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ABSTRACT

Discovering the nature of dark matter (DM) remains one of the most important outstanding
questions in particle physics. While the astrophysical evidence for its existence continues to
accumulate, we know very little about its fundamental constituents, and how it connects to
the Standard Model. Terrestrial direct detection experiments offer a unique experimental
perspective. Detection of a signal would be the first evidence for non-gravitational interac-
tions between DM and ordinary matter, a crucial clue in understanding the particle nature
of DM. Moreover detection in a laboratory is less susceptible to astrophysical uncertainties
which accompany indirect detection strategies, and offer a wider vantage than colliders with
the ability to swap target materials and search for modulation effects. In this dissertation I
will discuss searching for DM with the current state-of-the-art direct detection experiments
based on electronic excitations, as well as a potential direction for future experiments based
on phonon and magnon excitations.

Previous generations of direct detection experiments utilized nuclear recoil to search for
DM particles. While this process is well suited for DM candidates with masses above typ-
ical nuclear masses, O(GeV), sensitivity drops precipitously for lighter DM. New physical
processes must be utilized to facilitate the search for well-motivated light, sub-GeV, DM can-
didates. Electronic excitations are one such process which can probe DM candidates which
have enough energy to excite electrons across the band gap. I will discuss many aspects
of this DM-induced excitation rate which were developed in this work: the most advanced
first-principles calculations of DM scattering and absorption signals using density functional
theory (DFT) input, daily modulation effects in anisotropic crystal targets, comparisons of
a wide variety of potential detector targets, theoretical development of a non-relativistic
effective field theory (NR EFT) to aid in the calculation of DM absorption rates, as well as
a study of interactions in cutting edge small gap, spin-orbit coupled targets.

While direct detection experiments using electronic excitations are currently underway, to
reach even lower DM masses, which do not carry enough energy to excite states across
the band gap, new ideas must be explored. Collective excitations, such as phonons and
magnons, exist below the electronic band gap and offer an exciting future for direct detection
experiments. Detectors searching for single phonon excitations are currently in development,
whereas those based on magnons are in their infancy. Similar to the electronic excitations
we will discuss a myriad of topics involving single phonon and magnon excitations: an EFT
of DM-collective excitation scattering for general UV theories, potential uses for detection of
axion DM, as well as advanced first-principles calculations, detailed study of the directional
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detectability in anisotropic crystal targets, and comparisons across a variety of candidate
target materials.
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on which targets are superior is the same as for the light hadrophilic mediator
model. A detector threshold of 1 meV is used for the phonon calculations, and
all transitions with energy deposition greater than the band gaps are included
in electron excitations. The freeze-in benchmark is taken from Refs. [18, 19],
corrected by including plasmon decay for sub-MeV DM [20]. Stellar constraints
are from Ref. [17] and direct detection constraints are from DAMIC [21],
DarkSide-50 [12], SENSEI [22], SuperCDMS [23], XENON10 [24, 25], and
XENON100 [12, 26].222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Single phonon and nuclear recoil reach for a light (mφ = 1 eV) hadrophilic
scalar mediator. 1, 20, and 100 meV thresholds are shown for the single phonon
reach (solid, dashed, and dotted respectively), and 500 meV threshold is as-
sumed for the nuclear recoil reach (dot-dashed). For mφ = 1 eV the dominant
constraint on fn is from fifth force experiments [10]. If mχ makes up all the DM
then the dominant constraint on yχ is from DM self-interactions (SIDM) [10].
If mχ is only a subcomponent, we only require perturbativity yχ < 1 (Pert.);
in this case the reach curves can be easily rescaled.666 . . . . . . . . . . . . . 70
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3.3 Single phonon and nuclear recoil reach for a massive (mφ & 400 MeV) hadrophilic
scalar mediator. 1, 20, and 100 meV thresholds are shown for the single phonon
reach (solid, dashed, and dotted respectively), and 500 meV threshold is as-
sumed for the nuclear recoil reach (dot-dashed). There are no stellar con-
straints for mφ & 400 MeV [10]. Currently, the best experimental nuclear recoil
constraints in this region of parameter space are from DarkSide-50 [12] (assum-
ing binomial fluctuations), and XENON1T (combined limits from [13, 14]).
We also show the constraint from CRESST-II [15], which is stronger than
the DarkSide-50 constraint at low masses assuming no fluctuation in energy
quenching. A more complete collection of nuclear recoil constraints can be
found in Refs. [12, 16, 27]. The neutrino floor is taken from Ref. [11].666 . . . 71

4.1 Top: To understand the kinematic function, g(q, ω), defined in Eq. (4.11),
we plot v∗ ≡ q

2mχ
+ ω

q
as a function of q (blue) for various mχ and ω values.

Comparing v∗ to ve and ve + vesc we can qualitatively reconstruct the shape
of g(q, ω), as discussed in the text. Bottom: g(q, ω) vs. q for several fixed
mχ, ω values, with varying q̂ · v̂e. The kinematic function weights different
q̂ directions according to their angle with respect to ve(t), which ultimately
leads to a daily modulating rate. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Comparison between the various sources of anisotropy a in SiO2 target, for an
example DM mass for each benchmark model. A 1 meV energy threshold is
assumed in all cases. As discussed in the text, anisotropy in the Y j · εν,k,j
factor in Eq. (4.7) is the dominant factor in determining the daily modulation
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Left: Daily modulation for a h-BN target with various experimental thresh-
olds, ωmin, assuming dark photon mediated scattering and mχ = 100 keV.
Right: Differential rate at t = 0 for the same process assuming σe = 10−43 cm2.
The daily modulation pattern is drastically different depending on whether the
optical phonon modes just below 100 meV are included or excluded.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Effect of the crystal target orientation on the daily modulation pattern, for a

sapphire target and the light dark photon mediator model as an example. The
default orientation is the one adopted in Refs. [7, 28, 29] for which ve(t) is
given by Eq. (4.10), and the alternative orientation is achieved by rotating the
crystal z axis by 60◦ clockwise around n̂ = (x̂+ ŷ+ ẑ)/

√
3 (or equivalently, a

−60◦ right-handed rotation around n̂.)
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4.5 Top: Projected reach for the dark photon mediator model assuming 1 meV
and 20 meV detector energy thresholds and one kg-year exposure. Solid curves
show the 95% confidence level (CL) exclusion limits in the case of zero observed
events, assuming no background. Dashed curves and the associated ±1σ bands
show the modulation reach for DM masses with more than 1% daily modula-
tion, i.e., cross sections for which we can reject the non-modulating hypothesis
and establish the statistical significance of a modulating signal, as explained
in App. E. Bottom: Daily modulation amplitudes fmod, defined in Eq. (4.15),
for the same energy thresholds. Results are shown only for mχ values where
a material has substantial reach and fmod > 10−2. The exact DM mass corre-
sponding to a specific bar can be read off from the left edge of that bar. . . . 89

4.6 Same as Fig. 4.5, for the light hadrophilic scalar mediator model. . . . . . . . 91
4.7 Same as Fig. 4.5, for the heavy hadrophilic scalar mediator model. . . . . . . 92
4.8 Left: Daily modulation for an h-BN target with various DM masses, assuming

dark photon mediated scattering and ωmin = 1meV. The change in modula-
tion pattern is a result of the kinematically favored q̂ · v̂e increasing from −1
toward 0 as mχ increases. During the transition between different modulation
patterns, an intermediate mass value around 20 keV features a reduced modu-
lation amplitude, which explains the peak in the modulation reach curve in the
top-left panel of Fig. 4.5. A similar effect is also observed for the hadrophilic
scalar mediator models in Figs. 4.6 and 4.7. Right: Differential rates at t = 0

for several higher mχ assuming σe = 10−43 cm2. Another transition between
modulation patterns occurs when new phonon modes become dominant as
mχ increases, resulting in a second reduced modulation mass point, around
200 keV, in Fig. 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Projected reach for the DM models in Table 5.1 for a YIG target, assuming
three events with kilogram-year exposure, for several magnon detection thresh-
olds ωmin (solid). Also shown are the results of a Heisenberg ferromagnet with
the same mass and spin densities as YIG, and the same magnon dispersion as
the low-energy gapless modes of YIG, for ωmin = 1meV (dashed); they coincide
with the YIG curves for 0.02MeV . mχ . 0.1MeV, which can be understood
from the effective theory argument in the text. The gray contours show the
model parameters in the magnon sensitivity regions, which astrophysical and
cosmological constraints on specified UV completions can be mapped onto (see
text). For the pseudo-mediated model, we consider a DM subcomponent to
evade SIDM constraints, and let ge saturate the white dwarf cooling bound. . 103
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6.1 Spectra of gapped phonon polaritons and magnons at zero momentum for sev-
eral representative targets considered in this work. These collective excitations
have typical energies of O(1 - 100)meV, and can be utilized to search for axion
DM in the mass window ma ∼ O(1 - 100)meV. Longer lines with darker colors
correspond to the resonances in Figs. 6.3, 6.4 and 6.5, while the shorter ones
with lighter colors represent modes with suppressed couplings to axion DM
due to selection rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Dispersion of phonon polaritons in GaAs near the center of the 1BZ, k ∼ ω.
The mixing between the photon and TO phonons is maximal at ω ∼ k. At
k � ω, the TO phonon-like modes are degenerate with the LO phonon mode
(blue line), while at ω � k they approach their unperturbed value (dotted
blue line), and an LO-TO splitting is present. . . . . . . . . . . . . . . . . . . 114

6.3 Projected reach on gaγγ from axion absorption onto phonon polaritons in Al2O3,
CaWO4, GaAs and SiO2, in an external 10 T magnetic field, averaged over the
magnetic field directions, assuming 3 events per kilogram-year. Also shown are
predictions of the KSVZ and DFSZ QCD axion models, and horizontal branch
(HB) star cooling constraints [30]. . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Similar to Fig. 6.3, but with the external magnetic field oriented in the x̂ (ẑ)

direction in the left (right) panel. The strength of axion-phonon couplings
depends on the orientation of the magnetic field, and different resonances can
be selected by changing the magnetic field direction. . . . . . . . . . . . . . . 127

6.5 Projected reach on gaee from axion-to-magnon conversion, compared with DFSZ
(assuming 0.28 ≤ tan β ≤ 140) and KSVZ model predictions, as well as white
dwarf (WD) constraints from Ref. [31]. The suppression of axion-magnon cou-
plings is alleviated by using the three strategies discussed in the main text:
lifting gapless magnon modes by an external magnetic field (YIG target in a
1 T magnetic field, compared to the scanning scheme of Ref. [32]), anisotropic
interactions (NiPS3 target), and using targets with nondegenerate g-factors
(hypothetical toy models based on YIG, referred to as YIGo and YIGt). For
all the cases considered we assume 3 events per kilogram-year exposure, and
take the magnon width to frequency ratio γ/ω to be 10−2 (solid) or 10−5
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7.1 Projected reach on the standard SD model listed in Table 7.2 from single
magnon (red) and phonon (blue) excitations in YIG. The phonon rate is esti-
mated in two ways, as discussed in the text, which lead to the solid and dashed
curves, respectively. Since this model generates only the S response, magnons
are seen to have better sensitivity than phonons. . . . . . . . . . . . . . . . . 157

7.2 Comparison of the total detection rate in models with a light (left panel) or
heavy (right panel) scalar mediator. The couplings to SM fermions are taken
proportional to their masses, gp = gn = mp

me
ge, and we fix gχge = 10−13. Each

curve is labeled with the model type as in Table 7.2 and the excitation type
(phonon or magnon) that can probe each model. The phonon curves assume
SiO2 (solid) and GaAs (dashed) targets, and the magnon curves assume YIG
(solid) and α-RuCl3 (dashed) targets. . . . . . . . . . . . . . . . . . . . . . . 159

7.3 Projected reach on the multipole DM models listed in Table 7.2, assuming dark
photon-like couplings to SM particles: gp = −ge, gn = 0. The left panel shows
the hierarchy of sensitivities of single phonon excitations, in GaAs and in SiO2,
to the three multipole DM models, together with the SI interaction model for
comparison. The center and right panels focus on the magnetic dipole and
anapole DM models, respectively, and compare the phonon reach of GaAs and
SiO2 (via the N response), and the magnon reach of YIG (via the S response)
and α-RuCl3 (via both S and L responses); these models are best probed by
magnons, though the phonon sensitivity with an optimal target like SiO2 may
be competitive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4 Projected reach on the (L · S)-interacting DM model in Table 7.2, assuming
coupling only to electrons, and κ = 0. Single phonon excitations in GaAs and
SiO2 targets (via the N response) and single magnon excitations in YIG and
α-RuCl3 targets (via the S response) are seen to cover complementary regions
of parameter space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.1 Schematic representation of electronic states in Si (left) and Ge (right), di-
vided into core, valence (“val”), conduction (“cond”) and free. Shaded regions
indicate the range of energies for each type of electronic states. In a scattering
process, electrons transition from either core or valence states, below the Fermi
surface at E = 0, to conduction or free states above the band gap Eg. As out-
lined in Sec. 8.1 and explained in detail in Sec. 8.2, we compute the valence
and conduction states numerically using DFT (including all-electron recon-
struction), model the core states semi-analytically with RHF wave functions,
and treat the free states as plane waves. . . . . . . . . . . . . . . . . . . . . . 171
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8.2 Selection of results from Sec. 8.4, for DM-electron scattering via a heavy medi-
ator in a Ge target. Left: Contribution from each of the four transition types,
valence to conduction (v→c), valence to free (v→f), core to conduction (c→c),
and core to free (c→f) to the scattering rate binned in energy deposition (with
∆ω = 1 eV) for a 1 GeV DM at a given reference cross section σe = 10−40 cm2.
Right: 95% C.L. projected limit (3 events) on σe assuming 1 kg-year exposure,
for energy thresholds corresponding to 1 and 5 electron-hole pairs. We com-
pare our results with QEdark calculations in Refs. [33, 34] and the semi-analytic
model of Lee et al [35]; see text for details. . . . . . . . . . . . . . . . . . . . 172

8.3 Comparison of the Bloch wave function magnitudes, defined in Eq. (8.7), com-
puted with DFT with (red, “AE”) and without (blue, “no AE”) AE reconstruc-
tion, and the semi-analytic core approximation of Eq. (8.9) (green, “core”).
Shaded bands indicate the maximum and minimum values across all the bands
belonging to the state type indicated in the upper right corner of each panel.
AE reconstruction, discussed in Sec. 8.2, recovers the large momentum behavior
of the electronic wave functions. Core electronic states, such as those shown in
the right panels and discussed in Sec. 8.2, can be well modeled semi-analytically
with atomic wave functions, as seen by the good agreement between the “core”
and “AE” curves. When applicable, the semi-analytic parameterization is ad-
vantageous since the electronic wave functions are then known to arbitrarily
large momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.4 Calculated band structures of Si (left) using a PBE xc-functional within DFT
and Ge (right) using a hybrid functional HSE06. The band gaps have been
scissor corrected to their measured values near zero temperature, 1.11 eV and
0.67 eV for Si and Ge, respectively. The Fermi level is set to 0 eV in both panels.193

8.5 DM-electron scattering rate from valence to conduction bands binned in energy
deposition (with ∆ω = 1 eV) for 1 GeV DM, light (top row) and heavy (bottom
row) mediators, assuming σe = 10−40 cm2, computed with vs. without AE
reconstruction. Valence states included are the first four bands below the
band gap, and conduction states included are all bands up to Edft = 60 eV. . . 194

8.6 DM-electron scattering rate from valence to conduction (v→c) bands and
from valence bands to free states (v→f) binned in energy deposition (with
∆ω = 1 eV) for 1 GeV DM, light (top row) and heavy (bottom row) mediators,
assuming σe = 10−40 cm2. The upper edge of the shaded region corresponds
to using Zeff from Eq. (8.15), while the bottom edge corresponds to Zeff = 1. . 195
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8.7 DM-electron scattering rate from core states to conduction bands binned in
energy deposition (with ∆ω = 5 eV) for 1 GeV DM, light (top row) and heavy
(bottom row) mediators, assuming σe = 10−40 cm2. The core states are labelled
by the corresponding atomic orbitals, and the conduction states up to Edft =

60 eV are included. For comparison we also show the v→c contribution (after
AE reconstruction) from Fig. 8.5 in gray. . . . . . . . . . . . . . . . . . . . . 196

8.8 Contribution to the DM-electron scattering rate binned in energy deposition
(with ∆ω = 1 eV) from 3d electrons to conduction bands in Ge, for 1 GeV
DM, light (left) and heavy (right) mediators, assuming σe = 10−40 cm2. The
three curves in each panel are computed using DFT with and without AE
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8.9 DM-electron scattering rate from core states to conduction bands (c→c) and to
free states (c→f) binned in energy deposition (with ∆ω = 10 eV) for 1 GeV DM,
light (top row) and heavy (bottom row) mediators, assuming σe = 10−40 cm2.
As in the v→f calculation in Fig. 8.6, the upper edge of the shaded bands
corresponds to Zeff from Eq. (8.15), and the lower edge corresponds to Zeff = 1. 198

8.10 Dielectric function ε(q, ω), given by Eq. (8.46) with the parameters in Table 8.1,
of Si (left) and Ge (right) used to incorporate screening effects. The solid line
indicates the edge of the kinematically accessible region ω . qv. The dashed
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8.11 Effect of screening on the binned rate (top row, for 1 GeV DM) and total rate
(bottom row, as a function of mχ) from v→c transitions for DM models with a
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8.12 DM-electron scattering rate binned in energy deposition (with ∆ω = 1 eV)
for 1 GeV DM, light (top row) and heavy (bottom row) mediators, from all
four transition types: valence to conduction (v→c), valence to free (v→f), core
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and heavy (bottom row) mediators, from all four transition types: valence
to conduction (v→c), valence to free (v→f), core to conduction (c→c), and
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8.14 95% C.L. exclusion reach (3 events) assuming 1 kg-year exposure, Q ≥ 1, for
light (top row) and heavy (bottom row) mediators. The results shown are
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9.1 Comparison between different terms contributing to the scalar DM absorption
rate, defined in Eq. (9.57), for Si, Ge and Al-SC targets assuming q = 10−3mφ.
Dashed curves indicate negative values. In all three targets we see that Rv̄2,v̄2

dominates over the entire DM mass range considered. This term comes from
an NLO operator in the NR EFT (underlined in Table 9.1) and cannot be
directly related to the target’s optical properties (i.e. the complex conductiv-
ity/dielectric function). For Si and Ge, the calculation of Rv̄2,1 is technically
challenging as explained in Sec. 9.4; however, it is parameterically the same
order in q as R1,1 and therefore expected to be also subdominant compared to
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9.2 Projected 95% C.L. reach (3 events with no background) with semiconduc-
tor crystal (Si, Ge) and superconductor (Al-SC) targets for the vector and
pseudoscalar DM models defined in Eq. (9.3), assuming 1 kg-yr exposure. We
compare our theoretically calculated reach (solid) against the data-driven ap-
proach utilizing the target material’s measured conductivity/dielectric [37, 38]
(dashed). For Si and Ge, the data-driven approach was taken in previous
works [39, 40], with which we find good agreement. For Al-SC, our theoreti-
cal calculation reproduces the results in Ref. [41] (dotted) up to the choice of
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Stückelberg mass for vector DM) [42] and white dwarfs (WD) [31], and pseu-
doscalar couplings corresponding to the QCD axion in KSVZ and DFSZ (for
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9.3 Projected 95% C.L. reach (3 events with no background) with semiconductor
crystal (Si, Ge) and superconductor (Al-SC) targets, for the scalar DM model
defined in Eq. (9.3), assuming 1 kg-yr exposure. In contrast to the vector and
pseudoscalar cases shown in Fig. 9.2, the projections here cannot be derived
from the target’s optical properties. Differences compared to Hochberg et
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Sec. 9.5. Also shown are existing constraints from fifth force [45] and red giant
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10.1 ZrTe5 band structure computed using DFT with SOC (solid lines) and without
SOC (dashed lines). The inset highlights the low energy (low E) band disper-
sion, whose details are sampled using a denser k-point grid. The band gap for
the SOC band structure is set to the experimental value of 23.5meV [47], and
the No SOC band structure is shifted accordingly, which gives a larger band
gap of 81.6meV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
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10.2 Comparison of projected 95% C.L. reach (3 events, no background) assuming
one kg-year exposure for scalar (left), pseudoscalar (center) and vector (right)
DM. We compare our results with (solid) and without (dotted) SOC for elec-
tronic absorption in a ZrTe5 target (red), with the ones for semiconductor
silicon (Si, blue) and germanium (Ge, green) targets [2], superconducting alu-
minum (Al-SC, brown) [2]), phononic absorption in polar materials [28, 48]
(GaAs in orange and SiO2 in purple), and previous estimates for ZrTe5 (teal)
[29]. We also show the projected constraints combining the SOC energy levels
with the No SOC wave functions, (“Partial SOC”, red, dashed) to explicitly
show the effect of the spin dependent wave functions. Constraints are expressed
in terms of the commonly adopted parameters shown in Eq. (10.29). Shaded
red bands correspond to different parameterizations of the electron width
δ ∈ [10−1.5, 10−0.5]ω used in calculating the self-energies (see e.g., Eq. (Q.17)),
with the solid line corresponding to δ = 10−1ω. Thin lines indicate results
obtained by rescaling the optical data. Also shown are the direct detection
limits from XENON10/100 [40], fifth force constraints [45], and stellar cooling
constraints from red giants (RG) [46], and white dwarfs (WD) [31]. For the
pseudoscalar scenario we also report the couplings corresponding to the QCD
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10.3 Projected constraints on DM-electron scattering cross sections at the 95% C.L.
(three events, no background) assuming one kg-year exposure for two bench-
mark models shown in Eq. (10.1). Left: SI model with a light mediator
(Fmed = (q0/q)

2), screened with the static dielectric shown in Fig P.3. The red
solid (dashed) curve shows the constraints with (without) the inclusion of SOC
effects. For comparison we also show projected constraints from single phonon
excitations in GaAs (orange) and SiO2 (purple) computed with PhonoDark [4]
(assuming an energy threshold of ωmin = 20meV), electronic excitations in
an aluminum superconductor [49] (brown), and previous estimates for ZrTe5

(teal) [29]. We also show the projected constraints combining the SOC energy
levels with the No SOC wave functions, (“Partial SOC”, red, dashed) to explic-
itly show the effect of the spin dependent wave functions. Stellar constraints
(gray) are taken from Ref. [17] and the freeze-in benchmark (orange) is taken
from Ref. [20]. Right: SD model with a heavy mediator (Fmed = 1). Curves
labelled “low/high E” include transitions restricted to the low/high E regions
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D.1 Daily modulation amplitudes for the dark photon mediator model. Solid and
dashed curves assume energy thresholds of 1 meV and 20 meV, respectively.
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C h a p t e r 1

INTRODUCTION

Understanding the fundamental nature of dark matter (DM) continues to elude us. After
nearly 80 years since the term itself was coined by Fritz Zwicky [66] we still do not know
any more about its, if any, non-gravitational interactions. At the same time we continue to
confirm its evidence on astrophysical and cosmological scales, which makes the problem more
interesting than ever. Direct detection represents one class of experimental programs trying
to understand more about DM. These experiments rely on a DM particle in the cosmic
background interacting with a terrestrial detector strongly enough to be detected. The
simplest experiment to understand is based on the principal of nuclear recoil. A DM particle
flies in to the detector, kicks an atomic nucleus which is then detected at the boundary of
the experiment. There are a wide variety detectors built on this principle, e.g., ANAIS [67],
CRESST [15, 68, 69], DAMA/LIBRA [70], DAMIC [21, 71], DarkSide-50 [12], DM-Ice [72],
KIMS [73], LUX [16, 74, 75], SABRE [76], SuperCDMS [23, 77–80], and XENON1T [13, 14],
to name a few.

These experiments have been continually improving over the years, and are exceptionally
sensitive machines. However they have an inherent limitation in the types of DM, discussed
further in Sec. 1.3. Their main physics goal is to search for the prototypical DM candidate,
the “weakly interacting massive particle”, or WIMP. This specific DM candidate is predicted
to have a mass between O(GeV) and O(TeV). However DM with this mass is quickly being
ruled out by the previously mentioned nuclear recoil experiments, as well as at collider
experiments. This has led to an explosion of ideas both theoretically, and experimentally,
for detection of lighter, sub-GeV DM.

This thesis explores a few different methods for searching for light DM via electronic,
phononic, and magnonic excitations. These represent different ways a target material can
respond to incoming DM. In an electronic excitation process the DM can cause an electron to
transition across a band gap. Experiments based on this process, e.g., DAMIC [21, 71, 81],
EDELWEISS [82–84], SENSEI [22, 85–87], SuperCDMS [23, 77–80, 88, 89]), are already un-
derway. If the DM does not have enough energy to drive the electrons across the band gap,
collective modes such as phonons, lattice vibrations, and magnons, spin waves, can become
important. Experiments based on reading out phonon excitations are being built [90], while
those based on magnon readout are a bit more futuristic [91–95]. Therefore to maximize the



2

amount of DM theory space these experiments can cover, it is crucial to have a first-principles
understanding of how DM interacts with these excitations. These different excitations are
well known in the condensed matter community, and this research has sparked new collab-
orations between the particle physics community and condensed matter/materials science
communities. The wide range of other ideas is discussed in more detail in each chapter.

Chapters 2 and 10 are a collection of previously published manuscripts which build upon a
large literature of results. Therefore the purpose of this introduction is to ease the reader in
to these new results by providing context for these calculations, with minimal repetition. The
outline of this introduction is as follows: Sec. 1.1 reviews the current evidence for DM and
some model independent constraints on its particle nature. Sec. 1.2 discusses the theoretical
motivations for light, sub-GeV, DM candidates and the “dark portals” paradigm as a useful
intermediate between UV model building and lower energy phenomenology. Sec. 1.3 reviews
some of the most relevant formulas in the direct detection literature which serves as the
starting point of any excitation rate calculation. Lastly, Sec. 1.4 will connect the contents of
each chapter to the discussion here and highlight how each of them furthers the field of direct
detection of light DM. We will work in natural units throughout, where h̄ = c = kB = 1.

1.1 The Evidence for Dark Matter
Understanding the fundamental nature of DM is one of the most important questions in all of
physics for, mainly, one reason: we have evidence for its existence. This is in contrast to some
of the other open problems in theoretical particle physics such as the hierarchy problem [96],
cosmological constant problem [97], or Strong CP problem [98–100] which, while certainly
unappealing features of the SM, are fundamentally fine-tuning problems. Our fundamental
theory of nature must somehow contort to explain the absence of predicted features. The
problem of DM is fascinating because we must understand how to change the fundamental
theory to explain the DMs experimentally verified presence. In this section we review some
of the most important pieces of evidence we have for the existence of DM. From these
observations we also discuss the model independent statements we can make about DM. A
fantastic review of some of these can be found in Ref. [101].

Galactic Rotation Curves
The earliest experimental evidence for DM came from “galactic rotation curves”, or the
orbital velocity of galaxies, as a function of distance [66, 102–104]. These are typically
measured by studying the Doppler shifted 21 cm radiation coming from a galaxy. The stars
which are moving away emit red-shifted radiation, whereas those moving toward us, on the
other side of the galactic center, emit blue-shifted radiation. The amount of frequency shift



3

can then be related to the orbital velocity of a star.

The predicted orbital velocity of the stars is directly related to the gravitational pull of the
galactic mass density. For example, assuming a spherically symmetric galaxy, the orbital
velocities, v(r), as a function of distance from the galactic center, r are given by

v(r) =

√
GMenc(r)

r
, (1.1)

where Menc is the total amount of mass inside radius r.

Astronomers find that the predicted orbital velocities, based on the amount of luminous
matter, are much smaller than the measured orbital velocities. This implies that Menc must
composed of more than just luminous matter. This observation is the origin of “dark”
in dark matter. While there are other explanations of this, such as Modified Newtonian
Gravity [105, 106], interpretations other than DM typically have problems explaining the
other phenomena we will discuss.

Cosmic Microwave Background Anisotropies
While galactic rotation curves provide astrophysical evidence for DM, these measurements
can only probe relatively close galaxies, at small redshift. If DM has existed on cosmological
time scales it would have a large influence on the cosmological evolution of the universe, and
indeed this is what is observed.

The early universe was a hot plasma of particles, kept in thermal equilibrium via contact
with photons. As the universe expanded and cooled the thermal bath-particle interaction
strength became too small to compete with binding forces. Quarks bound in to protons
and neutrons at temperatures, T ∼ 100MeV, then Big Bang Nucleosynthesis (BBN) bound
protons and neutrons in to nuclei at T ∼ 100 keV. Once hydrogen atoms started to form from
the binding of nuclei and electrons in the plasma, at T ∼ eV, the plasma became neutral
and photon interactions became ineffective. This allowed the photons to freely stream to
us today and created the cosmic microwave background (CMB); a near perfect blackbody
radiation spectrum with T = 2.725K.

However not only is the temperature of the CMB measured, fluctuations in this temperature
are as well. These are typically parameterized as,

Θ(n̂) = T (n̂)− T̄
T̄

=
∑
`m

a`mY`m(n̂) , (1.2)
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where n̂ is some direction on the sky, T̄ is the average temperature, and alm represent the
coefficients in the spherical harmonic basis. Correlations in this quantity can be written

〈Θ(n̂)Θ(n̂′)〉 = 1

4π

∑
l

(2`+ 1)C`P`(n̂ · n̂′) , (1.3)

where

C` =
1

2`+ 1

∑̀
m=−`

〈|a`m|2〉 (1.4)

is a power spectrum of the temperature fluctuations.

This temperature fluctuation power spectrum, C`, is highly sensitive to the matter-radiation
content of the universe at the epoch of recombination (i.e., after production of bound atomic
states), as well as the contents of the universe it passed through on its way to us. Therefore
different cosmological models, i.e., with or without DM, will produce very different C`.
Many experiments have measured C` (e.g., COBE [107], WMAP [108], Planck [109]) with
exceptional precision and have found that the cosmological model which best fits the data,
known as the ΛCDM model, has a DM component of,

ΩDM =
ρDM

ρc
= 0.265 , (1.5)

where ρc = 3H2
0/(8πG) is the critical density of the universe [101].This is nearly five times

larger than the baryonic matter density and very strong evidence for the cosmological exis-
tence of DM.

Structure Formation
The cosmological influence of DM can also be seen in the formation of galaxies. To under-
stand this we will review a bit of cosmological perturbation theory [110, 111] which describes
how small pertubations in the matter density lead to the structures we see today. Matter
density perturbations can be written as,

δ(x) ≡ ρ(x)− ρ̄
ρ̄

, (1.6)

where ρ̄ is the average matter density. We will find it useful to work in Fourier space, and
define the Fourier components of δ as δk. The evolution of these perturbations, assuming a
single matter field, in an expanding universe can be shown to be determined by a relatively
simple ODE,

δ̈k + 2Hδ̇k +

(
c2sk

2

a2
− 4πGρ̄

)
δk = 0 , (1.7)
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where H is the Hubble parameter, cs is the speed of sound, and a is the scale factor. We
can understand this equation in a few different limits by analogy with a damped oscillator.
First, assume the universe is not expanding, or H = 0, a = 1. The equation simplifies to,

δ̈k + c2sk
2

(
1− k2J

k2

)
δk = 0 , (1.8)

where we have defined the Jeans scale, k2J = 4πGρ̄/c2s. This is exactly a simple harmonic
oscillator. If k < kJ then the sign on the second term is negative, corresponding to an
oscillating solution, and if k > kJ the perturbations grow. This Jeans factor can be thought
of as the balance between gravitational forces and internal pressure. For k > kJ , or length
scales smaller than ∼ 1/kJ , the gravitational attraction overpowers the pressure and causes
collapse.

Reintroducing the Hubble parameter damps the evolution and introduces some other com-
plications, but much of the intuition gained in studying the simpler case transfers over. The
evolution of the scale factor is determined by Friedmann equations, and depends on the
cosmological content of the universe. One can show that the growing solutions satisfy

δk ∝

ln a radiation domination

a matter domination
, (1.9)

when the universe is radiation dominated and matter dominated, respectively. In words,
perturbations grow linearly in a matter dominated epoch, and only logarithmically in a
radiation dominated epoch. Therefore we see why DM can affect structure formation so
drastically; a large DM component can efficiently drive the evolution of density perturbations.

Today we can precisely measure the matter power spectrum, P (k) ∝ 〈|δk|2〉, as well as the
halo mass function (which is simply how many halos of a given mass we expect to see). These
observables provide a wealth of information about the structures that form, and when they
did. Again the ΛCDM model does exceptionally well in determining the features in both the
matter power spectrum and the halo mass function piling on the evidence for the existence
of DM.

In addition to further solidifying ΛCDM as the prominent cosmological model, these probes
of structure formation also give us an important model independent feature of DM: it must
be cold. That is vχ � 1, where vχ is the velocity of DM. The reason for this is that if
DM is relativistic, too much small scale structure is washed out. Put another way, if DM
is relativistic it is not able to produce hierarchical structure formation from initial seeds of
density perturbations. While the DM velocity will follow a specific distribution, as discussed
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later in Sec. 1.3, the typical velocities are

vχ ∼ 10−3 , (1.10)

or about the same rotation speed as luminous matter. This is important for direct detection
experiments whose kinematics crucially depend on the DM velocity. For vχ � 1 the DM can
be treated as non-relativistic, and the classical, “billard ball” kinematic intuition becomes
useful.

However the ΛCDM model is not perfect, and there are some outstanding issues in its predic-
tion of structure formation. For example, the missing satellites and core-cusp problems [112].
Put simply, on the smallest scales ΛCDM predicts more structure than experimentally seen,
which can be seen as motivation for warm DM models, and might be able to wash out just
enough structure to match observational constraints [112–121].

Gravitational Lensing of Galactic Mergers
Perhaps the most violent evidence that exists for DM comes from galactic mergers [122,
123]. The results in Sec. 1.1 imply that galaxies contain an abundant amount of DM, and
sometimes two galaxies collide with one another. When this happens the luminous, Standard
Model matter clumps at the center of the collision, due to relatively strong self-interactions.
However if weakly interacting DM is inside the galaxies then it should just pass through; the
central mass density should not be located at the same point which is emitting the majority
of the radiation from the collision. The location of the mass density can be inferred from
gravitational lensing. General relativity tells us that light will bend in gravitational fields,
and by mapping the light paths near the merger we can locate the center of mass.

The measured result from the mergers is consistent with the DM hypothesis. Moreover we
learn that DM cannot be too strongly self-interacting, otherwise the final center of masses of
the galaxies would be closer together than seen.This bound is typically reported as a bound
on the “self-interaction” cross section, [124, 125]

σ

mχ

. 10−1 cm2

g
, (1.11)

and gives us complimentary model independent information about DM.1

Bounds on Dark Matter Mass
The majority of the properties of DM, discussed in the previous subsections, are inferred
on astrophysical scales, and do not directly give any information about the particle content.

1This bound only applies if the galaxies are made up of a single species of DM. Small DM subcomponents
are still allowed to strongly interact, as long as the majority of the DM obeys Eq. 1.11.



7

However there are a couple model independent statements we can make about the DM mass
which we will discuss here. If DM is composed of a single species of particle then

mχ &

10−24 eV bosonic

100 eV fermionic
, (1.12)

where “bosonic” and “fermionic” represent the particles statistical type. As discussed in
Sec. 1.1 DM is crucially needed for structures to form. However if DM is lighter than
10−24 eV then its de Brogile wavelength, λ ∼ (mχvχ)

−1, becomes larger than the size of
galaxies. This dramatically changes the structures that begin forming, and would leave a
measurable imprint on the CMB [113–115].

If DM is fermionic an even stronger constraint applies. Unlike bosonic DM, fermionic DM
experiences a quantum Fermi pressure since fermions cannot occupy the same quantum state.
This directly impacts the amount of fermionic matter which can be packed in to a portion
of phase space. If fermionic matter is lighter than ∼ 100 eV then the Fermi velocity can be
greater than galactic escape velocities, limiting the amount of DM allowed in a galaxy. The
first application of this principle led to the Tremaine-Gunn bound [126], and more recent
studies have pushed this bound even further [127–129].2

1.2 Theoretical Motivation for Light Dark Matter Models
Even with the abundance of evidence for DM discussed in Sec. 1.1, we know almost noth-
ing about its non-gravitational interactions with the Standard Model. This leaves a large
playground for theorists to build DM models which can then be tested by comparing to
experiment. A DM model must predict all of the experimentally observed properties: stable
on cosmological time scales [131], ΩDM = 0.265, must be relatively cold (vχ ∼ 10−3), not
interact too strongly with itself (Eq. (1.11)), and have a mass consistent with the discussion
in Sec. 1.1.

The canonical DM candidate is the “weakly interacting massive particle”, or the WIMP
motivated by electroweak scale supersymmetry [132]. See Ref. [133] for a recent review. This
is a particle with GeV . mχ . 100TeV whose production is set by the freeze-out mechanism,
discussed further in Sec. 1.2. The lower bound on the mass is set by the observed DM density.
If the DM was lighter then it would over populate the universe with DM, and much heavier
than this requires cross sections which would contradict unitarity. As mentioned earlier, this
DM candidate is being experimentally ruled out quickly, and therefore other DM candidates
need to be identified.

2These bounds depend crucially on a single species of DM. If there are more species the bound re-
laxes [130].
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In this section we will discuss some of those alternative ideas. This is in no way meant to be
exhaustive, but to represent some of the theories which will be discussed in later chapters.
We will begin by discussing some of the standard production mechanisms which generate the
cosmic abundance of DM. We will then discuss a couple of standard, benchmark, light DM
models which provide a good starting point to understanding some of the more complicated
ones discussed in later chapters.

Production Mechanisms
Freeze Out

The most well known DM production mechanism is “Freeze Out” [111]. In the early universe
all of the SM species were in thermal equilibrium mediated by the photon bath. Therefore it
is reasonable to think that the DM was also in thermal equilibrium, and its number density
was determined thermodynamically. However since DM is known to interact weakly, at some
point the interaction rate, Γ, becomes smaller than the expansion rate of the universe, Γ . H.
When this happens thermal equilibrium is no longer achieved, and the DM abundance stops
tracking the thermal equilibrium. The evolution of the abundance is given by the Boltzmann
equations,

dY

dx
= −xs〈σv〉

H

(
Y 2 − Y 2

eq
)
, (1.13)

where σ is the DM annihilation cross section, x = mχ/T , s is the entropy density of the
universe, Y = nχ/s, and Yeq is the equilibrium number density per entropy density. We
see that as σ/H → 0, Y stops changing, indicating that the particle species has frozen out.
The final DM abundance is inversely proportional to σ; a larger interaction cross section the
longer DM stays in thermal equilibrium, and the lower the final abundance. The WIMP is an
attractive DM candidate since for interaction cross section the size of the weak interaction,
the DM abundance is set automatically. More generally, lets assume that the cross section
scales as,

σ ∼ g4

m2
χ

, (1.14)

where g is some DM-SM coupling constant. For g smaller than typical weak interactions,
mχ can be light and still in agreement with the primordial abundance, set via σ. However
since freeze out happens at T ∼ mχ, if m . MeV then DM will freeze out after neutrinos
decouple, at T ∼ MeV. This can influence Neff, essentially the temperature ratio between
neutrinos and photons, which is severely constrained experimentally [134, 135]. Therefore
thermal freeze-out is only a valid production mechanism for mχ > MeV.
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Freeze In

The freeze out mechanism discussed in Sec. 1.2 depends on the DM starting in thermal
equilibrium with the Standard Model, i.e., for x � 1, Y = Yeq. This need not be the case;
the DM could have been absent initially: Y = 0 for x � 1. If the DM-SM coupling is
strong enough then the SM would produce the DM efficiently enough to bring it to thermal
equilibrium, and the universe is put back in the freeze out scenario. Therefore this difference
in initial conditions is only important if the DM-SM coupling is small. In this scenario the
SM will produce DM inefficiently, but over a long period of time, leading to the cosmic
abundance seen today. This is known as the “Freeze In” mechanism [136, 137]. Such small
couplings are naturally produced in Hidden Sector DM models, discussed in more detail in
Sec. 1.2. DM which freezes in avoids the low mass constraints from BBN because the DM is
never in thermal equilibrium.

Misalignment Mechanism

The previously discussed freeze out/in mechanisms rely on the thermal distribution of SM
particles. These are natural guesses for DM production mechanisms by analogy with the SM
thermal history. However DM production mechanisms do not have to be thermal. In fact,
the existence of baryons over anti-baryons is an example of production via an asymmetry,
somewhat distinct from a standard freeze out mechanism.3 Perhaps the most popular non-
thermal production mechanism is the “misalignment mechanism” [145–147], used mainly in
the context of axion DM, a model we will discuss further in Sec. 1.2.

To understand how the misalignment mechanism we will go through a simple exercise. Con-
sider a complex scalar field with the Higgs-like potential,

V (Φ) = −µ2Φ∗ · Φ + λ(Φ∗ · Φ)2 . (1.15)

By analogy with electroweak symmetry breaking we know that thermal effects at high tem-
peratures keep the minimum at Φ = 0. However as the temperature lowers, Φ develops
a new minima at v =

√
2µ2/λ. After the symmetry breaking occurs we can describe the

resultant Goldstone boson, which we will refer to as the “axion”, via a field redefinition,

Φ = veia , (1.16)

where a ∈ [0, 2π). Since the axion is a Goldstone boson, the field is massless. Conceptually
the evolution of the axion field at this point is straightforward: it simply rolls around the

3There exist models of DM which use similar production methods and go by “asymmetric DM” [11, 136,
138–144]. This mechanism is appealing because it can be used to connect the DM density to the baryon
density which are intriguingly only different by a factor of five.
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bottom of the potential. However, imagine the U(1) symmetry is explicitly broken at a later
stage, such that the potential contains a mass term for the axion.

V ⊃ m2
a

2
a2 . (1.17)

This will tilt the axion potential, and push the axion to the new minimum. As the axion
is pushed to the new minimum energy will be radiated which can set the primordial abun-
dance. If the universe is in causal contact when the axion is generated, T ∼ v, then the
axion abundance will be set by the value of a when it started decaying to the new minima
(created from the introduction of the mass term). This is not very attractive as a production
mechanism for the DM abundance, since the value is precisely tuned to the initial condition
of the axion field which was previously rolling around in the flat potential.

However this is not the end of the story. Imagine that the universe was not in causal contact
when T ∼ v. Then the axion field will essentially be a random value in different patches
of the universe. In this scenario the DM abundance will then be set by the average value
across all these patches. Therefore while different patches of the universe will have different
DM densities, the average density can be used to generate a DM abundance which is not
dependent on initial conditions. Moreover the axion relic density will be related to its mass,
giving a concrete prediction for the DM mass.

The scenario discussed here is the standard misalignment case. Recently, there has been
interest in expanding this idea by changing the initial conditions the axion field has before it
starts to roll in the potential [148, 149]. Additionally there has been work on understanding
whether this production mechanism is dominant. In a universe with many different patches
there exist domain walls which can decay in to axions as well, which can also set the relic
abundance [150].

Candidate Light Dark Matter Models
We now turn to discussing a couple specific light DM models, starting with the axion and
then discussing hidden sector DM models.

Axion
As mentioned in Sec. 1.1, DM is not the only open problem particle physics faces. Another
such problem is the “Strong CP” Problem [98–100]. SU(3) symmetry allows a term of the
form,

L ⊃ θGG̃ (1.18)
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in the Lagrangian, where G is the SU(3) field strength tensor. Naturally, one expects that
all terms allowed by symmetry are present in the Lagrangian with O(1) coefficients. If a
coefficient is unnaturally small then one might expect that there is a symmetry forbidding
that term to exist. No such symmetry is known to forbid the term in Eq. (1.18), yet the
experimentally measured value is bounded to

θ . 10−10 , (1.19)

an unnaturally small number indeed.

One solution is to introduce a new axial U(1) symmetry to the Standard Model, typically
referred to as a “Peccei-Quinn” symmetry for the creators of the mechanism. Imagine a new,
heavy, field, Q, charged under this U(1)PQ. Performing a field transformation, Q→ eiaγ

5
Q,

where a is the axion, generates an anomalous coupling to GG̃. The theta term is then
absorbed in to a field redefinition of a and vanishes, leaving a dynamic θ term. The minimum
of the potential for this dynamic θ term is zero, thereby dynamically solving the Strong CP
problem. An axion which does this is known as the QCD axion. The QCD axion can then
be produced via the misalignment mechanism discussed in Sec. 1.2 and be a viable DM
candidate. The ability to solve both the DM problem and Strong CP problem at once is
powerful motivation for the QCD axion.

The mass of the QCD axion is generated by QCD effects and directly relates the U(1)PQ

symmetry breaking scale, fa (essentially v in Sec. 1.2),

ma ∝
mπfπ
fa

, (1.20)

where mπ is the pion mass, and fπ is the pion decay constant. The symmetry breaking
scale, fa, also sets the strength of interactions between the QCD axion and the SM. If fa
is too small the interaction strength will be too large and in conflict with stellar cooling
bounds [30]. This constrains the mass of the QCD axion to ma . 100meV.

More generally one can consider axion-like particles (ALPs) whose mass is disconnected from
the symmetry breaking scale and generates a mass, coupling parameter space for ALP DM.
Searching for the QCD axion and ALPs experimentally is a large experimental program [91–
93, 151–169], and in Ch. 6 we discuss in detail how to use phonons and magnons to probe
these DM models for meV . ma . 100meV, a large chunk of previously unexplored model
space below the stellar cooling limits.

Hidden Sector Dark Matter
Another class of light DM models is known as “Hidden Sector”, or “dark portal” DM models.
These are models in which the Standard Model and DM interact very weakly via a new force.
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The new force acts as the “portal” between the Standard Model and the “hidden sector” of
DM particles which are also charged under this new force. As an example we will discuss the
light “dark photon” model [170] which has proven to be the most popular benchmark hidden
sector model (at least within the context of direct detection) since it simply adds a new U(1)′

gauge group. Minimally the model adds two terms to the Standard Model Lagrangian,

L ⊃ mA′

2
A′2 +

κ

2
F µνF ′

µν , (1.21)

where A′ is the dark photon, mA′ is its mass, and κ is known as a “kinetic mixing” parameter
since it mixes the kinetic terms of the photon and dark photon. This κ can be radiatively
generated through loops of heavy particles charged under U(1)× U(1)′. To understand the
phenomenology of this model it is typically useful to diagonalize the mass matrix of the A,A′

system via the field transformation,

Aµ → Aµ + κA′
µ . (1.22)

Note that A′
µ cannot be rotated since that would generate a mass for the photon. In this

rotated basis all of the Standard Model fermions which have an electromagnetic charge are
now charged under A′ and therefore the field acts like an additional photon field with rescaled
couplings, e→ κe.

The dark photon itself can be the DM [171, 172], typically one adds a particle χ which is
charged under the U(1)′ and takes this to be the DM. This χ field then serves as the light
DM candidate, and can give rise to a direct detection signal by scattering off a target via
mediating an A′.

While the motivation for any given dark photon model is perhaps weaker than the motivation
for the axion, this class of models, with an extra gauge group and a DM candidate is a very
natural explanation for DM. The Standard Model is a collection of seemingly random gauge
groups so it is not unfeasible to have one more gauge group.Moreover, extra gauge groups
are a fairly generic prediction of Grand Unified Theories. The dark photon model serves
as a useful benchmark for these more general cases since it is easier to calculate for than
extensions with an extra SU(N) group, or an MSSM-like model with many new parameters.

1.3 Direct Detection Preliminaries
We will now discuss computing the interaction rates between the cosmic background of DM
and a target in direct detection experiments. While this formalism is reviewed, and extended,
in many of the later chapters, we will take extra care here to discuss important details which
are often taken for granted.
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Light Dark Matter Kinematics
Before discussing the general interaction rate formalism it is useful to understand the kine-
matics, or how energy and momentum conservation are satisfied in interactions involving
light DM. Since DM is cold, as discussed in Sec. 1.1, it can be treated as a non-relativistic
particle, i.e.,

Eχ ≈ mχ +
1

2
mχv2

χ , (1.23)

where χ is a DM particle, and vχ ∼ 10−3. There are two different processes we will focus
on: scattering and absorption. In a scattering process a DM particle enters and leaves the
detector, depositing some energy and momentum. Let pχ be the momentum of the incoming
DM particle, and p′

χ = p−q be the momentum of the outgoing DM particle,4 where q is the
momentum leaving the DM system (and entering the detector). In this scenario the energy
deposited, ω, is determined by the momentum transfer,

ω = Eχ − E ′
χ =

p2
χ

2mχ

− (mχvχ − q)2

2mχ

= q · vχ −
q2

2mχ

, (1.24)

where Eχ is the initial energy of the DM particle and E ′
χ is the final energy of the DM

particle.

From here, without any knowledge of the detector itself, we see that

qmax = 2mχvχ,max ∼ keV
( mχ

MeV

)
, (1.25)

ωmax =
1

2
mχv

2
χ,max ∼ eV

( mχ

MeV

)
, (1.26)

where vχ,max is the maximum velocity of the incoming DM particle, qmax is the maximum
momentum transfer, and ωmax is the maximum energy transfer. From this simple exercise
we immediately understand the energy and momentum scales involved in DM scattering.
Moreover the experimental energy resolution necessary to see these interactions is clear; if
the threshold energy of an experiment is above ωmax then these events will not be visible.

In addition to the kinematics on the DM side the detector must be able to respond. Consider
the canonical direct detection experiment, i.e., DM scattering off a stationary nucleus of mass
mN . The final energy of the nucleus, q2/2mN , must be equal to the energy deposited by the
DM,

q2

2mN

= q · vχ −
q2

2mχ

. (1.27)

4Assuming that the outgoing particle is identical to the incoming one. If the DM is composite it can
change its internal state, leaving a residual ∆E = min

χ −mout
χ in Eq. (1.24). DM models with this behavior

are sometimes referred to as “inelastic” DM [173] due to the inelastic nature of the collision.
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Solving for q, ω gives

q = 2µNχvχ (1.28)

ω = 2
µ2
Nχ

mN

v2
χ , (1.29)

where µNχ is the reduced mass of the nucleus DM system. In the light DM limit, mχ � mN ,
we can simplify the energy deposition,

ω = 2
m2
χ

mN

v2
χ ∼ meV

( mχ

MeV

)2
, (1.30)

where we have assumed a light nuclei mN ∼ GeV. For mχ = MeV we see that nuclear recoil
can only extract a thousandth of the energy available in a DM scattering event. Therefore
we see that nuclear recoil is not well suited to search for light DM candidates, and that
to maximize detector sensitivity we need excitations which can kinematically match the
incoming DM. As we will discuss in detail, electronic, phononic, and magnonic excitations
are ideal for this purpose.

The kinematics of DM absorption is even simpler than scattering. Since there is no outgoing
DM state all of the energy and momentum of the initial DM state must be absorbed,

q = mχvχ (1.31)

ω = mχ . (1.32)

This can be thought of as the opposite limit of a scattering event since q � ω, whereas in
a scattering event q � ω. Because q is so small an absorption event can be thought of as a
vertical transition in the q − ω plane.

General Formalism
The calculation of DM-target interaction rates is typically treated with standard perturba-
tion theory since the DM-target coupling is small. In the absence of DM-target interactions,
the Hamiltonian governing the behavior of the DM and target is simply the sum of their
individual Hamiltonians,

H0 = H0
DM +H0

target , (1.33)

where H0 has dimensions [eV]. Assuming the DM is a non-relativistic particle, H0
DM is simply

H0
DM = mχ +

p2
χ

2mχ

. (1.34)
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and the eigensystem is then simply a set of plane wave states

H0
DM|pχ〉 = Eχ|pχ〉 , (1.35)

Eχ = mχ +
p2
χ

2mχ

. (1.36)

While this is a great approximation for the cosmic cold DM, we make no such assumptions
for the target states. This is because these states will take a vastly different form depending
on the excitation, e.g. electrons or phonons. To be as general as possible we take the
eigensystem of H0

target to be,

H0
target|I〉 = ωI |I〉 , (1.37)

for some set of states labelled by I. Therefore a DM-target state is then just a product state,

|I〉 = |I〉 ⊗ |pχ〉 , (1.38)

H0|I〉 = ωI |I〉 , (1.39)

ωI = ωI + Eχ . (1.40)

We now add a coupling between the DM and target system via an interaction Hamiltonian,

H = H0 + δH . (1.41)

Fermi’s Golden rule then dictates the transition rate, or number of transitions per unit
time. Assuming the initial (final) DM-target state is |I〉(|F〉) the transition rate between
the states, ΓI→F , is

ΓI→F = 2π
|〈F|δH|I〉|2

〈F|F〉〈I|I〉
δ(ωF − ωI) . (1.42)

This formula should be familiar, except perhaps the denominator of state inner products.
Fermi’s Golden Rule is usually derived in the context of quantum mechanics where the
states are implicitly unit normalized, and therefore the denominator is left out. However
sometimes it is convenient to leave these factors in, since the DM states are sometimes
normalized with QFT conventions. This formula simply generalizes Fermi’s Golden rule to
account for different state normalizations. Here we assume all states are unit normalized,
i.e, 〈I|I〉 = 〈p|p〉 = 1.

Since the DM states are assumed to be plane waves, we can further simplify Eq. (1.42) by
inserting an identity operator in the DM space,

1 =
1

V

∫
d3x |x〉〈x| , (1.43)
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where V is the target volume. Placing this inside of the matrix element gives

〈pχ|δH|p′
χ〉 =

1

V 2

∫
d3xd3y〈p′

χ|x〉〈x|δH|y〉〈y|p′
χ〉 , (1.44)

=
1

V

∫
d3xeiq·x〈x| ˆδH|x〉 , (1.45)

≡ 1

V
Ṽ(−q) , (1.46)

assuming the interaction Hamiltonian is local, 〈x| ˆδH|y〉 = δxy〈x| ˆδH|x〉 = V δ(3)(x−y)〈x| ˆδH|x〉,
〈x|p〉 = eip·x, and q = pχ − p′

χ is the momentum transferred to the target.5 We have intro-
duced Ṽ which we will often refer to as the “scattering potential” which will depend on how
the DM model couples to the target. Written in terms of the scattering potential, Eq. (1.42)
is given by,

Γpχ,I→p′
χ,F =

2π

V 2

∣∣∣〈F |Ṽ(−q)|I〉
∣∣∣2 δ(ωF − ωI − ω) , (1.47)

where ω ≡ Eχ − E ′
χ is the amount of energy the DM deposits on the target.

The total interaction rate for an incoming DM particle of momentum pχ is found by simply
summing over all the other states. However, instead of summing over all possible p′

χ with∑
p′
χ
→ V

∫ d3p′
χ

(2π)3
, it is convenient to shift variables to q giving,

Γpχ =
2π

V

∑
I

∑
F

∫
d3q
(2π)3

∣∣∣〈F |Ṽ(−q)|I〉
∣∣∣2 δ(ωF − ωI − ω) . (1.48)

This is the number of events per unit time assuming one incoming DM particle with momen-
tum pχ. The average excitation rate per incoming DM particle, Γ, can then be computed
once the momentum distribution of DM particles is known. Usually this is given in terms
of the DM velocity, vχ since pχ = mχvχ in the nonrelativistic limit. We will discuss the
standard choice of velocity distribution below. Assuming for now that the DM velocity dis-
tribution is fχ(vχ), the expected excitation rate per unit time, per incoming DM particle, is
given by,

Γ =
2π

V

∫
d3vχfχ(vχ)

∑
I

∑
F

∫
d3q
(2π)3

∣∣∣〈F |Ṽ(−q)|I〉
∣∣∣2 δ(ωF − ωI − ω) . (1.49)

The total number of interactions per unit time per detector mass, MT , is

R =
Nχ

MT

Γ =
ρχV

mχ

1

ρTV
Γ =

ρχ
mχρT

Γ , (1.50)

=
2πρχ
mχρTV

∫
d3vχfχ(vχ)

∑
I

∑
F

∫
d3q
(2π)3

∣∣∣〈F |Ṽ(−q)|I〉
∣∣∣2 δ(ωF − ωI − ω) , (1.51)

5Another common choice for the definition of q is p′
χ−pχ, or simply the negative of the convention here.

While this would remove the minus sign in the scattering potential, the momentum would now be “coming
out” of the target, which is, arguably, less intuitive.
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where Nχ is the number of DM particles in the detector, ρχ is the local DM density, taken
throughout this thesis to be ρχ = 0.4GeV cm−3 [174], and ρT is the target density. This
rate, R, is dimensionless (in natural units), but usually converted to units of kg−1yr−1 such
that one simply needs to multiply by the exposure to find the total number of interactions.
This is the central formula which will be used routinely in the coming chapters to compute
the expected number of events in a detector.

A standard parameterization of the DM velocity distribution is a Maxwell-Boltzmann dis-
tribution [174–176] cutoff at the galactic escape velocity,

fχ(v) =
1

N0

e−v2/v20Θ(vesc − |v|) , (1.52)

N0 = π3/2v20

[
v0erf (vesc/v0)−

2vesc√
π

exp
(
−v2esc/v

2
0

)]
, (1.53)

where our conventions throughout this thesis will be to use v0 = 230 km s−1, vesc = 600 km s−1 [177].
However this does not directly get substituted in to Eq. (1.51); this is the velocity distribu-
tion in the galactic frame. Since the Earth is also moving through the galaxy we need to
boost the Maxwell-Boltzmann distribution to the Earth’s frame, i.e., fχ(vχ + ve) is the ve-
locity distribution we use. The Earth velocity vector, ve, introduces interesting modulation
effects which will be the subject of the next subsection.

Modulation Effects
Since the interactions between the DM and any given target are weak, it is crucial to find
ways to differentiate a DM signal from any background sources. This way, even if only a
tiny signal is observed, we can still claim the signal is significant. The key differentiating
factor between DM and the majority of other backgrounds is that Earth is moving through
a cosmic background of DM. This means that as the Earth velocity changes, in the Earth
frame, the direction of the incoming DM is changing.

The two main modulation effects are “annual modulation” and “daily modulation”. Since
the Sun is also moving around the galactic center, the Earth’s motion relative to it on
a yearly basis changes the magnitude of the velocity relative to the incoming DM. We
take the central value of the Earth velocity is ve = 240 km s−1, and annual modulation
causes O(10 km s−1) fluctuations. While seemingly a relative small effect, remember from
Sec. 1.3 that the maximum energy/momentum transfer is set by the maximum DM velocity,
vmax = vesc + ve. As an example case where this might be important, consider an electronic
transition across a band gap. If the DM mass is just barely kinematically able to drive the
transition, then at different times of the year a transition may or may not be possible.
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The other type of modulation effect, daily modulation, is the focus of Ch. 4, and discussed
in Ch. 2. While the magnitude of the Earth’s velocity will change very slightly, the more
important effect here is that the DM wind will hit the target from different directions. For a
target with an isotropic response function this does not matter. However for targets which
have an anisotropic response this effect can cause O(1) fluctuations in the DM rate. This
spectacular signal, if observed, would be a “smoking gun” signature that the effect is due to
DM.

Setting Constraints Assuming No Backgrounds
In the absence of any events seen in the detector, and assuming negligible background events,
the rate in Eq. (1.51) can directly used to place constraints on the coupling constants which
govern the strength of the potential. While different statistical procedures exist for placing
limits, perhaps the simplest is to hypothesis test with the null hypothesis being a Poisson
distribution with expected number of events, N̄ = R×MT × T ,

P (n, N̄) =
N̄ne−N̄

n!
, (1.54)

where T is the exposure time. The probability of seeing 0 events is then e−N̄ . Therefore we
can reject the null hypothesis at the 100 × pth confidence level (C.L.) when e−N̄ = 1 − p.
Taking p = 0.95 implies N̄ ≈ 3. This is commonly reported in the figure captions as, e.g.,
“the 95% C.L. constraints (3 events) assuming no background”.

1.4 Summary
We will now briefly summarize the contents in each of the following chapters, and connect
the results to the previous discussion. The chapters are organized as follows: Chs. 2-3 discuss
DM excitations in multiple channels: electron, phonons, and nuclear recoils. Chs. 4-7 are
specific to single phonon and magnon excitations, and Chs. 8-10 are specific to electronic
excitations.

• Ch. 2: Multi-Channel Direct Detection of Light Dark Matter: Theoretical
Framework

Previously, calculations of electronic, phononic, and nuclear recoil signals from DM in
direct detection experiments followed a variety of different formulas. While this is fine
if one is only interested in a single excitation type, the response of any given target to
incoming DM will depend on these multiple channels of excitations. Therefore it is use-
ful to have a single theoretical framwork from which each of the excitation rates can be
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derived, and makes clear the assumptions being made in each calculation. Essentially,
it is an extension of the general formalism discussed in Sec. 1.3 focused on general spin
independent (SI) DM scattering. Using this general formalism we illustrated how daily
modulation effects could arise in electronic transitions in anisotropic targets, showed
that Umklapp processes are important for phonon excitations in models with a heavy
mediator, and highlighted the kinematic regimes each channel is likely to dominate in.

• Ch. 3: Multi-Channel Direct Detection of Light Dark Matter: Target Com-
parison

Many different target materials have been utilized in direct detection experiments.
From noble liquids, Xenon, and Argon in large chambers, to Si and Ge in detectors
focusing on electronic excitations. Different target materials can have dramatically
different properties, and an important question to ask is whether the optimal target
material is being used. In this chapter we compare and contrast the effectiveness of
26 different target materials as light DM detectors. This chapter is a companion to
Ch. 2 and relies heavily on the formalism developed there. Specifically, we compute
the electroninc, phononic, an nuclear recoil signals for a few benchmark DM models,
including the light dark photon model discussed in Sec. 1.2, in all 26 targets. In addition
we give simple analytic expressions in terms of macroscopic material properties which
can be optimized to further search for optimal targets.

• Ch. 4: Directional Detectability of Dark Matter With Single Phonon Exci-
tations: Target Comparison

While alluded to in the previous two chapters, anisotropic materials will not only have
a daily modulation, discussed in Sec. 1.3, in electronic excitations, but also phonon
excitations. Understanding the daily modulation pattern of a given target can be
crucial in rejecting backgrounds. This chapter is a detailed study of daily modulation
in single phonon excitations in the same 26 target materials, and benchmark DM
models, discussed in Ch. 3. We find that a variety of anisotropic targets can have O(1)
modulation fractions for a variety of DM model space.

• Ch. 5: Detecting Light Dark Matter With Magnons

Phonon excitations have been the collective excitation mode focused on so far, but they
are not the only ones to appear in target materials. In targets with magnetic order-



20

ing the low energy excitations appearing are known as magnons. These are quantized
spin waves arising from a Heisenberg-like Hamiltonian of spin interactions. Similar to
phonons, the energy of these excitations are O(1− 100meV); guaranteeing kinematic
matching between them and light DM candidates. Moreover these excitations are
uniquely susceptible to DM models which couple to spin, and therefore offer a comple-
mentary probe of light DM model space. In this chapter we study the light DM-single
magnon scattering rate for a few spin-dependent light DM models, in a yttrium iron
garnet (YIG) target.

• Ch. 6: Detectability of Axion Dark Matter With Phonon Polaritons and
Magnons

As discussed in Sec. 1.2, the QCD axion is a well motivated DM candidate with a unique
production mechanism and ability to solve the Strong CP problem. Direct detection
of the axion has a storied history, with many different detection ideas being utilized
to search for it. Typically these rely on coupling the axion to an electromagnetic
mode in a cavity and reading out the resultant electromagnetic field. While this is
great for low, m . meV scale axions, there quickly becomes a fundamental problem
that the energy of these modes is inversely proportional to the cavity size, limiting
exposure. Furthermore since stellar cooling constraints only limit the QCD axion to
m . 100meV, there is open parameter space between O(1− 100meV). This is ideally
matched to phonon and magnons modes, and we show that such experiments could
reach the QCD axion line. Technically, the absorption occurs on phonon-polariton
modes which come from the mixing between the photon and phonon near the level
crossing, clearly an important regime for DM absorption kinematics. We also show
that changing the direction of the external magnetic field can give rise to different
phonon modes, allowing for modulation effects.

• Ch. 7: Effective Field Theory of Dark Matter Direct Detection With Col-
lective Excitations

In Ch. 2 we discussed the general formalism for DM single phonon scattering via spin
independent operators, and in Ch. 5 we discussed the formalism for DM single magnon
scattering for operators depending on the electron spin. Here we unify and extend this
formalism to account for general scattering potentials. The space of UV DM models is
vast, and computing constraints for every single model is untenable. Thankfully this
need not be done, there exists a basis of operators for which any UV DM model can be



21

mapped on to via an effective field theory (EFT) procedure. In this chapter we discuss
the construction of this basis, and give examples of mapping some general DM model
theories on to these scattering potentials. Moreover we show how this basis can be used
for both DM-single phonon and single magnon scattering. We detail which response
will be dominant in target materials which have both excitations. We also released an
open source code, PhonoDark [178], which can compute the phonon excitation rate for
any material and operator from density functional theory (DFT) input.

• Ch. 8: Extended Calculation of Dark Matter Electron Scattering In Crystal
Targets

As discussed previously there are many ongoing experiments looking for electronic
excitations. Therefore it is important to have accurate calculations of the DM induced
electronic excitation rate. Central to this calculation is an accurate description of the
electronic wave functions and energy levels. Previous calculations approximated these
states with a variety of methods. Initially with the simplest analytic forms solving the
Hydrogen Schrödinger equation, to semi-analytic forms working with these functions
as a basis, to using density functional theory (DFT) techniques which solve for them
numerically. In this chapter we combine the best aspects of the previous calculations,
by using them when they are appropriate. For example, the states tightly bound to
the ionic sites can be well approximated as “core” electronic states in which semi-
analytic approaches work well, and the more free valence states can be computed with
DFT. This allows for the first complete calculation to be performed which takes in to
account all kinematically allowed transitions. We also take in to account “all-electron”
reconstruction effects which correct the pseudo-potential calculated wave functions at
small distances. We show that these effects can be important for heavy mediators, and
more generally for transitions with ω & 10 eV. We packaged this calculation in to the
open source program, EXCEED-DM [179].

• Ch. 9: Dark Matter Absorption via Electronic Excitations

In addition to the DM-electron scattering rate calculations performed in Ch. 8 ab-
sorption across the band gap can also take place. This ends up being a deceptively
complex problem for kinematic reasons. In a perfectly vertical transition one needs to
account for the fact that the energy eigenstates which the electron transitions between
are orthogonal. Generally this leads to a suppression of the absorption rate, and since
the DM momentum is smaller than the typical electron velocity, αme, electron veloc-
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ity dependent effects can be important. To handle these subtleties we construct an
non-relativistic EFT and carefully power count. This allows us to compute the DM
absorption rate from first principles for any DM model. It has been previously shown
that the vector DM and pseudoscalar DM absorption rates can be related to optical
data, and we find good agreement between the data and our calculations. We also
find that the scalar DM absorption rate cannot be related to optical data. Similar
to Ch. 8 we add an absorption module to EXCEED-DM to numerically compute these
absorption rates.

• Ch. 10: Dark Matter Direct Detection In Materials With Spin-Orbit Cou-
pling

While Chs. 8 and 9 focused on DM scattering and absorption in the Si and Ge targets
in use today, here we focus on more exotic targets, like ZrTe5, which have spin-orbit
couplings. These targets can be special because they can have much smaller band
gaps, O(meV), than the standard semiconductors used today. This allows for more
DM model parameter space to be covered in experiments which read out electrons,
without having to resort to phonon or magnon mode readout. These targets are also
theoretically interesting because the presence of spin-orbit coupling means that the
electronic spin is no longer a good quantum number, and the wave functions become
two component. We show that these effects can be important for states close to the
band gap. We also discuss the differences in the calculation presented here and those
done previously for Dirac materials which assume a perfectly linear dispersion relation.

Lastly in Ch. 11 we look to the future and discuss some important extensions of this work
done in this thesis.
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C h a p t e r 2

MULTI-CHANNEL DIRECT DETECTION OF LIGHT DARK MATTER:
THEORETICAL FRAMEWORK

2.1 Introduction
Direct detection has been playing a central role in the quest for the particle nature of dark
matter (DM). Over the past few decades, tremendous progress has been made at a range of
experiments focused on nuclear recoil signals, including ANAIS [67], CRESST [15, 68, 69],
DAMA/LIBRA [70], DAMIC [21, 71], DarkSide-50 [12], DM-Ice [72], KIMS [73], LUX [16,
74, 75], SABRE [76], SuperCDMS [23, 23, 77–80], and XENON1T [13, 14]. While these
experiments have excluded much of the parameter space for DM heavier than roughly a GeV,
much less is known about lighter DM. For sub-GeV DM, conventional nuclear recoil searches
lose sensitivity due to kinematic mismatch, as only a small fraction of DM’s kinetic energy
can be deposited on the heavier nuclei. Even with next generation detectors sensitive to sub-
eV energy depositions, nuclear recoils can at best probe DM masses down to O(100MeV).

To cover a broader mass range, electrons have been considered as an alternate pathway to
detecting light DM. A variety of targets have been studied, including noble gas atoms which
can be ionized with O(10 eV) energy deposition, semiconductors where electron transitions
can happen across O(eV) band gaps [19, 24, 25, 33–35, 39, 40, 177, 180], as well as systems
with O(meV) gaps like superconductors [41, 181, 182] and Dirac materials [29, 144, 183].
Electron transitions can potentially extract all of DM’s kinetic energy, and thus constitute a
more efficient search channel than nuclear recoils. For example, semiconductor targets can
probe DM masses down to O(MeV).

When the energy deposition is below the band gap, electron transitions are kinematically
forbidden. However, there are condensed matter systems with collective excitations that
can couple to the DM. For example, collective excitations in superfluid helium (phonons
and rotons) are sensitive to O(meV) energy depositions, especially via phonon pair produc-
tion [184–187]. In a crystal target, the active degrees of freedom below the electronic band
gap are acoustic and optical phonons – quanta of collective oscillations of atoms/ions. Direct
excitation of single phonons in crystals has been recently proposed as a new search channel
for light DM [28, 64]. Optical phonons typically have energies of O(10-100meV), and can
be excited by DM as light as O(10 keV). Acoustic phonons are gapless and, assuming an
O(meV) detector threshold, can also probe DM down to O(10 keV).
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All these detection channels do not exist in isolation. Depending on the DM mass and
couplings to Standard Model (SM) particles, it may either cause nuclear recoils, or induce
electron transitions, or excite phonons in the same target material. Thus, when designing
direct detection experiments, an important consideration should be to search for DM across
multiple channels in parallel. The kinematic interplay between several channels that we will
discuss in detail is illustrated in Fig. 2.1.
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Figure 2.1: Illustration of kinematic regimes probed via the three detection channels con-
sidered in this paper. For an incoming DM particle with velocity v = 10−3, the momentum
transfer q and energy deposition ω are bounded by ω ≤ qv − q2/2mχ, shown by the shaded
regions for three DM masses. Nuclear recoils require ω = q2/2mN for a given type of nucleus,
shown by the solid lines for helium and several elements in existing or proposed crystal tar-
gets. Standard calculations assuming scattering off individual nuclei break down below a few
meV (a few hundred meV) for superfluid He (crystal targets), where we truncate the lines.
Electron transitions can be triggered for ω above the band gap, which is O(eV) for typical
semiconductors, as shown by the dashed line. The end point at q ∼ 10 keV corresponds
to a few times αme, above which valence electron wavefunctions are suppressed, and only
(semi-)core electrons can contribute (which requires ω to be much higher than the band gap).
Single phonon excitations are relevant for ω . O(100meV) in typical crystals, as shown by
the dotted line. The momentum transfer can be up to q ∼ √mNωph ∼ O(100 keV) with
ωph the phonon energies, above which the rate is suppressed by the Debye-Waller factor.
We see that a GeV-mass DM can be probed by all three channels; a 10 MeV DM is out of
reach in conventional nuclear recoil searches, but can be searched for via electron transitions
in semiconductors and single phonon excitations in crystals; a sub-MeV DM cannot even
trigger electron transitions in eV-gap materials, but can still be detected via single phonon
excitations.
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On the theory side, most of the basic ingredients for the rate calculation are known. However,
they have been developed in separate contexts, and at first sight look very different for
different detection channels. In our opinion, it would be much more convenient to have a
common theoretical framework for all these calculations. This will not only facilitate the
comparison of target materials across various existing and proposed search channels, but
also provide the necessary calculation tools when new search channels are considered in the
future.

It is the purpose of this paper to lay out such a formalism, focusing on spin-independent (SI)
DM interactions.1 As we will see, for each detection channel, the calculation is factorized
into a particle physics model-specific part and a target response-specific part. The latter is
encoded in a dynamic structure factor, to be computed by quantizing the particle number
density operators in the Hilbert space of the excitations under study. We show how this
is done in three cases – nuclear recoils, electron transitions and single phonon excitations.
While the first two are relatively simple, and our calculation is mostly a formal rederivation
of known results, the phonon calculation presented here contains new aspects. Our general
framework allows us to derive single phonon excitation rates for arbitrary SI couplings from
first principles, such as phonon excitation by coupling to electrons.

In addition to deriving general rate formulae in this unified framework, we also aim to clarify
various conceptual and technical issues in direct detection calculations, and present new re-
sults that highlight some previously overlooked experimental prospects. For nuclear recoils,
we clarify the range of validity of the standard calculation. For electron transitions, we go
beyond the commonly made isotropic approximation. In fact, there exist simple materials
with large anisotropies. As an example, we consider boron nitride (BN) with a hexago-
nal crystal structure, and O(eV) band gap, and show that the expected rate can vary by
±(10 - 40)% during a day as the DM wind enters from different directions. Such daily mod-
ulation signals have been pointed out previously for electron transitions in graphene [188],
carbon nanotubes [189] and Dirac materials such as ZrTe5 and BNQ-TTF [29, 183], and
for single phonon excitations in sapphire [28] where they help distinguish signal from back-
ground. Here we show that also O(eV) band gap three dimensional semiconductors, like BN,
can exhibit daily modulation.2 Finally, for single phonon excitations, we extend the rate cal-
culation to DM heavier than an MeV, where the DM’s de Broglie wavelength is shorter than
the typical lattice spacing, and Umklapp processes can contribute significantly. We point

1The idea of treating various detection channels in a common framework was previously advocated in
Ref. [141], where the focus was on DM nuggets. Here we follow the same spirit and develop a formalism for
calculating direct detection rates for general DM models, assuming a point-like DM particle.

2See also Refs. [190–192] for proposals that take advantage of direction-dependent threshold effects.
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out an interesting interplay with nuclear recoils, and demonstrate the complementarity be-
tween the two channels. We also compute the phonon production rate for generic couplings
to the proton, neutron and electron, extending previous results for dark photon mediated
interactions.

We focus on the theoretical framework in the present work; in a companion paper [7], we
apply the results presented here to carry out a comparative study of many candidate tar-
get materials, and discuss strategies to optimize the search across multiple channels. We
also note that there are additional detection channels beyond those we discuss in detail
here (e.g., excitation of molecular states [193–195], multi-excitation production in superfluid
helium [184–187]), which have been pursued and can be studied in the same framework.

2.2 General Framework for Spin-Independent Dark Matter Scattering
In a direct detection event, a non-relativistic DM particle, χ, deposits a certain amount of
energy, and triggers a transition |i〉 → |f〉 in the target system. We assume the target system
is initially prepared in an energy eigenstate |i〉 (usually the ground state) and, as usual, treat
the incoming and outgoing DM particles as momentum eigenstates |p〉, |p′〉, with p = mχv,
p′ = p − q. For a given incoming velocity v and momentum transfer (from the DM to the
target) q, the energy deposition is

ωq =
1

2
mχv

2 − (mχv − q)2

2mχ

= q · v − q2

2mχ

. (2.1)

Here and in what follows, we denote q ≡ |q|, where q is the momentum 3-vector. Note that for
given DM mass mχ, the energy deposition is bounded by the parabola, ωq ≤ qvmax−q2/2mχ,
as shown in Fig. 2.1. Applying Fermi’s Golden Rule and summing over the final states, we
obtain the rate:

Γ(v) =

∫
d3q

(2π)3

∑
f

∣∣〈p′, f | δĤ |p, i〉
∣∣2 2πδ(Ef − Ei − ωq

)
, (2.2)

where δĤ is the interaction Hamiltonian, |p, i〉 = |p〉 ⊗ |i〉, |p′, f〉 = |p′〉 ⊗ |f〉. We take the
quantum states to be unit normalized unless specified otherwise, e.g., 〈p|p〉 = 〈i|i〉 = 1.

The DM part of the matrix element can be evaluated universally at the Born level:

〈p′| δĤ |p〉 = 1

V

∫
d3x eiq·x V(x) = 1

V
Ṽ(−q) , (2.3)

where V is the total spatial volume, V(x) is the effective scattering potential felt by the DM,
and Ṽ is its Fourier transform. We focus on SI couplings in the present work, in which case
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the scattering potential takes the form3

V(x) =
∫
d3x′

[
np(x

′)Vp(x− x′) + nn(x
′)Vn(x− x′) + ne(x

′)Ve(x− x′)
]
. (2.4)

Here np, nn, ne are the proton, neutron and electron number densities in the target, and
Vp,Vn,Ve are the respective scattering potentials from a single particle located at the origin.
We thus have

Ṽ(−q) = ñp(−q) Ṽp(q) + ñn(−q) Ṽn(q) + ñe(−q) Ṽe(q) . (2.5)

Note that for SI interactions, Ṽψ(−q) = Ṽψ(q) (ψ = p, n, e) are functions of only the magni-
tude of q. In vacuum, they simply coincide with 2→ 2 scattering matrix elementsMχψ(q) fa-
miliar from standard quantum field theory calculations. In the target medium, however, they
may receive corrections due to screening effects (see Sec. 2.2). We can define (momentum-
dependent) effective in-medium couplings fp, fn, fe to account for screening effects, while the
corresponding couplings in the vacuum Lagrangian are denoted by f 0

p , f
0
n, f

0
e . We can write

Ṽψ(−q) =
fψ(q)

f 0
ψ

Mχψ(q) ≡ fψ(q)M0(q) , (2.6)

whereM0 =Mχp/f
0
p =Mχn/f

0
n =Mχe/f

0
e is the vacuum matrix element for DM scattering

off any of the constituent particles (proton, neutron or electron) with unit coupling. The
total scattering potential is then

Ṽ(−q) = [fp(q) ñp(−q) + fn(q) ñn(−q) + fe(q) ñe(−q)]M0(q) . (2.7)

Let us rewrite this equation as follows:

Ṽ(−q) = Mχn(q)

[
fp(q) ñp(−q) + fn(q) ñn(−q) + fe(q) ñe(−q)

f 0
n

]
(2.8)

= Mχe(q)

[
fp(q) ñp(−q) + fn(q) ñn(−q) + fe(q) ñe(−q)

f 0
e

]
. (2.9)

Depending on the DM model and the process under consideration, we will factor out ei-
ther Mχn or Mχe, and define a target form factor, FT (q), composed of contributions from
protons, neutrons and electrons, as the quantity in brackets. In other words, we have

Ṽ(−q) =M(q)FT (q) , (2.10)
3More generally, DM interactions can be classified by nonrelativistic effective operators [55, 60, 196, 197].

The SI interaction we focus on here is the leading operator if generated without velocity suppression. Other
operators result in spin and/or velocity dependence of the scattering potential V(x), and may be probed
via additional detection channels beyond those considered in this work. For example, DM coupling to the
electron spin can excite magnons in solid state systems with magnetic order [8]. We leave a general effective
field theory study of light DM direct detection to future work.
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whereM stands forMχn orMχe. We can further factor out the q dependence ofM, which
can only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (2.11)

Fmed(q) =

1 (heavy mediator),

(q0/q)
2 (light mediator).

(2.12)

The reference momentum transfer is conventionally chosen to be q0 = mχv0 (with v0 the DM’s
velocity dispersion) for DM-neutron scattering, and q0 = αme for DM-electron scattering.

The factorization in Eq. (2.10) is a key component of the formalism. From the target-
independent particle-level matrix element M, we define the reference cross sections:

σn ≡
µ2
χn

π
|Mχn(q0)|2q0=mχv0 , σe ≡

µ2
χe

π
|Mχe(q0)|2q0=αme , (2.13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-
neutron and DM-electron scattering in the heavy mediator case. On the other hand, FT is
target specific, from which we define the dynamic structure factor :4

S(q, ω) ≡ 1

V

∑
f

∣∣〈f |FT (q)|i〉∣∣2 2πδ(Ef − Ei − ω), (2.14)

which encapsulates response of the target to DM couplings to the proton, neutron and
electron. Combining the two parts, we have

Γ(v) =
πσ

µ2

∫
d3q

(2π)3
F2

med(q)S
(
q, ωq

)
, (2.15)

where σ̄, µ, again, denote either σ̄n, µχn or σ̄e, µχe.

Let us highlight the following regarding the dynamic structure factor S(q, ω).

• S(q, ω) captures the target’s response to an energy-momentum deposition (q, ω).

• S(q, ω) depends on the distribution of constituent particles p, n, e in the target system
via ñp, ñn, ñe, which in turn depends on the nucleus types and electron wavefunctions.
It is therefore target material specific.

• S(q, ω) also depends on the active degrees of freedom in the target system via the
choice of |f〉, which in turn determines how FT (q) should be quantized. It is therefore
excitation (detection channel) specific.

4Here we adopt a slightly different normalization convention compared to Ref. [141]. The right hand
side of Eq. (2.14) here is identified with 2π

Ω S(q, ω) in Ref. [141], where Ω is the primitive cell volume.
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• If only one of the constituent particles p, n, e is responsible for the transitions |i〉 → |f〉,
S(q, ω) is DM model independent. Otherwise it depends on ratios (but not the overall
strength) of the couplings f 0

p , f
0
n, f

0
e .

• For any given DM mass mχ and incoming velocity v, only a slice in the (q, ω) space,
ω = ωq, is probed in the scattering process. The parabolic boundary of kinematic
region for each mχ in Fig. 2.1 is the envelope of these slices for all v directions for fixed
magnitude of v.

Finally, to obtain the total rate per target mass, we average over the DM’s initial velocity,
multiply by the number of DM particles in the detector, and divide by the detector mass,
giving

R =
1

ρT

ρχ
mχ

∫
d3v fχ(v) Γ(v) , (2.16)

where ρT is the target mass density, ρχ is the local DM energy density, and fχ is the DM’s
velocity distribution in the target rest frame. A common choice for fχ is a truncated Maxwell-
Boltzmann (MB) distribution boosted by the Earth’s velocity with respect to the galactic
rest frame,

fMB
χ (v) =

1

N0

e−(v+ve)2/v20 Θ
(
vesc − |v + ve|

)
, (2.17)

N0 = π3/2v20

[
v0 erf

(
vesc/v0

)
− 2 vesc√

π
exp
(
−v2esc/v

2
0

)]
. (2.18)

In the calculations presented in this paper, we take ρχ = 0.4GeV/cm3, v0 = 230 km/s,
vesc = 600 km/s, ve = 240 km/s.

In addition to the total rate, it is often useful to know the differential rate with respect to
the energy deposition onto the target ω. This simply requires inserting delta functions into
the integrals to pick out the contributions with ω = ωq:

dΓ

dω
=

πσ

µ2

∫
d3q

(2π)3
F2

med(q)S
(
q, ωq

)
δ
(
ω − ωq

)
, (2.19)

dR

dω
=

1

ρT

ρχ
mχ

∫
d3v fχ(v)

dΓ

dω
. (2.20)

To summarize, we have the following algorithm for computing the rate for a given detection
channel.

• First, identify the initial and final states |i〉, |f〉 according to the type of excitation.
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• Next, quantize FT (q) in terms of the relevant degrees of freedom such that it acts on
the target Hilbert space to induce the transitions |i〉 → |f〉.

• Then, compute the transition matrix element 〈f |FT (q)|i〉, and thus the dynamic struc-
ture factor S(q, ω) via Eq. (2.14).

• Finally, obtain the (differential) rate via Eqs. (2.15)-(2.20).

We will carry out this procedure for each detection channel in the next three sections. Before
doing so, let us discuss some technical details regarding the phase space integration and in-
medium effects.

Phase Space Integration
We see from Eqs. (2.15)-(2.20) that once the dynamic structure factor S(q, ω) is known, we
need to perform a six-dimensional integral over v and q to obtain the event rate R. The
integration gives familiar results in the special case of isotropic target response, but is more
complicated in the general anisotropic case. We now discuss the two cases in turn.

a) Special case: isotropic target response.

If
∣∣〈f |FT (q)|i〉∣∣2 = ∣∣〈f |FT (q)|i〉∣∣2, as is the case for nuclear recoils, the only dependence on

the direction of q is from the δ-function,

δ
(
Ef − Ei − ωq

)
=

1

qv
δ

(
cos θqv −

q

2mχv
− Ef − Ei

qv

)
, (2.21)

where θqv is the angle between q and v. Integrating over the angular variables, we have

Γ(v) =
σ

2µ2v

∫
qdqF2

med(q)
1

V

∑
f

∣∣〈f |FT (q)|i〉∣∣2Θ(v − vmin(q, Ef − Ei)
)
, (2.22)

where
vmin(q, ω) =

q

2mχ

+
ω

q
. (2.23)

The velocity integral then gives

R =
1

ρT

ρχ
mχ

σ

2µ2

∫
qdqF2

med(q)
1

V

∑
f

∣∣〈f |FT (q)|i〉∣∣2 η(vmin(q, Ef − Ei)
)
, (2.24)

where
η(vmin) =

∫
d3v

fχ(v)

v
Θ(v − vmin) . (2.25)
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These results are familiar from the standard nuclear recoil calculation [198], and have also
been used in previous electron transition calculations, where the target response has been
assumed to be isotropic. Note that they hold for any DM velocity distribution fχ(v). In
the case of the MB distribution in Eq. (2.17), the η function can be evaluated analytically,
giving

ηMB(vmin) =



πv20
2N0

{√
π v0
ve

[
erf
(
vmin+ve

v0

)
− erf

(
vmin−ve

v0

)]
− 4 exp

(
−v2esc

v20

)}
if vmin < vesc − ve ,

πv20
2N0

{√
π v0
ve

[
erf
(
vesc
v0

)
− erf

(
vmin−ve

v0

)]
− 2

(
vesc−vmin+ve

ve

)
exp
(
−v2esc

v20

)}
if vesc − ve < vmin < vesc − ve ,

0 if vmin > vesc + ve .

(2.26)
We see that five of the six integrals have been done analytically, and we are left only with a
one-dimensional integral over q (which can also be done analytically in the case of nuclear
recoils).

b) General case: anisotropic target response. Generally, crystal targets are not fully
isotropic, as the crystal structures break rotation symmetries. This implies that, for a
terrestrial detector, since the DM wind comes in from different directions at different times
of the day, there can be daily modulation in the detection rate. While the existence of
this effect is well-known [19, 33, 64], it has been calculated only recently in the contexts of
single phonon excitations [28] and electron transitions in Dirac materials [29, 183], where
the energy deposition is O(meV). In Sec. 2.4, we calculate this effect for the first time in
electron transitions in an O(eV) gap target.

When
∣∣〈f |FT (q)|i〉∣∣2 depends on the direction of q, the six-dimensional integral generally

does not admit a simple analytical solution. To proceed, we first evaluate the velocity integral
and define [28, 199]

g(q, ω) ≡
∫
d3v fχ(v) 2πδ(ω − ωq) . (2.27)

The rate can then be written in terms of this g(q, ω) function as

R =
1

ρT

ρχ
mχ

πσ

µ2

∫
d3q

(2π)3
F2

med(q)
1

V

∑
f

∣∣〈f |FT (q)|i〉∣∣2 g(q, Ef − Ei) . (2.28)

For general velocity distributions fχ, we still have to evaluate a six-dimensional integral,
which is a numerically intensive task. However, for the commonly assumed MB distribution,



33

Eq. (2.17), the g(q, ω) function can be evaluated analytically, giving

g(q, ω) =
2π2v20
N0q

[
exp
(
−v2−/v20

)
− exp

(
−v2esc/v

2
0

)]
, (2.29)

where
v− = min

{
1

q

∣∣∣∣q · ve +
q2

2mχ

+ ω

∣∣∣∣ , vesc

}
. (2.30)

Thus, only the three-dimensional integral over q needs to be done numerically (in addition to
other integrals that may be encountered in the evaluation of the dynamic structure factor).

In-Medium Effects
In the case of a vector mediator, in-medium effects can cause screening and affect direct
detection rates. They must be taken into account when deriving the target response FT (q)
(and hence the dynamical structure factor S(q, ω)) when present. While the treatment of
in-medium effects has been discussed in various contexts [10, 29, 144, 182], we review it here
for completeness. In particular, we derive the screening factors fψ(q)/f 0

ψ (ψ = p, n, e) in this
subsection.

For nonrelativistic systems relevant for direct detection that we focus on here, only electrons
can contribute significantly to screening when the energy deposition is above phonon fre-
quencies (ω & O(100 meV), corresponding to mχ & O(100 keV)), as nuclei are too heavy to
respond. At lower frequencies that match energy depositions in phonon excitation processes,
there is additional screening in an ionic (polar) crystal due to relative motion of ions. How-
ever, as we will see in Sec. 2.5, the ions’ response should be included in the source term in
Maxwell’s equations in order to be quantized in terms of phonon modes. Thus, also in this
case, we consider only electron contributions to in-medium effects.5

Consider a vector mediator A′, and suppose the vacuum Lagrangian takes the form

L = −1

4
FµνF

µν + eJµpAµ − eJµe Aµ

−1

4
F

′

µνF
′µν +

1

2
m2
A′A′

µA
′µ + gχJ

µ
χA

′
µ

+
(
f 0
pJ

µ
p + f 0

nJ
µ
n + f 0

e J
µ
e

)
A′
µ , (2.31)

where Jµψ = ψ̄γµψ (ψ = p, n, e). Here the first line is standard electromagnetism, the second
line is the dark sector Lagrangian, and the third line contains A′ couplings to SM particles.
We assume |f 0

ψ| � 1, and consistently keep terms only at linear order in these couplings.
Because the electron current Jµe couples to the linear combination Aµ+κA′

µ, with κ = −f 0
e /e,

5In-medium effects are also important when deriving astrophysical and cosmological constraints on vector
mediators [10, 42, 46], where other SM particles may be relevant.
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as opposed to just Aµ, the in-medium photon self-energy Πµν(q) implies the following terms
in the momentum space quantum effective action,

1

2
Πµν(Aµ + κA′

µ)(Aν + κA′
ν) =

1

2
ΠµνAµAν + κΠµνAµA

′
ν +O(κ2) . (2.32)

As in Ref. [29], we can project Πµν onto the three polarizations,

εµL =
1√
qαqα

(
q, ωq̂

)
, εµ± =

1√
2

(
0, ê⊥ ± i(q̂ × ê⊥)

)
, (2.33)

(where q̂ = q/|q|, and ê⊥ is a unit vector perpendicular to q), and diagonalize the 3 × 3

matrix
Kλλ′ ≡ −εµ∗λ Πµνε

ν
λ′ , (2.34)

to find the canonical modes. It is worth noting that the polarization vectors satisfy

gµνε
∗µ
λ ε

ν
λ′ = −δλλ′ ,

∑
λ

εµλε
ν∗
λ = −

(
gµν − qµqν

qαqα

)
. (2.35)

As a result, in the vacuum limit where Πµν =
(
gµν−qµqν/(qαqα)

)
Π and the photon propagator

is proportional to 1
qαqα−Π

, we have Kλλ′ = Π δλλ′ . In an isotropic medium,

Πµν = −ΠT

∑
λ=±

εµλε
ν∗
λ − ΠLε

µ
Lε
ν∗
L , K = diag(ΠT , ΠT , ΠL) , (2.36)

and the photon propagators are proportional to 1
qαqα−ΠT,L

. Generically, for an anisotropic
medium, we need to simultaneously rotate A and A′ into a polarization basis where K is
diagonal. In this basis, the quadratic part of the effective action can be diagonalized for each
polarization by

Aµ = Ãµ + κ
Π

m2
A′ − Π

Ã′
µ , A′

µ = Ã′
µ − κ

Π

m2
A′ − Π

Ãµ , (2.37)

where Π is an eigenvalue of K. In the Ã, Ã′ basis, the propagators are proportional to 1
qαqα−Π

and 1
qαqα−m2

A′
, respectively, and the interactions in Eq. (2.31) read[

e(Jµp − Jµe )−
Π

m2
A′ − Π

κgχJ
µ
χ

]
Ãµ

+

[
gχJ

µ
χ +

(
f 0
p −

Π

m2
A′ − Π

f 0
e

)
Jµp + f 0

nJ
µ
n +

m2
A′

m2
A′ − Π

f 0
e J

µ
e

]
Ã′
µ . (2.38)



35

Dark matter scattering is mediated by both Ã and Ã′. Taking both into account, we obtain
the following effective interaction:

gχJχµ

{
− 1

qαqα − Π

Π

m2
A′ − Π

κe(Jµp − Jµe )

+
1

qαqα −m2
A′

[(
f 0
p −

Π

m2
A′ − Π

f 0
e

)
Jµp + f 0

nJ
µ
n +

m2
A′

m2
A′ − Π

f 0
e J

µ
e

]}
=

1

qαqα −m2
A′
gχJχµ

{[
f 0
p +

(
1− qαqα

qαqα − Π

)
f 0
e

]
Jµp

+ f 0
nJ

µ
n +

qαqα
qαqα − Π

f 0
e J

µ
e

}
(2.39)

=
1

qαqα −m2
A′
gχJχµ

[
qαqα

qαqα − Π
f 0
e (J

µ
e − Jµp ) + (f 0

p + f 0
e )J

µ
p + f 0

nJ
µ
n

]
(2.40)

From the last equation, it is clear that the current A′ couples to contains a screened compo-
nent and an unscreened component: f 0

pJ
µ
p +f

0
nJ

µ
n+f

0
e J

µ
e = f 0

e (J
µ
e −Jµp )+

[
(f 0
p+f

0
e )J

µ
p +f

0
nJ

µ
n

]
.

The first term, which is proportional to the electromagnetic current, gets screened by a factor
of qαqα

qαqα−Π
, whereas the second term is unaffected.

In the special case of a dark photon that kinetically mixes with the SM photon, Eq. (2.31)
follows from diagonalizing the kinetic terms, and κ is equal to the kinetic mixing parameter.
In this case, f 0

p = −f 0
e = κe, f 0

n = 0, and the DM interaction is maximally screened. In
contrast, a U(1)B−L gauge boson has f 0

p = f 0
n = −f 0

e , and the coupling to neutrons is not
screened. As a final example, a hadrophobic A′ has f 0

p = f 0
n = 0, resulting in an unscreened

DM coupling to protons (which originates from the A-A′ mixing).

The screening factor qαqα
qαqα−Π

can be expressed in terms of the dielectric matrix ε(q, ω) by
solving the following set of equations for Πµν [29, 182]:

Jµ = −ΠµνAν , (2.41)

J i = σijE
j = σij(iωA

j − iqjA0) , (2.42)

σ = σT = iω(1− ε) . (2.43)

Note that the three-dimensional quantities are defined by σ = σij, 1 = δij, ε = εij. We
obtain the following solution:

Πµν =

(
Π00 Π0

Π0 −Π

)
, (2.44)

Π00 =
i

ω
q · σ · q , Π0 ≡ Π0

i = iσ · q , Π ≡ Πi
j = −iωσ . (2.45)
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Projecting Πµν onto polarization components, we obtain:

KLL = qαqα(1− q̂ · ε · q̂) , KL± = KL∓ = −ω
√
qαqα q̂ · ε · ε± , (2.46)

K±± = ω2
(
1− ε∓ · ε · ε±

)
, K∓± = −ω2 ε± · ε · ε± . (2.47)

We can see explicitly that in the isotropic limit, ε ∝ 1, so KL± = K∓± = 0, and KLL, K±±

are identified as ΠL, ΠT , respectively. In this case, K = diag(ΠL, ΠT , ΠT ), and the familiar
relations

ΠL = qαqα(1− ε), ΠT = ω2(1− ε) (2.48)

are reproduced. Beyond the isotropic limit, in general one has to diagonalize the K matrix as
discussed above. However, assuming anisotropies are not large, the calculation is simplified in
the case of nonrelativistic scattering. Here, the currents involved (Jµχ , Jµe , etc.) have velocity
suppressed spatial components, so the dominant contribution comes from the polarization
that is almost longitudinal, for which Π ' KLL up to small corrections. As a result, the
screening factor in Eq. (2.40) becomes

qαqα
qαqα − Π

' q2

q · ε · q
. (2.49)

Now it is straightforward to read off the screening of DM couplings from Eq. (2.39):

fp(q) = f 0
p +

(
1− q2

q · ε · q

)
f 0
e , fn(q) = f 0

n , fe(q) =
q2

q · ε · q
f 0
e . (2.50)

In what follows, we will often drop the argument q and just write fp, fn, fe for simplicity.

To close this subsection, we comment that in-medium screening affects different channels
differently. Nuclear recoils happen at high enough momentum transfer where ε can be ap-
proximated as unity, so fψ ' f 0

ψ. For electron transitions, the situation depends on the
band gap. For atoms, insulators and semiconductors with O(eV) or larger band gaps, ε

approaches unity when q & 2π/a ∼ O(keV) [65], which is the range for DM scattering kine-
matics. For smaller q, the full ε(q) can be fitted to experimental measurements or calculated
using advanced electronic structure techniques. For small-gap systems such as superconduc-
tors and Dirac semi-metals, it is important to keep the full energy-momentum dependence
in ε(q, ω). For example, in a (super)conductor, ε ∼ λ2TF/q

2 at low q, where λTF ∼ O(keV) is
the Thomas-Fermi screening parameter, resulting in significant screening [182]. In contrast,
in a Dirac semi-metal, ε approaches a constant at low q, so sensitivity to dark photon me-
diated scattering (and also dark photon absorption) is much stronger [29, 144]. For phonon
excitations, screening from electrons should also be accounted for, as we discuss in Sec. 2.5.
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2.3 Nuclear Recoils
We now apply the general framework of the previous section to the case of nuclear recoils
and reproduce familiar results. For simplicity we shall first assume only one type of nucleus
is present, with proton number Z and atomic mass number A, and later generalize to the
case of multiple nucleus types with non-degenerate {ZN}, {AN}.

To begin, we assume the nuclei do not interact with each other, so the Hilbert space of the
target system, which contains ρTV /mN nuclei, is a direct product of ρTV /mN single nucleus
Hilbert spaces. We will discuss the validity of this standard assumption in Sec. 2.3. The
target system is prepared in the initial state

|i〉 =
ρTV /mN∏
J=1

|ki〉J = |ki〉1 ⊗ |ki〉2 ⊗ . . . (2.51)

with ki = 0. In the final state |f〉, one of the |ki〉J ’s is replaced by |kf〉J with kf 6= 0. We
can write these states in terms of nucleus creation operators:

|ki〉J = V −1/2 b̂†ki |0〉J , |kf〉J = V −1/2 b̂†kf |0〉J . (2.52)

As usual, we have the canonical commutation relations [b̂k, b̂†k′ ] = (2π)3δ3(k−k′) or {b̂k, b̂†k′} =
(2π)3δ3(k − k′), etc.

Now we need to quantize

FT (q) =
1

fn

[
fpñp(−q) + fnñn(−q) + feñe(−q)

]
(2.53)

in terms of nucleus creation and annihilation operators b̂†, b̂. Obviously, the electron coupling
does not contribute, so we drop the last term. The proton and neutron number densities,
on the other hand, can be related to the nucleus number density nN , if we assume elastic
scattering (no transition between nuclear states):

np,n(x
′) =

∫
d3x′′ nN(x

′′)n0
p,n(x

′ − x′′) , (2.54)

where n0
p,n are the proton and neutron number densities around a single nucleus at the origin.

Therefore,

FT (q) =
fpñ

0
p(−q) + fnñ

0
n(−q)

fn
ñN(−q) ≡

fN
fn
FN(q) ñN(−q) , (2.55)

where fN ≡ fpZ + fn(A − Z), the DM-nucleus coupling in the q → 0 limit (where DM
interacts with all nucleons coherently). FN(q) is a nuclear form factor that deviates from
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unity only for q above the inverse nucleus radius. A commonly used form factor is the Helm
form factor [200],

FN(q) =
3 j1(qrn)

qrn
e−(qs)2/2 = 1− (qrn)

2

10
− (qs)2

2
+O(q4) , (2.56)

where rn ' 1.14A1/3 fm, s ' 0.9 fm. We can thus write FT (q) in terms of b̂†, b̂ via

ñN(−q) =
∫
d3x eiq·x b̂†xb̂x =

∫
d3k′

(2π)3
d3k

(2π)3
(2π)3δ3(k′ − k − q) b̂†

k′ b̂k . (2.57)

To obtain the dynamic structure factor, we evaluate the matrix element,

J〈kf |ñN(−q)|ki〉J =
1

V

∫
d3k′

(2π)3
d3k

(2π)3
(2π)3δ3(k′ − k − q) 〈0| b̂kf b̂

†
k′ b̂kb̂

†
ki
|0〉

=
(2π)3

V
δ3(kf − ki − q) , (2.58)

and sum over final states, which amounts to summing over the scattered nucleus J (simply
multiplying by ρTV /mN) and integrating over the final momentum V

∫
d3kf/(2π)

3. There-
fore,

S(q, ω) = 2π
ρT
mN

f 2
N

f 2
n

F 2
N(q) · V

∫
d3kf
(2π)3

[
(2π)3

V
δ3(kf − ki − q)

]2
δ

(
ω − q2

2mN

)
= 2π

ρT
mN

f 2
N

f 2
n

F 2
N(q) δ

(
ω − q2

2mN

)
, (2.59)

where we have regulated the delta function by (2π)3

V
δ3(0) = 1

V

∫
d3x ei0·x = 1.

We can now reproduce the familiar results for the differential rate. Assuming the nuclear
form factor is isotropic, FN(q) = FN(q), as is the case for the Helm form factor in Eq. (2.56),
we can apply Eq. (2.24) and obtain

dR

dω
=

ρχ
mχ

σn
2µ2

χn

f 2
N

f 2
n

∫
dq F 2

N F2
med η(vmin)

q

mN

δ

(
ω − q2

2mN

)
(2.60)

=
ρχ
mχ

σn
2µ2

χn

f 2
N

f 2
n

F 2
N F2

med η(vmin)
∣∣∣
q2=2mNω

, (2.61)

where η(vmin) is given by Eq. (2.25) and vmin = q
2µχN

in the present case. It is now easy to
generalize these results to the case of more than one nucleus type:

dR

dω
=

ρχ
mχ

σn
2µ2

χn

1∑
N AN

[∑
N

AN
f 2
N

f 2
n

F 2
N F2

med η(vmin)

]
q2=2mNω

, (2.62)

where N runs over the inequivalent nuclei in the target (e.g. N = Ga, As for GaAs).
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Validity of the Nuclear Recoil Calculation in Crystal Targets
A key assumption we have made in the derivation above is that the nuclei in the target
do not interact with each other (hence the factorization of the Hilbert space). In a crystal
target, however, the nuclei are not free, but interact with the neighboring nuclei in the crystal
structure. The justification of treating the nuclei as free particles initially at rest lies in the
fact that in the classical limit, the hard scattering process is instantaneous and local. In this
case, the nuclei interactions affect only the subsequent secondary processes. For example,
secondary phonons can be produced, which allows the energy deposition to be shared by
many nuclei.

On the other hand, as detector thresholds are pushed to lower energies, at some point we
would get into the quantum regime, where the finite duration and spatial extent of the
scattering invalidate the free nuclei assumption. We can make a quick estimate on when this
happens from the uncertainty principle. The time scale for the hard scattering to happen
is ∼ 1/ω. This should be compared to the intrinsic time scale for atomic vibrations in a
crystal, 1/ωph, with ωph the phonon energy. The instantaneous interaction approximation
in the standard nuclear recoil calculation is valid when the energy deposition is much higher
than the energies of all phonon modes, i.e.

ω � ωmax
ph (validity condition for nuclear recoils in crystals) . (2.63)

An alternative way to reach the same conclusion is the following. Within the length scale 1/q,
the DM should see the nucleus as a plane wave for the nuclear recoil calculation to hold. Since
the spatial extent of the nucleus wavefunction in a harmonic potential is ∼ (mNωph)

−1/2,
we need q � (mNω

max
ph )1/2. Using the kinematic relation ω = q2

2mN
, we arrive at the same

condition as Eq. (2.63).

To summarize, in crystal targets, the nuclear recoil calculation is valid for energy depositions
much higher than the phonon energies, which are typically O(10− 100) meV. This explains
the truncation of the C, Si, Ge, Cs nuclear recoil lines at low ω in Fig. 2.1. At lower energy
depositions, the target Hilbert space does not factorize into individual nuclei, but instead
contains single phonon and multi-phonon states as energy eigenstates, and the direct detec-
tion rate calculation proceeds differently. We discuss single phonon excitations in Sec. 2.5,
which will be the relevant processes when detector thresholds reach the 10-100 meV regime in
the future. In the intermediate energy regime – above the single phonon energies yet below
the validity range of nuclear recoils – direct multi-phonon production should be considered,
which we plan to investigate in future work.
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2.4 Electron Transitions
We next consider electron transitions. The initial state can be written as

|i〉 =
∏

I∈ occupied

ĉ†I |0〉 , (2.64)

where ĉ†I are electron creation operators, with I running over all occupied electron states
(energy eigenstates). Our normalization convention is such that {ĉI , ĉ†I′} = δII′ , so the
electron states are unit-normalized. The final states are labeled by I1, I2, where one of the
electrons has transitioned from I1 to an unoccupied state I2:

|f〉 = ĉ†I2 ĉI1|i〉 . (2.65)

The relevant piece in FT (q) is simply

FT (q) =
fe
f 0
e

ñe(−q) =
fe
f 0
e

∫
d3k′

(2π)3
d3k

(2π)3
(2π)3δ3(k′ − k − q) ĉ†

k′ ĉk , (2.66)

where the creation and annihilation operators are for momentum eigenstates, and satisfy
{ĉk, ĉ†k′} = (2π)3δ3(k − k′), etc. As discussed in Sec. 2.2, the screening factor is

fe
f 0
e

=

1 (scalar mediator),

q2/(q · ε · q) (vector mediator).
(2.67)

The dynamic structure factor is therefore

S
(
q, ω

)
=

2π

V

(
fe
f 0
e

)2∑
I1,I2

δ
(
EI2 − EI1 − ω

)
×

∣∣∣∣∫ d3k′

(2π)3
d3k

(2π)3
(2π)3δ3(k′ − k − q)〈i|ĉ†I1 ĉI2 ĉ

†
k′ ĉk|i〉

∣∣∣∣2
=

2π

V

(
fe
f 0
e

)2∑
I1,I2

δ
(
EI2 − EI1 − ω

)
×

∣∣∣∣∫ d3k′

(2π)3
d3k

(2π)3
(2π)3δ3(k′ − k − q) {ĉk, ĉ†I1}{ĉI2 , ĉ

†
k′}
∣∣∣∣2, (2.68)

where we have used ĉ†I1|i〉 = ĉI2|i〉 = 0, and that the anticommutators are just numbers.
To evaluate the anticommutators, we expand the energy eigenstates in terms of momentum
eigenstates:

ĉ†I |0〉 =
∫

d3k

(2π)3
ψ̃I(k) ĉ

†
k|0〉 , (2.69)
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where ψ̃I(k) is the momentum space wavefunction, which satisfies the orthonormality con-
dition

∫
d3k
(2π)3

ψ̃∗
I′(k)ψ̃I(k) = δII′ . We then obtain

S
(
q, ω

)
=

2π

V

(
fe
f 0
e

)2∑
I1,I2

δ
(
EI2 − EI1 − ω

)
·

∣∣∣∣∫ d3k′

(2π)3
d3k

(2π)3
(2π)3δ3(k′ − k − q) ψ̃∗

I2
(k′)ψ̃I1(k)

∣∣∣∣2. (2.70)

The dynamic structure factor in Eq. (2.70) applies for any target system where DM scattering
can trigger electron transitions – atoms, crystals, superconductors, Dirac materials, etc. –
once the energy levels and wavefunctions are known. In what follows, we examine the case of
periodic crystals in more detail. Here, the energy eigenstates of an electron are Bloch waves
labeled by a band index and a wavevector within the first Brillouin zone (1BZ), e.g.

ψI1(x) = ψi1k1(x) =
1√
V

∑
G1

ui1(k1 +G1) e
i(k1+G1)·x , (2.71)

ψ̃i1k1(k) =

∫
d3xψi1k1(x) e

−ik·x

=
1√
V

∑
G1

ui1(k1 +G1) (2π)
3δ3(k1 +G1 − k) , (2.72)

where G1 runs over all reciprocal lattice vectors. Note that the state labeled by i1,k1 has
Fourier components of k1 plus any reciprocal lattice vector. The coefficients ui1(k1 + G1)

are normalized as
∑

G1
|ui1(k1 +G1)|2 = 1. The dynamic structure factor now becomes

S
(
q, ω

)
=

2

V

(
fe
f 0
e

)2∑
i1,i2

∫
1BZ

d3k1
(2π)3

d3k2
(2π)3

2π δ
(
Ei2,k2 − Ei1,k1 − ω

)
×

∣∣∣∣ ∑
G1,G2

(2π)3δ3(k2 +G2 − k1 −G1 − q)u∗i2(k2 +G2)ui1(k1 +G1)

∣∣∣∣2, (2.73)

where the prefactor 2 comes from summing over contributions from degenerate spin states,
and the sums over the final state quantum numbers k1,2 have been replaced by integrals in
the continuum limit. As in Ref. [33], we define a crystal form factor

f[i1k1,i2k2,G] ≡
∑

G1,G2

u∗i2
(
k2 +G2

)
ui1
(
k1 +G1

)
δG2−G1,G (2.74)

for the transition i1k1 → i2k2 with an Umklapp G. This simply encodes the wavefunction
overlap, summed over all Fourier components consistent with momentum conservation. The
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dynamic structure factor can now be written more concisely as

S
(
q, ω

)
= 2

(
fe
f 0
e

)2∑
i1,i2

∫
1BZ

d3k1
(2π)3

d3k2
(2π)3

2π δ
(
Ei2,k2 − Ei1,k1 − ω

)
×∑

G

(2π)3δ3(k2 − k1 +G− q)
∣∣f[i1k1,i2k2,G]

∣∣2. (2.75)

Note that we have again used the identity (2π)3δ3(0) =
∫
d3x ei0·x = V . The material-

specific quantities appearing in S(q, ω) are the electron band structures (energy eigenvalues
Ei,k) and Bloch wavefunction coefficients ui(k + G). They can be computed by density
functional theory (DFT) methods which we discuss more in our companion paper [7].

Finally, performing the phase space integration, we obtain the total rate per target mass:

R =
2

ρT

ρχ
mχ

πσe
µ2
χe

∑
i1,i2

∫
1BZ

d3k1
(2π)3

d3k2
(2π)3

∑
G

g(q, ω)F2
med(q)

(
fe
f 0
e

)2∣∣f[i1k1,i2k2,G]

∣∣2 , (2.76)

where
q = k2 − k1 +G , ω = Ei2,k2 − Ei1,k1 . (2.77)

The g(q, ω) function, the mediator form factor Fmed, the screening factor fe/f 0
e and the

crystal form factor f[i1k1,i2k2,G] are given by Eqs. (2.27), (2.12), (2.67) and (2.74), respectively.
This generalizes the formula derived in Ref. [33] to account for possible anisotropies in the
target response.

Target Anisotropies and Daily Modulation
The simplest crystal targets that have been considered for direct detection via electron
transitions, like silicon and germanium, are quite isotropic. As a result, the rate is essentially
independent of the direction of the incoming DM’s velocity. However, this is not the case
for materials with large anisotropies in the electron band structures or wavefunctions. For
terrestrial experiments, as the target rotates with the Earth, the DM wind comes in from
different directions at different times of the day, resulting in a daily modulation of the
rate. This is on top of the annual modulation signal expected due to the variation of the
average DM velocity as the Earth orbits around the Sun [33, 35]. If observed, it would be a
smoking-gun signature of DM that is distinct from possible backgrounds. Our rate formula
Eq. (2.76) incorporates directional information, and is well-suited for calculating the daily
modulation signal.

As an example target, we consider hexagonal boron nitride (BN), shown in Fig. 2.2. The
numerical calculation of electron band structures and wavefunction coefficients, as well as
direct detection rates, proceeds in the same way as in our companion paper [7]. We include
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Figure 2.2: Crystal structure of hexagonal boron nitride (left), its corresponding first
Brillouin zone (middle) and DFT-calculated electronic band structure (right) with the Fermi
level set to zero. The letters shown in the Brillouin zone plot mark several of the high-
symmetry points, and the orange lines mark Brillouin zone paths along which electronic
band structure is plotted. The discontinuities in the band structure occur from taking a
discontinuous path through the Brillouin zone, indicated by “ | ” on the horizontal axis.

the calculation details specific for BN in Appendix A. As a result of the layered crystal
structure, the rate is strongly dependent on the angle between the DM wind and the layers.
We note, however, that BN has a three-dimensional crystal structure with the layers of
BN repeating in the out-of-plane direction, in contrast to single-layer graphene previously
considered in Ref. [188].

To show this directional dependence, we consider the same experimental setup as in Refs. [28,
29], where the crystal c-axis is aligned with the Earth’s velocity ve at time t = 0. With this
choice, daily modulation signal is independent of the location of the laboratory. In Fig. 2.3,
we pick three DM masses mχ = 5, 10, 100MeV to show how the expected detection rates –
both total (left panel) and differential (right panel) – change during a sidereal day, assuming
a light mediator and negligible in-medium effects. For all three masses, we see that the
rate is maximized at t = 12 hours when the DM wind is roughly aligned with the crystal
a-b plane, and minimized at t = 0 when the DM wind is aligned with the crystal c-axis.
This can be understood from the fact that electron wavefunctions are more localized in the
c direction and thus have smaller low-momentum components, whereas the DM scattering
matrix element peaks at low q for a light mediator. We also observe that modulation is
stronger for lighter DM. Generically, with a smaller energy deposition, the rate is more
strongly affected by band structure anisotropies near the band gap; far from the band gap,
the electron band structures and wavefunctions approach those for individual, isotropic ions.
For DM heavier than 100 MeV, we find roughly the same amount of daily modulation as the
mχ = 100MeV case. This is again because the momentum integral is dominated by small
q, which corresponds to the same kinematic region ωq ' q · v in the large mχ limit. On
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Figure 2.3: Total rate of electron transitions R in hexagonal BN, normalized to its daily
average 〈R〉 as a function of time (left), and differential rates at several times of the day
assuming σe = 10−37 cm2 (right), for a 5, 10, 100MeV DM scattering via a light mediator.

the other hand, once we go below mχ = 5MeV, the total rate quickly approaches zero, as
the DM does not carry sufficient kinetic energy to trigger a transition across the band gap,
which is ∼ 6 eV in BN.

2.5 Single Phonon Excitations
Finally, we derive single phonon production rates following the same procedure. Assuming
zero temperature, the initial state is the ground state with no phonons, and the final state
contains one phonon:

|i〉 = |0〉 , |f〉 = |ν,k〉 = â†ν,k|0〉 , (2.78)

where the canonical commutation relations read
[
âν,k, â

†
ν′,k′

]
= δνν′δkk′ , etc. Note that

phonons are labeled by a branch index ν = 1, . . . , 3n, where n is the number of atoms/ions
in each primitive cell, and a momentum vector k within the first Brillouin zone. For a crystal
with N primitive unit cells, k takes N discrete values. In the end we take the limit N →∞,
where k becomes continuous.

To see how FT (q) should be quantized in the phonon Hilbert space, we note that phonons
arise from atom/ion displacements:

ulj = xlj − x0
lj =

∑
ν

∑
k∈1BZ

1√
2Nmjων,k

(
âν,k εν,k,j e

ik·x0
lj + â†ν,k ε

∗
ν,k,j e

−ik·x0
lj

)
, (2.79)

where xlj is the position of the jth atom/ion in the lth primitive cell, x0
lj is the equilibrium

position, mj are the atom/ion masses, ων,k are the phonon energies, and εν,k,j are the phonon
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polarization vectors, normalized such that
∑

j |εν,k,j|2 = 1. The task is thus to find how
FT (q) depends on the atom/ion positions xlj and displacements ulj.

To do so, let us revisit the scattering potential in Eq. (2.4). For a periodic crystal, it can be
written as a sum over contributions from individual atoms/ions:

V(x) =
∑
l,j

∫
Ωlj

d3x′
[
nljp (x

′)Vp(x− x′) + nljn (x
′)Vn(x− x′) + nlje (x

′)Ve(x− x′)
]

=
∑
l,j

∫
Ωlj

d3r
[
nljp (r)Vp(x− xlj − r)

+ nljn (r)Vn(x− xlj − r)

+ nlje (r)Ve(x− xlj − r)
]

(2.80)

where Ωlj is a volume surrounding the lattice site l, j. Within each site volume, we have
changed the integration variable to r = x′ − xlj, the position relative to the center of the
site, and defined nljp (r) ≡ np(xlj + r), etc. For protons and neutrons, nljp,n here coincides
with n0

p,n introduced in Sec. 2.3 for the nucleus at site l, j. Also, displacing an atom/ion does
not change the nucleon distributions inside of a nucleus. Thus, we can write

nljp,n(r) = njp,n(r) , (2.81)

which makes it clear that nucleon number densities are the same in all primitive cells, and
are not affected by atom/ion displacements in any particular primitive cell. For electrons,
on the other hand, this is generally not true, since electron wavefunctions are distorted when
displacing an atom/ion relative to the other atoms/ions in the crystal lattice. To account
for this effect, we write

nlje (r) = nje(r) +
∑
l′,j′

δnlje
δul′j′

· ul′j′ +O(u2) ' nje(r) +
δnlje (r)

δulj
· ulj , (2.82)

where the last expression assumes the effect of electron redistribution following an atom/ion
displacement is weak and local. This is usually a good approximation for ionic crystals such
as gallium arsenide (GaAs), where electrons are semi-localized, and displacing an ion tends
not to significantly affect the electron clouds of neighboring ions. For covalent crystals such
as silicon, valence electron wavefunctions are more disperse, so more terms in the l′j′ sum
should be included for an accurate calculation.

Assuming the approximation in Eq. (2.82) is valid, we can Fourier transform Eq. (2.80) and
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obtain

Ṽ(−q) = M0(q)
∑
l,j

eiq·xlj
[
fpñ

j
p(−q) + fnñ

j
n(−q) + feñ

j
e(−q) + fe

δñlje (−q)
δulj

· ulj
]

= M0(q)
∑
l,j

eiq·xlj
[
fjFNj(q) + feñ

j
e(−q) + fe

δñlje (−q)
δulj

· ulj
]
, (2.83)

where fj = fpZj+fn(Aj−Zj), and FNj(q) is the nuclear form factor (introduced in Sec. 2.3)
for the nucleus occupying site j in each primitive cell. We therefore obtain

FT (q) =
∑
l,j

[
F0
j (q) +∆j(q) · ulj

]
eiq·xlj , (2.84)

with
F0
j (q) ≡

1

f 0
ψ

[
fjFNj(q) + feñ

j
e(−q)

]
, ∆j(q) ≡

fe
f 0
ψ

δñlje (−q)
δulj

, (2.85)

where f 0
ψ = f 0

n (f 0
e ) if the rate is written in terms of σn (σe). Note that ∆j is independent

of l due to lattice translation symmetries. From Eq. (2.84) we see that FT (q) depends on
ulj – which are quantized in terms of phonon modes as in Eq. (2.79) – via both the phase
factor eiq·xlj = eiq·(x

0
lj+ulj) and the ∆j(q) · ulj term.

With FT (q) quantized in the phonon Hilbert space, we now move on to calculate the matrix
element 〈ν,k|FT (q)|0〉. We first apply the Baker-Campbell-Hausdorff (BCH) formula to the
phase factor eiq·xlj to move annihilation operators to the right:

eiq·xlj = eiq·x
0
lj

∏
ν,k

exp
[
i(q · ε∗ν,k,j) e

−ik·x0
lj√

2Nmjων,k
â†ν,k +

i(q · εν,k,j) eik·x
0
lj√

2Nmjων,k
âν,k

]

= eiq·x
0
lj

∏
ν,k

exp
[
i(q · ε∗ν,k,j) e

−ik·x0
lj√

2Nmjων,k
â†ν,k

]
· exp

[
i(q · εν,k,j) eik·x

0
lj√

2Nmjων,k
âν,k

]
×

exp
(
|q · εν,k,j|2

4Nmjων,k

[
â†ν,k, âν,k

])
= eiq·x

0
lj e−Wj(q) exp

[∑
ν,k

i(q · ε∗ν,k,j) e
−ik·x0

lj√
2Nmjων,k

â†ν,k

]

× exp
[∑
ν,k

i(q · εν,k,j) eik·x
0
lj√

2Nmjων,k
âν,k

]
, (2.86)

where we have used the fact that the commutator between creation and annihilation opera-
tors is a classical number so the BCH series terminates. In the last equation,

Wj(q) =
1

4Nmj

∑
ν

∑
k∈1BZ

|q · εν,k,j|2

ων,k
→ Ω

4mj

∑
ν

∫
1BZ

d3k

(2π)3
|q · εν,k,j|2

ων,k
(2.87)
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is the Debye-Waller factor (in the continuum limit
∑

k → V
∫

d3k
(2π)3

= NΩ
∫

d3k
(2π)3

with Ω

the volume of the primitive cell). The physical meaning of this factor is that a transition
|i〉 → |f〉 can be accompanied by additional phonons’ creation out of the vacuum followed by
their annihilation, and all these processes are resummed into the exponential. The matrix
element thus becomes

〈ν,k|FT (q)|0〉 =
∑
l,j

eiq·x
0
lj e−Wj(q) ×

〈ν,k|
[
F0
j (q) +∆j(q) · ulj

]
exp
[∑
ν′,k′

i(q · ε∗ν′,k′,j) e
−ik′·x0

lj√
2Nmjων′,k′

â†
ν′,k′

]
|0〉

=
∑
l,j

ei(q−k)·x0
lj e−Wj(q)

i√
2Nmjων,k

×

[
F0
j q − i∆j +

q

Nmj

∑
ν′,k′

(i∆j · εν′,k′,j)(q · ε∗ν′,k′,j)

2ων′,k′

]
· ε∗ν,k,j . (2.88)

The l sum can be eliminated via the identity∑
l

ei(q−k)·xl = N
∑
G

δq−k,G , (2.89)

where x0
lj = xl + x0

j with xl being the position of the lth primitive cell and x0
j being the

equilibrium position of the jth atom/ion within the primitive cell, and G runs over the
reciprocal lattice vectors. In fact, at most one term in the G sum is picked out for given q

and k, since k ∈ 1BZ. We will thus drop the G sum in what follows. On each phonon branch,
as we sum over k, only the mode that satisfies q = k +G can give a nonzero contribution
to the dynamic structure factor, as a result of lattice momentum conservation.

It is worth emphasizing that the notion of momentum conservation here differs from the
one familiar in particle physics, due to the spontaneous breaking of continuous translation
symmetries. While each phonon can be thought of as carrying a momentum k within the
1BZ, it can be excited even when the momentum transfer q is outside the 1BZ via Umklapp
scattering, in which case G 6= 0. For DM heavier than ∼ MeV, the momentum transfer can
exceed ∼ keV, the typical size of the 1BZ. In this case, Umklapp processes can contribute
significantly if the matrix element has support at high q (which is the case for a heavy
mediator). We will see an example of this in Sec. 2.5. Note that momentum is still conserved
at the fundamental level: the extra momentum G leads to a recoil of the entire crystal,
which becomes unobservable in the limit N →∞. On the other hand, the notion of energy
conservation is the same, as continuous time translation symmetry remains unbroken. As
a result, the energy deposition has to match the phonon energy for a phonon mode to be
excited.
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With the equations above, we obtain the dynamic structure factor:

S(q, ω) =
2π

V

∑
ν

∑
k∈1BZ

∣∣〈ν,k|FT (q)|0〉∣∣2 δ(ω − ων,k)
=
π

Ω

∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2 δ(ω − ων,k) , (2.90)

where
Y j ≡ F0

j q − i∆j +
Ω

mj

q
∑
ν′

∫
1BZ

d3k′

(2π)3
(i∆j · εν′,k′,j)(q · ε∗ν′,k′,j)

2ων′,k′
. (2.91)

We have made it implicit in the last line of Eq. (2.90) that the k vector is the one inside the
first Brillouin zone that satisfies q = k +G.

Finally, integrating over the DM velocity distribution, we obtain the rate per target mass:

R =
1

mcell

ρχ
mχ

πσ

2µ2

∫
d3q

(2π)3
F2

med(q)
∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2 g(q, ων,k) ,
(2.92)

where mcell = ρTΩ is the mass contained in a primitive cell. The mediator form factor Fmed,
the Debye-Waller factor Wj(q) and the g(q, ω) function are given by Eqs. (2.12), (2.87) and
(2.27), respectively. The DM couplings are encoded in the Y j vectors given in Eq. (2.91),
with F0

j ,∆j defined in Eq. (2.85). Meanwhile, the material specific quantities – phonon
dispersions ων,k and polarization vectors εν,k,j – can be numerically computed using DFT
methods detailed in our companion paper [7].

In the following subsections, we discuss the phonon excitation calculation in more detail. It
is clear from the discussion above that Y j are the key quantities to compute for any specific
DM model. In Sec. 2.5, we consider the simpler case where DM couples only to nucleons but
not electrons, and point out an interesting complementarity with nuclear recoils. We also
discuss the relevance of Umklapp processes for DM heavier than an MeV, for both heavy and
light mediators. Including DM-electron couplings introduces complications, but we show in
Sec. 2.5 that Y j take a simple form in the low q limit for general couplings fp,n,e. Note that
the dark photon mediator benchmark (f 0

p = f 0
e , f

0
n = 0) has been studied in Refs. [28, 64]

based on the Fröhlich Hamiltonian. Our calculation here reproduces previous results, and
helps clarify their range of validity.

Dark Matter Coupling Only to Nucleons
Setting fe = 0 and f 0

ψ = f 0
n = fn in Eq. (2.85), we have

F0
j (q) =

(
fj
fn

)
FNj(q) , ∆j(q) = 0 . (2.93)



49

In this case, Y j is simply F0
j q, and the rate Eq. (2.92) becomes

R =
1

mcell

ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3
F2

med(q)×∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

fj
fn
FNj(q) e

iG·x0
j
(
q · ε∗ν,k,j

)∣∣∣∣2 g(q, ων,k) . (2.94)

It is interesting to compare to the nuclear recoils case. If there is only one atom in the
primitive cell, we have mcell = mj = mN , and

R =
ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3
e−2W f 2

N

f 2
n

F 2
NF2

med

∑
ν

∣∣q · ε∗ν,k∣∣2
m2
Nων,k

g(q, ων,k) . (2.95)

The differential rate reads

dR

dω
=

ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3
e−2W f 2

N

f 2
n

F 2
NF2

med g(q, ω)
∑
ν

∣∣q · ε∗ν,k∣∣2
m2
Nω

δ(ω − ων,k) . (2.96)

On the other hand, we can rewrite Eq. (2.60) for nuclear recoils in terms of the g(q, ω)

function via
∫
q dq η(vmin)→ 2

∫
d3q
(2π)3

g(q, ω), and multiply the integrand by 1 = q2

2mNω
:

dR

dω
=

ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3
f 2
N

f 2
n

F 2
NF2

med g(q, ω)
q2

m2
Nω

δ

(
ω− q2

2mN

)
(nuclear recoil) . (2.97)

One can clearly see the similarity between Eqs. (2.96) and (2.97). However, a key difference
between nuclear recoils and phonon excitations is the way in which contributions from dif-
ferent atoms add up in the case of more than one atoms in the primitive cell. Comparing
Eq. (2.94) against Eq. (2.62), we see that, in contrast to the nuclear recoils case where we add
up the rates from inequivalent nuclei, for phonon excitations the sum over j is taken at the
amplitude level. It is worth noting, however, that this apparent coherence does not result in
a more favorable scaling of the detection rate. In fact, the total rate per target mass scales
with neither the number of nuclei in the primitive cell, nor the total number of atoms/ions in
the crystal. The former can be seen from the fact that phonon polarization vectors scale as
εν,k,j ∼

√
mj/mcell, which, together with the prefactor, means the denominator of Eq. (2.94)

scales as m2
cell. The latter is because of the 1/

√
N normalization factor when expanding ulj

in terms of phonon creation and annihilation operators (see Eq. (2.79)). The intuition here
is that, despite the collective nature of phonon excitations, we have to project the motion of
each atom onto the phonon modes that match the energy-momentum transfer. As a result,
coherence between more atoms comes with a price of a smaller overlap with phonon modes.

Another key difference between nuclear recoils and phonon excitations, alluded to in Fig. 2.1
and Sec. 2.3, is the kinematic regimes probed. In the phonon case, the Debye-Waller factor
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e−Wj cuts off the momentum integral for q &
√
mNωph, the inverse spatial extent of the

nucleus wavefunction. The ωph here should be thought of as an average phonon energy
over the entire 1BZ, which is of the same order as ωmax

ph . As discussed in Sec. 2.3, this
high q regime is exactly where the nuclear recoil calculation becomes valid. In addition,
nuclear recoils happen at much higher energy depositions ω = q2/2mN � ωmax

ph than phonon
excitations.

A multi-channel search can exploit this complementarity between nuclear recoils and phonon
excitations. Let us consider, as a benchmark model, a hadrophilic scalar mediator coupling
identically to protons and neutrons (fp = fn, fe = 0). In Fig. 2.4, we compare the reach
of the two channels, using GaAs as an example target material. For a heavy mediator (left
panel), we see that with sub-eV energy thresholds, nuclear recoils can probe DM masses
above ∼ 100MeV — this is the mass regime where the single phonon excitation rate suffers
from Debye-Waller suppression. Below ∼ 100MeV where nuclear recoils lose sensitivity,
single phonon excitations can probe a few more orders of magnitude of mχ, depending on
the energy threshold. For a light mediator (right panel), on the other hand, single phonon
excitations outperform nuclear recoils for all mχ. This is because the momentum integral is
dominated by the lowest q, which only depends on the energy threshold, qmin ' ωmin/vmax.
The mass scaling of the curves in Fig. 2.4 can be understood with a close examination of
phase space integrals; we reserve a detailed discussion, including how the various features of
the curves depend on material properties, for the companion paper [7].

It is also worth noting that while direct production of single phonons has been proposed
mainly as a channel to search for sub-MeV DM, we see from Fig. 2.4 that its sensitivity
extends well above MeV DM masses, which is important for covering the parameter space
out of reach in nuclear recoils. A DM particle heavier than ∼MeV carries a momentum larger
than the typical size of the 1BZ (or equivalently, the inverse lattice spacing). However, as
explained below Eq. (2.89), a crystal target is able to absorb a momentum transfer beyond
the 1BZ while still producing a phonon, provided the energy deposition matches that of the
phonon energy. Such Umklapp processes can contribute significantly to the rate. In Fig. 2.5,
we examine the role of Umklapp scattering by comparing the full rate (solid) vs. contributions
from q ∈ 1BZ (dashed), for three DM masses. We show the differential distribution up to
34 meV, the highest phonon energy in GaAs. For mχ = 0.1MeV, the maximum momentum
transfer qmax ' 2mχvmax ' 0.56 keV is within the 1BZ, so the solid and dashed histograms
coincide. Also, only acoustic phonons with energies below csqmax ' 9meV (where cs is the
speed of sound) and optical phonons are kinematically accessible; contributions from optical
phonons are suppressed at low q [201], so the total rate is dominated by the low energy
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Figure 2.4: Projected reach for DM scattering via a heavy (left, mφ & 400 MeV) or light
(right, mφ = 1 eV) scalar mediator coupling to nucleons (fp = fn, fe = 0), assuming 1 kg-yr
exposure with a GaAs target, 3 signal events and no background. Both single phonon pro-
duction (purple, assuming energy thresholds ωmin = 1, 10, 30meV) and nuclear recoils (red,
assuming ωmin = 0.5, 1 eV) are complementary in probing currently unconstrained parame-
ter space. The heavy mediator case is free from stellar constraints for mφ & 400 MeV [10],
and the neutrino floor is taken from Ref. [11]. Currently, the best experimental nuclear
recoil constraints in this region of parameter space are from DarkSide-50 [12] (assuming
binomial fluctuations), and XENON1T (combined limits from [13, 14]). We also show the
constraint from CRESST-II [15], which is stronger than the DarkSide-50 constraint at low
masses assuming no fluctuation in energy quenching. A more complete collection of nuclear
recoil constraints can be found in Refs. [12, 14, 16]. For a light mediator with mφ = 1 eV,
fifth force experiments provide the dominant constraint on mediator-nucleon couplings [10].
Meanwhile, the mediator-χ coupling is constrained by DM self interactions (SIDM) if χ
makes up all the DM [10], or just by perturbativity (Pert.) if χ is a DM subcomponent (in
which case the projected reach can be easily rescaled).

acoustic phonons. For mχ = 1MeV and 10 MeV, Umklapp processes dominate the rate in
the heavy mediator case, since the momentum integral is dominated by large q. In the light
mediator case, the matrix element peaks at small q, so the total rate is well approximated by
the 1BZ contribution for sufficiently low energy thresholds (e.g. 1 meV). However, Umklapp
scattering can still contribute significantly in the highest energy bins, and dominate the rate
if the energy threshold is higher (e.g. 30 meV).

Dark Matter With Couplings to Electrons
In the presence of electron couplings fe 6= 0, information about electron distributions is
needed for the rate calculation. We focus on ionic crystals in this subsection, for which
Eq. (2.82) is a good approximation, and the rate formula Eq. (2.92) directly applies. In
this case, we need ñje and δñlje /δulj as input. While ñje can be derived from the same
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Figure 2.5: Differential rate of single phonon excitations in a GaAs target for mχ =
0.1, 1, 10MeV, assuming a heavy (left) or light (right) scalar mediator coupling to nucleons
(fp = fn, fe = 0), with σ̄n = 10−43 cm2 and ωmin = 1meV. Contributions from momentum
transfer within the first Brillouin zone are shown in dash. Umklapp processes account for
the differences between solid and dashed histograms.

electron wavefunctions as those used in electron transition calculations in Sec. 2.4, δñlje /δulj
is challenging to compute numerically for general q and ulj.

However, the calculation simplifies in the limit q � r−1
ion, the inverse ionic radii. As in classical

electromagnetism, we can make a multipole expansion,

ñje(−q) =
∫
Ωlj

d3r eiq·rnlje (r) = Ne,j − iq · P e,j +O(q2) , (2.98)

where Ne,j is the number of electrons associated with site l, j, and P e,j is the electron contri-
bution to the polarization in the volume Ωlj. Consider the response of the total polarization
of the volume to a lattice displacement ulj:

δP lj = Qj δulj + δP e,j , (2.99)

where Qj = Zj −Ne,j is the total charge. This defines the Born effective charge tensor:6

Z∗
j ≡

δP lj

δulj
= Qj1+

δP e,j

δulj
. (2.100)

Thus,
δñlje (−q)
δulj

= −iq · δP e,j

δulj
+O(q2) = −iq · (Z∗

j −Qj1) +O(q2) . (2.101)

6More precisely, the Born effective charge Z∗
j is defined as the change in macroscopic polarization caused

by a uniform displacement of the entire sublattice j [202]. However, under the assumption we have made in
Eq. (2.82) – that the electrons respond locally to the ionic displacements – the precise definition is equivalent
to Eq. (2.100).
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From Eqs. (2.98) and (2.101), we obtain (choosing f 0 = f 0
e in the normalization):

F0
j (q) =

fp
f 0
e

Zj +
fn
f 0
e

(Aj − Zj) +
fe
f 0
e

Ne,j +O(q) , (2.102)

∆j(q) = − fe
f 0
e

iq · (Z∗
j −Qj1) +O(q2) , (2.103)

where we have set FN,j(q) = 1 since q � r−1
ion is much smaller than the inverse nucleus radius.

We therefore obtain the following simple expression for Y j:

Y j = q ·
[
fp
f 0
e

Zj 1+
fn
f 0
e

(Aj − Zj)1+
fe
f 0
e

(Zj1−Z∗
j)

]
+O(q2) . (2.104)

In the case of a vector mediator, the coupling ratios appearing in Eq. (2.104) should incorpo-
rate in-medium screening effects according to Eq. (2.50). As mentioned at the beginning of
Sec. 2.2, while dielectric response of an ionic crystal comes from both electrons and ions at
phonon frequencies, only the electron contribution is included in the derivation of Eq. (2.50).
That this is the correct treatment should be clear from the calculation above. Polarization
induced by lattice displacements has been treated as an effective charge density ∇ ·P , since
it can induce the transition |0〉 → |ν,k〉. As such, it enters the source term rather than the
dielectric matrix ε in Maxwell’s equations. In the low q limit, electron contributions to ε

below the electronic band gap approach a constant ε∞, referred to as the high-frequency
dielectric constant.

In the special case of a dark photon mediator that kinetically mixes with the SM photon,
f 0
p = −f 0

e , f 0
n = 0. Combining Eqs. (2.104) and (2.50), and setting ε→ ε∞, we obtain

Y j = −
q2

q · ε∞ · q
(q ·Z∗

j) . (2.105)

By Eq. (2.92), the rate is therefore

R =
1

mcell

ρχ
mχ

πσe
2µ2

χe

∫
d3q

(2π)3
F2

med(q)
q4

(q · ε∞ · q)2
×

∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x0
j
(
q ·Z∗

j · ε∗ν,k,j
)∣∣∣∣2 g(q, ων,k) . (2.106)

Note that since Eq. (2.104) for Y j is derived in the limit q � r−1
ion ∼ O(keV), Eq. (2.106) holds

only when the integral is dominated by this region. This is the case for a light dark photon
mediator for any DM mass, since the integrand peaks at small q. In this case, Eq. (2.106)
is in agreement with the result obtain in Ref. [28] based on the Fröhlich Hamiltonian. For a
heavy mediator, on the other hand, the integrand peaks at qmax = 2mχvmax, so Eq. (2.106)
holds only for mχ � (2vmaxrion)

−1 ∼ O(MeV).
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Figure 2.6: Projected reach for a 5% subcomponent of DM scattering via a light (1 eV)
hadrophobic scalar (left) or U(1)B−L vector (right) mediator, assuming 1 kg-yr exposure
with a GaAs target, 3 signal events and no background. Single phonon excitation reach is
shown in purple, assuming energy thresholds ωmin = 1, 10, 30meV. Pink regions are excluded
when taking into account the strongest constraint on the mediator-SM coupling – red giant
(RG) stars and fifth force experiments for the two models respectively [10] – together with
perturbativity (Pert.) of the mediator-χ coupling. In the U(1)B−L case, the gray region is
excluded by stellar production of χ [17].

Beyond the previously studied dark photon mediator case, our first-principle rate derivation
here allows us to compute the reach for other DM models with couplings to electrons. As
examples, we consider two benchmark models from Ref. [10] – a hadrophobic light scalar
mediator and a light U(1)B−L vector mediator. In both cases, astrophysical constraints al-
ready rule out all of the parameter space within reach of proposed experiments if χ composes
all the DM. We find similar results here: for a hadrophobic light scalar mediator, the astro-
physical constraints extend past the reach of single phonon excitations in a GaAs target; for
a light U(1)B−L vector mediator, for mχ & 100 MeV and ωmin = 1 meV, the reach extends
slightly past the astrophysical constraints, but the rest of the parameter space is constrained.
Therefore, as in Ref. [10], we consider the case where χ is a 5% subcomponent of DM, in
which case SIDM constraints are absent and single phonon excitations can probe currently
unconstrained parameter space. The projected reach for both benchmark models is shown
in Fig. 2.6, where a mediator mass of 1 eV is assumed for definiteness.

2.6 Conclusions
Dark matter direct detection has entered an era in which not only the mass coverage is
extending beyond the classic WIMP window – especially into the sub-GeV regime – but
also multi-channel target response is becoming an important consideration when design-
ing new experiments. In this paper, we detailed a theoretical framework for calculating
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spin-independent direct detection rates that can be applied across multiple search channels.
Starting from generic DM couplings to the proton, neutron and electron, we factored out
material and channel dependent target response into the dynamic structure factor, and de-
rived a procedure to compute this factor which involves quantizing number density operators
in the appropriate Hilbert space. We focused on O(eV)-gap crystal targets where existing
and proposed search channels include nuclear recoils, electron transitions and single phonon
excitations, each probing a different kinematic regime (see Fig. 2.1). Despite the apparently
very different physics involved, the calculation proceeds analogously for all three channels.

While part of this paper has been devoted to rederiving known results in this unified frame-
work, we also obtained several new results, which we summarize in the following:

• We have clarified the range of validity of the standard nuclear recoils calculation
(Sec. 2.3). For energy depositions lower than O(100meV) in a crystal target, the
picture of scattering off single nuclei breaks down. Collective motions of all nuclei
have to be considered, with phonons being the appropriate degrees of freedom. The
situation is analogous in fluids, though the energy cutoff can be lower (e.g. O(meV)

for superfluid helium).

• We have extended the electron transition calculation to account for anisotropic target
response, and pointed out the resulting daily modulation can be significant (Sec. 2.4).
As an example, we considered hexagonal boron nitride, a semiconductor with a 6 eV
gap and layered crystal structure, and showed that ±(10 - 40)% daily modulation can
be expected, depending on the DM mass (Fig. 2.3).

• As a major new result, we have presented a first-principle derivation of single phonon
excitation rates for generic SI couplings. The final result is Eq. (2.92), where depen-
dence on the relative couplings to the proton, neutron, and electron is fully captured by
the quantities Y j. Computing Y j is straightforward for DM coupling only to nucleons
(Sec. 2.5), but nontrivial in the presence of coupling to electrons (Sec. 2.5). In the
latter case, we have shown that Y j are related to the Born effective charges in an ionic
crystal for a general light mediator (not necessarily a dark photon) – see Eq. (2.104).
As examples, we computed the reach for DM scattering via a light hadrophobic scalar
or U(1)B−L vector mediator (Fig. 2.6), where single phonon excitations offer a com-
plementary search channel with competitive sensitivities to previous proposals [10].

• We have pointed out that sensitivity of the single phonon excitation channel is not
restricted to sub-MeV DM. For heavier DM, Umklapp contribution can be significant
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(Fig. 2.5), and single phonon excitations and nuclear recoils play complementary roles
in probing the DM parameter space (Fig. 2.4).

In addition to shedding light on the connection and complementarity between various existing
and proposed direct detection channels, the theoretical framework presented here also makes
clear that there is a common algorithm one can follow to study yet unexplored novel detection
channels in the future. Some of them will require extending our present formalism beyond
SI interactions, a task we plan to take on in future work.
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C h a p t e r 3

MULTI-CHANNEL DIRECT DETECTION OF LIGHT DARK MATTER:
TARGET COMPARISON

3.1 Introduction
Direct detection experiments have traditionally focused on dark matter (DM) with mass near
the weak scale. Cosmologically, however, thermal particle DM may inhabit a much broader
mass range between a keV and 10 TeV. Recent years have seen bold advances in the efforts to
probe DM in the range below 10 GeV, which was less explored previously. Here, despite the
existence of well-motivated candidates – including MeV dark matter [203–205], WIMPless
miracle DM [206], GeV hidden sector dark matter [207–209], asymmetric DM [142, 143],
freeze-in DM [137], Strongly Interacting Massive Particles [210], and many others – conven-
tional detection techniques based on nuclear recoils lose sensitivity as the energy deposition
falls below detector thresholds. This has motivated an extensive exploration of novel de-
tection channels using a variety of target systems. These include electron transitions in
atoms and semiconductors [19, 24, 25, 33–35, 39, 40, 177, 180, 188, 190, 211, 212], super-
conductors [41, 181, 182], Dirac materials [29, 144, 183], via the Migdal effect [213–217],
molecular dissociation or excitation [193–195], multi-excitation production in superfluid he-
lium [184–187], defect production [191, 192], single phonon [28, 64] and magnon [8] excita-
tions in crystals (see also Refs. [189, 218–224] for other recent proposals).

As new experiments are being planned and detection technologies are being discussed and
improved, it is important to identify the most promising targets in order to prioritize the
experimental program. There are two questions in this respect: (i) what types of excitations
can be utilized as efficient detection paths with current and developing technologies, and (ii)
what materials have the strongest response to DM scattering?

It is the purpose of this paper to initiate a discussion on these questions, and provide theory
input to the optimization of experimental strategy. We consider several complementary
detection channels:

• nuclear recoils, sensitive to the heaviest DM masses, down to O(100MeV) at best;

• electron transitions across band gaps in crystals, covering DM masses down toO(100 keV);

• single phonon excitations in crystals, reaching the lightest DM masses, down toO(keV).
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The last two detection channels rely on collective properties of the target, which makes
calculating the DM model reach more involved than the standard nuclear recoil calculation.
While nuclear recoil was proposed long ago [225, 226], electron transitions in semiconductors
(proposed in Refs. [19, 33, 177]) and phonon production from sub-MeV DM in crystals (put
forth in Refs. [28, 39, 64]) have a much shorter history. Now that all these ideas are available,
we hope to find materials which have a strong response in all channels, in order to cover a
broad range of DM masses.

We begin in Sec. 3.2 with a brief review of each detection channel. A common framework
to calculate the reach via all three channels is presented in a companion paper [227], which
makes it clear that the detection rate factorizes into the particle-level scattering matrix
element squared and a material specific dynamic structure factor that captures the target
response. Here we summarize the main results of Ref. [227]. Our goal is to find materials with
strong responses (a large dynamic structure factor) in each channel over the kinematically
allowed mass region.

Toward this goal, in Secs. 3.3 and 3.4, we carry out a detailed comparison of target materials,
focusing on two benchmark DM scenarios to illustrate how to optimize target choice for the
best sensitivity. Our study covers a total of 24 crystal materials, whose key properties that
determine sensitivity to DM scattering are summarized in Table 3.1. Six of the targets we
consider are already used in existing nuclear recoil experiments, including Si (DAMIC [21, 71],
SENSEI [22], SuperCDMS [23, 77–80, 88]), Ge (SuperCDMS), NaI (DAMA/LIBRA [70],
KIMS [73], ANAIS [67], SABRE [76], DM-Ice [72]), CsI (KIMS [228]), Al2O3 (CRESST-
I [68]), CaWO4 (CRESST-II-III [15, 69]), but their responses over all channels have not
been studied. Two other targets – GaAs and diamond – have been proposed for near-future
experiments. We then choose a representative sample of well-known polar semiconductors
comprising 16 materials. Our work utilizes state-of-the-art density functional theory (DFT)
calculations of material properties. Technical aspects of these calculations are discussed
in Appendix B, where we also present our calculated electron band structures and phonon
dispersions for the target materials. In the main text, we will highlight a subset of these
materials, chosen according to those currently (previously) in use in direct detection (Si, Ge,
CsI, CaWO4, (Al2O3)), as well as one or two new materials which demonstrate particularly
strong sensitivity to each benchmark model. In particular, for the dark photon mediator,
we highlight SiO2 and InSb. Results for the materials not presented in the main text can be
found in Appendix C, along with other parameters assumed when calculating the reach.
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3.2 Detection Channels
We begin by briefly reviewing the detection channels, which are discussed thoroughly in our
companion paper [227]. Generally, for a DM particle χ, the event rate per unit target mass
is given by

R =
1

ρT

ρχ
mχ

∫
d3v fχ(v) Γ(v), (3.1)

where ρT is the target mass density, ρχ is the local DM energy density, mχ is the DM
mass, and fχ(v) is the incoming DM’s velocity distribution in the target rest frame. The
event rate Γ(v) for an incoming DM particle with velocity v is usually normalized against
a reference cross section, defined from the particle-level scattering matrix element M (in
the nonrelativistic normalization) evaluated at a reference momentum transfer q0. Here we
adopt the following definitions,

σn ≡
µ2
χn

π
|Mχn(q0)|2q0=mχv0 , (3.2)

σe ≡
µ2
χe

π
|Mχe(q0)|2q0=αme , (3.3)

for DM-nucleon and DM-electron interactions, respectively, where µχn, µχe are the reduced
masses, and v0 is the dispersion of the DM’s velocity distribution. They coincide with the
total particle-level scattering cross sections in the case of a heavy mediator. As we show in
Ref. [227], for spin-independent (SI) scattering off a target material via tree-level exchange
of a mediator, the matrix element factorizes into a DM component that is universal, and
a target response component captured by a dynamic structure factor S(q, ω) that is target
and excitation specific, such that

Γ(v) =
πσ

µ2

∫
d3q

(2π)3
F2

med(q)S
(
q, ωq

)
. (3.4)

Here σ, µ represent either σn, µχn or σe, µχe, q is the momentum transfer from the DM to
the target, and

ωq =
1

2
mχv

2 − (mχv − q)2

2mχ

= q · v − q2

2mχ

(3.5)

is the corresponding energy deposition. The mediator form factor is given by1

Fmed(q) =

1 (heavy mediator) ,

(q0/q)
2 (light mediator) .

(3.6)

1When present, in-medium screening effects are incorporated in the dynamic structure factor S(q, ω)
instead of the mediator form factor Fmed(q).
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The dynamic structure factor, which captures the target’s response to a general energy-
momentum transfer ω, q, is given by

S(q, ω) ≡ 1

V

∑
f

∣∣〈f |FT (q)|i〉∣∣2 2π δ(Ef − Ei − ω) , (3.7)

where V is the total volume, |i〉, |f〉 are the initial and final states of the target system,
and FT is the quantum mechanical operator acting on the target Hilbert space that the DM
couples to.

For an isotropic target, the dynamic structure factor depends only on the magnitude but
not the direction of q, so the velocity integral can be evaluated independently, giving

η(vmin) ≡
∫
d3v

fχ(v)

v
Θ(v − vmin) , (3.8)

vmin =
q

2mχ

+
∆E

q
, (3.9)

for which analytic expressions can be obtained assuming a boosted truncated Maxwell-
Boltzmann (MB) distribution. On the other hand, for the more general case of anisotropic
target response, the dynamic structure factor depends on the direction of q, and we can
utilize the delta function in Eq. (3.7) to evaluate the velocity integral first, giving

g(q, ω) ≡
∫
d3vfχ(v) 2π δ(ω − ωq), (3.10)

which can be computed analytically for the usually assumed boosted truncated MB distri-
bution.

In the following subsections, we consider each detection channel in turn, summarizing the
formalism presented in Ref. [227] on the dynamic structure factors and detection rates,
building on the discussion in previous works (particularly [28, 33, 141]).

Nuclear Recoils
For each nucleus species,

S
(
q, ω

)
= 2π

ρT
mN

f 2
N

f 2
n

F 2
N(q) δ

(
q2

2mN

− ω
)
, (3.11)

where mN is the nucleus mass, fn, fp and fN = fpZ + fn(A − Z) are the DM-neutron,
DM-proton and DM-nucleus couplings respectively, and FN(q) is the Helm form factor

FN(q) =
3 j1(qrn)

qrn
e−(qs)2/2 , (3.12)

rn ' 1.14A1/3
n fm , s ' 0.9 fm , (3.13)
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which approaches 1 in the q → 0 limit. The differential rate with respect to energy deposition,
generalized to the case of multiple nucleus species, is

dR

dω
=

ρχ
mχ

σn
2µ2

χn

1∑
N AN[∑

N

AN
f 2
N

f 2
n

F 2
N F2

med η(vmin)

]
q2=2mNω

, (3.14)

where vmin = q
2µχN

.

The conventional nuclear recoil calculation is valid when each nucleus can be considered
independent of the other nuclei. In a crystal target, this is true if the scattering happens
at a timescale 1/ω much shorter than the inverse phonon frequencies 1/ωph, i.e., if the
energy deposition ω � ωph ∼ O(100meV), or equivalently, q � √mNωph (note that this
momentum cutoff is essentially the inverse of the spatial extent of nucleus wavefunctions in
a harmonic potential). For lower energy depositions, the scattering event proceeds by direct
production of (single or multiple) phonons. We discuss single phonon excitations in Sec. 3.2.
We will see that single phonon excitation rates are suppressed by the Debye-Waller factor
for q & √mNωph, which shows the complementarity between the two channels.

Electron Transitions
In solids, electrons form band structures with energy eigenstates labeled by a band index i
and a wave vector k within the first Brillouin zone (1BZ). In an insulator or semiconductor, all
electrons occupy the valence bands at low temperatures, and can be excited across the band
gap to conduction bands. The dynamic structure factor encapsulates all such transitions
from i1,k1 to i2,k2:

S
(
q, ω

)
= 2

∑
i1,i2

∫
1BZ

d3k1d
3k2

(2π)6
2π δ

(
Ei2,k2 − Ei1,k1 − ω

)
×
∑
G

(2π)3δ3(k2 − k1 +G− q)
∣∣f[i1k1,i2k2,G]

∣∣2,
(3.15)

up to screening effects. Here G = n1b1 + n2b2 + n3b3, with n1, n2, n3 ∈ Z and b1,2,3 are
reciprocal primitive vectors. The crystal form factor is defined by

f[i1k1,i2k2,G] ≡
∑

G1,G2

δG2−G1,G

u∗i2
(
k2 +G2

)
ui1
(
k1 +G1

)
, (3.16)

where ui(k+G) are Bloch wavefunction coefficients computed from DFT (see Appendix B.1).
We neglect possible spin dependence of the electron band structures, and simply sum over
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contributions from the degenerate spin states. The total rate is given by

R =
2

ρT

ρχ
mχ

πσe
µ2
χe

∑
i1,i2

∫
1BZ

d3k1d
3k2

(2π)6∑
G

g(q, ω)F2
med(q)

∣∣f[i1k1,i2k2,G]

∣∣2 , (3.17)

where q = k2 − k1 + G and ω = Ei2,k2 − Ei1,k1 are assumed. Note that unlike in nuclear
recoils, the dynamic structure factor for electron transitions is generally not isotropic in q

for all energy-momentum depositions. When anisotropies are significant, the rate cannot be
expressed in terms of η(vmin), and the g function in Eq. (3.10) should be used instead. The
physical implication is that the rate depends on the direction of the DM wind and exhibits
daily modulation. An example of this is discussed in Ref. [227].

Single Phonon Excitations
Phonons are quanta of lattice vibrations in crystals. For a three-dimensional crystal with
n atoms/ions in the primitive cell, there are 3n phonon branches, with dispersions ων,k
(ν = 1, . . . , 3n), where the wave vector k is in the 1BZ. The dynamic structure factor has
the general form

S
(
q, ω

)
=

π

Ω

∑
ν

δ
(
ω − ων,k

)
×

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2, (3.18)

where Ω is the volume of the primitive cell, j = 1, . . . , n runs over the atoms/ions in the
primitive cell, x0

j are their equilibrium positions, and mj are their masses. Y j contains the
DM-atom/ion couplings, whose general definition is given in Ref. [227]. We explicitly state
the expression of Y j for each benchmark model below. εν,k,j are the phonon polarization
vectors. k is the momentum within the 1BZ that satisfies q = k + G for some reciprocal
lattice vector G — only those phonon modes that match the momentum transfer up to
reciprocal lattice vectors can be excited, as a result of lattice momentum conservation. At
large q, the dynamic structure factor is suppressed by the Debye-Waller factor, given by

Wj(q) =
Ω

4mj

∑
ν

∫
1BZ

d3k

(2π)3
|q · εν,k,j|2

ων,k
. (3.19)

We obtain the total rate

R =
1

mcell

ρχ
mχ

πσ

2µ2

∫
d3q

(2π)3
F2

med(q)
∑
ν

g(q, ων,k)

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2 , (3.20)
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where mcell = ρTΩ is the mass contained in a primitive cell. The phonon dispersions ων,k
and polarization vectors εν,k,j that enter this equation are obtained from DFT calculations
(see Appendix B.2).

Acoustic vs. Optical Phonons

It is useful to distinguish acoustic and optical phonons, as they are sensitive to different
types of DM interactions. Among the 3n phonon branches, three are gapless with linear
dispersions ων,k ∼ cs|k| near |k| = 0 (with cs the sound speed), as a result of spontaneous
breaking of translation symmetries; these are acoustic phonons that, in the long wavelength
limit, correspond to in-phase oscillations of atoms/ions in the same primitive cell. The
remaining 3(n − 1) branches are gapped “optical” phonons, corresponding to out-of-phase
oscillations.

Due to the nature of in-phase oscillations, acoustic phonons can be efficiently excited if DM
couples to different atoms/ions in a correlated way. An example is a DM particle coupling
to nucleons via a scalar or vector mediator. In this case, Y j is proportional to a linear
combination of Aj and Zj, and can have the same sign and similar magnitudes for all j.

By contrast, the out-of-phase oscillations associated with gapped phonon modes have en-
hanced sensitivity to DM coupling to the atoms/ions in the same primitive cell differently.
This is the case for dark-photon-mediated DM scattering with polar materials. The dark
photon mediator kinetically mixes with the SM photon, and as a result, Y j point in oppo-
site directions for oppositely charged ions. We follow convention and call all gapped phonon
modes “optical,” though only in polar materials where there are both positively and nega-
tively charged ions in the primitive cell (e.g., GaAs) do these modes couple strongly to the
(dark) photon via the oscillating dipole. Diamond, Si and Ge, for example, all have gapped
phonon modes, but none of these materials has a strong coupling to the dark photon as the
primitive cell does not contain oppositely charged ions.

3.3 Target Comparison: Kinetically Mixed Light Dark Photon Mediator
A well motivated model of light dark matter involves interaction with the SM via a light
dark photon A′ that kinetically mixes with the photon:

L = −1

4
F ′µνF ′

µν +
1

2
κF µνF ′

µν +
1

2
m2
A′A′2

+
(
|Dµχ|2 −m2

χ|χ|2
)

or
(
iχ /Dχ−mχχχ

)
, (3.21)

where Dµ = ∂µ − ie′A′
µ, and the DM χ can be either a complex scalar or a Dirac fermion.

The gauge boson kinetic terms can be diagonalized by redefining Aµ → Aµ + κA′
µ, which
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gives JµEM a charge under the dark U(1) of κe. The reference cross section, utilized in present
results for this model, is given by

σe =
µ2
χe

π

κ2e′2e2

(α2m2
e +m2

A′)
2 . (3.22)

The projected 95% condifence level (C.L.) exclusion reach on σe assuming zero background
(i.e., the cross section needed to obtain three events) from electron transitions and single
phonon excitations are shown in Fig. 3.1, for mA′ → 0 and an exposure of one kg-yr.2 In the
rest of this section, we describe in detail the features in this plot, and also discuss nuclear
recoils.

Single Phonon Excitations
Optical phonon excitation is the dominant detection mode for dark photon mediated scat-
tering. As shown in Ref. [227], in the low q limit (which dominates the momentum integral
for a light mediator since F2

med ∝ q−4), the interaction is described via the Born effective
charges of the ions, Z∗

j (which are generally 3× 3 matrices),

Y j = −
q2

q · ε∞ · q
(
q ·Z∗

j

)
+O(q2) , (3.23)

where ε∞ is the high-frequency dielectric matrix. The total rate is given by Eq. (3.20). Only
polar materials, or those which have differently charged ions in the primitive cell, can couple
phonon modes to the dark photon, which explains the absence of phonon reach curves for Si
and Ge in Fig. 3.1.

As explained in the previous section, optical phonon modes involve out-of-phase oscillations
and are gapped. Because the optical modes are the dominant contribution to the rate,
the properties of the optical modes determine the shape of the phonon excitation curves in
Fig. 3.1: when there are sharp changes in the reach as a function of mass, it is because there
is a transition in the dominance of a particular optical mode. For low momentum transfer,
the dispersion of the gapped modes is approximately a constant, such that the lowest DM
mass reachable is determined by setting the maximum kinetic energy of the incoming DM,

2 Changes in the constraint projections via single phonon excitations in Figs. 3.1, C.7-C.9, relative to
previous versions, are due to a bug fix when using the Born effective charges, Z∗

j . Targets with significant
changes, at low mχ, are SiO2, CaWO4 and MgF2. The calculations have been updated using PhonoDark
v1.1.0 [178].
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Figure 3.1: Projected reach from single phonon excitations (dashed) and electron transitions
(solid) for DM scattering mediated by a kinetically mixed light dark photon (the smallest-gap
target InSb suffers from slow convergence in the electronic transition calculation at mχ <
1MeV, for which we show results of the two most accurate runs with solid and dotted curves,
see Appendix B.1 for details). Nuclear recoils (not shown) can also probe this model, but
the conclusion on which targets are superior is the same as for the light hadrophilic mediator
model. A detector threshold of 1 meV is used for the phonon calculations, and all transitions
with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Refs. [18, 19], corrected by including plasmon decay for
sub-MeV DM [20]. Stellar constraints are from Ref. [17] and direct detection constraints are
from DAMIC [21], DarkSide-50 [12], SENSEI [22], SuperCDMS [23], XENON10 [24, 25], and
XENON100 [12, 26].2

mχv
2
max/2, equal to the energy of the lowest optical mode,3

mχ,min ∼ 3 keV
(

ωO

10meV

)
. (3.24)

Thus materials having low energy optical phonon modes are desirable to search for light
dark matter; CsI, for example, has particularly low-lying optical phonon excitations, and its
sensitivity to the lightest DM masses is seen in Fig. 3.1.

3One has to be careful with this estimate, as the lowest optical mode is generally not the dominant mode,
rather it is the mode which is most “longitudinal,” or maximizes q · ε. For simple diatomic materials, there
is one precisely longitudinal mode in the low q limit, but the same is not true for more complex materials
such as Al2O3, as many gapped modes have a longitudinal component. A general rule of thumb is that the
highest energy optical mode is the most longitudinal.



66

We can also see that at higher masses, single optical phonon production rates vary widely
between materials. This can be understood analytically. Consider first the simplest case
of a diatomic polar crystal (e.g., GaAs). The dominant contribution to the q integral in
Eq. (3.20) is well within the 1BZ and therefore we can set G = 0, Wj ' 0, and g(q, ω) ∝ q−1.
Approximating Z∗

j ' Z∗
j 1, and noting that Z∗

1 = −Z∗
2 ≡ Z∗, we see that the rate is

dominated by the longitudinal optical (LO) mode, for which one can show εLO,k,1 and εLO,k,2

are anti-parallel, and |εLO,k,j| =
√
µ12/mj in the limit k → 0, where µ12 is the reduced mass

of the two ions. Further approximating the phonon dispersion as constant and ε∞ ' ε∞ 1,
the rate simplifies to

R ∝ q40
mcell

ρχ
mχ

σe
ε2∞ωLO

Z∗2

µ2
χeµ12

log
(
mχv

2
0

ωLO

)
∝ Z∗2

A1A2ε2∞

(
meV
ωLO

)
≡ Q . (3.25)

We call Q a quality factor, since it is the combination of material-specific quantities that
determines the direct detection rate. A higher-Q material has a better reach in the high
mass regime. More concretely, we find

R ' 1

kg yr

(
Q

10−7

)(
me

mχ

)(
m2
e

µ2
χe

)(
σe

10−39 cm2

)
× log

(
qmax

qmin

)
. (3.26)

Note that although we have focused on the special case of diatomic polar crystals in order
to derive analytic estimates, similar considerations apply for more complicated crystals. For
example, it is not surprising that larger Born effective charges and lighter ions are helpful.
When comparing the targets, we adopt the following prescription for the quality factor,

Q ≡ 1

ε2∞ωO

n∏
j=1

( |Z∗
j |

Aj

) 2
n

, (3.27)

where n is the total number of ions in the primitive cell, and ωO is the directionally averaged
optical phonon energy of the highest mode near k = 0, given in Table 3.1. In our list of
materials LiF has the largest quality factor, with SiO2 second. We choose to highlight SiO2

in Fig. 3.1 because LiF is a less desirable experimental target due to large backgrounds [229].

A further consideration for optimizing Q given a fixed chemistry (atomic species) is to
maximize the Born effective charges. For example, cubic tungsten trioxide (WO3) has been
reported to have anomalously high Born effective charges of up to +12.5 and −9.1 on W
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and O respectively [230]. Materials with such high Born effective charges, a manifestation
of highly covalent bonding character, provide a further route for maximizing Q.4

We comment in passing that also in the case of a heavy dark photon mediator, the rate is
largely determined by the quality factor defined in Eq. (3.27) for sub-MeV DM; for heavier
DM, couplings to ions cannot be simply captured by the Born effective charges at high
momentum transfer, and the total rate is more challenging to compute [227].

Electron Transitions
The typical band gaps between valence and conduction bands, Eg, range from a fraction of
an eV (InSb and Ge) to as high as 10 eV (e.g., SiO2). This gap sets the lightest DM mass
to which the experiment is sensitive, as kinematics requires that mχv

2
max/2 > Eg, implying

mχ,min ∼ 0.3MeV
(
Eg
eV

)
. (3.28)

Thus, small gap materials will generally have better reach. For example, InSb is superior
to Si for mχ . MeV, as seen in Fig. 3.1; in fact, the sub-eV band gap of InSb allows for a
significant G = 0 contribution that is absent for larger gap materials, and this contribution
dominates at mχ . MeV, greatly extending the reach. However, note that Ge, which has
a smaller band gap than Si, does not have a better reach. The difference here is due to a
direct vs indirect band gap.5 When depositing energy via a scattering process, there must
be some momentum transfer, and therefore, strictly speaking, Eg in Eq. (3.28) should be
replaced by the minimum kinematically allowed energy difference. For direct gap materials
this means that mχ,min will increase, as it does in Ge, which is why Ge has worse reach than
Si. Note that there is a complementarity between single phonon excitations and electron
transitions. In the phonon case, materials with the best sensitivity tend to be insulators, as
they have small values of ε∞. However, for electron transitions, one prefers materials with
smaller band gaps, which generally have larger values of ε∞. This is because loop corrections
to the in-medium photon propagator are larger for a smaller band-gap: virtual electrons can
be more easily created because of the smaller energy difference.

For higher masses an analytic comparison is not tractable. The wavefunction coefficients
in Eq. (3.17) cannot be modeled well analytically, and hence the reach must be computed
numerically. Note that for Si, Ge, NaI, CsI, GaAs, and diamond, our results are roughly

4Cubic WO3 is dynamically unstable giving imaginary frequencies in the phonon band structure. There-
fore we do not include it in phonon comparison plots, and leave a study of other stable isomorphs for future
work.

5The HSE06 exchange-correlation functional used in our DFT calculations slightly underestimates the
direct band gap of Ge whilst being a close match to the indirect band gap [231]. This leads to the prediction
of a direct band gap when optimized lattice parameters are used, contrary to experiment.
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consistent with previous calculations in Refs. [33, 34, 180], where the DFT calculation is
implemented differently. However, we find discrepancies in the semi-core electron contribu-
tions, which are subdominant for our light mediator benchmark, but become important for
a heavy mediator. We will investigate this issue in detail in an upcoming publication. An-
other improvement of the calculation that we plan to address is the treatment of in-medium
screening effects (see Ref. [227] for further discussion), which we have neglected in the present
calculation. Such effects are expected to be weak for materials with band gaps larger than
about 1 eV. However, for sub-eV gap targets such as InSb, for masses below ∼ 1 MeV, the
result here should be taken with caution, as the effects may not be negligible.

Nuclear Recoils
The dark photon mediator coupling in a target system is momentum dependent. At very
small momentum transfers q → 0, the coupling is negligible as the total target is assumed
to have no net charge. For q . r−1

ion, where rion is the size of an atom without the binding
electrons, ionic charges, if present, can be coupled to. As the momentum transfer increases
further, outer-shell electrons will respond incoherently, possibly transitioning to conduction
bands independent of proton and inner-shell electron responses. On the other hand, in a
nuclear recoil event, q � √mNωph � r−1

ion. In this regime, protons respond coherently as long
as FN(q) ' 1, since they are bound in the nucleus, whereas electron couplings are irrelevant
since even the core electron wavefunctions do not have such high momentum components.
Therefore, nuclear recoils can happen in an overall neutral crystal via coupling to the proton
number of each nucleus without any atomic form factor suppression.

In order to compare against phonon and electron excitations, we express the reach in terms
of σe instead of σn. This corresponds to replacing (fN/fn)

2 → Z2
N for each nucleus species,

and µχn → µχe, q0 → αme, and lastly, σn → σe in Eq. (3.14). While we discuss material
comparison in this subsection, nuclear recoil reach curves have been omitted in Fig. 3.1 in
order not to further complicate the plot; they can be approximately rescaled from the reach
curves in Fig. 3.2 below, and are straightforward to compute from Eq. (3.14).6

The low mass reach of nuclear recoils is material and threshold dependent, and can be under-
stood from kinematics. The maximum momentum transfer is given by qmax = 2µχNvmax, and
therefore the maximum energy deposited is given by ωmax = 2µ2

χNv
2
max/mN . Requiring that

this be larger than the threshold sets the minimum DM mass. For a threshold around 500

meV (which almost saturates the validity bound for some of the crystal targets as discussed
6 Changes in the constraint projections via single phonon excitations in Figs. 3.2-3.3, C.10-C.15, relative

to previous versions, are due to a bug fix in computing FNj which altered the constraints by a factor of,
approximately, 2.25. The calculations have been updated using PhonoDark v1.1.0 [178].
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in Sec. 3.2), and vmax = 10−3, mχ � mN , the minimum DM mass within reach is

mχ,min ∼ 100MeV
( ωmin

500 meV

) 1
2
( mN

10 GeV

) 1
2
, (3.29)

Therefore, materials with lighter nuclei are more favorable for kinematic matching.

At higher masses, kinematics is not a limiting factor, and we can obtain an analytic ap-
proximation for the rate. Assuming a singular nuclear species, AN = A, ZN = Z simplifies
Eq. (3.14) to

dR

dω
∝ σe
mχµ2

χe

Z2

A2

1

ω2
η(vmin) , (3.30)

and we see that the rate is dominated by small ω. At masses above a few hundred MeV and
small ω, η(vmin) approaches η(0). The total rate then becomes

R ∝ σe
mχµ2

χe

Z2

A2

1

ωmin
, (3.31)

and is approximately material independent. Note that if the dark photon mediator is heavy,
the factor A2ω2 in the denominator of Eq. (3.30) would be absent, and heavier (larger Z)
elements are advantageous.

3.4 Target Comparison: Hadrophilic Scalar Mediator
As a second benchmark model, we consider a real scalar mediator φ coupling to the proton
and neutron,

L =
1

2
(∂µφ)

2 − 1

2
m2
φφ

2 + fp φ pp+ fn φnn

+

(
1

2
(∂µχ)

2 − 1

2
m2
χχ

2 +
1

2
yχmχφχ

2

)
or
(
iχ/∂χ−mχχχ+ yχφχχ

)
, (3.32)

where the DM χ is taken to be either a real scalar or a Dirac fermion. In the absence of
electron couplings, the relevant search channels are single phonon excitations and nuclear
recoils. We will quote the reach in terms of σn, given by

σn =
µ2
χn

4π

y2χf
2
n(

m2
χv

2
0 +m2

φ

)2 . (3.33)

The 95% C.L. exclusion reach on σn for a light (effectively massless) and heavy mediator
are shown in Figs. 3.2 and 3.3 respectively, assuming fp = fn, an exposure of one kg-yr, and
zero background events. In the rest of this section we explain in detail the features in these
plots.



70

10−3 10−2 10−1 1 10 102 103 104

mχ [MeV]

10−48

10−46

10−44

10−42

10−40

10−38

10−36
σ
n

[c
m

2 ]

Fifth Force + Pert.

Fifth Force + SIDM
ωmin = 1 meV

ωmin = 20 meV

ω
min = 100 meV

ω
m

in =
500 meV

Si
Ge
CsI
Al2O3

CaWO4

Diamond

Si
Ge
CsI
Al2O3

CaWO4

Diamond

Figure 3.2: Single phonon and nuclear recoil reach for a light (mφ = 1 eV) hadrophilic
scalar mediator. 1, 20, and 100 meV thresholds are shown for the single phonon reach
(solid, dashed, and dotted respectively), and 500 meV threshold is assumed for the nuclear
recoil reach (dot-dashed). For mφ = 1 eV the dominant constraint on fn is from fifth force
experiments [10]. If mχ makes up all the DM then the dominant constraint on yχ is from DM
self-interactions (SIDM) [10]. If mχ is only a subcomponent, we only require perturbativity
yχ < 1 (Pert.); in this case the reach curves can be easily rescaled.6

Single Phonon Excitations
We first consider DM creating a single phonon via the nucleon coupling. As shown in
Ref. [227],

Y j = q

(
fj
fn

)
FNj(q) , (3.34)

where fj = fpZj + fn(Aj − Zj) for the nucleus at site j in a primitive cell, and FNj(q) is
the nuclear form factor given by Eq. (3.13). As before, the total rate is calculated from
Eq. (3.20). However, a major difference compared to the dark photon mediator model is
that, if fp and fn have the same sign, the rate is dominated by acoustic and not optical
phonons, assuming the energy threshold is low enough to access the acoustic phonons. This
is because Y j points in the same direction for all j, resulting in stronger in-phase oscillations
as discussed in Sec. 3.2.

We first discuss Fig. 3.2, for the light mediator case, when the energy threshold, ωmin, is
1 meV. While such a low threshold is experimentally challenging, the curves are easier to
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Figure 3.3: Single phonon and nuclear recoil reach for a massive (mφ & 400 MeV) hadrophilic
scalar mediator. 1, 20, and 100 meV thresholds are shown for the single phonon reach
(solid, dashed, and dotted respectively), and 500 meV threshold is assumed for the nuclear
recoil reach (dot-dashed). There are no stellar constraints for mφ & 400 MeV [10]. Cur-
rently, the best experimental nuclear recoil constraints in this region of parameter space are
from DarkSide-50 [12] (assuming binomial fluctuations), and XENON1T (combined limits
from [13, 14]). We also show the constraint from CRESST-II [15], which is stronger than
the DarkSide-50 constraint at low masses assuming no fluctuation in energy quenching. A
more complete collection of nuclear recoil constraints can be found in Refs. [12, 16, 27]. The
neutrino floor is taken from Ref. [11].6

understand conceptually compared to the higher ωmin curves. In fact, over most of the
mass range, for most materials, the rate is dominated by single longitudinal acoustic (LA)
phonon production. At the high mass end, the reach is material-independent, understood
analytically as follows. The mediator form factor Fmed ∝ 1/q2, and therefore the rate is
dominated by the lowest detectable momentum transfer. In this case, we can set G = 0 (or
equivalently, q = k in Eq. (3.20)), Wj ' 0, ωLA = cLA

s q, FNj ' 1, and g(q, ω) ∝ q−1. Lastly,
in this limit q · εLA,j,k ' q

√
mj/mcell. Thus the rate

R ∝
m3
χ

m2
cell

σn
µ2
χn

(∑
j

fj
fn

)2
1

ωmin
. (3.35)

For fp = fn, we have fj ∝ Aj ∝ mcell/mn, and the dependence on the target properties
drops out. The reference cross section σn corresponding to a given event rate R scales with
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mass as µ2
χn/m

3
χ, as we see in Fig. 3.2. Note that as we go to higher mχ the reach on the

couplings f 2
ny

2
χ gets worse as µ2

χnmχ; the apparent better reach at higher mass in Fig. 3.2 is
due to the definition of σn ∝ m−4

χ .

For DM masses below ∼ 0.1 MeV in Fig. 3.2, kinematics causes the reach to diminish: the
maximum momentum transfer, 2mχvmax, must be large enough to reach the minimum mo-
mentum transfer set by the detector threshold, ωmin/c

LA
s . This sets the minimum reachable

DM mass
mχ,min ∼ 20 keV

(
ωmin

meV

)(
10−5

cLA
s

)
. (3.36)

To reach the lightest dark matter particle at low thresholds, an ideal material is then dia-
mond, as it has the highest speed of sound. AlN and SiO2 are the next best candidates from
our search.

As we move on to the curves with higher energy thresholds, ωmin = 20 meV and 100 meV,
the materials with lower sound speed lose reach altogether. (The ωmin = 500 meV curves
are derived from nuclear recoil; this is discussed in the next subsection.) The reason is that
acoustic phonons are accessible only when ωmin . cLA

s /a, where a is the lattice spacing. For
materials with lower sound speed, the energy threshold may simply never be low enough to
have any reach with an acoustic phonon. In addition, one can see where optical phonons
start to play a role, as the slope of the reach curve changes at lower masses, e.g., Si with
an energy threshold of 20 meV. This feature will be present for all materials if the lowest
kinematically reachable DM mass from optical phonon excitations, given in Eq. (3.24), is
smaller than the lowest kinematically reachable DM mass from acoustic phonon excitations,
given in Eq. (3.36).

Next we turn our attention to Fig. 3.3, for the same hadrophilic scalar mediator benchmark,
but with a heavy mediator. Again, we first focus on the case of a 1 meV threshold, as here
the acoustic phonon contributions dominate and analytic simplifications can be made since
the integrals are dominated by the high momentum behavior. There are four distinct regions
in mass and we now discuss the mass and material parameters dependence of each of them.

In the lowest mass regime, mχ . 10−1 MeV, the reach ends when the acoustic modes are no
longer kinematically available, just as in the massless mediator case, with minimum reachable
mass again set by Eq. (3.36). Between 10−1 and 1 MeV, the reach curves flatten and the
order of the curves reverses: materials with a higher speed of sound have worse reach, which
can be understood analytically starting with Eq. (3.20). For mχ . 1 MeV the momentum
transfer is within the 1BZ, so we can take q = k, Wj ' 0, ω = csq and g(q, ω) ∝ 1/q as in
the light mediator case. For simplicity we ignore angular dependence, assume the ions are
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the same, Aj ≡ A, mj ≡ m, set fn = fp, and consider only the longitudinal mode so that
q · ε ∝ q. Then we have

R ∝ σn
mcellm3

χcs

∫ 2mχv

d3k
1

k2

(
kA√
m

)2

∝ σn
cs
, (3.37)

where the upper cutoff is due to kinematics and manifests in the g function, which goes to
zero as k reaches the maximum allowed momentum transfer.

A similar derivation applies to the mass dependence in the next two regimes. For 1 MeV .

mX . 10 MeV, the dominant momentum transfer is outside of the 1BZ, which means that
ω can no longer be approximated by csq. In fact, since ω is only a function of the phonon
momentum in the 1BZ, it will vary rapidly as q increases. We therefore exchange ω with a q
independent quantity, roughly thought of as the average of ω over the whole 1BZ, 〈ω〉. The
rate becomes

R ∝ σn
mcellm3

χ〈ω〉

∫ 2mχv

d3k
1

k

(
kA√
m

)2

∝ σnmχ

〈ω〉
. (3.38)

Since the rate scales inversely with 〈ω〉, materials with lower energy phonon modes are
preferred. As 〈ω〉 is usually correlated with cs, the ordering of the curves is the same as in
the previous regime. We have neglected the Debye-Waller factor in the analytic estimates
above, because the momentum transfer is on the order of mχv, and is less than the Debye-
Waller cut-off around

√
mN〈ω〉. However, for the last mass regime, above ∼ 10 MeV, this is

no longer the case, and the momentum integral is cut-off by the Debye-Waller factor,

R ∝ σn
mcellmχµ2

χn〈ω〉

∫ √
mN 〈ω〉

0

d3k
1

k

(
kA√
m

)2

∝ σnA
2〈ω〉2

mχµ2
χn

. (3.39)

Therefore, materials with heavier elements and higher phonon energies are preferred. In our
search, CaWO4 has the highest factor of A〈ω〉, with PbTe following, which is the reason we
choose to highlight PbTe in Fig. 3.3.

For higher thresholds, the optical phonon modes contribute to a greater degree, so the scaling
arguments given above for the first two mass regimes no longer hold, but for the last two
they do, which is why the curves are almost parallel.

Nuclear Recoils
For DM heavier than O(100MeV), nuclear recoils offer a complementary detection channel
to phonon excitations. The low mass behavior of the reach curves is understood in the same
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way as in Sec. 3.3 (see Eq. (3.29)), and lighter elements are advantageous. At higher masses,
the σn reach depends on the mediator mass. To show this analytically we again consider a
single nucleus species, AN = A, and fn = fp. In the case of a light mediator the differential
rate in Eq. (3.14) becomes

dR

dω
∝
σnm

3
χ

µ2
χn

1

ω2
η (vmin) . (3.40)

For DM heavier than a few hundred MeV, the mN dependence via η(vmin) is weak, as in the
dark photon mediator case. The rate is then

R ∝
σnm

3
χ

µ2
χn

1

ωmin
, (3.41)

which is material independent. This is why all the reach curves coincide for large DM masses.
We also see that as in the case of acoustic phonons, achieving lower energy thresholds is
crucial for improving the reach.

If the mediator is heavy, we have

dR

dω
∝ σnA

2

mχµ2
χn

η (vmin) , (3.42)

R ∝ σnA
2

mχµ2
χn

ωmax ∝
σnAµ

2
χN

mχµ2
χn

, (3.43)

where for simplicity we take the η function to decrease sharply at the kinematic bound. We
reach the conclusion that heavier nuclei are preferred, similar to the case of single phonon
excitations with a heavy mediator. Note also that there is no threshold dependence for larger
masses. Therefore a lower threshold only helps to reach lower DM masses, as opposed to the
case of the light mediator.
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Target Eg [eV] cLA
s [10−5] Aj Z

∗
ε∞ ωO [meV] Q [10−7]

Si 1.11 2.84 28.1 - - 62.3 -
Ge 0.67 1.61 72.6 - - 34.8 -
NaI 5.8 0.90 23.0, 127 1.20 3.27 12.4 - 20.0 23
CsI 6.14 0.46 133, 127 1.22 2.70 6.9 - 10.0 12

CaWO4 5.2 1.42 40, 184, 16 2.84, 4.67 3.84 8.48 - 106 45

GaAs 1.42 1.57 69.7, 74.9 2.27 10.9 31.8 - 34.9 2.4
Al2O3 8.8 3.51 27.0, 16.0 2.97 3.26 35.6 - 104 130

Diamond 5.47∗ 5.98 12.0 - - 161 -

SiO2 9.2 5.76 28.1, 16.0 3.38 2.41 13.7 - 149 200
PbTe 0.19∗ 1.17 207, 128 5.69 26.3 3.91 - 13.5 1.3
InSb 0.24∗ 1.13 115, 122 2.40 23.7 20.5 - 21.5 0.34

AlN 6.20 5.70 27.0, 14.0 2.57 4.54 29.4 - 109 78
CaF2 11.81 2.15 40, 19.0 2.36 2.26 28.4 - 55.6 130
GaN 3.43∗ 4.17 69.7, 14.0 2.74 6.10 16.7 - 88.9 23
GaSb 0.720 1.32 69.7, 122 1.92 21.6 26.4 - 27.3 0.33
LiF 14.2 2.17 6.9, 19.0 1.05 2.02 33.5 - 77.2 270

MgF2 12.4 2.43 24.3, 19.0 2.00 1.97 12.1 - 73.7 130
MgO 7.83 3.11 24.3, 16.0 1.97 3.38 46.3 - 82.6 110
NaCl 8.75 1.19 23.0, 35.5 1.09 2.44 19.1 - 30.6 80
NaF 11.5 1.78 23.0, 19.0 0.98 1.78 29.6 - 49.9 140
PbS 0.29∗ 1.41 207, 32.1 4.45 15.0 7.27 - 26.9 4.9
PbSe 0.17∗ 1.27 207, 79.0 4.86 19.5 4.86 - 17.1 2.2
ZnO 3.3 4.18 65.4, 16.0 2.17 6.13 11.1 - 63.4 19
ZnS 3.80∗ 1.53 65.4, 32.1 2.03 5.91 32.8 - 41.0 14

Table 3.1: Target materials studied in this work and their key parameters. The four blocks
contain materials currently in use in nuclear recoil experiments, those considered for pro-
posed near-future experiments, those with superior properties for some specific DM models
discussed in this paper, and the remaining ones in alphabetical order, respectively. Sensitiv-
ity of electron transitions relies heavily on the band gap Eg, for which experimental values are
shown (those with asterisks are measured at low temperature). Nuclear recoils and acoustic
phonon excitations in the nucleon-coupling benchmark model are largely determined by the
speed of sound of longitudinal acoustic phonons cLA

s and atomic mass numbers Aj. For op-
tical phonon excitations in the light dark photon mediated model, relevant parameters are
the Born effective charges Z∗, high-frequency dielectric constant ε∞, optical phonon ener-
gies ωO as well as Aj, all of which combine into a quality factor Q, defined in Eq. (3.27),
which determines the reach at high mass. Barred quantities are properly averaged values;
see Appendix B.3 for details.
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3.5 Conclusions
We considered spin independent DM direct detection through three channels – single phonon
excitations, electron transitions, and nuclear recoils – in a wide variety of crystal target
materials, and two well motivated DM models. Many of these materials are already being
discussed for DM detection, but we have presented some new targets for consideration.

For each type of interaction, we specified the target material parameters which should be
optimized in order to maximize the reach, and we found complementarity between targets
depending on (i) the experimental threshold, (ii) the mass range, and (iii) the model. The
experimental threshold dictates which modes are available: at higher recoil energies, only
electron transitions and nuclear recoils are possible; as the threshold drops, optical and
acoustic phonons become accessible. The phonon modes in materials with high sound speed
become kinematically available at higher thresholds than in materials with lower sound
speeds. Also, for a given threshold, materials with higher sound speeds have reach to lighter
dark matter. Regarding the mass range, the smallest detectable masses are always set by
a kinematic constraint, and the dependence on material parameters, and detection thresh-
old, can be found in Eqs. (3.24), (3.28), (3.36), (3.29) for optical phonon, electron, acoustic
phonon excitations, and nuclear recoils respectively. As for the model, we defined a qual-
ity factor (in Eq. (3.27)) for single optical phonon excitations from dark photon mediated
scattering to indicate which targets will have the best sensitivity. On the other hand, for
a hadrophilic mediator, target optimization for acoustic phonon excitations depends on the
mediator and DM masses. We summarize our results in Table 3.2.

An attractive feature of phonon and electron excitations is the possible daily modulation
of event rates, as the dynamic structure factors in Eqs. (3.15) and (3.18) are generically
anisotropic. In the context of phonon excitations, Al2O3 has been considered in Ref. [28],
and in our companion paper [227] we have discussed hexagonal boron nitride as an example
of an O(eV)-gap target which exhibits daily modulation in electron transitions. We plan on
identifying other promising targets for daily modulation in the future.
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C h a p t e r 4

DIRECTIONAL DETECTABILITY OF DARK MATTER WITH SINGLE
PHONON EXCITATIONS: TARGET COMPARISON

4.1 Introduction
If the cold dark matter (DM) in the universe consists of new particles, they must interact
very weakly with the Standard Model. Directly detecting these feeble interactions in a lab-
oratory requires extraordinarily sensitive devices. Traditional direct detection experiments
(e.g., ANAIS [232], CRESST [233–235], DAMA/LIBRA [236], DAMIC [237], DarkSide-
50 [12], DM-Ice [72], KIMS [73], LUX [16, 238], SABRE [239], SuperCDMS [80, 240], and
Xenon1T [14]), based on nuclear recoil, are gradually improving their sensitivity and closing
the open parameter space before reaching the irreducible solar and atmospheric neutrino
background. However, these experiments are fundamentally limited in the DM mass, mχ,
they can probe. When the DM scatters off a nucleus at rest, the energy deposited, ω, is
limited by ω . m2

χv
2/mN , with v ∼ 10−3, and vanishes quickly as the DM mass decreases

below the nucleus mass mN .

This limitation in DM mass is typically not problematic in the search for the prototypical
weakly interacting massive particle (WIMP) which produces the DM abundance through
freeze-out, as mχ . GeV would both be overabundant and be in tension with indirect
detection bounds on DM annihilation rates. However, many other theoretically motivated
explanations of the origin of DM such as freeze-in [136, 137], hidden sector DM [207–209, 241],
asymmetric DM [138, 139, 142, 143], and strong self interactions [210, 242], allow for DM
ligher than a GeV and therefore should be searched for by means other than nuclear recoil.

In the pursuit of sub-GeV DM, several new experimental concepts have been proposed.
These include electron excitations in a variety of target systems [19, 24, 33–35, 81, 87, 89,
177, 180, 188, 243, 244] for DM with mass above an MeV, while single (primary) phonon
excitations [4, 6, 7, 28, 64, 184–187, 245–250], with energies up to O(100) meV, have been
shown to be especially sensitive to a wide range of DM models with masses down to a keV.
This coupled with the fact that detector energy thresholds are approaching the O(100) meV
range [251–255] makes single phonon excitations an exciting avenue for DM direct detection.
Phonons are quasiparticle vibration quanta which can exist in multiple states of matter, e.g.,
as sound waves in liquids or superfluids and lattice vibrations in crystalline solids. Superfluid
helium has been proposed [184] and studied as a light DM detector [185–187, 245, 246] and
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an experiment is currently in the R&D phase [90]. Crystal targets have also been proposed
[64] and studied extensively. Initial studies focused on GaAs and Al2O3 (sapphire) targets
[28], and more recently this analysis has been extended to account for more general DM
interactions [4, 7] and applied to a broader set of target materials [6]. Other targets have
also been proposed individually, e.g., SiC [248], and there has been work on understanding
the signal from multi-phonon excitations [247, 249, 250]. Similar to superfluid helium, a
DM detector using a crystal target with single phonon readout is also in the R&D phase of
development [90].

Most of the previous work has focused on calculating the theoretically predicted DM-phonon
interaction strength. Equally important is to minimize the experimental background [256].
This becomes easier when the DM scattering signal has unique properties which can distin-
guish it from backgrounds. For example, in experiments sensitive to nuclear recoil or electron
excitations, the rate modulates annually due to the change in the DM velocity distribution
in the Earth frame, as the Earth orbits around the Sun [33, 35, 226].

In an experiment based on primary phonon readout, the DM scattering rate can have a larger
and more unique signature: daily modulation. As the Earth rotates about its own axis, the
orientation of the detector relative to the DM wind changes. In a nuclear recoil experiment
this does not have an effect since the interaction matrix element is independent of the
direction of the DM velocity relative to the detector orientation — an (unpolarized) nucleus
is isotropic in its response. However, crystal targets can be highly anisotropic, which means
that the amplitude of the response depends not only on the magnitude of the momentum
transfer but also on its direction. This can lead to a significant daily modulation. Moreover,
since the modulation pattern depends on the crystal orientation, running an experiment with
multiple detectors simultaneously with different orientations can further enhance the signal-
to-noise ratio. This effect was studied for sapphire in Ref. [28] (see also Refs. [7, 29, 183, 188]
for discussions of daily modulation in electron excitations). In this work, we expand the
understanding of the daily modulation effect in single phonon excitations to a broader range
of materials, including those targeted in Ref. [6].

In particular, we highlight the following targets in the main text: Al2O3 (sapphire) and
CaWO4, which were already utilized for DM detection and have a significant daily modula-
tion; SiO2, which was shown to have a strong reach to several benchmark models; SiC, which
was proposed in Ref. [248] (for which we choose the commercially available 4H polytype);
and h-BN (hexagonal boron nitride), which is a highly anisotropic material. Among them,
Al2O3 and CaWO4 have the best prospects overall in terms of daily modulation reach and
experimental feasibility.
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Of the additional materials considered in Ref. [6], results for those with daily modulation
larger than 1% (for at least some DM masses where the material has substantial reach) are
presented in an appendix. We make available our code for the phonon rate calculation [257],
and also publish an interactive webpage [258] where results for all the materials presented
in Ref. [6] and in this paper, including reach curves, differential rates and daily modulation
patterns, can be generated from our calculations. Twenty-six materials are initially included
on the interactive webpage [258]: Al2O3, AlN, h-BN, CaF2, CaWO4, CsI, C (diamond),
GaAs, Ge, GaN, GaSb, InSb, LiF, MgF2, MgO, NaCl, NaF, NaI, PbS, PbSe, PbTe, Si,
4H-SiC, SiO2, ZnO, and ZnS. This diverse set of materials (with some currently in use
in nuclear recoil experiments, some proposed for light dark matter detection, and some
others being promising polar crystals from theoretical considerations) aims to explore a wide
range of possibilities with the hope of identifying broad theoretical features that could be
implemented in a more practical experimental setup. Materials shown in-text (Al2O3, SiO2,
SiC, CaWO4 and h-BN) are the ones with the highest daily modulation in this list.

4.2 Directional Detection With Single Phonon Excitations
Excitation Rate
We begin by summarizing the formulae for single phonon excitation rates; see Refs. [7, 28, 64]
for more details. For the scattering of a DM particle χ with mass mχ and general spin-
independent interactions, the rate per unit target mass takes the form

R(t) =
1

ρT

ρχ
mχ

πσψ
µ2
χψ

∫
d3v fχ(v, t)

×
∫

d3q

(2π)3
F2

med(q)S
(
q, ωq) , (4.1)

where v is the incoming DM’s velocity, q is the momentum transferred to the target, ρT is
the target’s mass density, and ρχ = 0.4GeV/cm3 is the local DM density. σψ, with ψ = n or
e (neutron or electron), is a reference cross section defined as

σψ ≡
µ2
χψ

π
|Mχψ(q = q0)|2 , (4.2)

where µχψ is the reduced mass,Mχψ is the vacuum matrix element for χψ → χψ scattering,
and q0 is a reference momentum transfer. We present the reach in terms of σψ, with q0 = mχv0

(where v0 = 230 km/s, the dispersion of DM’s velocity distribution) for ψ = n and q0 = αme

for ψ = e. fχ(v, t) is the DM’s velocity distribution in the lab frame, taken to be a truncated
Maxwell-Boltzmann distribution, boosted by the time-dependent Earth velocity ve(t), as will
be discussed in more detail in the next subsection. Fmed(q) is the mediator form factor, which
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captures the q dependence of the mediator propagator:

Fmed(q) =

1 (heavy mediator) ,

(q0/q)
2 (light mediator) .

(4.3)

Finally, S(q, ω) is the dynamic structure factor that encodes target response to DM scat-
tering with momentum transfer q and energy transfer ω, constrained by energy-momentum
conservation to be

ωq = q · v − q2

2mχ

. (4.4)

Generally, one sums over a set of final states f with energies ωf , and S(q, ω) takes the form

S(q, ω) =
∑
f

2π δ(ω − ωf )S ′
f (q) . (4.5)

For single phonon excitations, we assume the target system is initially prepared in the ground
state at zero temperature with no phonons, and sum over single phonon states labeled
by branch ν and momentum k inside the first Brillouin zone (1BZ). Lattice momentum
conservation dictates that q = k +G, with G a reciprocal lattice vector. To find k and G

from a given q, we first find the reduced coordinates (q1, q2, q3) (i.e., q =
∑3

i=1 qibi with bi

the basis vectors of the reciprocal lattice), and then find the nearest point (G1, G2, G3) with
Gi ∈ Z. In this way, any q outside of the 1BZ is mapped to a k inside the 1BZ and a G

vector. The sum over final states therefore only runs over the phonon branches, indexed by
ν,

S(q, ω) =
∑
ν

2πδ(ω − ων,k)S ′
ν(q) . (4.6)

As was shown in Refs. [7, 28, 64], S ′
ν can be written in terms of the phonon energies ωνk,

eigenvectors ενkj and an effective DM-ion couplings Y j (with j labeling the ions in the
primitive cell):

S ′
ν(q) =

1

2Ωων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2, (4.7)

where Ω is the volume of the primitive cell, and mj,x
0
j , and

Wj(q) ≡ Ω
4mj

∑
ν

∫
d3k
(2π)3

|q·εν,k,j |2
ων,k

are the masses, equilibrium positions, and Debye-Waller fac-
tors of the ions, respectively. We obtain the material-specific force constants in the quadratic
crystal potential and the equilibrium positions from density functional theory (DFT) cal-
culations [6, 28, 259], and use the open-source phonon eigensystem solver phonopy [50] to
derive the values of ων,k, εν,k,j for each material.

The DM-ion coupling vectors Y j are DM model dependent. In our target comparison study
in Sec. 4.3, we will focus on two sets of benchmark models, with a light dark photon mediator
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and a heavy or light hadrophilic scalar mediator, respectively. These are the same models
considered in Ref. [6], for which Y j are given by

Y j =


−

q ·Z?
j

q̂ · ε∞ · q̂
(dark photon med.),

qAj FNj(q) (hadrophilic scalar med.).
(4.8)

Here Z?
j is the Born effective charge tensor of the jth ion, ε∞ is the high-frequency dielectric

tensor that captures the electronic contribution to in-medium screening, Aj is the atomic
mass number, and FNj(q) =

3 j1(qrj)

qrj
e−(qs)2/2 (with rj = 1.14A

1/3
j fm, s = 0.9 fm) is the Helm

nuclear form factor [200] (which is close to unity for the DM masses considered in this work).

These benchmark models have highly complementary features. In a polar crystal, the dark
photon couples to the Born effective charges of the ions, which have opposite signs within
the primitive cell, and therefore dominantly induces out-of-phase oscillations corresponding
to gapped optical phonon modes in the long-wavelength limit. By contrast, the hadrophilic
scalar mediator couples to all ions with the same sign, and therefore dominantly excites
gapless acoustic phonons that correspond to in-phase oscillations in the long-wavelength
limit. There is also a difference between a light and heavy mediator due to the mediator
form factor in Eq. (4.3). Noting that Y j scales with q and the energy conserving delta
function contributes a factor of q−1 (see Eq. (4.11) below), we see that for a heavy mediator,
the integral scales as

∫
dq q3ω−1 and so is always dominated by large q. For a light mediator,

on the other hand, the integral scales as
∫
dq q−1ω−1. So for optical phonons with ω ∼ q0,

it receives similar contributions from all q, whereas for acoustic phonons, it is dominated by
small q where ω ∼ q.

Daily Modulation
In the rate formula Eq. (4.1), the time dependence comes from the DM’s velocity distribution
fχ(v, t), specifically via the Earth’s velocity ve(t) that boosts the distribution. Concretely,
we take

fχ(v, t) =
1
N0

exp
[
− (v+ve(t))2

v20

]
Θ
(
vesc − |v + ve(t)|

)
, (4.9)

where N0 is a normalization constant such that
∫
d3v fχ(v) = 1, vesc = 600 km/s is the

galactic escape velocity, and v0 = 230 km/s as mentioned above. Assuming the detector is
fixed on the Earth, in the lab frame ve becomes a function of time that is approximately
periodic over a sidereal day as a result of the Earth’s rotation. As a default setup, we adopt
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Figure 4.1: Top: To understand the kinematic function, g(q, ω), defined in Eq. (4.11), we
plot v∗ ≡ q

2mχ
+ ω

q
as a function of q (blue) for various mχ and ω values. Comparing v∗ to ve

and ve + vesc we can qualitatively reconstruct the shape of g(q, ω), as discussed in the text.
Bottom: g(q, ω) vs. q for several fixed mχ, ω values, with varying q̂ · v̂e. The kinematic
function weights different q̂ directions according to their angle with respect to ve(t), which
ultimately leads to a daily modulating rate.

the detector orientation in Refs. [7, 28, 29], for which, independent of the detector’s location,

ve(t) = ve


sin θe sinφ(t)

sin θe cos θe (cosφ(t)− 1)

cos2 θe + sin2 θe cosφ(t)

 , (4.10)

where ve = 240 km/s, θ = 42◦, and φ(t) = 2π
(

t
24 hr

)
. It is this periodicity of the direction of

ve(t) that induces the daily modulation in R(t) we study in this work.1

With the specific form of fχ in Eq. (4.9), the velocity integral in Eq. (4.1) can be done
1Annual modulation is also present, due to the change of the magnitude of ve, as in any terrestrial

direct detection experiment. Here we fix ve = 240 km/s and focus on the daily modulation signal, which is
unique to anisotropic (crystal) targets.
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analytically [7, 28, 29]. We define

g(q, ω, t) ≡
∫
d3v fχ(v, t) 2πδ(ω − ωq)

=
2π2v20
N0q

{
exp
[
− (v−(q,ω,t))2

v20

]
− exp

[
−v2esc

v20

]}
,

(4.11)

where
v−(q, ω, t) = min

(∣∣∣q̂ · ve(t) +
q

2mχ
+ ω

q

∣∣∣ , vesc

)
. (4.12)

We will refer to g(q, ω, t) as the kinematic function. The rate formula Eq. (4.1) then becomes

R(t) =
1

ρT

ρχ
mχ

πσψ
µ2
χψ

∫
d3q

(2π)3
F2

med(q)∑
ν

S ′
ν

(
q) g(q, ων,k, t) . (4.13)

With the rate written in this form, the time dependence now comes from the v− function
contained in g(q, ω, t). As we will discuss in detail in the rest of this subsection, the origin
of daily modulation is as follows. First, the kinematic function g(q, ω, t) selects a region of q
space at each time of the day that is strongly correlated with ve(t). For anisotropic targets,
this then results in a modulating rate after the q integral in Eq. (4.13). Intuitively, the DM
wind hits the target from different directions throughout the day, some of which may induce
a stronger response than others.

Kinematic Function

The kinematic function g(q, ων,k, t) can be viewed as a weight function: for each phonon
branch ν, the integrand in Eq. (4.13), F2

med(q)S
′
ν

(
q), is weighted toward momentum transfers

q that maximize the g function or, equivalently, minimize v− defined in Eq. (4.12). To
visualize this minimization, we plot

v∗ ≡
q

2mχ

+
ω

q
(4.14)

as a function of q in the top panel of Fig. 4.1. Setting ω to a constant approximates the case
of optical phonons, which have relatively flat dispersions, whereas ω → 0 corresponds to the
case of acoustic phonons, for which ω/q is bounded by the sound speed, which is typically
much smaller than the DM’s velocity. We can identify three distinct regions (as shown with
different colors in the plot):

• For v∗ ≥ vesc + ve, we have v− = vesc and therefore g = 0 for all q̂ directions. This is
the kinematically forbidden region.
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Figure 4.2: Comparison between the various sources of anisotropy a in SiO2 target, for an
example DM mass for each benchmark model. A 1 meV energy threshold is assumed in all
cases. As discussed in the text, anisotropy in the Y j ·εν,k,j factor in Eq. (4.7) is the dominant
factor in determining the daily modulation pattern.

• For ve ≤ v∗ < vesc + ve, the g function is maximized at q̂ · v̂e = −1.

• For v∗ ≤ ve, the g function is nonzero for all q̂ directions, and is maximized at q̂ · v̂e =

−v∗/ve. In the large mχ, small ω limit, v∗ → 0, and therefore the g function is
maximized when q̂ · v̂e = 0.

These behaviors are seen in the lower panels of Fig. 4.1 (see also Ref. [29]), where we plot
g(q, ω) as a function of q for fixed mχ, ω, and with varying q̂ ·v̂e. Note that in the ω → 0 case,
the g function has support down to q = 0, but the phase space integral for acoustic phonons
is cut off at qmin ' ωmin

cs
= 2 × 10−2 keV

(
ωmin
1meV

)(
5×10−5

cs

)
, where ωmin is the detector’s energy

threshold, and cs is the sound speed (slope of the linear dispersion). From these plots we see
that the kinematically favored region of q is strongly correlated with v̂e(t) and, therefore,
rotates with it throughout the day. This rotation then translates any target anisotropy into
a detection rate that modulates daily.

Sources of Anisotropy

There are a number of possible sources of anisotropy, as we can infer from Eq. (4.13) and
Eq. (4.7). First of all, the phonon energies ων,k generically depend on the direction of
q = k + G. This means that the region selected by the kinematic function, as discussed
above, does not preserve its shape as it rotates in q space. Also, the ω−1

ν,k factor in Eq. (4.7)
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is different in the dominating kinematic region at different times of the day, which adds to
the daily modulation signal.

The anisotropy in ων,k has two contributing factors. First, phonon dispersions can be
anisotropic as a result of crystal structures. For example, in h-BN, the sound speed of
the longitudinal acoustic phonons differs by more than a factor of two between different k

directions. Second, by the prescription explained above Eq. (4.6), a sphere of constant q
outside the 1BZ does not map to a sphere of constant k inside the 1BZ. Since the size of the
1BZ is typically O(keV), and the DM velocity is O(10−3), this is relevant for mχ & MeV.
Another related source of anisotropy is the eiG·x0

j factor in Eq. (4.7): a constant-q sphere
outside the 1BZ does not map onto a unique G vector.

In addition to ων,k and eiG·x0
j discussed above, the scalar product of the DM-ion coupling and

phonon eigenvectors, Y j · εν,k,j, can also be anisotropic for a variety of reasons, depending
on the DM model. For the hadrophilic scalar mediator model, Y j · εν,k,j are simply propor-
tional to the longitudinal components of phonon eigenvectors q̂ · εν,k,j, so the anisotropy is
determined by the extent to which the phonon eigenvectors deviate from transverse and lon-
gitudinal in different q̂ directions. For the dark photon mediator model, Y j ·εν,k,j are instead
proportional to q̂·Z?j ·εν,k,j

q̂·ε∞·q̂ , so there are additional anisotropies if the Born effective charges
Z?
j and dielectric tensor ε∞ are not proportional to the identity. All these anisotropies are

ultimately determined by the crystal structure.

We can carry out a simple exercise to see how the various sources of anisotropy discussed
above contribute to the full daily modulation signal. As an example, we consider a SiO2

target, and pick one mχ value for each benchmark model, as shown in the three panels of
Fig. 4.2. We obtain the full rate normalized to its daily average, R/〈R〉, as a function of
time, as shown by the solid red curves labeled by “full.” We then artificially make the various
factors in the rate formula isotropic and see how the modulation pattern changes.

First, we make S ′
ν(q) isotropic by setting ων,k and Y j · εν,k,j to their values at a specific

direction (q̂ = ẑ), and setting eiG·x0
j → 1. This isolates the effect of the kinematic function

g(q, ων,k, t) on daily modulation. The results are shown by the dot-dashed purple curves
in Fig. 4.2, labeled “isotropic S ′

ν(q).” In all three panels, we see that the “isotropic S ′
ν(q)”

curves are far from the full results (solid red curves), meaning that the anisotropy in S ′
ν(q)

plays an important role in determining the total modulation pattern. We find the same
conclusion for the other materials and for other mχ, ωmin values.

We can further dissect the anisotropy in S ′
ν(q) by computing the daily modulation with ω−1

ν,k

or Y j · εν,k,j made isotropic by the same prescription as above; these are labeled “isotropic
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Figure 4.3: Left: Daily modulation for a h-BN target with various experimental thresholds,
ωmin, assuming dark photon mediated scattering and mχ = 100 keV. Right: Differential
rate at t = 0 for the same process assuming σe = 10−43 cm2. The daily modulation pattern
is drastically different depending on whether the optical phonon modes just below 100 meV
are included or excluded.
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Figure 4.4: Effect of the crystal target orientation on the daily modulation pattern, for
a sapphire target and the light dark photon mediator model as an example. The default
orientation is the one adopted in Refs. [7, 28, 29] for which ve(t) is given by Eq. (4.10), and
the alternative orientation is achieved by rotating the crystal z axis by 60◦ clockwise around
n̂ = (x̂+ ŷ + ẑ)/

√
3 (or equivalently, a −60◦ right-handed rotation around n̂.)

ω−1
ν,k” (dotted blue curves) and “isotropic Y j · εν,k,j” (dashed green curves) in Fig. 4.2, re-

spectively. We see that the anisotropy in the Y j · εν,k,j factor contributes the most to daily
modulation, as making it isotropic leads to the most significant deviations from the full
results. We find the same is true for other materials.

We have also examined the effect of setting eiG·x0
j → 1 in S ′

ν(q) while leaving both ω−1
ν,k and
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Figure 4.5: Top: Projected reach for the dark photon mediator model assuming 1 meV
and 20 meV detector energy thresholds and one kg-year exposure. Solid curves show the
95% confidence level (CL) exclusion limits in the case of zero observed events, assuming no
background. Dashed curves and the associated±1σ bands show the modulation reach for DM
masses with more than 1% daily modulation, i.e., cross sections for which we can reject the
non-modulating hypothesis and establish the statistical significance of a modulating signal,
as explained in App. E. Bottom: Daily modulation amplitudes fmod, defined in Eq. (4.15),
for the same energy thresholds. Results are shown only for mχ values where a material has
substantial reach and fmod > 10−2. The exact DM mass corresponding to a specific bar can
be read off from the left edge of that bar.

Y j · εν,k,j intact. This has a visible impact only when the region of q space just outside
the 1BZ has a significant contribution to the rate; as q moves farther away from the 1BZ,
summing over contributions from many different G vectors mitigates the effect. For the
dark photon mediator model, this explains the enhanced daily modulation at mχ & MeV
(see Fig. 4.5 below). For the light hadrophilic scalar mediator model, there is no significant
effect since the q integral is dominated by small q. For the heavy hadrophilic scalar mediator
model, in contrast, the q integral is dominated by large q, so the enhancement happens in a
window around mχ ∼ MeV (see Fig. 4.7 below).
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Effects of Experimental Setup

The daily modulation pattern can also be significantly affected by experimental factors,
including in particular the detector’s energy threshold and the orientation of the target
crystal. The energy threshold ωmin can be important if phonon modes at different energies
have different modulation patterns. As an example, we show in the left panel of Fig. 4.3 the
daily modulation in h-BN for several different values of ωmin, for the dark photon mediator
model with mχ = 100 keV. The distinct daily modulation curves can be understood from
the differential rate plot in the right panel of Fig. 4.3. We see that the phonon modes just
below 100 meV dominate the total rate, so long as ωmin is below this, and they drive the
daily modulation pattern. On the other hand, if ωmin > 100meV, these modes are no longer
accessible, and the daily modulation is instead induced by phonon modes at energies higher
than about 175 meV, for which the rate has a very different time dependence.

Meanwhile, the orientation of the crystal determines the function ve(t), and hence the daily
modulation pattern. As an example, Fig. 4.4 compares the daily modulation patterns be-
tween our default setup, given in Eq. (4.10), and an (arbitrarily chosen) alternative orien-
tation where the crystal z axis is rotated by 60◦ clockwise around n̂ = (x̂ + ŷ + ẑ)/

√
3 (or

equivalently, a −60◦ right-handed rotation around n̂.)

4.3 Target Comparison
Having discussed the physics underlying daily modulation, we now consider concrete target
materials. Among the 26 materials studied [258], 19 are observed to have more than 1%
daily modulation for some DM masses in at least one of the benchmark models considered.
In this section, we focus on the following five which are observed to have the highest daily
modulation amplitudes: Al2O3, SiO2, SiC, CaWO4 and h-BN. Among them, Al2O3, SiO2

and SiC have been proposed and recommended for near-future phonon-based experiments,
while Al2O3 and CaWO4 are in use in the CRESST experiment. Meanwhile, h-BN is a highly
anisotropic target with layered crystal structure that we have found to have exceptionally
large daily modulation; while its experimental prospects have not been assessed, it serves
as a useful benchmark for our theoretical study. We supplement this analysis with the
remaining 14 materials with more than 1% daily modulation (AlN, CaF2, GaN, GaSb, InSb,
LiF, MgF2, MgO, NaF, PbS, PbSe, PbTe, ZnO, ZnS) in App. D.

Our main results are shown in Figs. 4.5, 4.6 and 4.7, for the dark photon mediator model and
the light and heavy hadrophilic scalar mediator models, respectively. In the top panels of each
figure, we show both the projected exclusion limits (solid) and the cross sections needed to
distinguish the modulating signal and a non-modulating hypothesis in the event of discovery



91

10-3 10-2 10-1 1

10-42
10-41
10-40
10-39
10-38
10-37
10-36
10-35

10-3 10-2 10-1 1

10-42
10-41
10-40
10-39
10-38
10-37
10-36
10-35

10-2 10-1 1

10-1

1

10-1 1

10-1

1

Figure 4.6: Same as Fig. 4.5, for the light hadrophilic scalar mediator model.

(dashed and shaded ±1σ bands), assuming 1 and 20 meV detector energy thresholds. These
energy thresholds have been envisioned with near-future advances in detector technology,
and the primary motivation for these specific values is to differentiate the effects of acoustic
and optical phonon dominated scattering. For the solid curves, we set t = 0 when computing
the rates for concreteness, and assume 3 events per kilogram-year exposure, corresponding
to 95 % confidence level (CL) exclusion in a background-free experiment. The results for
Al2O3, CaWO4 and SiO2 were computed previously in Ref. [6] (numerical errors in some
of the materials in early versions of that reference have been corrected here and on the
interactive webpage [258]), and here we perform the calculation also for SiC and h-BN. For
the dashed curves and the shaded bands for the modulation reach, we compute the number
of events needed to reject the constant rate hypothesis at the 95 % confidence level by a
prescription discussed in App. E; they are truncated where the daily modulation falls below
1%.

In the lower panels of Figs. 4.5, 4.6 and 4.7, we quantify the amount of daily modulation for
several representative DM masses by

fmod ≡
max

(
|R− 〈R〉|

)
〈R〉

, (4.15)
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Figure 4.7: Same as Fig. 4.5, for the heavy hadrophilic scalar mediator model.

which characterizes the maximum deviation of detection rate throughout the day from the
daily average 〈R〉. We shall refer to fmod as the daily modulation amplitude. The fmod plots
give us an overview of the amount of daily modulation to expect. More detailed information
on the daily modulation signal can be gained by plotting R(t)/〈R〉, as in Figs. 4.2, 4.3
and 4.4, for each DM mass and energy threshold; we provide these plots on the interactive
webpage [258].

We have considered detector energy thresholds ωmin = 1meV and 20 meV. For the dark
photon mediator model (Fig. 4.5), the energy threshold does not have a significant impact
on either the reach or the daily modulation amplitude, except at the lowest mχ values. This
is because gapped optical phonons dominate the rate as long as they are above ωmin and the
DM is heavy enough to excite them. For the hadrophilic scalar mediator models (Figs. 4.6
and 4.7), on the other hand, gapless acoustic phonons dominate and, as a result, both the
reach and the daily modulation amplitude are sensitive to ωmin. Generally, a higher energy
threshold tends to amplify the daily modulation since the kinematically accessible phase
space becomes limited, as discussed in detail in Sec. 4.2. Similarly, the daily modulation
amplitude tends to increase at the lowest mχ considered because of phase space restrictions.
The enhanced daily modulation in these cases comes at the price of a lower total rate, so
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Figure 4.8: Left: Daily modulation for an h-BN target with various DM masses, assuming
dark photon mediated scattering and ωmin = 1meV. The change in modulation pattern is
a result of the kinematically favored q̂ · v̂e increasing from −1 toward 0 as mχ increases.
During the transition between different modulation patterns, an intermediate mass value
around 20 keV features a reduced modulation amplitude, which explains the peak in the
modulation reach curve in the top-left panel of Fig. 4.5. A similar effect is also observed
for the hadrophilic scalar mediator models in Figs. 4.6 and 4.7. Right: Differential rates
at t = 0 for several higher mχ assuming σe = 10−43 cm2. Another transition between
modulation patterns occurs when new phonon modes become dominant as mχ increases,
resulting in a second reduced modulation mass point, around 200 keV, in Fig. 4.5.

there is a trade-off between better overall sensitivity and a higher daily modulation signal.
This is reflected by the dashed modulation reach curves in the top panels of each figure,
which ascend at lower masses since the rate also vanishes.

From Figs. 4.5, 4.6 and 4.7, we see that h-BN consistently outperforms all other materials in
terms of the daily modulation amplitude, which reaches O(1) for some mχ and ωmin values.
This is due to the layered crystal structure which means that the momentum transfers
perpendicular and parallel to the layers lead to very different target responses. Among the
other materials, Al2O3, CaWO4 and SiC are also competitive targets for the dark photon
mediator model at mχ . 100 keV, and CaWO4 shows percent level daily modulation across
a wide range of DM masses for the heavy scalar mediator model.

It is also worth noting that the modulation reach curves and fmod often exhibit a nontrivial
dependence on mχ. In particular, for given target material and ωmin, there can be mχ values
where the modulation signal diminishes. For example, for dark photon mediated scattering,
h-BN with ωmin = 1meV has two such low-fmod mass points at around 20 keV and 200 keV,
corresponding to the peaks of the modulation reach curve in the top-left panel of Fig. 4.5.

Generally, low-fmod points at low mχ result from the change in q̂ ·v̂e favored by the kinematic
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function. As discussed in Sec. 4.2, as mχ increases, the favored q̂·v̂e increases from −1 toward
0. As v̂e changes with time (e.g., as in Eq. (4.10)), a given q̂ · v̂e probes the crystal’s S ′

ν(q)

along a set of q̂ directions that modulates, and the modulation pattern depends on the
kinematically favored q̂ · v̂e value. We verify this expectation in the left panel of Fig. 4.8 for
h-BN. In this case, the modulation pattern flips as mχ increases from 10 keV to 40 keV, and
an approximate cancelation occurs around 20 keV. Note, however, that the daily modulation
sensitivity may be recovered by analyzing the differential rates dR(t)

dω
.

The low-fmod points at higher mχ, on the other hand, are explained by new phonon modes
with different modulation patterns becoming kinematically accessible as mχ increases. Again
focusing on h-BN as an example, we see from the right panel of Fig. 4.8 that while the
dominant phonon modes are the ∼ 100meV modes for mχ = 50 keV and 100 keV, the modes
above 150 meV take over as mχ increases to 250 keV. The reduced modulation sensitivity at
mχ ' 200 keV results from the transition between the two regimes.

4.4 Conclusions
As new experiments focused on light DM detection with single optical and acoustic phonons
begin an R&D phase [90], it is important and timely to understand which target crystals have
the optimal sensitivity to well-motivated DM models. This includes not only the sensitivity
to the smallest interaction cross section for a given DM model, but also the ability to extract a
smoking gun signature for DM that can be distinguished from background. Daily modulation
provides such a unique fingerprint. In this work, we have carried out a comparative study
of daily modulation signals for several benchmark models, where DM scattering is mediated
by a dark photon or hadrophilic scalar mediator. Our results supplement the information
on the cross section reach obtained previously in Ref. [6], and provide further theoretical
guidance to the optimization of near future phonon-based experiments.

Based on our analysis of 26 crystals, we observe that there is often a trade-off between
detection rate, modulation amplitude, and experimental feasibility. For example, for dark
photon mediated scattering, Al2O3 (sapphire), CaWO4 and SiO2 (α-quartz) outperform h-
BN in terms of their sensitivities to the total rate; h-BN’s daily modulation signal, however,
is significantly stronger. Still, despite having the largest daily modulation amplitude, h-BN
will likely be difficult to fabricate as a large ultra-pure single crystal target. Overall, Al2O3

and CaWO4 provide perhaps the optimal balance between the overall reach and the daily
modulation signal, and have both already been used in direct detection experiments.

Beyond the results presented in this paper, we also publish an interactive webpage [258],
where additional results can be generated from our calculations of single phonon excitation



95

rates and their daily modulation.
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C h a p t e r 5

DETECTING LIGHT DARK MATTER WITH MAGNONS

5.1 Introduction
Direct detection of dark matter (DM) has undergone a dramatic expansion of scope in
recent years. Well-motivated theories where sub-GeV DM arises in a hidden sector/hidden
valley, with new weakly or strongly coupled dynamics (see e.g., Refs. [140, 203–205, 210,
241, 260, 261] for early examples), have given impetus to new ideas to search for light
DM. Conventional nuclear recoils, well-matched kinematically to search for weak-scale DM,
are not effective for light DM — once the DM mass drops below the target nucleus mass,
the fraction of the DM’s kinetic energy that can be deposited on the target falls. Beyond
nuclear recoils, better DM-target kinematic matching allows us to probe qualitatively new
parameter space, through lighter targets (e.g., electrons) with ∼ eV (as in semiconductors
and atoms [19, 24, 25, 33–35, 39, 40, 177, 180] as well as molecules [193–195]) or ∼meV (as
in superconductors [41, 181, 182] and Dirac materials [188]) energy gaps. Reading out such
small energy depositions is achieved through improvements to cryogenic superconducting
calorimeters, such as transition edge sensors (TES) and microwave kinetic inductance devices
(MKIDs). Collective excitations, such as phonons in superfluid helium [184–187] and
crystals [28, 64], open new avenues for good kinematic matching. For example, the presence
of O(10-100)meV gapped optical phonons in some systems facilitates the extraction of a
large fraction of DM’s kinetic energy for DM as light as ∼10 keV.

Beyond kinematics, there is also a dynamics aspect of the problem — depending on how
the DM couples to Standard Model (SM) particles, different target responses are relevant.
A familiar example from nuclear recoils is the presence of several nuclear responses – spin-
independent (SI), spin-dependent (SD), etc. – which can probe different DM-SM interactions
[55, 60, 196, 197]. Together they provide broad coverage of the DM theory space, with various
target nuclei offering complementary information. Another example is dark photon mediated
DM: a material with a strong optical response, such as a superconductor, has weak reach
since the effective coupling of the dark photon is suppressed due to in-medium effects, while
Dirac materials and polar crystals, which have weaker optical response, have excellent reach
[28, 64, 188]. Similarly, collective excitations can arise from different degrees of freedom,
such as charge or spin, and some excitations may be advantageous over others for certain
types of DM couplings. Therefore, in order to identify the broadest DM detection strategy,
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it is important to consider collective excitations of all types.

From this perspective, previous proposals via phonon excitations are aimed at probing SI
responses. While they cover many simple DM models, including those with a dark photon
or scalar mediator, there are other scenarios that are equally plausible, where the leading
DM-SM interactions lead to stronger SD responses. For example, in dark photon mediated
models, the DM may in fact be charge neutral, but couple to the dark photon via a higher
multipole, e.g., magnetic dipole or anapole [52–63]. Also, a spin-0 mediator may dominantly
couple to the pseudoscalar (rather than scalar) current of SM fermions. In these scenarios,
summarized in Table 5.1, SI responses are suppressed compared to the previously considered
cases, and ideas of detecting SD responses are needed. More generally, SI and SD couplings
can coexist, so it is desirable to pursue detection channels for both in order to have a more
complete picture of DM interactions.
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Ŝ
γ χ

σ̄
e
=

g
2 χ
g
2 e

π

3
α
2
µ
2 χ
e

2
Λ
4 χ

Ps
eu

do
-m

ed
ia

te
d

D
M

L
=
g χ
χ̄
χ
φ
+
g e
ē
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In this Letter, we propose a novel detection path for spin-dependent light DM-electron inter-
actions via magnon excitations. Magnons are quanta of collective spin wave excitations in
condensed matter systems that exhibit magnetic dipole order in the ground state. They can
be thought of as the SD counterpart of phonons for DM detection with similar kinematics.
We demonstrate as a proof of principle that single magnon excitations can probe interesting
DM scenarios through scattering, thus broadening the coverage of the DM theory space.
In future work we will pursue DM (in particular axion DM) absorption through magnon
excitations.

5.2 Magnons In Magnetically Ordered Materials
Magnetic order can arise in solid state systems due to the interplay between electron-electron
interactions, electron kinetic energy and Pauli exclusion (see e.g., Refs. [262, 263]). Such
systems are usually described by a spin lattice model, e.g., the Heisenberg model,

H =
1

2

N∑
l,l′=1

n∑
j,j′=1

Jll′jj′ Slj · Sl′j′ . (5.1)

Here l, l′ label the magnetic unit cells, and j, j′ label the magnetic atoms/ions inside the
unit cell. Depending on the sign of the exchange coupling Jll′jj′ , the spins Slj and Sl′j′ tend
to align or anti-align. The low energy excitations are obtained by applying the Holstein-
Primakoff transformation to expand the spins around the ordered ground state in terms of
bosonic creation and annihilation operators â†, â. The quadratic part of the Hamiltonian
can then be diagonalized via a Bogoliubov transformation (see Supplemental Material for
details), (

âj,k

â†j,−k

)
=

(
Ujν,k Vjν,k

V∗
jν,−k U∗

jν,−k

)(
b̂ν,k

b̂†ν,−k

)
, (5.2)

H =
n∑
ν=1

∑
k∈1BZ

ων,kb̂
†
ν,kb̂ν,k , (5.3)

so that b̂†, b̂ are creation and annihilation operators of the canonical magnon modes, which
are collective excitations of the spins. For a system with N magnetic unit cells and n

magnetic atoms/ions in the unit cell, there are n magnon branches, labeled by ν, with N

modes on each branch, labeled by momentum vectors k within the first (magnetic) Brillouin
zone (1BZ). The n× n matrices U, V can be calculated for each k.
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5.3 Magnon Excitation From Dark Matter Scattering
If the DM couples to the electron spin, it can scatter off the target material and create
magnon excitations.1 Suppose the nonrelativistic effective Lagrangian takes the form

L = −
3∑

α=1

Ôαχ(q)Ŝαe , (5.4)

where α denotes the Cartesian coordinates, and q is the momentum transfer from the DM to
the target. The operators Ôχ that follow from the three Lagrangians we consider are listed
in Table 5.1. Focusing on transitions from the ground state to single magnon states |ν,k〉,
we obtain the matrix element as (see Supplemental Material for details)

Msisf
ν,k (q) = δq,k+G

1√
NΩ

3∑
α=1

〈sf |Ôαχ(q)|si〉 εαν,k,G , (5.5)

where Ω is the volume of the magnetic unit cell, G denotes a reciprocal lattice vector, and
|si,f〉 are the initial and final DM spin states. εν,k,G is the analog of polarization vectors for
the magnon modes,

εν,k,G =
n∑
j=1

√
Sj
2

(
Vjν,−kr

∗
j + U∗

jν,krj
)
eiG·xj , (5.6)

where rαj ≡ Rα1
j + iRα2

j parameterize the spin orientations in the ground state,

Sαlj =
∑
β

Rαβ
j S ′β

lj , {〈S ′1
lj 〉, 〈S ′2

lj 〉, 〈S ′3
lj 〉} = {0, 0, Sj} , (5.7)

and xj ≡ xlj − xl is the position of the jth site within a magnetic unit cell. As a simple
example, a ferromagnet with one magnetic ion per unit cell (n = 1) has r = (1, i, 0), U = 1,
V = 0, and thus, ε =

√
S/2 (1, i, 0) for all k and G, reminiscent of a photon polarization

vector.

From Eq. (5.5) we see that for given q, only the magnon modes with k ∈ 1BZ satisfying
q = k + G for some G can be excited, due to lattice momentum conservation. Summing
over sf and averaging over si, we obtain

|Mν,k(q)|2 =
δq,k+G

NΩ2
tr
(
ρ̂χÔαχ(q)Ô†β

χ (q)
)
εαν,k,Gε

∗β
ν,k,G , (5.8)

1Magnons can also be excited via couplings to orbital angular momenta. Here we assume negligible
orbital angular momenta for simplicity, noting that this is the case for many familiar materials where 3d
electrons are responsible for the magnetic order.
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where ρ̂χ = 1
2Sχ+1

12Sχ+1 is the density matrix for the spin of the incoming DM. The total
event rate per unit target mass is then obtained as

R =
1

ρT

ρχ
mχ

∫
d3vχ f(vχ)

∑
ν

∑
k∈1BZ

Γν,k(vχ) , (5.9)

Γν,k(vχ) = 2π
∑

q=k+G

|Mν,k(q)|2 δ
(
Eχi − Eχf − ων,k

)
, (5.10)

where ρT is the target mass density, ρχ = 0.3GeV/cm3 is the local DM energy density,
Eχi =

1
2
mχv

2
χ, Eχf = (mχvχ − q)2/(2mχ). We assume the DM velocity distribution f(vχ)

is Maxwell-Boltzmann, with dispersion 220 km/s, truncated by the galactic escape velocity
500 km/s, and boosted to the target rest frame by the Earth’s velocity in the galactic rest
frame, 240 km/s. We take the continuum limit

∑
k∈1BZ → NΩ

∫
d3k
(2π)3

, where R becomes
N -independent.

5.4 Projected Reach
As a first demonstration of the detection concept, we consider a yttrium iron garnet (YIG,
Y3Fe5O12) target. YIG is a classic ferrimagnetic material that has been extensively studied
and well-characterized, and can be readily synthesized with high quality [264, 265]. It has
been exploited for axion DM detection via absorption in an external magnetic field [93,
164, 266]. Here we focus on DM scattering for which external fields are not necessary for
producing a signal. Particular detection schemes will be explored in future work.

YIG has 20 magnetic ions Fe3+ per unit cell, with effective spins Sj = 5/2 (j = 1, . . . , 20)
coming from five 3d electrons with quenched orbital angular momentum. The ground state
has the 12 tetrahedral-site and 8 octahedral-site spins pointing in opposite directions. Taking
the crystal parameters from Ref. [267] and Heisenberg model parameters from Ref. [264], we
diagonalize the magnon Hamiltonian using the algorithm of Ref. [268] to obtain the magnon
spectrum ων,k and the U,V matrices that enter the rate formulae. For simplicity, we fix the
direction of the DM wind to be parallel (perpendicular) to the ground state spins for the
magnetic dipole and anapole (pseudo-mediated) models, which maximizes the event rate.
For fixed target orientation, we find a daily modulation of O(10%), which could be utilized
for distinguishing DM signals from backgrounds. Following common practice, we present
the projected reach in terms of a reference cross section σ̄e defined from DM-free electron
scattering. Here we generalize the definition in Ref. [19] beyond SI interactions by defining

σ̄e ≡
µ2
χe

16πm2
χm

2
e

|Mfree|2 (q = αme, v
⊥ = α) , (5.11)
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where µχe is the DM-electron reduced mass, α = 1/137 is the fine structure constant, and
v⊥ is the component of the relative velocity perpendicular to q. The reference cross-section
for each model is given in Table 5.1.

Our results are shown in Fig. 5.1 for mχ up to 10 MeV, assuming 3 events on a YIG tar-
get (colored solid curves) with kilogram-year exposure and, following convention for easy
comparison to other experiments, no background.2 Beyond 10 MeV, the simple Heisenberg
model description breaks down in part of the kinematic integration region where q exceeds
the inverse ionic radius of Fe3+; however, electron excitations are expected to have sen-
sitivity in this mass regime [19, 24, 25, 33–35, 177, 180] (though precise results are not
currently available for the SD models considered here). We consider several detector thresh-
olds ωmin corresponding to capabilities of TESs expected within the next few years (40 meV)
and further into the future (10 meV, 1 meV). Also shown in the plots are contours of model
parameters in the magnon sensitivity region (gray).

For each benchmark DM model, magnons can probe currently unconstrained parameter
space. For the vector mediator models, assuming the mediator V couples to SM particles
only via kinetic mixing with the photon, V production in stellar media and in the early
universe is suppressed when mV → 0, so the only astrophysical and cosmological constraints
are from DM production. The latter, however, depend on whether Λχ is above or below the
energies involved and, if below, the ultraviolet (UV) completion of the effective operators. For
example, if Λχ ∼ mχ and the UV completion involves millicharged particles [17, 270] with
couplings ∼ gχ, we find that magnetic dipole DM with gχge . 10−10 satisfies all existing
constraints, but can be probed by magnons. On the other hand, if Λχ & O(100MeV),
we can map the constraints derived in Ref. [271] onto the gray contours in Fig. 5.1, e.g.,
excluding gχgemχ/Λχ ∈ (10−12, 10−10)mχ/me for magnetic dipole DM from SN1987A — in
this case, there is a large region of unconstrained parameter space above this band (even
after imposing Big Bang Nucleosynthesis constraints) [271], which can be fully covered by our
projected magnon reach. The anapole model is more challenging to discover via magnons
due to the high power of momentum suppression, but the magnon sensitivity region still
accommodates viable UV models, such as those involving two dark photons [272] which
evade astrophysical and cosmological bounds altogether. Finally, for the pseudo-mediated
DM model, the mediator-electron coupling is constrained by white dwarf cooling to be ge .
2 × 10−13, so that gχ has to be O(1) to produce a detectable signal. Given the existing

2For calorimetric readout, the backgrounds are expected to be similar to other experiments reading
out meV-eV energy depositions: radiogenic backgrounds are not expected to be problematic at such low
energies, while coherent scattering from high-energy photons can be suppressed with an active veto, leaving
pp solar neutrinos the main irreducible background. We expect the latter to be at most a few events per
kilogram-year, as estimated from neutrino-nucleus scattering (see e.g., Refs. [182, 269]).
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Figure 5.1: Projected reach for the DM models in Table 5.1 for a YIG target, assuming three
events with kilogram-year exposure, for several magnon detection thresholds ωmin (solid).
Also shown are the results of a Heisenberg ferromagnet with the same mass and spin densities
as YIG, and the same magnon dispersion as the low-energy gapless modes of YIG, for ωmin =
1meV (dashed); they coincide with the YIG curves for 0.02MeV . mχ . 0.1MeV, which can
be understood from the effective theory argument in the text. The gray contours show the
model parameters in the magnon sensitivity regions, which astrophysical and cosmological
constraints on specified UV completions can be mapped onto (see text). For the pseudo-
mediated model, we consider a DM subcomponent to evade SIDM constraints, and let ge
saturate the white dwarf cooling bound.

self-interacting dark matter constraints, we consider χ to be a 5% subcomponent of DM as
a viable scenario, and show contours of gχ in Fig. 5.1 with ge saturating its upper bound.

To gain some analytical intuition, we note that for momentum transfer well within the 1BZ,
corresponding to mχ . 0.1MeV for a YIG target, the rate can be estimated via an effective
n = 1 ferromagnetic model. This is because in the q → 0 limit, the external probe Ôαχ acts
like a uniform magnetic field. In a semiclassical picture, this causes all the spins in the target
to precess in phase, so the angle between them, and thus the total energy of the Heisenberg
model, stays the same. As a result, only the gapless mode(s), i.e., Goldstone mode(s) of the
broken rotational symmetry, can be excited. Even for finite q, gapped magnon contributions
are suppressed by powers of aq, where a is the lattice spacing, and thus subdominant for
q � a−1 (' 0.2 keV for YIG). For a ferrimagnet like YIG, we can integrate out the gapped
modes to arrive at an effective theory, where the only relevant degree of freedom is the total
spin density ns. There is only one magnon branch in this effective n = 1 ferromagnetic
theory, which matches the gapless branch of the original ferrimagnet for k � a−1. For
YIG, the total spin density is Scell = (12 − 8) × 5/2 = 10 per unit cell volume Ω = a3/2,
with a ' 12.56Å, i.e., ns = 20/a3 ' (4.6Å)−3. The effective exchange coupling can be
shown to be Jeff ' −4K = −0.35meV [264], resulting in a quadratic magnon dispersion
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ω = |Jeff|Scell (ak)
2 ' k2/(7MeV) at small k. For this n = 1 ferromagnetic theory, we obtain

(see Supplemental Material for details),

R 'ns
ρT

ρχ
mχ

∫
d3vχ f(vχ) ·∫

d3q

8π2
tr
(
ρ̂χÔ+

χ (q)Ô†−
χ (q)

)
δ
(
Eχi − Eχf − ω

)
,

'3 (kg · yr)−1

(
ns

(4.6Å)−3

)(
4.95 g/cm3

ρT

)(
0.1MeV
mχ

)
∫
d3vχ f(vχ)

(
10−3

vχ

)(
R̂

4× 10−27

)
, (5.12)

where Ô±
χ ≡ Ô1

χ ± iÔ2
χ, and

R̂ = m2
e

∫
d3q

2πq
tr
(
ρ̂χÔ+

χ Ô†−
χ

)
δ

(
cos θ − q

2mχvχ
− ω

vχq

)

=


2g2χg

2
e(1+〈c2〉)
Λ2
χ

(q2max − q2min) (magnetic dipole) ,
g2χg

2
e(1+〈c2〉)
4Λ4

χ
(q4max − q4min) (anapole) ,

g2χg
2
e〈s2〉 log(qmax/qmin) (pseudo-mediated) .

(5.13)

Here θ is the angle between q and vχ, 〈c2〉 and 〈s2〉 are properly averaged values of cosine
and sine squared of the angle between q and the ground state spin direction over accessible
scattering kinematics, qmax ' 2mχvχ, and qmin is the magnon momentum for which ωq =

ωmin. The q dependence in Eq. (5.13) is indicative of dipole-dipole, quadrupole-dipole and
charge-dipole type interactions, respectively, for the three DM models.

The projected reach for this n = 1 Heisenberg ferromagnet is shown by the dashed curves
in Fig. 5.1 in the ωmin = 1meV case, with 〈c2〉 set to 1/3. We see that the full YIG
results are almost exactly reproduced for 0.02MeV . mχ . 0.1MeV. For mχ . 0.02MeV,
the gapless branch becomes kinematically inaccessible, and the reach is dominated by the
gapped magnons. For mχ & 0.1MeV, YIG beats the n = 1 ferromagnet due to contributions
from the gapped magnons, which are no longer suppressed as the typical momentum transfer
approaches (and goes beyond) the boundaries of the 1BZ. For higher ωmin, effective theory
predictions (not shown) are off because the lowest-energy magnon modes on the gapless
branch become inaccessible.

5.5 Discussion
While we have chosen three specific DM models for illustration, we note that there are other
scenarios with SD interactions that can be probed via magnon excitation. Examples include
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models with a spin-1 mediator coupling to ēγµγ5e or nonminimally to the electron. Generally,
Ôαχ is the mediator propagator multiplied by a function that is at least linear in q, so the rate
is at least logarithmic (as in the pseudo-mediated model). Given the strong astrophysical
and cosmological constraints on light DM and mediator scenarios [10, 135, 182], magnon
excitations are most relevant for probing subcomponents of DM with SD interactions, if not
mediated by a dark photon.

Beyond scattering, a magnon signal can also arise from absorption of bosonic DM. A prime
example is an axion a interacting via (∂µa) ēγ

µγ5e → ∇a · Se. However, Heisenberg-type
materials with 3d electrons, such as YIG, have very limited sensitivity to DM absorption,
because gapped modes with k ' 0, which match the kinematics, have strongly suppressed
matrix elements as explained above. Here we identify three possible solutions to pursue in
future work. First, in materials with nondegenerate Landé g-factors (due to different orbital
angular momentum admixtures in the effective spins), magnetic atoms/ions within the same
unit cell can respond differently in the q → 0 limit, allowing excitation of gapped magnons.
Second, anisotropic spin-spin interactions can lift the otherwise gapless Goldstone modes,
enabling them to match DM absorption kinematics. Finally, the gapless modes can also be
lifted by an external magnetic field, which can be tuned to scan the DM mass, as considered
in Refs. [93, 164, 266] (see also Ref. [221]) in the context of axion absorption.

5.6 Conclusions
Collective excitations in condensed matter systems offer a novel detection path for light DM
because of favorable kinematics. Given our ignorance of how the DM may interact with SM
particles, it is important to explore different types of collective excitations in various materials
in order to cover the broadest range of possibilities. In this Letter, we proposed using magnon
excitations to detect DM in the 10 keV-10MeV mass range that couples to the electron spin.
This complements previous proposals of detecting spin-independent DM interactions via
phonon excitation. For a concrete demonstration of the discovery potential, we calculated
the rate for three benchmark DM models, and found that currently unconstrained parameter
space can be probed via magnon excitation in a YIG target.

To move forward and realize our proposed DM detection concept, a pressing question is
an experimental scheme to detect magnon quanta. One possibility is calorimetric readout
similar to phonon detection [28, 64], in which case magnon propagation and decay, as well
as magnon-TES/MKID interactions, need to be understood. Besides, recent research in
quantum magnonics has taken on the challenge of resolving single magnons [273, 274], and
may find application in DM detection. We plan to investigate these possibilities in future
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work.
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C h a p t e r 6

DETECTABILITY OF AXION DARK MATTER WITH PHONON
POLARITONS AND MAGNONS

6.1 Introduction
The QCD axion [98, 99, 275, 276] remains one of the best-motivated and predictive models of
dark matter (DM) [145–147]. The search for the axion has a decades long history, and is still
ongoing. At the moment, only the Axion Dark Matter Experiment (ADMX) [151, 152] has
sensitivity to the QCD axion in a narrow mass range around 2-3µeV. The HAYSTAC [153]
and ORGAN [154] experiments are seeking to extend these results to higher frequencies. The
ABRACADABRA [155] and CASPEr [156] experiments have also recently achieved their
first limits for very light masses (though with sensitivity still far above that needed to reach
the QCD axion). The CERN Axion Solar Telescope (CAST) [157] is searching for axions
emitted by the Sun, and can constrain the QCD axion for masses above ∼ 1 eV. Many more
experiments plan to join this search. These include the MAgnetized Disk and Mirror Axion
eXperiment (MADMAX) [158, 159], which uses a layered dielectric in an external magnetic
field, and the QUaere AXion (QUAX) experiment [91–93], which searches for axion-induced
classical spin waves inside a magnetic target. See also Ref. [160–169] for recent axion DM
search proposals.

The QCD axion mass window ma ∼ O(1 - 100)meV remains, however, unconstrained.1 The
current best limits are provided by CAST, but this could be outperformed in the future
by fourth generation helioscopes like IAXO [291], and dish antennas [292] or multilayer
films [293] (both of which are related to MADMAX in concept but can reach higher axion
masses). These are limited by current single photon detection technology, which is rapidly
improving. Recently the use of axionic topological antiferromagnets has been proposed to
detect axions in this region [221], although such materials have not been fabricated yet in
the lab, and even then, this proposal is limited to ma . 10meV.

Collective excitations, such as phonons and magnons, have resonance energies in theO(1 - 100) meV
range, as shown in Fig. 6.1. They have been proposed as an excellent way to detect light
dark matter through scattering (if the dark matter is heavier than a keV) or absorption (if
the dark matter is in the O(1 - 100) meV mass window) [6–8, 28, 39, 41, 64, 184–187, 245].

1There are many well-motivated models that accommodate a QCD axion in this mass window — see
e.g., Refs. [149, 277–290].
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Figure 6.1: Spectra of gapped phonon polaritons and magnons at zero momentum for
several representative targets considered in this work. These collective excitations have
typical energies of O(1 - 100)meV, and can be utilized to search for axion DM in the mass
window ma ∼ O(1 - 100)meV. Longer lines with darker colors correspond to the resonances
in Figs. 6.3, 6.4 and 6.5, while the shorter ones with lighter colors represent modes with
suppressed couplings to axion DM due to selection rules.

While previous work has shown the reach to dark photon absorption, an open question is
whether phonon and magnon excitations possess a sufficiently strong coupling to reach the
QCD axion.

In this paper, we investigate axion absorption onto phonons and magnons, and demonstrate
the potential of these processes to cover the ma ∼ O(1 - 100)meV QCD axion mass window.
The particle-level axion interactions of interest are:

L = −1

4
gaγγaFµνF̃

µν +
∑

f=e,p,n

gaff
2mf

(∂µa)(f̄γ
µγ5f)−

∑
f=p,n

gafγ
4
aFµν(f̄ iσ

µνγ5f) , (6.1)

where the three terms are the axion’s electromagnetic, wind and electric dipole moment
(EDM) couplings, respectively. In the nonrelativistic limit, the effective interaction Hamil-
tonian is2

δĤ = −gaγγ
∫
d3x aE ·B −

∑
f=e,p,n

gaff
mf

∇a · sf −
∑
f=p,n

gafγ aE · sf . (6.2)

These couplings can be further matched onto axion couplings to low energy degrees of free-
dom in a crystal. In particular, phonon excitation results from couplings to atomic displace-
ments ulj = xlj − x0

lj, where l labels the primitive cell, j labels the atoms within each cell,
and x0

lj are the equilibrium positions, while magnons can be excited via couplings to the
2The coupling to the axial current also generates a term proportional to masf · vf , we neglect this term

since its coupling to collective spin excitations is suppressed compared to the one generated by the ∇a · sf
term.
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(effective) spins of magnetic ions Slj. An axion field oscillating with frequency ω = ma and
wavenumber p = mava is represented by

a(x, t) = a0 cos (p · x− ωt) , (6.3)

where the field amplitude is related to the energy density via ρa = m2
aa

2
0/2. The resulting

effective Hamiltonian relevant for phonon and magnon production takes the general form

δĤ = δĤ0e
−iωt + c.c. , δĤ0 =


∑
lj

eip·x
0
lj f j · ulj ⇒ phonons ,∑

lj

eip·x
0
lj f j · Slj ⇒ magnons ,

(6.4)

with the effective couplings, f j, proportional to a0 and the relevant axion coupling. While
our focus here is axion DM, the same equations hold for general field-like DM candidates.

In Sec. 6.2, we derive rate formulae for single phonon and magnon excitations starting from
the general form of couplings in Eq. (6.4).3 In the case of phonon excitation, the true energy
eigenmodes in a polar crystal, at the low momentum transfers relevant for dark matter
absorption, are phonon polaritons due to the mixing between the photon and phonons. We
take this mixing into account while still often referring to the gapped polaritons as phonons
since their phonon components are much larger. The final results for phonon and magnon
excitation rates are Eqs. (6.18) and (6.27). Depending on the couplings f j and symmetries
of the target system, it often happens that excitation of some of the phonon or magnon
modes is suppressed, reducing the sensitivity to DM. We discuss this problem and possible
ways to alleviate it in Sec. 6.3.

Then it remains to determine the effective couplings f j in terms of particle physics parame-
ters – gaγγ, gaff , etc. – in the case of axion DM. The effective couplings can receive multiple
contributions, some of which rely on the presence of an external field. We discuss the vari-
ous possibilities for axion-induced single phonon or magnon production in Sec. 6.4. Among
them, two are particularly promising: the coupling of the gradient of the axion field to the
electron spin, gaee, allows for magnon excitation, while the axion-induced electric field in the
presence of an external magnetic field, due to the axion-photon coupling gaγγ, can excite
phonon polaritons. These processes are summarized in Table 6.1. It is in fact not difficult
to roughly estimate the rates based on simple considerations about the physical quantities
that should enter each process. We show these estimates in the last column of the table,
which will allow us to quickly assess the projected sensitivity in Eqs. (6.40) and (6.36).

3Previous calculations of DM absorption rates often rely on rescaling of optical data. While this is in
principle possible for some of the processes discussed in this paper, the full set of data needed to capture
general anisotropic target responses are hard to come by. Therefore, we take a first-principle approach and
explicitly compute the DM absorption rates starting from the Hamiltonian.
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We present our full numerical results for the projected reach via these processes in Sec. 6.5.
We find that, consistent with the parametric estimates, when the axion mass is well-matched
to phonon polariton or magnon resonances in the target material, the QCD axion can be
easily within reach. The sensitivity is inherently narrow-band for any specific target mate-
rial, with the axion masses covered limited by the resonance widths. However, combining the
reach of a set of judiciously chosen materials with different phonon and magnon frequencies
can offer a broader coverage. Finally, we conclude in Sec. 6.6 and discuss future interdisci-
plinary work needed to better understand and realize the potential of the ideas presented in
this work.
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6.2 General Formalism For Absorption Rate Calculations
In this section, we adapt the DM scattering calculations in Refs. [7, 8] to the present case
of bosonic DM absorption. Unlike the scattering case, light bosonic DM (denoted by a

in what follows) should be treated as a classical field. Within the coherence time τa =

(mav
2
a)

−1 ∼ 10−7 s (10meV/ma), its effect can be modeled as a harmonic perturbation on
the target system as in Eq. (6.4). In this work, we focus on configurations with no external
AC electromagnetic fields, so that ω = ma. An AC external field with frequency ωe would
generate perturbations with ω = |ma ± ωe|, for which the calculations in this section also
apply.

Phonons and magnons arise from quantizing crystal lattice degrees of freedom, displacements
ulj and effective spins Slj respectively, which DM can couple to, as mentioned in the Intro-
duction — see Eq. (6.4). The effective couplings f j depend on the atom/ion types, hence
the subscript j. We will keep f j general in this section, and derive their expressions for the
case of axion DM in Sec. 6.4.

We assume the target system is prepared in its ground state |0〉 at zero temperature. The
transition rate from standard time-dependent perturbation theory reads

Γ =
∑
f

∣∣〈f | ˆδH0|0〉
∣∣2 2π δ(ω − ωf ) . (6.5)

Strictly speaking, since phonons and magnons are unstable particles, the sum over final states
f should include multi-particle states resulting from their decays. In practice, however, when
ω is close to a phonon/magnon resonance, we can simply smear the delta function to the
Breit-Wigner function and sum over single phonon/magnon states:4

Γ =
∑
ν,k

∣∣〈ν,k | ˆδH0|0〉
∣∣2 4ω ων,kγν,k
(ω2 − ω2

ν,k)
2 + (ωγν,k)2

, (6.6)

where |ν,k〉 is the single phonon/magnon state on branch ν with momentum k, and γν,k

is its decay width. Away from a resonance, the lineshape deviates from Breit-Wigner, and
depends on the details of phonon/magnon interactions. Since we are interested in sub-eV
DM candidates, the momentum deposited is limited to mava . meV — the DM field drives
phonon/magnon modes close to the center of the first Brillouin zone (1BZ). Finally, averaging
over the DM velocity distribution f(v), we obtain the expected total rate:

〈Γ〉 =
∫
d3v f(v) Γ(v) . (6.7)

4In deriving Eq. (6.6) we have assumed the observation time t & γ−1
ν,k, for which the transition rate Γ

is time-independent. We also assume that the line width of the axion, ∆ω ∼ mav
2
a ∼ 10−8 eV (ma/10meV)

is smaller than excitation linewidth, γν,k, which is true as long as γν,k is greater than ∼ 10−6 times the
resonance frequency.
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We take f(v) to be a boosted Maxwell-Boltzmann distribution,

fMB
χ (v) =

1

N0

e−(v+ve)2/v20 Θ
(
vesc − |v + ve|

)
, (6.8)

N0 = π3/2v20

[
v0 erf

(
vesc/v0

)
− 2 vesc√

π
exp
(
−v2esc/v

2
0

)]
. (6.9)

with parameters v0 = 230 km/s, ve = 240 km/s, vesc = 600 km/s. The local axion DM
density ρa, which enters the effective couplings f j (see Table 6.1), is assumed to be 0.3

GeV/cm3.

In the following subsections, we derive the rate formulae for single phonon and magnon
excitations, respectively. For easy comparison, we present both derivations in as similar
ways as possible.

Phonon excitations
We begin by calculating the absorption rate from couplings to phonons. The target Hamilto-
nian results from expanding the potential energy of the crystal around equilibrium positions
of atoms:

Ĥ =
∑
lj

p2
lj

2mj

+
1

2

∑
ll′jj′

ulj ·Vll′jj′ · ul′j′ +O
(
u3
)
, (6.10)

where plj = mju̇lj, and the force constant matrices, Vll′jj′ , can be calculated from ab initio
density functional theory (DFT) methods [294–297].

To diagonalize the Hamiltonian, we expand the atomic displacements and their conjugate
momenta in terms of canonical phonon modes:

ulj =
3n∑
ν=1

∑
k

1√
2Nmjων,k

(
âν,k + â†ν,−k

)
eik·x

0
lj εν,k,j , (6.11)

plj = i
3n∑
ν=1

∑
k

√
mjων,k
2N

(
â†ν,−k − âν,k

)
eik·x

0
lj εν,k,j , (6.12)

where ν labels the phonon branch (of which there are 3n for a three-dimensional crystal
with n atoms per primitive cell), k labels the phonon momentum within the 1BZ, N is the
total number of primitive cells, mj is the mass of the jth atom in the primitive cell, and
â†ν,k, âν,k are the phonon creation and annihilation operators. The phonon energies ων,k and
eigenvectors εν,k,j = ε∗ν,−k,j are obtained by solving the eigensystem of Vll′jj′ , for which we
use the open-source code phonopy [50]. The target Hamiltonian then reads

Ĥ =
3n∑
ν=1

∑
k

ων,kâ
†
ν,kâν,k +O

(
â3
)
. (6.13)
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Figure 6.2: Dispersion of phonon polaritons in GaAs near the center of the 1BZ, k ∼ ω.
The mixing between the photon and TO phonons is maximal at ω ∼ k. At k � ω, the TO
phonon-like modes are degenerate with the LO phonon mode (blue line), while at ω � k
they approach their unperturbed value (dotted blue line), and an LO-TO splitting is present.

For a polar crystal, since the ions are electrically charged, some of the phonon modes mix
with the photon. This mixing has a negligible impact in most of the 1BZ where k � ω, and
in particular does not affect the DM scattering calculations in Refs. [6, 7, 28, 64]. However,
near the center of the 1BZ where k . ω – relevant for DM absorption – the photon-phonon
mixing modifies the dispersions to avoid a level crossing. The true energy eigenstates are
linear combinations of photon and phonon modes, known as phonon polaritons. This is
shown in Fig. 6.2 for gallium arsenide (GaAs) as a simple example. For an isotropic diatomic
crystal like GaAs, the two degenerate, (mostly) transverse optical (TO) phonon modes at
k � ω continue to photon-like modes at k � ω, and vice versa. The phonon-like modes at
k � ω do not have the same energies as away from the polariton regime: the TO phonon-like
modes become degenerate with the longitudinal optical (LO) phonon mode at ωLO as k → 0,
whereas there is an LO-TO splitting, ωTO 6= ωLO, at k � ω. For more complex crystals like
sapphire (Al2O3), quartz (SiO2) and calcium tungstate (CaWO4), the mixing involves more
phonon modes, and in general shift all their energies with respect to the eigenvalues ων,k
computed from diagonalizing just the lattice Hamiltonian.

To account for the photon-phonon mixing, we write the total Hamiltonian of electromagnetic
fields coupling to the ions in the target crystal, and diagonalize its quadratic part via a
Bogoliubov transformation. We explain this procedure in detail in Appendix G. The resulting
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diagonal Hamiltonian is

Ĥ =
3n+2∑
ν=1

∑
k

ω′
ν,kâ

′†
ν,kâ

′
ν,k +O

(
â′3
)
. (6.14)

At each k, there are (3n + 2) modes, created (annihilated) by â′†ν,k (â′ν,k), which are linear
combinations of 3n phonon modes and 2 photon polarizations. Among them, 5 are gapless
at k = 0, including 3 acoustic phonons and 2 photon-like polaritons. The number of gapped
modes, 3n−3, is the same as in the phonon-only theory, but their energy spectrum is shifted,
{ω′

ν=(6,...,3n+2),k} 6= {ων=(4,...,3n),k}. The original phonon modes are linear combinations of the
phonon polariton eigenmodes:

âν,k =
3n+2∑
ν′=1

(
Uνν′,k â

′
ν′,k + Vνν′,k â

′†
ν′,−k

)
. (6.15)

For DM coupling to the atomic displacements ulj, the perturbing potential is given by
Eq. (6.4) and therefore

ˆδH0|0〉 =
∑
lj

3n∑
ν=1

∑
k

ei(p−k)·x0
lj

1√
2Nmjων,k

f j · ε∗ν,k,j
(
âν,−k + â†ν,k

)
|0〉

=

√
N

2

3n∑
ν=1

∑
j

1
√
mjων,p

f j · ε∗ν,p,j
(
âν,−p + â†ν,p

)
|0〉

=

√
N

2

3n∑
ν=1

3n+2∑
ν′=1

∑
j

1
√
mjων,p

f j · ε∗ν,p,j
(
U∗
νν′,p + Vνν′,−p

)
|ν ′,p〉 , (6.16)

where |ν ′,p〉 = â′†ν′,p |0〉. To arrive at the second equation, we have used the identity∑
l e
i(p−k)·x0

lj = Nδk,p (for k,p ∈ 1BZ). It follows that

〈ν,k | ˆδH0|0〉 = δk,p

√
N

2

3n∑
ν′=1

∑
j

1
√
mjων′,p

f j · ε∗ν′,p,j
(
U∗
ν′ν,p + Vν′ν,−p

)
, (6.17)

where we have swapped the dummy indices ν and ν ′. The DM absorption rate per unit
target mass, R = 〈Γ〉/(Nmcell), is therefore

R =
2ω

mcell

∫
d3va f(va)

×
3n+2∑
ν=6

ω′
ν,pγν,p

(ω2 − ω′2
ν,p)

2 + (ωγν,p)2

∣∣∣∣∑
j

3n∑
ν′=1

1
√
mjων′,p

f j · ε∗ν′,p,j
(
U∗
ν′ν,p + Vν′ν,−p

)∣∣∣∣2 , (6.18)

where ω = ma, p = mava, and mcell is the total mass of the atoms in a primitive cell. For
our numerical calculations, we use the phonopy code [50] to process DFT output [6, 7, 28]
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to obtain the unmixed phonon energies and eigenvectors ων′,p, εν′,p,j as mentioned above,
and then compute the polariton-corrected energy eigenvalues ω′

ν,p and mixing matrices U, V

via the algorithm of Refs. [268, 298]. We relegate the technical details to Appendix G, and
review the diagonalization algorithm [268, 298] in Appendix I.

Magnon excitations
We now move to the case of magnons. The target Hamiltonian is a spin lattice model, with
the following general form:

Ĥ =
∑
ll′jj′

Slj · Jll′jj′ · Sl′j′ + µBB ·
∑
lj

gjSlj , (6.19)

where l, l′ label the magnetic unit cells and j, j′ the magnetic ions inside the unit cell,
µB = e

2me
is the Bohr magneton, B is an external uniform magnetic field, and gj are the

magnetic ions’ Landé g-factors. In the simplest case of the Heisenberg model, Jll′jj′ ∝ 1 for
pairs of lj and l′j′ on (nearest, next-to-nearest, etc.) neighboring sites. One material which
is well described by this simple model is yttrium ion garnet (YIG) [264, 265], which has
already been considered for DM detection [8, 32, 91–93, 164]. However, as we will see below,
materials with spin-spin interactions beyond the simplest Heisenberg type can be useful for
enhancing DM-magnon couplings.

The spin-spin interactions in Eq. (6.19) can result in a ground state with magnetic order.
Here we focus on the simplest case of commensurate magnetic dipole orders, for which a
rotation on each sublattice can take Slj to a local coordinate system where each spin points
in the +ẑ direction:

Slj = Rj · S′
lj , 〈S′

lj〉 = (0, 0, Sj) . (6.20)

YIG and many other magnetic insulators have commensurate magnetic order. The calcu-
lation can be easily generalized to single-Q incommensurate orders, as we discuss in Ap-
pendix H.

For a magnetically ordered system, the lowest energy excitations are magnons. To obtain
the canonical magnon modes, we first apply the Holstein-Primakoff transformation to write
the Hamiltonian in terms of bosonic creation and annihilation operators:

S ′+
lj =

(
2Sj − â†lj âlj

)1/2
âlj , S ′−

lj = â†lj
(
2Sj − â†lj âlj

)1/2
, S ′z

lj = Sj − â†lj âlj , (6.21)

where S ′±
lj = S ′x

lj ±iS
′y
lj . The Holstein-Primakoff transformation ensures that the spin commu-

tation relations [S ′α
lj , S

′β
l′j′ ] = δll′δjj′ iε

αβγS ′γ
lj are preserved when the usual canonical commu-

tation relations [âlj, â†l′j′ ] = δll′δjj′ are imposed. As in the phonon case, translation symmetry



117

instructs us to go to momentum space:

âlj =
1√
N

∑
k

âj,k e
ik·x0

lj , (6.22)

where k ∈ 1BZ. The quadratic Hamiltonian, whose detailed form can be found in Ap-
pendix H, only couples modes with the same momentum, i.e. âj,k and âj′,k, â†j′,−k. A Bogoli-
ubov transformation takes the quadratic Hamiltonian to the desired diagonal form:

Ĥ =
n∑
ν=1

∑
k

ων,kâ
′†
ν,kâ

′
ν,k +O(â′3) . (6.23)

At each k, there are n magnon modes with n the number of spins per magnetic unit cell.
These energy eigenmodes are created (annihilated) by â′†ν,k (â′ν,k), which are related to the
unprimed creation and annihilation operators by

âj,k =
n∑
ν=1

(
Ujν,k â

′
ν,k + Vjν,k â

′†
ν,−k

)
. (6.24)

For DM coupling to the effective spins Slj, the interaction is given by Eq. (6.4), and we find,
in complete analogy with Eq. (6.16),

ˆδH0|0〉 =
∑
lj

∑
k

ei(p−k)·x0
lj

√
Sj
2N

f j · (r∗
j âj,−k + rj â

†
j,k) |0〉

= δk,p

√
N

2

∑
j

√
Sj f j · (r∗

j âj,−k + rj â
†
j,k) |0〉

= δk,p

√
N

2

n∑
ν=1

∑
j

√
Sj f j ·

(
U∗
jν,prj + Vjν,−pr

∗
j

)
|ν,p〉 , (6.25)

where rj ≡ (Rxx
j , Ryx

j , Rzx
j ) + i (Rxy

j , Ryy
j , Rzy

j ), and |ν,p〉 = â′†ν,p |0〉. Therefore,

〈ν,k| ˆδH0|0〉 = δk,p

√
N

2

n∑
ν=1

∑
j

√
Sj f j ·

(
U∗
jν,prj + Vjν,−pr

∗
j

)
. (6.26)

We can now obtain the DM absorption rate per unit target mass:

R =
2ω

mcell

∫
d3va f(va)

n∑
ν=n0+1

ων,pγν,p
(ω2 − ω2

ν,p)
2 + (ωγν,p)2

∣∣∣∣∑
j

√
Sj f j ·

(
U∗
jν,prj + Vjν,−pr

∗
j

)∣∣∣∣2 ,
(6.27)

where n0 is the number of gapless modes, which depends on the material (in particular,
on the symmetry breaking pattern). Similarity to the phonon formula Eq. (6.18) is appar-
ent. We again use the algorithm of Refs. [268, 298], reviewed in Appendix I, to solve the
diagonalization problem to obtain the magnon energies ων,p and mixing matrices U, V.
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6.3 Selection Rules And Ways Around Them
Depending on the DM couplings f j, excitation rates for some of the phonon or magnon
modes can be suppressed. In the context of DM scattering, it has been known that acoustic
and optical phonons are sensitive to different types of DM couplings [6, 7]: if DM couples to
the inequivalent atoms/ions with the same sign (different signs), the single phonon excitation
rate is dominated by acoustic (optical) phonons, corresponding to in-phase (out-of-phase)
oscillations of the atoms/ions.

The same considerations apply to absorption of DM, though here the gapless acoustic
phonons are kinematically inaccessible, and therefore only gapped optical phonons can be
excited. Thus, the rate is suppressed if all f j point in the same direction. As an extreme
example, consider f j = mjf , with f a constant vector. Up to the photon-phonon mixing
(which mostly shifts the energy eigenvalues while leaving the factor (U∗

ν′ν,p + Vν′ν,−p) close
to δν′ν), the rate in Eq. (6.18) is proportional to

∣∣∑
j

√
mjf · ε∗ν,p,j

∣∣2. However, one can
show from translation symmetry that √mjf can be written as a linear combination of the
polarization vectors εν,p→0,j with ν ∈ acoustic — see for example the explicit discussion
of [201], consistent with the earlier results in Refs. [28, 64]. This is not surprising since
gapless acoustic phonons are Goldstone modes of the broken translation symmetries. Thus,
by the orthogonality of the phonon polarization vectors, optical phonons do not contribute
to the rate in the p → 0 limit, and only higher order terms in the DM velocity can give a
nonzero contribution. In the next section, in the context of axion DM, we will encounter
both cases where the suppression due to the f j’s being aligned is present and absent, and
will identify a process free of the suppression as a viable detection channel.

Additional selection rules may be present among the optical phonons. For example, sapphire
has 27 optical phonon branches, but we find that near the 1BZ center, only 10 of them
couple to the axion-induced electric field (in the presence of an external magnetic field).
Furthermore, 8 of the 10 modes are degenerate in pairs, reducing the total number of distinct
resonances to 6, as seen in Fig. 6.1. This is consistent with the well-known fact that, due
to crystalline symmetries, sapphire has 6 infrared-active phonon modes [299–301]. Thus,
despite the existence of many optical phonon modes, sapphire does not really offer broadband
coverage of the axion mass. The same observation, that only a subset of gapped phonon
modes couple to axion DM, also holds for the other targets considered: SiO2 and CaWO4 –
see Fig. 6.1 (GaAs has only 3 optical phonon modes which are all degenerate and can couple
to axion DM). To broaden the mass coverage, it is therefore necessary to run experiments
with several target materials with distinct phonon frequencies.

There are also selection rules in the case of magnon excitations. It has been pointed out



119

that, assuming the absence of an external magnetic field, for a target system described by
the Heisenberg model with quenched orbital angular momentum, such as YIG, only gapless
magnons can be excited in the zero momentum transfer limit [8, 302]. To understand why,
let us review and quantify the semiclassical argument given in Ref. [8]. Within a coherence
length, the DM field couples to the spins as a uniform magnetic field, causing all the spins
to precess. As a result, the rate of change in the Heisenberg interaction energy between any
pair of spins is proportional to

d

dt

(
Slj · Sl′j′

)
=

dSlj

dt
· Sl′j′ + Slj ·

dSl′j′

dt
= (f j × Slj) · Sl′j′ + Slj · (f j′ × Sl′j′)

= (f j − f j′) · (Slj × Sl′j′) , (6.28)

which vanishes for f j = f j′ . Therefore, if the target system is described by the Heisenberg
Hamiltonian, and all f j are equal (which is quite generic since they all originate from DM-
electron spin coupling), the total energy cannot change in response to the DM field, and
no gapped magnons can be excited. In other words, the DM field only couples to gapless
magnons. In the case of scattering, the rate is not severely suppressed by this fact since
the scattering kinematics allows access to finite momentum magnons, and hence sufficient
energy deposition to be detected.

The situation is much worse in the case of absorption, because the momentum transfer is
small in comparison to the DM mass due to its small velocity v ∼ 10−3. Therefore, gapless
modes cannot be excited due to kinematics. As a result, the detection rate is severely
suppressed by powers of DM velocity. We have checked this explicitly for several target
materials. In what follows, let us expand on the two examples.

YIG (Y3Fe5O12). The crystal primitive cell of YIG consists of four copies of Y3Fe5O12.
The magnetic ions are Fe3+, each of which has spin 5/2. The magnetic unit cell coincides
with the crystal primitive cell, and contains 20 magnetic ions. The spin Hamiltonian has an-
tiferromagnetic Heisenberg interactions, which we include up to third nearest neighbors [265].
The ground state has ferrimagnetic order, where the 12 magnetic ions on the tetrahedral
sites and the 8 magnetic ions on the octahedral sites have spins pointing in opposite direc-
tions [264], taken to be ±ẑ. The symmetry breaking pattern is SO(3)→ SO(2), and hence
there are two broken generators Sx, Sy. There is however just one Goldstone mode (with
quadratic dispersion) due to the nonvanishing expectation value of the commutator between
the broken generators, 〈[Sx, Sy]〉 = (i/2)〈Sz〉 6= 0 [303–306]. Thus, among the 20 magnon
branches, only one is gapless. We find that at zero momentum, the j sum in the rate formula
Eq. (6.27),

∑
j

√
Sj ·
(
U∗
jν,0rj+Vjν,0r∗

j

)
, indeed vanishes for all but the gapless mode (ν = 1),

confirming the argument above that the DM field only couples to gapless magnons.
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Ba3NbFe3Si2O14. This is an example of materials with incommensurate magnetic order.
We discuss the generalization needed in the rate calculation in Appendix H, with the final
result given in Eq. (H.11). The magnetic unit cell contains three magnetic ions Fe3+ with
spin 5/2, which form a triangle in the x-y plane. The crystal consists of layers stacked in
the z direction. The antiferromagnetic Heisenberg interactions result in a frustrated order
with 120◦ between the three spins that are nearest neighbors. Further, the chiral structure of
inter-layer Heisenberg exchange couplings results in a rotation of the order in the z direction,
with a wavevector that is irrational, Q ' 0.1429 (2π/c) ẑ where c ' 5.32Å is the inter-layer
lattice spacing [268]. This is known as a single-Q incommensurate order. All 3 generators
of SO(3) are broken while the ground state has zero total magnetization, so there are 3
Goldstone modes. These appear at k = 0,±Q, which are also the momenta near which the
axion coupling is nonzero due to (generalized) momentum conservation. We find that at all
three momenta, the j sum in the generalized rate formula Eq. (H.11) is nonzero only for
ν = 1, i.e. the gapless modes, again confirming the argument above that the DM field only
couples to gapless magnons.

Nevertheless, there are several possibilities to alleviate the problem. First, one can consider
targets involving additional, non-Heisenberg interactions. These additional terms can ex-
plicitly break the rotational symmetries, causing the otherwise gapless Goldstone modes to
become gapped, and match the DM absorption kinematics. Concretely, we can identify two
ways of implementing this idea:

• An external magnetic field B 6= 0 can generate a gap for the lowest magnon branch
equal to the Larmor frequency,

ωL = 2µBB = 0.12meV
(
B

T

)
, (6.29)

assuming gj = 2 for all j. The QUAX experiment [91–93] makes use of this to search for
axion DM with ma ∼ O(0.1meV), currently in the regime where the magnon number
is large and a classical description can be used. Recently, a calculation to exploit
this effect in the quantum regime, similar to the derivation in Sec. 6.2, was carried
out in Ref. [32]. However, sensitivity of such a setup is limited to sub-meV DM by
the achievable magnetic field strengths, and only the lowest magnon mode(s) can be
excited.

• There are materials with anisotropic interactions where the number of gapless Gold-
stone modes is reduced. In Sec. 6.5, we consider a concrete example, NiPS3, where the
Jll′jj′ matrices in the spin Hamiltonian Eq. (6.19) have unequal diagonal entries [307].
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In this case, two gapped magnon modes at 12 meV and 44 meV can couple to axions.
There are also materials with nonzero off-diagonal entries in Jll′jj′ , arising from e.g.
Dzyaloshinskii-Moriya interactions, that could be used to achieve the same result.

An orthogonal route to solve the problem is to use targets where the DM-spin couplings f j

are nondegenerate.

• For materials with nondegenerate Landé g-factors, even a uniform magnetic field can
drive the magnetic ions differently and excite gapped magnon modes; the same is
true for a uniform DM field. The basic reason for this is the presence of spin-orbit
couplings that break the degeneracy between the DM couplings to the magnetic ions’
total effective spins. Concretely, the Landé g-factors are given by

gj =
3

2
+

1

2

sj(sj + 1)− `j(`j + 1)

Sj(Sj + 1)
, (6.30)

where sj and `j are respectively the spin and orbital angular momentum components
of the total effective spin Slj. In the simplest and most common case of magnetic
ions with quenched orbital angular momenta (i.e. `j ' 0), we recover the usual result
gj = 2. Breaking the degeneracy requires the magnetic ions to have different spin and
orbital angular momentum compositions. We demonstrate how this allows for axion
couplings to gapped magnons in Sec. 6.5.

As in the case of phonons, there are usually additional selection rules due to crystalline
symmetries. As a result, the strategies discussed above usually generate axion couplings to
only a subset of gapped magnon modes – see Fig. 6.1. Therefore, multiple target materials
which cover complementary ranges of magnon frequencies are desirable.

6.4 Axion Couplings And Detection Channels
The derivation and discussion in the previous two sections apply to general field-like DM
candidates. We now specialize to the case of axion DM. Our goal in the present section is to
identify the most promising detection channels involving phonon or magnon excitation via
order-of-magnitude estimates. We then examine these processes quantitatively in the next
section.

The axion couplings of interest are already given in Eqs. (6.1) and (6.2). For the QCD axion,
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we have [43]

gaγγ = Cγ
α

2πfa
= 2.03× 10−12Cγ

(
ma

10meV

)
GeV−1 , (6.31)

gaff = Cf
mf

fa
= 1.18× 10−13Cf

( mf

MeV

)( ma

meV

)
, (6.32)

ganγ = −gapγ = (3.7± 1.5)× 10−3 1

fa

1

GeV

= (6.5± 2.6)× 10−12

(
ma

10meV

)
GeV−2 , (6.33)

where we have denoted Cγ ≡ E/N − 1.92(4) with E/N = 0 (8/3) in the KSVZ (DFSZ)
model. The axion-fermion couplings Cf are also model dependent. In particular, the axion-
electron coupling is Ce = sin2 β/3 in the DFSZ model, where tan β is the ratio of the vacuum
expectation values of the two Higgs doublets giving masses to the up and down-type quarks.
In the KSVZ model, on the other hand, Ce is O(α2) suppressed.

In the following subsections we consider axion couplings independent of external fields and in
the presence of a magnetic field.5 In each case, we discuss the phonon and magnon excitation
processes that are allowed, and identify those with potentially detectable rates. The results
of this exercise are summarized in Table 6.1.

Axion couplings independent of external fields
The axion wind coupling to electron spin leads to a coupling to the spin component of
Slj. From slj + `lj = Slj and 2slj + `lj = gjSlj, we see that the axion wind couples to
slj = (gj − 1)Slj. Thus,

δĤ = −gaee
me

∇a ·
∑
lj

(gj − 1)Slj = −
gaee
me

(imava)
a0
2
·
∑
lj

(gj − 1)Slj e
ip·x0

lj−iωt + h.c. (6.34)

In the notation of Eq (6.4), we thus have

f j = −
i√
2
gaee (gj − 1)

√
ρa

me

va . (6.35)

For an order of magnitude estimate of the rate, let us note that the mixing matrices U, V in
Eq. (6.27) generically scale as 1/

√
n with n the number of magnetic ions in a primitive cell.

The maximum rate is obtained on resonance, which is parametrically given by

R ∼ g2aee ρav
2
a

m2
e

ns
ρTγ
∼ (kg·yr)−1

(
gaee
10−15

)2(
µeV
γ

)
. (6.36)

5An external electric field shifts the equilibrium positions of the ions such that there is no net electric
field at the new equilibrium positions, so it does not generate new axion couplings at leading order.
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where ns and ρT are the spin and mass densities of the target, taken to be (5Å)−3 and
5 g/cm3, respectively (close to the values for YIG), in the estimate. We see that, with single
magnon sensitivity, interesting values of gaee may be reached with less than a kilogram-year
exposure.

The axion wind also couples to nucleon spins. However, these couplings do not excite
magnons, since magnetic order originates from electron-electron interactions, meaning that
the effective spins of magnetic ions that appear in the spin Hamiltonian Eq. (6.19) come
from electrons. On the other hand, if the nuclear spins SN are ordered ( e.g. by applying
an external magnetic field which does not affect the axion-nucleon couplings) and form a
periodic structure, the axion wind couplings could excite phonons. However, the rate suffers
from multiple suppressions. First, coupling to atomic displacements relies on the spatial
variation of ∇a · SN , which brings in an additional factor of va on top of the gradient:
f j ∼ (Cf/fa)m

2
aa (va · SN,j)va. Second, there is a further suppression for exciting optical

phonons since f j are approximately aligned with acoustic phonon polarizations if all SN,j

point in the same direction (see discussion in Sec. 6.3). Even without taking into account
the second suppression, the estimated on-resonance rate using Eq. (6.18),

R ∼
C2
fρamav

4
a

f 2
a

n2
s

ρ2Tγν
∼ (kg·yr)−1C2

f

(
100GeV

fa

)2 ( ma

10meV

)(µeV
γν

)
, (6.37)

can be sizable only for uninterestingly low fa. Therefore, we conclude that axion wind
couplings to nucleon spins do not offer a viable detection channel.

Beyond the axion wind couplings, the axion field also turns magnetic dipole moments from
sf into oscillating EDMs, and one may consider phonon and magnon excitation by the re-
sulting electromagnetic radiation fields. In the case of the electron, since the EDM coupling
is perturbatively generated by the aF F̃ coupling, the process mentioned above is essen-
tially converting the crystal magnetic field into electromagnetic radiation, and should be
less efficient than applying an external magnetic field (discussed below in Sec. 6.4). In the
case of nucleons, the EDM coupling in Eq. (6.1) is not much larger than the perturbative
contribution from aF F̃ , so the same conclusion applies.

In sum, for axion couplings independent of external fields, we have identified magnon exci-
tation via the axion wind coupling to electrons as the only viable detection channel.

Axion couplings in a magnetic field
In the presence of a DC magnetic field B, the axion field induces oscillating electromagnetic
fields via the aF F̃ coupling. Solving the modified Maxwell equations (see e.g. Ref. [308, 309]),
we find the induced electric field is Ea = −gaγγa ε−1

∞ · B. Note that the high frequency
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dielectric constant, ε∞, which takes into account screening effects from the fast-responding
electrons while excluding ionic contributions, should be used when solving the macroscopic
Maxwell equations — essentially, since we are concerned with how the axion induced electric
field acts on the ions, the ion charges should appear in the source term rather than being
coarse grained into a macroscopic electric polarization. In the long-wavelength limit, the
axion-induced electric field Ea couples to charged ions via an effective dipole coupling:

δĤ = −e
∑
lj

Ea · Z∗
j · ulj = egaγγa

∑
lj

Ba · ε−1
∞ · Z∗

j · ulj , (6.38)

where Z∗
j is the Born effective charge tensor of the jth ion in the primitive cell — it captures

the change in macroscopic polarization due to a lattice displacement, δP = eZ∗
j · δulj/Ω,

and is numerically close to the ionic charge, Z∗
j ' Qj1 (where Ω is the primitive cell volume).

It follows that
f j =

1√
2
gaγγ

e
√
ρa

ma

B · ε−1
∞ · Z∗

j . (6.39)

Noting that the phonon polarization vectors scale as 1/
√
n with n the number of ions in

the primitive cell, and assuming photon-phonon mixing gives just a small correction, we can
estimate the on-resonance rate from Eq. (6.18) as follows:

R ∼
g2aγγρa

m3
a

Z∗2e2B2

ε2∞m
2
ionγ
∼ (kg·yr)−1

(
gaγγ

10−13 GeV−1

)2(
100meV
ma

)3(
B

10T

)2(meV
γ

)
, (6.40)

where we have taken Z∗/ε∞ ∼ 1 and mion ∼ 20GeV. We see that, with single phonon
sensitivity, there is excellent potential for reaching the QCD axion coupling if the axion
mass is close to a phonon resonance.

The axion-induced magnetic field is much smaller, Ba ∼ Eava. An order of magnitude
estimate tells us that the magnon excitation rate by Ba is much smaller than the phonon
excitation rate by Ea: Rmagnon

Rphonon
∼
( µBBaSlj
eZ∗Eaulj

)2 ∼ mjmav
2
a

m2
e
∼ 10−8 for a 100 meV axion.

In sum, we have identified phonon excitation via the axion-photon coupling in a magnetic
field as the only novel viable detection channel when considering an external DC magnetic
field.

6.5 Projected Sensitivity
We now compute the projected sensitivity for the two detection channels identified in the
previous section (see Table 6.1). In both phonon and magnon calculations, an important
but elusive parameter is the resonance width, γν,p, of each mode. While all other mate-
rial parameters entering the rate calculation (equilibrium positions, phonon energies and
eigenvectors, magnon energies and mixing matrices) can be computed within the quadratic
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Hamiltonian, the widths involve anharmonic interactions and are not always readily avail-
able. In what follows, we present the reach with reasonable assumptions for γν,p. Our goal
here is to demonstrate the viability of phonons and magnons for detecting axion DM, and
motivate further study in the condensed matter and materials science community on phonon
and magnon interactions. This will be crucial both for having more accurate inputs to the
DM detection rate calculation, and for designing detectors to read out these excitations.

Phonon excitation via the axion-photon coupling
When axion absorption excites a phonon polariton, it cascade decays to a collection of lower
energy phonons and photons on a timescale of γ−1 ∼ ps (meV/γ). Since the polariton is a
phonon-like state which decays via anharmonic phonon couplings, theoretically it is most
efficient to read out phonons (heat) in the final state. However, phonon readout (e.g. through
a transistor edge sensor) is complicated by the strong external magnetic field needed for the
axion absorption process. One possibility is to detect the phonon via evaporation of helium
atoms deposited on the surface of the crystal. The helium atoms are then detected well away
from the crystal, such that the magnetic field is isolated from the sensor.6 Alternatively, if
a target material can be found in which the photon yield from phonon polariton decays
is substantial, photon readout becomes a viable option. In this case, the photons may be
focused by a mirror and lens and directed by a waveguide onto a single photon detector (e.g.
a superconducting nanowire) placed in a region of zero magnetic field. Both the phonon and
photon readout possibilities sketched above will be studied in future work. In what follows,
we simply assume 3 single phonon polariton excitation events per kilogram-year exposure
(corresponding to 90% C.L. for a background-free counting experiment) when presenting the
reach.

To compute the projected sensitivity to the axion-photon coupling, we use the rate formula
Eq. (6.18), with the effective couplings f j given in Eq. (6.39). We consider several example
target materials and different orientations of the external magnetic field. The results are
shown in Figs. 6.3 and 6.4. As we discussed in Sec. 6.3, materials with different phonon
frequencies play important complementary roles in covering a broader axion mass range. In
these plots, we have taken the resonance widths to be γ/ω = 10−2, consistent with the order
of magnitude of the measured numbers in sapphire. As predicted by Eq. (6.40), the on-
resonance phonon production rate scales as R ∝ γ−1. From this follows that near-resonance
constraints on gaγγ scales like γ1/2 making them stronger (weaker) for smaller (larger) value of
the width, while at the same time narrowing (broadening) the peak structure. We should also
note that our projected constraints are derived assuming a Breit-Wigner lineshape, which is

6We thank Stephen Lyon and Thomas Schenkel for discussions on this experimental avenue.
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Figure 6.3: Projected reach on gaγγ from axion absorption onto phonon polaritons in Al2O3,
CaWO4, GaAs and SiO2, in an external 10 T magnetic field, averaged over the magnetic field
directions, assuming 3 events per kilogram-year. Also shown are predictions of the KSVZ
and DFSZ QCD axion models, and horizontal branch (HB) star cooling constraints [30].

expected to be a good approximation near resonance; details of phonon self-interactions are
needed to obtain more accurate results away from resonance.

It is also worth noting that, since the effective couplings f j depend on the direction of the
magnetic field b̂, the strengths of the resonances vary as b̂ is changed, as we can see in
Fig. 6.4. For example, for a sapphire target, when b̂ is parallel (perpendicular) to the crystal
c-axis, chosen to coincide with the z-axis here, only 2 (4) out of the 6 resonances appear. This
observation provides a useful handle to confirm a discovery by running the same experiment
with the magnetic field applied in different directions.

Magnon excitation via the axion wind coupling
To compute the magnon excitation rate, we substitute the coupling f j in Eq. (6.35), into the
rate formula Eq. (6.27). In Sec. 6.3, we discussed three strategies to alleviate the suppression
of axion-magnon couplings due to selection rules: external magnetic fields, anisotropic in-
teractions, and nondegenerate g-factors. In this subsection, we show the projected reach for
each of these strategies. The results are summarized in Fig. 6.5, assuming 3 single magnon
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Figure 6.4: Similar to Fig. 6.3, but with the external magnetic field oriented in the x̂ (ẑ)
direction in the left (right) panel. The strength of axion-phonon couplings depends on the
orientation of the magnetic field, and different resonances can be selected by changing the
magnetic field direction.

events per kilogram-year exposure. Absent a detailed study of anharmonic magnon interac-
tions, we take the resonance widths to be a free parameter, and show results for γ/ω = 10−2

and 10−5, consistent with measured phonon width values on the high end and YIG’s Kittel
magnon width on the low end. We see that, on resonance, all methods could reach axion-
electron couplings predicted by QCD axion models. In the following, we expand on the
calculation for each strategy.

External magnetic field. The idea of using an external magnetic field to lift the gapless
mode is the one adopted in the QUAX experiment [91–93]. In Ref. [92], a classical calculation
was used to estimate the axion absorption rate. Our formalism allows to compute the same
rate in the quantum regime, and agrees with the recent computation carried out in Ref. [32].
The projected reach we obtain for a YIG sample in a 1T field is shown in Fig. 6.5, where the
resonance is at 0.12 meV (see Eq. (6.29)). For comparison, we also overlay the projection in
Ref. [32] based on scanning the resonance frequency by changing the magnetic field, with an
observation time of 104 s per frequency interval and a total integration time of 10 years. In
deriving their constraints, the authors of Ref. [32] also include an estimate for the expected
background noise. This, together with the smaller observation time per resonant frequency,
is the origin of the difference between their constraints and our predicted peak sensitivity.

Anisotropic interactions. As another way to lift the gapless magnon modes, so that
the absorption kinematics are satisfied, we may use materials with anisotropic exchange
couplings. As an example, we consider NiPS3, which has a layered crystal structure [310].
The magnetic ions are spin-1 Ni2+. Following Ref. [307], we model the system as having
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Figure 6.5: Projected reach on gaee from axion-to-magnon conversion, compared with DFSZ
(assuming 0.28 ≤ tan β ≤ 140) and KSVZ model predictions, as well as white dwarf (WD)
constraints from Ref. [31]. The suppression of axion-magnon couplings is alleviated by using
the three strategies discussed in the main text: lifting gapless magnon modes by an external
magnetic field (YIG target in a 1 T magnetic field, compared to the scanning scheme of
Ref. [32]), anisotropic interactions (NiPS3 target), and using targets with nondegenerate
g-factors (hypothetical toy models based on YIG, referred to as YIGo and YIGt). For all
the cases considered we assume 3 events per kilogram-year exposure, and take the magnon
width to frequency ratio γ/ω to be 10−2 (solid) or 10−5 (dashed).

intralayer anisotropic exchange couplings up to third nearest neighbors, as well as single-ion
anisotropies. All four magnon branches are gapped, two of which are found to have nonzero
couplings to the axion wind. These correspond to the resonances at 12 meV and 44 meV in
Fig. 6.5.

Nondegenerate g-factors. Finally, we consider coupling the axion to gapped magnon
modes in the presence of nondegenerate g-factors. We are not aware of a well-characterized
material with nondegenerate g-factors so, as a proof of principle, we entertain a few toy
models, where a nondegenerate ` component is added to the effective spins S in YIG. In
reality, all the magnetic ions Fe3+ in YIG have (`, s, S) = (0, 5/2, 5/2); the orbital angular
momenta of 3d electrons are quenched. In Fig. 6.5, we show the reach for two toy models, with
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either the octahedral sites or the tetrahedral sites modified to have (`, s, S) = (1, 5/2, 7/2).
In each case, only one of the 19 gapped magnon modes, at 7 meV and 76 meV respectively, is
found to contribute to axion absorption. This is because, to preserve the lattice symmetries,
we have modified all the effective spin compositions on tetrahedral or octahedral sites in the
same way. The sole gapped mode that couples to axion DM corresponds to out-of-phase
precessions of the tetrahedral and octahedral spins.

6.6 Conclusions
In this paper we showed multiple ways collective excitations in crystal targets are, in princi-
ple, sensitive to QCD axion DM. Specifically, we identified two novel detection possibilities:
axion-induced phonon polariton excitation in an external magnetic field, and axion-induced
magnon excitation in the absence of external fields. These paths are complementary as
each probes a different axion coupling, gaγγ and gaee in the phonon case and magnon case
respectively.

In the phonon polariton case, we considered several example targets – Al2O3, CaWO4, GaAs
and SiO2 – and showed that on resonance, per kilogram-year exposure, they can reach
gaγγ ∼ 10−12 GeV−1, as shown in Figs. 6.3 and 6.4. This outperforms the leading constraint
in this mass window from stellar cooling, and reaches below the QCD axion band. Carefully
choosing a set of target materials with different phonon frequencies is key to covering a broad
range of axion masses.

Previous proposals for probing gaee via absorption onto magnons, which underlies the QUAX
experiment, considered targets in an external magnetic field, which would lift the lowest
magnon mode and kinematically allow sub-meV axion absorption [32, 91–93, 164]. In con-
trast, we focused on the O(1-100)meV axion mass window, and showed that without an
external magnetic field, materials with anisotropic exchange interactions, e.g. NiPS3, and
materials with nondegenerate g-factors can host gapped magnons coupling to the axion. On
resonance and with kilogram-year exposure, they can have sensitivity to the DFSZ model
and down to gaee ∼ 10−15, shown in Fig. 6.5.

Realizing the exciting potential of discovering O(1-100)meV axion DM via phonons and
magnons hinges upon the ongoing effort to achieve low threshold single quanta detection.
One possibility is to evaporate helium atoms from phonon interactions at the surface of
the crystal and then detect the evaporated helium atoms in a region separated from the
magnetic field region; R&D is underway for this direction. Another route is to read out
photons produced from the decay of a phonon polariton. Single photon detectors (e.g.
superconducting nanowires) may operate in a field-free region, away from the crystal target
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and connected to it via a waveguide. Finally, magnons are read out in a resonant cavity in
the QUAX setup in the classical regime [91–93, 164, 311, 312]. Work is underway to detect
single magnons in YIG by coupling cavity modes to a superconducting qubit [274], though
as in other resonant cavity searches, axion masses are best produced near the inverse cavity
size; for larger axion masses the virtual cavity modes will be off-shell and readout efficiency
is suppressed. On the materials side, we would like to make more accurate predictions
for the detection rates via an improved understanding of phonon and magnon resonance
lineshapes, and explore the possibility of scanning the resonance frequencies by engineering
material properties, in order to fully exploit the discovery potential of an axion DM search
experiment based on phonon and magnon excitations.
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C h a p t e r 7

EFFECTIVE FIELD THEORY OF DARK MATTER DIRECT
DETECTION WITH COLLECTIVE EXCITATIONS

7.1 Introduction
Light dark matter (DM) with sub-GeV mass is theoretically well-motivated [137, 142, 143,
203–210] but difficult to detect in traditional WIMP-focused experiments [12, 14, 75, 80, 313].
This can be understood from simple scattering kinematics: if the DM mass mχ . GeV, the
amount of energy deposited in a nuclear recoil process, ω = q2

2mN
, is suppressed by the

heavy target nucleus mass mN and limited by the possible momentum transfer q . 2mχv.
This, along with a steady improvement to the energy sensitivity of detectors [251–255], has
motivated the study of excitation channels far outside the scope of standard nuclear recoil.
Perhaps the most studied alternative is electronic excitations, in a variety of different targets,
e.g., individual atoms [19, 24, 33, 35, 177, 244], semiconductors and scintillators [6, 7, 19, 22,
23, 33–35, 87, 177, 180, 237, 314], superconductors [181, 182], aromatic organic targets [243],
graphene [188] and Dirac materials [29, 144, 183]. The smallest DM mass that can be probed
is limited by the band gap in these materials, typically O(eV) corresponding to DM masses
& MeV (the exceptions being superconductors and Dirac materials which typically have
O(meV) gaps and sensitivity to keV scale DM).

For sensitivity to smaller energy deposits, and optimal reach to light DM and mediating
particles, we look toward excitations at sub-eV energies. Such excitations exist and are
derived from collective behaviors of atoms, ions or electrons in condensed matter systems.
Phonons were proposed in Ref. [184] and further studied in Refs. [185–187, 245, 315] for
direct detection in superfluid helium (where maxon and roton excitations also contribute),
and were also discussed in the context of bosonic DM absorption in superconductors [41] and
semiconductors [39], though ultimately, acoustic and optical phonons in (polar) crystals were
advanced [64] and shown to have the best experimental prospects and sensitivity to light
dark matter [6, 7, 28, 247, 248]. Magnons – quanta of collective spin excitations – were also
proposed in Ref. [8]. Both phonons and magnons in crystal targets have typical energies up to
O(100meV). To date, the work in the literature has focused on demonstrating the sensitivity
of phonons and magnons to simple DM models. Only spin-independent (SI) interactions,
via couplings to linear combinations of the proton, neutron and electron numbers, have been
considered for phonon excitations, while a few benchmark models have been studied for
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magnon excitations.

The goal of this paper is to extend these results to general types of DM interactions. Effec-
tive field theory (EFT) is well-suited for this purpose: we can match a general relativistic
theory of DM onto a nonrelativistic (NR) EFT, and then compute the target response to
the EFT operators. Within this framework, starting from a UV model consisting of rela-
tivistic operators coupling the DM to the proton, neutron, and/or electron, we can system-
atically compute direct detection rates via single phonon and magnon excitations in various
target materials. The idea is along the lines of previous works on EFT calculations of nu-
clear recoils [60, 197, 316–319] (which extend earlier studies focused on standard SI and
spin-dependent (SD) DM-nucleon interactions), and, more recently, of electron excitations
in atoms [244] (which extends earlier studies focused on SI DM-electron interactions), but
technically there are important differences. Specifically, our EFT approach to DM-induced
single phonon and magnon excitations consists of the following steps:

i) Matching of a relativistic theory of DM interactions onto the NR EFT (DM model-
specific).

ii) Matching of NR operators onto DM couplings to lattice degrees of freedom (universal).

iii) Calculation of phonon or magnon excitation matrix elements (target- and excitation-
specific).

We explain each of these steps in the three subsections of Sec. 7.2. The first step – matching
relativistic DM theories to the NR EFT – largely follows previous works [60, 197, 244, 316–
319], and we review the procedure for completeness. For nuclear recoils, one then derives
the nuclear responses to the EFT operators. Analogously, the key quantities in the present
case are crystal responses which determines how DM couples to the collective excitations
(we emphasize, however, that despite the similar choice of terminology, collective excitations
are associated with a different kinematic regime and degrees of freedom than nuclear recoils
and therefore require a distinct EFT calculation). Technically, for both phonon and magnon
excitations in crystal targets, the second step listed above involves matching the NR EFT of
DM-nucleon and DM-electron interactions onto an effective scattering potential that involves
ionic degrees of freedom in the crystal lattice — in the long wavelength (low momentum
transfer) limit relevant for light DM scattering, these (as we will highlight throughout) are
quantities that characterize an ion as a whole, including the total particle numbers 〈Nψ〉 for
the proton, neutron and electron (ψ = p, n, e), total spins 〈Sψ〉, orbital angular momenta
〈Lψ〉, as well as spin-orbit couplings 〈Lψ ⊗Sψ〉 (a tensor with components 〈LiψSkψ〉 summed
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over the constituent nucleons/electrons). Finally, in the third step, we quantize the scattering
potential to obtain the phonon and magnon modes in a specific target material and compute
the matrix elements for exciting them. All four types of crystal responses highlighted above
can lead to phonon excitation in appropriately chosen targets, while 〈Se〉 and 〈Le〉 can also
lead to magnon excitation.

Our new results significantly extend the searchable DM model space via phonon and magnon
excitations, which we showcase in Sec. 7.3 with a variety of well-motivated benchmark mod-
els. We present full numerical calculations for several representative target materials, and
apply simple analytic estimates to understand the results. We compare for which opera-
tors and interactions one expects phonon versus magnon excitations to dominate the rate,
quantifying and generalizing the discussion in Ref. [8]. These calculations highlight the
complementarity between phonon and magnon excitations, and between different targets,
in probing the light DM theory space. We make the code for computing single phonon ex-
citation rates publicly available on GitHub � [257]; it integrates the open-source phonon
eigensystem solver phonopy [50], and takes general NR EFT operator coefficients, together
with density functional theory (DFT) calculations of material properties, as input. Our
magnon code, based on the Toth-Lake algorithm [268] for solving the magnon eigensystem,
is also available upon request.

7.2 Effective Field Theory Calculation of Dark Matter Induced Collective Ex-
citations

Our goal is to present a framework for computing direct detection rates for general DM
models, for the process where a DM particle scatters off a crystal target and induces a
quasiparticle excitation in the crystal. This quantum mechanical process follows Fermi’s
golden rule which, when the incoming and outgoing DM particles are momentum eigenstates
in free space, takes the form

Γ(v) =
1

V

∫
d3q

(2π)3

∑
f

∣∣〈f | Ṽ(−q,v) |i〉∣∣2 2π δ(Ef − Ei − ωq

)
, (7.1)

where v is the incoming DM’s velocity, V is the total target volume, |i〉 and |f〉 are the initial
and final states of the target system (defined with NR normalization: 〈i|i〉 = 〈f |f〉 = 1),
and Ṽ is the Fourier transform of the scattering potential. The momentum transfer from
the DM to the target, q, is integrated over, while the energy deposition onto the target is
constrained to be

ωq =
1

2
mχv

2 − (mχv − q)2

2mχ

= q · v − q2

2mχ

. (7.2)

See Ref. [7] for a review of the general formalism.

https://github.com/tanner-trickle/dm-phonon-scatter
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We now need to specify the type of transitions |i〉 → |f〉 in the target system to calculate
the matrix element 〈f | Ṽ(−q,v) |i〉. Here we focus on excitation of single phonon or magnon
in a crystal target at zero temperature. We therefore take |i〉 to be the ground state |0〉, and
|f〉 to be the one-phonon or one-magnon states |ν,k〉, labeled by branch ν and momentum k

within the first Brillouin zone (1BZ). For a crystal target, we write the scattering potential
as a sum of contributions from individual ions:1

V(x,v) =
∑
lj

Vlj(x− xlj,v) , (7.3)

where l = 1, . . . , N labels the primitive cells, j = 1, . . . , n labels the ions within each primitive
cell, and xlj is the position of the ion labeled by l, j. Therefore,

Ṽ(−q,v) =
∫
d3x eiq·x V(x,v) =

∑
l,j

eiq·xlj Ṽlj(−q,v) , (7.4)

and we obtain

Γ(v) =
1

V

∫
d3q

(2π)3

∑
ν,k

∣∣∣∣∑
l,j

〈ν,k| eiq·xlj Ṽlj(−q,v)|0〉
∣∣∣∣2 2π δ(ων,k − ωq

)
. (7.5)

The central quantity for the rate calculation is then the lattice potential Ṽlj which the DM
senses. This will depend on both the specific DM model and on the lattice degrees of freedom
(e.g., the nucleon/electron number or total electronic spin of the ions) available to scatter
from. We will determine the lattice potential Ṽlj in two steps previously mentioned in the
introduction: first, in Sec. 7.2, we review the procedure of matching relativistic DM models
onto NR effective operators; next, in Sec. 7.2, we further reduce these effective operators
to DM couplings to the lattice degrees of freedom. In the simplest case of SI interactions,
there is only one effective operator, O1 = 1, and Ṽlj is a linear combination of 〈Np〉lj,
〈Nn〉lj and 〈Ne〉lj (proton, neutron and electron numbers of the ions, respectively) [7]. More
generally, a DM model can generate a larger set of effective operators that involve the
spins, momentum transfer, and the relative velocity. The resulting lattice potential Ṽlj
depends on lattice degrees of freedom that include, in addition to the particle numbers
〈Nψ〉lj (ψ = p, n, e), also their spins 〈Sψ〉lj, orbital angular momenta 〈Lψ〉lj, as well as spin-
orbit couplings 〈Lψ ⊗ Sψ〉lj (a tensor with components 〈LiψSkψ〉lj, see Eq. (7.27) below). The
last step in computing the scattering rate is to quantize Ṽlj in terms of phonon/magnon
creation and annihilation operators; we carry out this exercise in Sec. 7.2. The framework
in this section will provide the basis for concrete calculations of direct detection rates via
single phonon and magnon excitations, and will be applied to a set of benchmark models in
Sec. 7.3.

1For simplicity, we will refer to either atoms or ions on lattice sites as ions.
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From Dark Matter Models to Nonrelativistic Effective Operators
In this subsection, we take a top-down approach in deriving the EFT, focusing on how the
effective operators arise from NR matching of well-motivated relativistic models. While
one can also take a bottom-up approach as in e.g., Ref. [197], and construct the EFT by
enumerating operators consistent with Galilean and translation invariance, we find it useful
to have a set of benchmark UV models to develop intuition on how realistic theories of
DM, which often predict correlations between EFT operators [55, 60], can be probed by
experiment.

Let us start from a relativistic model of a DM particle χ interacting with the proton (p),
neutron (n) and electron (e);2 we denote these Standard Model (SM) particles collectively
by ψ in the following. To compute the NR EFT, we take the NR limit of the relativistic
theory and map it on to the appropriate NR degrees of freedom. The EFT consists of the
NR fields χ±, ψ±, generally defined by (using the SM fermion ψ for example):

ψ+(x, t) ≡
∑
I

e−iεI tΨI(x) b̂I , ψ− ≡ (ψ+)† . (7.6)

Here the sum is over energy eigenstates, εI = EI − mψ are the energy eigenvalues minus
the rest mass, ΨI(x) are the wavefunctions (which are two-component for spin-1

2
fermions)

and b̂I are the annihilation operators. In the familiar case of a fermion in free space, the
energy eigenstates are labeled by momentum k and spin s = ±, with eigenvalues εk,s = εk =√

k2 +m2
ψ −mψ ' k2

2mψ
, and therefore3

ψ+
free(x, t) =

∫
d3k

(2π)3
e−iεkt eik·x ξs b̂k,s , (7.7)

where ξ+ = ( 1
0 ), ξ− = ( 0

1 ).

For a spin-1
2

fermion, the relation between the relativistic field ψ and NR field ψ+ is (see
Appendix J)

ψ(x, t) = e−imψt
1√
2

(1− σ·k
2mψ+ε

)
ψ+(x, t)(

1 + σ·k
2mψ+ε

)
ψ+(x, t)

 , (7.8)

at leading order in m−1
ψ , where k, ε are operators acting on ψ+. For a fermion in free

space, we have k = −i∇, ε = i∂t, which become simply numbers in momentum space.
2The DM-proton and DM-neutron couplings follow from the DM-quark and DM-gluon couplings in the

fundamental Lagrangian by standard methods, see e.g., Ref. [316].
3In this and the next subsection, we shall use k to denote a SM fermion’s momentum while deriving the

lattice potential, which should not be confused with the phonon momentum in Eq. (7.5). Afterward, starting
from Sec. 7.2, we will no longer need to deal with fermion momenta, and the notation k will be recycled for
phonon momentum.



136

In the presence of an external potential (Φ,A) (e.g., electromagnetic fields from the ions),
k = −i∇ −A is the kinematical momentum, while ε = i∂t − Φ. Eq. (7.8) applies for the
SM fermions ψ = p, n, e. If the DM χ is a spin-1

2
fermion, it also applies for the DM, with

ψ replaced by χ. For a spin-0 DM, on the other hand, χ = e−imχtχ+, with χ+ given by
Eq. (7.7) without the ξs factor.

To demonstrate the procedure of matching a relativistic model onto the NR EFT, we focus
on tree level DM scattering mediated by a spin-0 or abelian spin-1 particle, denoted by φ

and Vµ respectively. While it should be kept in mind that the EFT is capable of describing a
broader class of models, including e.g. loop-mediated scattering, we find it useful to organize
our thinking by categorizing mediator couplings to fermion bilinears. In Table 7.1, we list
the commonly considered types of couplings at the level of the relativistic Lagrangian, and
their NR limits. We explain the table in detail in the following two paragraphs.
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For a spin-0 mediator φ, we consider its couplings to the scalar and pseudoscalar currents JS,
JP . For a spin-1 mediator Vµ, we consider both minimal coupling to the vector and axial-
vector currents JµV , JµA, and non-minimal couplings to the field strength Vµν .4 The latter
include a series of higher dimensional operators. At dimension five, we have the electric
dipole moment (edm) and magnetic dipole moment (mdm) couplings. Upon integration by
parts, they can be cast in the same form, VµJµ, as the minimal coupling case, with effective
currents Jµedm, Jµmdm listed in the last column of Table 7.1. Next, at dimension six, we consider
∂νVµν coupling to the axial-vector and vector currents. The former represents a new type of
coupling known as the anapole [52, 55, 59], and the corresponding effective current is denoted
by Jµana. On the other hand, ∂νVµν coupling to the vector current gives an O(q2) contribution
to the same form factors that JµV induces (i.e., the familiar charge and magnetic dipole in
quantum electrodynamics), so we denote the effective current by JµV 2. It is useful to note
that all the (effective) currents that couple to a spin-1 mediator, except JµA, are conserved:
qµJ

µ
X = 0 (X = V, edm,mdm, ana, V 2).

In the NR limit, we can substitute Eq. (7.8) for the relativistic fermion field ψ into the
expressions for the (effective) currents in Table 7.1, and expand in powers of k

mψ
and ε

mψ
.

For example, for JµV = (J0
V ,JV ), we find, at leading order,

J0
V = ψ̄γ0ψ → ψ−ψ+ , JV = ψ̄γψ → ψ−

(
K

2mψ

− iq

mψ

× Sψ

)
ψ+ . (7.9)

where Sψ = σ
2

is the spin operator, and

K ≡ k′ + k , q ≡ k′ − k , (7.10)

with k′ defined as acting on the ψ− field on the left, k′ = i
←−
∇ −A, giving the kinematical

momentum of the final state ψ. We can carry out the same exercise for the other (effective)
currents. The results, up to the first nonvanishing order, are listed after the arrows in the
last column of Table 7.1, with ψ− on the left and ψ+ on the right implicit. We see that
all currents reduce to operators involving Sψ, K and iq; in the case of the electric dipole
coupling, ω ≡ ε′ − ε also appears, with ε′ defined as acting on ψ− on the left.

With Table 7.1, it is straightforward to derive the NR effective operators generated by tree-
level exchange of a spin-0 or spin-1 mediator between a DM current and a SM current.
Concretely, let us consider a set of benchmark models of spin-1

2
DM [60], listed in Table 7.2.

In each model, the DM χ and a SM fermion ψ each couple to the mediator via a linear
combination of the currents in the last column of Table 7.1, whose NR limits can be directly

4Other operators, such as those with derivatives acting on ψ and those involving the dual field strength
Ṽµν , are not independent — see e.g., Ref. [320].
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read off. Integrating out the mediator at tree level, we then arrive at a NR EFT for DM
scattering of the form

Leff = χ−
[
ε− p2

2mχ

+O
(
m−2
χ

)]
χ++ψ−

[
ε− k2

2mψ

+O
(
m−2
ψ

)]
ψ++

∑
i

∑
ψ=p,n,e

c
(ψ)
i O

(ψ)
i χ−χ+ψ−ψ+ .

(7.11)
For convenience, we reserve k and k′ for the momentum operators acting on ψ±, and write
the same operators as p and p′ when they act on χ±. We normalize the operators by powers
of mψ so that O(ψ)

i are dimensionless and c
(ψ)
i have dimension −2.



140

M
od

el
U

V
L

ag
ra

ng
ia

n
N

R
E

F
T

R
es

po
ns

es

St
an

da
rd

SI
φ
( g χJ

S
,χ

+
g ψ
J
S
,ψ

) or
c(
ψ
)

1
=

g
χ
g
ψ

q
2
+
m

2 φ
,V

N
V
µ

( g χJ
µ V
,χ
−
g ψ
J
µ V
,ψ

)
St

an
da

rd
SD

5
V
µ

( g χJ
µ A
,χ

+
g ψ
J
µ A
,ψ

)
c(
ψ
)

4
=

4
g
χ
g
ψ

q
2
+
m

2 V
S

O
th

er
sc

al
ar

m
ed

ia
to

rs

P
×

S
φ
( g χJ

P
,χ

+
g ψ
J
S
,ψ

)
c(
ψ
)

1
1

=
m
ψ

m
χ

g
χ
g
ψ

q
2
+
m

2 φ
N

S
×

P
φ
( g χJ

S
,χ

+
g ψ
J
P
,ψ

)
c(
ψ
)

1
0

=
−

g
χ
g
ψ

q
2
+
m

2 φ
S

P
×

P
φ
( g χJ

P
,χ

+
g ψ
J
P
,ψ

)
c(
ψ
)

6
=

m
ψ

m
χ

g
χ
g
ψ

q
2
+
m

2 φ
S

M
ul

ti-

po
le

D
M

m
od

el
s

El
ec

tr
ic

di
po

le
V
µ

( g χ
J
µ ed

m
,χ

+
g ψ

( J
µ V
,ψ

+
δµ̃

ψ
J
µ m

dm
,ψ

))
c(
ψ
)

1
1

=
−
m
ψ

m
χ

g
χ
g
ψ

q
2
+
m

2 V
N

M
ag

ne
tic

di
po

le
V
µ

( g χ
J
µ m

dm
,χ

+
g ψ

( J
µ V
,ψ

+
δµ̃

ψ
J
µ m

dm
,ψ

))
c(
ψ
)

1
=

q
2

4
m

2 χ

g
χ
g
ψ

q
2
+
m

2 V

N
,
S
,
L

c(
ψ
)

4
=

µ̃
ψ

q
2

m
χ
m
ψ

g
χ
g
ψ

q
2
+
m

2 V

c(
ψ
)

5
=

m
ψ

m
χ

g
χ
g
ψ

q
2
+
m

2 V

c(
ψ
)

6
=
−
µ̃
ψ
m
ψ

m
χ

g
χ
g
ψ

q
2
+
m

2 V

A
na

po
le

V
µ

( g χ
J
µ an

a,
χ
+

g ψ
( J

µ V
,ψ

+
δµ̃

ψ
J
µ m

dm
,ψ

))
c(
ψ
)

8
=

q
2

2
m

2 χ

g
χ
g
ψ

q
2
+
m

2 V
N
,
S
,
L

c(
ψ
)

9
=
−
µ̃
ψ

q
2

2
m

2 χ

g
χ
g
ψ

q
2
+
m

2 V

(L
·S

)-
in

te
ra

ct
in

g
V
µ

( g χJ
µ V
,χ

+
g ψ

(J
µ m

dm
,ψ

+
κ
J
µ V
2
,ψ
))

c(
ψ
)

1
=

(1
+

κ
)

q
2

4
m

2 ψ

g
χ
g
ψ

q
2
+
m

2 V

N
,S
,
L
⊗
S

c(
ψ
)

3
=

g
χ
g
ψ

q
2
+
m

2 V

c(
ψ
)

4
=

q
2

m
χ
m
ψ

g
χ
g
ψ

q
2
+
m

2 V

c(
ψ
)

6
=
−
m
ψ

m
χ

g
χ
g
ψ

q
2
+
m

2 V

Ta
bl

e
7.

2:
B

en
ch

m
ar

k
m

od
el

s
of

sp
in

-1 2
D

M
χ

co
up

lin
g

to
SM

fe
rm

io
ns
ψ
=
p,
n
,e

.
Ea

ch
m

od
el

is
m

at
ch

ed
on

to
th

e
N

R
EF

T
by

m
ul

tip
ly

in
g

th
e

cu
rr

en
ts
J
χ
J
ψ

(d
efi

ne
d

in
Ta

bl
e

7.
1)

an
d

th
e

m
ed

ia
to

r
pr

op
ag

at
or

,a
nd

ac
co

un
tin

g
fo

r
in

-m
ed

iu
m

eff
ec

ts
(if

pr
es

en
t)

ac
co

rd
in

g
to

Eq
.(

7.
14

).
T

he
le

ad
in

g
or

de
r

no
nv

an
ish

in
g

co
effi

ci
en

ts
c(
ψ
)

i
fo

r
th

e
op

er
at

or
s
O

(ψ
)

i
(d

efi
ne

d
in

Ta
bl

e
7.

3)
ar

e
lis

te
d

in
th

e
se

co
nd

to
la

st
co

lu
m

n.
Fo

r
th

e
m

ul
tip

ol
e

D
M

m
od

el
s,
δµ̃

ψ
≡
µ̃
ψ
−

1
w

he
re
µ̃
ψ

is
ha

lf
th

e
La

nd
é
g
-fa

ct
or

of
ψ

(µ̃
p
'

2.
8,
µ̃
n
'
−
1.
9,
µ̃
e
'

1)
.

T
he

la
st

co
lu

m
n

lis
ts

th
e

la
tt

ic
e

de
gr

ee
s

of
fre

ed
om

w
hi

ch
en

te
r

th
e

sc
at

te
rin

g
po

te
nt

ia
l,

Eq
.(

7.
30

).
A

ll
m

od
el

sc
an

ex
ci

te
ph

on
on

s,
an

d
m

od
el

sw
ith

S
or
L

re
sp

on
se

ge
ne

ra
te

d
by

D
M

-e
le

ct
ro

n
co

up
lin

g
ca

n
al

so
ex

ci
te

m
ag

no
ns

.



141

For each UV model, the coefficients c(ψ)i of the NR operators generated at leading order are
given in Table 7.2. These coefficients contain all the information for constructing the lattice
potential Ṽlj for a given DM model, and will be exploited below for computing the DM
detection rate. The list of NR operators O(ψ)

i is already familiar from previous works on the
EFT for direct detection via nuclear recoils [60, 197, 316–319]. We list the operators up to
linear order in v⊥ (defined below in Eq. (7.13)) in Table 7.3 (grouped into four categories
to be explained below), adopting the basis of Ref. [319]. These encompass all the operators
generated at leading order in the benchmark models we consider here. The standard SI and
SD interactions correspond to O1 and O4, respectively.6 Other types of scalar mediators
generate O6, O10 and O11. A well-motivated class of (hidden sector) models contain DM
particles coupling to a vector mediator via a multipole moment, which in turn kinetically
mixes with the photon (see e.g., Refs. [52–55, 58–60, 321]). We consider the electric dipole,
magnetic dipole and anapole DM models, which generate O11, O1,4,5,6 and O8,9, respectively.
Finally, Table 7.2 includes a model where a vector mediator couples to the SM fermion’s
magnetic dipole moment Jµmdm, and as a result generates O3. Among other things, this leads
to a coupling to the SM fermion’s spin-orbit coupling, which can be the leading interaction if
one simultaneously introduces a coupling to the “O(q2) vector current” JµV 2 (see Table 7.1),
with a coefficient (relative to Jµmdm) tuned to κ = −1 to cancel the standard SI interaction
O1.

6Note that the standard SD interaction cannot be realized with a light mediator. In that case the
leading interaction is induced by longitudinal vector exchange, and is proportional to JP,χJP,ψ rather than
JµA,χJA,ψµ.
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For kinematic conventions, we take

q ≡ k′ − k = p− p′ (7.12)

to denote the momentum transfer from the DM to the target, which agrees with Refs. [316,
319] but has an opposite sign compared to the definitions in Refs. [60, 197, 317, 318]. The
other independent combination of momenta is

v⊥ ≡ P

2mχ

− K

2mψ

= v − k

mψ

− q

2µχψ
, (7.13)

where P = p′ + p, K = k′ + k, and µχψ is the reduced mass. Recall from the beginning of
this section that we use v = p

mχ
for the incoming DM’s velocity. So v − k

mψ
in Eq. (7.13) is

the relative velocity, and v⊥ is the component of the relative velocity perpendicular to the
momentum transfer, q · v⊥ = 0. Note that Eq. (7.13) reduces to the familiar relation with
k = 0 for DM scattering off a target particle at rest; the term proportional to k accounts for
motions of the initial state ψ = p, n, e, and will be important for deriving DM-ion scattering
potentials below.

We also note that, in the case of a vector mediator coupling to the electron’s vector current
JµV,e, in-medium screening effects modify the effective couplings to the proton and electron [7,
10, 29, 144, 182]. For NR scattering via the N response, e.g., standard SI interactions, this
amounts to replacing

gp → geff
p = gp +

(
1− q2

q · ε · q

)
ge , ge → geff

e =
q2

q · ε · q
ge , (7.14)

where ε is the dielectric tensor, and gp,e are the tree-level (unscreened) couplings, as shown
in Refs. [7, 10]. The same is true for a scalar mediator coupling to the electron’s scalar
current JS,e [44]. For single phonon and magnon excitations below the electronic band gap
that we focus on in this work, one can use the high-frequency dielectric ε∞, which captures
the screening due to fast electron responses [7, 28, 322].

We will study the reach phonon and magnon detectors have to these benchmark models in
Sec. 7.3, after developing the formalism of rate calculations within the EFT in the rest of
this section.

Matching Effective Operators Onto Lattice Degrees of Freedom
We now match the effective operators O(ψ)

i onto lattice degrees of freedom (highlighted for
clarity) that appear in the DM-ion scattering potentials Ṽlj. In Table 7.3, we have organized
the operators into four categories, according to whether O(ψ)

i ∝ 1ψ (“coupling to charge”)



144

or O(ψ)
i ∝ Sψ (“coupling to spin”), and whether the operator involves v⊥. Since our focus is

light DM that evades conventional searches via nuclear recoils and electronic excitations, we
will work in the long wavelength limit, where the momentum transfer is small compared to the
inverse ionic radius (corresponding to mχ . 10MeV), so at leading order, the only relevant
degrees of freedom are those that characterize the ion as a whole. Intuitively, we expect
couplings to charge and spin of a consituent particle ψ = p, n, e to match onto couplings
to the total number 〈Nψ〉 and spin 〈Sψ〉 of that particle, respectively. These are point-like
degrees of freedom that do not involve the internal motions of the ion constituents; they are
the only degrees of freedom to which DM couples if the operator is velocity-independent.
On the other hand, velocity-dependent operators are expected to couple DM to the motion
of ψ particles inside an ion, manifest as the total orbital angular momenta 〈Lψ〉 and spin-
orbit couplings 〈Lψ ⊗ Sψ〉, which are “composite” degrees of freedom. In the rest of this
subsection, we will see concretely how these intuitive expectations are borne out. The final
result of this calculation is the lattice potential in terms of the NR EFT operator coefficients
c
(ψ)
i , given below in Eq. (7.30).

Since the calculation proceeds in much the same way for all operators in the same category,
to avoid tedious repetition we pick one operator from each category to explain the proce-
dure: O(ψ)

1 , O(ψ)
8 , O(ψ)

4 and O(ψ)
3 , with ψ taken to be one of p, n, e. To obtain the DM-ion

scattering potentials Ṽlj, we need to compute the matrix elements of these operators be-
tween the incoming and outgoing states of the DM-ion system. Since the initial and final
DM states are plane waves, the DM part of the matrix element simply yields a phase factor, so

Ṽlj(−q,v) ⊃
∑
α

[
c
(ψ)
1

〈
eiq·xα

〉
lj
+ c

(ψ)
4 Sχ ·

〈
eiq·xαSψ,α

〉
lj

+ c
(ψ)
8 Sχ ·

〈
eiq·xαv⊥

α

〉
lj
+ c

(ψ)
3

iq

mψ

·
〈
eiq·xα v⊥

α × Sψ,α

〉
lj

]
, (7.15)

where α runs over all the ψ fermions associated with the ion labeled by l, j, and 〈·〉 repre-
sents the ionic expectation value (assuming the ionic state is unchanged for the low energy
depositions of interest). Computing these expectation values in full generality is a tedious
task that involves numerical integration over nuclear and electronic wavefunctions. However,
the calculation is dramatically simplified in the long wavelength limit of interest here, where
we can expand eiq·xα = 1+ iq ·xα+ . . . and keep just the leading nonvanishing terms. In the
following two paragraphs, we discuss in turn the v⊥-independent operators O(ψ)

1 , O(ψ)
4 (first

line of Eq. (7.15)) and the v⊥-dependent operators O(ψ)
8 , O(ψ)

3 (second line of Eq. (7.15)).
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a) v⊥-independent operators: O(ψ)
1 , O(ψ)

4 . For these, it is sufficient to set eiq·xα → 1:

c
(ψ)
1

∑
α

〈
eiq·xα

〉
lj
' c

(ψ)
1

∑
α

〈1〉lj = c
(ψ)
1 〈Nψ〉lj , (7.16)

c
(ψ)
4 Sχ ·

∑
α

〈
eiq·xαSψ,α

〉
lj
' c

(ψ)
4 Sχ ·

∑
α

〈Sψ,α〉lj = c
(ψ)
4 Sχ · 〈Sψ〉lj . (7.17)

So we obtain, respectively, the expectation values of the number and total spin of ψ parti-
cles for ion l, j, as one would expect for the lowest order “coupling to charge” (O(ψ)

1 ) and
“coupling to spin” (O(ψ)

4 ) operators. Note that 〈Sψ〉lj should not be confused with the to-
tal nuclear or ionic spin, which may also contain orbital angular momentum components.
We will see in the next subsection that the total ionic spin (from electrons) is relevant for
magnon excitations, and we will need to work out its decomposition into spin and orbital
components (see Eq. (7.36) below); the total nuclear spin, on the other hand, does not enter
the calculation of phonon or magnon excitations.

b) v⊥-dependent operators: O(ψ)
8 , O(ψ)

3 . We can write v⊥
α as

v⊥
α = v − q

2mχ

− (k + k′)α
2mψ

= v − q

2mχ

+
i

2mψ

←→
∇ α , (7.18)

where v = p
mχ

is the incoming DM’s velocity. The first two terms do not act on the ψ

wavefunctions, so just as in the v⊥-independent case,∑
α

〈
eiq·xα

(
v − q

2mχ

)〉
lj

'
(
v − q

2mχ

)∑
α

〈1〉lj =
(
v − q

2mχ

)
〈Nψ〉lj , (7.19)

∑
α

〈
eiq·xα

(
v − q

2mχ

)
× Sψ,α

〉
lj

'
(
v − q

2mχ

)
×
∑
α

〈Sψ,α〉lj

=

(
v − q

2mχ

)
× 〈Sψ〉lj . (7.20)

The last term in Eq. (7.18), on the other hand, is the probability current operator, jα =
i

2mψ

←→
∇ α. The treatment of this term is analogous to the nuclear recoil calculation [197].

First, we note that the expectation value of jα is zero; assuming the ionic states are energy
eigenstates implies that the probability density is constant in time, and therefore by the
continuity equation, ∂i〈jiα〉lj = 0. This means that jiα can be written as a total derivative,
jiα = ∂k

(
xiαj

k
α

)
, and therefore has vanishing expectation value. The leading contribution

then comes from expanding the eiq·xα to the next order in q:∑
α

〈
eiq·xαjα

〉
lj
' i

∑
α

〈
(q · xα) jα

〉
lj
, (7.21)∑

α

〈
eiq·xα jα × Sψ,α

〉
lj
' i

∑
α

〈
(q · xα) jα × Sψ,α

〉
lj
. (7.22)
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To go further, we note that
〈
xiαj

k
α

〉
lj

is anti-symmetric in i ↔ k since the symmetric part
can be written as a total derivative, xiαjkα + xkαj

i
α = ∂i′

(
xiαx

k
αj

i′
α

)
and therefore has vanishing

expectation value. Expanding the anti-symmetric part gives〈
xiαj

k
α

〉
lj
=

1

2

〈
xiαj

k
α−xkαjiα

〉
lj
=

i

4mψ

(〈
xiα
−→
∇k
α

〉
lj
−
〈
xiα
←−
∇k
α

〉
lj
−
〈
xkα
−→
∇ i
α

〉
lj
+
〈
xkα
←−
∇ i
α

〉
lj

)
, (7.23)

which after integration by parts can be simplified to〈
xiαj

k
α

〉
lj
=

i

2mψ

〈
xi
−→
∇k
α − xk

−→
∇ i
α

〉
lj
= − 1

2mψ

εikk′〈Lk
′

α 〉lj , (7.24)

where Lα is the angular momentum operator. We therefore have∑
α

〈
eiq·xαjα

〉
lj
' iq

2mψ

×
∑
α

〈Lψ,α〉lj =
iq

2mψ

× 〈Lψ〉lj , (7.25)

∑
α

〈
eiq·xα jα × Sψ,α

〉
lj
' i

2mψ

∑
α

〈(q ×Lψ,α)× Sψ,α〉lj

=
i

2mψ

(∑
α

〈Lψ,α ⊗ Sψ,α〉lj · q −
∑
α

〈Lψ,α · Sψ,α〉lj q
)

=
i

2mψ

(
〈Lψ ⊗ Sψ〉lj · q − 〈Lψ · Sψ〉lj q

)
=

i

2mψ

[
〈Lψ ⊗ Sψ〉lj · q − tr

(
〈Lψ ⊗ Sψ〉lj

)
q
]
. (7.26)

where (
〈Lψ ⊗ Sψ〉lj

)ik
= 〈LiψSkψ〉lj ≡

∑
α

〈Liψ,αSkψ,α〉lj (7.27)

are Cartesian components of the spin-orbit coupling tensor. Combining these with Eqs. (7.19)
and (7.20), we finally obtain

c
(ψ)
8 Sχ ·

∑
α

〈
eiq·xαv⊥

α

〉
lj
= c

(ψ)
8 Sχ ·

[(
v − q

2mχ

)
〈Nψ〉lj +

iq

2mψ

× 〈Lψ〉lj
]
, (7.28)

c
(ψ)
3

iq

mψ

·
∑
α

〈
eiq·xα v⊥

α × Sψ,α

〉
lj

= c
(ψ)
3

[(
iq

mψ

× v

)
· 〈Sψ〉lj +

1

2m2
ψ

(q2δik − qiqk)
(
〈Lψ ⊗ Sψ〉lj

)ik]
. (7.29)

As alluded to previously, the v⊥-dependent operators O(ψ)
8 and O(ψ)

3 induce DM couplings
to not only the number and total spin of ψ particles, but also their total orbital angular
momentum and spin-orbit coupling.
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We can carry out the same calculation for the other operators in Table 7.3. The result is

Ṽlj(−q,v) =
∑

ψ=p,n,e

c
(ψ)
1 〈Nψ〉lj

+ c
(ψ)
3

[
− iq

mψ

v′ ·
(
q̂ × 〈Sψ〉lj

)
+

q2

2m2
ψ

(δik − q̂iq̂k)
(
〈Lψ ⊗ Sψ〉lj

)ik]
+ c

(ψ)
4 Sχ · 〈Sψ〉lj

+ c
(ψ)
5

[
iq

mψ

·
(
v′ × Sχ

)
〈Nψ〉lj +

q2

2m2
ψ

Sχ ·
(
1− q̂q̂

)
· 〈Lψ〉lj

]
+ c

(ψ)
6

q2

m2
ψ

(
q̂ · Sχ

)(
q̂ · 〈Sψ〉lj

)
+ c

(ψ)
7

[
v′ · 〈Sψ〉lj + εikk

′ iqk
′

2mχ

(
〈Lψ ⊗ Sψ〉lj

)ik]
+ c

(ψ)
8

[(
v′ · Sχ

)
〈Nψ〉lj +

iq

2mψ

Sχ ·
(
q̂ × 〈Lψ〉lj

)]
+ c

(ψ)
9

iq

mψ

Sχ ·
(
〈Sψ〉lj × q̂

)
+ c

(ψ)
10

iq

mψ

· 〈Sψ〉lj

+ c
(ψ)
11

iq

mψ

· Sχ 〈Nψ〉lj

+ c
(ψ)
12

[(
v′ × Sχ

)
· 〈Sψ〉lj +

iq

2mψ

(
(q̂ · Sχ)δ

ik − q̂kSiχ
)(
〈Lψ ⊗ Sψ〉lj

)ik]
+ c

(ψ)
13

[
iq

mψ

(
v′ · Sχ

)(
q̂ · 〈Sψ〉lj

)
+

q2

2m2
ψ

(
q̂ × Sχ

)
· 〈Lψ ⊗ Sψ〉lj · q̂

]
+ c

(ψ)
14

[
iq

mψ

(
q̂ · Sχ

)(
v′ · 〈Sψ〉lj

)
− εikk′ q2

2m2
ψ

q̂k
′(
q̂ · Sχ

)(
〈Lψ ⊗ Sψ〉lj

)ik]
+ c

(ψ)
15

[
− q2

m2
ψ

(
q̂ · (v′ × Sχ)

)(
q̂ · 〈Sψ〉lj

)
+
iq3

2m3
ψ

Sχ ·
(
1− q̂q̂

)
· 〈Lψ ⊗ Sψ〉lj · q̂

]
, (7.30)

where
v′ ≡ v − q

2mχ

. (7.31)

and summation over repeated Cartesian indices is implicit. Here and in what follows, we
denote q ≡ |q| (so that q2 ≡ q2 6= qµqµ), and q̂ ≡ q/q.
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To summarize, in the long wavelength limit, the DM-ion scattering potential Ṽlj involves a set
of quantities that characterize properties of the ion: the total numbers 〈Nψ〉, spins 〈Sψ〉 and
orbital angular momenta 〈Lψ〉 of the constituent particles ψ = p, n, e, as well as the spin-orbit
coupling tensors

〈
Lψ ⊗ Sψ

〉
. We will refer to these as different types of crystal responses,

as DM couplings to these quantities drive collective excitations in the crystal; they play a
similar role to the nuclear responses in nuclear recoil calculations (which similarly reduce
to the total nucleon numbers, spins, etc. in the long wavelength limit [60, 197, 317, 318]).
We emphasize, however, that in contrast to standard nuclear recoil where nuclei are treated
as free – a valid approximation at energy depositions & 500meV [7] – collective excitations
arise in a lower energy regime where inter-ionic interactions become important; the EFT
therefore involves different degrees of freedom and the calculation proceeds differently.7 We
will sometimes abbreviate the crystal responses introduced above as N , S, L, L⊗ S, or
simply N , S, L, L⊗ S, when there is no confusion. The crystal responses generated by each
NR operator and in each benchmark DM model have been summarized in Tables 7.3 and
7.2, respectively.

We reiterate that, among the four types of crystal responses, 〈Nψ〉 and 〈Sψ〉 are induced by
DM couplings to point-like ionic degrees of freedom (which do not involve internal motions
of nucleons or electrons inside an ion), while 〈Lψ〉 and

〈
Lψ ⊗ Sψ

〉
are induced by DM

couplings to composite degrees of freedom. We therefore refer to them as point-like and
composite responses respectively. Velocity-independent operators (first and third categories
in Table 7.3) generate only point-like responses, while velocity-dependent operators (second
and fourth categories in Table 7.3) can also generate the corresponding composite responses.
It is worth noting that for the velocity-dependent operators that generate both point-like
and composite responses – O3, O5, O8, O12,...,15 – the ratio of composite versus point-like
responses (i.e., coefficients of 〈Lψ〉 versus 〈Nψ〉, or

〈
Lψ ⊗ Sψ

〉
versus 〈Sψ〉 in Eq. (7.30)) is,

parametrically, q
mψv

. This is generic, as point-like and composite responses result from the
leading two terms in the expansion eiq·xα = 1+ iq ·xα+ . . . , and qx ∼ q

mψv
L, with L ∼ O(1).

For nuclear recoils, q
mψv
∼ µχN

mp,n
with µχN the reduced mass of the DM and the target nucleus,

so composite responses can be significant, as emphasized in Refs. [60, 317]. In contrast, in the
present case of collective excitations induced by light DM, we have q

mψv
. mχ

mψ
. For couplings

to nucleons, ψ = p, n, this ratio is always smaller than one for sub-GeV DM, so for a given
7Technically, Refs. [197, 317] defined a few “nuclear response functions,” W ττ ′

M , W ττ ′

Σ′ etc., which the
nuclear recoil rate is proportional to, from the unpolarized average of nuclear matrix element squared. No
such averaging is involved in the calculation of collective excitations, and the rate formulae derived below
do not depend on the same functions W ττ ′

M , W ττ ′

Σ′ etc. even in the absence of coupling to electrons. Here we
are simply borrowing the terminology “response” in the sense that it refers to a type of coupling, just as M ,
Σ′, etc., usually called “nuclear responses,” are different types of couplings to the nucleus.
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type of excitation, point-like responses tend to dominate; for couplings to electrons, ψ = e,
both point-like and composite responses, if present, can be important. From the bottom-up
point of view, it is useful to keep in mind this interplay between point-like and composite
responses for the purpose of organizing the effects of various operators, although from the
top-down point of view, it seems difficult to construct well-motivated simple models that
dominantly generate a composite response (L or L⊗ S) without being accompanied by a
point-like response (N or S) of at least comparable size, similar to the case of nuclear recoil
as highlighted in Ref. [60]. We will elaborate on this in Sec. 7.3.

Quantization of Lattice Potential for Phonons and Magnons
Now that we have obtained Ṽlj in terms of the lattice degrees of freedom, Eq. (7.30), it
remains to compute the matrix elements

〈ν,k| Ṽ(−q,v)|0〉 =
∑
l,j

〈ν,k| eiq·xlj Ṽlj(−q,v)|0〉 (7.32)

by quantizing the lattice potential in terms of phonon or magnon modes. The simplest cases,
where phonon excitations in a crystal proceed through 〈Nψ〉 (via the SI operator O1 = 1) and
magnon excitations proceed through 〈Se〉 were considered previously in Refs. [6, 7, 28, 64]
and Ref. [8], respectively. Here we extend those calculations to include all four crystal
responses (〈Nψ〉, 〈Sψ〉, 〈Lψ〉, 〈Lψ ⊗ Sψ〉) identified in the previous subsection, which can be
generated by the full set of effective operators.

Phonons arise from the ions’ displacements with respect to their equilibrium positions x0
lj:

ulj = xlj − x0
lj =

3n∑
ν=1

∑
k∈1BZ

1√
2Nmjων,k

(
âν,k εν,k,j e

ik·x0
lj + â†ν,k ε

∗
ν,k,j e

−ik·x0
lj

)
. (7.33)

Recall that N (without subscript, not to be confused with 〈Nψ〉) is the total number of
primitive cells in the crystal lattice, to be sent to infinity at the end of the calculation. The
phonon creation and annihilation operators satisfy the canonical commutation relations,
[âν,k, â

†
ν′,k′ ] = δνν′δk,k′ with all others vanishing. The eigenenergies ων,k and eigenvectors

εν,k,j (normalized such that
∑

j |εν,k,j|2 = 1) are solved for by diagonalizing the quadratic
crystal potential. The quadratic crystal potential, and equilibrium positions, are computed
with DFT [294] (see Refs. [6, 28] for details) and the diagonalization is performed with
phonopy [50]. At leading order, dependence of the matrix element in Eq. (7.32) on ulj comes
only from the phase factor eiq·xlj ; we assume the DM-ion scattering potentials Ṽlj(−q,v) are
not significantly affected by ionic displacements and can thus be pulled out of the matrix



150

element.8 Then, evaluating the matrix element of the phase factor, 〈ν,k| eiq·xlj |0〉, follows
the standard procedure of expanding xlj as in Eq. (7.33) and applying the Baker-Campbell-
Hausdorff formula to normal-order the phonon creation and annihilation operators [7]. As a
result,

〈ν,k| Ṽ(−q,v)|0〉 = 1√
N

∑
ν,k,j

[∑
l

Ṽlj(−q,v) ei(q−k)·x0
lj

]
e−Wj(q)

i(q · ε∗ν,k,j)√
2mjων,k

, (7.34)

where Wj(q) = 1
4Nmj

∑
ν,k

|q·εν,k,j |2
ων,k

is the Debye-Waller factor. Crucially, the 1√
N

factor
(which originates from Eq. (7.33) and is to be squared when computing the rate), together
with the prefactor 1

V
in the rate formula Eq. (7.5), indicates that the rate Γ would scale as

1
N2 → 0 unless the l sum in Eq. (7.34) scales with N . This in turn requires the N terms
in the l sum to add up coherently, which is possible only when i) the phonon momentum
k matches the momentum transfer q up to reciprocal lattice vectors, which is the statement
of lattice momentum conservation, and ii)

∑
l Ṽlj ∼ N , i.e., the DM couples coherently

across the crystal lattice. The second requirement is trivially satisfied for DM couplings to
the scalar quantities 〈Nψ〉, tr(〈Lψ ⊗ Sψ〉). For couplings to the vector and tensor quantities
〈Sψ〉, 〈Lψ〉, 〈Lψ ⊗ Sψ〉 (modulo the trace part), on the other hand, coherence is possible
only when they are ordered (or polarized), so that they point in the same directions in all
primitive cells; in the case of 〈Sψ〉, this can be achieved by spontaneous magnetic ordering
for ψ = e, or by applying an external magnetic field for ψ = p, n.

Up to possible small corrections due to the presence of different isotopes, we can set Ṽlj = Ṽj,
which is independent of l. We then obtain the single phonon excitation rate:

Γ(v) =
1

Ω

∫
d3q

(2π)3

3n∑
ν=1

2π δ
(
ων,k − ωq

) 1

2ων,k

∣∣∣∣∑
j

e−Wj(q)eiG·x0
j
q · ε∗ν,k,j√

mj

Ṽj(−q,v)
∣∣∣∣2 , (7.35)

where Ω is the volume of the primitive cell, x0
j is the equilibrium position of the jth ion

with respect to the cell center, and it is implicit that q = k + G where G is a reciprocal
lattice vector. To map q to a vector k within the 1BZ, we first write q =

∑3
i=1 aibi, with bi

the basis vectors of the reciprocal lattice, then construct a set of eight candidate G vectors
whose components in reduced coordinates take the floor and ceiling integer values of ai, and
finally choose the correct G vector to be the one that minimizes |q −G|.

The DM-ion scattering potential Ṽj that enters Eq. (7.35) is simply given by Eq. (7.30)
above, with the l subscripts dropped, assuming 〈Sψ〉, 〈Lψ〉, 〈Lψ ⊗ Sψ〉 are ordered, as

8If Ṽlj receives contributions from DM-electron couplings, the scattering potential can depend on ulj
directly, as ionic displacements distort the electron wavefunctions. This correction can be taken into account
via the Born effective charges in the case of SI interactions in the long wavelength limit, as discussed in
Ref. [7].
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explained above; in the absence of ordering, the corresponding terms should be dropped
(with 〈Lψ ⊗ Sψ〉 set to its scalar component 1

3
tr(〈Lψ ⊗ Sψ〉) 1 = 1

3
〈Lψ · Sψ〉 1). In the

special case of SI interactions, one has only c
(ψ)
1 , so Ṽj =

∑
ψ c

(ψ)
1 〈Nψ〉j, reproducing the

results in Ref. [7], whereas in the full EFT, all four crystal responses can contribute to
phonon excitations.

Next we move on to magnons. They are collective spin excitations in a magnetically ordered
phase, and can thus respond to DM scattering only if the potentials Ṽlj depend on the
magnetic ions’ effective spins Slj. Generally, Slj can come from the electrons’ spin and
orbital angular momenta, 〈Se〉lj and 〈Le〉lj, respectively. When projected onto the Hilbert
space spanned by Slj, they become

〈Se〉lj → λS,jSlj , 〈Le〉lj → λL,jSlj , (7.36)

where λS,j, λL,j are numbers (which we will say more about shortly). Therefore, from
Eq. (7.30) we obtain the matrix element for exciting a magnon mode |ν,k〉:

〈ν,k| Ṽ(−q,v)|0〉 =
∑
l,j

eiq·xljf j(−q,v) · 〈ν,k|Slj|0〉 , (7.37)

where

f j(−q,v) =

λS,j

[
c
(e)
3

iq

me

(
q̂ × v′)+ c

(e)
4 Sχ + c

(e)
6

q2

m2
e

(
q̂ · Sχ

)
q̂ + c

(e)
7 v′ + c

(e)
9

iq

me

(
q̂ × Sχ

)
+ c

(e)
10

iq

me

+c
(e)
12

(
v′ × Sχ

)
+ c

(e)
13

iq

me

(
v′ · Sχ

)
+ c

(e)
14

iq

me

(q̂ · Sχ)v
′ − c(e)15

q2

m2
e

(
q̂ · (v′ × Sχ)

)
q̂

]
+
λL,j
2

[
c
(e)
5

q2

m2
e

(
1− q̂q̂

)
· Sχ − c(e)8

iq

me

(
q̂ × Sχ

)]
. (7.38)

As in Eq. (7.30), we have defined q ≡ |q|, q̂ ≡ q/q, and v′ ≡ v − q
2mχ

.

Now we need to compute 〈ν,k|Slj|0〉. The calculation follows Ref. [8], which we encourage
the reader to consult for more details. The magnetic order is captured by a set of rotation
matrices Rj that take each Slj to a local coordinate system where it points in the +z

direction:
Slj = Rj · S′

lj , 〈S′
lj〉 =

(
〈S ′x

lj 〉, 〈S
′y
lj 〉, 〈S

′z
lj 〉
)
=
(
0, 0, Sj

)
. (7.39)

We restrict ourselves to commensurate orders, in which case the rotation matrices Rj do
not depend on the primitive cell label l. We then apply the Holstein-Primakoff transforma-
tion and expand Slj around the ground state in terms of bosonic creation and annihilation
operators:

S ′x
lj =

(
2Sj − â†lj âlj

)1/2
âlj , S ′y

lj = â†lj
(
2Sj − â†lj âlj

)1/2
, S ′z

lj = Sj − â†lj âlj . (7.40)



152

Magnon eigenstates are obtained by diagonalizing the spin Hamiltonian, which is specific
to the target material; in the simplest cases, the target can be modeled by Heisenberg
exchange interactions Slj · Sl′j′ between neighboring sites, while more complicated model
descriptions are needed in other cases. For a general spin Hamiltonian, the diagonalization
can be achieved by a Bogoliubov transformation in momentum space:

âlj =
1√
N

∑
k∈1BZ

âj,k e
ik·xlj ,

(
âj,k

â†j,−k

)
=

(
Ujν,k Vjν,k

V∗
jν,−k U∗

jν,−k

)(
b̂j,k

b̂†j,−k

)
, (7.41)

where U, V are n×n matrices (with n the number of magnetic ions per cell), and b̂†j,k, b̂j,k are
the creation and annihilation operators for the magnon eigenstates satisfying canonical com-
mutation relations, [b̂ν,k, b̂†ν′,k′ ] = δνν′δk,k′ with all others vanishing. An efficient algorithm
for the diagonalization can be found in Ref. [268] (see also Refs. [5, 8]). Now computing the
magnon excitation matrix element 〈ν,k|Slj|0〉, and hence the DM scattering rate, is reduced
to standard algebra. We obtain [5, 8]

Γ(v) =
1

Ω

∫
d3q

(2π)3

n∑
ν=1

2π δ
(
ων,k − ωq

) 1
2

∣∣∣∣∑
j

eiG·x0
j

√
Sj
(
U∗
jν,krj + Vjν,−kr

∗
j

)
· f j(−q,v)

∣∣∣∣2 ,
(7.42)

where rj = (Rxx
j , R

yx
j , R

zx
j ) + i (Rxy

j , R
yy
j , R

zy
j ). As in the phonon case, it is implicit that k

matches q up to a reciprocal lattice vector, q = k+G, due to lattice momentum conservation.

A comment is in order about the target choice. In the case where the total Slj involve only
spin degrees of freedom (as is the case for yttrium iron garnet (YIG) discussed in Ref. [8]),
λS,j = 1, λL,j = 0, and only the first two lines of Eq. (7.38) are relevant. Targets for which
λL,j 6= 0 are more exotic. One class of materials with λL,j 6= 0 is spin-orbit-entangled Mott
insulators [323–325], where the combined effect of crystal fields and spin-orbit coupling results
in effective spins Sj = 1

2
, and we can show that λS,j = −1

3
, λL,j = −4

3
(see Appendix K for

details, and Refs. [324–327] for related discussion), so the magnetic ions’ effective spins are in
fact dominated by their orbital components. Perovskite irridates such as Sr2IrO4 [323, 326]
and Kitaev materials Na2IrO3, α-RuCl3 [325, 327–329] are among the materials with this
feature that have been actively studied recently by the condensed matter physics community.
While perhaps futuristic as DM detectors, such materials have the novel feature of being
sensitive to DM couplings with electrons’ orbital angular momenta.

As a final remark, we note from the derivation above that when the same crystal response,
〈Se〉 or 〈Le〉, excites both phonons and magnons, the phonon excitation rate is parametrically
suppressed by q2

mionω
∼ 10−2

(
q

keV

)2(10GeV
mion

)(
10meV
ω

)
. Thus, for example, for the third group

of operators in Table 7.3 with ψ = e, which generates only 〈Se〉 response, single magnon
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excitation is expected to achieve better sensitivity than single phonon excitation for the
same exposure and detector efficiency. On the other hand, since phonons can be excited also
by other crystal responses, they have a broader coverage of the DM theory space. We will
investigate the interplay between single phonon and magnon excitations in the context of
our benchmark models in the next section.

7.3 Application to Benchmark Models
We now apply the general results of the previous section to the set of benchmark models in
Table 7.2. The first step of the calculation – matching the relativistic model onto the NR
EFT – was already done in Sec. 7.2. The results are the operator coefficients c(ψ)i listed in the
second to last column of Table 7.2. We then need to substitute these operator coefficients
into the formulae derived in Secs. 7.2 and 7.2 to compute direct detection rates Γ(v) —
Eq. (7.35) together with Eq. (7.30) for single phonon excitations, and Eq. (7.42) together
with Eq. (7.38) for single magnon excitations.

In order to present the results in a concise way, let us introduce the following definitions.
For single phonon excitation, we define (cf. Eq. (7.35))

F
(ψ)
X,ν(q) ≡

∑
j

e−Wj(q)eiG·x0
j

q · ε∗ν,k,j√
2mjων,k

〈Xψ〉j , (7.43)

where X represents one of the crystal responses, X = N,S, L, L⊗ S; note that F (ψ)
X,ν are

vector (tensor) quantities when X = S, L (X = L⊗ S), and will be written as F
(ψ)
X,ν (F(ψ)

X,ν).
These F (ψ)

X,ν play the role of form factors for exciting a single phonon via a certain type of
response. For single magnon excitation, we define (cf. Eq. (7.42))

EX,ν(q) ≡
∑
j

eiG·x0
j

√
Sj
2

(
U∗
jν,krj + Vjν,−kr

∗
j

)
λX,j , (7.44)

where X = S, L. These are formally analogous to polarization vectors of a vector field.
In both Eqs. (7.43) and (7.44), k is the phonon momentum inside the 1BZ that satisfies
q = k+G for some reciprocal lattice vector G; as emphasized below Eq. (7.35), k is uniquely
determined by mapping q into the 1BZ through reciprocal lattice vectors. We further define
a set of quantities Σν(q), for both single phonon and single magnon excitations, by (cf.
Eq. (7.5))

Γ(v) ≡ 1

Ω

∫
d3q

(2π)3

∑
ν

2π δ
(
ων,k − ωq

)
Σν(q) . (7.45)

We will refer to Σν(q), which have mass dimension −4, as “differential rates.” Practically,
Σν(q) are obtained simply by taking Ṽlj in Eq. (7.30), substituting 〈Xψ〉lj by F

(ψ)
X,ν (for
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ψ = p, n, e and X = N,S, L, L⊗ S) or EX,ν (for ψ = e only, and X = S, L), squaring it
and averaging over the DM’s spin (which amounts to replacing SiχS

k
χ → 1

4
δik). As we will

see, written in terms of the dimensionless quantities F (ψ)
X,ν and EX,ν defined above, Σν(q) can

be expressed in a concise form for each benchmark model. This will be convenient when we
compare the rates between different models, and between phonon and magnon excitations.

Our final results will be presented in terms of the rate per unit target mass,

R =
1

ρT

ρχ
mχ

∫
d3v fχ(v) Γ(v) , (7.46)

where ρT is the target’s mass density that we take from Ref. [267], ρχ = 0.4GeV/cm3

is the local DM mass density, and fχ(v) is the DM’s velocity distribution, taken to be a
boosted and truncated Maxwell-Boltzmann distribution — see Appendix L for technical de-
tails of evaluating the velocity integrals. For the projected reach, we assume 3 events per
kilogram-year exposure, corresponding to 95% C.L. exclusion in a background-free counting
experiment, and assume a detector energy threshold of 1 meV. While we will present full
numerical results, the main features can usually be understood by simple parametric esti-
mates. Generally, noting that the velocity integral over the energy conserving delta function
δ(ων,k − ωq) yields a function that scales as q−1 (see Appendix L), we have from Eqs. (7.45)
and (7.46), parametrically,

R ∼ ρχ
mχ

1

mcell

∫
dq qΣ , (7.47)

where mcell = ρTΩ is the mass of the primitive cell, and as before, q = |q|. Then, from
the formulas for Σν(q) presented below for each model in terms of F (ψ)

X,ν and EX,ν defined in
Eqs. (7.43) and (7.44), we can estimate the rate R by

F
(ψ)
X,ν ∼

q
√
mionω

〈Xψ〉 , EX,ν ∼
√
Sion . (7.48)

In the case of single phonon excitations, we should further note that ω, which appears in F (ψ)
X,ν

above, can scale differently with q for different models and DM masses. Typically, either
acoustic phonons (associated with in-phase oscillations) or optical phonons (associated with
out-of-phase oscillations) dominate the total rate, depending on whether the DM model
couples to different ions in a correlated or anti-correlated way. For acoustic phonons, and for
q within the 1BZ, ω ∼ csq (with cs the sound speed that is typically O(10−5)), whereas for
optical phonons or for q beyond the 1BZ, ω ∼ q0. The size of the 1BZ is set by the inverse
lattice spacing a−1, and is typically O(keV). Since v ∼ O(10−3), contributions from outside
the 1BZ are possible for DM masses above around an MeV. We will see below that in several
cases, the curves scale differently for mχ . MeV and mχ & MeV for this reason.

On the target side, we will consider the following representative set of materials:
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• GaAs [phonons, subject of R&D]. As the first-studied target for DM detection via
phonons, GaAs is already in R&D as a target for both electron excitations and phonon
excitations [90]. Phonons in GaAs form 3 acoustic and 3 optical branches, and have
energies up to ∼35 meV.

• SiO2 (quartz) [phonons, optimal sensitivity]. Based on our previous theoretical
study comparing the phonon reach of a variety of target materials [6], we have advo-
cated quartz as having good sensitivity to DM couplings to both acoustic and optical
phonons. Also, quartz has complementary features compared to GaAs: while GaAs
has a simple crystal structure and relatively low phonon energies, quartz has a large
number of phonon branches (3 acoustic, 24 optical), with energies up to ∼ 150meV.

• Y3Fe5O12 ( YIG) [mostly magnons, also phonons for comparison]. YIG is a well
studied material with ferrimagnetic order, and is already used in an axion DM detection
experiment QUAX [91–95]. The effective spin Hamiltonian is a Heisenberg model,
with Sj =

5
2

for the magnetic Fe3+ ions coming entirely from electron spins 〈Se〉 (i.e.,
λS,j = 1, λL,j = 0 in Eq. (7.44)). We take the antiferromagnetic exchange coupling
parameters from Ref. [264], together with the crystal parameters from Ref. [267], to
compute the magnon spectrum and rotation matrices. YIG has 20 magnon branches,
one of which is gapless and has a quadratic dispersion at small k. The gapped magnons
have energies up to ∼ 90meV. We will mostly consider YIG as a candidate material
for DM detection via magnon excitations, but will also consider phonon excitations
in YIG via DM couplings to the ordered electron spins in Sec. 7.3 for comparison; in
this case the scattering potential is determined by 〈Se〉lj of the Fe3+ ions, which have
magnitude 5

2
and directions set by the ferrimagnetic order. YIG has 80 ions in total

in the primitive cell and therefore 240 phonon branches (3 acoustic, 237 optical), with
energies up to ∼ 120 meV.

• α-RuCl3 [small-gap magnons with orbital component]. As discussed below Eq. (7.38),
α-RuCl3 is one of the materials where the effective ionic spins involve orbital degrees
of freedom, and is therefore sensitive to DM couplings to the electrons’ orbital angular
momenta. The magnetic ions Ru3+ have Slj = 1

2
, coming from both 〈Se〉 and 〈Le〉 with

λS,j = −1
3
, λL,j = −4

3
, as discussed in Appendix K. The effective spin Hamiltonian

features Kitaev-type bond-directional exchange couplings. We use the Hamiltonian
parameters derived from neutron scattering data in Ref. [330], which also includes an
antiferromagnetic Heisenberg exchange; see Ref. [329] for a summary of some alter-
native model parameterizations derived from a variety of experimental and numerical
techniques. The resulting magnetic order is zig-zag antiferromagnetic. Magnons in
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α-RuCl3, of which there are 4 branches, are at very low energy, below 7 meV, and can
thus probe lighter DM than YIG. Also, since all magnon branches are gapped at zero
momentum, the sensitivity is not significantly affected by the finite detector threshold.
This is in contrast with YIG, where the assumed 1 meV energy threshold limits the
momentum transfer to be greater than ∼ 80 eV in order to excite magnons on the
gapless branch. Therefore, even though the experimental prospects of α-RuCl3 itself
are unclear, it can be regarded as a useful benchmark which highlights the generic
advantage of small-gap targets.

Our main results are Figs. 7.1-7.4. We give a brief summary here and discuss them in more
detail in the following subsections. A major issue of interest is the comparison of sensitivity
to various types of DM interactions, via single phonon and magnon excitations induced by
various crystal responses. First, we consider the standard SD interaction in Fig. 7.1, where
we see that magnons outperform phonons, typically, by more than an order of magnitude
in terms of the coupling reach. Next, in Fig. 7.2, we compare the phonon and magnon
rates for the four combinations of scalar mediator couplings; the phonon production rate is
larger, if the scalar and pseudoscalar couplings are of the same order, while magnons allow
access to the models where the mediator dominantly couples to the pseudoscalar currents
of SM fermions. Next, we compare the reach of phonons and magnons to multipole models
in Fig. 7.3; for the magnetic dipole and anapole models we expect the magnon reach to
be better, and indeed it is. However, the phonon reach from quartz is sufficiently strong
that, given the greater experimental challenges currently associated with magnon read-out,
quartz should be considered a competitor for these models. Lastly, in Fig. 7.4, we compare
theoretical reach in the (L · S)-interacting model, where magnons outperform phonons for
sub-MeV DM with the same exposure; however, the (L·S)-interacting model is difficult to UV
complete, and our calculation is perhaps somewhat an academic exercise that demonstrate
aspects of the EFT.

We now discuss each benchmark model in turn.

Standard Spin-Dependent Interaction
For the standard SD interaction there is only one operator, O4, which generates the S

response, and can excite both phonons and magnons in a magnetically ordered target. Here,
only couplings to electrons (whose spins are ordered) are relevant, and we obtain, for the
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Figure 7.1: Projected reach on the standard SD model listed in Table 7.2 from single
magnon (red) and phonon (blue) excitations in YIG. The phonon rate is estimated in two
ways, as discussed in the text, which lead to the solid and dashed curves, respectively. Since
this model generates only the S response, magnons are seen to have better sensitivity than
phonons.

differential rates,

Σν(q)phonon =
4g2χg

2
e

m4
V

∣∣F (e)
S,ν

∣∣2 , (7.49)

Σν(q)magnon =
4g2χg

2
e

m4
V

∣∣ES,ν

∣∣2 . (7.50)

In Fig. 7.1, we compare the phonon and magnon reach with YIG. As a technical note, in
the absence of a DFT calculation for the crystal potential in YIG which is necessary for
computing the phonon eigenmodes, we estimate the rate in two ways. First, we carry out
an approximate analytic calculation taking into account long-wavelength acoustic phonons,
as explained in Appendix M. This results in the dashed reach curve in Fig. 7.1, which is
truncated at the DM mass for which the maximum momentum transfer reaches the edge
of the 1BZ, so that the approximations we make cease to hold. Second, we borrow the
crystal potential of Y3Ga5O12 (YGG) which is publicly available [259]. YGG has the same
crystal structure as YIG, with Fe replaced by Ga, and the phonon dispersions we obtain
for YGG are very similar to those of YIG [331]. The resulting reach is shown by the solid
blue curve in Fig. 7.1. We see from the figure that both estimates are in good agreement
near mχ ∼ 10−2 MeV, where acoustic phonons dominate, while including optical phonon
contributions in the second approach improves the reach at lower and higher mχ.
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We can understand these curves by estimating the rates using Eqs. (7.47) and (7.48). The
q integrals are dominated by qmax ∼ mχv. As a result,

Rphonon ∼
ρχ
mχ

1

mcell

g2χg
2
e

m4
V

S2
ion

mion

∫
dq
q3

ω

∼


g2χg

2
e

m4
V

ρχ
mχ

S2
ion

mcellmioncs
(mχv)

3 (acoustic, mχv . a−1) ,

g2χg
2
e

m4
V

ρχ
mχ

S2
ion

mcellmion〈ω〉(mχv)
4 (otherwise) ,

(7.51)

Rmagnon ∼
ρχ
mχ

1

mcell

g2χg
2
e

m4
V

Sion

∫
dq q ∼

g2χg
2
e

m4
V

ρχ
mχ

Sion

mcell
(mχv)

2 . (7.52)

Fixing R, the coupling plotted in Fig. 7.1, gχge
m2
χ

m2
V

scales as mχ, m1/2
χ and m3/2

χ , respectively,
in the three cases, in agreement with the high-mχ behaviors of the dashed blue, solid blue
and red curves in Fig. 7.1, respectively. Also, magnons have better sensitivity than phonons
to the SD coupling by a factor of

√
Rmagnon
Rphonon

∼
√
mionω/Sion
mχv

, and the advantage becomes more
significant at smaller mχ (though the magnon curve hits the kinematic threshold at higher
mχ due to the dispersion being quadratic).

Scalar Mediator Models
We next consider scalar mediator models with both scalar and pseudoscalar couplings. We
take the mediator couplings to SM fermions to be proportional to their masses, gψ ∝ mψ

(motivated by Higgs-portal hidden sector theories, see Ref. [332] for a recent review), and
consider each of the four combinations of currents, which we denote by S×S, P ×S, S×P
and P×P . Among them, S×S (i.e., standard SI considered previously in Refs. [6, 7, 28, 64])
and P × S can excite phonons via the N response,9 while S × P and P × P can excite both
phonons and magnons in a magnetically ordered target via the S response. However, similar
to the standard SD interaction in Sec. 7.3, the phonon excitation rate will be suppressed
relative to the magnon excitation rate, so we focus on the latter here. We obtain the following

9These models generate additional operators when matched onto the NR EFT beyond leading order,
which could excite magnons. We do not consider magnon excitation here due to the severely suppressed
rate. The same applies to the SI and electric dipole DM models in Sec. 7.3.
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Figure 7.2: Comparison of the total detection rate in models with a light (left panel) or
heavy (right panel) scalar mediator. The couplings to SM fermions are taken proportional
to their masses, gp = gn = mp

me
ge, and we fix gχge = 10−13. Each curve is labeled with the

model type as in Table 7.2 and the excitation type (phonon or magnon) that can probe each
model. The phonon curves assume SiO2 (solid) and GaAs (dashed) targets, and the magnon
curves assume YIG (solid) and α-RuCl3 (dashed) targets.

expressions for the differential rates defined in Eq. (7.45):

Σν(q)
S×S
phonon =

g2χ
(q2 +m2

φ)
2

∣∣∣∑
ψ

geff
ψ F

(ψ)
N,ν

∣∣∣2 , (7.53)

Σν(q)
P×S
phonon =

g2χ
(q2 +m2

φ)
2

q2

4m2
χ

∣∣∣∑
ψ

geff
ψ F

(ψ)
N,ν

∣∣∣2 , (7.54)

Σν(q)
S×P
magnon =

g2χg
2
e

(q2 +m2
φ)

2

q2

m2
e

∣∣∣q̂ ·ES,ν

∣∣∣2 , (7.55)

Σν(q)
P×P
magnon =

g2χg
2
e

(q2 +m2
φ)

2

q4

4m2
χm

2
e

∣∣∣q̂ ·ES,ν

∣∣∣2 . (7.56)

Note that for the S × S and P × S models, screening effects have been taken into account
by using geff

ψ in place of gψ, as discussed around Eq. (7.14); the dielectric tensors ε∞ of the
phonon targets GaAs and SiO2 are obtained from DFT calculations [248].

In Fig. 7.2, we plot the expected rate for each of the four coupling combinations, for a
common value for the product of couplings, to illustrate the hierarchy between the rate from
the different interactions. We have chosen to show the rate instead of projected reach here
so that the general case where more than one types of interactions are present, it would
be straightforward to rescale the curves to see which one is dominant. For example, if
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g
(S)
χ ∼ g

(P )
χ , g(S)ψ ∼ g

(P )
ψ , we have the highest rate from phonon excitations via the S × S

coupling, i.e., the standard SI interaction, as expected. On the other hand, if the couplings to
SM fermions are dominantly pseudoscalar, g(P )

ψ /g
(S)
ψ & 107, magnon excitations have better

sensitivity than phonon excitations for the same exposure; this is one of the benchmark
models considered previously in Ref. [8]. The hierarchy seen in Fig. 7.2, and also some main
features of the curves, can be understood following Eqs. (7.47) and (7.48), as we now explain.

First consider the light mediator case, mV � q (left panel of Fig. 7.2). For phonon excitations
in the S × S and P × S models, since the couplings to all ions have the same sign, the rate
is dominated by acoustic phonons. For q within the 1BZ, setting ω ∼ csq, we obtain

RS×S
phonon ∼

ρχ
mχ

1

mcell
g2χg

2
p

〈Np,n〉2

mion

∫
dq

1

qω
∼ g2χg

2
p

ρχ
mχ

〈Np,n〉2

mcellmion

1

ωmin
, (7.57)

RP×S
phonon ∼

ρχ
mχ

1

mcell
g2χg

2
p

〈Np,n〉2

mionm2
χ

∫
dq

q

ω
∼ g2χg

2
p

ρχ
mχ

〈Np,n〉2

mcellmion

v

mχcs
, (7.58)

where ωmin = csqmin. These are consistent with the m−1
χ and m−2

χ scaling of the green and
purple curves for mχ up to ∼MeV. Also, consistent with the figure, the ratio between them is
RP×S

phonon

RS×Sphonon
∼ ωmin

mχ
v
cs
∼ 10−6 ωmin

1meV
10−1 MeV

mχ
v

10−3
10−5

cs
for couplings of the same size. For heavier DM,

on the other hand, momentum transfers beyond the 1BZ are allowed. For the S × S model,
this is irrelevant since the integral is dominated by small q, so the m−1

χ trend continues past
MeV. For the P × S model, since the integral is dominated by high q where ω no longer
scales with q, we have v2

〈ω〉 in place of v
mχcs

in Eq. (7.58). This explains the m−1
χ scaling of

the purple curves past mχ ∼ MeV in the left panel of Fig. 7.2.

For magnon excitations in the S × P and P × P models, we have

RS×P
magnon ∼

ρχ
mχ

1

mcell
g2χg

2
e

Sion

m2
e

∫
dq

1

q
∼ g2χg

2
e

ρχ
mχ

Sion

mcellm2
e

, (7.59)

RP×P
magnon ∼

ρχ
mχ

1

mcell
g2χg

2
e

Sion

m2
em

2
χ

∫
dq q ∼ g2χg

2
e

ρχ
mχ

Sion

mcellm2
e

v2 , (7.60)

again consistent with the m−1
χ scaling of the corresponding curves in Fig. 7.2 (though the

YIG curves have a bump near MeV due to the gapped magnons starting to contribute, as
discussed in Ref. [8], which slightly obscures the overall scaling with mχ). Comparing the
two models, we see that RP×P

magnon

RS×Pmagnon
∼ v2. Also, comparing with phonon excitation in the S × S

model, we have RS×Pmagnon

RS×Sphonon
∼ g2e

g2p

Sionmionωmin
〈Np,n〉2m2

e
∼ ωmin

mion
∼ 10−14 ωmin

1meV
100GeV
mion

, assuming similar values
of mcell, mion for the targets and Sion ∼ O(1), and noting that geff

p ' gp and ge/gp = me/mp.
This is consistent with what we see in Fig. 7.2.



161

10−3 10−2 10−1 1 10
mχ [MeV]

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2
g χ
g e

gn = 0, gp = −ge

gana
χ

gmdm
χ

gedm
χ

gSI
χ

GaAs

SiO2

10−3 10−2 10−1 1 10
mχ [MeV]

10−8

10−7

10−6

10−5

10−4

10−3

g χ
g e

α− RuCl3

YIG

GaAs

SiO2

Anapole
gn = 0, gp = −ge

10−3 10−2 10−1 1 10
mχ [MeV]

10−11

10−10

10−9

10−8

10−7

10−6

g χ
g e

GaAs

SiO2

α− RuCl3

YIG

Magnetic Dipole
gn = 0, gp = −ge

Figure 7.3: Projected reach on the multipole DM models listed in Table 7.2, assuming
dark photon-like couplings to SM particles: gp = −ge, gn = 0. The left panel shows the
hierarchy of sensitivities of single phonon excitations, in GaAs and in SiO2, to the three
multipole DM models, together with the SI interaction model for comparison. The center
and right panels focus on the magnetic dipole and anapole DM models, respectively, and
compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach of
YIG (via the S response) and α-RuCl3 (via both S and L responses); these models are best
probed by magnons, though the phonon sensitivity with an optimal target like SiO2 may be
competitive.

The heavy mediator case, mV � q (right panel of Fig. 7.2), follows a similar analysis. All
the q integrals are now peaked at qmax ∼ mχv, and we find

RS×S
phonon ∼

ρχ
mχ

1
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g2χg
2
p

m4
V
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mion

∫
dq
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ω
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
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4 (mχv & a−1) ,
(7.61)

RP×S
phonon ∼ v2RS×S

phonon , (7.62)

RS×P
magnon ∼

ρχ
mχ

1

mcell

g2χg
2
p

m4
V

Sion

m2
e

∫
dq q3 ∼

g2χg
2
e

m4
V

ρχ
mχ

Sion

mcellm2
e

(mχv)
4 , (7.63)

RP×P
magnon ∼ v2RS×P

magnon . (7.64)

These equations explain both the hierarchy of the rates for the four models, and the mχ

scaling: in all cases, R m4
V

m4
χ
∼ m−1

χ at large mχ, while the phonon curves switch to m−2
χ

scaling below ∼ MeV.

Multipole Dark Matter Models
We now turn to the electric dipole, magnetic dipole, and anapole DM models in Table 7.2. For
comparison, we also include the SI interaction model with a vector mediator. Motivated by
the kinetic mixing benchmark, we assume the mediator couples to electric charge, gp = −ge,
gn = 0, and is much lighter than the smallest momentum transfer, mV � eV. The SI
and electric dipole DM models generate O1 and O11 at leading order, respectively, both of
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which induce only the N response, which can be probed by single phonon excitation. The
differential rates are

Σν(q)
SI
phonon =

g2χg
2
e

(q · ε∞ · q)2
∣∣∣F (p)

N,ν − F
(e)
N,ν

∣∣∣2 , (7.65)

Σν(q)
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g2χg
2
e

(q · ε∞ · q)2
q2

4m2
χ

∣∣∣F (p)
N,ν − F

(e)
N,ν

∣∣∣2 . (7.66)

Eq. (7.65) is in agreement with previous results in Refs. [6, 7, 28]. The magnetic dipole
and the anapole DM models generate, in addition to N , also S and L responses, and can
therefore be probed by both phonons and magnons. For single phonon excitation, we have
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Σν(q)
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Note that for an unorderd/unpolarized target, F (ψ)
S,ν = F

(ψ)
L,ν = 0. For single magnon excita-

tion, we have

Σν(q)
mdm
magnon =

g2χg
2
e

16m2
χm

2
e

∣∣∣(1− q̂q̂) · (2µ̃eES,ν +EL,ν)
∣∣∣2 , (7.69)

Σν(q)
ana
magnon =

g2χg
2
e

64m4
χm

2
e

∣∣∣q × (2µ̃eES,ν +EL,ν)
∣∣∣2 , (7.70)

which extend the results in Ref. [8].

A comparison of the phonon reach in these models is shown in the left panel of Fig. 7.3. The
center and right panels of Fig. 7.3 zoom in on the magnetic dipole and anapole DM models,
respectively, and compare the reach of phonon and magnon excitations.

We can carry out a similar analysis as in the previous subsections to understand the main
features in Fig. 7.3. For single phonon excitation in GaAs and SiO2, we keep only the F (ψ)

N,ν

terms in the Σν(q) formulae above, and note that, as in the SI case discussed previously in
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Refs. [6, 7, 28, 64], the DM-ion couplings, being proportional to 〈Np〉 − 〈Ne〉 = Qion, have
opposite signs for oppositely charged ions, so the optical phonon modes with ω ∼ q0 give the
dominant contributions. Using Eqs. (7.47) and (7.48), we obtain the following parametric
estimates:

RSI
phonon ∼

ρχ
mχ

1

mcell

g2χg
2
e

ε2∞

Q2
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∫
dq
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q
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e
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(
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, (7.71)
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Rana
magnon

Rmdm
magnon

∼ v2 . (7.74)

Several comments are in order. First, Eq. (7.72) explains the hierarchy of sensitivity of
phonon excitations to the four models in the left panel of Fig. 7.3, while Eq. (7.74) shows
a similar hierarchy of sensitivity of magnon excitations to the magnetic dipole and anapole
DM models. Also, note that in all cases, R ∼ m−1

χ , so the reach on gχge scales as m1/2
χ , as

seen in Fig. 7.3.

Next, let us compare the reach of different target materials, and via phonons versus magnons.
For phonon excitations, the factor in parentheses in Eq. (7.71) reproduces the “quality factor”
identified in Ref. [6], up to O(1) factors we have dropped here. It captures the material
properties that determine the sensitivity to the SI model with a dark photon mediator, and
is the quantity to maximize in order to optimize target choice. For example, SiO2 has a
quality factor that is about 80 times that of GaAs, which explains its significantly better
reach, by almost an order of magnitude on the coupling gχge, as seen in Fig. 7.3 (and also
previously in Ref. [6]).

For magnon excitations for the magnetic dipole and anapole DM models, we have considered
YIG, which probes only the S response, and α-RuCl3, which probes both S and L. Since for
these models, DM couples to the linear combination 2Se + Le – the spin of an elementary
particle has a Landé g-factor of 2 – the additional L response that α-RuCl3 has does not
qualitatively improve the sensitivity. Indeed, we see from Fig. 7.3 that YIG and α-RuCl3
have very similar reach around mχ ∼ 0.1MeV. At higher mχ, YIG performs better due to
additional contributions from the large number of gapped magnon modes. On the other
hand, α-RuCl3 extends the reach down to much lower mχ ∼ keV. As discussed previously,
this is because the magnon modes at zero momentum are gapped at a few meV (in contrast
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Figure 7.4: Projected reach on the (L · S)-interacting DM model in Table 7.2, assuming
coupling only to electrons, and κ = 0. Single phonon excitations in GaAs and SiO2 targets
(via the N response) and single magnon excitations in YIG and α-RuCl3 targets (via the S
response) are seen to cover complementary regions of parameter space.

to YIG which has a gapless magnon branch that dominates the coupling to DM in the low
momentum transfer limit).

Finally, we can compare the magnon and phonon excitation rates for the two models (mag-
netic dipole and anapole DM) where both are available. Let us denote Q ≡ Q2

ion
ε2∞

m2
p

mcellmion
1meV
ω

,
which is the phonon quality factor with the dimensionful parameters normalized in a way
close to Ref. [6]. Its values are typically O(10−7-10−5), with GaAs and SiO2 residing on the
lower and higher ends of the interval, respectively. We find

Rmdm
phonon

Rmdm
magnon

∼
Rana

phonon

Rana
magnon

∼ Qmcellm
2
ev

2

Sionm2
p · 1meV

∼ 10−4

(
Q

1.4× 10−7

)
, (7.75)

where mcell is for the target for magnon excitations, and we have substituted the numbers
for YIG in the last equation. We see that, for the magnetic dipole and anapole DM models,
magnons are indeed more sensitive than phonons, though choosing high phonon quality
factor targets, such as SiO2 with Q ∼ 10−5 can approach the magnon sensitivity. Up to
O(1) factors, this is consistent with the center and right panels of Fig. 7.3.
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(L · S)-Interacting Dark Matter
We finally consider the (L · S)-interacting DM model, which induces N , S and L⊗ S re-
sponses. Taking the mediator to couple only to electrons for simplicity, we obtain the
differential rates:
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In the absence of magnetic order, F (e)
S,ν = 0. Also, unless κ is tuned to be very close to −1,

we do not expect the F(e)
L⊗S,ν term in Eq. (7.76) to dominate — the total spin-orbit coupling

vanishes for full shells, and is otherwise often suppressed by crystal fields, especially for
lighter elements. Thus, while an interesting feature of this model, the coupling to L · S
does not suggest a better probe than searching for phonon excitations via the N response
with already proposed target materials. In Fig. 7.4, we include only the F (e)

N,ν term when
computing phonon reach for GaAs and SiO2, and for concreteness set κ = 0. Since the total
electron numbers of ions are all positive, the rate is dominated by acoustic phonons, with
ω ∼ csq. Again using Eqs. (7.47) and (7.48), we can estimate
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for a light mediator (mV � q), and

Rphonon ∼
ρχ
mχ

1

mcell

g2χg
2
e

m4
V

〈Ne〉2

mionm4
e

∫
dq
q7

ω
∼


g2χg

2
e

m4
V

ρχ
mχ

〈Ne〉2(mχv)7
mcellmionm4

ecs
(mχv . a−1) ,

g2χg
2
e

m4
V

ρχ
mχ

〈Ne〉2(mχv)8
mcellmionm4

e〈ω〉
(mχv & a−1) ,

(7.79)

for a heavy mediator (mV � q). These equations explain the scaling of the phonon curves
in Fig. 7.4: fixing R, we obtain gχge ∼ m−1

χ (m−3/2
χ ) for mχ below (above) about an MeV in

the light mediator case, and the same for gχge
m2
χ

m2
V

in the heavy mediator case.

The magnon reach curves for YIG and α-RuCl3 can be understood in a similar way. We
have
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for a light mediator (mV � q), and
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for a heavy mediator (mV � q). In contrast to the phonon case, the reach on gχge (gχge
m2
χ

m2
V

)
in the light (heavy) mediator case scales as m1/2

χ . So the magnon reach becomes better at
lower mχ, as we can see in Fig. 7.4. In particular, magnons outperform phonons for mχ

below about an MeV, which we can understand from the estimate: Rphonon
Rmagnon

∼ 〈Ne〉2m3
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Sionmionm2
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∼( mχ
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)3( 〈Ne〉
10

)2 10GeV
mion
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10−3
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cs
, assuming similar mcell and mion for the targets and Sion ∼ O(1).

7.4 Conclusions
We have formulated an EFT framework for computing direct detection rates via single
phonon and magnon excitations for general DM interactions, and illustrated its application
with a set of benchmark models, listed in Table 7.2, that cover a wide range of possibilities
for a spin-1

2
DM particle interacting with SM fermions ψ = p, n, e (proton, neutron and

electron). The procedure consists of first matching a relativistic DM model onto the stan-
dard set of NR effective operators, listed in Table 7.3, and then matching these operators
onto lattice degrees of freedom, including particle numbers 〈Nψ〉, spins 〈Sψ〉, orbital angular
momenta 〈Lψ〉 and spin-orbit couplings

〈
Lψ ⊗ Sψ

〉
for the ψ = p, n, e particles in an ion.

These define the four types of crystal responses and enter the rate formula for single phonon
excitation, while a subset of them – 〈Se〉 and 〈Le〉 – also enter the rate formula for single
magnon excitation.

A practical prescription for computing direct detection rates, as explained around Eq. (7.45),
utilizes the central formula, Eq. (7.30), which gives the lattice scattering potential in terms of
the effective operator coefficients c(ψ)i . Upon plugging in the c(ψ)i ’s generated by a relativistic
theory of DM (listed in Table 7.2 for our benchmark models), one simply replaces the ionic ex-
pectation values 〈Xψ〉lj by F (ψ)

X,ν defined in Eq. (7.43) (for ψ = p, n, e and X = N,S, L, L⊗ S)
or EX,ν defined in Eq. (7.44) (for ψ = e and X = S, L), squares the expression and takes
the DM spin average. This gives the differential rates Σν(q), which are then substituted into
Eqs. (7.45) and (7.46) for the total rate of single phonon or magnon excitation.

The set of crystal responses that we have identified point to various possibilities of optimiz-
ing detector target choice. However, a general observation from our calculations in Sec. 7.3
is that, among the four types of crystal responses, 〈Nψ〉 and 〈Sψ〉, which are associated
with point-like degrees of freedom, tend to dominate the rate, compared to the composite
responses 〈Lψ〉 and

〈
Lψ ⊗ Sψ

〉
. This implies that, purely from the point of view of maxi-
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mizing the rate, exotic materials with orbital orders or strong spin-orbit couplings are not
necessary for improving the reach to a broad class of DM models.

Meanwhile, as phonon DM experiments focused on crystal targets, such as SPICE (Sub-
eV Polar Interactions Cryogenic Experiment), which is part of the TESSERACT (Transition
Edge Sensors with Sub-EV Resolution And Cryogenic Targets) project [90], move into R&D,
it is important to note that their discovery potential extends well beyond the simplest models
with spin-independent interactions studied previously. As we showed in Sec. 7.3, with the
exception of a pure spin-dependent interaction, phonon excitations have broad sensitivity
to light DM models. Perhaps surprisingly, with judicious choice of target material, phonon
excitations may even be competitive with magnon excitations for some DM models where
the latter is expected to have a parametrically higher rate, such as the magnetic dipole and
anapole DM models. Given the greater challenges associated with single magnon detection
relative to phonons, this is encouraging for phonon-based experiments in the near term.
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C h a p t e r 8

EXTENDED CALCULATION OF DARK MATTER ELECTRON
SCATTERING IN CRYSTAL TARGETS

8.1 Introduction
Electronic excitations have been established as an alternative to nuclear recoils in direct
detection of sub-GeV dark matter (DM). Nuclear recoil searches lose sensitivity at lower
DM masses due to kinematic mismatch between the DM and heavier nuclei, whereas elec-
tronic transitions can potentially extract all of the DM kinetic energy during a DM-electron
scattering event by excitation across an energy gap. Proposed targets, including noble gas
atoms with O(10 eV) ionization energies [14, 19, 24, 35, 177, 244, 333, 334], semiconductors
with O(eV) electronic band gaps [6, 7, 19, 25, 33–35, 39, 40, 177, 180, 248, 256], and super-
conductors and Dirac materials with O(meV) band gaps [29, 41, 144, 181–183, 335], extend
the reach on DM mass well below the limit of nuclear recoil. Experimental searches using
dielectric crystal targets are currently underway, specifically with Si (DAMIC [21, 71, 81],
SENSEI [22, 85–87], SuperCDMS [23, 77–80, 88, 89]) and Ge (EDELWEISS [82–84], as well
as SuperCDMS) which have been predicted to have excellent sensitivity down to O(MeV)

DM masses based on their O(eV) band gaps.

Reliable theoretical predictions of target-specific transition rates are important not only for
current experiments, but also for planning the next generation of detectors. Compared to
the DM-induced electron ionization rate in noble gases like xenon [14, 19, 24, 35, 177, 244,
333, 334], calculations for the DM-electron scattering rate in a crystal are more complicated.
Ionization rates for noble gases can be calculated by considering each noble gas atom as
an individual target, where the calculation simplifies to finding the ionization rate from
an isolated atom, for which the wave functions and energy levels are well tabulated [336].
However, for crystal targets the atoms are not isolated and more involved techniques are
required to obtain an accurate characterization of DM-electron interactions in a many-body
system.

There have been a variety of approaches taken to compute the DM-electron scattering rate
in crystals. One of the first attempts, Ref. [177], computed the rate with semi-analytic ap-
proximations for the initial and final state wave functions, and used the density of states
to incorporate the electronic band structure. Later, Ref. [35] continued in this direction
and used improved semi-analytic approximations for the initial state wave functions. Mean-
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while, a fully numerical approach was advanced in Refs. [19, 33, 34] where density functional
theory (DFT) was employed to calculate the valence and conduction electronic band struc-
tures and wave functions. The latter approach, as implemented in the QEdark program and
embedded in the Quantum ESPRESSO package [337–339], has become the standard for
first-principles calculations of DM detection rates. Recently, in Refs. [6, 7] we used a similar
DFT approach as implemented in our own program for a study of DM-electron scattering
in a variety of target materials. More recently there has been work utilizing the relation
between the dielectric function and the spin-independent scattering rate [36, 48, 49], which
also properly incorporates screening effects.

The goal of this work is to further extend the DM-electron scattering calculation in sev-
eral key aspects, and present state-of-the-art predictions for Si and Ge detectors using a
combination of DFT and semi-analytic methods. As we will elaborate on shortly, the time-
and resource-consuming nature of DFT calculations presents an intrinsic difficulty that has
limited the scope of previous work in this direction to a restricted region of phase space;
typically only bands within a few tens of eV above and below the band gap were included
and electronic wave functions were cut off at a finite momentum. We overcome this diffi-
culty by implementing all-electron (AE) reconstruction (whose importance was previously
emphasized in Ref. [340]) to recover higher momentum components of DFT-computed wave
functions, and by extending the calculation to bands farther away from the band gap us-
ing semi-analytic approximations along the lines of Refs. [35, 177]. As we will see, the
new contributions computed here have a significant impact on detection prospects in cases
where higher energy and/or momentum regions of phase space dominate the rate, including
scattering via a heavy mediator, and experiments with O(10 eV) or higher energy thresh-
olds. We also stress that in contrast to the recent work emphasizing the relation between
spin-independent DM-electron scattering rates and the dielectric function [36, 48, 49], our
calculation can be straightforwardly extended to DM models beyond the standard spin-
independent coupling. Furthermore, we do not make assumptions about isotropy for the
majority of our calculation, and our framework is capable of treating anisotropic targets
which exhibit smoking-gun daily modulation signatures [7, 29, 183] (see also Refs. [28, 341]
for discussions of daily modulation for phonon excitations).

Our calculation is implemented in an open-source program EXCEED-DM (EXtended Calcu-
lation of Electronic Excitations for Direct detection of Dark Matter), to be released in an
upcoming publication. Currently a beta version of the program is available here [342]. We
also make available our DFT-computed wave functions [343] and the output of EXCEED-
DM [344] for Si and Ge.

https://github.com/tanner-trickle/EXCEED-DM
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Figure 8.1: Schematic representation of electronic states in Si (left) and Ge (right), divided
into core, valence (“val”), conduction (“cond”) and free. Shaded regions indicate the range
of energies for each type of electronic states. In a scattering process, electrons transition
from either core or valence states, below the Fermi surface at E = 0, to conduction or free
states above the band gap Eg. As outlined in Sec. 8.1 and explained in detail in Sec. 8.2, we
compute the valence and conduction states numerically using DFT (including all-electron
reconstruction), model the core states semi-analytically with RHF wave functions, and treat
the free states as plane waves.

Overview of the Calculation and Key Results
Before delving into the technical details, let us give a brief overview of the calculation and
highlight some key results. We divide the electronic states in a (pure) crystal into four
categories: core, valence, conduction and free, as illustrated in Fig. 8.1 for Si and Ge and
discussed in more detail in Sec. 8.2. At zero temperature, electrons occupy states up to the
Fermi energy, defined as the maximum of the valence bands and denoted by E = 0. The band
gap Eg, i.e., the energy gap between the occupied valence bands and unoccupied conduction
bands, is typically O(eV) for semiconductors, e.g., 1.11 eV for Si and 0.67 eV for Ge; this sets
a lower limit on the energy deposition needed for an electron transition to happen.

The electronic states near the band gap deviate significantly from atomic orbitals and need
to be computed numerically. We apply DFT methods (including AE reconstruction) for this
calculation, and refer to the DFT-computed states as valence and conduction. Specifically,
for both Si and Ge, we take the first four bands below the gap to be valence, which span an
energy range of −12 eV to 0 and −14 eV to 0, respectively, and take bands above the gap up
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Figure 8.2: Selection of results from Sec. 8.4, for DM-electron scattering via a heavy
mediator in a Ge target. Left: Contribution from each of the four transition types, valence
to conduction (v→c), valence to free (v→f), core to conduction (c→c), and core to free
(c→f) to the scattering rate binned in energy deposition (with ∆ω = 1 eV) for a 1 GeV DM
at a given reference cross section σe = 10−40 cm2. Right: 95% C.L. projected limit (3
events) on σe assuming 1 kg-year exposure, for energy thresholds corresponding to 1 and 5
electron-hole pairs. We compare our results with QEdark calculations in Refs. [33, 34] and
the semi-analytic model of Lee et al [35]; see text for details.

to Edft = 60 eV to be conduction.

With more computing power we can in principle include more states, both below and above
the band gap, in the DFT calculation. However, since the states far from the band gap
can be modeled semi-analytically with reasonable accuracy, computing them with DFT is
inefficient. Below the valence bands, electrons are tightly bound to the atomic nuclei. We
model them using semi-analytic atomic wave functions and refer to them as core states.
These include the 1s, 2s, 2p states in Si and 1s, 2s, 2p, 3s, 3p, 3d states in Ge (the 3d states
in Ge are sometimes referred to as semi-core, and we will compare the DFT and semi-analytic
treatment of them in Secs. 8.2 and 8.3). Finally, above Edft = 60 eV, we model the states as
free electrons as they are less perturbed by the crystal environment.

With the electronic states modeled this way, we compute the rate for valence to conduction
(v→c), valence to free (v→f), core to conduction (c→c) and core to free (c→f) transitions
induced by DM scattering, as discussed in detail in Sec. 8.3. The total rate is the sum of
all four contributions. We then use our calculation to update the projected reach of direct
detection experiments in Sec. 8.4, and compare our results with previous literature.
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Figure 8.2 gives a glimpse of some of our key results. Here we consider the case of DM
scattering via a heavy mediator in a Ge target. The impact of core (3d) to conduction con-
tributions is clearly visible from both the differential rate (left panel, for mχ = 1GeV) and
the projected reach (right panel). They dominate the total rate for mχ & 10MeV, and, as we
can see from the right panel of Fig. 8.2, lead to significantly more optimistic reach compared
to previous DFT calculations implemented in QEdark [33, 34]; this is especially true for
higher detector thresholds (corresponding to higher Q values). Note that while Refs. [33, 34]
included the 3d states in their DFT calculation, their contributions were significantly under-
estimated due to the absence of AE reconstruction. The importance of AE reconstruction is
also seen from the valence to conduction differential rate in the left panel of Fig. 8.2, where
our calculation predicts a much higher rate at ω & 15 eV compared to the QEdark calculation
in Ref. [34]. Meanwhile, accounting for in-medium screening (see Sec. 8.3) we find, consistent
with Ref. [36], a lower rate at energy depositions just above the band gap, and as a result,
weaker reach at low mχ, compared to Refs. [33, 34]. On the other hand, our modeling of
the core (3d) states is similar to the semi-analytic approach of Ref. [35], and indeed we find
very similar reach at large mχ; however, the approach of Ref. [35] overestimates the rate at
smaller mχ due to reduced accuracy in the modeling of the valence and conduction states.
We reserve a more detailed comparison with the literature for Sec. 8.4.

8.2 Electronic States
To compute the DM-electron scattering rate one must understand the electronic states of the
target. In targets with a periodic potential, Bloch’s theorem states that the energy eigen-
states can be indexed by a momentum, k, which lies within the first Brillouin zone (1BZ).
These Bloch states, ψi,k, where i represents additional quantum numbers, are eigenstates
of the discrete translation operator such that ψi,k(x + r) = eik·rψi,k(x), which means the
electronic wave functions can be written as

ψi,k(x) =
1√
V
eik·x ui,k(x) , (8.1)

where ui,k(x + r) = ui,k(x) and V is the target volume. For every k there exists a tower
of eigenstates (labeled by i) of the target Hamiltonian which constitutes the complete set of
states in the target. Unfortunately this complete set is not known for a general material and
therefore a combination of approximations must be used to calculate them. As discussed in
Sec. 8.1 and illustrated in Fig. 8.1, we divide the states into core, valence, conduction and
free, and use a combination of numerical calculations and semi-analytic modeling. In this
section, we expand on the treatment of each type of electronic states.

We first discuss the DFT calculation for valence and conduction states in Sec. 8.2, and then
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move on to explain the semi-analytic treatment of core states in Sec. 8.2. Our main results
are contained in Fig. 8.3 where we compare the average magnitude of electronic wave func-
tions, binned in momentum (see Eq. (8.7)), computed with and without AE reconstruction,
discussed further in Sec. 8.2, and, for the highest energy core states (2p in Si and 3d in Ge),
those computed using the core approximation discussed in Sec. 8.2. We find that the AE
reconstruction includes a significant contribution from wave functions at large momentum as
expected, and that for the core states, the semi-analytic approach reproduces the large mo-
mentum components of these AE reconstructed DFT wave functions. Lastly we will discuss
the analytic treatment of the free states in Sec. 8.2.

DFT Wave Functions and Band Structures
In principle, DFT provides an exact solution to the many-electron Schrödinger equation by
the Hohenberg-Kohn theorems that treat all properties of a quantum many-body system as
unique functionals of the ground state density. They further show that the exact ground state
density and energy can be found by minimizing the total energy of the system [294, 345]. This
becomes tractable by the Kohn-Sham (KS) equations that reduce the many-body problem
to non-interacting electrons moving in an effective potential, Veff,(

p2

2me

+ Veff − εi
)
ψi = 0 , Veff = Vext + VH + Vxc , (8.2)

where εi is the orbital energy of the KS orbital ψi [346]. The external potential Vext and
Hartree potential VH, are known, while the exchange-correlation (xc) potential Vxc, which
contains the many-body interactions, must be approximated. Herein lies the deviation from
the exact solution, and although various formulations of xc-energy functionals have been
successful, the choice of xc-functional will affect the predicted electronic states and hence
calculated transition rates. For Si, we use PBE [347], a type of generalized gradient approx-
imation (GGA) xc-functional which is one of the most popular and low-cost choices. Local
and semi-local based xc-functionals, such as PBE, suffer from a self-interaction error and
band gap underestimation, which we modify with a “scissor correction” where the bands are
shifted to match the experimentally determined values of band gap. For Ge, this underes-
timation results in zero band gap with PBE, therefore we instead use a hybrid functional,
which mixes a parameterized amount of exact exchange into the xc-functional, correcting
band gaps and band widths by error cancellation at the cost of increased computation time.
We use the range-separated hybrid functional HSE06 [348, 349], which applies a screened
Coulomb potential to correct the long-range behavior of the xc-potential, giving high accu-
racy at a mid-level computational cost. Our computed band structures for Si and Ge are
shown in Fig. 8.4.
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The periodic Bloch wave functions, ui,k(x), Eq. (8.1), for band i and Bloch wave vector
k are computed by finding the Fourier coefficients, ũi,k,G (which satisfy the normalization
condition,

∑
G |ũi,k,G|2 = 1):

ui,k(x) =
∑
G

ũi,k,G e
iG·x . (8.3)

The number of reciprocal lattice vectors G kept in the sum is conventionally set by an energy
cutoff, Ecut, such that |k+G|2 < 2meEcut. These Bloch wave function coefficients ũi,k,G for
both Si and Ge are computed with the projector augmented wave (PAW) method [350, 351]
within vasp [295–297, 352] up to Ecut = 1 keV on a 10×10×10 uniform k mesh over the 1BZ.
We then include AE reconstruction effects up to a higher energy cutoff, EAE = 2 keV, which
recovers higher momentum components of the wave functions up to |k+G|2 < 2meEAE, as
discussed in more detail in Sec. 8.2. The Bloch wave function coefficients, ũi,k,G, for Si and
Ge used for this work can be found here [343].

A final consideration of using DFT wave functions is that DFT is fundamentally a ground
state method, and the KS conduction band states are only approximations to excited states.
Excited state methodologies are much more computationally expensive than ground state
KS-DFT. Furthermore, since excited state quasiparticles, such as excitons, have been argued
to have a negligible effect on the calculation of DM scattering rates [34], they are neglected
in our calculations.

All-Electron Reconstruction

There are many different approaches to find the eigenstates of Eq. (8.2). The PAW method [350]
is one such standard approach. The main idea of the PAW method is to split up the calcula-
tion of the eigenstates: near the ionic centers the wave functions resemble the eigenstates of
an isolated atom, while further away they can be computed numerically with a pseudopoten-
tial. This greatly simplifies the numeric calculation since the focus is then on large distance
(small momentum), and the small distance (high momentum) pieces can be self-consistently
reintroduced after the main part of the DFT calculation. The large distance components
of the wave function are known as “pseudo wave functions” (PS wave functions) and the
total wave functions are known as the “all-electron wave functions” (AE wave functions),
indicating that all of the wave function components are included. We will now give a brief
overview of how the AE wave functions can be reconstructed from the PS wave functions,
computed with PAW-based DFT codes, and refer the reader to Refs. [350, 351, 353, 354] for
more detailed information.1

1It is possible to calculate all electronic eigenstates, including the core, self-consistently by other more
complex methods such as the full-potential linearized augmented plane wave (FP-LAPW) method or the
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The AE wave functions, |ΨAE〉 are built from two components. Near the ionic core, or inside
an “augmentation sphere,” |ΨAE〉 is expanded in a set of basis functions, |φAE

j 〉, which are
simply taken to be the wave functions of an isolated atom,

|ΨAE〉 =
∑
j

cj |φAE
j 〉 . (8.4)

Outside of the augmentation sphere, |ΨAE〉 = |ΨPS〉. Near the ionic core the PS wave
functions |ΨPS〉 are expanded in a set of basis functions |φPS

j 〉 that are computationally more
convenient than the |φAE

j 〉. Therefore,

|ΨAE〉 = |ΨPS〉 −
∑
j

c′j |φPS
j 〉+

∑
j

cj |φAE
j 〉 , (8.5)

which simply replaces the components in |ΨPS〉 within the augmentation sphere with the
AE wave function. To find the c coefficients we insert an identity, 1 =

∑
j |φAE

j 〉〈pAE
j | =∑

j |φPS
j 〉〈pPS

j |, where |pAE/PS
j 〉 are projector functions, defined to satisfy this identity within

the augmentation sphere. Therefore, cj = 〈pAE
j |ΨAE〉, c′j = 〈pPS

j |ΨPS〉. The last ingredient
to compute |ΨAE〉 from |ΨPS〉 is to require that |φAE

j 〉 is related to |φPS
j 〉 via a transforma-

tion, |φAE〉 = T |φPS〉. This implies that all the PS states are related to AE states by this
transformation T , such that cj = c′j and the AE reconstruction can be written as

|ΨAE〉 = |ΨPS〉+
∑
j

(
|φAE
j 〉 − |φPS

j 〉
)
〈pPS
j |ΨPS〉 . (8.6)

In practice, we implement the AE reconstruction with pawpyseed [354], and the plane wave
expansion cutoff of |ΨAE〉, EAE, can be increased from the initial Ecut. We use EAE = 2 keV.

To visualize the effect of AE reconstruction, we plot in Fig. 8.3 the average magnitude of
the Bloch wave functions, binned in q,〈

|ũi|2
〉
(q; ∆q) ≡ 1

Nq

∑
k

∑
G

|ũi,k,G|2 θ(q +∆q − |k +G|) θ(|k +G| − q) , (8.7)

where ũi,k,G are the Fourier components of the Bloch wave functions, defined in Eq. (8.3).
Each bin in momentum space extends from q to q + ∆q with ∆q = 1 keV, and Nq is a
normalization factor equal to the number of points in a bin, Nq =

∑
k

∑
G θ(q + ∆q −

|k + G|) θ(|k + G| − q). We see that AE reconstruction recovers the high momentum
components, which as we will see can significantly affect the DM-induced transition rate
for processes which favor large momentum transfers (such as processes mediated by heavy
particles), or processes limited to larger ω (e.g., higher experimental thresholds where large
relaxed-core PAW (RC-PAW) method.
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q processes are the only kinematically allowed transitions). Previous DFT calculations of
DM-induced electron transition rates, with the exceptions of Ref. [6, 7, 340], used only the
pseudo wave functions, |ΨPS〉 as opposed to the AE wave functions, |ΨAE〉, and have therefore
underestimated detection rates in several cases.

Atomic Wave Functions
If one could reconstruct the AE wave functions arbitrarily deep into the band structure, and
to arbitrarily high momentum, one could calculate an accurate representation of the complete
set of electronic states with a DFT calculation. In practice, however, this is neither feasible
nor necessary. States deep in the band structure are more isolated from the influence of the
crystal environment, and so an isolated atomic approximation becomes valid. We refer to
these inner, tightly bound electrons as core electrons. In Si, we will show that the 2p states
and below can be treated as core, while in Ge, the 3d states and below can, as alluded to in
Fig. 8.1. The purpose of this subsection is to expand on the atomic approximation for core
electrons and discuss its accuracy.

More precisely, the initial states of a transition should be taken as a linear combination of
isolated atomic wave functions that is in Bloch form (known as Wannier states):

ψκnlm,k(x) =
1√
N

∑
r

eik·(r+xκ) ψatom
κnlm(x− r − xκ) , (8.8)

where κ labels the atom in the primitive cell, n, l,m are the standard atomic quantum
numbers, xκ is the equilibrium position of the κth atom,

∑
r sums over all primitive cells in

the lattice, and N is the total number of cells. In contrast to the valence and conduction
states discussed in the previous subsection, the core states are labeled by (κnlm) rather than
band index i. The corresponding periodic (dimensionless) u functions can be easily obtained
via Eq. (8.1):

uκnlm,k(x) =
√
Ω
∑
r

e−ik·(x−r−xκ) ψatom
κnlm(x− r − xκ) , (8.9)

where Ω = V /N is the primitive cell volume.

In general, the atomic wave functions ψatom
κnlm are not known analytically, but are expanded

in a basis of well-motivated analytic functions. The basis coefficients are then fit by solving
the isolated atomic Hamiltonian, giving a semi-analytic expression for ψatom

κnlm. We use a basis
of Slater type orbital (STO) wave functions whose radial component is

RSTO(r;Z, n) = a
−3/2
0

(2Z)n+
1
2√

(2n)!

(
r

a0

)n−1

e−Zr/a0 , (8.10)
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where a0 = 0.53Å = (3.7 keV)−1 is the Bohr radius, and Z is an effective charge of the ionic
potential. Including the angular part, the atomic wave functions are then

ψatom
κnlm(x) =

∑
j

Cjln,κRSTO(x;Zjl,κ, njl,κ)Y
m
l (x̂) , (8.11)

where Cjln,κ, Zjl,κ, njl,κ are tabulated in Ref. [336], and Y m
l (x̂) are the spherical harmonics

with the Condon-Shortley phase convention [355].

To assess the accuracy of the atomic wave function approximation, we temporarily push the
DFT calculation beyond its default regime (valence and conduction), to the highest core
states – 2p states in Si and 3d states in Ge, where it is still computationally feasible –
and compare the numerical wave functions to the semi-analytic ones discussed above. The
results, in terms of the average magnitude of Bloch wave functions defined in Eq. (8.7), are
shown in the right panels of Fig. 8.3.2 We see that the atomic approximation accurately
reproduces the numerical wave functions up to the momentum cutoff

√
2meEAE ' 50 keV

for EAE = 2 keV. These plots also show the limitation of DFT calculations. While AE
reconstruction recovers higher-momentum components of electronic wave functions, it is not
feasible to expand the plane wave basis set to arbitrarily high cutoff. However, having verified
the atomic approximation for the highest core states, we can use it for all core states with
confidence, allowing us to more easily include the high momentum components beyond the
DFT cutoff.

Plane Wave Approximation
With the inclusion of the semi-analytic core states, all of the states below the band gap have
been modeled. States above the band gap can also be computed with DFT methods, as
described in Sec. 8.2. Similar to valence bands, there are practical limitations to how many
conduction bands can be included. To remedy this in the simplest way possible, we model
states far above the band gap as plane waves,

ψG,k(x) =
1√
V
ei(k+G)·x , EG,k =

|k +G|2

2me

, (8.12)

where G is a reciprocal lattice vector, and plays the role of a band index. (To understand
this, simply note that every momentum can be decomposed into a k vector inside the 1BZ
and a reciprocal lattice vector. Integrating over the momentum of plane wave states amounts
to a k integral within the 1BZ and a G sum.) From Eq. (8.1) we see that the corresponding

2The flatness of band structures offers a complementary check of the validity of the atomic approximation.
We have verified that the DFT computed energy eigenvalues indeed have a small variance for the highest
core states, as expected.
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periodic u functions are simply
uG,k(x) = eiG·x . (8.13)

The plane wave approximation is often used in atomic ionization rate calculations, with the
inclusion of a Fermi factor, F (ν),

F (ν) =
ν

1− e−ν
, ν(Zeff, E) = 2πZeff

αme√
2meE

, (8.14)

where E is the final state electron energy, and Zeff is an effective charge parameter, which
enhances the transition rate at low E to account for the long range behavior of the Coulomb
potential. See Refs. [19, 35, 177, 333] for more details. In atomic ionization calculations one
usually takes Zeff to be related to the binding energy of the initial state, EB,

Zeff = n

√
EB

13.6 eV
, (8.15)

where n is the principal quantum number. Since the rate is proportional to the Fermi factor,
Zeff = 1 is seen as the conservative choice. Later in Secs. 8.3 and 8.3 we quantify how much
of an effect this has on the transition rate. This uncertainty is only important for very high
experimental thresholds, and generally we find that Zeff = 1 leads to a smoother match
(within an O(1) factor) to conduction band contributions from DFT calculations.

8.3 Electronic Transition Rates
We now present the DM-induced electron transition rate calculation. We begin with a
general discussion and then in Secs. 8.3-8.3 consider the four different transition types in
turn: valence to conduction (v→ c), valence to free (v→ f), core to conduction (c→ c) and
core to free (c→ f). Finally, in Sec. 8.3 we discuss the treatment of in-medium screening.

The general derivation has been discussed previously (see, e.g., Refs. [7, 33, 177, 244, 340]),
and we repeat it here for completeness and clarity, as a variety of conventions have been used.
Beginning with Fermi’s Golden Rule, the transition rate between electronic states |i, s〉 and
|f, s′〉 due to scattering with an incoming non-relativistic DM particle, χ, with mass mχ,
velocity v, and spin σ is given by

Γi,s,σ→f,s′,σ′(v) = 2πV

∫
d3q

(2π)3
∣∣〈p′, σ′; f, s′| δĤ |p, σ; i, s〉

∣∣2 δ(Ef,s′ − Ei,s − ωq) , (8.16)

where |p, σ; i, s〉 = |p, σ〉 ⊗ |i, s〉, q is the momentum deposited onto the target, p = mχv,
p′ = p−q, δĤ is the interaction Hamiltonian, V is total volume of the target, and ωq is the
energy deposition:

ωq =
1

2
mχv

2 − (mχv − q)2

2mχ

= q · v − q2

2mχ

. (8.17)
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We assume that all quantum states are unit normalized. Modulo in-medium screening
effects, discussed below in Sec. 8.3, we can write Eq. (8.16) in terms of the standard
QFT matrix element, defined with plane wave incoming and outgoing states, by inserting
1 = V

∑
s

∫
d3k
(2π)3
|k, s〉〈k, s| and using

〈p′, σ′;k′, s′| δĤ |p, σ;k, s〉 ≡ (2π)3

V 2

Mσ′s′σs(p
′,k′,p,k)

4memχ

δ(3) (p′ + k′ − p− k) . (8.18)

We find

Γi,s,σ→f,s′,σ′(v) =
2π

16V m2
em

2
χ

∫
d3q

(2π)3
δ(Ef,s′ − Ei,s − ωq)

×
∣∣∣∣∫ d3k

(2π)3
Mσ′s′σs(p− q,k + q,p,k) ψ̃∗

f (k + q)ψ̃i(k)

∣∣∣∣2 , (8.19)

where ψ̃i(k) =
√
V 〈k|i〉.

We will limit our analysis to matrix elements which only depend on q, and assume that the
electron energy levels are also spin independent, which allows the spin sums to be easily
computed:

Γi→f ≡
1

2

∑
σ,σ′

∑
s,s′

Γi,s,σ→f,s′,σ′

=
4π

16V m2
em

2
χ

∫
d3q

(2π)3
|M(q)|2 |fi→f |2 δ (Ef − Ei − ωq) , (8.20)

fi→f ≡
∫

d3k

(2π)3
ψ̃∗
f (k + q) ψ̃i(k) =

∫
d3x eiq·x ψ∗

f (x)ψi(x) , (8.21)

where |M|2 is the spin averaged matrix element squared and we have defined a crystal form
factor fi→f , written in terms of both momentum and position space representations of the
wave functions.

The transition rate per target mass, Ri→f , is then given by

Ri→f =
1

ρT

ρχ
mχ

∫
d3vfχ(v) Γi→f , (8.22)

where ρT is the target density, ρχ = 0.4GeV/cm3 is the local DM density, and fχ is taken
to be a boosted Maxwell-Boltzmann distribution. The total rate, R, is then simply the
sum over all possible transitions from initial to final states. Since the only v dependence in
Eq. (8.22) comes from the energy conserving delta function, we perform the v integral first
and define g(q, ω) = 2π

∫
d3vfχ(v)δ(ω−ωq). This integral can be evaluated analytically (see
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e.g., Refs. [7, 29, 341]):

g(q, ω) =
2π2v20
N0

1

q

(
e−v

2
−/v20 − e−v2esc/v

2
0

)
, (8.23)

v− = min
{
1

q

∣∣∣∣ω +
q2

2mχ

+ q · ve
∣∣∣∣ , vesc

}
, (8.24)

where ω = Ef − Ei is the deposited energy, and N0 is a normalization factor such that∫
d3vfχ(v) = 1. We take the DM velocity distribution parameters to be v0 = 230 km/s ,

vesc = 600 km/s, and ve = 240 km/s. The total rate then becomes

R =
2

16V m2
em

3
χ

ρχ
ρT

∑
i,f

∫
d3q

(2π)3
|M(q)|2 g(q, ω) |fi→f (q)|2 . (8.25)

Here we focus on simple DM models, such as the kinetically mixed dark photon or lep-
tophilic scalar mediator models. In these models M(q) can be factorized as M(q) =

M(q0)Fmed(q0/q) (fe/f
0
e ), where Fmed(q0/q) = 1 for a heavy mediator and Fmed(q0/q) =

(q0/q)
2 for a light mediator, and fe/f

0
e is a screening factor discussed in more detail in

Sec. 8.3. As in previous works, we choose the reference momentum transfer to be q0 = αme.
We can then finally write the rate in terms of a reference cross section,

σe =
µ2
χe

16πm2
χm

2
e

|M(q0)|2 , (8.26)

and find

R =
2πσe

V µ2
χemχ

ρχ
ρT

∑
i,f

∫
d3q

(2π)3

(
fe
f 0
e

)2

F2
med g(q, ω) |fi→f (q)|2 . (8.27)

Another useful quantity is the binned rate (the rate for energy deposition between ω and
ω +∆ω), ∆Rω, defined as

∆Rω =
2πσe

V µ2
χemχ

ρχ
ρT

∑
i,f

θ(ω +∆ω − Ef + Ei) θ(ω − Ef + Ei)

×
∫

d3q

(2π)3

(
fe
f 0
e

)2

F2
med g(q, ω) |fi→f (q)|2 . (8.28)

Valence to Conduction
We begin with valence to conduction band transitions. The initial (final) states are indexed
by band number, i(f), and Bloch momentum, ki(kf ) inside the 1BZ. The wave functions in
Eq. (8.1) can be substituted into the crystal form factor in Eq. (8.21),

fi,ki→f,kf =
1

V

∫
d3x ei

(
ki−kf+q

)
·x u∗f,kf (x)ui,ki(x)

=
∑
G

δq,kf−ki+G
1

Ω

∫
cell
d3x eiG·x u∗f,kf (x)ui,ki(x) , (8.29)
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where the integral is over the primitive cell with volume Ω, and we have used the identity∑
r e

iq·r = N
∑

G δq,G. The total rate in Eq. (8.27) is then

R =
2πσe
µ2
χemχ

ρχ
ρT

Nv∑
i=1

Nc∑
f=1

∫
1BZ

d3ki
(2π)3

d3kf
(2π)3

∑
G

(
fe
f 0
e

)2

F2
med g(q, ω)

×
∣∣∣∣ 1Ω
∫

cell
d3x eiG·x u∗f,kf (x)ui,ki(x)

∣∣∣∣2 , (8.30)

where q = kf −ki+G, Nv(c) is the number of valence (conduction) bands. This is identical
to the rate formulae derived in [6, 7, 33] but written in terms of the periodic Bloch func-
tions, ui,k(x), instead of their Fourier transformed components, ũi,k,G, similar to Ref. [340].
Numerically the position space form is superior since the integral over the primitive cell can
be computed by Fast Fourier Transform. This reduces the computational complexity from
O(N2

G) to O(NG logNG), where NG is the number of G points, i.e., the number of Fourier
components in the expansion of ũi,k in Eq. (8.3).

In Fig. 8.5 we show the scattering rate from valence to conduction transitions binned in
energy deposition, defined in Eq. (8.28), for a 1 GeV DM. The main difference between the
calculation performed here and in previous works is the effect of the AE reconstruction,
as discussed in Sec. 8.2. For the case of DM with a heavy mediator, the rate, even with
experimental thresholds as low as ∼ 10 eV, is significantly enhanced relative to previous
work. The AE reconstruction plays less of a role in the light mediator case since the transition
rate is dominated by small momentum transfers. However, at high thresholds, where only
larger momentum components can contribute, the AE reconstruction can still significantly
boost the scattering rate by fully including the contributions neglected in the pseudo wave
functions.

Since most earlier works computing DM-electron scattering include only valence to conduc-
tion transitions, it is useful to understand for which DM masses these are the only kinemat-
ically allowed transitions. If ω < Eg−Ecore

max, where Ecore
max is the maximum energy of the core

states, then the core states cannot contribute; if ω < Edft the free states are not available.
Therefore if ω < min{Edft, Eg−Ecore

max} only the valence to conduction transitions are allowed,
which can be related to a DM mass via ωmax(mχ) < min{Edft, Eg − Ecore

max}, where

ωmax(mχ) =
1

2
mχv

2
max = 3.9 eV

( mχ

MeV

)( vmax

840 km/s

)2

, (8.31)

with vmax = ve + vesc, the maximum incoming DM velocity. For Si (Ge), Ecore
max = −116 eV
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(−28 eV), this corresponds to

mχ <

15.2 MeV (Si) ,

7.8 MeV (Ge) .
(8.32)

Requiring that ωmax > Eg, where Eg is the band gap, sets a lower bound on the minimum
detectable mass, mmin

χ ,

mmin
χ =

2Eg

v2max
= 0.25 MeV

(
Eg

eV

)(
840 km/s
vmax

)2

. (8.33)

For Si (Ge), with a band gap of 1.11 (0.67) eV, mmin
χ is 0.28 (0.17) MeV. Lastly, we remark

that for DM interactions characterized by higher-dimensional operators (not considered in
this work), the scattering rate scales with higher powers of q and therefore is even more
sensitive to AE reconstruction (and also c → c contributions discussed below in Sec. 8.3),
which must be included in the analysis.

Valence to Free
For valence to free transitions the initial states are identical to those from Sec. 8.3, labeled
by band number i and Bloch momentum, ki. The final state wave functions are simple plane
waves given by Eq. (8.12), labeled by a momentum kf in the 1BZ with the bands labeled by
G. We can therefore directly substitute Eq. (8.13) into Eq. (8.29) derived in the previous
subsection, and obtain the crystal form factor:

fi,ki→Gf ,kf =
∑
G

δq,kf−ki+G
1

Ω

∫
cell
d3x ei(G−Gf )·x ui,ki(x)

=
∑
G

δq,kf−ki+G ũi,ki,Gf−G , (8.34)

where ũi,ki,G are the Fourier components of the Bloch wave functions defined in Eq. (8.3).
Incorporating the Fermi factor correction discussed in Sec. 8.2, we find the rate in Eq. (8.27)
is given by

R =
2πσe
µ2
χemχ

ρχ
ρT

Nv∑
i=1

∑
Gf

∫
1BZ

d3ki
(2π)3

d3kf
(2π)3

F (νi,ki)
∑
G

(
fe
f 0
e

)2

F2
med g(q, ω)

∣∣ũi,ki,Gf−G

∣∣2 ,
(8.35)

where
ω ≡ |kf +Gf |2

2me

− Ei,ki , νi,ki = ν(Zi,ki
eff , ω + Ei,ki) . (8.36)
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With a change of variables, G′ = Gf −G and defining k′ ≡ kf +Gf (and then dropping
the prime for simplicity), the rate becomes

R =
2πσe
µ2
χemχ

ρχ
ρT

Nv∑
i=1

∫
1BZ

d3ki
(2π)3

F (νi,ki)
∑
G

|ũi,ki,G|
2

∫
d3k

(2π)3

(
fe
f 0
e

)2

F2
med g(q, ω) . (8.37)

where q = k − ki −G.

In Fig. 8.6 we compare the binned rate from the valence to conduction (v→c) calculation
in the previous subsection to the valence to free (v→f) one performed here, again for a
1 GeV DM. We see that for large ω, where the v→c calculation is limited by the number
of conduction bands included, the v→f calculation extrapolates the results to higher ω as
expected. There is some uncertainty due to the choice of the effective charge parameters,
which is why the results are shown in bands. The lower edge corresponds to the conservative
choice of Zi,ki

eff = 1 for all i,ki, and the upper edge corresponds to the value set by the binding
energy, Eq. (8.15) with EB = −Ei,ki . We find that the conservative choice Zi,ki

eff = 1 is a
better match to the edge for the v→c calculation, and will use this in our final projections
in Sec. 8.4. Note that as the threshold increases, the effect of v→f transitions becomes more
important, and for a heavy mediator non-negligible constraints can be placed even with
O(100) eV energy thresholds.

Core to Conduction
We now turn to core to conduction transitions. The initial core states are indexed by κ,
the atom in the primitive cell, the usual atomic quantum numbers, n, l,m, and the Bloch
momentum, ki. The final states are the DFT computed conduction states. The crystal form
factor is simply obtained from Eq. (8.29) by substituting ui,ki → uκnlm,ki :

fκnlm,ki→f,kf =
∑
G

δq,kf−ki+G
1

Ω

∫
cell
d3x eiG·x u∗f,kf (x)uκnlm,ki(x) , (8.38)

The total scattering rate is then

R =
2πσe
µ2
χemχ

ρχ
ρT

Na∑
κ=1

Nκ
p∑

n=1

n−1∑
l=0

l∑
m=−l

Nc∑
f=1

∫
1BZ

d3ki
(2π)3

d3kf
(2π)3

∑
G

(
fe
f 0
e

)2

F2
med g(q, ω)

×
∣∣∣∣ 1Ω
∫

cell
d3x eiG·xu∗fkf (x)uκnlmki(x)

∣∣∣∣2 , (8.39)

where Na is the number of atoms in the primitive cell, Nκ
p is the largest principal quantum

number for atom κ, and ω = Ef,kf − Eκnl. The core wave functions uκnlm,ki(x) are given
by Eq. (8.9), and involves a sum over primitive cells. Since the integral in Eq. (8.38) is just
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over one primitive cell, only the atoms in this and neighboring cells can have a significant
contribution. In other words, the sum over r converges very quickly due to the localized
nature of atomic wave functions. We therefore restrict r to be summed over only the 3×3×3
nearest cells.

The contribution of core to conduction (c→c) transitions to the binned rate, for mχ = 1GeV,
can be seen in Fig. 8.7. In most cases the v→c transitions are dominant compared to the
c→c, but there are two main scenarios where this is not true. First, when the experimental
threshold is raised; this excludes the v→c transitions and causes the c→c contribution to
be dominant. For example, consider a Si detector and a DM model with a heavy mediator
(bottom left panel of Fig. 8.7). If the experimental threshold is ∼ 50 eV the c→c contribution
from the 2p states in Si gives the dominant contribution. Second, for a Ge target, and a DM
model with a heavy mediator, the 3d states dominate the rate even at the lowest experimental
threshold. To understand this in more detail we present Fig. 8.8 which compares the binned
rate taking different modeling approaches for the 3d states in Ge. We see that the large
momentum components of the wave function, recovered only after AE reconstruction in the
DFT calculation, dominate the rate, which explains why previous works have underestimated
the importance of 3d electrons. Meanwhile, we see explicitly at the scattering rate level that
the semi-analytic approach accurately reproduces the DFT calculation at low ω, and extends
the latter beyond its cutoff at high ω, consistent with the observation at the wave function
level in Fig. 8.3.

Core to Free
The last transition type we consider involves a core electron initial state and a free electron
final state. The crystal form factor is most easily obtained by substituting Eqs. (8.8) and
(8.12) into its definition, Eq. (8.21):

fκnlm,ki→Gf ,kf =
1√
NV

∑
r

eiki·(r+xκ)

∫
d3x ei(q−kf−Gf )·x ψatom

κnlm(x− r − xκ)

=
1√
NV

ei(ki+q−kf−Gf )·xκ
∑
r

ei(q−kf+ki)·r
∫
d3x ei(q−kf−Gf )·x ψatom

κnlm(x)

=
1√
Ω
ei(ki+q−kf−Gf )·xκ

∑
G

δq−kf+ki,G ψ̃
atom
κnlm(−ki +G−Gf ) , (8.40)
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where the Fourier transform of the RHF Slater type orbital (STO) core wave functions, given
in Eq. (8.10), are known analytically [356]:

ψ̃STO(q;Z, n, l,m) =

∫
d3x eiq·xRSTO(x;Z, n)Y

m
l (x̂) ≡ χSTO(q;Z, n, l)Y

m
l (q̂) , (8.41)

χSTO(q;Z, n) = 4πN(n− l)!(2Z)n
(
ia0q

Z

)l b(n−l)/2c∑
s=0

ωnls
((a0q)2 + Z2)n−s+1 , (8.42)

ωnls =
(
−4Z2

)−s (n− s)!
s!(n− l − 2s)!

. (8.43)

The direct detection rate is then

R =
2πσe
µ2
χemχ
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ρTΩ
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∫
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∣∣∣2 , (8.44)

where q = kf − ki +G, and νκnl = ν(Zκnl
eff , ω + Eκnl). We can now shift the Gf variable,

G′ ≡ Gf −G and define k = ki +G′ and k′ = kf +G. Therefore, q = k′ − k and

R =
2πσe
µ2
χemχ

ρχ
ρTΩ

Na∑
κ=1

Nκ
p∑

n=1

n−1∑
l=0

l∑
m=−l

∫
d3k

(2π)3
d3k′

(2π)3
F (νκnl)

(
fe
f 0
e

)2

F2
med g(q, ω)

∣∣∣ψ̃atom
κnlm (k)

∣∣∣2 ,
(8.45)

which is the closest expression to the vacuum matrix element, with just the inclusion of the
core wave functions acting as a form factor.

In Fig. 8.9, we compare the binned rate from the core to conduction (c→c) calculation to
the core to free (c→f) calculation and see a reasonable extrapolation to higher ω. As with
the transition region between v→c and v→f shown in Fig. 8.6, we find Zeff = 1 gives a better
match between c→c and c→f. While the total number of electrons from these transitions is
expected to be much less than lower energy transitions, this is the best available calculation
for thresholds up to the kinematic limit of ωmax.

In-Medium Screening
DM-electron interactions mediated by a dark photon or scalar are screened due to the in-
medium mixing between the mediator and the photon. The relevance of screening has been
recently emphasized in Ref. [36]. The screening factor, fe/f 0

e , is related to the longitudinal
dielectric, fe/f 0

e = (q̂ · ε · q̂)−1, where ε is the dielectric tensor. It can be computed from
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Target ε0 α ωp [eV] qTF [keV]

Si 11.3 1.563 16.6 4.13
Ge 14 1.563 15.2 3.99

Table 8.1: Parameters used in the model of dielectric function, Eq. (8.46), of Si and Ge from
Ref. [65], which accounts for in-medium screening effects on the transition rate.

in-medium loop diagrams or extracted from optical data. Here we model the dielectric of Si
and Ge following Ref. [65]:

ε(q, ω) = 1 +

[
1

ε0 − 1
+ α

(
q

qTF

)2

+
q4

4m2
eω

2
p

−
(
ω

ωp

)2
]−1

, (8.46)

and εij = ε(q, ω) δij. Here, ε0 ≡ ε(0, 0) is the static dielectric, α is a fitting parameter, qTF is
the Thomas-Fermi momentum, and ωp is the plasma frequency. The parameters used for Si
and Ge are listed in Table 8.1, and we plot the dielectric as a function of q, ω in Fig. 8.10.

Naively one might expect that the effect of the dielectric is to screen the rate by an O(100)
factor due to the fact that the static dielectric, ε0, is O(10). However, this is only the
value of the dielectric function at q = ω = 0, while as q → ∞ and ω → ∞ the dielectric
approaches unity. Therefore, the effect of the dielectric crucially depends on the region of
the kinematic phase space being probed. For a given energy deposition, ω, the momentum
transfer is limited to q & ω/v where v ∼ 10−3 is the DM velocity. Therefore, the absolute
minimum momentum transfer is qmin ∼ Eg/v ∼ O(keV), for O(eV) band gap targets. This
is parametrically the same size as the Thomas-Fermi momentum qTF, so the dielectric is
expected to slightly deviate from one, which causes only an O(1) shift to the scattering rate,
as seen in Fig. 8.11.

8.4 Projected Sensitivity
We now compile the results from the previous sections to compute the projected sensitivity.
We also compare the relative importance of each transition type, and discuss differences
between our results and previous calculations in the literature. When there are large dif-
ferences, it is typically because of the inclusion of AE reconstruction and core states in the
calculation. Since AE reconstruction and core states contribute predominantly at higher mo-
mentum transfer and energy deposition, we will find the largest differences typically occur
for a massive mediator and higher detector threshold, where the effects in some cases can be
more than an order of magnitude (especially for Ge). For the case of a massless mediator
and lower detection threshold, the differences with previous literature are much smaller and
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mostly due to the inclusion of in-medium effects.

In Fig. 8.12 we show the contribution to the binned rate from each of the four transition
types, for a 1 GeV DM. We see that valence to conduction (v→c) has a higher peak than the
other three transition types, except for the Ge, heavy mediator case, where core to conduction
(c→c) has the highest peak. For comparison, Refs. [33, 34] compute the valence to conduction
rates with DFT, including also the 3d states in Ge, but without AE reconstruction. As
expected, we find a lower rate at the lowest energy depositions due to the inclusion of in-
medium screening, and a much higher rate at high ω due to AE reconstruction and inclusion
of core states.

The impact of these observations on the reach depends on the energy threshold. Assuming
charge readout (e.g., via a CCD), the relevant quantity is the number of electron-hole pairs,
Q, produced in an event. For an energy deposition ω, this is given by

Q = 1 +

⌊
ω − Eg

ε

⌋
, (8.47)

where the values for ε are 3.6 eV and 2.9 eV for Si and Ge respectively. In Fig. 8.13, we show
the total rate as a function of the DM mass, for Q ≥ 1, 5, 10. The threshold only affects
the v→ c rate, as the other three transition types involve energy depositions corresponding
to Q > 10, and are therefore always fully included. We see that for Q ≥ 1, the valence
to conduction (v→c) contribution dominates the total rate with the exception of the Ge,
heavy mediator scenario, where core to conduction (c→c) is dominant for mχ & 30MeV.
Higher thresholds significantly cut out v→c contributions in all cases, and render c→c more
important for Ge, even in the light mediator scenario. For Si, on the other hand, the total
rate is still dominated by v→c because the core states are much deeper and contribute a
lower rate. We also see that v→f and c→f contributions are subdominant in all cases.

Finally, we present the projected reach on the DM-electron reference cross section σe in
Figs. 8.14 and 8.15, for Q ≥ 1 and Q ≥ 10, respectively. Our new calculation yields several
important differences compared to the previous literature, and we discuss them in detail in
the following subsection.

Comparison With Previous Results
We begin by comparing to our previous work, Ref. [6], shown in brown in Fig. 8.14. We pre-
viously restricted our analysis to the light mediator scenario, and Q ≥ 1, which is relatively
unaffected by AE reconstruction effects since the rate is peaked at small energy/momentum
transfers, as seen in Fig. 8.5. The main reason the reach here is weaker is the inclusion of
in-medium screening discussed in Sec. 8.3.
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Next we compare to Ref. [33], shown in red in Figs. 8.14 and 8.15. Those results were
computed solely from valence to conduction (v→c) transitions. The largest discrepancy
is in the high mχ regime scattering off a Ge target via a heavy mediator. This is due
to high momentum contributions to the 3d wave functions in Ge. Ref. [33] computed the
3d states with DFT without AE reconstruction, which as we saw in Fig. 8.3 is crucial for
recovering the dominant part of the 3d wave functions at high momentum. As discussed in
Sec. 8.2, our modeling of 3d electrons in Ge as core states reproduces their DFT-computed
wave functions up to the AE reconstruction cutoff, and provides a robust parameterization of
higher momentum components. Since the valence states in Ge also contribute an appreciable
amount, the Q ≥ 1 results in Fig. 8.14 only differ by about an order of magnitude. However,
the difference is more stark when going to higher Q thresholds in Fig. 8.15, which essentially
isolates the 3d electrons’ contribution. In the low mass regime the difference is less significant,
and primarily due to the inclusion of screening effects. Another difference that is important
here is sampling of the 1BZ. Ref. [33] used a uniform 6 × 6 × 6 mesh with extra 27 points
chosen by hand close to the center of the 1BZ, whereas here (as well as in Ref. [6]) we use
a uniform 10× 10× 10 grid. While checking convergence we found our (unscreened) results
using a 6 × 6 × 6 uniform mesh were a closer match to Ref. [33]; generally, increasing the
number of k points reduces the rate toward convergence, i.e., R10×10×10 < R9×9×9 < R8×8×8.
This can be seen more directly in the difference between the brown and red lines in the light
mediator scenario (as both are computed without screening), and it affects Ge more than Si,
as is expected due to the smaller band gap and greater dispersions of nearby bands requiring
denser k point sampling for convergence.

Ref. [35] also computed DM-electron scattering rates in semiconductors, focusing on Ge. The
approach taken in that paper was to semi-analytically model the Ge wave functions with the
core wave functions (with the same set of RHF STO wave function coefficients tabulated in
Ref. [336]) and treat the final states as free with a Fermi factor, analogous to the core to
free calculation performed here. As we can see from Fig. 8.14, while for most of the mass
range and mediators the estimates are too optimistic due to incorrect modeling of the valence
and conduction states, in the high mass region with a heavy mediator (bottom-right panel),
where 3d states dominate, their estimates are in good agreement with ours presented here,
as expected.

Finally, we discuss the comparison with the most recent work, Ref. [36], which was limited to
valence to conduction transitions. To show the effect of screening, we show their projected
reach with (purple) and without (green) screening in Fig. 8.14. Again the largest discrepancy
is in the heavy mediator scenario with a Ge target, primarily due to the neglect of the 3d
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states in Ref. [36]. When these are not important, i.e., the low mass regime or a light
mediator, we generally find good agreement, with our reach being a bit stronger. Notably
this does not seem due to a mis-model of the dielectric, since the effect of screening relative
to our previous results, Ref. [6], is consistent with their result. We also find that screening
has a smaller effect at high masses in the heavy mediator scenario for Si. These small
differences are harder to disentangle since they could be due to: 1) different xc-functionals
used (PBE and HSE vs. TB09); 2) local field effects which are only partially included here
since we assume the screening factor is isotropic; 3) the plane wave expansion parameter,
Ecut, taken to be 500 eV without AE reconstruction in Ref. [36], vs. 1 keV, AE corrected to 2
keV taken here; 4) DM velocity distribution parameters, studied in detail in Refs. [357, 358],
for which Ref. [36] assumed vesc = 500 km/s as opposed to vesc = 600 km/s chosen here; and
5) Ref. [36] took a directionally averaged dielectric, whereas here we only assume isotropy
in the screening factor but not the matrix element itself.

8.5 Conclusions
Dark matter-electron scattering in dielectric crystal targets, especially semiconductors like Si
and Ge, are at the forefront of DM direct detection experiments. It is therefore imperative to
have accurate theoretical predictions for the excitation rates. In this work, we extended the
scattering rate calculation in several key aspects. Much of the focus of previous calculations
has been on transitions from valence to conduction bands just across the band gap, which will
be accessible to near-future experiments. We performed state-of-the-art DFT calculations
for these states, and highlighted the importance of all-electron reconstruction which has
been neglected in most previous works. Along with this, we extended the transition rate
calculation by explicitly including the contributions from core electrons and additional states
more than 60 eV above the band gap using analytic approximations.

We updated the projected reach with our new calculation and found important differences
compared to previous results. In particular, we found that in the heavy mediator scenario,
3d electrons in Ge give a dominant contribution to the detection rate for DM heavier than
about 30 MeV. Relative to previous works the increased importance of the 3d electrons is
due to more accurate modelling of the high momentum components of their electronic wave
functions, as seen in Fig. 8.3. Intuitively, the more accurate model here stems from a more
accurate model of the short distance potential (a pseudo-potential versus the all-electron
reconstructed potential, discussed in Sec. 8.2) which dominantly affects the high momentum
components of the wave functions. Also, the rate can be significantly higher than predicted
previously for higher experimental thresholds. This is exciting because new DM parameter
space will be within reach even before detectors reach the single electron ionization threshold.
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We also release a beta version of EXCEED-DM (available here [342]) that implements our
DM-electron scattering calculation for general crystal targets, and make the electronic wave
function data for Si and Ge [343], as well as the EXCEED-DM output [344], publicly available
so our present analysis can be reproduced. We have previously used EXCEED-DM for a target
comparison study [6], and to study the daily modulation signals that can arise in anisotropic
materials [7]. The generality of EXCEED-DM means that potential applications are vast. It can
be used to compute detection rates for other target materials (assuming DFT calculations of
valence and conduction states are available), and can also be adapted to include additional
DM interactions such as in an effective field theory framework similar to the study of atomic
ionizations in Ref. [244] (see Ref. [359] for a recent effort in this direction). For momentum-
suppressed effective operators, a full calculation in our framework is even more important,
as the effects of all-electron reconstruction and core states (overlooked in Ref. [359]) are
generally amplified. Moreover, the differential information that can be obtained from our
program facilitates further studies including realistic backgrounds. Details of EXCEED-DM and
additional example calculations will be presented in an upcoming publication.

https://github.com/tanner-trickle/EXCEED-DM
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Figure 8.3: Comparison of the Bloch wave function magnitudes, defined in Eq. (8.7), com-
puted with DFT with (red, “AE”) and without (blue, “no AE”) AE reconstruction, and the
semi-analytic core approximation of Eq. (8.9) (green, “core”). Shaded bands indicate the
maximum and minimum values across all the bands belonging to the state type indicated
in the upper right corner of each panel. AE reconstruction, discussed in Sec. 8.2, recovers
the large momentum behavior of the electronic wave functions. Core electronic states, such
as those shown in the right panels and discussed in Sec. 8.2, can be well modeled semi-
analytically with atomic wave functions, as seen by the good agreement between the “core”
and “AE” curves. When applicable, the semi-analytic parameterization is advantageous
since the electronic wave functions are then known to arbitrarily large momentum.
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Figure 8.4: Calculated band structures of Si (left) using a PBE xc-functional within DFT and
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The Fermi level is set to 0 eV in both panels.
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Figure 8.5: DM-electron scattering rate from valence to conduction bands binned in energy
deposition (with ∆ω = 1 eV) for 1 GeV DM, light (top row) and heavy (bottom row) me-
diators, assuming σe = 10−40 cm2, computed with vs. without AE reconstruction. Valence
states included are the first four bands below the band gap, and conduction states included
are all bands up to Edft = 60 eV.
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Figure 8.6: DM-electron scattering rate from valence to conduction (v→c) bands and from
valence bands to free states (v→f) binned in energy deposition (with ∆ω = 1 eV) for 1 GeV
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Figure 8.7: DM-electron scattering rate from core states to conduction bands binned in
energy deposition (with ∆ω = 5 eV) for 1 GeV DM, light (top row) and heavy (bottom row)
mediators, assuming σe = 10−40 cm2. The core states are labelled by the corresponding
atomic orbitals, and the conduction states up to Edft = 60 eV are included. For comparison
we also show the v→c contribution (after AE reconstruction) from Fig. 8.5 in gray.
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Figure 8.9: DM-electron scattering rate from core states to conduction bands (c→c) and to
free states (c→f) binned in energy deposition (with ∆ω = 10 eV) for 1 GeV DM, light (top
row) and heavy (bottom row) mediators, assuming σe = 10−40 cm2. As in the v→f calculation
in Fig. 8.6, the upper edge of the shaded bands corresponds to Zeff from Eq. (8.15), and the
lower edge corresponds to Zeff = 1.



199

1 10
q [keV]

10−1

1

10

ω
[e

V
]

Si

ω = Eg

ω
=
q
× 10

−3

1 10
q [keV]

10−1

1

10

ω
[e

V
]

Ge

ω = Eg

ω
=
q
× 10

−3

1

2

3

4

5

6

7

8

9

10

11

1
2
3
4
5
6
7
8
9
10
11
12
13

Dielectric function ε(q, ω)

Figure 8.10: Dielectric function ε(q, ω), given by Eq. (8.46) with the parameters in Table 8.1,
of Si (left) and Ge (right) used to incorporate screening effects. The solid line indicates the
edge of the kinematically accessible region ω . qv. The dashed line is the band gap of the
target. While the static dielectric can be O(10), in the kinematically allowed region ε(q, ω)
is an O(1) number, leading to an O(1) effect on the scattering rates when the latter are
dominated by small q, ω transitions.



200

10 20 30 40
ω [eV]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

∆
R

sc
r

ω
/∆
R

n
o

sc
r

ω

Si

−d logFmed

d log q = 2

−d logFmed

d log q = 0

10 20 30 40
ω [eV]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

∆
R

sc
r

ω
/∆
R

n
o

sc
r

ω
Ge

1 10 102 103 104

mχ [MeV]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
sc

r /
R

n
o

sc
r

Si
1 10 102 103 104

mχ [MeV]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
sc

r /
R

n
o

sc
r

Ge

Figure 8.11: Effect of screening on the binned rate (top row, for 1 GeV DM) and total rate
(bottom row, as a function of mχ) from v→c transitions for DM models with a light (red)
and heavy (blue) mediator. The unscreened rate Rno scr is obtained with ε = 1, and the
screened rate Rscr is obtained with the model of the dielectric function given in Eq. (8.46).



201

0 25 50 75 100 125 150 175 200
ω [eV]

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

1

∆
R
ω
×

kg
·y

r

Si

−d logFmed

d log q = 2

v→ c
c→ c
v→ f
c→ f
Derenzo et al.

0 25 50 75 100 125 150 175 200
ω [eV]

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

1

∆
R
ω
×

kg
·y

r

Ge

−d logFmed

d log q = 2

0 25 50 75 100 125 150 175 200
ω [eV]

10−5

10−4

10−3

10−2

10−1

1

∆
R
ω
×

kg
·y

r

Si

−d logFmed

d log q = 0

0 25 50 75 100 125 150 175 200
ω [eV]

10−5

10−4

10−3

10−2

10−1

1

∆
R
ω
×

kg
·y

r

Ge

−d logFmed

d log q = 0

Figure 8.12: DM-electron scattering rate binned in energy deposition (with ∆ω = 1 eV)
for 1 GeV DM, light (top row) and heavy (bottom row) mediators, from all four transition
types: valence to conduction (v→c), valence to free (v→f), core to conduction (c→c), and
core to free (c→f). We assume σe = 10−40 cm2, and take Zeff = 1 for all effective charges
in the Fermi factor. Note that the c→c and c→f transitions involve semi-analytic treatment
of 2p (3d) states and below in Si (Ge), which has been validated with DFT calculations
including AE reconstruction; see Fig. 8.3. We also overlay the binned rate from Ref. [34]
which computed the v→c contribution using QEdark (treating 3d states in Ge as valence,
without including AE reconstruction effects).
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Figure 8.14: 95% C.L. exclusion reach (3 events) assuming 1 kg-year exposure, Q ≥ 1, for
light (top row) and heavy (bottom row) mediators. The results shown are from this work,
Griffin et al. [6], Essig et al. [33], Lee et al. [35], and Knapen et al. [36] (with and without
screening). See Sec. 8.4 for detailed comparison.
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Figure 8.15: 95% C.L. exclusion reach (3 events) assuming 1 kg-year exposure, Q ≥ 10, for
light (top row) and heavy (bottom row) mediators. The results shown are from this work
and Essig et al. [33]. See Sec. 8.4 for detailed comparison.
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C h a p t e r 9

DARK MATTER ABSORPTION VIA ELECTRONIC EXCITATIONS

9.1 Introduction
Uncovering the nature of cosmic dark matter (DM) remains one of the major goals in par-
ticle physics. Recent advances in low-threshold detectors (e.g., skipper charge-coupled de-
vices [85], transition edge sensors [90, 251, 253, 255], microwave kinetic inductance detec-
tors [254] and quantum evaporation of helium atoms [252]) coupled with new theoretical
investigations of various small-gap materials (e.g., O(eV)-gap semiconductor crystals [6, 7,
9, 19, 25, 33–35, 39, 40, 177, 180, 248, 256], O(meV)-gap superconductors [41, 181, 182] and
Dirac materials [29, 144, 183, 335]) have opened up new possibilities in the pursuit of this goal,
well beyond the scope of conventional searches based on nuclear recoils. In a direct detection
experiment, DM may leave its trace not only via scattering off the target ions or electrons,
but also via absorption if it is bosonic and has a mass that matches the difference between
energy levels in the target system [28, 29, 39–41, 44, 64, 144, 166, 180, 183, 185, 194, 360–365].
In this work, we focus on processes where the absorption of a bosonic DM drives electronic
excitations, i.e. transitions between electronic states.

It has been widely appreciated that, for several well-motivated bosonic DM models, the
absorption process is closely related to that of photon absorption, and the rate can be
expressed in terms of the target material’s optical properties, i.e. the (complex) conductivity
or dielectric function. In fact, most studies on DM absorption so far have utilized this
feature to make rate predictions by simply rescaling optical data. This approach is obviously
attractive because it saves the labor of first-principles calculations, which can be technically
challenging or resource-intensive, and because one can often make quick comparisons between
target materials based on existing data.

Nevertheless, this data-driven approach has important limitations. First of all, conductiv-
ity/dielectric data are not always readily available, especially for newly proposed, more
exotic materials, in which case one has to resort to first-principles calculations and/or
semi-analytic modeling (this is the case, e.g., for Dirac materials studied in several recent
works [29, 144, 183, 335]). Meanwhile, and more importantly, the question of whether DM
absorption for a particular model can be simply related to photon absorption is a nontrivial
one, and explicit calculations are needed to establish the answer.

It is the purpose of this work to revisit the calculation of DM absorption via electronic



206

excitations. We critically examine the question above by carefully working out the match-
ing between relativistic Lagrangians for DM-electron interactions and non-relativistic (NR)
effective field theories (EFTs) (Sec. 9.2), and computing in-medium self-energies to fully ac-
count for mixing and screening effects (Sec. 9.3). This is a slightly different strategy than
several previous calculations: by matching onto a NR EFT from the beginning instead of
taking the NR limit of a relativistic calculation in the end, the power counting relevant for
the absorption process becomes more transparent; also, the cryogenic nature of direct de-
tection experiments allows us to perform the in-medium calculation in the zero-temperature
limit and avoid the complications of thermal field theory. We will carry out the calculation
for three widely-studied bosonic DM candidates:

• Vector (e.g., dark photon) DM, which can be produced, for example, by inflationary
fluctuations [172], by parent particle decays or coherent oscillations after reheating [171,
366–368], or from a network of cosmic strings [369]. In this case, since the DM couples
to electrons via the same vector current ψ̄γµψ as the photon does, its absorption rate
is trivially a rescaling of the photon absorption rate.

• Pseudoscalar (e.g., axion-like particle) DM, which can be produced, for example, via
the misalignment mechanism [145–147], from the decays of topological defects [370–
372], or by a variety of other mechanisms (see e.g., Refs. [278, 280, 287, 290, 367]).
While not immediately obvious (since the DM couples to a different current, ψ̄iγ5ψ,
than the photon does), it has been well-known that also in this case, there is a simple
relation between DM and photon absorption [360]. We will recover this result in
the NR EFT calculation. It is worth noting that the dominant contribution to NR
pseudoscalar DM absorption actually comes from an operator generated at the next-to-
leading order (NLO) in the 1/me expansion, because the leading order (LO) operator
suffers a suppression by the DM’s momentum q.

• Scalar DM, which can be produced via mechanisms similar to pseudoscalar DM men-
tioned above. It couples to the scalar current ψ̄ψ, which at LO coincides with the
temporal component of the vector current ψ̄γ0ψ. However, as we will see, the LO
operator gives a q-suppressed contribution and, as in the pseudoscalar case, the rate
is dominated by a NLO operator. Importantly, this NLO operator has a different
structure than the photon coupling, and its contribution cannot be simply related to
photon absorption, invalidating the data-driven approach.

We make the statements above on the scalar and pseudoscalar DM more concrete in Table 9.1.
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The fact that the DM absorption rate is not always relatable to the target material’s opti-
cal properties highlights the necessity to go beyond the conventional data-driven approach.
(The same can be said for DM scattering, for which the data-driven approach based on the
dielectric function that has been advocated recently [36, 48, 49] covers only a limited set of
DM interactions.) In this work, we consider two types of targets:

• Semiconductor crystals with O(eV) gaps (Sec. 9.4), focusing on silicon (Si) and ger-
manium (Ge) that are in use in current experiments (DAMIC [71, 81, 237], EDEL-
WEISS [82–84], SENSEI [22, 86, 87], SuperCDMS [23, 77–80, 88, 89]). We compute
DM absorption rates using first-principles density functional theory (DFT) calculations
of electronic band structures and wave functions, which are now publicly available [343].
The numerical calculation builds upon the EXCEED-DM framework [9] and we publish
the “absorption” module of the program together with this work [179].

• Conventional (BCS) superconductors with O(meV) gaps (Sec. 9.5), focusing on alu-
minum (Al) that has been proposed for direct detection [41, 181, 182]. We compute
DM absorption rates by semi-analytically modeling the electronic states near the Fermi
surface, largely following Refs. [41, 181, 182].

For all the materials under study, we find good agreement between our theoretical calcu-
lation and the data-driven approach for the DM models where both are valid, i.e. vector
and pseudoscalar DM. This serves as an important validation of our calculations. In the
case of scalar DM, we show explicitly how the data-driven approach fails to reproduce the
leading contribution, and present our calculated sensitivity projections. In particular, for
Al superconductor, our revised projected reach is much more optimistic than that found in
Ref. [44], although somewhat weaker than the original estimate in Ref. [41].

9.2 Dark Matter Couplings to Non-relativistic Electrons
Since electrons in a detector are non-relativistic, it is convenient to perform the DM ab-
sorption calculation in the framework of NR EFT (see e.g., Refs. [373, 374] for reviews). In
this section, we work through the procedure of matching a relativistic theory of DM-electron
interactions onto effective operators involving the NR electron field. The total Lagrangian
of interest is

L = Lψ + Lφ + Lint . (9.1)

Here Lψ is the Standard Model part that includes the electron ψ coupling to electromag-
netism,

Lψ = ψ̄
[
iγµ(∂µ + ieAµ)−me

]
ψ , (9.2)
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Lφ contains the standard kinetic and mass terms of the DM field φ, and we consider the
following DM-electron interactions:

Lint =


gφψ̄ψ (scalar DM, g = dφee

√
4πme
MPl

) ,

gφψ̄iγ5ψ ' − g
2me

(∂µφ)(ψ̄γ
µγ5ψ) (pseudoscalar DM, g = gaee) ,

gφµψ̄γ
µψ (vector DM, g = κe) ,

(9.3)

where we have also indicated the relation between the coupling g and commonly adopted
parameters dφee, gaee, κ in the literature. Note that there are two equivalent ways of writing
the pseudoscalar coupling that are related by a field redefinition and integration by parts
(IBP).

Let us first consider Lψ. Writing the electron field in the relativistic theory as

ψ(x, t) = e−imet ψNR(x, t) . (9.4)

We obtain
Lψ = ψ†

NR

[
i∂t − eA0 + iγ0γ · (∇− ieA) +

(
1− γ0

)
me

]
ψNR . (9.5)

We now define projection operators

P± ≡
1

2

(
1± γ0

)
, (9.6)

which satisfy P 2
± = P±, P+P− = P−P+ = 0 and (P±)

† = P±. By using P±γ
0 = γ0P± = ±P±

and P±γ
i = γiP∓, we can rewrite Eq. (9.5) as

Lψ = ψ†
+(i∂t−eA0)ψ++ψ

†
−(i∂t−eA0+2me)ψ−+ψ

†
+ iγ ·(∇−ieA)ψ−−ψ†

− iγ ·(∇−ieA)ψ+ ,

(9.7)
where ψ± ≡ P±ψNR (thus ψNR = ψ+ + ψ−). Integrating out the heavy field ψ− at tree level
by solving its equation of motion (EOM),

ψ− =
1

2me + i∂t − eA0

iγ · (∇− ieA)ψ+ , (9.8)

we arrive at the EFT for ψ+:

Leff
ψ = ψ†

+

[
i∂t − eA0 − γ · (∇− ieA)

1

2me + i∂t − eA0

γ · (∇− ieA)

]
ψ+

= ψ†
+

[
i∂t − eA0 +

(∇− ieA)2

2me

+ (∇×A) · eΣ
2me

− i

4m2
e

(∇− ieA) · ∂t (∇− ieA) + . . .
]
ψ+ (9.9)



210

where we have used

γiγj = −δij − iεijkΣk , Σ ≡

(
σ 0

0 σ

)
. (9.10)

We can readily identify the first four terms in Eq. (9.9), which come from LO in the 1/me

expansion, as the familiar electromagnetic interactions as in NR quantum mechanics. There
are several operators at NLO in the 1/me expansion, of which we have only written out
the one involving ∂t. This is the last term in Eq. (9.9), and is the only NLO term that
will be relevant in what follows. Importantly, it gives a tree-level contribution to the wave
function renormalization of the ψ+ field. In NR EFT calculations, it is often convenient to
adopt an operator basis where temporal derivatives in the quadratic part of the Lagrangian
have been traded for spatial derivatives, so as to eliminate any non-trivial wave function
renormalization factors at tree level. The field redefinition needed to go into this basis, at
the order we are working here, is

ψ+ =

[
1− 1

8m2
e

(
γ · (∇− ieA)

)2]
ψ̂+ . (9.11)

This field redefinition does not change the LO Lagrangian (the first four terms in Eq. (9.9)),
but replaces the last term in Eq. (9.9) by NLO operators that do not contain ∂t (and hence
do not contribute to the wave function renormalization of ψ̂+). We will not need the NLO
operators for electron couplings to vector fields (photon and dark photon),1 but the field
redefinition in Eq. (9.11) that modifies the NLO Lagrangian will be important in the cases
of scalar and pseudoscalar DM.

We are interested in the case where the photon field Aµ consists of an electrostatic background
Φ and quantum fluctuations Aµ:

A0(x, t) = Φ(x) +A0(x, t) , A(x, t) = A(x, t) . (9.12)

The normalized NR field ψ̂+ can be expanded in energy eigenstates of the NR Schrödinger
equation:

ψ̂+(x, t) =
∑
I,s

ĉI,s e
−iεI tΨI(x)

1√
2

(
ξs

ξs

)
, (9.13)

where ĉI,s are annihilation operators for NR electrons, and(
− ∇

2

2me

− eΦ(x)
)
ΨI(x) = εIΨI(x) , ξ+ =

(
1

0

)
, ξ− =

(
0

1

)
. (9.14)

1As a side remark, in the special case of an electrostatic potential, A0 = Φ(x), A = 0, one can check
that keeping all the NLO terms reproduces the familiar fine structure correction in NR quantum mechanics:
Leff,NLO
ψ = ψ̂†

+
∇4

8m3
e
ψ̂+ − e

8m2
e
(∇2Φ) ψ̂†

+ψ̂+ − ie
8m2

e
(∇Φ) ·

(
ψ̂†
+ Σ ×

←→
∇ ψ̂+

)
, where the three terms are the

relativistic kinetic energy correction, the Darwin term and spin-orbit coupling, respectively.
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Note that the form of the background field in Eq. (9.12) assumes negligible spin-orbit cou-
pling, in which case the two spin states s = ± for a given I are degenerate. From Eqs. (9.9)
and (9.12), we can also deduce the electron’s coupling to photon quanta Aµ at LO in the
NR EFT:

Leff
ψA = −eA0 ψ̂

†
+ψ̂+ −

ie

2me

A ·
(
ψ̂†
+

←→
∇ ψ̂+

)
+

e

2me

(∇×A) ·
(
ψ̂†
+Σ ψ̂+

)
− e2

2me

A2 ψ̂†
+ψ̂+ ,

(9.15)
where ψ̂†

+

←→
∇ ψ̂+ ≡ ψ̂†

+ (∇ψ̂+)− (∇ψ̂†
+) ψ̂+.

Let us now move on to the DM-electron interaction Lint. For vector DM, we can simply
replace eAµ → eAµ − g φµ in the derivation above, and obtain:

Leff
int = g φ0 ψ̂

†
+ψ̂+ +

ig

2me

φ ·
(
ψ̂†
+

←→
∇ ψ̂+

)
− g

2me

(∇× φ) ·
(
ψ̂†
+Σ ψ̂+

)
+
ge

me

φ ·A ψ̂†
+ψ̂+ −

g2

2me

φ2 ψ̂†
+ψ̂+ (vector DM).

(9.16)

For the scalar and pseudoscalar cases, since Lint contains an operator that has a different
structure than all the operators in Lψ, there is no such simple replacement. In principle, we
should have included Lint when solving the EOM for ψ− in Eq. (9.8). However, if we are
working at leading order in the DM-electron coupling g, it is sufficient to simply substitute
Eq. (9.8) into Lint. We therefore obtain, at LO in the NR expansion:

Leff,LO
int =

g φ ψ̂
†
+ψ̂+ (scalar DM) ,

− g
2me

(∇φ) · ψ̂†
+Σ ψ̂+ (pseudoscalar DM) .

(9.17)

We now show that these LO terms are not sufficient to capture the dominant contributions
to DM absorption. The point is that our NR EFT is an expansion in ∇

me
∼ ve, and the power

counting is such that momenta (and spatial derivatives) count as meve and energies (and time
derivatives) count as mev

2
e . For NR absorption, the energy deposition is ω ' mφ ∼ mev

2
e .

Meanwhile although the momentum transfer formally counts as meve, it is in fact much
smaller: q = mφvφ ∼ mev

2
evφ � meve, with vφ ∼ O(10−3). Therefore, when the LO result

contains factors of q, we need to work out the NLO terms and see if they may in fact
dominate.

From Eq. (9.17) it is clear that such q suppression is indeed present in the pseudoscalar case.
It is perhaps less obvious that the scalar case also suffers a q suppression, and its origin can
be understood from charge conservation: the LO operator couples the scalar DM φ to the
electron number density ψ̂†

+ψ̂+ = −ρe/e (with ρe the charge density carried by the electron),
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whose matrix elements vanish in the q → 0 limit because ρe = q · J e/ω; technically this is
manifest via the orthogonality of initial and final state electron wave functions, as we will
see later in the paper.2 Therefore, in both scalar and pseudoscalar cases, we need to expand
Lint up to NLO where there are several operators. Many of them will not be needed, though,
because they are also q suppressed or involve too many fields to contribute to the in-medium
self-energies to be computed in the next section. Including only the unsuppressed operators
at NLO that contain up to four fields, we have

Leff
int =


g φ ψ̂†

+ψ̂+ + g
8m2

e
φ
(
ψ̂†
+

←→
∇ 2ψ̂+

)
− ige

2m2
e
φA ·

(
ψ̂†
+

←→
∇ ψ̂+

)
(scalar DM) ,

− g
2me

(∇φ) · ψ̂†
+Σ ψ̂+ + ig

4m2
e
(∂tφ)

(
ψ̂†
+ Σ ·

←→
∇ ψ̂+

)
(pseudoscalar DM) .

(9.18)
These results were already summarized in Table 9.1 (for brevity we dropped the hat on ψ̂+

and omitted the last operator in the scalar case in that table — we will see that it gives
vanishing contribution to DM absorption in an isotropic medium). The second term in the
scalar case, where the DM φ couples to ψ̂†

+

←→
∇ 2ψ̂+ ≡ ψ̂†

+(∇2ψ̂+) + (∇2ψ̂†
+) ψ̂+ − 2 (∇ψ̂†

+) ·
(∇ψ̂+), is obtained by combining the ψ†

−ψ− term from ψ̄ψ = ψ†
+ψ+−ψ†

−ψ− (with ψ− replaced
by its EOM solution Eq. (9.8)) and additional terms from the field redefinition in Eq. (9.11).
We will see in the next section that this operator gives the dominant contribution to scalar
DM absorption. Pseudoscalar DM absorption is likewise dominated by the NLO operator
(∂tφ)

(
ψ̂†
+Σ ·

←→
∇ ψ̂+

)
.3

9.3 In-medium Self-energies and Absorption Rates
We now use the NR EFT derived in the previous section to compute DM absorption rates.
Generally, the absorption rate of a state can be derived from the imaginary part of its self-
energy. In a medium, care must be taken because of mixing effects. If the DM φ mixes
with a SM state A in the medium (generalization to the case of mixing with multiple states
is straightforward) then the self-energy matrix has to diagonalized to find the in-medium

2The same can be said for the φ0 component in the vector DM case. However, since φ0 couples exactly
to the charge density even beyond LO, retaining higher order terms in the NR expansion does not remove
the q suppression.

3Technically, the electron fields in the two equivalent expressions of the pseudoscalar coupling, gφψ̄iγ5ψ
and − g

2me
(∂µφ)(ψ̄γ

µγ5ψ), are not the same, but are related by a field redefinition. If one derives the NR EFT
starting from − g

2me
(∂µφ)(ψ̄γ

µγ5ψ), this NLO operator is obtained directly from its µ = 0 component. On
the other hand, if one derives the NR EFT from gφψ̄iγ5ψ, a further field redefinition is needed to eliminate
operators involving the background electrostatic potential Φ and arrive at the same operator coefficient
shown in Eq. (9.18).
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eigenstates: (
m2
φ +Πφφ ΠφA

ΠAφ ΠAA

)
→

(
m2
φ +Πφ̂φ̂ 0

0 ΠÂÂ

)
, (9.19)

where Πφφ ∼ O(g2), ΠφA,ΠAφ ∼ O(g). For a 4-momentum Qµ = (ω, q), we have ΠφA(Q) =

ΠAφ(−Q). Simple algebra shows that to O(g2),

Πφ̂φ̂ ' Πφφ +
ΠφAΠAφ

m2
φ − ΠAA

. (9.20)

The DM absorption rate is then derived from the imaginary part of the eigenvalue corre-
sponding to the DM-like state, φ̂:

Γφabs = −
Zφ̂
ω

ImΠφ̂φ̂ ' −
1

ω
Im

(
Πφφ +

ΠφAΠAφ

m2
φ − ΠAA

)
, (9.21)

where the wave function renormalization Zφ̂ =
(
1 − dReΠφ̂φ̂

dω2

)−1

= 1 + O(g2) has been
approximated as unity. The total rate per unit target mass is given by

R =
ρφ
ρT

1

ω
Γφabs = −

ρφ
ρT

1

ω2
Im

(
Πφφ +

ΠφAΠAφ

m2
φ − ΠAA

)
, (9.22)

where ρT is the target’s mass density, and ρφ = 0.4GeV/cm3 is the local DM energy density.
For non-relativistic DM, ω ' mφ, and ρφ ' 1

2
m2
φφ

2
0 with the DM field amplitude defined by

φ(x, t) = φ0 cos(q · x− ωt).

The calculation of self-energies generally involves two graph topologies:

Q−→
O1 O2

≡ − iΠO1,O2(Q) = −iΠO2,O1(−Q) , (9.23)

Q−→
O

≡ − iΠ′
O(Q) , (9.24)

where a blob represents the sum of one-particle-irreducible (1PI) graphs. While we have
drawn curly external lines for concreteness, they can each represent a scalar, pseudoscalar
or vector. The operators O1, O2, O that the external fields couple to may carry Lorentz
indices, in which case Π and Π′ inherit these indices. We discuss the calculation of these
self-energy diagrams in App. N.
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In the cases of interest here, A represents one of the polarizations of the SM photon, and
ΠAA is directly related to the target’s complex conductivity/dielectric function, as discussed
further below. Since ΠAA enters the absorption rate formula (Eq. (9.22)) as long as there
is a nonzero mixing ΠφA, let us examine this quantity in more detail before specializing to
each DM model. The photon self-energy tensor Πµν is defined such that the effective action
contains

Seff ⊃
1

2

∫
d4QΠµν(Q)Aµ(Q)Aν(−Q)

=
1

2

∫
d4Q

[
Π00(Q)A0(Q)A0(−Q)− 2Π0j(Q)A0(Q)Aj(−Q) + Πij(Q)Ai(Q)Aj(−Q)

]
,

(9.25)

where Aj (j = 1, 2, 3) represent the three components of A. As usual, we compute Πµν from
the sum of 1PI graphs. From Eq. (9.25) it is clear that the sign convention here is such that
iΠ00, −iΠ0j and iΠij are given by the sum of two-point 1PI graphs between A0A0, A0Aj

and AiAj, respectively. From the photon-electron couplings in Eq. (9.15), we obtain Πµν in
terms of ΠO1,O2 and Π′

O defined in Eq. (9.23) and (9.24):

Π00 = −e2Π1,1 , Π0j = −e2Π1,vj ,

Πij = −e2Πvi,vj −
e2

4m2
e

(q2δij − qiqj)Π1,1 +
e2

me

δijΠ′
1 , (9.26)

where the velocity operator vj is defined by

vj ≡ − i
←→
∇ j

2me

. (9.27)

Here and in what follows, we suppress the arguments Qµ = (ω, q) of self-energy functions
where there is no confusion. To arrive at the expression of Πij in Eq. (9.26), we have simplified
the spin trace assuming the electron loop does not involve non-trivial spin structures; for
example,

ΠΣi,Σj =
tr(σiσj)

tr 1
Π1,1 = δij Π1,1 . (9.28)

This assumption is obviously valid for one-loop self-energy diagrams. In the superconductor
calculation in Sec. 9.5, we will need two-loop self-energies with an internal phonon line;
in that case the electron-phonon coupling is spin-independent, so the same simplification
applies.

The photon self-energy satisfies the Ward identity QµΠ
µν = QνΠ

µν = 0. From Eq. (9.26) we
see that this implies the following relations between Π1,1, Π1,vj , Πvi,vj and Π′

1:

ωΠ1,1 = qj Π1,vj , ωΠ1,vj = qiΠvi,vj −
qj

me

Π′
1 . (9.29)
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These relations can be explicitly checked with the one-loop-level expressions in Eqs. (N.7)
and (N.8).

We can write Πµν in terms of its polarization components as follows:

Πµν = −
∑

λ,λ′=±,L

Πλλ′ e
µ
λe
ν∗
λ′ , (9.30)

where
eµ± =

1√
2
(0 , x̂± iŷ) , eµL =

1√
Q2

(q , ωẑ) (9.31)

for Qµ = (ω, q) = (ω, qẑ). These are the three photon polarizations in Lorenz gauge Qµe
µ
λ =

0, and coincide with the three physical polarizations of a massive vector with m2 = Q2.

We will mostly focus on isotropic target materials in this work, and leave a discussion of the
anisotropic case to App. O. For an isotropic medium, the 3× 3 matrix Πλλ′ is diagonal:

Π++ Π+− Π+L

Π−+ Π−− Π−L

ΠL+ ΠL− ΠLL

 isotropic−→


ΠT 0 0

0 ΠT 0

0 0 ΠL

 (9.32)

where ΠT and ΠL are the transverse and longitudinal photon self-energies, respectively. The
photon self-energy tensor Πµν therefore has the following form:

Πµν isotropic−→ −ΠT

(
eµ+e

ν∗
+ + eµ−e

ν∗
−
)
− ΠLe

µ
Le

ν∗
L = −


q2

Q2 ΠL 0 0 ωq
Q2 ΠL

0 ΠT 0 0

0 0 ΠT 0
ωq
Q2 ΠL 0 0 ω2

Q2 ΠL

 . (9.33)

From the linear response relation Jµ = −ΠµνAν
4 and Ohm’s law J = σE = σ(iωA− iqA0)

we can relate ΠT and ΠL to the complex conductivity σ, which in turn is related to the
complex dielectric ε via σ = iω(1− ε) [7, 29, 182]:

ΠT = −iωσ = ω2(1− ε) , ΠL = −iωZ−1
L σ = Q2(1− ε) , (9.34)

where ZL = ω2/Q2. The real part of the conductivity σ1 ≡ Reσ (the imaginary part of the
dielectric) gives the photon absorption rate in medium:

σ1 = ω Im ε = − 1

ω
ImΠT = −ZL

ω
ImΠL . (9.35)

4Strictly speaking, linear response theory relates Jµ and Aν via the retarded Green’s function Rµν , which
differs from the time-ordered self-energy Πµν by the sign of the imaginary part at negative frequencies. This
difference is however irrelevant for our calculations.
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We finally note that all the quantities introduced above – the complex conductivity σ and
dielectric ε, and photon self-energies ΠT , ΠL can be simply computed from Π1,1:

ε− 1 =
iσ

ω
= −ΠL

Q2
= −ΠT

ω2
= −e

2

q2
Π1,1 . (9.36)

With the photon part of the self-energy calculation completed, we now move on to consider
self-energies involving the DM and compute DM absorption rates.

Vector Absorption
Since a vector DM couples to electrons in the same way as the photon, albeit with a coupling
rescaled by −g/e = −κ, we have

Πµν
φφ = −κΠ

µν
φA = −κΠµν

Aφ = κ2Πµν . (9.37)

Each of the three polarizations of φ mixes with the corresponding polarization of the photon.
Therefore, for the transverse (longitudinal) polarization, we simply set Πφφ = −κΠφA =

−κΠAφ = κ2ΠAA in Eq. (9.22), with ΠAA = ΠT (ΠL). As a result,

RT,L = −κ2 ρφ
ρT

Im

(
ΠT,L

m2
φ − ΠT,L

)
= −κ2 ρφ

ρT
m2
φ Im

(
1

m2
φ − ΠT,L

)
. (9.38)

The total absorption rate for an unpolarized vector DM is obtained by averaging over the
three polarizations, R = (2RT + RL)/3. For NR absorption, we have ω2 ' Q2 = m2

φ, and
ΠT ' ΠL = m2

φ
e2

q2
Π1,1 (see Eq. (9.36)), so

Rvector = −κ2
ρφ
ρT

Im

(
1

1− e2

q2
Π1,1

)
. (9.39)

The rate is semi-independent of the momentum transfer (and hence the DM velocity) since
Π1,1 generically scales as q2.

The result can also be written in terms of the material’s complex conductivity/dielectric:

Rvector = −κ2
ρφ
ρT

Im
(
1

ε

)
= κ2

ρφ
ρT

1

|ε|2
σ1
mφ

, (9.40)

with ε, σ1 evaluated at ω = mφ, q = 0. One may think of

1

|ε|2
=

m4
φ

(m2
φ − ReΠL)2 + (ImΠL)2

(9.41)

as an in-medium screening factor, which suppresses the absorption rate compared to the
obvious rescaling of photon absorption by κ2 [39, 41, 362, 375].
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Pseudoscalar Absorption
A pseudoscalar does not mix with the photon due to parity mismatch,5 and we simply have
R = − ρφ

ρT

1
ω2 ImΠφφ. The pseudoscalar self-energy Πφφ is defined such that the effective

action contains
Seff ⊃ −

1

2

∫
d4Q

[
m2
φ +Πφφ(Q)

]
φ(Q)φ(−Q) . (9.42)

Therefore, −iΠφφ is given by the sum of two-point 1PI graphs. From the pseudoscalar
coupling in Eq. (9.18), we find, again after simplifying the spin trace as in Eq. (9.28):

ImΠφφ =
g2

4m2
e

Im
[
q2Π1,1 − ωqj

(
Π1,vj +Πvj ,1

)
+ ω2Πvj ,vj

]
(9.43)

Comparing with Eq. (9.26), we see that ImΠφφ for a pseudoscalar is closely related to the
photon polarization Πµν :

ImΠφφ = −
g2

e2
1

4m2
e

Im
[
q2Π00 − ω qj

(
Π0j +Πj0

)
+ ω2Πjj − q2 ω2

2m2
e

Π00

]
. (9.44)

Note that the Π′
1 term in Πjj is purely real and thus does not appear in the equation above.

Also, since ω � me, we can drop the last term. Writing Πµν in terms of ΠT and ΠL as in
Eq. (9.33) and setting g = gaee, we find

Rpseudoscalar = −g2aee
ρφ
ρT

1

4m2
eω

2

1

e2
(
2ω2 ImΠT +m2

φ ImΠL

)
. (9.45)

For NR absorption, ω2 ' Q2 = m2
φ, and ΠT ' ΠL = e2

m2
φ

q2
Π1,1 (see Eq. (9.36)), and

therefore,

Rpseudoscalar = −g2aee
ρφ
ρT

3m2
φ

4m2
e

1

q2
ImΠ1,1 . (9.46)

As in the vector DM case, the absorption rate can be written solely in terms of Π1,1; the
other self-energies that appear in Eq. (9.43) have been traded for Π1,1 via the Ward identity.
Also, analogous to the vector DM case, the rate is semi-independent of the DM velocity as
Π1,1 ∼ q2. Note that the dominant contribution to pseudoscalar DM absorption comes from
the last term in Eq. (9.43) that is proportional to ω2Πvi,vj , which originates from the second
(formally NLO) operator in Eq. (9.18) (as underlined in Table 9.1).

We can further recast the pseudoscalar DM absorption rate in terms of the photon absorption
rate σ1 = Reσ = ω Im ε and reproduce the standard result [39–41, 360]:

Rpseudoscalar =
g2aee
e2

ρφ
ρT

3mφσ1
4m2

e

. (9.47)

5The mixed self-energy Π0
φA (ΠjφA) between φ and A0 (Aj) has to be parity odd (even). For an isotropic

target one must have ΠjφA ∝ qj while Π0
φA is a scalar function of q2, so neither has the right parity if nonzero.
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We remark in passing that pseudoscalar absorption has also been studied in the context of
solar axion detection; in that case, the relativistic kinematics ω � mφ means that the ImΠL

term in Eq. (9.45) is negligible, so the proportionality factor in Eq. (9.47) is 1
2

instead of
3
4

[39, 360, 376].

Scalar Absorption
For scalar DM, we need to compute explicitly both ImΠφφ and its mixing with the photon
Πµ
φA(Q) = Πµ

Aφ(−Q). These self-energies are defined such that

Seff ⊃
∫
d4Q

[
−1

2

(
m2
φ +Πφφ(Q)

)
φ(Q)φ(−Q)− Πµ

φA(Q)φ(Q)Aµ(−Q)
]

=

∫
d4Q

[
−1

2

(
m2
φ +Πφφ(Q)

)
φ(Q)φ(−Q)

− Π0
φA(Q)φ(Q)A0(−Q) + Πj

φA(Q)φ(Q)A
j(−Q)

]
. (9.48)

Therefore, −iΠφφ, −iΠ0
φA and iΠj

φA are given by the sum of two-point 1PI graphs between
φφ, φA0 and φAj, respectively. From the scalar coupling in Eq. (9.18) and photon coupling
in Eq. (9.15), we find:

ImΠφφ = g2 Im
(
Π1,1 − Π1,v̄2 − Πv̄2,1 +Πv̄2,v̄2

)
, (9.49)

Π0
φA = − ge

(
Π1,1 − Πv̄2,1

)
, (9.50)

Πj
φA = − ge

(
Π1,vj − Πv̄2,vj +

1

me

Π′
vj

)
, (9.51)

where

v̄2 ≡ 1

2
vjvj = −

←→
∇ 2

8m2
e

. (9.52)

As in the photon case, the self-energies are related by the Ward identity QµΠ
µ
φA = 0:

ωΠv̄2,1 = qj Πv̄2,vj −
qj

me

Π′
vj , (9.53)

where we have used the first relation in Eq. (9.29). One can explicitly check that Eq. (9.53)
holds between the one-loop-level expressions for the self-energies in Eqs. (N.7) and (N.8).

For an isotropic medium, we must have Πj
φA ∝ qj because there is no special direction other

than q.6 So the mixing only involves the photon’s longitudinal component. Therefore, ΠAA

6We note in passing that the Π′
vj term in ΠjφA is q independent and must therefore vanish in an isotropic

medium. This is why we have omitted the φA ·
(
ψ̂†
+

←→
∇ ψ̂+

)
operator in Eq. (9.18), which only contributes

to this term, from Table 9.1.
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in the rate formula Eq. (9.22) should be set to ΠL = m2
φ
e2

q2
Π1,1 (see Eq. (9.36)), and ΠφA

should be set to

ΠφL = Πµ
φAeLµ =

1

q
√
Q2

(
q2Π0

φA−ωqj Π
j
φA

)
= −

√
Q2

q
Π0
φA = ge

√
Q2

q

(
Π1,1−Πv̄2,1

)
, (9.54)

where we have used the Ward identity to trade qj Πj
φA for ωΠ0

φA. Substituting the expressions
for ImΠφφ, ΠφL and ΠL above into Eq. (9.22), and applying the NR absorption kinematics
ω2 ' Q2 = m2

φ, we find

Rscalar = − d2φee
4πm2

e

M2
Pl

ρφ
ρT

1

m2
φ

Im

[
Πv̄2,v̄2 +

q2

e2

(
1− e2

q2
Πv̄2,1

)(
1− e2

q2
Π1,v̄2

)
1− e2

q2
Π1,1

]
, (9.55)

where we have used ΠLφ(Q) = ΠφL(−Q), Πv̄2,1(−Q) = Π1,v̄2(Q), and g = dφee
√
4πme
MPl

.

We see that the result for scalar absorption, Eq. (9.55), depends on Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 in
addition to Π1,1. If we had kept only the LO operator φ ψ̂†

+ψ̂+ in the calculation above, we
would obtain Eq. (9.55) with Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 set to zero, which coincides with q2

m2
φ

times the
vector DM absorption rate in Eq. (9.39). Just as in the vector DM case, the contribution of
the LO operator φ ψ̂†

+ψ̂+ to scalar DM absorption is screened due to in-medium mixing [44].
However, the formally NLO operator φ

(
ψ̂†
+

←→
∇ 2ψ̂+

)
introduces additional contributions via

Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 . As we will see in the next two sections, generically Π1,1 , Πv̄2,1 ∼ q2 while
Πv̄2,v̄2 ∼ q0. It is thus clear from Eq. (9.55) that the absorption rate of a NR scalar DM is
in fact dominated by the Πv̄2,v̄2 term:

Rscalar ' −d2φee
4πm2

e

M2
Pl

ρφ
ρT

1

m2
φ

ImΠv̄2,v̄2 . (9.56)

Importantly, this term (overlooked in several previous calculations of scalar DM absorp-
tion [44, 364, 365]) is not directly proportional to the photon absorption rate and is un-
screened. We emphasize that the suppression of LO operator’s contribution is specific to the
case of non-relativistic DM absorption, where q � ω; for absorption of a relativistic scalar
(q ' ω) or scalar-mediated scattering (q � ω), the LO operator φ ψ̂†

+ψ̂+ indeed gives the
dominant contribution.

To summarize, in this section we have derived DM absorption rates in terms of in-medium
self-energies of the form ΠO1,O2 , as defined in Eq. (9.23). (Contributions from the other
graph topology, Eq. (9.24), have been eliminated using the Ward identity.) Both vector and
pseudoscalar absorption involve a single self-energy function Π1,1 ∝ ΠL (see Eqs. (9.39) and
(9.46)), and the rates can be simply related to the (complex) conductivity/dielectric (see
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Eqs. (9.40) and (9.47)). In these cases, the data-driven approach based on the measured
conductivity/dielectric is viable, and we can also use optical data to calibrate our theoretical
calculations based on DFT or analytic modeling. On the other hand, for scalar DM absorp-
tion, additional self-energy functions Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 enter (see Eq. (9.55)), and the rate
is not directly related to photon absorption. In this case, the data-driven approach fails and
theoretical calculations are needed.

In the next two sections, we compute the self-energies Π1,1, Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 in crystal and
superconductor targets, respectively, which then allow us to derive the absorption rates of
vector, pseudoscalar and scalar DM in these targets. Our main results for Si, Ge and Al-
superconductor (Al-SC) targets are collected in Figs. 9.1, 9.2 and 9.3. First, Fig. 9.1 confirms
the dominance of the Πv̄2,v̄2 term in the scalar DM absorption rate (i.e. that Eq. (9.55) indeed
simplifies to Eq. (9.56)) by rewriting Eq. (9.55) as

Rscalar = d2φee
4πm2

e

M2
Pl

ρφ
ρT

(Rv̄2,v̄2 +R1,1 +Rv̄2,1) , (9.57)

and comparing the sizes of the terms. HereRv̄2,v̄2 ≡ − 1
m2
φ

ImΠv̄2,v̄2 ,R1,1 ≡ − 1
m2
φ

q2

e2
Im
(

1

1− e2

q2
Π1,1

)
,

while the remaining terms define Rv̄2,1. Next, Fig. 9.2 shows the projected reach for the
pseudoscalar and vector DM models, where we see good agreement between our theoreti-
cal calculations (solid curves) and rescaled optical data (dashed curves). Lastly, Fig. 9.3
shows our calculated reach for scalar DM and compares the Al-SC results with previous
work [39, 44]. These results will be discussed in detail in the following sections.

9.4 Dark Matter Absorption in Crystals
In this section, we specialize to the case of crystal targets that are described by band theory.
It suffices to compute the self-energies ΠO1,O2 at one-loop level, with O1,2 = 1, v̄2. The
result for general O1, O2 is given in Eq. (N.7) in Appendix N, and involves a sum over
electronic states I, I ′ that run in the loop. Since we assume the target is at zero temperature
the occupation numbers fI , fI′ take values of either 1 or 0. Only pairs of states for which
fI′ − fI 6= 0, i.e. one is occupied and the other is unoccupied, contribute to the sum — it is
between these pairs of states that electronic transitions can happen.

In the present case, the states are labeled by a band index i and momentum k within the
first Brillouin zone (1BZ), so we write I = i,k, and I ′ = i′,k′. The wave functions have the
Bloch form, which in real and momentum space read, respectively:

Ψi,k(x) =
1√
V

∑
G

ui,k,G e
i(k+G)·x , Ψ̃i,k(p) =

√
V
∑
G

ui,k,G δp,k+G , (9.58)
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Figure 9.1: Comparison between different terms contributing to the scalar DM absorption
rate, defined in Eq. (9.57), for Si, Ge and Al-SC targets assuming q = 10−3mφ. Dashed
curves indicate negative values. In all three targets we see that Rv̄2,v̄2 dominates over the
entire DM mass range considered. This term comes from an NLO operator in the NR EFT
(underlined in Table 9.1) and cannot be directly related to the target’s optical properties
(i.e. the complex conductivity/dielectric function). For Si and Ge, the calculation of Rv̄2,1

is technically challenging as explained in Sec. 9.4; however, it is parameterically the same
order in q as R1,1 and therefore expected to be also subdominant compared to Rv̄2,v̄2 .

where the sum runs over all reciprocal lattice vectors G. These are related by

Ψi,k(x) =

∫
d3p

(2π)3
Ψ̃i,k(p) e

ip·x , Ψ̃i,k(p) =

∫
d3xΨi,k(x) e

−ip·x (9.59)

upon applying the standard dictionary between discrete and continuum expressions:∑
p

= V

∫
d3p

(2π)3
, δp1,p2

=
(2π)3

V
δ3(p1 − p2) . (9.60)

We now examine the matrix element 〈i′,k′| O1 e
iq·x |i,k〉 involved in Eq. (N.7) for the v̄2 and

1 operators; 〈i,k| O2 e
−iq·x |i′,k′〉 is completely analogous. For the v̄2 operator, we simply

obtain

〈i′,k′| v̄2 eiq·x |i,k〉 = − 1

8m2
e

∫
d3x

(
Ψ∗
i′,k′
←→
∇ 2Ψi,k

)
eiq·x

=
1

8m2
e

∑
G′,G

(k′ +G′ + k +G)2 u∗i′,k′,G′ ui,k,G δk′+G′,k+G+q . (9.61)

For NR absorption in the mass range of interest here, mφ . 100 eV, the momentum transfer
q ∼ 10−3mφ ∼ meV

(mφ
eV

)
is well within the 1BZ (O(keV)). This implies that Umklapp

processes where G′ 6= G do not contribute, so (lattice) momentum conservation simply



222

10−3 10−2 10−1 1 10 102

mφ [eV]

10−17

10−16

10−15

10−14

10−13

10−12

10−11
κ

Al−
SC

X
E

N
O

N
10
/1

00

Sun

Ge

Si

Vector DM

10−3 10−2 10−1 1 10 102

mφ [eV]

10−13

10−12

10−11

10−10

10−9

g a
ee

WD

KSVZ

DFSZ
A

l−
SC

Ge

Si

Pseudoscalar DM

Figure 9.2: Projected 95% C.L. reach (3 events with no background) with semiconductor
crystal (Si, Ge) and superconductor (Al-SC) targets for the vector and pseudoscalar DM
models defined in Eq. (9.3), assuming 1 kg-yr exposure. We compare our theoretically calcu-
lated reach (solid) against the data-driven approach utilizing the target material’s measured
conductivity/dielectric [37, 38] (dashed). For Si and Ge, the data-driven approach was taken
in previous works [39, 40], with which we find good agreement. For Al-SC, our theoretical
calculation reproduces the results in Ref. [41] (dotted) up to the choice of overall normaliza-
tion factor. Also shown are existing direct detection limits from XENON10/100 [40], stellar
cooling constraints from the Sun (assuming Stückelberg mass for vector DM) [42] and white
dwarfs (WD) [31], and pseudoscalar couplings corresponding to the QCD axion in KSVZ
and DFSZ (for 0.28 ≤ tan β ≤ 140) models [43].

dictates k′ = k + q. At leading order in q we can set k′ = k, and Eq. (9.61) simplifies to

〈i′,k′| v̄2 eiq·x |i,k〉 = δk′,k

1

2m2
e

∑
G

(k +G)2 u∗i′,k,G ui,k,G +O(q) . (9.62)

For the 1 operator, additional care is needed since 〈i′,k′| eiq·x |i,k〉 vanishes in the q → 0

limit: |i′,k′〉 and |i,k〉 are distinct energy eigenstates and therefore orthogonal. At O(q), we
have 〈i′,k′| eiq·x |i,k〉 ' iq ·〈i′,k′|x |i,k〉. A numerically efficient way to compute this matrix
element is to trade the position operator for the momentum operator via its commutator
with the Hamiltonian H = p2

2me
+ V (x):

〈i′,k′|x |i,k〉 = − 1

εi′,k′ − εi,k
〈i′,k′| [x, H] |i,k〉 = − i

me(εi′,k′ − εi,k)
〈i′,k′|p |i,k〉 . (9.63)

Substituting in the wave functions, we find:

〈i′,k′| eiq·x |i,k〉 = δk′,k

q

me ωi′i,k
·
∑
G

(k +G)u∗i′,k,G ui,k,G +O(q2) . (9.64)
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Figure 9.3: Projected 95% C.L. reach (3 events with no background) with semiconductor
crystal (Si, Ge) and superconductor (Al-SC) targets, for the scalar DM model defined in
Eq. (9.3), assuming 1 kg-yr exposure. In contrast to the vector and pseudoscalar cases
shown in Fig. 9.2, the projections here cannot be derived from the target’s optical properties.
Differences compared to Hochberg et al. [41] and Gelmini et al. [44] in the Al-SC case are
discussed in detail in Sec. 9.5. Also shown are existing constraints from fifth force [45] and
red giant (RG) cooling [46].

where ωi′i,k ≡ εi′,k − εi,k.

It is convenient to define the following crystal form factors, via which the Bloch wave func-
tions enter DM absorption rates (at leading order in q):

f i′i,k ≡
1

2m2
e

∑
G

(k +G)2 u∗i′,k,G ui,k,G , (9.65)

f i′i,k ≡
1

ωi′i,k

∑
G

(k +G)u∗i′,k,G ui,k,G . (9.66)

Note that they differ from the crystal form factor used in spin-independent DM scattering [7,
9, 33]: f[i′k′,ik,G] =

∑
G′ u∗i′,k′,G′+G ui,k,G′ . The absorption kinematics simply set the k and

G vectors of the initial and final states to be the same; also, powers of (k +G) appear as
follows from the effective operators.

The crystal form factors defined above allow us to write the self-energies in a concise form.
For the operators 1 and v̄2, the spin trace is trivial and simply yields a factor of two. Each
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pair of valence/conduction states between which a transition can happen contributes to two
terms in the sum over electronic states, because either i,k or i′,k′ can be a valence or
conduction state. Combining the two terms for each pair, we obtain

Π1,1 =
2

V

∑
i′∈ cond.
i∈ val.

∑
k∈ 1BZ

(
1

ω − ωi′i,k + iδ
− 1

ω + ωi′i,k − iδ

) ∣∣∣∣ qme

· f i′i,k
∣∣∣∣2 , (9.67)

Πv̄2,v̄2 =
2

V

∑
i′∈ cond.
i∈ val.

∑
k∈ 1BZ

(
1

ω − ωi′i,k + iδ
− 1

ω + ωi′i,k − iδ

) ∣∣fi′i,k∣∣2 , (9.68)

where δ → 0+. We see explicitly that Π1,1 ∼ q2 and Πv̄2,v̄2 ∼ q0, as already alluded to in
Sec. 9.3. The other two self-energies, Πv̄2,1 and Π1,v̄2 , take the form of q ·F +O(q2), where
F is a target-dependent function that involves f i′i,k and f i′i,k. In the absence of a special
direction, we must have F = 0 and therefore, Πv̄2,1 , Π1,v̄2 ∼ O(q2). Working out the leading
O(q2) contribution to these self-energies would require the O(q2) term in 〈i′,k′| eiq·x |i,k〉,
which however does not admit a simple expression in terms of just the momentum operator
as in Eq. (9.63). Nevertheless, Πv̄2,1 and Π1,v̄2 only enter the absorption rate in the scalar
DM case and we expect Rv̄2,1 ∼ R1,1 since Πv̄2,1, Π1,v̄2 and Π1,1 all scale as q2. So as long
as R1,1 � Rv̄2,v̄2 , it is justified to neglect the second term in Eq. (9.55) altogether and
use Eq. (9.56) for the rate; computing Πv̄2,1, Π1,v̄2 then becomes unnecessary. We see from
Fig. 9.1 that this is indeed the case for Si and Ge.

To calculate the DM absorption rates and make sensitivity projections, we use DFT-computed
electronic band structures and wave functions for Si and Ge [343], including all-electron re-
construction up to a cutoff of 2 keV; see Ref. [9] for details. We adopt the same numerical
setup as the “valence to conduction” calculation in Ref. [9], and include also the 3d states
in Ge as valence (treating them as core states gives similar results). The finite resolution
of the k-grid means we need to apply some kind of smearing to the delta functions coming
from the imaginary part of Eqs. (9.67) and (9.68). This is done in practice by setting δ in
Eqs. (9.67) and (9.68) to a finite constant 0.2 eV, which we find appropriate for a 10×10×10

k-grid for the majority of the DM mass range. We implement our numerical calculation as
a new module “absorption” of the EXCEED-DM program [179].

We present the projected reach for the three DM models in Figs. 9.2 and 9.3, assuming
3 events (corresponding to 95% CL) for 1 kg-yr exposure without including background,
together with existing constraints on these models for reference. The solid curves are our
theoretical predictions; they are obtained using the rate formulae Eqs. (9.39), (9.46) and
(9.56) for vector, pseudoscalar and scalar DM, respectively, with the self-energies Π1,1, Πv̄2,v̄2

computed numerically for Si and Ge according to Eqs. (9.67) and (9.68) as explained above.
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For pseudoscalar and scalar DM, the reach curves are essentially the sum of Lorentzians
coming from the smearing of delta functions in ImΠ1,1 and ImΠv̄2,v̄2 , respectively; there is
no screening in these cases. For vector DM, in-medium mixing with the photon results in
the plasmon peak (dip in the reach curves) between 10 and 20 eV for both Si and Ge; the
rate is screened below the plasmon peak.

For vector and pseudoscalar DM, we can alternatively take the data-driven approach, using
Eqs. (9.40) and (9.47), respectively, to derive the rate from the measured conductivity/di-
electric. As in Ref. [39, 40], we use the measured optical data from Ref. [37]. Results
from this data-driven approach are shown by the dashed curves; they are the same as in
Ref. [39, 40] upon inclusion of backgrounds. For Si, the solid and dashed curves are very
close to each other for mφ & 3 eV; the theoretical calculation (solid curves) systematically
overestimates the rate as mφ approaches the band gap (1.2 eV) because of the smearing
procedure discussed above. For Ge, we see the same systematic discrepancy close to the
band gap (0.67 eV); also, the theoretical calculation predicts a sharper plasmon peak (cor-
responding to a smaller ImΠ1,1 near the plasmon frequency) compared to data. Aside from
these issues, we view the overall good agreement between the solid and dashed curves in the
vector and pseudoscalar cases as a validation of our DFT-based theoretical calculation in the
majority of DM mass range. Importantly, this gives credence to the reach curves we have
calculated in the scalar DM case, where the data-driven approach does not apply, though
one has to keep in mind that our calculation systematically overestimates the rate for DM
masses below about 3 eV because of the smearing issue.

9.5 Dark Matter Absorption in Superconductors
We now turn to the case of conventional superconductors described by BCS theory. For the
majority of the calculation, we are concerned with electronic states with energies ε satisfying
|ε−εF | � ∆, where εF is the Fermi energy and 2∆ ∼ O(meV) is the gap, and the description
of a superconductor approaches that of a normal metal; corrections due to Cooper pairing
only become relevant within O(∆) of the Fermi surface.

Following Refs. [41, 181, 182], we model the electrons near the Fermi surface with a free-
electron dispersion εk = k2

m∗
and wave function Ψk(x) =

1√
V
eik·x, where the effective mass

m∗ is generally an O(1) number times the electron’s vacuum mass me. At zero temperature,
electrons occupy states up to the Fermi surface, a sphere of radius kF =

√
2m∗εF . The

volume of the Fermi sphere gives the density of free electrons, ne = 2
(2π)3

4
3
πk3F , where the

twofold spin degeneracy has been taken into account. We expect this simple effective de-
scription to hold up to a UV cutoff ωmax (∼ 0.5 eV for Al), above which interband transitions
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become important and one may instead perform a DFT calculation (as in the case of crystals
discussed in Sec. 9.4).

Within this simple free-electron model, the self-energies ΠO1,O2 are real at one-loop level; it
is easy to see that two electronic states differing by energy ω and momentum q cannot be
both on-shell when ω � q. Therefore, the leading contribution to the imaginary part arises
at two loops, and we have

ΠO1,O2 ' ReΠ(1-loop)
O1,O2

+ i ImΠ
(2-loop)
O1,O2

. (9.69)

For the real part ReΠO1,O2 = ReΠ(1-loop)
O1,O2

, we apply the general formula Eq. (N.7) to the
free-electron model in the limit ω � q, as explained in detail in App. N.2. The results are:

ReΠ1,1 =
q2

ω2

ne
m∗

, ReΠv̄2,1 = ReΠ1,v̄2 =
k2F
2m2

e

q2

ω2

ne
m∗

. (9.70)

While these are derived for normal conductors, we expect them to carry over to the su-
perconductor case; proportionality to ne (the total number of electronic states within the
Fermi sphere) implies insensitivity to deformations within O(∆) of the Fermi surface. We
also note in passing that, via Eq. (9.36), we obtain the familiar result for the photon self-
energies [377, 378]: ReΠT = ω2

p, ReΠL = Q2

ω2 ω
2
p, where ω2

p ≡ e2ne
m∗

is the plasma frequency
squared.

For the imaginary part ImΠO1,O2 = ImΠ
(2-loop)
O1,O2

, we expect the dominant contribution
to come from two-loop diagrams with an internal phonon line for a high-purity sample
(otherwise impurity scattering may also contribute). These are associated with φ (or γ)
+ e− → e− + phonon processes by the optical theorem, and can be computed by the stan-
dard cutting rules, as we detail in App. N.3. We model the (acoustic) phonons with a linear
dispersion, ωq′ = csq

′ where cs is the sound speed, and neglect Umklapp processes which
amounts to imposing a cutoff on the phonon momentum, q′max = qD ≡ ωD/cs with ωD the
Debye frequency. The electron-phonon coupling, in our normalization convention, is given by
Ce-phq

′√
2ωq′ρT

[41, 379, 380], with Ce-ph ∼ O(εF ) a constant with mass dimension one. Accounting
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Fermi energy εF = 11.7 eV
Plasma frequency ωp = 12.2 eV
Electron effective mass m∗ =

9π2ω4
p

128α2ε3F
= 0.35me

Fermi momentum kF =
√

2m∗εF = 2.1 keV
Superconducting gap 2∆ = 0.6meV
Debye frequency ωD = 37meV
Sound speed cs = 2.1× 10−5

Maximum phonon momentum qD =
ωD
cs

= 1.8 keV
Electron-phonon coupling Ce-ph = 56 eV
Mass density ρT = 2.7 g/cm3

Table 9.2: Material parameters for aluminum superconductor.

for the superconducting gap, we obtain, for ω � q:

ImΠ1,1 = −
C2

e-ph ω
2 q2

3 (2π)3ρT c
6
s

∫ min
(
1− 2∆

ω
,
ωD
ω

)
0

dx x4(1− x)E

(√
1− (2∆/ω)2

(1− x)2

)
,

(9.71)

ImΠv̄2,v̄2 = −
C2

e-ph ω
4

(2π)3ρT c
4
s

m4
∗

m4
e

∫ min
(
1− 2∆

ω
,
ωD
ω

)
0

dx x2(1− x)3E

(√
1− (2∆/ω)2

(1− x)2

)
,

(9.72)

ImΠv̄2,1 = ImΠ1,v̄2 =
C2

e-ph ω
2 q2

3 (2π)3ρT c
4
s

m2
∗

m2
e

∫ min
(
1− 2∆

ω
,
ωD
ω

)
0

dx x2(1− x)2E

(√
1− (2∆/ω)2

(1− x)2

)
,

(9.73)

where E(z) =
∫ 1

0
dt
√

1−z2t2
1−t2 is the complete elliptic integral of the second kind. For energy

depositions much higher than the gap, ω � 2∆, the elliptic integral E(1) = 1 drops out and
we reproduce the results for a normal conductor; see App. N.3 for details.

With the expressions of self-energies above, we can use Eqs. (9.39), (9.46) and (9.55) to
calculate the absorption rates for vector, pseudoscalar and scalar DM. We consider an alu-
minum superconductor (Al-SC) target, for which the relevant material parameters are listed
in Table 9.2. We use the same numerical values as in Ref. [41] for εF , ωp, ∆, ωD, cs, and
determine the electron-phonon coupling Ce-ph from resistivity measurements [381, 382] as
explained in App. N.3. For scalar DM, we again confirm the dominance of the Rv̄2v̄2 term
in Eq. (9.57), as seen in Fig. 9.1, so the rate formula Eq. (9.55) simplifies to Eq. (9.56) as in
the cases of Si and Ge discussed in Sec. 9.4.

Figs. 9.2 and 9.3 show the projected reach, assuming 3 events per kg-yr exposure without
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including background. We see that Al-SC, with its O(meV) gap, significantly extends the
reach with respect to Si and Ge to lower mφ. The solid red curves are obtained from the self-
energy calculations discussed above; the underlying model has a UV cutoff ωmax ∼ 0.5 eV
where we truncate the curves. Low-temperature conductivity data are available between
0.2 eV and 3 eV [38]. For the vector and pseudoscalar DM models, we also present the reach
following the data-driven approach in this mass range (dashed curves), obtained by using
Eqs. (9.40) and (9.47) with σ1(= Reσ = ω Im ε) taken from Ref. [38] and Re ε set to 1− ω2

p

ω2 .
Between 0.2 eV and 0.5 eV where both theoretical (solid) and data-driven (dashed) predic-
tions are shown, they are in reasonable agreement, with the latter stronger by about 40% for
both κ and gaee at 0.2 eV. The difference is presumably a result of approaching the UV cutoff
of the theoretical calculation, and possibly also the neglect of Umklapp contributions. For
scalar DM, the data-driven approach is not viable, and we present our theoretical prediction
up to 0.5 eV. We also show the reach curves obtained in the previous literature [41, 44] for
comparison, and discuss the differences in what follows.

Comparison with previous calculations. The calculation of DM absorption in super-
conductors was first carried out in Ref. [41], where the 2→2 matrix element for φ + e− →
e− + phonon was evaluated at leading order in q. For vector and pseudoscalar DM, our
results agree with Ref. [41] as seen in Fig. 9.2, up to a minor numerical prefactor understood
as follows. Ref. [41] chose the value of the electron-phonon coupling Ce-ph such that the
photon absorption rate (i.e. conductivity σ1) matches the experimentally measured value
at ω = 0.2 eV. In this work, we instead determine Ce-ph via the λtr parameter following
Refs. [381, 382], which results in a slightly lower value and hence the slight mismatch ob-
served in Fig. 9.2.

The more significant numerical difference in the scalar case between our results and Ref. [41],
as seen in Fig. 9.3, can be traced to two sources. First, the numerically dominant effect is
that Ref. [41] did not distinguish m∗ and me, while we have kept the vacuum mass me in the
operator coefficients and used the effective mass m∗ for the electron’s dispersion and phase
space; the two masses differ by about a factor of three in Al-SC. Note that the difference
between me and m∗ does not affect the vector and pseudoscalar absorption rates as they
only depend on Π1,1, which is independent of m∗/me. Second, Ref. [41] dropped a factor
of (1− x)2 in the scalar absorption matrix element when taking the soft phonon limit; this
results in an O(1) difference on the projected reach that is numerically subdominant. One
can easily verify these two points by evaluating the integral in Eq. (N.38) using x2(1− x) in
place of m4

∗
m4
e
x2(1 − x)3 in the last line; this would reproduce the analytic relation presented

in Ref. [41] between scalar and photon absorption rates in the limit ω � 2∆.
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More recently, Ref. [44] revisited scalar DM absorption and claimed that in-medium effects
lead to a significantly weaker reach. We reiterate that while in-medium mixing with the
photon screens the contribution from the LO operator 1, the leading contribution to scalar
absorption comes instead from the NLO operator v̄2 that is not screened. In fact, the
screening factor in Ref. [44] was (correctly) derived for the 1 operator but inconsistently
applied to the dominant contribution coming from the v̄2 operator as obtained in Ref. [41].
As a result, Ref. [44] significantly underestimated the reach as we can see from Fig. 9.3.

9.6 Conclusions
In this paper we revisited the calculation of electronic excitations induced by absorption of
bosonic DM. Specifically, we focused on O(1 - 100) eV mass DM for Si and Ge targets that
are in use in current experiments, and sub-eV mass DM that a proposed Al superconductor
detector will be sensitive to. We utilized an NR EFT framework, where couplings between
the DM and electron in a relativistic theory are matched onto NR effective operators in a
1/me expansion. We then computed absorption rates from in-medium self-energies, carefully
accounting for mixing between the DM and the photon. For crystal targets like Si and Ge, we
used first-principles calculations of electronic band structures and wave functions based on
density functional theory, and implemented the numerical rate calculation as a new module
“absorption” of the EXCEED-DM program [9, 179]. For BCS superconductors, we adopted
an analytic model as in Refs. [41, 181, 182] treating electrons near the Fermi surface as
free quasiparticles and including corrections due to the O(meV) superconducting gap. The
projected reach is presented in Figs. 9.2 and 9.3 for vector, pseudoscalar and scalar DM.

Most of previous calculations of DM absorption relied upon relating the process to photon
absorption, and hence to the target’s optical properties, i.e. the complex conductivity/dielec-
tric. For vector and pseudoscalar DM, this is a valid approach. Our theoretical calculations
reproduced the results of this data-driven approach in the majority of mass range, which we
view as a validation of our methodology and numerical implementation.

For scalar DM, however, we showed that the dominant contribution is not directly related
to photon absorption. One therefore cannot simply rescale optical data to derive the DM
absorption rate. Importantly, the familiar coincidence between scalar and vector couplings,
ψ̄ψ ' ψ̄γ0ψ, holds only at leading order in the NR EFT. For non-relativistic scalar DM
φ, matrix elements of the leading order operator are severely suppressed by the momentum
transfer q ∼ 10−3mφ. The dominant contribution comes instead from a different operator
that is formally next-to-leading-order in the NR EFT expansion, and does not suffer from
in-medium screening. We presented reach projections for scalar DM based on our theoretical
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calculations. Notably, for Al superconductor, the reach we found is much more optimistic
than the recent estimate in Ref. [44].

It is straightforward to extend the calculation presented here to anisotropic targets and ma-
terials with spin-dependent electronic wave functions (as can arise from spin-orbit coupling);
we will investigate this subject in detail in an upcoming publication. Another future di-
rection is to calculate phonon and magnon excitations from DM absorption via in-medium
self-energies in a similar EFT framework, refining and extending the calculation in Ref. [5].
Finally, in-medium self-energies are also relevant for DM detection via scattering; one can
carry out a calculation similar to what we have done here, but in a different kinematic
regime, to include in-medium screening corrections in the study of DM-electron scattering
via general EFT interactions [359].
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C h a p t e r 10

DARK MATTER DIRECT DETECTION IN MATERIALS WITH
SPIN-ORBIT COUPLING

10.1 Introduction
Detection of dark matter (DM) through non-gravitational interactions remains one of the
main goals of particle physics. Electronic excitations have been identified as a promising path
to lead the direct detection of DM to sub-GeV masses, a region not kinematically accessible in
experiments based on nuclear recoil. A variety of avenues to search for DM induced electronic
excitations have been proposed: ionization in noble gases [14, 19, 24, 35, 177, 244, 333, 334],
excitations across a band gap in crystal targets [2, 6, 7, 19, 25, 33–35, 39, 40, 177, 180, 248,
256], superconductors [41, 181], graphene [188], Dirac materials [29, 144, 182, 183, 335], and
transitions between molecular orbitals in aromatic organics [243, 383].

In this work we focus on a specific class of semiconductors for which O(meV) band gaps (as
opposed to typical O(eV) band gaps in semiconductors and insulators) arise as a consequence
of spin-orbit coupling (SOC) effects. Targets with such small band gaps can probe DM masses
down to O(keV) via scattering, and O(meV) via absorption, while still suppressing thermal
noise. Moreover, some of these SOC materials have tunable band structures, a property
which makes them interesting candidates for direct detection experiments [335].

However, SOC effects introduce some intricacies in the DM-electron interaction rate cal-
culations since the Bloch wave functions are no longer eigenstates of the Sz operator, and
therefore become two-component objects in spin space. This implies that electron spin sums
cannot be trivially performed, and new transition form factors must be computed. For
example, spin-dependent vector mediated scattering can no longer be related to its spin-
independent counterpart, and must be computed from first principles. We extend the frame-
work in Sec. 10.2 and implement the new spin-dependent form factors numerically within
EXCEED-DM [9, 384], which is publicly available on Github �.

To showcase the formalism developed in this paper, we apply it to a target with important
SOC effects, ZrTe5. This material has been extensively studied in the context of DM direct
detection [29, 144, 183] as a leading candidate for Dirac material targets. Dirac materials are
characterized by low-energy excitations which behave like free electrons and satisfy the Dirac
equation. The properties of the electronic excitations can then be understood by a simple
extension of the standard QED results. An additional consequence is that they have weak

https://exceed-dm.caltech.edu
https://github.com/tanner-trickle/EXCEED-DM
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electromagnetic screening, even with a small energy gap between the valence and conduction
bands, making them a desirable target for sub-MeV dark matter coupled to electrons via a
dark photon mediator [29]. In this work, however, we will focus only on ZrTe5 properties
which stem from its SOC nature, and we will not exploit any of the ones deriving from its
Dirac nature (which is still debated [385–396]).

To illustrate the variety of DM models that an SOC target can probe, we consider several
different DM models and processes. Specifically, we will study:

• Standard spin-independent (SI) and spin-dependent (SD) scattering via vector media-
tors. The fundamental interaction Lagrangians for these models take the form

L int =


φµ
(
gχχγ

µχ+ geψγ
µψ
)

(SI)

φµ
(
gχχγ

µγ5χ+ geψγ
µγ5ψ

)
(SD)

(10.1)

where ψ and χ are the electron and DM fermion fields, respectively, and φµ is the dark
mediator field.

• Scalar, pseudoscalar, and vector DM absorption. In this case the fundamental inter-
action Lagrangians take the form

Lint =


geφψψ (scalar DM)

geφψiγ
5ψ (pseudoscalar DM)

geφµψγ
µψ (vector DM) .

(10.2)

The paper is organized as follows. In Sec. 10.2 we generalize the DM interaction rate formal-
ism to account for spin-dependent wave functions in general (spin-orbit coupled, anisotropic)
targets. Then in Sec. 10.3 we apply these results to the candidate material ZrTe5 and com-
pare the results obtained with and without the inclusion of SOC effects. Further details of
DFT calculation are presented in App. P.1, and convergence tests for the results shown in
Sec. 10.3 can be found in App. P.2.

10.2 DM Interaction Rate Formalism
In this section we derive the rates for transitions between electronic energy levels induced by
DM absorption and scattering. For the targets of interest here, the electronic energy levels
can be labelled by a band index i and a momentum k within the first Brillouin zone (1BZ),
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which we collectively indicate with an index I = {i,k}. The wave functions of the electronic
states can be written in the Bloch form as:

ΨI(x) =
1√
V
eik·x uI(x) (10.3)

where the periodic Bloch wave functions uI are two-component vectors in the spin basis, and
V is the crystal volume.

Absorption
In this subsection, we use the non-relativistic (NR) effective filed theory (EFT) developed
in Ref. [2], and summarized in Appendix Q, to compute DM absorption rates in materials
with sizable SOC.

The absorption rate of a state can be derived from the imaginary part of its self-energy. In a
medium, care must be taken due to the possible mixing between the DM, φ, and SM states
(in our case the SM photon, A). In the presence of such mixing effects, the DM absorption
rate is related to the imaginary part of the self-energy of the “mostly DM” eigenstate, Πφ̂φ̂:

Γφabs = −
Zφ̂
ω

ImΠφ̂φ̂ , (10.4)

where ω ' mφ is the energy of the DM state, and Zφ̂ =
(
1 − d ReΠφ̂φ̂

dω2

)−1
= 1 + O(g2e) is

the wave function renormalization which we will approximate as unity in the following. The
total absorption rate per unit target mass, R, is given by

R =
ρφ

ρTmφ

1

n

n∑
η=1

Γ
φη
abs (10.5)

where n is the number of degrees of freedom of the DM particle (n = 3 for vector DM and
n = 1 for scalar and pseudoscalar DM) and we average over the incoming DM polarizations.
The DM density, ρφ, is taken to be 0.4GeV cm−3, and ρT is the target density.

To derive Πφ̂φ̂ we need to diagonalize the in-medium self-energy matrix, which in our case
contains a mixing between the DM and the SM photon:

Seff ⊃ −
1

2

∫
d4Q

(
Aλ φη

)(Πλλ′
AA Πλη′

Aφ

Πηλ′

φA m2
φ δ

ηη′ +Πηη′

φφ

)(
Aλ

′

φη
′

)
, (10.6)

where the implicit sum over λ, λ′ (η, η′) runs over the photon (DM) polarizations, and we
have introduced the self-energies polarization components defined as:

Πλλ′ ≡ ελµΠ
µνελ

′∗
ν (10.7)
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where ελµ are polarization vectors. In general, the polarization vectors which diagonalize this
matrix are not the typical longitudinal and transverse polarization vectors, since mixing can
occur (i.e., ΠL,T

AA 6= 0). However one can always find an appropriate basis to diagonalize the
DM and photon self-energies. In this basis Eq. (10.6) becomes

Seff ⊃ −
1

2

∫
d4Q

(
Aλ φη

)(Πλ
AA δ

λλ′ Πλη′

Aφ

Πηλ′

φA (m2
φ +Πη

φφ) δ
ηη′

)(
Aλ

′

φη
′

)
, (10.8)

where Πλ
AA and Πη

φφ are the eigenvalues of Πλλ′
AA and Πηη′

φφ respectively.

The off-diagonal terms in Eq. (10.8) are perturbatively suppressed by a factor of ge with
respect to the ΠAA terms. Therefore, working at order O(g2e), we find that the in-medium
self-energy for the η polarization of the mostly DM eigenstate is given by:

Πη

φ̂φ̂
= Πη

φφ +
∑
λ

Πηλ
φAΠ

λη
Aφ

m2
φ − Πλ

AA

. (10.9)

Since vector DM couples to electrons in the same way as the photon, one can derive the
relevant self-energies by simply replacing the electromagnetic charge with ge, e.g., Πηλ

φA =

−(ge/e)Πλ
AA δ

ηλ. Doing so allows us to write Eq. (10.9) in terms of the photon self energy
as

Πη

φ̂φ̂
=
(ge
e

)2 m2
φΠ

η
AA

m2
φ − Πη

AA

(vector DM) . (10.10)

Scalar and pseudoscalar DM only have one degree of freedom, and therefore Eq. (10.9) takes
the form

Πφ̂φ̂ = Πφφ +
∑
λ

Πλ
AφΠ

λ
φA

m2
φ − Πλ

AA

((pseudo)scalar DM) . (10.11)

As usual, the self-energies appearing in the previous equations are computed from the sum
of 1PI diagrams. Working at one loop, there are two graph topologies that can contribute

Q−→

I ′

I

O1 O2

≡ − i Π̄O1,O2(Q) , (10.12)

Q−→

I

O

≡ − i Π̄′
O(Q) , (10.13)
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where O(1,2) is any operator to which the external field, A or φ (dashed lines), couples. For
vector external states these operators carry Lorentz indices that are inherited by Π̄ and Π̄′.

The full expressions for the self-energies involved in the absorption calculation can be found in
Appendix Q. However, as we discuss in the same appendix, due to the absorption kinematics
and the hierarchy between the DM and electron velocities, a few diagrams dominate these
self-energies. Specifically, we find that the diagonalization of the photon in-medium self-
energy (and therefore the derivation of Πλ

AA) reduces to diagonalizing Π̄vi,vj , where the
velocity operator is defined by

vi ≡ −i
←→
∇ i

2me

. (10.14)

From this it follows that the long wavelength limit of the dielectric function, ε(0, ω), which
will enter explicitly in the scattering rate calculation, can be derived from Π̄vi,vj :

[ε(0, ω)]ij = 1 +
Πij
AA

ω2
' 1− e2

Π̄vi,vj

ω2
. (10.15)

The long wavelength dielectric function, ε(0, ω), together with details of its numeric calcula-
tion, is reported in Appendix P.2.1 For scalar and pseudoscalar DM, the leading order terms
in the self-energy of the mostly DM eigenstate are found to be

Πφ̂φ̂ '


g2e Π̄v̄2,v̄2 (scalar DM)

g2e
ω2

4m2
e

Π̄v·σ,v·σ (pseudoscalar DM)

(10.16)

where we have introduced the operator

v̄2 ≡ −
←→
∇ 2

8m2
e

. (10.17)

Scattering
In this subsection we proceed to derive the DM scattering rate with spin-dependent electronic
wave functions. Generalizing the formulas previously derived in Refs. [7, 9, 33, 177, 244, 340],

1Strictly speaking, the dielectric function is a mixed index tensor, as evident from the defining equation,
J i = σijA

j = iω
(
1− εij

)
Aj , where εij = δij − Πij/ω

2 = 1 + Πij/ω2 (see the discussion in Appendix A of
Ref. [29] for more details). With a slight abuse of notation we define the matrix ε which has components
[ε]

ij
= εij .
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Figure 10.1: ZrTe5 band structure computed using DFT with SOC (solid lines) and without
SOC (dashed lines). The inset highlights the low energy (low E) band dispersion, whose
details are sampled using a denser k-point grid. The band gap for the SOC band structure
is set to the experimental value of 23.5meV [47], and the No SOC band structure is shifted
accordingly, which gives a larger band gap of 81.6meV.

we can write the DM scattering rate as

ΓI→I′ =
π

8V m2
em

2
χ

∫
d3q δ (EI′ − EI − ωq)

×
∣∣∣∣∫ d3k

(2π)3
Ψ̃∗
I′(k + q) ·M(q) · Ψ̃I(k)

∣∣∣∣2 (10.18)

where the bar indicates a spin average (sum) over the incoming (outgoing) DM states, Ψ̃I(k)

are the Fourier transform of the electronic wave functions defined in Eq. (10.3), and

ωq ≡ q · v − q2

2mχ

. (10.19)

For the SI and SD models of interest here, we can write the free electron scattering amplitude
as

Mss′,σσ′(q) =

√
16πm2

χm
2
eσe

µ2
χe

fe
f 0
e

Fmed

(
q

q0

)
Sss′,σσ′ , (10.20)

where Fmed
(
q
q0

)
encodes the momentum dependence induced by the mediator propagator,

fe(q)/f 0
e is the screening factor introduced by in-medium effects, and σe is a reference cross
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section defined by

σe ≡
µ2
χe

64πm2
χm

2
e

∑
ss′,σσ′

|Mss′,σσ′(q0)|2 , (10.21)

with q0 = αme. The total rate per unit detector mass is then

R =
πσe

V µ2
χemχ

ρχ
ρT

∑
I,I′

∫
d3q

(2π)3

(
fe
f 0
e

)2

F2
med(q) g(q, ω)FII′(q) (10.22)

where g(q, ω) is the velocity integral defined as

g(q, ω) ≡
∫
d3vfχ(v) 2πδ(ω − ωq) , (10.23)

with fχ(v) being the DM velocity distribution in the laboratory rest frame, which we take
to be a boosted Maxwell-Boltzmann distribution with parameters v0 = 230 km s−1, v esc =

600 km s−1, and ve = 240 km s−1.

The crystal form factor FII′ is defined as

FII′(q) ≡
∣∣∣∣∫ d3k

(2π)3
Ψ̃∗
I′(k + q) · S · Ψ̃I(k)

∣∣∣∣2 (10.24)

where the spin operators for the models considered in this work are given by

Sss′,σσ′ =


δss′δσσ′ (SI) ,

1√
3

∑
i

σiss′σ
i
σσ′ (SD) ,

(10.25)

and σi are the Pauli matrices. Given these expressions the form factors, FII′ , for the SI and
SD models take the form,2

FII′ =

|TII′|
2 (SI) ,

1

3
T ∗
II′ · TII′ (SD) ,

(10.26)

where we have defined the DM model independent transition form factors, TII′ and TII′ , as

TII′ =
∫

d3k

(2π)3
Ψ̃∗
I′(k + q) · Ψ̃I(k) , (10.27)

TII′ =
∫

d3k

(2π)3
Ψ̃∗
I′(k + q) · σ · Ψ̃I(k) . (10.28)

2The absence of the overall factor of two, relative to the SI rate formula given in Ref. [9], can be
understood from the sum over the states. If the wave functions are spin independent then

∑
IF →

∑
IF

∑
ss′ ,

where s (s′) indexes the initial (final) electron spin state. These spin sums contribute the extra factor of
two, bringing Eq. (10.22) and the rate formula in Ref. [9] into agreement.
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10.3 Detection Rates in ZrTe5

We will now apply the formalism developed in the previous section to our benchmark SOC
target: ZrTe5. The band structure of ZrTe5, with and without the inclusion of SOC effects,
is shown in Fig. 10.1. The details of the DFT calculation can be found in Appendix P.1.
The dominant effect of SOC is to shift the valence and conduction bands closer at the Γ

point relative to the No SOC calculation.

While in theory the calculation of DM interaction rates is identical for O(meV) and O(eV)

gap semiconductors, in practice one must be careful about sampling the 1BZ. This is because
these O(meV) energy differences generally only occur in small volumes within the 1BZ. To
account for this we sample the 1BZ with a higher k-point density in regions corresponding to
the low energy band structure. For ZrTe5 this occurs near the Γ point, and we split the phase
space in to two separate regions, “low E” and “high E”, which we describe now. The low E

region consists of the highest two (one) valence bands and lowest two (one) conduction bands,
for the calculation with (without) SOC, sampled on a “mini-BZ” grid. This mini-BZ grid
is a rescaled uniform Monkhorst-Pack grid [397]; each k is scaled by a factor of 1/5, giving
a 125× k-point sampling in that region. This region will give the dominant contribution
to absorption of DM with mass . 100meV, as well as DM scattering via a light mediator.
The high E region includes all the bands outside the low E region, sampled with a standard
Monkhorst-Pack uniform grid. The DM absorption rates in Sec. 10.3 are a combination of
the low and high E regions. The DM scattering rates in Sec. 10.3 will be shown for both
regions, and it will be clear when one dominates the other.

We compute the Bloch wave functions, Eq. (10.3), in both regions within the framework of
DFT with Quantum ESPRESSO [339, 398, 399]; details can be found in Appendix P.1.
The DM absorption and scattering rates are computed with an extended version of EXCEED-
DM [9, 384] which includes the formalism developed in Sec. 10.2, and is publicly available
on Github �.

For each of the models considered in the following subsections, we will show the projected
constraints from three different calculations. The curves labelled “SOC” are computed with
the inclusion of SOC effects, the curves labelled “No SOC” do not include any SOC effects,
and those labelled “Partial SOC” are a combination of the SOC and No SOC calculations,
obtained using the energy levels computed with SOC, and the wave functions without SOC.
While the Partial SOC results are not a consistent calculation, they aid in understanding
how much of the difference between the SOC and No SOC results is due to the changes in
the band structure versus the inclusion of the spin dependent wave functions. Generally we
find that the changes in the band structure are more influential than the spin dependence

https://exceed-dm.caltech.edu
https://exceed-dm.caltech.edu
https://github.com/tanner-trickle/EXCEED-DM
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in the wave functions, but the latter can still be important.

Lastly, we note that previous works [29, 144, 183] have derived excitation rates analytically
by exploiting the putative Dirac nature of ZrTe5. While a direct comparison to assess the
validity of the analytic approximations is dubious since we do not observe a conical band
structure (see Appendix P.1), previous estimates from Ref. [29] are shown in Figs. (10.2, 10.3).
In App. R we discuss the validity of these analytic approximations in more general Dirac
materials.
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Figure 10.2: Comparison of projected 95% C.L. reach (3 events, no background) assuming
one kg-year exposure for scalar (left), pseudoscalar (center) and vector (right) DM. We
compare our results with (solid) and without (dotted) SOC for electronic absorption in
a ZrTe5 target (red), with the ones for semiconductor silicon (Si, blue) and germanium
(Ge, green) targets [2], superconducting aluminum (Al-SC, brown) [2]), phononic absorption
in polar materials [28, 48] (GaAs in orange and SiO2 in purple), and previous estimates
for ZrTe5 (teal) [29]. We also show the projected constraints combining the SOC energy
levels with the No SOC wave functions, (“Partial SOC”, red, dashed) to explicitly show
the effect of the spin dependent wave functions. Constraints are expressed in terms of
the commonly adopted parameters shown in Eq. (10.29). Shaded red bands correspond to
different parameterizations of the electron width δ ∈ [10−1.5, 10−0.5]ω used in calculating the
self-energies (see e.g., Eq. (Q.17)), with the solid line corresponding to δ = 10−1ω. Thin lines
indicate results obtained by rescaling the optical data. Also shown are the direct detection
limits from XENON10/100 [40], fifth force constraints [45], and stellar cooling constraints
from red giants (RG) [46], and white dwarfs (WD) [31]. For the pseudoscalar scenario we
also report the couplings corresponding to the QCD axion in KSVZ and DFSZ models, for
0.28 ≤ tan β ≤ 140 [43].

For the models considered, Eq. (10.2), our results are shown in Fig. 10.2. For ease of
comparison we map the constraints on the ge parameters in Eq. (10.2) to a more commonly
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used notation,

ge =


4πme
MPl

dφee (scalar)

gaee (pseudoscalar)

eκ (vector) ,

(10.29)

where MPl = 1.22× 1019 GeV is the Planck mass.

For all the benchmark models, the inclusion of SOC effects dominantly impacts the low mass
reach where the SOC corrections to the band structure are most relevant. Most notably, the
lowest testable DM mass is shifted as a consequence of the different band gaps: 23.5meV
with SOC, and 81.6meV without SOC. At higher masses the SOC effects are milder and, as
expected, the SOC reach approaches the reach without SOC effects. The close agreement
between the “Partial SOC” and “SOC” curves indicates that changes to the energy levels
are what is mainly driving the difference in the “SOC” and “No SOC” calculations.

For the scalar and vector DM models we find that ZrTe5 is superior at low DM masses
relative to a superconducting aluminum target, another target material with an O(meV) gap
(0.6meV for the Al-SC curves shown here). However for pseudoscalar DM, for mφ . eV,
Al-SC yields better sensitivity than ZrTe5. This can be attributed to the large amount of
screening present in the vector DM case (but not in the pseudoscalar DM case) for Al-SC.

Shaded bands correspond to different width parameterizations, δ ∈ [10−1.5, 10−0.5]ω. In
theory, the absorption rate calculation is independent of the choice of width; however, when
sampling the 1BZ discretely this is not the case, and practically the goal is to find results that
have a weak dependence on this parameter. The discrepancy in the shaded bands should be
viewed as an uncertainty in the calculation. The constraints turn up on the left hand side
because of the band gap, and on the right hand side because of the finite number of bands
used in the calculation. All bands for which E − EF < 4 eV, where EF is the valence band
maximum were included; see Appendix P.2 for more details.

Scattering
We now consider DM-electron scattering in ZrTe5 for the two benchmark models, standard SI
and standard SD interactions, shown in Eq. (10.1). Specifically we consider a light mediator
for the SI model and a heavy mediator for the SD model. For the SI model a light mediator
was chosen due to its high sensitivity to the lowest energy excitations, as well as for ease of
comparison with other proposals which commonly report constraints on this model. The SD
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Figure 10.3: Projected constraints on DM-electron scattering cross sections at the 95%
C.L. (three events, no background) assuming one kg-year exposure for two benchmark mod-
els shown in Eq. (10.1). Left: SI model with a light mediator (Fmed = (q0/q)

2), screened
with the static dielectric shown in Fig P.3. The red solid (dashed) curve shows the con-
straints with (without) the inclusion of SOC effects. For comparison we also show projected
constraints from single phonon excitations in GaAs (orange) and SiO2 (purple) computed
with PhonoDark [4] (assuming an energy threshold of ωmin = 20meV), electronic excitations
in an aluminum superconductor [49] (brown), and previous estimates for ZrTe5 (teal) [29].
We also show the projected constraints combining the SOC energy levels with the No SOC
wave functions, (“Partial SOC”, red, dashed) to explicitly show the effect of the spin de-
pendent wave functions. Stellar constraints (gray) are taken from Ref. [17] and the freeze-in
benchmark (orange) is taken from Ref. [20]. Right: SD model with a heavy mediator
(Fmed = 1). Curves labelled “low/high E” include transitions restricted to the low/high E
regions discussed in Sec. 10.3.

model was chosen to highlight the effect of spin dependent wave functions.3

The results are shown in Fig. 10.3 and we discuss them in detail here. Constraints computed
in this work are shown in red, with shaded bands corresponding to the uncertainty in the
calculation of the screening factor/dielectric function from the electron width parameter,
discussed previously in Sec. 10.3.

When considering the SI model with a light mediator we include anisotropic screening effects
in the fe(q)/f 0

e = (q̂ · ε(q, ω) · q̂)−1 factor. ε(q, ω) is the dielectric tensor, and this screening
3In the SD model, Fmed = 1 also for a light mediator due to the dominance of longitudinal component.

Here we focus on the heavy mediator case. To avoid perturbativity constraints on the couplings, gχge . (4π)2,

one needs mA′ . 3GeV
(

10−37cm2

σSD
e

)1/4
for keV < mχ < MeV.
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factor is especially important for the sub-MeV DM masses considered here. Since in this
model the scattering rate is dominated by events with small q, we approximate ε(q, ω) ≈
ε(0, ω), such that we replace the dielectric with the anisotropic, long wavelength dielectric
function shown in Fig. P.3.

For the SI model, we find that the contribution from transitions in the low E region, discussed
earlier in Sec. 10.3, dominate the scattering rate. Therefore, in the left panel of Fig. 10.3,
we only show the results derived from transitions within the low E region. For the massive
mediator SD model, in the right panel of Fig. 10.3, we see that the low E contributions
dominate at small DM masses. However for mχ & 100 keV, when the high E contributions
at O(100meV) become kinematically available, the high E contributions are dominant. This
is due to the fact that when scattering via a heavy mediator the rate is no longer dominated
by the smallest momentum transfers. While we did not explicitly include transitions between
the low and high E regions, we note that these are only expected to be important for masses
where the reach is comparable between the regions, and will not affect the conclusions.

We find that, for the SI model with a light mediator, the inclusion of SOC effects significantly
alters the reach for the whole DM mass range considered since the rate is dominated by small
energy/momentum depositions. For the SD model with a massive mediator the SOC effects
are most prominent for low DM masses when the scattering is probing the band structure
near the band gap, which is the most affected by SOC effects. We also see that at the lowest
masses the “Partial SOC” curve is closer to the “SOC” than the “No SOC” lines. This shows
that while the change to the energy levels is the dominant effect when including SOC, the
spin dependence of the wave functions can give O(1) variations.

The left hand side of all the constraint curves are determined by the band gap. The smallest
kinematically allowed DM mass is mχ = 6 keV for the SOC calculation with Eg = 23.5meV,
and mχ = 21 keV for the No SOC with Eg = 81.6meV. As mentioned in Sec. 10.3, we only
consider bands up to 4 eV above the valence band maximum. Kinematically this means that
we are only including all contributions for mχ < MeV, and explains why our projections
stop there.

10.4 Conclusions
Materials with strong spin-orbit coupling, such as ZrTe5, are promising targets in which
electronic excitations can be utilized to search for sub-MeV DM. Their O(meV) band gaps
lead to sensitivity to new DM parameter space via both absorption and scattering processes,
without relying on detecting single collective excitation modes.

However, due to the spin-orbit coupling, in these materials the electron spin is no longer a
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good quantum number, and the spin sums over electronic states cannot be trivially reduced.
This introduces interesting wrinkles in the DM absorption and scattering rate calculations,
which we extended to account for these effects. In addition, we updated the EXCEED-DM
program [9, 384], which computes DM-electron interaction rates from first principles, to be
compatible with this input for future study of general targets with spin-orbit coupling.

We considered a wide range of DM models and processes to which materials with SOC are
sensitive: absorption of vector, pseudoscalar, and scalar DM in Sec. 10.3, and scattering via
heavy and light mediators via spin-independent and spin-dependent scattering potentials in
Sec. 10.3. We found that for sub-eV vector and scalar DM absorption, ZrTe5 is a far superior
target relative to an aluminum superconductor. We also found more optimistic projections
for SI scattering via a light mediator than previous estimates, and computed, for the first
time, the projected constraints on an SD model with a heavy mediator. Our projections for
ZrTe5 lay the foundation for further first-principles studies of materials with strong spin-orbit
coupling as targets in direct detection experiments.

https://exceed-dm.caltech.edu
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C h a p t e r 11

CONCLUSIONS

The future of direct detection of light DM is bright. The current experimental programs
utilizing nuclear recoil and electronic excitations to search for sub-GeV DM are continually
improving their sensitivity, exposure, and background mitigation techniques. The coming
years should see them either detect DM, or probe down to the neutrino floor, and projected
freeze in line respectively; an important benchmark for light DM models. The next frontier,
searching for sub-MeV DM, is beginning to take shape. New excitation channels, such
as phonons and magnons, are kinematically well suited for these tasks, with their O(1 −
100meV) energies and susceptibility to a wide range of DM models. In addition to these
new channels, electronic excitations in small band gap materials also looks like a promising
path forward, see, e.g., Ch 10. These advancements have also driven fruitful collaboration
between condensed matter/materials scientists and particle physicists, which is catalyzing
many novel ideas about how to utilize targets in new ways to detect DM.

While the effectiveness of these detectors is limited by the experimental capabilities, it is also
limited by the theoretical understanding of how different DM models can generate signals.
That is, to maximize the search over DM parameter space it is crucial to understand these
DM-target interactions more generally than by analogy with a few simple benchmark DM
models and targets. This requires intimate first principles understanding which has been
the backbone of the work presented in this thesis. Even when focused on a simple class of
DM models, e.g. spin independent scattering (Chs. 2, 3, 4), care was taken to understand
the target dependence of the signal, such that the analysis was general to any target. To
facilitate this we created the tools, PhonoDark, and EXCEED-DM, which can compute the
direct detection signals of phonons and electrons, respectively, in any target.

In addition to target independence, to study the influence of general DM models, effec-
tive field theory (EFT) is a necessary tool. We used EFTs in two contexts: for general
DM-phonon/magnon scattering rate calculations, Ch. 7, and DM absorption on electronic
excitations, Ch. 9. These chapters lay the foundation for more general EFT studies, with a
final goal of understanding the DM induced signal for a general UV complete model. This
will require more development both theoretically, and computationally, for electron, phonon,
and magnon excitations, but certainly within reach with the research presented here.

While much of the theoretical groundwork has been laid down, there are still many interest-
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ing applications to study. First and foremost is a more intimate connection from the results
presented here to experimental projections. All of the projections shown here assume no
backgrounds are included; how does the reach for different DM models change when this
is included? Additionally, since experiments are actively working their way down to single
meV thresholds, are there targets which are sensitive to DM even with higher thresholds?
For example targets with higher than normal phonon modes, e.g., organic scintillators at
ω ∼ 500meV, as well as a more complete understanding of multiphonon excitations. There
are also open experimental questions such as the best way to read out magnon or phonon po-
lariton excitations which are necessary if these are to be used as axion detectors as discussed
in Ch. 6.
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A p p e n d i x A

DFT CALCULATION DETAILS FOR BN

We used the Vienna Ab initio Simulation Package (VASP) [295–297, 352] for our density
functional theory calculations to obtain the electronic properties of BN. Projector augmented
wave (PAW) pseudopotentials [350, 351] with the Perdew-Becke-Ernzerhof (PBE) exchange-
correlation functional [347] were used. We included van der Waals interactions between BN
layers using the D3 correction method of Grimme et al. with Becke-Johnson damping [400,
401]. In the PAW scheme, we treated s and p electrons as valence for both B and N.

For structural optimization, we use an energy cutoff of 950 eV for our plane wave basis set,
with a Gamma-centered k-point grid of 12 × 12 × 12. The total energy and forces were
converged to 1 × 108 eV and 1 meV/Å respectively. Wavefunctions were evaluated on two
Gamma-centered k-point meshes, 10×10×3, and 14×14×4, converging the scattering rate
to ∼ 9% at 5 MeV, ∼ 8% at 10 MeV and ∼ 6% at 100 MeV. We extracted the all-electron
wavefunction coefficients from our PAW calculations using pawpyseed [354] with an energy
cutoff of 450 eV. 68 energy bands were included, incorporating energies up to 60 eV above
and below the valence band maximum.

Boron nitride (BN) adopts a hexagonal crystal structure with space group P63/mmc (No.
194) as shown in Fig. 2.2. Our calculated lattice parameters are a = 2.507 Å and c = 7.093

Å which compare well to those from experiment [402] (a = 2.504 Å and c = 6.661 Å). The
PBE-level calculated band gap is 3.61 eV which was corrected to the experimental value of
5.97 eV [403] using a scissors operator.
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A p p e n d i x B

CALCULATIONS OF TARGET PROPERTIES

We obtain the materials-specific responses using first principles calculations based on density
functional theory (DFT) [294]. DFT is a standard method for obtaining solutions to the
many-electron interaction problem, and can accurately predict materials properties ab initio
ranging from electronic and magnetic to mechanical and vibrational properties. For this
work, we used DFT to calculate the full electronic and phonon spectra for a range of materi-
als, with the calculation details given below. However, since DFT is a ground-state method,
it suffers from the famous ‘band gap’ problem where excited-state properties, including band
gaps, are not accurately treated using standard DFT methods. We correct for this in two
ways: (i) we performed beyond-DFT calculations (hybrid functional calculations) for several
of the compounds where standard DFT gave a zero band gap, and (ii) we adjusted the band
gaps to experimentally-reported values for all compounds. We note that the convergence pa-
rameters used for the electronic and phonon calculations are different owing to the different
physical properties being calculated.

The list of materials calculated with their corresponding space groups and space group num-
bers is given in Table B.1, with the crystal structures depicted in Fig. C.1. For compounds
where several structural isomorphs exist, we considered the reported low-temperature ground
state structure. The Brillouin zones for the crystal structures considered in this work are
depicted in Fig. C.2 with the high-symmetry points labelled. Both the electronic and phonon
band structure plots take paths through these high-symmetry points.

All DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP) [295–
297, 352] with projector augmented wave (PAW) pseudopotentials [350, 351] using the
Perdew-Becke-Ernzerhof (PBE) exchange-correlation functional [347]. In the PAW scheme,
we treated s and p electrons as valence for Li, C, N, O, F, Na, Al, Si, S, Cl, Ca, I, Cs and
W, p electrons as valence for Mg and d electrons as valence for Zn, Ga, Ge, As, In and
Sb. Below we summarize the convergence criteria used for the (i) electronic structure and
wavefunctions, and (ii) phonon calculations.
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B.1 Calculation Details for Electronic Band Structures and Wavefunctions
For structural optimizations, a plane wave cutoff-energy of 950 eV was used with a 12×12×12
Γ-centered k-point grid. The energy and force convergence criteria were 1 × 10−8 eV and
1meV Å−1 respectively.

All-electron wavefunction coefficients were extracted from PAW calculations using a mod-
ification of the pawpyseed code [436]. This enabled recovery of the full wavefunctions as
normalized single-particle Kohn-Sham states from the pseudo-wavefunctions obtained by the
PAW-method. Initial PAW wavefunctions were calculated with a plane wave energy-cutoff of
1000 eV, from which the all-electron wavefunctions were constructed with a minimum energy-
cutoff of 450 eV. Calculations were performed using Γ-centered Monkhorst-Pack grids, with
a k-point density of at least 0.27Å−1. Energy bands were included up to 60 eV above and
below the valence band maximum. However, since there is no pseudopotential containing
the low-lying 4d-states for indium in VASP, these bands are neglected from the calculations.
In NaI and CsI the I 4d states are positioned at approximately 43 eV and 42 eV below the
valence band maxima respectively. A scissor operator was applied to match the experimental
band gaps given in Table 3.1. For Ge, InSb and GaSb, the PBE functional gave partially
occupied bands due to underestimation of the band gap. In these cases the HSE06 hybrid
functional [437] was applied in a static calculation to introduce a band gap before applying
the scissor correction. Electronic band structures were computed on a discrete k-mesh along
the high-symmetry directions.

PbS, PbSe and PbTe were excluded from the electron calculations because spin-orbit in-
teractions are required to capture important features of the band structures and spin-orbit
coupling is not yet implemented within the pawpyseed code.

Multiple k-point densities, energy-cutoffs, and energy bands included were tested for all
materials to ensure convergence of the scattering rates to less than 2% at mχ = 10 GeV,
less than 3% at mχ = 10 MeV, and less than 28%, 18%, 18% and 10% for GaAs, GaSb, Ge,
and Si at mχ = 1 MeV respectively. InSb was tested with a 12× 12× 12 and 14× 14× 14

k-point grid, plotted as dotted and solid curves in Fig. 3.1 respectively. At mχ = 1 MeV
the rate convergence is 5%, and decreases for larger masses. However at smaller masses
the G = 0 contribution, from momentum transfers within the 1BZ, and energy depositions
below ∼ 1 eV, dominate the rate. The slow convergence here is due to the fact that InSb has
rapidly changing band structure near the Γ point, and more k-points are needed for better
convergence. These uncertainties are plotted as shaded bands in Fig. 3.1, and accompanying
figures in Appendix C, although most are invisible due to the plots being log-log.
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B.2 Calculation Details for Phonon Spectra
We obtained the phonon dispersions from Phonopy [50] using the ‘frozen-phonon’ method by
diagonalizing the force matrix using VASP as the force calculator. For the VASP calculations,
the electronic wavefunctions were expanded in a plane-wave basis with a kinetic-energy cutoff
of 600 eV. The Brillouin zone sampling was no less than 0.8Å−1 in each direction of the unit
cell with Monkhorst-Pack grids, and was correspondingly scaled for phonon supercell calcu-
lations. Born effective charges were calculated for polar materials using density-functional
perturbation theory as implemented in VASP.

B.3 Parameters in Table 3.1
The experimental electronic band gaps, Eg, are taken from references cited in Table B.1.
The speed of sound, cLA

s , was calculated by averaging ωLA/q over a uniform 20× 20 grid on
the surface of a sphere in reciprocal space with radius q ≈ 10 eV centered at the Γ point.
The same averaging procedure was used in calculating the range of optical modes, ωO, when
a range exists. The average Born effective charge, Z∗, is defined as Tr

[
Z∗
+

]
/3, where Z∗

+ is
the Born effective charge of the positive ion(s) (the other charges can be found by requiring
that the primitive cell is neutral). The average high frequency dielectric constant, ε∞, is
defined as Tr [ε∞] /3.
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A p p e n d i x C

ADDITIONAL TARGET COMPARISON PLOTS

In this Appendix, we provide plots for the remainder of the materials in Table 3.1 not
presented in the main text. For concreteness, in all figures we take the local DM density to be
ρχ = 0.4 GeV/cm3, and assume a Maxwell-Boltzmann distribution with velocity dispersion
v0 = 230 km/s, truncated at the escape velocity vesc = 600 km/s, and boosted to the
target rest frame by the Earth velocity in the galactic rest frame vE = 240 km/s. We take
the direction of the Earth’s velocity to be in the ẑ direction with respect to the crystal
coordinates when computing the reach (for most of the target materials we consider here
we expect modulation effects from the Earth’s motion to be small). The constraints on
σ correspond to a 95% confidence level (C.L.) assuming Poisson distributed counts and no
events are seen (equivalently, the constraint corresponds to the cross section needed to obtain
three events). We chose the 95% C.L. for easier comparison with previous literature. Because
it is also standard to compute the 90% C.L. exclusion reach, we note that one simply has to
mulitply the 95% C.L. exclusion reach by 2.3/3 (as the 90% C.L. constraint corresponds to
the cross section needed to obtain 2.3 events). We also assume an exposure of one kg-yr.
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(a) Diamond: diamond-C,
Si, Ge. Two interpene-
trating face centered cubic
lattices, one offset by 1/4
along the cubic diagonal.
Each atom has four nearest
neighbors, forming corner-
sharing tetrahedra.

(b) Zincblende: ZnS, GaAs,
InSb, GaSb. Same arrange-
ment as diamond cubic, but
with two atom types, each
occupying one of the face
centered cubic lattices.

(c) Rock salt: NaCl, MgO,
LiF, NaF, NaI, PbS, PbSe,
PbTe. The two atom types
each form a face centered
cubic lattice, offset by 1/2
along the cubic axis. One
atom type is octahedrally
coordinated to the other
atom type and vice versa.

(d) Fluorite: CaF2. Ca
ions form a face centered
cubic lattice. Each Ca ion
is surrounded by eight F
ions in a cubic geometry.

(e) CsI. The two atom
types form interpenetrat-
ing primitive cubic lattices,
with an atom of one type
at the center of each cube
of the other type.

(f) α-quartz: SiO2. Each
Si ion is bonded to four
O ions, forming corner-
sharing tetrahedra.

(g) Corundum: Al2O3.
Each Al ion is bonded to
six O ions, forming octahe-
dra with a mixture of cor-
ner, edge and face-sharing
connectivities.

(h) Rutile: MgF2. Each
Mg ion is bonded to six
F ions, forming octahedra
with a mixture of corner
and edge-sharing connec-
tivities.

(i) Wurtzite: GaN, AlN,
ZnO. One atom type is
tetrahedrally bonded to the
other atom type and vice
versa. The tetrahedra
are corner-sharing and the
structure is a member of
the hexagonal crystal sys-
tem.

(j) CaWO4. Each Ca ion is
bonded to eight O ions, and
each W ion is bonded to
four O ions, forming corner-
sharing octahedra.

Figure C.1: Crystal structures of targets in Table 3.1.
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(a) Simple cubic: CsI. (b) Face centered cubic: Diamond,
Si, Ge, GaAs, InSb, GaSb, ZnS,
NaCl, MgO, LiF, NaF, NaI, PbS,
PbSe, PbTe, CaF2.

(c) Simple tetragonal: MgF2.

(d) Body centered tetragonal: CaWO4. (e) Hexagonal: SiO2, GaN, AlN, ZnO. (f) Rhomohedral: Al2O3.

Figure C.2: First Brillouin zones of targets in Table 3.1, with high symmetry points labeled.
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Figure C.3: Calculated electronic band structures of targets in Table 3.1.
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Figure C.4: Calculated electronic band structures of targets in Table 3.1.
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Figure C.5: Phonon dispersions calculated with VASP and phonopy [50] including non-
analytic corrections. The path through the high symmetry points is found using SeeK-path
[51].
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analytic corrections. The path through the high symmetry points is found using SeeK-path
[51].



258

10−3 10−2 10−1 1 10 102 103 104

mχ [MeV]

10−48

10−46

10−44

10−42

10−40

10−38

10−36

10−34

10−32

σ
e

[c
m

2 ]

Stell
ar

Freeze− In

AlN
CaF2

Diamond
GaAs
GaN
GaSb

XENON10
DarkSide− 50
XENON100
SuperCDMS
SENSEI
DAMIC

Figure C.7: Same as Fig. 3.1, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.1.
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Figure C.8: Same as Fig. 3.1, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.1.
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Figure C.9: Same as Fig. 3.1, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.1.
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Figure C.10: Same as Fig. 3.2, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.2.
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Figure C.11: Same as Fig. 3.2, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.2.
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Figure C.12: Same as Fig. 3.2, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.2.
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Figure C.13: Same as Fig. 3.3, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.3.
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Figure C.14: Same as Fig. 3.3, but with different materials. For reference, gray lines are CsI,
Si, and Al2O3 taken from Fig. 3.3.
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Figure C.15: Fig. 3.3 with different materials. Gray lines are CsI, Si, and Al2O3 taken from
Fig. 3.3.



263

A p p e n d i x D

DAILY MODULATION AMPLITUDES FOR ADDITIONAL MATERIALS

In addition to the materials discussed in the main text, we have also investigated the daily
modulation of the full list of materials considered in Ref. [6]. Their projected reach curves
were already computed in Ref. [6] and are included on the interactive webpage [258]. Here we
only show the daily modulation amplitude fmod, defined in Eq. (4.15), as in the lower panels
of Figs. 4.5, 4.6 and 4.7 in the main text. The results for the dark photon mediator model,
the light hadrophilic scalar mediator model and the heavy hadrophilic scalar mediator model
are shown in Figs. D.1, D.2 and D.3, respectively. Only materials with fmod ≥ 10−2 for at
least one mχ value (at which the material has substantial reach) are shown in each case.

10-2 10-1 1

10-1

1

Figure D.1: Daily modulation amplitudes for the dark photon mediator model. Solid and
dashed curves assume energy thresholds of 1 meV and 20 meV, respectively. Among the
materials studied, only those that have a modulation amplitude greater than 1% for at least
one mχ value (at which the material has substantial reach) are shown. As in the lower panels
of Figs. 4.5, 4.6 and 4.7 in the main text, the low mass values where the rate diminishes are
excluded for each material. Therefore the shown modulation amplitudes correspond to the
mass values where the materials have reach.
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Figure D.2: Same as Fig. D.1, for the light hadrophilic scalar mediator model.

10-2 10-1 1

10-1

1

10-2 10-1 1

10-1

1

Figure D.3: Same as Fig. D.1, for the heavy hadrophilic scalar mediator model.
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A p p e n d i x E

CALCULATION OF THE MODULATION REACH

To establish the statistical significance of a modulating signal, we find the expected number
of events needed to reject the non-modulating hypothesis using the following procedure.
For a given DM model, with the DM mass mχ and experimental energy threshold ωmin

specified, we first obtain the modulating signal shape r(t) ≡ R(t)/〈R〉 as explained in the
main text. We divide a sidereal day into Nbins = 24 equal-size bins, and denote the bin
boundaries by tk = (k/Nbins) days; this binning is fine enough to capture diverse modulation
patterns of the large set of materials studied here. Given an expected number of events
Nexp, we simulate a DM signal sample and a non-modulating sample by generating events
following a Poisson distribution in each bin, with mean 〈Nk〉sig ≡ Nexp

∫ tk
tk−1

r(t) dt/day and
〈Nk〉non-mod ≡ Nexp/Nbins for the kth bin, respectively. We define our test statistic to be
the difference between the Pearson’s χ2 values when fitting the simulated data to the non-
modulating vs. modulating signal shapes. Concretely, suppose the number of events in the
kth bin is Nk. The test statistic is given by

TS =
∑
k

(Nk − 〈Nk〉non-mod)
2

〈Nk〉non-mod
−
∑
k

(Nk − 〈Nk〉sig)2

〈Nk〉sig
. (E.1)

GivenNexp, we simulate events according to the modulating (DM signal) and non-modulating
hypotheses for Nsample = 104 times each, and obtain the distribution of TS for the modu-
lating and non-modulating samples. For the non-modulating sample, we compute the 95
percentile value TSnon-mod, 95%. For the modulating signal sample, we compute the mean
TSsig, mean and the (50± 34) percentiles TSsig,±1σ. These numbers tell us to what extent we
can reject the non-modulating hypothesis: TSnon-mod, 95% < TSsig, mean means we can reject
the non-modulating hypothesis at 95% CL on average, while TSnon-mod, 95% < TSsig,±1σ means
we can reject the non-modulating hypothesis at 95% CL given a ±1σ statistical fluctuation
of the signal. Repeating the calculation for many values of Nexp, we obtain the interpolat-
ing functions TSnon-mod, 95%(Nexp), TSsig, mean(Nexp) and TSsig,±1σ(Nexp). These allow us to
solve for the Nexp needed for TSnon-mod, 95% to drop below TSsig, mean, and for it to go below
TSsig,±1σ. These then translate into cross sections assuming 1 kg-yr exposure, represented by
the modulation reach curves in Figs. 4.5, 4.6 and 4.7. Note that the procedure here largely
follows that in Ref. [28], but we have adopted a different test statistic that we find simpler
to compute and interpret. We have checked that using instead the test statistic in Ref. [28]
produces very similar results in most cases.
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A p p e n d i x F

SUPPLEMENTAL MATERIAL: ADDITIONAL DETAILS OF THE
MAGNON RATE CALCULATION

Here we provide additional technical details of the calculations in the Letter. We begin by
reviewing the derivation of the magnon Hamiltonian (Eq. (3) in the Letter). We first define
a local coordinate system for each sublattice j, in which the spins point in the z direction in
the ground state. Denoting the rotation matrices between global and local coordinates by
Rj, we have

Sαlj =
∑
β

Rαβ
j S ′β

lj , {〈S ′1
lj 〉, 〈S ′2

lj 〉, 〈S ′3
lj 〉} = {0, 0, Sj} , (F.1)

where α, β are Cartesian coordinates. To find the excitations above the ground state, we
map the spin system onto a bosonic system via the Holstein-Primakoff transformation,

S ′+
lj =

(
2Sj − â†lj âlj

)1/2
âlj , S ′−

lj = â†lj
(
2Sj − â†lj âlj

)1/2
, S ′3

lj = Sj − â†lj âlj , (F.2)

where S ′±
lj = S ′1

lj ± iS ′2
lj . The bosonic creation and annihilation operators satisfy [âlj, â

†
l′j′ ] =

δll′δjj′ , so that commutators between the spin operators [S ′α
lj , S

′β
l′j′ ] = δll′δjj′ iε

αβγS ′γ
lj are

reproduced. Going to momentum space and diagonalizing the quadratic Hamiltonian (cor-
responding to the leading terms in the 1/S expansion) by a Bogoliubov transformation,

âlj =
1√
N

∑
k∈1BZ

âj,ke
ik·xlj , (F.3)

(
âj,k

â†j,−k

)
= Tk

(
b̂ν,k

b̂†ν,−k

)
where Tk =

(
Ujν,k Vjν,k

V∗
jν,−k U∗

jν,−k

)
, (F.4)

where xlj is the position of the jth site in the lth unit cell, we arrive at the free magnon
Hamiltonian,

H =
n∑
ν=1

∑
k∈1BZ

ων,kb̂
†
ν,kb̂ν,k , (F.5)

where b†ν,k, b̂ν,k are creation and annihilation operators for the canonical magnon modes.
The canonical commutators are preserved, [b̂ν,k, b̂†ν′,k′ ] = δνν′δkk′ , by imposing the following
constraint,

Tk

(
1n 0n

0n −1n

)
T†

k =

(
1n 0n

0n −1n

)
. (F.6)
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Figure F.1: Calculated magnon dispersion of YIG along the high symmetry lines in the
first Brillouin zone.

We follow the algorithm in Ref. [268] to solve the constrained diagonalization problem to
obtain ων,k, Tk. Note that Ref. [268] uses a different Fourier transformation convention, with
xl rather than xlj in the exponent of Eq. (F.3). We have consistently followed our convention
throughout the calculation, adjusting the equations in Ref. [268] where necessary. In Fig. F.1,
we plot our calculated magnon dispersion ων,k for YIG along the high symmetry lines in the
(body-centered cubic) 1BZ generated using the SeeK-path code [51].

Next, we derive the single magnon production matrix element (Eq. (5) in the Letter) from the
DM-electron spin coupling (Eq. (4) in the Letter). Assuming the absence of orbital angular
momentum, a magnetic atom/ion at site l, j sources an effective scattering potential for the
incoming DM, which is given by the Fourier transform of the momentum space operator,

Vlj(x) =

∫
d3q

(2π)3

∑
α

Ôαχ(q)Ŝαlj e−iq·(x−xlj) . (F.7)

For a DM particle with incoming momentum p and outgoing momentum p′ = p− q, and a
transition λi → λf in the target system, the matrix element is

M = 〈χfλf |V̂ |χiλi〉

=
1

NΩ

∑
lj

∫
d3x eiq·x〈sfλf |Vlj(x)|siλi〉

=
1

NΩ

∑
α

〈sf |Ôαχ(q)|si〉
∑
lj

eiq·xlj〈λf |Ŝαlj|λi〉 . (F.8)

Now focus on the case where λi is the ground state |0〉 and λf is a single magnon state |ν,k〉.
Plugging in Eqs. (F.1)-(F.4), and keeping only terms proportional to a single power of b̂†ν,k,
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we obtain∑
lj

eiq·xlj〈λf |Ŝαlj|λi〉 =
∑
lj

eiq·xlj
∑
β

〈ν,k|Rαβ
j Ŝ ′β

lj |0〉 =
∑
lj

√
Sj
2
eiq·xlj〈ν,k|rα∗j âlj + rαj â

†
lj|0〉

=
1√
N

∑
k′∈1BZ

∑
l

ei(q−k′)·xl
∑
j

√
Sj
2
ei(q−k′)·xj〈ν,k|rα∗j âj,−k′ + rαj â

†
j,k′ |0〉

=
√
N
∑

k′∈1BZ

∑
G

δq−k′,G

∑
jν′

√
Sj
2
eiG·xj

(
Vjν′,−k′rα∗j + U∗

jν′,k′rαj
)
〈ν,k|b̂†

ν′,k′ |0〉

=
√
N
∑
G

δq−k,G

∑
j

√
Sj
2
eiG·xj

(
Vjν,−kr

α∗
j + U∗

jν,kr
α
j

)
, (F.9)

where we have used xlj = xl + xj,
∑

l e
i(q−k′)·xl = N

∑
G δq−k′,G. Plugging Eq. (F.9) into

Eq. (F.8) reproduces Eq. (5) in the Letter (where the sum over G is implicit).

Finally, we derive the analytical approximation for the rate in the case of an n = 1 ferro-
magnet target (Eqs. (12) and (13) in the Letter). Noting that the k integral over the 1BZ
combined with the G sum is equivalent to an integral over the entire momentum space, we
have

R =
ns
ρT

ρχ
mχ

∫
d3vχ f(vχ)

∫
d3q

8π2
tr
(
ρ̂χÔ+

χ (q)Ô†−
χ (q)

)
δ
(
q · vχ −

q2

2mχ

− ωk=q−G

)
. (F.10)

Since the magnon dispersion is near isotropic, the delta function fixes the angle between q

and vχ for any given q = |q|— this is true as long as q2

2mχ
+ω ≤ qvχ, or approximately (since

ω � qvχ), q ≤ 2mχvχ. Thus,

R =
ns
ρT

ρχ
mχ

∫
d3vχ

f(vχ)

vχ

∫
Σ

dq dφ

8π2
q tr
(
ρ̂χÔ+

χ (q)Ô†−
χ (q)

)
, (F.11)

where the q integral is now over a two-dimensional surface Σ that satisfies the energy-
conserving delta function, which is approximately a sphere of radius mχvχ centered at mχvχ.
The trace generally depends on the angle θq between q and the spins. For the three models
in Table 5.1, we have

tr
(
ρ̂χÔ+

χ Ô†−
χ

)
=


4g2χg

2
e

Λ2
χm

2
e
(1 + cos2 θq) (magnetic dipole DM) ,

g2χg
2
e

Λ4
χm

2
e
q2 (1 + cos2 θq) (anapole DM) ,

y2χy
2
e

m2
e

1
q2

sin2 θq (pseudo-mediated DM) .

(F.12)

However, since the trigonometric functions are bounded, we have, e.g.,
∫
dqdφ f(q) cos2 θq =

2π〈c2〉
∫
dq f(q) for a general function f(q), with 〈c2〉 ∈ [0, 1] a constant to be understood as
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a weighted average of cos2 θq over the integration region. Thus,

R =
ns
ρT

ρχ
mχ

∫
d3vχ

f(vχ)

vχ

∫ qmax(vχ)

qmin(ωmin)

dq

4π
q
〈
tr
(
ρ̂χÔ+

χ (q)Ô†−
χ (q)

)〉
. (F.13)

After performing the q integral, we arrive at Eqs. (12) and (13) in the Letter.
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A p p e n d i x G

PHOTON-PHONON MIXING

As outlined in Sec. 6.2, mixing between long-wavelength photon and phonon states needs to
be taken into account when computing DM absorption rates in a polar crystal. Our starting
point is the Lagrangian for an ionic lattice coupling to electromagnetism:

L =
∑
lj

(
1

2
mju̇

2
lj −

1

2

∑
l′j′

ulj ·V(2)
lj,l′j′ · ul′j′ + eE(x0

lj) · Z∗
j · ulj

)
+

∫
d3x

(
−1

4
F µνFµν +

1

2
AµΠ

µνAν

)
. (G.1)

In the long wavelength limit, the leading electromagnetic coupling is via the electric dipole,
as shown in the third term. Plugging in E = −∇A0 − Ȧ and integrate by parts, we can
write it in the familiar form of −

∫
d3x JµAµ =

∫
d3x(−ρA0 + J ·A), with

ρ(x) = −e
∑
lj

(
∇δ(3)(x− x0

lj)
)
· Z∗

j · ulj , J(x) = e
∑
lj

Z∗
j · u̇lj δ(3)(x− x0

lj) . (G.2)

when expanded to linear order in u. The last term in Eq. (G.1) results from integrating
out electron response. As explained in detail in Ref. [7], the photon self-energy Πµν can be
related to the dielectric tensor of the medium, ε (taken to be the electronic contribution,
usually denoted by ε∞, in the present case), and the photon Lagrangian can be written as

− 1

4
F µνFµν +

1

2
AµΠ

µνAν =

1

2
Ȧ · ε · Ȧ− 1

2
A0 (∇ · ε · ∇)A0 + Ȧ0(∇ · ε ·A)− 1

2

(
∂iA

j
)2

+
1

2
(∇ ·A)2 . (G.3)

It is convenient to choose a generalized Coulomb gauge, ∇ · ε ·A = 0, and since the A0 field
is non-dynamical, it can be immediately integrated out. We thus obtain

L =
∑
lj

1

2
mju̇

2
lj −

1

2

∑
ll′jj′

ulj ·Vll′jj′ · ul′j′ + eA(x0
lj) · Z∗

j · u̇lj

+

∫
d3x

[
1

2
Ȧ · ε · Ȧ− 1

2

(
∂iA

j
)2

+
1

2
(∇ ·A)2 +

1

2
ρ

1

∇ · ε · ∇
ρ

]
. (G.4)

To derive the Hamiltonian, we note the canonical momenta are:

plj =
∂L

∂u̇lj
= mju̇lj + eA(x0

lj) · Z∗
j , P (x) =

∂L
∂Ȧ(x)

= ε · Ȧ(x) . (G.5)
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Therefore,

H =
∑
lj

plj · u̇lj +
∫
d3xP · Ȧ− L = Hph +HCoulomb +HEM +Hmix , (G.6)

where

Hph =
∑
lj

p2
lj

2mj

+
1

2

∑
ll′jj′

ulj ·Vll′jj′ · ul′j′ , (G.7)

HCoulomb = −1

2

∫
d3x ρ

1

∇ · ε · ∇
ρ , (G.8)

HEM =
1

2

∫
d3x

[
P · ε−1 · P +

(
∂iA

j
)2 − (∇ ·A)2

+ e2
∑
lj

1

mj

δ(3)(x− x0
lj)
(
A · Z∗

j

)2]
, (G.9)

Hmix = −e
∑
lj

1

mj

A(x0
lj) · Z∗

j · plj . (G.10)

Note that while we have written A and P as 3-vectors, they are implicitly assumed to satisfy
the gauge condition. This means that, in Eq. (G.9), ε should be projected onto the subspace
satisfying the gauge condition before the inverse is taken.

We now consider the four terms in turn. First, as mentioned in Sec. 6.2, we use the phonopy
code with DFT calculations of the force constants V(2)

lj,l′j′ to diagonalize the lattice (phonon)
Hamiltonian Hph, giving

Hph =
3n∑
ν=1

∑
k

ων,kâ
†
ν,kâν,k . (G.11)

Second, the Coulomb term, HCoulomb, becomes more transparent when written as a momen-
tum space integral:

HCoulomb =
1

2

∫
d3k

(2π)3
|ρ̃(k)|2

k · ε · k
, (G.12)

with the charge density

ρ̃(k) =

∫
d3x e−ik·xρ(x) = −ie

∑
lj

k · Z∗
j · ulj e

−ik·x0
lj . (G.13)

Expanding ulj in (âν,k′ + â†
ν,−k′) as in Eq. (2.79) and summing over l picks out the k′ = k

modes. With the momentum integral discretized,
∫

d3k
(2π)3

→ 1
NΩ

∑
k, we find

HCoulomb =
e2

4Ω

∑
ν,ν′,k

1
√
ων′,kων,k

(k · ξ∗ν′,k)(k · ξν,k)
k · ε · k

(
âν′,−k + â†ν′,k

)(
âν,k + â†ν,−k

)
, (G.14)
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where
ξν,k ≡

∑
j

1
√
mj

Z∗
j · εν,k,j . (G.15)

As a technical note, while there is an option in phonopy (non-analytic correction) to also in-
clude HCoulomb in the diagonalization calculation, it seems to work only at k & ω. Therefore,
in our calculation, we use phonopy to diagonalize only Hph, and include HCoulomb separately.

Next, we also write the photon Hamiltonian HEM in momentum space:

HEM =

∫
d3k

(2π)3

[
1

2
P̃ (k)∗ · ε−1 · P̃ (k) +

1

2
Ã(k)∗ ·K2 · Ã(k)

]
, (G.16)

where
K2 = k21 +

e2

Ω

∑
j

Z∗
jZ∗T

j

mj

− kk . (G.17)

We decompose the photon field Ã into two orthogonal linear polarizations e1,k ⊥ e2,k which
satisfy the gauge condition, k · ε · eλ,k = 0 (λ = 1, 2). We choose the basis in which the
projection of ε onto the two-dimensional subspace, eλ′ · ε · eλ, is diagonal, with eigenvalues
ε1, ε2. Denote the projection of K2 in this basis by

e∗
λ′,k ·K2 · eλ,k ≡ K2

λ′λ . (G.18)

We introduce phonon creation and annihilation operators b̂†λ,k, b̂λ,k satisfying the usual (dis-
cretized) commutation relations, [b̂λ,k, b̂†λ′,k′ ] = δλ,λ′δk,k′ , etc., based on the diagonal piece of
the Hamiltonian:

Ã(k) =
√
NΩ

∑
λ

1√
2 ε

1/2
λ Kλλ

(
b̂λ,k + b̂†λ,−k

)
eλ,k , (G.19)

P̃ (k) =
√
NΩ

∑
λ

√
ε
1/2
λ Kλλ

2

1

i

(
b̂λ,k − b̂†λ,−k

)
eλ,k . (G.20)

The photon Hamiltonian then becomes

HEM =
∑
k

[ 2∑
λ=1

Kλλ√
ελ
b̂†λ,kb̂λ,k +

K2
12

2
√√

ε1ε2K11K22

(
b̂1,−k + b̂†1,k

)(
b̂2,k + b̂†2,−k

)]
, (G.21)

where we have used K12 = K21.
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Finally, the photon-phonon mixing term Hmix can be written in terms of the creation and
annihilation operators according to Eqs. (6.12) and (G.19):

Hmix = − e

NΩ

∑
k

∑
lj

eik·x
0
lj

mj

Ã(k) · Z∗
j · plj

=
ie

2
√
Ω

∑
k

3n∑
ν=1

2∑
λ=1

√
ων,k

ε
1/2
λ Kλλ

(
eλ,−k · ξν,k

)(
âν,k − â†ν,−k

)(
b̂λ,−k + b̂†λ,k

)
. (G.22)

The total quadratic Hamiltonian, given by the sum of Eqs. (G.11), Eqs. (G.14), Eqs. (G.21)
and Eqs. (G.22), involves the 3n phonon and 2 photon creation/annihilation operators,
â
(†)
ν=(1,...,3n),k, b̂(†)λ=(1,2),k. For simplicity, let us write â(†)ν=(3n+1,3n+2),k ≡ b̂

(†)
λ=(1,2),k. The quadratic

Hamiltonian then has the form:

Ĥ =
∑

k∈1BZ

a†
k · hk · ak with ak =

[
â1,k, . . . , â3n+2,k, â

†
1,−k, . . . , â

†
3n+2,−k

]T
. (G.23)

The matrix hk can be written as:

hk =



Ak B∗
k Ak B†

k

BT
k Ck −BT

k Ck

Ak B−k Ak B−k

BT
k Ck −BT

k Ck


, (G.24)

where Ak is a 3n× 3n matrix given by:

Ak,νν′ =
1

2
ωνδνν′ +

e2

4Ω
√
ων,kων′,k

(k · ξ∗ν,k)(k · ξν′,k)
k · ε · k

, (G.25)

while Bk is a 3n× 2 with the following structure

Bk,νν′ = −
2∑

λ=1

ie

4
√
Ω

√
ων,k

ε
1/2
ν′ Kν′ν′

(
ξν,k · eν′,−k

)
, (G.26)

and Ck,νν′ is a 2× 2 matrix given by

Ck,νν′ =
K2
νν′

4
√√

ενεν′KννKν′ν′
. (G.27)

We review a general algorithm for diagonalizing such Hamiltonians in Appendix I.
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A p p e n d i x H

GENERAL FORM OF THE MAGNON HAMILTONIAN

In this appendix, by following Ref. [268], we review the procedure to derive the quadratic
Hamiltonian describing small fluctuations around the ground state of the spin lattice de-
scribed by Eq. (6.19).1 The results we review will apply to both commensurate and single-Q
incommensurate materials (such as Ba3NbFe3Si2O14 discussed in Sec. 6.3). We conclude the
appendix giving the generalization of the rate in Eq. (6.27) for the case of incommensurate
materials.

To include in our discussion the case of single-Q incommensurate materials, we need to
generalize Eq. (6.20) to

Slj = R′(xlj) ·Rj · S′
lj , (H.1)

where the additional rotation R′(xlj) brings to a reference frame where the spin orientation
looks the same in all the unit cells (for commensurate ordered materials, R′ = 1). Following
the Holstein-Primakoff transformation, Eq. (6.21), we we can rewrite Eq. (H.1) as, at leading
order,

Slj = R′(xlj)

[√
Sj
2

(
r∗
j âlj + rj â

†
lj

)
+ tj

(
Sj − â†lj âlj

)]
, (H.2)

where tj is a unit vector pointing along the direction of the j-th spin in the rotating frame
(i.e., the reference frame defined by the rotation R′), while rj and r∗

j span an orthogonal
coordinate system. These vectors are related to the components of the matrix Rj by

rαj = Rα1
j + iRα2

j tαj = Rα3
j . (H.3)

By substituting Eq. (H.2) into Eq. (6.19), and going to momentum space, we obtain the
following expression for the quadratic part of the Hamiltonian

Ĥ =
∑

k∈1BZ

a†
k · hk · ak with ak =

[
â1,k, . . . , ân,k, â

†
1,−k, . . . , â

†
n,−k

]T
. (H.4)

The matrix hk can be written in terms of n× n sub-matrices as:

hk =

(
Ak − C Bk

B†
k A∗

−k − C

)
(H.5)

1We adopt a different phase convention compared to Ref. [268], by using eik·xlj as oppose to eik·xl , in
the Fourier transform Eq. (F.3).
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where, by defining J′
lj,l′j′ = R′(xlj)

T · Jlj,l′j′ ·R′(xl′j′), we have

Ak,jj′ = A†
k,jj′ =

√
SjSj′

2
rT
j · J′

−k,jj′ · r∗
j′ −

1

2
µBδjj′ B

T · gj · tj

Bk,jj′ = B∗
k,jj′ =

√
SjSj′

2
rT
j · J′

−k,jj′ · rj′

Ck,jj′ = δjj′
∑
l

Sl t
T
j · J′

jl(0) · tl

. (H.6)

The procedure to diagonalize Hamiltonian of this kind is reviewed in Appendix I.

We conclude by generalizing to the incommensurate case the formula for magnon produc-
tion given in Eq. (6.27). We start by writing the rotation matrix R′(xlj) in terms of the
propagation vector which characterizes the incommensurate order Q = (τ1, τ2, τ3):

R′(xlj) = R(n |Q · xlj) , (H.7)

where R(n |ϕ) is the rotation matrix around the unit vector n by an angle ϕ:

R(n |ϕ) = Re
[
eiϕ(1− in× − nnT )

]
+ nnT = R′

0 + R′
+e

iϕ + R′
−e

−iϕ (H.8)

R′
0 = nnT , R′

± =
1

2
(1∓ in× − nnT ) , n× =


0 −nz ny

nz 0 −nx
−ny nx 0

 , (H.9)

noting that n× · v = n × v for any vector v. Then, by using Eq. (H.1) and the interaction
given by Eq. (6.4), we find

〈ν,k| ˆδH0|0〉 =
∑
lj

√
Sj
2N

e−ik·xlj f j ·R′(xlj) ·
(
Vjν,−kr

∗
j + U∗

jν,krj
)

=

√
N

2

∑
j

√
Sj f j ·

(
δk,0R′

0 + δk,Q R′
+ + δk,−Q R′

−
)
·
(
Vjν,−kr

∗
j + U∗

jν,krj
)
,

(H.10)

from which we can obtain the generalized expression for the rate:

RQ 6=0 =
2ω

mcell

n∑
ν=1

1∑
λ=−1

ων,λQ γν,λQ
(ω2 − ω2

ν,λQ)
2 + (ω γν,λQ)2

∣∣∣∣∑
j

√
Sj f

T
j R′

λ

(
Vjν,−λQr

∗
j + U∗

jν,λQrj
)∣∣∣∣2 .

(H.11)
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A p p e n d i x I

DIAGONALIZATION OF QUADRATIC HAMILTONIANS

In this appendix, by closely following Ref. [268, 298], we review the procedure to diagonalize
quadratic Hamiltonians which have the form of Eq. (G.23) and Eq. (H.4). The goal of the
procedure is to find a homogeneous linear transformation

ak = Tk · a′
k ≡ Tk ·

[
â′1,k, . . . , â

′
n,k, â

′†
1,−k, . . . , â

′†
n,−k

]T
, (I.1)

such that the operators â′ν,k, â
′†
ν,k satisfy the canonical commutation relations

[a′
k, a

′†
k ] =

(
1 0

0 −1

)
≡ g , (I.2)

and that rewrites the quadratic Hamiltonian as

Ĥ =
∑

k a†
khkak =

∑
k a′†

k · E · a′
k , (I.3)

where

Ek ≡ T†
k · hk · Tk =

1

2
diag (ω1,k . . . ωn,k, ω1,k . . . ωn,k) with ων,k > 0 . (I.4)

By using the commutation relations in Eq. (I.2), it can be easily shown that, up to constant
terms, Eq. (I.3) is equivalent to Eq. (6.14) and Eq. (6.23) with the U and V matrices implicitly
defined as

Tk =

(
Ujν,k Vjν,k

V∗
jν,−k U∗

jν,−k

)
. (I.5)

Such diagonalization procedure (usually called para-unitary diagonalization) can be achieved
if h(k) is positive definite. If the spectrum contains zero energy modes, the h(k) matrix will
be positive semidefinite and such para-unitary diagonalization may not exist. This problem
can be cured by adding a small ε value to the diagonal components of h(k) [298]. This
introduces a small and negligible shift in the spectrum but makes h(k) positive definite and
allows for a para-unitary diagonalization. Ref. [298] provides a simple three-step algorithm
to find the linear transformation T and the associated eigenvalues:

• A Cholesky decomposition is applied to find a complex matrix Kk such that hk = K†
kKk.



277

• The eigenvalue problem for the Hermitian matrix KkgK†
k is solved, and the resulting

eigenvalues used to form the columns of the matrix Uk. The order of the columns is
chosen such that the first N elements of the diagonalized matrix L = U†KkgK†

kU are
positive and the last N negative.

• Finally, the matrix Ek in Eq. (I.4) is simply related to Lk by Ek = gLk, and the Tk

matrix is given by Tk = K−1
k UkE1/2

k .
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A p p e n d i x J

NONRELATIVISTIC MATCHING FOR A FERMION FIELD

In this appendix, we review the procedure of decomposing a Dirac fermion field ψ in the NR
limit. Consider the following unperturbed relativistic Lagrangian:

L0 = ψ̄ i(∂µ − iAµ)γµψ −mψψ̄ψ . (J.1)

In free space, we would expand the ψ field in plane waves multiplied by the usual u, v spinors
satisfying the free particle Dirac equation. Here, we allow the presence of an external gauge
potential Aµ = (Φ,A), which may not be a small perturbation. For example, if ψ is an
electron in a crystal, it is bound by the electromagnetic potential from the ions, and the
bound state wavefunctions are very different from plane waves. Generally, we can expand
the ψ field in the basis of energy eigenstate wavefunctions. Dropping the antiparticle part,
we have

ψ(x, t) =
∑
I

uI(x, t) b̂I =
∑
I

e−iEI t uI(x) b̂I , (J.2)

where the c-number uI spinors satisfy(
EIγ

0 − iγ · ∇ −mψ − γ0Φ(x) + γ ·A(x)
)
uI(x) = 0 . (J.3)

Writing

uI(x) =
1√
2

(
ΨI(x) + ΘI(x)

ΨI(x)−ΘI(x)

)
, (J.4)

with ΨI , ΘI two-component wavefunctions, we see that Eq. (J.3) is solved by

ΘI(x) =
iσ ·

(
∇− iA(x)

)
EI +mψ − Φ(x)

ΨI(x) . (J.5)

This immediately leads to Eq. (7.8), repeated here for easy reference:

ψ(x, t) = e−imψt
1√
2

(1− σ·k
2mψ+ε

)
ψ+(x, t)(

1 + σ·k
2mψ+ε

)
ψ+(x, t)

 , (J.6)

where k = −i∇−A, ε = i∂t−Φ, and ψ+(x, t) =
∑

I e
−iεI tΨI(x) b̂I with εI = EI−mψ. The

prefactor has been chosen such that the NR field ψ±’s kinetic term is normalized at leading
order as in Eq. (7.11).
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In the NR limit, |ΘI | � |ΦI |. The large component ΨI satisfies[
−σ ·

(
∇− iA(x)

) 1

2mψ + εI − Φ(x)
σ ·
(
∇− iA(x)

)
+ Φ(x)

]
ΨI(x) = εIΨI(x) . (J.7)

At leading order, we replace 1
2mψ+εI−Φ(x)

→ 1
2mψ

, and recover the NR Schrödinger equation:

[
−
(
∇− iA(x)

)2
2mψ

+
1

2mψ

σ ·
(
∇×A(x)

)
+ Φ(x)

]
ΨI(x) = εIΨI(x) . (J.8)

Corrections to this equation can be incorporated order by order if needed.
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A p p e n d i x K

PROJECTION OF ANGULAR MOMENTUM OPERATORS

In this appendix, we detail the steps that lead to the numbers λS,j = −1
3
, λL,j = −4

3
in

the case of α-RuCl3, following the projection of angular momentum operators Se, Le in
Eq. (7.36). The formation of effective ionic spins Sj = 1

2
is due to the combined effect

of crystal fields and spin-orbit coupling [325]. First, octahedral crystal fields split the five
degenerate 3d orbitals (` = 2) of Ru3+ into two higher-energy eg orbitals and three lower-
energy t2g orbitals with an effective orbital moment `eff = 1. The energy difference between
the eg and t2g orbitals is O(eV), rendering the (unoccupied) eg orbitals irrelevant for the
discussion. For the t2g orbitals, spin-orbit coupling further splits these `eff = 1 states into
jeff = 3

2
and 1

2
. With five 3d electrons, the lower-energy jeff = 3

2
states are fully occupied,

while the higher-energy jeff = 1
2

Kramers doublet is occupied by a single electron — it is
this electron that contributes to the magnetic order. Therefore, the goal is to project the
angular momentum operators S, L (dropping subscript e from here on for simplicity) onto
the jeff = 1

2
subspace.

The first step is to project L onto the t2g subspace. The t2g states are denoted by dyz, dzx,
dxy. The angular part of their wavefunctions are linear combinations of spherical harmonics
Y m
`=2(θ, φ) (see e.g., Ref. [263]); equivalently, these t2g states are linear combinations of |`,m`〉

states with ` = 2:

|dyz〉 =
i√
2

(
|2, 1〉+|2,−1〉

)
, |dzx〉 = −

1√
2

(
|2, 1〉−|2,−1〉

)
, |dxy〉 = −

i√
2

(
|2, 2〉−|2,−2〉

)
.

(K.1)
To compute Pt2gLPt2g , with the projection operator

Pt2g = |dyz〉〈dyz|+ |dzx〉〈dzx|+ |dxy〉〈dxy| , (K.2)

we make use of the familiar formulae

〈`′,m′
`|Lz|`,m`〉 = m` δ`′,`δm′

`,m`
, 〈`′,m′

`|L±|`,m`〉 =
√

(`∓m`)(`±m` + 1) δ`′,`δm′
`,m`±1 ,

(K.3)
where L± = Lx ± iLy, and obtain, for the matrix representation in the |dyz〉, |dzx〉, |dxy〉
basis:

Pt2g Lz Pt2g =̇


0 i 0

−i 0 0

0 0 0

 , Pt2g L±Pt2g =̇


0 0 ±1
0 0 i

∓1 −i 0

 . (K.4)
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These might not look familiar, but they are nothing but ` = 1 angular momentum operators
in the |px〉, |py〉, |pz〉 basis, which is related to the |`,m`〉 basis with ` = 1 by [263]

|px〉 = −
1√
2

(
|1, 1〉 − |1,−1〉

)
, |py〉 =

i√
2

(
|1, 1〉+ |1,−1〉

)
, |pz〉 = |1, 0〉 . (K.5)

The angular momentum operators in this basis read

Lz =̇


0 −i 0

i 0 0

0 0 0

 , L± =̇


0 0 ∓1
0 0 −i
±1 i 0

 . (K.6)

Comparing Eq. (K.4) and (K.6), we see that L acts as an effective angular momentum with
` = 1 on the t2g subspace:

Pt2g LPt2g = −L
(`=1)
eff . (K.7)

The second step is to combine this effective orbital angular momentum `eff = 1 with the
electron’s spin s = 1

2
. This follows the standard angular momentum addition, and we

obtain, for the jeff = 1
2

states:∣∣jeff = 1
2
,mjeff = 1

2

〉
=

√
2
3

∣∣m`eff = 1,ms = −1
2

〉
−
√

1
3

∣∣m`eff = 0,ms =
1
2

〉
, (K.8)∣∣jeff = 1

2
,mjeff = −1

2

〉
=

√
1
3

∣∣m`eff = 0,ms = −1
2

〉
−
√

2
3

∣∣m`eff = −1,ms =
1
2

〉
, (K.9)

where the coefficients are Clebsch-Gordan coefficients. It is now straightforward to project
Leff and S onto the jeff = 1

2
subspace:

Pjeff=
1
2
Leff
z Pjeff=

1
2
=̇

(
2
3

0

0 −2
3

)
, Pjeff=

1
2
Leff
+ Pjeff=

1
2
=̇

(
0 4

3

0 0

)
, (K.10)

Pjeff=
1
2
Sz Pjeff=

1
2
=̇

(
−1

6
0

0 1
6

)
, Pjeff=

1
2
S+Pjeff=

1
2
=̇

(
0 −1

3

0 0

)
. (K.11)

We see that both Leff and S are proportional to J eff = σ
2

(identified as the total ionic spin
as discussed above) when acting on the jeff = 1

2
subspace. So finally, we obtain

Pjeff=
1
2
LPjeff=

1
2
= −Pjeff=

1
2
LeffPjeff=

1
2
= −4

3
J eff , Pjeff=

1
2
S Pjeff=

1
2
= −1

3
J eff . (K.12)
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A p p e n d i x L

VELOCITY INTEGRALS

When the velocity dependent rate Γ(v), given by Eq. (7.45), is convoluted with the incoming
DM’s velocity distribution fχ(v) to yield the total rate, Eq. (7.46), we encounter the following
scalar, vector and tensor velocity integrals:

g0(q, ω) ≡
∫
d3v fχ(v) 2πδ(ω − ωq) , (L.1)

g1(q, ω) ≡
∫
d3v fχ(v) 2πδ(ω − ωq)v

′ , (L.2)

g2(q, ω) ≡
∫
d3v fχ(v) 2πδ(ω − ωq)v

′v′ , (L.3)

where v′ = v − q
2mχ

, and ωq = q · v − q2

2mχ
. From the expressions of differential rates Σν(q)

throughout Sec. 7.3, it should be easy to see how these integrals emerge. Note that for
velocity-independent interactions, only the scalar integral g0 appears [7, 28, 29].

As we now show, all three velocity integrals above can be evaluated analytically for a boosted
and truncated Maxwell-Boltzmann distribution, which we assume in this work:

fχ(v) =
1

N0

e−(v+ve)2/v20 Θ
(
vesc − |v + ve|

)
, (L.4)

where

N0 = π3/2v20

[
v0 erf

(
vesc/v0

)
− 2 vesc√

π
exp
(
−v2esc/v

2
0

)]
, (L.5)

and we take v0 = 230 km/s, vesc = 600 km/s, ve = 240 km/s. For all the target materials
considered in Sec. 7.3, the rates are insensitive to the direction of ve. The analytic results
obtained here are key to efficient rate calculations, as they reduce the six-dimensional integral∫
d3v
∫
d3q to just a three-dimensional integral

∫
d3q, which we then compute numerically.

First, the scalar integral g0 follows from Refs. [7, 28, 29]. Shifting v → v − ve, we obtain

g0(q, ω) =
2π

N0

∫
d3v e−v

2/v20 Θ(vesc − v) δ
(
q · v − q · ve −

q2

2mχ

− ω
)

=
4π2

N0

∫ vesc

0

dv v2 e−v
2/v20

∫ 1

−1

d cos θ δ
(
qv cos θ − q · ve −

q2

2mχ

− ω
)
. (L.6)

Let us define
v∗ ≡

1

q

(
q · ve +

q2

2mχ

+ ω

)
, v− ≡ min

(
|v∗| , vesc

)
. (L.7)
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We then obtain

g0(q, ω) =
4π2

N0q

∫ vesc

0

dv v e−v
2/v20

∫ 1

−1

d cos θ δ
(

cos θ − v∗
v

)
=

4π2

N0q

∫ vesc

v−

dv v e−v
2/v20

=
2π2v20
N0q

(
e−v

2
−/v20 − e−v2esc/v

2
0

)
. (L.8)

Next, the vector integral g1 can be decomposed as

g1(q, ω) =

∫
d3v fχ(v)(v + ve)−

(
ve +

q

2mχ

)
g0(q, ω) . (L.9)

The first term can be computed by shifting v → v−ve as before, but this time the integrand
also depends on the azimuthal angle φ:∫

d3v fχ(v)(v + ve) =
2π

N0

∫
d3v e−v

2/v20 Θ(vesc − v) δ
(
q · v − q · ve −

q2

2mχ

− ω
)
v

=
4π2

N0

∫ vesc

0

dv v3 e−v
2/v20

∫ 1

−1

d cos θ δ
(
qv cos θ − q · ve −

q2

2mχ

− ω
)

∫ 2π

0

dφ

2π

[
cos θ q̂ + sin θ (cosφ n̂1 + sinφ n̂2)

]
=

4π2

N0

q̂

∫ vesc

0

dv v3 e−v
2/v20

∫ 1

−1

d cos θ δ
(
qv cos θ − q · ve −

q2

2mχ

− ω
)

cos θ

=
4π2

N0q
q̂

∫ vesc

0

dv v2 e−v
2/v20

∫ 1

−1

d cos θ δ
(

cos θ − v∗
v

)
cos θ

=
4π2v∗
N0q

q̂

∫ vesc

v−

dv v e−v
2/v20 = v∗ q̂ g0(q, ω) , (L.10)

where n̂1, n̂2 are orthogonal unit vectors in the plane perpendicular to q. Plugging in the
definition of v∗ in Eq. (L.7), we obtain

g1(q, ω) =

[
ω

q
q̂ − (1− q̂q̂) · ve

]
g0(q, ω) . (L.11)

Finally, we compute the tensor integral g2, which can be similarly decomposed as

g2(q, ω) =

∫
d3v fχ(v)(v + ve)(v + ve)−

[(
ve +

q

2mχ

)
q̂ + q̂

(
ve +

q

2mχ

)]
v∗ g0(q, ω)

+

(
ve +

q

2mχ

)(
ve +

q

2mχ

)
g0(q, ω)

=

∫
d3v fχ(v)(v + ve)(v + ve)

+

{[
ω

q
q̂ − (1− q̂q̂) · ve

][
ω

q
q̂ − (1− q̂q̂) · ve

]
− v2∗ q̂q̂

}
g0(q, ω) , (L.12)
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where we have used Eq. (L.10). The remaining integral can be evaluated similarly to
Eq. (L.10):∫

d3v fχ(v)(v + ve)(v + ve)

=
4π2

N0

∫ vesc

0

dv v4 e−v
2/v20

∫ 1

−1

d cos θ δ
(
qv cos θ − q · ve −

q2

2mχ

− ω
)

∫ 2π

0

dφ

2π

[
cos θ q̂ + sin θ(cosφ n̂1 + sinφ n̂2)

]
⊗
[
cos θ q̂ + sin θ(cosφ n̂1 + sinφ n̂2)

]
=

4π2

N0q

∫ vesc

0

dv v3 e−v
2/v20

∫ 1

−1

d cos θ δ
(

cos θ − v∗
v

)[
cos2 θ q̂q̂ +

1

2
sin2 θ(1− q̂q̂)

]
=

4π2

N0q

∫ vesc

v−

dv v e−v
2/v20

[
v2∗ q̂q̂ +

1

2
(v2 − v2∗)(1− q̂q̂)

]
= v2∗ q̂q̂ g0(q, ω) + (1− q̂q̂)

π2v20
N0q

[
(v20 − v2∗ + v2−) e

−v2−/v20 − (v20 − v2∗ + v2esc) e
−v2esc/v

2
0

]
= v2∗ q̂q̂ g0(q, ω) + (1− q̂q̂)

π2v20
N0q

[
v20 e

−v2−/v20 − (v20 − v2− + v2esc) e
−v2esc/v

2
0

]
, (L.13)

where we have used n̂1n̂1 + n̂2n̂2 = 1− q̂q̂. Therefore,

g2(q, ω) =

[
ω

q
q̂ − (1− q̂q̂) · ve

][
ω

q
q̂ − (1− q̂q̂) · ve

]
g0(q, ω)

+(1− q̂q̂)
π2v20
N0q

[
v20 e

−v2−/v20 − (v20 − v2− + v2esc) e
−v2esc/v

2
0

]
. (L.14)

The following relations between the velocity integrals often help simplify the calculaiton:

q · g1(q, ω) = ω g0(q, ω) , q · g2(q, ω) = g2(q, ω) · q = ω g1(q, ω) . (L.15)

They follow from q ·v′ = ωq, and can be easily checked using the explicit expressions above.
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A p p e n d i x M

ESTIMATION OF SINGLE PHONON EXCITATION RATE IN YIG

In this appendix, we explain the analytic estimation that results in the dashed curve in
Fig. 7.1. For the standard SD interaction considered in Sec. 7.3, the single phonon excitation
rate is

Γ(v) =
4g2χg

2
e

m4
V

1

Ω

∫
d3q

(2π)3

∑
ν

2π δ
(
ων,k − ωq

) ∣∣F (e)
S,ν

∣∣2 , (M.1)

where
F

(e)
S,ν(q) =

∑
j=Fe3+

e−Wj(q)eiG·x0
j

q · ε∗ν,k,j√
2mjων,k

〈Se〉j . (M.2)

See Eqs. (7.45), (7.49) and (7.43). For YIG, ν runs from 1 to 240. However, since DM has
same-sign couplings to all the Fe3+ ions (and zero couplings to the other ions), we expect
acoustic phonons to give an O(1) contribution to the total rate at low momentum transfer.
Further, the dot product q ·ε∗ν,k,j in F

(e)
S,ν singles out the longitudinal acoustic branch, ν = 3,

which has the following general properties at low momentum [201]:

ων=3,k ' csk , εν=3,k,j '
√

mj

mcell
k̂ , (M.3)

where cs is the longitudinal acoustic sound speed. Also, we can set G = 0, k = q, and
Wj ' 0 at low q. Therefore,

F
(e)
S,ν=3(q) '

√
q

2mcellcs

∑
j=Fe3+

〈Se〉j =
√

q

2mcellcs
Scell , (M.4)

and the velocity-dependent rate becomes

Γ(v) '
g2χg

2
e

m4
V

2S2
cell

Ωmcellcs

∫
d3q

(2π)2
δ
(
csq − ωq

)
q

=
g2χg

2
e

m4
V

S2
cell

πΩmcellcs

∫
dq q3

∫
d cos θ δ

(
csq − qv cos θ + q2

2mχ

)
=

g2χg
2
e

m4
V

S2
cell

πΩmcellcs

1

v

∫
dq q2Θ

(
v − vmin(q)

)
, (M.5)

where
vmin(q) ≡

q

2mχ

+ cs . (M.6)
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Now we can write the total rate per unit target mass in terms of the commonly used η

function, defined by

η(vmin) ≡
∫
d3v

f(v)

v
Θ(v − vmin) . (M.7)

The result is

R ' 1

ρT

ρχ
mχ

g2χg
2
e

m4
V

S2
cell

πΩmcellcs

∫
dq q2 η

(
vmin(q)

)
=

1

πcs

(
Scell

mcell

)2 g2χg
2
e

m4
V

ρχ
mχ

∫
dq q2 η

(
vmin(q)

)
. (M.8)

This is the formula we use to estimate the single phonon excitation rate in YIG in Sec. 7.3.
The material parameters are cs = 7.2 km/s [438], Scell = 10, mcell = ρTΩ, with ρT =

4.95 g/cm3, Ω = 990.683Å3. The analytic expression for the η(vmin) function for the Maxwell-
Boltzmann distribution of Eq. (L.4) can be found in e.g., Ref. [7]. Since the η function has
support up to qmax ' 2mχ(ve + vesc), we cut off the dashed curve in Fig. 7.1 at the mχ value
for which qmax reaches π

Ω1/3 , roughly the edge of the 1BZ.
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A p p e n d i x N

SELF-ENERGY CALCULATIONS

N.1 General Result for the One-Loop Self-Energy
At one-loop level, the self-energies defined in Eqs. (9.23) and (9.24) are given by

− iΠO1,O2(Q) =
Q−→

I ′

I

O1 O2

, −iΠ′
O(Q) =

Q−→

I

O
, (N.1)

where the external states (drawn with curly lines for concreteness) can be either spin-0
or spin-1, and the internal electronic states I, I ′ are summed over. Using the in-medium
Feynman rules (see e.g., Ref. [380]) we obtain, for the first diagram:

− iΠO1,O2 =
(−1)
V

∑
I′I

∫ ∞

−∞

dε

2π

tr (〈I ′| O1 e
iq·x|I〉〈I| O2 e

−iq·x|I ′〉)
(ε+ ω − εI′ + iδI′)(ε− εI + iδI)

, (N.2)

where V is the total volume, “tr” represents the spin trace, and δ
I(′)
≡ δ sgn(ε

I(′)
− εF ) with

δ → 0+. Note that the iδ prescription for electron propagators is different from the vacuum
theory, and depends on whether the state is above or below the Fermi energy εF ; using
the correct iδ prescription is crucial for ensuring causality. Meanwhile, the matrix elements
coming from the vertices are

〈I ′| O1 e
iq·x|I〉 =

∫
d3x

[
Ψ∗
I′(x)O1ΨI(x)

]
eiq·x , (N.3)

and likewise for 〈I| O2 e
−iq·x|I ′〉. Here O1,2 are matrices in spin space, and may involve

spatial derivatives acting on the electronic wave functions. For example, for the velocity
operator defined in Eq. (9.27) (which is proportional to the identity matrix in spin space),
we have〈
I ′
∣∣ vj eiq·x ∣∣I〉 = − i

2me

〈
I ′
∣∣←→∇j e

iq·x ∣∣I〉 = − i

2me

∫
d3x

[
Ψ∗
I′ (∇jΨI)− (∇jΨ

∗
I′)ΨI

]
eiq·x .

(N.4)

We can evaluate the energy integral in Eq. (N.2) by examining the pole structure of the
integrand in the complex plane. If δI′ and δI have the same sign (i.e., if both I ′ and I are
above or below the Fermi energy), the two poles are on the same side of the real axis and
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they have opposite residues; the integral therefore vanishes upon closing the contour via
either +i∞ or −i∞. So we must have one state above the Fermi energy and one below it,
in which case there is one pole on each side of the real axis; closing the contour via either
+i∞ or −i∞ to pick up the residue at one of the poles, we obtain

∫ ∞

−∞

dε

2π

1

(ε+ ω − εI′ + iδI′)(ε− εI + iδI)
=


i

ω − ωI′I + iδ
if δI′ > 0, δI < 0 ;

− i

ω − ωI′I − iδ
if δI′ < 0, δI > 0 .

(N.5)

Here ωI′I ≡ εI′ − εI , and δ → 0+. All cases discussed above can be concisely summarized as:∫ ∞

−∞

dε

2π

1

(ε+ ω − εI′ + iδI′)(ε− εI + iδI)
=
−i (fI′ − fI)
ω − ωI′I + iδI′I

, (N.6)

where fI , fI′ are the occupation numbers (equal to 1 for states below the Fermi energy, 0
for states above it), and δI′I ≡ δ sgn(ωI′I). We therefore obtain

ΠO1,O2 = −
1

V

∑
I′I

fI′ − fI
ω − ωI′I + iδI′I

tr
(
〈I ′| O1 e

iq·x|I〉〈I| O2 e
−iq·x|I ′〉

)
. (N.7)

As the simplest example, setting O1 = O2 = 1 in Eq. (N.7), we obtain Π1,1, and hence the
dielectric via Eq. (9.36), which reproduces the familiar Lindhard formula (see e.g., Ref. [439]
and recent discussions in Refs. [36, 49]).

Now move on to the second diagram in Eq. (N.1). While we have shown in Sec. 9.3 that con-
tributions to absorption rates from this diagram can be eliminated using the Ward identity,
we present its result here for completeness and also to allow for an explicit check of the Ward
identity. In this diagram, the electron propagator starts and ends at the same time point and
time-ordering becomes ambiguous. The correct prescription is to take the normal-ordered
product of creation and annihilation operators, and the loop is simply proportional to the
electron number operator [380]. Again writing the result in terms of occupation number fI ,
we find

Π′
O = − 1

V

∑
I

fI tr〈I| O|I〉 . (N.8)

Note that Π′
O is purely real at all orders. With Eqs. (N.7) and (N.8) one can readily verify

the relations implied by the Ward identity, Eqs. (9.29) and (9.53).

N.2 Real Part of the One-Loop Self-Energy in a Metal
We now apply Eq. (N.7) to the case of a metal. As discussed in Sec. 9.5, we model the
electrons near the Fermi surface of a metal as free quasiparticles with an effective mass m∗
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and energy eigenstates labeled by momentum. The sum over I, I ′ becomes integrals over
k,k′, and we have

ΠO1,O2 = ReΠO1,O2 =

− 1

V

∫
V d3k′

(2π)3

∫
V d3k

(2π)3
fk′ − fk

ω − k′2

2m∗
+ k2

2m∗

tr
(
〈k′| O1 e

iq·x|k〉〈k| O2 e
−iq·x|k′〉

)
. (N.9)

Note that the iδ in the denominator is irrelevant since the intermediate states cannot go
on-shell and ΠO1,O2 is real at one-loop level.

Let us first consider Π1,1. For the matrix element part, we have

〈k′| 1 eiq·x|k〉

=
1

V

∫
d3x ei(k+q−k′)·x 1

=
(2π)3

V
δ3(k + q − k′) 1 , (N.10)

tr
(
〈k′| 1 eiq·x|k〉〈k| 1 e−iq·x|k′〉

)
= 2

(2π)3

V
δ3(k + q − k′)

1

V

∫
d3x = 2

(2π)3

V
δ3(k + q − k′) . (N.11)

Therefore,

Π1,1 = −2
∫

d3k

(2π)3
fk+q − fk

ω − (k+q)2

2m∗
+ k2

2m∗

= −2
∫

d3k

(2π)3
fk+q − fk

ω − k·q
m∗
− q2

2m∗

. (N.12)

Expanding in small q and integrating by parts, we find

Π1,1 = − 2

∫
d3k

(2π)3
(q · ∇fk + . . . )

(
1

ω
+

k · q
m∗ω2

+ . . .

)
= 2

∫
d3k

(2π)3
fk (q · ∇+ . . . )

(
1

ω
+

k · q
m∗ω2

+ . . .

)
' 2

∫
d3k

(2π)3
fk

q2

m∗ω2
=

q2

ω2

ne
m∗

, (N.13)

where the gradients are in k space, and ne = 2
∫

d3k
(2π)3

fk is the free electron density.

We can calculate Πv̄2,1 in a similar way. The matrix element part again yields a momentum-
conserving delta function, and the integrand can then be expanded in small q. We find

Πv̄2,1 = −2
∫

d3k

(2π)3
fk+q − fk

ω − k·q
m∗
− q2

2m∗

(2k + q)2

8m2
e

= 2

∫
d3k

(2π)3
fk

(
q · ∇ − 1

2
qiqj∇i∇j + . . .

)(
1

ω
+

k · q
m∗ω2

+ . . .

)(
k2

2m2
e

+
k · q
2m2

e

+ . . .

)
' 2

∫
d3k

(2π)3
fk
k2q2 + 2(k · q)2

2m2
em∗ω2

=
k2F
2m2

e

q2

ω2

ne
m∗

, (N.14)
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where we have used fk = Θ(kF − k), and ne = 2
(2π)3

4
3
πk3F . Finally, since Eq. (N.14) is

invariant under (ω, q)→ (−ω,−q), we have Π1,v̄2(Q) = Πv̄2,1(−Q) = Πv̄2,1(Q).

N.3 Imaginary Part of the Two-Loop Self-Energy in a Metal
The one-loop self-energies calculated above are purely real: both electrons cannot go on-shell
if their energies and momenta differ by Qµ = (ω, q) with ω � q. The leading contribution to
ImΠO1,O2(Q) comes from two-loop diagrams with an internal phonon line. In this section,
we compute them first in the case of a normal conductor, and then discuss the corrections
needed in the superconductor case when ω approaches the gap 2∆.

Cut diagrams. There are three contributing diagrams:

Q−→ →
Q′

K

O1 O2

= − i
∫

d4K

(2π)4

∫
d4Q′

(2π)4
GK GK+QGK+Q−Q′ GK+QG

ph
Q′

y2q′ tr
[
Õ1(K,K +Q) Õ2(K +Q,K)

]
, (N.15)

Q−→

K +Q

Q′
→

O1 O2

= − i
∫

d4K

(2π)4

∫
d4Q′

(2π)4
GK GK+QGK GK+Q′ G

ph
Q′

y2q′ tr
[
Õ1(K,K +Q) Õ2(K +Q,K)

]
, (N.16)

Q−→ ↓ Q′

K
O1 O2

= − i
∫

d4K

(2π)4

∫
d4Q′

(2π)4
GK GK+QGK+Q−Q′ GK−Q′ G

ph
Q′

y2q′ tr
[
Õ1(K,K +Q) Õ2(K +Q−Q′, K −Q′)

]
. (N.17)

Here each propagator is labeled by a four-momentum that consists of the energy it carries
and the momentum label of the electron or phonon state. In each diagram, we denote four-
momentum flowing into the O1 vertex from the electron propagator as Kµ = (ε,k), and
the phonon four-momentum (with direction indicated by the arrow) as Q′µ = (ω′, q′). The
electron and phonon propagators are denoted by iG and iGph, respectively, with

GK =
1

ε− k2

2m∗
+ iδε

, Gph
Q′ =

1

ω′ − ωq′ + iδ
− 1

ω′ + ωq′ − iδ
=

2ωq′

ω′2 − ω2
q′ + iδ

, (N.18)

where δε = δ sgn(ε − εF ), δ → 0+, and ωq′ = csq
′. The electron-phonon vertex yq′ =

Ce-phq
′√

2ωq′ρT
, while the vertices associated with operator insertionsO1,2 yield the momentum space
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representations of these operators, Õ1,2, whose arguments are the incoming and outgoing
electrons’ four-momenta. We have assumed exact momentum conservation and neglected
Umklapp processes; the latter may introduce an O(1) correction to the final results which is
more difficult to calculate.

By the optical theorem, 2 ImΠO1,O2 is given by the sum of cut diagrams. For the first
diagram, Eq. (N.15), there is only one possible cut to put all intermediate states on-shell,
i.e., the one through the phonon propagator and the two electron propagators carrying
momenta K and K +Q−Q′. By the cutting rules, we should replace

Gph
Q′ → − 2πi

[
δ(ω′ − ωq′) + δ(ω′ + ωq′)

]
, (N.19)

GK → − 2πi sgn(ε− εF ) δ
(
ε− k2

2m∗

)
, (N.20)

GK+Q−Q′ → − 2πi sgn(ε+ ω − ω′ − εF ) δ
(
ε+ ω − ω′ − (k + q − q′)2

2m∗

)
. (N.21)

For ω > 0, the on-shell condition requires ω′ > 0, ε < εF and ε+ω−ω′ > εF ; this corresponds
to a process where an electron jumps out of the Fermi sphere by absorbing Qµ = (ω, q) while
emitting a phonon to conserve momentum. We therefore obtain

Cut
[

Eq. (N.15)
]

= −
∫

d4K

(2π)3

∫
d4Q′

(2π)3
2π δ(ω′ − ωq′) δ

(
ε− k2

2m∗

)
δ

(
ε+ ω − ω′ − (k + q − q′)2

2m∗

)
fk
(
1− fk+q−q′

)
G2
K+Q y

2
q′ tr
[
Õ1(K,K +Q) Õ2(K +Q,K)

]
= −

∫
d3k

(2π)3

∫
d3q′

(2π)3
2π δ

(
ω +

k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2q′

G2
K+Q tr

[
Õ1(K,K +Q) Õ2(K +Q,K)

]
, (N.22)

where it is understood that ε (the energy components of K) is set to k2

2m∗
in the final expres-

sion. The second diagram, Eq. (N.16), is completely analogous. Cutting the propagators
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GK+Q, Gph
Q′ and GK+Q′ , we obtain

Cut
[

Eq. (N.16)
]

= −
∫

d3k

(2π)3

∫
d3q′

(2π)3
2π δ

(
ω +

(k + q′)2

2m∗
− (k + q)2

2m∗
− ωq′

)
fk+q′

(
1− fk+q

)
y2q′

G2
K tr

[
Õ1(K,K +Q) Õ2(K +Q,K)

]
= −

∫
d3k

(2π)3

∫
d3q′

(2π)3
2π δ

(
ω +

k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2q′

G2
K−Q′ tr

[
Õ1(K −Q′, K +Q−Q′) Õ2(K +Q−Q′, K −Q′)

]
, (N.23)

where we have shifted the integration variable k→ k − q′ to arrive at the last line.

For the last diagram, Eq. (N.17), there are two possible cuts: through GK , Gph
Q′ , GK+Q−Q′

and through GK+Q, Gph
Q′ , GK−Q′ . Carrying out the same procedure as above, we obtain

Cut
[

Eq. (N.17)
]

= −
∫

d3k

(2π)3

∫
d3q′

(2π)3

{
2π δ

(
ω +

k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2q′

GK+QGK−Q′ tr
[
Õ1(K,K +Q) Õ2(K +Q−Q′, K −Q′)

]
+ 2π δ

(
ω +

(k − q′)2

2m∗
− (k + q)2

2m∗
− ωq′

)
fk−q′

(
1− fk+q

)
y2q′

GK GK+Q−Q′ tr
[
Õ1(K,K +Q) Õ2(K +Q−Q′, K −Q′)

]}

= −
∫

d3k

(2π)3

∫
d3q′

(2π)3
2π δ

(
ω +

k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2q′

GK+QGK−Q′ tr
[
Õ1(K,K +Q) Õ2(K +Q−Q′, K −Q′)

+ Õ1(K −Q′, K +Q−Q′) Õ2(K +Q,K)
]
, (N.24)

where we have shifted the integration variable k → k + q′ and then changed q → −q′

(assuming the phonon energies ωq′ and electron-phonon couplings yq′ depend only on the
magnitude but not the direction of q′) in the second term.
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Adding up Eqs. (N.22), (N.23) and (N.24), we obtain

2 ImΠO1,O2

= −
∫

d3k

(2π)3

∫
d3q′

(2π)3
2π δ

(
ω +

k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2q′

tr
{[
GK+Q Õ1(K,K +Q) +GK−Q′ Õ1(K −Q′, K +Q−Q′)

]
×
[
GK+Q Õ2(K +Q,K) +GK−Q′ Õ2(K +Q−Q′, K −Q′)

]}
. (N.25)

Small q expansion. As in the previous section, we expand the integrand in small q. The
electron propagators become:

GK+Q =
1

k2

2m∗
+ ω − (k+q)2

2m∗

=
1

ω − k·q
m∗
− q2

2m∗

=
1

ω
+

k · q
m∗ω2

+ . . . , (N.26)

GK−Q′ =
1

k2

2m∗
− ωq′ − (k−q′)2

2m∗

=
1

−ω + (k+q−q′)2

2m∗
− (k−q′)2

2m∗

= − 1

ω
− (k − q′) · q

m∗ω2
+ . . . ,

(N.27)

where we have used the energy-conserving delta function to eliminate ωq′ in GK−Q′ . There-
fore, at leading order in q′,

GK+Q Õ1(K,K +Q) +GK−Q′ Õ1(K −Q′, K +Q−Q′)

=


GK+Q +GK−Q′ ' q′ · q

m∗ω2
for O1 = 1 ,

GK+Q
(2k + q)2

8m2
e

+GK−Q′

(
2(k − q′) + q

)2
8m2

e

' −m∗

m2
e

ω − ωq′
ω

for O1 = v̄2 ,

(N.28)

where an identity operator in spin space is understood, and we have again used energy
conservation to simplify the expression in the O1 = v̄2 case. Note in particular how the
O(q0) terms cancel in the case of O1 = 1, such that this LO operator gives a q-suppressed
contribution. The other factor GK+Q Õ2(K + Q,K) + GK−Q′ Õ2(K + Q − Q′, K − Q′) in
Eq. (N.25) is completely analogous, so we obtain, after taking the spin trace (which simply
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yields a factor of two) and substituting in yq′ =
Ce-phq

′√
2ωq′ρT

, ωq′ = csq
′:

ImΠ1,1

ImΠv̄2,1 = ImΠ1,v̄2

ImΠv̄2,v̄2


= −

C2
e-ph

2m2
∗ρT cs

∫
d3k

(2π)3

∫
d3q′

(2π)3
2π δ

(
ω +

k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
×

fk
(
1− fk+q−q′

)
q′ ·



(q′ · q)2

ω4

−m
2
∗

m2
e

q′ · q
ω2

(
1− csq

′

ω

)
m4

∗
m4
e

(
1− csq

′

ω

)2


. (N.29)

Including the gap. We have presented the calculation of cut diagrams assuming a normal
metal for simplicity. Accounting for pairing of electrons in the BCS theory introduces a slight
modification in the final result in the form of a coherence factor [381]. Concretely, for the
imaginary part of two-loop self-energies computed above, this amounts to replacing

2π δ

(
ω+

k2

2m∗
− k′2

2m∗
−ωq′

)
fk
(
1−fk′

)
→ π

2
δ
(
Ek+Ek′+ωq′−ω

) (
1− εkεk′ −∆2

EkEk′

)
(N.30)

in Eq. (N.29), where we have abbreviated k + q − q′ ≡ k′ and defined εk ≡ k2

2m∗
− εF ,

Ek ≡
√
ε2k +∆2 (and similarly for εk′ , Ek′). The energy of the electron-hole pair is therefore

constrained to be Ek + Ek′ ≥ 2∆.

The k integral. We now perform the k integral:

I ≡
∫

d3k

(2π)3
π

2

(
1− εkεk′ −∆2

EkEk′

)
δ
(
Ek + Ek′ + ωq′ − ω

)
. (N.31)

The integrand depends only on the magnitude of k and the angle θ between k and q′ − q.
So the azimuthal angle integral simply yields a factor of 2π and we can use the δ function
to perform the integral over cos θ. The argument of the δ function has two roots in cos θ
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(corresponding to εk′ = ±|εk′|), both of which are within the range [−1, 1] in most of viable
phase space. Noting that dEk′

d cos θ =
εk′
Ek′

dεk′
d cos θ = −

εk′
Ek′

k|q′−q|
m∗

, we have

I =
m∗

4π|q′ − q|

∫ ∞

0

dk k
Ek′

|εk′|

(
1 +

∆2

EkEk′

)
Θ
(
ω − ωq′ −∆− Ek

)
. (N.32)

where Ek′ = ω − ωq′ − Ek. Changing the integration variable from k to Ek, we find

I =
m2

∗
2π|q′ − q|

∫ ω−ωq′−∆

∆

dE
EE ′ +∆2

|εε′|
=

m2
∗

2π|q′ − q|

∫ ω−ωq′−∆

∆

dE
EE ′ +∆2√

(E2 −∆2)(E ′2 −∆2)
,

(N.33)
where a factor of two comes from combining contributions from the two values of k above
and below kF that correspond to the same Ek, and we have abbreviated Ek, Ek′ , εk, εk′ to
E,E ′, ε, ε′, with E ′ = ω − ωq′ − E. The integral over E can be reduced to elliptic integrals
via E = 1

2

[
ω − ωq′ + t (ω − ωq′ − 2∆)

]
:

I =
m2

∗
4π|q′ − q|

∫ 1

−1

dt

[
(ω − ωq′ + 2∆)

√
1− α2t2

1− t2
− 4∆(ω − ωq′)
ω − ωq′ + 2∆

1√
(1− t2)(1− α2t2)

]

=
m2

∗
2π|q′ − q|

[
(ω − ωq′ + 2∆)E(α)− 4∆(ω − ωq′)

ω − ωq′ + 2∆
K(α)

]

=
m2

∗(ω − ωq′)
2π|q′ − q|

[
(1 + β)E(α)− 2β

1 + β
K(α)

]
=
m2

∗(ω − ωq′)
2π|q′ − q|

E
(√

1− β2
)

(N.34)

where we have introduced

α ≡ ω − ωq′ − 2∆

ω − ωq′ + 2∆
=

1− β
1 + β

, β ≡ 2∆

ω − ωq′
(N.35)

to simplify notation, and

K(z) =

∫ 1

0

dt
1√

(1− t2)(1− z2t2)
, E(z) =

∫ 1

0

dt

√
1− z2t2
1− t2

(N.36)

are the complete elliptic integrals of the first and second kind, respectively. In the ∆ → 0

limit, corresponding to a normal conductor, we have α → 1, β → 0, E(1) = 1, and I →
m2

∗(ω−ωq′ )
2π|q′−q| .
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The q′ integral. The remaining integral over the phonon momentum is
ImΠ1,1

ImΠv̄2,1 = ImΠ1,v̄2

ImΠv̄2,v̄2


= −

C2
e-phω

4πρT cs

∫
d3q′

(2π)3
E

(√
1− (2∆/ω)2

(1− csq′/ω)2

)
×

q′

|q′ − q|

(
1− csq

′

ω

)
·



(q′ · q)2

ω4

−m
2
∗

m2
e

q′ · q
ω2

(
1− csq

′

ω

)
m4

∗
m4
e

(
1− csq

′

ω

)2


. (N.37)

Expanding q′

|q′−q| = 1 + q′·q
q′2

+ . . . and keeping the leading nonvanishing term, we can easily
carry out the angular integration. Finally, changing the radial integration variable to x = csq′

ω
,

we obtain
ImΠ1,1

ImΠv̄2,1 = ImΠ1,v̄2

ImΠv̄2,v̄2



= −
C2

e-phω
4

(2π)3ρT c
4
s

∫ xmax

0

dxE

(√
1− (2∆/ω)2

(1− x)2

)


q2

3c2sω
2
x4(1− x)

− q2

3ω2

m2
∗

m2
e

x2(1− x)2

m4
∗

m4
e

x2(1− x)3


, (N.38)

where the upper limit

xmax ≡ min
(
1− 2∆

ω
,
ωD
ω

)
(N.39)

is set by the requirements ω − ωq′ ≥ 2∆ and ωq′ = csq
′ ≤ ωD (Debye frequency).

When the energy deposition is well above the gap, ω � 2∆, Eq. (N.38) reproduces the
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normal conductor result:

ImΠ1,1
ω�2∆−−−−→ −

C2
e-ph

(2π)3ρT

ω2q2

15 c6s
·


1

6
(ω ≤ ωD) ,

x5D

(
1− 5

6
xD

)
(ω > ωD) ,

(N.40)

ImΠv̄2,1 = ImΠ1,v̄2
ω�2∆−−−−→

C2
e-ph

(2π)3ρT

ω2q2

9 c4s

m2
∗

m2
e

·


1

10
(ω ≤ ωD) ,

x3D

(
1− 3

2
xD +

3

5
x2D

)
(ω > ωD) ,

(N.41)

ImΠv̄2,v̄2
ω�2∆−−−−→ −

C2
e-ph

(2π)3ρT

ω4

3 c4s

m4
∗

m4
e

·


1

20
(ω ≤ ωD) ,

x3D

(
1− 9

4
xD +

9

5
x2D −

1

2
x3D

)
(ω > ωD) ,

(N.42)

where xD ≡ ωD/ω.

Determination of Ce-ph. We use resistivity measurements [382] to determine Ce-ph. In
Refs. [381, 382], a parameter λtr is introduced for the electron-phonon coupling, which is
defined by

λtr = 2

∫ ∞

0

dω′

ω′ α
2
tr F (ω

′) . (N.43)

The function α2
tr F (ω

′) is in turn defined from the conductivity of a normal conductor,

σ1(ω) = Reσ(ω) =
ω2
p

ω2

2π

ω

∫ ω

0

dω′ (ω − ω′)α2
tr F (ω

′) . (N.44)

Note that the normalization convention in Ref. [381] is such that 4πσ1 there equals σ1 in our
notation. From Eqs. (9.36) and (N.38) (in the limit ∆→ 0) we can readily identify

α2
tr F (ω

′) =


C2

e-phe
2ω′4

3 (2π)4ρT c
6
sω

2
p

(ω′ ≤ ωD) ,

0 (ω′ > ωD) ,

(N.45)

and therefore
λtr =

C2
e-phe

2ω4
D

6 (2π)4ρT c
6
sω

2
p

. (N.46)

For Al, using λtr = 0.39 together with values of the other parameters in Table 9.2, we find
Ce-ph = 56 eV.
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A p p e n d i x O

ABSORPTION IN ANISOTROPIC TARGETS

Since the benchmark materials considered in this work (Si, Ge and Al-SC) are near-isotropic,
in the main text of the paper we worked under the simplifying assumption that the medium
is isotropic. However, it is straightforward to extend the calculation to anisotropic targets.
In this appendix, we discuss the modifications needed to go beyond the isotropic limit.

First, the in-medium photon self-energy matrix Πλλ′ may have nonzero off-diagonal entries,
and its eigenvalues can be found by diagonalization [29]:

Π++ Π+− Π+L

Π−+ Π−− Π−L

ΠL+ ΠL− ΠLL

 diagonalize−→


Π1 0 0

0 Π2 0

0 0 Π3

 . (O.1)

A DM state φ may mix with all three photon polarizations, and Eq. (9.22) generalizes to

R = −ρφ
ρT

1

ω2
Im

(
Πφφ +

∑
i=1,2,3

ΠφiΠiφ

m2
φ − Πi

)
, (O.2)

where Πφi is obtained from Πµ
φA by first projecting onto eµ±,L and then rotating into the

diagonal basis.

For vector DM φ, the same rotation in Eq. (O.1) diagonalizes also the φφ and φA self-energy
matrices. So each of the three polarizations of φ mixes only with the one corresponding
photon polarization, and we simply replace ΠT,L in Eq. (9.22) by Π1,2,3 and average over the
three polarizations to obtain the rate in the anisotropic case:

Rvector = −
1

3
κ2
ρφ
ρT

m2
φ

∑
i=1,2,3

Im

(
1

m2
φ − Πi

)
. (O.3)

For pseudoscalar DM, still assuming spin-degenerate electronic states, we obtain from Eq. (9.44):

Rpseudoscalar = −g2aee
ρφ
ρT

1

4m2
eω

2

1

e2

[
ω2 Im (Π++ +Π−−) +m2

φ ImΠLL

]
, (O.4)

which generalizes Eq. (9.45). Note that while anisotropy allows for a nonzero mixing between
the DM φ and the photon (via its coupling to the electron’s magnetic dipole), its contribu-
tion to absorption rate is at O(q2) and negligible. On the other hand, if the electronic states
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are not spin-degenerate (e.g., due to spin-orbit coupling), one would need to explicitly com-
pute additional matrix elements of the spin operator Σ between the spin part of the wave
functions, and the absorption rate cannot be written in terms of components of the photon
self-energy matrix. Also, mixing between the DM and the photon becomes relevant in this
case.

For scalar DM, anisotropy may introduce mixing with all three photon polarizations, and
Eq. (O.2) applies. The final result, however, is still expected to be dominated by the Πv̄2,v̄2

term from Πφφ, and we therefore have the same formula, Eq. (9.56), as in the isotropic case:

Rscalar ' −d2φee
4πm2

e

M2
Pl

ρφ
ρT

1

m2
φ

ImΠv̄2,v̄2 . (O.5)
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A p p e n d i x P

NUMERICAL DETAILS

P.1 Density Functional Theory (DFT)
The DFT calculations are carried out within the generalized gradient approximation (GGA)
[347] using the Quantum Espresso code [399] with and without spin-orbit coupling (SOC)
included. We use the ZrTe5 experimental lattice constants, a = 3.9797 Å, b = 14.470 Å,
and c = 13.676 Å of the orthorhombic crystal structure [440]. We employ fully relativistic
pseudopotentials for calculations including SOC, and scalar relativistic pseudopotentials for
calculations without SOC, in both cases generated with Pseudo Dojo [441–443]. In each
case, we use a 3265 eV kinetic energy cutoff on a uniform 4× 4× 2 Brillouin zone (BZ) grid
to compute the electron density. To systematically converge the absorption and scattering
rates, for the high E region we compute the electronic wave functions with 200, 300, and
400 eV cutoffs on 10× 10× 10, 12× 12× 12, and 14× 14× 14 k-grids. For the low E region,
we compute the wave functions with 650, 750, and 850 eV cutoffs on 8×8×8, 9×9×9, and
10× 10× 10 uniform k-grids in a small reciprocal-space volume that includes the low-energy
band dispersion. The convergence of these calculations is discussed in Appendix P.2.
The computed band structure of ZrTe5 is presented in Fig. 10.1, where we correct the band
gap with a scissor shift to match the experimental band gap for the calculation with SOC. The
inset shows in detail the dispersion near the band edges, highlighting the linear dispersion
along the intralayer directions Γ-Y and Γ-Z. Note that in interlayer directions (not shown in
Fig. 10.1) the dispersion is not linear or conical. This band structure obtained by combining
the experiment lattice constant and the Perdew-Burke-Ernzerhof (PBE) exchange correlation
functional is consistent with a previous study [444]. While the presence of a Dirac cone in
ZrTe5 is still under debate [385–396], pursuing more extensive tests of crystal structure and
DFT functionals, or carrying out beyond-DFT band structure calculations, is beyond the
scope of this work.

P.2 DM Interaction Constraint Convergence and Dielectric Function
In this appendix we will discuss some details of the DM scattering and absorption rate
calculations, as well as the long wavelength, anisotropic dielectric function, ε(0, ω). Since
the main focus of this paper is the effect of SOC, only the electronic wave functions near
the Fermi surface are needed. This is because, in ZrTe5, SOC effects are approximately
O(10meV), and therefore a very small perturbation for states > eV away from the Fermi
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Figure P.1: Convergence of the constraints on DM absorption, for the models discussed
in Sec. 10.3, with respect to the k point sampling (k−grid) and plane wave energy cutoff,
Ecut. The first row includes SOC effects while the second row does not. Absorption rates
were computed by adding the contributions from the low E and high E regions, and the
first (second) value in the legends corresponds to the parameter used in the low (high) E
calculation. For example, the red dotted line corresponds to a calculation in which the low
(high) E region was sampled on an 8×8×8 (10×10×10) Monkhorst-Pack grid in the 1BZ,
with Ecut = 650 (200) eV. All curves assume a width parameter of δ = 10−1ω.

surface. We are therefore safely within the “valence to conduction” regime, discussed in
more detail in Ref. [9], and do not need to study deeper, core electronic levels, or larger
energy states where the electrons are close to free. DFT is the preferred tool for studying
these transitions, and the two main convergence parameters are the number of k-points in
the 1BZ sampling, and the plane wave expansion cutoff, Ecut. In both the low E and high
E regions we sample k points uniformly with a Monkhorst-Pack grid. The only difference
is that the low E points are scaled by 1/5 relative to the high E region. Convergence of
the DM absorption and scattering constraints with respect to the k point sampling and Ecut

parameters are shown in Fig. P.1 and Fig. P.2 respectively. The constraints in the main
text are identical to the most converged constraints shown in Figs. (P.1, P.2). Generally
we see faster convergence with respect to Ecut than the k point density, and slightly faster
convergence for the DFT calculation which omits SOC effects than those which include
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Figure P.2: Convergence of the constraints on DM scattering, for the models discussed
in Sec. 10.3, with respect to the k point sampling (k-grid) and plane wave energy cutoff,
Ecut. The first row includes SOC effects while the second row does not. The collection of
constraints dominant at the lowest masses corresponds to the low E transitions, and the
other set corresponds to the high E transitions. Similar to Fig. P.1, the Ecut parameters in
the legend correspond to the values used for the low/high E regions.

them. We also note that all-electron reconstruction effects were omitted here since we are
focusing on very small DM masses, and therefore kinematically limited to small q transitions.
However these effects could be important for studies of DM scattering in ZrTe5 at higher
masses, or for larger experimental thresholds.

The dielectric function in the long wavelength limit is shown in Fig. P.3, was used as an
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Figure P.3: Magnitude of the dielectric function of ZrTe5 computed with SOC (solid), with-
out SOC (dotted), and a combination of the calculations with and without SOC (dashed),
as described in Sec. 10.3. The directional dependence of the dielectric function is due to
the anisotropic nature of ZrTe5. Note that while non-local corrections are not included in
this figure we found they have a small O(10%) effect. These results are obtained with an
electronic broadening of δ = 10−1ω.

intermediate to compute a few different constraints. Specifically it was used to screen the
SI scattering rate, and it can be shown that the vector DM absorption rate, as well as the
pseudoscalar DM absorption rate when wave functions are spin independent, can be related
to the dielectric function. Moreover this calculation serves as a useful benchmark to compare
future DFT calculations.
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A p p e n d i x Q

GENERALIZED SELF-ENERGIES

In this appendix we provide the expressions for the self-energies used in the main text,
namely ΠAA, ΠAφ, and Πφφ. Since electrons in the target are non-relativistic, we will work in
the framework of NR EFT closely following Ref. [2], generalizing the results to anisotropic
materials with sizable SOC.

At leading order in the NR EFT, it can be shown [2] that the electron-photon coupling reads:

Leff
ψA = −eA0 ψ

†
+ψ+ −

ie

2me

A ·
(
ψ†
+

←→
∇ ψ+

)
+

e

2me

(∇×A) ·
(
ψ†
+Σψ+

)
− e2

2me

A2 ψ†
+ψ+ ,

(Q.1)

where Σ = diag(σ,σ), and ψ+ = 1
2
(1 + γ0)ψ NR with ψ NR being the NR electron field

defined as

ψ(x, t) = e−imet ψ NR(x, t) . (Q.2)

For vector DM, by simply replacing eAµ → eAµ − geφµ in eq. (Q.1), we obtain:

Leff
int = g φ0 ψ̂

†
+ψ̂+ +

ig

2me

φ ·
(
ψ̂†
+

←→
∇ ψ̂+

)
− g

2me

(∇× φ) ·
(
ψ̂†
+Σ ψ̂+

)
+
ge

me

φ ·A ψ̂†
+ψ̂+ −

g2

2me

φ2 ψ̂†
+ψ̂+ (Q.3)

(vector DM).

In deriving the effective interaction Lagrangian for scalar and pseudoscalar DM, we have to
keep some NLO terms in the NR expansion. This is because, as discussed in [2], the LO order
terms contain factors of the momentum transfer, q, which in the absorption limit induces a
larger suppression compared to the electron velocity. Therefore, keeping all the NLO order
terms that do not contain factors of q we obtain

Leff
int =


g φ ψ̂†

+ψ̂+ + g
8m2

e
φ
(
ψ̂†
+

←→
∇ 2ψ̂+

)
− ige

2m2
e
φA ·

(
ψ̂†
+

←→
∇ ψ̂+

)
(scalar DM) ,

− g
2me

(∇φ) · ψ̂†
+ Σ ψ̂+ + ig

4m2
e
(∂tφ)

(
ψ̂†
+Σ ·

←→
∇ ψ̂+

)
(pseudoscalar DM) .

(Q.4)

With these effective interactions, we are now ready to derive the expressions for the self-
energies. By using the photon-electron coupling given in eq. (Q.1), we obtain the expression
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for Πµν
AA in terms of the loop diagrams ΠO1O2 and Π′

O defined in eq. (9.23) and (9.24):

Π00
AA = −e2Π̄11 (Q.5)

Πi0
AA = −e2

(
Π̄vi1 +

iql

2me

εiml Π̄σm1

)
(Q.6)

Πij
AA = −e2

[
Π̄vivj +

iql

2me

(
εjml Π̄viσm + εiml Π̄σmvj

)
− qlqr

4m2
e

εilmεjrnΠ̄σmσn

]
− ω2

pδ
ij (Q.7)

where ωp =
√

nee2

me
is the plasma frequency, and we have highlighted in red terms that vanish

in absence of sizable spin-orbit coupling (in this specific case, they vanish because tr[σi] = 0

in absence of SOC). Since vector DM couples to electrons in the same way of the photon but
with a rescaled coupling, κ = ge/e, we have

Πµν
φφ = −κΠ

µν
φA = κ2Πµν

AA . (Q.8)

For scalar DM, by using the interactions given in eq. (Q.4), we get

Π0
φA = −gee

(
Π̄11 − Π̄1v̄2 +

iqk

4me

εijkΠ̄1ṽij

)
(Q.9)

Πi
φA = −gee

[
Π̄1vi − Π̄v̄2vi +

iqk

4me

εljkΠ̄ṽljvi +
iql

4me

εlim
(
Π̄1σm − Π̄v̄2σm

)
+

iqk

4me

iqr

4me

εijkεmlrΠ̄ṽijσm +
1

me

Π̄′
vi

]
(Q.10)

Πφφ = g2e
[
Π̄11 − Π̄1v̄2 − Π̄v̄21 + Π̄v̄2v̄2

+
iqk

4me

εijk
(
Π̄1ṽij + Π̄ṽij1 + Π̄v̄2ṽij + Π̄ṽij v̄2

)
+

iqk

4me

iqr

4me

εijkεmlrΠ̄ṽij ṽml
]
, (Q.11)

where we have introduced the operator ṽij ≡ σivj, and as before highlighted in red the terms
that vanish in absence of sizable SOC. The terms highlighted in blue, instead, vanish in
isotropic materials without SOC.

Similarly, by using the couplings given in eq. (Q.4), we derive the expression for the self-
energies of pseudoscalar DM:

Π0
φA = −igee

(
qi

2me

Π̄σi1 −
ω

2me

Π̄ṽii1

)
(Q.12)

Πi
φA = gee

(
qj

2me

Π̄σjvi −
ω

2me

Π̄ṽjjvi −
qj

2me

ql

2me

εlirΠ̄σjσr + Π̄′
σi

)
(Q.13)

Πφφ = −g2e
[
qi

2me

qj

2me

Π̄σiσj −
qi

2me

ω

2me

(
Π̄σiṽjj + Π̄ṽjjσi

)
+

ω2

4m2
e

Π̄ṽiiṽjj

]
. (Q.14)
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Π̄O1O2 1 σ v, ṽ v̄2

1 v2ev
2
φ

mφ

me

v2φ v2evφ
mφ

me

v2ev
2
φ

σ 1
mφ

me

vφ v2e

v, ṽ v2e
mφ

me

v2evφ

v̄2 v4e

Table Q.1: Self-energies scaling with the DM and electron velocities in the absorption limit.
Notice that each insertion of the identity operator induces a suppression of order vevφ due
to the wave-function orthogonality, and that parity odd self-energies receive an additional
suppression of order q/k.

Due to the absorption kinematics (q ∼ mφvφ � ω ∼ mφ), and the hierarchy that exists
between the DM velocity, vφ ∼ 10−3, and the electrons’ typical velocity in a crystal, ve ∼
10−2; only a few terms are actually relevant in the self-energy expressions given above. To
facilitate the following discussion, in Table Q.1 we summarize the velocity scaling of all the
terms appearing in the self-energy expression given above. By using these scaling relations
it is easy to see that the photon self-energy (and therefore also the DM self-energy) is
dominated by its spatial components, specifically by the Π̄vivj term. For scalar DM, Πφφ is
dominated by the term Π̄v̄2v̄2 , and the mixing self-energies ΠAφ are suppressed by one power
of vφ. Finally, for pseudoscalar DM, Πφφ is dominated by Π̄ṽṽ and the mixing self-energies
are again suppressed.

So far we have ignored the tadpole terms Π̄′
O. They can be written in terms of the electronic

wave functions as [2]:

Π̄′
O = − 1

V

∑
I

fI〈I|O|I〉 , (Q.15)

and are usually related to macroscopic quantities of the material. Specifically, Π̄′
vi

and Π̄′
σi

are related to the current and spin densities of the material (which both vanish for the case
of ZrTe5). For the case of ZrTe5, the only non-vanishing tadpole term is Π̄′

1 = ne, which
enters in the expression for the vector self-energy. However, we never explicitly compute this
term. Instead, we exploit the relation

Π̄ij
11 =

m2
e

ω2

(
Π̄vivj −

δij

me

Π̄′
1

)
(Q.16)
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where Π̄11 = qi

me
Π̄ij

11
qj

me
. Indeed, as discussed in [445], a direct numerical derivation of

Π̄vivj − δij

me
Π̄′

1 would be affected by numerical errors in the ω → 0 limit.

Let’s conclude this section by discussing more in detail the scaling relations given in Table
Q.1. Indeed, while some of them are trivial, others require some explanation. The expression
for the loop diagrams Π̄O1,O2 is given by [2]:

−i Π̄O1,O2 =
i

V

∑
I′I

fI′ − fI
ω − ωI′I + iδI′I

〈I ′| O1 e
iq·x|I〉〈I| O2 e

−iq·x|I ′〉 , (Q.17)

where V is the total volume, ωI′I ≡ E ′
I−EI , δI′I ≡ δ sgn(ωI′I), and fI , f ′

I are the occupation
numbers (which, at zero temperature, equal one for states below the Fermi surface, and zero
for states above it). From this expression we can see that self-energies involving the identity
operators contain the matrix element 〈i′,k′| eiq·x |i,k〉 which vanishes in the q → 0 limit since
|i′,k′〉 and |i,k〉 are distinct energy eigenstates and therefore orthogonal. At O(q), we have
〈i′,k′| eiq·x |i,k〉 ' iq · 〈i′,k′|x |i,k〉. One way to compute this matrix element is to trade
the position operator for the momentum operator via its commutator with the Hamiltonian.
Here we will assume that the Hamiltonian has the form H = p2

2me
+ V (x), ignoring the

possibility of momentum-dependent or non-local terms in the potential. While these terms
can introduce mild corrections (O(10%)) we do not expect them to change the overall scaling
of the self-energies so we can ignore them in this context. With this assumption in mind, we
can write the matrix element involving the position operator as

〈i′,k′|x |i,k〉 = − 1

Ei′,k′ − Ei,k
〈i′,k′| [x, H] |i,k〉 = − i

me(Ei′,k′ − Ei,k)
〈i′,k′|p |i,k〉 .

(Q.18)
Writing the wave functions in the Bloch form, we find:

〈i′,k′| eiq·x |i,k〉 = δk′,k

q

me ωi′i,k
·
∑
G

(k +G)
(
usi′,k,G

)∗
usi,k,G +O(q2) . (Q.19)

where ωi′i,k ≡ Ei′,k−Ei,k. Therefore, in the absorption limit, each identity operator entering
in a self-energy diagram induces a suppression of order vevφ.

Parity-odd self energies also vanish in the q → 0 limit. Let’s show this explicitly for the case
of Π̄viv̄2 . By rewriting the electronic wave function in the Bloch form, we can write Π̄viv̄2 as

Πv̄2vi =
1

V

1

16m3
e

∑
i′∈ con.
i∈ val.

∑
k([∑

G(2k +G+ q)us∗i′kGu
s
ikG

][∑
G(2k +G+ q)2uλ∗i′kGu

λ
ikG

]
ω − ωi′i,k,k+q + iδi′i,k,k+q

− i→ i′

)
. (Q.20)



308

By parity invariance the Bloch coefficients satisfy the relation usikG = usi−k−G, therefore, at
order q0 we have Π̄viv̄2 = −Π̄viv̄2 = 0. The first non-vanishing contribution arises at order q
and is given by

Π̄v̄2vi =
1

V

qi

4m3
e

∑
i′∈ con.
i∈ val.

∑
k

([∑
G u

s∗
i′k+qGu

s
ikG

][∑
G(2k +G)2uλ∗i′kGu

λ
ikG

]
ω − ωi′i,k + iδi′i,k

− i→ i′

)
.

(Q.21)

Therefore, instead of the naive v3e scaling, Π̄v̄2vi scales as (mφ/me)v
2
evφ in the absorption

limit. By following an analogous derivation, we can conclude that any parity-odd operator
receives an additional mφvφ

meve
∼ q

k
suppression respect to its naive scaling.
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A p p e n d i x R

ANALYTIC APPROXIMATIONS IN DIRAC MATERIALS

Dirac materials are defined by having a conical band structure near the Fermi surface. They
are “Dirac” since the electronic dispersion relation in this conical region is linear in k, similar
to the solutions to the Dirac equation,(

i/∂ −m
)
ψ(x) = 0 (R.1)

describing free fermions. The presence of this conical structure in Dirac materials implies
the existence of low energy excitations which satisfy a rescaled version of this equation,(

i /̃∂ −∆
)
ψ(x) = 0 , (R.2)

where 2∆ is a band gap between the two cones, and ∂̃µ ≡ (∂t, v
x
F∂x, v

y
F∂y, v

z
F∂z), with vF the

directionally dependent Fermi velocity. The solutions to Eq. (R.2) can be found analytically,
and most previous works [29, 144, 183] studying DM-electron interactions in 3D Dirac ma-
terials used these analytic solutions as the Bloch wave functions in Eq. (10.3). Specifically,
they used these analytic wave functions to derive scattering and absorption rates.

However, the subtlety is that solutions to Eq. (R.2) cannot be the electronic Bloch wave func-
tions since they are not eigenstates of the crystal Hamiltonian, H = p2/2me+ V . Therefore
while the excitations which satisfy the rescaled Dirac equation, Eq. (R.2), are certainly re-
lated to the electronic Bloch wavefunctions, they are, generally, not the appropriate wave
functions to use when computing DM interaction rates.

To further illustrate this point we will briefly discuss the most well known Dirac material,
graphene. Even though it is only two dimensional it will serve as a good example to illustrate
the difference between the electronic Bloch wave functions and those which satisfy the Dirac
equation. Our discussion here will closely follow Ref. [446], to which we refer the reader for
further details.

Graphene has two carbon atoms within a unit cell which form a hexagonal lattice structure.
The Bloch wave functions, satisfying the crystal Hamiltonian, are typically found using the
“tight-binding” method, which assumes that the Bloch wave functions are a linear combina-
tion of the atomic wave wave functions of each of the carbon atoms,

Ψi,k(x) =
∑
j=A,B

ψj,k(x)Xj,k(x) (R.3)
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where the“A” and “B” indexes refer to the individual carbon atoms (equivalently the indi-
vidual carbon atom sublattices), ψj,k are some coefficient functions and Xj,k are the specific
linear combination of the atomic wave functions which forms a Bloch state,

Xj,k(x) =
1√
N

∑
r

eik·rψatom
j (x− r− r0j) . (R.4)

Here r is a lattice vector, r0j is the equilibrium position of the carbon atom on the jth

sublattice, and N is the number of unit cells in the lattice. The Bloch nature of the Xj,k

functions can be seen explicitly by noticing that Xj,k(x + r) = eik·rXj,k(x). Assuming that
the ψj,k’s are lattice periodic implies that Ψi,k is also a valid Bloch state. The idea behind
this decomposition is that the ψj,k’s are slowly varying functions, or envelope functions, in
position space, while the atomic wave functions contain the high frequency behavior, being
very localized to the atomic sites. Using this intuition we can simplify the full Schödinger
equation near the Dirac point(

− ∇
2

2me

+ V (x)− Ei,k
)
Ψi,k = 0 (R.5)

to

0 =
∑
j=A,B

− 1

me

∇ψj,k · ∇Xj,k + ψj,k

(
− ∇

2

2me

+ V − Ei,k
)
Xj,k . (R.6)

This equation can now be “coarse-grained” by integrating out the pieces close to the center
of the atoms with the operator,

∫
Ωl
d3xX∗

l,k for both l ∈ {A,B} sublattices. Assuming that ψ
varies slowly over these regions, we can pull ψj,k out of these integrals and Eq. (R.6) becomes
two equations,

0 =
∑
j=A,B

(
− 1

me

〈Xl,k|∇|Xj,k〉 · ∇ − δl,jEi,k
)
ψj,k (R.7)

for each l = A,B, where the expectation value of −∇2/2me+V with respect to Xi,k vanishes
since we are implicitly assuming k is close to the Dirac point, i.e. at the peak of the conical
band.. From symmetry arguments it can be shown that 〈XA,k|∇|XB,k〉 ∝ x̂−iŷ and therefore
Eq. (R.7) can be further simplified to,

vF (σ · k)
(
ψA,k

ψB,k

)
= Ei,k

(
ψA,k

ψB,k

)
(R.8)

which is exactly the rescaled Dirac equation, with vF the Fermi velocity parameter.

Therefore we see that the ψi,k components of the total Bloch wave functions in Eq. (R.3)
are what satisfies the Dirac equation, not the Ψi,k which should be used in the excitation
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rate calculations. Moreover note that the σ operator does not act in spin-space but rather
in “sublattice” space, and therefore for spin-dependent excitation rates the spin dependence
follows from the Xj,k functions.

There are circumstances where the analytic expressions can be used as as approximation.
If the tight-binding approximation is valid, and the Bloch wave functions can be cleanly
separated in to high and low momentum components (as was just done for graphene), then
for q much smaller than typical momentum scale of the X functions the spin independent
transition form factors, e.g., Eq. (10.27) if Ψ is spin-independent, can reduce to the previously
used analytic expressions. In these targets the agreement between an analytic and numeric
approach is then indicative of how good the tight-binding approximation is. However not all
Dirac cones necessarily appear from the same tight-binding approximation as in graphene,
and a detailed study of the Bloch wave functions, along with the band structure, should be
done to understand whether any analytic approximations will be valid.
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