
Quantum Constructions on Hamiltonians, Codes, and
Circuits

Thesis by
Thomas C. Bohdanowicz

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Physics

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2022
Defended October 12, 2021

ii

© 2022

All rights reserved

iii

ABSTRACT

This thesis covers three different and largely unrelated projects from my time as Ph.D.
student studying quantum information and computation.

In the first chapter, we construct aHamiltonianwhose dynamics simulate the dynamics
of every other Hamiltonian up to exponentially long times in the system size. The
Hamiltonian is time independent, local, one dimensional, and translation invariant.
As a consequence, we show (under plausible computational complexity assumptions)
that the circuit complexity of the unitary dynamics under this Hamiltonian grows
steadilywith time up to an exponential value in system size. This resultmakes progress
on a recent conjecture by Susskind, in the context of the AdS/CFT correspondence,
that the time evolution of the thermofield double state of two conformal field theories
with a holographic dual has circuit complexity increasing linearly in time, up to
exponential time.

In the second chapter, we study approximate quantum low-density parity-check
(QLDPC) codes, which are approximate quantum error-correcting codes specified
as the ground space of a frustration-free local Hamiltonian, whose terms do not
necessarily commute. Such codes generalize stabilizer QLDPC codes, which are
exact quantum error-correcting codes with sparse, low-weight stabilizer generators
(i.e. each stabilizer generator acts on a few qubits, and each qubit participates in a
few stabilizer generators). Our investigation is motivated by an important question in
Hamiltonian complexity and quantum coding theory: do stabilizer QLDPC codes
with constant rate, linear distance, and constant-weight stabilizers exist?

We show that obtaining such optimal scaling of parameters (modulo polylogarithmic
corrections) is possible if we go beyond stabilizer codes: we prove the existence
of a family of [[#, :, 3, Y]] approximate QLDPC codes that encode : = Ω̃(#)
logical qubits into # physical qubits with distance 3 = Ω̃(#) and approximation
infidelity Y = O(1/polylog(#)). The code space is stabilized by a set of 10-local
noncommuting projectors, with each physical qubit only participating inO(polylog #)
projectors. We prove the existence of an efficient encoding map and show that
the spectral gap of the code Hamiltonian scales as Ω̃(#−3.09). We also show that
arbitrary Pauli errors can be locally detected by circuits of polylogarithmic depth.

Our family of approximate QLDPC codes is based on applying a recent connection
between circuit Hamiltonians and approximate quantum codes (Nirkhe, et al., ICALP
2018) to a result showing that random Clifford circuits of polylogarithmic depth
yield asymptotically good quantum codes (Brown and Fawzi, ISIT 2013). Then, in
order to obtain a code with sparse checks and strong detection of local errors, we
use a spacetime circuit Hamiltonian construction in order to take advantage of the
parallelism of the Brown-Fawzi circuits.

iv

The analysis of the spectral gap of the code Hamiltonian is the main technical
contribution of this work. We show that for any depth � quantum circuit on =
qubits there is an associated spacetime circuit-to-Hamiltonian construction with
spectral gap Ω(=−3.09�−2 log−6(=)). To lower bound this gap we use a Markov
chain decomposition method to divide the state space of partially completed circuit
configurations into overlapping subsets corresponding to uniform circuit segments
of depth log =, which are based on bitonic sorting circuits. We use the combinatorial
properties of these circuit configurations to show rapid mixing between the subsets,
and within the subsets we develop a novel isomorphism between the local update
Markov chain on bitonic circuit configurations and the edge-flip Markov chain on
equal-area dyadic tilings, whose mixing time was recently shown to be polynomial
(Cannon, Levin, and Stauffer, RANDOM 2017). Previous lower bounds on the
spectral gap of spacetime circuit Hamiltonians have all been based on a connection
to exactly solvable quantum spin chains and applied only to 1+1 dimensional
nearest-neighbor quantum circuits with at least linear depth.

In the third and final chapter, we study the problem of maximum-likelihood (ML)
decoding of stabilizer codes under circuit level noise. As progress in the design
of proposed fault-tolerant quantum computing architectures moves forward, it is
becoming essential to achieve the highest noise suppression possible from the
underlying quantum error correcting code. The decoder, which ultimately decides
which correction to apply to an encoded state that has suffered an error, is an essential
part of this design. So-called maximum likelihood decoders achieve optimal error
suppression, but using such a decoder becomes intractable as the size of code grows,
therefore sub-optimal decoders which achieve good performance and favorable
implementation complexity are used instead. Circuit level noise presents a particular
challenge for achieving good performance and practical complexity. We present the
construction of a subsystem code called the Circuit History Code which provides
an algebraic structure for understanding and classifying circuit level errors. We
use this structure to formulate maximum likelihood decoding under circuit level
noise as a tensor network contraction. This in turn allows the implementation of
approximate maximum likelihood decoders which we expect could provide near
optimal decoding performance with considerably lower complexity. Using tensor
network ML decoders can be useful for benchmarking the performance of efficient
decoders being designed for implementation in real experiments, as well as providing
options for implementing decoders for codes that would be difficult to decode with
conventional methods.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

The first chapter of this thesis is based on [1]. This work was my first completed
project as a graduate student, with the project concept being suggested by my advisor,
Fernando Brandão. Other than parts of the introduction, the rest of this manuscript
was prepared by myself. The technical construction was designed by myself, based
on the construction by Nagaj and Wocjan [72]. Fernando Brandão and Elizabeth
Crosson provided helpful guidance in the development of this construction. This
work has been presented as a poster at Quantum Information Processing 2018 in
Delft, Netherlands and a talk at Quantum Information and String Theory 2019 in
Kyoto, Japan. It will be submitted for peer review in the next two months.

The second chapter of this thesis is based on [2]. This work started out of a discussion
betweenmyself andChinmayNirkhe about similarities between techniques being used
in [1] and [73], and became a project about approximate LDPC codes after insightful
discussion with Elizabeth Crosson and Henry Yuen. The technical development and
writing of results in this work came from equal contributions among all four authors.
My most important technical contribution to this work was the development and
proof of the counting isomorphism underlying the gap analysis. This work earned an
accepted talk at Quantum Information Processing 2019 in Boulder, CO, as well as
STOC 2019 in Phoenix, AZ.

The third chapter of this thesis is based on yet unpublished work with Steve Flammia,
Chris Chamberland and Giacomo Torlai at the Amazon Web Services Center for
Quantum Computing as an intern in the summer of 2020 and 2021. We expect to
complete this work and submit it for publication by the year’s end.

[1] Thomas C. Bohdanowicz and Fernando G. S. L. Brandão. Universal hamiltonians
for exponentially long simulation, 2017.

[2] Thomas C. Bohdanowicz, Elizabeth Crosson, Chinmay Nirkhe, and Henry
Yuen. Good approximate quantum ldpc codes from spacetime circuit hamil-
tonians. Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, Jun 2019. doi: 10.1145/3313276.3316384. URL
http://dx.doi.org/10.1145/3313276.3316384.

http://dx.doi.org/10.1145/3313276.3316384

vi

CONTENTS

Abstract . iii
Published Content and Contributions . v
Bibliography . v
Contents . v
List of Figures . vii
Chapter I: Universal Hamiltonians for Exponentially Long Simulation 1

1.1 Introduction . 1
1.2 Main Results . 6
1.3 Construction I: Applying* Once 10
1.4 Construction II - Applying* More Than Once 20
1.5 Construction III: Binary Clock Construction 23
1.6 Construction IV: Deterministic Selection of G in time poly(G, #) . . . 31
1.7 Acknowledgements . 40

Chapter II: Good approximate quantum LDPC codes from spacetime circuit
Hamiltonians . 41
2.1 Introduction . 41
2.2 Preliminaries . 54
2.3 Construction of the code Hamiltonian 61
2.4 Spectral gap analysis . 68
2.5 Local detection of Pauli errors . 72
2.6 Alternate constructions and spatial locality 83
2.7 Partially applied configurations of a bitonic sorting circuit 89

Chapter III: Tensor Network Maximum Likelihood Decoders for Circuit-Level
Noise . 102
3.1 Introduction . 102
3.2 Algebraic Structure of Quantum Stabilizer Codes 103
3.3 Measurement Circuits, Circuit Level Noise, and Error Histories . . . 107
3.4 Circuit History Code by Example 116
3.5 The Circuit History Code . 121
3.6 Maximum Likelihood Decoding with Tensor Networks 126
3.7 Applications and Future Work . 134

Bibliography . 139

vii

LIST OF FIGURES

Number Page
1.1 A cartoon depiction of a non-traversal AdS wormhole whose boundary

consists of a pair of conformal field theories which share the state
|)�((C)〉. 4

1.2 This graph shows the time growth of a non-traversible wormhole in
AdS space, which is proposed to be the time growth of the circuit
complexity of the thermofield double state of the dual conformal field
theories, CY (|)�((C)〉). 5

1.3 Schematic of our simulator. The input is a particular starting state
|k(0)〉 from a Hilbert spaceH upon which the Hamiltonian � which
we wish to simulate acts. After decoding, we obtain the desired
time-evolved state |k(C)〉 = 48�C |k(0)〉. 7

2.1 The approximate nature of the codes introduced in [73] arises from the
fact that part of the history state superposition corresponding to early
time steps, which do not match the output of the encoding circuit and
are treated as noise in our analysis. Once a sufficient depth to form
a codeword is reached, the computation can be padded with identity
gates in order to increase the overlap of this approximate codeword
with the original codeword it is approximating. 49

2.2 A bitonic sorting architecture on = = 8 bits. We refer to the final
phase of the architecture, corresponding to the last log(=) = 3 layers
enclosed in a gray box, as a bitonic block. Note that the gates in each
layer are executed simultaneously, but are drawn as non-overlapping
for visual clarity. An arbitrary circuit consisting of 2-local gates can
be transformed to have the architecture of consecutive repetitions of
bitonic blocks at the cost of increasing the depth by a factor of log(#)2. 51

2.3 The Markov chain block decomposition for a sequence of padded
bitonic sorting architecture on 8 bits. The set of valid time configura-
tions contained entirely within the 8-th colored rectangle constitutes
the block Ω8. The set of time configurations in two rectangles of
different colors are related by a permutation of the qubit wires. The
aggregate chain % has a nonzero transition probability %(8, 9) iff the
rectangles corresponding to the blocks Ω8 and Ω 9 are overlapping.
Each block Ω8 has a nonzero transition probability to log # other
blocks Ω 9 . Every valid time configuration is contained in at least one
of the blocks, and no time configuration is contained in more than
log # blocks. 51

viii

2.4 An illustration of the states and transitions in the aggregate chain
corresponding to the subsets of time configurations contained with
the blocks in fig 2.3. 52

2.5 Examples of dyadic tilings of rank 4. 52
2.6 A color-coding of the correspondence between dyadic tilings and

valid time configurations of a bitonic sorting circuit. The colored
line segments in (a) correspond to sub-edges which when rotated by
c/2 about their midpoint will be sub-edges of a vertical edge in some
dyadic tiling. These edges are placed in correspondence with the
gates of the bitonic sorting circuit in (b), with the convention that
colored line segments in (a) are ordered from left to right and from
top to bottom, and the gates in a given commuting layer in (b) are
enumerated from top to bottom. Given an arbitrary dyadic tiling, one
checks which of the colored line segments in (a) correspond to vertical
sub-edges in the tiling, and these correspond to gates that are in the
past causal cone of the bitonic time configuration associated with that
tiling. 53

2.7 (a) Bitonic block B1. (b) Bitonic block B2. (c) Bitonic block B3. . . 60
2.8 The region in the intersection of the red and green bitonic blocks B3

contains the time configurations that belong to ΩA1 ∩ ΩA2 . The key
insight is that the valid time configurations in the intersection of these
blocks can be counted by observing that the intersection corresponds to
two independent copies of B∈. Similarly, the configurations contained
in the intersection Ω6 ∩Ω8 correspond to 4 independent copies of B1. 72

2.9 A demonstration of Lemma 2.7.7. The colored wires represent the
permutation mapping each of the shifted bitonic blocks B3 back to
the original bitonic block. 91

2.10 Examples of rank 4 dyadic tilings. 95
2.11 The dressed tiling C0 for ℓ = 3 . 96
2.12 This example for ℓ = 3 illustrates the correspondence between 2-

segments and their associated gates in C0 97
2.13 Consider the left-most 3-segment in both of these dyadic tilings. In the

left tiling, we see that it can not be flipped from horizontal to vertical
because only one of the 2-segments directly above and below it has
been flipped to vertical. Consequently, this 3-segment is a complete
edge of the dyadic rectangle a but not rectangle b. In the right tiling
we see that this is remedied by flipping the remaining nearest 2-segment. 98

ix

3.1 The circuit CS,1 for the standard measurement protocolMS,1, where
S is the three-qubit phase-flip repetition code. We note that there
are four time slices per qubit during which faults may occur: During
C = 1 the data qubits may experience idling faults that occur while
the ancilla qubits are being initialized, and the ancilla qubits may
experience failures from their initialization. During C = 2 and C = 3,
all qubits may experience faults from the execution of CNOT gates
or from idling. During C = 4, the data qubits experience idling errors
while the ancilla qubits are measured, and the fault locations on the
ancilla qubits model faults that occur during these measurement. . . . 110

3.2 The circuit for the standard measurement protocolMS,2, where S
is the three-qubit phase-flip repetition code. Between measurement
repetitions, ancilla qubits are re-initialized. 110

3.3 The circuit for the standard measurement protocolMS,2, where S is
the three-qubit phase-flip repetition code. The 8 boundary locations
are circled. 112

3.4 Gate propagation relations for �- and identity gates. These relations
depict how individual gates of measurement circuits spread and
propagate errors through the circuit. Each relation also tells us how
to build an error history that has no effect on the data qubits or ancilla
measurement outcomes: consider each relation as an error history
where the errors before the gate occur, and the errors after the gate
also occur at the next time step. Then the error pattern before the gate
will propagate through the gate to become exactly the same as the
error pattern that occurs after the gate, and will cancel it out. 115

x

3.5 An example depicting how an error history for CS,2 can be analyzed
to understand what syndrome will be observed, and what actual error
will have accumulated on the data qubits. The error history �ℎ8BC can
be broken into the first and second measurement rounds. The accu-
mulation map A2 is used to map �ℎ8BC to the equivalent accumulated
error on the boundary of the circuit, �022. The accumulated error
factors into components on the boundaries of the data and ancilla
qubits respectively. The accumulated error on the data qubits is
�022 = /.- . Referring to our chosen generators of the stabilizer,
pure error, and logical groups of the base code, one can see that the
LTS decomposition of this accumulated error is !/)2(2. This means
that if this accumulated error on the data qubits were subjected to
a perfect (noise free) syndrome measurement we would obtain the
actual syndrome, C0 = {0, 1}. The observed syndrome, however, is
a different story. The accumulated error on the ancilla qubits has
two components, one for each round of syndrome measurements per-
formed. The accumulated error for the first round is �022,0=2,1 = -�,
which commutes with the - ⊗ - measurement being performed,
resulting in observed syndrome C>,1 = {0, 0}. The accumulated error
for the second round is �022,0=2,2 = /�, which anti-commutes with
- ⊗ - on the first qubit, resulting in observed syndrome C>,2 = {1, 0}. 116

3.6 Standard simplified measurement circuit for the three bit phase-flip
repetition code, A = 1. We omit the fourth time step of idle and mea-
surement failure locations for simplicity in describing the construction
in this example. The first three qubits are the data qubits of the
repetition code. The other two are ancilla qubits used to measure the
stabilizer generators "1 = --� and "2 = �-- respectively. Ancilla
qubits are prepared in the |+〉 state and measured in the - basis. Red
dots denote fault locations where a single Pauli error may occur during
the execution of the circuit. Each of these fault locations are viewed
as physical qubits of the CHC. 117

3.7 24 independent generators of the gauge group of the CHC for the
measurement circuit in figure 3.6. Gate gauge generators are deter-
mined using the error propagation relations of �- and identity gates
seen in figure 3.4, below. Preparation gauge generators express that
an - error doesn’t affect a |+〉 state preparation. Measurement gauge
generators express that an - error won’t affect the outcome of an
--basis measurement. 118

3.8 A single - error occuring on a freshly initialized |+〉 ancilla state
propagates to apply a stabilizer generator to the data qubits. 119

xi

3.9 Single and two-qubit fault tensors. Observe that when two single
fault locations are joined into a single fault tensor with a correlated
probability distribution, it is denoted graphically using a dotted line. . 130

3.10 The gauge generator � = //- is easily converted into its correspond-
ing gauge tensor. 130

3.11 Here we show how to constructNG for a simple circuit consisting of a
single�- gate, assuming for simplicity that there are only /-type gate
gauge generators. On the left we see how to connect the gauge tensors
to the fault tensors for both /-type gate gauge generators. On the right
we see how to construct the full tensor from both generators. Here
the dashed line between the fault tensors after the �- gate indicates
that we are using a single joint distribution over Pauli errors on those
locations in order to account for correlated errors. 131

3.12 Here we show how the contraction of the example of NG given in
figure 3.11. 132

3.13 Here we show how the construction of N (restricting to a model with
/ errors only for simplicity) for a 2-bit repetition code with a single
stabilizer. 133

3.14 Total logical / failure rate as a function of physical failure rate
parameter ? for thin strip rotated surface codes of width 3G = 3
and various lengths 3I. For each data point, the number of faulty
measurement repetitions is the same as the length of the surface code
patch, A = 3I. The error model used is described in the first column
of Tables I and II of [28] (our parameter ? is their ^1/^2), and the
MWPM data points are taken from Figure 8 of [28]. All data points
collected via monte carlo simulation with standard error less than 5%.
We note that this particular error model is very strongly /-biased,
with a bias of roughly 107. 135

3.15 This figure shows the percent improvement in logical / failure rate of
ML decoding relative to MWPM decoding using the data from figure
3.14 for two different values of ? = ^1/^2. 136

3.16 This figure compares the performance of two different 3 × 3 rotated
surface codes (3 faulty measurement rounds) with different decoders.
We see that using an -. code and approximate ML decoding, perfor-
mance is improved by at least an order of magnitude compared to the
standard -/ code using MWPM. These simulations assume nearly
identical circuit level noise models. The -/ simulations use the same
error model as in figure 3.14, and the -. simulations use that same
noise model with added �. gate failure rates [55] compatible with
the hardware parameters employed in this model. 137

1

C h a p t e r 1

UNIVERSAL HAMILTONIANS FOR EXPONENTIALLY LONG
SIMULATION

1.1 Introduction
In recent years, there has been an explosion of exciting work using ideas from
the theory of quantum information and computation to study and understand open
questions in areas of physics like high energy theory (holography and quantum gravity
in particular) and condensed matter theory (topological phases of matter in particular).
The exploration of ideas at the forefront of quantum gravity research using quantum
information tools has been particularly fruitful, with many conjectures having been
made about what the theory of computation can tell us about a possible fundamental
theory of nature. In this work, we explore broad connections between the Hamiltonian
Quantum Cellular Automaton model of quantum computation, classical and quantum
complexity theory, and a recent conjecture by Susskind which asserts notions of
computational complexity as being fundamental in understanding certain aspects of
the AdS/CFT correspondence used in string theory and quantum gravity. In particular,
we build an explicit family of Hamiltonians which demonstrates the plausability
of Susskind’s conjecture while also giving the first local, translation-invariant, and
time-independent Hamiltonian whose time evolution can be used to simulate the
dynamics of any other for times scaling exponentially in the system size. Further, we
assert that there is a notion in which the family of Hamiltonians we present are, by
construction, the most complex time-independent, local, and translation-invariant
Hamiltonians that can exist.

Universality
The notion of universality is central in science. At its core is the idea that a simple
set of objects can describe the fundamental properties of a much richer class of
objects. One particularly successful example in physics is the use of universality in
classifying phase transitions. It turns out that critical phenomena can be understood
by looking at only a small set of systems and critical exponents associated to them,
which are universal in the sense that they can reproduce the critical behavior of every
other system [57]. A second example, which is the focus of this paper, is the study of
universal quantum dynamics. The goal here is to understand and classify, in several
different scenarios, which quantum dynamics can simulate any other [35]. This line
of investigation is at the core of the idea of a (universal) quantum computer, which
should be able to efficiently simulate the dynamics of any quantum system [38, 41].
It also naturally extends to the quantum domain the study of universality in classical

2

dynamics, usually considered in the context of cellular automata.

There are several different notions of universality for quantum dynamics. One of
the first to be considered was the notion of universal quantum gates in quantum
computation, in which one is interested in identifying and classifying sets of quantum
gates (simple one or two-qubit unitary operators) that can approximate any unitary
operator. This is a rich problem and there is a beautiful theory around it [36, 59],
still with many unresolved questions. A noteworthy result is that almost any two
qubit gate is universal in the sense that it, together with the ability to swap the qubits,
can approximate any other unitary. Therefore, in a well defined sense, one could say
that universality is the general rule for quantum gates.

Another notion concerns universal Hamiltonians. Herewe are interested in identifying
Hamiltonians whose time evolution can be used to simulate the dynamics of any
other Hamiltonian. More precisely, we can ask whether we can perform universal
quantum computation with the Hamiltonian. One variant of that notion is to consider
sets of few-qubit interactions and classify which are universal, given the ability of
controlling the interactions in a time-dependent fashion. This notion is closely related
to the one discussed for quantum gates above and, similarly, a generic two-qubit
Hamiltonian is typically universal for quantum computing in this sense [30].

Yet another interesting variant is to consider a fixed time-independentHamiltonian and
ask if it is universal. It is clear that the class of unitaries which can be approximated
by the time evolution of a fixed Hamiltonian is rather limited (as the eigenbasis of
48C� for a fixed � is always the same). However the situation is more interesting
if one allows for some form of encoding of the desired dynamics (represented by
an appropriate quantum circuit which approximates them) by preparing a simple
initial state of the system in a suitable way. Indeed, Vollbrecht and Cirac [77]
gave a construction of a time-independent and translation-invariant model which
is universal for quantum computing. A description of the desired quantum circuit
to be implemented by the simulator is encoded in the initial state as a particular
computational basis state. Later on, Nagaj and Wocjan made refinements to this
construction in Ref. [72]. In contrast to the other notions of universality, it is unclear
if a typical local Hamiltonian will be universal in this sense. Indeed, apart from a
few examples, it is still largely unexplored which Hamiltonians can give universal
dynamics through time-independent evolutions. Further, no other simulation scheme
for quantum dynamics is capable of simulating dynamics of an =-qubit system for
exponentially long times, C = $ (2=). All current schemes have approximation errors
which become large at exponentially long times, or would require use space scaling
as $ (2=) to avoid this large error. This motivates us to ask the following question:

Problem 1.1.1. Does there exist a universal scheme that can faithfully simulate the
dynamics of an =-qubit system for exponentially long timescales C = $ (2=)?

3

In this work we construct a time-independent, geometrically local, translation
invariant Hamiltonian whose dynamics can efficiently (in a sense made more precise
below) reproduce the dynamics of any other time-independent Hamiltonian for times
up to exponentially large in the system size, using space only polynomially large in
the size of the system to be simulated.

Circuit Complexity
An a priori unrelated question in the realm of quantum complexity theory concerns
the circuit complexity of quantum dynamics. Note that in the following, we use the
notation 5 (=) is $ (6(=)) to mean that the function 5 (=) has an asymptotic growth
rate no greater than that of the function 6(=), and 5 (=) is Ω(6(=)) to mean that
the function 5 (=) has an asymptotic growth rate no less than that of 6(=). Further,
we will use poly(=) to denote the set of functions growing at rate =2 for any 2 > 0.
The circuit complexity of a unitary operator consists of the minimum number of
two-qubit gates needed to (approximately) construct the unitary. Formally, we can
use the following definition:

Definition 1.1.2. Given a unitary operator* ∈ * (2=) acting on =-qubits and a preci-
sion Y > 0, the circuit complexity of* to precision Y, CY (*) is the minimum number
of 2-qubit gates from the generating set {�, %,)> 5 5 >;8} needed to approximate*
to entry-wise precision Y. Similarly, for an =-qubit quantum state |k〉, we define
the circuit complexity of |k〉 to precision Y, CY (|k〉), to be the minimum number of
2-qubit gates from the generating set {�, %,)> 5 5 >;8} needed to build a quantum
circuit on < > = qubits such that when applied to |0〉⊗< we obtain a state d such that
‖d − |k〉〈k | ⊗ |0<−=〉〈0<−= |‖tr 6 Y.

Large circuit complexity is a general feature of unitary operators. Indeed a simple
counting argument shows that most unitaries on = qubits will have circuit complexity
which grows as $ (2=) [2]. Moreover in Ref. [17] it was shown that most quantum
circuits with < gates have circuit complexity Ω(<1/11). It is much harder to prove
circuit complexity lower bounds for the evolution of a fixed Hamiltonian (or even for
the application of a fixed unitary many times). In fact proving a superpolynomial
lower bound on circuit complexity for exponentially long times in the system size
= would result in a major breakthrough in classical complexity theory (as shown
in Ref. [2], it would imply that the computational complexity class PSPACE is not
contained in the class BQP/poly, a conclusion which appears to be far beyond the
reach of current proof techniques in theoretical computer science).

It turns out that the concept of universality naturally connects with circuit complexity.
If one aims to find a unitary whose dynamics has large circuit complexity, it would be
natural to consider one whose time evolution is universal, capable of simulating any
other evolution (with a reasonable overhead). Indeed, from the result of Ref. [17], it

4

Figure 1.1: A cartoon depiction of a non-traversal AdS wormhole whose boundary consists of a pair
of conformal field theories which share the state |)�((C)〉.

directly follows that the circuit complexity of the unitary evolution of the Vollbrecht-
Cirac universal Hamiltonian [77] on = qubits, for large enough time, is Ω(poly(=)).
However it is not clear how to obtain larger lower bounds (i.e. superpolynomial in
=) for long times, e.g. exponential in =, using a physically reasonable Hamiltonian,
even under reasonable computational complexity assumptions. We state this as a
formal problem that we address in this work.

Problem 1.1.3. Does there exist a local, time-independent and translation-invariant
Hamiltonian on = local quantum systems of a fixed dimension whose time evolution
can grow to have circuit complexity Ω(2=)?

This is a natural problem to consider on its own (e.g. it was considered in Ref. [11]
under the name of "fast-forwarding" and connected to the time-energy uncertainty
relation), but it has recently gained a renewed interest due to a possible unexpected
application in the context of quantum gravity and holography, which we now briefly
review.

Holography and Susskind’s Conjecture
The AdS/CFT correspondence [69] posits the equivalence between a theory of quan-
tum gravity in Anti-de-Sitter (AdS) space (i.e. gravity with a negative cosmological
constant) with 3 + 1 dimensions (called the bulk theory) and a quantum conformal
field theory (CFT) with 3 dimensions (called the boundary theory). This idea
suggests that gravity is an emergent phenomenon (as it does not appear explicitly in
the CFT description) and has become one of the most influential ideas in physics
in the last twenty years. The correspondence is usually phrased as a dictionary
between properties of the two theories. A physical quantity in one theory should
have a partner in the other which behaves similarly. Yet there is one quantity of the
quantum gravity picture for which it is hard to find a suitable partner in the CFT
picture. This is the volume of a non-traversible wormhole (or Einstein-Rosen bridge)
in the AdS space connecting two boundary CFTs (see Figure 1.1). One can argue

5

Figure 1.2: This graph shows the time growth of a non-traversible wormhole in AdS space, which is
proposed to be the time growth of the circuit complexity of the thermofield double state of the dual
conformal field theories, CY (|)�((C)〉).

that the volume of the wormhole will grow linearly with time up to exponential time
(see Figure 1.2) [75]. But most of the traditionally considered physical properties
of the CFT (which usually involve only few-body operators) will equilibrate much
sooner (on the timescale of the scrambling time). One property of the CFT system
which does seem to have the same behaviour as the volume of the wormhole is
the circuit complexity of the joint quantum state 1 of the two CFTs associated with
the boundary of the wormhole. This state is given by the time evolution of the
so-called ‘thermofield double state’ (TDS), which at infinite temperature reduces to a
maximally entangled state of the two CFTs. Indeed, in analogy with the behavior of
the wormhole volume, we expect the circuit complexity of the state to grow linearly
with time up to exponential in the size of the system, at which point it has to saturate
(see Figure 1.2). Then at recursion times (which are doubly exponential in system
size) the circuit complexity will have sharp oscillations before stabilizing again at
an exponentially large value. Such a connection prompted Susskind to conjecture
that the circuit complexity of the CFT state is the dual property of the volume of the
wormhole. Although fascinating, Susskind’s proposal is still somewhat speculative;
it is an interesting and challenging task to make it more concrete. Progress was made
by Aaronson and Susskind [3]. They considered a toy model of the problem for which
concrete results about the circuit complexity could be established. Let + describe
one discrete step of the time evolution of the CFT. The CFT thermofield double state
(at infinite temperature and regularizing the theory to have finite dimension #) after
C time steps is given by

|TDS(C)〉 : =
1
√
#

∑
8

+ C |8〉CFT, 1 ⊗ (+))C |8〉CFT, 2 (1.1.1)

=
1
√
#

∑
8

|8〉CFT, 1 ⊗ *C |8〉CFT, 2 (1.1.2)

1Analogously to the circuit complexity of a unitary, the circuit complexity of a state is the
minimum number of two-qubit gates (from a given universal set of gates) needed to (approximately)
create the state.

6

with * = (+))2, where +) is the transpose of + . For Susskind’s correspondence
to hold, we need the circuit complexity of |TDS(C)〉 to grow linearly in time up to
an exponential value in the system size log # . Aaronson and Susskind abstracted
away the fact that * is associated to the dynamics of a CFT and asked if there
is any (efficiently implementable) unitary * for which one can show that the
corresponding |TDS(C)〉 has complexity growing up to exponential with the number
of applications C. They proved that choosing * as a step function of a reversible
and computationally-universal cellular automaton achieves the goal (under certain
computational complexity assumptions). A natural open question is whether one
can prove something similar for the evolution of the CFT. Short of that, can we get
closer to this goal? Can we find a local Hamiltonian whose evolution can replace the
step function of the cellular automaton in the Aaronson-Susskind reasoning? This
motivates the following more difficult variation of Problem 3:

Problem 1.1.4. Can we find a local, time-independent, translation-invariant Hamil-
tonian whose time evolution generates a circuit complexity whose growth mimics
that of the volume of a non-traversible AdS wormhole? That is, can we come up
with an � such that a single time step, * = 48� , when applied C times, generates a
unitary*C whose circuit complexity CY (*C) grows linearly with C until it saturates at
exponentially long times C = $ (2=)?

1.2 Main Results
In this paper we consider universality for fixed Hamiltonians up to exponential
times. All Hamiltonians will be normalized to have ‖�‖ = 1. Our desired notion of
universality is captured by the following definition 2:

Definition 1.2.1. A family of Hamiltonians {�<}<∈N, indexed by the number of
qudits < they act on, is called a Universal Hamiltonian Family if for any :-local
Hamiltonian � ∈ B(C2=) on = qubits (with : 6 $ (log(=))) and time C, there are
poly(=)-sized quantum circuits � and � , < = poly(=, log C), and C′ = poly(C, =) such
that

‖48�C − (�⊗= ⊗ 〈0<−= |)�48�<C ′� (�⊗= ⊗ |0<−=〉)‖ < 1/poly(=). (1.2.1)

Previous results [72, 77] achieved a weaker notion of universality. In the notation
of Definition 1.2.1, the size < of the Hamiltonians in Refs. [72, 77] scales as
< = poly(=, C), which prevents efficient simulation for exponentially long times
because it would require preparing an exponentially large state encoding the dynamics.
So, in other words, our construction allows exponentially long simulation time using
only polynomial space and without requiring any active control or intervention
during the simulation. Note also that this notion of universality is incomparable to

2This definition was suggested to us by Dorit Aharonov [4].

7

Figure 1.3: Schematic of our simulator. The input is a particular starting state |k(0)〉 from a Hilbert
spaceH upon which the Hamiltonian � which we wish to simulate acts. After decoding, we obtain
the desired time-evolved state |k(C)〉 = 48�C |k(0)〉.

the notion considered in [35]. Rather than reproducing a large class of properties
of the system being simulated (e.g. spectrum of Hamiltonian, etc.) our simulation
scheme only simulates the dynamics and is weaker in that sense. See Figure 1.3.
However, our simulation faithfully simulates dynamics for times up to exponentially
large in the system size, whereas the construction of Ref. [35] can not, and is in
that sense stronger. Although Definition 1.2.1 is natural when discussing universal
Hamiltonians, we can also consider the following stronger definition, which will be
useful to us:

Definition 1.2.2. A family of Hamiltonians {�<}<∈N, indexed by the number of
qudits < they act on, is called a Circuit Universal Hamiltonian Family if for every
poly(=)-sized circuit * on = qubits and time C, there are poly(=)-sized quantum
circuits � (for encoding) and � (for decoding),< = poly(=, log C), and C′ = poly(C, =)
such that

‖*C − (�⊗= ⊗ 〈0<−= |)�48�<C ′� (�⊗= ⊗ |0<−=〉)‖ < 1/poly(=). (1.2.2)

From the Hamiltonian simulation results of Ref. [16], it follows that a Circuit
Universal Hamiltonian Family is also a Universal Hamiltonian Family. Our main
result is the following:

Theorem 1.2.3. There is a Circuit Universal Hamiltonian Family in one spatial
dimension with translation-invariance and local spin dimension of 14580. The
encoding circuit consists of preparing computational basis product states. The
decoding circuit consists of making a measurement in the computational basis and
resetting computational basis product states to the all zero state.

It is an open question to decrease the local dimension of the model; we expect
substantial improvements to be possible. In words, we explicitly construct a local
term ℎ;,;+1 acting on two qudits, each of dimension 14580, such that the family of
Hamiltonians

�< =
1
<

<−1∑
;=1

ℎ;,;+1 (1.2.3)

8

is universal in the sense of Definition 1.2.2.

Theorem 1.2.3 can be used to argue that the circuit complexity of 48�<C must grow to
a superpolynomial value. The starting point is the result of Atia and Aharonov that
unless PSPACE = BQP, there must exist a 2-sparse row computable Hamiltonian
whose long-time dynamics has superpolynomial circuit complexity (see Theorem 6
of Ref. [11]). This result together with Theorem 1.2.3 gives:

Corollary 1.2.4. Unless PSPACE = BQP, the circuit complexity of 48C�< is super-
polynomial for C = 2$ (<) .

An interesting feature of Corollary 1.2.4 is that we can identify a single Hamiltonian
– more precisely a fixed interaction term forming a translation-invariant model for
each length – which can be shown to have growing circuit complexity (under certain
computational complexity assumptions).

We can also make progress on Susskind proposal discussed before. Define

|TDS�< (C)〉 :=
1
√
#

∑
8

|8〉 ⊗ 48C�< |8〉. (1.2.4)

Then we have:

Corollary 1.2.5. Assuming PSPACE ⊂ PP/poly, the circuit complexity of
|TDS�< (C)〉 is superpolynomial for C = 2$ (<) . Assuming that there are no subex-
ponential PP circuits for PSPACE, the circuit complexity of 48C�< for C = 2$ (<) is
2Ω(<) .

The proof follows directly from Theorem 7.1.2 of Ref. [2], by using �< to simulate
the step function of the universal cellular automaton used there. The corollary makes
partial progress on Susskind’s proposal, by finding a quantum evolution which shares
more features with the dynamics of a CFT (locality and translation-invariance) than
the cellular automaton of Ref. [3]. We leave as open questions demonstrations
that our construction can replicate important features and symmetries expected of a
CFT Hamiltonian, and whether or not it can be used to create a state whose circuit
complexity actually grows linearly in C from C = 0 up to exponential times (under
plausible complexity theoretic assumptions).

Sketch of Construction
The construction of our circuit universal Hamiltonian family (CUHF) that proves
Theorem 1.2.3 makes use of the concept of a Hamiltonian Quantum Cellular
Automaton (HQCA), as described by Nagaj and Wocjan in [72]. The formal
definition of an HQCA is as follows:

9

Definition 1.2.6. A Hamiltonian Quantum Cellular Automaton (HQCA) is a local,
time-independent, translation-invariant Hamiltonian � on a lattice of qudits which
carries out quantum computation via the following sequence of steps:

1. The input of the computation as well as information describing the computation
to be performed (which is described by some unitary operator*) is encoded
in the state of the qudits.

2. The qudits undergo continuous time evolution under � for some time C.

3. A simple basis state measurement on a subset of the qudits collapses, with
high probability, the state of the whole system to one where an appropriate
subset of the qudits contains the desired output of the quantum computation.

Such a Hamiltonian � is termed a cellular automaton because the local terms which
sum up to make � can usually be thought of as transitions between different basis
states for a local part of the lattice, which themselves correspond to reversible
transition rules of some classical cellular automaton. This will be evident in the
description of our construction.

Our CUHF {�<}<∈N will actually be a family of universal HQCA on a 1� chain of
< qudits, which satisfy the following properties in addition to those in the definition
above:

• The local qudit dimension is constant.

• A quantum circuit* with � gates acting on # qubits can be applied C times
through time evolution via Hamiltonian�< on a chain of< = poly(#,�, log C)
qudits.

The starting point of our construction is that of Nagaj and Wocjan [72], which
produces a 1� CUHF with constant local qudit dimension 3 = 20, for which the size
of the chain scales as < = poly(#,�). A version of this construction is described in
detail in section 1.3, where we also identify and highlight some important features of
their construction that are essential to preserve in our eventual final construction 3.

We build an HQCA which only encodes * into the input state and a number C
encoded in binary, but which is able to apply* repeatedly up to C times after waiting
for a time C′ = poly(#,�, C) [1]. Therefore the size of the system needed for the
simulation is only < = poly(#, log C). In the following sections, we proceed to
augment Nagaj-Wocjan construction [72] step by step to add in more functionality
until we achieve the desired < = poly(#, log C) scaling for the simulation size.

3E.g., the definition and consequences of having a uniquely orthogonally generated set of states
for an HQCA, see section 1.3

10

The innovationswhich allow us to obtain our final construction dictate the organization
of the remainder of the paper:

1. The Nagaj-Wocjan construction can only apply its encoded unitary * once.
So, first, we modify the Nagaj-Wocjan construction so that when the HQCA
reaches its end state where* has been applied, it can undergo transitions to
‘reset’ itself and allow for another application of* without undoing the original
application of*. This basically has the effect of allowing the Nagaj-Wocjan
construction to run over and over again rather than just once. This is described
in Section 1.4.

2. Next, we augment the construction to include a binary clock in the qudit
chain which counts the number of times that* has been applied. This allows
states of the chain with different numbers of* applications to be orthogonal
so that they can be distinguished by a simple measurement. Binary clock
constructions of a similar nature also appear in [8, 34, 51], in the context
of proving hardness/uncomputability results for the ground-energy/gap of
translation-invariant models. This is described in Section 1.5.

3. Finally, we augment the construction with the addition of a target register that
allows one to specify a certain desired number of applications of* which is
stored in the start state. Once the clock has counted this number of applications
of *, the HQCA continues evolving forward in time similarly to the way in
which it did before, but it no longer makes any applications of* to the qubits.
This allows one to have complete control over how many times* is applied
to the qubits, and is crucial to being able to guarantee that after waiting a
reasonable amount of time, performing a simple measurement on a subset of
the chain is likely to yield a state with the desired number of applications of*.
This is described in Section 1.6.

The main challenge in achieving each of these results was to carefully engineer
transition rules such that starting from the appropriate start state, for every state that
can be obtained from the start state through application of transition rules, exactly
one forward transition rule and one reverse transition rule is applicable to that state.
This guarantees that the sequence of states obtained from the start state through
application of the HQCA transition rules can map directly onto position eigenstates
of a single particle on a chain, so that the analysis of the time evolution under the
HQCA reduces to that of a single particle continuous-time quantum walk on a line
(see Sections 1.3 and 1.6).

1.3 Construction I: Applying* Once
We begin with the modest goal of applying * to our qubits once (G = 1) using the
time evolution of a simple time-independent and translation-invariant Hamiltonian,

11

where the sequence of gates that implements* is stored in the start state of the qudit
chain that we embed our qubits into for the simulation. The construction described
in this section only differs from the 3 = 20 HQCA construction of Nagaj and Wocjan
[72] in notation (and only slightly at that). We do, however, formalize and elaborate
on some of the essential ideas underlying the success and utility of their construction
which will be important in subsequent sections when we expand their construction,
the most important of which being the definition of what it means for a sequences of
quantum states to be ‘uniquely orthogonally generated’ by a sequence of transition
rules of an HQCA (see Section 1.3). The construction described in this section will
be referred to as ‘construction I’ throughout the rest of the paper.

Gateset
The universal gate set we will use to describe a quantum circuit for* is G = {,, (, �}
where each gate acts on a local pair of left and right qubits and

• , is a controlled rotation by c/2 about the H-axis of the Bloch sphere (where
the left qubit always controls the right)

• (is the two-qubit swap gate

• � is shorthand for the two-qubit identity gate � ⊗ �.

We note that because all of these gates leave the state |00〉 invariant, to use these
gates to simulate the application of an arbitrary* on a state of the form |0=〉, some
number of qubits in the |1〉 state must be provided in order to simulate gates that act
non-trivially on the |0〉 state. This overhead is polynomial in the number of gates
that* would have in a circuit using a more traditional gateset, so we ignore it and
assume that the state that our gates act on has the correct number of qubits in |1〉
states for the simulation to proceed.

For the convenience of the construction, the way that* breaks down into a sequence
of gates from G will be as follows: we write the unitary as a gate sequence from G
in the form

* = (* ,1 . . . * ,#−1)� � (* −1,1 . . . * −1,#−1)� � . . .
. . . � � (*1,1 . . . *1,#−1)� . (1.3.1)

Here we say that* is expressed as rounds of # − 1 gates from G. Note that the
use of the term ‘round’ of gates differs here from the usual usage. Normally, a round
of gates from some gate set is some tensor product of < 6 # single or two-qubit
gates with the property that each of the # qubits has exactly one gate acting on it
(identity counted as a gate). This allows the number of rounds making up* to count
the time complexity of applying the circuit. This is not true of our rounds. The gate

12

*:,< ∈ G is a two qubit gate acting on qubits < and < + 1. So, two successive gates
in a round,*:,< and*:,<+1 will possibly each act non-trivially on qubit < + 1. Thus,
the number of rounds, , in our circuit description of* will in general under-count
the depth or time complexity of applying* as written, but it will undercount at most
by a factor of # . The reason we write our circuit this way is for the convenience of
constructing our desired HQCA. For ease of discussion, we will use the term depth
of* to refer to the numbe of rounds, , in the above sense rather than the traditional
sense.

Notice also that in the above description, each round of gates is padded with an
additional � on either side, except for the final round which does not have an � on
the left side. The reason for this is that it makes the construction of our desired
HQCA more convenient, and will be explained below. With the above convention for
describing* in terms of G, a unitary* of depth acting on # qubits has a circuit
sequence of length (# + 1) − 1.

Hilbert Space
Here we describe the Hilbert space C of the 1D chain that our HQCA Hamiltonian
� will act on. We imagine our chain as consisting of two registers C = % ⊗ �,
each with ! local sites C9 = % 9 ⊗ � 9 , indexed from left to right. We will describe
orthonormal basis states for each local site Hilbert space in terms of symbols:

• The program register %, whose local sites are % 9 , stores the sequence of gates
that describe* and controls its application to the work qubits. The local hilbert
space is 10 dimensional, with basis symbols {,, (, �,−→,,−→(,−→� , J, C, � ,→}.
So, % = C10.

• The data register �, whose local sites � 9 are qubits described by computational
basis symbols {0, 1}, is simply a chain of qubits, # of which are the ‘work
qubits’ to which we want to apply the unitary*. So, � = C2.

The symbols in the basis states for % 9 have the following interpretation

• ,, (, � : representing unitary gates in the program sequence that will apply
U,

• −→,,−→(,−→� : marked characters in the program sequence, used to propagate the
active spot to the front (left) of the program sequence,

• J: apply gate symbol,

• C: shift program forward,

13

• →: a control symbol indicating that we’re in the process of shifting the program
sequence to the right,

• � : empty spot (before/after the program).

Theway these symbolswill interactwill become clearerwhen illustrating the transition
rules defined below. The length of the chain will be ! = (2 − 1) (# + 1) + 2 where
 is the number of rounds/depth of the circuit description of*, and # is the number
of qubits that* is being applied to. The # qubits which* is being applied to will
be referred to as the work qubits, and their location in the chain C will be the sites
� 9 of the data register with 9 = (− 1) (# + 1) + 1 + = for = = 1...# .

Initial State
The rest of the construction will be described with a simple illustrative example in
mind, where we are applying a = 2-round unitary * = ((12,23)� � (,12(23)� to
= 3 work qubits. Details regarding certain choices about the structure of the initial
statewill make sense after describing the transition rules and running through applying
them to this example initial state. This chain will have ! = 14, and the initial state
is written as a product state over the sites and registers: |k0〉 =

⊗14
9=1(|? 9 〉 ⊗ |3 9 〉)

where |? 9 〉 is the state of the 9 th site of the program register and |3 9 〉 is the state of
the 9 th site of the data register. The following table describes the initial state:

9 1 · · · · · · !

? 9 → (, � � , (� � � � � � �

3 9 1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0
(1.3.2)

Note the following about the structure of the initial state:

• The individual initial states of the work qubits have here been labelled F1, F2
and F3 to remind the reader where they are located.

• The work qubits are bordered by data qubits in the 1 state on either side

• The work qubits are further padded to the left by the sequence 10# − 1 times,
and to the right by the sequence 0#1 − 1 times

• The final data qubit is in the state 0

The reason for this structure will become clearer in the description and application
of the transition rules to this example, and will be commented upon further below.

14

Transition Rules
We now describe the forward transition rules of our HQCA. Application of these
forward transition rules to our initial state |k0〉 will create a sequence of)� + 1
mutually orthogonal states |kC〉)�C=0. Note that)� is a function of # and . The
transition rules are deliberately constructed such that for each |kC〉, there is always
one single unique forward transition rule that can be applied to it, which results in
the state |kC+1〉. For every forward transition rule there is a unique reverse transition
rule (the Hermitian conjugate of the forward transition rule), and for each |kC〉, there
is always one single unique reverse transition rule that can be applied to it, which
results in |kC−1〉. No reverse transition rule will be applicable to |k0〉, and no forward
transition rule will be applicable to |k)� 〉.

The transition rules are summarised as follows:

1 : → � → �
−→
� (1.3.3)

2 : −→
� � → �

−→
� (1.3.4)

3 : −→
� � → � → (1.3.5)

40 : → �

1 → J �

1

41 : → �

0 → C �

0

(1.3.6)

50 : � J

k 9 , 9+1
→ J �

�(k 9 , 9+1)

51 : � C → C �

(1.3.7)

60 : � J

1 → � →
1

61 : � C

0 → � →
0

(1.3.8)

Here, �, � ∈ G, and k 9 , 9+1 refers to the state of qubits 9 and 9 + 1 and �(k 9 , 9+1)
refers to the gate � applied to the state of qubits 9 and 9 + 1. We will name this set
of forward transition rules F�

15

Active Site
A subset of the basis states for % 9 whose symbols contain directional arrows of some
form, A� = {→,

−→
,,
−→
� ,
−→
(, J, C}, are called active symbols. By construction, the

initial state and all states resulting from applying a sequence of transition rules to
the initial state will always contain exactly one active symbol, the site at which it
is located being referred to as the active site of the chain. All transition rules for
the HQCA involve the propagation of the active site to a neighbouring site and/or
transforming one active symbol into another. This feature will be helpful in analysing
the construction below.

Illustration
Now we illustrate the use of these transition rules on our example initial state to
demonstrate features of the construction and how the HQCA evolves. We start with
initial state |k0〉 described by the table in equation 1.3.2:

|k0〉 =
[
→ (, � � , (� � � � � � �

1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0

]
, (1.3.9)

Applying the sequence of forward transition rules 1, 2 (6 times), and 3, we reach the
state,

|k8〉 =
[
� (, � � , (� → � � � � �

1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0

]
. (1.3.10)

At this point, transition rule 40 applies, turning the→ symbol into the gate application
symbol J, giving

|k9〉 =
[
� (, � � , (� J � � � � �

1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0

]
. (1.3.11)

Now, rule 50 is applied 3 times, which applies the first round of gates to the work
qubits:

|k12〉 =
[
� (, � � J , (� � � � � �

1 0 0 0 1 (23 (,12 (F1F2F3)) 1 0 0 0 1 0

]
. (1.3.12)

Applying rule 50 four more times will have propagated the active site as far back to
the left as it can go, giving

|k16〉 =
[
� J (, � � , (� � � � � �

1 0 0 0 1 (23 (,12 (F1F2F3)) 1 0 0 0 1 0

]
, (1.3.13)

and applying rule 60 yields

|k17〉 =
[
� → (, � � , (� � � � � �

1 0 0 0 1 (23 (,12 (F1F2F3)) 1 0 0 0 1 0

]
. (1.3.14)

16

So, we see that applying this unique sequence of 17 forward transitions has moved
the active site→ from the far left of the gate sequence over the to the far right of
the gate sequence (equation 1.3.10), converted the active symbol→ into the active
symbol J which is the gate applying symbol (equation 1.3.11), which then moved
back to the left applying gates to the qubits below, shifting the gate sequence a single
site to the right as it went (equations 1.3.12, 1.3.13 and 1.3.14). We will refer to this
single back and forth movement of the active site as a right-moving oscillation of
the active site. The halfway point of an oscillation, just before the→ symbol turns
around to move left as J (as illustrated in equation 1.3.10) is called the turning point
of the oscillation.

From the above illustration of the first oscillation, one can now see that applying this
same sequence of 17 forward transitions over and over again will simply generate
further right moving oscillations of the active site that proceed nearly identically,
shifting the entire gate sequence one space to the right with each completed oscillation,
until the entire gate sequence has been shifted all the way to the right. For example,
after the second right-moving oscillation, the state of the chain will be

|k34〉 =
[
� � → (, � � , (� � � � �

1 0 0 0 1 (23 (,12 (F1F2F3)) 1 0 0 0 1 0

]
, (1.3.15)

and after the third oscillation,

|k51〉 =
[
� � � → (, � � , (� � � �

1 0 0 0 1 (23 (,12 (F1F2F3)) 1 0 0 0 1 0

]
, (1.3.16)

after the fourth,

|k68〉 =
[
� � � � → (, � � , (� � �

1 0 0 0 1 (23 (,12 (F1F2F3)) 1 0 0 0 1 0

]
, (1.3.17)

and finally after the fifth,

|k85〉 =
[
� � � � � → (, � � , (� �

1 0 0 0 1 * (F1F2F3) 1 0 0 0 1 0

]
. (1.3.18)

Note that the first round of gates was applied to the work qubits during the first
oscillation, no gates were applied during oscillations 2, 3, or 4, and the second round
of gates was applied during the fifth oscillation, completing the application of the
desired*. Whether or not a particular oscillation will apply gates to the data qubits
in the second half of the oscillation depends on whether or not there is a 1 or 0 in the
data qubit below the active symbol when it reaches the far right of the oscillation.
We can see in equations 1.3.10 and 1.3.11, the active symbol→ becomes an apply
gate symbol J because there is a 1 in the data register of the active site at the turning
point. If there were a zero instead, which is true at the turning points of the next
three oscillations,→ would turn into C and no gates would be applied in the second
half of the oscillation. This is good because the second round of gates is not yet

17

aligned with the work qubits (see equations 1.3.14, 1.3.15 and 1.3.16), and we do
not want to be applying any gates until this alignment is achieved.

So, we see that the pattern of ones and zeros in the data qubits to the right of the
work qubits is simply chosen so that transition rules 4a and 4b can properly enforce
that gates are only applied for the first in every # + 1 oscillations, which is precisely
when rounds of gates will properly be aligned to the work qubits that they will be
applied to. The pattern of the data qubits to the left of the work qubits mirrors that on
the right so that transition rules 6a and 6b can properly convert J or C back into→
at the end of the oscillation. Finally, note also that whenever we begin an oscillation
that applies gates, rounds of gates that are not being applied during that round are
aligned so that they are always applied to |00〉 qubit states, on which the (and,
gates both act trivially. So, we see that the states on the non-work qubits in the data
register remain invariant under the application of our HQCA transition rules.

Finally, after one more half oscillation (8 steps) we reach a state |k93〉 to which no
forward transition rules apply:

|k93〉 =
[
� � � � � � (, � � , (� →

1 0 0 0 1 * (F1F2F3) 1 0 0 0 1 0

]
. (1.3.19)

General Case
Now that we understand the construction via the above worked example, we can make
some statements about the general case where we are applying a depth- unitary to #
work qubits. In general, if we want to apply depth- unitary in the form of equation
1.3.1 to # qubits, we initialize the state of the length ! = (2 − 1) (# + 1) + 2 chain
of 3 = 20 qudits as follows:

• Program register %: %1 =→, %2...% (#+1) =

(* ,1 . . . * ,#−1)� � (* −1,1 . . . * −1,#−1)� � · · · � � (*1,1 . . . *1,#−1)�,
% 9> (#+1) = �

• Data register �: �1...� (−1) (#+1)+1 = (1(0)#) −11,
� (−1) (#+1)+2...� (−1) (#+1)+1+# = 0# (these are the work qubits),
� (−1) (#+1)+1+#+1...�!=(2 −1) (#+1)+2 = 1(0#1) −10

Consider an instance of construction I with a -depth unitary being applied to #
work qubits. A single full right-moving oscillation will be achieved through the
application of 2 (# + 1) + 1 forward transitions: Rule 1 once and then rule 2
 (# + 1) − 2 times, and then rule 3 once completes the first half of the oscillation
where the active symbol moves all the way to the right and gets to the turning point.
Then applying rule 40/1 once prepares us for the second half of the oscillation where
the active site moves all the way back to the left which is accomplished by applying
rule 50/1 (# + 1) − 1 times and then applying 60/1 once to prepare the active site

18

to begin the next oscillation. The first half of a right-moving oscillation is (# + 1)
steps and the second half is (# + 1) + 1 steps. The final state is reached after
(− 1) + full oscillations and one half oscillation (of (# + 1) steps). So, the
total number of forward transitions needed to reach the end state from the start state
is)� = 2#2 2 − 2#2 + 4# 2 − # + 2 2 + 2 .

Note that at each step of the sequence of forward transition moves applied on a proper
start state |k0〉, there is only ever exactly one forward transition that can be applied
(unless you have reached the end state |k)� 〉). This is, essentially, due to the fact that
the start state has a single active symbol, and the transition rules were specifically
designed to move and transform the active symbol in a prescribed way.

Nagaj and Wocjan [72] show that by time evolving the appropriate initial state |k0〉
encoding the desired unitary under Hamiltonian �� for time polynomial in and # ,
a simple measurement on a subset of the chain will collapse the state of the work
qubits to* |0#〉 with high probability. We defer any run-time analysis to the end of
the paper where we will present the run-time analysis for our full construction which
is based on this one.

Hamiltonian and Hilbert Space Geometry
Let us choose a Hamiltonian �� for this system as a sum of translationally invariant
terms:

�� = −
1

61!

!−1∑
8=1

61∑
:=1

(
%: + %†:

)
(8,8+1)

(1.3.20)

where the terms %: 8,8+1 correspond to the rules 1-6b and act on two neighboring
qudits as

%18,8+1 =
∑

�∈{,,(,�}
| � −→�〉〈→ � |?8 ,?8+1 ⊗ I38 ,38+1 , (1.3.21)

%28,8+1 =
∑

�,�∈{,,(,�}
| �−→� 〉〈−→� � |?8 ,?8+1 ⊗ I38 ,38+1 , (1.3.22)

%38,8+1 =
∑

�∈{,,(,�}
| � →〉〈−→� � |?8 ,?8+1 ⊗ I38 ,38+1 , (1.3.23)

%408,8+1 = | J � 〉〈→ � |?8 ,?8+1 ⊗ |1〉〈1|38 ⊗ I38+1 , (1.3.24)
%418,8+1 = | C � 〉〈→ � |?8 ,?8+1 ⊗ |0〉〈0|38 ⊗ I38+1 , (1.3.25)
%508,8+1 =

∑
�∈{,,(,�}

| J � 〉〈 � J |?8 ,?8+1 ⊗ �38 ,38+1 , (1.3.26)

%518,8+1 =
∑

�∈{,,(,�}
| C � 〉〈 � C |?8 ,?8+1 ⊗ I38 ,38+1 , (1.3.27)

%608,8+1 = | � →〉〈 � J |?8 ,?8+1 ⊗ I38 ⊗ |1〉〈1|38+1 , (1.3.28)

19

%618,8+1 = | � →〉〈 � C |?8 ,?8+1 ⊗ I38 ⊗ |0〉〈0|38+1 . (1.3.29)

Each local term in the sum making up �, when acting on a basis state of C,
either changes the state by implementing the corresponding HQCA forward/reverse
transition rule or annihilates it if the rule can not be applied to that state. The
following definition will be essential for further understanding and analyzing the
time evolution generated by this Hamiltonian and those based on it later in the paper:

Definition 1.3.1. Consider the Hilbert space of states C of any HQCA described
in this paper. A sequence of) + 1 states from C, {|kC〉})C=0, is called Uniquely
Orthogonally Generated (UOG) by sequence of forward transition rules of the
HQCA, S (which has length)), if the two following conditions are satisfied:

1. The states {|kC〉})C=0 are each a product state over all sites and registers aside
from the work qubits, and are mutually orthogonal (thus the states differ in at
least one site of the chain)

2. For each state |kC<) 〉, there is exactly one forward transition rule that can be
applied to the state, and the application of this rule yields the state |kC+1〉

It is clear from the illustration of a single right-moving oscillation as in the example
above that the sequence of intermediate states of the chain throughout a right-moving
oscillation is UOG by the sequence of transitions described above.

We will name the unique sequence of forward transitions that takes the initial state of
the chain, |k0〉, to the final state |k)� 〉 T� ∈ F

)�
�
. This sequence {|kC〉})�C=0 is UOG by

T� . This is easily seen from the fact that for each individual right-moving oscillation,
the set of transitions that implements it is unique, and for each successive oscillation
the sets of intermediate states are orthogonal to those of all other oscillations because
the program sequence starts at a different position in each oscillation. Thus, every
state in the sequence {|kC〉})�C=0 is orthonormal to all others in the sequence. Further,
for each state in {|kC〉})�C=0, only one forward transition can be applied at each step
because this was true of the individual right-moving oscillations. Thus {|kC〉})�C=0 is
UOG by T� .

Now we can see the benefit of the UOG property. The fact that the sequence of states
{|kC〉})�C=0 is UOG by T� allows one to be able to think of the set of states |kC〉 as the
set of positions of a particle on a line, so �� becomes

��,;8=4 = −
)−1∑
C=0

(
|C〉〈C + 1| + |C + 1〉〈C |

)
. (1.3.30)

This is the Hamiltonian of a (continuous-time) quantum walk on a line of length
)� + 1. Therefore, the HQCA Hamiltonian �� induces a continuous quantum walk

20

on the “line” of states {|kC〉})�C=0 of the qudit chain of length !. Note that starting
from an appropriately defined start state |k0〉, the outcome of any time evolution
under �� is restricted to the subspace of states spanned by {|kC〉})�C=0.

Summary and Conclusions

• Given a depth unitary on # qubits, we can create a simple initial state |k0〉
on a qudit chain of length ! = (2 − 1) (# + 1) + 2 whose local site dimension
is 3 = 20 (itself factorizing locally into a qubit and a 3 = 10 qudit) which
encodes the desired unitary

• The forward transition rules and their reverse versions define the Hamiltonian
�� which encodes an HQCA

• Starting from |k0〉 and applying only forward transition rules, one obtains a
unique sequence of mutually orthogonal states {|kC〉})�−1

C=0 . For each |kC〉, there
is only ever exactly one forward transition rule that can be applied, from which
one obtains |kC+1〉

• The continuous time evolution of |k0〉 under �� can be mapped to a simple
1D quantum walk of a single particle on a chain of length)� + 1

• The state |k)� 〉 has the desirable feature that it is a product state among all
sites and registers except for the work qubits, and the work qubits have had the
desired unitary applied to them. No forward transition rule applies to |k)� 〉.

• One can do a simple computational basis measurement on the program register
to see if the program sequence has moved far enough to the right for* to have
been applied to the qubits

1.4 Construction II - Applying* More Than Once
What is needed in order to apply * more than once? In the construction that has
been made so far, we see that after applying* once to the state of the work qubits,
the state of the HQCA reaches a state for which no forward transition rules can be
applied. In the language of the quantum walk, the particle has reached the end of
the line, so all it can do is turn around and walk the other way, which would undo
the application of * to the work qubits. So under arbitrarily long time evolution
* will never be applied to the work qubits more than once. To apply * twice, we
would desire to be in a state like the start state in Eq. (1.3.9) except with* already
applied to the work qubits. So, if there were some way of taking the end state in Eq.
(1.3.19) and then somehow move the program sequence back to its starting position
without undoing the application of* to the work qubits, then we could apply forward
transition rules to apply * again. Here, we modify the construction to allow this.
We proceed by adding a new set of local basis states to the program register Hilbert

21

states and transition rules that will allow the program sequence to reset itself without
undoing the application of *. We will refer to the construction described in this
section as ‘construction II’.

Hilbert Space
The following changes are made to the local program register Hilbert space: we add
the new basis states represented by symbols {←−,,←−(,←−� , B,←, 	 }. The length of
the chain is increased by two sites.

Initial State
We must now define a new initial state to account for the fact that we have added two
new sites. We will illustrate with the same example* being applied to three work
qubits. The example initial state for our new construction will be

|k0〉 =
[
	 → (, � � , (� � � � � � � 	

0 1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0 0

]
. (1.4.1)

The rules for constructing this state are identical to those for the base construction
except the two ends of the chain have extra sites added with the program register in
state 	 and data register in state 0.

Transition Rules
We add the following new forward transition rules:

7 : � ← → ←−
� � (1.4.2)

8 : �
←−
� → ←−

� � (1.4.3)

9 : �
←−
� → ← � (1.4.4)

10 : � ← → � B (1.4.5)

11 : B � → � B (1.4.6)

12 : B � → ← � (1.4.7)

130 : → 	 → ← 	

131 : 	 ← → 	 →
(1.4.8)

The forward transition rules 6-12 are designed to mimic the reverse versions of rules
1-6 using the newly introduced basis symbols. Rule 13 shows conversions between
the→ and← symbols via the 	 symbol, called the turn symbol.

22

Illustration
We now show how the additions made to our construction allow us to repeatedly
apply* multiple times. Starting with our new start state

|k0〉 =
[
	 → (, � � , (� � � � � � � 	

0 1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0 0

]
, (1.4.9)

the same sequence of forward transitions T� that took Eq. (1.3.9) to Eq. (1.3.19)
yields

|k)� 〉 =
[
	 � � � � � � (, � � , (� → 	

0 1 0 0 0 1 * (F1F2F3) 1 0 0 0 1 0 0

]
. (1.4.10)

Now, whereas in the previous construction, no forward transition rule could apply to
|k)� 〉, here there is one forward transition rule that applies to |k)� 〉: rule 130, which
brings us to state |k)�+1〉:

|k)�+1〉 =
[
	 � � � � � � (, � � , (� ← 	

0 1 0 0 0 1 * (F1F2F3) 1 0 0 0 1 0 0

]
. (1.4.11)

Now from state |k)�+1〉 there is a unique set of)� forward transitions through mutually
orthogonal states that brings us to state |k2)�+1〉

|k2)�+1〉 =
[
	 ← (, � � , (� � � � � � � 	

0 1 0 0 0 1 * (F1F2F3) 1 0 0 0 1 0 0

]
. (1.4.12)

The set of transitions T ′
�
that does this is chosen from rules 7-12. Note that each rule

7-12 is similar to the reverse of one of the rules 1-6. To obtain the set of forward
transitions that takes |k)�+1〉 → |k2)�+1〉, take the set of forward transitions that took
|k0〉 → |k)� 〉, T� , reverse it, and replace each transition from 1-6 with its partner
from 7-12. Basically, this is undoing everything that happened in the transitions
that took |k0〉 → |k)� 〉 but not undoing the application of gates to the work qubits,
because there are no apply gate symbols in the transitions 7-12. It is clear, then
that the sequence of states

{
|k)�+1+C〉

})�
C=0 is UOG by T ′

�
for the same reason that

{|kC〉})�C=0 is UOG by T� . From state |k2)�+1〉, there is only one forward transition
rule that applies: 131, which brings us to

|k2)�+2〉 =
[
	 → (, � � , (� � � � � � � 	

0 1 0 0 0 1 * (F1F2F3) 1 0 0 0 1 0 0

]
. (1.4.13)

Now, we see that the state is identical in structure to the initial state |k0〉, but* has
already been applied to the work qubits. So, applying the same set of transitions that
took |k0〉 → |k2)�+2〉, we should get

|k4)�+4〉 =
[
	 → (, � � , (� � � � � � � 	

0 1 0 0 0 1 *2 (F1F2F3) 1 0 0 0 1 0 0

]
. (1.4.14)

This set of forward transitions can be able to be applied over and over again, which
will apply * to the work qubits again and again. That is, applying this set of
transitions G times should yield the state

|kG(2)�+2)〉 =
[
	 → (, � � , (� � � � � � � 	

0 1 0 0 0 1 *G (F1F2F3) 1 0 0 0 1 0 0

]
. (1.4.15)

23

Active Site
In the sequence T ′

�
which resets the gate sequence, the sequence of right moving

oscillations that occurred from the sequence T� play out in reverse, but with the
active symbol pointing in the opposite direction this time. Seeing one of the symbols
A' = {→,

−→
,,
−→
� ,
−→
(, J, C} at the active site in a state indicates that the system is

in the process of applying right moving oscillations that shift the gate sequence to
the right, applying the gate sequence to the work qubits when appropriate as it goes,
whereas seeing one of the symbolsA! = {←,

←−
,,
←−
� ,
←−
(, B} indicates that the system

is in the process of applying left moving oscillations that shift the gate sequence to
the left and not applying any gates to the work qubits.

Conclusion: There is A Catch
We see that we have built a sequence of states {|kC〉})� �=2)�+2

C=0 , for which each
state has a unique forward transition described by the sequence of transitions
T� � = {T� , 130,T ′

�
, 131}, and for which |k)� � 〉 is identical to |k0〉 except that* has

been applied to the work qubits. We see, then, that by applying the set of transitions
T� � repeatedly, the work qubits have* applied to them repeatedly.

The above conclusion would tempt one to say that by building a new Hamiltonian
�� � analogous to �� but with the new additional transition rules, we again have a
system whose time evolution is analogous to a 1D single particle quantum walk
where the farther the particle walks from the starting point of the chain |k0〉, the
more times* will be applied to the work qubits. This, however, is incorrect. For the
states {|kC〉}G)� �C=0 to map to adjacent position eigenstates of a particle on a chain to,
the states must be UOG by T G

� �
. However, they are not. The only difference in state

|kC〉 and state |kC+:)� � 〉 is the number of times that* has been applied to the work
qubits. For any quantum state |q〉, |q〉 and*: |q〉 will not generally be orthogonal.

As a result, if we time evolve the state |k0〉 with �� � , states that have* applied to the
work qubits a different number of times can interfere with each other, and can not be
distinguished by a simple measurement. There is no clear way to do a measurement
to collapse the time evolved state into one where* has been applied a certain number
of times. We will remedy this problem by further augmenting our construction to
include a binary clock that ‘counts’ the number of times that* has been applied and
orthogonalizes the states which have had* applied a different number of times.

1.5 Construction III: Binary Clock Construction
We would like to modify Construction II so that by applying forward transition
rules, all of the uniquely obtained states of the chain at each step, |kC〉, are mutually
orthogonal, and as a particular consequence, states of the chain where the work
qubits have had* applied a different number of times will be orthogonal, and can be
distinguished by doing a computational basis state measurement on a subset of the

24

chain that excludes the work qubits. We will accomplish this by further modifying
the construction in the previous section. First, we give an overview of how the clock
itself should work, then we describe how to implement its control and integration
into our existing construction, and then we will prove its correctness. Similar binary
clock constructions appear in [8, 34, 51].

Hilbert Space
The clock, itself, will consist of two registers/layers: the clock register (denoted �),
whose local sites � 9 are four dimensional with basis { � , -, 0, 1}, and the clock
pointer register (denoted �%), whose local sites �% 9 are five dimensional with basis
states { � , -, !, ', �}. So we add these two new registers to our system (� being
the third layer, �% being the fourth). We will also augment the program register’s
local Hilbert space basis to include the symbol�.

So, our complete local Hilbert space description is as follows: There are ! =

(2 − 1) (# + 1) + 4 local sites on the chain, each site 9 consisting of four different
local Hilbert spaces, one from each register:

• The program register’s local sites % 9 have basis {,, (, �,
−→
,,
−→
(,
−→
� , J, C, � ,→

, 	 ,
←−
� ,
←−
,,
←−
(, B,←,�}

• The data register’s local sites � 9 have basis {0, 1}

• The clock register’s local sites � 9 have basis { � , 0, 1}

• The clock pointer register’s local sites �% 9 have basis { � , -, !, ', �}

The total local site dimension is 16 × 2 × 3 × 5 = 480.

Initial State
The initial state for this augmented construction is as follows:

|k0〉 =


	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0 0
� 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� ' � � � � � � � � � � � � � �


, (1.5.1)

Here, the third layer is the clock register and the fourth and final layer is the clock
pointer register. Notice that the program register has a different initial configuration
than the previous two constructions: this time, the gate sequence starts shifted all the
way to the right, and the clock and clock pointers are specifically initialized so that
no reverse transition rule applies to the initial state. This will be illustrated below.

25

Clock Schematic and Update Algorithm
Here we describe a simple algorithm for updating a binary counter which will be
implemented in our HQCA transition rules. The idea is the following: The clock
register, consisting of ! sites, can store a binary number of up to ! − 1 digits long.
Numbers with = < ! significant digits will be stored in the = rightmost sites of the
clock register via the 0 and 1 states, and the remaining ! − = sites will all be in the
state 0 except for the first register which will always be � . Significant bits will
increase from right to left, so, for example, the binary representation of the number
6, in our clock, will look like � 0...00000110.

Given any binary number represented in this form, we can use the following schematic
algorithm for incrementing it by 1:

• A) Initialize a ‘pointer’ which starts sitting underneath the least significant bit.

• B) If the least significant bit is 0, change it to a 1, end

• C) If the least significant bit is 1, and the next bit is 0, update both bits 10→ 01,
end

• D) Otherwise, the first two bits are 11. In this case, move the pointer to the
left, bit by bit, until it encounters a 1 bit whose next most significant bit is a 0.
When it is found, update these two bits 01→ 10. Move the pointer back to the
right, bit by bit, flipping all of the less significant 1 bits to 0 as it passes, until
it is back under the least significant bit, end.

• E) If the number being incremented is � 11...1, then the pointer halts when it
reaches the most significant 1, as this number can not be incremented further.

In our construction, the �% register is where the pointer that scans through and
increments the clock registers will live. Generally, when the clock is not being
incremented, the �% register will be in the state � � ... � - . This indicates that the
‘pointer’ is underneath the least significant bit of the clock, and is inactive, - . The
� symbol underneath all of the other bits simply indicates the absence of the clock
pointer. When the clock pointer is scanning to the left, looking for a 1 bit whose next
most significant bit is a 0, it will be in state ! and will hop right past the � symbols
until it encounters this configuration in the clock register. Then it updates the clock
bits according to the algorithm above, the pointer in state ! transitions to a pointer in
state ', and will now start scanning back to the right, flipping the less significant 1
bits it encounters along the way to 0 bits. Once it reaches the least significant bit, the
clock pointer transitions to the � state to indicate that the clock update is complete,
and then back to the - state, in which it will stay until it is once again called upon to
increment the clock.

26

Transition Rules
Now we give the transition rules which implement the control of the clock as
described above. These rules include a modification to rule 13:

130 : → 	 → 	 � 131 : 	 ← → 	 → (1.5.2)

14 :

	 �

− −
− −
� -

→

	 	

− −
− −
� !

(1.5.3)

15 :

	 	

− −
− 0
� !

→

	 	

− −
− 1
� �

(1.5.4)

16 :

	 	

− −
0 1
� !

→

	 	

− −
1 0
� �

(1.5.5)

17 :

− −
− −
1 1
� !

→

− −
− −
1 1
! �

(1.5.6)

18 :

=>C 	 −
− −
0 1
� !

→

=>C 	 −
− −
1 0
� '

(1.5.7)

19 :

=>C 	 −
− −
0 1
' �

→

=>C 	 −
− −
0 0
� '

(1.5.8)

20 :

	 	

− −
0 1
' �

→

	 	

− −
0 0
� �

(1.5.9)

27

21 :

	 	

− −
− −
� �

→

← 	

− −
− −
� -

(1.5.10)

Active Site
In analyzing the correctness of the above transition rules for achieving our goals, it
will again be useful to make use of the concept of the active site and active symbol.
In our augmented construction, there will again only ever be exactly one active
symbol in the state, which will indicate the active site. But this time, the active
symbol can either be in the program register or the clock pointer register, depending
on whether or not the clock is being updated. The set of active symbols is now
the union of the active symbols for the % and �% registers: A = A% ∪ A�%, with
A% = {←,→,

←−
,,
←−
(,
←−
� ,
−→
,,
−→
(,
−→
� , C, J, B,�} and A�% = {!, ', �}. Transition

rules 14 and 21 describe the passing of the active symbol between the program and
clock pointer registers. It is still true that every single transition rule describes the
moving of an active symbol from one site to a neighbouring site and/or the conversion
of one kind of active symbol into another, which is essential for our sequence of
states to be UOG and for the dynamics of the HQCA to map to a quantum walk on a
line.

Correctness
We claim the following: starting from the initial state

|k0〉 =


	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0 0
� 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� ' � � � � � � � � � � � � � �


, (1.5.11)

and applying forward transition rules 1-21, one generates a unique and finite
sequence of mutually orthogonal states {|kC〉}C>0, whose states on all registers across
all layers aside from the work qubits are orthogonal product states. Moreover,

A) The final state is

|k�〉 =


	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *: (F1F2F3) 1 0 0 0 1 0 0
� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� ! � � � � � � � � � � � � � �


, (1.5.12)

where * has been applied to the work qubits : = 2!−1 times, where
! = (2 − 1) (# + 1) + 4 is the number of sites in the chain.

B) Suppose you define a Hamiltonian, �� � � , out of terms that implement
transition rules 1-21 and their Hermitian conjugates, and use this Hamiltonian to

28

continuously time evolve the state |k0〉. If, at any point in the time evolution, one
measures the clock layer to hold the binary number : , and the first site of the �%
layer to hold the state �, then the post measurement state of the work qubits is
guaranteed to be in the state*: |F1F2F3〉.

I will separate the proof into several small pieces.

Lemma 1 1. Starting from the state

|(*,G0 〉 =

	 � � � � � � (, � � , (� ← 	

0 1 0 0 0 1 *G (F1F2F3) 1 0 0 0 1 0 0
� 18=0AH G

� � � � � � � � � � � � � � � -


. (1.5.13)

there is a sequence of states (*,G =
{
|(*,GC 〉

}=*
C=0

UOG by sequence of =* forward
transitionsU and whose final state is

|(*,G=*
〉 =


	 � � � � � � (, � � , (� → 	

0 1 0 0 0 1 *G+1 (F1F2F3) 1 0 0 0 1 0 0
� 18=0AH G

� � � � � � � � � � � � � � � -


. (1.5.14)

for any G ∈ {0, 1, · · · , 2!−1 − 1}.

Proof. By the correctness of Construction II, the sequence of forward transitions
U = {T ′

�
, 131,T�} fulfills the requirements. �

The sequence of forward transitions U described above will referred to as an
application transition since it generates a single application of* to the work qubits,
and =* =)� � − 1 is the number of transitions in U. The sequence of mutually
orthogonal states (*,G =

{
|(*,GC 〉

}=*
C=0

is called the Gth application sequence.

Lemma 2 1. Starting with a state of the form

|(�,G0 〉 =

	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *G+1 (F1F2F3) 1 0 0 0 1 0 0
� 18=0AH G

� � � � � � � � � � � � � � � !


, (1.5.15)

the sequence of states (�,G =
{
|(�,GC 〉

}=�,G
C=0

is UOG by sequence of forward transitions
CUG , with final state

|(�,G=�,G 〉 =

	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *G+1 (F1F2F3) 1 0 0 0 1 0 0
� 18=0AH G + 1
� � � � � � � � � � � � � � � �


. (1.5.16)

for all G ∈ {0, 1, · · · , 2!−1}.

29

Proof. Once a state of the form |(�,G0 〉 is reached, there is no longer any active symbol
in the program register, and the active symbol is now in the CP register.

First, observe that no matter what number the clock layer holds, there will only ever
be one of four possibly valid forward transitions from a state of the form |(�,:0 〉,
which will be either rule 15, 16, or 17 depending on the values of the clock’s least
two significant bits. Referring to the clock update algorithm described earlier, rule
15 corresponds to situation B), rule 16 corresponds to situation C), and rule 17
corresponds to situation D).

If the least significant bit of the clock in state |(�,G0 〉 is zero (least two significant bits
are 10 or 00), then only rule 15 can be applied, resulting in state

|(�,G=�,G 〉 =

	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *G+1 (F1F2F3) 1 0 0 0 1 0 0
� 18=0AH G + 1
� � � � � � � � � � � � � � � �


. (1.5.17)

so we’re done. (By examining transition rule 15, it’s obvious that in any of these
situations, applying the single transition rule correctly increments the clock’s stored
number, as per case � of the clock update algorithm described earlier.)

If the two least significant bits of the clock in state |(�,G0 〉 are 01, then only rule 16
can be applied, resulting in state

|(�,G=�,G 〉 =

	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *G+1 (F1F2F3) 1 0 0 0 1 0 0
� 18=0AH G + 1
� � � � � � � � � � � � � � � �


. (1.5.18)

so we’re done. (Again, by examining transition rule 16, it’s obvious that in any of
these situations, applying the single transition rule correctly increments the clock’s
stored number, as per case � of the clock update algorithm described earlier.)

If rules 15 and 16 don’t apply to |(�,G0 〉, then let 2 6 ? 6
⌈
log2(G)

⌉
be the number

of least significant bits of G that form an uninterrupted string of 1s. Then it is clear
that there are ? − 1 unique forward transitions through ? − 1 applications of rule 17.
Because G < 2!−1, we know that ? < ! − 1. Then, after the ? − 1 applications of
rule 17, registers ? and ? + 1 of the chain must fit the description of the initial state
of rule 18, in which case rules 15-17 can not apply (after the first application of 17,
the program registers won’t have the 	 ’s needed in the program register to allow 15
or 16 to apply), therefore only rule 18 can be applied because it is the only remaining
transition rule whose initial state has ! in the clock pointer.

After rule 18 is applied, the clock pointer’s active site is in ' mode, so only rules
19 or 20 could potentially be applied. If ? = 2, then only rule 20 can be applied
because the existence of the 	 symbol in the program register above the ' symbol
will forbid application of rule 19. If ? > 2, then after application of rule 18, we see

30

that bits ? and ? − 1 of the number stored in the clock (counting from the right) are
exactly the requisite initial state for applying rule 19, so 19 is the only way forward.
This will obviously be true for ? − 2 applications of rule 19, at which point the '
symbol will have the 	 symbol in the program register above it, so only rule 20
will be able to be applied. In either case, at this point we will have implemented case
E) of the clock increase algorithm, and will be in state |(�,G=�,G 〉 as above. Note that
the state of the program and data layers never changed at any point in this sequence
because we only used rules 15 through 20, and they leave those layers invariant.

By having described all possibilities, we see that the sequence (�,G is UOG by the
appropriate sequence of forward transitions CUG . �

The sequence of forward transitions, CUG , that takes |(�,G0 〉 → |(
�,G
=�,G 〉 is called a clock

transition, and the sequence of mutually orthogonal states (�,G = (�,G =
{
|(�,GC 〉

}=�,G
C=0

is called the Gth clock sequence.

Lemma 3 1. The states in sequences (�,: and (�, 9 are mutually orthogonal for
9 ≠ : .

Proof. Suppose that there were states |q 9 〉 ∈ (�, 9 and |q:〉 ∈ (�,: which are not
orthogonal. This necessarily means that the configurations of the clock and clock
pointer registers in both states are identical. This, then, implies that it is possible to
find a sequence of forward transitions to apply to |q 9 〉 that brings it to |(�,:=�,: 〉. But,
then, this contradicts Lemma 2 which states that the clock update sequence (�,: with
is UOG, as this would imply that there are at least two distinct forward transition
rules that could be applied to |q 9 〉. �

Lemma 4 1. The states in sequences (%,: and (%, 9 are mutually orthogonal for
9 ≠ : .

Proof. This is obvious because the clocks will hold different numbers in each
sequence (9 and : respectively). �

Lemma 5 1. Starting from the state

|(�,2
!−1−1

0 〉 =

	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *2!−1 (F1F2F3) 1 0 0 0 1 0 0
� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� � � � � � � � � � � � � � � !


(1.5.19)

there is a unique sequence of ! − 2 forward transitions which maps us to the final
state

|(�,2
!−1−1

0 〉 =

	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *2!−1 (F1F2F3) 1 0 0 0 1 0 0
� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� ! � � � � � � � � � � � � � �


(1.5.20)

from which there are no possible forward transitions.

31

Proof. Clearly, applying rule 17 ! − 2 times does the job. �

Lemma 6 1. Starting from the initial state

|k0〉 =


	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0 0
� 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� ' � � � � � � � � � � � � � �


, (1.5.21)

and applying forward transition rules 1-21, one generates the sequence {|kC〉}�C=0
which is UOG by some sequence of � transitions, S, and whose final state is reaching
the final state

|k�〉 =

	 � � � � � � (, � � , (� 	 	

0 1 0 0 0 1 *2!−1 (F1F2F3) 1 0 0 0 1 0 0
� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� ! � � � � � � � � � � � � � �


. (1.5.22)

Proof. By lemmas 1 through 5, we see that the sequence of forward transitions of
length �, S = {L−1, {LG}2

!−1−1
G=0 ,L�}, with subsequences defined

L−1 = {19!−3, 20, 21} (1.5.23)
LG = {U, 130, 14,UCG , 21} (1.5.24)
L� = {U, 130, 14, 17!−2} (1.5.25)

does the job. �

1.6 Construction IV: Deterministic Selection of G in time poly(G, #)
Now we augment construction III so that a particular number G of applications of*
can be selected to be applied to the work qubits, and we can obtain the state where this
has happened more or less deterministically by time evolving for a time polynomial
in G and # . To do this, we build in a new register that holds the number of desired
applications G in binary form, and once the number in the clock register reaches
G, forward transitions are modified so that although the quantum walk continues
forward, gates are no longer applied to data qubits, so there is some) < � such that
for all |kC>) 〉, the work qubits will always have*G applied to them.

Hilbert Space
We add two new registers in this construction: the target register) , and the a second
clock register �2. The local sites of both registers are three dimensional {0, 1, � }.
We also make the following additions of new states to the local sites of the other
registers:

• The program register adds symbols {−→� ×,−→(×,−→,×, C×,→×,←−� ×,←−(×,←−,×, B×
,←×,�×}

32

• The clock pointer register adds symbols {←−� ,�-, '×, �×, !×}

With these additions, the local dimensions of the program, data, clock, clock
pointer, target and second clock pointer registers are now 27, 2, 3, 10, 3, and
3 respectively. The total local dimension of a site of the qudit chain C is thus
3 = 27 × 2 × 3 × 10 × 3 × 3 = 14580.

Initial State
In the initial state we must now have initialization of the fifth and sixth layers, the
target and second clock registers respectively. The target register is initialized to hold
the binary representation of the target number of applications, G, with significant
digits increasing from right to left, and all places greater than the most significant 1
of G being padded by � symbols. The second clock register is initialized the same
way the clock register was initialized in the previous construction.

|k0〉 =



	 � � � � � � (, � � , (� ← 	

0 1 0 0 0 1 F1 F2 F3 1 0 0 0 1 0 0
� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� � � � � � � � � � � � � � � -

� 18=0AH G

� 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1


. (1.6.1)

Transition Rules
Here are the added transition rules, including a modification of transition rule 21:

21 :

	 	

− −
− −
� �-

→

← 	

− −
− −
� -

(1.6.2)

22 :

	 	

− −
− −
� �×

→

←× 	
− −
− −
� -

(1.6.3)

33

230 :

	 	

− −
=>C � 0

� �

=>C � 0

→

	 	

− −
=>C � 0
←−
� �

=>C � 0

231 :

	 	

− −
=>C � 0

� �

� 0

→

	 	

− −
=>C � 0
←−
� �

� 0

(1.6.4)

232 :

	 	

− −
� 0

� �

=>C � 0

→

	 	

− −
� 0
←−
� �

=>C � 0

240 :

=>C 	 −
− −

=>C � 0

�
←−
�

=>C � 0

→

=>C 	 −
− −

=>C � 0
←−
� �

=>C � 0

241 :

=>C 	 −
− −

=>C � 0

�
←−
�

� 0

→

=>C 	 −
− −

=>C � 0
←−
� �

� 0

(1.6.5)

242 :

=>C 	 −
− −
� 0

�
←−
�

=>C � 0

→

=>C 	 −
− −
� 0
←−
� �

=>C � 0

25 :

	 −
− −
− 0

� �

− 0

→

	 −
− −
− 0

� �-

− 0

(1.6.6)

34

26 :

=>C 	 −
− −
− 0

�
←−
�

− 0

→

=>C 	 −
− −
− 0

� �-

− 0

(1.6.7)

27 :

− −
− −
− 0

�- �

− 0

→

− −
− −
− 0

� �-

− 0

(1.6.8)

28 :

− −
− −
� 0

�
←−
�

� 0

→

− −
− −
� 0
←−
� �

� 0

(1.6.9)

29 :

− =>C 	

− −
� �

�
←−
�

� �

→

− =>C 	

− −
� �
←−
� �

� �

(1.6.10)

30 :

− 	

− −
− −
�
←−
�

− −
0 1

→

− 	

− −
− −
� '×

− −
0 1

(1.6.11)

31 : →× � → �
−→
�× (1.6.12)

32 : −→
�× � → �

−→
�× (1.6.13)

33 : −→
�× � → � →× (1.6.14)

35

34 : →× � → C× � (1.6.15)

35 : � C× → C× � (1.6.16)

36 : � C× → � →× (1.6.17)

37 : � ←× → ←−
�× � (1.6.18)

38 : �
←−
�× → ←−

�× � (1.6.19)

39 : �
←−
�× → ←× � (1.6.20)

40 : � ←× → � B× (1.6.21)

41 : B× � → � B× (1.6.22)

42 : B× � → ←× � (1.6.23)

430 : →× 	 → 	 �×

431 : 	 ←× → 	 →×
(1.6.24)

44 :

	 �×

− −
− −
� -

− −
− −

→

	 	

− −
− −
� !×

− −
− −

(1.6.25)

45 :

	 	

− −
− −
� !×

− −
− 0

→

	 	

− −
− −
� �×

− −
− 1

(1.6.26)

36

46 :

	 	

− −
− −
� !×

− −
0 1

→

	 	

− −
− −
� �×

− −
1 0

(1.6.27)

47 :

− −
− −
− −
� !×

− −
1 1

→

− −
− −
− −
!× �

− −
1 1

(1.6.28)

48 :

=>C 	 −
− −
− −
� !×

− −
0 1

→

=>C 	 −
− −
− −
� '×

− −
1 0

(1.6.29)

49 :

=>C 	 −
− −
− −
'× �

− −
0 1

→

=>C 	 −
− −
− −
� '×

− −
0 0

(1.6.30)

50 :

	 	

− −
− −
'× �

− −
0 1

→

	 	

− −
− −
� �×

− −
0 0

(1.6.31)

Whenever just 0 appears in a transition rule it must be one of {0, 1}. Whenever 0
and 0 appear, one of 0 or 0 must be in {0, 1} and the remaining symbol is either the
logical negation, or the � symbol.

37

Discussion
Here’s a brief outline of how this modified construction with these new transition
rules works:

• Transition rules 22-30 implement a new part of the clock update phase by
giving it a new function at the end: when the clock pointer has finished
updating the clock and is in � mode, it then begins a second sweep to the left
in
←−
� mode, comparing the number stored in the clock to the number stored in

the target register bit by bit

• If the clock pointer discovers bits that do not match, it turns into �- mode,
moves back to the right, and the active symbol moves back up to the program
layer to begin the next unitary application as normal in construction III

• If the clock pointer in
←−
� mode determines that the clock and target registers

match, it continues moving left until it reaches the left end of the chain, and
this causes the clock pointer to transition to '× mode

• Once the the clock pointer has transitioned to '× mode, all future active
symbols will have the × symbol attached and obey transition rules 31-50,
which identically mimic transition rules 1-20 of construction � � �, but are
modified slightly so that a unitary is never applied to the work qubits ever
again (the presence of the × symbol on all active symbols indicates this),
and now the clock pointer (operating in an identical fashion to how it did in
construction � � �, without a phase where it compares to a target register) treats
the the second clock register �2 as the clock register.

At this point, based on our in depth analysis of construction III, it is easy to check
that the sequence of states generated by forward transition rules 1 − 50 is UOG by
the appropriate sequence of unique forward transitions. The outcome, then, is that
the Hamiltonian ��+ based on transition rules 1-50 implements a quantum walk
on a line whose length is ; = exp(#,) (the length of the line for constructions
�� � � and ��+ is exponential because the clock can count up to a time exp(#,)).
Once the quantum walk has proceeded far enough for* to have been applied to the
work qubits G times (this distance is poly(G, #,)), the quantum walk can continue
forward for exp(#,) more steps without ever changing the state of the data and
clock registers ever again. We complete the analysis of the construction below by
proving that we only need to run the simulation for a time poly(G, #,) in order to
be able to do a simple measurement on the chain that will collapse the state of the
work qubits to one where*G has been applied with high probability.

38

Run-Time Analysis
Here we prove that after running construction �+ with an appropriate input state for
a time g = poly(G, #,), a computational basis measurement on the clock register
will return the result that G is stored in the clock register (and therefore*G has been
applied to the work qubits) with high probability.

This is accomplished by slightly modifying a lemma from [72]:

Lemma 7 1. Consider a continuous-time quantum walk on a line of length ;, where
the Hamiltonian is the negative of the adjacency matrix for the line. Let the system
evolve for a time g 6 g∗ chosen uniformly at random, starting from position basis state
|0〉 (one end of the line). The probability to measure a state |<〉 with < > (1 − �);,
� ∈ [0, 1], is then bounded from below as ?∗ > � −$

(
;
g∗

)
−$

(
1
;

)
.

Proof. Let ?g (<) be the probability of measuring state |<〉 at time g in the above
scenario. Then the time average of ?g (<) for 0 6 g 6 g∗ is

?g∗ (<) =
1
g∗

∫ g∗

0
?g (<)3g (1.6.32)

which, in the limit g∗ →∞, converges to the limiting distribution [72]

c(<) = 2 + X<,0 + X<,;−1

2(; + 1) , (1.6.33)

in the sense that

;−1∑
<=0
|?g∗ (<) − c(<) | 6 $

(
;

g∗

)
. (1.6.34)

Then, the probability of measuring state |<〉 for < > (1−�); for time g < g∗ chosen
uniformly at random is

?∗ =
∑

<>(1−�);
?g∗ (<). (1.6.35)

We have that

;−1∑
<=0
|?g∗ (<) − c(<) | (1.6.36)

>
∑

<>(1−�);
|?g∗ (<) − c(<) | (1.6.37)

>

������ ∑
<>(1−�);

(
?g∗ (<) − c(<)

) ������ (1.6.38)

39

=

������?∗ − ∑
<>(1−�);

2 + X<,0 + X<,;−1

2(; + 1)

������ (1.6.39)

=

����?∗ − � + �

; + 1
+ 1

2(; + 1)

���� (1.6.40)

> −?∗ + � − �

; + 1
− 1

2(; + 1) (1.6.41)

But, $
(
;
g∗

)
>

∑;−1
<=0 |?g∗ (<) − c(<) |, thus, we have that

?∗ > � −$
(
;

g∗

)
−$

(
1
;

)
, (1.6.42)

as desired. �

We now consider the consequences of this lemma for the run-time of our simulation.
The length of the chain that the states |kC〉 of the simulator map onto position
eigenstates |C〉 of is ; = exp(#,). For G = exp(#), parameters can easily be chosen
such that the fraction � of ; such that |kC>(1−�);〉 has had *G applied to the work
qubits is 1 − exp(−#). Then by setting g∗ = poly(;) appropriately, and picking a
uniformly random time between 0 and g∗, we will succeed in applying*G to the work
qubits with probability ?∗ > 1−1/exp(poly(#,)). For all states |kC>(1−�);〉, which
have had *G applied to the work qubits, the clock register will hold the number G
which was originally set in the target register. So we only need to do a computational
basis measurement on the clock register and find it in the state holding the binary
number G to know that we’ve succeeded.

Note that if we would like to simulate the application of unitary*G for G = poly(#),
the above strategy does not actually seem very helpful: because ; = exp(poly(#,))
is exponential, we need to wait for, on average, exponential time to guarantee high
success probability even though we’re simulating something that should only take
polynomial time. This can easily be fixed. By modifying the start state of the
simulator, |k0〉, so that the � symbol in the target register is far enough to the
right, one can exponentially reduce ;. This is because once the target register starts
functioning as a clock (after *G has been applied), the length of the remaining
distance the particle can travel is exponential in the number of sites to the right of the
� symbol in the target register. The end state is not reached until the target register
has counted up to the largest number that it can. So, one can place the � at the
appropriate site (say, 3 sites to the left of the most significant digit of the number G
stored in the target register) so that ; will be polynomial in # , but will also be large
enough relative to G so that one only needs g∗ to be polynomial to achieve a high rate
of success. Note, however, that in this scenario, the probability of success will only
be inverse polynomially close to unity rather than exponentially.

40

Finally, we mention that from the start state defined in equation (76), it is actually
possible to apply reverse transitions to this start state which allows you to start
running a ‘clock check and update’ phase in reverse using the reverse of transition
rules 21, 25 and 20 (if the target register’s least significant bit is 1), or rules 21, 27,
23, 24 and 20 (if the target register’s least significant bit is 0). However, it is easy
to check that in either case, only one unique sequence of no more than 3! reverse
transitions can be applied to this state before reaching a state from which no further
reverse transitions can be made. Thus the effect on run-time analysis is insignificant.

1.7 Acknowledgements
We thank Dorit Aharonov for interesting discussions, Elizabeth Crosson for helpful
discussions and suggestions, and Toby Cubitt for helpful comments on our first
draft that lead us to correct several mistakes in our construction. Author T.C.B.
acknowledges financial support from the National Science and Engineering Research
Council of Canada (NSERC) in the form of a Postgraduate Scholarship (PGS-D)
award during the time in which this work was completed.

41

C h a p t e r 2

GOOD APPROXIMATE QUANTUM LDPC CODES FROM
SPACETIME CIRCUIT HAMILTONIANS

2.1 Introduction
A central result in the theory of classical error correcting codes is that there exist
families of good linear [#, :, 3] codes, which have linear dimension : = Ω(#),
linear distance 3 = Ω(#), constant sparsity parity checks, and linear time encoding
and decoding algorithms. These low-density parity check (LDPC) codes [46] have
many theoretical as well as practical applications.

A grand challenge in quantum information theory is to construct a quantum counter-
part to classical LDPC codes with similarly optimal parameters. Traditionally this
effort has focused on CSS stabilizer codes1, where the notion of sparse parity checks
corresponds to stabilizer generators that each act on O(1) physical qubits, with each
qubit participating in only O(1) of such checks. The existence of QLDPC codes
with good parameters and fast encoding/decoding algorithms would have significant
practical impact; for example, Gottesman has shown these would imply schemes for
fault tolerant quantum computation with constant overhead [50].

Despite many years of investigation, we do not yet know of QLDPC codes that
simultaneously achieve constant rate and relative distance while maintaining constant
locality and sparsity. The QLDPC codes of [67, 76] have a constant rate, but the
minimum distance does not exceed O(

√
#) where # is the number of physical qubits.

So far the QLDPC code with the best distance scaling is the construction of Freedman,
Meyers and Luo [45] which achieves minimum distance distance O(

√
log #), but

only encodes a single qubit. Bravyi and Hastings gave a probabilistic construction
of a code with constant rate and linear distance, but the stabilizer generators each
act on

√
physical qubits [19]. Hastings proved that, assuming a conjecture

about high dimensional geometry, there exist QLDPC codes encoding a constant
number of qubits (i.e. have vanishing rate) with distance scaling as Ω(#1−b) for any
b > 0 [52, 54].

The question ofwhether goodQLDPCcodes exist also has importance forHamiltonian
complexity and the construction of exotic models in physics. This connection arises
because any QECC code space that can be enforced by a set of constant-weight
check operators can also be identified as the ground space of a local Hamiltonian.

1The CSS construction [26, 74] combines two classical codes, C1 = [#, :1, 31] and C2 =
[#, :2, 32] to form an [[#, :1 + :2 − #,min(31, 32)]] QECC with commuting check terms that
generate a stabilizer subgroup of the Pauli group.

42

A central goal in these areas is to identify classes of local Hamiltonians with
robust entanglement properties, and QLDPC codes provide a fruitful source of
candidates. However, if the local terms are stabilizers then � is always a commuting
Hamiltonian, and despite the richness of these systems they only capture a subset of
local Hamiltonians and the properties they can exhibit.

Here we explore the QLDPC Conjecture (which posits that there exist asymptotically
good QLDPC codes) through the correspondence between QLDPC codes and local
Hamiltonians. This leads us to relax the requirement of being a CSS stabilizer code
in two ways:

1. The code satisfies an approximate error-correction property: after an error
channel is applied the decoding procedure recovers encoded states up to some
1 − Y fidelity, where Y = >(1).

2. The codespace is specified as the groundspace of a frustration-free local
Hamiltonian � = Π1+ · · · +Π<, where the local projectorsΠ8 don’t necessarily
commute.

Codes satisfying the approximate reovery condition are known as approximate
quantum error correcting codes (AQECC), and codes with noncommuting frustration-
free local check terms have been considered as a generalization of QLDPC in
Hamiltonian complexity, therefore we call codes satisfying satisfying these conditions
approximate QLDPC codes.

Our results
Our main result is a construction of approximate QLDPC codes with nearly-optimal
parameters.

Theorem 2.1.1. For infinitely many # there exists #-qubit subspaces {C# } with the
following properties:

1. C# is an AQECC that encodes : = Ω̃(#) logical qubits in # physical qubits,
has distance 3 = Ω̃(#), approximation error Y = O(1/polylog #), and a
poly(#) time encoding algorithm.

2. C# is the ground space of a frustration-free local Hamiltonian � (#) =
∑
�
(#)
8

such that each term �
(#)
8

acts on $ (1) qubits, and each physical qubit
participates in at most polylog # terms.

3. The Hamiltonian � (#) has spectral gap Ω̃(#−3.09) and it is spatially local in
polylog(#) dimensions (i.e. it can be embedded in Rpolylog # with finite qubit
density and geometrically local interactions).

43

Here, the notation Ω̃(·) suppresses factors of polylog # .

The fact that the local check terms do not commute means that it is impossible
to measure them all simultaneously. However, in Section 2.5 we show that any
Pauli error will increase the energy of at least one local check term by at least
1/polylog(#), and we use this to show that this family of codes is capable of locally
detecting arbitrary Pauli errors with polylog(#) depth circuits.

Theorem 2.1.2. For the family of codes described above, there exists with high
probabilty a collection D of polylog(#)-local projectors satisfying the following
properties:

1. Each projector Π ∈ D acts on 10 physical qubits in the code and B =
polylog(#) ancilla qubits initialized in the |0〉 state, and Π|k〉|0B〉 = 0 for all
Π ∈ D if and only if |k〉 ∈ C# .

2. For all Pauli channels E, for all codewords |k〉 ∈ C, there exists a projector
Π ∈ D such that

Tr (Π (E(k) ⊗ |0B〉〈0B |)) > (1 − U) (1 − 2− polylog(#)) (2.1.1)

where k = |k〉〈k | and U is the total weight of the channel E on the (nonlocal)
Pauli stabilizers in S.

Furthermore, there exists ameasurement" , implementable by a circuit of polylog(#)
depth acting on O(# polylog(#)) qubits, such that for all Pauli channels E and for
all codewords |k〉 ∈ C

Tr
(
"

(
E(k) ⊗ |0#B〉〈0#B |

))
> (1 − U) (1 − 2− polylog(#)). (2.1.2)

Our construction of this family of codes is based on a recently discovered connection
between AQECC and Feynman-Kitaev (FK) Hamiltonians [73]. FK Hamiltonians
have ground states of the form 1√

)+1
∑)
C=0 |C〉|kC〉, where |kC〉 = *C ...*1 |0=〉2 is the

state of a quantum circuit at time C, and are used to prove the quantum version
of the Cook-Levin theorem. The connection to AQECC is based on mapping the
encoding circuit of a QECC to the ground space of a local Hamiltonian. To construct
the family of codes in Theorem 2.1.1 we apply the connection formed in [73]
to a randomized construction of good quantum codes with polylogarithmic depth
encoding circuits [24]. The polylogarithmic factors in our construction arises from
the additional “clock” qubits that are used in this mapping from circuits to ground

2We use = for the number of input qubits in a circuit Hamiltonian, and # for the number of physical
qubits in our code construction. # = = polylog(=) in our construction because of the overhead used
to represent the clock.

44

states. However, the standard FK construction uses a single global clock variable
and does not allow for gates to be applied in parallel; to take full advantage of
these parallel encoding circuits we present a substantial new technical analysis of
the many-clock “spacetime” [23, 71] version of the FK construction that assigns an
independent clock variable C8 to each qubit 8 in the circuit3.

The spacetime circuit Hamiltonian enforces a ground state that is a uniform superpo-
sition over all valid configurations of these clocks (where validity is determined by
the pattern of gates in the circuit), and it is unitarily equivalent to the normalized
Laplacian of a random walk on the high-dimensional space of partially completed
circuit configurations. Spacetime circuit Hamiltonians have been used previously
for universal adiabatic computation and QMA-completeness constructions that are
spatially local on a square lattice and do not require perturbative gadgets [23, 49, 66].
The analysis of the spectral gap in these previous works has always relied on the exact
solutions to certain 1 + 1 dimensional quantum spin chains [61]. Here we develop a
nearly tight lower bound on the spectral gap of the spacetime circuit Hamiltonian for
a particular uniform class of circuits based on bitonic sorting networks. These sorting
networks are used to transform a � depth circuit with arbitrary connectivity and
= qubits into a depth � log(=)2 circuit4 with spatially local connectivity in log(=)
dimensions. By analyzing these sorting networks we prove the following general
theorem in Section 2.4.

Theorem 2.1.3. For any depth � quantum circuit of 2-local gates on = qubits,
where = is a power of 2, there is an associated spacetime circuit-to-Hamiltonian
construction which is spatially local in polylog(=) dimensions and has a spectral
gap that is Ω(=−3.09�−2 log−6(=)).

The spectral gap of a code Hamiltonian lower bounds the soundness of the code,
since it determines the minimum energy of states outside of the code space. In our
code construction we take � = polylog(=), and since the circuit Hamiltonian acts on
a total of # = = polylog(=) qubits this accounts for the bound on the spectral gap in
Theorem 2.1.1. Since our proof holds for any circuit with arbitrary connectivity we
state the general result here for future potential applications to QMA and universal
adiabatic computation.

Discussion
Webelieve that our approximateQLDPCcodes, beyond being an attempt to address the
QLDPC Conjecture via a different perspective, also illustrate a compelling synthesis
of various intriguing concepts of quantum information theory, and furthermore,
highlight several connections that deserve closer investigation.

3The term “spacetime” comes from relativistic physics, in which time is necessarily measured by
local clocks.

4All logarithms in this work are base 2.

45

Approximate quantum error correction. AQECCs generalize QECCs by only
requiring that the quantum information stored in the code, after the action of an error
channel, be recoverable with fidelity at least 1−Y. AQECCs have long been known to
be capable of achieving better parameters than standard QECCs [32, 64], though the
necessary and sufficient conditions for approximate recovery were only established
within the last decade [15]. AQECC have found applications to fault-tolerant
quantum computation [21, 63] through the analysis of realistic perturbations to exact
QECC, and have recently experienced a resurgence in popularity in physics due to
connections made with the holographic correspondence in quantum gravity [10].
Recently [44] have considered a version of local AQECC which also includes the
possibility of locally approximate correction of errors in order to investigate the
ultimate limits of the storage of quantum information in space. One can interpret
our approximate QLDPC codes as providing another demonstration that the AQECC
condition is a useful relaxation that facilitates the construction of codes with superior
parameters than what is (known to be) achievable in the standard QECC framework.

Codes from local Hamiltonians. As previously mentioned, QLDPC codes have
been a fruitful source of local Hamiltonians with robust entanglement properties,
which are central objects of study in quantum Hamiltonian complexity and condensed
matter theory. The first example of a QLDPC code was Kitaev’s toric code, which
is also a canonical example of a topologically ordered phase of matter [58]. Most
research on QECC has been focused on stabilizer codes, like the toric code, for which
the associated code Hamiltonians are commuting and frustration-free. In this paper
we proceed in the opposite direction by asking: what kinds of quantum codes can we
construct from local Hamiltonians whose terms don’t necessarily commute? With
this perspective, the extensive toolbox of techniques for constructing and analyzing
Hamiltonians in quantum computing and quantum physics becomes immediately
useful. This approach is inspired by several recent papers:

1. In [40], Eldar, et al. defined general QLDPC codes to be subspaces (that are
stabilized by a collection of local projectors {Π8}; in other words, Π8 |k〉 = 0
for all 8 if and only if |k〉 ∈ (. They call the Π8 projectors “parity checks” in
analogy to the parity check terms of CSS codes; however, the projectors {Π8}
need not be parity checks in the traditional sense.

2. In [44], Flammia, et al. formalized a notion of local AQECCs that includes
an additional condition of approximate local correctability. This notion was
applied to derive bounds on the ultimate limits of the storage of quantum
information in spatially local codes.

3. In [18], Brandao et al. show that qutrit systems on a line with nearest-neighbor
interactions can form approximate QLDPC that encode log(#) qubits with

46

distance log(#), and also show that AQECC can appear generically in energy
subspaces of local Hamiltonians.

4. In [73], Nirkhe, et al. shows that by using the Feynman-Kitaev circuit-to-
Hamiltonian construction and a non-local CSS code, one can obtain a local
approximate QECC where the corresponding Hamiltonian’s ground space is
approximately the original CSS code.

Although there are stillmany hurdles to climb before codeswith noncommuting checks
can be realistically applied to fault-tolerance protocols, these recent developments
form an exciting frontier in the study of local Hamiltonians. Another example
of this connection is that the approximate codes developed in [73] and extended
here can be seen as an instance of the recently formalized notion of Hamiltonian
sparsification [6].

Comparison with the sparse subsystem codes of [12]. In [12] Bacon et al.
construct subsystem codes with distanceΩ(#1−b) for b = O(1/

√
log #) and constant

weight gauge generators, and these were termed “sparse subsystem codes.” These
are the best parameters achieved to date for any exact QECC in the ground space of a
local Hamiltonian. Even more remarkable, in relation to the present work, is the fact
that the codes of Bacon et al. have local checks that arise in a completely different
way from quantum circuits. The difference is that [12] considers fault-tolerant circuit
gadgets (instead of encoding circuits as in [73] and this work) and enforces the
correct operation of these Clifford circuits according to the Gottesman-Knill theorem
(rather than FK circuit Hamiltonians).

Another difference between these code constructions is that the code Hamiltonians
of Bacon et al. are necessarily frustrated due to the fact that the noncommuting
gauge generators are all Pauli operators, which therefore anticommute and share
no simultaneous eigenstates. Although frustration does not always preclude the
possibility of local error correction [44], there is no lower bound established on the
spectral gap of the codes in [12] (and so there may be states outside the codespace
with exponentially small energy), and detecting an error on a single qubit requires
measuring poly(#) gauge generators in order to ascertain the syndromes of nonlocal
stabilizers. With this understanding we summarize past results on QECC with strong
parameters:

47

Reference # of logical qubits Distance Locality Notes
[76] Θ(#) Θ(

√
#) $ (1) CSS Stabilizer code

[45] $ (1) $ (
√
log #) $ (1) CSS Stabilizer code

[19] Θ(#) Θ(#) Ω(
√
#) CSS Stabilizer code

[52, 54] $ (1) Ω(#1−b) for all b > 0 $ (1) CSS code, assumes conjecture
in high dimensional geometry

[12] $ (#) Ω(#1−b) for all b > 0 $ (1) Subsystem Stabilizer code,
frustrated Hamiltonian

This paper Ω(#/polylog #) Ω(#/polylog #) $ (1) approximate QLDPC code

ConnectionswithQPCP. On of themost significant open problems inHamiltonian
complexity is to resolve the quantum PCP conjecture [9], which posits that quantum
proofs can be made probabilistically checkable. Since local Hamiltonians and the
complexity class QMA are the respective quantum generalizations of constraint
satisfaction problems and NP, the QPCP conjecture is equivalent to the statement
that it is QMA-complete to decide whether the ground state energy of a Hamiltonian
� =

∑<
8=1 �8 is less than 0 or greater than 1 (under the promise that one of these is

the case), where 1 − 0 > 2
(<·max8 ‖�8 ‖) for some 2 = Ω(1) corresponds to constant

relative precision. One reason this question is difficult is any trivial state which is
output by a constant-depth quantum circuit acting on a product state can be given as
an NP witness, and many of the commonly studied classes of local Hamiltonians
necessarily have low-energy trivial states. Therefore in order for QPCP to hold there
must be some Hamiltonian with no low-energy trivial states, and even this weaker
NLTS conjecture [53] remains an open problem.

One approach to resolving the NLTS and QPCP conjectures is to develop the quantum
analogue of locally testable codes, which are defined in [5] as codes with frustration-
free but not necessarily commuting local checks, good parameters, and a soundness
property which states that the energy of a state with respect to the constraints grows
linearly with its distance from the code space. Therefore constructing good QLDPC
is necessary for constructing QLTC, but it is not sufficient since in general QLDPC
may have low energy states outside the code space. This collection of open challenges
that are stimulating innovations in Hamiltonian complexity is known as the robust
entanglement zoo [39], since they all involve generalizing known properties of
quantum ground states to states with constant relative distance above the code space.

Just as the classical PCP Theorem indirectly transforms a Cook-Levin computational
tableau into a probabilistically checkable CSP, a QPCP construction could be seen as
transforming the FK circuit-to-Hamiltonian construction into a local Hamiltonian
with robust entanglement. While known limitations on generalized FK constructions
make such a direct approach unlikey [14, 47, 48], our Theorem 2.1.2 on local error
detection in polylog(#) depth is the first result to quantitatively substantiate the
belief that the spacetime Hamiltonian construction is more robust than the standard

48

global-clock FK Hamiltonian. Specifically, we show that the energy of a state after
the application of a Pauli error channel is inversely proportional to the depth of
the circuit in the spacetime construction, whereas it is proportional to the size of
the circuit in the standard FK construction. In fact in Section 2.6 we describe an
alternate version of our approximate QLDPC construction that is based on global-
clock FK and a modified distribution over time steps of the quantum circuit, and
this version can achieve any scaling of the approximation error Y(#) > 0 at the
expense of decreasing the spectral gap to Ω̃(Y#−3), but this substantially weakens
the corresponding version of Theorem 2.1.2 and forces the local error detection
circuits to have superlinear depth. This results suggest that continued investigation
into alternative circuit-to-Hamiltonian constructions might be a fruitful direction
of research, and might possibly make headway towards the mystery of the QPCP
conjecture.

Overview of the remaining sections. Section 2.1 overviews the spacetime circuit
Hamiltonian used in our construction, and Section 2.1 sketches the proof techniques
we use to lower bound the spectral gap of the code Hamiltonian, which is the
main technical contribution of this work. Section 2.2 formally defines approximate
QLDPC codes and develops the machinery needed to describe our construction,
including the good codes with polylogarithmic depth encoding circuits due to Brown
and Fawzi [24] in Section 2.2, spacetime circuit Hamiltonians in Section 2.2, and
bitonic sorting networks in Section 2.2. Our code construction and the efficient
encoding circuit are given in Section 2.3, and the analysis of the spectral gap result in
Theorems 2.1.1 and 2.1.3 is given in Section 2.4. The local error detection analysis
underlying Theorem 2.1.2 is given in Section 2.5, and finally we discuss alternate
versions of the construction in Section 2.6 and a spatially local embedding in Section
2.6. Appendix 2.7 contains many detailed results on combinatorial properties of
partially completed circuit configurations of bitonic sorting networks, as well as the
connection between these circuit configurations and dyadic tilings.

Description of the code Hamiltonian
In [73] it was recognized that the FK Hamiltonian which maps circuits to ground
states could be used to develop a set of local checks for AQECC for which only an
efficient encoding circuit was previously been found. For a circuit with local gates
1, ...,) the FK ground states are

|Ψ〉 = 1
√
) + 1

)∑
C=0
|C〉C ⊗ (*C*C−1 · · ·*1) |k, 0 . . . 0〉S. (2.1.3)

Such states are called history states. The register C, called the clock register, indicates
how many gates have been applied to the all zeroes state, which is stored in register
S (called the state register) containing an initial state |k〉 and ancillas.

49

Although this state has only a 1/() + 1) fidelity with the output of the circuit, the
standard technique for increasing the overlap to be inverse polynomially close to 1 is
to pad the end of the circuit with identity gates (for recent work on more efficient
methods for biasing the history state towards its endpoints, see [14, 25]). This
technique allows history states to capture approximate versions of QECC that have
efficient encoding circuits. The approximation error of the code is directly related to
history state overlap with the output of the encoding circuit.

Figure 2.1: The approximate nature of the codes introduced in [73] arises from the fact that part of
the history state superposition corresponding to early time steps, which do not match the output of the
encoding circuit and are treated as noise in our analysis. Once a sufficient depth to form a codeword
is reached, the computation can be padded with identity gates in order to increase the overlap of this
approximate codeword with the original codeword it is approximating.

The Hamiltonian which enforces the ground space spanned by states of the form
(2.1.3) is formed by projectors that check the input state of the computation, as well
as propagation terms that check that the branch of the superposition corresponding
to time C and the branch corresponding to time C + 1 differ by the application of the
gate *C+1 to the state register. The linear ordering of the computation *1, . . . ,*)
is enforced via the sum of these propagation terms. The propagation Hamiltonian
is unitarily equivalent to a normalized Laplacian on the path graph with vertices
{0, ...,)} and therefore has a spectral gap that is Θ()−2). For the purpose of lower
bounding the energy of excitations that leave the code space, it is important to check
the spectral gap of the full Hamiltonian including the input check terms, see Section
2.1 for further discussion.

In this work we use the spacetime version of the FK circuit Hamiltonian [23], which
assigns a clock register to each computational qubit, and has a ground space spanned
by uniform superposition over all valid time configurations 3 = (C1, ..., C=) of the
state of the computation after the gates prior to 3 have been performed,

|k〉 = 1
|T |1/2

∑
3∈C
|3〉C ⊗ * (3 ← 0) |0 · · · 0〉S. (2.1.4)

Here T is the set of all valid time configurations 3, which is any vector (C1, . . . , C=)
that the clock registers could hold if a subset of gates that respected causal dependence
(see Definition 2.3.4) were applied. To avoid boundary effects at the beginning and
end of the computation we use circular (periodic) time, which involves reversing the

50

gates in the second half of the circuit so that the computation returns to its initial
state. In Section 2.2 implement these periodic clocks using qubits.

The necessity of including these causal constraints is one of the complications
introduced by the use of spacetime circuit Hamiltonians, but a far more significant
challenge is lower bounding the spectral gap of the spacetime propagationHamiltonian.
In contrast with single-clock circuit Hamiltonians, the geometric arrangement of the
gates in the circuit now has a significant effect on the spectrum of the spacetime
circuit Hamiltonian due to the causal constraints. All lower bounds in previous works
apply to spacetime Hamiltonians in 2 spatial dimensions, which represent 1 (space)
+ 1 (time) dimensional quantum circuits. This is not only due to the importance of
planar connectivity for practical applications, but it is also a symptom of the general
fact that exactly solvable models in mathematical physics are hardly known beyond 1
+ 1 dimensions. The 1 + 1 dimensional circuit propagation Hamiltonian is unitarily
equivalent to a stochastic model describing the evolution of a string in the plane.
For higher dimensional circuits it corresponds to the dynamics of membranes or
crystal surface growth, where no known solutions are available. To overcome this
in the present work we use sorting networks to turn arbitrary random circuits into
circuits with uniform connectivity, and then we apply powerful techniques and past
results from the theory of Markov chains to analyze the resulting high-dimensional
spacetime circuit Hamiltonians.

Proof sketch for the spectral gap analysis
Our analysis of the spectral gapΔprop of the spacetime circuit propagationHamiltonian
begins with the standard mapping from �prop to a a Markov chain transition matrix
%. 5 To analyze the latter, we apply a Markov chain decomposition method due
to Madras and Randall [68], which is used to split the Markov chain and its state
space into pieces that are easier to analyze individually. For our decomposition of
choice these pieces come in several closely related variants, which all essentially
correspond to the set of time configurations contained within the final phase of a
bitonic sorting circuit (as shown in Figure 2.3 for 8 lanes) which we call a bitonic
block. As described in Appendix 2.7, an arbitrary circuit consisting of 2-local gates
can be transformed into a sequence of consecutive bitonic blocks, with at most a
polylogarithmic factor of blow up in the depth.

After dividing the set of valid time configurations Ω (the state space of the Markov
chain) into subsets Ω8 of configurations confined to bitonic blocks of the form
illustrated in Figure 2.3, the subsets will form a quasi-linear chain in the sense

5The re-scaled Hamiltonian �prop/‖�prop‖ is unitarily equivalent to a normalized graph Laplacian
L for the graph with vertices corresponding to valid time configurations and edges corresponding to
local gate updates on those time configurations. % is the transition matrix for the random walk on this
graph, which is obtained from � − L by a similarity transformation. The point is that these mappings
provide an algebraic relation between Δprop and Δ% .

51

Figure 2.2: A bitonic sorting architecture on = = 8 bits. We refer to the final phase of the architecture,
corresponding to the last log(=) = 3 layers enclosed in a gray box, as a bitonic block. Note that
the gates in each layer are executed simultaneously, but are drawn as non-overlapping for visual
clarity. An arbitrary circuit consisting of 2-local gates can be transformed to have the architecture of
consecutive repetitions of bitonic blocks at the cost of increasing the depth by a factor of log(#)2.

Figure 2.3: The Markov chain block decomposition for a sequence of padded bitonic sorting
architecture on 8 bits. The set of valid time configurations contained entirely within the 8-th colored
rectangle constitutes the block Ω8 . The set of time configurations in two rectangles of different colors
are related by a permutation of the qubit wires. The aggregate chain % has a nonzero transition
probability %(8, 9) iff the rectangles corresponding to the blocks Ω8 and Ω 9 are overlapping. Each
blockΩ8 has a nonzero transition probability to log # other blocksΩ 9 . Every valid time configuration
is contained in at least one of the blocks, and no time configuration is contained in more than log #
blocks.

that Ω8 and Ω 9 have nonempty intersections when |8 − 9 | 6 log =. To apply the
decomposition method we need to analyze (1) the spectral gap of the restricted
Markov chains %8 that are confined to stay within each of the subsets Ω8, and (2) the
spectral gap of an aggregate Markov chain % that moves between the blocks based
on transition probabilities related to the size of the intersections of the blocks.

As suggested by its quasi-linear connectivity, the spectral gap of the aggregate chain
can be lower bounded using Cheeger’s inequality in similar manner as is done for
the path graph Laplacian. The main technical challenge is to accurately compute
the transition probabilities %(8, 9) = c(Ω8 ∩Ω 9)/(Θc(Ω8)), which involve the ratio
of the number of configurations within each of the blocks to the number within the

52

pairwise intersections, |Ω8 ∩Ω 9 |/|Ω8 |, as well as the maximum number of blocks Θ
that can contain any particular time configuration. In Appendix 2.7, we develop a
recurrence relation to exactly count these configurations and show that the former
is constant for consecutive blocks (and decays doubly exponentially with |8 − 9 | for
longer distance transitions), and the latter is logarithmic in =. Using asymptotic
properties of the recurrence relation we show that the transition probabilities between
8, 8 + 1 are equal to (q log =)−1, where q = (1 +

√
5)/2 is the golden ratio. If there

are < blocks in total so that the length of the path is <, we use Cheeger’s inequality
to show that the spectral gap Δ

%
of the aggregate chain satisfies

Δ
%
> (q< log =)−2 . (2.1.5)

Figure 2.4: An illustration of the states and transitions in the aggregate chain corresponding to the
subsets of time configurations contained with the blocks in fig 2.3.

Turning to the analysis of the restricted chains %8, we present the discovery of a
surprising and beautiful connection between valid time configurations of architectures
of the form shown in Figure 2.2 with combinatorial structures known as dyadic
tilings [56]. Dyadic tilings are tilings of the unit square by equal-area dyadic
rectangles, which are rectangles of the form [02−B, (0 + 1)2−B] × [12−C , (1 + 1)2−C],
where 0, 1, B, C are nonnegative integers. These tilings have a natural recursive
characterization: beginning from the unit square, draw a line that is either a
horizontal or vertical bisector. This divides the square into two rectangles, and
in each of these one chooses a horizontal or vertical bisector, and so on. After
ℓ = log(=) such recursive steps one obtains a dyadic tiling of rank ℓ with a total of =
dyadic rectangles, each with area 1/=. Some examples are given in Figure 2.5.

Figure 2.5: Examples of dyadic tilings of rank 4.

For a spacetime circuit with = qubits, we choose the blocks Ω8 in the decomposition
so that for each block there is an exact bĳection between the time configurations
within the block and the set of equal-area dyadic tilings of rank ℓ = log =. Moreover,

53

it turns out that the natural Markov chain on time configurations can also be mapped
onto a previously defined Markov chain for dyadic tilings called the edge-flip chain.
This Markov chain selects a rectangle of area 1/= in the current dyadic tiling and
one of its four edges at random, and flips this edge if the result would be another
dyadic tiling. The correspondence is described in Figure 2.6.

Figure 2.6: A color-coding of the correspondence between dyadic tilings and valid time configurations
of a bitonic sorting circuit. The colored line segments in (a) correspond to sub-edges which when
rotated by c/2 about their midpoint will be sub-edges of a vertical edge in some dyadic tiling. These
edges are placed in correspondence with the gates of the bitonic sorting circuit in (b), with the
convention that colored line segments in (a) are ordered from left to right and from top to bottom,
and the gates in a given commuting layer in (b) are enumerated from top to bottom. Given an
arbitrary dyadic tiling, one checks which of the colored line segments in (a) correspond to vertical
sub-edges in the tiling, and these correspond to gates that are in the past causal cone of the bitonic
time configuration associated with that tiling.

The mixing time of this edge flip chain was an open problem for over a decade, but
has recently been the subject of a tour de force analysis that establishes an upper
bound on the mixing time that is polynomial in =. Adapting these results using our
bĳection between these Markov chains yields

Δ%8 = Ω

(
=−4.09

)
, for all 8 = 1, ..., <, (2.1.6)

where the value of the exponent can be taken to be log(17) = 4.087 Once (2.1.5)
and (2.1.6) are established, we combine them according to the decomposition result,

Δ% >
1
2
Δ
%

min
8=1,...,<

Δ%8 = Ω

(
=−4.09<−2polylog(=)−1

)
,

which is an inverse polynomial lower bound on the gap. The circuit propagation
Hamiltonian is equivalent to the Markov chain % scaled by a factor of =, and so we

54

obtain Δprop = Ω̃(=−3.09). Finally, using the version of the spacetime Hamiltonian
with circular time we show that every state in the code space has overlap 1/polylog(=)
with the input terms and so the geometrical lemma yields a gap of Ω̃(=−3.09) for the
full code Hamiltonian.

2.2 Preliminaries
In what follows, we present the definitions of the main ingredients of our code
construction and analysis.

Approximate QLDPC codes
Here we present the formal definition of an approximate QLDPC code.

Definition 2.2.1 (Approximate QLDPC code). A 2:-dimensional subspace � of
(C2)⊗# is a [[#, :, 3, Y, ℓ, B]] approximate QLDPC code iff there exists a (not
necessarily commuting) set of projectors {�1, . . . , �<} acting on # qubits such that

1. Each term �8 acts on at most ℓ qubits (i.e. locality) and each qubit participates
in at most B terms (i.e. sparsity).

2. For all |k〉, we have that |k〉 ∈ � if and only if 〈k |� |k〉 = 0, where
� = �1 + · · · + �<.

3. There exist encoding and recovery maps Enc,Rec such that for all |q〉 ∈
(C2)⊗: ⊗ R where R is some purifying register, for all completely positive
trace preserving maps E acting on at most (3 − 1)/2 qubits, we have that the
image of Enc is exactly the code � and

� (Rec ◦ E ◦ Enc(|q〉〈q |), |q〉〈q|) > 1 − Y (2.2.1)

where � (·, ·) denotes the fidelity function. Here, the maps Enc, E, and Rec do
not act on register R.

The first condition of the above definition enforces the locality and sparsity conditions
of the approximate QLDPC code. The second condition enforces that the code
is the ground space of a frustration-free local Hamiltonian. The third condition
corresponds to the approximate error-correcting condition, where we only require
that the decoded state is close to the original state (i.e., we no longer insist that
Rec ◦ E ◦ Enc is exactly the identity channel). Although there are few results on
approximate quantum error-correcting codes, we do know that relaxing the exact
decoding condition yields codes with properties that cannot be achieved using exact
codes [15, 64].

55

Parallel quantum circuits
We establish some notational conventions for parallel quantum circuits.

Consider the following model of depth � circuits on = qubits. The circuit � consists
of � layers !1, . . . , !� . In each layer !C for 1 6 C 6 �, the = qubits are partitioned
into =/2 disjoint pairs {(?, @)}, and a two-qubit gate*C (?, @) acts on the qubit pair
(?, @). Layer !1 is applied first, then layer !2, and so on. The unitary corresponding
to circuit � is

�∏
C=1

⊗
(?,@)∈!C

*C [?, @] (2.2.2)

where the product is written from right to left. In other words, the unitary⊗
(?1,@1)∈!1

*1 [?1, @1] is the rightmost factor, followed by
⊗
(?2,@2)∈!2

*2 [?2, @2],
and so on.

Model for random low-depth Clifford circuits. Our model for random depth �
Clifford circuits is to choose, for each layer !C , a random partition {(?, @)} of the =
qubits, and then for each pair (?, @), and let*C [?, @] be a uniformly chosen from the
two-qubit Clifford group (i.e., the set of all unitaries that preserve the Pauli group
under conjugation).

Brown and Fawzi showed that for � = O(log3 =), the circuit � is an encoding circuit
for a good error-correcting code with high probability [24]:

Theorem 2.2.2 ([24]). For all X > 0, for all integers =, :, 3 > 0 satisfying

:

<
6 1 − ℎ(3/=) − log(3)3/= − 4X, (2.2.3)

with ℎ(·) as the binary entropy function, the circuit � described in the paragraph
above is an encoding circuit for a [[<, :, 3]] stabilizer code with probability at least
1−Ω(=−8). In other words, with high probability the subspace C = {� |k〉|0〉⊗(=−:) :
|k〉 is a :-qubit state} is a [[=, :, 3]] stabilizer code.

Notation 2.2.3. To avoid confusion with the blocklength of our approximate QLDPC
code that we construct in our paper (which is denoted by #), we will use = to denote
the blocklength of the Brown-Fawzi random circuit code.

Since the circuits are Clifford circuits, the resulting code is a stabilizer code.

The spacetime circuit Hamiltonian construction
As mentioned in the introduction, we use a small variant of the spacetime circuit
Hamiltonian of Brueckmann and Terhal [23] to create our code Hamiltonian. In
this section, we present the spacetime construction for general depth � circuits.

56

In Section 2.3, we will describe the specific circuit that we will use for our code
Hamiltonian.

Let � be an even integer and let� be an =-qubit circuit of depth � where !1, . . . , !�
be the � layers of �, where each !C is a set of =/2 two-qubit gates6 *C [?, @] acting
on disjoint pairs of qubits {(?, @)}. We assume that � is a “circular” circuit; in other
words, that it is equivalent to the identity circuit.

We let �28A2D8C [�] denote the circular spacetime circuit Hamiltonian corresponding
to the circular circuit�. Let - def

= �−2
2 . The Hamiltonian is defined on =(1+ - +1) =

=(- + 2) qubits, which is divided into three classes of registers: (1) data registers
S1, . . . ,S=, (2) clock registers C1, . . . ,C=, and (3) flag registers F1, . . . , F=.

The data register S8 is a qubit register that corresponds to the 8-th qubit that the circuit
� acts on. The flag register F8 is a qubit register that indicates whether the 8-th qubit’s
local clock is in the “forward phase” or the “backward phase”; this denotes which
half (first or second) of clock states the clock is in. The clock register C8 consists
of - qubits and indicates the local time of the 8-th data qubit (within the forward
phase or the backward phase). The valid clock states for register C8 are {|1 90-− 9 〉}
for 0 6 9 6 - (i.e. a domain wall clock).

Following Brueckmann and Terhal [23], the flag register combined with the clock
register allows us to put our qubit clocks “on a circle”: we index time from 0 to
2- + 1 = � − 1, and we identify time C = � with C = 0. We encode time steps C
according to the following convention. For notational convenience, we let the register
T8 (for “time register”) denote the union of F8 and C8.

|C〉T8
def
=


|0〉F8 ⊗ |1C 0-−C〉C8 if C ∈ {0, 1, . . . , -}
|1〉F8 ⊗ |1-〉C8 if C = - + 1
|1〉F8 ⊗ |12-+1−C 0C−-−1〉C8 if C ∈ {- + 2, . . . , 2- + 1}.

(2.2.4)

In other words, the time register evolves in the following way:

|0〉F8 ⊗ |00 · · · 0〉C8 → · · · → |0〉F8 ⊗ |11 · · · 1〉C8 (0 6 C 6 -)
(2.2.5)

→ |1〉F8 ⊗ |11 · · · 1〉C8 (C = - + 1)
(2.2.6)

→ |1〉F8 ⊗ |1 · · · 10〉C8 → · · · → |1〉F8 ⊗ |00 · · · 0〉C8 (- + 2 6 C 6 2- + 1).
(2.2.7)

6By padding with identity gates, we can assume without loss of generality that every layer has
exactly =/2 two-qubit gates.

57

Notice that in any transition from |C〉T8 to |C + 1〉T8 , there is at most one qubit being
flipped.

For the remainder of this section we fix a circuit� and assume it fixed. The spacetime
Hamiltonian �28A2D8C [�] is defined as

�28A2D8C = �2;>2: + �8=8C + �?A>? + �20DB0; . (2.2.8)

Notation 2.2.4. In what follows, subscripts of operators such as “F8” in “|0〉〈0|F8”
indicates which registers the operators act on. Let Π(U)R be the projector |U〉〈U |R for
any register R.

The terms �2;>2: , �8=8C , �?A>?, and �20DB0; are defined as follows:

(1) �2;>2: : The term �2;>2: enforces that all the clock registers are encoded as
described above. We write �2;>2: =

∑=
8=1 �2;>2: [8] where

�2;>2: [8] =
�−1∑
9=1
Π
(01)
C8, 9C8, 9+1 . (2.2.9)

This enforces that the register C8 encodes a domain wall.

(2) �8=8C: The initialization term is defined as �8=8C =
∑=
8=:+1 �8=8C [8] for some

integer 1 6 : 6 =, 7 where

�8=8C [8] = Π(1)C8,0 ⊗ Π
(1)
S8 . (2.2.10)

This term checks that the last = − : qubits are in the state |0〉 when their
corresponding time registers are in state |0〉T8 or |2- + 1〉T8 . We only need
to check one bit of the time register T8 because of the previous set of terms
enforcing that the clock is a domain wall.

(3) �?A>?: The propagation term �?A>? is defined to be �?A>? =∑�−1
C=0

∑
(?,@)∈!C �C [?, @], where

�C [?, @] =
1
2

[(
�C,C [?, @] + �C+1,C+1 [?, @]

)
⊗ 1

− �C+1,C [?, @] ⊗ *C [?, @] − �C,C+1 [?, @] ⊗ (*C [?, @])†
]

(2.2.11)

and �C,C ′ [?, @] = |DC [?]〉〈DC ′ [?] | ⊗ |DC [@]〉〈DC ′ [@] |, (2.2.12)
7In our case, : will eventually be the number of logical qubits.

58

|DC [?]〉 =


1 ⊗ |0〉F? |1〉C?,C |0〉C?,C+1 if 0 6 C < -
1 ⊗ |0〉F? |1〉C?,- if C = -
1 ⊗ |1〉F? |1〉C?,- if C = - + 1
1 ⊗ |1〉F? |1〉C?,2-+1−C |0〉C?,2-+2−C if - + 1 6 C 6 2- + 1.

(2.2.13)

Here, |DC [?]〉 is the tensor product of a state on the specified qubits and the
identity operator on all unspecified qubits. This term enforces the agreement of
slices of the superposition corresponding to two time configurations differing
by a gate with respect to the unitary *C [?, @]. Because of the �2;>2: terms,
the checks only require looking at a few qubits of the time registers8.

(4) �20DB0;: The term �20DB0; is used to enforce causality meaning that the super-
position is only over valid time configurations (see Definition 2.3.4). At a high
level, a time configuration 3 = (C1, . . . , C=) is valid if and only if for all pairs
of qubits (?, @) sharing a gate in layer !C , both clocks C? and C@ are 6 C or
> C. This is, however, complicated by the circularity of time imposed in this
particular construction as “all clocks are both ahead and behind any particular
C”. In reality, we require the more complicated definition: for all pairs of
qubits (?, @) sharing gates in layers !C0 and !C1 for C0 < C1, either C?, C@ are
both ∈ [C0, C1) or are both ∉ [C0, C1).
Let �? be the set of qubits @ which interact with qubit ?.

�20DB0; =

=∑
?=1

∑
@∈�?

�20DB0; [?, @] (2.2.14)

where �20DB0; [?, @] is defined as follows. Let C (1) < C (2) < . . . < C (5) be the
times at which ? and @ share a gate. Then,

�20DB0; [?, @] =
5∑
9=1

C (9+1)−1∑
C?=C

(9)

�C? ,C? [?] ⊗ �C (9) ,C (9+1) [@] (2.2.15)

where �C,C ′ [@] is a projector ensuring that qubit C@ is between C and C′ (respecting
circularity)9. Therefore, we verify that qubit @ is valid with respect to qubit ?.
The definition of �C,C ′ [@] is case dependent.

Case 1 If 0 6 C, C′ 6 - . In this case, the flag qubit must be |0〉F@ . Furthermore,
C@,C must be |1〉 and C@,C ′ must be |0〉. Therefore,

�C,C ′ [@] = Π(0)F@ Π
(1)
C@,CΠ

(0)
C@,C ′

. (2.2.16)
8In effect, |DC [?]〉 is the minimal description of |C〉T? given that the state is a ground-state of

�2;>2: .
9By this we mean that if C < C ′, the projector is onto the set {C, . . . , C ′ − 1}. If C ′ < C, then the

projector is onto the set {C, . . . , -} ∪ {0, . . . , C ′ − 1}.

59

Case 2 If - + 1 6 C, C′ 6 2- + 1. This is the similar except the flag is flipped.
Hence,

�C,C ′ [@] = Π(1)F@ Π
(1)
C@,2-+2−C ′

Π
(0)
C@,2-+2−C . (2.2.17)

Case 3 If 0 6 C 6 - and - + 1 6 C′ 6 2- + 1. In this case, the flag qubit may
be different. However, we can write the projector as the sum of the two
projectors for the different flags.

�C,C ′ [@] = Π(0)F@ Π
(1)
C@,C + Π

(1)
F@ Π

(1)
C@,2-+2−C ′

. (2.2.18)

Case 4 If 0 6 C′ 6 - and - + 1 6 C 6 2- + 1. This is similar except again
the flag is flipped. Hence,

�C,C ′ [@] = Π(0)F@ Π
(0)
C@,C ′
+ Π(1)F@ Π

(0)
C@,2-+2−C . (2.2.19)

Bitonic sorting networks
In this section, we describe a class of circuits called bitonic sorting networks. These
are parallel circuits, devised by Batcher [13], that are used to efficiently sort data
arrays. Specifically, these are circuits acting on = elements, with depth O(log2 =). In
each layer of the circuit, pairs of elements are compared and swapped. Equivalently,
for every permutation c on = elements, there is a bitonic sorting network consisting
of SWAP and identity gates that implements c.

Bitonic sorting networks will be a crucial component of our code construction, as we
use them to “uniformize” the random Brown-Fawzi encoding circuits before applying
the spacetime circuit Hamiltonian construction. The uniformity of the resulting
circuits will be the key ingredient that allows us to analyze the spectral gap of the
Hamiltonian.

Notation 2.2.5. We will assume that the number of qubits =, is a power of 2, with
= = 2ℓ for some integer ℓ.

For this paper, we will be interested in the architecture (i.e. the wiring and gate
structure) of the bitonic sorting circuit. A bitonic sorting architecture consists of
smaller sub-architectures, called bitonic blocks.

Definition 2.2.6. An architecture is a directed acyclic graph where each vertex E
has deg8= (E) = deg>DC (E) ∈ {1, 2} except for specific vertices B and C which have
deg>DC (B) = deg8= (C) = = and deg>DC (C) = deg8= (B) = 0. A circuit � (acting on
= qubits) over an architecture is instantiated by specifying a gate for each vertex
E ∉ {B, C} in the graph that acts on the qubits labelled by the edges adjacent to the
vertex. The vertices B and C represent the state prior to and after the application of
the circuit. That is, we can think of an architecture as an outline of a quantum circuit
and one needs to fill in the blanks (specify each gate) to instantiate a circuit.

60

Definition 2.2.7 (Bitonic block [13]). For a positive integer ℓ, the bitonic block of
rank ℓ, Bℓ, is a circuit architecture acting on 2ℓ qubits. Bℓ is recurisvely defined with
the architecture B1 being an architecture consisting of a single layer, L1, with a gate
between qubits 1 and 2 (see part (a) of Figure 2.7).

For ℓ > 1, the bitonic block Bℓ is a ℓ-depth architecture with the first layer, L1 being
2ℓ−1 gates connecting qubit 8 to 8+2ℓ−1 for 8 = 1, 2, . . . , 2ℓ−1. The following ℓ−1 layers,
Lℓ,L4;;−1, . . . ,L2 are defined recursively as B⊗2

ℓ−1 where one of the two blocks acts
on the qubits {1, 2, . . . , 2ℓ−1} and the other on the qubits {2ℓ−1 + 1, 2ℓ−1 + 2, . . . , 2ℓ}.

See Figure 2.7 for illustrations of blocks B2, and B3.

Figure 2.7: (a) Bitonic block B1. (b) Bitonic block B2. (c) Bitonic block B3.

Theorem 2.2.8 ([13]). Let �ℓ be an instantiation of a bitonic block architecture Bℓ
with generalized comparator gates for some well-ordering – i.e. given two input
wires, it either swaps them or performs the identity such that the larger element is
on the lower wire. Then, given two monotonically decreasing sequences of length
2ℓ−1 as inputs, the output of the circuit � is the merged monotonically decreasing
sequence.

Corollary 2.2.9 ([13]). The following ℓ(ℓ+1)
2 depth circuit is a sorting circuit:

�ℓ�
⊗2
ℓ−1�

⊗4
ℓ−2 . . . �

⊗2ℓ−1

1 . (2.2.20)

We will use the notation B×A
ℓ

for the product (i.e. concatenation) of A bitonic blocks
Bℓ. To simplify the analysis, we can insert additional layers of identity gates so that
the circuit architecture is B×ℓ

ℓ
; this at most doubles the size of the circuit. Therefore,

we can make the following statement:

Lemma 2.2.10. For any permutation c ∈ (=, there exists a circuit �c of the
architecture B×ℓ

ℓ
applying c on the input wires.

Proof. Note which comparator gates of the bitonic sorting circuit would be SWAP
gates if sorting according to the permutation c. Pad with identity gates as previously
stated till the circuit conforms to the architecture. �

61

Uniformizing circuits for spacetime Hamiltonians
We now present a general method for encoding depth � circuits � into a spacetime
circuit Hamiltonian, in a way that allows us to give a good lower bound on the
spectral gap. Let � denote a circuit of depth � consisting of layers !1, . . . , !� ,
where each !C is a set of =/2 two-qubit gates.

We preprocess the circuit � in multiple steps to obtain a slightly larger-depth circuit
�′. We “uniformize” the circuit using bitonic sorting networks described in the
previous section. The circuit � will not, in general, correspond to nearest-neighbor
interactions in small dimension. We add bitonic sorting networks in between each
layer !C of � to ensure that all the Clifford gates act on adjacent qubits. Because
of the regular structure of the sorting networks, the resulting circuit will consist of
nearest-neighbor interactions on a hypercube of dimension ℓ = log =.

More formally, we do the following: label the qubits using {1, . . . , =}. In a layer
!C of � for 1 6 C 6 �, a qubit @ is generally not paired with a neighboring qubit
@ − 1 or @ + 1. Instead, there is some permutation cC on = qubits that maps the pairs
{(1, 2), (2, 3), . . . , (= − 1, =)} to the pairs !C = {(?, @)}. Let cC (!C) denote the layer
where all the qubits are permuted by cC , and all the gates in !C now act on consecutive
qubits.

By Lemma 2.2.10, there exists a circuit �cC with the architecture B×ℓℓ for ℓ = log =
that implements the permutation cC . Replace each layer !C in � by the following
subcircuit C : first apply �cCcC−1 and then apply the layer cC (!C). Since the last layer
of �cCcC−1 and cC (!C) have the same architecture, we can merge the gates into a single
layer. Here we assume c0 = 1.

The final �′ is the composition of the subcircuits 1, 2, . . . , �1 , yielding a depth
O(� log2 =) circuit. Note that by induction, circuit �′ is exactly equivalent to the
original circuit �. Notice that each subcircuit C can be implemented as nearest-
neighbor gates on a hypercube of dimension log =, and thus the same holds for �′ as
well.

Let �′ denote the depth of circuit �′. We consider spacetime Hamiltonians
�28A2D8C [�′] of the circuit �′, as described in Section 2.2. We first note that it has
the following properties: it is a 9-local Hamiltonian, the terms act locally on a
O(�′ + log =)-dimensional lattice, and each qubit participates in at most O(�′)
terms.

2.3 Construction of the code Hamiltonian
Here we describe our code construction in detail. Let Y > 0 be the desired
target approximation error. Let =, :, 3 be integers satisfying Theorem 2.2.2 where
:, 3 = Ω(=). Let �0 denote a Clifford circuit of depth �0 = O(log3 =) that is an
encoding circuit of an [[=, :, 3]] code C�� , as promised by Theorem 2.2.2. Let

62

!1, . . . , !�0 be the �0 layers of�0, where each !C is a set of at =/2 two-qubit Clifford
gates.

The first preprocessing step is to replace all the Clifford gates by gates from the set

� =

(
1 0
0 1

)
, � =

1
√

2

(
1 1
1 −1

)
, (=

(
1 0
0 8

)
, �#$) =

©­­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®®¬
.

(2.3.1)
This is possible because the gate set {�, �, (, �#$)} generates the Clifford group;
thus every two-qubit Clifford gate can be written as a O(1)-length product of �, �,
(, and �#$) gates. The depth of this circuit is �1 = O(�0). Let �1 denote this
circuit.

Next, we pad the circuit to have depth 3�1/Y where the last 1 − (Y/3) fraction of
the layers are simply applications of the identity gate on consecutive pairs of qubits.
Call this padded circuit �′1; its depth is �

′
1 = 3�1/Y.

Now, let �2 be the circuit obtained by preprocessing �′1 as described in Section 2.2.
This has depth � = O(log5 =). Let �28A2D8C [�2] denote the corresponding spacetime
circuit Hamiltonian, acting on # = O(=�) qubits. For what follows, we will
abbreviate �28A2D8C [�2] as �.

Let C denote the ground space of �. This will be our code. We now show that C is
an approximate QLDPC code, and we establish its parameters.

Theorem 2.3.1. For all Y > 0, the subspace C is a [[#, :, 3, Y, ℓ, B]] approximate
QLDPC code, for : = Ω(#/log5 #), 3 = Ω(#/log5 #), ℓ = 9, and B = polylog(#).

Proof. First we have to show that C is the image of an encoding map, Enc. We
present methods for efficiently generating a codeword of the code C in Section 2.3.

Next, we present a recovery map for the code (i.e. a map that approximately corrects
errors and decodes). An important point is that the Brown-Fawzi stabilizer code
underlying our construction was probabilistically chosen and there is no known
efficient correction algorithm for their code. However, since the stabilizer code
encoded by the circuit� satisfies the Knill-Laflamme error correction conditions [60],
there exists an ideal recovery map, Rec�� , that can correct any error on (3 − 1)/2
qubits or less. In other words, for all errors E acting on at most (3 − 1)/2 qubits, the
following is equivalent to the identity channel on : qubits:

Rec�� ◦ E ◦ Enc�� (2.3.2)

where Enc�� is the encoding map for the Brown-Fawzi code. This is all that we will
need.

63

Our recovery map Rec for our code works as follows: given an input state on registers
S1 · · ·S= and T1 · · · T= (i.e. the data and time registers), it

1. Traces out the registers T1 · · · T=.

2. Applies the Brown-Fawzi ideal recovery map Rec�� to S1 · · ·S=.

We now prove the approximate error correction condition. We rely on the following
Lemma, which we prove in Appendix 2.7.

Lemma 2.3.2. Let T denote the set of all time configurations of a spacetime history
state. There exists a subset T2><? ⊂ T such that for all spacetime history states

|k〉 = 1√
|T |

∑
3∈T
|3〉 ⊗ |k3〉 (2.3.3)

there exists a codeword |Γ〉 ∈ C�� such that if 3 ∈ T2><?, then |k3〉 = |Γ〉.
Furthermore, we have that

|T2><? |
|T | > 1 − Y. (2.3.4)

Recall that C�� is the [[=, :, 3]] stabilizer code10 whose encoding map is the circuit
�0 described above.

Let |q〉 ∈ (C2)⊗: ⊗ R be a :-qubit message d that has been purified (i.e., d =
TrR (|q〉〈q |)). Let a Schmidt decomposition of |q〉 be ∑

8

√
?8 |b8〉|8〉, where the {|b8〉}

correspond to theHilbert space (C2)⊗: and the {|8〉} are orthonormal vectors inR. Let
|Ψ〉〈Ψ| = Enc(|q〉〈q|), so that |Ψ〉 = ∑

8

√
?8 |Ψ8〉|8〉 where |Ψ8〉 = 1√

)

∑
3 |3〉 ⊗ |k8,3〉

is the spacetime history state for circuit � on input state |b8〉 ⊗ |0(=−:)〉. By
Lemma 2.3.2 we can write

|Ψ8〉 =
1√
|T |

∑
3∉T2><?

|3〉 ⊗ |k8,3〉 +
1√
|T |

∑
3∈T2><?

|3〉 ⊗ |Γ8〉. (2.3.5)

Define the following (subnormalized) states:

|_〉 = 1√
|T |

∑
3∈T2><?

|3〉, |Ψ̃8〉 = |_〉 ⊗ |Γ8〉. (2.3.6)

Note that |Ψ̃8〉 has norm equal to ‖|_〉‖2 > 1−Y because of Lemma 2.3.2. Furthermore,
|〈Ψ̃8 |Ψ8〉|2 = ‖|_〉‖2. If we define |Ψ̃〉 =

∑
8

√
?8 |Ψ̃8〉|8〉, then we have that

� (|Ψ〉〈Ψ|, |Ψ̃〉〈Ψ̃|) > (1 − Y)2 > 1 − 2Y. (2.3.7)
10The �� subscript stands for “Brown-Fawzi”.

64

Let E be a completely positive, trace preserving map acting on at most (3 − 1)/2
qubits. Since C�� is a code that can correct up to (3 − 1)/2 errors, and |Ψ̃〉 is a
(sub-normalized) superposition of codewords of C�� (along with a state |_〉 that gets
traced out by Rec), we have that Rec ◦ E(|Ψ̃〉〈Ψ̃|) = |q〉〈q | · 〈_ |_〉. Since the fidelity
metric is non-decreasing under quantum operations, we have that

� (Rec ◦ E ◦ Enc(|q〉〈q |), |q〉〈q |) > �
(
Rec ◦ E(|Ψ〉〈Ψ|),Rec ◦ E(|Ψ̃〉〈Ψ̃|)

)
(2.3.8)

> �
(
|Ψ〉〈Ψ|, |Ψ̃〉〈Ψ̃|

)
(2.3.9)

> 1 − 2Y. (2.3.10)

As discussed in Section 2.2, the geometry underlying the Hamiltonian � is a lattice
with dimension O(� polylog =); each 9-local term acts in a spatially-local manner
on this lattice, and each qubit participates in polylog = terms. This establishes the
Theorem. �

Encoding circuit
We demonstrate that there is an efficient circuit generating a ground-state of the
Hamiltonian.

Theorem 2.3.3. There exists an encoding circuit of polynomial size in = which on
input |k〉 generates the state Enc(k). In particular, the polynomial size circuit
generating the state is log(=) + 2 spatially local.

Proving the generability of the ground-state is done in two parts. We first show that
once one can generate a particular superposition over the time registers, one can
generate the ground-state. Next, we provide an efficient algorithm for generating the
particular superposition. This is encapsulated formally in Lemmas 2.3.6 and 2.3.7.

The superposition over the time registers (the union of all clock and flag registers)
of interest is the uniform superpositions over valid partially applied configurations
– or valid configurations, for brevity - of an architecture11. Imagine progressively
applying a circuit from an architecture, gate by gate. Non-commutativity of gates in
different layers demands that the gates of the circuit cannot be applied in any order,
but must be applied in a way that respects causality.

Definition 2.3.4 (Partial configuration of an architecture). A partial configuration of
an architecture on = qubits of depth �, is a vector of integers describing how many
layers of gates have been applied per qubit: g ∈ /=

�+1. A partial configuration is
valid if it respects the causal dependence of the gates in the circuit.

11A formal definition of an architecture is given as Definition 2.2.6.

65

Formally, consider a gate 6 at depth 36 acting on qubits 8 and 9 as applied if 36 6 g8
and 36 6 g9 . Then an architecture is valid if for every marked gate 6, any gate 6′
such that 6′ → 6 in the DAG represented the architecture (see Definition 2.2.6) is
also marked.

Notationally, we refer to a qubit 8 being at time C = g8.

Specifically, we are interested in generating the uniform superposition over valid
configurations of the architecture behind the circuit �2 from Section. We note that
the architecture is similar to the product of bitonic block architectures (see Definition
2.7.12), B×<

ℓ
for < = �′0, ℓ = $ (log4 =/Y), and ℓ = log =. However, on closer

inspection, since the code Hamiltonian includes terms that check the consistency
between clocks at the final time state and the initial time state, this does not exactly
correspond to the spacetime Hamiltonian construction from a linear product of
bitonic blocks. Rather, it corresponds to the spacetime Hamiltonian construction
from a “circular” product of bitonic blocks. The set of valid configurations for this
Hamiltonian includes configurations which “wrap around” the final time state and
back to the initial time state. Formally,

Definition 2.3.5 (Valid configurations of a circular architecture). Let A be an
architecture on = qubits of depth �. LetA×∞ be the infinite circuit defined by taking
infinite consecutive copies of A:

A×∞ =
∞∏

9=−∞
A. (2.3.11)

Let V∞ ⊂ Z= be the set of valid configurations for A×∞. Define V ∈ Z=
�
by

V = V∞/�Z=, i.e. identity identical time configurations in the infinite copies. The
set of valid configurations for the circular architecture isV.

We call this a circular architecture, B↔<
ℓ

and describe it with more formality in the
Appendix (Definition 2.7.14).

Lemma 2.3.6. Let |Ξ〉 be the uniform superposition over valid configurations of the
architecture B↔<

ℓ
. Formally, letV ⊆ /=

<ℓ
be the set of valid configurations. Then,

|Ξ〉 = 1√
|V|

∑
(C1,...,C=)∈V

|C1〉T1 |C2〉T2 . . . |C=〉T= . (2.3.12)

The state |Ξ〉 can be generated efficiently.

Proof. By Theorem 2.7.15, the number of valid configurations, 0↔<
ℓ

def
= |V| has

a recursive definition and is at most doubly exponential in ℓ. Therefore, it can be

66

calculated in time poly(=). There exists an enumeration bĳection 5 : [0↔<
ℓ
] → V

which is (classically) efficient such that 5 −1 is also (classically) efficient. We extend
this to reversible operations

5 (| 9〉|2〉) = | 9〉|2 ⊕ 5 (9)〉 and 5 −1(| 9〉|2〉) = | 9 ⊕ 5 −1(2)〉|2〉. (2.3.13)

As a consequence, we can create |Ξ〉 by starting12 with

1√
0↔<
ℓ

0↔<
ℓ∑
9=1
| 9〉|0〉 (2.3.14)

and applying 5 followed by 5 −1. A construction of 5 and 5 −1 is given as Theorem
2.7.26 in the Appendix.

�

Lemma 2.3.7. Given the state |Ξ〉 (2.3.12) and an initial state |k〉 ∈ (C2)⊗: , one
can efficiently generate the state

|Ψ〉 = 1
√
V

∑
(C1,...,C=)∈V

|C1〉T1 |C2〉T2 . . . |C=〉T= ⊗ *C1,...,C= |k〉S1S2...S: |0=−:〉S:+1S:+2...S=

(2.3.15)
where *C1,...,C= is the unitary acting on (C2)⊗= defined by the action of the valid
configuration (C1, . . . , C=). The efficient generating circuit is spatially local in
2 + log2(=) dimensions.

Proof. We describe three methods for efficiently constructing the state |Ξ〉 (2.3.12).
The first describes a quantum circuit, the second is approximate and relies on phase
estimation, and the third is based on adiabatic computation. We describe the first in
detail and provide sketches for the other two.

Notationally, we will let T be the union of registers {T8} and similarly define the
registers C, F and S.

Method 1 (quantum circuit). Let �2 be the circuit from which the spacetime
circuit Hamiltonian is built. We modify the circuit �2 into a new circuit �′2 which
acts in one additional dimension such that

�′2

(
|Ξ〉T̃ ⊗ |k〉S1S2...S: |0=−:〉S:+1S:+2...S= ⊗ |0〉T

)
= |0〉T̃ ⊗ |Ψ〉ST. (2.3.16)

12The state 1√
1:

∑0↔<
ℓ

9=1 | 9〉 can be generated efficiently by the following. Let, be the largest power
of 2 greater than 0↔<

ℓ
. Using Hadamard gates, we can generate the superposition 1√

,

∑,
9=1 | 9〉|0〉.

Then, we apply the reversible operation | 9〉|I〉 ↦→ | 9〉|I ⊕ 1 961: 〉 and measure the ancilla in the
standard basis. If the measurement is 1, we achieve the desired state. The measurement 0 will occur
with probability 6 1/2.

67

Here the register T̃ is a copy of the register T. The additional dimension of �′2 over
�2 is the additional interaction with the register T̃. Each sub-register T̃8 will interact
with register T8 as well as any register T̃ 9 for register T 9 that T8 interacts with.

For every gate 6 in �2 at depth C acting on qubit registers S8 and S 9 , we replace
6 with a constant depth circuit acting on S8,S 9 , T8, T 9 , T̃8, T̃ 9 . The constant depth
circuit applies the following map: On input |k〉S8S 9 |C8〉T8 |C 9 〉T 9 |)8〉T̃ 9 |)9 〉T̃ 9 , if C8 <)8
and C 9 <)9 , then the gate 6 is applied to |k〉S8S 9 and the registers T8 and T 9 are
incremented. Otherwise, the identity map is applied. Equivalently,

|k〉S8S 9 |C8〉T8 |C 9 〉T 9 |)8〉T̃ 9 |)9 〉T̃ 9 ↦→
{
6 |k〉S8S 9 |C8 + 1〉T8 |C 9 + 1〉T 9 |)8〉T̃ 9 |)9 〉T̃ 9 if C8 <)8 ∧ C 9 <)9
|k〉S8S 9 |C8〉T8 |C 9 〉T 9 |)8〉T̃ 9 |)9 〉T̃ 9 otherwise.

(2.3.17)
Notice that making this adjustment to every gate 6 in �2 will on input
|)1〉T̃1

|)=〉T̃= . . . |)=〉T̃= , generate the partial computation of �2 up to ()1, . . . ,)=).
Furthermore, in the end, the registers T and T̃ will both contain ()1, . . . ,)=). Then,
we can apply the map |0〉T̃ |1〉T ↦→ |0 ⊕ 1〉T̃ |1〉T to erase the T̃ register.

By linearity, when ran on the input |Ξ〉T̃, this will yield the state |Ψ〉.

There is one complication to consider. We must consider valid configurations which
cross time C = 0 (i.e. some clocks are near the end while others are just starting). To
fix this, we first preprocess register C̃ such that any register with |)8〉C̃8 for)8 < �/2
is replaced with)8 + �. This ensures that all clock registers are in the range13
[�/2, 3�/2]. We now perform the same adjustment to each gate 6 except we do it
for gates of the circuit�′�′ (circuit repeated twice). We follow it with postprocessing
to return all clock registers to between 0 and �.

Method 2 (phase estimation). Apply the original random Clifford circuit �0 of
depth �0 to the computational qubits, to the form the a state with no entanglement
between the clocks and the data qubits,

|Ψ′〉 = |Ξ〉 ⊗ �0 |k〉S1S2...S: |0=−:〉S:+1S:+2...S= . (2.3.18)

Since the spacetime history state |Ψ〉 is padded to length) = poly(�0) with identity
gates, the overlap between these states is

|〈Ψ|Ψ′〉|2 > 1 −
(
�0
)

)2
= 1 − O

(
1

polylog(=)

)
(2.3.19)

Since the spectral gap of the code Hamiltonian scales as 1/poly(=), we can apply
a phase estimation circuit*PE to |Ψ′〉 that estimates the first O(log =) digits of the

13This ensure that all valid configurations are “consecutive” because the width of a configuration
(Lemma 2.7.2) is much smaller than �.

68

energy of this state with respect to the code Hamiltonian. By the overlap calculation
above this phase estimation yields an eigenvalue of 0 with probability 1 − >(1) and
projects |Ψ′〉 into the ground space of the code Hamiltonian. Using the fact that
distinct code words are orthogonal, this produces a state of the form√

1 − Y2 |Ψ〉 + Y |Ψ′′〉 (2.3.20)

where |Ψ′′〉 is contained in the code space and Y 6 �0/) 6 1/polylog(=).

Method 3 (adiabatic computation). As described in Section 3.4 of [23], a standard
way to turn a circuit Hamiltonian � (*1, ...,*!) into a procedure for adiabatically
preparing the ground state is to use a continuous family of circuit Hamiltonians
� (B) = � (*1(B), ...,*! (B)) to define the adiabatic path. Here B ∈ [0, 1] is a
parameter such that *8 (0) = � and *8 (1) = *8 for each 8. Since we use 2-qubit
gates and (* (4) is simply connected we may define *8 (B) = *B

8
for each 8. Every

Hamiltonian in this continuous family has the same spectral gap, which we have
shown is 1/poly(=) in Section 2.4, and so any rigorous version of the adiabatic
theorem suffices to turn the initial ground state of � (�, ..., �) into the ground state of
� (*1, ...,*!) in polynomial time. Alternatively, instead of the adiabatic theorem,
one can discretize the adiabatic path into polynomially many steps and use phase
estimation to move between consecutive steps, which suffices to prepare the ground
state of � (*1, ...,*!) with exponentially small error. �

2.4 Spectral gap analysis
Our analysis of the spectral gap of the spacetime circuit Hamiltonian begins with
several standard steps that are applied to Feynman-Kitaev Hamiltonians [7] and their
spacetime variants [23]. First one defines a global unitary rotation,

, =
∑
3∈T

* (3 ← 0) |3〉〈3 | (2.4.1)

which when applied to full Hamiltonian yields,

,†�, = �init + Lprop ⊗ 1 + �causal (2.4.2)

Lprop =
∑

3,3′∈T

(
|3〉〈3 | + |3′〉〈3′| − |3〉〈3′| − |3′〉〈3 |

)
(2.4.3)

where Lprop is the combinatorial Laplacian of a graph with vertices corresponding to
valid time configurations and edges connecting time configurations 3, 3′ that differ
by the application of a 2-local gate. Since [�causal, �prop] = 0, any state with energy
less than 1 will be in the ground space of �causal.

Applying the argument from Section 3.1.4 of [7], the Hamiltonian (2.4.2) in the
rotated frame only acts on the computational qubits through �in; so the Hamiltonian

69

can be written in block diagonal form with each block �8 corresponding to a different
input string 8 = 0, ..., 2= − 1,

,†�, =

©­­­­«
�0

�1
. . .

�2=−1

ª®®®®¬
(2.4.4)

The ground space of,†�, is contained in the block �0; therefore, the spectral gap
of � will either be the spectral gap of Δprop within �0, or it will be the minimum
among the ground state energies in the other blocks �8. To lower bound the ground
state energies in the blocks �8 ≠ 0 we can apply the geometrical lemma.

Kitaev’s Geometrical lemma. Let �1, �2 � 0 be positive semi-definite operators
with 0 as an eigenvalue, and let the least nonzero eigenvalue of �1 and �2 be lower
bounded by Λ, then

�1 + �2 � Λ sin2
(
\

2

)
, cos2 \ = max

|b〉∈Ker(�1)
|[〉∈Ker(�2)

(2.4.5)

The lemma is applied in each of the blocks �8 with 8 ≠ 0, taking �1 = �in and
�2 = Lprop ⊗ 1. Since the spectral gap of �in is 1 we take Λ = Δprop, where Δprop is
the spectral gap of Lprop. The sine of the angle between the kernels of �in and �prop
is lower bounded by the overlap of the ground state of �prop with any one of the
local terms in �in, which is 1/) . Therefore the spectral gap of the full Hamiltonian
satisfies

Δ� =
Δ

)
= Ω̃(Δprop). (2.4.6)

It remains to lower bound the spectral gap Δ of the graph Laplacian Lprop. This
graph Laplacian is a stoquastic frustration-free Hamiltonian with a uniform ground
state in the time configuration basis, and so it can be mapped to a Markov chain
transition matrix by shift and rescaling,

% = � − Lprop/‖Lprop‖ (2.4.7)

The transformation of a spacetime Hamiltonian �prop into a Markov chain in [23] first
maps the 1 + 1 dimensional spacetime Hamiltonian to the ferromagnetic Heisenberg
chain and then relates the Heisenberg model to a Markov chain transition matrix
by rescaling its operator norm. This multistep mapping reveals additional insights
about the physics of that model, and is the basis for the gap analysis in [23], but
the mapping from stoquastic Hamiltonians to Markov chains is entirely general as
described in [33].

70

The operator norm satisfies ‖!prop‖ = ‖�prop‖ = Ω(=) and so in terms of the spectral
gap Δ% of the Markov chain (2.4.7) we have

Δ� = Ω(=Δ%). (2.4.8)

Preliminaries on Markov chains
Throughout this section let (Ω, c, %) be an irreducible, ergodic, reversible Markov
chain on the state space Ω, with stationary distribution c and transition matrix %
(see [65] for background on these terms).

Block decomposition method [68]. The state space is decomposed into subsets
Ω = ∪'

8=1Ω8 (“blocks”), which in general will have nonempty pairwise intersection,
Ω8 ∩Ω 9 ≠ ∅. Let Θ

def
= maxG∈Ω |{8 : G ∈ Ω8}| be the maximum numbers of sets that

can contain any single element G ∈ Ω. For any (⊆ Ω, define c(() def
=

∑
G∈(c(G).

Define the aggregate (“block”) Markov chain % on the state space {1, ..., '},

%8 9
def
=
c

(
Ω8 ∩Ω 9

)
Θc (Ω8)

, 8, 9 ∈ {1, ..., '}. (2.4.9)

One can easily check that these transition probabilities are reversible with respect to
the distribution c̄8

def
= c(Ω8). Next define a restricted (“within-block”) chain %8 for

each subset Ω8 as follows: if G ∈ Ω8 and H ≠ G then

%8 (G, H)
def
=

{
%(G, H) H ∈ Ω8
0 H ∉ Ω8

, (2.4.10)

and %8 (G, G)
def
= 1 −∑

H≠G %8 (G, H). The spectral gap of Δ% satisfies the lower bound

Δ% >
1
2
Δ
%

min
8=1,...,'

Δ%8 (2.4.11)

Cheeger’s inequality. For any nonempty subset (⊆ Ω define the conductance
Φ(() by

Φ(() def= 1
c(()

∑
G∈(,H∈(2

cG%GH (2.4.12)

and define Φ%
def
= min(:0<c(()61/2Φ((). Cheeger’s inequality states that

Φ2
%

2
6 Δ% . (2.4.13)

71

Decomposition of the circuit Propagation Markov chain
The subsets in our decomposition are defined by

ΩA
def
= {(C1, ..., C=) ∈ Ω : A 6 C8 6 A + ℓ for all 8 = 1, ..., =} , A = 0, ..., � − ℓ

(2.4.14)
(recall ℓ def

= log(=)). Every valid time configuration is contained in at least one ΩA ,
so Ω = ∪�−A

A=0 ΩA as required. The maximum number of blocks that can contain any
particular time configuration isΘ = :; this maximum is attained by any configuration
(C1, ..., C=) for which C1 = ... = C= = A, with such configurations being contained in
ΩA−ℓ, ...,ΩA .

Next we compute the aggregate transition probabilities %8 9 . In particular, we will need
the transition probability between consecutive blocks %A,A+1. Since the distribution
over time configurations is uniform, we have

c(ΩA ∩ΩA ′
c(ΩA)

=
|ΩA ∩ΩA ′ |
|ΩA |

for all A, A′ = 0, . . . , � − ℓ. To determine |ΩA |, we use the recursion relation
0ℓ = 202

ℓ−1 − 0
4
ℓ−2 for the number of partially completed circuit configurations 0ℓ

of a bitonic block of rank ℓ which is defined in Definition 2.2.7 and the recursive
relation is proved in Theorem 2.7.10). This recursion relation has been studied
previously [62] and has the asymptotic solution 0ℓ = q−1l2ℓ , where q = (1 +

√
5)/2

is the golden ratio and l = 1.8445... does not have a known closed form. Next
in Appendix 2.7 we show that |ΩA | = |ΩA ′ | for every pair of blocks A, A′, which
follows from the fact that the valid configurations of any circuit architecture are
invariant under permutation of the qubit labels, together with an explicit set of
permutations we define that relates the architecture in each block. Therefore we have
|ΩA | = 0ℓ = q−1l2ℓ for all A = 0, ..., � − ℓ.

To evaluate (2.4.9) we also need to count the number of configurations contained in
the intersection of two such consecutive blocks, see Figure 2.8. The key insight is that
removing either the first or last layer of any block will split it into two independent
bitonic blocks on half the number of qubits, which implies that |ΩA ∩ΩA+1 | = 02

ℓ−1
and so

c(ΩA ∩ΩA+1)
c(ΩA)

=
02
ℓ−1
0ℓ

= q−2 , A = 0, ...,) − ℓ. (2.4.15)

and similarly,

c(ΩA ∩ΩA+ 9)
c(ΩA)

=
02 9
ℓ− 9
0ℓ

= q−2 9 , A = 0, ...,) − ℓ. (2.4.16)

and so the aggregate transition probabilities decay doubly exponentially with distance,

%(A, A + 9) = ℓ−1q−2 9 , A = 0, ..., � − ℓ. (2.4.17)

72

Figure 2.8: The region in the intersection of the red and green bitonic blocks B3 contains the time
configurations that belong to ΩA1 ∩ ΩA2 . The key insight is that the valid time configurations in
the intersection of these blocks can be counted by observing that the intersection corresponds to
two independent copies of B∈. Similarly, the configurations contained in the intersection Ω6 ∩Ω8
correspond to 4 independent copies of B1.

Next we lower bound the minimum conductance Φ
%
. Let (be a nonempty subset

of blocks, (⊂ {0, ..., � − ℓ}. Define c(() def= ∑
A∈(c(ΩA), and assume c(() 6 1/2.

There must be some A′′ < � − ℓ such that A′′ ∉ (, and so

1
c(()

∑
A∈(,A ′∈(2

c(ΩA)%A,A ′ > 2ℓ−1c(ΩA ′′−1∩ΩA ′′) = 2ℓ−1 0
2
ℓ−1
|C| > 2ℓ−1(<ℓ+1)−1q−2.

(2.4.18)
Therefore, Cheeger’s inequality yields

Δ
%
> 2ℓ−2(<ℓ + 1)−2q−4 =

1
polylog(=) . (2.4.19)

It remains to lower bound the spectral gaps Δ%8 corresponding to the restricted
(“within-block”) chains defined in (2.4.10). By our careful choice of the block
decomposition, we demonstrate in Section 2.7 a one-to-one correspondence between
the time configurations in any block Ω8 and the equal area dyadic tilings of a unit
square, and crucially this correspondence also exactly maps the edge-flip Markov
chain moves considered in [27] to the updates which describe the application of a
local gate to a valid time configuration. Since the relaxation time of the edge-flip
Markov chain is O(=4.09) we have Δ%8 = Ω(=−4.09) and so

Δ% = Ω̃(=−4.09), (2.4.20)

and by (2.4.8) this implies
Δ� = Ω̃(=−3.09). (2.4.21)

2.5 Local detection of Pauli errors
In this section we describe the local detection of errors on spacetime codewords
with probability 1 − 2− polylog(#) with polylog(#)-depth circuits. The class of errors

73

that we handle is the set of tensor products of Pauli operators on the physical qubits
(which includes data and time qubits). Interestingly, we can detect Pauli errors even
if the weight of the error (the number of qubits affected) exceeds the distance of
the spacetime code! Here we only describe a single round of error detection while
assuming the ability to perform measurements implemented by low-depth circuits
perfectly.

Definition 2.5.1 (Pauli group). The Pauli group on # qubits, denoted by P# , is the
group generated by the #-fold tensor product of the Pauli matrices

� =

(
1 0
0 1

)
, f- =

(
0 1
1 0

)
, f. =

(
0 −8
8 0

)
, f/ =

(
1 0
0 −1

)
(2.5.1)

along with multiplication by {±1,±8}.

Definition 2.5.2 (Pauli channels). A quantum operator E acting on # qubits is a
Pauli channel if it has a Kraus decomposition

E(d) =
∑
%∈P#

2% %d%
† (2.5.2)

where {2%} is a probability distribution over P# .

Pauli stabilizers of the spacetime code
There are nonidentity elements % ≠ � of the Pauli group P# that stabilize the
spacetime code, i.e., for all |k〉 ∈ C, we have % |k〉 = |k〉. In this section, we identify
three stabilizers; in the next section, we will argue that these are the only nonidentity
stabilizers, and all other nonidentity Pauli operators can be locally detected with high
probability.

Let � denote the circuit such that the code Hamiltonian is �28A2D8C [�], as described
in Section 2.3. Recall that - = �−2

2 where � is the depth of �.

For any ? ∈ {1, . . . , =} and 9 ∈ {1, . . . , I} consider the set of 4 qubits
C?, 9 ,C@1, 9 ,C@2, 9 , and C?′, 9 where @1 is the qubit in layer ! 9 interacting with ?,
@2 is the qubit in layer !2-+1− 9 interacting with ?, and ?′ is the qubit in layer
!2-+1− 9 interacting with @1. Because the layers ! 9 and !2-+1− 9 are different layers
of the bitonic architecture, we know that these layers together form a product of
bitonic blocks of rank 2, B2 (see Corollary 2.7.9). Then, it is easy to also see that
?′ is the qubit in layer ! 9 interacting with @2. Define A42C (?, 9) as the elements
{?, @1, @2, ?

′}. It is not difficult to see that A42C (·, 9) yields the same set on inputs
?, @1, @2, ?

′. Let the stabilizer (2;>2: [A42C (?, 9)] be

(2;>2: [A42C (?, 9)]
def
= f/ (C?, 9) ⊗ f/ (C@1, 9) ⊗ f/ (C@2, 9) ⊗ f/ (C?′, 9) (2.5.3)

wheref/ (C?, 9) denotes thef/ operator acting on the clock qubit C?, 9). Furthermore,
let

74

(5 ;06
def
=

=⊗
?=1

f/ (F?) (2.5.4)

where f/ (F?) denotes the f/ operator acting on the flag qubit corresponding to data
qubit ?. This is the product of f/ ’s acting on all the flag qubits.

Claim 2.5.3. (2;>2: [A42C (?, 9)] for any qubit ? and 1 6 9 6 - and (5 ;06 are Pauli
stabilizers of the spacetime code.

Proof. Let 3 = (C1, . . . , C=) ∈ T be a valid time configuration of the spacetime
history state.

Recall that every time configuration can be seen as the result of incrementing the
clocks by applying gates. Therefore there is a sequence of time configurations
(30, 31, . . . , 3 5 = 3) such that 30 has all clock and flag registers set to 0, and each
38+1 differs from 38 by the application of a gate. To each time configuration 38 we
can associate a 138 ∈ {±1} such that

(2;>2: [A42C (?, 9)] |38〉 = 138 |38〉. (2.5.5)

Clearly 130 = 1. We argue that 138+1 = 138 . Consider the gate differentiating these
two configurations. Applying it must change the time registers by flipping the values
of CA, 9 ′ and CB, 9 ′ (and perhaps the corresponding flag registers). This either flips the
sign of 138 twice (if this gate is one of A42C (?, 9)) or not at all (if it is not). Therefore,
138+1 = 138 . This proves that 13 = 1 and that (2;>2: [A42C (?, 9)] is a stabilizer as

(2;>2: [A42C (?, 9)] |k〉 =
1√
|T |

∑
3∈T

(2;>2: [A42C (?, 9)] |3〉 ⊗ |k3〉 = |k〉. (2.5.6)

A similar argument can be made showing that (5 ;06 is also a stabilizer by arguing
that either pair of flag qubits must be flipped or none are flip when transitioning from
a valid time configuration to the next. Therefore, (5 ;06 is also a stabilizer.

�

Let S be the closure of the following set under product,

{
�, (5 ;06

}
∪

=⋃
?=1

-⋃
9=1
(2;>2: [A42C (?, 9)] . (2.5.7)

Every element of S is a stabilizer.

75

Locally detecting errors
In this section, we argue that there is a set of local operators that can detect, with
high probability, any Pauli error in P# \ S.

Our argument will rely on a structural property of the Brown-Fawzi circuit � that
holds with high probability (when the circuit is sampled according to the random
Clifford model described in Section 2.2).

Definition 2.5.4. Adepth� circuit on = qubit is nice if for every qubit ? ∈ {1, . . . , =},
there exists layers 1 6 C, C′ 6 � such that:

1. The two-qubit gate acting on ? in layer !C is � ⊗ �, where the Hadamard gate
� acts on qubit ?, and

2. The two-qubit gate acting on ? in layer !C ′ is (⊗ �, where the phase gate

(=

(
1 0
0 8

)
acts on qubit ?.

Fact 2.5.5 ([24]). The Brown-Fawzi encoding circuit � sampled according to the
random Clifford model described in Section 2.2 is nice with probability at least
1 − 2−Ω(log2 =) .

The following fact can be verified via a simple computation.

Fact 2.5.6. Each of the following unitary operators has eigenvalues 8 and −8:

1. �f-�f-

2. �f/�f/

3. (†f†
.
(f.

Here, � is the Hadamard gate, and (is the phase gate.

We now proceed to prove the local error detection property of the spacetime code.

Theorem 2.5.7. Suppose the Brown-Fawzi encoding circuit defining the spacetime
code C is nice. Then there exists a collection D of polylog(#)-local projectors
satisfying the following properties:

1. Each projector Π ∈ D acts on 10 qubits of the code space, and acts on
B = polylog(#) ancilla qubits initialized in the |0〉 state.

2. For all =-qubit states |k〉, we have that Π|k〉|0B〉 = 0 for all Π ∈ D if and only
if |k〉 is a codeword in the spacetime code C.

76

3. For all Pauli channels E, for all codewords |k〉 ∈ C, there exists a projector
Π ∈ D such that

Tr (Π (E(k) ⊗ |0B〉〈0B |)) > (1 − U) (1 − 2− polylog(#)) (2.5.8)

where k = |k〉〈k | and U = ∑
%∈S 2% is the weights of the channel E on the

Pauli stabilizers in S.

Furthermore, there exists ameasurement" , implementable by a circuit of polylog(#)
depth acting on O(# polylog(#)) qubits, such that for all Pauli channels E and for
all codewords |k〉 ∈ C

Tr
(
"

(
E(k) ⊗ |0#B〉〈0#B |

))
> (1 − U) (1 − 2− polylog(#)). (2.5.9)

Proof. We first define a set of projectors D0 that weakly detect errors, in the sense
that for every Pauli channel E, for every spacetime codeword |k〉, there is a projector
Π ∈ D0 that has expectation value at least (1 − U)/polylog(#) on E(k). We will
then boost the set D0 into the desired set D that detects errors with high probability,
using QMA-amplification techniques.

A weak set of detector projections. The weak detection set D0 will simply be
the set of local terms of the spacetime circuit Hamiltonian defining the spacetime
code. We first show that for each member % of the Pauli group P# that is not a Pauli
stabilizer in S, there exists a projector Π ∈ D0 such that

Tr
(
Π %k%†

)
>

1
polylog #

. (2.5.10)

Fix a % ∈ P# \ S, and fix a spacetime codeword |k〉 ∈ C, which we can write as

|k〉 = 1√
|T |

∑
3∈T
|3〉 ⊗ |k3〉. (2.5.11)

We divide our analysis into several cases. Write % = % 5 ;06 ⊗ %2;>2: ⊗ %30C0, where
% 5 ;06 acts on the {F?} registers, %2;>2: acts on the {C?, 9 } registers and %30C0 acts on
the {S?} registers.

Case 1. Suppose that %2;>2: has a tensor factor that is either f- or f. = −8f/f- .
In other words, there exists a data qubit ? ∈ {1, . . . , =} and an associated clock
qubit 9 ∈ {1, . . . , -} such that the tensor factor of % corresponding to the
register C?, 9 (i.e. the part of % acting on the 9’th clock qubit of ?’s clock) is
one of {f- , f. }. We can write % = %/%- where %/ consists of only f/ and
identity factors and %- consists only f- and identity factors. By assumption,
%- has at least one f- acting on a clock qubit.
Let d = TrC? (%k%

†) denote14 the reduced density matrix of % |k〉 on the clock
14Here and throughout the paper, we use the notation R to refer to all registers excluding R.

77

register C?. Notice that d = %? TrC? (k)%
†
? where %? is the restriction of % to

the qubits of the C? register. We now appeal to the following Lemma, which
we prove in the Appendix as Lemma 2.7.17:

Lemma 2.5.8. The marginal distribution of the clock register C? of any data
qubit ? in a spacetime codeword is uniform over the - + 1 = �/2 states

|0-〉, |10-−1〉, . . . , |1-〉. (2.5.12)

Lemma 2.5.8 implies that TrC? (k) =
1
-+1

∑-
C=0 |1C0-−C〉〈1C0-−C |. Since this is

a convex combination over standard basis states, we have that

d = %-

(
1

- + 1

-∑
C=0
|1C0-−C〉〈1C0-−C |

)
%
†
-
. (2.5.13)

It is easy to see that for all %- ≠ �, we have that there is at least one 0 6 C 6 -
such that %- |1C0-−C〉 is not a valid clock state – that is, there is a location
9 ∈ {1, . . . , -} such that

Tr
(
|01〉〈01|C?, 9C?, 9+1 %- |1C0-−C〉〈1C0-−C |%

†
-

)
= 1. (2.5.14)

Notice that the projector Π 9 = |01〉〈01|C?, 9C?, 9+1 is precisely one of the terms
in the spacetime Hamiltonian (see (2.2.9)). Thus we have that

Tr(Π 9 %k%
†) = Tr(Π 9 d) >

2
�
= Ω

(
1

log5 #

)
. (2.5.15)

Case 2. Suppose that %2;>2: only has f/ or identity factors and % 5 ;06 has a tensor
factor that is either f- or f. = −8f/f- . In other words, there exists a data
qubit ? ∈ {1, . . . , =} such that the associated tensor factor of % corresponding
to the register F? is one of {f- , f. }. We can write % 5 ;06 ⊗ %2;>2: = %/%-
where %/ consists of (up to multiplication by {1,−1, 8,−8}) only f/ and
identity factors and %- consists only f- and identity factors. By assumption,
%- has at least one f- acting on a flag qubit.

Case 2.1. We first consider a subcase that %- includes as a factor the operator

) 5 ;06 =
⊗
?

f- (F?). (2.5.16)

In other words, %- flips every flag qubit. This maps every valid time
configuration 3 = (C1, . . . , C=) to a “mirror” time configuration 3 =

(C1, . . . , C=) where C 9 = � − 1 − C 9 according to the mapping described
in (2.2.4). Mirror time configurations are also valid time configurations
(i.e. they satisfy the causality constraints of the spacetime Hamiltonian).

78

We argue that these mirror time configurations, combined with the state of
the data qubits, cannot satisfy the propagation constraints of the spacetime
Hamiltonian. To see this, suppose that the circuit � had the following
subcircuit � appended to both the beginning and end of the circuit�. The
subcircuit � consists of two bitonic block architectures Bℓ, wherein each
block all the gates are identity gates except for the last layer, which is
populated with f- ⊗ f- gates acting on each neighboring pair of qubits.
Thus the subcircuit � is equivalent to the identity circuit because the two
layers of f- gates cancel each other out. Appending � to the beginning
and end of the circuit � yields a circuit with a small increase in depth,
and it can be checked that this does not qualitatively affect the analysis of
the spacetime Hamiltonian. Thus we will assume that our circuit � has
this structure.
The circuit � acts on = qubits, = − : of which are ancilla qubits that
are initialized in all the all zeroes state. Let ? denote an ancilla qubit.
Let 3 = (C1, . . . , C=) be any valid time configuration such that C? = ℓ − 1.
Since this time is before the first row of f- gates in the circuit �, qubit ?
in |k3〉 is in the state |0〉. The f- gates get applied in the transition from
time ℓ − 1 to ℓ, so qubit ? in |k′3〉 is in the state |1〉, where 3′ is the time
configuration obtained from 3 by applying the two-qubit f- ⊗ f- gate
to qubit ? and its neighbor.
Now consider the mirror time configurations 3 = (C1, . . . , C=), and
3′ = (C′1, . . . , C

′
=). We have that C ? = � − 1 − C? = � − ℓ − 1 and

C
′
? = � − 1− C′? = � − ℓ − 2. The gate on qubit ? corresponding between
times � − ℓ − 2 and � − ℓ − 1 is an identity gate (because we’re assuming
that the circuit � has the subcircuit � at the end).
Let Π = �C [?, @] for C = � − ℓ − 1. This projector acts as the identity on
the S register. Observe that

% |k〉 = 1√
|T |

∑
3∈T

%/ |3〉 ⊗ %30C0 |k3〉 (2.5.17)

=
1√
|T |

∑
3∈T
|3〉 ⊗ 13%30C0 |k3〉 (2.5.18)

for some 13 ∈ {±1}.
In what follows, we use the notation 3[?, @] to denote the pair (C?, C@),
and use 3 →?,@ 3

′ to indicate that the time configuration 3′ is 3 updated
by the gate*C [?, @]. We now calculate the expectation

〈k |%†Π% |k〉 (2.5.19)

79

=
1
|T |

∑
3∈T :

3[?,@]=(C,C)
3→?,@3

′

(13〈k3 | + 13′〈k3′ |) %†30C0Π%30C0 (13 |k3〉 + 13′ |k3′〉)

(2.5.20)

=
1
|T |

∑
3∈T :

3[?,@]=(C,C)
3→?,@3

′

(
1 − 131′3Re 〈k3 |k3′〉

)
. (2.5.21)

Observe that when 3[?, @] = (C, C), we have that 3[?, @] = (� − 1 −
C, �−1− C) = (ℓ, ℓ), and 3′[?, @] = (ℓ−1, ℓ−1). But from the reasoning
above, we have that |k3〉 and |k3′〉 are orthogonal, because the state of
qubit ? of the two vectors are orthogonal. Therefore

〈k |%†Π% |k〉 =
∑
3∈T :

3[?,@]=(C,C)
3→?,@3

′

1
|T | . (2.5.22)

This is equal to the probability that a uniformly random time configuration
3 is such that 3[?, @] = (C, C). By Lemma 2.5.8, this is at least 1/�2 =

1/polylog(#).
Case 2.2. The second subcase is that there is at least one flag qubit F? such

that %- is identity on it. We follow a similar line of reasoning as in Case
1.
Let (?, @) be a pair of data qubits such that %- acts as the identity on F?
but has a f- acting on F@. Let C∗ = d-/2e. Let 3 = (C1, . . . , C=) be any
time configuration where C? = C@ = C∗.
Let |3′〉 = %- |3〉. Then it must be that 3′ ∉ T . In other words, it is
not a valid time configuration. This is because if 3′ = (C′1, . . . , C

′
=), then

C′? = C? = C
∗, yet C′@ = 2- + 1 − C@ > - + 1. In particular, 5@ (3′) = 1

and 5? (3′) = 0, which violates the causality constraints on the set of
time configurations. In other words, the “membrane” described by 3′ is
broken between qubits ? and @. LetΠ be the component of �20DB0; [?, @]
verifying C? = C∗ from the spacetime Hamiltonian (see (2.2.14)). Then
we have that 〈3′|Π|3′〉 = 1.
Let d = TrT(%k%†) denote the reduced density matrix of % |k〉 on the
time configuration register T. Notice that d = %C8<4 TrT(k) (%C8<4)†
where %C8<4 is the restriction of % to the time configuration register.
Since

TrT(k) =
1
|T |

∑
3

|3〉〈3 | (2.5.23)

is a convex combination of classical states, and the %/ operator leaves
classical states invariant, we have that d = %- TrT(k)%

†
-
.

80

From a similar argument to that in Case 1, we obtain that the probability
of sampling a time configuration 3 = (C1, . . . , C=) such that C? = C@ = C∗
is 1/�2. Thus

Tr(Π%k%†) = Tr(Πd) > 1
�2 . (2.5.24)

Case 3. Now suppose that % 5 ;06 ⊗%2;>2: only has f/ or identity factors. This means
that for all 3 ∈ T , we have % 5 ;06 ⊗ %2;>2: |3〉 = 13 |3〉, where 13 ∈ {±1}. Thus
we can write % |k〉 as

% |k〉 = 1√
|T |

∑
3∈T
|3〉 ⊗ 13%30C0 |k3〉. (2.5.25)

Case 3.1. First, suppose that %30C0 ≠ �. Let ? ∈ {1, . . . , =} be a data qubit
such that %30C0 is some non-identity Pauli matrix f ∈ {f- , f. , f/ } on
S?. If f = f. , let C denote a layer and @ ≠ ? denote a qubit such
that *C [?, @] in the Brown-Fawzi circuit is (⊗ �, with (acting on ?;
otherwise, let C and @ be such that *C [?, @] = � ⊗ �. Such C, @ exist by
Proposition 2.5.5. Without loss of generality suppose that f = f- .
Consider the projectorΠ = �C [?, @] in the spacetime circuit Hamiltonian,
which is one of the projectors in the set D0. Let 3 = (C1, . . . , C=) be a
time configuration such that C? = C@ = C. Let 3′ = (C′1, . . . , C

′
=) be the

same as 3 except C′? = C′@ = C + 1 (i.e. it is the configuration after gate
*C [?, @] is applied). Thus |k3′〉 = � |k3〉. Then notice that

(13〈3 | ⊗ 〈k3 | + 13′〈3′| ⊗ 〈k3′ |) %†30C0Π%30C0 (13 |3〉 ⊗ |k3〉 + 13′ |3′〉 ⊗ |k3′〉)
(2.5.26)

= (13〈3 | ⊗ 〈k3 | + 13′〈3′| ⊗ 〈k3 |�) (� ⊗ f†)Π(� ⊗ f) (13 |3〉 ⊗ |k3〉 + 13′ |3′〉 ⊗ � |k3〉)
(2.5.27)

This expectation vanishes if and only if

〈k3 |�f†�f |k3〉 = 1313′ . (2.5.28)

However, Proposition 2.5.6 implies that 〈k3 |�f†�f |k3〉 is either 0
or purely imaginary. This implies that (2.5.26) does not vanish, and
furthermore, it is exactly equal to 1.
Thus we can evaluate the expectation of Π = �C [?, @] with respect to
% |k〉. The expectation 〈k |%†Π% |k〉 is equal to

1
|T |

∑
3,3′

3[?,@]=(C,C)
3→?,@3

′

(13〈3 | ⊗ 〈k3 | + 13′〈3′| ⊗ 〈k3′ |) %†30C0Π%30C0 (13 |3〉 ⊗ |k3〉 + 13′ |3′〉 ⊗ |k3′〉)

=
∑

3:3[?,@]=(C,C)

1
|T | .

(2.5.29)

81

This is equal to the probability that a uniformly random time configu-
ration 3 is such that 3[?, @] = (C, C). By Lemma 2.5.8, this is at least
1/�2 = 1/polylog(#). The cases f = f/ and f = f. can be treated as
described above by replacing � with (.

Case 3.2. Next, we handle the case of %30C0 = �. Since % ∉ S, we have that
% 5 ;06 ≠ (5 ;06.

Case 3.2.1. First suppose that %2;>2: ≠ �.
Case 3.2.1.1. Suppose there exists a pair of data qubits (?, @) and

an index 1 6 9 6 - such that
1. ? and @ are neighboring qubits in the circuit � at time at a

time C such that 9 = C or 9 = 2- + 1 − C.
2. %2;>2: has a f/ factor acting on C?, 9 but has an identity factor

acting on C@, 9 .
With probability at least 1/�2 over a uniformly random time
configuration 3 such that 3[?, @] = (9 , 9), we have that 1313′ =
−1, where 3 →?,@ 3′. Consider the projector Π = � 9 [?, @]
in D0. In order for 〈k |%†Π% |k〉 to vanish, we would need
that 〈k3′ |k3〉 = −1 for all such 3 and 3′, which cannot hold.
Therefore 〈k |%†Π% |k〉 > 1/polylog(#).

Case 3.2.1.2. Now assume that for all pairs of data qubits (?, @)
and an index 1 6 9 6 - such that
1. ? and @ are neighboring qubits in the circuit � at time C for

9 = C or 9 = 2- + 1 − C, then
2. %2;>2: has a f/ factor acting on C?, 9 if and only if %2;>2: has

a f/ factor acting on C@, 9 .
We argue that if there is a f/ factor on C?, 9 then there is a f/
factor on C@, 9 for all @ in A42C (?, 9) (defined earlier). This is
because this is precisely the equivalence class of qubits that are
neighbors in times involving qubits in the 9 th layer.
Therefore, %2;>2: is a product of (2;>2: [A42C (?, 9)] for some
subset of rectangles meaning %2;>2: ∈ S and we can equivalently
consider % · %2;>2: as the logical Pauli error.

Case 3.2.2. Finally, suppose that %2;>2: = � but % 5 ;06 ≠ �. Since
% 5 ;06 ≠ (5 ;06, there exists two data qubits (?, @) such that % 5 ;06
has a f/ factor acting on F? but has an identity factor acting
on F@. With probability at least 1/�2 over a uniformly random
time configuration 3 such that 3[?, @] = (-, -), we have that
1313′ = −1, where 3 →?,@ 3′. This is because it is the transition
from time C = - to C = - + 1 that the flag qubit on qubits ? and

82

@ switch from |0〉 to |1〉. Consider the projector Π = �- [?, @]
in D0. In order for 〈k |%†Π% |k〉 to vanish, we would need that
〈k3′ |k3〉 = −1 for all such 3 and 3′, which cannot hold. Therefore
〈k |%†Π% |k〉 > 1/polylog(#).

Boosting the success probability. We now boost our detection setD0 to a stronger
set of projectors D that can detect errors with very high probability. We leverage the
following result of Marriott and Watrous [70]:

Lemma 2.5.9 (In-place amplification [70]). Let X > 0. Let � be a circuit on A
qubits along with B ancilla bits. Then there exists a circuit �′ on A qubits and
B′ = B + O(X−3) ancillas, that has size at most O(X−3) times the size of �, such that
the following holds: for all A-qubit states |i〉, if � accepts |i〉|0B〉 with probability
0, then �′ accepts |i〉|0B′〉 with probability 0. Otherwise, if � accepts |i〉|0B〉 with
probability at least X, then �′ accepts |i〉|0B′〉 with probability at least 1 − 2−1/X.

Here, we define the acceptance probability of the circuit to be the probability that the
first qubit measures |1〉.

For each projector Π ∈ D0, we create a “boosted” projector Π′ ∈ D in the following
way: let � denote a circuit that performs the projective measurement {Π, � −Π} and
records the outcome in an ancilla qubit. The circuit � acts on 9+1 qubits, and has size
O(1). Let �′ be the amplified circuit given by Lemma 2.5.9 for X = 1/polylog(#).
The circuit �′ acts on 9 qubits and B′ = O(X−3) ancillas. Define the projector
Π′ = �′(|1〉〈1| ⊗ �) (�′)† where |1〉〈1| denotes the projection onto the first qubit being
in the state |1〉.

Then we have that, for all spacetime codewords |k〉, for all Pauli errors % ∈ P# ,

1. If Π% |k〉 = 0, then Π′(% |k〉|0B′〉) = 0, and

2. If Tr(Π%k%†) > 1/polylog(#), then Tr(Π′(%k%†) ⊗ |0B′〉〈0B′ |) > 1 −
2− polylog(#) .

Thus we have established that for all non-identity % ∈ P# , there exists a projector
Π ∈ D such that Tr(Π %k%†) > 1 − 2− polylog(#) . For general Pauli channels E, we
have that

Tr (Π E(k)) =
∑
%

2%

(
Π %k%†

)
>

∑
%≠�

2% (1−2− polylog(#)) = (1−2�) (1−2− polylog(#)).

(2.5.30)
This concludes the first part of the Theorem.

We now establish the “Furthermore” part of the Theorem. Since the spacetime
Hamiltonian is spatially local in polylog(#) dimensions, and each qubit participates

83

in at most polylog(#) terms, this implies that the projectors in D can be divided
into = polylog(#) layers �1, . . . , � such that the projectors in any set � 9 act on
disjoint sets of qubits.

The measurement " will consist of measuring the layers �1, �2, . . . , � in sequence,
and accepting if any of the projectors in the layers accept. Since each projector can
be implemented using a size polylog(#) circuit, each layer measurement can be
implemented using a depth polylog(#) circuit, so, therefore, " can be implemented
using a depth polylog(#) circuit.

Let % denote a non-identity Pauli operator in P# , and let |k〉 be a spacetime codeword.
Let � 9 be the first layer that contains a projector Π ∈ D projector that accepts % |k〉
with positive probability. Then the probability that measuring " rejects on the state
% |k〉 is at most the probability that measuring Π rejects % |k〉, which is 2− polylog(#) .
We do not have to worry about the projectors in earlier layers, because by definition
they reject % |k〉 with certainty, and leave the state unchanged.

We can extend this argument to a general Pauli channel E in the same way as before,
and this completes the proof of the Theorem. �

2.6 Alternate constructions and spatial locality
Good approximate QLDPC from weighted FK Hamiltonians
In this section, we describe another closely related construction of approximate
LDPC codes, which is based on using the standard Feynman-Kitaev construction
with a global clock as well as recently-introduced variants that increase the overlap
of the history state with the beginning and end of the computation [14, 25]. The
primary advantage of this version of the construction is the significantly simpler
analysis of the spectral gap, even in the presence of nonuniform weight distributions
on the time steps of the computation. The main disadvantage for this version of
the construction is that the increase in energy caused by local errors is significantly
reduced in some cases (thereby making them more difficult to detect). In the global
clock construction, there are local errors with expected energy scaling like 1/) where
) is the (polynomial) size of the computation, instead of errors having energy 1/�
in the spacetime construction where � is the (polylogarithmic) depth. This can be
seen as a fulfillment of the intuition that the spacetime circuit-to-Hamiltonian is
more robust than its global clock counterpart. Finally, due to the simplification in the
analysis for the global clock construction, we can achieve a provably optimal tradeoff
between the approximate error Y of the code and the soundness B, using a result that
was previously established in [14].

Result. For any Y(#) > 0 there exists an [[#, :, 3, Y, ℓ, B]] approximate LDPC
code with : = Ω(#/log5 #), 3 = Ω(#/log5 #), ℓ = 5, B = polylog(#) . The

84

spectral gap of the code Hamiltonian is

Δ� = Ω

(
Y(#)

#3 polylog(#)

)
. (2.6.1)

The encoding circuits analyzed by Brown and Fawzi with depth � = O(log3 =) have
size) = O(= log2 =). To ensure that only a polylogarithmic number of Hamiltonian
terms act on each physical qubit we consider the same sequence of random Clifford
gates interspersed with bitonic sorting circuits of Section 2.2,

�∏
C=1

⊗
(?,@)∈!C

*C [?, @] (2.6.2)

but now the local gates are each applied individually in sequence. Note that in this
section we do not reverse the application of the gates, and the time register is not
periodic. For each layer !C we choose an ordering (?1, @1)...(?=/2, @=/2) for the pairs
of qubits interacting within that layer, and we re-index this sequence of) = =�/2
gates as simply*) ...*1,

*) ...*1 = *C [@=/2, ?=/2] ...*2 [?1, @1]*1 [?=/2, @=/2] ...*1 [?1, @1] (2.6.3)

The code space, which will be the ground space of the code Hamiltonian, is

C =
{
)+=∑
C=0

√
cC |C〉� ⊗ *C−=...*1 |k, 0, ..., 0〉(: |k〉 ∈ C=−:

}
(2.6.4)

where by convention we define *C−=...*1 = 1 for C < =, and the distribution c is
defined by

cC =

{
Y
)+= , 0 6 C <) + =
1 − Y , C =) + =

. (2.6.5)

Instead of the standard �8= of the form,

|0〉〈0|� ⊗ 1(1...=−: ⊗
(

=∑
A==−:

|1〉〈1|(A

)
. (2.6.6)

we use a "staggered" version of the input check,

�in =
=∑

A==−:
|A − = + :〉〈A − = + : |� ⊗ �(1...=−: ⊗ |1〉〈1|(' . (2.6.7)

The point of the staggered input check is to avoid having a nonconstant number of
terms acting on the clock bits that represent C = 0.

The propagation Hamiltonian for this nonuniform distribution over time steps is based
on the method used in [14]. One first considers the Markov chain with Metropolis

85

transition probabilities (see [65] for a general background on Markov chains) from C

to C − 1, C + 1 that is reversible with respect to c. For 0 < C <) − = we have

%C,C+1 =
1
4

min
{
1,
cC+1
cC

}
, %C,C−1 =

1
4

min
{
1,
cC−1
cC

}
, %C,C = 1 − %C,C+1 − %C,C−1

(2.6.8)
and also

%0,C =
1
2

min
{
1,
c1
c0

}
, %0,0 = 1 − %0,1 (2.6.9)

and

%)+=,)+=−1 =
1
2

min
{
1,
c)+=−1
c)+=

}
, %)+=,)+= = 1 − %)+=,)+=−1. (2.6.10)

The transition probabilities satisfy cC%C,C ′ = cC ′%C ′,C for all 0 6 C, C′ 6) + =,
and so

∑)+=
C=0 cC%C,C ′ = c′C . Therefore the propagation Hamiltonian defined by

�prop =
∑)+=
C=0 �prop(C) with

�prop(C) =
1
2
(
%C,C |C〉〈C |� ⊗ 1(+ %C−1,C−1 |C〉〈C |� ⊗ 1((2.6.11)

− c1/2
C c

−1/2
C−1 %C,C−1 |C〉〈C − 1|� ⊗ *C−= − c1/2

C−1c
−1/2
C %C−1,C |C − 1〉〈C |� ⊗ *†C−=

)
,

(2.6.12)

is such that �in + �prop has the ground space C in (2.6.4) as claimed.

The locality of the checks ℓ = 5 follows from the fact that when the clock register is
implemented with qubits as in (2.2.9) the local terms in � are at most 5-local, and
this is unaffected by the modified coefficients in the propagation terms. The error
bound of Y for the code follows from the same argument used in Section 2.3 together
with the fact that the distribution c assigns a probability of 1 − Y to the final time
step of the computation.

To obtain the bound B = polylog(#) on the number of check terms acting on each
physical qubits, we first consider the clock bits. For = + 2 6 C 6) + = − 2 there are 5
terms acting on clock bit C,

�prop(C − 2), �prop(C − 1), �prop(C), �prop(C + 1), �prop(C + 2) (2.6.13)

and for C = = − 1,) + = − 1,) + = the number of propagation terms is even fewer.
For 0 6 C 6 =, each clock bit participates in one term from �in and at most 5 terms
from �prop. Finally, the number of nontrivial gates acting on each system qubit is at
most � = polylog(#).

The spectral gap of �prop is the same as the spectral gap of the Markov chain %
described above, which can be lower bounded by Cheeger’s inequality. Since 1−>(1)

86

of the weight in the stationary distribution is concentrated on the final time step
C =) + =, the subset (= {0, ...,) + = − 1} has the minimum conductance which is

Φ =
1

c(()
∑

C∈(,C∉(
cC%C,C ′ =

1
Y

(Y

) + =

)
%)+=−1,)+= =

1
4() + =) (2.6.14)

and since) = = polylog(=) we have

Δ�prop = Ω

(
1

=2polylog(=)

)
. (2.6.15)

To go from Δ�prop to Δ� we apply the same argument as in Section 2.4, and use the
geometrical lemma to obtain

Δ� = Ω

(
Y

=3polylog(=)

)
. (2.6.16)

Finally, we note that because of the dual importance of the spectral gap and the
overlap with the endpoint of the computation, which respectively determine the
soundness of the code and the infidelity of recovery, the optimality of the distribution
c in (2.6.5) follows from Theorem 8 in [14].

Theorem 2.6.1 ([14]). Let |k〉 be the ground state of a Hamiltonian � with eigen-
values � def

= �0 6 �1 6 . . . 6 �) . If � is tridiagonal in the basis {|0〉, . . . , |)〉},

�
def
=

)∑
C=0

0C |C〉〈C | +
)−1∑
C=0

(
1C |C + 1〉〈C | + 1∗C |C〉〈C + 1|

)
, (2.6.17)

with |0C |, |1C | 6 1 for C = 0, . . . ,) then the product Δ� · min{|k |20, |k) |
2} of the

spectral gap Δ� = �1 − � and the minimum endpoint overlap is O()−2).

Spatial locality of the Hamiltonian
In this section, we demonstrate that the code Hamiltonian is indeed polylog(=)-
spatially local. We also provide a sketch of how to make the construction O(log =)-
spatially local at the cost of increasing the locality of the Hamiltonian from 9 to
15.

We give a technical definition for spatial locality that fits the previous descriptions
given in other works [20, 44].

Definition 2.6.2. A code defined by a local Hamiltonian � =
∑
8 �8 is 3-spatially

local if there exists an embedding map emb : & → R3 , where & is the set of qubits,
satisfying the following conditions:

1. For all @1 ≠ @2 ∈ &, ‖emb(@1) − emb(@2)‖2 > 1.

87

2. Let &8 ⊆ & be the set of qubits acted on non-trivially by Hamiltonian �8.
There exists a constant 2 > 0 such that for all @1, @2 ∈ &8,

‖emb(@1) − emb(@2)‖2 6 2. (2.6.18)

We propose such an embedding for 3 = O(log5 =). First, consider the interaction
graph of the qubits in a bitonic block architecture Bℓ for ℓ = log = (there exists an
edge between two qubits if they share a gate). We note the following lemma:

Lemma 2.6.3. The incidence graph of the bitonic block architecture Bℓ is equivalent
to the ℓ-dimensional hypercube.

Proof. The result is easy to see for ℓ = 1. For ℓ > 1, notice that layer L1 connects
matching vertices in two bitonic blocks Bℓ−1 (Corollary 2.7.9), which by induction
yields a ℓ-dimensional hypercube. �

Therefore, there is an encoding ℎ : [=] → Rℓ such that if qubits 8 and 9 interact then
‖ℎ(1) − ℎ(2)‖2 = 1. Let 4 9 denote the 9-th standard basis vector.

Theorem 2.6.4. The code defined in this paper is O(log5 =)-spatially local.

Proof. We provide the explicit embedding map and prove it satisfies the definition.
Our embedding map can be seen as

emb : & → Rℓ × R1 × R- (2.6.19)

defined by

Data registers emb(S8) = (ℎ(8), 0, 0-), (2.6.20)
Flag registers emb(F8) = (ℎ(8), 1, 0-), (2.6.21)

Clock registers emb(C8, 9) = (ℎ(8), 0, 4 9). (2.6.22)

Note that ℓ + 1 + - = log = + 1 + O(log5 =) = O(log5 =).

Every coordinate of every qubit is either 0 or 1 and clearly the qubits are distinct.
Therefore, the minimal distance between them is indeed 1. We now verify that each
of the Hamiltonian terms act on qubits that are only a constant distance of

√
3 apart.

�2;>2: terms. All �2;>2: terms are projections of the form Π
(01)
C8, 9 ,C8, 9+1 . Any pair of

clock qubits C8, 9 and C8, 9 ′ are distance
√

2 in the ℓ2 norm.

�8=8C terms. All �8=8C terms are projections of the form Π
(1)
C8,0 ⊗ Π

(1)
S8 . We note that

for any 8, any clock qubit C8, 9 is distance
√

2 in the ℓ2 norm from S8.

88

�?A>? terms. All �?A>? terms are interactions between the clock, flag, and data
qubits for qubits ? and @ that share a gate*C [?, @] in the circuit. We note that
ℎ(?) and ℎ(@) have Hamming distance 1 (i.e. differ in only one coordinate).
The specific set of qubits involved are S?,S@, F?, F@, as well as six clock
qubits, three C?,· and three C@,· (the exact collection depends on C according
to (2.2.13)). It is not difficult to see that any two of the embeddings of these
qubits differ in at most 3 coordinates, hence a distance of

√
3 in the ℓ2 norm.

�20DB0; terms. A term in �20DB0; compares the clock of a qubit ? to an adjacent
qubit @. It will involve the flag qubit F? and up to two clock qubits C?,0,C?,0+1
(again, 0 depends on C; see (2.2.13)). In addition, it checks the flag qubit
F@ and up to two clock qubits C@,1,C@,2 (here 1 and 2 depend on C; see the
case-wise definition of �20DB0;). Likewise, it is not difficult to see that any two
of these embeddings of these qubits differ in at most 3 coordinates, hence a
distance of

√
3 in the ℓ2 norm.

�

Alternate construction
We now present an alternate construction which improves the spatial locality of the
Hamiltonian. We only provide a sketch of the construction as the majority of the
analysis is similar to that presented in the main sections of the paper. In particular,
we will demonstrate that a different representation of the time register can be used to
make this code O(log =)-spatially local at the cost of worsening the code to being
50-local.

Instead of encoding the time register using a flag and a domain wall, we will encode
it using the multi-dimensional clock method used in [73]. At a high level, we express
time in its unique representation in base �̄ = d 6√

�e +1 and represent each coordinate
of the representation using a flag and domain wall.

More specifically, additionally let -̄ = �̄−2
2 . Then �̄ = O(log =) for our construction.

For any number 0 6 9 6 �, let 00, . . . , 05 be the unique numbers ∈ {0, . . . , �̄ − 1}
such that

9 = 00 + 01�̄ + . . . + 05�̄
5. (2.6.23)

We then express | 9〉T8 as
| 9〉T8 = |00〉T(0)

8

⊗ |05〉T(5)
8

(2.6.24)

where |0:〉T(
8
:) is an encoding with a flag and domain wall of times between

{0, . . . , � − 1} as described in the main section of the paper. T(:)
8

consists of a flag
register � (:)

8
and {� (:)

8, 9
}-̄
9=0.

89

This adjustment will require the Hamiltonian terms to act on 6 times as many time
registers as before; hence the 50-locality. The encoding to demonstrate O(log =)-
spatial locality is

Data registers emb (S8) = (ℎ(8), 06, 06-̄), (2.6.25)

Flag registers emb
(
F(:)
8

)
= (ℎ(8), 4: , 06-̄), (2.6.26)

Clock registers emb
(
C8, 9

)
= (ℎ(8), 4: , Y: ⊗ 4 9). (2.6.27)

Acknowledgments
We thank Winton Brown, Aram Harrow, and Umesh Vazirani for helpful discussions.
Author TB acknowleges support from NSERC through a PGSD award. Author CN is
supported by ARO Grant W911NF-12-1-0541 and NSF Grant CCF-1410022. Part of
this work was completed while authors EC, CN, and HY were visitors at the Simon’s
Institute 2018 summer cluster Challenges in Quantum Computation.

2.7 Partially applied configurations of a bitonic sorting circuit
In this Appendix, we provide the mathematical foundations required for analyzing
the spectral gap of the Hamiltonian and generating the encoding circuit. We explore
the properties of the bitonic block [13] (see Definition 2.2.7) and prove results about
the space of valid configurations of partial computations of a bitonic block (see
Definition 2.3.4).

Configurations and width
We study the structure and combinatorics of the valid configurations (see Definition
2.3.4). One can think of a valid partial configuration as being represented visually
on the architecture as a string which partitions the architecture into two halves: gates
that have and have not been applied. Depending on the configuration of the circuit in
question, there is a maximum width, a number of layers, that such a string can have.

Definition 2.7.1. The width of a partial configuration g is

F(g) = max(g) −min(g). (2.7.1)

Lemma 2.7.2. For bitonic block Bℓ,

F(g) < ℓ (2.7.2)

for any valid partial configuration g.

Proof. Suppose that we have a configuration of width ℓ, then at least one gate in
the final layer Lℓ must be applied (and corresponding qubits are at time C = ℓ),

90

and at least one gate in the first layer L1 must not have been applied (so that its
corresponding qubits are at time C = 0). Let 6 be a gate in Lℓ that has been applied.

Consider the light cone Λ of the gate 6; there are two gates of Lℓ−1 in Λ. Precisely,
these are the two gates of the B2 block which connect the B1 block containing 6 to
its neighboring B1 block (recall Definition 2.2.7). Likewise, there are 2 9 gates of
layer Lℓ− 9 in Λ as they are the 2 9−1 gates of a B 9 block connecting the block B 9−1 to
its neighboring B 9−1 block.

Carrying this until the first layer, there are 2ℓ−1 gates of Λ in L1. Since all of Λ must
be applied, every gate of L1 is applied. Therefore, the assumption of a configuration
of width ℓ is false.

�

The proof of Lemma 2.7.2 illustrates an interesting and important property of bitonic
blocks; the light cone of any gate in the architecture doubles in size each layer.
Additionally,

Corollary 2.7.3. Any valid configuration of a bitonic block Bℓ must satisfy at least
one of the following:

1. Every gate in layer L1 is activated.

2. Every gate in layer Lℓ is not activated.

Permutations and the splitting property
In this subsection, we demonstrate some important combinatorial properties of
bitonic blocks.

Fact 2.7.4. The number of valid configurations of any architecture is invariant under
permutation of the qubit labels.

Definition 2.7.5. Two architectures A1 and A2 both acting on = qubits are called
isomorphic (denoted A1 ' A2) if one can be obtained from the other by some
permutation of the qubit labels.

Therefore, isomorphic architectures have the same number of valid configurations.

Fact 2.7.6. For a bitonic block Bℓ, the first ℓ − 1 layers, {L1,L2, . . . ,Lℓ−1}, can
be viewed as B⊗2

ℓ−1 where the first smaller block acts on odd indexed qubits and the
second on even indexed qubits.

91

Proof. It is easy to see for ℓ = 2. For ℓ > 2, by induction, we know the odd indexed
qubits in layers {L2, . . . ,Lℓ−1} form B⊗2

ℓ−2. Recall that L1 contains gates between
qubit 8 and 8 + 2ℓ−1 for 8 6 2ℓ−1. This produces a block Bℓ−1 on the odd indexed
qubits; a similar argument holds for even indexed qubits. �

Lemma 2.7.7. A single layer left cyclic shift of the layers of a bitonic block Bℓ is
isomorphic to the bitonic block Bℓ. The isomorphism is described by the permutation
cℓ:

cℓ (8)
def
=

{
28 − 1 if 8 6 2ℓ−1

28 − 2ℓ if 8 > 2ℓ−1.
(2.7.3)

A single layer right cycle shift isomorphism is described by the permutation c−1
ℓ
:

c−1
ℓ (8)

def
=

{
8+1
2 if 8 odd
8+2ℓ

2 if 8 even.
(2.7.4)

Figure 2.9 illustrates the above permutations for ℓ = 3.

Proof. By Fact 2.7.6, the first ℓ − 1 layers of a bitonic block Bℓ form B⊗2
ℓ−1 where one

is the collection of odd indexed rows and other the collection of even indexed rows.
By the definition, the last ℓ − 1 layers form B⊗2

ℓ−1 where one is the collection of the
first 2:−1 rows and the other the collection of 2ℓ−1 rows. Therefore, any permutation
for a single layer left cyclic shift must permute these Bℓ−1 blocks onto each other. It
then is easy to check that the permutation c will also send the first layer to the last
layer. The single layer right cycle shift is just the inverse permutation, c−1. �

Figure 2.9: A demonstration of Lemma 2.7.7. The colored wires represent the permutation mapping
each of the shifted bitonic blocks B3 back to the original bitonic block.

Corollary 2.7.8. A 9 layer left (or right) cyclic shift of the layers of a bitonic block
Bℓ is isomorphic to a bitonic block Bℓ. The permutation describing the isomorphism
is c 9

ℓ
(or c− 9

ℓ
).

92

This yields the following important corollary.

Corollary 2.7.9. LetA 9

ℓ
be a sub-architecture formed by taking any distinct 9 layers

(in any order). Then,

A 9

ℓ
'

2:− 9⊗
8=1
B 9 . (2.7.5)

Proof. Consider any excluded layer. By the previous corollary, we can assume it to
be the first layer. Thus, the remaining layers decompose into the tensor product of
smaller bitonic blocks. We can repeat for each excluded layer. �

Counting configurations
Configurations of a bitonic block

We now recursively count the number of valid configurations of a block Bℓ. This
will be useful in the encoding circuit and the spectral gap analysis.

Theorem 2.7.10. Let 0ℓ be the total number of valid partial configurations of Bℓ.
This number is described by the recurrence relation15

0ℓ
def
= 202

ℓ−1 − 0
4
ℓ−2, (2.7.7)

with initial conditions 01 = 2, 02 = 7.

Proof. The initial cases can be counted by hand. For ℓ > 2, by Corollary 2.7.3, we
know that the first layer is entirely activated or the last layer is entirely not activated.
Corollary 2.7.9, tells us that, in either case, the remaining layers are isomorphic to
B⊗2
ℓ−1. Therefore, aside from double-counting between the two cases, there are 202

ℓ−1
valid configurations. The set of double counted configurations are all configurations
that lie entirely in the middle ℓ − 2 layers. Again we apply Corollary 2.7.9, to
argue that this set of layers is isomorphic to B⊗4

ℓ−2, and therefore, has 04
ℓ−2 valid

configurations. �

Corollary 2.7.11. The total number of valid partial configurations of Bℓ with some
gate in layer L1 not activated is 0ℓ − 02

ℓ−1.

Proof. We need to ignore the valid partial configurations which have the entire L1
layer activated. The last ℓ − 1 layers are isomorphic to B⊗2

ℓ−1 by Corollary 2.7.9. �
15This recurrence relation does not have a known solution. It is, however, known to scale as

0ℓ ∼
l2ℓ

q
(2.7.6)

where q is the golden ratio, and l = 1.8445 . . ., a number with no known form.

93

Configurations of products of bitonic blocks

Consider an architecture composed of < consecutive copies of a bitonic block of
rank ℓ.

Definition 2.7.12 (Linear product of bitonic blocks).

B×<ℓ
def
=

<∏
8=1
Bℓ . (2.7.8)

Theorem 2.7.13. The total number of configurations of B×<
ℓ

is

0×<ℓ
def
= ((< − 1) ℓ + 1) 0ℓ − (< − 1)ℓ02

ℓ−1. (2.7.9)

Proof. Notice, that any ℓ consecutive layers – henceforth called a window – of B×<
ℓ

is isomorphic to a bitonic block Bℓ. Then by Lemma 2.7.2, we know that any valid
configuration is contained within a window. We can, therefore, count the number of
valid configurations by considering the first window it appears in. For every window
except the last, all configurations corresponding to the window must have some gate
in the first layer not activated; otherwise, they would correspond to a later window.
By Corollary 2.7.11, there are 0ℓ − 02

ℓ−1 configurations for every window except the
last. For the last, there are no restrictions, so there are 0ℓ configurations. It is easy to
see that there are (< − 1)ℓ + 1 windows. Then,

0×<ℓ = (< − 1)ℓ(0ℓ − 02
ℓ−1) + 0ℓ = ((< − 1) ℓ + 1) 0ℓ − (< − 1)ℓ02

ℓ−1. (2.7.10)

�

Definition 2.7.14. Let B↔<
ℓ

be the circular architecture defined by taking < copies
of the bitonic block and wrapping it around the cylinder.

Theorem 2.7.15. The total number of configurations of B↔<
ℓ

is

0↔<ℓ

def
= (0ℓ − 02

ℓ−1)<ℓ. (2.7.11)

Proof. We can consider a similar argument as that of Theorem 2.7.13. In this case,
there are ℓ< windows as windows can wrap around the circular architecture. Since
we identify each configuration with the first window containing it, every window
must have some gate in the first layer not activated. Each layer of the architecture
can be the start of a window since the architecture is circular. Therefore, there are
<ℓ windows, completing the proof. �

94

We now provide the proof of Lemma 2.3.2 which was omitted from the main article.

Proof of Lemma 2.3.2. Let T2><? be the set of valid configurations for whom all
clocks were past �1ℓ

2. Since all the gates in the circuit past time �1ℓ
2 are identity

gates, |k3〉 is constant. The subcircuit of identity gates has a depth of (3/Y − 1)�1ℓ
2

depth. By Lemma 2.7.2, we know that any valid configuration has a width of at most
ℓ and by the counting argument of Lemma 2.7.17 and Theorem 2.7.15, we know that
we can get a lower bound on |T2><? |/|T | by counting the fraction of windows purely
contained in the subcircuit of identity gates. To avoid any configurations that cross
outside the region of identity gates, we will ignore the first and last �1ℓ

2 gates. Then
the fraction of windows purely contained is at least(

3
Y
− 1

)
�1ℓ

2 − 2�1ℓ
2

3�1ℓ2

Y

= 1 − Y. (2.7.12)

�

Configurations overlapping the initial state

Lemma 2.7.16. Let 8 be a fixed qubit. Then the number of valid configurations of
B×<
ℓ

such that the clock of qubit 8 is at 0 is
∏ℓ−1

9=1 0 9 .

Proof. We only need consider the first block Bℓ of B×<ℓ due to Lemma 2.7.2. By
Corollary 2.7.3, we know that no gate in the last layer of Bℓ is activated. Therefore,
we only need to consider the first ℓ− 1 gates which are isomorphic to B⊗2

ℓ−1 (Corollary
2.7.9). The block Bℓ−1 corresponding to the set of qubits of which 8 is not a member
has 0ℓ−1 valid configurations. The set containing 8 can be recursively seen to have∏ℓ−2

9=1 0 9 valid configurations. �

Lemma 2.7.17. Let 8 be a fixed qubit. Then the number of valid configurations of
B↔<
ℓ

such that the clock of qubit 8 is at 0 is (0ℓ − 02
ℓ−1).

Proof. By symmetry (Corollary 2.7.9), this corresponds to one of the <ℓ windows
described in Theorem 2.7.15. �

Isomorphism with dyadic tilings
Dyadic Tilings

The numbers 0ℓ count the number of valid partial circuit configurations of Bℓ, but
they also happen to enumerate a different combinatorial structure: the number of
dyadic tilings of the unit square of rank ℓ [27]. To facilitate the analysis of the gap of
our code Hamiltonian, we will describe an explicit isomorphism between the two
sets and the Markov chains defined on them.

95

Definition 2.7.18 (Dyadic tiling). A dyadic tiling of rank ℓ is a tiling of the
unit square by 2ℓ equal-area dyadic rectangles, which are rectangles of the form
[02−B, (0 + 1)2−B] × [12−C , (1 + 1)2−C], where 0, 1, B, C are nonnegative integers for
some positive integer ℓ.

Figure 2.10 shows some examples for ℓ = 4:

Figure 2.10: Examples of rank 4 dyadic tilings.

Each tiling of rank ℓ can be described recursively: beginning from the unit square,
draw a line that is either a horizontal or vertical bisector. This divides the square
into two rectangles of equal area.Then, choose two (not necessarily distinct) dyadic
tilings of rank ℓ − 1 and scale them to overlay with the two rectangles.

Definition 2.7.19. Let Tℓ be the set of dyadic tilings of rank ℓ.

There is a natural Markov chain on Tℓ called the edge-flipMarkov chain [56]. Given a
dyadic tiling, there is a distinguished set of edges in the tiling which can be removed
and replaced by their perpendicular bisector to obtain another valid dyadic tiling of
the same size. So, the transitions between states of the Markov chain are described
by choosing one of the flippable edges uniformly at random and flipping it, obtaining
a new tiling.

We can formally define the edge-flip Markov chain as follows:

Definition 2.7.20 (Edge-flip Markov chain [27, 56]). The edge-flip Markov Chain,
Mℓ on state space Tℓ is defined with the following transition rule. Starting from state
<8 ∈ Tℓ:

• Choose a rectangle in the tiling <8 uniformly at random.

• Choose an edge 4 of the four edges of the rectangle (left, right, top, or bottom)
uniformly at random.

• If 4 can be flipped to produce a new dyadic tiling in Tℓ, then flip the edge and
let <8+1 be the resulting tiling.

• If 4 cannot be flipped to produce a new dyadic tiling in Tℓ, then choose a new
edge at random and return to the previous step.

96

There exists an isomorphism between the valid configurations of Bℓ and the set of
dyadic tilings of rank ℓ.That is, adding or removing a single gate from a partial con-
figuration of Bℓ corresponds directly to a unique valid edge flip of the corresponding
dyadic tiling (and vice-versa).

We will describe this isomorphism in a way that will build a visual intuition for it.
First, we identify the empty configuration of Bℓ on 2ℓ qubits with the tiling consisting
entirely of horizontal cuts, C0 s(the tiling consisting of 2ℓ horizontal rectangles stacked
on top of each other).

The tiling C0 can be described by 2ℓ − 1 horizontal cuts. We now describe these
horizontal cuts as the disjoint union of smaller components we call 2-segments. The
following recursive procedure describes the segments:

• Begin with an empty square and initialize a counter 2 = ℓ.

• Make a horizontal cut through the square and subdivide this cut into 22−1 equal
length segments, each a 2-segment.

• If 2 > 1, decrement 2 → 2 − 1 and repeat the previous step for each of the two
empty rectangles (using the same 2 for each of the two) produced by the cut
made in the last previous step. Otherwise, stop.

In the resulting representation of C0, there are always 2ℓ−1 2-segments for 2 ∈ {1, ..., ℓ}.
The set of 2ℓ−1 2-segments are distributed evenly across 22 horizontal cuts of C0 in
groups of 2ℓ−2−1. We call the resulting representation of C0 a dressed tiling. We
give an example of C0 for ℓ = 3 in Figure 2.11 below, with the number labels for the
2-segments 2 = 1, 2, 3 replaced with the colors blue, green, and red, respectively, for
visual clarity:

Figure 2.11: The dressed tiling C0 for ℓ = 3

97

To understand the edge-flip Markov chain, we need to understand how to determine
which edges can be flipped (flipping that edge will take you from one dyadic tiling to
another), and which can not.

Fact 2.7.21 ([27]). A flippable edge of a tiling C ∈ Tℓ is a 2-segment which, when
considered alone, forms an entire edge of both dyadic rectangles it borders.

This fact tells us that starting from C0, and flipping flippable 2-segments, we obtain
the edge-flip Markov chain.

Next, we establish a bĳection between the gates of Bℓ with the 2-segments of the all
horizontal tiling C0 ∈ Tℓ in the following way: the set of 2ℓ−1 2-segments corresponds
to the set of 2ℓ−1 gates in the 2th layer of Bℓ. Consider the following procedure for
assigning each particular gate to a particular 2-segment:

• Assign each ℓ-segment of C0, from left to right, to the gates in layer Lℓ, from
top to bottom.

• For each gate inLℓ, identify the two gates in its past light-cone inLℓ−1 with the
two nearest ℓ − 1-segments sitting above and below the ℓ-segment in question.

• Continue this procedure recursively for the ℓ − 1-segments all the way down to
the 1-segments.

Figure 2.12 illustrates this bĳection for ℓ = 3.

Figure 2.12: This example for ℓ = 3 illustrates the correspondence between 2-segments and their
associated gates in C0

Now, consider the following bĳection between the partial configurations of Bℓ and
dyadic tilings Tℓ: For a tiling C ∈ Tℓ, identify it with the circuit in which the only

98

gates applied are those for which the corresponding 2-segments of the tiling are
vertical. To see that the edge flip and circuit Markov chains are isomorphic, we need
only see that the valid edge flips of a tiling correspond directly to the possible gate
activations and deactivations of the corresponding partial configuration of Bℓ.

But this is clear by the gate to 2-segment identification procedure described above:
for a 2-segment to be flippable from horizontal to vertical (vertical to horizontal), it
must comprise an entire edge of both dyadic rectangles that it borders. This only
happens once the two nearest 2 − 1-segments (2 + 1-segments) – the one directly
above and the one directly below (directly left and directly right of) – have been
flipped to be vertical (horizontal). By the bĳection procedure outlined above, those
two 2 − 1 (2 + 1) segments correspond to the gates that directly precede the gate
corresponding the 2-segment in its past (future) light-cone. Figure 2.13, below,
illustrates an example with ℓ = 3.

Figure 2.13: Consider the left-most 3-segment in both of these dyadic tilings. In the left tiling, we
see that it can not be flipped from horizontal to vertical because only one of the 2-segments directly
above and below it has been flipped to vertical. Consequently, this 3-segment is a complete edge of
the dyadic rectangle a but not rectangle b. In the right tiling we see that this is remedied by flipping
the remaining nearest 2-segment.

�+-Trees

In order to give a more complete understanding of the isomorphism between valid
partial configurations of Bℓ and Tℓ, we introduce an alternate representation of dyadic
tilings called �+-trees [56].

Janson, Randall, and Spencer showed that the recursive description of a tiling gives
an easy isomorphism to a graph called a �+-tree [56]. Consider a complete binary
tree of depth ℓ where each vertex is labeled either � or + . There is a clear mapping
from such trees to dyadic tilings: starting with the unit square and the root of the
tree, draw a horizontal (�-cut) bisector or vertical (+-cut) bisector depending on the

99

label of the root. Then recursively draw �- or +-cuts by the labels of the children on
the two generated rectangles.

This mapping isn’t a bĳection, however. It is easy to see that the following two
�+-trees produce the same dyadic tiling.

[56] noticed that collisions only occur when there is a cross in the dyadic tiling,
either a �-cut followed by 2 +-cut children or a +-cut followed by 2 �-cut children.
By disallowing any �-vertex to have both children be +-vertexes, we obtain an
isomorphism.

Definition 2.7.22 (�+-trees). An �+-tree of depth ℓ is a complete binary tree of
depth ℓ with each vertex labeled either � or + and the restriction that no �-vertex
has both children labeled + .

Theorem 2.7.23 ([56]). There is an isomorphism between Tℓ, the set of dyadic tilings
of rank ℓ, and the set of �+-trees of depth ℓ.

Proof. We previously described the mapping from �+-trees to dyadic tilings. For
the other direction, look at the unit square. If there is a +-cut, label the root + and
proceed recursively. Otherwise, there must exist a �-cut (Theorem 1.1 of [56]) label
the root � and proceed recursively. Note that by choosing a +-cut if both cuts exist
ensures that the generated tree satisfies the �+-condition. �

We now prove the isomorphism between valid configurations of the bitonic block Bℓ
and Tℓ; it suffices to show the isomorphism between bitonic blocks and �+-trees.
Recall Corollary 2.7.3: Any valid configuration of Bℓ must have every gate in
L1 activated or every gate in layer Lℓ is not activated. Call valid configurations
satisfying the first property E-configurations and call configurations satisfying the
second property ℎ-configurations.

Notice that given a E-configuration, we can recursively specify it by describing the
configuration of the last ℓ − 1 layers of Bℓ, which are isomorphic to B⊗2

ℓ−1 (Corollary
2.7.9). Similarly, given a ℎ-configuration, we can recursively specify it by describing
the configuration of the first ℓ − 1 layers of Bℓ. A configuration that is both a
E-configuration and ℎ-configuration, can be recursively specified by the configuration
of the middle ℓ − 2 layers which are isomorphic to B⊗4

ℓ−2.

100

Theorem 2.7.24. There is an isomorphism between the set of valid configurations
of Bℓ and the set of �+-trees of depth ℓ. With Theorem 2.7.23, this proves an
isomorphism between the set of valid configurations of Bℓ and Tℓ.

Proof. Given a �+-tree, if the root is a +-vertex, we activate all the gates in L1. We
proceed recursively using the two children of the root to describe the configuration
on the last ℓ − 1 layers with each child describing the configuration on one of the
blocks Bℓ−1. Likewise, if the root is a �-vertex, we set all the gates in Lℓ as not
activated and proceed recursively on the first ℓ − 1 layers.

Given a configuration, we know it must be a E-configuration or ℎ-configuration. If it
is a E-configuration, we set the root as a +-vertex and build the tree recursively with
the blocks Bℓ−1 in the last ℓ − 1 layers describing the children sub-trees. Likewise, if
it is a ℎ-configuration, we set the root as a �-vertex and build the tree recursively
with the blocks Bℓ−1 in the first ℓ − 1 layers describing the children sub-trees.

Notice, that by checking if a configuration is a E-configuration before checking if it
is a ℎ-configuration, we ensure the �+-tree property. �

Indexing configurations
Inspired by the uniform sampling algorithm for dyadic tilings of Janson, Randall,
and Spencer [56], we adapt, using the isomorphisms in Theorem 2.7.24, them to
generate an indexing algorithm for valid configurations of a bitonic block.

Theorem 2.7.25. There exists an isomorphism between [0ℓ] = {1, 2, . . . , 0ℓ} and
the set of valid configurations of bitonic block Bℓ. Furthermore, both maps are
efficiently calculable.

Proof. Theorem 2.7.10, tells us that these sets have the same magnitude. Corollary
2.7.11, tells us that the number of E-configurations is 02

ℓ−1 and the the number of
ℎ-configurations which are not E-configurations is 0ℓ − 02

ℓ−1.

Divide the set [0ℓ] into (+ = [02
ℓ−1] and (� = 02

ℓ−1 + [0ℓ − 0
2
ℓ−1]. Given an

index 8 ∈ [0ℓ], we use these disjoint sets to decide whether the configuration is a
E-configuration or ℎ-configuration. If 8 ∈ (+ , then we set L1 as activated and we
express 8 uniquely as 8!0ℓ−1+8' and then recursively, using 8! and 8' as indices, decide
the configurations on the two bitonic blocks Bℓ−1 generating the last ℓ − 1 layers.
The case of 8 ∈ (' is a bit more subtle. Since we are choosing a ℎ-configuration,
we know its children cannot both be E-configurations. Therefore, we divide ('
into 3 parts, corresponding to the bitonic blocks on the first ℓ − 1 layers being both
ℎ-configurations, or one being a ℎ-configuration and the other a E-configuration. It is
not difficult to check that there are (0ℓ−1 − 02

ℓ−2)
2 configurations with both children

being ℎ-configurations and 02
ℓ−2(0ℓ−1 − 0ℓ−2)2 for the other two cases. Now, we can

proceed recursively.

101

For the other direction, given a valid configuration, we decide if it is a E-configuration
or ℎ-configuration. If a E-configuration, we recursively decide the index within (+
and output it. Otherwise, we recursively decide the index within (', add 02

ℓ−1 and
output it.

We note that in both directions, the smaller bitonic blocks will involve permuted
indexes. However, since Lemma 2.7.7 is efficient, this is not an issue. �

A similar proof holds for B×<
ℓ

and B↔<
ℓ

.

Theorem 2.7.26. There exists an isomorphism between [0×<
ℓ
] and the set of valid

configurations of architecture B×<
ℓ

. Likewise, there exists an isomorphism between
[0↔<
ℓ
] and the set of valid configurations of circular architectureB↔<

ℓ
. Furthermore,

both maps are efficiently calculable.

Proof. The proof is nearly identical except the initial partition of [0×<
ℓ
] is based on

the window that the configuration lies in. We note configurations of all windows
except the last must be ℎ-configurations. For the case of circular architecture, all
windows are ℎ-configurations. �

102

C h a p t e r 3

TENSOR NETWORK MAXIMUM LIKELIHOOD DECODERS
FOR CIRCUIT-LEVEL NOISE

3.1 Introduction
In this final chapter we study quantum error correcting codes in a much more
concrete and practical setting. As experimental progress in quantum computing
hardware marches forwards, exciting proposals for fault-tolerant quantum computing
architectures based on such hardware are being proposed [28]. One of the major
challenges in quantum computing is the design of fault tolerant error correction
(FTEC) schemes that will perform well enough to implement demonstrations of error
corrected quantum computing with near term (and hopefully long term) hardware.

The performance of a FTEC scheme can only be as good as its decoder: the map
which takes information measured from some encoded quantum state that may have
suffered some error and infers a correction that can be applied to the state to eliminate
the error. The design of a decoder has two primary goals that often result in a trade
off: accuracy and speed. First we want the decoder to be correct as often as possible,
yielding the lowest logical failure rates that we can achieve. Second, we require that
the decoder be implementable in a way that it can produce corrections fast enough
to actually be able to correct errors as they occur on the time scales relevant to the
specific application.

Usually, implementing an optimal decoding scheme is impractical, so in practice
efficient decoders are designed based on heuristics chosen based on some underlying
mathematical structure of the code in question. One example being the surface
code and minimum weight perfect matching decoders [37] [28]. Such efficient
purpose-built decoders perform well enough that they are helping shape the paradigm
for how we think of what can be achieved with current and near term architecture
proposals [28].

Given an efficient sub-optimal decoder for a quantum error correcting code, we can
ask two questions:

1. How large is the gap in performance compared to an optimal decoder?

2. Can we design an efficient decoder that performs better in this particular
application?

In this chapter we provide a tool for answering both questions. We study optimal
and approximately optimal decoders for general stabilizer codes under circuit level

103

noise models. We describe how implement optimal maximum likelihood (ML)
decoders using a tool called the Circuit History Code (CHC) based on the sparse
code construction seen in [12]. The CHC allows us to reformulate the problem of
maximum likelihood decoding as the contraction of a tensor network, in a sense
extending the work of Bravyi, Suchara, and Vargo [22] to the setting of circuit level
noise. This maps optimal decoding of circuit level noise into a problem that has
been thoroughly studied, granting us access to techniques that have been developed
to make it more tractable.

Exact ML decoding and tensor network contraction are generally difficult problems
whose complexity scales exponentially in the problem size. However, many different
techniques for approximate tensor network contraction exist and allow a tradeoff in
complexity for accuracy by setting a fixed bond dimension during the contraction of
the tensor network. This reduces the time complexity of tensor network contraction
to be polynomial in the size of the network and the fixed bond dimension. As
demonstrated in [22] and [31] for code capacity noise models this allows one to
perform approximatemaximum likelihood decoding which may provide near-optimal
performance at relatively low fixed bond dimension.

In section 3.2, we remind the reader of important definitions and properties of
stabilizer codes that will be needed to describe our construction. Next, in section 3.3
we discuss circuit level noise models in detail, establishing mathematical structure
that we will be needed to understand the CHC construction. In section 3.4 we
describe the CHC informally by way of example in order to help give the reader
intuition for the formal mathematical description of the construction which we give
in section 3.5. In section 3.6 we describe the decoding problem for circuit level noise,
define maximum likelihood decoding in this setting, and give a construction that
use the CHC to produce a tensor network whose contraction implements maximum
likelihood decoding. Finally, in section 3.7, we describe preliminary numerical
results comparing the performance of our ML decoder to MWPM for a standard
rotated surface code, and also give evidence that in a biased noise model, using an
XY surface code with approximate ML decoding can give significant improvements
over using a standard XZ surface code with a matching decoder.

3.2 Algebraic Structure of Quantum Stabilizer Codes
Note: for this entire chapter we will be ignoring phases on pauli operators. Thus
when we refer to the pauli group P=, we really mean the Pauli group quotiented by
{±�,±8�}.

Definition 3.2.1. A stabilizer code on = qubits (referred to as physical qubits), is
defined by choosing a set of < = = − : (: > 0) independent commuting elements
{"8}<8=1 of the =-qubit Pauli group, P=. These commuting generators generate
the stabilizer group of the code, S = 〈"8〉<8=1, an abelian subgroup of P=. The

104

simultaneous +1 eigenspace of the stabilizer generators {"8}<8=1 is a subspace of the
=-qubit Hilbert space, H2>34 ' C⊗2: ⊆ C⊗2= , referred to as the codespace of the
code. We say that such a stabilizer code encodes : logical qubits into = physical
qubits.

Definition 3.2.2. The logical group of a stabilizer code S is defined as the quotient
of the normalizer of S by S itself:

L = # (S)/S. (3.2.1)

We may describe L by choosing 2: generators {!-,8, !/,8}:8=1 from # (S), which we
think of as specific representatives of the cosets of S in # (S), and which satisfy the
following relations:

{!-,8, !/,8} = 0, ∀ 8 (3.2.2)
[!-,8, !/, 9] = 0, ∀ 8 ≠ 9 (3.2.3)
[!-,8, !-, 9] = 0, ∀ 8, 9 (3.2.4)
[!/,8, !/, 9] = 0, ∀ 8, 9 . (3.2.5)

Definition 3.2.3. Suppose we have a stabilizer code on = physical qubits with
stabilizer group S = 〈(8〉<8=1, and assume fixed representatives of the logical operators
L = 〈!-8 , !/8〉=−<8=1 . Given this fixed set of generators for S and L, we can define a
unique (up to certain stabilizer transformations) set of pure error generators which
generate the group of pure errors, T = 〈)8〉<8=1. The pure error generators)8 are
specifically chosen such that

[)8, (9] = 2)8(9X8 9 ∀ 8, 9 (3.2.6)

and

[)8,)9] = 0 ∀ 8, 9 (3.2.7)

and

[)8, !] = 0 ∀ 8 ∀ ! ∈ L. (3.2.8)

The above commutation relations say that the pure error generator)8 anticommutes
only with the stabilizer generator (8 and commutes with all other generators of S, L,
and T . In this sense they can be thought of as canonical conjugates of the stabilizer
generators "8.

The generators of the three groups S, L and T give < +< + 2(=−<) = 2= indepent
Pauli operators in P= and therefore the generators of the three groups S, L and T
form a minimal generating set for the Pauli group on = qubits P=. This allows us a
unique decomposition of any Pauli operator � ∈ P= (up to ± phase):

105

Definition 3.2.4. Given a description of a stabilizer code with pure errors and logical
operators (S,T ,L) on = qubits, any � ∈ P= has a unique decomposition of the
following form:

� = !)(, ! ∈ L) ∈ T (∈ S. (3.2.9)

The above will be referred to as the LTS decomposition of � .

For notational convenience and clarity, we define the following maps which isolate
different components of a Pauli operator’s LTS decomposition:

Definition 3.2.5. Suppose we have � ∈ P= with LTS decomposition

� = !)(, ! ∈ L) ∈ T (∈ S. (3.2.10)

Then we define the maps T0 : P= → T and L : P= → L to project the error onto
the corresponding subgroup:

T0 (�) =) (3.2.11)

L(�) = !. (3.2.12)

Definition 3.2.6. The actual syndrome associated with a Pauli error � is an <-bit
string whose 8th bit is 1 if and only if � anti-commutes with the 8th stabilizer generator
"8. We introduce the map t0 which maps � to its actual syndrome:

t0 : P= → {0, 1}< . (3.2.13)

When a fixed Pauli error � is understood, its actual syndrome will be referred to as
C0 = t0 (�).

Note that the pure error part) of the Pauli error � ∈ P= completely determines the
syndrome that one would obtain for � by measuring each "8 perfectly (assuming
no measurement errors). In particular, given a syndrome C0 = (C01 , C02 , ..., C0<) with
C08 ∈ {0, 1} we can refer to the corresponding pure error

)C0 =

<∏
8=1
)
C08
8
. (3.2.14)

Clearly all pure errors) ∈ T can bewritten this way, so for any syndrome C0 ∈ {0, 1}<
there is a corresponding pure error)C0 ∈ T , and vice-versa. From this point onward
we will always label a pure error operator with its corresponding syndrome as a
subscript (i.e.)C0).

106

A simple example of a stabilizer code that we will return to and build upon throughout
this chapter is be the 3-qubit phase-flip repetition code. This code has a stabilizer
with two generators:

S = 〈"1 = --�, "2 = �--〉. (3.2.15)

There are two associated pure error generators

T = 〈)1 = /��,)2 = � �/〉, (3.2.16)

and we may choose logical operator generators

L = 〈!/ = ///, !- = �-�〉. (3.2.17)

In summary: when referring to a Pauli error � ∈ P= with LTS decomposition
� = !)C0(, we will refer to the operator L(�) = ! ∈ L as �’s logical class or logical
component, the operator T(�) =)C0 ∈ T as its pure error, and t0 (�) = C0 ∈ {0, 1}<
as its corresponding actual syndrome. We may then refer to the equivalence class of
Pauli errors with logical class ! and pure error)C0 (equivalently syndrome C0) as

E!,C0 = {� = !)C0(|(∈ S}. (3.2.18)

Extended Stabilizer Code
To improve the clarity with which we discuss the circuit history code construction,
we also introduce the notion of an extended stabilizer code. The idea is as follows:
for stabilizer code S on = qubits with < generators {"8}<8=1, we may construct a
stabilizer code on = + A< physical qubits.

Definition 3.2.7. The extended stabilizer group S4GC has generators {"8}<8=1 ∪
{"4GC

8
}A<
8=1. The original generators {"8}<8=1 just act on the first = physical qubits,

while each additional new generator "4GC
8

acts non-trivially on only the = + 8th
physical qubit of the extended code via an - or / operator. It is clear that this is a
stabilizer code no matter what non-trivial Pauli "4GC

8
acts on qubit = + 8 with.

The idea is that the A< additional qubits that extend the code, and their associated
stabilizers, model observed syndromes learned from imperfect measurements of the
base stabilizer generators {"8}<8=1 in a circuit-level noise model. We allow for A > 1
to account for the case where syndrome measurements are repeated. When stabilizer
measurements are noisy, we refer to an observed syndrome, denoted C>, which may
differ from the actual syndrome C0 that one would have observed if there were no
measurement errors. The violation of extended stabilizer "4GC

8
indicates that the

outcome of some possibly faulty measurement of base stabilizer generator "8 was 1,
and is otherwise assumed to be 0.

107

Definition 3.2.8. For each extended stabilizer generator, "4GC
8

, we have an extended
pure error) 4GC

8
which is simply the canonical conjugate of "4GC

8
.

For example, if "4GC
8
= /=+8, then) 4GC8

= -=+8. As with any stabilizer code, we may
use the LTS decomposition on an extended stabilizer code. When we do so, we will
make a point of expressing the pure error in two parts corresponding to the actual
and observed syndromes explicitly.

) =)C0 ⊗)C> . (3.2.19)

It will be helpful to define two more maps T and T>:

Definition 3.2.9. When discussing the LTS decomposition of an extended stabilizer
code we’ll use the map T to project onto the entire pure error

T(�) =)C0 ⊗)C> , (3.2.20)

and the map T> to project onto the extended part of the pure error corresponding to
the observed syndrome

T> (�) =)C> . (3.2.21)

Finally, we define the map t> which isolates the observed error of an error of an
extended stabilizer code:

t> (�) = C> ∈ {0, 1}A< . (3.2.22)

We illustrate the concept using the 3-qubit phase-flip repetition code. We may
construct an extended version of this code has a stabilizer with four generators:

S4GC = 〈"1 = --�� �, "2 = �--��, "
4GC
1 = � � �-�, "4GC

2 = � � � �-〉. (3.2.23)

There are two associated pure error generators

T 4GC = 〈)1 = /�� � �,)2 = � �/ � �,)
4GC
1 = � � �/ �,) 4GC2 = � � � �/〉, (3.2.24)

and we may choose logical operator generators

L = 〈!/ = ///��, !- = �-� � �〉. (3.2.25)

3.3 Measurement Circuits, Circuit Level Noise, and Error Histories
Noise Models
Now we briefly review the most common types of error models used to study and
assess the performance of stabilizer codes.

108

Code Capacity Noise

A code capacity error model is specified by a probability distribution over the =-qubit
Pauli group,

c�� : P= → [0, 1] . (3.3.1)

therefore, any pauli error � occurs with probability c�� (�). In this model we
assume the capability of being able to perfectly measure the stabilizer generators
{"8} and obtain the actual syndrome t0 (�) = C0. The decoder may then use the
actual syndrome C0 to decide on a correction.

Phenomenological Noise
A phenomenological noise model is a code capacity noise model in which each
measurement of a stabilizer generator "8 fails with some probability @, flipping that
syndrome bit. This means that the observed syndrome C> that one actually receives
from the stabilizer measurements differs from the actual syndrome associated with
the error, C0. This inequivalence between the observed and actual syndromes adds
considerable complication to the decoding problem, as we shall discuss in section
3.6.

Circuit Level Noise
Although phenomenological noise models capture the notion of faulty measurements,
they ignore the fact that the quantum circuits used to perform stabilizer measurements
are made up of individual hardware components, each of which can be prone to
failure. Such failures that occur at different points throughout the execution of the
stabilizer measurement circuit create errors that propagate and accumulate, leading
to correlations between the observed syndrome and final error on the data qubits.
Phenomenological noise models fail to capture these correlations, but circuit level
noise models succeed.

A circuit level noise model is based on the quantum circuit that one would use to
carry out stabilizer measurements for the underlying code. Every state preparation,
measurement, and logic gate (including qubit idles) involved in this circuit is assigned
a probability of producing a Pauli error.

In order to proceed in defining a circuit level noise model, we must discuss the
circuits whose noise we are trying to model. First we standardize our description of
a stabilizer code measurement circuit.

Definition 3.3.1. A measurement protocol for a stabilizer code, M, is a list of
stabilizers operators selected from S to measure. The operators inM need not be
generators and may appear inM more than once. For the purposes of this manuscript,
we will be interested in the case where the measurement protocolM consists of

109

the generators {"8}<8=1 of S, repeated an integer A multiple of times. For a fixed
stabilizer code S, we will denote such a measurement protocol as a standard repeated
measurement protocolMS,A .

Given a standard repeated measurement protocol, we can then build an associated
measurement circuit CS,A that implements this measurement protocol:

Definition 3.3.2. A measurement circuit CS,A for a standard repeated measurement
protocolMS,A , is a quantum circuit on = + < qubits, = of which are data qubits of
the base stabilizer code, and the remaining < qubits are ancillas used to produce
measurement outcomes for the operators in the measurement protocol MS,A . A
circuit for A measurement rounds consists of an A = 1 circuit repeated A times, with
measurement ancillas re-initialized between each round. An A = 1 circuit is almost
completely specified by the following:

• In the first time step, data qubits idle while each ancilla qubit is initialized in
the |+〉 state.

• In the following � time steps, data and ancilla qubits are entangled using
�-/�./�/ gates as follows: For each data qubit 9 on which "8 acts non-
trivially with an -/.// operator, data qubit 9 and ancilla qubit = + 8 are
coupled via �-=+8, 9/�.=+8, 9/�/ 9 ,=+8 (first qubit is control, second is target).
(TODO: footnote about fault-tolerance).

• In the final time step, data qubits idle while ancilla qubits are measured in the
- basis.

The only ambiguity in this description is how the different individual entangling
gates are scheduled during the � time steps. Different code architectures benefit
from different gate scheduling specifics, and the choice of specific schedule can be
important to preserving fault-tolerance. Moving forward, we will assume that some
schedule has been specified or provide one. We note, however, that details of gate
scheduling do not change the validity of what follows. Finally, we remark that any
circuit as specified above is a Clifford circuit, which will allow us to easily understand
the cumulative effect of errors that occur during the execution of the circuit.

We illustrate an example of CS,1, where S is the 3-qubit phase-flip repetition code,
in figure 3.1, below. Figure 3.2, below, illustrates CS,2.

110

Figure 3.1: The circuit CS,1 for the standard measurement protocolMS,1, where S is the three-qubit
phase-flip repetition code. We note that there are four time slices per qubit during which faults may
occur: During C = 1 the data qubits may experience idling faults that occur while the ancilla qubits
are being initialized, and the ancilla qubits may experience failures from their initialization. During
C = 2 and C = 3, all qubits may experience faults from the execution of CNOT gates or from idling.
During C = 4, the data qubits experience idling errors while the ancilla qubits are measured, and the
fault locations on the ancilla qubits model faults that occur during these measurement.

Figure 3.2: The circuit for the standard measurement protocolMS,2, where S is the three-qubit
phase-flip repetition code. Between measurement repetitions, ancilla qubits are re-initialized.

In the above examples, we have specified each of the space-time locations throughout
the execution of the circuit where we would like to model the possibility of a failure.
We will call each of these locations fault locations, and enumerate them 58 ∈ �.
Generally speaking, a fault location is meant to model a fault that occurs on a qubit

111

from: faulty execution of a single or two-qubit gate, decoherence during idling, faulty
ancilla state preparation, or faulty ancilla state measurement.

As we can see in the figures above, we can organize fault locations into time slices.
Each measurement repetition features a time slice related to ancilla initialization, a
time slice related to ancilla measurement, and one time slice following each of the
� = 2 layers of entangling gates between data and ancilla qubits.

We see that, in general, the number of fault locations in the circuit CS,A for the
standard measurement protocolMS,A is

5 0D;C = A (� + 2) (= + <). (3.3.2)

Specifying a single qubit pauli error which occurs at each fault location 58 ∈ �
specifies what we will refer to as an error history:

Definition 3.3.3. Suppose that the circuit has a total of time-slices during which
faults can occur. At the :th time slice of such a circuit, some pauli error � : ∈ P=+<
acts on the data and ancilla qubits. This allows us to define an error history for the
circuit, �ℎ8BC ∈ P⊗ =+<,

�ℎ8BC =

 ⊗
:=1

� : . (3.3.3)

Definition 3.3.4. A circuit level error model for a measurement circuit CS,A is
specified by assigning a set of probability distributions {c8}8 over single or multiple-
qubit Pauli groups such that the product of these distributions yields a probability
distribution c�� over error histories for the circuit:

c�� : P⊗ =+< → [0, 1] (3.3.4)

c�� =
∏
8

c8 . (3.3.5)

The individual probability distributions c8 may be over single-qubit or multi-qubit
faults. As an example, for faults that occur on qubits due to a faulty CX gate, one may
prefer to specify a single distrubtion over two-qubit faults c : P2 → [0, 1], rather
than two single-qubit fault distributions c : P → [0, 1], so that the error model can
capture correlations between the errors on the two qubits that interact through the
CNOT gate.

So, we see that drawing an error history from a circuit level error model tells us an
error that occurs on each qubit at each timestep of the circuit’s execution.

The next question we examine is: how does an error history ultimately cause an
error on the encoded data qubits, and what information about this error can we learn

112

from our measurement circuit? Each time slice of an error history carries forward to
future timesteps and eventually, at the end of the circuit’s execution, each qubit has
an error which is the result of the accumulation of all individual errors in the error
history. Next we discuss the dynamics of these errors and how they give rise to the
final accumulated error.

Definition 3.3.5. The boundary B of a standard repeated measurement protocol
circuit CS,A consists of the set of final fault locations of each data qubit of the
base code, as well as each fault location of an ancilla qubit directly preceding a
measurement. The boundary B of CS,A consists of = + A< fault locations.

We distinguish the fault locations in B because they are where all faults in an error
history will accumulate to by the end of the circuit’s execution. We illustrate the
boundary of CS,2 in figure 3.3, below.

Figure 3.3: The circuit for the standard measurement protocolMS,2, where S is the three-qubit
phase-flip repetition code. The 8 boundary locations are circled.

Definition 3.3.6. A circuit error history �ℎ8BC ∈ P⊗ =+< can be mapped to an accumu-
lated error of the circuit �022 by taking each time slice � : , propagating it through
the remaining gates of the circuit to the output boundary of the circuit, and taking
the product of the results for all � : .

The accumulated error �022 ∈ P=+A< represents the entire accumulated error on
both the data and ancilla qubits throughout the execution of the measurement circuit
CS,A , and can be analyzed using the LTS decomposition of the extended stabilizer
code of the base code, S4GC , and it will be helpful to analyze it from this point of
view. The accumulated error can be broken into two parts, one acting on the data
qubits/codeblock (an error of the base stabilizer code) and the other part acting on
each repeated copy of the ancilla qubits (which together form the extension of the
base stabilizer code):

�022 = �022,30C0 ⊗ �022,0=2 �022,30C0 ∈ P=, �022,0=2 ∈ PA< (3.3.6)

.

113

Now we describe how to compute the accumulated error �022 of a given error history
�ℎ8BC .

Definition 3.3.7. The circuit unitary of a single-repetition protocol MS,1 is the
unitary operator *S acting on = + < qubits obtained from taking the circuit CS,1
and removing all qubit preparations and measurements. The circuit unitary can be
decomposed into a sequence of � + 1 unitary operator time slices: {*S,: }�+1:=1 , where
*S,: is the layer of the circuit acting after the :th set of fault locations. Then,

*S = *S,�+1...*S,1. (3.3.7)

With this decomposition of the circuit unitary understood, we may use the individual
*S,: to propagate a time-slice of the error history � : forward by a single time-step.

Definition 3.3.8. Denote the action by conjugation of a unitary slice on a single
error history time slice as*S,:� 9*

†
S,: = *S,: • �

9 .

Lemma 3.3.9. If* is a Clifford gate, then*• is a group homomorphism of P=+< to
itself.

Proof. This is evident since*• is a group action of an element of the unitary group
on a subgroup of the unitary group. �

The effect that the individual qubit errors occuring at a specific single time-slice of the
error history, � : , have caused by the end of the circuit’s execution can be computed
by using the*S,: operators to propagate � : forward in time to the boundary of CS,1.

Definition 3.3.10. The accumulation of circuit error history time slice � : , A: (� :)
is the result of conjugating � : through to the end of the circuit past all of the layers
*S,: that come after it:

A: (� :) = *S,�+1 •*S,� • ...*S,: • � : (3.3.8)

Lemma 3.3.11. For a a clifford circuit, the map A: is a group homomorphism of
P=+< to itself.

Proof. This is evident since A: is a composition of homomorphisms. �

We can now compute the accumulated error of error history �ℎ8BC through a measure-
ment circuit of a single-repetition measurement protocol CS,1 by taking the product
of the accumulation of each time-slice at the boundary:

114

Definition 3.3.12. The accumulationmapA : P⊗(�+2)=+< → P=+< maps error histories
to their accumulated error:

A(�ℎ8BC) =
�+2∏
:=1
A: (�:) = �022 (3.3.9)

Lemma 3.3.13. For a a clifford circuit, the accumulation map A is a group
homomorphism of P⊗(�+2)=+< to P=+<.

Recall that the accumulated error breaks into data and ancilla factors: �022 =
�022,30C0 ⊗ �022,0=2. The accumulation map as described above correctly calculates
the accumulated error for an error history of a single-repetition protocol CS,1. For
an error history of a repeated measurement protocol CS,A , we can calculate the
accumulated error as follows:

1. Factor the error history �ℎ8BC into its A different sections (one for each measure-
ment repetition):

�ℎ8BC =

A⊗
8=1

�ℎ8BC,8 (3.3.10)

2. For the first factor, �ℎ8BC,1 we calculate the accumulated error

A(�ℎ8BC,1) = �022,30C0,1 ⊗ �022,0=2,1 (3.3.11)

3. For factors 8 = 2...A: Interpret �022,30C0,8−1 as acting non-trivially on the very
first data qubit fault locations of �ℎ8BC,8 and calculate the accumulated error

A(�022,30C0,8−1�ℎ8BC,8) = �022,30C0,8 ⊗ �022,0=2,8 (3.3.12)

4. The final accumulated error on the data qubits will be

�022,30C0 = �022,30C0,A ∈ P= (3.3.13)

and the final accumulated error on the ancilla qubits will be

�022,0=2 =

A⊗
8=1

�022,0=2,8 ∈ PA< (3.3.14)

Definition 3.3.14. The repeated accumulation map, AA , calculates the accumulated
error of an error history �ℎ8BC of a repeated measurement protocolMS,A using the
above algorithm.

AA (�ℎ8BC) = �022 = �022,30C0 ⊗ �022,0=2 (3.3.15)

115

We think of AA as pushing an error history of a circuit to an error of the extended
stabilizer code on its boundary. Figure 3.5 gives a fully worked example of how
we can use the extended stabilizer code and the definitions given in this section to
interpret the output of the accumulation map acting on an error history (using �-
propagation rules illustrated in figure 3.4).

Figure 3.4: Gate propagation relations for�- and identity gates. These relations depict how individual
gates of measurement circuits spread and propagate errors through the circuit. Each relation also tells
us how to build an error history that has no effect on the data qubits or ancilla measurement outcomes:
consider each relation as an error history where the errors before the gate occur, and the errors after
the gate also occur at the next time step. Then the error pattern before the gate will propagate through
the gate to become exactly the same as the error pattern that occurs after the gate, and will cancel it
out.

116

Figure 3.5: An example depicting how an error history for CS,2 can be analyzed to understand what
syndrome will be observed, and what actual error will have accumulated on the data qubits. The
error history �ℎ8BC can be broken into the first and second measurement rounds. The accumulation
map A2 is used to map �ℎ8BC to the equivalent accumulated error on the boundary of the circuit,
�022 . The accumulated error factors into components on the boundaries of the data and ancilla qubits
respectively. The accumulated error on the data qubits is �022 = /.- . Referring to our chosen
generators of the stabilizer, pure error, and logical groups of the base code, one can see that the LTS
decomposition of this accumulated error is !/)2(2. This means that if this accumulated error on
the data qubits were subjected to a perfect (noise free) syndrome measurement we would obtain the
actual syndrome, C0 = {0, 1}. The observed syndrome, however, is a different story. The accumulated
error on the ancilla qubits has two components, one for each round of syndrome measurements
performed. The accumulated error for the first round is �022,0=2,1 = -�, which commutes with the
- ⊗ - measurement being performed, resulting in observed syndrome C>,1 = {0, 0}. The accumulated
error for the second round is �022,0=2,2 = /�, which anti-commutes with - ⊗ - on the first qubit,
resulting in observed syndrome C>,2 = {1, 0}.

We may now finally classify circuit error histories according to the LTS of the
equivalent error of the extended stabilizer code:

E!,C0 ,C> = {�ℎ8BC ∈ P⊗ =+A |L(�ℎ8BC) = !, t0 (�ℎ8BC) = C0, t> (�ℎ8BC) = C>}. (3.3.16)

Given a circuit-level error model c�! for measurement circuit
<0Cℎ20;�S,A , we can express the probability that an error history which occurs
during the execution of CS,A produces a specific ! and)C0 on the data via �022,30C0,
and produces a specific observed syndrome C> on the ancilla qubits via �022,0=2:

c�! (E!,C0 ,C>) =
∑

�ℎ8BC∈E!,C0 ,C>

c�! (�ℎ8BC). (3.3.17)

3.4 Circuit History Code by Example
Before describing the circuit history code construction in general detail, we will
describe simplest possible example of the Circuit History Code (CHC) based on the
3-qubit phase-flip repetition code with A = 1. Recall, the 3-qubit phase-flip repetition
code has a stabilizer with two generators:

S = 〈"1 = --�, "2 = �--〉. (3.4.1)

117

There are two associated pure errors

T = 〈)1 = /��,)2 = � �/〉, (3.4.2)

and we may choose logical operators

L = 〈!/ = ///, !- = �-�〉. (3.4.3)

Consider the following simplified measurement circuit for this code in figure 3.6,
where we omit the final time step to reduce the size of the associated groups:

Figure 3.6: Standard simplified measurement circuit for the three bit phase-flip repetition code, A = 1.
We omit the fourth time step of idle and measurement failure locations for simplicity in describing the
construction in this example. The first three qubits are the data qubits of the repetition code. The
other two are ancilla qubits used to measure the stabilizer generators "1 = --� and "2 = �--
respectively. Ancilla qubits are prepared in the |+〉 state and measured in the - basis. Red dots denote
fault locations where a single Pauli error may occur during the execution of the circuit. Each of these
fault locations are viewed as physical qubits of the CHC.

The first three qubits are the physical data qubits of the code, and the other two qubits
are meausrement ancilla qubits initialized in the |+〉 state and measured in the -
basis after the final timestep. We can divide the circuit into three time-slices, each
slice containing a possible fault location for each qubit.

The circuit history code assigns a physical qubit to each fault location of the base
code’s measurement circuit. So, in this example, the CHC is defined on # = 15
physical qubits.

The guiding principle behind the design of the CHC is that it treats dynamic
circuit-level error histories of its base code as the static instantaneous errors of a
code-capacity error model on the corresponding CHC, a gauge code. This is useful

118

because it allows us to understand the underlying algebraic group structure of the
set of dynamic error histories, which we shall see allows us to better understand
properties the circuit-level noise model and the fault-tolerant properties of a code’s
measurement protocols.

Below, we give a list of generators for the gauge group of the CHC. We note three
different types of generators.

Figure 3.7: 24 independent generators of the gauge group of the CHC for the measurement circuit in
figure 3.6. Gate gauge generators are determined using the error propagation relations of �- and
identity gates seen in figure 3.4, below. Preparation gauge generators express that an - error doesn’t
affect a |+〉 state preparation. Measurement gauge generators express that an - error won’t affect the
outcome of an --basis measurement.

The first are gate-type generators. These are constructed using the knowledge of how
errors propagate through �- and identity gates, as seen in figure 3.4, above.

These obviously correspond to error histories which have a trivial effect on the
accumulated error on the data qubits. This is equivalent to the fact that the image of
each gate-type generator under the accumulation map A is the identity.

The second type of gauge generators are measurement-type generators. These are -
errors that occur on an ancilla qubit just before performing an --basis measurement
of the ancilla. Obviously, such an error has no effect on the data qubits nor the
observed measurement outcome.

The third type of gauge generators are preparation-type generators. These are -
errors that occur on an ancilla qubit just after being initialized in the |+〉 state. Such
an error will have no effect on the measurement outcome of the ancilla qubit. We can
see, however, that propagating this error forward in time through the circuit has the

119

effect of applying a stabilizer generator to the data qubits (in particular, the stabilizer
generator that this ancilla qubit is meant to measure).

Figure 3.8: A single - error occuring on a freshly initialized |+〉 ancilla state propagates to apply a
stabilizer generator to the data qubits.

All gauge operators share the common feature that, when considered as error histories
of the measurement circuit, they do not change the measurement outcomes of any
ancilla qubit measurements, and leave the accumulated error on the data qubits
unchanged, up to a stabilizer operator of the base repetition code. The gauge group
is exactly the subgroup of error histories that share this feature.

The Stabilizer groupS′ of the CHC is the center of the gauge group: S′ = Z(G) ⊆ G.
In this particular case, the stabilizer group can be generated using the operators
below. We build these operators by taking the worldsheets of the base code stabilizer
operators as they propagate through the circuit, as well as the worldsheets of a trivial
initialization error on each ancilla qubit.

(′1 =

- - -

- - -

� � �

� � �

� � �

, (′2 =

� � �

- - -

- - -

� � �

� � �

, (′3 =

� - -

� � -

� � �

- - -

� � �

, (′4 =

� � �

� - -

� � -

� � �

- - -

(3.4.4)

One can check that these four operators commute with each of the 24 gauge generators
in figure 7, and therefore form at least a subgroup of the center of the gauge group.

Next, we may describe generators for the group of pure errors of the CHC, T ′, using
generators which canonically anti-commute with the above stabilizer generators. The
non-trivial elements of T ′ are error histories which will accumulate non-trivial pure
errors of the base code on the data qubits, as well as generate measurement outcome
flips on the ancilla qubits. A generating set for these pure errors is given below.

) ′1 =

� � /

� � �

� � �

� � /

� � �

,) ′2 =

� � �

� � �

� � /

� � �

� � /

,) ′3 =

� � �

� � �

� � �

� � /

� � �

,) ′4 =

� � �

� � �

� � �

� � �

� � /

(3.4.5)

120

We can see that this set of generators canonically anti-commutes with the set of
stabilizer generators. The intuition behind this choice of pure error generators is as
follows: the first two are pure errors of the base code occurring on the boundary data
qubits, along with a measurement outcome flip on the boundary of the corresponding
ancilla qubit. These pure errors can be interpreted as generating the pure errors
of the base code whose presence on the data qubits is also correctly detected in
the measurement outcome on the ancilla. The other two pure errors are simply
measurement bit flip errors on the individual ancilla boundary qubits, which are to
be interpreted as generating measurement errors.

Finally, we may describe a set of logical operators for the CHC. These are error
histories whose accumulation leave a logical operator of the base code on the data
qubits. They can simply be chosen to be the logical operators of the base code placed
on the boundary data qubits:

!′/ =

� � /

� � /

� � /

� � �

� � �

, !′- =

� � �

� � -

� � �

� � �

� � �

. (3.4.6)

These chosen logical operators obviously commute with all stabilizers and pure
errors and anti-commute with each other.

We have now provided 30 independent Pauli operators, which form a complete
generating set for the Pauli group on 15 qubits, which is the number of qubits of the
CHC in this example. This tells us that the error histories in the gauge group are
the only ones which have a trivial effect on the data qubits and ancilla measurement
outcomes, since any nontrivial combination of of the pure error or logical operator
generators must have a non-trivial effect on the accumulated error.

Let’s use the CHC take a closer look at the algebraic structure of the error histories
of the underlying circuit-level error model.

As previously mentioned, the gauge group G consists of all possible error histories
which have trivial logical and pure error accumulation on the data qubits, and cause
no measurement errors on the data qubits.

All error-histories that are not in G introduce at least one of: an accumulated pure
and/or logical error on the data qubits, or a measurement error.

We can use non-trivial elements of the CHC pure error and logical groups, T ′ and
L′, to compute exactly which sets of error histories cause which errors in our data
and measurements: they will be co-sets of the gauge group in the Pauli group P15.

121

For example: to find every error history which causes a fixed accumulated logical
error ! and pure error)C0 on the data qubits, and results in an observed syndrome C>,
one need only compute the coset

E!,C0 ,C> = !) ′C0)
′
C>
G. (3.4.7)

3.5 The Circuit History Code
In this section we give a formal description of the construction of the Circuit History
Code (CHC). We will assume that we have a stabilizer code with stabilizers, pure
errors, and logical operators S, T and L. Further, we will assume a standard
repeated measurement protocolMS,A with circuit CS,A .

We will describe a gauge/subsystem code defined on # = (= + <) physical qubits,
the same as the number of fault locations in the measurement circuit CS,A . When
we refer to the base code S and any of its = physical qubits, this will correspond to
a set of physical qubits of the CHC which model all fault locations for that base
code data qubit. When we refer to an ancilla qubit, this will correspond to a set of
physical qubits of the CHC which model fault locations for the ancilla qubit being
used to measure a particular stabilizer generator (including repetitions).

Boundary locations of the underlying measurement circuit distinguish corresponding
boundary qubits of the CHC. Thus, a CHC of a standard repeated measurement
circuit CS,A will have = + A< boundary qubits.

Error histories of the associated measurement circuit correspond to static errors of the
physical qubits of the CHC (as one might encounter in a code capacity error model).
However the algebraic structure of the dynamics of error histories we covered in
section 3.3 will allow us to understand the algebraic structure of the CHC in a useful
way.

Recall that we can interpret the repeated accumulation mapAA as ‘pushing’ a circuit
error history �ℎ8BC to the boundary qubits. This map takes an error history and
produces an accumulated error on the boundary qubits which allow us to perform an
LTS decomposition to classify its effect. For notational convenience, we also define
an inclusion map which turns an error from the extended base code into an error
history which only has support on the boundary qubits of the CHC.

Definition 3.5.1. The inclusion map I : P=+A< → P⊗ =+< maps a Pauli error on the
boundary qubits of a CHC to the equivalent error on all CHC qubits (or error history
of the measurement circuit) by adding identity operators to all other qubits.

The Gauge Group
At the core of the definition of any gauge/subsystem code is the gauge group. In
the circuit history code, all gauge operators in G share the property that they result
in a trivial accumulated logical error, pure error, and observed syndrome when

122

interpreted using the accumulation map AA . In section 3.4, we saw the intuition
behind the three different types of generators of G that we now define for general
circuit history codes.

The first type of generator is the gate gauge generator. As we discussed, these
generators reflect that the effect of an - or / error at any non-boundary fault location
can be cancelled out by an appropriate error at the next time step, depending on the
Clifford gate connecting those time steps. We may systematically construct all gate
gauge generators with the following definitions:

Definition 3.5.2. Given a single qubit gate*0→1 whose input qubit of the CHC has
label 0 and output qubit has label 1, we can define two gate gauge generators,

�
60C4,�

0→1 = (�)0 ⊗ (*0→1 • �)1, � ∈ {-, /} (3.5.1)

where identity operators on all other qubits of the CHC are implicit.

Definition 3.5.3. Given a two-qubit gate *01→23 whose input qubits of the CHC
have labels 0 and 1 and output qubits have labels 2 and 3, we can define four gate
gauge generators,

�
60C4,�

01→23 = (�)01 ⊗ (*01→23 • �)23 , � ∈ {-�, �-, / �, �/} (3.5.2)

where identity operators on all other qubits of the CHC are implicit.

Lemma 3.5.4. The image of any gate gauge generator under any accumulation map
is the identity operator.

Proof. By construction, we have that

A: ((�)01) (*01→23 • �)23 = (*01→23 • �)23 (*01→23 • �)23 (3.5.3)
= �, (3.5.4)

where the final equality is due to the fact that (*01→23 • �)23) is a phaseless pauli
operator. �

Next are the preparation gauge generators. Ancilla state preparation locations have
a distinguished role as CHC qubits in that there is always an individual Pauli error
which leaves a successfully prepared ancilla qubit unchanged. Therefore if such a
Pauli error occurs directly after an ancilla preparation, it is a gauge operator of the
CHC.

Definition 3.5.5. For the - or / basis ancilla qubit preparations preceding the very
first preparation location of a CHC qubit labeled 0, we can define a preparation
gauge generator,

�
?A4?,�
0 = �0 (3.5.5)

123

where � is - if a |+〉 state was prepared, or / if a |0〉 state was prepared. Identity
operators on all other qubits of the CHC are implicit.

Finally, we have measurement gauge generators. These can be understood in the
same manner as the preparation gauge generators: a Pauli X/Z error occurring just
before making an X/Z-basis measurement will have no effect on the outcome. Such
an error is, therefore, a gauge generator.

Definition 3.5.6. For any - or / basis measurement following CHC qubit labeled 0,
we can define a measurement gauge generator,

�<40B,�
0 = �0 (3.5.6)

where � is - or / depending on the basis measured. Identity operators on all other
qubits of the CHC are implicit.

With all proposed generators of G defined, we need to prove that they indeed
are a minimal generating set for the set of error histories we’ve described: those
whose image under AA have trivial logical component, pure error, and and observed
syndrome.

First, we note an obvious fact about the measurement gauge generators:

Lemma 3.5.7. The image of each measurement gauge generator under the accumu-
lation map is an extended stabilizer generator of the underlying extended stabilizer
code:

AA (〈�<40B,�
0 〉0) = 〈"4GC

8 〉8 . (3.5.7)

Proof. This is obvious from the fact that �<40B,�
0 only act non-trivially on the

boundary of the CHC. �

Next, we see that we can use specific combinations of measurement and preparation
gauge generators to generate base stabilizer generators under AA :

Lemma 3.5.8. The image of each preparation gauge generator together with its cor-
responding measurement gauge generator, � ?A4?,�

0 �
<40B,�

1
under the accumulation

map AA is simply the stabilizer generator that the corresponding ancilla qubit of the
measurement circuit measures:

AA (� ?A4?,�
0 �

<40B,�

1
) = "8 (3.5.8)

Proof. This is by construction of our measurement circuit CS,A as defined in definition
3.3.2. We will focus our attention on the case in which all ancilla qubits are prepared

124

and measured in the - basis. �- and �. gates propagate an - error on the control
qubit (ancilla) to an - and . respectively on the target qubit (data). A �/ gate
propagates an - error on the target qubit (ancilla) to a / on the control qubit
(data). Therefore it is clear that AA (� ?A4?,�

0) = "8"
4GC
8

. Therefore, we can see that
AA (� ?A4?,�

0 �
<40B,�

1
) = "8, as inclusion of �<40B,�

1
in the error history will simply

cancel out the accumulated "4GC
8

on the boundary. �

Combining these facts, we have:

Lemma 3.5.9. The image of the gauge group G under the accumulation map AA is
the extended stabilizer group of the base code, S4GC:

AA (G) = S4GC . (3.5.9)

At this point, a simple counting argument suffices to prove that G is exactly the
set of all non-trivial �ℎ8BC ∈ P⊗ =+A< which map into S4GC under AA , justifying our
definitions of the generators of G:

Lemma 3.5.10. For �ℎ8BC ≠ �,

AA (�ℎ8BC) ∈ S4GC ⇐⇒ �ℎ8BC ∈ G. (3.5.10)

Proof. We need only prove the forward direction. Note that there are 2# − 2<(A −
1) −2(=+<) gate gauge generators and (A +1)< preparation and measurement gauge
generators, making a total of 2# − (A − 1)< − 2= independent gauge generators.
Note that the logical group L and extended pure error group T 4GC of the extended
base code have exactly 2(= −<) +<A = 2= + (A − 1)< independent generators. The
images of these independent generators under the inclusion map I are obviously
2= + (A − 1)< independent error histories which do not map to S4GC under AA and
are therefore not in G. This means that no non-trivial error history outside of G can
map to S4GC under the accumulation map. �

Definition 3.5.11. The Gauge Group of the CHC is the non-abelian group generated
by all gate, preparation, and measurement gauge generators of the measurement
protocolMS,A associated to the CHC:

G = 〈�60C4,�

0→1 , �
60C4,�� ′

01→23 , �
?A4?,�
0 , �<40B,�

0 〉. (3.5.11)

CHC Gauge Pure Errors
Here we will describe the set of generators of the group of gauge pure errors T ′ of
the CHC. We call them gauge pure errors because they do not correspond, strictly
speaking, to pure errors of the gauge code, but rather to dressed pure errors which
are equivalent to the true pure errors of the CHC up to gauge operators.

125

Definition 3.5.12. To every pure error generator) (4GC)
8

of the base code, we assign a
gauge pure error) (4GC)

8
′ = I() (4GC)

8
). These (A +1)< independent generators generate

the group of gauge pure errors of the CHC:

T ′ = 〈) ′8 ,) 4GC8
′〉 (3.5.12)

That these generators are independent from those of G should be clear from the fact
that they do not map to S4GC under AA . In fact:

Lemma 3.5.13. The image of T ′ under the accumulation map AA is the extended
pure error group of the base code:

AA (T ′) = T 4GC (3.5.13)

We will use the same notation for indication actual and observed syndromes on gauge
pure errors of the CHC as we do with the extended base code.

CHC Gauge Logical Operators
Here we will describe the set of generators of the group of gauge logical operators L′
of the CHC. We call them gauge logical operators because they do not correspond,
strictly speaking, to logical operators of the gauge code, but rather to dressed logical
operators which are equivalent to the true bare logical operators of the CHC up to
gauge operators.

Definition 3.5.14. To every logical operator generator !-//8 of the base code, we
assign a gauge logical operator !′

-//8 = I(!-//8). These 2(= − <) independent
generators generate the group of gauge logical operators:

L′ = 〈!′
-//8〉 (3.5.14)

As was the case with the gauge pure errors, it is obvious that these gauge logical
operators are independent from any oeprators in G or T ′. And, in fact:

Lemma 3.5.15. The image of L′ under the accumulation map AA is the logical
group of the base code:

AA (L′) = L (3.5.15)

The LTG Decomposition
We have now described 2# − (A − 1)< − 2= independent gauge generators, (A + 1)<
independent gauge pure error generators, and 2(= − <) independent gauge logical
error generators, making for a total of 2# independent error histories which therefore
generate the entirety of the group of error histories.

As a consequence, just as any error of the base code admits an LTS decomposition,
any error history of the CHC admits an LTG decomposition:

126

Lemma 3.5.16. Any error history �ℎ8BC ∈ P⊗ =+< has a unique decomposition into a
product of operators from G, T ′, and L′, and we call this decomposition the LTG
decomposition of the error history:

�ℎ8BC = !)C0 ,C>�, ! ∈ L′,)C0 ,C> ∈ T ′, � ∈ G (3.5.16)

As a result, we may group error histories that cause different combinations of
syndromes and logical errors into different cosets of G:

Lemma 3.5.17. The set of error histories E!,C0 ,C> with fixed logical component !,
and fixed actual syndrome C0 and observed syndrome C> are a conjugacy class of the
Gauge group G in P⊗ =+<:

E!,C0 ,C> = {!′) ′C0 ,C>� |� ∈ G} (3.5.17)

Therefore, assuming a circuit level noise model c�! , we may organize the calculation
of the occurrence of an error history with a specific syndrome pattern and accumulated
logical component as a summation over the gauge group of the CHC:

Lemma 3.5.18. The probability of an error history in conjugacy class E!,C0 ,C>
occurring is calculated by fixing !′,) ′C0 ,C> , and summing over the gauge group:

c�! (E!,C0 ,C>) =
∑

�ℎ8BC∈E!,C0 ,C>

c�! (�ℎ8BC) =
∑
�∈G

c�! (!′) ′C0 ,C>�) (3.5.18)

3.6 Maximum Likelihood Decoding with Tensor Networks
In this section, we apply the CHC to construct a tensor network implementation of
maximum likelihood decoding for stabilizer codes under circuit level noise models.
First we review the decoding problem in the settings of perfect and imperfect syndrome
measurements. Next we describe and analyze the tensor network construction which
can implement both exact and approximate maximum likelihood decoding.

Decoding Code Capacity Noise
The simplest definition of a decoder for stabilizer codes arises in the setting of a code
capacity noise. In this setting, we have some stabilizer code S on = physical qubits
and can then specify the decoding problem as follows:

• A pauli error � is drawn from from the noise model’s probability distribution
c��

• Each generator of the stabilizer groupS is measured with perfect fidelity which
produces the syndrome of error � , t0 (�) = C0 ∈ {0, 1}<, so that T0 (�) =)C0

127

• The decoder, X�� , takes this syndrome C0 and uses it to determine a correction
operator � ∈ P=

Generally, we can think of the code capacity decoder as a map

X�� : {0, 1}< → P=, (3.6.1)

but there is one additional property it should satisfy: it should return the error state
to the codespace. Algebraically, this condition can be stated

Definition 3.6.1. For an error � ∈ P= with actual syndrome C0, the code capacity
decoder should produce correction X(C0)�� = � such that

�� ∈ SL, (3.6.2)

or, equivalently, the correction � also has actual syndrome C0 and pure error
component)C0 so that �� has trivial actual syndrome and pure error component.

The above condition fixes the pure error component of X�� (C0) to be exactly)C0 .
So the only non-trivial decision to be made in specifying the decoder map is in
specifying the logical component of X�� (C0).

The decoder X�� has successfully decoded syndrome C0 whenever the correction
returns the error state back to the original code state. Algebraically, this occurs when
the logical component of the correction X�� (C0) = � matches the logical component
of � , so that

�� ∈ S. (3.6.3)

In summary, it is trivial for a code capacity decoder to always return the state to the
code space, and the question of success or failure depends entirely on whether or
not it inadvertently applies an unwanted logical operator in doing so. As such, a
code capacity decoder can be described as a map that takes the actual syndrome and
simply produces a guess at the logical operator of the error:

X�� : {0, 1}< → L. (3.6.4)

Decoding With Faulty Measurements
The code capacity noise setting is highly idealistic. Although studying decoding
under code capacity noise models can give impressions about how well a QECC will
perform, we must consider more realistic noise models in order to understand more
realistic performance and how performance should even be assessed.

One important deficiency of code capacity noise models is the assumption that
stabilizer generators measurements can be carried out with perfect fidelity, and

128

therefore that the decoder has access to the actual syndrome of the data qubit error
that it is trying to correct, C0. Of course, in a real quantum computer, it is highly
unlikely that there will be a way of performing perfect syndrome measurements, and
we use phenomenological and circuit-level noise models to account for this.

The possibility of disagreement between observed and actual syndromes complicates
the decoding process. It is no longer trivial to correct the pure error component of
� and return the state to the codespace. Suppose, under a phenomenological noise
model, that error � occurs which has actual syndrome C0, and the syndrome C> is
measured, which may differ from C0. If one naively believes that C> was the correctly
measured syndrome, and uses the code capacity decoder, then one would apply the
correction

X�� (C>) =)C>L(X�� (C>)). (3.6.5)

The residual error will then be

�� = ()C>L(X�� (C>))) ()C0L(�)) (3.6.6)
=)C>)C0L(X�� (C>))L(�) (3.6.7)
=)C>⊕C0L(X�� (C>))L(�), (3.6.8)

which has non-trivial pure error component unless C> = C0, which is only true if no
syndrome measurement errors occurred. Therefore, naively using a code capacity
decoder in the presence of measurement faults will mean that the state will not, in
general, be returned to the codespace.

One way of mitigating the effects of faulty measurements is to repeat syndrome
measurements several times. If the probability of measurement error @ is sufficiently
low, for example, taking a majority vote result of many repetitions for each stabilizer
measurement to construct C> can significantly increase the probability that C> = C0
and that the state will be returned to the codespace.

Correctly specifying and implementing repeated measurement schemes is a subtly
technical problem in itself. One common model for specifying the decoding problem
in a way which guarantees the decoder will return the state to the codespace is to
allow for a single round of ‘perfect’ syndrome measurement after performing A
rounds of imperfect measurements. This perfect round of syndrome measurement
can be motivated in some experimental settings e.g. quantum memory experiments
where the code state does not need to be fed forward into a continued quantum
computation [37]. Therefore we may directly (destructively) measure each individual
data qubit which gives enough information to reconstruct the actual syndrome.

Maximum Likelihood Decoding
In what follows, we focus on decoding in this scenario where the decoder has access
both to A imperfect syndrome measurements, C> as well as one final perfect syndrome

129

measurement C0. In this setting the decoder is a map

X : {0, 1}A< × {0, 1}< → L. (3.6.9)

Because the input to the decoder includes the actual syndrome C0, we know that it is
trivial for the decoder to select the correct pure error)C0 needed to return the state to
the codespace, and therefore the only non-trivial decision for the decoder to make is
what logical error it is trying to correct based on the syndrome information it has
received.

In this setting if one knows the underlying error model producing the data qubit
errors and syndromes, then there is an obvious strategy for maximizing the success of
the decoding algorithm: given observed syndrome C> and actual syndrome C0, simply
use the error model to determine which logical error matches the syndromes with
the highest probability on average. This strategy is known as maximum likelihood
decoding. Given a circuit level error model c�! a maximum likelihood decoder X"!
performs the following calculation:

X"! (C>, C0) = argmax! ′∈L ′
∑

�ℎ8BC∈E!′,C0 ,C>

c�! (�ℎ8BC). (3.6.10)

Using the CHC’s gauge group, we may re-write this as

X"! (C>, C0) = argmax! ′∈L ′
∑
�∈G

c�! (!′) ′C>)
′
C0
�). (3.6.11)

In this setting, it is obvious by mathematical definition that the maximum likelihood
decoder X"! is the optimal decoder: it will have the lowest possible rate of leaving a
logical error on the data qubits after applying its correction.

Tensor Network Construction
Implementing a the maximum likelihood decoder X"! involves a complicated
summation that crucially depends on the underlying mathematical structure of the
stabilizer code and its measurement circuit. This structure is captured succinctly by
the gauge group G of the associated CHC. We now describe how to reduce the ML
decoding problem to the problem of contracting a tensor network by describing a
construction which uses the structure of the CHC to produce a tensor network whose
contractions implement the summation in equation (3.6.11).

The tensor network is built from two types of tensors: fault tensors and gauge tensors.
We define fault tensors for single-qubit and two-qubit fault locations, but in principle
these definitions extend in a straightforward way to allow for more highly correlated
Pauli errors.

130

Definition 3.6.2. A single qubit fault tensor is defined using a probability distribution
c over the single qubit Pauli group, and two sets of binary indices which we refer to
as G-indices, {G8}, and I-indices, {I8}. We may then define the tensor:

F I1,I2...
G1,G2... = c(-

∑
8 G8/

∑
8 I8). (3.6.12)

Similarly, for a two-qubit fault location, we use a probability distribution c over
the two-qubit Pauli group P2, two sets of G-indices, {G1

8
} and {G2

8
}, and two sets of

I-indices, {I1
8
} and {I2

8
}. Then, we have

F I
1
1,I

1
2...I

2
1,I

2
2

G1
1 ,G

1
2 ...,G

2
1 ,G

2
2 ...
= c(-

∑
8 G

1
8

1 /

∑
8 I

1
8

1 ⊗ -
∑
8 G

2
8

2 /

∑
8 I

2
8

2). (3.6.13)

Figure 3.9 below shows graphical representations of single and two-qubit fault
tensors.

Figure 3.9: Single and two-qubit fault tensors. Observe that when two single fault locations are joined
into a single fault tensor with a correlated probability distribution, it is denoted graphically using a
dotted line.

Gauge tensors are modeled upon the gauge generators of the underlying CHC.

Definition 3.6.3. Given a gauge generator 6 ∈ G, its corresponding gauge tensor is
defined to be an identity tensor with exactly one binary G or I index for each location
where 6 acts non-trivially with an - or / operator, respectively. For this purpose,
any location where 6 acts with a . operator is understood to be a location where
6 acts with both an - operator and a / operator (and has separate G and I indices
corresponding to each).

Figure 3.10, below, gives an example of how to convert a simple gauge operator into
a gauge tensor.

Figure 3.10: The gauge generator � = //- is easily converted into its corresponding gauge tensor.

131

We now give an algorithm to build a maximum-likelihood decoder tensor network
(MLTN). This algorithm takes as input a CHC with gauge generators G and set of
fault locations � with corresponding probability distributions over the Pauli group.

1. For each gauge generator �, create a corresponding gauge tensor 6 according
to definition 3.6.3 above.

2. For each probability distrubition c8 of the circuit-level noise model, create a
single-qubit or two-qubit fault tensor F for the associated fault locations 5 ∈ �.
The number of G-indices and I-indices of each fault-tensor is determined by the
number of G and I-indices of gauge generators in step 1 which are associated
to the underlying fault locations of F .

3. Connect the G/I-indices of the gauge tensors 6 of step 1 with the appropriate
G/I-indices of the fault tensors of step 2

The output of this algorithm is a tensor networkN� with no free indices, and therefore
contracts to a scalar. In particular, we have that upon contraction,

NG =
∑
�∈G

c�! (�). (3.6.14)

This tensor network therefore computes the probability of the identity coset of G in
P⊗ =+<.

In figure 3.11 we show how to constructNG for a simple circuit consisting of a single
�- gate (only / type gate generators used for simplicity).

Figure 3.11: Here we show how to construct NG for a simple circuit consisting of a single �- gate,
assuming for simplicity that there are only /-type gate gauge generators. On the left we see how to
connect the gauge tensors to the fault tensors for both /-type gate gauge generators. On the right we
see how to construct the full tensor from both generators. Here the dashed line between the fault
tensors after the �- gate indicates that we are using a single joint distribution over Pauli errors on
those locations in order to account for correlated errors.

In figure 3.12 we demonstrate how contracting the example of NG from figure 3.11
indeed sums over all four combinations of the two different gauge generators and
their associated probabilities furnished by the circuit level error model.

132

Figure 3.12: Here we show how the contraction of the example of NG given in figure 3.11.

We now describe how to turn NG into a tensor network that allows us to calculate
the probability of any coset of G:

Definition 3.6.4. The circuit level tensor network or CLTNN of a circuit level error
model c�! is built by taking the gauge tensor network NG, and augmenting it as
follows

1. Identify all fault tensors F associated with boundary locations of the circuit

2. To each fault tensor, add a single open G index and a single open I index

The open indices on each boundary fault tensor allow one to insert any pauli error
whose support is entirely on the boundary. If one sets these indices according to
boundary error � ∈ P=+A<, then contracting N gives

N(�) =
∑
�∈G

c�! (��), (3.6.15)

the probability of an an error history in the coset �G. Therefore, by restricting the
inputs to the boundary indices to be combinations of operators from L′ and T ′ and
considering the setting of the boundary indices of N as inputs to a function N , we
see that contracting N gives us a function

N : T ′ × L′→ [0, 1] (3.6.16)

N() ′C>,C0 , !
′) =

∑
�∈G

c�! (�!′) ′C>)
′
C0
) (3.6.17)

We illustrate the construction of N (restricting to a model with / errors only for
simplicity) for a 2-bit repetition code with a single stabilizer in figure 3.13, below:

133

Figure 3.13: Here we show how the construction of N (restricting to a model with / errors only for
simplicity) for a 2-bit repetition code with a single stabilizer.

Therefore we have given a construction for a tensor network whose contractions
allow us to implement maximum-likelihood decoding by fixing the observed and
actual syndromes and repeating the contraction for all ! ∈ L, outputting the logical
operator !′ that which maximizes the value of N() ′C>,C0 , !

′).

Exact and Approximate Contraction Cost
Optimal exact contraction of a tensor network is generally a difficult problem, as
determining the optimal contraction path is itself an NP-hard problem [29]. We can
say, however, that the cost of contracting N will generally scale exponentially in the
number of qubits that the measurement circuit acts on:

N ∈ $ (2=). (3.6.18)

This already indicates that exact maximum likelihood decoding using tensor network
contraction does not scale in a practical way, and such a decoder is unsuitable for
real-time decoding. However, the fact that we have reduced MLD to the problem of
tensor network contraction allows us to use numerical techniques for controlling the
complexity of contraction through use of approximate contraction. The idea is that
the complexity of contraction is to a large degree controlled by the bond dimensions
of the tensors being contracted. By using an appropriately chosen accuracy cutoff,
one can reduce bond dimensions of all contractions to a fixed dimension in a way
that minimizes loss in accuracy. This is usually accomplished using singular value
decomposition.

By actively truncating to a fixed bond dimension j throughout contraction, one can
achieve a time complexity of$ (#j3), where # is the number of tensors in the tensor
network. In stark contrast to exact contraction, for a fixed number of repetitions, this
grows linearly in the size = of the underlying stabilizer code.

Previous work [22] and [31] has shown that such approximate approaches to MLD
have been able to yield high accuracy for low fixed bond dimensions in code capacity
settings. It remains to be seen to what degree approximate decoding with fixed bond
dimension works in the circuit-level noise settings, where the tensor networks are
considerably more complex.

134

We implemented approximate tensor network ML decoding using PastaQ [42] a
numerical package built on top of ITensor [43] that uses matrix product state (MPS)
based algorithms to simulate quantum circuit evolution. Although PastaQ is designed
to approximately contract tensor networks made up of unitary quantum gates, its
methods are equally compatible with tensors described by stochastic matrices, like
those in our tensor networks. We briefly describe preliminary results in the next
section.

3.7 Applications and Future Work
Here we briefly discuss simulation efforts currently in progress. As discussed in this
chapter’s introduction, we expect that efficient approximate ML decoding may be
able to outperform efficient yet sub-optimal decoders that are currently promising
candidates for certain experimental architectures, e.g. minimum-weight perfect
matching in surface code architectures.

To this end we perform simulations to compare with the thin strip rotated surface
code MWPM simulations performed for the biased-noise concatenated cat-qubit
architecture considered in [28]. Using an identical /-biased error model as that used
in [28], we perform Monte Carlo simulations to estimate the probability of logical /
failure in a 3G = 3 rotated surface code for various values of 3I after performing 3I
rounds of noisy measurements and exact ML decoding.

As seen in figures 3.14 and 3.15, even exactML decoding onlymarginally outperforms
MWPM in this setting, with a relative percentage improvement of up to roughly 25%
at 3I = 9.

135

Figure 3.14: Total logical / failure rate as a function of physical failure rate parameter ? for thin strip
rotated surface codes of width 3G = 3 and various lengths 3I . For each data point, the number of
faulty measurement repetitions is the same as the length of the surface code patch, A = 3I . The error
model used is described in the first column of Tables I and II of [28] (our parameter ? is their ^1/^2),
and the MWPM data points are taken from Figure 8 of [28]. All data points collected via monte carlo
simulation with standard error less than 5%. We note that this particular error model is very strongly
/-biased, with a bias of roughly 107.

136

Figure 3.15: This figure shows the percent improvement in logical / failure rate of ML decoding
relative to MWPM decoding using the data from figure 3.14 for two different values of ? = ^1/^2.

If one is committed to using a specific type of decoder (e.g. MWPM), then this may
also restrict the class of quantum codes that one can use. As an example, MWPM
decoders take advantage of the CSS nature of the standard rotated surface code
(whose stabilizer generator come in all - or all / varieties) by matching - and /
defects separately. As a result, a MWPM decoder would have difficulty decoding in
a situation where the independence of different types of defects is a poor assumption.

We can demonstrate one such example in the context of the biased noise cat-qubit
architecture of [28]. This work studies fault-tolerance architectures based on physical
qubits built with hardware whose noise model can be strongly biased to make /
errors far more likely than - or . . This work uses a standard rotated surface code
with - and / type stabilizer generators, and takes advantage of the noise bias by
only growing the 3I instead of both side lengths of the surface code patch. One
could ask if using a different variant of the surface code whose stabilizer generators,
themselves, are better suited to the biased noise might yield better results on the
same hardware architecture.

One example of such a surface code variant is the -. rotated surface code, in
which the /-type stabilizer generators of the -/ surface code are replaced by
. -type generators. If the noise is dominated by / errors, then only measurements
of the --type stabilizer generators of the -/ surface code are providing us with

137

any information about the occurrence of / errors. One can imagine that at certain
bias strengths, measuring the /-type stabilizers, which only identify rare - and .
errors, may be doing more harm than good by adding more possible fault locations
to the measurement circuit. By replacing the /-type measurements with . -type
measurements, every observed syndrome bit is telling us about a possible / error,
which is what we need the most protection against. However, in order to actually use
the -. code, we need a better suited decoder than the MWPM decoder as used in
[28].

Using a realistic error model for the implementation of controlled-. gates [55] in the
cat-qubit architecture of [28], we simulate the performance of the rotated -. surface
code with an approximate ML tensor network decoder of fixed bond dimension
j = 40, and compare this performance to that of an -/ surface code with a MWPM
decoder and identical hardware noise parameters.

Figure 3.16: This figure compares the performance of two different 3 × 3 rotated surface codes (3
faulty measurement rounds) with different decoders. We see that using an -. code and approximate
ML decoding, performance is improved by at least an order of magnitude compared to the standard
-/ code using MWPM. These simulations assume nearly identical circuit level noise models. The
-/ simulations use the same error model as in figure 3.14, and the -. simulations use that same
noise model with added �. gate failure rates [55] compatible with the hardware parameters employed
in this model.

We see that, as expected, there is a considerable improvement in logical failure
rates in using an XY surface code over an XZ surface code in this setting. More

138

simulations could help us assess what kinds of physical overhead reductions using
an -. code in this architecture could provide in experiments where a specific logical
failure rate is being targeted.

While the limited simulation results we have presented are promising in making a
case for studying approximate ML decoding with tensor networks, we have found
that simulation code needs to be considerably more efficient in order to be able to
realistically carry out informative simulations for larger system sizes. Although it’s
true that choosing a fixed bond dimension renders the scaling of the time complexity
linear in the size of the tensor network, there is considerable overhead involved in
performing the tensor network contractions, which make it difficult to probe larger
code sizes without incurring massive simulation costs. As we grow the size of a
surface code patch to even 5 × 3, we have contraction times on the order of 1 second
per trial running on AWS cloud machines. It will be an ongoing challenge to further
reduce the time cost per contraction in PastaQ in order to be able to use it more
practically to perform Monte Carlo simulations.

139

BIBLIOGRAPHY

[1] We thank Elizabeth Crosson for suggesting this modification.

[2] Scott Aaronson. The complexity of quantum states and transformations: from
quantum money to black holes. eprint arXiv:quantph/1607.05256, 2016.

[3] Scott Aaronson and Leonard Susskind. in preparation, 2017.

[4] Dorit Aharonov. private communication, 2017.

[5] Dorit Aharonov and Lior Eldar. Quantum locally testable codes. SIAM Journal
on Computing, 44(5):1230–1262, 2015.

[6] Dorit Aharonov and Leo Zhou. On gap-simulation of Hamiltonians and the
impossibility of quantum degree-reduction. arXiv preprint arXiv:1804.11084,
2018.

[7] Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and
Oded Regev. Adiabatic quantum computation is equivalent to standard quantum
computation. SIAM review, 50(4):755–787, 2008.

[8] Dorit Aharonov, Daniel Gottesman, Sandy Irani, and Julia Kempe. The power
of quantum systems on a line. Comm. Math. Physics, 287(1):41–65, 2009.

[9] Dorit Aharonov, Itai Arad, and Thomas Vidick. Guest column: the quantum
PCP conjecture. ACM SIGACT news, 44(2):47–79, 2013.

[10] Ahmed Almheiri, Xi Dong, and Daniel Harlow. Bulk locality and quantum
error correction in AdS/CFT. Journal of High Energy Physics, 2015(4):163,
2015.

[11] Yosi Atia and Dorit Aharonov. Fast-forwarding of hamiltonians and exponen-
tially precise measurements. arXiv preprint arXiv:1610.09619, 2016.

[12] Dave Bacon, Steven T Flammia, Aram W Harrow, and Jonathan Shi. Sparse
quantum codes from quantum circuits. IEEE Transactions on Information
Theory, 63(4):2464–2479, 2017.

[13] K. E. Batcher. Sorting networks and their applications. In Proceedings of the
April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring),
pages 307–314, New York, NY, USA, 1968. ACM. doi: 10.1145/1468075.
1468121. URL http://doi.acm.org/10.1145/1468075.1468121.

[14] Johannes Bausch and Elizabeth Crosson. Analysis and limitations of modified
circuit-to-Hamiltonian constructions. Quantum, 2:94, September 2018. ISSN
2521-327X. doi: 10.22331/q-2018-09-19-94. URL https://doi.org/10.
22331/q-2018-09-19-94.

http://doi.acm.org/10.1145/1468075.1468121
https://doi.org/10.22331/q-2018-09-19-94
https://doi.org/10.22331/q-2018-09-19-94

140

[15] Cédric Bény and Ognyan Oreshkov. General conditions for approximate
quantum error correction and near-optimal recovery channels. Physical review
letters, 104(12):120501, 2010.

[16] Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamiltonian
simulation with nearly optimal dependence on all parameters. In Foundations
of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
792–809. IEEE, 2015.

[17] Fernando GSL Brandao, Aram W Harrow, and Michal Horodecki. Local
random quantum circuits are approximate polynomial-designs. arXiv preprint
arXiv:1208.0692, 2012.

[18] Fernando GSL Brandao, Elizabeth Crosson, M Burak Şahinoğlu, and John
Bowen. Quantum error correcting codes in eigenstates of translation-invariant
spin chains. arXiv preprint arXiv:1710.04631, 2017.

[19] Sergey Bravyi and Matthew B Hastings. Homological product codes. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 273–282. ACM, 2014.

[20] Sergey Bravyi and Barbara Terhal. A no-go theorem for a two-dimensional
self-correcting quantum memory based on stabilizer codes. New Journal of
Physics, 11(4):043029, 2009.

[21] Sergey Bravyi, Matthew B Hastings, and Spyridon Michalakis. Topological
quantum order: stability under local perturbations. Journal of mathematical
physics, 51(9):093512, 2010.

[22] Sergey Bravyi, Martin Suchara, and Alexander Vargo. Efficient algorithms for
maximum likelihood decoding in the surface code. Phys. Rev. A, 90:032326,
Sep 2014. doi: 10.1103/PhysRevA.90.032326. URL https://link.aps.
org/doi/10.1103/PhysRevA.90.032326.

[23] Nikolas P Breuckmann and Barbara M Terhal. Space-time circuit-to-
Hamiltonian construction and its applications. Journal of Physics A: Mathe-
matical and Theoretical, 47(19):195304, 2014.

[24] Winton Brown and Omar Fawzi. Short random circuits define good quantum
error correcting codes. In Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on, pages 346–350. IEEE, 2013.

[25] Libor Caha, Zeph Landau, and Daniel Nagaj. Clocks in Feynman’s computer
and Kitaev’s local Hamiltonian: Bias, gaps, idling, and pulse tuning. Physical
Review A, 97(6):062306, 2018.

[26] A Robert Calderbank and Peter W Shor. Good quantum error-correcting codes
exist. Physical Review A, 54(2):1098, 1996.

https://link.aps.org/doi/10.1103/PhysRevA.90.032326
https://link.aps.org/doi/10.1103/PhysRevA.90.032326

141

[27] Sarah Cannon, David A. Levin, and Alexandre Stauffer. Polynomial Mixing of
the Edge-Flip Markov Chain for Unbiased Dyadic Tilings. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2017), volume 81 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 34:1–34:21, 2017. ISBN 978-3-95977-044-6.
doi: 10.4230/LIPIcs.APPROX-RANDOM.2017.34. URL http://drops.
dagstuhl.de/opus/volltexte/2017/7583.

[28] Christopher Chamberland, Kyungjoo Noh, Patricio Arrangoiz-Arriola, Earl T.
Campbell, Connor T. Hann, Joseph Iverson, Harald Putterman, Thomas C.
Bohdanowicz, Steven T. Flammia, Andrew Keller, Gil Refael, John Preskill,
Liang Jiang, Amir H. Safavi-Naeini, Oskar Painter, and Fernando G. S. L.
Brandão. Building a fault-tolerant quantum computer using concatenated cat
codes, 2020.

[29] Lam Chi-Chung, P Sadayappan, and Rephael Wenger. On optimizing a class
of multi-dimensional loops with reduction for parallel execution. Parallel
Processing Letters, 7(2):157–168, 1997.

[30] Andrew M Childs, Debbie Leung, Laura Mančinska, and Maris Ozols. Charac-
terization of universal two-qubit hamiltonians. arXiv preprint arXiv:1004.1645,
2010.

[31] Christopher T. Chubb. General tensor network decoding of 2d pauli codes,
2021.

[32] Claude Crépeau, Daniel Gottesman, and Adam Smith. Approximate quantum
error-correcting codes and secret sharing schemes. In Proceedings of the 24th
annual international conference on Theory and Applications of Cryptographic
Techniques, pages 285–301. Springer-Verlag, 2005.

[33] Elizabeth Crosson and John Bowen. Quantum ground state isoperimetric
inequalities for the energy spectrum of local Hamiltonians. arXiv preprint
arXiv:1703.10133, 2017.

[34] Toby Cubitt, David Perez-Garcia, and Michael M. Wolf. Undecidability of the
spectral gap (full version). arXiv preprint arXiv:1502.04573, 2015.

[35] Toby Cubitt, Ashley Montanaro, and Stephen Piddock. Universal quantum
hamiltonians. eprint arXiv:quantph/1701.05182, 2017.

[36] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev algorithm. eprint
arXiv:quantph/0505030, 2005.

[37] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological
quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.

[38] David Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London A, 4, 1985.

http://drops.dagstuhl.de/opus/volltexte/2017/7583
http://drops.dagstuhl.de/opus/volltexte/2017/7583

142

[39] Lior Eldar and Aram W Harrow. Local Hamiltonians whose ground states are
hard to approximate. In Foundations of Computer Science (FOCS), 2017 IEEE
58th Annual Symposium on, pages 427–438. IEEE, 2017.

[40] Lior Eldar, Maris Ozols, and Kevin F Thompson. The need for structure in
quantum LDPC codes. arXiv preprint arXiv:1610.07478, 2016.

[41] Richard Phillip Feynman. Simulating physics with computers. Int. J. Theor.
Phys., 21, 1982.

[42] Matthew Fishman and Giacomo Torlai. PastaQ: A package for simulation,
tomography and analysis of quantum computers, 2020. URL https://github.
com/GTorlai/PastaQ.jl/.

[43] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor
software library for tensor network calculations, 2020.

[44] Steven T Flammia, Jeongwan Haah, Michael J Kastoryano, and Isaac H Kim.
Limits on the storage of quantum information in a volume of space. Quantum,
1:4, 2017.

[45] Michael H Freedman, David A Meyer, and Feng Luo. Z2-systolic freedom and
quantum codes. Mathematics of quantum computation, Chapman & Hall/CRC,
pages 287–320, 2002.

[46] Robert G. Gallager. Low-density parity-check codes, 1963.

[47] Anand Ganti and Rolando Somma. On the gap of Hamiltonians for the adiabatic
simulation of quantum circuits. International Journal of Quantum Information,
11(07):1350063, 2013.

[48] Carlos E González-Guillén and Toby S Cubitt. History-state Hamiltonians are
critical. arXiv preprint arXiv:1810.06528, 2018.

[49] David Gosset, Barbara M. Terhal, and Anna Vershynina. Universal adiabatic
quantum computation via the space-time circuit-to-Hamiltonian construction.
Phys. Rev. Lett., 114:140501, Apr 2015. doi: 10.1103/PhysRevLett.114.
140501. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.
140501.

[50] Daniel Gottesman. Fault-tolerant quantum computation with constant overhead.
arXiv preprint arXiv:1310.2984, 2013.

[51] Daniel Gottesman and Sandy Irani. The quantum and classical complexity
of translationally invariant tiling and hamiltonian problems. arXiv preprint
arXiv:0905.2419, 2010.

[52] MathewBHastings. Weight reduction for quantum codes. Quantum Information
& Computation, 17(15-16):1307–1334, 2017.

https://github.com/GTorlai/PastaQ.jl/
https://github.com/GTorlai/PastaQ.jl/
https://link.aps.org/doi/10.1103/PhysRevLett.114.140501
https://link.aps.org/doi/10.1103/PhysRevLett.114.140501

143

[53] Matthew B Hastings. Trivial low energy states for commuting Hamiltonians,
and the quantum PCP conjecture. Quantum Information & Computation, 13
(5-6):393–429, 2013.

[54] Matthew B Hastings. Quantum codes from high-dimensional manifolds. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 67, 2017.

[55] Joseph Iverson. personal communication.

[56] Svante Janson, Dana Randall, and Joel Spencer. Random dyadic tilings of the
unit square. 21:225–251, 10 2002.

[57] Leo P. Kadanoff. Scaling laws for ising models near tc. Physics, 2(6), 1966.

[58] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,
303(1):2–30, 2003.

[59] Alexei Yu Kitaev. Quantum computations: algorithms and error corrections.
Russian Mathematical Surveys, 52(6):1191–1249, 1997.

[60] Emanuel Knill and Raymond Laflamme. A theory of quantum error-correcting
codes. 1996. doi: 10.1103/PhysRevLett.84.2525.

[61] Tohru Koma and Bruno Nachtergaele. The spectral gap of the ferromagnetic
XXZ-chain. Letters in Mathematical Physics, 40(1):1–16, 1997.

[62] Jeffrey C Lagarias, Joel H Spencer, and Jade P Vinson. Counting dyadic
equipartitions of the unit square. Discrete mathematics, 257(2-3):481–499,
2002.

[63] Yi-Chan Lee, Courtney G Brell, and Steven T Flammia. Topological quan-
tum error correction in the Kitaev honeycomb model. Journal of Statistical
Mechanics: Theory and Experiment, 2017(8):083106, 2017.

[64] DebbieWLeung,Michael ANielsen, Isaac LChuang, andYoshihisaYamamoto.
Approximate quantum error correction can lead to better codes. Physical Review
A, 56(4):2567, 1997.

[65] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107.
American Mathematical Soc., 2017.

[66] Seth Lloyd and Barbara M Terhal. Adiabatic and Hamiltonian computing on a
2d lattice with simple two-qubit interactions. New Journal of Physics, 18(2):
023042, 2016.

[67] Seth Lloyd, Peter Shor, andKevin Thompson. polylog-LDPC capacity achieving
codes for the noisy quantum erasure channel. arXiv preprint arXiv:1703.00382,
2017.

144

[68] Neal Madras and Dana Randall. Markov chain decomposition for convergence
rate analysis. Ann. Appl. Probab., 12(2):581–606, 05 2002. doi: 10.1214/aoap/
1026915617. URL https://doi.org/10.1214/aoap/1026915617.

[69] Juan Maldacena. The large-N limit of superconformal field theories and
supergravity. Adv. Theor. Math. Phys., 2, 1998.

[70] Chris Marriott and John Watrous. Quantum Arthur–Merlin games. Computa-
tional Complexity, 14(2):122–152, 2005.

[71] Ari Mizel, Daniel A Lidar, and Morgan Mitchell. Simple proof of equivalence
between adiabatic quantum computation and the circuit model. Physical review
letters, 99(7):070502, 2007.

[72] Daniel Nagaj and Pavel Wocjan. Hamiltonian quantum cellular automata in
one dimension. Phys. Rev. A, 78(3), 2008.

[73] Chinmay Nirkhe, Umesh Vazirani, and Henry Yuen. Approximate Low-
Weight Check Codes and Circuit Lower Bounds for Noisy Ground States. In
45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018), volume 107 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 91:1–91:11, 2018. ISBN 978-3-95977-076-7. doi:
10.4230/LIPIcs.ICALP.2018.91. URL http://drops.dagstuhl.de/opus/
volltexte/2018/9095.

[74] Andrew Steane. Multiple-particle interference and quantum error correction.
Proc. R. Soc. Lond. A, 452(1954):2551–2577, 1996.

[75] Leonard Susskind. Computational complexity and black hole horizons. eprint
arXiv:hepth/1402.5674, 2014.

[76] Jean-Pierre Tillich and Gilles Zémor. Quantum LDPC codes with positive rate
and minimum distance proportional to the square root of the blocklength. IEEE
Transactions on Information Theory, 60(2):1193–1202, 2014.

[77] K. G. H. Vollbrecht and J. I. Cirac. Quantum simulators, continuous-time
automata, and translationally invariant systems. Phys. Rev. Lett., 100(1), 2008.

https://doi.org/10.1214/aoap/1026915617
http://drops.dagstuhl.de/opus/volltexte/2018/9095
http://drops.dagstuhl.de/opus/volltexte/2018/9095

	Abstract
	Published Content and Contributions
	Bibliography
	Contents
	List of Figures
	Universal Hamiltonians for Exponentially Long Simulation
	Introduction
	Main Results
	Construction I: Applying U Once
	Construction II - Applying U More Than Once
	Construction III: Binary Clock Construction
	Construction IV: Deterministic Selection of x in time poly(x,N)
	Acknowledgements

	Good approximate quantum LDPC codes from spacetime circuit Hamiltonians
	Introduction
	Preliminaries
	Construction of the code Hamiltonian
	Spectral gap analysis
	Local detection of Pauli errors
	Alternate constructions and spatial locality
	Partially applied configurations of a bitonic sorting circuit

	Tensor Network Maximum Likelihood Decoders for Circuit-Level Noise
	Introduction
	Algebraic Structure of Quantum Stabilizer Codes
	Measurement Circuits, Circuit Level Noise, and Error Histories
	Circuit History Code by Example
	The Circuit History Code
	Maximum Likelihood Decoding with Tensor Networks
	Applications and Future Work

	Bibliography

