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ABSTRACT

The defining feature of active matter, self-propulsion requires constant consumption
of energy to be maintained. As a result, active matter systems are inherently out of
equilibrium and some principles that are accepted as common knowledge, partic-
ularly from thermodynamics, do not apply to the active matter systems. Arguably
the most popular example is the motility-induced phase separation (MIPS) – active
matter can spontaneously phase separate into liquid-like dense phase and gas-like
sparse phase even without any attractive interactions between the self-propelling
constituents. In this thesis, I demonstrate the utility of a mechanical perspective
in revealing and understanding the underlying physics of seemingly confounding
behaviors of active matter systems. In Chapters 2 and 3, I consider the mechanics
of a suspension of active colloidal particles when the transport properties (self-
propelling speed and diffusivities) vary spatially. The mechanical analysis reveals
the reverse-osmotic nature of active matter systems with a spatial variation in activ-
ity. I provide an explanation for why physical processes governed by the osmotic
pressure of particles can appear in a reversed manner in active matter systems, e.g.
a fluid can flow from regions of high concentration to low in a suspension of active
colloids. In Chapter 4, I develop a mechanical theory of phase coexistence that
applies to both equilibrium and nonequilibrium systems. By applying the mechan-
ical theory to MIPS, I find phase coexistence conditions of the MIPS that allow
a construction of a phase diagram, which excellently agrees with the results from
computer simulations. The mechanical theory also allows access to the microscopic
structure of phase interfaces. By investigating the interfacial structure, I discover
interesting nonequilibrium interfacial behavior of the MIPS. I find that the width of
the MIPS interface varies nonmonotically with the activity of particles and provide
a mechanical explanation for the phenomena.
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C h a p t e r 1

INTRODUCTION

1.1 Active Matter Systems
It might be a human nature to relate the self-propelling motion to the life. When
Brown reported his first observations of spontaneous random motions of pollen
grains suspended in water in 1827 [1], he had to write another paper [2] in the
following year to clarify that he did not intend to mean the pollen grains are alive
or ‘animated’. Thanks to Einstein’s theory of Brownian motion [3], we now well-
understand that the random motion observed by Brown is not a self-propelled
motion but originates from the microscopic thermal motion of the suspending water
molecules. Recent advances in material processes even allow non-living synthetic
particles to self-propel [4–14]. Clearly, self-propulsion is not a unique feature of
life.

Yet self-propulsion is still crucial in many living systems at a variety of length
scales. Survival of many organisms depends on their motility [15]; fertilization
requires progressive swimming of spermatozoa [16]; and motor proteins [17–19]
and enzymes [20] self-propel inside a cell. Self-propulsion, which is the defining
feature of active matter, is ubiquitously observed in living systems and this is one of
the reasons why research interest in active matter systems has grown considerably
over the past decade.

One of the main questions in the field of active matter research is about the conse-
quences of self-propulsion. While active matter systems at large length scales exhibit
fascinating collective phenomena such as flocking of birds, schooling of fish, cy-
cloning of reindeer [21], and shimmering of bees [22], such behaviors result from
complex interplay between motility and intellectual and/or social abilities [23]. Pure
effects of self-propulsion can be more easily isolated and studied by considering ac-
tive matter at a colloidal scale, such as motile bacteria and synthetic self-propelling
colloids, which are not able to ‘think’.

Active (colloidal) suspensions exhibit a number of intriguing behaviors: sponta-
neous directed motion of an asymmetric object immersed in an active suspen-
sion [24–28], self-enrichment of microswimmers in the presence of chevron-shaped
structures [29–32], motility-induced phase separation (MIPS) [33–36], upstream
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swimming [37–39], superfluidic flow without external forces [40, 41], etc. Surpris-
ingly, some of these phenomena are against our intuitions gained from thermody-
namics. For example, purely repulsive self-propelling particles can phase separate
into gas- and liquid-like phases [34–36] — the so-called MIPS — while it is well-
known that attractive interactions are essential for such phase separations in usual
systems described by thermodynamics [42]. The confounding behaviors of active
colloids originates from their nonequilibrium nature. Active matter constantly con-
verts energy from internal or external sources to the mechanical self-propulsive
motion. Therefore, active matter systems are inherently out of equilibrium and the
framework of equilibrium thermodynamics may not be directly applied.

It is notable that many of above phenomena are universally observed in active
suspensions regardless of the mechanisms of self-propulsion, which indicates that
the self-propulsion itself is the most significant factor of the underlying physics. In
the following section, we introduce the minimal model of self-propelling particles
that can be helpful in illuminating the fundamental physics of active suspensions.

1.2 Active Brownian Particles
To describe active suspensions, we require a model for the microswimmers. The
simplest possible description of microswimmers is offered by the active Brownian
particle (ABP) model [43–45], which captures the essential features of the motion
of microswimmers: self-propulsion and random reorientations. The model is sur-
prisingly simple. ABPs self-propel, or swim, at intrinsic speed *0 in direction
q (jq j = 1). In addition to the swimming motion, ABPs undergoes translational
Brownian motion characterized by translational diffusivity �) . Simultaneously,
the swimming orientation q undergoes a random reorientation process, which is
characterized by the rotational diffusivity �’. The rotational diffusivity defines the
times scale of reorientations g’ = 1��’.

In usual passive colloidal systems, the translational and rotational diffusions are
both of thermal origin: the Brownian motion. Consequently, the translational
and rotational diffusivities are coupled to each other via the thermal energy :�)
as described by the Stokes-Einstein-Sutherland relation: Z�) = Z’�’ = :�) ,
where Z and Z’ are the Stokes translational and rotational drag coefficients. In this
thesis we let the rotational diffusivity �’ be uncoupled from the thermal energy, and
hence independent from the translational diffusivity, in order to allow considerations
of reorientations from athermal sources such as autonomous rotations of motile
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bacteria e.g. tumbling of Escherichia coli [46]. We note that the reorientation
of ABPs is modeled as a continuous random process as we will discuss below,
but microswimmers undergoing discrete random reorientations (e.g. the run-and-
tumble motion of Escherichia coli [46]) are also well described by the ABP model
at a long time scale C � g’ [47, 48].

The transport properties of ABPs *0, �) , and �’ define two important length
scales in the ABP model: the microscopic length X =

p
�)g’ and intrinsic run

length �0 = *0g’ [49]. The behavior of an active suspension is governed the Péclet
number %4 = *0�0��) = „�0�X”2, which acts as a measure of the activity of ABPs.
In this introductory Chapter we provide a brief description of dilute suspensions of
ABPs to demonstrate general features of the ABP model and neglect the effects of
interparticle interactions among particles, i.e., ideal ABPs. We present a detailed
treatment of interactions between active particles in Chapter 4.

While the size of a particle � is mostly immaterial in understanding the behavior of
ideal ABPs, we note that it is still fundamentally important in some basic assumptions
in the ABP model. We assume low Reynolds number ’4 = d 5*0��‘ � 1 based
on the colloidal size and speed of microswimmers, where d 5 and ‘ are the density
and viscosity of the suspending medium; the typical Reynolds number in aqueous
active colloidal suspensions is on the order of $ „10�4” [50]. Also, the motion of
ABPs is assumed to be overdamped by neglecting inertial effects. This assumption
is valid when the Stokes number (C = d?�d 5 � ’4 and the rotational Stokes number
(C’ = (C � %4’ are small, where d% is the density of ABPs and %4’ = ���0 is the
reorientation Péclet number. For systems with a large Stokes number, the inertia
of particles should be considered since their underdamped dynamics may result in
different behaviors [51–58].

The overdamped stochastic motion of ABPs can be described in two manners.
One can write the equations of motion for the particles including stochastic forces
and torques for the Brownian motion and random reorientation. Such equations
are called the (overdamped) Langevin equations (see appendix 2.7 for details) and
are useful when performing Brownian Dynamics (BD) simulations of ABPs. An
alternative and equivalent approach is to consider the probability density %„x� q� C”
of finding an ABP with position x and orientation q at time C. The evolution of
the probability density in the phase space „x� q” is governed by the Smoluchowski
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equation:

m%

mC
‚ r � j) ‚ r’ � j’ = 0 � (1.1)

j) = *0q% � �)r% � (1.2)

j’ = ��’r’% � (1.3)

where j) is the translational flux in the spatial domain, j’ is the rotational flux in
the orientational domain, and r’ = q � m�mq is the rotational gradient operator.

There is no general analytical solution methods known for the Smoluchowski equa-
tion (1.1)-(1.3) but the essential physics can be understood by considering the
orientational moments of the probability density [59, 60].1 The zeroth order mo-
ment is simply the concentration of the particles, or the number density = =

fl
%3q.

From eq. (1.1), the number density satisfies

m=

mC
‚ r � j= = 0� (1.4)

j= = *0m � �)r=� (1.5)

The first order moment, or the polar order m =
fl
%q3q, represents the net orienta-

tion of the particles and it satisfies

mm

mC
‚ r � j< ‚ „3 � 1”�’m = 0� (1.6)

j< = *0W ‚ 1
3
*0=O � �)rm� (1.7)

Here, 3 is the spatial dimension for reorientation, W =
fl
%„qq � O�3”3q is the

traceless second order moment, or the nematic order tensor, and O is the second-
order isotropic tensor. We note that the coupling between the orientational moments
of neighboring orders (= & m, m & W, etc.) arises from the active convective
contribution *0q% in the translational flux (1.2) and brings about a hierarchical
structure of orientational moments [59, 60], which requires a closure approximation
for a closed set of equation. The appropriateness of a closure heavily depends on
the character of individual problem [37, 60–62] and can be confirmed by numerical
solutions of the full Smoluchowski equation (1.1)-(1.3) or BD simulations.

1.3 Mechanics of Active Suspensions
The expression for the number density flux (1.5) provides a starting point for a
mechanical description of active suspensions. Multiplying the translational Stokes

1See appendix 4.7 for detailed derivations of the orientational moment equations.
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drag coefficient Z eq. (1.5) becomes

0 = �Z j= ‚ Z*0m ‚ r � 2>B<> � (1.8)

where 2>B<> = �=Z�) O = �=:�) O is the osmotic stress of the particles. Equa-
tion (1.8) is a mechanical force balance on the ABPs. The first and second terms on
the right-hand side represent the net hydrodynamic drag on the ABPs and average
of the swim force LBF8< = Z*0q for the self-propulsive motion and the net force
density is balanced by the divergence of the stress.

It is important to note that both the drag and swim forces originate from the sus-
pending medium around an ABP. In the description of ABPs using Langevin and/or
Smoluchowski equations, the existence of a medium is prone to be forgotten since it
does not explicitly appear in the equations but only implicitly as the drag coefficients
and Brownian diffusion. Yet the self-propulsion of microswimmers is fundamen-
tally enabled by the presence of a medium. An individual active unit generates
a propulsive force on its body by essentially ‘pushing’ a medium (whether it is a
‘wet’ fluid or a ‘dry’ surface) backwards and the resulted forward motion relative
to the medium produces a drag force that is also exerted by the medium. From a
mechanical perspective, the self-propulsion of microswimmers is not much different
from us swimming in a pool — a body is propelled by pushing water with strokes
and is simultaneously resisted also by the water. The only differences are that for
microswimmers, the motion of a suspending fluid follows the Stokes equation due
to the low Reynolds number environment and consequently the swim strokes re-
quire subtle mechanisms. The same logic applies to the reorientation torque for the
rotational motion.

The particle force balance (1.8) shows that the average swim force Z*0m acts as
an internal [50] or self-generated ‘body’ force [63]. Owing to the form of the
polar order equation (1.6)-(1.7), the average swim force density can be written as a
divergence at steady state: m = �r � „ j<g’�„3 � 1””. This motivates us to treat the
average swim force as an (divergence of) effective stress and the steady state force
balance becomes

0 = �Z j= ‚ r � 202C � 202C = 2BF8< ‚ 2>B<> � (1.9)

2BF8< = � Z*0�

3 � 1
j< = �

Z*0�0
3 � 1

W � �BF8< O ‚ :�)�0rm � (1.10)

where 202C is the active stress of the ABPs, 2BF8< is the swim stress, and �BF8< =
Z*0�0=�„3 „3 � 1”” is the swim pressure [64]. In this mechanical formulation it is
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clear that the swim pressure or stress is analogous to the equivalent (or dynamic)
pressure in fluid mechanics [65] or the Maxwell stress in electrostatics [66].

The utility of the swim pressure can be clearly revealed by considering the concept
of equivalent pressure. For a static incompressible fluid under an external potential
q4GC a mechanical force balance is given by: 0 = �drq4GC � r?, where d is the
fluid density and ? is the ‘true’ pressure of the fluid. One can combine the body
force density �drq4GC and the pressure gradient r? to rewrite the force balance
as 0 = �rP, where P = dq4GC ‚ ? is the equivalent pressure. When the external
potential is unidirectional, say the familiar gravity field q6 = 6I (gravity acting in
�I direction, where 6 is the gravity acceleration constant), the force balance results
in constant equivalent pressure throughout the whole fluid P = d6I ‚ ? = cosntant.
Thus, the static condition of a fluid is described by the equivalent pressure in an
intuitive fashion: there is no fluid motion if the equivalent pressure is constant. The
real meaning of the constant equivalent pressure is, however, that there is a gradient
in the ‘true’ pressure ?; in order to resist motion induced by gravity and to maintain
the static condition — the fluid pressure gradient develops toward the direction of
the gravity. When computing the pressure exerted by the fluid on a wall, one needs
to use the ‘true’ pressure of the fluid ? not the equivalent pressure. Nevertheless,
the equivalent pressure does not lose its utility because it allows us to think about
the ‘true’ pressure only with the height of the static fluid.

Similarly the swim pressure provides a convenient way to compute the pressure
exerted by ABPs on a simple no-flux boundary [60].2 Suppose a suspension of ideal
ABPs (I ¡ 0) with the bulk concentration =1 is dammed by a flat no-flux wall at
I = 0. Integrating eq. (1.9) from the wall (I = 0) to an arbitrary position (I = !), we
obtain »fBF8<II ‚f>B<>II …I=0 = »fBF8< ‚f>B<>II …I=! . At the wall, the no-flux condition
9<�II = 0 results fBF8<II = 0. Also, in the limit of ! ! 1 the effect of the wall
becomes negligible at I = ! and the suspension becomes homogeneous: rm = 0,
W = 0, and = = =1. Consequently, we obtain �>B<> jI=0 = »�BF8< ‚ �>B<>…1,
where �>B<> = =:�) is the ‘true’ osmotic pressure of the particles. Therefore, the
pressure exerted by ABPs on the wall per unit area is simply given as the sum of the
bulk swim and osmotic pressures far from the wall. Furthermore, this shows that

2 We note that when special particle-wall interactions (e.g. a wall exerting a torque on active
particles [67]) are present, the polar order flux j< may not vanish at the wall due to the interactions.
In such a case, the particle pressure on the wall should include the effect of swim stress: �>B<>

I=0 =

»�BF8< ‚ �>B<>…1 � fBF8<
II jI=0. We also note that the polar order m cannot be written as written

as r � j< when there is a ‘bulk’ torque (e.g. fluid flow [37] or external field [68]).
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there exists an accumulation of ABPs at the wall which increases with the activity
%4 = *0�0��) = „�0�X”2: =jI=0 = =

1„1 ‚ %4�„3 „3 � 1””.

1.4 Thesis Outline
In Chapter 2 of this thesis, we answer, arguably, one of the most fundamental
questions for active suspensions: the effects of an abrupt spatial variation in transport
properties *0, �) , and �’. We present analytical solutions of the steady state
number density and polar order for various simple geometries and confirm their
accuracy by performing computer simulations. From the analytical solutions and
computer simulations, we find that the difference in the number densities in regions
with different transport properties is governed by the swim speed difference and
modulated in amplitude by the activity. We also investigate the transient effects
of abrupt spatial variations in transport properties. We reveal that when ABPs are
released at a position where a step change in transport properties occurs, the particles
preferably partition to the region with longer reorientation time g’ = 1��’ and the
swim speed difference does not produce nor affect the transient partitioning. We
explain the connection between the seemingly contradictory results from transient
and steady states. Using the results from Chapter 2, we analyze the mechanics of
active suspensions with an abrupt spatial variation in transport properties in Chapter
3. By considering a mechanical force balance for the whole suspension, including
the ABPs and the suspending medium, we reveal a unique feature of active matter
systems with spatially varying activities: the reverse osmotic effect. We show that
the swim strokes of ABPs can be utilized as a microscopic pump to spontaneously
generate a reverse osmotic fluid flow from regions of high concentration to low.
We also show that the reverse osmotic effect results in a counter-intuitive reverse-
diffusiophoretic motion of a passive body inside an active suspension.

In Chapter 4, we further demonstrate the utility of the mechanical perspective in un-
derstanding active matter systems by considering MIPS. We first revisit the classical
and statistical thermodynamic descriptions of phase equilibrium and introduce an
equivalent mechanical description of phase equilibrium. Unlike the thermodynamic
framework, which only applies to equilibrium systems, a mechanical theory can
be readily generalized to analyze the nonequilibrium phase coexistence. Using the
mechanical approach, we discover phase coexistence conditions of MIPS that allow
an equal-area construction of a phase diagram on the active pressure vs. collisional
pressure plane. The phase diagram obtained by the mechanical theory excellently
agrees with the computer simulations of MIPS. We also explore the microscopic
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structure of phase interfaces in MIPS using the mechanical theory and report a
unique nonequilibrium interfacial behavior in MIPS for the first time. We find that
the width of phase interface nonmonotically varies with the activity of particles and
provide a mechanical explanation of this phenomena.
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C h a p t e r 2

ACTIVE MATTER WITH SPATIALLY VARYING TRANSPORT
PROPERTIES

This chapter includes content from our previously published article:

[1] H. Row and J. F. Brady, “Reverse osmotic effect in active matter,” Physical
Review E, vol. 101, no. 6, p. 062 604, 2020. doi: 10.1103/PhysRevE.101.
062604,

2.1 Introduction
Intriguing non-equilibrium behaviors exhibited by colloidal active matter systems
can be tuned using external means such as light [1–3]. Spatial control of activ-
ity can direct transport [4, 5], which offers a number of intriguing applications,
e.g. reproduction of images by projecting light patterns [6, 7] and rectification of
microswimmers [8, 9].

The concentration variation resulting from a spatial variation in activity was first
explored by Schnitzer [10] and later by Tailleur & Cates [11–13] who showed
that for slow spatial variations in one dimension the number density = of active
particles is inversely proportional to the speed of self-propulsion or swimming *,
i.e. =* = constant in the absence of translational diffusion.

In this chapter, we generalize this finding and present results for an abrupt change of
activity in any dimension and also include the effects of thermal Brownian motion,
allowing us to span the complete range from thermal to active transport. We
consider spatial variations in all three transport properties,*0, �) , and �’. Several
simple geometries that permit analytical solutions are compared with the results
to Brownian dynamics (BD) simulations. We also present an interesting transient
behavior of the Green’s function of the Smoluchowski equation for active particles
with an abrupt change in activity.

We limit our analysis to dilute isothermal suspensions of spherical ABPs in order
to illustrate the basic physics. Since isothermal suspensions are considered, a
variation in �) is equivalent to a spatially varying the Stokes drag coefficient Z
which depends on the viscosity of the suspending fluid and the the hydrodynamics
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of the low Reynolds number motion of the ABPs. When the temperature varies
within a system, well-known thermal drifts [14] should be considered.

2.2 Infinite Active Suspensions
We revisit the simple relationship =* = constant [10–13] and examine the conditions
that allow it to hold. We consider purely active particles without the translational
Brownian motion. In the absence of the translational diffusion, �) = 0, and the
number density balance (1.4) for no flux isr�„*m” = 0, which, for a one dimensional
geometry, requires m = 0. From the polar order balance (1.6) at steady state the
polar order is

m � � 1
3 „3 � 1”�’

r „=*” � (2.1)

which implies that =* � constant. For (2.1) to hold in general the nematic order W

needs to be small (� =O) even when there is an abrupt change in properties. For this
reason, the condition (2.1) is exact for 1D reorientations and therefore =* = const.
[10, 11] since the traceless nematic order & � 0 for motion that is strictly 1D.1 In
the following, we show with examples that the nematic order W is sufficiently small
in higher dimensions as well by comparison to solution of the full Smoluchowski
equation. Thus, we close the hierarchy with W=0 [15].

To explore the validity of =* = const., when thermal Brownian motion is present
and there is a sharp discontinuity in activity, we first consider an infinite suspen-
sion of ABPs with a step change in transport properties at G = 0 as described in
Fig. 2.1. Since the two regions have different transport properties, the Smoluchowski
equation (1.1) is written for each region:

m%8

mC
‚ r � j)�8 ‚ r@ � j@�8 = 0 � (2.2)

j)�8 = *8q%8 � �)�8r%8 � (2.3)

j@�8 = ��’�8r@%8 � (2.4)

Here, the subscript 8 „= 1 or 2” is the index of a region and the probability density
functions %1 and %2 are defined for G � 0 and G � 0 in the spatial domain.
Consequently, equations for the first two orientational moments of the probability
density are also obtained for each region as

m=8

mC
‚ r � j=�8 = 0 � (2.5)

1For 1D processes one cannot set 3 = 1 in eq. (1.6) as the reorientation process is just changing
direction � rather than an angular displacement as modeled in the Smoluchowski equation. The
conclusion is the same, however, and the equivalent of W = 0 also holds.
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Figure 2.1: A schematic of an in�nite suspension of ABPs with an abrupt change
in activity. In regions 1 (G Ÿ0) and 2 (G � 0) the ABPs have swim speeds* 8,
translational di�usivities� )8, and rotational di�usivities� '8 , where the subscript
8¹= 1 or 2º represents the index of a region.

j =–8= * 8m8 � � )–8r =8– (2.6)

mm8

mC
¸ r � j <–8 ¸ ¹ 3 � 1º� '–8m8 = 0 – (2.7)

j <–8= * 8W8 ¸
1
3

* 8=8O� � )–8r m8 • (2.8)

The boundary conditions are a homogeneous random suspension far from the step

change:=1 ! =�1 and< 1–G! 0 asG! �1 , and=2 ! =¸1 and< 2–G! 0 as

G! 1 . At the discontinuity in properties, the full Smoluchowski equation requires

that the �eld variables,= and m, etc., be continuous. Even though=* = const.

would predict a discontinuity in= at G= 0, the problem is singular and thermal

Brownian motion, no matter how small (no matter how large%4), will result in a

boundary layer of thickness$ ¹�%4� 1 = � ) •* º where Brownian motion balances

advection and the probability density is continuous. Thus,=, < G, and the �uxes9=–G

and9<–GGare continuous atG= 0. We de�neh=i as the scale for the number density:
¯ !
� ! = 3G! 2! h=i as ! ! 1 . The moment equations are easily solved at steady

state with the closureW8 = 0:

< 8–G= < G04� _8G– (2.9)



16

=8
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� ©

«
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� 1
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ª
®
¬
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4� _8G– (2.10)

where

< G0

h=i
=

1
p

3
¹* 1 � * 2º
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_8 =

p
3 � 1

X8

vt

1 ¸
%48

3¹3 � 1º
– (2.13)

� 8 =
1

s

1 ¸
3¹3 � 1º

%48

• (2.14)

Here, the subscript8 indicates the two regions (1 or 2), X8 =
p

� )8• � '8 is the

microscopic length scale related to the translational di�usion,%48 = * 8� 8• � )8 =

* 2
8•¹ � )8� '8 º = ¹� 8•X8º2 is the Péclet number which is a measure of the activity of

the ABPs,=�1 is the number density far from the step change in transport properties

(G! �1 ), 3 is the spatial dimension for reorientation, upper signs are for region

1 (G Ÿ0), and lower signs are for region 2 (G� 0). Note that the inverse screening

length_8 is the characteristic length scale of the decay of step changes in the �eld

variables. A modi�ed Péclet number� 8 ranges from 0 when%48 = 0 to 1 when

%48 ! 1 . The overall number density is simplyh=i = ¹=�1 ¸ =¸1 º•2 for an in�nite

suspension.

The analytic solution gives the distribution of number densities as

=¸1

=�1 =
� 2* 1 ¸ � 1* 2 ¸ � 1� 2

2 ¹* 1 � * 2º

� 2* 1 ¸ � 1* 2 � � 2
1� 2¹* 1 � * 2º

– (2.15)

and its typical functional form is presented in Fig. 2.2. The analytical solution (2.10)

indicates that the number density di�erence is governed by the swim speed di�erence
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Figure 2.2: Color map of=¸1 •=�1 for * 2•* 1 = 5. The modi�ed Péclet numbers
� 8 = 0when%48 = 0and� 8 ! 1when%48 ! 1 . The black line represents the case
when di�usivities are the same in the two regions. When activities in both regions
are high (� 1– �2 � 1), =¸1 •=�1 � * 1•* 2 = 0•2 i.e. =* = constant. If either of the
two regions is di�usion-dominated (� 8 � 0), the number density becomes constant
throughout the whole suspension:=¸1 = =�1 .

and modulated in amplitude by%4. The number density is predicted to be always

lower in the region with higher swim speed and the nonzero polar order points

towardsthe region with slower swim speed. If there is no di�erence in swim speeds

(* 1� * 2 = 0), the suspension becomes homogeneous; the number density is uniform

and the polar order is zero everywhere. Also, it is notable that eqn. (2.15) recovers

the simple relation=* = const. from the previous section when activities in the two

regions are large, i.e.� 8 ! 1, or equivalently%48 ! 1 , for 8= 1 and2. As the

activity %4decreases the di�erence of the number densities in the two regions fades

away.

In order to verify the analytical solution, BD simulations have been performed as

described in Appendix 2.7 and the results are compared with the analytical solution

in Fig. 2.3. When activity dominates translational di�usion (%4� 1), the number

density jumps sharply at the boundary of the two regionsG= 0 and=* becomes

constant. In the absence of translational Brownian motion, indicated by the black

crosses in Fig. 2.3,=* is constant everywhere. Increasing the di�usivities decreases

%4and smears out the sharpness of the density jump.


