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ABSTRACT

~ Instability in liquid monopropellant rocket motors may be
corrected by the use of a feedback servomechanism. This
mechanism consists essentially of a pressure pickup which senses
pressure oscillations in the combustion chamber, an amplifier and
a variable capacitance iﬁ the feed line., It is shown that a feedback
system with an arbitrary sampling circuit which causes the capaci=
tance in the line to complete its own cycle of variation once for
every several cycles of combustion pressure oscillations can be
made to stabilize the oscillations for all values of combustion time
lag for a particular motor. It is believed that this system of

stabilization may be applied to monopropellant motors in general.
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SYMBOLS AND DEFINITIONS

time

_time lag .

instantaneous value of pressure

dimensionless quantity relating pressure and time lag
steady-state pressure in the combustion chamber
injector pressure drop

p/Ap2 , injector pressure drop parameter

distance along feed line between pump cutlet and injector
steady-state mass flow rate

cross-sectional area of the feed line

gas residence time in the combustion chamber
[r—';s/ZAgSAGS line inertia characteristic parameter
instantaneous value of pump outlet pressure
steady-state value of pump outlet pressure
instantaneous value of pump outlet mass ﬂ.ow rate
~F-h(po~13)/ P, (fh,m)pump delivery characteristic parameter

{p-p )/B ., fractional variation of pressure in the combastion
chambexr

t/Qq , reduced time

T/QQ » reduced time lag

(fht—r:\ )/¥n  fractional variation in injector masé flow rate
reduced amplification coefficient

reduced angular frequency (real frequency divided by resi-
dence time)

A+ L

instantaneous value of capacitance
transfer function of sampling circuit

transfer function of amplifier
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I. INTRODUCTION

The low fregquency, "cl;ugging", oscillations in liguid rocket
motors have been attributed to the coupled effects of the feed system
a.nd combustion chamber dynamics., According to D. ¥. Gunder and
D. R. Friant(l), the pressure oscillations can take place in the
combustion chamber merely as a result of small changes in the
velocity of flow in the injected fuel; that is, if for any rcason the flow
rate decreases, the rate of burning and hence the pressure will
decrease a short time later in the chamber, Then, as the pressure
drop is felt at the injector the flow rate will increase and a short time
later the pressure at the point of combustion will increase resulting
finally in a decrease in rate of flow from the injection nozzle, the
cycle continuing indefinitely., The explanation for this phenomenon
involves the concepts of time lag between the instant of injection and
transformation of the fuel to hot combustion producis, and of the
dependence of the rate of burning on combustion chamber pressure.

M. Summerfield(z) has shown how the length of feed 11‘;:16, the
velocity of the propellant in the feed line, the ratio of feed pressure
to chamber pressure and the ratio of chamber volume to nozzle area
affect chugging oscillations and has discussed the trend of changes
required in the feed system and motor parameters to suppress these
oscillations.

L. Crocco(3) has introduced the concept of variable time lag
basing this concept on a qualitative analysis of the complicated

processes that affect the propellants from the time of injection to the



time of burning. | He has formulated a relation between time lag

and pressure showing that if the pressure is oscillating, the time
lag is also an oscillating quantity around an average value. Using
this idea he has demonstrated that self-excited oscillations in the
combustion chamber can exist even in the absence of any variation
in the injection rate. In the case where the time lag is decreasing
the burning of the particles that were injected later catch up with the
burning of those that were injected earlier and an increase in rate of
burning would result, the opposite being true if the time lag were
increasing; then, if the variations in time lag coincided with the
variations in pressure in a certain manner, self-excited oscillations
would be produced.

H. S. Tsien (4) has demonstrated that a feedback servomech-
anism may be used to stabilize combustion chamber pressure
oscillations for all values of time lag, thus making it possible to
stabilize motors for which a change in configuration parameters alone
would not correct instability or where such changes would not be
feasible. The servomechanism Tsien proposed consists essentially
of a feedback servocontrol which senses the oscillating pressure in
the combustion chamber and changes the propellant flow by the proper
amount and in the proper phase to damp the oscillations. Such a
system is shown schematically on Figure 1.

A servomechanism in which the variable capacitance is
required to oscillate at the same frequency as the chamber pressure

fluctuations is likely to produce at least two important problems



arising from the ré.te at which these oscillations generally occur,
namely in the order of 100 per second. One is the difficulty of pro-
ducing sizeable changes in capacitance at such frequencies, and the
other is cavitation in the fluid. If the variable capacitance consists
of a piston-cylinder mechanism, il wouuld help to lessen the problems
to move the piston down on the compression stroke at the same
frequency as the chamber oscillation and to withdraw the piston
slowly to the maximum-~capacity position in the time required for
several pressure oscillations in the chamber to take place. With the
proper phasing and amplitude it should be possible to damp out
pressure oscillations in the chamber,

The purpose of this investigation is to design a feedback
circuit that will detect symmetric (say sinusoidal) oscillations in the
combustion chamber and provide signals to the servomotor that will
produce the asymmetric motion described above and provide stability
for all values of combustion time lag.

N As an extension of Tsien's work, F. E. Marble and

D. W. Cox(s) have shown that a feedback servomechanism may
stabilize liquid bipropellant motors as well as monopropellant motors.
Their general method for designing the stabilizing transfer function

of the feedback loop will be used in this investigation.



II. DYNAMICS OF THE MONOPROPELLANT MOTOR

The basic motor without feedback control considered in this
investigation essentially consists of a combustion chamber, injector,
feed line and fuel pump. It may be thought of as two dynamic systems:
one, the combustion chamber and the discharge nozzle; the other, the
propellant supply system consisting of the propellant pump, propellant
line and injector. These two systems are coupled through the require-~
ment that the mass of propellant discharged from the propellant line
appear in the combustion chamber. The performance of the combustion
chamber is characterized by a mean pressure P , a mean residence
time ©9 and a mean flow rate m . When the chamber pressure
varies from P its fractional variation will be denoted ¢ = —P;-—:——P—— .
The performance of the propellant feed system depends upon the cross-

sectional area A and length { of the feed line, the pressure drop AP

across the injector and the local slope o of the mass flow-pressure

- M-, P
characteristics of the pump where o= — "__m p°___ . The
mQ po- Po
fractional variation in propellant injection rate will be defined as
_ g -t
-

The fuel injected into the chamber does not burn immediately
but only after it has remained a certain time T in the chamber. The
time T required for the transformation of propellant into products

of combustion may be represented by means of the integral
..t
£ (p. ;i-g) = constant
t-7
where f(p, Tg) is a function depending upon the mechanics of the



process, and Tg is the ambient gas temperature in the neighborhood
of the injector. Since the time lag T depends upon the chamber
pressure it varies with time in the same manner as the chamber

pressure does. In fact Tsien (4) has shown that

dt p(t-t) — p(T)
dt =
h _
where dloa (B . Tq)
5109{5

(3)

Now, as shown by Crocco '™/, the continuity of mass tlow

through the combustion chamber may be written as

d¢
T + (-nYP(z) v nd (2-8) - plr-S) =0 (1)
where $ is the reduced time lag -:Ce— and Z = —-t- .
9 9

Furthermore, defining

P = i_ J= ! o
2hp 26 A 8,
the dynamic equilibrium of the propellant supply system is given by

J—S—{+ l%(P+—‘éy+l}p+Pc\>=o (2)

The presence of ¢ and p in Equations (1) and (2) indicates the

coupling between the chamber and feed systems:
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To analyze the stability of the system the following solutions
may be fried:

(s-3)%

S€
PRY=Ps)e | PGB-2)= H)e MCEYI= M (S) e

where s= A+l . Using these trial solutions and eliminating
the common factor eS%, Equations (1) and (2) represent a solution
of the system if the two homogeneous equations below are simul-

taneously satisfied:

-58 . _ -5$
(S+1-n a+ne YD) -~ e mM(sy=o (3)

PdHis) + [Js+—é(P+J£)+x]M(s)=o (4)

For non~trivial solutions the determinant of the coefficients of
Equations (3) and (4) must vanish, that is

-5$ ~58
S+ —-n +tnNne - €

= G'(s1=0 (%)
P . Js+ S (P+5)+1 |

This is a transcendental equation in the complex variable s , the
roots of which determine the stability of pressure oscillations. If
any root of C'(s)=o0 possesses a positive real part the system
is unstable. The Nyquist criterion may be applied to G'(s) to
determine the existence of such roots (5) In this method the variable
$ traces a contour enclosing the right-half complex plane. As s
moves in the manner shown in Figure 2, that is, along the imaginary
axis and a large half circle to the right, the behavior of C'(sy is

plotted and the number of complete revolutions noted. This number
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is the difference betweeﬁ the number of roots and poles of G'(s) in

the right half s~plane. If the number of poles can be determined

independently the number of roots is known and the stability determined.
The term e.”gg in G’(s) makes use of the Nyquist diagram

difficult. A complete investigation would require plotting the function

Glcs) for many values of & , the reduced time lag. A different

(6) and developed by Tsien(4),

technique, proposed by M. Satche

requires the function G'(s) to be separated into two parts, the first
-S& ‘ .

consisting only of e and the second of the remaining terms. In

this case ’¢s) may be expressed as a combination of two deter-

minants
S+ 1l—-m o
DI(S) = | (6)
. n -
D, s1= | (7)
=4 Js + 2 (P + é\

so that Equation (5) may be written

Disy + e~56 H,(s)= © (8)
Following Tsien(4) in calling 'e—sé. 2 9, (s) and D65 -9,
- Equation (8) becomes D
G (5) — gz(s) = G(3) (9)

and g,(sy and 9e(s) may be plotted separately. For neutral stability
R?(s)=o0 and <5,(Lun becomes a unit circle on the Satche diagram;

all unstable roots lie within the unit circle. Assuming that G(s)



has no poles in the right-half plane then if g,(s) either passes
through the unit circle or encircles the origin the system is
unstable, while the converse is true. The function G(s), however,
may have poles in the right-half plane because of possible zeros in
ihe denominator determinant $,(s) . This number of poles may be
found by applying the Nyquist criterion to §,(s) and this number
must be added to whatever number of turns g, (s) makes about the
.. (5)

origin.

As an example of the above criteria applied to a specific case
a motor with the following parameters may be considered:

R { 1 £ - n 7 o) _
= 1.0 Jy = 1.5 m - 0,0 F=1.0

Expressing D‘(s) and D?_(s) as follows:

D‘(S) = A"“ + A:I)S + A:l) s?. (10)
D= 47 + d."s (11)
the coefficients become:
3= 1+ 5(P+5)) (- d.”= Penlir L(P+ 1y
d.(t)= [J(‘—h)+‘+-‘atp+_‘-i\)] d-:“= nJ (12)
Au)= J
For this particular motor
d'(0\= \ A:O):‘Z.S
w (4}
4, =3 d,"= 0.9
d'(l\z ‘S

The characteristic equation for s is

-s$ 1 +3.1s +1.5g%
e -+ = 0
25 v09s




For the case where s=iw , along the imaginary axis,

_ _ l+3.l;..u¢-—-|,5<.u2
93(Lw)= —_
2.5 + 0.9 (w
0.86w™~2.5 135w - 6.85 .

= — L
$25+ 081w 635+ 0.81w

The Satche diagram for this function is shown on Figure 3. The
function g,(iw) crosses the unit circle and indicates instability

for values of «> below approximately 0.9. For large values of
L8
s off the imaginary axis, let s= Re . Then g2 () behaves

e
- B and as ©  decre from w/2 to -w/2 the

oo
£ R

0

curve progresses clockwise in a large arc from -0t to +eot
in the left-half plane without encircling the origin indicating no
further instability.

References 4 and 5 contain examples of stable and unstable

motor behavior as determined by analyses similar to the above.
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III. FEEDBACK STABILIZATION

The unsfable operation of a motor with fixed parameters may be
~corrected by means of a simple feedback servomechanism, consisting
of a combustion chamber pressure pickup instrument, sampling circuit,
ampiiﬁer, servomator and a variable capacitance. A feedback system
in a stability analysis provides a mathematical relation belween Lhe
combustion chamber pressure and the variable capacitance and intro-
duces a new coupling term in the relations for the simple circuit with~-
out feedback., The relation between the capacitance K (z) and the

pressure may be written symbolically as

d d 1
K(2)y= — L —
Fldz L 'dz(b(Z)J

d

where F, e and F, gz are linear differential-integral operators
of the amplifier and sampling circuit, respectively. The above rela-
tion indicates that the line capacitance changes with time in accordance
with the amplifier signals whose action is controlled by a samplin'g
circuit, which interprets the combustion chamber pressure impulses

in a certain manner.

A new set of simultaneous differential equations arises from the

(5),

introduction of the feedback 1oop

33 + - d +nd(2-8) - M(Z-8)=90

z
A Kyt
dz*

JF_’E -+ [' (P+——)+|]p+P¢+ J==

Fo j { iq:(z)}— K(z) =0
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Using trial solutions

= St

_ s& ’ =
K(2)=R(s)e d@=Fne | p@EI=Ms)e

a set of homogeneous simultaneous equations similar to (3) and (4 is

obtained,

. _.sﬁ -s$
(s+i-n+ne 1Py —¢ MC3) = 0

Pdwe) + {Js +é(P+LZ) +l]MC?)+ {Js7‘+ é(P+LZ)r) Kesy=0

FGIRmPes) ~KG)=o

where F,¢s) and F,(s) are the transfer functions of the sampling
circuit and the amplifier circuit, respectively. The stability of the
sysiem now depends on the roots of the third order determinant,

formed from the coefficients of the above set of equations

~5% -5
S+i-Nn+ne - e Q
P Js+irg(Prl)  Jst+ L (PrY)s | (13)
Fi(s) F209) Q -1

This determinant may be conveniently expressed in terms of &,¢(s),

Equation (6), bl(s) Equation (7), and a third minor defined as g (s)
R o
D{_(S) = (14)

Js+ e L(Prd) Jse L (P+ 1)

The new characteristic equation obtained by setting the stability

determinant (13) equal to zerao is

-sé
D+ e [Dl(S) +F (5 F, (5) Dg(s)] = 0 (15)

For stability analysis using the Satche diagram Equation (15) may
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be written

-sd bl(s)
DZ(S) + Fi(s) Fois) D;(s)

where g,¢5 and g,(s) now correspond to the first and second
terms, respectively, of the above equation and may be plotted
separately on the Satche diagram. Stable motor operation is to be
assured by choosing the form of F, ) and F,(s) so that the
stability criteria are satisfied. It should be noted that By Sz(s)
and D;(S) are functions of the fixed motor parameters and are
independent of the feedback functions.

Generally, instability in the basic motor arises from the inter=
section of the 9,({w) curve with the unit circle as in Figure 3,
where the reduced angular frequency is in the order of unity at the
point of intersection. If for higher frequencies the function g, (s)
shows no further instability as is generally the case it is necessary
only to modify g, ({w) to move clear of the unit circle for small
values of 3 and to cause the gain of the amplifier to disappear. at

higher frequencies.
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IV. SAMPLING CIRCUIT FOR FEEDBACK SYSTEM

The functions of the feedback circuit in this investigation will
be divided into two paris: one, to provide stabilization and control
the gain at different frequencies and the other, to transform the
pressure signal received from the combustion chamber in such a
manner that the compression stroke of the variable-capacitance will
be of the same frequency and the return stroke will take considerably
longer time. A sampling circuit will be responsible for carrying out
this latter task while the stabilizing function will be carried out by the
amplifier.

As a representative example, let the pressure signals received
by the sampling circuit from the combustion chamber be sinusoidal,
and the signals which the sampling circuit delivers to the amplifier
be represented by an asymmetric function, as follows:

Into the sampling circuit

sin 2

Out of the sampling circuit

= cos Z interval O<zem

‘C(Z)
Z-m
291

- COs

interval ™€ 2éAng

The input and output functions are shown graphically on Figure 4.
Over a total interval of time 2mq there are q pressure cycles in
the combustion chamber for each cycle of motion in the variable

capacitance.
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The function {(2) may be expanded in a Fourier series

-]
{izy = ;(Qk cos —kc—l?_ + bKSm—\%z)

The coefficients1 are

2113
Q= — J 4(1)(053 2 d=z
g Jo 9
. 2Trq K
b= — S L2y cos ¥ z de
K qu o qQ

Replacing f(z) by the required output functions in the above equations the

following general expressions for the coefficients are obtained

"W Zﬁq_
Ok: —‘-— j cosigos—\i%d-z-— —‘—- ( cOSs Ll COS*k'%C}E
g b g 2g-1
° Q
s \
= ——— SN E'ﬂ" z — '
" 2 | g4kt E
(23-0)*
™ ZTrq
| -k 1 2-T
bk= cos 2 Sin 32- dz - L Cos Sin>zdz
’qu_ o ‘ITcl o 29-i
\ + Cos =27 cos lin
= X 4 2
— 2z -
1) 1 - K? OLZ" kl
(za-1)?

The second expressions for Q, and b, above may be used to

evaluate the coefficients when q# k For the case where q=k

the integral expressions used directly are more convenient.

Anticipating the use of an illustrative example the coefficients
for the first eight terms of the Fourier series using a value of q-=4

have been calculated and are tabulated below.
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K a, b,

1 0,350 ~0.821
2 0.226 -0.1731
3 0.174 0,0643
4 0,125 0

5 0.0794 ~0.144
6 0. 0420 -0.0535
7 0.0154 -0,0303
8 0 ~0.027

wa, it is ‘necessary to obtain the transfer function of this
sampling circuit in terms of the complex variable s eventually to
investigate the stability of the system. The transfer function is the
ratio‘of the Liaplace transforms of the output and input functions of
the sampling circuit.

The Liaplace transform of the output function is

00 o0
—-sZ
gwc(-z)e d=z =J

< o

} y -5z
(okcosqzﬁh b, sin leﬁe dz

IR

-] < ) —k.. [ ]
_ !
= Zok_—sz+ = “+ 2 bk T T } - ~ (qus + b k)
k= = = S+ —_2 Sq +
q ﬂ K=

\

Similarly for the input circuit

o0
. -5 .
S\snze  dr = —_
S -+ 4

Q



- 16 -

Therefore, the transfer function of the sampling circuit may

he writien as

Fiis) = ) ———— (995 +bk) ()
(s"+ &) *
K= ! q*

Introducing a term 2¢s  in (17) to take into account the damp-
ing which exists in a real circuit because of resistance elements,the

function ¥ (s) will be modified as follows:

o S, ' +z2cs+st
F,(S)‘modn-f.ed = E ER 1(0qu +b,s) (18)
k=i -%z+2cs+ s

It is now possible to proceed to the development of the appro-
priate amplifier transfer function and to determine the overall

stability of the system.
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V. AMPLIFIER CHARACTERISTICS AND STABILITY ANALYSIS

An appropriate procedure for determining the amplifier
characteristics is (5), (1) to find the approximate behavior of k,(s)
for s=iw<<t such that g,({w) does not intersect the unit circle
and.(Z) to determine the function F,(s)  so that it has the prescribed
behavior for small values of & and vanish for large «w . The
first part of the procedure may be carried out in the following

manner. Each of the terms in the expression for g, (s)

g,(s) = — D) (19)

D.s) + F) Ry Bees)

obtained from Equation (16) may be expressed as a power series in

Thus

B.oy=d2 + 4% + 407

D= d,2 + 4%
and ‘D-(-(S) = B,s t BZSZ" ' (20)
where =5 (P+3) B,=J (21)

The B, are obtained by expanding the determinant of Equation (14).
The terms ,BI sy , Bz(s) and D; (s) depend only on the fixed
parameters of the basic motor. Equation (18) representing the
transfer function F(s) of the sampling circuit may be expanded

as follows

o 2 <9
z qb, (|+ch+s)(l+ bhksj

F\(S)z ql
by K |-+ - (zes + s%)
o
- q by q* q* .. G
= Z (1+2cs+S) |1- — (2ecs+s* )+ — (2cs+ s ) +...Q+ 5)
& K x* b, k
=}
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S Sk S ab qty %9
22 + Z‘"‘ 2((“Ez)+ S
k=1 b k= o Qk
< ab qfoc a9/ amqy| Q' 9\ .
+§_— V+2¢c — ——-—'(?_c+——> ~— =4 — S + - (22)
oLk kb x bk/] K K

It is appropriate to choose the following form for the amplifier

transfer function

112

) R ;
F,(s) & "g + 4.9 4+ £ (23)

where the ‘F.,_L are unknown constants. The function G,(s}] may

now be written

9,050 (24)

=y =
—'(Cl,(d-l- dlms + CL z < )
() W) oy

-0
d.+d,. s + [A.+As +A,_51) (isl + ~§-_:°\+ i, s >(B,5+ B.s)

where, for brevity, Ai represent the coefficients of s in the approxi-
mate expression for F,(s) , Equation (22). The reason for choosing
the form for WF.(s) of Equation (23) becomes clear from inspection
of Equation (24), since, for s =0

_‘d ()
(%) -n
A«z -+ lu\o {-7_ B|

G, o) =

and Q,(o9) remains finite. Now the requirement that the
curve lie outside the unit circle for small «w may be met as

follows. Prescribe g,(tw) by the polynomial

O.(lw)= ¥, + B (lw) + ¥, Lad)® (25)

choosing the Y.  so that stability will be obtained. Then there are



- 19 -

namely

two expressions for g, (%) wvalid for small s |

2

Q. (5) = ¥, + F,5 + W, 5 (26)
and Equation (24). Since these two expressions are power series
expansions in s they are equal term by term. The results of setting
coefficients of like powers of s equal to each other are expressions
relating the unknown constants 1(,_‘ and the known coefficients from
which the values of 4; may be calculated. Thus, after performing
the necessary operations and retaining terms in s of no higher

power than sZ the following expressions for the "; are obtained:

(—1) ] d.(u\ [€*)]
{. =;—§ﬁ(— < d. (27)
IL:l k
Q)] s ’
(o) \ g d, i, qby, Co}
o= abe | &, 1, {8'2 K d. \) 128)
B, T ° ¢ k=t
k=1t
) qbt N 2 ) a9 qbk - ()
g5 -2 B i
B,é - 4, [Zc (\ i ng lé, . —d.
() 2 z
' d, T a9b, | 0 a a q q
4:‘3—7'-;‘{“——8‘23_'( 4, (1+2 3——"—3(2 +—?>}~—2(I—4Cz—l)
B'Zq k l Yo = k bK K < k
v o, Y

< bx - : K 0 @9b. _n '
- K {B.Ei {-(( ){Zc(x-—%l +qu}+-£z(\}+82§_iz -Fz —vcs:)

B, Z — ‘,_‘z -+ CL (29)
k=
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The second part of the procedure fof determining the complete
amplifier transfer function is to obtain an expression which agrees
with Equation (23) for small values of s and will vanish for large values
of s so as to leave the original Satche diagram unchanged for large s.
Consider the following choice of F,(s)
-n

{2 (|+os+bsz> (30)

Fa(5)= S 1 1+ hs*

where a, b, and h are constants. For small values of s

{_’(—ﬁ

e

5

Foesy =

(r+as -I.—bg?-)

and the coefficients a and b must become

'E-(_(Q\ 1(.]
oy o b= -
4?. ) "F':—I\

a =

(31)

in order that F,(s) may agree with Equation (23). For large s,

Fe(s) will behave as , causing the second term in the

h53

denominator of ¢,(s) in Equation (19), that is, the product
Fo(s) F¢s) D‘((s) , to behave as s® so that the value of 9205 .
becomes nearly that of the basic motor without feedback. The value
of h must be such that stability will be obtained for all values of s
and will be determined largely by trial and error.

The exact expression for the function g, (s) becomes then,

for all values of s

(€}
_(d.(o\“_d" < +lengz\)
oo

(o d(-\s . E(H—ZCS-&SZ)(QG,‘S +kb,) “’:') (H—QS+bS‘)

97_(5):
. SN

2
. K 2es 4 s S i+ hs? (B,5+st)
= 9* (32)
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To illustrate‘ the application of the stabilization procedure
consider the unstable motor for which the Satche diagram is shown
on Figure 3. To provide stabilization at low values of « the curve
of g,(ew) must be moved away from unit circle. Choosing the

following values of 8,

$, = -1.25 ¥, =-2.0 %, = -0,25

] Y

and using Equation (25) for q, ({w) the dashed line on Figure 3 is

obtained. From Equations (27), (28) and (29), using a value of

C = 0.1, and summing over the first eight terms of the Fourier
coefficients, the -(,f are
-1 () oW
t, =0.304 {,=0.032 £=5.34,
which fixes the feedback loop for small values of «w . To obtain the

general expression for the amplifier transfer function the constants a

and b are, from Equations (31),
a = 3.395 b=17,48

and F.(¢(sy becomes

£ (5 = 2304 (1 + 33955 +17.485°)
N : L+ hs?

Choosing arbitrarily a value of h = 1 the function Q,¢s) becomes

- (l + 3.15 + |.Ss‘\)

%,_(5\ =

2.5 +09s ‘-‘—Z
4 k*
k=1 16

4
1+ 3

8
(i+025+ 5 Y/4as+Eb,) 0304 &H— 33955 + 17.4B5"

kA
+ 0.25 + 5 s

(I.Ss +1{.5s" \)
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For the condition where s=ilw

— (V= 150" + 3.0 w)
qz(‘w)'—' 3 ~ - . N
. C(1-w +0.2iw) (kb + 4g,cw) (1,034 0304 5320 .
254+09(w + — > ; - (- 1.5w + 1.6 L)
41’.—0 .‘Et;.._wi-po.?.t:w 1+ w? w1+ w?y
= I

This function is plotted on Figure 5 and shows failure to provide
complete stability since it cuts through the unit circle.

For a value of h-=io however, the function ¢,({w) stays
clear of the unit circle for small values of <« , as shown on
Figure 6 {(on this plot also are shown the. unstable curves of the motor
without feedback and the curve for the approximate behavior of
with feedback for small values of « ). As « increases, csl(u'cu)
moves down toward —oot ; as s traces the arc in the right-half
‘plane shown on Figure 2, Q,(s) proceeds in a large clockwise arc
in the left half-plaﬂne and returns to the positive imaginary axis and
finally traces a mirror image of the cont‘bur below the real axis. The
closed contour, therefore, does not enclose the unit circle.

To check for unconditional stability. the Nyquist criterion must
.be applied to the denominator of gq,(sy , namely B,_(s\ + Fn b B;(s\,
As shown on Figure 7, the plot .of this function makes no revolutions
around the origin demonstrating unconditional stability for all values
of time lag.

Of special interest is the behavior of %I(L.,o) in the vicinity of
w = 0.9. Feor frequencies close to this value the proximity of the
curve to the unit circle shows that pressure oscillations in the com-

bustion chamber may be poorly damped.
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Vi. CONCLUDING REMARKS

The scheme of introducing a sampling circuit in the feedback
loop to transform the pressure signals in a certain manner and
alleviale prubable mechanical difficulties in the variable capacitance
does not appear to make the problem of designing a stabilizing
circuit more difficult than usual. The question now arises as to the
possibility of designing a practical sampling circuit with realizable
components. It is necessary to introduce an actual nonlinear circuit
into the problem and to analyze its stability and performance. In ali

probability the technique of analysis must be modified.
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