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ABSTRACT

𝑍̂ is a 3d TQFT whose existence was predicted by S. Gukov, D. Pei, P. Putrov, and C.
Vafa in 2017. To each 3-manifold equipped with a spin𝑐 structure, 𝑍̂ is supposed
to assign a 𝑞-series with integer coefficients that is categorifiable and provides
an analytic continuation of the Witten-Reshetikhin-Turaev invariants. In 2019, S.
Gukov and C. Manolescu initiated a program to mathematically construct 𝑍̂ via
Dehn surgery, and as part of that they conjectured that the Melvin-Morton-Rozansky
expansion of the colored Jones polynomials can be re-summed into a two-variable
series 𝐹𝐾 (𝑥, 𝑞), which is 𝑍̂ for the knot complement. Following those developments,
in this thesis we develop further and generalize the theory of 𝑍̂ . Some of the main
results are:

1. Proof of Gukov-Manolescu conjecture for a big class of links, including all
homogeneous braid links, which gives a mathematical definition of 𝑍̂ for the
complements of those links;

2. Generalization of Gukov-Pei-Putrov-Vafa formula for 𝑍̂ for negative-definite
plumbed 3-manifolds to general Lie algebra;

3. Various conjectures coming out of the interpretation of 𝐹𝐾 (𝑥, 𝑞) in terms of
topological strings, such as the HOMFLY-PT analogue (i.e., 𝑎-deformation)
of 𝐹𝐾 (𝑥, 𝑞) and the holomorphic Lagrangian generalizing the 𝐴-polynomial.
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C h a p t e r 1

OVERVIEW

1.1 Introduction
“If a smooth 4-manifold is homeomorphic to 𝑆4, then does it follow that it is
diffeomorphic to 𝑆4?” This is a major open problem in topology known as the
smooth Poincaré conjecture in dimension four. The fact that such a fundamental
question remains open to date shows how little is known about the differential
topology in dimension four. In order to develop an understanding of smooth 4-
manifolds, it is vital to construct an invariant of smooth 4-manifolds that is strong
and easily computable.

A categorification of an invariant of 𝑛-manifolds assigns a graded vector space
H(𝑌 ) = ⊕𝑖∈ZH𝑖 (𝑌 ), instead of a number, to each 𝑛-manifold 𝑌 in such a way that
the Euler characteristic

∑
𝑖∈Z(−1)𝑖 dimH𝑖 (𝑌 ) of the graded vector space recovers the

original invariant. For each cobordism 𝑋 from 𝑌1 to 𝑌2, the categorification assigns
a linear map from H(𝑌1) to H(𝑌2). In particular, it assigns a number to each closed
(𝑛+1)-manifold 𝑋 , which can be considered as a cobordism from an empty manifold
to itself. The idea of categorification has revolutionized the study of low-dimensional
topology, as it provides a way to construct much stronger invariants of manifolds. For
instance, Rasmussen’s 𝑠-invariant of a knot [Ras10], which provides a lower bound
to the slice genus of the knot, can be derived from Khovanov homology [Kho00], a
categorification of the Jones polynomial.

To date, however, most research on categorification has been limited to invariants of
knots, instead of 3-manifolds. While categorification of knot invariants has provided
new insights on smooth surfaces in the 4-ball, it does not tell us much about general
smooth 4-manifolds. In order to construct novel invariants of smooth 4-manifolds, it
is desirable to categorify topological invariants of 3-manifolds, instead of knots. The
main challenge has been to find the right candidate of an invariant of 3-manifolds
that can be categorified.

Physics provides a promising idea to answer this question. There is a construction in
string theory and M-theory that takes an 𝑛-dimensional manifold 𝑌 and an ADE type
Lie algebra 𝔤 as an input and produces a (6 − 𝑛)-dimensional quantum field theory
𝑇𝔤 [𝑌 ] that contains a wealth of information about the manifold 𝑌 itself. When the
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manifold 𝑌 is 3-dimensional, there is an invariant 𝑍̂𝔤
𝑌

of 𝑌 derived from 𝑇𝔤 [𝑌 ] known
as the homological block [GPV17; Guk+20]. Physically, the homological block is a
certain count of what is known as the Bogomol’nyi–Prasad–Sommerfield (BPS) states.
This means that the vector space of BPS states provides a natural categorification of
the homological block of 3-manifolds. In other words, the homological block 𝑍̂𝔤 is
the sought-after invariant of 3-dimensional manifolds that can be categorified.

This provides a research program to construct a novel invariant of smooth 4-
dimensional manifolds by categorifying the homological block, in a mathematically
rigorous way.

Problem 1.1.1. Mathematically construct and categorify the homological block.
This problem can be divided into two parts:

1. Mathematically construct the homological block 𝑍̂𝔤 as an invariant of 3-
manifolds.

2. Mathematically construct the vector space of BPS states as a categorification
of the homological block.

It should be noted that it is a highly non-trivial problem to “translate” the physical
construction into mathematics. This is because, for one thing, quantum field theory is
not yet mathematically rigorously defined, and for another, not much is known about
the physics of the quantum field theory 𝑇𝔤 [𝑌 ] for a general 3-manifold 𝑌 . Hence,
completing this research problem would not only be impactful in low-dimensional
topology but also would shed light on the physics of the quantum field theory 𝑇𝔤 [𝑌 ].

1.2 This thesis
What this thesis is about
This thesis is about the first part of the Problem 1.1.1; that is, we focus on constructing
the 𝑞-series invariant 𝑍̂ of 3-manifolds, leaving the categorification problem for the
future. While this problem has not been solved completely yet, we have been able
to make significant progress. For simplicity, assume 𝔤 = 𝔰𝔩2 for now. The main
ingredient in our construction is the large-color 𝑅-matrix [Par20b; Par] that we
introduce in Chapter 3. It is the 𝑅-matrix describing the braiding of Verma modules
of𝑈𝑞 (𝔰𝔩2). Using Verma modules and the 𝑅-matrix, we construct 𝑍̂ for a large class
of 3-manifolds, that includes all complements of homogeneous braid links.
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Theorem 1.2.1 ([Par]). For any homogeneous braid link 𝐿 ⊂ 𝑆3, there is a well-
defined invariant 𝑍̂𝑆3\𝐿 that can be computed from a state sum model on the
homogeneous braid diagram.

A braid is called homogeneous if it can be presented by a braid word 𝜎𝜖1
𝑖1
· · ·𝜎𝜖𝑙

𝑖𝑙
,

𝜖𝑘 ∈ {±1}, where each Artin generator 𝜎𝑗 always appears with the same sign. A link
is called a homogeneous braid link if it is a closure of a homogeneous braid. For
example, the figure-eight knot 41 is a homogeneous braid knot, as it is the closure of
the homogeneous braid 𝜎1𝜎

−1
2 𝜎1𝜎

−1
2 . It is well-known [Sta78] that any link 𝐿 can

be made into a homogeneous braid link 𝐿′ = 𝐿 ∪ 𝐾 by adding an auxiliary unknot
component 𝐾 with any desired linking number with each component of 𝐿. Combined
with the classical theorem of Lickorish and Wallace [Lic62; Lic63; Wal60] that
any closed, oriented, connected 3-manifold can be obtained by performing Dehn
surgery on a framed link in 𝑆3 (with ±1 surgery coefficients), it implies that for any
3-manifold 𝑌 , there is a link 𝐿 ⊂ 𝑌 such that the complement 𝑌 \ 𝐿 is homeomorphic
to the complement of a homogeneous braid link 𝐿′ ⊂ 𝑆3. Therefore, our theorem
has the following corollary.

Corollary 1.2.2. For any 3-manifold 𝑌 , there is a link 𝐿 ⊂ 𝑌 for which we can
compute 𝑍̂𝑌\𝐿 .

In other words, the first part of the Problem 1.1.1 is now reduced to the problem of
finding a Dehn surgery formula for 𝑍̂ . While a fully general Dehn surgery formula
is not available yet, there are many hints. One of them is the conjectural 𝑝

𝑟
-surgery

formula of Gukov and Manolescu [GM21], which can be applied whenever − 𝑟
𝑝

is
sufficiently large. Another one is the conjectural regularized surgery formula coming
from the inverted Habiro series. We review them in Chapter 2 and 4.

Another main result of this thesis is the study of the dependence of 𝑍̂ on the choice
of Lie algebra 𝔤, which is the topic of Chapter 5. The following result generalizes
the result of [Guk+20] and [GM21] from 𝔰𝔩2 to an arbitrary simple Lie algebra.

Theorem 1.2.3 ([Par20a]). Fix a simple Lie algebra 𝔤. For any negative definite
plumbed 3-manifold (or any negative definite plumbed knot complement) 𝑌 , there is
a well-defined invariant 𝑍̂𝔤

𝑌
.

When 𝔤 = 𝔰𝔩𝑁 and 𝑌 = 𝑆3 \ 𝐾 is the complement of a torus knot 𝐾 = 𝑇𝑠,𝑡 , after
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specializing to symmetric representations, it can be checked that

𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎, 𝑞)
����
𝑎=𝑞𝑁

𝑍̂
𝔰𝔩(𝑁)
𝑆3\𝐾 (𝑥, 𝑞) = 0,

where 𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎, 𝑞) is a 𝑞-difference operator known as the 𝑎-deformed quantum
𝐴-polynomial of 𝐾 [FGS13]. In view of such a regular behavior of 𝑍̂𝑆3\𝐾 under
the change of the rank of the Lie algebra, it is natural to conjecture that for any
knot 𝐾 , there is a three-variable invariant 𝑍̂𝑆3\𝐾 (𝑥, 𝑎, 𝑞) that interpolates all the 𝔰𝔩𝑁
invariants 𝑍̂𝔰𝔩𝑁

𝑆3\𝐾 (𝑥, 𝑞).

From the physics point of view, there is a natural interpretation of such a three-variable
invariant [Ekh+; Ekh+22] as a count of open topological strings. This is based on
the well-known duality [Wit95; GV98; OV00] between Chern-Simons theory and
topological string theory. The novelty in our case is that we need to use the knot
complement Lagrangian instead of the usual knot conormal Lagrangian. While the
physical description of 𝑍̂𝔰𝔩𝑁

𝑆3\𝐾 (𝑥, 𝑞) is not mathematically rigorous, it allows us to
formulate a number of concrete mathematical conjectures which can be explicitly
checked for some simple knots. We review them in Chapter 6.

How this thesis is organized
In Chapter 2, we review the necessary background, including quantum groups, their
representations, quantum invariants of links and 3-manifolds. We then review the
definition of 𝑍̂ for negative definite plumbed 3-manifolds [Guk+20] as well as the
conjectures of Gukov-Manolescu [GM21] on 𝑍̂ for knot complements and Dehn
surgery formulas.

In Chapter 3 (based on [Par20b; Par]), we introduce the large-color 𝑅-matrix. Given
a link diagram, the large-color 𝑅-matrix determines a state sum model, but due to
the infinite-dimensional nature of Verma modules, it is a highly non-trivial problem
to make sense of these infinite sums. We introduce the notion of inverted state
sums, and show that if a link admits a link diagram on which the inverted state sum
converges absolutely, then the inverted state sum is a well-defined invariant of the
link. Any homogeneous braid link admits such a link diagram. This link invariant
satisfies the expected properties of 𝑍̂ for link complements and therefore provides a
definition of 𝑍̂ for those link complements.

In Chapter 4 (based on [Par]), we introduce the notion of inverted Habiro series.
We present some 𝑞-series identities, which can be used to study 𝑍̂ of certain Dehn
surgeries on a knot.
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In Chapter 5 (based on [Par20a]), we present a generalization of the works [Guk+20;
GM21] reviewed in Chapter 2 to any simple Lie algebra 𝔤. We also provide simple
formulas of 𝑍̂𝔤 for some 3-manifolds, including Seifert manifolds with 3 singular
fibers and torus knot complements.

In Chapter 6 (based on [Ekh+; Ekh+22]), we present some conjectures on 𝑍̂𝑆3\𝐾 (𝑥, 𝑎, 𝑞)
that are motivated from the physics of topological strings.
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C h a p t e r 2

BACKGROUND

2.1 Chern-Simons theory
Quantum topology, now a mature field of study of more than 30 years of history,
started with the discovery of Jones polynomial [Jon85] and its interpretation as
the expectation value of the Wilson line defect in Chern-Simons theory [Wit89].
Chern-Simons theory is a prominent example of a 3-dimensional topological quantum
field theory (TQFT) [Ati88; Wit88], and it can be defined mathematically using the
representation theory of quantum groups [RT91]. There are numerous textbooks
on this topic, such as [Ati90; Koh02; Tur94; BK01], so we will not review in detail
what Chern-Simons theory is. Instead, let us briefly review what colored Jones
polynomials and Witten-Reshetikhin-Turaev invariants are, which will be useful for
the readers in reading the later chapters.

Quantum groups
Quantum 𝔰𝔩2,𝑈𝑞 (𝔰𝔩2), is an associative algebra overC(𝑞 1

4 ) generated by 𝐸, 𝐹, 𝐾± 1
2 (=

𝑞±
𝐻
4 ) with relations1

𝐾
1
2𝐸 = 𝑞

1
2𝐸𝐾

1
2 , 𝐾

1
2𝐹 = 𝑞−

1
2𝐹𝐾

1
2 , [𝐸, 𝐹] = 𝐾 − 𝐾−1

𝑞
1
2 − 𝑞− 1

2
.

In fact, 𝑈𝑞 (𝔰𝔩2) is not just an associate algebra, but it is a quasitriangular Hopf
algebra. This means, first of all, that it is a Hopf algebra with the following coproduct,
counit and antipode

Δ(𝐸) = 𝐸 ⊗ 𝐾 1
2 + 𝐾− 1

2 ⊗ 𝐸, Δ(𝐹) = 𝐹 ⊗ 𝐾 1
2 + 𝐾− 1

2 ⊗ 𝐹, Δ(𝐾 1
2 ) = 𝐾 1

2 ⊗ 𝐾 1
2 ,

𝜖 (𝐸) = 𝜖 (𝐹) = 0, 𝜖 (𝐾 1
2 ) = 1,

𝑆(𝐸) = −𝑞 1
2𝐸, 𝑆(𝐹) = −𝑞− 1

2𝐹, 𝑆(𝐾 1
2 ) = 𝐾− 1

2 ,

and moreover that it admits a universal 𝑅-matrix

𝑅 = 𝑞
𝐻⊗𝐻

4
∑︁
𝑘≥0

𝑞−
𝑘 (𝑘+1)

4
(𝑞 1

2 − 𝑞− 1
2 )𝑘

[𝑘]! (𝐾 𝑘
2 𝐸 𝑘 ⊗ 𝐾− 𝑘2 𝐹𝑘 ) ∈ 𝑈𝑞 (𝔰𝔩2)⊗̂𝑈𝑞 (𝔰𝔩2).

1Here we are following the “balanced” convention used in [KM91] which uses a square root of
𝐾 . It is possible to work only with integral powers of 𝐾 as in [Hab02] by choosing the “unbalanced”
generators 𝐸𝐻𝑎𝑏𝑖𝑟𝑜 = 𝐸𝐾𝑀𝐾

1
2 , 𝐹𝐻𝑎𝑏𝑖𝑟𝑜 = 𝐾

− 1
2 𝐹𝐾𝑀 instead.
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For each 𝑛 ≥ 1, let𝑉𝑛 be the 𝑛-dimensional𝑈𝑞 (𝔰𝔩2)-module with basis {𝑣0, · · · , 𝑣𝑛−1}
on which the generators act by

𝐸𝑣 𝑗 = [ 𝑗]𝑣 𝑗−1, 𝐹𝑣 𝑗 = [𝑛 − 1 − 𝑗]𝑣 𝑗+1, 𝐾𝑣 𝑗 = 𝑞
𝑛−1−2 𝑗

2 𝑣 𝑗 ,

where [𝑚] := 𝑞
𝑚
2 −𝑞−

𝑚
2

𝑞
1
2 −𝑞−

1
2

for any 𝑚 ∈ Z.

Applying the universal 𝑅-matrix to 𝑉𝑛 (followed by a flip 𝑣 ⊗ 𝑤 ↦→ 𝑤 ⊗ 𝑣), we obtain
an automorphism 𝑅̌ ∈ Aut(𝑉𝑛 ⊗ 𝑉𝑛) given by

𝑅̌(𝑣𝑖 ⊗ 𝑣 𝑗 ) = 𝑞 𝑛
2−1
4

∑︁
𝑘≥0

𝑞−
(𝑖+ 𝑗−𝑘+1) (𝑛−1)

2 +(𝑖−𝑘) 𝑗
[
𝑖

𝑘

]
𝑞

∏
1≤𝑙≤𝑘

(1 − 𝑞−𝑛+ 𝑗+𝑙)𝑣 𝑗+𝑘 ⊗ 𝑣𝑖−𝑘

that satisfies the Yang-Baxter equation

𝑅̌12𝑅̌23𝑅̌12 = 𝑅̌23𝑅̌12𝑅̌23,

where 𝑅̌12 := 𝑅̌ ⊗ Id𝑉𝑛 and 𝑅̌23 := Id𝑉𝑛 ⊗ 𝑅̌. The Yang-Baxter equation can be
thought of diagrammatically as in Figure 2.1. Therefore, for any 𝑠 (the number of

Figure 2.1: Yang-Baxter equation encodes the braid relation.

strands), the 𝑅-matrix induces a representation of the braid group

𝜑𝑛,𝑠 : 𝐵𝑠 → Aut(𝑉⊗𝑠
𝑛 )

by applying 𝑅̌ for each positive crossing and 𝑅̌−1 for each negative crossing.

Colored Jones polynomials
For any𝑈𝑞 (𝔰𝔩2)-module 𝑉 and an endomorphism 𝑓 ∈ End(𝑉), the quantum trace of
𝑓 is defined to be

Tr𝑞 ( 𝑓 ) := Tr
(
𝐾⊗𝑠 𝑓

)
.
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The quantum dimension of a𝑈𝑞 (𝔰𝔩2)-module 𝑉 is simply the quantum trace of the
identity map. In particular,

qdim(𝑉𝑛) = Tr𝑞 (Id𝑉𝑛) = [𝑛] .

Let 𝐿 be a link which can be presented as the closure of a braid 𝛽 with 𝑠 strands.
The unreduced 𝑛-colored Jones polynomial 𝐽𝐿,𝑛 (𝑞) is the quantum trace of the
automorphism 𝜑𝑛,𝑠 (𝛽). That is,

𝐽𝐿,𝑛 (𝑞) := Tr𝑞 (𝜑𝑛,𝑠 (𝛽)).

It can be shown that this is independent of the choice of a braid representing the link.
Instead of the full quantum trace, we can also consider the partial quantum trace,
which is taken by closing up the braid to the right, except for the left-most strand
which we leave open. See Figure 2.2 for an example of the trefoil knot. Since 𝑉𝑛 is

Figure 2.2: Partial quantum trace of the trefoil knot.

irreducible, by Schur’s lemma, this partial quantum trace of 𝜑𝑛,𝑠 (𝛽) is a constant
times the identity map Id𝑉𝑛 . The reduced 𝑛-colored Jones polynomial 𝐽𝐿,𝑛 (𝑞) is
defined to be this constant. By closing up the remaining strand, we see that

𝐽𝐿,𝑛 (𝑞) =
1
[𝑛] 𝐽𝐿,𝑛 (𝑞).

From now on, we will refer to the reduced 𝑛-colored Jones polynomial simply as the
𝑛-colored Jones polynomial. For any 0-framed (Seifert-framed) knot 𝐾, it can be
shown that

𝐽𝐾,𝑛 (𝑞) ∈ Z[𝑞, 𝑞−1] .
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Witten-Reshetikhin-Turaev invariants
Let 𝑌 be a closed 3-manifold obtained by performing a Dehn surgery on a framed
link 𝐿 ∈ 𝑆3 with 𝑠 components, and let 𝜁𝑘 a primitive 𝑘-th root of unity. The
Witten-Reshetikhin-Turaev (WRT) invariant 𝑊𝑅𝑇𝑌 (𝜁𝑘 ) of 𝑌 at 𝜁𝑘 is a topological
invariant of 𝑌 that can be defined as a certain linear combination of 𝐽𝐿,𝑛1,··· ,𝑛𝑠 (𝜁𝑘 )
for 1 ≤ 𝑛1, · · · , 𝑛𝑠 ≤ 𝑘 − 1:

𝑊𝑅𝑇𝑌 (𝜁𝑘 ) := 𝐶𝜎(𝐿)
∑︁

1≤𝑛1,··· ,𝑛𝑠≤𝑘−1
𝑆0𝑛𝑠 · · · 𝑆0𝑛𝑠𝐽𝐿,𝑛1,··· ,𝑛𝑠 (𝜁𝑘 ),

where 𝐶𝜎(𝐿) is the framing factor, 𝑆0𝑛 𝑗 ’s are the 𝑆-matrix elements, etc. The precise
definition is not so important for the purpose of this thesis; interested readers can
learn more by reading the standard textbooks such as [Tur94; BK01; Koh02] instead.
What is important for us is that, while WRT invariants are natural analogues of the
colored Jones polynomials for 3-manifolds, unlike colored Jones polynomials WRT
invariants have no apparent integrality.

A crucial observation was made by Lawrence and Zaiger [LZ99]. They discovered
that the WRT invariants of the Poincaré homology sphere (and some other Seifert
3-manifolds) can be obtained as, up to a simple overall factor, the limit of a power
series in 𝑞 with integer coefficients, as 𝑞 approaches each root of unity radially from
inside the unit disk.

Theorem 2.1.1 ([LZ99]). Let 𝑃 = Σ(2, 3, 5) be the Poincaré homology sphere.
Then2

𝑊𝑅𝑇𝑃 (𝜁𝑘 ) = lim
𝑞→𝜁𝑘

𝑍̂𝑃 (𝑞)
2(𝑞 1

2 − 𝑞− 1
2 )
,

where

𝑍̂𝑃 (𝑞) = 𝑞−
3
2
∑︁
𝑛≥0

(−1)𝑛𝑞
𝑛(3𝑛−1)

2∏
1≤ 𝑗≤𝑛 (1 − 𝑞𝑛+ 𝑗 ) (2.1)

= 𝑞−
3
2 (1 − 𝑞 − 𝑞3 − 𝑞7 + 𝑞8 + 𝑞14 + · · · ).

Similar results for more general Seifert 3-manifolds can be found in a series of work
by Hikami [Hik05a; Hik05b; Hik06b; Hik06a].

The important point is that, while integrality was not visible for WRT invariants,
the “analytic continuation” of the WRT invariants has integer coefficients, making

2As we will see later, the denominator 2(𝑞 1
2 − 𝑞− 1

2 ) is in fact 𝑍̂𝑆3 (𝑞).
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it suitable for categorification. Homological blocks, that we introduce in the next
section, can be thought of as a generalization of these analytically continued WRT
invariants.

2.2 Homological blocks
As briefly described in the Introduction, the homological blocks were first introduced
in the physics literature by Gukov, Pei, Putrov, and Vafa [GPV17; Guk+20] in their
study of 3d/3d correspondence. The idea is to consider the 6d N = (0, 2) theory (the
world-volume theory of M5-branes) of type 𝔤 on 𝑌 ×C× 𝑆1, where 𝑌 is a 3-manifold.
Reducing the theory on 𝑌 , it becomes a 3d N = 2 superconformal field theory 𝑇𝔤 [𝑌 ]
on C× 𝑆1. Viewing 𝑆1 as the time direction, the physics “definition” of 𝑍̂𝑌 is a count
of BPS states:

𝑍̂𝑌,𝑏 (𝑞) =
∑︁
𝑖, 𝑗

(−1)𝑖𝑞 𝑗 dimH 𝑖, 𝑗

𝑇𝔤 [𝑌 ] (C, 𝑏),

where 𝑖 is the 𝑅-charge, 𝑗 is the spin, and 𝑏 is a charge (superselection sector) of the
M2-branes (ending on the M5-branes) that give rise to the BPS particles of 𝑇𝔤 [𝑌 ].

While it is not easy to make sense of this physics “definition” mathematically, the
following conjecture proposes a precise relation between 𝑍̂ and WRT invariants.

Conjecture 2.2.1 ([Guk+20]). Let 𝑌 be a 3-manifold with 𝑏1(𝑌 ) = 0, and set 𝔤 = 𝔰𝔩2

for simplicity. Then the WRT invariant of 𝑌 can be decomposed into a certain linear
combination of 𝑞 → 𝑒

2𝜋𝑖
𝑘 limit of 𝑍̂𝑌,𝑏. More explicitly,

𝑊𝑅𝑇𝑌 (𝑒
2𝜋𝑖
𝑘 ) =

∑︁
𝑎∈𝐻1 (𝑌 ;Z)/Z2

𝑒2𝜋𝑖𝑘𝐶𝑆(𝑎)
∑︁

𝑏∈Spin𝑐 (𝑌 )/Z2

𝑆𝑎𝑏 lim
𝑞→𝑒

2𝜋𝑖
𝑘

𝑍̂𝑌,𝑏 (𝑞)
2(𝑞 1

2 − 𝑞− 1
2 )
,

where 𝑆𝑎𝑏 is a matrix determined by the linking pairing of 𝑌 that does not depend on
𝑘 . (See [Guk+20] for the explicit form of the matrix 𝑆𝑎𝑏.)

This conjecture can be motivated in various ways, including resurgence in complex
Chern-Simons theory around abelian flat connections [GMP16] and a string theory
realization of Chern-Simons theory (nicely reviewed in [FP20, Sec. 2.1]).

In view of this conjecture, 𝑍̂ can be thought of as an “analytic continuation” of
the WRT invariants, generalizing what we briefly reviewed in the previous section.
What is perhaps a little surprising is that, according to this conjecture, in order to
analytically continue the WRT invariant we need to decompose it into parts labeled
by spin𝑐-structures on 𝑌 .
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𝑍̂ for negative definite plumbed 3-manifolds
There is a class of 3-manifolds called negative definite plumbed 3-manifolds for
which there is a simple mathematical definition of 𝑍̂ .

For any tree Γ whose vertices are labeled by integers (called the plumbing graph),
there is a naturally associated framed link obtained by replacing each vertex by an
unknot, framing it by the number labeling the vertex, and linking two unknots in the
simplest possible way whenever the corresponding two vertices are connected by
an edge. See Figure 2.3 for an example. By performing a Dehn surgery along that

Figure 2.3: A plumbing graph and the corresponding surgery link.

framed link, we obtain a 3-manifold 𝑌Γ, called the plumbed 3-manifold.

Different plumbing graphs can give rise to the same 3-manifold, and such an
equivalence relation between plumbing graphs is generated by a finite set of moves
depicted in Figure 2.4 known as the Neumann moves [Neu81]; they are analogues of
the Kirby moves [Kir78].

Figure 2.4: Neumann moves.

Let 𝐵 be the adjacency matrix of the plumbing graph, with the integers labeling the
vertices on the diagonal. That is, if 𝑠 = |𝑉 | and 𝑚𝑣’s are the integers labeling the
vertices, then 𝐵 is the 𝑠 × 𝑠 matrix defined by

𝐵𝑣𝑤 =


𝑚𝑣 if 𝑣 = 𝑤

1 if (𝑣, 𝑤) ∈ 𝐸 (Γ)

0 otherwise

.

We call a plumbed 3-manifold negative definite if 𝐵 is negative definite.
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Definition 2.2.2 ([Guk+20]). For a negative definite plumbed 3-manifold 𝑌Γ, define

𝑍̂𝑌Γ,𝑏 (𝑞) = 𝑞−
3𝑠+∑𝑣 𝑚𝑣

4

∮ ∏
𝑣∈𝑉

𝑑𝑥𝑣

2𝜋𝑖𝑥𝑣

(∏
𝑣∈𝑉

(𝑥
1
2
𝑣 − 𝑥−

1
2

𝑣 )2−deg 𝑣
∑︁

ℓ∈2𝐵Z𝑉+𝑏
𝑞−

1
4 (ℓ,𝐵

−1ℓ)𝑥
ℓ
2

)
,

(2.2)
where

𝑏 ∈ (2Z𝑉 + 𝛿)/2𝐵Z𝑉 � Spin𝑐 (𝑌Γ),

and 𝛿 is the degree vector whose 𝑣-th coordinate is 𝛿𝑣 = deg 𝑣.

Theorem 2.2.3 ([GM21]). The above definition is invariant under Neumann moves,
and therefore it is a well-defined invariant of negative definite plumbed 3-manifolds.

The expression (2.2) should be interpreted in the following way:

1. Take the symmetric expansion (i.e., average of the power series expansions
near 0 and near ∞) of the rational function (𝑥

1
2
𝑣 − 𝑥

− 1
2

𝑣 )2−deg 𝑣 , and take product
over all vertices 𝑣 ∈ 𝑉 . The result is a formal bilateral series in 𝑠 variables.

2. Multiply it with the theta function
∑
ℓ∈2𝐵Z𝑉+𝑏 𝑞

− 1
4 (ℓ,𝐵

−1ℓ)𝑥
ℓ
2 .

3. The contour integral
∮ ∏

𝑣∈𝑉
𝑑𝑥𝑣

2𝜋𝑖𝑥𝑣 picks out the constant term of this formal

series. Multiply it by 𝑞−
3𝑠+∑𝑣 𝑚𝑣

4 , and we get 𝑍̂𝑌Γ,𝑏 (𝑞) ∈ 2−𝑡𝑞ΔZ[[𝑞]], where 𝑡
is the number of vertices with degree ≥ 3 and

Δ = −3𝑠 + ∑
𝑣 𝑚𝑣

4
+ min
ℓ∈2𝐵Z𝑉+𝑏

−(ℓ, 𝐵−1ℓ)
4

∈ Q. (2.3)

Note, negative definiteness of 𝐵 ensures that the resulting 𝑞-series converges inside
the unit disk |𝑞 | < 1.

Example 2.2.4. • 𝑆3: a single vertex labeled by −1.

𝑍̂𝑆3 (𝑞) = 2(𝑞 1
2 − 𝑞− 1

2 ).

• 𝐿 (8, 3): two vertices both labeled by −3 connected by an edge.

𝑍̂𝐿 (8,3) (𝑞) = {𝑞 1
4 , 𝑞−

1
8 , 0, 0, 0}.

• 𝑃 = Σ(2, 3, 5): Y-shaped plumbing with four vertices, with the center vertex
labeled by 1 and the other three vertices labeled by 2, 3, 5, respectively.

𝑍̂Σ(2,3,5) (𝑞) = 𝑞−
3
2 (1 − 𝑞 − 𝑞3 − 𝑞7 + 𝑞8 + 𝑞14 + · · · )

= 𝑞−
3
2
∑︁
𝑛≥0

(−1)𝑛𝑞
𝑛(3𝑛−1)

2∏
1≤ 𝑗≤𝑛 (1 − 𝑞𝑛+ 𝑗 ) = (2.1).
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• Σ(2, 3, 7): Y-shaped plumbing with four vertices, with the center vertex labeled
by −1 and the other three vertices labeled by −2,−3,−7, respectively, as in
Figure 2.5.

Figure 2.5: Σ(2, 3, 7).

𝑍̂Σ(2,3,7) (𝑞) = 𝑞
1
2 (1 − 𝑞 − 𝑞5 + 𝑞10 − 𝑞11 + 𝑞18 + · · · )

= 𝑞
1
2
∑︁
𝑛≥0

(−1)𝑛𝑞
𝑛(𝑛+1)

2∏
1≤ 𝑗≤𝑛 (1 − 𝑞𝑛+ 𝑗 ) . (2.4)

Remark 2.2.5. This definition has various generalizations; see [Chu20; Par20a;
FP20] for the generalization to general Lie algebras and Lie superalgebras, and
[AJK21] for a common generalization of 𝑍̂ and lattice cohomology for negative
definite plumbed 3-manifolds.

Remark 2.2.6. Conjecture 2.2.1 relating 𝑍̂ and WRT invariants is proven in many
cases by now. See e.g., [AM22; Fuj+21; MM21].

Remark 2.2.7. Also, it is known that in many examples, they provide examples of
quantum modular forms. See e.g., [BMM20b; BMM20a; Bri+21].

Remark 2.2.8. The overall shift of 𝑞-degree (2.3) is closely related to the 𝜌-invariant.
See [GPP21].

Toward 𝑍̂ for general 3-manifolds
While negative definite plumbed 3-manifolds form a nice class of 3-manifolds, they
are all examples of graph manifolds, and in particular none of them are hyperbolic.
How do we generalize further? Since every closed, connected, oriented 3-manifold
can be obtained by performing a Dehn surgery on a link in 𝑆3, one possible approach
is to

1. study 𝑍̂ for link complements, and then

2. study how it behaves under Dehn surgery.
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This is the approach initiated by Gukov and Manolescu in [GM21]. By studying 𝑍̂
for plumbed knot complements, they proved that

Theorem 2.2.9 ([GM21]). For the complement of a torus knot 𝐾 = 𝑇 (𝑠, 𝑡), there is
a two-variable series

𝑍̂𝑆3\𝐾 (𝑥, 𝑞) = 𝐹𝐾 (𝑥, 𝑞)

and a Dehn surgery formula

𝑍̂𝑆3
𝑝/𝑟 (𝐾),𝑏

(𝑞) = 𝜖𝑞𝑑
∮

𝑑𝑥

2𝜋𝑖𝑥
©­­«(𝑥

1
2𝑟 − 𝑥− 1

2𝑟 )𝐹𝐾 (𝑥, 𝑞)
∑︁

𝑢∈ 𝑝
𝑟
Z+ 𝑏

𝑟

𝑞
− 𝑟
𝑝
𝑢2
𝑥𝑢

ª®®¬, (2.5)

for some 𝜖 ∈ {±1} and 𝑑 ∈ Q, provided that the right-hand side converges (i.e.,
when − 𝑟

𝑝
is big enough).

They conjectured that such two-variable series invariant exists for all knots. In order
to state their conjecture, we need to review the Melvin-Morton-Rozansky (MMR)
expansion of colored Jones polynomials.

Theorem 2.2.10 (Conjectured by [MM95; Roz97], proved by [BG96; Roz98]). Set
𝑞 = 𝑒ℏ. Consider the limit where ℏ → 0 and 𝑛 → ∞ while 𝑛ℏ is fixed. In this
large-color limit, the colored Jones polynomial has the following expansion:

𝐽𝐾,𝑛 (𝑞) =
1

Δ𝐾 (𝑥)
+ 𝑃1(𝑥)
Δ𝐾 (𝑥)3ℏ +

𝑃2(𝑥)
Δ𝐾 (𝑥)5

ℏ2

2!
+ · · · ,

where 𝑥 = 𝑞𝑛 = 𝑒𝑛ℏ, Δ𝐾 (𝑥) is the Alexander polynomial, and 𝑃 𝑗 (𝑥) ∈ Z[𝑥, 𝑥−1] are
Laurent polynomials invariant under Weyl symmetry 𝑥 ↔ 𝑥−1.

Conjecture 2.2.11 ([GM21]). For any knot 𝐾 , there is a two-variable series invariant
𝐹𝐾 (𝑥, 𝑞) such that the ℏ-expansion of 𝐹𝐾 (𝑥,𝑒ℏ)

𝑥
1
2 −𝑥−

1
2

agrees with the MMR expansion of
colored Jones polynomials. That is,

𝐹𝐾 (𝑥, 𝑒ℏ)
𝑥

1
2 − 𝑥− 1

2
=

∑︁
𝑗≥0

𝑃 𝑗 (𝑥)
Δ𝐾 (𝑥)2 𝑗+1

ℏ 𝑗

𝑗!

where the right-hand side is understood as the symmetric expansion (i.e., the average
of its power series expansions near 𝑥 = 0 and 𝑥 = ∞), and 𝐹𝐾 (𝑥, 𝑞) is a formal
series of the form 1

2
∑
𝑚∈2Z+1 𝑓𝑚 (𝑞)𝑥

𝑚
2 with 𝑓𝑚 (𝑞) ∈ Z((𝑞)) and 𝑓−𝑚 (𝑞) = − 𝑓𝑚 (𝑞).

Moreover,
𝐴̂𝐾 (𝑥, 𝑦̂, 𝑞)𝐹𝐾 (𝑥, 𝑞) = 0,
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where 𝐴̂𝐾 is the quantum 𝐴-polynomial for the unreduced colored Jones polynomials
of 𝐾 .

This two-variable series 𝐹𝐾 (𝑥, 𝑞) should really be thought of as 𝑍̂ for the knot
complement 𝑆3 \ 𝐾. It is conjectured [GM21, Conjecture 1.7] that the same Dehn
surgery formula (2.5) can be applied to obtain the 𝑍̂ for the 3-manifold 𝑆3

𝑝/𝑟 (𝐾)
obtained by performing the 𝑝

𝑟
-Dehn surgery on 𝐾 whenever − 𝑟

𝑝
is big enough.

Example 2.2.12 (Unknot). For the unknot 01,

𝐹01 (𝑥, 𝑞) = 𝑥
1
2 − 𝑥− 1

2 .

Example 2.2.13 (Figure-eight knot). For the figure-eight knot 41,

𝐽41,𝑛 (𝑞) =
∑︁

0≤𝑚≤𝑛

∏
1≤ 𝑗≤𝑚

(𝑞𝑛 + 𝑞−𝑛 − 𝑞 𝑗 − 𝑞− 𝑗 )

= 1

+ (−1 + 𝑛2)ℏ2

+
(
47
12

− 5𝑛2 + 13
12
𝑛4

)
ℏ4

+ · · ·

=
1

−𝑥 + 3 − 𝑥−1 + 𝑥
2 − 4𝑥 + 5 − 4𝑥−1 + 𝑥−2

(−𝑥 + 3 − 𝑥−1)5 ℏ2 + · · · .

Expanding and resumming, we get

𝐹41 (𝑥, 𝑞) =
1
2

∑︁
𝑚≥0
odd

𝑓𝑚 (𝑞)
(
𝑥
𝑚
2 − 𝑥−𝑚2

)
,

where

𝑓1 = 1,

𝑓3 = 2,

𝑓5 = 𝑞−1 + 3 + 𝑞,
𝑓7 = 2𝑞−2 + 2𝑞−1 + 5 + 2𝑞 + 2𝑞2,

and so on.

Applying the (conjectural) −1-surgery formula,

𝑍̂−Σ(2,3,7) (𝑞) = −𝑞− 1
2 (1 + 𝑞 + 𝑞3 + 𝑞4 + 𝑞5 + 2𝑞7 + 𝑞8 + 2𝑞9 + · · · )

= −𝑞− 1
2
∑︁
𝑛≥0

𝑞𝑛
2∏

1≤ 𝑗≤𝑛 (1 − 𝑞𝑛+ 𝑗 ) . (2.6)

This is one of Ramanujan’s mock theta functions!
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Remark 2.2.14. Compare (2.6) with (2.4). Up to sign, one expression can be
obtained from another by replacing 𝑞 with 𝑞−1, which is exactly what is expected of 𝑍̂
under orientation reversal of the 3-manifold, from its connection to WRT invariants.
Of course, it is a highly non-trivial problem to extend a 𝑞-series defined inside the
unit disk |𝑞 | < 1 to outside the unit disk |𝑞 | > 1. We will see in Chapter 4 how
inverted Habiro expansion of 𝐹𝐾 (𝑥, 𝑞) can help constructing such pairs.
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C h a p t e r 3

LARGE-COLOR 𝑅-MATRIX

3.1 The large-color 𝑅-matrix
We would like to solve Conjecture 2.2.11. Since it is about the large-color asymptotics
of colored Jones polynomials and since colored Jones polynomials can be obtained
from 𝑅-matrices, it is natural to study the large-color limit of the 𝑅-matrices.

In the large-color limit, the finite-dimensional representations 𝑉𝑛 become an infinite-
dimensional Verma module 𝑉∞ with a generic highest (or lowest) weight. We will
mostly focus on the highest weight Verma modules, but the story is analogous for the
lowest weight Verma modules (they are related via the Weyl symmetry 𝑥 ↔ 𝑥−1).

Let 𝑉∞(𝑥) denote the highest weight Verma module with the highest weight 𝜆 =

log𝑞 𝑥 − 1. It has a basis {𝑣 𝑗 } 𝑗≥0 on which the generators of𝑈𝑞 (𝔰𝔩2) act by

𝐸𝑣 𝑗 = [ 𝑗]𝑣 𝑗−1, 𝐹𝑣 𝑗 = [𝜆 − 𝑗]𝑣 𝑗+1, 𝐾𝑣 𝑗 = 𝑞
𝜆−2 𝑗

2 𝑣 𝑗 .

Definition 3.1.1. The large-color 𝑅-matrix is the 𝑅-matrix for these Verma modules
(i.e., the universal 𝑅-matrix applied to the Verma modules1). Explicitly,

𝑅̌(𝑥1, 𝑥2) : 𝑉∞(𝑥1) ⊗ 𝑉∞(𝑥2) → 𝑉∞(𝑥2) ⊗ 𝑉∞(𝑥1)
𝑣𝑖 ⊗ 𝑣 𝑗 ↦→

∑︁
𝑖′, 𝑗 ′≥0

𝑅̌(𝑥1, 𝑥2)𝑖
′, 𝑗 ′

𝑖, 𝑗
𝑣𝑖′ ⊗ 𝑣 𝑗 ′,

where

𝑅̌(𝑥1, 𝑥2)𝑖
′, 𝑗 ′

𝑖, 𝑗
= 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞

( 𝑗+ 1
2 ) ( 𝑗

′+ 1
2 )𝑥

−𝑖′− 𝑗−1
4

1 𝑥
𝑖−3 𝑗 ′−1

4
2

[
𝑖

𝑗 ′

]
𝑞

∏
1≤𝑙≤𝑖− 𝑗 ′

(1 − 𝑞 𝑗+𝑙𝑥−1
2 ).

(3.1)

When the two strands are both 𝑉∞(𝑥), define also

𝑅̌(𝑥)𝑖
′, 𝑗 ′

𝑖, 𝑗
:= 𝑞

1
4 𝑅̌(𝑥, 𝑥)𝑖

′, 𝑗 ′

𝑖, 𝑗

= 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞
𝑗 𝑗 ′+ 𝑗+ 𝑗

′+1
2 𝑥−

𝑗+ 𝑗 ′+1
2

[
𝑖

𝑗 ′

]
𝑞

∏
1≤𝑙≤𝑖− 𝑗 ′

(1 − 𝑞 𝑗+𝑙𝑥−1).

1To be more precise, we have divided it out by the framing factor so that when we apply this for a
knot we automatically get an invariant associated to the canonical 0-framing.
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The large-color 𝑅-matrix describes the braiding of the Verma modules, and it satisfies
the Yang-Baxter equation, meaning it induces a representation of the braid group

𝜑𝑥,𝑠 : 𝐵𝑠 → Aut(𝑉∞(𝑥)⊗𝑠),

and, if we use different 𝑥-parameters for different strands, a representation of the
corresponding subgroup of the braid group (such as the pure braid group)

𝜑𝑥1,··· ,𝑥𝑠 : 𝑃𝑠 → Aut(𝑉∞(𝑥1) ⊗ · · · ⊗ 𝑉∞(𝑥𝑠)).

An invariant of annular braid closures from the large-color 𝑅-matrix
Since we have a braid group representation coming from the large-color 𝑅-matrix,
the most natural and naive guess would be that the two-variable series 𝐹𝐾 (𝑥, 𝑞) in
Conjecture 2.2.11 for a knot 𝐾 (presented as the closure of a braid 𝛽 with 𝑠 strands)
is the (partial) quantum trace of 𝜑𝑥,𝑠 (𝛽). However, in general the quantum trace does
not converge due to the infinite-dimensional nature of the Verma module.

There is a way to make sense of the trace, by making use of the fact 𝑉∞(𝑥)⊗𝑠 is
graded by the total weight. For a vector 𝑣𝑖1 ⊗ · · · ⊗ 𝑣𝑖𝑠 ∈ 𝑉∞(𝑥)⊗𝑠, let its total weight
be 𝑤 =

∑
1≤𝑘≤𝑠 𝑖𝑘 . Let

(
𝑉∞(𝑥)⊗𝑠

)
𝑤

be the span of the vectors of total weight 𝑤. Then

𝑉∞(𝑥)⊗𝑠 = ⊕𝑤≥0
(
𝑉∞(𝑥)⊗𝑠

)
𝑤
.

The large-color 𝑅-matrix preserves the total weight, so the finite-dimensional
subspaces

(
𝑉∞(𝑥)⊗𝑠

)
𝑤

themselves are representations of the braid group 𝐵𝑠.

Definition 3.1.2. Define the 𝑧-graded trace of 𝜑𝑥,𝑠 (𝛽) to be

Tr𝑧 (𝜑𝑥,𝑠 (𝛽)) :=
∑︁
𝑤≥0

𝑧𝑤 Tr
(
𝜑𝑥,𝑠 (𝛽)

��
(𝑉∞ (𝑥)⊗𝑠)𝑤

)
∈ 𝑞 𝑠+1

2 𝑥
𝑠+1

2 Z[𝑥±1, 𝑞±1] [[𝑧]] .

Clearly, this is invariant under braid isotopy and conjugation of the braid, and
therefore it is an invariant of the annular closure of 𝛽 (that is, the closure of 𝛽 in
the solid torus, where the braid goes around the 𝑆1 direction of the solid torus).
Moreover, our discussion so far in this subsection has an obvious generalization to
braids whose closures are links, so from the 𝑧-graded trace we obtain an invariant of
any annular braid closure.

The complement of the annular link (𝐷2×𝑆1)\𝐿 is homeomorphic to the complement
𝑆3 \ 𝐿′ of the link 𝐿′ = 𝐿 ∪𝑂 obtained by adding an unknot component 𝑂 to 𝐿 ⊂ 𝑆3

so that the braid 𝛽 goes around the meridian of 𝑂 once, as in Figure 3.1. We can
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Figure 3.1: The link 𝐿′.

Figure 3.2: 𝐿′ as a (1, 1)-tangle.

open up the unknot component and draw 𝐿′ as the (1, 1)-tangle as in Figure 3.2. It
turns out, the corresponding partial quantum trace converges absolutely to a power
series in 𝑧−1, if 𝑧 is the parameter for the Verma module 𝑉∞(𝑧) assigned to the open
strand. This can be seen by putting the vector 𝑣0 on the ends of the open strand. It is
easy to see that all the arcs of the open strand should carry 𝑣0 as well. Using the fact
that

𝑅̌(𝑧, 𝑥)𝑎,00,𝑎 𝑅̌(𝑥, 𝑧)
0,𝑎
𝑎,0𝑥

1
2 𝑞−

1
2−𝑎 = 𝑧−𝑎−

1
2

for any 𝑥 and 𝑎, we see that the partial quantum trace multiplied by (𝑧 1
2 − 𝑧− 1

2 ) is
exactly

𝐹𝐿 ′ (𝑧, 𝑥, 𝑞) = (𝑧 1
2 − 𝑧− 1

2 )𝑧− 𝑠2 Tr𝑧−1 (𝜑𝑥,𝑠 (𝛽)).

This is in fact 𝑍̂ for the complement of the link 𝐿′ in the sense that it satisfies all
the properties in Conjecture 2.2.11! This can be shown using a proof similar to that
of Rozansky’s proof of MMR conjecture [Roz98]. We will give a more elaborate
version of the state sum later in this chapter, as well as the proof of Conjecture
2.2.11 for a big class of links. In case of annular braid closures, what is special
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about 𝐿′ is that its complement is fibered over 𝑆1, with the fiber being a disk with 𝑠
punctures. The fibered structure is what makes the state sum converge absolutely to
a power series (in the variable associated to the 𝑆1-direction) whose coefficients are
polynomials. We will comment more about this in the next section.

Geometrical meaning of the parameter 𝑥
Geometrically, the parameters 𝑥1 and 𝑥2 are the (squares of the) holonomy eigenvalues
around the meridians of the two strands, in 𝑆𝐿2(C) Chern-Simons theory at the
abelian branch. See [Eli+89] for a relevant discussion. For this reason, the 𝑅-matrix
elements 𝑅̌(𝑥1, 𝑥2)𝑖

′, 𝑗 ′

𝑖, 𝑗
and 𝑅̌−1(𝑥1, 𝑥2)𝑖

′, 𝑗 ′

𝑖, 𝑗
can be drawn diagrammatically as in

Figure 3.3.

Figure 3.3: 𝑅̌(𝑥1, 𝑥2)𝑖
′, 𝑗 ′

𝑖, 𝑗
and 𝑅̌−1(𝑥1, 𝑥2)𝑖

′, 𝑗 ′

𝑖, 𝑗
.

Define the pairing and copairing by Figure 3.4. So, for instance, when we are taking

Figure 3.4: Pairing and copairing.

the right-closure of a braid, for each strand with holonomy 𝑥 and spin 𝑖, we get the
weight of (𝑥 1

4 𝑞−
1
4−

𝑖
2 )2 = 𝑥

1
2 𝑞−

1
2−𝑖, which is the correct weight for taking the quantum

trace.
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Extension of the large-color 𝑅-matrix
The large-color 𝑅-matrix element (3.1) is originally defined for 𝑖, 𝑗 , 𝑖′, 𝑗 ′ ≥ 0, but
the domain of 𝑖, 𝑗 , 𝑖′, 𝑗 ′ can be naturally extended to the set of all integers. Explicitly,

𝑅̌(𝑥)𝑖
′, 𝑗 ′

𝑖, 𝑗
=



𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞
𝑗+ 𝑗 ′+1

2 𝑥−
𝑗+ 𝑗 ′+1

2 𝑞 𝑗 𝑗
′

𝑖

𝑖 − 𝑗 ′

𝑞
∏

1≤𝑙≤𝑖− 𝑗 ′ (1 − 𝑞 𝑗+𝑙𝑥−1) if

𝑖 ≥ 𝑗 ′ ≥ 0

or

0 > 𝑖 ≥ 𝑗 ′

𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞
𝑗+ 𝑗 ′+1

2 𝑥−
𝑗+ 𝑗 ′+1

2 𝑞 𝑗 𝑗
′

𝑖

𝑗 ′

𝑞 1∏
0≤𝑙≤ 𝑗 ′−𝑖−1 (1−𝑞 𝑗−𝑙𝑥−1) if 𝑗 ′ ≥ 0 > 𝑖

0 otherwise

,

𝑅̌−1(𝑥)𝑖
′, 𝑗 ′

𝑖, 𝑗
=



𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞−
𝑖+𝑖′+1

2 𝑥
𝑖+𝑖′+1

2 𝑞−𝑖𝑖
′

𝑗

𝑗 − 𝑖′

𝑞−1

∏
1≤𝑙≤ 𝑗−𝑖′ (1 − 𝑞−𝑖−𝑙𝑥) if

𝑗 ≥ 𝑖′ ≥ 0

or

0 > 𝑗 ≥ 𝑖′

𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞−
𝑖+𝑖′+1

2 𝑥
𝑖+𝑖′+1

2 𝑞−𝑖𝑖
′

𝑗

𝑖′

𝑞−1

1∏
0≤𝑙≤𝑖′− 𝑗−1 (1−𝑞−𝑖+𝑙𝑥)

if 𝑖′ ≥ 0 > 𝑗

0 otherwise

,

and

𝑅̌(𝑥, 𝑦)𝑖
′, 𝑗 ′

𝑖, 𝑗
=



𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞
𝑗+ 𝑗 ′+ 1

2
2 𝑥−

𝑖′+ 𝑗+1
4 𝑦−

3 𝑗 ′−𝑖+1
4 𝑞 𝑗 𝑗

′

𝑖

𝑖 − 𝑗 ′

𝑞
∏

1≤𝑙≤𝑖− 𝑗 ′ (1 − 𝑞 𝑗+𝑙𝑦−1) if

𝑖 ≥ 𝑗 ′ ≥ 0

or

0 > 𝑖 ≥ 𝑗 ′

𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞
𝑗+ 𝑗 ′+ 1

2
2 𝑥−

𝑖′+ 𝑗+1
4 𝑦−

3 𝑗 ′−𝑖+1
4 𝑞 𝑗 𝑗

′

𝑖

𝑗 ′

𝑞 1∏
0≤𝑙≤ 𝑗 ′−𝑖−1 (1−𝑞 𝑗−𝑙𝑦−1) if 𝑗 ′ ≥ 0 > 𝑖

0 otherwise

,

𝑅̌−1(𝑥, 𝑦)𝑖
′, 𝑗 ′

𝑖, 𝑗
=



𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞−
𝑖+𝑖′+ 1

2
2 𝑥

3𝑖′− 𝑗+1
4 𝑦

𝑗 ′+𝑖+1
4 𝑞−𝑖𝑖

′

𝑗

𝑗 − 𝑖′

𝑞−1

∏
1≤𝑙≤ 𝑗−𝑖′ (1 − 𝑞−𝑖−𝑙𝑥) if

𝑗 ≥ 𝑖′ ≥ 0

or

0 > 𝑗 ≥ 𝑖′

𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝑞−
𝑖+𝑖′+ 1

2
2 𝑥

3𝑖′− 𝑗+1
4 𝑦

𝑗 ′+𝑖+1
4 𝑞−𝑖𝑖

′

𝑗

𝑖′

𝑞−1

1∏
0≤𝑙≤𝑖′− 𝑗−1 (1−𝑞−𝑖+𝑙𝑥)

if 𝑖′ ≥ 0 > 𝑗

0 otherwise.
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As power series in 𝑥−1, we have

𝑅̌(𝑥)𝑖
′, 𝑗 ′

𝑖, 𝑗
= 𝑂 (𝑥−

𝑗+ 𝑗 ′+1
2 ), 𝑅̌−1(𝑥)𝑖

′, 𝑗 ′

𝑖, 𝑗
= 𝑂 (𝑥

𝑗+ 𝑗 ′+1
2 ). (3.2)

These bounds in 𝑥-degree will be used later to show that certain state sums converge
absolutely to a power series in 𝑥−1.

Meaning of the extension
Before extension, “the space of spin states” assigned to each strand of a braid in our
state sum model is the highest weight Verma module 𝑉∞(𝑥) with the highest weight
𝜆 = log𝑞 𝑥−1. The basis vectors {𝑣 𝑗 } 𝑗≥0 are labeled by non-negative integers, where
each 𝑣 𝑗 is an element of the weight subspace 𝑉∞(𝑥)

��
𝐾=𝑞

𝜆−2 𝑗
2

. We can describe this
highest weight Verma module diagrammatically as

· · ·
𝐸
⇌
𝐹

span(𝑣1)
𝐸
⇌
𝐹

span(𝑣0).

Now, extending 𝑗 to negative values means we consider new vectors 𝑣 𝑗 for 𝑛 < 0 on
which 𝐾 acts as 𝑞

𝜆−2 𝑗
2 as usual. That is, the highest weight Verma module is extended

to the principal series module

· · ·
𝐸
⇌
𝐹

span(𝑣1)
𝐸
⇌
𝐹

span(𝑣0)
𝐸
⇌
𝐹

span(𝑣−1)
𝐸
⇌
𝐹

span(𝑣−2)
𝐸
⇌
𝐹

· · · .

The new upper-half part of this module,

span(𝑣−1)
𝐸
⇌
𝐹

span(𝑣−2)
𝐸
⇌
𝐹

· · · ,

which can be seen as the quotient of the principal series by the highest weight
module, is actually the lowest weight Verma module 𝑉∗

∞(𝑥−1) with the lowest weight
𝜆 + 2 = log𝑞 𝑥 + 1. To see this, observe that, for 𝑗 ≥ 0,

𝐸𝑣− 𝑗−1 = [− 𝑗−1]𝑣−( 𝑗+1)−1, 𝐹𝑣− 𝑗−1 = [𝜆+ 𝑗+1]𝑣−( 𝑗−1)−1, 𝐾𝑣− 𝑗−1 = 𝑞
(𝜆+2)+2 𝑗

2 𝑣− 𝑗−1.

If we rescale the basis and define

𝑤 𝑗 =
[ 𝑗]!∏ 𝑗−1

𝑘=0 [𝜆 + 2 + 𝑘]
𝑣− 𝑗−1,

then

𝐸𝑤 𝑗 = [−(𝜆 + 2) − 𝑗]𝑤 𝑗+1, 𝐹𝑤 𝑗 = [ 𝑗]𝑤 𝑗−1, 𝐾𝑤 𝑗 = 𝑞
(𝜆+2)+2 𝑗

2 𝑤 𝑗 ,

which is the standard action of 𝑈𝑞 (𝔰𝔩2) on the basis {𝑤 𝑗 } 𝑗≥0 of the lowest weight
Verma module with lowest weight 𝜆 + 2 = log𝑞 𝑥 + 1.

In terms of diagrams, this allows us to identify an arc labeled by spin 𝑖 with the
orientation-reversed arc labeled by spin −1 − 𝑖, as in Figure 3.5.
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Figure 3.5: Inverting the domain of 𝑖 from Z≥0 to Z<0 is the same as inverting the
orientation of the strand.

Symmetries of the large-color 𝑅-matrix
The large-color 𝑅-matrix satisfies all the symmetries that are natural from the
diagrammatic point of view. In particular, it is straightforward to check the following
identities:

Proposition 3.1.3.

𝑅̌(𝑥1, 𝑥2)𝑖
′,−1− 𝑗 ′
−1−𝑖, 𝑗 = 𝑞

𝑖− 𝑗 ′
2 𝑅̌−1(𝑥2, 𝑥

−1
1 )𝑖,𝑖

′

𝑗 , 𝑗 ′, (3.3)

𝑅̌(𝑥1, 𝑥2)−1−𝑖′, 𝑗 ′
𝑖,−1− 𝑗 = 𝑞

𝑖′− 𝑗
2 𝑅̌−1(𝑥−1

2 , 𝑥1) 𝑗
′, 𝑗
𝑖′,𝑖 , (3.4)

𝑅̌(𝑥1, 𝑥2)−1−𝑖′,−1− 𝑗 ′
−1−𝑖,−1− 𝑗 = 𝑅̌(𝑥−1

1 , 𝑥−1
2 ) 𝑗 ,𝑖

𝑗 ′,𝑖′, (3.5)

𝑅̌−1(𝑥1, 𝑥2)𝑖
′,−1− 𝑗 ′
−1−𝑖, 𝑗 = 𝑞

𝑖− 𝑗 ′
2 𝑅̌(𝑥2, 𝑥

−1
1 )𝑖,𝑖

′

𝑗 , 𝑗 ′, (3.6)

𝑅̌−1(𝑥1, 𝑥2)−1−𝑖′, 𝑗 ′
𝑖,−1− 𝑗 = 𝑞

𝑖′− 𝑗
2 𝑅̌(𝑥−1

2 , 𝑥1) 𝑗
′, 𝑗
𝑖′,𝑖 , (3.7)

𝑅̌−1(𝑥1, 𝑥2)−1−𝑖′,−1− 𝑗 ′
−1−𝑖,−1− 𝑗 = 𝑅̌−1(𝑥−1

1 , 𝑥−1
2 ) 𝑗 ,𝑖

𝑗 ′,𝑖′ . (3.8)

The first identity (3.3), for instance, can be diagrammatically understood as in
Figure 3.6. Note, the factor 𝑞

𝑖− 𝑗 ′
2 = (𝑥

1
4
1 𝑞

1
4+

𝑖
2 ) (𝑥−

1
4

1 𝑞−
1
4−

𝑗 ′
2 ) comes from the pairing

Figure 3.6: A symmetry of the 𝑅-matrix.
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and copairing (Figure 3.4). All the other identities have similar diagrammatic
interpretation as well.

3.2 Inverted state sum
By inverting some arcs, we get not only the rotated versions of the standard positive
and negative crossings but also some non-standard crossings where the orientation
of the strands change across the crossing; see Figure 3.7.

Figure 3.7: A new type of crossing.

Let 𝐿 be an oriented link, and let 𝐷 be its diagram as a (1, 1)-tangle. An inversion
datum 𝐼 on 𝐷 is an orientation of each arc of 𝐷 such that each crossing looks like
one of the crossings in Figure 3.8 or their rotated versions.

Figure 3.8: Allowed crossings.

A diagram 𝐷 with an inversion datum 𝐼 determines a state sum that we call an
inverted state sum. That is, given a spin configuration (i.e., labeling of the arcs), its
weight is given by the product of 𝑅-matrix elements, pairing, and the copairings. The
inverted state sum 𝑍 (𝐷, 𝐼) is the sum of such weights over all spin configurations
(i.e., indices 𝑖 ≥ 0) of the internal arcs. Since this is an infinite sum, convergence is
not always guaranteed.

Definition 3.2.1. A link is nice if it admits a link diagram with an inversion datum
such that the inverted state sum 𝑍 (𝐷, 𝐼) is absolutely convergent in Z[𝑞, 𝑞−1] [[𝑥−1]].

We will prove the following theorem in the next section.

Theorem 3.2.2 ([Par]). Gukov-Manolescu conjecture (Conjecture 2.2.11) is true for
any nice link.
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In fact, we will show that for a nice link 𝐿,

𝐹𝐿 = 𝜖 (𝑥 1
2 − 𝑥− 1

2 )𝑍 (𝐷, 𝐼),

where 𝑥 is the holonomy parameter associated to the open strand, and 𝜖 ∈ {±1} is a
sign determined in the following way:

1. Consider the usual orientation of the link compatible with the choice of
orientation of the meridian of each link component. Comparing it with the
inversion datum 𝐼, let 𝑆 be the set of arcs of the link diagram 𝐷 whose
orientation is inverted by the inversion datum 𝐼.

2. For each crossing, if exactly two out of four arcs are in 𝑆, then connect the
ends of the two arcs. If all four arcs are in 𝑆, then connect the ends of the arcs
of the same strand (i.e., same as in the link). Let 𝑆 be the resulting tangle made
out of the arcs in 𝑆.

3. Define 𝜖 = (−1)# of closed components of 𝑆.

The class of nice links is quite big. As briefly mentioned in the introduction, a braid
is called homogeneous if it can be presented as a braid word where all the Artin
generators 𝜎𝑗 , for fixed 𝑗 , appears with either postive or negative power. A link is
called a homogeneous braid link if it is a closure of a homogeneous braid.

Proposition 3.2.3. Homogeneous braid links are nice.

Proof. Given any homogeneous braid, we can orient its arcs in such a way that for
any positive crossing, the two arcs on the right are oriented upward, and for any
negative crossing, the two arcs on the right are oriented downward. In other words,
we invert the right-arcs of the negative crossings. We close up the braid to the right,
leaving the left-most strand open. See Figure 3.9 for an example of the figure-eight
knot. Thanks to the bound (3.2), only finitely many spin configurations contribute to
the coefficient of a fixed power of 𝑥−1, and therefore the resulting inverted state sum
converges absolutely. □

Homogeneous braid link examples

Example 3.2.4 (Figure-eight knot). Take the braid 𝜎1𝜎
−1
2 𝜎1𝜎

−1
2 from bottom to

top. We close up the second and the third strand while leaving the first strand open.
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Figure 3.9: An inversion datum for the figure-eight knot.

We use the inversion datum as in Figure 3.9. In this case, 𝜖 = −1, because there is
only one closed component of 𝑆 made out of the arcs labeled by minus sign. Before
closing up the braid, let’s say the indices of the three open strands are 0, 𝑚, 𝑘 from
left to right. In this case, these three indices uniquely determine all the internal
indices. Summing over 𝑚 ≥ 0 and 𝑘 < 0, we get the following expression for 𝐹41:

𝐹41 (𝑥, 𝑞) = −(𝑥 1
2 − 𝑥− 1

2 )
∑︁
𝑚≥0
𝑘<0

𝑅̌(𝑥)𝑚,00,𝑚 𝑅̌
−1(𝑥)0,𝑘

0,𝑘 𝑅̌(𝑥)
0,𝑚
𝑚,0 𝑅̌

−1(𝑥)𝑚,𝑘
𝑚,𝑘

· 𝑥 1
2 𝑞−

1
2−𝑚 · 𝑥 1

2 𝑞−
1
2−𝑘

= −𝑥− 1
2 − 2𝑥−

3
2 − ( 1

𝑞
+ 3 + 𝑞)𝑥− 5

2 − ( 2
𝑞2 + 2

𝑞
+ 5 + 2𝑞 + 2𝑞2)𝑥− 7

2 +𝑂 (𝑥− 9
2 )

= −(𝑥 1
2 − 𝑥− 1

2 )
∑︁
𝑛≥0

1∏
0≤ 𝑗≤𝑛 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

.

In [GM21] this series was computed term by term using recursion, but we have found
a closed formula!

Example 3.2.5 (62 knot). Take the braid 𝜎3
1𝜎

−1
2 𝜎1𝜎

−1
2 from bottom to top. Comput-

ing the inverted state sum, we get

𝐹62 (𝑥, 𝑞) = −𝑞𝑥− 3
2 −2𝑞𝑥−

5
2 + (−1−3𝑞+𝑞2)𝑥− 7

2 + (−2
𝑞
−2−4𝑞+2𝑞2)𝑥− 9

2 +𝑂 (𝑥− 11
2 ).

Example 3.2.6 (63 knot). Take the braid 𝜎2
1𝜎

−1
2 𝜎1𝜎

−2
2 from bottom to top. Comput-

ing the inverted state sum, we get

𝐹63 (𝑥, 𝑞) = 𝑥−
3
2 +2𝑥−

5
2 + (−1

𝑞
+3− 𝑞)𝑥− 7

2 + (− 2
𝑞2 −

2
𝑞
+4−2𝑞−2𝑞2)𝑥− 9

2 +𝑂 (𝑥− 11
2 ).

Note that each coefficient has 𝑞 ↔ 𝑞−1 symmetry, which is due to amphichirality of
63.
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Example 3.2.7 (Whitehead link). Take the braid 𝜎1𝜎
−1
2 𝜎1𝜎

−1
2 𝜎1 from bottom to

top. Computing the inverted state sum, we get

𝐹Wh(𝑥1, 𝑥2, 𝑞) = −𝑞 1
2

∑︁
𝑛,𝑚≥0

𝑓Wh
𝑛,𝑚 𝑥

−𝑛− 1
2

1 𝑥
−𝑚− 1

2
2 ,

where

𝑓Wh =

©­­­­­­­«

1 1 1 1 ···
1 1

𝑞
+1−𝑞 1

𝑞2 +
1
𝑞
+1−𝑞−𝑞2 1

𝑞3 +
1
𝑞2 +

1
𝑞
+1−𝑞−𝑞2−𝑞3 ···

1 1
𝑞2 +

1
𝑞
+1−𝑞−𝑞2 1

𝑞4 +
1
𝑞3 +

2
𝑞2 +

1
𝑞
−2𝑞−2𝑞2 1

𝑞6 +
1
𝑞5 +

2
𝑞4 +

2
𝑞3 +

2
𝑞2 −1−3𝑞−3𝑞2−𝑞3+𝑞5 ···

1 1
𝑞3 +

1
𝑞2 +

1
𝑞
+1−𝑞−𝑞2−𝑞3 1

𝑞6 +
1
𝑞5 +

2
𝑞4 +

2
𝑞3 +

2
𝑞2 −1−3𝑞−3𝑞2−𝑞3+𝑞5

1
𝑞9 +

1
𝑞8 +

2
𝑞7 +

3
𝑞6 +

3
𝑞5 +

3
𝑞4 +

2
𝑞3

− 3
𝑞
−4−6𝑞−4𝑞2−2𝑞3+𝑞4+2𝑞5+𝑞6+𝑞7 ···

...
...

...
...

. . .

ª®®®®®®®¬
.

Example 3.2.8 (Borromean rings). Take the braid 𝜎1𝜎
−1
2 𝜎1𝜎

−1
2 𝜎1𝜎

−1
2 from bottom

to top. Computing the inverted state sum, we get

𝐹Bor(𝑥1, 𝑥2, 𝑥3, 𝑞) =
∑︁

𝑛,𝑚,𝑙≥0
𝑓 Bor
𝑛,𝑚,𝑙𝑥

−𝑛− 1
2

1 𝑥
−𝑚− 1

2
2 𝑥

−𝑙− 1
2

3 ,

where

𝑓 Bor
0 =

( 1 1 1 ···
1 1 1 ···
1 1 1 ···
...
...
...
. . .

)
,

𝑓 Bor
1 =

©­­­«
1 1 1 ···
1 − 1

𝑞2 +3−𝑞2 − 1
𝑞3 −

1
𝑞2 +

1
𝑞
+3+𝑞−𝑞2−𝑞3 ···

1 − 1
𝑞3 −

1
𝑞2 +

1
𝑞
+3+𝑞−𝑞2−𝑞3 − 1

𝑞4 −
2
𝑞3 −

1
𝑞2 +

2
𝑞
+5+2𝑞−𝑞2−2𝑞3−𝑞4 ···

...
...

...
. . .

ª®®®¬ ,
𝑓 Bor
2 =

©­­­«
1 1 1 ···
1 − 1

𝑞3 −
1
𝑞2 +

1
𝑞
+3+𝑞−𝑞2−𝑞3 − 1

𝑞4 −
2
𝑞3 −

1
𝑞2 +

2
𝑞
+5+2𝑞−𝑞2−2𝑞3−𝑞4 ···

1 − 1
𝑞4 −

2
𝑞3 −

1
𝑞2 +

2
𝑞
+5+2𝑞−𝑞2−2𝑞3−𝑞4 1

𝑞7 −
1
𝑞5 −

5
𝑞4 −

6
𝑞3 −

1
𝑞2 +

6
𝑞
+13+6𝑞−𝑞2−6𝑞3−5𝑞4−𝑞5+𝑞7 ···

...
...

...
. . .

ª®®®¬ ,
and so on. Note that the coefficients have 𝑞 ↔ 𝑞−1 symmetry due to amphichirality
of the Borromean rings.

Example 3.2.9 (L7a1). Take the braid 𝜎2
1𝜎

−1
2 𝜎1𝜎

−1
2 𝜎1𝜎

−1
2 from bottom to top.

Among the three strands that are open before closing up, let’s say 𝑥1 is the variable
associated with the first two strands (they are connected once we close up the braid)
and 𝑥2 is the variable associated with the third strand. Computing the inverted state
sum, we get

𝐹L7a1(𝑥1, 𝑥2, 𝑞) = 𝑞
1
2

∑︁
𝑛,𝑚≥0

𝑓 L7a1
𝑛,𝑚 𝑥

−𝑛− 1
2

1 𝑥
−𝑚− 1

2
2 ,
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where

𝑓 L7a1 =
©­­«

0 0 0 0 ···
1 1 1 1 ···
2 2 2 2 ···

3−𝑞 − 1
𝑞2 +4−𝑞 − 1

𝑞3 −
1
𝑞2 +4 − 1

𝑞4 −
1
𝑞3 −

1
𝑞2 +4+𝑞2 ···

...
...

...
...

. . .

ª®®¬ .
The link L7a1 consists of two unknots linked together with linking number 0. See
Figure 3.10. So by doing 1

𝑟
-surgery on one of the components, we can obtain various

Figure 3.10: The link L4a1.

knots. For instance, −1, +1, −1
2 . and +1

2-surgery on the 𝑥2-component gives 63, 62,
88, and 86, respectively. These are good consistency checks, and indeed applying the
partial +1 and −1 surgery formula (which can be found in Chapter 4 of this thesis),
we get the same result as in Examples 3.2.5 and 3.2.6.

Homogenization of braids
As pointed out in [Sta78], for any link 𝐿, we can add an additional unknot component
𝑂 (with any desired linking number with each component of 𝐿) so that 𝐿′ = 𝐿 ∪𝑂
is a homogeneous braid link. It follows that the problem of defining 𝐹𝐿 for all links
is reduced to the following problem of finding an ∞-surgery formula.

Question 3.2.10. Let 𝐿′ be a link obtained by adding a new component 𝑂 to a link
𝐿. Is there a formula for 𝐹𝐿 ′ in terms of 𝐹𝐿?

Remark 3.2.11. In [Tur02], there is a nice ∞-surgery formula for the torsion, or
equivalently the Alexander-Conway polynomial in our case of link complements,
when the lk(𝐿,𝑂) is non-zero. Written in terms of the inverse torsions, the ∞-surgery
formula is given by

1
𝜏(𝑆3 \ 𝐿)

=
[𝑂] − 1

in(𝜏(𝑆3 \ 𝐿′))
, (3.9)

where [𝑂] is the homology class of 𝑂 in 𝑆3 \ 𝐿, and in : Z[𝐻1(𝑆3 \ 𝐿′)] →
Z[𝐻1(𝑆3 \ 𝐿)] is the inclusion homomorphism. So, Question 3.2.10 is asking if
there is a 𝑞-deformation of the equation (3.9).
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If a link 𝐿 can be obtained by performing −1
𝑟
-surgery on an unknot component of a

link 𝐿′, and if 𝐿′ is a homogeneous braid link, then we can compute 𝐹𝐿 by using
the partial surgery formula that we will review in Chapter 4. This has been a useful
strategy in computing 𝐹𝐾 for a variety of knots; for instance, double twist knots can
be obtained by 1

𝑚
, 1
𝑛

surgery on the Borromean rings, which is a homogeneous braid
link.

Fibered knots
According to KnotInfo [LM], there are 117 fibered knots up to 10 crossings. Using
their minimum braid representatives in Knot Atlas [Atl], we see that 74 of them are
homogeneous braids, and the other 43 of them are non-homogeneous braids. It turns
out, all of them are good knots!

Proposition 3.2.12. All fibered knots up to 10 crossings are nice.

We summarize the inversion data in Table 3.1. In the table, each inversion datum
shows how each elementary braid in the braid word looks like. The green arcs
represent the ones labeled with − signs (i.e., the ones whose orientation gets inverted)
and the black arcs represent the ones labeled with + signs. For example, the inversion
datum for 820 can be translated into the diagram in Figure 3.11. In each case, one
can show that the inverted state sum converges absolutely using the bound (3.2) on
the order of 𝑥−1 for the 𝑅-matrix elements.

Based on this observation, we conjecture the following:

Conjecture 3.2.13 ([Par]). For any fibered knot 𝐾 , the coefficients of 𝐹𝐾 (𝑥, 𝑞) are
in Z[𝑞, 𝑞−1] (rather than Z((𝑞))).

Remark 3.2.14. If 𝐾 has a non-monic Alexander polynomial (in which case 𝐾 must
be non-fibered), 1

Δ𝐾 (𝑥) has non-integral coefficients as a power series in 𝑥 (or 𝑥−1).
Therefore, in this case, the coefficients of 𝐹𝐾 (𝑥, 𝑞) cannot be polynomials. It is
known that up to 10 crossings, a knot has a monic Alexander polynomial iff it is
fibered. Therefore, for knots with at most 10 crossings, the coefficients of 𝐹𝐾 (𝑥, 𝑞)
are polynomials iff 𝐾 is fibered.

This conjecture is motivated by enumerative geometry too. As we will say more
in Chapter 6, 𝐹𝐾 can be thought of a count of open topological strings [Ekh+], a
setup similar to [OV00] for HOMFLY-PT polynomials, except that we use the knot
complement Lagrangian instead of the usual knot conormal Lagrangian. When the
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Knot Braid Inversion data
820 𝜎−1

1 𝜎−3
2 𝜎−1

1 𝜎3
2

821 𝜎−2
1 𝜎2

2𝜎
−1
1 𝜎−3

2
942 𝜎1𝜎

−1
2 𝜎1𝜎

−2
3 𝜎−1

2 𝜎3
3

944 𝜎1𝜎
−1
2 𝜎1𝜎

2
3𝜎

−1
2 𝜎−3

3
945 𝜎−1

1 𝜎2𝜎
−1
1 𝜎−1

3 𝜎−1
2 𝜎3𝜎

−1
2 𝜎−2

3
948 𝜎−1

1 𝜎2𝜎
−1
3 𝜎2𝜎

−1
1 𝜎3𝜎2𝜎

−1
3 𝜎2𝜎

2
3

1060 𝜎−1
1 𝜎2𝜎

−1
1 𝜎2

2𝜎
−1
3 𝜎2𝜎

−1
3 𝜎−1

2 𝜎−1
4 𝜎3𝜎

−1
4

1069 𝜎1𝜎
−1
2 𝜎3𝜎

−1
2 𝜎4𝜎1𝜎3𝜎

−1
2 𝜎−1

4 𝜎3𝜎
2
4

1073 𝜎−1
1 𝜎2𝜎

−1
1 𝜎2𝜎

−1
3 𝜎2𝜎

−1
4 𝜎−1

3 𝜎4𝜎
−1
3 𝜎−2

4
1075 𝜎1𝜎

−1
2 𝜎1𝜎

−1
2 𝜎3𝜎

−2
2 𝜎4𝜎

−1
3 𝜎2𝜎4𝜎3

1078 𝜎−2
1 𝜎2𝜎

−1
1 𝜎−1

3 𝜎2𝜎
−1
4 𝜎−1

3 𝜎4𝜎
−1
3 𝜎−2

4
1081 𝜎2

1𝜎
−1
2 𝜎1𝜎3𝜎

2
2𝜎

−1
4 𝜎−3

3 𝜎−1
4

1089 𝜎−1
1 𝜎−1

2 𝜎3𝜎
−1
2 𝜎−1

4 𝜎−1
1 𝜎−1

3 𝜎2𝜎3𝜎
−1
4 𝜎3𝜎

−1
4

1096 𝜎1𝜎
−1
2 𝜎3𝜎

−1
2 𝜎4𝜎1𝜎

−1
2 𝜎3𝜎

−1
2 𝜎4𝜎3𝜎

−1
4

10105 𝜎2
1𝜎

−1
2 𝜎1𝜎3𝜎

2
2𝜎

−1
4 𝜎−1

3 𝜎2𝜎
−1
3 𝜎−1

4
10107 𝜎−2

1 𝜎2𝜎
−1
1 𝜎3𝜎

2
2𝜎

−1
4 𝜎3𝜎

−1
2 𝜎3𝜎

−1
4

10110 𝜎−1
1 𝜎2𝜎

−1
1 𝜎−1

3 𝜎−3
2 𝜎4𝜎3𝜎

−1
2 𝜎3𝜎4

10115 𝜎1𝜎
−1
2 𝜎1𝜎3𝜎

2
2𝜎

−1
4 𝜎−1

3 𝜎2𝜎
−2
3 𝜎−1

4
10125 𝜎−1

1 𝜎−3
2 𝜎−1

1 𝜎5
2

10126 𝜎−1
1 𝜎3

2𝜎
−1
1 𝜎−5

2
10127 𝜎−2

1 𝜎2
2𝜎

−1
1 𝜎−5

2
10132 𝜎−1

1 𝜎−1
2 𝜎−1

3 𝜎2𝜎
3
1𝜎

−2
3 𝜎−1

2 𝜎−1
1

10133 𝜎−2
1 𝜎2𝜎

−1
1 𝜎−1

2 𝜎2
3𝜎

−1
2 𝜎−3

3
10136 𝜎1𝜎

−1
2 𝜎1𝜎

2
3𝜎

−1
2 𝜎−1

3 𝜎4𝜎
−1
3 𝜎4

10137 𝜎1𝜎
−1
2 𝜎1𝜎

−2
3 𝜎−1

2 𝜎3𝜎
−1
4 𝜎3𝜎

−1
4

10140 𝜎−1
1 𝜎−1

2 𝜎−1
3 𝜎2𝜎

3
1𝜎

−1
3 𝜎−1

2 𝜎−2
1

10141 𝜎−2
1 𝜎−3

2 𝜎−1
1 𝜎4

2
10143 𝜎−2

1 𝜎3
2𝜎

−1
1 𝜎−4

2
10145 𝜎−1

1 𝜎−1
2 𝜎3𝜎

−1
2 𝜎−1

1 𝜎−1
3 𝜎−1

2 𝜎3𝜎
−1
2 𝜎−2

3
10148 𝜎−1

1 𝜎2𝜎
−1
1 𝜎2

2𝜎
−1
1 𝜎−4

2
10149 𝜎−2

1 𝜎2𝜎
−1
1 𝜎2𝜎

−1
1 𝜎−4

2
10150 𝜎2𝜎1𝜎

−1
3 𝜎−1

2 𝜎1𝜎
2
3𝜎

−1
2 𝜎3

3
10151 𝜎−1

2 𝜎1𝜎3𝜎
−1
2 𝜎1𝜎

−2
3 𝜎2𝜎

3
3

10153 𝜎−3
1 𝜎−1

2 𝜎−2
1 𝜎3𝜎

3
2𝜎3

10154 𝜎1𝜎
3
2𝜎1𝜎3𝜎2𝜎

−1
3 𝜎2𝜎

2
3

10155 𝜎1𝜎
−2
2 𝜎1𝜎

−2
2 𝜎1𝜎

3
2

10156 𝜎−1
1 𝜎−1

2 𝜎3𝜎
−1
2 𝜎−1

1 𝜎2
3𝜎2𝜎

−3
3

10157 𝜎2
1𝜎

−1
2 𝜎1𝜎

−1
2 𝜎2

1𝜎
3
2

10158 𝜎1𝜎2𝜎
−1
3 𝜎2𝜎1𝜎

2
3𝜎

−1
2 𝜎−3

3
10159 𝜎−2

1 𝜎2
2𝜎

−1
1 𝜎2𝜎

−1
1 𝜎−3

2
10160 𝜎−1

1 𝜎2𝜎
−1
3 𝜎2𝜎

−1
1 𝜎2

3𝜎2𝜎
3
3

10161 𝜎−2
1 𝜎−2

2 𝜎−1
1 𝜎2𝜎

−1
1 𝜎−3

2
10163 𝜎1𝜎

2
2𝜎

−1
3 𝜎2𝜎1𝜎

−2
3 𝜎−1

2 𝜎2
3

Table 3.1: Fibered knots up to 10 crossings that are possibly not homogeneous braid
knots.
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Figure 3.11: The 820 knot.

knot is fibered, the knot complement Lagrangian can be completely shifted off of
the zero section 𝑆3, just like the knot conormal Lagrangian. Since the geometry is
completely analogous, we expect that the coefficients of 𝐹𝐾 for a fibered knot 𝐾 are
polynomials, just like (colored) HOMFLY-PT polynomials are polynomials.

Remark 3.2.15. Based on the principles of topological field theory, it is natural to
expect that 𝐹𝐾 (𝑥, 𝑞) for a fibered knot is a (graded) trace of the monodromy action
on the Hilbert space HΣ𝑔,1 associated to the fiber surface. It is a very interesting
problem to figure out the exact formula for the monodromy representation on HΣ𝑔,1

and compare it with 𝐹𝐾 (𝑥, 𝑞).

3.3 Proof of Theorem 3.2.2
In this section, we will prove Theorem 3.2.2, which is restated in a more precise way
below.

Theorem 3.3.1. For any nice link 𝐿, let

𝐹𝐿 := 𝜖 (𝑥 1
2 − 𝑥− 1

2 )𝑍 (𝐷, 𝐼),

where 𝑥 is the holonomy parameter associated to the open strand, and 𝜖 ∈ {±1} is
the sign that we explained in the previous section. Then the following is true.



32

1. 𝐹𝐿 is an invariant of 𝐿. That is, it is independent of the choice of the
homogeneous braid representative.

2. Setting 𝑞 = 𝑒ℏ, its ℏ-expansion agrees with the Melin-Morton-Rozansky
expansion of the colored Jones polynomials.

3. 𝐹𝐿 is annihilated by the quantum 𝐴-polynomial (or quantum 𝐴-ideal in case it
has multiple components).

In other words, 𝐹𝐿 is the invariant whose existence was conjectured in [GM21].

Proof. For simplicity, let’s focus on the case 𝐿 is a knot. The argument we are about
to present can be easily generalized to the case of links. In this case, 𝜖𝑍 (𝐷, 𝐼) is
an element of Z[𝑞, 𝑞−1] [[𝑥−1]]. Our goal is to show that the ℏ-expansion of this
series agrees with the Melvin-Morton-Rozansky expansion of the colored Jones
polynomials of 𝐿 expanded near 𝑥 = ∞, which is part (2) of the Theorem. Before
doing that, let’s first see how part (1) and (3) immediately follow from part (2). Part
(1) follows from part (2) because the Melvin-Morton-Rozansky expansion is an
invariant of a knot, and part (2) shows that it can be re-summed into a series in 𝑥−1

with coefficients in Z[𝑞, 𝑞−1]. Since the ℏ-series uniquely determines the Laurent
polynomial in 𝑞 = 𝑒ℏ, 𝐹𝐿 itself is an invariant of 𝐿, and that proves part (1). Proof
of part (3) from (2) is similar. Since the Melvin-Morton-Rozansky expansion is
annihilated by the quantum 𝐴-polynomial, 𝐴̂𝐿𝑍 (𝐷, 𝐼) should vanish when expanded
into a series in ℏ. Since 𝐴̂𝐿𝑍 (𝐷, 𝐼) ∈ Z[𝑞, 𝑞−1] [[𝑥−1]], it follows that each coefficient
should vanish, meaning that 𝐴̂𝐿𝑍 (𝐷, 𝐼) = 0.

Now let’s prove part (2). For this, we combine ideas from [LW01] and [Roz98].
Following [Roz98], we define the parametrized 𝑅-matrices to be

R(𝛼, 𝛽, 𝛾)𝑖
′, 𝑗 ′

𝑖, 𝑗
= 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′

(
𝑖

𝑗 ′

)
𝛼 𝑗 𝛽 𝑗

′
𝛾𝑖− 𝑗

′
, (3.10)

R−1(𝛼, 𝛽, 𝛾)𝑖
′, 𝑗 ′

𝑖, 𝑗
= 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′

(
𝑗

𝑖′

)
𝛼𝑖𝛽𝑖

′
𝛾 𝑗−𝑖

′
,

where 𝑖, 𝑗 , 𝑖′, 𝑗 ′ ≥ 0. Given an oriented knot diagram with one strand open, we
can consider the state sum by replacing each positive crossing with R and negative
crossing with R−1. We will use different parameters for each crossing, so there will
be 3𝑐 independent parameters in total, where 𝑐 is the number of crossings of the knot
diagram. It should be noted that the parametrized 𝑅-matrices do not satisfy either
Yang-Baxter relation or unitarity. In particular, R is not the inverse matrix of R−1;
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we are abusing the notation for convenience. The significance of the parametrized
𝑅-matrix comes from the fact that they induce an algebra morphism in the following
way. Denoting the vector 𝑣𝑖 ⊗ 𝑣 𝑗 by a monomial 𝑧𝑖1𝑧

𝑗

2, we see that

R(𝑧𝑖1𝑧
𝑗

2) = (𝛾𝑧1 + 𝛽𝑧2)𝑖 (𝛼𝑧1) 𝑗 = R(𝑧1)𝑖R(𝑧2) 𝑗 ,
R−1(𝑧𝑖1𝑧

𝑗

2) = (𝛼𝑧2)𝑖 (𝛽𝑧1 + 𝛾𝑧2) 𝑗 = R−1(𝑧1)𝑖R−1(𝑧2) 𝑗 .

Put in a slightly different language, this means that the parametrized 𝑅-matrices
induce a model of random walk of free bosons on the knot diagram. It follows from
the theorem of Foata and Zeilberger [FZ99] (see also [LW01] for an exposition of
Foata-Zeilberger formula) that the result of this state sum is

Z({𝛼}, {𝛽}, {𝛾}) = 1
det(𝐼 − B) , (3.11)

where B is the transition matrix of this model of random walk. That is, B is the 𝑛× 𝑛
matrix where 𝑛 is the number of internal arcs of the knot diagram, and it records the
probability (or the weight) of a boson to jump from one arc to another. The weight is
determined by the corresponding entry of the matrix R or R−1, with (𝑖, 𝑗) = (0, 1) or
(1, 0) and (𝑖′, 𝑗 ′) = (0, 1) or (1, 0). From the definition of the transition matrix, it is
easy to see that the denominator, det(𝐼 − B), can be expressed in the following way.

det(𝐼 − B) =
∑︁
𝑐

(−1) |𝑐 |𝑊 (𝑐), (3.12)

where the sum ranges over all simple multi-cycles 𝑐, |𝑐 | is the number of components
of the multi-cycle 𝑐, and𝑊 (𝑐) denotes the weight of 𝑐. Let us clarify some of the
terminologies. A cycle is a cyclic path (without a starting point or an end point)
on the knot diagram as an oriented graph. A multi-cycle is an unordered tuple of
cycles. We call a multi-cycle simple if it uses each arc at most once. Since it counts
simple multi-cycles (with weights), det(𝐼 − B) can be obtained as a result of a state
sum where the space of spin states is spanned by 0 and 1, instead of all non-negative
integers, as long as we keep track of the sign (−1) |𝑐 |. In this sense, det(𝐼 − B) can
be obtained as a state sum in a system of random walk of free fermions.

The argument we are about to present applies to all nice diagrams, but for simplicity
of exposition, let’s assume that our oriented knot diagram is given by a homogeneous
braid diagram. With the canonical inversion datum for this homogeneous braid
diagram, each crossing will look like one of the four types in Figure 3.12. The
−-signed arcs are the ones whose orientations get inverted in the inversion datum.
The sign 𝜖 is given by
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Figure 3.12: Four possible types of crossings

𝜖 = (−1) (# of columns with negative crossings)+(# of (𝑅̌−1)−,−−,− crossings) .

Now let’s “invert” this model of random walk. That is, we consider the inverted state
sum, but using R and R−1 instead 𝑅̌ and 𝑅̌−1. Explicitly, the four types of crossings
are given by

R+,+
+,+ : 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′

(
𝑖

𝑗 ′

)
𝛼 𝑗 𝛽 𝑗

′
𝛾𝑖− 𝑗

′
, (3.13)

R−,+
−,+ : 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝛾−1

(
𝑗 ′ + (−𝑖 − 1)

𝑗 ′

)
𝛼 𝑗 (−𝛽) 𝑗 ′𝛾−(−𝑖−1)− 𝑗 ′,

(R−1)+,−+,− : 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝛾−1
(
𝑖′ + (− 𝑗 − 1)

𝑖′

)
𝛼𝑖 (−𝛽)𝑖′𝛾−𝑖′−(− 𝑗−1) ,

(R−1)−,−−,− : 𝛿𝑖+ 𝑗 ,𝑖′+ 𝑗 ′𝛼−1𝛽−1
(
−𝑖′ − 1
− 𝑗 − 1

)
𝛼−(−𝑖−1)𝛽−(−𝑖

′−1) (−𝛾) (−𝑖′−1)−(− 𝑗−1) .

Extracting out the factors 𝛾−1 and 𝛼−1𝛽−1 to normalize these “inverted” parametrized
𝑅-matrices, we see that this again gives a model of random walk of free bosons. This
can be best described with what we call “highway diagrams." Before inversion, the
highway diagrams for the positive and the negative crossing look like Figure 3.13.
Note the arcs connecting the over-strand with the under-strand. They denote the

Figure 3.13: Highway diagrams for the positive and the negative crossing.

way the bosons can move; they can move from the over-strand to the under-strand,
but not the other way around. After inverting some of the indices according to the
four types of crossings as in Figure 3.12, we can make a change of variables to the
inverted indices and use 𝑘 inv := −𝑘 − 1 ∈ Z≥0 instead of 𝑘 ∈ Z<0 for each inverted
index 𝑘 (𝑖, 𝑗 , 𝑖′, or 𝑗 ′). The effect of this change of variables to the diagram is to
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invert the orientation of the inverted arcs. As a result, the inverted highway diagrams
for the four types of crossings look like Figure 3.14. The inverted parametrized

Figure 3.14: Inverted highway diagrams for the four types of crossings.

𝑅-matrices can now be thought of as the maps from the incoming strands to the
outgoing strands. After extracting out the pre-factor (𝛾−1 for R−,+

−,+ and (R−1)+,−+,−, and
𝛼−1𝛽−1 for (R−1)−,−−,−), each of these maps induce an algebra morphism in the sense
we discussed above. For instance, in case of 𝛾R−,+

−.+, denoting the vector 𝑤𝑖′inv
⊗ 𝑣 𝑗 by

a monomial 𝑧𝑖
′
inv

1 𝑧
𝑗

2, we see that

𝛾R(𝑧𝑖
′
inv

1 𝑧
𝑗

2) = (𝛾−1𝑧1 − 𝛽𝛾−1𝑧2)𝑖
′
inv (𝛼𝛾−1𝑧1 − 𝛼𝛽𝛾−1𝑧2) 𝑗 = (𝛾R(𝑧1))𝑖

′
inv (𝛾R(𝑧2)) 𝑗 .

It follows that the result of the state sum of this new model of random walk of free
bosons is

Zinv({𝛼}, {𝛽}, {𝛾}) =
∏
𝑐2 𝛾

−1 ∏
𝑐3 𝛾

−1 ∏
𝑐4 𝛼

−1𝛽−1

det(𝐼 − Binv)
, (3.14)

where Binv is the transition matrix of this new model of random walk (determined by
R+,+
+,+, 𝛾R−,+

−,+, 𝛾R+,−
+,−, 𝛼𝛽R−,−

−,−), and the term in the numerator denotes the product of
𝛾−1 for each crossing of the second and the third type multiplied by the product of
𝛼−1𝛽−1 for each crossing of the fourth type, basically pulling out the pre-factor.

We will prove the following lemma.

Lemma 3.3.2.
Z({𝛼}, {𝛽}, {𝛾}) = 𝜖Zinv({𝛼}, {𝛽}, {𝛾}). (3.15)

To prove the lemma, let’s compare the denominators, det(𝐼 − B) and det(𝐼 − Binv).
Recall from (3.12) that each of these determinants can be understood as the weighted
sum over all simple multi-cycles. So our strategy is to find a one-to-one correspon-
dence between the set of all simple multi-cycles in the first model of random walk of
free fermions and that of the second model. A crucial observation is the following
correspondence.

Proposition 3.3.3. For 𝑖, 𝑖′, 𝑗 , 𝑗 ′ ∈ {0, 1}, there is a correspondence between the
parametrized 𝑅-matrix and its inverted version , as in Figure 3.15.
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Figure 3.15: The correspondence between the parametrized 𝑅-matrix and its
inversion.

This can be proved by checking all the cases. There are two cases we need to be
a little careful of. Those are when 𝑖, 𝑗 , 𝑖′, 𝑗 ′ are all 1 in the crossing of the type
either R−,+

−,+ or R+,−
+,−. In those cases, the right-hand side of the equations in Figure

3.15 are zero, but naively the inverted parametrized 𝑅-matrices (3.13) themselves
are non-zero. This is okay, and in fact when we consider the fermionic model that
computes det(𝐼 − Binv) (instead of the bosonic model that computes its inverse), it is
more natural to set the value of the matrices R−,+

−,+ and R+,−
+,− to be 0 when 𝑖, 𝑗 , 𝑖′, 𝑗 ′ are

all 1. This is because in those types of crossing, when 𝑖, 𝑗 , 𝑖′, 𝑗 ′ are all 1, then there
are two different ways to make it into a simple multi-cycle. That is, there are two
different simple multi-cycles realizing that configuration. For instance, in the case of
R−,+
−,+, we can either connect 𝑖′ to 𝑗 ′ and 𝑗 to 𝑖, or we can connect 𝑖′ to 𝑖 and 𝑗 to 𝑗 ′.

Moreover, one of the two simple multi-cycles have one more component than the
other. Since we are counting simple multi-cycles with weight and sign as in 3.12, the
contribution of that configuration is 0. Therefore in this fermionic model R−,+

−,+ and
R+,−
+,− are zero when 𝑖, 𝑗 , 𝑖′, 𝑗 ′ are all 1, and this proves the proposition.

We are now ready to compare det(𝐼 − B) with det(𝐼 − Binv). Let 𝐷 and 𝐷inv be the
highway diagrams for the original knot diagram and its inversion. Any multi-cycles
in either 𝐷 or 𝐷inv can be thought of as a configuration of 0’s and 1’s on the diagram.
Moreover, any such configuration that has a non-zero weight uniquely determines the
simple multi-cycle. Following the rule as in Figure 3.15, for each simple multi-cycle
𝑐 in 𝐷, there is a corresponding multi-cycle 𝑐inv in 𝐷inv and vice versa. Even their
weights agree, up to a simple factor as given in Figure 3.15. We need to carefully
study these extra factors. The factors 𝛾−1 and 𝛼−1𝛽−1 give an overall factor of
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𝑐2 𝛾

−1 ∏
𝑐3 𝛾

−1 ∏
𝑐4 𝛼

−1𝛽−1, which gets cancelled out with the numerator of (3.14).

Let’s take a careful look at the sign factors. We claim that the overall sign factor
agrees with (−1) |𝑐 |−|𝑐inv |𝜖 . The basic idea is the following. Suppose we have 𝑛
number of disjoint intervals on a circle, and suppose that the ends of the intervals are
connected in a certain way so that they form a collection of cycles. If we change the
set of intervals on the circle to their complement, then the resulting number of cycles
and the original number of cycles have the same parity if 𝑛 is odd, and they have the
opposite parity if 𝑛 is even. See Figure 3.16 as an illustration. This is exactly what

Figure 3.16: The change of parity of the number of components as we invert the
circle.

happens when we invert a column of a knot diagram. Under the correspondence
in Figure 3.15, 0’s and 1’s in a column labeled with − signs change place. So, for
instance, if we have a column labeled with − signs and if the adjacent columns are
labeled with + signs, then a typical picture would be something like Figure 3.17. In
the figure, the column we are inverting is highlighted with a green stripe, and this is
the one that plays the role of the circle in Figure 3.16. A part of a typical multi-cycle
is drawn with red lines. As pointed out above, the change of parity of the number
of components of the multi-cycle is determined by the parity of the red intervals in
the green stripe. The number of such intervals equals the number of red outgoing
strands from the green stripe, which is the sum of 𝑖′’s for the crossings on the left
edge of the stripe plus the sum of 𝑗 ′’s for the crossings on the right edge of the stripe.

More generally, there can be some number of columns labeled with − signs that are
adjacent to each other. In that case, the number of circles is not just the number of
columns that we invert, because some of the circles are connected through crossings
of type (R−1)−,−−,− with either (𝑖, 𝑗 , 𝑖′, 𝑗 ′) = (1, 0, 0, 1), (0, 1, 1, 0) or (1, 1, 1, 1). As a
result, the parity of the number of circles that we invert has the same parity with the
number of columns with − sign plus the number of such crossings. Note that the
number of crossings of type (R−1)−,−−,− with either (𝑖, 𝑗 , 𝑖′, 𝑗 ′) = (1, 0, 0, 1), (0, 1, 1, 0)
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Figure 3.17: Inverting a column labeled with − sign.

or (1, 1, 1, 1) equals the number of all crossings of type (R−1)−,−−,− minus the number
of such crossings with (𝑖, 𝑗 , 𝑖′, 𝑗 ′) = (0, 1, 0, 1) (or (1, 0, 1, 0) after inversion). All in
all, we have

(−1)change of parity in the # of components = (−1)
∑
𝑐2 𝑗

′+∑𝑐3 𝑖
′+∑𝑐4 (𝑖′− 𝑗)

𝜖,

where
∑
𝑐2 𝑗

′ + ∑
𝑐3 𝑖

′ + ∑
𝑐4 (𝑖′ − 𝑗) denotes the sum of 𝑗 ′’s for all the crossings of

the second type plus the sum of 𝑖′’s for all the crossings of the third type plus the sum
of (𝑖′ − 𝑗)’s for all the crossings of the fourth type. Comparing with Figure 3.15, we
see that the overall change of sign in the weight of any multi-cycle is just 𝜖 . This
concludes the proof of Lemma 3.3.2.

In the classical limit, the 𝑅-matrices 𝑅̌(𝑥) and 𝑅̌−1(𝑥) can be obtained by specializing
the parameters of the parametrized 𝑅-matrix. More precisely,

𝑅̌(𝑥)𝑖
′, 𝑗 ′

𝑖, 𝑗

����
𝑞=1

= R(𝛼, 𝛽, 𝛾)𝑖
′, 𝑗 ′

𝑖, 𝑗

����
𝛼=𝑥

− 1
2 ,𝛽=𝑥−

1
2 ,𝛾=1−𝑥−1

, (3.16)

𝑅̌−1(𝑥)𝑖
′, 𝑗 ′

𝑖, 𝑗

����
𝑞=1

= R−1(𝛼, 𝛽, 𝛾)𝑖
′, 𝑗 ′

𝑖, 𝑗

����
𝛼=𝑥

1
2 ,𝛽=𝑥

1
2 ,𝛾=1−𝑥

.

This fact, combined with Lemma 3.3.2, immediately proves that the classical limit of
𝜖𝑍 (𝐷, 𝐼) agrees with 1

Δ𝐿 (𝑥) , where Δ𝐿 (𝑥) denotes the Alexander polynomial of 𝐿.
The rest of the proof follows easily from what Rozansky proved in [Roz98]; there
exists a differential operator 𝐷𝑛 in the parameters {𝛼}, {𝛽}, {𝛾} with polynomial
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coefficients such that the coefficient of ℏ𝑛 in the Melvin-Morton-Rozansky expansion
is

𝐷𝑛 Z({𝛼}, {𝛽}, {𝛾})
����
specialize {𝛼},{𝛽},{𝛾} according to (3.16)

. (3.17)

The way it is proved is by observing that the ℏ-expansion of 𝑅̌(𝑥) can be obtained by
acting a certain differential operator in 𝛼, 𝛽, 𝛾 to R(𝛼, 𝛽, 𝛾) and then specializing
these parameters. It is easy to see that the differential operator for the 𝑅-matrix
remains the same even when we invert some of the indices, and it follows that
the operator 𝐷𝑛 itself remains the same under inversion. So the corresponding
ℏ𝑛-coefficient for the inverted state sum is given by

(−1)𝑠𝐷𝑛 Zinv({𝛼}, {𝛽}, {𝛾})
����
specialize {𝛼},{𝛽},{𝛾} according to (3.16)

. (3.18)

By Lemma 3.3.2, (3.17) and (3.18) are the same as rational functions. This finishes
the proof of Theorem 3.3.1. □

Remark 3.3.4. It is important to note that (3.17) is a power series in (1 − 𝑥) while
(3.18) is a power series in 𝑥−1. In other words, a state sum and its inversion are
typically defined in a different domain; one near 𝑥 = 1 and the other near 𝑥 = ∞ (or
𝑥 = 0 if we had started with the lowest weight Verma module). For this reason, they
can’t be compared directly. This is why even though a lot is known about the integral
form of the Melvin-Morton-Rozansky expansion cyclotomically (see e.g., [Hab02;
Hab07; Wil22]), it has been a challenge to find its integral form near 𝑥 = 0 or 𝑥 = ∞
as [GM21] conjectured.

In the above proof, we circumvented the issue of having different domains of
convergence by making use of the fact that they can both be expressed as rational
functions and showed that the two rational functions are the same.

Remark 3.3.5. The effect of the sign factor on the positive and negative stabilization
moves can be summarized as in Figure 3.18.

Remark 3.3.6. When specialized according to (3.16), the equation (3.12) becomes
Murakami’s state sum expression for the (multi-variable) Alexander polynomial
[Mar05]. In Murakami’s state sum model, the space of spin states is a 2-dimensional
super-vector space𝑉 = span{𝑣0, 𝑣1} where 𝑣0 has even degree and 𝑣1 has odd degree.
The trace is replaced by the super-trace, and one of the 𝑅-matrix element has an
extra − sign. The set of 𝑣1-colored arcs form a simple multi-cycle, and the number
of components is counted by the signs coming from the super-trace and the 𝑅-matrix
element.
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Figure 3.18: Sign factors under stabilizations.
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C h a p t e r 4

DEHN SURGERY

In the previous chapter we have studied how to define and compute 𝑍̂ for various
link complements. In this chapter, we turn our attention to Dehn surgery, in order to
glue in solid tori along the boundaries of those link complements.

The most basic form of the surgery formula is (2.5) [GM21, Conjecture 1.7], which
we expect to be true for all knots, whenever − 𝑟

𝑝
is big enough (where 𝑝

𝑟
is the Dehn

surgery coefficient). There is a natural generalization for links.

Conjecture 4.0.1. Let 𝑆3
𝑝1,··· ,𝑝𝑙 (𝐿) be the 3-manifold obtained by performing the

(𝑝1, · · · , 𝑝𝑙)-surgery on 𝐿 ⊂ 𝑆3, and let 𝐵 be the 𝑙 × 𝑙 linking matrix defined by

𝐵𝑖 𝑗 =


𝑝𝑖 if 𝑖 = 𝑗

𝑙𝑘 (𝑖, 𝑗) otherwise
. (4.1)

Let L𝑏
𝐵

be the “Laplace transform” defined by

L𝑏
𝐵 : 𝑥𝑢 ↦→


𝑞−(𝑢,𝐵

−1𝑢) if 𝑢 ∈ 𝑏 + 𝐵Z𝑙

0 otherwise
. (4.2)

Then1

𝑍̂𝑆3
𝑝1 , · · · , 𝑝𝑙 (𝐿),𝑏

(𝑞) � L𝑏
𝐵

[
(𝑥

1
2
1 − 𝑥−

1
2

1 ) · · · (𝑥
1
2
𝑙
− 𝑥−

1
2

𝑙
)𝐹𝐿 (𝑥1, · · · , 𝑥𝑙 , 𝑞)

]
, (4.3)

whenever the smallest eigenvalue of −𝐵−1 is big enough so that the right-hand side
converges.

Remark 4.0.2. The range of surgery coefficients for which this Dehn surgery formula
is applicable is closely related to the rate of quadratic growth of the order of 𝑞 (i.e.,
the minimal 𝑞-degree) of the coefficients of 𝐹𝐾 (𝑥, 𝑞). More precisely, for any knot
𝐾 , if we define

𝑐𝐾 := lim inf
𝑛→∞

ord𝑞 𝑓𝑛 (𝑞)
𝑛2 ,

1Here, � denotes equality up to a sign and a shift in overall 𝑞-degree. That is, 𝑓 � 𝑔 iff 𝑓 = 𝜖𝑞𝑑𝑔

for some sign 𝜖 ∈ {±1} and 𝑑 ∈ Q.



42

where 𝑓𝑛 (𝑞) is the coefficient of 𝑥𝑛+
1
2 in 𝐹𝐾 (𝑥, 𝑞), then the right-hand side of

the surgery formula converges whenever whenever − 1
𝑝/𝑟 + 𝑐𝐾 > 0. It would be

very interesting to understand how the invariant 𝑐𝐾 is related to some other known
invariants of knots, such as the boundary slopes of the 𝐴-polynomial Newton polygon.

Assuming Conjecture 4.0.1 and its consistency, one can deduce formulas for partial
Dehn surgery (i.e., performing Dehn surgery only on some strands of a link). In
particular, the following partial small surgery formula is often useful:

Conjecture 4.0.3. Let 𝐿 be a link with components 𝐿0, 𝐿1, · · · , 𝐿𝑙 , with 𝐿0 being
an unknot. Let 𝐿′ be the link obtained by performing the −1

𝑟
-surgery on 𝐿0. Then

𝐹𝐿 ′ (𝑥1, · · · , 𝑥𝑙 , 𝑞) � L
[
(𝑥

1
2𝑟
0 − 𝑥−

1
2𝑟

0 )𝐹𝐿 (𝑥0, · · · , 𝑥𝑙 , 𝑞)
]

(4.4)

whenever 𝑟 is big enough so that the right-hand side converges, where

L : 𝑥𝑢0 ↦→ 𝑞𝑟𝑢
2 ∏

1≤𝑖≤𝑙
𝑥
𝑙𝑘 (𝐿𝑖 ,𝐿0)𝑟𝑢
𝑖

. (4.5)

This partial Dehn surgery formula was used in [Par20b] to reverse-engineer 𝐹𝐿 for
the Whitehead link and the Borromean rings, from the double twist knots, and the
result is consistent with Examples 3.2.7 and 3.2.8.

While the Dehn surgery formulas we have just reviewed are nice, they are limited
to the surgeries for which the minus of the inverse of the surgery coefficient is
big enough. In the rest of this chapter, we present some hints and ideas toward
overcoming this issue. The main observation is that the two-variable series 𝐹𝐾 (𝑥, 𝑞)
can be expanded in a form that we call the inverted Habiro series, and that in this
form there are some nice 𝑞-series identities that allow us to go beyond the range of
surgery coefficients that we were limited to.

4.1 Inverted Habiro series
It is a well-known theorem of Habiro [Hab02] that for any knot 𝐾 , there is a sequence
of Laurent polynomials 𝑎𝑚 (𝐾) ∈ Z[𝑞, 𝑞−1] such that the colored Jones polynomials
𝐽𝐾 (𝑉𝑛), colored by the 𝑛-dimensional irreducible representation 𝑉𝑛 of 𝔰𝔩2, can be
decomposed as

𝐽𝐾 (𝑉𝑛) =
∞∑︁
𝑚=0

𝑎𝑚 (𝐾)
𝑚∏
𝑗=1

(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )
����
𝑥=𝑞𝑛

.
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The purpose of this section is to make a curious observation that for some simple
knots and links, the sequence {𝑎𝑚 (𝐾)}𝑚≥0 can be naturally extended to negative
values of 𝑚. The simplest example is the figure-eight knot. In this case we have
𝑎𝑚 (41) = 1 for any𝑚 ≥ 0, so it is very natural to set 𝑎𝑚 (41) = 1 for any𝑚 ∈ Z. Once
we have such an extension of the sequence {𝑎𝑚 (𝐾)}, we can “invert" the Habiro
series in the following way:

∞∑︁
𝑚=0

𝑎𝑚 (𝐾)
𝑚∏
𝑗=1

(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 ) { −
∞∑︁
𝑚=1

𝑎−𝑚 (𝐾)∏𝑚−1
𝑗=0 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

.

The series on the right-hand side is what we will call an inverted Habiro series. As
we will see through examples, 𝑎𝑚 (𝐾) with 𝑚 < 0 are in general not necessarily
Laurent polynomials, but rather Laurent power series in 𝑞 with integer coefficients.

A priori the “inverted Habiro series" is a very different object compared to the original
Habiro series. For one thing, the specialization 𝑥 = 𝑞𝑛 doesn’t make sense any more
for the inverted Habiro series, as it has poles at 𝑞Z. For another thing, the inverted
Habiro series can be expanded into a power series in 𝑥 or 𝑥−1, which is not possible
for the usual Habiro series. The distinction is clearer in the classical limit 𝑞 → 1
where the usual Habiro series take values in Z[[𝑥 + 𝑥−1 − 2]] (a completion at a finite
place 𝑥 + 𝑥−1 = 2) whereas the inverted Habiro series take values in Q[[ 1

𝑥+𝑥−1−2 ]]
(a completion at an infinite place 𝑥 + 𝑥−1 = ∞). Morally, this is the same as what
we did in the previous section; whether it is a state sum or a Habiro series, we are
inverting it to make it convergent near 𝑥 + 𝑥−1 = ∞.

We conjecture that 𝐹𝐾 can be thought of as the inverted Habiro series.

Conjecture 4.1.1. For any knot 𝐾 with Δ𝐾 (𝑥) ≠ 1, it has an inverted Habiro series,
and it agrees with the 𝐹𝐾 in the sense that

𝐹𝐾 (𝑥, 𝑞) = −(𝑥 1
2 − 𝑥− 1

2 )
∞∑︁
𝑚=1

𝑎−𝑚 (𝐾)∏𝑚−1
𝑗=0 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

when the right-hand side is expanded into a power series in 𝑥.

Remark 4.1.2. In this conjecture, we have imposed the condition that degΔ𝐾 (𝑥) > 0
to make sure that 1

Δ𝐾 (𝑥) = 𝑂 (𝑥) as a power series in 𝑥.

The following identity allows us to transform a power series in 𝑥 into an inverted
Habiro series and vice versa.
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Proposition 4.1.3. If we write

−(𝑥 1
2 − 𝑥− 1

2 )
∞∑︁
𝑚=1

𝑎−𝑚 (𝐾; 𝑞)∏𝑚−1
𝑘=0 (𝑥 + 𝑥−1 − 𝑞𝑘 − 𝑞−𝑘 )

= 𝑥
1
2
∑︁
𝑗≥0

𝑓 𝑗 (𝐾; 𝑞)𝑥 𝑗 ,

then

𝑓 𝑗 (𝐾; 𝑞) =
𝑗∑︁
𝑖=0

[
𝑗 + 𝑖
2𝑖

]
𝑎−𝑖−1(𝐾; 𝑞), (4.6)

𝑎−𝑖−1(𝐾; 𝑞) =
𝑖∑︁
𝑗=0

(−1)𝑖+ 𝑗
[

2𝑖
𝑖 − 𝑗

]
[2 𝑗 + 1]
[𝑖 + 𝑗 + 1] 𝑓 𝑗 (𝐾; 𝑞).

Proof. The first identity is a direct consequence of Heine’s binomial formula

1
(𝑧)𝑛

=
∑︁
𝑗≥0

[
𝑛 + 𝑗 − 1

𝑗

]
𝑞

𝑧 𝑗 .

The second identity is the inverse of the first identity and can be verified using qZeil
[PR97]. □

It follows from this proposition and Theorem 3.3.1, that for any nice knot 𝐾 (such as
any homogeneous braid knot) that is not an unknot, 𝐹𝐾 can be expressed as as an
inverted Habiro series.

Remark 4.1.4. Proposition 4.1.3 says that the inverted Habiro series and the power
series in 𝑥 contain the same amount of information. Still, the inverted Habiro series
is an especially nice way of presenting 𝐹𝐾 , as it is manifestly Weyl-symmetric. What
is more, it helps us uncover various surgery formulas, as we we will see in later
subsections.

Inverted Habiro series for some simple knots and links
The 𝑎𝑚 (𝐾) for the figure-eight and the trefoil knots of both handedness are particularly
simple:

𝑎𝑚 (41) = 1, 𝑎𝑚 (3𝑙1) = (−1)𝑚𝑞
𝑚(𝑚+3)

2 , 𝑎𝑚 (3𝑟1) = (−1)𝑚𝑞−
𝑚(𝑚+3)

2 .

It is straightforward to extend these to negative 𝑚. From this, we obtain the inverted
Habiro expansions of the corresponding 𝐹𝐾’s:

𝐹41 (𝑥, 𝑞) = −(𝑥 1
2 − 𝑥− 1

2 )
∞∑︁
𝑚=1

1∏𝑚−1
𝑗=0 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

, (4.7)
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𝐹3𝑙1
(𝑥, 𝑞) = −(𝑥 1

2 − 𝑥− 1
2 )

∞∑︁
𝑚=1

(−1)𝑚𝑞
𝑚(𝑚−3)

2∏𝑚−1
𝑗=0 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

(4.8)

= 𝑞−1(𝑥 1
2 − 𝑥− 1

2 )
∑︁
𝑛≥0

(−1)𝑛𝑞
𝑛(𝑛−1)

2∏𝑛
𝑗=0(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

,

𝐹3𝑟1 (𝑥, 𝑞) = −(𝑥 1
2 − 𝑥− 1

2 )
∞∑︁
𝑚=1

(−1)𝑚𝑞−
𝑚(𝑚−3)

2∏𝑚−1
𝑗=0 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

(4.9)

= 𝑞(𝑥 1
2 − 𝑥− 1

2 )
∑︁
𝑛≥0

(−1)𝑛𝑞−
𝑛(𝑛−1)

2∏𝑛
𝑗=0(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

.

Their power series expansions agree with the known results in [GM21].

The Habiro coefficients for the Whitehead link and the Borromean rings are given in
[Hab00]. Inverting them, we obtain the following expressions for the corresponding
𝐹𝐾’s:

𝐹Wh(𝑥1, 𝑥2, 𝑞) = 𝑞−
1
2 (𝑥

1
2
1−𝑥

− 1
2

1 ) (𝑥
1
2
2−𝑥

− 1
2

2 )
∑︁
𝑛≥0

(−1)𝑛𝑞−
𝑛(𝑛+1)

2 (𝑞𝑛+1)𝑛∏𝑛
𝑗=0(𝑥1 + 𝑥−1

1 − 𝑞 𝑗 − 𝑞− 𝑗 ) (𝑥2 + 𝑥−1
2 − 𝑞 𝑗 − 𝑞− 𝑗 )

,

(4.10)

𝐹Bor(𝑥1, 𝑥2, 𝑥3, 𝑞) = (𝑥
1
2
1 −𝑥

− 1
2

1 ) (𝑥
1
2
2 −𝑥

− 1
2

2 ) (𝑥
1
2
3 −𝑥

− 1
2

3 )∑𝑛≥0
(−1)𝑛𝑞−

3𝑛2+𝑛
2 (𝑞𝑛+1)2𝑛∏𝑛

𝑗=0 (𝑥1+𝑥−1
1 −𝑞 𝑗−𝑞− 𝑗 ) (𝑥2+𝑥−1

2 −𝑞 𝑗−𝑞− 𝑗 ) (𝑥3+𝑥−1
3 −𝑞 𝑗−𝑞− 𝑗 )

.

(4.11)
These formulas agree perfectly with the results from the previous chapter (Examples
3.2.7 and 3.2.8).

+1-surgery
One surprising aspect of inverted Habiro series is that it allows us to uncover some
surgery formulas that were not known before.

Proposition 4.1.5. The following identity holds

1∏𝑛
𝑗=1(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

����
𝑥𝑢 ↦→𝑞𝑢

2
=

𝑞𝑛
2

(𝑞𝑛+1)𝑛
, (4.12)

where 𝑓 (𝑥)
����
𝑥𝑢 ↦→𝑞𝑢

2
is a shorthand notation for “first expand 𝑓 (𝑥) into a power series

in 𝑥 and then replace each 𝑥𝑢 by 𝑞𝑢2 ." In other words,

∞∑︁
𝑘=0

(𝑞 (𝑛+𝑘)2 − 𝑞 (𝑛+𝑘+1)2)
[
2𝑛 + 𝑘

2𝑛

]
=

𝑞𝑛
2

(𝑞𝑛+1)𝑛
.



46

Proof. In Proposition 4.1.14, we will show that (𝑞)2𝑛 1∏𝑛
𝑗=1 (𝑥+𝑥−1−𝑞 𝑗−𝑞− 𝑗 )

����
𝑥𝑢 ↦→𝑞𝑢

2
is a

polynomial. Using qZeil [PR97], one can verify that this polynomial is 𝑞𝑛2 (𝑞)𝑛. □

Corollary 4.1.6 (−1-surgery formula). Suppose that

𝐹𝐾 (𝑥, 𝑞) = −(𝑥 1
2 − 𝑥− 1

2 )
∞∑︁
𝑚=1

𝑎−𝑚 (𝐾)∏𝑚−1
𝑗=0 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

.

Then the −1-surgery formula of [GM21] can be written as

𝑍̂𝑆3
−1 (𝐾)

(𝑞) = −𝑞− 1
2
∑︁
𝑛≥0

𝑎−𝑛−1(𝐾)
𝑞𝑛

2

(𝑞𝑛+1)𝑛
.

Example 4.1.7 (−1-surgery on 41). Let’s take a look at the −1-surgery on the
figure-eight knot 41. Since the inverted Habiro coefficients of 41 are all 1, we
immediately get the following formula

𝑍̂−Σ(2,3,7) (𝑞) = 𝑍̂𝑆3
−1 (41) (𝑞) = −𝑞− 1

2
∑︁
𝑛≥0

𝑞𝑛
2

(𝑞𝑛+1)𝑛
.

Up to a prefactor, this is F0(𝑞), one of Ramanujan’s mock theta functions of order 7.

It is a very useful fact that the right-hand side of (4.12) is a rational function in 𝑞.
This means that even if we replace 𝑞 by 𝑞−1, the right-hand side will still make sense
as a power series in 𝑞.

Corollary 4.1.8. We have the identity

1∏𝑛
𝑗=1(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

����
𝑥𝑢 ↦→𝑞−𝑢2

=
(−1)𝑛𝑞

𝑛(𝑛+1)
2

(𝑞𝑛+1)𝑛
. (4.13)

Since the transform 𝑥𝑢 ↦→ 𝑞−𝑢
2 when applied to (𝑥 1

2 − 𝑥− 1
2 )𝐹𝐾 (𝑥, 𝑞) is the +1-surgery

formula given in [GM21], we can make use of this identity to do +1-surgery. The
result, written in terms of inverted Habiro coefficients, looks like

𝑍̂𝑆3
+1 (𝐾)

(𝑞) = 𝑞 1
2
∑︁
𝑛≥0

𝑎−𝑛−1(𝐾)
(−1)𝑛𝑞

𝑛(𝑛+1)
2

(𝑞𝑛+1)𝑛
. (4.14)

However, one should note the important difference between the +1-surgery formula
of [GM21] and the above formula. In (4.14), we are making an implicit regularization
of the 𝑞-series. This is because the left-hand side of (4.13) is a power series in 𝑞−1,
whereas we are using the right-hand side of (4.13) as a series in 𝑞. This is more evident
when we write the transform (4.14) in terms of 𝐹𝐾 (𝑥, 𝑞) = 𝑥

1
2
∑
𝑗≥0 𝑓 𝑗 (𝐾; 𝑞)𝑥 𝑗 using

Proposition 4.1.3.
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Proposition 4.1.9. For any 𝑗 ≥ 0,
∞∑︁
𝑛= 𝑗

(−1)𝑛+ 𝑗
[

2𝑛
𝑛 − 𝑗

]
[2 𝑗 + 1]

[𝑛 + 𝑗 + 1]
(−1)𝑛𝑞

𝑛(𝑛+1)
2

(𝑞𝑛+1)𝑛

= (𝑞− 𝑗2 − 𝑞−( 𝑗+1)2)©­«1 −
∑

|𝑘 |≤ 𝑗 (−1)𝑘𝑞
𝑘 (3𝑘+1)

2

(𝑞)∞
ª®¬.

Proof. The left-hand side can be simplified as

(𝑞− 𝑗2 − 𝑞−( 𝑗+1)2) (−1) 𝑗+1𝑞
𝑗 (3 𝑗+1)

2

∞∑︁
𝑛=0

𝑞𝑛+2 𝑗+1 (𝑞𝑛+1) 𝑗
(𝑞)𝑛+2 𝑗+1

.

Therefore, it suffices to prove that2

(−1) 𝑗+1𝑞
𝑗 (3 𝑗+1)

2
∑︁
𝑛≥0

𝑞𝑛+2 𝑗+1(𝑞𝑛+1) 𝑗 (𝑞𝑛+2 𝑗+2)∞
?
=

∑︁
|𝑘 |> 𝑗

(−1)𝑘𝑞
𝑘 (3𝑘+1)

2 . (4.15)

Firstly, it follows from the 𝑞-Vandermonde convolution identity∏
0≤𝑙≤ 𝑗−1

(𝑥 − 𝑞𝑙𝑦) =
∑︁

0≤𝑖≤ 𝑗
(−1)𝑖𝑞

𝑖 (𝑖−1)
2

[
𝑗

𝑖

]
𝑞

(𝑞−𝑖+1𝑥)𝑖 (𝑦) 𝑗−𝑖,

that

(−1) 𝑗+1𝑞
𝑗 (3 𝑗+1)

2 (𝑞𝑛+1) 𝑗 =
∑︁

0≤𝑖≤ 𝑗
(−1)𝑖+1𝑞

𝑖 (𝑖−1)
2

[
𝑗

𝑖

]
𝑞

(𝑞𝑛+2 𝑗−𝑖+2)𝑖 (𝑞 𝑗+1) 𝑗−𝑖 .

So, the left-hand side of (4.15) becomes∑︁
𝑛≥0

𝑞𝑛+2 𝑗+1(𝑞𝑛+2 𝑗+2)∞
∑︁

0≤𝑖≤ 𝑗
(−1)𝑖+1𝑞

𝑖 (𝑖−1)
2

[
𝑗

𝑖

]
𝑞

(𝑞𝑛+2 𝑗−𝑖+2)𝑖 (𝑞 𝑗+1) 𝑗−𝑖

=
∑︁
𝑛≥0

𝑞𝑛+2 𝑗−𝑖+1(𝑞𝑛+2 𝑗−𝑖+2)∞
∑︁

0≤𝑖≤ 𝑗
(−1)𝑖+1𝑞

𝑖 (𝑖+1)
2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖

=
∑︁
𝑛≥0

(
(𝑞𝑛+2 𝑗−𝑖+2)∞ − (𝑞𝑛+2 𝑗−𝑖+1)∞

) ∑︁
0≤𝑖≤ 𝑗

(−1)𝑖+1𝑞
𝑖 (𝑖+1)

2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖

=

(
1 − (𝑞2 𝑗−𝑖+1)∞

) ∑︁
0≤𝑖≤ 𝑗

(−1)𝑖+1𝑞
𝑖 (𝑖+1)

2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖

=
©­«

∑︁
0≤𝑖≤ 𝑗

(−1)𝑖+1𝑞
𝑖 (𝑖+1)

2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖
ª®¬ − (𝑞 𝑗+1)∞

∑︁
0≤𝑖≤ 𝑗

(−1)𝑖+1𝑞
𝑖 (𝑖+1)

2

[
𝑗

𝑖

]
𝑞

=
©­«

∑︁
0≤𝑖≤ 𝑗

(−1)𝑖+1𝑞
𝑖 (𝑖+1)

2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖ª®¬ + (𝑞)∞,

2I thank Fedor Petrov for providing a proof of this identity.
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where we have used the 𝑞-binomial identity in the last equality. Euler’s pentagonal
number theorem says

(𝑞)∞ =
∑︁
𝑘∈Z

(−1)𝑘𝑞
𝑘 (3𝑘+1)

2 ,

and therefore (4.15) is reduced to the following simple identity:∑︁
0≤𝑖≤ 𝑗

(−1)𝑖𝑞
𝑖 (𝑖+1)

2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖
?
=

∑︁
|𝑘 |≤ 𝑗

(−1)𝑘𝑞
𝑘 (3𝑘+1)

2 .

The left-hand side is a polynomial of degree at most

max
0≤𝑖≤ 𝑗

{
𝑖(𝑖 + 1)

2
+ 𝑖( 𝑗 − 𝑖) + (3 𝑗 − 𝑖 + 1) ( 𝑗 − 𝑖)

2

}
=
𝑗 (3 𝑗 + 1)

2
.

On the other hand, we know that

(𝑞)∞ −
∑︁

0≤𝑖≤ 𝑗
(−1)𝑖𝑞

𝑖 (𝑖+1)
2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖 = (−1) 𝑗+1𝑞
𝑗 (3 𝑗+1)

2
∑︁
𝑛≥0

𝑞𝑛+2 𝑗+1(𝑞𝑛+1) 𝑗 (𝑞𝑛+2 𝑗+2)∞

≡ 0 mod 𝑞
𝑗 (3 𝑗+1)

2 +2 𝑗+1.

Therefore,∑︁
0≤𝑖≤ 𝑗

(−1)𝑖𝑞
𝑖 (𝑖+1)

2

[
𝑗

𝑖

]
𝑞

(𝑞 𝑗+1) 𝑗−𝑖 = (𝑞)∞ mod 𝑞
𝑗 (3 𝑗+1)

2 +2 𝑗+1 =
∑︁
|𝑘 |≤ 𝑗

(−1)𝑘𝑞
𝑘 (3𝑘+1)

2

as desired. □

As a result, we can write (4.14) as

𝑍̂𝑆3
+1 (𝐾)

(𝑞) = 𝑞 1
2
∑︁
𝑗≥0

𝑓 𝑗 (𝐾; 𝑞) (𝑞− 𝑗2 − 𝑞−( 𝑗+1)2)©­«1 −
∑

|𝑘 |≤ 𝑗 (−1)𝑘𝑞
𝑘 (3𝑘+1)

2

(𝑞)∞
ª®¬. (4.16)

In this form, it is clear what the effect of the implicit regularization (4.13) is; it adds

the “regularization factor” of 1 −
∑

|𝑘 | ≤ 𝑗 (−1)𝑘𝑞
𝑘 (3𝑘+1)

2

(𝑞)∞ . Note that (4.16) can be written
in the following form

𝑍̂𝑆3
+1 (𝐾)

(𝑞) = 𝑞
1
2

(𝑞)∞

∑︁
𝑗≥0
|𝑘 |> 𝑗

𝑓 𝑗 (𝐾; 𝑞) (𝑞− 𝑗2 − 𝑞−( 𝑗+1)2) (−1)𝑘𝑞
𝑘 (3𝑘+1)

2 . (4.17)

This expression hints that the +1-surgery formula is related to indefinite theta
functions. We study this connection further in Section 4.2.
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Conjecture 4.1.10 (Regularized +1-surgery formula). Suppose 𝐹𝐾 can be expressed
as an inverted Habiro series. Then 𝑍̂ for the +1-surgery on 𝐾 is given by (4.14), or
equivalently (4.17).

We have checked this conjecture through various examples.

Example 4.1.11 (+1-surgery on 41). Naive application of the +1-surgery formula
of [GM21] to 𝐹41 does not converge. So we need to use our regularization. From
(4.14), we immediately get

𝑍̂Σ(2,3,7) (𝑞) = 𝑍̂𝑆3
+1 (41) (𝑞) = 𝑞

1
2
∑︁
𝑛≥0

(−1)𝑛𝑞
𝑛(𝑛+1)

2

(𝑞𝑛+1)𝑛
,

which agrees with the computation from the plumbing description of Σ(2, 3, 7) in
[GM21].

Example 4.1.12 (+1-surgery on Whitehead link). Consider the Whitehead link
which is obtained by −1-surgery on a component of the Borromean rings (mirror to
Example 3.2.7). If we apply the +1-surgery of [GM21], then it stabilizes to 𝐹41 but
does not converge to it. This is because even if we add more and more terms, there
are always terms with higher and higher power of 𝑞−1. This issue is solved by using
the regularized +1-surgery formula; in this way, the result actually converges to 𝐹41 .

Example 4.1.13 (+1-surgery on L7a1). As briefly mentioned in Example 3.2.9,
the +1-surgery on the 𝑥2-component of L7a1 is the 62 knot. Indeed, applying the
regularized +1-surgery formula, the result converges to 𝐹62 (𝑥1, 𝑞).

Other positive integer surgeries
Now we study some other integer surgeries in a similar fashion.

Proposition 4.1.14. The 𝑞-series

1∏𝑛
𝑗=1(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

����
𝑥𝑢 ↦→𝛿𝑏,𝑢(mod 𝑝)𝑞

𝑢2
𝑝

is a rational function function in 𝑞. Here, 𝑓 (𝑥)
����
𝑥𝑢 ↦→𝛿𝑏,𝑢(mod 𝑝)𝑞

𝑢2
𝑝

is a shorthand

notation for “first expand 𝑓 (𝑥) into a power series in 𝑥 and then replace each 𝑥𝑢 by
𝑞
𝑢2
𝑝 whenever 𝑏 = 𝑢 (mod 𝑝) and by 0 otherwise.”
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Proof. We start by putting it in a form that is easier to deal with:

(𝑞)2𝑛
1∏𝑛

𝑗=1(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

����
𝑥𝑢 ↦→𝛿𝑏,𝑢(mod 𝑝)𝑞

𝑢2
𝑝

= −(𝑞)2𝑛 (𝑥
1
2 − 𝑥− 1

2 )
∑︁
𝑘≥0

𝑥𝑛+𝑘+
1
2

[
2𝑛 + 𝑘

2𝑛

] ����
𝑥𝑢 ↦→𝛿𝑏,𝑢(mod 𝑝)𝑞

𝑢2
𝑝

=
∑︁
𝑘≧0

(𝑥𝑛+𝑘 − 𝑥𝑛+𝑘+1)𝑞−𝑛𝑘 (1 − 𝑞𝑘+1) · · · (1 − 𝑞𝑘+2𝑛)
����
𝑥𝑢 ↦→𝛿𝑏,𝑢(mod 𝑝)𝑞

𝑢2
𝑝

=
∑︁
𝑘≥0

𝑘≡𝑏−𝑛 mod 𝑝

𝑞
(𝑛+𝑘)2
𝑝 𝑞−𝑛𝑘 (1 − 𝑞𝑘+1) · · · (1 − 𝑞𝑘+2𝑛)

−
∑︁
𝑘≥0

𝑘≡𝑏−𝑛−1 mod 𝑝

𝑞
(𝑛+𝑘+1)2

𝑝 𝑞−𝑛𝑘 (1 − 𝑞𝑘+1) · · · (1 − 𝑞𝑘+2𝑛).

Expanding (1 − 𝑞𝑘+1) · · · (1 − 𝑞𝑘+2𝑛) on both sides, there are 22𝑛 terms on each side
of the summation. There is a natural pairing between the terms on the left side with
the terms on the right side, given by the following rule. Any term on the left side can
be expressed as a sequence of signs, where the 𝑖-th sign would represent whether we
choose 1 or −𝑞𝑘+𝑖 from (1 − 𝑞𝑘+𝑖). Then we flip all the signs and reverse the order.
This new sequence will correspond to a term on the right summation. If we started

with a term 𝑞
(𝑛+𝑘)2
𝑝

+𝐴𝑘+𝐵 from the left summation, then the corresponding term on

the right summation is −𝑞
(𝑛+𝑘+1)2

𝑝
−𝐴𝑘+(𝐵−(2𝑛+1)𝐴) . Notice that

𝑞
(𝑛+𝑘)2
𝑝

+𝐴𝑘+𝐵
= 𝑞

1
𝑝
(𝑛+𝑘) (𝑛+𝑘+𝑝𝐴)+(𝐵−𝐴𝑛)

,

−𝑞
(𝑛+𝑘+1)2

𝑝
−𝐴𝑘+(𝐵−(2𝑛+1)𝐴)

= −𝑞
1
𝑝
(𝑛+𝑘+1−𝑝𝐴) (𝑛+𝑘+1)+(𝐵−𝐴𝑛)

.

This means that the summation of these pairs over 𝑘 telescopes, leaving only finitely
many terms. Therefore the expression we started with is a Laurent polynomial in
𝑞. □

This proposition itself is enough to study positive and negative integer surgeries, but
we should remark that, based on experiments, it seems we can say more about the
structure of the rational function; it takes the following form:

1∏𝑛
𝑗=1(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

����
𝑥𝑢 ↦→𝛿𝑏,𝑢(mod 𝑝)𝑞

𝑢2
𝑝

=
𝑞𝑛

2

(𝑞𝑛+1)𝑛
𝑞
− 𝑏 (𝑝−𝑏)

𝑝 𝑃
𝑝,𝑏
𝑛 (𝑞), (4.18)

where 𝑃𝑝,𝑏𝑛 (𝑞) ∈ Z[𝑞−1] is a polynomial with non-negative coefficients of degree at
most 𝑝⌊ 𝑛2

4 ⌋ whose classical limit (i.e., 𝑞 = 1 limit) is 𝑝𝑛−1 for any 𝑛 ≥ 1. In Table
4.1, we list the first few polynomials 𝑃𝑝,𝑏𝑛 .



51

𝑛

0 𝑃
𝑝,𝑏

0 = 𝛿𝑏,0

1 𝑃
𝑝,𝑏

1 = 1

2

𝑃
1,0
2 = 1

𝑃
2,0
2 = 1 + 𝑞−2

𝑃
2,1
2 = 1 + 𝑞−1

𝑃
3,0
2 = 1 + 𝑞−2 + 𝑞−3

𝑃
3,1
2 = 1 + 𝑞−1 + 𝑞−2

3

𝑃
1,0
3 = 1

𝑃
2,0
3 = 1 + 𝑞−2 + 𝑞−3 + 𝑞−4

𝑃
2,1
3 = 1 + 𝑞−1 + 𝑞−2 + 𝑞−4

𝑃
3,0
3 = 1 + 𝑞−2 + 2𝑞−3 + 2𝑞−4 + 𝑞−5 + 2𝑞−6

𝑃
3,1
3 = 1 + 𝑞−1 + 2𝑞−2 + 𝑞−3 + 2𝑞−4 + 𝑞−5 + 𝑞−6

Table 4.1: The first few polynomials 𝑃𝑝,𝑏𝑛 .

Replacing 𝑞 with 𝑞−1, the right-hand side still makes sense as a power series in 𝑞.

Corollary 4.1.15. We have the identity

1∏𝑛
𝑗=1(𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

����
𝑥𝑢 ↦→𝛿𝑏,𝑢(mod 𝑝)𝑞

− 𝑢2
𝑝

=
(−1)𝑛𝑞

𝑛(𝑛+1)
2

(𝑞𝑛+1)𝑛
𝑞
𝑏 (𝑝−𝑏)
𝑝 𝑃

𝑝,𝑏
𝑛 (𝑞−1).

(4.19)

Just like we made use of (4.13) to conjecture a regularized version of the +1-surgery
formula, we conjecture that we can use (4.19) to regularize 𝑝-surgery.

Example 4.1.16 (+1, +2, +3-surgery on 41). The +1, +2, +3-surgeries on 41 are
all Seifert manifolds. They are nicely summarized in [GM21, Table 9]. In that
table, 𝑍̂ for those 3-manifolds were computed from their plumbing descriptions.
The surgery formula of [GM21] cannot be applied directly to compute them as
+1, +2, +3-surgeries on 41, as it gives non-convergent results. Instead, we can use the
regularized +𝑝-surgery formula (4.19), and we find that the results agree perfectly
with the computation from plumbing descriptions.

Quantum 𝐶-polynomial recursion and positive small surgeries
So far, we have discussed how to use inverted Habiro series to study various integer
surgeries, but we haven’t discussed much how to compute the inverted Habiro series.
Of course, once we know 𝐹𝐾 , we can use Proposition 4.1.3 to compute inverted
Habiro coefficients, but is there a way to compute the inverted Habiro coefficients just
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from the Habiro coefficients? Sometimes this is possible by solving the quantum (i.e.,
non-commutative) 𝐶-polynomial recursion, which is the topic of this subsection.

It was shown in [GL05] that the coefficients {𝑎𝑚 (𝐾)}𝑚≥0 of the Habiro series are
𝑞-holonomic. The recurrence relation was further studied in [GS06] and was named
the 𝐶-polynomial. A quantum 𝐶-polynomial 𝐶̂𝐾 (𝐸̂ , 𝑄̂, 𝑞) is written in terms of the
𝑞-commuting operators 𝑄̂ and 𝐸̂ . These operators act on the set of discrete functions
by

(𝑄̂ 𝑓 ) (𝑚) = 𝑞𝑚 𝑓 (𝑚), (𝐸̂ 𝑓 ) (𝑚) = 𝑓 (𝑚 + 1),

and they satisfy the following 𝑞-commutation relation

𝐸̂𝑄̂ = 𝑞𝑄̂𝐸̂ .

Let 𝐸 be a variable where 𝑄̂ and 𝐸̂ act by

𝑄̂𝐸−𝑚 = 𝑞𝑚𝐸−𝑚, 𝐸̂𝐸−𝑚 = 𝐸−(𝑚−1) .

It is useful to combine the Habiro coefficients {𝑎𝑚 (𝐾)}𝑚≥0 into a series∑︁
𝑚≥0

𝑎𝑚 (𝐾)𝐸−𝑚 .

Since 𝐶̂𝐾 (𝐸̂ , 𝑄̂, 𝑞) defines a recurrence relation for {𝑎𝑚 (𝐾)}𝑚≥0, when we apply 𝐶̂𝐾
to the above series, all but finitely many terms will cancel out. However, in general it
doesn’t vanish completely, because the boundary terms survive. The non-vanishing
of 𝐶̂𝐾 (𝐸̂ , 𝑄̂, 𝑞)

∑
𝑚≥0 𝑎𝑚 (𝐾)𝐸−𝑚 is actually very useful for our purpose, because we

can take it as the starting point of the recursion and use it to extend the sequence
{𝑎𝑚 (𝐾)}𝑚≥0 to negative 𝑚. More precisely, we want to extend it into a bilateral
sequence {𝑎𝑚 (𝐾)}𝑚∈Z in such a way that

𝐶̂𝐾 (𝐸̂ , 𝑄̂, 𝑞)
∑︁
𝑚∈Z

𝑎𝑚 (𝐾)𝐸−𝑚 = 0. (4.20)

Since explicit expressions for the quantum 𝐶-polynomials for twist knots are given
in [GS06], we will use them and demonstrate how this strategy works.

The simplest cases are the trefoil knot and the figure-eight knot. In those cases,
we find that solving the quantum 𝐶-polynomial recursion, there is a unique way to
extend the series

∑
𝑚≥0 𝑎𝑚 (𝐾)𝐸−𝑚 into a bilateral series

∑
𝑚∈Z 𝑎𝑚 (𝐾)𝐸−𝑚,3 and the

result agrees with what we found in Section 4.1.
3More generally, we expect that for any fibered knot 𝐾, the quantum 𝐶-polynomial uniquely

determines the extension into a bilateral series.
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Other twist knots are more interesting. Let’s focus on the two-twist knot 𝐾2 = 52 for
the moment. In this case, the series

∑
𝑚≥0 𝑎𝑚 (52)𝐸−𝑚 looks like

1+(−𝑞2−𝑞4)𝐸−1+(𝑞5+𝑞7+𝑞8+𝑞11)𝐸−2+(−𝑞9−𝑞11−𝑞12−𝑞13−𝑞15−𝑞16−𝑞17−𝑞21)𝐸−3+· · · ,

and the quantum 𝐶-polynomial is given by

𝐶̂52 (𝐸̂ , 𝑄̂, 𝑞) = 𝐸̂2 + (𝑞2 + 𝑞3)𝐸̂𝑄̂ + (𝑞6 − 𝑞3𝐸̂)𝑄̂2 + (−𝑞7 + 𝑞4𝐸̂)𝑄̂3.

When we try to solve the recursion, we quickly realize that 𝑎−1(52) cannot be
determined by {𝑎𝑚 (52)}𝑚≥0, but once we know 𝑎−1(52) all the other 𝑎𝑚 (52) with
𝑚 < −1 are uniquely determined.4

So, how do we determine 𝑎−1(52)? It turns out this can be done by imposing a
certain boundary condition on the bilateral sequence. More precisely, we take the
ansatz where we express 𝑎−1(𝐾) in terms of {𝑎𝑚 (𝐾)}𝑚≤−𝑀 and take the limit where
𝑀 goes to ∞. Explicitly, we have the following sequence of relations coming from
the quantum 𝐶-polynomial recursion:

𝑎−1(52) =
1

1 + 𝑞

(
−𝑞−1 + (1 − 𝑞)𝑎−2(52)

)
𝑎−2(52) =

1
1 + 𝑞2 + 𝑞3 + 𝑞4

(
𝑞 + (1 + 𝑞 − 𝑞2 − 𝑞3)𝑎−3(52)

)
𝑎−3(52) =

1
1 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6 + 𝑞7 + 𝑞8 + 𝑞9

(
−𝑞6 + (1 + 𝑞2 + 𝑞4 − 𝑞5 − 𝑞6 − 𝑞7)𝑎−4(52)

)
,

and so on. Starting with the first equation, we can plug in the second equation to
express 𝑎−1(52) in terms of 𝑎−3(52). Plugging in the third equation to that would
give an expression of 𝑎−1(52) in terms of 𝑎−4(52), and we can proceed in the same
way indefinitely. Taking the limit, we have the following ansatz for 𝑎−1(52):

𝑎−1(52) =
−𝑞−1

1 + 𝑞

(
1 + −(1 − 𝑞)𝑞2

1 + 𝑞2 + 𝑞3 + 𝑞4

(
1 + −(1 + 𝑞 − 𝑞2 − 𝑞3)𝑞5

1 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6 + 𝑞7 + 𝑞8 + 𝑞9 (· · · )
))
.

(4.21)
Expanding this into a power series in 𝑞, we find

𝑎−1(52) = −𝑞−1 + 1 − 𝑞2 + 𝑞5 − 𝑞9 + 𝑞14 − 𝑞20 + 𝑞27 −𝑂 (𝑞35),

which agrees perfectly with 𝐹52 (𝑥, 𝑞) obtained in [Par20b] (our 52 is the knot that
was denoted 𝑚(52) in [Par20b]).

4This is analogous to how we need to know the first two terms to determine the full power series
𝐹52 (𝑥, 𝑞) if we were to solve it using quantum 𝐴-polynomial recursion.
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The same type of ansatz seems to work for all twist knots. In general, for the
𝑛-twist knot 𝐾𝑛, 𝑎𝑙 (𝐾𝑛) can be expressed in terms of {𝑎𝑙−𝑘 (𝐾𝑛)}1≤𝑘≤|𝑛|−1. Using
these relations, we can always express 𝑎𝑙 (𝐾𝑛) in terms of {𝑎𝑚 (𝐾𝑛)}𝑚≤−𝑀 for any 𝑀 .
Sending 𝑀 to ∞, we get the ansatz.

All these ansatz can be obtained as a limit of a sequence of rational functions in 𝑞.
As we emphasized in previous subsections, having a rational function is especially
useful as it allows us to study the mirror knot and the orientation-reversed 3-manifold.
For instance, we can simply replace 𝑞 by 𝑞−1 in (4.21) and still expand it as a power
series in 𝑞. As a result, we get a candidate for 𝑎−1(𝑚(52)):

𝑎−1(𝑚(52)) = −𝑞2 + 𝑞4 − 𝑞5 + 2𝑞6 − 2𝑞7 + 𝑞8 − 3𝑞10 +𝑂 (𝑞11).

By construction, the asymptotic expansion of this series near each root of unity
agrees with that of 𝑎−1(52)

��
𝑞→𝑞−1 . What we are doing here is morally very similar to

what we did when we described the regularized versions of positive integer surgery
formulas. We are regularizing 𝑎−1(52)

��
𝑞→𝑞−1 into a power series in 𝑞 by using the

fact that it can be naturally expressed as the limit of a sequence of rational functions.

In a similar fashion, we get candidates of the inverted Habiro coefficients for all
mirror twist knots. For instance, the mirror of

𝑎−1(72) = −𝑞−1 + 1 − 𝑞4 + 𝑞7 − 𝑞15 + 𝑞20 − 𝑞32 + 𝑞39 −𝑂 (𝑞55),
𝑎−2(72) = 𝑞3 − 𝑞5 − 𝑞6 + 𝑞8 + 𝑞13 + 𝑞14 − 𝑞16 − 𝑞17 −𝑂 (𝑞18)

are

𝑎−1(𝑚(72)) = −𝑞3 + 𝑞5 − 𝑞7 + 2𝑞8 − 2𝑞10 + 2𝑞12 +𝑂 (𝑞13),
𝑎−2(𝑚(72)) = 𝑞5 − 𝑞8 − 𝑞9 − 𝑞11 + 𝑞13 +𝑂 (𝑞14).

Since all these twist knots can be obtained from the Whitehead link by doing
1
𝑟
-surgery for various 𝑟 , we can use these results to reverse-engineer the regularized

1
𝑟
-surgery formula. It turns out, the end result is very simple.

Conjecture 4.1.17 (Regularized +1
𝑟
-surgery formula). When the +1

𝑟
-surgery formula

of [GM21] does not converge, we can regularize it in the following way, as long as
this regularization converges:

𝑍̂𝑆3
+1/𝑟 (𝐾)

(𝑞) = 𝑞 𝑟+𝑟
−1

4
∑︁
𝑗≥0

𝑓 𝑗 (𝐾; 𝑞) (𝑞−𝑟 ( 𝑗+ 1
2−

1
2𝑟 )

2−𝑞−𝑟 ( 𝑗+ 1
2+

1
2𝑟 )

2)©­«1 −
∑

|𝑘 |≤ 𝑗 (−1)𝑘𝑞
𝑘 ( (2𝑟+1)𝑘+1)

2

𝑓 (−𝑞𝑟 ,−𝑞𝑟+1)
ª®¬

(4.22)
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where 𝐹𝐾 (𝑥, 𝑞) = 𝑥
1
2
∑
𝑗≥0 𝑓 𝑗 (𝐾; 𝑞)𝑥 𝑗 , and

𝑓 (𝑎, 𝑏) :=
∑︁
𝑛∈Z

𝑎
𝑛(𝑛+1)

2 𝑏
𝑛(𝑛−1)

2 = (−𝑎; 𝑎𝑏)∞(−𝑏, 𝑎𝑏)∞(𝑎𝑏; 𝑎𝑏)∞

denotes the Ramanujan theta function.

As a small consistency check, we find that the three surgery descriptions 𝑆3
1
2
(41) =

𝑆3
−1(𝑚(𝐾2)) = 𝑆3

+1(𝐾−2) of the same manifold give the same result for 𝑍̂ , which is

𝑞3/2(1 − 2𝑞2 + 𝑞3 − 3𝑞4 + 4𝑞5 − 𝑞6 + 𝑞7 + 5𝑞8 +𝑂 (𝑞9)).

Remark 4.1.18. We have to warn the readers though, that this last conjecture is far
more speculative compared to any other conjectures presented in this thesis. We
are not entirely sure yet, for instance, if the candidate 𝑞-series for 𝑎−1(𝑚(52)) is the
correct one. In fact, there is another candidate, coming from the following 𝑞-series
identity (found from an inverted state sum model for 𝐹52 (𝑥, 𝑞)):∑︁

𝑛≥0
(−1)𝑛𝑞

𝑛(𝑛+1)
2 =

∑︁
𝑚,𝑛≥0

(−1)𝑚+𝑛𝑞
𝑚(𝑚+1)+𝑛(𝑛+1)

2

(𝑞)𝑚 (𝑞)𝑛 (1 − 𝑞𝑚+𝑛+1)
.

While the left-hand side of this identity only makes sense inside the unit disk |𝑞 | < 1,
the right-hand side of this identity can be expanded into a power series in 𝑞−1 as well.
Since 𝑎−1(52) = −𝑞−1 ∑

𝑛≥0(−1)𝑛𝑞
𝑛(𝑛+1)

2 , substituting 𝑞 by 𝑞−1 in the identity above,
we get the following candidate for 𝑞-series for 𝑎−1(𝑚(52)):

𝑎−1(𝑚(52))
?
= 𝑞2 + 3𝑞3 + 6𝑞4 + 13𝑞5 + 23𝑞6 + 44𝑞7 + 74𝑞8 +𝑂 (𝑞9).

Figuring out the correct expression for 𝐹𝑚(52) (𝑥, 𝑞) is the next important step that
will take us even closer toward a full definition of 𝑍̂ .

Inverted Habiro series in higher rank
When we restrict our attention to symmetric representations, the higher rank analogue
of the Habiro’s cyclotomic expansion is known. See [Ito+12; MMM13] and references
therein. The 𝑞-holonomicity of these cyclotomic coefficients follows from the 𝑞-
holonomicity of the colored HOMFLY-PT polynomials. The corresponding higher
rank analogue of the quantum 𝐶-polynomial was studied in [MM95]. Thanks to
these known results, it is straightforward to extend our analysis in this section to the
higher rank case, by solving the higher rank quantum 𝐶-polynomial recursions. For
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example, in case of the figure-eight knot, the reduced version of 𝐹𝔰𝔩𝑁 ,𝑠𝑦𝑚

41
(𝑥, 𝑞) is

given by

𝐹
𝔰𝔩𝑁 ,𝑠𝑦𝑚,𝑟𝑒𝑑

41
(𝑥, 𝑞) = −

∑︁
𝑛≥0

[−𝑛] [−𝑛+1]···[−𝑛+𝑁−3]
[𝑁−2]!∏𝑛

𝑗=0(𝑥
1
2 𝑞

𝑗

2 − 𝑥− 1
2 𝑞−

𝑗

2 ) (𝑥 1
2 𝑞

(𝑁−2)− 𝑗
2 − 𝑥− 1

2 𝑞
𝑗−(𝑁−2)

2 )

Note that in this form the Weyl symmetry 𝐹𝔰𝔩𝑁
𝐾

(𝑥, 𝑞) = 𝐹𝔰𝔩𝑁
𝐾

(𝑞2−𝑁𝑥−1, 𝑞) is manifest.
We will encounter this Weyl symmetry again in (5.35).

4.2 Connection to indefinite theta functions
While the definition of 𝑍̂ for negative definite plumbed 3-manifolds was given
in [Guk+20] (Definition 2.2.2), it has been a challenge to extend it to indefinite
plumbings. This is mainly because the formula gives a non-convergent result when
applied naively to a plumbed 3-manifold that is not negative definite. One approach
to overcome this issue suggested by Cheng, Ferrari, and Sgroi [CFS20] is to use
indefinite theta functions with a regularization factor. Only one example, −Σ(2, 3, 7),
was given in their paper. Starting from the plumbing formula of Gukov-Pei-Putrov-
Vafa naively applied to a plumbing description of −Σ(2, 3, 7), they multiplied both
the numerator and the denominator by (𝑞)∞. The factor (𝑞)∞ =

∑
𝑘∈Z(−1)𝑘𝑞

𝑘 (3𝑘+1)
2

in the numerator is then interpreted as a part of an indefinite theta function. Then they
inserted a regularization factor (denoted by 𝜌(v) in their paper), and the resulting
formula somewhat magically gives the correct 𝑍̂−Σ(2,3,7) (𝑞).

In this section, we explore this connection to indefinite theta functions based on our
observation from the previous section that the regularization factors appearing in the
regularized positive surgery formulas look very much like the regularization factors
we can use for indefinite theta functions. We will work out a number of explicit
examples, hoping that they will eventually shed light on figuring out a formula for 𝑍̂
for general plumbed 3-manifolds.

Example 4.2.1 (−Σ(2, 3, 7)). The 3-manifold −Σ(2, 3, 7) has various descriptions,
for instance,

−Σ(2, 3, 7) = 𝑀 (1;−1
2
,−1

3
,−1

7
) = 𝑆3

+1(3
𝑙
1) = 𝑆

3
−1(41).

For our purpose, the description as the +1-surgery on the left-handed trefoil knot is
the most useful one. The naive plumbing formula [Guk+20] applied to −Σ(2, 3, 7)
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gives the following expression

𝑍̂−Σ(2,3,7) (𝑞)“ � ”
∮

𝑑𝑥1

2𝜋𝑖𝑥1

𝑑𝑥2

2𝜋𝑖𝑥2

𝑑𝑥3

2𝜋𝑖𝑥3

𝑑𝑥7

2𝜋𝑖𝑥7

(𝑥
1
2
2 − 𝑥−

1
2

2 ) (𝑥
1
2
3 − 𝑥−

1
2

3 ) (𝑥
1
2
7 − 𝑥−

1
2

7 )

𝑥
1
2
1 − 𝑥−

1
2

1

×
∑︁

®ℓ∈𝑀Z4+ 1
2
®1

𝑞−(
®ℓ,𝑀−1 ®ℓ) ®𝑥 ®ℓ,

where

𝑀 =

©­­­­­«
1 1 1 1
1 2 0 0
1 0 3 0
1 0 0 7

ª®®®®®¬
, 𝑀−1 =

©­­­­­«
42 −21 −14 −6
−21 11 7 3
−14 7 5 2
−6 3 2 1

ª®®®®®¬
.

The symbol � denotes equality up to an overall sign and a power of 𝑞, and we wrote
it in quote, because the right-hand side does not converge. Integrating out 𝑥2, 𝑥3, 𝑥7,
we get

𝑍̂−Σ(2,3,7) (𝑞)“ � ”
∮

𝑑𝑥1

2𝜋𝑖𝑥1

1

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
𝜖2,𝜖3,𝜖7=±1

∑︁
ℓ1∈Z+ 1

2

𝜖2𝜖3𝜖7 𝑞
−42(ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3+ 1
7 𝜖7))2+ 1

168 𝑥
ℓ1
1 .

(4.23)
Now recall that from the plumbing description of the left-handed trefoil, we have

𝐹3𝑙1
(𝑥, 𝑞) �

∮
𝑑𝑥1

2𝜋𝑖𝑥1

𝑑𝑥2

2𝜋𝑖𝑥2

𝑑𝑥3

2𝜋𝑖𝑥3

(𝑥
1
2
2 − 𝑥−

1
2

2 ) (𝑥
1
2
3 − 𝑥−

1
2

3 )

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
®𝑛∈Z3×{0}

𝑞−(®𝑛,𝑀
′®𝑛)−(®𝑛,®1) ®𝑥𝑀 ′®𝑛+ 1

2
®1,

where

𝑀′ =

©­­­­­«
1 1 1 1
1 2 0 0
1 0 3 0
1 0 0 6

ª®®®®®¬
.

So the power of 𝑥 = 𝑥6 is 𝑛1 + 1
2 . We have seen previously that the regularized +1

surgery formula can be written as

𝑥𝑚+
1
2 ↦→ (𝑞−𝑚2 − 𝑞−(𝑚+1)2)

∑
𝑘∈Z

|𝑘 |> |𝑚+ 1
2 |
(−1)𝑘𝑞

𝑘 (3𝑘−1)
2

(𝑞)∞
.
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Therefore,

𝑍̂−Σ(2,3,7) (𝑞)

�
∮ 𝑑𝑥1

2𝜋𝑖𝑥1
𝑑𝑥2

2𝜋𝑖𝑥2
𝑑𝑥3

2𝜋𝑖𝑥3

(𝑥
1
2
2 −𝑥

− 1
2

2 ) (𝑥
1
2
3 −𝑥

− 1
2

3 )

𝑥

1
2
1 −𝑥

− 1
2

1

×∑
®𝑛∈Z3×{0} 𝑞

−( ®𝑛,𝑀 ′ ®𝑛)−( ®𝑛,®1)𝑥
𝑛1+𝑛2+𝑛3+

1
2

1 𝑥
𝑛1+2𝑛2+

1
2

2 𝑥
𝑛1+3𝑛3+

1
2

3 (𝑞−𝑛
2
1−𝑞−(𝑛1+1)2 )

∑
𝑘∈Z

|𝑘 |> |𝑛1+ 1
2 |

(−1)𝑘𝑞
𝑘 (3𝑘−1)

2

(𝑞)∞

�
∮ 𝑑𝑥1

2𝜋𝑖𝑥1
𝑑𝑥2

2𝜋𝑖𝑥2
𝑑𝑥3

2𝜋𝑖𝑥3
𝑑𝑥7

2𝜋𝑖𝑥7

(𝑥
1
2
2 −𝑥

− 1
2

2 ) (𝑥
1
2
3 −𝑥

− 1
2

3 ) (𝑥
1
2
7 −𝑥

− 1
2

7 )

𝑥

1
2
1 −𝑥

− 1
2

1

×∑
®𝑛∈Z3×Z 𝑞

−( ®𝑛,𝑀 ′ ®𝑛)−𝑛2
7−( ®𝑛,

®1)
𝑥
𝑛1+𝑛2+𝑛3+

1
2

1 𝑥
𝑛1+2𝑛2+

1
2

2 𝑥
𝑛1+3𝑛3+

1
2

3 𝑥
𝑛1+𝑛7+ 1

2
7

∑
𝑘∈Z

|𝑘 |> |𝑛1+ 1
2 |

(−1)𝑘𝑞
𝑘 (3𝑘−1)

2

(𝑞)∞

=
∮ 𝑑𝑥1

2𝜋𝑖𝑥1
𝑑𝑥2

2𝜋𝑖𝑥2
𝑑𝑥3

2𝜋𝑖𝑥3
𝑑𝑥7

2𝜋𝑖𝑥7

(𝑥
1
2
2 −𝑥

− 1
2

2 ) (𝑥
1
2
3 −𝑥

− 1
2

3 ) (𝑥
1
2
7 −𝑥

− 1
2

7 )

𝑥

1
2
1 −𝑥

− 1
2

1

∑
®𝑛∈Z3×Z 𝑞

−( ®𝑛,𝑀 ®𝑛)−( ®𝑛,®1)𝑥𝑀 ®𝑛+ 1
2
®1

∑
𝑘∈Z

|𝑘 |> |𝑛1+6𝑛7+ 1
2 |

(−1)𝑘𝑞
𝑘 (3𝑘−1)

2

(𝑞)∞

=
∮ 𝑑𝑥1

2𝜋𝑖𝑥1
𝑑𝑥2

2𝜋𝑖𝑥2
𝑑𝑥3

2𝜋𝑖𝑥3
𝑑𝑥7

2𝜋𝑖𝑥7

(𝑥
1
2
2 −𝑥

− 1
2

2 ) (𝑥
1
2
3 −𝑥

− 1
2

3 ) (𝑥
1
2
7 −𝑥

− 1
2

7 )

𝑥

1
2
1 −𝑥

− 1
2

1

∑
®ℓ∈𝑀Z4+ 1

2
®1 𝑞

−( ®ℓ,𝑀−1 ®ℓ) ®𝑥 ®ℓ

∑
𝑘∈Z

|𝑘 |> | ( (6,−3,−2,0),®ℓ) |
(−1)𝑘𝑞

𝑘 (3𝑘−1)
2

(𝑞)∞

�
∮ 𝑑𝑥1

2𝜋𝑖𝑥1
1

𝑥

1
2
1 −𝑥

− 1
2

1

∑
𝜖2 , 𝜖3 , 𝜖7=±1

∑
ℓ1∈Z+

1
2
𝜖2𝜖3𝜖7 𝑞

−42ℓ2
1 +(21𝜖2+14𝜖3+6𝜖7)ℓ1−

1
2 (7𝜖2 𝜖3+3𝜖2 𝜖7+2𝜖3 𝜖7)𝑥

ℓ1
1

∑
𝑘∈Z

|𝑘 |>6|ℓ1− 1
2 (

1
2 𝜖2+ 1

3 𝜖3) |
(−1)𝑘𝑞

𝑘 (3𝑘−1)
2

(𝑞)∞

�
∮ 𝑑𝑥1

2𝜋𝑖𝑥1
1

𝑥

1
2
1 −𝑥

− 1
2

1

∑
𝜖2 , 𝜖3 , 𝜖7=±1

∑
ℓ1∈Z+

1
2
𝜖2𝜖3𝜖7 𝑞

−42(ℓ1−
1
2 ( 1

2 𝜖2+
1
3 𝜖3+

1
7 𝜖7))

2+ 1
168 𝑥

ℓ1
1

∑
𝑘∈Z

|𝑘 |>6|ℓ1− 1
2 (

1
2 𝜖2+ 1

3 𝜖3+ 1
7 𝜖7) |

(−1)𝑘𝑞
3
2 (𝑘− 1

6 )
2− 1

24

(𝑞)∞

=

∮
𝑑𝑥1

2𝜋𝑖𝑥1

1

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
𝜖2,𝜖3,𝜖7=±1

∑︁
ℓ1∈Z+ 1

2

𝜖2𝜖3𝜖7 𝑞
−42(ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3+ 1
7 𝜖7))2+ 1

168 𝑥
ℓ1
1

×

∑
𝑘∈Z

|𝑘− 1
6 |>6|ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3+ 1
7 𝜖7) |

(−1)𝑘𝑞 3
2 (𝑘−

1
6 )

2− 1
24

(𝑞)∞
.

Comparing this last expression with (4.23), we see that a regularization factor
has been added to the naive non-convergent expression. What this regularization
factor is doing is clear: it first multiplies (𝑞)∞ to both the numerator and the
denominator, and then restricts the range of summation from the rank 2 indefinite
lattice (ℓ1, 𝑘) ∈ (Z + 1

2 ) × Z to a double cone |𝑘 − 1
6 | > 6|ℓ1 − 1

2 (
1
2𝜖2 + 1

3𝜖3 + 1
7𝜖7) |

where the lattice is positive definite.

Remark 4.2.2. While our expression of 𝑍̂−Σ(2,3,7) (𝑞) is very similar to that of
[CFS20], there is an important difference between the two. While we regularized the
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indefinite theta function by restricting it to a double cone, the authors of [CFS20]
regularized it by restricting it to a one-sided cone 𝑘 − 1

6 >
16
3 |ℓ1 − 1

2 (
1
2𝜖2 + 1

3𝜖3 + 1
7𝜖7) |.

The one-sided cone is slightly wider than the double cone, and they give the same
answer. See Figure 4.1. We believe it is more natural to use a double cone instead of

Figure 4.1: Double cone vs one-sided cone.

a one-sided cone since it comes naturally from the regularized surgery formula.

Example 4.2.3 (−Σ(2, 3, 5)). The 3-manifold −Σ(2, 3, 5) has various descriptions,
such as

−Σ(2, 3, 5) = 𝑀 (−1;
1
2
,

1
3
,

1
5
) = 𝑆3

+1(3
𝑟
1).

For us, the description as the +1-surgery on the right-handed trefoil is the most useful
one. The naive plumbing formula gives

𝑍̂−Σ(2,3,5) (𝑞)“ � ”
∮

𝑑𝑥1

2𝜋𝑖𝑥1

𝑑𝑥2

2𝜋𝑖𝑥2

𝑑𝑥3

2𝜋𝑖𝑥3

𝑑𝑥5

2𝜋𝑖𝑥5

(𝑥
1
2
2 − 𝑥−

1
2

2 ) (𝑥
1
2
3 − 𝑥−

1
2

3 ) (𝑥
1
2
5 − 𝑥−

1
2

5 )

𝑥
1
2
1 − 𝑥−

1
2

1

×
∑︁

®ℓ∈𝑀Z4+ 1
2
®1

𝑞−(
®ℓ,𝑀−1 ®ℓ) ®𝑥 ®ℓ,

where

𝑀 =

©­­­­­«
−1 1 1 1
1 −2 0 0
1 0 −3 0
1 0 0 −5

ª®®®®®¬
.

Integrating out 𝑥2, 𝑥3, 𝑥5, we get

𝑍̂−Σ(2,3,5) (𝑞)“ � ”
∮

𝑑𝑥1

2𝜋𝑖𝑥1

1

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
𝜖2,𝜖3,𝜖5=±1

∑︁
ℓ1∈Z+ 1

2

𝜖2𝜖3𝜖5 𝑞
−30(ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3+ 1
5 𝜖5))2+ 1

120 𝑥
ℓ1
1 .
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From the plumbing description of the right-handed trefoil knot, we have

𝐹3𝑟1 (𝑥, 𝑞) �
∮

𝑑𝑥1

2𝜋𝑖𝑥1

𝑑𝑥2

2𝜋𝑖𝑥2

𝑑𝑥3

2𝜋𝑖𝑥3

(𝑥
1
2
2 − 𝑥−

1
2

2 ) (𝑥
1
2
3 − 𝑥−

1
2

3 )

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
®𝑛∈Z3×{0}

𝑞−(®𝑛,𝑀
′®𝑛)−(®𝑛,®1) ®𝑥𝑀 ′®𝑛+ 1

2
®1,

where

𝑀′ =

©­­­­­«
−1 1 1 1
1 −2 0 0
1 0 −3 0
1 0 0 −6

ª®®®®®¬
.

Using the regularized +1-surgery formula, we can deduce an expression for
𝑍̂ (−Σ(2, 3, 5)) in terms of a indefinite theta function, just like the way we ob-
tained such an expression for 𝑍̂−Σ(2,3,7) (𝑞). The result looks like

𝑍̂−Σ(2,3,5) (𝑞) �
∮

𝑑𝑥1

2𝜋𝑖𝑥1

1

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
𝜖2,𝜖3,𝜖5=±1

∑︁
ℓ1∈Z+ 1

2

𝜖2𝜖3𝜖5 𝑞
−30(ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3+ 1
5 𝜖5))2+ 1

120 𝑥
ℓ1
1

×

∑
𝑘∈Z

|𝑘− 1
6 |>6|ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3+ 1
5 𝜖5) |

(−1)𝑘𝑞 3
2 (𝑘−

1
6 )

2− 1
24

(𝑞)∞
.

Again, we see that the indefinite theta function is regularized by restricting the range
of summation to a double cone |𝑘 − 1

6 | > 6| (ℓ1 − 1
2 (

1
2𝜖2 + 1

3𝜖3 + 1
5𝜖5)) |.

Example 4.2.4 (𝑆3
−2(41)). The −2-surgery on the figure-eight knot is a Seifert

manifold
𝑆3
−2(41) = 𝑀 (1;−1

2
,−1

4
,−1

5
).

As a plumbed 3-manifold, the plumbing graph has the linking matrix

𝑀 =

©­­­­­«
1 1 1 1
1 2 0 0
1 0 4 0
1 0 0 5

ª®®®®®¬
.

We have experimentally found the double cone, and the resulting expression for
𝑍̂𝑆3

−2 (41) (𝑞) is given by

𝑍̂𝑆3
−2 (41) (𝑞) �

∮
𝑑𝑥1

2𝜋𝑖𝑥1

1

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
𝜖2,𝜖4,𝜖5=±1

∑︁
ℓ1∈Z+ 1

2

𝜖2𝜖4𝜖5 𝑞
− 40

2 (ℓ1− 1
2 (

1
2 𝜖2+ 1

4 𝜖4+ 1
5 𝜖5))2+ 1

80 𝑥
ℓ1
1

×

∑
𝑘∈Z

|𝑘− 1
6 |>4|ℓ1− 1

2 (
1
2 𝜖2+ 1

4 𝜖4+ 1
5 𝜖5) |

(−1)𝑘𝑞 3
2 (𝑘−

1
6 )

2− 1
24

(𝑞)∞
.
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To separate the contribution of each 𝑏, we just need to add the characteristic function
for the following condition: ©­­­­­«

ℓ1

𝜖2

𝜖4

𝜖5

ª®®®®®¬
∈ 𝑀Z4 + 𝑏.

Example 4.2.5 (𝑆3
−3(41)). The −3-surgery on the figure-eight knot is a Seifert

manifold
𝑆3
−3(41) = 𝑀 (1;−1

3
,−1

3
,−1

4
).

As a plumbed 3-manifold, the plumbing graph has the linking matrix

𝑀 =

©­­­­­«
1 1 1 1
1 3 0 0
1 0 3 0
1 0 0 4

ª®®®®®¬
.

We have experimentally found the double cone, and the resulting expression for
𝑍̂𝑆3

−3 (41) (𝑞) is given by

𝑍̂𝑆3
−3 (41) (𝑞) �

∮
𝑑𝑥1

2𝜋𝑖𝑥1

1

𝑥
1
2
1 − 𝑥−

1
2

1

∑︁
𝜖3𝑎 ,𝜖3𝑏 ,𝜖4=±1

∑︁
ℓ1∈Z+ 1

2

𝜖3𝑎𝜖3𝑏𝜖4 𝑞
− 36

3 (ℓ1− 1
2 (

1
3 𝜖3𝑎+ 1

3 𝜖3𝑏+ 1
4 𝜖4))2+ 1

48 𝑥
ℓ1
1

×

∑
𝑘∈Z

|𝑘− 1
6 |>3|ℓ1− 1

2 (
1
3 𝜖3𝑎+ 1

3 𝜖3𝑏+ 1
4 𝜖4) |

(−1)𝑘𝑞 3
2 (𝑘−

1
6 )

2− 1
24

(𝑞)∞
.

To separate the contribution of each 𝑏, we just need to add the characteristic function
for the following condition: ©­­­­­«

ℓ1

𝜖3𝑎

𝜖3𝑏

𝜖4

ª®®®®®¬
∈ 𝑀Z4 + 𝑏.

Example 4.2.6 (−Σ(2, 3, 7) with another degree 3 node). As our last example, let’s
see what happens to the regularization factor if we create a new degree 3 node to
the plumbing graph of −Σ(2, 3, 7) by applying Neumann moves twice. The linking
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matrix of the resulting plumbing graph is

𝑀 =

©­­­­­­­­­­«

1 1 1 1 0 0
1 2 0 0 0 0
1 0 3 0 0 0
1 0 0 5 1 1
0 0 0 1 −1 0
0 0 0 1 0 −1

ª®®®®®®®®®®¬
.

As a result, after multiplying (𝑞)∞ in both the numerator and the denominator, the
indefinite theta function is of signature +,−,−. With a bit of experimenting, we
found an appropriate double cone, and the resulting expression is given below

𝑍̂−Σ(2,3,7) (𝑞) �
∮

𝑑𝑥1

2𝜋𝑖𝑥1

𝑑𝑥5

2𝜋𝑖𝑥5

1

𝑥
1
2
1 − 𝑥−

1
2

1

1

𝑥
1
2
5 − 𝑥−

1
2

5

∑︁
𝜖2,𝜖3,𝜖−1𝑎 ,𝜖−1𝑏=±1

∑︁
ℓ1,ℓ5∈Z+ 1

2

𝜖2𝜖3𝜖−1𝑎𝜖−1𝑏

× 𝑞 (ℓ1−
1
2 (

1
2 𝜖2+ 1

3 𝜖3),ℓ5− 1
2 (−𝜖−1𝑎−𝜖−1𝑏))·

(
−42 6

6 −1

)
·(ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3),ℓ5− 1
2 (−𝜖−1𝑎−𝜖−1𝑏))𝑡+ 1

24

× 𝑥ℓ11 𝑥
ℓ5
5

∑
𝑘∈Z

|𝑘− 1
6 |>6|ℓ1− 1

2 (
1
2 𝜖2+ 1

3 𝜖3) |
|𝑘− 1

6 |> |ℓ5−
1
2 (−𝜖−1𝑎−𝜖−1𝑏) |

(−1)𝑘𝑞 3
2 (𝑘−

1
6 )−

1
24

(𝑞)∞
.

That is, the double cone is determined by the two inequalities |𝑘 − 1
6 | > 6|ℓ1− 1

2 (
1
2𝜖2+

1
3𝜖3) | and |𝑘 − 1

6 | > |ℓ5 − 1
2 (−𝜖−1𝑎 − 𝜖−1𝑏) |. Compare this with Example 4.2.1. It is

a very interesting problem to study how the double cone behaves under Neumann
moves in general.
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C h a p t e r 5

HIGHER RANK

The 𝑍̂ we considered in the previous chapters was implicitly 𝑍̂𝔤 for 𝔤 = 𝔰𝔩2. In this
chapter, which is based on [Par20a], we study the dependence of 𝑍̂ on the choice
of Lie algebra 𝔤 by studying 𝑍̂𝔤 for general Lie algebra. In particular, we will give
explicit formulas for 𝑍̂𝔤 for negative definite plumbed 3-manifolds and 𝐹𝔤

𝐾
for torus

knot complements.

As we will see, 𝐹𝔰𝔩𝑁
𝐾

(𝑥, 𝑞) behaves regularly under change of 𝑁 , which suggests
that there should be a three-variable series 𝐹𝐾 (𝑥, 𝑎, 𝑞) that interpolates all the
𝐹
𝔰𝔩𝑁
𝐾

(𝑥, 𝑞)’s, analogously to how the HOMFLY-PT polynomial interpolates all the
𝑆𝑈 (𝑁) Jones polynomials. This three-variable series has a natural interpretation in
terms of topological strings, which is the topic of the next chapter.

Notations
Throughout this chapter, 𝔤 is a complex semisimple Lie algebra with the root system
Δ ⊂ 𝔥∗, 𝑄 ⊂ 𝔥∗ is the root lattice, 𝑄∨ ⊂ 𝔥 is the coroot lattice, 𝑃 ⊂ 𝔥∗ is the weight
lattice,𝑊 is the Weyl group, Δ+ is the set of positive roots, 𝜌 denotes the Weyl vector
(half-sum of positive roots), and the letters 𝛼 and 𝜔 will be reserved for roots and
fundamental weights. The inner product (·, ·) on 𝔥∗ is the standard one normalized
such that (𝛼, 𝛼) = 2 for short roots 𝛼. The length of a Weyl group element 𝑤 ∈ 𝑊
will be denoted by 𝑙 (𝑤). We use the letter 𝐵 for the linking matrix of a plumbed
3-manifold, and 𝜎 = 𝜎(𝐵) and 𝜋 = 𝜋(𝐵) denote the signature and the number of
positive eigenvalues of 𝐵, respectively. For a multi-index monomial, we use the
following notation for any 𝛽 ∈ 𝑃:

𝑥𝛽 :=
∏

1≤ 𝑗≤𝑟
𝑥
(𝛽,𝜔 𝑗 )
𝑗

,

where 𝑟 = rank 𝔤. When it comes to 𝑞-series, often we do not bother to fix the overall
power of 𝑞, and just use the notation � for equivalence up to sign and overall power
of 𝑞.
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5.1 Higher rank 𝑍̂
The set of labels B
Before getting into the definition of 𝑍̂𝔤

𝑏
for negative definite plumbings, we have to

first describe what the labels 𝑏 are. Recall that, in case of 𝔤 = 𝔰𝔩2, these labels 𝑏 were
Spin𝑐-structures, at least for plumbings on trees, as clarified by [GM21]. Likewise,
for a general Lie algebra 𝔤, 𝑍̂𝔤 will be an invariant of 3-manifolds decorated by
structures analogous to Spin𝑐-structures.

Definition 5.1.1. For a plumbed 3-manifold 𝑌 = 𝑌 (Γ), define

B𝔤 (𝑌 ) := (𝑄𝑉 + 𝛿)/𝐵𝑄𝑉 , (5.1)

where 𝑉 = 𝑉 (Γ) is the set of vertices, and 𝛿𝑣 = (2 − deg 𝑣)𝜌.

This is essentially a generalization of Spin𝑐-structures, in a sense that B𝔰𝔩2 (𝑌 ) �
Spin𝑐 (𝑌 ) canonically. Recall that Spin𝑐 (𝑌 ) is affinely isomorphic to 𝐻2(𝑌 ) and
admits a Z2 action by conjugation. Similarly, two of the main features of B𝔤 (𝑌 ) are
that it is affinely isomorphic to 𝐻2(𝑌 ;𝑄) and that it admits an action by the Weyl
group𝑊 (and hence carries an action by 𝐻2(𝑌 ;𝑄) ⋊𝑊).

Higher rank 𝑍̂ for negative definite plumbings
We present here a formula for 𝑍̂ for negative definite plumbed 3-manifolds, for
arbitrary semisimple Lie algebra 𝔤.

Definition 5.1.2 ([Par20a]). For a negative definite plumbed 3-manifold 𝑌 = 𝑌 (Γ)
and a choice of 𝑏 ∈ B𝔤 (𝑌 ), define

𝑍̂
𝔤

𝑌,𝑏
(𝑞) := 𝑞−

3𝑠+∑𝑣 𝑚𝑣
2 (𝜌,𝜌)

∮ ∏
𝑣∈𝑉

1≤ 𝑗≤𝑟

𝑑𝑥𝑣 𝑗

2𝜋𝑖𝑥𝑣 𝑗

(∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝑥𝑤(𝜌)𝑣

)2−deg 𝑣

Θ−𝐵
𝑏 (𝑥, 𝑞),

(5.2)

where
Θ−𝐵
𝑏 (𝑥, 𝑞) :=

∑︁
ℓ∈𝐵𝑄𝑉+𝑏

𝑞−
1
2 (ℓ,𝐵

−1ℓ)
∏
𝑣∈𝑉

𝑥
−ℓ𝑣
𝑣 . (5.3)

In particular, in case 𝔤 = 𝔰𝔩𝑁 , this takes the following simple form:

𝑍̂
𝔰𝔩𝑁
𝑌,𝑏

(𝑞) = 𝑞−
3𝑠+∑𝑣 𝑚𝑣

2
𝑁3−𝑁

12

∮ ∏
𝑣∈𝑉

1≤ 𝑗≤𝑁−1

𝑑𝑥𝑣 𝑗

2𝜋𝑖𝑥𝑣 𝑗
𝐹3𝑑 (𝑥)Θ𝑏

2𝑑 (𝑥, 𝑞) (5.4)
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with

𝐹3𝑑 (𝑥) :=
∏
𝑣∈𝑉

©­«
∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)
∏

1≤ 𝑗≤𝑁−1
𝑥
(𝜔 𝑗 ,𝑤(𝜌))
𝑣 𝑗

ª®¬
2−deg 𝑣

=
∏
𝑣∈𝑉

©­«
∏

1≤ 𝑗<𝑘≤𝑁
(𝑦1/2
𝑣 𝑗
𝑦
−1/2
𝑣𝑘

− 𝑦−1/2
𝑣 𝑗

𝑦
1/2
𝑣𝑘

)ª®¬
2−deg 𝑣

, (5.5)

Θ𝑏
2𝑑 (𝑥, 𝑞) :=

∑︁
ℓ∈𝐵𝑄𝑉+𝑏

𝑞−
1
2 (ℓ,𝐵

−1ℓ)
∏
𝑣∈𝑉

∏
1≤ 𝑗≤𝑁−1

𝑥
−(𝜔 𝑗 ,ℓ𝑣)
𝑣 𝑗

, (5.6)

where 𝑥 𝑗 =
𝑦 𝑗
𝑦 𝑗+1

.

Here the contour integral is the principal value integral. That is, taking the average
over 𝑊 number of deformed contours, each corresponding to a Weyl chamber.
For instance, for 𝔤 = 𝔰𝔩𝑁 , the deformed contour corresponding to a permutation
𝜎 ∈ 𝑊 = 𝑆𝑁 is given by

|𝑦𝜎(1) | < |𝑦𝜎(2) | < · · · < |𝑦𝜎(𝑁) |. (5.7)

In practice, this means that there are 𝑊 number of ways to expand the integrand
into power series, and the contour integral simply picks out the constant term in the
average of these power series.

Theorem 5.1.3. The 𝑞-series 𝑍̂𝔤
𝑌,𝑏

defined above is invariant under Neumann moves,
and therefore it is a well-defined invariant for negative definite plumbed 3-manifolds.

Proof. For negative definite plumbed 3-manifolds, there are two types of Neumann
moves we need to consider: Type A move, which is the first move in Figure 2.4 with
minus signs, and Type B move, which is the second move in Figure 2.4 with minus
signs.

Consider the Type A move. Under this move −3𝑠 − ∑
𝑣 𝑚𝑣 remains unchanged. The

contribution of the vector ℓ = ( ®ℓ𝑙 , 0, ®ℓ𝑟) for the top graph to the theta function is the
same as the contribution of the vector ℓ′ = ( ®ℓ𝑙 , ®ℓ𝑟) for the bottom graph. That is,

(ℓ, 𝐵−1ℓ) = (ℓ′, 𝐵′−1ℓ′). (5.8)

Hence 𝑍̂𝔤 is invariant under the Type A Neumann move.

Consider the Type B move. Under this move, −3𝑠 − ∑
𝑣 𝑚𝑣 increases by 1. The

contribution of the vector ℓ = ( ®ℓ𝑙 , ℓ0, 𝑤(𝜌)) for the top graph is related to that of the
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vector ℓ′ = ( ®ℓ𝑙 , ℓ0 + 𝑤(𝜌)) for the bottom graph via

(ℓ, 𝐵−1ℓ) = (ℓ′, 𝐵′−1ℓ′) − (𝜌, 𝜌).

The extra factor of 𝑞−
(𝜌,𝜌)

2 due to this change is cancelled out by the change in
𝑞−

3𝑠+∑𝑣 𝑚𝑣
2 (𝜌,𝜌) . Hence 𝑍̂𝔤 is invariant under the Type B Neumann move as well. □

Some examples and higher rank false theta functions
It turns out, in many examples, 𝑍̂𝔤 can be written in terms of higher rank false theta
functions.

Definition 5.1.4. For 𝑝 ∈ Z>0 and 𝛽 ∈ 𝑃, define the corresponding higher rank false
theta function to be

𝜒
𝔤

𝑝,𝛽
(𝑞) :=

∑︁
ℓ∈𝑃+∩(𝑄+𝜌)

𝑁ℓ

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝑞
1
2 | |

√
𝑝ℓ− 1√

𝑝
𝑤(𝛽) | |2

, (5.9)

where
𝑁ℓ :=

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝐾 (𝑤(ℓ)), (5.10)

and 𝐾 (𝛽) denotes the Kostant partition function.1

When 𝔤 = 𝔰𝔩2, this becomes

𝜒𝔰𝔩2𝑝,𝑛𝜌 (𝑞) = Ψ𝑝,𝑝−𝑛 (𝑞), for 𝑛 = 1, · · · , 𝑝 − 1, (5.11)

where
Ψ𝑝,𝑟 (𝑞) :=

∑︁
ℓ∈Z

ℓ=𝑟 mod 2𝑝

sign(ℓ) 𝑞ℓ2/4𝑝 (5.12)

is the usual false theta function, and in this sense 𝜒𝔤
𝑝,𝛽

is the higher rank generalization
of the false theta functions.

𝑌 = 𝑆3
0(𝐾𝑛)

The 0-surgery on twist knots are probably the simplest examples. They admit simple
plumbing diagrams given in Figure 5.1.2 For instance,

1For example, 𝑁ℓ is sgn((ℓ, 𝛼1)) for 𝔰𝔩2, and sgn(∏𝛼∈Δ+ (ℓ, 𝛼)) min{|(ℓ, 𝛼1) |, | (ℓ, 𝛼2) |} for 𝔰𝔩3.
2Although we have assumed for simplicity in Definition 5.1.2 that the plumbing graph is a tree,

we can extend this definition to plumbings with loops, as in [Chu+20].
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𝑚 0 0 𝑛
+

−
−1 0 𝑝

+

−

Figure 5.1: Plumbing diagrams for the 0-surgery on 𝐾𝑚,𝑛 and 𝐾𝑝 = 𝐾1,𝑝.

𝔤 𝑍̂𝑆3
0 (52) (𝑞) �

𝔰𝔩2
1
2! (1 − 𝑞 + 𝑞3 − 𝑞6 + 𝑞10 − 𝑞15 + 𝑞21 − 𝑞28 + 𝑞36 − 𝑞45 + 𝑞55 − 𝑞66 + 𝑞78 − · · · )

𝔰𝔩3
1
3! (1 − 2𝑞 + 2𝑞3 + 𝑞4 − 4𝑞6 + 2𝑞9 + 2𝑞10 + 𝑞12 − 2𝑞13 − 4𝑞15 + 2𝑞18 + 2𝑞19 + · · · )

𝔰𝔩4
1
4! (1 − 3𝑞 + 𝑞2 + 4𝑞3 − 2𝑞4 + 𝑞5 − 5𝑞6 − 2𝑞7 + 3𝑞8 + 2𝑞9 + 9𝑞10 − 2𝑞11 − · · · )

𝔰𝔩5
1
5! (1 − 4𝑞 + 3𝑞2 + 6𝑞3 − 7𝑞4 − 2𝑞5 + 2𝑞7 − 2𝑞8 + 6𝑞9 + 15𝑞10 − 12𝑞11 − 23𝑞12 + · · · )

Indeed, for every positive twist knot 𝐾𝑝 the following is easy to deduce from (5.2).

Proposition 5.1.5. For the 0-surgery on the twist knot 𝐾𝑝, its 𝑍̂𝔤 is given by

𝑍̂
𝔤

𝑆3
0 (𝐾𝑝)

(𝑞) � 1
|𝑊 | 𝜒𝑝,𝜌 =

1
|𝑊 |

∑︁
ℓ∈𝑃+∩(𝑄+𝜌)

𝑁ℓ

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝑞
1
2 | |

√
𝑝ℓ− 1√

𝑝
𝑤(𝜌) | |2

. (5.13)

Note that 𝜒𝑝,𝜌 is exactly the higher rank false theta function (a character of the
log-VOA𝑊0(𝑝)𝑄) given in [BM17, equation (1.2)]! Similarly for double twist knots
𝐾𝑚,𝑛 with 𝑚, 𝑛 > 0,3

𝑍̂
𝔤

𝑆3
0 (𝐾𝑚,𝑛)

(𝑞) � 1
|𝑊 | 𝜒𝑚,𝜌𝜒𝑛,𝜌 . (5.14)

Proof of Proposition 5.1.5. The 0-surgery on 𝐾𝑝 has a simple plumbing description
as shown in Figure 5.1. The linking matrix and its inverse are

𝐵 =
©­­«
−1 0 0
0 0 1
0 1 𝑝

ª®®¬ , 𝐵−1 =
©­­«
−1 0 0
0 −𝑝 1
0 1 0

ª®®¬ .
There is a single trivalent vertex with 0 framing. This contributes the following
factor in 𝐹3𝑑 (𝑥):(∑︁

𝑤∈𝑊
(−1)𝑙 (𝑤)𝑥𝑤(𝜌)0

)−1

=
1
|𝑊 |

∑︁
ℓ0∈𝑃+∩(𝑄+𝜌)

𝑁ℓ0

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝑥𝑤(ℓ0)0 .

For ℓ = (0, ℓ0, ℓ𝑝)𝑡 ,

𝑞−
1
2 (ℓ,𝐵

−1ℓ) = 𝑞
1
2 | |

√
𝑝ℓ0− 1√

𝑝
ℓ𝑝 | |2− 1

2𝑝 | |ℓ𝑝 | |
2
.

3In our notation, 𝐾𝑚,𝑛 denotes the double twist knot with 𝑚 and 𝑛 full twists.
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Applying (5.2), it is straightforward to get (5.13).

Using a plumbing description of the 0-surgery on 𝐾𝑚,𝑛 (Figure 5.1), it is easy to
derive (5.14) as well. □

𝑌 = Σ(𝑝1, 𝑝2, 𝑝3)

Proposition 5.1.6. For the Brieskorn sphere 𝑌 = Σ(𝑝1, 𝑝2, 𝑝3) with 0 < 𝑝1 < 𝑝2 <

𝑝3 pairwise relatively prime, we have

𝑍̂
𝔤

Σ(𝑝1,𝑝2,𝑝3) (𝑞) �
∑︁

(𝑤1,𝑤2)∈𝑊2

(−1)𝑙 (𝑤1𝑤2)𝜒𝑝1𝑝2𝑝3,𝑝2𝑝3𝜌+𝑝1𝑝3𝑤1 (𝜌)+𝑝1𝑝2𝑤2 (𝜌) . (5.15)

That is, it is a sum of |𝑊 |2 number of higher rank false theta functions.4

Proof. The proof is analogous to that of [GM21, Proposition 4.8]. □

Note that we did not have to treat Σ(2, 3, 5) separately. In this sense, using 𝜒𝑝,𝛽 as
false theta functions is more natural than using Ψ𝑝,𝑛.

𝑌 = 𝑀 (𝑎0; 𝑎1
𝑏1
,
𝑎2
𝑏2
,
𝑎3
𝑏3
)

Let 𝑏1, 𝑏2, 𝑏3 > 0 and assume that 𝑌 has negative orbifold number; i.e.,

𝑒 = 𝑎0 +
3∑︁
𝑗=1

𝑎 𝑗

𝑏 𝑗
< 0. (5.16)

Assume further that the central meridian is trivial in homology; i.e.,

𝑒 lcm(𝑏1, 𝑏2, 𝑏3) = −1. (5.17)

Then their 𝑍̂𝑏’s can be expressed as signed sum of higher rank false theta functions:

Proposition 5.1.7. Under the assumptions as above, 𝑍̂𝔤 for 𝑌 = 𝑀 (𝑎0; 𝑎1
𝑏1
,
𝑎2
𝑏2
,
𝑎3
𝑏3
) is

given by

𝑍̂
𝔤

𝑀 (𝑎0; 𝑎1
𝑏1
,
𝑎2
𝑏2
,
𝑎3
𝑏3

),𝑏
(𝑞) �

∑︁
(𝑤1,𝑤2)∈𝑊2

1𝑏 (𝑤1, 𝑤2) (−1)𝑙 (𝑤1𝑤2)𝜒𝑏1𝑏2𝑏3
|𝐻1 |

,
𝑏2𝑏3
|𝐻1 |

𝜌+ 𝑏1𝑏3
|𝐻1 |

𝑤1 (𝜌)+
𝑏1𝑏2
|𝐻1 |

𝑤2 (𝜌)
,

(5.18)
where

1𝑏 (𝑤1, 𝑤2) :=


1 if ℓ(𝜌, 𝜌, 𝑤1(𝜌), 𝑤2(𝜌)) ∈ 𝐵𝑄𝑉 + 𝑏,

0 otherwise.
(5.19)

4That 𝑍̂’s for Brieskorn spheres should be expressed as sums of higher rank false theta functions
was envisaged earlier in [Che+19].
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Observe that Proposition 5.1.7 is a slight generalization of Proposition 5.1.6.

Proof. Since 𝑌 is a Seifert manifold with 3 singular fibers, it can be described as
a star-shaped plumbing with 3 legs. The only vertices whose degree is not 2 are
the central vertex and the terminal vertices. Denote by ℓ(ℓ0, ℓ1, ℓ2, ℓ3) an element
ℓ ∈ 𝐵𝑄𝑉 + 𝑏 such that

ℓ𝑣 =


ℓ0 𝑣 is the central vertex,

ℓ1, ℓ2, ℓ3 𝑣 is the corresponding terminal vertex,

0 otherwise.

Then for any ℓ with ℓ1, ℓ2, ℓ3 ∈ 𝑊 (𝜌),

𝑞−
1
2 (ℓ,𝐵

−1ℓ) = 𝑞
1

2 |𝐻1 |
| |
√
𝑏1𝑏2𝑏3ℓ0− 1√

𝑏1𝑏2𝑏3
(𝑏2𝑏3ℓ1+𝑏3𝑏1ℓ2+𝑏1𝑏2ℓ3) | |2+𝐶

for some constant 𝐶 independent of ℓ. Applying (5.2), it is straightforward to obtain
(5.18). Note that the assumption 𝑒 lcm(𝑏1, 𝑏2, 𝑏3) = −1 was introduced so that

ℓ(𝜌, 𝜌, 𝑤1(𝜌), 𝑤2(𝜌)) ∈ 𝐵𝑄𝑉 + 𝑏 ⇔ ℓ(𝜌 +𝑄, 𝜌, 𝑤1(𝜌), 𝑤2(𝜌)) ∈ 𝐵𝑄𝑉 + 𝑏.

□

Remark 5.1.8. It is possible to drop the assumption on the Euler number. Then we
get up to |𝑊 |3 false theta functions with modulus 𝑒 lcm(𝑏1, 𝑏2, 𝑏3)2.5

5.2 Higher rank 𝐹𝐾
Higher rank 𝐹𝐾
Let us study the higher rank generalization of 𝐹𝐾 (𝑥, 𝑞). As a natural generalization
of Conjecture 2.2.11, we make the following conjecture.

Conjecture 5.2.1. For any knot 𝐾 and a choice of a semisimple Lie algebra 𝔤, there
exists a series

𝐹
𝔤

𝐾
(x, 𝑞) = 1

|𝑊 |
∑︁

𝛽∈𝑃+∩(𝑄+𝜌)
𝑓
𝔤

𝛽
(𝑞)

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝑥𝑤(𝛽) . (5.20)

where x = (𝑥1, · · · , 𝑥𝑟) and the coefficients 𝑓 𝔤
𝛽
(𝑞) are Laurent series with integer

coefficients, such that its asymptotic expansion agrees with the higher rank Melvin-
Morton-Rozansky expansion for the higher rank colored Jones polynomials:

𝐹
𝔤

𝐾
(x, 𝑒ℏ) =

∏
𝛼∈Δ+

(𝑥 𝛼2 − 𝑥− 𝛼
2 )

∑︁
𝑗≥0

𝑃 𝑗 (x)∏
𝛼∈Δ+ Δ𝐾 (𝑥𝛼)2 𝑗+1

ℏ 𝑗

𝑗!
(5.21)

5I thank Josef Svoboda for pointing this out.
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− 𝑡
𝑡 ′ −1 − 𝑠

𝑠′

−𝑠𝑡

Figure 5.2: Plumbing diagram of the complement of 𝑇𝑠,𝑡 .

where 𝑃 𝑗 (x) ∈ Z[𝑥1, 𝑥
−1
1 , · · · , 𝑥𝑟 , 𝑥−1

𝑟 ] and 𝑃0 = 1. In particular, in the classical
limit we should have

lim
𝑞→1

𝐹
𝔤

𝐾
(x, 𝑞) =

∏
𝛼∈Δ+

𝑥
𝛼
2 − 𝑥− 𝛼

2

Δ𝐾 (𝑥𝛼)
. (5.22)

Moreover, this series should be annihilated by the (higher rank) quantum 𝐴-
polynomial:

𝐴̂𝐾 (𝑥1, 𝑦̂1, · · · , 𝑥𝑟 , 𝑦̂𝑟)𝐹𝔤

𝐾
(x, 𝑞) = 0. (5.23)

Our main result in this section is an explicit expression for 𝐹𝔤

𝐾
(x, 𝑞) for torus knots.

Theorem 5.2.2 ([Par20a]). For 𝐾 = 𝑇𝑠,𝑡 , 𝑓 𝔤𝛽 (𝑞) is a monomial of degree (𝛽,𝛽)
2𝑠𝑡 , up to

an overall 𝑞-power. More precisely,

𝐹
𝔤

𝑇𝑠,𝑡
�

1
|𝑊 |

∑︁
𝛽∈𝑃+∩(𝑄+𝜌)

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝑥𝑤(𝛽) (5.24)

×
∑︁

(𝑤1,𝑤2)∈𝑊2

(−1)𝑙 (𝑤1𝑤2)1(𝛽, 𝑤1, 𝑤2)𝑁 1
𝑠𝑡
(𝛽+𝑡𝑤1 (𝜌)+𝑠𝑤2 (𝜌))𝑞

(𝛽,𝛽)
2𝑠𝑡 ,

where

1(𝛽, 𝑤1, 𝑤2) :=


1 if 1
𝑠𝑡
(𝛽 + 𝑡𝑤1(𝜌) + 𝑠𝑤2(𝜌)) ∈ 𝑃+ ∩ (𝑄 + 𝜌),

0 otherwise.
(5.25)

Proof. This can be derived either directly from (5.2) by using plumbing description
or by reverse-engineering using the higher rank surgery formula that we discuss
below. Here we present a direct derivation. Recall from [GM21] that the complement
of 𝑇𝑠,𝑡 has a plumbing description as in Figure 5.2, where 0 < 𝑡′ < 𝑡, 0 < 𝑠′ < 𝑠 are
chosen such that 𝑠𝑡′ ≡ −1(mod 𝑡) and 𝑡𝑠′ ≡ −1(mod 𝑠). The linking matrix is

𝐵 =

©­­­­­«
−𝑠𝑡 1 0 0
1 −1 1 1
0 1 (− 𝑡

𝑡 ′ ) 0
0 1 0 (− 𝑠

𝑠′ )

ª®®®®®¬
,
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where (− 𝑡
𝑡 ′ ) and (− 𝑠

𝑠′ ) should be understood as block matrices corresponding to the
continued fractions. To compute the integral (5.2) with 𝑥−𝑠𝑡 left unintegrated, we
just have to replace the theta function Θ−𝐵 (𝑥−1, 𝑞) with

Θ−𝐵′ (𝑥−1, 𝑞) �
∑︁
𝛼∈𝑄𝑉 ′

𝑞−
1
2 (𝛼,𝐵

′𝛼)−(𝛼,𝛿)
∏
𝑣∈𝑉 ′

𝑥
−(𝐵′𝛼+𝛿)
𝑣 · 𝑥−𝛼−1−𝜌

−𝑠𝑡 ,

where 𝑉 ′ = 𝑉 \ {𝑣−𝑠𝑡} and 𝐵′ is the corresponding sub-linking matrix. Set 𝛽 =

−𝛼−1 − 𝜌. We need to multiply Θ−𝐵′ (𝑥−1, 𝑞) with

∏
𝑣∈𝑉 ′

(∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤)𝑥𝑤(𝜌)𝑣

)2−deg 𝑣

and take the constant term with respect to variables 𝑥𝑣, 𝑣 ∈ 𝑉 ′. As 2 − deg 𝑣 is
non-zero for only 3 vertices (the central vertex 𝑣−1 and the 2 terminal vertices) it
is pretty easy to compute. The only contributions come from those 𝛼’s such that
𝐵′𝛼 + 𝛿 takes values 𝑤1(𝜌), 𝑤2(𝜌) on the terminal vertices for some 𝑤1, 𝑤2 ∈ 𝑊 , a
value in 𝑄 + 𝜌 in the central vertex, and 0 on all the other vertices. Using simple
linear algebra, it is easy to check that for those 𝛼’s,

𝑞−
1
2 (𝛼,𝐵

′𝛼)−(𝛼,𝛿) = 𝑞
(𝛽,𝛽)
2𝑠𝑡 +𝐶

for some constant 𝐶 independent of 𝛼, and that 1
𝑠𝑡
(𝛽 + 𝑡𝑤1(𝜌) + 𝑠𝑤2(𝜌)) is the value

of 𝐵′𝛼 + 𝛿 on the central vertex. This proves (5.24). □

Example 5.2.3. Right-handed trefoil with 𝐺 = 𝔰𝔩3. The first few 𝑓
𝔰𝔩3
𝛽

are (up to
overall sign and 𝑞-power)

𝑓(1,1) = −𝑞, 𝑓(4,1) = −𝑞2, 𝑓(5,2) = −2𝑞3, 𝑓(7,1) = −𝑞4, 𝑓(5,5) = 𝑞
5,

𝑓(7,4) = 2𝑞6, 𝑓(10,1) = −𝑞7, 𝑓(8,5) = 𝑞
8, 𝑓(11,2) = −2𝑞9, 𝑓(7,7) = −𝑞9,

𝑓(13,1) = −𝑞11, 𝑓(11,5) = 𝑞
12, · · · , (5.26)

where we have written 𝛽 in the fundamental weights basis. (Because 𝑓(𝑚,𝑛) = 𝑓(𝑛,𝑚) ,
we have only written those terms with 𝑚 ≥ 𝑛.) The 𝑞-power of this 𝑓𝛽 is, up to
overall constant,

(𝛽, 𝛽)
12

. (5.27)

In the 𝑞 → 1 limit we have, as expected,

𝐹
𝔰𝔩3
3𝑟1

(𝑥1, 𝑥2, 1) =
𝑥

1/2
1 − 𝑥−1/2

1

𝑥1 + 𝑥−1
1 − 1

𝑥
1/2
2 − 𝑥−1/2

2

𝑥2 + 𝑥−1
2 − 1

𝑥
1/2
1 𝑥

1/2
2 − 𝑥−1/2

1 𝑥
−1/2
2

𝑥1𝑥2 + 𝑥−1
1 𝑥−1

2 − 1
. (5.28)
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We conjecture the following surgery formula analogous to [GM21, Conjecture 1.7]
relating 𝐹𝔤

𝐾
to 𝑍̂𝔤

𝑆3
𝑝/𝑟 (𝐾),𝑏

(𝑞):

Conjecture 5.2.4 (Higher rank surgery formula). Let 𝐾 ⊂ 𝑆3 be a knot. Then

𝑍̂
𝔤

𝑆3
𝑝/𝑟 (𝐾),𝑏

(𝑞) � L (𝑏)
𝑝/𝑟

[ ∏
𝛼∈Δ+

(𝑥 𝛼
2𝑟 − 𝑥− 𝛼

2𝑟 )𝐹𝔤

𝐾
(x, 𝑞)

]
(5.29)

whenever − 𝑟
𝑝

is big enough so that the right-hand side converges.

This is a theorem for knots and 3-manifolds represented by negative-definite plumb-
ings, as a straightforward generalization of Theorem 1.2 of [GM21]. For instance,
surgery on 3𝑟1 gives us the following 𝑍̂𝔰𝔩3’s:

𝑟 𝑆3
−1/𝑟 (3

𝑟
1) 𝑍̂

𝔰𝔩3
𝑆3
−1/𝑟 (3

𝑟
1)
(𝑞)

1 Σ(2, 3, 7) 1 − 2𝑞 + 2𝑞3 + 𝑞4 − 2𝑞5 − 2𝑞8 + 4𝑞9 + 2𝑞10 − 4𝑞11 + 2𝑞13 − 6𝑞14 + · · ·
2 Σ(2, 3, 13) 1 − 2𝑞 + 2𝑞3 − 𝑞4 + 2𝑞10 − 2𝑞11 − 2𝑞14 + 2𝑞16 + 2𝑞19 − 2𝑞20 + 4𝑞21 − · · ·
3 Σ(2, 3, 19) 1 − 2𝑞 + 2𝑞3 − 𝑞4 + 2𝑞16 − 2𝑞17 − 2𝑞20 + 2𝑞22 + 2𝑞25 − 2𝑞26 + 4𝑞33 − · · ·
4 Σ(2, 3, 25) 1 − 2𝑞 + 2𝑞3 − 𝑞4 + 2𝑞22 − 2𝑞23 − 2𝑞26 + 2𝑞28 + 2𝑞31 − 2𝑞32 + 4𝑞45 − · · ·
5 Σ(2, 3, 31) 1 − 2𝑞 + 2𝑞3 − 𝑞4 + 2𝑞28 − 2𝑞29 − 2𝑞32 + 2𝑞34 + 2𝑞37 − 2𝑞38 + 4𝑞57 − · · ·
𝑟 Σ(2, 3, 6𝑟 + 1) ∑

(𝑤1,𝑤2)∈𝑊2 (−1)𝑙 (𝑤1𝑤2)𝜒36𝑟+6,3(6𝑟+1)𝑤1 (𝜌)+2(6𝑟+1)𝑤2 (𝜌)+6𝜌

In fact it is easy to check that for 𝐾 = 𝑇𝑠,𝑡 ,

L−1/𝑟

[ ∏
𝛼∈Δ+

(𝑥 𝛼
2𝑟 − 𝑥− 𝛼

2𝑟 )𝐹𝐾 (x, 𝑞)
]

�
∑︁

(𝑤1,𝑤2)∈𝑊2

(−1)𝑙 (𝑤1𝑤2)𝜒𝑠𝑡 (𝑟𝑠𝑡+1),𝑡 (𝑟𝑠𝑡+1)𝑤1 (𝜌)+𝑠(𝑟𝑠𝑡+1)𝑤2 (𝜌)+𝑠𝑡𝜌 (𝑞)

� 𝑍̂𝔤
Σ(𝑠,𝑡,𝑟𝑠𝑡+1) (𝑞),

which is consistent with what we have seen in Proposition 5.1.6.

5.3 Symmetric representations and large 𝑁
Specialization to symmetric representations
In this section we study a specialization of 𝐹𝔤

𝐾
(x, 𝑞) to symmetric representations.

We restrict our attention to 𝔤 = 𝔰𝔩𝑁 . We start from the reduced version of 𝐹𝐾 :

𝐹red
𝐾 (x, 𝑞) :=

1
|𝑊 |

∑︁
𝛽∈𝑃+∩(𝑄+𝜌)

𝑓𝛽 (𝑞)
∑
𝑤∈𝑊 (−1)𝑙 (𝑤)𝑥𝑤(𝛽)∑
𝑤∈𝑊 (−1)𝑙 (𝑤)𝑥𝑤(𝜌)

. (5.30)
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Then the (reduced) symmetrically colored 𝐹𝐾 corresponds to the following special-
ization:

𝐹
sym
𝐾

(𝑥, 𝑞) := 𝐹red
𝐾 ((𝑥, 𝑞, · · · , 𝑞), 𝑞). (5.31)

That is, we set 𝑥1 = 𝑥 and 𝑥2 = · · · = 𝑥𝑁−1 = 𝑞. A version of quantum volume
conjecture [FGS13] states that this should be annihilated by the symmetrically
colored quantum A-polynomial:

𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎 = 𝑞𝑁 , 𝑞)𝐹𝔰𝔩𝑁 ,sym
𝐾

(𝑥, 𝑞) = 0. (5.32)

Example 5.3.1. Right-handed trefoil. For the right-handed trefoil, 𝐹𝔰𝔩𝑁 ,sym
3𝑟1

(𝑥, 𝑞)
for the first few values of 𝑁 look like the following:

• For 𝔰𝔩2,

𝐹
𝔰𝔩2,sym
3𝑟1

(𝑥, 𝑞) � 1
2

[
(−𝑞 + 𝑞2 + 𝑞3 − 𝑞6 − 𝑞8 + 𝑞13 + 𝑞16 − · · · )

+ (𝑥 + 𝑥−1) (𝑞2 + 𝑞3 − 𝑞6 − 𝑞8 + 𝑞13 + 𝑞16 − · · · )
+ (𝑥2 + 𝑥−2) (𝑞2 + 𝑞3 − 𝑞6 − 𝑞8 + 𝑞13 + 𝑞16 − · · · )
+ (𝑥3 + 𝑥−3) (𝑞3 − 𝑞6 − 𝑞8 + 𝑞13 + 𝑞16 − · · · )
+ (𝑥4 + 𝑥−4) (−𝑞6 − 𝑞8 + 𝑞13 + 𝑞16 − · · · )
+ · · · ] ;

• For 𝔰𝔩3,

𝐹
𝔰𝔩3,sym
3𝑟1

(𝑥, 𝑞) � 1
2

[
(−2𝑞 − 2𝑞2 + 2𝑞4 + 4𝑞5 + 4𝑞6 + 4𝑞7 + 2𝑞8 − 2𝑞10 − 4𝑞11 − · · · )

+ (𝑞1/2𝑥 + 𝑞−1/2𝑥−1)𝑞1/2(−1 − 2𝑞 − 𝑞2 + 𝑞3 + 3𝑞4 + 4𝑞5 + 4𝑞6 + · · · )
+ (𝑞𝑥2 + 𝑞−1𝑥−2) (−𝑞 − 𝑞2 + 2𝑞4 + 3𝑞5 + 4𝑞6 + 3𝑞7 + 2𝑞8 − 2𝑞10 + · · · )
+ (𝑞3/2𝑥3 + 𝑞−3/2𝑥−3)𝑞1/2(𝑞3 + 2𝑞4 + 3𝑞5 + 3𝑞6 + 2𝑞7 + 𝑞8 + · · · )
+ (𝑞2𝑥4 + 𝑞−2𝑥−4) (𝑞3 + 𝑞4 + 2𝑞5 + 2𝑞6 + 2𝑞7 + 𝑞8 + · · · )
+ · · · ] ;
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• For 𝔰𝔩4,

𝐹
𝔰𝔩4,sym
3𝑟1

(𝑥, 𝑞) � 1
2

[
(𝑞−2 + 𝑞−1 − 2 − 4𝑞 − 8𝑞2 − 7𝑞3 − 7𝑞4 + · · · )

+ (𝑞𝑥 + 𝑞−1𝑥−1) (𝑞−2 − 1 − 5𝑞 − 6𝑞2 − 8𝑞3 − 5𝑞4 − 2𝑞5 + · · · )
+ (𝑞2𝑥2 + 𝑞−2𝑥−2) (−2 − 3𝑞 − 6𝑞2 − 5𝑞3 − 5𝑞4 + 4𝑞6 + · · · )
+ (𝑞3𝑥3 + 𝑞−3𝑥−3) (−𝑞−1 − 1 − 3𝑞 − 3𝑞2 − 4𝑞3 − 2𝑞4 + 5𝑞6 + 9𝑞7 + · · · )
+ (𝑞4𝑥4 + 𝑞−4𝑥−4) (−1 − 𝑞 − 2𝑞2 − 𝑞3 − 𝑞4 + 2𝑞5 + 4𝑞6 + 8𝑞7 + · · · )
+ · · · ] .

Note that the overall factor is 1
2 instead of 1

𝑁! . This is due to reduction of the Weyl
symmetry to Z2 as we specialize to symmetric representations.

It is easy to experimentally check (5.32) term by term in this case, using the
𝑎-deformed quantum 𝐴-polynomial for the right-handed trefoil

𝐴̂3𝑟1 (𝑥, 𝑦̂, 𝑎, 𝑞) = 𝑎0 + 𝑎1 𝑦̂ + 𝑎2 𝑦̂
2,

where

𝑎0 = − (−1 + 𝑥) (−1 + 𝑎𝑞𝑥2)
𝑎𝑥3(−1 + 𝑎𝑥) (−𝑞 + 𝑎𝑥2)

,

𝑎1 =
(−1 + 𝑎𝑥2) (−𝑎2𝑥2 + 𝑎𝑞3𝑥2 + 𝑎𝑞𝑥(1 + 𝑥 + 𝑎(−1 + 𝑥)𝑥) − 𝑞2(1 + 𝑎2𝑥4))

𝑎2𝑞𝑥3(−1 + 𝑎𝑥) (−𝑞 + 𝑎𝑥2)
,

𝑎2 = 1

with 𝑎 specialized to 𝑞𝑁 .

Large-𝑁
From (5.32), we are naturally led to the following conjecture:

Conjecture 5.3.2 ([Par20a]). For each knot 𝐾, there exists a function 𝐹𝐾 (𝑥, 𝑎, 𝑞)
such that

𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎, 𝑞)𝐹𝐾 (𝑥, 𝑎, 𝑞) = 0 (5.33)

and
𝐹𝐾 (𝑥, 𝑞𝑁 , 𝑞) = 𝐹𝔰𝔩𝑁 ,sym

𝐾
(𝑥, 𝑞) (5.34)

for any 𝑁 . Moreover, this function should have the following Weyl symmetry:

𝐹𝐾 (𝑥−1, 𝑎, 𝑞) = 𝐹𝐾 (𝑎−1𝑞2𝑥, 𝑎, 𝑞). (5.35)
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In particular, (5.34) implies

lim
𝑞→1

𝐹𝐾 (𝑥, 𝑞𝑁 , 𝑞) = Δ𝐾 (𝑥)1−𝑁 . (5.36)

The study of this HOMFLY-PT analogue (i.e., 𝑎-deformation) of 𝐹𝐾 is the subject of
next chapter.

Remark 5.3.3. This conjecture has been checked for various knots [Ekh+; Ekh+22],
by either solving the quantum 𝐴-polynomial equation, or by using the 𝑅-matrix state
sum and then using the knots-quivers correspondence to find the 𝑎-deformation.
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C h a p t e r 6

TOPOLOGICAL STRINGS

At the end of the previous chapter, we presented a conjecture on the existence of a three-
variable series 𝐹𝐾 (𝑥, 𝑎, 𝑞) that interpolates 𝐹𝐾’s for 𝔰𝔩𝑁 . In this chapter, following
[Ekh+; Ekh+22], we explain how this three-variable series can be interpreted as a
topological string partition function. As we will see, this will lead to several concrete
mathematical predictions.

6.1 Topological strings and 𝐹𝐾
HOMFLY-PT polynomials
For a knot 𝐾 ⊂ 𝑆3, its HOMFLY-PT polynomial is a topological invariant [Hos+85;
PT87] which can be defined by the skein relation

𝑎1/2𝑃 (𝑎, 𝑞) − 𝑎−1/2𝑃 (𝑎, 𝑞) = (𝑞1/2 − 𝑞−1/2)𝑃 (𝑎, 𝑞)

with a normalization condition 𝑃01 (𝑎, 𝑞) = 1 for the unknot. The HOMFLY-PT
polynomial interpolates all the 𝔰𝔩𝑁 Jones polynomials 𝐽𝔰𝔩𝑁

𝐾
(𝑞) in the sense that

𝑃𝐾 (𝑎 = 𝑞𝑁 , 𝑞) = 𝐽
𝔰𝔩𝑁
𝐾

(𝑞).

More generally, the colored HOMFLY-PT polynomials 𝑃𝐾,𝑅 (𝑎, 𝑞) are polynomial
knot invariants generalizing the HOMFLY-PT polynomial, which also depends
on a representation (a Young diagram) 𝑅. The colored HOMFLY-PT polynomial
𝑃𝐾,𝑅 (𝑎, 𝑞) interpolates the colored 𝔰𝔩𝑁 Jones polynomials in the sense that

𝑃𝐾,𝑅 (𝑎 = 𝑞𝑁 , 𝑞) = 𝐽
𝔰𝔩𝑁
𝐾,𝑅

(𝑞).

The original HOMFLY-PT polynomial corresponds to the case of defining represen-
tation 𝑅 = □. We will be interested mainly in the HOMFLY-PT polynomials colored
by the totally symmetric representations

𝑅 = 𝑆𝑟 = □ · · ·□︸ ︷︷ ︸
𝑟

with 𝑟 boxes in a row in the Young diagram. In order to simplify the notation, we
will denote them by 𝑃𝐾,𝑟 (𝑎, 𝑞) and call them simply the HOMFLY-PT polynomials.
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There is also a 𝑡-deformation of the HOMFLY-PT polynomials [DGR06; GS12a].
The superpolynomial P𝐾,𝑟 (𝑎, 𝑞, 𝑡) is defined as the Poincaré polynomial of the
triply-graded homology that categorifies the HOMFLY-PT polynomial:

𝑃𝐾,𝑟 (𝑎, 𝑞) =
∑︁
𝑖, 𝑗 ,𝑘

(−1)𝑘𝑎𝑖𝑞 𝑗 dimH 𝑆𝑟

𝑖, 𝑗 ,𝑘 (𝐾),

P𝐾,𝑟 (𝑎, 𝑞, 𝑡) =
∑︁
𝑖, 𝑗 ,𝑘

𝑎𝑖𝑞 𝑗 𝑡𝑘 dimH 𝑆𝑟

𝑖, 𝑗 ,𝑘 (𝐾).
(6.1)

The superpolynomial reduces to the HOMFLY-PT polynomial when 𝑡 = −1:

P𝐾,𝑟 (𝑎, 𝑞, 𝑡 = −1) = 𝑃𝐾,𝑟 (𝑎, 𝑞).

𝐴-polynomials
The 𝐴-polynomial 𝐴𝐾 (𝑥, 𝑦) is a polynomial knot invariant defining the algebraic
curve {(𝑥, 𝑦) ∈ (C∗)2 | 𝐴𝐾 (𝑥, 𝑦) = 0}, which is the projection of the character
variety of the the knot complement to the boundary torus [Coo+94]. According to the
volume conjecture, it also captures the asymptotics of the colored Jones polynomials
𝐽𝐾,𝑟 (𝑞) for large colors 𝑟 . The quantization of the 𝐴-polynomial encodes information
about all colors, not only large ones. Namely, it gives the recurrence relations
satisfied by the colored Jones polynomials 𝐽𝑟 (𝐾; 𝑞):

𝐴̂𝐾 (𝑥, 𝑦̂, 𝑞)𝐽𝐾,𝑟 (𝑞) = 0,

where 𝑥 and 𝑦̂ act by

𝑥𝐽𝐾,𝑟 (𝑞) = 𝑞𝑟𝐽𝐾,𝑟 (𝑞), 𝑦̂𝐽𝐾,𝑟 (𝑞) = 𝐽𝐾,𝑟+1(𝑞),

and satisfy the 𝑞-commutation relation 𝑦̂𝑥 = 𝑞𝑥𝑦̂. The 𝑞-difference operator
𝐴̂𝐾 (𝑥, 𝑦̂, 𝑞), which we have already seen many times in previous chapters, is called
the quantum 𝐴-polynomial; in the classical limit 𝑞 = 1 it becomes the usual 𝐴-
polynomial 𝐴𝐾 (𝑥, 𝑦). The existence of the quantum 𝐴-polynomial was conjectured
independently in the context of quantization of the Chern-Simons theory [Guk05]
and in parallel mathematics developments [Gar04].

The 𝐴-polynomial can be generalized further for the colored HOMFLY-PT polyno-
mials [AV12] and colored superpolynomials [Awa+12; FGS13], which we briefly
introduced in (6.1). In these cases the objects mentioned in the previous paragraph
become 𝑎- and 𝑡-dependent. In particular, the asymptotics of colored superpolyno-
mials P𝑟 (𝐾; 𝑎, 𝑞, 𝑡) for large 𝑟 is captured by an algebraic curve 𝐴𝐾 (𝑥, 𝑦, 𝑎, 𝑡) = 0
defined by the super-𝐴-polynomial. When 𝑡 = −1 it becomes the 𝑎-deformed
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𝐴-polynomial, and upon setting in addition 𝑎 = 1, it gets reduced further to the
original 𝐴-polynomial (as a factor). For brevity, all these objects are often referred to
as 𝐴-polynomials. The quantization of the super-𝐴-polynomial gives rise to quantum
super-𝐴-polynomial 𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎, 𝑞, 𝑡), which is a 𝑞-difference operator that encodes
the recurrence relations for the colored superpolynomials:

𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎, 𝑞, 𝑡)P∗(𝐾; 𝑎, 𝑞, 𝑡) = 0.

A universal framework that enables us to determine a quantum 𝐴-polynomial from
an underlying classical curve 𝐴(𝑥, 𝑦) = 0 was proposed in [GS12b] (irrespective of
extra parameters these curves depend on, and also beyond examples related to knots).

Large-𝑁 transition
In this subsection we explain the physical background in order to motivate the
conjectures that we will present in later sections. The mathematically inclined
readers may skip this subsection.

The physical system we are interested in1 can be represented by the system of 𝑁
fivebranes supported on R2 × 𝑆1 ×𝑌 , where 𝑌 is embedded as the zero-section inside
the Calabi-Yau 3-fold 𝑇∗𝑌 and R2 × 𝑆1 ⊂ R4 × 𝑆1:

spacetime : R4 × 𝑆1 × 𝑇∗𝑌

∪ ∪
𝑁 M5-branes : R2 × 𝑆1 × 𝑌 .

(6.2)

Finding the large-𝑁 limit of this system for general 3-manifold 𝑌 is highly nontrivial
(see [GPV17, sec.7] and [ES19, Remark 2.4]). However, when𝑌 is a knot complement
𝑀𝐾 := 𝑆3\𝐾, there is an equivalent description for which the study of large-𝑁
behavior can be reduced to the celebrated “large-𝑁 transition” [GV98; OV00].

We consider first a description without transition. From the viewpoint of 3d/3d
correspondence, 𝑁 fivebranes on 𝑌 = 𝑀𝐾 produce a 4d N = 4 theory — which is a
close cousin of (but is not) 4d N = 4 super-Yang-Mills — on a half-space R3 × R+
coupled to 3d N = 2 theory 𝑇 [𝑀𝐾] on the boundary. Indeed, near the boundary
𝑇2 = Λ𝐾 = 𝜕𝑀𝐾 , the compactification of 𝑁 fivebranes produces a 4d N = 4 theory
which has moduli space of vacua Sym𝑁 (C2 × C∗) [Chu+20]. (The moduli space of
vacua in 4d N = 4 SYM is Sym𝑁 (C3).) The 𝑆𝑈 (𝑁) gauge symmetry of this theory
appears as a global symmetry of the 3d boundary theory 𝑇 [𝑀𝐾]. In particular, the

1We have already reviewed this briefly in Section 2.2.
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variables 𝑥𝑖 ∈ C∗ are complexified fugacities for this global (“flavor”) symmetry. For
𝐺 = 𝑆𝑈 (2), the moduli space of vacua of the knot complement theory 𝑇𝔰𝔩2 [𝑀𝐾]
gives precisely the 𝐴-polynomial of 𝐾. Similarly, for 𝐺 = 𝑆𝑈 (𝑁), 𝐺C character
varieties of 𝑀𝐾 are realized as spaces of vacua in 𝑇𝔰𝔩𝑁 [𝑀𝐾] [FGS13; Fuj+13].

We next give another equivalent description of the physical system (6.2) with𝑌 = 𝑀𝐾 ,
where the large-𝑁 behavior is easier to analyze:

spacetime : R4 × 𝑆1 × 𝑇∗𝑆3

∪ ∪
𝑁 M5-branes : R2 × 𝑆1 × 𝑆3

𝜌 M5′-branes : R2 × 𝑆1 × 𝐿𝐾 .

(6.3)

This brane configuration is basically a variant of (6.2) with 𝑌 = 𝑆3 and 𝜌 extra
M5-branes supported on R2 × 𝑆1 × 𝐿𝐾 , where 𝐿𝐾 ⊂ 𝑇∗𝑆3 is the conormal bundle of
the knot 𝐾 ⊂ 𝑆3 (often called the knot conormal Lagrangian). There is, however, a
crucial difference between fivebranes on 𝑆3 and 𝐿𝐾 . Since the latter are non-compact
in two directions orthogonal to 𝐾, they carry no dynamical degrees of freedom
away from 𝐾. One can path integrate those degrees of freedom along 𝐾, which
effectively removes 𝐾 from 𝑆3 and puts the corresponding boundary conditions on
the boundary 𝑇2 = 𝜕𝑀𝐾 . The resulting system is precisely (6.2) with 𝑌 = 𝑀𝐾 .
Equivalently, one can use the topological invariance along 𝑆3 to move the tubular
neighbourhood of 𝐾 ⊂ 𝑆3 to “infinity.” This creates a long neck isomorphic to
R × 𝑇2, as in the above discussion. Either way, we end up with a system of 𝑁
fivebranes on the knot complement and no extra branes on 𝐿𝐾 , so that the choice
of 𝐺𝐿 (𝜌,C) flat connection on 𝐿𝐾 is now encoded in the boundary condition for
𝑆𝐿 (𝑁,C) connection2 on 𝑇2 = 𝜕𝑀𝐾 . In particular, the latter has at most 𝜌 nontrivial
parameters 𝑥𝑖 ∈ C∗, 𝑖 = 1, . . . , 𝜌.

We will consider the simplest case of 𝜌 = 1. Then we can use the geometric transition
of [GV98], upon which there is one brane on 𝐿𝐾 and 𝑁 fivebranes on the zero-section
of 𝑇∗𝑆3 disappear. The Calabi-Yau space 𝑇∗𝑆3 undergoes a topology changing
transition to a new Calabi-Yau space 𝑋 , the so-called “resolved conifold”, which
is the total space of O(−1) ⊕ O(−1) → CP1, and only the Ooguri-Vafa fivebranes

2To be more precise, it is a 𝐺𝐿 (𝑁,C) connection, but the dynamics of the 𝐺𝐿 (1,C) sector is
different from that of the 𝑆𝐿 (𝑁,C) sector and can be decoupled.
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supported on the conormal bundle 𝐿𝐾 remain:

spacetime : R4 × 𝑆1 × 𝑋
∪ ∪

𝜌 M5′-branes : R2 × 𝑆1 × 𝐿𝐾 .

(6.4)

Note that on the resolved conifold side, i.e., after the geometric transition, log 𝑎 =

Vol(CP1) + 𝑖
∫
𝐵 = 𝑁ℏ is the complexified Kähler parameter which enters the

generating function of enumerative invariants.

To summarize, a system of 𝑁 fivebranes on a knot complement (6.2) is equivalent to
a brane configuration (6.4), with a suitable map that relates the boundary conditions
in the two cases. There is another system closely related to (6.4) that one can obtain
from (6.3) by first reconnecting 𝜌 branes on 𝐿𝐾 with 𝜌 branes on 𝑆3. This give 𝜌
branes on 𝑀𝐾 (that go off to infinity just like 𝐿𝐾 does) plus 𝑁 − 𝜌 branes on 𝑆3.
Assuming that 𝜌 ∼ 𝑂 (1) as 𝑁 → ∞ (e.g. 𝜌 = 1 in the context of this paper), after
the geometric transition we end up with a system like (6.4), except 𝐿𝐾 is replaced by
𝑀𝐾 and Vol(CP1) + 𝑖

∫
𝐵 = (𝑁 − 𝜌)ℏ. Both of these systems on the resolved side

compute the HOMFLY-PT polynomials of 𝐾 colored by Young diagrams with at
most 𝜌 rows.

𝐹𝐾 as the count of open holomorphic curves
From the mathematical point of view, what the above physical picture tells us is that
𝐹𝐾 (𝑥, 𝑎, 𝑞) is the count of open topological strings in the resolved conifold 𝑋 , with
the knot complement Lagrangian 𝑀𝐾 ⊂ 𝑋 .

Mathematically, the large-𝑁 transition (going from 𝑇∗𝑆3 to the resolved conifold)
corresponds to the Symplectic Field Theory (SFT)-stretching [ES19]. With enough
stretching, all the curves leave a neighborhood of 𝑆3, so one can effectively replace
𝑇∗𝑆3 with the resolved conifold. In order for the SFT-stretching to work nicely, we
should be able to shift the Lagrangian completely off of the zero section 𝑆3. With
𝑀𝐾 , that would be exactly when 𝐾 is fibered. When 𝑀𝐾 is non-fibered, it cannot
be completely shifted off of the zero section. Instead, there will be finitely many
intersection points where 𝑀𝐾 looks like the cotangent fiber. In this case, even after
SFT-stretching, the curves can end on Reeb chords ending on those intersection
points, which complicates the story.

Before moving onto the next topic, let us point out one implication of this interpretation.
Write

𝐹𝐾 (𝑥, 𝑎, 𝑞 = 𝑒𝑔𝑠 ) = 𝑒
1
𝑔𝑠
𝑈𝐾 (𝑥,𝑎)+𝑈0

𝐾
(𝑥,𝑎)+𝑔𝑠𝑈1

𝐾
(𝑥,𝑎)+𝑔2

𝑠𝑈
2
𝐾
(𝑥,𝑎)+···

.
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The𝑈𝐾’s are the open Gromov-Witten invariants in our setup (with knot complement
Lagrangian 𝑀𝐾). Then, if 𝑏̂ is the operator such that

𝑏̂ : 𝑁 ↦→ 𝑁 + 1 (i.e., 𝑎 ↦→ 𝑞𝑎),

then its expectation value is

⟨𝑏̂⟩| (𝑦,𝑎)=(1,1) = lim
𝑞→1

𝐹𝐾 (𝑥, 𝑞𝑎, 𝑞)
𝐹𝐾 (𝑥, 𝑎, 𝑞)

����
(𝑦,𝑎)=(1,1)

= Δ𝐾 (𝑥)−1 (6.5)

since, according to Conjecture 5.3.2,

lim
𝑞→1

𝐹
𝔰𝔩𝑁 ,𝑠𝑦𝑚

𝐾
(𝑥, 𝑞) = Δ𝐾 (𝑥)1−𝑁 .

But also,

⟨𝑏̂⟩| (𝑦,𝑎)=(1,1) = exp

(
𝜕𝑈𝐾 (𝑥, 𝑎)
𝜕 log 𝑎

����
(𝑦,𝑎)=(1,1)

)
= exp

(∫
𝜕 log 𝑦(𝑥, 𝑎)
𝜕 log 𝑎

����
(𝑦,𝑎)=(1,1)

𝑑 log 𝑥

)
= exp

(∫
−
𝜕log 𝑎𝐴𝐾

𝜕log 𝑦𝐴𝐾

����
(𝑦,𝑎)=(1,1)

𝑑 log 𝑥

)
.

So we have a formula forΔ𝐾 (𝑥) in terms of the 𝑎-deformed 𝐴-polynomial 𝐴𝐾 (𝑥, 𝑦, 𝑎).
This was confirmed recently by Diogo and Ekholm.

Theorem 6.1.1 ([DE20]). The Alexander polynomial can be computed from the
augmentation polynomial3 Aug𝐾 (𝑥, 𝑦, 𝑎) near the abelian branch:

Δ𝐾 (𝑥) = (1 − 𝑥) exp

(∫
𝜕log 𝑎Aug𝐾
𝜕log 𝑦Aug𝐾

����
(𝑦,𝑎)=(1,1)

𝑑 log 𝑥

)
.

6.2 Branches
The variables 𝑥 and 𝑦 of the 𝐴-polynomial correspond to the holonomy eigenvalues
of the meridian and longitude of the knot. Since there are always abelian 𝑆𝐿2(C)
connections regardless of the choice of knot, the 𝐴-polynomial 𝐴𝐾 (𝑥, 𝑦) always
have a factor of (𝑦 − 1). By branches, we mean the solutions 𝑦 of 𝐴𝐾 (𝑥, 𝑦) = 0 as
a function of 𝑥. So, there are as many branches as deg𝑦 𝐴𝐾 (𝑥, 𝑦). The canonical

3The augmentation polynomial in knot contact homology is essentially the same as the 𝑎-deformed
𝐴-polynomial (also known as the 𝑄-deformed 𝐴-polynomial). See [Aga+14; AV12].
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solution 𝑦 = 1 is called the abelian branch. Similarly in the 𝑎-deformed setting, we
call the branch 𝑦 (𝛼) (𝑥, 𝑎) abelian branch if 𝑦 (𝛼) (𝑥, 𝑎 = 1) = 1.

All of our discussions so far have been on the abelian branch. This is because for
𝐹𝐾 (𝑥, 𝑞), the expectation value of the 𝑦̂ operator is always 1:

⟨𝑦̂⟩ = lim
𝑞→1

𝐹𝐾 (𝑞𝑥, 𝑞)
𝐹𝐾 (𝑥, 𝑞)

= 1.

As briefly mentioned in the previous section, a choice of branch corresponds to a
choice of vacuum in the 3d theory 𝑇 [𝑀𝐾]. Therefore, it is natural to expect that
there are invariants analogous to 𝐹𝐾 (𝑥, 𝑎, 𝑞) associated to other branches of the
𝐴-polynomial.

Conjecture 6.2.1 ([Ekh+22]). Given a knot 𝐾 , let 𝑦 (𝛼) (𝑥, 𝑎) be a branch of 𝑦 near
𝑥 = 0 (or 𝑥 = ∞) of the 𝑎-deformed 𝐴-polynomial of 𝐾, 𝐴𝐾 (𝑥, 𝑦, 𝑎). Then, there
exists a wave function 𝐹 (𝛼)

𝐾
(𝑥, 𝑎, 𝑞) associated to this branch in a sense that

⟨𝑦̂⟩ := lim
𝑞→1

𝐹
(𝛼)
𝐾

(𝑞𝑥, 𝑎, 𝑞)
𝐹
(𝛼)
𝐾

(𝑥, 𝑎, 𝑞)
= 𝑦 (𝛼) (𝑥, 𝑎),

and this wave function is annihilated by the quantum 𝑎-deformed 𝐴-polynomial
𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎, 𝑞) (which is the same for all branches 𝑦 (𝛼) (𝑥, 𝑎)):

𝐴̂𝐾 (𝑥, 𝑦̂, 𝑎, 𝑞)𝐹 (𝛼)
𝐾

(𝑥, 𝑎, 𝑞) = 0.

This conjecture has been checked in numerous examples in [Ekh+22]. In fact, in
many cases, we can obtain 𝐹 (𝛼)

𝐾
(𝑥, 𝑎, 𝑞) by solving the 𝑞-difference equation given

by the quantum 𝐴-polynomial. If 𝑦 (𝛼) (𝑥) ∼ 𝑥𝑑 asymptotically near 𝑥 = 0, for some
𝑑 ∈ Q, then we can use it as the initial condition and find a solution of the form

𝐹
(𝛼)
𝐾

(𝑥, 𝑎, 𝑞) = 𝑒𝑑
(log 𝑥)2
2 log 𝑞 · (some Puiseux series in 𝑥),

up to an overall factor independent of 𝑥. Possible values of 𝑑 correspond exactly
to the boundary slopes of the 𝐴-polynomial Newton polygon. More precisely, − 1

𝑑

should be a boundary slope of the Newton polygon, with 𝑥- and 𝑦-axis representing
the 𝑥- and 𝑦-degree of the monomials. The abelian branch always corresponds to the
slope ∞ (or equivalently 𝑑 = 0), and that’s why the two-variable series 𝐹𝐾 (𝑥, 𝑞) we

considered in previous chapters do not have the exponential prefactor 𝑒𝑑
(log 𝑥)2
2 log 𝑞 . For

non-abelian branches, however, 𝐹 (𝛼)
𝐾

(𝑥, 𝑞) in general involve such a prefactor.
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Example 6.2.2 (Figure-eight knot 41). For simplicity, let’s consider the 𝔰𝔩2 case
(i.e., 𝑎 = 𝑞2). The 𝐴-polynomial of the figure-eight knot is of 𝑦-degree 3, so it
has 3 branches. One of them is the abelian branch, and there are two non-abelian
branches of boundary slope ±1

2 which are conjugate to each other. Let’s denote the
non-abelian branches by 𝛼±1/2, according to their boundary slopes.

Using the quantum 𝐴-polynomial, we can solve for 𝐹 (𝛼±1/2)
41

(𝑥, 𝑞) term by term. It
turns out, they have nice expressions similar to the inverted Habiro series! Explicitly,
they are given by

𝐹
(𝛼−1/2)
41

(𝑥, 𝑞) = 𝑒
(log 𝑥)2

log 𝑞
∑︁
𝑛≥0

(−1)𝑛𝑞−
𝑛(𝑛−1)

2

(𝑞)𝑛∏
0≤ 𝑗≤𝑛 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

,

and

𝐹
(𝛼1/2)
41

(𝑥, 𝑞) = 𝑒−
(log 𝑥)2

log 𝑞
∑︁
𝑛≥0

𝑞𝑛
2

(𝑞)𝑛∏
0≤ 𝑗≤𝑛 (𝑥 + 𝑥−1 − 𝑞 𝑗 − 𝑞− 𝑗 )

.

Remark 6.2.3. The abelian branch 𝐹𝐾 (𝑥, 𝑞), as we have reviewed extensively in
previous chapters, was part of a bigger story that involves closed 3-manifolds. On the
other hand, it is not clear at the moment if the non-abelian branch 𝐹 (𝛼)

𝐾
(𝑥, 𝑞)’s can

be extended to closed 3-manifolds. Given that there seems to be some correlation
between the window of good surgery coefficients (Remark 4.0.2) and the boundary
slope of the 𝐴-polynomial Newton polygon, it is not too far-fetched to speculate
that perhaps these non-abelian branch 𝐹𝐾’s might play some role to get a full
understanding of 𝑍̂ .

6.3 Holomorphic Lagrangian subvarieties
Consider the 𝑏̂ operator that we introduced earlier. It is the operator that substitutes 𝑎
by 𝑞𝑎. We have seen that in the abelian branch the expectation value of the 𝑏̂ operator
provides an 𝑎-deformation of the inverse Alexander polynomial. On other branches
𝑦 (𝛼) (𝑥, 𝑎), the expectation value of the 𝑏̂ operator will be some other functions; let’s
define

𝑏 (𝛼) (𝑥, 𝑎) := lim
𝑞→1

𝐹
(𝛼)
𝐾

(𝑥, 𝑞𝑎, 𝑞)
𝐹
(𝛼)
𝐾

(𝑥, 𝑎, 𝑞)
.

It turns out, the functions 𝑏 (𝛼) (𝑥, 𝑎) describe branches of the equation 𝐵𝐾 (𝑎, 𝑏, 𝑥) = 0
defined by a polynomial 𝐵𝐾 (𝑎, 𝑏, 𝑥) that we call the 𝐵-polynomial in [Ekh+22]. The
𝐵-polynomial is uniquely determined by the 𝐴-polynomial, thanks to the equation

𝜕 log 𝑏 (𝛼) (𝑥, 𝑎)
𝜕 log 𝑥

=
𝜕 log 𝑦 (𝛼) (𝑥, 𝑎)

𝜕 log 𝑎
.
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We summarize the 𝐵-polynomials for some simple knots in Table 6.1.

𝐾 𝐵𝐾 (𝑎, 𝑏, 𝑥)
01 1 − 𝑏
31 1 − 𝑥−1(2 − (1 + 𝑥)𝑎 + 𝑥2𝑎2)𝑏 + 𝑥−2(1 − 𝑎) (1 − 𝑥𝑎)𝑏2

41

1 + 𝑎−1𝑥−1(2 − (1 + 3𝑥 + 𝑥2)𝑎 + 2𝑥2𝑎2)𝑏
+ 𝑎−2𝑥−2(1 − 𝑎) (1 − 𝑥𝑎) (1 − 2𝑥(1 + 𝑥)𝑎 + 𝑥3𝑎2)𝑏2

− 𝑎−2𝑥−1(1 − 𝑎) (1 − 𝑎) (1 − 𝑥𝑎) (1 − 𝑥𝑎)𝑏3

51

1 − 𝑥−2 (3 − 2(1 + 𝑥)𝑎 + 𝑥(1 + 2𝑥)𝑎2 − 𝑥2(1 + 𝑥)𝑎3 + 𝑥4𝑎4)𝑏
+ 𝑥−4(1 − 𝑎) (1 − 𝑥𝑎) (3 − (1 + 𝑥)𝑎 + 2𝑥2𝑎2)𝑏2

− 𝑥−6(1 − 𝑎) (1 − 𝑎) (1 − 𝑥𝑎) (1 − 𝑥𝑎)𝑏3

52

1 − 𝑥−2
(
2𝑎2𝑥3 + 𝑎2𝑥2 − 4𝑎𝑥2 − 𝑎𝑥 − 𝑎 + 3𝑥 + 1

)
𝑏

− 𝑥−3(𝑎 − 1) (𝑎𝑥 − 1)
(
𝑎3𝑥4 − 3𝑎2𝑥3 − 2𝑎2𝑥2 + 5𝑎𝑥2 + 𝑎𝑥 + 𝑎 − 3𝑥 − 3

)
𝑏2

− 𝑥−4(𝑎 − 1)2(𝑎𝑥 − 1)2
(
𝑎2𝑥3 − 2𝑎𝑥2 − 𝑎𝑥 + 𝑥 + 3

)
𝑏3

+ 𝑥−5(𝑎 − 1)3(𝑎𝑥 − 1)3𝑏4

Table 6.1: Classical 𝐵-polynomials for some simple knots.

One important feature of the 𝐵-polynomial is that it takes the following simple form
in the 𝑎 = 1 limit, which can be seen from equation (6.5):

𝐵𝐾 (𝑎 = 1, 𝑏, 𝑥) = 1 − Δ𝐾 (𝑥)𝑏.

The 𝐵-polynomial shares many features similar to the 𝐴-polynomial. For instance, the
𝑏-degree of the 𝐵-polynomial equals the 𝑦-degree of the 𝐴-polynomial (since there
is a one-to-one correspondence between the branches). Moreover, 𝐵𝐾 (𝑎, 𝑏, 𝑥 = 1)
always has a factor of 𝑏 − 1, just like 𝐴𝐾 (𝑥, 𝑦, 𝑎 = 1) always has a factor of 𝑦 − 1.

Just like 𝐴-polynomials can be quantized to 𝑞-difference equations, so do 𝐵-
polynomials. We summarize the quantum 𝐵-polynomials for some simple knots in
Table 6.2.

In fact, there is a better way to think of 𝐴- and 𝐵-polynomials. This is by lifting them
to the same holomorphic Lagrangian in (C∗)4 parametrized by 𝑥, 𝑦, 𝑎, 𝑏. Physically,
this holomorphic Lagrangian corresponds to the Coulomb branch of a 3d-5d coupled
system, which should have a quantization. Therefore, we propose the following
conjecture.



85

𝐾 𝐵̂𝐾 (𝑎̂, 𝑏̂, 𝑥, 𝑞)
01 1 − 𝑏̂
31 1 − 𝑞−1𝑥−1(1 + 𝑞 − (1 + 𝑞𝑥)𝑎̂ + 𝑞𝑥2𝑎̂2)𝑏̂ + 𝑞−1𝑥−2(1 − 𝑎̂) (1 − 𝑞𝑥𝑎̂)𝑏̂2

41

1 + 𝑞−1𝑥−1𝑎̂−1(1 + 𝑞 − (1 + 3𝑞𝑥 + 𝑞2𝑥2)𝑎̂ + 𝑞𝑥2(1 + 𝑞)𝑎̂2)𝑏̂
+ 𝑞−2𝑥−2𝑎̂−2(1 − 𝑎̂) (1 − 𝑞𝑥𝑎̂) (1 − 2𝑞𝑥(1 + 𝑞𝑥)𝑎̂ + 𝑞3𝑥3𝑎̂2)𝑏̂2

− 𝑞−2𝑥−1𝑎̂−2(1 − 𝑎̂) (1 − 𝑞𝑎̂) (1 − 𝑞𝑥𝑎̂) (1 − 𝑞2𝑥𝑎̂)𝑏̂3

51

1 − 𝑞−2𝑥−2 (1 + 𝑞 + 𝑞2 − (1 + 𝑞) (1 + 𝑞𝑥)𝑎̂ + 𝑞𝑥(1 + 𝑥 + 𝑞𝑥)𝑎̂2 − 𝑞𝑥2(1 + 𝑞𝑥)𝑎̂3 + 𝑞2𝑥4𝑎̂4) 𝑏̂
+ 𝑞−3𝑥−4(1 − 𝑎̂) (1 − 𝑞𝑥𝑎̂) (1 + 𝑞 + 𝑞2 − 𝑞(1 + 𝑞𝑥)𝑎̂ + 𝑞2𝑥2(1 + 𝑞)𝑎̂2)𝑏̂2

− 𝑞−3𝑥−6(1 − 𝑎̂) (1 − 𝑞𝑎̂) (1 − 𝑞𝑥𝑎̂) (1 − 𝑞2𝑥𝑎̂)𝑏̂3

Table 6.2: Quantum 𝐵-polynomials for some simple knots.

Conjecture 6.3.1 ([Ekh+22]). Let us endow (C∗)4 with the holomorphic symplectic
form

Ω := 𝑑 log 𝑥 ∧ 𝑑 log 𝑦 + 𝑑 log 𝑎 ∧ 𝑑 log 𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈ C∗.

For every knot 𝐾, there is a holomorphic Lagrangian subvariety Γ𝐾 ⊂ (C∗)4 with
the following properties:

1. This holomorphic Lagrangian is preserved under the Weyl symmetry

𝑥 ↦→ 𝑎−1𝑥−1, 𝑦 ↦→ 𝑦−1, 𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑦−1𝑏.

2. The projection of Γ𝐾 on (C∗)3
𝑥,𝑦,𝑎 is the zero set of the 𝑎-deformed 𝐴-polynomial

of 𝐾 .

3. Moreover, if 𝑥, 𝑦̂, 𝑎̂, 𝑏̂ are operators such that

𝑦̂𝑥 = 𝑞𝑥𝑦̂, 𝑏̂𝑎̂ = 𝑞𝑎̂𝑏̂,

and all the other pairs commute, then the ideal defining Γ𝐾 can be quantized
to a left ideal Γ̂𝐾 ⊂ C[𝑥±1, 𝑦̂±1, 𝑎̂±1, 𝑏̂±1] that annihilates 𝐹𝐾 (𝑥, 𝑎, 𝑞).

This conjecture can be generalized even further, by introducing the 𝑡-variable and its
conjugate which we denote by 𝑢.

Conjecture 6.3.2 ([Ekh+22]). Let us endow (C∗)6 with the holomorphic symplectic
form

Ω′ := 𝑑 log 𝑥 ∧ 𝑑 log 𝑦 + 𝑑 log 𝑎 ∧ 𝑑 log 𝑏 + 𝑑 log 𝑡 ∧ 𝑑 log 𝑢, 𝑥, 𝑦, 𝑎, 𝑏, 𝑡, 𝑢 ∈ C∗.

For every knot 𝐾, there is a holomorphic Lagrangian subvariety Γ′
𝐾
⊂ (C∗)6 with

the following properties:



86

1. This holomorphic Lagrangian is preserved under the Weyl symmetry

𝑥 ↦→ (−𝑡)3𝑎−1𝑥−1, 𝑦 ↦→ 𝑡𝑠𝑦−1, 𝑎 ↦→ 𝑎, 𝑏 ↦→ (−𝑡) 𝑠2 𝑦−1𝑏,

𝑡 ↦→ 𝑡, 𝑢 ↦→ 𝑥−𝑠𝑦−3𝑎−
𝑠
2𝑢,

where 𝑠 is a version of 𝑠-invariant of the knot 𝐾 .

2. The projection of Γ′
𝐾

on (C∗)4
𝑥,𝑦,𝑎,𝑡 is the zero set of the super-𝐴-polynomial of

𝐾 .

3. Moreover, if 𝑥, 𝑦̂, 𝑎̂, 𝑏̂, 𝑡, 𝑢̂ are operators such that

𝑦̂𝑥 = 𝑞𝑥𝑦̂, 𝑏̂𝑎̂ = 𝑞𝑎̂𝑏̂, 𝑢̂𝑡 = 𝑞𝑡𝑢̂,

and all the other pairs commute, then the ideal defining Γ′
𝐾

can be quantized to a
left ideal Γ̂′

𝐾
⊂ C[𝑥±1, 𝑦̂±1, 𝑎̂±1, 𝑏̂±1, 𝑡±1, 𝑢̂±1] that annihilates 𝐹𝐾 (𝑥, 𝑎, 𝑞, 𝑡).4

6.4 Knots-quivers correspondence
In this final section, we briefly review the knots-quivers correspondence for colored
HOMFLY-PT polynomials, and then conjecture that 𝐹 (𝛼)

𝐾
(𝑥, 𝑎, 𝑞) also has a quiver

form.

Quivers and their representations
A quiver 𝑄 is an oriented graph, i.e., a pair (𝑄0, 𝑄1) where 𝑄0 is a finite set of
vertices and 𝑄1 is a finite set of arrows between them. We number the vertices
by 1, 2, ..., 𝑚 = |𝑄0 |. An adjacency matrix of 𝑄 is the 𝑚 × 𝑚 integer matrix with
entries 𝐶𝑖 𝑗 equal to the number of arrows from 𝑖 to 𝑗 . If 𝐶𝑖 𝑗 = 𝐶 𝑗𝑖, we call the quiver
symmetric.

A quiver representation with a dimension vector d = (𝑑1, ..., 𝑑𝑚) is an assignment of
a vector space of dimension 𝑑𝑖 to the node 𝑖 ∈ 𝑄0 and a linear map 𝛾𝑖 𝑗 : C𝑑𝑖 → C𝑑 𝑗
to each arrow from vertex 𝑖 to vertex 𝑗 . Quiver representation theory studies moduli
spaces of quiver representations. While explicit expressions for invariants describing
those spaces are difficult to find in general, they are quite well understood in the case
of symmetric quivers [KS08; KS11; Efi12; MR19; FR18]. Important information
about the moduli space of representations of a symmetric quiver is encoded in the

4While we haven’t discussed much about 𝑡-deformation of 𝐹𝐾 (𝑥, 𝑎, 𝑞) in this thesis, since there
are quantum super 𝐴-polynomials that involves both 𝑎 and 𝑡 variables, solving the 𝑞-difference
equations we naturally obtain a 𝑡-deformation of 𝐹𝐾 .
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motivic generating series defined as

𝑃𝑄 (x, 𝑞) =
∑︁
d≥0

(−𝑞1/2)d·C·d xd

(𝑞)d
=

∑︁
𝑑1,...,𝑑𝑚≥0

(−𝑞1/2)
∑
𝑖, 𝑗 𝐶𝑖 𝑗𝑑𝑖𝑑 𝑗

𝑚∏
𝑖=1

𝑥
𝑑𝑖
𝑖

(𝑞)𝑑𝑖
. (6.6)

Let us define the plethystic exponential of 𝑓 =
∑
𝑛 𝑎𝑛𝑡

𝑛, 𝑎0 = 0 in the following way:

Exp
(
𝑓
)
(𝑡) = exp

(∑︁
𝑘

1
𝑘
𝑓 (𝑡𝑘 )

)
=

∏
𝑛

(1 − 𝑡𝑛)𝑎𝑛 .

Then we can write

𝑃𝑄 (x, 𝑞) = Exp
(
Ω(x, 𝑞)
1 − 𝑞

)
,

Ω(x, 𝑞) =
∑︁
d,𝑠

Ωd,𝑠xd𝑞𝑠/2 =
∑︁
d,𝑠

Ω(𝑑1,...,𝑑𝑚),𝑠

(∏
𝑖

𝑥
𝑑𝑖
𝑖

)
𝑞𝑠/2,

(6.7)

where Ωd,𝑠 are motivic Donaldson-Thomas (DT) invariants [KS08; KS11]. The DT
invariants have two geometric interpretations, either as the intersection homology
Betti numbers of the moduli space of all semi-simple representations of 𝑄 of
dimension vector d, or as the Chow-Betti numbers of the moduli space of all simple
representations of 𝑄 of dimension vector d; see [MR19; FR18]. [Efi12] provides a
proof of integrality of DT invariants for the symmetric quivers.

Knots-quivers correspondence for knot conormals
In the context of the knots-quivers correspondence, we combine 𝑃𝐾,𝑟 (𝑎, 𝑞) into the
HOMFLY-PT generating series:

𝑃𝐾 (𝑦, 𝑎, 𝑞) =
∞∑︁
𝑟=0

𝑦−𝑟

(𝑞)𝑟
𝑃𝐾,𝑟 (𝑎, 𝑞).

Using this expression we can encode the Labastida-Mariño-Ooguri-Vafa (LMOV)
invariants [OV00; LM01; LMV00] in the following way:

𝑃𝐾 (𝑦, 𝑎, 𝑞) = Exp
(
𝑁 (𝑦, 𝑎, 𝑞)

1 − 𝑞

)
, 𝑁 (𝑦, 𝑎, 𝑞) =

∑︁
𝑟,𝑖, 𝑗

𝑁𝑟,𝑖, 𝑗 𝑦
−𝑟𝑎𝑖/2𝑞 𝑗/2. (6.8)

According to the LMOV conjecture [OV00; LM01; LMV00], 𝑁𝑟,𝑖, 𝑗 are integer
numbers counting BPS states in the effective 3d N = 2 theories described in
subsection 6.1.

The knots-quivers correspondence for the knot conormals [Kuc+17; Kuc+19]
is an assignment of a symmetric quiver 𝑄 (with adjacency matrix 𝐶), vector
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n = (𝑛1, . . . , 𝑛𝑚) with integer entries, and vectors a = (𝑎1, . . . , 𝑎𝑚), l = (𝑙1, . . . , 𝑙𝑚)
with half-integer entries to a given knot 𝐾 in such a way that

𝑃𝐾 (𝑦, 𝑎, 𝑞) =
∑︁
d≥0

(−𝑞1/2)d·C·d 𝑦
n·d𝑎a·d𝑞l·d

(𝑞)d
= 𝑃𝑄 (x, 𝑞)

��
𝑥𝑖=𝑦

𝑛𝑖 𝑎𝑎𝑖 𝑞𝑙𝑖
. (6.9)

The possibility of such assignment was proven for all 2-bridge knots in [SW19] and
for all arborescent knots in [SW21]. Some exotic cases with 𝑛𝑖 < −1 (the simplest
examples are 942 and 10132) require a generalization of the correspondence, for more
details see [EKL21].

Equation (6.9) can be rewritten as

𝑁 (𝑦, 𝑎, 𝑞) = Ω(x, 𝑞) |𝑥𝑖=𝑦𝑛𝑖 𝑎𝑎𝑖 𝑞𝑙𝑖 , (6.10)

which ties the knots-quivers correspondence with LMOV conjecture using the fact
that DT invariants of symmetric quivers are integer.

Knots-quivers correspondence for knot complements
The knots-quivers correspondence can be generalized to knot complements, as
proposed in [Kuc20] and studied extensively in [Ekh+22]. Then it is an assignment
of a symmetric quiver 𝑄, an integer 𝑛𝑖, and half-integers, 𝑎𝑖, 𝑙𝑖, 𝑖 ∈ 𝑄0 to a given
knot complement 𝑀𝐾 = 𝑆3\𝐾 in such a way that

𝐹𝐾 (𝑥, 𝑎, 𝑞) =
∑︁
d≥0

(−𝑞1/2)d·C·d 𝑥
n·d𝑎a·d𝑞l·d

(𝑞)d
= 𝑃𝑄 (x, 𝑞)

��
𝑥𝑖=𝑥

𝑛𝑖 𝑎𝑎𝑖 𝑞𝑙𝑖
. (6.11)

In fact, we conjecture a version of knots-quivers correspondence not just for the
abelian branch but for any branch:

Conjecture 6.4.1 ([Ekh+22]). The wave function 𝐹 (𝛼)
𝐾

(𝑥, 𝑎, 𝑞) has a quiver form.

This conjecture has been checked in a number of examples. We list a couple of
simple examples below. See [Ekh+22] for more examples.

Example 6.4.2 (31 knot). For the abelian branch of the 31 knot, we have

𝐹3𝑟1 (𝑥, 𝑎, 𝑞) = 𝑒
log 𝑥 log 𝑎

log 𝑞 𝑥−1
∑︁

𝑑1,𝑑2,𝑑3,𝑑4≥0
(−𝑞 1

2 )
∑

1≤𝑖, 𝑗≤4 𝐶𝑖 𝑗𝑑𝑖𝑑 𝑗

4∏
𝑖=1

𝑥
𝑑𝑖
𝑖

(𝑞)𝑑𝑖
with

𝐶 =

©­­­­­«
0 1 0 0
1 0 1 0
0 1 1 0
0 0 0 1

ª®®®®®¬
,

©­­­­­«
𝑥1

𝑥2

𝑥3

𝑥4

ª®®®®®¬
=

©­­­­­«
𝑞𝑥

𝑎𝑥

𝑞−
1
2 𝑎𝑥

𝑞−
1
2 𝑎𝑥

ª®®®®®¬
.
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Example 6.4.3 (41 knot). For the abelian branch of the 41 knot, we have

𝐹41 (𝑥, 𝑎, 𝑞) = 𝑒
log 𝑥 log 𝑎

log 𝑞 𝑥−1
∑︁

𝑑1,··· ,𝑑6≥0
(−𝑞 1

2 )
∑

1≤𝑖, 𝑗≤6 𝐶𝑖 𝑗𝑑𝑖𝑑 𝑗

6∏
𝑖=1

𝑥
𝑑𝑖
𝑖

(𝑞)𝑑𝑖

with

𝐶 =

©­­­­­­­­­­«

0 0 0 0 0 0
0 0 −1 −1 0 0
0 −1 0 0 1 0
0 −1 0 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1

ª®®®®®®®®®®¬
,

©­­­­­­­­­­«

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

ª®®®®®®®®®®¬
=

©­­­­­­­­­­«

𝑞𝑥

𝑞𝑥

𝑞𝑥

𝑞−
1
2 𝑎𝑥

𝑞−
1
2 𝑎𝑥

𝑞−
1
2 𝑎𝑥

ª®®®®®®®®®®¬
.

Remark 6.4.4. Conjecture 6.4.1 imposes a strong condition on the structure of the
series 𝐹 (𝛼)

𝐾
(𝑥, 𝑎, 𝑞). In many cases, it allows us to find the 𝑎-deformation, even when

only 𝐹 (𝛼)
𝐾

(𝑥, 𝑞) for 𝔰𝔩2 is available.

Remark 6.4.5. Having a quiver form is very useful in finding the holomorphic
Lagrangian Γ𝐾 which we discussed in the previous section. This is because any
quiver form satisfies a set of 𝑞-difference equations known as quantum quiver 𝐴-
polynomials. The holomorphic Lagrangian Γ𝐾 can be found by eliminating variables
(e.g. using Gröbner basis) from the classical quiver 𝐴-polynomials, according to the
knots-quivers change of variables.

Remark 6.4.6. For a fixed knot 𝐾 , the quivers for 𝐹 (𝛼)
𝐾

(𝑥, 𝑎, 𝑞) for different branches
𝛼 will look different, but they should be closely related because, for instance, the
same holomorphic Lagrangian Γ𝐾 can be deduced from those quivers. It is an
interesting problem to understand given a quiver for one branch how to obtain a
quiver for another branch of the same knot.
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