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ABSTRACT

In this thesis, I present results on two distinct topics within geophysics: earthquake
mechanics and the core of gas giant planets. A common element connecting this
work is the similar research approach that I use to address each topic. Each chapter
in this thesis attempts to provide a simple physical understanding on the fundamental
aspects relevant to the system in question. Further, I use numerical models to expand
my arguments in some cases, while in others I build up my case with mathematical
modeling only.

Chapters II-IV focus on the gravitational field of Jupiter and connect radio science
observations from NASA’s Juno mission to the structure of Jupiter’s dilute core. In
Chapter II, I use dynamical tides to interpret a nonhydrostatic component in Jupiter’s
degree-2 tidal response—represented by the Love number 𝑘2—observed by Juno at
the mid-mission perijove (PJ) 17. The results presented here show how the Coriolis
acceleration contributes with a dynamical effect to Jupiter’s tidal response, providing
a satisfactory fit to Juno’s observed 𝑘2. From these results, I conclude that Juno
obtained the first unambiguous detection of the gravitational effect of dynamical
tides in a gas giant planet.

In Chapter III, I build a perturbation theory to show that the high-degree tidal
gravitational field of Jupiter is dominated by spherical harmonic coupling promoted
by Jupiter’s oblate figure as forced by the centrifugal effect. Based on this novel
understanding of Jupiter’s high-degree tidal gravitational field, I establish that Juno
observed a 7𝜎 nonhydrostatic component in 𝑘42 at mid-mission.

In Chapter IV, I invoke a core-orbital resonance between internal gravity waves
trapped in Jupiter’s dilute core and the orbital motion of Io to explain the 7𝜎
nonhydrostatic component in the high-degree tidal response of Jupiter as observed
by Juno at mid-mission—namely the Love number 𝑘42. These results suggest that
an extended dilute core in Jupiter (𝑟 ≳ 0.7𝑅𝐽𝑢𝑝) reconciles the 𝑘42 nonhydrostatic
component. This explanation of Juno’s observation requires two ingredients: a dilute
core in Jupiter that becomes smoother or shrinks over geological time, alongside
with a high amount of dissipation provided by resonantly excited internal gravity
waves.

In Chapter V, I connect observations of earthquake modes of propagation to the
damaged rock often found around tectonic fault zones. Previous work showed
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that pulse-like rupture—a propagation mode where slip propagates as a narrow
pulse—can be induced by the dynamic effect of seismic waves reflected at the
boundary of a cavity formed by the damaged material in fault zones. My main result
shows that pulses are easier to produce than previously thought; pulses can appear
in a highly damaged fault zone even in the absence of reflected seismic waves.
In addition, these results provide a new explanation for back-propagating rupture
fronts recently observed during large earthquakes and the rapid-tremor-reversal slip
patterns observed in Cascadia and Japan.

In summary, the results contained in these four chapters advance our knowledge
in fundamental problems related to geophysics. In relation to gas giant planets,
my results include the development of a novel technique to reveal the structure
of Jupiter’s core using spacecraft observations of the tidal gravitational field. In
relation to earthquakes, my results connect earthquake ruptures to observable fault
zone properties.
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C h a p t e r 1

INTRODUCTION

“The universe is made of stories, not of atoms.”

— Muriel Rukeyser, The Speed of Darkness

Planets keep the secrets of the formation of planetary systems concealed in their
deep interiors. The planetary scientist attempts to reveal such secrets, illuminating
the materials and structures that define what a planet looks like deep below its crust
or atmosphere. In such effort, the planetary scientist develops theories and models to
connect observations obtained outside the planet to properties and processes active
within the planet. Without such observations, the planetary scientist can hardly
make any progress.

Since decades NASA has led humanity in exploring our solar system and beyond.
The most distant planet in the solar system, Neptune, lies only a couple of decades
away from NASA’s reach assuming conventional spacecraft travel. This proximity
allows NASA to routinely visit solar system planets and collect in situ observations
using a diverse fleet of orbiters, probes, and rovers.

In situ observations hold the key to expose a planet’s interior. In that sense, the
best known planetary interior is our own Earth’s. The measurement and analysis
of Earth’s vibrations provide enough information to reveal Earth’s layered structure
from its silicate crust to its solid iron core.

In situ observations also reveal the interior structure of the fluid giant planets (also
known, perhaps imprecisely, as gas giant planets). These planets do not posses
a solid surface from where to measure planetary vibrations. Alternatively, a ring
system traps planetary vibrations in the case of Saturn, revealing that the planet’s
core has a fuzzy structure (also known as diluted core) rather than a distinct boundary
like Earth’s core. In Jupiter, the biggest planet in the solar system, the ring system
is too faint and fails to record the planet’s vibrations. Revealing Jupiter’s interior
requires another kind of in situ observation; for example, gravity.

In situ gravity observations of Jupiter’s response to rotation suggest that Jupiter may
host a diluted core, just like Saturn does. But contrary to Saturn’s case, the radial
extension of Jupiter’s diluted core is poorly constrained. Unlike ring seismology,
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the precision of the traditional gravity analysis depends on a precise description of
the behavior of high-pressure hydrogen and helium, which is currently uncertain. A
new mission concept to measure Jupiter’s vibrations could settle the matter of the
extension of Jupiter’s dilute core. In the meantime, gravity remains one of the best
available options to reveal Jupiter’s interior.

This thesis explores the potential of using Jupiter’s response to tidal forces to aliviate
some of the limitations of a traditional gravity analysis. It contains my contribution
to detect and characterize Jupiter’s core from the tidal gravity field observed in situ
by NASA’s Juno mission. The main question I try to answer in this thesis is: what
kind of core does Jupiter have? One end member core model concentrates the core
material near the center in what is traditionally known as a compact core (Fig. 1.1).
Another end member distributes the core material broadly along the planetary radius
in what is emerging in recent years as the new paradigm of diluted cores in gas giant
planets (Fig. 1.1).

Figure 1.1: Schematic of two end member Jupiter core models.

In particular, here I develop theory and models that interpret anomalies in the
tidal gravity field raised by the Galilean satellites on Jupiter. The tidal gravity
field is advantageous to study Jupiter’s interior in that it is small compared to the
total gravity field of the planet. Consequently, perturbation theory provides an
excellent approximation to represent the tidal gravity field, allowing us to simplify
the mathematical understanding of the problem and circumvent the demand of
precisely knowing the behavior of high-pressure hydrogen and helium.

The gravity anomalies mentioned here correspond to anomalies in Doppler shifts
from the navigation data provided by a Ka-band antenna on board the Juno space-
craft. At every close encounter with Jupiter, Juno acts like a test particle perturbed
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by Jupiter’s gravitational field. While Juno flies at full speed through Jupiter’s het-
erogeneous gravity field, the trajectory followed by the spacecraft generates Doppler
shifts on radio signals that continuously interrogate Juno’s Ka-band antenna with
the Earth-based antennas from NASA’s Deep Space Network. An analysis of the
Doppler shift data recovers the gravity field required to explain Juno’s trajectory.

I interpret this tidal gravity anomalies to be the dynamical component of Jupiter
tides. In general for a planet-satellite system, the highest tide corresponds to the
tidal bulge that balances the gravity perturbation of the satellite mass, namely the
equilibrium tide (i.e.,

∑
𝐹 = 0). A dynamical tide perturbs the tidal bulge out of

equilibrium due to dynamical effects that are frequency dependent (i.e.,
∑
𝐹 = 𝑚𝑎).

Formally, I define
Δ𝑘 =

𝑘

𝑘𝑒𝑞
− 1, (1.1)

where the Love number 𝑘 represents the nondimensional amplitude of tidal gravity,
𝑘𝑒𝑞 is the equilibrium tide, and Δ𝑘 is the deviation from equilibrium tides due to
dynamical tides.

Dynamical tides perturb the equilibrium tide depending on the tidal frequency,
following a qualitative fashion that resembles the response of the harmonic oscillator
(Fig. 1.2). A far-out satellite produces a negligible dynamical tide because the
tidal frequency is almost zero. On the contrary, a satellite can resonate with the
normal oscillations of the host planet, leading to large amplitude dynamical tides.
Given complications in the equation of the tidal flow, the harmonic oscillator only
constitutes a qualitative model. Tidal resonances can produce either positive or
negative perturbations from the equilibrium tide depending on the specific character
of the relevant host planet normal oscillation.

The work presented here concentrates in what may seem like mere details about one
single planet in the universe. What is the merit in studying one single planet when
we know of the existence of more than 5,000 others? Beyond our solar system,
space exploration seems daunting. It would take a conventional spacecraft more
than 70,000 years to reach Proxima Centauri, the closest star to our sun. The scarce
number of photons that highly sophisticated telescopes struggle to capture say barely
enough to constrain those distant planet’s mass and radius. In some favorable cases,
they may even provide rudimentary information about the composition and dynamics
of the planetary atmosphere. However, in the absence of in situ observations, the
deep interiors of this new multitude of planets may remain a mystery.
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Figure 1.2: The frequency-dependent response of the ideal harmonic oscillator, a
qualitative model for dynamical tides.

In this scenario, the solar system planets represent the ground truth to understand
the interiors and formation of planets in the universe at large. These eight planets
are the only places we can actually visit and understand to the similar degree we
currently understand Earth. Any hypothetical general theory of planet formation
would need first to explain these eight planets, which interiors remain to this day
a largely unexplored frontier. Thus, more than ever understanding our place in the
universe requires of space exploration. We live (still) in the infancy of an exploration
era.

The rest of this thesis is organized as follows. In Chapter II, I provide a first
approach to the gravitational signature of dynamical tides in a gas giant planet. This
chapter introduces the use of perturbation theory to represent tidal gravity employed
in Chapters II-IV. It also covers the intimate relationship between normal mode
oscillations and tidal gravity using simple intuitive models. The main result in this
chapter comes from unequivocally classifying a gravity anomaly detected by Juno as
the gravitational effect of dynamical tides associated to Jupiter’s fundamental mode
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of oscillation. Our theory illuminates in detail the structure of the flow that leads to a
−4% reduction in tidal gravity, mainly as a result of the Coriolis acceleration. In my
simple perturbation theory, I find a compelling answer to the puzzling requirement
of a negative dynamical effect when a simple harmonic oscillator predicts a positive
dynamical effect.

Chapter III contains an attractive theoretical result for the reader interested in tidal
theory and simple dynamical models. I again develop a perturbation theory to
illuminate puzzling numerical results previously obtained by another group. Our
main result defies the centenary tradition of using Love numbers to describe the tidal
response of a fluid body. Our theory shows how the oblate figure of a rapidly rotating
fluid body couples the tidal response at spherical harmonics of various degree ℓ.
The result is that high-degree Love numbers are dominated by the tidal response at
lower degree. As a consequence, the tidal response at high-degree attenuates less
rapidly than the tidal forcing, causing an increment in the high-degree Love number
with satellite semi-major axis that does not correspond to an increased tidal gravity
field. An implication of this theory is that the often neglected tidal torque produced
by the high-degree tidal bulge may play a sensitive role in satellite orbital migration.

To close my work on Jupiter dynamical tides, Chapter IV integrates the lessons
learned in previous chapters to propose that an extended dilute core in Jupiter
explains a gravity anomaly on the high-degree tidal gravity as recorded by Juno at
mid-mission. In our proposed scenario, Jupiter’s diluted core resonates with the
tides raised by Io, leading to resonant internal gravity waves that significantly perturb
Jupiter’s tidal response and Io’s orbital migration rate. I discuss that such a resonant
state may be sustained over long geological timescales via resonant locking. An
important prediction made in our scenario is that Jupiter possesses a normal mode
of oscillation with frequency ∼270 𝜇Hz and a Jupiter Love number 𝑘42 caused by
Europa that is close to the equilibrium tide 𝑘42 = 4.2. The first prediction requires a
seismological campaign/mission and the second prediction may be testable by Juno
at the end of the mission.

In Chapter V, the last chapter in my thesis, I swerve off from the outer solar system to
dive back into Earth. This chapter contains the results of my initial years of doctorate
research in earthquake mechanics. Here I extend previous work on a numerical tool
to simulate fault slip in an elastic and heterogenous medium that represents the
damaged fault zones observed in strike-slip geological faults around the world. In
a parametric exploration, I find that heavily damaged faults produce earthquake
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pulses and back-propagating fronts that persist over multiple earthquake cycles. The
results in this chapter strengthen the hypothesis that observable fault structure can
modulate patterns of earthquake slip and explain some of the complexity observed
in nature from simple mechanical ingredients.
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C h a p t e r 2

DYNAMICAL TIDES IN JUPITER AS REVEALED BY JUNO

“The tide is high but I’m holding on,
I’m gonna be your number one."

— The Paragons, The Tide is High

B. Idini and D. J. Stevenson. Dynamical tides in Jupiter as revealed by Juno. The
Planetary Science Journal, 2(2):69, 2021. doi:10.3847/PSJ/abe715.
B.I. contributed to the determination of the project’s direction, developed the
mathematical theory, implemented numerical calculations, performed analysis to
generate results, and led the writing of the manuscript. This work was adapted to
constitute Chapter II.

2.1 Abstract
The Juno orbiter continues to collect data on Jupiter’s gravity field with unprece-
dented precision since 2016, recently reporting a non-hydrostatic component in the
tidal response of the planet. At the mid-mission perijove 17, Juno registered a Love
number 𝑘2 = 0.565 ± 0.006 that is −4 ± 1% (1𝜎) from the theoretical hydrostatic
𝑘
(ℎ𝑠)
2 = 0.590. Here we assess whether the aforementioned departure of tides from

hydrostatic equilibrium represents the neglected gravitational contribution of dy-
namical tides. We employ perturbation theory and simple tidal models to calculate
a fractional dynamical correction Δ𝑘2 to the well-known hydrostatic 𝑘2. Exploiting
the analytical simplicity of a toy uniform-density model, we show how the Coriolis
acceleration motivates the negative sign in the Δ𝑘2 observed by Juno. By simplify-
ing Jupiter’s interior into a coreless, fully convective, and chemically homogeneous
body, we calculate Δ𝑘2 in a model following an 𝑛 = 1 polytrope equation of state.
Our numerical results for the 𝑛 = 1 polytrope qualitatively follow the behavior of the
uniform-density model, mostly because the main component of the tidal flow is sim-
ilar in each case. Our results indicate that the gravitational effect of the Io-induced
dynamical tide leads to Δ𝑘2 = −4 ± 1%, in agreement with the non-hydrostatic
component reported by Juno. Consequently, our results suggest that Juno obtained
the first unambiguous detection of the gravitational effect of dynamical tides in a
gas giant planet. These results facilitate a future interpretation of Juno tidal gravity
data with the purpose of elucidating the existence of a dilute core in Jupiter.

https://doi.org/10.3847/PSJ/abe715


8

2.2 Introduction
The interior structure of a planet or star closely corresponds with its origin and evo-
lution history. Seismology provides the tightest constraints on the interior structure
of Earth (Dahlen and Tromp (1998) and references therein), Saturn (Fuller, 2014;
Marley and Porco, 1993), the Sun (Christensen-Dalsgaard et al., 1985), and other
distant stars (Aerts et al. (2010) and references therein). In particular, Saturn’s ring
seismology facilitates estimates of the planet’s rotation rate (Mankovich et al., 2019)
and possible dilute core (Mankovich and Fuller, 2021; Mankovich, 2020). Unlike
Saturn, Jupiter lacks extensive optically thick rings with embedded waves that are
excited by resonance of ring particle motions with internal normal modes. As an
alternative to ring seismology, Doppler imaging reveals a suggested seismic behav-
ior in Jupiter, limited to radial overtones of p-modes. At best, the current Doppler
imaging data resolve the spacing in frequency space of low-order p-modes, provid-
ing a loose constraint compatible with simple interior models (Gaulme et al., 2011).
Future efforts based on similar techniques promise to reveal additional information
on Jupiter’s seismic behavior.

In the current absence of detailed seismological constraints, the Juno orbiter (Bolton
et al., 2017) emerges as the alternative directed to reveal Jupiter’s interior by em-
ploying gravity field measurements of global-scale motions. Based on radiometric
observations, Juno produces two kinds of gravity field measurements sensitive to
Jupiter’s interior structure: the zonal 𝐽ℓ and tesseral 𝐶ℓ,𝑚 gravity coefficients. The
odd 𝐽2ℓ+1 coefficients reflect contributions from zonal flows, including atmospheric
zonal winds and zonal flow in the dynamo region. The even 𝐽2ℓ coefficients contain
Jupiter’s response to the centrifugal effect responsible for its oblateness, with minor
contributions from zonal winds in the atmosphere (Iess et al., 2018) and the dynamo
region (Kulowski et al., 2020). A time-dependent subset of 𝐶ℓ,𝑚 coefficients con-
tains Jupiter’s tidal response to the gravitational pull from its system of satellites.
Closely related to the time-dependent 𝐶ℓ,𝑚, the Love number 𝑘 represent the non-
dimensional gravitational field of tides evaluated at the outer boundary of the planet
(Munk and MacDonald, 1960). One common interpretation relates 𝑘 to the degree
of central concentration of the planetary mass (e.g., compressibility of the planetary
material or the presence of a core). In a quadrupolar gravitational pull, the leading
term in the tidal response relates to the Love number 𝑘2, which corresponds to the
ℓ = 𝑚 = 2 spherical harmonic.

Following linear perturbation theory, the Love number 𝑘2 breaks down into two
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contributions, one hydrostatic and the other dynamic. The hydrostatic 𝑘2 ignores
the time dependence of tides. The dynamical tide represents the tidal flow and
perturbed tidal bulge solving the traditional equation of motion 𝐹𝑇 = 𝑀 ¥𝑢, rather
than 𝐹𝑇 = 0, where 𝐹𝑇 is the satellite-induced tidal force, diminished by the
opposing self-gravity of the perturbed planet.

Early studies of the Love numbers in the gas giant planets relied on purely hydrostatic
theory, assisted by simple thermodynamic principles alongside loosely constrained
interior models (Gavrilov and Zharkov, 1977). With the assistance of historical
astrometric data, the Cassini mission provided the first occasion to test the accu-
racy of those first hydrostatic models, finding an ∼10% discrepancy between the
theoretical and observed 𝑘2 of Saturn (Lainey et al., 2017). The discrepancy was
solved after incorporating the oblateness produced by the centrifugal effect into the
tidal model, not requiring to invoke the gravitational effects of Saturn dynamical
tides. The oblateness produced by the centrifugal effect is large due to Saturn’s fast
rotation, leading to major higher-order cross-terms neglected in the earlier theory
(Wahl et al., 2017a). This effect remains hydrostatic provided that rotation occurs
on cylinders, which allows the centrifugal force to be represented as the gradient of
a potential (i.e., Chachan and Stevenson (2019)).

Unlike Cassini, the Juno orbiter recently detected a 3𝜎 deviation in Jupiter’s observed
𝑘2 from the revised hydrostatic theory that accounts for the interaction of tides with
oblateness (Durante et al., 2020; Notaro et al., 2019). Importantly, the difference
between the observed 𝑘2 and hydrostatic theory cannot be attributed to a failure to
correctly constrain the hydrostatic number. Hydrostatic tides are well constrained
(i.e., the 𝑘2 error in Wahl et al. (2020) is ±0.02% of the central value) because the
effect of oblateness of the planet on the zonal gravity coefficients 𝐽2ℓ is known to a
high precision by Juno. Juno’s non-hydrostatic detection motivates a more careful
consideration of neglected effects that contribute to 𝑘2, particularly the gravitational
field related to dynamical tides.

Here we evaluate dynamical tides as a potential explanation for Juno’s non-hydrostatic
detection. We concentrate on the contribution of dynamical tides to the overall
gravity field while ignoring their contribution to dissipation. In other words, we
implicitly assume that the imaginary part of 𝑘2 is too small to affect our results
for the real part, in agreement with observations of the orbital evolution of Io
(𝑄2 = −|𝑘2 |/Im(𝑘2) ∼ 105; Lainey et al. (2009)).

We are motivated in our efforts by the prospect of finding an additional contribution
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to 𝑘2 coming from Jupiter’s core. A traditional model of a Jupiter-like planet consists
of a discreet, highly-concentrated central region of heavy elements (i.e., a core made
of rock and ice) surrounded by a chemically homogeneous and adiabatic envelope of
hydrogen-rich fluid material (Stevenson, 1982). Jupiter’s observed radius indicates a
supersolar abudance of heavy elements that accounts for a total of∼20𝑀𝐸 . However,
whether heavy elements reside in a traditional core or are distributed throughout the
envelope is less clear. The observed 𝐽2 and 𝐽4 require some tendency toward central
concentration but do not require a traditional core. In a subsequent investigation,
we exploit our results of the dynamical tide presented here to answer questions
about the origin and evolution of Jupiter by including in our model an enrichment
of heavy elements that increases with depth (i.e., a dilute core; Wahl et al. (2017b)).
Using the information contained in 𝑘2, we plan to provide answers to the following
questions about Jupiter. Whether solid or fluid, does Jupiter have a traditional core?
Alternatively, do the heavy elements in Jupiter spread out from the center, forming
a dilute core?

The remainder of this manuscript is organized as follows. In Section 2, we describe
the Juno non-hydrostatic detection and develop the mathematical formalism used in
the calculation of the fractional dynamical correction to 𝑘2. In Section 3, we calcu-
late the fractional dynamical correction to 𝑘2 using simple tidal models, which leads
to an unambiguous explanation of the non-hydrostatic Juno detection. In Section 4,
we deliver a discussion on the limitations of our analysis, other physical processes
potentially altering the Love number 𝑘 , and future directions of investigation. In
Section 5, we outline the conclusions and implications of our study.

2.3 Jupiter’s Love number
A correction to the hydrostatic 𝑘2

The main objective of this manuscript is to evaluate the hypothesis that Juno captured
a systematic deviation of 𝑘2 from the hydrostatic number and that most of the
deviation can be explained by the neglected gravitational effect of dynamical tides.
The mean 𝑘2 Juno estimate at the time of perijove 17 (PJ17) is 0.565 (Durante
et al., 2020), establishing a −4% deviation from the theoretical hydrostatic number
𝑘
(ℎ𝑠)
2 = 0.590 (Wahl et al., 2020). The correction to the hydrostatic 𝑘2 due to the

rotational bulge is included in 𝑘
(ℎ𝑠)
2 and is of order 𝑞 = Ω2𝑅3

𝐽
/G𝑀𝐽 ∼ 0.1, the

ratio of centrifugal effects to gravity at the equator (Wahl et al., 2020); 𝑅𝐽 is the
equatorial radius, and𝑀𝐽 is Jupiter’s mass. The satellite-independent 3𝜎 uncertainty
(confidence level ≈ 99.7%) in Juno’s observation is 3% of 𝑘 (ℎ𝑠)2 at perijove 17
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(Durante et al., 2020), close to the mean of observed deviation. At the end of the
prime mission, the satellite-independent 3𝜎 uncertainty in Juno’s observation is
projected to decrease to 1% (William Folkner, personal communication, 2020 April
8). Following the optimistic assumption that the mean deviation remains the same
at the end of the prime mission, 𝑘 (ℎ𝑠)2 will require a non-hydrostatic correction from
−5% to −3% to be reconciled with 3𝜎 observations.

In our tidal models, we evaluate a dynamical correction to the hydrostatic 𝑘2 as

𝑘2

𝑘
(ℎ𝑠)
2

= 1 + Δ𝑘2 + O(1%), (2.1)

where Δ𝑘2 is the fractional dynamical correction calculated for a spherical planet
using perturbation theory and comes from the inertia terms in the equation of motion.
The fractional dynamical correction is of order Δ𝑘2 ∼ 𝜔2/4𝜋G 𝜌̄ ∼ 0.1, where 𝜌̄
is the mean density of the planet and 𝜔 is the forcing frequency related to the tide.
The theoretical hydrostatic number 𝑘 (ℎ𝑠)2 includes the effect of the oblateness of the
planet, a realistic equation of state, and a density profile consistent with the zonal
gravitational moments 𝐽2 and 𝐽4. From assuming that the number 𝑘 (ℎ𝑠)2 is perfectly
known, we aim to evaluate how the gravitational contribution of dynamical tides
perturbs 𝑘 (ℎ𝑠)2 .

Instead of adding dynamical effects into the already complicated numerical model
used to calculate 𝑘 (ℎ𝑠)2 , we use perturbation theory to isolate the dynamical effects
in a much simpler interior model defined by an 𝑛 = 1 polytropic equation of state.
The 𝑛 = 1 polytrope 𝑝 = 𝐾𝜌2 closely follows the equation of state of a H-He
mixture (Stevenson 2020) and is chosen for computational simplicity but is not
crucial to the Δ𝑘2 calculation. The density distribution in a non-rotating 𝑛 = 1
polytrope is 𝜌 = 𝜌𝑐 𝑗0(𝑘𝑟). The central density 𝜌𝑐 is set to fit Jupiter’s total mass;
𝑗0 is the zero-order spherical Bessel function of second kind; 𝑘2 = 2𝜋G/𝐾 is
a normalizing constant for the radius, where 𝐾 = 2.1 · 1012 (cgs) for an H/He
cosmic ratio (Hansen et al., 2012); G is the gravitational constant; 𝑟 is the radial
coordinate. Exploiting the compact equation of state and density profile of the
𝑛 = 1 polytrope, we calculate the dynamical Love number by accounting for the
dynamical terms in the equation of motion (Section 2.4). The fractional dynamical
correction Δ𝑘2 comes from comparing the hydrostatic and dynamical Love number
in the polytrope; however, as the correction is expressed in fractional terms, Δ𝑘2

calculated this way introduces dynamical effects into any hydrostatic model, to
leading order approximation. The hydrostatic Love number in a spherical planet
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following an 𝑛 = 1 polytrope is obtained analytically (Fig. 2.1; Appendix A). For
example, the degree-2 hydrostatic Love number of a spherical planet following an
𝑛 = 1 polytrope is 𝑘2 = 15/𝜋2 − 1 ≈ 0.520. Stated explicitly, our approach assumes
that the realistic elements included in the calculation of 𝑘 (ℎ𝑠)2 = 0.590 produce little
effect on the dynamical tide and can be ignored for now.

Figure 2.1: Angular patterns and radial functions describing the 3D structure of
the gravitational field of tides. The radial functions are the normalized hydrostatic
gravitational potential |𝜙0 | in an 𝑛 = 1 polytrope (Equation (A.9)). The sign of
the hydrostatic ℓ−tide is (−1) (ℓ+𝑚)/2. The hydrostatic tide is zero for ℓ and 𝑚 of
different parity.

The uncertainty O(1%) in equation (4.1) is an order-of-magnitude estimate of the
neglected cross-term that accounts for the effect of the centrifugal effect on dynam-
ical tides. Individually, the centrifugal and the dynamical effects are both of order
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∼10%. In linear perturbation theory, the cross-term is roughly the multiplication
of the individual terms, resulting in ∼1%. The uncertainty may be smaller as the
dynamical correction involves terms that tend to cancel each other. This cancella-
tion is expected to remain when an account is made of the oblateness of the planet,
since (as our analysis shows below) it is the small difference between 𝜔 and 2Ω that
matters, with or without oblateness.

The remainder of this manuscript deals with the calculation of the dynamical Love
number.

Equations of tides in an adiabatic gas giant planet
To calculate the Love number 𝑘 , we must compute the tidal gravitational potential
𝜙′ on Jupiter. The Love number 𝑘 represents the ratio of 𝜙′ over the gravitational
pull of the satellite 𝜙𝑇 evaluated at the outer boundary of the planet,

𝑘ℓ,𝑚 =

(
𝜙′
ℓ,𝑚

𝜙𝑇
ℓ,𝑚

)
𝑟=𝑅𝑝

. (2.2)

At a distance 𝑟 from the center of a planet of radius 𝑅𝑝, the potential 𝜙𝑇 from a
satellite orbiting in a circular orbit aligned with the equatorial plane of the planet is

𝜙𝑇 =
∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

𝑈ℓ,𝑚

(
𝑟

𝑅𝑝

)ℓ
𝑌𝑚ℓ (𝜃, 𝜑)𝑒𝑖𝜔𝑡 , (2.3)

where 𝑈ℓ,𝑚 are a numerical constants and 𝑌𝑚
ℓ

are normalized spherical harmonics
(Appendix A). The tidal frequency 𝜔 = |𝑚(Ω − 𝜔𝑠) | represents the frequency of
a standing wave as observed from the perspective of an observer rotating with the
planet at a spin rate Ω, where 𝜔𝑠 is the orbital frequency of the satellite and 𝑚
is the order of the tide. We follow the convention where 𝜔 is always positive and
retrograde tides are represented by a negative order𝑚 that flips the coordinate frame.
The simplifications applied to the orbit are consistent to first order with the observed
eccentricities 𝑒 < 0.01 and inclinations 𝑖 < 0.5◦ of the Galilean satellites.

We calculate the tidal response of a rigidly rotating planet from a problem defined by
the linearly perturbed momentum, continuity, and Poisson’s equations, respectively,

− 𝑖𝜔v + 2𝛀 × v = −∇𝑝
′

𝜌
+ 𝜌′

𝜌2∇𝑝 + ∇𝜙′, (2.4)

∇ · (𝜌v) = 𝑖𝜔𝜌′, (2.5)

∇2𝜙′ = −4𝜋G𝜌′. (2.6)
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The tidal response of the planet produces adiabatic perturbations to the gravitational
potential 𝜙′, the density profile 𝜌′, and pressure 𝑝′. The potential of the gravitational
pull 𝜙𝑇 and the tidal gravitational potential 𝜙′ are combined into 𝜙′ = 𝜙𝑇 + 𝜙′ for
analytical simplicity. Adiabatic perturbations in an adiabatic planet follow the
thermodynamic statement (e.g., Wu (2005)),

𝑝′

𝑝
= Γ1

𝜌′

𝜌
= 𝑐2

𝑠

𝜌′

𝑝
, (2.7)

where Γ1 is the first adiabatic index (Aerts et al., 2010). Unprimed pressure and
density represent the unperturbed state of the planet in hydrostatic equilibrium. We
rewrite the momentum equation of an adiabatic planet as

− 𝑖𝜔v + 2Ω × v = ∇
(
𝜙′ − 𝑝′

𝜌

)
= ∇

(
𝜙′ − 𝑐2

𝑠

𝜌′

𝜌

)
= ∇𝜓. (2.8)

In equation (2.8), hydrostatic tides follow 𝜓 = 0 (Appendix A).

The tidal flow becomes a function of the potential 𝜓 after operating the divergence
and curl on the momentum equation (Goodman and Lackner, 2009; Wu, 2005),

v = − 𝑖𝜔

4Ω2 − 𝜔2

(
∇𝜓 + 2

𝑖𝜔
𝛀 × ∇𝜓 − 4

𝜔2𝛀(𝛀 · ∇𝜓)
)

. (2.9)

After replacing the flow into the continuity equation, the governing equations of
tides in an adiabatic planet reduce to

∇ ·
(
𝜌

(
∇𝜓 + 2

𝑖𝜔
𝛀 × ∇𝜓 − 4

𝜔2𝛀(𝛀 · ∇𝜓)
))

=

(
4Ω2 − 𝜔2

4𝜋G

)
∇2𝜙′, (2.10)

𝜓 =
𝑐2
𝑠

4𝜋G𝜌∇
2𝜙′ + 𝜙′. (2.11)

Perturbation theory allows us to decouple the weakly coupled potentials 𝜓 and 𝜙′ in
equations (2.10) and (2.11). According to perturbation theory, the tidal gravitational
potential splits into a static and dynamic part,

𝜙′ = 𝜙0 + 𝜙𝑑𝑦𝑛, (2.12)

where 𝜙0 corresponds to the gravitational potential of the hydrostatic tide after
solving equation (2.11) with 𝜓 = 0 (Fig. 2.1; Appendix A). By definition, the sound
speed in an 𝑛 = 1 polytrope follows 𝑐2

𝑠 = 2𝐾𝜌, which reduces the hydrostatic version
of equation (2.11) to

∇2𝜙0

𝑘2 + 𝜙0 + 𝜙𝑇 = 0. (2.13)
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As a good approximation, we ignore the contribution from dynamical tides to the
potential 𝜓 by setting ∇2𝜙′ ≈ ∇2𝜙0 on the right-hand side in equation (2.10).
According to equation (2.10), the potentials satisfy 𝜓 ∼ 𝜙′𝜔2/4𝜋G 𝜌̄, which leads
to 𝜙′ ≫ 𝜓 given a tidal frequency 𝜔2 ≪ 4𝜋G 𝜌̄. By continuity, the approximation
means that the tidal flow mostly advects the mass in the hydrostatic tidal bulge (i.e.,
𝜌′ ≈ 𝜌0 and equation (2.6)). The decoupled tidal equations simplify to

∇ ·
(
𝑗0(𝑘𝑟)

(
∇𝜓 + 2

𝑖𝜔
𝛀 × ∇𝜓 − 4

𝜔2𝛀(𝛀 · ∇𝜓)
))

=

(
4Ω2 − 𝜔2

4𝜋G𝜌𝑐

)
∇2𝜙0, (2.14)

𝜓 =
∇2𝜙𝑑𝑦𝑛

𝑘2 + 𝜙𝑑𝑦𝑛. (2.15)

We obtain the dynamical gravitational potential 𝜙𝑑𝑦𝑛 first solving 𝜓 from equation
(2.14) and then using the result to calculate 𝜙𝑑𝑦𝑛 from equation (2.15).

The boundary condition at the center of the planet imposes a finite solution for
both potentials, allowing us to discard the divergent term characteristic of problems
that include the Laplace operator. As required for a free planetary boundary, the
condition at the outer boundary sets the Lagrangian perturbation of pressure equal
to zero (e.g., Goodman and Lackner (2009)),

𝑣𝑟 = v · 𝑛̂ = −𝑖𝜔 𝑝′

𝜕𝑟 𝑝
= −𝑖𝜔𝜌′

𝑐2
𝑠

𝜌𝑔
, (2.16)

or,

𝑛̂ · ∇𝜓 + 2
𝑖𝜔
𝑛̂ · (𝛀 × ∇𝜓) − 4

𝜔2 (𝑛̂ ·𝛀) (𝛀 · ∇𝜓) = −
(
4Ω2 − 𝜔2

4𝜋G

)
𝑐2
𝑠

𝜌𝑔
∇2𝜙′

= −
(
4Ω2 − 𝜔2

𝑔

)
(𝜓 − 𝜙′), (2.17)

where 𝑣𝑟 is the radial component of the tidal flow, 𝑛̂ is a unitary vector normal to the
outer boundary, and 𝑔 is the gravitational acceleration at the outer boundary. The
sound speed and density nearly vanish near the outer boundary of a compressible
body, resulting in a finite radial flow (e.g., 𝑣𝑟 = −2𝐾𝜔𝜌′/𝑔 in an 𝑛 = 1 polytrope).
The outer boundary condition (2.17) indicates 𝜓/𝑅𝐽 ∼ (𝜙′−𝜓)𝜔2/𝑔. The Jupiter-Io
system prescribes 1/𝑅𝐽 ≫ 𝜔2/𝑔, which leads to 𝜙′ ≫ 𝜓 and simplifies equation
(2.17) into

𝑛̂ · ∇𝜓 + 2
𝑖𝜔
𝑛̂ · (𝛀 × ∇𝜓) − 4

𝜔2 (𝑛̂ ·𝛀) (𝛀 · ∇𝜓) =
(
4Ω2 − 𝜔2

𝑔

)
(𝜙0 + 𝜙𝑇 ). (2.18)
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Also at the outer boundary, the gravitational potential should be continuous in
amplitude and gradient with a gravitational potential external to the planet that
decays as 𝑟−(𝑙+1) .

In the following section, we solve the tidal equations for a uniform-density model
and an 𝑛 = 1 polytrope model with and without the Coriolis effect.

2.4 Dynamical tides in a gas giant planet
Following our simplified model of dynamical tides, we calculate Δ𝑘2 in a coreless,
chemically homogeneous, and adiabatic Jupiter-like model. The thermal state be-
comes almost adiabatic in a convecting fluid planet with homogeneous composition.
From the point of view of tidal calculations, the deviation from adiabaticity is neg-
ligible in the interior because the superadiabaticity required to sustain convection is
a tiny fraction of the adiabatic temperature gradient, despite the possible inhibitions
arising from rotation and convection. A fluid parcel in an adiabatic interior that
is adiabatically displaced by a tidal perturbation will find itself in a new state that
is essentially unchanged in density and temperature from the unperturbed state at
that pressure. This definition of neutral stability begins to break down near the
photosphere, where the density is low and the radiative time constant is no longer
huge for blobs with spatial dimension of order the scale height. However, that region
represents only a tiny fraction of the planet and does not produce enough gravity
to significantly alter the real part of the Love number 𝑘 . We discuss hypothetical
contributions to 𝑘 from a core and depth-varying chemical composition in Section
4.

As a matter of simplifying the arguments presented in this section, we mostly concen-
trate on the Love number at ℓ = 𝑚 = 2, commonly known as 𝑘2. Correspondingly,
𝑘2 is forced by the degree-2 component in the gravitational pull,

𝜙𝑇2 =
3

16
G𝑚𝑠

𝑎3 𝑟2 sin2 𝜃𝑒−𝑖(𝜔𝑡+2𝜑) . (2.19)

Dynamical effects scale with the satellite-dependent 𝜔. We concentrate on the
dynamical effects caused by Io, the Galilean satellite with the dominant gravitational
pull on Jupiter.

A non-rotating gas giant
To an excellent approximation, dynamical tides in a non-rotating planet represent the
forced response of the planet in the fundamental normal mode of oscillation (f-mode)
(Vorontsov et al., 1984). Despite Cassini suggesting that higher-order normal mode
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overtones (p-modes) dominate the gravitational field of Saturn’s free-oscillating nor-
mal modes (Markham et al., 2020), the forced response of normal modes depends on
the coupling of the gravitational pull and the mode radial eigenfunction. The forced
response of p-modes contributes negligibly to the gravitational field of dynamical
tides (Vorontsov et al., 1984) because of the bad coupling between the zero-node
radial component of the gravitational pull and p-modes’ eigenfunctions, the latter
having one or more radial nodes. Conversely, the gravitational pull more efficiently
excites f-modes, whose radial eigenfunctions roughly follow the radial scaling of
the gravitational pull (∝ 𝑟ℓ).

The harmonic oscillator analogy

In the following, we use the forced harmonic oscillator as an analog model to tidally
forced f-modes. In this model, the fractional dynamical correction to 𝑘2 acquires a
simple analytical form. The equation of motion of a mass 𝑀 connected in harmonic
motion to a spring of stiffness K and negligible dissipation is

− 𝑀𝜔2𝑢 + K𝑢 = 𝐹𝑇 , (2.20)

where 𝜔 is the forcing frequency and 𝐹𝑇 is the tidal forcing. F-modes oscillate at
frequencies 𝜔0 that are much higher than the forcing tidal frequency, meaning that
tidal resonances with f-modes are highly unlikely. Assuming that the dynamical
effects are small so that the tidal forcing is mostly balanced by static effects (i.e.,
𝐹𝑇 ≈ K𝑢𝑠), the displacement of the mass is

𝑢 = 𝑢𝑠

(
𝜔2

0

𝜔2
0 − 𝜔2

)
. (2.21)

The mass assumes the static equilibrium position 𝑢𝑠 as the forcing frequency tends
to zero. The displacement 𝑢 is analogous to the Love number 𝑘; thus, the fractional
dynamical correction becomes

Δ𝑘 =
𝑢 − 𝑢𝑠
𝑢𝑠

=
𝜔2

𝜔2
0 − 𝜔2

. (2.22)

The Coriolis-free 𝑛 = 1 polytrope

To verify the analogy of the forced harmonic oscillator to tidally forced f-modes,
we calculate the tidal response of a non-rotating 𝑛 = 1 polytrope directly from the
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governing equations of tides. When Ω = 0, the governing equation (2.14) reduces
to

𝑗0(𝑘𝑟)∇2𝜓 − 𝑗1(𝑘𝑟)𝜕𝑟 (𝜓) = −
(

𝜔2

4𝜋G𝜌𝑐

)
∇2𝜙0. (2.23)

For the potential 𝜓 at ℓ = 𝑚 = 2, the boundary condition at the outer boundary
𝑟 = 𝑅𝑝 (Equation (2.17)) is

𝑔

𝜔2 𝜕𝑟𝜓2 − 𝜓2 = −5 𝑗2(𝑘𝑅𝑝). (2.24)

For the same degree and order, the continuity of the gravitational potential and its
gradient at the outer boundary requires

𝜕𝑟𝜙
𝑑𝑦𝑛

2 = −
(

3𝜙𝑑𝑦𝑛2 + 5
𝑅𝑝

)
. (2.25)

At the center of the planet 𝑟 = 𝑟0 → 0, we find the following scaling ∇2𝜙0 ∼ 0,
𝑗1(𝑘𝑟0) ∼ 0, and 𝑗0(𝑘𝑟0) ∼ constant. A finite potential 𝜓 satisfying equation (2.23)
is 𝜓2 ∼ 𝑟2 near 𝑟0, or,

𝜕𝑟𝜓2 −
2
𝑟0
𝜓2 = 0. (2.26)

Similarly, a finite gravitational potential of dynamical tides is 𝜙𝑑𝑦𝑛2 ∼ 𝑟2 at the center
of the planet, satisfying

𝜕𝑟𝜙
𝑑𝑦𝑛

2 − 2
𝑟0
𝜙
𝑑𝑦𝑛

2 = 0. (2.27)

We compute the fractional dynamical correction to 𝑘2 first projecting the tidal
equations into spherical harmonics (Appendix B) and later solving for the relevant
potentials using a Chebyshev pseudospectral numerical method (Appendix C). Af-
ter projecting equations (2.23) and (2.15) into spherical harmonics, we obtain two
decoupled equations for the radial parts of the potentials 𝜓 and 𝜙 (Appendix B.1).
After numerically solving the radial equations in Appendix B.1 using Io’s grav-
itational pull 𝜔𝑠 ≈ 42𝜇Hz), the fractional dynamical correction corresponds to
Δ𝑘2 ≈ 1.2%, in close agreement with the forced harmonic oscillator analogy ap-
plied to the oscillation frequency of the degree-2 f-mode 𝜔0 ≈ 740 𝜇Hz (Vorontsov
et al., 1976). We observe a similar agreement between the harmonic oscillator and
the Coriolis-free 𝑛 = 1 polytrope at higher-degree spherical harmonics (Table 2.1).
Our results agree with a previously reported fractional correction to the gravitational
coefficient 𝐶2,2 ∝ 𝑘2 due to dynamical tides in a non-rotating Jupiter. (Vorontsov
et al., 1984).
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Table 2.1: Io-induced fractional dynamical cor-
rection Δ𝑘 in a Coriolis-free Jupiter.

Harmonic oscillator1 𝑛 = 1 polytrope
Type (%) (%)
Δ𝑘2 +15 +13
Δ𝑘42 +5 +5
Δ𝑘31 +2 +2
Δ𝑘33 +19 +15
Δ𝑘44 +25 +19
1 See equation (F.2). The mode frequency

without rotation comes from Vorontsov et al.
(1976).

When Vorontsov et al. (1984) excluded Jupiter’s spin, they were doing something
that was mathematically sensible but physically peculiar. Tides occur much more
frequently in Jupiter’s rotating frame of reference, and the tidal flow is accordingly
much larger than if one had Jupiter at rest, which implies a much larger dynam-
ical effect. Consequently, Δ𝑘2 increases by an order of magnitude after partially
including Jupiter’s rotation in the tidally forced response of f-modes. Without the
Coriolis effect but including Jupiter’s spin rate (Ω ≈ 176 𝜇Hz) in the calculation
of Io’s tidal frequency (𝜔 ≈ 270 𝜇Hz), the fractional dynamical correction in an
𝑛 = 1 polytrope corresponds to Δ𝑘2 ≈ 13%, close to the Δ𝑘2 ≈ 15% from the
forced harmonic oscillator analogy (Equation (F.2)). In general, for a non-rotating
planet, the dynamical correction increases as the tidal frequency approaches the
characteristic frequency of Jupiter’s f-modes (

√︃
G𝑀𝐽/𝑅3

𝐽
∼ 600 𝜇Hz).

The Coriolis effect in a rotating gas giant
The Galilean satellites produce dynamical tides for which the Coriolis effect plays
an important role. Following relatively slow orbits (𝜔𝑠 ≪ Ω), the Galilean satellites
produce tides on Jupiter with a tidal frequency 𝜔 ∼ 2Ω. Consequently, the two
inertial terms responsible for dynamical tides on the left-hand side of the equation
of motion (Equation (F.1)) have similar amplitudes. Moreover, Juno observes 𝑘2 to
be less than the predicted number for a purely hydrostatic tide (Section 2.3) and yet
our analysis above produces a positive Δ𝑘2 when dynamical effects are included and
the Coriolis effect is neglected (see equation (F.2)). We must accordingly motivate
the change in sign when Coriolis is included.

In the following, we first calculate the gravitational effect of dynamical tides in a
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uniform-density sphere to reveal the fundamental behavior of the tidal equations,
avoiding most of the technical difficulties related to using an 𝑛 = 1 polytrope. We
later found that the more complicated case of an 𝑛 = 1 polytrope introduces a minor
quantitative difference but leads to the same general behavior.

A uniform-density sphere

First, we explain why Δ𝑘2 changes sign because of the Coriolis effect in a specially
simple model with uniform density. We calculate the fractional dynamical correction
to 𝑘2 in two steps: (1) we calculate the potential of the flow 𝜓 in a uniform-density
sphere, and (2) we use the 𝜓 calculated this way to calculate the gravity potential 𝜙′.

In a uniform-density sphere, the sound speed 𝑐𝑠 is infinite, and Equation (2.10)
reduces to the well-known Poincaré problem (Greenspan et al., 1968),

∇2𝜓 − 4
𝜔2 (𝛀 · ∇)2𝜓 = 0, (2.28)

where the boundary condition at the outer boundary requires to satisfy equation
(2.18).

Following the incompressibility of a uniform-density sphere, 𝜓2 retains the sym-
metry and degree-2 angular structure from the gravitational pull in equation (2.19),
thus acquiring exact solutions in the form

𝜓2 ∝ (𝑥 − 𝑖𝑦)2. (2.29)

The numerical factor in 𝜓2 is set by the outer boundary condition (2.17), corre-
sponding to (Goodman and Lackner, 2009)

𝜓2 =
3𝜔(2Ω − 𝜔)

8𝜋G 𝜌̄ 𝜙′2 =
𝑅𝑝𝜔(2Ω − 𝜔)

2𝑔
𝜙′2. (2.30)

In a constant-density sphere, tides act displacing the sphere’s boundary within an in-
finitesimally thin shell. According to the momentum equation, the tidal gravitational
potential relates to the potential 𝜓 following

𝜙′ − 𝜓 − 𝑝′

𝜌̄
= 0. (2.31)

The radial tidal displacement projected into spherical harmonics is

𝜉 =
∑︁
ℓ,𝑚

𝜉ℓ,𝑚 (𝑟)𝑌𝑚ℓ (𝜃, 𝜑), (2.32)
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and the pressure perturbation follows

𝑝′ = −𝜉 𝜕𝑝
𝜕𝑟

= 𝜉 𝜌̄𝑔. (2.33)

The gravitational potential of a thin spherical density perturbation follows directly
from the definition of the gravitational potential and integration throughout the
volume,

𝜙′ =
∑︁
ℓ,𝑚

4𝜋G 𝜌̄
(2ℓ + 1)

𝑅ℓ+2
𝑝

𝑟ℓ+1 𝜉ℓ,𝑚𝑌
𝑚
ℓ . (2.34)

The degree-2 tidal gravitational potential corresponds to

𝜙′2 =
4𝜋G 𝜌̄

5
𝑅4
𝑝

𝑟3 𝜉2 =
3
5

(
𝑅𝑝

𝑟

)3
𝑔𝜉2. (2.35)

We once again use perturbation theory to split the hydrostatic and dynamic contri-
butions to the tidal displacement (i.e., 𝜉2 = 𝜉0 + 𝜉𝑑𝑦𝑛). We first solve the well-known
problem of the hydrostatic 𝑘2 (i.e., 𝜓 = 0) in a uniform-density sphere (Love, 1909).
At the sphere’s boundary (i.e., 𝑟 = 𝑅𝑝), the hydrostatic gravitational potential fol-
lows 𝜙0 = 3𝑔𝜉0/5. From equation (2.31) evaluated at 𝑟 = 𝑅𝑝, the potential of the
gravitational pull becomes 𝜙𝑇 = 2𝑔𝜉0/5. Following the last two results, the Love
number is 𝑘2 = 3/2, as expected.

The dynamical contribution to the tidal displacement 𝜉𝑑𝑦𝑛 produces the gravitational
potential 𝜙𝑑𝑦𝑛 = 3𝑔𝜉𝑑𝑦𝑛/5. After applying perturbation theory and canceling the
hydrostatic terms in equation (2.31), the potential 𝜓2 becomes 𝜓2 = −2𝑔𝜉𝑑𝑦𝑛/5.
Combined with equation (2.30), the last result for𝜓2 allows us to reach an expression
for the fractional dynamical correction in a uniform-density sphere,

Δ𝑘2 =
𝜉𝑑𝑦𝑛

𝜉0 ≈ −
(5𝑅𝑝

4𝑔

)
𝜔(2Ω − 𝜔). (2.36)

Two effects contribute to the fractional dynamical correction: a negative contribution
from the Coriolis effect∝ 2Ω𝜔/𝜋G 𝜌̄ and a positive contribution from the dynamical
amplification of f-modes ∝ 𝜔2/𝜋G 𝜌̄. The two contributions cancel each other at
2Ω = 𝜔, where the tide achieves hydrostatic equilibrium. Tides become hydrostatic
not only when the planetary spin is phase-locked with the orbit of the satellite
(Ω = 𝜔𝑠), but also in planet-satellite systems where the central body is rotating at a
rate many orders of magnitude faster than the orbit of the satellite (i.e., Ω ≫ 𝜔𝑠).
As the frequency of the degree-2 f-mode approximately follows 𝜔2

0 ∼ 𝑔/𝑅𝑝, Δ𝑘2 in
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Io

Europa

Ganymede

Callisto

Figure 2.2: Fractional dynamical correctionΔ𝑘2 in a rotating uniform-density sphere
including the Coriolis effect as a function of tidal frequency (see equation (2.36)).

equation (2.36) approximately becomes the positive fractional correction determined
in Section 2.4 after setting Ω = 0.

At the degree-2 Io-induced tidal frequency, the fractional dynamical correction
corresponds to Δ𝑘2 ≈ −7.8%. The other Galilean satellites lead to a smaller Δ𝑘2

because their tidal frequency falls closer to hydrostatic equilibrium (Fig. 2.2). A
negative Δ𝑘2 works in the direction required by the non-hydrostatic component
identified by Juno in Jupiter’s gravity field (Section 2.3).

The direction of the flow provides an explanation for the negative sign of the
fractional dynamical correction via the Coriolis acceleration. By definition, a
uniform-density sphere has no density perturbations in its interior and thus produces
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an interior tidal gravitational potential that satisfies 𝜙′ ∝ 𝑟ℓ𝑌𝑚
ℓ

∝ 𝜙𝑇 . We adopt
equation (2.30) as the degree-2 potential 𝜓 and obtain analytical solutions for the
Cartesian components of the resulting degree-2 tidal flow using equation (2.9),

v2 = −
𝐴𝜔𝑅𝑝

𝑔
(𝑥(𝑖𝑥 + 𝑦) + 𝑦̂(𝑥 − 𝑖𝑦)) , (2.37)

where 𝐴 is a constant depending on 𝜉 (Appendix D). The degree-2 tidal flow purely
exist in equatorial planes, showing no vertical component of motion (Fig. 2.3b).

c.a. Non-rotating f-mode acceleration Tidal flow Coriolis accelerationb.

Figure 2.3: Degree-2 (ℓ = 𝑚 = 2) tidal perturbations on a uniform-density sphere
forced by the gravitational pull of a companion satellite: (a) the non-rotating f-
mode acceleration −𝜔2𝜉, (b) tidal flow as shown in equation (2.37), and (c) Coriolis
acceleration 𝛀 × v according to the right-hand rule.

The Coriolis acceleration plays a major role in setting the sign of the fractional
dynamical correction for the Galilean satellites. Without Coriolis, the acceleration
of non-rotating f-modes sustains a positive dynamical tidal displacement that follows
𝜉𝑑𝑦𝑛 ≈ 5𝑅𝑝𝜔2𝜉0/4𝑔. A 𝜉𝑑𝑦𝑛 > 0 increases the tidal gravitational field, which
leads to a positive Δ𝑘2. Conversely, as shown in equation (2.36), the fractional
dynamical correction flips sign when Coriolis promotes 𝜉𝑑𝑦𝑛 < 0. A Coriolis term
enters the momentum equation, introducing an acceleration that competes with the
acceleration of non-rotating f-modes, ultimately impacting 𝜉𝑑𝑦𝑛. According to the
right-hand rule, the Coriolis acceleration (i.e., 𝛀×v, Fig. 2.3c) opposes the direction
of the acceleration of non-rotating f-modes (i.e., −𝜔2𝜉, Fig. 2.3a). The resulting
gravitational field is smaller than the hydrostatic field if 𝜔 < 2Ω, where the Coriolis
acceleration beats the acceleration of non-rotating f-modes.

The 𝑛 = 1 polytrope

In the following, we consider the more relevant case of a compressible planet that
follows an 𝑛 = 1 polytropic equation of state (Equation (2.14)). In contrast to
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the localized tidal perturbation of a uniform-density sphere, a compressible body
yields a tidally induced density anomaly that arises from advection of the isodensity
surfaces within the body. The resulting tidal gravitational potential is different in
each case owing to differences in the tidally perturbed density distribution obtained
in a uniform-density sphere and a compressible body.

Despite the aforementioned difference between models, the tidal flow remains sim-
ilar so that dynamical tides motivate a negative correction to 𝑘2 in each case. In
an 𝑛 = 1 polytrope, the continuity equation (2.5) tells us that the degree-2 radial
component of the flow takes the form 𝑣𝑟 ∝ 𝑗2(𝑘𝑟)/ 𝑗1(𝑘𝑟) when the flow has small
divergence, as it does. Remarkably, the dominant contribution to the Taylor series
expansion of 𝑣𝑟 is linear in 𝑟, even out to a large fraction of the planetary radius.
In a uniform-density sphere, the potential 𝜓 is 𝜓2 ∝ 𝑟2, which leads to a tidal flow
that follows 𝑣2 ∝ ∇𝜓2; therefore, 𝑣𝑟 is also linear in 𝑟 in this model. As shown, the
dominant contribution to 𝑣𝑟 scales with radius as ∝ 𝑟, both in an 𝑛 = 1 polytrope
and in a uniform-density sphere. In an 𝑛 = 1 polytrope, the dominant contribution
to 𝑣𝑟 is curl- and divergence-free and provides the 𝜓2 ∝ 𝑟2 part of the solution to the
potential 𝜓 (Fig. 2.4a). Since the 𝑛 = 1 polytrope also contains terms where 𝜓 is
of higher order in 𝑟, it produces a flow with non-zero curl and nonzero divergence,
causing 𝜓2 to depart from 𝜓2 ∝ 𝑟2. Because high-order terms in 𝑟 are smaller
than the dominant term, dynamical effects on 𝑘2 in a uniform-density sphere are
qualitatively similar to those in an 𝑛 = 1 polytrope.

We compute the fractional dynamical correction to 𝑘2 in a rotating polytrope fol-
lowing the same strategy used in Section 2.4. In opposition to the Coriolis-free
polytrope, solving equation (2.14) is technically challenging due to the ℓ−coupling
of the potential 𝜓ℓ,𝑚 (e.g., mode mixing) promoted by the Coriolis effect. Mode
mixing is also found in hydrostatic tides over a planet distorted by the effect of the
centrifugal force (Wahl et al., 2017a). The result of projecting equation (2.14) into
spherical harmonics is an infinite ℓ−coupled set of ordinary differential equations
for 𝜓ℓ,𝑚 (Appendix B.2), similarly observed in the problem of dissipative dynamical
tides (Ogilvie and Lin, 2004a). The Coriolis-promoted ℓ−coupling comes from
the sine and cosine in the spin rate of the planet (𝛀/Ω = 𝑟 cos 𝜃 − 𝜃 sin 𝜃), which
changes the degree of the spherical harmonics related to 𝜓. As a consequence, a
given spherical harmonic from 𝜙0 on the right-hand side of Equation (2.14) forces
multiple spherical harmonics of the potential 𝜓 with different ℓ.

Projected into spherical coordinates, the boundary condition (2.17) at 𝑟 = 𝑅𝑝
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corresponds to:

𝜕𝑟𝜓 − 2Ω
𝑖𝜔𝑅𝑝

𝜕𝜑𝜓 − 4Ω2

𝜔2

(
cos2 𝜃𝜕𝑟𝜓 − sin 𝜃 cos 𝜃

𝜕𝜃𝜓

𝑅𝑝

)
=

(
4Ω2 − 𝜔2

𝑔

)
(𝜙0 + 𝜙𝑇 ).

(2.38)
The outer boundary condition is also ℓ−coupled after projected into spherical har-
monics (Appendix B.2).

Figure 2.4: Radial functions in an 𝑛 = 1 polytrope (thick blue and orange curves)
of the (a) potential 𝜓 and the (b) dynamical gravitational potential 𝜙𝑑𝑦𝑛. The
thinner black curves in panel (a) represent the radial scaling of the potential 𝜓 in a
uniform-density sphere.

At the center of the planet 𝑟 = 𝑟0 → 0, we find the following scaling: ∇2𝜙0 ∼ 0 and
𝑗0(𝑘𝑟0) ∼ constant. As a result, the tidal equation (2.14) becomes the previously
solved problem of the potential 𝜓 in a uniform-density sphere (2.28) near the center.
Required to be finite near the center and to satisfy equation (2.28), the radial part of
the potential 𝜓 follows 𝜓ℓ,𝑚 ∼ 𝑟ℓ. The boundary condition for 𝜓ℓ,𝑚 near the center
corresponds to

𝜕𝑟𝜓ℓ,𝑚 − ℓ

𝑟0
𝜓ℓ,𝑚 = 0. (2.39)

The equation for the gravitational potential of dynamical tides 𝜙𝑑𝑦𝑛 remains un-
changed compared to the Coriolis-free polytrope (Appendix B.1). The outer and
inner boundary conditions for the gravitational potential generalize in degree as

𝜕𝑟𝜙
𝑑𝑦𝑛

ℓ,𝑚
= −

(
(ℓ + 1)𝜙𝑑𝑦𝑛

ℓ,𝑚
+ (2ℓ + 1)𝑈ℓ,𝑚
𝑅𝑝

)
, (2.40)
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𝜕𝑟𝜙
𝑑𝑦𝑛

ℓ,𝑚
− ℓ

𝑟0
𝜙
𝑑𝑦𝑛

ℓ,𝑚
= 0. (2.41)

By projecting𝜓ℓ,𝑚 and 𝜙ℓ,𝑚 into a series of 𝑁 Chebyshev polynomials oriented in the
radial component (Appendix C), we numerically solve (B.14) and (B.4) truncating
the infinite series of ℓ−coupled equations at an arbitrary ℓ = 𝐿𝑚𝑎𝑥 . We choose a
truncation limit 𝐿𝑚𝑎𝑥 = 50 and the number of Chebyshev polynomials 𝑁𝑚𝑎𝑥 = 100
based on numerical evidence of convergence for 𝑘2 and 𝑘42.

Table 2.2: Jupiter Love numbers.

Hydrostatic1 Juno PJ17 3𝜎2 3𝜎 fractional Δ𝑘 (rotating)4

Type difference3 (%)
Number Number (%) Io Eu Ga Ca

𝑘2 0.590 0.565 ± 0.018 -7/-1 -4 -2 -1 -1
𝑘42 1.743 1.289 ± 0.189 -37/-15 +7 +8 +10 +12
𝑘31 0.190 0.248 ± 0.046 +6/+55 +1 +3 +4 +5
𝑘33 0.239 0.340 ± 0.116 -6/+91 +2 +5 +7 +8
𝑘44 0.135 0.546 ± 0.406 +4/+605 +7 +11 +13 +15
1 The hydrostatic number is from Wahl et al. (2020).
2 The Juno PJ17 3𝜎 number is the satellite-independent number from Durante

et al. (2020).
3 The 3𝜎 fractional difference represents the minimal/maximal 3𝜎 non-

hydrostratic fractional correction required to explain the Juno observations.
4 The fractional dynamical correction is valid for an 𝑛 = 1 polytrope forced by

the gravitational pull of the Galilean satellites (Eu = Europa, Ga = Ganymede,
Ca = Callisto).

We obtain Δ𝑘2 = −4.0% at the degree-2 Io-induced tidal frequency (Table 3.1),
which is of slightly lower amplitude than the estimate in a uniform-density sphere
and in agreement with the 𝑘2 non-hydrostatic component observed by Juno at
PJ17. However different models, both the uniform-density sphere and the polytrope
produce fractional dynamical corrections that fall within the order-of-magnitude
estimate Δ𝑘2 ∼ 𝜔2/4𝜋G𝜌 ∼ 0.1. As argued before, the dominant contribution to
the potential 𝜓 follows the radial scaling 𝜓ℓ ∝ 𝑟ℓ (Fig. 2.4a). Ignoring the sign,
the radial scaling of the dynamical gravitational potential 𝜙𝑑𝑦𝑛 (Fig. 2.4b) closely
follows the shape of the hydrostatic gravitational potential (Fig. 2.1).

Due to the essentially circular and equatorial geometry of the Galilean orbits, the
spherical harmonic ℓ = 𝑚 = 2 dominates Jupiter’s tidal gravitational field. Conse-
quently, we concentrate in comparing 𝑘2 Juno observation to our model prediction.
Of significantly higher uncertainty, the mid-mission Juno report of Love numbers
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at PJ17 includes other spherical harmonics in addition to 𝑘2 (Table 3.1). Our poly-
tropic model predicts an Io-induced tidal gravitational field in a 3𝜎 agreement with
most Love numbers observed at PJ17, save for 𝑘42 and 𝑘31.

Titan

Rhea

Dione

Tethys

Enceladus

Mimas

Io

Callisto
Ganymede

Europa

Figure 2.5: Conditions for the detection of dynamical tides evaluated for the Galilean
satellites (black) and inner Saturn satellites (white). Satellites to the right of the
dashed line have favorable conditions for a detection of dynamical tides assuming an
uncertainty roughly similar to that of Io’s 𝑘2 on Jupiter at the end of Juno’s extended
mission. The fractional dynamical correction Δ𝑘2 is for an 𝑛 = 1 polytrope.

Detection of dynamical tides in systems other than Jupiter-Io

A detection of dynamical tides via direct measurement of the gravitational field will
be challenging in bodies other than Jupiter (Fig. 2.5). The 1𝜎 uncertainty in the
gravitational field of degree-2 Io tides is projected to be𝜎𝐽 ∼ 6·10−2 m2/s2 at the end
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of the proposed Juno extended mission (William Folkner, personal communication,
2020 April 8). The uncertainty in the measured tidal gravity field depends on
the number and design of spacecraft orbits, the uncertainty in ephemerides, and
instrumental capabilities. Assuming the uncertainty 𝜎𝐽 , we roughly estimate the
gravitational pull required to produce a detectable dynamical component in the
gravity field using

𝜙𝑇 (𝑟 = 𝑅) ≳ 𝜎𝐽

𝑘2 |Δ𝑘2 |
. (2.42)

Our calculation indicates that detecting dynamical tides in Saturn will require a
mission with a more precise determination of the gravity field than that obtained by
Juno (Fig. 2.5). A 1𝜎 detection of Europa-induced dynamical tides seems plausible
at the end of Juno’s extended mission, assuming that the factors determining the
uncertainty in the gravity field remain similar to those of Io. We calculate a model
prediction for the satellite-dependent Jupiter Love number for all of the Galilean
satellites (Table 3.1). We obtain 𝑘2 = 0.578 in the case of Europa, a prediction
testable by the recently approved Juno extended mission.

2.5 Discussion
Future updates to Juno Love number observations
The discrepancy between our predicted 𝑘42, 𝑘31, and the Juno PJ17 observations
may allude to several reasons: (1) a suggestion to revise the hydrostatic ℓ−coupled
𝑘ℓ,𝑚 in Wahl et al. (2020), (2) a failure of perturbation theory in our model when
accounting for the ℓ−coupled 𝑘ℓ,𝑚, (3) other physical reasons, for example, tidal
resonance with normal modes or the neglected correction from a dilute core. We
strongly suggest a thorough analysis of these possibilities in future investigations.
Ultimately, the perijove passes required to complete the scheduled Juno mission
may change the still highly uncertain numbers reported in Table 3.1. A recent
revision to Juno observations at PJ29 (Daniele Durante, personal communication,
2020 November 18) suggests an agreement of our 𝑘31 prediction with the revised
satellite-independent 𝑘31 = 0.234±0.016 (1𝜎). The PJ29-revised 𝑘42 = 1.5±0.095
(1𝜎) remains in disagreement with our 𝑘42 prediction, but the difference is much
narrower than that attained at PJ17. A disagreement between our predicted 𝑘ℓ,𝑚 and
high-degree Juno observations does not impair the much more relevant agreement
observed for 𝑘2. Compared to the amplitude of the tidal gravitational potential
related to 𝑘2, the tidal gravitational potential related to 𝑘42 represents an order-
of-magnitude smaller contribution to the tidal gravitational field due to the factor
𝑅𝑝/𝑎 ∼ 1/6 in 𝜙𝑇

ℓ,𝑚
. In addition, whereas the predicted 𝑘2 simply depends on the
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contribution from the Coriolis effect and the dynamical response of f-modes, the
more complicated predicted 𝑘42 additionally depends on the numerical solution of
the ℓ−coupled system of equations described in Section B.2.

Ignoring for the moment other possibilities related to the 𝑘42 discrepancy, resonant
tides have been previously invoked as a potential candidate to explain the current
structure of the Laplace resonance in Saturn (Fuller et al., 2016; Lainey et al.,
2020). As planets in the solar system rotate far from breakup, there is no overlap
between the frequencies of tides and f-modes in adiabatic, non-rotating planets.
However, compositional gradients (g–modes) and rotation (inertial modes) introduce
additional normal modes whose frequencies can become close to the tidal frequency,
either by chance or by planetary evolution. These hypothetically resonant tides
could produce high dissipation rates and thus a detectable imaginary part in the
Love number that would consequently induce a significant change in the real part
of the Love number. Equivalently, the high dissipation rate from an hypothetically
resonant tide would cause a phase between the gravitational pull and the degree-2
tidal bulge. However, the degree-2 tidal dissipation in Jupiter due to Io tides is
modest (Lainey et al., 2009). This argument does not necessarily apply for higher-
degree tides (ℓ > 2) that have much smaller amplitudes and therefore whose phase
shifts would be much harder to detect.

We compare our Io-induced fractional dynamical corrections to the Juno PJ17
satellite-independent observations. We justify the use of the satellite-independent
𝑘2 uncertainty because our results indicate small variations in the Love number due
to dynamical effects (Table 3.1), assuming the absence of degree-2 tidal resonances.
In the hypothetical of an ℓ = 4, 𝑚 = 2 tidal resonance, the Love number 𝑘42

would vary significantly among satellites. In such a case, we would be required
to use a satellite-dependent uncertainty (Durante et al., 2020), in which no a priori
information is used at the time of inferring the Love number. So far, we neither
confirm nor deny resonant tides that may be having an impact on 𝑘42 or 𝑘31. An
improved version of the satellite-independent 𝑘2 uncertainty could be obtained a
priori assuming that the Love number increases ∼4% outward when comparing
the inner to the outer satellites. A stronger conclusion on the possibility of tidal
resonances observed in Juno data requires additional progress in the mission to
reduce the uncertainty on 𝑘42 and 𝑘31, plus a thorough analysis of resonances with
Jupiter interior models that include a compositional gradient.

A tighter constraint on the satellite-dependent 𝑘2 from satellites other than Io will
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test the prediction of our model of satellite-dependent dynamical tides. Despite
the relatively large fractional dynamical correction obtained for the inner Saturn
satellites (e.g., Mimas or Enceladus), their small mass leads to an overall small tidal
disturbance that is difficult to detect in the gravity field. From all Jupiter and Saturn
satellites, only Europa elevates a short-term prospect of obtaining a new detection
of dynamical tides via Juno’s extended mission (Fig. 2.5). A detection of dynamical
tides due to other satellites will require an uncertainty on 𝑘2 that is significantly
lower than that produced by Juno.

Other potential contributions to 𝑘2

Free-oscillating normal modes

Free oscillations of normal modes cannot explain the bulk of the non-hydrostatic
Juno detection discussed here. The small gravitational field of tides becomes
resolvable by Juno in part because the phase of the signal is well known. The
unknown phase of non-resonant free oscillations departs from the phase of the
satellite used in determining 𝑘2. Even if freely oscillating normal modes were
detected in Jupiter as they were in Saturn (Iess et al, 2019), the anticipated high
frequency of their gravity field would render them irrelevant to the tidal problem. In
order for free oscillations to play a role in the observed gravity, they require avoiding
a rapid decay after becoming excited (i.e., a very high 𝑄). It is not known whether
free oscillations persist over multiple Juno perijove passes.

Jupiter’s rheology

A central viscoelastic region in Jupiter’s interior could potentially reduce 𝑘2 below
the hydrostatic number; however, evidence suggests that such a possibility is unlikely.
Viscoelastic deformation of a body produces a 𝑘2 between the purely elastic and
the hydrostatic numbers, a model that helps to explain Titan’s observed 𝑘2 (Iess
et al., 2012). Assuming that a traditional core in Jupiter exists, the core radius
should remain small (i.e., ∼0.15𝑅𝐽) to satisfy the constraint on the total abundance
of heavy elements and the supersolar enrichment of the envelope (Wahl et al., 2020).
At this core radius, the tidal deformation of the core does not contribute to Re(𝑘2)
(Storch and Lai, 2014). Whether rigid, elastic, or viscoelastic, a small traditional
core produces a small effect on Re(𝑘2) due to the added heavy elements, already
included in the hydrostatic number (Wahl et al., 2020). Beyond the possibility of
a viscoelastic traditional core, the hydrogen-rich envelope most likely behaves as
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an inviscid fluid. The kinematic viscosity of the fluid external to the core needs to
reach 𝜈 ∼ 1011 m2/s in order for its viscosity to become relevant at tidal timescales
(i.e., 𝜔 ∼ 𝜈/𝑅2

𝐽
). Such kinematic viscosity exceeds by ∼17 orders of magnitude

the realistic estimates of the hydrogen-dominated fluid viscosity (Stevenson and
Salpeter, 1977). A similar argument applies to a dilute core, which most likely
consists of a mixture dominated by hydrogen.

The dynamical contribution of a traditional core

A traditional core blocks the tidal flow from extending to the center of the planet
by forcing a zero-flow boundary condition at the core radius. As shown earlier, the
radial tidal flow sets the amplitude of the tidal gravitational potential and roughly
scales with distance from the center following 𝑣𝑟 ∝ 𝑟 in an 𝑛 = 1 polytrope.
Consequently, the tidal flow is nearly zero in the area where a traditional core would
exist, minimizing a potential effect of the traditional core on the fractional dynamical
correction. A thorough quantification of Δ𝑘2 in a model with a traditional core that
blocks the flow requires further investigation. We expect an effect going from
negligible to small (i.e., less than +1% applied to the current estimate in Table 3.1)
given the limits to traditional core size imposed by the constrained total abundance
of heavy elements.

A dilute core

A dilute core may promote an additional departure of the tidal response from the
hydrostatic tide to that caused by dynamical tides. The hydrostatic tide in 𝑘2

provides the same information about the planet as 𝐽2 (Hubbard, 1984). In the
presence of a dilute core, the gravity produced by tides fundamentally differs from
the 𝐽2ℓ coefficients due to the different timescales associated with tidal perturbations
and the evolution of the rotation rate. Tidal timescales are short compared to the
timescale required for the tidal perturbation to equilibrate with the environment
by either heat transport or compositional evolution. By contrast, the timescale at
which the rotation rate evolves is so long that the planet adjusts to any perturbation
caused by the centrifugal effect. Tidal displacements remain roughly adiabatic,
whereas displacements induced by changes in the rotation rate reach thermodynamic
equilibrium. A fluid parcel in the proximity of the dilute core responds differently
depending on the timescale of the perturbation; only an adiabatic perturbation leads
to changes in the buoyancy of the fluid parcel, causing a wave-like oscillation known
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as static stability. Consequently, the dilute core produces a signature in the tidal
response of the planet not registered by 𝐽2. We address the tidal effects of a dilute
core in a subsequent investigation.

2.6 Conclusions
Our tidal models suggest that the gravity field observed by Juno captured the dy-
namical tidal response of Jupiter to the gravitational pull of the Galilean satellites.
We show that two effects contribute to the dynamical gravity field of tides in Jupiter:
the dynamical response of f-modes and the Coriolis acceleration. When the Coriolis
effect is ignored, tides closely follow the dynamical response of f-modes modeled
as a forced harmonic oscillator. In ignoring the Coriolis effect, dynamical amplifi-
cation in a harmonic oscillator accounts for the dynamical response of f-modes in
the planet’s interior, forced by the gravitational pull of the companion satellites. As
the tidal frequency is lower than the f-mode oscillation frequency, the dynamical
response of f-modes amplifies the gravity field of the hydrostatic tide. Motivated
by Jupiter’s fast rotation, we show that the Coriolis effect leads to a significant
additional contribution to the dynamical tide. When the Coriolis effect is included
in our tidal models, we show that the Coriolis acceleration produces a competing
effect of opposite sign compared to the dynamical response of f-modes. When both
dynamical effects are considered together, they reduce the Love number 𝑘2 below the
hydrostatic number if 𝜔 < 2Ω and amplify it otherwise. Following our theoretical
prediction, dynamical effects lead to a negative correction to Jupiter’s hydrostatic
Love number 𝑘2 in the case of the Galilean satellites, for which the degree-2 tidal
frequency is 𝜔 < 2Ω. The fractional dynamical correction for the Jupiter-Io system
is Δ𝑘2 = −4%. Our analysis provides an explanation for the recently observed
non-hydrostatic component in the gravity field of Jupiter tides obtained by the Juno
mission.

In conclusion, our analysis proposes that the Juno non-hydrostatic detection is the
first unambiguous measurement of the gravitational effects of dynamical tides in
a gas giant. Our conclusion depends on the assumption that the degree-2 tidal
frequency of the Galilean satellites is far from resonance with Jupiter’s normal
modes. In a subsequent investigation, we will utilize the results reported here
to infer the extension and static stability of Jupiter’s dilute core from 𝑘2. The
uncertainty expected in the observed 𝑘2 at the end of the mission exceeds the
uncertainty achieved by our model, suggesting that a more detailed tidal model
will be required in the future to fully exploit the information contained in the data
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provided by Juno.
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C h a p t e r 3

THE LOST MEANING OF JUPITER’S HIGH–DEGREE LOVE
NUMBERS

“So baby, tell me where your love lies"

— Khalid & Normani, Love Lies

B. Idini and D. J. Stevenson. The lost meaning of Jupiter’s high-degree Love num-
bers. The Planetary Science Journal, 3(1):11, 1 2022. doi:10.3847/PSJ/ac4248.
B.I. contributed to the conception of the project, developed the mathematical the-
ory, performed analysis to generate results, and led the writing of the manuscript.
This work was adapted to constitute Chapter III.

3.1 Abstract
NASA’s Juno mission recently reported Jupiter’s high–degree (degree ℓ, azimuthal
order 𝑚 = 4, 2) Love number 𝑘42 = 1.289 ± 0.063 (1𝜎), an order of magnitude
above the hydrostatic 𝑘42 obtained in a nonrotating Jupiter model. After numerically
modeling rotation, the hydrostatic 𝑘42 = 1.743 ± 0.002 is still 7𝜎 away from the
observation, raising doubts about our understanding of Jupiter’s tidal response.
Here, we use first–order perturbation theory to explain the hydrostatic 𝑘42 result
analytically. We use a simple Jupiter equation of state (𝑛 = 1 polytrope) to obtain
the fractional change in 𝑘42 when comparing a rotating model with a nonrotating
model. Our analytical result shows that the hydrostatic 𝑘42 is dominated by the
tidal response at ℓ = 𝑚 = 2 coupled into the spherical harmonic ℓ, 𝑚 = 4, 2 by
the planet’s oblate figure. The ℓ = 4 normalization in 𝑘42 introduces an orbital
factor (𝑎/𝑠)2 into 𝑘42, where 𝑎 is the satellite semimajor axis and 𝑠 is Jupiter’s
average radius. As a result, different Galilean satellites produce a different 𝑘42. We
conclude that high–degree tesseral Love numbers (ℓ > 𝑚, 𝑚 ≥ 2) are dominated
by lower–degree Love numbers and thus provide little additional information about
interior structure, at least when they are primarily hydrostatic. Our results entail
important implications for a future interpretation of the currently observed Juno
𝑘42. After including the coupling from the well–understood ℓ = 2 dynamical tides
(Δ𝑘2 ≈ −4%), Jupiter’s hydrostatic 𝑘42 requires an unknown dynamical effect to
produce a fractional correction Δ𝑘42 ≈ −11% in order to fit Juno’s observation
within 3𝜎. Future work is required to explain the required Δ𝑘42.

https://doi.org/10.3847/PSJ/ac4248
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3.2 Introduction
NASA’s Juno mission recently registered Jupiter’s tidal response in a set of Love
numbers, observing 𝑘42 = 1.289 ± 0.063 (1𝜎) at the mid–mission perijove 17
(Durante et al., 2020). The observation requires imposing the same Love number
for all Galilean satellites as an a priori constraint, resulting in a Juno 𝑘42 that
represents the dominant tidal influence of Io (Durante et al., 2020). Ignoring the
effect of rotation on tides, the modeled hydrostatic tidal response is 𝑘42 = 0.1279
in a Jupiter model with a density profile that fits the radius and zonal gravity up to
𝐽4 (Wahl et al., 2020). In the same Jupiter model, numerical modeling indicates
that rotation increases 𝑘42 by an order of magnitude to 𝑘42 = 1.743 ± 0.002 in the
case of Io’s tidal forcing (Wahl et al., 2020), which is 7𝜎 above the Juno 𝑘42. The
purpose of this paper is to illuminate on the rotational effect that leads to an order
of magnitude enhancement in 𝑘42, which is key to a correct interpretation of Juno’s
𝑘42.

Love numbers traditionally represent an interior property of the planet. A property of
the planet must be independent of forcing; for example, the adiabatic sound speed.
The Love number 𝑘42 corresponds to the tidal gravitational potential of Jupiter
normalized by the tidal forcing produced by the satellite, both in the ℓ, 𝑚 = 4, 2
term of the spherical harmonics projection. The oblate figure of a rotating planet
distorts the traditional meaning attributed to Love numbers by introducing spherical
harmonic coupling; that is, the tidal forcing at given ℓ produces a tidal response
in multiple spherical harmonics. In particular, Jupiter’s Love number 𝑘42 contains
a small contribution from the tidal response to the ℓ, 𝑚 = 4, 2 tidal forcing, plus
a dominant contribution from the coupled tidal response to the ℓ = 𝑚 = 2 tidal
forcing. For the sake of brevity, we partially omit further references to the order 𝑚,
which should always be considered 𝑚 = 2 throughout this paper.

The coupled tidal response promoted by the oblate figure of Jupiter enhances
Jupiter’s hydrostatic Love number 𝑘42 by an order of magnitude when compared to
a hypothetical nonrotating Jupiter (Wahl et al., 2020). To order of magnitude, we
can estimate 𝑘42 ∼ 𝑞𝑘2(𝑎/𝑅)2, where 𝑎 is the semimajor axis of the satellite, 𝑅 is
the planetary radius, 𝑘2 is the 𝑙 = 𝑚 = 2 Love number, and 𝑞 is the adimentional
rotational parameter,

𝑞 =
Ω2𝑠3

G𝑀 , (3.1)

where 𝑀 is the mass of the planet, Ω is the planet’s rotational frequency, 𝑠 is
the average planetary radius, and G is the gravitational constant. In the case of



36

Jupiter-Io, we obtain 𝑞 ≈ 0.09 and 𝑘42 ∼ 1.9. The coupled tidal response to the
ℓ = 2 tidal forcing that contributes to 𝑘42 is of order ∼𝑞𝑘2. The factor (𝑎/𝑅)2

describes how much smaller the tidal forcing is at ℓ = 4 when compared to ℓ = 2.
As numerically shown by Wahl et al. (2020), the resulting hydrostatic Love number
𝑘42 varies greatly among the Galilean satellites according to the semimajor axis of
each orbit, a result that contradicts the traditional concept of the hydrostatic Love
number defined as a property of the planet.

Here, we use first–order perturbation theory to analytically explain the correction
to the hydrostatic Love number introduced by rotation, a result only known so far
via implementation of numerical strategies (Wahl et al., 2017a). As a response to
rotation, the oblate figure of the planet promotes mixing in the tidal response at
different zonal degree ℓ, causing a ∼+10% correction to 𝑘2 observed both in Saturn
(Lainey et al., 2017; Wahl et al., 2017a) and Jupiter (Durante et al., 2020; Idini and
Stevenson, 2021; Wahl et al., 2020), and an order of magnitude increment in 𝑘42

that is key to correctly interpreting Juno’s 𝑘42 observation.

The remainder of this paper is organized as follows. In Section 2, we derive the
general solution for the hydrostatic tidal response in the interior of a gas giant
planet mostly made of H-He. In Section 3, we use first–order perturbation theory to
obtain the hydrostatic Love numbers while including the oblate figure of the planet
introduced by rotation. In Section 4, we use our theoretical results from Section 3
to calculate Jupiter’s hydrostatic 𝑘42. In Section 5, we discuss the implications of
our results. In Section 6, we summarize our conclusions.

3.3 The hydrostatic tidal response
In this section, we derive the equation and general solution for the hydrostatic tidal
response of a gas giant planet mostly made of H-He fluid. Tides in hydrostatic
equilibrium follow Poisson’s equation and a simple equation of motion

∇2𝜙 = −4𝜋G𝜌, (3.2)

∇𝑝 = 𝜌∇𝜙. (3.3)

The potential 𝜙 represents the relevant gravitational forces, 𝑝 is pressure, and 𝜌 is
density. In a gas giant planet mostly made of H-He, the equation of state of the fluid
can be conveniently approximated by an 𝑛 = 1 polytrope (Stevenson, 2020), which
follows

𝑝 = 𝐾𝜌2, (3.4)
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where 𝐾 is a constant describing the material properties. The simple result ∇𝑝 =

2𝐾𝜌∇𝜌 combined with Equations (3.2) and (3.3) allows us to obtain

∇2𝜙

𝑘2 + 𝜙 = 0, (3.5)

where 𝑘2 = 2𝜋G/𝐾 .

The first approximation to the hydrostatic tidal response comes from considering
tides as a perturbation 𝜙′ over a spherical planet with a spherically symmetric
gravitational potential 𝜙0. Perturbation theory correctly approximates the tidal
response because the tidal gravitational potential only constitutes a ∼10−6 part of
the total gravitational potential. In such scenario, the potential 𝜙 can be written as

𝜙 = 𝜙0 + 𝜙′ + 𝜙𝑇 , (3.6)

where the tidal forcing potential takes the form

𝜙𝑇 =

∞∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

𝑈𝑚
ℓ

(𝑟
𝑠

)ℓ
𝑌𝑚ℓ , (3.7)

𝑈ℓ,𝑚 is a numerical factor defined by

𝑈ℓ,𝑚 =

( 𝑠
𝑎

)ℓ (
G𝑚𝑠

𝑎

) (
4𝜋(ℓ − 𝑚)!

(2ℓ + 1) (ℓ + 𝑚)!

)1/2
P𝑚
𝑙 (0), (3.8)

P𝑚
ℓ

are the associated Legendre polynomials of degree ℓ and azimuthal order 𝑚,
𝑌𝑚
ℓ

are spherical harmonics, and 𝑚𝑠 the mass of the satellite. The hydrostatic tidal
response that solves Equation (3.5) follows (Idini and Stevenson, 2021)

𝜙′ =
∞∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

(
𝐴ℓ 𝑗ℓ (𝑘𝑟) −

(𝑟
𝑠

)ℓ)
𝑈𝑚
ℓ 𝑌

𝑚
ℓ , (3.9)

where 𝑗ℓ is the spherical Bessel function of the first kind.

The boundary condition for 𝜙′ at the outer boundary of the planet defines the coef-
ficients 𝐴ℓ. At the outer boundary of the planet, the tidal response 𝜙′ should match
an external potential that decays with distance 𝑟 away from the planet, according to
the factor (𝑠/𝑟)ℓ+1. Both potentials should also match in their directional derivative
normal to the outer boundary of the planet. In a spherical planet, the directional
derivative is simply 𝜕𝑟 due to the convenient decomposition of the tidal response into
an axially symmetric factor and a spherical harmonic. In an oblate planet, however,
the directional derivative involves additional terms that depend on the oblate figure
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of the planet. Additionally, the boundary of the planet is no longer the average radius
𝑠, but instead an oblate figure that varies with colatitute 𝜃 (i.e., roughly following a
P2(cos 𝜃) figure). In the following section, we consider those effects to calculate 𝐴𝑚

ℓ

and obtain first order corrections to the hydrostatic Love number due to the oblate
figure of a rotating planet.

3.4 The hydrostatic tidal response in a rotating planet
In this section, we use first–order perturbation theory to illuminate on the effect that
the oblate figure of a rotating planet has on the hydrostatic Love number. To 𝑞 order
of approximation, the oblate figure of a gas giant mostly made of H-He follows
(Appendix E)

𝑅(𝜃) ≈ 𝑠
(
1 − 5

𝜋2 𝑞P2(cos 𝜃)
)

. (3.10)

At the outer boundary of the oblate planet (i.e., 𝑟 = 𝑅(𝜃)), the gravitational tidal
response requires to satisfy the boundary condition

∇𝜙′(𝑅) · 𝑛̂ = ∇Θ′(𝑅) · 𝑛̂, (3.11)

where Θ is an external gravitational potential that matches 𝜙′ at 𝑟 = 𝑅,

Θ𝑚ℓ
′ =

(
𝑅

𝑟

)ℓ+1
𝜙𝑚ℓ

′(𝑅), (3.12)

𝜕𝑟Θ
𝑚
ℓ
′ = − (ℓ + 1)

𝑟

(
𝑅

𝑟

)ℓ+1
𝜙𝑚ℓ

′(𝑅), (3.13)

𝜕𝜃Θ
𝑚
ℓ
′ =

(ℓ + 1)
𝑅

(
𝑅

𝑟

)ℓ+1
𝜙𝑚ℓ

′(𝑅)𝜕𝜃𝑅 +
(
𝑅

𝑟

)ℓ+1
𝜕𝜃𝜙

𝑚
ℓ
′(𝑅), (3.14)

and 𝑛̂ is the vector normal to the oblate surface of the planet 𝑅(𝜃),

𝑛̂ =

(
1 − 5

𝜋2 𝑞P2(cos 𝜃)
)
𝑟 − 15

𝜋2 𝑞 cos 𝜃 sin 𝜃𝜃. (3.15)

After applying the differential operator in spherical coordinates and keeping only
terms of order 𝑞, the boundary condition reduces to∑︁

ℓ

(
1 − 5

𝜋2 𝑞P2(cos 𝜃)
)
𝜕𝑟𝜙

𝑚
ℓ
′(𝑅) =

∑︁
ℓ

− (ℓ + 1)
𝑠

𝜙𝑚ℓ
′(𝑅). (3.16)

Assuming that rotation only causes a small deviation from a sphere, we can write
𝑅 = 𝑠(1− 𝜖P2), where 𝜖 = 5𝑞/𝜋2 is a small parameter. We evaluate the hydrostatic
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tidal response at the oblate outer boundary of the rotating planet by Taylor expansion
of 𝜙′ over 𝜖 ,

𝜙𝑚ℓ
′(𝑅) ≈ 𝜙𝑚ℓ

′(𝑠) − 𝜖 𝑠𝜕𝑟𝜙𝑚ℓ
′(𝑠)P2, (3.17)

𝜕𝑟𝜙
𝑚
ℓ
′(𝑅) ≈ 𝜕𝑟𝜙𝑚ℓ

′(𝑠) − 𝜖 𝑠𝜕𝑟,𝑟𝜙𝑚ℓ
′(𝑠)P2. (3.18)

From Equation (3.9), the hydrostatic tidal response of a sphere evaluated at 𝑟 = 𝑠

follows
𝜙𝑚ℓ

′(𝑠) = (𝐴ℓ 𝑗ℓ (𝑘𝑠) − 1)𝑈𝑚
ℓ 𝑌

𝑚
ℓ , (3.19)

𝜕𝑟𝜙
𝑚
ℓ
′(𝑠) =

(
𝐴ℓ𝜕𝑟 𝑗ℓ (𝑘𝑠) −

ℓ

𝑠

)
𝑈𝑚
ℓ 𝑌

𝑚
ℓ , (3.20)

𝜕𝑟,𝑟𝜙
𝑚
ℓ
′(𝑠) =

(
𝐴ℓ𝜕𝑟,𝑟 𝑗ℓ (𝑘𝑠) −

ℓ(ℓ − 1)
𝑠2

)
𝑈𝑚
ℓ 𝑌

𝑚
ℓ . (3.21)

We replace Equations (3.17) and (3.18) into Equation (3.16) to obtain the final
equation for the coupled hydrostatic tidal response of an oblate rotating planet,∑︁

ℓ

(
𝐴ℓ

(
𝑗ℓ (𝑘𝑠)

(
ℓ + 1
𝑠

)
+ 𝜕𝑟 𝑗ℓ (𝑘𝑠)

)
− 2ℓ + 1

𝑠

)
𝑈𝑚
ℓ 𝑌

𝑚
ℓ

=
15
𝜋2 𝑞

∑︁
ℓ

(
𝐴ℓ

(
𝑠𝜕𝑟,𝑟 𝑗ℓ (𝑘𝑠) + (ℓ + 2)𝜕𝑟 𝑗ℓ (𝑘𝑠)

)
− ℓ(2ℓ + 1)

𝑠

)
𝑈𝑚
ℓ 𝑌

𝑚
ℓ P2. (3.22)

We use a recursive relation based on Clebsch-Gordan coefficients to calculate the
coupling in spherical harmonics introduced by the term 𝑌𝑚

ℓ
P2 (Idini and Stevenson,

2021),
𝑌𝑚ℓ cos2 𝜃 = 𝑝ℓ−1𝑝ℓ𝑌

𝑚
ℓ−2 + (𝑝2

ℓ + 𝑝
2
ℓ+1)𝑌

𝑚
ℓ + 𝑝ℓ+1𝑝ℓ+2𝑌

𝑚
ℓ+2, (3.23)

𝑝ℓ =

(
ℓ2 − 𝑚2

4ℓ2 − 1

)1/2

. (3.24)

Using the recursive relation above, we can write the term that couples the spherical
harmonics of the hydrostatic tidal response as

𝑌𝑚ℓ P2 =
3
2

cos2 𝜃𝑌𝑚ℓ −
𝑌𝑚
ℓ

2
=

3
2
𝑝ℓ−1𝑝ℓ𝑌

𝑚
ℓ−2+

(
3
2
(𝑝2

ℓ + 𝑝
2
ℓ+1) −

1
2

)
𝑌𝑚ℓ +3

2
𝑝ℓ+1𝑝ℓ+2𝑌

𝑚
ℓ+2.

(3.25)
In the following section, we use Mathematica (Wolfram, 1999) to evaluate Equations
(3.8), (3.22), and (3.25) to obtain 𝐴ℓ in the case of Jupiter when tidally perturbed
by the gravitational pull of Io.



40

3.5 Jupiter’s hydrostatic Love numbers
For the sake of simplicity, we analyze the case of coupling between Jupiter’s rota-
tional and hydrostatic tidal responses in ℓ = 2 and ℓ = 4, ignoring terms of higher
degree. To order of magnitude, the contribution to 𝑘42 from ℓ = 6 tides follows
∼𝑞𝑘62(𝑅/𝑎)2 ∼ 𝑞2𝑘42, a second-order correction in 𝑞 and thus neglected here.
From Equation (3.22), we can write a linear system of equations in the form

𝑐1𝐴2 + 𝑐2𝐴4 = 𝑐3, (3.26)

𝑐4𝐴2 + 𝑐5𝐴4 = 𝑐6, (3.27)

where we obtain the 𝑐𝑛 coefficients from evaluating the sum in Equation (3.22)
truncated at ℓ = 4 and set for 𝑚 = 2.

Table 3.1: Rotational correction to Jupiter’s hydrostatic Love num-
ber under the tidal perturbation of Io, Europa, and Ganymede.

polytrope2 CMS3

Type1 Io Europa Ganymede Io Europa Ganymede
𝛿𝑘2 1.11 1.11 1.11 1.10 1.10 1.10
𝛿𝑘42 14.4 35.0 87.6 13.6 32.8 83.7
1 The rotational correction 𝛿𝑘ℓ𝑚 is the ratio between the Love

number in an oblate rotating Jupiter model, over the Love number
in a spherical nonrotating Jupiter model. Jupiter’s rotation rate
follows 𝑞 = 0.0892.

2 We obtain the analytical results in an 𝑛 = 1 polytrope from the
ratio between Equation (3.30) and Equation (3.29).

3 We calculate 𝛿𝑘 from Love numbers reported in Wahl et al.
(2020), which were numerically obtained with the Concentric
Maclaurin Spheroid (CMS) method.

Our analytical polytropic Jupiter model approximates the rotational correction to the
hydrostatic Love number reported in Wahl et al. (2020) to 𝑞–order accuracy (Table
3.1). In the case of tides raised by Io, we obtain a ∼10% increment in 𝑘2 and an
order of magnitude increment in 𝑘42, both results previously reported in numerical
calculations using the Concentric Maclaurin Spheroids (CMS) method (Wahl et al.,
2016, 2020). The order of magnitude enhancement in 𝑘42 comes from the the tidal
response to the ℓ = 2 tidal forcing rotationally–coupled into the ℓ = 4 gravitational
field. We calculate the rotational correction 𝛿𝑘ℓ𝑚 in Table 3.1 as the ratio between
the Love number in an oblate rotating polytrope over the Love number in a spherical



41

nonrotating polytrope,
𝛿𝑘ℓ𝑚 =

𝑘ℓ

𝑘
(𝑠)
ℓ

. (3.28)

The Love number in a spherical nonrotating polytrope follows (Idini and Stevenson,
2021)

𝑘
(𝑠)
ℓ

=

(
2ℓ + 1
𝜋

)
𝑗ℓ (𝜋)
𝑗ℓ−1(𝜋)

− 1, (3.29)

while the Love number in an oblate rotating polytrope follows (i.e., from evaluating
Equations (3.7) and (3.9) at 𝑟 = 𝑠)

𝑘ℓ = 𝐴ℓ 𝑗ℓ (𝜋) − 1, (3.30)

where the 𝐴ℓ coefficients come from solving Equations (3.26) and (3.27). In the
case of Jupiter’s rotation (𝑞 = 0.0892) and Io’s semimajor axis, we obtain 𝐴2 = 5.19
and 𝐴4 = 42.2. For the sake of comparison, the nonrotating 𝑛 = 1 polytrope in
hydrostatic equilibrium produces 𝐴2 = 5 and 𝐴4 = 17.3.

We can apply our rotational corrections calculated from Equation (3.28) to the
nonrotating Love numbers of a Jupiter model with a more realistic equation of state
and density profile (i.e., Wahl et al. (2020)). Our Io results agree with the CMS
results within a margin of 2% and 3% for 𝑘2 and 𝑘42, respectively (Table 3.2). The
difference between both results comes from second order effects not included in our
analysis. As we show here, the correct Love number in a rotating planet comes from
the boundary condition that forces the smoothness of the tidal gravitational potential
over an oblate planetary figure.

Table 3.2: Jupiter’s hydrostatic Love numbers under the tidal perturba-
tion of Io, Europa, and Ganymede.

CMS 𝑛 = 1 polytrope2 CMS3

Nonrotating1 Io Io Europa Ganymede
𝑘2 0.5364 0.60 0.5898 0.5894 0.5893
𝑘42 0.1279 1.8 1.7432 4.1975 10.7058
1 Numerical results obtained with the Concentric Maclaurin Spheroid

(CMS) method applied to a nonrotating Jupiter model that follows
an equation of state derived from ab initio simulations (Wahl et al.,
2020).

2 We obtain the analytical results in an 𝑛 = 1 polytrope from applying
the fractional correction in Equation (3.28) to the nonrotating result.

3 CMS Numerical results for the Love number of a rotating Jupiter
model (Wahl et al., 2020).
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3.6 Discussion
The lost meaning of Love numbers in rotating gas giant planets
High–degree tesseral Love numbers (ℓ > 𝑚, 𝑚 ≥ 2) lose their original meaning in a
rotating planet with an oblate figure. As first proposed by A.E.H. Love in 1909, Love
numbers represent the tidal response of a planet normalized by the tidal forcing, both
at the same ℓ, 𝑚 spherical harmonic. Accordingly, the hydrostatic tidal gravitational
field of a spherical planet is a sum over terms 𝑘ℓ,𝑚𝜙𝑇ℓ,𝑚. In this original meaning,
the Love number represents an interior property of the planet. In the context of gas
giant exoplanets, the Love number may describe the degree of central concentration
of mass, with a lower Love number indicating a more centrally concentrated planet
(Batygin et al., 2009). However, the coupling introduced by rotation complicates
this convenient picture.

As shown in Equation (3.17), the hydrostatic tidal response to the forcing at a given ℓ
contains terms from multiple spherical harmonics. Rotation introduces a significant
term with ℓ = 4 spherical harmonic corresponding to part of the tidal response to
the ℓ = 2 tidal forcing. In fact, this term dominates Jupiter’s ℓ = 4 tidal gravitational
field, with 7% of the amplitude arising from the tidal response to the ℓ = 4 tidal
forcing and 93% from the tidal response to the ℓ = 2 tidal forcing coupled by the
oblate figure of the planet (Table 3.1). According to this new term, the ℓ = 4 tidal
gravitational field is (Equation (3.17)),

𝜙2
4
′ ∼ 5

𝜋2 𝑞𝜙
2
2
′P2 ∼ 5

𝜋2 𝑞
(𝑟
𝑠

)2
𝑘2𝑈2,2𝑌

2
4 . (3.31)

When computing 𝑘42 after normalization of Equation (3.31) by the tidal forcing 𝜙2
4𝑇 ,

the term introduced by rotation promotes a dependency of 𝑘42 on the semimajor
axis of the satellite,

𝑘42 ∼ 5
𝜋2 𝑞

(𝑎
𝑠

)2
𝑘2. (3.32)

Explicitly revealed here using perturbation theory, the dependency of 𝑘42 on semi-
major axis was previously observed in numerical results obtained with CMS (Wahl
et al., 2017a, 2020). The difference in 𝑘42 among the Galilean satellites can be
explained by the orbital factor (𝑎/𝑠)2, where 𝑎/𝑠 is roughly 6 for Io, 10 for Europa,
and 15 for Ganymede (Table 3.1).

The 7𝜎 discrepancy observed by Juno
Our analytical results validate the accuracy of CMS to obtain the hydrostatic 𝑘42

(Table 3.2), confirming a 7𝜎 discrepancy between Juno’s 𝑘42 and hydrostatic tides at
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perijove 17. The CMS hydrostatic 𝑘42 requires aΔ𝑘42 ≈ −15% fractional correction
to fit the Juno observation within 3𝜎. Due to rotational coupling (Equation (3.32)),
one part of the required correction comes from dynamical effects on 𝑘2 that include
the Coriolis effect. The Δ𝑘2 ≈ −4% effect introduced by dynamical tides (Idini and
Stevenson, 2021; Lai, 2021) reduces the fractional correction required by Juno to
Δ𝑘42 ≈ −11%. This residual effect must come from additional dynamical effects
related to the ℓ = 4 tidal response, which is only a small fraction (7%) of the
hydrostatic 𝑘42. At perijove 17, Juno 3𝜎 uncertainty on 𝑘2 is only 3% (Idini and
Stevenson, 2021), much smaller than the required Δ𝑘42 ≈ −11%. Consequently,
additional hypothetical dynamical effects applied to 𝑘2 are constrained by Juno to
be small and insufficient. We require future studies to understand the origin of the
Δ𝑘42 fractional correction required to fit Juno observations.

The uncertainty 𝜎 = 0.063 at perijove 17 depends on imposing the same Love
number for all Galilean satellites. When 𝑘42 is let to freely vary among satellites,
an orbital resonance between the Juno spacecraft and Io–Europa–Ganymede (in
mean–motion resonance 1:2:4) conspires against a unique decomposition of the
joint tidal gravitational field, leading to a tradeoff among individual contributions
that sharply increases uncertainty (𝜎 = 0.353 for Io). Future perijove passes from
Juno’s extended mission will break the tradeoff given a recent change in Juno’s orbital
period. Currently, the best representation of Jupiter’s 𝑘42 due to Io’s gravitational
pull comes from assuming a reasonable a priori constraint to the 𝑘42 caused by the
other satellites. Imposing the same Love number to all Galilean satellites equals
to assume that Io dominates the 𝑘42 tidal gravitational field, which is true unless
Europa or Ganymede cause a tidal resonance with Jupiter.

3.7 Conclusions
We used first–order perturbation theory to calculate the rotational correction to
Jupiter’s hydrostatic Love number 𝑘42. We showed that the oblate figure of the
rotating planet forces the ℓ = 𝑚 = 2 tidal response to couple into the ℓ, 𝑚 = 4, 2
tidal gravitational field, increasing the hydrostatic 𝑘42 beyond an order of magnitude
for Io and roughly by two orders of magnitude for Ganymede. As a result, we con-
clude that low–degree hydrostatic Love numbers dominate high–degree hydrostatic
tesseral Love numbers (ℓ > 𝑚, 𝑚 ≥ 2), and thus the latter provide little additional
information about interior structure. The exception is the case where dynamical
effects particular to a given high–degree Love number acquire relevant amplitude
due to, for example, tidal resonances.
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Our analysis leads to important implications for the correct interpretation of a 7𝜎
anomaly in Jupiter’s 𝑘42 as observed by NASA’s Juno mission. The Juno 𝑘42

anomaly is slightly attenuated by the coupled ℓ = 2 dynamical tides (Δ𝑘2 ≈ −4%).
At Juno’s mid–mision perijove 17, Jupiter’s hydrostatic Love number 𝑘42 requires
an additional fractional correction Δ𝑘42 ≈ −11% from unknown dynamical effects
associated to its tidal response to the ℓ = 4 tidal forcing. We require further analysis
to unravel the origin of the required fractional correction.
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C h a p t e r 4

THE GRAVITATIONAL IMPRINT OF AN INTERIOR–ORBITAL
RESONANCE IN JUPITER–IO

“You’ve got me locked in"

— Judas Priest, Locked In

B. Idini and D. J. Stevenson. The gravitational imprint of an interior–orbital
resonance in Jupiter–Io. The Planetary Science Journal, 3(4):89, 4 2022.
doi:10.3847/PSJ/ac6179.
B.I. conceived of the project’s primary objective, performed calculations and
analysis to generate results, and led the writing of the manuscript. This work was
adapted to constitute Chapter IV.

4.1 Abstract
At mid-mission perijove 17, NASA’s Juno mission has revealed a 7𝜎 discrepancy be-
tween Jupiter’s observed high–degree tidal response and the theoretical equilibrium
tidal response, namely the Love number 𝑘42. Here, we propose an interpretation for
this puzzling disagreement based on an interior–orbital resonance between internal
gravity waves trapped in Jupiter’s dilute core and the orbital motion of Io. We use
simple Jupiter models to calculate a fractional correction Δ𝑘42 to the equilibrium
tidal response that comes from the dynamical tidal response of a 𝑔–mode trapped in
Jupiter’s dilute core. Our results suggest that an extended dilute core (𝑟 ≳ 0.7𝑅𝐽)
produces an interior–orbital resonance with Io that modifies Jupiter’s tidal response
in Δ𝑘42 ∼ −11%, allowing us to fit Juno’s 𝑘42. In our proposed self–consistent sce-
nario, Jupiter’s dilute core evolves in resonant locking with Io’s orbital migration,
which allows the interior–orbital resonance to persist over geological timescales.
This scenario requires a dilute core that becomes smoother or shrinks over time,
together with a 2

4𝑔1 mode (ℓ, 𝑚, 𝑛 = 4, 2, 1) with resonant tidal dissipation reaching
𝑄4 ∼ 1000. Jupiter’s dilute core evolution path and the dissipation mechanism
for the resonant 2

4𝑔1 mode are uncertain and motivate future analysis. No other
alternative exists so far to explain the 7𝜎 discrepancy in Juno 𝑘42. Our proposed
interior–orbital resonance can be tested by Juno observations of 𝑘42 tides raised on
Jupiter by Europa as obtained at the end of the extended mission (mid 2025), and
by future seismological observations of Jupiter’s 2

4𝑔1 mode oscillation frequency.

https://doi.org/10.3847/PSJ/ac6179
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4.2 Introduction
In the traditional view of Jupiter’s interior, an envelope of H-He fluid with small
traces of heavier elements overlays a compact core of 10 − 20𝑀𝐸 made entirely of
elements heavier than H-He (Guillot, 2005). The traditional view follows from the
simplest scenarios of planet formation via core accretion (Mizuno, 1980; Mizuno
et al., 1978; Perri and Cameron, 1974; Pollack et al., 1996; Safranov, 1969), ignor-
ing the disaggregation or dissolution of incoming planetesimals that recent work
considers (Bodenheimer et al., 2018; Helled and Stevenson, 2017). An adiabatic
Jupiter requires 10 − 20𝑀𝐸 of heavy elements to attain its observed radius, irre-
spective of how those heavy elements distribute inside the planet. However, no
direct geophysical evidence exists to justify the presence of a compact core over
a smoother distribution of heavy elements. Opposing the traditional view, Juno
recently obtained accurate zonal gravitational moments 𝐽2ℓ that suggest that heavy
elements distribute broadly along the radius rather than tightly concentrating near
the center in a compact core (Miguel et al., 2022; Wahl et al., 2017b) (Militzer et
al., 2022).

In addition to 𝐽2ℓ, Juno also recently obtained accurate Love numbers that contain
Jupiter’s tidal response to the gravitational perturbation caused by the Galilean
satellites. Intriguinly, the high–degre Love number 𝑘42 observed by Juno is 7𝜎
away from the hydrostatic 𝑘42 calculated in a Jupiter model that fits the observed
radius, 𝐽2, and 𝐽4 (Durante et al., 2020; Wahl et al., 2020). The Love number 𝑘42

represents the ℓ, 𝑚 = 4, 2 spherical harmonic term in Jupiter’s tidal gravitational
field normalized by the respective tidal forcing spherical harmonic term. The oblate
figure of Jupiter introduces part of the tidal response to the ℓ = 2 tidal forcing into
the ℓ = 4 tidal gravitational field, enhancing 𝑘42 then compared to a hypothetical
spherical Jupiter. In the case of tides raised on Jupiter by Io, only 7% of 𝑘42

corresponds to the tidal response to the ℓ = 4 tidal forcing and the remainding 93%
corresponds to the coupled 𝑘2 (ℓ = 𝑚 = 2) (Idini and Stevenson, 2022).

Here, we use simple Jupiter models to propose an explanation to the 7𝜎 disagreement
between Juno and the hydrostatic 𝑘42. We calculate a fractional correction to the
hydrostatic 𝑘42 introduced by the dynamical response of Jupiter’s dilute core to tidal
excitation. The hypothesized dilute core promotes static stability in the interior of
Jupiter, allowing internal gravity waves to propagate and organize in normal modes
of oscillation (i.e., 𝑔–modes) restored by buoyancy (Fuller, 2014; Mankovich and
Fuller, 2021). Our proposal depends on an interior–orbital resonance between 𝑔–
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modes trapped in Jupiter’s dilute core and the orbital motion of Io, a scenario that
is highly unlikely to happen by pure chance. Accordingly, we invoke a state of
resonant locking (Fuller et al., 2016) to allow the required interior–orbital resonance
to remain active over geological timescales.

Our results support a previous suggestion that Jupiter’s dilute core may extend as
far as ∼0.7𝑅𝐽 (Militzer et al., 2022), without allowing us to rule out a less extended
dilute core. A future tight constraint to the extension of Jupiter’s dilute core will
lead to important consequences for our current understanding of the formation
and evolution of gas giants. Extending outwards from a compact core, a narrow
compositional gradient appears in some standard core accretion models (Helled and
Stevenson, 2017). Double–diffusive convection could potentially broaden a narrow
compositional gradient near the center by upward transport of heavy elements. On
the other hand, convection over the age of Jupiter (∼4.5 Ga) promotes mixing in the
envelope, potentially erasing compositional gradients that extend too far from the
center (Müller et al., 2020). Perhaps an extended compositional gradient survives
convective mixing only in the case of a "cold" formation process (Vazan et al., 2018),
which is not compatible with standard core accretion models (Müller et al., 2020).
Alternatively, a head-on giant impact could disturb Jupiter after formation, leading
to an extended compositional gradient resistant to convective mixing (Liu et al.,
2019). However, head–on giant impacts occur rarely and oblique giant impacts may
not accomplish the desired heavy element distribution (Helled et al., 2022).

4.3 An interior–orbital resonance solves the Juno discrepancy
At mid–mission perijove 17, Juno registers a 7𝜎 discrepancy in the observed 𝑘42

when compared to the hydrostatic 𝑘42 expected in a rotating Jupiter model that
follows a density profile consistent with the observed radius and Juno zonal gravity
up to 𝐽4 (Durante et al., 2020; Wahl et al., 2020). The hydrostatic Love number
is 𝑘42 = 1.743 ± 0.002 (Wahl et al., 2020), while the Juno observation is 𝑘42 =

1.289 ± 0.063 (1𝜎) (Durante et al., 2020). The hydrostatic 𝑘42 requires a fractional
correction Δ𝑘42 ≈ −15% to be reconciled at 3𝜎 with the 𝑘42 observed by Juno.

One part of the required fractional correction comes from the −4% effect introduced
by ℓ = 2 𝑓 –mode dynamical tides on 𝑘2 (Dewberry and Lai, 2022; Idini and
Stevenson, 2021; Lai, 2021) and coupled by the oblate figure of the planet into the
ℓ = 4 gravitational field (Idini and Stevenson, 2022). The ℓ = 4 𝑓 –mode dynamical
tide produces a negligible effect on 𝑘42, thus the remaining Δ𝑘42 ≈ −11% comes
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from additional dynamical effects related to the tidal response of nonfundamental
modes to the ℓ = 4 tidal forcing.

In the rest of this section, we present a self–consistent scenario where resonantly
enhanced internal gravity waves trapped in Jupiter’s extended dilute core produce
the tidal gravity required to reconcile the 7𝜎 Juno discrepancy.

Instead of a compact traditional core, gas giant planets most likely host a dilute
core where the abundance of heavy elements changes with depth (Fuller, 2014).
Recent observations of normal oscillations in Saturn’s rings confirm this picture
in Saturn (Mankovich and Fuller, 2021), whereas high–degree zonal gravitational
coefficients observed by Juno suggest an analogous situation in Jupiter (Wahl et al.,
2017b). Contrary to a homogeneous envelope, a dilute core permits the propagation
of internal gravity waves (i.e., waves restored by buoyancy) that organize in normal
modes of oscillation called 𝑔–modes. The oscillation frequency of 𝑔–modes spans
a wide frequency range that includes the forcing tidal frequency of the Galilean
satellites. Consequently, in a gas giant planet hosting a dilute core, the orbital
motion of the satellites may resonate with internal gravity waves trapped in the
dilute core, leading to what we denominate an interior–orbital resonance. As we
show in Section 4.5, internal gravity waves trapped in the dilute core fail at producing
enough gravity to explain Juno’s observation when out of resonance.

The tidal excitation of 𝑔–modes trapped inside Jupiter’s dilute core produces a
fractional correction Δ𝑘42 to the hydrostatic Love number defined as

Δ𝑘42 =
𝑘42

𝑘
(hs)
42

− 1, (4.1)

where 𝑘42 is the dynamical Love number (Appendix F) and 𝑘 (hs)
42 ≈ 0.12 the hy-

drostatic Love number (Idini and Stevenson, 2022), both calculated in an 𝑛 = 1
polytrope. The 𝑛 = 1 polytrope closely approximates the equation of state of H-He,
the elements that dominate the composition of gas giant planets (Stevenson, 2020).
We use perturbation theory to obtain the Δ𝑘42 required by Juno rather than directly
trying to fit the observed 𝑘42. A polytropic equation of state and our perturbative ap-
proach greatly simplify an otherwise much more complicated numerical procedure
without compromising the generality of our results.

A gyrotidal effect on Jupiter couples Love numbers to rotation (Idini and Stevenson,
2022; Dewberry and Lai, 2022) and introduces an additional complication when
comparing Equation (4.1) to the fractional correction required by Juno. Due to the



49

gyrotidal effect, an interior–orbital resonance only affects the contribution to 𝑘42

that comes from the ℓ = 4 tidal forcing, which represents only a small fraction (7%)
of the total 𝑘42 associated to Io (Idini and Stevenson, 2022); the contribution to 𝑘42

from the nonresonant coupled response to the ℓ = 2 forcing remains hydrostatic.
Consequently, we calculate the 𝑔–mode fractional dynamical correction Δ𝑘42 as

Δ𝑘42 ≃ 0.07

(
4𝜋

9𝑘 (hs)
42

) (
Q2

𝜔2
𝑔 − (2𝐶Ω + 𝜔)2

)
, (4.2)

where the numerical factor 0.07 accounts for Jupiter’s gyrotidal effect, 𝜔𝑔 is the 𝑔–
mode frequency, 𝜔 is the tidal frequency, Q is the dimensionless coupling integral
that represents how well the tidal forcing couples to the eigenvector of the normal
mode, and𝐶 is the dimensionless amplitude of the first–order correction to the mode
frequency due to Jupiter’s rotation rate Ω,

Q =
4𝜋
𝑀𝑅ℓ

∫ 𝑅

0
𝑟ℓ+2𝛿𝜌∗𝑑𝑟 , (4.3)

𝐶 =
4𝜋
𝑀𝑅2

∫ 𝑅

0

(
2𝜉𝑟𝜉⊥ + 𝜉2

⊥

)
𝜌𝑟2𝑑𝑟 , (4.4)

where 𝛿𝜌∗ is the complex conjugate of the Eulerian densitiy perturbation of the mode,
𝜉𝑟 is the radial eigenfunction of the mode, and 𝜉⊥ is the horizontal eigenfunction of
the mode. At ℓ = 4, rotation produces only a small shift on the 𝑔–mode frequency
(e.g.,𝐶 ≤ 0.05 for models shown in this paper), thus resonances still appear roughly
at 𝜔𝑔 ≈ 𝜔. At a given satellite, the tidal frequency at 𝑚 = 2 follows

𝜔 = −2(Ω − 𝜔𝑠), (4.5)

where 𝜔𝑠 is the orbital frequency of the satellite that depends on the semimajor axis
according to 𝜔𝑠 ∝ 𝑎−3/2.

To fit the Juno observation, we require to approach an interior–orbital resonance
from the resonance branch that produces a negative fractional correction to 𝑘42.
According to Equation (4.2), we obtain the required negative fractional correction
only when |𝜔| > 𝜔𝑔. Pure chance hardly favors an interior–orbital resonance in the
hypothetical scenario that the Galilean satellites are randomly placed in orbit around
Jupiter. Tidal torques constantly force the satellite to migrate outwards, increasing
the semimajor axis 𝑎 and 𝜔 over time. Likewise, the dilute core structure evolves
over time due to convection (either overturning convection or double–diffusive
convection), correspondingly changing the 𝑔−mode frequency. Resonant locking
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(Appendix G) allows us to circumvent the invocation of a historical coincidence to
explain why these two frequencies match in present days. Resonant locking is an
equilibrium state where the evolution of the dilute core roughly matches the orbital
migration of the forcing satellite (Fuller et al., 2016).

We propose the following scenario to maintain an interior–orbital resonance over
geological timescales that produces a negative fractional correction to 𝑘42 and fits
Juno’s observation (Fig. 4.1). An initially nonresonant extended dilute core (i.e.,
𝑟 ≳ 0.7𝑅𝐽) hosts a 𝑔–mode that evolves into higher frequency due to some kind
of convection. In this initial stage, the Galilean satellites slowly migrate outward,
expanding their orbits due to dissipation associated with ℓ = 2 tides. Eventually,
the 𝑔–mode frequency encounters a resonance with Io, the Galilean satellite of
lowest tidal frequency. The onset of the resonance increases tidal dissipation at
ℓ = 4, accelerating Io’s orbital migration until achieving a state of resonant locking
(Section 4.6). The system could remain in resonant locking for geological timescales
until present day, assuming that the 𝑔–mode evolved faster toward higher frequency
than the orbital migration of Io while they were out of resonance.

orbital
migration

current state

initial state

convective
evolution

tidal
migration

tidal
migration

resonance
onset

Figure 4.1: Pictographic orbital migration and dilute core evolution required to
explain Juno’s 𝑘42 using a core–orbital resonance. The dilute core forms with a 𝑔–
mode frequency lower than the satellite tidal frequency. Initially out of resonance,
the satellite migrates outward at an almost negligible rate. After some uncertain
time, the dilute core evolves into a locked interior–orbital resonance, increasing the
rate of satellite orbital migration.
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In the following, we evaluate the plausibility of the scenario shown in Fig. 4.1.
In Section 4.4, we describe our simple models of Jupiter’s dilute core. In Section
4.5, we show that an interior–orbital resonance in Jupiter–Io prefers an extended
dilute core. In Section 4.6, we calculate the tidal dissipation required to attain ℓ = 4
resonant locking.

4.4 Jupiter dilute core models
The density 𝜌 of a mixture of H-He fluid and heavy elements as a function of pressure
𝑝 (Fig. 4.2) can be obtained from volume additivity of the individual constituents
(Appendix H)

1
𝜌
= (1 − 𝑍)

(
𝐾

𝑝

)1/2
+ 𝑍

𝜌𝑧
, (4.6)

where 𝜌𝑧 is the density of heavy elements, 𝑍 the fraction of mass corresponding
to elements heavier than H-He, and 𝐾 ≈ 2.1 · 1012 cgs represents the bulk elastic
properties of the H-He fluid for a cosmic abundance of He. For simplicity, we again
adopt an 𝑛 = 1 polytrope to approximately represent the response of the H-He fluid.
Provided 𝑍 is not large, the solution to Equation (4.6) is not much different from
the 𝑛 = 1 polytrope. For example, the dilute core models of Militzer et al. (2022)
closely follow an 𝑛 = 1 polytrope with a slightly different effective 𝐾 (Stevenson,
2020).

For convenience, we parameterize the enrichment of heavy elements in a dilute core
of width 𝐿𝑐 and inner radius 𝑥𝑖𝑐 following (Fuller, 2014)

𝑍 (𝑥) = 𝑍𝑒 + (𝑍𝑐 − 𝑍𝑒) sin2
(
𝜋(𝑥𝑖𝑐 + 𝐿𝑐 − 𝑥)

2𝐿𝑐

)
, (4.7)

where 𝑍𝑒 and 𝑍𝑐 represent the enrichment of heavy elements in the envelope (𝑥 >
𝑥𝑖𝑐 + 𝐿𝑐) and at center of the planet (𝑥 < 𝑥𝑖𝑐), respectively. The normalized radius
follows 𝑥 = 𝑘𝑟, where 𝑘2 = 2𝜋G/𝐾 . The enrichment of heavy elements decays
from 𝑍𝑐 to 𝑍𝑒 following the sin2 function along the dilute core width (Fig. 4.2).

The total mass of heavy elements in our models range from 18 to 25 𝑀𝐸 , in
agreement with estimates provided by other interior models (Guillot, 2005). We
construct our dilute core models by fixing the enrichment of heavy elements in the
envelope to 𝑍𝑒 = 0.0167, the value observed by two independent instruments in the
Galileo entry probe. The free parameters in our models are 𝑍𝑐 and 𝐿𝑐. The presence
of heavy elements shrinks Jupiter’s radius when compared to a planet made of pure
H-He fluid. We set the parameter 𝑥𝑖𝑐 to fit the target planetary radius 𝑅 = 3/𝑘 in
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Figure 4.2: Jupiter interior models with a dilute core defined as a gradient in the
enrichment of heavy elements. (a) A wide dilute core with a smooth compositional
gradient similar to that proposed in Debras and Chabrier (2019), (b) a narrow dilute
core with a sharp compositional gradient similar to that proposed in Militzer et al.
(2022), and (c) a compact dilute core with a sharp compositional gradient constrained
to a central region, similar to a traditional core. The density profile is normalized by
a central density 𝜌𝑐 equal to 5.8, 4.6, and 23.1 g cm−3, respectively. The enrichment
of heavy elements 𝑍 corresponds to the mass fraction of elements heavier than H
and He. The Brunt-Vaisala (B-V) frequency is normalized by Jupiter’s dynamical
frequency 𝜔2

𝑑𝑦𝑛
= G𝑀𝐽/𝑅3

𝐽
.

all of our models. The target planetary radius ultimately constrains the total mass
of heavy elements.

A compositional gradient in heavy elements introduces static stability to the interior
of Jupiter, represented by the Brunt-Vaisala frequency (Fig. 4.2),

𝑁2 = 𝑔

(
1
𝛾

𝜕 ln 𝑝
𝜕𝑟

− 𝜕 ln 𝜌
𝜕𝑟

)
. (4.8)

In calculating 𝑁2, we set the first adiabatic index to 𝛾 = 2, which represents the
adiabatic response of an 𝑛 = 1 polytrope. Thermal effects could possibly modify
the static stability, but those effects are small for reasonable central temperatures
(Mankovich and Fuller, 2021) and neglected here.

4.5 Tidal excitation of the dilute core
In this section, we calculate the fractional dynamical correction Δ𝑘42 produced by
the tidal excitation of our simple models of Jupiter’s dilute core. We restrict our
analysis to the first–order ℓ, 𝑚 = 4, 2 𝑔–mode (i.e., 2

4𝑔1), which produces a better
coupling with the respective tidal forcing compared to higher order 𝑔–modes (i.e,
2
4𝑔𝑛 modes, where 𝑛 > 1). We obtain 𝜔𝑔, Q, and 𝐶 in Equation (4.2) using the



53

1.
51

00

1.
50

75

1.
50

50

1.
50

25

1.
50

00

1.
49

75

1.
49

50

Tidal frequency, ω/Ω

20

15

10

5

0

5

10

15

20

∆
k

42
(%

)

Q4 = 104

Q4 = 103

Q4 = 102

Figure 4.3: Fractional correction to the hydrostatic Love number 𝑘42 as a function
of tidal frequency and dissipation 𝑄4. The dilute core model (Fig. 4.2b) produces
a 𝑔1–mode in resonance with the tidal frequency 𝜔 ≈ −1.5Ω, a forcing frequency
close to Io’s tidal frequency 𝜔𝐼𝑜 ≈ −1.53Ω.

stellar oscillations code GYRE (Townsend and Teitler, 2013) applied to our simple
Jupiter models. We observe a fractional dynamical corection capable of reaching the
required Δ𝑘42 ≈ −11% only when the 2

4𝑔1 mode frequency approaches a resonance
with the tidal frequency of the Galilean satellites (i.e., Fig. 4.3). The resonant model
in Fig. 4.3 produces a ∼1 m radial displacement of Jupiter’s outer boundary in order
to obtain the required gravitational signal.

The amount of tidal dissipation in the 2
4𝑔1 mode is limited to 𝑄4 ≳ 1000, otherwise

internal gravity waves are damped below the amplitude required to explain Juno 𝑘42
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(Fig. 4.3). Our account of dissipation represents only a rough estimate, following a
substitution in Equation (4.2) of the 𝑔–mode frequency,

𝜔̃𝑔 = 𝜔𝑔

(
1 + 𝑖

2𝜋𝑄

)
. (4.9)

Our simplified dissipation model is equivalent to introducing the term v/(2𝜋𝑄) in
the right-hand side of the equation of motion (Equation (F.1)), a term that accounts
for a convenient mathematical representation of frictional damping (Ogilvie, 2009).

Our results indicate that an extended dilute core (i.e., extending as far as ≳ 0.7𝑅𝐽)
produces a 2

4𝑔1 mode frequency that resonates with the tidal frequency of the Galilean
satellites (Fig. 4.4). Our compact dilute core models produce a 2

4𝑔1 mode frequency
considerably above the tidal frequency of the Galilean satellites 𝜔 < 2Ω, thus far
from resonance. We cannot rule out the possibility of a resonance in a compact core
with higher order 2

4𝑔𝑛 modes (i.e., 2
4𝑔𝑛 modes with extra radial nodes, where 𝑛 > 1)

of worse tidal coupling because the 2
4𝑔𝑛 mode frequency diminishes with increasing

order 𝑛 (Aerts et al., 2010). Consequently, we cannot constrain the extension of
the dilute core purely based on the identification of an interior–orbital resonance
at certain frequency. However, the lower tidal coupling of higher order 2

4𝑔𝑛 modes
leads to narrower resonances with lower saturation points, making the establishment
of resonant locking harder when compared to the 2

4𝑔1 mode (Appendix G).

Can the dilute core trap a satellite in an interior–orbital resonance at ℓ = 2? In
general, the 𝑔–mode frequency scales down with lower degree ℓ (Aerts et al., 2010).
At low degree ℓ and large number of radial nodes 𝑛, we can write

𝜔ℓ,𝑛 ≃
√︁
ℓ(ℓ + 1)
𝜋𝑛

∫ 𝑅

0

𝑁

𝑟
𝑑𝑟. (4.10)

According to Equation (4.10), the first–order ℓ = 2 𝑔–mode (i.e., 2
2𝑔1) approximately

oscillates with a frequency that is roughly 1/
√

3 times lower than the 2
4𝑔1 mode fre-

quency. The 𝑔–mode spacing determined this way represents only a rough estimate
because the 2

2𝑔1 and 2
4𝑔1 modes are far from the high–𝑛 asymptotic limit. Consider-

ing a current ℓ = 4 interior–orbital resonance at 𝜔𝑔 ≈ 1.5Ω, the corresponding 2
2𝑔1

mode frequency is 𝜔𝑔 ≈ 0.87Ω, which is far from resonant. The
√

3 factor provides
enough spacing between the mode frequency at different ℓ for the dilute core to
evolve into a ℓ = 4 resonance without interfering with the 2

2𝑔1 mode.

Our dilute core models could potentially produce an ℓ = 2 interior–orbital resonance
for realistic dilute core geometries (Fig. 4.5), but Juno 𝑘2 observation argues against
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Figure 4.4: The 2
4𝑔1 mode frequency of several dilute core models. The vertical

lines represent the tidal frequency |𝜔| of Io, Europa, Ganymede, and Callisto, from
left to right, respectively.

such scenario in present times. Juno observed 𝑘2 = 0.565 ± 0.006 at perijove 17
(Durante et al., 2020), which is in close agreement with a rotating gas giant out
of any significant interior resonance at ℓ = 2 (Dewberry and Lai, 2022; Idini and
Stevenson, 2021; Lai, 2021). The Juno 𝑘2 could only admit a small near–resonance
effect of a few percent, which would not be enough to explain the Δ𝑘42 ≈ −11%
required to reconcile the 7𝜎 discrepancy in 𝑘42.

4.6 Constraints to tidal dissipation imposed by resonant locking
In this section, we show that the ℓ = 4 tidal bulge can dominate the orbital migration
of a satellite over the migration produced by ℓ = 2 tides, a requirement to establish
a long–lived ℓ = 4 interior–orbital resonance via resonant locking.

The orbit of a satellite evolves in time due to a gravitational torque Γ exerted on the
satellite by the tidal bulge raised on the planet. In particular, the semimajor axis
of a satellite of mass 𝑚𝑠 evolves as ¤𝑎 ∝ Γ, with the gravitational torque following
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(Murray and Dermott, 1999)

Γℓ = −𝑚𝑠

𝜕 (𝑚
ℓ
Θ

′)
𝜕𝛼

, (4.11)

where 𝛼 is the angle that the tidal bulge lags behind the gravitational pull of the
satellite due to tidal dissipation. The tidal bulge produces an external potential Θ
proportional to 𝑟−(ℓ+1)Pℓ (cos𝛼), which is a solution to Laplace’s equation. The
ℓ = 2 external potential evaluated at the position of the satellite can be written as

2
2Θ

′
=
G𝑚𝑠

𝑎

( 𝑠
𝑎

)5
𝑘2P2(cos𝛼2), (4.12)

where 𝑠 is the average planetary radius.

The oblate figure of a rotating planet introduces significant changes to the structure
of the tidal gravitational field. The ℓ = 4 tidal gravitational field acquires a new
coupled nonresonant term from the ℓ = 2 tidal forcing, in addition to the term
related to the direct response to the ℓ = 4 tidal forcing (Idini and Stevenson, 2022).
The external potential induced by the coupled nonresonant term and the direct term
evaluated at the satellite position are, respectively,

2
4Θ

′ ∼ 5𝑞
𝜋2

G𝑚𝑠

𝑎

( 𝑠
𝑎

)7
𝑘2P4(cos𝛼4), (4.13)

2
4Θ

′
=
G𝑚𝑠

𝑎

( 𝑠
𝑎

)9
𝑘42P4(cos𝛼4), (4.14)

where 𝑞 is the dimensionless rotational parameter of a planet of mass 𝑀 ,

𝑞 =
Ω2𝑠3

G𝑀 . (4.15)

We explicitly indicate different lag angles 𝛼ℓ because dissipation can vary depending
on the proximity between the tidal frequency and the mode frequency. The angle 𝛼
increases when the mode frequency approaches a resonance with the tidal frequency.
In Equation (4.13), the relevant mode frequency is the ℓ = 2 𝑓−mode, which is
much higher than the tidal frequency of the Galilean satellites and hence leads to a
comparatively small 𝛼4. In Equation (4.14), on the other hand, the relevant mode
frequency is the 2

4𝑔1 mode, which can resonate with Io’s tidal frequency, leading to
a comparatively large 𝛼4.

Assuming that 𝛼 remains a small angle in all cases, we compare the evolution of the
satellite’s semimajor axis promoted by the ℓ = 2 tidal torque and the two ℓ = 4 tidal



57

torques. The coupled nonresonant term and the direct term produce significantly
different migration rates, respectively,

¤𝑎2
¤𝑎4

∼ 3𝜋2

50𝑞

(
𝑄4
𝑄2

) (𝑎
𝑠

)2
, (4.16)

¤𝑎2
¤𝑎4

=
3

10

(
𝑘2
𝑘42

) (
𝑄4
𝑄2

) (𝑎
𝑠

)4
, (4.17)

where we use 2𝛼ℓ ≈ 𝑄−1
ℓ

, and 𝑄ℓ is the tidal dissipation at a given degree ℓ.

We require 𝑄4 ≲ 1000 for the ℓ = 4 external potential in Equations (4.13) and
(4.14) to significantly contribute to Io’s orbital migration (i.e., ¤𝑎4 ≳ ¤𝑎2), under
the reasonable parameters 𝑞 ∼ 0.1, 𝑎/𝑠 ≈ 6, 𝑘2/𝑘42 ≈ 0.4, and 𝑄2 ∼ 105. The
nonresonant potential in Equation (4.13) hardly produces the low𝑄4 required in the
analysis above, and therefore produces a negligible contribution to orbital migration.
However, the external potential in Equation (4.14) can reach the relatively low 𝑄4

required as a result of a resonance between Jupiter’s 2
4𝑔1 mode and the tidal frequency

associated to Io (Fuller et al., 2016). In this case, the dissipation in the required low
𝑄4 describes kinetic energy leaving the 2

4𝑔1 mode mostly due to energy cascading
into higher degree 2

ℓ
𝑔1 modes (ℓ > 4) sustained by mode coupling. Particularly

for internal gravity waves, dissipation mostly occurs in the turbulent breaking of
oscillations at short wavelengths. Currently, no widely accepted explanation exists
for the origin of the tidal 𝑄 inside gas giant planets, which should be the subject of
future work.

The 𝑄4 required to guarantee dominance of the ℓ = 4 tidal torque (upper bound)
is of the same order of magnitude than the 𝑄4 required to obtain the necessary
gravitational effect to explain Juno’s 𝑘42 (lower bound), namely 𝑄4 ∼ 1000. The
coincidence suggests a limitation in our proposal, which can be resolved by the
following possibilities. Firstly, the upper bound extends upward if 𝑄2 is higher
than what has been assumed so far, a possibility we discuss in further detail in
Section 4.7. Secondly, the linear approach implied in Fig. 4.3 and Equation (4.9)
may not adequately represent tidal dissipation to the extend required in this problem.
Finally, we should consider the fortuitous possibility that the current dissipation lies
at 𝑄4 ∼ 1000. Notwithstanding these concerns, there is no known alternative to
explain the 𝑘42 observed by Juno.
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Figure 4.5: Same as Fig. 4.4 but for the 2
2𝑔1 mode frequency. The empty rectangles

show the higher–frequency 2
4𝑔1 mode of the same dilute core models.

4.7 Discussion
Previous estimates of Jupiter’s tidal dissipation
A century of astrometric observations of the Galilean satellites ephemerides con-
strains Jupiter’s recent dissipation to 𝑘2/𝑄2 ≈ 10−5, which leads to𝑄2 ≈ 6 ·104 for a
realistic 𝑘2 ≈ 0.6 (Lainey et al., 2009). The analysis assumes the same Jupiter 𝑘2/𝑄2

at each satellite (i.e., no dynamical tides) and neglects any contribution to orbital
migration from 𝑘42/𝑄4 or other higher degree tides. A different set of assumptions
may lead to a much larger Jupiter’s 𝑄2 than previously considered, which would
allow us to reconcile our upper (𝑄4 ≳ 1000) and lower bound (𝑄4 ≲ 1000) on 𝑄4.
In particular, our scenario suggest a resonant 𝑘42/𝑄4 ∼ 10−3 that in principle could
contribute to set Io’s ephemerides as registered in the last century, allowing 𝑘2/𝑄2

to assume a lower value while maintaining the same secular migration rate ¤𝑎 ∼ 10
cm/yr. A small 𝑘2/𝑄2 is in agreement with the nonresonant 𝑄2 ∼ 106 predicted
by dynamical tide theories of gas giant planet dissipation (Ogilvie and Lin, 2004b).
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Further analysis is required to test this hypothesis.

In our proposed scenario, an interior–orbital resonance vigorously pushes Io outward
against the mean-motion resonance with the other Galilean satellites. A short-
lived eccentricity cycle (Ojakangas and Stevenson, 1986) can explain the astrometic
suggestion that Io has migrated inward in the last century without compromising
our proposal of outward migration at a longer secular timescale. The width of the
resonance required to maintain resonant locking is 𝛿𝜔 ∼ 0.3 𝜇Hz (Fig. 4.3 with
Jupiter’s spin–rate Ω ≈ 170 𝜇Hz). Astrometry suggest that Io’s orbital migration
is ¤𝜔𝑠/𝜔𝑠 ∼ 10−11/yr in the last century (Lainey et al., 2009). When we apply the
currently observed migration rate over a period of 100 years, Io’s migration only
changes the tidal frequency by Δ𝜔𝑠 ∼ 4 · 10−8 𝜇Hz (Io’s orbital frequency 𝜔𝑠 ≈ 41
𝜇Hz), a quantity much smaller than the width of the resonance. Io would require
more than ∼1 Gyr to migrate out of the proposed resonance at the migration rate
observed by Lainey et al. (2009).

Evolution of Jupiter’s dilute core
Orbital evolution can drive a satellite into a transient resonance with a normal mode
for normal modes with frequency 𝜔𝛼 < 2Ω. However, satellites evolve fast out
of the resonance due to the temporally acquired enhanced dissipation. In a planet
where normal modes assume a spectrum fixed in time (i.e., no planetary evolution),
the observation of an interior–orbital resonance becomes a historical coincidence.

Jupiter’s dilute core possibly evolves as convective currents erode the dilute core from
the top. Due to dilute core erosion, an initially smooth compositional gradient turns
sharper over geological timescales, reducing the effective width and extension of the
dilute core. For a fixed dilute core outer boundary, our models show that the 2

4𝑔1 mode
frequency evolves towards lower frequency as the dilute core becomes narrower
(Fig. 4.4). Alternatively to dilute core erosion, double diffusive convection promotes
a contrary evolution path for the dilute core, increasing the effective width and
extension of the dilute core. The 2

4𝑔1 mode frequency in our models evolves towards
higher frequency as the dilute core becomes wider at fixed extension (Fig. 4.4).
Inertial modes restored by the Coriolis force are unlikely to lead to long–lived
interior–orbital resonances because the inertial mode frequency mostly depends on
the planet’s rotation rate (Dewberry and Lai, 2022), which rapidly evolves into
an essentially constant value a few hundred million years after formation. The
possibility of a slowly evolving inertial mode matching the evolution of the Galilean
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satellites should be assessed in a future effort.

Principal uncertainties in our proposal
Our proposed scenario of a long–lived interior–orbital resonance contains large
uncertainties. The evolution rate of the dilute core is hard to estimate and it should
be high enough as to produce a 2

4𝑔1 mode evolution that exceeds the evolution rate
of the Galilean satellites in the absence of resonances (Fig. 4.1). Not even the
sign of the resulting change in the 2

4𝑔1 mode frequency is known, with core erosion
and double diffusive convection evolving the dilute core in different directions.
Even by formation or evolution, we require an initially extended dilute core with a
compositional gradient located at 𝑟 ≳ 0.7𝑅𝐽 to obtain an initial 2

4𝑔1 mode frequency
that is lower than Io’s current tidal frequency. Formation models struggle to produce
an extended dilute core that survives convective mixing over the age of the solar
system (Liu et al., 2019; Müller et al., 2020; Vazan et al., 2018).

The duration of the interior–orbital resonance and the initial dilute core structure are
also uncertain. If the dilute core formed with an initial extension 𝑟 ∼ 0.7𝑅𝐽 , then
the interior–orbital resonance needs to be short-lived to produce almost negligible
migration for Io over ∼4.5 Gyr. If the initial dilute core reached 𝑟 ∼ 0.9𝑅𝐽 and
shrank or became broader over time, the interior–orbital resonance could be as old
as ∼1.5 Gyr assuming a resonant migration rate of ∼10 cm/yr (for a compilation
of current estimates, see Table 1 in Lainey et al. (2009)) and negligible migration
when out of resonance. In the latter scenario of an initial dilute core with 𝑟 ∼ 0.9𝑅𝐽 ,
Io’s semimajor axis can expand at most ∼2𝑅𝐽 after formation, which requires Io’s
formation to occur at ∼4𝑅𝐽 .

Finally, interior–orbital resonances become less likely to occur with high order 2
4𝑔𝑛

modes due to lower coupling with the tidal potential but cannot be ruled out. An
interior–orbital resonance with a high order 2

4𝑔𝑛 mode in a less extended dilute core
(𝑟 ≲ 0.7𝑅𝐽) could alternatively explain Juno’s 𝑘42 and also be maintained over
geological timescales. In this scenario, Io is free to migrate beyond ∼2𝑅𝐽 and the
initial dilute core may extend below 𝑟 ∼ 0.9𝑅𝐽 .

Future tidal and seismological observables of an interior–orbital resonance in
Jupiter–Io
Our proposed scenario of an interior–orbital resonance can be tested against future
seismological observations of Jupiter’s normal modes and to a lesser extent by the
Juno extended mission. We predict that Europa should raise nonresonant tides on
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Jupiter following the hydrostatic 𝑘42 = 4.4 (Wahl et al., 2020). In a scenario alterna-
tive to our proposed interior–orbital resonance, the Δ𝑘42 = −11% may come from a
unknown nonresonant effect and should equally apply to all satellites, leading to the
prediction 𝑘42 = 3.9 for Europa. At the end of the Juno extended mission, the Eu-
ropa 𝑘42 Juno observation will reach an uncertainty 𝜎 ≈ 0.4 (Luciano Iess, personal
communication, 2021 September 26), perhaps allowing us to discriminate between
an interior–orbital resonant and a nonresonant model. Ultimately, we require seis-
mological observations to robustly identify the spectrum of Jupiter’s normal modes
(Gaulme et al., 2011). In particular, we predict the 2

4𝑔1 mode frequency to be near
Io’s current tidal frequency 𝜔 ≈ 270 𝜇Hz.

He rain
We discard Jupiter’s He rain layer as a potential contributor to the 7𝜎 discrepancy
in 𝑘42 observed by Juno. The He rain layer in Jupiter produces 𝑔–modes that
oscillate with a frequency that is much lower than the tidal frequency of the Galilean
satellites. The immiscibility of He in H produces a He gradient that starts with
𝑌 ≈ 0.24 at 𝑟 ≈ 0.85𝑅𝐽 and ends with 𝑌 ≈ 0.28 at 𝑟 ≈ 0.75𝑅𝐽 . In this cavity, the
2
2𝑔1 mode oscillates with frequency 𝜔𝑔 ≈ 0.54Ω and the 2

4𝑔1 mode with frequency
𝜔𝑔 ≈ 0.87Ω, both much lower than the lowest tidal frequency among the Galilean
satellites |𝜔| ≈ 1.5Ω (Io). Higher order He rain 𝑔–modes oscillate at even lower
frequency (Equation (4.10)). In the context of gas giant planet evolution, the He
rain layer forms near the atmosphere and migrates inward in time as the planet
cools down. According to Equation (4.10), consequently, the He rain layer hosted
𝑔–modes with even lower frequencies in the past.

Jupiter’s dilute core and the dynamo region
In general, a dynamo region requires to be convectively unstable to produce a
magnetic field. A dilute core region promotes vertical stratification of the fluid,
presumably shutting down any potential dynamo activity. Recent analysis of Juno
observations suggests that Jupiter hosts a dynamo region at ∼0.8𝑅𝐽 capable of
reproducing Jupiter’s magnetic field (Connerney et al., 2022). Our extended dilute
core model extends up to ∼0.7𝑅𝐽 , allowing convection to occur within a layer of
metallic hydrogen trapped between the top of the dilute core and the bottom of He
rain.
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4.8 Conclusions
We used simple Jupiter dilute core models to calculate the fractional dynamical cor-
rection to Jupiter’s hydrostatic Love number 𝑘42 from the tidal excitation induced
by the Galilean satellites. After considering previously understood dynamical ef-
fects, Juno’s 𝑘42 observation at PJ17 requires an additional fractional correction
Δ𝑘42 ≈ −11% to reconcile a 7𝜎 disagreement with the hydrostatic 𝑘42. Our results
suggest that the required Δ𝑘42 can be produced by an interior–orbital resonance
between Io and a 2

4𝑔1 mode (i.e., ℓ, 𝑚, 𝑛 = 4, 2, 1, a 𝑔–mode with one radial node
in its eigenvector) trapped in Jupiter’s dilute core. The tidal dissipation in the 2

4𝑔1

mode is limited to 𝑄4 ≲ 1000 or the dynamical tide is damped below the required
Δ𝑘42 ≈ −11%. Our simple dilute core model achieves a 2

4𝑔1 mode in close reso-
nance with Io’s orbital motion when it extends as far as 𝑟 ≳ 0.7𝑅𝐽 , a dilute core
extension previously suggested in the analysis of zonal gravity data recorded by
Juno. Less extended dilute core models could explain Juno’s observed 𝑘42 invoking
a resonance of Io with higher order 2

4𝑔𝑛 modes (i.e., additional radial nodes in the
mode eigenvector), a possible scenario that cannot be ruled out.

To avoid invoking a historical coincidence in explaining Juno’s observation, we
propose a scenario where the 2

4𝑔1 mode evolves roughly at a similar rate compared
to the rate of Io’ current orbital migration, conforming a state of resonant lock-
ing that allows the invoked resonance to remain active over geological timescales.
We require a tidal dissipation 𝑄4 ≲ 1000 to maintain the aforementioned state of
resonant locking. Our proposed self–consistent scenario depends on largely uncon-
strained assumptions about the long–term evolution of Jupiter’s dilute core. On the
short term, Juno may provide the first test for our proposal from the end–mission
observation of Jupiter’s 𝑘42 associated to tides raised by Europa. On a longer term,
future seismological observations of Jupiter’s normal modes can test the validity of
our proposal from an observation of our predicted 2

4𝑔1 mode frequency (𝜔𝑔 ≈ 270
𝜇Hz).
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C h a p t e r 5

FAULT-ZONE DAMAGE PROMOTES PULSE-LIKE RUPTURE
AND BACK-PROPAGATING FRONTS VIA QUASI-STATIC

EFFECTS

“’Cause the players gonna play, play, play, play, play,
and the haters gonna hate, hate, hate, hate, hate,
baby, I’m just gonna shake, shake, shake, shake, shake,
I shake it off, I shake it off."

— Taylor Swift, Shake It Off

B. Idini and J.-P. Ampuero. Fault-zone damage promotes pulse-like rupture and
back-propagating fronts via quasi-static effects. Geophysical Research Letters,
47(23):e2020GL090736, 2020. doi:10.1029/2020GL090736.
B.I. contributed to the determination of the project’s direction; performed numeri-
cal simulations, scaling arguments, and analysis to generate results; implemented
new software features; and led the writing of the manuscript. This work was
adapted to constitute Chapter V.

5.1 Abstract
Damage zones are ubiquitous components of faults that may affect earthquake rup-
ture. Simulations show that pulse-like rupture can be induced by the dynamic effect
of waves reflected by sharp fault zone boundaries. Here we show that pulses can
appear in a highly damaged fault zone even in the absence of reflected waves. We
use quasi-static scaling arguments and quasi-dynamic earthquake cycle simulations
to show that a crack turns into a pulse after the rupture has grown larger than the fault
zone thickness. Accompanying the pulses, we find complex rupture patterns involv-
ing back-propagating fronts that emerge from the primary rupture front. Our model
provides a mechanism for back-propagating fronts recently observed during large
earthquakes. Moreover, we find that slow-slip simulations in a highly-compliant
fault zone also produce back-propagating fronts, suggesting a new mechanism for
the rapid-tremor-reversals observed in Cascadia and Japan.

https://doi.org/10.1029/2020GL090736
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5.2 Introduction
Pulse-like rupture (hereafter referred to as pulses) is a common mode of earthquake
propagation in which the duration of slip at each point of the fault, known as the
rise-time, is short compared to the total rupture duration (Heaton, 1990). Pulses
play a prominent role in the theory of earthquake mechanics: they can radically
affect the earthquake energy balance (Nielsen and Madariaga, 2003), reduce the
apparent strength of faults (Noda et al., 2009), enhance the spatial heterogeneity
of earthquake slip and stress (Aagaard and Heaton, 2008), and promote complex-
ity of seismicity manifested by a broad range of event magnitudes (Cochard and
Madariaga, 1996). Yet their origin is not completely established. Several mecha-
nisms of pulse generation have been proposed, involving healing fronts emerging
from features of the friction law (Cochard and Madariaga, 1996; Perrin et al., 1995),
from early arrest of one dimension of rupture (Day, 1982; Johnson, 1990), from
fault heterogeneities (Beroza and Mikumo, 1996; Day et al., 1998) or from waves
reflected in a low-velocity fault damage zone (Huang and Ampuero, 2011). The
present work focuses on the generation of pulses by damaged zones.

Faults are usually embedded in a damaged zone (Fig. 5.1a) characterized in field
observations by distributed fractures and micro-cracks (Chester and Logan, 1986;
Mitchell and Faulkner, 2009; Savage and Brodsky, 2011) and in seismological and
geodetic observations by reduced wave speeds or elastic modulus relative to the host
rock (Ben-Zion et al., 2003; Cochran et al., 2009; Lewis et al., 2005; Lewis and
Ben-Zion, 2010; Li et al., 2007, 2006, 1990, 2002; Mizuno et al., 2008; Peng et al.,
2003; Yang and Zhu, 2010; Yang et al., 2011). Seismic imaging methods resolve
fault zones of strike-slip faults as flower-structures with depth-varying thickness
and damage (Ben-Zion et al., 2003; Finzi et al., 2009). Hereafter, we refer to these
structures as low-velocity fault zones (LVFZ).

Dynamic rupture simulations show that the presence of a LVFZ can induce complex
rupture patterns: pulses promoted by healing fronts mediated by reflected waves,
oscillations of slip-rate and rupture speed, and supershear rupture at low background
stress (Harris and Day, 1997; Huang and Ampuero, 2011; Huang et al., 2014, 2016).
Recent earthquake cycle simulations show that the generation of pulses by a LVFZ
is persistent across multiple earthquake cycles, both in fully-dynamic (Thakur et al.,
2020) and quasi-dynamic simulations (Idini and Ampuero, 2017). The mechanism
of pulse generation by a LVFZ has been previously attributed to the dynamic effect
of waves reflected at the boundary of the LVFZ, which tend to unload the fault and
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Figure 5.1: (a) Schematic representation of a fault zone. (b) Conceptualization of a
fault zone as a simple tabular Low Velocity Fault Zone (LVFZ) model. The damaged
and intact media have constant shear modulus, (1 − Δ)𝜇 and 𝜇, respectively. (c)
Quasi-static rupture growth with uniform stress drop in a LVFZ, showing a transition
from crack-like (elliptical) to pulse-like (flat) slip profiles when the rupture length
exceeds the LVFZ thickness. The static slip profiles are computed numerically for
Δ = 0.99 by the method described in Appendix J.
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promote slip arrest (Huang and Ampuero, 2011; Thakur et al., 2020). However,
LVFZ quasi-dynamic simulations do not include these reflected waves. Here, we
explain how pulses can be promoted in LVFZs by a quasi-static mechanism.

The present work is further motivated by recent evidence of complex rupture pat-
terns in earthquakes and tectonic tremors, in particular back-propagating fronts.
While the inherent complexity of large earthquakes is abundantly highlighted by
modern seismological observations (Meng et al., 2012; Ross et al., 2019), reports
of secondary rupture fronts propagating in the direction opposite to the main front
(i.e., towards the hypocenter) are becoming increasingly clear and robust (Beroza
and Spudich, 1988; Hicks et al., 2020; Meng et al., 2011; Uchide et al., 2013; Vallée
et al., 2020). Back-propagating fronts have also been identified during slow slip
events (SSE) in Cascadia and Japan, appearing as tremor swarms known as Rapid
Tremor Reversals (RTR) which migrate at fast speed in the direction opposite to the
propagation of the large-scale slow slip (Houston et al., 2011).

Here, we show that pulses can be generated by a highly-damaged LVFZ, even without
the dynamic effects of reflected waves. We follow two complementary approaches:
static rupture scaling arguments (Section 2) and quasi-dynamic earthquake cycle
simulations (Section 3). Our simulations also reveal that the quasi-static effects of
a highly-damaged LVFZ are sufficient to generate back-propagating fronts.

5.3 Scaling arguments for quasi-static pulse generation
We consider a simple, tabular LVFZ model defined by a finite fault of length 𝐿

bisecting a homogeneous low-rigidity layer, the damage zone, embedded in an
intact medium (Fig. 5.1). The LVFZ is specified by its half-thickness ℎ and its
damage level Δ defined by:

𝜇𝑑 = (1 − Δ)𝜇, (5.1)

where 𝜇𝑑 and 𝜇 are the shear moduli of the LVFZ and intact medium, respectively.
We consider anti-plane deformation.

The model converges to two different homogeneous end-member models, depending
on the fault zone thickness. When ℎ/𝐿 is very small, the model approaches a
homogeneous intact medium with shear modulus 𝜇. When ℎ/𝐿 is very large, the
model tends to a homogeneous damaged medium with shear modulus (1 − Δ)𝜇.

Key effects of a LVFZ on rupture propagation are highlighted by analyzing the
limiting case of a highly damaged fault zone (Δ → 1), which is asymptotically
equivalent to the case of a rigid medium surrounding an elastic fault zone considered
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by (Horowitz and Ruina, 1989). We consider a rupture growing quasi-statically
with prescribed uniform stress drop Δ𝜏 and increasing rupture half-length 𝑟 (𝑡).
The fault-zone thickness ℎ is fixed and, for illustrative purposes, we set Δ = 0.99.
The resulting slip profiles (Fig. 5.1c) are computed by solving numerically a static
problem in which we account for static stress interactions modified by the presence
of the damaged layer, as described in Appendix J. The shape of the slip profile is
indicative of the style of rupture: crack-like ruptures show an elliptical slip profile
whereas (steady-state) pulses have a flat slip profile (Gabriel et al., 2012). While the
rupture is small (𝑟 (𝑡) ≪ ℎ), it only interacts with the damaged zone and therefore
has a crack-like slip profile, as in a uniformly damaged infinite medium. Its slip
grows proportional to rupture length as Δ𝑢(𝑡) ∼ Δ𝜏

2𝜇(1−Δ) 𝑟 (𝑡). As the rupture grows
large (𝑟 (𝑡) ≫ ℎ), it interacts with a thin elastic slab of thickness ℎ and develops
a pulse-like slip profile. Its slip reaches a value independent of rupture length,
Δ𝑢 ∼ Δ𝜏

𝜇(1−Δ) ℎ, as expected in a thin slab problem. Connecting these two rupture
stages together, a growing rupture with constant stress drop in a highly-damaged
LVFZ will initiate as a crack-like rupture and later transition into a pulse. The
transition is characterized by saturation of slip caused by the LVFZ once the rupture
grows larger than 2ℎ.

The above picture of crack-to-pulse transition provides insight into what controls
rise-time in a damaged fault zone in the absence of wave reflection effects. The rise-
time at the hypocenter is the time required for the appearance of a healing front. This
time corresponds kinematically to the emergence of pulses, which is approximately
the time required for the size of the initial crack to grow up to 𝑟 (𝑡) = ℎ. Assuming
a constant rupture speed 𝑣𝑟 , the size of the rupture is 𝑟 (𝑡) ∼ 𝑣𝑟 𝑡, hence the rise time
at the hypocenter roughly follows

𝑡 ∼ ℎ

𝑣𝑟
. (5.2)

This estimation of rise-time is valid at other locations beyond the hypocenter as-
suming that the propagation speed of the healing front is close to the rupture speed.
Because rise-time can be shorter away from the hypocenter (Huang and Ampuero,
2011), Eq. (5.2) should be taken as an upper bound. The resulting upper bound for
the pulse width, defined as the distance between the position of the rupture front
and the healing front, is

𝑙 ∼ 𝑣𝑟 𝑡 ∼ ℎ. (5.3)

The foregoing simplified analysis predicts the emergence of pulses from static effects
alone, independently of the presence of reflected waves in the LVFZ.
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Figure 5.2: History of seismic activity in a simulation of a fault model with Δ = 0.9
and 2ℎ ≈ 1/40𝐿𝑣𝑤. Solid lines represent accumulated slip after an earthquake
occurs.

5.4 Pulses and back-propagating fronts in quasi-dynamic multi-cycle models
We conduct quasi-dynamic earthquake cycle simulations under rate-and-state fric-
tion (Appendix I for methods), covering a wide range of values of LVFZ thickness
and damage. Our simulations do not include dynamical effects from reflected waves.
Each simulation produces a history of seismic activity, including earthquakes with
multiple sizes (Fig. 5.2). The largest earthquakes in one simulation span the whole
seismogenic length 𝐿𝑣𝑤 (Fig. I.1) and are labeled as characteristic events. In a
given fault model, characteristic events have the same magnitude but may show
different rupture patterns. We define an earthquake cycle as the period between two
characteristic events. In some fault models, simulations show a variable duration
of the earthquake cycle. We only consider results in characteristic events after a
spin-up period of several initial cycles, avoiding a dependence of our results on the
arbitrarily-prescribed initial conditions.
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Figure 5.3: Ruptures and seismicity in fault-zone models after multiple earthquake
cycles. (a) Average rise-time normalized by the total rupture duration, (b) average
number of rupture fronts (𝑉 > 1 cm/s) during an event, and (c) number of char-
acteristic events over the total number of events as a function of damage level Δ
and fault-zone thickness 2ℎ normalized by the size of the velocity-weakening fault
segment 𝐿𝑣𝑤. The rise-time is the duration of slip rate exceeding 1 cm/s. Black
contours in (a) are a semi-analytical prediction of the flatness of the slip profile in
a constant stress drop model (Appendix J). The slip profiles are obtained with the
same method used in Fig. 5.1c. Flatness is the fraction of the fault length where
slip is roughly constant, at most 20% lower than the maximum slip in the slip pro-
file. White contours in (c) show the estimated reduction of the nucleation length
due to the LVFZ (contours of 𝐿𝑛𝑢𝑐 in LVFZ normalized by its value in a homoge-
neous intact medium). (d) Spatiotemporal evolution of slip and slip velocity in the
characteristic event of an intact homogeneous medium, (e) a LVFZ with Δ = 0.9
and 2ℎ ≈ 𝐿𝑣𝑤/40, and (f) an intact homogeneous medium with ten times smaller
nucleation length than (d).
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Complex slip patterns appear in characteristic events when damage is high (Δ > 0.7)
and the fault zone is thin compared to the length of the seismogenic zone (2ℎ <
𝐿𝑣𝑤). Two signatures characterize the slip complexity: the promotion of pulses
(Fig. 5.3a) and the re-rupture of previously healed fault segments during the same
event (Fig. 5.3b,e).

Pulses are defined here by a drastic reduction of slip rate (𝑉 < 1 cm/s) at a short
distance behind the rupture front, leading to a short rise-time. We observe a
systematic reduction of the average rise-time over a wide range of LVFZ thickness
and high damage values (Fig. 5.3a). Short rise-times occur roughly within the
range of LVFZ parameters that produce flat slip profiles in the static rupture models
computed in Section 2 (Fig. 5.3a), consistent with the kinematic implications we
drew from the static crack analysis.

The re-rupture of previously healed fault segments (Fig. 5.3b) is characterized by
the emergence of secondary fronts propagating in the opposite direction to the main
rupture front (Fig. 5.3e and Fig. 5.4). These back-propagating fronts have a short
rise-time and can re-rupture multiple times the same fault segment. Models with
seismogenic zones that are much larger than the nucleation size (𝐿𝑣𝑤 ≫ 𝐿𝑛𝑢𝑐;
Appendix I) promote back-propagating fronts without requiring a LVFZ, but their
rise-time is longer and their number of re-ruptures is small (Fig. 5.3f with 𝐿𝑣𝑤 ∼
100𝐿𝑛𝑢𝑐).

In addition to characteristic events with complex slip patterns, events comprising
a wide range of sizes develop in thick and highly damaged fault zones (Fig. 5.3c),
where small events partially break the seismogenic zone from the edges (Fig. 5.2).
Small, non-characteristic events are known to emerge in rate-and-state friction mod-
els in homogeneous media with seismogenic zones much larger than their nucleation
length 𝐿𝑛𝑢𝑐 (Barbot, 2019; Cattania, 2019). The nucleation length is the smallest
size of a slip patch that can accelerate to instability (Rubin and Ampuero, 2005). In
a homogeneous medium it is proportional to the shear modulus, and in a damaged
zone to a reduced, effective shear modulus that depends on ℎ and Δ (Appendix I).
The LVFZ thickness and damage values promoting variable event magnitudes in our
models are well explained by the increase in the 𝐿𝑣𝑤/𝐿𝑛𝑢𝑐 ratio due to the reduction
in 𝐿𝑛𝑢𝑐 induced by the LVFZ (Fig. 5.3c). The smallest nucleation length is achieved
in models with Δ = 0.9 and 2ℎ > 𝐿𝑣𝑤, which have 𝐿𝑣𝑤 ∼ 100𝐿𝑛𝑢𝑐.

The rupture speed in our homogeneous medium model (Fig. 5.3d) corresponds to
𝑉𝑟𝑢𝑝 ∼ 1 km/s, a typical value in seismological observations. In contrast, a highly-



71

Figure 5.4: Spatiotemporal evolution of slip rate in the characteristic event of
earthquake cycle models using a LVFZ with Δ = 0.9 and different values of damage
zone thickness.

Table 5.1: Approximated dimensions of a fault and properties of the rupture in the
homogeneous and LVFZ models shown in Fig. 5.5 after assuming a value for 𝐷𝑐.

Homogeneous LVFZ (Δ = 0.9)
Characteristic slip, 𝐷𝑐 2 mm 2 mm
Seismogenic zone, 𝐿𝑣𝑤 2.5 km 2.5 km
Nucleation length, 𝐿𝑛𝑢𝑐 and 𝐿∗𝑛𝑢𝑐 242 m 40 m
Fault-zone thickness, 2ℎ - 64 m
Event duration, 𝑡 2.4 sec 32.4 sec
Average rise-time 2.1 sec 5.6 sec

damaged fault zone promotes a reduction in the rupture speed 𝑉 𝑑𝑟𝑢𝑝/𝑉𝑟𝑢𝑝 ∝ (1 −Δ),
compatible with theoretical quasi-static predictions of rupture speed (Ampuero
and Rubin, 2008) but slower than most seismological observations. The non-
dimensional units in Fig. 5.3 can be converted into real scales depending on the
assumed value of the characteristic slip distance of rate-and-state friction, 𝐷𝑐;
examples of dimensional scales are given in Table 5.1 for 𝐷𝑐 = 2 mm.
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Figure 5.5: Spatiotemporal evolution of slip and slip rate in the characteristic event
of earthquake cycle models assuming (a) a nearest-neighbor model with Δ = 0.99
and 2ℎ = 𝐿𝑣𝑤/25 and (b) a slow-slip model in a LVFZ model with Δ = 0.9
and 2ℎ ≈ 𝐿𝑣𝑤/40 and a modified friction law with velocity-strengthening at high
velocities. Axes are normalized following the convention in Fig. 5.3.
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Table 5.2: Parameters used in the numerical simulations.
Parameter Symbol Value
Direct effect (VW/VS) 𝑎 0.014/0.043
Evolution effect (VW/VS) 𝑏 0.019/0.019
Characteristic slip 𝐷𝑐 2 mm
Tectonic loading 𝑉𝑝𝑙 10−9 m/s
Reference slip rate 𝑉0 10−9 m/s
Reference friction coefficient 𝜇0 0.6
Shear-wave speed 𝛽 3.5 km/s
Intact shear modulus 𝜇 30 GPa
Effective normal stress 𝜎 120 MPa

5.5 Discussion
Short-range stress transfer and the origin of pulses in a LVFZ
Models with nearest-neighbour stress transfer, such as the Burridge-Knopoff (BK)
model (Burridge and Knopoff, 1967), have been often used as a mechanical analog
to earthquake rupture and are capable of promoting pulses in the continuum limit
(Brener et al., 2018; Erickson et al., 2011). In a BK model, a chain of sliders
connected by springs is loaded by a uniform displacement applied to a loading
spring (Burridge and Knopoff, 1967). In a uniform stress drop rupture, the BK
model produces the flat static slip profile characteristic of pulses when the loading
stiffness is much higher than the static stress transfer due to the relative motion
of sliders (Appendix K). Under our current model parameters (Table 5.2), ruptures
propagate as pulses both in a nearest-neighbour model (Fig. 5.5a) and in a fault-zone
model with large damage, Δ = 0.9 (Fig. 5.3e). Here we show that the emergence
of pulses in a LVFZ can be related to stress interactions approaching the nearest-
neighbour regime across a wide range of slip wavelengths.

The static stress transfer in a fault-zone model due to spatially-harmonic slip with
wavelength 𝑘 and unit amplitude is (Appendix J, Fig. J.1)

K(𝑘) = 1
2
𝜇(1 − Δ) |𝑘 | coth (ℎ |𝑘 | + atanh(1 − Δ)) . (5.4)

Asymptotic analysis (Fig. 5.6a, Appendix K) shows that at low 𝑘 the stress transfer
in a LVFZ tends to that of an intact homogeneous medium, whereas at high 𝑘 it
tends to that of a damaged homogeneous medium. In an intermediate range of
wavelengths, the stress transfer is approximately nearest-neighbour. As Δ increases,
the relative bandwidth of the nearest-neighbour regime broadens (Fig. S8), and the
short rise-time observed in the nearest-neighbor model (Fig. 5.5a) appears in the
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Figure 5.6: Nearest-neighbor stress transfer and promotion of slip complexity. (a)
The static stress transfer kernel of a LVFZ (Eq. 5.4) with Δ = 0.99 (black) in Fourier
domain, as a function of the normalized wavenumber 𝑘ℎ of slip, and its nearest-
neighbor approximation (red) (Appendix K). Also shown are the asymptotic limits
of a homogeneous intact medium (blue dashed) (K = 𝜇 |𝑘 |/2) and homogeneous
damaged medium (orange dashed) (K = 𝜇𝑑 |𝑘 |/2). The exaggerated level of damage
Δ = 0.99 represents the asymptotic limit of a LVFZ as damage increases. (b)
Conceptual interpretation of the emergence of secondary pulses. Re-rupturing is
necessary to fill the slip deficit (cyan) between a pulse at intermediate rupture length
(𝑟 (𝑡) > 2ℎ, purple curves) and a crack appearing at much larger lengths (𝑟 (𝑡) ≫ 2ℎ,
gray curves).

LVFZ model as well. In other words, increasing the LVFZ damage level extends the
range of slip length scales where pulses can exist. When ℎ is small (ℎ ≪

√
3𝐿𝑣𝑤),

a LVFZ model within the nearest-neighbour regime produces uniform stress drop
ruptures with a slip profile that is flat and has an average slip ≈ 2ℎΔ𝜏/(1 − Δ)𝜇
(Appendix K).

The limiting case where Δ → 1, analyzed in Section 2, represents an elastic layer
of thickness 2ℎ bounded by an infinitely rigid medium (Horowitz and Ruina, 1989).
Stress interactions in that case are nearest-neighbour at wavelengths larger than
∼2𝜋ℎ (Fig. S8). Such model is completely nearest-neighbour if the process zone
size, the smallest characteristic length scale of slip, is larger than ∼2𝜋ℎ.
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Origin of back-propagating fronts
Highlighted in our work as a manifestation of rupture complexity, back-propagating
fronts owe part of their relevance to recent earthquake observations. A recent report
from a M7.1 oceanic transform earthquake features a "boomerang earthquake" slip
pattern (Hicks et al., 2020) that resembles the structure of back-propagating fronts
shown in our models. Seismic observations indicate that LVFZs extend throughout
the seismogenic zone in oceanic transform faults (Roland et al., 2012), enhancing
the relevance of our model to explain the "boomerang earthquake" slip pattern. In a
different tectonic setting, a back-propagating front appears during a recently reported
M8 intermediate-depth earthquake (Vallée et al., 2020). Both observations are
independently supported by teleseismic back-projection imaging and finite source
inversion, suggesting the ubiquity of back-propagating fronts to different tectonic
environments.

The static solutions introduced in Section 2 provide insight on the origin of mul-
tiple back-propagating fronts. Relying on an idealized situation where the only
deformable medium is within the LVFZ, we showed the emergence of a transition
from a crack into a pulse when the rupture size exceeds 2ℎ. In reality the medium
outside the LVFZ is deformable as well. As the rupture continues growing to
sizes much larger than 2ℎ, stress increasingly transfers through the outer medium.
Eventually, the influence of the LVFZ becomes irrelevant to the propagation of the
rupture. At this point, the static analysis predicts a second, reverse transition from
pulse-like behavior to the crack-like behavior of an intact homogeneous medium
(Fig. 5.6b). Beyond this transition, slip increases in regions that were previously
healed. Therefore, slip reactivation is required there, leading to secondary rupture
fronts.

We expect re-ruptures to initiate where stresses are the highest, which is near the
primary rupture front, thus the ensuing secondary rupture fronts have to propagate
backwards. Furthermore, because these secondary ruptures start small, they need
to go through a pulse-like phase. In summary, in the presence of a LVFZ, back-
propagating pulses are necessary to complete the slip budget of a very large rupture,
filling the slip gap between intermediate-size pulses and large-size cracks.

A mechanism for Rapid Tremor Reversals
While observations of back-propagating fronts during earthquakes are challenging
and still incipient, slow slip and tremor phenomena offer a unique and systematic
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opportunity to observe complex slip patterns in slow motion. The back-propagating
fronts identified in Fig. 5.3e suggest that a highly-compliant LVFZ can provide a
mechanism for Rapid Tremor Reversals (RTRs) observed in Cascadia and Japan
during slow-slip events (Houston et al., 2011). Seismological observations suggest
that subduction megathrusts are surrounded by low-velocity zones (Audet and Scha-
effer, 2018; Nedimović et al., 2003) that are several kilometers thick near the region
where tremor activity concentrates (Calvert et al., 2020). Instead of damaged rock,
low-velocity zones in subduction zones mostly relate to layers of subducted material
containing pressurized fluids. Previous models of RTR rely on frictional hetero-
geneities (Luo and Ampuero, 2017; Luo and Liu, 2019), pore fluid pressure waves
(Cruz-Atienza et al., 2018), or external transient forcings such as tides (Hawthorne
and Rubin, 2013a). Our models show RTR-like patterns emerging from a different
mechanism: the quasi-static stress transfer of a LVFZ. Due to the ubiquity of LVFZ
to both regular earthquakes and slow slip events, our model supports the idea that
detailed observations of slow slip phenomena contribute to understand earthquakes
in general (Michel et al., 2019).

Our simulations show that back-propagating fronts also occur in slow slip models
with a LVFZ (Fig. 5.5b). Introducing strengthening at high slip rate is a known
approach to model slow-slip events (Hawthorne and Rubin, 2013b). We added
a linear velocity-strengthening term into the friction law (i.e., the fault strengthens
proportionally to𝑉), which is stronger than the logarithmic strengthening term of the
conventional rate-and-state friction (Appendix I). We chose a velocity-strengthening
coefficient 106 times larger than the radiation damping coefficient. Our results indi-
cate that back-propagating fronts emerge during slow-slip events in a LVFZ model
with the modified friction, although they are less vigorous than those observed in our
fast-rupture results (Fig. 5.5). Slow-slip events only show pulse-like behavior and
back-propagating fronts in the presence of a LVFZ (Fig. 5.7). As slow-slip models
are insensitive to dynamical effects, our results confirm that back-propagating fronts
emerge from quasi-static LVFZ effects alone. The SSE propagation speed in our
model is ∼5 m/day, about 1000 times lower than SSE propagation speeds observed
in Cascadia, which range from 7 to 15 km/day (Houston et al., 2011). Further work
is required to examine how low-velocity zones quantitatively affect tremor migration
patterns in more detailed slow-slip models.

The damage level observed in strike-slip faults ranges from 0.45 to 0.85 and the fault
zone thickness from 80 to 1500 m, with typical values Δ ∼ 0.65 and 2ℎ ∼ 200 m
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Figure 5.7: Comparison of slow-slip earthquakes (SSE) with and without a fault
zone (LVFZ) modeled using a friction law of increased velocity-strengthening. (a)
A slow earthquake in a fully-damaged homogeneous medium. The slip profiles are
indicative of crack-like rupture propagation. (b) The addition of the LVFZ promotes
multiple back-propagating secondary fronts. The main and secondary fronts show
slip profiles indicative of pulse-like rupture propagation.

(Fig. 5.8). The most damaged fault-zone structures reach Δ ∼ 0.85 (Li et al., 2007;
Yang and Zhu, 2010), which is close to the minimum value required by our model
to show significant slip complexity (Fig. 5.3a,b). For Δ ∼ 0.85 and a reasonable
fault-zone thickness 2ℎ from 100 m to 1 km, the rupture length required to develop
pulses and back-propagating fronts must be larger than 2 to 20 km (Fig. 5.3a,b).
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Figure 5.8: A compilation of fault-zone properties included in Huang et al. (2014).
Damage represents a reduction in shear moduli, which relates to a reduction in
velocity as Δ𝜇 = 1 − (1 − Δ𝑣)2, where Δ𝜇 is the damage reported in the figure and
Δ𝑣 the reduction in velocity reported in Huang et al. (2014).

It is likely then that the quasi-static LVFZ effects described here do not operate
during very small slow slip events. The properties of fault zones where RTRs
are observed are harder to be resolved compared to crustal faults due to the larger
depths involved. Dimensions of fault zones in subduction environments have been
inferred from observations in exhumed subduction zones (Rowe et al., 2013) but
their elastic properties remain poorly constrained. Receiver functions suggest that
the 𝑣𝑝/𝑣𝑠 ratio may increase over ∼75% due to over-pressurization of fluids within
the several-km-thick low-velocity zone that surrounds regions where tremors are
generated (Audet and Schaeffer, 2018; Calvert et al., 2020).

Potential model limitations
Further research is warranted to investigate whether the effects observed in our ide-
alized fault zone model remain after releasing some of the simplifying assumptions,
in particular the quasi-dynamic approximation and the 2D tabular LVFZ geometry.

Quasi-dynamic simulations in the absence of a LVFZ qualitatively agree with fully-
dynamic simulations under a conventional Dieterich-Ruina friction law (Thomas
et al., 2014). However, dynamic simulations that include a LVFZ produce a range of
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fault zone waves, including reflected, trapped and head waves (Huang and Ampuero,
2011; Huang et al., 2014), which can perturb the dynamic stress on the fault and in-
terfere with the quasi-static mechanism highlighted in the present work. Preliminary
results suggest that dynamic effects modulate, but do not obliterate the quasi-static
effects reported here (Flores-Cuba et al., 2020). Similarly, in previous dynamic
single-rupture simulations (Huang et al., 2014) dynamic LVFZ wave effects modu-
late, but do not obliterate the generation of pulses by another mechanism, enhanced
velocity-weakening friction. An important open question is whether the dynamic
effects of fault zone waves allow the slip complexity revealed here to operate over
a broader range of LVFZ property values, including the lower, commonly observed
levels of fault-zone damage.

The direction of slip is not important in the context of our quasi-dynamic model. Our
anti-plane results can be transferred to in-plane slip by replacing 𝜇 with 𝜇/(1 − 𝜈),
where 𝜈 is Poisson’s ratio. However, in-plane dynamical models can promote
additional slip complexity, for instance transitions to super-shear rupture speed
which are relevant for the interpretation of past earthquakes (Huang et al., 2016;
Oral et al., 2020).

The 3D structure of damage zones observed in the field is more complicated than a
simple 2D tabular region, usually displaying flower structures with wider thickness
at shallower depth (Finzi et al., 2009; Mitchell and Faulkner, 2009; Savage and
Brodsky, 2011). Moreover, LVFZ properties are not uniform along strike as the
fault-zone thickness varies with along-strike changes in fault geometry and the total
amount of slip locally accumulated over time (Ampuero and Mao, 2017; Mitchell
and Faulkner, 2009; Perrin et al., 2016). How such systematic variations of LVFZ
properties affect the rupture features highlighted here warrants further study. We
expect that the promotion by LVFZ of pulses and back-propagating fronts reported
in our 2D simulations should also appear in 3D simulations, as the static transfer
mechanism is approximately the same (similar to Eq. 5.4 with 𝑘 replaced by the
modulus of the wavenumber vector).

The quasi-static pulse-generation mechanism revealed here should persist in a LVFZ
without the sharp elasticity contrasts of a simple tabular damage zone, in contrast
to the dynamic mechanism of pulse-generation by reflected waves (Huang et al.,
2014). In fact, the static stress transfer in a model with exponential decay of damage
as a function of distance from the fault (Ampuero et al., 2002) has the same essential
features as in our tabular model (Eq. 5.4), in particular the same asymptotic behaviors
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highlighted in Fig. 5.6.

5.6 Conclusions
Our analytical arguments and simulation results show that rupture pulses emerge
and persist across multiple earthquake cycles via quasi-static effects in a fault sur-
rounded by a highly-damaged fault zone, independently of the dynamic effects
induced by fault-zone-reflected waves. We develop a formal analogy between a
fault zone model and a nearest-neighbor (Burridge-Knopoff) model that explains
the emergence of pulses. Nearest-neighbor models are known to produce pulses
and, within a certain range of length scales, the stress transfer in a damaged fault
zone is approximately nearest-neighbor. Our results suggest that the earthquake
rise-time should be proportional to fault zone thickness divided by rupture speed in
highly-damaged faults.

We also showed that fault-zone effects can produce complex slip patterns, including
back-propagating fronts that re-rupture previously healed fault segments. Such
back-propagating fronts have been most recently observed in large earthquakes. The
back-propagating fronts in our slow-slip models with highly-damaged fault zones
are also analogous to rapid tremor reversals observed in Cascadia and Japan.

Overall, quasi-static fault-zone effects provide a simple mechanism to promote and
sustain earthquake complexity, and a mechanical link between structural fault prop-
erties and seismicity. Our results further motivate the quest for higher temporal and
spatial resolution in earthquake source studies. The systematic exploration of model
parameters contained in our results provide targets for laboratory experiments aimed
at understanding the interactions between rupture propagation and heterogeneous
media.
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C h a p t e r 6

SUMMARY OF CONCLUSIONS

In this thesis, I developed a new framework to explore the interior structure of Jupiter
based on tidal gravity measurements obtained by NASA’s Juno spacecraft (Fig. 6.1).
My goal required further developing of the theory of dynamical tides applied to the
amplitude of the tidal gravitational field of Jupiter. I divided this complex task
into three smaller and simpler projects. In each of these projects, my approach
involved using simple models and perturbation theory to extract meaningful results
and physical insight from the complicated equations that describe tides in a gas giant
planet.

Figure 6.1: A diluted core model for Jupiter. This model satisfies Juno’s zonal
gravity constraints up to 𝐽6 and tidal gravity 𝑘2 and 𝑘42.

In Chapter II, I revealed how the Coriolis effect associated to Jupiter’s rotation
introduces a −4% change in the tidal amplitude 𝑘2 at the tidal frequency of Io.
To the current date, this effect is enough to reconcile 𝑘2 Juno observations with
models. In fact, the present 𝑘2 measurement is noninformative of core structure
given the current observational error (Fig. 6.2). As Juno continues collecting data,
future reductions in the observational error may require developing further detailed
modeling or theory to fully explain the observed 𝑘2.
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Figure 6.2: Gravitational imprint of dynamical tides as a function of tidal frequency.
The fractional corrections Δ𝑘2 and Δ𝑘42 represent a percentile change in the Love
number of Jupiter’s equilibrium tide. The diluted core is shown in Fig 6.1. The
gray circle is the Juno observation with 3𝜎 error bars at perijove 17 (mid-mission).
Vertical lines are the tidal frequency of the satellites I: Io, E: Europa, C: Callisto,
and G: Ganymede.

In Chapter III, I illuminated the gyrotidal effect that enhances Jupiter’s tidal response
in the high-order Love number 𝑘42. Jupiter develops a significant oblate figure due
to the centrifugal effect, resulting in Jupiter’s equatorial radius being 6% larger than
the polar radius. This oblate shape couples the tidal response at different scales,
causing an order of magnitude increase in 𝑘42. This fully analytical study provided
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physical insight into a result that in the past was only accessible via numerical
modeling.

In Chapter IV, I integrated lessons learned in the previous two chapters to propose
a scenario that explains a 7𝜎 anomaly in the high-order tidal gravity field of Jupiter
𝑘42. In this proposed scenario, Jupiter’s diluted core is shrinking over geological
timescales while its oscillation frequency remains synchronized to the orbital fre-
quency of the satellite Io. The result is a tidal resonance that introduces a high-order
dynamical tide observable by Juno (Fig. 6.2). The most likely resonant scenario
involves Jupiter’s diluted core extending as far as ∼70% of the radius (Fig. 6.1).
Less extended diluted cores could also cause a similar resonance but such config-
uration becomes less likely due to the weaker tidal coupling associated with the
resonant normal mode. Important uncertanties in this proposed scenario invite new
theoretical studies and independent observational confirmations of the proposed
Jupiter-Io tidal resonance. Independent observational evidence can be gathered at
the end of the Juno mission by means of observing the satellite dependent 𝑘42 and
from ground-based astronomy via Doppler seismology targeted at detecting a Jupiter
normal mode with oscillation frequency ∼270 𝜇Hz.

The new framework I developed here can in principle be used to study other giant
planets if precise gravity measurements from an orbiting spacecraft are available.
However, an important limitation is that tidal gravity is only sensitive to planetary
interior structure when the satellite tidal forcing is close to a resonance with a plan-
etary normal mode (Fig. 6.2). In that sense, tidal gravity constitutes a complement
to the traditional zonal gravity analysis. Given the sensitivity of dynamical tides to
tidal resonances, tidal gravity can be of particular interest to detect deeply settled
compositional gradients in giant planets. The next opportunity to apply this tidal
gravity analysis to a giant planet will be the Uranus Orbiter and Probe mission, a mis-
sion concept recently recommended in the 2023–2032 Planetary Science Decadal
Survey as first priority for the next NASA Flagship-class mission.

In Chapter V, I revealed a new mechanism to promote pulse-like rupture and back-
propagating rupture fronts based on quasi-static stress transfer. Earthquakes are
dynamical processes whose study requires detailed numerical approaches that ex-
ceed the complexity of the convenient quasi-dynamic approximation used in this
chapter. An immediate research question is whether the quasi-static effects identified
here remain relevant when competing with overlapping dynamical effects.
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6.1 Future research opportunities in giant planet’s interiors
The following are questions related to the new paradigm of diluted cores in gas giant
planets that remain open:

• What is the origin of diluted cores (i.e., formation versus evolution)? Current
ideas suggest that the diluted core could emerge as a result of core erosion or
via the particular order in which planetary materials are put into place at the
time of formation.

• What influence do diluted cores have on gas giant planet tidal dissipation?
A dilute core implies a change in how tidal energy is dissipated inside the
planet. The tidal excitation of internal waves trapped in the diluted core
influences the amount of angular momentum that is transferred from the
planet into the orbiting satellites, with implications to the current structure of
circumplanetary systems.

• Is Jupiter’s diluted core qualitatively different from Saturn’s?

• Can we resolve smaller-scale dilute core structure? The planetary scale struc-
ture of the diluted core models considered in this thesis may represent an
over simplification of a finer structure where thinner regions of stratification
alternate with regions of convection.

• Where do we locate the dynamo region? Dynamos most likely require the
existence of a convective region to allocate the flow of a semi-conductor
material. Whereas that region is shallow (i.e., top of the diluted core) or deep
(within the diluted core) is an active topic of research.

• How is the planet cooling down and where is the heat coming from? The
diluted core promotes stratification, countering the traditional view of Jupiter
as a fully adiabatic and convective interior. Vertical heat transfer without
overturning convection is inefficient, thus naturally raising questions about
the origin of the planet’s luminosity.
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A p p e n d i x A

HYDROSTATIC TIDES IN AN INDEX-ONE POLYTROPE

In hydrostatic tides, the tidal frequency becomes 𝜔 ≈ 0, and the tidal flow is slow
enough to set v ≈ 0. After projecting 𝜙0 into spherical harmonics by setting a
solution in the form

𝜙0 =
∑︁
ℓ,𝑚

𝜙0
ℓ,𝑚 (𝑥)𝑌

ℓ
𝑚 (𝜃, 𝜑)𝑒−𝑖𝜔𝑡 , (A.1)

the radial part of 𝜙0 at a given harmonic that satisfies equation (2.13) follows

𝜕𝑥,𝑥𝜙
0
ℓ +

2
𝑥
𝜕𝑥𝜙

0
ℓ +

(
1 − ℓ(ℓ + 1)

𝑥2

)
𝜙0
ℓ = −

( 𝑥
𝜋

)ℓ
, (A.2)

where 𝑌𝑚
ℓ

are the normalized spherical harmonics defined by

𝑌𝑚ℓ (𝜃, 𝜑) =

√︄
(2ℓ + 1)

4𝜋
(ℓ − 𝑚)!
(ℓ + 𝑚)!P

𝑚
ℓ (cos 𝜃)𝑒𝑖𝑚𝜑, (A.3)

and P𝑚
ℓ

are the associated Legendre polynomials corresponding to

P𝑚
ℓ (𝜇) = (−1)𝑚

2ℓ𝑙!
(1 − 𝜇2)𝑚/2 𝑑

ℓ+𝑚

𝑑𝜇ℓ+𝑚
(𝜇2 − 1)ℓ. (A.4)

The normalized radial coordinate follows 𝑥 = 𝑘𝑟, which leads to a planet with radius
𝜋. Note that equation (A.2) is non-dimensional and should be scaled by the factor

𝑈ℓ,𝑚 =

(
G𝑚𝑠

𝑎

) (
𝑅𝑝

𝑎

)ℓ (
4𝜋(ℓ − 𝑚)!

(2ℓ + 1) (ℓ + 𝑚)!

)1/2
P𝑚
𝑙 (0). (A.5)

The order 𝑚 does not appear in equation (A.2), indicating a degeneracy on 𝑚 of the
hydrostatic tide. As 𝑥ℓ𝑌𝑚

ℓ
is a solution to Laplace’s equation (i.e., ∇2(𝑥ℓ𝑌𝑚

ℓ
) = 0), a

complete solution to equation (A.2) is

𝜙0
ℓ = 𝐴 𝑗ℓ (𝑥) + 𝐵𝑛ℓ (𝑥) −

( 𝑥
𝜋

)ℓ
. (A.6)

We require 𝜙0 to be finite at the center of the planet and thus set 𝐵 = 0. According
to the outer boundary condition, we set a external gravitational potential Φ0

ℓ
(𝑥)

that extends outward from the planet and matches the internal tidal potential at the
planetary radius as

Φ0
ℓ (𝑥) =

(𝜋
𝑥

)ℓ+1
𝜙0
ℓ (𝜋) =

(𝜋
𝑥

)ℓ+1
(𝐴ℓ 𝑗ℓ (𝜋) − 1). (A.7)
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The continuity of the gradients of the internal and external potentials at the surface
of the planet sets the constant 𝐴ℓ to

𝐴ℓ =
2ℓ + 1
𝜋 𝑗ℓ−1(𝜋)

. (A.8)

Consequently, the gravitational potential of hydrostatic tides at degree ℓ is

𝜙0
ℓ =

(
2ℓ + 1
𝜋

)
𝑗ℓ (𝑥)
𝑗ℓ−1(𝜋)

−
( 𝑥
𝜋

)ℓ
, (A.9)

and the hydrostatic Love number follows

𝑘ℓ =

(
2ℓ + 1
𝜋

)
𝑗ℓ (𝜋)
𝑗ℓ−1(𝜋)

− 1. (A.10)
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A p p e n d i x B

PROJECTION OF THE DYNAMICAL TIDE EQUATIONS INTO
SPHERICAL HARMONICS

Here we project into spherical harmonics the equation for the potential 𝜓 in a
non-rotating (2.23) and rotating (2.14) 𝑛 = 1 polytrope. The equation for the
gravitational potential of dynamical tides is equation (2.15), forced by a different
potential 𝜓 depending on rotation. We evaluate solutions in the form

𝜓 =
∑︁
ℓ,𝑚

𝜓ℓ,𝑚 (𝑥)𝑌𝑚ℓ (𝜃, 𝜑)𝑒−𝑖𝜔𝑡 , (B.1)
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In the following, we conveniently drop the time-dependent part 𝑒𝑖𝜔𝑡 out of our
derivation. Notice that we normalize the radial coordinate following 𝑥 = 𝑘𝑟 , leading
to a body of normalized radius 𝜋 = 𝑘𝑅𝑝.

B.1 The Coriolis-free 𝑛 = 1 polytrope
We project into spherical harmonics the potential 𝜓 (2.23) and the dynamical grav-
itational potential (2.15) of the non-rotating polytrope,

𝑗0(𝑥)
(
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B.2 The 𝑛 = 1 polytrope
Relative to the left-hand side of equation (2.14), the projections of the first, second,
and third terms, respectively follow

∇ ·
(
𝑗0∇𝜓ℓ,𝑚

)
= 𝑗0

(
𝜕𝑥,𝑥 +

(
2
𝑥
− 𝑗1
𝑗0

)
𝜕𝑥 −

ℓ(ℓ + 1)
𝑥2

)
𝜓ℓ,𝑚𝑌

𝑚
ℓ , (B.5)

2
𝑖𝜔

∇ · ( 𝑗0𝛀 × ∇𝜓𝑙𝑚) =
2𝑚Ω 𝑗1
𝜔𝑥

𝜓ℓ,𝑚𝑌
𝑚
ℓ , (B.6)
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− 4
𝜔2∇ ·

(
𝑗0𝛀(𝛀 · ∇𝜓ℓ,𝑚)

)
= −4Ω2

𝜔2

((
𝑗0𝜕𝑥,𝑥 −

(
𝑗1 +

𝑗0
𝑥

)
𝜕𝑥

)
𝜓ℓ,𝑚𝑌

𝑚
ℓ cos2 𝜃

+ 𝑗0
𝑥
𝜕𝑥𝜓ℓ,𝑚𝑌

𝑚
ℓ +

(
2 𝑗0
𝑥2 + 𝑗1

𝑥
− 2 𝑗0

𝑥
𝜕𝑥

)
𝜓ℓ,𝑚 cos 𝜃 sin 𝜃𝜕𝜃𝑌𝑚ℓ

+ 𝑗0

𝑥2𝜓ℓ,𝑚 sin2 𝜃𝜕𝜃,𝜃𝑌
𝑚
ℓ

)
. (B.7)

The multiplication of spherical harmonics with trigonometric functions expresses
a physical statement about the coupling effect that Coriolis produces in the tidal
gravitational response of a rotating body. The partial derivatives in the spherical
harmonics indicate changes in quantum numbers described in the following differ-
ential relations (Lockitch and Friedman, 1999),

sin 𝜃𝜕𝜃𝑌𝑚ℓ = ℓ𝑄ℓ+1𝑌
𝑚
ℓ+1 − (ℓ + 1)𝑄ℓ𝑌𝑚ℓ−1, (B.8)

cos 𝜃𝑌𝑚ℓ = 𝑄ℓ+1𝑌
𝑚
ℓ+1 +𝑄ℓ𝑌

𝑚
ℓ−1, (B.9)

where

𝑄ℓ =

(
ℓ2 − 𝑚2

4ℓ2 − 1

)1/2

. (B.10)

Combining the previous differential relations, we arrive to expressions for each of
the angular terms in equation (B.7),

𝑌𝑚ℓ cos2 𝜃 = 𝑄ℓ−1𝑄ℓ𝑌
𝑚
ℓ−2 + (𝑄2

ℓ +𝑄
2
ℓ+1)𝑌

𝑚
ℓ +𝑄ℓ+1𝑄ℓ+2𝑌

𝑚
ℓ+2, (B.11)

cos 𝜃 sin 𝜃𝜕𝜃𝑌𝑚ℓ = −(ℓ + 1)𝑄ℓ−1𝑄ℓ𝑌
𝑚
ℓ−2 −

(
(ℓ + 1)𝑄2

ℓ − ℓ𝑄
2
ℓ+1

)
𝑌𝑚ℓ

+ℓ𝑄ℓ+1𝑄ℓ+2𝑌
𝑚
ℓ+2, (B.12)

sin2 𝜃𝜕𝜃,𝜃𝑌
𝑚
ℓ = (ℓ + 1)2𝑄ℓ−1𝑄ℓ𝑌

𝑚
ℓ−2 +

(
(2 + ℓ − ℓ2)𝑄2

ℓ − ℓ(ℓ + 3)𝑄2
ℓ+1

)
𝑌𝑚ℓ

+ℓ2𝑄ℓ+1𝑄ℓ+2𝑌
𝑚
ℓ+2. (B.13)

After grouping terms with the same spherical harmonic, equation (2.14) becomes an
infinite set of ℓ-coupled radial equations following the structure of a Sturn-Liouville
problem,(

(𝑃(1)
ℓ,𝑚
𝜕𝑥,𝑥 +𝑄 (1)

ℓ,𝑚
𝜕𝑥 + 𝑅(1)

ℓ,𝑚

)
𝜓ℓ,𝑚 +

(
𝑃
(2)
ℓ,𝑚
𝜕𝑥,𝑥 +𝑄 (2)

ℓ,𝑚
𝜕𝑥 + 𝑅(2)

ℓ,𝑚

)
𝜓𝑙+2,𝑚

+
(
𝑃
(0)
ℓ,𝑚
𝜕𝑥,𝑥 +𝑄 (0)

ℓ,𝑚
𝜕𝑥 + 𝑅(0)

ℓ,𝑚

)
𝜓𝑙−2,𝑚

= 𝑈ℓ,𝑚

(
𝜔2 − 4Ω2

4𝜋G𝜌𝑐

) (
2ℓ + 1
𝜋

)
𝑗ℓ (𝑥)
𝑗ℓ−1(𝜋)

. (B.14)
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The nine radial coefficients correspond to

𝑃
(0)
ℓ,𝑚

= −4Ω2

𝜔2 𝑗0𝑄ℓ−1𝑄ℓ, (B.15)

𝑃
(1)
ℓ,𝑚

= 𝑗0

(
1 − 4Ω2

𝜔2 (𝑄2
ℓ +𝑄

2
ℓ+1)

)
, (B.16)

𝑃
(2)
ℓ,𝑚

= −4Ω2

𝜔2 𝑗0𝑄ℓ+1𝑄ℓ+2, (B.17)

𝑄
(0)
ℓ,𝑚

=
4Ω2

𝜔2

(
(2ℓ − 3) 𝑗0

𝑥
+ 𝑗1

)
𝑄ℓ−1𝑄ℓ, (B.18)

𝑄
(1)
ℓ,𝑚

=
2 𝑗0
𝑥

− 𝑗1 −
4Ω2

𝜔2

(
𝑗0
𝑥

(
1 + (2ℓ + 1) (𝑄2

ℓ −𝑄
2
ℓ+1)

)
− 𝑗1(𝑄2

ℓ +𝑄
2
ℓ+1)

)
, (B.19)

𝑄
(2)
ℓ,𝑚

= −4Ω2

𝜔2

(
(2ℓ − 3) 𝑗0

𝑥
− 𝑗1

)
𝑄ℓ+1𝑄ℓ+2, (B.20)

𝑅
(0)
ℓ,𝑚

= −4Ω2

𝜔2 (ℓ − 2)
(
ℓ
𝑗0

𝑥2 + 𝑗1
𝑥

)
𝑄ℓ−1𝑄ℓ, (B.21)

𝑅
(1)
ℓ,𝑚

= − 𝑙 (𝑙 + 1) 𝑗0
𝑥2 + 2𝑚Ω 𝑗1

𝜔𝑥

+4Ω2

𝜔2

(
𝑗1
𝑥
((ℓ + 1)𝑄2

ℓ − ℓ𝑄
2
ℓ+1) +

𝑗0

𝑥2 ℓ(ℓ + 1) (𝑄2
ℓ +𝑄

2
ℓ+1)

)
, (B.22)

𝑅
(2)
ℓ,𝑚

= −4Ω2

𝜔2

(
(ℓ(ℓ + 4) + 11) 𝑗0

𝑥2 − (ℓ − 1) 𝑗1
𝑥

)
𝑄ℓ+1𝑄ℓ+2. (B.23)

The projection into the spherical harmonics of the boundary condition (2.38) leads
to

𝑌𝑚ℓ

(
𝜕𝑥𝜓ℓ,𝑚 − 2𝑚Ω

𝜔𝜋
𝜓ℓ,𝑚

)
− 4Ω2

𝜔2

(
𝑌𝑚ℓ cos2 𝜃𝜕𝑥𝜓ℓ,𝑚 − 𝜓ℓ,𝑚

𝜋
sin 𝜃 cos 𝜃𝜕𝜃𝑌𝑚ℓ

)
= 𝑈ℓ,𝑚

(
4Ω2 − 𝜔2

𝑔

) (
2ℓ + 1
𝜋

)
𝑗ℓ (𝑥)
𝑗ℓ−1(𝜋)

𝑌𝑚ℓ . (B.24)

The previous differential relations still apply to deal with coupled spherical harmon-
ics in the boundary condition. Grouping terms for each spherical harmonic 𝑌𝑚

ℓ
, we

reach an ℓ−coupled boundary condition with the structure

2∑︁
𝑗=0

(
𝑄̂

( 𝑗)
ℓ,𝑚
𝜕𝑥 + 𝑅̂( 𝑗)

ℓ,𝑚

)
𝜓𝑚ℓ+2 𝑗−2 = 𝑈ℓ,𝑚

(
4Ω2 − 𝜔2

𝑔

) (
2ℓ + 1
𝜋

)
𝑗ℓ (𝜋)
𝑗ℓ−1(𝜋)

. (B.25)
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The six radial coefficients correspond to

𝑄̂
(0)
ℓ,𝑚

= −4Ω2

𝜔2 𝑄ℓ−1𝑄ℓ, (B.26)

𝑄̂
(1)
ℓ,𝑚

= 1 − 4Ω2

𝜔2

(
𝑄2
ℓ +𝑄

2
ℓ+1

)
, (B.27)

𝑄̂
(2)
ℓ,𝑚

= −4Ω2

𝜔2 𝑄ℓ+1𝑄ℓ+2, (B.28)

𝑅̂
(0)
ℓ,𝑚

=
4Ω2

𝜋𝜔2 (ℓ − 2)𝑄ℓ−1𝑄ℓ, (B.29)

𝑅̂
(1)
ℓ,𝑚

= −2𝑚Ω
𝜋𝜔

− 4Ω2

𝜋𝜔2

(
(ℓ + 1)𝑄2

ℓ − ℓ𝑄
2
ℓ+1

)
, (B.30)

𝑅̂
(2)
ℓ,𝑚

= −4Ω2

𝜋𝜔2 (ℓ − 1)𝑄ℓ+1𝑄ℓ+2. (B.31)
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A p p e n d i x C

CHEBYSHEV PSEUDOSPECTRAL METHOD

We solve the Sturn-Liouville differential problem (Boyd, 2001) defined by

𝑝(𝑟)𝑢′′(𝑟) + 𝑞(𝑟)𝑢′(𝑟) + 𝑟 (𝑟)𝑢(𝑟) = 𝑓 (𝑟), (C.1)

and constrained to the boundary conditions

𝛼0𝑢
′(𝑎) + 𝛼1𝑢(𝑎) = 𝛼2, (C.2)

𝛽0𝑢
′(𝑏) + 𝛽1𝑢(𝑏) = 𝛽2, (C.3)

where 𝑎 and 𝑏 are the two ends of a boundary value problem. We shift the domain of
equation (C.1) from 𝑟 ∈ [𝑎, 𝑏] to the domain of Chebyshev polynomials 𝜇 ∈ [−1, 1]
and seek for a solution that is a truncated sum of an infinite Chebyshev series,

𝑢(𝜇) ≈
𝑁𝑚𝑎𝑥∑︁
𝑛=0

𝑎𝑛𝑇𝑛 (𝜇), (C.4)

with the Chebyshev polynomials defined by

𝑇𝑛 (𝜇) = cos(𝑛𝑡), (C.5)

and 𝑡 = arccos(𝜇). Our objective is to obtain the coefficients 𝑎𝑛 by solving a linear
inverse problem,

𝐿𝑎 = 𝑓 . (C.6)

The square matrix 𝐿 and the vector 𝑓 come from the evaluation of equation (C.1)
into Gauss-Lobatto collocation points defined by

𝜇𝑖 = cos
(
𝜋𝑖

𝑁 − 1

)
, 𝑖 = 1, 2, . . . , 𝑁 − 1, (C.7)

plus the constraints from boundary conditions. The partial derivatives in equation
(C.1) assume the analytical form

𝜕𝑇𝑛 (𝜇)
𝜕𝜇

= 𝑛
sin(𝑛𝑡)
sin(𝑡) , (C.8)

𝜕2𝑇𝑛 (𝜇)
𝜕𝜇2 = −𝑛2 cos(𝑛𝑡)

sin2(𝑡)
+

(
𝑛 cos(𝑡)
sin3(𝑡)

)
sin(𝑛𝑡). (C.9)
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A p p e n d i x D

TIDAL FLOW IN A UNIFORM-DENSITY SPHERE

We calculate the tidal flow from projecting equation (2.9) into Cartesian coordinates,

v = −
(

𝑖𝜔

4Ω2 − 𝜔2

) (
𝑥

(
𝜕𝑥 +

2𝑖Ω
𝜔
𝜕𝑦

)
+ 𝑦̂

(
𝜕𝑦 −

2𝑖Ω
𝜔
𝜕𝑥

)
+ 𝑧

(
4Ω2

𝜔2 − 1
)
𝜕𝑧

)
𝜓.

(D.1)
The potential 𝜓 depends on the potential of the gravitational pull (2.19) and the tidal
potential internal to the thin shell disturbed by tides. Analogous to what we did for
the external potential, we obtain the tidal gravitational potential (i.e., 𝑟 < 𝑅𝑝) from
integration throughout the volume,

𝜙′2 =
3
5

(
𝑟

𝑅𝑝

)2
𝑔𝜉2, (D.2)

which leads to

𝜓2 =
𝑅𝑝𝜔(2Ω − 𝜔)

2𝑔
𝜙2

′
=
𝐴𝑅𝑝𝜔(2Ω − 𝜔)

2𝑔
(𝑥 − 𝑖𝑦)2. (D.3)

The constant 𝐴 comes from the numerical factor of the relevant potentials, corre-
sponding to

𝐴 =
3

16
G𝑚𝑠

𝑎3 + 3
20

√︂
15
2𝜋
𝑔𝜉2

𝑅2
𝑝

. (D.4)

As shown in equation (D.3), 𝜓2 is independent of 𝑧, leading to a 2-D tidal flow in
equatorial planes. Replacing equation (D.3) into equation (D.1), the degree-2 tidal
flow becomes

v2 = −
𝐴𝜔𝑅𝑝

𝑔
(𝑥(𝑖𝑥 + 𝑦) + 𝑦̂(𝑥 − 𝑖𝑦)) . (D.5)



104

A p p e n d i x E

THE OBLATE FIGURE OF A GAS GIANT PLANET

In this appendix, we revise the classical result of calculating the first–order figure
of a gas giant planet mostly made of H-He (i.e., an 𝑛 = 1 polytrope) after being
perturbed by the centrifugal effect (Hubbard, 1984). The external potential of a
body perturbed by the centrifugal effect follows

𝜙 ≈ G𝑀
𝑟

(
1 −

( 𝑠
𝑟

)2
𝐽2P2(cos 𝜃)

)
, (E.1)

and the rotational forcing potential follows

𝜙𝑅 =
Ω2𝑟2

3
(1 − P2(cos 𝜃)) , (E.2)

where G is the gravitational constant, 𝑀 is the mass of the planet, 𝑠 is the average
planetary radius, Ω is the planet’s rotational frequency, 𝐽2 is the zonal gravitational
coefficient of degree ℓ = 2, and P2 the Legendre Polynomial of degree ℓ = 2. The
outer boundary of the planet represents an equipotential surface where pressure is
constant. If 𝑅(𝜃) represents the outer boundary of the planet, we require to satisfy

𝜙(𝑅) + 𝜙𝑅 (𝑅) = constant = 𝜙(𝜃 = 0), (E.3)

or

G𝑀
𝑅

(
1 −

( 𝑠
𝑅

)2
𝐽2P2(cos 𝜃)

)
+ Ω2𝑅2

3
(1 − P2(cos 𝜃)) = G𝑀

𝑏

(
1 −

( 𝑠
𝑏

)2
𝐽2

)
,

(E.4)
where 𝑏 is the polar radius. We consider the first–order expansion on the oblate
figure of the planet as

𝑅(𝜃) =
∞∑︁
ℓ=0

𝛿𝑟2ℓP2ℓ (cos 𝜃) ≈ 𝑠 + 𝛿𝑟2P2(cos 𝜃), (E.5)

where 𝛿𝑟2 is a ℓ = 2 perturbation to the figure of the planet. After replacing the
first–order expansion of 𝑅(𝜃) into Equation (E.4), we obtain the classical result

𝛿𝑟2
𝑠

≈ −
(
𝐽2 +

𝑞

3

)
, (E.6)

which is accurate to first order in 𝑞, and 𝑞 is the adimentional rotational parameter.
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To obtain 𝐽2 in an 𝑛 = 1 polytrope, we equal the external potential in Equation (E.1)
to the ℓ = 2 rotational gravitational response of the polytrope to the centrifugal
effect, both evaluated at 𝑟 = 𝑠,

𝐽2 = (5 𝑗2(𝜋) − 1) 𝑞
3

, (E.7)

where 𝑗2 is the spherical Bessel function of the first kind. The rotational gravitational
response in a 𝑛 = 1 polytrope follows the same equations and boundary conditions
than the tidal gravitational response with 𝜙𝑇 replaced by 𝜙𝑅 in Equation (3.6).
Finally, we obtain the first–order oblate figure of a rotating gas giant planet perturbed
by the centrifugal effect,

𝑅(𝜃) ≈ 𝑠
(
1 − 5

𝜋2 𝑞P2(cos 𝜃)
)

. (E.8)
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A p p e n d i x F

DYNAMICAL LOVE NUMBERS OF GAS GIANT PLANETS

The dynamical Love number describes dynamical tides where inertial effects in the
response of the planet are taken into account. The associated tradional equation
of motion corresponds to 𝐹 = 𝑀 ¤𝑣, where 𝐹 includes the tidal forcing and self–
gravitation of the tidally displaced mass, 𝑀 the tidally displaced mass, and 𝑣 the
tidal flow. Alternatively, the hydrostatic Love number describes an instantaneous
response where the equation of motion to solve reduces to the traditional 𝐹 = 0.
In a gas giant planet, the linearly perturbed equation of motion for dynamical tides
becomes (Idini and Stevenson, 2021)

− 𝑖𝜔v + 2𝛀 × v = −∇𝑝
′

𝜌
+ 𝜌′

𝜌2∇𝑝 + ∇𝜙′, (F.1)

where 𝜔 is the tidal frequency, 𝛀 is the spin rate of the planet, 𝑝 is pressure,
𝜌 is density, and 𝜙 is the resulting tidal potential after adding the tidal forcing
potential and the self-gravitation potential. The primes represent Eulerian linear
perturbations.

Alternatively to solve the tidal equation of motion (Equation F.1 coupled to Poisson’s
and continuity equations; for an example, see Idini and Stevenson (2021)), the
dynamical Love number can be obtained from considering the dynamical response
of periodically excited harmonic oscillators with oscillation frequency 𝜔0 (Idini and
Stevenson, 2021)

Δ𝑘 =
𝜔2

𝜔2
0 − 𝜔2

, (F.2)

where Δ𝑘 represents the fractional correction to the hydrostatic Love number due
to dynamical effects. In Equation (F.2), the frequency 𝜔0 represents the 𝑓 –mode
oscillation frequency of the planet, which is forced by a periodic loading with
frequency 𝜔 associated to the gravitational pull of the companion satellite.

Several additional effects complicate a practical use of Equation (F.2), which is
qualitatively illuminating but fails at delivering useful predictions. In Jupiter and
Saturn, fast rotation introduces the Coriolis effect as an important new term in the
equation of motion (i.e., the term 2𝛀 × v in Equation F.1). Even in this case,
the dynamical Love number can still be represented by periodically forced normal
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modes, but the new dynamics change the tidal motion in important ways. The
𝑓 –mode dynamical response changes in sign and amplitude (Idini and Stevenson,
2021), and a new set of modes restored by the Coriolis force join the already existent
𝑝– and 𝑓 –modes (Dewberry and Lai, 2022).

When rotation is treated as a linear perturbation, we can write the dynamical Love
number as (Lai, 2021)

𝑘ℓ𝑚 ≃
(

4𝜋
2ℓ + 1

) ∑︁
𝛼

Q2
𝛼

𝜔2
𝛼 − (𝑚𝐶𝛼Ω + 𝜔)2

, (F.3)

where the sum over 𝛼 represents a sum over all normal modes trapped inside the
planet, 𝜔𝛼 is the mode frequency, Q𝛼 is the coupling integral defined in Equation
(4.3), 𝐶𝛼 is the rotational coefficient defined in Equation (4.4), ℓ is degree, and 𝑚 is
azimuthal order.

The hydrostatic Love number emerges from 𝑓 –modes in Equation (F.3) when𝜔 = 0.
Other modes (i.e., 𝑝–, 𝑔–, and inertial modes restored by Coriolis) weakly couple to
the tidal forcing (i.e., they have a small Q𝛼), thus only contribute to the dynamical
Love number when the mode frequency 𝜔𝛼 approaches the forcing frequency 𝜔.
The dynamical contribution from inertial modes restored by Coriolis requires a
nonperturbative treatment of rotation, which complicates the numerical calculation
of mode properties but preserves the main idea behind Equation (F.3) (Dewberry
and Lai, 2022).
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A p p e n d i x G

RESONANT LOCKING APPLIED TO A PLANET–SATELLITE
SYSTEM

In a state of resonant locking, the migration rate ¤𝑎 of the satellite depends only on
the planetary evolution of the central planet (Fuller et al., 2016),

¤𝑎
𝑎
=

2
3

(
Ω

𝜔𝑠

(
¤𝜔𝛼
𝜔𝛼

−
¤Ω
Ω

)
− ¤𝜔𝛼
𝜔𝛼

)
, (G.1)

where Ω is the spin–rate of the planet, 𝜔𝑠 is the orbital frequency of the satellite,
and 𝜔𝛼 is the oscillation frequency of the resonant mode trapped inside the planet.
Resonant locking extends the lifetime of interior–orbital resonances to geological
timescales, diminishing the secular tidal 𝑄 of the tidal bulge associated to the
resonant mode and modifying the secular amplitude of dynamical tides.

The basic conditions required to maintain a state of resonant locking are the following
(Fuller et al., 2016):

1. The resonance must greatly increase the amount of tidal dissipation after it
kicks in, so that satellite migration accelerates when 𝜔 ≈ 𝜔𝛼.

2. The resonance must migrate in the same direction of satellite migration. For
a satellite migrating outwards, the mode frequency should increase in time to
encounter the also increasing tidal frequency 𝜔 = 𝑚(Ω −𝜔𝑠), where 𝑚 is the
azimuthal order and 𝜔𝑠 diminishes as the orbit expands.

3. Tidal dissipation at resonance must accelerate the satellite migration to match
the evolution of the resonant mode. If satellite migration cannot match the
mode evolution ¤𝜔𝛼 before saturation of the resonance, the resonance migrates
past the orbital frequency and resonant locking fails.
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A p p e n d i x H

A SIMPLIFIED EQUATION OF STATE OF MIXTURES

We compute the pressure 𝑝 in a mixture of H-He fluid with density 𝜌 and heavy
elements with density 𝜌𝑧 using volume additivity of the individual constituents
(Equation (4.6)). For H-He fluid following an 𝑛 = 1 polytropic equation of state
with a He cosmic abundance, the pressure follows

𝑝 = 𝐾𝜌2 𝑓 2, (H.1)

where the radial function 𝑓 (𝑟) is

𝑓 (𝑟) = 1 − 𝑍
1 − 𝜌

𝜌𝑧
𝑍

. (H.2)

The ratio 𝜌/𝜌𝑧 becomes small near the atmosphere but non-negligible near the core
region. To a good approximation, the pressure-density relation for an adiabatic
distribution of ’rocky’ heavy elements follows (Hubbard and Marley, 1989):

𝑝 ≈
(

1.4
1000

)
𝜌4.4
𝑧 , (H.3)

with 𝑝 in Mbar and 𝜌𝑧 in g/cm3. Near the center of Jupiter, pressure reaches
𝑝 ∼ G𝑀2

𝐽
/4𝑅4

𝐽
∼ 30Mbar and fluid density 𝜌 ∼ 4.4 g/cm3, which leads to a ratio

𝜌/𝜌𝑧 ∼ 0.4. We approximate the ratio 𝜌/𝜌𝑧 by treating 𝜌 as the density of pure H-
He fluid and 𝜌𝑍 as the density of ’rocky’ heavy elements (Equation H.3) subjected
to the hydrostatic pressure obtained from a body made of pure H-He fluid (i.e.,
𝑝 = 𝐾𝜌2

𝑐 𝑗
2
0 (𝑘𝑟))

𝜌

𝜌𝑧
≈ 0.42 ( 𝑗0(𝑘𝑟))0.6 . (H.4)

We can now rewrite 𝑓 (𝑟) as

𝑓 (𝑟) = 1 − 𝑍
1 − 0.42 ( 𝑗0(𝑘𝑟))0.6 𝑍

. (H.5)

The hydrostatic density profile of the mixture comes from solving a differential
equation similar to Lane-Emden’s equation. After defining the auxiliary variable
𝜌̃ = 𝜌 𝑓 , hydrostatic equilibrium imposes

1
𝜌

𝜕𝑝

𝜕𝑟
= 2𝐾 𝑓

𝜕𝜌̃

𝜕𝑟
= −𝑔. (H.6)
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After substituting the previous equation into the resulting equation from differenti-
ating with respect to 𝑟, we reach a second-order differential equation on 𝜌̃,

𝜕2 𝜌̃

𝜕𝑟2 +
(
𝜕 log 𝑓
𝜕𝑟

+ 2
𝑟

)
𝜕𝜌̃

𝜕𝑟
+

(
𝑘

𝑓

)2
𝜌̃ = 0. (H.7)

The usual boundary conditions 𝜌 = 𝜌𝑐 and 𝜌′ = 0 at the center lead to a new set of
boundary conditions

𝜌̃(0) = 𝑓 (0)𝜌𝑐 =
(

1 − 𝑍𝑐
1 − 0.42𝑍𝑐

)
𝜌𝑐, (H.8)

𝜕𝜌̃

𝜕𝑟

����
𝑟=0

= 0. (H.9)

We solve Equation (H.7) numerically after normalizing 𝜌̃ by the central density 𝜌𝑐.
We use the result to calculate 𝜌𝑐 from Jupiter’s mean density 𝜌̄𝐽 , according to

𝜌̄𝐽 =

(
3
𝑅3
𝐽

) ∫ 𝑅𝐽

0
𝜌𝑟2𝑑𝑟. (H.10)
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A p p e n d i x I

EARTHQUAKE CYCLE SIMULATIONS

I.1 Methods
We characterize the effect of a LVFZ on rise-time and slip profile in earthquake cycle
simulations covering a wide range of values of LVFZ thickness and damage. We
adopt a spectral boundary integral equation method (SBIEM) (Luo et al., 2017) and
a quasi-dynamic approximation where wave-related effects are crudely represented
by a radiation-damping term (Rice, 1993). The static stress transfer kernel required
in the SBIEM for a LVFZ is derived in Text S2. The modeling approach captures
the static LVFZ effects described in Section 2 of the main text, without including
any dynamic effect of fault zone reflected waves, and its computational efficiency
enables a comprehensive exploration of the parameter space.

The fault strength is prescribed by the Dieterich-Ruina rate-and-state friction law
coupled with the “ageing law” of state evolution (Dieterich, 1981; Ruina, 1980,
1983),

𝜏/𝜎 = 𝜇0 + 𝑎 ln
(
𝑉

𝑉0

)
+ 𝑏 ln

(
𝑉0𝜃

𝐷𝑐

)
, (I.1)

¤𝜃 = 1 − 𝑉𝜃
𝐷𝑐

, (I.2)

where 𝜏 and 𝜎 are the shear and normal fault stresses, respectively, 𝑉 is slip rate
and 𝜃 a fault state variable. The parameter 𝑎 quantifies the direct effect, 𝑏 the
evolution effect, and 𝐷𝑐 is the characteristic slip related to the state evolution.
Under steady-state, 𝑏 > 𝑎 leads to stick-slip behavior (velocity-weakening, VW)
whereas 𝑏 < 𝑎 leads to stable sliding behavior (velocity-strengthening, VS). We
represent a seismogenic zone driven by surrounding creep by prescribing a VW
patch of length 𝐿𝑣𝑤 in the middle of the fault, surrounded by two VS segments of
total length 3𝐿𝑣𝑤 and, at further distance, by steady uniform creep at slip rate 𝑉𝑝𝑙
(Fig. I.1). The parameter values of our numerical model are given in Table S2.

Ruptures that start as a crack and later turn into a pulse require a minimum rupture
distance to develop the transition, therefore a sufficiently large ratio between 𝐿𝑣𝑤
and the nucleation length 𝐿𝑛𝑢𝑐 (Rubin and Ampuero, 2005),

𝐿𝑛𝑢𝑐 =
2
𝜋

𝜇𝐷𝑐𝑏

𝜎(𝑏 − 𝑎)2 . (I.3)
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Figure I.1: The 𝑏 − 𝑎 parameter along position in the fault. The seismogenic zone
is indicated as a velocity-weakening zone (VW) surrounded by two stably sliding
velocity-strengthening (VS) segments.

Previous earthquake cycle simulations including a LVFZ model did not show signif-
icant reductions in rise-time for 𝐿𝑣𝑤 ∼ 1.5𝐿𝑛𝑢𝑐 and Δ = 0.36 (Kaneko et al., 2011),
so we extended the seismogenic length to 𝐿𝑣𝑤 ∼ 10𝐿𝑛𝑢𝑐. Moreover, we explored
values of Δ ranging from moderate damage to the upper bound inferred from cur-
rent seismological observations (Δ = 0.5 − 0.9) and values of ℎ extending over a
range wide enough to encompass most geological and seismological observations
(2ℎ/𝐿𝑣𝑤 ∼ 10−3 − 10). A compilation of observed or estimated levels of damage
and fault-zone thickness in natural faults is given in Fig. S6.
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We prescribed a minimum of five elements within an effective cohesive zone,

𝐿∗𝑏 =
9𝜋
32
𝜇∗𝐷𝑐

𝜎𝑏
, (I.4)

where 𝜇∗ is an effective shear modulus that accounts for the LVFZ derived bellow.
A well-resolved cohesive zone was verified a posteriori in all our simulation results,
characterized by a smooth and properly sampled stress distribution near the rupture
tips.

I.2 Estimation of the process zone size in a LVFZ.
The components of slip and stress drop at a wavenumber 𝑘∗ are related by an effective
shear modulus, 𝜇∗, which represents an effective value of the shear modulus profile
𝜇(𝑥) up to an off-fault distance comparable to 𝜆∗ = 2𝜋/𝑘∗. As is the case of a
homogeneous medium, the static stress transfer at this effective length scale can be
written as

K(𝑘∗) = 1
2
𝜇∗ |𝑘∗ |. (I.5)

Combining equations (J.9) and (I.5), we obtain

𝜇∗ = 𝜇(1 − Δ) coth(ℎ |𝑘∗ | + atanh(1 − Δ)). (I.6)

An estimate of the process zone size in a LVFZ, 𝐿∗
𝑏
, is related to the process zone

size in an intact medium, 𝐿𝑏, by

𝐿∗𝑏 = 𝐿𝑏
𝜇∗

𝜇
. (I.7)

After replacing Eq. (I.6) into Eq. (I.7) and setting 𝜆∗ ≈ 𝐿∗
𝑏
, the process zone in a

LVFZ satisfies

𝐿∗𝑏 = 𝐿𝑏 (1 − Δ) coth
(
2𝜋ℎ
𝐿∗
𝑏

+ atanh(1 − Δ)
)

. (I.8)

This equation is solved numerically to obtain 𝐿∗
𝑏
/𝐿𝑏 as a function of Δ and ℎ/𝐿𝑏.
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A p p e n d i x J

THE STATIC STRESS TRANSFER KERNEL IN A LVFZ MODEL

J.1 Problem statement
Let us consider a 2D elastic medium where the fault is located on the line 𝑥 = 0.
The medium is heterogeneous with the shear modulus 𝜇 depending only on 𝑥. Slip
is anti-plane in the direction out of the 𝑥 − 𝑦 plane. A static slip distribution D(𝑦)
produces a shear stress on the fault T (𝑦). Because the elasticity problem is linear,
slip and stress are related by a linear relation,

T (𝑦) = −
∫ ∞

−∞
K(𝑦, 𝑦′)D(𝑦′)𝑑𝑥′, (J.1)

where K is the static stress transfer kernel. The minus sign is introduced to give
K a meaning analogous to stiffness in a spring-block system. As the problem is
invariant by translation along 𝑦 (K(𝑦, 𝑦′) = K(𝑦 − 𝑦′)), Eq. (J.1) is a convolution,

T (𝑦) = −
∫ ∞

−∞
K(𝑦 − 𝑦′)D(𝑦′)𝑑𝑦′. (J.2)

After a Fourier transform, the convolution simplifies into a product,

T (𝑘) = −K(𝑘)D(𝑘), (J.3)

where 𝑘 is the wavenumber along the fault direction, 𝑦. In order to connect stress
and slip in the fault, the goal is to derive an expression for the static kernel in spectral
domain, the so-called spectral stiffness K(𝑘).

The equation of anti-plane elasticity governing the displacement field 𝑢(𝑥, 𝑦) parallel
to 𝑧 is

𝜇(𝑥)𝑢,𝑦𝑦 + (𝜇(𝑥)𝑢,𝑥),𝑥 = 0. (J.4)

A first boundary condition is the symmetric distribution of applied slip on each side
of the fault,

𝑢(0±, 𝑦) = ±1
2
D(𝑦). (J.5)

A second boundary condition requires that displacement 𝑢 must be finite at 𝑥 =

±∞. As the boundary conditions are symmetric, the resulting displacements are
symmetric as well and follow 𝑢(−𝑥, 𝑦) = −𝑢(𝑥, 𝑦). Therefore, we solve for the
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half-plane 𝑥 ≥ 0 only. After applying a Fourier transform over Eq. (J.4), our task is
reduced to find 𝑢(𝑥, 𝑘) such that

−𝑘2𝜇(𝑥)𝑢 + (𝜇(𝑥)𝑢,𝑥),𝑥 = 0

𝑢(0+, 𝑘) = 1
2
D(𝑘) (J.6)

𝑢(∞, 𝑘) < 0

and then evaluate the fault shear stress T (𝑘) = 𝜇(0)𝑢(0, 𝑘),𝑥 .

The problem has analytical solutions only for certain shear-modulus distributions
𝜇(𝑥). In the following we address two cases: a homogeneous medium and a two-
layer medium. An analytical solution for an exponential distribution of 𝜇(𝑥) is
possible as well but not exposed here (Ampuero et al., 2002).

J.2 Homogeneous medium
In a homogeneous medium, Eq. (J.4) reduces to

− 𝑘2𝑢 + 𝑢,𝑥𝑥 = 0. (J.7)

Its well-known general solution is 𝑢(𝑥, 𝑘) = 𝐴 exp (−|𝑘 |𝑥) +𝐵 exp ( |𝑘 |𝑥). The finite
displacement boundary condition imposes 𝐵 = 0, and the fault boundary condition at
𝑥 = 0 implies 𝐴 = 1

2D. The resulting displacement is 𝑢(𝑥, 𝑘) = 1
2D(𝑘) exp (−|𝑘 |𝑥).

After evaluating the shear stress on the fault, T (𝑘) = −1
2𝜇 |𝑘 |D(𝑘), the spectral

stiffness is
K(𝑘) = −T (𝑘)/D(𝑘) = 1

2
𝜇 |𝑘 |. (J.8)

J.3 Two-layer medium
Consider a fault in a homogeneous medium surrounded by two layers of uniform
half-thickness ℎ and homogeneous but reduced shear modulus (Fig. 1b). Within
the layers the shear modulus is 𝜇(1 − Δ) and outside the layers it is 𝜇. The
derivation of the kernel in a layered medium follows the same steps as the previously
addressed case. The differential equation is Eq. (J.7). Its general solution is a
combination of exponential functions for each layer, together with a total of four new
constants analogous to 𝐴 and 𝐵. Two new boundary conditions arise: continuity of
displacement and stress across the interface between the layers, 𝑢(ℎ+, 𝑘) = 𝑢(ℎ−, 𝑘)
and (1 − Δ)𝑢(ℎ−, 𝑘),𝑥 = 𝑢(ℎ+, 𝑘),𝑥 .

It is possible to obtain the displacement D(𝑥, 𝑘) after some algebraic work, then
derive the shear stress at the fault and finally the spectral kernel,

K(𝑘) = 1
2
𝜇 |𝑘 | (1 − Δ) coth(ℎ |𝑘 | + atanh(1 − Δ)). (J.9)
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J.4 Static slip profiles with constant stress drop
A first application of Eq. (J.9) is to numerically compute the static slip profiles of
a rupture with prescribed constant stress drop propagating in a fault with a LVFZ
(Fig. 1c). By applying an inverse fast Fourier transform to Eq. (J.9) over a very
long fault, we obtained a static stress transfer kernel in space domain, K(𝑦). Then
assuming a uniform stress drop, we solved numerically the discretized version of
Eq. (J.2) to obtain the slip profiles.

J.5 Numerical implementation of a LVFZ
Our numerical implementation of a LVFZ on multi-cycle earthquake simulations
consists of combining the time-domain kernel of a fault with finite length (Cochard
and Rice, 1997) with Eq. (J.9) in the frequency domain. The numerical models
shown in Fig. 3 are based on this implementation. We verified that the values of
the obtained kernel are similar to those obtained by the more expensive approach of
applying Eq. (J.9) to a periodic homogeneous fault 32 times longer (Fig. J.1).
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Figure J.1: Static stress kernel in a LVFZ versus wavenumber based on two numerical
implementations. The blue circles represent the combination of the kernel of a finite
fault with Eq. (J.9) in the wavenumber domain. The continuous orange line is an
approximated kernel using Eq. (J.9) over a periodic fault 32 times longer.
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A p p e n d i x K

THE STRESS TRANSFER IN A LVFZ AND A
BURRIDGE-KNOPOFF MODEL

K.1 Burridge-Knopoff (BK) model
In a BK model (Burridge and Knopoff, 1967), the quasi-static slip D𝑖 and stress T𝑖
at the base of the 𝑖-th block of area 𝑑𝑦2 relate to each other as

T𝑖𝑑𝑦2 = −𝑘𝐿 (D𝑖 − D𝐿) + K̄ (D𝑖−1 − 2D𝑖 + D𝑖+1), (K.1)

where D𝐿 is the loading displacement, 𝑘𝐿 the loading stiffness, and K̄ the stress
transfer due to the relative motion of the sliders. We furthermore introduce a loading
stiffness per unit area of block surface defined as

K̄𝐿 = 𝑘𝐿/𝑑𝑦2. (K.2)

Taking the continuum limit (𝑑𝑦 → 0) in Eq. (K.1):

T (𝑦) = −K̄𝐿 (D(𝑦) − D𝐿) + K̄D,𝑦𝑦. (K.3)

The second term in the right-hand side in the equation above is derived by expanding
terms in a Taylor series up to second order at small 𝑑𝑦,

D,𝑦𝑦 ≈
D(𝑦 − 𝑑𝑦) − 2D(𝑦) + D(𝑦 + 𝑑𝑦)

𝑑𝑦2 =
D𝑖−1 − 2𝐷𝑖 + D𝑖+1

𝑑𝑦2 . (K.4)

Taking the Fourier transform for non-zero wavenumbers (|𝑘 | > 0),

T (𝑘) = −K̄𝐿D(𝑘) − K̄𝑘2D(𝑘) = −(K̄𝐿 + K̄𝑘2)D(𝑘). (K.5)

The loading displacement D𝐿 is spatially uniform, hence it only contributes when
𝑘 = 0. We get the following static kernel in spectral domain,

K(𝑘) = K̄𝐿 + K̄𝑘2. (K.6)

K.2 Static slip induced by uniform stress drop in the continuum BK model
Consider a uniform stress drop within a rupture segment of size 𝑟, i.e.

Δ𝜏 = K̄𝐿D(𝑦) − K̄D,𝑦𝑦, (K.7)
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for 𝑦 ∈ [−𝑟/2, 𝑟/2], and zero slip elsewhere. The solution to the second-order linear
ODE above is the sum of a particular solution satisfying the ODE (here, a uniform
slip profile) and the general solution to the homogeneous version of the ODE,

D(𝑦) = Δ𝜏

K̄𝐿

+ 𝐴𝑒𝜅𝑦 + 𝐵𝑒−𝜅𝑦, (K.8)

where 𝜅 =
√︁
K̄𝐿/K̄. The constants 𝐴 and 𝐵 are determined by enforcing the

boundary conditions at the rupture tips, D(±𝑟/2) = 0,

𝐴 = 𝐵 = − Δ𝜏

2K̄𝐿 cosh(𝜅𝑟/2)
. (K.9)

Thus, the slip profile is

D(𝑦) = Δ𝜏

K̄𝐿

(
1 − cosh(𝜅𝑦)

cosh(𝜅𝑟/2)

)
. (K.10)

Figure K.1 shows the resulting slip profiles for a range of values of the dimension-
less number 𝜅𝑟 . For large 𝜅𝑟 values, the slip is flat over most of the rupture, as in
pulse-like ruptures, with slip approximately equal to Δ𝜏/K̄𝐿 .

K.3 Comparison between LVFZ and BK kernels
For a LVFZ model, we rewrite the kernel given in Eq. (J.9) as

K(𝑘) = 1
2
𝜇𝑑 |𝑘 |

(
1 + (1 − Δ) tanh(1 − Δ)

1 − Δ + tanh(ℎ |𝑘 |)

)
. (K.11)

In a highly damaged fault zone where Δ → 1, the kernel reduces to

K(𝑘) ≈ 1
2
𝜇𝑑 |𝑘 |

(
1

1 − Δ + tanh(ℎ |𝑘 |)

)
. (K.12)

The high-frequency regime is defined by tanh(ℎ |𝑘 |) ≫ 1 − Δ and leads to

K(𝑘) ≈ 1
2
𝜇𝑑 |𝑘 | coth(ℎ |𝑘 |). (K.13)

Moreover, if ℎ|𝑘 | ≪ 1, by Taylor expansion we obtain

K(𝑘) ≈ 𝜇𝑑

2ℎ
+ 1

6
𝜇𝑑ℎ𝑘

2. (K.14)

This shows that, under certain conditions for ℎ |𝑘 |, the stress transfer of the LVFZ
model is equivalent to that of the BK model, with the following formal analogies,

K̄𝐿 =
𝜇𝑑

2ℎ
, (K.15)
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Figure K.1: Static slip profiles for ruptures with uniform stress drop Δ𝜏 in a con-
tinuum Burridge-Knopoff model, with loading stiffness 𝐾𝐿 . Each curve is for a
different value of 𝜅𝑟 in {1, 2, 4, 8, 16, 32, 64}, from bottom to top.

K̄ =
𝜇𝑑ℎ

6
. (K.16)

Figure K.2a shows the LVFZ kernels (Eq. J.9) for various damage levels and their
BK-like approximation (Eq. K.14). Figure K.2 shows their ratio as a function of
normalized wavenumber 𝑘ℎ and for all damage levels Δ above 0.5. The bandwidth
over which the two kernels agree expands with increasing damage.

Under the conditions described above, the similarity between the LVFZ and BK
kernels implies a formal analogy between the two models, which we now exploit to
develop implications on pulse-like rupture. Eqs. (K.15) and (K.16) give 𝜅 =

√
3/ℎ.

The condition 𝜅𝑟 ≫ 1 for a flat, pulse-like slip profile in the BK model becomes, for
the LVFZ model, 𝑟 ≫ ℎ/

√
3. Under that condition and assuming a uniform stress

drop Δ𝜏, a LVFZ produces ruptures with the flat slip profile characteristic of pulses
and average slip of

D ≈ Δ𝜏

K̄𝐿

=
2ℎΔ𝜏

(1 − Δ)𝜇 . (K.17)
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Figure K.2: Comparison of LVFZ and BK static stress transfer kernels. (a) LVFZ
kernels for a range of damage levels Δ (see legend) and their BK approximation
(dashed) as a function of normalized wavenumber 𝑘ℎ. Kernels are normalized by
𝜇𝑑/2ℎ. (b) Ratio between LVFZ kernels and their BK-like approximation, as a
function of 𝑘ℎ and damage level Δ. The bandwidth over which the two kernels
agree expands with increasing damage (see for instance the contours 0.9 and 0.95).

In the low-frequency regime defined by tanh(ℎ |𝑘 |) ≪ 1−Δ, the LVFZ is too narrow
to have an effect on the stress transfer, and the kernel tends to that of a homogeneous
medium,

K(𝑘) ≈ 1
2
𝜇 |𝑘 |. (K.18)
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