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ABSTRACT

The Bost-Connes system [BC95] is a C∗-dynamical system whose partition function,
KMS states, and symmetries are related to the explicit class field theory of Q. In
particular, its zero-temperature KMS states, when evaluated on certain points in an
arithmetic sub-algebra, yield the generators of Qcycl. The Bost-Connes system can
be viewed in terms of a geometric picture of 1-dimensional Q-lattices. The GL2-
system [CM04] is an extension of this idea to the setting of 2-dimensional Q-lattices.
A specialization of the GL2-system introduced in [CMR06] is related in a similar
way to the explicit class field theory of imaginary quadratic extensions.

Inspired by the philosophy of Manin’s real multiplication program, we define a
boundary version of the GL2-system. In this viewpoint we see P 1(R) under a certain
PGL2(Z) action (which is related to the shift of the continued fraction expansion) as
a moduli space characterizing degenerate elliptic curves. These degenerate elliptic
curves can be realized as non-commutative 2-tori. This moduli space of the non-
commutative tori is interpreted as an “invisible” boundary of the moduli space of
elliptic curves. In fact, we define a family of such boundary GL2 systems indexed
by a choice of continued fraction algorithm. We analyze their partition functions,
KMS states, and ground states. We also define an arithmetic algebra of unbounded
multipliers in analogy with the GL2 case. We show that the ground states when
evaluated on points in the arithmetic algebra give pairings of the limiting modular
symbols of [MM02] with weight-2 cusp forms.

We also begin the project of extending this picture to the higher weight setting
by defining a higher-weight limiting modular symbol. We use as a starting point
the Shokurov modular symbols [Sho81a], which are constructed using Kuga varieties
over the modular curves. We subject these modular symbols to a limiting procedure.
We then show, using the coding space setting of [KS07b], that these limiting modular
symbols can be written as a Birkhoff ergodic average everywhere.
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C h a p t e r 1

INTRODUCTION

Hilbert’s 12th problem asks for a description of abelian extensions of number fields
in terms of arithmetic data. It has been solved explicitly only in two cases, that of
the rational numbers Q and the imaginary quadratic extensions of Q. The latter
uses a geometric theory of elliptic curves and modular forms. The elliptic curves are
characterized by the moduli space of the upper half plane H quotiented by the action
of SL2(Z) by fractional linear transformations. Manin’s real multiplication program
[Man04] proposes a viewpoint of studying real quadratic extensions using geometric
objects which are obtained via degenerations of complex tori (elliptic curves). These
degenerate objects do not have good topological quotients but they can be inter-
preted using methods from noncommutative geometry as noncommutative 2-tori. In
this way we can see the real boundary of the upper half plane (quotiented by an
action of GL2(Z) related to the continued fraction expansion) as a moduli space
characterizing these objects. We interpret it as the “invisible” boundary of the space
of elliptic curves.

The modular symbols introduced in [Man72] are a useful tool in computing with
modular forms. The modular symbol associated to a pair of cusps is elements of the
homology group H1(XG,R) where XG is some modular curve. There is a perfect
pairing between modular symbols and weight-2 cusp forms. In [MM02], the limiting
modular symbols were introduced in order to extend the picture of modular symbols
to the invisible boundary of modular curves. The limiting modular symbols are de-
fined via a limiting procedure and are known to exist almost everywhere. They can
be expressed in terms of continued fraction expansions and in particular they are non-
vanishing at real quadratic points, which have periodic continued fraction expansion.

There is a rich interplay between quantum statistical mechanics and the class field
theory of number fields via the Bost-Connes type systems. These are quantum
statistical dynamical systems whose thermodynamic properties, such as partition
functions, equilibrium states (i.e. KMS states), and symmetries, are related to prop-
erties of number fields. The original Bost-Connes system corresponds to the number
field Q, while a later extension corresponds to the imaginary quadratic extensions.
The first aim of this work is to construct a further extension that takes into account
the invisible boundary of Manin’s real multiplication program in such a way that the
resulting C∗-dynamical system naturally connects to the limiting modular symbols.
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The Bost-Connes system is a C∗-dynamical system introduced in 1995 by Jean
Benoit Bost and Alain Connes [BC95]. The underlying C∗-algebra was originally
constructed as a Hecke algebra, but it can be seen as the groupoid C∗-algebra of
the space of 1-dimensional Q-lattices up to a commensurability relation. This gives
the Bost-Connes system a geometric interpretation. Formally, a Q-lattice is a pair
(Λ, φ) where Λ is a lattice in R and φ is a homomorphism φ : Q/Z→ QΛ/Λ. Two Q-
lattices are commensurable if QΛ1 = QΛ2 and φ1 = φ2 mod Λ1 + Λ2. The groupoid
C∗-algebra is constructed by taking the algebra of continuous compactly supported
functions on the space, and endowing it with an appropriate involution, convolution
product, and a C∗-norm. The Bost Connes algebra is then given a dynamics of the
form

σt(f)(Λ,Λ′) = |Λ/Λ′|itf(Λ,Λ′)

where |Λ/Λ′| is the ratio of the lattice covolumes. The system has an associated
arithmetic sub-algebra, which can be thought of as an algebra of classical points. The
Bost-Connes system is important because of its arithmetic properties. The partition
function given by the dynamics is the Riemann zeta function. The symmetries
of the system are automorphisms of the algebra given by Ẑ∗ = GL1(Af )/Q∗ =

Gal(Qcycl/Q). The β-KMS states exhibit spontaneous symmetry breaking: they
are unique at high temperature, but are non-unique at low temperature, with a
critical temperature at β = 1. The extremal KMS states at low temperature are
parameterized by the embeddings Qcycl → C. Ground states are obtained as weak
limits of the low-temperature states. The ground states, when evaluated on points
in the arithmetic sub-algebra, yield generators of the maximal abelian extension of
Q. All of this ties the Bost-Connes system and the arithmetic sub-algebra to the
explicit class field theory of Q.

Connes and Marcolli later extended this picture by considering 2-dimensional Q-
lattices, leading to a C∗-dynamical system called the GL2-system [CM06a]. An
arithmetic algebra was also constructed, in this setting as an algebra of unbounded
multipliers on the GL2 algebra. The system has partition function ζ(β)ζ(β − 1)

and a symmetry group consisting of both automorphisms and endomorphisms of the
algebra given by GL2(Af )/Q∗ ' Aut(F ), where F is the modular field. The β-KMS
states exhibit symmetry breaking at two critical temperatures, β = 1 and β = 2,
with the extremal zero-temperature states being parameterized by the invertible Q-
lattices, which can be seen equivalently as the set M2(Ẑ) × H. The ground states,
when evaluated on points in the arithmetic algebra, yield generators of specializations
of the modular field to points in the upper half plane. This picture was subsequently
extended again by Connes, Marcolli, and Ramachandran, based upon the geomet-
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ric object of K-lattices [CMR06]. For an imaginary quadratic field K = Q(τ), let
O = Z+ τZ be its ring of integers. A K-lattice is a pair (Λ, φ) where Λ is a finitely
generated O-module in C satisfying Λ⊗O K ' K and φ : K/O → KΛ/K is a mor-
phism ofO-modules. The resulting C∗-dynamical system is known as the CM system,
due to its connection with complex multiplication. The extremal zero-temperature
KMS states evaluated on arithmetic points are related to A∗K,f/K∗ for an imaginary
quadratic field K. The CM system is thus connected to the explicit class field theory
for imaginary quadratic extensions. The CM system can be viewed as a specializa-
tion of the GL2 system, since a K-lattice can be viewed as a 2-dimensional Q-lattice.

The construction usingK-lattices has been extended by Laca, Larsen, and Neshveyen
in [LLN09] to all number fields. The construction yields some of the desired proper-
ties: the correct partition function, KMS-states, symmetries, and symmetry breaking
behavior. However, the evaluation of the ground states on an arithmetic algebra to
obtain generators of a maximal abelian extension has not been obtained in these
models. This is not surprising, since doing so would shed light on the solution to
Hilbert’s 12th problem for an arbitrary number field.

In this work, we take a different approach. Instead of using the K-lattices, we view
P 1(R) as an “invisible” boundary of the H, with points in R representing psuedolat-
tices which can be viewed as degenerations of complex tori as suggested by Manin’s
real multiplication program. We construct a boundary version of the GL2-system
by incorporating the boundary P 1(R) directly, with an action of the shift operator
which implements the shift on the continued fraction expansion.

In fact, we construct a family of quantum-statistical mechanical systems, indexed
by N where the parameter corresponds to a choice of continued fraction expansion
algorithm. We consider the countable family of N -continued fraction expansions
given by

[a0; a1, a2, a3, ...]N = a0 +
N

a1 + N
a2+ N

a3+...

with ai ≥ N when N ≥ 1 and ai ≥ |N |+ 1 when N ≤ −1. This continued fraction
expansion has an associated shift on the boundary p1(R). For each N -continued
fraction expansion, we introduce an algebra associated to the boundary P1(R) with
the action of a certain subsemigroup of GL2(Q) depending on the choice of N . In
the case that N = 1 this semigroup is contained in GL2(Z) and in the case that
N = −1 it is contained in SL2(Z). In the N = ±1 cases, the associated algebra can
be interpreted as a boundary algebra of the GL2 system. While we have no such
interpretation when |N | > 1, considering the whole family of systems leads to some
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interesting observations about the structure of the KMS states. We also define an
arithmetic algebra of unbounded multipliers, completely analogous to the standard
GL2 case.

The boundary C∗-algebras we construct have a semi-direct product structureA∂,G,PN =

B∂,N oRedN where the B∂,N part of the algebra is a modified GL2-system depend-
ing on a choice of finite index subgroup G of GL2(Z), and the RedN is a Cuntz-
Krieger-Toeplitz type algebra generated by isometries SN,k related to the shift of
the continued fraction expansion. The dynamics are given by σN,t(f)(g, ρ, x, s) =

|det(g)|it(f)(g, ρ, x, s) on the GL2 part of the system, and by σN,t(SN,k) = kitSN,k

on the RedN part of the system. We analyze the partition function and the structure
of the KMS states.

The partition function for the system (A∂,G,PN , σN,t) is

Z(β) =


ζ(β)ζ(β − 1)

∏
p prime : p|N

(
1− p−β

) (
1− p−(β−1)

)
1 +

∑N−1
n=1 n

−β − ζ(β)
if N > 1

ζ(β)ζ(β − 1)
∏
p prime : p|N

(
1− p−β

) (
1− p−(β−1)

)
1 +

∑|N |
n=1 n

−β − ζ(β)
if N ≤ −1

where ζ(β) the Riemann zeta function. In the N = 1 case there is no partition
function.

The KMSβ states of the QSM system (A∂,G,PN , σN,t) can be characterized as follows.
When N = 1, there are no KMSβ states for any temperature β. When N ≤ −1

or N > 1, the system has a critical temperature βN,c ∈ (1, 2). We then have the
following.

1. When β < βN,c there are no β-KMS states.

2. When β > βN,c, there is one β-KMS state for every β-KMS state of the mod-
ified GL2 system corresponding to B∂,N .

3. In particular, when β > 2, the β-KMS states correspond to a unique β-KMS
on the RedN part of the system paired with one of a set of Gibbs states on the
B∂,N part of the system, parameterized by (ρ, x, s) with ρ ∈M2(Ẑ) invertible.

The figure below compares the classification of the KMS states of the standard
Bost-Connes system and of the GL2 system with the newly constructed boundary-
GL2-systems.
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Bost-Connes and GL2 systems

BC

GL2

0 1

unique β-KMS states Eβ = Gal(Qcycl/Q)
]]

0 1 2

no β-KMS states
×

unique β-KMS states Eβ = inv. Q-lattices
] ]]

N = 1

Boundary GL2 systems

0

no β-KMS states
×]

0 β−1,c

(∼ 1.728647)

2

no β-KMS states
× Gibbs states exist

βN,c
∈ (1, 2)

] ]]

β-KMS states mirror modified GL2-system

N ∈ Z\{0, 1}

Figure 1.1: KMS States of the Bost-Connes, GL2, and Boundary-GL2-systems

The precise structure of the KMS states in the region β ∈ (βN,c, 2) remains an open
problem. The standard GL2-system has been studied in this temperature region
by Laca, Larsen, and Neshveyev in [LLN07]. Their analysis of the behavior when
β ∈ (1, 2) is not directly applicable in our case, because for N = 1, the RedN part
of the system has no KMS states at any temperature β. However, an interesting
problem for future work is to see whether a similar analysis can be applied to the
modified GL2-system.

Even in the N = 1 case where we have no low-temperature KMS states, we can
still define ground states, in the sense that they satisfy a KMS-∞ condition. They
take the form of a projection onto the kernel of the Hamiltonian in various repre-
sentations of the system, and they are consistent with the 0-temp states obtained as
limits of the KMS states in the cases N 6= 1. The ground states are parametrized by
(ρ, x, s) ∈Mz(Ẑ)× [0, 1]×PN such that ρ is invertible and PN is a coset space that
accounts for the choice of G in the modified-GL2 part of the system. Here [0, 1]×PN
plays the role of H in the standard GL2-system.

Having established the ground states for the N = 1 boundary-GL2-system, we
proceed with a study of their evaluation on the points in the arithmetic algebra.
In particular, we relate these evaluations to a pairing between the cusp forms and
the limiting modular symbols. This result is the main advantage of the boundary-
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GL2 construction presented here. The table below summarizes the properties of the
Bost-Connes, GL2-, and boundary-GL2-systems.

B-C GL2 N -Boundary-GL2

Partition
function

ζ(β) ζ(β)ζ(β − 1)

ζ(β)ζ(β−1)
∏
p|N

(1−p−β)(1−p−(β−1))

1+
N−1∑
n=1

n−β−ζ(β)

Critical
temperatures

β = 1 β = 1, 2 β = 2, β = βN,c ∈ (1, 2)

Low-temp.
KMS states
parameterized

embeddings
Qcycl → C

(ρ, τ) ∈M2(Ẑ)×H
s.t. ρ invertible
∼(invertible Q-lattices)

(ρ, x, s) ∈M2(Ẑ)× [0, 1]× PN
s.t. ρ invertible

Ground states
evaluated on
arith. algebra

generators of
Qcycl

generators of Fτ
(the modular

field)

pairing of limiting modular
symbol and cusp form

Symmetries
A∗f/Q∗ '

Gal(Qcycl/Q)

GL2(Af )/Q∗ '
Aut(F )

?

Figure 1.2: Quantum statistical mechanical properties of the Bost-Connes,
GL2, and Boundary-GL2 systems

The modular symbols of [Man72] are of weight-2, in the sense that they have a per-
fect pairing with the cusp forms of weight-2. However, in [Sho81a], Shokurov gave a
construction for modular symbols of higher weight. This is done by using a nonsin-
gular projective variety called a Kuga variety, which has natural projection Φ onto
the modular curve XG. The modular symbols of weight w are then elements of the
relative homology H1(XG, {cusps}, (R1Φ∗Q)w) where (R1Φ∗Q)w is the symmetric
tensor power of the sheaf R1Φ∗Q = G⊗QQ. The modular symbols of Shokurov with
parameter w have a pairing with the cusp forms of weight w + 2.

We show that a higher-weight limiting modular symbol can be defined using a limit-
ing procedure on the Shokurov modular symbols, and that these exist almost every-
where. Rather than using the method in [Mar03], we use a similar technique to that
applied in [KS07b]. We pass to a coding space for geodesics related to the Farey
tessellation. This approach allows us to obtain an expression for the limiting modu-
lar symbol in terms of continued fraction expansions that holds everywhere, whereas
the technique of [Mar03] leaves out an exceptional set of measure 0 and Hausdorff
dimension 1. It is expected that the boundary GL2 system developed here will also
extend to the Kuga variety setting, and that the evaluation of the ground states on
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the arithmetic algebra will yield the relations between periods of Hecke eigencusp
forms described in [Man73]. This is left to a future work.
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C h a p t e r 2

BACKGROUND

This thesis sits at the intersection of operator algebras, number theory, and non-
commutative geometry. The central idea of the research program of which this
work is one part is to use techniques from operator algebras to construct certain
C∗-dynamical systems whose partition functions, equilibrium states, and symmetries
are related to important objects in the study of the class field theory of number fields.
Some readers may be familiar with operator algebra techniques but not as familiar
with the geometric/number theoretical setting, or vice versa. The background section
is thus divided into three distinct parts. The first part (Section 2.1) discusses the
geometric/number theory setting we are interested in studying, the second part
(Section 2.2) provides an overview of some operator algebra techniques that will be
used, and the third part (Section 2.3) provides a survey of previous work in this
research program. Readers are invited to read or skip Sections 2.1 and 2.2 as is
appropriate to their areas of expertise.

2.1 Number fields and geometry

This work is motivated by questions in the study of number fields, and particularly
the study of real quadratic extensions. Explicit solutions to Hilbert’s 12th problem
have been worked out only in the case of Q and imaginary quadratic extensions, the
latter using the geometric theory of elliptic curves. Considerable work has been done
in Manin’s real multiplication program to develop an analogous non-commutative
geometric setting corresponding to the real quadratic extensions.

2.1.1 Class Field Theory

The general goals of class field theory are to describe, for K a finite extension of Q,
properties of abelian extensions of K in terms of the arithmetic of K. We begin by
elaborating what we mean by the “arithmetic of K”.

Let OK be the ring of algebraic integers of K. A fractional ideal a of K is a finitely-
generated OK-module with generators in K. We endow the set of fractional ideals
with multiplication as follows. If a is generated by α1, ..., αn and b is generated by
β1, ..., βm, we let ab be the fractional ideal generated by {αiβj}i=1,...,n,j=1,...m. With
this multiplication, the set of fractional ideals forms a group with the identity ele-
ments given by OK = (1). We call this group AK . The arithmetic of K is the study
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of AK and related objects such as its subgroups and ideals.

In terms of the arithmetic of K, class field theory aims to describe:

1. the abelian extensions L of K,

2. the Galois group Gal(L/K), and

3. the decomposition of a prime ideal from K to L (i.e. provide a reciprocity
law).

The first two points can be equivalently stated as describingKab the maximal abelian
extension, and its Galois group Gal(Kab/K). Addressing these first two questions for
all number fields is known as Hilbert’s 12th problem. Explicit solutions to Hilbert’s
12th problem have been worked out for only two cases: Q and imaginary quadratic
extensions Q(

√
−d). In the case of Q, the solution was given in 1896.

Proposition 2.1.1 (Kronecker-Weber Theorem). Every abelian extension of Q is
contained in a cyclotomic extension Q(ζn) where ζn is a primitive nth root of unity.

The Galois group is given by Gal(Q(ζn)/Q) = Z/nZ. Equivalently, the maximal
abelian extension is Qab = Qcycl, the field obtained by adjoining all roots of unity,
and the Galois group is Gal(Qcycl/Q) ' lim← Z/nZ = Ẑ∗.

In the case of imaginary quadratic extensions, the solution is more difficult and
requires the machinery of elliptic curves. The case of real quadratic extensions is
still open. It is known, however, that the maximal abelian extension can be ex-
pressed in terms of the idèle class group.

We define the ring of adèles of K to be

AK =
∏
P

K̂P

where K̂P is the completion ofK at the prime P ofOK , with the additional constraint
that for an element given by the tuple (aP ), all but finitely many of the aP satisfy
aP ∈ (ÔK)P . The group of units of AK is the group of idèles IK . K× embeds in IK
and we define the idèle class group to be

CK = IK/K×.
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We define a norm map, for a field extension L/K and L and K number fields.

N : AL → AK∏
Q

αQ 7→
∏
P

∏
Q|P

N
L̂Q

K̂P
(αP )

where Q runs over the primes of L and P runs over the primes of P and NL′
K′ is the

norm map

NL
K : L→ K

α 7→ det(lα)

where lα : L → L is multiplication by α on the left. The norm map descends to a
map

N : CL → CK .

For a finite index field extension L/K we define the norm subgroup

NL := N (CL) ⊂ CK .

It is not trivial to prove, but turns out to be the case that NL is a closed subgroup
of finite index in CK . We have the following result which generalizes the Kronecker-
Weber theorem.

Proposition 2.1.2. Let L/K be a finite field extension of number fields. There is
a natural isomorphism

Θ : Gal(L/K)ab → CK/NL. (2.1)

2.1.2 Imaginary quadratic fields and elliptic curves

The theory of elliptic curves over the complex numbers is used to explicitly solve
Hilbert’s 12th problem in the case of imaginary quadratic extensions. We recall some
basic facts of this theory.

An elliptic curve over C is the set of points

E = {(x, y) : y2 = 4x3 − ax− b} ∪ {∞}

where a, b ∈ C satisfy that the discriminant a3 − 27b2 6= 0, so that the curve is
non-singular. The elliptic curve is also endowed with an addition which turns it into
a group. We will see below that every elliptic curve is isomorphic to a complex torus,
and the addition on the elliptic curve is the one which is compatible with that on
the torus. We will not describe it explicitly here.
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Every complex torus C/Λ, where Λ = ω1Z + ω2Z is a rank 2 lattice in C, is iso-
morphic to an elliptic curve over C. This isomorphism is given by means of the
Weierstrass ℘-functions

℘Λ(u) =
1

u2
+
∑
ω∈Λ

(
(u− ω)−2 + ω−2

)
(2.2)

which have Laurent expansions

℘Λ(u) =
1

u2
+

∞∑
n=2

(2n− 1)G2n(Λ)u2n−2,

G2n(Λ) =
∑
ω∈Λ

ω−2n.

(2.3)

Let
g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ). (2.4)

For a given lattice Λ, we define the elliptic curve

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ). (2.5)

Then the map
C/Λ→ EΛ

u 7→ (℘Λ(u), ℘′Λ(u))
(2.6)

is an isomorphism.

y2 = 4x3 − g2(Λ)x− g3(Λ)

C/Λ = C/Z+ τZ
τ

1

∼
u 7→ (℘Λ(u), ℘′Λ(u))

Figure 2.1: Isomorphism between an elliptic curve and a complex torus

In fact, it is the case that for every elliptic curve, there is a complex torus isomorphic
to it. We define the j-function on the upper half plane H by

j(τ) = 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
(2.7)

where gi(τ) = gi(ω1Z+ ω2Z) for τ = ω1/ω2. The map

j : Γ\H→ C
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where Γ = SL2(Z) acts by fractional linear transformations, is a bijection (see e.g.
[Lan27] §3.) We can use this fact about the j-function to define, for an arbitrary
elliptic curve E, a complex torus which is isomorphic to E. Given two complex
numbers c2 and c3 satisfying c3

2 − 27c2
3 6= 0, there is τ ∈ H satisfying

j(τ) = 1728
c3

2

c3
2 − 27c2

3

.

From this we construct a lattice Lτ

Lτ =

w1(τZ+ Z) if c2 = 0

w2(τZ+ Z) if c2 6= 0

where w1 satisfies w−6
1 g3(τZ + Z) = c3 6= 0 and w2 satisfies w−4

2 g2(τZ + Z) = c2.
The elliptic curve associated to this lattice is EΛτ : y2 = 4x3 − c2x− c3.

The j-function parameterizes the isomorphism classes of complex tori i.e. j(τ) =

j(τ ′) if and only if C/(Z+ τZ) ' C/(Z+ τ ′Z), and consequently also parameterizes
the isomorphism classes of elliptic curves. The moduli space characterizing elliptic
curves is given by the one point compactification

(Γ\H) ∪ {∞} = Γ\(H ∪ P1(Q)),

with each point in the space representing an isomorphism class of elliptic curves.

τ

γ(τ)

ρ

H

i

[ρ]

[i]

[∞]

[τ ]

Figure 2.2: A fundamental domain for the SL2(Z) action on H, and the moduli
space of elliptic curves with cusp added

We will also be interested in the modular curves, which are constructed as quotients
of H by certain subgroups of the modular group.

Definition 2.1.3. The principal congruence subgroup of level n is

Γ(n) =

{(
a b

c d

)
: a, d ≡ 1 and b, c ≡ 0 mod(n)

}
.
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In particular, Γ(1) = SL2(Z). A subgroup Γ ⊂ SL2(Z) is a congruence subgroup if it
contains Γ(n) for some n. The minimal such n is called the level of Γ.

Two important congruence subgroups are called the Hecke congruence subgroups:

Γ0(n) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
mod n

}
,

Γ1(n) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
mod n

}
.

Let Γ be a congruence subgroup. Then the quotient Γ/H is a Riemann surface. As
before, we compactify this space by adding in the cusps to get the compact Riemann
surface

XΓ = Γ/(H ∪ P 1(Q)) = Γ/H ∪ {cusps}.

The modular field

A modular function of level n is a function on H that is invariant under Γ(n), the
principal congruence subgroup of level n, and is meromorphic at the cusps.

Definition 2.1.4. We denote by Fn the field of modular functions f(τ) of level n
that are rational over the cyclotomic field Q(ζn), i.e. such that the expansion in
powers of q1/n = e2πiτ/n has coefficients in Q(e2πi/n). The field F = ∪n∈NFn is
called the modular field.

The Galois group Gal(Qcycl/Q) ' Ẑ∗ acts on the coefficients of the q-expansion of
the functions in F , which determines a homomorphism

cycl : Ẑ∗ → Aut(F ). (2.8)

The fields Fn are generated by certain functions related to theWeierstrass ℘-functions.
Let Λ(ω1, ω2) = ω1Z+ ω2Z. For a ∈ Q2\Z2, let

fa(ω1/ω2) =
g2(Λ(ω1, ω2))g3(Λ(ω1, ω2))

∆(Λ(ω1, ω2))
℘Λ(ω1,ω2)

(
a

(
ω1

ω2

))
(2.9)

where
∆(Λ) = g2(Λ)3 − 27g3(Λ)2.

Note that we can always substitute the lattice Λ(1, τ) for some τ ∈ H for the the
lattice Λ(ω1, ω2), so that we can see the function fa as

fa(τ) =
g2(Λ(1, τ)g3(Λ(1, τ))

∆(Λ(1, τ))
℘Λ(1,τ)

(
a

(
1

τ

))
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for τ ∈ H.

Now, for n ∈ N, the field
Q(j, fa : a ∈ n−1Z2 \ Z2)

coincides with Fn ([Shi71] Proposition 6.9) Using this description, it can be shown
that Fn is a Galois extension of Q(j) which contains the primitive nth roots of unity
([Shi71] Theorem 6.6)

The automorphism group of the modular field F has been determined by Shimura
([Shi71] §6.6):

GL2(Af )/Q∗ ∼−→ Aut(F ). (2.10)

This can be seen as a non-commutative analogue of the class field isomorphism

Θ : A∗f/Q∗+
∼−→ Gal(Qcycl/Q). (2.11)

Certain points τ ∈ H are called generic, and will be of interest when we look at the
0-temperature states of the GL2-system.

Definition 2.1.5. We say that τ ∈ H is generic (for n) if the specialization

{j, fa : a ∈ n−1Z2 \ Z2} → {j(τ), fa(τ) : a ∈ n−1Z2 \ Z2}

induces an isomorphism of fields

Fn = Q(j, fa : a ∈ n−1Z2 \ Z2)→ Q(j(τ), fa(τ) : a ∈ n−1Z2 \ Z2).

It is known that such generic points exist ([Shi71] Lemma 6.5.)

Complex multiplication

Certain points in the moduli space have a property called complex multiplication.
These points are related to the class field theory of imaginary quadratic extensions.

All the endomorphisms of a complex torus C/Λ are given by multiplication by some
complex number λ satisfying λ(Λ) ⊂ Λ. The set of endomorphisms of a complex
torus always includes Z whose elements just scale and/or flip the lattice. However,
the set of endomorphisms may be more interesting and include additional elements.
We say that a complex torus C/Λ has complex multiplication if the set of endomor-
phisms is larger than Z, i.e.

End(C/Λ) = {λ ∈ C : λ(Λ) ⊂ Λ} 6= Z.
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An important fact is that the torus C/(Z + τZ) has complex multiplication if and
only if Q[τ ] is an imaginary quadratic field. Furthermore, in this case, j(τ) is an
algebraic integer. We now state the result linking this geometric picture to the class
field theory of imaginary quadratic fields.

Proposition 2.1.6. Let K be an imaginary quadratic field and OK be its ring of
units. Let C/(Z+ τZ) be a complex torus satisfying

End(C/(Z+ τZ)) = OK .

The maximal abelian extension of K is generated by the set {f(τ) : f ∈ F} where F
is the modular field.

The action of Gal(Kab/K) is induced by the action of Aut(F ).

2.1.3 Real quadratic fields and non-commutative tori

Manin’s real multiplication program [Man04] proposes the development of an anal-
ogous theory where elliptic curves are replaced by “degenerate” elliptic curves (non-
commutative tori).

The main idea is to consider the limiting object obtained when we take the complex
torus C/(Z+τZ) and allow the generator τ of the lattice to tend towards a real irra-
tional point on R. The lattice Λτ = Z+τZ becomes a pseudolattice Lθ = Z+θZ ⊂ R.
The resulting topological quotient of R by the pseudolattice will be bad, but we can
still define a limiting object by using standard methods from non-commutative ge-
ometry. Instead of considering the equivalence relation of the quotient directly, we
will consider the non-commutative algebra of functions defined on the graph of the
equivalence relation with the convolution product

f1 ? f2(x, y) =
∑
x∼y∼z

f1(x, z)f2(y, z).

In particular, when we have a discrete group G acting on a compact topological
space X, the algebra will be given by the crossed-product algebra

C(X)oα G

where we define the action αg(f)(x) = f(g−1(x)) for all f ∈ C(X) and g ∈ G. The
non-commutative multiplication in the algebra is given by

(fUg)(f
′Ug′) = fαg(f

′)Ugg′ .

To apply this idea to our setting of complex tori, we first identify the torus C/(Z+τZ)

with C∗/(qZ) where q = e2πiτ via the exponential map.
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C/Z+ τZ
τ

1

∼

C×/(qZ)

1

q

Figure 2.3: Uniformization of a complex torus

The identification of the boundary of the torus corresponds to gluing together the two
boundary circles of the annulus with a twist by e2πiτ . The limit that τ → θ ∈ R−Q
corresponds to the limit |q| → 1, with a twist on the boundary S1 by e2πiθ. We
obtain the noncommutative algebra

C(S1)oθ Z

where θ acts on S1 by a rotation of 2πθ. This algebra is called the noncommutative
2-torus, and is denoted by Tθ.

There are two notions of isomorphism that we may want to use when considering
non-commutative tori. The first takes the point of view of directly replacing lattices
in C by pseudeolattices. Formally, a pseudolattice is a quadruple (L, V, j, s) where
L is a rank-two free abelian group, V is a one-dimensional complex vector space,
j : L → V is an injective homomorphism whose image lies in the real line, and s is
a choice of orientation of the real line. A strict isomorphism of pseudolattices is a
commutative diagram

L′ V ′

L L

j′

j

ϕ ψ

where ϕ is a group homomorphism and ψ is linear map that takes the orientation s
to s′. Every strict isomorphism class of pseudolattices has a representative element
with j : Z2 → C such that j(0, 1) = 1 and j(1, 0) = θ for an irrational real number θ.
We denote this element by Lθ. Two psuedolattices Lθ and Lθ′ are strictly isomorphic
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if θ and θ′ lie in the same PGL2(Z) orbit. Then the moduli space characterizing the
isomorphism classes of pseduolattices is

PGL2(Z)\(P 1(R)− {cusp})

where the cusp is the orbit of the rational numbers. The action of PGL2(Z) on R
is related to the continued fraction expansion by the classical result that two irra-
tional numbers are in the same PGL2(Z) orbit if and only if their continued fraction
expansion has the same tail.

On the other hand, in the setting of noncommutative tori, Morita equivalence is
the correct notion of isomorphism to employ if we want to imitate the framework
of complex multiplication. We say that a point θ ∈ R has real multiplication if Tθ
has non-trivial Morita self equivalences. Then Tθ has real multiplication if and only
if Q[θ] is a real quadratic field. Two noncommutative tori Tθ and Tθ′ are Morita
equivalent if and only if θ and θ′ are in the same SL2(Z) orbit in R. We can con-
sider the moduli space of the noncommutative tori, which characterizes their Morita
equivalence classes. This is also a noncommutative space, given by the action of
SL2(Z) on P 1(R). It is again described by a crossed product algebra

C(P 1(R))o SL2(Z).

2.1.4 Modular forms, Hecke operators, and modular symbols

An important tool in the study of modular curves is the modular forms. The modular
forms are a class of functions defined on H, which capture the geometry of the
underlying space.

Definition 2.1.7. A modular form of weight k is a function f : H → C satisfying
the following properties.

1. f is holomorphic,

2. f is holomorphic at infinity (i.e. as Im(z) → ∞, |f(z)| is majorized by a
polynomial in max{1, Im(z)−1}), and

3. for γ =

(
a b

c d

)
∈ SL2(Z)

f(z) = (cz + d)kf (γ · z)

where γ acts by fractional linear transformation.

We say that f is a cusp form if it satisfies the stronger growth condition
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2’. f decays rapidly at infinity (i.e. |f(z)| is majorized by Im(z)k/2 as Im(z)→∞).

Similarly, if Γ is a congruence subgroup then a modular form of weight k for Γ

(resp. cusp form of weight k) satisfies the same above three conditions except that
in (3) SL2(Z) is replaced with Γ and the growth condition (2) (resp (2’)) holds for
all (cz + d)−1f(γ · z) where γ ∈ Γ. The growth condition gives that the Fourier
expansion of a modular form given by

f(z) =
∑
n∈Z

ane
2πinz

satisfies an = 0 for all n < 0. For a cusp form we have instead that an = 0 for all
n ≤ 0. We denote by Mk the space of modular forms of weight k, and by Sk ⊂ Mk

the space of cusp forms of weight k.

Equivalently, modular forms can be seen as functions on lattices satisfying a cer-
tain homogeneity property. Let f̃ be a function satisfying

f̃(λΛ) = λ−kf̃(Λ)

for all lattices Λ and λ ∈ C∗. Then for Λ = ω1Z+ ω2Z we have

f̃(λω1Z+ λω2Z) = λ−kf̃(ω1Z+ ω2Z).

From this equation we see that ω−k2 f̃(ω1Z + ω2Z) depends only on ω1/ω2 and so
there exists some f defined on H such that

f̃(ω1Z+ ω2Z) = ω−k2 f(ω1/ω2).

We also see that f̃ is invariant under the SL2(Z) action on (ω1, ω2) and so f satisfies

f(z) = (cz + d)−kf (γ · z)

for γ ∈ SL2(Z).

The space Mk of modular forms of weight k is finite dimensional and admits a col-
lection of commuting linear operators called the Hecke operators. They are defined
by

(Tnf)(z) =
∑
γ∈χn

(det γ)k−1(cz + d)−kf(γ · z)

where

χn =

{(
a b

0 d

)
: g ≥ 1, ad = n, 0 ≤ b < d

}
.
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In the lattice picture, the Hecke operator Tn can be seen taking as input a function
f̃ and outputting a function which averages f̃ over index-n sublattices (for details
see [Ser77] §VII 5.1). The Hecke operators satisfy relations

TnTm = Tnm if (n,m) = 1

Tpn = Tpn−1Tp − pk−1Tpn−2 for p prime.

There is an alternate definition of the Hecke operators in terms of the Hecke algebra
of double cosets (see e.g., [Miy06] §2.7.) This type of Hecke algebra is used in the
construction of the Bost-Connes system in section 2.3.

Definition 2.1.8. Let Γ be a congruence subgroup and ∆ ⊂ GL2(Q)+ be a semi-
group. We define the Hecke algebra by

R(Γ,∆) :=

{∑
α∈∆

aαΓαΓ : aα ∈ Z and aα = 0 for all but finitely many α

}

with the multiplication
ΓαΓ · ΓβΓ =

∑
γ∈∆

cγΓγΓ

where cγ counts the number of (i, j) such that Γαiβj = Γγ for ΓαΓ =
⊔
i Γαi.

This multiplication turns out to be well-defined (independent of the decomposition
ΓαΓ =

⊔
i Γαi). We define the Hecke operators as elements of R(Γ0(n),∆0(n)) where

Γ0(n) is the Hecke congruence subgroup and

∆0(n) =

{(
a b

c d

)
∈M2(Z) : c ≡ 0 mod n, (a, n) = 1, ab− bc > 0

}

as follows.

T (n) =
∑

detα=n

Γ0(n)αΓ0(n)

where the sum is taken over all the double cosets Γ0(n)αΓ0(n) such that det(α) = n.

The modular symbols are a useful tool for computing with modular forms. We
define here the modular symbols of weight 2 introduced in [Man72], which will have
a pairing with the weight-2 cusp forms. A more general construction of higher weight
modular symbols has been given in [Sho81a], and is summarized in Chapter 4.

We fix some modular curve XG for a modular group G. The modular symbol
associated to points α, β in P 1(Q) is a real homology class in H1(XG,R), con-
structed as follows. Consider Cα,β the oriented geodesic going from α to β in H. Let
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ϕ : H ∪ P 1(Q) → XG be the quotient map. Because α and β are cusps, the image
ϕ(Cα,β) is closed on XG. We defined the modular symbol {α, β}G by∫

{α,β}G
ω :=

∫ β

α
ϕ∗(ω) =

∫
ϕ(Cα,β)

ω

for ω a differential form on XG.

The modular symbols are related to the weight-2 cusp forms as follows. Consider
some cusp form f ∈ S2(G). The function f doesn’t descend to a function on XG

because it isn’t G-invariant, but the one-form fdz does. We have the invariance,

f(γ · z)d(γ · z) = f

(
az + b

cz + d

)
d

(
az + b

cz + d

)
= (cz + d)2f(z)

ac− bd
(cz + d)2

dz = f(z)dz

for γ =

(
a b

c d

)
∈ G ⊂ SL2(Z). We then obtain a pairing

〈, 〉 : S2(G)×H1(XG,Z)→ C

by integrating along the image in XG of the geodesic in H connecting α and β

〈f, {α, β}G〉 =

∫ β

α
f(z)dz.

We extend the pairing to a pairing 〈, 〉 : S2(G)×H1(XG,R)→ C by linearity. This
pairing is perfect and it identifies the dual S2(G)∗ with H1(XG,Z).

The modular symbols have several basic properties, which all follow easily from
the definition:

• {α, β}G = −{β, α}G

• {α, β}G = {α, γ}G + {γ, β}G

• {gα, gβ}G = {α, β}G for all g ∈ G

Because of the second property, it suffices to consider modular symbols of the form
{0, α}G. A common technique used when working with modular symbols is to de-
compose them using the continued fraction expansion of α. Recall that every real
number can be represented as a continued fraction expansion of the form

[a0; a1, a2, a3, ...] := a0 +
1

a1 + 1
a2+ 1

a3+
1
...
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and in particular rational numbers have a finite continued fraction expansion while
quadratic irrationalities have a periodic continued fraction expansion. The kth ap-
proximant is the rational number

pk
qk

=
1

a1 + 1
a2+ 1

...+ 1
ak

.

The numbers pk and qk satisfy recurrence relations

pk = akpk−1 + pk−2

qk = akqk−1 + qk−2

where p0 = 0 and q0 = 1. It follows that pkqk−1 − pk−1qk = (−1)k−1. The matrix

gk(α) =

(
pk(α) pk−1(α)

qk(α) qk−1(α)

)

is thus in GL2(Z). For α = [a1, a2, ..., an] rational, we can write the modular symbol
as a finite sum:

{0, α}G =

n∑
k=1

{
pk−1

qk−1
,
pk
qk

}
G

=

n∑
k=1

{gk(0), gk(i∞)}G .

0 p1
q1

p2
q2

pn
qn

= α

Figure 2.4: Approximating a path in H for a modular symbol by continued
fractions

This corresponds to approximating the image of the path C0,α in the modular curve
by geodesics whose endpoints approach α.
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2.2 C∗-dynamical systems and KMS states

Before we describe the Bost-Connes type systems, which are C∗-dynamical systems
with connections to number fields, we give an overview of C∗-dynamical systems in
general. We describe the mathematical formalism used to model the states, observ-
ables, and time evolution of infinitely extended quantum systems, and devote some
time to defining the equilibrium states appropriately in this setting. We also discuss
the geometric structure of the space of equilibrium states, which will turn out to
be a simplex. The structure of the equilibrium states is crucial to the Bost-Connes
picture.

The standard mathematical formalism for a dynamical system in quantum mechan-
ics consists of a triple (H, H, ρ0) where H is a finite-dimensional Hilbert space, H is a
self-adjoint operator in B(H), and ρ is a positive semi-definite trace-one self-adjoint
operator in B(H). The pure states of a system are viewed as norm-one elements ofH.
Observables are self-adjoint elements A of B(H) with some spectral decomposition

A =
∑
i

λiPi

where Pi is the projection on the λi eigenspace. The possible observed values of the
measurement described by A are the eigenvalues λi of A, and each λi is observed for
a fixed pure state ψ ∈ H with probability (ψ, Piψ).

Mixed states are modeled by positive semi-definite trace-one self-adjoint operators
on H. This is motivated by considering a statistical ensemble of pure states ψj each
occurring with probability pj . The probability of measuring the eigenvalue λi of A
is then given by

tr(ρA) =
∑
j

pj(ψj , Piψj)

where ρ(·) =
∑

j pj(ψj , ·)ψj . Note that ρ is positive and trace-one because the pi’s
give a probability distribution on the states ψi. The operator ρ0 represents the initial
mixed state of the system.

The time evolution of the system, in the absence of measurement, is described by a
special observable called the Hamiltonian, denoted by H. Since H is self-adjoint it
induces a continuous one-parameter group of unitary transformations on the mixed
states, or equivalently on the observables by

τ t(ρ) = e−itHρeitH or τ t(A) = eitHAe−itH .

In the case of infinitely-extended quantum systems, it can often be the case that
certain states we wish to consider fail to be traceclass. In this situation, a different
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formalism is used. We move from considering the Hilbert space as the fundamental
object to studying B(H) directly.

Now, we consider a triple (A, τ t, ω) where A is a generic C∗-algebra playing the
role of B(H), τ t is a strongly-continuous one parameter group of automorphisms on
A, and ω is a positive linear functional of norm 1 on A playing the role of the state.
This point of view is supported by the structure theorem for C∗-algebras, which states
that every C∗-algebra is isomorphic to a norm-closed, self-adjoint (i.e. closed under
taking adjoints) algebra of bounded operators on a Hilbert space ([BR87] Theorem
2.1.10).

2.2.1 States

In the finite dimensional setting, the states of a system are given by density matrices.
In the more general C∗-algebraic setting, this needs to be modified as there may be
cases when the trace against a density matrix does not converge. Given a density
matrix ρ over a (finite dimensional) Hilbert space H, we can construct ωρ, a linear
functional on B(H). For A ∈ B(H),

ωρ(A) := tr(ρA).

We have that ωρ is positive, in the sense that it maps positive operators to positive
numbers. This follows by considering the eigenvalues of ρA, which are all positive
since both ρ and A are positive. Furthermore, we may put a norm on the space of
linear functionals defined by

||ω|| = sup
||A||=1

|ω(A)|.

This norm can equally well be defined on the space of linear functionals over an
abstract C∗-algebra. Since ρ is trace-one, it follows that ||ωρ|| = 1.

Importantly, these positive linear functionals which are induced by the density ma-
trices are objects which still make sense in the C∗-algebra setting. Motivated by this
discussion, we give the following definition. A linear functional ω over a C∗-algebra
A is positive if ω(A∗A) ≥ 0 for all A ∈ A. A positive linear functional ω with
||ω|| = 1 is called a state. Conveniently, the positivity condition automatically gives
continuity.

A natural question to ask is whether all states defined in this way can be recovered
by tracing against an appropriate density matrix. This is not the case. However,
for a fixed state we can construct a certain “local” representation such that in the
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representation the state is represented by a density matrix.

It is a fact that the set of states on a C∗-algebra is convex. It is then natural
to define the pure states as the extremal points of the set of states. This mirrors the
classical case when we view the set of mixed states, which are probability measures,
as a subset of the hyperplane in Rn. The set is convex in the euclidean geometry
with the extremal points being the pure probability measures. The difference is that
in the classical setting there is a unique way to write each mixed state as a linear
combination of pure states: the set of states is a simplex. However, in the quantum
case we do not have this unique decomposition.

2.2.2 Measurement

C∗-algebras have a very nice spectral theory that will allow us to generalize the
formalism for measurement from the finite-dimensional setting. First we use the
version of the spectral theorem that allows us to “take functions of” observables,
called the functional calculus version of the spectral theorem.

Theorem 2.2.1 (Spectral Theorem, Functional Calculus Version). Let A be a self-
adjoint element of a C∗-algebra A, and let C∗(A) be the sub-algebra of A generated
by A. Then there exists a map ΦA : C(σ(A))→ C∗(A), where C(σ(A)) is the space
of continuous functions on the spectrum, σ(A), satisfying

1. ΦA is an isomorphism ,

2. ΦA is an isometry (in particular it is continuous) with the sup norm on C(σ(A)),

3. ΦA(1) = 1, where 1 is the map R 3 x 7→ 1 ∈ R,

4. ΦA(id) = A, where id is the map R 3 x 7→ x ∈ R.

Furthermore, σ(ΦA(f)) = f(σ(A)). This is sometimes called the Spectral Mapping
Theorem.

The element ΦA(f) for a continuous function f should be interpreted as “taking the
function” of the element A. We denote it by f(A).

For a fixed state ω ∈ A∗, and observable A ∈ A, we now let µA,ω be the unique
Borel measure on σ(A) obtained from the Riesz-Markov theorem, satisfying

ω(f(A)) =

∫
σ(A)

f(x)dµA,ω(x).
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This is called the spectral measure associated to A and ω. The possible results
of a measurement described by A for a system in state ω are given by σ(A), and
the probability distribution is given as follows. For a Borel subset E ⊂ σ(A), the
probability of measuring a value in E when the system is in the state ω is µA,ω(E).

2.2.3 Dynamics

Recall that in the finite dimensional setting, our dynamics on the observables was
given by a Hamiltonian H

τ t(A) = eitHAe−itH .

We can compute the derivative to obtain the differential equation

d

dt
τ t(A) = iHτ t(A)− τ t(A)(iH) = i[H, τ t(A)]

with initial condition τ0(A) = A. A solution to this is

τ t(A) = eit[H,·]A

where we view δH := i[H, ·] : A 7→ i[H,A] as a bounded linear operator on the space
B(H), noting that in this setting B(H) is a finite dimensional Banach space. δH is
self-adjoint and is called the generator of τt. Importantly, δH is in the C∗-algebra
of operators rather than the underlying Hilbert space, so this is the formulation we
will use when moving to the general setting.

First let us consider what happens if the Hilbert space is infinite dimensional. We
define dynamics using unitary operators, which preserve the inner product structure.

Definition 2.2.2. Let H be an infinite dimensional Hilbert space. A dynamics on
B(H) is a map τ t(A) = U(t)AU(t)∗ where U(t) is a one-paramter strongly-continuous
unitary group. In other words,

1. for each t, U(t) is unitary,

2. for s, t > 0, U(t+ s) = U(t)U(s),

3. U(0) = 1,

4. for each A, t 7→ U(t)AU(t)∗ is continuous.

We can apply Stone’s theorem to our dynamics, which gives a correspondence be-
tween one-parameter strongly-continuous unitary groups U(t) and self-adjoint (but
not necessarily bounded) operators A.

U(t)↔ eitA
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The exponential is well-defined using a power series if A is bounded or using spectral
theory if A is unbounded [RS80]. Therefore, while we can still write our dynamics
in the form τ t(A) = eitHAe−itH , H may be unbounded and hence not an element of
the algebra B(H). From a physical point of view, this corresponds to an infinitely
extended system having infinite energy, but it will pose problems when we move to
the C∗-algebraic formalism, where we do not have access to the Hilbert space.

We can rewrite the definition of a dynamics in terms of the operator algebra by
using the fact that unitary operators preserve inner products, and hence conjuga-
tion by unitaries preserves operator norm.

Definition 2.2.3. A dynamics on a C∗-algebra A is a map

R 3 t 7→ τ t ∈ Aut(A)

which satisfies

1. τ t+s = τ t ◦ τ s,

2. t 7→ τ t(A) is continuous for all A ∈ A (strong continuity).

For a C∗-dynamics, which is a one-parameter strongly-continuous automorphism
group on a Banach space, we define the generator as the possibly unbounded operator
δ : D(δ)→ A:

D(δ) = {A ∈ A : lim
t→0

1

t
(τ t(A)−A) exists},

δ(A) = lim
t→0

1

t
(τ t(A)−A) for A ∈ D(δ).

The following theorem says that the generator does indeed generate the dynamics
(see e.g. [Rud91] Theorem 13.35).

Theorem 2.2.4 (Hille-Yosida). Let t 7→ τ t be a one-parameter strongly continuous
group of automorphisms on a Banach space X with generator δ. Then the domain
of δ, D(δ), is dense and δ is closed. Furthermore if A ∈ D(δ) then(

t 7→ τ t(A)
)
∈ C0(R,D(δ)) ∩ C1(R, X)

and δ satisfies the differential equation

d

dt
τ t(A) = δτ t(A) = τ tδ(A).

For this reason we use the formal notation τ t = etδ. Note that if we have a Hamil-
tonian dynamics on a finite dimensional Hilbert space given by Hamiltonian H,
then we may compute the generator δ in this last more general sense and find that
δ = δH = i[H, ·].
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2.2.4 Gibbs states and KMS states

In statistical mechanics, we often study equilibrium states. An equilibrium state
is both invariant under the dynamics of the system, and has a certain stability
property. We express this stability property precisely in terms of the entropy of the
system. In the finite-dimensional case the von Neumann entropy is the functional
S : {ρ ∈ B(H)|tr(ρ) = 1, ρ ≥ 0} → R defined by

S(ρ) = −tr(ρ log ρ) = −
∑
i

λi log(λi)

where ρ =
∑

i λiPλi is the spectral decomposition. Note that log(λi) is defined since
ρ is positive. If we take ρ to be a density matrix defined by

∑
i pi(ψi, ·)ψi, then the

von Neumann entropy is the same as the classical (Gibbs) entropy of the probability
distribution (p1, ..., pn).

An equilibrium state is one which maximizes the entropy among all states with
a fixed energy E ∈ [Emin, Emax] where Emin and Emax are the smallest and largest
eigenvalues of the Hamiltonian. In other words, it is a state ρ0 such that tr(Hρ0) = E

and
max{S(ρ) : ρ a state, tr(Hρ) = E} = S(ρ0).

In the finite-dimensional setting, the equilibrium states are completely described by
Gibbs states.

Definition 2.2.5. For a finite dimensional quantum system H with Hamiltonian H,
the Gibbs state at inverse temperature β is

ρβ :=
e−βH

tr(e−βH)
.

Note that this is a positive operator with trace one.

For each fixed E ∈ [Emin, Emax] there is a unique inverse temperature β ∈ [−∞,∞]

such that ρβ(H) = E. For this value of β,

max{S(ρ) : ρ a state, tr(Hρ) = E} = S(ρβ)

and the unique maximizer is ρβ . (See e.g. [Jak+12] for the proof.) The definition of
the Gibbs state in the finite dimensional setting relied on using the trace: tr(e−βH).
When we move to the infinite dimensional setting, this trace does not always con-
verge, and therefore, the Gibbs state may not exist.

We wish to give a definition of the equilibrium states for the general C∗-algebra
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setting. In order to do this, we will first derive a condition on states which, in the
Hilbert space setting, is equivalent to the state being Gibbs. This condition will be
written in terms of the linear functional induced by tracing against a density matrix.

We have a Hamiltonian dynamics acting on B(H) given by τ t(A) = eitHAe−itH .
For fixed A,B we can extend the function R 3 t 7→ ω(Aτ t(B)) to a strip in the
complex plane, just by applying the functional calculus to the Hamiltonian. Then
the Gibbs state is equivalent to an approximate commutation property [Jak+12].

Proposition 2.2.6. Let H be a finite dimensional Hilbert space. The state ω ∈
B(H)∗ is a Gibbs state at inverse temperature β if and only if

ω(Aτ iβ(B)) = ω(BA)

for all A,B ∈ B(H). This condition is called the KMS condition.

Proof. Suppose ωβ is the Gibbs state.

ωβ(Aτ iβ(B)) = tr(ρβAe−βHBeβH) = tr(
e−βH

tr(e−βH)
Ae−βHBeβH) = tr(ρβBA) = ωβ(BA)

The KMS condition follows from the cyclicity of the trace. This implication actually
holds as long as the Gibbs state exists, even if H is not finite-dimensional. The
traceclass operators are an ideal in the space of bounded operators, and so the above
calculation still makes sense.

Now suppose ω is a state satisfying the KMS condition. Since we are in the fi-
nite dimensional case, we have some density matrix ρ such that ω(·) = tr(ρ ·). The
KMS condition can then be written as

tr(ρBA) = tr(ρAe−βHBeβH) ∀A,B ∈ B(H).

Let X = eβHρ and Y = Ae−βH . Then we have

tr(XBY ) = tr(XY B) ∀B, Y ∈ B(H).

It follows that [X,B] = 0 for all B and hence X = α1 for some scalar α. Hence
ρ = αe−βH . Normalizing so that tr(ρ) = 1 gives the Gibbs state.

Remark 2.2.1. The KMS condition can be rewritten as

ω(τ t(B)A) = ω(Aτ t+iβ(B)) ∀t ∈ R.

In this form we can see it as a boundary condition of the function

FA,B(z) := ω(Aτ z(B))

on the strip 0 ≤ Im(z) ≤ β: FA,B(t+ iβ) = ω(τ t(B)A).
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β

0

FA,B(z)

ω(Aτ t(B))

ω(τ t(B)A)

Figure 2.5: The KMS condition as a boundary condition on a strip

We now wish to generalize the KMS condition to the operator algebra setting. First
we need to verify that, for a general C∗ dynamics, we can extend the function t 7→
ω(Aτ t(B)) analytically to a strip in the complex plane. Indeed, we can show that
for a fixed C∗-dynamics τ t, such an analytic extension is possible for a norm-dense
sub-algebra called Aτ .

Definition 2.2.7. Let t 7→ τ t be a strongly continuous, one-parameter group of
∗-automorphisms of a C∗-algebra A. An element A ∈ A is analytic for τ t if there
exists a strip Iλ = {z ∈ C : |Im(z)| < λ} and a function f : Iλ → A such that

1. for t ∈ R, f(t) = τ t(A) and

2. for each ω ∈ A∗, the function z 7→ ω(f(z)) is analytic.

This pointwise analyticity condition is actually equivalent to a stronger notion of
analyticity in the space A itself.

One can show that the sub-algebra of entire analytic elements (for a given dynamics
τ t), which we denote by Aτ , is dense in the norm of A (see e.g. [BR87] Prop 2.5.22).
We then give the KMS condition for C∗-algebras.

Definition 2.2.8. Let (A, τ) be a C∗-dynamical system. A state ω is a (τ, β)-KMS
state if

ω(Aτ iβ(B)) = ω(BA)

for all A,B in some norm-dense, τ -invariant sub-algebra Bτ ⊂ Aτ . We often suppress
the τ in our notation when it is clear from context which dynamics we are referring
to.

The set of β-KMS states for some fixed inverse temperature β, denoted by Kβ is a
simplex (see e.g. [BR96] Theorem 5.3.30). We denote the set of extremal β-KMS
states by Eβ . These extremal KMS states can be thought of as pure phases.
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2.2.5 Ground states

There are two possible choices for how to define the equilibrium states of a C∗-
dynamical system at 0-temperature. One may consider weak limits of low tempera-
ture KMS states (we refer to these as∞-KMS states) or one may use a more general
definition, which allows for 0-temperature states to exist even when there are no
low-temperature KMS states. We refer to the latter as ground states.

Definition 2.2.9. ω is a ground state for (A, τ) if for any A,B ∈ A, there exists
a function FA,B which is continuous on Im(z) ≥ 0 and analytic and bounded on
Im(z) > 0 such that

FA,B(t) = ω(Aτt(B))

for all t ∈ R.

This corresponds to taking β → ∞ in the strip of Remark 2.2.1. We refer to 0-
temperature states as defined by weak limits of low-temperature states as ∞-KMS
states.

Definition 2.2.10. Let (A, τ) be a C∗-dynamical system and {ωα} a net of states
on A such that

lim
α
ωα(A) = ω(A)

for all A ∈ A. Let ωα be a βα-KMS state for βα ∈ R such that

lim
α
βα =∞.

Then ω is called an ∞-KMS state.

It is a fact that if ω is an ∞-KMS state, then it is automatically a ground state (see
e.g. [BR96] Prop 5.3.23). However, the converse is not true. For example, if the time
evolution is trivial, then all states are ground states, but only tracial states (those
satisfying ω(AB) = ω(BA)) are ∞-KMS states. It can be convenient to consider
the ∞-KMS states because they form a simplex and therefore we can consider the
set of extremal states E∞.

2.2.6 Symmetries and symmetry-breaking

An important phenomenon to study in quantum statistical mechanics is symmetry
breaking. This occurs when there is some underlying group G of symmetries on
a C∗-algebra A which commutes with the time evolution. In certain temperature
ranges, the induced action on the equilibrium states is trivial. However, in other
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temperature ranges, the choice of an equilibrium state ϕ breaks the symmetry group
into smaller subgroups

Gϕ = {g ∈ G : g∗(ϕ) = ϕ}

where g∗ is the induced action of g on the states. This often occurs when there
is some critical inverse temperate βc such that above this temperature (β < βc)

there is a unique β-KMS state, and below this temperature the β-KMS states are
no longer unique. We will consider symmetries that are both automorphisms and
endomorphisms of A.

• Automorphisms: We consider subgroups G ⊂ Aut(A) which commute with
the time evolution

gσt = σtg ∀g ∈ G, t ∈ R.

There is an induced action of G on the set of KMS states Kβ and on the
extremal KMS states Eβ .

• Endomorphisms: We consider subgroups G ⊂ End(A) that commute with
the time evolution, so that

ρσt = σtρ ∀ρ ∈ G, t ∈ R.

Let eρ = ρ(1). If we have an extremal KMS state ϕ ∈ Eβ such that ϕ(eρ) 6= 0

then we may define a pullback

ρ∗(ϕ) =
1

ϕ(eρ)
ϕ ◦ ρ.

More care is needed when defining an action of G in this way on E∞. There
are cases where ϕ(eρ) = 0 but one can still define an interesting action on E∞
by first “warming up” the states, acting by ρ, and then “cooling down” (see e.g.
[Mar04] for details).
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2.3 Bost-Connes type systems

In [BC95], a C∗-dynamical system called the Bost-Connes system was introduced. It
was initially constructed as a Hecke algebra, but it has a geometric interpretation
as a coordinate algebra of 1-dimensional Q-lattices up to a certain equivalence re-
lation. A sub-algebra of the Bost-Connes algebra, called the arithmetic sub-algebra
was also constructed. The Bost-Connes system is related to the number field Q and
various important objects in its study. The partition function given by the Hamilto-
nian which generates the dynamics is the Riemann-zeta function. The Galois group
Gal(Qcycl/Q) acts as a symmetry group on the extremal KMS states (pure phases)
and with respect to this group of symmetries, the system exhibits spontaneous sym-
metry breaking at a critical temperature. Finally, the system has 0-temperature
equilibrium states, and these states, when evaluated on points in the arithmetic
sub-algebra, give a set of algebraic numbers which generate the maximal abelian
extension Qcycl.

Later, in [CM04], this picture was extended to the geometric setting of 2-dimensional
Q-lattices. A C∗-dynamical system called the GL2-system (again based on a Hecke
algebra) was constructed, as well as an arithmetic sub-algebra of, in this case, the
algebra of unbounded multipliers on the Hecke algebra.

A construction of a Bost-Connes type system for an arbitrary number fieldK is given
in [LLN09], which has the desired partition function, symmetries and behaviour of
the KMS states. However, it is still unknown whether these systems have the im-
portant property that the ∞-KMS states, when evaluated on an arithmetic algebra,
generate the maximal abelian extension Kab. These dynamical systems are initially
constructed using the class field theory data, but a geometric object (the K-lattices)
are introduced which allow for a description of the systems that does not rely on
the class field theory data. The present work takes a different tack. We instead
define a boundary version of the GL2 system directly by viewing points in R as
parameterizing pseudolattices (degenerate elliptic curves) and connect the ground
states of this system evaluated on the arithmetic algebra to the limiting modular
symbols. Therefore, in this section we shall focus on the construction of the GL2

system, which is most relevant to our construction.

2.3.1 Bost-Connes system

We begin by describing the C∗-dynamical system constructed by Bost and Connes
in [BC95] and its connections to properties of the number field Q. The KMS states,
the ground states, and the symmetries of the system will be of particular interest.
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Construction of the Bost-Connes system

The original construction given by Bost and Connes in 1995 proceeds by first con-
structing a Hecke algebra, then moving to a regular representation of the algebra on
a Hilbert space, and finally obtaining a canonical time evolution in the induced von
Neumann algebra using Tomita-Takeaski theory. For a discrete group Γ and sub-
group Γ0 we define the Hecke algebra H(Γ,Γ0) to be the algebra of complex-valued
functions with finite support on the double coset space Γ0\Γ/Γ0 equipped with the
convolution product

(f1 ∗ f2)(γ) =
∑

γ1∈Γ0\Γ

f1(γγ−1
1 )f2(γ1) ∀γ ∈ Γ. (2.12)

Here we view f1, f2 as functions on Γ which are invariant with respect to multipli-
cation on the left and right by Γ0 and which have finite support in Γ0\Γ/Γ0. It is
also equipped with the involution

f∗(γ) = f(γ−1) ∀γ ∈ Γ0\Γ/Γ0.

At this point we impose an additional condition that Γ0 is an almost normal subgroup
of Γ, which means that the orbits of the left action of Γ0 on Γ/Γ0 are finite. Under
this condition, we turn the Hecke algebra into a C∗-algebra by completing it in an
appropriate representation. The map

λ : H(Γ,Γ0)→ l2(Γ0\Γ)

f 7→ λf

defined by the formula

(λfξ)(γ) =
∑

γ1∈Γ0\Γ

f(γγ−1
1 )ξ(γ1) ∀γ ∈ Γ0\Γ, ξ ∈ l2(Γ0\Γ) (2.13)

is a representation, which we call the regular representation. We denote by C∗r (Γ,Γ0)

the norm closure of H(Γ,Γ0) in l2(Γ0\Γ).

Also under the condition that Γ0 is an almost normal subgroup of Γ, we define
a dynamics on C∗r (Γ,Γ0) by taking the unique strongly-continuous one-parameter
automorphism group σt such that

σt(f)(γ) =

(
L(γ)

R(γ)

)−it
f(γ) (2.14)

where R(γ) and L(γ) are the cardinalities of the image of Γ0γΓ0 in Γ0\Γ and Γ/Γ0 re-
spectively. This time evolution is obtained in the regular representation via Tomita-
Takesaki theory as the canonical time evolution associated to the state

ϕ(f) = (e, λ(f)e)l2(Γ0\Γ)
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where e is a separating and cyclic vector given by the left coset Γ01 ∈ Γ0\Γ (see
Prop 4 of [BC95]).

Definition 2.3.1. The Bost-Connes system is the C∗-algebra A1 = C∗r (P+
Q , P

+
Z )

and its associated dynamics σt of Equation 2.14 where

P+
Q =

{(
1 b

0 a

)
: a, b ∈ Q, a > 0

}
,

P+
Z =

{(
1 b

0 1

)
: b ∈ Z

}
.

Note that P+
Z is an almost normal subgroup of P+

Q (Lemma 13 of [BC95]), so that
this definition makes sense.

A presentation for the algebra C∗r (P+
Q , P

+
Z ) is also obtained. We first observe that

C∗r (Γ,Γ0) has a linear basis given by {εX} where X ∈ Γ0\Γ/Γ0 is a double coset.

Proposition 2.3.2 ([BC95] Prop. 18, simplified in [LR99] Lemma 2.7). For n ∈ N,
let

µn = n−1/2εXn , where Xn = P+
Z

(
1 0

0 n

)
P+
Z .

For γ ∈ Q/Z, let

e(γ) = εXγ , where Xγ = P+
Z

(
1 γ

0 1

)
.

The elements µn for n ∈ N and e(γ) for γ ∈ Q/Z generate C∗r (P+
Q , P

+
Z ), and the

following relations give a presentation.

• µ∗nµn = 1 ∀n ∈ N

• µnm = µnµm ∀n,m ∈ N

• e(0) = 1, e(γ)∗ = e(−γ) and e(γ1 + γ2) = e(γ1)e(γ2) ∀γ, γ1, γ2 ∈ Q/Z

• µne(γ)µ∗n = 1
n

∑
δ∈Q/Z:nδ=γ e(δ) ∀n ∈ N, γ ∈ Q/Z

In this presentation, the time evolution acts by

σt(µn) = nitµn, σt(e(γ)) = e(γ). (2.15)

By means of this presentation, one can show that the Bost-Connes algebra is iso-
morphic to the semigroup crossed product

C∗(Q/Z)oN
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where N is the semigroup under multiplication [LR99]. Here C∗(Q/Z) is the group
C∗-algebra.

We will also consider an arithmetic sub-algebra of the Bost-Connes algebra, which
we think of as a sub-algebra of certain classical points on which we will evaluate the
ground states of the Bost-Connes system. It is defined as follows.

Definition 2.3.3. The arithmetic sub-algebra of the Bost-Connes system, denoted
by A1,Q, is the algebra over Q generated by the elements e(λ) for λ ∈ Q/Z and µn
and µ∗n for n ∈ N in the presentation of Proposition 2.3.2.

The arithmetic sub-algebra can equivalently be described in the Hecke algebra pic-
ture as the compactly-supported Q-valued functions on Γ0\Γ with the convolution
product 2.12.

Geometric interpretation

There is a geometric picture corresponding to the Bost-Connes system in terms
of 1-dimensional Q-lattices under a commensurability relation. We present here the
general description of Q-lattices (as we will make use of the 2-dimensional case later)
before specializing to the 1-dimensional case.

Definition 2.3.4. An n-dimensional Q-lattice consists of a pair (Λ, φ) where Λ ⊂ Rn

is a lattice and φ is a labelling of its torsion points given by

φ : Qn/Zn → QΛ/Λ

where φ is a group homomorphism. In the special case that φ is an isomorphism, we
say that (Λ, φ) is invertible.

(q1, q2)

Q2/Z2

φ((q1, q2))

QΛ/Λ

φ

Figure 2.6: Non-invertible 2-dimensional Q-lattice.

We denote by φN the restriction of the map φ to the N -torsion points,

φN :

(
1

N
Z/Z

)n
→ 1

N
Λ/Λ. (2.16)
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We say that (Λ, φ) is divisible by N if φN = 0.

Definition 2.3.5. We say that two Q-lattices (Λ1, φ1) and (Λ2, φ2) are commensu-
rable, denoted by (Λ1, φ1) ∼ (Λ2, φ2), if

QΛ1 = QΛ2 and φ1 = φ2 (mod Λ1 + Λ2). (2.17)

Commensurability of Q-lattices is an equivalence relation (see e.g. [CM08] Lemma
3.18). We denote by Ln the set of commensurability classes of n-dimensional Q-
lattices.

In the 1-dimensional case, a Q-lattice can be written in the form (Λ, φ) = (λZ, λρ)

where λ > 0 is some scaling factor and

ρ ∈ Hom(Q/Z,Q/Z) = lim
←−
Z/nZ = Ẑ.

The 1-dimensional Q-lattices, up to scaling by R+, are completely determined by
the choice of ρ ∈ Ẑ. We will construct a non-commutative C∗-algebra describing the
commensurability classes of 1-d Q-lattices up to scaling. First we take the algebra
of coordinates of the space of all the 1-d Q-lattices up to scaling, which is C(Ẑ).
The commensurability relation is implemented by the action of N on the coordinate
space of Q-lattices by the maps

αn(f)(Λ, φ) =

f(nΛ, φ) if (Λ, φ) is divisible by n

0 if (Λ, φ) is not divisible by n
. (2.18)

This corresponds in C(Ẑ) to the action of N by the maps

αn(f)(ρ) = f(n−1ρ) ∀ρ ∈ nẐ. (2.19)

From this, it follows that the algebra of coordinates of commensurability classes of 1-
d Q-lattices up to scaling, which we denote by C(L1/R+), is isomorphic to C(Ẑ)oN.
Pontryagin duality can then be used to identify C(Ẑ) and C∗(Q/Z), giving us that
C(L1/R+) = C∗(Q/Z)oN, which is isomorphic to the original Bost-Connes algebra
A1. In the Q-lattice picture, the time evolution of the Bost-Connes system is given
on C(L1/R+) by

σt(f)(L1, L2) = |L1/L2|itf(L1, L2) (2.20)

where Li = (Λi, φi) is a Q-lattice, we view elements of C(L1/R+) as functions on
pairs of commensurable Q-lattices invariant under scaling

f(λL1, λ, L2) = f(L1, L2) ∀λ ∈ R+,
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and the quantity |L1/L2| is the ratio of the co-volumes of the lattices

|L1/L2| =
covol(Λ1)

covol(Λ2)
.

The arithmetic sub-algebra can be viewed in the lattice picture as the sub-algebra
of C(L1/R+) generated by certain weight-0 functions on the space of Q lattices. Let
a ∈ Q/Z. Then we define a weight-0 function by

ea(Λ, φ) = c(Λ)
∑

y∈Λ+φ(a)

y−1 (2.21)

where c(Λ) is a multiple of covol(Λ) determined by the formula

2πic(Z) = 1. (2.22)

The arithmetic sub-algebra A1,Q is generated by ea for a ∈ Q/Z and the µn, µ∗n for
n ∈ N.

KMS states and symmetries

The Bost-Connes system is interesting because of the connection between its thermo-
dynamic behaviour and properties of the number field Q. In particular, the system
has a group of symmetries given by the Galois group Gal(Qcycl/Q).

Observe that each element α ∈ Gal(Qcycl,Q) has an associated representation πα :

A1 → l2(N∗) (Prop 24 [BC95]). Let εk for k ∈ N∗ be the canonical basis for l2(N∗).
In this basis, πα is given by

πα(µn)εk = εnk ∀n, k ∈ N∗

πα(e(γ))εk = α(exp 2πikγ)εk ∀k ∈ N∗, γ ∈ Q/Z.
(2.23)

Note that there is a canonical extension of πα to the full C∗-algebra A1. In the
representation, the time evolution is given by the Hamiltonian

Hεn = log(n)εn (2.24)

i.e. eitHπα(x)e−tH = πα(σt(x)) for all x ∈ A1 and t ∈ R. In the representation, the
partition function is the Riemann-zeta function.

Z(β) = tr(e−βH) =
∑
n∈N

n−β = ζ(β)

We will now describe the KMS states of the system, using these representations.
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Proposition 2.3.6 (Theorem 5, Theorem 25 [BC95]). For 0 < β ≤ 1, there is a
unique β-KMS state, denoted by ϕβ, on the BC system (A1, σt). On the C∗(Q/Z)

part of the algebra, the restriction of the state is given by the function on Q/Z

ϕ(e(a/b)) = b−β
∏

p prime ,p|b

(1− pβ−1)(1− p−1)−1 (2.25)

where a
b ∈ Q/Z such that a, b ∈ Z are relatively prime, and b > 0.

For β > 1, the extremal β-KMS states, Eβ, are parameterized by embeddings χ :

Qcycl → C. For each α ∈ Gal(Qcycl/Q), there is a β-KMS state given by

ϕβ,α(x) =
1

ζ(β)
Tr(πα(x)e−βH) ∀x ∈ A1 (2.26)

The map α 7→ ϕβ,α is a homeomorphism of Gal(Qcycl/Q) and Eβ.

The restriction of the state ϕβ,α to the C∗(Q/Z) part of the algebra is given by

ϕβ,α(e(a/b)) =
1

ζ(β)

∞∑
n=1

n−βχα(ζna/b) (2.27)

where χα : Qcycl → C is the embedding corresponding to the element α ∈ Gal(Qcycl/Q),
and ζa/b is a root of unity.

There is a critical temperature β = 1. Above this temperature (β ≤ 1) the KMS
states are unique. However, for low temperature (β > 1) there are many β-KMS
states, and they are described by embeddings of the the cyclotomic field in C. In
addition, Gal(Qcycl/Q) acts on the set of β-KMS states by composition, and the sys-
tem exhibits spontaneous symmetry-breaking at β = 1 with respect to this action.

We note that ϕβ,α are Gibbs states in the representation πα. In the limit β → ∞
we obtain extremal ∞-KMS states of the form

ϕ∞,α(x) = (πα(x)ε1, ε1)2(N∗) (2.28)

each one corresponding to α ∈ Gal(Qcycl/Q). The Galois group also acts on the ∞-
KMS states by composition. We end by describing how the ∞-KMS states behave
when evaluated on the arithmetic subalgebra A1,Q.

Proposition 2.3.7. Let ϕ∞,α ∈ E∞ be an∞-KMS state on (A1, σt). Then ϕ∞,α(A1,Q) ⊂
Qcycl. Furthermore, the class field isomorphism

Θ : Gal(Qcycl/Q)→ Ẑ∗

intertwines the Galois action on ϕ∞,α(A1,Q) with the action of Ẑ∗ on A1,Q:

γϕ∞,α(x) = ϕ∞,α(Θ(γ)x)

where γ ∈ Gal(Qcycl/Q) and x ∈ A1,Q.
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2.3.2 GL2-system

A 2-dimensional version of the Bost-Connes system was given by Connes and Marcolli
in [CM04], based upon the geometric picture of Q-lattices. It utilizes 2-dimensional
Q-lattices rather than 1-dimensional Q-lattices. The idea is to consider an algebra
of coordinates C(L2/C∗) on the space of commensurability classes of 2-d Q-lattices
up to scaling. As before, we begin by characterizing all the Q-lattices by some
parameters including a scaling parameter. In the 2-dimensional case, every Q-lattice
can be written in the form

(Λ, φ) = (λ(Z+ τZ), λρ) (2.29)

where λ ∈ C∗ is some scaling factor, τ ∈ H, and ρ ∈ Hom(Q2/Z2,Q2/Z2) = M2(Ẑ).
Recall that the lattices Z+ τZ correspond to elliptic curves, and the quotient under
the SL2(Z) action of the parametrizing points τ ∈ H gives the modular curve, which
encodes the isomorphism classes of elliptic curves. The thermodynamic properties
of the GL2-system are related to the imaginary quadratic fields similarly to how the
thermodynamic properties of the Bost-Connes system are related to the number field
Q. We will go through a careful construction of the GL2-system, comparing it to the
Bost-Connes system, and using an underlying picture of 2-dimensional Q-lattices.
We will then summarize results surrounding the GL2-system’s KMS states, phase
transitions, ground states, and symmetries.

Construction of the GL2-system

We will proceed by first considering R2, the groupoid of the set of 2-d Q-lattices
(not up to scaling) with the equivalence relation of commensurability, and then de-
scribe how the scaling action of C∗ acts on R2. We begin by obtaining an equivalent
description of the groupoid R2.

Let G2 be the groupoid of pairs (g, ρ) where g ∈ GL+
2 (Q), ρ ∈ M2(Ẑ), and gρ ∈

M2(Ẑ), with composition given by

(g1, ρ1) ◦ (g2, ρ2) = (g1g2, ρ2)

if g2ρ2 = ρ1. The associated C∗-algebra C∗(G2) is the groupoid C∗-algebra introduced
in [Ren80], which has the convolution product

f1 ? f2(g, ρ) =
∑
s

f1(gs−1, sρ)f2(s, ρ) (2.30)

and involution

f∗(g, ρ) = f(g−1, gρ).
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This C∗-algebra can be equivalently viewed as the semigroup crossed product C(M2(Ẑ))o
M2(Z)+. Comparing this to the 1-d case where we had C(L1/R+) is isomorphic to
C(Ẑ) o N, we see that M2(Ẑ) is playing the role of Ẑ. However, G2 by itself is
actually not an equivalent description of R2. To obtain the correct full description
of R2, we take a crossed product with GL2(R). Let

ψ : G2 → GL+
2 (R)

(g, ρ) 7→ g
(2.31)

be the homomorphism obtained from the inclusion GL+
2 (Q) ⊂ GL+

2 (R).

Definition 2.3.8. For a groupoid G, a group H, and a homomorphism ψ : G→ H,
we define the cross product groupoid G ×ψ H to be the set G × H with objects
G(0) ×H, range and source maps

r(g, h) = (r(g), ψ(g)h), s(g, h) = (s(g), h),

and composition
(g1, h1) ◦ (g2, h2) = (g1 ◦ g2, h2).

Let G̃2 = G2 ×ψ GL2(R) be the cross product groupoid. The set of objects of G̃2 is

G̃2
(0)

= {(g, ρ, α) ∈ GL+
2 (Q)×M2(Ẑ)×GL+

2 (R) : gρ ∈M2(Ẑ)}. (2.32)

We can take the quotient of G̃2 by the free action of SL2(Z)× SL2(Z) given by

(γ1, γ2)(g, ρ, α) = (γ1gγ
−1
2 , γ2ρ, γ2α) (2.33)

to obtain a groupoid S2 which is Morita equivalent to G̃2. There is an isomorphism
of locally compact groupoids between the quotient S2 and R2 given by

Φ(g, ρ, α) = ((α−1g−1Λ0, α
−1ρ), (α−1Λ0, α

−1ρ)) ∀(g, ρ, α) ∈ S2 (2.34)

where Λ0 is the lattice Λ0 = Z + iZ ([CM04] Proposition 1.22). Having obtained
this equivalent description of R2, we now describe how the action of scaling by
C∗ on the Q-lattices behaves. The scaling action of C∗ on R2 is not free, so the
quotient R2/C∗ will not be a groupoid. However, we will still be able to define a
convolution C∗-algebra. Observe that we can view C as a subgroup of GL+

2 (R) via
the identification

C→ GL+
2 (R)

a+ ib 7→

(
a b

−b a

)
(2.35)
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and one can identify GL+
2 (R)/C∗ with the upper half plane H by

GL+
2 (R)→ H

α =

(
a b

c d

)
7→ α(i) =

ai+ b

ci+ d
.

(2.36)

Consider the space M2(Ẑ)×H and the action of GL+
2 (Q) on it by

γ(ρ, τ) =

(
γρ,

aτ + b

cτ + d

)
(2.37)

where γ =

(
a b

c d

)
∈ GL+

2 (Q) , ρ ∈M2(Ẑ), and τ ∈ H. Let Z be the space defined

as the quotient of

U = {(g, ρ, τ) : g ∈ GL+
2 (Q), ρ ∈M2(Ẑ), τ ∈ H, gρ ∈M2(Ẑ)} (2.38)

by the action of SL2(Z)× SL2(Z) given by

(γ1, γ2)(g, ρ, τ) = (γ1gγ
−1
2 , γ2(ρ, τ)) ∀γ1, γ2 ∈ SL2(Z). (2.39)

This quotient can be identified with the space of commensurability classes of Q-
lattices up to scaling, using the isomorphism of equation 2.34 and the lift of the
quotient map in 2.36 to first obtain an isomorphism

θ : SL2(Z)\(M2(Ẑ)×H)→ X = {2-d Q-lattices }/C∗

(ρ, τ) 7→ (Z+ τZ, φρ)
(2.40)

where φρ is the map φρ(x) = ρ1(x)−τρ2(x) for x ∈ Q2/Z2. Here we use the notation
ρi(x) =

∑
j ρij(xj) for x = (x1, x2) ∈ Q2/Z2.

From this, we obtain the desired isomorphism

θ̃ : Z → R2/C∗

(g, ρ, τ) 7→ (λg,τθ(g(ρ, τ)), θ(ρ, τ))

where λg,τ = det(g)−1(cτ + d) for g =

(
a b

c d

)
.

The quotient space Z is not a groupoid, so we cannot simply take the groupoid
C∗-algebra of Z. However, we can still define a coordinate C∗-algebra on Z. Let
Ã2 = Cc(Z) be the space of continuous functions with compact support on Z. We
can view an element f ∈ Ã2 as a function on GL+

2 (Q)×M2(Ẑ)×H satisfying

f(γg, ρ, τ) = f(g, ρ, τ), f(gγ, ρ, τ) = f(g, γ(ρ, τ)) = f

(
g, γρ,

aτ + b

cτ + d

)
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for all γ ∈ SL2(Z), g ∈ GL+
2 (Q), ρ ∈M2(Ẑ), and τ ∈ H. We define a Hecke algebra

via the convolution product

(f1 ? f2)(g, ρ, τ) =
∑

h∈SL2(Z)\GL+
2 (Q)

f1(gh−1, h(ρ, τ))f2(h, ρ, τ) (2.41)

and the involution
f∗(g, ρ, τ) = f(g−1, g(ρ, τ)). (2.42)

Finally, we need to complete Ã2 to a C∗-algebra. Let

Gρ = {g ∈ GL+
2 (Q) : gρ ∈M2(Ẑ)}. (2.43)

For each lattice (Λ, φ), which corresponds to a pair (ρ, τ) ∈ M2(Ẑ)×H by 2.29, we
construct a representation πρ,τ of Ã2 into the Hilbert space Hρ = l2(SL2(Z)\Gρ) by

(πρ,τ (f)ξ)(g) =
∑

h∈SL2(Z)\Gρ

f(gh−1, h(ρ, τ))ξ(h) (2.44)

for f ∈ Ã2 and ξ ∈ Hρ.

Remark 2.3.1. The representations 2.44 are related to the commensurability classes
of Q-lattices. For each x ∈ X = {2-d Q-lattices }/C∗, let c(x) ⊂ X be the commen-
surability class of x. Let p be the quotient map p : M2(Ẑ) × H → X associated to
2.40. The map

Gρ → X

g 7→ p(g(ρ, τ))

induces a surjection from SL2(Z)\Gρ onto c(xρ,τ ) where p(ρ, τ) = xρ,τ . However,
this map is not injective in general.

We obtain a C∗-algebra A2 by completing Ã2 in the norm given by

||f || = sup
(ρ,τ)∈M2(Ẑ)×H

||πρ,τ (f)||l2(SL2(Z)\Gρ) (2.45)

([CM04] Prop 1.23.)

Definition 2.3.9. The GL2-system is the C∗-algebra A2 together with the C∗ dy-
namics

σt(f)(g, ρ, τ) = (det g)itf(g, ρ, τ).
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Arithmetic algebra

As in the Bost-Connes case, we will also construct an arithmetic algebra, on whose
elements we will later evaluate the 0-temperature KMS states. In the GL2 setting,
the appropriate choice of arithmetic algebra turns out to be an algebra unbounded
multipliers of A2 rather than a sub-algebra of A2. The construction is detailed below.

Let f be a continuous function on Z and for g ∈ GL+
2 (Q), ρ ∈M2(Ẑ) and z ∈ H, let

fg,ρ(z) = f(g, ρ, z)

so that fg,ρ ∈ C(H) and consider the canonical projection pn : M2(Ẑ)→M2(Z/nZ).
We say that f is of level n if

fg,ρ = fg,pn(ρ) ∀g ∈ GL+
2 (Q), ρ ∈M2(Ẑ).

Note that if f is of level n, then f is completely determined by the functions

fg,m ∀ g ∈ GL+
2 (Q), m ∈M2(Z/nZ).

The arithmetic algebra is defined as follows.

Definition 2.3.10. A function f ∈ C(Z), is in the arithmetic algebra A2,Q if

1. f is finitely supported in SL2(Z)\GL+
2 (Q).

2. f is of level n for some finite n with

fg,m ∈ F ∀ g ∈ GL+
2 (Q), m ∈M2(Z/nZ)

where F is the modular field of definition 2.1.4.

3. f satisfies
fg,α(u)m = cycl(u)fg,m

for all diagonal g ∈ GL+
2 (Q) and u ∈ Ẑ∗, where cycl is the homomorphism of

equation 2.8 and

α(u) =

(
u 0

0 1

)
.

The algebra A2,Q has the convolution product given by 2.41.

Note that the modular field Fn ⊂ F contains a primitive nth root of unity. There-
fore, requiring only condition (2) without condition (3) would have allowed A2,Q to
contain Qcycl. This would preclude the symmetry group (which will be introduced
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in the next section) from acting on the set of zero-temperature states evaluated on
points in A2,Q, as desired. Condition (3) is added to resolve this issue.

The arithmetic algebra A2,Q has a presentation in terms of the Eisenstein series

E2k,a(ρ, τ) =
1

π2k

∑
y∈Λ+φ(a)

y−2k

Xa(ρ, τ) =
1

π2

 ∑
y∈Λ+φ(a)

y−2 +
∑
y∈Λ

y−2

 (2.46)

where (Λ, φ) = θ(τ, ρ) is given by the isomorphism 2.40 (see [CM04] proof of Theorem
1.39 and Prop 1.41). This is similar to the original Bost-Connes system, which had
a presentation in terms of Eisenstein series in the 1-d Q-lattice setting, normalized
to be 0-weight (c.f. equation 2.21).

KMS states and symmetries

As in the original Bost-Connes system, the GL2-system exhibits symmetry breaking,
except in this case there are two phase transitions at β = 1 and β = 2. There is
interesting action of a certain symmetry group on the low- and 0-temperature states.
We begin by summarizing the structure of the KMS states. First, note that in a
representation πρ,τ , the dynamics σt is implemented by a Hamiltonian

(Hρξ)(h) = log(deth)ξ(h) ∀h ∈ Gρ (2.47)

so that πρ,τ (σt(A)) = eitHρπρ,τ (A)e−itHρ for all A ∈ A2.

In the special case that (Λ, φ) ∼ (ρ, τ) is an invertible Q-lattice,

Hρ ' l2(SL2(Z)\M+
2 (Z))

and the Hamiltonian is given by

Hρεm = log(detm)εm

where εm for m ∈ SL2(Z)\M+
2 (Z) is the standard basis for l2(SL2(Z)\M+

2 (Z)). The
partition function is then

Z(β) = tr(e−βHρ) =
∑

m∈SL2(Z)\M+
2 (Z)

(detm)−β =

∞∑
k=1

σ(k)k−β = ζ(β)ζ(1−β) (2.48)

where σ(k) =
∑

d|k d.

Proposition 2.3.11 ([CM04] Cor 1.32 and Theorem 1.26, [LLN07] Theorem 4.1).
The β-KMS states of the GL2-system (A2, σt) can be classified as follows.
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• For β ≤ 1, there are no β-KMS states.

• For 1 < β ≤ 2, there is a unique β-KMS state.

• For β > 2, each invertible lattice l = (Λ, φ) ∼ (ρ, τ) gives an extremal β-KMS
state

ϕβ,l(f) =
1

ζ(β)ζ(1− β)

∑
m∈SL2(Z)\M+

2 (Z)

f(1,m(ρ, τ))(detm)−β

and in fact the map l 7→ ϕl,β is a bijection from the space of invertible Q-lattices
up to scaling and Eβ, the space of extremal β-KMS states.

In the weak limit as β →∞ we obtain extremal ∞-KMS which restrict to Cc(X) ⊂
A2 (recalling that X and Z are identified in 2.40) as

ϕ∞,l(f) = f(l) ∀f ∈ Cc(X). (2.49)

These ∞-KMS states, when evaluated on the arithmetic algebra A2,Q, generate
specializations of the modular field.

Proposition 2.3.12 ([CM04] Theorem 1.39). Let l = (ρ, τ) be an invertible Q-lattice
and ϕ∞,l ∈ E∞ be the corresponding ∞-KMS state. Then ϕl,∞(A2,Q) ⊂ C generates
the specialization at τ , Fτ , of the modular field.

Unlike the original Bost-Connes system, the GL2-system has a symmetry group that
consists of both automorphisms and endomorphisms. In this case, the symmetry
group is

S = Q∗\GL2(AF ).

The group GL2(AF ) satisfies

GL2(AF ) = GL+
2 (Q)GL2(Ẑ)

and we shall see that the action of the GL2(Ẑ) part corresponds to the automorphisms
of the system, while the action of the GL+

2 (Q) corresponds to endomorphisms. We
describe the automorphisms first by noting that GL2(Ẑ) acts from the right on the
Q-lattices by

(Λ, φ) · γ = (Λ, φ ◦ γ) ∀γ ∈ GL2(Ẑ).

This action preserves commensurability classes of Q-lattices. The corresponding
action onM2(Ẑ)×H commutes with the left action of GL2(Q)+ onM2(Ẑ)×H given
by 2.37. We define automorphisms of A2 by

θγ(f)(g, ρ, τ) = f(g, ρ ◦ γ, τ) (2.50)
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for f ∈ A2, and γ ∈ GL2(Ẑ).

The GL2(Q)+ part of the symmetry group acts as endomorphisms as follows. For
m ∈ M2(Z)+ define m̃ = det(m)m−1. We define an endomorphism on A2 by the
formula

θm(f)(g, ρ, τ) =

f(g, ρ ◦ m̃−1, τ) if ρ ∈M2(Ẑ)m̃

0 otherwise
. (2.51)

The map, θm(f) commutes with the dynamics σt, and the action onM2(Ẑ)×H given
m : (ρ, τ) 7→ (ρ ◦ m̃−1, τ) commutes with the left action of GL2(Q)+.
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C h a p t e r 3

THE BOUNDARY-GL2-SYSTEM, EQUILIBRIUM STATES, AND
LIMITING MODULAR SYMBOLS

In this chapter we outline a construction of a “boundary algebra” for the GL2-system,
endowed with an induced time evolution, that is built on the noncommutative bound-
ary of modular curves described in [MM02] and on limiting modular symbols.

The GL2-system of [CM06b] is based on a convolution algebra involving Hecke op-
erators and possibly degenerate level structures on modular curves. More precisely,
in [CM06b] one considers functions on the set

{(g, ρ, z) ∈ GL+
2 (Q)×M2(Ẑ)×H | gρ ∈M2(Ẑ)}

that are invariant under the action of SL2(Z)× SL2(Z) by

(γ1, γ2) : (g, ρ, z) 7→ (γ1gγ
−1
2 , γ2ρ, γ2z).

This algebra is then endowed with a time evolution and covariant representations. A
first difficulty in extending the system constructed in this way to the boundary is that
on P1(R) = ∂H the action of SL2(Z) by fractional linear transformation has dense
orbits, hence it no longer makes sense to consider functions that are invariant under
this action. Thus, what we consider here as an alternative is to retain the SL2(Z)

invariance as above in the variables (g, ρ), while replacing the action of SL2(Z) on
z ∈ H by a different action for which, instead of requiring invariance, we introduce
as part of the algebra generators that implement that action (which amounts to
taking a quotient in the noncommutative sense). The action considered is built out
of the partial inverses of the shift of the continued fraction expansion. (Regarding
the resulting decoupling of this action and the GL+

2 (Q)-action, see the comments
below about isogenies.)

We first extend the original definition of the GL2-system of [CM06b] to other sub-
groups of GL2(Q) that include the case of SL2(Z) and GL2(Z). The main re-
quirement for such subgroups Γ ⊂ GL2(Q) is to have an associated Hecke algebra
Ξ = Γ\GL2(Q)/Γ. In order to account for some additional structure considered in
the setting of limiting modular symbols in [MM02], we also introduce the choice of
a finite index subgroup G ⊂ Γ and the coset spaces Pα = ΓαG/G.

We focus in particular on a choice of Γ = ΓN , dependent on an integer N ∈ Z r
{0}, consisting of matrices in GL2(Q) with determinant in the subgroup of GL1(Q)
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generated by the prime factors of N and −1. The main motivation for this choice
is that these subgroups contain certain semigroups associated to an N -dependent
family of continued fraction algorithms that we will use in the construction of the
boundary systems. This family includes a GL2(Z)-version of the original GL2-system
as a special case. Moreover, the partition function for these systems has a natural
interpretation as the zeta function of the GL2-system (the zeta function of P1) with
a finite number of Euler factors removed.

We then construct two families of noncommutative algebras (both dependent on the
integer parameter N). The first is a family of “bulk algebras” that generalize the
GL2-system of [CM06b], involving the Hecke algebra ΞN with a (partially defined)
action on the level structure ρ ∈ M2(Ẑ), the union PN of coset spaces Pα, and
the half planes H±. The other is a corresponding family of “boundary algebra”
that are semigroup crossed products of the algebra of continuous functions from a
“disconnection” of the interval [0, 1] (in the sense of [Spi93], see also [MM08]) to the
restriction of the bulk algebra to the coordinates (g, ρ, s) ∈ GL2(Q)×M2(Ẑ)×PN , by
a semigroup RedN ⊂ ΓN that implements a family of continued fraction algorithms
parameterized by N .

In this construction, in the special case where N = 1, the action of GL2(Z) on H± of
the first system is replaced in the second one by the action of the shift T of the usual
GL2-continued fraction algorithm on [0, 1]. This action on [0, 1] is equivalent to the
action of GL2(Z) on P1(R), so it is interpreted here as a way to describe pushing
the action of GL2(Z) on H± to the boundary P1(R). As mentioned above, we no
longer require invariance with respect to this action, and we introduce isometries
Sk, associated to the partial inverses of T , to implement the action at the level
of the algebra. Note that, by exchanging the GL2(Z) action with the semigroup
action implemented by the Sk, this action on [0, 1] becomes decoupled from the
partial action of GL2(Q), unlike what happens on the upper half plane. In terms of
the original interpretation of the GL2-system as implementing the commensurability
relation on lattices with possibly degenerate level structure, in this boundary setting
what remains of the commensurability relation affects the level structures (both
through the action on M2(Z) and on the coset space P) but does not change the
pseudolattice Zθ + Z ⊂ R. The reason behind this choice is the lack (at present) of
a good theory of isogeny for noncommutative tori, unlike the notion of isomorphism
realized by the bimodules implementing Morita equivalence. This means that, at
the level of the noncommutative boundary of the modular curve (which should be
thought of as the moduli space of noncommutative tori with level structure), we see
the commensurability relation as a relation on level structures. Both the semigroup
and the Hecke operators simultaneously act on the cosets in P, with commuting
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actions.

A more elaborate model of the boundary algebra would require developing a good
setting for nontrivial isogenies of noncommutative tori. This can in principle be
done by considering a larger class of bimodules that are not imprimitivity bimod-
ules associated to Morita equivalences (for instance, the bimodules constructed in
Proposition 5.7 of [LM21]), and select among these the ones that correspond to a
good notion of isogenies. While this approach is certainly feasible, it is outside of
the narrower scope of the present paper, and will be considered elsewhere.

The case N = −1 corresponds to the SL2(Z)-continued fraction algorithm. The
other algebras in our family, for other values of N , do not have the same direct
interpretation in terms of the geometry of modular curves as the N = ±1 cases,
because the semigroup RedN of the continued fraction algorithm sits inside the
group ΓN but will no longer necessarily have, in general, the same orbit structure.
The main reason to consider this entire family of algebras is because the structure of
KMS states of the resulting quantum statistical mechanical systems becomes more
transparent when viewed over this whole family with varying parameter N .

We show that the structure of KMS states depends on that of the Cuntz–Krieger–
Toeplitz type system generated by the isometries implementing the continued frac-
tion algorithm and on the generalization of the GL2-system. For all N 6= 1 there is
a critical inverse temperature βN,c in the interval (1, 2) with the property that no
KMS exist for β < βN,c. Above this critical temperature there are as many extremal
KMS states as there are for our generalized GL2-system. In particular, for all β > 2

all the KMS states are Gibbs states and are parameterized by the representations
πρ,x,s with an invertible ρ ∈ GL2(Ẑ). For β →∞ these Gibbs states converge weakly
to KMS∞ states given by evalutation at a point (1, ρ, x, s). In the special case N = 1

the KMS states at finite β disappear entirely, due to the fact that in this case the
Cuntz–Krieger–Toeplitz part has no KMS states, while only the ground states re-
main and satisfy a weaker form of the KMS condition. The SL2-case with N = −1

is, in this respect, the nicer in this family of algebras, as it has both the geometric
interpretation in terms of modular curves and a nicer structure of KMS states with a
convergent partition function in the low-temperature range β > 2 and Gibbs states
converging to the ground states as the temperature goes to zero.

The ground states are the only ones that we need in order to investigate the pairing
with limiting modular symbols. So for that purpose we can restrict to the caseN = 1,
which more closely reflects the setting of [MM02]. We introduce a class of “boundary
arithmetic elements”. These are obtained by first constructing a “boundary value
map” which is a linear map from the bulk to the boundary algebra associated to the
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choice of a cusp form. The same map can be applied to the arithmetic algebra of the
bulk system (which as in the original GL2-case is an algebra of unbounded multipliers
consisting of modular functions and Hecke operators). The sub-algebra generated
by the images is the arithmetic algebra of the boundary system. The image of
the boundary value map consists of elements obtained by a procedure of averaging
along geodesics. The evaluation of the ground states on these boundary values
therefore agrees with the pairing of cusp forms with limiting modular symbols. This
construction reflects the fact that, while the abelian class field theory of imaginary
quadratic fields arises from evaluation of modular functions at complex multiplication
points in the upper half plane, the corresponding geometry of real multiplication
is expected to depend on a suitable averaging along geodesics with endpoints at
conjugate quadratic irrationalities in a real quadratic field.

3.1 The modified GL2-system

In this section we recall the basic properties of the GL2-quantum statistical mechan-
ical system of [CM06b], in a version that accounts for the choice of a finite index
subgroup of GL2(Z) and for a more general class of subgroups of GL2(Q) that include
GL2(Z) and SL2(Z) as special cases.

3.1.1 The GL2-quantum statistical mechanical system

The GL2-quantum statistical mechanical system constructed in [CM06b] as a gen-
eralization of the Bost–Connes system of [BC95] has algebra of observables given
by the non-commutative C∗-algebra describing the “bad quotient” of the space of 2-
dimensional Q-lattices up to scaling by the equivalence relation of commensurability.
This algebra is made dynamical by a time evolution defined by the determinant of the
GL+

2 (Q) matrix that implements commensurability. There is an arithmetic algebra
of unbounded multipliers on the C∗-algebra of observable, which is built in a natural
way out of modular functions and Hecke operators (see [CM06b] and Chapter 3 of
[CM08]). The KMS-states for the time evolution have an action of Q∗\GL2(AQ,f )

by symmetries, which include both automorphisms and endomorphisms of the C∗-
dynamical system. The KMS states at zero temperature, defined as weak limits of
KMS-states at positive temperature, are evaluations of modular functions at points
in the upper half plane and the induced action of symmetries on KMS-states re-
covers the Galois action of the automorphisms of the modular field. In the case
of imaginary quadratic fields, the associated Bost–Connes system, constructed in
[HP05] and [LLN09], can be seen as a specialization of the GL2-quantum statistical
mechanical system of [CM06b] at 2-dimensional Q-lattices that are 1-dimensional
K-lattices, with K the imaginary quadratic field, and to CM points in the upper half
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plane.

Our goal here is to adapt this construction to obtain a specialization of the GL2-
system to the boundary P1(R) and a further specialization for real quadratic fields.
Our starting point will be the same algebra of the GL2-system of [CM06b], hence
we start by reviewing briefly that construction in order to use it in our setting.
It is convenient, for the setting we consider below, to extend the construction of
the GL2-system recalled above to the case where we replace GL+

2 (Q) acting on the
upper half plane H with GL2(Q) acting on H± (the upper and lower half planes)
and we consider a fixed finite index subgroup G of GL2(Z), where the latter replaces
Γ = SL2(Z) = GL+

2 (Q) ∩ GL2(Ẑ) in the construction of the GL2-system. We can
formulate the resulting quantum statistical mechanical system in the following way.
We can consider two slightly different versions of the convolution algebra.

Definition 3.1.1. The involutive algebra AcG is given by complex valued functions
on

U± = {(g, ρ, z) ∈ GL2(Q)×M2(Ẑ)×H± | gρ ∈M2(Ẑ)} (3.1)

that are invariant under the action of G × G by (g, ρ, z) 7→ (γ1gγ
−1
2 , γ2ρ, γ2z), and

that have finite support in g ∈ G\GL2(Q), depend on the variable ρ ∈ M2(Ẑ)

through the projection onto some finite level pN : M2(Ẑ) → M2(Z/NZ) and have
compact support in the variable z ∈ H±. The convolution product on AcG is given
by

(f1 ? f2)(g, ρ, z) =
∑

h∈G\GL2(Q) :hρ∈M2(Ẑ)

f1(gh−1, hρ, h(z))g2(h, ρ, z) (3.2)

and the involution is f∗(g, ρ, z) = f(g−1, gρ, g(z)). The algebra AcG is endowed with
a time evolution given by σt(f)(g, ρ, z) = |det(g)|itf(g, ρ, z).

Let Ξ denote the coset space Ξ = GL2(Z)\GL2(Q)/GL2(Z) and let ZΞ denote the
free abelian group generated by the elements of Ξ. For simplicity of notation we
write Γ = GL2(Z). The following facts are well known from the theory of Hecke
operators. For any double coset Tα = ΓαΓ in Ξ, there are finitely many αi ∈ ΓαΓ

such that ΓαΓ = tiΓαi. Thus, one can define a product on Ξ by setting

TαTβ =
∑
γ

cγαβTγ (3.3)

where for ΓαΓ = tiΓαi and ΓβΓ = tjΓβj , the coefficient cγαβ counts the number
of pairs (i, j) such that Γαiβj = Γγ. The ring structure on ZΞ determined by
the product (3.3) can equivalently be described by considering finitely supported
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functions f : Ξ→ Z with the associative convolution product

(f1 ? f2)(g) =
∑
h

f1(gh−1)f2(h) (3.4)

where the sum is over the cosets Γh with h ∈ GL2(Q) or equivalently over Γ\GL2(Q).
The Hecke operators are built in this form into the algebra of the GL2-system,
through the dependence on the variable g ∈ Γ\GL2(Q)/Γ, see the discussion in
[CM08], Proposition 3.87.

Coset spaces

We introduce here a variant AcGL2(Z),G,P of the GL2-algebra, where an additional
variable is introduced that accounts for the choice of the finite index subgroup G ⊂
GL2(Z) through the coset spaces Pα = GL2(Z)αG/G, for α ∈ GL2(Q), which include
for α = 1 the coset space P = GL2(Z)/G.

Lemma 3.1.2. Let G ⊂ GL2(Z) be a finite index subgroup such that αGα−1∩GL2(Z)

is also a finite index subgroup, for all α ∈ GL2(Q). Consider the double coset
GL2(Z)αG, with the left action of GL2(Z) and the right action of G. The orbit
spaces Pα = GL2(Z)αG/G are finite. The algebra ZΞ of Hecke operators acts on the
module ZP with P = ∪αPα.

Proof. We show that the map GL2(Z)→ GL2(Z)αG given by multiplication γ 7→ γα

induces a bijection between GL2(Z)/(αGα−1 ∩ GL2(Z)) and GL2(Z)αG/G, hence
the orbit space Pα = GL2(Z)αG/G is finite. For ` = αgα−1 ∈ αGα−1 ∩ GL2(Z)

and γ ∈ GL2(Z) we have γ`α = γαg ∼ γα in ΓαG/G so the map is well defined on
equivalence classes. It is injective since two γ, γ′ ∈ Γ with the same image differ by
γ′γ−1 = α`α−1 in αGα−1∩Γ and it is also surjective by construction. The action of
the algebra ZΞ of Hecke operators is given by the usual multiplication of cosets. We
write ΓαΓ = tiΓαi for finitely many αi ∈ ΓαΓ and ΓβG = tjΓβj for finitely many
βj ∈ ΓβG. The product is then given by

ΓαΓ · ΓβG =
∑
γ

cγαβΓγG

where cγ counts the number of pairs (i, j) such that Γαiβj = Γγ.

The condition that αGα−1 ∩ GL2(Z) is also a finite index subgroup, for all α ∈
GL2(Q) is certainly satisfied, for instance, when G is a congruence subgroup.

In terms of generators Tα in the Hecke algebra ZΞ and an element
∑

s asδs in ZP,
we write the action of ZΞ on the module ZP as

Tα
∑
s

asδs =
∑
s

asTαδs =
∑
s

as
∑
i

ciα,sδsi =
∑
i

(
∑
s

asc
i
α,s)δsi . (3.5)
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We can equivalently write elements of ZP as finitely supported functions ξ : P → Z,
and elements of ZΞ as finitely supported functions f : Ξ→ Z, and write the action
in the equivalent form

(f ? ξ)(s) =
∑
h

f(gh−1)ξ(hs) (3.6)

where the sum is over cosets Γh and for ξ(s) =
∑

σ aσδσ(s) we write ξ(hs) as

ξ(hs) :=
∑
i

(
∑
σ

aσc
i
h,σ)δsi(s). (3.7)

More general subgroups and coset spaces

We will also want to consider a more general family of double coset spaces in order to
consider all possibleN -continued fraction expansions as described at the beginning of
Section 3.2. For N ∈ Z\{0}, Let ΞN denote the coset space ΞN = ΓN\GL2(Q)/ΓN ,
where for |N | > 1,

ΓN = {g ∈ GL2(Q)|det(g) ∈ GN}

where GN is the subgroup of Q× generated by −1 and the prime factors of N .

In the case of N = 1 we take Γ1 := GL2(Z) and Ξ1 = Ξ, as before. When N = −1,
we take Γ−1 := SL2(Z).

We may also consider a finite index subgroup G of ΓN and associated orbit spaces
PN,α = ΓNαG/G for α ∈ GL2(Q). The discussion in Lemma 3.1.2 remains the
same, where now cγαβ counts the number of pairs (i, j) such that ΓNαiβj = ΓNγ.
We suppress the N subscript when it is clear from context.

To be more concrete, we illustrate here some explicit examples.

The SL2(Z) case

In the case of the algebra of the GL2-system of [CM06b], for an invertible ρ ∈ GL2(Ẑ),
the relevant Hecke algebra is ZΞ−1 = H(Γ−1,M) where Γ−1 = SL2(Z) and the
subsemigroupM = M+

2 (Z) of GL+
2 (Q).

In this case (see Chapter 4 of [Kri90]) H(Γ−1,M), as an algebra over Z, is generated
by the Hecke operators

T (`) =
∑

α∈Γ−1\M(`)/Γ−1

Γ−1αΓ−1 =
∑

ad=`, a|d

T (a, d),

withM(`) = {α ∈M| det(α) = `} and

T (a, d) = Γ−1

(
a 0

0 d

)
Γ−1,
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subject to the relations, for k, ` ∈ N,

T (`)T (k) =
∑

d| gcd{k,`}

d T (d, d)T (
k`

d2
).

Equivalently, the Hecke algebra H(Γ−1,M) splits into primary components

H(Γ−1,M) = ⊗pH(Γ−1,M)p,

over the set of primes p, where H(Γ−1,M)p = Z[T (p), T (p, p)].

This description of the Hecke algebra is obtained directly from the following prop-
erties of right cosets and double cosets (Chapter 4 of [Kri90]). Given α ∈ M, the
right coset Γ−1α contains a unique representative of the form(

a b

0 d

)
, with a, d ∈ N, 0 ≤ b < d.

The set M(`) decomposes as a disjoint union of σ1(`) =
∑

d|` d right Γ−1-cosets,
with a set of representatives given by the matrices(

a b

0 d

)
, with d ∈ N, 0 ≤ b < d, a = `/d.

Given α ∈M there are γ1, γ2 ∈ Γ−1 and a, d ∈ N with a|d such that

γ1αγ2 =

(
a 0

0 d

)
.

The GL2(Z) case

Here we consider also the case where Γ = GL2(Z) andM = M2(Z)∩GL2(Q) is the
subsemigroup of GL2(Q). In this case the explicit description of ZΞ = H(Γ,M) is
similar to the previous case (see Chapter 5 of [Kri90]), and H(Γ,M) is generated by
the Hecke operators

T (`) =
∑

α∈Γ\M(`)/Γ

ΓαΓ,

where here M(`) = {α ∈ M2(Z) | | detα| = `}. The Hecke algebra splits into
primary components as in the previous case. We refer the reader to [Kri90] for more
details.

The case with congruence subgroups

In the case where we also consider a choice of a non-trivial congruence subgroup
G ⊂ Γ, with a Hecke algebra ZΞ = H(Γ,M) as in the previous cases (see Section 2.7
of [Miy06]), we can identify the Z-module ZP with

ZP = Z[Γ\M]G,
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with the identification induced by the injective homomorphism of Z-modules

φ : ZP → Z[Γ\M], φ(ΓαG) =
∑
i

Γαi,

for ΓαG = tiΓαi a decomposition into right-cosets. We can then write the action
of ZΞ on ZP described above in (3.6), (3.7) in the form

ΓβΓ · ξ =
∑
α

aα Γαβj ,

where
ξ =

∑
α

aα Γα

is a G-invariant element in Z[Γ\M] and ΓβΓ = tjΓβj . The action is independent
of the choice of representatives (Lemma 2.7.3 of [Miy06]).

Thus, for general elements h ∈ ZΞ and ξ ∈ ZP with h =
∑

β bβ ΓβΓ and ξ =∑
α aαΓαG, we reformulate (3.6), (3.7) as

h ? ξ =
∑
α,β,γ

bβ aα c
γ
α,βΓγG,

see (2.7.3) of [Miy06].

The bulk algebra

We now proceed to the construction of a “bulk algebra” (namely, the algebra asso-
ciated to the bulk space H), which includes the choice of a finite index subgroup
G ⊂ ΓN .

Definition 3.1.3. Let G ⊂ ΓN be a finite index subgroup and let PN = ∪αPN,α
with PN,α = ΓNαG/G for α ∈ GL2(Q). The involutive algebra AcΓN ,G,PN is given
by complex valued functions on the space

U±G,PN = {(g, ρ, z, ξ) ∈ GL2(Q)×M2(Ẑ)×H± × PN | gρ ∈M2(Ẑ)}, (3.8)

that are invariant under the action of ΓN × ΓN by

(g, ρ, z, s) 7→ (γ1gγ
−1
2 , γ2ρ, γ2z, γ2s).

Moreover, functions in AcΓN ,G,PN have finite support in ΓN\GL2(Q) and in PN ,
compact support in z ∈ H±, and they depend on the variable ρ ∈ M2(Ẑ) through
the projection onto some finite level pn : M2(Ẑ) → M2(Z/nZ). The convolution
product of AcΓN ,G,PN is given by

(f1 ? f2)(g, ρ, z, s) =
∑

h∈Sρ,N

f1(gh−1, hρ, h(z), hs)f2(h, ρ, z, s), (3.9)
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where we are using the notation (3.6), (3.7) for the action of Hecke operators on
functions of PN and Sρ,N is the collection of ΓN -cosets that have some representative
element in the set {g ∈ GL2(Q)|gρ ∈ M2(Ẑ)}. In particular, when N = 1, Sρ =

GL2(Z)\{g ∈ GL2(Q) : gρ ∈M2(Ẑ)}.

The involution is f∗(g, ρ, z, s) = f(g−1, gρ, g(z), gs). The algebra AcΓN ,G,PN is en-
dowed with a time evolution given by

σt(f)(g, ρ, z, s) = | det(g)|itf(g, ρ, z, s).

We focus here on the algebra AcΓN ,G,PN and we construct Hilbert space representa-
tions analogous to the ones considered for the original GL2-system.

Consider then the Hilbert space Hρ,N = `2(Sρ,N ), and the representations π(ρ,z,s) :

AcΓN ,G,PN → B(Hρ,N )

π(ρ,z,s)(f)ξ(g) =
∑

h∈Sρ,N

f(gh−1, hρ, h(z), hs)ξ(h).

We can complete the algebra AcΓN ,G,PN to a C∗-algebra AΓN ,G,PN in the norm
‖f‖ = sup(ρ,z,s) ‖π(ρ,z,s)(f)‖B(Hρ,N ). The time evolution is implemented in the rep-
resentation π(ρ,z,s) by the Hamiltonian Hξ(g) = log | det(g)| ξ(g).

3.1.2 The arithmetic algebra

We proceed exactly as in the case of the GL2-system of [CM06b] to construct an
arithmetic algebra associated to AΓN ,G,PN . As in [CM06b] this will not be a subal-
gebra but an algebra of unbounded multipliers.

The arithmetic algebra AarΓN ,G,PN is the algebra over Q obtained as follows. We
consider functions on U±G,PN of (3.8) that are invariant under the action of ΓN ×ΓN

by (g, ρ, z) 7→ (γ1gγ
−1
2 , γ2ρ, γ2z) and that are finitely supported in g ∈ G\GL2(Q)

and in PN , that depend on ρ through some finite level projection pn(ρ) ∈M2(Z/nZ)

and that are holomorphic in the variable z ∈ H and satisfy the growth condition
that |f(g, ρ, z, s)| is bounded by a polynomial in max{1,=(z)−1} when =(z) →
∞. The resulting algebra AarΓN ,G,PN acts, via the convolution product (3.9), as
unbounded multipliers on the algebraAΓN ,G,PN . This construction and its properties
are completely analogous to the original case of the GL2-system described in Section
2.3.2 and we refer the reader to [CM06b], [CM08] for details.

The invariance property ensures that these are modular functions for G (written as
ΓN -invariant functions on H×PN rather than as G-invariant functions on H). These
functions are endowed with the same convolution product (3.9).
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3.2 Boundary GL2-system

We now consider how to extend this setting to incorporate the boundary P1(R) of
the upper half-plane H and Q-pseudolattices generalizing the Q-lattices of [CM06b].
A brief discussion of the boundary compactification of the GL2-system was given in
§7.9 of [CM08], but the construction of a suitable quantum statistical mechanical
system associated to the boundary was never worked out in detail.

We replace the full P1(R) boundary of H± with the smaller interval [0, 1]. In the N =

1 case this choice is natural as this interval meets every orbit of the GL2(Z) action and
the equivalence relation given by this action can be described equivalently through
the shift T of the continued fraction expansion. This action can be implemented via
the semigroup of reduced matrices in the form of a crossed product algebra. Inspired
by this case, we adopt the same setting for the whole family of algebras parameterized
by the nontrivial integer N , with corresponding continued fraction algorithms on the
interval [0, 1] and associated semigroups. We analyze Hilbert space representations,
time evolution, Hamiltonian, partition function, and KMS states.

3.2.1 Continued fraction algorithms

We consider the countable family of N -continued fraction expansions given by

[a0; a1, a2, a3, ...]N = a0 +
N

a1 + N
a2+ N

a3+...

(3.10)

with ai ≥ N when N ≥ 1 and ai ≥ |N | + 1 when N ≤ −1. We denote the set of
allowed digits of the N -continued fraction expansion by ΦN ,

ΦN =

N≥N when N ≥ 1

N≥|N |+1 when N ≤ −1
. (3.11)

where we write N≥N := {n ∈ N |n ≥ N}.

For each N -continued fraction expansion, we introduce an algebra associated to the
boundary P1(R) with the action of a certain subsemigroup of GL2(Q), called the
semigroup of reduced matrices, depending on the choice of N . In the case that
N = 1 this semigroup of reduced matrices is contained in GL2(Z) and in the case
that N = −1 it is contained in PSL2(Z). In the N = ±1 cases, the associated
algebra can be interpreted as a boundary algebra of the GL2-system. While we
have no similar direct geometric interpretation when |N | > 1, considering the whole
family of systems leads to some interesting observations about the structure of the
KMS states.
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3.2.2 Boundary dynamics and coset spaces

The N -continued fraction expansion of a real number x can be retrieved via the shift
operator TN : [0, 1]→ [0, 1] given by

TN (x) =
N

x
−
⌊
N

x

⌋
, x 6= 0; TN (0) = 0. (3.12)

For x ∈ [0, 1), one has that a0 = 0 and ai =

⌊
N

T i−1
N (x)

⌋
in the case that N ≥ 1, and

a0 = 1 and ai = −
⌊

N
T i−1
N (1−x)

⌋
in the case that N ≤ −1.

Note that for N ≥ 1,
⌊
N
x

⌋
= n if and only if N

n+1 < x ≤ N
n , so that we can

write explicitly

TN (x) =

0 if x = 0

1
x − n if N

n+1 < x ≤ N
n

for n ∈ N.

A similar formula holds in the N ≤ −1 case. In either case, the shift map TN has
discontinuities at rational numbers, and is otherwise continuous and decreasing on
each branch.

x

T1(x)

11
2

1
3

1
4

...

Figure 3.1: Graph of the shift map T1(x)

We extend TN to a map on [0, 1]× P by

TN : (x, s) 7→

(
N

x
−
⌊
N

x

⌋
,

(
−bN/xc N

1 0

)
· s

)
. (3.13)

We remark that in the geometrically meaningful case of N = 1, the set [0, 1] × P
meets every orbit of the action of GL2(Z) on P1(R)×P, acting on P1(R) by fractional
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linear transformations and on P = GL2(Z)/G by the left-action of GL2(Z) on itself.
Moreover, two points (x, s) and (y, t) in [0, 1] × P are in the same GL2(Z)-orbit if
and only if there are integers n,m ∈ N such that Tn1 (x, s) = Tm1 (y, t).

Lemma 3.2.1. The action of the shift map (3.13) on [0, 1]×P extends to an action
on [0, 1] × PN,α, with PN,α = ΓNαG/G, for any given α ∈ GL2(Q), hence to an
action on [0, 1]× PN with PN = ∪αPN,α.

Proof. The action of TN on (x, s) ∈ [0, 1] × P is implemented by the action of the
matrix (

−bN/xc N

1 0

)
∈ ΓN .

The same matrix acts by left multiplication on PN,α = ΓNαG/G, hence it determines
a map TN : [0, 1]× PN,α → [0, 1]× PN,α.

3.2.3 Disconnection algebra

We recall here from [Spi93] (see also [MM08]) the construction of the disconnection
algebra of P1(R) along P1(Q) and its restriction to [0, 1].

Given a subset B ⊂ P1(R) one considers the abelian C∗-algebra AB generated by the
algebra C(P1(R)) and the characteristic functions of the positively oriented intervals
with endpoints in B. If the set U is dense in P1(R) then the algebra obtained in
this way can be identified with the norm closure of the ∗-algebra generated by these
characteristic functions. By the Gelfand–Naimark correspondence, the C∗-algebra
AB is the algebra of continuous functions on a compact Hausdorff topological space,
AB ' C(DB). We refer to this space DB as the disconnection of P1(R) along B.
The space DB is totally disconnected if and only if B is dense in P1(R).

In particular, the disconnection DP1(Q) of P1(R) along P1(Q) can be identified with
the ends of the tree of PSL2(Z) embedded in the hyperbolic plane H (see the discus-
sion in §5 of [MM08]).
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0 1−1

...... ......

i

ρ = e
2
3
πi

Figure 3.2: The tree of PSL2(Z) embedded in the hyperbolic plane H

In our setting, since the Gauss map of the continued fraction algorithms we are
considering has discontinuities, which occur at rational points, we need to work with
an algebra of continuous functions over a disconnection of the interval [0, 1] at the
rationals. The algebra C(D[0,1]∩Q) of the disconnection D[0,1]∩Q of [0, 1] along the
rational points [0, 1] ∩ Q is the image of C(DP1(Q)) under the projection given by
the characteristic function χ[0,1] of the interval, which is a continuous function in
C(DP1(Q)) by construction.

Lemma 3.2.2. The action

f 7→ χXN,k · f ◦ g
−1
N,k and f̃ 7→ f ◦ gN,k , (3.14)

with

gN,k =

(
0 N

1 k

)
and g−1

N,k =

(
− k
N 1

1
N 0

)
, (3.15)

is well defined on C(D[0,1]∩Q).

Proof. This is immediate from (3.11), (3.12), (3.13), but since some readers appeared
to be confused about it, we spell it out in full. Indeed, for x ∈ [0, 1], we have

gN,k(x) =
N

x+ k
∈ [0, 1]

since k ≥ N by (3.11), so f ◦gN,k is still a function in C(D[0,1]∩Q), while for x ∈ XN,k

we have
g−1
N,k(x) =

−kx+N

x
∈ [0, 1] ,

because XN,k is the set of those x for which k = bNx c, so that k ≤ N/x ≤ k+1. Thus,
even though f ◦ g−1

N,k is not necessarily in C(D[0,1]∩Q) the product χXN,k · f ◦ g
−1
N,k is

in C(D[0,1]∩Q).
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Disconnection algebra and coset spaces

We incorporate the coset spaces in the construction of the disconnection algebra in
the following way.

Lemma 3.2.3. Let CPN denote the ring of finitely supported complex valued func-
tions on PN and let BN = C(D[0,1]∩Q,CPN ) denote the algebra of continuous func-
tions from the disconnection of [0, 1] at the rationals to CPN . Consider the ac-
tion of the semigroup Z+ on BN determined by the action of TN on [0, 1] × PN of
Lemma 3.2.1 and the action on BN by Hecke operators acting on CPN . These two
actions commute.

Proof. We write functions f ∈ BN in the form
∑

α fα(x, sα)δα where δα is the
characteristic function of PN,α = ΓNαG/G and sα ∈ PN,α. The action of Z+ is
given by

TnN :
∑
α

fα(x, sα)δα 7→
∑
α

fα(TnN (x, sα))δα,

with TN (x, sα) as in (3.13), while the action of a Hecke operator Tβ is given by

Tβ :
∑
α

fα(x, sα)δα 7→
∑
γ

(
∑
α

cγβ,αfα(x, sα))δγ , (3.16)

with cγβα defined as in (3.5), modified appropriately for the choice of N . It is then
clear that these two actions commute.

Lemma 3.2.4. Let XN,k ⊂ [0, 1] be the subset of points x ∈ [0, 1] with N -continued
fraction expansion starting with the digit k ∈ ΦN . Let BN denote the algebra of
continuous complex valued functions on D[0,1]∩Q × PN . Let τN (f) = f ◦ TN denote
the action of the shift TN : [0, 1] → [0, 1] of the N -continued fraction expansion on
f ∈ BN .

Let BN act as multiplication operators on L2([0, 1], dµN ) with dµN the TN -invariant
measures on [0, 1],

dµN (x) =


(
log N+1

N

)−1
(N + x)−1 dx if N ∈ Z\{0,−1}

(1− x)−1 dx if N = −1
.

With the notation (3.15), consider the operators

SN,kξ(x) = χXN,k(x) · ξ(g−1
N,kx) and S̃N,kξ(x) = ξ(gN,k x), (3.17)

for ξ ∈ L2([0, 1], dµN ), with χXN,k the characteristic function of the subset XN,k ⊂
[0, 1].
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These satisfy S̃N,k = S∗N,k with S∗N,kSN,k = 1 and
∑

k SN,kS
∗
N,k = 1. They also

satisfy the relation ∑
k

SN,k f S
∗
N,k = f ◦ TN . (3.18)

Proof. The shift map of the continued fraction expansion, given by TN (x) = N/x−
[N/x], acts on x ∈ XN,k as x 7→ g−1

N,kx with the matrix g−1
N,k acting by fractional

linear transformations. The operators SN,k defined as in (3.17) are not isometries on
L2([0, 1], dx) with respect to the Lebesgue measure dx. However, if we consider the
TN -invariant probability measures dµN , then we have dµN ◦ g−1

N,k|XN,k = dµ|XN,k for
all k ∈ N, hence

〈SN,kξ1, SN,kξ2〉 =

∫
XN,k

ξ̄1 ◦ g−1
N,k ξ2 ◦ g−1

N,k dµN

=

∫
XN,k

ξ̄1 ◦ g−1
N,k ξ2 ◦ g−1

N,k dµN ◦ g
−1
N,k =

∫
[0,1]

ξ̄1 ξ2 dµN = 〈ξ1, ξ2〉.

We have S̃N,k SN,kξ(x) = ξ(x)χXN,k(gN,kx) = ξ(x). Moreover, S̃N,k = S∗N,k in this
inner product since we have

〈ξ1, SN,kξ2〉 =

∫
XN,k

ξ̄1 ξ2 ◦ g−1
N,k dµN

=

∫
XN,k

ξ̄1 ξ2 ◦ g−1
N,k dµN ◦ g

−1
N,k =

∫
[0,1]

ξ̄1 ◦ gN,k ξ2 dµN = 〈S̃N,kξ1, ξ2〉.

Using Lemma 3.2.2, we also have
∑

k SN,k f S
∗
N,kξ(x) =

∑
k f(g−1

N,kx)χXN,k(x)ξ(x) =

f(TN (x)). Thus we obtain
∑

k SN,k f S
∗
N,k = f ◦TN , which in particular also implies∑

k SN,k S
∗
N,k = 1.

3.2.4 Semigroups

Consider the set of matrices in GL2(Q)

RedN,n :=




0 N

1 k1

 . . .

0 N

1 kn

 |ki ∈ Z≥N
 if N ≥ 1


0 N

1 k1

 . . .

0 N

1 kn

 |ki ∈ Z≥|N |+1

 if N ≤ −1

(3.19)

Note that RedN,n ⊂ ΓN and in particular when N = 1, Red1,n ⊂ GL2(Z), and when
N = −1, Red−1,n ⊂ SL2(Z).
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The semigroups of reduced matrices are defined as

RedN := ∪n≥1 RedN,n. (3.20)

An equivalent description of the Red1 semigroup is given by ([LZ97])

Red1 =

{(
a b

c d

)
∈ GL2(Z) | 0 ≤ a ≤ b, 0 ≤ c ≤ d

}
.

Lemma 3.2.5. Assigning to a matrix

γ =

(
0 N

1 n1

)
· · ·

(
0 N

1 nk

)
(3.21)

in RedN the product n1 · · ·nk ∈ N is a well-defined semigroup homomorphism.

Proof. We only need to check that the representation of a matrix γ in RedN as a
product (3.21) is unique so that the map is well defined. It is then by construction
a semigroup homomorphism.

First we consider the N = 1 case. The group GL2(Z) has generators

σ =

(
1 0

1 1

)
ρ =

(
0 1

1 1

)

with relations (σ−1ρ)2 = (σ−2ρ2)6 = 1. The semigroup Red1 can be equivalently
described as the subsemigroup of the semigroup generated by σ and ρ made of all
the words in σ, ρ that end in ρ, so elements are products of matrices of the form

σn−1ρ =

(
0 1

1 n

)
. We have

γ =

(
0 1

1 n1

)
· · ·

(
0 1

1 n`(γ)

)

where `(γ) is the number of ρ’s in the word in σ and ρ representing γ. The semigroup
generated by σ and ρ is a free semigroup, as the only relations in GL2(Z) between
these generators involve the inverse σ−1. If an element γ ∈ Red1 had two different
representations (3.21), for two different ordered sets {n1, . . . , nk} and {m1, . . . ,ml}
then we would have a relation

σn1−1ρσn2−1ρ · · ·σnk−1ρ = σm1−1ρσm2−1ρ · · ·σml−1ρ

involving the generators σ and ρ but not their inverses, which would contradict the
fact that σ and ρ generate a free semigroup.
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Next we consider the case N ∈ Z\{−1, 0, 1}. We observe that we can decompose

elements of RedN in terms of ρ, σ and ηN =

(
N 0

0 1

)
, a diagonal matrix depending

on N since

(
0 N

1 n

)
=

(
N 0

0 1

)(
0 1

1 n

)
= ηNσ

n−1ρ.

If an element γ ∈ RedN for |N | > 1 had two different representations (3.21), for two
different ordered sets {n1, . . . , nk} and {m1, . . . ,ml} then we would have a relation

ηNσ
n1−1ρηNσ

n2−1ρ · · · ηNσnk−1ρ = ηNσ
m1−1ρηNσ

m2−1ρ · · · ηNσml−1ρ.

As before, there are no relations between ρ and σ. There cannot be a relation
involving ηN and ρ and σ. If we had word(ηN , ρ, σ) = 1 then the determinant of
the left-hand side would be ±N r where r is the number of times ηN appears in the
word, while the determinant of the right-hand side would be 1. Since we are in the
case |N | > 1, this is a contradiction.

Finally we consider the N = −1 case. PSL2(Z) can be written as a free product of
cyclic groups

PSL2(Z) ' C2 ? C3

with generators

B =

(
0 −1

1 0

)
and C =

(
1 −1

1 0

)
(3.22)

of degree 2 and 3 respectively (B2 = 1 and C3 = 1). We can write a matrix in Red−1

γ =

(
0 −1

1 n1

)
· · ·

(
0 −1

1 n`(γ)

)
in terms of these generators by noting that in PSL2(Z),(

0 −1

1 n

)
= B(CB−1)n

and hence

γ = B(CB−1)n1 · · ·B(CB−1)n`(γ)

= B(CB−1)n1−1C2B−1(CB−1)n2−1C2B−1 . . . C2B−1(CB−1)n`(γ)−1. (3.23)

Since each ni ≥ 2, this is a reduced sequence of words in C2 and C3. Every element in
a free product can be written uniquely as a reduced sequence of words. Furthermore,
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each element of the cyclic groups C2 and C3 can be written uniquely as Bk or Ck

where k is required to be either positive or negative. The form (3.23) is unique. If
an element γ ∈ Red−1 had two different expressions of the form (3.21), it would
contradict this uniqueness.

Lemma 3.2.6. Let BN denote the algebra of continuous complex valued functions
on D[0,1]∩Q × PN that are finitely supported in PN . The transformations αγ(f) =

χXγ · f ◦ γ−1 for γ ∈ RedN define a semigroup action of RedN on BN . This action
commutes with the action of Hecke operators.

Proof. We check that αγ(f) = χXγ · f ◦ γ−1 is a well-defined semigroup action of
RedN on BN . For γ of the form (3.21) we have αγ = αg1 · · ·αgn with the factors
gi = gN,ki as in (3.15), since for two matrices γ, γ′ in RedN related by γ′ = gN,kγ for
some gN,k as in (3.15) we have χXk · χXγ′ ◦ g

−1
N,k = χXγ .

The commutation with the action of Hecke operators can be checked as in the case
of the shift TN in Lemma 3.2.3. We write elements of the algebra in the form∑

α fα(x, sα)δα where δα is the characteristic function of PN,α = ΓNαG/G and
sα ∈ PN,α, with the action of Hecke operators as in (3.16). The action of γ ∈ RedN
on the other hand is given by αγ

∑
α fα(x, sα)δα =

∑
α χXγ (x) f(γ−1(x, sα))δα.

These actions commute, as in the case of Lemma 3.2.3.

3.2.5 A boundary algebra

We now introduce an algebra associated to the boundary of the bulk-system. In
order to explain the reason behind our construction, consider first again the bulk
space, namely the upper-half-plane H or H× P in the case where we fix a choice of
a finite index subgroup G ⊂ GL2(Z).

In the algebra of the Γ = GL2-system on the bulk space, we consider functions
f(g, ρ, z) that are invariant under the action of Γ× Γ mapping

(g, ρ, z) 7→ (γ1gγ
−1
2 , γ2ρ, γ2z)

(and similarly for the H×P case). This same prescription cannot be used to define
a boundary algebra, since the action of Γ = GL2(Z) (or SL2(Z)) on the boundary
P1(R) = ∂H has dense orbits, hence requiring this Γ × Γ-invariance would force
continuous functions to be constant.

One possible way around this problem would be to replace invariance under the Γ×Γ-
action (in fact, invariance under the second copy of Γ, as that is the one acting on the
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z variable in the bulk, hence on the boundary variable in P1(R)) by taking an algebra
given by a crossed product with Γ. A similar kind of boundary algebra was considered
in Section 4 of [MM02]. Using a crossed product with Γ would imply dealing with
a boundary algebra that contains a copy of C∗(Γ). Invertible ρ’s would determine,
as in the GL2-system, representations on the Hilbert space H = `2(M+

2 (Z)) and in
such representation the algebra C∗(Γ) generates a type II1 factor in H. This affects
the construction of KMS states for this algebra. Gibbs-type states with respect
to the trace TrΓ can be evaluated on elements in the commutant of this factor, as
discussed in Section 7 of [CM06b]. However, here we do not make this choice in
the construction of the boundary algebra, and we leave this to separate future work.
This is tied up to the question mentioned in the introduction, of developing a good
theory of isogeny for noncommutative tori.

The point of view we follow here on constructing a boundary algebra is based instead
on a different observation, namely on the fact that the orbits of the action of Γ =

GL2(Z) on P1(R) can be equivalently described as the orbits of a discrete dynamical
system T acting on the interval [0, 1]. Thus, we will replace the crossed product by
G with a semigroup crossed product that implements this equivalence relation as
part of the algebra. The reason why we prefer this approach to the crossed product
by G is because the dynamical system T used here is the same generalized shift of
the continuous fractions expansion used in [MM02] to construct limiting modular
symbols, and one of our main goals in this paper is obtaining a boundary algebra
that is especially suited to relate to limiting modular symbols, hence this viewpoint
is more natural here.

Moreover, as already discussed, this viewpoint allows us to see our boundary algebra
as one case (N = ±1 for Γ = GL2(Z) and SL2(Z), respectively) of a countable family
of algebras labelled by an integer N , associated to a family of different continued
fraction algorithms. Considering this whole family of algebras will help us illustrate
some interesting phenomena in the structure of KMS states, even though only the
N = ±1 cases have a direct interpretation as boundary algebras of the respective
bulk system and related to the geometry of modular curves.

Thus, in the following we first restrict the boundary variable θ ∈ DP1(Q) to the
interval [0, 1], that is, to the disconnection D[0,1]∩Q, because of the prior observation
that the interval [0, 1] meets every GL2(Z)-orbit. Then we implement the action
of the shift operator T in the form of a semigroup crossed product algebra. This
corresponds to taking the quotient by the action of T (hence by the action of GL2(Z))
in a noncommutative way, by considering a crossed product algebra instead of an
algebra of functions constant along the orbits. This will be a semigroup crossed
product with respect to the semigroup RedN discussed above, and in a form that will
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implement the action of the shift operator T as in Lemma 3.2.4. We will work with
the algebra of continuous functions on the disconnection D[0,1]∩Q. In Corollary 3.2.11
we will further extend this disconnection space by including additional T -invariant
subspaces. The reason for this further extension will become clear when we consider
such boundary functions that are obtained as integration on certain configurations
of geodesics in the bulk space (see Lemma 3.3.1).

Note that if we write, as before, Ξ for the set of cosets ΓαΓ and P for the set of cosets
ΓαG, we can identify the sets P ' Ξ × P, with the finite coset space P = Γ/G. It
is convenient to use this identification, so that, when we consider the shift operator
T (in the case N = 1) acting on [0, 1]×P, this can be viewed as the action of T on
[0, 1]× P as in [MM02], with T acting trivially on Ξ.

Definition 3.2.7. Let Ac∂,N denote the associative algebra of continuous complex
valued functions on

U∂,G,N = {(g, ρ, s) ∈ GL2(Q)×M2(Ẑ)× PN | gρ ∈M2(Ẑ)} (3.24)

that are invariant with respect to the action of ΓN × ΓN by (g, ρ) 7→ (γ1gγ
−1
2 , γ2ρ)

and are finitely supported in PN and in ΓN\GL2(Q) with the dependence on ρ

through a finite level projection pn(ρ) ∈ M2(Z/nZ), endowed with the convolution
product

(f1 ? f2)(g, ρ, s) =
∑

h∈Sρ,N

f1(gh−1, hρ, hs)f2(h, ρ, s) (3.25)

and with the involution f∗(g, ρ, s) = f(g−1, gρ, gs). Let πρ,s : Ac∂,N → B(Hρ,N ) be
the representation πρ,s(f)ξ(g) =

∑
h f(gh−1, hρ, hs)ξ(h) for h ∈ Sρ,N . Let A∂,N de-

note the C∗-algebra completion of Ac∂,N with respect to ‖f‖ = sup(ρ,s) ‖πρ,s(f)‖Hρ,N .
Let B∂,N = C(D[0,1]∩Q,A∂,N ) be the algebra of continuous functions from D[0,1]∩Q

to A∂,N , with pointwise product

(f1 ? f2)(g, ρ, x, s) =
∑
h

f1(gh−1, hρ, x, hs)f2(h, ρ, x, s)

and involution f∗(g, ρ, x, s) = f(g−1, gρ, x, gs).

Definition 3.2.8. Let A∂,G,PN be the involutive associative algebra generated by
B∂,N and by isometries SN,k, with k ∈ ΦN . It has relations S∗N,kSN,k = 1 and∑

k SN,kS
∗
N,k = 1 and relations of the form

SN,k f = χXN,k · f ◦ g
−1
N,k · SN,k and S∗N,k f = f ◦ gN,k · S∗N,k, (3.26)

where χXN,k is the characteristic function of the subset XN,k ⊂ [0, 1] of points with
N -continued fraction expansion starting with k. The matrices gN,k, g−1

N,k in GL2(Q)



68

are as in (3.15), with f ◦ g±N,k(g, ρ, x, s) = f(g, ρ, g±N,k(x, s)). They also satisfy the
relation ∑

k∈N
SkfS

∗
k = f ◦ TN (3.27)

for all f ∈ B∂,N . Here, for f = f(g, ρ, x, s), we have

(f ◦ TN )(g, ρ, x, s) = f(g, ρ, TN (x, s)),

with the action of TN on [0, 1]×PN as in Lemma 3.2.1. The involution on A∂,G,PN
is given by the involution on B∂,N and by SN,k 7→ S∗N,k.

In fact, the relation (3.27) follows from the relations (3.26) as in Lemma 3.2.4, but
we write it explicitly as it is the relation that implements the dynamical system TN .
Note that we are implicitly using in the construction of the algebra the fact that the
semigroup action of RedN and the action of Hecke operators (that is built into the
convolution product of B∂,N ) commute as in Lemma 3.2.6.

3.2.6 Semigroup crossed product

Several examples of semigroup crossed product algebras have been considered in rela-
tion to quantum statistical mechanical system, especially in various generalizations
of the Bost–Connes system. However, there is no completely standard definition
of semigroup crossed product algebra in the literature. For our purposes here, the
following setting suffices.

Definition 3.2.9. Let A be a C∗-algebra, and let S be a countable semigroup
together with a semigroup homomorphism β : Sop → End(A). For ` ∈ S, let
β`(1) = e` be an idempotent in A and let α` denote a partial inverse of β` on e`Ae`.
The (algebraic) semigroup crossed product algebra AoS is the involutive C-algebra
generated by A and elements S`, S∗` , for all ` ∈ S with the relations

S`S`′ = S``′ , S∗`S` = 1, S`S
∗
` = e`,

∑
`

S`S
∗
` = 1,

S`X S∗` = α`(X), S∗` X S` = β`(X).

If π : A → B(H) is a representation as bounded operators on a Hilbert space,
and the S` act as isometries on H, compatibly with the relations above, then semi-
group crossed product C∗-algebra (which will also be denoted by A o S) is the
C∗-completion in B(H) of the above algebraic crossed product.

Lemma 3.2.10. The algebra A∂,G,PN can be identified with the semigroup crossed
product B∂,N o RedN of the algebra B∂,N of Definition 3.2.7 and the semigroup of
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reducible matrices, with respect to the action α : RedN → Aut(B∂,N ) by αγ(f) =

χXγ · f ◦ γ−1, where for γ of the form (3.21), the set Xγ ⊂ [0, 1] is the cylinder set
consisting of points with N -continued fraction expansion starting with the sequence
n1, . . . , nk.

Proof. We see as in Lemma 3.2.6 that αγ(f) = χXγ ·f◦γ−1 defines a semigroup action
of RedN on B∂,N . The semigroup crossed product algebra is generated by B∂,N and
by isometries µγ for γ ∈ RedN satisfying µγµγ′ = µγγ′ for all γ, γ′ ∈ RedN , µ∗γµγ = 1

for all γ ∈ RedN and µγ f µ∗γ = αγ(f). It suffices to consider isometries µgN,k =: SN,k

associated to the elements gN,k ∈ RedN as in (3.15) with µγ = Sn1 · · ·Snk for
γ ∈ RedN as in (3.21). We then see that the generators and relations of the algebras
B∂,N o RedN agree with those of the algebra A∂,G,PN of Definition 3.2.8.

We consider the following variant of the boundary algebra introduced above, which
will be useful for the application discussed in the following section, see in particular
Lemma 3.3.1.

Corollary 3.2.11. Let E = {Eα} be a collection of subsets Eα ⊂ [0, 1] that are
invariant under the action of the shift TN of the N -continued fraction expansion.
We denote by DE the disconnection space dual to the abelian C∗-algebra C(DE) gen-
erated by C(D[0,1]∩Q) and by the characteristic functions χEα. This then determines
an algebra A∂,G,PN ,E given by B∂,N,E o RedN where B∂,N,E = C(DE ,A∂,N ) is the
algebra of continuous functions from the disconnection space DE to A∂,N as in
Definition 3.2.7.

Proof. If the sets Eα are TN -invariant then the algebra B∂,N,E is invariant under the
action of the semigroup RedN by αγ(f) = χXγ · f ◦γ−1, since for γ = gN,k1 · · · gN,kn ,
the matrix γ−1 acts on Xγ as the shift TnN . Thus, we can form the semigroup crossed
product algebra B∂,N,E o RedN as in Lemma 3.2.10.

3.2.7 Representations and time evolution

Let Hρ,N be the same Hilbert space considered above, Hρ,N = `2(Sρ,N ) with Sρ,N
the collection of ΓN -cosets that have some representative element in the set {g ∈
GL2(Q)|gρ ∈ M2(Ẑ)}. We will consider the case of an invertible ρ ∈ GL2(Ẑ). This
choice is made to guarantee non-negative spectrum of the Hamiltonian of Proposition
3.2.13 and is also geometrically motivated by the GL2(Z) (i.e. N = 1) setting as
discussed in Section 3.2.5. When N = 1 and ρ ∈ GL2(Ẑ) is invertible we can write

Sρ,1 = GL2(Z)\{g ∈ GL2(Q)|gρ ∈M2(Ẑ)} = GL2(Z)\M×2 (Z),
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with M×2 (Z) = {M ∈M2(Z) | det(M) 6= 0}.

Let WN = ∪nWN,n denote the set of all finite sequences k1, . . . , kn with ki ∈ ΦN ,
including an element ∅ corresponding to the empty sequence. Consider the Hilbert
spaces `2(WN ) and H̃ρ,N = `2(WN )⊗Hρ,N .

Lemma 3.2.12. The algebra A∂,G,PN = B∂,NoRedN acts on the Hilbert space H̃ρ,N
through the representations

πρ,x,s(f) (ξ(g)⊗ εk1,...,kn) =
∑

h∈Sρ,N

f(gh−1, hρ, gγ(x, hs)) ξ(h)⊗ εk1,...,kn (3.28)

for f ∈ B∂,N and with gγ = gN,k1 · · · gN,kn, with gN,ki as in (3.15), and

πρ,x,s(SN,k) (ξ ⊗ εk1,...,kn) = ξ ⊗ εk,k1,...,kn ,

πρ,x,s(S
∗
N,k)(ξ ⊗ εk1,...,kn) =

{
ξ ⊗ εk2,...,kn k1 = k

0 otherwise.

(3.29)

In what follows we sometimes write πρ,x,s(SN,k) as SN,k because the mapping of these
operators does not depend on the choice of (ρ, x, s).

Proof. We check that (3.28) gives a representation of the subalgebra B∂,N and
that the operators πρ,x,s(f), SN,k, S∗N,k of (3.28) and (3.29) satisfy the relations
S∗N,kSN,k = 1,

∑
k SN,kS

∗
N,k = 1, SN,kπρ,x,s(f) = πρ,x,s(χXN,k f ◦ g

−1
N,k)SN,k and

S∗N,kπρ,x,s(f) = πρ,x,s(f ◦ gN,k)S∗N,k. For the first property it suffices to see that
πρ,x,s(f1 ? f2) = πρ,x,s(f1) ◦ πρ,x,s(f2). We have

πρ,x,s(f1 ? f2) (ξ(g)⊗ εk1,...,kn) =
∑

h∈Sρ,N

(f1 ? f2)(gh−1, hρ, gγ(x, hs)) ξ(h)⊗ εk1,...,kn =

∑
h∈Sρ,N

∑
`∈Sρ,N

f1(gh−1`−1, `hρ, gγ(x, `hs))f2(`, hρ, gγ(x, hs))ξ(h)⊗ εk1,...,kn ,

where we used Lemma 3.2.6. This is then equal to∑
`∈Sρ,N

f1(gh−1`−1, `hρ, gγ(x, `hs))(πρ,x,s(f2)ξ)(`)⊗εk1,...,kn = πρ,x,s(f1)πρ,x,s(f2)ξ⊗εk1,...,kn .

The relations S∗N,kSN,k = 1 and
∑

k SN,kS
∗
N,k = 1 follow directly from (3.29). For

relations between the SN,k, S∗N,k and the πρ,x,s(f), we have

SN,kπρ,x,s(f) ξ ⊗ εk1,...,kn = SN,k
∑

h∈Sρ,N

f(gh−1, hρ, g−1
k gkgγ(x, hs)) ξ(h)⊗ εk1,...,kn

=
∑

h∈Sρ,N

f(gh−1, hρ, g−1
N,kgN,kgγ(x, hs))χXN,k(gN,kgγx) ξ(h)⊗ εk,k1,...,kn ,
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for gγ = gN,k1 · · · gN,kn , with χXN,k(gN,kgγx) = 1, so we get

πρ,x,s(χXN,k · f ◦ g
−1
N,k)SN,k ξ ⊗ εk,k1,...,kn .

The second relation is similar: we have

S∗N,kπρ,x,s(f) ξ ⊗ εk1,...,kn = S∗N,k
∑

h∈Sρ,N

f(gh−1, hρ, g−1
k gkgγ(x, hs)) ξ(h)⊗ εk1,...,kn

=
∑

h∈Sρ,N

f(gh−1, hρ, gN,kgγ′(x, hs))S
∗
N,kξ(h)⊗ εk1,...,kn ,

with gγ′ = gN,k2 · · · gN,kn , so that we obtain

πρ,x,s(f ◦ gN,k)S∗N,k ξ ⊗ εk1,...,kn .

Thus, (3.28) and (3.29) determine a representation of A∂,G,PN = B∂,N o RedN by
bounded operators on the Hilbert space H̃ρ,N .

Proposition 3.2.13. The transformations σN,t(f)(g, ρ, x, s) = | det(g)|itf(g, ρ, x, s)

and σN,t(SN,k) = kitSN,k define a time evolution σN : R → Aut(A∂,G,PN ). In the
representations of Lemma 3.2.12 on H̃ρ,N with ρ ∈ GL2(Ẑ) the time evolution is
implemented by the Hamiltonian

HN ξ(g)⊗ εk1,...,kn = log(|det(g)| · k1 · · · kn) ξ(g)⊗ εk1,...,kn , (3.30)

with partition function

ZN (β) = Tr(e−βHN ) =


ζ(β)ζ(β − 1)

∏
p prime : p|N

(
1− p−β

) (
1− p−(β−1)

)
1 +

∑N−1
n=1 n

−β − ζ(β)
if N > 1

ζ(β)ζ(β − 1)
∏
p prime : p|N

(
1− p−β

) (
1− p−(β−1)

)
1 +

∑|N |
n=1 n

−β − ζ(β)
if N ≤ −1

(3.31)
with ζ(β) the Riemann zeta function. In the N = 1 case there is no partition
function.

Proof. We have

σN,t(f1 ? f2)(g, ρ, x, s) = σN,t(
∑
h

f1(gh−1, hρ, x, hs)f2(h, ρ, x, s)) =

∑
h

| det(gh)−1|it|det(h)|itf1(gh−1, hρ, x, hs)f2(h, ρ, x, s) = σN,t(f1) ? σt(f2).
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We also have σN,t(S∗N,k) = k−itS∗N,k and we see that the action of σN,t is compatible
with the relations in A∂,G,PN and defines a 1-parameter family of algebra homo-
morphisms. By direct comparison between (3.30) and (3.28) and (3.29) we also see
that

πρ,x,s(σN,t(f)) = eitH πρ,x,s(f) e−itH and σN,t(SN,k) = eitH SN,ke
−itH .

We have
ZN (β) =

∑
g∈Sρ,N

| det(g)|−β ·
∑

k=k1···kn:ki∈ΦN

k−β

where ΦN is the set of possible digits in the N -continued fraction expansion.

For the first sum, we begin by considering the N = 1 case. We now have that
Sρ = GL2(Z)\M×2 (Z), where M×2 (Z) = {M ∈ M2(Z) | det(M) 6= 0}. Thus, we are
counting {M ∈M×2 (Z) | |det(M)| = n} modulo GL2(Z). Up to a change of basis in
GL2(Z) we can always write a sublattice of Z2 in the form(

a b

0 d

)
Z2

with a, d ≥ 1 and 0 ≤ b < d, [Ser77]. Thus, we are equivalently counting such
matrices with determinant n. This counting is given by σ(n) =

∑
d|n d so the first

sum is
∑

n≥1 σ(n)n−β = ζ(β)ζ(β − 1) as in the original GL2-system, and converges
on β ∈ (2,∞).

In the general case, we again consider ρ ∈ GL2(Ẑ), and we now have that Sρ,N is
the set of matrices in M×2 (Z) with determinant not divisible by any prime factor of
N , up to the equivalence relation defined by GL2(Z). The first sum is then given by∑

g∈Sρ,N

| det(g)|−β =
∑

n≥1:(N,n)=1

σ(n)n−β

=

 ∑
n≥1:(N,n)=1

n−β

 ∑
n≥1:(N,n)=1

n−(β−1)


= ζ(β)ζ(β − 1)

∏
p prime : p|N

(
1− p−β

)(
1− p−(β−1)

)
where the counting σ(n) =

∑
d|n d is identical to the N = 1 case. Again, this series

converges on β ∈ (2,∞).

To compute the second sum, let PN,n denote the total number of ordered factoriza-
tions of n into positive integer factors in ΦN . In the N ≥ 1 case, the sum we are
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considering is∑
n≥1

PN,n n
−β =

∞∑
k=1

∞∑
n=1

n−β
∑

n=n1···nk:ni≥N
1

=
∑
k≥1

k∏
i=1

(
∑
ni≥N

n−βi )

=



∞∑
k=1

(ζ(β))k =
1

1− ζ(β)
if N = 1

∞∑
k=1

(ζ(β)−
N−1∑
n=1

n−β)k =
1

1 +
∑N−1

n=1 n
−β − ζ(β)

if N > 1.

In the N = 1 case, note that the series
∑∞

k=1(ζ(β))k converges when |ζ(β)| < 1.
However, when β > 1, ζ(β) > 1 and the series does not converge there. The first
series

∑
n≥1 σ1(n)n−β = ζ(β)ζ(β − 1) converges for β > 2. Since the second series

does not converge anywhere in the region (2,∞), there is no partition function.

In the N > 1 case, the relevant series converges when

|ζ(β)−
N−1∑
n=1

n−β| = |ζ(β)− (1 + ξ(β))| < 1

where ξ(β) = 0 when N = 2 and ξ(β) =
∑N−1

n=2 n
−β when N > 2. In the range

β ∈ (1,∞) the ζ-function is decreasing to 1 and it crosses the value ζ(β) = 2 at a
point β2,c ∼ 1.728647. When N = 2, the series converges on (β2,c,∞). When N > 2

we consider the function ζ(β)− ξ(β) where ξ(β) consists of a finite sum of terms of
the form n−β each of which are continuous, decreasing to 0 as β →∞ and have some
finite value at β = 1. Since limβ→∞ ζ(β)− ξ(β) = 1 and limβ→1+ ζ(β)− ξ(β) =∞,
there will be some point βN,c > 1 at which ζ(βN,c)−ξ(βN,c) = 2. The corresponding
series then converges on (βN,c,∞). Since each n−β term is decreasing, we also know
that βN+1,c < βN,c.

Similarly, in the N ≤ −1 case we have∑
n≥1

PN,n n
−β =

∞∑
k=1

∞∑
n=1

n−β
∑

n=n1···nk:ni≥|N |+1

1

=
∑
k≥1

k∏
i=1

(
∑

ni≥|N |+1

n−βi )

=

∞∑
k=1

(ζ(β)−
|N |∑
n=1

n−β)k =
1

1 +
∑|N |

n=1 n
−β − ζ(β)

.

As before, this series converges on (βN,c,∞) where for N ≤ −1, βN,c = β1−N,c. In
particular, β−1,c = β2,c ∼ 1.728647.
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Note that in the proof above we have shown that βN,c is decreasing in N for positive
N , and therefore attains its maximum value at β2,c = β−1,c ∼ 1.728647. We also
know that βN,c > 1 for all N .

|
2

|
1

β2,cβ3,cβ4,cβ10,cβ102,cβ1010,c

Figure 3.3: N-dependence of Boundary-GL2 critical temperature (βN,c)

Lemma 3.2.14. For N ≥ 2 and N ≤ −1, the partition function ZN (β) of Proposi-
tion 3.2.13 is defined by an absolutely convergent series

ZN (β) = Tr(e−βHN ) =
∑

λ∈Spec(HN )

e−βλ

for β > 2. Its analytic continuation (3.31) has poles at β ∈ {1, βN,c, 2}, for a point
1 < βN,c < 2. In the geometrically relevant case of N = −1, β−1,c ∼ 1.728647.

Proof. As argued in the proof of 3.2.13, the denominator of ZN (β) has a single zero
at a point 1 < βN,c < 2. The Riemann zeta function ζ(β) has a pole at β = 1.
Therefore, the sum

∑
n≥1 : (N,n)=1 σ1(n)n−β is convergent for β > 2 and its analytic

continuation ζ(β)ζ(β − 1)
∏
p prime : p|N

(
1− p−β

) (
1− p−(β−1)

)
has poles at β = 2

and β = 1.

3.2.8 KMS states.

We classify the KMS states for the family of dynamical systems (A∂,G,PN , σN,t).
Since we have A∂,G,PN = B∂,N o RedN , we consider separately the KMS states for
the modified GL2 part B∂,N of the system, and the part of the system generated by
the isometries SN,k in the semigroup RedN , which is a Cuntz-Krieger-Toeplitz type
algebra. The KMS states of the Cuntz-Krieger-Toeplitz type algebras have been
studied by [EL03], and we draw on their main results. We show that in the N = 1

case, corresponding to the standard GL2-system, there are no KMS states at any
temperature, though we may still define ground states. In all other cases, the system
has two critical temperatures at β = βN,c < 2 and β = 2. When β < βN,c there
are no KMSβ states. When βN,c < β < 2, the structure of the KMSβ states will
be identical to the structure on the modified GL2 part of the system alone, though
we have not computed this explicitly. When β > 2, the KMSβ states are given by
Gibbs states, whose limit as β →∞ gives the ground states.

Lemma 3.2.15. The subalgebra of A∂,G,PN generated by the family {SN,k}k∈ΦN of
isometries is a Cuntz-Krieger-Toeplitz algebra, denoted by OA in the setting of [EL03]
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with the infinite matrix A = {A(x, y)}x,y∈ΦN given by A(x, y) = 1 for all x, y ∈ ΦN .
In other words, it satisfies the following properties on its initial and final projections
qk = S∗N,kSN,k and pk = SN,kS

∗
N,k. For all k, j ∈ ΦN :

1. qkqj = qjqk,

2. S∗N,kSN,j = 0 if j 6= k,

3. qkSN,j = SN,j,

4. and
∏
k∈X qk

∏
j∈Y (1− qj) = 0 for X,Y finite subsets of ΦN .

Proof. Conditions (1), (3), and (4) follow from the fact that S∗N,kSN,k = 1 (Lemma
3.2.4). Condition (2) is easily verified. If k 6= j then

S∗N,kSN,jξ(x) = S∗N,k(χXN,j (x)ξ(g−1
N,jx))

= χXN,j (gN,kx)ξ(gN,kg
−1
N,jx) = 0.

Proposition 3.2.16. The KMSβ states of the dynamical system (A∂,G,PN , σN,t)
can be characterized as follows. When N = 1, there are no KMSβ states for any
temperature β. When N ≤ −1 or N > 1, the system has a critical temperature
βN,c ∈ (1, 2). We then have the following.

1. When β < βN,c there are no β-KMS states.

2. When β > βN,c, there is one β-KMS state for every β-KMS state of the modi-
fied GL2-system corresponding to B∂,N .

3. When β > 2, the β-KMS states restrict to the RedN part of the system as the
unique β-KMS state Cuntz-Krieger-Toeplitz algebra and restrict to a β-KMS
state on the B∂,N part of the system. In particular, one obtains extremal KMS-
states corresponding to the Gibbs states of B∂,N , parameterized by (ρ, x, s) with
ρ ∈M2(Ẑ) invertible.

Proof. If there is a KMSβ state on(A∂,G,PN , σN,t), it must restrict to a KMSβ state
on the subalgebra of A∂,G,PN generated by the family of isometries {SN,k}k∈ΦN . We
will first characterize the KMSβ states of this subalgebra, which we have established
in Lemma 3.2.15 is a Cuntz-Krieger-Toeplitz algebra. We also note that since ΦN is
a countable set and in our case the matrix A is simply a matrix with every entry set
to 1, Standing Hypothesis 8.1 (i), and (ii) of [EL03] are satisfied. The dynamics σN,t
on the subalgebra take the form σN,t(SN,k) = kitSN,k for each k ∈ ΦN , and since
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ΦN is a set of real numbers in the interval (1,∞) the rest of Standing Hypothesis
8.1 of [EL03] is also satisfied.

We now draw on the main results of [EL03]. Corollary 9.7 states that there is a crit-
ical temperature β̇N,c above which there is a single KMSβ state at each temperature
β. Theorem 14.5 states that there is a second critical temperature β̈N,c below which
there are no KMSβ states at all. These critical temperatures are defined as follows.
Let ΩN be the set of words in ΦN and ΩN,j,k be the set of words in ΦN beginning
with j and ending with k. Then β̇N,c and β̈N,c are the abscissas of convergence of
the series

Z(β) =
∑
µ∈ΩN

(µ)−β and Zjk(β) =
∑

µ∈ΩN,j,k

(µ)−β

respectively. Note that the abscissa of convergence of the second series is independent
of the choice of j and k. We will now calculate these critical temperatures.

The partition function Z(β) has already been calculated in the second part of Propo-
sition 3.2.13 and is given by

Z(β) =



∞∑
k=1

(ζ(β))k if N = 1

∞∑
k=1

(ζ(β)−
N−1∑
n=1

n−β)k if N > 1

∞∑
k=1

(ζ(β)−
|N |∑
n=1

n−β)k if N ≤ −1.

Modifying this calculation slightly we find that

Zjk(β) = (jk)−β +
∞∑
n=1

∑
µ∈ΩN :|µ|=n

j−βµ−βk−β

= (jk)−β

1 +
∞∑
n=1

n∏
i=1

∑
ki∈ΦN

k−βi

 = (jk)−βZ(β).

Clearly Z(β) and Zjk(β) have the same abscissa of convergence, β̈N,c = β̇N,c. In
fact in the N 6= 1 case, this abscissa of convergence is βN,c of 3.2.13. When N = 1,
neither series converges for any value of β, β̇N,c = β̈N,c = ∞. Hence there are no
KMSβ states for any finite inverse temperature β.

Now we focus our attention on the subalgebra corresponding to B∂,N in the N 6= 1

case. In the range β > 2, e−βHN is trace class, by Lemma 3.2.14. We therefore have
Gibbs states of the form, for X ∈ A∂,G,PN
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ϕβ,N (X) =
Tr(πρ,x,s(X)e−βHN )

Tr(e−βHN )

= ZN (β)−1
∑

ki∈ΦN ,g∈Sρ,N

|det(g)|−β(k1 · · · kn)−β 〈δg ⊗ εk1,...,kn , πρ,x,s(X)δg ⊗ εk1,...,kn〉.

depending on our choice of representation πρ,x,s.

We now restrict to the subalgebra B∂,N . The Gibbs states above give, for f ∈ B∂,N

ϕβ,ρ,x,s(f) =
Tr(πρ,x,s(f)e−βHN )

Tr(e−βHN )

= Z(β)−1
∑

ki∈ΦN ,g∈Sρ,N

| det(g)|−β(k1 · · · kn)−βf(1, gρ, gγ(x, gs))

where γ ∈ RedN is determined by k1, ..., kn. These are parameterized by the choice
of ρ ∈M2(Ẑ) invertible.

Remark 3.2.1. The standard GL2-system (when Γ = SL2(Z)) has been studied in
[LLN07]. Their analysis of the behavior when β ∈ (1, 2) is not directly applicable
in our case, because for N = 1 (Γ = SL2(Z)), the RedN part of the system has no
KMS states at any temperature β. However, it would be interesting to see whether
a similar analysis can be applied when Γ = ΓN for some N > 1 or N ≤ −1.

As in [CM06b] we consider the ground states at zero temperature as the weak limit
of the Gibbs states for β →∞

ϕ∞,ρ,x,s(f) = lim
β→∞

ϕβ,ρ,x,s(f).

Corollary 3.2.17. When N 6= 1, the ground states are given by

ϕ∞,ρ,x,s(f) = f(1, ρ, x, s).

Proof. Observe that whenever N 6= 1, limβ→∞ ZN (β) = 1. Furthermore, the only
g ∈ Sρ,N with | det(g)| = 1 is the identity element, and hence the only terms for
which limβ→∞ | det(g)|−β does not vanish are those for which g = 1. A word in
ΦN satisfies k1...kn ≥ |N |n if N > 1 and k1...kn ≥ (|N | + 1)n if N ≤ 1. Hence
limβ→∞ |k1...kn|−β vanishes unless k1...kn is the empty word. We have that the
ground states are

ϕ∞,ρ,x,s(f) = 〈δ1 ⊗ ε∅, πρ,x,s(f) δ1 ⊗ ε∅〉 = f(1, ρ, x, s), (3.32)

the evaluation of the function f at the point g = 1 and (ρ, x, s) that determines the
representation πρ,x,s.
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Although in the N = 1 case there are no low-temperature KMS states, and hence
the weak limit does not exist, we can still define the projection onto the kernel of
the Hamiltonian as in 3.32. This satisfies the weak KMS condition in the sense that
function

F (t) = ϕ∞,ρ,x,s(fσt(f
′)) = f(1, ρ, x, s)f ′(1, ρ, x, s)

has a bounded holomorphic extension to the upper half plane.

3.3 Averaging on geodesics and boundary values

In this section we construct boundary values of the observables of the GL2-system of
§3.1. We use the theory of limiting modular symbols of [MM02]. We show that the
resulting boundary values localize nontrivially at the quadratic irrationalities and at
the level sets of the multifractal decomposition considered in [KS07b]. We discuss
in particular the case of quadratic irrationalities.

3.3.1 Geodesics between cusps

Let Cα,ε,s with α ∈ P1(Q)r {0}, ε ∈ {±}, and s ∈ P denote the geodesic in Hε × P
with endpoints at the cusps (0, s) and (α, s) in P1(Q)× P.

Let pk(α), qk(α) be the successive numerators and denominators of the GL2(Z)-
continued fraction expansion of α ∈ Q with pn(α)/qn(α) = α and let

gk(α) :=

(
pk−1(α) pk(α)

qk−1(α) qk(α)

)
∈ GL2(Z).

We denote by Ckα,ε,s the geodesic in Hε × P with endpoints at the cusps

pk−1(α)

qk−1(α)
= g−1

k (α) · 0 and
pk(α)

qk(α)
= g−1

k (α) · ∞,

where g · z for g ∈ GL2(Z) and z ∈ H± is the action by fractional linear transforma-
tions.

For C a geodesic in H± let dsC denote the geodesic length element. In the case of
C∞,ε,s we have dsC∞,ε,s(z) = dz/z.

We use the notation {g · 0, g · α}G to denote the homology class determined by the
image in the quotient XG = G\H = GL2(Z)\(H±×P) of the geodesic Cα,ε,s, for g a
representative of s ∈ P. Similarly we write {α, β}G for homology classes determined
by the images in the quotient XG of geodesics in H± × P with endpoints α, β at
cusps in P1(Q)× P.
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3.3.2 Limiting modular symbols

We recall briefly the construction of limiting modular symbols from [MM02]. We
consider here some finite index subgroup G ⊂ Γ of Γ = PGL2(Z). We denote by
P = Γ/G the finite coset space of this subgroup. We also write the quotient modular
curve as XG = G\H = Γ\(H× P).

Recall that the classical modular symbols {α, β}G, with α, β ∈ P1(Q) are defined as
the homology classes in H1(XG,R) defined as functionals that integrate lifts to H of
differentials on XG along the geodesic arc in H connecting α and β (see [Man72]).
They satisfy additivity and invariance: for all α, β, γ ∈ P1(Q)

{α, β}G + {β, γ}G = {α, γ}G and {gα, gβ}G = {α, β}G ∀g ∈ G.

Thus, it suffices to consider the modular symbols of the form {0, α}G with α ∈ Q.
These satisfy the relation

{0, α}G = −
n∑
k=1

{pk−1(α)

qk−1(α)
,
pk(α)

qk(α)
}G = −

n∑
k=1

{g−1
k (α) · 0, g−1

k (α) · ∞}G,

where pk(α), qk(α) are the successive numerators and denominators of the GL2(Z)-
continued fraction expansion of α ∈ Q with pn(α)/qn(α) = α and

gk(α) =

(
pk−1(α) pk(α)

qk−1(α) qk(α)

)
.

(There is an analogous formula for the SL2(Z)-continued fraction.)

Limiting modular symbols were introduced in [MM02], to account for the noncom-
mutative compactification of the modular curves XG by the boundary P1(R) with
the G action. One considers the infinite geodesics Lθ = {∞, θ} given by the vertical
lines Lθ = {z ∈ H | <(z) = θ} oriented from the point at infinity to the point θ on
the real line. Upon choosing an arbitrary base point x ∈ Lβ let x(s) denote the point
on Lβ at an arc-length distance s from x in the orientation direction. One considers
the homology class {x, x(s)}G ∈ H1(XG,R) determined by the geodesic arc between
x and x(s). The limiting modular symbol is defined as the limit (when it exists)

{{?, θ}}G := lim
s→∞

1

s
{x, x(s)}G ∈ H1(XG,R). (3.33)

It was shown in [MM02] that the limit (3.33) exists on a full measure set and can
be computed by an ergodic average. More generally, it was shown in [Mar03] that
there is a multifractal decomposition of the real line by level sets of the Lyapunov
exponent of the shift of the continued fraction expansion plus an exceptional set
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where the limit does not exist. On the level sets of the Lyapunov exponent the limit
is again given by an average of modular symbols associated to the successive terms
of the continued fraction expansion. More precisely, as in the previous section, let
T : [0, 1]→ [0, 1] denote the shift map of the continued fraction expansion,

T (x) =
1

x
−
[

1

x

]
,

extended to a map T : [0, 1]×P→ [0, 1]×P with P = Γ/G. The Lyapunov exponent
of the shift map is given by the limit (when it exists)

λ(x) = lim
n→∞

1

n
log |(Tn)′(x)| = 2 lim

n→∞

1

n
log qn(x), (3.34)

where qn(x) are the successive denominators of the continued fraction expansion of
x ∈ [0, 1]. There is a decomposition [0, 1] = ∪λLλ∪L′ where Lλ = {x ∈ [0, 1] |λ(x) =

λ} and L′ the set on which the limit (3.34) does not exist. For all θ ∈ Lλ the limiting
modular symbol (3.33) is then given by

{{?, θ}}G = lim
n→∞

1

λn

n∑
k=1

{g−1
k (θ) · 0, g−1

k (θ) · ∞}G = lim
n→∞

1

λn

n∑
k=1

{pk−1(θ)

qk−1(θ)
,
pk(θ)

qk(θ)
}G.

(3.35)

The results of [MM02] and [Mar03] show that the limiting modular symbol (3.35)
vanishes almost everywhere, with respect to the Hausdorff measure of Lλ. However,
non-vanishing values of the limiting modular symbols are obtained, for example, for
all the quadratic irrationalities.

In the case of quadratic irrationalities, one obtains two equivalent descriptions of the
limiting modular symbol, one that corresponds to integration on the closed geodesic
Cθ = Γθ\Sθ with Sθ the infinite geodesic with endpoints the Galois conjugate pair
θ, θ′ and the other in terms of averaged integration on the modular symbols as-
sociated to the (eventually periodic) continued fraction expansion. We obtain the
identification of homology classes in H1(XG,R)

{{?, θ}}G =

∑`
k=1{

pk−1(θ)
qk−1(θ) ,

pk(θ)
qk(θ)}G

λ(θ)`
=
{0, g · 0}G

`(g)
∈ H1(XG,R). (3.36)

In the first expression ` is the minimal positive integer for which T `(θ) = θ and the
limit defining the Lyapunov exponent λ(θ) exists for quadratic irrationalities. In the
second expression g ∈ Γ is the hyperbolic generator of Γθ with fixed points θ, θ′,
with eigenvalues Λ±g and {0, g · 0}G denotes the homology class in H1(XG,R) of the
closed geodesic Cθ and `(g) = log Λ−g = 2 log ε is the length of Cθ.

A more complete analysis of the values of the limiting modular symbols was then
carried out in [KS07b], where it was shown that, in fact, the limiting modular symbol
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is non-vanishing on a multifractal stratification of Cantor sets of positive Hausdorff
dimension. We will recall more precisely this result in §3.3.3 below.

The construction recalled above of limiting modular symbols determine non-trivial
real homology classes in the quotient XG associated to geodesics in H with endpoints
in one of the multifractal level sets of [KS07b]. These homology classes pair with 1-
forms onXG, and in particular with weight 2 cusp forms for the finite index subgroup
G.

Let MG,k the C-vector space of modular forms of weight k for the finite index
subgroup G ⊂ GL2(Z) and let SG,k be the subspace of cusp forms. Let XG =

GL2(Z)\(H± × P) be the associated modular curve. We denote by

〈·, ·〉 : SG,2 ×H1(XG,R)→ C (3.37)

the perfect pairing between cusp forms of weight 2 and modular symbols, which we
equivalently write as integration

〈ψ, {α, β}G〉 =

∫
{α,β}G

ψ(z) dz. (3.38)

3.3.3 Boundary values

We consider now a linear map, constructed using cusp forms and limiting modular
symbols, that assigns to an observable of the bulk GL2-system a boundary value.

Let L ⊂ [0, 1] denote the subset of points such that the Lyapunov exponent (3.34)
of the shift of the continued fraction exists. The set L is stratified by level sets
Lλ = {x ∈ [0, 1] |λ(x) = λ}, with the Lyapunov spectrum given by the Hausdorff
dimension function δ(λ) = dimH(Lλ). Recall also that, for a continuous function φ
on a T -invariant subset E ⊂ [0, 1], the Birkhoff spectrum (see [FF00]) is the function

fE(α) := dimH Lφ,E,α, (3.39)

where Lφ,E,α are the level sets of the Birkhoff average by

Lφ,E,α := {x ∈ E | lim
n→∞

1

n

n−1∑
k=0

φ ◦ T k(x) = α}. (3.40)

In particular, Lλ = Lφ,λ for φ(x) = log |T ′(x)|. Lyapunov and Birkhoff spectra for
the shift of the continued fraction expansion are analyzed in [PW99], [Fan+09].

In a similar way, one can consider the multifractal spectrum associated to the level
sets of the limiting modular symbol, as analyzed in [KS07b]. Let f1, . . . , fg be a
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basis of the complex vectors space SG,2 of cusp forms of weight 2 for the finite index
subgroup G ⊂ GL2(Z). Let <(fi), =(fi) be the corresponding basis as a real 2g-
dimensional vector space. Under the pairing (3.37), (3.38), which identifies SG,2 with
the dual of H1(XG,R), we can define as in [KS07b] the level sets Eα, for α ∈ R2g,
of the limiting modular symbol as

Eα := {(x, s) ∈ [0, 1]× P | 〈fi, {{?, x}}G〉 = α ∈ R2g}. (3.41)

Equivalently, we write this as

Eα = {(x, s) ∈ [0, 1]×P | ( lim
n→∞

1

λ(x)n

∫
{g−1
k (x)·0,g−1

k (x)·∞}G
fi(z) dz)i=1...,g = α ∈ R2g}.

For (x, s) ∈ Eα we have

lim
n→∞

1

λ(x)n
{g−1
k (x) · 0, g−1

k (x) · ∞}G = hα ∈ H1(XG,R),

where the homology class hα is uniquely determined by the property that 〈fi, hα〉 =∫
hα
fi(z)dz = αi.

The main result of [KS07b] shows that for a given finite index subgroup G ⊂ GL2(Z)

with XG of genus g ≥ 1, there is a strictly convex and differentiable function βG :

R2g → R such that, for all α ∈ ∇βG(R2g) ⊂ R2g

dimH(Eα) = β̂G(α), (3.42)

where β̂G(α) = infv∈R2g(βG(v)−〈α, v〉) is the Legendre transform, and for all (x, s) ∈
Eα

lim
n→∞

1

λ(x)n
{g−1
k (x) · g · 0, g−1

k (x) · g · ∞}G = hα(x, s) (3.43)

with g a representative of the class s ∈ P = GL2(Z)/G.

Let E = {Eα} be the collection of the level sets Eα of the limiting modular symbol.
We let A∂,G,P,hα = B∂,E o Red be the algebra associated to the collection E of
invariant sets, as in Corollary 3.2.11. As an immediate consequence of the results
(3.42), (3.43) of [KS07b] we have the following.

Lemma 3.3.1. The choice of a cusp form ψ ∈ SG,2 determines a bounded linear
operator Iψ,α from AGL2(Z),G,P to B∂,Eα with for (x, s) ∈ Eα

Iψ,α(f)(g, ρ, x, s) =

∫
{?,x}G

f(g, ρ, z, s)ψ(z) dz

= lim
n→∞

1

λ(x)n

n∑
k=1

∫
{g−1
k (x)·0,g−1

k (x)·∞}G
f(g, ρ, z, s)ψ(z) dz

=

∫
hα(x)

f(g, ρ, z, s)ψ(z) dz.

(3.44)
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Here we pair the form ω(z) = f(z)ψ(z)dz with the limiting modular symbol hα(x, s)

of (3.43). We use the notation ω(z) = ωρ,s(z) to highlight the dependence on the
variables (ρ, s) that come from choosing an element f in the arithmetic algebra
AarGL2(Z),G,P .

Note that Iψ,α is only a linear operator and not an algebra homomorphism. We
obtain a subalgebra of A∂,G,P as follows.

Definition 3.3.2. Let AI,G,P denote the subalgebra of A∂,G,P = B∂ o Red gen-
erated by all the images Iψ,α(f) for f ∈ AGL2(Z),G,P , for ψ ∈ SG,2, and for α ∈
∇βG(R2g), and by the Sk, S∗k with the relations as in Definition 3.2.8. The arith-
metic algebra AarI,G,P is obtained in the same way as the algebra generated by the
images Iψ,α(f) with f in the arithmetic algebra AarGL2(Z),G,P of §3.1.2, for all ψ ∈ SG,2
and α ∈ ∇βG(R2g), and by the Sk, S∗k as above.

3.3.4 Evaluation of ground states on boundary values

When we evaluate zero-temperature KMS states on the elements Iψ,α(f), for an
element f ∈ AarGL2(Z),G,P , we obtain the pairing of a cusp form with a limiting
modular symbol,

ϕ∞,ρ,x,s(Iψ,α(f)) = 〈ωρ,s, hα(x)〉, (3.45)

where ωρ,s(z) = f(1, ρ, z, s)ψ(z)dz is a cusp form in SG,2 for all (ρ, s). Since elements
f ∈ AarGL2(Z),G,P depend on the variable ρ ∈ M2(Ẑ) through some finite projection
πN (ρ) ∈ Z/NZ, we can write ωρ,s(z) as a finite collection {ωi,s(z)}i∈Z/NZ.

To illustrate the properties of the values of ground states on arithmetic boundary
elements, we consider here the particular case where G = Γ0(N) and a state ϕ∞,ρ,x,s
with s ∈ P. We also choose f and ψ so that the resulting ωi,s are cusp forms for
Γ0(N) that are Hecke eigenforms for all the Hecke operators T (m).

Recall (see [Ser77]) that the Hecke operators T (m) given by

Tm =
∑

γ : det(γ)=m

Γ0(N)γΓ0(N)

satisfying TnTm = TmTn for (m,n) = 1 and TpnTp = Tpn+1 + pTpn−1Rp with Rλ

the scaling operator that acts on a modular form of weight 2k as multiplication by
λ−2k. The Hecke operators Tm and the scaling operators Rλ generate a commutative
algebra, and the action of Tm on a modular form of weight 2k is given by

Tm f(z) = n2k−1
∑

a≥1,ad=n,0≤b<d
d−2k f(

az + b

d
).
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Proposition 3.3.3. Let G = Γ0(N) and let ωi,s0, with i = 0, . . . , N − 1 and s0 =

Γ0(N)g0 ∈ P, be Hecke eigencuspforms of weight 2. For s ∈ P with s = Γ0(N)g0γ,
with γ ∈ GL2(Z), let ωi,s = ωi,s0γ := ωi,s0 ◦ γ−1. Consider the pairing

ξω(s) = 〈ωρ,s, hα(x)〉 =

∫
hα(x)

ωi,s

with the limiting modular symbol hα(x), as in (3.44) and (3.45). For (m,N) = 1 we
have the relations

ai,m ξω(s) =
∑

M∈Ām

um ξω(sM)

where ai,m are the Hecke eigenvalues and Am = {M ∈M2(Z) : det(M) = m}, with
Ām = Am/{±1} and

∑
M uM M ∈ ZĀm is the Manin–Heilbronn lift of the Hecke

operator Tm.

Proof. The condition that ωi,sγ = ωi,s◦γ−1 implies that 〈ωi,s, hα(x)〉 = 〈ωi,s0 , hα(x, s)〉.
The following facts are known from [Man72], [Mer91]. Let

Am,N = {M =

(
a b

c d

)
∈M2(Z) : det(M) = m, N |c}.

Let R be a set of representatives for the classes Γ0(N)\Am,N The Hecke operators
act on the modular symbols by Tm{α, β} =

∑
λ∈R{λα, λβ}. For (m,N) = 1 there is

a bijection between the cosets Γ0(N)\Am,N and Am/SL2(Z). For s ∈ P consider the
assignment ξω : s 7→ ξω(s) = 〈ωi,s, hα(x, s)〉, where ωi,s is a Hecke eigencuspform.
It is shown in [Man72], [Mer91] that there is a lift Θm of the action of the Hecke
operators Tm ◦ ξ = ξ ◦ Θm (the Manin–Heilbronn lift), which is given by Θm =∑

γ∈Am/SL2(Z) Υγ , where Υγ is a formal chain of level m connecting ∞ to 0 and of
class γ. This means that Υγ =

∑n−1
k=0 γk in ZAm, for some n ∈ N where

γk =

(
uk uk+1

vk vk+1

)

with u0/v0 = ∞ and un/vn = 0 and where γk agrees with γ in Am/SL2(Z). An
argument in [Mer91] based on the continued fraction expansion and modular symbols
shows that it is always possible to construct such formal chains with γk = γgk with
gk ∈ SL2(Z) and that the resulting Θm is indeed a lift of the Hecke operators.
(The length n of the chain of the Manin–Heilbronn lift is also computed, see §3.2 of
[Mer91].) Using the notation of Theorem 4 of [Mer91], we write the Manin–Heilbronn
lift as Θm =

∑
M∈Ām uM M as an element of ZAm. Each element M ∈ Ām maps

s 7→ sM in P, hence one obtains a map Θm : ZP → ZP. In particular, as shown in
Theorem 2 of [Mer91], for s = Γ0(N)g in P one has Θm(s) =

∑
γ∈R

∑n−1
k=0 φ(gγγk)
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where φ : Am → Γ0(N)\SL2(Z) is the map that assigns

Am 3 γ =

(
a b

c d

)
7→ Γ0(N)

(
w t

u v

)
∈ Γ0(N)\SL2(Z)

with (c : d) = (u : v) in P1(Z/NZ) ' P = Γ0(N)\SL2(Z). Thus, as in Theorem 2 of
[Mer91] we then have Θm(s) =

∑
γ∈R

∑n−1
k=0 φ(gγ)gk =

∑
γ∈R φ(gγ)γ−1, seen here as

an element in ZP. Thus, in the pairing of limiting modular symbols and boundary
elements we find

Tmξω(s) = Tm

∫
hα(x,s)

ωi,s0 =

∫
hα(x,s)

Tmωi,s0 = ai,m

∫
hα(x,s)

ωi,s0 ,

where ai,m are the Hecke eigenvalues of the eigenform ωi,s0 , with ai,1 = 1. On the
other hand, using the Manin–Heilbronn lift we have

Tmξω(s) = ξω(Θm(s)) =
∑
γ∈R

∫
hα(x,sγ)

ωi,s0

with sγ ∈ P given by sγ = φ(gγ)γ−1 as above. We write the latter expression in the
form ∑

M∈Ām

uM

∫
hα(x,sM)

ωi,s0

for consistency with the notation of Theorem 4 of [Mer91].

Proposition 3.3.4. Under the same hypothesis as Proposition 3.3.3, let Lωi,s0 (σ) =∑
m ai,mm

−σ be the L-series associated to the cusp form ωi,s0 =
∑

m ai,m q
m. For x

a quadratic irrationality the evaluation (3.45) of KMS∞ states satisfies

〈ωi,s, h(x)〉 =
1

λ(x)n

n∑
k=1

〈ωi,sk , {0,∞}〉 =
1

λ(x)n

n∑
k=1

Lωi,sk (1), (3.46)

where sk = Γ0(N)gg−1
k (x) for s = Γ0(N)g.

Proof. The special value Lωi,s0 (1) of the L-function gives the pairing with the mod-
ular symbol 〈ωi,s0 , {0,∞}〉. Similarly, for s ∈ P with s = Γ0(N)g, the special value
gives

Lωi,s(1) = 〈ωi,s, {0,∞}〉 = 〈ωi,s0 , {g · 0, g · ∞}〉.

In the case of a quadratic irrationality the limiting modular symbol satisfies

h(x) =
1

λ(x)n

n∑
k=1

{g−1
k (x) · 0, g−1

k (x) · ∞}G,

where n is the length of the period of the continued fraction expansion of x and
λ(x) is the Lyapunov exponent. For sk = Γ0(N)gg−1

k (x) with s = Γ0(N)g, we have
〈ωi,sk , {0,∞}〉 = 〈ωi,s, {g−1

k (x) · 0, g−1
k (x) · ∞}〉 hence one obtains (3.46).
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As shown in Theorem 3.3 of [Man72], the special value Lωi,s0 (1) satisfies

(
∑
d|m

d− ai,m)Lωi,s0 (1) =
∑

d|m, b mod d

∫
{0,b/d}G

ωi,s0 ,

since one has∫ ∞
0

Tmωi,s0 = ai,m

∫ ∞
0

ωi,s0 =
∑
d|m

d−1∑
b=0

∫
{b/d,0}G+{0,∞}G

ωi,s0 .

For a normalized Hecke eigencuspform f =
∑

n anq
n, let Lf (s) =

∑
n ann

−s be the
associated L-function and Λf (s) = (2π)−sΓ(s)Lf (s) the completed L-function, the
Mellin transform Λf (s) =

∫∞
0 f(iz)zs−1dz.

The relation between special values of L-functions and periods of Hecke eigenforms
generalizes for higher weights, and it was shown in [Man73] that ratios of these
special values of the same parity are algebraic (in the field generated over Q by the
Hecke eigenvalues). For a normalized Hecke eigencuspform f =

∑
n anq

n of weight
k the coefficients of the period polynomial rf (z) are expressible in terms of special
values of the L-function,

rf (z) = −i
k−2∑
j=0

(
k − 2

j

)
(iz)jΛf (j + 1).

Manin’s Periods Theorem shows that, for Kf the field of algebraic numbers generated
over Q by the Fourier coefficients, there are ω±(f) ∈ R such that for all 1 ≤ s ≤ k−1

with s even Λf (s)/ω+(f) ∈ Kf , respectively Λf (s)/ω−(f) ∈ Kf for s odd.

Shokurov gave a geometric argument based on Kuga varieties and a higher-weight
generalization of modular symbols, [Sho81a]. It is expected that the limiting modular
symbols of [MM02], as well as the quantum statistical mechanics of the GL2-system
and its boundary described here, will generalize to the case of Kuga varieties, with
the relations between periods of Hecke eigencuspforms described in [Man73] arising
in the evaluation of zero-temperature KMS states of these systems. The first steps
of this project are discussed in the next chapter.
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C h a p t e r 4

KUGA VARIETIES AND HIGHER-WEIGHT LIMITING MODULAR
SYMBOLS

The first step in extending the work of the previous chapter to a higher-weight
setting is to define the limiting modular symbols for weight greater than 2. We
begin with the body of work by Shokurov ([Sho81a]) in which the modular symbol for
higher weights is defined, based on the Kuga modular varieties and their projections
onto the modular curves. We then define a limiting modular symbol by means of
a limiting procedure analogously to the standard weight-2 case. We show that the
limiting modular symbol can be written as an ergodic average involving the continued
fraction expansion, and in particular it converges almost everywhere. To do this we
use similar techniques to those of [KS07b]. The idea is to move to a coding space
setting where each geodesic in H is coded using its type changes as it traverses the
Farey tessellation. The advantage of this approach is that it allows us to write
the limiting modular symbol as an ergodic average everywhere, without having to
exclude an exceptional set where the Lyapunov exponent does not converge.

4.1 Shokurov modular symbols of higher weight

We briefly recall the definition of the standard modular symbol . Let G ⊂ SL2(Z)

be a modular group, XG = G\H the modular curve, and Π = G\P1(Q) the cusps
of the modular curve. Fixing two points α, β ∈ H ∪ P1(Q), we define the modular
symbol {α, β}G ∈ H1(XG,R) by∫

{α,β}G
ω =

∫ β

α
φ∗(ω) (4.1)

where the integral on the right-hand side is taken along the geodesic arc connecting
α and β and φ : H→ XG. Modular symbols have the additivity property

{α, β}G + {β, γ}G = {α, γ}G.

Because of this additivity property, it is sufficient to consider modular symbols of
the form {0, α} with α ∈ Q

{0, α} = −
N∑
k=1

{gk(0), gk(i∞)}G

where

gk =

(
pk−1(α) pk(α)

qk−1(α) qk(α)

)
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with pk/qk is the kth continued fraction approximant of α and pN/qN = α. Finally,
for any g ∈ G we have that

g{α, β}G = {g(α), g(β)}G = {α, β}G.

Following [Sho81a], we define the modular symbols of weight greater than 2. From
a pair (G,w) where G is a modular group and w is a weight, one can construct a
nonsingular projective variety Bw

G over the complex numbers called a Kuga modular
variety. [Sho76] This variety is related to a elliptic surface BG over the modular curve
XG. There is a natural projection from Bw

G onto the modular curve Φw : Bw
G → XG.

4.1.1 Kuga modular variety

The Kuga modular variety is constructed using as a starting point the modular
elliptic surface, which is an elliptic surface BG over the modular curve Φ : BG → XG.
It has the important property that the functional invariant is given by JG, where JG
is a meromorphic function on XG given by the composition of the morphism

XG → XSL2(Z)

induced by the subgroup structure G ⊂ SL2(Z) with the absolute invariant function

j : XSL2(Z) → C

extending the standard j-invariant. Such an elliptic modular surface is canonically
defined in the case that −1 /∈ G by [Shi72]. In the absence of this condition, a
non-canonical construction with the desired property is given in [Sho76].

The Kuga modular variety is obtained by taking the Kuga variety, which can be
constructed from any non-singular projective surface over a modular curve, of the
modular elliptic surface. We give a very brief sketch of this construction. For details,
please see [Sho76].

Let ∆′ be the set of non-singular points of XG, and U ′ be its universal cover. There
is an action of

Gw = π1(∆′)× Zw × Zw

on U ′ × Cw given by

(β, n,m)(u, ξ) = (βu, fβ(u)(ξ + z(u)n+m))

where z is a multivalued function on ∆′ defined by

j(z(u)) = JG(u)
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and a choice of branch gives a function z : U ′ → H, and

fβ(u) = (cz(u) + d)−1

where c, d are given by the entries of the matrix S(β) =

(
a b

c d

)
where S : π1(∆′)→

SL2(Z) is a certain representation of the fundamental group.

We define
B
w
G|∆′ = Gw\(U ′ × Cw).

By compactifying and resolving singularities, we then obtain a non-singular projec-
tive variety Bw

G, with a canonical projection Φw : Bw
G → XG.

4.1.2 Shokurov symbols

To define the modular symbol of weight w+2, we first define {α, n,m}G, a boundary
modular symbol of weight w + 2, by a mapping

{, , }G : Q̃× Zw × Zw → H0(Π, (R1Φ∗Q)w)

(α, n,m) 7→ {α, n,m}G

where Q̃ = Q∪{i∞}, (R1Φ∗Q)w is a symmetric tensor power of the sheaf R1Φ∗Q =

G⊗Q Q, where G is the homological invariant of BG.

Remark 4.1.1. In general the sheaf RjΦw
∗ Q is defined by taking the sheaf of local

coefficients
∪v∈∆′Hj(B

w
v ,Q)

and extending it over XG. We will only need to use the case R1Φ∗1Q = G ⊗Q Q,
which can be interpreted as a rational homological invariant.

This mapping is described carefully in Section 1.1 of [Sho81a], but we summarize the
construction here. Let α ∈ Q̃, and n,m ∈ Zw. Let p0 ∈ Π be the cusp corresponding
to α. There is a decomposition

H0(Π, (R1Φ∗Q)w) =
⊕
p∈Π

H0(p, (R1Φ∗Q)w).

The modular symbol {α, n,m} is trivial on H0(p, (R1Φ∗Q)w) when p 6= p0, and
so will be defined by an element in H0(p0, (R1Φ∗Q)w). Let E ⊂ XG be a small
disc around p0. Let Uα be a neighborhood of α in H′ = H \ SL2(Z){e

2πi
3 } that

covers E, and let Γ̃α : Uα → E be the covering. Choose a point zE ∈ Uα and let
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vE = Γ̃α(zE). View zE as a 0-cell in a cellular decomposition of the disc E. Now we
let {zE , n,m}EG ⊂ H0(E, (R1Φ∗Q)w) the cohomology class of the cycle

w∑
j=1

(nje1 +mje2)vE

where {e1, e2} is a certain basis which we will not describe in detail here. There is
a projective system of spaces H0(E, (R1Φ∗Q)w)) by morphisms

H0(E′, (R1Φ∗Q)w))→ H0(E, (R1Φ∗Q)w))

where E′ ⊂ E ⊂ XG are nested small discs. Finally, we set

{α, n,m}G = lim←
E

{ze, n,m}EG.

It requires some argument to see that this definition makes sense, but we do not
include it here as we will not need to work with this definition directly.

The modular symbol, {α, β, n,m}G, is then defined ([Sho81a] Lemma 1.2) via the
unique mapping

Q̃× Q̃× Zw × Zw → H1(XG,Π, (R1Φ∗Q)w)

(α, β, n,m) 7→ {α, β, n,m}G

such that

1. ∂{α, β, n,m}G = {β, n,m}G − {α, n,m}G where ∂ is the boundary mapping
of the pair (XG,Π).

2. For any cusp forms Ψ1,Ψ2 ∈ Sw+2(G)

〈{α, β, n,m}G, (Ψ1,Ψ2)〉 =

∫ β

α
Ψ1Πw

j=1(njz+mj)dz+

∫ β

α
Ψ2Πw

j=1(njz+mj)dz

where n = (n1, ..., nw), m = (m1, ...mw) and 〈, 〉 is the canonical pairing de-
scribed in [Sho81b]:

〈, 〉 : H1(XG, Y, (R1Φ∗Q)w)× Sw+2(G)⊕ Sw+2(G)→ C

where Y ⊂ XG.

Importantly, the pairing 〈, 〉 is non-degenerate on H1(XG, (R1Φ∗Q)w)× Sw+2(G)⊕
Sw+2(G) [Sho81b].
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The modular symbols of higher weight have a similar additivity property to the
weight-2 case:

{α, β, n,m}G + {β, γ, n,m}G = {α, γ, n,m}G

and they transform by elements g =

(
a b

c d

)
∈ GL+

2 (Z) as

g|{α, β, n,m}G = {g(α), g(β), g · (n,m)}G = {g(α), g(β), dn− cm,−bn+ am}G.

Note that this does not give an action directly on H1(XG,Π, (R1Φ∗Q)w), but rather
on representations of homology classes as modular symbols. For g ∈ G, we have

g|{α, β, n,m}G = {g(α), g(β), dn− cm,−bn+ am}G = {α, β, n,m}G. (4.2)

Again, due to the additivity property, it is sufficient to consider modular symbols of
the form, for α ∈ Q

{0, α, n,m}G = −
N∑
k=1

{gk(0), gk(i∞), n,m}G.

4.1.3 Limiting modular symbols

The paper [MM02] introduced a generalization of the modular symbols to the whole
boundary P1(R) by considering an infinite geodesic γβ in H with one with one end
at β ∈ R�Q and the other end at α ∈ R. Let x0 ∈ H be a fixed point on γβ and
y(τ) a point along γβ with an arc length distance of τ away from x0 towards β. The
limiting modular symbol is defined as the following limit, whenever it exists:

{{∗, β}}G = lim
τ→∞

1

τ
{x0, y(τ)}G ∈ H1(XG,R) (4.3)

where {x0, y(τ)}G is the homology class determined by the geodesic arc between x0

and y(τ) in H. The limit is independent of the choice of x0 and of γβ (§2 of [MM02]).

4.1.4 Shift map and the Lyapunov spectrum

To study the weight-2 limiting modular symbols, we consider a modular curve of the
form XG = PGL2(Z)\(H× P) where P = PGL2(Z)/G and the associated shift map

T : [0, 1]× P→ [0, 1]× P

(β, t) 7→

(
1

β
−
[

1

β

]
,

(
−[1/β] 1

1 0

)
t

)
.

(4.4)

Defining a map φ : P→ H1(XG,Π,R) by

φ(s) = {g(0), g(i∞)}G
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where g ∈ PSL2(Z) is a representative of the coset s ∈ P, we see that gk acts on
points (β, t) ∈ [0, 1]× P as the kth power of the shift operator T . Precisely,

φ(T k(β, t)) = {gk(β)(0), gk(β)(i∞)}G = −
{
pk−1(β)

qk−1(β)
,
pk(β)

qk(β)

}
G

where, as before,

gk(β) =

(
pk−1(β) pk(β)

qk−1(β) qk(β)

)
acts by Mobius transformations.

It is shown in [Mar03] that the limiting modular symbol can be computed on certain
level sets as a Birkhoff average. The level sets are given by the Lyapunov spectrum
of the shift map on the unit interval

T : [0, 1]→ [0, 1]

β 7→ 1

β
−
[

1

β

]
.

(4.5)

Recall that the Lyapunov exponent of a map T : [0, 1] → [0, 1] is given by the
T -invariant function

λ(β) = lim
n→∞

1

n
log |(Tn)′(β)|.

In the particular case of T defined by equation 4.5, the Lyapunov exponent is

λ(β) = 2 lim
n→∞

1

n
log qn(β). (4.6)

A theorem of Lévy [Lév29] shows that λ(β) = π2

6 log 2 for almost all β. We can
decompose the unit interval into level sets of 4.6, Lc = {β ∈ [0, 1] : λ(β) = c}

[0, 1] = ∪c∈RLc ∪ {β ∈ [0, 1] : λ(β) does not exist}.

Then, we have the following result about the limiting modular symbols.

Proposition 4.1.1 ([Mar03] Theorem 2.1). For a fixed c ∈ R and for β ∈ Lc, the
limiting modular symbol 4.3 is computed by

lim
n→∞

1

cn

n∑
k=1

φ ◦ T k(β, t0) (4.7)

where T is the shift operator defined in 4.4 and t0 is a base point.

It is easy to check that the shift of the continued fraction expansion is measure-
preserving with respect to the Gauss measure

dµ = (log 2)−1 dx

1 + x
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and so the limiting modular symbol exists almost everywhere. However, it is also
known that there is an exceptional set of measure 0 and Hausdorff dimension 1

where λ(β) does not exist ([PW99] Theorem 3). On the exceptional set, the limiting
modular symbol cannot be written as the limit 4.7. Finally, in the special case that
β is a quadratic irrationality (and hence has a periodic continued fraction expansion)
it is shown ([Mar03] Lemma 2.2) that the limiting modular symbol is given by

{{∗, β}}G =

∑n
k=1{g

−1
k (β) · g(0), g−1

k (β) · g(i∞)}G
λ(β)n

where n is the period of the continued fraction expansion. In this case it is also
known that the limit λ(β) converges to a positive finite number, so that in particu-
lar the limiting modular symbol does not vanish.

To extend this picture to the higher weight setting, we now define φ : P× Z× Z→
H1(XG,Π, (R1Φ∗Q)w) by

φ(s, n,m) = g|{0, i∞, n,m}G = {g(0), g(∞), dn− cm,−bn+ am}G

where g−1 =

(
a b

c d

)
∈ PSL2(Z) and g is a representative of the coset s ∈ P. The

action of the shift operator on the higher-weight modular symbols is now described
by the relation

φ(T k(β, t), n,m) = {gk(0), gk(i∞), g−1
k · (n,m)}G

= −

{
pk−1(β)

qk−1(β)
,
pk(β)

qk(β)
,

(
0 −1

−1 −ak

)
. . .

(
0 −1

−1 −a1

)(
n

m

)}
G

(4.8)

where β = [a1, ..., aN ] is the continued fraction expansion of β. Note that, again,
this action is not on H1(XG,Π, (R1Φ∗Q)w), but on representations of the homology
classes as modular symbols.

Instead of proceeding with this setting, however, we will move to a related set-
ting where we code each geodesic in the hyperbolic plane using cells of the Farey
tessellation. It was introduced by Kessenbómer and Stratmann in [KS07b] in order
to obtain a more complete description of the standard modular symbols and their
level set structure.

4.2 Twisted continued fraction coding and shift space

Following [KS07b] we define a code space related to the dynamical system given
by the shift map in the previous section. We recall that an oriented geodesic in H
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can be coded by a sequence of “type changes”. Consider the Farey tessellation of H
formed by PSL2(Z)-translates of the triangle with vertices at 0,1, and i∞. As we
travel along a geodesic in the positive direction, each tile is intersected in such a way
that one vertex of the triangle is on one side, and two vertices of the triangle are on
the other. If the single vertex is on the left, we say the visit to the tile is of type L,
and if the single vertex is on the right, we say it is of type R. Let l = (l+, l−) be the
oriented geodesic with start point l+ and end point l− and consider the set

L = {l = (l−, l+)|0 < |l+| ≤ 1 ≤ |l−|, l−l+ < 0, and l−, l+ ∈ R�Q}.

Each l ∈ L is coded by the types of its visits

...Ln−2Rn−1ylL
n1Rn2 ... if l− ≥ 1

...Rn−2Ln−1ylR
n1Ln2 ... if l− ≤ −1

where yl is the point where l intersects the imaginary axis.

0 1−1 l+l−

yl
L

R

R

R

L

Figure 4.1: Farey tesselation and coding of a geodesic

This coding is related to the continued fraction expansion of the endpoints l+ and
l− by

l− = [n−1, n−2, ...]
−1 and l+ = −[n1, n2, ...] if l− ≥ 1,

l− = −[n−1, n−2, ...]
−1 and l+ = [n1, n2, ...] if l− ≤ −1.

We now consider the generators S and T of PSL2(Z) given by

S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
which can also be thought of as their actions on H as S : z 7→ −1/z and T : z 7→ z+1

and define the map P̃ : L → L

P̃(l) =

ST−n1(l) = (−[n2, n3, ...]
−1, [n1, n−1, ...]) if l = ([n1, n2, ...]

−1,−[n−1, n−2, ...])

STn1(l) = ([n2, n3, ...]
−1,−[n1, n−1, ...], ) if l = (−[n1, n2, ...]

−1, [n−1, n−2, ...])
.
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Let P be the restriction of P̃ to the first coordinate. Then the map

G : [−1, 1]→ [−1, 1]

x 7→ SPS(x)

is called the twisted Gauss map. It is related to the shift map T by

G(x) = −sign(x)T (|x|).

We define the shift space to be

Σ∗ =
{

(x1, x2, ...) ∈ (Z×)N |xixi+1 < 0∀i ∈ N
}

with the shift map σ∗(x1, x2, ...) = (x2, x3, ...). The map

ρ : Σ∗ → I

(x1, x2, ...) 7→ −sign(x1)[|x1|, |x2|, ...]

where I = [−1, 1] ∩ (R�Q), is a bijection with the property ρ ◦ σ∗ = G ◦ ρ.

We also wish to consider a generalization of this setup where G is a modular sub-
group of PSL2(Z). Let EG be a set of fixed representative elements of the left cosets
in G\PSL2(Z). We now consider the set of oriented geodesics given by

LG =
⋃
e∈EG

e(L)

and the space
ΣG =

⋃
e∈EG

e(I)× {e}

with the topology inherited from R. The G-twisted Gauss map is

GG : ΣG → ΣG

(x, e) 7→
(
eSPSe−1(x), e

)
for x ∈ e(I). It is shown in [KS07b] that a certain proper shift space ΣG is isomorphic
to ΣG. This shift space is

ΣG = {((x1, e1), (x2, e2), ...) ∈ (Z××EG)N |(x1, x2, ...) ∈ Σ∗, and ek+1 = τxk(ek)∀k ∈ N}

where τxk : EG → EG is defined by

τxk(ek) ≡G ekST xk

equipped with the shift map

σ : Σ→ Σ

((x1, e1), (x2, e2), ...) 7→ ((x2, e2), (x3, e3), ...)
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and metric

d(((xk, ek))k, ((x
′
k, e
′
k)k)) =

∞∑
i−=1

1

2i

(
1− δ(xi,ei),(x′i,e

′
i)

)
.

The isomorphism ΣG → ΣG is given by

(e(±[n1, n2, ...]), e) 7→ ((∓n1, e), (∓n2, τ∓n1(e), (∓n3, τ∓n2(τ∓n1(e))), ...).

Formulating the limiting modular symbols in terms of the shift space rather than
directly in terms of points in R is useful because the shift space (ΣG, σ) is known
to be finitely irreducible (Prop 3.1 [KS07b]). This means that there is a finite set
W ⊂ Σ∗G, where Σ∗G is the set of finite admissible words in the alphabet Z× × EG,
such that for any a, b ∈ Z× × EG there exists w ∈W such that awb ∈ Σ∗G.

It is also shown in [KS07b] that, as elements in ((xi, ei))i ∈ ΣG satisfy ek+1 =

τxk(ek), there is a relation in terms of the continued fraction expansion of x =

−sign(x1)[|x1|, |x2|, ...] = [x̃1, x̃2, ...]

ek+1 ≡G e1ST
x̃1 ...ST x̃k = e1gk(x)

where

gk(x) =

(
−sign(x1)pk−1(|x|) (−1)kpk(|x|)

qk−1(|x|) (−1)k+1sign(x1)qk(|x|)

)
. (4.9)

Similar to equation 4.8, we have the relation describing the action of gk(x) on higher-
weight modular symbols

gk(x)|{0, i∞, n,m}G

= −

{
−sign(x1)

pk−1(|x|)
qk−1(|x|)

,−sign(x1)
pk(|x|)
qk(|x|)

,

(
0 1

−1 −|xk|

)
. . .

(
0 1

−1 −|x1|

)(
n

m

)}
G

.

(4.10)

4.3 Limiting modular symbol for the shift space

We now define a corresponding modular symbol on the shift space. Let XG =

(H ∪ P 1(Q))/G. For an element of ΣG, the associated limiting modular symbol on
the shift space is

l̃G : ΣG → H1(XG,R)

((xk, ek))k 7→ lim
t→∞

1

t
{i, e1(x+ i exp(−t))}G

(4.11)

where we set x = −sign(x1)[|x1|, |x2|, ...] ∈ I. The modular symbol on the right-
hand side, {i, e1(x + i exp(−t))}G ∈ H1(XG,R), is the standard modular symbol
defined by Equation 4.1.
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x

γ(t) = x+ i exp(−t))

e1(x)

i
e1(γ(t2))

e1(γ(t1))

e1(γ(t))

e1(i∞)

γ(t2)

γ(t1)

Figure 4.2: Definition of the limiting modular symbol for the shift space

It is known that this limit can be equivalently written by approximating the point
e1(x) by its continued fraction expansion (Proposition 4.2 [KS07b])

l̃G(((xk, ek))k) = lim
n→∞

1

2 log qn(|x|)

n∑
i=1

{ek(i∞), ek(0)}G. (4.12)

We generalize this picture to the higher-weight setting by putting

l̃G,n,m : ΣG → H1(XG,Π, (R1Φ∗Q)w)

((xk, ek))k 7→ lim
t→∞

1

t
{i, e1(x+ i exp(−t)), n,m}G.

(4.13)

We proceed by obtaining a similar result to equation 4.12, but now with modular
symbols of higher weight. Importantly, the result holds everywhere on ΣG.

Theorem 4.3.1. For ((xk, ek))k ∈ ΣG we have

l̃G,N,M (((xk, ek))k) = lim
n→∞

1

2 log qn(|x|)

∞∑
k=1

{ek(i∞), ek(0), g̃−1
k−1(x) · (N,M)}G

where g̃k−1(x) = e1gk−1(x)e−1
k and we set x = −sign(x1)[|x1|, |x2|, ...].

Proof. The proof follows the strategy outlined in [KS07b], but here we track the
additional (n,m)-coordinate data of the higher-weight modular symbol. The general
strategy is as follows. We begin by showing that

LG,N,M (((xk, ek))k) := lim
n→∞

1

2 log qn(|x|)

∞∑
k=1

{ek(i∞), ek(0), g̃−1
k−1(N,M)}G. (4.14)

exists if and only if there is a sequence (tn)n∈N tending to infinity such that

lim
n→∞

1

tn
{i, e1(x+ ie−tn), N,M}G (4.15)

exists, and that if either limit exists they coincide. Then, we will show that the limit
4.15 does not depend on the particular sequence (tn)n∈N chosen.
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The main idea is to write the geodesic passing through e1(i∞) and e1(x), in terms
of geodesics related to the continued fraction approximants of x. Define a sequence
of points in P 1(Q) by

ξ1 = e1(i∞)

ξn = e1

(
−sign(x1)

pn−2(|x|)
qn−2(|x|)

)
n ≥ 2

(4.16)

and let ωn be the oriented geodesic in H∪P 1(Q) which starts at ξn and ends at ξn+1.

Next, let l(x) be the oriented vertical geodesic running from i∞ to x and let e1(l(x))

be its image. The image e1(l(x)) is a geodesic starting at ξ1 and ending at e1(x).
Define a sequence of points along e1(l(x)) by

yn = ωn ∪ e1(l(x)). (4.17)

ξ1 = y1 ξ2ξ3 ξ4e1(x)

y4

y3

y2

e1(l(x))

ω1

ω2

ω3

Figure 4.3: Approximating e1(l(x)) by continued fractions

Note that the oriented geodesic path from yn to yn+1 is homologous to the geodesic
path running from yn to ξn+1 to yn+1. Therefore, we have that

{yn, yn+1, N,M}G = {yn, ξn+1, N,M}G + {ξn+1, yn+1, N,M}G

for all n ∈ N.

Recall that we have
en+1 ≡G e1gn(x)

where gn for n ≥ 2 is defined in 4.9 and g1 = id. Therefore, there exists some
g̃n(x) ∈ G such that

g̃n(x)en+1 = e1gn(x).
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By property 4.2 of the modular symbols, and by directly acting gn on the points 0

and i∞ by fractional linear transformations, we get

{en(i∞), en(0), g̃−1
n−1(x) · (N,M)}G = {g̃n−1(x)en(i∞), g̃n−1(x)en(0), N,M}G

= {e1gn−1(x)(i∞), e1g̃n−1(x)(0), N,M}G
= {ξn, ξn+1, N,M}G.

Using homologous paths and additivity of the modular symbols we find

{i, yn+1, N,M}G = {i, y2, N,M}G + {y2, yn+1, N,M}G

= {i, y2, N,M}G +

n∑
k=2

{yk, yk+1, N,M}G

= {i, y2, N,M}G +

n∑
k=2

({yk, ξk+1, N,M}G + {ξk+1, yk+1, N,M}G)

= {i, y2, N,M}G − {ξ2, y2, N,M}G − {yn+1, ξn+1, N,M}G +
n+1∑
k=2

{ξk, ξk+1, N,M}G

= {i, ξ1, N,M}G − {yn+1, ξn+1, N,M}G +
n+1∑
k=1

{ξk, ξk+1, N,M}G

= {i, ξ1, N,M}G − {yn+1, ξn+1, N,M}G +

n+1∑
k=1

{ek(i∞), ek(0), g̃−1
k−1 · (N,M)}G

Let the sequence tn be defined by the equation

e1(x+ ie−tn) := yn.

An argument involving hyperbolic geometry gives an estimate e−tn ∼ (qn(|x|))2, for
sufficiently large n (see Lemma 3.3 of [KS07a]).

With this we can complete the first part of the proof, concluding the equivalence of
the limits:

LG,N,M (((xk, ek))k) = lim
n→∞

1

2 log qn(|x|)

∞∑
k=1

{ek(i∞), ek(0), g̃−1
k−1 · (N,M)}G

= lim
n→∞

1

tn
({i, yn+1, N,M}G + {yn+1, ξn+1, N,M}G − {i, ξ1, N,M}G)

= lim
n→∞

1

tn
({i, yn, N,M}G + {yn, ξn+1, N,M}G − {i, ξ1, N,M}G)

= lim
n→∞

1

tn
{i, yn, N,M}G

= lim
n→∞

1

tn
{i, e1(x+ ie−tn), N,M}G

The second step of the proof is to show that the limit limn→∞
1
tn
{i, e1(x+ie−tn), N,M}G

is independent of the choice of sequence (tn) tending to infinity. Recall that we have
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a non-degenerate pairing between the higher-weight modular symbols and the space
of cusp forms Sw+2(G) ⊕ Sw+2(G). Suppose that LG,N,M (((xk, ek))k) exists. For
Φ = (Φ1,Φ2) ∈ Sw+2(G)⊕ Sw+2(G) arbitrary and t > 0, let

αΦ = 〈LG,N,M (((xk, ek))k) ,Φ〉

and let
nt = sup{n ∈ N : 2 log qn(|x|) ≤ t}.

Our aim is to show that for all Φ ∈ Sw+2(G)⊕ Sw+2(G),

lim sup
t→∞

∣∣∣∣∣〈{i, e1(x+ ie−t), N,M}G,Φ〉
t

−
〈
∑nt

k=1{ek(i∞), ek(0), g̃−1
k (N,M)}G,Φ〉

2 log qnt(|x|)

∣∣∣∣∣ = 0,

which will allow us to conclude that l̃G,N,M (((xk, ek))k) exists and is equal to LG,N,M (((xk, ek))k).
We obtain a bound following exactly the same strategy as [KS07b], but we repeat it
here for completeness.

lim sup
t→∞

∣∣∣∣∣∣∣∣∣∣
〈{i, e1(x+ ie−t), N,M}G,Φ〉

t
−

〈
nt∑
k=1

{ek(i∞), ek(0), g̃−1
k (N,M)}G,Φ

〉
2 log qnt(|x|)

∣∣∣∣∣∣∣∣∣∣
= lim sup

t→∞

∣∣∣∣∣∣∣∣∣∣
2 log qnt(|x|)〈{i, e1(x+ ie−t), N,M}G,Φ〉

2t log qnt(|x|)
−

t

〈
nt∑
k=1

{ek(i∞), ek(0), g̃−1
k (N,M)}G,Φ

〉
2t log qnt(|x|)

∣∣∣∣∣∣∣∣∣∣
≤ lim sup

t→∞

∣∣∣∣∣1t 〈{i, e1(x+ ie−t), N,M}G −
nt∑
k=1

{ek(i∞), ek(0), g̃−1
k (N,M)}G,Φ〉

∣∣∣∣∣
+ lim sup

t→∞

∣∣∣∣2 log qnt(|x|)− t
t

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

〈
nt∑
k=1

{ek(i∞), ek(0), g̃−1
k (N,M)}G,Φ

〉
2 log qnt(|x|)

∣∣∣∣∣∣∣∣∣∣
≤ lim sup

t→∞

const.

t
+ lim sup

n→∞

log |xn+1|
log qn(|x|)

|αΦ|

= |αΦ| lim sup
n→∞

log |xn+1|
log qn(|x|)

where in the last bound we are using the recursion relation qn(|x|) = |xn+1|qn−1(|x|)+
qn−2(|x|).

In the case that αΦ = 0 for all Φ ∈ Sw+2(G) ⊕ Sw+2(G), the result follows im-
mediately. We will assume wlog that there is some Φ such that αΦ > 0. In this case,
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we will show that lim supn→∞
log |xn+1|
log qn(|x|) = 0. To do this, we first observe that

αΦ = lim
n→∞

〈
n+1∑
k=1

{ek(i∞), ek(0), g̃−1
k (N,M)}G,Φ

〉
2 log qn+1(|x|)

= lim
n→∞

〈
n∑
k=1

{ek(i∞), ek(0), g̃−1
k (N,M)}G + {en+1(i∞), en+1(0), g̃−1

n+1(N,M)}G,Φ
〉

2 log qn(|x|) + 2 log |xn+1|

= lim
n→∞

〈
n∑
k=1

{ek(i∞, ek(0), g̃−1
k (N,M)}G,Φ

〉1 +
〈{en+1(i∞),en+1(0),g̃−1

n+1(N,M)}G,Φ〉〈
n∑
k=1
{ek(i∞,ek(0),g̃−1

k (N,M)}G,Φ
〉


2 log qn(|x|)
(

1 + log |xn+1|
log qn(|x|)

)

= αΦ lim
n→∞

1 +
〈{en+1(i∞),en+1(0),g̃−1

n+1(N,M)}G,Φ〉〈
n∑
k=1

{ek(i∞),ek(0),g̃−1
k (N,M)}G,Φ

〉
1 + log |xn+1|

log qn(|x|)

.

Suppose for contradiction that lim supn→∞
log |xn+1|
log qn(|x|) > 0. Then there is a subse-

quence (nk)k such that limk→∞
log |xnk+1|
log qnk (|x|) > 0, and hence limk→∞ |xnk+1| = ∞.

Since we have assumed that αΦ > 0, we get

1 = lim
k→∞

1 +
〈{enk+1(i∞),enk+1(0),g̃−1

nk+1(N,M)}G,Φ〉〈
nk∑
j=1
{ej(i∞),ej(0),g̃−1

j (N,M)}G,Φ
〉

1 +
log |xnk+1|
log qnk (|x|)

= lim
k→∞

log qnk(|x|)〈
nk∑
j=1
{ej(i∞), ej(0), g̃−1

j (N,M)}G,Φ

〉 〈{enk+1(i∞), enk+1(0), g̃−1
nk+1(N,M)}G,Φ〉

log |xnk+1|

=
1

αΦ
(0) = 0

This is a contradiction, so we conclude that lim supn→∞
log |xn+1|
log qn(|x|) = 0.
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