut-
off parametrically above its mass. Nonetheless, the sickness of the m → 0 limit does
show that a single massive higher spin particle cannot be "elementary", and that any
consistent theory for such particles must also include new particle states with a mass
comparable to m. As an example, suppose we have some strongly-interacting QCD-like
gauge theory; can such a theory have a spectrum consisting of bound states of high spin,
with a parametrically large gap up to higher excited states? Our analysis suggests that
this is impossible. We can imagine weakly gauging a global symmetry of the theory, or
coupling the system to gravity. The total cross-section, for example, for γγ → X should
be bounded by σ < C × e4/s for some constant C characterizing the current four-point
amplitude. But if we have a charged higher spin particle, just the cross-section for its
production would grow as e4/s × (s/m2)n, and if there is a parametrically large gap up
to other particle states this will exceed the bound when (s/m2)n > C. Of course this is a
somewhat qualitative argument, but we believe it captures the essence of why higher-spin
massive particles must be composite. A sharpening of the argument may be able to give
a more quantitative bound for the scale beneath which new particles must appear.

We can ask if the presence of new states in the propagator can tame this high-energy
behaviour by cancelling the 1/m6 singularity in eq.(2.106). In other words consider the
case where one has a new spin S ′ state with the similar mass as the S = 3

2
, then one can

include the contribution:

4
1 2 3

2 3
+1 −1

1
1 2 3

. (2.115)

If S ′ ̸= S, then in the degenerate mass limit, it is easy to see that the three point
amplitude cannot involve the pure x dependent pieces and thus the residue must be
local. This then tells us that the contribution of such terms in the high energy limit
must take the form ns

smα + nu

umα for some α, and ns, nu is some local function in kinematic
invariants. This has a distinct high energy behaviour than eq.(2.106) which behaves as
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1/su, and thus cannot cancel.12 For S ′ = S, if the masses are not identical then the
residue is again local and we have the same issue. If the masses are the same, then
one simply obtains the exact same form as eq.(2.106) with identical signs, and the H.E.
behaviour is again untamed.

Thus even with finite number of states with comparable mass, the sick H.E. limit still
rules out isolated charged higher spin state as a fundamental particle. The above analysis
does provide a loophole: one can have an infinite tower of ever increasing higher spin
states. While their presence in the propagator only produces terms with single poles
in the H.E. limit, an infinite sum of ns/s terms can produce poles in u if the degree of
polynomial for ns unbounded. That is, if the exchanged state has unbounded spin. This
is precisely what happens for string theories which contain massive higher spin states.

All Possible Four Particle Amplitudes

Having discussed the four-particle amplitudes associated with the most familiar and
important three-particle interactions, let us finally turn to computing all possible four-
particle amplitudes. As we have seen when there are no "x" factors involved, we have
local residues and the construction of four-particle amplitudes is trivial. We will therefore
concentrate on discussing the cases where consistent factorization is non-trivial, which
involve having at least one minimal coupling with an ”x” factor, but now allowing for the
most general set of other couplings. We will see (once again) that consistency demands
that the minimal couplings have the standard Yang-Mills/gravitational forms, and that
the other interactions have to be (globally) Yang-Mills invariant. But it is then possi-
ble to find consistently factorizing four-point amplitudes for any choice of three-particle
interactions satisfying these conditions.

All Massive amplitude

This is the simplest, since we only need to consider the massless exchange. Consider the
exchange of a massless-photon; for external scalars we have:

1

2 3

4

: m2

(
x12
x34

+
x34
x12

)
, (2.116)

12Strictly speaking, due to our helicity choice eq.(2.106) really only has an s-channel pole at H.E.
The bad H.E. behaviour in both channels will be present for other helicity configurations.
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where the two terms correspond to the two different helicities. Using x12λP ≡ p1
m
|P ],

x34λP ≡ p3
m
|P ] and P = p1 + p2, we find:

1

s
m2

(
x12
x34

+
x34
x12

)
=

1

s

(
⟨η|p1|P ]⟨P |p3|ξ]
⟨ηP ⟩[Pξ]

+
⟨η|p3|P ]⟨P |p1|ξ]
⟨ηP ⟩[Pξ]

)
=

2(p1 · p3)
s

, (2.117)

where one uses the fact that ⟨P |pi|P ] = 0 for any external momenta pi. This is not
the complete answer, as one expects (p1·p3)−(p2·p3)

s
from minimal coupling. The difference

is s/s and thus has no factorization poles. The correct answer can be inferred from
symmetry arguments under 1↔ 2 exchange. Thus the correct completion is

1

s
m2

(
x12
x34

+
x34
x12

)
=

(p1 − p2) · p3
s

, (2.118)

For the exchange of a general massless spin S state, we simply get a factor of ((p1−p2)·p3)S

for the numerator.

Now we let the external particles carry spin. For simplicity we will consider the case
where all four particles are of the same spin. Then the residue for the most general
coupling is given by:

x12
m2S−2

[
⟨12⟩2S +

2S−1∑
i=0

(
ai⟨12⟩i

(
⟨1P ⟩[2P ]

m

)2S−i

+ ãi⟨12⟩i
(
⟨2P ⟩[1P ]

m

)2S−i
)]

× 1

x34

[
[34]2S +

2S−1∑
i=0

(
bi[34]

i

(
⟨3P ⟩[4P ]

m

)2S−i

+ b̃i[34]
i

(
⟨4P ⟩[3P ]

m

)2S−i
)]

.

(2.119)

where ai, bi, ãi, b̃i parameterize all possible coupling to the photon, and for parity invariant
theories we have ai = bi and ãi = b̃i. Since besides the leading term in the square brackets,
each of the terms contains |P ]⟨P | which can readily convert x12

x34
into local forms, and thus

we only need to worry about the term
1

m2S−2

(
x12
x34
⟨12⟩2S[34]2S + x34

x12
[12]2S⟨34⟩2S

)
, (2.120)

where we’ve included the contribution where the photon helicity is flipped. Finally, using
the identity:

[12] = ⟨12⟩+ ⟨1|P |2]
m

, (2.121)

introduces |P ]⟨P | that can again be used to absorb the x-factors leaving behind

⟨12⟩2S⟨34⟩2S

m2S−2

(
x12
x34

+
x34
x12

)
=
⟨12⟩2S⟨34⟩2S

m2S
(p1 − p2) · p3 , (2.122)

where we’ve used eq.(2.118). Thus we see that the massless gluing of any three point
vertex can be converted into a local form. For more general external spins, the analysis
is the same albeit more complicated.



44

Three-massive one-massless

If we have three-massive legs, the dangerous x-factors can occur in two types of diagrams
for the s-channel residue:

3

1

2

4

(a)
1

2 3

4

(b)

. (2.123)

Let us first consider the case where the solid lines are massive scalars, and the wavy line
is the positive helicity photon. Diagram (a), (b) gives:

(a)
[2P ]2

x34
=

[2P ][2|p3|P ⟩
m

, (b) mx1P =
[2|p1|ξ⟩
⟨2ξ⟩

. (2.124)

The first is manifestly local. For the second, let’s consider the all massive vertex being
ϕϕ′ϕ′′ vertex, and the photon only couples to ϕ and ϕ′ with coupling e, e′. Then gluing
leads to:

e
[2|p1|ξ⟩

⟨2ξ⟩(s−m2)
+ e′

[2|p4|ξ⟩
⟨2ξ⟩(u−m2)

= (e+ e′)
[2|p4|ξ⟩

⟨2ξ⟩(u−m2)
+ e

[2|p4p1|2]
(s−m2)(u−m2)

, (2.125)

where legs 1, 4 are ϕ, ϕ′ respectively. We see that only when the charge is conserved, i.e.
e+e′ = 0 does the ⟨2ξ⟩ pole cancels and the amplitude becomes local. If the scalars were
all charged with charges e, e′, e′′, the same analysis would tell us that e+e′+e′′ = 0. Next
suppose the photon was instead a gluon, with the scalars carry indices i, i′, i′′ and the
three-point amplitude given by cii′i′′ . We have already seen that consistency demands the
couplings to the gluons T aij, T ai′j′ , T ai′′j′′ be generators in some representation of the Yang-
Mills group. Then we discover that we must have T aijcji′i′′ + T ai′j′cij′i′′ + T ai′′j′′c

ii′j′′ = 0,
in other words the cubic interaction must be invariant under the (global) Yang-Mills
symmetry. Finally, for graviton, gluing to a ϕ3 vertex leads to:

g1
[2|p1|ξ⟩2

Mpl⟨2ξ⟩2(s−m2)
+ g3

[2|p3|ξ⟩2

Mpl⟨2ξ⟩2(t−m2)
+ g3

[2|p4|ξ⟩2

Mpl⟨2ξ⟩2(u−m2)
, (2.126)

where we’ve let all three scalars couple to gravity. Again after rearranging the terms, one
finds that the auxiliary spinor drops out only if g1 = g2 = g3, and one arrives at:

g1
Mpl

[2|p1p3|2]2

(s−m2)(u−m2)(t−m2)
. (2.127)

Thus we see that coupling to photons, the consistency of the four-point amplitude re-
quires charge to be conserved, for a gluon it requires the particles to be in the adjoint
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representation, and finally for a graviton, it leads to the equivalence principle. Note that
this discussion does not refer to any gauge redundancy and the independence there of.
On the other hand, the astute reader will recognize that the factor [2|p1|ξ⟩

⟨2ξ⟩ can be identi-
fied with ϵ2 · p1 from Feynman rules, where λξ is the reference spinor for the polarization
vector ϵ2. Indeed from the photon and graviton soft-theorem [123, 170], it is precisely
this factor whose gauge invariance (Ward identity) demands the conservation of charges
and equivalence principle. Here, there’s no gauge redundancy, the auxiliary spinor λξ is
simply a projection of eq.(2.61), and the independence thereof is the requirement that
factorization is consistent to all solutions of x defined through eq.(2.61).

Again the same applies if we consider external spinning particles. For example for massive
spin-1, diagram (a) yields,

(a)
[2P ]3⟨12⟩⟨1P ⟩

m5

1

x34

(
⟨34⟩ − x34

⟨3P ⟩⟨4P ⟩
m

)2

= [2P ]2⟨12⟩⟨1P ⟩ [2|p3|P ⟩
m6

(
⟨34⟩ − ⟨4|p3|P ]⟨3P ⟩

m2

)2

, (2.128)

where again the residue is local. For diagram (b) the only non-locality originates from
the minimal coupling piece, and hence one recovers the same condition as before.

One-massive three-massless

So far we have found that all potential non-localities can be converted into local expres-
sions, and hence the residue of one-channel does not encode information with respect to
other channels. For three massless particles things are more interesting. The potential
s-channel factorization diagrams are:

(a) (b)

3

1

2

4
1

2 3

4

. (2.129)

For our purpose, only minimal coupling is relevant for the two massive one massless vertex
in (a). We will consider a massive scalar coupled to abelian and non-abelian vectors.

First for the abelian case we only need to consider diagram (a). Taking all vectors to be
plus helicity, one finds the s-channel residue given by

(a) x12[34]
2 =
⟨3|p1|2][34]2

m⟨23⟩
=
m[42][34]

⟨23⟩
. (2.130)
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The appearance of ⟨23⟩ seems to indicate an illegal massless pole. However since s = m2,
this can be identified as a u-channel massive pole, u−m2 = −t. Thus one can write the
amplitude as

m[42][34][23]

(s−m2)(u−m2)
. (2.131)

Note however the extra − sign under the 2 ↔ 3 exchange will lead to the violation
of spin-statistics for identical vectors. Thus we see that minimally coupled scalars are
incompatible with a di-photon coupling. Indeed from the action point of view, this is
simply the statement that the U(1) symmetry of a charged scalar forbids the appearance
of ϕF 2 coupling. Thus there is no such four-particle amplitude for the abelian theory.
For the non-abelian case, one must also consider diagram (b), which yields

(b) :
[2P ]2

m

[34]3

[3P ][P4]
=

m3[34]

⟨23⟩⟨24⟩
. (2.132)

We gain find the illegal pole 1/⟨24⟩. Since we are considering the non-abelian theory
we can consider the colour stripped amplitude and convert the spurious pole into a legal
t-channel massive pole. This suggests us to write

M4(1, 2
+, 3+, 4+) =

m3[24][23][34]

st

(
1

(t−m2)
+

1

(s−m2)
+

1

m2

)
, (2.133)

where we’ve added the massless t-channel image, and the extra 1/m2 is to guarantee that
both massless channels factorises correctly. One can check the s-channel massive residue,
which was given in eq.(2.130), matches when taken into account that ⟨34⟩ = m2

[43]
. Note

that the amplitude vanishes as m→ 0 as it should.

Now let’s move on to the case where there are external spins. For example, one can
consider a massive spin-1 particles couple to three massless vectors. If the vector is

abelian, Yang’s theorem tells us that there is no vertex to consider, and thus there
are no factorizable four-point amplitude to consider. We instead begin with a massive
vector and three gluons. We will start with colour stripped all plus-helicity gluons, whose
residue for the massless s-channel is given as:

1

2 3

4

P

S=1

→ ⟨12⟩⟨1P ⟩ [P2]
3

m4
× [34]3

[4P ][P3]
. (2.134)

Now since the vertex on one side contains high power of momenta, there are different
ways of rewriting this residue which are equivalent on the kinematics ⟨34⟩ = 0. We will
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choose the representation where one separates the various pieces that contain information
on other channels. More precisely, we have:

⟨12⟩⟨1P ⟩ [P2]
3

m4
× [34]3

[4P ][P3]
= ⟨12⟩⟨1P ⟩[P2][34]([P3][42] + [P4][23])2

m4[4P ][P3]

= [34]

(
2[1|p2|1⟩[42][23]

m3
+

[42]⟨1|p4p2|1⟩
m2⟨23⟩

+
[23]⟨1|p2p3|1⟩

m2⟨24⟩

)
(2.135)

where the last equality sign is understood to hold on ⟨34⟩ = 0 kinematics. We see that
unavoidably there is an 1/⟨24⟩ pole in the s-channel massless residue, which is spurious
unless it can be interpreted as a t-channel pole 1/(t−m2). Thus the massless residue for
the amplitude tells us that there must be a two massive vector, one gluon matrix element
that must be present to explain the apparent spurious singularity. The contribution of
this matrix element for the s-channel is given by:

1

2 3

4
S=1

→
(
x12
⟨1P⟩2

m
× ⟨P3⟩⟨P4⟩ [34]

3

m4

)
=

[42][34]⟨1|p3p4|1⟩
⟨32⟩m2

. (2.136)

This suggests that we begin with the following piece which factorises correctly on the s
and t-channel massive pole:

[42][34]⟨1|p3p4|1⟩
⟨32⟩(s−m2)m2

− [42][32]⟨1|p3p2|1⟩
⟨34⟩(t−m2)m2

. (2.137)

Note that the above is symmetric in (2↔ 4) and contains ⟨34⟩, ⟨23⟩ poles as well. Taking
⟨34⟩ → 0, only the second term in eq.(2.137) contributes to its residue:

Res

[
− [42][32]⟨1|p3p2|1⟩
⟨34⟩(t−m2)m2

] ∣∣∣∣
⟨34⟩=0

=
[23]⟨1|p2p3|1⟩
⟨24⟩m2

. (2.138)

This is nothing but the spurious residue appearing in eq.(2.135)!

Putting the information built from the s- and t-channel massive, and s-channel massless
residue together, leads to:

M(1S=12+3+4+) =
[42][23][34]

m2

{
1

t

(
⟨1|p3p4|1⟩
(s−m2)

+
2⟨1|p1p4|1⟩

m2

)
+
⟨1|p4p2|1⟩

st

+
1

s

(
⟨1|p3p2|1⟩
(t−m2)

+
2⟨1|p1p2|1⟩

m2

)
. (2.139)

The matching to the massless t-channel is straight forward given that the above is sym-
metric in (2↔3). Note that unlike the uniqueness of the one massive two massless am-
plitude, a priori the coupling between the two massive and one massless vector does not
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have to match that of minimal coupling. It is the consistency between the massless and
massive factorisation that fixes this choice. A quick recap: beginning with the massless
residue, for which the three-point coupling involving the massive spin-1 is unique, the
anti-symmetric property with respect to the massless legs tells us that the massive state
must be in adjoint rep of the color group. Then the presence of an 1/⟨24⟩ singularity
becomes spurious unless it arises from the massive propagators evaluated on degenerate
kinematics. Thus the massless residue in one channel encodes the massive residue in the
other.

For the other helicity components, the derivation is simpler as one can construct the full
amplitude from the residue of the massive channel, and we simply list the results:

1
4

2 3

S=1

→ [3|p1|2⟩⟨23⟩[34][13][14]
m4t(s−m2)

1

4

2 3

S=1

→ [12][14][24]2⟨32⟩⟨43⟩
stm2

. (2.140)

In the first line, we’ve listed the amplitude in the dotted frame for simplicity. One
can check that the leading contribution for the H.E. limit of this amplitude yields the
amplitude generated by the tr(F 3) extension of Yang-Mills theory.

As a final example, let’s consider a possible singlet massive spin-2 particle that interacts
with gluons via a higher-dimensional operator RF 2. For the one massive three positive-
helicity gluon amplitude, we expect that the final result is cyclic invariant in (2, 3, 4).
The massless s-channel residue can now be written as

1

2 3

4
S=2

P

→ ⟨12⟩2⟨1P ⟩2 [P2]
4

m7
× [43]3

[4P ][P3]

=
[43][1|p2|1⟩2

m3

(
[42]

⟨23⟩
+

[32]

⟨24⟩

)
, (2.141)

where we’ve suppressed the symmetrized SL(2,C) indices, keeping in mind they are dis-
tributed amongst the (pi · pj)s. Putting back the massless propagator, this suggest that
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we start with:
[1|p2|1⟩2

m3⟨34⟩

(
[42]

⟨23⟩
+

[32]

⟨24⟩

)
. (2.142)

The above result contains other additional poles, which under cyclic rotation (2, 3, 4),
will generate terms that will modify the original 1

⟨34⟩ residue. Thus before summing over
its cyclic image, we should augment eq.(2.142) with terms that kill the extra poles in
⟨24⟩ and ⟨23⟩. Putting everything together, we find:

M(1S=22+3+4+) =
[1|p2|1⟩2

m

[43][32][42]

stu

− [21]2

m3

(
⟨24⟩[43][32]

st
[41]2 +

⟨23⟩[43][42]
su

[31]2
)

+ cyclic(2, 3, 4) . (2.143)

We give further examples of massive amplitudes involving one massive higher spin and
non-identical spin massless particles in appendix A.6.

The spinning polynomial basis

The fact our on-shell formalism provides a convenient basis to classify distinct three-point
couplings lends itself to another important application: construction of a basis polynomial
to expand the four-point amplitude. A well known example for such a polynomial is the
Gegenbauer polynomial, or its four dimensional representation the Legendre polynomial,
as a basis for the four-point scalar amplitude. The Gegenbauer polynomials arises from
the exchange of a spin-S particle for a four scalar amplitude. Note that we have one
polynomial for a given S because the three-point coupling between two scalars and a
spin-S particle is fixed.

As we’ve seen in the previous discussion, the three-point amplitude for one massive, two
massless particles is also unique. This implies that we can similarly construct "spinning"
Gegenbauer polynomials for massless scattering amplitude, where each polynomial cor-
respond to a different spin exchange. To see how this works let’s consider the residue
for a spin-S exchange in the s-channel for M(1−h2+h3−h4+h). We can write down the
unique three-point amplitudes on both sides:

λS+2h
1 λS−2h

2 [12]S

m2S−1
,

λS+2h
3 λS−2h

4 [34]S

m2S−1
.

Such coupling only exists for S ≥ 2h. Now when we glue the two tensor structures
together the indices on λ1, λ2 must be fully contracted with those on λ3, λ4. This can
be done in many ways, each with its own pre-factor counting the number of equivalent
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contractions. The gluing procedure is thus a sum over all possible contractions with
suitable combinatoric factors:

[12]S[34]S

m4S−2

∑
a

c2S,S+2h,a⟨13⟩a⟨14⟩S+2h−a⟨23⟩S+2h−a⟨24⟩a−4h (2.144)

where the summation a ranges from 4h to S + 2h, and

c2S,S+2h,a =
(S + 2h)!2(S − 2h)!2

a!(S + 2h− a)!2(a− 4h)!
, . (2.145)

It would be useful to convert this polynomial into a function of the scattering angle in the

center of mass frame for particles 1 and 2. We write λ1 = m
1
2

(
1

0

)
, λ2 = m

1
2

(
0

1

)
, λ3 =

im
1
2

(
cos θ

2

sin θ
2

)
, λ4 = im

1
2

(
sin θ

2

− cos θ
2

)
. The spinning Gegenbauer polynomial is then given

as:

P h
S (cos θ) =

1

(S!)2

∑
a

(S + 2h)!2(S − 2h)!2

a!(S + 2h− a)!2(a− 4h)!

(
cos θ − 1

2

)a−2h(
cos θ + 1

2

)S+2h−a

.

(2.146)

As a few example (with x = cos θ):

P 1
2 (x) =

3

2
(x− 1)2, P 1

3 (x) =
5

6
(x− 1)2(2 + 3x)

P 1
4 (x) =

5

8
(x− 1)2(1 + 7x(1 + x)) . (2.147)

The universal prefactor (x− 1)2 can be identified with ⟨13⟩2[24]2 which takes care of the
overall helicity weights of this amplitude. Taking ℓ = 0 we indeed recover the Legendre
polynomials P 0

S(x) = PS(x).

For completely general helicities h1, h2, h3, h4 of external massless particles, we have:

P hi
S (x) =

1

(S!)2

∑
a

(S + h4 − h3)!(S + h3 − h4)!(S + h1 − h2)!(S + h2 − h1)!
a!(S + h4 − h3 − a)!(S + h2 − h1 − a)!(a+ h1 + h3 − h2 − h4)!

×
(
x− 1

2

)a+h1+h3−h2−h4
2

(
x+ 1

2

)S−a−h1+h3−h2−h4
2

.

This reduces to equal spin polynomial if we take all |hi| to be equal.

Three-point couplings with more than one massive leg are no longer unique. This means
that for a given spin-exchange, one instead has a symmetric matrix where the rows and
the columns label the independent three-point vertices on both sides of the factorization
channel. We illustrate this for the two massive spin-1 and two massless spin-1 amplitude.
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Now the three-point coupling involved in the factorization involves a massive spin-1 spin-
S and massless spin-1 amplitude. The number of such coupling is determined by the
lowest spin massive particle, which in this case is 1 and there are three independent
coupling. To give an explicit example, consider S=2

(α1α2)

1

(β1β2β3β4)

The building blocks of tensor structures will be {λ1, P2λ̃1} = {v, u}. If the massless
particle has − helicity, we have three tensor structures listed in eq.(2.58). Now imagine
gluing the two three-point amplitude:

(α1α2)

1−

(β1β2β3β4)

(β1β2β3β4)

(γ1γ2)

4− .

The residue will be a polynomial of (uL, vL, uR, vR) with

uαL = ϵαβ(P2)ββ̇λ̃
β̇
1 , vαL = λα1

uαR = ϵαβ(P3)ββ̇λ̃
β̇
4 , vαR = λα4 .

By gluing them we contract the internal indices in all possible ways, then sum them up
with appropriate combinatoric factors. We can distribute indices carried by exchanged
particle into a bunch of u’s and v’s:

#(uL) + #(vL) = 2S

#(uR) + #(vR) = 2S.

where S is the spin of exchanged particle. For a contraction with (uL)
k1 and (uR)

k2 on
exchanged leg, suppose uL and uR are contracted together k3 times. Then we have

⟨uLuR⟩k3⟨uLvR⟩k1−k3⟨vLuR⟩k2−k3⟨vLvR⟩2N−k1−k2+k3 (2.148)
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which means a factor of (
k2
k3

)(
2N − k2
k1 − k3

)
(k1)!(2N − k1)!. (2.149)

The first two factors come from choosing which uLs and uRs are to be contracted together.
Since we can always redefine coupling constants for interactions, the k3-independent
factors shall not concern us here. Summing this factor over k3 one gets (2N)!, the total
number of permutations on 2N indices.

Assigning a coupling constant gi for each three-point vertex, the residue of the four-point
amplitude can then be expanded as giMijgj where each element in Mij is a polynomial
given by the contraction of the corresponding three-point amplitudes. Since we have two
external spin-1 particles, Mij is a 3× 3 symmetric matrix irrespective of the exchanged
spin. For the case where one exchanges a spin-2, the matrix elements are given by:

M11 = 24⟨vLvR⟩4⟨uL1⟩2⟨uR4⟩2

M12 = 24⟨vLuR⟩⟨vLvR⟩3⟨uL1⟩2⟨uR4⟩⟨vR4⟩

M13 = 24⟨vLuR⟩2⟨vLvR⟩2⟨uL1⟩2⟨vR4⟩2

M22 =
(
18⟨uLvR⟩⟨vLuR⟩⟨vLvR⟩2 + 6⟨uLuR⟩⟨vLvR⟩3

)
⟨uL1⟩⟨vL1⟩⟨uR4⟩⟨vR4⟩

M23 =
(
12⟨uLvR⟩⟨vLuR⟩2⟨vLvR⟩+ 12⟨uLuR⟩⟨⟨vLuR⟩⟨vLvR⟩2

)
⟨uL1⟩⟨vL1⟩⟨vR4⟩2

M33 =
(
4⟨uLvR⟩2⟨vLuR⟩2 + 16⟨uLuR⟩⟨uLvR⟩⟨vLuR⟩⟨vLvR⟩+ 4⟨uLuR⟩2⟨vLvR⟩2

)
· ⟨vL1⟩2⟨vR4⟩2 , (2.150)

where we’ve contracted each entry with the external λI1, λI4s.

For convenience, we will also give the representation in terms of scattering angle. We
can parameterize the kinematics as

p1 = (x, 0, 0, x)

p2 = (
√
x2 +m2

2, 0, 0,−x)

p3 = (−
√
y2 +m2

3,−y sin θ, 0,−y cos θ)

p4 = (−y, y sin θ, 0, y cos θ),

where

x =

√
(m2

2 + t)2

−4t
, y =

√
(m2

3 + t)2

−4t
.
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One can explicitly check that
∑

i pi = 0, p2i = m2
i . In this parametrization, the matrix

elements then take the form, where we’ve stripped the external spinor dependent terms: 6 + 12x+ 6x2 12(1 + x)
√
1− x2 24− 24x2

12(1 + x)
√
1− x2 12− 12x− 24x2 −48x

√
1− x2

24− 24x2 −48x
√
1− x2 −32 + 96x2

 . (2.151)

2.6 (Super)Higgs Mechanism as IR Unification

Our exploration of consistent four-particle amplitudes has given us an almost complete
understanding of the broad architecture of particle physics. Theories of massless particles
are incredibly constrained, allowing only helicities (0,1/2,1,3/2,2), and limited to the
(super)gravity coupled to (super)Yang-Mills theories. Massless higher spins are made
impossible by the mere presence of gravity. We have also seen that the amplitudes
for massive particles of sufficiently high spin have sick high-energy limits—as expected,
since there is no consistent theory of massless high-spin particles they can match to at
high-energies—so such particles cannot be "elementary".

The final case to consider is then that of massive particles of low spin S ≤ 2. Here
of course there is in principle a consistent high-energy theory to match to, but as we
will see in this section, doing so puts non-trivial restrictions on the particle content and
interactions of the theory. This investigation will lead to the on-shell discovery of the
Higgs and Super-Higgs mechanisms.

Note that we will not simply be rephrasing well-known "bottom-up" facts, such as the
high-energy growth of scattering amplitudes for longitudinal components of massive spin
one particles, and the attendant need for the Higgs particle to tame this growth, in an
on-shell language. It is of course perfectly possible to do this, and the on-shell methods
do simplify the explicit computations, but the advantage is purely technical and does not
add anything conceptually new to this standard textbook discussion.

We will instead take a different, "top-down" point of view, where as described above we
insist that massive amplitudes manifestly match to consistent massless amplitudes in the
high-energy limit. As we will see this gives us a satisfying understanding of the Higgs
mechanism that is at least psychologically quite opposite to the usual picture of gauge
symmetry "breaking". Indeed in textbook language, the gauge symmetry is "broken"
or "hidden", and becomes more manifest only at high energies. By contrast in the
on-shell picture, the massive "Higgsed" amplitudes do not "break" or "hide" the (non-
existent in this formalism!) gauge redundancies. Instead, they unify the different helicity
components of massive amplitudes, and thus the Higgs mechanism can be thought of as
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an infrared unification of massless amplitudes, and this unification is more disguised at
high energies!

We will see this beginning already at the level of three-particle amplitudes. Here, the non-
locality associated with the poles in massless three-particle amplitudes gets IR-deformed
to 1/m poles. Such 1/m poles non-trivially disappear in the high-energy limit while
the massive amplitudes unify different helicity components together. Matching the high-
energy limit enforces all the usual consistency conditions associated with the Higgs mech-
anism. Moving on to four-particle amplitudes, we will obtain them both by gluing the
three-particle amplitudes as usual, but also in a novel way, starting with the massless
helicity amplitudes, simply adding them so they fit into massive multiplets, then shift-
ing the poles and "BOLD"ing the spinor-helicity variables to make massive amplitudes!
This will highlight the Higgs mechanism as an "IR unification" in an even more vivid
way.

Rather than present a completely systematic analysis of all possible "Higgsings", in this
section we will content ourselves with illustrating this physics in three standard examples:
the Abelian Higgs model, the Super-Higgs mechanism in a simple model with N = 1

SUSY, and the general structure of the non-Abelian Higgs mechanism for a model with
enough scalars so that all the spin one particles are massive. As alluded to above we will
also discuss why gravity cannot be Higgsed in this way.

Abelian Higgs

Let us start with the simplest example - a theory with a massless photon and a charged
scalar; we’ll call the scalar’s two real degrees of freedom "H" and "E".

The three-particle amplitudes are

1
E

3
H

2
+

g
[12][32]

[13]
,

1
E

3
H

2

g
⟨12⟩⟨32⟩
⟨13⟩

. (2.152)

We now want to see how to introduce masses as an "infrared deformation". The first step
is a trivial kinematical one. We declare that (+,−, E) are to become the 3 components
of a massive spin 1 particle, leaving H as an additional scalar. Now, the two massive
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vector (with m2
γ) and one massive scalar (with m2

H) amplitude can only be,

3

2

1

g

mγ

⟨12⟩[21] . (2.153)

The coefficient is fixed by the requirement that this 3 particle amplitude matches the
massless amplitude in the high-energy limit. It is illuminating to see how this happens
explicitly. Recall that to take the HE limit we put

λIα = λαξ
I
+ + ηαξ

I
−

λ̃Iα̇ = λ̃α̇ξ
I
− + η̃α̇ξ

I
+ , (2.154)

where we scale each of η, η̃ as ∼ m. We are looking for pieces that survive in the
mγ,mH → 0 limit. The leading piece in the numerator is that with zero η, η̃’s which is
given as:

3

2

1
0

0

H

=
g

mγ

⟨12⟩[21] = g

mγ

(m2
H) . (2.155)

This indeed vanishes as mH → 0, as expected since we don’t have an (EEH) coupling
in the UV. For the order η̃ piece, we have

3

2

1
0

H

=
g

mγ

⟨12⟩[1η̃2] . (2.156)

This term is more interesting. To compute it, note that in the UV we have our usual
restrictions on 3 particle kinematics — either λ1 ∝ λ2 ∝ λ3 or λ̃1 ∝ λ̃2 ∝ λ̃3. This
3-particle amplitude vanishes in the first case. On the other hand, in the second case, we
have by momentum conservation that

λ̃1 = ⟨23⟩ξ̃, λ̃2 = ⟨31⟩ξ̃, λ̃3 = ⟨12⟩ξ̃ , (2.157)

and so
[1η̃2] = [2η̃2]

⟨23⟩
⟨31⟩

= mγ
⟨23⟩
⟨31⟩

. (2.158)
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So this amplitude becomes

3

2

1
0

H

=
g

mγ

⟨12⟩ ×mγ
⟨23⟩
⟨31⟩

= g
⟨12⟩⟨23⟩
⟨31⟩

=

1
E

3
H

2

(2.159)

exactly as desired. Obviously we get the analogous result for 2+. Thus quite beautifully

the massive three-particle amplitude reproduces the component helicity ampli-

tudes and unifies them into a single object. Note also that despite appearances, there is
no such singularity as mγ → 0.

Here we see an interesting counterpart to the purely massless 3pt amplitudes, which are
not manifestly local due to the presence of poles. Healthy theories of massless particle
(which we should reproduce in the UV) do not have such non-local poles at 4pts and
higher. When we perform this "IR deformation", we have removed the non-local poles
but are left with seeming factors of 1

mγ
in the amplitude. But as we have seen the 3pt

amplitude is — by design — chosen to match the correct massless helicity amplitudes
and thus be smooth as mγ → 0, and this will be inherited at higher points.

Indeed let us compute the 4-particle amplitude with all massive spin 1 particles consistent
with factoring into the three-point amplitude in eq.(2.153). Since we have no "x" factors
to worry about, we can proceed in the most naive possible way, simply gluing the 3-pt
amplitudes in the s, t and u channels, and we find:

1

2 3

4

g2

m2
γ

[
⟨12⟩[12]⟨34⟩[34]

s−M2
h

+
⟨23⟩[23]⟨14⟩[14]

t−M2
h

+
⟨13⟩[13]⟨24⟩[24]

u−M2
h

]
. (2.160)

Since there are no three-point massive spin-1 amplitude, there is no poles involving mγ.
Note that all possible contact terms here can be eliminated since they give growing
amplitudes for some of the helicity components in the UV, which we are assuming not
to have. Now again, despite appearances this amplitude is guaranteed (by construction!)
to be smooth in the high-energy (or mγ,mH → 0) limit. Let us first show this directly
for some of the helicity components. For instance, the all-longitudinal amplitude is

g2

m2
γ

[
(p̂1 · p̂2)(p̂3 · p̂4)

s−M2
h

+
(p̂1 · p̂4)(p̂2 · p̂3)

t−M2
h

+
(p̂1 · p̂3)(p̂2 · p̂4)

u−M2
h

]
, (2.161)
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where with p = λλ̃+ ηη̃ we define p̂ = λλ̃− ηη̃. Just to take a first look at the HE limit,
which naively goes as g2

mγ2
, we drop the η’s and find at O( 1

m2
γ
)

g2

m2
γ

× [s+ t+ u] = 0 , (2.162)

and so as expected there is no ( s,t,u
m2

γ
) singularity as mγ → 0. In order to find the leading

high-energy limit, let us define q ≡ ηη̃. Note that p · q = m2
γ

2
so q = O(m2

γ), and we will
work to first order in q. Using 2p1 · p2 = s− 2m2

γ, and also p̂ = p− 2q, we find in the HE
limit
4(p̂1 · p̂2)(p̂3 · p̂4)

s−M2
h

= s−4m2
γ+M

2
h−4(q1 ·p2+q2 ·p1+q3 ·p4+q4 ·p3)+O(M4

h ,m
4
γ) . (2.163)

So summing over channels gives

s+ t+ u− 3× 4m2
γ + 3M2

h − 4(q1 · (p2 + p3 + p4) + ...)

= 4m2
γ − 3× 4m2

γ + 3M2
h + 2× 4m2

γ

= 3M2
h . (2.164)

Hence the all-longitudinal amplitude is fixed to be 3
4
g2

M2
h

m2
γ
. This tells us we must have a

quartic coupling in the UV, and by the U(1) invariance it must be λ(E2 +H2)2 with

λ

M2
H

=
g2

m2
γ

. (2.165)

Let’s see how some of the other component amplitudes work. Consider (102−3+40), which
should match (1E2−e+4E) in the high-energy limit. This is

g2

m2
γ

[
⟨12⟩[1η̃2]⟨4η3⟩[43]

s
+
⟨2η3⟩[η̃23]⟨14⟩[14]

t
+
⟨1η3⟩[13]⟨24⟩[η̃24]

u

]
. (2.166)

Note that since all that matters is [2η̃2] = mγ, ⟨3η3⟩ = mγ, η̃2, η3 are defined up to shifts
such as η̃2 → η̃2 + αλ̃2. Not surprisingly the above representation is independent of such
shifts. The term in the brackets shifts as

α [⟨4η3⟩[43] + ⟨2η3⟩[23] + ⟨1η3⟩[13]] = α⟨η3|p3|3] = 0 . (2.167)

Hence we are free to choose η̃2 =
mγ λ̃3
[23]

, η3 =
mγλ2
⟨23⟩ , 13 so then only the s+u channel terms

contribute and we find

1

2 3

4

+

0 0

=g2⟨2|p4|3]2
(
1

st
+

1

tu

)
= −g2 ⟨2|(p1−p4)|3]

2

4su
=

1

2 3

4

+

E
E

. (2.168)

13Using this representation for η̃2, one can also show that the O(m−1
γ ) term in the amplitude vanishes

as well, with λ̃I
2 → η̃2, while all other massive spinors are set to their massless limit.
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Thus we find the correct amplitude for minimally charged scalars in the UV. All other
helicity amplitude components vanish as mγ → 0. We have thus verified that the 4pt
massive amplitudes are an "infrared deformation" of the massive ones, reproducing and
unifying the different helicities in the HE limit.

Higgsing as UV Unification → IR Deformation

Given that we see the massive amplitudes reproduce the massless ones at high energy,
we are motivated to consider directly assembling the high-energy massless amplitudes in
a way that one can readily "IR deform" the amplitude by simply putting in the mass for
the propagator and "BOLDing" the spinor brackets. We are then guaranteed to have a
result that gives the correct high-energy behaviour, and what remains is simply to add
in higher order corrections in mass that ensure the massive residue is matched.

Let’s first consider all the different component amplitudes - Compton scattering for H,E,
and the quartic interaction for E. We will first merely group these amplitudes together,
ready to be "BOLD"ed + unified into a massive amplitude. The massive amplitude
in the IR will be the four massive vector amplitude, and thus we will need a total of
eight spinors to carry the SU(2) Little group indices, these are the objects that will be
BOLDed. Thus the name of the game is to write the massless amplitudes in a form which
contains eight spinors, two for each legs, and every thing else can only be expressed as
momenta. Note that because of this the E4 quartic must be written in an interesting
way. Naively it is just 3λ, but to put it in a form where by BOLDing we can recognize
it as a component of massive spin 1, we have to write it in the following way:

3λ = λ
s3+t3+u3

stu
= λ

(⟨12⟩[21][3|p4|3⟩[4|p3|4⟩+⟨34⟩[43][1|p2|1⟩[2|p1|2⟩) + {u}+{t}
2stu

,

(2.169)
where λ =

g2M2
h

m2
γ

and {t} {u} represents its t, u image. This is the only way to represent
the "constant" without introducing double poles. Similarly for the two photons two E
amplitudes we write

− g2 ⟨2|p1−p4|3]
2

4su
= g2

[14]⟨14⟩⟨2|p1−p4|3]2

4stu
. (2.170)

Collecting all the component amplitudes together, we are ready to IR deform: declaring
the particles have mass mγ by BOLDing the spinors, and deforming s → s −M2

h etc.,
giving an IR deformed object:

[12]⟨12⟩(g2⟨3|p1−p2|4]2 + g2⟨4|p1−p2|3]2 + 2λ[3|p4|3⟩[4|p3|4⟩+(1, 2↔ 3, 4)

4(s−M2
h)(t−M2

h)(u−M2
h)

+ {u}+{t} .

(2.171)
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The above result by construction gives the correct answer in the High-energy limit, with
mismatch at higher order in m2

γ,M
2
h . Thus we have the identity

g2

m2
γ

(
⟨12⟩[12]⟨34⟩[34]

s−M2
h

+
⟨14⟩[14]⟨32⟩[32]

t−M2
h

+
⟨13⟩[13]⟨24⟩[24]

u−M2
h

)
=
[12]⟨12⟩(g2⟨3|p1−p2|4]2 + g2⟨4|p1−p2|3]2 + 2λ[3|p4|3⟩[4|p3|4⟩+(1, 2↔ 3, 4)

4(s−M2
h)(t−M2

h)(u−M2
h)

+{u}+{t}+O(m2
γ,M

2
h) . (2.172)

But now in this form, the challenge is to check the factorization channels, which will fix
the O(m2

γ,M
2
h) terms. For example in the limit where m2

γ = M2
h ≡ m2, the remaining

term is simply

O(m2) =
m2(⟨43⟩2[12]2 + ⟨12⟩2[34]2 − ⟨43⟩[43]⟨12⟩[12]) + {u}+{t}

(s−m2)(t−m2)(u−m2)
. (2.173)

We have thus seen the Higgs mechanism very explicitly as an IR deformation. Note that
while it is pleasing to see everything work explicitly, the correct HE limit was guaranteed
once we ensured the 3 particle amplitudes reproduced and unified the helicity amplitudes
in the high-energy limit. Again, all the non-trivial physics was in the "unified packag-
ing" of all the massless helicity amplitudes into the massive amplitudes—everything was
guaranteed to work after that point.

We could also consider
H H H H

H

H H

HH

and derive the rest of the physics. For

example, from the fact that we know there is a coupling λ(E2 +H2)2 in the UV, tells us
that we have an (EEHH) = λ component that needs to be unified into

H H .

Naively, one would combine this with (γγHH), however, the bolded version of this am-
plitude:

2 3
+ −

4
H

1
H

=
⟨3|p1−p4|2]2

4st
→ ⟨3|p1−p4|2]2

4(s−m2
γ)(t−m2

γ)
, (2.174)

will not contain such a high-energy scalar contact piece. This suggests that we should
directly IR deform it:

λ = λ
⟨23⟩[23]

t
→ λ

⟨23⟩[23]
(t−m2

H)
. (2.175)
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Thus we see that by IR deforming it, we are forced to have a Higgs propagator, whose

residue reveals the presence of a Higgs cubic coupling

H

H

H .

Super-Higgs

Let us now describe the Super-Higgs mechanism. Again, we will consider the simplest
case, and N = 1 SUGRA where we have a graviton, gravitino ψ as well as a chiral
superfield: a fermion χ and a scalar ϕ. First, in the massless limit, in addition to the
universal couplings to gravity we have

3

1
−1/2

2
−3/2

1

Mpl

⟨12⟩2⟨23⟩
⟨13⟩

3

2
+3/2

1
+1/2

1

Mpl

[12]2[23]

[13]
(2.176)

Now, we wish to see whether the (ψ, χ) amplitudes can be unified into those of a single
massive spin 3

2
multiplet. The logic completely parallels to the Abelian Higgs mechanism

we discussed above. Indeed, again we simply have the following massive amplitude for
massive spin-3

2
, spin-3

2
and scalar:

1

2

3φ
1

Mpl

1

m3/2

⟨12⟩[12] ([12] + ⟨12⟩) .

The correct HE limit emerges in exactly the same way. For instance the (1−
1
22−

3
230)

− 1
2

− 3
2

φ
1

Mpl

1

m3/2

⟨21⟩[1η̃2] ([η̃1η̃2] + ⟨12⟩) .
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The first term vanishes as m3/2 → 0, while the second term becomes ⟨12⟩2[1η̃2]
Mplm3/2

. Substi-

tuting [1η̃2] = m3/2
⟨23⟩
⟨13⟩ yields the correct massless amplitude in the HE limit. After this

point everything is guaranteed to work just as with the Abelian Higgs mechanism, and
we omit the details. (We have described spontaneous SUSY breaking with the chiral
superfield X = ϕ+ θχ+ θ2Fϕ and W = µ2X.)

Non-Abelian Higgs

Let us now look at the most general case. In the UV we have gluons and scalars in some
representation R:

2−b

1−a

3+c

gfabc ⟨12⟩3
⟨13⟩⟨23⟩

2a

1I

3J

g(T a)IJ
⟨12⟩⟨32⟩
⟨13⟩ .

Now, we want to take the ± component of index a, together with some linear combination
of the scalars (uaJϕ

J), and make the part of a massive vector of mass ma. Here, we are
assuming that all the vectors are massive, in particular this means that the number
of scalars Nϕ is larger than or equal to the number of massless vectors. Then, what
we are doing is considering a big SO(Nϕ) matrix UIJ , such that UaJϕJ will become
the longitudinal component of the massive vector. The remaining scalars are "Higgses"
UiJϕJ . We can always diagonalise so these have mass M2

i , i.e. UaIUbI = δab, UaIUiI =

0, UiIUjI = δij. So, we have

a ma, i
Mi . (2.177)

The relevant massive amplitudes in question includes

b

a

c ,

b

a

i ,

b

j

i . (2.178)
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In particular in the high energy limit we must have, for example:

b

a

c H.E.−−−−−−−→ gfabc

2−b

1−a

3+c + gUa
I U

c
J(T

b
IJ)

b

J

I (2.179)

b

a

i H.E.−−−−−−−→ gUa
I UJi(T

b
IJ)

b

I

J . (2.180)

Being able to unify these into massive amplitudes will allow us some interesting inter-
pretations of the U matrix. First, the only possibility for the first figure in (2.178) is14

2b

1a

3c =
gfabc

mambmc

(⟨12⟩[12]⟨3|p1−p2|3] + cyc.) . (2.181)

We can again compute the HE limit of the component amplitudes. The details of this
limit is given in appendix A.5, and we simply summarise the result:

2−b

1−a

3+c −→ gfabc
⟨12⟩3

⟨23⟩⟨31⟩
(2.182)

2−b

1a

3c −→ gfabc

mamc

⟨12⟩⟨23⟩
⟨31⟩

(
m2
b −m2

c −m2
a

)
. (2.183)

From the above we see that in order for the massless amplitudes to be unified into a
single massive amplitude, the matrix Ua

I must satisfy

Ua
I T

b
IJU

c
J = fabc

m2
b −m2

a −m2
c

mamc

. (2.184)

14This can be verified by noting that ϵαα̇ =
λ{I
α λ̃

J}
α̇

m , and substitute into the usual Feynman rules.
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Let’s define τaI = maU
a
I , and then

τaI τ
b
I = m2

aδ
ab. (2.185)

So, we can re-write the eq.(2.184) as

(τaT bτ c) = fabd(τ bτ d − τaτ d − τ cτ d) (2.186)

where we have suppressed the contraction of indices I, J . The solution to the constraint
for τaI is simply that

τaI = T aIJVJ (2.187)

for some constant vector VJ (the "vev"). Indeed this is precisely what we get in the usual
Higgs mechanism. The combination T aIJVJϕI is "eaten", and diagonalising (M2)ab =

V TT aT bV .

One can check that after substituting for τ , eq.(2.186) becomes

V TT aT bT cV = −V TT cT bT aV =
1

2
V T (T aT bT c − T cT bT a)V (2.188)

(note we are always writing with real states so T aIJ = −T aJI). Now, if we assume that
the "coupling tensor" fabc is the structure constant for the Lie group associated with T a,
then we can repeatedly use T aT b = fabdT d + T bT a, and we find,

T aT bT c = f bcdT aT d + T aT cT b

= f bcdT aT d + facdT dT b + T cT aT b

= f bcdT aT d + facdT dT b + fabdT cT d + T cT bT a. (2.189)

Using the fact that V TT aT bV is diagonalised, we find:

V T (T aT bT c − T cT bT a)V

=f bcam2
a + facbm2

b + fabcm2
c

=fabc(m2
a +m2

c −m2
b). (2.190)

Once eq.(2.184) is satisfied, the rest of the story is again the same as our previous
examples. Note in particular that we must have Higgses! Even if we have Nscalar = Ngluon

precisely, the interactions are not the correct ones for the full UV theory due to the
standard polynomial growth of the longitudinal piece scattering, which is not present for
the UV theory. But with the "uneaten Higgses" included, is simply chosen to match the
high energy limit, and we manifestly match to a healthy UV theory.
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Obstruction for Spin 2

We now consider massive spin-2 particles, which in the HE limit should yield a graviton,
a massless vector and scalar. We would like to see if the massless interactions can
be consistently unified into an IR massive amplitude. The three-point massive spin-2
amplitude can be easily written down as:

2

1

3 =
1

Mplm6
[⟨12⟩[12]⟨3|p1−p2|3] + cyc.]2 , (2.191)

where m is the mass of the massive graviton. Let us look at the HE limit. We can
directly import what was done for non-abelian Higgs, and one finds:

1

Mplm6
[⟨12⟩[12]⟨3|p1−p2|3] + cyc.]2 HE−−−−−−→

{
(−2,−2,+2) : 1

Mpl

⟨12⟩6
⟨13⟩2⟨23⟩2

(0,−2, 0) : 3
Mpl

⟨12⟩2⟨23⟩2
⟨13⟩2

.

(2.192)
Notice the extra factor of 3 associated with the minimally coupled scalars. This extra fac-
tor is due to the three different combinations (+,−,−)×(−,−,+), (−,−,+)×(+,−,−),
and (0,−, 0) × (0,−, 0). Thus the scalar coupling at high energy is three times what it
should be. This is unacceptable since gravitational coupling is universal, and the coupling
strength Mpl has already been set by the self-interaction. Note that similar difficulties
arise for the HE limit that yields the one-graviton two-minimally-coupled-vector, where
one obtains −2⟨12⟩4/Mpl⟨13⟩2. Again the factor of 2 is inconsistent with graviton self
coupling. Thus we see that there is a fundamental obstruction in organising the mass-
less degrees of freedom into a massive spin-2 particle, in a way such that the massive
interactions have HE limit that morphs into a consistent UV theory.

2.7 Loop Amplitudes

In this section we briefly touch on constructing loop amplitudes by an on-shell gluing of
the tree amplitudes we have found in previous sections. We will follow the philosophy of
"generalized unitarity" [30–32, 34, 35, 39, 78], where the integrand for loop amplitudes is
determined by a knowledge of its (generalized) cuts, putting internal propagators on-shell.
As is well-known, at one-loop this gives a systematic way of determining the integrand
from gluing together on-shell tree amplitudes.15 While we are not adding anything new to
this conceptual framework, the technical advantages offered by our formalism for massive

15There is an obvious subtlety in this on-shell approach to loop amplitudes, regarding "wavefunction
renormalization". In the unitarity approach where one glues tree amplitude on both sides of the cut,
there will be diagrams which correspond to a bubble insertion on the external leg, and hence give rise



65

particles with spin are significant in many cases, including the dispensation of complicated
gamma matrix algebra, the clear separation of electric and magnetic moments for charged
particles, the extraction of UV divergent properties without the contamination from IR
divergences (by virtue of using massive external and internal states), and finally directly
obtaining the (internal) mass depending pieces in the small mass expansion relevant for
obtaining rational terms for massless one-loop amplitudes. In all of these processes, as
they do not have tree counterparts, bubbles on external legs do not contribute. It is
pleasing to continue seeing directly the way in which Poincare symmetry and Unitarity
fully determines the physics, not just at tree-level but also in incorporating the leading
quantum loop corrections as well.

g−2 for spin-1
2

and 1

As seen in previous discussions the simplicity of minimal coupling allows us to straight-
forwardly separate the magnetic moment pieces. The same simplicity translates to a
straightforward computation for the loop level magnetic moment.

Let’s consider the e+, e− → γ at one loop. The diagram we want to build is:

+

+

+ −

−

p1 p2

q

a

bc
∼ e3m3xaεαβ

[
εβγ

xb
xc

(
ε+ xc

λℓλℓ
m

)αδ
+ εαδ

xc
xb

(
ε− xb

λℓλℓ
m

)βγ]
. (2.193)

where we’ve glued the three-point vertices according to the two possible helicity con-
figurations in the internal photon lines. Notice that here, we are using the three point
amplitude in the SL(2,C) undotted basis. This is motivated by eq.(2.74), which yields
a clear separation of (g−2) factors in this basis. One can also understand this from the
fact that anomalous moments should arise only if the particle carries spin. By expanding
the integrand in eq.(2.193), one notices that the λ independent terms will be present for
charged scalars as well, and thus the piece of the integrand that can contain the magnetic

to an 1/0 from the on-shell propagator. In the Feynman diagram approach, these are wave function
diagrams that are to be amputated, replaced by counter terms. This procedure breaks gauge invariance
in the intermediate steps. For massless internal states, these can be side stepped since there will be
UV-IR cancellation for these diagrams. For massive internal particles this is no-longer the case, and we
refer the reader to [19, 41, 68] for unitarity based treatments of this issue. This subtlety will not affect
any of the examples we discuss in this section: for (g-2) and rational terms, the 1-loop corrections are
leading, while for the beta function the external massive particles are merely probes.
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moment is:
e2m2xa(xb − xc)λδℓλ

γ
ℓ = −mxaq

δ
α̇ℓ
α̇β . (2.194)

This gives us the following integrand:

−mxa
∫

d4ℓ

(2π)4
qδ α̇ℓ

α̇β

ℓ2((ℓ− p2)2 −m2)((ℓ+ p1)2 −m2)
=

e2

(4π)2
2xa

qδ α̇p
α̇β
1

m
=

α

2π
x2aλ

γ
qλ

δ
q .

(2.195)
This gives the (g−2) = α

2π
by comparing with eq.(2.74).

Just to give us a little bit more challenge, let’s now consider the W+,W− → γ at one
loop involving only photon coupling. The integrand is again built from:

+

+

+ −

−

p1

q

a

bc

p2

1 12 2

∼ e3m3xaε{α1α2εβ1}β2

[
εβ1{γ1εα1δ1}xb

xc

(
ε+ xc

λℓλℓ
m

)α2{δ2 (
ε+ xc

λℓλℓ
m

)β2γ2}

+εβ2{γ2εα2δ2}xc
xb

(
ε− xb

λℓλℓ
m

)α1{δ1 (
ε− xb

λℓλℓ
m

)β1γ1}]
. (2.196)

Leaving behind the electric coupling, we now have two structures for the numerator of
the integrand:

e2xa(xb − xc)m2
[
4
(
εδ1{δ2λγ1ℓ λ

γ2}
ℓ + εγ1{δ2λδ1ℓ λ

γ2}
ℓ

)]
+ 16e2xaxbxcmλ

δ1
ℓ λ

δ2
ℓ λ

γ1
ℓ λ

γ2
ℓ

= −4e2xam
[
εδ1{δ2qγ1 α̇ℓ

α̇γ2} + εγ1{δ2qδ1 α̇ℓ
α̇γ2}
]

f1(q)

+
2e2xa
3m

(p1α̇
{δ1ℓα̇γ1})(p2α̇

{δ2ℓα̇γ2})

f2(q)

. (2.197)

Here f1(q) is the same as the electron moment, and leads to:

F1(q) =
∫

d4ℓ
(2π)4

f1(q)
ℓ2((ℓ−p2)2−m2)((ℓ+p1)2−m2)

= 4 α
2π
xa
(
εδ1{δ2λγ1q λ

γ2}
q + εγ1{δ2λδ1q λ

γ2}
q

)
. (2.198)

For the second tensor structure, one has:

F2(q) =

∫
d4ℓ

(2π)4
f2(q)

ℓ2((ℓ− p2)2 −m2)((ℓ+ p1)2 −m2)
=

α

(4π)9m3
O{δ1γ1}

1,2 O{δ2γ2}
1,2 , (2.199)

where we’ve defined Oαβi,j ≡ piα̇
αpα̇βj .
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The beta function

Let’s now turn to the extraction of beta function. For massless amplitudes, these can
be obtained by extracting the coefficient for the bubble integrals in the scalar integral
basis [7, 78]. However, extra care needs to be taken for the subtraction of infrared diver-
gence. Here we will instead consider two massive scalar probes of a photon propagator,
and consider the correction to the propagator due to an internal massive scalar, fermion
and vector (denoted by X):

X

.

The UV divergence of this amplitude contains the contribution of a scalar to the beta
function, without the IR-contamination. The loop amplitude will be constructed by
gluing the 2→2 amplitude involving the scalar probe particle exchanging a photon with
X. This will allow us to obtain the beta function for different spins. From the massive
vector, we will also be able to extract the contribution for a massless vector by simply
subtracting a scalar. Assuming that the mass of X is identical with that of the scalar
probe, the relevant tree amplitudes can be easily constructed by generalizing the examples
in subsection 2.5:

X
+

+

−

−

a b

1

2 3

4

: X ∈ scalar
m2

s

(
xa
xb

+
xb
xa

)
=

(p1 − p2) · p3
s

X
+

+

−

−

a b

1

2 3

4

: X ∈ fermion
m

s

(
xa
xb

[34]+
xb
xa
⟨34⟩

)

=
1

2ms
(2(p1 − p2) · p3⟨34⟩−⟨3|p1P − Pp1|4⟩)

X
+

+

−

−

a b

1

2 3

4

3 3

4 4

: X ∈ vector
1

s

(
xa
xb

[34]2+
xb
xa
⟨34⟩2

)

=
1

m2s

(
(p1 − p2) · p3⟨34⟩2−⟨34⟩⟨3|p1P − Pp1|4⟩

−⟨3|p1P − Pp1|4⟩⟨3|P |4]
2m

)
(2.200)

where we’ve again summed over the two possible photon helicity configuration and P =

p3+ p4. The second equality for each amplitude gives the manifest local form, which can
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be checked against the H.E. limit where one should find a finite result as m → 0. Note
that each term contains a piece which is identical to the scalar contribution.

We can now glue the tree amplitudes into the one-loop integrand. The beta function
can be readily read off by picking out the divergent piece which is proportional to the
tree amplitude. For further simplification, we can take the s → 0 limit, and we will be
looking for the term that is proportional to 2(p1·p3)

s
. Let us use the scalar correction as

an example. The one-loop amplitude is now

1

2 3

4

1

2

= Ascalar4 (p1, ℓ1)A
scalar
4 (ℓ2, p3)

∣∣
s→0

=
4(p1 · ℓ1)(p3 · ℓ2)

s2
. (2.201)

The one-loop integrand is then simply:

4

s2

∫
d4−2ϵℓ

(2π)4
(p1 · ℓ1)(p3 · ℓ2)

(ℓ2 −m2)((ℓ− P )2 −m2)
= − 1

(4π)2ϵ

1

6

(2p1 · p3)
s

+ · · · . (2.202)

where · · · represent terms terms that are purely functions of s, or finite. For fermions,
there are now two pieces that are relevant: the square of the scalar piece, and the square
of the piP piece. All other contributions cannot generate the p1 · p3 tensor structure. We
find:

Afermion4 (p1, ℓ1)A
fermion
4 (ℓ2, p3) =

8(p1 · ℓ1)(p3 · ℓ2)
s2

− 2
(p1 · p3)

s
+ · · · . (2.203)

The relevant part of the one-loop integrand is then:

1

s

∫
d4−2ϵℓ

(2π)4
8(p1 · ℓ1)(p3 · ℓ2)/s− 2(p1 · p3)
(ℓ2 −m2)((ℓ− P )2 −m2)

= − 1

(4π)2ϵ

4

3

(2p1 · p3)
s

+ · · · . (2.204)

Finally, similar analysis for vectors yields:

Avector4 (p1, ℓ1)A
vector
4 (ℓ2, p3) =

12(p1 · ℓ1)(p3 · ℓ2)
s2

+ 8
(p1 · p3)

s
(2.205)

which leads to

1

s

∫
d4−2ϵℓ

(2π)4
12(p1 · ℓ1)(p3 · ℓ2)/s+ 8(p1 · p3)

(ℓ2 −m2)((ℓ− P )2 −m2)
=

1

(4π)2ϵ

7

2

(2p1 · p3)
s

+ · · · . (2.206)

Thus we’ve found that the beta function for a scalar is 1
6

a Dirac fermion 4
3

and a massless
vector being −7

2
+ 1

6
= −11

3
, where we’ve subtracted the scalar "eaten" by the massive

vector.
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Rational terms

Another application of massive amplitudes is to derive rational terms for massless am-
plitudes that are not constructible via four-dimensional cuts. These terms appear due to
the fact that the integrals are regulated and one can encounter ϵ/ϵ ∼ O(1) effects. These
terms can be obtained by considering the states in the internal loops to be massive [16,
140], where the mass m2 is identified with the extra −2ϵ dimension piece of ℓ2, denoted
as µ2.16 For QCD, one considers the contribution of a massive adjoint scalar state that
is minimally coupled to the external gluons. These "µ" terms are computed using the
tree-level amplitudes in D-dimensions [29, 33] and consider the extra dimension momenta
as four-dimensional mass.

Here we will directly use the four-dimensional massive amplitudes to obtain the integral
coefficients for I4[µ2k], the four-point scalar box integral with µ2k as its numerator. For
the box-integral coefficient one considers the quadruple cut, where the two solutions for
the cut loop momentum are:

ℓ1 =
1

2

(
c±λ̃1λ4 −

m2

tc±
λ1λ̃4

)
, c± =

⟨12⟩
2⟨42⟩

(
1±

√
1 +

4m2u

st

)
. (2.207)

The box-coefficient is then obtained by gluing the four tree-amplitudes substituted with
the cut loop momenta.

First consider the four-point all-plus amplitude, where the cut is given by:

1
+

2
+

4
+

3
+

a

b c

d

1

2

∼ m4xaxbxcxd = m4 [41]m

⟨4|ℓ1|1]
⟨4|ℓ1|1]
⟨41⟩m

[23]m

⟨2|ℓ2|3]
⟨2|ℓ2|3]
⟨23⟩m

= m4 [41][23]

⟨41⟩⟨23⟩
(2.208)

This directly gives the all plus integrand, [12][34]
⟨12⟩⟨34⟩I4[µ

4]. For the single minus amplitude,
16See [76] for some recent applications.
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one instead has:

2
+

4
+

3
+

a

b c

d

1

2

1
−

∼ m4xbxcxd
xa

= m4 ⟨4|ℓ1|1]2

⟨41⟩[14]m2

[23]m

⟨2|ℓ2|3]
⟨2|ℓ2|3]
⟨23⟩m

= m2 ⟨4|ℓ1|1]2

t

[23]

⟨23⟩
. (2.209)

Substituting the two solutions for the cut in eq.(2.207) and summing the results, one
obtains

[23][42]⟨12⟩
4⟨23⟩⟨42⟩[12]

(
st

2u
I4[µ

2] + I4[µ
4]

)
. (2.210)

The above rational terms are in agreement with [29].

2.8 Form Factors and Correlation Functions

The ability to discuss scattering amplitudes for general mass and spin largely removes the
distinction between amplitudes and "off-shell" objects such as correlation functions and
form-factors. Consider correlation functions for the stress tensor for some theory. The
computations are precisely the same as what we would carry out if we were computing
the scattering amplitude for a massive spin two particle, (arbitrarily) weakly coupled to
the theory. The scattering amplitude for these massive particles gives us the correlation
function in momentum-space, which corresponds closely to the experiments that are
actually done to measure correlation functions. Strictly speaking we are coupling a
continuum of particles of different masses, and we are getting the correlator in momentum
space for the external legs pa in the timelike Lorentzian region where p2a > 0. But we can
then define the correlators for null and spacelike momenta by analytic continuation. At
least in perturbation theory—which is what we will largely concern ourselves with here
in this subsection—there is no ambiguity for what this means in practice.

It is important to imagine that the massive particle O corresponding to the operator
is simply an external probe and does not participate in the dynamics. In other words,
we should not have any "internal propagators" associated with cuts that put O on-
shell. In practice, this means that we should be able to make the coupling of O to our
system proportional to a parameter ϵ that we can make as small as we wish. To take an
example, consider a 3-point coupling of O to a pair of massless particles for the system
of interest; making this proportional to ϵ means that the leading amplitudes will never
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involve internal O particles:

O : ϵ, O O : ϵ2. (2.211)

In general, the leading amplitude involving N O’s will be proportional to ϵN and will
never involve internal O particles.

Observables in Gauge Theories and Gravity

Before moving on to illustrating how this interpretation is useful in concrete calculations,
let us pause to interpret some standard and elementary facts about observables in gauge
theories and gravity from this on-shell perspective.

In particular, let us understand the reason for the absence of charged local operators in
gauge theory, or any local operators whatsoever in gravity. Consider a charged operator
Φ. We know that consistency enforces universal coupling of Φ to photons/gluons, with
strength set by the gauge coupling g, and so we can’t arbitrarily weakly couple Φ to
the system. Thus we can’t speak of charged local operator. Similarly with gravity, the
coupling of any particle to gravity is universal given by

√
GN , so in the presence of

gravity we can’t meaningfully talk about any local operators at all. In a conventional
Lagrangian description of the physics, this is associated with the impossibility of making
local charged operators gauge invariant. Of course we can always fix a gauge and compute
correlators for operators in that gauge, but then these are not quite local. If we start
with correlators of local operators in the limit as g2 → 0 or GN → 0, the weak gauging
attaches Wilson lines to the operators in some way. Of course this also has an obvious
on-shell meaning, again corresponding closely to physical experiments that measure these
Wilson-line dressed correlators.

Consider again a charged scalar Φ of charge +1 in an abelian gauge theory, and let’s
consider the correlator ⟨Φ∗(x)Φ(y)⟩ first in the limit where we turn off the gauge coupling.
We may have U(1) invariant self-interactions for Φ of the form (Φ∗Φ)2 for example,
and we can also turn on the gauge-interactions. But we also couple Φ to some heavy
external probe particles X(q), Y (q+1) and A(Q), B(Q+1) via the couplings ϵX(q)Y (q+1)∗Φ,
ϵ′A(−Q)B(−Q−1)∗Φ∗. Let’s now look at the (XY ∗B∗A) scattering amplitude. Since this
breaks the global particle number symmetries acting separately on X, Y,A,B as ϵ, ϵ′ → 0,
this amplitude is proportional to the product ϵϵ′; some of the diagrams contributing to
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the amplitude are shown below:

X X X

Y Y YA A A

B B B

. (2.212)

As ϵ, ϵ′ → 0, stripping off this product from the amplitude yields the correlator where
⟨Φ∗(x)Φ(y)⟩ is dressed with Wilson lines in the pX , pY , pA, pB directions:

M(pX , pY , pA, pB) → ϵϵ′
∫
x,y

ei(pX+pY )xei(pA+pB)y⟨
(
W q

pXΦW ∗(q+1)
pY

)
(x)
(
W−Q

pA ΦW ∗(−Q−1)
pB

)
(y)⟩. (2.213)

The fact that inequivalent "dressings" of the local operator with Wilson lines are possible
simply reflects the many different ways we can couple Φ to external probes; since the
probes themselves are charged and emit long-range gauge fields, the amplitudes (and
hence the extracted correlator) do depend on the choices that are made. Thus, while
correlation functions for local charged operators don’t exist, dressed version of these
correlators exist, for both gauge theory and gravity, to all orders in g and

√
GN .

There is a deeper difficulty with gravity, which makes even these quasi-local "Wilson-line
dressed" correlators ambiguous at a non-perturbatively tiny level, of O(exp(−M2

Pl/s)).
As we saw in our example above, in order to be able to identify the piece of the amplitude
for the heavy probes that is unambiguously associated with the coupling to the operator
Φ, it was important that the coupling to the probe broke some global symmetry of the
problem. But we expect that gravity breaks all global symmetries, and in particular,
we can’t say that the XY ∗A∗B amplitude, for example, is arbitrarily small; there is
some (perhaps virtual black-hole mediated) rate for this process of O(exp(−M2

Pl/s)) that
pollutes any attempt to associate this amplitude with the (Wilson-line dressed) correlator
of interest, making it impossible to pick out a piece proportional to ϵϵ′ as ϵ, ϵ′ → 0.

Summarizing more informally, in both gauge theories and gravity we don’t have meaning-
ful correlators of local charged operators, for the (relatively trivial) reason that we can’t
ignore the long-range gauge and gravitational fields. This can already be seen perturba-
tively in g2, GN , but to all order in these couplings, there are dressed versions of local
operators that take care of the long-range fields at infinity, smoothly deforming the local
correlators we have when g2, GN = 0. But in gravity, due to exponentially small effects
of O(exp(−Area/GN)), associated with black-hole physics, even these dressed versions
of local operators don’t make precise sense. This is a concrete sense in which any notion
of spacetime becomes ambiguous in quantum gravity, for example highlighting that the
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breakdown of locality in the context of the black-hole information paradox is an effect of
O(exp(−SBH)), and is otherwise invisible to every order in GN .

Weinberg-Witten

The interpretation of correlators in terms of massive amplitudes allows us to re-interpret
some familiar facts about massive amplitudes we have already encountered to other well-
known facts about QFT’s. Consider the Weinberg-Witten theorem [172], which in this
way of thinking is essentially identical to Yang’s theorem. Recall the discussion of con-
sistent couplings of a massive spin S particle to massless particles. Note that since
conserved currents and stress tensors measure the charge and the momentum on sin-
gle particle states respectively, we will be interested in the interaction of the massive
state with two opposite helicity massless-particles h1 = −h2.17 Our analysis showed that
S + h2 − h1 and S + h1 − h2 must always be greater or equal to 0, this tells us that
for S = 1, |h1| = |h2| ≤ 1

2
, i.e. massless particles with spin > 1

2
cannot couple to a

Lorentz covariant conserved current. Similarly for S = 2, |h1| = |h2| ≤ 1, and massless
particles with spin > 1 cannot couple to a conserved stress-tensor. This is precisely the
Weinberg-Witten theorem.

Form Factors Example: Stress Tensor/Gluons

From Weinberg-Witten theorem we know that the stress tensor can only couple to mass-
less particles of spin ≤ 1, thus we will consider form factors of a stress tensor and three
gluons. Identifying the stress tensor as a massive spin-2 state, we will map this to a
four-point amplitude involving one massive and three massless states:

−
+

+

×T −→
T1

2−

4+

3+

. (2.214)

Let us consider the t-channel massless residue. Since the gluon is "charged" under the
stress tensor, for the one massive two massless coupling, one should consider opposite
helicity gluons. The t-channel residue can then be written as:

(λP )
4 [p4]

2

m3

[3P ]3

[P2][23]
=

(λ2)
4m[23]

⟨43⟩⟨24⟩
, (2.215)

where again, the equality holds for ⟨23⟩ = 0. This leads us to the following simple
expression for the form factor:

⟨T̃ (1)|2−3+4+⟩ = (λ2)
4m

⟨43⟩⟨32⟩⟨24⟩
. (2.216)

17Recall that all momenta are out going, so for p1 and p2 to represent the same particle, h1 = −h2.
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It is straight forward to check that the above result matches all three factorisation chan-
nels, as expected from its cyclic invariant form, up to the over all factor of (λ2)4 that
takes care of the excess helicity weight and the stress tensor’s SL(2,C) indices. We can
straightforwardly extend to two stress tensors coupled to two gluons:

⟨T̃ (1)T̃ (2)|3−4+⟩ = (λ3)
4

(
([4|p1)2([3|p2)2

t
+

([3|p1)2([4|p2)2

u

)
. (2.217)

There is an elephant in the room that we have not yet addressed. So far we have been
considering conserved operators as massive spinning states. But conserved operators are
a tiny subset of an infinite number tensor operators, for which all must have well defined
form factors (and in the next section momentum space correlation functions). Further-
more, we should be able to see there must be a kinematic distinction between conserved
operators and non-conserved operators, such that higher-spin conserved currents for an
interacting theory can be ruled out, à la Coleman–Mandula theorem [53].

As an exercise let’s consider a theory with two scalars (ϕ, ϕ̄) and the operators O1µ =

ϕ
←→
∂ µϕ̄ and O2µ = ϕ∂µϕ̄. The first is a conserved current while the second is not. Let us

now consider the three-point form factor for

⟨Õ1αα̇,ββ̇|p1p2⟩ ∼ (p1 − p2)αα̇, ⟨Õ2αα̇,ββ̇|p1p2⟩ ∼ pαα̇1 . (2.218)

Converting the above result into pure undotted SL(2,C) indices by contracting with
(p1 + p2), one finds:

⟨Õ1|p1p2⟩ ∼ [12]λ
{α1

1 λ
α2}
2 , ⟨Õ2|p1p2⟩ ∼ [12]λα1

1 λ
α2
2 =

1

2
[12]

(
λ
{α1

1 λ
α2}
2 + ⟨12⟩εα2α1

)
.

(2.219)

Not surprisingly the form factor for O2 can be further decomposed into a combination
of S = 2, 1, and 0 states. Thus we see that a general operator simply corresponds to
a linear combination of lower spin states. In position space this is a statement that a
general current, for example, can

Oµ = (ηµν − ∂µ∂ν

□
)Oν +

∂µ∂ν

□
Oν ≡ Ôµ +

∂µ∂ν

□
Oν . (2.220)

where Ôµ is the conserved piece. Note that while there is a conserved piece in a gen-
eral operator, the projection introduces non-locality and is thus distinct from a genuine
conserved operator. This non-locality is present in all the lower spin components in the
projection.
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Let us look at this distinction more closely in the context of general form factors. For an
interacting theory, the form factor will in general have poles whose residue reveals the
existence of a non-trivial S-matrix:

+ ....

. (2.221)

Let us consider the particles to be massless, and take the momenta of the operator to be
soft. Then just like the usual Weinberg’s soft theorems for S-matrix, the form factor will
be dominated by diagrams where one has the operator attached to the external leg

∑
i

i

q

=
∑
i

n(pi, q)

pi · q
Mn. (2.222)

where q is the soft momenta of the operator, n(pi, q) is the numerator function. If
the operator is a tensor, then n(pi, q) should carry the corresponding Lorentz indices.
Conserved tensor is reflected in that the form factor must vanish when contract with
qµ. If we have a conserved current, then we can have n(pi, q)µ = eip

µ
i , where ei is the

charge of each external state. The requirement of conservation then simply corresponds
to the requirement of charge conservation. Similarly for conserved stress tensor we have
n(pi, q)

µν = κpµi p
ν
i , and the conservation condition simply stems from momentum con-

servation if the coupling κ is universal. Note that for higher spins, S > 2, there are no
local solutions for n(pi, q)µ1···µS such that the conserved quantity is respected. This is
the Coleman-Mandula theorem! The assumptions that went into this argument is the
existent of a non-trivial S-matrix, the analyticity of the form factor which can be inter-
preted as a massive S-matrix, and Lorentz invariance. The fact that the argument is
closely related to Weinberg’s soft theorems for gauge bosons is not a surprise in view of
our usual intuition that if a conserved tensor exists in an interacting theory, then we can
always weakly gauge it and have non-trivial S-matrix involving the gauge boson.

Note that while one can always project out a conserved piece for non-conserved tensors,
the corresponding form factor will include non-local pieces. Indeed in this case we can
have, for example, n(pi, q)µ = qµñ(pi,q)

q2
= qµñ(pi,q)

m2 . This non-locality is again reflected in



76

the singularity of the m2 → 0 limit. This of course is an artifact of our projection, since
there will be lower spin contributions coming along that will contain the same singularity
and conspire to cancel, producing a smooth m2 → 0 limit.

Current and Stress-Tensor Correlators

Let’s consider the two and three-point correlation functions for stress-tensors in a con-
formal theory. In momentum space, the tree-level correlator are computed by gluing
tree-level amplitudes with one massive leg and two massless legs. For conformal theories,
the available tensor structures are constrained by conformal symmetry. In momentum
space, this constraint is simply a reflection of the uniqueness of the three-point ampli-
tude, which is fixed by the spin of the massive state and the helicities of the massless
legs.

For example, the two point function receives contribution from:

⟨Tα1α2α3α4Tβ1β2β3β4⟩ =
1

2

+

+

−

−

I2
[
Sℓ1ℓ2α1α2

Sℓ1ℓ2α3α4
Sℓ1ℓ2β1β2

Sℓ1ℓ2β3β4

]

+

1

2

+

−

−

+

I2

[
4∏
i=1

Sℓ1ℓ2βiαi

]
+

2

+

−

−

+

1

1

2
−

1

2
−

1

2
−

1

2
−

I2
[
Sℓ1ℓ2α1α2

Sℓ1ℓ2β1β2
Sℓ1ℓ2α3β3

Sℓ1ℓ2α4β4

]
,

(2.223)

where we’ve listed the contributions from different internal helicity configuration and
I2[X] is defined as:

I2[X] ≡
∫
d4ℓ

X

ℓ2(ℓ− k)2
, (2.224)

where k is the momenta of the stress tensor. The operator Sℓ1ℓ2α1α2
is a shorthand notation

for ℓ1α1β̇
ℓ2α2

β̇. Note that it is understood that the expression must be symmetrized
over {αi} and {βi} separately, as well as over exchanging αi ↔ βi, which takes into
account the conjugate helicity configurations. For the scalar and and equal helicity
fermion contributions, their tensor structure are identical to that of equal helicity gauge
field.
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For the three-point function one has:

⟨Tα1α2α3α4Tβ1β2β3β4Tγ1γ2γ3γ4⟩ =
−+

1 2

3

{
I3
[
Sℓ1ℓ2
β1α1

Sℓ1ℓ2
β2α2

Sℓ1ℓ3
β3γ1

Sℓ1ℓ3
β4γ2

Sℓ3ℓ2
γ3α3

Sℓ3ℓ2
γ4α4

]

+ I3
[
Sℓ1ℓ2
β1α1

Sℓ1ℓ2
β2α2

Sℓ2ℓ3
α3β3

Sℓ2ℓ3
α4β4

Sℓ2ℓ3
γ1γ2

Sℓ2ℓ3
γ3γ4

]}
+

− +
1 2

3

{
I3
[
Sℓ1ℓ2
α1γ1

Sℓ1ℓ2
α2γ2

Sℓ1ℓ3
α3β1

Sℓ1ℓ3
α4β2

Sℓ3ℓ2
β3γ3

Sℓ3ℓ2
β4γ4

]

+ I3
[
Sℓ1ℓ2
α1γ1

Sℓ1ℓ2
α2γ2

Sℓ1ℓ3
α3γ3

Sℓ1ℓ3
α4γ4

Sℓ1ℓ3
β1β2

Sℓ1ℓ3
β3β4

]}
+

− −
1 2

3

{
I3
[
Sℓ1ℓ3
α1β1

Sℓ1ℓ3
α2β2

Sℓ2ℓ3
α3β3

Sℓ2ℓ3
α4β4

Sℓ2ℓ3
γ1γ2

Sℓ2ℓ3
γ3γ4

]

+ I3
[
Sℓ1ℓ3
β1β2

Sℓ1ℓ3
β3β4

Sℓ1ℓ3
α1γ1

Sℓ1ℓ3
α2γ2

Sℓ2ℓ3
α3γ3

Sℓ2ℓ3
α4γ4

]}
+

+ +
1 2

3

{
I3
[
Sℓ1ℓ2
α1α2

Sℓ1ℓ2
α3α4

Sℓ1ℓ2
β1γ1

Sℓ1ℓ2
β2γ2

Sℓ2ℓ3
γ3β3

Sℓ2ℓ3
γ4β4

]

+ I3
[
Sℓ1ℓ2
α1α2

Sℓ1ℓ2
α3α4

Sℓ1ℓ2
β1γ1

Sℓ1ℓ2
β2γ2

Sℓ1ℓ3
β3γ3

Sℓ1ℓ3
β4γ4

]}
+

−
1

2
−+

1

2
−

1 2

3

{
I3
[
Sℓ1ℓ2
α1α2

Sℓ1ℓ2
β3α3

Sℓ1ℓ3
β1β2

Sℓ2ℓ3
γ1γ2

Sℓ2ℓ3
γ3γ4

Sℓ2ℓ3
α4β4

]

+ I3
[
Sℓ1ℓ2
α1α2

Sℓ1ℓ2
β3α3

Sℓ1ℓ3
β1β2

Sℓ1ℓ3
β4γ3

Sℓ2ℓ3
γ1γ2

Sℓ2ℓ3
α4γ4

]}
+

+
1

2
−−

1

2
−

1 2

3

{
I3
[
Sℓ1ℓ2
α1α2

Sℓ2ℓ1
γ3α3

Sℓ2ℓ3
γ1γ2

Sℓ1ℓ3
β1β2

Sℓ1ℓ3
β3β4

Sℓ1ℓ3
α4γ4

]

+ I3
[
Sℓ1ℓ2
α1α2

Sℓ2ℓ1
γ3α3

Sℓ2ℓ3
γ1γ2

Sℓ2ℓ3
γ4β3

Sℓ1ℓ3
β1β2

Sℓ1ℓ3
α4β4

]}
(2.225)

and I3[X] is defined as:

I3[X] ≡
∫
d4ℓ

X

ℓ21(ℓ1 − k2)2(ℓ1 + k1)2
(2.226)

where k1, k2 are the momenta carried by the αi and βi indexed stress-tensor respectively.
Again symmetrisation interns of {αi}, {βi}, and {γi} are implied and the equal helicity
fermion on one of the vertices as well as internal scalars does not produce new tensor
structures.

2.9 Outlook

Relativistic quantum mechanics governs the laws of nature at low enough energies so
that physics can be described in flat space, with a finite number of interacting parti-
cles. "Quantum field theory" is the standard textbook approach to this physics, where,
as useful theoretical constructs, "local quantum fields" are introduced, along with the
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attendant baggage of field redefinition and gauge redundancies, in order to allow a de-
scription of the physics in a way compatible with relativistic locality and unitarity. But
the on-shell approach to scattering amplitudes suggests that this may not be the only
way—that we might instead be able to describe relativistic quantum mechanics without
local quantum fields, directly in terms of the physical particles. 18

In this paper we have taken the first steps to extending the ideas of this on-shell approach
to cover particles of all masses and spins in four dimensions. The purely kinematical
part of our discussion has been fundamentally trivial—but trivializing the kinematics
allows for understanding the structure of the physics as following seamlessly from the
foundational principles of Poincare Invariance, Locality, and Unitarity in a satisfying
way.

We have seen many aspects of this understanding throughout this paper. The structure
of three particle amplitudes, for any mass and spin, is fixed by Poincare invariance.
For massless particles, there is a peculiarity for high enough spin—the three particle
amplitudes are superficially "non-local" in the sense of having poles; while this doesn’t
show up in (3, 1) signature Minkowski space where these amplitudes vanish, it does mean
that consistent factorization at four points is non-trivial, and indeed, all but the usual
massless theories we know and love, of interacting spin (0, 1/2, 1, 3/2, 2), are ruled out
by these considerations. We learn that we can only have a single massless spin two
particle, with universal couplings, that the massless spin one particles must have the
structure of Yang-Mills theories, and spin 3/2 requires supersymmetry. Furthermore the
mere existence of a consistent amplitude coupling to gravitons rules out all higher spin
massless particles.

Similarly there is still a superficial "non-locality" associated with the coupling of a single
massive particle to massless particles with spin—the "x− factor"—which again makes
factorization non-trivial. Unlike the case for massless particles, we can (non-trivially)
find consistently factorizing four-particle amplitudes for any choice of three-particle cou-
plings, (with the usual restrictions on consistent couplings to massless spin one and spin
2 particles). But for massive particles of high enough spin, these consistently factoriz-
ing amplitudes are badly behaved at high energies—growing with powers of (pi · pj/m2),
so that the massless limit cannot be taken smoothly. This tells us that even massive
particles of high enough spin cannot be separated by a parametrically large gap from

18It is amusing that the on-shell program is often contrasted with the standard approach using
Feynman diagrams, since Feynman’s primary physical motivation for introducing his diagrams to begin
with was to get rid of quantum fields—and he was famously disappointed to learn, via Dyson’s proof,
that his diagrams were so closely related to field theory after all!
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other particles—massive particles with high spin cannot be "elementary". Finally, three
particle amplitudes involving all massive particles are local, but naturally have powers
of 1/m. Thus, theories of massive particles can only smoothly interpolate to massless
amplitudes at high energies for special choices of spectra and couplings; conversely, start-
ing from massless helicity amplitudes at high energies, we can "unify" subsets of these
amplitudes into massive ones in some cases. This can be done for spin 1 and spin 3/2
particles, representing the on-shell avatars of the Higgs and super-Higgs mechanism, but
we can see that gravity can’t be "Higgsed" in this way.

In the context of this summary it is perhaps also worth briefly describing the on-shell un-
derstanding of the most famous general consequences of relativistic quantum mechanics:
the existence of antiparticles and the spin-statistics connection.

The existence of antiparticles is essentially hardwired into the on-shell formalism, since
by fiat we are considering analytic functions of Lorentz-invariant kinematical variables,
with consistent factorization on all possible channels. To be a little more explicit on these
ancient points, we can ask how causality is encoded in the S-matrix in any theory, with
or without Lorentz invariance. At tree-level, causality tells us that the amplitude can
only have simple poles as a function of energy variables. If the particles have a dispersion
relation of the form E = ω(p⃗), the poles can be either be of the form 1/(E+ω(p⃗)), or also
1/(E−ω(p⃗)) if the interaction Hamiltonian allows particle production. But in a Lorentz
invariant theory, neither (E+ω(p⃗)) nor (E−ω(p⃗)) are individually invariant, so Lorentz
invariance and causality forces us to have poles of the form 1

(E2−ω(p⃗)2) = 1
p2−m2 . This

is how we see that causality demands this familiar pole structure at tree-level, which
as a byproduct also forces the existence of non-zero amplitudes for the production of
degenerate particles and antiparticles.

The on-shell understanding of the connection between spin and statistics is slightly more
interesting, and makes use of the universality of coupling to gravity. Indeed we saw
vividly that the structure of the four-particle amplitude for gravi-compton scattering
off particles of general mass and spin is completely fixed, and in particular forces the
correct spin-statistics connection. This deeply relies on the non-triviality of how residues
in different channels are consistent with each other, forcing the "s" and "u" channels—
related by particle interchange—to have fixed relative signs. It is not surprising that an
on-shell understanding of a classic fact related to locality and unitarity should be related
to coupling to gravity—after all it is precisely the ability to "weakly gauge" gravity that
gives a physical probe (via the existence of an energy momentum tensor) of the locality
of quantum field theory. We also described how other famous general results in field
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theory, such as the Weinberg-Witten and Coleman-Mandula theorems, are interpreted in
directly on-shell terms.

Moving beyond tree-scattering, we also took some first steps for computing amplitudes
at one-loop, where the on-shell picture is especially powerful, as seen in the speed and
transparency of the computation for electron (g− 2) and the QCD beta function. While
not discussed in this paper, chiral anomalies, together with the possibility of cancelling
them via the Green-Schwartz mechanism, also have a beautiful on-shell understanding,
arising from the necessity to interpret poles in one-loop amplitudes fixed by generalized
unitarity [100].

But of course, much more importantly than providing a conceptually transparent and
technically straightforward understanding of standard results, we hope that the formalism
introduced in this paper removes the trivial barriers to exploring the new frontier of
massive scattering amplitudes, which is filled with fascinating physical questions. We
close by listing just a small number of these.

We have focused almost entirely on the computation of tree-level three- and four-particle
amplitudes, so one completely obvious question is, for example, how you would extend
the BCFW recursion relations to any number of external particles, especially for Higgsed
Yang-Mills theories. Of course for massless particles the BCFW shift must be performed
for massless particles of appropriate helicity in order to ensure the absence of poles at
infinity, so the obvious challenge is that the massive amplitudes unify both the "good"
and "bad" helicity combinations into a single object.

Another clear goal is the systematic computation of all the massive amplitudes in the
Standard Model, starting at tree level but moving to multi-loop level. It is worth men-
tioning at least one exciting motivation for this undertaking. Future Higgs factories—like
the CEPC or TLEP—can also run on the Z-pole, producing between 109 − 1011 Z par-
ticles. Making full use of this data will require a computation of Z-couplings at three to
four loop accuracy. And unlike QCD calculations of backgrounds at the LHC, for which
the perturbative computations must ultimately be convolved with non-perturbative in-
formation such PDF’s and hadron fragmentation functions to connect with experiment,
these precision electroweak calculations are unaffected by hadronic uncertainties at the
needed level of precision, so any theoretical predictions can be unambiguously connected
to exquisitely precise experimental measurements!

It is also clearly of interest to investigate massive amplitudes in supersymmetric theories,
as this should of course be especially interesting in the context of the N = 4 SYM on
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the Coulomb branch. Now even our first look at the on-shell avatar of the Higgs and
Super-Higgs mechanisms showed that the Higgsed amplitudes are more unified than their
massless counterparts. Thus we should expect that all the natural objects encountered
for massless amplitudes—such as tree amplitudes, leading singularities, and on-shell di-
agrams, which are separated into different "k" sectors—are somehow unified into more
interesting objects. Amongst other things the extension of BCFW to the Higgsed the-
ories might be most natural in the massive N = 4 on-shell diagram formulation. And
of course it would be fascinating to see if the Grassmannian/Amplituhedron structures
underlying the theory and the origin of the moduli space is somehow extended/deformed
away from the origin.

All of the physics we have discussed in this paper has revolved around the consistency
of long-distance physics: the on-shell focus on factorization and cuts at tree and loop
level is meant to ensure that infrared singularities needed by locality and unitarity are
correctly accounted for, and this fixes the structure of the amplitudes. For theories with
growing amplitudes in the ultraviolet, needing a UV completion, it is very natural to
ask the same questions: can the physics of UV completion also be determined from
the consistency conditions of locality and unitarity? If the UV completion has a weak
coupling, the question becomes perfectly sharply posed, and in the context of unitariz-
ing the Fermi interaction or WW scattering, searching for a tree-level UV completion
correctly led to the prediction of massive W particles and Higgses as the completion of
the weak interactions. Turning to the even more famous problem of UV completion for
gravity scattering amplitudes, we encounter a well-known novelty. As will be discussed
at greater length in [9], any weakly coupled UV completion for gravity amplitudes, (or
for that matter, also Yang-Mills or ϕ3 theory, any theory with non-trivial three-particle
amplitudes), must involve an infinite tower of particles with infinitely increasing spins, as
of course familiar from string theory. It is a tantalizing prospect to try and "derive string
theory" in this way, as giving the only possible consistent tree scattering amplitudes for
gravitons coupled to the infinite tower of massive higher spin particles necessary for UV
completion. But consideration of amplitudes involving massive higher spin particles is
necessary for any possible uniqueness, since as shown in [9], deformations of the string
scattering amplitudes with only gravitons as external particles, compatible with all the
standard rules, have been identified. This is not at all surprising. Since we know the
presence of gravity makes massless higher spin particles impossible, the coexistence of
gravity unified with an infinite tower of massive higher spin particles must involve the
strongest consistency conditions imaginable. Again, the massive amplitude formalism
we have discussed in this paper trivializes kinematical issues so that important physics
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points can be studied with an unobstructed view, and with this in hand we will return
to string theory and the challenge of UV completion in [9].
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C h a p t e r 3

THE EFT-HEDRON

1

3.1 Introduction

There is a long-appreciated, close connection between vacuum stability, causality, and
unitarity, and analyticity/positivity properties of scattering amplitudes, going back to the
1960’s S-matrix program. In this standard story, there are three fundamental origins of
positivity: the positivity of energies (vacuum stability), the sharp localization of signals
inside the lightcone (causality, and the positivity of probabilities (unitarity). These basic
positivities, together with analyticity properties of scattering amplitudes meant to reflect
causality, allow the derivation of more non-trivial positivity constraints on coefficients of
higher-dimension operators in low-energy effective field theories (as in [4, 5, 143]). In
recent years, a sort of opposite of the S-matrix program has emerged in a number of
theories, where notions of positivity take a central role, determining certain "positive
geometries" in the the kinematic space of particle scattering with a fundamentally com-
binatorial definition, from which the amplitudes are naturally extracted. In this picture,
locality and unitarity are not taken as fundamental principles, but instead arise, joined at
the hip, from the the study of the boundary structure of the positive geometries. These
examples suggest that there is vastly more "hidden positivity" in scattering amplitudes
than meets the eye, with locality and unitarity as derived from, rather than the origin
of, positivity properties.

Motivated by these discoveries, in this paper we will revisit the positivity properties of
2→ 2 scattering amplitudes, and re-examine the usual positivity properties dictated by
analyticity, causality, and unitarity. We will find that there are infinitely many constraints
on the coefficients of higher-dimension operators, and that these constraints involve very
similar mathematical structures as have already been seen in the story of positivity
geometries and amplituhedra.

To illustrate the nature of the constraints, consider for simplicity the scattering ampli-
tudes for two massless scalars ab→ ab, and suppose we are working in an approximation

1This chapter is adapted from Nima Arkani-Hamed, Tzu-Chen Huang, and Yu-Tin Huang. “The
EFT-Hedron”. In: JHEP 05 (2021), p. 259. doi: 10.1007/JHEP05(2021)259. arXiv: 2012.15849
[hep-th].

https://doi.org/10.1007/JHEP05(2021)259
https://arxiv.org/abs/2012.15849
https://arxiv.org/abs/2012.15849
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where we have integrated out massive states but not yet accounted for massless loops in
the low-energy theory. Then, the low-energy amplitude has a power-series expansion in
the Mandelstam variables s, t:

A(s, t) =
∑
∆,q

a∆,qs
∆−qtq (3.1)

and all the information in the low-energy effective field theory is captured in the coeffi-
cients a∆,q which we can organize into a table:

q=0 1 2 3 · · ·
∆=1 a1,0 a1,1

∆=2 a2,0 a2,1 a2,2

∆=3 a3,0 a3,1 a3,2 a3,3
...

...
...

...
...

...

, (3.2)

There are infinitely many constraints on the a∆,q, forcing this infinite table of coefficients
to lie inside "the EFT-hedron".

These constraints quantify certain intuitions about "garden variety" higher dimension op-
erators contributing to ab→ ab scattering, into sharp bounds. For instance we shouldn’t
expect operators of the same mass dimension ∆ to have vastly different coefficients; these
correspond to the coefficients in the same row in our table. But we might also think that
this is a consequence of "naturalness", and that by fine-adjustments of the parameters in
the high-energy theory, we can engineer any possible relative sizes between these opera-
tors we like. The EFT-hedron shows that this is not the case: not everything goes, and
indeed the coefficients a∆,q for a fixed ∆ must satisfy linear inequalities, which force them
to lie inside a certain polytope. We would also expect all operators to be suppressed by
a similar scale, i.e. not to have dimension 6 operators suppressed by the TeV scale while
dimension 8 operators are suppressed by the Planck scale, though again one might think
this can be done with suitable fine-tuning. Again, the EFT-hedron shows this is impos-
sible, and imposes non-linear inequalities between different a∆,q, which in the simplest
case constrain the relative sizes of coefficients at fixed q, in a fixed column of the table.
We will initiate a systematic study of the EFT-hedron in this paper. But before diving
in, let us give a high-level overview of the physical and mathematical engines at work.

The physical starting point is a dispersive representation of 2 → 2 scattering ampli-
tudes, as a function of s working at fixed t. To begin with we will assume, as mentioned
above, that we integrate out massive states of some typical mass M , which generates
higher-dimension operators in the low-energy theory, and for the purpose of these intro-
ductory comments let us ignore the further running of these higher dimension operators



85

by massless loops in the low-energy theory (we will revisit this point in the body of the
paper). Working at fixed t with |t| ≪ M2, it can be argued that the amplitudes only
have singularities on the real s axis, with discontinuities reflecting particle production in
the s and u channels. The discontinuity across these cuts has a partial wave expansion,
as a sum over spins with positive coefficients. Furthermore, causality is reflected in a
bound on the amplitude at large s for fixed |t|. In a theory with a mass gap, we have the
Froissart bound telling us the amplitude is bounded by A < s log2s. In quantum gravity,
we expect that for any UV completion with a weak coupling (like in string theory), the
high-energy amplitude in the physical region, with fixed negative t, is bounded by A < sp

with p < 2. Thus at fixed t, for any theory, we have a dispersive representation for the
amplitude at fixed t, of the form

A(s, t) = A0(t)+A1(t)s+

∫
dM2

∑
l

pl(M
2)Gl(1+

2t

M2
)

(
1

s−M2
+

1

u−M2

)
, (3.3)

where Gl(x) are Gegenbauer polynomials.

Now, this dispersive representation has the two basic and crucial long-appreciated pos-
itivities we have alluded to: the positivity of energies is reflected in M2 > 0, and the
positivity of probabilities in pl(M2) > 0. The new surprise we will explore in this paper,
are further hidden positive structures associated with the propagator 1/(s−M2), and
with the Gegenbauer polynomials Gl(x). It is these new positivities that are responsible
for the non-trivial geometry of the EFT-hedron and the associated infinite number of
new constraints on the a∆,q. Here we content ourselves here with summarizing the basic
mathematical facts of these hidden positivities, whose consequences we will explore in
detail in the body of the paper.

Let’s begin with the positivity associated with propagators, which can be illustrated in
a simplified setting, where we imagine a dispersive representation for a function F (s) of
the form

F (s) =

∫
dM2 p(M

2)

M2 − s
. (3.4)

This has a power-series expansion at small s, F (s) =
∑

n fns
n, where

fn =

∫
dM2p(M

2)

M2
(
1

M2
)n. (3.5)

This can be interpreted geometrically as saying that the vector f = (f0, f1, f2, · · · ) lies
in the convex hull of the continuous moment curve (1, x, x2, · · · ), where here x = 1/M2,
so we also impose that x > 0. Thus we have a well-posed mathematical question: what
is the region in f space that is carved out by the convex hull of the half-moment curve
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with x > 0? This question has a beautifully simple answer. To begin with, we associate
a "Hankel matrix" F with the vector f via Fij = fi+j:

F =


f0 f1 f2 · · ·
f1 f2 f3 · · ·
f2 f3 f4 · · ·
f3 f4 f5 · · ·

 . (3.6)

Then the allowed region in f space is completely specified by demanding that all of the
square k×k minors of the Hankel matrix F are positive! This is abbreviated by saying the
F is a "totally positive" matrix. For k = 1, this just tells us that all the fn are positive,
which is essentially the amplitude positivity found in the early works of [4]. But there are
also infinitely many non-linear positivity conditions. It is striking to see "all minors of a
matrix positive" conditions–earlier seen in the context of the positive grassmannian [13]
and the amplituhedron [11] for N = 4 SYM, show up again in a different setting, and in
such a basic way, for completely general theories.

Note that all these conditions are homogeneous in the mass dimension of the operators,
as they should be, since we have not input any further knowledge of the UV mass scales.
But suppose we were also given the gap Mgap to the first massive states. In this case, the
vector f would lie in the convex hull of the moment curve, starting at x = 0 and cut-off
at x = xgap = 1/M2

gap. Working in units where Mgap = 1, the region in f space is carved
out by looking not only at f , but also at its discrete derivatives,

f0

f1

f2
...

 ,


f1 − f2
f2 − f3
f3 − f4

...

 ,


(f2 − f3)− (f3 − f4)
(f3 − f4)− (f4 − f5)
(f4 − f5)− (f5 − f6)

...

 , · · · (3.7)

and demanding that the Hankel matrices associated with all of these vectors are totally
positive. A simple illustration of the region in (f1/f0, f2/f0) space carved out with
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(patterned region) and without knowledge of the gap is shown in the following plot:

.

Now to illustrate Gegenbauer positivity, let us again focus on simplest example illustrat-
ing the non-trivial point. Consider a dispersive representation for some function F (s, t)

only containing s-channel (and no u-channel) poles:

F (s, t) =

∫
dM2

∑
l

pl(M
2)Gl(1+2t/M2)

M2−s
(3.8)

and consider the low-energy expansion in powers of s, (2t), as

F (s, t) =
∑
∆,q

f∆,qs
∆−q(2t)q,

yielding
f∆,0

f∆,1
...

f∆,∆

 =
∑
l

Pl


G

(0)
l (x=1)

G
(1)
l (x=1)

...
G

(D)
l (x=1)

 where Pl =

∫
dM2 pl(M

2)

(M2)∆+1
> 0 . (3.9)

Here G(q)
l (x = 1) are the q’th derivatives of the Gegenbauer polynomials, evaluated at

the "forward limit" where x = 1. The above expression tells us that the projective
vector f∆ = (f∆,0, · · · , f∆,∆) lies in the convex hull of all the "Gegenbauer derivative"
vectors. Finding the space of all consistent f∆ is then a standard polytope problem:
we are given a collection of vectors (an infinite number in this case) whose convex hull
specifies some polytope, and we’d like to determine how to characterize the polytope
instead by the inequalities that cut out its facets. As we will review in the body of
the paper, the facet structure of a ∆-dimensional polytope, in turn, is fully captured by
the knowledge of the signs of the all the determinants made from any (∆+1) vectors of
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the vertices. In our context, then, we should look at the infinite "Gegenbauer matrix"
Gl,q = G

(q)
l (x = 1), and consider the top ∆+1 rows of this matrix and look at all the

corresponding (∆+1) × (∆+1) minors. Remarkably, it turn out that all these minors
of the Gegenbauer matrix are positive! This is another appearance of the "matrix with
all positive minors" phenomenon, and it immediately allows us to fully determine the
inequalities cutting out the corresponding polytope in f space, which are the famous
"cyclic polytopes". Cyclic polytopes have already made a prominent appearance in the
story of N = 4 SYM amplitudes, as the simplest example of "amplituhedra" for the case
of next-to-MHV tree scattering amplitudes. Indeed tree amplituhedra can be thought of
as grassmannian generalizations of the notion of cyclic polytopes. It is again interesting
to see the same objects show up in the totally different, very general setting of the
EFT-hedron. A morally similar geometry was seen in the conformal bootstrap [8].

We close our introductory remarks with two comments. First, we stress that these
constraints on effective field theory are non-trivial statements about any theory, and in
particular non-trivial constraints on quantum gravity in the real wold. Of course we don’t
usually care about the relative sizes of very high dimension "garden variety" operators,
for phenomenological purposes, but we nonetheless find it fascinating that the structure
of low-energy dynamics is vastly more constrained than previously appreciated. As a
sampling of our results, let’s look at some of the constraints for photon and graviton
scattering. For the (−,−,+,+) helicity configuration, where the helicities are identical
in the s-channel, the amplitude for the D8F 4 and D8R4 operator takes the form:

⟨12⟩2h[34]2h(a4,0s4+a4,1s3t+a4,2s2t2 · · · ) , (3.10)

where h = 1, 2 for photon and graviton respectively. The allowed region for a4,1
a4,0

, a4,2
a4,0

is
given as:

photon graviton

Note that the allowed region is bounded.
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It is also important to note that, while the EFT-hedron places extreme constraints on the
effective field theory expansion, sensible effective field theories do not appear to populate
the entire region allowed by the EFT-hedron, but cluster close to its boundaries. The
reason is likely that the physical constraints we have imposed, while clearly necessary,
are still not enough to capture consistency with fully healthy UV theories. In particular,
our dispersive representation at fixed t, does not make it easy to impose the softness of
high-energy, fixed-angle amplitudes where both s, t are large with t/s fixed. It would be
fascinating to find a way to incorporate this extra information about UV softness into
the constraints.

Having given this high-level overview of the physical and mathematical basis for our
results, we proceed to a more systematic discussion. Through sections 3.2, 3.3, 3.4, 3.5
we will present an elementary introduction of EFT amplitudes with explicit examples, the
analytic definition of aD,q through dispersion relations and their potential obstructions,
and finally the theory space that emerges from the dispersive representation. Next in
sec.3.6, we take a brief sojourn in the positive geometries relevant to our analysis, giving
a pedagogical discussion of convex hulls of moment curves and cyclic polytopes. These
geometries will be immediately utilized to define the s-channel EFT-hedron in sec.3.7,
where we focus on the theory space for scalar EFTs that allow for preferred ordering and
hence the absence of u-channel thresholds. This will be generalized to include u-channel
thresholds in sec.3.8, as well as photon and gravitons in sec. 3.9. We will study explicit
examples of EFTs and their "positions" in the EFT-hedron in sec. 3.10. Finally IR
logarithms generated by the massless loops will be incorporated in sec.3.11.

Many of the results of this paper have been presented in conferences and schools over
the past few years 2. As we were preparing our manuscript, a number of independent
works appeared on the arxiv overlapping with some of this work. In particular, new
positivity constraints involving scale dependent "arc moments" were introduced in [24],
and are intimately related to the geometry of the gap discussed in subsection 3.7. These
constraints arise from the knowledge of the precise UV cut off, and hence the reach of
validity for the EFT description. Bounds involving the combination of positivity away
from the forward limit and full permutation invariance was discussed in [164] and [46],

2See for example, N. Arkani-Hamed and Y.-T. Huang, talk at Strings 2018; Lectures at the cern
winter school on supergravity, strings and gauge theory (2019); talk at UV Meets the IR: Effective Field
Theory Bounds from QFT to String Theory KITP 2020.
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which have some overlap with the s-u polytope discussion in subsection 3.8. Other related
works can be found in [22, 146, 147, 155].
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(I) (II)

Figure 3.1: Different origins for the EFT: (I) Integrating away massive states in tree
exchanges, for example the Higgs for the Sigma model and the infinite tower of higher
spin states in string amplitudes, (II) or massive states in the loop, for example the φX2

coupling.

3.2 EFT from the UV

Let’s begin by considering a few concrete examples of EFTs emerging from their UV
parent amplitudes. We will give a broad stroke description of what types of high energy
theories/amplitudes they can arise from, the features that we will be focusing on, and
their relations to local operators, leaving the detailed analysis for the the remainder of
the paper.

Explicit EFT amplitudes

The amplitude for the low energy degrees of freedom may originate from a UV amplitude
where they interact through a tree-level exchange of massive particles. A simple example
is the case of the linear sigma model in the broken phase:

L =
1

2
(∂µh)

2−m
2
h

2
h2 +

(
1+

h

v

)2
1

2
(∂π · ∂π) + V (h). (3.11)

where v = mh

√
2
λ
, λ is the quartic coupling for the potential in the unbroken phase. As

the massless Goldstone boson π couples to the massive Higgs via cubic coupling π2h, the
following four π amplitude in the UV is given by (see fig3.1):

M(s, t) = − λ

8m2
h

(
s2

s−m2
h

+
t2

t−m2
h

+
u2

u−m2
h

)
, (3.12)

where s = (p1+p2)
2, t = (p1+p4)

2, and u = (p1+p3)
2, and as the pions are massless

s+t+u = 0. In the center of mass frame, we have s = E2
CM as the center of mass energy

and t = − s
2
(1− cos θ), where θ is the scattering angle. At low energies, all Mandelstam

variables are small compared to the UV scalemh, and thus the low energy EFT amplitude
is obtained by expanding in p2

m2
h
≪ 1,

M IR(s, t) =
λ

8m2
h

(
s2+t2+u2

m2
h

+
s3+t3+u3

m4
h

+ · · ·
)

=
λ

8

∞∑
n=2

σn
m2n
h

, (3.13)
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where σn = sn+tn+un. We see that the IR description is given by an infinite series of
polynomial terms, reflecting the presence of an infinite number of higher dimensional
operators from integrating out the massive Higgs.

Note that the residues of the poles for the UV amplitude eq.(3.12), say in the s-channel,
are constants. This reflects the fact that the exchanged particle is spinless. In general
a spin-J exchange in the s-channel will lead to a residue that is polynomial in t up to
degree J . For example, consider the four-gluon amplitude of type-I open string theory,
given by

M(1−2−3+4+) = −gsα′2⟨12⟩2[34]2Γ[−α
′s]Γ[−α′t]

Γ[1−α′s−α′t]
, (3.14)

where we have put the gauge bosons in a four-dimensional subspace and thus the helicity
dependence is carried by the spinor brackets. The definition of these brackets as well
as their relation to the local operators will be introduced shortly. Here gs is the string
coupling and in this paper we will set the string scale α′ = 1. The gamma functions in
the numerator have poles at s, t ∈ N+, reflecting an infinite number of massive states.
The residue at s = n is given by

gs⟨12⟩2[34]2
(−)n

n!

n−1∏
i=1

(t+ i) , (3.15)

where the non-trivial dependence in t reflects the spinning nature of the exchanged par-
ticle. Since α′ = 1 low energy is simply p2 ≪ 1, and the low energy amplitude is given
as:

M IR(1+2+3−4−) = gs⟨12⟩2[34]2
(
− 1

st
+ ζ2 + ζ3(s+ t) + · · ·

)
, (3.16)

where the leading term contains massless poles corresponding to the field theory Yang-
Mills piece. The coefficients for the polynomials are now zeta values ζn ≡

∑∞
ℓ=1

1
ℓn

,
reflecting the fact that each term in the polynomial expansion receives contribution from
the infinite number of UV states at integer values of m2. The same feature can be found
for the four-graviton amplitude of type-II closed string theory:

M(1−22−23+24+2) = g2s⟨12⟩4[34]4
Γ[−s]Γ[−t]Γ[−u]

Γ[1+s]Γ[1+u]Γ[1+t]
, (3.17)

where the low energy expansion gives:

M IR(1−22−23+24+2) = M(s, t)|α′→0 = GN⟨12⟩4[34]4
(
−1
stu

+2ζ3+ζ5σ2+2ζ23stu · · ·
)
.

(3.18)
The leading piece with the massless poles 1

stu
correspond to the contribution from the

Einstein-Hilbert term and we’ve identified GN = g2s .
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Figure 3.2: An operator of four fields will contribute to the four-point amplitude as a
polynomial, and the six-point amplitude as a rational term.

Instead of tree-level exchanges, the massive UV states can also contribute via loop pro-
cess. For example, consider a massless scalar φ coupled to massive X via λφX2. In
the UV four φs can interact through a massive X loop, and the amplitude is simply the
scalar box-integral (see fig3.1):

M(s, t) = λ4
∫

d4ℓ

(2π)4
1

[ℓ2−m2
X ][(ℓ−p1)2−m2

X ][(ℓ−p1−p2)2−m2
X ][(ℓ+p4)

2−m2
X ]

+perm(2, 3, 4) . (3.19)

The analytic result of the box integral is given as [59]:

I4[s, t] =
1

(4π)2
uv

8βuv

{
2 log2

(
βuv + βu
βuv + βv

)
+ log

(
βuv − βu
βuv + βu

)
log

(
βuv − βv
βuv + βv

)
− π2

2

+
∑
i=u,v

[
2Li2

(
βi − 1

βuv + βi

)
− 2Li2

(
−βuv − βi

βi + 1

)
− log2

(
βi + 1

βuv + βi

)]}
,

(3.20)

where u = −4m2
X

s
and v = −4m2

X

t
, and

βu =
√
1 + u, βv =

√
1 + v, βuv =

√
1 + u+ v . (3.21)

This gives the following low energy expansion:

M IR(s, t) =
g4

2m4
X

(
1+

1

5!

σ2
m4
X

+
20

7!3

σ3
m6
X

+
2

7!3

σ2
2

m8
X

+
1

6!33

σ3σ2
m10
X

+ · · ·
)
.

(3.22)

Note that in general for identical scalars, the polynomial part of the four-point amplitude
can be expanded on the basis of two permutation invariant polynomials σ2 and σ3.

From local amplitudes to local operators

In this paper we are interested in theories whose IR description admits an expansion in
terms of local operators, i.e. L = Lkin+LI [ϕ, ∂ϕ], with LI [x] being polynomial functions.
A local operator that contains n fields, for example (∂ϕ · ∂ϕ)ϕn−2, will contribute to the
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n-point scattering amplitude as a polynomial of Mandelstam invariants si,j. At higher
points, it appears in factorization channels, contributing to the residue of rational terms,
as illustrated in fig. 3.2. This translates to the low energy four-point amplitude taking
the form:

M IR(s, t) ≡M(s, t)|s,t→0 = {massless poles}+{polynomials} , (3.23)

where {massless poles} reflect the presence of cubic operators, and {polynomials}
quartic ones. The coefficients of the cubic operators appear in the residue for the
{massless poles}, while that of quartic operators are linearly mapped in to the Tay-
lor coefficients in {polynomials}. Here we have ignored the logarithms arisings massless
loops. These effects are of course intimately tied with what we mean by EFT coefficients,
as they inevitably run. However, for the sake of simplicity in our presentation, we will
focus on tree-level EFT amplitudes for now, and assign section 3.11 to discuss how these
results extend to the situation where massless loops are present.

Let’s begin with operators involving only scalars. First, since the momentum inner
products vanish for three-point kinematics,

p23 = (p1+p2)
2 = 2p1 · p2 = 0 , (3.24)

the only non-trivial three-point amplitude is a constant. In terms of cubic operators, this
is a reflection of the fact that any three-scalar operator with derivatives much vanish via
equations of motion:

(∂ϕ · ∂ϕ)ϕ ∼ ϕ2□ϕ = 0 , (3.25)

i.e. it can be removed by a field redefinition. At four-points the amplitude can be
expressed as:

M IR(s, t) = {massless poles} +
∑
k,q

ak,q s
k−qtq . (3.26)

Here k labels the total degree in Mandelstam variables, q the degree in t,. This labeling
will be convenient for considering the expansion near the forward limit, i.e. t = 0. For
fixed k these correspond to dimension 2k+4 operators in four-dimensions. For example,
(∂ϕ · ∂ϕ)2, (∂ϕ · ∂ϕ)(∂2ϕ · ∂2ϕ), translate to

(∂ϕ · ∂ϕ)2 → (2s2+2t2+2st), (∂ϕ · ∂ϕ)(∂2ϕ · ∂2ϕ)→ −st2 − s2t . (3.27)

Thus the coefficients of the EFT operators are translated into the coefficients of the
polynomials sk−qtq. Note that we do not have an k = 1 operator (∂ϕ · ∂ϕ)ϕ2, since
on-shell it vanishes by momentum conservation s+t+u = 0. Once again, as with the
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three-point example, this illustrates the important advantage of such "on-shell basis": it
is free from field redefinition or integration by parts ambiguities.

Generally, it is unnatural for scalars to be massless unless they’re Goldstone bosons for
some broken symmetry. Thus the degrees of freedom in low energy effective field theories
are more naturally associated with photons and gravitons, and the local operators are
built out of field strengths and Riemann tensors (Ricci tensor and scalars vanish under
Einstein equations). Their imprint on the amplitudes can be more conveniently captured
by the spinor-helicity variables, where one express the momenta as:

piµ → piαα̇ = piµ(σ
µ)αα̇ = λiαλ̃iα̇ . (3.28)

Under the massless U(1) little group, these transforms as λiα → e−i
θi
2 and λ̃iα̇ → ei

θi
2 λ̃iα̇.

The polarization vectors are then expressed as

ε+iαα̇ =
1√
2

ηαλ̃iα̇
⟨iη⟩

, ε−iαα̇ =
1√
2

λ̃iαηα̇
[iη]

(3.29)

where ⟨ij⟩ = λαi λjα = ϵαβλiβλjα, and [ij] = λ̃iα̇λ̃
α̇
j = ϵα̇β̇λ

β̇
i λ

α̇
j . Here η are the reference

spinors parameterizing the gauge redundancy associated with the polarization vectors,
and drops out for any gauge invariant quantity. Polarization tensors are just the square
of these vectors. It is straightforward to see, in terms of these on-shell variables, the field
strength and the linear part of Riemann tensor are expressed as:

Fµν → Fαα̇,ββ̇ = F+

α̇β̇
ϵαβ+F

−
αβ ϵα̇β̇, F+

α̇β̇
=
√
2λ̃α̇λ̃α̇, F−

α̇β̇
=
√
2λαλα,

Rµνρσ → Rαα̇ββ̇γγ̇δδ̇ = ϵαβϵγδ R
+

α̇β̇γ̇δ̇
+ϵα̇β̇ϵγ̇δ̇ R

−
αβγδ

R+

α̇β̇γ̇δ̇
=
√
2λ̃α̇λ̃β̇λ̃γ̇λ̃δ̇, R−

αβγδ =
√
2λαλβλγλδ , (3.30)

where the ± superscript indicates the ±h helicity of the polarization (tensors) vector.
Indeed up to an overall constant, the above form is uniquely fixed by the little group
scaling and dimension analysis.

Thus polynomials of spinor brackets can be straightforwardly translated to local opera-
tors of field strengths and Riemann tensors. For example, for the three-point amplitude,
possible polynomial representation for self interacting spin-1 and 2 particles can be im-
mediately translated into F 3 and R3 operators:

M3(1
−2−3−) → 2

√
2⟨12⟩⟨23⟩⟨31⟩ = (F−

1 )α
β(F−

2 )β
γ(F−

3 )γ
α

M3(1
+2+3+) → 2

√
2[12][23][31] = (F+

1 )α̇
β̇(F+

2 )β̇
γ̇(F+

3 )γ̇
α̇

M3(1
−22−23−2) → 2

√
2⟨12⟩2⟨23⟩2⟨31⟩2 = (R−

1 )α1α2

β1β2(R−
2 )β1β2

γ1γ2(R−
3 )γ1γ2

α1α2

M3(1
+22+23+2) → 2

√
2[12]2[23]2[31]2 = (R+

1 )α̇1α̇2

β̇1β̇2(R+
2 )β̇1β̇2

γ̇1γ̇2(R+
3 )γ̇1γ̇2

α̇1α̇2(3.31)
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Note that there are no amplitudes associated with R2, reflecting the fact that the Gauss-
Bonnet term is a total derivative in four dimensions. Higher dimensional R2 upon di-
mensional reduction will reduce to ϕR2 in four-dimensions, and generate the amplitude
for a dilaton coupled to two gravitons:

M3(1
02+23+2) → 2[23]4 = (R+

1 )α̇1α̇2

β̇1β̇2(R+
2 )β̇1β̇2

α̇1α̇2 ,

M3(1
02−23−2) → 2⟨23⟩4 = (R−

1 )α1α2

β1β2(R−
2 )β1β2

α1α2 , (3.32)

and similar amplitudes for ϕF 2.

Extending to four-points we find that there are three possible helicity structures that
admit polynomial representations. For spin-1 we have for the lowest mass-dimensions:

M4(1
+2+3+4+) → 4

(
[12]2[34]2+[13]2[24]2+[14]2[23]2

)
= (F+

1 · F+
2 )(F+

3 · F+
4 ) + (F+

1 · F+
3 )(F+

4 · F+
2 ) + (F+

1 · F+
4 )(F+

2 · F+
3 )

M4(1
+2+3−4−) → 4[12]2⟨34⟩2 = (F+

1 · F+
2 )(F−

3 · F−
4 ) , (3.33)

where (F+
i · F+

j ) ≡ (F+
i )α

β(F+
j )β

α and similar definition for (F−
i · F−

j ). We also have
M4(1

−2−3−4−) which is simply changing the square brackets of M4(1
+2+3+4+) to an-

gles. It is straightforward to translate this back to vector representations, for which the
independent F 4 contractions are given by:

(F 2)2 ≡ (FµνF
µν)2, (F 2)(FF̃ ) ≡ (FµνF

µν)(ϵµνρσFµνFρσ), (FF̃ )2 . (3.34)

The linear map between them are given as:

M4(1
+2+3+4+) =8

(
(F 2)2 − 4(FF̃ )2 + 2(F 2)(FF̃ )

)
M4(1

+2−3+4−) =8(F 2)2 + 32(FF̃ )2

M4(1
−2−3−4−) =8

(
(F 2)2 − 4(FF̃ )2 − 2(F 2)(FF̃ )

)
. (3.35)

From the above we immediately see that the combination (F 2)2+1
4
(FF̃ )2, which is the

square of the Maxwell stress-tensor, only generates the MHV helicity configuration. Sim-
ilar identification applies to spin-2, where we also have three distinct tensor structures
for R4 mapping to the three helicity structures. For higher derivative operators such
as D2nF 4 or D2nR4, we simply have extra Mandelstam variables multiplying the spinor
brackets. For example

σ2⟨12⟩4[34]4 → D4R4 . (3.36)
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Thus the EFT amplitude for massless spinning particles can in general be written in such
a way that the spinor brackets are prefactors:

M IR
4 (1+2+3+4+) =

[12][34]

⟨12⟩⟨34⟩
×

(∑
k,q

aall+k,q sk−qtq

)

M IR
4 (1+2+3+4−) =

[12][23]⟨24⟩
⟨12⟩⟨23⟩[24]

×

(∑
k,q

asingle−k,q sk−qtq

)

M IR
4 (1−2−3+4+) =

⟨12⟩2[34]2

stu
×

(∑
k,q

aMHVk,q sk−qtq

)
. (3.37)

where the spinor prefactors are written in such a way that all possible massless poles
are contained and are invariant under the permutation of the same helicity legs. The
superscript for the Taylor coefficients a···k,q label the helicity configuration.

Let’s consider explicit examples. The low energy expansion for Type-I and II superstring
in eq.(3.16) and eq.(3.18) gives prime examples of gauge and gravitational EFT ampli-
tudes. However due to being supersymmetric, only MHV configurations are present. For
a more general set up, lets consider the open bosonic string amplitude, which contains
all three sectors:

f++++ =
[12][34]

⟨12⟩⟨34⟩
stu

(
1− 1

s+1
− 1

u+1
− 1

t+1

)
MBos(s, t) =

Γ[−s]Γ[−t]
Γ[1+u]

f{I}, f+++− = stu
[12][23]⟨24⟩
⟨12⟩⟨23⟩[24]

f++−− = −[12]2⟨34⟩2
(
1− tu

s+1

)
. (3.38)

The low energy EFT is then given as:

M IR(1+2+3+4+) = 2u
[12][23][34][41]

st
+2[13]2[24]2−[12][23][34][41](π

2

3
−2) + · · ·

M IR(1+2+3+4−) = [12]2[23]2⟨24⟩2
(
− 1

st
+
π2

6
−uζ3+

π4

360
(4s2+st+4t2)+ · · ·

)
M IR(1+2+3−4−) = [12]2⟨34⟩2

(
− 1

st
+
u

s
+
π2

6
−u(1+ζ3)+ · · ·

)
, (3.39)

where we’ve rewritten the spinor brackets in a form that exposes the massless poles. It
is instructive to identify local operators in each helicity sector. For the all plus helicity
the leading term correspond to the gluon exchange between the Yang-Mills vertex and
F 3, followed by two types of contractions for (F+)4. For the single minus sector, we
have massless poles associated with the exchange of a vector between (F+)3 and a Yang-
Mills vertex, while the leading four-point local operator correspond to D2(F+)3F−. For
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Figure 3.3: We define the low energy couplings through a contour integral on the complex
s-plane, where the contour C0 encircles the origin. On the complex plane, if the amplitude
only has singularities on the real-s axes on either poles or branch points, then we can
deform to contour C∞.

the MHV sector, we have two sets of massless poles, the leading corresponding to the
exchange between the Yang-Mills vertex, while the subleading is between (F+)3 and
(F−)3. The leading four-point local operator is (F+)2(F−)2.

3.3 Dispersive representation for EFT coefficients

In the previous section, we’ve seen that given the UV theory, the low energy EFT can
be obtained by expanding the UV amplitude in Mandelstam variables, leading to an IR
amplitude of the form

M(s, t)|s,t≪m2 =M IR(s, t) = {massless poles} +
∑
k,q

ak,q s
k−qtq . (3.40)

Mapping to on-shell local operators is then a straightforward task. However, it has been
long appreciated that general principles of unitarity and Lorentz invariance imposes non-
trivial constraint on the IR description. These constraints arise through the analyticity
of the scattering amplitude, where the poles and branch cuts on the complex Mandelstam
variable plane are associated with threshold productions. For the four-point amplitude,
such analytic property allows us to equate the low energy couplings ak,q to the discon-
tinuities of the branch cuts (or residues of poles), giving a dispersive representation for
the couplings.

Let’s begin by holding t = t∗ ≪ m2 fixed, where m2 is the characteristic mass associated
with the UV completion, and consider four-point amplitude M(s, t∗) as a function of
s. We will imagine that we are only integrating out the massive states, which generate
contact terms in the low-energy effective theory. Of course there will also be calculable
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massless loops in the low-energy effective theory, which induce logarithmic variation in
these coefficients. We will return to discussing this point later in section 3.11. Note,
however, that the very notion of "higher dimension operators" is only well-defined when
there is a weak coupling in the UV theory, so that the contact operators induced by
integrating out the massive states dominate over the ones generated by massless loops
in the low-energy theory, so that this first-pass analysis captures the most interesting
UV physics. In practice, we are assuming that, for small fixed t ≪ m2, the amplitude
is analytic in the s plane for small s, and develops its first singularity (be it a pole at
tree-level, or more generically a branch cut associated with UV particle production) at
s=m2.

It is important that when t is ≪ m2, the only singularities of the amplitude are on the
real s axis, and correspond to particle production thresholds. This is not true when
t is comparable to m2, where new sorts of singularities, simplest amongst them the
infamous "anomalous thresholds", with no Lorentzian particle production interpretation,
also appear. But for our purposes of controlling EFT coefficients, we only need t≪ m2

and never have to worry about anomalous thresholds. See appendix B.2 for a more
detailed discussion of these issues.

As is standard from the study of dispersion relations, we consider the contour integral

i

2π

∫
C0

ds

sn+1
M(s, t∗) , (3.41)

where C0 represents the contour that encircles the origin. Since at the origin both s, t∗ ≪
m2 we know that amplitude takes its low energy form in eq.(3.40), and the residue for
the measure 1

sn+1 will be given by terms in eq.(3.40) proportional to sn. In the absence
of t-channel massless pole, this residue will be a polynomial function of t, giving a well
defined Taylor expansion around t = 0. Thus we find that ak,q can be identified as:

ak,q =
1

q!

[
∂q

∂tq
i

2π

∫
C0

ds

sk−q+1
M(s, t)

]∣∣∣∣
t=0

. (3.42)

In other words, the low energy couplings can be analytically defined through the on-
shell amplitude. Note that taking the residue is equivalent to taking derivatives, and the
result of this action is often referred to as the subtracted amplitude. Now instead of C0
we deform to the contour encircling infinity C∞. If the non-analyticities are associated
with particle production, they occur on the real axes where depending their origin as s
or u-channel threshold, they will lie on the positive or negative real s-axes respectively.
Thus the contour C∞ takes the form shown in fig.3.3, where one picks up the discontinuity
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on the real axes as well as boundary contributions. At large s, if the amplitude falls of
faster than sk−q then the latter simply yields zero, and we would have an identity between
ak,q and the residues or discontinuities.

Let us consider the linear sigma model as an explicit example. Once again the UV
tree-amplitude is given as:

M(s, t) = − λ

8m2
h

(
s2

s−m2
h

+
t2

t−m2
h

+
u2

u−m2
h

)
. (3.43)

As s → ∞ the amplitude grows linearly in s, the contour deformation of eq.(3.42) will
have no boundary contributions when k−q ≥ 2. Focusing on the couplings with q = 0,
i.e. those that survive in the forward scattering limit t = 0, we find eq.(3.42) implies:

ak,0 = −
1

(m2
h)
k+1

(
RessM(s, 0)+(−)kResuM(s, 0)

)
. (3.44)

That is, the coupling ak,0 is given by the residue of the Higgs pole in the s and u channel.
Plugging in Ress=m2

h
M(s, 0) = −λm2

h

8
and Ress=−m2

h
M(s, 0) = −λm2

h

8
, we have

ak,0 =
λ

4(m2
h)
k
, k ∈ even, (3.45)

and 0 for k ∈ odd. Indeed this reproduces the low energy couplings in eq.(3.13), for
k ≥ 2.

In general for theories whose four-point amplitude admits a convergent partial wave
expansion, causality and unitarity dictate that the four-particle amplitude at t = 0 is
bounded by s logD−2 s, i.e. the Froissart bound [82, 126]. When massless particles are
present, such as in gravity, the t-channel singularity obstructs a convergent polynomial
expansion in t and the Froissart analysis no longer holds. However, assuming a weakly
coupled UV completion for gravity, causality consideration requires the presence of an
infinite tower of massive higher spin states, leading to the forward amplitude behaving
as sp for p < 2 at large s for fixed negative t [45]. From now on we will assume that for
|t| ≪ m2 the amplitude is bounded by s2 at large s. For a more detailed discussion, see
Appendix B.1.

For general tree-level UV completions it is obvious that all poles lies on the real s-axes.
More generally, the amplitude admits a dispersive representation

M(s, t)|t≪m2 =MSub +

∫ ∞

M2
s

dM2 ρs(M
2)

s−M2
+

∫ ∞

M2
u

dM2 ρu(M
2)

u−M2
(3.46)

where MSub represents the appropriate subtraction terms, representing the contributions
from infinity in the dispersion relation. Note again the importance of keeping t ≪ m2
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here. In general, we don’t have good control on the analytic structure even of 4pt
amplitudes in general theories. But we do have good control on the analytic structure of
2-pt functions as restricted by causality and unitarity. Intuitively, by keeping t ≪ m2,
our 4-pt amplitude is close to forward scattering and hence a 2-pt function. A standard
justification that the only singularities for t ≪ m2 are associated with usual particle
production is given by studying Landau equations. In appendix B.2 we give a different,
more direct derivation following directly from Feynman/Schwinger parametrization of
loop integrals. Putting everything together, we conclude that for k−q ≥ 2:

ak,q = −
1

q!

∂q

∂tq

(∑
a

Ress=m2
a
M(s, t)

(m2
a)
k−q+1

+

∫
4m2

a

ds′

s′k−q+1
DisM(s, t)

)∣∣∣∣∣
t=0

+{u} , (3.47)

where a labels all the massive states and {u} represents the u-channel contributions.

Let us study the above identity with two explicit examples: the infinite resonance of a
string theory tree level exchange and the one-loop massive bubble in three-dimensions.

Tree-level dispersive representation: Let’s begin with the type-I string amplitude
introduced in eq.(3.14), where the s-channel residue is given as:

Ress=n

[
−Γ[−s]Γ[−t]

Γ[1 + u]

]
= −(t+ 1)(t+ 2) · · · (t+n−1)

n!
. (3.48)

Now using eq.(3.47) we have,

ak,q =
1

q!

∂q

∂tq

(
∞∑
n=1

1

n!

(t+ 1)(t+ 2) · · · (t+n−1)
nk−q+1

)
. (3.49)

First consider the coefficients relevant to the strict forward limit, ak,0, which corresponds
to setting t = 0 in the above, and we find:

ak,0 =
∞∑
n=1

1

nk+2
= ζk+2 . (3.50)

Indeed this is the reproduces the ζ2 and ζ3 for the constant and the coefficient for s in
eq.(3.16) respectively. Now let’s move away from the strict forward limit and consider
coefficients of t to the first power. From eq.(3.49) we have,

ak,1 =
∞∑
n=2

1

nk+1

(
1+

1

2
+
1

3
+ · · ·+ 1

n−1

)
, . (3.51)

Explicitly expanding eq.(3.14) to the fifth power in Mandelstam variables one finds,

a5,1 = −
1

90
(π4ζ3+15π2ζ5−270ζ7) , (3.52)
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which once again agrees with eq.(3.51).

Loop-level dispersive representation: Consider a three-dimensional theory with a
massless scalar ϕ and a massive one X, interacting via the quartic coupling λϕ2X2. At
low energies we have an effective action for ϕ, generated by integrating away the massive
X loops. For example at leading order in λ, operators of the form ∂2nϕ4 are obtained by
integrating out X from the one-loop bubble diagrams:

1

2 3

4

X

. (3.53)

This yields the following UV amplitude

M(s, t) = λ2
[
I3bubble(s) + I3bubble(t) + I3bubble(u)

]
,

I3bubble(s) =

∫
dℓ3

(2π)3
1

(ℓ2 −m2)((ℓ+ p12)2 −m2)
=

1

8π
√
s
log

(
2m+

√
s

2m−
√
s

)
.

(3.54)

The low energy expansion yields,

M IR(s, t) =
λ2

8πm

(
3+

σ2
80m4

+
σ3

448m6
+

σ4
2304m8

)
+O

(
1

m11

)
. (3.55)

Now since the UV amplitude eq.(3.54) behaves as ∼ s0 as s→∞, we expect that through
eq.(3.47) we can recover all low energy coefficients in eq.(3.55) with degree 1 and higher
in s from the discontinuity of the bubble integrals. For fixed t, only the s- and u-channel
bubble integrals contain branch cuts. The I3bubble(s) has a branch cut starting from 4m2

to ∞, with the discontinuity given by i
4
√
s
, while the branch cut for I3bubble(u) is on the

negative real s-axes from −4m2 − t to −∞, with discontinuity i
4
√
−t−4m2 . Thus from

eq.(3.47), we find

an+q,q =
1

q!

∂q

∂tq

[
1

2πi

(∫ ∞

4m2

1

sn+1

i

4
√
s
+

∫ −∞

−t−4m2

1

sn+1

i

4
√
−t− 4m2

)]∣∣∣∣
t=0

. (3.56)

For example to reproduce the coefficients of s2tq, we take n = 2 in the square bracket
above, yielding:

1

640m5π
+

1

64πt5/2

(
3π − 6 tan−1

(
2m√
t

)
− 4m

√
t(12m2 + 5t)

(4m2 + t)2

)
=

1

320m5π
− 3t

3584m7π
+

t2

3072m9π
+O(t3) . (3.57)
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Indeed the first three terms in the t expansion match with the coefficients of s2, s2t, and
s2t2 in eq.(3.55) respectively.

Before closing this section, we comment on two potential obstructions in utilizing the
dispersive representation:

• The the residue at s = 0 contains t-channel singularity.

• The presence of massless cuts, which leads to branch point singularity at the origin.

A 1/t pole in the residue at s = 0 renders the Taylor expansion in eq.(3.42) ill defined.
More precisely since by Cauchy theorem the t-channel pole must be reproduced by the
sum over residues and branch cuts, the singularity in the t → 0 limit indicates that the
sum is not convergent. The graviton pole mentioned previously is a famous example of
such obstruction. We will discuss this in great detail in the following section.

At loop-level there are two forms of non-analyticity at the origin for massless theories,
IR singularities and massless cuts. For those with massless three-point interactions, such
as gravity, loop-corrections are accompanied by collinear divergences. However, if we
assume that the UV completion occurs while the self-coupling of the massless states are
still perturbative, these divergences can be suppressed or computed order by order. The
presence of massless cuts imply that one can no longer define the EFT couplings via the
contour at C0. As previously mentioned this is reflecting the subtlety in what we mean by
EFT couplings when log runnings are present. As we will see in sec. 3.11, the choice of
"scale" against which the couplings run, are naturally introduced by moving the contour
off the origin. After introducing such "generalized coupling" the remaining analysis are
almost identical of the tree amplitude.

3.4 Obstructions from the massless poles

The presence of massless poles in the four-point amplitude, can potentially forbid a
near forward limit dispersion representation. Take for an example an IR amplitude that
behaves as

M IR(s, t)|s,t→0 ∼
sn

t
+ an,0s

n+O(t) . (3.58)

Applying the dispersive representation for an,0 in eq.(3.47), we find:

1

t
+ an,0+

∑
a

Ress=m2
a
M(s, t)

(m2
a)
n+1

∣∣∣∣∣
t=0

= 0 . (3.59)

Now since the above equality holds in the limit where t→ 0, the divergent behaviour of
the 1

t
pole tells us that the remaining summation cannot be convergent. For a concrete
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example, let’s consider the four gluon amplitude in type-I super string. Stripping off the
spinor factors, the following contour integral yields,

i

2π

∫
C0
ds
MTypeI(1+2+3−4−)

[12]2⟨34⟩2
=

1

t
. (3.60)

This isolates the field theory contribution 1
st

in the low energy amplitude. Now at large
s and small t, the amplitude scales as

MTypeI(1+2+3−4−)

[12]2⟨34⟩2

∣∣∣∣
s→∞

< s−1 . (3.61)

Thus if we deform the contour to C∞, there are no boundary contributions and one only
picks up poles on the real axes, whose residue is given by eq.(3.48). Thus we have

1

t
−

∞∑
n=1

(t+1)(t+2) · · · (t+n−1)
n!

= 0 , (3.62)

and setting t = 0 we indeed find that the summation is non convergent,
∑∞

n=1
1
n
=∞!

In this paper, we will focus on a, b → a, b scattering where a, b may or may not be of
the same type. When embedded in a gravitational theory one inevitably encounters the
t-channel graviton exchange. For example consider the four-dilaton amplitude of type-II
string theory

MType−II(10203040) = g2s(st+ tu+ su)2
Γ[−s]Γ[−u]Γ[−t]

Γ[1+s]Γ[1+u]Γ[1+t]
. (3.63)

At low energies, beyond the tree-level graviton exchange the leading local amplitude is
associated with D8ϕ4,

M IR(10203040) = GN

(
−st
u
−tu
s
−su
t
+2ζ3(st+ tu+ su)2 + · · ·

)
. (3.64)

Note that there are no four derivative couplings D4ϕ4, which appears to violate the
positivity bound a2,0 > 0 introduced long ago [4]. The resolution precisely lies in the
presence of the t graviton pole! Let us see how this plays out in detail. First, as the
amplitude enjoy s↔ u symmetry, we manifest this symmetry by switching to

z = s+
t

2
, (3.65)

whereby s ↔ u translates to z ↔ −z. We take the contour integral in z-plane, and
defining the low energy coupling via its degree in z, t. Now let’s compare the dispersive
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representation for the coupling of the four- and eight-derivative couplings, a4,0 a2,0. The
integrals of interest are then:

i

2π

∫
C0

dz

z3
MType−II(10203040) = −1

t
+

∞∑
q=0

aq+2,qt
q,

i

2π

∫
C0

dz

z5
MType−II(10203040) =

∞∑
q=0

aq+4,qt
q. (3.66)

Note that the contour C0 picked up residues at z = 0,±t/2, since t→ 0. Comparing the
two integrals we see that the dispersive representation should be convergent for aq+4,q

(including a4,0), but not for aq+2,q (including a2,0). As the representation is not convergent
for a2,0, positivity based on such dispersive arguments is no longer applicable.

However, the presence of massless t-poles in the field theory amplitude does not necessar-
ily imply an obstruction. Consider a gravitational EFT whose low energy limit is given
by the Einstein-Hilbert action and no modification to the graviton cubic couplings (i.e.
no R3). The low energy amplitude for M(1+22+23−24−2) is given by

M IR(1+22+23−24−2) = [12]4⟨34⟩4
(

1

stu
+
∑
k,q

ak,qs
k−qtq

)
. (3.67)

Even though the low energy amplitude contains massless t poles, the C0 contour actually
picks up multiple 1/t that cancels∫

C0

ds

sn
M IR(1+22+23−24−2)

[12]4⟨34⟩4
= − 1

tn+2
+

1

tn+2
+
∑
q

aq+n−1,qt
q . (3.68)

This can be tied to the massless poles coming in the combination 1
stu

. This result is
deeply tied to the fact that the amplitude for minimally coupled self-interacting mass-
less particles are "3-particle constructible", i.e. consistent factorization in one channel
automatically enforces consistency in all other channels.

Thus in summary, while graviton exchanges can introduce t-channel singularity, if the
four-point amplitude is 3-particle constructible, then the combined contributions cancel
each other and we are free of t-channel obstruction. Examples include four-graviton am-
plitude of pure Einstein-Hilbert gravity, as well as the gravitational Compton amplitude
for minimally coupled particles. If we have extra symmetry which relates the amplitude
to a 3-particle constructible partner, or that it suppresses the t-channel exchange, one
can similarly avoid the t-channel obstruction. Let us go through explicit examples for
spin-0, 1, and 2 amplitudes with graviton exchange.
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Scalars We have discussed identical scalars in eq.(3.66). For distinct scalars, we can
arrange the scalars such that there are no t-channel exchanges. For example, a pair of
complex scalars with U(1) symmetry, the graviton exchange is given by:

M IR(ϕ1ϕ2ϕ3ϕ4) =
tu

s
+
st

u
, (3.69)

where there would be no t-channel poles and free from obstructions.

Photons The graviton poles and its residues are dictated by their minimal coupling,
F 2ϕ and RF 2 operators. Let’s start by choosing the same helicity to be in the t-channel,
where one has:

M IR(1−2+3+4−) = [23]2⟨14⟩2
(
1

s
+

1

u
+ α1

1

t
+ α2

su

t
+ · · ·

)
, (3.70)

where α1 and α2 represent contribution from ϕF 2 and RF 2 respectively. Note that due
to the helicity arrangements, the contribution from the latter only appears in t-channel.
Factoring out the universal helicity factor and taking the contour integral near the origin
we find,∫

dz

zn+1

(
4t

4z2 − t2
+
α1

t
+ α2

(
t

4
− z2

t

))
=

{
α1

t
+ α2t

4
for n = 0

−α2

t
for n = 2

(3.71)

while the integral vanishes for other n. Thus we see that minimal coupling does not intro-
duce t-channel poles, while the presence of ϕF 2 and RF 2 leads to t-channel obstruction
for the four and eight derivative terms respectively. Following our scalar example, let’s
arrange the helicity such that contributions from these higher-derivative operators only
appear in the s-channel, as:

M IR(1−2−3+4+) = [34]2⟨12⟩2
(
1

t
+

1

u
+ α1

1

s
+ α2

tu

s
+ · · ·

)
, (3.72)

This time we find,∫
du

un+1

(
1

t
+

1

u
− α1

1

u+ t
− α2

tu

u+ t

)
=

1

t
− α2t for n = 0 (3.73)

and zero otherwise. Since we’ve factored out the spinor brackets, we see that t-channel
singularities from minimal coupling obstruct the convergence of four derivative operators.

Let’s consider the case where we wish to apply dispersive representation to the coefficient
of F 4 operators, relevant for the analysis of weak gravity conjecture. After factoring out
the spinor brackets, the coefficient of F 4 is mapped to a0,0. For helicity (1−2−3+4+)

the spinor brackets are s2 and thus we can bound a0,0. However due to eq.(3.73) we
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see that a0,0 suffers the t-pole obstruction. One might attempt to use the configuration
(1−2+3+4−), where there are no t-pole obstruction for the four-derivative term. However
in this case the spinor prefactor is simply t2 up to a phase, thus the coefficient for F 4 is
mapped to the coefficient of s0 for which the dispersive representation is not applicable
due to boundary contributions.

Gravitons

For external gravitons, the analysis is parallel to the photon case except that the relevant
couplings are now the Einstein-Hilbert term, ϕR2 and R3. For the MHV amplitude, with
equal helicity in the s-channel we have

M IR(1−22−23+24+2) = [12]4⟨34⟩4
(
− 1

stu
+ α1

1

s
+ α2

tu

s

)
, (3.74)

where now α1 and α2 represents ϕR2 and R3 respectively. Since as previously discussed
summing over the massless residues cancels for the Einstein-Hilbert term, there are no
potential t-channel singularities. If we were to choose the other two channels, then from
t-channel exchanges between ϕR2 or R3, we would have encounter the similar obstruction
as the photon case for the eight and twelve derivative terms respectively.

The t-channel pole and Reggie behaviour In cases where the t-channel singularity
implies non-convergence of the dispersive representation, it is instructive to see how the
singularity is analytically reproduced. Let’s reexamine the summation eq.(3.62) in the
t→ 0 limit. In such case it can be approximated as

∞∑
n=1

(t+1)(t+2) · · · (t+n−1)
n!

∼
∞∑
n=1

1 + t+ t
2
+ · · · t

n−1

n
∼

∞∑
n=1

1 + t log n

n
∼

∞∑
n=1

et logn

n
.

(3.75)
Finally, the last line simply becomes

∑∞
n=1 n

t−1 which after approximating the sum as
an integral yields 1

t
. Recall that the summation is over the residues of the amplitude at

s = n, which is the dominant contribution for the amplitude as s nears threshold. The
fact that at small t the residue is approximated by nt implies that the amplitude behaves
as st in the near forward limit. This is nothing but the linear Regge behaviour of string
theory, except that it holds true for large but finite values of s. Of course this is not
surprising given that in order for equation eq.(3.62) to hold, the amplitude is required to
die off at s→∞, which is true precisely due to such Regge behaviour.

3.5 Theory space as a convex hull

As we have reviewed, there is a simple expression for the coefficients of low-energy effective
field theory coefficients in terms of the spectrum and discontinuities of the high-energy
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amplitude:

ak,q = −
1

q!

∂q

∂tq

(∑
a

Ress=m2
a
M(s, t)

(m2
a)
k−q+1

+

∫
4m2

a

ds′

s′k−q+1
DisM(s, t)

)∣∣∣∣∣
t=0

+{u} . (3.76)

Since optical theorem tells us that the sum of residue and discontinuity of the forward
amplitude is proportional to the total cross-section σ(s), Im M(s, 0) = −sσ(s), one
immediately concludes that ak,0 > 0.

However, this is not the whole story since the optical theorem is really a "coarse grained"
description of the residues and discontinuity. Lorentz invariance and factorization tells
us vastly more than just the positivity in the forward limit. In particular when combined
with unitarity, Lorentz invariance tells us that the discontinuities are positively expand-
able on a preferred polynomial basis! To see this, consider the 2→ 2 scattering of scalar
particles M(1a, 2b, 3b, 4a), where a, b labels the distinct species. Let’s consider the general
form of the residue from a tree-level spin-ℓ exchange:

1

2 3

4 (3.77)

The residue is given by the product of three-point amplitudes for two scalars a, b coupled
to the spin-ℓ state. The amplitude is fixed by Lorentz invariance to be:

M3(1
a, 2b, ϵI) = icℓ(p1 − p2)µ1 · · · (p1 − p2)µℓϵIµ1···µℓ , (3.78)

where cℓ is the coupling constant, ϵIµ1···µℓ is the polarization tensor, and I labels the
components of the spin-ℓ representation of the SO(D-1) massive Little group. The residue
is then: ∑

I

M3(1
a, 2b, ϵI)M3(3

b, 4a, ϵI) . (3.79)

Denoting (p1−p2) and (p3−p4) as (X, Y ), in the center of mass (c.o.m) frame these are
(D−1)-dimensional vectors. The sum over the I converts the product of polarization
tensors into a polynomial of ηµνs, which is symmetric and traceless in the Lorentz indices
on both sides of the factorization pole. This suggests that eq.(3.79) is simply a polynomial
function of (X2, Y 2, X ·Y ) that is of degree ℓ in X and Y respectively, and vanishes under
the Laplacian ∇2

X and ∇2
Y . The last constraint is a reflection of the traceless condition.

In other words, one can read off the polynomial from the D−1 dimension solution to the
Laplace equation:

1

(X2 − 2X · Y + Y 2)
D−3
2

. (3.80)
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Without loss of generality, we can scale |X| = 1, |Y | = r, and X · Y = r cos θ, where θ is
the scattering angle. Then the polynomial can be identified through

1

(1− 2r cos θ + r2)
D−3
2

=
∞∑
ℓ=0

rℓG
(D)
ℓ (cos θ) . (3.81)

which is the generating function for the Gegenbauer polynomials. For D = 4 this re-
duces to Legendre polynomial, while the three-dimensional counter part is the Chebyshev
polynomials. From now on we will suppress the superscript (D) unless needed.

We’ve seen that the residue is simply a sum of Gegenbauer polynomials. Now due to
our specific choice of external states, M(1a, 2b, 3b, 4a), the three-point couplings on both
sides of the (u) s-channel exchange are identical, i.e. the coupling constants squared c2ℓ .
Thus we see that the residue is a function that is positively expandable on the Gegenbauer
basis:

Ress=m2M(s, t) = −
∑
ℓ

pℓGℓ(cos θ), pℓ ≥ 0 , (3.82)

where cos θ = 1+ 2t
m2 . Functions that have such property are referred to as positive

functions, and they enjoy the feature that such positivity is preserved under multiplication
and differentiation. Note that since Gegenbauer polynomials are positive when θ = 0,
the optical theorem is simply a corollary of eq.(3.82). Gegenbauer polynomials are a
particular example of orthogonal polynomials that are orthogonal to each other under
prescribed integration measure. Gegenbauer polynomials are orthogonal with respect
to SO(D−1) invariant measure (sin θ)D−4d cos θ. Since SO(D−1) symmetry is simply a
reflection of our kinematic setup, it is applicable for discontinuities as well. Indeed as
we will demonstrate in appendix B.3, when combined with unitarity, the discontinuity in
the near forward limit is again given by a positive sum of Gegenbauer polynomials:

Diss≥4m2M(s, t) = −
∑
ℓ

pℓ(s)Gℓ(cos θ) , pℓ(s) ≥ 0 . (3.83)

Here, pℓ(s) is the positive "spinning" spectral function. Note that at weak couplings,
pℓ > 0 is all we can say. The full non-linear constraint implied by unitarity, Im[aℓ(s)] ≥
|aℓ(s)|2 where aℓs are the partial wave coefficients, is only relevant for theories where the
amplitudes becomes genuinely large/the theory is genuinely strongly coupled in the UV.

While the discussion so far is applicable the scattering amplitude of scalars, and hence
scalar EFT, one can easily generalize when ever the three-point couplings of two massless
one massive state are kinematically unique. This is the case in four-dimensions with
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external helicity states [10], where the corresponding orthogonal polynomials are Jacobi
polynomials. We will review and discuss its property in great detail in sec.3.6.

Now that we see the residue/discontinuity of the four-point amplitude is given by a special
class of functions, positive functions, we would like to extract the image of this property
on the space of low energy couplings. Naturally this can be done through eq.(3.47). In
other words, we would like to explore the full implication of:

ak,q =
1

q!

dq

dtq

(∑
a

paGℓa(1 + 2 t
m2

a
)

(m2
a)
k−q+1

+
∑
b

∫
ds′pb,ℓ(s

′)
Gℓ(1 + 2 t

s′
)

(s′)k−q+1
+ {u}

)∣∣∣∣∣
t=0

, (3.84)

where the equality is understood to hold as a Taylor series in t. i.e. |t| ≪ m2. More
precisely, coefficients of the higher dimensional operators as an expansion away from the
forward limit must be given as a positive sum of the Taylor expansion of Gegenbauer
polynomials. Note that since the difference between contributions from residues and
discontinuities is simply whether the spectrum of mass is discrete or continuous, by not
assuming discreteness we will cover both. In this context, the previous forward limit
positivity constraint at q = 0 is really the "tip" of the iceberg. It is coarse grained
because it did not fully exploit the fact that the residue and discontinuity are positive
functions.

Collecting the low energy couplings, eq.(3.84) is equivalent to:∑
k,q

ak,qs
k−qtq = −

∑
a

paGℓa

(
1+

2t

m2
a

)(
1

s−m2
a

− 1

s+t+m2
a

)
, (3.85)

where again the equality is understood in the sense of Taylor expansion in t, s. In
other words, the near forward limit low energy expansion is captured by the s and
u-channel factorizations alone. Now eq.(3.85) gives us a relation between ak,q and the
Taylor coefficients of the Gegenbauer polynomials expanded around 1,

Gℓ(1 + 2δ) =
∑
q=0

vℓ,q δ
q . (3.86)

If we only have s-channel contribution, eq.(3.85) implies:

s channel : ak,q =
∑
a

pa
vℓa,q

(m2
a)
k+1

pa ≥ 0. (3.87)

If u-channel contributions are present, we redefine the coupling in terms of expanding in
(t, z), i.e. ak,qzk−qtq, we find eq.(3.85) can instead be rewritten as:

s−u channel : ak,q =
∑
a

pa
uℓa,k,q
(m2

a)
k+1

pa ≥ 0. (3.88)
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where uℓ,k,q is a linear combination of vℓ,q with its explicit form given in eq.(3.194). For
q = 0, uℓ,k,0 > 0 and we are back to the old forward limit positivity constraint. For q ̸= 0,
uℓ,k,q can have either sign and we no longer have strict positive bounds for individual ak,q,
and naively there is no constraint. However, while there may no longer be constraint for
individual ak,q with q ̸= 0, there are non-trivial constraints as a collective. For example
collecting the coefficients with fixed k but distinct q into a vector ak, we find

ak ≡


ak,0

ak,1

ak,2
...

 , u⃗ℓ,k ≡


uℓ,k,0

uℓ,k,1

uℓ,k,2
...

 ⇒ ak =
∑
a

pau⃗ℓa,k pa ≥ 0 , (3.89)

where we absorbed the positive factors (m2
a)
k+1 into pa. In other words, ak must be in

the convex hull of the vectors u⃗ℓ,k! That is the boundary of "theory space", the space of
allowed ak, is given by the boundaries of the hull.

Let us "see" explicitly examples of what this space looks like. For simplicity consider color
ordered EFT amplitude whose UV completion does not include u-channel contributions.
Taking k = 1 we find that eq.3.88 tells us:

a2 =

(
a1,0

a1,1

)
=
∑
a

pa

(
vℓa,0

vℓa,1

)
. (3.90)

Since pa is positive, the equality is projective in nature and we can rescale the top
component of each vector to be 1. This then implies the following inequality

a2,1
a2,0
≥Min

[
vℓ,1
vℓ,0

]
. (3.91)

Taking D = 4, we have vℓ,0 = 1 and vℓ,1 = ℓ(ℓ+1), and we conclude that a2,1
a2,0
≥ 0. For

k = 2, the vector a3 lives in P2

a3 =

 a2,0

a2,1

a2,2

 =
∑
a

pa

 vℓa,0

vℓa,1

vℓa,2

 →

(
a2,1/a2,0

a2,2/a2,0

)
=
∑
a

pa

(
vℓa,1

vℓa,2

)
, (3.92)

where after the rescaling, besides pa ≥ 0, we further have
∑

a pa = 1. Using vℓ,2 =
(1)ℓ+2

4(ℓ−2)!
,
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the allowed region is now given as:

a2,2
a2,0

a2,1
a2,0

Once again, the positivity bound of [4] simply tells us that a2,0 > 0 and thus has no
constraint for the above plot. As we extend to a higher degree in k, eq.(3.87) and eq.(3.88)
become the statement that ak,q lives in the convex of vectors v⃗ℓ and u⃗ℓ,k for fixed k, and
the relevant question is what are the boundaries of this hull.

In general the spin is unbounded especially when the UV completion involves massive
loops, and thus the number of vectors that constitute the hull is infinite. Naively de-
termining the boundaries of such space is computationally prohibitive. Note that these
polytopal constraints, being for fixed k, bound operators of the same dimension. At
the same time, we should expect non-trivial constraints that are cross dimensional since
operators of different dimension are constrained by the same UV completion. As we will
see these fascinating questions have a beautiful geometric answer to be explored in the
remaining sections.

3.6 Hidden total positivity from unitarity and locality

In this section we briefly review the positive geometries relevant for our analysis. The
spaces that we will be interested in are invariantly constructed as a positive sum of a fix
set of vectors {Va}:

a ∈
∑
a

paVa, pa > 0 . (3.93)
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Such construction are referred to as convex hulls and the resulting geometry convex
polytopes. Given a convex polytope, we will seek the complete set of inequalities that
defines its interior. In other words we would like to "carve out" the subspace satisfying
eq.(3.93) through equations of the form:

fi(a) > 0 . (3.94)

In the above i labels the distinct constraints. Depending on the nature of the vectors,
we will find that fi can be either linear or non-linear functions of a. In the context
of constraints for EFT, a is identified with the space of EFT couplings {ak,q} and the
vectors Va are determined by Lorentz invariance and locality, properties that we assume
for the UV completion.

Convex hulls and Cyclic polytopes

Let us begin with the definition of convex hull. Given a set of d+1-dimensional vectors
Va, consider the subspace spanned by its positive weighted sum:

a ∈
∑
a

paVa, pa > 0 . (3.95)

The number of vectors will in general be greater than the dimension, and one must first
determine whether this spans the whole space. For example, consider three vectors in
two dimensions as in fig.(3.4). In the first case the three vectors span the whole space,
as any point on the two-dimensional plane can be written as some positive sum of the
three vectors. This is not the case for the second configuration since all vectors are on
one side of the horizontal axis. Thus in order for the hull to be non-trivial, all the vectors
must be on the same side of some hyperplane, or equivalently there are no non-trivial
solutions to ∑

a

paVa,= 0 pa > 0 , (3.96)

i.e. the vectors do not enclose the origin.

Clearly for any a that satisfies eq.(3.95), so will ρa with ρ > 0. Thus the solution space
is naturally projective, and we identify a ∼ ρa and Va ∼ ρaVa. Since all the vectors lie
on the same side of some hyperplane, we can choose our coordinates such that the top
component is always positive, which we choose to normalize to 1:

Va =

(
1

v⃗a

)
, X =

(
1

x⃗

)
. (3.97)
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Figure 3.4: The convex hull of these three vectors encloses the origin, and hence trivially
covers the entire two-dimensional plane.

In terms of (v⃗a, x⃗) the canonical definition of convex hull is written as:

Conv[v⃗a] =

{∑
a

pa v⃗a,

∣∣∣∣∣ (∀ a : pa > 0) ∧
∑
a

pa = 1

}
. (3.98)

As we will see it will be useful to retain the use of homogeneous coordinates, i.e. con-
sidering the vectors in their full (d+1)- component, and consider the hull as a projective
polytope in Pd:

Conv[Va] =

{∑
a

pa Va,

∣∣∣∣∣ (∀ a : pa > 0)

}
. (3.99)

The advantage of this is that it allows us to define various co-plane or incidence conditions
projectively with the help of the d+1-dimensional Levi-Cevita tensor, ϵI1I2···Id+1. For
example, for the three vectors to be on a line in P2 we have

⟨a, b, c⟩ ≡ ϵI1I2I3V
I1
a V I2

b V I3
c = 0 , (3.100)

where Ii = 1, 2, 3. Similarly for d+1 vectors to lie on a d−1-dimensional plane in Pd,
tells us that the bracket ⟨a1, a2, · · · , ad+1⟩ = 0. In this paper, the dimension of the angle
brackets ⟨· · · ⟩ will be implicit from the number of entires or the surrounding discussions.

While eq.(3.99) gives us a d-dimensional polytope, not all vectors in Va are vertices of
the polytope—some might be inside. Thus given a convex hull, one needs to identify the
vectors that constitute the vertices which ultimately define the polytope. The polytope
can equivalently be defined through its boundaries, which are a set of co-dimension one
hyper-planes or facets. The advantage of such facet point of view is that the polytope
can be carved out successively one facet at a time. Not surprisingly, these facets can also
be defined through the vertices of the polytope. More precisely, a co-dimension one plane
is defined by a set of d distinct vectors, say (Va1 ,Va2 , · · · ,Vad). We can represent this



115

plane as a d+1 component dual vector Wi, where i labels the set of {ai} that defined
the plane, and its components given by:

(Wi)I ≡ ϵII1I2···IdV
I1
a1
, V I2

a2
, · · · , V Id

ad
= ⟨∗, a1, a2, · · · , ad⟩ . (3.101)

Then the inside of polytope is then given by the condition that a lies on one side of the
facet Wi. This constraint can be phrased in terms of a positivity condition:

Wi · a = (Wi)Ia
I = ⟨a, a1, a2, · · · , ad⟩ > 0, ∀a ∈ Conv[Va] . (3.102)

It is useful to see how such constraint arrises in simple setup. Consider a polygon in P2:

a

b

c

.

The line bc is a boundary since the interior of the polygon is on one side of the line.
This is not the case for ac. Not only does points of the interior lie on both sides, it can
be on the line, i.e. collinear with (a, c). Since collinear means ⟨a, a, c⟩ = 0, this implies
that ⟨a, a, c⟩ is positive on one side of ac, and negative one the other. Thus if Wi is a
boundary, Wi · a must have the same sign for all a, which we can always chose to be
positive by appropriately arranging the sequence of vectors in {ai} eq.(3.101).

Given the complete set of {Wi}, we now have a set of inequalities fi(a) > 0 that carves
out the space. The function fi in this case is linear in a:

fi(a) = Wi · a ≥ 0 . (3.103)

The equal sign refers to points that are on the boundary. Now one can see that given
a set of vectors Va, to determine the full set of {Wi}, one would need to compute
the sign of ⟨a1, a2, · · · , ad+1⟩ for all d+1-tuples. The sign patterns will tell us which
vectors are vertices that form facets, and which ones are inside. For n vectors, this

involves the computation of

(
n

d+1

)
number of d+1×d+1 determinants, which becomes

intractable for large n. In the context of our EFT setup, n is associated with the number of
Gegenbauer polynomials which is infinite. Thus the problem appears intractable, unless
some reasonable truncation can be established. As we will now see, if the vectors satisfy
special positivity conditions, the boundary and the vertices can be straightforwardly
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determined before hand. Remarkably, for us these properties are readily satisfied as a
consequence of Lorentz invariance and locality of the UV completion!

Cyclic polytopes Let’s start with a set of vectors Va that are endowed with some
preferred ordering. If all "ordered" d+1× d+1 determinants are positive:

⟨a1, a2, · · · , ad+1⟩ > 0, ∀a1 > a2 > · · · > ad+1 , (3.104)

then the convex hull Conv[Va] yields a cyclic polytope. The canonical example for a
cyclic polytope is the convex hull of points on a moment curve. A moment curve is the
embedding of the real line in d-dimensional space, such that each point on the line maps
to a d-component vector with successive "moments", i.e. (z, z2, · · · , zd), with z ∈ R.
The convex hull of points on a moment curve is then a positive weighted sum of vectors
taking the form:

Va =



1

za

z2a
...
zda


. (3.105)

Naturally, Va can be ordered by the value of za. In such case ⟨a1, a2, · · · , ad+1⟩ is simply
the determinant of the Vandermonde matrix:

Det



1 1 · · · 1

z1 z2 · · · zd+1

(z1)
2 (z2)

2 · · · (zd+1)
2

...
...

...
...

(z1)
d (z2)

d · · · (zd+1)
d


=
∏
i<j

(zj − zi) . (3.106)

Indeed this determinant is positive for ordered points, z1 < z2 < · · · < zd+1.

Given eq.(3.104) one can straightforwardly see that the boundaries for a cyclic polytope
in Pd are simply given as:

d ∈ even → P2 : ⟨∗, i, i+1⟩, P4 : ⟨∗, i, i+1, j, j+1⟩,

d ∈ odd → P3 : ⟨0, ∗, i, i+1⟩, ⟨∗, i, i+1,∞⟩,

P5 : ⟨0, ∗, i, i+1, j, j+1⟩, ⟨∗, i, i+, j, j+1,∞⟩, (3.107)

where i, i+1 represents vectors that are adjacent in the ordering, and 0, ∞ is the first
and final vector. To see that these are true boundaries, we must show for each of the
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walls in eq.(3.107), any point inside the hull a ∈ Conv[Va] will satisfy ⟨a, · · · ⟩ ≥ 0 or
⟨0, a, · · · ⟩ ≥ 0. Let’s take ⟨0, ∗, i, i+1, j, j+1⟩ as an example:

⟨0, a, i, i+1, j, j+1⟩ =
∑
a

pa⟨0, a, i, i+1, j, j+1⟩ , (3.108)

since each bracket in the sum is an even permutation away from canonical ordering,
they are positive due to eq.(3.104). As pa > 0 the RHS is a sum of positive terms and
thus establishes ⟨0, ∗, i, i+1, j, j+1⟩ being a boundary of Conv[Va]. Note that a similar
argument also tells us that there are no other boundaries.

Thus in summary, if the vectors Va satisfy eq.(3.104), then the boundaries for Conv[Va] is
completely determined and constructed from consecutive pairs as illustrated in eq.(3.107).
Furthermore since eq.(3.107) are boundaries for any i, j, · · · , all vectors are vertices.

Hankel matrix total positivity

Let us consider a simple example where the positive geometry of cyclic polytopes arises
in our EFT discussion. Take the following four point amplitude:

M(s) =
∑
a

− pa
s−ma

. (3.109)

This arrises naturally as the dispersive representation of the four-point amplitude in the
forward limit. Note that the positivity of pa is a reflection of unitarity and the simple
pole in s is a reflection of locality. Thus the geometry that arrises from eq.(3.109) will
have its origin in the union of unitarity and locality.

Expanding eq.(3.109) in small s we find∑
k

ak s
k =

∑
a

pa
m2
a

(
1 +

s

m2
a

+
s2

m4
a

+ · · ·
)
. (3.110)

Matching both sides of the above equation we immediately see that the aks are positive.
But there is more! If we collect the couplings into a vector a⃗, eq.(3.110) becomes:

a =



1

a1/a0

a2/a0
...

ak/a0


=
∑
a

p′
a


1

xa
...
xka

 , xa ≡
1

m2
a

, (3.111)

where we’ve used the projective nature of the problem to rescale the top component to be
1. We find that eq.(3.110) tells us that a⃗ lies in the convex hull of moment curves! Note
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that since m2
a > 0, we are really considering the "half" moment curve where xa ∈ R+.

Using what we’ve learned in the previous subsection, we have

Wi · a ≥ 0. (3.112)

where Wi are the boundaries listed in eq.(3.107) with Va determined by xa and we have
an infinite number of constraints on the couplings! However these constraints are not
ideal as they rely on the explicit vectors Va and for a low energy theorist we are not privy
to the information of the UV spectrum, i.e. we do not know what the xas are. It would
be desirable to find constraints fi(a) ≥ 0 , such that the functions fi do not depend on
the explicit values xa, while reflecting the fact that xa ∈ R+.

Let’s start by assuming the knowledge of the spectrum and see if we can rewrite Wi ·a > 0

in such a way that the information of the spectrum decouples. We can assume the
spectrum to be continuous without lost of generality, since any of the pas can be set
to be arbitrarily matched with any specific spectrum. Beginning with d = 1, we have
a = (1, a1

a0
) and there is only one boundary W = (1, 0). Thus we have:

W · a = ⟨0, a⟩ = a1
a0

> 0, (3.113)

which is trivial since we know that a0, a1 > 0. For d = 2, a = (1, a1
a0
, a2
a0
) and the constraint

is
⟨a, a, a+ 1⟩ > 0 . (3.114)

Since the spectrum is continuous, given a point xa on the moment curve we can take
a+1 to be arbitrarily close to a, such that ⟨∗, a, a+1⟩ → ⟨∗, a, ȧ⟩, where ȧ represents the
derivative. The determinant then becomes

⟨X, a, a+ 1⟩ = Det

 1 1 0
a1
a0

xa 1
a2
a0

x2a 2xa

 =
a2 − 2a1xa + a0x

2
a

a0
. (3.115)

We see that the minimum occurs at xa = a1
a0

, and thus for eq.(3.114) to hold we must
have:

a0a2 − a21 = Det

[
a0 a1

a1 a2

]
> 0 . (3.116)

Note that is non-linear in a and no longer depends on the point xa! Moving on to d = 3,
the analysis for ⟨0, a, a, a+ 1⟩ is identical to that for the d = 2 case, leading to

a1a3 − a22 = Det

[
a1 a2

a2 a3

]
> 0 . (3.117)
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Two comments are in order. First note that we have not considered constraints involving
the infinity vertex. This is because projectively, the infinity vector is simply (0, · · · , 0, 1)
and when plugged into ⟨· · · , a, a+1,∞⟩, it reduces to the constraint one dimension lower.
Second, as we move from even to odd dimensions, we obtain the same constraint as before
only with ai → ai+1, for example eq.(3.116) and eq.(3.117). This can be understood as
follows: the facets in both cases are comprised of the same set of vertices, just with the
inclusion of the origin 0 for the odd case. In taking the determinant, 0 removes the
first component of each vector, and the remaining part is proportional to the vector one
dimension lower. Thus the condition in the odd dimension is simply an overall factor
multiplying that of one dimension lower. Importantly, since we are on a half moment
curve, the overall prefactor will be positive. For example:

⟨0, a, a, a+1⟩ = Det


x0 1 1 1

a1 0 xa xa+1

a2 0 x2a x2a+1

a3 0 x3a x3a+1

 = xa+1xaDet

 a1 1 1

a2 xa xa+1

a3 x2a x2a+1

 . (3.118)

Since xa, xa+1 > 0, the fact that the very LHS is positive translate to the positivity on
the very RHS, i.e. in eq.(3.117). Let’s consider one more example before moving on to
the general constraint. For d = 4 we have

⟨a, a, a+1, b, b+1⟩ = Det


1 1 0 1 0
a1
a0

xa 1 xb 1
a2
a0

x2a 2xa x2b 2xb
a3
a0

x3a 3x2a x3b 3x2b
a4
a0

x4a 4x3a x4b 4x3b


= (xa−xb)4(a4−2αa3+a2(α2+2β)+β(a0β−2a1α)) , (3.119)

where α = (xa+xb) and β = xaxb. The minima in terms of α occurs at α = βa1+a3
a2

.
Plugging into the RHS of the above and requiring it to be positive leads to:

Det

 a0 a1 a2

a1 a2 a3

a2 a3 a4

 > 0 . (3.120)

We are now ready to give the result for general d. Collecting the coefficients of a⃗ into
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the symmetric Hankel matrix:

K (⃗a) =


a0 a1 · · · ap−1

a1 a2 · · · ap
...

...
...

...
ap−1 ap · · · a2p−2

 , (3.121)

then the coefficients are in the convex hall of the half-moment curve if and only if the
Hankel matrix is a totally positive matrix! A totally positive matrix has the property
that all of its minors are non-negative. This is the well known solution to the Stieltjes
moment problem. Note that due to K being a symmetric matrix, not all minors are
independent. The independent constraints are the positivity of the principle minors of
K (⃗a) and K (⃗a)i→i+1. That is

i ∈ even : Det


a0 a1 · · · a i

2

a1 a2 · · · a i
2
+1

...
...

...
...

a i
2

a i
2
+1 · · · ai

 ≥ 0,

i ∈ odd : Det


a1 a2 · · · a i+1

2

a2 a3 · · · a i+3
2...

...
...

...
a i+1

2
a i+3

2
· · · ai

 ≥ 0. (3.122)

Its validity can be seen by the analytic representation of eq.(3.122):

i ∈ even :
∑

{b1,b2,··· ,b i
2+1

}

 i
2
+1∏
k=1

pbk

 ∏
1≤k<l≤ i

2
+1

(xbk − xbl)
2 ,

i ∈ odd :
∑

{b1,b2,··· ,b i+1
2

}

 i+1
2∏

k=1

pbkxbk

 ∏
1≤k<l≤ i+1

2

(xbk − xbl)
2 (3.123)

For i ∈ even it is manifestly positive, and thus must hold for the convex hull of general
moment curves. Indeed this was already noted in [149]. For i ∈ odd, its positivity then
relies on xa > 0, and thus only hold for the convex hull of half moment curves.

The Gegenbauer cyclic polytopes

We now turn to the positivity associated with the Gegenbauer polynomials. From the
its definition from the generating function in eq.(3.81), it is straightforward to see that
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G
(n)
ℓ (1) ≡ 1

n!
∂nzGℓ(z)|z=1 ≥ 0. However, just as the case with moments and Vander-

monde determinants, further positive properties can be found when the components are
organized into matrices. Let us consider the following Gegenbauer matrix

Det


Gℓ1(z1) Gℓ2(z1) · · · Gℓn(z1)

Gℓ1(z2) Gℓ2(z2) · · · Gℓn(z2)
...

...
...

...
Gℓ1(zn) Gℓ2(zn) · · · Gℓn(zn)

 . (3.124)

It turns out, the above matrix is totally positive if 1 ≤ z1 < z2 < · · · zn and ℓ1 < ℓ2 <

· · · < ℓn. For Chebychev polynomials, which are the Gegenbauer polynomials in D = 3,
this can be straightforwardly proven, and we present the result in appendix B.5. For
general D, the proof follows from that presented by Karlin and McGregor for general
orthogonal polynomials [111]. In appendix B.5, we also give a direct computation of the
relevant determinants for the Gegenbauer case of interest to us, allowing us to see the
positivity explicitly

Such "position space" positivity, where the zis are evaluated at separate points, is not
convenient for our EFT analysis. In anticipating the Taylor expansion in eq.(3.84), we
would like to instead extract conditions on the derivatives of the polynomials. This
can be done by taking the positions to be close to some common point, say 1. Then
the determinant of the Gegenbauer matrix becomes that for derivatives of Gegenbauer
polynomial evaluated at zi = 1. For example, defining

Gℓ ≡



G
(0)
ℓ (1)

G
(1)
ℓ (1)

G
(2)
ℓ (1)
...

G
(n)
ℓ (1)


, (3.125)

the determinant of the Gegenbauer matrix with 1 ≤ z1 < z2 < · · · zn < 1 + ϵ becomes
the determinant of the "Taylor" scheme matrix

(Gℓ1(1), Gℓ2(1), · · · , Gℓn+1(1)) . (3.126)

Thus the positivity of the Gegenbauer matrix in position space will imply the determinant
of the above matrix is positive. Let’s write out the explicit Taylor coefficients:

Gℓ(1 + 2δ) =
ℓ∑

q=0

vℓ,qδ
q , vℓ,q =

{
2q

q!(ℓ−q)!
(α)ℓ+q∏q

a=1(α+2a−1)
for q ≤ ℓ

0 for q > ℓ
, (3.127)
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where α = D−3. Note that the coefficients are all positive, which reflects the fact that
the derivative of Gℓ(x) is again a positive function.3 Using this one can show that the
determinant of eq.(3.126) is (see appendix B.5):

Det
[
Gℓ1 , · · · , Gℓn+1

]
= 2

n(1+n)
2

(
n+1∏
i=1

(α)ℓi
ℓi!

1∏i−1
a=1(α+2a−1)a!

)∏
i<j

(ℓj−ℓi)(α+ℓj+ℓi) ,

(3.128)
which is manifestly positive for ordered spins, ℓ1 < ℓ2 < · · · < ℓd+1. This immediately
tells us that

the convex hull of the Gℓ is a cyclic polytope! (3.129)

Thus just as for the convex hull of points on the moment curve, the boundaries for
Conv[Gℓ] are simply given by:

d ∈ even → P2 : ⟨∗, ℓi, ℓi+1⟩, P4 : ⟨∗, ℓi, ℓi+1, ℓj, ℓj+1⟩,

d ∈ odd → P3 : ⟨0, ∗, ℓi, ℓi+1⟩, ⟨∗, ℓi, ℓi+1,∞⟩,

P5 : ⟨0, ∗, ℓi, ℓi+1, ℓj, ℓj+1⟩, ⟨∗, ℓi, ℓi+, ℓj, ℓj+1,∞⟩ .

(3.130)

Going back to the position space Gegenbauer matrix, instead of setting all of the positions
close to 1, lets have z∗ ≤ z1 < z2 < · · · < zn < z∗+δ, with 1 < z∗, the eq.(3.124) becomes

Det


Gℓ1(z1) Gℓ2(z1) · · · Gℓn(z1)

Gℓ1(z2) Gℓ2(z2) · · · Gℓn(z2)
...

...
...

...
Gℓ1(zn) Gℓ2(zn) · · · Gℓn(zn)

 = Det [Gℓ1(z
∗), · · · , Gℓn(z

∗)] > 0 . (3.131)

Thus the convex hull of Gℓ(z
∗) is in fact a cyclic polytope for all z∗ ≥ 1! Now consider

a series of cyclic polytope,
Polyi = Conv[Gℓ(zi)] . (3.132)

defined with 1 ≤ z1 < z2 < · · · . Since the derivative of Gℓ(z) is a positive function, i.e.

dGℓ(z)

dz
=
∑
ℓ′

cℓℓ′Gℓ′(z) cℓℓ′ ≥ 0 (3.133)

3This can be deduced by taking the derivative on the generating function. Such extended positivity
away from the forward limit was suggested long ago in [127], and utilized as consistency conditions for
EFT in [137], deriving bounds in [23].
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we can deduce

Gℓ(z + δ) =


Gℓ(z) + δG′

ℓ(z)

G′
ℓ(z) + δG′′

ℓ (z)
...

+O(δ2) = Gℓ(z)+
∑
ℓ′

cℓℓ′Gℓ′(z)+O(δ2) . (3.134)

That is, a positively shifted Gℓ(z) can be positively re-expanded on Gℓ(z). Now starting
with z1 < z2, since we’ve concluded Gℓ(z2) is positively expanded on Gℓ(z1), its convex
hull is inside the polytope Pol1. Thus given a series of ordered points, z1 < z2 < z3, the
corresponding Polyi defined in eq.(3.132) satisfies:

Poly3 ⊂ Poly2 ⊂ Poly1 for z1 < z2 < z3. (3.135)

In other words, as we push z away from 1, not only is the convex hull of Gℓ(z) a cyclic
polytope, it goes deeper and deeper inside the original polytope!

Spinning Gegenbauer cyclic polytope Recall that the Gegenbauer polynomial being
the unique polynomial for scalar amplitude with a spin-ℓ exchange is rooted in the three-
point amplitude of two scalars and a spin-ℓ particle is unique. For general three-point
amplitudes with spins this is no longer true. However as discussed in [10], in four-
dimensions given the helicities of the two massless particles and the spin of the massive
particle, the amplitude is fixed. This allows one to define a set of "spinning" Gegenbauer
polynomial basis.

To see this, let’s consider the three-point amplitude involving a massive spin-ℓ particle
and massless particles with helicity h1, h2. We again have a polarization tensor ϵµ1µ2···µℓ
needing ℓ vectors to contract. Due to h1, h2 ̸= 0, besides p12 we now have two new
vectors, q = λ1λ̃2 and q̃ = q∗ = λ2λ̃1, that can be used to contract with the polarization
tensor. Up to an overall constant, the amplitude is fixed by {h1, h2, ℓ} as:

qµ1qµ2 · · · qµh2−h1 (p12)
µh2−h1+1 · · · (p12)µℓϵµ1···µℓ , for h2−h1 > 0

q̃µ1 q̃µ2 · · · q̃µh1−h2 (p12)
µh1−h2+1 · · · (p12)µℓϵµ1···µS , for h1−h2 > 0 . (3.136)

We can now glue the two three-point amplitudes together to construct the residue for a
spin-ℓ exchange. As discussed in [10], since the polarization tensors form irreps of the
little group, the gluing of the three-point amplitude is simplified by first rewriting it in
SL(2,C) irreps as:

[12]ℓ+h1+h2
(
λℓ+h2−h11 λℓ+h1−h22

)
{α1···α2ℓ}

, (3.137)
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and then contract the SL(2,C) indices between both sides of the factorization channel.
In the center of mass frame, we can parameterize the spinors as:

λ1 = m
1
2

(
1

0

)
, λ2 = m

1
2

(
0

1

)
, λ3 = im

1
2

(
sin θ

2

− cos θ
2

)
, λ4 = im

1
2

(
cos θ

2

sin θ
2

)
. (3.138)

We can identify the the three-point coupling in eq.(3.137) involving legs 1, 2 as a spin-ℓ
state with "Jz" quantum number m = h1 − h2. Replacing 1, 2 with 3, 4 we then have
a spin-ℓ state with quantum number m = h3 − h4, acted upon a rotation matrix in
the "y"-axes by θ. The gluing of the three-point amplitude on both sides then simply
corresponds to computing the overlap of the two states, which is nothing by the Wigner
d-matrix! Thus we see that for general spinning particles the polynomial is simply:

dℓh1−h2,h3−h4(θ) . (3.139)

where djm′,m(θ) is the Wigner d-matrix defined by djm′,m(θ) = ⟨j,m′|e−iθJy |j,m⟩.

Let us consider as an example the residue for a spin-ℓ exchange in the helicity configura-
tion (+h,−h,+h,−h). Writing it as a product of three point amplitudes, we find:

n
{+h,−h,+h,−h}
ℓ = A(1+h2−hPℓ)A(3+h4−hPℓ)

=
|cℓ|2([12][34])ℓ

m4ℓ−2

(
λℓ−2h
1 λℓ+2h

2

){α1···α2ℓ} (λℓ−2h
3 λℓ+2h

4

)
{α1···α2ℓ}

= |cℓ|2[13]2h⟨24⟩2h
([12][34])τ

m4ℓ−2−4h
[(λτ1λ

τ
2) · (λτ3λτ4)] ,

= |cℓ|2m2dℓ2h,2h(θ) , (3.140)

where Pℓ indicates a spin-ℓ state with P 2 = (p1+p2)
2 = m2, τ = ℓ−2h and we’ve nor-

malized the amplitudes such that the coupling constant cℓ is dimensionless. Note that
the ℓ-independent prefactor [13]2h⟨24⟩2h is required from helicity constraints, indicat-
ing that dℓ2h,2h(θ) ∝ cos4h θ

2
. Exchanging 3, 4 one obtains the residue for other helicity

configurations:
n
{+h,−h,−h,+h}
ℓ =

∑
ℓ

|cℓ|2m2(−1)ℓdℓ2h,−2h(θ) . (3.141)

Note that n{+h,−h,−h,+h}
ℓ = (−1)ℓn{+h,−h,+h,−h}

ℓ |θ→θ+π.4 For example, the polynomials for
4We thank Z. Bern, A. Zhiboedov, and D. Kosmopoulos for pointing out this relation.
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the first few spins in n{+1,−1,+1,−1}
ℓ are:

d22,2(θ) = cos4
θ

2

d32,2(θ) = cos4
θ

2
(3 cos θ−2)

d42,2(θ) = cos4
θ

2
(1−7 cos θ+7 cos2 θ)

d52,2(θ) = cos4
θ

2
(1+3 cos θ−18 cos2 θ+15 cos3 θ) . (3.142)

Note that one starts from ℓ = 2 a reflection of Landau-Yang’s theorem.

Now following the previous discussion, since the Wigner d-matrices are also orthogonal
polynomials, we expect that their Taylor vectors yield a positive definite matrix when
the spins are ordered. Indeed consider the Taylor vectors for dℓ2,2(θ) expanded around
θ = 0. The Taylor vectors for spins 2, 3, · · · , 9 are given as:

h=1 :



1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 3
4

7
4

3 9
2

25
4

33
4

21
2

0 0 7
4

27
4

135
8

275
8

495
8

819
8

0 0 0 15
4

165
8

275
4

715
4

3185
8

0 0 0 0 495
64

3575
64

15015
64

47775
64

0 0 0 0 0 1001
64

9009
64

5733
8

0 0 0 0 0 0 1001
32

10829
32

0 0 0 0 0 0 0 1989
32


.

(3.143)

It is straightforward to verify that, just as the vectors from Gegenbauer polynomials, the
above is a totally positive matrix. Thus we see that the convex hull of the Taylor vectors
from the spinning polynomial yields a cyclic polytope.

3.7 The s-channel EFT-hedron

In the previous section we’ve seen that for a to reside inside a convex hull, the geometry
set up in eq.(3.87, 3.88), it can be cast into a (infinite) set of positivity conditions:

fi(a) ≥ 0 . (3.144)

The explicit function fi depends on the vectors that constitute the hull, and can be linear
or non-linear functions of a. Let us now explore the geometry for the simplest class of
EFTs where the massless degrees of freedom are colored state. We can then focus on color
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ordered four-point amplitude and assume the absence of UV states in the u-channel. In
such case we have eq.(3.87)

ak,q =
∑
a

pa
vℓa,q

(m2
a)
k+1

pa ≥ 0 . (3.145)

where once again vℓ,q is the q-th Taylor coefficient in expanding Gℓ(1+2δ). The couplings
ak,q are naturally dimensionful, but since our bounds will be projective in nature, only
dimensionless ratios will be constrained. Note that since we are considering color ordered
amplitudes, cyclic symmetry implies that the amplitude is symmetric under s ↔ t.
Translated to the EFT couplings we have that they must lie on the "cyclic plane" XCyc

defined by
ak,q = ak,k−q . (3.146)

Thus the geometry of interest will be the intersection of the convex hull in eq.(3.145),
with the cyclic plane XCyc.

Recall that the origin of eq.(3.145) is the fact that the low energy amplitudes can be
reproduced from the s-channel singularities. This can be recast into the following equiv-
alence: ∑

k,q

ak,q sk−qtq =
∑
a

−
pa Gℓa

(
1 + 2 t

m2
a

)
s−m2

a

for s, t≪ m2 , (3.147)

where the equality is understood as the matching of Taylor series in s, t on both sides,
with n ≥ 2. Thus the sum on the RHS is only expected to be reproduced ak,q with
q ≤ k−2. Writing out the Taylor series for the RHS,∑

k,q

ak,q sk−qtq =
∑
a

pa
m2
a

(
1 +

s

m2
a

+
s2

m4
a

+ · · ·
)

·

(
vℓa,0 + vℓa,1

t

m2
a

+ vℓa,2

(
t

m2
a

)2

+ · · ·

)
, (3.148)

we immediately see the emergence of two types of geometries: one is the coefficients
associated with the expansion in t and the other is the expansion in s. The geometry
encoded in the former is a reflection of UV Lorentz invariance, since the convex hull
depends on the details of the Gegenbauer polynomials, while the geometric series of the
later reflects locality, i.e. that the only singularities of the four-point amplitude are in the
Mandelstam variables. We will begin our analysis by disentangling the two geometry,
taking the point of view of either fixed k or fixed q, and end in the geometry that is
defined by its union.
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Fixed k: the Gegenbauer cyclic polytope

Identifying the coefficient for sk−qtq on both sides of eq.(3.148), we have

ak,q =
∑
a

pa
[
xk+1
a vℓa,q

]
xa ≡

1

m2
a

. (3.149)

Now consider terms with the same mass-dimension, corresponding to fixed k. We write

ak =


ak,0

ak,1
...

 =
∑
a

pax
k+1
a


vℓa,0

vℓa,1
...

 . (3.150)

Since pa, xa > 0, this says that
ak ∈ Conv[Gℓ] , (3.151)

that is, the coefficients for the distinct polynomials associated with the mass-dimension
2k+4 operator must live inside the Gegenbauer cyclic polytope! We will refer to Conv[Gℓ]

as the unitary polytope Uk, where the subscript k indicates that the polytope is in Pk−2.
The dimension is projectively k−2, since there are k+1 distinct polynomials at given k,
with ak,k and ak,k−1 not subject to the constraints implied by eq.(3.145).

Furthermore, cyclic symmetry requires that the couplings lie on the cyclic plane Xcyc.
For k < 5 cyclic symmetry simply relates the coefficients ak,k and ak,k−1 to those that
are constrained by Uk. For k ≥ 5 the cyclic plane Xcyc defines a ⌈k+1

2
⌉−1-dimensional

subspace inside Uk, i.e. the space of allowed couplings are now given by the intersection
of the cyclic plane Xcyc with the unitary polytope Uk, i.e. Uk ∩Xcyc, as illustrated in
fig.(3.5). In the following, we will consider explicit examples up to k = 5.

• k=2 : D4ϕ4:

MD4ϕ4(s, t) = (a2,0s
2+a2,1st+a2,2t

2). (3.152)

We will only be able to bound a2,0 and the geometry is P0. From the fact that vℓ,0
is a positive number, we simply have a2,0 > 0, the forward limit positivity bound
discussed in [4].

• k=3 : D6ϕ4

MD6ϕ4(s, t) = (a3,0s
3+a3,1s

2t+ · · · ). (3.153)

From now on we’ll suppress listing the couplings that cannot be bounded. The
geometry is now P1, and a3 = (1, a3,1

a3,0
) is bounded by the minimum and maximum

value of vℓ,1
vℓ,0

, which are 0 and ∞ respectively. Thus we simply have a3,0, a3,1 > 0.
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X

U

Figure 3.5: The s-channel geometry at fixed k. The vector ak must live on the intersection
between the cyclic plane Xcyc with the unitary polytope Uk.

• k=4 : D8ϕ4

MD8ϕ4(s, t) = (a4,0s
4+a4,1s

3t+a4,2s
2t2+ · · · ). (3.154)

We have a4 = (1, a4,1
a4,0

, a4,2
a4,0

) ≡ (1, x, y). The boundaries of the two-dimensional
polygon are given by (i, i+1), and the constraint on a4 is given by ⟨a4, i, i+1⟩ > 0

and ⟨a4,∞, 0⟩ > 0, where

⟨a4, i, i+1⟩ = Det

 1 vi,0 vi+1,0

x vi,1 vi+1,1

y vi,2 vi+1,2

 (3.155)

Listing the first sets of constraints:

⟨a4, 0, 1⟩ > 0⇒ y > 0, ⟨a4, 1, 2⟩ > 0⇒ 6−3x+2y > 0,

⟨a4, 2, 3⟩ > 0⇒ 18−4x+y > 0 . (3.156)

The combined constraint is plotted in fig.3.6.

• k=5 : D10ϕ4

MD10ϕ4(s, t) = (a5,0s
5+a5,1s

4t+a5,2s
3t2+a5,3s

2t3+ · · · ). (3.157)

In this case, the cyclic plane a5 ∈ Y = (1, x, y, y) is two-dimensional and thus
represents a subspace of the three-dimensional unitary polytope U5. There are two
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Figure 3.6: The allowed region satisfying ⟨a4, i, i+1⟩ > 0. We have plotted the combined
constraint for i ≤ 40. For larger is, the constraint does not appear for the range of (x, y)
displayed in the plot.

sets of constraints coming from ⟨0, a5, i, i+1⟩ > 0 and ⟨a5, i, i+1,∞⟩ > 0, given as:

⟨0, a5, i, i+1⟩ =


1 1 vi,0 vi+1,0

0 x vi,1 vi+1,1

0 y vi,2 vi+1,2

0 y vi,3 vi+1,3

 ,

⟨a5, i, i+1,∞⟩ =


1 vi,0 vi+1,0 0

x vi,1 vi+1,1 0

y vi,2 vi+1,2 0

y vi,3 vi+1,3 1

 . (3.158)

The first set of constraints simply leads to y ≥ 0, x ≥ y
3
, while the second set is

shown in fig. 3.7. The combined constraint leads to a finite region composed of
boundaries (i, i+1,∞) with i = 0, 1, · · · , 4 and (0, 4, 5) as shown in fig.3.8.

The fact that the ratio of coefficients ak,q
ak,0

are bounded within finite regions tells us that,
in the on-shell basis, it is not only unnatural to have two distinct operators with the same
dimension yet large differences in their coupling constants, unitarity in the UV tells us
that it is impossible to do so !

Let’s see where explicit EFTs sit inside Uk ∩Xcyc. Consider the open superstring four-
gluon amplitude in eq.(3.14), where its low-energy expansion is given in eq.(3.16). Strip-
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Figure 3.7: The constraints curved out from ⟨a5, i, i+1,∞⟩ > 0.

Figure 3.8: The projection of the unitary polytope onto the cyclic plane at k = 5. The
boundary is given by (0, 4, 5) as well as (i, i+1,∞) for i = 0, · · · , 4, displayed as (i, i+1).
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Figure 3.9: The position of the string theory coefficients given in eq.(3.159) inside the
region Uk ∩Y, for k = 4, 5 respectively.

ping off the spinor brackets and considering the expansion up to k = 5 we find,

k = 2 : a2,0 =
2ζ22
5
, k = 3 : a3,0 = ζ(5), a3,1 = 2ζ(5)−ζ(3)ζ(2)

k = 4 : (x, y) =

(
a4,1
a4,0

,
a4,2
a4,0

)
=

(
3

4
− 945ζ23

2π6
,

23

20160
− 3ζ23

4π6

)
k = 5 : (x, y) =

(
a5,1
a5,0

,
a5,2
a5,0

)
=

(
3− π4ζ3 + 15π2ζ5

90ζ7
, 5− π4ζ3 + 24π2ζ5

72ζ7

)
.

(3.159)

For k = 2, 3 the coefficients are not only inside Uk, it close to the "boundary". This
behaviour is more prominent for k = 4, 5 where the EFT couplings are close to the
boundary composed of low spins, as we display in fig.(3.9). This indicates that the pas
in eq.(3.145) is dominated by contributions from low spin sector. In fact, in section 3.10
we will see that such behaviour is common amongst all known EFTs.

Fixed q: Hanekl matrix constraints

Instead of fixed k and considering the constraint on ak, let’s now examine the geometry
associated with fixed q, i.e. that associated with the first parentheses on the RHS of
eq.(3.148). First taking q = 0, we have

ak,0 =
∑
a

p′
a(xa)

k , (3.160)

where p′
a = xapa vℓ,0, and the equality holds for the k ≥ 2. Since vℓ,0 = Gℓ(1) is positive,

p′
a > 0. We immediately see that eq.(3.160) implies ak,0 > 0, which is the forward limit

positivity bound discussed in [4] extended to higher derivatives. We’ve seen this before
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in section 3.6, where the vector

ã0 =


1
a3,0
a2,0
a4,0
a2,0
...

 =
∑
a

pa


1

xa
...
xka

 , xa ≡
1

m2
a

, (3.161)

lies in the convex hull of points on a half moment curve, and thus the Hankel matrix of
its entries K[ã0] is a totally positive matrix. Note that since vℓ,q > 0 for all q, the same
holds true for any fixed q. Thus in general we have:

K [ãq] ∈ Total positive matrices ∀q . (3.162)

Once again, lets us demonstrate this for the Type-I string amplitude. Collecting the
coefficients as

a⃗0 =



2
5
ζ22

ζ5
8
35
ζ32

ζ7
24
175
ζ42

 , a⃗1 =


2ζ5−ζ2ζ3
6
35
ζ32−1

2
ζ23

3ζ7−ζ2ζ5−2
5
ζ22ζ3

6
35
ζ42−ζ3ζ5

4ζ9−ζ2ζ7−2
5
ζ22ζ5− 8

35
ζ32ζ3

 , (3.163)

The corresponding Hankel matrix are,

K [⃗a0] =


2
5
ζ22 ζ5

8
35
ζ32

ζ5
8
35
ζ32 ζ7

8
35
ζ32 ζ7

24
175
ζ42



K [⃗a1] =

 2ζ5−ζ2ζ3 6
35
ζ32−1

2
ζ23 3ζ7−ζ2ζ5−2

5
ζ22ζ3

6
35
ζ32−1

2
ζ23 3ζ7−ζ2ζ5−2

5
ζ22ζ3

6
35
ζ42−ζ3ζ5

3ζ7−ζ2ζ5−2
5
ζ22ζ3

6
35
ζ42−ζ3ζ5 4ζ9−ζ2ζ7−2

5
ζ22ζ5− 8

35
ζ32ζ3

 .

(3.164)

It is straightforward to check that all minors of the above Hankel matrix are indeed
positive. A more detailed study of the Hankel matrix constraint for superstring amplitude
was recently done in [89].

It is interesting to ask which theories lie on boundaries of the Hankel constraints, i.e.,
for which theories do all the minors of the Hankel matrix greater than some size all
vanish? The answer is extremely simple and satisfying. Only UV amplitudes with a finite
number of poles satisfy this property; that is, only UV theories with N massive states
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Figure 3.10: We organize the information that each state contributes to the determination
of ak,q. For each fixed row (fixed k), for example the red box, each state’s contribution
is proportional to a Gegenbauer vector multiplied by a universal factor xka. For a fixed
column (fixed q), the purple box, each state contributes to a point on a half moment
curve multiplied by universal factor vℓa,q.

exchanged at tree-level lie on the boundary of the Hankel constraints. This can be seen
from the analytic expression of the determinants in eq.(3.123), where it is proportional
to the Vandermonde determinant of the masses of the UV state xa. This gives us a
way to “detect” the number of massive states: if there are a massive states, then the
(a+ 1)× (a+ 1) determinant vanishes.

The s-channel EFT-hedron

Up to now, we’ve been considering the constraints from the two parentheses in eq.(3.148)
separately. These, however, are not the full set of constraints. To see this it is useful to
organize the information each state contributes to ak,q as in fig.3.10. For a given row,
each state contributes a fixed positive factor xka multiplying the Gegenbauer vector, which
led to the constraint that the row vectors must lie in the convex hull of a cyclic polytope.
For a fixed column, each state contributes a point on the half moment-curve weighted
by a positive factor vℓ,q, and thus implying the constraint that the Hankel matrix of the
column vector is a totally positive matrix.

As one can see from the above description, these are not the complete constraints. For
example, the cyclic polytope constraint does not tell us that the positive proportionality
factor takes the form xka, which is only visible if we consider different ks at the same time.
Put in another way, if we truncate our expansion of t to a fix order, say the first order,
we should see that for different moments (xka), each state contributes the same vector
(vℓa,0, vℓa,1), as illustrated in fig.3.11. In other words, not only does each row must lie in
the cyclic polytope, but it must be the same point after scaling away the moment factors!

To recap, the space of higher dimensional operator is given by the tensor product of
two positive geometries, the Gegenbauer cyclic polytope and convex hull of half moment
curve, and we would like to find the full set of inequalities that carve out this space.



134

Figure 3.11: For a given state, its contribution to each row is the same vector (vℓa,0, vℓa,1)
after scaling away the moment factor xka.

This is reminiscent of the (tree) Amplituhedron which gives the scattering amplitude of
N = 4 SYM [11]. There we have a subspace of k-planes in k+4 dimensions, Y I

α , given
by the product of two positive geometries

Y I
α =

∑
i=1,n

Cα,iZ
I
i , Cα,i ∈ Gr>0(k, n), ZI

i ∈M+(n, k+4) (3.165)

where the Cα,i is in the positive Grassmannian Gr>0(k, n), a k × n matrix with all
ordered minors positive mod GL(k), and ZI

i is a n × k+4 positive matrix with positive
ordered minors. The Zs are the "external data" that is given and already in the positive
region. Note that for k = 1, this is simply a polytope in P4. To carve out this space via
inequalities, we require that Y satisfies:

⟨Y1Y2 · · ·YkZiZi+1ZjZj+1⟩ > 0 . (3.166)

To see this note that we can interpret eq.(3.165) as expanding Y I
α on the the "basis" ZI

i ,
with coefficients Cα,i. Then the above condition implies

⟨Y1Y2 · · ·YkZiZi+1ZjZj+1⟩ =
∑

i1<i2<···<ik

⟨Ci1Ci2 · · ·Cik⟩⟨Zi1Zi2 · · ·ZikZiZi+1ZjZj+1⟩ > 0.

(3.167)
For this to hold for any choice of ZI

i ∈M+(n, k+4), forces Cα,i ∈ Gr>0(k, n).

For our case, the fixed external data is the Gegenbauer vectors, which automatically yield
positive matrices. This motivates us to first organize all the states with the same spin
together and rewrite eq.(3.149) as:

ak,q =
∑
a

pa
[
xk+1
a vℓa,q

]
≡
∑
ℓ

Ck,ℓVℓ,q . (3.168)

Here Vℓ,q = vℓ,q, and Ck,ℓ =
∑

{a:ℓa=ℓ} pa x
k+1
a , where one sums over all the states with

the same fixed spin ℓ. Collecting the Cs into a column vector Cℓ = {C1,ℓ, C2,ℓ, · · · , Ck,ℓ},
we see that Cℓ is inside the convex hull of the half moment curve. We are now ready to
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define the EFT-hedron: the space of consistent coefficients of higher dimension operators
is given by the product (with k ≥ q)

ak,q =
∑
ℓ

Ck,ℓVℓ,q (3.169)

where Ck,ℓ is positive in the sense that K[Cℓ] is a totally positive matrix for each ℓ,
and Vℓ,q is positive in that any ordered minor of the vectors are positive. Let us make
a comparison with the amplituhedron [11]. For the EFT-hedron the positivity property
in C is defined for each column (spin) independently, while for the amplituhedron the C
being in Gr>0(k, n), the positivity condition mixes the columns. For the amplituhedron
I is locked in with k being 4+k dimensional, while for the EFT-hedron q can be any
dimension independent of k.

Now let us carve out the space via inequalities. Consider a set of "walls", which are dual
vectors Wq

I , labelled by I, satisfying∑
q

Wq
IVℓ,q ≥ 0, ∀ℓ. (3.170)

Unit vectors {0, 0, 1, · · · , 0} trivially satisfies this criteria due to the positivity of the
Gegenbauer Taylor coefficients. We denote these as Wq

II
. There are also walls comprised

of the facets of Conv[Vℓ], taking the form (i, i+1), (1, i, i+1), e.t.c, which in dual vector
form is given by ⟨∗, i, i + 1⟩, ⟨∗, 1, i, i + 1⟩. We denote these as Wq

Ib
. Given these walls

we take the inner product with the higher dimension operators. Define

Ak,I ≡
∑
q

ak,qWq
I , ∀ Wq

I ∈ {W
q
II
,Wq

Ib
} (3.171)

and the EFT-hedron is carved out by the inequality

K[A⃗I ] is a totally positive matrix . (3.172)

where A⃗I = (A0,I , A1,I , · · · ). In other words, for any of one of the walls Wq
I , the Ak,Is

satisfies the following infinite set of constraints

A0,I ≥ 0, A1,I ≥ 0, Det

(
A0,I A1,I

A1,I A2,I

)
≥ 0, Det

(
A1,I A2,I

A2,I A3,I

)
≥ 0

Det

 A0,I A1,I A2,I

A1,I A2,I A3,I

A2,I A3,I A4,I

 ≥ 0, Det

 A1,I A2,I A3,I

A2,I A3,I A4,I

A3,I A4,I A5,I

 ≥ 0, · · · .

(3.173)
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Before closing, let us confirm that the inequalities in eq.(3.172), combined with the
information of the walls, indeed carve out the space in eq.(3.168). First take the walls to
be the unit vectors, and then K[A⃗II ] being a totally positive matrix simply implies

ak,q =
∑
a

pa,q(xa)
k, pa,q > 0 xa > 0 , (3.174)

i.e. for each fixed q, the vector a⃗q = (a1,q, a2,q, · · · ) lies in the convex hull of half moment
curves. Next, we consider the walls that are the boundaries of the Conv[Vℓ]. The pos-
itivity of individual Ak,Ib tells us that each row ak,q is inside Conv[Vℓ]. This combined
with the previous result tells us that

ak,q =
∑
a,ℓ

pa(xa)
k Oa,k,ℓ Vℓ,q, pa > 0 , xa > 0 , Oa,k,ℓ > 0 . (3.175)

Finally, the total positivity of K[A⃗Ib ] then tell us that Oa,k,ℓ must be such that

(xa)
k Oa,k,ℓ = (x′a,ℓ)

k.

In other words,
ak,q =

∑
a,ℓ

pa(x
′
a,ℓ)

k Vℓ,q, pa > 0 x′a,ℓ > 0 . (3.176)

We see that indeed eq.(3.168) is recovered.

The geometry of the gap

Let’s suppose we have the extra information of the scale of the UV completion, i.e. the
UV spectrum starts at MGap above the massless modes. This allows us to write

ak,0 =
∑
a

pa
M

2(k+1)
Gap

(
MGap

ma

)2(k+1)

=
1

M
2(k+1)
Gap

∑
a

pa x
k+1
a , xa ≤ 1 . (3.177)

Now since xa ≤ 1, we see that the gap implies

a2,0 ≥M2
Gapa3,0 ≥ · · · ≥M

2(k−2)
Gap ak,0 ≥ 0 . (3.178)
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The fact that xa ≤ 1 also tells us that the convex hull of ak is now over a restricted
region of the half-moment curve:

ak =
∑
a

pa


1 0 0 0

0 1
M2

Gap
0 0

0 0
... 0

0 0 0 1

M
2(k−2)
Gap




1(

MGap

ma

)2
...(

MGap

ma

)2(k−2)



→


1 0 0 0

0 M2
Gap 0 0

0 0
... 0

0 0 0 M
2(k−2)
Gap

 ak =
∑
a

pa


1

xa
...

xk−2
a

 , pa > 0, xa ≤ 1 ,

(3.179)

that is, instead of x ∈ R+ we now have x ∈ [0, 1]. For simplicity we set M2
Gap = 1 from

now on, and we write:

ak =
∑
a

pa


1

xa
...

xk−2
a

 , pa > 0, xa ≤ 1 . (3.180)

where the components of ak have been rescaled by appropriate factors of M2
Gap to be

dimensionless. Now since the curve is bounded by xa = 1, we now have a new boundary
vertex

nGap =


1

1

· · ·
1

 . (3.181)
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The change in geometry is fully illustrated in the following P2 example

where the convex hull now has a new boundaries consisting of (0, n), with 0 denoting
the spin-0 vector. Extending to higher dimensions we now have a new set of boundary
consists of (0, i, i+1, · · · , n), and thus besides the usual Hankel matrix constraints, a now
must also respect

⟨0, a, i, i+1, · · · , j, j+1, n⟩ > 0 . (3.182)

where we recall (i, i+1)→ (i, i̇).

Now the new constraint eq.(3.182) can be translated to the geometry projected through
the line (0, n). To see this geometry cleanly, we take a GL transformation G that keeps
0 fixed and rotate n to:

G 0 =



1

0

0
...
0


, G n =



0

1

0
...
0


,→ G =



1 −1 0 0 0

0 1 0 0 0

0 1 −1 0 0
...

...
...

...
...

0 0 0 1 −1


. (3.183)

The action of G on the moment curve yields

G



1

x

x2

x3

...
xd


=



1−x
x

x(1−x)
x2(1−x)

...
xd−1(1−x)


. (3.184)

Thus after the the GL transformation, the presence of (0, n) in the determinant

⟨0, a, i, i+1, · · · , j, j+1, n⟩
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simply knocks out the first two components of the other vectors, and eq.(3.182) becomes

⟨ã, ĩ, ĩ+1, · · · , j̃, j̃+1⟩ > 0, (3.185)

where the " ˜ ” represents the GL transformed vector with the first two components
removed. For example

G a =



a2−a3
a3

a3−a4
a4−a5
a5−a6

...


→ ã =


a3−a4
a4−a5
a5−a6

...

 . (3.186)

Now ĩ takes the form : 
xi(1−xi)
x2i (1−xi)

...
xd−1
i (1−xi)

 = xi(1−xi)


1

xi
...

xd−2
i

 (3.187)

which, since 0 < x ≤ 1, up to a positive factor is once again a moment curve! In other
words, the constraint ⟨ã, ĩ, ĩ+1, · · · , j̃, j̃+1⟩ > 0 implies that ã, which are twisted sum
of ais, also satisfies the non-linear Hankel matrix constraint! For example, starting with
a ∈ P4, we have ã = (a4−a3, a5−a4, a6−a5), and the Hanel matrix constraint implies
ai > aj for i > j and

(a3 − a4)(a5 − a6)− (a4 − a5)2 > 0 . (3.188)

The above argument is not all! We have just noted that ĩ is positively proportional to a
moment curve, but once again since x ≤ 1, it is a capped moment curve and we can reit-
erate our analysis! The above argument gives an intuitive explanation for the additional
gapped Hankel constraints, but with hindsight it is also easy to derive them even more
directly. We simply note that if (a2, a3, a4, a5, · · · ) is in the convex hull of (1, x, x2, · · · ),
then (a2−a3, a3−a4, a4−a5, · · · ) is the the convex hull of x(1−x) × (1, x, x2, · · · ). Since
x(1−x) ≥ 0 for 0 ≤ x ≤ 1, this is the same as the hull of (1, x,2 , · · · ). Thus the discrete
derivative (a2−a3, a3−a4, a4−a5, · · · ) must have a totally positive Hankel matrix!
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In summary, with a known gap, we can find that the following sequence of "twisted"
couplings satisfies the positive Hankel matrix constraint:

a2

a3

a4

a5

a6

a7
...


,



a3−a4
a4−a5
a5−a6
a6−a7

...


,


(a4−a5)− (a5−a6)
(a5−a6)− (a6−a7)

...

 . (3.189)

This is known as the Hausdorff moment problem [158, 159]. The extra constraints from
the knowledge of the gap are interesting, however, they are obviously of only academic in-
terest to the low-energy observer that has no knowledge of the gap. Any higher-dimension
operator measured by a low-energy observer could be produced by arbitrarily weakly cou-
pled, arbitrarily low-mass states, and in the limit where the masses and couplings go to
zero we recover the pure Hankel constraints. Note that the pure Hankel constraints are
homogeneous in mass dimensions, comparing sums of products of couplings with the same
total mass dimension, which are the only sorts of constraints we can talk about without
knowledge of an absolute mass scale (such as the gap). For this reason, in the rest of
this paper, we will focus on these types of universal constraints that can be sensibly
formulated in the low-energy theory, assuming no knowledge of the gap.
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3.8 Scalar EFT-hedron

So far we have restricted ourselves to the geometry arising from singularities on the
positive real s-axis. For a general 2 → 2 process, M(1a, 2b, 3b, 4a), the amplitude will
have poles and discontinuities on both positive and negative real s-axes, reflecting s and
u-channel exchanges:

1

2 3

4 1

2 3

4

(s) (u)

a a a a

b b b b

.

The residue or discontinuity on the s-channel as a function of t will be identical to that
in the u-channel since the two diagrams are related via 2↔ 3 exchange. However, while
the residues are the same, the u-channel singularities lie on the negative s-axes with a
t-dependent shift: u−m2 = −s− (t+m2). In other words, the low energy couplings are
now governed by the Taylor expansion of:

−
∑
a

pℓa

[
1

s−m2
a

+
1

−s− t−m2
a

]
Gℓa

(
1+

2t

m2
a

)
. (3.190)

Recall that in the previous section, the s-channel EFT-hedron is the direct product of the
positive geometry of the Gegenbauer vectors and that of the moment curve. Compared
to the above one can see that we now have a new feature: upon Taylor expansion, the
t in the u-channel will mix with that from Gℓ(1 + 2t

m2 ), and the two geometries are no
longer a direct product, but "entangled".

Due to the s, u symmetry, it will be more convenient to parameterize our kinematics as

s = − t
2
+ z, u = − t

2
− z , (3.191)

and the four-point amplitude is a function of z, t, M(z, t). The low energy couplings are
now extracted from the Taylor expansion of:

−
∑
a

pa

(
1

− t
2
− z −m2

a

+
1

− t
2
+ z −m2

a

)
Gℓa

(
1 +

2t

m2
a

)
(3.192)

The resulting Taylor expansion only has even powers of z, which is a reflection of the
underlying s↔ u symmetry. If we consider the geometry associated with fixed k or fixed
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q, then the geometry here is the Minkowski sum of the s- and u-channel convex hull.
Thus we have5

ak,qz
k−qtq =

∑
a

pa
[
xk+1
a uℓa,k,q

]
zk−qtq k−q ∈ even . (3.193)

where the coefficients uℓ,k,q are linear combinations of Gegenbauer Taylor coefficients vℓ,qs:

uℓ,k,q =
∑
a+b=q

(−)a (k−q + 1)a
a!

2b−avℓ,b . (3.194)

Thus for fixed k, the couplings must live inside Conv[u⃗ℓ,k], where

k ∈ even : u⃗ℓ,k = (uℓ,k,0, uℓ,k,2, · · · , uℓ,k,k)

k ∈ odd : u⃗ℓ,k = (uℓ,k,1, uℓ,k,3, · · · , uℓ,k,k) . (3.195)

Importantly, the vectors u⃗ℓ,k are labeled by both the spin and k. This k-dependence was
absent in the s-channel analysis, where Conv[v⃗ℓ] only depends on spin. This new feature
leads to an important distinction between s-channel and full EFT-hedron.

Due to the absence of zodd terms, at fixed k the dimensionality of u⃗ℓ,k is smaller than v⃗ℓ
(half for k ∈ odd). More precisely, u⃗ℓ,k is obtained by a GL rotation of v⃗ℓ that projects
away the odd components. For example, for k ∈ even we have:

u⃗ℓ,k =



uℓ,k,0

0

uℓ,k,2
...
0

uℓ,k,k


=



1 0 0 0 0 0

0 0 0 0 0 0
(k−1)2

2
1
22

(k−1)1 1 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0

(1)k
k!

2−k − (1)k−1

k−1!
22−k (1)k−2

k−2!
24−k · · · −2k−2 1





vℓ,0

vℓ,1

vℓ,2
...

vℓ,k−1

vℓ,k


.

(3.196)
Due to this projection, Conv[u⃗ℓ,k] does not inherit the positivity of Conv[v⃗ℓ], and thus
we cannot conclude that Conv[u⃗ℓ,k] is a cyclic polytope. Similarly for fixed q, comparing
the coefficient of xk+1

a in eq.(3.193) with the s-channel eq.(3.149), we see that the k-
dependence of uℓa,k,q results in each moment xk+1

a being weighted differently, and we no
longer have a momentum curve. Thus naively, the positivity geometry that defined the
s-channel EFT-hedron is lost, and we no longer have control over the geometry. As we
will now see, there is in fact a hidden positivity that retains most of the structure of the
s-channel cyclic polytope, thus allowing us to carve out the EFT-hedron.

5Here we define the couplings ak,q with respect to powers of z, t. To avoid proliferation of new
couplings, we will continue to use the notation ak,q where the context is obvious.
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The s−u polytope
Let us consider the boundaries of the (s−u) polytope, i.e. Conv[u⃗ℓ,k]. We will be inter-
ested in the sign for the determinant of ordered u⃗ℓ,ks. Setting k = 4 as an example, we
find:

Det
(

u⃗ℓ1,4 u⃗ℓ2,4 u⃗ℓ3,4

)
= Det

 vℓ1,0

vℓ1,2 − 3
4
vℓ1,1 {ℓ2} {ℓ3}

vℓ1,4 − 1
4
vℓ1,3 +

1
16
vℓ1,2 − 1

64
vℓ1,1


= Det

 vℓ1,0

vℓ1,2 {ℓ2} {ℓ3}
vℓ1,4

− 3

4
Det

 vℓ1,0

vℓ1,1 {ℓ2} {ℓ3}
vℓ1,4

− 1

32
Det

 vℓ1,0

vℓ1,1 {ℓ2} {ℓ3}
vℓ1,2


− 1

4
Det

 vℓ1,0

vℓ1,2 {ℓ2} {ℓ3}
vℓ1,3

+
3

16
Det

 vℓ1,0

vℓ1,1 {ℓ2} {ℓ3}
vℓ1,3

+ · · · , (3.197)

where {ℓi} represents the same as the first column just with ℓ1 → ℓi, and ℓ1 < ℓ2 < ℓ3.
We see that the determinant for ordered u⃗ℓ,k is given by a sum of determinant for ordered
v⃗ℓ,k with mixed signs, and thus the positivity of the latter does not imply that for the
former.

Amazingly, explicit evaluations of eq.(3.197) reveal that the determinant is positive so
long as {ℓi}s are larger than some critical spin! That is, above some critical spin, ℓc,

Det[{u⃗ℓ1,k, u⃗ℓ2,k, · · · }] > 0, ∀ ℓc ≤ ℓ1 < ℓ2 < · · · . (3.198)

In other words the convex hull of Gegenbauer vectors above the critical spin yields a
cyclic polytope.6 For example, focusing on four-dimensions, we find the critical spin at
different k given as:

k 2 3 4 5 6 7 8 9 10
ℓc 1 2 2 3 3 4 4 5 5

. (3.199)

It is intriguing to understand how such positivity emerged. In the RHS of eq.(3.197),
each term can be identified as a minor of the Gegenbauer matrix with half of the rows
removed. Consider the ratio of the first term on the RHS of eq.(3.197), against the next
three. The first term has the property that it retains only even Taylor expansion terms.
We plot these ratios for spins (ℓ1, ℓ2, ℓ3) = (1 + n, 2 + n, 3 + n) in fig.(3.12). As we can
see, the leading term is dominant to the others as we increase in spin. Thus even though
the other determinants in eq.(3.197) may have negative coefficients, their contributions
are overwhelmed by the leading term which leads to the observed positivity. In other
words, the minors with all even (or odd depending on the dimensions) Taylor coefficients
take the maximal value!

6A fun "historic" note, the authors actually first observed the positivity of the ordered determinants
for u⃗ℓ,k, not v⃗ℓ.
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Figure 3.12: We take the ratio of the four determinants in the second and third line in
eq.(3.197), denoted as mi(ℓ1, ℓ2, ℓ3), for i = 1, · · · , 4. We plot m1(1+n,2+n,3+n)

m2(1+n,2+n,3+n)
(red),

m1(1+n,2+n,3+n)
m3(1+n,2+n,3+n)

(blue), and m1(1+n,2+n,3+n)
m4(1+n,2+n,3+n)

(green), with n = 1, · · · . As we can see,
m1(ℓ1, ℓ2, ℓ3) is the largest and the ratio is an increasing function with spins.

The fact that u⃗ℓ,k form a cyclic polytope above the critical spin indicates that for our
s−u polytope, most of the boundaries are known except for those involving spins below
the critical spin, which can be computed straightforwardly. For coefficients that we can
reliably bound, i.e. those proportional to zn with n ≥ 2. For k=2 (D4ϕ4), we have

MD4ϕ4 = (a2,0z
2 + a2,2t

2). (3.200)

which simply gives us a2,0 > 0. For higher k, we have:

• k=3 : D6ϕ4

MD6ϕ4 = (a3,1z
2t+a3,3t

3). (3.201)

Here we again have a single coefficient a3,1 to bound. Since

uℓ,3,1 = {−3, 1, 9, 21, ...} , (3.202)

due to the first entry being negative, the positive span of these numbers will cover
the whole real line, meaning we have no bound for the coefficient a3,1.

• k=4 : D8ϕ4

MD8ϕ4 = (a4,0z
4 + a4,2z

2t2 + a4,4t
4). (3.203)

We can hope to bound (a4,0, a4,2). The u⃗l,k for each spin is(
uℓ,4,0

uℓ,4,2

)
=

(
2

3

)
,

(
2

−3

)
,

(
2

−3

)
,

(
2

27

)
, · · · . (3.204)
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Projectively these are points in P1, and the boundaries are given by the minimum
and maximum value for the ratio u∗,4,2

u∗,4,0
, which is given by −3

2
and ∞ respectively.

Thus we simply have the bound:

a4,2
a4,0
≥ −3

2
. (3.205)

• k=5 : D10ϕ4

MD10ϕ4(s, t) = (a5,1z
4t+a5,3z

2t3+ · · · ). (3.206)

where we’ve suppressed the couplings that we cannot bound. We would like to
bound (a5,1, a5,3) and the space is P1. However, listing the relevant contributions
from each spin

uℓ,5,3
uℓ,5,1

=

{
1

2
,−7

2
,− 5

14
,−33

38
, ...

}
, (3.207)

we see that just as in the k = 3 case, the positive span will cover the entire P1, and
thus the bound is trivial.

• k=6 : D12ϕ4

MD12ϕ4 = (a6,0z
6+a6,2z

4t2+a6,4z
2t4+ · · · ). (3.208)

we can bound a6=(a6,0, a6,2, a6,4) and the geometry is P2. The boundaries are given
by:

⟨a6, 2, 1⟩, ⟨a6, 1, 4⟩, ⟨a6, i, i+1⟩i≥4, ⟨a6,∞, 2⟩. (3.209)

We see that Conv[u⃗ℓ,6] retains most of the boundaries of a cyclic polytope. Note
that since the spin-0 and 3 vector are not involved with any boundary, they are
inside the hull.7

Moving to higher-ks, in general there are no bounds for k ∈ odd, while for k ∈ even we
have the familiar cyclic polytope boundaries above a critical spin and a few additional
boundaries involving spins below the critical spin.

Identical scalars: intersecting with the permutation symmetry plane

When the scalars are identical, the amplitude further respects permutation invariance,
and at low energies will be given as a polynomial in σ2 = (s2 + t2+u2) and σ3 =

(s3+t3+u3). This translates to the couplings ak,q living on the permutation plane Xperm,
defined through,

Xperm : M (z, t) =M

(
z

2
+
3t

4
,− t

2
+z

)
. (3.210)

7Here, the critical spin is 4 instead of 3 as listed in table 3.199. This is because here we are only
keeping the first three components of u⃗ℓ,6, i.e. uℓ,6,0, uℓ,6,2, and uℓ,6,4.
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Figure 3.13: The space of allowed (a6,2
a6,0

, a6,4
a6,0

). The shaded region is carved out by the
unitary polygon, whose boundary is composed of (ℓ, ℓ+ 2) with ℓ ≥ 2, and (2,∞). Note
that spin-0 is inside the hull and thus not part of the boundary. Finally the red-line
represents the intersection of the permutation "line" Xperm and the unitary polygon.

Thus the geometry of interest is the intersection between Xperm and the unitary polytope,
where the later is now constructed from even spins only. The dimensionality of Xperm is
the number of independent polynomials built from σ3 and σ2. For k = 2, 4 the polynomial
is unique, and the first place where there are two possibilities is k = 6: σ2

3 and σ3
2. On

Xperm the couplings are parameterize as:


a2,0 a2,2

a4,0 a4,2 a4,4

a6,0 a6,2 a6,4 a6,6

a8,0 a8,2 a8,4 a8,6 a8,8

→


e2

3
4
e2

e4
3
2
e4

9
16
e4

e6 f6
45
16
e6 − 1

2
f6

9
32
e6 +

1
16
f6

e8 f8
21
8
e8 +

1
4
f8

21
8
e8 − 5

16
f8

45
256

e8 +
3
64
f8

 .

(3.211)

For k = 2, 4 we simply have the bound e2, e4 > 0. At k = 6, 8, the boundaries bound
the ratio f

e
to be:

k = 6 : −21

4
<
f6
e6
<

183

4
, k = 8 : −8 < f8

e8
<

223

4
. (3.212)

In fig.3.13 we display the intersection geometry in P2 for k = 6.

These can be explicitly checked against the spinor-bracket stripped type-II closed string
amplitude:

Γ[−s]Γ[−u]Γ[−t]
Γ[1+s]Γ[1+u]Γ[1+t]

. (3.213)
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We can then identify:

k = 6 :
f6
e6

=
(8ζ33 + 31ζ9)

12ζ9
= 3.73895, k = 8 :

f8
e8

=
2(2ζ11 + ζ5ζ

2
3 )

ζ11
= 6.99512 .

(3.214)
We see that it indeed resides in the bounds given by eq.(3.212).

Deformed moment curves and the EFT-hedron

We’ve seen the k-dependence of u⃗ℓ,k leads to a deformation of the cyclic polytope discussed
in the s-channel geometry. Now we would like to see how such mixing modifies the Hankel
constraints, and the EFT-hedron.

Deformed moment curves

Let’s again collect the coefficient with different ks and fixed q in to a column vector:
a2,q

a4,q

a6,q

· · ·
ak,q

 =
∑
a

pa



uℓa,2,q

uℓa,4,q xa

uℓa,6,q x
2
a

· · ·
uℓa,k,q x

k−2
2

a


. (3.215)

For q = 0 as uℓ,k,0 = vℓ,0 ≥ 0, the vectors on the RHS are just points on a moment curve
multiplied by an overall positive factor and the usual Hankel matrix constraint applies.
For q ̸= 0, the k dependence of uℓ,k,q spoils this overall proportionality. This leads us to
consider a generalization of moment curves: given a set of distinct positive factors αi, we
define a deformed moment curve (1, x, α1x

2, · · · , αn−1x
n). Note that the convex hull of

such deformed moment curve can be straightforwardly carved out by the total positivity
of the rescaled Hankel matrix:

(
a4,q a6,q

a6,q
a8,q
α1

)
,

(
a6,q

a8,q
α1

a8,q
α1

a10,q
α2

)
,

 a4,q a6,q
a8,q
α1

a6,q
a8,q
α1

a10,q
α2

a8,q
α1

a10,q
α2

a12,q
α3

 · · · . (3.216)

However, this is not sufficient to describe eq.(3.215) for two reasons: 1.) while each vector
on the RHS of eq.(3.215) is a point on a rescaled moment curve, the scaling factors are
distinct for different spins, and 2.) the rescaled factor uℓ,k,q is not necessarily positive.

Let’s instead collect the different qs into row vectors u⃗ℓ,k and a⃗k, and rewrite eq.(3.215)
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as: 
a⃗2

a⃗4

a⃗6

· · ·
a⃗k

 =
∑
a

pa



u⃗ℓa,2

u⃗ℓa,4 xa

u⃗ℓa,6 x
2
a

· · ·
u⃗ℓa,k x

k−2
2

a


. (3.217)

Here each vector u⃗ℓ,k will be of the same dimension. Now denote the boundaries of
Conv[u⃗ℓ,k] as W⃗k

I . The inner product (u⃗ℓ,k · W⃗k′
I ) by construction will give a positive

factor when k = k′, but no longer guaranteed for k′ ̸= k. If we find some wall such that
(u⃗ℓ,k · W⃗I) is always positive, then we are in business. Thus the task at hand is to find
the boundary for Conv[u⃗ℓ,2, u⃗ℓ,4, · · · ], i.e. we will be interested in the boundary of the
Minkowski sum. Remarkably, numerical analysis so far has shown that the boundaries
of Conv[u⃗ℓ,2, u⃗ℓ,4, · · · ] are simply that of the highest k.

Conv[u⃗ℓ,k1 ] ⊂ Conv[u⃗ℓ,k2 ], ∀k1 < k2 , (3.218)

so in other words the inner product of u⃗ℓ,k with W⃗k′
I is guaranteed to be positive for

k ≥ k′.

Let us take eq.(3.217) and dotted into the boundaries of the highest k:
a⃗2 · W⃗k

I

a⃗4 · W⃗k
I

a⃗6 · W⃗k
I

· · ·
a⃗k · W⃗k

I

 =
∑
a

pa



(u⃗ℓa,2 · W⃗k
I )

(u⃗ℓa,4 · W⃗k
I )xa

(u⃗ℓa,6 · W⃗k
I )x

2
a

· · ·
(u⃗ℓa,k · W⃗k

I )x
k−2
2

a


. (3.219)

Since by construction u⃗ℓ,k ·W⃗k
I ≥ 0, the RHS gives a sum over points on a set of deformed

moment curves, with the deformation parameters given as {α⃗ℓ} = {u⃗ℓ,2·W⃗k
I , u⃗ℓ,4·W⃗k

I , · · · }.
Note that the {α⃗ℓ}s are distinct for each spin.

Now we have arrived at a well posed positive geometry: the convex hull of an infinite
number of deformed half moment curves. To proceed we will construct a "principle
deformed curve" such that the deformed curves defined by {α⃗ℓ} reside in the hull of the
former, i.e. we will like to find a set of parameters {α̃i} that defines a deformed moment
curve whose convex hull encapsulates the RHS of eq.(3.219) for all ℓ. Note that since
{α⃗ℓ} depends on the boundary W⃗k

I , so will {α̃i}. Let us see how this works in practice.
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• k=6: Beginning with eq.(3.219) and setting k = 6, we would like to find a deformed
moment curve

(1, x, α1x
2) (3.220)

such that the RHS of eq.(3.219) lies inside its convex hull. Since the being inside
its hall translates to total positivity of the deformed Hankel matrix, we conclude
that we need to find α1 such that(

u⃗ℓ,2 · W⃗6
I u⃗ℓ,4 · W⃗6

I

u⃗ℓ,4 · W⃗6
I

u⃗ℓ,6·W⃗6
I

α̃1

)
, (3.221)

is totally positive for all ℓ, or

(u⃗ℓ,6 · W⃗6
I )(u⃗ℓ,2 · W⃗6

I )

(u⃗ℓ,4 · W⃗6
I )

2
≥ α̃1, ∀ℓ , (3.222)

Thus there is a maximal value for α̃1 corresponding to the minimal value of the
RHS of the above. Importantly, since some of the vectors u⃗ℓ,6 will inevitably be on
the boundary W⃗6

I , the upper bound for α̃1 is actually zero! To this end, it will be
natural to consider boundaries that are outside of Conv[u⃗ℓ,6], which we will denote
as W⃗6′

I ≡ W⃗6
I +∆w. The value for α̃i now becomes ∆w dependent.

• k=8: taking k = 8 on the RHS of eq.(3.219) for fixed W⃗8
I , the independent posi-

tivity constraint will be the total positivity of(
u⃗ℓ,2 · W⃗8′

I u⃗ℓ,4 · W⃗8′
I

u⃗ℓ,4 · W⃗8′
I

u⃗ℓ,6·W⃗8′
I

α̃1

)
,

 u⃗ℓ,4 · W⃗8′
I

u⃗ℓ,6·W⃗8′
I

α̃1

u⃗ℓ,6·W⃗8′
I

α̃1

u⃗ℓ,8·W⃗8′
I

α̃2

 , (3.223)

where once again W⃗8′
I = W⃗8

I +∆w. To find a set of suitable (α̃1, α̃2), we first solve
total positivity for the first matrix to determine α̃1, and use the result to solve the
second matrix to determine α̃2.

For general k one iteratively solves the α̃i in sequence. As a final example, for k = 10 we
simply iteratively solve total positivity of the following three matrices

(
u⃗ℓ,2 · W⃗10′

I u⃗ℓ,4 · W⃗10
I

u⃗ℓ,4 · W⃗10′
I

u⃗ℓ,6·W⃗10′
I

α̃1

)
,

(
u⃗ℓ,4 · W⃗10′

I
u⃗ℓ,6·W⃗10′

I
α̃1

u⃗ℓ,6·W⃗10′
I

α̃1

u⃗ℓ,8·W⃗10′
I

α̃2

)
,

 u⃗ℓ,2 · W⃗10′
I u⃗ℓ,4 · W⃗10′

I
u⃗ℓ,6·W⃗10′

I
α̃1

u⃗ℓ,4 · W⃗10′
I

u⃗ℓ,6·W⃗10′
I

α̃1

u⃗ℓ,8·W⃗10′
I

α̃2

u⃗ℓ,6·W⃗10′
I

α̃1

u⃗ℓ,8·W⃗10′
I

α̃2

u⃗ℓ,10·W⃗10′
I

α̃3

 .

(3.224)
In all cases, we need to choose a deformed boundary W⃗k′

I = W⃗k
I +∆w.

The EFT-hedron
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We now turn to the full EFT-hedron. Again begin with

A⃗I =


A2,I

A4,I

· · ·
Ak,I

 =


a⃗2 · W⃗I

a⃗4 · W⃗I

· · ·
a⃗k · W⃗I

 , (3.225)

where we’ve taken k to be even. Firstly Ak,I is positive, whenever W⃗I is one of the facets
of Conv[u⃗ℓ,k]. Furthermore we require total positivity of the deformed Hankel matrix of
A⃗I , given as(

A2,I A4,I

A4,I
A6,I

α̃1

)
,

(
A4,I

A6,I

α̃1
A6,I

α̃1

A8,I

α̃2

)
,

 A2,I A4,I
A6,I

α̃1

A4,I
A6,I

α̃1

A8,I

α̃2
A6,I

α̃1

A8,I

α̃2

A10,I

α̃3

 , e.t.c. (3.226)

where W⃗I is now the deformed boundary of maximal k, W⃗k′
I , and the deformation pa-

rameters {α̃i}s defined through the total positivity of eq.(3.224). These two constraints
are encapsulated as:

K[A⃗I ]{α̃i} is a totally positive matrix . (3.227)

Let us compare side by side the s-channel EFT-hedron and the general EFT-hedron:
starting with A⃗I given in eq.(3.225), they are defined by:

s-ch EFT-hedron EFT-hedron
Hankel matrix Canonical K[X] Deformed K[X]{α̃i}

WI boundaries of Conv[v⃗ℓ] boundaries of Conv[u⃗ℓ,k]

In the following we will consider the P1 geometry. Example:

Let’s consider the explicit example for k = 4, 6, 8, where a4,0 a4,2

a6,0 a6,2

a8,0 a8,2

 =
∑
a

pa

 x4au⃗ℓa,4

x6au⃗ℓa,6

x8au⃗ℓa,8

 u⃗ℓ,k = (uℓ,k,0, uℓ,k,2) , (3.228)

Since uℓ,k,0 is positive for all ℓ, k, we can use it to positively rescale the first entry to
1 and define u

(k)
ℓ =

uℓ,k,2
uℓ,k,0

. Then Conv[u⃗ℓ,k] is simply a line segment in P1 with its

boundary determined by the minimum value of u(k)ℓ . From eq.(3.194) one can check that
the minimum value of u(k)ℓ for fixed k and arbitrary spin is given as:

Min
[
u
(4)
ℓ

]
= −3

2
(ℓ = 1, 2), Min

[
u
(6)
ℓ

]
= −21

4
(ℓ = 2), Min

[
u
(8)
ℓ

]
= −8 (ℓ = 2) .

(3.229)
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Note the above agrees with eq.(3.218), which states that the boundary of the Minkowski
sum is given by that of the largest k, here 8. Rescaling (ak,0, ak,2) = ak (1, βk), the above
tells us that the boundaries of Conv[u⃗ℓ,k] for each k translate to

a4 ≥ 0, a6 ≥ 0, a8 ≥ 0, β4 ≥ −
3

2
, β6 ≥ −

21

4
, β8 ≥ −8 . (3.230)

Furthermore, we also have that ak,0 is inside the convex hull of the half-moment curve:

a26 − a4a8 ≥ 0 . (3.231)

These inequalities correspond to A4,I , A6,I , A8,I being positive with WI are chosen to be
the boundary of Conv[u⃗ℓ,k], and (

A4,I A6,I

A6,I
A8,I

α̃1

)
(3.232)

being totally positive, where WI = (1, 0) and α̃1 = 1.

Next, we consider the positivity of Det[eq.(3.232)] where WI is the boundary of the
Minkowski sum. Since the boundary of Conv[u⃗ℓ,4, u⃗ℓ,6, u⃗ℓ,8] is given by (1,−8), the upper
bound for α̃1 is such that

(u
(4)
ℓ + 8 +∆w)(u

(8)
ℓ + 8 +∆w)

α̃1

−
(
u
(6)
ℓ + 8 +∆w

)2
≥ 0, ∀ℓ . (3.233)

Note that we have add a small deformation ∆w. This is needed since hereWI is identified
with u

(6)
2 , which would cause the first term in the above (with ∆w = 0) to be zero for

ℓ = 2 and invalidate the inequality. Picking ∆w = 1
100

we find α̃1 ≤ 0.0085. Equipped
with this the positivity of the determinant eq.(3.232) translates to

(β4 + 8 + 1
100

)(β8 + 8 + 1
100

)

0.0085
−
(
β6 + 8 +

1

100

)2

≥ 0 . (3.234)

Note that in the above it is necessary to consider walls that are deformed away from
the boundary of Conv[u⃗ℓ,4, u⃗ℓ,6, u⃗ℓ,8], and α̃1 as well as that the non-linear constraint
that follows depends on the choice of deformation parameter ∆w. As we will see in
appendix B.6, the most stringent non-linear constraint does not necessarily correspond
to ∆w being small! In other words, the true boundary of the EFT-hedron is actually
defined by a new wall that can be far from the boundaries of the cyclic polytope. A more
complete understanding of the true boundaries will be left to future studies.

When the external particles are identical, we should consider even spins only. However,
since the minimum in (3.229) is given by spin-2, the optimal value for α̃1 remains the
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same. Thus the problem simply reduces to the intersection of the permutation plane
defined in (3.210) with our P1 geometry. From (3.211), we see that β4 =

a4,2
a4,0

is fixed to
3
2
. This turns (3.234) into a quadratic bound for β6 and β8. Thus for identical scalars,

the EFT-hedron bounds are given by eq.(3.230) and

(
19

2
+

1

100
)(β8 + 8 +

1

100
)− 0.0085

(
β6 + 8 +

1

100

)2

≥ 0 . (3.235)

Multiple Species

Let us now return to the scattering of a, b, but now consider the amplitude M(a, b, b, a)

in combination with all a and all b scattering. For simplicity we will assume each of a, b
have a Z2 symmetry, so the only non-vanishing amplitude involves even number of a’s
and b’s. Now we can get constraints mixing the a4, a2b2 and b4 amplitudes, if we consider
ABBA scattering of general states A = αa+βb,and B = γa+ρb. These must satisfy
the EFT-constraints for all (α, β, γ, ρ); in the special case of A = B (α = γ, β = ρ)
we intersect with the crossing symmetry plane as well. A systematic exploration of the
geometry associated with this envelope of constraints is left for future work, but it is easy
and illuminating to look at the simplest example.

Consider the leading 4-derivative amplitudes

M(a4) = ca(s
2+t2+u2), M(b4) = cb(s

2+t2+u2), M(abba) = c(s2+u2)+
d

2
t2 . (3.236)

Note our analysis of M(abba) just tells us that c > 0; d can have any sign. But we will
now see that magnitude of d is bounded by ca,b as

cacb − d2 > 0 . (3.237)

To whit, the amplitude for M(ABBA) is given by

M(ABBA) = (αγ)2M(a4)+(βρ)2M(b4)+(γβ)2M(baab)+(αρ)2M(abba)

+ (αβγρ) [M(aabb)+M(baba)+M(abab)+M(bbaa)] . (3.238)

Note that while the term proportional to d in M(abba) drops out in the forward limit as
t→ 0, this is not the case e.g. for M(aabb) = c(u2+t2)+d

2
s2 which becomes s2(c + d/2)

in the forward limit.

Taking the t→ 0 limit, the coefficient of s2 in the M(ABBA) amplitude, which must be
positive, is given by

(αγ)2ca+(βρ)2cb+(αβγρ)(2d+4c)+2c((γβ)2+(αρ)2)

= (αγ)2ca+(βρ)2cb+2d(αβγρ)+2c(γβ+αρ)2 . (3.239)
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Now of course if we put α = 1, β = 0, γ = 0, ρ = 1, we go back to A = a, B = b, and we
learn that c > 0. But now let’s put γβ+αρ = 0. We then have x2ca + y2cb+2xyd > 0,
where x = −α2ρ/β, y = βρ; note that varying over α, β, ρ, (x, y) can be any real numbers.
Thus we learn that ca,b > 0 and cacb − d2 > 0, or the positivity of the matrix in(

x y
)( ca d

d cb

)(
x

y

)
. (3.240)

Note it was important in this analysis to allow general AB states; had we taken only
A = B → α = γ, β = ρ, we would find no constraints on d > 0.

This can be straightforwardly generalized to any number of species labelled by the index
i. Again assuming Z2 symmetry for each species, writing

M(i4) = ci(s
2 + t2 + u2), M(ijji) = cij(s

2+u2)+dijt
2 , (3.241)

we find that cij ≥ 0, and that the matrix
c11 d12 d13 · · ·
d12 c22 d23 · · ·
d13 d23 c33 · · ·
...

...
...

...

 , (3.242)

is positive. The positivity of a symmetric matrix S is equivalent to the positivity of all
the leading principle minors (determinant of all upper left square matrices) of the matrix
(the Sylvester’s criterion ). As an example we have

det

 c11 d12 d13

d12 c22 d23

d13 d23 c33

 ≥ 0, det

(
c11 d12

d12 c22

)
≥ 0, c11 ≥ 0 . (3.243)

3.9 The spinning EFT-hedron

So far we have examined constraints on amplitudes with external scalars. The analysis
can be readily extended to external spinning states such as gluons, photons, and gravi-
tons, where the higher dimensional operators of the EFT will be given in terms of field
strengths, Riemann tensors, and derivatives thereof. In subsection 3.6 we’ve seen that the
Taylor vectors of spinning polynomials also generate cyclic polytopes, and thus we can
simply retrace all of the previous discussion, with vℓ,q replaced by the Taylor coefficient
of the spinning polynomials.

An important question is which helicity configuration should one select for the disper-
sive representation. The choice should be such that one is expanding around a forward
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process, i.e. the t → 0 limit corresponds to a, b → b, a scattering. Take for example
M(1+, 2−, 3+, 4−). In the s-channel threshold where 1, 2 are incoming and 3, 4 outgo-
ing, the process corresponds to 1+2− → 3−4+. Note that the helicity of legs 3 and
4 are flipped since we’ve defined the helicity for M with all momenta incoming. For
it to be forward, we should identify the state on leg 1 with 4, so we set p4 = p1 and
p2 = p3 which indeed corresponds to t = 0. For the u-channel threshold one instead
has 1+3+ → 2+4+, which once again correspond to a forward process with p4 = p1 and
p2 = p3. Similarly M(1+, 2+, 3−, 4−) also admits a positive expansion. This is in contrast
with M(1+, 2−, 3−, 4+), where in the s-channel we have 1+2− → 3+4−. In order for this
to be forward, we need to take p1 = p3 and p2 = p4 which corresponds to u = 0 instead
of t = 0. So in this case the small t expansion of the residue is not an expansion around
a forward process, and does not enjoy the positivity properties we wish to exploit.

As a simple example, the s-channel EFT hedron can be generalized to color ordered
states. From the previous discussion, we’ve seen that expanding in t for M(1+, 2−, 3+, 4−)

corresponds to an expansion around the forward limit. Thus the s-channel residue can
be positively expanded on dℓ2,2(θ) (see eq.(3.140))

Ress[M(1+, 2−, 3+, 4−)] =
∑
ℓ

pℓd
ℓ
2,2(θ) pℓ ≥ 0. (3.244)

Removing the overall spinor bracket mandated by the helicity weights, we have:

⟨24⟩2[13]2
(∑

k,q

ak,qs
k−qtq

)
= −⟨24⟩2[13]2

(∑
a

pℓa
d̃ℓa2,2(θ)

s−m2
a

)∣∣∣∣∣
θ=arccos(1+2t/m2

a)

(3.245)

where once again the equality is understood in terms of Taylor expansion, and d̃ℓa2,2(θ) =
dℓa2,2(θ)

cos4 θ
2

. We can then bound operators using the boundaries of the cyclic polytopes, as an
example, for k = 2, which corresponds to D4F 4, we have

⟨a2, ℓ, ℓ+ 1⟩ ≥ 0, a2 = (a2,0, a2,1, a2,2) . (3.246)

The two-dimensional region is then given in fig.3.14. Imposing cyclic symmetry sets
a2,2/a2,0 = 1 and the region becomes a one-dimensional line, and the bound becomes

0 ≤ a2,1/a2,0 ≤
9

5
. (3.247)

For open super-string, we have a2,1
a2,0

= 1
4

and are thus inside the bound.

For photons and gravitons, we need to consider the contributions from both s and u-
channel. Here we choose the amplitude M(1+h, 2+h, 3−h, 4−h), and the s-channel residue
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Figure 3.14: The k = 2 polygon for (+−+−) gluon scattering.

for a spin-ℓ exchange is written as:

Ress
[
M(1+h, 2+h, 3−h, 4−h)

]
= g++

ℓ g−−
ℓ [12]2h⟨34⟩2h dℓ0,0(θ) , (3.248)

where g
++/−−
ℓ is the coupling constant of a real spin-ℓ state to a pair of plus/minus

helicity photon. CPT requires g++
ℓ = (g−−

ℓ )∗, and the above yields a positive expansion
as expected. Furthermore under 3, 4 exchange dℓ0,0(θ) → dℓ0,0(−θ) = (−)ℓdℓ0,0(θ), thus
bose symmetry requires ℓ ∈ even. The u-channel residue is given as:

Resu
[
M(1+h, 2+h, 3−h, 4−h)

]
= (g+−

ℓ )2[12]2h⟨34⟩2hd̃ℓa2,2 (3.249)

where now CPT simply requires g+−
ℓ to be real. Thus we arrive at the following dispersive

representation8

[12]2h⟨34⟩2h
(∑

k,q

ak,qs
k−qtq

)
= −[12]2h⟨34⟩2h

(∑
a

pℓa
dℓa0,0(θ)

s−m2
a

+
∑
b

p̃ℓb
d̃ℓb2,2

u−m2
b

)
,

(3.250)
where pℓa and p̃ℓb are distinct positive coefficients and ℓa ∈ even.

In the following, we will analyze external photons and gravitons separately. For k = even

the bounds are listed as:

(-h,-h,+h,+h):
photon graviton

k = 2 D4F 4 (3.253) D4R4 (3.259)
k = 4 D8F 4 (3.256) D8R4 (3.262)

8The first version of this paper had an error in the residue polynomials in the spinning dispersion re-
lation, which we correct here, modifying the obtained bounds. We thank Zvi Bern, Alexander Zhiboedov,
and Dimitrios Kosmopoulos for pointing out this mistake to us.



156

Photon EFT

For photons, our analysis can be separated into whether or not gravity decouples. For
EFTs whose gravitational dynamics are irrelevant, such as the Euler-Heisenberg theory,
one can bound operators of degree 2 or higher in s. If gravity does not decouple, as
discussed in sec.3.4 the forward limit graviton pole will obstruct any bound on s2. In
practice, starting with the geometry for gravitationally decoupled EFTs, one can incor-
porate gravity simply by projecting the geometry onto the directions perpendicular to
ak,k−2.9

Note that now the s- and u-channel have distinct polynomials, we will label the vectors
from the s and u channel in eq.(3.250) as ℓs and ℓu respectively, and the unitary polytope
is the Minkowski sum of the two polytopes. Furthermore, this helicity configuration is
invariant under t ↔ u exchange, and thus the amplitude must lie on the "symmetry
plane" Xsym parameterized as:

a1,0 a1,1

a2,0 a2,1 a2,2

a3,0 a3,1 a3,2 a3,3

a4,0 a4,1 a4,2 a4,3 a4,4

 →


x 0

x y y

x y y 0

x y z 2(z−y) (z−y)

 . (3.251)

We now give the intersection of Xsym with the unitary polytope:

• k=2 : D4F 4

MD4F 4 = ⟨12⟩2[34]2(a2,0s2 + a2,1st+ a2,2t
2). (3.252)

Now we would like to bound a2 = (a2,0, a2,1, a2,2) which live in P2. The edge of the
polygon is given by

⟨∗, iu+1, iu, ⟩iu≥2, ⟨∗, is, is+2⟩is≥2, ⟨∗, 2u, 2s⟩ , (3.253)

where is, iu represents the Taylor vectors from dis0,0 and diu−2,−2 respectively. Note
that the majority of the edges for the s- and u-channel cyclic polytope remains a
facet for the Minkowski sum. The polygon is presented in projective coordinates(
a2,1
a2,0

, a2,2
a2,0

)
in fig.3.15, where we’ve labeled the vertices from the (purple)s and

(red)u channels explicitly.

On Xsym we have a2,1
a2,0

= a2,2
a2,0

and the geometry reduces to P1. The region of
intersection is given as:

− 30

7
≤ a2,1
a2,0

=
a2,2
a2,0
≤ 6 . (3.254)

9We will assume that RF 2 is not relevant for the analysis, although it is straightforward to incorpo-
rate.
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Figure 3.15: The k = 2 polygon for (− − ++) photon scattering. It is bounded by the
Minkowski sum of the vectors originated from the s-channel (purple dots) and u-channel
(red dots).

Note that similar to the intersection of the scalar s−u polytope with the permu-
tation plane, here the intersection yields leads to EFT coefficients being bounded
from both sides.

• k = 4 : D8F 4

MD8F 4 = ⟨12⟩2[34]2(a4,0s4 + a4,1s
3t+ a4,2s

2t2 + a4,3st
3 + a4,4t

4). (3.255)

The coupling a4 = (a4,0, a4,1, a4,2, a4,3, a4,4) lives in P4, and is bounded by

⟨a4, 2u, 3u, 4u, 5u⟩, ⟨a4, iu, iu+1, ju, ju+1⟩iu,ju≥3,

⟨a4, is, is+2, js, js+2⟩is,js≥2, ⟨a4, is+2, is, ju, ju+1⟩is,≥4,ju≥3,

⟨a4, 4s, 2s, 3u, 2u⟩, ⟨a4, 4s, 2s, 2u, 5u⟩, ⟨a4, 4s, 2s, iu, iu + 1⟩iu≥5

⟨a4, is + 2, is,∞u,∞s⟩is≥2, ⟨a4, iu, iu + 1,∞u,∞s⟩iu≥3

⟨a4, 2s,∞s, 3u,∞u⟩, ⟨a4, 4s, 2u, 3u, 4u⟩, ⟨a4, 4s, 2u, 4u, 5u⟩,

⟨a4, is + 2, is, 2s, 3u⟩is≥4, ⟨a4, 2s, 3u, 2u, 5u⟩is≥4, ⟨a4, 2s, 3u, iu, iu + i⟩iu≥5, .(3.256)
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Figure 3.16: The intersection of the P4 polytope defined by the boundaries in eq.(3.256)
with Xsym.

being non-negative. Note that the boundary of the Minkowski sum consists of
almost all the boundaries of the individual cyclic polytope, label by a pair of con-
secutive spins, as well as the tensor products of consecutive pair from both sides.
At lower spin region we have some irregular boundaries as well. The intersection
of the above with Xsym is illustrated in fig.3.16.

Graviton EFT

For gravity the analysis is a straightforward extension of the photon EFT: simply set
h = 2 in the polynomial basis. From the discussion in sec.(3.4), we’ve seen that the tree-
level four-graviton amplitude does not introduce any t-channel massless obstructions, and
thus here we will be able to bound operators proportional to sn with n ≥ 2. Once again,
we will consider the intersection of the unitary polytope with the symmetry plane Xsym

defined in eq.(3.251):

• k=0 : R4

MR4 = ⟨12⟩4[34]4a0,0. (3.257)
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and we simply have a0,0 > 0.

• k=2 : D4R4

MD4R4 = ⟨12⟩4[34]4(a2,0s2 + a2,1st+ a2,2t
2). (3.258)

The facets are again given by that of the individual cyclic polytope in the s- and
u-channel. The bounds are then given by:

⟨a2, iu+1, iu, ⟩iu≥4, ⟨a2, is, is+2⟩is≥2, ⟨a2, 4u, 1s⟩ . (3.259)

being non-negative, with a2 = (a2,0, a2,1, a2,2). On Xsym we have

− 90

11
≤ a2,1
a2,0

=
a2,2
a2,0
≤ 6 . (3.260)

• k=4 : D8R4

MD8R4 = ⟨12⟩4[34]4(a4,0s4 + a4,1s
3t+ a4,2s

2t2 + a4,3st
3 + a4,4t

4). (3.261)

The facets are:

⟨a4, 4u, 5u, 6u, 7u⟩, ⟨a4, iu, iu+1, ju, ju+1⟩iu,ju≥5,

⟨a4, is, is+2, js, js+2⟩is,js≥2, ⟨a4, is+2, is, iu, iu+1⟩is≥4,iu≥5,

⟨a4, is+2, is,∞u,∞s⟩is≥4,

⟨a4, 4s, 2s, 6s, 5u⟩, ⟨a4, 4s, 2s, 5u, 4u⟩, ⟨a4, 4s, 2s, 4u, 7u⟩,

⟨a4, 4s, 2s, iu, iu+1⟩iu≥7, ⟨a4, 4s, 2s,∞u,∞s⟩,

⟨a4, 2s, 5u, 4u, 7u⟩, ⟨a4, 2s, 5u, iu, iu+1⟩iu≥7,

⟨a4, 2s, 5u,∞u,∞s⟩, ⟨a4, 2s, 5u, is+2, is⟩is≥4,

⟨a4, 4s, 4u, 5u, 6u⟩, ⟨a4, 4s, 4u, 6u, 7u⟩, ⟨a4, iu, iu+1,∞u,∞s⟩iu≥5.

(3.262)

Once again, the facets maintain a cyclic structure at higher spins, while some
irregularities occur at lower spin region. Its intersection with the symmetry plane
Xsym is displayed in fig.3.17.

In this section we have focused for simplicity on the scattering of a single species—
photons or gravitons—but it is easy to constrain photon-graviton couplings as well. The
amplitude M(1−12+23−24+1) is forward as t → 0 in both the s- and u- channels, and so
has a positive expansion. Thus considering the Gegenbauer constraints, the coefficients
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Figure 3.17: The intersection of the P4 polytope defined by the boundaries in eq.(3.262)
with Xsym.

must lie inside the unitarity polytopes; but we don’t have the extra crossing symmetry
constraints enjoyed by pure photon/graviton scattering. While this is all we can say
considering only photon-graviton scattering, as with our multi-species discussion for the
scalar case, there are clearly constraints relating the pure photon and pure graviton
scattering coefficients to those of photon-graviton scattering, considering the scattering
of general linear combinations of different species, which would be interesting to further
explore.

3.10 Explicit EFTs in the EFT-hedron

So far we have been mostly discussing bounds on general EFTs, derived from the analyt-
icity and unitarity in the UV. In this section we will discuss in more detail how realistic
EFTs with explicit UV completions satisfy these bounds.
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s-channel EFT-hedron

Let’s begin with the s-channel constraints. We will use the tree-level massless open
superstring amplitude as an example eq.(3.14), which we display again here

M(1+2−3+4−) = −⟨24⟩2[13]2Γ[−s]Γ[−t]
Γ[1−s−t]

= ⟨24⟩2[13]2
[
− 1

st
+
∑
k,q

ak,qs
k−qtq

]
. (3.263)

The coupling constants, up to k = 4, are given as
a0,0

a1,0 a1,1

a2,0 a2,1 a2,2

a3,0 a3,1 a3,2 a3,3

a4,0 a4,1 a4,2 a4,3 a4,4

 =


ζ(2)

ζ(3) ζ(3)
π4

90
π4

360
π4

90

ζ(5) 2ζ(5)−ζ(3)ζ(2) 2ζ(5)−ζ(3)ζ(2) ζ(5)
π6

945
π6−630ζ2(3)

1260
23π6

15120
− ζ2(3) π6−630ζ2(3)

1260
π6

945

 .

The s-channel EFT-hedron defined in eq.(3.172) says that the Hankel matrix for Ak,I =
a⃗k · WI must be a totally positive matrix, where WI is the facets.
Let us first consider the facets WII , the unit vectors. The Hankel matrix for these facets
is

Wq
II
= δq0 :

 ζ2 ζ3
π4

90

ζ3
π4

90
ζ5

π4

90
ζ5

π6

945

 , Wq
II

= δq1 :

(
ζ3

π4

360
π4

360
2ζ5−ζ3ζ2

)
,

(
π4

360
2ζ5−ζ3ζ2

2ζ5−ζ3ζ2
π6−630ζ23

1260

)

Wq
II

= δq2 :

(
π4

90
2ζ5−ζ3ζ2

2ζ5−ζ3ζ2
23π6

15120
−ζ23

)
. (3.264)

It is straightforward to check that these matrices are positive semi-definite.

Next we consider facets of the cyclic polytopeWIb . For this we utilize the Taylor vectors
for spinning polynomials of h = 1 listed in eq.(3.143), and denote each column as ν⃗ℓ.
Recall that due to Yang’s theorem, ℓ starts at 2. Since the Taylor vectors forms a cyclic
polytope, the boundaries for the P1, P2, and P3 geometry are given by:

P1 : (2), P2 : (i, i+1), P3 : (2, i, i+1) . (3.265)

When written in terms of dual vectors, they are given by contracting the d vectors with
the d+1 component Levi-Cevita tensor. Explicitly they are given as:

⟨∗, 2⟩ = det

(
1 ∗
0 ∗

)
, ⟨∗, i, i+1⟩ = det


∗ 1 1

∗ νℓ,1
νℓ,0

νℓ+1,1

νℓ+1,0

∗ νℓ,2
νℓ,0

νℓ+1,2

νℓ+1,0

 ,

⟨2, ∗, i, i+1⟩ = det


1 ∗ 1 1

0 ∗ νℓ,1
νℓ,0

νℓ+1,1

νℓ+1,0

0 ∗ νℓ,2
νℓ,0

νℓ+1,2

νℓ+1,0

0 ∗ νℓ,3
νℓ,0

νℓ+1,3

νℓ+1,0

 . (3.266)
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When taking the inner product with some vector X, ∗s denotes the position where
components of X should be placed. For example for P1, the coupling constants are
organized as

a⃗k =

(
1
ak,1
ak,0

)
(3.267)

and identify WI as the boundary for P1 in eq.(3.266), we find (again with Ak ≡ a⃗k · WI) A1

A2

A3

 =


a1,1
a1,0
a2,1
a2,0
a3,1
a3,0

 . (3.268)

Then from eq.(3.172), we see that being inside the s-channel EFT-hedron requires

K[A⃗] =

(
A1 A2

A2 A3

)
=

(
1 1

4
1
4

2− ζ(2)ζ(3)
ζ(5)

)
(3.269)

to be a totally positive matrix. Indeed one can straightforwardly verify that each com-
ponent and the determinant of the above matrix is positive. Next let’s consider the
constraint in P2. Choosing WI from eq.(3.266) to be ⟨∗, 6, 7⟩, we find, A2

A3

A4

 =


7(45a2,0−20a2,1+6a2,2)

30a2,0
7(45a3,0−20a3,1+6a3,2)

30a3,0
7(45a4,0−20a4,1+6a4,2)

30a4,0

 =


161
15

7
90

(
51 + 7π2ζ(3)

ζ(5)

)
721
80

+ 882ζ2(3)
π6

 . (3.270)

One again finds that the matrix

(
A2 A3

A3 A4

)
is totally positive.

Full EFT-hedron

Now let’s consider the tree-level closed superstring amplitude in four-dimensions, with
M(1+22−23+24−2):

− ⟨24⟩4[13]4 Γ[−s]Γ[−t]Γ[−u]
Γ[1+s]Γ[1+t]Γ[1+u]

= ⟨24⟩2[13]2
[
− 1

stu
+
∑
k,q

ak,qz
k−qtq

]
, (3.271)
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whose low energy effective coupling constants are:
a0,0

a2,0 a2,2

a4,0 a4,2 a4,4

a6,0 a6,2 a6,4 a6,6

 =


2ζ(3)

2ζ(5) 3
2
ζ(5)

2ζ(7) 3ζ(7) 9
8
ζ(7)

2ζ(9) 1
6
(8ζ3(3)+31ζ(9)) 1

24
(−16ζ3(3)+73ζ(9)) 1

96
(8ζ3(3)+85ζ(9))

 .

(3.272)

Since the UV states now appear in both s−u channels, the couplings should satisfy the
constraints of the full EFT-hedron.

Now let’s consider the simplest EFT-hedron constraint in P1, which was discussed in
detail in Appendix.B.6. The difference is that we will use spinning polynomials for our
facets. Furthermore, due to the helicity configuration, the s-channel and u-channel will
contribute independently and a Minkowski sum over polytopes will be taken. To simplify
the discussion, we will assume permutation invariance for the space of amplitudes that
we want to constrain here. The absence of a2,1, a4,1, · · · terms in the above is then just
a direct consequence of this, and other amplitudes in this space can be compared with
the closed superstring amplitude on equal footing. For each k, the polytope will be a
Minkowski sum of the polytopes from s- and u- channels. Let us denote the vertices
contributed by spin-ℓ as

(xℓ̃,k,0, xℓ̃,k,2), (3.273)

where ℓ̃ zips together information about spin and channel, for example like

{(1, s), (2, u), · · · }.

Projectively, (
1, x

(k)

ℓ̃

)
=

(
1,
xℓ̃,k,2
xℓ̃,k,0

)
, for k = 2, 4, 6 , (3.274)

then we have

minx(2)
ℓ̃

= −23

20
, minx(4)

ℓ̃
= −11

2
, minx(6)

ℓ̃
= −165

16
, (3.275)

and hence we choose W = (−w, 1), with w = −165
16

. Note that again we find that the
boundary of the Minkowski sum is given by that of maximal k. Now organizing the
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couplings as 
1 a2,2

a2,0

1 a4,2
a4,0

1 a6,2
a6,0

 =

 a⃗2

a⃗4

a⃗6

 , (3.276)

the constraint in eq.(3.227) then tells us that

(⃗a2 · W)(⃗a6 · W)− αmin(⃗a4 · W)2

=
177

16

(
619

48
+

2ζ3(3)

3ζ(9)

)
− αmin

(
189

16

)2

> 0, (3.277)

where αmin is defined as the minimum of
(x

(6)

ℓ̃
−w)(x(2)

ℓ̃
−w)

x
(4)

ℓ̃
−w)2

. Direct evaluation shows this is

indeed true.

Living near the boundary of unitary polytopes

Now that we’ve seen how explicit EFTs satisfy our EFT-hedron bounds, we would like
to see where do they actually reside. For example, consider the two dimensional region
carved out by Xcyc ∩U5 in fig.(3.8), where U5 is the s-channel unitary polytope. Now
we consider the following scalar EFTs, each with a distinct known UV completion:

• (a) The tree-level exchange of a massive Higgs in the linear Sigma model

− s

s−m2
− t

t−m2

∣∣∣∣
m→∞

= · · ·+ 1

m10
(s5 + t5) + · · · (3.278)

• (b) The one-loop contribution of a massive scalar X coupled to a massless scalar
ϕ via X2ϕ. The one-loop integrand is simply the massive box, whose low energy
expansion is:∣∣∣∣∣∣

m→∞

= · · ·+
(s5 + 1

5
s4t+ 1

10
s3t2 + 1

10
s2t3 + 1

5
st4 + t5)

1153152m14π2
+ · · · (3.279)

• (c) The type-I stringy completion of bi-adjoint scalar theory:

−Γ[−α′s]Γ[−α′t]

Γ[1−α′s−α′t]

∣∣∣∣
α′→0

= · · ·+ α′5
[
ζ7s

5+

(
−π

4ζ3
90
−π

2ζ5
6

+3ζ7

)
s4t

+

(
−π

4ζ3
72
−π

2ζ5
3

+5ζ7

)
s3t2+(s↔ t)

]
+ · · · (3.280)
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where we’ve listed the coefficients for k = 5. Plotting their position within XCyc ∩U5,
we find:

StringBoxTree

0 2 4 6 8 10 12
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x
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Tree
String

Box
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0.15

0.20

x

y

(3.281)

Note that they are sitting extremely close to the bottom tip of the allowed region! Let’s
consider another example for the graviton s−u polytope, parameterized for the MHV
configuration as:

⟨24⟩4[13]4
(
{massless poles}+

∑
k,q

zk−qtq

)
. (3.282)

In the most general case, we can have R3 operator which introduces a t-channel obstruc-
tion for operators proportional to z2. Consider the coefficients (a8,0, a8,2, a8,4) such that
the geometry is P2. In principle the odd power coefficients will also be important for
comparing spectral densities contributed from each spin. Here we simply wish to visu-
alize certain coefficients in a convenient way. Two theory points that are nearby on this
plot can still have very different spectral densities.

We projectively plot the corresponding polygon in the coordinates (a8,2
a8,0

, a8,4
a8,0

). The result
as well as the positions of the coefficient for Type-II, Heterotic and bosonic strings is
presented in fig.3.18. Labels for lower spin vertices are omitted for clarity. Once again,
we see that the three distinct string EFTs are cluttered close to the lowest spins of the
entire geometry.

In fact, this behaviour is ubiquitous as we survey other k, as well as the s−u channel
polytopes: all known EFTs sit close to the boundaries characterized by the low-spin
vertices. This implies that the residue or discontinuity induced by the UV completion
is generically dominated by low spins! For the linear sigma model, we only have a spin
zero exchange so this is trivial. Listing the Gegenbauer coefficients for the residue of the
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Figure 3.18: The unitary polygon for (a8,0, a8,2, a8,4) of the graviton EFT. We see that
the string theory EFTs are clustered near the low spin boundaries of the polygon.

open string to level n,
ℓ\n 1 2 3 4 5

0 1 1
11880

1 1
14

1
924

2 1
84

25
39312

3 2
693

4 125
144144

, (3.283)

we see that the leading scalar coefficient is dominant over the rest. For the box integral,
the spinning spectral function for the discontinuity is discussed in detail in appendix B.4;
see eq.(B.73). Plotting the spectral function for spin-0, 1, 2 as a function of s we find:

pℓ(s)

l=0

l=1

l=2
1 2 3 4 5

5

10

15

20

s

(3.284)

where s is normalized with respect to 4m2, and hence the plot begins only at the branch
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point s = 1. Once again the scalar spectral function dominates the contribution from
other spins, and the ratio increases as we increase with s. Note that the positivity
of the six-dimensional a-anomaly for a free massive scalar was precisely due to such
suppression [70]. The suppression of higher spin coefficients can be understood from the
polynomial boundedness of the amplitude: as a spin-ℓ exchange in the t-channel will
bring a contribution behaving as sℓ at large s, polynomial boundedness then implies that
higher spin contributions must be suppressed. Indeed the suppression at large spins is
precisely what led to the Froissart bound as reviewed in appendix B.1. Thus in general,
we expect physical EFTs to lie near the low spin boundaries of the unitary polytope,
although a more quantitative understanding of the implications from such suppression is
clearly desired, which we leave to future work.

If EFTs naturally live near the low-spin boundaries of the unitary polytope, what is the
purpose of the rest? Note that for a given UV completion, there exists an entire family of
effective theories for which the EFTs discussed above are in the deep IR. Here, the scale
dependence under discussion is not from the running generated from the massless loops,
which will be the focus in the next section, but rather from the simple fact that different
part of the spectrum is visible depending on the energy. What this means in practice is
that at a given energy scale Λ, the couplings for our higher dimensional operators take
the form:

M(s, t) = {massless/massive poles}+
∑
k,q

aΛk,qs
k−qtq , (3.285)

where the amplitude now contains massless as well as massive poles for all the massive
states below Λ. When the couplings are defined in such fashion, they naturally become
Λ dependent. Let us consider an explicit example. Imagine that we are studying type
-II string theory at some energy scale and we have discovered the first few massive states
up to level n. At this scale the amplitude at fixed t should take the form

n∑
a=1

Ra(t)

(
1

s− a
+

1

u− a

)
+
∑
k,q

a
(n)
k,qz

k−qtq, (3.286)

where Ra(t) = 1
(a!)2

∏a−1
i=1 (t + i)2 is the residue for the resonance s = a. The value of

the couplings for the higher dimensional operators can be extracted by Taylor expanding
both sides of∑

k,q

a
(n)
k,qz

k−qtq =
Γ[−s]Γ[−t]Γ[−u]
Γ[1+s]Γ[1+u]Γ[+t]

−

[
n∑
a=1

Ra(t)

(
1

s− a
+

1

u− a

)]
. (3.287)

Note that by construction, the couplings must reside inside our unitary polytope. Since
the massive poles that are "subtracted" from the full UV completion are precisely the
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Figure 3.19: On the LHS we the purple dots indicate (xn, yn) for n = 0, · · · , 20, repre-
senting the position of the type-II string EFT in side the unitary polytope for s ∼ n

α′ . We
see that as we go to large s, the EFT tends to the corner with higher spins. This implies
that the UV and IR EFTs populate different regions in the polytope, as illustrated on
the right.

dominating low spin states, we expect the resulting couplings to float towards the upper
region of the polytope! When plotting the coefficients for

(xn, yn) =

(
a
(n)
8,2

a
(n)
8,0 + a

(n)
8,4/10

3
,

a
(n)
8,4

a
(n)
8,0 + a

(n)
8,4/10

3

)

in fig.3.19, we see that indeed as we raise the energy scale the corresponding EFT probes
deeper in the unitary polytope.

Thus in summary, the low spin regions of the unitary polytope correspond to the EFTs
in the deep IR, while the higher spin region corresponds to the EFTs in the UV. We leave
the detailed study of this UV-IR relation to future work.
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3.11 Running into the EFT-hedron

Let us now turn to discussing the full amplitude including the massless loops that induce
the logarithmic running of the EFT couplings. For example, consider again the linear
sigma model, whose tree-amplitude is given in eq.(3.12). At one-loop the coefficients of
the s4 starts receiving loop-corrections from the s2 operators:

M IR(s, t) =
ā2
m4
h

(s2+t2+u2) +
ā4
m8
h

(s4+t4+u4)−
[
ā22

1

15(4π)2m8
h

(
41s2+u2+t2

)
s2 log

s

s0

+(s↔ t)+ (s↔ u)] +O(p10) , (3.288)

where āis are to be understood as renormalized couplings at some scale s0. In this paper,
we will only consider one-loop effects for EFTs that have a well defined S-matrix. The
derivative couplings ensures that expansion near the forward limit is well defined, since
the t-channel cut appears as tn log t, as can be seen in the above, and hence there is no
singularity at the branch point t = 0. The presence of the massless logs leads to two
pressing issues, 1.) there is a massless cut coming all the way to the origin, and thus the
low energy couplings, analytically extracted from eq.(3.42), are no longer well defined.
2.) the fact that coupling runs also brings into question the fate of our previous positivity
bounds as the theory flows to the IR.

Naively, one can simply introduce a mass regulator,10 which will allow us to push the
massless cut away from the origin of the complex s-plane. Since this corresponds to intro-
ducing a massive state, all ingredients necessary to the derivation of previous positivity
bounds are intact and should hold whenever the EFT is valid. This means that running
in the IR will stay within the unitary polytope. However, it is easy to see from explicit
examples that this is not the case, the massless logs can take us outside of the EFT
hedron! This apparent contradiction originated from the fact that the mass deformed
theory does not reproduce the correct IR behaviour of the massless loops. It is instructive
to see why our intuition was wrong, which in turn will guide us to defining "generalized
EFT couplings", for which previous positivity constraints apply.

Running out of bounds Let’s consider the EFT of a single massless scalar with the
following higher dimension operators turned on:

LInt =
a2
Λ4

(∂ϕ)4 +
a4
Λ8

(∂2ϕ)4 +
a6
Λ12

(∂3ϕ)4 , (3.289)

The one-loop RG equation is then

µ2 ∂a4
∂µ2

= 0, µ2 ∂a4
∂µ2

= β1a
2
2, µ2 ∂a6

∂µ2
= β2a2a4 . (3.290)

10This of course can only be consistently done for scalars and vectors, but not gravity.
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With the solution, a2 = ā2, a4 = ā4 + β1ā
2
2 log

s0
p2

and a6 = ā6 + β2ā2ā4 log
s0
p2

. For
simplicity let’s consider the forward-limit Hankel matrix constraints, and set āis be the
renormalized couplings at some scale M2 where the constraints hold. For example we
have āi > 0 and

ā2ā6 − ā24 > 0 . (3.291)

Now as we allow the couplings to run in the IR, the determinant of the Hankel matrix
becomes:

Det

(
ā2 ā4 + β1ā

2
2δ

ā4 + β1ā
2
2δ ā6 + β2ā2ā4δ

)
= (ā2ā6−ā24) + (β2 − 2β1)ā4ā

2
2δ +O(δ2) , (3.292)

where we have used a short-hand notation δ = log s0
p2

. If the running couplings were
to stay inside the EFT-hedron, we would have a sharp prediction for the one-loop beta
functions, namely (β2 − 2β1) > 0. Since for our current theory we only have bubble
integrals at one-loop, their coefficients can be directly captured from the two-particle
cut, which we derive in appendix B.7, yielding β1 = 14

5(4π)2
and β2 = 166

35(4π)2
. Immediately

we see that β2 − 2β1 < 0 in contradiction to the expectation from the Hankel matrix
bounds. In other words, the low energy running drives the couplings outside of the EFT
hedron!

Let us see why our intuition from the mass regulated picture failed to yield the correct
prediction. Consider the explicit low energy amplitude in the forward limit, which is all
that is necessary for eq.(3.291). We have:

M(s, 0) = 2
s2

Λ4
ā2 + 2

s4

Λ8

(
ā4 + β1ā

2
2 log

M2

s

)
+ 2

s6

Λ12

(
β2ā2ā4 log

M2

s

)
, (3.293)

where we’ve set µ2 = M2, representing the scale for which the Hankel constraint holds.
Now by deforming the massless loop propagators to be massive, the logs get deformed
as:

log
M2

s
→ log

M2

m2
−i
√

1

z
−1 log(i

√
z+
√
1−z2)−1 = log

M2

m2
−
∑
n

(1)n−1

3
(
5
2

)
n−1

zn (3.294)

where z ≡ s
4m2 . Thus we see that at low energies, z ≪ 1, the leading log correction

appearing at s4 is log M2

m2 , reproducing the same running as the massless log if we take
s,m2 ≪ M2. However the z expansion in eq.(3.294) introduces correction to the coeffi-
cient of s6, s8, · · · that dominates over their original logarithms since:

1

m2
≫ 1

Λ2
log

M2

m2
(3.295)
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Figure 3.20: In the presence of massless cuts, we can either (I) introduce a small mass
regulator and push the cut slightly away from the origin, or (II) we analytically define
our generalized couplings by moving the contour at origin onto to the complex plane to
s = ±iµ in a way that the integration measure is positive definite. After deformation
the contour picks up the discontinuity on the real s-axes, which for |t| < |s|, is controlled
by unitarity. We can analytically continue to |s| < |t| for theories with well behaved soft
limits.

as m2 → 0. Put another way, the small mass deformation is no longer "small" when
one considers subleading contributions. Note that due to these corrections, the Hankel
matrix constraint is trivially satisfied for the mass deformed amplitude. Indeed it is
straightforward to check that the Hankel matrix for an ≡ (1)n−1

3( 5
2)n−1

is total positive, and

since the z expansion in eq.(3.294) dominates the contributions for s6, s8, · · · couplings,
they trivialize the Hankel matrix constraint on the amplitude.

Generalized EFT couplings and their dispersive representation

The reasons we’ve introduced the mass regulated theory is so that the massless cut is
pushed off the origin, where the couplings are analytically defined. However, we’ve just
seen that by doing so the EFT no longer captures the correct IR physics beyond leading
order. Instead of moving the branch point, let’s move the pole itself. For example,
consider the following contour integral of the amplitude at fixed t≪ m2:

1

2πi

∮
ds s

(s2 + µ4)n+1
M(s, t) , (3.296)

where the contour encircles the poles at s = ±iµ2, and we will take µ2 ≪ 1. Using this
contour we can define the following generalized couplings in the forward limit

aµ
2

2n,0 ≡
1

2πi

∮
C0

ds s

(s2 + µ4)n+1
M(s, 0) , (3.297)
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where the superscript µ2 on gµ
2 indicates its the position for which the pole has been

moved off the origin. Note that we’ve naturally introduced scale dependence into the
definition of the coupling. Now in the forward limit, M(s, 0) is finite since the t-channel
cut is suppressed by pre-factors proportional to powers of t, guaranteed by the derivative
coupling. Again deform the contour C0 to C∞, and this relates the generalized couplings
to the discontinuity of the amplitude on the s-axes as illustrated in fig.3.20. In other
words, we have

aµ
2

2n,0 = − 1

2πi

∫ ∞

−∞

ds s

(s2 + µ4)n+1
ImM(s, 0) . (3.298)

Once again, let’s demonstrate the validity of eq.(3.298) using our linear sigma model
amplitude in eq.(3.288). Since the amplitude behaves as s4 log s as s→∞, we should ex-
pect eq.(3.297) and eq.(3.298) to agree for aµ

2

6,0. Using eq.(3.297) the generalized couplings
evaluate to:

aµ
2

4,0 =
ā4
m8
h

− 7a22
160π2m8

h

(
3 + 2 log

µ4

s20

)
, aµ

2

6,0 =
7ā22

240π2m8
hµ

4
. (3.299)

As expected, the aµ
2

4,0 is given by the combination of tree coefficient ā4 and the one-loop
log proportional to ā22. Moreover, even though we only consider the amplitude up to s4

terms, all generalized couplings aµ
2

2n,0 are nonzero due to the log. Now for eq.(3.298) the
imaginary part of the four-point amplitude arising from the s- cut is given by:

Ims=[0,∞]M(s, t) =

=
ā22

(4π)3m8
h

∫
dϕ′d cos θ′ (s2 + t2 + u2)L(s

2 + t2 + u2)R

= − ā22
m8
h

s4

60(4π)2
(167 + cos 2θ) ,

(3.300)

where θ is the scattering angle. Taking the forward limit one finds Ims=[0,∞]M(s, 0) =

−7ā22
m8

h

s4

40π2 , reproducing the coefficient of the s-channel logarithm in eq.(3.288). Using
Ims=[0,∞]M(s, 0) = −Ims=[−∞,0]M(s, 0), one recovers,

1

2πi

(
−
∫ 0

−∞
+

∫ ∞

0

)
ds s

(s2 + µ4)4
iπ

7ā22
40π2m8

h

s4 =
7ā22

240π2µ4m8
h

, (3.301)

in agreement with eq.(3.299).
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Now deforming the contour one again picks up the discontinuity on the real axes as
shown in fig.(3.20) (II). Now the question is whether the discontinuity is given by physical
thresholds. For t < 0, the region |t| ≤ |s| corresponds to the physical kinematics and thus
its discontinuity is determined from unitarity. Due to the derivative couplings, there are
no new singularities at t = 0, and we can analytically continue to positive t. Thus the
entire s-channel discontinuity can be obtained by analytically continuation of that in the
physical regime, i.e. it is expressible as a positive sum of the Gegenbauer polynomials in
(D−1)-spatial dimensions:

Diss>0[M(s, t)] =
∑
ℓ=0,2,4

pℓ(s)Pℓ(θ) . (3.302)

Let’s demonstrate the above in a non-trivial example. The one-loop correction to the
scalar theory introduced earlier in this section has one-loop logarithm proportional to ā22,
ā2ā4, and ā24. The first two were computed previously while the latter is given by

ā24s
8

M1620160(4π)2
(39843+988 cos 2θ+cos 4θ) . (3.303)

Summing all three contributions we obtain the discontinuity on the positive real axes
given by the following spinning spectral functions

p0(s)=
s4(25ā2 + 21ā4s

2)2

225(4π)2
, p2(s)=

s4(7ā2 + 12ā4s
2)2

2205(4π)2
, p4(s)=

ā24s
8

11025(4π)2
, (3.304)

and indeed they are positive definite.

In conclusion, the generalized coupling constants defined through the contour integral
in eq.(3.296), again subject to appropriate boundary behaviour, will satisfy the same
analytic constraint as that before. In the following we will demonstrate with explicit
examples that the Hankel matrix constraint is satisfied.

The Hankel matrix constraints:

Let’s again take the forward limit four-point amplitude for eq.(3.289)

M4(s, 0) = 2
ā2s

2

Λ4
+2

(
ā4 + β1ā

2
2 log

M2

s

)
s4

Λ8
+2

(
ā6 + β1ā2ā4 log

M2

s

)
s6

Λ12
.

(3.305)
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The generalized couplings are then given by

aµ
2

2,0 =
1

Λ4

[
ā2+z

4

(
β1ā

2
2

(
1

2
−2 log y

)
− 2ā4

)
+O

(
z8
)]
,

aµ
2

4,0 =
1

Λ8

[
ā4−β1ā22

(
3

4
− log y

)
+z4

(
β2ā2ā4

(
5

4
− 3 log y

)
− 3ā6

)
+O

(
z8
)]

aµ
2

6,0 =
1

Λ8µ4

[
β1ā

2
2

6
+z4

(
ā6−β2ā2ā4

(
11

12
− log y

))
+O

(
z8
)]
, (3.306)

where z = µ2

Λ2 and y = M2

µ2
. First of all, we see that the leading contributions for aµ

2

2,0 are

given by the tree-level coupling ā2, where as for aµ
2

4,0 the tree-level coupling ā4 mixes with
logarithmic contributions β1ā22 log y at leading order. However, beyond aµ

2

4,0 the original
tree-couplings become subdominant to terms that were generated from the logarithms
in aµ

2

4,0. Indeed for aµ
2

6,0 the tree-level piece ā6 is subleading to a term proportional to
β1ā

2
2, which came from the leading logarithm in aµ

2

4,0. The dominance of terms induced
by the the leading log for all aµ

2

2n,0 with n > 2, is reminiscent of the leading 1
m

corrections
flooding the higher-derivative couplings for the mass regulated case discussed previously.
As we will see, these effects ensures the positivity constraints on the generalized couplings
which we now derive.

Now let us consider the dispersive representation:

aµ
2

2n,0 = −
∫ ∞

−∞

ds s

(s2 + µ4)n+1
Im M(s, 0) , (3.307)

As discussed above, even in the presence of massless cut, the discontinuity is still given by
a positive sum of Gegenbauer polynomials. The only modification is that the s-channel
cut now starts at s = 0. Incorporating the u-channel cut, we then have a branch cut
covering the entire real axes leading to

aµ
2

2n,0 =

[
−
∫ 0

−∞
+

∫ ∞

0

]
ds s

(s2 + µ4)n+1

∑
ℓ

pℓ(s)G
D−4
2

ℓ (1)

=
∑
ℓ

∫ ∞

0

dx

(x+ µ4)n+1
pℓ(x)G

D−4
2

ℓ (1) , (3.308)

In other words, it is given by a continuous sum of points on the moment curve:

aµ
2

2,0

aµ
2

4,0

aµ
2

6,0
...

aµ
2

2n,0


=
∑
i

ci



1

yi

y2i
...

yn−1
i


, ci > 0, yi >

1

µ4
∀i . (3.309)
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Note that the moment curve is shifted by 1
µ4

, and thus the coefficients will obviously
satisfy the original Hankel matrix constraint.

Let us show this in detail for the generalized couplings in eq.(3.306). First of all in
the limit µ2 ≪ Λ2, the positivity of aµ

2

2,0, a
µ2

4,0, a
µ2

6,0, and aµ
2

2,0a
µ2

6,0−(a
µ2

4,0)
2 is ensured by the

positivity of the tree-level coupling and that of the βis. An interesting scenario occur
when we deform the position of the pole all the way to the renormalization scale µ2 =M2,
while assuming M2 ≪ Λ2. The positivity of aµ

2

4,0 then requires that

ā4−β1ā22
3

4
> 0 , (3.310)

where again β1 = 14
5(4π)2

∼ 0.002. It is easy to see that this imposes further constraint
on the couplings beyond that of the tree-level Hankel constraints, i.e. the positivity of
ā2, ā4, ā6, and ā2ā6 − ā24.

It is interesting to understand why this new constraint arises. First, note that the effec-
tive action considered in the beginning of this section, eq.(3.289), is not the most generic
for single scalar theory: it lacks the marginal ϕ4 interaction. In general, the lack of ϕ4

interaction is associated spontaneous symmetry breaking in the UV, where the result-
ing EFT respects a shift symmetry. Now due to boundary contributions, for tree-level
couplings we are not privy to the information of the constant piece of the amplitude, or
k = 0, which translate to the presence/absence of ϕ4 interaction. However, at loop-level,
its presence will affect the pattern of IR running for the couplings. For example, the
presence of ϕ4 would induce logarithmic running already for the s2 operator, which leads
to the modification of aµ

2

4,0 to:

aµ
2

4,0 =
1

Λ4µ4

[
ā0ā2β0

4
+z4

(
ā4−β1ā22

(
3

4
− log y

))
+O(z8)

]
, (3.311)

instead of eq.(3.306). Here ā0 is the tree-level coupling for ϕ4 and β0 is the beta function
for s2 operator. We see that the running at s2 now induces corrections for aµ

2

4,0 that
dominates the original contributions! Now the positivity of aµ

2

4,0 simply implies ā0β0 > 0,
even if we take µ close to the renormalization scale.

Said in another way, the constraint in eq.(3.310) is a reflection of ā0 = 0! Let’s consider
an explicit UV completion that realizes such low energy behaviour: the linear sigma
model. As discussed previously, the shift symmetry of the EFT ensures that there are
no constant piece for the quartic interaction. In IR tree-level couplings can be identified
as ā2 = ā4 = λ, where λ is the quartic coupling constant of the complex scalar in the
UV. Thus we see that in the perturbative regime, where the map between the IR and
UV couplings are applicable, eq.(3.310) is trivially satisfied.



176

Thus we see that when massless loops are included, the positivity bounds allow us to
probe details of the EFT previously hidden behind the "Froissart horizon" !

A peek beyond the forward limit

We now consider the extension away from the forward limit, which correspond to taking
a Taylor expansion around t = 0. Again due to the t-channel log coming in the form
tn log t, the amplitude is finite in the forward limit. Due to the t-channel branch cut,
once again we deform the t contour away from the origin to t = ϵ:

aµ
2

k,q ≡
(

1

2πi

)2 ∮
dt

(t− ϵ)q+1

∮
ds s

1+(−)k

2

(s2 + µ4)⌊
k−q
2

⌋+1
M(s, t) ,

(3.312)

where ϵ > 0. We will be considering the limit where t is much smaller than any massive
threshold. Note that since ϵ > 0, we are actually analytically continuing t away from the
physical regime t < 0. For theories such as those of interacting goldstones, where the
massless amplitudes are soft enough, free of soft/collinear singularities, so that massless
amplitudes are well-defined, it is reasonable to expect that discontinuities of the ampli-
tude in the s−channel are actually analytic in t. Taking this as a working assumption
gives us the dispersive representation. We have:

aµ
2,ϵ
k,q =

1

2πi

∮
dt

(t− ϵ)q+1

∑
ℓ

∫ ∞

0

ds s
1+(−)k

2

(s2 + µ4)⌊
k−q
2

⌋+1
pℓ(s)Gℓ

(
1 + 2

t

s

)
, (3.313)

Evaluating the t-integral on the pole then gives the Taylor expansion of the Gegenbauer
polynomials Gℓ(x) at x = 1 + ϵ. Now importantly, since we’ve set ϵ > 0, the resulting
convex hull is inside the Gegenbauer polytope! To see this, recall that under the rescaling
x→ ax with a > 1, Gegenbauer polynomials rescales to a positive function, i.e. :

Gℓ((1+ϵ)x) =
ℓ∑

ℓ′=0

cℓ′Gℓ′(x), cℓ′ > 0 . (3.314)

It then follows that the vector G⃗ℓ(1 + ϵ) is a positive sum of G⃗ℓ(1), and thus the convex
hull of G⃗ℓ(1 + ϵ) must be inside Gegenbauer polytope! In fact, from eq.(3.124), we see
that the convex hull of G⃗ℓ(1 + ϵ) is another cyclic polytope. Thus as we increase in ϵ,
the couplings must live in a cyclic polytope that is contained in the previous ones. In
this precise sense, by increasing ϵ generalized couplings moves deeper inside the original
geometry!
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3.12 Outlook

We have seen that the constraints on vacuum stability, causality, and unitarity place
enormously powerful constraints on low-energy effective field theories. There are a large
number of obvious open avenues for future work. Most immediately, there is the question
of fully understanding the geometry and boundary structure of the EFT-hedron for four-
particle scattering; this mathematical problem has been fully solved for the toy example
of the s−channel only EFT-hedron where it is already rather non-trivial. We have also
bounded the full EFT-hedron for the most general cases of interest, but have still not
determined the exact facet structure of the EFT-hedron in complete generality. It would
also be interesting to extend the dispersive analysis beyond 2→ 2 scattering. Indeed, if
we consider a simple theory with Lagrangian P (X = (∂ϕ)2), we know that subluminality
for small fluctuations around background with ⟨∂ϕ⟩ ̸= 0 demands P ′′(X) > 0 for all
X, which enforces positivity conditions on higher-point scattering amplitudes. Another
obvious avenue is to systematically explore constraints on scattering for multiple species
with general helicities.

It is also important to note that, while the EFT-hedron places powerful constraints on the
effective field theory expansion, sensible effective field theories do not appear to populate
the entire region allowed by the EFT-hedron, but cluster close to its boundaries. The
reason is likely that the physical constraints we have imposed, while clearly necessary,
are still not enough to capture consistency with fully healthy UV theories. In particular,
our dispersive representation at fixed t, does not make it easy to impose the softness of
high-energy, fixed-angle amplitudes where both s, t are large with t/s fixed. It would be
fascinating to find a way to incorporate this extra information about UV softness into the
constraints, along the lines of the celestial sphere amplitude [12], which should further
reduce the size of the allowed regions for EFT coefficients.

The unexpected power of stability, causality and unitarity in constraining effective field
theory raises the specter of a much greater prize, which was in the fact the question that
initially motivated this work. Can the same principles be used to strongly constrain, and
perhaps with additional conditions actually uniquely determine, consistent UV complete
scattering amplitudes? To sharpen this question, we can begin by thinking about UV
completions of gravity amplitudes at "tree-level", assuming the amplitude only has poles.
Unlike theories of scalar scattering, which can be UV completed in a myriad of ways such
as glueball scattering in large N-gauge theories, the only consistent tree-gravity scattering
amplitudes we know of come from string theory, so it is more likely this question has a
unique answer. The four particle tree graviton scattering amplitudes in string theory are
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essentially unique, independent of any details of compactification and fixed by the nature
of the worldsheet supersymmetry. Indeed the amplitudes differ only by the massless three
particles amplitudes in the low-energy theory, with type II theories having only the usual
three-graviton vertex, and the heterotic theory also including the R2ϕ coupling to the
dilaton. So it is plausible to conjecture that amplitudes with, say, only the usual three-
graviton amplitude at low-energies, have a unique tree-level UV completion given by the
Virasoro-Shapiro amplitude.

As an easy first step in this direction, it is easy to see that tree-level UV completions of
gravity must contain an infinite tower of massive particles of arbitrarily high spin. In fact
gravity is not particularly special in this regard. Consider any theory with fundamental
cubic interactions, so that four-particle amplitudes already have 1

s,t,u
poles at tree-level.

Suppose we wish to improve the high-energy behavior of the amplitudes relative to what
is seen in the low-energy theory, so for example for gravity/Yang-Mills/ ϕ3 theory, we
would like the high-energy limit to drop more quickly that s2/s/s−1 respectively. It is
then easy to see that this is impossible unless the UV theory has an infinite tower of
particles with arbitrarily large spin.

Let us briefly sketch the reason for this. It is instructive to contrast the situation with that
of simple UV completions for theories whose four-particle interaction begin with contact
interactions at low-energies. Consider for instance goldstone scattering in the non-linear
sigma model, where the low-energy four-particle amplitude begins as A = − 1

f2
(s + t).

It is trivial to UV complete this simply by softening s → s
(1−s/M2)

, t → t
(1−t/M2)

. This
is consistent with the causality bounds at large s and fixed t, and keeps the fixed-angle
amplitude small so long as M2 ≪ f 2. And crucially, thanks to the overall negative sign in
front of the amplitude, the residues on the massive poles are positive and are interpreted
as the production of a scalar particle with positive probability. This is of course nothing
but the linear sigma model UV completion of the non-linear sigma model, with the new
massive particle identified as the Higgs. Note that had the overall sign of the amplitude
been reversed, we would not be able to do this, as the residue on the massive pole would
be negative.

Now, consider instead the amplitude A = g2(1
s
+ 1

t
+ 1

u
) for ϕ3 theory at tree-level,

and let us try to add massive poles to make the amplitude decrease faster than 1/s at
high-energies. It is easy to see that the same strategy used in the goldstone example
can’t work. For instance if we again attempt to soften 1

s
→ 1

s(1−s/M2)
, the residue on

the massive pole will have the opposite sign as that of the (correct, positive) residue
on the massless pole at s = 0! This will happen for any amplitude that is a rational
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function (finite number of massive poles) in the Mandelstam variables. If the amplitude
is softened in the physical region, it is softened everywhere in the s-plane; so given that
the amplitude vanished faster than 1/s at infinity, the sum of all the residues must be
zero. But that means that some of the massive residues must be negative, to cancel the
positive residue at s = 0. This can only be avoided if there are infinitely many poles that
allow the function to die in the physical region but blow up elsewhere in the s-plane, as
is familiar in string theory. A small elaboration of this argument also shows the necessity
of an infinite tower of spins, and the same arguments apply to gravity and Yang-Mills
amplitudes as well.

It is amusing that theories that only have a life in the UV—such as the weak interactions
and the non-linear sigma model, whose low-energy amplitudes are tiny—are "easy" to UV
complete with finitely many massive states. It is theories with IR poles, associated with
long-range interactions, that are forced to have much more non-trivial UV completions.
This is why the most ancient interaction described by physics—gravity—continues to be
the most challenging to UV complete, while the weak interactions were discovered and
UV completed within about half a century!

One can also easily "discover" the stringy completion of gravity amplitudes, from the
bottom-up, as the simplest possible UV completion with an infinite tower of poles sat-
isfying extremely basic consistency conditions, even before imposing the restrictions of
causality and unitarity. The tree-level 4-graviton amplitude is A+−+− = GN⟨13⟩4[24]4 ×
1
stu

. We know that any tree-level UV completion must have an infinite tower of poles,
in the s, t, u channels. Thus, the most general Ansatz for the amplitude would replace
1
stu
→ N(s,t,u)

stu
∏

i(s−m2
i )(t−m2

i )(u−m2
i )

. Note that this expression has the property that on the s−
channel pole at s = m2

j , the residue has poles at t = m2
i and u = m2

i → t = −(m2
i +m2

j).
These poles must be absent in the physical amplitude, and thus the numerator must
have zeroes, when s = m2

j , at these values of t. It is then natural to make the simple
assumption that these are the only zeroes of the numerator. That tells us that if we write
N(s, t, u) =

∏
j(s+ ri)(t+ ri)(u+ ri), then the set of all the roots {ri} must contain all

of {m2
i ,m

2
i +m2

j}. And this in turn is most trivially accomplished if m2
j =M2

s j are just
all the integers in the units of a fundamental mass scale Ms!

By this simple reasoning, we are led to the infinite product formula for the Virasoro-
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Shapiro amplitude, putting α′ =M−2
s :

A = GN⟨13⟩4[24]4
∏∞

j=1(α
′s+ j)(α′t+ j)(α′u+ j)∏∞

i=0(α
′s− i)(α′t− i)(α′u− i)

= GN⟨13⟩4[24]4
Γ(−α′s)Γ(−α′t)Γ(−α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
. (3.315)

Of course this is not at all a "derivation" of the string amplitude, but it is nonetheless
striking to see how easily the amplitude emerges as the simplest possible way of writing
an expression with infinitely many poles that passes even the most basic consistency
checks.

In fact, it is fascinating that directly checking the consistency known string tree ampli-
tudes is high non-trivial. Causality in the form of the correct Regge behavior is readily
verified, but unitarity, in the form of the positivity of the Gegenbauer expansion of the
amplitude residues on massive poles, turns into a simple but highly non-trivial statement.
For concreteness consider the scattering of colored massless scalars in the type I open
superstring theory, where the amplitude is

A = s2
Γ(−s)Γ(−t)
Γ(1− s− t)

. (3.316)

The residue on the massive poles at s = n is a polynomial Rn(x = cosθ), where t =
−n

2
(1− x), given by

Pn(x) =
n−1∏
i=1

(
x− (n− 2i)

n

)
(3.317)

Already at n = 3, we learn something striking: P3(x) = (x− 1
3
)(x+ 1

3
) = x2− 1

9
, which we

would like to express as a sum over Gegenbauer polynomial. The spin 2 Gegenbauer in d
spatial dimension is proportional to x2− 1

d
, thus by writing (x2− 1

9
) = (x2− 1

d
)+ (1

d
− 1

9
),

we see a massive spin 2 state with positive norm, but also a spin 0 state with norm
(1
d
− 1

9
), which is ≥ 0 for d ≤ 9, but is negative, violating unitarity, for d > 9. Thus the

critical spacetime dimension D = d + 1 = 10 is hiding in plain sight in the four-particle
amplitude, purely from asking for unitarity at on this pole at s = 3. But of course for
unitarity, we must have that

Pn(x) =
∑
s

pn,sG
(d)
s (x), with pn,s ≥ 0 for d ≤ 9. (3.318)

This extremely simple statement turns out to be very difficult to prove directly—indeed
we are not aware of any direct proof of this fact in the literature! Of course it does
follow, more indirectly, from the still rather magical proof of the no-ghost theorem in
string theory.
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The miraculous way in with which string amplitudes manage to be consistent make it
seem even more plausible that these amplitudes emerge as the unique answer to the ques-
tion of finding consistent four particle massless graviton amplitudes with only poles. But
some further constraints other than causality, unitarity, and good high-energy behavior of
just massless graviton scattering must be imposed to do this, as we have found candidate
four-particle amplitudes satisfying all these rules that deform away from the known string
amplitudes. Consider again the Virasoro-Shapiro amplitude for graviton scattering. The
residue on the pole at s = n is the square of the open-string residue Pn(x)2, and so the
positivity of its Gegenbauer expansion follows directly from the positivity of Pn(x) for
the open string. But now consider a deformation by a parameter ϵ of the form

Γ(−α′s)Γ(−α′t)Γ(−α′u)

Γ(1+α′s)Γ(1+α′t)Γ(1+α′u)
→

Γ(−α′s)Γ(−α′t)Γ(−α′u)

Γ(1+α′s)Γ(1+α′t)Γ(1+α′u)
+ ϵ

Γ(1−α′s)Γ(1−α′t)Γ(1−α′u)

Γ(2+α′s)Γ(2+α′t)Γ(2+α′u)
.

(3.319)

This deformed amplitude has the same Regge behavior as the usual string amplitude,
and the same exponential softness for high-energy fixed-angle scattering. The residue at
s = n is given by

1+n(1−ϵ)
n+1

(
nn−1

2n−1n!

)2(
Pn(x)

2 +
4ϵ(n−1)

n(1+(1−ϵ)n)
Pn(x)P

B
n−4(x)

)
, (3.320)

where PB
n (x) ≡

∏n+1
i=1

(
x− n+2−2i

n+4

)
is the residue of the Veneziano amplitude. It is

straightforward to see that so long as 0 < ϵ < 1, the positivity of Pn(x) continues
to imply the positivity of the Gegenbauer expansion on the massive poles. Thus this
deformed expression satisfies all the constraints we have been imposing on four-particle
scattering. It seems very unlikely, however, that this corresponds to amplitudes in some
consistent deformation of string theory: the spectrum is exactly the same as the usual
(free!) string, and there is no obvious room for an extra parameter ϵ in the quantization
of the string.

Thus any claim about consistent UV completion must go beyond merely the consistency
of massless scattering at four particles, and include consistent expressions for higher-
point massless scattering and/or, relatedly, consistent amplitudes for the new massive
resonances introduced in the UV completion. This is very reasonable and is after all
precisely what happened in the story of the weak interactions, where the four-fermi
interaction was UV completed by W particles, which in turn had bad high-energy growth
for the scattering of their longitudinal modes that had to be further cured by the Higgs. It
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is also interesting to note that imposing just a frisson of extra string properties on the four-
particle amplitude—such as the monodromy relations relating different color channels [37,
101]—when combined with the EFT-hedron constraints, do appear to uniquely fix string
amplitudes. These observations all suggest a number of fascinating open avenues for
further exploration at the intersection of unitarity, causality, analyticity, string theory,
and the UV/IR connection.
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C h a p t e r 4

THE F -SYMBOLS FOR TRANSPARENT HAAGERUP-IZUMI
CATEGORIES WITH G = Z2n+1

1

4.1 Introduction

Subfactors [107, 108] and fusion categories [72, 73] provide the mathematical framework
underlying various physical objects in quantum field theory, including anyons in (2+1)d
Chern-Simons theory [109, 174] and topological defect lines in (1+1)d quantum field
theory [36, 50, 160]. Fusion categories with invertible objects encapsulate the notion of
symmetries and ’t Hooft anomalies in quantum field theory, and those with non-invertible
objects generalize such a notion[1, 50, 110, 161]. Due to Ocneanu rigidity [72, 169], a
fusion category is an invariant under renormalization group flows connecting short and
long distance physics. This generalization of the ’t Hooft anomaly matching condition
has shed new light on the phases of quantum field theory.

Subfactor theory has an inherent categorical structure [135], and has been a productive
factory of fusion categories. Subfactors with Jones indices less than 4 have been classified
by Ocneanu [138] and extended to 4 by Popa [145]. Haagerup [96] searched for subfactors
with Jones indices a little bit beyond 4, and together with Asaeda [14] constructed one
with Jones index 5+

√
13

2
, the smallest above 4. In [105], Izumi generalized the Haagerup

fusion ring to a family of fusion rings labeled by a finite abelian group G, and explicitly
constructed the subfactors for G = Z3, Z5. The constructive classification of subfactors
for |G| odd was achieved up to |G| = 19 by Evans and Gannon [75] (up to |G| = 9 with
exact expressions and the rest with numerical estimates), and that of subfactors with
G = Z4, Z2 × Z2, Z4 × Z2, Z6, Z8, Z10 by Grossman, Izumi, and Snyder [90–92, 104].

The fundamental data underlying a fusion category are the F -symbols, which are so-
lutions to the pentagon identity. Some (almost) equivalent notions exist: associators,
quantum 6j-symbols, and crossing kernels. They underlie the Turaev-Viro theory [165,
166], the Levin-Wen string-net models [119], and large classes of statistical models (see
[2] and references within) as well as the associated anyon chains [77]. In [50], one of the
present authors showed how the F -symbols strongly constrain (1+1)d (fully extended)

1This chapter is adapted from Tzu-Chen Huang and Ying-Hsuan Lin. “The F -Symbols for Trans-
parent Haagerup-Izumi Categories with G = Z2n+1”. In: (July 2020). arXiv: 2007.00670 [math.CT].

https://arxiv.org/abs/2007.00670
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topological quantum field theories [58, 129], which are endpoints of symmetry-preserving
renormalization group flows; in many cases, given the F -symbols, the full field theory
data could be completely determined by bootstrap.

In this paper, unitary and non-unitary Haagerup-Izumi fusion categories with G = Z2n+1

are constructed up to G = Z15 by computing Groebner bases for the pentagon identity.
The notion of a transparent fusion category is introduced in Definition 4.3.1, from which
various consequential graph equivalences and F -symbol relations are derived to reduce
the number of independent F -symbols from O(n6) to O(n2) and render the pentagon
identity practically solvable. These relations are summarized into a system of constraints
in Definition 4.4.1, and the solutions to the pentagon identity under said constraints
provide a classification of F -symbols for transparent Haagerup-Izumi fusion categories.
The results of this classification are stated in Theorems 4.5.1 and 4.5.2.

Some remarks on the comparison of the present results with the existing literature are in
order. As mentioned above, the datum equivalent to the F -symbols for several unitary
Haagerup-Izumi fusion categories were obtained by Izumi [105], Evans and Gannon [75],
and Grossman and Snyder [93] using Cuntz algebra techniques; such constructions were
further generalized by Evans and Gannon [74] to fusion categories that need not be uni-
tary. More recently, the F -symbols for all fusion categories realizing the Haagerup fusion
ring (G = Z3) with six simple objects have been computed using the pentagon approach
by Titsworth [163], and for the special case of the Haagerup H3 fusion category (in the
nomenclature of Grossman and Snyder [93]) independently by Osborne, Stiegemann and
Wolf [139].

The novelty of this paper is twofold. First, it offers the direct pentagon construction
for Haagerup-Izumi fusion categories beyond the Haagerup case (G = Z3); in particular,
the Haagerup-Izumi fusion categories classified in Theorem 4.5.2 have not appeared in
the literature beyond G = Z5. Second, the special transparent gauge adopted in this
paper—in which all F -symbols involving at least one external invertible object take
value one—not only makes the independent F -symbols directly comparable to the Cuntz
algebra datum of Izumi [105], Evans and Gannon [74, 75], and Grossman and Snyder [93],
but also makes the F -symbols automatically tetrahedral-symmetric (A4 or S4 tetrahedral-
invariant in the language of this paper), and unitary for pseudo-unitary fusion categories.2

2In [139, 163], the F -symbols for the Haagerup fusion categories with six simple objects were pre-
sented in non-transparent gauges that do not enjoy tetrahedral symmetry. The present authors used the
Mathematica package provided by Titsworth [163] to check that the F -symbols in the present paper are
indeed gauge-equivalent to his. The authors also thank Yuji Tachikawa for explicitly checking that the
four sets of F -symbols in [139] are all gauge-equivalent, and also gauge-equivalent to those presented in



185

In physical applications, such a gauge satisfies the assumptions of various theoretical
constructions—the Levin-Wen string-net models [119], large classes of statistical models
(see [2] and references within) and the associated anyon chains [77]—and allows the more
effective exploitation of the G = Z2n+1 symmetry. Of course, for a given fusion ring, there
may exist non-transparent fusion categories that elude the present approach. However,
none of the Haagerup-Izumi fusion categories up to G = Z9 known in the literature [14,
75, 90–92, 104, 105] was found to be non-transparent!

The outline of this chapter is as follows. Section 4.2 reviews the string diagram calcu-
lus, the F -symbols, and their relation to the tetrahedra. Section 4.3 defines the notion
of a transparent fusion category, and derives various consequences including invariance
relations for the F -symbols. Section 4.4 introduces the Haagerup-Izumi fusion rings,
and formulates a set of constraints on F -symbols that must be satisfied for transparent
Haagerup-Izumi fusion categories. Section 4.5 states the classification of solutions to the
pentagon identity under the said constraints, and presents the explicit F -symbols for
unitary Haagerup-Izumi fusion categories with S4 tetrahedral invariance, as well as for
the Haagerup H2 fusion category. Section 4.6 ends with some concluding remarks.

Note: The authors first obtained the F -symbols for the Haagerup fusion categories with
six simple objects from Titsworth [163]. By performing gauge transformations on his
solution, a gauge manifesting the transparent property was found. This observation led
the present authors to postulate that transparent fusion categories also exist for the
subsequent Haagerup-Izumi fusion rings with G = Z2n+1.

4.2 Preliminaries

A classic introduction to fusion categories can be found in [72, 73]. The type of fusion
categories considered in this chapter are pivotal fusion categories over ground field k = C.3

The notation for string diagrams is as follows. Each object L is represented by an oriented
string that is equivalent to its dual L with the opposite orientation,

L
=

L
.

this paper.
3For such categories, a physical formulation in the context of topological defect lines in (1+1)d

quantum field theory can be found in [50] (see also [36, 160]).
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The basic building block for string diagrams is a trivalent vertex with three open edges

×

L3

L1 L2

with × specifying the ordering of edges. It represents the vector space of morphisms

VL1,L2,L3 ≡ hom(L2 ⊗ L1,L3) ∈ CN
L3
L2,L1 ,

where NL3

L2,L1
is the fusion coefficient, the multiplicity of L3 in L2 ⊗ L1. A change of

basis at this vertex is a gauge transformation gL1,L2,L3 ∈ GL(NL3
L1,L2

,C). To simplify the
discussion, it is assumed in the following that the fusion algebra is multiplicity-free, i.e.
all nonzero fusion coefficients are one, and hence every nontrivial gauge factor gL1,L2,L3

is a complex scalar.

For a trivalent vertex involving at least one unit object, the ordering of edges is irrelevant,
and the marking × can be dropped. Furthermore, by choosing the unitors and counitors
to be identity morphisms, the unit object I can be removed or added at will,

L

L I

=

L

L

=

L

.

For a string diagram composed of two trivalent vertices

×
L5

L1

L2 L3

×

L4

the gauge freedom is gL1,L2,L5
gL5,L3,L4 . It is related by an F -move to a sum of string

diagrams in a different configuration,

×
L5

L1

L2 L3

×

L4

=
∑
L6

(FL1,L2,L3

L4
)L5,L6 ×

L6

L3L2

L1

×
L4

, (4.1)



187

where (FL1,L2,L3

L4
)L5,L6 are the F -symbols. The gauge factor for an F -symbol is

gL1,L2,L5
gL5,L3,L4

gL2,L3,L6
gL1,L6,L4

.

The F -symbols must satisfy a consistency condition that is the equivalence of the two
different sequences of F -moves

×
+

+

−→
×

+

L8

+

−→
×

+
+

↘ ↗

×
+

L+

−→
×L9

+

L+

both resulting in

×

L5

L7

+ L6

+

L1L4 L3 L2

→
×

L5

L9

+L8

+

L4 L1L2L3

.

This consistency condition is the pentagon identity

(FL6,L3,L4

L5
)L7,L8 (F

L1,L2,L8

L5
)L6,L9 =

∑
L

(FL1,L2,L3

L7
)L6,L (F

L1,L,L4

L5
)L7,L9 (F

L2,L3,L4

L9
)L,L8 .

(4.2)
A solution to the pentagon identity amounts to the construction of a pivotal fusion
category. If there are n isomorphism classes of simple objects, then the pentagon identity
is a set of O(n9) cubic polynomial equations for O(n6) variables, modulo O(n3) gauge
freedom. As n grows, a generic system of this size quickly becomes unmanageable.

The cyclic permutation map is the isomorphism relating the three vector spaces

VL1,L2,L3 , VL2,L3,L1 , VL3,L1,L2 ,
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which pictorially corresponds to moving the × mark around. It is the F -move with an
external edge representing the unit object I:

×
L3

L1

L2 L3

I

= (FL1,L2,L3

I )L3,L1 ×L1

L3L2

L1 I

.

The net effect is a counter-clockwise rotation of the × mark accompanied by a factor of
(FL1,L2,L3

I )L3,L1
. Gauge freedom alone cannot guarantee that the F -symbols (FL1,L2,L3

I )L3,L1

take value one for all L1,L2,L3.4 The temptation to ignore the ordering and marking at
trivalent vertices motivates the following definition.

Definition 4.2.1 (Cyclic-permutation invariance) A pivotal fusion category is called
cyclic-permutation invariant if the trivalent vertices are cyclic-permutation invariant,
that is, for every triple (L1,L2,L3) of objects,5

×

L3

L1 L2

=

L3

L1

×

L2

=

L3

×
L1 L2

.

In a cyclic-permutation invariant fusion category C, it is clear by a π-rotation that the
F -symbols enjoy an order-two invariance

(FL1,L2,L3

L4
)L5,L6 = (FL3,L4,L1

L2
)L5,L6

.

4See for instance Appendix A of [50].
5A more conventional string diagram is

×

L3

L1 L2

=
×

L2

L3

L1

I

I

=
×

L1

L3

L2

I

I

involving evaluation, coevaluation, unitor, and counitor.
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By relating the F -symbols to tetrahedra (as shown in Appendix C.1),

L1

L6

L2

L5

L4

L3

= (FL1,L2,L3

L4
)L5,L6

L1 L6L4 L6 L2L3

L6

,

L4

L6

L3

L5

L1

L2

= (FL1,L2,L3

L4
)L5,L6

L4 L6L1 L6 L3L2

L6

,

(4.3)
additional relations can be manifested. Each tetrahedron enjoys an S3 symmetry: it is
invariant under the Z3 rotations and complex conjugate under a reflection. Combined
with the aforementioned π-rotation invariance generates an S4 worth of relations for the
F -symbols. However, these relations are generally nonlinear due to the factors of graphs
appearing on the right of (4.3).

4.3 Transparent fusion categories

Definition 4.3.1 (Transparency) A pivotal fusion category C is called transparent if
the associator involving any invertible object is the identity map. In terms of string
diagrams, C is transparent if for every triple (L1,L2,L3) of objects in C and for every
invertible object η,

×
ηL3

L1

L2 L3

×

η

= ×L1η

L3L2

L1

×

η

and likewise for η on any of the three other external edges.
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Since the unit object is invertible, a transparent fusion category is automatically cyclic-
permutation invariant. Hence, the marking × on the trivalent vertices representing the
ordering or edges can be ignored.

Transparency essentially means that invertible objects can be attached or detached
“freely”, changing the isomorphism classes of the other involved objects without gen-
erating extra F -symbols. Appendix C.2 illustrates some basic operations. The following
operation will be referred to as symmetry nucleation: given a graph, nucleate an invertible
loop on any face and merge it with the bordering edges. For example, on any triangular
face,

L2

L1 L3

η =

ηL2

ηL1 ηL3

η =

ηL2

ηL1 ηL3

.

A slight variant of symmetry nucleation gives rise to invariance relations for F -symbols.
Consider the F -move equation and add an invertible object η to an open face

η
L5

L1

L2 L3

L4

=
∑
L

(FL1,L2,L3

L4
)L5,L6

η L6

L3L2

L1 L4

,

which by transparency is equivalent to

L5

L1η

ηL2 L3

L4

=
∑
L

(FL1,L2,L3

L4
)L5,L6

ηL6

L3ηL2

L1η L4

.

The result is an invariance relation

(FL1,L2,L3

L4
)L5,L6 = (FL1η,ηL2,L3

L4
)L5,ηL6 .

Similar operations on the other three faces give

(FL1,L2,L3

L4
)L5,L6 = (FL1,L2η,ηL3

L4
)L5η,L6 = (FL1,L2,L3η

ηL4
)L5,L6η = (F ηL1,L2,L3

L4η
)ηL5,L6 .
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Further useful relations between graphs and F -symbols can be derived as follows. Let
(L1,L2,L3) be any triple of simple objects in C, and η any invertible object. Consider

η

L1

L1η

L3

L3η

L2

= L1 L3L2 , (4.4)

and perform an F -move on L2 to obtain

η

L1

L1η

L3

L3η

L2

= (FL1,L3,L3η
L1η

)L2,η
L1 L3 .

Thus

(FL1,L3,L3η
L1η

)L2,η
=

L1 L3L2

L1 L3

. (4.5)

The special case of L2 = θ invertible, and L1 = L, L3 = θL gives

(FL,θL,θLη
Lη )θ,η

−1
= L . (4.6)

Consider again the original diagram (4.4). Perform an F -move on η, and then another
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F -move on a unit object connecting the two L2 edges to obtain

η

L1

L1η

L3

L3η

L2

= (FL1,L1η,L3η

L3
)η,L2

L1 L1η L3L3η

L2

L2

= (FL1,L1η,L3η

L3
)η,L2

(FL2,L2,L2

L2
)I,I L1 L3L2 L1η L2L3η .

From the above it is deduced that

(FL1,L1η,L3η

L3
)η,L2

=

L2

L1η L2L3η

. (4.7)

4.4 Transparent Haagerup-Izumi fusion categories

A Haagerup-Izumi fusion ring can be defined for every finite abelian group G. A key
feature is that it is quadratic [91, 162]: the fusion of a single non-invertible simple
object with the invertible objects generates all the non-invertible simple objects. In this
section, a set of constraints are formulated for classifying transparent Haagerup-Izumi
fusion categories with G = Z2n+1.

The Haagerup-Izumi fusion ring with G = Zν has ν invertible objects

I, α, α2, · · · αν−1

and ν non-invertible simple objects

ρ, αρ, α2ρ, · · · αν−1ρ ,

subject to the relations

αν = 1 , αρ = ραν−1 , ρ2 = I +
ν−1∑
k=0

αkρ .
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When ν = 1, this is the Fibonacci ring, which is the Grothendieck ring of the Fibonacci
category (even sectors of the A4 subfactor) and Lee-Yang category. When ν = 2, this is
the Grothendieck ring of the C(sl(2), 8)ad fusion category (even sectors of the A7 subfac-
tor), which is premodular but not modular [43]. When ν = 3, this is the Grothendieck
ring of the Haagerup H2 and H3 fusion categories [14, 93]. For ν ≥ 3, the fusion ring is
non-commutative.

Let C be a transparent Haagerup-Izumi fusion category with G = Z2n+1. Define ζ and ξ
to be the graph values

ζ ≡ ρ , ξ ≡ ρ ρρ .

On the left, symmetry nucleation implies that all non-invertible loops take value ζ. On
the right, symmetry nucleation on the three faces implies that all such graphs with
three non-invertible simple objects take the same value ξ. In summary, for any triple
(L1,L2,L3) of simple objects,

L1 L3L2 =


1 all invertible ,

ζ one invertible ,

ξ all non-invertible .

By (4.6), for any pair (η, θ) of invertible objects,

(FL,θL,θLη
Lη )θ,η =

1 L invertible ,

ζ−1 L non-invertible .

The F -symbols with a single internal invertible object can also be deduced. For any
triple (L1,L2,L3) of non-invertible simple objects, by (4.5) and (4.7),

(FL1,L3,ηL3

L1η
)L2,η = ζ−2 ξ , (FL1,ηL1,ηL3

L3
)η,L2 = ζ ξ−1 . (4.8)

The possible values of ζ can be constrained as follows. Consider two concentric ρ loops
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and perform an F -move to obtain

ζ2 = ρρ I

= (F ρ,ρ,ρ
ρ )I,I I ρρ +

2n∑
i=0

(F ρ,ρ,ρ
ρ )I,αiρ

αiρ ρρ

= 1 + (2n+ 1) ζ .

Hence,

ζ =
2n+ 1±

√
(2n+ 1)2 + 4

2
.

Finally, a gauge choice can be made such that

ξ = ζ
3
2 , (FL1,L3,ηL3

ηL1
)L2,η = (FL1,ηL1,ηL3

L3
)η,L2 = ζ−

1
2 .

Definition 4.4.1 (Transparent constraints) Let I be the set of isomorphism classes
of invertible objects and N the set of isomorphism classes of non-invertible simple objects
in the Haagerup-Izumi fusion ring with G = Z2n+1. The transparent constraints are the
collection of constraints on the F -symbols

(F η,L2,L3

L4
)L5,L6 = (FL1,η,L3

L4
)L5,L6 = (FL1,L2,η

L4
)L5,L6 = (FL1,L2,L3

η )L5,L6 = 1 ,

(F ηLθ,θL,L
ηL )η,θ = ζ−1 , (FL1,L3,ηL3

L1η
)L2,η = (FL1,ηL1,ηL3

L3
)η,L2 = ζ−

1
2 ,

(FL1,L2,L3

L4
)L5,L6 = (FL1η,ηL2,L3

L4
)L5,ηL6 = (FL1,L2η,ηL3

L4
)L5η,L6

= (FL1,L2,L3η
L4η

)L5,L6η = (F ηL1,L2,L3

ηL4
)ηL5,L6 ,

(4.9)

for all η, θ ∈ I and L,Li ∈ N .

For the Haagerup-Izumi fusion ring with G = Z2n+1, the number of independent F -
symbols after imposing the transparent constraints is (2n+1)2+1, significantly reduced
from O(n6). This number can be further reduced by exploiting tetrahedral invariance.
Since the factors in the relations (4.3) between the tetrahedra and the F -symbols are uni-
versally equal to ζ−1ξ2, the set of F -symbols with all objects non-invertible are invariant
under the A4 symmetry of the tetrahedron, and are related by complex conjugation under
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reflection if ξ is chosen to be real. To facilitate the computation, one may further assume
reflection invariance and impose S4 invariance on the F -symbols.6

Table 4.1 lists the numbers of independent F -symbols after imposing the transparent
constraints together with A4 or S4 tetrahedral invariance. With A4 invariance (necessary
consequence of transparency), the pentagon identity under the transparent constraints
can be practically solved up to G = Z9 by computing a Groebner basis using MAGMA
[38]. With S4 invariance, it can be solved up to G = Z15. The next section presents the
results of this classification.

G A4 S4

Z3 8 7
Z5 22 16
Z7 44 29
Z9 74 46
Z11 112 67
Z13 158 92
Z15 212 121

Table 4.1: The numbers of independent F -symbols for the Haagerup-Izumi fusion rings
after imposing the transparent constraints together with A4 or S4 tetrahedral invariance.

4.5 Classification of F -symbols

Main theorems

Theorem 4.5.1 For the Haagerup-Izumi fusion rings with G = Z2n+1, let

ζ± ≡
2n+ 1±

√
(2n+ 1)2 + 4

2
.

Under the transparent constraints (4.4.1) and imposing A4 tetrahedral invariance (neces-
sary by transparency), the pentagon identity has the following solutions:

(a) There are two solutions for G = Z1 corresponding to the Fibonacci and Lee-Yang
categories.

(b) There are eight solutions for G = Z3.

(c) There are sixteen solutions for G = Z5.
6The usual notion of tetrahedral symmetry includes complex conjugation under reflections. However,

such relations complicate the present approach of computing a Groebner basis for the pentagon identity.
Hence, the term tetrahedral invariance in this paper refers to true equality without complex conjugation,
and the notion is further subdivided into A4 invariance (without reflections) and S4 invariance (with
reflections).
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(d) There are twenty-four solutions for G = Z7.

(e) There are forty-eight solutions for G = Z9.

(f) For G = Z2n+1 with n = 1, 2, 3, the solutions form four order-2n orbits of the Z2n

automorphism group. Two orbits are unitary with ζ = ζ+; the F -symbols are real in
one of the two orbits, and complex in the other. The remaining two orbits are the
non-unitary Galois associates of the two unitary orbits, with ζ = ζ−. In particular,
for G = Z3, the unitary real orbit corresponds to the Haagerup H3 fusion category,
and the unitary complex orbit corresponds to the Haagerup H2 fusion category, in
the nomenclature of Grossman and Snyder [93].

Theorem 4.5.2 For the Haagerup-Izumi fusion rings with G = Z2n+1, let

ζ± ≡
2n+ 1±

√
(2n+ 1)2 + 4

2
.

Under the transparent constraints (4.4.1) and imposing S4 tetrahedral invariance, the
pentagon identity has the following solutions:

(a) There are two solutions for G = Z1, corresponding to the Fibonacci and Lee-Yang
categories.

(b) There are four solutions for G = Z3.

(c) There are eight solutions for G = Z5.

(d) There are twelve solutions for G = Z7.

(e) There are twenty-four solutions for G = Z13.

(f) For G = Z2n+1 with n = 1, 2, 3, 6, the solutions form two order-2n orbits of the Z2n

automorphism group. One orbit is unitary with ζ = ζ+, and the other orbit consists of
the non-unitary Galois associates with ζ = ζ−. In particular, for G = Z3, the unitary
real orbit corresponds to the Haagerup H3 fusion category in the nomenclature of
Grossman and Snyder [93].

(g) There are twenty-four solutions for G = Z9, forming four order-six orbits of the Z6

automorphism group. Two orbits are unitary with ζ = ζ+, and the other two orbits
consist of the non-unitary Galois associates with ζ = ζ−.
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(h) There are twenty-four solutions for G = Z11, forming two order-two orbits and two
order-ten orbits of the Z10 automorphism group. One order-two orbit and one order-
ten orbit are unitary with ζ = ζ+, and the other two orbits consist of the non-unitary
Galois associates with ζ = ζ−.

(i) There are forty-eight solutions for G = Z15, forming six order-eight orbits of the
Z2 × Z4 automorphism group. Three orbits are unitary with ζ = ζ+, and the other
three orbits consist of the non-unitary Galois associates with ζ = ζ−.

(j) In the above, the F -symbols are real when ζ = ζ+, and complex when ζ = ζ−.
Solutions in a single orbit of the automorphism group have the same (F ρ,ρ,ρ

ρ )ρ,ρ, while
different orbits have distinct (F ρ,ρ,ρ

ρ )ρ,ρ. Since (F ρ,ρ,ρ
ρ )ρ,ρ is gauge-invariant, solutions

with distinct values correspond to inequivalent fusion categories.

Explicit F -symbols for G = Z2n+1 with 1 ≤ n ≤ 7

Let I be the set of invertible objects and N the set of non-invertible simple objects of
the Haagerup-Izumi fusion ring with G = Z2n+1. By (4.4.1), the F -symbols involving at
least one invertible object are given by

(F ηLθ,Lθ,L
ηL )η,θ = ζ−1 , (FL1,L3,ηL3

ηL1
)L2,η = (FL1,ηL1,ηL3

L3
)η,L2 = ζ−

1
2 ,

for all η, θ ∈ I and Li ∈ N . For the F -symbols with all simple objects being non-
invertible, it suffices to specify the (2n + 1)2 components (F ρ,ρ,ρ

∗ )ρ,∗ with ∗ running over
the non-invertible simple objects. The rest are equal to one of the above by the Z4

2n+1

invariance relations in (4.4.1). In fact, these invariance relations can be equivalently
written as

(FL1,L2,L3

L4
)L5,L6 = (F ηL1,ηL2,ηL3

ηL4
)ηL5,ηL6 = (F ηL1,L2,L3η

L4
)L5,L6

= (FL1,ηL2,L3

L4η
)L5,L6 = (FL1,L2,L3

L4
)ηL5,L6η ,

for all η, θ ∈ I and Li ∈ N .7

The explicit F -symbols for the Haagerup H2 fusion category will first be presented,
corresponding to two of the eight solutions in Theorem 4.5.1(b) that are unitary and
complex (hence strictly A4 tetrahedral invariance but not S4). Then, among the solutions
classified by Theorem 4.5.2 (satisfying S4 tetrahedral invariance), the explicit F -symbols

7Note that the equality of the first and the last terms implies that every (FL1,L2,L3

L4
)L5,L6

with
L5, L6 ∈ N is anti-circulant and therefore symmetric. Together with the gauge choice in (4.4.1), it
follows that every F -symbol is symmetric in the appropriate basis.
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for the unitary ones—the real ones with ζ = ζ+—will now be presented.8 The F -symbols
for the other fusion categories are available by request. In the following, except for the
particularly nice ones, the F -symbols will be presented as roots of polynomials, where
xi denotes the i-th smallest real root of some polynomial in x, and likewise for other
symbols y, z, . . . . Note that all the presented polynomials only have simple roots. The
simpler polynomials are given in the main text, while the more complicated ones are
given in Appendix C.3.

Haagerup H2 (G = Z3)

Theorem 4.5.1(b). Under the automorphism group Aut(G) ∼= Z2, there is exactly one
unitary orbit with two complex solutions (strict A4 tetrahedral invariance). One solution
is given by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ

ρ x z z

αρ z z y1

α2ρ z y2 z

where

x =
7−
√
13

6
, y1,2 =

1

12

(
−1 +

√
13± 3i

√
2
(
1 +
√
13
))

, z =
1−
√
13

6
.

Aut(G) ∼= Z2 exchanges y1 and y2, giving the other solution in the orbit.

Haagerup H3 (G = Z3)

Theorem 4.5.2(b). Under the automorphism group Aut(G) ∼= Z2, there is exactly one
unitary orbit with two real solutions (S4 tetrahedral invariance). One solution is given
by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ

ρ x y1 y2

αρ y1 y2 z

α2ρ y2 z y1
8The unitarity of the F -symbols for these solutions can be understood as follows. First, by trans-

parency, FL1,L2,L3

L4
is nontrivial only if L1, . . . , L4 are all non-invertible and self-dual, so FL1,L2,L3

L4
=

FL1,L2,L3

L4
. Next, S4 invariance and reality imply that FL2,L3,L4

L1
= (FL1,L2,L3

L4
)t = (FL1,L2,L3

L4
)†. Hence

unitarity FL1,L2,L3

L4
(FL1,L2,L3

L4
)† = I becomes equivalent to the condition FL1,L2,L3

L4
FL2,L3,L4

L1
= I, which

is the pentagon identity (4.2) with L5 = I, L7 = L4, and L9 = L1.
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where

x =
2−
√
13

3
, y1,2 =

1

12

(
5−
√
13∓

√
6
(
1 +
√
13
))

, z =
1 +
√
13

6
.

Aut(G) ∼= Z2 exchanges y1 and y2, giving the other solution in the orbit.

G = Z5

Theorem 4.5.2(c). Under the automorphism group Aut(G) ∼= Z4, there is exactly one
unitary orbit with four real solutions (S4 tetrahedral invariance). One solution is given
by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ α3ρ α4ρ

ρ x y1 y3 y2 y4

αρ y1 y4 z2 z4 z2

α2ρ y3 z2 y2 z4 z4

α3ρ y2 z4 z4 y3 z2

α4ρ y4 z2 z4 z2 y1

where

x =
7−
√
29

5
,

yi are the real roots of

P Z5
y (y) = 625y8 − 1375y7 + 1275y6 + 245y5 − 654y4 + 152y3 + 75y2 − 29y − 1 ,

and zi are the roots of

P Z5
z (z) = 25z4 − 15z3 − 9z2 + 7z − 1 .

Aut(G) ∼= Z4 permutes yi and exchanges z2 and z4 by

τy = (1243) , τz = (24) ,

giving the other solutions in the orbit.

Note that the polynomial in z factorizes over Q(
√
29 = 52 + 4), and z2, z4 are the roots

to one of the factors. This pattern continues in the following solutions. Namely, all
polynomials factorize over Q(

√
n2 + 4), and the roots in a single orbit of Aut(G) will

always be roots of the same factor.
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G = Z7

Theorem 4.5.2(d). Under the automorphism group Aut(G) ∼= Z6, there is exactly
one unitary orbit with six solutions. One solution is given by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ α3ρ α4ρ α5ρ α6ρ

ρ x y1 y2 y6 y4 y3 y5

αρ y1 y5 z6 w2 z3 w1 z6

α2ρ y2 z6 y3 w1 z4 z4 w2

α3ρ y6 w2 w1 y4 z3 z4 z3

α4ρ y4 z3 z4 z3 y6 w2 w1

α5ρ y3 w1 z4 z4 w2 y2 z6

α6ρ y5 z6 w2 z3 w1 z6 y1

where

x =
11− 2

√
53

7
.

Aut(G) ∼= Z6
∼= ⟨σ, τ | σ2 = τ 3 = 1⟩ permutes the roots by

σy = (15)(23)(46) , σz = id , σw = (12) ,

τy = (356)(142) , τz = (346) , τw = id ,

giving the other solutions in the orbit.

G = Z9

Theorem 4.5.2(g). Under the automorphism group Aut(G) ∼= Z6, there are two uni-
tary orbits each with six solutions. A solution in one orbit is given by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ α3ρ α4ρ α5ρ α6ρ α7ρ α8ρ

ρ x1 y1 y12 r○4 y6 y8 r○1 y7 y5

αρ y1 y5 z8 w10 w2 z11 w5 w7 z8

α2ρ y12 z8 y7 w7 z4 w9 w1 z4 w10

α3ρ r○4 w10 w7 r○1 w5 w1 s○4 w9 w2

α4ρ y6 w2 z4 w5 y8 z11 w9 w1 z11

α5ρ y8 z11 w9 w1 z11 y6 w2 z4 w5

α6ρ r○1 w5 w1 s○4 w9 w2 r○4 w10 w7

α7ρ y7 w7 z4 w9 w1 z4 w10 y12 z8

α8ρ y5 z8 w10 w2 z11 w5 w7 z8 y1

where

x1,2 =
35− 4

√
85∓

√
517− 56

√
85

18
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are the two negative roots of

P Z9
x (x) = 81x4 − 630x3 + 899x2 + 210x+ 9 .

Aut(G) ∼= Z6
∼= ⟨σ, τ | σ2 = τ 3 = 1⟩ permutes the roots by

σx = id, σy = (1 5)(2 4)(3 11)(6 8)(7 12)(9 10) , σz = id ,

σw = (1 9)(2 5)(3 8)(4 12)(6 11)(7 10) , σr = (1 4)(2 3) , σs = id ,

τx = id, τy = (1 6 7)(2 3 9)(4 11 10)(5 8 12) , τz = (3 10 7)(4 8 11) ,

τw = (1 7 2)(3 6 12)(4 8 11)(5 9 10) , τr = id, τs = id ,

giving the other solutions in the orbit. There is an additional Z2
∼= ⟨ι | ι2 = 1⟩ action

that acts by

ιx = (1 2) , ιy = (1 2)(3 6)(4 5)(7 9)(8 11)(10 12) , ιz = (3 4)(7 11)(8 10) ,

ιw = (1 12)(2 6)(3 7)(4 9)(5 11)(8 10) , ιr = (1 3)(2 4) , ιs = (2 4) ,

and exchanges the two unitary orbits.

G = Z11

Theorem 4.5.2(h). Under the automorphism group Aut(G) ∼= Z10, there is one uni-
tary orbit with two solutions and one unitary orbit with ten solutions. In the orbit with
two solutions, one solution is given by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ α3ρ α4ρ α5ρ α6ρ α7ρ α8ρ α9ρ α10ρ

ρ x y1 y2 y1 y1 y1 y2 y2 y2 y1 y2

αρ y1 y2 z2 w2 w2 w1 z2 w2 w1 w1 z2

α2ρ y2 z2 y1 w1 z2 w2 w1 w2 w1 z2 w2

α3ρ y1 w2 w1 y2 w1 w1 z2 z2 z2 w2 w2

α4ρ y1 w2 z2 w1 y2 w2 w2 z2 z2 w1 w1

α5ρ y1 w1 w2 w1 w2 y2 z2 w1 z2 w2 z1

α6ρ y2 z2 w1 z2 w2 z2 y1 w1 w2 w1 w2

α7ρ y2 w2 w2 z2 z2 w1 w1 y1 w2 z2 w1

α8ρ y2 w1 w1 z2 z2 z2 w2 w2 y1 w2 w1

α9ρ y1 w1 z2 w2 w1 w2 w1 z2 w2 y2 z2

α10ρ y2 z2 w2 w2 w1 z1 w2 w1 w1 z2 y1

where

x =
13− 5

√
5

11
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is a root of the polynomial

P Z11

2|x (x) = 11x2 − 26x+ 4 .

The Z2 subgroup of Aut(G) ∼= Z10 exchanges y1 with y2 and w1 with w2. In the order-ten
orbit, one solution is given by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ α3ρ α4ρ α5ρ α6ρ α7ρ α8ρ α9ρ α10ρ

ρ x y1 y10 y9 y2 y8 y3 y7 y4 y6 y5

αρ y1 y5 z6 w10 w3 w9 z7 w1 w7 w4 z6

α2ρ y10 z6 y6 w4 z3 w2 w6 w5 w8 z3 w10

α3ρ y9 w10 w4 y4 w7 w8 z4 z8 z4 w2 w3

α4ρ y2 w3 z3 w7 y7 w1 w5 z8 z8 w6 w9

α5ρ y8 w9 w2 w8 w1 y3 z7 w6 z4 w5 z7

α6ρ y3 z7 w6 z4 w5 z7 y8 w9 w2 w9 w1

α7ρ y7 w1 w5 z8 z8 w6 w9 y2 w3 z3 w7

α8ρ y4 w7 w8 z4 z8 z4 w2 w3 y9 w10 w4

α9ρ y6 w4 z3 w2 w6 w5 w9 z3 w10 y10 z6

α10ρ y5 z6 w10 w3 w9 z7 w1 w7 w4 z6 y1

where

x =
101− 49

√
5

22

is a root of the polynomial

P Z11

10|x(x) = 11x2 − 101x− 41 .

Aut(G) ∼= Z10
∼= ⟨σ, τ | σ2 = τ 5 = 1⟩ permutes the roots by

σy = (1 5)(2 7)(3 8)(4 9)(6 10) , σz = id , σw = (1 9)(2 8)(3 7)(4 10)(5 6) ,

τy = (1 2 8 6 9)(3 10 4 5 7) , τz = (3 4 6 8 7) , τw = (1 5 2 10 3)(4 7 9 6 8) ,

giving the other solutions in the orbit.
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G = Z13

Theorem 4.5.2(e). Under the automorphism group Aut(G) ∼= Z12, there is exactly
one unitary orbit with twelve solutions. One solution is given by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ α3ρ α4ρ α5ρ α6ρ α7ρ α8ρ α9ρ α10ρ α11ρ α12ρ

ρ x y1 y9 y12 y8 y4 y7 y3 y5 y2 y10 y6 y11

αρ y1 y11 z6 w5 s3 w8 w4 z9 w11 w9 s2 w2 z6

α2ρ y9 z6 y6 w2 z7 w10 w12 s1 s4 w7 w1 z7 w5

α3ρ y12 w5 w2 y10 s2 w1 z10 w3 z8 w6 z10 w10 s3

α4ρ y8 s3 z7 s2 y2 w9 w7 w6 z4 z4 w3 w12 w8

α5ρ y4 w8 w10 w1 w9 y5 w11 s4 z8 z4 z8 s1 w4

α6ρ y7 w4 w12 z10 w7 w11 y3 z9 s1 w3 w6 s4 z9

α7ρ y3 z9 s1 w3 w6 s4 z9 y7 w4 w12 z10 w7 w11

α8ρ y5 w11 s4 z8 z4 z8 s1 w4 y4 w8 w10 w1 w9

α9ρ y2 w9 w7 w6 z4 z4 w3 w12 w8 y8 s3 z7 s2

α10ρ y10 s2 w1 z10 w3 z8 w6 z10 w10 s3 y12 w5 w2

α11ρ y6 w2 z7 w10 w12 s1 s4 w7 w1 z7 w5 y9 z6

α12ρ y11 z6 w5 s3 w8 w4 z9 w11 w9 s2 w2 z6 y1

where

x =
107− 8

√
173

13

is a root of the polynomial

P Z13
x (x) = 13x2 − 214x+ 29 .

Aut(G) ∼= Z12
∼= ⟨σ, τ | σ4 = τ 3 = 1⟩ permutes the roots in the following way

σy = (1 4 11 5)(2 7 8 3)(6 12 9 10) , σz = (4 9)(6 8)(7 10) ,

σw = (1 5 10 2)(3 7 6 12)(4 9 11 8) , σs = (1 3 4 2) ,

τy = (1 2 12)(3 6 5)(4 7 9)(8 10 11) , τz = (4 10 6)(7 8 9) ,

τw = (1 4 7)(2 8 3)(5 9 6)(10 11 12) , τs = id .
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G = Z15

Theorem 4.5.2(i). Under the automorphism group Aut(G) ∼= Z2×Z4, there are three
unitary orbits each with eight solutions. A solution in one orbit is given by9

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ α3ρ α4ρ α5ρ α6ρ α7ρ α8ρ α9ρ α10ρ α11ρ α12ρ α13ρ α14ρ

ρ x2 y1 y9 r7 y2 s5 r1 y23 y16 r4 s4 y17 r9 y19 y18

αρ y1 y18 z14 w14 t10 u5 v19 w13 z7 w4 v23 u10 t5 w1 z14

α2ρ y9 z14 y19 w1 z15 v6 w10 u2 t7 t12 u12 w20 v2 z15 w14

α3ρ r7 w14 w1 r9 t5 v2 a11 w18 v5 a4 v10 w19 a11 v6 t10

α4ρ y2 t10 z15 t5 y17 u10 w20 w19 z4 v4 v13 z4 w18 w10 u5

α5ρ s5 u5 v6 v2 u10 s4 v23 u12 v10 v13 b6 v4 v5 u2 v19

α6ρ r1 v19 w10 a11 w20 v23 r4 w4 t12 a4 v4 v13 a4 t7 w13

α7ρ y23 w13 u2 w18 w19 u12 w4 y16 z7 t7 v5 z4 v10 t12 z7

α8ρ y16 z7 t7 v5 z4 v10 t12 z7 y23 w13 u2 w18 w19 u12 w4

α9ρ r4 w4 t12 a4 v4 v13 a4 t7 w13 r1 v19 w10 a11 w20 v23

α10ρ s4 v23 u12 v10 v13 z22 v4 v5 u2 v19 s5 u5 v6 v2 u10

α11ρ y17 u10 w20 w19 z4 v4 v13 z4 w18 w10 u5 y2 t10 z15 t5

α12ρ r9 t5 v2 a11 w18 v5 a4 v10 w19 a11 v6 t10 r7 w14 w1

α13ρ y19 w1 z15 v6 w10 u2 t7 t12 u12 w20 v2 z15 w14 y9 z14

α14ρ y18 z14 w14 t10 u5 v19 w13 z7 w4 v23 u10 t5 w1 z14 y1

Aut(G) ∼= Z2 × Z4
∼= ⟨σ, τ | σ2 = τ 4 = 1⟩ permutes the roots in the following way

σy = (1 18)(2 17)(9 19)(16 23) , σr = (1 4)(7 9) , σs = (4 5) , σt = (5 10)(7 12) ,

σr = (2 12)(5 10) , σr = (1 4)(2 6)(4 13)(10 20) , σw = (1 14)(4 13)(10 20)(18 19) ,

σz = id , σa = id , σb = id ,

τy = (1 19 2 23)(9 17 16 18) , τr = (1 7 4 9) , τs = id , τt = (5 7)(10 12) ,

τu = (2 10 12 5) , τv = (2 13 5 23)(4 10 19 6) , τw = (1 10 19 13)(4 14 20 18) ,

τz = (4 7 14 15) , τa = (4 11) , τb = id ,

giving the other solutions in the orbit. There is an additional Z3
∼= ⟨ι|ι3 = 1⟩ action that

acts by

ιx = (1 2 3) ,

ιy = (1 3 5)(2 10 14)(4 20 18)(6 11 17)(7 9 13)(8 12 19)(15 16 22)(21 24 23) ,

ιr = (1 6 8)(2 7 5)(3 4 10)(9 12 11) , ιs = (1 5 3)(2 6 4) ,

ιt = (1 6 7)(2 5 8)(3 10 11)(4 12 9) , ιu = (1 12 4)(2 6 7)(3 8 10)(5 11 9) ,

ιv = (1 23 15)(2 3 12)(4 18 16)(5 7 22)(6 20 8)(9 14 13)(10 17 21)(11 24 19) ,

ιw = (1 8 16)(2 18 11)(3 10 22)(4 9 6)(5 24 20)(7 21 13)(12 14 15)(17 19 23) ,

ιz = (4 5 11)(7 10 8)(14 19 17)(15 16 20) ,

ιa = (3 10 11)(4 8 6) , ιb = (3 6 5) ,
9The polynomials are rather long and thus omitted in writing.
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and cycles through the three distinct unitary orbits. The polynomial for x is given by

3375x6 − 116550x5 + 620280x4 − 926392x3 + 41520x2 + 88128x− 6912 .

4.6 Conclusions and outlook

In this paper, the notion of a transparent fusion category was defined, and the F -symbols
for transparent Haagerup-Izumi fusion categories with G = Z2n+1 were constructively
classified up to G = Z9, and further up to G = Z15 by additionally imposing S4 tetra-
hedral invariance. Various graph equivalences and F -symbol relations were derived from
transparency, reducing the number of independent F -symbols from O(n6) to O(n2),ing
the pentagon identity practically solvable.

In the Cuntz algebra approach to the construction of Haagerup-Izumi fusion categories,
the polynomial equations are simpler to solve for Izumi systems [105], corresponding to
F -symbols with strict A4 tetrahedral invariance, than for Grossman-Snyder systems [93],
corresponding to F -symbols with S4 tetrahedral invariance. For the former, the results
of this paper (up to G = Z9) can be directly compared with the solutions obtained by
Evans and Gannon [75],and they are in complete agreement. For the latter, whereas
solutions to the Grossman-Snyder systems are available from Evans and Gannon [74]
only up to G = Z5, the present paper constructed categories up to G = Z15. To facilitate
the comparison of the Cuntz algebra approach, the present authors solved the Grossman-
Snyder system up to G = Z9 by computing Groebner bases, and again found agreement.

Up to G = Z9, the number of solutions under strict A4 tetrahedral invariance (Izumi
systems) and that under S4 (Grossman-Snyder systems) are in agreement. A possible
explanation is that for any G, there is a one-to-one correspondence between the two,
where a fusion category on one side is the bimodule category of another fusion category
on the other side, with respect to an appropriate algebra object; in the physics language,
they are related by gauging the G = Z2n+1. That this is true for the Haagerup [96] case
G = Z3 was shown by Grossman and Snyder [93]. If this explanation is generally valid,
then for G = Z15, the existence of three unitary orbits of the Z2×Z4 automorphism group
according to Theorem 4.5.2 suggests that Evans and Gannon [75] missed two solutions
in their numerical analysis. However, the present authors have not been able to compute
a Groebner basis for the G = Z15 Izumi system to verify this speculation.

It would be interesting to construct transparent fusion categories for other fusion rings,
especially quadratic (or generalized near-group) fusion rings where the fusion of the in-
vertible objects with a single non-invertible object generates all the non-invertible objects
[91, 162]. Partial transparency may already be sufficient to reduce the pentagon identity



206

to being practically solvable. For instance, consider the following family of fusion rings:
introduce ν invertible objects

I, α, α2, · · · αν−1

together with ν + 1 non-invertible simple objects

ρ, αρ, α2ρ, · · · αν−1ρ, N ,

and define the fusion ring

αν = 1 , αρ = ραν−1 , αN = N α = N ,

ρ2 = I + Z +N , N 2 = Y + Z , ρN = Nρ = Z +N ,

where

Y ≡
ν−1∑
k=0

αk , Z ≡
ν−1∑
k=0

αkρ .

When ν = 1, this is the RC(ŝo(3))5 fusion ring, which is known to admit three inequiv-
alent fusion categories. The generalization of RC(ŝo(3))5 to the above family of fusion
rings parallels the generalization of Fibonacci to Haagerup-Izumi. Because the N object
is similar to the non-invertible object in the G = Zν Tambara-Yamagami categories,
which are not transparent, it is unreasonable to expect that the above family extending
the RC(ŝo(3))5 fusion ring admits fully transparent fusion categories. Nonetheless, par-
tial transparency for ρ, αρ, . . . , αν−1ρ may already be sufficient to render the pentagon
identity solvable.

Explicit F -symbols have interesting applications. For instance, three-manifold invariants
can be defined by the F -symbols alone without the need of braiding [21, 87]. In physics,
one could study the gapped phase of (1+1)d quantum field theories with Haagerup-Izumi
symmetries, by constructing (1+1)d topological quantum field theories with the same
symmetries, as was done in [50] for fusion categories of smaller ranks. The statistical
models of [2] and the associated anyon chains can also be explicitly constructed from the
unitary F -symbols. In conformal field theory, the crossing symmetry of defect four-point
functions may produce universal bounds on the spectra via the conformal bootstrap [154].
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C h a p t e r 5

TOPOLOGICAL FIELD THEORY WITH HAAGERUP SYMMETRY

1

5.1 Introduction

The best cultivated terrains in the landscape of (1+1)d conformal field theories (CFTs)
are rational conformal field theories (RCFTs) [80], free theories, and orbifolds [63, 64]
thereof. Exactly marginal deformations of orbifold twist fields bring us into more in-
teresting realms, and when explored far enough provide candidates with weakly coupled
holographic duals. But the full landscape is believed to be vaster. The conformal boot-
strap bounds on various quantities such as the twist gap [26, 27, 54] are not saturated
by known CFTs, and numerical studies of certain renormalization group flows, such as
that from the three-coupled three-state Potts model [66], indicate the existence of fixed
points with irrational central charges. However, such fixed points are evasive of current
analytic methods. Even for RCFTs, a full classification has not been achieved.

The full set of interesting observables in a (1+1)d CFT is not limited to the correlation
functions of local operators. There are boundaries and defects that interact with the local
operators in nontrivial ways, and are together subject to stringent consistency conditions.
Some of the data, like the fusion category [72, 73] furnished by the topological defect
lines (TDLs) [36, 50, 160], are mathematically rigid structures that exist independently
of quantum field theory. A simple example of a fusion category is a group-like category,
which consists of the specification of a discrete symmetry group together with its anomaly.
Fusion categories generalize symmetries and anomalies, and constrain the deformation
space of quantum field theory. The preceding remarks beg the following question:

Q1: Given a fusion category, is there a (1+1)d CFT whose TDLs (or a subset thereof)
realize the said category?

The (2+1)d Turaev-Viro theory [166] or Levin-Wen string-net model [119] constructed
out of a fusion category C is a bulk phase whose anyons are described by the Drinfeld
center Z(C). By placing the bulk phase on a slab between a gapped boundary and an-
other boundary condition B, and further compactifying on a circle, the resulting theory

1This chapter is adapted from Tzu-Chen Huang and Ying-Hsuan Lin. “Topological Field Theory
with Haagerup Symmetry”. In: (Feb. 2021). doi: 10.1063/5.0079062. arXiv: 2102.05664 [hep-th].

https://doi.org/10.1063/5.0079062
https://arxiv.org/abs/2102.05664
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T [B] would be a CFT with TDLs described by C. Q1 is thus interpreted as the exis-
tence/classification problem of boundary conditions for the bulk phase.2 From a purely
(1+1)d perspective, statistical height models which take C (and the choice of a distin-
guished object) as the microscopic input have recently been shown by Aasen, Fendley,
and Mong [2] to host macroscopic TDLs described by C. One can explore the phases of
such models in search of a CFT.

A closely related question is the following:

Q2: Given a modular tensor category (MTC), is there a vertex operator algebra (VOA)
whose representations realize the said category?

The phrase VOA could be replaced by diagonal RCFT, in which the fusion ring of Verlinde
lines (TDLs commuting with the VOA) is isomorphic to the fusion ring of the VOA
representations. The correspondence between MTC and (1+1)d RCFT traces its origin
to a seminal series of papers by Moore and Seiberg [130–134], and is conjectured to be
one-to-one thought a construction or proof is lacking. Note that an affirmative answer
to Q2 implies an affirmative answer to Q1: Given a fusion category C, if one can find
a VOA that realizes the Drinfeld center D(C), then gauging the diagonal RCFT by an
algebra object gives a non-diagonal RCFT whose TDLs realize C ⊠ Cop.3

The explicit realization of many categories in CFT is not known. A famous example is
the Haagerup fusion category, which has a special place in the history of category and
subfactor theory. Subfactors have inherent categorical structure, and serve as a major
source of fusion categories. While Ocneanu [138] and Popa [145] classified subfactors with
Jones indices less than or equal to 4, Haagerup and Asaeda [14] constructed one—the
Haagerup subfactor—with Jones index 5+

√
13

2
, the smallest above 4 [96]. As the title of

[14] suggests, the Haagerup subfactor was deemed exotic since its construction at the
time did not fit into any infinite family. Later work by Izumi [105], Evans, and Gannon
[75] postulated that the Haagerup subfactor does in fact fit into an infinite family, and
furthermore constructed the first few members. This development suggested that the
Haagerup may not be exotic after all. Nonetheless, for various categorical conjectures,
the explicit demonstration in the case of Haagerup is viewed as a key test of a conjecture’s
legitimacy and generality.

There are actually three inequivalent unitary Haagerup fusion categories, commonly de-
noted by H1, H2, and H3. Most of this note concerns the Haagerup H3 fusion category,

2The authors thank Shu-Heng Shao and Yifan Wang for discussions.
3The authors thank Sahand Seifnashri for a discussion.
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which did not descend directly from the Haagerup subfactor of [14, 96], but was in-
stead constructed by Grossman and Snyder [93]. Because the fusion ring (reviewed in
Section 5.3) is non-commutative, the Haagerup H3 fusion category cannot possibly be
realized by Verlinde lines [67, 85, 142, 167] in a diagonal RCFT. To our knowledge, its
realization as general TDLs (need not commute with the full VOA) is not known in
any CFT. To connect to Verlinde lines, one must consider the MTC that is Drinfeld
center of Haagerup. In fact, Evans and Gannon [75] constructed c = 8 characters for
the Haagerup modular data, and used it to surmise possible constructions of the VOA
through the Goddard-Kent-Olive coset construction [88] and its generalizations [65, 84,
120], or through the generalized orbifold construction (gauging an algebra object) of
Carqueville, Fröhlich, Fuchs, Runkel, and Schweigert [47, 81, 83] (see [36] for a recent
discussion). Recently, Wolf [176] considered the Haagerup anyon chain and numerically
searched for CFT phases, but with inconclusive results.4 To date, a bona fide construc-
tion remains an important open question. By trying to construct CFTs that realize more
exotic fusion categories, one hope is that light would be shed beyond the current borders
of known (R)CFTs.

Concerning the gapped phases of (1+1)d quantum field theory, described by (1+1)d
topological field theories (TFTs) extended by defects [58, 148], a related but simpler
question can be asked:5

Q3: Given a fusion category, is there a (1+1)d TFT whose TDLs (or a subset thereof)
realize the said category?

Thorngren and Wang [161] has argued that C-symmetric defect TFTs are in bijection
with C-module categories, and since the regular module category always exists, Q3 has
been affirmatively answered. However, their construction utilizes the Turaev-Viro state-
sum [166] or Levin-Wen string-net [119] construction, and it is generally unclear how the
axiomatic TFT data can be extracted. We are thus led to the next question:

Q4: Given a fusion category, can one construct the axiomatic data of a (1+1)d TFT
whose TDLs (or a subset thereof) realize the said category?

4Anyon chains generalize the golden chain of Feiguin et al [77], and arise in a limit of the statistical
height models of Aasen, Fendley, and Mong [2].

5There are various notions of TFT with different amounts of structure, the most common being
closed TFT [3, 61, 114, 150] and open/closed TFT [6, 117, 118, 129]. The defect TFT of [58, 148] is an
overarching formalism that can incorporate multiple closed TFTs and their boundaries and interfaces.
The minimal structure that incorporates the data of TDLs is a defect TFT containing a single closed
TFT; mathematically speaking, it is a bicategory with a single object, whose 1-morphisms are the
TDLs, and whose 2-morphisms are the local and defect operators. The full enrichment by boundaries
and interfaces with other closed TFTs is beyond the scope of this note.
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This question has been answered for group-like categories by Wang, Wen, and Witten
[168] and by Tachikawa [160], and for categories with fiber functors (the resulting TFT
has a unique vacuum) by Thorngren and Wang [161]. In [50], it was shown that for a
variety of CFTs, the TFT data can be solved solely from the input of the fusion categorical
data, by bootstrapping the consistency conditions. For general categories, a construction
of the bulk Frobenius algebra was given by Komargodski, Ohmori, Roumpedakis, and
Seifnashri [115], but the full defect TFT data remains unsolved.6

The preceding questions are ultimately connected. A CFT realizing a certain fusion cate-
gory is connected to a TFT realizing the same category under TDL-preserving renormal-
ization group (RG) flows, and this principle strongly constrains the infrared fate of CFTs.
In the space of TDL-preserving RG flows and without fine-tuning, they must either flow
to gapped phases described by TFTs, or to “dead-end” CFTs [136], which correspond to
gapless phases protected by fusion categories [161].7

As desirable as fully universal answers to the preceding questions are, a more pragmatic
approach may be to first examine fusion categories for which the answers are not known.
This note makes a modest offering in this approach of pursuing exotica in the quest
for their eventual conformity: the construction of a TFT realizing the Haagerup H3

fusion category with fully explicit axiomatic TFT data. The construction is of bootstrap
nature, by solving the full cutting and sewing consistency conditions. A prerequisite in
this approach is the explicit knowledge of the F -symbols. They were implicit in the work
of Grossman and Snyder [93] (using a generalization of the approach by Izumi [105]),
and also explicitly obtained by Titsworth [163], Osborne, Stiegemann, and Wolf [139]. In
[102], the present authors recast the F -symbols in a gauge that manifests the transparent
property, which greatly simplify our present computational endeavor.

The remaining sections are organized into steps of the construction and discussions of
further ramifications. Section 5.2 reviews the generalities of topological field theory
extended by defects, and formulates the defining data and consistency conditions. Sec-
tion 5.3 introduces the Haagerup fusion ring with six simple objects/TDLs, studies its
representation theory, and constrains the vacuum degeneracy using modular invariance.
Section 5.4 studies the relations among dynamical data implied by transparency and
Z3 symmetry. Section 5.5 delineates the constraints of associativity and torus one-point

6After publication of the first version of this note, Kantaro Ohmori and Sahand Seifnashri suggested
to the authors that a construction of the full defect TFT data may be possible through a generalization
of [115].

7Such phases generalize the notion of (group-like) symmetry-protected gapless phases [51] and perfect
metals [144].
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modular invariance. Section 5.6 solves the constraints to construct a topological field the-
ory with Haagerup symmetry. Section 5.7 examines the expectation that the boundary
conditions furnish a non-negative integer matrix representation (NIM-rep) of the fusion
ring. Section 5.8 discusses the relations among topological field theories by gauging al-
gebra objects. Section 5.9 ends with some prospective questions. Appendix D.1 contains
the F -symbols for the Haagerup H3 fusion category. Appendix D.2 analyzes the general
crossing symmetry of defect operators.

5.2 Topological field theory extended by defects

This section introduces the axiomatic data of a topological field theory (TFT) extended
by defects, and the consistency conditions they must satisfy.

Fusion category of topological defect lines

The nontrivial splitting and joining relations of a finite set of topological defect lines
(TDLs) are captured by a fusion category. A classic introduction to fusion categories
can be found in [72, 73], and expositions in the physics context can be found in [36, 50].
Here we follow the latter and present a lightening review of the key properties of TDLs.

Topological defect lines are (generally oriented) defect lines whose isotopic transforma-
tions leave physical observables invariant. We restrict ourselves to considering sets of
TDLs with finitely many simple TDLs {Li}; the others, the non-simple TDLs, are direct
sums of the simple ones.8 Among the simple TDLs there is a trivial TDL I representing
nothingness. Furthermore, every TDL L has an orientation reversal L, as depicted by
the equivalence

L = L . (5.1)

Whenever a TDL is isomorphic to its own orientation reversal, L = L, we omit the arrows
on the lines.9

A general configuration of TDLs involves junctions built out of trivalent vertices. The
allowed trivalent vertices are specified by the fusion ring

LiLj = Nk
ijLk , (5.2)

8See [49] for progress in incorporating “non-compact” topological defect lines.
9The orientation cannot be completely ignored if the TDL has an orientation-reversal anomaly

(nontrivial Frobenius-Schur indicator) [50]. This subtlety does not arise for the Haagerup and is therefore
neglected.
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where Nk
ij ∈ Z≥0 are the fusion coefficients. To simplify the discussion, it is assumed that

(1) the fusion coefficients (dimensions of junction vector spaces) are zero or one, and (2)
the trivalent vertices are cyclic-permutation invariant.10 In conformity with [50, 102], we
adopt the counter-clockwise convention for trivalent vertices, such that

L3

L1 L2

(5.3)

is allowed when I ∈ L1L2L3. To completely specify a trivalent vertex, a junction vector
must be chosen from the junction vector space VL1,L2,L3 .11 The collection of choices for
all trivalent vertices formed by all simple TDLs constitutes a gauge.

The fusion product of a simple TDL L with its orientation reversal contains the trivial
TDL,

LL = I + · · · , (5.4)

because clearly
I

L L

=

L

(5.5)

is allowed. Another important notion is invertibility. A TDL L is invertible if LL =

I, and non-invertible otherwise. Invertible TDLs are equivalent to background gauge
bundles for finite symmetry groups [36, 86].

The splitting and joining of TDLs can be decomposed into basic F -moves that are char-
acterized by the F -symbols. In a given gauge, the F -symbols are C×-numbers, and an
F -move is the equivalence between the two configurations

L5

L1

L2 L3

L4

=
∑
L6

(FL1,L2,L3

L4
)L5,L6

L6

L3L2

L1 L4

. (5.6)

10Both assumptions are satisfied by the transparent Haagerup H3 fusion category. The reader is
referred to [50] for a general discussion without these assumptions.

11In the path integral language, a junction vector specifies the boundary conditions of quantum fields
at a trivalent vertex.
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The F -symbols must satisfy the pentagon identity, which can only have finitely many
solutions (up to gauge equivalence) for a given fusion ring due to Ocneanu rigidity [72,
169].

Local operators and commutative Frobenius algebra

Topological defect lines act on local operators by circling and shrinking. In conformity
with [50, 102], we adopt the clockwise convention for action on local operators,

O
L = L̂(O) . (5.7)

For instance, if Oq is a local operator with Z3-charge q, and if α is the TDL corresponding
to the generator of Z3, then

Oq
α = ωqOq . (5.8)

The data of local operators is captured by a commutative Frobenius algebra [3, 114].
Commutativity guarantees that a projector basis exists:

{πa, a = 1, . . . , nV | πaπb = δabπa} , (5.9)

where nV denotes the number of vacua. In this basis, the nontrivial data is captured in
the overlap of the projectors with the identity, i.e. the one-point functions ⟨πa⟩. Most
of this note does not work in the projector basis, because for us it is more convenient
to work in a basis that simplifies the TDL actions as much as possible. However, the
projector basis will figure in the discussion of boundary states in Section 5.7.

Defect operators, defect operator algebra, and lassos

Associated to every topological defect line L is a defect Hilbert space HL, which contains
states quantized on a spatial circle with twisted periodic boundary conditions. Via the
state-operator map,

|O⟩

L 7→

O(x)

L
(5.10)
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HL is also the Hilbert space of point-like defect operators on which L can end. Defect
Hilbert spaces are equipped with a norm

HL ⊗HL → C , (5.11)

which defines a hermitian structure. The hermitian conjugate of O will be denoted by
O.

The spectral data of a topological field theory extended by defects consists of the set
of local operators, their representations under the fusion ring, and the set of defect
operators. The dynamical data consists of the operator product

O1 ⊗O2 ∈ HL1
⊗HL2

7→ L3

L1

O1

L2

O2

∈ HL3 (5.12)

and the lasso action

O4 ∈ HL4 7→ L1

L2

L3

L4O4 ∈ HL1 . (5.13)

When L1 = L4 = I and L2 = L3, the above diagram becomes (5.7), and the lasso action
reduces to the TDL action L̂2 on local operators that maps H to H. The lasso action is
a generalization that maps a defect Hilbert space H4 to another defect Hilbert space H1.
In the following, for TDLs ending on defect operators, the labeling of the former will be
suppressed as it is implied by that of the latter.

The closest analog of charge conservation for a non-invertible TDL L is to circle a pair
of local operators by L, and impose the commutativity of (1) taking the local operator
product and (2) performing an F -move and studying the defect operator product, as
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illustrated below:

“ charge ”

conservation

O1 O2 O1 ×O2

O1

L′

O2

∑
L′

(FL,L̄,L̄
L̄ )I,L′

L L

L L
∑

O∈O1×O2

L̂(O)

(5.14)

By the use of the norm, the operator product is equivalently encoded in the three-point
coefficients

c(O1,O2,O3) = O1

O2

O3

∈ C , (5.15)

and the lasso action is encoded in the lasso coefficients

O1

L2

L3

O4 ∈ C . (5.16)

In the above, vacuum expectation values are implicitly taken. The three-point coefficients
are invariant under cyclic permutations

c(O1,O2,O3) = c(O2,O3,O1) = c(O3,O1,O2) , (5.17)

and complex conjugate under reflections

c(O1,O2,O3) = c(O1,O3,O2)
∗ . (5.18)

The lasso coefficients also enjoy the symmetries

O1

L2

L3

O4 = O4

L3

L2

O1 =

 O1

L2

L3

O4


∗

. (5.19)
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General observables, crossing symmetry, and modular invariance

A general observable in a topological field theory extended by defects is the vacuum
expectation value of a graph—a configuration of topological defect lines with junctions
and endpoints—on a Riemann surface.12 On the sphere, any graph can be expanded
into a sum of local operators, and taking the vacuum expectation value amounts to
computing the overlap with the identity. The basic building blocks for this computation
are the three-point and lasso coefficients introduced earlier, and the computation also
involves basic manipulations of TDLs such as F -moves. Observables on general Riemann
surfaces can be reduced to those on the sphere by a pair-of-pants decomposition. The
equivalence of the various ways of building the same observable on a general Riemann
surface is guaranteed by the four-point crossing symmetry and torus one-point modular
invariance [50], generalizing the situation without defects argued by Sonoda [156, 157]
and by Moore and Seiberg [130, 131]. In the following, all local and defect operators are
taken to be canonically normalized under the hermitian structure,

⟨ O
L

O ⟩ = 1 . (5.20)

On the sphere, the four-point correlator of local and defect operators Oi ∈ HLi
bridged by

an internal L ∈ L1L2 ∩ L4L3 can be decomposed into three-point coefficients by cutting
across L (with the cut shown by the dotted lines),

L

O1

O2 O3

O4

=
∑

O∈HL

c(O1,O2,O) c(O3,O4,O) . (5.21)

Under an F -move,

L

O1

O2 O3

O4

=
∑
L′

L′

O3O2

O1 O4

(FL1,L2,L3

L4
)L,L′ , (5.22)

12Each observable can be interpreted as a transition amplitude over some time function, with non-
trivial topology changes and defect dressing. See [36] for an exposition from this perspective.
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where each graph appearing on the right can be decomposed into three-point coefficients
by cutting across L′. Crossing symmetry is the equivalence of∑
O∈HL

c(O1,O2,O) c(O3,O4,O) =
∑
L′

(FL1,L2,L3

L4
)L,L′

∑
O′∈HL′

c(O2,O3,O′) c(O4,O1,O
′
) .

(5.23)

The modular invariance of the torus one-point function begins with performing F -moves
on the configuration

L1

L2

L1

L2 L3

L4

O

=
∑

L′∈LOL1

(FL4,LO,L1

L2
)L3,L′

L1

L2

L1

L2

L′

L4

O

=
∑

L′∈L2LO

(FL1,L2,LO
L3

)L4,L′

L1

L2

L1

L2

L′ L3

O

(5.24)
and demanding the equivalence of the two cuts shown by the dotted lines:

∑
L′∈LOL1

∑
O1∈HL1

∑
O′∈HL′

(FL4,LO,L1

L2
)L3,L′ c(O,O1,O

′
) O1

L2

L4

O′

=
∑

L′∈L2LO

∑
O2∈HL2

∑
O′∈HL′

(FL1,L2,LO
L3

)L4,L′ c(O,O2,O
′
) O2

L1

L3

O′ .

(5.25)

5.3 Spectral constraints by Haagerup symmetry

This section studies the modular constraints on the spectral data—the set of local oper-
ators, their representations under the fusion ring, and the set of defect operators—when
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the theory is known to contain topological defect lines (TDLs) realizing the Haagerup
H3 fusion category.

The Haagerup fusion ring with six simple objects

The Haagerup H3 fusion category was constructed by Grossman and Snyder [93] as a
variant (Grothendieck equivalent) of the H2 fusion category that directly came from the
Haagerup subfactor [14, 96]. There are six simple objects/TDLs, which we denote by

I, α, α2, ρ, αρ, α2ρ . (5.26)

The fusion ring is fully specified by the relations

α3 = 1 , αρ = ρα2 , ρ2 = I + Z , Z ≡
2∑
i=0

αiρ . (5.27)

For shorthand,
ρi ≡ αiρ . (5.28)

In the rest of this note, we use unoriented solid lines to denote the non-invertible self-dual
simple TDLs ρi, and oriented dashed lines to denote the invertible ones:

= α , = ᾱ , ρi . (5.29)

There are two gauge-inequivalent unitary fusion categories realizing the above fusion
ring, denoted H2 and H3 by Grossman and Snyder [93]. Whereas the Haagerup H2

fusion category descended directly from the Haagerup subfactor [14, 96], the Haagerup
H3 fusion category was constructed by Grossman and Snyder [93] based on H2. It turns
out to be easier to work with H3, but the analysis in this section applies to both H2 and
H3. The F -symbols for H3 were implicit in the work of Grossman and Snyder [93] (using
a generalization of the approach by Izumi [105] for H2), and also explicitly obtained
by Titsworth [163], Osborne, Stiegemann, and Wolf [139]. In [102], the present authors
recast the F -symbols in a gauge that manifests the transparent property, a notion we
introduce in Section 5.4. The transparent F -symbols are given in Appendix D.1.

Action on local operators and representation theory

To describe how topological defect lines forming the Haagerup H3 fusion category act on
local operators, we should first study the complex representation theory of its fusion ring.
Since the fusion ring is non-commutative, the action of TDLs cannot be simultaneously
diagonalized. We work in a basis in which the action of Z3 is diagonal.
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• For a state |ϕ⟩ neutral under Z3,

ρ|ϕ⟩ = αρ|ϕ⟩ = α2ρ|ϕ⟩ , Z|ϕ⟩ = 3ρ|ϕ⟩ , (5.30)

hence there are two one-dimensional representations,

ρ|ϕ⟩ = 3±
√
13

2
|ϕ⟩ . (5.31)

• For a state |ϕ⟩ with unit Z3-charge,

α|ϕ⟩ = ω|ϕ⟩ , αρ|ϕ⟩ = ρα2|ϕ⟩ = ω2ρ|ϕ⟩ , α2ρ|ϕ⟩ = ρα|ϕ⟩ = ωρ|ϕ⟩ . (5.32)

It follows that Z|ϕ⟩ = 0, and hence

ρ2|ϕ⟩ = |ϕ⟩ . (5.33)

If ρ|ϕ⟩ and |ϕ⟩ were equal up to a phase, then there would be two possible one-
dimensional representations with

ρ|ϕ⟩ = ±|ϕ⟩ , (5.34)

which is in conflict with αρ = ρα2. Hence ρ|ϕ⟩ and |ϕ⟩ must be independent, and
the representation is two-dimensional. In the (|ϕ⟩, ρ|ϕ⟩) basis,

α =

(
ω 0

0 ω2

)
, ρ =

(
0 1

1 0

)
. (5.35)

The above classification of irreducible representations is summarized in Table 5.1. In
a reflection-positive quantum field theory, the identity operator transforms in a one-
dimensional representation with positive charges. Here, under the reflection-positive
assumption, the identity operator must transform in the + representation.

r α ρ

+ 1 3+
√
13

2

− 1 3−
√
13

2

2
(
ω 0
0 ω2

) (
0 1
1 0

)
Table 5.1: Irreducible representations of the Haagerup fusion ring with six simple ob-
jects/TDLs.
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Modular invariance and vacuum degeneracy

Let nV denote the number of vacua (local operators), and n± and n2 be their multiplicities
of representations (in the notation of Table 5.1). Clearly, nV = n+ + n− + 2n2.

Consider the modular invariance of the torus partition function with the non-invertible
TDL ρ wrapped around a one-cycle

ρ
(5.36)

The horizontal cut computes the trace over the action of ρ̂ in the Hilbert space H of local
operators, and the vertical cut simply counts the dimensionality of the defect Hilbert
space Hρ. Modular invariance requires

TrH ρ̂ = TrHρ1 ∈ Z≥0 . (5.37)

Given the representation content of the Haagerup fusion ring, summarized in Table 5.1,
we immediately conclude that n+ = n−, and the number of vacua must be even. Let us
write

n1 ≡ n+ = n− (5.38)

to denote the multiplicity of each one-dimensional representation. Using the U(n2) free-
dom, we can choose a basis of local operators to represent ρ̂ in block diagonal form

ρ̂ =

n+⊕
p=1

(
3 +
√
13

2

)
⊕

n−⊕
q=1

(
3−
√
13

2

)
⊕

(
0 1

1 0

)
⊕ · · · ⊕

(
0 1

1 0

)
. (5.39)

Modular invariance (5.37) also implies that the defect Hilbert spaceHρ is 3n1-dimensional,
i.e. the TDL ρ can end on

nρ = 3n1 (5.40)

independent defect operators, and similarly for each of the other ρi.
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nV n1 = n+ = n− n2 nα = nᾱ nρ = nαρ = nα2ρ nP

2 1 0 2 3 15
4 1 1 1 3 15
4 2 0 4 6 30
6 1 2 0 3 15
6 2 1 3 6 30
6 3 0 6 9 45

Table 5.2: Possible numbers of point-like operators that satisfy the torus one-point mod-
ular invariance (5.36) and (5.41). Here nV denotes the total number of vacua (local
operators), comprised of nr copies of representation r, where r = +, −, 2; nL denotes
the number of defect operators in each L, for L = α, ᾱ, ρ, αρ, α2ρ; nP denotes the to-
tal number of point-like (local and defect) operators. Only the highlighted cases with
n1 = 1, nρ = 3, and nP = 15 are considered in this note.

Consider the modular invariance of the torus partition function with the invertible TDL
α wrapped around a one-cycle

α
(5.41)

Modular invariance requires

TrH α̂ = TrHα1 ∈ Z≥0 . (5.42)

Hence the α TDL hosts
nα = 2n1 − n2 (5.43)

defect operators. The total number of point-like operators is

nP ≡ g + 2nα + 3nρ = (2n1 + 2n2) + 2(2n1 − n2) + 9n1 = 15n1 . (5.44)

The first few possibilities are listed in Table 5.2 in the order of increasing nV. Whenever
n2 = 0, the Z3 symmetry is not faithfully realized on the vacua. In the following, we
consider the three minimal cases totaling nP = 15 point-like operators, highlighted in
Table 5.2; each case has n1 = 1 and nρ = 3. Eventually we will succeed in constructing a
TFT realizing nV = 6, but along the way we also derive various constraints on nV = 2, 4.



223

5.4 Transparency and Z3 symmetry

This note works in a gauge of the H3 fusion category that manifests its “transparent”
property [102]—the associator involving any invertible topological defect line (TDL) is
the identity morphism. In terms of the F -symbols, it means that every F -symbol with
an external invertible TDL takes value one. Hence invertible TDLs can be attached or
detached “freely”, changing the isomorphism classes of other involved TDLs but without
generating extra F -symbols. Several diagrammatic identities are illustrated below:

(a)

ρi

ρi+1

ρi

= ρi (b)

ρi

ρi+1

ρi

= ρi

(c)

ρi

ρi+1

ρi+2

=

ρi

ρi+2

(d)
ρi

ρk ρk+1

ρj
ρj+1

=
ρi

ρk+1

ρj+1

(e)

ρi

ρi+1

=

ρi

ρi−1

ρi+1

=

ρi

ρi−1

ρi+1

(f)

ρi

ρi

=

ρi

ρi+1

ρi

=

ρi

ρi−1

ρi

(5.45)
Importantly, the four-way junctions in (e) and (f) are unambiguously defined.

In [102], transparency and the Z3 symmetry were exploited to reduce the pentagon iden-
tity so that the F -symbols could be efficiently solved. Below, in attempting to construct
a topological field theory, the utilization of the Z3 symmetry is also essential in reducing
the amount of independent data.

Z3 relations for lassos and dumbbells

Let Oq be a local operator with Z3-charge q ∈ {0, ±1}, and consider the lasso

ρiOqρj . (5.46)
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The Z3 symmetry relates lassos with different triples (q, i, j) as follows: replace Oq using
the equalities

Oq = ωq
Oq

= ω−q
Oq

(5.47)

and fuse the Z3 symmetry line with ρi (apply (5.45)(b) and then (d)) to obtain the
relations

ρi
Oq

ρj = ωq ρi−1

Oq
ρj = ω−q ρi+1

Oq
ρj . (5.48)

Next consider the dumbbell

ρi ρk
ρj

, (5.49)

where each empty dot denotes an arbitrary local operator insertion. The Z3 action on
the dumbbell (circling it with a clockwise Z3 loop) gives (see (5.45)(e) for the meaning
of the four-way junction)

ρi ρk
ρj

= ρi ρk
ρj

= ρi−1 ρk−1

ρj+1

(5.50)

Combining (5.48) and (5.50), we obtain an identity that leaves the side loops intact and
only changes the handle

ρi ρk
Oq1 Oq2

ρj
= ω−q1−q2 ρi ρkOq1 Oq2

ρj+1

, (5.51)

which will prove useful in Section 5.5. A mnemonic is that the Z3 symmetry line measures
the opposite Z3-charge of the local operators Oq1 and Oq2 placed inside a dumbbell,
because the Z3 symmetry line changes orientation when it crosses a ρi TDL, as illustrated
in (5.45)(f).
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Z3 action on defect operators

Recall that each ρi TDL hosts three independent defect operators. We work in an or-
thonormal basis and denote them by

oiA , i = 0, 1, 2 , A = 1, 2, 3 , with ⟨oiAojB⟩ = δijδAB . (5.52)

Note that there is still an O(3)3 basis freedom. The Z3 action on a defect operator
oi ∈ Hρi is defined by the lasso (see (5.45)(e) for the meaning of the four-way junction)

ρi+1

oiA

=

|oiA⟩

ρi

ρi+1

=

|oiA⟩

ρi

ρi+1

, (5.53)

where in the last diagram the left and right edges of the square are identified to represent
a cylinder. Performing the Z3 action three times on Hρi becomes a trivial action, as
illustrated by the sequence of F -moves

= = . (5.54)

We make use of the O(3)2 ⊂ O(3)3 basis freedom such that the lasso (5.53) representing
the Z3 action takes

Z3 : o1A → o2A → o3A → o1A . (5.55)

The Z3 action also gives rise to relations among the dynamical data. For instance,
consider the Z3 action on the operator product of oiA and oiB

oiB

oiA

=

oiA

oiB

. (5.56)

If the vacuum expectation value is taken, possibly in the presence of other local operators,
the Z3 symmetry line can be deformed to shrink in some other patch while picking up the
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Z3-charges of other local operators. This process gives rise to identities among correlators.
Similarly, the Z3 action

oiA

ojB

okC

= oiA

ojB

okC

= oiA

ojB

okC

(5.57)
implies identities among different three-point coefficients, when the sphere vacuum ex-
pectation value is taken.

We can nucleate Z3 loops inside or outside a lasso to change the species of the ρi TDLs,
resulting in the relations

ρiOqojB = ρi−1Oqoj+1,B = ωq ρi−1OqojB ,

ρk

ρℓ

ojB oiA =

ρk−1

ρℓ−1

oj+1,B oiA =

ρk−1

ρℓ−1

ojB oi+1,A .

(5.58)

5.5 Bootstrap constraints

Given the spectral constraints derived in Section 5.3, our goal now is to solve for a minimal
defect topological field theory (TFT) with a total of nP = 15 point-like operators, and
the number of vacua (local operators) can be nV = 2, 4, 6. For each case, there is one
nontrivial Z3-neutral local operator v and three defect operators oiA on each ρi line. The
remaining four point-like operators can be two pairs of Z3-charged local operators ua, ūa,
two pairs of Z3 defect operators wa ∈ Hα, w̄a ∈ Hα2 , or a pair of each.

In this section, we delineate constraints of crossing symmetry and modular invariance
that were formulated in generality in Section 5.2. For simplicity, we ignore the constraints
involving Z3 defect operators wa, w̄a, and only consider the part of crossing symmetry
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that is equivalent to the associativity involving at least one local operator. More general
crossing symmetry is deferred to Appendix D.2.

We reserve the i = 0, 1, 2 index for the species of the ρi line, the A = 1, 2, 3 index for the
species of the defect operators of each ρi line, and the a = 1, . . . , n2 index for the species
of Z3-charged local operators. Note that the Z3-charged operators ua, ūa have a U(n2)

basis freedom.

Local operator algebra and associativity

The most general local operator algebra consistent with the Z3 symmetry is

v × v = 1 + βv , v × ua =
∑
b

ξabub ,

ua × ūb = δab + ξabv , ua × ub =
∑
c

σabcūc .
(5.59)

The following are the constraints from associativity.

• uaubuc

σabc = σbca ,
∑
d

σabd ξed =
∑
d

σbcd ξad ,∑
e

σabeσcde =
∑
e

σadeσbce =
∑
e

σaceσbde .
(5.60)

Hence σabc is totally symmetric.

• uaūbv

ξab = ξ̄ba , δab + βξab =
∑
c

ξac ξ̄bc =
∑
c

ξ̄bc ξac , (5.61)

The first condition says that ξab is Hermitian, which allows us to use the U(n2) basis
freedom to diagonalize ξab. Then the second condition, which also encompasses the
associativity of uavv, is solved by

ξab = ξaδab , ξa =
β ±

√
β2 + 4

2
. (5.62)

• uaubv ∑
c

σabcξ̄
cd =

∑
c

ξbcσacd =
∑
c

ξacσbcd . (5.63)

• uaubūc ∑
d

σabdσ̄dce = δbcδae + ξbcξae . (5.64)

In the special case of a = e and b = c,∑
d

σabdσ̄dba = 1 + ξaξb . (5.65)
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Mixed local and ρ defect operators

The most general operator algebra involving mixed local and ρ defect operators is

oiA
ρi

oiB = δAB + κiABv +
∑
a

(
λ̄iAB;aua + λiAB;aūa

)
,

ρi
oiA v =

∑
B

κiAB
ρi

oiB ,
ρi

oiA ua =
∑
B

λiAB;a

ρi
oiB ,

(5.66)

where κiAB and λiAB;a are both symmetric in A,B, and the Z3 action (5.57) implies that

κi+1
AB = κiAB , λi+1

AB;a = ω−1λiAB;a . (5.67)

The following are the constraints from associativity.

• oiAoiBv

oiA
ρi

oiB v

= δABv + κiAB(1 + βv) +
∑
a,b

(
λ̄iAB;bξbaua + λiAB;bξ̄baūa

)
= κiAB +

(∑
C

κiACκ
i
BC

)
v +

∑
C

κiAC
∑
a

(λ̄iBC;aua + λiBC;aūa) .

(5.68)

Hence, ∑
C

κiACκ
i
BC = δAB + βκiAB , (5.69)

which also encompasses the associativity of oiAvv, and∑
C

κiACλ
i
BC;a =

∑
b

λiAB;bξ̄ba . (5.70)

• oiAoiBua

oiA
ρi

oiB ua

= δABua +
∑
b

κiABξabub +
∑
b,c

λ̄iAB;bσabcūc + λiAB;a +
∑
b

λiAB;b ξabv

= λiAB;a +

(∑
C

λiAC;aκ
i
BC

)
v +

∑
C

λiAC;a

∑
b

(λ̄iBC;bub + λiBC;būb) .

(5.71)

Hence,∑
C

λiAC;aλ̄
i
BC;b = δABδab + κiABξab ,

∑
C

λiAC;aλ
i
BC;b =

∑
c

λ̄iAB;cσabc . (5.72)
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ρ action on local operators

Let us study the analog of charge conservation (5.14) for the non-invertible TDLs ρi. We
will constrain the ρi action on local operators,

ρi1 = ζ , ρiv = −ζ−1v , ρiua = ωi
∑
b

Rabūb , (5.73)

and the lassos on local operators,

εiA ≡ ρivoiA , γiaA ≡ ρiuaoiA . (5.74)

The Z3 action relations (5.58) imply that

εi+1
A = ω−iεiA , γi+1

aA = ω−iγiaA . (5.75)

Note that in writing (5.62), we already used the U(n2) freedom to diagonalize the operator
product ua ūb, so we can no longer use it to simplify Rab. In the following, we make
frequent use of the explicit values of the F -symbols

(F ρi,ρi,ρi
ρi

)I,I = ζ−1 , (F ρi,ρi,ρi
ρi

)I,ρj = ζ−1 , ζ ≡ 3 +
√
13

2
(5.76)

from (D.7).

First, let us revisit the requirement that ua transforms as a representation of the fusion
ring.13 The consideration of

ρρ
ua

= ua +
∑
i

ρiua (5.77)

leads to a constraint ∑
c

RacRcb = δab +
∑
i

ωiRab = δab , (5.78)

where the left side comes from shrinking the inner and outer ρ loops consecutively, and
the right side from fusing them before shrinking.14

13The representation given in (5.35) was specialized to a particular basis for ua. Here we prioritize
the use of the U(n2) basis freedom to diagonalize ξab in (5.62), so the requirement that ua transforms
as a representation needs to be rewritten in a basis-independent fashion.

14The fusion of the two ρ TDLs can be understood as an F -move followed by the shrinking of the ρ
loop.
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Now, following the ↓ direction in (5.14), we circle ρi on the operator product of local
operators, and apply the F -move to obtain

ρi
Oq1 Oq2

I =
∑
j′

ρi ρiOq1 Oq2
ρj′

. (5.79)

Using the Z3 action (5.51), we can simplify the sum of dumbbells to

3 ρi ρiOq1 Oq2
ρj

∣∣∣∣∣
Z3-charge −(q1 + q2)

, (5.80)

where j is arbitrary. We might as well set j = i. In the following, we equate the above
to the →↓ direction of (5.14) where the local operator product is taken first.

• v × v = 1 + βv

ζ−3 (1 + βv) + 3 ζ−1 ρi ρiv v
ρi

∣∣∣∣∣
Z3-neutral

= ζ − ζ−1βv . (5.81)

Hence, ∑
A

(εiA)
2 =
√
13 ,

∑
A,B

εiAκ
i
ABε

i
B = −

√
13

3
ζ−1β . (5.82)

• ua × ūb = δab + ξabv

ζ−1

(
δab +

∑
c,d

RacRbdξdcv

)
+ 3 ζ−1 ρi ρiua ūb

ρi
∣∣∣∣∣
Z3-neutral

= ζδab − ζ−1ξabv .

(5.83)

Hence, ∑
A

γiaAγ̄
i
bA = ζδab , (5.84)

∑
A,B

γiaAγ̄
i
bBκ

i
AB = −1

3

(
ξab +

∑
c,d

RacRbdξdc

)
. (5.85)

• ua × ub =
∑

c σabcūc

ζ−1ω−i
∑
d,e,f

RadRbeσ̄defuf + 3 ζ−1 ρi ρiua ub
ρi

∣∣∣∣∣
Z3-charge 1

= ω−i
∑
c,f

σabcRcfuf .

(5.86)



231

Hence,

∑
A,B

γiaAγ
i
bBλ̄

i
AB;f =

1

3
ω−i

(
ζ
∑
c

σabcRcf −
∑
d,e

Radρbeσ̄def

)
. (5.87)

• ua × v =
∑

b ξabub

− ζ−2ωi
∑
b,c

Rabξ̄bcūc + 3 ζ−1 ρi ρiua v
ρi

∣∣∣∣∣
Z3-charge −1

= ωi
∑
b,c

ξabRbcūc .

(5.88)

Hence, ∑
A

γiaAλ
i
AB;cε

i
B =

1

3
ωi
∑
b

(
ζξabRbc + ζ−1Rabξ̄bc

)
. (5.89)

Torus one-point modular invariance

Consider the torus one-point modular invariance (5.25) in the special case of

L2 = LO = I , L3 = L4 = L1 . (5.90)

• v with Z3 symmetry line

v

(5.91)

Let us denote the three-point coefficient of v with Z3 defect operators by

ξ̃a = c(v, wa, w̄a) . (5.92)

Let us write down
vertical cut = horizontal cut (5.93)

for different numbers of vacua.
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(a) nV = 6

0 = c(v, v, v) + ω
∑
a

c(v, ua, ūa) + ω2
∑
a

c(v, ūa, ua)

= c(v, v, v)−
∑
a

c(v, ua, ūa)

= β − ξ1 − ξ2 .

(5.94)

(b) nV = 4

ξ̃ = β − ξ . (5.95)

(c) nV = 2

ξ̃1 + ξ̃2 = β . (5.96)

• v with ρ line

ρi

v

(5.97)

Under the vertical cut,∑
A

c(v, oiA, oiA) =
∑
A

κiAA = tr(κi) , (5.98)

and under the horizontal cut.

−ζ−1c(v, v, v) = −ζ−1β , (5.99)

Hence,
tr(κi) = −ζ−1β . (5.100)

• ua with ρ line

ρi

ua
(5.101)
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Under the vertical cut ∑
A

c(ua, oiA, oiA) =
∑
A

λiAA;a , (5.102)

and under the horizontal cut,∑
b,c

Rbcc(ua, ub, uc) =
∑
b,c

Rbcσabc . (5.103)

Hence, ∑
A

λiAA;a =
∑
b,c

Rbcσabc . (5.104)

5.6 Topological field theory with Haagerup H3 symmetry

This section analyzes the bootstrap constraints delineated in the previous section. We
first narrow down the local operator algebra to a handful of possibilities, and then proceed
to construct a topological field theory with six vacua realizing the Haagerup H3 fusion
category.

Local operator algebra

To solve for a defect topological field theory, we begin by examining the associativity of
local operators detailed in Section 5.5. There we used the U(n2) basis freedom for ua
and ūa to put ξab into diagonal form, and used associativity to constrain the possible
eigenvalues; the result was

ξab = ξaδab , ξa =
β ±

√
β2 + 4

2
. (5.105)

In this basis, (5.63) becomes

ξa σabc = ξb σabc = ξc σabc . (5.106)

Then for any pair (a, b) such that ξa ̸= ξb, it follows that σabc = 0, i.e. the operator
product uaub must vanish. We have the following scenarios:

(a) nV = 2. There is no Z3-charged operator.

(b) nV = 4. There is a single pair of Z3-charged operators. Then (5.65) reads

σ2 = 1 + ξ2 . (5.107)

(c) nV = 6, and there are two pairs of Z3-charged operators with different ξa. Because
σabc with mixed indices vanish, (5.65) becomes

0 = 1 + ξ1ξ2 , σ2
111 = 1 + ξ21 , σ2

222 = 1 + ξ22 . (5.108)
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We can use the residual U(1)2 basis freedom to make σaaa real and non-negative.
Without loss of generality,

ξ1 =
β −

√
β2 + 4

2
, ξ2 =

β +
√
β2 + 4

2
,

σ111 =
√
1 + ξ21 , σ222 =

√
1 + ξ22 .

(5.109)

(d) nV = 6, and there are two pairs of Z3-charged operators with the same ξa. It can be
shown that the associativity of local operators admits a unique solution

β = 2i , ξ1 = ξ2 = i , σabc = 0 . (5.110)

This case will be ruled out momentarily.

To proceed, we examine the associativity of oiAoiBv detailed in Section 5.5. The first
condition (5.69) ∑

C

κiACκ
i
BC = δAB + βκiAB (5.111)

implies that κiAB are 3×3 matrices with each eigenvalue taking one of two possible values

each eigval(κi) =
β ±

√
β2 + 4

2
. (5.112)

And it follows from the torus one-point modular invariance condition (5.100) that

tr(κi) = −ζ−1β , ζ =
3 +
√
13

2
. (5.113)

We immediately see that (5.110) fails to satisfy this constraint, so (d) is ruled out. In
the following, we analyze the two inequivalent possibilities for the eigenvalues −−−
and +−− as labeled by the signs taken in (5.112). The +++ and ++− cases are
equivalent to −−− and +−− by the redefinition v → −v.

I. −−− The torus one-point modular invariance condition (5.100) becomes

3× β −
√
β2 + 4

2
= −ζ−1β ⇒ β = 3 . (5.114)

As all eigenvalues of κiAB are the same, in any basis for oiA,

κiAB = −ζ−1δAB . (5.115)
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Besides the local operator algebra, the action of the ρ TDL on the Z3-charged
operators is constrained as follows. First, recall from (5.78) that∑

c

RacRcb = δab . (5.116)

Second, by the use of (5.84) and (5.115), we can evaluate the left side of (5.85),∑
A,B

γiaAγ̄
i
bBκ

i
AB = −ζ−1

∑
A

γiaAγ̄
i
bA = −δab , (5.117)

and then (5.85) becomes

−δab = −
1

3

(
ξab +

∑
c,d

RadRbcξdc

)
. (5.118)

Let us examine the scenarios (a)(b)(c).

a) If nV = 2, then β = 3 completely specifies the local operator algebra.

b) If nV = 4, then (5.118) becomes a scalar equation reading

−1 = −1

3

(
ξ +RRξ

)
=

2

3
ξ , ξ ≡ ξ11 = ξ1 , R ≡ R11 , (5.119)

which contradicts with the allowed ξ values (5.105) given β = 3. Hence this
case is ruled out.

c) If nV = 6, then to be consistent with torus one-point modular invariance (5.94)
and the allowed ξa values (5.105), we set without loss of generality

ξ1 = −ζ−1 , ξ2 = ζ . (5.120)

By (5.108), the non-vanishing three-point coefficients of Z3-charged operators
are

σ111 =
√

1 + ζ−2 =

√
13− 3

√
13

2
, σ222 =

√
1 + ζ2 =

√
13 + 3

√
13

2
.

(5.121)
We have thus completely specified the operator product algebra. Together with
(5.116) and (5.118), the action of the ρ TDL on Z3-charged local operators are
restricted to be

ρ̂(ua) =
ρiua =

∑
b

Rabūb , R = θ ×

(
0 1

1 0

)
, θ ∈ C , |θ| = 1 .

(5.122)
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II. +−− The torus one-point modular invariance condition (5.100) becomes

3β −
√
β2 + 4

2
= −ζ−1β , ⇒ β =

1√
3
. (5.123)

The values of ξab and σabc are fixed by β through (5.105), (5.107), and (5.109). The
bootstrap analysis of this possibility is more complicated than the −−− case, so
we leave it for future work. However, some hints pointing towards the existence of
a defect TFT of case II(b) with nV = 4, and arguments for the non-existence in
cases II(a) with nV = 2 and II(c) with nV = 6 can be found in Section 5.7.

In the next section, we complete the construction of a TFT of case I(c) with nV = 6 and
β = 3. The reader interested in boundary conditions can safely proceed to Section 5.7.

Topological field theory with six vacua

We now construct the rest of the defect TFT data in case I(c) with nV = 6 and β = 3,
and solve all the consistency conditions outlined in Section 5.2.

It turns out that a good point of attack is the associativity of oiAoiBv. The condition
(5.70) in the basis diagonalizing ξab (5.62) reads∑

C

κiACλ
i
BC;a = ξaλ

i
AB;a , (5.124)

which implies that for fixed A and a, λiAB;a must be an eigenvector of κi with eigenvalue
ξa; otherwise λiBC;a vanishes. But because κi does not have ζ as an eigenvalue, it follows
that

λiAB;2 = 0 . (5.125)

Note that the vanishing of λiAB;2 is consistent with (5.72).

By considering the vanishing λiAB;2, we can determine the ρ action, which we found to
be parameterized by θ ∈ C in (5.122). The nontrivial part of (5.87) with f = 2 becomes

0 = ζσ111θ̄ − θ2σ222 , (5.126)

which by the use of (5.121) leads to

|θ| = ζ
σ111
σ222

= ζ

√
1 + ζ−2

1 + ζ2
= 1 , θ3 = 1 . (5.127)

Up to the relabeling of ρi,
θ = 1 . (5.128)
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For the non-vanishing λiAB;1, it is convenient to define a normalized

λ̂iAB ≡
λiAB;1

σ111
, (5.129)

and write the associativity of oiAoiBua (5.72) and the modular invariance condition (5.104)
in matrix notation as (recall that λ̂i is a symmetric matrix)

λ̂i
¯̂
λi = 1 , λ̂iλ̂i =

¯̂
λi , Tr λi = 0 . (5.130)

The first equation says that λ̂i is unitary, and combined with the second equation implies
that (λ̂i)3 = 1. The third equation then tells us that λ̂i has eigenvalues

eigvals(λ̂i) = {1, ω, ω2} . (5.131)

We now prove that λ̂ (suppressing superscript i) must be diagonalizable by an O(3)

matrix. For convenience define Ω = diag(1, ω, ω2). Because λ̂ is unitary, it can always
be diagonalized by a unitary matrix Z, i.e. λ̂ = Z†ΩZ. For λ̂ to be symmetric, we must
have

Z†WZ = ZTWZ̄ ⇒ (ZZT )W (ZZT ) = W. (5.132)

Let us define A = ZZT . The (1, 1)-component of the matrix equation (5.132) reads

|A11|2 + ω|A12|2 + ω2|A13|2 = 1 , (5.133)

where we used the fact that A is symmetric. Now for the above equation to have a
solution, we must have |A12|2 = |A13|2, since otherwise the imaginary part cannot match.
Let us call this value x ≡ |A12|2 = |A13|2. Then |A11|2 = 1 + x. Proceeding similarly, we
arrive at the following matrix

A =

e
ia11
√
1 + x eia12

√
x eia13

√
x

eia12
√
x eia22

√
1 + x eia23

√
x

eia13
√
x eia23

√
x eia33

√
1 + x

 , (5.134)

where aij are arbitrary phases. Finally, A must be unitary since

AA† = (ZZT )(ZZT )† = Z(ZT Z̄)Z† = ZZ† = 1 , (5.135)

which means that
(AA†)11 = 1 + 3x = 1 . (5.136)
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Hence x = 0 and we end up with

A =

e
ia11

eia22

eia33

 . (5.137)

The O(3) matrix of interest is given by15

O ≡
√
A−1Z . (5.138)

We can therefore use the O(3) freedom to set

λ̂iAB;1 = ωA−1−iδAB ⇒ λiAB;1 = ωA−1−iσ111δAB = ωA−1−i
√

1 + ζ−2 δAB . (5.139)

Let us summarize the solution we found so far into

v × v = 1 + 3v , u1 × ū1 = 1− ζ−1v , u2 × ū2 = 1 + ζv ,

u1 × ū2 = 0 , u1 × u1 =
√

1 + ζ−2 ū1 , u2 × u2 =
√

1 + ζ2 ū2 ,

oiA
ρi

oiB =

1− ζ−1v +
√

1 + ζ−2
(
ωi+1−Au1 + ωA−1−iū1

)
A = B ,

0 A ̸= B .

(5.140)

We proceed to solve the more general crossing symmetry involving four ρi defect op-
erators. Some analytic progress is made in Appendix D.2, such as deriving a selection
rule (D.20), but eventually we resort to computer numerics to find a solution.16 Up to
operator relabeling and sign redefinitions, the solution appears to be unique. The non-
vanishing defect three-point coefficients are (vacuum expectation values are implicitly

15The fact that O is an O(3) matrix follows from OO† = OOT = 1. The first equality implies that
O† = OT , or equivalently that O is real, and the second equality is orthogonality.

16Up to this point in the main text, no assumption about reflection-positivity was needed. However,
both Appendix D.2 and the computer numerics assume reflection-positivity.
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taken)

oiA

oiA

oiA

=

√
17
√
13− 52

3
,

oi+1,A+1

oiA

oiA

= −1

2

√√√√1

3

(
−13 + 11

√
13 +

√
78
(
7
√
13− 23

))
,

oi−1,A−1

oiA

oiA

=
1

2

√√√√1

3

(
−13 + 11

√
13−

√
78
(
7
√
13− 23

))
,

oiA

oi+1,A+1

oi−1,A−1

= oiA

oi−1,A−1

oi+1,A+1

= −

√
13 + 7

√
13

6
.

(5.141)

Note an interesting “superselection” rule: If we define three “sectors” labeled by i −
A mod 3, then all non-vanishing three-point coefficients are those that involve defect
operators in a single sector.

Finally, we can solve the full set of modular invariance constraints, which are linear in
the lassos. We find a solution where some of the lassos are given by (vacuum expectation
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values are implicitly taken)

ρivoiA = εiA = −

√√
13

3
,

ρiu1oiA = γi1A =

√
ζ

3
ωA−1−ie−iϕγ , ϕγ =

π

4
+

1

2
arccos

1

3 +
√
13
,

ρiu2oiA = γi2A = −
√
ζ

3
ω1−A−i ,

ρi

ρi

oiB oiA =


−1 + 5

√
13

18
A = B ,

−7−
√
13

18
A ̸= B ,

ρi±1

ρi∓1

oiB oiA =


17 + 5

√
13

18
A = B ,

−7−
√
13

18
A ̸= B ,

ρi±1

ρi±1

oiB oiA =



5 + 2
√
13±

√
15 + 6

√
13

18
A = B ,

−11 +
√
13±

√
6
(
61 + 19

√
13
)

36
A ̸= B ,

ρi

ρi±1

oiB oiA =


5 + 2

√
13±

√
15 + 6

√
13

18
A = B ,

7 +
√
13∓

√
798 + 222

√
13

36
A ̸= B ,

(5.142)
and the rest are related to the above via (5.58).

We have thus completed the construction of a defect topological field theory whose defin-
ing data solve all the consistency conditions outlined in Section 5.2.
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5.7 Boundary conditions and NIM-reps

We can extend our topological field theory (TFT) further by considering boundaries.
Given the bijection between C-symmetric TFTs and C-module categories argued by
Thorngren and Wang [161], the fact that the Haagerup H3 fusion category has exactly
three indecomposable module categories [93], with two, four, and six simple objects, is
strongly suggestive of a connection to the three “minimal” possible TFTs (with nP = 15

point-like operators) in Table 5.2, with two, four, and six vacua. However, except in spe-
cial cases, it is not known how to extract the axiomatic defect TFT data from the module
category. In this section, without assuming any prior knowledge of module categories, we
use the bootstrap results on the axiomatic defect TFT data to construct boundaries and
examine their fusion with TDLs. This section can be read independently of Section 5.6.

We first review some nontrivial results in open/closed TFTs. The admissible boundary
conditions of a TFT are direct sums of a set of elementary boundary conditions Ba,
which are related to the so-called Cardy states νa by folding the boundary into a circle
and invoking the state-operator map,

Ba

TFT
→ TFT |νa⟩ 7→ νa

(5.143)

By solving the consistency conditions of open/closed TFT, Moore and Segal [129] estab-
lished an explicit formula for the Cardy states νa in terms of the projectors πa introduced
in Section 5.2,

νa =
πa√
⟨πa⟩

. (5.144)

In particular, the number of Cardy states is the same as the number of vacua nV.

Let {Li | i = 1, . . . , r} be the set of simple TDLs, Nk
ij the fusion coefficients, and

{νa | a = 1, . . . , nV} the set of Cardy states. The fusion of any TDL with an admissible
boundary must give another admissible boundary. Therefore, the action of TDLs on the
Cardy states must furnish a non-negative integral matrix representation (NIM-rep): a
set of nV × nV non-negative integral matrices (Ni) b

a , one for each line i, such that∑
c

(Ni) c
a (Nj) b

c = Nk
ij (Nk) b

a . (5.145)

Given that we have narrowed down the full local operator algebra to a few possibilities in
Section 5.6, it is straightforward to compute the projector basis and examine the action
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of the TDLs on the projectors. To condense the discussion, we present formulae that
apply to the entire family of local operator algebras, parameterized by β, that solve the
associativity of local operators. Of course, we have seen that the associativity of oiAoiBv
requires β = 3 or β = 1√

3
.

(a) Consider nV = 2. The projector basis for

v × v = 1 + βv (5.146)

is given by

π1 =
ζ − v√
4 + β2

, π2 =
ζ−1 + v√
4 + β2

. (5.147)

According to (5.144), the Cardy states are

ν1 =
4
√

4 + β2

√
ζ

π1 , ν2 =
4
√
4 + β2

√
ζ π2 . (5.148)

I. When β = 3, they furnish a NIM-rep

Nα =

(
1

1

)
, Nρ =

(
3 1

1

)
. (5.149)

II. When β = 1√
3
, the representation

Nα =

(
1

1

)
, Nρ =

(
2
√
3√

3 1

)
(5.150)

is not NIM.

(b) For nV = 4, the local operator algebra is given by

v × v = 1 + βv , u× ū = 1 + ξv , u× u =
√

1 + ξ2 ū , ξ =
β ±

√
β2 + 4

2
.

(5.151)
There are two possible choices for ξ, and we can construct the projector basis

πa =


ϵ ξ−1 + ϵ v + 4

√
4 + β2

√
ϵ ξ−1 (ωa−1u+ ω1−aū)

3
√

4 + β2
, a = 1, 2, 3 ,

ϵ ξ − ϵ v√
4 + β2

, a = 4 ,
(5.152)
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where ϵ ≡ sign(ξ). The Cardy states (5.144) are then

νa =



(
ϵ ξ−1

3
√
4 + β2

)− 1
2

πa , a = 1, 2, 3 ,(
ϵ ξ√
4 + β2

)− 1
2

πa , a = 4 .

(5.153)

Whether they furnish a NIM-rep depends on how the ρ TDL acts, that is, on R.

I. When β = 1√
3
, we find that for ξ taking either value, that is ϵ = ±, there is

exactly one value of R that gives rise to a NIM-rep:

ϵ = + , R = 1 : Nα =


1

1

1

1

 , Nρ =


1 1

1 1

1 1

1 1 1 2

 ,

ϵ = − , R = −1 : Nα =


1

1

1

1

 , Nρ =


1 1 1

1 1 1

1 1 1

1 1 1 1

 .

(5.154)

II. When β = 3, we instead have

ϵ = + : Nρ =


2 cosϕ

3
− cosϕ

3
+ sinϕ√

3
− cosϕ

3
− sinϕ√

3
1√
3

− cosϕ
3

+ sinϕ√
3

− cosϕ
3
− sinϕ√

3

2 cosϕ
3

1√
3

− cosϕ
3
− sinϕ√

3

2 cosϕ
3

− cosϕ
3

+ sinϕ√
3

1√
3

1√
3

1√
3

1√
3

3

 ,

ϵ = − : Nρ =


1 + 2 cosϕ

3
1− cosϕ

3
+ sinϕ√

3
1− cosϕ

3
− sinϕ√

3
1√
3

1− cosϕ
3

+ sinϕ√
3

1− cosϕ
3
− sinϕ√

3
1 + 2 cosϕ

3
1√
3

1− cosϕ
3
− sinϕ√

3
1 + 2 cosϕ

3
1− cosϕ

3
+ sinϕ√

3
1√
3

1√
3

1√
3

1√
3

0

 ,

(5.155)
where R = eiϕ. As we can see the representation is not NIM.

(c) Finally, consider nV = 6. The local operator algebra is

v × v = 1 + βv , u1 × ū1 = 1 + ξ1v , u2 × ū2 = 1 + ξ2v ,

u1 × ū2 = 0 , u1 × u1 =
√

1 + ξ21 ū1 , u2 × u2 =
√

1 + ξ22 ū2 ,

ξ1,2 =
β ∓

√
β2 + 4

2
,

(5.156)
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and the projector basis is given by

πa =


ξ2 − v + 4

√
4 + β2

√
ξ2 (ω

a−1u1 + ω1−aū1)

3
√

4 + β2
, a = 1, 2, 3 ,

−ξ1 + v + 4
√

4 + β2
√
−ξ1 (ωa−1u2 + ω1−aū2)

3
√

4 + β2
, a = 4, 5, 6 .

(5.157)

The Cardy states (5.144) are

νa =



(
ξ2

3
√
4 + β2

)− 1
2

πa , a = 1, 2, 3 ,(
−ξ1

3
√
4 + β2

)− 1
2

πa , a = 4, 5, 6 .

(5.158)

Clearly, the triples (ν1, ν2, ν3) and (ν4, ν5, ν6) each transforms as a three-dimensional
permutation representation under Z3.

I. When β = 3, with the ρ TDL action Rab given by (5.122) and (5.128), one can
check that the Cardy states furnish a NIM-rep

Nα =



1

1

1

1

1

1


, Nρ =



1 1 1 1

1 1 1 1

1 1 1 1

1

1

1


.

(5.159)

II. For β = 1√
3
, without assuming anything about the matrix Rab = xab + iyab, we

get the following representation for ρ action:

Nρ =

(
A B

C D

)
, B =


1√
3
+ 2x12

3
− x12

3
+ 1+y12√

3
− x12

3
+ 1−y12√

3

− x12
3

+ 1+y12√
3

− x12
3

+ 1−y12√
3

1√
3
+ 2x12

3

− x12
3

+ 1−y12√
3

1√
3
+ 2x12

3
− x12

3
+ 1+y12√

3

 ,

(5.160)
and A, C, D are other 3 × 3 matrices whose explicit form we do not need.
Suppose B is NIM. Because B12 − B13 = 2y12√

3
, it follows that y12 must be a

multiple of
√
3
2

, and we can write y12 = n
√
3

2
with n ∈ Z. But then B11 +2B12 =√

3 + n. Hence no NIM-rep exists.
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The results of the above analysis are summarized in Table 5.3. The defect TFT con-
structed in Section 5.6 passed the NIM-rep test, and notably the NIM-rep requirement in
case II(b) allowed us to determine the action of the ρ TDL on the Z3-charged operators.

(a) nV = 2 (b) nV = 4 (c) nV = 6

I. β = 3 ◦ × ◦
II. β = 1√

3
× ◦ ×

Table 5.3: Existence of (1+1)d topological field theories realizing the Haagerup H3 fu-
sion category from analyzing the fusion of topological defect lines with the admissible
boundary conditions. We restrict to theories with exactly two Z3-neutral vacua 1 and
v. Here nV denotes the total number of vacua, and β is the coefficient in the fusion rule
v×v = 1+βv. The ◦ marks the cases that pass the NIM-rep condition, and the × marks
those ruled out. The theory constructed in Section 5.6 is highlighted.

5.8 Realization of Haagerup H1 and H2 via gauging

Given (a (1+1)d quantum field theory with) a finite symmetry group G that contains a
non-anomalous subgroup H, gauging H < G gives rise to (a quantum field theory with) a
fusion category symmetry F ′ that contains a Rep(H) sub-category. This process can be
reversed by gauging Rep(H) < F ′. In this sense, the pairs (G,H) and (F, Rep(H)) are
dual to each other. A generalization of the above statement is the following: given a fusion
category C that contains an algebra object (a non-simple topological defect line satisfying
certain conditions) A, gauging A < C gives rise to a fusion category C ′ = BimodC(A,A)

(category of (A,A) bimodules within C) that contains a dual algebra object A′, and this
process can be reversed by gauging A′ < C ′. Thus, the pairs (C, A) and (C ′, A′) are dual
to each other.17 The reader is referred to [36] for a much more refined discussion, and to
[47, 81, 83] for the original idea of generalized gauging.

The relations among the Haagerup H1, H2, H3 fusion categories can be understood this
way. Up to automorphism, there are two nontrivial algebra objects inH2, one correspond-
ing to the non-anomalous Z3 symmetry I+α+α2, and the other to I+ρ. There are also
two nontrivial algebra objects in H3, one again corresponding to the non-anomalous Z3

symmetry I +α+α2, and the other to I + ρ+αρ. Gauging the Z3 symmetry exchanges
H2 and H3, and gauging the other nontrivial algebra object in either H2 or H3 gives H1.
These relations are summarized in Figure 5.1.

Thus, to construct topological field theories realizing the Haagerup H1 or H2 fusion
17Gauging by different algebra objects A1 and A2 with the same module category ModC(A1) =

ModC(A2) gives rise to the same gauged theory, so A1 and A2 are equivalent in the context of gauging.
The duality pairing of (C, A) and (C′, A′) is up to this equivalence.
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category, one can simply take a topological field theory realizing H3, such as the one we
constructed in Section 5.6, and gauge I + ρ + αρ or I + α + α2 (the Z3 symmetry),
respectively. A discussion on the gauging of algebra objects in (1+1)d topological field
theory can be found in [36]. In particular, gauging the theory we constructed, which has
nV = 6 vacua and realizes the Haagerup H3 fusion category, by Z3 gives rise to a theory
that has nV = 2 vacua and realizes the Haagerup H2 fusion category.

H1

H2 H3

gauge I + ρ gauge I + ρ+ αρ

gauge Z3

(gauge I + α + α2)

Figure 5.1: Gauging relations among theories realizing the three Haagerup fusion cate-
gories.

5.9 Prospective questions

• What is the full axiomatic data, when boundaries are included, of the defect topo-
logical field theory that we constructed in Section 5.6?

• Is there an explanation for the “superselection” rule noted below (5.141)?

• The construction of topological field theories realizing cases I(a), with nV = 2 vacua
and β = 1√

3
, and II(b), with nV = 4 vacua and β = 1√

3
, is left for future work. For

these cases, we showed in Section 5.7 that the Cardy states obtained from bootstrap
furnish non-negative integer matrix representations under fusion with topological
defect lines.

• Is there a conformal field theory realizing Haagerup or its quantum double? De-
spite nontrivial positive evidence from the work of Evans and Gannon [75], and
recent attempts by Wolf [176], the question remains open. The defect modular
bootstrap approach of [121, 122] may put universal constraints on such conformal
field theories.

• Is Haagerup truly exotic (whatever exotic means)? Evans and Gannon [75] sug-
gested not, as it sits inside a hypothetically infinite family of Haagerup-Izumi sub-
factors/fusion categories [105]. The transparent F -symbols for some higher mem-
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bers of this family have been recently computed by the present authors [102], and
may allow for the construction of the corresponding defect topological field theories.

• Finally, the broader questions Q1, Q2, and Q4 of Section 5.1 motivating this work
remain open.
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A.1 Conventions

In this paper we follow the mostly minus convention (+,−,−,−), and an on-shell mo-
mentum satisfies p2 = m2. The SL(2,C) and SUL(2) indices are raised and lowered
as

ψα = ψβεαβ, ψα = εαβψβ, εαβεβγ = δαγ (A.1)

where we use εαβ = −εαβ =

(
0 −1
1 0

)
. The spinor contraction can be converted to

vector contraction following
pαα̇1 p2αα̇ = 2pµ1p2µ , (A.2)

and hence for massive momenta, pαα̇pαα̇ = 2m2. The vector indices are converted to
spinorial ones as:

γµ =

(
0 σµ

αβ̇

σ̄µα̇β 0

)
→ ( ̸p+m) =

(
mδβα pαβ̇
pα̇β mδα̇

β̇

)
(A.3)

A.2 SU(2) Irreps as Symmetric Tensors

In this appendix we review, mostly to set notation, the elementary treatment of repre-
sentations of SU(2) as symmetric tensors, and briefly discuss some of its standard applic-
tions, such as a transparent determination of spherical harmonics. The standard treat-
ment of representations of SU(2) is the one encountered by most undergraduates in be-
ginning quantum mechanics courses. Since we can mutually diagonalize J⃗2 and Jz, eigen-
states of these operators are labeled by |s, jẑ⟩, where the ẑ reminds us that we have chosen
to diagonalize the operator Jz, and we have J⃗2|s, jẑ⟩ = s(s+1)|s, jẑ⟩, Jz|s, jẑ⟩ = m|s, jẑ⟩.
The irrep is (2s + 1) dimensional with jẑ taking all the values −s ≤ jẑ ≤ +s. The spin
information in a general state |ψ⟩ is then entirely contained in specifying ⟨s, jẑ|ψ⟩.

But for our purposes it is more convenient to describe an irrep of SU(2) as a completely
symmetric SU(2) tensor with 2j indices:

ψi1···i2s (A.4)

where i is the SU(2) index. The inner product ⟨χ|ψ⟩ between two states is given by

⟨χ|ψ⟩ = εi1j1 · · · εi2sj2s(χi1···i2s)∗ψj1···j2s (A.5)

Saying that ψ is an SU(2) tensor is just the statement that the rotation generators J⃗ act
as

(J⃗ψ)i1···i2s = (
1

2
σ⃗)j1i1ψj1···i2s + · · ·+ (

1

2
σ⃗)j2si2sψi1···j2s (A.6)
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Note that the dimensionality of ths space is precisely 2×3×· · ·×(2j+1)/(1×2×· · ·×2j) =
(2j + 1) as desired. Using that σ⃗ji · σ⃗lk = 2δjkδ

l
i − δ

j
i δ
l
k, we trivially see that (J⃗2ψ)i1···i2s =

s(s + 1)ψi1···i2s . If we choose to diagonalize σz with eigenstates (σz)
j
iζ
ẑ,±
j = ±ζ ẑ,±i , then

the spin s tensor that is an eigenstate of Jz with eigenvalue jẑ is

ψs,jẑ = (ζ ẑ,+)s+jẑ(ζ ẑ,−)j−jẑ (A.7)

where here and in what follows, since the tensor indices on ψ are always symmetrized
there is no need to write them explicitly when no confusion can arise. We can also
express the same fact in a different way, telling us how to extract ⟨s, jẑ|ψ⟩ from the
tensor ψi1,··· ,i2s :

ζi ≡ α+ζ
ẑ,+
i + α−ζ

ẑ,−
i ; ζ i1 · · · ζ i2sψi1···i2s =

∑
jẑ

αs+jẑ+ αs−jẑ− ⟨s, jẑ|ψ⟩ (A.8)

The tensor representation makes it trivial to give explicit expressions for finite rotations,
and expand the eigenstate ψs,jn̂ for a general direction n̂ pointing in the usual (θ, ϕ)

direction, as a linear combination of ψs,jẑ ’s. We only need to know the relation for spin
1/2: (

ζ n̂,+

ζ n̂,−

)
=

(
c −s∗

s c

)(
ζ ẑ,+

ζ ẑ,−

)
where c ≡ cos

θ

2
, s ≡ sin

θ

2
eiϕ (A.9)

We can then look at

ψs,jn̂ =
(
ζ n̂,+

)s+jn̂ (ζ n̂,−)s−jn̂
=

(
cζ ẑ,+ − sζ ẑ,−

)s+jn̂ (s∗ζ ẑ,+ + cζ ẑ,−
)s−jn̂

=
∑
jẑ

Rs
jn̂,jẑ

(θ, ϕ)ψs,jẑ (A.10)

with

Rs
jn̂,jẑ

(θ, ϕ) =
∑

m±,m++m−=s+jẑ

(
s+ jn̂

m+

)(
s− jn̂
m−

)
(c)m+(−s)s+jn̂−m+(c)s−jn̂−m−(s∗)m−

(A.11)
The tensor formalism also makes it trivial to construct spherical harmonics, which nat-
urally arise in building irreps of SU(2) which are polynomials in a 3-vector x⃗. Of course
we are used to converting x⃗ to SU(2) indices by dotting with the σ matrices, but this
gives us an object σ⃗ji · x⃗ with an upstairs and downstairs index, while for the purposes of
building irreps we would like to work with symmetric tensors and all downstairs indices.
So it is natural to look instead at xij = ϵikx

k
j ; explicitly we have

xji =

(
z x− iy

x+ iy −z

)
, xij =

(
−(x− iy) z

z (x+ iy)

)
(A.12)
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We would like to make symmetric rank 2s tensors from a product of s xij’s. But we don’t
need to do the symmetrizations explicitly; again because of the symmetrization all the
information is contained in

ζ i1ζj1 · · · ζ isζjsxi1j1 · · ·xisjs = (ζζx)s (A.13)

Putting ζi = (α+, α−) and so ζ i = (−α−, α+), expanding the above gives us the generating
function for spherical harmonics. Letting x⃗ be the unit vector with (x + iy) = sin(θ)eiϕ

and z = cos(θ), we have

(ζζx)s =
(
α2
+sin(θ)e

iϕ − 2α+α−cos(θ)− α2
−sin(θ)e

−iϕ)s ≡∑
jẑ

αs+jẑ+ αs−jẑ− Ys,jẑ(θ, ϕ)

(A.14)

A.3 Explicit Kinematics

For massless particles, we have

λα =
√
2E

(
c

s

)
, λ̃α̇ =

√
2E

(
c

s∗

)
(A.15)

For massive particles, we can write

λIα =

( √
E + pc −

√
E − ps∗

√
E + ps

√
E − pc

)
, λ̃Iα̇ =

( √
E + pc −

√
E − ps∗

√
E + ps

√
E − pc

)
(A.16)

We can write this equivalently as

λIα =
√
E + pζ+α (p)ζ

−I(k) +
√
E − pζ−α (p)ζ+I(k)

λ̃Iα̇ =
√
E + pζ̃−α̇ (p)ζ

+I(k) +
√
E − pζ̃+α̇ (p)ζ−I(k) (A.17)

where

ζ+α =

(
c

s

)
, ζ̃−α̇ =

(
c

s∗

)
; ζ−α =

(
−s∗

c

)
, ζ̃+α̇ =

(
−s
c

)
(A.18)

We can read off the specific spin components as in the previous appendix, since by using
the above expressions for λIα, λ̃Iα̇ we can expand for any particle:

M{I1···I2S} =
∑
jz

(
(ζ+)S+jz(ζ−)S−jz

){I1···I2S}M(jz) (A.19)
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A.4 Comparison with Feynman Diagrams for Compton Scattering

Here we directly construct Compton scattering from Feynman rules, and converting into
our notations. We begin with

3
2

t 1 t4

: ϵµ2ϵ
ν
3 v̄1

(
γν (̸P12 +m)γµ

s−m2
+
γµ(̸P13 +m)γν

u−m2

)
u4 , (A.20)

where Pij = pi + pj. Peeling off u4 and v̄1, we obtain two 4 × 4 numerator factor each
given by:

ns =

(
mϵ3αγ̇ϵ

γ̇δ
2 ϵ3αβ̇(P21)

β̇γϵ2γδ̇
ϵα̇β
3 (P12)βγ̇ϵ

γ̇δ
2 mϵα̇γ

3 ϵ2γδ̇

)
, nu =

(
mϵ2αγ̇ϵ

γ̇δ
3 ϵ2αβ̇(P13)

β̇γϵ3γδ̇
ϵα̇β
2 (P13)βγ̇ϵ

γ̇δ
3 mϵα̇γ

2 ϵ3γδ̇

)
. (A.21)

Substituting the explicit polarization vectors one finds:

ns =

(
mλ3α[q̃2]q

δ λ4α[q̃|P12|q⟩λ̃2δ̇
q̃α̇⟨3|p1|2]qδ mq̃α̇⟨1q⟩λ̃4δ̇

)
⟨2q⟩[3q̃]

, nu =

(
mqα[2q̃]λ

δ
3 qα[2|p1|3⟩q̃δ̇

λ̃α̇2 ⟨q|P12|q̃]λδ3 mλ̃α̇2 ⟨q3⟩q̃δ̇

)
⟨2q⟩[3q̃]

(A.22)
where q, q̃ are the reference spinors for the polarization vectors. The elements in the
4× 4 matrix is in different SL(2,C) representations. We again judicially multiply factors
of p/m to convert it into our preferred basis, which has leg 1 in the undotted basis, and
leg 4 in the dotted basis. That is, we multiply:

(
pα̇α
4

m
δα̇
β̇

)( Oα δ Oαδ̇
Oβ̇δ Oβ̇ δ̇

)(
δβδ
pδ̇β1
m

)
(A.23)

where the Os are stand ins for matrix elements of ns, nu. Summing up the terms and
choosing q = λ3 and q̃ = λ̃2, one finds:

⟨3|p1|2](λ̃α̇2λ
β
3 − pα̇4αλα3p

β
1 δ̇λ̃

δ̇
2/m

2)

(u−m2)(s−m2)
. (A.24)

Contracting with external λ, λ̃s we recover eq.(2.99).

A.5 The High Energy Limit of Massive Three-Point Amplitude

Let us consider the HE limit of the three-point massive vector amplitude

gfabc

mambmc

[⟨12⟩[12]⟨3|p1−p2|3] + cyc.] (A.25)
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First consider the component amplitude (1−2−3+). Its high energy limit is given by:

2−b

1−a

3+c →
1

mambmc

· gfabc (⟨12⟩[η̃1η̃2]⟨η3|p1−p2|3] + ⟨2η3⟩[η̃23]⟨1|p2−p3|η̃1] + ⟨η31⟩[3η̃1]⟨2|p3−p1|η̃2])

(A.26)

Since in the high energy limit we will be interested in the MHV configuration, we have:

λ̃1 = ⟨23⟩ξ̃, λ̃2 = ⟨31⟩ξ̃, λ̃3 = ⟨12⟩ξ̃ , (A.27)

and eq.(A.26) simplifies to:

gfabc (⟨2η3⟩[η̃23]⟨1|p2−p3|η̃1] + ⟨η31⟩[3η̃1]⟨2|p3−p1|η̃2])
mambmc

= 2
gfabc

mc

(
⟨η32⟩⟨12⟩2

⟨23⟩
+
⟨η31⟩⟨12⟩2

⟨31⟩

)
= 2gfabc

⟨12⟩3

⟨23⟩⟨31⟩
. (A.28)

where we have repeatedly used identities such as [η̃13] =
⟨12⟩
⟨23⟩ [η̃11] = ma

⟨12⟩
⟨23⟩ , which holds

for MHV kinematics.

A more interesting component would be (102−30). Keeping in mind that extracting the
longitudinal term corresponds to choosing λ{I λ̃J} → λλ̃−ηη̃, the relevant terms are:

2−b

1a

3c → gfabc

mambmc

{
⟨12⟩[1η̃2](⟨3η1⟩[η̃13]− ⟨3η2⟩[η̃23]− ⟨1η3⟩[η̃31] + ⟨2η3⟩[η̃32])

+ ⟨23⟩[η̃23](⟨1η2⟩[η̃21]− ⟨1η3⟩[η̃31]− ⟨η12⟩[2η̃1] + ⟨η13⟩[3η̃1])

−
(
1

2
⟨23⟩[3η̃2](⟨η31⟩[η̃31] + ⟨η13⟩[η̃13])−

1

2
⟨21⟩[1η̃2](⟨η31⟩[η̃31] + ⟨η13⟩[η̃13])

)}
.

(A.29)

Substituting explicit representation for [η̃ij] for MHV kinematics, one finds:

gfabc

mamc

⟨12⟩⟨23⟩
⟨31⟩

(
m2

b −m2
c −m2

a

)
. (A.30)

A.6 Examples for 1 Massive 3 Massless Amplitudes

For three-point amplitudes, since the all massless and one-massive two-massless ampli-
tudes are unique, this tells us that the massless residue for the one-massive three-massless
amplitude is unique. If the residue is non-local, then consistent factorization in the other
channel may force the theory to have a particular one-massless two-massive interaction.
Here we present some examples.
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We consider the four-point amplitude of arbitrary higher spin-S, two massless scalars
and a graviton:

M(1S203+240) . (A.31)

We can now look at the massless residue for s-channel,

S

2

J
4

3

P (λ2)
S(λP )

S[2P ]S

m2S−1
× [3P ]2[34]2

[4P ]2Mpl

=
(λ2)

S([2|p1)S−2

m2S−5

[34]2(λ4)
2

⟨23⟩2Mpl

, (A.32)

where Mpl is the Plank mass. Note that we have double poles 1/⟨23⟩2, which is a general
feature for couplings involving gravitons. The presence of double poles indicate that we
have access to information in other channel. Let’s start with S = 2; dressing the residue
with 1/s propagator, we find:

m

Mpl

1

s
(λ2)

2(λ4)
2 [34]2

⟨23⟩2 =
m

Mpl

(λ2)
2(λ4)

2[34][23]

⟨32⟩⟨43⟩t → M(12203+240) =
m

Mpl

(λ2)
2(λ2)

2[34][23]

⟨32⟩⟨34⟩(u−m2)
. (A.33)

Note that the double pole has been converted into a t-channel massless and an u-
channel massive pole u−m2. The residue of the massive channel can be identified with
M3(1

S=23+2PS=2) ×M3(P
S=22040), where M3(1

S=23+2PS=2) is the minimally coupling
between a graviton and massive spin-2 states. Indeed using minimal coupling in the
u-channel, we find the following residue:

P

23

4
S

J

x213 × [24]2(λ2)
2(λ4)

2 ∼ (λ2)
2(λ4)

2 [34][23]

⟨43⟩⟨23⟩
, (A.34)

which indeed matches that of eq.(A.33). This is a general feature for amplitudes of
eq.(A.31), consistent factorization will require the presence of a three point minimal
coupling for graviton to two massive states. Consider S = 3, the s-channel residue can
be represented in a way that it can readily be completed:

(λ2)
S([2|p1)S−2 [34]

2(λ4)
2

⟨23⟩2

∣∣∣∣
⟨34⟩=0

= (λ2)
3(λ4)

3

(
[34]2[32]

⟨23⟩⟨24⟩
− [42][34]2[23]

⟨23⟩t

)
, (A.35)

Indeed putting back the s-channel propagator and writing −t → (u −m2), we find the
form factor given as:

M(13203+240) = (λ2)
3(λ4)

3

(
[34][32]

⟨23⟩⟨24⟩⟨43⟩
+

[42][34][23]

⟨23⟩⟨43⟩(u−m2)

)
. (A.36)

It is not difficult to see that the massive residue of this amplitude contains the minimum
coupling for the spin-3 states:

x213(λ2)
3(λ4)

3[24]3 ∼ (λ2)
3(λ4)

3 [23][34][24]

⟨23⟩⟨43⟩
. (A.37)
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B.1 Causality constraints on amplitudes

Time delay and positivity bounds

It is well-known that causality puts interesting positivity bounds on the amplitude in the
low energy effective field theories. Perhaps the simplest example is the case of a single
derivatively coupled scalar with lagrangian

L =
1

2
(∂ϕ)2 +

c

M4
(∂ϕ)4 + · · · . (B.1)

The claim is causality demands c > 0 [4]. This is slightly surprising at first sight: c

reflects unknown physics in the UV, ordinarily we can only probe higher-dimension op-
erators if they violate a symmetry of the low-energy theory, but that is not the case here.
And indeed, there is nothing obviously wrong with this as a Euclidean EFT. However in
the physical Lorentzian world, there is something "right-on-the-edge" in the 2-derivative
theory: ϕ excitations propagate exactly on the light-cone. It can happen that in simple
backgrounds the coefficient for the higher-dimensional operators push propagation out-
side the light-cone. We can consider for instance the spatially translationally invariant
background ϕ = ϕ0 + φ where ϕ̇0 ̸= 0. We can make (ϕ̇0/M

2) as tiny as we like such
that the background is trustworthy within the EFT. The background breaks Lorentz
invariance and small fluctuations propagate with speed v = (1− cϕ̇20

M4 ), so we must have
c > 0 to avoid superluminality.

Note that despite being associated with a higher-dimensional operator, the effect of the
superluminality is not "small. Indeed if we turn on ϕ̇0 ̸= 0 inside some bubble of radius
R, and throw in a φ excitation, we get a time advance/delay of φ propagation that is
δt = δvR =

cϕ̇20
M4R, which can be made arbitrarily large by increasing R.

Rt c 2

M 4

.

R

time delay

c >0

time advance

c <0

t

x

This highlights the fundamental fact that the usual Wilsonian intuition about the decou-
pling of "short-distance" from "long-distance" physics is fundamentally Euclidean.
In Euclidean signature, to probe a distance (x−y)2 ∼ 1

Λ2
UV

, one needs probes with wave-
length near the UV scale ΛUV . By contrast in Minkowski space, ultra-small spacetimes
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(x−y)2 ∼ 1
Λ2
UV

can be probed by very long-distance experiments since (x, y) can be sep-
arated by huge distances and time but be close to the light-cone, with advances/delays
that can be made parametrically large.

As is also well-known, these positivity constraints can also be derived from unitarity plus
dispersion relations, reflecting the historic origin of analytic properties of Green’s func-
tions and amplitudes in the investigation of causal propagation! We will recap this story,
but instead of jumping from the classical picture of φ propagation around a background
to dispersion relations for the forward 2 → 2 scattering amplitude, we will connect the
two pictures directly, by repeating the above analysis, preformed in the language of clas-
sical field theory, in terms of particle propagation plus scattering. As we will see this will
in fact give us more than simply the positivity of the (∂ϕ)4 coefficient; we will see that

∂

∂s

M(s)

s
> 0 , (B.2)

where M(s) is the four particle φ scattering amplitude in the forward limit as t→ 0.

As is ubiquitous in the quantum particle-classical field theory connection for bosons,
we recover the classical field picture of time advance/delay for small fluctuations about
the background, by considering the scattering of a single hard φ quanta, against a bose
condensate of a large number N of soft ϕ0 quanta, representing the blob. We begin
by recalling familiar undergraduate basics on wave-packets and the connection between
amplitude phase shifts and time delays: first, free propagation, where we have one particle
states with momentum p⃗. From these we can build good approximation to particles
moving with constant momentum trajectories. We can define the state |x⃗∗, p⃗∗; t∗⟩ as

|x⃗∗, p⃗∗; t∗⟩ =
∫
ddp ei(p⃗·x⃗∗−E(p⃗)t∗)Ψ∆p(p⃗− p⃗∗) , (B.3)

where Ψ∆p(p⃗ − p⃗∗) is sharply localized around p⃗ = p⃗∗, for example Ψ∆p(p⃗ − p⃗∗) ∝
e−(p⃗−p⃗∗)2/(∆p)2 . With this definition, we can compute |⟨x⃗2, p⃗, t2|x⃗1, p⃗, t1⟩|2 via stationary
phase approximation, giving

|⟨x⃗2, p⃗, t2|x⃗1, p⃗, t1⟩|2 = e−∆p2((x⃗1−x⃗2)−V⃗ (p⃗)(t1−t2))
2

, (B.4)

where V⃗ (p⃗) = ∂E(p⃗)
∂p⃗

; this peaked on the classical constant velocity trajectory ∆x⃗ = V⃗∆t

with the unavoidable quantum-mechanical uncertainty of order 1
∆p

.

Now let’s instead imagine that we are propagating through our blob above. Now in
computing the same overlap, we will need the S-matrix element for φ scattering off the
blob,

⟨B, p⃗|S|B, p⃗⟩ = eiδ(E(p⃗)). (B.5)
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Note that the momentum uncertainty/transfer associated with the blob is k ∼ 1
R
, which

we assume to be much smaller than |p⃗|, so the outgoing momentum is the same as the
incoming one. We also assume no other particles were produced, so this amplitude is
just a phase eiδ(E(p⃗)). Repeating the stationary phase analysis, we now find that

|⟨x⃗2, p⃗, t2|x⃗1, p⃗, t1⟩|2 = e−∆p2(∆x−V⃗ (p⃗)(∆t+
∂δ(E)
∂E

))
2

. (B.6)

Thus, the presence of the blob has given us a time delay/advance given by ∆blobt = ∂δ(E)
∂E

.
In order for this to be detectable above the quantum uncertainty ∆quantumt ∼ 1

∆p
∼ 1

E
,

clearly we must have that the phase δ(E)≫ 1 is parametrically large.

Thus to find a situation where the delay/advance is reliably calculable, we must find
a setting where δ(E) ≫ 1 is reliably calculable. Now when we consider few particle
scattering in any situation with a weak coupling, where amplitudes are reliably calculable,
essentially by definition the phase above will be perturbatively small. However, δ(E)≫ 1

is exactly what happens when we scatter φ off the condensate "blob", which we can think
of as a large number N of φ quanta with k ∼ 1

R
. Note that the relation between N and

the classical background field (∂ϕ0) is given by matching the energy of the blob in the
two pictures, as N ∼ (∂ϕ0)/k

4. Now let’s consider M = ⟨B,E|S|B,E⟩ computed in
perturbation theory. We can take momentum of order k for the background. At lowest
order, we have

M = 1 +

E E

k k

+ · · · = 1 + iA(s=kE) + · · · .

Again so long as we have weak coupling, A(s = kE) is small. But since k is so small,
the corrections from multi-particle scattering are significantly enhanced by the s-channel
propagator 1

s
∼ 1

kE
. Thus the full amplitude is then the sum over all disconnected graphs,

scattering of 0, 2, 4, · · · ,m soft particles

M = 1+ + + + · · ·

iAf (s) +
[
iAf (s)

] 1

kE

[
iAf (s)

]
+
[
iAf (s)

] 1

kE

[
iAf (s)

] 1

kE

[
iAf (s)

]
. (B.7)

where, since we imagine k ∼ 1
R

is tiny, Af (s) is the forward-limit amplitude. Note
these are amplitudes with the conventional relativistic normalization of states: M =

⟨B,E|S|B,E⟩ is dimensionless and the units are made up for with powers of k. At large
m number of scattering, we have

M =
∑
m

(
iAf (s)k

E

)m(
N

m

)
=

(
1 +

iAf (s)k

E

)N
. (B.8)
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Using N ∼ (∂ϕ0)
2/k4 we have

M = exp

[
i
Af (s)

Ek

(∂ϕ0)
2

k2

]
, (B.9)

and thus we can identify

δ(E) =

(
A(s)

s

)
(∂ϕ0)

2

k2
. (B.10)

So the time delay is

∆t =
∂

∂E
δ(E) =

∂

∂s

(
A(s)

s

)
(∂ϕ0)

2R . (B.11)

From here, we can reproduce the previous result for the c(∂φ)4 theory: there A(s) = cs2

M4 ,
so ∆t = c

M4 (∂ϕ0)
2R.

As another quick check, suppose we had turned on a λφ4 interaction. Then A(s) ∼ −λ,
and ∆t = λ

s2
(φ0)2

R2 R ∼ λ (φ0)2

E2 R. This is again as we’d expect: inside the blob the φ

particle picks up a mass m2
0 ∼ λφ2

0. So if the velocity (for E ≫ m0) is reduced to
(1 − m2

0

E2 ) = (1 − λ
φ2
0

E2 ), this leads to a time delay of ∆ = λ
φ2
0

E2R. Note however that if
λ < 0 this does not mean we have superluminal propagation; and indeed it is possible to
have consistent theories with λ < 0, with vacuum instability on exponentially long time
scales ∝ exp(b/|λ|) as in the Higgs instability in the Standard Model. If λ < 0, turning on
φ0 destabilizes the vacuum inside the bubble, and so the perturbative assumption of this
computation is violated. Strictly speaking then, our arguments says that ∂

∂s

(
A(s)
s

)
> 0

so long as A(s = 0) ≤ 0 (which allows of course for A(s = 0) as for goldstones).

Thus from consideration of scattering off the blob, we conclude that ∂
∂s

(
A(s)
s

)
> 0, a

stronger statement than merely the positivity of the coefficient of (s2) in the low energy
expansion of A(s).

We now switch gears to discuss the dispersive representation of the (forward) scattering
amplitude, and show how analyticity and unitarity allow us to conclude that ∂

∂s

(
A(s)
s

)
>

0 when A(s = 0) ≤ 0. The non-trivial statement that makes this is possible is the
Froissart bound, which we will review shortly, following from assumptions of analyticity
and a reasonable polynomial boundedness of the forward amplitude. The bound tells us
that Af (s) < s log2 s at large s, and so Cauchy’s theorem allows us to express for a single
scalar φ (with s−u symmetry)

A(s) = A0+

∫
dM2ρ(M2)

[
1

M2−s
+

1

M2+s
− 2

M2

]
(B.12)
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where we’ve separated out the constant piece A0 = A(s = 0), since these are not captured
by contour integration, and the expression in the brackets vanishes at s = 0. Of course
unitarity tells us that ρ(M2) ≥ 0. Now we simply note that

∂

∂s

1

s

[
1

M2−s
+

1

M2+s
− 2

M2

]
=

2(M4 + s2)

M2(M4 − s2)2
> 0 , (B.13)

and thus if A0 <≤ 0 so that ∂
∂s

A0

s
> 0, we have that ∂

∂s

(
A(s)
s

)
> 0 as desired. This shows

quite vividly how unitarity and analyticity in the UV guarantee a rather non-trivial
condition needed for IR causality.

We have seen that reliable causality constraints on scattering amplitudes can arise if
we can find a background in which small, perturbative amplitude phase-shifts can be
calculably exponentiated to large phases, that allow us to look for the presence of a time
advance or delay in the scattering process. We have discussed one such background:the
"soft blob" of a scalar condensate, through which we shot a hard probe. Another limit of
this kind arises when we have gravitational long-range forces, and consider the scattering
in the Eikonal limit, or equivalently, shooting a probe particle through a gravitational
shock wave [45]. In the impact parameter representation, where the impact parameter
b⃗ is fourier-conjugate to the momentum transfer q⃗ with t = −q⃗2, the amplitude again
exponentiates to a phase δ(s, b⃗) at small b⃗. If further we assume the UV theory has a
weak coupling and so a scale of new physics beneath the Planck scale, as in string theory,
at fixed t, the leading weak coupling amplitude at large s scales as a(s)/t, which maps
to an Eikonal phase δ(s, b⃗) = a(s)

s
log b. The center of mass energy s = EprobeEshock;

causality and unitarity demand that |eiδ(Eprobe)| < 1 everywhere in the upper-half Eprobe
plane, and this tells us that δ(Eprobe) itself must be bounded by E1

probe at large Eprobe.
This in turn tells us that the fixed t amplitude is bounded by s2 at large s. This is easily
seen to be satisfied for gravity amplitudes in string theory, which has a Regge behavior
at fixed t, large s given by s2+α′t/t, giving a power smaller than s2 for physical t < 0.

It is amusing that, while the "small-phase exponentiating backgrounds" are different in
these two examples, the final practical constraint on the high-energy behavior of am-
plitudes is the same. The usual Froissart bound (whose derivation we will review in a
moment) tells us that the amplitude at fixed t can grow only logarithmically faster than
s, while the shockwave arguments applicable for weakly coupled in the UV gravitational
theories tells us that the amplitude can’t grow as fast as s2. In both cases, we learn that
the amplitude is bounded by s2 at fixed t.
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Froissart bound

Let’s recall first the intuition behind the Froissart bound, going back to an argument
by Heisenberg [98]. Consider particles scattering at center of mass energy E, involving
exchange of a particle with mass m. We can imagine the interaction strength grows as
gEn, but in position space we also expect the amplitude to behave as e−mR:

E

E

R

e
mR−

Thus the relevant contributions are given by

(gEn)e−mR ∼ 1 → R ≤ n logE

m
, (B.14)

so the total cross section should be bounded by

σ ∼ R2 ≤ n2 log2E

m2
. (B.15)

Now since σ(s) = Im[M(s,t→0)]
s

, this also tells us that

Im[M(s, t→ 0)] ≤ cs log2 s

m2
. (B.16)

for some constant c at large s. Note that locality, seen in the finite range of the effective
interaction, was crucial to this argument.

We’d like to see how to understand this intuitive result directly from properties of the
amplitude. Very naively, one might think that an upper bound on the amplitude would
come from unitarity, but this is not enough; as we’ve seen locality is also crucial, and
thus some "good" analytic properties of the amplitude must also be needed. To begin
with, let’s write the partial wave expansion of the amplitude

M(s, cos θ) =
∑
ℓ

(2ℓ+1) aℓ Pℓ(cos θ) → M(s, t) =
∑
ℓ

(2ℓ+1) aℓ Pℓ(1+2t/s) . (B.17)

Unitarity tells us that |1+iaℓ|2 ≤ 1 so 0 ≤ |aℓ|2 ≤ 2Imaℓ ≤ 1. Note the extremely naive
intuition that "unitarity means A(s) can’t get too big" is wrong, since unitarity only tells
us each aℓ individually can’t get too big. Indeed if we keep all aℓ’s to be O(1) up to some
ℓ ∼ ℓmax, we’d have that

M(s, 0) =
∑
ℓ≤ℓmax

(2ℓ+1) aℓ ∼ ℓ2max . (B.18)
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Going again to the Heisenberg picture, at the distance Rmax ∼ logE
m

, the angular momen-
tum is ℓmax ∼ ERmax ∼ E logE

m
, so M ≤ ℓ2max ∼ s log

2 s
m2 would agree with our Froissart

intuition.

So unitarity is not enough, we need an extra argument to tell us that the partial waves
above ℓmax(E) ∼ E logE are shut off. Let’s imagine working at fixed t smaller than
any of the thresholds. Importantly we assume that the amplitude at fixed s is analytic
in t: in other words, we can continue from small negative t (i.e. the physical region)
to small positive t smoothly. We will also have at fixed but small t, the amplitude
is polynomial bounded at large s, M < sN . We’ve already seen heuristic reasons for
this from causality, though those are only applicable for physical (negative) t. It is our
assumption of analyticity in t for small enough t that allows us to continue the bound
to positive t, which is crucial for the following argument. Now the Legendre polynomials
Pℓ(x) are wildly oscillating for large ℓ when |x| = cos θ < 1, but for x > 1 they instead
are exponentially growing:

Pℓ

(
1+

2t

s

)
∼ 1√

ℓ
e2ℓ
√

2t
s (B.19)

for t/s > 0. Now consider ImM(s, t) =
∑

ℓ(2ℓ+1)Imaℓ Pℓ(1 +
2t
s
). If we want this to be

bounded by sN at large s, Imaℓ have to sharply die above some ℓmax(s), estimated as

e2ℓmax(s)
√

2t
s < sN → ℓmax(s) ∼ N

√
s

2t
log s . (B.20)

Note this is in agreement with what we expect from the Heisenberg picture; taking
t ∼ 1/R2, we have ℓmax ∼ NRE logE as expected. From here, we recover the Froissart
bound.

Note we can also say slightly more, not just about the imaginary part of the amplitude,
but the amplitude itself. We’ve already seen that Imaℓ → 0 for ℓ > ℓmax(s). But since
by unitarity we have |aℓ|2 < 2Imaℓ, this means that Reaℓ → 0. Thus we learn that for
small enough |t|

M(s, t) ≤ s log2 s (B.21)

for large s. This is interesting: we began only by assuming M(s, t) < sN for some power
N ; but analyticity in t for small t, and unitarity, then forces upon us the much stronger
statement that M(s, t) < s log2 s.
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B.2 Dispersive representation of loop amplitudes

In this section, we will show that by integrating out massive states in loops, so long as
t≪ m2, the four point amplitude admits the following dispersive representation:

M(s, t)|t≪m2 =MSub +

∫ ∞

M2
s

dM2 ρs(M
2)

s−M2
+

∫ ∞

M2
u

dM2 ρu(M
2)

u−M2
(B.22)

where MSub is the subtraction terms reproducing with boundary behaviour of M(s, t) as
s→∞, and M2

s ,M
2
u are the leading thresholds in the s and u- channel. In other words,

near the forward limit, the analytic behaviour of the amplitude takes the form

Note that we can say that the loop integral can be represented as a (continuous) sum of
tree-exchanges. We will see in generality that this representation follows directly from
the Schwinger parameter representation.

We will illustrate the ideas of the general proof by working through the example of the
1-loop box in D = 4. But just as an initial warm up, we can consider the bubble in
D = 2

1

2 ,

where the parametric representation is

I(s) =

∫
dα1dα2

GL(1)

1

(−s)α1α2 +m2(α1 + α2)2
. (B.23)

The important point is that this is manifestly a (continuous) sum over simple poles in s
- that is the dispersive representation! More formally, we can write:

I(s) =

∫
dM2 ρ(M2)

−s+M2
(B.24)
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where

ρ(M2) =

∫
dα1dα2

GL(1)

1

α1α2

δ

(
M2 − m2(α1 + α2)

2

α1α2

)
=

∫
dα1

α1

δ

(
M2 − m2(α1 + 1)2

α1

)
. (B.25)

Since the αis are integrated over R+, min (1+α1)2

α1
= 4, and thus ρ(M2) = 0 when

M2 < 4m2. For M2 > 4m2 the integral is localized by the delta function and one has:

ρ(M2) =
2√

M2(M2 − 4m2)
Θ(M2 − 4m2) . (B.26)

This manifests the position of the branch point at s = 4m2.

We now turn to the D = 4

1

2 4

3

1

2 3

4 .

We will see that
I(s, t) =

∫ ∞

4m2

dM2 ρ(M2, t)

−s+M2
(B.27)

where ρ(M2, t) is analytic in t around t = 0, with a cut at large positive t ∼ m2, but
finite for t < 0. Note that importantly the starting point of the integral is at 4m2 which
is independent of t. If this had then say 4m2 − t, then we would not have an analytic
expression in t. Now let’s look at the the box integral in Schwinger parameter space:

I(s, t) =

∫
dα1 · · · dα4

GL(1)

1

((−s)α1α3 + (−t)α2α4 +m2(α1 + α2 + α3 + α4)
2︸ ︷︷ ︸

∆

)2
(B.28)

We begin in the Euclidean regime where −s,−t > 0, the denominator ∆ is positive, and
the integral is perfectly analytic. In fact, even if (−s) and (−t) are negative, as long as
they are small with respect to m2 we are fine, since ∆ can be rewritten as

∆ = (4m2−s)α1α3+(4m2−t)α2α4+m
2
(
(α1 − α3)

2 + (α2 − α4)
2 + 2(α1 + α3)(α2 + α4)

)
.

(B.29)
Now let’s keep t fixed and small but increase s. Clearly ∆ > 0 for any s < 4m2. But
note that for any positive ϵ, we can make ∆ < 0 at s = 4m2 + ϵ. Naively one might
worry about (−t) being positive, but simply by considering the limit (α1, α3)→∞ while
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(α2, α4) held fixed, we can make ∆ < 0 for any value of positive ϵ. So, we see that we
hit a branch point singularity at s = 4m2 independent to the value of t.

Now let’s first get the dispersive representation starting in the forward limit t → 0.
Fixing the GL(1) symmetry by setting α1 = 1, we have

I(s, t=0) =

∫
dα2dα3dα4

1

((−s)α3 +m2(1 + α2 + α3 + α4)
2︸ ︷︷ ︸

∆

)2

=

∫
dM2 ρ̃(M2)

(M2 − s)2
(B.30)

where
ρ̃(M2) =

∫
dα2dα3dα4

1

α2
3

δ

(
M2 − m2(1 + α2 + α3 + α4)

2

α3

)
. (B.31)

Note that since the minimum of (1 + α2 + α3 + α4)
2/α3 is at 4, ρ̃(M2) will vanish when

M < 4m2 so we have I(s, t=0) =
∫∞
4m2 dM

2 ρ̃(M2)
(M2−s)2 . Integrating by parts, we have

I(s, t=0) = −
∫ ∞

4m2

dM2 ∂

∂M2

ρ̃(M2)

(M2 − s)
+

∫ ∞

4m2

dM2 1

(M2 − s)
∂

∂M2
ρ̃(M2) (B.32)

The boundary term at M2 =∞ vanishes. Importantly, for M2 = 4m2, ρ̃(4m2) itself also
vanishes. This can be explicitly confirmed, but it must be: if ρ̃(M2 → 4m2) = const.,
then the integral near ∫

4m2

dM2 1

(M2 − s)2
∼ 1

4m2 − s
(B.33)

gives a pole in s = 4m2, while we can see easily that one can at most get a branch cut
there. Let us explicitly compute ρ̃(M2):

ρ̃(M2) =

∫
dα2dα3dα4

1

m2α3

δ
(
(α3 − α+)(α3 − α−)

)
, (B.34)

where α± = −(1+α2+α4)+
x
2
(1 ±

√
1− 4

x
(1+α2+α4)) and x = M2

m2 . We use the delta
functions to localize α3, while the integration over α2 and α4 is bounded by 1+α2+α4 ≤ x

4

to ensure that α± stays real. In the end we find:

ρ̃(M2) =
log(1 +

√
1− 4

x
)− log(1−

√
1− 4

x
)− 2

√
1− 4

x

m2
, (B.35)

which indeed vanishes when M2 = 4m2. Substituting the result back into eq.(B.32), we
find

I(s, t=0) =

∫ ∞

4m2

dM2 ρ(M2)

(M2 − s)
ρ(M2) =

√
1− 4

x

M2m2
. (B.36)
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We can proceed in the same way to compute the t-expansion. We simply Taylor expand
eq.(B.28) where we have:

∑
q

(−t)q
∫

dM2 ρ̃(q)(M2)

(M2 − s)q+2
ρ̃(q)(M2)=

∫
dα2dα3dα4

(α2α4)
q

α2+q
3

δ

(
M2−m2(1+α2+α3+α4)

2

α3

)
. (B.37)

Again the α3 integral localizes and we are restricted to α2+α4 <
M2

4m2 −1. Note that this
shows that due to the (α2α4)

q factor, ρ̃(q)(M2) and all q of its derivatives with respect to
M2 vanishes at M2 → 4m2. Thus we can write the coefficient of (−t)q as∫ ∞

4m2

dM2 ρ(q)(M2)

(M2 − s)
, ρ(q)(M2) =

∂q+1

∂(M2)q+1
ρ̃(q)(M2). (B.38)

This leads to the dispersive representation for the box integral around t = 0:

I(s, t) =

∫ ∞

4m2

dM2

∑
q(−t)qρ(q)(M2)

(M2 − s)
. (B.39)

As an example we can explicitly compute ρ(1)(M2). Starting with:

ρ̃(1)(M2) =
3(M2+6m2)

(
log(1+

√
1− 4

x
)− log(1−

√
1− 4

x
)
)
−(11M2+16m2)

√
1− 4

x

18m4
,

(B.40)
we find:

ρ(1)(M2) =
∂2

∂(M2)2
ρ̃(1)(M2) =

(1− 4
x
)
√
1− 4

x

6M2m4
. (B.41)

Finally, we note that due to the increase in M2 derivatives, ρ(q)(M2) are increasingly
suppressed for larger q as M2 →∞. We will come back to this point when we study the
partial wave expansion of the numerator in eq.(B.39).

Having seen all the relevant ideas in the 1-loop examples, let’s now consider the general
story. Consider any integral associated with a graph G, as far as the analytic structure
is concerned we can just take scalar graphs with numerator = 1. The integral in general
takes the form

I = Γ (E−LD/2)
∫

dEα

GL(1)

1

UD/2

(
U
F

)E−LD/2

, (B.42)

where U , F are the Symanzik polynomials given as

U =
∑

T ∈spanning
tree

(∏
i/∈T

αi

)
, F = F0 + (

∑
i

m2
iαi)U

F0 =
∑

T2 ∈spanning
2−tree

(∏
i/∈T2

αi

)
(
∑
j∈L

pj)
2 (B.43)
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In particular all the dependence on the external Mandelstams is in the F -polynomial.
Specializing to four-points, we have that

F = (−s)F0
s+(−t)F0

t +(−u)F0
u + (

∑
i

m2
iαi)U (B.44)

Note that every 2-tree that contributes to F0 must appear in U , so every monomial in
F0 also occurs in (

∑
im

2
iαi)U ; this makes it manifest that F > 0, so long as (−s), (−t),

(−u) are small enough.

Now we’d like to show that, at fixed t, we have some branch point singularity at s→M2
s

(independent of t), and u → M2
u (again independent of t). Of course at general loops

there can be many "thresholds", but one of them will occur at smallest s; for example

1

2 3

4

1

2

3

4

5

6

7

8

9

10

we can have thresholds at s = (m2 +m5)
2 or (m6 +m7 +m8)

2. We can systematically
identify these as follows. Pick any monomial m(s) in F0

s , since these monomials do not
appear in F0

t or F0
u , they will dominate if we scale those αs→∞. So for each monomial

we will have some threshold M2
m(s) . The minimum of those over all monomials m(s) is

some m∗(s), and the branch point is at M2
s ≡M2

m∗(s) . Similarly for M2
u . Furthermore, for

any ϵ > 0, by scaling all of the αs in m∗(s) to infinity, we see that we can always make
F < 0 for s =M2

s + ϵ, so the branch point sits at s =M2
s independent of t, and similarly

for M2
u .

Now in general the four-point loop integral takes the form

I(s, t) =

∫
dEα

GL(1)

1

Ua
1

((−s)F0
s+(−t)F0

t +(−u)F0
u + (

∑
im

2
iαi)U)

b

=

∫
dEα

GL(1)

1

Ua
1

[(−s)(F0
s−F0

u)+(−t)(F0
t −F0

u)+(
∑

im
2
iαi)U)

b

=

∫
dM2

∑
q(−t)qρ̃(q)(M2)

(M2 − s)b
, (B.45)

where
ρ̃(q)(M2) =

∫
dEα

GL(1)

1

Ua
(F0

t −F0
u)
q

(F0
s−F0

u)
b+q

δ

(
M2 − (

∑
im

2
iαi)U

(F0
s−F0

u)

)
. (B.46)
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Now, the point is again that the δ function constraint forces either that for M2 > 0,
M2 > M2

s , or for M2 < 0, that M2 < −M2
u − t, so that we can write

I(s, t) =

∫ ∞

M2
s

dM2

∑
q(−t)qρ̃

(q)
s (M2)

(M2 − s)b
+

∫ ∞

M2
u

dM2

∑
q(−t)qρ̃

(q)
u (M2)

(M2 − u)b
.

(B.47)

By the same integration by parts idea, we arrive at our final form:

I(s, t) =

∫ ∞

M2
s

dM2ρs(M
2, t)

(M2 − s)
+

∫ ∞

M2
u

dM2 ρu(M
2, t)

(M2 − u)
. (B.48)

B.3 Partial wave expansion of unitarity cuts

As stressed in the main text, near the forward limit the singularities of the four-point
amplitude are associated with threshold productions. We would like to demonstrate that
contributions from these singularities, which are the imaginary part of the amplitude on
the real s-axes, is given by a positive expansion on the Gegenbauer polynomial. We begin
by considering scalar scattering in the C.O.M frame, with the spatial momenta of the
incoming and out going particles given by p̂in = p1−p2 and p̂out = p3 − p4 respectively,
which span a D−1-dimensional space. As the singularites are associated with threshold
production, in the C.O.M frame these are all single or multi-particle states forming
irreducible representations under SO(D−1). To this end, let us first build up general
irreps of SO(n+1), latter identifying n = D−2.

For a system with rotational SO(n+1) symmetry, it is useful to consider operators as
matrix elements on the Hilbert space of states that form irreducible representations of
SO(n+1). To this end, we introduce n+1-dimensional unit vectors x, i.e. points on an
n-sphere. The states in the Hilbert space will be functions of these vectors, in particular
we have states |x⟩ equipped with the inner product ⟨x|y⟩ = δ(x, y). To integrate these
functions, we introduce the SO(n+1) invariant measure ⟨xdnx⟩ ≡ 1

Ωn
ε(xdx · · · dx), where

it is normalized with the solid angle Ωn.

Now we will like to construct states that transforms as irreps under SO(n+1), i.e. they
transform linearly. To draw an analogy, consider the state labeled by coordinate X, |X⟩.
Under translations Ta, it transforms non-linearly, Ta|X⟩ = |X + a⟩. For linear represen-
tations, we know we can define the Fourier transformed state |k⟩ which transforms under
translation as:

|k⟩ =
∫
dXeikX |X⟩ → Ta|k⟩ = e−ika|k⟩ . (B.49)
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We would like a similar representation for SO(n+1). Now clearly the state

| ⟩ =
∫
⟨xdnx⟩ |x⟩ (B.50)

is invariant as |x⟩ → |Rx⟩, where R is a SO(n+1) rotation, while

|i⟩ =
∫
⟨xdnx⟩ xi|x⟩ (B.51)

transforms as a vector. For |ij⟩ we cannot simply use
∫
⟨xdnx⟩ xixj|x⟩ since it is

not reducible and contains a trace piece. This tells us that we should use |ij⟩ =∫
⟨xdnx⟩

(
xixj − δij

n+1

)
|x⟩. Going onward it is clear that this is the same task we’ve

encountered previously in deriving the Gegenbauer polynomial from tree-exchanges. Bor-
rowing from that experience, we see that the irreducible states can be simply generated
by expanding: ∫

⟨xdnx⟩
|x− y|n−1

|x⟩ =
∑
ℓ

yi1 · · · yiℓ |i1 · · · iℓ⟩ . (B.52)

The states |i1 · · · iℓ⟩ are now irreps: symmetric traceless tensors of SO(n+1). Note that
the Gegenbauer polynomials in this language is simply

G
n−1
2

ℓ (cos θ) = An,ℓyi1 · · · yiℓ⟨x|i1 · · · iℓ⟩, cos θ = y · x (B.53)

where An,ℓ := 2ℓ
Γ(ℓ+n−1

2
)

Γ(n−1
2

)ℓ!
. The orthogonality property of Gegenbauer polynomials is then

simply:∫
⟨zdnz⟩G

n−1
2

ℓ (y · z)
An,ℓ

G
n−1
2

ℓ′ (w · z)
An,ℓ′

=

∫
⟨zdnz⟩ yi1 · · · yiℓ⟨i1 · · · iℓ|z⟩⟨z|j1 · · · jℓ′⟩wj1 · · ·wjℓ′

= Bn,ℓδℓ,ℓ′
G

n−1
2

ℓ (y · w)
An,ℓ

, (B.54)

where we’ve used that the states |i1 · · · iℓ⟩ and |j1 · · · jℓ′⟩ are orthogonal to each other if

ℓ ̸= ℓ′ since they have different quantum numbers, and here Bn,ℓ =
2−ℓΓ(n+ℓ−1)Γ(n+1

2 )
Γ(n−1)Γ(ℓ+n+1

2 )
. If

we let y = w and replace ⟨zdnz⟩ by

Ωn−1

Ωn

sinn−2 θd cos θ , (B.55)

we get the usual normalization factor for Gegenbauer polynomials:∫
Gℓ(cos θ)Gℓ′(cos θ) sin

n−2 θd cos θ = Nn,ℓδℓ,ℓ′ (B.56)

with
Nn,ℓ =

Ωn

Ωn−1

An,ℓBn,ℓ =
π22−nΓ[ℓ+n−1]

ℓ!
(
ℓ+n−1

2

)
Γ2
[
n−1
2

] . (B.57)
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1weak
coupling

s

Figure B.1: The region allowed for sℓ and tℓ by unitarity. At weak coupling this constraint
is only reflected in Re[sℓ] ≤ 1 and Im[tℓ] ≥ 0.

The orthogonality relation also implies that:

⟨x|i1 · · · iℓ⟩⟨i1 · · · iℓ|y⟩ = B−1
n,ℓ

∫
⟨zdnz⟩

(
⟨x|i1 · · · iℓ⟩zi1 · · · ziℓ

) (
zj1 · · · zjℓ⟨j1 · · · jℓ|y⟩

)
= B−1

n,ℓ

∫
⟨zdnz⟩xi1 · · · xiℓ⟨i1 · · · iℓ|z⟩⟨z|j1 · · · jℓ⟩yj1 · · · yjℓ

= A−1
n,ℓG

n−1
2

ℓ (x · y) ,

(B.58)

where the first equality holds since the SO(n+1) invariant integration of zi1 · · · zjℓ yields
a polynomial of products of Kronecker deltas, and when acting on the irreps, only i, j

contractions yield contributions as any trace pieces vanish.

Finally, these irreducible states also provide a basis for operators. A general operator
can be expanded as:

O =
∑
Oi1···iℓ;j1···jℓ′ |i1 · · · iℓ⟩⟨j1 · · · jℓ′| . (B.59)

However, for SO(n+1) invariant ones, the operator Oi1···iℓ;j1···jℓ′ can only be comprised of
Kronecker deltas and since δiaib contracted with the states |i1 · · · iℓ⟩ vanishes, it can only
be polynomials of δiajb . This tells us that ℓ = ℓ′, i.e. it is diagonal in spin space. In the
last equality we’ve used eq.(B.54). Thus we conclude that SO(n+1) invariant operators
can be written as

⟨y|OInv|x⟩ =
∑
ℓ

Nn,ℓpℓG
n−1
2

ℓ (x · y) , (B.60)

i.e. it is expandable on the Gegenbauer polynomials.

Now let’s consider S, the s-matrix of the full theory. Restricting ourselves to the 2→ 2

elastic scattering, we can define the "little" matrix s

⟨p̂out|s|p̂in⟩ =out ⟨p3, p4|S|p1, p2⟩in . (B.61)
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In other words s is only defined only on the 2 → 2 states. The full s-matrix satisfy
S†S = I, while the small s-matrix satisfy

s†s ≤ I , (B.62)

as an operator statement, i.e. for any state |ψ⟩, we have ⟨ψ|s†s|ψ⟩ ≤ ⟨ψ|ψ⟩. Now since s

is rotationally invariant, we can write

s =
∑
ℓ

sℓ |i1i2 · · · iℓ⟩⟨i1i2 · · · iℓ| , (B.63)

then s†s ≤ 1 implies |sℓ| ≤ 1. If we write s = 1+ it, then this implies |1 + itℓ| ≤ 1. Note
that

t =
∑
ℓ

tℓ |i1i2 · · · iℓ⟩⟨i1i2 · · · iℓ| → ⟨p̂out|t|p̂in⟩ = Nn,ℓ
∑
ℓ

tℓG
n−1
2

ℓ (p̂out · p̂in) (B.64)

where ⟨p̂out|t|p̂in⟩ is the four-point amplitude of interest. Since |1 + itℓ| ≤ 1,

1 + i(tℓ − t∗ℓ) + |tℓ|2 ≤ 1 → i(t∗ℓ − tℓ) ≥ |tℓ|2 . (B.65)

More explicitly we have 1 + itℓ = ηℓe
iδℓ with ηℓ ≤ 1. Note that in a weakly coupled

theory, eq.(B.65) just tells us that i(tℓ − t∗ℓ) ≥ 0, i.e. the imaginary part is positive.
The full non-linear constraint is only present at strong coupling see fig.B.1. Since the
imaginary part is positive, we have

Im[⟨p̂out|t|p̂out⟩] = Nn,ℓ
∑
ℓ

Im[tℓ]G
n−1
2

ℓ (p̂out · p̂in) (B.66)

i.e. the imaginary part of the amplitude is positively expandable on the Gegenbauer
polynomials.

B.4 The spinning-spectral function for massive box

From appendix B.2 we’ve seen that near the forward limit, the four-point amplitude
admits a Källén-Lehman representation representation, where the "spectral function"
depends on t, i.e. ρ(M2, t). Since the spectral function is a polynomial in t near the
forward limit, it has a partial wave expansion. Now from appendix B.3, we’ve seen that
the discontinuity for A,B → A,B type scattering should be positively expandable on
the Gegenbauer polynomials. Since the discontinuity in the dispersive representation is
the spectral functions, we conclude that the "spinning spectral function" should be a
positive function. Here we will use the massive box to demonstrate this fact.
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Let us consider an explicit example, the discontinuity for the box-integral with massive
internal propagators in four-dimensions. The integrand in the phase space integral is
simply given by the product of two tree-propagators:

1

2 3

4

I

I’

=
1

2(p1 · pI)
1

2(p4 · pI)
=

4

s2
1

1−
√

1− 4m2

s
p̂1 · p̂I

1

1−
√

1− 4m2

s
p̂4 · p̂I

,

(B.67)
where we are again considering the kinematics in center of mass frame. The discontinuity
is now given as:

⟨p̂in|T †T |p̂out⟩ =
∫ ∞

4m2

ds
4Js
s2

∫
⟨p̂Id2p̂I⟩F ∗(p̂1 · p̂I)F (p̂4 · p̂I) (B.68)

where F (x) =

(
1−

√
1− 4m2

s
x

)−1

, and Js is the dimensionless Jacobian factor stem-

ming from the phase space integral:∫
dDℓδ

(
ℓ2 −m2

)
δ
(
(ℓ− p12)2 −m2

)
=

(s− 4m2)
D−3
2

√
s

∫
dΩD−2 , (B.69)

which for D = 4 is simply Js =
√

1−4m2

s
.

Let us write F (x) as an expansion on the Gegenbauer polynomial with coefficient fℓ,
F (x) =

∑
ℓ fℓ(s)G

1
2
ℓ (x). Then the two-dimensional angular integral simply reduces the

corresponding product of G
1
2
ℓ (x)s in eq.(B.68) to

∑
ℓ |fℓ(s)|2

2
2ℓ+1

G
1
2
ℓ (p̂1 · p̂4), where θ is

precisely the scattering angle. Thus we conclude that the discontinuity is simply

⟨p̂in|T †T |p̂out⟩ =
∫ ∞

4m2

ds
4Js
s2

∑
ℓ

pℓ(s)
2

2ℓ+ 1
G

1
2
ℓ (cos θ), (B.70)

where pℓ(s) ≡ |fℓ(s)|2 is the positive definite "spinning" spectral function. Let us compute
the fℓ(s)s explicitly.

Using the generating function and the orthogonality of the Gegenbauer polynomials, we
can write down the following generating function for fℓ(s),∫ 1

−1

dx
1

(1− ax)
1

(1− 2rx+ r2)
1
2

=
∑
ℓ

rℓ
2

2ℓ+ 1
fℓ(s) , (B.71)

where a =
√

1− 4m2

s
. A straight forward integration yields for the LHS:

1

ab
log

[
(1− r + b)

(1− r − b)
(1 + r − b)
(1 + r + b)

]
, b =

√
1 + r2 − 2

r

a
(B.72)
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Figure B.2: We plot the coefficients fℓ(s) for s = 14. We see that the coefficients are
suppressed for higher spins

As the generating function is non-polynomial in r, we have an infinite tower of spin in
the expansion. The coefficient for the first few spins are:

f0 =
1

2

log δ

a
, f1 =

3

2

(−2a+ log δ)

a2
, f2 =

5

2

(−6a+ 3 log δ − a2 log δ)
2a3

, (B.73)

where δ = 1+a
1−a . Since a takes value between 0 and 1, one can straightforwardly see that

the coefficient decreases for increasing spin.

Let us verify that eq.(B.70), combined with (B.71) and (B.72), indeed reproduces the
correct discontinuity of eq.(3.20)

I4[s, t]− I4[s, t]|βu→−βu . (B.74)

To compare, we first note that the coefficients fℓ(s) is suppressed for higher spin, see.
fig B.2. Thus we should find a good approximation by truncating at ℓ = 10. Indeed
summing eq.(B.70) up to spin-10 the result matches with that of eq.(B.74) as shown in
fig.(B.3), thus confirming eq.(B.70).

B.5 Positivities of the Gegenbauer matrix

The results on the total positivity of Gegenbauer polynomials follow from general the-
orems connecting total positivity to orthogonal polynomials with positive measure dis-
covered in the 1960s [111]. Here, we will give elementary and explicit computations that
show the positivity properties explicitly for the Gegnebauer polynomial case of immedi-
ate interest to us. For the simplest case of d = 2, where we just have Fourier expansion
in cos(θ), we will give an especially simple argument for positivity going back essentially
to Chebyshev. We will then give a simple explicit computation of the determinants asso-
ciated with the Taylor expansion of Gegenbauer polynomials, where they can explicitly
be seen to be positive
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Dis

Figure B.3: We compare our Gegenbauer sum expression in eq.(B.70), truncating at
ℓ = 10, with the explicit discontinuity in eq.(B.3). We’ve normalized s

4m2 → s, so that
the discontinuity begins at s = 1 to ∞. We’ve compared the result of eq.(B.70), in red
dots, to eq.(B.74) which is the colored curve. The brown curve is for cos θ = 1

2
, and the

blue curve for cos θ = 1/6. Both exhibit perfect matching.

Total positivity of Chebyshev matrix

Let us consider a general strategy in proving the positivity of the determinant of matrices
constructed from specific functions Vℓ(y). In particular, the columns of the matrix are
given by evaluating the function at n distinct ordered points y1 < y2 < · · · < yn, i.e.
Vℓ = (Vℓ(y1), Vℓ(y2), · · · , Vℓ(yn)). Our task is to prove that for a collection of n such
vectors,

Det(Vℓ1 ,Vℓ2 , · · · ,Vℓn) = Det


Vℓ1(y1) Vℓ2(y1) · · · Vℓn(y1)

Vℓ1(y2) Vℓ2(y2) · · · Vℓn(y2)
...

... · · · ...
Vℓ1(yn) Vℓ2(yn) · · · Vℓn(yn)

 > 0 . (B.75)

The general strategy, as also discussed in [8], is to show that the above can never be
zero for any choice of distinct yis. In other words, the sign of the determinant is fixed.
Then the vanishing of the determinant implies that the column vectors are now linearly
dependent, or

n∑
i=1

ciVℓi(yj) = 0 . (B.76)

for j = 1, 2 · · · , n. Said in another way, the function
∑n

i=1 ciVℓi(y) have n roots on the
real axes. Thus proving the definite sign of eq.(B.75) amounts to proving that eq.(B.76)
cannot have n real solutions.

Before considering Chebyshev polynomials, let’s first begin with Vℓ(y) = eℓy. Choose a
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sets of n ℓis conveniently labelled with ℓ1 < ℓ2 < · · · < ℓn, where the goal is to show that

fn(y) =
n∑
i=1

cie
ℓiy (B.77)

cannot have n real roots for any ci. We will prove this by induction. First for n=1,
indeed f1(y) = eℓ1y does not have a root. Next, lets assume that there are at most n−2
roots for fn−1(y), but fn(y) has n roots. We will show that this leads to a contradiction.
If fn(y) has n roots, then multiplied by e−ℓ1y will not change that. That is,

e−ℓ1yfn(y) = c1 + c2e
(ℓ2−ℓ1)y + · · · ,+cne(ℓn−ℓ1)y (B.78)

will also have n roots. Now the derivative of a function with n roots on the real axes
must have at least n−1 real roots. Taking the derivative we find,(

e−ℓ1yfn(y)
)′
= c2(ℓ2 − ℓ1)e(ℓ2−ℓ1)y + · · · ,+cn(ℓn − ℓ1)e(ℓn−ℓ1)y . (B.79)

But this is nothing but fn−1 with another set of ordered ℓi, which now has n−1 real roots,
a contradiction to our initial assumption! Thus we conclude that fn(y) cannot have n-
roots and the determinant in eq.(B.75) can never be zero. Note that if one replaces
y = log x, then the functions we are considering are simply moments xℓ. As we assume
that y is real, we have x > 0 and thus the positivity of eq.(B.75) also leads to the total
positivity of the Vandermonde matrix for half moment curves.

We are interested in the Chebyshev polynomials cos ℓy. Since we will be interested in
cases where cos y > 1, y is purely imaginary and the Chebyshev polynomial becomes
cosh ℓy with y being real. Now we want to show that

n∑
i=1

ci cosh ℓiy = 0 (B.80)

cannot have 2n real roots (or n positive roots since its a even function). But we’ve
already shown that any linear combination of 2n distinct eℓy cannot have 2n roots—thus
a contradiction! This therefore proves that

Det


cosh ℓ1y1 cosh ℓ2y1 · · · cosh ℓny1

cosh ℓ1y2 cosh ℓ2y2 · · · cosh ℓny2
...

... · · · ...
cosh ℓ1yn cosh ℓ2yn · · · cosh ℓnyn

 ̸= 0. (B.81)

i.e. it has a definite sign. Finally since all that we assumed for our Chebyshev matrix is
that the spin is ordered, the minors of a given matrix obviously satisfies the same criteria,
and hence we conclude that the Chebyshev matrix is a totally positive matrix.



289

Positivity of the Taylor scheme Gegenbauer matrix

Here we analytically prove that the determinant of the Gegenbauer matrix in the deriva-
tive scheme. Starting with the Taylor coefficients defined in eq.(3.127), first we reorganize
the analytic expression as:

vD
ℓ,q =

1

q!(ℓ− q)!
(∆)ℓ+q∏q

a=1(∆ + 2a− 1)
=

(∆)ℓ
(q!)(ℓ!)

1∏q
a=1(∆ + 2a− 1)

[(ℓ)−q(ℓ+∆)q] ,

(B.82)
where ∆ = D−3, (a)−q = a(a − 1) · · · (a − q + 1) and (a)0 = 1. Now consider the
determinant of n+1 Taylor vectors. Due to our rearrangement, the determinant can be
written in a factorized form:

Det


vD
ℓ1,0

vD
ℓ2,0

· · ·
vD
ℓ1,1

vD
ℓ2,1

· · ·
...

... · · ·

 =

(
n+1∏
i=1

(∆)ℓi
ℓi!

1∏i−1
a=1(∆ + 2a− 1)a!

)

×Det

(ℓ1)0(ℓ1 +∆)0 (ℓ1)−1(ℓ1 +∆)1 ...

(ℓ2)0(ℓ2 +∆)0 (ℓ2)−1(ℓ2 +∆)1 ...

... ... ...

 . (B.83)

Now we know that the remaining determinant must have the factor
∏

i<j(ℓj − ℓi) since
the result vanishes if ℓi = ℓj. Furthermore, using

(−a)b = (−a)(−a+ 1)...(−a+ b− 1) = (−1)b(a)−b , (B.84)

we can see that the remaining determinant is invariant under ℓ→ −ℓ−∆. This together
with power counting leads to

Det

(ℓ1)0(ℓ1 +∆)0 (ℓ1)−1(ℓ1 +∆)1 ...

(ℓ2)0(ℓ2 +∆)0 (ℓ2)−1(ℓ2 +∆)1 ...

... ... ...

 =
∏
i<j

(ℓj − ℓi)(∆ + ℓj + ℓi). (B.85)

Thus we find that

(
∏
i

vD
ℓi,σi

)ϵσ1σ2··· =

(
n+1∏
i=1

(∆)ℓi
ℓi!

1∏i−1
a=1(∆ + 2a− 1)a!

)∏
i<j

(ℓj − ℓi)(∆ + ℓj + ℓi). (B.86)

As one can see, the result is positive so long as ℓ1 < ℓ2 < · · · < ℓn+1!

B.6 The true boundary of the P1 EFT-hedron

The EFT-hedron constraint relies on two aspects, the wall W⃗I and the resulting defor-
mation parameters {αi}. Let us consider dotting a⃗ in to some wall W = (−w, 1), then
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the RHS of eq.(3.228) then tells us that: a⃗2 · W
a⃗4 · W
a⃗6 · W

 =

 a2(β2 − w)
a4(β4 − w)
a6(β6 − w)

 =
∑
a

pa

 (u
(2)
ℓa
− w)

(u
(4)
ℓa
− w)ya

(u
(6)
ℓa
− w)y2a

 , (B.87)

where we absorbed factors of xa into pa, and ya = x2a. We see that the inner product
lives in the hull of multiple deformed curves. To ensure that the hull is non-trivial, we
would like to ensure all entires of the deformed moment curves to be non-negative. In
other words we want W to satisfy

(u
(k)
ℓ − w) > 0, ∀ℓ. (B.88)

As the minimum of u(k)ℓ listed in eq.(3.229) is −21
4
, we write w = −21

4
−∆w with ∆w ≥ 0.

Since we have a collection of deformed curves, the constraint for a⃗k ·W should be derived
from a curve that encapsulate all the other curves. i.e. the master moment curve. In other
words, we want to find (1, x, αx2) such that its convex hull contains all the individual
moment curves, or,

(u
(2)
ℓ − w)(u

(6)
ℓ − w)

α
− (u

(4)
ℓ − w)

2 ≥ 0, ∀ℓ . (B.89)

This tells us that there is an upper bound for α, corresponding to the the minimum of
(u

(6)
ℓ −w)(u(2)ℓ −w)
(u

(4)
ℓ −w)2

, which we denote as αmin[∆w], reflecting the fact that it is a function of

∆w. Explicitly plotting αmin[∆w] we find:

5 10 15 20
Dw

0.2

0.4

0.6

0.8

Αmin

We see that αmin rises approximately linear with ∆w up to around ∆w ∼ 5, after which
αmin ∼ 1 for all ℓ.

Equipped with αmin[∆w] we can now write down the non-linear constraint for a⃗k · W :

(⃗a2 · W)(⃗a6 · W)− αmin[∆w](⃗a4 · W)2 > 0 (B.90)

It is important to see if above gives constraints that go beyond those in eq.(3.230). To
this end we write β2 = −3

4
+ β̂2, β4 = −3

2
+ β̂4 and β6 = −21

4
+ β̂6, so that the original
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polytope bound is simply that β̂i ≥ 0. In terms of these new parameters, eq.(B.90)
becomes,(

β̂6 +∆w
)(

β̂2 +
9

2
+ ∆w

)
− αmin[∆w]

a24
a2a6

(
β̂4 +

15

4
+ ∆w

)2

≥ 0 . (B.91)

If the above leads to any constraint for β̂i beyond that it is non-negative, or ϵ ≡ a24
a2a6

< 1

then we have found new constraints beyond eq.(3.230). For example, for ∆w = 0,
αmin[0] = 0 and eq.(B.91) does not implement anything new.

However, for non-zero αmin[∆w] we will always obtain new constraints! For example,
since β̂4 ≥ 0, eq.(B.91) implies(

β̂6 +∆w
)(

β̂2 +
9
2
+∆w

)
αmin[∆w]ϵ

≥ (
15

4
+ ∆w)2 , (B.92)

and we see that (β̂2, β̂6) is bounded from below. Let’s set β̂2, β̂6 = 0, and consider

j(∆w) =
∆w

(
9
2
+∆w

)
αmin[∆w]ϵ

−
(
15

4
+ ∆w

)2

. (B.93)

We have non-trivial lower bounds for (β̂2, β̂6) if j(∆w) < 0. Plotting j(∆w) for fixed ϵ

with respect to ∆w we find

ϵ = 0.4 :
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jHDwL

ϵ = 0.85 :
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Dw
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jHDwL

We see that if ϵ is above a critical value ϵc = 0.54, there are ranges of ∆w where the
constraint is non-trivial. Thus we either have a non-trivial lower bound for (β̂2, β̂6), or
that we have an upper bound for ϵ < ϵc. Note that these non-trivial bounds are derived
from walls that are not the walls of the original polytopes.
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From eq.(B.91) one can also derive an upper bound for β̂4:√√√√(β̂6 +∆w
)(

β̂2 +
9
2
+∆w

)
αmin[∆w]ϵ

− 15

4
−∆w ≥ β̂4 . (B.94)

Obviously, the bound is most stringent when β̂6 = β̂2 = 0. Thus we consider

jβ4(∆w) =

√
∆w

(
9
2
+∆w

)
αmin[∆w]ϵ

− 15

4
−∆w . (B.95)

We plot the above function with respect to ∆w and look for the upper bound for β̂4 as
the minimum of jβ4(∆w). The result depends on ϵ:

ϵ = 0.4 :
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, ϵ = 0.5 :
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For the first two graphs we consider ϵ < ϵc, where no lower bounds on (β̂6, β̂2) were
imposed from eq.(B.92), we see that there is always an upper bound for β̂4. For ϵ > ϵc,
we have a region of walls, ∆w < 15, where there’s no new bounds on β̂4, however for
these cases, there are lower bounds on β̂6, β̂2.

In summary, we find that using walls that are "outside" the walls of Conv[u⃗ℓ,k], imposes
further constraint through eq.(B.91) either as a upper bound on β̂4, or lower bound on
(β̂2, β̂6), depending on whether ϵ is above or below ϵc. Thus eq.(B.92) and eq.(B.94)
characterizes the P1 EFT-hedron.

B.7 Beta function for eq.(3.289)

Here we present the details for the computation of the beta functions from two-particle
cuts in eq.(3.289).
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We compute the two-particle cut by taking the product of the two tree-amplitudes pa-
rameterized in the center of mass frame as illustrated in fig.(B.4) : (θ′, ϕ′) is the angular
dependence of the phase space for the cut propagators, and θ is the scattering angle for
the external momenta. For example, for the ā22 coupling the bubble coefficient is given
by:

= − ā22
Λ8(4π)

∫
dϕ′d cos θ′ (s2 + u2 + t2)L(s

2 + u2 + t2)R

= − ā
2
2

Λ8
s4
∫
dϕ′d cos θ′ F2,LF2,R =

ā22
Λ8

s4

60
(167 + cos 2θ) (B.96)

where we’ve defined the short hand notation:

Fn,L =

(
1+

(
1+ cos θ′

2

)n

+

(
1− cos θ′

2

)n)
Fn,R =

(
1+

(
1+ cos θ′ cos θ+sin θ′ cosϕ′ sin θ

2

)n

+

(
1− cos θ′ cos θ− sin θ′ cosϕ′ sin θ

2

)n)
.

(B.97)

Changing back to Mandelstam variables we find the coefficient for the ā22
15
(41s2+t2+u2)s2

for the s-channel coefficient. Summing over the three channels we obtain

− 14ā22
5Λ8(4π)2

(s4+t4+u4) log
p2

µ2
,

and hence β1 = 14
5(4π)2

. Similarly for s6 we have:

= − ā2ā4s
6

Λ12(4π)

∫
dϕ′d cos θ′ F2,LF4,R + F4,LF2,R

=
2ā2ā4
Λ1235

s6(82 + cos 2θ) =
2ā2ā4
35Λ12

s4(83s2 + 8st+ 8t2) . (B.98)

Again summing over all three channels we obtain

− 2ā2ā4
35Λ12(4π)2

(
83(s6+t6+u6)−24(stu)2

)
log

p2

µ2
,

and thusβ2 = 166
35(4π)2

.
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2

Figure B.4: We represent the internal loop momentum in the center of mass frame. The
angle between the loop momentum and p⃗1 = −p⃗2 is θ′, while the angle between the plane
spanned by (p⃗1, ℓ⃗1) and the plane (p⃗1, p⃗2) is ϕ′. θ is then the usual scattering angle.
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C.1 F -symbols and tetrahedra

This appendix contains a derivation of the relation (4.3) between F -symbols and tetra-
hedra. On both sides of the F -move equation (5.6)

L5

L1

L2 L3

L4

=
∑
L

(FL1,L2,L3

L4
)L5,L L

L3L2

L1 L4

,

join

L6

L2L3

L4 L1

(C.1)

from the right. The resulting graph on the left side of the F -move equation can be
adjusted into a tetrahedron

L1

L6

L2

L5

L4

L3

,

whereas the graph on the right side of the F -move equation can be adjusted into

L6L

L4

L2

L3

L1

= δL,L6 × L6L6

L4

L2

L3

L1

,

which vanishes if L ≠ L6 because the top and bottom loops can be shrunk but the vector
space VL,L6 is empty. Applying the F -move to a unit object connecting the two L6 edges
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gives

L6L6

L4

L2

L3

L1

= (FL6,L6,L6

L6
)I,I L1 L6L4 L6 L2L3 .

Again, no non-unit object L can bridge the two Θ graphs on the right because the Θ

graphs can be shrunk, but the vector space VL,I is empty if L ≠ I.

Putting things together,

L1

L6

L2

L5

L4

L3

= (FL1,L2,L3

L4
)L5,L6

L1 L6L4 L6 L2L3

L6

.

A similar derivation by joining (C.1) from the left with the F -move equation shows that

L4

L6

L3

L5

L1

L2

= (FL1,L2,L3

L4
)L5,L6

L4 L6L1 L6 L3L2

L6

.

C.2 Transparent graph equivalences

Let C be a transparent fusion category, and η an invertible object. There are the following
graph equivalences.

1. (Loop Value) Applying the F -move to an invertible η loop gives

η ηI = η ηI
.
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Thus

η = 1 , (C.2)

i.e. invertible loops have value 1.

2. (Attachment) An invertible object can be attached to a simple object L

η L =

L

ηL

L

.

3. (Detachment) An invertible object with two ends attached to a non-invertible
simple object L can be detached

η

L

ηL

L

= η L
I

= L .

4. (Swap) An invertible object attached to an edge can be swapped across a trivalent
vertex

L1

ηL1

L3

L2

η
=

L1

ηL3

L3

L2

η

.

5. (Contraction) An invertible object bridged across a trivalent vertex can be
contracted. It can be regarded as a swap followed by a detachment

L1
ηL2

ηL3

L2

L3

η = L

L2

L3

η = L1

L2

L3

.
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6. (Symmetry nucleation) Given a graph, an invertible loop can be nucleated on
any face and merged with the bordering edges, where the merging can be regarded
as attachments followed by contractions. For example, on a triangular face,

L2

L1 L3

η =

ηL2

ηL1 ηL3

η =

ηL2

ηL1 ηL3

.

C.3 Polynomials with F -symbols as roots

G = Z7

P Z7
y (y) = 117649y12 − 453789y11 + 1145277y10 − 1070503y9 + 882588y8 − 284732y7

− 89977y6 + 31488y5 − 1828y4 − 849y3 + 381y2 + 45y − 1 ,

P Z7
z (z) = 343z6 + 196z5 − 371z4 + 27z3 + 56z2 − 9z − 1 ,

P Z7
w (w) = 49w4 − 63w3 + 15w2 + 10w − 4 .

G = Z9

P Z9
y (y) = 282429536481y24 − 2541865828329y23 + 13891349053584y22 − 42375665666331y21

+ 93048845085738y20 − 163017616751046y19 + 191382870385035y18

− 91749046865085y17 − 71565147070767y16 + 121393466114850y15

− 42556511453652y14 − 23330326470255y13 + 20787803433577y12

− 1805958554210y11 − 2533403044422y10 + 632950992624y9

+ 91558817982y8 − 30315392921y7 − 4655443748y6 + 986603649y5

+ 182920180y4 − 28268573y3 − 1118977y2 − 127236y − 1801 ,

P Z9
z (z) = 531441z12 + 885735z11 − 1535274z10 − 121014z9 + 647352z8 − 79407z7

− 92863z6 + 18139z5 + 4928z4 − 1208z3 − 64z + 25z − 1 ,

P Z9
w (w) = 282429536481w24 − 1129718145924w23 + 1997927461773w22 − 1984755165147w21

+ 1330918519878w20 − 791614850283w19 + 459695402118w18 − 222483700269w17

+ 99182263023w16 − 47943836820w15 + 17026501158w14 − 3348784053w13

+ 1374949378w12 − 621445880w11 − 329500476w10 + 412571852w9 − 148134014w8

+ 18260969w7 + 2110023w6 − 806198w5 + 47683w4 + 6215w3 − 711w2 + 4w + 1 .

P Z9
r (r) = 6561r8 − 8019r7 + 1377r6 − 792r5 + 3349r4 + 4r3 − 662r2 + 52r + 19 ,

P Z9
s (s) = 81s4 + 99s3 + 17s2 − 14s− 4 .
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G = Z11

For the unitary orbit with two solutions

P Z11

2|y (y) = 121y4 − 209y3 + 82y2 + 24y − 9 ,

P Z11

2|z (z) = 11z2 + 7z + 1 ,

P Z11

2|w (w) = 121w4 − 88w3 + 38w2 − 13w + 1 .

For the unitary orbit with ten solutions,

P Z11
10|y(y) = 25937424601y20 − 47158953820y19 + 1064291844165y18 + 4808654315960y17

+ 35564388240370y16 + 114903432126461y15 + 194232171940290y14

+ 126582540515475y13 − 21851286302395y12 − 65093840585730y11

− 20230205549333y10 + 6813959963720y9 + 4785911566905y8 + 360322446200y7

− 303249779065y6 − 76228721396y5 − 379548930y4 + 2142467760y3

+ 324308000y2 + 19299130y + 40207 ,

P Z11
10|z(z) = 161051z10 + 658845z9 − 971630z8 − 542080z7 + 322135z6

+ 105612z5 − 39815z4 − 6570z3 + 1960z2 + 70z − 19 ,

P Z11
10|w(w) = 25937424601w20 − 176846076825w19 + 592702305965w18 − 1134445659765w17

+ 1534818445765w16 − 1765089648718w15 + 1769544129045w14

− 1394768735745w13 + 776013578560w12 − 263088585485w11 + 20179458718w10

+ 32370728245w9 − 20820136235w8 + 6982550700w7 − 1450721110w6

+ 175316847w5 − 7539540w4 − 877925w3 + 133550w2 − 5960w + 71 .
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G = Z13

P Z13
y (y) = 23298085122481y24 + 80647217731665y23 + 3069557179509834y22

+ 41919543603471508y21 + 536909384312855190y20 + 4259352400707950897y19

+ 19179161744641728596y18 + 47561155144008593243y17 + 63626358551986353149y16

+ 40207662041712799114y15 + 1257635216859228766y14 − 13522223195096193305y13

− 6598116247933199625y12 + 128413711306511340y11 + 938990747292838888y10

+ 202797783582401196y9 − 32756778784407789y8 − 16526752437401584y7

− 933201395423678y6 + 349378912529867y5 + 53761577382743y4 + 1555890743172y3

− 87453542726y2 − 2773486466y + 28678361 ,

P Z13
z (z) = 4826809z12 + 34901542z11 − 124183228z10 − 57416398z9 + 51122838z8 + 3476850z7

− 4988283z6 + 418090z5 + 93250z4 − 14139z3 + 205z2 + 38z − 1 ,

P Z13
w (w) = 23298085122481w24 − 268824059105550w23 + 1610738618763716w22

− 4730805028787149w21 + 8265875258850053w20 − 9798763675027379w19

+ 8948312751528579w18 − 6464842564613641w17 + 3087209293878385w16

− 284952516401007w15 − 771813881083466w14 + 531872957583864w13

− 107361616574952w12 − 39739582655570w11 + 27485052167132w10

− 4323332693485w9 − 1159653323459w8 + 583780092624w7 − 51758752951w6

− 19939454943w5 + 4746063302w4 + 131285807w3 − 111025779w2 + 2170222w

+ 898159 ,

P Z13
s (s) = 28561s8 − 24167s7 + 163930s6 − 225693s5 + 119817s4 − 26999s3 + 1045s2 + 546s

− 67 .



302

A p p e n d i x D

APPENDICE TO CHAPTER 5



303

D.1 The F -symbols for the Haagerup H3 fusion category

This appendix presents the F -symbols for the transparent Haagerup H3 fusion category
found in [102]. We first present the unitary gauge, and then transit to a slightly more
convenient gauge for this note.

Let I = {I, α, α2} be the set of invertible objects, N = {ρ, αρ, α2ρ} be the set of
non-invertible simple objects of the Haagerup fusion ring, and define ζ ≡ 3+

√
13

2
. For a

unitary fusion category, the F -symbols involving at least one invertible object can be set
to

(F ηLθ,θL,L
ηL )η,θ = ζ−1 , (FL1,L3,ηL3

L1η
)L2,η = (FL1,ηL1,ηL3

L3
)η,L2 = ζ−

1
2 , (D.1)

where η, θ ∈ I and Li ∈ N . The remaining nontrivial F -symbols are the ones where all
six simple objects are non-invertible. It suffices to specify the nine components (F ρ,ρ,ρ

∗ )ρ,∗

with ∗ running over the non-invertible simple objects, since via the transparency relations

(FL1,L2,L3

L4
)L5,L6 = (F ηL1,ηL2,ηL3

ηL4
)ηL5,ηL6 = (F ηL1,L2,L3η

L4
)L5,L6

= (FL1,ηL2,L3

L4η
)L5,L6 = (FL1,L2,L3

L4
)ηL5,L6η

(D.2)

the values of all other F -symbols are determined. An equivalent, and sometimes more
convenient, set of relations that also allows the generation of all F -symbols is

(FL1,L2,L3

L4
)L5,L6 = (FL1η,ηL2,L3

L4
)L5,ηL6 = (FL1,L2η,ηL3

L4
)L5η,L6

= (FL1,L2,L3η
L4η

)L5,L6η = (F ηL1,L2,L3

ηL4
)ηL5,L6 .

(D.3)

We provide an explicit algorithm to turn any nontrivial F -symbol into (F ρ,ρ,ρ
∗ )ρ,∗ form.

1. Use (FL1,L2,L3

L4
)L5,L6 = (F ηL1,L2,L3η

L4
)L5,L6 to turn L1 into ρ.

2. Use (FL1,L2,L3

L4
)L5,L6 = (FL1,ηL2,L3

L4η
)L5,L6 to turn L2 into ρ.

3. Use (FL1,L2,L3

L4
)L5,L6 = (FL1,L2,L3η

L4η
)L5,L6η to turn L3 into ρ.

4. Use (FL1,L2,L3

L4
)L5,L6 = (FL1,L2,L3

L4
)ηL5,L6η to turn L5 into ρ.

Solving the pentagon identity in the gauge (D.1) and under transparency and S4 full
tetrahedral symmetry, there are exactly two solutions, both of which are unitary. One of
them is given by

(F ρ,ρ,ρ
∗ )ρ,∗ ρ αρ α2ρ

ρ x y1 y2

αρ y1 y2 z

α2ρ y2 z y1

(D.4)
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where

x =
2−
√
13

3
, y1,2 =

1

12

(
5−
√
13∓

√
6
(
1 +
√
13
))

, z =
1 +
√
13

6
. (D.5)

The other solution is related by the Aut(Z3) ∼= Z2 action that exchanges y1 and y2. For
the first solution, some of the F -symbols can be presented as

F ρi,ρj ,ρj
ρi

=


ζ−1 ζ−

1
2 ζ−

1
2 ζ−

1
2

ζ−
1
2 fi+j fi+j−1 fi+j−2

ζ−
1
2 fi+j−1 fi+j−2 fi+j

ζ−
1
2 fi+j−2 fi+j fi+j−1

 , f0 = x , f1 = y2 , f2 = y1 ,

F ρi,ρj ,ρj
ρk ̸=i

=

 f′j−i−k f′j−i−k−1 f′j−i−k−2

f′j−i−k−1 f′j−i−k−2 f′j−i−k
f′j−i−k−2 f′j−i−k f′j−i−k−1

 , f′0 = z , f′1 = y2 , f′2 = y1 ,

F ρi,ρj ,ρi
ρj ̸=i

=

 f′i+j f′i+j−1 f′i+j−2

f′i+j−1 f′i+j−2 f′i+j

f′i+j−2 f′i+j f′i+j−1

 ,

(D.6)

where the subscripts of f and f′ are defined modulo 3.

In this note we adopt a different, non-unitary gauge to eliminate the appearance of some
factors of ζ−

1
2 in the bootstrap equations. The only difference from the unitary gauge is

that (D.1) is replaced by

(F ηLθ,Lθ,L
ηL )η,θ = (FL1,ηL1,ηL3

L3
)η,L2 = ζ−1 , (FL1,L3,ηL3

ηL1
)L2,η = 1 . (D.7)

Consequently, the 4× 4 F -symbols become

F ρi,ρj ,ρj
ρi

=


ζ−1 ζ−1 ζ−1 ζ−1

1 fi+j fi+j−1 fi+j−2

1 fi+j−1 fi+j−2 fi+j

1 fi+j−2 fi+j fi+j−1

 , (D.8)

while the 3× 3 F -symbols remain the same.

D.2 Crossing symmetry of ρ defect operators

General crossing symmetry involving topological defect lines (TDLs) was discussed in
Section 5.2. In search for a defect topological field theory (TFT) whose TDLs realize
the Haagerup H3 fusion category, the subset of crossing symmetry constraints that are
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equivalent to the associativity with at least one local operator was delineated in Sec-
tion 5.5, and solved in Section 5.6 to obtain part of the defining data of the TFT. In this
appendix, we study other crossing symmetry constraints that encode more data of the
TFT. These constraints can be depicted graphically as

L

oi1A1

oi2A2 oi3A3

oi4A4

=
∑
L′

L′

oi3A3oi2A2

oi1A1 oi4A4

(F
ρi1 ,ρi2 ,ρi3
ρi4

)L,L′ , (D.9)

and cutting along the dotted line gives∑
O∈HL

c(oi1A1 , oi2A2 ,O) c(oi3A3 , oi4A4 ,O)

=
∑
L′

(F
ρi1 ,ρi2 ,ρi3
ρi4

)L,L′

∑
O′∈HL′

c(oi2A2 , oi3A3 ,O′) c(oi4A4 , oi1A1 ,O
′
) .

(D.10)

Depending on the quadruple (i1, i2, i3, i4), the internal TDLs L, L′ run over either the
three non-invertible TDLs ρ0 ≡ ρ, ρ1 ≡ αρ, ρ2 ≡ α2ρ, or an additional invertible TDL.
It is convenient to introduce a capital I index such that ρI=−1 denotes the invertible TDL
whenever applicable, and ρI=i = ρi for i = 0, 1, 2. In particular, if ρI=−1 is the trivial
TDL I, then oI=−1,A with A = 1, . . . , nV represent the local operators.

Two pairs of identical external operators oiA and ojB in the 1221
configuration

In this case, the defect crossing equation (D.10) in the newly introduced notation reads

ρK

oiA

ojB ojB

oiA

|oKC⟩⟨oKC |

=
2∑

L=−1

ρL

ojBojB

oiA oiA

|oLD⟩⟨oLD|
(F

ρi1 ,ρi2 ,ρi3
ρi4

)ρK ,ρL ,

2∑
C=−1

|c(oiA, ojB, oKC)|2 =
2∑

L=−1

(F ρi,ρj ,ρj
ρi

)ρK ,ρL
∑
D

c(oiA, oiA, oLD) c(ojB, ojB, oLD) .

(D.11)
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• Setting K = −1 gives∑
C

c(oiA, ojB, o−1,C)
2 = ζ−1

∑
D

c(oiA, oiA, o−1,D) c(ojB, ojB, o−1,D)

+ ζ−1

2∑
ℓ=0

∑
D

c(oiA, oiA, oℓD) c(ojB, ojB, oℓD) ,

(D.12)

where we have used the explicit values of F -symbols given in (D.8).

• If we sum (D.11) over K = k = 0, 1, 2 (but not K = −1), and use the explicit
values of F -symbols given in (D.8), then we obtain1

2∑
k=0

∑
C

|c(oiA, ojB, okC)|2 = 3
∑
D

c(oiA, oiA, o−1,D) c(ojB, ojB, o−1,D)

− ζ−1

2∑
ℓ=0

∑
D

c(oiA, oiA, oℓD) c(ojB, ojB, oℓD) .

(D.14)

• Let us set i = j and A ̸= B. Using the explicit values of κiAB and λiAB;a in (5.112)
and (5.139) to evaluate the contributions from local operators,

∑
C

c(oiA, oiB, o−1,C)
2 = δAB + (κiAB)

2 + 2
∑
a

λiAB;aλ̄
i
AB;a =

3σ2
111 A = B ,

0 A ̸= B ,

(D.15)∑
D

c(oiA, oiA, o−1,D) c(ojB, ojB, o−1,D)

= 1 + κiAAκ
j
BB +

∑
a

(
λiAA;aλ̄

j
BB;a + λ̄iAA;aλ

j
BB;a

)
=

3σ2
111 A− i = B − j ,

0 A− i ̸= B − j ,
(D.16)

where
σ111 =

√
1 + ζ−2 , (D.17)

the preceding two equations (D.12) and (D.14) become

0 =
2∑
ℓ=0

∑
D

c(oiA, oiA, oℓD) c(oiB, oiB, oℓD) ,

2∑
k=0

∑
C

c(oiA, oiB, okC)
2 = −ζ−1

2∑
ℓ=0

∑
D

c(oiA, oiA, oℓD) c(oiB, oiB, oℓD) .

(D.18)

1We used
2∑

k=0

(F ρi,ρj ,ρj
ρi

)ρk,I = 3 ,

2∑
k=0

(F ρi,ρj ,ρj
ρi

)ρk,ρℓ
= x+ y+ + y− = −ζ−1 ∀ ℓ . (D.13)
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It follows that
2∑

k=0

∑
C

c(oiA, oiB, okC)
2 = 0 , (D.19)

and we arrive at a selection rule:

c(oiA, oiB, okC) = 0 ∀ i, k, C if A ̸= B. (D.20)

Four identical external defect operators oiA

In this case, the defect crossing equation (D.10) becomes

ρJ

oiA

oiA oiA

oiA

|oJB⟩⟨oJB|

=
2∑

K=−1

ρK

oiAoiA

oiA oiA

|oKC⟩⟨oKC |
(F

ρi1 ,ρi2 ,ρi3
ρi4

)ρJ ,ρK ,

2∑
K=−1

[
δJKδBC − (F ρi,ρi,ρi

ρi
)ρJ ,ρK

] ∑
C

c(oiA, oiA, oKC)
2 = 0 ,

(D.21)
which says that the four-dimensional vector

∑
C c(oiA, oiA, oKC)

2 is a non-negative four-
dimensional eigenvector of the matrix F ρi,ρi,ρi

ρi
with eigenvalue one. Using the explicit

values of the F -symbols given in (D.8), we determine that such an eigenvector is in the
two-dimensional subspace spanned by

(1 + ζ, 1, 1, 1) ,


(0, 1, ψ+, ψ−) i = 0 ,

(0, ψ−, 1, ψ+) i = 1 ,

(0, ψ+, ψ−, 1) i = 2 ,

(D.22)

where

ψ± =
−1±

√
7 + 2

√
13

2
. (D.23)

Equivalently,
∑

C c(oiA, oiA, oKC)
2 is orthogonal to

(−1 + ζ−1, 1, 1, 1) ,


(0, 1, η−, η+) i = 0 ,

(0, η+, 1, η−) i = 1 ,

(0, η−, η+, 1) i = 2 ,

(D.24)

where

η± =
−1±

√
3
(
2
√
13− 7

)
2

.
(D.25)
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Two pairs of identical external operators oiA and ojB in the 1212
configuration

We first recall from (5.17) and (5.18) that the defect three-point coefficients are invariant
under cyclic permutations and complex conjugate under reflections. Thus the trivalent
vertices

okC

oiA

ojB

okC

ojB

oiA

are complex conjugates of each other, and can differ by a phase 2ϕijk. The corresponding
three-point coefficients of defect operators can be parameterized as

c(oiA, ojB, okC) = |c(oiA, ojB, okC)|eiϕijk ,

c(ojB, oiA, okC) = |c(oiA, ojB, okC)|e−iϕijk .
(D.26)

Since the phase is trivial when two indices coincide, ϕiij = 0, the only nontrivial phase
is ϕ ≡ ϕ012. Let us define

Φij =

e
iϕij0

eiϕij1

eiϕij2

 , (D.27)

which is the identity matrix if i = j, and has a single possibly nontrivial entry if i ̸= j.

In the current case, the crossing equation (D.10) becomes

ρk

oiA

ojB oiA

ojB

|okC⟩⟨okC |

=
2∑
ℓ=0

ρL

oiAojB

oiA ojB

|oℓD⟩⟨oℓD|
(F

ρi1 ,ρi2 ,ρi3
ρi4

)ρk,ρℓ ,

∑
C

c(oiA, ojB, okC)
2 =

∑
ℓ

(F ρi,ρj ,ρi
ρj

)ρk,ρℓ
∑
D

c(ojB, oiA, oℓD)
2 .

(D.28)

By factoring out the phase using (D.26), the above crossing equation can be reexpressed
as ∑

C

|c(oiA, ojB, okC)|2 =
2∑
ℓ=0

(Φ̄2
ij F

ρi,ρj ,ρi
ρj

Φ̄2
ij)kℓ

∑
D

|c(oiA, ojB, oℓD)|2 . (D.29)
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The three-dimensional vector
∑

C |c(oiA, ojB, okC)|2, if nonzero, is a non-negative eigen-
vector of Φ̄2

ij F
ρi,ρj ,ρi
ρj Φ̄2

ij with eigenvalue 1.

• If ϕ is a generic phase, by which we mean ϕ ̸= 0, π, then such an eigenvector is
unique up to overall normalization, given by

(ψ+, −ψ−, 0) {i, j} = {0, 1} ,

(0, ψ+, −ψ−) {i, j} = {1, 2} ,

(−ψ−, 0, ψ+) {i, j} = {0, 2} ,

(D.30)

which in particular implies that

c(o0A, o1B, o2C) = 0 . (D.31)

In other words, the only three-point coefficient that is allowed to have a nontrivial
phase vanishes. Then without loss of generality, we can assume ϕ = 0, π.

• If ϕ = 0, π, then the eigenvector is in the two-dimensional subspace that is orthog-
onal to 

(
ψ−, ψ+, e

iϕ
)
{i, j} = {0, 1} ,(

eiϕ, ψ−, ψ+

)
{i, j} = {1, 2} ,(

ψ+, e
iϕ, ψ−

)
{i, j} = {0, 2} .

(D.32)
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