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ABSTRACT

P honons, or quantized normal modes of crystal vibrations, are responsible for
much of the thermophysical behavior in solid-state systems. This behavior

includes properties like thermal expansion, defined as the change in material vol-
ume in response to temperature. Typically, materials expand upon heating and
contract upon cooling; however, some undergo anomalous or negative thermal ex-
pansion (NTE). This study focuses on a material with NTE, cuprous oxide (Cu2O),
commonly known as cuprite. Using computational and experimental methods, we
identify the underlying mechanisms of the NTE and how these mechanisms relate
to temperature-dependent phonon behavior with temperature, using both compu-
tational and experimental methods.

Computationally, we interpret temperature-dependent changes in phonon energies
with perturbation theory. Assuming that the bonds between atoms behave like
simple harmonic oscillators, we model the observed random motion of the atoms
around their equilibrium positions with quasi-harmonic (QH) and anharmonic (AH)
approximations. Furthermore, the perturbations in the atom position allow us to
model phonon energy changes in response to temperatures.

While these models, particularly AH models, have proven accurate in predict-
ing the phonon behavior, experimental methods, like inelastic neutron scattering
(INS), remain the gold standard for validation. This study presents INS data from
single-crystal cuprite measured on the Wide-Angular Range Chopper Spectrometer
(ARCS) at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source
(SNS). We present INS data collected at 10 K, 300 K, 700 K, and 900 K. The post-
processing workflow included: (1) binning with the software package Mantid, (2)
reducing with a multiphonon background correction for polyatomic crystals, and
(3) condensing into a single irreducible wedge in the first Brillouin zone (BZ).
From this, we obtain a four-dimensional scattering function S (Q, E ). Our AH cal-
culations use the stochastic-Temperature Dependent Effective Potential (sTDEP)
and the Machine Learning Interatomic Potential (MLIP) methods. The former
method uses perturbation theory to include cubic and quartic AH contributions.
The latter uses machine learning (ML), which in principle, includes all orders of
AH terms.

This investigation of the NTE of cuprite demonstrates that QH and AH models
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successfully predict anomalous NTE behavior. However, only AH calculations show
the temperature-dependent phonon behavior seen in INS results. This discrepancy
likely stems from a fortuitous cancellation of cubic and quartic AH terms giving
an apparent success of QH models for the NTE. Ultimately, a correct prediction of
thermal expansion with incorrect phonons reinforces the need to look at the role
of higher-order terms in the temperature-dependent behavior of this material.

Despite the success of sTDEP at predicting phonon frequency shifts, it could not
account for the newly observed diffuse inelastic intensity (DII) in the INS phonon
spectra. For this, MLIP was more effective.

This work provides complementary models to explain the origins of the DII, which
is likely an emerging category of AH feature best described as a local nonlinear
many-body process. We investigate phonon dissipation, the dynamics of systems
coupled to their environments, Brownian motion, and discontinuities due to im-
pulse transfer effects. We conclude by addressing the potential applications of the
results and their role in future work on thermal lattice dynamics.
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C h a p t e r 1

INTRODUCTION

I did not understand what materials science was until college. The small high
school I attended nestled in the uppermost corner of Pennsylvania Appalachia

had the basics. Materials science was considered fancy. However, it was an area
rich in materials. My fourth-grade class field trip took us underground into the
anthracite coal mines, where many of our great grandparents spent their days. By
the time I came around, the mines were closed, some consumed by floodwaters.
Others were structurally unstable after years of unsustainable mining practices. A
shift to cleaner energy sources like a steam nuclear power plant built along the
same river that witnessed the Three Mile Island Disaster made the mines obsolete.

No matter where you are, materials are everywhere. And unless you live inside
a vacuum, you see the dynamic properties of these materials. This work focuses
on some of these fundamental properties and behavior, specifically the role of
temperature.

This thesis looks at the material cuprous oxide, commonly called cuprite. Cuprite
is a mineral that consists of the elements copper (Cu) and oxygen (O) in a 2:1
ratio in a cubic arrangement. It has interesting temperature-dependent behavior,
particularly the thermal expansion behavior. Unlike most materials, cuprite con-
tracts with an increase in temperature for a limited temperature range. This goes
against our intuition that materials expand upon heating, a property known as
thermal expansion.

Whether you realize it or not, we all have experience with thermal expansion. For
example, imagine you want to open a glass jar with a metal lid, but it will not
budge. One trick is to run the top of the jar under hot water. The heat causes
the metal lid to expand, making it easier to open. But what happens if we run
the entire jar under the hot water? The answer is that the jar and lid increase
in volume at different rates. This difference in the increase in volume is because
they have different coefficients of thermal expansion. Since the metal has a larger
coefficient of thermal expansion, it undergoes a more substantial change in volume
in response to the change in temperature. At the end of the day, heat and the
resulting thermal expansion help you open the jar.
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The primary experimental method in this thesis is neutron scattering. Neutron
scattering fires neutrons at a material of interest and measures how those neu-
trons interact with it. The nature of these interactions provides us with valuable
information about the structure and dynamics of materials. Throughout my thesis,
I’ve participated in many neutron scattering experiments. We collect data for these
experiments at government-funded user facilities with specialized instruments. We
then compare the data from these experiments with calculations.

The theoretical portion of this thesis is computational thermodynamics which is
part of a larger field in materials science called computational materials. In com-
putational materials, the goal is to use computer code and theory to describe the
behavior of atoms in a chemical system. For example, suppose we know the atom
position and velocity in a solid. In that case, we can use this information to de-
termine properties like stability. The field of computational materials continues
to grow with advances in computing on high-performance computers (HPC), also
known as supercomputers. I performed all the calculations shown in this work on
HPC.

Chapter 1 of the work provides much of the background information needed to
understand the techniques and methods used throughout. Chapter 2 focuses on
thermal expansion in cuprite. Using computation and experiment, we try to figure
out the underlying mechanisms in cuprite that explain how this material changes in
volume in response to temperature. We also look at problems with the theory used
to understand temperature-dependent behavior. Finally, we tackle the question of
model fidelity, or how well a model reproduces the actual behavior of the real world.
Chapter 3 addresses a new feature in our neutron scattering data through existing
theories and calculations. Last but not least, Chapter 4 talks about the future.
Here we outline future experiments and ideas to explore the new phenomenon in
this work.
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C h a p t e r 2

BACKGROUND

T he phonon is the elementary unit of vibration in atoms or molecules, much like
the photon is the elementary unit of electromagnetic radiation or light. The

word phonon comes from the Greek word phonē — sound or voice. A thorough
comprehension of phonon behavior in a material is imperative to understanding
the bulk thermophysical properties and attributes.

We classify phonons as longitudinal or transverse depending on the direction of
their motion relative to their wave propagation. In longitudinal phonons, the atoms
vibrate parallel to the direction of the wave propagation, whereas, in transverse
phonons, the atoms vibrate perpendicular to the direction of wave propagation.

Another classification of phonons is acoustic or optic. Acoustic phonons have
lower frequencies that correspond to long-wavelength vibrations. These phonons
typically vibrate in phase with their neighbors. Optical phonons are found at higher
energies and oscillate out of phase with their neighbors.

To gather information on all phonons in a material, we rely on experiments, the-
ories, and computations. Alone, each methods may not provide sufficient infor-
mation to fully describe the microscopic phonon behavior. However, when used in
conjunction, they provide ample details to assemble a model.

2.1 The Fundamentals of Neutron Scattering
In the past ten years, we have seen orders of magnitude improvement in computa-
tion and theory. However, experiments remain the gold standard for understanding
phonon behavior. Experimentally, one of the best ways to examine phonons in a
material is through coherent inelastic neutron scattering (INS). Scattering exper-
iments involve observing and measuring the deviation in motion of an incoming
particle upon impact with material or medium. In inelastic scattering, neutron
energy is not conserved, meaning the final energy of the neutron is different from
its initial, as shown in Fig. 2.1, leaving us with Q = ki−kf . This definition of Q in
terms of ki and kf is standard practice in diffraction and other scattering sciences.
Therefore, we refer to Q as a scattering vector and ħQ as the momentum transfer,
which comes from the well-known Planck relation. The Planck relation tells us
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Figure 2.1: A diagram showing the energy transfer in INS for an incoming neutron
with energy ħki, where ħ is the reduced Planck constant (6.5821 × 10−16eV · s)
and k i is the incoming neutron wavevector, colliding with a sample resulting in
an outgoing wavevector, kf . The vectors on the top show the scenario where the
neutron loses energy from the collision and the lower image shows the scenario
where the neutron gains energy. To conserve energy and momentum in the system,
this collision results in a momentum transfer, ħQ, which can be the energy of a
phonon.

that the energy of a phonon is proportional to its frequency and, consequently, its
wavevector. The variables ki and kf are the initial and final scattering wave vectors
of the neutron shown in Fig. 2.2, whereas, Fig. 2.1 shows the vector relationship
between them. The use of Q and ki/f allows us to specify the components of the
system. For example, we use Q to talk about the dynamics of the nucleus and
k to talk about the neutron. Later on in this work, we will use ®q to refer to a
spatial point in reciprocal space in a crystal sample, and it is distinct from the
variables Q and k. We use thermal neutrons to study the dynamics or vibrations
in materials. Thermal neutrons have energy on the order of kBT , Boltzmann’s
constant (8.617x10−5 eV/K) multiplied by the temperature, and an average wave-
length of 1.8 Å. This energy and wavelength are in the same order of magnitude
as the interatomic spacing in most materials. For these reasons, they are ideal
for probing collective excitation, like phonons. Further, neutrons are suitable for
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ki kf

neutron

nucleus
Figure 2.2: A pictorial representation of inelastic neutron scattering. The incoming
neutron (black circle) strikes the atomic nucleus (large white circle with black
outline) and rebounds. The nucleus undergoes a change in energy from the neutron
impact, denoted by the squiggle line.

measuring phonons because they have zero net charge, allowing them to interact
with atomic nuclei rather than an atom’s electron shell.

We classify the type of scattering based on coherent versus incoherent and elastic
versus inelastic characteristics. Coherent scattering preserves the phase of the
scattered neutrons. A more intuitive way to think of coherence is to think of
constructive and destructive interference in sound waves. For example, imagine
attending a concert. Depending on the seat or location in the venue, the music will
sound different. A specific section of the concert venue might be louder due to the
constructive interference of the sound waves. With this in mind, when two sound
waves are “in phase“ with one another, their amplitudes add together, resulting
in a louder sound. Two waves out of phase have the opposite effect and cancel
one another out. Regarding neutrons, for a coherent scattering process, we know
the incoming and outgoing phase of the neutron or wave, whereas, for incoherent
scattering, this relationship is unknown. This unknown relationship can be due to
a coupling of the oscillators in the system.

Each combination of scattering: incoherent elastic, incoherent inelastic, coherent
elastic, and incoherent inelastic provides different information about material dy-
namics [1]. Figure 2.3 summarizes this information and lists general behavior for
the total scattering function, S , which is the sum of the component from the neu-
trons scattering off the sample along with phonon-phonon interactions, and the
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Figure 2.3: A flow chart showing the types of neutron scattering along with the
total scattering factor, S , the pair distribution function, G , and what each type
measures.

pair distribution function, G , the probability of finding an element in the sample
at a given radial distance. This figure also describes the type of phenomenon each
type of scattering examines.

INS experiments typically require expensive, high-precision instrumentation and
power sources. Consequently, we usually perform these experiments at centralized
government user facilities. At the time of publication, the largest neutron facility
in North America was the Spallation Neutron Source (SNS), located at Oak Ridge
National Laboratory (ORNL) in Oak Ridge, Tennessee, USA [2].

The SNS houses many instruments, each designed for different types of scattering
experiments, sample environments, and various energy ranges. While there are sev-
eral instruments at the SNS capable of studying phonons, the premiere instrument
is the Wide Angular-Range Chopper Spectrometer (ARCS) [3]. ARCS achieves
unique energy and spatial resolution optimization, ideal for studying high-energy
phonons in materials. ARCS uses Fermi choppers, which regulate the opening of
a pathway for the neutrons with a specific velocity to pass through. This results
in a monochromatic pulse of neutrons at the desired specifications [4]. In contrast
to triple-axis neutron scattering measurements, INS measurements with ARCS are
not limited to individual energy scans at a single point in a sample.

We record individual neutron “events“ during INS experiments. This type of data
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collection is called event-based data collection. In this setup, we find the wave-
length or energy of each neutron from its velocity. ARCS measures momentum
transfer from neutron events with a two-dimensional detector bank array spanning
-30°to +60°. Detectors like these record each neutron event by the pixel and time
the detector registers the neutron, as shown in Fig. 2.4. Finally, we bin the neutron
into a histogram and convert it to the spatial reference frame of the sample.

Neutron Event

Figure 2.4: A pictorial representation of a detector with pixels recording neutron
events. The red shaded pixel records the neutron event. The distance from the
sample to the detector is known to be L. With this information, we can indirectly
obtain a value for Q. This form of data collection histograms the data.

We can study several high-to-low periodic samples including: single crystals, poly-
crystals, and powders. The focus of this study is single-crystal measurements. A
single crystal or monocrystalline sample is a solid material with a continuous and
unbroken crystal lattice, much like toy blocks arranged in a repeating orientation.
A perfect single crystal does not have grain boundaries or defects. Polycrystals
consist of smaller subsets of single crystals, called crystallites or grains. Grain
boundaries separate the crystallites or grains. As the name suggests, powder sam-
ples are small particulates of a chemical species or compound. While one can
transform a single crystal or polycrystal into a powder by grinding up a single crys-
tal or polycrystal, the reverse is not so simple. As a result, growing single crystals
remain cost and time prohibitive.

Each sample type helps look at different components of phonon behavior. For
example, with powder and crystallite, we obtain a phonon density of state (DOS),
as shown in Fig. 2.5. The phonon DOS contains information about the phonon
states in a material, typically displayed as a function of frequency or energy. The
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Figure 2.5: An example phonon DOS measured with INS.

phonon DOS is incredibly useful for examining phonon occupancy changes with
temperature. We see that phonons occupy the higher energy or frequency modes
for virtually all materials at high temperatures.

Figure 2.6: An example of phonon dispersions measured with INS.

With single crystals, we obtain complete phonon dispersions like the one shown
in Fig. 2.6. A phonon dispersion provides the spatial/directional dependence of
the phonon frequencies in a crystal typically viewed along the path of the high-
symmetry directions in reciprocal space. Reciprocal space is the Fourier transform
of real space. Real-space is what we know as Cartesian coordinates, whereas
reciprocal space serves as a tool to work with frequency in the crystal lattice with
ease. The Fourier transform provides a spatial variable that relates directly to a
frequency, which is incredibly convenient for phonon frequencies. When referring to
points in reciprocal space, we use the variable ®q . A significant difference between
phonon DOS and dispersions is that we visualize the latter with an explicit ®q -
dependence as shown in Fig 2.6 where the x-axis shows the ®q -dependence with
the high-symmetry points. The high symmetry points in reciprocal space are
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particular points that are invariant under certain transformations. It allows one to
look at a smaller subset of the crystal while maximizing the amount of information
obtained. Examples of high symmetry points in cuprite, a cubic structure, are
shown in Table 2.1. To relate high-symmetry points to a concept we see in our

Symbol Symmetry Points Description
Γ (0, 0, 0) center of BZ
X

(
0, 12 , 0

)
center of face

M
(
1
2 ,

1
2 , 0

)
center of edge

R
(
1
2 ,

1
2 ,

1
2

)
corner

Table 2.1: This table shows the high-symmetry points for the cuprite structure
and describes where they are located on the unit cell lattice.

everyday lives, we can think of them in terms of navigation. The high-symmetry
points are like specific landmarks on an extended road trip. By seeing specific
landmarks, we can get the vibe of a specific region.

2.2 Computational Thermodynamics
Calculations complement experimental measurements of phonons. There exist a
variety of software packages available to model phonons. For this work, we focus
on perturbation theory calculations with effective potentials like the stochastic-
Temperature Effective Potential (sTDEP) method and machine learning inter-
atomic potentials (MLIP) with moment tensor potentials (MTP).

Perturbation theory is an approximation technique that relies on small variations
from a ground state solution like the harmonic Hamiltonian, ĤH . We can write
this as:

Ĥ = ĤH + λ3Ĥ3 + λ4Ĥ4 + λ5Ĥ5 + . . . (2.1)

where the harmonic Hamiltonian, an energy operator that contains all the potential
and kinetic energy for the ground or base state, is:

ĤH = U0 +
∑
i

p2
i

2m
+ 1

2

∑
i j αβ

Φ
αβ
i j
uαi u

β
j
. (2.2)

In the harmonic Hamiltonian, we ignore all terms above the second order. The
harmonic approximation has the advantage of being the most computationally
feasible. However, the omission of high-order terms results in a model that fails
to predict fundamental thermal properties like thermal expansion, defined as the
volume change in response to temperature.
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Figure 2.7: A drawing of a cubic crystal structure with atomic interactions shown
as springs.

We need a more complex model like the quasiharmonic (QH) approximation to
account for properties like thermal expansion. The QH model does not explic-
itly depend on temperature. The harmonic and QH Hamiltonians are the same.
The difference is that the QH model accounts for thermal expansion through a
renormalization of the Hamiltonian at each volume. While the QH approximation
can obtain accurate values, it lacks fidelity. We know that temperature changes
directly affect the crystal lattice volume. Therefore, we ought to use an explicit
temperature dependence model. The anharmonic approximation (AH) contains
the desired temperature dependence. It also includes higher-order perturbative
terms, as shown in the equation:

ĤAH = U0 +
∑
i

p2
i

2m
+ 1

2

∑
i j αβ

Φ
αβ
i j
uαi u

β
j

+ 1

3!
∑

i j k αβγ

Φ
αβγ
i j k
uαi u

β
j
u
γ
k
+ 1

4!
∑

i j k l αβγδ

Φ
αβγδ
i j k l

uαi u
β
j
u
γ
k
uδl .

(2.3)

In the above equation, p is the momentum; m is the mass; ui , u j , uk , u l are
atomic displacements; and Φ is the interatomic force constant corresponding to
the one, two, three, and four phonon processes. The higher-order AH terms better
describe the underlying physics; however, it comes at a much higher computational
cost than the harmonic and QH approximations. Figure 2.7 shows a cubic crystal
lattice with springs as bonds.

The unifying concept is the free energy, F, regardless of the computational method.
At finite temperatures, we can write an expression for F as a sum of individual
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contributions:
F = Uel −T Sv i b . (2.4)

In this equation, Uel is the elastic energy of the system; T is the temperature; and
Sv i b is the vibrational energy. This equation is defined under constant volume, V ,
whereas the Gibbs free energy, G , is defined under constant pressure, P ,

G = F + PV = Uel −T Sv i b + PV . (2.5)

To understand the origin of these components, we can look at the various ap-
proximations we employ. The Born-Oppenheimer approximation states that the
wavefunctions or mathematical expressions that describe the state of a system,
from atomic nuclei (comprised of neutrons and protons) and electrons are sepa-
rable since there is a substantial difference in mass and subsequently timescales
between these two entities. Consequentially, we can express the Hamiltonian in
the Born-Oppenheimer approximation as

Ĥ = Ĥn + Ĥe (2.6)

where Ĥe is the Hamiltonian for the electrons and Ĥn is the Hamiltonian for the
nucleus. The majority of the mass of an atom is from the nucleus. Therefore, we
focus on Ĥn .

We can obtain an expression for the system’s free energy from the Hamiltonian.
One way of doing this is with a canonical ensemble. In this statistical setup, the
atoms or components of a system interact with a heat reservoir or bath at a set
temperature. In a canonical approach, the probability, P̂ , of finding system A in
the state α with corresponding energy Eα while in equilibrium with the thermal
bath is:

Pα =
e−Eα/kBT∑
α e

−Eα/kBT
. (2.7)

The factor kBT provides an explicit temperature dependence in the above equation.
Looking at a specific case where the trace of the density matrix equals one, we
replace Eα with Ĥα .

From these expressions, we turn to the basic thermodynamic definitions and equa-
tions. The vibrational entropy, Sv i b , is the measurable disorder of a given system
from the vibrations of the atoms about their ideal positions. Another way to think
about vibrational entropy in lattice dynamics is the phase space that the atoms
can traverse or explore. We show a visualization of this phase space in Fig. 2.8.
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Figure 2.8: A visualization of phase space with overlaid snapshots of atomic dis-
placements. The region around the atomic equilibrium position is analogous to
the phase space.

An expression for the Gibbs entropy, named after its discoverer Josiah Willard
Gibbs, is

Sv i b = kB
∑
i

Pα lnPα . (2.8)

Phonon behavior described with a canonical ensemble is often written using the
Planck occupancy factor, which provides information on the number of phonons
in the system. Looking at the case of a single phonon mode with energy and
corresponding frequency, ε1 = ħω1, we can write an expression for the partition
function

Z =
∑
n

e−nεn/kBT (2.9)

which for n=1 is
Z = 1 + e−ε1/kBT = 1 + e−ħω1/kBT . (2.10)

The above expression is the partition function for the one-phonon case. To obtain
the probability for the one-phonon occupancy, we follow the same procedure as we
did for Eq. 2.7.

P =
e−ħω1/kBT∑α
0 e

−ħωα/kBT
(2.11)

The above expression is called the Planck distribution, n (T ) and depends directly
on the temperature of the system.

This direct dependence on temperature carries over to the free energy expressions.
With Eq. 2.3, we obtain the vibrational entropy in the AH approximation, which
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is the only approximation that reflects this direct dependence. Then we can plug
this expression into Eq. 2.4 or Eq. 2.5, giving us the Helmholtz or Gibbs free
energy.

We find the other values in Eq.2.4 using density functional theory (DFT) or molec-
ular dynamics (MD) simulations. DFT allows us to perform ground-state electronic
structure calculations. We can obtain interatomic forces to calculate the phonon
behavior of a system. When using DFT with the lattice dynamics package sTDEP,
we set up a workflow shown in Fig. 2.9.

Phonon calculations typically require large supercells rather than unit cells. In
crystallography, unit cells are the smallest repeating unit. They come in conven-
tional or primitive. Supercells are the same structure as unit cells, except they
are transformed, resulting in a larger volume. It is essential to use supercells in
phonon calculations to avoid self-interactions and boundary issues from periodicity
in small volumes.

Our workflow needs configurations to simulate the system’s behavior at non-zero
temperatures. When working with sTDEP, we use a finite number of displaced
configurations generated from a canonical distribution. These configurations look
like the individual configurations shown in Fig. 2.10.

Performing calculations this way is more computationally feasible than large-scale
ab initio molecular dynamics (AIMD). A more detailed explanation of how we
applied these methods appears later in this work.

The other way we obtain computational results is using MLIP. The workflow for
this method involves training the potential, performing classical MD calculations,
and then taking the velocity-autocorrelation.

These theories and approaches are part of a larger concept called many-body
theory, which involves the interaction of three or more particles. Figure 2.11
provides an example of interactions in anharmonic many-body systems. In the case
of the 3-phonon process, we see phonon creation and annihilation. Annihilation
occurs when two phonons come together and result in a single phonon. Creation
is the opposite of annihilation: one phonon splits into two new phonons. While
the terminology makes it sound like energy is not conserved, that is not the case.
The perturbation theory calculations in this work include AH terms up to cubic.
Beyond this point, we turn to MLIP.

There is a shift toward formalism like many-body theory, nonlinear dynamics, and
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Green’s functions. These methods would allow us to capture the potential energy
landscape better. The following work compares perturbation theory approaches,
machine-learned potentials, and the beginnings of work with many-body theory
and Brownian motion.



15

Generate initial 
configurations from θD.

Calculate Helmholtz 
free energy, F(V(T),T).

Fit V and F(V(T),T) to 
Birch Murnaghan 
equation of state

Generate phonon 
lineshapes.

Is convergence criteria met?

No

Construct thermal 
expansion curve.

Generate supercell 
displacements

Calculate Helmholtz 
free energy, F(V,T).

Generate phonon 
frequencies and 

eigenvectors

Fit V and F(V,T) to 
Birch Murnaghan 
equation of state

Obtain force constants 
from ab inito 
calculations

Compare calculations 
with experiment.

Quasiharmonic Anharmonic

Obtain force constants 
from ab inito 
calculations

Generate new initial 
configurations from 

force constants.

Yes

Figure 2.9: A flowchart showing the computational workflows (QH and AH) in
parallel. The dotted frame around the first three steps of the QH and AH workflows
specifies components of the workflow repeated for volumes at each temperature.
Dashed lines designate workflow for each temperature to obtain thermal expansion
curves.
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Figure 2.10: A visualization of the snapshots of the atomic canonical configurations
generated by sTDEP. The grey lines in each configurations show the ideal crystal
lattice equilibrium points.
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Figure 2.11: Feynman diagrams for the three-phonon processes showing the cre-
ation or annihilation of a phonon with wavevector q.
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C h a p t e r 3

ORIGINS OF THERMAL EXPANSION OF CUPRITE

Adapted from "Thermal expansion and phonon anharmonicity of cuprite studied
by inelastic neutron scattering and ab initio calculations" [1].

3.1 Introduction

C uprite, Cu2O, (Fig. 3.1) is one of the first known semiconductors [2, 3]. It
has applications in photovoltaics [4, 5], nanoelectronics [6], thermoelectrics

[7], spintronics [8], and catalysis [9, 10]. Below room temperature, cuprite has
a small negative thermal expansion (NTE) coefficient that becomes positive at
temperatures above 300 K. The coefficient of volumetric thermal expansion,

β =
1

V

∂V

∂T
, (3.1)

where V is volume and T is temperature, is explained by a balance between
the internal energy, U , and the entropy, S . At finite temperatures, the primary

Figure 3.1: Unit cell of Cu2O. Copper atoms are shown in blue and oxygen atoms
in red. There is a linear arrangement of O-Cu-O as the 3z 2 − r 2 orbitals of copper
make chemical bonds with the sp3 orbitals of oxygen [11].

contributions to U and S are the elastic energy, Uel , and the vibrational entropy
of phonons, Sv i b , respectively. Using this approximation, the total free energy,

F = Uel −T Sv i b , (3.2)

is minimized when reductions in the phonon frequencies with volume (and temper-
ature) cause a larger Sv i b . These changes counteract the energy penalty from Uel
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during thermal expansion. Spectroscopies to study phonons include inelastic neu-
tron, inelastic X-ray, and Raman methods. All of these methods have been used
to study phonon behavior in cuprite [12–31]. Inelastic neutron scattering (INS)
experiments with triple-axis spectrometers measure energy spectra of phonons at
single points in crystal momentum, ®q . Thermophysical properties such as thermal
expansion and the temperature dependence of elastic constants depend on the
phonon frequencies at all ®q -points in the first Brillouin zone. New methods of INS
on single crystals at pulsed neutron sources can provide such detailed information
[32, 33]. Measurements of all phonons in a crystal allow testing the basic physics
behind microscopic models of thermophysical properties.

Computationally, phonons in materials can be modeled or interpreted with QH or
AH theories [34]. The QH vibrational Helmholtz free energy contribution, Fv i b ,
depends explicitly on V , and effects of T are only through thermal expansion, i.e.,
V (T ). The Fv i b in the AH theory used here is:

Fvib(V ,T ) = U0(V ,T ) +
∑
®q ,s

[
ħω ®q ,s (V ,T )

2
+ kBT ln

(
1 − e−

ħω ®q ,s (V ,T )
kBT

)]
, (3.3)

where the phonon frequencies, ω ®q ,s (s is a branch index) depend on bothV and T .
An explicit dependence on T is essential for AH models. Some classify the thermal
expansion of materials by magnitude: small, conventional, or giant and sign: pos-
itive or negative [35]. In materials with very small NTE, temperature-dependent
changes in individual phonon frequencies may be small. Another possibility is that
positive and negative contributions to phonon frequency shifts of different phonons
cancel one another. This results in an overall small net change in Fv i b . Further,
effective forces between atoms directly depend on V . However, T drives the am-
plitude of the atomic vibrations about their crystal sites. This effect of T alters
how the phonon frequencies change with V . A QH model accounts for the V de-
pendence of the interatomic forces without including the direct effects of thermal
displacements of atoms. Materials with small thermal expansions still have thermal
displacements, so these materials offer compelling tests of the roles of T and V
on thermophysical properties. However, properties averaged over phonon modes,
like thermal expansion, do not capture the detailed physics from the relationship
between phonon frequencies and the variables T and V .

The present study identifies the microscopic physics of the individual phonon modes
that contribute to the macroscopic thermal expansion. We do this by calculating
individual phonon contributions to Fv i b with both QH and AH theory and com-
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paring the thermal trends of the calculated phonons to new phonon measurements
by INS on cuprite at 10 K and 300 K.

Previous studies of cuprite showed the success of QH theory for predicting thermal
expansion [36–40], and some studies included results on phonon dynamics [36, 37,
41]. We find similar success with the QH theory for thermal expansion but find
similar success with an AH theory. Our comparisons of thermal expansion draw on
a previous study on the thermal expansion of silicon, another small NTE material.
In silicon, the AH effects dominate over the QH effects for thermal phonon shifts
at low temperatures even though effects from both theories are small [33, 42].

The net volume change of cuprite from thermal expansion between 10 K and 300 K
is small, so QH calculations predict phonon shifts that are nearly zero. Experiment
and AH calculations give thermal shifts and broadenings of phonons, especially
optical modes. However, the low-frequency acoustic modes are likely more per-
tinent to the NTE at low temperatures. There are small measurable changes in
the acoustic phonons between 10 K and 300 K. Closer examination shows that QH
theory predicts changes in both magnitude and sign of the thermal shifts of the
lowest acoustic branch that varies with ®q .

Nevertheless, AH theory and experiment show that this entire branch undergoes a
thermal shift that is nearly the same at all ®q . Ultimately, QH theory successfully
predicts the small NTE behavior in cuprite. However, the success of QH theory is
less compelling when it fails to accurately predict the underlying phonon physics.

3.2 Experiment
Powder
We performed INS measurements on a 20 g powder sample of Cu2O with the
time of flight (TOF) Wide Angular-Range Chopper Spectrometer (ARCS) [32] at
the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL)
[43]. The incident energy was 120 meV, and sample temperatures were 5 K and
300 K. We reduced the data to phonon density of states (DOS) curves. The
reduction process included background subtraction of an empty aluminum can
and the subtraction of multiphonon correction with Mantid and the Multiphonon
package [44, 45].
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Single Crystal
Further INS measurements used ARCS to perform measurements on single-crystal
cuprite. The [100] oriented single crystal was grown at the Joint Center for Arti-
ficial Photosynthesis at Caltech in an optical furnace with the float zone method
[46] with 99.999% Cu rods from Alfa Aesar. The crystal was a cylinder of 50 mm in
height and 7 mm in diameter, suspended in a platinum holder for all measurements.
Images of the crystal and mount are available in Appendix B.

For 10 K measurements, the crystal was in an aluminum canister within a closed-
cycle helium refrigerator. TOF neutron spectra were acquired at 152 individual
angles of the crystal in increments of 0.5°, about the vertical axis. For 300 K
measurements, the crystal was in a low-background electrical resistance vacuum
furnace [47]. The measurements at 300 K used 201 angles in increments of 0.5°.
The incident energy for all single-crystal measurements was 110 meV. An oscillating
radial collimator suppressed multiple scattering and background.

We reduce the single crystal data to obtain the four-dimensional S( ®Q ,ε) with the
Mantid package. An additional analysis assessed the data statistics and crystal
alignment. Then we folded the data from high- ®Q into the irreducible wedge
in the first BZ following crystal symmetry. Finally, we subtracted an averaged
multiphonon scattering correction from the S( ®Q ,ε) and thermally weighted the
spectral weights. Figure 3.2 shows the results. Appendix E includes further details
of the data post-processing,

3.3 Computation
The Vienna Ab Initio Simulation Package (VASP) was used for all ab initio DFT
calculations [48–51] with plane wave basis sets, projector augmented wave (PAW)
pseudopotentials [52] and the scan meta-GGA exchange correlation functional [53].
All calculations used 3×3×3 supercells containing 162 atoms, a 2×2×2 k -grid,
and a kinetic energy cutoff of 600 eV. The supercell configurations for calculations
were generated with the stochastic Temperature Dependent Effective Potential
(sTDEP) method or PHONOPY [54]. For further details on calculation parameters
see Appendix C.

Thermal Expansion
Thermal expansion calculations used five supercell volumes centered around the
0 K equilibrium volume. The minimization of the Helmholtz free energy, which
consisted of the electronic and phononic contributions, provided an equilibrium
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volume. The five volumes included were ±1.5% and ±3.0% and the 0 K equi-
librium volume. We used PHONOPY for QH calculations at each volume. All
QH calculations used the finite displacement method. AH calculations used the
sTDEP package [55–57].

Calculating the free energy for each volume is crucial for obtaining thermal ex-
pansion curves. We use the following conventions for defining QH and AH free
energy. In the QH approximation, Eq. 3.3 reduces to:

F QH
vib (V ,T ) = U0(V ) +

∑
®q ,s

[
ħω ®q ,s (V )

2
+ kBT ln

(
1 − e−

ħω ®q ,s (V )
kBT

)]
. (3.4)

In the QH approximation, phonon frequencies and ground state energy do not have
explicit temperature dependence, but V =V (T ) with thermal expansion.

For thermal expansion calculations, AH components are accounted for in U0(T ,V )
and ω ®q ,s (T ,V ). The expression for U0(T ,V ) in our AH thermal expansion calcu-
lations is:

U0(V ,T ) =
〈
UBO(V ,T ) − 1

2

∑
i j

∑
αβ

Φ
αβ
i j
uαi u

β
j

〉
(3.5)

where UBO(T ,V ) is the Born-Oppenheimer potential energy from sampling the
surface and Φ

αβ
i j

are forces that are matched between the actual system and with
our model Hamiltonian, and 〈〉 denotes the thermal average. The uα

i
and uβ

j

are Cartesian components of the displacements of atoms i and j . Accounting for
third-order terms for phonon self-energies, Eqn. 3.5 becomes:

U0(V ,T ) =
〈
UBO(V ,T ) − 1

2!
∑
i j

∑
αβ

Φ
αβ
i j
uαi u

β
j
− 1

3!
∑
i j k

∑
αβγ

Φ
αβγ
i j k
uαi u

β
j
u
γ
k

〉
.

(3.6)
In all the above expressions, the partial derivatives of U0 and in ω ®q ,s (T ,V ) account
for the AH components. After the lattice parameter was found by minimizing
the free energy at a given temperature, phonon dispersions and self-energy are
calculated for this temperature.

Mode Grüneisen Parameters
Previous studies of lattice dynamics and the NTE of cuprite employed the QH
approximation. In QH theory, each phonon mode s with corresponding angu-
lar frequency ω ®q ,s depends directly on the volume through the mode Grüneisen
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parameter, γ®q ,s , at a given wave vector ®q ,

γ®q ,s (V ) = − V

ω ®q ,s (V )
∂ω ®q ,s (V )
∂V

. (3.7)

Equation 3.7 predicts thermal shifts of individual phonon frequencies. An average
γ, where each γ®q ,s , is weighted by the contribution of phonon s to the heat ca-
pacity, predicts the macroscopic thermal expansion. Average phonon frequencies
decrease for positive values of γ as volume increases. This decrease in ω ®q ,s pos-
itively contributes to the vibrational entropy, Svib, and lowers the QH vibrational
Helmholtz free energy, F QH.

For AH computations, where third-order force constants are available [58], the
mode Grüneisen parameters for a mode with frequency ω ®q ,s is:

γ®q ,s (V ,T ) = − V

6ω ®q ,s (V ,T )2
∑

i j k αβγ

εi α†®q ,s ε
j β

®q ,s
√
mim j

r
γ
k
Φ
αβγ
i j k

e ®q ·®rj . (3.8)

In this equation, Φαβγ
i j k

is the cubic anharmonicity tensor with Cartesian indices α ,
β , γ. ε is the polarization eigenvector, and atomic position and mass are designed
by ®r and m, respectively. Equation 3.8 offers an advantage over Eq. 3.7 because
it is not divergent when the thermal expansion is zero. The mode Grüneisen
parameters were calculated using Eq. 3.8. All calculations were performed in
sTDEP using the third order force constants.

Phonon Self-Energy
The calculated phonon self-energy gives phonon spectra with thermal shifts and
finite linewidths. Calculations of this include terms to the third power of atom
displacements (cubic anharmonicity) [59, 60]. The AH calculations of the self-
energy were performed in sTDEP. The solution of the dynamical matrix provided
frequencies. For a given third-order force constant,Φss ′s ′′ the phonon self-energy
was calculated and adjusted with the real ∆ and imaginary Γ corrections to the
phonon self-energy. The imaginary correction to the phonon self-energy is:

Γ
®q ®q ′ ®q ′′

ss
′
s
′′ (V ,T ) = ħπ

16

∑
ss

′
s
′′

���Φ ®q ®q ′ ®q ′′

ss
′
s
′′

���2 (
n ®q ′,s ′ + n ®q ′′,s ′′ + 1

)
× δ

(
Ω − ω ®q ′,s ′ − ω ®q ′′,s ′′

)
+

(
n ®q ′,s ′ − n ®q ′′,s ′′

) [
δ

(
Ω − ω ®q ′,s ′ + ω ®q ′′,s ′′

)
− δ

(
Ω + ω ®q ′,s ′ − ω ®q ′′,s ′′

)]
,

(3.9)
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where ħΩ is a probing energy, ω2
®q ,s are the eigenvalues of the dynamical matrix,

and n are the occupancy factors. The three-phonon matrix component can be
written as:

Φ
®q ®q ′ ®q ′′

ss
′
s
′′ =

∑
i j k

∑
αβγ

εi αs ε
j β

s
′ ε
k γ

s
′′

√
mim jmk

√
ω ®q ,sω ®q ′,s ′ω ®q ′′,s ′′

Φ
αβγ
i j k

e
i
(
®q · ®ri+®q

′ · ®rj +®q
′′ · ®rk

)
, (3.10)

where the primes help identify the three-phonon interactions. Remaining indices
are defined in Eq. 3.8.

The real component of the phonon self-energy is obtained from the Kramers–
Kronig transform:

∆ ®q ,s (Ω ®q ,s ) =
1

π

∫
Γ(ω ®q ,s )
ω ®q ,s − Ω

dω ®q ,s (3.11)

Large deviations of ∆ ®q ,s (Ω ®q ,s ) from a Lorentzian function suggests a high degree
of anharmonicity.

3.4 Results
Figure 3.3 shows the percentage change in lattice parameter of cuprite versus
temperature, referenced to a nominal 0 K. Panel A compares the sTDEP lattice
parameter to experimental results. Panel B corresponds to our QH calculations
and other QH calculations in the literature. Both QH and AH calculations below
250 K reproduce the measured negative thermal expansion. However, the thermal
expansion coefficient in this region is small, less than –2.4×10−6/K, and is zero
near 250 K.

Figure 3.4b shows the calculated sTDEP phonon partial DOS curves for Cu and O
atoms in cuprite. The O atoms dominate the spectral weight in the high-energy
modes between 65 and 80 meV, and Cu atoms dominate below 45 meV. Their sum
agrees with the experimental spectra from INS measurements shown in Fig. 3.4a,
without neutron-weight corrections.

Grüneisen parameters from sTDEP with Eq. 3.8 are shown in Figs. 3.5a,c at
different temperatures. These Grüneisen parameters are in good agreement with
prior QH calculations and experimental results [40]. The plotted mode Grüneisen
parameters correspond to the same color mode in the dispersions in Fig. 3.5
b,d. Many of the low-energy dispersions have negative Grüneisen parameters.
This includes the low-energy transverse acoustic (TA) modes that are useful for
explaining the negative thermal expansion in QH theory. The high-energy optical
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modes have positive Grüneisen parameters. Still, these are similar to the Grüneisen
parameters of other phonon branches. Modes with similar Grüneisen parameters
are predicted by QH theory to have similar thermal shifts.

The real and imaginary parts of the phonon self-energy at the point ®Q = (0.25, 0.25,
0.00) are shown in Fig. 3.6, colored in correspondence with their phonon branches
in Fig. 3.5. There are large deviations from the harmonic self-energy for the
optical modes with energies above 70 meV, showing that these modes are more
anharmonic than the others. There are significant cubic AH effects for the optical
modes around 40 meV. A comparison of the partial phonon DOS to the phonon
self-energies shows that the displacements of oxygen atoms dominate these AH
modes.

Figure 3.2 shows phonon spectra from INS measurements and AH calculations
along high-symmetry crystallographic directions. Figures 3.2a) and b) show the
folded experimental data from the single crystal at 10 and 300 K, respectively,
and Figs. 3.2 c) and d) show the corresponding AH sTDEP calculations. The
main features and energies of the calculated and measured intensities agree. Both
calculated and measured data show softening of the high-energy optical modes.
However, the calculated softening of these modes is larger than the experimental
results. Below 45 meV, small changes in the calculated and measured dispersions
follow the same thermal trends.

Figure 3.7 compares experimental cuts taken at single points along the high sym-
metry path with cuts from sTDEP lineshape calculations with QH dispersion results
from PHONOPY. The AH results show thermal shifts, but the QH calculations
display no noticeable changes with the temperature on the scale of Fig. 3.7.

3.5 Discussion
Without magnetism, the coefficient of thermal expansion, β , in thermodynamic
equilibrium from the Gibbs free energy, G , is:

G (T , P ,N ) = U −T S + PV , (3.12)
∂2G

∂T ∂P
=

∂V

∂T
=V β . (3.13)

The average nuclear spacing increases with increasing increasing V . This results
in an increase in the internal energy, U , of the system as the electronic energy
increases from the ground state value. (This U is different from the U0 in Eq.
3.3.) The contribution from phonons appears primarily in the entropy term, S . For
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cuprite, the phonon entropy, Svib, dominates the entropy. The Svib directly depends
on the phonon frequencies ω ®q ,s . With anharmonicity, we assume ω ®q ,s depends
independently on both T and V . In quasiharmonicity, we assume ω ®q ,s (V (T )) so
all effects from T originate solely with ∆V = βT .

The AH sTDEP calculations better predict the measured effects of temperature
on phonons than QH PHONOPY calculations. We see this in the energy cuts of
Fig. 3.7. For cuprite, Grüneisen parameters from sTDEP and QH calculations
are essentially the same [40]. In the QH approximation, phonon shifts follow the
®q -dependence of the Grüneisen parameters shown in Eq. 3.13. This QH trend is
not the thermal trend of the phonon branches; there are two differences. First,
the phonon frequencies depend solely on volume in QH theory, so it predicts a
negligible difference between calculated dispersions at 10 K and 300 K. While the
thermal shifts are small, they are measurable and larger than predicted by QH
calculations. Figure 3.5shows a second problem. For the low TA branch at the
X point, the Grüneisen parameter is –4, whereas it is approximately +5 at the R
point. However, in Fig. 3.2 the entire low TA branch in the experimental results
shifts upwards in energy with increasing temperature. This also appears in Fig.
3.7.

There are no observable differences in the behavior at the X or R points. The
Grüneisen parameters for the low-energy optical branches also change signs at
different ®q . However, branches from sTDEP have simple behavior. The modes
below 11 meV shift upwards and above 11 meV shift downwards with temperature.

The thermal expansion of Eq. 3.13 depends only on the temperature dependence
of U through the electronic energy, and the temperature dependence of S through
the phonon frequencies, dω ®q ,s/dT . Since the QH approximation does not reliably
predict the dω ®q ,s/dT , it cannot be reliable for predicting the thermal expansion.
Nevertheless, the QH approximation gives generally good results, as shown in Fig.
3.3. With its prediction of very small shifts in phonon frequencies between 10 K
and 300 K, it is difficult to pinpoint why the QH approximation might be successful
in predicting the thermal expansion. We attribute the success to a cancellation of
errors because for many phonons, the dω ®q ,s/dT has the wrong sign.

Three-phonon processes are subject to kinematic constraints. The energy con-
straint requires pairs of lower energy phonons can add their energy to create a
higher-energy phonon. This process alters the self energies, and Fig. ?? shows
peaks at some energies where the self-energy corrections are significant. For exam-
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ple, at 10 K, most of the 3-phonon processes involve down-conversion and dominate
the high energy optical modes at 300 K (the self-energy corrections above 40 meV
are similar at 10 and 300 K). Figure ?? shows that other self-energy corrections
are becoming more significant at 300 K than at 10 K. An examination of the self-
energy corrections and the phonon partial DOS curves of Fig. 3.4 shows that a
large cubic anharmonicity is associated with optical modes (oxygen). A modest
cubic anharmonicity is from acoustic modes dominated by copper atoms.

The calculated broadenings of phonon dispersions at energies below 50 meV are
not as large as the experimental phonon dispersions in Fig. 3.2. A previous study
attributed some of the thermal behavior of cuprite to quartic anharmonicity [39].
Quartic anharmonicity can account for further shifts of phonon energies. However,
it cannot account for phonon lineshapes. This is because the loop diagram for the
quartic term does not have an imaginary part. Higher-order AH processes may
be needed to account for the measured thermal broadening and shifts of phonons
in cuprite. Therefore, it seems challenging for perturbation theory to predict the
thermal shifts of phonons in cuprite at higher temperatures.

3.6 Conclusions
INS with a pulsed neutron source and area detector measured all phonons in a
cuprite single-crystal at 10 K and 300 K. The phonons from QH and AH calculations
and experiments were compared directly. The AH theory better described the
temperature-dependent phonon behavior than the QH theory. The temperature
dependence of the low-energy transverse acoustic and high-energy optical modes
did not follow the experimental change in volume predicted by QH theory. This
QH change in volume was nearly zero because the volumes at 10 K and 300 K are
almost the same. Calculations with AH theory predicted these shifts better than
the QH theory. Nevertheless, the self-energy calculated with the AH theory failed
to capture the full thermal broadening of the measured optical modes. For cuprite,
details of the measured phonon dispersions may require higher-order anharmonicity.

Both QH and AH models successfully calculated the small NTE in cuprite. Ther-
mophysical properties such as thermal expansion are averages over numerous mi-
croscopic contributions to the Gibbs free energy. The reliability of a model that
predicts thermal expansion should be tested against its predictions of the under-
lying microscopic processes, such as the thermal softening of individual phonons.
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With this criterion, the QH theory is less compelling than the AH theory because
it predicts incorrect phonon behavior.
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Figure 3.2: Experimental and calculated phonon dispersions along high-symmetry
directions of cuprite. Experimental phonon dispersions measured by INS are shown
at (a) 10 K and (b) 300 K. Computational phonon dispersions calculated by sTDEP
are shown at (c) 10 K and (d) 300 K.
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Figure 3.3: Percentage change with temperature of lattice parameter of cuprite
from experiment and computation. (a) Experimental results [29–31, 61] are shown
as colored markers, compared to AH result from minimized free energies using
sTDEP. (b) Calculated percentage change of lattice parameter versus temperature.
QH results are colored line and markers [37, 40], compared to sTDEP results shown
with black circles.
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Figure 3.4: Experimental and calculated phonon DOS of cuprite. (a) Phonon
DOS from INS measurements on powdered cuprite. (b) Phonon partial DOS from
sTDEP calculations using second order terms at 10 K and 300 K. Solid curves are
Cu, dashed are O atoms.
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Figure 3.5: Calculated mode Grüneisen parameters for cuprite. Mode Grüneisen
parameters for dispersions, shaded to match their corresponding dispersions at (a)
10 K and (c) 300 K. (b,d) Phonon dispersions from quadratic terms in sTDEP
calculations at (b) 10 K and (d) 300 K colored to correspond with their matching
mode Grüneisen parameters.
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Figure 3.6: Real and imaginary components of the phonon self energy of cuprite.
(a,c) are the imaginary part (Γ) of the phonon self-energy at 10 K in blue and
300 K shown in red. Different shades of red and blue correspond to individual
modes designated by Figs. 3.5 (b,d), which show the real part (∆) of the phonon
self-energy. Data are for ®Q = (0.25, 025, 0.0).
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Figure 3.7: Calculated and experimental energy spectra at specific values of ®Q .
Energy spectra at three values of ®Q at 10 K (blue) and 300 K (red). (a) Energy
cut at X-point for experimental (top panel), AH calculations (lower panel), and
QH calculation (lower panel, black lines) at labeled temperatures. (b) This plot
shows the energy cut at M-point. (c) This plot shows the energy cut halfway
between the high symmetry points X and M. The color specifies the experimental
and computational data temperature. Both temperatures of the QH data are
denoted by black at the bottom because there is no discernible change of QH
phonons between 10 K and 300 K.
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C h a p t e r 4

DIFFUSE INELASTIC INTENSITY IN PHONON SPECTRA OF
CUPRITE

4.1 Introduction

T his chapter presents experimental and computational evidence of a newly
observed intensity contribution to the inelastic phonon spectrum. We can

conclude that this spectrum, which we call diffuse inelastic intensity (DII), is not
attributable to instrument artifacts, sample defects, or post-processing techniques.
In what follows, we present several physical models to explain the DII along with
its broader implications in anharmonic (AH) solids.

Recent advances in measurements and computations of AH solids has prompted
new interest in AH effects beyond the cubic perturbation term [1, 2]. While this
study is the first to observe and interpret the DII, the DII likely falls under a broader
category of AH features classified as local nonlinear quantum processes in many-
body systems. Existing examples of these processes include intrinsic localized
modes (ILM) [3–6], intermodulation phonon sidebands (IPS) [1, 7–9], and AH
interference [10, 11].

Throughout this chapter, AH effects exclusively mean phonon-phonon interac-
tions unless otherwise specified. These interactions shift the central position of
the spectral intensity of individual phonon modes to a higher or lower energy
value, commonly called stiffening or softening, respectively. Another AH change
in phonon branches is lineshape broadening. When a branch broadens, the width
of the spectral branch, which is given a quantitative value through a fitting, cor-
relates to an increase in the full width at half maximum. For a phonon of energy,
ħΩ, the phonon self-energy correction is [12]:

Σ(Ω) = ∆(Ω) + i Γ(Ω), (4.1)

where the real component, ∆, shifts the phonon energy and the imaginary com-
ponent, Γ, broadens the phonon branches. ħΩ is the phonon energy often called
the probing energy. We indirectly measure this energy in INS experiments with
neutron arrival times at the detectors.
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The DII presents as a temperature-dependent spectral band of nonuniform intensity
spread over a finite frequency range of the phonon spectra. Due to its broadening
nature, we focus on the imaginary component of the phonon self-energy, Γ. The
three-phonon interaction is [12]:

Γλ (Ω) = ħπ

16

∑
λ
′
λ
′′

��Φλλ ′λ ′′ ��2 {
(nλ ′ + nλ ′′ + 1)δ (Ω − ωλ ′ − ωλ ′′ )

}
+ (nλ ′ − nλ ′′ )

[
δ (Ω − ωλ ′ + ωλ ′′ ) − δ (Ω + ωλ ′ − ωλ ′′ )

]
.

(4.2)

In this equation, we sum over all of the interactions specified with λ, λ ′, and λ ′′.
The variables nλ, nλ ′, nλ ′′ are the Bose-Einstein thermal occupancy factors for each
of the phonon processes denoted by the subscript. In a perturbative approach, the
three-phonon matrix element, Φλλ ′λ ′′ , is [12]:

Φλλ ′λ ′′ =
∑
i j k

∑
αβγ

εi α
λ
ε
j β

λ
′ ε
k γ

λ
′′

√
mim jmk

√
ωλωλ ′ωλ ′′

φ
αβγ
i j k

e iq·ri+iq·rj+iq·rk . (4.3)

In the above equation, m is the mass, and ω is a frequency eigenvalue of the
dynamical matrix.

This study uses the previous equations in our phonon spectra calculations per-
formed at nonzero temperature with sTDEP. sTDEP produces the observed noise
at lower energy values (< 40 meV). However, at higher temperatures, sTDEP
predicts sharp, low-energy acoustic modes not seen in the experiment.

While the discrepancies appear to contraindicate sTDEP for examining these ef-
fects, sTDEP results compared with other computational results provide insight
into the underlying microscopic mechanisms of the DII. For example, machine-
learned interatomic potentials (MLIP) calculations do not fully show the DII.
However, the MLIP calculations display more diffuse intensity than sTDEP cal-
culations.

Cuprite (Cu2O) is an extreme case of a material exhibiting DII, much like the overt
presentation of ILMs and intermodulation sidebands in alkali halide compounds.
Though not explicitly referenced, past experimental work on Ag2O shows evidence
of DII in the phonon DOS [13]. The feature is evident in the center portion of
the DOS as a solid background contribution. The prevalence of DII in Ag2O is
unsurprising due to the similarities between cuprite and Ag2O. They are both Pn3̄m
structures and demonstrate high-symmetry bonding behavior with a distinct M-
O-M (M=Cu, Ag) bond. Likewise, copper and silver are predominantly coherent
scatterers of neutrons of comparable magnitude.
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When Cu or Ag bond to oxygen, the resulting oxide is mainly coherent, making it
suitable for neutron scattering. Moreover, the mass difference between the Ag/Cu
and oxygen delineates the partial DOS contribution. Ag/Cu dominates the DOS
below ∼40 meV, and oxygen modes dominate above 40 meV.

While we cannot say that any of the neutronic properties of cuprite and Ag2O
mentioned above are the origin of the DII, it does not preclude them. We be-
lieve that DII is probably a ubiquitous feature but challenging to resolve with
experiments and computations for many materials where the DII is less prominent.
There is no mention of a DII-type artifact in the scientific literature. Therefore,
we surmise that it was summarily dismissed as poor counting statistics, noise from
instrumentation, or a multiphonon effect when it appeared in experiments.

Computational Background
In lattice dynamics calculations, like sTDEP, we use random or stochastic pro-
cesses to describe the behavior of AH systems at nonzero temperatures. While
many use the terms random and stochastic interchangeably, there is a clear distinc-
tion. Stochastic processes are random processes, but not all random processes are
stochastic. The origin of the word stochastic as we use it today is from the Greek
word meaning "guess" or "conjecture." In essence, we use stochastic methods to
approximate randomness.

For example, in sTDEP we generate stochastic atomic positions consistent with a
Gaussian distribution, ui , and velocities, ¤ui :

ui =
3Na∑
s=1

εi s 〈Ai s 〉
√
−2 ln ξ1 sin 2πξ2

¤ui =
3Na∑
s=1

εi s 〈Ai s 〉
√
−2 ln ξ1 cos 2πξ2.

(4.4)

In the above equation, ξ is a randomly sampled variable ranging from 0 to 1. This
variable takes the familiar form of the Box-Mueller transformation [14]. When
constructing AH models, we rely on stochastic models in spatial and time coordi-
nates.

The Physics of Noise
We often associate the word noise with music or audio. However, any system
that produces a stochastic or random process is capable of generating noise. For
example, the average human can hear frequencies within the finite range of 20 to
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20,000 Hz. Still, so much more noise around us in our day-to-day lives falls outside
the scope that we process as sound. Phonons are a great example of this. The
typical frequency of phonons is on the order of terahertz (1012).

While the standard definition of noise carries the connotation that it is unwanted
or destructive to pure signal, noise can provide important information about what
is happening in a dynamic system. In signal processing and analog electronics,
noise gives us information about the source and the underlying mechanisms that
drive the system. We can look at phonons the same way. If we can classify the
noise present in phonon spectra, we can learn new information about fundamental
phonon interactions.

Figure 4.1: Log-log spectra for 1/f noise. White noise is shown with the black
lines, pink noise is shown in pink, and red or Brownian noise is shown in red.

We categorize noise as a particular color or spectrum. The color stems from a
stochastic process and produces a distinct frequency output and power spectrum
density. The predominant colors used to classify noise are white, pink, red (Brow-
nian), violet, and grey. There are other noise classifications, including 1/f noise,
which appears in many systems throughout nature. Fig. 4.1 shows pink, Brown-
ian, and white noise on a log-log plot. The defining feature for each type of 1/f
noise on the plot is how each changes with increasing frequency.
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1/f noise has a frequency spectrum with a spectral power density that is inversely
proportional to the frequency. The general form of the spectral power density is:

S (fκ) ∝ 1

fκ . (4.5)

In this equation, f is the frequency. The exponent, κ, ranges from 0 to 2. The
value of κ sets the color of noise. While it can take on a non-integer value, the
noise shown in Fig. 4.1 shows the noise spectrum for each integer values for κ.
We focus on κ = 2, the condition for Brownian motion, in this chapter.

Brownian motion was first observed in the early 1800s by the botanist Robert
Brown [15]. Also referred to as pedesis, derived from the Greek word for leap-
ing, Brownian motion refers to the random motion of small, fast-moving particles
suspended in a medium. While it was first seen by Brown looking through a mi-
croscope at plant pollen suspended in water, it exists throughout nature. Albert
Einstein developed its application to atomic motion in materials. His doctoral the-
sis developed many of the concepts we use today for looking at Brownian motion
in statistical mechanics [16].

Brownian motion is a Wiener process. The Wiener process provides mathematical
tools to describe Brownian motion and other continuous time-dependent random
processes. In the system we describe in this chapter, we look at how particles’
random motion can result in noise in a power spectrum. We use the Wiener–
Khinchin theorem, which allows us to relate the random time-dependent motion
to a power spectrum.

The following text presents several models to describe the origin of the DII. The
first model addresses the incoherent approximation in data reduction. The second
model shows how discontinuities in impulses can generate diffuse spectra. The
next model looks at the role of higher-order AH contributions, followed by a brief
section on AH interference. We also present a model derived from the van Hove
function. Lastly, we offer a model incorporating quantum dissipation theory which
models oxygen atoms as Brownian particles contained in an AH reservoir of Cu
atoms.

4.2 Methods and Tools
This analysis uses similar experimental and computational tools as the previous
chapter. While we describe the general procedure for this section, we refer the
reader to Chapter 3 for a detailed description.
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Experiment
INS measurements used ARCS to perform measurements on a single-crystal of
cuprite (see Chapter 3 Section 3.2) at 700 K and 900 K. For both measurements,
we mounted the crystal in a low-background electrical resistance vacuum furnace
[17]. There were 200 angles in increments of 0.5 °taken at 700 K and 900 K. The
incident energy for all single-crystal measurements was 110 meV. An oscillating
radial collimator suppressed multiple scattering and background. Similar to the
data measured at 10 K and 300 K, the data were reduced in Mantid to obtain the
four-dimensional S(Q,ε). Appendixes D and E contain full detail on the data
reduction.

Computation
To calculate the lattice dynamics, we used the Vienna Ab initio Simulation Pack-
age (VASP) and the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [18]. Additionally, the LAMMPS plugin Machine-Learning (ML) In-
teratomic Potential (MLIP) package generated interatomic potentials with the
Moment Tensor Potential (MTP) method [18, 19].

We trained the ML model and calculated trajectories with Density Functional The-
ory (DFT) supercell calculations performed with VASP. The DFT calculations used
plane-wave basis sets, projector augmented wave (PAW) pseudopotentials, and the
generalized gradient approximations (GGA) exchange-correlation functionals [20].
The supercell size was 3 × 3 × 3 containing 162 atoms. The k-grid was 2 × 2 × 2,
and the kinetic energy cutoff of 520 eV. There were N = 523 supercell configura-
tions used to train the model. Each supercell had unique atomic displacements
generated with sTDEP.

The accuracy of ML algorithms depends heavily on the makeup of the training
set. Accuracy is crucial for active learning, where the algorithm makes on-the-fly
predictions. Cases that are significantly different from the scope of the training set
may require extrapolation rather than interpolation. This can result in significant
errors. One method to address this issue is to define extrapolation explicitly. In
MLIP, the D-optimality criterion defines extrapolation, which states that a robust
training set provides the maximum value of the information matrix determinant.
Subsequently, this defines the extrapolation grade, γ (cfg), which is comprised of
the training set and current configuration and does not require ab initio data as
an input.
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Once training was complete, we performed classical MD simulations with LAMMPS.
The LAMMPS plugin Moment Tensor Potential (MTP) method generated inter-
atomic potentials. The supercell size was 30 × 30 × 30 with 162,000 atoms.
sTDEP calculations referenced in this chapter use the same procedure described
in Section 3.3 of Chapter 3. The computational results from MD calculations were
post-processed in the package VVCORE. See Appendix F for a detailed explanation
of the calculations and their code implementation.

To generate DII on a more straightforward monatomic system, we performed calcu-
lations on face center cubic Cu at 300 K using LAMMPS with MLIP. The training
sets consisted of 162 atoms in a 3x3x3 supercell. In these calculations, we work
with a modified Morse potential within LAMMPS. The Morse potential is AH and
initially developed for diatomic molecules. In this work, we apply it to a monatomic
system without loss of accuracy. The functional form is:

VM(r ) = De
(
1 − e−α (r−re)

)2
, (4.6)

where De sets the depth and α sets the width of the potential well. For the Morse
potential, the value for α is:

α =
√
ke/2De . (4.7)

In the above expression, ke is the force constant at the minimum of the potential
well. For our calculations with LAMMPS, we assembled a discontinuous Morse
pair potential to simulate the proposed impulse between adjacent atoms. We
varied the size of the potential jump with 1, 3, 5, 10 eV/Å. We also compared the
difference between using a Gaussian function in place of a discontinuity.

4.3 Results
Figure 4.2 shows the phonon dispersion high-symmetry direction along Γ to X
for fcc Cu at 300 K for each energy. The panels show the phonon dispersion
corresponding to an increase in the jump size. We see that with an increase in the
jump size, there is an increase in the noise.

Figure 4.3 shows spatial slices at the center point between the high-symmetry
direction Γ and X for fcc Cu at 300 K as a function of energy. Each line color
shows a different value of the potential jump (0-10 eV/Å). With an increase in the
jump size, there is an increase in the noise trending towards high energy.

Figure 4.4 shows the interatomic force in the copper system. Each color shows
a different jump size ranging from 0 to 10 eV/Å. Figure 4.5 shows a zoomed-in
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Figure 4.2: Data for fcc Cu simulated at 300 K along the high-symmetry direction,
Γ to X, with respect to energy. Each panel corresponds to a different value of k,
the magnitude of the atom jumps.

Figure 4.3: Data cut between Γ and X for fcc Cu at 300 K with respect to energy.
Each line is for a different value of k, the magnitude of the atom jump.
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version of Fig. 4.4. Figure 4.6 shows the discontinuity introduced into the force
constant.

Figures 4.7 and 4.8 show processed phonon spectra at 700 K and 900 K from INS
measurements along high-symmetry crystallographic directions. For both temper-
atures, the only discernible details are the low-energy acoustic modes. The DII
dominates the remainder of the spectra.

Figure 4.13 shows phonon spectra from INS measurements and AH calculations
along high-symmetry crystallographic directions. Figure 4.13 a) and c) show the
folded experimental data from the single-crystal at 700 and 900 K, respectively,
and Fig. 4.13 c) and d) show the corresponding AH MLIP calculations. The
main features and energies of the calculated and measured intensities agree. The
calculated high-energy optical modes show a broadening and softening. Due to the
degree of broadening in the experimental measurements, it is not easy to ascertain
whether the softening is consistent with the experiment. Below 45 meV, there is
inconsistency in the low-energy optical modes. While calculations yield a diffuse
signal, the optical modes maintain their features. In the experimental results, the
optical modes are entirely diffuse.

Figure 4.14a)-d) shows sTDEP calculations for a) 10 K, b) 150 K, c) 300 K, and d)
550 K. These temperature results show the softening of the optical modes as the
temperature increases. Approaching 550 K, the DII increases in intensity as the low
energy optical modes from 20 meV to 40 meV soften. The DII is most visible from
the high-symmetry points X to M. While there is visible temperature-dependent
broadening of the high energy optical modes, this is not the case for the modes
below 40 meV.

4.4 Discussion
Overall, MLIP calculations better account for the experimentally measured behav-
ior at 700 K (Fig. 4.7) and 900 K (Fig. 4.8). All calculations do not account
for what we observe experimentally fully. One approach to understanding what is
happening in this system is to investigate experimental components that we have
not accounted for in our calculations that would make the collected dispersions
more diffuse than they ought to be.
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Figure 4.4: The interatomic forces in the copper system. The magnitude of the
jump in the force is shown by the color of the line.

Figure 4.5: Expanded region of Fig. 4.4. The magnitude of the jump in the force
is shown by the color of the line.
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Figure 4.6: The nearest neighbor forceconstants in the copper system. The mag-
nitude of the jump in the force is shown by the color of the line.

Contributions of Phonon Dissipation Through Friction
This section expresses the DII in its contribution to the total scattering power spec-
trum, S (ω). The origin of this spectral contribution is from phonon friction energy
dissipation. Internal instabilities from phonon-phonon coupling and finite phonon
lifetimes are redistributed over the entire phonon spectrum [21]. Derivations of
the generalized quantum Langevin equation can generate dissipative friction forces
in dynamic systems of non-interacting phonon modes while never reaching ther-
malization.

Cuprite has a distinct linear O-Cu-O bond. This linear bonding with the nega-
tive thermal expansion (NTE) below room temperature prompted an investigation
into the presence of rigid unit modes (RUMs) in cuprite [22]. However, later
experiments investigating the same thermal expansion behavior showed that the
tetrahedral unit (OCu4) in cuprite was not rigid [23].

Our own examination of the individual AH configurations used in Chapter 3 shows
that the local tetrahedral unit becomes largely distorted at elevated temperatures.
Furthermore, the displacements of O atoms dominate the optical modes above
60 meV. The relative flatness of the modes is typical of isotropic vibrations of
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individual O-atoms. This study concluded that the ionic bonding in cuprite includes
weak intranetwork interactions between Cu atom correlations and cuprophilic O
atom interactions which become increasingly dominant with higher temperatures.

While we know that a rigid model does not accurately describe the dynamics of
cuprite, the intranetwork interactions do allow some rigidity like frictional dissipa-
tion through the movement of Cu atoms over a plane of the O atoms. Further,
this frictional interaction is necessary if we assume a closed quantum system.

In what follows, we derive an expression for the total scattering power spectrum
of Brownian-like harmonic oscillators, Cu atoms, coupled to an AH reservoir of O
atoms. We use a modified version of the Caldeira-Leggett (CL) model where we
have a nonlinear system weakly coupled to a reservoir [24]. This range requires
quantum operators to at least second-order. In solid-state quantum optics, the
contribution of the weak nonlinear regime to the total spectrum is negligible;
however, it may contribute more in other domains like Raman spectroscopy and
inelastic neutron scattering (INS).

When examining phonon behavior in materials, one typically assumes a system
in equilibrium. However, in our weakly coupled nonlinear system, we do not as-
sume thermalization, also called thermal equilibrium, due to phonon dissipation in
friction-like interaction.

Recent studies on intrinsic localized modes and intermodulation phonon sidebands
in alkali halides strongly suggest that there is internal phonon coupling in the sys-
tem that arises from nonlinear many-body effects [1]. The authors present a final
symmetrized power spectral density that obeys detailed balance when in thermal
equilibrium. However, thermal equilibrium is not experimentally or computationally
confirmed.

Detailed balance states that elementary processes, like the collision of a neutron
with atomic nuclei, must be in equilibrium with the reverse process [25]. For the
four-dimensional neutron scattering function, S (ω), this means

S (−ω) = exp
[
− ω

kBT

]
S (ω). (4.8)

In Eq. (4.8), ω, kB, and T are the frequency of oscillation, Boltzmann’s constant,
and temperature.

In grossly equivalent optical systems, there exists a phenomenon known as sideband
inequivalence [26]. Side-band inequivalence is not possible in the presence of
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strong coupling. It has a short lifetime in highly nonlinear systems. Moreover, it
is forbidden in linear systems, making it challenging to observe experimentally.

We proposed that the motion of the Cu atoms in cuprite is Brownian-like. While
Brownian systems are one of the most commonly used examples of Markovian
systems, we do not assume a Markovian setup. This assumption means that the
system has a memory of prior states. Further, we assume a system with phonon
dissipation from friction interactions and infer locally broken detailed balance.
Locally broken detailed balance does not necessarily mean that detailed balance
in the entire setup is broken, but rather broken local contributions. The last
assumption is that an outside force does not externally drive our system.

The Hamiltonian of the system and bath is

Ĥ = ħω0â
†(t ) â (t ) +

∑
k

[
ħωk b̂

†
k
(t )b̂k (t ) +

(
b̂†
k
(t ) + b̂k (t )

)3]
+

∑
k

ħ
(
Vk â

†(t )b̂k (t ) +V ∗
k â (t )b̂

†
k
(t )

) (4.9)

where â†(t ), â (t ), b̂†
k
(t ), b̂k (t ) are time-dependent creation and annihilation

operators of the harmonic oscillator system with resonant frequency ω0 and of the
reservoir with frequency ωk , respectively. The variables Vk and V ∗

k are the phonon
scattering amplitudes between a O atom of index k and a Cu atom. The creation
and annihilation must obey the commutation relationships [27]

[a (t ), a†(t )] = δ [b j (t ), b†j ′ (t )] = δj j ′ (4.10)

and

[a (t ), b†
k
(t )] = [b j (t ), b†k (t )] = [a (t ), b†

i
(t )] = [a†(t ), b†

j
(t )] = 0. (4.11)

where δj j ′ is the Dirac delta function. The remaining variables in Eq. (4.10) and
(4.11).

We can write Eq. (4.9) in terms of the composite Hamiltonians

Ĥ = ĤS + ĤR + ĤI . (4.12)

In Eq. 4.12, ĤS is the Hamiltonian of the system harmonic oscillator

ĤS = ħω0â
†(t ) â (t ). (4.13)
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ĤR is the Hamiltonian of the AH reservoir

ĤR =
∑
k

[
ħωk b̂

†(t )b̂ (t ) +
(
b̂†(t ) + b̂ (t )

)3]
. (4.14)

The remaining composite Hamiltonian expression is the interaction term is ĤI

ĤI =
∑
k

ħ
(
Vk â

†(t )b̂k (t ) +V ∗
k â (t )b̂

†
k
(t )

)
. (4.15)

Caldierra and Leggett construct the master equation in terms of the quantum
reduced density operator [28]
d ρ̂ (t )
d t

= − i ω′
0(t )

[
â†(t ) â (t ), ˆρ (t )

]
+γ1(t )

[
2a (t )ρ (t ) â†(t ) − â†(t ) â (t )ρ (t ) − ρ (t ) â†(t ) â (t )

]
+γ2(t )

[
â (t )ρ (t ) â†(t ) + â†ρ (t ) â (t ) − â†(t ) â (t )ρ (t ) − ρ (t )a (t )a†(t )

]
.

(4.16)

In Eq. (4.16), ω′
0 is a renormalized frequency of the time-dependent Einstein

oscillator. γ1(t ) and γ2(t ) are the phonon dissipation an fluctuation (noise) re-
spectively.

We obtain ρ by taking the trace of the degrees of freedom of the entire system an
reservoir such that ρ (t ) = T r [ρt ot (t )], where ρt ot (t ) = e−

i
ħ Ĥ (t−t0)ρ (t0)e

i
ħ Ĥ (t−t0)

[29, 30]. This allows the separation into a time evolution component multiplied
by the initial state of the system at an arbitrary initial time t0. We can then write
the initial state of the total system as a product of an initial state of the system
multiplied by the thermal state of the reservoir, ρt ot (t0) = ρ (t0)

⊗
ρR (t0), where

ρR (t0) = exp [−βĤR ]/T r
[
exp (−βĤR )

]
.

Previous calculations [31] show the following

ω′
0 = −Im

[
¤u (t )
u (t )

]
, (4.17)

γ1(t ) = −Re
[
¤u (t )
u (t )

]
, (4.18)

and
γ2(t ) = ¤ν (t ) − 2ν (t )Re

[
¤u (t )
u (t )

]
. (4.19)

In the above equations, u (t ) is a non-equilibrium spectral Green’s function which
satisfies the Schwinger-Dyson equation of motion,

¤u (t ) + i ω′
0u (t ) +

∫ t

t0

dτg (t − τ)u (t ) = 0, (4.20)
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with the initial condition u (t0) = 1. Using the non-equilibrium fluctuation dissipa-
tion theorem for the correlation function,

ν (t ) =
∫ t

t0

dτ

∫ t

t0

dτ′g2(τ − τ′u∗(τ)u (τ′), (4.21)

where g1 and g2 are time correlation functions,

g1(t − τ) =
∫ ∞

0

dω

2π
J (ω) exp [−i ω (t − τ)] (4.22)

and
g2(t − τ) =

∫ ∞

0

dω

2π
J (ω)n (ω,T ) exp [−i ω (t − τ)] . (4.23)

The above equations for g1 and g2 contain the information necessary to describe
the non-Markovian memory effects of the system. n (ω,T ) is the Planck occupancy
factor. The expression for the spectral density is

J (ω) = 2π
∑
k

|Vk |2 δ (ω − ωk ). (4.24)

If we assume a continuous spectral density, the expression becomes

J (ω) = 2πν (ω) |Vk |2 , (4.25)

where ν (ω) is the density of final states of the reservoir.

If we want to obtain the quantum noise of our system, we need to take the
autocorrelation

S (ω) = lim
t→∞

∫ ∞

−∞
e i ωτ 〈a′(t + τ)a (t )〉 dτ . (4.26)

It has been shown [27] that in the master equation we have the relationship,

〈a′(t + τ)a (t )〉 = u′(t + τ)u (t ) 〈a′(t0)a (t0)〉 + ν (t , t + τ), (4.27)

where we use the more general form of Eq. (4.21),

ν (t , t + τ) =
∫ t

t0

dτ1

∫ t+τ

t0

dτ2u (t , τ2)g2(τ1, τ2)u∗(t + τ, τ2). (4.28)

We use the exact form of the spectral Green’s function,

u (t ) = Ze−i ωb (t−t0) + 1

π

∫ ∞

0

γ1(ω)e−i ω (t−t0)

[ω − ω0 − ∆(ω)]2 + γ21 (ω)
dω. (4.29)
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In the above expression, we have the real correction to the self-energy γ1(ω) =

J (ω)/2 and the imaginary correction (Kramer’s Kronig relation),

∆(ω) = P
∫ ∞

0

J (ω′)
ω − ω′dω

′. (4.30)

In Eq. (4.29), the term Z is the energy correction from the coupling between the
Einstein oscillators and the reservoir. It is expressed as

Z =
1

(1 − Σ′(ωb))2
, (4.31)

where ωb = ω0 + δ (ωb). The above expression relates the residue of Σ(z ) at the
pole when z = ωb .

Using the above equations, we solve for the noise contribution to the spectrum

S (ω) = lim
t→∞

∫ ∞

−∞
e i ωτ 〈a′(t + τ)a (t )〉 dτ

= lim
t→∞

∫ ∞

−∞

[
e i ωτu′(t + τ)u (t ) 〈a′(t0)a (t0)〉 + ν (t , t + τ)

]
dτ,

(4.32)

where we get

S (ω) =Z2δ (ω − ωb) 〈a′(t + τ)a (t )〉

+
[
Z2J (ω)n (ω,T )

(ω − ωb)2
+ J (ω)n (ω,T )
[ω − ω0 − ∆(ω)]2 + γ1(ω)2

]
=S1(ω) + S2(ω).

(4.33)

S1(ω) and S2(ω) are the correlation term contributions from the system (S1) and
reservoir (S2) to the noise spectrum due to the coupling.

We perform a power series expansion on S1 giving us

S2(ω) =
Z2J (ω)n (ω,T )

(ω − ωb)2
+ J (ω)n (ω,T )

ω2
0γ

2
1 (ω)

(∑
n=0

Pn (x )x y n
)2

=
Z2J (ω)n (ω,T )

(ω − ωb)2
+ J (ω)n (ω,T )

ω2
0γ

2
1 (ω)

[
1 + 2x y + O(x 2y 2) + . . .

] (4.34)

where x = ω0/
√
ω2
0 + γ

2
1 (ω) and y = (ω − δ (ω)/

√
ω2
0 + γ

2
1 (ω)). In our ex-

perimental results, the greatest noise appears in the low-frequency limits where
ħω/kBT << 1 and ω0 << ω0. In this limit, the expression becomes

S (ω) = η′kBT

ω1−s =
µkBT

ωκ
(4.35)
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where η′ = ηω1−s
c /ħω2

0 .

While this model clearly produces the observed 1/f noise, we later address limita-
tions on the value of κ in Eq. (4.35). Previous studies on decoherence dynamics
of 1/f noise [32] have plots comparing different values in Eqs. (4.35), (4.34), and
(4.33). We refer the reader to these plots.

Aside from cuprite, a similar self-interacting weakly correlated network is CsPbBr3
which looks at the AH behavior as a phonon gas and rattling motions of Cs+

cations. Investigating materials with cage-like structures with some rigidity and
significant mass discrepancies between atomic constituents might prove valuable
for further experimental validation of the DII.

Modeling Brownian Motion in an Anharmonic Reservoir with Perturbation
Theory
In the previous section on phonon dissipation, we presented a non-Markovian model
which produces 1/f noise in the low frequency. Here we consider the other case of
Markovian Brownian motion. Cu atoms exhibit Brownian motion in an AH field or
medium from nearby O atoms in this setup. We model the behavior of this setup
using a purely AH double-well potential. Prior studies have shown the efficacy of
modeling phononic behavior using a double-well potential [33]. This AH potential
has a similar form to a Landau potential for a second-order transition [34]. We
show that the correlated Brownian motion of Cu atoms in an AH O field produces
a diffuse intensity in the power spectrum. The work in this section draws from
previous theoretical studies on classical dynamics correlations between harmonic
Brownian particles subject to a purely AH field [35].

We use the time-dependent spatial variable qs (t ), for the system of Cu-atoms and
qr ,λ (t ), for the reservoir of O-atoms. Further differences are in subscripts of the
variables.

The total Hamiltonian follows the expression:

Ĥ = ĤS + ĤR + ĤI + ĤC . (4.36)

In the equation for Ĥ , the first term, ĤS , is a Hamiltonian that describes the
system of Cu-atoms. The Cu-atoms act as Einstein oscillators, each vibrating at
a frequency of ωs . As a result, the Hamiltonian is the same as one for a simple
quantum harmonic oscillator:

ĤS =
ps (t )2
2Ms

+Us (qs (t )). (4.37)
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For now, we express the potential simply as US (qs (t )). The other variables are
the momentum, ps (t ), for a single oscillator with mass, Ms .

The second term in Eq. (4.36) is the Hamiltonian for the AH reservoir of O-atoms,
ĤR . For this Hamiltonian, we will use the following AH expression

ĤR =
∑
λ

[(
pr ,λ (t )2
2Mr ,λ

+ 1

2
Mr ,λω

2
r ,λqr ,λ (t )

2

)
+ γ

(
Ur ,λ (qr ,λ (t )) −

1

2
Mr ,λω

2
r ,λqr,λ (t )2

)]
.

(4.38)

In this expression, the subscript r denotes a variable of the reservoir. This ex-
pression sums over λ AH oscillators in the reservoir each with mass, MR ,λ, and
frequency, ωr ,λ. For adjusting the strength of a perturbation, we include γ. Note
that Eq. (4.38) recovers the equation for the simple harmonic oscillator when
γ = 0.

We model the AH potential from the standard equation for a double-well oscillator,
U (q ) = −αq2 + βq4, and use the following expression for the AH potential:

Ur ,λ (qr ,λ (t )) =
α2
λ

2βλ
− αλ

(
qr ,λ (t ) −

√
αλ
2βλ

)2
+ βλ

(
qr ,λ (t ) −

√
αλ
2βλ

)4
. (4.39)

In the above expression, αλ and βλ are positive constants. The
√

αλ
2βλ

term sets
the origin of the AH potential to the minimum of the left well.

In Eq. (4.36), the next component is a correlation term between the system and
the reservoir. For this calculation we assume the coupling is linear in both reference
frames. This term must include both qs (t ) and qr ,λ (t ):

ĤI = ρCr ,λqs (t )qλ (t ). (4.40)

In the coupling Hamiltonian, ρ is a sufficiently small scaling prefactor that we
will use for our perturbative approach. Cr ,λ is a coupling constant between the
harmonic system and the λ-th oscillator in the AH reservoir. The final two terms,
qs (t ) and qr ,λ (t ) are linear position functions in the system and reservoir reference
frames specified by the subscript.

The final term in our general Hamiltonian is ĤC . This term is often called a counter
term. The counter term ensures that the reservoir does not directly modify the
harmonic potential system. We write it as a second-order perturbation expansion
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term of the coupling Hamiltonian:

ĤC = −ρ2
C 2
r ,λ

2Mr ,λω
2
r ,λ

qs (t )2. (4.41)

Summing the components, the full Hamiltonian becomes

Ĥ =ĤS + ĤR + ĤI + ĤC

=
ps (t )2
2Ms

+Us (qs (t ))

+
∑
λ

[(
pr ,λ (t )2
2Mr ,λ

+ 1

2
Mr ,λω

2
r ,λqr ,λ (t )

2

)
+ γ

(
Ur ,λ (qr ,λ (t )) −

1

2
Mr ,λω

2
r ,λqr ,λ (t )

2

)
+ ρCr ,λqs (t )qr ,λ (t ) − ρ2

C 2
r ,λ

2Mr ,λω
2
r ,λ

qs (t )2
]
.

(4.42)

With the full Hamiltonian in phase space coordinates, we use Hamilton’s equations
for p and position, q:

dq
d t

=
∂Ĥ

∂p , (4.43)

dp
d t

= −∂Ĥ
∂q . (4.44)

The goal is to obtain the positions in both reference frames, qs (t ) and qr ,λ (t ).
Starting for the harmonic system:

dps (t )
d t

= − ∂Ĥ
∂qs

= −∂Us (qs (t ))
∂qs (t )

−
∑
λ

[
ρCλqr ,λ (t ) − ρ2

C 2
r ,λ

Mr ,λω
2
r ,λ

qs (t )
]
.

(4.45)

The left hand side of the equation can be written as dps
d t = Ms

d ¤qs (t )
d t , where the

dot specifies a time derivative. We solve for qr ,λ (t ) to obtain an expression for
qs (t ) that is independent of the spatial coordinates of the reservoir:

Ms ¥qs (t ) +
∂Us (qs (t ))
∂qs(t)

= −
∑
λ

[
ρCr ,λqr ,λ (t ) − ρ2

C 2
r ,λ

Mr ,λω
2
r ,λ

qs (t )
]
. (4.46)

For this, we use a perturbation theory approach:

qr ,λ (t ) = q(0)
r ,λ

(t ) +ρq(1ρ)
r ,λ

(t ) +γq(1γ)
r ,λ

(t ) +ργq(ργ2)
r ,λ

(t ) +ρ2q(2ρ)
r ,λ

(t ) +γ2q(2γ)
r ,λ

(t ) + . . .
(4.47)
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Due to the relative magnitude of the zeroth and first order terms, we only keep
terms up to first order for both ρ and γ:

qr ,λ (t ) = q(0)
r ,λ

(t ) + ρq(1ρ)
r ,λ

(t ) + γq(1γ)
r ,λ

(t ). (4.48)

Substituting the above expression into Eq. (4.46):∑
λ

Mr ,λ ¥qr ,λ (t ) = −
∑
λ

[
γ

(
∂Ur ,λ (qr ,λ (t ))
∂qr ,λ (t )

−Mr ,λqr ,λ (t )
)
+ ρCr ,λqr ,λ (t )

]
= −

∑
λ

[
γ

(
2α1qr ,λ (t ) − 3α2q2

r ,λ (t ) + 4α3q3
r ,λ (t )

− Mr ,λqr ,λ (t )
)
+ ρCr ,λqs (t )

]
(4.49)

For the zeroth order case (γ = ρ = 0), we get:

¥q(0)
r ,λ

(t ) + ω2
r ,λq

(0)
r ,λ

(t ) = 0 (4.50)

and the following solution:

q(0)
r ,λ

(t ) =qr ,λ (0) cosωr ,λt +
pr ,λ (0)
Mr ,λωr ,λ

sinωr ,λt

=q0,r ,λ cosωr ,λt +
p0,r ,λ

Mr ,λωr ,λ
sinωr ,λt

(4.51)

where qr ,λ (t = 0) = q0,r ,λ and pr ,λ (t = 0) = p0,r ,λ.

Now we want to do the same for the first-order of γ. From this, we obtain the
following solution [35]:

q(1γ)
r ,λ

(t ) = K0 + K1s sinωr ,λ + K1c cosωr ,λ
− K2s sinωr ,λ − K2c cosωr ,λ
− K3s sinωr ,λ − K3c cosωr ,λ

(4.52)
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The expressions for K are:

ω2
r ,λK0 =

3

Mr ,λ

√
2αλβλ

[
Q 2
λ + P

2
λ

]
4ω2

r ,λK1s =Ω
2
λPλ −

3βλ
Mr ,λ

[
P 3
λ + Q 2

λPλ
]

4ω2
r ,λK1c =Ω

2
λQλ −

3βλ
Mr ,λ

[
Q 3
λ + QλP

2
λ

]
3ω2

r ,λK2s =
6
√
2αλβλ

Mr ,λ
QλPλ

3ω2
r ,λK2c =

3
√
2αλβλ

Mr ,λ

[
Q 2
λ − P

2
λ

]
8ω2

r ,λK3s =
βλ
Mr ,λ

[
P 3
λ − 3Q 2

λPλ
]

8ω2
r ,λK3c =

βλ
Mr ,λ

[
3QλP

2
λ − Q 3

λ

]

(4.53)

where Qλ = qr ,λ (0), Pλ = pr ,λ (0)/(Mr ,λω
2
r ,λ) and Ωλ =

[
ω2
r ,λ −

4αλ
Mr ,λ

]1/2
. With

a complete solution q(1)
r ,λ

(t ), we do the same for the perturbation term, ρ. The
solution is:

q(1ρ)
r ,λ

(t ) = − Cr ,λ

Mλω2
r ,λ

[
qs (t ) − q(0)

s (t ) cosωr ,λt −
∫ ∞

0
d t ′ ¤qs (t ′) cosωλ (t − t ′)

]
(4.54)

We see here that the counter term we used cancels out with the full expression
for qr ,λ (t ). Further, we see that we can use the above solutions and the original
Langevin equation for Brownian motion to write the expression:

Ms ¤qs (t ) + Us (qs (t )) +
∫ t

0
γ2

∑
λ

C 2
r ,λ

Mr ,λωr ,λ
cosωr ,λ (t − t ′) ¤q(0)

s (t )d t ′ = Γ(t ).

(4.55)
We are interested in finding an expression for Γ(t ) because by the definition of the
Langevin equation for a harmonic oscillator in a medium which takes the form:

M
dv
d t

= −µv + Γ(t ) − k x , (4.56)

where M is mass, v is velocity, kx is the harmonic spring constant multiplied by
displacement from the original position, and Γ(t ) is the noise term.

To further simplify the expression, we must set some parameters based on what
is happening in our system. The relaxation time of the Brownian particle will be
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significantly shorter than the relaxation time of the reservoir. Therefore, we equate
q(0)
s (t ) = qs (t ) to simplify the expression:

Ms ¤qs (t ) +
∂Us (qs (t ))
∂qs(t)

+ γ2
∑
λ

C 2
r ,λ

Mr ,λωr ,λ

∫ t

0
cosωr ,λ (t − t ′) ¤qs (t )d t ′ = Γ(t ).

(4.57)
To determine the contribution of the noise, we need to take the time auto-
correlation of the noise function, Γ(t ). To do this, we use perturbation theory
and model our system as a canonical ensemble. We use the probability function
for a specific value of λ:

Pλ =
1

Z
e−Ĥλ/kBT . (4.58)

The above equation gives us one of the probabilities. To obtain the probability of
the whole system, we use:

P = Πλ
1

Z
e−Ĥλ/kBT . (4.59)

Using the Hamiltonian we found in Eq. (4.38), we separate the individual Hamil-
tonians into two components:

Ĥ0 =
∑
λ

[(
p2
r ,λ (t )
2Mr ,λ

+ 1

2
Mr ,λω

2
r ,λq

2
r ,λ (t )

)]
,

Ĥ1,λ =

(
Ur ,λ (qr ,λ (t )) −

1

2
Mr ,λω

2
r ,λq

2
r,λ (t )

)
.

(4.60)

We recognize that the solution follows the fluctuation-dissipation theorem from
here. For the noise contribution to the power spectrum up to second-order terms,
we obtain:

〈Γ(t )Γ(t ′)〉 = γ

βλ
+ λ2ε

∑
ν

Dr ,λC
2
r ,λ

Mr ,λω
2
r ,λ

cosωr ,λ (t − t ′). (4.61)

The variable Dr ,λ can be written as:

Dr ,λ =
1

kBT

(
1

2
− 2αλ

Mr ,λω
2
r ,λ

)
− 1

(kBT )2
6βλ

(Mr ,λω
2
r ,λ
)2
. (4.62)

From these equations, we recover an expression that reflects higher-order 1
kBT

corrections to the fluctuation-dissipation theorem. The dissipation in the system
can be tuned based on the values of αλ and βλ. It is important to note that the
order of the noise is 1

kBT
, which is comparable to the energy of our system.
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The physical meaning of Dr ,λ is not entirely intuitive. The terms α and β are
adjustable parameters that define the AH well. These will be specific to each sys-
tem. While we write them as constants, they might depend on spatial coordinates
or frequency, as do the displacement term prefactors in AH codes like sTDEP. To
obtain a more physical understanding of the behavior of the noise, we can com-
pare its behavior at different temperatures. We can calculate values at different
temperatures if we assume that the only explicit temperature dependence comes
from T. Setting all variables equal to 1 and letting ωr ,λ range from 0 to 100, we
can substitute different temperatures. For this example, we take a ratio of Dr ,λ
for 10 K, 300 K, and 1000 K. Between 10 K and 300 K, Dr ,λ increases thirty times.
Between 10 K and 1000 K, it increases one hundred times, shown in Fig. 4.9.
The corresponding value for the noise time correlation appears in Fig. 4.10. This
function behaves similarly to the proposed Gaussian impulse model shown in Fig.
4.11.

To further validate this model, we need to perform molecular dynamics simulations.
For example, we should tune the peaks in Fig. 4.10 to determine if they numerically
correspond to particle collision times in MD simulations.

Addressing Other Colors of Noise
The previous section described a model where the oxygen atoms act as independent
Einstein oscillators undergoing Brownian motion that introduce Brownian noise
into the power spectrum. Here we discuss the possibilities of other types of noise,
specifically pink noise. We assume the oxygen atoms act as unperturbed Einstein
oscillators similar to the previous Brownian model. Returning to the concept of 1

fκ

noise. We examine the κ = 1, known as the pink noise case.

Revisiting Eq. (4.1), we showed the corrections to the phonon self-energy for a
phonon of energy ħΩ. In these equations, the real part of the phonon self-energy
∆ shifts the phonon energy, and the imaginary component Γ in Eq. (4.2) broadens
it. We will use these equations to show that the diffuse spectra do not come from
pink noise from a superposition of Lorentzian functions.

Previous work has shown that a superposition of Lorentzian functions can approxi-
mate all complex functions that obey the Kramers-Kronig relations [36]. Moreover,
the Kramers-Kronig relations result from causality in both the frequency and time
domain, which tells us a response must follow a cause.

In an ideal INS experiment, the one-phonon neutron cross section can be written



63

as:
σλ (Ω) ∝ 2ωλΓλ (Ω)[

Ω2 − ω2
λ
− 2ωλ∆λ (Ω)

]2 + 4ω2
λ
Γ2
λ
(Ω)
. (4.63)

In the above equation, we measure the probing energy ħΩ during an experiment.
It is the likelihood of exciting a phonon with momentum q and energy ħΩ. ω2

λ is an
eigenvalue of the dynamical matrix for the one phonon process λ. It is analogous
to measuring the phonon lineshape when varying the probing energy.

We can use the Kramers-Kronig transform to obtain the real part of the phonon
self-energy:

∆(Ω) = 1

π

∫
Γ(ω)
ω − Ω

dω (4.64)

For our specific case, we can rewrite the one-phonon scattering cross section in
terms of a superposition of Lorentzian functions. The desired form of our function
is given by:

L(ω′) = 1

π

1
2Γ

′

(ω′ − ω′
0)2 +

(
1
2Γ

′
)2 . (4.65)

In the previous equation, L designates the Lorentzian function. When the reso-
nance frequency, ω′

0, is greater than zero, then ω′ is a subsidiary frequency. Γ′ is a
bandwidth. The prime designation differentiates these variables with the frequen-
cies in the one-phonon cross-section.

Comparing this function to the one-phonon scattering cross-section, we find that
in the limit where Γλ (Ω) and ∆(Ω) approach small constant values, we recover
a Lorentzian function. 1/fκ noise is commonly explained by a superposition of
Lorentzian functions with a spread in relaxation times [32, 37]. It is tempting
to argue that sTDEP generates pink noise through a superposition of Lorentzian
function. However, this does not correspond with the physics of our system.

The Role of Discontinuities in Diffuse Spectral Intensity
While many interatomic potentials in DFT calculations are continuous, model
systems could include discontinuities. For example, phase noise is a frequency-
domain view of the noise spectrum around an oscillator signal. At the same time,
jitters are a time-domain measure of the timing accuracy of the oscillator period.
To get from the impulse to the spectral function, we take the autocorrelation of
the displacement in time. While this does not reflect the random nature of a jump
we are likely to see, it results in diffuse intensity.
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Here we present a model system of copper atoms in a Morse Potential. We
introduce a discontinuity in the atomic momentum and the resulting potential to
show how this generates diffuse spectra that decrease with increasing energy. We
assume interactions between nearest neighbors and the Born-von Karman boundary
condition holds.

A Morse potential has the functional form:

VM(r ) = De
(
1 − e−α (r−re)

)2
. (4.66)

In the above equations, De is the depth of the potential well; α regulates the width
of the well; re is the equilibrium atomic bond length; r is the distance between
atoms.

From this, we obtain the force:

FM = −dVM
dr
. (4.67)

In classical mechanics, the force equals the negative of a force constant multiplied
by the the distance of the particle from its equilibrium point:

F = −kf (r − re). (4.68)

Solving for the forceconstant, kf , and substituting Eq. (4.67) into the above
equation,

kf (r ) = −F /(r − re)

= −2aDe (V (r )2 −V (r ))
(r − re)

.
(4.69)

In Chapter 3, we compared the accuracy of quasiharmonic (QH) and AH models
to predict the thermal expansion and overall phonon behavior in cuprite at tem-
peratures from 10 K to 300 K. Here we look at higher temperature single-crystal
measurements taken at 700 K and 900 K. Next, we focus on the overall phonon
behavior, exhibiting exciting features at elevated temperatures. At higher temper-
atures, the spectra take on a diffuse appearance. Neither our sTDEP nor MLIP
calculations show this behavior.

Higher-Order Anharmonic Contributions
The previous study of cuprite (see Ch.3) showed that higher-order AH terms might
be needed to model the microscopic temperature-dependent dynamics correctly.
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To further ascertain the role of higher-order AH terms play in reproducing the
DII, we compared phonon dispersions calculated with sTDEP with results from
the MLIP package with LAMMPS as described in Section 4.2. While the former
considered AH terms to cubic order, the latter included all AH terms.

From the AH approximation, we know that the three-phonon processes cause the
phonon spectral function to approach zero as we approach double the maximum
phonon frequency. For cuprite, this upper bound is roughly 600 K, which is ap-
proximately 75 meV [38]. Including the factor of two, we expect the dispersion to
approach zero as we increase in frequency up to 100 meV, as seen in Fig. 4.12.

Based on the observed behavior, we know that three-body AH terms are not
entirely responsible for the DII. If it were, DII would be a significant component in
the majority of, if not all, phonon dispersions at nonzero temperatures. However,
we observe that MLIP produces more noise than sTDEP. Therefore, while higher-
order AH terms do not generate sufficient noise, we see that they play a small part
in creating DII. We examine the similarities and differences in our simulations to
determine why MLIP calculated dispersions show more uniform noise in the phonon
spectra than sTDEP. Notably, sTDEP and MLIP calculations showed cuprite’s
distinct low-energy acoustic and optical modes. However, as seen in Fig. 4.13 the
experimental results show nontrivial broadening in this range.

Gaussian Impulse Model
The high-energy optical modes show a modest softening and considerable broad-
ening in the calculations with an increase in temperature (Fig.4.14). In Chapter
3, we mentioned the relationship between the size of the lattice constant and the
central positions of the optical peaks, so we can reasonably attribute the soften-
ing of the high-energy optical modes to the change in lattice size from thermal
expansion (Appendix C).

Below 40 meV, the experimental DII is prominent and appears as a background
signal beneath the phonon dispersion curves. The curves significantly broaden
at 300 K, but still retain features. The DII is characteristically similar to diffuse
scattering from displacement disorder in a diffraction pattern. We adapt this
displacement disorder model to work in the time domain.

In the cuprite system, we postulate that the motion of the O-atoms is disturbed
by sudden momentum transfers from adjacent Cu atoms in the time domain. The
momentum transfers abruptly change the O-atom’s vibrational phase, resulting in
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a discontinuous force and momentum. The momentum takes a similar form to a
boxcar or unit impulse function. This behavior is analogous to phase noise and
jitter behavior seen in electronic band-pass filters that attenuate frequencies that
fall outside a specific range. The resulting signal is filtered, but contains noise-
like artifacts from the attenuation in both the frequency and time domains. Here
we offer a similar analytical model for phase and amplitude disorder in the time
domain for the dynamics of an A-atom with B-neighbors analogous to the O-atom
and Cu-atoms in cuprite.

For an unperturbed Einstein quantum oscillator, we have the usual equations of
motion for the oxygen atom in the cuprite crystal:

iħ
∂

∂t
â (x , t ) =

[
â (x , t ), Ĥ

]
= ħω (x , t ). (4.70)

The subsequent Hamiltonian for this setup is:

Ĥ = ħω

(
â†â + 1

2

)
(4.71)

where the lowering and raising operators â(x,t) and â†(x,t), for a phonon with
frequency ω0 are, respectively:

â (x , t ) = â (x )e−i ω0t (4.72)

and
â†(x , t ) = â†(x )e i ω0t . (4.73)

These operators allow us to construct a real wavefunction solution for an Einstein
oscillator:

ψ (x , t ) =

√
ħ

2ω0

[
â (x )e−i ωt + â†(x )e i ωt

]
. (4.74)

Looking at the phonon dispersions along the high-symmetry path in Fig. 3.2, the
form of the modes does not vary wildly, meaning the O-atom vibrations do not
have a strong Q-dependence. Therefore, we neglect the Q-dependence of the
phonons, unit location, or any spatial information. This assumption allows for the
simplification of Eq. (4.74).

ψ∗(t = 0) =

√
ħ

2ω0

[
â† + â

]
,

ψ (t ) =

√
ħ

2ω0

[
âe−i ω0t + â†e i ωt

]
. (4.75)
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The double differential cross-section for one phonon inelastic neutron scattering in
the incoherent approximation is [39]:(

d 2σ

dΩdE

)
=
kf
k i

N

M
e−2W

Q2

3

σ

2πħ

∫ ∞

−∞
e−i ωt 〈ψ∗(0)ψ (t )〉 d t . (4.76)

In this equation, N is the number of atoms; M is the atomic mass, σ is the neutron
scattering cross section. The shape of the energy spectrum is from the integral,
where 〈〉 denotes the thermal average:

I (ω) =
∫ ∞

−∞
e−i ωt 〈ψ∗(0)ψ (t )〉 d t . (4.77)

We need to calculate the time autocorrelation function in the above expression:
〈ψ∗(0)ψ (t )〉. This is straightforward for a harmonic oscillator:

I (ω) =
∫ ∞

−∞
e−i ωt

ħ

2ω0

[〈
â†â

〉
e−i ω0t +

〈
â â†

〉
e i ω0t

]
d t . (4.78)

The thermal averages for our harmonic oscillator give:

I (ω) = ħ

2ω0
2π [〈n〉 δ (ω + ω0) + 〈n + 1〉 δ (ω − ω0)] . (4.79)

This I (ω) has two peaks at ±ω0 about the elastic line with relative intensities as
expected from detailed balance as 〈n+1〉

〈n〉 .

However, the oxygen atom (atom A) does not behave like a simple harmonic
oscillator for more than a few cycles. The model assumes that brief interactions
with a heavier B-atom modify an A-atom’s motion. Furthermore, we presume
A- and B-atoms vibrate independently and have significantly different frequencies,
which is the case for oxygen and copper. When an A- and B-atom reach a critical
distance, a transfer of impulse ±∆p occurs that alters the dynamics of the lighter
A-atom oscillation. This interaction causes a sudden change in the forces between
the atoms and the resulting energy of the A-atom. Although this alters the energy,
the thermal average remains kBT . However, there is an error in the phase of
oscillation that is cumulative.

We expect phase changes with positive and negative signs. Overall, the phase
changes average to zero but have a mean-squared error that grows with the number
of impulse transfers. This provides a basic explanation that originates from the
van Hove function of Eq. (??), but we can look at the specific dynamics of this
system. The momentum of the A-atom has a time-dependence

ψA(t ) = ψ0 { exp(i[ωAt + φA|B(t )]) + c .c . } (4.80)
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which would have pure frequencies ±ωA if φ were constant, with a spectral shape
of I (ω) ' δ (ω ∓ ωA). For nonzero φA|B(t ), a time-averaged spectrum would
have a spread in frequencies that increases with the amplitude of the stochastic
function φ and the frequency of energy transfers, 1/τ. Analogously, phase noise
in oscillators has a power spectrum that is peaked near ω0, but has broad tails
that extend over a wide range of frequencies [40]. In our model, the characteristic
time τ for the phase errors of the A-atom is the period of oscillation of the B-
atom (τ = 2π/ωB). The frequency spectrum of the real fluctuating quantity
ψA(t ) is obtained from its time-time correlation function over long times, and the
Wiener-Khinchin theorem.

Each stochastic change of phase of the A-atom, ∆φ, is assumed to have a Gaussian
probability distribution with zero mean and a standard deviation, γ. This changes
when we look at the first impulse transfer at time τ

P∆φ (t ) =
1

√
π γ

e−(t−τ)2/γ2 . (4.81)

The second impulse transfer from the B-atom adds to the phase uncertainty of
the A-atom. With respect to the phase at the initial time, it is the convolution
of Eq. (4.81) with itself, giving a Gaussian with standard deviation

√
2γ. The

convolution with Eq. (4.81) is performed at each time interval τ, so

Pφ (t ) =
∞∑

n=−∞

1√
|n | π γ

e−(t−nτ)2/(|n |γ2) (4.82)

which is a sum of Gaussians spaced by intervals of τ and the width of the Gaussians
increase with time. The case n = 0 is taken as the limit τ → 0, giving a δ-function
of unit area. Terms with negative n give the phase distributions at earlier times
that give the reference phase at t = 0.

The power spectrum from the phase disorder, I (ω), is the Fourier transform of
the time-time correlation function, Pφ (t )

I (ω) =
∞∫

−∞

e−i ωt
( ∞∑
n=−∞

1√
|n | π γ

e−(t−nτ)
2/(|n |γ2)

)
d t . (4.83)

Substituting t ′ = t − nτ and taking Fourier transforms of the series of Gaussian
functions:

I (ω) =
∞∑

n=−∞
e−ω

2 |n |γ2/4 e−i nωτ . (4.84)
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Evaluating Eq. (4.84) as two geometric series [41]

I (ω) =
1

1 − exp
[
− ω2γ2/4 + iωτ

] + c .c . − 1 , (4.85)

I (ω) =
1 − e−ω2γ2/2

1 + e−ω2γ2/2 − 2e−ω2γ2/4 cos(ωτ)
. (4.86)

A time-time correlation function for the phase of the A-atom, of Eq. (4.82), is
shown in Fig. 4.16a for the ratio γ = τ/3. The corresponding I (ω) of Eq. (4.86)
is shown in Fig. 4.16b for γ = τ/3 and two other ratios, showing the sensitivity of
the fluctuation spectrum to the ratio γ/τ. Small values of γ/τ give sharp features
in the spectrum at the characteristic frequency of the B-atom and its harmonics.
These features would be difficult to observe in experiments because the main peak
of Fig. 4.16b largely overlaps the spectrum from the Einstein mode of the B-atom
at ωB. Small changes in the value of γ greater than τ/3 quickly eliminate the
peaks in the intensity spectrum however, as shown in Fig. 4.16b.

In all cases, our stochastic model for I (ω) of the A-atom rises gradually from zero
to a plateau at approximately 2ωB. A roll-off at low frequencies is predicted with
Eq. (4.86), and seems consistent with the low intensity below the acoustic modes
in Fig. 4.13. Although the analytical form of I (ω) extends to infinity in ω, there
must also be a roll-off at large ω because the impulse is not instantaneous.

For Cu2O, first, consider how the Einstein modes of the O-atoms alter the dynamics
of the Cu-atoms. The characteristic time for the O-atom vibration is τ ' 1.7 ×
10−13 sec (70 meV). This was the τ used for numerical values in Fig. 4.16. The
γ is less certain, but should increase with temperature, smoothing any peaks in
I (ω). We can make similar arguments for how impulse transfers from neighboring
Cu-atoms alter the O-atom dynamics. This transfer should be a strong effect,
owing to the mass difference between Cu and O.

When Cu-atoms alter the dynamics of O-atom vibrations, we expect a broad in-
elastic spectrum from phase fluctuations at the energies above the peak of the
Cu phonon partial DOS at 12 meV (Fig. 3.4). Several phonon dispersions are in
this energy range, spreading the normal mode spectrum and allowing the multiple
contributions of the phase fluctuation spectra to be proportionately larger.

The momentum of the B-atom increases as
√
2mkBT . We expect the impulse

transfers to increase as
√
T , and the relative intensity of the broad background

from phase fluctuations to increase with T , in qualitative agreement with the
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experimental trend of Fig. 4.13. A small change in γ can quickly smooth the
distinct phonon peaks in I (ω).

In our model, the atoms that dominate the phase fluctuation spectra are the
neighbors of the atoms that dominate the normal modes. We expect the fractional
contribution to the diffuse intensity in I (ω) at energies below 50 meV to be from
O-atoms scattered out of their vibrational modes by the slower-moving Cu-atoms
in their first-neighbor shell. Above 50 meV, we expect the diffuse background to
originate from Cu-atoms perturbed by the faster-moving O-atoms. Quantitative
interpretations would require consideration of the different phonon modes that can
interact in cuprite and the transition towards classical behavior as the low-energy
modes (such as the band at 10 meV) become more occupied with temperature.
Correlations in the motions of Cu and O-atoms would bring structure to the diffuse
intensity.

This approach assumes that the noise is uniform throughout the spectrum. While
sTDEP calculations show the phase noise appearing prominently in the lower en-
ergy modes, MLIP calculations capture more of this broad diffusivity than the
experimental INS results.

Anharmonic Interference
When investigating the DII in cuprite, we would be remiss if we did not address
the phenomenon known as AH interference. Ambegaokar, Conway, and Baym
first proposed AH interference at the 1963 International Conference on Lattice
Dynamics [42]. While the theory of it was a topic of interest in lattice dynamics in
the 1960s, there was a lack of convincing experimental evidence. There has been
no further experimental validation in the years following its inception. Initially
defined as the diffuse spectral intensity from the interaction between the one-
phonon contribution to the dynamic structure factor with various multiphonon
components, we extend the idea past the one-phonon case.

Since the 1960s, advancements in code packages have allowed us to work with
higher-order phonon effects. For example, AH interference can form from the
interaction of an n-phonon process with an m-phonon process. In this portion of
the text, we endeavor to determine if AH in cuprite is sufficiently large enough to
cause a diffuse spectral intensity. If so, we must also determine if it would produce
the type of Brownian noise we see in the phonon spectra.

The one-phonon cross-section has a resonant frequency equal to the phonon fre-
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quency. The corresponding lineshape for the one-phonon cross-section is equal to
the inverse of the phonon lifetime. In materials with non-negligible AH interfer-
ence, the resonant phonon frequency shifts from the phonon frequency, and the
neutron scattering cross-section deviates strongly from a Lorentzian function.

The AH interference contribution to the dynamic structure-function, Sp (Q, E )
between a one-phonon process with a multiphonon process in the original 1963
paper is:

Sp (Q,ω) =
2e−2W

1 − e−βω
× Im

[
R i (Q,ω − i ε)Di j (Q,ω − i ε)R j (Q,ω − i ε)

]
.

(4.87)
The first term on the right hand of the above expression, R i (Q,ω − i ε) can be
written as:

R i (Q,ω − i ε) = Qi +
∫ ∞

∞

dω

2π
(4.88)

In the above expression, Di j (Q − i ε) is:

Di j (Q,ω − i ε) =
∫ ∞

∞

dω

2π

Ai j

Q,ω (4.89)

These expressions are far too small in magnitude to generate the noise that we
see.

In his 1963 paper on AH corrections for a cubic crystal, Thompson estimates the
intensity ratio of the interference terms to the total intensity [43]. He estimates
that the AI contributes approximately 1% to the one-phonon peak. Overall he
estimates an even more minor correction of 0.01% for the Bravais lattice. While we
cannot entirely isolate the DII to obtain a corresponding percentage, we observe
a more significant effect than Thompson’s calculated percentages. Further, his
estimation shows that the AI contribution for the one-phonon case directly depends
on the thermal expansion. However, cuprite has very small thermal expansion
coefficients even at elevated temperatures. Therefore it is unlikely that AI is
responsible for the diffuse background.

4.5 Conclusions
In this work, we performed calculations on cuprite using the AH codes sTDEP and
MLIP to explain the DII. At the same time, each code produced some degree of this
diffuse phenomenon, but neither fully matched what we saw in the experimental
INS data at 700 K and 900 K. To further understand the underlying mechanisms
of the DII, we proposed and tested a Gaussian impulse model that relied on the
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mass discrepancies between the oxygen and copper atoms which we saw as phase
differences. In addition, we analyzed the possibility of a failing of the incoherent
approximation, which would present a noise-like background if present. We also
looked at the role force discontinuities play in noise production. Lastly, we looked
into AH interference. While AH interference would produce the type of noise we
expect to see, it would not be sufficiently large enough.

We addressed several possible origins of the DII in cuprite throughout this chap-
ter. Concepts such as pink noise lack scientific justification in this setting. AH
interference is too negligible in magnitude relative to the spectrum. Ideas such
as Gaussian impulses in-phase and AH reservoirs provide classical and quantum
explanations for this phenomenon. However, a more in-depth analysis of other
compounds is required.

These are promising models, and it may be possible to use them with molecu-
lar dynamics calculations to give more quantitative comparisons to experimental
measurements of DII.
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Figure 4.9: Comparison of Dr ,λ for different temperature values. Low temperature
values appear in light pink and high temperature values are in dark purple. The
temperatures range from 10 K to 500 K. All other variables in the expressions are
set to unity.
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Figure 4.10: Comparison of the noise time correlation, 〈Γ(t )Γ(t ′)〉, plotted as a
function of time from temperatures ranging from 10 K to 500 K. High temperatures
are shown in dark purple, and low temperatures are shown in light pink. All other
variables in the expressions are set to unity.
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Figure 4.11: Comparison of spectral weight predicted in Fig. 4.13 with the experi-
mental data from cuprite at 300 K. The positioning of the calculated curve is over
the peak in the phonon scattering dominated by copper atoms, and the diffuse
tails extend above and below the experimental range. The comparison suggests
that γ ' τ/3.

Figure 4.12: Cuts from the INS data for experimental data. Location in Q of the
cut is shown in each panel. At high energy, the spectrum goes to zero.
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Figure 4.13: a, c) Phonon dispersions along high-symmetry directions measured
by INS at 700 and 900 K respectively. Phonon dispersions calculated with MLIP
at b) 700 K and d) 900K.
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Figure 4.14: This plot shows calculated sTDEP phonon dispersions for (a) 10 K,
(b) 150 K, (c) 300 K, (d) 550 K along the high-symmetry path.
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(a) This is a cartoon representation of the dynamics between the
O (red) and Cu atoms (blue) before the impulse interaction. In
this setup, the Cu and O have different phases.

(b) This is a cartoon representation of the dynamics between the
O and Cu atoms. As the O and Cu get closer, the dynamics of
the O-atom are altered by an impulse transfer from the Cu.

Figure 4.16: (a) Time-time correlation function of Eq. (4.82) for γ = τ/3. (b)
Intensity I (ω) of Eq. (4.86) from Fourier transform of panel a, for different ratios
of γ/τ.
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C h a p t e r 5

FINAL REMARKS AND FUTURE DIRECTIONS

I n this work, we used experimental methods, computation, and theory to explain
the mechanisms driving the thermal behavior of cuprite. We show the inherent

value in using an anharmonic (AH) over a quasiharmonic (QH) model. AH models
describe the thermal expansion behavior while simultaneously obtaining accurate
macroscopic quantities and correct microscopic behavior.

We presented an in-depth look at the newly seen phenomena, diffuse inelastic in-
tensity (DII), and proposed several models to describe the atomic behavior. These
models go beyond perturbation theory and allow us to truly understand the factors
that contribute to AH behavior in solids.

Understanding systemic trends in thermophysical properties of materials guides our
comprehension of the fundamental AH mechanisms. However, machine learning
(ML) models that attempt to predict phonon behavior using only atomic species
and configurations as input fail to capture the role atomic interactions and dynamic
behavior have in our understanding of more complex AH features like DII [1].

This final chapter presents the beginnings of a comparative study of experimental
phonon linewidths. This analysis highlights the need for phonon data collection
and post-processing standardization and how new experimental and computational
methods reveal previously unseen anharmonic phenomena. We also address the
future of single-crystal data analysis.

5.1 Advancements in Methods
Phonon linewidths are indicative of phonon lifetimes owing to 3-phonon processes.
However, experimental phonon lineshapes often vary substantially between phonon
branches in a material. Differences in experimental techniques further complicate
this. Luckily, many trends are sufficiently large enough to see easily. The visibil-
ity of these trends is partly due to advancements in experimental methods and
equipment. The three main methods are Raman, high-resolution inelastic X-rays,
triple-axis, and TOF chopper spectrometry. Each differs in sample environments,
data reduction methods, and instrument settings.

There is some standardization in the neutron scattering community in data collec-
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tion. Most modern facilities capture data in event mode. Data captured in event
mode maintains event information during the reduction and correction process,
reducing the need for unnecessary corrections or renormalizations [2, 3]. Strides in
big to medium data allow us to quickly process the 4-D S(Q,ε) scattering func-
tions which for single crystals are on the order of 50 to one hundred gigabytes. The
tools now exist for users with limited computer science and data backgrounds to
process their data in Python Jupyter notebooks, MATLAB, and customized tools
while preserving data in event mode.

Improvements in instrumentation, sample environments, and data reduction allow
us to examine artifacts in experimental methods that were previously unattainable
[4]. For example, data from experiments of inelastic scattering of thermal neutrons
performed on time-of-flight (TOF) chopper spectrometers with a high-flux pulsed
neutron source provides improved instrument resolution in both Q and E over
triple-axis spectrometer data [5–8]. TOF chopper spectrometers allow greater
exploration of Q-space than triple-axis spectrometers which confine us to individual
energy scans at single energy points in Q-space. This versatility is valuable when
we want to explore features not along high-symmetry directions or weaker features
visible only through the addition of multiple Brillouin zones.

We have seen simultaneous advancements in high-performance computing soft-
ware and hardware with these experimental enhancements. These developments
allow us to perform more ab initio calculations and use more advanced exchange-
correlation functionals. These improved computational tools allow us to model
highly correlated electronic systems more accurately at high temperatures and
understand the phonons and thermodynamic behavior.

There have been significant advances in computational methods to describe an-
harmonic lattice dynamics in solids in the past decade. In a matter of years, the
community went from writing new code specific to their system for each data
analysis to having multiple packages to choose from. Some of these packages
include but are not limited to ALAMODE [9–11], TDEP [12–14], CSLD [15–17],
HIPHIVE [18], PHONO3PY [19], and SHENGBTE [20].

With every improvement in simulation, we seek to refine the experiments and data
reduction to obtain new information once hidden by experimental noise or masked
by approximations in our algorithms. Many existing codes accomplish this by
calculating second-order and third-order force constants. However, quartic terms
remain a computational challenge to decouple from quadratic terms.
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Newer packages and plug-ins utilize machine-learning through MLIP or machine-
learning force-fields (MLFF) [21, 22]. These codes include AH terms to infinite
order; however, there is no straightforward way to isolate and identify the magni-
tude of each anharmonic term.

Predicting the magnitude of individual and total anharmonicity in materials is in-
herently valuable for our overall understanding of the properties in materials that
are rooted in anharmonicity. Recent studies have proposed computational bench-
marks to look at pure anharmonicity that was dependent on the standard deviation
of the distribution of anharmonic force components obtained from ab initio forces
and their harmonic approximation, normalized by the absence of external forces
[23]. From a computational perspective, this works quite well. However, it is not
entirely obvious how it carries over to experimental data, which is still the golden
standard when determining the accuracy of anharmonic calculations.

5.2 Experimental Trends
We present an initial compilation of experimental lineshapes in the literature. Fig-
ure 5.1 shows the temperature dependence of the normalized lineshapes for the
materials Pd, Si, CsI, Al, UO2, and YNi2B2C . Since the y-axis is proportional to
the three phonon process, we will talk about it as a measure of anharmonicity.
Looking at Si, denoted by green circles, it falls on the lower end of what we would
call an anharmonic material. The phonon linewidths of UO2, shown with brown
circles, are broader than Si by four factors. Comparing Si to other pure single ele-
ments with relatively simple structures like Pd and Al, we see that they all fall close
in value, except for Al at higher temperatures. Notably, Si has small anharmonicity
on the scale of Fig. 5.1. This trend is consistent with recent studies that argued
that Si has low anharmonicity [24]. However, the AH phonon shifts are much more
significant than QH shifts [25], which is also the case for cuprite. In general, the
pure elements are less anharmonic overall. Although it is premature to conclude
the anharmonicity of elements and compounds with ionic versus covalent, we can
still see the beginnings of AH trends with plots such as this one. A major challenge
in constructing a dataset like this one is that there is no standardization of data or
post-processing. Some of what we attribute to anharmonicity are possibly artifacts
leftover by instrumentation and data reduction.
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Figure 5.1: This plot compares phonon lineshapes for different materials [26–32].
The y-axis compares phonon lineshapes normalized by central energies. The x-axis
shows the temperature weighted by the melting temperature.

5.3 The Future of Single Crystal Neutron Experiments
In this research, we worked with various teams to create better workflows for
processing INS data of single crystals. From when we began today, techniques like
data folding dispersion data for single crystals are increasingly feasible with new
data structures and GPU-enabled codes. However, there has not been substantial
analysis comparing folded and unfolded datasets. We need to understand better
when specific data post-processing techniques are valuable to understanding the
science and when they can mask features. While software like OCLIMAX exists
for calculating multiphonon and multiple scattering contributions for powder, we
need to develop and streamline this capability for single crystals [33]. In the future,
ideally, we will be able to run synthetic experiments by having three-dimensional
scans of our samples.

We need faster ways to process single-crystal data in terms of computing. During
this work, we collaborated with the NVIDIA RAPIDS team at NERSC to develop
folding code that the RAPIDS team helped enable for GPU [34]. We sped up steps
in the workflow by factor 191 compared to the CPU processing time in this process.
GPUs will be a promising tool for speeding up experimental data processing.



87

5.4 The Future of Lattice Dynamics
Over the next several years, we will be able to measure and compute new types
of AH effects. These effects include the previously discussed nonlinear quantum
effects that stem from many-body theory and effects we have not imagined. In
addition, through higher resolution measurements, machine learning codes, and
GPU-based codes, we will be able to examine effects in materials that we have yet
to imagine. I am excited to see what lies ahead.
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A p p e n d i x A

THERMAL STABILITY OF CUPRITE

There are reports in the literature that cuprite dissociates at elevated tempera-
tures [1]. We annealed powdered samples of cuprite for one hour in a vacuum

at 300 K, 773 K, 973 K, 1173 K and measured post-annealing diffraction patterns
at room temperature to test this claim. Figure A.1 shows insignificant changes
to the samples after heating. This result is consistent with the synthesis of our
cuprite single crystal by the float zone growth method, which exposed the crystal
to high temperatures to remove cupric oxide (CuO) and suppress void formation
[2].

Figure A.1: Post-annealing X-ray diffraction patterns measured at 300 K, 773 K,
972 K, and 1173 K. Peaks are indexed. Black markers under the diffraction patterns
are positions of diffraction peaks from Cu, CuO, and Cu2O .
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A p p e n d i x B

SINGLE CRYSTAL SAMPLE SETUP

For 10 K inelastic neutron scattering measurements, the single crystal was sus-
pended with a niobium and platinum mount (Fig. B.1). Only platinum was

in contact with the cuprite crystal. The platinum and niobium were not directly in
the neutron beam. The crystal was similarly mounted for 300 K measurements but
contained in a thin aluminum canister. Background measurements were obtained
from the aluminum canister. Aluminum has distinct phonon features around 20
and 30 meV [1]. However, scattering from the thin aluminum was less than 2% of
the cuprite sample, which dominated the inelastic intensity at 20-30 meV [2]. The
background was found to be negligible and was not subtracted from the data. We
determined the experimental lattice parameter using white-beam measurements of
the total scattering.

Figure B.1: The left-hand image shows the single crystal with platinum and nio-
bium mount used for measurement. The right hand image data measurements
shows the same single crystal after the experiment removed from the mount.
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A p p e n d i x C

DETAILS ON THERMAL EXPANSION CALCULATIONS

Considerable effort has gone into determining the optimal exchange-correlation
functional for both electronic structure calculations and lattice dynamics cal-

culations in cuprite. We calculated and compared equilibrium lattice constants for
LDA, PBE, PBE0, SCAN metaGGA, AM05, HSE06 with an experimental value
(Table C.1). We found that AM05, PBE0, SCAN metaGGA, and HSE06 all yielded
reasonable results for lattice constants. HSE06 and SCAN metaGGA gave simi-
lar electronic band gaps. A clear relationship was seen between the accuracy of
the equilibrium lattice constants and the position of the optical modes. Due to
the computational cost of HSE06 we were not able to use it for large supercell
calculations.

For sTDEP calculations, 20 canonical configurations were generated for each of the
five volumes. Zero-point energy was enabled. When calculating force constants,
the cutoff radius for second-order force constants was 100.0 Å, and the cutoff
for third-order force constants was 50.0 Å. For phonon dispersion calculations,
the q-point mesh was 26x26x26, and the integration method was the standard
Monkhorst-Pack mesh. Default values were used for calculating the phonon self-
energy. In the PHONOPY calculations, the sampling mesh was 8x8x8.

Previous studies performed convergence testing on supercell size and the number
of k-points [3]. Our results agree with previous convergence testing for QH and

Functional a0 (Å)
LDA 4.1814a
PBE 4.1323a
PBE0 4.2851a
SCAN 4.2580
AM05 4.2395
HSE06 4.2887a

Experiment 4.2696b

Table C.1: This table compares the equilibrium lattice constant, a0, and electronic
bandgap, for various exchange correlations and experiment.
aReference [1]
bReference [2]
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AH calculations. We considered the effect of supercell size and the number of
k -points on the phonon dispersions and lineshapes for our convergence testing.
We performed ab initio calculations on displaced configurations of atoms and
calculated the corresponding free energy.

Using the finite displacement method in PHONOPY, we calculated phonon fre-
quencies for five volumes [4]. Using the Stochastic Temperature Dependent Ef-
fective Potential Method (sTDEP) package, we calculated phonon dispersions at
finite temperatures by fitting first-principles forces on atoms in the supercell to the
following model Hamiltonian [5]:

H = U0 +
∑
i

p2
i

2m
+ 1

2

∑
i j αβ

Φ
αβ
i j
uαi u

β
j

(C.1)

where i, j denotes an atom and α , β are Cartesian coordinates.

To simulate effects of higher temperature, we generated various configurations of
atoms by stochastic sampling of a canonical ensemble, with Cartesian displace-
ments, uα

i
, normally distributed around a mean thermal displacement [6]:

uαi =
∑
s

εi αs cs,α√
mi

√
−2 ln ξ1 sin(2πξ2). (C.2)

Here cα is the amplitude for a normal mode s , εs , ωs are the normal mode
eigenvector and frequency respectively, and ξ1 and ξ1 are random numbers between
0 and 1.

cs,α =

√
ħ(2ns + 1)
2msωs

(C.3)

This amplitude in Eq.C.3 accounts for nuclear quantum effects through zero point
amplitude. We used this for our AH calculations. To obtain phonon dispersions,
we used the model Hamiltonian:

H = U0 +
∑
i

p2
i

2m
+ 1

2

∑
i j αβ

Φ
αβ
i j
uαi u

β
j
+ 1

3!
∑

i j k αβγ

Φ
αβγ
i j k
uαi u

β
j
u
γ
k
. (C.4)

with the corresponding Helmholtz free energy in the main text. Here U0(T ,V )
depends on temperature and volume.
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A p p e n d i x D

MULTIPHONON CORRECTION FOR POLYATOMIC SYSTEMS

The multiphonon correction for a crystal structure with multiple species can
be approximated using existing derivations for the multiphonon scattering

correction for a monatomic system within the incoherent approximation. We follow
the conventions and derivation from V. Sears’ 1973 paper on approximations for
the incoherent neutron scattering function, S (Q, ε) [1]. In the equation for the
multiphonon dynamical structure factor:

S (Q, ε) = e−2W
∞∑
n=2

(2W )n

n!
σ

M
An (ε), (D.1)

Q is the reciprocal space vector; ε is the phonon energy; σ is the incoherent
neutron scattering cross section; M is the atomic mass; and 2W is two times the
Debye-Waller factor.

2W = 2W ( |Q|) = ħ |Q|2

2M

∫ ∞

0

g (ε)
ε

coth
(
ε

2kBT

)
dε . (D.2)

An (ε) is defined as convolution of the thermally-weighted 1-phonon scattering
profile with the thermally-weighted (n-1)-phonon scattering profile

An (ε) = A1(ε) ~ An−1(ε) =
∫ ∞

0
A1(ε − E )An−1(ε) dε (D.3)

The 1st order phonon spectrum, A1(ε), can be expressed as:

A1(ε) =
g (ε)
ε

1

eε/kBT − 1
. (D.4)

This can be broken down into two simple components. The first is the DOS, g (ε),
divided by the energy, ε. This term accounts for the fact that low-energy acoustic
modes have larger amplitudes of motion than high-energy modes, and it allows us
to properly weight the expression. The other term that appears in A1(ε) is the
Planck occupancy factor modified for phonons.

n (ε,T ) = 1

e
− ε
kBT − 1

(D.5)

This gives us the average number of phonons at a given energy value.
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The DOS is a vital part of these calculations. Despite its importance, there is no
standard for what type of phonon DOS to use to minimize introducing error into
our data post-processing. The following options exist for obtaining a phonon DOS
for the above equations: (1) calculated total, (2) calculated partial, (3) measured
total, and (4) measured partial. Each option has pros and cons associated with it,
and the reader should use the option best suited for their specific situation.

In the case of a monatomic system where (1) calculated total DOS and (3) mea-
sured total are relevant, one must consider that the peaks of the calculated will be
significantly sharper than what can be measured experimentally. This peak sharp-
ness can result in an undersubtration of the multiphonon contributions. In this
scenario, an instrument resolution function can be convoluted with the calculated
DOS to make it more reflective of what is seen in experiment [2].

Conversely, using an experimental DOS risks oversubtracting the multiphonon con-
tribution. To understand this, we must first understand how we obtain the exper-
imental DOS. The most common way is to perform INS on a powder or polycrys-
talline sample. Once the data is collected, it needs to be reduced. This reduction
involves calculating and subtracting a multiphonon contribution. This process
is typically done in an iterative fashion until a convergence criteria is achieved
[3]. Some multiphonon contribution may remain in the experimental DOS. This
leftover contribution will affect the scaling factor in Eq. D.4.

Another option for obtaining a phonon DOS from experiment is calculating the
DOS in each Brillouin zone in our single crystal data. This options is more com-
plicated than measuring the DOS directly from a sample. To understand how
to perform this calculation with single crystal data, we turn to the definition of
the phonon DOS. We know that it is the number of modes per unit frequency
or energy in a unit volume of space. To successfully calculate the DOS for each
Brillouin zone (BZ), we need complete data coverage in each zone or a concrete
understanding of the partial volume of the data within the boundaries of the ex-
pected zone. In single crystal experiments, parts of BZ are often missing due to
lack of full detector coverage and size and shape of the sample. However, the
advantage to this approach is that we would be considering the number of modes
specific to each zone. This approach results in similar error to using the exper-
imentally measured DOS since we would like have remaining components of the
multiphonon contribution to the DOS in this weighting factor.

In the example calculation shown in this appendix, we show the multiphonon
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Figure D.1: This figure shows the experimental density of states for cuprite at 5 K

dynamical structure factor results for 700 K in Fig.D.2 using an experimentally
obtained DOS from powder measurements shown in Fig.D.1).

When the system we are working with has multiple atom species, it is necessary to
consider how to treat the interactions between different atom species along with
self-interactions. In previous publications it has been treated as a function of all
the possible correlations of different atom species [4]. In this setup for a system
with two atom species, we define A1(ε) as

A1,α (ε) =
gα (ε)
ε

1

eε/kBT − 1

A1,β (ε) =
gβ (ε)
ε

1

eε/kBT − 1

(D.6)

where α and β specify the atom species type, gα (ε) is the partial density of state
for species α , and gβ (ε) is the partial density of state for species β . An,α/β written
as a sum of all correlation

An,α = A1,α ~ An−1,α + 1

n
A1,α ~ An−1,β +

n − 1

n
A1,β ~ An−1,α

An,β = A1,β ~ An−1,β +
1

n
A1,β ~ An−1,α + n − 1

n
A1,α ~ An−1,β

(D.7)

For proof of concept, let’s look at a simplified case of these equations where α
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Figure D.2: This shows the weighted, thermal factor corrected multiphonon ap-
proximation for 700 K along the folded high-symmetry path in cuprite. The ex-
perimental density of state for 5 K was used for this calculation. The streaking
seen throughout originates from weighting the multiphonon contribution with the
number of neutron events recorded.

and β are the same, designated by γ, and gα+gβ = gγ such that gα = gβ = 1
2gγ

An,α =
gα (ε)
ε

1

eε/kBT − 1
~ An−1,α

+ 1

n

gα (ε)
ε

1

eε/kBT − 1
~ An−1,β +

n − 1

n

gβ (ε)
ε

1

eε/kBT − 1
~ An−1,α

An,β =
gβ (ε)
ε

1

eε/kBT − 1
~ An−1,β

+ 1

n

gβ (ε)
ε

1

eε/kBT − 1
~ An−1,α + n − 1

n

gα (ε)
ε

1

eε/kBT − 1
~ An−1,β
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Combining like terms

An,α =

(
1

eε/kBT − 1

) (
1

ε

) [
gα (ε) ~ An−1,α

+1
n
gα (ε) ~ An−1,β +

n − 1

n
gβ (ε) ~ An−1,α

]
An,β =

(
1

eε/kBT − 1

) (
1

ε

) [
gβ (ε) ~ An−1,β

+1
n
gβ (ε) ~ An−1,α + n − 1

n
gα (ε) ~ An−1,β

]
Now we add An−1,α + An−1,β

An,α + An,β =

(
1

eε/kBT − 1

) (
1

ε

) [(
gα (ε) +

n − 1

n
gβ (ε) +

1

n
gβ (ε)

)
~ An−1,α

+
(
1

n
gα (ε) + gβ (ε) +

n − 1

n
gα (ε)

)
~ An−1,β

]
(D.8)

Substituting gα (ε) = gβ (ε) = 1
2gγ (ε)

An,α + An,β =

(
1

eε/kBT − 1

) (
1

2ε

) [(
1 + n − 1

n
+ 1

n

)
gγ (ε) ~ An−1,α

+
(
1

n
+ 1 + n − 1

n

)
gγ (ε) ~ An−1,β

] (D.9)

Substituting An,α + An,β = An,γ,

An,α + An,β =

(
1

eε/kBT − 1

) (
gγ (ε)
ε

)
~

(
An−1,α + An−1,β

)
(D.10)

This gives us the final expression

An,γ =

(
1

eε/kBT − 1

) (
gγ (ε)
ε

)
~ An−1,γ (D.11)

There is no ideal practice here for the multiphonon correction of single crystal
datasets. Ideally, we want to keep our computational and experimental errors sep-
arate. However, we also want to avoid adding error by subtracting a multiphonon
component that includes an unaccounted for multiphonon contribution from an-
other experimental dataset. This appendix explains the calculation and subtraction
of the multiphonon correction for the cuprite single crystal dataset and discusses
options that the reader can implement in their own experimental single crystal
data reduction.
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Figure D.3: This figure shows the form of An for cuprite for n = 1 through 6.

For the low temperature data (10 K and 300 K), an experimental phonon density
of state from powder measurements was used rather than calculated. This was
done with the knowledge that the multiphonon contributions would be relatively
small at these temperatures. Conveniently, we happened to have experimental
data from powder cuprite at 5 K and 300 K.

Forms of An(ε) for n = 0 to 6 are shown in Fig. D.3. The elastic peak which
was approximated with a skewed Lorenztian function. The elastic peak was then
subtracted and subsequent convolutions were performed to recursively obtain the
remaining values of An(ε).

For Cu2O, a polyatomic system, we used averaged versions of these equations.
This also reflects our decision to use the DOS from a powder sample. For Eq. ??,
we replace σ and M with:

σav =
2

3
σCu +

1

3
σO , (D.12)

Mav =
2

3
MCu +

1

3
MO . (D.13)

Fractions in front of the partial contributions are the partial molar fractions. The
final result is a multiphonon S( ®Q ,ε) that is averaged between Cu and O that we
subtract from the experimental S( ®Q ,ε).
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D.1 Code Excerpts
The following are snippets of the Python3 code with comments and pseudocode
used to calculate the multiphonon correction.

The A0 term is used to subtract the elastic peak from the density of state. There
is an asymmetry in the ARCS resolution function that results in an elastic peak
that more resembles a skewed Lorentzian rather than a Gaussian. To simplify the
peak subtraction a Gaussian fit was used for these calculations.

from s c i p y . s i g n a l import g a u s s i a n
def A0( e , g ) :

e , g = r e f l e c t e d ( e , g )
return g a u s s i a n ( len ( e ) , s t d =0.5)

The expression for A1 is described in Eq. D.4. Issues encountered when program-
ming this component include divide-by-zero or not-a-number errors. These issues
can be circumvented by suppressing the warning (shown in the code below) or
replacing the zero or not-a-number with a sufficiently small number

import numpy as np

def A1( e , g , T, de ) :
be ta = kb i /T
g0 = gamma0( e , g , T, de )
e , g = r e f l e c t e d ( e , g )
w i th np . e r r s t a t e ( i n v a l i d= ' i g n o r e ' ) :

f = ( g/e ) / g0 / (1−np . exp(−e∗ beta ) )
i nd = np . a rgwhere ( np . i s n a n ( f ) )
f [ i nd ]=( f [ ind −1]+ f [ i nd +1])/2
return f

The expression for An is described in Eq. D.3.

from s c i p y . s i g n a l import convo l v e
import numpy as np

def An( e , g , T, de , n ) :
i f n == 0 :

A_val = A0( e , g )
e l i f n == 1 :
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A_val = A1( e , g , T, de )
return A_val

e l se :
return convo l v e (A1( e , g , T, de ) ,
An( e , g , T, de , n−1) , ' same ' , ' d i r e c t ' )
/ np . sum(An( e , g , T, de , n−1))

import numpy as np
import math

def Sn ( e , g , Q, T, M, de , n ) :
WW = twoW( e , g , Q, M, T, de )
WW = np . r e shape (WW, ( len (WW) , 1 ) )
A_res = An( e , g , T, de , n)[− len ( e ) : ]
A = np . r e shape ( A_res , ( 1 , len ( A_res ) ) )
i f n==1:

return np . exp(−WW)∗WW∗M∗A
e l se :

S = np . exp(−WW)∗ (WW∗∗n/math . f a c t o r i a l ( n ) )∗M∗A
return S
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A p p e n d i x E

BEST PRACTICE FOR SINGLE CRYSTAL EXPERIMENTS

In the past ten years, instrumentation for scattering measurements has improved
dramatically. Advancements in instrumentation allow for increasingly compli-

cated sample environments that allow users to achieve higher temperatures, pres-
sures, and vacuums than ever before. With these developments, we face new
challenges in data management and post-processing. This is particularly impor-
tant for single crystal measurements that generate larger data file (on the order of
terabytes) than powder or polycrystalline measurements. Furthermore, there is no
standard or “golden rule” for collecting event-based INS measurements for single
crystals.

This text attempts to set forth general recommendations of best practice for the
collection and analysis of INS single crystal data.

E.1 Sample Alignment
Proper sample alignment is a vital aspect of any scattering experiment. For sam-
ples that have a specific orientation, like single crystals, it is crucial for the success
of an experiment. When mounting single crystals it is important to determine
proper alignment through the UB matrix and u v vectors. The sample should be
aligned at the beamline before data collection begins, and it should also be done
when processing the data.

When using a chopper-spectrometer like ARCS where the Fermi choppers are
mounted on a motorized translation table, the user should take white beam or
polychromatic beam measurements when the crystal is mounted before data col-
lection. White beam measurements allow the user to collect data on the structure
of the single crystal sample along with the dynamics. By performing just two white
beam measurements, the diffraction peaks from the white beam measurments an
be used to

should be performed while the crystal is mounted before experimental data collec-
tion. For many of the post-processing codes to find the appropriate

E.2 Experimental Setup and Data Post-processing
The intensities at all ®Q were corrected for multiphonon scattering in the incoherent
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approximation, using a phonon DOS from cuprite powder and appropriate values
of Q and T . The single crystal data were folded using symmetry operations to
bring the inelastic intensity into a single irreducible wedge in the first Brillouin
zone, followed by a correction for thermal occupancy. Folding brings risk if there
are nonlinearities in the transformation of the measured intensities in k -space.

We verified that the higher-order Bragg diffraction occurred at the expected posi-
tions to validate the instrument linearity. In this analysis, we found slight offsets at
high values of Q . This was done independently in Python. Autoreduced *.nxspe
files were read in, converted to sample space [1] and the following selection factors
were used for each data point:

1. The energy value of the point is within ± 3% of the incident energy. (This
accounts for the elastic resolution of ARCS.)

2. The reciprocal space range is ± 0.1 reciprocal lattice units. (In fractional
coordinates, we expect points to fall on integer values.)

3. The intensity of each point is less than or equal to 1.0. (This removes
anomalous high-intensity points that reflect detector artifacts rather than
elastic scattering.)

Examples of these diffractions and offsets are shown in Fig. E.1. After points
were read in and converted, the centers of the intensities around reciprocal lattice
points were determined by k -means clustering. Through multivariate regression,
we obtained a linear correction matrix. This matrix should be close to the identity
matrix. For the 10 K data, the correction matrix was:

©«
1.004 × 100 −9.393 × 10−4 8.176 × 10−4

6.493 × 10−4 0.9999 × 100 1.296 × 10−4

−1.378 × 10−3 4.128 × 10−4 1.000 × 100

ª®®¬ .
Offsets with increasing values of ®Q were within the instrument resolution. These
offsets also informed our selection of the data limits to be folded. Results with
linearly corrected data are shown in Fig. E.2. Ultimately, no linear corrections to
the data were made because of their negligible magnitude relative to the instru-
ment resolution and our inability to separate instrument and sample artifacts. We
did observe ®Q -dependent behavior, but we could not definitely say whether the
trends were due to a mosaic structure of the single crystal, misalignment in the
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sample mount on the instrument, misalignment of our crystal, or accuracy of the
instrument resolution function. Furthermore, the elastic and inelastic data require
different corrections in k -space.

Folding was done in Mantid [2]. Thermal weighting of the data was done to correct
spectral weights, using the functional form:

−ε
e

−ε
kBT − 1

× S( ®Q , ε) = Sweighted( ®Q , ε) (E.1)

where ε = ħω. For visualization, spectral intensities were corrected for thermal
weights after folding. This correction increased intensity in high-energy optical
modes.



109

Figure E.1: Diffraction pattern from 10 K data. These points were obtained by
considering selection factors.
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Figure E.2: Comparison of central point of diffraction points for 10 K data before
(black) and after (green) matrix correction.
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A p p e n d i x F

CALCULATING VELOCITY AUTO-CORRELATION FUNCTIONS

To properly calculate the vibrational dynamics from large MD simulations, one
needs an efficient and accurate velocity auto-correlation analysis. Several pack-
ages exist to calculate the correlation function from MD trajectories including
but not limited to pwtools, QuantumATK, and DYNASOR. For all velocity auto-
correlation calculations mentioned, we used our own code VVCORE. VVCORE is
a parallelized Central Processing Unit (CPU) and Graphics Processing Unit (GPU)
enabled package that addresses the Input/Output bottleneck issues faced by other
packages.

VVCORE calculates the mode-projected velocity

jA (q, t ) =
NA∑
i

vi (t )e iqri (t ) (F.1)

which is a form of current density. In the above equation q is the wave-vector,
ri (t ), vi (t ) are the positions and velocities of individual atoms at time t , respec-
tively. The index A denotes the partial contribution of type A to the total current,
and NA is the number of atoms of the corresponding type. jA (q, t ) can be broken
down into the perpendicular and parallel wavevector components. The perpendic-
ular or transverse element can be written as

jAT (q, t ) =
NA∑
i

[vi (t ) − q̂(vi (t ) · q̂)] e iqri (t ) (F.2)

and the parallel or longitudinal

jAL (q, t ) = q̂
NA∑
i

(vi (t ) · q̂)e iqri (t ) (F.3)

. To get the transverse and longitudinal DOSs at a specific point in the BZ, we
take the Fourier transforms of Eqs. F.2 and F.2

gABk (ω, q) =
∫ ∞

0

〈
jAk (t , q)j

B
k (0,−q)

〉
e−i ωtd t , (F.4)

where the subscript k denotes the point of interest along the transverse or lon-
gitudinal direction. To obtain the total density at a wavevector q, we add the
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individual DOSs and weight them with their masses.

g (ω, q) =
∑
A,B

√
MAMB

(
gABT + gABL

)
(F.5)

After the summation, we can obtain the vibrational density of states by taking the
Fourier transform

Φ(t ) = 1

N

N∑
i

〈
vi (t )vi (0)

〉〈
vi (0)vi (0)

〉 , (F.6)

which can be used to obtain a phonon density of state

g (ω) =
∫ ∞

0
Φ(t ) cos (ωt )d t . (F.7)

To get the dynamical structure factor, one needs to relate the longitudinal corre-
lations:

ω2S (Q, E ) = q2 (F.8)
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