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ABSTRACT

The defining feature of active matter, self-propulsion requires constant consumption
of energy to be maintained. As a result, active matter systems are inherently out of
equilibrium and some principles that are accepted as common knowledge, partic-
ularly from thermodynamics, do not apply to the active matter systems. Arguably
the most popular example is the motility-induced phase separation (MIPS) — active
matter can spontaneously phase separate into liquid-like dense phase and gas-like
sparse phase even without any attractive interactions between the self-propelling
constituents. In this thesis, I demonstrate the utility of a mechanical perspective
in revealing and understanding the underlying physics of seemingly confounding
behaviors of active matter systems. In Chapters 2 and 3, I consider the mechanics
of a suspension of active colloidal particles when the transport properties (self-
propelling speed and diffusivities) vary spatially. The mechanical analysis reveals
the reverse-osmotic nature of active matter systems with a spatial variation in activ-
ity. I provide an explanation for why physical processes governed by the osmotic
pressure of particles can appear in a reversed manner in active matter systems, e.g.
a fluid can flow from regions of high concentration to low in a suspension of active
colloids. In Chapter 4, I develop a mechanical theory of phase coexistence that
applies to both equilibrium and nonequilibrium systems. By applying the mechan-
ical theory to MIPS, I find phase coexistence conditions of the MIPS that allow
a construction of a phase diagram, which excellently agrees with the results from
computer simulations. The mechanical theory also allows access to the microscopic
structure of phase interfaces. By investigating the interfacial structure, I discover
interesting nonequilibrium interfacial behavior of the MIPS. I find that the width of
the MIPS interface varies nonmonotically with the activity of particles and provide

a mechanical explanation for the phenomena.
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The ratio of the pressures exerted by ABPs on wall 1 (z=-L) and
wall 2 (z = Ly) scaled with the ratio of corresponding run lengths
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the rotational diffusivity (Pey/Pe; = Dga/Dpg1). The two regions
have the same length (L; = L,) and the distance between the walls
L = L; + L, is 100 times longer than the microscopic length scale
0y = m in region 2. Markers are from pressures directly
measured from BD simulations and lines are from the analytical
solution (2.33)-(2.36). In the both cases the ratio of pressures exerted
by particles on the walls is £; /¢ when activity is high (Pe > 1)..

A schematic of a suspension of ABPs with an abrupt change in activity
confined between two parallel planar walls (see Fig. 2.7 for detailed
description of the system). The whole active suspension enclosed by
the red dashed box is taken as a control volume. Since ABPs undergo
a force-free motion, the net pressure on the left and right (or top and
bottom) sides of the control volume must be identical to satisfy a
macroscopic mechanical force balance. . . . . . ... ... .. ...
(Left) A schematic of the pressure distributions. The pressure exerted
by active particles Il = nkpT on a wall is larger in the region with
the faster swim speed. Since the total pressure p in a force-free
active suspension is constant for a mechanical force balance, the fluid
pressure p r is lower at the wall in the region with the faster swim speed
generating a fluid pressure difference at the two walls Ap}”. (Right)
A schematic of a novel pumping device powered by the activity of
suspended particles. When two regions with different swim speeds
are connected by a tube and the walls are semi-permeable membranes,
the fluid pressure difference Ap;c” will generate a flow of fluid from
the slower to the faster region — from regions of high concentration

tolow! . . .
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3.4 A schematic of reverse diffusiophoresis in a bath of active hard-
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spheres. When the swim speed Uy of highly active (Pe > 1) bath
particles varies spatially, the number density is lower in the faster
than in the slower region satisfying nUy =~ constant. Due to the re-
verse osmotic behavior of active particles, the osmotic pressure at the
contact surface Il|g,. oc £y is higher on the lower concentration side.
The resulted phoretic motion is from regions of low concentration to
high even though interparticle interactions are repulsive: the reverse
diffusiophoresis. . . . . . . . . .. ...
The total osmotic force F?*"¢ = — <¢‘r= R, [1n dS on a circular phoretic
body fixed at x = 0 in a bath of purely active particles versus the linear
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force is scaled with the product of the swim force {U((0), background
number density n*°(0) at the center of the phoretic particle, and area
pervaded by the phoretic particle and the swim speed gradient is
scaled with the rotational diffusivity. The contact radius R, is 10
times longer than the run length at the center {y(0). The results
obtained by the BD simulations confirm Brady’s prediction [7] of
the reverse diffusiophoresis that the total osmotic force and hence the
phoretic speed is linearly proportional to the swim speed gradient. . .
(a) A schematic description of the double-tangent construction on an
isotherm in the diagram of the molar Helmholtz free energy F versus
the molar volume v at a fixed temperature 7. The points at contact
with the common tangent line (blue) correspond to the coexisting
phases. The slope and y-intercept of the common tangent represents
the the coexistence pressure (0F/dv)r = —p and the coexistence
chemical potential F — v(dF /0v)r = u. The red region of the curve
indicates unstable region from the stability condition (4.5). (b) A
schematic description of the Maxwell construction on an isotherm
in the p — v diagram. A horizontal line that cuts equal areas from
the isotherm above (shaded blue) and below (shaded red) gives the
coexistence pressure. The intersections of the horizontal line and
isotherm correspond to the coexisting phases. The red region of the

curve indicates unstable region from the stability condition (4.5).
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Chapter 1

INTRODUCTION

1.1 Active Matter Systems

It might be a human nature to relate the self-propelling motion to the life. When
Brown reported his first observations of spontaneous random motions of pollen
grains suspended in water in 1827 [1], he had to write another paper [2] in the
following year to clarify that he did not intend to mean the pollen grains are alive
or ‘animated’. Thanks to Einstein’s theory of Brownian motion [3], we now well-
understand that the random motion observed by Brown is not a self-propelled
motion but originates from the microscopic thermal motion of the suspending water
molecules. Recent advances in material processes even allow non-living synthetic
particles to self-propel [4—14]. Clearly, self-propulsion is not a unique feature of
life.

Yet self-propulsion is still crucial in many living systems at a variety of length
scales. Survival of many organisms depends on their motility [15]; fertilization
requires progressive swimming of spermatozoa [16]; and motor proteins [17-19]
and enzymes [20] self-propel inside a cell. Self-propulsion, which is the defining
feature of active matter, is ubiquitously observed in living systems and this is one of
the reasons why research interest in active matter systems has grown considerably

over the past decade.

One of the main questions in the field of active matter research is about the conse-
quences of self-propulsion. While active matter systems at large length scales exhibit
fascinating collective phenomena such as flocking of birds, schooling of fish, cy-
cloning of reindeer [21], and shimmering of bees [22], such behaviors result from
complex interplay between motility and intellectual and/or social abilities [23]. Pure
effects of self-propulsion can be more easily isolated and studied by considering ac-
tive matter at a colloidal scale, such as motile bacteria and synthetic self-propelling

colloids, which are not able to ‘think’.

Active (colloidal) suspensions exhibit a number of intriguing behaviors: sponta-
neous directed motion of an asymmetric object immersed in an active suspen-
sion [24-28], self-enrichment of microswimmers in the presence of chevron-shaped

structures [29-32], motility-induced phase separation (MIPS) [33-36], upstream
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swimming [37-39], superfluidic flow without external forces [40, 41], etc. Surpris-
ingly, some of these phenomena are against our intuitions gained from thermody-
namics. For example, purely repulsive self-propelling particles can phase separate
into gas- and liquid-like phases [34-36] — the so-called MIPS — while it is well-
known that attractive interactions are essential for such phase separations in usual
systems described by thermodynamics [42]. The confounding behaviors of active
colloids originates from their nonequilibrium nature. Active matter constantly con-
verts energy from internal or external sources to the mechanical self-propulsive
motion. Therefore, active matter systems are inherently out of equilibrium and the

framework of equilibrium thermodynamics may not be directly applied.

It is notable that many of above phenomena are universally observed in active
suspensions regardless of the mechanisms of self-propulsion, which indicates that
the self-propulsion itself is the most significant factor of the underlying physics. In
the following section, we introduce the minimal model of self-propelling particles

that can be helpful in illuminating the fundamental physics of active suspensions.

1.2 Active Brownian Particles

To describe active suspensions, we require a model for the microswimmers. The
simplest possible description of microswimmers is offered by the active Brownian
particle (ABP) model [43—45], which captures the essential features of the motion
of microswimmers: self-propulsion and random reorientations. The model is sur-
prisingly simple. ABPs self-propel, or swim, at intrinsic speed Up in direction
q (q| = 1). In addition to the swimming motion, ABPs undergoes translational
Brownian motion characterized by translational diffusivity D7. Simultaneously,
the swimming orientation ¢ undergoes a random reorientation process, which is
characterized by the rotational diffusivity Dg. The rotational diffusivity defines the

times scale of reorientations 7z = 1/Dxp.

In usual passive colloidal systems, the translational and rotational diffusions are
both of thermal origin: the Brownian motion. Consequently, the translational
and rotational diffusivities are coupled to each other via the thermal energy kpT
as described by the Stokes-Finstein-Sutherland relation: (D7 = {gDgr = kpT,
where ¢ and (g are the Stokes translational and rotational drag coefficients. In this
thesis we let the rotational diffusivity D g be uncoupled from the thermal energy, and
hence independent from the translational diffusivity, in order to allow considerations

of reorientations from athermal sources such as autonomous rotations of motile
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bacteria e.g. tumbling of Escherichia coli [46]. We note that the reorientation
of ABPs is modeled as a continuous random process as we will discuss below,
but microswimmers undergoing discrete random reorientations (e.g. the run-and-
tumble motion of Escherichia coli [46]) are also well described by the ABP model

at a long time scale r > 7 [47, 48].

The transport properties of ABPs Uy, D7, and Dg define two important length
scales in the ABP model: the microscopic length § = VD77g and intrinsic run
length £y = Ugtg [49]. The behavior of an active suspension is governed the Péclet
number Pe = Uyly/ D1 = (£o/5)?, which acts as a measure of the activity of ABPs.
In this introductory Chapter we provide a brief description of dilute suspensions of
ABPs to demonstrate general features of the ABP model and neglect the effects of
interparticle interactions among particles, i.e., ideal ABPs. We present a detailed

treatment of interactions between active particles in Chapter 4.

While the size of a particle D is mostly immaterial in understanding the behavior of
ideal ABPs, we note thatitis still fundamentally important in some basic assumptions
in the ABP model. We assume low Reynolds number Re = pUpD/u < 1 based
on the colloidal size and speed of microswimmers, where p ¢ and u are the density
and viscosity of the suspending medium; the typical Reynolds number in aqueous
active colloidal suspensions is on the order of O(107#) [50]. Also, the motion of
ABPs is assumed to be overdamped by neglecting inertial effects. This assumption
is valid when the Stokes number St = p,/ps - Re and the rotational Stokes number
Stg = St - Peg are small, where pp is the density of ABPs and Peg = D/{ is the
reorientation Péclet number. For systems with a large Stokes number, the inertia
of particles should be considered since their underdamped dynamics may result in
different behaviors [51-58].

The overdamped stochastic motion of ABPs can be described in two manners.
One can write the equations of motion for the particles including stochastic forces
and torques for the Brownian motion and random reorientation. Such equations
are called the (overdamped) Langevin equations (see appendix 2.7 for details) and
are useful when performing Brownian Dynamics (BD) simulations of ABPs. An
alternative and equivalent approach is to consider the probability density P(x, q, )
of finding an ABP with position x and orientation ¢ at time t. The evolution of

the probability density in the phase space (x, q) is governed by the Smoluchowski



equation:
oP
E-I-V.jT-i_VR.jR:O’ (1'1)
jr =UogP - D7VP, (1.2)
Jr =—DRVRP, (1.3)

where j; is the translational flux in the spatial domain, j is the rotational flux in

the orientational domain, and Vg = ¢ X 0/0q is the rotational gradient operator.

There is no general analytical solution methods known for the Smoluchowski equa-
tion (1.1)-(1.3) but the essential physics can be understood by considering the
orientational moments of the probability density [59, 60].1 The zeroth order mo-
ment is simply the concentration of the particles, or the number density n = / Pdq.

From eq. (1.1), the number density satisfies

on
V.j =0, 1.4
5 tVon (1.4)
Jj,=Upm — DrVn. (1.5)

The first order moment, or the polar order m = / Pqdq, represents the net orienta-

tion of the particles and it satisfies

0
a—';' +V.j + (d=1)Dgm =0, (1.6)
1
jm = UOQ + EU()I’lI — D7Vm. (L.7)

Here, d is the spatial dimension for reorientation, Q = / P(qq — I/d)dq is the
traceless second order moment, or the nematic order tensor, and I is the second-
order isotropic tensor. We note that the coupling between the orientational moments
of neighboring orders (n & m, m & Q, etc.) arises from the active convective
contribution UpqP in the translational flux (1.2) and brings about a hierarchical
structure of orientational moments [59, 60], which requires a closure approximation
for a closed set of equation. The appropriateness of a closure heavily depends on
the character of individual problem [37, 60—62] and can be confirmed by numerical

solutions of the full Smoluchowski equation (1.1)-(1.3) or BD simulations.

1.3 Mechanics of Active Suspensions
The expression for the number density flux (1.5) provides a starting point for a

mechanical description of active suspensions. Multiplying the translational Stokes

!'See appendix 4.7 for detailed derivations of the orientational moment equations.



drag coeflicient { eq. (1.5) becomes

0=-(j,+{Um+V -ag°", (1.8)

where g 25"°

= —n{Drl = —nkpgTI is the osmotic stress of the particles. Equa-
tion (1.8) is a mechanical force balance on the ABPs. The first and second terms on
the right-hand side represent the net hydrodynamic drag on the ABPs and average
of the swim force F*"'™ = {Uyq for the self-propulsive motion and the net force

density is balanced by the divergence of the stress.

It is important to note that both the drag and swim forces originate from the sus-
pending medium around an ABP. In the description of ABPs using Langevin and/or
Smoluchowski equations, the existence of a medium is prone to be forgotten since it
does not explicitly appear in the equations but only implicitly as the drag coefficients
and Brownian diffusion. Yet the self-propulsion of microswimmers is fundamen-
tally enabled by the presence of a medium. An individual active unit generates
a propulsive force on its body by essentially ‘pushing’ a medium (whether it is a
‘wet’ fluid or a ‘dry’ surface) backwards and the resulted forward motion relative
to the medium produces a drag force that is also exerted by the medium. From a
mechanical perspective, the self-propulsion of microswimmers is not much different
from us swimming in a pool — a body is propelled by pushing water with strokes
and is simultaneously resisted also by the water. The only differences are that for
microswimmers, the motion of a suspending fluid follows the Stokes equation due
to the low Reynolds number environment and consequently the swim strokes re-
quire subtle mechanisms. The same logic applies to the reorientation torque for the

rotational motion.

The particle force balance (1.8) shows that the average swim force {Uym acts as
an internal [50] or self-generated ‘body’ force [63]. Owing to the form of the
polar order equation (1.6)-(1.7), the average swim force density can be written as a
divergence at steady state: m = =V - (j,,7r/(d — 1)). This motivates us to treat the
average swim force as an (divergence of) effective stress and the steady state force

balance becomes

0= _{jn +V- O_act’ O_act — O_swim + gosmo , (19)

_ _gUofjm _ _iUO‘;OQ TV 4 kT (1.10)

where 0?“! is the active stress of the ABPs, 0" is the swim stress, and TT*"" =

swim
g

LUpbon/(d(d — 1)) is the swim pressure [64]. In this mechanical formulation it is
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clear that the swim pressure or stress is analogous to the equivalent (or dynamic)

pressure in fluid mechanics [65] or the Maxwell stress in electrostatics [66].

The utility of the swim pressure can be clearly revealed by considering the concept
of equivalent pressure. For a static incompressible fluid under an external potential
¢*" a mechanical force balance is given by: 0 = —pV¢*’ — Vp, where p is the
fluid density and p is the ‘true’ pressure of the fluid. One can combine the body
force density —pV¢*" and the pressure gradient Vp to rewrite the force balance
as 0 = —VP, where P = p¢®*" + p is the equivalent pressure. When the external
potential is unidirectional, say the familiar gravity field ¢ = gz (gravity acting in
—z direction, where g is the gravity acceleration constant), the force balance results
in constant equivalent pressure throughout the whole fluid = pgz + p = cosntant.
Thus, the static condition of a fluid is described by the equivalent pressure in an
intuitive fashion: there is no fluid motion if the equivalent pressure is constant. The
real meaning of the constant equivalent pressure is, however, that there is a gradient
in the ‘true’ pressure p; in order to resist motion induced by gravity and to maintain
the static condition — the fluid pressure gradient develops toward the direction of
the gravity. When computing the pressure exerted by the fluid on a wall, one needs
to use the ‘true’ pressure of the fluid p not the equivalent pressure. Nevertheless,
the equivalent pressure does not lose its utility because it allows us to think about

the ‘true’ pressure only with the height of the static fluid.

Similarly the swim pressure provides a convenient way to compute the pressure
exerted by ABPs on a simple no-flux boundary [60].? Suppose a suspension of ideal
ABPs (z > 0) with the bulk concentration n* is dammed by a flat no-flux wall at
z = 0. Integrating eq. (1.9) from the wall (z = 0) to an arbitrary position (z = L), we
obtain [0 im oM =0 = [oswim 4 028"°] ;=1 At the wall, the no-flux condition
Jmzz = 0 results O'ZSZW"’" = 0. Also, in the limit of L — oo the effect of the wall
becomes negligible at z = L and the suspension becomes homogeneous: Vm = 0,
Q =0, and n = n™. Consequently, we obtain I1°°|,_q = [IT*"" 4 [1957°],
where 17" = nkpgT is the ‘true’ osmotic pressure of the particles. Therefore, the
pressure exerted by ABPs on the wall per unit area is simply given as the sum of the

bulk swim and osmotic pressures far from the wall. Furthermore, this shows that

2 We note that when special particle-wall interactions (e.g. a wall exerting a torque on active
particles [67]) are present, the polar order flux j,, may not vanish at the wall due to the interactions.
In such a case, the particle pressure on the wall should include the effect of swim stress: T2 =
[ITsWim 4 [1os™me], — lopid im| _,. We also note that the polar order m cannot be written as written

as V - j,, when there is a ‘bulk’ torque (e.g. fluid flow [37] or external field [68]).
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there exists an accumulation of ABPs at the wall which increases with the activity
Pe = Uoly/Dr = (€5/8)*: n|,—0 = n®(1 + Pe/(d(d - 1)).

1.4 Thesis Outline

In Chapter 2 of this thesis, we answer, arguably, one of the most fundamental
questions for active suspensions: the effects of an abrupt spatial variation in transport
properties Uy, Dr, and Dgr. We present analytical solutions of the steady state
number density and polar order for various simple geometries and confirm their
accuracy by performing computer simulations. From the analytical solutions and
computer simulations, we find that the difference in the number densities in regions
with different transport properties is governed by the swim speed difference and
modulated in amplitude by the activity. We also investigate the transient effects
of abrupt spatial variations in transport properties. We reveal that when ABPs are
released at a position where a step change in transport properties occurs, the particles
preferably partition to the region with longer reorientation time 7g = 1/Dg and the
swim speed difference does not produce nor affect the transient partitioning. We
explain the connection between the seemingly contradictory results from transient
and steady states. Using the results from Chapter 2, we analyze the mechanics of
active suspensions with an abrupt spatial variation in transport properties in Chapter
3. By considering a mechanical force balance for the whole suspension, including
the ABPs and the suspending medium, we reveal a unique feature of active matter
systems with spatially varying activities: the reverse osmotic effect. We show that
the swim strokes of ABPs can be utilized as a microscopic pump to spontaneously
generate a reverse osmotic fluid flow from regions of high concentration to low.
We also show that the reverse osmotic effect results in a counter-intuitive reverse-

diffusiophoretic motion of a passive body inside an active suspension.

In Chapter 4, we further demonstrate the utility of the mechanical perspective in un-
derstanding active matter systems by considering MIPS. We first revisit the classical
and statistical thermodynamic descriptions of phase equilibrium and introduce an
equivalent mechanical description of phase equilibrium. Unlike the thermodynamic
framework, which only applies to equilibrium systems, a mechanical theory can
be readily generalized to analyze the nonequilibrium phase coexistence. Using the
mechanical approach, we discover phase coexistence conditions of MIPS that allow
an equal-area construction of a phase diagram on the active pressure vs. collisional
pressure plane. The phase diagram obtained by the mechanical theory excellently

agrees with the computer simulations of MIPS. We also explore the microscopic
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structure of phase interfaces in MIPS using the mechanical theory and report a

unique nonequilibrium interfacial behavior in MIPS for the first time. We find that

the width of phase interface nonmonotically varies with the activity of particles and

provide a mechanical explanation of this phenomena.
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Chapter 2

ACTIVE MATTER WITH SPATIALLY VARYING TRANSPORT
PROPERTIES

This chapter includes content from our previously published article:

[1] H. Row and J. F. Brady, “Reverse osmotic effect in active matter,” Physical
Review E, vol. 101, no. 6, p. 062 604, 2020. por: 10.1103/PhysRevE. 101.
062604,

2.1 Introduction

Intriguing non-equilibrium behaviors exhibited by colloidal active matter systems
can be tuned using external means such as light [1-3]. Spatial control of activ-
ity can direct transport [4, 5], which offers a number of intriguing applications,
e.g. reproduction of images by projecting light patterns [6, 7] and rectification of

microswimmers [8, 9].

The concentration variation resulting from a spatial variation in activity was first
explored by Schnitzer [10] and later by Tailleur & Cates [11-13] who showed
that for slow spatial variations in one dimension the number density n of active
particles is inversely proportional to the speed of self-propulsion or swimming U,

i.e. nU = constant in the absence of translational diffusion.

In this chapter, we generalize this finding and present results for an abrupt change of
activity in any dimension and also include the effects of thermal Brownian motion,
allowing us to span the complete range from thermal to active transport. We
consider spatial variations in all three transport properties, Uy, D, and Dg. Several
simple geometries that permit analytical solutions are compared with the results
to Brownian dynamics (BD) simulations. We also present an interesting transient
behavior of the Green’s function of the Smoluchowski equation for active particles

with an abrupt change in activity.

We limit our analysis to dilute isothermal suspensions of spherical ABPs in order
to illustrate the basic physics. Since isothermal suspensions are considered, a
variation in Dt is equivalent to a spatially varying the Stokes drag coefficient ¢

which depends on the viscosity of the suspending fluid and the the hydrodynamics
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of the low Reynolds number motion of the ABPs. When the temperature varies

within a system, well-known thermal drifts [14] should be considered.

2.2 Infinite Active Suspensions

We revisit the simple relationship nU = constant [ 10—13] and examine the conditions
that allow it to hold. We consider purely active particles without the translational
Brownian motion. In the absence of the translational diffusion, Dy = 0, and the
number density balance (1.4) forno fluxis V-(Um) = 0, which, for a one dimensional
geometry, requires m = (. From the polar order balance (1.6) at steady state the

polar order is
1

m = —mv (nU) , (2.1)
which implies that nU =~ constant. For (2.1) to hold in general the nematic order Q
needs to be small (« nl) even when there is an abrupt change in properties. For this
reason, the condition (2.1) is exact for 1D reorientations and therefore nU = const.
[10, 11] since the traceless nematic order Q = 0 for motion that is strictly 1D.! In
the following, we show with examples that the nematic order Q is sufficiently small
in higher dimensions as well by comparison to solution of the full Smoluchowski

equation. Thus, we close the hierarchy with @ =0 [15].

To explore the validity of nU = const., when thermal Brownian motion is present
and there is a sharp discontinuity in activity, we first consider an infinite suspen-
sion of ABPs with a step change in transport properties at x = 0 as described in
Fig.2.1. Since the two regions have different transport properties, the Smoluchowski

equation (1.1) is written for each region:

OP; . .

5 TV Jri t Ve Jgi=0, (2.2)
Jri=UiqP;i — Dr;VP;, (2.3)
Jgi=—"DriVqPi. (2.4)

Here, the subscript i (= 1 or 2) is the index of a region and the probability density

functions Py and P, are defined for x < 0 and x > O in the spatial domain.

Consequently, equations for the first two orientational moments of the probability
density are also obtained for each region as

on;
ot

IFor 1D processes one cannot set d = 1 in eq. (1.6) as the reorientation process is just changing
direction =+ rather than an angular displacement as modeled in the Smoluchowski equation. The
conclusion is the same, however, and the equivalent of Q = 0 also holds.

+V-j,=0, (2.5)
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Figure 2.1: A schematic of an infinite suspension of ABPs with an abrupt change
in activity. In regions 1 (x < 0) and 2 (x > 0) the ABPs have swim speeds U,

translational diffusivities Dr;, and rotational diffusivities Dg;, where the subscript
i (=1 or 2) represents the index of a region.

Jni=Um; — Dr;Vn;, (2.6)
om.
% +Veju; + (d-1)Dgim; =0, 2.7)
1
Jmi=UiQ; + EUinil - Dr;Vm; . (2.8)

The boundary conditions are a homogeneous random suspension far from the step
change: nj —» n™* and m;, — 0 asx — —oo, and n, — n** and my, — 0 as
x — oo. At the discontinuity in properties, the full Smoluchowski equation requires
that the field variables, n and m, etc., be continuous. Even though nU = const.
would predict a discontinuity in n at x = 0, the problem is singular and thermal
Brownian motion, no matter how small (no matter how large Pe), will result in a
boundary layer of thickness O(£Pe~! = Dy/U) where Brownian motion balances
advection and the probability density is continuous. Thus, n, m,, and the fluxes j, .
and j,, . are continuous at x = 0. We define (n) as the scale for the number density:
f_ LL n dx — 2L{(n) as L — oo. The moment equations are easily solved at steady
state with the closure Q; = 0:

M = mee= (2.9)
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n; Ci(Uy - Uy) i
o1+ e (2.10)
n U]
—+—|-CG(U; -U
c e (U — Us)
where
: ( )
— (U, - U,
o _ vd 2.11)
m (u, v, 1
|- (U~ (Ci - C
& G ( 1 =) (Cr - )
U U,
—+ — C(U U
n¢oo C1+C2 * ( = 2)
- , 2.12)
(n) U, U
|-~ — U (Ci - C
oG ( 1= U)(C1 - Cy)
d-1 Pe,-
A = 1 , 2.13
5, \ Tdd-1 @13
1
C = , (2.14)
d(d-1)
+—
Pei

Here, the subscript i indicates the two regions (1 or 2), §; = \/m is the
microscopic length scale related to the translational diffusion, Pe; = U;{;/Dy; =
Ul.2 /(D7:Dg;) = (£;/6;)? is the Péclet number which is a measure of the activity of
the ABPs, n™* is the number density far from the step change in transport properties
(x — Fo0), d 1s the spatial dimension for reorientation, upper signs are for region
1 (x < 0), and lower signs are for region 2 (x > 0). Note that the inverse screening
length A; is the characteristic length scale of the decay of step changes in the field
variables. A modified Péclet number C; ranges from O when Pe; = 0 to 1 when
Pe; — oco. The overall number density is simply (n) = (n~*° +n**)/2 for an infinite

suspension.

The analytic solution gives the distribution of number densities as

nte  CUp+CiUy+ C1C5(Uy — Us)
n=® QUi+ CiUs = C2Co(Uy = Us)

(2.15)

and its typical functional form is presented in Fig. 2.2. The analytical solution (2.10)

indicates that the number density difference is governed by the swim speed difference
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Figure 2.2: Color map of n**/n~ for U,/U; = 5. The modified Péclet numbers
C; = 0when Pe; = 0and C; — 1 when Pe; — oo. The black line represents the case
when diffusivities are the same in the two regions. When activities in both regions
are high (C;, Cy = 1), n**®/n* ~ U /U, = 0.2 i.e. nU = constant. If either of the
two regions is diffusion-dominated (C; ~ 0), the number density becomes constant
throughout the whole suspension: n*® = np=*

and modulated in amplitude by Pe. The number density is predicted to be always
lower in the region with higher swim speed and the nonzero polar order points
towards the region with slower swim speed. If there is no difference in swim speeds
(U1 —U, = 0), the suspension becomes homogeneous; the number density is uniform
and the polar order is zero everywhere. Also, it is notable that eqn. (2.15) recovers
the simple relation nU = const. from the previous section when activities in the two
regions are large, i.e. C; — 1, or equivalently Pe; — oo, fori = 1 and 2. As the
activity Pe decreases the difference of the number densities in the two regions fades

away.

In order to verify the analytical solution, BD simulations have been performed as
described in Appendix 2.7 and the results are compared with the analytical solution
in Fig. 2.3. When activity dominates translational diffusion (Pe > 1), the number
density jumps sharply at the boundary of the two regions x = 0 and nU becomes
constant. In the absence of translational Brownian motion, indicated by the black
crosses in Fig. 2.3, nU is constant everywhere. Increasing the diffusivities decreases

Pe and smears out the sharpness of the density jump.
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Figure 2.3: (a) Number densities scaled with the overall number density (n), (b)
the product of the number density and swim speed scaled with the overall number
density and the harmonic mean of the swim speeds (Uj, = 2(U 1_1 +U; =1, and (c)
polar orders scaled with the overall number density versus the position x scaled with
the run length in the region 2 £, = U, /D g, when the swim speed abruptly changes
atx =0: Uy /Uy, =2, Dry = Dy, and Dy = Dpgy. The translational diffusivity
Dr is systematically changed to show the effect of the Brownian motion. Markers
are BD simulations and solid lines are the analytic solutions of egs. (2.5)-(2.8) with

0=0((2.9)-(2.14)).
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Figure 2.4: Relative magnitude of the nematic order Q,, compared to the number
density n as a function of the position x scaled with the run length in the region
2 £, = U,/ Dpg, obtained by BD simulations. The swim speed abruptly changes at
x =0sothat Uy /U, =2, Dy; = D1y, and Dy = Dgy. The translational diffusivity
Dr is systematically changed to show the effect of the Brownian motion. When
Pe < 100 the nematic order is three orders of magnitude smaller than the number
density allowing the simple closure Q =0 to result in the highly accurate analytical
solution.

Excellent agreements of the analytical solution and BD simulations in Fig. 2.3
demonstrate the propriety of the assumption Q =0 as a closure of the orientational-
moment hierarchy when active matter systems have abrupt spatial variations in
transport properties. For the validity of the simple closure, Q <« nl is required
and we confirm it by comparing the number density and nematic order from BD
simulations as shown in Fig. 2.4. We find that the nematic order is three orders of
magnitude smaller than the number density and consequently assuming Q =0 does
not compromise the accuracy significantly when Pe < 100. For extremely high
activities, the effect of nematic field is prominent and higher order moments should

be taken into account.

We note that our results are in contrast to the study in [4] where they found via
simulations that a spatial variation in number density occurred when D7 varied
even without activity. In addition to the BD simulations, we also confirmed our
findings with numerical solutions of the full Smoluchowski equation obtained by
the finite element method [16] in order to verify the predictions of the analytical
solution (2.9)-(2.14) obtained by the Q =0-closure.

Figure 2.5 shows that solutions of the full Smoluchowski equation agree with the
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Figure 2.5: (a) Number densities and (b) polar orders scaled with (n). Black dashed
line represents the analytical solution obtained by the Q = 0-closure ((2.9)-(2.14))
and the other lines are obtained by solving the full Smoluchowski equation with the
finite element method. The position x is scaled with the run length ¢, in region 2.
In region 1 (x < 0), Pe = 2 and in region 2 (x > 0), Pe = 1. The number density
changes only when there exists variation of swim speed.

0 =0-closure and that the variation in the number density and the peak of the polar
order only occurs when the swim speed is different in the two regions. The number
density changes rapidly only near x = 0. Since m ~ Vn, the polar order field is
nearly zero everywhere except near x = 0 where it has a peak as seen in Fig. 2.5(b).
The sharpness of the peak increases as the screening length A~! decreases. In the
singular athermal limit (D7 — 0), the number density satisfies nU = const. and the
polar order becomes a d-function if swim speeds are different in the two regions.

If suspended particles are not active in one region, say region 2 (i.e. Uy = 0), the
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analytical solution to the moment equations (2.5)-(2.8) at steady state is obtained as

1
n ClPelzzeﬂ”‘
— =1+ : : (2.16)
n 1 1
C_1 - Cl Peiz +1
n, =nt®, 2.17)
myy = mye™ (2.18)
Moy = mge™ (2.19)
where
L pe!
—Pe
myo \/3 1,2
_ , 2.20
(n) AN (220
C_l — 7 Pel’z +1
: %
—_ = C1 Pe: +1
o Cl 1,2
— , 2.21)
(n) 1o\
C_l — 7 P€1,2 +1
L pet
n+c>o C_IPelvz +1
= : (2.22)
(n) oA\ .
C_l — 7 })6’1,2 +1
%
Peis = (2.23)

d(d = 1)Dr2Dpy
Here, Pe; is the global Péclet number that represents the relative significance
of advective transport in region 1 compared to diffusive transport in region 2. By
comparing the analytical solutions egs. (2.9)-(2.14) and eqs. (2.16)-(2.23), we find an
interesting difference between weakly active ABPs (Uy > 0 and Pe = 0) and passive
Brownian particles (PBPs; Uy = 0 and so Pe = 0), which are generally perceived
to be indistinguishable to each other [17, 18] since they both just diffuse with the
thermal diffusivity D7 exhibiting the identical diffusion-dominated dynamics. The
analytical solutions predict different steady state behaviors for passive-like ABPs

and PBPs when there are spatial variations in activity. As seen in Fig. 2.2 when
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Figure 2.6: (a) Number densities and (b) polar orders scaled with the overall number
density (n) versus the position x scaled with the microscopic length in region
1 61 = \/Dr1/Dg; in 2D. Particles are active (Pe; = 10) in region 1 and the
transnational diffusivity is the same in the two regions. When both regions are active
(blue), the number density is nearly constant even though swim speeds in the two
regions differ (U; /U, = 10) due to the passive-like (Pe; = 10~*) character in region
2. When particles are not active in region 2 (black) the number density abruptly
jumps at the boundary. The global Péclet number Pe;, = U12 /(2D Dgy) = 5
in the passive region. Markers are BD simulations and solid lines are the analytic
solutions ((2.16)-(2.23)).

particles are active throughout the whole suspension the number density becomes
nearly constant everywhere provided either of the two regions is diffusion-dominated
(Pe < 1). However when particles are not active in one region, the analytical
solution (2.16)-(2.23) predicts that the number density can have a significant jump
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at the boundary of the two regions even though Pe = 0 in the passive region.

We have performed BD simulations to verify this prediction and observe distinctive
behaviors of the two types as seen in Fig. 2.6. The analytical solutions obtained
by the Q = 0-closure shows great accuracy. While weakly active ABPs and PBPs
are usually indistinguishable by themselves, when each of them is compared with
particles with a reference activity (in region 1), whether the activity Pe is nearly or
exactly zero makes a singular difference. For suspensions of ABPs, the maximum
jump in the number density is set by the ratio of swim speeds following nU = const.
and finite Pe moderates it. If the swim speed in one region is exactly zero, however,
the conditions become singular; an infinitely large maximum jump in the number
density and Pe =0 to alleviate the singularity compete. Consequently, the number
density is not simply constant even though Pe = 0 in the passive region. The
different behaviors of ABPs and PBPs in the presence of a reference region with a
different activity can be utilized as a test for the presence of extremely small activity

in colloidal suspensions.
2.3 Active Suspensions Confined by Planar Walls

Dr1, Dgr1, Uy Dro, Dpra, Us

o -
~ ® -,
\ / - e O

~®

O /P 8.

~

_L, Regionl Region 2 L, T

Figure 2.7: A schematic of a suspension of ABPs with an abrupt change in activity
bounded between two parallel planar walls. In regions 1 (-L; < x < 0) and 2
(0 < x < Ly) the ABPs have swim speeds U;, translational diffusivities Dr;, and
rotational diffusivities Dg;, where the subscript i (= 1 or 2) represents the index of
a region.

Now finite suspensions of ABPs in the presence of an abrupt variation in activity are

considered with two examples. We first explore a suspension confined between two
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parallel walls at x = —L; and x = L, with a step change in transport properties at
x = 0 as described in Fig. 2.7. The governing Smoluchowski equations (2.2)-(2.4)
and associated moment equations (2.5)-(2.8) remain the same but the spatial domain

for the two regions are now finite in x direction.

The walls are assumed to be hard and act as no-flux boundaries, i.e. n - j; =0,
at x = —L; and x = L,, where n is the unit normal vector to the surface of walls.
Continuity of field variables and fluxes at the boundary of the two regions (x = 0)
still applies and the overall number density is (L; + Ly){(n) = f_ LLZI n dx. The
steady state analytical solution for bounded suspensions with the Q = 0-closure is

straightforward to obtain:

M via;(cosh(;x) — 1) + yi@ sinh(4;x) + 1, (2.24)
no no
Mix _ M0 cosh(A;x) + a;sinh(2;x) , (2.25)
no no
where
mMx0 1
= —[A1A2(U1 - Uz)(COSh(/llLl) - 1)(COSh(/12L2) - 1)
ng b (2.26)
+ A1U1(COSh(/11L1) - 1) - AzUz(COSh(/lsz) - 1)] ,
1
ap = E [AlAz(Ul - Uz) Sinh(/llLl)(COSh(/lsz) - 1))
(2.27)
+ AU sinh(L L)) + ZAsU; sinh(/lng)] ,
Y2
1
ar= - [AlAz(Uz — Uy) sinh(A2L2)(cosh(41Ly) - 1))
(2.28)
+ AU, sinh(4, L)) + AsUs sinh(/lng)] :
1
d .
b =—AU;sinh(A;L)(1 + Ax(cosh(A,L,) — 1))
4 p (2.29)
+ —A2U2 sinh(/lsz)(l +A1 (COSh(/llLl) - 1)) ,
Y2
d-1 Pei
A= 1 , 2.30
TS, T dd=1) 2.30)

(2.31)
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N=——7—. (2.32)
Pe;
1+ m
Here, ng and m,o are the number density and polar order at the step change in
transport properties (x = 0). In order to determine the value of ng, the particle
conservation equation (n) = f_ LLZI n dx/(Ly + L) is used for given overall number

density (n).

Yan and Brady (2015)

P walis

Boundary Layers

An active suspension with one wall

Region 1 : Region 2
Dr1, Dg1, Ur Dra, Dge, Us
—L1 0 L2 L
An infinite suspension of ABPs with
A homogeneous active suspension a step change in transport properties
n = const. Dr1, Dr1, Up E Dra, Dpgo, Uz

Figure 2.8: A schematic of the singular perturbation analysis with matched asymp-
totic expansions when the length of a region is much larger than the boundary-layer
thickness L; > Dr;/U;. Red lines represent the number density in boundary layers
near the walls. The leading order solution insided the boundary layers has been ob-
tained by Yan and Brady [15] for the number density of ABPs near a wall. The blue
line represents the number density in the boundary layer where transport properties
change. To leading order, the suspension can be treated as an infinite suspension
with a step change in transport properties inside the boundary layer at x = 0. The
number densities in the boundary layers are matched with number densities in the
bulk, or outer regions, where the number density is constant to leading order.

The resulting formula, however, is not particularly illuminating and difficult to
evaluate because of the sharp boundary layers at both walls and at the point of

discontinuity in properties. Instead, a singular perturbation analysis with three
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boundary layers of thickness O(£Pe™! = Dz/U) is used along with the overall
conservation of number density to obtain solutions at all positions between the walls
to obtain a more intuitive and simpler analytical solution as described in Fig. 2.8. In
the singular perturbation, we recognize that there are boundary layers at the point
of discontinuity in properties (x = 0) and at each wall where rapid variations in
number density and polar order occur. When the length of a region L; is large
compared to the boundary-layer thickness O (D7/U), the full solution that is valid

for all positions can be constructed by piecing together the boundary layers.

The leading order inner solutions within boundary layers near walls have been
obtained by Yan and Brady [15] as solutions for semi-infinite suspensions with one
wall. Also, the analytical solution (2.9)-(2.14) for an infinite suspension with a step
change in transport properties is the leading order inner solution inside the boundary
layer at x = 0. The outer solutions far from boundary layers are homogeneous to
leading order: n = nf’ “lk (const.) and m = 0. By matching inner and outer asymptotic

solutions, we obtain a complete solution:

n;%: L+ 27D dl_ 1)Pe,-e‘”f@fﬂ) r CIiJ(Ul ~ %) e, (2.33)
i 1 2
+ C_1+C_2 - Ci(U - Uy)
i U e, GWIZUD
nl’?”lk Vdc;| dd-1) ' U, U ’
C_1+ G FCGi(U) - )
(2.34)
u U
nll’“”‘ C_1+C_2 - C (U - Uy)
ng“”‘ = — , (2.35)
C_1+ Fz +C (U - Ur)

where A; and C; are the same as in (2.13) and (2.14). The bulk number densities

nbulk bulk

1 »'* are determined by the conservation of particles:

and n

0 Ly
/ ny dz + / ny dz = (L1 + Lz)(ﬂ) . (2.36)
- 0

Ly
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Figure 2.9: (a) Number densities, (b) polar orders, and (c) nematic orders of ABPs
confined between parallel walls when transport properties abruptly changes at x = 0.
The number densities and polar orders are scaled with the overall number density
(n) and the nematic orders are scaled with the local number densities: Q,,/n =
{g%) —1/2. Markers are BD simulations and lines are analytic solutions obtained by
a singular perturbation analysis (2.33)-(2.36). In all cases, the two regions have the
same translational and rotational diffusivities and length (L /2), but the swim speeds
differ: Pe,/Pe, = (U;/U,)?. The coordinate x is scaled with L, which is 10 times
longer than the microscopic length scale 6 = VDr1g.

bulk
2

swim speeds in two regions are the same regardless of the other parameters — the

and n are identical when

Note that the number densities in the two regions n’f””‘

number density is governed by swim speed difference.

A comparison of number densities obtained by the singular perturbation solution
and BD simulations is shown in Fig. 2.9(a). The slight discrepancy near the walls at
high Pe results from the Q =0 closure losing accuracy as shown in Fig. 2.9(c), not
the invalidity of the singular analysis, which is valid as long as the two regions are
larger than the boundary-layer thickness: L > D7 /U; and L, > D7;/U;. When
the activity is high (Pe > 100) the nematic field associated with the steep change of
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n and m needs to be included in the analysis to improve the accuracy as shown by
Yan & Brady [15].

The singular perturbation solution also accurately predicts the polar order shown in
Fig. 2.9(b). Since m ~ Vn from the number density balance (1.4) there is a peak
in polar order at x = O directed towards the slower region; net advective transport
of particles into the slower region is balanced by the diffusive transport due to the

number density jump.

Figure 2.9(c) shows that boundary layers of the nematic order develop near the
confining walls and near the step change in the swim speed of the particles. The
nematic order drops sharply and becomes negative near the walls because most of
the particles leave the walls orienting parallel to the walls. The sign of the nematic
order also abruptly changes near the step change in swim speed. From the polar
order balance (1.6), the nematic order is coupled to the gradient of the polar order
by Q@ ~ U/DrVm for high Pe. Since the polar order develops a sharp peak near
the step change, the nematic order has a shape of the derivative of the sharp peak,

which resembles a shape of the derivative of a d-function.

2.4 Active Suspensions Confined by a Circular Wall

As another example of finite suspensions we consider a suspension confined by a
circular or cylindrical container of radius R as described in Fig. 2.10. Transport
properties changes abruptly at » = AR and we call the inner part (r < AR) region
1 and the outer part (AR < r < R) region 2. Again, the governing Smoluchowski
equations (2.2)-(2.4), associated moment equations (2.5)-(2.8), and continuity of
field variables and fluxes at the boundary of the two regions (r = AR) still apply.
The hard circular wall does not allow particles to pass through and the no-flux

boundary condition n - j; = 0 is applied at r = R.

As in the previous example with planar walls the steady state analytical solution
with the Q = 0-closure can be easily obtained but it is not very elucidating and
difficult to compute numerically. Again it is more instructive to perform a singular
perturbation analysis with two boundary layers with the overall conservation of
number density. The two boundary layers develop at the step change in the transport
properties (r = AR) and at the wall (r = R). The matched asymptotic expansion
obtained by piecing together the two boundary layers is valid for the whole domain
as long as the size of the suspension R is large compared to the boundary-layer
thickness O (D7 /U).
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Figure 2.10: A schematic of a suspension of ABPs with an abrupt change in activity
bounded by a circular wall of radius R. In regions 1 (r < AR; 0 < A < 1) and 2
(AR < r < R) the ABPs have swim speeds U;, translational diffusivities D7;, and
rotational diffusivities Dg;, where the subscript i (= 1 or 2) represents the index of
a region.

In order to describe the boundary layer at r = AR generated by the jump in transport
properties, an infinite suspension with the same jump is considered — imagine
the circular wall is removed from Fig. 2.10 and region 2 is everywhere outside
the region 1 (AR < r). For this infinite domain problem, all the equations and
conditions remain the same except for the no-flux boundary condition at the wall.
Instead of the no-flux condition the suspension is now homogeneous and random far
from the abrupt change at r = AR i.e. n; — n3’ and m, — 0 asr — oo. The overall
number density (n) is defined by /OL(n) rdr = fOAR ny rdr + /A; ny rdr as L — oo
and therefore (n) = n3’. The steady state analytical solution is easily obtained with

the Q =0-closure:

U -U
n—ot =1+ Gi-ta) [71[10(/11r) — lo(D1)]K1(D2) = y2l1(D1)Ko(A2AR) |,
n, CAR
(2.37)
n_020 =1 - M)’zh(Dl)Ko(/lzr) , (2.38)
I’l2 AR
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mi, (U3 —-U)

= = Ky(D2) I (7)) , (2.39)
n2 CAR
r U - U
mi = (U 2)Il(Dl)Kl(/br), (2.40)
I’l2 CAR
where
d U, d U,

CAR = E—Kl (D2)(Io(D1) + 12(D1)) + =—11(D1)(Ko(D2) + K2(D3))
Y1 2y

+ (U = Up)y211i(D1)Ko(D>) ,
(2.41)

D; = ;AR . (2.42)

Here, Iy 12 and Ky 1 » are modified Bessel functions of the first and second kinds and
A; and y; are defined by eqgs. (2.30) and (2.31). We note that even with the circular
geometry the analytical solution (2.37)-(2.42) again predicts that the number density
is governed by the swim speed difference U; — U, regardless other parameters —
the suspension is homogeneous if the swim speed does not vary. It is also notable
that the simple result nU = constant is recovered for the circular geometry when
activity is high (Pe > 1) and region 1 is sufficiently large (AR > A ~ O(Dr/U))
by using the leading order asymptotic expansions of the modified Bessel functions,
I(x) ~ ¢*/\2nx and K (x) ~ e /4 as x — oo:

nl—EoO) =1+ -0 y1ill = Io(D1)]K1(D2) — y2l1(D1)Ko(1AR) | ~ Y
) CAR U,
(2.43)

Another boundary layer at the circular wall has been described by Yan and Brady [15]
to leading order. Piecing the two boundary layers together, the matched asymptotic

expansion gives an analytic solution that is valid for all positions in the circular

domain:
n U -U
bllk SR Gl yillo(ir) = Io(D1)]K1(D2) — y2li(D1)Ko(12AR) |
ny" CAR
(2.44)
n U -U 1
oy - Um0 Dok + ——(o(dar) = 1), (245
n’ AR AR

mi, (U —U»)
bulk

n2“

my,  (Uy—U»)

= I (DK (Aor) +
nsulk CAR Y2dAR2

Ki (Do) (A7) , (2.46)

11 (/12}’) . (247)
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Figure 2.11: (a) Number densities, (b) polar orders, and (c) nematic orders of
ABPs confined by a circular wall when transport properties abruptly changes at
r = R/2. The number densities and polar orders are scaled with the overall number
density (n) and the nematic orders are scaled with the local number densities:
Q,-/n = {g?) — 1/2. Markers are BD simulations and lines are analytic solutions
obtained by a singular perturbation analysis ((2.44)-(2.48)). In all cases, the two
regions have the same translational and rotational diffusivities, but the swim speeds
differ: Pe;/Pe, = (U;/U;)?. The coordinate r is scaled with the radius of the
container R, which is 25 times longer than the microscopic length scale 6 = VDr7g.

where

1(d(d-1 1(d(d~-1
dsr2=1+ 5 ((Tz)_ 1)10(192) + 5((’72)+1)12(D2). (2.48)

’2”” ¥ is determined by the overall conservation

of the number density (n) R?/2 = fOAR ny rdr + fAI; ny rdr.

The bulk number density in region 2 n

A comparison of the singular perturbation solution and BD simulations is shown
in Fig. 2.11. The number density is always lower in the region with the faster

swim speed and the polar order develops toward the region with the slower swim
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speed. We once again note that the slight discrepancy in the number density at high
Pe = 107 results from the Q = 0-closure used to describe the boundary layers not
from the singular perturbation analysis. The singular perturbation solution is valid
as long as the sizes of the two regions are larger than the boundary-layer thickness:
AR > D7 /Uy and (1 — A)R > Dr,/U,. When the activity is high (Pe > 10?) the
accuracy can be improved by accounting for the nematic field associated with rapid

changes of the number density and polar order inside the boundary layers [15].

2.5 Transient Behavior of Microswimmers with Abrupt Variation in Activity
In the previous sections we demonstrated that the steady-state number density of
colloidal active matter is governed by the swim speed difference. We also have shown
that the amplitude of the difference in the number densities is bounded above by the
relation nU = const., which holds when particles are purely active, and is modulated
by Pe. In this section we explore the transient dynamics of microswimmers released

from the position where an abrupt change in transport properties occurs.

The evolution of microswimmers released from a point source is described by
the Green’s function solution of the Smoluchowski equation (2.2). The Green’s
function of the Smoluchowski equation when the transport properties of ABPs are
uniform throughout a suspension has been studied in several previous works both
experimentally [19] and theoretically [20-22] due to its relevance to the growth of
bacterial films. One of the most interesting aspects of the dynamics of ABPs is the
transition from ballistic wave-like motion in a short (<« 7g) time to diffusive motion

in a long (> 7) time.

The transition of the dynamics of ABPs is most clearly seen by considering the
first two moments of the probability density function as shown by Dulaney and
Brady [20]. By combining the number density and polar order balance equa-
tions (1.4)-(1.7) with the Q =0-closure, the number density of purely active particles
(D7 =0) satisfies

9%n on Uj_,
I d-1)Dpr = 0y 2.4
gz - DD =gV 249)

which is known as the telegraph equation [23, 24]. A scaling analysis reveals that in
a short (<« 7g) time scale the second order time derivative dominates the first order
time derivative and eq. (2.49) can be approximated as a wave equation. On the other
hand in a long (> 71x) time scale the first order time derivative is dominant and the

equation becomes a diffusion equation.

Now we consider the geometry used for infinite suspensions with a step change
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in the properties in section 2.2 (see Fig. 2.1) in order to study the effect of an
abrupt change in transport properties. Since the translational diffusivity just smears
out spatial gradients, purely active particles (D7 = 0) are considered in order to
understand the essential physics. The moment equations closed by Q =0 are
on;
ot

+V-j:i=0, j,i=Um, (2.50)

om; 1
% + V- sz + (d - I)DR,im,‘ =0, sz = EUiniI > (2.51)

where subscripts i (= 1 or 2) represents the index of regions. We discuss the validity
of the assumption Q = 0 later in this section. For mathematical simplicity we
consider an instantaneous infinite line source of particles with random orientations.
The particles are initially located at at the interface of the two regions (x = 0) and
released at t+ = 0. The corresponding initial conditions are n; = np, = 6(x) and
m; = m, = 0 atr=0. Also at the interface the fluxes are continuous: n1U; = nyU;
and mU; = myU; at x =0. Finally particles swim into an infinite free space so

n; — 0 and m; — 0 as |x| — co. The associated telegraph equation for each region is

2 2
% + (d - 1)DR,,-% = %Vzni . (2.52)
For the telegraph equation (2.52) the initial and boundary conditions for the polar
order should be rewritten in terms of the number density. From eq. (2.50) the initial
condition for the polar order can be expressed as an initial condition for the number
density dn;/dt=0 at t=0. Also by integrating eq. (2.50) over each region and using
the boundary condition for the polar order, we obtain an integr