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ABSTRACT
Let (X,Z,p) be a measure space, and T a positive con-
traction of L.(X,Z,p) (thatis: Tf=0 if £=0, and HTfl1 =1).
Let {fn, n =1} ke a sequence of non-negative numbers whose sum is

one, and {un, n = 0} a sequence defined by inductions as follows

ug = 1, u = flun—l + fzun_z +... + fnuo (n=1).

Now let f € L, 0=p € L;, then we prove in this work that

g

u N7 (x)
v
0

<
1l

(%) lim
A1

18

u, )\vTvp(x)
0

12

exists almost everywhere in the set {x: p(x) > 0}. When f1 =0 (fnz 0
for n= 2) we get that all u =1L In this case (*) yields the abelian
analog of the well-known ergodic theorem of Chacon-Ornstein dealing
with the convergence of averages of the form

(%) £(x)+ TEE) + ... + T i(x)
plx) + Tplx) +. .. + T p(x)

H

whose proof we have generalized and adapted to show the convergence
of (*). We have also considered the generalization of (*%) to
weighled averages
' n-1
uof(x) + U.le(X) +... + u T “f(x)

-1
-1
uop(x) + ulTp(X) +... F u.n_lTn p(x)

whose convergence in {p > 0} was recently proved by G. E. Baxter.

We have given a considerably simpler proof for this fact.
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infinite total measure. Let w denote a measure preserving transfor-
mation of X into itself (w is not necessarily 1-1). That is, for any

AC S
1.1 nlo )= w(a) .

The classical pointwise ergodic theorem of G. D. Birkhoff (see

Halmos [ 8, p. 18]) then states that for any f € L (X, Z, 1) the

averages

flx) + flux) +... + f(wn_lx)
n

1.2

converge almost everywhere to a finite limit. Furthermore if we

denote this limit by f, then
fHwx) = £(x) a.e.,

that is, f* is an invariant function. In fact, it is well-known that f*

is the conditional expectation of f with respect to the Borel field of
w-invariant sets (i.e., sets E € £ such that H(EAw_lE) =0 ).

We shall now briefly review the work which has led to two
significant generalizations of this theorem: one in the direction of
operator theory; the other replaces the averages 1. 2 by weighted
averages. The present work arises in attempting to bring both the.se
approaches together.,

For a transformation « as above, consider the operator Tm

defined by



(T Dix) = flwx),
where f CLP(X), l1=p=oc. T 1is remarkably well-behaved in a
number of ways
(i) T is positive: {=Z 0=T{= 0
(i1) S T £ dp = Sf dp, for any £ C 1L,
(iid) wa =1
(ii) follows immediately from 1.1. As a consequence of (ii), and the

fact that Tw ]flp = Iwalp we get that Tw is an isometry in any Lp:

vsq n —
(ii") llwallp_llpr, f€L, (=p= o).

Based on the last observation for p = 2 J. von Neumann had

previously established the convergence in the square mean of

£+ TE+... +T

n

1.3

where T 1is an isometry in L2 (strictly speaking v. Neumann
proved it for unitary operators. F. Riesz later simplified and
extended the proof to isometries in Hilbert space). This result is

the first of a long family of mean ergodic theorems involving strong

. - - L .
convergence of the operators n 12?_(]3 T in any reflexive L
(1< p < ), and more generally for reflexive Banach spaces where
the conditions on T are rather weakened. Naturally these investi-

gations do not stop here, but continue to the so-called "uniform

ergodic theory" where the convergence of the averages is taken in
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the operator norm (see for example Dunford and Schwarz [ 5, vol. I,

ch. VIII]. It is however the pointwise convergence of 1.3 for f € L1
(L1 not reflexive} which poses the most delicate problems, especially
when one tries to assume for T as weak a version as possible of
properties (i) - (iii). In this sense one of the deepest, and in some

way definitive result was conjectured by E. Hopf [ 9], and lately

proved by Chacon-Ornstein [ 4]. These authors consider ratios

F+TE+... + T
ptTpt... +Tn_1.p

1.4

of averages of type 1.3 where f € Ll’ 0=pc L Then they prove
convergence almost everywhere to a finite limit in the set where the
denominator eventually makes sense; i.e. in

\J (= T >0} ,

n=0
if the following mild conditions are satisfied by T:
(a) T is positive: 1= 0=T{= 0

(b) T is a contraction in Ly ||Tf||15 ||f]]1

When p(X) < oo Birkhoff's ergodic theorem is a very special case of
the above result when T = Tw; and p=1€ Ll" It is interesting
however to remark that for p(X) = o, Birkhoff's theorem remains
outside the mainstream of ergodic theory since then llé L

The proof of Chacon-Ornstein's theorem, later significantly

simplified by E. Hopf [10], depends massively on establishing the
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corresponding maximal ergodic theorem, which in this case states

fad

1.5 ‘) fde = 0.
n-1
{sup Z T f> 0}
n>0v=0

All further generalizations of the pointwise ergodic theorem inevitably
commence by proving the appropriate version of this result, As we
shall see later in greater generality (see lemma 2. 3) the maximal

ergodic theorem implies a weak estimate for

n-1
Z T'f
sup r=0 ,
n>0 n-1 ,
Tp
v=0

which has as a éonsequence the fact that the ratios are bounded almost
everywhere in the set where the denominator eventually makes sense,
Thus the problem of convergence is reduced to showing that 1. 4 cannot
oscillate. This again is taken care of by a very skillful use of 1.5, In
fact the full significance of 1, 5 may lie in its being equivalent to the
ergodic theorem.

Let us now return to the original formulation of Birkhoff's
theorem. A different line of generalization can be suggested by con-

sidering weighted averages of the form




1. 6 R (x,1) =

where the {un, n= 0} is some sequence of real constants, and

fe Ll' In some simple cases the convergence of 1. 6 already follows
from that of 1, 2. For example if 1imn_, u, exists and is different
from zero, it is then clear that a simple tauberian Iargument will
sufficc. On the other hand if the u, incrcase very rapidly one can
make the behavior of R_(x,f) depend on that of f(w™x), which may

well oscillate. Moreover there are examples of bounded sequences

{un} for which Rn(X’ f) fails to converge (see B. Jamison [11]).

However G. Baxter [1] was able to show convergence for a rather
special but quite interesting kind of sequence {un} arising naturally
in probability theory as the probabilities of recurrent events. These

recurrent probabilities are defined as follows: Let {fn, n=1} be

a sequence of non-negative numbers for which

o 0]

Z'f =1,
v

v=1

Define the {u.n, n = 0} by recurrence, thus:

n.

1.7 Uy = 1, u, = E fvun—v n=1).

v=]

In terms of the generating functions
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8. K

v ) v

F(\) = Z £, UM = ) u
v=] v=0

definition 1. 7 can be written compactly as
1

1.8 U(\) = m

It is interesting to observe that this implies

1
8

o)
&
ZJ u
n
v=0
Note that for fl =1 (fn =0 for n= 2) we get all u = 1, so that
Rn(x, f) gives us back the original Birkhoff averages 1. 2.
For these {un} Baxter proved, when W(X)< oo, that the

Rn(x, f) converge almost everywhere if one assumes that both

Rn(X’ f) and Rn‘(cox, f) have the same limiting behavior, i.e., if
1.9 Rn(x, f) - Rn(wx, f) -0 a.e., as n—™ o .

This condition essentially expresses "a priori" the invariance of the

limit. Clearly, however, this is not an easily verifiable hypothesis.

In the particular case when all u, = 1 it reduces to

f(oonx)

— 0 a.e.,
n

which can easily be shown from the weak half of the Borel-Cantelli

lemma. One can also prove more generally that



n
1.10 —r:—-T-—i-—-—""O a.e. in {p >0},

-1
), T
v=0
where T fulfills (a) and (b). In fact this is a crucial step in the
proof of Chacon-Ornstein's theorem (see for example [ 5; lemma 4] ).
The generalization of 1. 9 and 1.10 to the weighted average case is

rather difficult and shall come up to plague us later in this work (see

4.1, 4. 2). Baxter showed that 1. 9 holds if

u
lim = = 1.
n—*oo n+l
Now it is known that
. . 1
lim u = lim —————
n n
n—*o n—"oo ;
kf
'y k
k=1

so that in the casge where Elfio_lkfk<foo the convergence of Rn(x, f)
already follows from Birkhoff's ergodic theorem as mentioned above.
Otherwise in the more interesting case when 1i1rnn__>OO u, = 0 itis

well-known (see De Bruijn [ 3]) that u.n~ Uy need not be the case.

It is then convenient to get rid altogether of such encumbering

hypothesis on the {un}. A. Garsia and S. Sawyer [ 7] recently
succeeded in this task, and moreover extended Baxter's result to the

operator case proving the almost everywhere convergence of the

averages



1.11

for f€ Ll’ where T besides being a positive contraction in L1 is
also assumed to satisfy T1= 1, (u(X) < o). This readily implies
that T also contracts the Loo—norm. By Riesz's interpolation
theorem this is equivalent to (ii'}, that is: T contracts all L_-norms
(l=p = o0). In particular I is a contraction in LZ’ which allows
the authors to borrow the techniques of mean ergodic theory to show
convergence of 1,11 for all f in a dense subset of Ll' Then a
1 - nding masimal eroodic theorem
gives convergeﬁce for all f € Ll' (For an application of the same
principle see Remark in section 4.)

Clearly one should go further than this and consider in full

generality the convergence of weighted "Chacon-Ornstein" averages

-1
S_{f) =
1.12 Q_(f,p) = —Tn ;S = u T,
? “nlP) ® 1}2:0 ’

for f € Ll’ 0=p € Li, and T a positive contraction of L Not

ln

having here any recourse to mean ergodic theory we are forced back

to the techniques used in the proof of Chacon-Ornstein's theorem. At
this point, however, it seemed more convenient to consider a closely

related problem involving abelian-type averages. In effect the work

of G. C. Rota [12] strongly suggests that Abcl convergence is a more
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natural limit process to be associated with the method of Chacon-
Ornstein-Hopf,

Rota's paper is concerned with averages of the form
V(8 = (1 - x)Z A TVE (0=r<1)
. V=0

where the limit is to be taken as X\ — 1. For a positive contraction

T of L1 he then proves very elegantly the maximal theorems:

f dp = 0.

{ sup V)\(f) >0}
0<A<1

We shall see later in greater generality (Lemma 2. 2) that this is a
fairly direct consequence of the ordinary maximal theorem for Cesaro
sums 1. 5. However the significance of the abelian approach does not
lie in such simple consequences, but rather in the transparency
gained when treating the problem in this manner., Rota also observed
that it would be desirable to prove the abelian analog of the Chacon-
Ornstein theorem. We shall obtain such analog as a special case of

our main theorem (see Corollary to theorem 3.1).

Let us then formulate the problem in the abelian context,
Starting from a positive contraction T of L1 define the positive

operators F(AT), F(T), and U(AT) as follows
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. QO
F(\T) = Z £ 0=Ar=<1)
vzl
. ©
U(\T) = Z u \'T” (0=1x<1)
v=0

Note for further use that F(T)} is also a contraction and F(T) = F(\T).

The identity 1. 8 remains valid in the operator sense
1.13 U(\T) = (1 - F(\T) )"1 .

Define the abelian weighted averages

U(\T) f(x)

R\EP) = GRG0
where f € Ll’ 0=pcC Ll' Notice that

(88

(UO\T)E)(x) :-z u M(T )(x) a.e.,
v=0

where the series converges absolutely, as can be seen from Beppo-

Levi's theorem. Observe also that both

R¥(f, p)x) = sup |R,(£,p)(x)]|
01

sup TU{AT)f(x)
01

are measurable., The maximal ergodic theorem (see theorem 2.1)

now becomes
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| C fde = 0.

J
{ sup U(AT){>0}
0<\<1

Our main ergodic theorem (see theorem 3.1) establishes that

1.14 lim R)\(f,p)(x) exists a.e. in {p >0} .
A1

In particular when all the w = 1, this gives the abelian analog of

Chacon-Ornstein's theorem

o)
? 2T £(x)
-1 ‘-:'
lim -(L_—)\—T-—):-l--i-(-}-{-)- = lim 1;;0 exists a.e. in {p > 0}.
A1 1A Tplx) A1 R
; A T plx)
V=0

(Actually the equality of the weights immediately gives convergence

in the set whe re the denominator is positive, that is, in U{T"p > 0}.)
n

In this simple case the crucial fact of the invariance of the limit (see

Remark to lemma 3.1) admits a one-line proof which compares

rather favorably with that of the equivalent fact 1,10 for Chacon-
Ornstein's theorem (for example see [10; lemma 4].

Suitable tauberian theorems should enable us to deduce the
convergence of the:ordinary weighted averages 1.12 from 1.14, and
vice versa. In this direction some interesting results have been
obtained by A, Garsia [ 6]. Since this work was completed it has
come to our attention that G, Baxter [ 2] also found a proof for the
convergence of Qn(f, p)in {p> 0}. His proof is based essentially

on that of Hopf, but it must be said that the methods employed are



-12-

considerably more complicated than ours for the corresponding
theorem 3.1, In section 4 (Theorem 4.1) we have shown how a much
simpler proof can be given for Baxter's theorem. The key to it is

our proof of the relevant maximal theorem (theorem 2. 2):

f dp = 0,

{sup S_(f) > 0}
n>0

after which we noticed that our line of reasoning in the abelian case

can be adapted step by step.
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2. Maximal Theorems. In this section we shall prove the

appropriate versions of the maximal ergodic theorem for both
abelian and ordinary sums. We shall also show how the latter implies
the former, and we shall derive some important consequences from

both. In the sequel we use the customary notation

+ -
f = max (0, 1), f = -min (0,1
The decomposition f = f+ - £ is minimal in the following sense:
2.1 [~~~ £>O£>O—>f+<£ (C =1
’ T2 1T 2 T [ A

This follows from the rather obvious inequality

(a + b)Y = 2% + T .

In what follows we always assume T is a positive contraction of

Ll(X,Z'., i), and the un's are defined as in 1. 7.

Alf) = { sup UNTE>0},

o<1
then
2.2 _ 5 fdp = 0.
A(f)

Proof: By analogy with Hopf we define a sequence of integrable

functions {hn, n = 0} by recurrence as follows

4 -
2.3 hy=f h =F(Th ,-h

0~ n-1 =1
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From 2.1 we immediately get

2.4 hOZhlz...ZhnZ...,

- +
Moreover the hn- converge to zero in the support of all hn’ that is

2.5 h' |l 0 in B:U{h;>0},

n
n=0

since x € B implies hZ(x) >0 for some n, thus h1—1+k(x) =0 for

k = 0. We shall now show that

‘g fdp=0.
B

Notice that F(T) is a positive contraction, so for all 0 = g € L1

S F(T)g dHSS g dp

So using this together with {h:;—l >0}C B we obtain

+ -
SBhn’l dp = S‘X hn-l dp - SB hn—l dp
+ -
= EXF(T)hn_l (_ipu - SB hn—l dp
+ -
= S.B (F(T)hn—l - hn—l) dp.

= *S‘B hn dp .

Hence a trivial induction gives

fdng h dp,Z-S‘ h_ du,
'S‘B B " B "
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where the last integral tends to zero by virtue of 2. 5.

The proof of the theorem will now be concluded if we show that

{>0}C A(f) CB,

for this readily implies

g}
2.6 ‘Sﬁ fdp.ZS £ dp. .
A(f) B

The first inclusion is trivial. An observation of A. Garsia yields the

second inclusion. Following Rota set

Q0 ) o0
+_ +.n - -.n -
h)\—Zhnh, hk—E B (0=2r<1),
n=0 n=0

where we are leaving out the argument x. Multiplying 2.3 by A" and

summing from 1 to oo we obtain

® o0 @
n + .n - n
z h A F(T)Z h X -z ho
n=1

n=1

1]

+ -
AF(T)hy - Mhy .

Since the left side is equal to h; - h;\ - ho, transposing terms we get

+ -
,(1 - AF(T) )h)\~»h0 +{1 - thz hg = 1.

This inequality can be strengthened remembering that F(\T) =< F(T),

hence

(l-F()\T))h:Zf,
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which can be inverted using 1.13, so finally we get

2.7 h;tZ UMT) £ .

This readily gives the desired inclusion, for let x € A(f), then
U(AT){(x) > 0 for some \. But then clearly for some n, h;(x) >0,

or x € B.

From the foregoing proof one can practically read off the

following lemma which is the analog of Hopf's Basic Lemma [10,

page 102]. This lemma is essential for the proof of our main theorem

3.1.

ey 1’ A€ E’ A gA(f): En_d € > O, El_l_eil_thf_i_}‘_g

exist integrable functions h, ¢ such that

(a) h =f,

(8) h=f+F(T)p -9, ¢=0

{v) Shdp.iSfdp.,

A
Proof: Notice that (y) is a direct consequence of (B} as can be
seen integrating (B) remembering F(T) is a positive contraction.
Now if we take h = hn for any n, then (a) will be satisfied auto-

matically by 2.4, whereas (B) follows from the definition 2.3 since
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n n
_ N _ -
hy=hy * ___,(hv hv—l) = hy +z (F(T)hv—l By hv—l)
v=] vzl
n %
+ +
_f+F(T)Zhv IR N
v= v-1
50 we set
n-1
+
@ = hv -
v=0

Finally note that A © A(f) ¢ B so 2,5 implies that {6) is satisfied (for

large n).

The corresponding maximal theorem for ordinary sums can

also be shown along the lines of theorem 2.1.

E(f) = { sup S () >0},
n>0

then

SI fdp=0.
E(f)

Proof: Proceeding exactly as in theorem 2.1 it suffices to show that

{f >0}c E(f) S B.

Again we need only prove the second inclusion., To this end observe

that for any g € L, g = 0, using the definition 1.7 of the un's, we
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can write

n-1 n-v n_
2.8 S(F(T))>§ T"Zka->
- n g —L./ u k g = Ly
v=0 k=1 i=1
1
_ i _ -
=) uwTg= S ,(g-g.
i=1
Hence

S,(g) =g +S ,(F(T)e)

Applying this to f+ we get

(g= 0)

+ : + -
S =£+8 _[(F(T)E) - S_(£)

= hg + Sn_l(F(T)f+ -f)

4
=hy +5_ _,(h)

Now we can repeat this process with sn—l(hl)’ so by induction we

finally obtain

n-1
2.9 s ()= Z nt
n v
v=0

which concludes the proof of the theorem,

Notice that 2.9 is quite

the analog of 2.7, and both may be said to generalize the elementai‘y

fact that for all u_ =1, F(T) = T, one has S (Tg) = S 4(8) - g

{(compare with 2. 8).

We shall now show that theorem 2.2 implies theorem 2.1 1in a
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fairly elementary way. By the same kind of reasoning we have already

used twice (see 2. 6) it follows that we need only show
Alf) € E(f) .

(It can be proved that this is a strict inclusion.) In effect if

SUPG <] U(NT){(x) > 0, then for some A and n, E\?:O uv}\v T £(x) > 0.

Taking the least such n we also have E]fr:lo uv)\vTxf(x)S 0 for

0=m < n. DBut this implies that 251:0 uvva(x) > 0 "as follows from
v

the next elementary lemma (put a, = uVTVf(x), bv =\ ).

=Zb,=...

0 1

;_;:egr:u:réa_zzz.zzz. Let ags al, cees an be real numbers, and b

= bn > 0, such that

[

n m
Z avbv >0, and avbv =0 (0 = m < n),
v=0 v=0
then
n
Z a, >0,
v=0
_P_l_'p__gg: Define
n
-
_ 1 < <
Am—l_avbv (0 =m=n) ,
v=am

and notice that all Am > 0. Now using partial summation we obtain

_ . L. o A1
av“}_:avbv b. b +LAv<bv bv—l) > 0.
v=0 v=0 © v=]
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Finally we close this section with a standard but ve ry useful

consequence of the maximal ergodic theorem. For 0=p € L1

define the p-measure
p.(A):S. pdp, AcC =
P A

(Notice that }J.p(A) =0 implies (A N{p > 0}) = 0.) The following

weak estimate then holds:

2.10 pp{R*(f,p) >c} = %?[ﬂ dp .

Proof: Clearly

{R™(f,p) > c} = { sup R,(f,p)> c} U{inf R,(f,p)< -c}
\ A
0<A<1 O<a<l

={sup R,(f,p)> c} U { sup R,(-f,p)>c}.
0<A<1 0<A<1

The p-measure of the last two sets can easily be estimated. In effect
for any g & Ly it is clear that R)\(g, p) > ¢ if and only if
UNT){g - cp) > 0, therefore

2.11 { sup R,(g,p) >c} = Alg - pc).
| 0<A<1

Then 2. 2 immediately gives

0 SSA( )(g-cp) dp 55 lg| du - cup(A(g - cp)) .,
g-Ccp
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that is
b {R (gp)>e}= L gl
P : c 1
Applying this to both g=f and g = -f we obtain the desired estimate.
Remark: An immediate consequence of the weak estimate is that

R*(f,p) <o a.e. in {p>0}.

e
To see this we need only let ¢~ oo in 2,10, so that p,p{R (f, p)=o0} =0,

Clearly both lemma 2.1 and lemma 2.3 have their counter-

parts for the case of ordinary sums. In particular, if we define

Q£ p) = sw [Q (5],
n>0

then we have

2.12 1o Q1 B) > e} = 27 Jg]] .
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e w4y i S e o e e S S Pl e i Pt e T

state formally our main result:

Theorem 3.1. Let T be a positive contraction of Ll(X,E,p.).

If €Ly, 0=p Ly, then

lim R, (f.p) (%)
A1

exists and is finite for almost any x € {p > 0}.

The proof of theorem 3.1 depends on the following lemma that

essentially expresses the invariance of the limit under F(T).

Lemma 3.1, If 0=¢ CLl, and 0 <p CLl, then

3.1 lim Rk(go - F(T)e,p)=0 a.e. in {p>0}N D,
=1

where D = {1lim 1 U(AT)p = w}.

K——b

Proof: Since ¢ = UNT){l - FP(AT))¢ we can write

3.2 UQATL - F(T)e __¢ _UOTHF(T) - F(AT) )¢
. U(XT)p T UM\T)p U(AT)p ’

that is

Ryle - F(Te, P) = gy - Ryl (F(T) - FOAT) Jo, p)

where the first tcrm on the right clearly tends to zeroin D as N — 1.

Now setting

A, = Ry ((F(T) - FO\T) ), p)
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we shall show that in fact A)\ -+ 0 as A1 almost everywhere in

{p > 0}. To prove this we first estimate F(T) - F(A\T) as follows

m ®
OSF(T)-F(W)=<Z+ Z/ )fvu-x")T"

v=l v=m+H

m Q0
=@ -\ 2 fvTV + E fvTV
v=l

v=m+l
o)
= (1 - \"F(T) + > £ T,
£ v
v=m+l
This immediately gives
@
. v
3.3 0=A,=(1- )\m)RK(F(T)q),p) + R)\( Z £,T <p,p)
v=m-+1

x o
= (-2 "R (g, p) +R (9, 4, P)

. f Tvgo =Qnae Clearly

where we have put F(T)¢ = g, and Zv:mﬂ v

Sq:mﬂd}.t-—*o as m = oo .

So for any 6 > 0 the weak estimate 2.10 gives

But
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. . * 1
{ 11-1'1:1 R (‘Pmﬂ’ p) > 0} = U {R (‘Pm_]_la P) > i’ all m} ;

therefore

3.4 R;ﬁ(gom_l_l,p)l 0 a.e. in {p>0}.

Now for a given € > 0, choose m large enough so R*(gom_l_l, p) <e€
(clearly m = mi(x,€) ). Then letting X —>1 in 3.3 we obtain

0= lim sup A, =€ (a.e. in {p>0}),
A1

which completes the proof of the lemma.

Remark. In the special case when all the u, = 1, lemma 3.1 can bhe
proven directly in such a simple way that it deserves mention here.

Here F(\) =\, and U(\) = (1—)\)_1. Equation 3. 2 now becomes

@-AT) - T)p _ o PN AT) T

-7 a-amlp - A7)

which clearly tends to zero {(as N — 1) in the appropriate set since

-1
1 -AT) T
sup | ( ) . @
01 (1 -AT) p

| <o  a.e. in {p>0}.

Proof of theorem 3.1. Since R*(f, p) <o a.e. in {p >0} we may

discard the possibility of divergence to infinity. Now we turn our
attention to the possible set where R)\(f, p) oscillates in {p > 0}.

Notice that in this set
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Hm UAT)p = c© (a.e.),
Al

* 4+ K -
for otherwise we must have R (f ,p) =R {f ,p) = o in a set of posi-
tive measure. Clearly the set of oscillation is a countable union of

sets of the type

3.5 A = {lim inf R, (f,p) < a < b <lim sup R, {(f,p)} N{p >0}
A1 M A—1 A

where a,b run, say, over the rationals. We shall now show that

pla) = 0.

The proof of this fact strictly parallels that in Hopf [10, lemma 5].
First we observe that the right- and leftmost inequalities in 3. 5

imply just as in 2.11 that
3.6 A < A(f - bp) N Alap - f} .

This is indeed a very weak consequence of 3.5 since we are only using
the fact that for some )\1, )\.Z we have R}\l(f_? p)<a<b< R)\z(f, P)
()\1, )‘Z depend of course on %). The gist of the proof therefore is to
utilize more fully the information that actually there is an infinity of
such \'s available for each x.

From .A C A(f - bp) and lemma 2.1 we can find two functions,
which we write h - bp, and ¢, such that the corresponding proper-
ties {a) - (0) are satisfied. In particular (B) gives h-bp ={f-bp+

F(T)e - ¢, hence
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R, (h, p) = R,(£,p) - R,(¢ - F(T), ¢, p) .

Then lemma 3.1 shows that

}i,-nri f;llfp R)\(h, p) = lxn'nl f;lfp R?\(f' p) a.e. in A.
)\.—b e

Therefore 3.6 again holds if f is substituted by h., In particular
AC A(ap - h), so we can apply lemma 3.1to ap - h, and A, writing
the auxiliary functions as ap - £' and | Property (B) implies
that the process can be so continued ad infinitum, alternating the
applications of lemma 3.1 between the right and left inequalities in
3.5. Now we list for reference the relevant properties of h - bp,

and ap - f' to be used in what follows:

(1a) (h - bp)” =< (f - pb) .
(16) S\'(h— bp) du<e.
A
(20) (ap - £} =< (ap - h) .
ey [ -mas=lE-ma.

(26) S‘A(ap -fY dp<e.

Inequality (la) implies
(la") (h - ap)” = (£ - ap) .

This is a trivial consequence of the following implication for real

numbers:
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u=0, cv0=dvo={(c-u)v0={(d- u)wvo0.

This immediately extends to functions; then note that (h - _bp)— -
(bp - h)\v 0= (bp - )0 = (f - bp)”, and (b - a)p = 0.
We shall now find an estimate for pp(A) in terms of f, and

f', but independent of the intermediate function h. We start from
(b - a)p = (bp - h) +(h - ap),

where we take positive parts and integrate over A, recalling that

+

+ +
(c +d) =c¢ +4d, thus obtaining

+ +
(b - a)p_(A) = S. (bp - h) du+5 (h - ap) dp.
P A A
. + -
Since ¢ = (-c) , we can use (18) and get

3.7 (b - a)pp(A) <€ +S‘A(ap - h) dp.

Now in this inequality substitute

F

S {ap - h) dp =§ (ap - ) dp +\ [(ap-h) - (ap-£)]apn,
A A YA

noticing that the first integral on the right is less than € by (2§),
and that the second integrand is non-negative by (2a), so the inequality

is strengthened if the integration is taken over X: thus 3.7 becomes
© - an (a)<ze+ § @p - w7+ § ap - 67 an

But -(ap - ') = (ap - ') - (ap - f')+, so substituting and using (2y)
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we get

3.8 b - a)MP(A) < 2¢€ + 5[ (ap - h) + (ap - h)}dp - S' {ap - f')+d|J.
= 2¢ +S‘(ap - ) Fap - X(ap -yt a
' + nt
(by (1a'}) S2~E+S[(«':11;>-f) -(ap - )] ap.

Now, as we already pointed out the whole process can be repeated

indefinitely to get a sequence f, f', f", ... where each consecutive
f(k)’ (k1)

pair is connccted by an incquality like 3. 8, that ia:

3.9 (b-ale (A) < z¢ +5[ (@p - £ - (@ap - ] ap, k=0
Adding the first n inequalities thus obtained yields
n{b - a)pP(A) < 2ne +S (ap - f)+ - 5 (ap - f(n))+ dp
< 2ne +§(ap - 97,
Dividing by (b - a)n, and passing to the limit we obtain
pp(A) < B%-Sa ]

and a fortiori
HP(A) =p(A) = 0.

This concludes the proof of the theorem.
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Corollary., (Abelian analog of Chacon-Ornstein's theorem.) Let T

be a positive contraction of Ll(X,E,H)- I fc Ll’ 0=pc Ll’ then

Az va(x)

T8

<
1}
o)

1im
A1
AT p(x)

]

v=0

I}

exists and is finite almost everywhere in the set whe re the denomina-

tor is positive, thatis, in UL . {T% >0},
n=0 P

It is quite clear from theorem 3.1 that we have convergence

in {p > 0}. A simple argument gives convergence in the larger set

{Tnp>_0} ={p> 0},U.U{p=Tp=--- =1 =0, T% >o0}.

n=0 n=1 ‘
Just observe that in {p=Tp=... = Tn_lp = 0, Tnp > 0}
n-1
; )\UTUf
- 4 —

(- a7 v=o . L= an) TP

-0 R v v (@ - AT HT p)
Z AT p
v=n

where the first term on the right clearly converges as N\ — 1, whereas

the last term is R}L(Tnf, 'I‘np), which converges in {Tnp > 0}.
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analog of our main theorem 3.1 for ordinary averages is the

following

Theorem 4.1, (Baxter) Let T be a positive contraction of

L(X,Z,p). I f€L, 0=p Ly, then

lim Q (f,p) exists a.e. in {p>0}.
n—oo

Proof: This theorem can be proved along the lines followed for
theorem 3.1. As mentioned in section 2 theorem 2. 2 readily gives
the analog of the basic lemma 2.1, and the weak estimate 2.12. So
we immediately get that Qn(f, p) is bounded for almost every

x €{p>0}. To establish that the set of oscillation has measure

zero we need here the equivalent of lemma 3.1 (invariance of the

1limit), which in this case reads

4.1 lim Qn(F(T)cp-q),p)=0 a.e. in {p>0}N F,
a~>o0

where F = {limn S, (p) = 0}. This fact, however, has already been
established by Baxter [ 2, lemma 2]. It is then easy to see that the
series of "upcrossing estimates" 3.9 can again be obtained in

exactly the same form, so again p (set of oscillation) = 0.

The above limit 4.1 further affords an excellent illustration
of the essential advantages of the abelian approach, Although quite

similar to 3.1, it is significantly more difficult to prove. In fact
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with techniques like those in lemma 3.1 it is only possible to show
that 4.1 is equivalent to the simpler limit
n
unT @

4, 2 lim —S-—TI—)T- =0 a.e. in {p>0}ﬂD,

n—>on n

which is the generalization of 1.10 to weighted averages. As this fact

is of some interest in itself we shall now establish this criterion.

¢ and p are non-negative integrable functions, then the following

two conditions are equivalent

(1) lim Qn(F(t)go -¢,p) =0 a.e.in {p>0}N D,

n—>o0
unan)
i —_———— = 0 .e. i >0t D,
@ dim o -0 se i (p>0)

Proof: Using 2.8 we can write

¢ 15 (F(T)y - ¢) _ ! 8, e - ¢ -5, () ) unTnsv
S, (p) S, (p) S, (p)

=0,

so that it is clear that (I)=> (II}. Now assume (II) holds. Implicit

in 2.8 is the identity

n-2 n-1-v
S (o) = +>; ™) £ Tk
?) =0 w, T ) £ T ,
v=0 k=1

therefore
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n;l n-2 n-1-v
S (T(T)e - )=Z w T'F(T)g - ¢ - ) u T ¢ K
n ? -9 v -9 v KL @
v=0 v=0 k=1
n-1 Q0
_ v k
= -9 * uvT z fkT e
=0 k=n-v
. s 00 k et as .
Setting again P Zk:m fkT ¢, and substituting we obtain
n-1
v
uvT Pn-v
v=0

Q, (F(T)¢ - 9,p) = - g7 +

N s, (P) ’

whe re we have to show that the last term converges to zero. Now take

0 =m = n-1 and recall that <pm1, to obtain

n-1 n-m n-1 n-m
WV ) T) ) wT
vi Ppov Yt Pm n-l Tk
V=0 _v=0 n-m# _ v=0 + kT 1
S, (p) S, (p) S,(p) 5, ()
n-m+
s o) T w1 At ukaso
< _n’m k 1 < Q'\(cp p) + 1
Snlp5 fd Sk(P; m’ ) Sk(PS
n-m+l n-mil
However just as in 3.4 we can prove that
4,3 Q*(qom, p 0 a.e. in {p<o0},

the refore take m = m(x,€) such that Q*(tpm, p){x) < €, and then let
n > oo: the m terms (m now fixed!) of the last summation tend to

zero by hypothesis.
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.Remark: In closing we want to point out that even the simpler limit
(Ii) has not yielded to simple methods of proof. However as a last
example of the power of the maximal ergodic theorem let us show
that (II) holds in case T also contracts the Loo—norm of functions
in Llﬂ Loo (notice this furnishes a proof for the convergence of

Qn(f, p) in a case slightly more general than Garsia-Sawyer's (1.11).)

In effect for any ¢ € Lfﬂ Loo

n
0, 1% u llell,

0= -2 _ =< -0 in D.
5, (P) 5,(P) "

o +
Now for any ¢ € L1 , find a sequence P € L1 M LOO such that

then
‘ n 1n. n
u‘nT ¢ U’nT ?m U’nT (¢ - gDm)

0= = +
Sni D} S_(p) S, (p)

n
unT P «
—F— TQ - »P) .
Sn(P) (o ?m p)
As in 4.3 we see that the last term goes to zero as m —> oo, sO again

take m large enough, and let n > 00 remembering that P <3 Loo’

This immediately gives the desired result,
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