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ABSTRACT

This thesis reports searches for beyond Standard Model physics in e+e− collisions
in two directions.

We report the first search for a dark matter bound state. The existence of dark matter
bound states could arise in a simple dark sector model in which a dark photon
(A′) is light enough to generate an attractive force between dark fermions. We
report herein a search for a JPC = 1−− darkonium state, the ΥD, produced in the
reaction e+e− → γΥD,ΥD → A′A′A′, where the dark photons subsequently decay
into pairs of leptons or pions, using data collected with the BABAR detector. No
significant signal is observed, and we derive limits on the γ − A′ kinetic mixing (ε)
as a function of the dark sector coupling constant for 0.001 < mA′ < 3.16 GeV and
0.05 < mΥD < 9.5 GeV. Bounds on the mixing strength ε down to 5 × 10−5 − 10−3

are set for a large fraction of the parameter space.

We also report a measurement of R(D) = B(B → D̄τν̄τ)/B(B → D̄`ν̄`) and
R(D∗) = B(B → D̄∗τν̄τ)/B(B → D̄∗`ν̄`), where ` refers to either an electron
or muon. We select samples by reconstructing tag-side B mesons in semileptonic
decays and signal-side τ in a purely leptonic decay. Using data collected with
the BABAR detector, we measure R(D) = 0.316 ± 0.062(stat) ± 0.019(syst) and
R(D∗) = 0.226 ± 0.022(stat) ± 0.012(syst), which agree with the Standard Model
expectations by 0.26σ and 1.10σ, respectively. Taken together, the results are in
agreement with the Standard Model within 1.51σ level.
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C h a p t e r 1

THE STANDARD MODEL OF PARTICLE PHYSICS

The ultimate goal of particle physics is to understand the fundamental law of matter
in the universe, which is made of elementary particles. In other words, elementary
particles are the building blocks of the universe and are thought to have no internal
structure. According to the idea of reductionism, if we understand the characteristics
of elementary particles and how they interact with each other, we are able to fully
explain and link together all physical phenomena in the universe. The corresponding
theory to model elementary particles and their interactions is often referred as the
Theory of Everything (TOE).

Developed during the twentieth century, the standard model (SM) is a quantum
field theory to describe three of four fundamental forces: electromagnetism, strong,
and weak interactions. Although it does not include gravity, the standard model
is currently our best attempt to unify the fundamental interactions together, and it
has been extensively tested by a series of experiments. Some famous experiments
include discovery of Z boson at CERN,W boson at CERN and Fermilab, J/ψmeson
at SLAC and BNL, and Higgs boson at CERN.

The Lagrangian of the standard model is

LSM = −
1
4

BµνBµν −
1
4
Tr[WµνW

µν] −
1
4
Tr[GµνG

µν]

+ iψ̄ /Dψ + h.c.

+
∑

i,j=e,µ,τ

ψiyi jψ jφ + h.c.

+ |Dµφ|
2 − V(φ).

(1.1)

The first term is the gauge term, where Bµν,Wµν and Gµν are the field tensors for the
U(1), SU(2), and SU(3) groups. Using the weak mixing angle θw, the Aµ, Zµ,W±µ
bosons are mixtures of Wµν and Gµν components:

Aµ = W11µ sin θw + Bµ cos θw, Bµ = Aµ cos θw − Zµ sin θw
Zµ = W11µ cos θw − Bµ sin θw, W11µ = −W22µ = Aµ sin θw + Zµ cos θw
W+µ = W−∗µ = W12µ/

√
2, W12µ = W∗21µ =

√
2W+µ .

(1.2)
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The second term involves kinetic terms of fermions and how fermions interact with
gauge fields. ψ is a vector including all fermion fields. Explicitly, the Lagrangian
can be re-written as

LF,F−G =iψ̄ /Dψ + h.c.

=(ν̄L, l̄L)σ̃
µiDµ

(
νL

lL

)
+ l̄RσµiDµlR + ν̄Rσ

µiDµνR + h.c.

+(ūL, d̄L)σ̃
µiDµ

(
uL

dL

)
+ ūRσ

µiDµuR + d̄Rσ
µiDµdR + h.c.,

(1.3)

where l = (e, µ, τ), ν = (νe, νµ, ντ),u = (u, c, t), and d = (d, s, b) are all three-
component generation indices. The σ are the Pauli matrices satisfying

σµ =

[(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i

i 0

)
,

(
1 0
0 −1

)]
σ̃µ = [σ0,−σ1,−σ2,−σ3].

(1.4)

Dµ is covariant derivative combining electromagnetic, weak, and strong interactions
in the form of

Dµ = ∂µ − ig′Y Bµ − igWa
µTa − igsGa

µta

where g′,g,gs are the coupling strengths of the hypercharge, weak and strong inter-
action. Y,Ta, ta are the corresponding hypercharge operator, SU(2) generator, and
SU(3) generator.

The interaction between fermions and gauge fields can be further decomposed to
charged and neutral currents. Taking leptons as an example, its charged current part
of the Lagrangian is

LCC
L = −

g

2
√

2
( j µW,LWµ + h.c.)

j µW,L = ν̄lγ
µ(1 − γ5)l .

(1.5)

Its neutral current includes the QED Lagrangian as well as a weak neutral current:

LNC
L = LγL + LZ

L

LγL = −e j µγ,L Aµ, j µγ,L = −ēγµe

LZ
L = −

g

2 cos θw
j µZ,L Zµ, j µZ,L = ν̄lγ

µ(cνV − cνAγ
5)νl + l̄γµ(cl

V − cl
Aγ

5)l .

(1.6)

The last two terms are related to the Higgs mechanism. They describe the Higgs
field and how the Higgs field gives mass to gauge and fermion fields. For the
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Higgs-gauge interaction, since the hypercharge Y = +1, we have

Dµ = ∂µ + igWµ ·
σ

2
+ ig′Bµ ·

1
2
.

So the Higgs-gauge term can be written as

LH,G =
1
2
(∂µH)(∂µH) − λv2H2 − λvH3 −

1
4
λH4

+
v2g2

4
W+µW−µ +

v2g2

8 cos θw2 ZµZ µ

+
vg2

2
W+µW−µH +

v2g2

4 cos θw2 ZµZ µH +
v2g2

4
W+µW−µH2 +

v2g2

8 cos θw2 ZµZ µH2,

(1.7)

from which we can get the mass of the Higgs as well as the mass ofW and Z bosons:

mH =
√

2λv2

mW =
vg

2
mZ =

vg

2 cos θw
.

(1.8)

Since themass termof fermion fieldsmψ̄ψ = m(ψ̄LψR+ψ̄RψL) is not gauge invariant,
the way to give mass to fermions is via Yukawa coupling. Once diagonalized, it can
be written as

LYukawa =
∑

i,j=e,µ,τ

ψiyi jψ jφ

=

(
ylv
√

2

)
l̄ l −

yl
√

2
hl̄l

+

(
yuv
√

2

)
ūu −

yu
√

2
hūu

+

(
ydv
√

2

)
d̄d −

yd
√

2
hd̄d,

(1.9)

so the mass of leptons and quarks are

mi =
yi

lv
√

2
, i = e, µ, τ

mi =
yi

uv
√

2
, i = u, c, t

mi =
yi

dv
√

2
, i = d, s, b.

(1.10)
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Figure 1.1: The Standard Model of particle physics. The picture is taken from [1].

Fig. 1.1 shows all the elementary particles in the standard model. In conclusion, the
standard model has 17 types of elementary particles. 12 of them are fermions, which
are the building blocks of the matter in our universe. The two type of fermions,
quark and lepton, are distinguished by whether they carry color charge. In addition,
we have 4 gauge bosons which act as force carriers: photon for electromagnetism,
gluon for strong interaction, and W and Z boson for weak interaction. We also have
the Higgs boson to explain the mass of the other particles.
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C h a p t e r 2

BEYOND STANDARD MODEL PHYSICS

Although the standard model has been tested by many experiments, it is still an
incomplete theory due to the lack of explanation of the following phenomena and
theoretical puzzles:

• Gravity: the standard model does not explain gravity, which is currently best
described with general relativity and explains the gravitational force due to
curved space-time from massive objects.

• Dark matter: The existence of dark matter has been supported by many
cosmological and astrophysical observations, and it is measured to be 4-
5 times that of ordinary matter in our universe. However, particles and
interactions in the SM only explain the physics of ordinary matter, leaving
dark matter unexplained.

• Dark energy: Dark energy is around 70% of the entire energy in our universe,
and it is also not explained in the SM.

• Neutrino masses: the neutrinos in the SM are massless, however, neutrino
oscillation experiments show that they do have mass.

• Hierarchy problem: The SM introduces a Higgs field to explain particle
masses, however, the mass parameter in the Higgs field needs to be fine-
tuned to cancel quantum correlations. However, relying on a numerical
cancellation to explain the large discrepancy between weak force and gravity
is uncomfortable for many physicists.

• Strong CP problem: The CP symmetry in the strong interaction sector is
allowed to be broken in theory, while no experiments observe such violation.

Therefore, one of the main goals of particle physics is to search for and understand
the physics beyond the SM. To search for BSM physics, particle physics has three
categories of approaches, referred to as the energy frontier, the cosmic frontier, and
the intensity frontier. While the energy and cosmic frontiers often provide a direct
search for the production of new particles, the intensity frontier provides indirect
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probes of new physics with intense beam sources and super-sensitive detectors. With
much better sensitivity, intensity frontier experiments can probe for new physics at
mass scales of hundreds to thousands of TeV.
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The primary goal of the experiment is to study CP violation in the decays of B

mesons. With its high luminosity, a sensitive measurement of the CKM matrix
element Vub can be made, which is a fundamental parameter in the Standard Model.
This high-luminosity experiment is designed such that electrons and positrons col-
lide at the Υ(4S) resonance, which then decays to BB pairs more than 95% of the
time. The B mesons subsequently decay to other particles, which can be detected
or reconstructed from specific sub-systems of the BABAR detector. At the hardware
level, charged or neutral final-state particles generate hits or clusters in the detector.
The optimized particle identification algorithms (PID) or cluster-finding algorithms
are applied to identify final-state particles and reconstruct the entire decay process.

Besides the Υ(4S) resonance, the BABAR experiment also operated at the Υ(3S)

and Υ(2S) resonances, as well as off-resonance to better understand the continuum
backgrounds. The BABAR experiment can be also applied to study a range of other
physics including, but not limited to, other B meson decays, the physics of charm
and τ leptons, and two-photon physics.
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C h a p t e r 3

THE PEP-II ACCELERATOR

Figure 3.1: The design of the PEP-II accelerator.

The PEP-II accelerator is designed to deliver the B mesons to the experiment. It is
an e+e− collider operating at the Υ(4S) resonance of 10.58 GeV. The two storage
rings are asymmetric with 9 GeV for the electron beam and 3.1 GeV for the positron
beam, which is a key design feature of PEP-II, as shown in Fig. 3.1. This design
results in B mesons with significant momenta in the lab frame, and its decay length
can be measured.

The PEP-II system includes the following four major subsystems: Injector, High-
Energy Ring (HER), Low-Energy Ring (LER), and Interaction Region (IR) [2].
The Injector includes the extraction and transport lines from the SLAC two-mile
linac. The HER is responsible for the 9 GeV electron beam. It is originated from
PEP ring but with new vacuum, RF, feedback, and diagnostics systems. The LER
is a new ring mounted above the 9-GeV HER, responsible for the 3.1 GeV positron
ring. The IR is designed to focus the beam spots, bring two beams into head-on
collision, and separate them cleanly.
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C h a p t e r 4

THE BABAR DETECTOR

In order to achieve the sensitivity required, the BABAR detector needs to have maxi-
mum possible acceptance in the center-of-mass (CM) system, excellent vertex res-
olution to measure B meson decay time, and great discrimination between charged
particles to tag B meson decays. The detector mainly includes six components: Sil-
icon Vertex Tracker (SVT), Drift Chamber (DCH), Detector of Internally Reflected
Cherenkov light (DIRC), Caesium Iodide Electromagnetic Calorimeter (EMC), a
1.5 T superconducting coil, and Instrumented Flux Return (IFR). The details of
design [3] are summarized below.

4.1 Silicon Vertex Tracker (SVT)
The main goal of the SVT is to reconstruct the decay vertices of the two B mesons
to determine the time between two decays, and measure time-dependent CP asym-
metries in B meson decays. The SVT is also responsible for the detection of
low-momentum charged particles which do not reach the drift chamber.

As shown in Fig. 4.1, the SVT includes five concentric cylindrical layers of double-
sided silicon detectors, divided in azimuth into modules. The inner three layers are
barrel-style structures with six detector modules. The outer two layers have 16 and
18 detector modules, respectively, and are employed with a new arch structure so
that detectors are electrically connected across an angle.

The silicon vertex detectors use double-sided silicon strip detectors coupled with
polysilicon bias resistors. The p+ and n+ strips are fabricated on around 300-µm-
thick high-resistivity silicon. The front-end signal processing is performed by ICs
mounted on hybrid circuits, fabricated in a radiation-hard CMOS technology.

4.2 Drift Chamber (DCH)
The drift chamber is the main tracking system of the BABAR detector used to recon-
struct tracks with transverse momentum larger than 100 MeV/c. The performance
goal of the DCH includes a spatial resolution better than 140 µm, a PID for low mo-
mentum tracks by dE/dx with resolution of 7%, and a resolution of σpt ≈ 0.3%× pt

for momentum above 1 GeV/c.
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3.3 The Silicon Vertex Tracker 83

Figure 3-4. Detail of the inner part of the apparatus, showing the cross-sectional view of the
silicon vertex tracker in a plane containing the beam axis.

Each module is divided into two electrically separated forward and backward half-modules, the
shorter (if they are not exactly symmetrical) always being the forward one. In order to follow the
designed structure of the fourteen half-modules, detectors with six different wafer geometries are
needed.

The inner sides of the detectors have strips oriented perpendicular to the beam direction to measure
the coordinate ( -side), whereas the outer sides, with longitudinal strips, allow the coordinate
measurement ( -side). The read-out electronics will be placed outside the active area, the -side
strips will be connected to them with flexible Upilex fanout circuits glued to the inner faces of the
half-modules. In the two outer modules, the number of strips exceeds the number of readout
channels, so some fraction of the strips is “ganged”, i.e., two strips are connected to the same
readout channel. The “ganging” is performed by the fanout circuits. The strips are daisy-chained
between detectors, resulting in a total strip length of up to 26 and a maximum capacitance of
35 pF. Also, for the -side, a short fanout extension is needed to connect the ends of the strips to
the readout electronics.

Half-modules contain from two to four detectors. The connections between two adjacent detectors
on the -side, and with the fanout on both sides, are made with wire bonds. The bending of the
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Figure 3-5. Layout of the BABAR silicon vertex tracker. Cross-sectional view in the plane
orthogonal to the beam axis.

outer detector of external layers is done after the wire bonding. The modules are supported on
Kevlar ribs mounted to the end cones located in the forward and backward directions. A carbon-
fiber space frame supports the assembly, which is mounted on the bendingmagnets using kinematic
mounts. The space frame is needed to allow some motion of the magnet during the assembly
procedure.

The BABAR silicon vertex tracker will have 340 silicon detectors in total, covering an area of about
1 , with a total of 150.000 readout channels. Details of the silicon vertex tracker parameters
are shown in Table 3-4: here the intrinsic point resolution is calculated for tracks incident at 90 ,
assuming a signal-to-noise ratio, .

3.3.3 The Silicon Microstrip Detectors

Silicon vertex detectors use double-sided silicon strip detectors, AC coupled with polysilicon bias
resistors [5]. They have p strips on the p-side and n strips on the opposite, n-side. The n strips
on the n-side must be interleaved by p implants (p-stops). They are fabricated on (300 30)

REPORT OF THE BABAR PHYSICS WORKSHOP

Figure 4.1: The cross-sectional view of the silicon vertex tracker design (upper)
along the beam axis; (bottom) orthogonal to the beam axis.

The side view and layout of drift chamber are shown in Fig. 4.2. The drift chamber is
a 280-cm-long cylinder. Its flat endplates are made of aluminum. The forward end-
plate is made thinner in the acceptance region of the detector compared with the rear
endplate. The drift cells are arranged in 10 superlayers of 4 layers each, scheduled
using the pattern AUVAUVAUVA for axial (A) and stereo (U, V) superlayers.

4.3 Detector of Internally Reflected Cherenkov Light (DIRC)
As shown in Fig. 4.3, the DIRC is designed to provide excellent kaon identification
to distinguish between the two-body decay modes B0 → π+π− and B0 → K+π−. It
is also designed to identify muons in the low-momentum range. The DIRC system
includes 144 long, straight bars of synthetic quartz arranged in a 12-sided polygonal
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3.4 The Drift Chamber 89

Helium-based. The read-out electronics are mounted on the rear endplate to minimize the material
in the forward region.

The high luminosity of PEP-II imposes a stringent demand on the deadtime tolerated both for the
chamber itself and for its readout electronics. Background from synchrotron radiation is expected
to cause high signal occupancy, especially in the innermost sense wires. A small-cell cylindrical
chamber design was chosen to minimize the drift time, and a fast and highly pipelined design was
adopted for the front-end electronics, in order to eliminate the readout deadtime.

The detailed engineering design of the drift chamber was finalized after the time of the BABAR
Technical Design Report [2]. An up-to-date description of the design can be found in [10]. In the
following sections, the main features of the final design are summarized.

3.4.1 Drift Chamber Design

A schematic side view of the BABAR drift chamber is shown in Fig. 3-7. The BABAR drift chamber
is a 280 cm-long cylinder, with an inner radius of 23.6 cm and an outer radius of 80.9 cm. The flat
endplates are made of aluminum. Since the BABAR events will be boosted in the forward direction,
the design of the detector is optimized to reduce the material in the forward end. The forward
endplate is made thinner (12mm) in the acceptance region of the detector compared to the rear
endplate (24mm), and all the electronics is mounted on the rear endplate. The inner cylinder is
made of 1 mm beryllium, which corresponds to 0.28% radiation lengths (X ). The outer cylinder
consists of 2 layers of carbon fiber on a Nomex core, corresponding to 1.5% X .

IP
1618

469
236

324 681015 1749

551 973
17.1920235

Figure 3-7. Side view of the BABAR drift chamber. The dimensions are in mm.
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Figure 3-8. Cell layout in the BABAR drift chamber.
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Figure 4.2: (upper) The side view of drift chamber; (bottom) The cell layout of the
drift chamber.

barrel.

4.4 Electromagnetic Calorimeter (EMC)
The primary goal of EMC is to measure the energy of photon and electrons with
precise energy and angular resolution. When a photon or an electron travels through
the crystal, it interacts with the thallium-doped cesium iodide (CsI(Tl)) and triggers
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Figure 4.3: The geometry of DIRC.

an electromagnetic cascade and deposits its energy to create scintillation light. The
photons are then reflected inside the crystal and collected with the PIN diodes.

As shown in Fig. 4.4, the calorimeter includes a cylindrical barrel section and a
forward conic endcap. It is located asymmetrically about the interaction point with
the inner radius extending 112.7 cm in the backward direction and 180.9 cm in the
forward direction. The barrel crystals covers angle between−0.775 ≤ cos θ ≤ 0.892
in the laboratory frame, corresponding to −0.916 ≤ cos θ ≤ 0.715 in the c.m.s.
frame.

4.5 Instrumented Flux Return (IFR)
The IFR shown in Fig. 4.5 is designed to return the flux of the 1.5T magnet and to
provide muon identification and neutral hadron detection. The system consists of
a central part (Barrel) and two plugs (End Caps) to cover the angle from 300 mrad
in the forward direction to 400 mrad in the backward direction. The resistive plate
chambers (RPC) are constructed of bakelite sheets separated by thick polycarbonate
spacers with cylindrical symmetry and fiberglass frame.
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8184A17–96
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15.8°
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IP
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Figure 3-11. The EMC layout: Side view showing dimensions (in mm) of the calorimeter barrel
and forward endcap.

The barrel consists of 5760 CsI(Tl) crystals, arranged in 48 polar-angle ( ) rows of distinct crystal
sizes, each having 120 identical crystals in azimuthal angle ( ). The crystals are grouped in 280
modules, each spanning crystals in and , respectively (except for the most-backward
module, which has only 6 crystals in ). The modules are made from 300 thick carbon fiber
composite (CFC) material and held from the rear by an aluminum strongback. They are mounted
in an aluminum support cylinder, which in turn is fixed to the coil cryostat.

By supporting the crystals from the rear, minimal material is placed in front of them. The EMC
front material consists of two 1 -thick cylinders of aluminum, separated by foam, which pro-
vide a gas seal and rf shielding. Additional front material due to the liquid radioactive source
calibration system consists of the equivalent of another 3 of aluminum. (All thicknesses are
quoted at perpendicular incidence.) Cooling, cables, and services are located at the back of each
module and thus do not add to the inactive-materials budget.

The total amount of external material in front of the calorimeter barrel (endcap) is about 0.25
(0.20 ) at a polar angle of 90 (20 ), the major contributors being the DIRC (drift chamber
endplate) with about 0.14 in both cases. Areas of particular concern are the forward and
backward end of the barrel, where the material grows to 0.5 and 0.39 , respectively.

REPORT OF THE BABAR PHYSICS WORKSHOP

Figure 4.4: The side view of the electromagnetic calorimeter barrel and forward
endcap.

Figure 4.5: The overview of the IFR system.
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C h a p t e r 5

DATA RECORD AND LUMINOSITY

The BABAR experiment operated from 1999 to 2008. An integrated luminosity of
531 fb−1 was collected mostly at theΥ(4S) resonance, but also at theΥ(3S),Υ(2S),
as well as off-resonance. Fig. 5.1 shows the integrated luminosity over time. The
luminosity for each run is shown in Table 5.1.

Figure 5.1: The integrated luminosity over time.
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Run period Luminosity (fb−1) Data sample on-peakon-peak off-peak
Run1 20.4 2.6 Υ(4S)
Run2 61.3 6.7 Υ(4S)
Run3 32.3 2.4 Υ(4S)
Run4 99.6 10.0 Υ(4S)
Run5 133.2 14.3 Υ(4S)
Run6 78.3 7.8 Υ(4S)
Run7 27.9 2.6 Υ(3S)
Run8 13.6 1.4 Υ(2S)
Total 465.7 47.9

Table 5.1: Integrated luminosity of on-peak and off-peak data collected for each
run.
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C h a p t e r 6

SEARCH FOR DARKONIUM IN ELECTRON-POSITRON
COLLISIONS

6.1 Introduction
The existence of dark matter is overwhelmingly supported by astrophysical and
cosmological observations, and it is one of themost important tasks of contemporary
physics to understand its nature and properties. The concept of dark matter can be
traced back to 1880s, when Lord Kelvin estimated the number of dark bodies in the
Milky Way from the observed velocity dispersion of the stars orbiting the center
of the galaxy. From his results, he concluded that many of our stars may be dark
bodies. In 1933, Fritz Zwicky reached a similar conclusion by applying the virial
theorem to the Coma Cluster in an attempt to estimate its mass, finding a result 400
times larger than the visible mass. During the last decades, much evidence for dark
matter has been accumulated frommeasurements of galaxy rotation curves, velocity
dispersions, galaxy clusters, and gravitational lensing.

Many dark matter candidates have been proposed during the last decades. A long-
leading paradigm is in the form of Weakly Interacting Massive Particles (WIMPs),
as the dark matter self-annihilation cross section is roughly consistent with a weak-
scale massive particle interacting via the electroweak force. Many beyond Standard
Model theories, such as Supersymmetry [4] or models containing extra dimensions,
include WIMP-like candidates. However, the absence of observation of WIMPs so
far has motivated the exploration of alternative models, such as light dark matter
and the existence of a dark sector.

The dark sector (also known as hidden sectors) is a collection of particles that do
not interact directly with SM particles, i.e. the dark sector fields are singlets under
the SM gauge groups. They are motivated by many BSM theories, for example, in
string theory constructions and type-II compactifications. The dark sector has its
own symmetries, which could be arbitrarily complex. If the dark sector contains
an extra U(1) symmetry, the dark and visible sectors are indirectly connected via
the so-called vector portal, namely they can interact via kinetic mixing between the
dark gauge field (A′µ) and the SM hypercharge field Fµν:
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εFµν,Y Fµν,D Fµν,D = ∂µA′ν − ∂νA′µ,

with ε denoting the mixing strength, as shown in Fig. 6.1. Values of mixing strength
in the 10−12 − 10−3 range have been predicted in the literature [5, 6, 7]. The kinetic
mixing term can be removed by redefining the vector field

A′µ → A′µ, Aµ → Aµ + εA′µ,

so that SM fermions pick up a small dark charge ∼ εe leading to "milli-charged"
interaction between the two sectors. The dark photon can be massive, and its mass
can arise via the Higgs or the Stueckelberg mechanisms. Its mass range is predicted
to be in the MeV-GeV range [8, 9, 10, 11], though much smaller (sub-eV) masses
are also possible [12].

Besides the vector portal, there are a few other indirect interactions that can connect
the dark sector to the SM, including the scalar and Fermion portals. In this analysis
we focus on the vector portal.

Dark sector
DM
!(1)′

SM
!" 3 ×!" 2 ×"(1)

&′!"!"##!"

Figure 6.1: The dark sector scenario under study: The dark sector has an additional
U(1)′ group and the corresponding dark photon A′ (γ′ in the picture) plays a role as
intermediate messenger between SM and dark sector (hidden sector).
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6.2 Dark Matter Bound States Model
The possibility of dark sector bound states was first proposed by An et al.[13]. A
specific model contains a Dirac dark matter field (χ) charged under an additional
U(1) gauge group in the dark sector, with the corresponding vector boson acting as
a mediator between the dark sector and SM via kinetic mixing. The mass of dark
matter particles is O(few GeV). The Lagrangian for this model is

L =LSM + χ̄iγµ(∂µ − igD A′µ)χ − mχ χ̄ χ

−
1
4

A′µνA′µν −
ε

2
FµνA′µν +

1
2

m2
A′A
′
µA′µ,

(6.1)

where A′µ is the vector boson mediator with field strength A′µν, Fµν is the SM

hypercharge field, ε is the kinetic mixing strength, and αD =
g2
D

4π is the strength
of the dark electromagnetic interaction. When gD is sufficiently large, the force
between the dark fermions mediated becomes attractive, resulting in the formation
of dark matter bound states (χ χ̄).

The two lowest (1S) bound states, 1S0 and 3S1, are respectively denoted ηD and ΥD

in analogy with the SM. The critical conditions for the existence of stable bound
states has been determined numerically [14],

1.68mA′ ≤ αDmχ .

If we assume αD = 0.5 and mχ = 3.5 GeV, the dark photon must be lighter than 1
GeV, as shown in Fig. 6.2. The value of αD has to be large enough to produce a
bound state; mχ higher than 3.5 GeV has been excluded by other measurements [15,
16].

The quantum numbers of the two lowest (1S) bound states suggest the following
production mechanisms at electron-positron colliders:

e+e− → ηD + A′

e+e− → ΥD + γ.

These production processes are mediated by a mixed γ − A′ propagator, as shown in
Fig. 6.3. The ηD (ΥD) decays into 2 (3) pairs of dark photons, leading to multi-lepton
and/or multi-quark final states.



22

4

FIG. 2. Left: Constraint on the dark photon parameter space from the BABAR dark Higgsstrahlung searches, adapted to the
production and decay of dark bound states ⌘D and ⌥D. The solid purple curve corresponds to the current BABAR limit for the
parameters ↵D = 0.5, m� = 3.5 GeV. The dashed purple curve shows the future reach of B-factories. Right: Current constraints
on the m� �mV plane for the SIDM scenario are shown with 2 = 10�7 and different values of ↵D. The green (blue) region is
favored for SIDM solving the galactic small-scale structure problems [3] for ↵D = 0.3 (0.5). The combined constraints via the
e+e� ! (⌘DV, ⌥D) ! 3V channels are shown in thick purple curves, and the constraints via the e+e� ! ��̄ + 3V channel
are shown in thin blue curves. Allowed regions are in the arrow direction. Assuming no SM background, the constraints via
the e+e� ! ��̄ + 2V channel are shown in dot-dashed black curves for ↵D = 0.3, 0.4, 0.5 (bottom-up). The brown region is
excluded by CDMSlite [37] and LUX [38]. The region mV . 30 MeV is ruled out by the XENON10 electron recoil analysis [39]
for ↵D = 0.3.

beams, the most important production channel is from
the quark-anti-quark fusion, qq̄ ! ⌥D. Generalizing cal-
culations of [42], the production cross section is given by

�pp(n)!⌥D
=

4⇡2↵22
D

s

X

q

Q2
q

Z 1

⌧

dx

x

⇥
h
fq/p(x)fq̄/p(n)

⇣⌧
x

⌘
+ fq̄/p(x)fq/p(n)

⇣⌧
x

⌘i
, (10)

where ⌧ = m2
V /s, fq/p(n) and fq̄/p(n) are the relevant

structure functions for this process, and Qq is the quark
charge in units of e. Unlike B-factories, only muonic de-
cays of dark bound states, such as ⌥D ! 3V ! 3(µ+µ�),
constitute a useful signature, as backgrounds in other
channels are likely to be too large. The multi-dark pho-
ton FSR channels can also be relevant for the proton
beam experiments.

Among the possible candidates of proton-on-target ex-
periments, we focus our discussion on SeaQuest [43] and
the planned SHiP [44] facilities. Note that only a fixed
target mode of operation, rather than a beam dump
mode that would try to remove prompt muons, is suit-
able for the search of ⌥D. Taking a point in the param-
eter space, m� = 2 GeV, 2 = 10�7, mV = 300 MeV,
↵D = 0.5 and the energy of incoming proton beam
of 400 GeV, we estimate a probability of producing a
⌥D decaying to 3(µ+µ�) for a 1 mm tungsten target,
P = n�` ⇠ 2 ⇥ 10�17. With O(1020) particles on tar-
get, one could potentially expect up to 2⇥ 103 six muon
events. The large multiplicity of signal events gives some
hope that this signal could be extracted from large num-
ber of muons produced per each proton spill. Given the

current uncertainties in estimating the background, we
refrain from showing the potential reach of proton ex-
periments in Fig. 2, noting that in any case, it would
not cover the most interesting region for SIDM, namely
mV < 200 MeV.
Outlook. Among the various probes of dark sectors sug-
gested and conducted in recent years, only a few are
sensitive to both the dark force and dark matter at the
same time. We have pointed out that in case of relatively
strong self-interaction, the presence of dark force greatly
facilitates the discovery of the entire sector, as it leads
to the formation of dark bound states, and causes dark
FSR radiation that decay into multiple charged parti-
cles of the SM. The existing searches at BABAR and Belle
already limit this possibility, and further advance in sen-
sitivity can be made by searching for the missing energy
plus pairs of charged particles.
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Figure 6.2: Constraints on the dark photon parameter space from a re-interpretation
of the BABAR dark Higgsstrahlung searches. The solid purple curve corresponds to
the current BABAR limit for the parameters αD = 0.5, mχ = 3.5 GeV. The figure is
taken from [13].
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As discussed in the introduction, sufficiently strong
dark interaction strength and light dark photon will re-
sult in the formation of dark matter particles (��̄). The
two lowest (1S) bound states, 1S0 (JPC = 0�+) and 3S1

(JPC = 1��), will be called ⌘D and ⌥D, respectively.
The condition for their existence has been determined nu-
merically [26] 2, 1.68mV < ↵Dm�, with ↵D = g2

D/(4⇡).
Their quantum numbers suggest the following production
mechanisms at colliders:

e+e� ! ⌘D+V ; e+e� ! ⌥D+�; p+p ! ⌥D+X (2)

The last process represents the direct production of ⌥D

from qq̄ fusion. All production processes are mediated by
a mixed � � V propagator, as shown in Fig. 1.

FIG. 1. Diagram for ⌘D and ⌥D production and decay at
B-factories.

In order to obtain the rate for the first process in (2),
we calculate the amplitude of e+e� ! ��̄V with �, �̄
having the same four momentum p (with p2 = m2

�), and
apply the projection operator,

⇧⌘ =

s
1

32⇡m3
�

R⌘D
(0)( 6p + m�)�5( 6p � m�) , (3)

to select the ⌘D bound state [28]. We find a leading-order
differential cross section:

d�e+e�!⌘DV

d cos ✓
=

4⇡↵↵2
D2[R⌘D

(0)]2(1 + cos2 ✓)

m�s3/2(s � 4m2
� + m2

V )2
|p|3 , (4)

where ✓ is the angle between ⌘D and the ini-
tial e� in the center-of-mass (CM) frame, and
|p| is the spatial momentum of ⌘D, |p| =p

[s � (2m� + mV )2][s � (2m� � mV )2]/(2
p

s). We
neglect the binding energy for ⌘D, and set m⌘D

' 2m�.
An analytic form for R⌘D

(0), the wave function at
origin, is obtained using the Hulthén potential V (r) =
�↵D�e��r/(1 � e��r) with � = (⇡2/6)mV , which is
known as a good approximation of the Yukawa poten-
tial V (r) = �↵De�mV r/r [29]. In that case, R⌘D

(0) =

(4 � �2a2
0)

1/2a
�3/2
0 , where a0 = 2/(↵Dm�).

The scalar bound state ⌘D dominantly decays into two
dark photons, each subsequently decaying into a pair of

2 It is known that too large ↵D would run to the Landau pole very
quickly at higher scale [27]. Hereafter, we focus on ↵D  0.5,
and work with leading-order results in ↵D.

SM particles via kinetic mixing. These decays are all
prompt for the relevant region of parameter space. The
above decay chain eventually results in the final states
containing six charged tracks, which can be electrons,
muons or pions, depending on the dark photon mass.

We turn to the calculation of ⌥D production via ini-
tial state radiation (Fig. 1). In the ⌥D rest frame, the
non-relativistic expansion can be used, taking the dark
matter field in the form: � = eim�t [⇠, � · p/(2m�)⇠]

T
+

e�im�t [� · p/(2m�)⇣, ⇣]
T , where ⇠, ⇣ are the 2-spinor an-

nihilation (creation) operators for particle (antiparticle).
We use the relation between matrix element and wave
function [30],

h0|⇣†�µ⇠|⌥Di =

r
1

2⇡
R⌥D

(0) "µ
⌥D

, (5)

where "µ
⌥D

is the polarization vector of ⌥D and R⌥D
(0) '

R⌘D
(0) is the radial wave function at origin. Taking into

account the kinetic mixing between dark photon and the
photon, we derive the effective kinetic mixing term be-
tween ⌥D and the photon,

Le↵ = �1

2
DFµ⌫⌥

µ⌫
D , D =

r
↵D

2m3
�

R⌥D
(0) . (6)

In the limit mV ⌧ ↵Dm�, the term D reduces to D =
↵2

D/2. We obtain a differential cross section:

d�e+e�!�⌥D

d cos ✓
' 2⇡↵222

D

s

 
1 � 4m2

�

s

!

⇥
"

8s2(s2 + 16m4
�) sin2 ✓

(s � 4m�)2 (s + 4m2
e � (s � 4m2

e) cos 2✓)
2 � 1

#
, (7)

where ✓ is the the angle between � and the initial e� in
the CM frame. In the denominator, the electron mass
must be retained in order to regularize the ✓ integral, as
for me = 0 the cross section is divergent in the forward
direction [31].

Compared to the e+e� ! ⌘DV process, the e+e� !
�⌥D cross section is suppressed by a factor ↵/↵D, al-
though the latter contains a logarithmic enhancement
from the angular integral. Moreover, the cross-section
e+e� ! ⌘DV contains an additional m2

�/s factor, which
brings additional suppression of lighter dark matter. For
↵D & 0.1 and m� ⇠ p

s, the two processes have similar
cross-sections, and we will combine them to set the limit
on this model.

The ⌥D particle will subsequently decay into three
dark photons. We calculate the differential decay rate
following the approach in Ref. [28] by generalizing it to
the massive dark photon case,

d�(⌥D ! 3V )

dx1dx2
=

2↵3
D [R⌥D

(0)]
2

3⇡m2
�

⇥ 39x8 + 4x6F6 � 16x4F4 + 32x2F2 + 256F0

(x2 � 2x1)2(x2 � 2x2)2(x2 + 2(x1 + x2 � 2))2
,(8)
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Figure 6.3: Diagram for ηD and ΥD production and decay at BABAR . The figure is
taken from [13].

This analysis is searching forΥD production. The e+e− emit an initial state radiation
(ISR) photon to produce a ΥD state. The ΥD then decays into three dark photons,
and these dark photons subsequently decay to lepton or quark-antiquark pairs. In
this analysis, we will only search for A′→ X+X−(X = e, µ, π).

The ΥD production cross-section via initial state radiation is calculated in [13] by
applying a non-relativistic expansion to the dark matter field in the ΥD rest frame,
and using the relation between the matrix element and the wave function [17] to
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derive the effective kinetic mixing term between ΥD and the photon

Le f f = −
1
2
εεDFµνΥ

µν
D , εD =

√
αD

2m3
χ

RΥD (0). (6.2)

When mA′ � αDmχ, the following differential cross section is obtained

dσe+e−→γΥD

d cos θ
≈

2πα2ε2ε2
D

s

(
1 −

4m2
χ

s

)
×

[
8s2(s2 + 16m4

χ) sin2 θ

(s − 4mχ)
2(s + 4m2

e − (s − 4m2
e) cos 2θ)2

− 1

]
,

(6.3)

where θ is the angle between γ and the initial e− in the center-of-mass frame.

TheΥD particle will subsequently decay to three dark photons; the differential decay
rate is calculated by generalizing the approach in [18] to massive dark photon case,

dΓ(ΥD → A′A′A′)
dx1dx2

=
2α3

D[RΥD (0)]
2

3πm2
χ

×
39x8 + 4x6F6 − 16x4F4 + 32x2F2 + 256F0

(x2 − 2x1)2(x2 − 2x2)2(x2 + 2(x1 + x2 − 2))2
,

(6.4)

where x1,2 = E1,2/mχ, x = mA′/mχ, and

F6 = x2
1 + (x1 + x2)(x2 − 2) − 30

F4 = (x2
1 + x1x2 − 2x1)(3x2 − 10) − 10x2(x2 − 2) − 21

F2 = x4
1 + 2x3

1(x2 − 2) + x2
1(x2(3x2 − 22) + 28)+

2x1(x2 − 2)(x2(x2 − 9) + 12) + x2(x2 − 2)(x2(x2 − 2) + 24) + 24

F0 = x4
1 + 2x3

1(x2 − 2) + x2
1(3x2(x2 − 3) + 7)+

x1(x2 − 1)(x2 − 2)(2x2 − 3) + (x2 − 1)2(x2(x2 − 2) + 2).

(6.5)

We assume that the coupling of dark photons to SM fermions is universal and
proportional to their charge. Based on the following constraints,

• B(A′→ hadrons)/B(A′→ l+l−) = σ(e+e− → hadrons)/σ(e+e− → l+l−) = R,

•
∑

l=e,µ,τ

B(A′→ l+l−) + B(A′→ hadrons) = 1,

(6.6)
we obtain the dark photon branching ratios into specific final states, as shown in Fig.
6.4.
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Figure 6.4: Dark photon branching ratios to specific final states as a function of the
dark photon mass. The two peaks around 0.78 GeV and 1.0 GeV for qq̄ correspond
to the ω and φ resonances.

Integrating (6.3) over θ, and combining with (6.4) and the dark photon branching
ratios, we obtain the total cross section of the signal channel e+e− → γΥD,ΥD →

A′A′A′, A′→ X+X−(X = e, µ, π), which is a function of ε and mA′ only.

One complication arises from the dark photon lifetime, which can become suf-
ficiently large to produce displaced decay vertices and affect the mass resolution
and signal efficiency. The partial decay width of the dark photon in the case of
mA′ > 2me is given by Γ ≈ 1

3mA′αε
2, where mA′ is the dark photon mass, α is

the strength of SM electromagnetic interaction, ε is the kinetic mixing strength.
Therefore, dark photon decay length l in the laboratory frame is

l = γvcτ =
p

m2 ·
3~c
αε2 ,

(6.7)

which becomes significant when the kinetic mixing and the dark photon mass are
small. For instance, if mA′ = 10 MeV and ε = 10−4, the flight length of dark photon
is around 0.2 m. The effect of the dark photon flight length becomes non-negligible
above O(100 µm), a few times the resolution of the beam spot location.
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6.3 Dataset and Signal Monte Carlo Simulations
Signal MC events are generated using MadGraph, which calculates matrix elements
from first principles. Our final states consist of three pairs of leptons or pions,
leading to 10 different possibilities. We do not consider the 3π+π− combination, as
this channel has much more background and much lower signal-to-noise ratio than
the other possibilities. These final states can be divided into three categories based
on the number of pion pairs: 0π+π− pair (C0), 1π+π− pair (C1) and 2π+π− pairs
(C2).

We simulate zero-lifetime signalMC events in the range 0 < mΥD ≤ 10 GeV and 0 <
mA′ ≤ 3 GeV. The number of events simulated for each final state is listed in Table
6.1. The dark photon and dark Upsilon mass hypotheses we generated are shown in
Fig. 6.5. The range of dark Upsilon mass is [0.05, 0.15, 0.3, 0.5, 1, 1.5, 2, 2.25,
3, 4, 4.5, 5, 6, 7, 7.5, 8, 9, 10] GeV. The range of dark photon mass is [0.01, 0.02,
0.05, 0.1, 0.2, 0.3, 0.47, 0.5, 0.71, 0.75, 1, 1.42, 1.5, 2, 2.38, 2.5, 2.85, 3] GeV.
The generated events are passed through the detector response simulation based on
GEANT4 [19] and reconstructed using the same software chain as the experimental
data. The dark photons are reconstructed using the prompt reco sequence.

Signal MC events with non-zero lifetimes are also generated using MadGraph and
reconstructed using the same software chain as the experimental data using prompt
reco sequence. The dark photon flight lengths we simulated are [0.1, 1, 10] mm.
The range of dark Upsilon mass is [ 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] GeV. The range
of dark photon mass is [0.02, 0.05, 0.1 , 0.2, 0.5] GeV. This signal MC will be used
to evaluate the impact of dark photon lifetime on the signal efficiencies.

The background is complex due to multiple lepton and pion pairs in the final states
and cannot be simulated accurately by current generators. Instead, we use 5% of
the data (Run3 data) as a background sample to optimize our selection criteria and
validate the fitting procedure. We assume that the signal component is negligible in
the validation data.

6.4 Candidate Reconstruction
We search for the reaction e+e− → γΥD,ΥD → A′A′A′, where the dark photon
subsequently decays into a lepton or pion pair. We conduct our analysis by first
identifying events containing exactly six charged tracks, and we form all possible
combinations of three dark photon candidates. The electrons, muons and pion
pairs are selected from loose PID algorithms (a track may satisfy several PID
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Category Final state Number of events generated
3e+e−

C0
2e+e−1µ+µ− 20400831e+e−2µ+µ−

3µ+µ−
2e+e−1π+π−

C1 2µ+µ−1π+π− 1103956
1e+e−1µ+µ−1π+π−

C2
1e+e−2π+π− 11039561µ+µ−2π+π−

Table 6.1: Number of signal Monte Carlo events generated for each category of final
states.
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Figure 6.5: Monte Carlo-generated ΥD and dark photon masses.

algorithms and be used multiple times with different mass hypotheses). To limit
the combinatoric background, we require the presence of at least two tracks loosely
identified as either electrons or muons, and the maximum mass difference between
the three dark photon candidates must be less than 0.5 GeV. Tighter PID and criteria
are applied at a later stage.

We then perform a kinematic fit with a beam constraint to each reconstructed ΥD

candidate. No energy constraint is applied, to allow for the possibility of initial
state radiation or Bremsstrahlung from electrons. The ISR photon kinematics can
then be inferred, based on the dark photon and ΥD kinematics. For signal events,
the recoil mass should be compatible with the photon hypothesis (∼ 0 GeV), while
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background events produce a wide distribution. The ISR photon can be observed
or not, and this analysis treats both cases simultaneously. If the extrapolated ISR
photon is emitted in the EMC acceptance, a corresponding photon must be found.
Otherwise, only a small amount of extra neutral energy should be seen.

Same-sign A′ candidates are also reconstructed. For our analysis with 6 charged
tracks grouped into 3 neutral dark photon pairs, the same-sign A′ candidates are
obtained by swapping two particles of the same charge with opposite charge in
different pairs. The mass difference between the same-sign candidates tends to
be smaller for background events than signal events. The background is mostly
combinatorics and the same-sign mass difference is distributed more broadly than
signal events, i.e, the probability of having a small same-sign mass difference is
larger for background than signal.

6.5 Event Selection
To further improve the signal purity, we use a multivariate classifier based on the
following variables.

• χ2: The probability of the constrained fit on the ΥD candidate, imposing a
beam constraint to the six tracks. Signal events should have small value, as
they should be compatible with the beam spot and their tracks can form a
common vertex. Background events are spread continuously.

• PIDpass: The particle type (e, µ, π) assigned to each track must be compatible
with the PID requirements described in Table 6.2. We explored several PID
requirements by changing the selectors and the required number of charged
tracks, and choose the ones optimizing the signal significance.

• massdiff : Maximum mass difference between the three dark photon candi-
dates. Given the reconstructed masses of the three dark photons m1

A′,m
2
A′,m

3
A′,

we compute

massdiff = max(
��m1

A′ − m2
A′
�� , ��m2

A′ − m3
A′
�� , ��m1

A′ − m3
A′
��).

Signal events should be peaked around 0, while background events are spread
continuously.

• ISR_costh: The cosine of the polar angle of the reconstructed ISR photon in
the laboratory frame.
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• bestISRPhoton: A categorical feature indicating whether the emitted ISR
photon is found in the calorimeter. Its value can be {−2,−1,0}. Its value
is -2 when the reconstructed ISR photon polar angle is outside the detector
acceptance. Its value is -1 when reconstructed ISR photon polar angle is
within the detector acceptance, but not found in the calorimeter, i.e, there is a
missing energy in this event. Its value is 0 when the reconstructed ISR photon
polar angle is within the detector acceptance and detected by calorimeter.
The ISR photon is considered to be detected if a neutral cluster is found in
the calorimeter with an energy within 10% of that reconstructed from the
ΥD measurement, and the cosine of the angle between the neutral cluster and
reconstructed ISR photon directions smaller than 0.1.

• ISR_mass2: Invariant mass of reconstructed ISR photon m2
ISR = (pe+e− −

pΥD )
2. Signal candidates should be compatible with the photon hypothesis,

peaking around 0, while background candidates span a large range of values.

• E_extra: Sum of neutral clusters in the ECAL, excluding the ISR photon
candidate and Bremsstrahlung photons. Signal events are expected to have
small extra neutral energy, while the background events can have larger values.

• A_helicity: The average helicity angle of three dark photons. The helicity
angle is defined as the angle between the ΥD flight in CM frame and A′ flight
in ΥD rest frame, as illustrated in Fig. 6.6.

• A_angle: The average of angles between the dark photons in theΥD rest frame,
as illustrated in Fig. 6.6.

• A_dihedral: The average dihedral angles between the dark photons. For two
dark photons A′1 → X+1 X−1 and A′2 → X+2 X−2 , the dihedral angle between
A′1 and A′2 is the angle between the planes defined by X+1 X−1 and X+2 X−2 , as
illustrated in Fig. 6.6.

• A_poslepton_helicity: The average helicity angle of the positive lepton for
each dark photon decay, as illustrated in Fig. 6.6.

• A_FlightLen_avg: The average flight length of the "zero-lifetime" dark pho-
tons.

• same_sign_massdiff : For each candidate with three pairs of opposite charged
particles, we construct its same sign candidates by swapping two same par-
ticles with opposite charge in different pairs. If there is only one type of
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particle in final states, i.e, in the form of X+1 X−1 ,X
+
2 X−2 ,X

+
3 X−3 where X indi-

cates symbol of particles (e, µ, π) and integer indicates which dark photon it
decays from, we have 3 × C2

3 = 9 possible same sign candidates:

X+1 X+2 ,X
−
1 X−2 ,X

+
3 X−3

X+1 X+2 ,X
−
1 X−3 ,X

+
3 X−2

X+1 X+2 ,X
−
3 X−2 ,X

+
3 X−1

X+1 X+3 ,X
+
2 X−1 ,X

−
2 X−3

X+1 X+3 ,X
+
2 X−2 ,X

−
1 X−3

X+1 X+3 ,X
+
2 X−3 ,X

−
1 X−2

X+2 X+3 ,X
+
1 X−1 ,X

−
2 X−3

X+2 X+3 ,X
+
1 X−2 ,X

−
1 X−3

X+2 X+3 ,X
+
1 X−3 ,X

−
1 X−2 .

(6.8)

If there are two types of particles in final states, i.e, X+1 X−1 ,X
+
2 X−2 ,Y

+
3 Y−3

where X and Y are different particles from e, µ, π, we have only one possible
candidate:

X+1 X+2 ,X
−
1 X−2 ,Y

+
3 Y−3 .

If there are three types of particles in final states, namely e+e−, µ+µ−, π+π−,
we will consider pions as muons and use the previous rule.
The same sign mass candidate for tracks X1 and X2 is calculated as

pA′ = pX1 + pX2

mA′ = E2
A′ − p

2
A′ .

(6.9)

We choose theminimum same-signmass difference among all possible combi-
nations for a candidate. Themass difference between the same-sign candidates
tends to be smaller for background events than signal events. The background
is mostly combinatorics and the same-sign mass difference is distributed more
broadly than signal events, i.e, the probability of having a small same-sign
mass difference is larger for background than signal.

The distributions of these features for all three categories are shown in Fig. 6.7
and 6.8, in which each entry comes from one candidate. Correlations among these
features are shown in Fig. 6.9. The background candidates are taken fromRun3 data,
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Final state PID Selection Criteria
3e+e− at least 4 tracks pass tight electron PID

and 5 track passes loose electron PID

2e+e−1µ+µ− at least 3 tracks pass loose electron PID
and 1 track passes loose muon PID

1e+e−2µ+µ− at least 1 track passes loose electron PID
and 3 tracks pass loose muon PID

3µ+µ− at least 3 tracks pass tight muon PID
and 5 tracks pass loose muon PID

2e+e−1π+π− at least 3 tracks pass loose electron PID

1e+e−1µ+µ−1π+π− at least 1 track passes tight electron PID
and 1 track passes loose muon PID

2µ+µ−1π+π− at least 3 tracks pass loose muon PID
and 2 tracks pass tight muon PID

1e+e−2π+π− at least 1 track passes tight electron PID
1µ+µ−2π+π− at least 1 track passes loose muon PID

Table 6.2: PID selection rules of different final states.

while the signal candidates are selected from a mixture of MC samples generated at
all different masses.

Machine learning classifier
Using the features described above, our next step is to choose and train machine
learningmodels for signal/background classification. The dataset we use is amixture
of Run3 data as negative (background) sample and signal MC as positive (signal)
sample. We separate the dataset into two disjoint subsets acting as a training dataset
and a validation dataset respectively. Models are first trained using the training
dataset, while hyper-parameters are selected based on the models’ performance on
validation dataset to reduce over-training. We tried both Random Forest (RF) and
Gradient Boosting Decision Tree (GBDT) models, and we found that RF has better
performance, so we use RF in this analysis. The classification probability of RF
models is discrete by construction. For example, a RF classifier containing 100 trees
will have score values separated by increments of 0.01, which is insufficient for our
purpose. In order to obtain a continuous classification probability and determine
the hypothesis testing rejection region, we perform a logistic regression on the RF
output, as shown in Fig. 6.10. Specifically, we train the RF with our training dataset
first. The outcome of each decision tree in the RF indicates which leaf node our
event ends. This information is represented by a binary vector d = [0,0,0, ...,1, ...,0],
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Figure 6.6: Illustration of angle-related physical variables used in the MVA.
A_helicity (upper left), A_angle (upper right), A_dihedral (bottom left), and
A_poslepton_helicity (bottom right).

indicating that the event ended in the ith leaf node. Given a RF with n decision trees,
the binary representation of the full RF is a stack of decision trees’ representations
[d1,d2, ...,dn]. To obtain a continuous score function, we fit a Logistic Regression
function on top of this binary representation of training samples as our classification
model. We denote this model as stacked RF. All of models are trained and validated
using the scikit-learn package.

We trained stacked RF under a different number of assembled decision trees
(n_estimators). Other hyper-parameters such as the criterion (the function to mea-
sure the quality of a split) and the min_samples_split (minimum number of samples
required to split an internal node), are kept as default values, as they are believed
to have been well-tuned. Under the figure of merit defined below, we find that RF
with 60 trees offers stable and close to optimal performance, and we select this
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Figure 6.7: Signal and background density distributions of input variables.



33

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Costh of angle between A’

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty background

signal

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Costh of dihedral angle between A’

0.0

0.2

0.4

0.6

0.8D
en

si
ty background

signal

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Costh of helicity angle of positive lepton

0.0

0.2

0.4

0.6

0.8D
en

si
ty background

signal

0.0 0.1 0.2 0.3 0.4 0.5
Average dark photon flight length (mm)

0

5

10

15

20

D
en

si
ty background

signal

0 1 2 3 4 5
same sign massdiff (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty background

signal

Figure 6.8: Signal and background density distributions of input variables.
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Figure 6.10: Illustration of the stacked Random Forest model. Figure taken from
[20].

configuration.

Selection criteria optimization
The distribution of the classifier outputs is shown in Fig. 6.11 and Fig. 6.12 for
both prompt and displaced dark photon decays. The optimal criteria on the MVA
output (ml_score) is determined by optimizing the average cross-section upper limit
over the whole mass range, assuming every observed event is a signal candidate.
This approach is clearly conservative, but as it can be seen in Fig. 6.11 and 6.12,
the background rises rapidly in the vicinity of the optimal cut, while the signal
efficiency varies smoothly. Minimizing the background level (ideally completely
suppressing it) therefore has a small effect on the signal sensitivity, but greatly
reduces the associated systematic uncertainties and facilitates the determination of
the signal significance as well.

More specifically, we optimize the classifier by minimizing the figure of merit λ̂(n)ε ,
where λ̂(n) is the 90% CL upper limit on the number of signal events given n

observed events in the signal region (assumed to be signal), and ε is the signal
efficiency averaged over the phase space.

We determined n and ε as a function of the classifier cut by fitting the classifier output
distributions, and integrated the density over the cut value. We apply a binned fit to
theml_score histogram of the data events in the range of 0 ≤ ml_score ≤ 8, by fitting
a function of the form f (x) = ea·x2+b·x+c. The fit is performed for each category of
C0, C1 and C2 separately. The fitting results are shown in Fig. 6.13. The dashed
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vertical lines indicates the optimal cuts. The range of 0 ≤ ml_score ≤ 8 ensures
that the fit is completely dominated by background events and still offers a good
estimation of the data. Then, for a given cut c, we estimate the expected number of
observed events by integrating the fitting density over the cuts: n = N ·

∫ +∞
c f (x)dx,

where N is the total number of data events in the corresponding category.
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C2 : Data
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Figure 6.11: The distribution of the classifier scores for each event category for the
data (markers) and signal Monte Carlo (solid lines) samples, for the prompt dark
photon decays. The MC simulations are arbitrarily normalized.

Best candidate selection
The best candidate selection aims to assign each event with one single best matching
candidate. If multiple candidates pass the MVA selection for one event, the best
candidate is selected based on its final state, according to the following sequence of
hypotheses:

6e,4e2µ,2e4µ,6µ,4e2π,2e2µ2π,4µ2π,2e4π,2µ4π.

The sequence of hypotheses is ordered according to the purity of the final states to
minimize mis-identification among channels.
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Figure 6.12: The distribution of the classifier scores for data (markers) and signal
MC simulations (solid lines) for dark photon lifetimes corresponding to (top) cτA′ =

0.1mm, (middle) cτA′ = 1mm, and (bottom) cτA′ = 10mm. The MC simulations
are arbitrarily normalized.

Event selection results
For signal with prompt decays, a total of 69 events pass all the selection criteria. The
corresponding (mΥD,mA′) distribution is shown in Fig. 6.14. Most events correspond
to e+e− → qq̄ process. The events near mΥD ∼ 0.1 GeV and mA′ ∼ 0.05 GeV arise
from e+e− → γγγ events in which all three photons convert to e+e− pairs.

For signal with displaced decays, a total of 56, 33, and 31 events are selected for the
cτA′ = 0.1, 1, and 10 mm data sample, respectively. The resulting mass distributions
are shown in Fig. 6.15.

6.6 Signal Modeling and Efficiency
Mass resolution
The A′ andΥD mass resolutions are used for both determining the size of a given scan
box, as well as calculating the scan step size. The mass resolutions are estimated by
fitting the A′ (ΥD) mass distributions with Crystal Ball functions (CBF) for each MC
sample. One example of the fits is shown in Fig. 6.16, in which we fit the ΥD and
dark photon mass spectrum at mΥD = 8 GeV, mA′ = 0.5 GeV. The CBF captures the
energy loss in low tails and gives a better estimation of the (∆mΥ ,∆mA′

) resolution
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Figure 6.13: Fits to the classification score distributions of data with a function of
the form p(x) = ea·x2+b·x+c, for C0 (upper), C1 (middle), and C2 (bottom) category
of events.
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tion criteria for the datasets optimized for each dark photon lifetime.
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than a simple Gaussian fit. While the fits are not perfect, they are sufficient for the
purpose of estimating the mass resolution.

To evaluate the mass resolution as a function of (mΥD,mA′), we interpolate the results
at known points using a 2-dimensional smooth spline. Smooth spline function aims
to fit a polynomial function on data and guarantees the smoothness of the function at
the same time. To minimize the fitting uncertainties, we fit each category of events
individually. The results are shown in Fig. 6.17. TheΥD mass resolutions are at the
level of 20 MeV. The dark photon mass resolutions are at the level of 3 MeV.

Signal efficiency
The signal efficiency is evaluated by counting the fraction of simulated events
passing the selection criteria in the signal window at a given point, normalized to
the total number of generated events. The size of the signal window is given by the
mass resolutions at that point, namely 4∆mΥ and 4∆mA′

.

To evaluate the signal efficiency as a function of (mΥD,mA′), we also use a 2-
dimensional smooth spline technique for interpolation, fitting each category sepa-
rately. The degrees of the polynomial functions used for interpolation are increased
until the model is stable. The results of the signal acceptance, selection efficiency,
and signal efficiency are shown in Fig. 6.18.

The signal acceptance is low when mΥD and mA′ are low, which stops us from
improving the signal efficiency in the low mass region. The MVA prefers to select
events in the range of 6 GeV ≤ mΥD ≤ 9 GeV, thus the selection efficiencies are
higher in this region.

For each signal window, the signal efficiencies from C0,C1, and C2 are weighted by
branching fractions to obtain the total signal efficiency of the signal window. The
total signal efficiency is then used for signal extraction. The result is shown in Fig.
6.19. The two horizontal bands around mA′ = 0.78 GeV and 1.0 GeV correspond
to the ω and φ resonances. The drop in the branching fraction A′ → X+X−,X =

e, µ, π at mA′ = 0.78 GeV and 1.0 GeV is due to the A′ decaying predominantly into
π+π−π0 and K+K−, respectively.

Lifetime dependency

The signal efficiencies depend on the dark photon lifetime. When the dark photons
have non-zero lifetime, the χ2 fit of assuming prompt decay becomes larger and the
mass resolution worse. The larger the dark photon lifetime, the smaller the signal
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Figure 6.16: Example of CBF fits to theΥD and A′ mass spectrum (mΥD = 8.0 GeV
and mA′ = 0.5 GeV).
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Figure 6.17: (Left) TheΥD and (right) the dark photon mass resolution as a function
of mΥD and mA′ for each category of events.

efficiency. We generate and reconstruct the signal MC with non-zero lifetime to
estimate and interpolate the impact of lifetime on the signal efficiencies. We use
the functional form log(ε) = a · log(l) + b to fit the relation between the average
signal efficiencies (ε) and the dark photon lifetime (l). We checked that the results
obtained for eachmass hypothesis are compatiblewith those obtained by considering
the average efficiency, but the later are more robust and were chosen to describe
the global dependence on the lifetime. For a given mass hypothesis (mΥD,mA′) with
prompt signal efficiency ε0, the relation between the signal efficiency and the dark
photon lifetime under the mass hypothesis is reasonably described by:

log(ε) = a · (log(l) − log(l0)) + log(ε0), (6.10)
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Figure 6.18: The acceptance, selection efficiency, and signal efficiency as a function
of mΥD and mA′ for each category of events.

with l0 = 0.1 mm, and ε0 the efficiency for prompt decays. For a dark photon flight
lengths above 100 µm, this interpolated relation will be used to correct the signal
efficiency and establish the kinetic mixing strength upper limit. When the dark
photon flight length is below 100 µm, we use the efficiency determined for prompt
decays, as the displaced decay vertices of the dark photon have negligible effect on
the signal efficiencies.

6.7 Systematic Uncertainties
The following source of systematic uncertainties are considered:

• EfficiencyMC statistics (σεstat ): The uncertainties on the efficiency estimation
due to the limitedMonteCarlo simulation are taken as a systematic uncertainty.
Our estimate of signal efficiency is ε̂ =

∑N
i=1 xi
N , where xi ∼ Bernoulli(ε)

indicates whether the ith event is selected as signal, and it follows a Bernoulli
distribution with a true signal efficiency ε probability of taking 1. Therefore,
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Figure 6.19: Signal efficiency (including the branching fractions) as a function
of mΥD and mA′. The two horizontal bands around mA′ = 0.78 GeV and 1.0 GeV
correspond to the ω and φ resonances.

the statistical uncertainty of the signal efficiency estimate is σε̂ =
√

ε̂(1−ε̂)
N ,

where ε̂ is the estimated signal efficiency and N is the number of simulated
events.

• Efficiency Interpolation (σεint ): This is the uncertainty due to the interpola-
tion of the signal efficiency, as a function of mΥD and mA′. For each M.C.
sample, we have both an estimated signal efficiency (εest) and a predicted
signal efficiency (εeval). The former was obtained by counting the fraction
of simulation events passing the classifiers and within our scanning windows,
while the latter is the output of smooth spline functions obtained by removing
this M.C. point and refitting the spline interpolation. The interpolation uncer-
tainty at this point is defined as |εest − εeval |/εest . To evaluate the interpolation
uncertainty of any point, we fit a smooth spline function on the interpolation
uncertainties for each category of events. The average interpolation uncer-
tainty is within the scale of 8%, which indicates that the spline functions
provide a good interpolation.
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• PID: A systematic efficiency uncertainty of 2% per muon, 2% per pion, and
1% per electron is used. The PID uncertainty is added linearly for each final
state, and we average the PID uncertainties within each category of events,
assuming each final state within category occurs with equal probability. The
final uncertainty is 9% for C0, 10% for C1 and 11% for C2.

• Luminosity: The uncertainty on the luminosity for Run 1-6 is taken to be
0.5%, following the result from BAD 2186. A systematic of 1.2% is taken for
the fraction of Run7 data missing B-counting information. The luminosity
weighted uncertainty is 0.6%.

• Tracking efficiency: The systematic uncertainty is taken to be 0.2% per track,
determined from various control sample, added linearly for the 6 tracks.

• Branching fraction: This fraction of uncertainties come from uncertainties
of photon decay to X+X−,X = e, µ, π. The uncertainty on the measurement
of the ratio R [21] is propagated to the product of branching fraction. This
uncertainty is mostly at the level of 1% for all category of events.

All systematic uncertainties listed above are summed in quadrature to obtain the
total systematic uncertainty for each category. We also combine the systematic
uncertainties from each of the categories together. The correlations arising from
the uncertainties on the PID and branching fractions are taken into consideration in
the combination process. The combined total systematic uncertainties are shown in
Fig. 6.20. The average scale of the systematic uncertainties is ∼ 11%; the main
contributor is the PID uncertainty.

There is a horizontal band around 0.7 GeV ≤ mA′ ≤ 0.85 GeV that corresponds to
the regionwhere the A′→ π+π− branching fraction is higher. This band results from
the higher C2 category of branching fractions in the region. Without considering
the correlation among the three categories, the relation between combined relative
uncertainty (σrel

comb) and each category’s relative systematic uncertainty (σrel
i , i =

C0,C1,C2) is:

(σrelative
comb )2 =

∑
(σrelative

i )2 · wi

wi =
(BFi · εi)

2

(
∑
i

BFi · εi)2
.
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Figure 6.20: The total systematic uncertainties as a function of mΥD and mA′ for
combined systematic uncertainties.

6.8 Signal Significance Estimation
This section discusses the procedure to estimate the significance of a potential signal.
There are three steps to accomplish this:

1. Sideband Dataset: Construct a sideband dataset to estimate the background
characteristics, since no events were selected in the optimization sample.

2. Distribution Structure: Use the sideband dataset to study the background dis-
tribution as a function of (mΥD,mA′) and establish the background estimation
procedure.

3. Signal significance: Determine the distribution of the number of observed
signal events under the null hypothesis.

Sideband dataset
To obtain the distribution of background events in a signal region, we would need to
study background events selected by our classifiers, which is infeasible for two rea-
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sons. First, there are no generators to simulate the relevant backgrounds accurately.
Second, no events are selected in the optimization sample.

Instead, we construct a sideband dataset to solve this challenge. Given our classifier
with an optimal selection criteria optimal_cut on the classifier score, our sideband
region is defined as [optimal_cut − δ,optimal_cut], where δ is a parameter we
set. If δ is too small, we won’t have enough statistics, while the sideband dataset
may be too biased if δ is too large. Our method is to select δ such that each
sideband contains at least 500 events for each category of events, while making sure
that δ is no smaller than the prediction uncertainty of each classifier, which is the
standard deviation of optimal_cut estimated via bootstrapping. Run3 data events
falling into the sideband regions constitute the sideband datasets. We claim that
sideband datasets are a good approximation of the background distribution in the
signal region. Fig. 6.21 illustrates the sideband region for the C2 category of events.

Figure 6.21: Distribution of the ml_score for the C2 category for data. The sideband
region is shown as a red rectangle. The optimal cut on the classifier score is shown
as a solid line. The width of signal region is the δ we set to contain at least 500
events.

Background structure
To understand the distribution of background events in the signal region, we plot
the distributions of sideband events on mΥD − mA′ space, shown in Fig. 6.22. The
dimuon and dipion thresholds are indicated by horizontal lines. For the C0 and C1

category of events, the distribution of sideband events are uniform. There is also a
small band for photon conversions in the C0 sample. For the C2 category of events,
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the distribution of sideband events is also uniform, but there is a one-dimensional
band when the dark photon mass is in the range of 0.7-0.8 GeV, corresponding to
the ρ meson.

The distributions of sideband events provide a prescription on how to estimate the
number of background events in the scanning windows. Under the assumption that
the background distributions in the signal region are smooth, a nearest-neighbor
method can be applied to estimate the number of background events. Specifically,
the estimated number of background events B within a scanning window is obtained
by calculating the average number of observed events of its nearest left and right
scanning windows, as illustrated in Fig. 6.23. We do not take up and down windows
due to the horizontal band structure in the background distribution. If the scanning
window is at the left (right) boundary of mΥD − mA′ space, we only use the nearest
right (left) scanning window for estimation. When the scanning window is above
dimuon threshold, the uniformity of the background guarantees the unbiasedness
of the estimated number of background events. Using the left and right windows
also works when we scan over the one-dimensional band produced by ρ or ω meson
decays. When the scanning window is under the dimuon threshold, it is still a good
estimation as long as background distribution is smooth along the ΥD axis.

Signal significance
Generally, three factors are needed to estimate the signal significance: (1) Hypothe-
ses: our null hypothesis (H0) is that there is no darkonium signal. (2) Statistic:
a test statistic that has discrimination between the null hypothesis (no signal) and
alternative hypothesis (have signal). The statistic we use is the maximum number
of observed signal events Nmax

sig among all signal windows. For each signal window,
the number of observed signal events equals the number of observed events minus
the estimated background: Nsig = Nobs − B. (3) Distribution of statistic: we use
a bootstrapping technique to estimate the distribution of Nmax

sig . The distribution
of Nmax

sig will be used to calculate the signal significance (p-value) of the observed
signal events in the final data.

There are two steps to obtain the distribution of Nmax
sig . First, we estimate the expected

number of background events based on the optimal expected number of observed
events on data. The second step estimates the Nmax

sig distribution with a bootstrap
procedure (i.e, Toy MC). For each category Ci, we sample a number of events Ni

from a Poisson distribution. We then bootstrap Ni events from the sideband dataset,
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Figure 6.22: The distributions of sideband events for the (upper) C0, (middle) C1,
and (bottom) C2 categories of events.
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Figure 6.23: Illustration of the background estimate method for a given mass hy-
pothesis in the mΥD −mA′ space. The dataset displayed here is sideband data for C0
category of events.

and run our scanning procedure on the mΥD − mA′ space. Since all categories are
summed together when establishing scanning windows, a single scan is necessary
here. The maximum number of events among all signal windows gives one entry of
the Nmax

sig distribution. We run 10,000 bootstraps to obtain the distribution of Nmax
sig

shown in Fig. 6.24.
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Figure 6.24: The distribution of themaximumnumber of signal events after scanning
the parameter space 0 < mΥD < 10 GeV, 0 < mA′ < 3 GeV.

6.9 Signal Extraction and Upper Limit of Coupling
In this section, we first describe the procedure to extract the potential signal, then
the results of upper limit of the coupling constant we obtain from data.

Signal extraction
We first combine the three categories (C0,C1,C2) together before scanning for the
signals: (1) The combined ΥD and dark photon mass resolutions are taken as the
maximum mass resolutions of three categories:

σmΥD
= max{σmΥD

(C0), σmΥD
(C1), σmΥD

(C2)}

σmA′
= max{σmA′

(C0), σmA′
(C1), σmA′

(C2)}.

(2) The signal efficiencies are combined as the average of a categories’ signal
efficiencies weighted by their branching fractions ε̄ = BF(C0) · εC0 + BF(C1) · εC1 +

BF(C2) · εC2 . (3) The systematic uncertainties from three categories are combined.

The signal is extracted by scanning the ΥD mass versus the dark photon mass
plane. As mentioned above, the signal region is defined as a rectangular window
mΥD − 4σmΥD

< mΥD < mΥD + 4σmΥD
and mA′ − 4σmA′

< mA′ < mA′ + 4σmA′
for a
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given ΥD and photon mass (mΥD,mA′). An estimate of the background is obtained
from the nearest left and right signal windows. The signal significance is obtained
from the distribution of the maximum number of signal events derived from the
bootstrap procedure (Fig. 6.24). We do not see a clear signal; therefore upper limits
on the signal cross section are extracted, as described below.

Suppose for a certain scanning window, we observe ni events passing the selection
criteria for each category Ci (i = 0,1,2). The combined signal efficiency is ε̄ . The
estimated number of background events is B̂. The combined systematic uncertainty
is σtot . We assume the total number of observed events n =

∑
i=0,1,2 ni follows a

Poisson distribution with parameter λ = Lσε + B, where L is luminosity, σ is
cross section of dark Upsilon decaying to three dark photons, ε is unknown true
signal efficiency, and B is unknown true number of background. We also assume
that the evaluated signal efficiency ε̄ follows a Gaussian distribution whose mean
value is the true signal efficiency ε and the standard deviation is the estimated total
systematic uncertainty σ2

tot . The likelihood for this scanning window is:

L(n|λ = Lσε + B) = Poisson(n|λ) · N(ε̄ |ε,σ2
tot) · Poisson(B̂ |B).

There are two nuisance parameters in the likelihood, ε and B. We apply a profile
likelihood method to obtain a 90% confidence level limit on the cross section. For a
likelihood L with parameters (θ,ψ), where θ are the nuisance parameters and ψ are
the parameters of interest, the profile likelihood method takes two steps to optimize
the L: For each ψ, we have a curve Lψ(λ) over λ. We first evaluate the maximal L

over λ, then we choose the ψ that is maximum over all these curves.

To take the signal lifetime into consideration, we apply an iterative algorithm to find
the converged signal efficiency and converged upper limits. We use Equation 6.7 to
compute the theoretical dark photon lifetime and Equation 6.10 to correct the signal
efficiencies. The detailed algorithm is described in Table 6.3.

Results
We do not observe a significant signal of dark matter bound state ΥD. The 90%
CL results on cross sections for both prompt and displaced signal decays are shown
in Fig. 6.25 and 6.26. We derive separate limits for αD values set to 0.1, 0.3, 0.5,
0.7, 0.9, and 1.1. Constraints for different values of αD, mA′, and mΥD are shown
in Fig. 6.27. The results compared with previous search are shown in Fig. 6.28 for
different αD. Bounds on the mixing strength ε down to 5 × 10−5 − 10−3 are set for
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Algorithm to derive the limit when the lifetime is non-zero
Step 0: Compute the zero-lifetime kinetic mixing strength upper limit (ε) using
profile likelihood method.
Step 1: Calculate the corresponding dark photon lifetime (l) using Equation 6.7. If
the lifetime is smaller than 10 um, go to Step 5; otherwise go to Step 2.
Step 2: Update the signal efficiency under the dark photon lifetime l using Equation
6.10.
Step 3: Update the corresponding mixing strength upper limit ε using the updated
signal efficiency.
Step 4: Repeat Step 1 until the procedure has converged.
Step 5: Return the converged signal efficiency, the cross-section upper limit and the
mixing strength upper limit.

Table 6.3: Algorithm to find converged signal efficiency, cross-section upper limits,
and kinetic mixing strength upper limits.

a wide range of dark photon mass from MeV to few GeV. Compared with previous
search, our analysis shows that the constraints on γ − A′ coupling strength can be
improved by a large fraction of parameter space and can be more than one order of
magnitude for 40 MeV ≤ mA′ ≤ 200 MeV with strong electromagnetic interaction
in the dark sector, demonstrating the dark matter bound state as a sensitive probe of
dark matter.

Figure 6.25: The 90% CL upper limits on the e+e− → γΥD cross section for prompt
dark photon decays.
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Figure 6.26: The 90% CL upper limits on the e+e− → γΥD cross section for dark
photon lifetimes corresponding to (top left) cτA′ = 0.1 mm, (top right) cτA′ = 1
mm, and (bottom) cτA′ = 10 mm.

6.10 Summary and Outlook
In summary, we explore the sensitivity of collider probes on dark sector searches
with the existence of dark sector structures. Dark matter bound states could exist
under a simple dark photon model when the dark photon is light enough to generate
an attractive force between dark fermions. We report the first search for a dark sector
bound state decaying into three dark photons in the range 0.001 GeV < mA′ < 3.16
GeV and 0.05 GeV < mΥD < 9.5 GeV. We do not observe significant signals. The
limits on the γ − A′ kinetic mixing ε are derived at the level of 5 × 10−5 − 10−3,
depending on the values of the model parameters. These measurements improve
upon existing constraints over a significant fraction of dark photon masses below 1
GeV for large values of the dark sector coupling constant.

In the future, the search for ηD bound state can also be also included. With the
current experiment data, the upper limits on the cross section (in the absence of a
signal) could be improved by around a factor of 2, leading to an improvement on
the constraints on the kinetic mixing strength by about a factor of

√
2. With 50 ab−1

luminosity collected by future B factory experiments (Belle II), the limits on the
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Figure 6.27: The 90% CL upper limits on the kinetic mixing ε2 as a function of the
ΥD mass, mΥD , and dark photon mass, mA′, assuming (top left) αD = 0.1, (top right)
αD = 0.3, (middle left) αD = 0.5, (middle right) αD = 0.7, (bottom left) αD = 0.9,
and (bottom right) αD = 1.1.

kinematic mixing strength can potentially reduce by at least one order of magnitude.
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Figure 6.28: The 90% CL upper limits on the kinetic mixing ε for (top) various ΥD
masses assuming αD = 0.5 and (bottom) various αD values assuming mΥD = 9 GeV
together with current constraints (gray area).
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C h a p t e r 7

MEASUREMENT OF R(D) AND R(D∗) USING SEMILEPTONIC
TAGGING AND LEPTONIC τ DECAYS

7.1 Introduction
The excess of semitauonic decays B→ D(∗)τν have been one of the most interesting
puzzles in flavor physics in recent years [22]. The physical quantity to measure is
the ratio between B→ D(∗)τν and B→ D(∗)lν:

R(D(∗)) =
B(B→ D(∗)τ−ντ)
B(B→ D(∗)l−νl)

(l = e, µ)

Figure 7.1: Feynman diagram of B→ D(∗)τν decay.

In the StandardModel, B→ D(∗)τν decay involves the semileptonic quark transition
b→ cl ν̄ with l = e, µ, τ. The Feynman diagram is shown in Fig. 7.1. The b quark
in the B meson decays to c quark via first-order electroweak interactions, and the
mediator, a W boson, decays into pair of leptons l ν̄. The other quark q̄ in the B

meson binds with the c quark in the final state to form a D(∗) meson. The Lagrangian
of the system is

L =
GF
√

2
|Vcb |J

+µ
νl Jcb,µ + h.c.,

which involves the quark currents Jµcb = ψ̄cγ
µ(1 − γ5)ψb and the leptonic currents

Jµ
νl = ψ̄νγ

µ(1 − γ5)ψl . The amplitudes of this scattering process are:

M
λl
λM
(q2, x) =

GF
√

2
Vcb

∑
λW

ηλW LλlλW HλM
λW
,

where λ is the particle helicities, M = D,D∗ indicates the final state meson. The
leptonic amplitudes LλlλW can be analytically calculated with the standard framework
of electroweak interactions [23]. Although the analytical calculation of hadronic
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amplitudes is intractable because of complex interactions between quarks and the
self-interactions of the gluons, they can be expressed in terms of six functions,
or the form factors depending only on q2: f±(q2) and fi(q2), i = 1,2,3,4, where
q = pB − pD(∗) is the four-momentum of the virtual W . One model to form factors
is the Caprini-Lellouch-Neubert (CLN) model [24], which introduces dispersive
constraints from heavy quark symmetry to provide relations between the form factors
near zero recoil. The SM predictions for R(D(∗)) are:

R(D)SM = 0.299 ± 0.003,

R(D∗)SM = 0.254 ± 0.005.

The uncertainties on R(D(∗))SM come from the uncertainties of the form factor
parameters.

If new particles couple proportionally with their masses, B → D(∗)τν are sensitive
probes for non-SM contributions due to the heavy τ mass. The individual decay
modes will suffer from large hadronic uncertainties related to the form factors and
the Cabibbo-Kobayashi-Maskawa (CKM) elements. Normalizing the B → D(∗)τν

to the corresponding decay with light leptons provides better sensitivity to new
physics (NP).

Since the energy scale of NP should be far above the scale of B meson, we can inte-
grate out higher degrees of freedom and form the following effective Hamiltonian:

Heff = Ccb
SMOcb

SM + Ccb
R Ocb

R + Ccb
L Ocb

L ,

where
Ocb

SM = q̄γµPLbτ̄γµPLντ

Ocb
R = q̄PRbτ̄PLντ

Ocb
L = q̄PLbτ̄PLντ .

The first term is the SM charged current. The second and third terms are the four-
fermion operators allowed by Lorentz invariance [25]. The SM Wilson coefficient
Ccb

SM =
4GFVcb√

2
. The corresponding Wilson coefficients Ccb

R and Ccb
L affect the

observables in the following way:

R(D) = RSM(D)
©­«1 + 1.5R

[
Ccb

R + Ccb
L

Ccb
SM

]
+ 1.0

�����Ccb
R + Ccb

L

Ccb
SM

�����2ª®¬
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R(D∗) = RSM(D∗)
©­«1 + 0.12R

[
Ccb

R − Ccb
L

Ccb
SM

]
− 0.05

�����Ccb
R − Ccb

L

Ccb
SM

�����2ª®¬ .
Therefore, any deviation between the SM prediction and observed value of R(D(∗))

may imply existence of NP, including

• Supersymmetry: In the Minimal Supersymmetric Standard Model (MSSM),
a charged Higgs boson which couples proportionally to the masses of the
fermions is introduced. The Higgs only couples significantly to τ, so that
it contributes to the deviation between SM prediction and observed value of
measured quantity.

• Lepton flavor universality (LU) violation: The b→ clν transition is a Flavor-
Changing Charged Current (FCCC) test. If LU is violated, the Wilson coeffi-
cients would be different for the operators with the same structure but different
lepton flavors, contributing additional term to R(D(∗)).

The first measurement of R(D(∗)) were at BABAR in 2008 [26], and the first observa-
tion of an excess was on 2012 [27]. The measurements use hadronic tags to fully
reconstruct B mesons and leptonic τ decays. The measured value has a 3.4σ devi-
ation from SM predictions. Since then, many other experiments have contributed
their measurements to the quantity of interest [28, 29, 30]. As of 2019, the R(D) and
R(D∗) exceeds the SM prediction by 1.4σ and 2.5σ respectively. Considering the
R(D)−R(D∗)) correlation of -0.38, The difference with the SM predictions reported
above, corresponds to about 3.08σ. Fig. 7.2 and Table 7.1 show a summary of
previous measurements of this quantity.

The goal of this BABAR analysis is to provide another measurement of this quantity
using, for the first time, a semileptonic tagging method.
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Figure 7.2: Visualization of previous measurements of R(D) and R(D∗). The plot
is from HFLAV [22].

R(D) R(D∗)
BABAR 2013 [23] 0.440 ± 0.058 ± 0.042 0.332 ± 0.024 ± 0.018
Belle 2015 [28] 0.375 ± 0.064 ± 0.026 0.293 ± 0.038 ± 0.015
LHCb 2015 [29] - 0.336 ± 0.027 ± 0.03
Belle 2016 [31] - 0.302 ± 0.030 ± 0.011
Belle 2017 [32] - 0.270 ± 0.035+0.028

−0.025
LHCb 2018 [33] - 0.291 ± 0.019 ± 0.029
Belle 2019 [30] 0.307 ± 0.037 ± 0.016 0.283 ± 0.018 ± 0.014
Average (HFLAV Summer 2018) 0.340 ± 0.027 ± 0.013 0.295 ± 0.011 ± 0.008
Standard Model [22] 0.299 ± 0.003 0.258 ± 0.005

Table 7.1: Previous results.

7.2 Analysis Strategy Overview
Event types definition
For the BB̄ system, the signal events are defined as Btag → D(∗)lν,Bsig → D(∗)τν.
On the tag B side, the B meson decays to D(∗)lν, where l = e, µ. On the signal
B side, the B meson decays to D(∗)τν, and the τ subsequently decays to leptons.
We have two types of signal events, based on whether there is a D or D∗ meson.
The normalization events are defined as events with both the tag side B meson and
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signal side B meson decaying to D(∗)lν. One of the most important category of
backgrounds arises from a B→ D∗∗lν events where D∗∗ denotes the excited charm
meson states heavier than D∗ because of the similar decay topology to signal events.
Two other sources of background are combinatorial BB̄ events and continuumevents.
The definition of these events is listed in Table 7.2.

Event type Description

Signal event signal D One B decays to D(∗)lν, the other B decays to Dτν, τ → leptons
signal D∗ One B decays to D(∗)lν, the other B decays to D∗τν, τ → leptons

Normalization event norm D One B decays to D(∗)lν, the other B decays to Dlν
norm D∗ Both B decay to D∗lν

D∗∗ event

At least one B decays to D∗∗(l/τ)ν, where D∗∗ denotes any excited charmed
meson states that are not in the ground state 1S doublet. In this analysis,
it includes 1P states D∗0,D1,D′1,D

∗
2, and 2S states. We also allow

non-resonant final states consisting of a D(∗) and one pion.
Combinatorial BB̄ event Any BB̄ events that are not signal and not normalization and not D∗∗.

Continuum event Non-BB̄ events produced in the detector

Table 7.2: Definition of event types in the BB̄ system.

Reconstruction
The first step of this analysis is to identify primitive particles (e.g, e, µ, π±,K, γ),
and reconstruct composite particles (e.g, π0, KS, D(∗), B) by applying a series of
selection criteria. When we reconstruct signal events, we first reconstruct a Btag,
then search for D(∗)l in the remaining tracks and calorimeter clusters. The signal
events can be categorized into four disjoint subsets based on the reconstructed type of
D meson: D+l,D0l,D∗+l,D∗0l. We denote these as channel_labels for convenience.
The details of the reconstruction and selection criteria are described in Section 7.4.

Estimate of R(D(∗))

To measure R(D(∗)), let us denote

P := B(B→ Dτν)

P∗ := B(B→ D∗τν)

Q := B(B→ Dlν)(average for l = e or µ)

Q∗ := B(B→ D∗lν)(average for l = e or µ).

(7.1)

Therefore, R(D) = P
Q and R(D∗) = P∗

Q∗ . If we denote the number of generated
BB̄ event as N , the relationship between the B decay branching fractions and the
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expected number of signal events generated in the detector would be

N(signal D) = 2N · (2Q + 2Q∗) · P · B(τ → leptons)

N(signal D∗) = 2N · (2Q + 2Q∗) · P∗ · B(τ → leptons)

N(norm D) = 4N · (Q2 + 2QQ∗)

N(norm D∗) = 4N · Q∗2.

(7.2)

Given the estimated number of generated signal events N̂(signal D) and N̂(signal D∗)

and normalization events N̂(norm D) and N̂(norm D∗), the estimated P(∗) can be
derived from Equation (7.2):

P̂ =
N̂(signal D)

2
√

N · B(τ → leptons) ·
√

N̂(norm D) + N̂(norm D∗)

P̂∗ =
N̂(signal D∗)

2
√

N · B(τ → leptons) ·
√

N̂(norm D) + N̂(norm D∗)

Q̂ =

√
N̂(norm D) + N̂(norm D∗) −

√
N̂(norm D∗)

√
4N

Q̂∗ =

√
N̂(norm D∗)

4N
.

(7.3)

Therefore, the estimated R(D(∗)), as functions of the estimated number of generated
events N̂(signal D) and N̂(signal D∗), would be

R(D) =
1

2B(τ → leptons)
·

N̂(signal D)√
N̂(norm D) + N̂(norm D∗) ·

(√
N̂(norm D) + N̂(norm D∗) −

√
N̂(norm D∗)

)
R(D∗) =

1
2B(τ → leptons)

·

N̂(signal D∗)√
N̂(norm D) + N̂(norm D∗) ·

√
N̂(norm D∗)

.

(7.4)

The branching fraction of τ decays to leptons is taken to be [34]

B(τ → leptons) = B(τ → eν̄eντ) + B(τ → µν̄µντ)

= (35.24 ± 0.05)%
(7.5)

N̂(signal D), N̂(signal D∗), N̂(norm D), and N̂(norm D∗) can be estimated as the
extracted yields divided by the corresponding efficiencies.
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7.3 Simulation Samples
The simulated data includes generic MC, signal MC, as well as normalization MC
events.

The generic MC aims to represent the data collected in the detector by faithfully
generating the possible results of the e+e− collisions. The generic MC includes two
types of events: BB̄ events and continuum events. BB̄ events emulate both charged
and neutral BB̄ meson pairs produced from Υ(4S). Continuum sample simulates
e+e− → qq̄. Other constributions (QED, two-photon processes) are negligible. The
weighted collection of these types of events gives our best reproduction of what an
on-peak collider run produces. To weight the generic MC, we need to consider the
cross section of each type of event by the following formula:

wi = L
σi

Ni
,

where L is the integrated detector data luminosity, σi is the corresponding cross
section for event component i, and Ni is the number of event components i generated.
The cross sections for each event type are listed in Table 7.3. The components of
the generic MC dataset are listed in Table 7.4.

SP Mode Mode type Cross section (pb)
1235 B+B− 525.0
1237 B0B0 525.0
1005 cc 1300.0
998 uds 2090.0

Table 7.3: Cross sections used to convert the sizes generic simulated data to the
equivalent on-peak dataset.

The signal (normalization) MC is generated by forcing every B meson decay in the
signal (normalization) modes. The datasets we use are listed in Table 7.5 and Table
7.6, in which both charged and neutral BB̄ meson pairs are simulated. The signal
(normalization) MC datasets are used in the analysis described later.
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Simulated Dataset Name Mode Type Collisions Generated Multiplier
SP-1235-AllEventsSkim-Run1-R24a1 B+B− 34878000 0.306
SP-1235-AllEventsSkim-Run2-R24a1 B+B− 105561000 0.305
SP-1235-AllEventsSkim-Run3-R24a1 B+B− 56035000 0.303
SP-1235-AllEventsSkim-Run4-R24a1 B+B− 166784000 0.314
SP-1235-AllEventsSkim-Run5-R24a1 B+B− 215168000 0.323
SP-1235-AllEventsSkim-Run6-R24a1 B+B− 130336000 0.316
SP-1237-AllEventsSkim-Run1-R24a1 B0B0 34941000 0.306
SP-1237-AllEventsSkim-Run2-R24a1 B0B0 104188000 0.308
SP-1237-AllEventsSkim-Run3-R24a1 B0B0 57888000 0.292
SP-1237-AllEventsSkim-Run4-R24a1 B0B0 169801000 0.307
SP-1237-AllEventsSkim-Run5-R24a1 B0B0 215953000 0.321
SP-1237-AllEventsSkim-Run6-R24a1 B0B0 135224000 0.304
SP-1005-AllEventsSkim-Run1-R24a1 cc 55254000 0.479
SP-1005-AllEventsSkim-Run2-R24a1 cc 164722000 0.483
SP-1005-AllEventsSkim-Run3-R24a1 cc 88321000 0.475
SP-1005-AllEventsSkim-Run4-R24a1 cc 267308000 0.484
SP-1005-AllEventsSkim-Run5-R24a1 cc 344275000 0.499
SP-1005-AllEventsSkim-Run6-R24a1 cc 208664000 0.488
SP-998-AllEventsSkim-Run1-R24a1 uds 176404000 0.241
SP-998-AllEventsSkim-Run2-R24a1 uds 525504000 0.243
SP-998-AllEventsSkim-Run3-R24a1 uds 276381000 0.244
SP-998-AllEventsSkim-Run4-R24a1 uds 845899000 0.246
SP-998-AllEventsSkim-Run5-R24a1 uds 1110944000 0.249
SP-998-AllEventsSkim-Run6-R24a1 uds 655152000 0.250

Table 7.4: Generic simulated data. Multiplier is the factor by which the size of the
corresponding on-peak dataset exceeds that of the given simulated dataset. More
simulated datasets are usually generated to better study the decay characteristics.

7.4 Event Reconstruction
The event reconstruction procedure includes three steps, all of which are imple-
mented using the BABAR offline analysis framework (version-52).

1. Pre-screening: We use a collection of loose criteria to remove obvious back-
ground events. This step helps reduce the amount of data to analyze.

2. Candidate reconstruction: We then attempt to reconstruct the Btag and Bsig

of signal events from a set of tracks of final state particles. The event recon-
struction is a hierarchical process: we first identify primitive particles (e.g,
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Simulated Dataset Name Mode Type Nevent Collected
SP-11440-Run1-R24 B0 → D(∗)`ν, B0 → Dτ(e, µ)ν

2621000

SP-11440-Run2-R24 B0 → D(∗)`ν, B0 → Dτ(e, µ)ν
SP-11440-Run3-R24 B0 → D(∗)`ν, B0 → Dτ(e, µ)ν
SP-11440-Run4-R24 B0 → D(∗)`ν, B0 → Dτ(e, µ)ν
SP-11440-Run5-R24 B0 → D(∗)`ν, B0 → Dτ(e, µ)ν
SP-11440-Run6-R24 B0 → D(∗)`ν, B0 → Dτ(e, µ)ν
SP-11441-Run1-R24 B0 → D(∗)`ν, B0 → D∗τ(e, µ)ν

2756000

SP-11441-Run2-R24 B0 → D(∗)`ν, B0 → D∗τ(e, µ)ν
SP-11441-Run3-R24 B0 → D(∗)`ν, B0 → D∗τ(e, µ)ν
SP-11441-Run4-R24 B0 → D(∗)`ν, B0 → D∗τ(e, µ)ν
SP-11441-Run5-R24 B0 → D(∗)`ν, B0 → D∗τ(e, µ)ν
SP-11441-Run6-R24 B0 → D(∗)`ν, B0 → D∗τ(e, µ)ν
SP-11442-Run1-R24 B+ → D(∗)`ν, B− → Dτ(e, µ)ν

2789000

SP-11442-Run2-R24 B+ → D(∗)`ν, B− → Dτ(e, µ)ν
SP-11442-Run3-R24 B+ → D(∗)`ν, B− → Dτ(e, µ)ν
SP-11442-Run4-R24 B+ → D(∗)`ν, B− → Dτ(e, µ)ν
SP-11442-Run5-R24 B+ → D(∗)`ν, B− → Dτ(e, µ)ν
SP-11442-Run6-R24 B+ → D(∗)`ν, B− → Dτ(e, µ)ν
SP-11443-Run1-R24 B+ → D(∗)`ν, B− → D∗τ(e, µ)ν

2356000

SP-11443-Run2-R24 B+ → D(∗)`ν, B− → D∗τ(e, µ)ν
SP-11443-Run3-R24 B+ → D(∗)`ν, B− → D∗τ(e, µ)ν
SP-11443-Run4-R24 B+ → D(∗)`ν, B− → D∗τ(e, µ)ν
SP-11443-Run5-R24 B+ → D(∗)`ν, B− → D∗τ(e, µ)ν
SP-11443-Run6-R24 B+ → D(∗)`ν, B− → D∗τ(e, µ)ν

Table 7.5: Simulated signal data.

e, µ, γ), then reconstruct D(∗) and B mesons, and then combine B and B̄ pairs
to reconstruct Υ(4S) candidates.

3. Candidate selection: When multiple candidates are involved in an event after
reconstruction, we select a single best candidate, as defined below.

Pre-screening
The following set of broad selection criteria is first applied to loosely pre-select
signal events. These selection criteria, studied from MC samples, are set to exclude
obvious backgrounds but keep most signal and normalization events.

• Size of ChargedTracks ≤ 14,
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Simulated Dataset Name Mode Type Nevent Collected
SP-11438-Run1-R24 B+ → D(∗)`ν, B− → D(∗)`ν

2443000

SP-11438-Run2-R24 B+ → D(∗)`ν, B− → D(∗)`ν
SP-11438-Run3-R24 B+ → D(∗)`ν, B− → D(∗)`ν
SP-11438-Run4-R24 B+ → D(∗)`ν, B− → D(∗)`ν
SP-11438-Run5-R24 B+ → D(∗)`ν, B− → D(∗)`ν
SP-11438-Run6-R24 B+ → D(∗)`ν, B− → D(∗)`ν
SP-11439-Run1-R24 B0 → D(∗)`ν, B0 → D(∗)`ν

2869000

SP-11439-Run2-R24 B0 → D(∗)`ν, B0 → D(∗)`ν
SP-11439-Run3-R24 B0 → D(∗)`ν, B0 → D(∗)`ν
SP-11439-Run4-R24 B0 → D(∗)`ν, B0 → D(∗)`ν
SP-11439-Run5-R24 B0 → D(∗)`ν, B0 → D(∗)`ν
SP-11439-Run6-R24 B0 → D(∗)`ν, B0 → D(∗)`ν

Table 7.6: Simulated normalization data.

• Size of GoodPhotonsLoose ≤ 10,

• −2 ≤ Qtotal ≤ 2,

• Apply tag filter BGFMultiHadron,

• Apply tag filter TagL3.

Candidate reconstruction
Events passing the pre-screening are then used to reconstruct Btag and Bsig. Initially,
each event is a collection of tracks of final-state particles. To reconstruct the signal
candidates, we first identify final-state particles using built-in Particle Identification
algorithms. The loosest selectors are applied to identify e, µ, π±,K , and γ.

The π0 mesons are then reconstructed from π0 → γγ by combining a pair of
photons, and KS is reconstructed from the KS → π+π− mode. The following are
applied to select light mesons:

• π0: pi0AllDefault and pi0SoftDefaultMass. Using the photon list
above, reconstruct π0 → γγ with the mass of the pion candidate constrained
to be between [0.115,0.15] GeV.

• KS: KsDefault. Reconstruct KS → π+π− using TreeFitter.



68

The D mesons are reconstructed based on the identified final state particles and light
mesons. The D decay modes listed in Table 7.7 are considered in reconstruction,
which sum up to 19.2% and 30.1% of D+ and D0 branching fractions. Other decay
modes are not considered in this analysis due to higher backgrounds.

Decay Modes Branching Fraction (%) Number in Generic MC
D+ → K−π+π+ 9.46 ± 0.24 142202
D+ → KSπ

+ 1.53 ± 0.06 22691
D+ → KSπ

+π0 7.24 ± 0.17 430750
D+ → K−K+π+ 0.99 ± 0.026 62859
D0 → K−π+ 3.88 ± 0.05 158718
D0 → K−π+π0 14.3 ± 0.80 1235214
D0 → K−π+π−π+ 8.06 ± 0.23 646768
D0 → KSπ

+π− 2.85 ± 0.20 641954
D0 → KSπ

0 1.20 ± 0.04 94151
D0 → K−K+ 0.40 ± 0.007 49909

Table 7.7: D meson decay modes used in the analysis.

The mass of D mesons (m(D)) is used to select correctly reconstructed candidates.
Since the mass resolutions vary for different types of D meson decay modes, our
criteria on m(D) are different depending on the D decay modes. The distribution of
m(D) and the criteria is shown in Fig. 7.3.

– D decay without a π0 in the final state: The mass resolution (σmD ) for this
type of D decay modes is around 5 MeV. Therefore, we require m(D) within
[-15, 15] MeV of the nominal mass, which corresponds to ±3σmD .

– D+ decay with a π0 in the final state: The mass resolutions for this type of D

decay modes is around 12 MeV. We require m(D±) within [-36, 24] MeV of
the nominal charged D mass, corresponding to [-3σmD , +2σmD ].

– D0 decay with a π0 in the final state: The mass resolutions for this type of D

decay modes is around 15 MeV. We require m(D±) within [-45, 30] MeV of
the nominal neutral D mass, corresponding to [-3σmD , +2σmD ].
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Figure 7.3: The distributions of reconstructed D meson mass for (upper left) D+

decays without π0, (upper right) D0 decays without π0, (bottom left) D+ decays with
π0, and (bottom right) D0 decays with π0.

The D∗ mesons are reconstructed in three decay modes. Other decay modes are not
considered, due to the high backgrounds. Themass difference between reconstructed
D∗ meson and its daughter D meson (∆M) is used to select well-reconstructed D∗

mesons. The resolution on ∆M is around 2 MeV. Tighter criteria are applied when
there is a π0 in the final state, as large backgrounds arise from mis-reconstructed
neutral pions. The distributions of mass differences for each type of decays are
shown in Fig. 7.4.

• D∗+ → D0π+: We require ∆M to be within 2.5 MeV of the nominal mass
difference.

• D∗+ → D+π0: We require ∆M to be within 2.0 MeV of the nominal mass
difference.

• D∗0 → D0π0: We require ∆M to be within 2.0 MeV of the nominal mass
difference.
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Figure 7.4: The distribution of mass difference between reconstructed D∗ meson
and its daughter D meson for (left) D∗+ → D0π+, (middle) D∗+ → D+π0, and
(right) D∗0 → D0π0 decays.

The Btag mesons are reconstructed by combining a D(∗) and an electron or muon
candidate. The D(∗)l invariant mass is required to be at most 5.2791 GeV, and the
p-value for the χ2 test of the kinematic fit must be at least 0.001. The variable used
to select a correctly reconstructed Btag is the angle between the 3-momentum of
the Btag and the 3-momentum sum of its D(∗) and lepton daughters (cos θtag

B−D(∗)l
),

defined as

cos θtag
B−D(∗)l

=
2EbeamED(∗)l − m2

B − m2
D(∗)l

2|pB | · |pD(∗)l |
.

The value of cos θtag
B−D(∗)l

should be in the range of [-1, 1], as it has only one missing
neutrino. Other events (signal, combinatorial, continuum events) tend to have more
negative cos θtag

B−D(∗)l
values. We select events requiring cos θtag

B−D(∗)l
∈ [−2,1] to take

the detector resolutions into consideration.

• B+ → D0e+.

• B+ → D0µ+.

• B0 → D−e+.

• B0 → D−µ+.

• B+ → D∗0e+.

• B+ → D∗0µ+.

• B0 → D∗−e+.

• B0 → D∗−µ+.
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In each event with a selected Btag candidate, we search for D(∗)l among the remain-
ing tracks and calorimeter clusters to reconstruct Bsig, using the B decay modes
described above. The invariant mass of D(∗)l candidates is required to be at most
5.2791 GeV, and the p-value of the χ2 test must be at least 0.001.

The Υ(4S) candidates are reconstructed by combining Btag and Bsig, requiring that
the two B mesons must conserve charge. To further suppress backgrounds, we
require:

• No extra charged tracks, K0
S or π0 particles must be present.

• The extra neutral energy in the calorimeter Eextra ≤ 1.2 GeV.

• The second Fox-Wolfram moment R2 ≤ 0.4.

• The 3-momentum magnitude of the Bsig’s lepton daughter in the CM frame
|psig

l | ≤ 2 GeV.

Candidate selection
We use the following algorithm to assign a truth-matched candidate for each signal
MC event. The criteria for the best candidate is clear: if the reconstruction graph of
a candidate matches exactly that of the truth, that is our best candidate. The truth
matching algorithm is described in detail in [35].

About 91% of the reconstructed events have only a single candidate. If multiple
candidates are observed in an event, we choose the candidate with the minimal
Eextra as the best candidate to represent the event. Following this method, 95.8% of
the reconstructed signal candidates are the truth-matched candidate.

Reconstruction results
Table 7.8 shows the composition of events selected by the reconstruction strategy
evaluated on generic MC. 1.56% (3.18%) of our reconstructed generic MC sample
are B→ Dτν (B→ D∗τν) events. The normalization events (B→ D(∗)lν) sum up
to around 38%. Combinatorial BB̄ background dominates and is roughly 28%, and
we also have around 6.4% of continuum events.
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Component Proportion (%)
B→ Dτν 1.56
B→ D∗τν 3.18
B→ Dlν 19.80
B→ D∗lν 18.11
B→ D∗∗lν 22.74

Combinatorial BB̄ 28.17
Continuum 6.44

Table 7.8: Proportions of each component after reconstruction, evaluated using the
generic MC.

7.5 Signal Detection
Weapplymachine learningmodels to classify each type of event after reconstruction.
Two binary classifiers C1,C2 are used, the corresponding scores denoted as z1 and
z2. C1 is used to identify signal events and normalization events from background
D∗∗, BB̄ combinatorial and continuum events. C2 is used to separate signal and
normalization events. The combination of z1 and z2 enables us to measure signal
events based on their density shape difference from other event types. We do not
apply any selection criteria on z1 or z2, however, the (z1, z2) spectrum of all event
types is used to extract the signal yields.

C1 classifier
The sample used to train and validate the C1 classifier includes 350K events from the
generic MC. The sample is divided into two parts using random sampling without
replacement: training sample (240K) and validation sample (110K). We first use
the training sample to train different classifiers and then use the validation sample
to choose the best classifier.

Generally, a binary classifier aims to classify two categories of events (often labeled
as positive/negative), based on a set of input variables. C1 is a binary classifier to
distinguish signal events and normalization events, from all types of background
events. When training the C1 classifier, we label signal and normalization events as
positive, and label D∗∗, combinatorial BB̄, and continuum events as negative. The
following variables are used as inputs to train the C1 classifier. The histograms of
these variables for positive label (signal and normalization events) and each type of
background event are shown in Fig. 7.5, 7.6, and 7.7.

• Ntracks: Number of charged tracks.
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• R2 All: Second Fox-Wolfram moment.

• M2
miss: Square of the missing 4-vector of the event in the CM frame.

• Eextra: Extra neutral energy in the calorimeter.

• cos θT : Cosine of the angle between the thrust and the beam momentum.

• |ptag
l |: 3-momentum magnitude of the Btag lepton in the CM frame.

• cos θtag
B−D(∗)l

: Cosine of the angle between the 3-momentum of the Btag and
the 3-momentum sum of its D and lepton daughters in the CM frame.

• cos θtag
D−l : Cosine of the angle between the 3-momentum of the D meson and

the lepton daughter in the tag side.

• mtag
D : Mass of the Btag D meson daughter.

• ∆mtag: Mass difference between D∗ and D meson in the tag side, if exists.

• cos θtag
D so f t : Cosine of the angle between the D∗ mesons daughters in the tag

side in the CM frame.

• |ptag
so f t |: 3-momentum magnitude of the D∗’s soft daughter in the tag side in

the CM frame.

• |psig
l |: 3-momentum magnitude of the Bsig lepton daughter in the CM frame.

• cos θsig
D−l : Cosine of the angle between the 3-momentum of the D meson and

the lepton daughter in the sig side in the CM frame.

• χ2: χ2 of the Bsig vertex fit.

• msig
D : Mass of the Bsig D meson daughter.

• ∆msig: Mass difference between D∗ and D meson in the sig side, if it exists.

• cos θsig
D so f t : Cosine of the angle between the D∗ mesons’ daughters in the sig

side in the CM frame.

• |psig
so f t |: 3-momentum magnitude of the D∗’s soft daughter in the sig side in

the CM frame.

• cos θD(∗)l−D(∗)l : Cosine of the angle between the two Dl Dl systems in the CM
frame.
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• tag l electron PID: Btag lepton daughter’s electron PID level.

• tag l muon PID: Btag lepton daughter’s muon PID level.

• sig l electron PID: Bsig lepton daughter’s electron PID level.

• sig l muon PID: Bsig lepton daughter’s muon PID level.

Figure 7.5: Histograms of variables used for the C1 classifier.
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Figure 7.6: Histograms of variables used for the C1 classifier.
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Figure 7.7: Histograms of variables used for the C1 classifier.

We use a Gradient Boosting Decision Tree (BDT) [36] for the C1 classifier. The
number of decision trees ranges from 20 to 600. Themodel is implemented using the
scikit-learn package. Themetric used to evaluate the classification performance
is the area under the ROC curve. The higher the score, the higher the classification
power. Fig. 7.8 shows the relationship between the area under ROC curve and the
number of trees. The classification performance becomes stable when the number



77

of decision trees is above 500. We use a BDT with 600 trees as the final model. Fig.
7.9 shows the importance of variables for classification. Eextra and |psig

l | are the
most powerful variables to identify B→ D(∗)(τ/l)ν from all types of backgrounds.
For Eextra, the signal and normalization events usually have near-zero extra neutral
energy, while background events have a wide distribution. The normalization decay
has an energetic lepton produced by the D decay, leading to a higher |psig

l | value
than signal events, as well as all types of backgrounds. The output of the BDT score
p is transformed using a logit function:

z1 = logit(p) = log
p

1 − p
.

The z1 distribution for all types of events is shown in Fig. 7.10. Signal and
normalization events tend to have higher z1 values than backgrounds.

Figure 7.8: Area under the ROC curve for BDT classifiers with different numbers
of trees.
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Figure 7.9: Importance of each variable for learning the C1 classifier.

Figure 7.10: z1 distribution for signal, normalization, D∗∗lν, BB̄ combinatorial, and
continuum events.
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C2 classifier
The C2 Classifier aims to classify signal events and normalization events. Similar
to the C1 classifier, we divide the sample into training and validation samples. The
training sample is first used to train the classifier, the validation sample is then
applied to evaluate the performance of the classifiers. Signal events are labeled
positive and normalization events are labeled negative before training. We use the
same variables used for the C1 classifier, with the addition of the following quantity:

• cos θsig
B−D(∗)l

: Cosine of the angle between the 3-momentum of the Bsig and the
3-momentum sum of its D and lepton daughters.

The histogram of these variables for signal and normalization events are shown in
Fig. 7.11.

Figure 7.11: Histograms of variables used for the C2 classifier.

Similar to the C1 classifier, we use a BDT for the C2 classifier. The number of
decision trees ranges from 100 to 600. The classification performance is stable
when the number of decision trees is above 100, as shown in Fig. 7.12. We use
a BDT with 600 trees as the final model. Fig. 7.13 shows the importance of the
variables for classification: cos θsig

B−D(∗)l
and |psig

l | are the most powerful variables to
distinguish signal from normalization events. For cos θsig

B−D(∗)l
, normalization events

have only a single neutrino, and the value should be from -1 to 1. However, signal
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events tend to have more negative values, due to the presence of three neutrinos in
the final state. The e/µ produced from the τ decays in signal events have a softer
|psig

l | spectrum than the leptons produced from D decays for normalization events.

The output of the BDT score is transformed to z2 using a logit function. The z2

distribution for all types of events is shown in Fig. 7.14. Signal events tend to
have a higher z2 score, while normalization events tend to have a lower z2 score.
Backgrounds have z2 scores in between.

Figure 7.12: The area under theROCcurve for BDT classifierswith different number
of trees.
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Figure 7.13: Importance of each variable for learning the C2 classifier.

Figure 7.14: z2 distribution for signal, normalization, D∗∗lν, BB̄ combinatorial, and
continuum events.
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7.6 Signal Extraction
In this section we describe how the signal yields are estimated. Our procedure
includes two steps, and is applied to each subset individually to extract the corre-
sponding signal yields:

1. Density Estimation: estimate the 2-dimensional density f (z1, z2) for each type
of event.

2. Maximum Likelihood Estimation: estimate signal yields based on estimated
densities, by solving a convex optimization problem.

Density estimation
Suppose a random variable X follows an unknown distribution f . If we have N

observations of X , the objective of the density estimation procedure is to estimate
f based on the N observations. Many approaches have been developed, both
parametric and non-parametric, to solve this problem. One popular non-parametric
approach is histogramming. Histogramming divides the range of X into m equally-
sized bins, and assigns each observation to one of these bins. The normalized counts
of each bin gives us the estimated density f .

Kernel density estimation (KDE) [37] is a non-parametric approach, which estimates
f via data smoothing. Given N observations {xi}

N
i=1 of X , the KDE estimate of f

is:

f̂ (x) =
1

Nh

N∑
i=1

K(
x − xi

h
),

where K is a kernel function, h is the bandwidth parameter to control the level of
smoothing. General choices of kernel function can be Gaussian (K(ν) = 1√

2π
e−

1
2 ν

2)
or Epanechnikov (K(ν) = 3

4 (1 − ν
2)), though the kernel function K can be any

nonnegative bounded function satisfying

1.
∫ 1
−1 K(ν)dν = 1

2. K(ν) = K(−ν)

3.
∫ 1
−1 ν

2K(ν)dν < ∞.
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The choice of bandwidth parameter h involves minimizing the mean squared error
(MISE) between the estimated f̂ and f :

MISE =
∫
( f̂ − f )2 =

∫
f̂ 2 − 2

∫
f̂ · f +

∫
f 2,

which can be evaluated by summing over the observed data points of X . Practically,
we use cross validation to choose the optimal bandwidth, which gives the same
asymptotic accuracy:

CV(h) =
∫

f̂ 2 − 2N−1
∑

i

f̂−i(xi),

where f̂−i(xi) =
1

Nh
∑

i, j K( xi−xj
h ) is used to evaluate MISE by removing the contri-

bution from point i.

In this analysis, we use an adaptive KDE to evaluate the 2-dimensional probability
density function (PDF) of each event type. Adaptive KDE changes the bandwidth
parameters depending on the densities. In lower data density regions, adaptive KDE
chooses wider bandwidths to reduce the effect of outliers on the overall KDE, and
provides better overall performance. The adaptive KDE of f is:

f̂ (x) =
1
N

N∑
i=1

1
hi

K(
x − xi

hi
)

hi = h × λi

λi = (
G

f̃ (xi)
)α,

(7.6)

where f̃ (xi) is a pilot estimate of f (xi), λi is local bandwidth factor to control the
local smoothing, G is the geometric mean of f (xi), α is a sensitivity parameter
between 0 and 1. We normally set its values to be 0.5.

We use an Epanechnikov function as the kernel function, and use grid search to find
the optimal bandwidth h. The KDE using an Epanechnikov kernel is claimed to
have better mean integrated squared error under the same amount of data, and is one
of the popular kernels used in practice. We use the bbrcit_kde library to reduce
the time complexity of performing KDE from O(n2) to O(n). It applies kd-tree [38]
algorithm and applies GPU computation to speedup the KDE computation. The
learned densities for all event components for each of four subsets are shown in Fig.
7.15, 7.16, 7.17, and 7.18.
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Figure 7.15: KDE learned densities for event components in the D+l subset.
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Figure 7.16: KDE learned densities for event components in the D0l subset.
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Figure 7.17: KDE learned densities for event components in the D∗+l subset.
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Figure 7.18: KDE learned densities for event components in the D∗0l subset.

Maximum likelihood estimation
We extract the signal and normalization yields from each subset (channel_label)
individually, and then combine them to get the overall yields. Given a subset with C

components and the corresponding learned densities f j(z1, z2) ( j = 1,2, ...,C), the
z = (z1, z2) distribution of the subset can be written as

Prob(z) =
C∑

j=1
p j f j(z),

where p j is the proportion of j’s component. If we observe N events in the subset
{z}Ni=1, the likelihood is
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L =
N∏

i=1
Prob(zi) =

N∏
i=1

©­«
C∑

j=1
p j · f j(zi)

ª®¬ .
The MLE estimate of component proportions p j ( j = 1,2, ...,C) can be obtained by
solving the following convex optimization problem:

max
p1,p2,...,pC

N∏
i=1

©­«
C∑

j=1
p j · f j(zi)

ª®¬
s.t.

∑
j

p j = 1.
(7.7)

We use the CVXOPT [39] python package to implement the above estimation. The
procedure is applied to the generic MC to evaluate its performance. To estimate the
statistical sensitivity, we bootstrap the generic MC 900 times and solve the MLE for
each bootstrap sample. The standard deviations of the 900 estimated proportions
are used as absolute statistical uncertainties for the MLE estimation. The extracted
yields and the absolute statistical uncertainties for all the four subsets are listed in
Table 7.9. The projected fitting results on z1 and z2 scores are shown in Fig. 7.19
and Fig. 7.20.
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Figure 7.19: Comparison of z1 score distributions of the data with the projections
of fit results for (upper left) D+l, (upper right) D0l, (bottom left) D∗+l, and (bottom
right) D∗0l subsets.
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Subset Component Extracted Yield

D+l

B→ Dτν 117 ± 44
B→ D∗τν 191 ± 57
B→ Dlν 1965 ± 110
B→ D∗lν 1261 ± 146
B→ D∗∗lν 3248 ± 233
Other Bkgs 7258 ± 182

D0l

B→ Dτν 726 ± 273
B→ D∗τν 2452 ± 285
B→ Dlν 12012 ± 555
B→ D∗lν 22808 ± 648
B→ D∗∗lν 15594 ± 445
Other Bkgs 22065 ± 307

D∗+l

B→ D∗τν 110 ± 17
B→ Dlν 614 ± 127
B→ D∗lν 1246 ± 139
B→ D∗∗lν 292 ± 54
Other Bkgs 665 ± 42

D∗0l

B→ D∗τν 175 ± 25
B→ Dlν 479 ± 126
B→ D∗lν 2154 ± 149
B→ D∗∗lν 1387 ± 101
Other Bkgs 1415 ± 70

Table 7.9: Fit results for the yields of all the components in four subsets.
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Figure 7.20: Comparison of z2 score distributions of the data with the projections
of fit results for (upper left) D+l, (upper right) D0l, (bottom left) D∗+l, and (bottom
right) D∗0l subsets.
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Cross-check on PDFs modeling
Cross-checks are performed to study the modeling of PDF shapes. We first check
the PDF modeling of normalization events by comparing the PDFs of MC with data
on the normalization enriched region. The normalization enriched region is defined
in (z1, z2) space as z1 > 2, z2 < −4, in which 94% events are normalization decays.
The MC and data comparison shown in Fig. 7.21 indicates the normalization PDF
shapes are well modeled.
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Figure 7.21: MC/data comparison of z1 and z2 score distributions in normalization
enriched region.

We then check the PDF modeling of backgrounds (after on-peak background cali-
bration) by comparing the PDFs of MC with data on background enriched region.
The background enriched region is defined as −4 ≤ z1 ≤ −2, in which 97% events
are either B → D∗∗lν, BB̄ combinatorial, or continuum events. The MC and data
comparison shown in Fig. 7.22 indicates the PDF shapes of backgrounds are also
well-modeled.
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Figure 7.22: MC/data comparison of z1 and z2 score distributions in backgrounds
enriched region.
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7.7 Systematic Uncertainties
Procedure
Many quantities are required to precisely measure R(D(∗)), for instance, the PDF
shape of each event type, the physical parameter setup for the Monte Carlo simula-
tions, and the detector efficiencies. We use our best knowledge of this information
during the measurement, however, this information has associated uncertainties.
Consequently, our measurement might be biased due to these sources of uncer-
tainty. This section describes the systematic uncertainties that are important in this
analysis, and how we evaluate them.

Different procedures are developed to evaluate each source of uncertainty. Uncer-
tainties from form factors, branching fractions of B̄→ D∗∗(τ/l)−ν̄, b→ cc̄ decays,
and D meson decays are evaluated based on the delta method [40]. We fluctuate
every uncertain parameter up and down according to their 1σ uncertainties. Each
time the parameter is changed, we re-evaluate the kernel densities and repeat the
fit with the new PDFs. The changes in R(D(∗)) are quoted as the corresponding
systematic uncertainty. Uncertainties due to the limited size of the MC sample and
background calibration are evaluated using a bootstrap algorithm [41].

B→ D(∗)lν form factors
One source of uncertainty comes from the model behind theMonte Carlo simulation
of B meson decays, in which form factors are required. However, the form factors
used for the MC simulation have associated uncertainties, which contribute to the
differential decay rate of B→ Dτν through angular distributions, and therefore the
shapes of the PDFs. To transform the uncertainties on the form factors to R(D(∗)),
we first transform the default model i, which is used to generate simulation events, to
an updated parameterization model j, and use model j to evaluate the corresponding
systematics.

The default form factor model used to simulate B → Dlνl, l = e, µ, τ events is the
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CLN [24] model. It uses dispersion relations to expand the form factors [42]

V1(ω)

V1(1)
= 1 − 8ρ2z + (51ρ2 − 10)z2 − (262ρ2 − 84)z3 + O(z4)

S1(ω)

V1(ω)
= (1 + ∆(ω))

ρ2 = 1.186 ± 0.054

V1 = 1.0816

∆ = 1.0.

(7.8)

The expansions of the CLN model used to simulate B → D∗lν, l = e, µ, τ and
baseline parameter settings are::

hA1(ω)

F1
= 1 − 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3 + O(z4)

R0(ω) = R0(1) − 0.11(ω − 1) + 0.01(ω − 1)2 + O(ω3)

R1(ω) = R1(1) − 0.12(ω − 1) + 0.05(ω − 1)2 + O(ω3)

R2(ω) = R2(1) + 0.11(ω − 1) − 0.06(ω − 1)2 + O(ω3)

F1 = 0.921

ρ2 = 1.207 ± 0.026

R0 = 1.14

R1 = 1.401 ± 0.033

R2 = 0.854 ± 0.02.

(7.9)

To evaluate the systematic uncertainty due to the B→ D(∗)(l/τ)νl form factors, we
measure the central values of R(D(∗)) using the world average values of parameters
in form factor model. Then we change the form factor parameters with the corre-
sponding uncertainties by ±σ. The difference between the values obtained before
and after fluctuation are listed as systematic. The results are shown in Table 7.10.

Source ∆R(D) (%) ∆R(D∗) (%)
B→ D(l/τ)ν form factor 0.42 0.13
B→ D∗(l/τ)ν form factor 0.92 0.31

Table 7.10: Evaluated relative systematic uncertainties from the B → Dlν and
B→ D∗lν form factors.
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B→ D∗∗(l/τ)νl form factors

The systematic uncertainties from semileptonic B meson decays involving D∗∗ are
also evaluated, where D∗∗ denotes the L = 1 excitations of the ground state D

meson: D∗0,D1,D′1, and D∗2. In this case, we use the LLSW B1 model [43] as
baseline, fluctuate it to the LLSW B2 [43] model and take the difference between
the two models as systematic uncertainties. The resulting systematic uncertainty is
shown in Table 7.11.

Source ∆R(D) (%) ∆R(D∗) (%)
B→ D∗∗(l/τ)ν form factor 0.48 0.18

Table 7.11: Evaluated relative systematic uncertainties from the B → D∗∗lν form
factors.

B→ D(∗)lν branching fractions
Branching fractions from semileptonic B meson decays are another source of sys-
tematic uncertainties, as they affect the relative abundance of the decays and thus
the density distributions of event components, as well as the estimate of signal
and normalization efficiencies. Some of the branching fractions used for the MC
generation are different than the current world average. Therefore, before evaluat-
ing the systematic uncertainties associated with the branching fractions, we assign
correction factors to re-weight the MC events:

ω(x) =
ωW .A.(x)

ωDECAY.DEC(x)
,

where ω(x) is the assigned weight for event x, ωW .A. is the world average value
of event x’s branching fraction, and ωDECAY.DEC(x) is the value used in the MC
simulation.

The B→ D(∗)lν decays are one of the dominant B meson decays in this analysis; we
corrected and fluctuated their uncertainties to evaluate the systematic uncertainties
according to the values listed in Table 7.12. The resulting systematic uncertainties
are listed in Table 7.13.

B→ D∗∗(l/τ)ν branching fractions
Semileptonic decays of B→ D∗∗lνl and B→ D∗∗τντ are an important background
as they have topologies to the signal events. In general, D∗∗ is defined as any excited
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Decay Mode MC Simulation Value World Average Value Uncertainty
B+ → D∗0µ+νµ 0.0617 0.0566 0.0022
B+ → D∗0e+νe 0.0617 0.0566 0.0022
B+ → D0µ+νµ 0.0224 0.0235 0.0009
B+ → D0e+νe 0.0224 0.0235 0.0009

B0 → D∗−µ+νµ 0.057 0.0506 0.0012
B0 → D∗−e+νe 0.057 0.0506 0.0012
B0 → D−µ+νµ 0.0207 0.0231 0.0010
B0 → D−e+νe 0.0207 0.0231 0.0010

Table 7.12: Decay modes fluctuated to evaluate the B→ D(∗)lν branching fractions
on generic MC. The world average values are from [34].

Source ∆R(D) (%) ∆R(D∗) (%)
B→ D(∗)lν branching fraction 0.47 0.38

Table 7.13: Evaluated relative systematic uncertainties from B→ D(∗)lν branching
fractions on MC.

charmedmeson states that is not in the ground-state 1S doublet [44]. In this analysis,
we consider the following three D∗∗ decay types:

• Resonant D∗∗(1P) state, which includes the four lightest excited charmed
meson states D∗0(0

+), D1(1+), D′1(1
+) and D∗2(2

+).

• Resonant D∗∗(2S) state, the radially-excited modes of D(∗).

• Non-resonant D∗∗ states. We allow unmeasured D∗∗ states whose final states
consist of a D(∗) and one pion.

We estimate the systematic uncertainties fromboth B→ D∗∗lνl and B→ D∗∗τντ for
these three types of D∗∗ decays. We do not have MC samples for some B→ D∗∗τντ
decays, so we use a 3-body phase space model for estimation. Table 7.14 shows
all the decay modes taken into consideration. We do not consider other charmed
states heavier than D(∗)(2S) as their smaller phase space suppresses the branching
fractions.
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Resonant D∗∗(1P) Resonant D∗∗(2S) Non-resonant B→ D(∗)πlνl
B→ D∗∗lνl MC MC MC
B→ D∗∗τντ MC Phase Space Phase Space

Table 7.14: B→ D∗∗(D(∗)π)(l/τ)ν decays and method used to estimate the system-
atic uncertainties. "MC" means the uncertainties can be directly estimated using
MC sample. "Phase Space" means we do not have the corresponding MC samples,
therefore a phase-space-based estimation is applied.

To evaluate the resonant D∗∗(1P) for B → D∗∗(l/τ)ν decays, the following decays
in the generic MC sample are fluctuated as listed in Table 7.15. The corresponding
systematic uncertainties are obtained in Table 7.16.
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Decay Mode MC Simulation Value Setup Value Uncertainty

B+ → D
0
1e+νe 0.0056 0.0096 0.001

B+ → D
∗0
0 e+νe 0.0049 0.0044 0.0008

B+ → D
∗0
2 e+νe 0.003 0.003 0.0004

B+ → D
′0
1 e+νe 0.009 0.002 0.0005

B+ → D
0
1µ
+νµ 0.0056 0.0096 0.001

B+ → D
∗0
0 µ+νµ 0.0049 0.0044 0.0008

B+ → D
∗0
2 µ+νµ 0.003 0.003 0.0004

B+ → D
′0
1 µ
+νµ 0.009 0.002 0.0005

B+ → D
0
1τ
+ντ 0.0013 0.001 0.00014

B+ → D
∗0
0 τ
+ντ 0.0013 0.0004 0.00015

B+ → D
′0
1 τ
+ντ 0.002 0.00012 0.00005

B+ → D
∗0
2 τ
+ντ 0.002 0.00021 0.00004

B0 → D∗−2 e+νe 0.0023 0.0028 0.0004
B0 → D

′−
1 e+νe 0.0083 0.0019 0.00046

B0 → D∗−0 e+νe 0.0045 0.00408 0.00074
B0 → D−1 e+νe 0.0052 0.0089 0.000911
B0 → D−1 µ

+νµ 0.0052 0.0089 0.000911
B0 → D∗−0 µ+νµ 0.0045 0.00408 0.00074
B0 → D

′−
1 µ+νµ 0.0083 0.0019 0.00046

B0 → D∗−2 µ+νµ 0.0023 0.0028 0.0004
B0 → D−1 τ

+ντ 0.0013 0.0009 0.00013
B0 → D∗−0 τ+ντ 0.0013 0.0003 0.00014
B0 → D

′−
1 τ
+ντ 0.002 0.00017 0.00005

B0 → D∗−2 τ+ντ 0.002 0.00013 0.00004

Table 7.15: Decay modes fluctuated to evaluate the resonant B → D∗∗(1P)(l/τ)ν
branching fractions on generic MC. The setup values are from [34, 45].

Source ∆R(D) (%) ∆R(D∗) (%)
Resonant B→ D∗∗(1P)(l/τ)ν branching fraction 1.87 0.35

Table 7.16: Evaluated relative systematic uncertainties from resonant B →
D∗∗(1P)(l/τ)ν branching fractions.

The samples simulated B → D∗∗lν decays are used to evaluate the systematic
uncertainties from resonant B → D∗∗(2S)lν decays, as listed in Table 7.17. The
masses for D∗∗(2S) and D∗∗(2S)∗ are around 2.47 GeV and 2.7 GeV. These events are
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then reconstructed, selected, and assigned (z1, z2) scores using the same procedure
as for the generic MC. It is well known that there is a discrepancy of 1.5% between
the inclusive branching fraction of semileptonic B decays and the sum of exclusive
branching fractions. Conservatively, we use this sample to make up the 1.5%
discrepancy. The densities of each event type are then re-evaluated. The difference
between the measured R(D(∗)) on whether the B → D∗∗(2S)lν decays are included
are taken as a systematic uncertainty. The resulting systematic uncertainty is shown
in Table 7.18.

Decay Type # event [106] BABAR Dataset Name
B+ → D∗∗(2S)(Dππ)`ν 6.776 SP-11461-R24
B0 → D∗∗(2S)(Dππ)`ν 6.826 SP-11467-R24
B+ → D∗∗(2S)(D∗ππ)`ν 6.530 SP-11462-R24
B0 → D∗∗(2S)(D∗ππ)`ν 6.769 SP-11468-R24
B+ → D∗∗(2S)∗(Dππ)`ν 6.369 SP-11463-R24
B0 → D∗∗(2S)∗(Dππ)`ν 6.552 SP-11469-R24
B+ → D∗∗(2S)∗(D∗ππ)`ν 6.425 SP-11464-R24
B0 → D∗∗(2S)∗(D∗ππ)`ν 6.616 SP-11470-R24

Table 7.17: MC samples used for assessing the gap between inclusive and the sum
of exclusive B→ Xc`ν branching fractions.

Source ∆R(D) (%) ∆R(D∗) (%)
B→ D∗∗(2S)lν branching fraction 0.58 0.56

Table 7.18: Evaluated relative systematic uncertainties from the resonant B →
D∗∗(2S)lν branching fractions.

For non-resonant B → D∗∗lν decays, we fluctuated both B → D(∗)π+lν and
B → D(∗)π0lν decay modes simultaneously and the corresponding systematic un-
certainties are listed in Table 7.19.

Source ∆R(D) (%) ∆R(D∗) (%)
Non-resonant B→ D(∗)πlν branching fraction 2.05 1.46

Table 7.19: Evaluated relative systematic uncertainties from non-resonant B →
D(∗)πlν branching fractions.
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We do not have MC samples for resonant B → D∗∗(2S)τν and non-resonant B →

D(∗)πτν decays. However, since B→ D∗∗τν and B→ D∗∗lν have similar topology
in this analysis, we will use the branching ratio between B(B → D∗∗τν) and
B(B→ D∗∗lν) to estimate the systematic uncertainties.

We estimate the relative branching ratio R(D∗∗) with the available phase space Φ

R(D∗∗) =
B(B→ D∗∗τν)
B(B→ D∗∗lν)

≈
Φ(B→ D∗∗τν)
Φ(B→ D∗∗lν)

.

The phase space of the three body decay B→ Mlν is given by the integral

Φ(B→ Mlν) =
∫

d3pM

2EM

d3pl

2El

d3pν
2Eν

δ4(pB − pM − pl − pν)

∝

∫ (mB−mM )
2

m2
l

dq2

√
1 −

2m2
l

q2 +
m4

l

q4

√
(
m2

B − m2
M + q2

2mB
)2 − q2.

(7.10)

We calculate R(D∗∗) as well as the Φ(B → D∗∗lν) integrals numerically for a
wide range of mM , as shown in Fig. 7.23. The mass of the discovered excited D

mesons are roughly in the range of [2300,3300] MeV, so we use R(D∗∗) = 0.13
at mD∗∗ = 2300 MeV to conservatively estimate the systematic uncertainty from
resonant B→ D∗∗(2S)τν decays. The results are shown in Table 7.20. For heavier
excited D mesons, the phase space decreases and thus has a smaller effect on the
measurement.
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Figure 7.23: (upper) The current mass ranges for excited D meson states. (bottom
left) The R(D∗∗) for different excited D meson masses. (bottom right) The Φ(B →
D∗∗lν) for different excited D meson masses.

Source ∆R(D) (%) ∆R(D∗) (%)
Resonant B→ D∗∗(2S)τν 0.08 0.07
Non-resonant B→ D(∗)πτν 0.27 0.19

Table 7.20: Evaluated relative systematic uncertainties from resonant B →
D∗∗(2S)τν and non-resonant B→ D(∗)πτν branching fractions.

D meson decay branching fractions
The uncertainties from D meson decay branching fractions are also considered.
Since performing fluctuations on all D meson decay channels is impractical, we
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simply fluctuate the most common decay D → Kππ. Specifically, for each event
involving a D → Kππ decay, we assign a factor of ω = ωW .A./ωDECAY.DEC = 0.992.
Table 7.21 shows the resulting systematic uncertainties.

Source ∆R(D) (%) ∆R(D∗) (%)
D→ Kππ branching fraction 0.84 0.70

Table 7.21: Evaluated relative systematic uncertainties from the D→ Kππ branch-
ing fractions.

Υ(4S)) → BB̄ branching fractions
The branching fractions of B(Υ(4S)) decaying to charged or neutral B mesons are
B(Υ(4S) → B+B−) = 51.4% ± 0.6%, and B(Υ(4S) → B0B̄0) = 48.6% ± 0.6%.
To evaluate the effect of the uncertainty of the neutral/charged B meson ratio, we
fluctuate the relative number of events between B0B̄0 and B+B− in the amount of
1.1% and propagate it to the uncertainty of R(D(∗)). The results are in Table 7.22.

Source ∆R(D) (%) ∆R(D∗) (%)
B(Υ(4S)) 0.48 0.43

Table 7.22: Evaluated relative systematic uncertainties from B(Υ(4S)) decays to
charged or neutral B mesons.

Lepton efficiency

We assign a 1% relative uncertainty per electron or muon in an event, and assign
a 1.1% relative uncertainty per kaon in an event. There are two light leptons and
two kaons for a signal or normalization event, one from the Btag and the other from
Bsig. However, most sources of PID efficiency uncertainties will cancel out, since
we measure the ratio between signal and normalization event. The only source left
is the signal side lepton PID efficiency, because the signal side lepton momentum
varies for signal and normalization events.

If we assume ε signalPID ∼ N(µx, σ
2
x ), ε

norm
PID ∼ N(µy, σ

2
y ), then(

σx/y

x/y

)2
=

(σx

x

)2
+

(
σy

y

)2
− 2 ·

(σx

x

)
·

(
σy

y

)
.

Based on [46, 47], the corresponding R(D(∗)) uncertainties are 0.29% and 0.40%.
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Neutral pion efficiency

The soft π0 efficiency uncertainty does not cancel in the ratio. Studies have been
performed by the BABAR collaboration to measure the difference of the π0 efficiency
in data and simulation. Following BAD [48], an average π0 correction ωπ0 =

0.958 ± 0.009 is applied, and the corresponding uncertainties are propagated to the
results of R(D∗). Although the soft pion efficiency is momentum dependent, the
momentum for nearly all soft pions is in the range of [0.1,1] GeV in this analysis.
Given the momentum-dependent correction factor as shown in Fig. 7.24, this is a
second-order effect and can be neglected.

Figure 7.24: The π0 efficiency correction values in dependence of the π0 momentum.
The figure is from [48].

PDF shape of on-peak backgrounds
Among the three types of backgrounds, the continuum background is characterized
using off-peak data. However, the shape of B → D∗∗lν and combinatorial BB̄

background are characterized using generic MC, which may be different from what
happened in the detector. We denote the latter two backgrounds as BB̄ backgrounds.
To compare the shape difference of BB̄ backgrounds between MC and data, we
construct a sideband in which the data consists only of background events. The
criteria to define the sideband is:

S1: Eextra > 1.0 GeV
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S2: |psig
l | < 0.4 GeV

We assume that the signal and normalization events are negligible in the sideband
region (estimated proportions are 0.4% for signal events and 3.8% for normalization
events). A sample of 1% of on-peak data is used to demonstrate and calibrate the
difference between MC and data, as shown in Fig. 7.25. Since the continuum
background is well modeled using off-peak data, the discrepancy in the figure is a
result of mis-modeling of BB̄ background.
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Figure 7.25: z1 and z2 distribution of sidebands for generic MC and sideband data.
The difference between data and histogram indicates the discrepancy between MC
and data.

The discrepancy of the (z1, z2) distribution between MC and data may introduce
a bias on this measurement, therefore, we apply a correction factor based on the
2-dimensional shape difference as follows:

1. Let g(z1, z2) be the (z1, z2) distribution of on-peak data in the sideband region.
Since the signal and normalization events are negligible, its density can be
decomposed as the sum of BB̄ background and continuum components:

g(z1, z2) = pBB̄gBB̄(z1, z2) + pcontgcont(z1, z2)

pBB̄ + pcont = 1.

2. Let fBB̄(z1, z2) be the density function of the sideband MC BB̄ background.

3. The correction factors are:

ω(z1, z2) =
gBB̄(z1, z2)

fBB̄(z1, z2)
=

g(z1, z2) − pcontgcont(z1, z2)

pBB̄ fBB̄(z1, z2)
. (7.11)
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The systematic uncertainty from these correction factors is estimated using a boot-
strap technique. Since the variance ofω(z1, z2) is due to the limited sample, to model
the PDF shapes, we bootstrap the sideband sample of BB̄ background, on-peak data,
and off-peak data to capture its effect on the measurement.

1. We bootstrap the sideband sample of BB̄ background, on-peak data, and
off-peak data 100 times.

2. For each bootstrap sample, we calculate Equation 7.11 and apply the sideband
calibration for each BB̄ background events.

3. For each bootstrap sample, we use updated generic MC events to extract the
signal and normalization yields and measure R(D(∗)).

4. We take the sample standard deviation of the measured R(D(∗)) as an estimate
of the systematic uncertainty.

The results are shown in Table 7.23.

Source ∆R(D) (%) ∆R(D∗) (%)
BB̄ background shape 0.73 0.37

Table 7.23: Evaluated relative systematic uncertainties from the calibration factor
on the BB̄ background shape difference between generic MC and data.

Sideband selection efficiency
Our definition of sideband does not guarantee the same selection efficiency for BB̄

events and D∗∗lν events. Therefore, the corresponding systematic is estimated. We
apply the correction only for BB̄ events and D∗∗lν events, and take the half of the
discrepancy as an estimate of the systematic uncertainty. The results are shown in
Table 7.24.

Source ∆R(D) (%) ∆R(D∗) (%)
Sideband Region 2.34 0.23

Table 7.24: Evaluated relative systematic uncertainties from the calibration factor
on the BB̄ background shape difference between generic MC and data.



104

Correlation between the uncertainties on R(D) and R(D∗)

The correlations between R(D) and R(D∗) are used to combine all the uncertainties
together and compare with the theoretical predictions. We use the MC samples to
estimate the correlations for additive systematic uncertainties, while the correlations
for multiplicative uncertainties can be clearly derived.

For the additive systematic uncertainties, a standard approach to estimate correla-
tions is bootstrapping: we should bootstrap several samples and measure R(D(∗)) for
each sample, and then estimate the correlations using the sample results. However,
the above approach is impractical in this analysis, due to the lengthy computation
required to evaluate the kernel densities for each bootstrapping sample. Therefore,
we use importance sampling as an approximate method. For a given systematic
uncertainty source X with standard deviation σ, we assume it follows a Gaussian
distribution X ∼ N(µ,σ2), and affects the R(D(∗)) measurements in the unknown
form of r (∗)(X). We fluctuate X up and down on an amount of ±σ/2,±σ, and then
we measure R(D(∗)) for each fluctuated sample. The correlation between R(D) and
R(D∗) under the systematic uncertainty source X can be obtained by computing the
weighted Pearson correlations between the following two samples:

[r(X − σ),r(X − σ/2),r(X),r(X + σ/2),r(X + σ)]

[r∗(X − σ),r∗(X − σ/2),r∗(X),r∗(X + σ/2),r∗(X + σ)],

with the weighting [Prob[X = µ − σ],Prob[X = µ − σ/2],Prob[X = µ],Prob[X =
µ + σ/2],andProb[X = µ + σ]], which are standard Gaussian densities at the
corresponding ±σ/2,±σ away from mean value. This approach is applied to
estimate correlations for all the additive systematic uncertainties as well as the
B(Υ(4S)) uncertainty.

Among the multiplicative uncertainties, the PID efficiency, soft π0 efficiency and
tracking efficiency affect R(D) and R(D∗) equally, so it has a 100% correlation. The
efficiency uncertainty due to limited statistics (MC Efficiency) is clearly uncorre-
lated. The uncertainty on B(τ → l−ν̄lντ) affects all channels equally, so it also
has 100% correlation. The correlation on the statistical uncertainty is evaluated by
fitting the MLE multiple times, and is found to be negatively correlated.

Summary
Table 7.25 summarizes all the uncertainties taken into consideration, as well as the
correlations between the uncertainties on R(D) and R(D∗). The effective correlation
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coefficient ρtot is calculated by adding the covariance matrices as follows:∑
i

(
σ2

i ρiσiσ
∗
i

ρiσiσ
∗
i σ∗2i

)
=

(
σ2
tot ρtotσtotσ

∗
tot

ρtotσtotσ
∗
tot σ∗2tot

)
, (7.12)

where σ(∗)i refers to uncertainties on R(D(∗)), and i runs over each source of uncer-
tainty.

Source ∆R(D) (%) ∆R(D∗) (%) Correlation
B→ Dlν form factor 0.42 0.13 -0.18
B→ D∗lν form factor 0.92 0.31 -0.19
B→ D∗∗lν form factor 0.48 0.18 -0.90
B(B→ D(∗)lν) 0.47 0.38 0.97
B(b→ cc̄) 0.34 0.13 1
B(B→ D∗∗lν) 2.83 1.60 -0.97
B(D) 0.84 0.70 -0.40
PDF shapes MC statistics 4.12 4.37 -0.15
On-peak background calibration 2.45 0.44 -0.05
B(Υ(4S)) 0.48 0.43 1
PID efficiency 0.29 0.40 1
Soft π0 efficiency 0.84 1.25 1
B(τ → l−ν̄lντ) 0.16 0.16 1
Systematic Total 5.86 4.96 -0.20
Statistical Uncertainty 19.8 9.9 -0.92
Total 20.65 11.07 -0.82

Table 7.25: Summary of evaluated uncertainties (preliminary).

7.8 Results
Our preliminary results are

R(D) = 0.316 ± 0.062 ± 0.019

R(D∗) = 0.226 ± 0.022 ± 0.012,
(7.13)

where the first uncertainties are statistical and the second are systematic. The
correlation between R(D) and R(D∗) is -0.82. The fitted yields for each event type
in all of four subsets are listed in Table 7.9. The signal and normalization efficiencies
are listed in Table 7.26. The comparison of our result with previous measurments
is shown in Fig. 7.26
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Figure 7.26: The comparison of preliminary results with previous measurments for
R(D(∗)).

Event type Efficiency (%)
B→ Dτν 0.41
B→ D∗τν 0.47
B→ Dlν 0.46
B→ D∗lν 0.43

Table 7.26: Efficiencies for signal and normalization events.

7.9 Summary
In summary, we measure R(D(∗)) using a semileptonic tagging method and leptonic
τ decays. Our preliminary results are R(D) = 0.316 ± 0.062 ± 0.019 and R(D∗) =
0.226 ± 0.022 ± 0.012, where the first uncertainties are statistical and the second
are systematic. The measured R(D), R(D∗), and their combinations agree with the
Standard Model predictions by 0.26σ, 1.10σ, and 1.51σ. This analysis is BABAR’s
first measurement of R(D(∗)) using a semileptonic tagging method.

The measurement strategy imposes as minimal assumptions from Monte Carlo
samples as possible. For instance, instead of fixing background yields, they are
also treated as free parameters when fitting the data. By doing this, our strategy
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can overcome potential simulation bias. It is also feasible because of the customer
package developed to best model PDFs of decays with millions of MC samples.
Due to this, our measurement strategy is unique and reliable.

Our combined results on R(D(∗)) agree with the Belle’s semileptonic tagging mea-
surement by 2.23σ. If we average the two semileptonic tagging measurements
together and compare with the SM prediction, the combined difference is about
0.46σ.

Similar to previous measurements, this measurement is also statistically dominant.
However, with future Belle II experiment target luminosity of 50 ab−1, the statistical
uncertainty on R(D(∗)) measurements can be reduced to only few percent, making
it comparable with the systematic uncertainties and better to probe the new physics.
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C h a p t e r 8

CONCLUSION

This thesis focuses on collider searches of beyond Standard Model physics at the
intensity frontier. With an integrated luminosity of 531 fb−1 collected at the BABAR

experiment, both direct and indirectmethods to probe for NewPhysics are performed
with this unique experimental environment.

We first briefly review the Standard Model, which is the current best theory to
describe the interactions between fundamental particles, and has been extensively
tested by a series of experiments. However, the Standard Model is not a complete
theory. Besides the fact that it does not include gravity, we also summarize its
limitation in both experimental and theoretical aspects. The main goal of high
energy physics is to search and understand the beyond Standard Model physics.

We then describe the details of the PEP-II accelerator and BABAR detector. It is
an e+e− collider operating at the center-of-mass energy around 10.58 GeV. The
asymmetric design enables the B meson decay length to be measurable in the lab
frame. We also briefly summarize the main components of the BABAR detector.

We present our direct search for beyond Standard Model physics by looking for
dark sectors. Dark sectors are new particle(s) interacting only feebly with ordinary
matter mediated via portals, and have become an intriguing framework to explain
the presence of dark matter in the Universe. While previous collider searches focus
on identifying new mediators, we investigate the possibility of dark matter bound
states as a probe for dark sector. This is also the first search for darkonium. In an
absence of signal, we show that this search improves the existing constraints on the
γ − A′ mixing strength over a significant fraction of dark photon masses below 1
GeV for large values of the dark sector coupling constant.

We then present our indirect search for beyond Standard Model physics by precision
measurement of semileptonic B meson decays. Wemeasure R(D) and R(D∗), which
are sensitive probes for BSM physics, using a semileptonic tagging method. The
results are dominated by statistical uncertainties, and agree with the StandardModel
prediction within 1.51σ. This measurement applies a data-driven approach and is
therefore robust to potential bias from simulation. The unique strategy is enabled by
our custom-developed software for fast kernel density estimation powered by GPU
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technology, which enables us to best characterize signatures of decays with large
samples.

In the appendix, we demonstrate the idea of applying deep transfer learning al-
gorithms to reduce systematic uncertainties. With the adversarial neural network
architecture, the multivariate classifiers can be trained to be insensitive to the small
variance of event distributions. This framework can be applied to most high en-
ergy physics analysis to reduce the systematics from mis-modeling of signal or
background samples.
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APPENDIX A: DEEP ADVERSARIAL NETWORK FOR
SYSTEMATIC UNCERTAINTY REDUCTION

Monte Carlo simulation samples are almost always used in high energy physics to
study the characteristics of particle decays and establish the measurement strategies.
They are used to simulate the response of detectors in the event reconstruction
stage, and to optimize criteria in the event selection stage. However, simulations are
not always perfect, especially for background with high-multiplicity decay modes.
The imperfection from simulations is usually considered as a source of systematic
uncertainties in the measurements.

For a simple case in which experimental data is categorized into only two labels,
signal and background, we usually generate and simulate signal MC sample Smc

and background MC sample Bmc. A typical and widely used strategy to establish
event selection strategy is to optimize criteria using the combined samples of Smc

and Bmc. To estimate corresponding systematics, people compare Bmc distribution
with experimental data on signal suppressed regions, and evaluate the difference as
systematics. This strategy is reliable but not optimal, as it does not take into account
the information of MC/data discrepancy when optimizing selection criteria.

The systematics due to MC/data discrepancy can be potentially reduced if the
adversarial framework can be introduced. One architecture we played with is un-
supervised domain adaptation [49], as shown in Fig. 8.1, while other adversarial
architectures about unsupervised domain adaptation [50, 51] are also applicable. In
this framework, the input variables x (normally physical variables of an event) are
first transformed to f using G f (x; θ f ), and then used to train two classifiers together.
The first classifier Gt(x; θt), similar to traditional multivariate analysis algorithms
in event selection, aims to distinguish between signal and backgrounds. The second
classifier Gd(x; θd) aims to distinguish whether the input event is from MC simula-
tion or experimental data. Each event has two labels, yt to label signal/background,
and yd to label it is from MC simulation or experimental data. Therefore, a more
robust classifier can be obtained by minimizing the combined loss function

L = Lt − λLd

Lt = Lt(Gt(G f (x)), yt)

Ld = Ld(Gd(G f (x)), yd),

(8.1)

where Lt and Ld are the loss functions for signal/background classification and
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MC/data classification. λ is a hyper-parameter to control the tradeoff between
accuracy and robustness.

Figure A.1: Diagram of the DANN algorithm. [31]

for target domain points. The task classifier Gt is also a supervised learning algorithm, but
uses (zs, ys) as its training data instead.

We denote the domain loss and the prediction loss as

Ld(✓f , ✓d) = Ld(Gd(Gf (x)), yd), (A.1)

Lt(✓f , ✓t) = Lt(Gt(Gf (xs)), ys), (A.2)

where L can be any loss function such as the cross-entropy loss.
Then, the overall loss function of the algorithm is

L = Lt � �Ld, (A.3)

where � is a hyperparameter controlling the amount of adaptation. If � = 0, it is as if we do
not perform any feature transformation; the optimizer solely focuses on the task classifier
performance. On the other hand, as � becomes large, the domain adaptation will be the
main focus, disregarding the task classifier performance.

The optimal parameters are the saddle point solution to the following optimization
problem:

min
✓f ,✓t

max
✓d

L(xs, xt, ys; ✓f , ✓d, ✓t). (A.4)

Figure A.1 shows the diagram of the DANN algorithm.

A.3 Reverse validation

Given that the test set has no labels, how can we quantify the performance of the task
classifier? This is a problem that the vanilla supervised learning algorithms also face given
the dataset of this analysis. Model parameters selected based on the cross validated metrics
do not provide any theoretical guarantees on the out-of-sample performance.

We use the metric called the reverse validation which can be calculated as follows [33]:

1. Using the training set, which contains both source and target domain data, train
the model and extract the optimal set of parameters ✓, which does not include the
hyperparameters such as learning rate that remains fixed throughout the estimation
of reverse validation.

2. Using model defined by ✓ to predict the classes of the target domain portion of the
training set, which gives us a pseudo-label of the target data set (xt, ŷt).

3. Now, swap the roles of the source and target domains: treat (xt, ŷt) as the labeled
source domain data and xs as the unlabeled target domain data.

4. Train a new model the new dataset giving us a new set of model parameters ✓0.

5. The reverse validation error is the error of the new model with ✓0 predicting on xs,
which has known labels ys.
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Figure 8.1: Architecture of unsupervised domain adaptation. The figure is taken
from [49].

Although the algorithm does not give significant improvement in our analysis, as
our analysis is dominated by statistical uncertainties, we believe this framework is
sufficient general to reduce systematics when the mis-modeling of particle decays
is not negligible.


