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ABSTRACT

Whether the three-dimensional (3D) incompressible Euler equations can de-
velop a finite-time singularity from smooth initial data with finite energy is a
major open problem in partial differential equations. A few years ago, Tom
Hou and Guo Luo obtained strong numerical evidence of a potential finite
time singularity of the 3D axisymmetric Euler equations with boundary from
smooth initial data. So far, there is no rigorous justification. In this thesis,
we develop a framework to study the Hou-Luo blowup scenario and singular-
ity formation in related equations and models. In addition, we analyze the

obstacle to singularity formation.

In the first part, we propose a novel framework of analysis based on the dy-
namic rescaling formulation to study singularity formation. Our strategy is to
reformulate the problem of proving finite time blowup into the problem of es-
tablishing the nonlinear stability of an approximate self-similar blowup profile
using the dynamic rescaling equations. Then we prove finite time blowup of
the 2D Boussinesq and the 3D Euler equations with C'%* velocity and bound-
ary. This result provides the first rigorous justification of the Hou-Luo scenario

using O velocity.

In the second part, we further develop the framework for smooth data. The
method in the first part relies crucially on the low regularity of the data, and
there are several essential difficulties to generalize it to study the Hou-Luo
scenario with smooth data. We demonstrate that some of the challenges can
be overcome by proving the asymptotically self-similar blowup of the Hou-Luo
model. Applying this framework, we establish the finite time blowup of the
De Gregorio (DG) model on the real line (R) with smooth data. Our result
resolves the open problem on the regularity of this model on R that has been

open for quite a long time.

In the third part, we investigate the competition between advection and vor-
tex stretching, an essential difficulty in studying the regularity of the 3D Euler
equations. This competition can be modeled by the DG model on S'. We
consider odd initial data with a specific sign property and show that the reg-
ularity of the initial data in this class determines the competition between

advection and vortex stretching. For any 0 < a < 1, we construct a finite



vi
time blowup solution from some C'* initial data. On the other hand, we prove
that the solution exists globally for C! initial data. Our results resolve some
conjecture on the finite time blowup of this model and imply that singularities
developed in the DG model and the generalized Constantin-Lax-Majda model

on S' can be prevented by stronger advection.
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Chapter 1

INTRODUCTION

1.1 The 3D incompressible Euler equations

The three-dimensional (3D) incompressible Euler equations in fluid dynamics
describe the motion of ideal incompressible flows. The equations are among the
most fundamental nonlinear partial differential equations and have been used
to model ocean currents, weather patterns, and other fluids-related phenom-
ena. Despite their wide range of applications, whether the 3D Euler equations
can develop a finite-time singularity from smooth initial data remains open,
which is generally viewed as one of the major open questions in mathematical

fluid mechanics. See the surveys [24] 51, 53], [66, [89] and the references therein.

There are three fundamental difficulties associated with the analysis of the
3D Euler equations: nonlinearity, nonlocality, and the competing effects from
advection and vortex stretching. To illustrate these difficulties, we consider

the vorticity-stream function formulation [89):
w+u-Vw=w-Vu, (1.1)

where w = V x u: R? x [0,T) — R? is the vorticity of the fluid, and u(z,?) :
R3 x [0,T) — R? is the velocity vector related to w via the Biot-Savart law:

u=Vx (—A)w. (1.2)

The above nonlocal relation comes from the divergence-free condition V -u =
0 enforcing the incompressibility of the fluids. Thus, the Euler equations
(1.1) are a nonlinear and nonlocal system, making analysis of these equations

extremely challenging.

The term w- Vu in (L.1]) is called the vortex stretching term. Note that Vu is
formally of the same order as w. Under some decay conditions in the far field,

using Calderon-Zygmund estimates, one can show that
pllwller < IVulle < Cpllwllee,  p e (1,00)

with constants c,, C,, depending on p. Thus the vortex stretching term scales

quadratically as a function of vorticity, suggesting that (1.1)) may develop a
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finite time singularity. In 2D, the vortex stretching term is absent, and one
can get an a-priori estimate of ||w(t)||s for all time. Then the global regular-
ity follows from the Beale-Kato-Majda blow-up criterion [1]. Thus, the
vortex stretching term is the main source of difficulty in obtaining the global
regularity of the 3D Euler equations. For the third difficulty of competing

effects from advection and vortex stretching, we will discuss it in Section [I.4]

The 3D Euler equations are locally well-posed for sufficiently regular data, and
several blow-up criteria have been developed for the Euler equations. More-
over, the equations enjoy several properties, such as symmetry groups and

energy conservation. We will review these classical results in Section 2.1}

There have been a number of attempts on the numerical search of a potential
singularity of the Euler equations, see e.g., [2], 40, [58, [66], 69, [75]. We refer to

a review article [53] for more discussions on potential Euler singularities.

1.2 The Hou-Luo scenario

In [86], 87|, Hou-Luo obtained strong numerical evidence that the 3D axisym-
metric Euler equations in a periodic cylinder develop a potential finite
time singularity on the boundary from smooth initial data with finite energy.
It is by far the most promising blowup scenario for (1.1)) with smooth data.
We refer to Section for the settings of the Hou-Luo scenario.

Review of related works The Hou-Luo scenario has inspired several im-
portant subsequent developments, see e.g., [22], 23] [78, 80]. In [78], Kiselev-
Sverak proved that the gradient of the vorticity in the 2D Euler can achieve
the double exponential growth rate (the fastest possible growth rate) using a
setting similar to that of the Hou-Luo scenario. In [80], Kiselev-Ryzhik-Yao-
Zlatos established singularity formation of a sequence of vortex patch models
with boundary using a similar flow structure. We also mention the works of
Zlatos [106] and Kiselev-He [62] on the small-scale creation of the 2D Euler
and the SQG equations, where a similar hyperbolic flow structure in R? is

considered.

A lot of efforts have been devoted to studying the Hou-Luo scenario, in par-
ticular via the 2D Boussinesq equations (|1.3)

w;+u-Vw=10,,

(1.3)
0, +u-Vo=0, u=(u,v)’ =V (-A)" w,
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where u is the velocity satisfying the no flow boundary condition v(z,0) = 0, w
is the vorticity, and 6 is the density. Since the potential singularity [86] occurs
on the boundary, away from the symmetry axis » = 0, it is well known that
the 3D axisymmetric Euler equations are similar to the 2D Boussinesq
equations [89]. Note that the question of finite time blowup of the Boussinesq
equations from smooth initial data is listed by Yudovich as one of the great
problems of mathematical hydrodynamics [I05]. Due to the difficulties in the
3D Euler equations discussed in Section (see also Section [1.4]), only a few
methods have been developed to study the singularity formation of the 3D

Euler equations and related equations.

One way to make progress in understanding the Hou-Luo scenario is by study-
ing simplified 1D model equations capturing certain features of the full equa-
tions. The study of 1D models for hydrodynamical equations has a long his-
tory, and one of the earliest works is the Constantin-Lax-Majda model [20] for
the effect of vortex stretching. Hou-Luo [86] derived the first 1D model for
the Hou-Luo scenario by restricting on the boundary under some closure
assumption. In [22], Choi-Kiselev-Yao simplified the Biot-Savart law in the
HL model and established finite time blowup. In [70], Hou and Liu estab-
lished the self-similar singularity of the CKY model [22] using the property
that the CKY model can be reformulated as a local ODE system. By exploit-
ing the symmetry properties of the solution and some monotonicity property
of the velocity kernel, Choi et al. established the singularity formation of the
HL model in [23] using a Lyapunov functional argument. There are other 1D
models for the Hou-Luo scenario, see e.g., [30, 37, 64], and finite time blowups

of these models were established therein.

There are some 2D models for the Hou-Luo scenario by simplifying the nonlocal
Biot-Savart law u = V+(—A)™! in (L.3), an essential difficulty in the study
of and (1.3), see e.g., [65, [79]. In [65] [79], the authors studied modified
2D Boussinesq equations with 6, in replaced by 0/x. In these works, the
simplified Biot-Savart law has a positive kernel, and the authors proved finite
time blowup for smooth initial data using the method of characteristics and a

functional argument [79] or barrier functions [65].

Unlike studying simplified model equations, Elgindi-Jeong considered the 2D
Boussinesq and the 3D axisymmetric Euler equations in a domain with a corner

using C% data and settings similar to the Hou-Luo scenario and established
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finite time blowup [43, 45]. This line of research is further extended in [47]
to establish singularity formation of under octahedral symmetry with
bounded and piecewise-smooth vorticity. In these works, the behavior of the
solutions is governed by exact 1D models or ODEs. We refer to the excellent

survey [77] for more discussions related to the Hou-Luo scenario.

Singularity formation in the 3D Euler equations Recently, Elgindi [42]
proved a remarkable result on singularity formation of the 3D axisymmetric
Euler equations without swirl for C1 velocity with sufficiently small o. In
[48], Elgindi-Ghoul-Masmoudi further established the stability of the blowup
solutions in [42] and constructed C'* blowup solutions with finite energy. Note
that the result in [42] cannot be generalized to smooth data since it is well
known that the 3D axisymmetric Euler equations without swirl have a global

smooth solution for smooth initial data [89].

Despite all the previous efforts, rigorous proof of the Hou-Luo blowup scenario
or finite time blowup of the Euler equations with smooth data remains open.
There seem to be some essential difficulties in generalizing the methods in
[22, 23], 65], 78-R0] to study the singularity formation of the 3D Euler equations.

One of the main contributions of this thesis is developing a novel framework to
study the singularity formation of the 3D Euler equations and related equations
based on the dynamic rescaling formulation (or modulation technique), see e.g.,
[74,92]. This framework contributes to the publications [13H16, 19, 20]. Many

important ideas were first developed in work [19].

1.3 A framework to study singularity formation
Our framework of analysis builds on the scaling symmetry of the equations

and the dynamic rescaling formulation. See Section for more discussions.

To introduce our framework, we use the Boussinesq equations (|1.3)). The main
idea of our framework is to prove that the vorticity enjoys a decomposition
1 T
w(z,t) ~ Q( ,t ), 1.4
=gy Na =g (1.4

and the profile ) is bounded from below [|2(+,t)||s > ¢ uniformly for some

¢ > 0 up to the blowup time 7. The dynamic rescaling formulation [92]
allows us to reformulate the physical equations (|1.3)) into the following dynamic
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rescaling equations of the profile by choosing appropriate scaling parameters
wi+ (gx+u)-Vw=cow+0, 0+ (x+u) V0= (q+2)0, (1.5

where u = V4 (—A)"lw, x = (x,y), and the scaling factors c,, ¢; satisfy some
normalization conditions depending on (w,f). The potential blowup time T
in (1.4)) is mapped to t = oo in (|1.5)) and the profile €2 in becomes the
solution w to . We refer the reformulation to Section m

The challenge is to prove that the profile w(z,t) is bounded from below for all
t > 0. Due to the nonlinear terms, standard energy estimates only yield a short
time estimate of the solution to . Our idea is that if has a stable
approximate steady state (ASS) with a small residual error, by establishing
its nonlinear stability, we can control the solution for all time. Thus, we
reformulate the problem of proving finite time singularity into the problem
of establishing the nonlinear stability of an ASS in the dynamic rescaling
equations. We will discuss how to construct an ASS in Section [I.3.6.1} In the
whole framework, the most challenging step is to establish the linear stability

of the ASS.

1.3.1 Linear stability analysis
Given an ASS (w, 1,0, ¢,,¢) of (1.5), we linearize (1.5) around (@, 1,0, ¢, )

to obtain the linearized equations for the perturbations (@, 0,c, Co):

o = —(Elx+ﬁ)-V®+0~x+éwd)— (Gx+1) Vo + é,w+ N(w) + F,
9,0 = —(Gx+1)-VO+ (¢ +26,)0 — (Gx+ 1) - VO + (¢ + 2¢,)0 + N(0) +
(1.6)

where x = (z,y), u = V*(—A)~'& is nonlocal, N(w), N(6) are the nonlinear

terms, and F,,, Fy are the residual error of the approximate steady state.

Our motivation to establish linear stability in the framework is inspired by [85],
where Liu showed that the eigenvalues of the discretized linearized operator
of have negative real parts bounded from above by roughly —0.3. How-
ever, since the linearized operators in and other equations, e.g., and
, that we study in this thesis are not compact, we cannot approximate
them by finite rank operators that can be analyzed by computing the eigen-
values of these finite rank operators. Moreover, the operators are non-normal
and contain several nonlocal terms involving the velocity u, which are difficult

to control. Since @, have size O(1), the damping factor is small, and there
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is no regularizing effect, e.g., viscosity, we would not be able to prove linear

stability of the ASS if we overestimate the effect of these nonlocal terms.

For example, one may try to estimate the term u-V6, in ((1.6]) using a weighted
Sobolev estimate
[upi]|z2 < Cllwpsl|re, (1.7)

for some singular weights p1, po (see the discussion below for the motiva-
tion of singular weights). Yet, the constant C' is typically unknown and can be
large. Such an estimate can lead to the failure of linear stability analysis. This
makes it extremely difficult to establish the linear stability for (1.6 and other

equations. We remark that the linear stability analysis is problem-dependent.

To further establish nonlinear stability, we need to control an energy of the

perturbations and understand the damping mechanism.

Some damping mechanisms For several equations, the damping terms in
the energy estimates can be derived from the local terms, such as ¢x-Vw, ¢x-
V0, ¢w, by performing the estimates in a suitably weighted functional space
X with singular weights. In general, the scaling parameters ¢, ¢, satisfy ¢; >

0,¢, < 0. Then ¢, w in (1.6)) is already a damping term.
To understand the effect of the operator ¢;x - V, we consider a 1D toy model
fi = —axf. +R(x), f(z)=0(|z|') near x =0, [ >0, (1.8)

where ¢z f, models ¢x - V0 or ¢x - Vw in (1.6) and R(z) models other terms
in (1.6]). Performing a weighted L? estimate on f with a weight p = 7% k > 1
and applying integration by parts, we obtain

i [ Fo= [ do= [awt e Ryt = [ESap kg mpat

2dt
Since k > 1, we see that —¢z f, contributes to a damping term [ —%1¢ f2z=*
for the energy [ f?p. Moreover, for larger k, the damping factor k—;lél is larger.
If the remaining part [Rfz ™" is smaller, we obtain the linear stability. In
order for [ f2z™" to be well defined, since f(z) = O(|z|') near z =0 (L.§), we
require k < 2]l + 1. Hence, the higher vanishing order of f near z = 0, the
larger damping factor we can derive by choosing a more singular weight. Yet,
the estimate of the remaining term [Rfxz~" can get worse due to the more

singular weight. Thus, we need to design the singular weight carefully. Note
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that the idea of applying singular weights in stability analysis has been used
in 73] [83].

An alternative approach to derive the damping term from ¢z f, (and similarly
ax -V ) is to perform an energy estimate on 9%f with suitably large
k > 0. Yet, it has a disadvantage that it leads to more nonlocal terms that
are difficult to control and a worse structure of due to the Leibniz rule.

Normalization conditions In the dynamic rescaling equations , we
have the freedom to choose time-dependent scaling parameters ¢;,¢,. See
Section [2.1.4] for more discussions. We choose some normalization conditions
for the scaling factors &, &, to enforce that the perturbations (&, #) vanish at
the origin with higher order. This allows us to choose more singular weights
and obtain a larger damping factor in the energy estimates. For example,
in the blowup analysis of the Boussinesq equations in Chapter , by
choosing appropriate normalization conditions, we can improve the vanishing

order of @, V@ near the origin from O(|z|*) to O(|z|**) for some small o > 0.

Moreover, it is important to choose the appropriate normalization conditions
for ¢, ¢, to eliminate potential dynamically unstable modes in ((1.6). This is
crucial in the analysis of the HL model in Chapter [4]

Control of the nonlocal terms To control the nonlocal terms in (|1.6)),
we use sharp functional inequalities and exploit cancellation among various
nonlocal terms. It is crucial to exploit the cancellation in the equations since
applying sharp functional inequalities alone can still overestimate the effect
of the nonlocal terms. See the discussion around . Since we only have
limited sharp functional inequalities and weighted inequalities that capture the
nonlocal cancellation, we need to perform the energy estimate very carefully.
We refer to for an example of nonlocal cancellation.

Our goal is to apply these sharp estimates to show that the nonlocal terms can
be treated as perturbations to the damping terms and establish linear stability

estimates of the perturbations in some lower-order functional space Xj.

1.3.2 Nonlinear stability
Once we establish the linear stability estimates in space X;, we can similarly

perform linear stability estimates in higher-order functional spaces. Then we
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can close the nonlinear estimate using embedding inequalities. The above
strategies and analysis culminate in a nonlinear energy estimate for some en-
ergy E(&(t),0(t)) of the perturbations

%E < C(w,0)E? — \E +¢. (1.9)

The crucial damping term —AF with A > 0 comes from the linear stability,
CFE? controls the nonlinear terms N(w), N(#) in (1.6)), and ¢ is the weighted
norm of the residual error F,, Fy in (1.6]) of the approximate steady state.

The mechanism of nonlinear stability is that for small perturbation E and
error £, CE? and ¢ can be treated as small perturbations to the damping term
—\FE, resulting in stability. Applying a bootstrap argument, we obtain that if

the error ¢ and initial perturbation E(0) are small

e =X B0) = B b < B = = (1.10)
€ € = 40? - Wo, Yo - )\7 .
the assumption
E(t) = E(&(t),0(t)) < E* (1.11)

holds true for all time. Thus, we can close the nonlinear estimate (1.9)). Es-
timate ([1.10) provides an upper bound £* on the required accuracy ¢ of the

approximate steady state.

A significant difference between the above estimates and those in Section [1.3.1
is that we have a small parameter €. As long as ¢ is sufficiently small : 4Ce < \?
, thanks to the damping term —AE from the linear stability, we can afford
a large constant C'(,f) in the nonlinear estimates and close the nonlinear
estimates. Thus, the above estimates are much simpler than those in Section
[1.3.1] We refer to Section for constructing an approximate steady state
(@,0) to (I.5) with a sufficiently small residual error.

1.3.3 Finite time blowup from finite energy initial data

It is essential to have initial data with finite energy ||ug||rz < 400 for singu-
larity formation in fluids equations. However, the approximate steady state
1 we construct for several equations has sublinear growth in the far-field and
thus has infinite energy |||,z = co. Since the ASS is nonlinearly stable, it is
natural to choose perturbation (&, ) small in the energy norm E to truncate

the ASS. Note that u is growing. The fundamental idea is to design a weighted
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energy norm F with suitably decaying weights so that the truncation is small

in the energy F.

We illustrate this idea using the blowup analysis of with C1< data dis-
cussed in Chapter[2] The ASS of the velocity has sublinear growth |a| ~ |z|'=®
for large = and small o > 0, and the associated vorticity w = V x u has a
slow decay |z|~®. In the energy estimate of the perturbation @, we choose a
functional space L?(p) with weight p(x) that has a radial decay rate |z|7,v €
(—2,—2+ 2a). Since the weight has a fast decay, we can truncate the ASS in
the far-field with perturbation & that is small in L?(p). This provides initial
data with finite energy ||ug||e < 4+00. Using the rescaling argument in Section
and the idea in (|1.4)), we establish the finite time blowup.

1.3.4 Convergence to the steady state
Based on the nonlinear stability estimates (1.11]), we can further establish that
the solution (@ + @(t),0 + A(t)) to (L.5) converges to the exact steady state

(1.5). We first rewrite ((1.6)) as follows :
Zy=LZ + N(Z)+ Fyz,

where Z = (@,0), £ denotes the linearized operators, N(Z) = (N (@), N(f)),
and F; = (F,, Fy) in (1.6). The key observation is that the residual error F

and the operator £ are time-independent. Taking time-derivative, we yield
02y = O LZ + 8,5N(Z) + atFZ =LZ + 8tN(Z)

We can estimate £7; using the same linear stability analysis of £ under the
norm X; in Sections [1.3.1] and estimate the nonlinear part 9, N(Z) in the

norm X; using embedding inequalities. These estimates imply
d .
1Zdlx < =M Zidlx, + Ca@, OIZi][x, E(Z)-

From E(Z(t)) < % ((1.10) and (L.11)), if the error ¢ is small enough, we get
that ||Z;||x, decays exponentially fast and further establish the convergence
from Z+Z(t) to the steady state Z, of (L.5). The convergence and a rescaling
argument (see Section implies that the blowup is asymptotically self-
similar. We refer to Section [3.4.3] Chapter [3| for a concrete example and

argument.
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1.3.5 (Y velocity
Using the strategies in Section [I.3]and adopting several methods from Elgindi’s

important work [42], Hou and I proved the following blowup result.

Theorem 1.1. For small «, the solution of the Boussinesq equations (1.3) in
R? develops a focusing asymptotically self-similar singularity in finite time for

some initial data w € C*(R2),0 € Cx*(R%) with finite energy ||ul|rz < +o0.

We also proved similar blowup results for the 3D Euler equations with bound-
ary and C'* velocity [16]. See Theorems , in Chapter [2| for the precise
statements of these theorems. These results provide the first rigorous justifi-

cation of the Hou-Luo scenario [86] using C* data.

For a class of u,§ € C** with sufficiently small o, following [42], we derive the
leading order terms in the nonlocal velocity , and show that some nonlocal
terms in the dynamic rescaling equations become lower order terms. This
allows us to further construct an ASS analytically. As discussed in Section
1.3.1} one of the main difficulties is to control the nonlocal terms effectively
in the stability analysis of . One of the key ingredients is to exploit the

nonlocal cancellation between w and u using the following inequality

//D—(um — uz(0))w S”iﬁﬁ)d dp = —Cra // T1+k d,,,dﬁJrlOt

(1.12)
for sufficiently small o, where k € [3/2,4] and (r, 8) is the polar coordinate
in Ry and D = [0,00] X [0,7/2]. The interaction term on the left appears
in the weighted L? energy estimate of (@, 0, éy) in (L.6). On the right hand
side, the main term is a damping term since it has a negative sign. We apply
this crucial damping term to control the nonlocal terms @ in ((1.6)). To exploit
the above cancellation, we use the coupling structures in and carefully
design the weighted energy estimates. With these sharp estimates, we follow
the ideas in Sections [1.3.1] to establish the stability analysis of (1.6). To
generalize the analysis of to that of the 3D Euler equations, we further

develop a localized elliptic estimate and control the support of the solution.

Using the idea in Section |1.3.3] we can obtain finite time blowup of (1.3]) and
(2.5 from finite energy initial data. Note that the initial data of the singular
solution in [42] does not have finite energy. Constructing a singular solution

from finite energy initial data was established in a subsequent paper [48]. Our
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argument to construct finite energy initial data in [I6] develops independently
from that in [48]. We refer to Chapter [2] for complete proof.

1.3.6 Smooth data

Yet, several important methods in [16], Chapter , rely crucially on the small
parameter o from the C1% regularity. For smooth data, the leading order
structure for C1® velocity is not available and a few nonlocal terms that we
can neglect using C1® data are not small. Moreover, we need to address the

challenging problem of constructing an ASS.

1.3.6.1 Construction of the approximate steady state

An analytic construction of ASS is applicable if the dynamic rescaling equa-
tions are perturbations to simpler equations whose steady state can be de-
rived, see e.g., [16, 42| for the 3D Euler equations with C''® velocity, and
[13-15, 19l 44] for model problems with specific parameters.

In general, it is very difficult to construct an ASS analytically for fluids equa-
tions due to the nonlinearity and the nonlocality of the velocity. For the
Hou-Luo scenario, constructing a smooth ASS of the Euler equations or
the Boussinesq equations is even more challenging due to the coupled

system. It is almost impossible to do it analytically.

An advantage of considering an ASS in our framework over an exact steady
state is that we avoid constructing an exact steady state which is much more
challenging. An ASS with a small residual error can be obtained by solving the
dynamic rescaling equations for a long enough time numerically. We can
represent the ASS using suitably chosen piecewise polynomial basis functions.
The residual error is estimated a posteriori and incorporated in the energy

estimate for nonlinear stability as a small error term.

We have first applied the framework introduced in Section [I.3] and the above
idea to construct an ASS numerically and establish the finite time blowup of
the De Gregorio model (1.15). We defer our discussion to Section [1.4]

1.3.6.2 The Hou-Luo model

The most essential difficulty in applying our framework to study the Hou-Luo
scenario with smooth data [86] [87] is establishing the linear stability of (|1.6)).
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Due to the difficulties stated in Section and the first paragraph in Section
1.3.6 the stability mechanism of ([1.6) is far from clear. To understand the

stability mechanism, we consider the HL. model proposed in [86]
wi +udpw =0,, 0, +ud,0 =0, u,=Huw, (1.13)

which can be seen as the restriction of the Boussinesq equations (1.3]) to the
boundary. Here, H is the Hilbert transform.

The analysis of the HL. model captures the difficulties of constructing an ASS
and the linear stability analysis in the Boussinesq equations on the bound-
ary, where the potential singularity develops. Firstly, Hou-Luo [86] showed
numerically that the blowup exponents and profiles of the HL. model and the
3D axisymmetric Euler equations on the boundary are quantitatively similar.
Secondly, we obtain numerical evidence that the eigenvalues of the discretized
linearized operator in the HL model all have negative real parts bounded from
above by —0.38, which is similar to that of (about —0.3) reported in [85].

In joint work with Hou and Huang [20], we successfully applied the framework
and ideas in Section [[L3] and the numerical construction in Section [[.3.6.1] to

establish the following result.

Theorem 1.2. There is a family of initial data (6o, wo) with Oy, wy € C,

such that the solution of the HL model (1.13)) develops a focusing asymptotically

self-similar singularity in finite time.

The more precise and stronger statement of the above theorem is given in
Chapter [, We refer to Chapter [4] for the stability mechanism of the HL model
and its implication for (|1.6]).

1.3.7 Energy estimates with computer assistance

We do not require computer assistance in the blowup analysis of the Boussinesq
equations and the 3D Euler equations with O velocity in Chapter [2] and the
DG model discussed in Chapter | For other problems, such as the analysis
of the DG model and HL model with smooth data, we need to use computer

assistance in the following aspects.

Firstly, as discussed in Section [I.3.6.1], we need to construct the ASS numeri-
cally in general. We use numerical analysis with rigorous error control to verify

that the residual error of the ASS is small in the energy norm. Secondly, the
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crucial part of the stability analysis is to use energy estimates to establish lin-
ear stability. In the energy estimates, instead of bounding several coefficients
by some absolute constants, which leads to overestimates, we keep track of
these coefficients. Since these coefficients depend on the ASS constructed nu-
merically, we use numerical computation with rigorous error control to verify
several inequalities that involve these coefficients. We remark that we do not
compute the eigenvalues of the linearized operator £ in the dynamic rescaling

equations to establish linear stability since L is not compact.

1.4 Competition between advection and vortex stretching

The Hou-Luo scenario has significantly advanced the understanding of the
potential singularity formation of the Euler equations with boundary. In the
case without the boundary, the understanding is much poorer. One of the
difficulties is the competition between advection and vortex stretching. In the
Hou-Luo scenario with O velocity, one of our contributions is to show that

the boundary plays a vital role in weakening the advection. See Chapter [2

This competition in the 3D Euler equations has been studied in [72], where
Hou-Jin-Liu considered a family of models of the 3D axisymmetric Euler equa-
tions (2.5)) by adding a weight € to advection in the equations of u’/r,w’/r

0 0 r, 0
Ol 4 e(ud, +ud,) = = —21 L
T T r
o e Y (1.14)
Op— +e(u"0, +u*0,)— = 0.(—)*
r r r

The model reduces to the 3D Euler equations (2.5) when ¢ = 1. The authors
presented numerical evidence that ((1.14) develops finite time singularity for
weak advection (¢ < 0.3), but a similar singularity scenario does not persist

for strong advection. These results suggest the following principle:

The vortex stretching tends to lead to the growth of the solution,

while the advection tends to stabilize the solution.

Note that the stabilizing effect of advection has also been studied in [67, [68]
for the 3D Navier Stokes and Euler equations.

Given the difficulties discussed in Section [1.1] experts have devised simpler

models, which capture some of the difficulties and the above effects and can
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be better understood. De Gregorio [33] 34] introduced an 1D model (DG)

W + uw, = upw, Uy = Hw, (1.15)

to model the effects of advection and vortex stretching in the 3D Euler equa-
tions , where H is the Hilbert transform. The DG model is a modification
of the Constantin-Lax-Majda model (CLM) [101] which does not include the
advection uw, in (1.15). By adding a weight a to the advection uw, in ,
Okamoto et al. [97] introduced the following one-parameter family of models

(sCLM)

Wy + auw, = Uyw, Uy = Hw. (1.16)
The domain of (L.15), can be R or S!'. In these models, uw, and u,w
models the advection u- Vw and the vortex stretching Vu - w in the 3D Euler
equations , respectively. The Biot-Savart law Vu=VVx(-A)lw
is modeled by u, = Hw, which preserves the same scaling. We refer to Section
for basic properties of these models.

1.4.1 Conjectures and open problems

Despite the significant simplifications from the Euler equations to these
models, the analysis of ((1.15) or (1.16) with @ > 0 remains very challenging
since it captures all the three difficulties in Section for the Euler equations,

in particular the competition between advection and vortex stretching. There

are some open problems and conjectures in the literature for ((1.16]) and (1.15)).

(I) Regularity of the DG model The evidence in [33] B34], numerical simu-
lations [88, [07], and the report in [73]| suggest global regularity of from
smooth initial data. These lead to the conjecture in [44], 88, 07| that the DG
model is globally well-posed for smooth initial data. The question of regularity

for the DG model is listed as one of the open problems in [57].

(IT) Finite time blowup of gCLM model It is conjectured in [44] [88], O8]
that the gCLM model ([1.16) with a < 1 can blow up from some C¢° initial

data. A related conjecture was stated earlier in [97].

(III) Finite time blowup of the DG model In [44] 104], it is conjectured
that (1.15) develops a finite time singularity from initial data wy € C* or
wy € H* for any o € (0,1) and s < 3.

The borderline case of these conjectures is the DG model (or the gCLM model

with @ = 1) with w € C'. In such a case, the advection and the vortex
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stretching are balanced, which can be understood by a Taylor expansion near

x =0 for odd u,w
uw, = Uz (0)w,(0)x + Lo.t., uyw = uy(0)w,(0)x + Lo.t., uw, =~ uw. (1.17)

Formally, below the borderline case, i.e. a < 1 or a = 1 with C'* data, the

advection is weaker than the vortex stretching, and blowup may occur, which
is Conjectures (II) and (III).

1.4.2 Finite time blowup

Before our study, the only blowup result of with a > 0 was established
recently by Elgindi-Jeong [44], where they constructed smooth self-similar pro-
files for sufficiently small a and C* self-similar profiles for all a € R with |ac/|
sufficiently small using a fixed point argument. Note that the initial data in
[44] do not have finite energy. There are other blowup results for (1.16)), see
e.g., [B, 26 28, 49]. We refer to Chapter 3| for a detailed review.

Applying the framework in Section [1.3| and the numerical construction in Sec-
tion [1.3.6.1, Hou, Huang, and I [I9] have established the following result.

Theorem 1.3. There ezist some C°(R) initial data such that the solution of
the DG model on R develops an expanding and asymptotically self-similar sin-

gularity in finite time with compactly supported self-similar profile Q € H'(R).

Our result resolves the open problem (I) in the case of R, which has been open
for quite a long time. It also resolves Conjecture (III) and can be seen as the
endpoint case of Conjecture (II). This blowup result does not generalize to the

case of a circle (S1) due to the expanding nature of the blowup solution.

In [14], applying our framework, we proved singularity formation of on
St with C* initial data for any a € (1 — 4§, 1) with some 6 > 0. It resolves the
endpoint case of Conjecture (IT) on S*. On the other hand, for with the
same initial data and a € [1,1 + §), we showed that such a singular scenario
does not persist by proving global regularity of . In [I5], we further
established the singularity formation of on S' with C* N H*® data and
any 0 < a < 1,5 < 2. This result resolves Conjecture (IIT) on S*. In these
works, we need to carefully quantify that the advection is weaker than the
vortex stretching since there is a strong competition between these two effects
(1.17). The behavior of the singular solution is similar to

W = Upw — AU, ~ w? — fw? = (1 — B)w?, wy >0,
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for 5 = a in the first result, and § = «,a = 1 in the second result. As long as
£ < 1, the blowup can occur. The key novelty of these works is that we give a
sharp characterization of two effects and justify the above heuristic using our
framework, which is non-trivial due to the nonlocality of the velocity u. The
C* result [15] relates to an important idea in [44] that the advection can be
weakened by choosing some C'“ data with sufficiently small . However, we

do not require « to be sufficiently small in [15].

1.4.3 Global regularity of the DG model

An important question is whether stronger advection can prevent the above
singularity formations. In fact, in contrast to the above blowup results for the
DG model and gCLM model with a < 1, it is conjectured that the DG model
(gCLM with @ = 1) on S! is globally well-posed for smooth initial data. See
open problem (I) in Section [1.4.1] Due to the destabilizing effect of vortex
stretching, the lack of a-priori conserved quantity, and dissipation in ,
this question has been open for quite a long time. There have been only a few
results in recent years, see e.g., [73, [[0I] and more discussions in Chapter [3|
In [73], Jia-Stewart-Sverak established global regularity for initial data near

the equilibrium sin z by proving its nonlinear stability.

In [15], we considered initial data wy with period 7 and in class X: wy is odd
and wp < 0 (or wyp > 0) on [0,7/2]. The singularity formation of the DG
model and gCLM model in Section and [I3HI5) [19) 44, 49] all develops
from initial data with the same sign and symmetry properties as those in X.
Thus, to establish the global regularity of the DG model on S* with C°° initial
data, we need to address the important question of whether there is a finite

time blowup in this class. We proved the following result:

UJ2 .
Theorem 1.4. Suppose that wy € X N C* and fﬂ/2 - sm(2x)‘d:}c < +o00.

0 wo
There exists a global solution w of the DG model with initial data wy.

w2

We remark that | /2 e sin(2:1:)‘dx < 400 is a mild assumption and holds

0
true for generic data in X. See Chapter [5| for more discussion. This global

regularity result and the blowup result from some C'“ initial data in Section
characterize the regularity of with initial data in X. Moreover,
it justifies that stronger advection can prevent singularity formation of
and on S' and confirms the principle below ((1.14).



17

Recall the heuristic (1.17)). The C! case is the borderline case, and we expect
that the advection is (almost) stronger than the vortex stretching. To prove
global regularity from C' data, we need to quantify this heuristic, which is
very challenging since is nonlocal and there is a transition from finite
time blowup for C* data to global regularity for C* data.

Quadratic form In the special case of wy € C** N X with wy,(0) = 0,
which is the case above the borderline case ((1.17)), the key step is to establish

Wl

it ), w cot? wdr = /02 (Upw — uw,) cot® zdx > 0. (1.18)
The quantity Q(2,t) = OW/2 w cot? zdx distinguishes the C® case and the case
of w € OV with w,(0) = 0 since wcot?z is not integrable for C* data in
general but is integrable in the other case. The above estimate quantifies that
the stabilizing effect of advection is stronger than the effect of vortex stretching
in some sense. We exploit the convolution structure in the quadratic form in
and use an idea from Bochner’s theorem for a positive-definite function
to establish (1.18). It implies that |Q(2,¢)| is monotone decreasing in time,
which is an important a-priori estimate for .

One-point blow-up criterion Another key ingredient in the proof is a cru-
cial one-point blow-up criterion for . Based on a novel equation discov-
ered in [83], we prove that for wy € XNH! with an additional mild assumption,
the solution to cannot be extended beyond 7' if and only if

/T |ug (0, 8)|dt = oo (1.19)

The DG model satisfies the BKM-type blow-up criterion [I] that fOT [|lw(t)|]|sodt
or fOT |2 (t)]|oodt controls the blowup of the solution. For initial data in X,
criterion improves the latter criterion significantly by replacing ||u,]|so
by one point |u,(0)|. Based on the a-priori estimate of Q(2,¢) and (1.19)), we
establish global well-posedness for wy € CY* N X with wy . (0) = 0.

The borderline case of wy € C!' (1.17) is much more challenging since the
advection and vortex stretching are precisely balanced. We will study it in
detail in Chapter [5
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1.4.4 Singularity formation with dissipation

A natural question is whether our framework can be applied to study the
singularity formation of viscous fluid equations. In [13], we gave a positive
answer by generalizing this framework to establish singularity formation of

gCLM with a viscous term
wy + auw, = uyw + vAw, u, = Hw

for a close to % and v > 0. The novelty of our approach is first to show that the
blowup in the inviscid case is stable and then to show that the viscous term
is asymptotically small compared to the nonlinear terms under the blowup

scaling.

Summary of the Thesis

The remaining thesis is organized as follows:

Singularity formation in incompressible fluids

In Chapter [2 we first review some basic properties of the 3D Euler equations
and introduce the Hou-Luo scenario and the dynamic rescaling formulation.
Then we consider the 2D Boussinesq equations and the 3D Euler equations in
a setting similar to the Hou-Luo scenario. We follow the framework introduced
in Section to establish finite time blowup of these equations with bound-
ary and C1“ velocity. The most essential difficulty is establishing the linear
stability analysis of the approximate steady state in Section [2.6, We need to
perform energy estimates carefully and exploit several nonlocal cancellations in
the system. The blowup analysis for C* initial data captures certain essential
features of the Hou-Luo scenario and some essential difficulties in analyzing

such a scenario with smooth data.

Finite time blowup of the De Gregorio model on R

In Chapter (3], we further develop the framework in Section [1.3|for smooth data
and establish finite time asymptotically self-similar blowup of the DG model
on R from C° initial data. Moreover, we prove finite time blowup of
the gCLM model with small |a| from C2° initial data and with any |a|
from C¢ initial data with small |aa|. We will discuss how to construct the
approximate steady state for the DG model numerically and incorporate it in

the energy estimate rigorously in Section [3.5]
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Asymptotically self-similar singularity of the Hou-Luo Model

In Chapter [4] we study the stability mechanism of the blowup in the Hou-Luo
scenario with smooth data using the HL. model. Based on our framework with
numerical construction of the approximate steady state, we establish finite
time asymptotically self-similar singularity of the HL model from a class of
smooth initial data with compact support. Compared to the analysis of the
DG model, the analysis of the HL. model is much more complicated since it is
a coupled system. The analysis of the HLL model serves as an intermediate step

toward the analysis of the full 2D Boussinesq equations with smooth data.

Competition between advection and vortex stretching

In Chapter [5] we investigate the DG model on S* to analyze the competition
between advection and vortex stretching, an essential difficulty in studying the
regularity of the 3D Euler equations. The behaviors of the solutions to the
DG model on S* are much more complicated than those on R. We consider
initial data wy with period 7 and in class X: wy is odd and wy < 0 (or wy > 0)
on [0,7/2]. The importance of this class of data has been discussed in Section
[1.4.3] We prove global well-posedness for initial data wy € H' N X with
wo(z)z™! € L*®. On the other hand, for any a € (0,1), we construct a finite
time blowup solution from a class of initial data with wy € C*NC*>(S1\{0})N
X. Our results imply that singularities developed in the DG model and the

gCLM model on S* can be prevented by stronger advection.

In Chapter [6] we make some concluding discussions toward justifying the Hou-
Luo scenario with smooth data. In addition, we discuss potential applications

of our framework to other equations and list some related problems.
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Chapter 2

SINGULARITY FORMATION IN INCOMPRESSIBLE FLUIDS

In this chapter, we will first present some preliminaries about 3D incompress-
ible Euler equations, the Hou-Luo scenario, and the dynamic rescaling for-
mulation in Section 2.1} These fundamental results relate to three important

ingredients in studying singularity formation.

Firstly, the a-priori energy identity of the equations is not strong enough to
control the nonlinear terms in the equations, and thus finite time blowup could
occur. Secondly, it is useful to consider a specific scenario for potential singu-
larity formation, where the solutions enjoy certain sign and symmetry prop-
erties. These properties are crucial to generating a stable finite time blowup
for the equations and models we study in this thesis. We will consider the
Hou-Luo scenario for the 2D Boussinesq and 3D Euler equations and similar
scenarios for 1D models studied in Chapters [3}j5} Thirdly, the 3D Euler equa-
tions and related equations and models enjoy some scaling symmetries. Based
on the scaling symmetries, we can apply the dynamic rescaling formation and
construct approximately self-similar blowup solutions. This approach allows

us to obtain strong control of the solution up to the blowup time. See also

Section [1.3]

We will discuss the main results and ideas in Section [2.2] and prove the main

results in the rest of the chapter.

2.1 Preliminaries
2.1.1 The blow-up criterion for 3D Euler equations
The 3D Euler equations are locally well-posed for initial data uy €
CY a > 0oru € H* s > 3 |89]. The solution satisfies energy conserva-
tion

[lu@)]| 2 = lJuol| - (2.1)
The regularity of the solution is propagated and the celebrated Beale-Kato-
Majda (BKM) blow-up criterion [I] states that the unique local solution to
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(1.1)) blows up at finite time 7" if and only if

/0 (-, 8)|oedt = oo, 2.2)

The BKM criterion imposes a constraint on the blowup rate of ||w||s. For
example, a blowup rate ||w||e ~ C(T — t)? with 8 > —1 is excluded since
the associated integral is finite. Note that the a-prior: estimate is much
weaker than the one required to control ||w]||~. There are other blowup criteria

[27, B5] based on geometric aspects of the 3D Euler flows.

2.1.2 Symmetry groups

There are several symmetry groups for the Euler equations, including the
Galilean invariance, the rotation symmetry, and the scaling symmetry [89].
The latter two are of fundamental importance in studying the potential sin-
gularity formation of (L.I). Suppose that u(z,t) is a solution to (L.I).

Rotation symmetry. For any orthogonal matrix Q € R**3 ( QT = Q™1),

ug(t, z) 2 QTu(Qu, 1)
is also a solution to (|1.1)).

Scaling symmetry. The Euler equations ([I.1)) enjoy the scaling symmetry

with a two-parameter symmetry group. For any A\, 7 € R,

uy, = éu(x t) (2.3)

T \\' T

is also a solution to (|1.1)).

2.1.2.1 Axisymmetric flows

The rotation symmetry implies an special class of solution to (1.1)), the 3D
axisymmetric flow. Denote by (r, 6, z) the cylindrical coordinate in R?: r =

(22 +y*)'/?, B = arctan(y/z), and e, eg, e, the orthonormal unit vectors
er = (cosf,sin,0)", ey = (sinf, —cosh,0)", e, =(0,0,1)T.
The velocity field u is axisymmetric if

u=u"(r,z,t)e, +u’(r, 2, t)eg + u*(r, 2, t)e,. (2.4)
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The velocity u? is called the swirl velocity. The associated vorticity is given
by

w(r,z,t) =V xu=uw"e, +wley + we,,

w'=-0u", w,= %(rug)r, W= 0" — o,
The rotation symmetry implies that the axisymmetry is preserved by the flow.
Under the axisymmetric assumption, (|1.1)) reduces to the following system for

(u?,w?) on (r,2)

8t(ru9) + ur(rue)r + uz(rug)z =0,

0 0 0

w w w 1
a_ r_r Z_Z:_
tr+u(r)+u(r) 1

(2.5)
2.((ru)?).

The specialty of the 3D axisymmetric Euler equation is that it has a strong con-
nection to the 2D Boussinesq equations, and can be approximated by Boussi-

nesq equations away from the symmetry axis r = 0 [89].

Thanks to the rotation symmetry, we can further impose a reflection symmetry
on the solution to (2.5)). In particular, the following symmetry in z is preserved
by the dynamic

W(r,2) = =(r,—2), uP(r,2) =u’(r,—2). (2.6)

The axisymmetry and the above reflection symmetry provides the most promis-
ing candidate for a potential blowup solution of (1.1]) [86, 87]. See Section

for more discussions.

2.1.2.2 Scaling symmetry and self-similar singularity

Due to the scaling symmetry ([2.3)), it is natural to look for self-similar singu-

larity of (1.1)

Wz, t) = (T_lwwgz((;:i;q), (2.7)

where ¢, ¢; are the blowup exponents, zy € R?, T' > 0 is the blowup time, and

Q) is the blowup profile.

Self-similar singularities develop in many nonlinear PDEs governing physical
phenomena. There are examples in the nonlinear Schrodinger equations |74,
811, [92], 93], the nonlinear wave equation [95], and the nonlinear heat equation

[94]. See [41] for a survey of self-similar singularity.
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There are some efforts in ruling out the self-similar singularity of the 3D Euler
equations [8HI0]. In [8, @], the blowup is excluded if the blowup admits the
power law ||w(t)||ec = O((T — t)7'), and the profile Q has very fast decay [S]
or is small in some specific norm [9]. Nevertheless, possibilities of self-similar
singularity are not entirely ruled out. Recently, there has been important
progress in constructing (asymptotically) self-similar singularity of [16,
42 186], R7]. We refer to Sections for more discussions of these results.

The scaling symmetry is closely related to the dynamic rescaling formulation
[81, 92] and the modulation technique [74], which will be discussed in Section
214

2.1.3 The Hou-Luo scenario

We give more details about the Hou-Luo scenario [86, [87] introduced in Section
for the 3D axisymmetric Euler equations . The solution (w?, u?) enjoys
the axisymmetry and the reflection symmetry in z (2.6). To understand
the Hou-Luo scenario, we consider the Boussinesq equations in R% .

The solution enjoys the following sign and symmetry properties

w(z,y), O(z,y), 0O.(xr,y)>0, z>0, 2.8)

W(%y) = —W(—%y)a Q(x,y) = 9(_5L',y)
The symmetry is the same as (2.6) under the connection w <> w? 8 < (u?)2.
The vorticity induces a clockwise flow in the first quardrant. Due to the sym-
metry in z, we obtain a hyperbolic flow in R . The potential singularity occurs
at the origin (0,0), which is on the boundary and a stagnation point of the
flow. Due to the no-flow boundary condition v(0,y) = 0, along the boundary,
the fluid is compressed at the origin. See Figure for an illustration.

ty w(x,y) = —w(=x,y)
0(x,y) = 6(=x,y)

w>00,>00>0

w<06,<0,0>0

Flow

Singularity\
> ) < X

Solid boundary

Figure 2.1: Ilustration of the Hou-Luo scenario.
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2.1.4 Dynamic rescaling formulation
Our framework of analysis is based on the scaling symmetry in Section [2.1.2]

and the following dynamic rescaling formulation. Let w(x,t),0(x,t),u(x,t) be
the solutions of (|1.3). It is easy to show that

W(x,7) = Cu(m)w(Cy(T)z, t(T)), é(:L‘,T) = Cy(T)0(Cy(1)x, t(T)),

(2.9)
u(z,7) = Co(r)Ci(7) " u(Ci(), (7)),
are the solutions to the dynamic rescaling equations
~7' s + +~'v~:w ~+~xa
w~ (x,7) + (g(T)x + 1) ai Co(T)@ (2.10)
0-(x,7) + (a(r)x +a) - VO =0,
where u = (u,v)” = VH(-A)"'@, x = (z,y)7,
C,(T) =exp </ Cw(S)dT) . Cy(1) =exp (/ —cl(s)ds) :
OT T 0 (2'11)
Co(T) = exp (/ Cg(S)dT) , )= / C,(7)dr,
0 0
and the rescaling parameter ¢;(7), co(7), c,,(7) satisfies
co(T) = (1) + 2¢, (7). (2.12)

Let us explain the above relation. Using (2.9) and (2.11)), we have
-V =Cu(1)u-Vw, 6, =Cy(1)Ci(1)b,.

To obtain (2.10) from (|1.3), we require that the scaling factors of - V@ and
0, are the same, which implies C,,(7)? = Cy(7)Cy(7). Using this relationship

and ([2.11)), we obtain ([2.12]).

The Boussinesq equations have the same scaling-invariant property as
with two parameters. We have the freedom to choose the time-dependent
scaling parameters ¢;(7) and ¢, (7) according to some normalization condi-
tions. After we determine the normalization conditions for ¢;(7) and ¢, (7),
the dynamic rescaling equation is completely determined and the solu-
tion of is equivalent to that of the original equation using the scaling

relationships in (2.9))-(2.11)), as long as ¢(7) and ¢, (7) remain finite.

The dynamic rescaling formulation was introduced in [81, 02] to study the

self-similar blowup of the nonlinear Schrodinger equations. This formulation
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is closely related to the modulation technique, which has been developed by
Merle, Raphael, Martel, Zaag and others. It has been a very effective tool to
analyze singularity formation for many problems like the nonlinear Schrodinger
equation [74] 93], the nonlinear wave equation [95], the nonlinear heat equation
[94], the generalized KdV equation [90], and other dispersive problems. Re-
cently, this method has been applied to study singularity formation in the 3D
Euler and 2D Boussinesq equations [16} 42, [48|, the De Gregorio model [15] [19],
the gCLM model [14, 19, 49], and the HL model for 3D Euler equations [20].

If there exists C' > 0 such that for any 7 > 0, ¢, (7) < —C < 0 and the solution
@ is nontrivial, e.g., ||&(7,)||z< > ¢ > 0 for all 7 > 0, we then have
Co(1) <77, t(oo) < / e “Tdr = C7! < o0,
0
and
[w(Ci(r)z, t(7))| = Co(r) M@ (@, 7)] = el (w, 7)]

blows up at finite time 7' = #(c0). This corresponds to the heuristic (1.4)) in
the Introduction, Chapter . If (&(7),0(7), (1), co(T), co(T)) converges to a
steady state (Weos Uoos Croos Cuwo0s Co.00) Of (2.10]) as 7 — 0o, one can verify that

(2,1) 1 T Cl,oo
w\T - — W D —— = —
’ Lt \a—ty) 7 Como

o)) =G t)clevoo/%oo e (ﬁ) ’

is a self-similar solution of ([1.3)). Due to this connection, we will not distin-

guish the (approximate) steady state of the dynamic rescaling equations and

(2.13)

the (approximate) self-similar profile of the original equations throughout the

thesis.

To simplify our presentation, we still use ¢ to denote the rescaled time in the
rest of the thesis and drop ~ in . A similar formulation and transform
apply to other equations, including the 3D Euler equations, the DG model,
the gCLM model, and the HL model for 3D Euler equations.

2.1.5 Basic notations

Throughout this thesis, we use the notation A < B if there is some absolute
constant C' > 0 with A < CB, and denote A < Bif A < B and B S A.

The notation ~ is reserved for the approximate steady states, e.g., Q denotes
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the approximate steady state for 2. We will use C, C, Cy for some absolute
constant, which may vary from line to line. We use K1, Ko, ... and puq, o, ... to

denote some absolute constant which does not vary.

2.2 Main results and ideas

2.2.1 Main results

The main results of this chapter are summarized by the following two theorems.
In our first main result, we prove finite time blowup of the Boussinesq equations
with C1® initial data for the velocity field and the density.

Theorem 2.1. Let w be the vorticity and 6 be the density in the 2D Boussinesq
equations described by —. There exists ag > 0 such that for0 < a <
o, the unique local solution of the 2D Boussinesq equations in the upper half
plane develops a focusing asymptotically self-similar singularity in finite time
for some initial data w € CX(R?%),0 € C2*(R3). In particular, the velocity
field is CY* with finite energy. Moreover, the self-similar profile (Weo, Oo0)
satisfies wWeo, Voo € C'i0.

By asymptotically self-similar, we mean that the solution in the dynamic
rescaling equations (see Definition in Section [2.1.4]) converges to the self-similar
profile in a suitable norm. We will specify the norm in the convergence in Sec-
tion 2.9.6.3

In our second result, we prove the finite time singularity formation for the 3D
axisymmetric Euler equations with large swirl in a cylinder D = {(r,2) : r <
1,z € T} that is periodic in z (axial direction) with period 2, where r is the
radial variable and T = R/(2Z).

Theorem 2.2. Consider the 3D axisymmetric FEuler equations in the cylinder
r,z €[0,1] x T. Let ¥ be the angular vorticity and u® be the angular velocity.
There exists ag > 0 such that for 0 < a < «ap, the unique local solution
of the 3D axisymmetric Euler equations given by - develops a
singularity in finite time for some initial data W’ € C*(D),u’ € C**(D)
supported away from the axis v = 0 with u® > 0. In particular, the velocity

field in each period has finite energy.

Our analysis shows that the singular solution in Theorem in the dynamic

rescaling formulation remains very close to an approximate blowup profile
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in some norm (see Section [2.10)) for all time (or up to the blowup time in

the original formulation). It is conceivable that it converges to a self-similar
blowup profile of 2D Boussinesq at the blowup time so that the blowup solution
is asymptotically self-similar. However, we cannot prove this result using the
current analysis since the domain D is not invariant under dilation. We leave

it to our future work.

In the recent works [43] 45], Elgindi and Jeong proved finite time singularity
formation for the 2D Boussinesq and 3D axisymmetric equations in a physical
domain with a corner and C°® data. The domain we study in this chapter
does not have a corner. In the case of the 3D Euler equations, our physical
domain includes the symmetry axis. In comparison, the domain studied in

[43] does not include the symmetry axis.

2.2.2 Main ingredients in our analysis
Our analysis follows the framework developed by Elgindi in [42] and our frame-
work introduced in Section [I.3] We use the Boussinesq equations to illustrate

the main ideas in our analysis.

Guided by the framework in Section[I.3] we reformulate the equations using an
equivalent dynamic rescaling formulation (see e.g., [81],92]). We follow [42] to
derive the leading order system. In the derivation, we have used the argument
in [42] to obtain the leading order approximation of the stream function for
small ov. Moreover, as observed by Elgindi and Jeong in [44] (see also [42]),
the advection terms are relatively small compared with the nonlinear vortex
stretching term when we work with C'* solution with small « for vorticity or
V0, which vanishes weakly near the origin, e.g., |x|* In the 2D Boussinesq
equations (2.16)-(2.17)), the vortex stretching term for the w equation is given
by 6,. Within the above C'* class of solution, the transport term u - Vw may
not be smaller than #,.. For example, one can choose w, 6 so that u-Vw = O(1)
and 6, = O(1). We further look for solutions of the 2D Boussinesq equation
([2.16)-([2-17) by letting w = aw, § = af with @ = O(1) and § = O(1) as
a — 0. Formally, the nonlinear transport term u - Vw becomes relatively
small compared with 6, due to the weakening effect of advection for C* data
and the weak nonlinear effect due to the fact that w = O(«a) and 6, = O(«)
for small a at a given time. Thus, we can ignore the contributions from the

advection terms for small o when we work with this class of w and 8. See more



28

discussion in Section [2.3.4] In addition, inspired by our own computation of
the Hou-Luo singularity scenario [86], 87], we look for # that is anisotropic in
the sense that 6, is small compared with 6,. We will justify that this property
is preserved dynamically for our singular solution. As a result, we can decouple
the 0, equation from the leading order equations for w and 6,. This gives rise
to a leading order coupled system of Riccati type for w and 6, which is similar
to the scalar leading order equation obtained in [42]. Inspired by the solution
structure of the leading order system in [42], we are able to find a class of

closed form solutions of this leading order system.

The most essential part of our analysis is to establish linear stability of the
approximate steady state using the dynamic rescaling equations. Following
the strategies in Section [I.3.1] we design some singular weights to extract the
damping effect from the linearized operator around the approximate steady
state. In order for the perturbation from the approximate steady state to be
well defined in the weighted norm with a more singular weight, we impose
some vanishing conditions on the perturbation at the origin by choosing some
normalization conditions. This leads to some nonlocal terms related to the

scaling parameter ¢, in the linearized equations, which are not present in [42].

Compared with the scalar linearized equation considered in [42], the linearized
equations for the 2D Boussinesq equations lead to a more complicated coupled
system and we need to deal with a few more nonlocal terms that are of O(1) as
a — 0. Thus we cannot apply the coercivity estimate of the linearized operator
in [42], which is one of the key steps in constructing the self-similar solution in
[42]. One of the main difficulties in our linear stability analysis is to control the
nonlocal terms. If we use a standard energy estimate to handle these nonlocal
terms, we will over-estimate their contributions to the linearized equations
and would not be able to obtain the desired linear stability result. Since the
damping term has a relatively small coefficient, we need to exploit the coupling
structure in the system and take into account the cancellation among different
nonlocal interaction terms in order to obtain linear stability. For this purpose,
we design our singular weights that are adapted to the approximate self-similar
profile and contain different powers of R~* to account the interaction in the
near field, the intermediate field and the far field. To control the nonlocal
scaling parameter c,, we will derive a separate ODE for ¢,, which captures

the damping effect of c,.
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We have used the elliptic estimate and several nonlinear estimates from [42] in
our nonlinear stability analysis. The presence of swirl (the angular velocity u?)
or density (#) introduces additional technical difficulties. Since the approxi-
mate steady state for V# does not decay in certain direction, we need to design
different weighted Sobolev spaces carefully for different derivatives and further
develop several nonlinear estimates. To obtain the L> estimate of a directional
derivative of 6, which is necessary to close the nonlinear stability analysis, we
make use of the hyperbolic flow structure. Once we obtain nonlinear stability,
using the ideas in Section [1.3.3] we establish finite time blowup from a class
of compactly supported initial data wy and 6, with finite energy by truncating
the approximate steady state and using a rescaling argument. We further es-
tablish convergence of the solution of the dynamic rescaling equations to the
self-similar profile using a time-differentiation argument introduced in Section
[[.3.4] This argument has also been used in our recent joint work with Hou
and Huang in [19] and developed independently in [42].

2.2.3 From the 2D Boussinesq to the 3D Euler equations

For the 3D Euler equations, we consider the domain within one period, i.e.
Dy ={(r,z) : 7 €]0,1], |2] < 1}. We will construct a singular solution that is
supported near r = 1,z = 0 up to blowup time and blows up at »r =1,z = 0.
Since the support is away from the symmetry axis, we show that the 3D Euler
equations are essentially the same as the 2D Boussinesq equations up to some
lower order terms. This connection is well known; see e.g., [89]. Then we
generalize the proof of Theorem to prove Theorem [2.2] To justify this
connection rigorously, we need two steps. The first step is to establish the
elliptic estimates in the new domain. The second step is to control the support
of the solution and show that it remains close to r = 1, z = 0 up to the blowup

time.

2.2.3.1 Control of the support

The reason that the support of the singular solution remains close to (r, z) =
(1,0) is due to the following properties of the singular solution. Firstly, the
singular solution is focusing, which is characterized by the rescaling parameters
(1) > 5= for all 7 > 0. See the definition of ¢ in Section . Secondly,
the velocity in the dynamic rescaling formulation has sublinear growth in the

support of the solution. These properties hold for the singular solution of the
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2D Boussinesq equations. We prove that they remain true for the 3D Euler
in Section [2.10] Using these properties, we derive an ODE to control the size
of the support and show that it remains small up to the blowup time. See
more discussion in Section 2.10.3.5l Similar ideas and estimates to control the
support have been used in [19] to generalize the singularity formation of the

De Gregorio type model from the real line to a circle.

2.2.3.2 The elliptic estimates

The elliptic equation for the stream function 1/;(7“, z) in Dy reads
- 1 1,
L= —(0p + ;& + 0.0+ ﬁ¢ =uw’, (2.14)

where w? is the angular vorticity. We impose the periodic boundary condition
in z and a no-flow boundary condition on 7 = 1 : 9(1,2) = 0. See [6, 89].
Since the solution is supported near r = 1,z = 0, we will only use 12(7’, z) for
(r, z) near (1,0) in our analysis. In this case, 7~! & 1 and the term —%&@E—l— %21;
in £4) is of lower order compared with 9,,¢) 4+ 9,,4. In the dynamic rescaling
equations, we obtain a small factor C;(7) for the term —%&AZJ + T%z; and treat
it as a perturbation in £i. Moreover, if we relabel the variables (r, z) as (y, )
in R2, we formally have £¢ ~ —A,pt. In Section , we will justify this
connection rigorously and then generalize the elliptic estimates that we obtain

for the 2D Boussinesq to the 3D Euler equations.

2.2.4 Connections to the Hou-Luo scenario

Many settings of our problem are similar to those considered in [86, 87]. See
more discussions after Lemma [2.4.1. The driving mechanism for the finite
time singularity that we consider in this chapter is essentially the same as that
for the 3D axisymmetric Euler equations with solid boundary considered in
[86, 87]. In both cases, the swirl (the angular velocity v’ ) and the boundary
play an essential role in generating a sustainable finite time singularity. It is
the strong compression of the angular velocity u? toward the symmetry plane
z = 0 along the axial (z) direction on the boundary r = 1 that creates a
large gradient in u’. Then the nonlinear forcing term 0, (u%)? induces a rapid
growth in the angular vorticity w’, ultimately leading to a finite time blowup.
Moreover, the singularities that we consider occur at the solid boundary, which

are the same as the one reported in [86], 87].
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We would like to emphasize that the presence of boundary plays a crucial role
in the singularity formation even with C1¢ initial data for the velocity and 6.
If we remove the boundary, a promising potential blowup scenario for the 2D
Boussinesq equation is to have a hyperbolic flow structure near the origin with
4-fold symmetry for 6, i.e. 6 is odd in y and even in z. Similar scenario has
been used in [106]. Since §(z,y) is odd with respect to y and § € C1<, a typical
0 is of the form: 0(z,y) ~ ciax'™®y + l.o.t.,c; # 0 near the origin. From our
derivation and analysis of the leading order system, it is the nonlinear coupling
between w and 6, that generates the blow-up mechanism. However, without
the boundary, 6, = c;a(1 + a)z®y + l.o.t. and it does not vanish to the order
O(Jy|®) near y = 0 with a small exponent x > 0. The advection of 6, along
the y direction is not small compared with the vortex stretching term —u,0,
in the 6, equation . Thus, we can no longer neglect the contribution
from the y advection term and we cannot derive our leading order system in
this case. In fact, the transport of 8, along the y direction provides a strong
destabilizing effect to the singularity formation and would likely destroy the

self-similar focusing blowup mechanism [67, [68].

If we approximate the velocity field (u,v) by (zu,(0,0,t),yv,(0,0,t)) (note
that w,(0,0,t) + v,(0,0,¢) = 0) as was done in a toy model introduced in
[42], we have the following result. For any wg, V6, € C¥(R?), which is in the
local well-posedness class for the 2D Boussinesq equations [I1], under the 4-
fold symmetry assumption, the solution of the toy model exists globally. The
key point is that due to the odd symmetry of 6y with respect to y and the
assumption that 6, € C' 6y must vanish linearly in y, i.e. [0(z,y)| < |y|.

The proof follows an estimate similar to that presented in [42] and we defer it
to Appendix [A.0.8

In the presence of the boundary (y = 0), # can be nonzero on y = 0, which
removes the above constraint |0(z,y)| < |y|. Then we can further weaken the
transport terms in the 2D Boussinesq as discussed in Section [2.2.2] Although
the leading order system for the 2D Boussinesq equations and the 3D Euler
equations with b initial velocity and the boundary looks qualitatively sim-
ilar to that for the 3D Euler equations without swirl and without boundary
obtained in [42], the physical driving mechanisms of the finite time singularity
behind these two blowup scenarios are quite different. In our case, the swirl

and the boundary play a crucial role. Our numerical study suggests that even
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for smooth initial data, 0, is an order of magnitude larger than 6, and the ef-
fect of advection is relatively weak compared with the vortex stretching term.
More importantly, Liu [85] provided a strong evidence that the linearized op-
erator should be stable even for smooth initial data. See Section [[L3.1] for the
discussion. The essential step in proving this rigorously is the linear stability
analysis, which requires us to estimate the Biot-Savart law without the avail-
ability of the leading order structure for C1® velocity and control a few more
nonlocal terms that we can neglect using the C'' initial data. In some sense,
our blowup analysis for O initial data captures certain essential features of
the Hou-Luo scenario 86, [87] and some essential difficulties in analyzing such

a scenario.

Organization of the Chapter The rest of the chapter is organized as
follows. In Sections [2.342.5] we provide some basic set-up for our analysis,
including the derivation of the leading order system, the dynamic rescaling
formulation, the reformulation using the polar coordinates (R, ), and the
construction of the approximate self-similar solution. Section [2.6] is devoted
to the linear stability analysis of the leading order system. In Section [2.7]
we perform higher order estimates of the leading order system as part of the
nonlinear stability analysis. Sections and are devoted to the nonlin-
ear stability analysis of the original system. In Section we extend our
analysis for the 2D Boussinesq equations to the 3D axisymmetric Euler equa-
tions. Some concluding remarks are provided in Chapter [6] and some technical

estimates are deferred to Appendix [A]

Notations We use (-, -),||-||z2 to denote the inner product in (R, 3) and its

L? norm

oo pm/2
(f.9) = /0 /0 f(R.A)g(R. B)dRAB, ||flle = V). (215)

We also simplify ||-||z2 as || -|]o. We remark that we use dRdf in the definition
of the inner product rather than RdRdp.

2.3 Derivation of the leading order system
In this section, we will derive the leading order system used for our analysis

later in the chapter. We first recall that the 2D Boussinesq equations on the
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upper half space are given by the following system:

wet+u-Vw=146,, (2.16)

6 +u-V0 =0, (2.17)
where the velocity field u = (u,v)” : R% x [0,T) — R? is determined via the
Biot-Savart law

—AY=w, u=-—1, v=1,, (2.18)
with no flow boundary condition
P(z,0)=0 ze€R
and 1 is the stream function. The reader should not confuse the vector field
u with its first component w.

The 2D Boussinesq equations have the following scaling-invariant property. If

(w, ) is a solution pair to (2.16))-(2.18]), then
1 x t A f(xt
)= w20, O (et =20 (2,2 2.19
e =to(5.5) onn=50(51) 2o

T T2

is also a solution pair to (2.16)-(2.18)) for any A\, 7 > 0.

Next, we follow the ideas in Section 2.2.2] to derive the leading order system

for the solutions w, VO € C* with small «.

2.3.1 The setup
We look for a solution of (2.16])-(2.18|) with the following symmetry

W({L‘,y) = _w<x7 _y)7 Q(ZE,y) = 0(_I>y)

for all z,y > 0. Accordingly, the stream function ¢ (2.18) is odd with respect

to x

’QZ)(I‘, y) = —@Z)(—ZL‘, y)

It is easy to see that the equations (2.16)-(2.18)) preserve these symmetries
during time evolution. With these symmetries, it suffices to solve ([2.16])-(2.18))

on (z,y) € [0,00) x [0, 00) with the following boundary conditions

w(xao) = 2b(oay) =0

for the elliptic equation ([2.18]).
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Taking x,y derivative on ([2.17)), respectively, we obtain

we+u-Vw =0, (2.20)
O +u -V, = —uy0, —v,0,, (2.21)
O +u-Vo, = —u,0, —v,0,. (2.22)

Under the odd symmetry assumption, we have u(0,y) = 0. If the initial data
0(0,y) = 0, this property is preserved. Therefore, we can recover ¢ from 6, by
integration. We will perform a-prior estimate of the above system, which is

formally a closed system for (w,0,,6,).

2.3.2 Reformulation using polar coordinates

Next, we reformulate (2.20))-(2.22)) using the polar coordinates introduced by
Elgindi in [42]. We assume that oo < 1/10. We introduce

r=+/2?2+y? p=arctan(y/x), R=r17,

Notice that rd, = aR0r. We denote

AR, 6.0) = wlwy.0), ¥=—3b, n(R6.1) = (6:)(x.0,0)

(2.23)
E(R,B,t) = (0y)(z,y,1).
We have
= o0, - g, = anay - g,
9,  sin(8), + =Wy, qufﬁ ) o R + Cosr(ﬁ )95, 2
Then using (2.18), we derive
u=—(r*V), = —2rsin ¥ — arRsin fOxrY — r cos BV, (2.25)

v = (r*¥), = 2rcos Y + ar R cos BOrY — rsin 05 V.

Using the new variables R, 3, we can reformulate the Biot-Savart law (2.18)

as
—0a?R?*Opp¥ — a4 + @) RORVY — 0550 — 4V = () (2.26)

with boundary condition
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For the transport term in ([2.20)-(2.22)), we use (2.24) to derive

u&t + Uay — —(aRﬁﬁ\If)GR + (2‘11 + ozR@R\I/)Qg. (227)

Recall the notations Q,7,¢ in (2.23) for w,6,,6, in the (R, ) coordinates.
Using ([2.27)), we can rewrite (2.20))-(2.22)) in (R, 8) coordinates as follows

O+ (= (@RO59)0n + (29 + aRORD)I3 )2 =, (2.28)
N + ( — (aROV)0R + (2¥ + aRE)R\I/)85>77 = —un — &, (2.29)
&+ (= (QROW)Ip + (20 + aROR®)0s )€ = —uyn — vy6. (2.30)

The formulas of Vu in (R, ) coordinates are rather lengthy and presented in

E150).

2.3.3 Leading order approximations of the Biot-Savart law and the
velocity

Next, we use an important result of Elgindi in [42] to obtain a leading order

approximation of the modified stream function. Using this approximation, we

can simplify the transport terms and Vu, and further derive the the leading
order system of ([2.28])-(2.30)).

Following [42], we decompose the modified stream function ¥ as follows
1
U = —sin(25)L12(2) + lower order terms,

yiyes
0o /2 o
L15(2) = /R /0 8111(2519(37 mdsdﬁ.

For w € C% with sufficiently small « > 0, the leading order term in W is

(2.31)

given by the first term on the right hand side. The lower order terms (l.o.t.)
are relatively small compared to the first term and we will control them later
using the elliptic estimates. We will perform the L? estimate for the solution
of and one can see that the a-priori estimate blows up as a — 0. For

a =0, (2.26) becomes
Lo(V) = —0pp ¥ — 40,

with boundary conditions ¥(R,0) = W(R,7/2) = 0, which is self-adjoint and
has kernel sin(2/3). In this case, to solve Lo(¥) = ), a necessary and sufficient

condition is that € is orthogonal to sin25. Imposing this constraint when we

perform the elliptic estimate leads to the leading order term in ¥ (2.31)).
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Following the same procedure as in [42], we drop the O(«) terms in (2.24)),
(2.25) and the lower order terms in (2.31) to extract the leading order term of

the velocity u, v

2 2 si
_IreosB @)+ lot, ve= 2T ) Lo,

ey e (2.32)

Uy = —Vy = _ELIQ(Q) +lot., wu,=lot., wv,=1Llot.

u =

The complete calculation and the formulas of the lower order terms are given

in (2.150)-(2.152)). Similarly, the leading order term in the transport terms
(2.27) is

- (OéRag\If)aR + (2\11 + OéRaR\I/>aﬁ
2 2 (2.33)
= — —cos(206)L12(Q)ROR + — sin(25)L12(2)05 + l.0.t.
T T

Later on, we will prove that the self-similar blowup is non-linearly stable and
we will control the above lower order terms using the elliptic estimates. These
terms will be treated as small perturbations and are harmless to the self-similar

blowup.

2.3.4 Decoupling and simplifying the system

We will look for solution 8 of ([2.20)-(2.22) (or equivalently (2.28)-(2.30)) such
that 6, € C%, 0, is odd, and 0, is relatively small compared to 0,, i.e. 0 is
not isotropic. The anisotropic property of 8 will enable us to further simplify
—. The reason that we have this property is due to the following
key observation. For the purpose of illustration, we construct a function 0 that

has the same qualitative feature as our solution 6. We first construct 6, of the

form: 6, = W for 2,4 > 0. Then for z,y close to 0, we have
1 1+« af 2 2\ /2
. ' x | |9y|%‘ a wmy  z(@+y) < b,
14+a 1+ (1'2 +y2)a/2 1+« 12 +y2 (1 + (:[2 +y2)a/2)2
(2.34)

Compared to 0, 0, is relatively small. Equivalently, ¢ is small relative to

n. Moreover, £ is weakly coupled with Q,7 in (2.28])-(2.29) since v, = l.o0.t.
according to (2.32)). Hence, we can decouple ¢ from the 1 equation in (2.29)

as follows

m+ (= (@RO;W)0p + (20 + aRORW)D; )n = ~ugn + Lot
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These key observations motivate us to focus on the system ([2.28))-(12.29)) about
Q,n.
Using the calculations of Vu (2.32)), the transport terms (2.33)) and treating
¢ (6,) as a lower order term, we can simplify ([2.28)-(2.30) as follows

Q — 2 cos(2/3) L12(2) RORS2 + % sin(28)L12(Q2)05Q2 = n + l.o.t., (2.35)
T T

2 2 2
M — % COS(2B)L12(Q)R8}{7] + E sm(?ﬁ)ng(Q)@ﬂn = ELIQ(Q)T} + l.O.t.,
(2.36)

where the equations are evaluated at (R,3) with R = (2 + y?)*/%,3 =
arctan(y/z). Notice that in (2.36]), the first transport term looks much smaller
than the other transport term and the nonlinear term which contains a 1/«
factor. Thus we can ignore it in our leading order approximation. For the
angular transport term, we use an argument introduced in [42] and look for

approximate solutions (€2, 7) of the form

Q(Rvﬁat) = O'/F(6>Q*(R7 t)a n(Raﬁat) = O‘F(ﬁ)n*(}%a t)a F(ﬁ) = (COS(B))OC'
(2.37)
We have added the factor a in the above form, which is slightly different from

[42]. For g € [0,7/2], we gain a small factor a from the angular derivative:

|5in(28)050(8)| = |2a sin?(8) (cos(8))°] < 2aT(8).

Hence, the angular transport term in ([2.36)) becomes smaller compared to the

nonlinear term.

Using (2.37) and the above estimate, formally, we obtain that the transport
terms in ([2.35)) is of order o and 7 in ([2.35)) is of order a. Therefore, we drop
the transport terms in (2.35)). This additional consideration is not required in

[42] for 3D asymmetric Euler without swirl.

We remark that in our dynamic rescaling formulation, n is comparable to the

nonlinear term o ' L15(Q)n. Therefore, we drop the transport terms and the

lower order terms in ([2.35),(2.36)) to derive a leading order system for (€2, 7)

oo pm/2 :
Q=n n= ile(Q)n, L15(Q2) = /R /0 9(57@58111(26)(15(16.

™ (2.38)

It is not difficult to see that if the initial data 2,7 are non-negative and are

odd with respect to x, the solutions preserve these properties dynamically. In
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the first equation, (2 tends to align with n during the evolution. Then the
nonlinear term in the second equation is of order n?, which is the driving force

of finite time singularity of the leading order system.

2.4 Self-similar solution of the leading order system

The leading order system is crucial in our analysis and it captures the
leading behavior of the blowup solution of the Boussinesq equations —
(2.18). In this section, we construct the self-similar solution of the leading
order system for (£2,m). Notice that L12(€2) does not depend on the
angular component . Inspired by the solution structure of the leading order
system in [42], we look for a self-similar solution in the form

(R, B.1) = (T — 1), (ﬁ) r(g),

R 5 = (7= 07 (e T(S)

where ¢, ¢, ¢y are the scaling parameters. The reason that we use the scal-

R

Tor =
[e7

<W) , where r = /a2 4+ y2. Factor (T — t)® corresponds to the scaling

of the original variables x,y and (T" — t)® is the scaling of 6 in (2.20])-(2.22)).

See (2.19) for the scaling invariance of the Boussinesq equations.

ing factor (1" — t)*““ in the space variable R is that R = r® and

Plugging the self-similar solutions ansatz into ([2.38]), we obtain
— (T — ) e, (2)L(B) + (T — )™ Lagz0,Q.(2)T(B)
(T — ), (=)T(8),
— (T =)~ (g — e ()L (B) + (T = )~ a2, (:)0(8) (239

BN L)

e’

w/2
ds / T'(8) sin(28)dB,
0

where z = R- (T'—t)~*@ > 0. From the above equations, we obtain that the

scaling parameters (c,, ¢;, cg) satisfies
Cw—1l=cop—c¢, coy—c—1=c,+cy—q,
which implies
co=—1, coy=c +2.
Denote

c=— /07r [(B) sin(28)dp.

™
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Plugging the relations among the scaling parameters into ([2.39) and factorizing

the temporal variable, we derive

aqz0,Q0.1(6) = —Q.I(B) + nL(B),

. () (s 2.40
aczd.nL(8) = —2n(8) + amf(ﬂ)/ 2 )ds. (2:40)

S

We can factorize the angular part I'(5) to further simplify the above equations.

Surprisingly, the above equations have explicit solutions of the form

az 1
Q* — 5, —_ —
(2) (b+ 2)? “T
(recall that z > 0). We determine 7, from the first equation in ([2.40))
2abz
T]*(Z) = @CZZ&ZQ* + Q* = z@ZQ* + Q* = m
Then (7., §2) solves (2.40) exactly if and only if
[es) Q*
20,My + 21, — E77*/ ﬁds =0
a ), s
which is equivalent to
0 6abz N 2ab dabz ¢ 2abz a 2ab(—3ab + ac)z
= Z —_ _— — —
b+2* (b+2)3) (b+2)?2 ad+2)3b+=z2 alb+ 2)*
Hence, we obtain

_ 3ab
==
Using the above formula, we can derive the solutions (€,,n.) of (2.38). We

remark that there is a free parameter b in the solutions (€2, 7,). After we

a

impose a normalization condition, e.g., the derivative of €2, at z = 0, we can
determine b. For simplicity, we choose b = 1 and then a becomes a = 3a/c.

Consequently, we obtain the following result.

Lemma 2.4.1. The leading order system (2.38)) admits a family of self-similar

solutions
1 R 1 R
QR,B,1) = %m (B)SL (ﬂ) , n(R,B,t) = %WF(@T}* (m
for some T > 0, where
3 6 9 [T/2
) = T - e oo / D(8) sin(28)d5 # 0.

We will choose I'(8) = (cos(f))® in the later discussion.

)
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Properties of §,,w The self-similar profile (€2, ) of the leading order system
(2.38]) in Lemma is indeed anisotropic in x, y direction. Moreover, 6, and
w are positive in the first quadrant. For I'(5) = (cos(5))*, the self-similar

profile of 6, in the first quadrant is
R i
0,=Cal'(f)——= =C ,
al'(B) (1+ R)3 a(l + (22 + y?)o/2)3
for some constant C. If 22+ is small, the formal argument ([2.34) shows that

0, is relatively small compared to 6,. We will estimate it precisely in Lemma

[A.0.8in Appendix [A]

Hyperbolic flow field The leading order of the flow structure correspond-

ing to the self-similar solution of the leading order system can be obtained

using ((2.32)

ma 1 3 T 3
Lo@)(8. 5.0 = 5537 YR/(T—t) 2 (T-0)+R
B 3rcos 3 _ 3rsin(p)
u(z,y,t) = EDE: +lot., wv(z,yt)= EDET + Lot

In the first quadrant, the flow is clockwise since u < 0,v > 0. Moreover, the
odd symmetry of w implies that the flow is hyperbolic near the origin. These

properties of the solutions are similar to those considered in [86, [87].

2.5 The dynamic rescaling formulation

Applying the dynamic rescaling formulation in Section 2.1.4] we obtain the

dynamic rescaling equations of (2.20)-(2.22) with Biot-Savart law (2.18) in
E10)- 1)

2.5.1 Reformulation using the (R, ) coordinates

Taking x,y derivative on the 6 equation in ([2.10)), we obtain a system similar
to (2.20)-(2-22).
wi + (gx+u) - VO, = c,w+ 0,
Ot + (ax +u) - VO, = (cog — ¢ — uy)0, — v,0,, (2.41)
Oy + (ax+u) - VO, = (cg — ¢, — vy)8y — uyb,,

where we have dropped *~ to simplify the notations. We make a change of

variable R = r®, = arctan(y/z) and introduce

Q(R7 /87 t) = W($, y7t)’ n(R’/B7 t) = (91')(x7 y’t)7 £(R7 /87 t) = (Qy)(x7 y’t)
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in (2.41) as we did in Section Notice that the stretching term and the

damping term satisfy
ax-Vw(x,y,t) = qrow(r, 5,t) = aqROrQUR, ,t), cow(z,y,t) = c,QR,B,t),

and similar relations hold for 6,,6,. The reformulated system (2.41]) under
(R, ) coordinates reads

Q + aqRIRQ+ (u-V)Q =, +1n
e + acROgn + (u- V)n = (2¢, — ug)n — 0.8 (2.42)
&+ aqRORE + (u- V)E = (2¢, — vy)€ — uyn,

with the Biot-Savart law in the (R, ) coordinates and , where
we have used ¢y — ¢ = 2¢, . For now, we do not expand u - V using
and ug, Uy, Uy, v, due to their complicated expressions. Using the same
argument as that in Section , the leading terms in are given by

Q + aqROR) = ¢,Q0+n+lo.t.,
2
n + acROgn = (2¢, + ELH(Q)M + lo.t., (2.43)
2
ft —+ OéClRaR£ = (2@, — ELIQ(Q))f -+ l.O.t.,

where we have dropped the transport terms and simplified u,, uy, v, vy, u/x,v/y
using (2.32). We remark that the first two equations in (2.43) are exactly the

dynamic rescaling formulation of the leading order system ([2.38]).

2.5.2 Constructing an approximate steady state

Notice that the system captures the leading order terms in the system
(2.42) and that the self-similar profile of corresponds to the steady state
of the first two equations in (2.43) after neglecting the lower order terms. It
motivates us to use the self-similar solutions of in Lemma as the
building block to construct the approximate steady state of . Firstly, we

construct

3R 6R
YR n(R,B) = %F(ﬁ)— Co = —1,

Q(R. B) = ZT(8) e

(2.44)

/2
Gm 3 () = (cos(@)" c== [ T(B)sina)s

Notice that (Q,7) is a solution of (2.40) with ¢, = 2. We modify & so that the

approximate error vanishes quadratically near R = 0, which will be discussed
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later. The corresponding 6 can be obtained by integrating 6, with condition
0(0,y) = 0, which is discussed in Appendix m, and @, v are obtained from
the Biot-Savart law (2.25)), (2.26)). We can derive the leading order terms using

E31) and @32

oo /2 O : .
L@ :/R /0 2 Q(s,ﬁ)ssm(Qﬁ)dS T 3a T sin(28) 3 Lot
_ 2

214+ R’ 2 1+R

3
Ugp = —Ey = —Eng(Q) +lot. = 1—|——R + l.O.t., ﬂy, Uy = l.o.t.
(2.45)

We will explain later why we choose the above I'(3). Lemma in Appendix
shows that I'(3) is essentially equal to the constant 1 in some weighted norm.

We define the error of the approximate steady state below
E,2¢,Q+17—agROgQ — (u-V)Q,

£ (2, — Uy)7) — V,€ — ac ROgN — (- V)1, (2.46)

Fe £ (26, — v,)€ — 1,7 — ag RORE — (- V)E.

e

The criteria to choose I' in (2.44) is that F,, F;,, Fr vanish quadratically near
R = 0 since we will perform energy estimates with a singular weight in the
later sections. Using the formula (2.27) for « - V and (2.44)), one can obtain

the following expansion of F,, near R =0

_ _ -~ 9aR

F, = —3aR0pY — (u-V)Q = L(af cos(23) — sin(28)95T — al') + O(R?),
c

where we have used the explicit formula (2.44)) in the first equality and the

factor 3 comes from ¢ = 1 43 in (2.44). In order for F,, to vanish quadratically

near R = 0, we have no choice but to set the coefficient in the O(R) term to

be zero, which gives
al'cos(283) —sin(25)0sI" — o’ = 0.

To solve the above first order ODE for I', we choose the boundary condition
I'(r/2) = 0 and requires I'(5) > 0 for 8 € (0,7/2]. The solution of this ODE
is exactly given by the formula of I'(3) in . As we can see, such choice
of I' is unique and is a consequence of the condition that F, = O(R?) near
R = 0. This condition plays an essential role in our stability analysis for the
approximate self-similar profile. With this T'(3), we also have F,, F; = O(R?)
near R = 0. We justify these rigorously in Section [2.9
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2.5.3 Normalization conditions
For initial data Q + Q,7 +n,& + € of (2.42)), we treat 2,7, ¢ as perturbation

and choose time-dependent scaling parameters ¢; + ¢, ¢, + ¢, as follows

() = ——Lin(Q)(0),  at) = 22 Ly(@)(0) = ~—Le(t).
(2.47)

T a 7o
Here, ¢;(t), ¢, (t) are treated as the perturbation of the scaling parameters ¢, ¢,,.

Suppose that Fq(t), F),(t), Fe(t) are the time-dependent update in (2.42)),i.e.
Fo(t) = (cot0)(Q+Q)+ (n+7) — e +a)ROR(Q+Q) + ((u+1) - V) (Q+Q),

and so on. The reason we choose (2.47) is that we want Fo(t), F;,(t), Fe(t)
vanishes quadratically near R = 0 for any perturbation Q(t),n(t),£(t) that

vanishes quadratically near R = 0, so that we can choose a singular weight to
analyze the stability of the approximate steady state. Similar consideration
has been used in our previous work with Hou and Huang on the asymptotically
self-similar blowup of the Hou-Luo model from smooth initial data [20]. We

will provide rigorous estimates for these terms in Section [2.9]

2.6 Linear stability

We present our linear stability analysis in this section. In Section [2.6.1] we
linearize the dynamic rescaling formulation in the (R, ) coordinates
around the approximate steady state (Q,7,&,6,¢,). In Section we
outline the steps in the linear stability analysis. In the rest of the Section,
we establish the linear stability of the leading terms in the linearized sys-
tem. Throughout this section, we use ,n,&, ¢, ¢, to denote the perturba-
tions around the approximate profile and assume that Q € L%(p),n €
L?(p), & € L*(¢) for some singular weights ¢, 1) to be determined later.

2.6.1 Linearized system
We linearize (2.42)) around (2,79,€,¢,¢,) (2.44) and derive the equations for
the perturbation €2, 7, £ as follows

Qi+ (1 +3a)RORQ+ (0 - V)Q = —Q + 1 + ¢,(Q — RORQ)
+ (ac, RO — (u-V))Q + Fg + N,
V)0 = (=2 = ta)n = uaT) + €u(20] — RORM)
+ (ac,ROp — (u- V) — v, — 0, + F, + Ny,
& + (1 +3a)ROpE + (- V)E = (=2 — 0,)€ — v,€ + cu(2€ — RIRE)
+ (acuROp — (0- V)€ — uyf] — Gy + F + N,

+ (
e + (1 + 3a) ROgn + (T - (2.48)
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where we have used ¢ = 1/a+3,¢, = —1 (2.44), ac(t) = c,(t) — ac,(t) (2.47)
and —acROrg = —c,RORg + ac,ROgg for g = Q,1,€. The error Fq, F,, Fy
are defined in (2.46)) and the nonlinear terms are defined below

Ng = c,Q+1n— aqRIg — (u- V)Q,
N, = (2¢c, — uy)n — v:€ — aqROgn — (u- V), (2.49)
Ne = (2¢, — vy)€ — uyn — aqRORE — (u- V)E.

We focus on the linearized equation of (2.48)). From (2.33) and ([2.45]), we have

BQRGR +u- V = 2@% + {—OzRag\TfaR + @R@R\I/ag}

_ 3sin(26) (2.50)

We will justify the above decomposition using integration by parts to avoid
loss of derivatives. We will also show that

(acyROR — (u-V))Q, (ac,ROp — (u-V))7, (ac,ROg— (u-V))E (2.51)

in ([2.48)) are lower order terms. Moreover, we will justify that £ is small and
is of order a? in Lemma so that we can treat v,¢ as a lower order term

in the 1 equation.

Using (2.32)), (2.45), (2.50), (2.51) and then collecting the lower order terms

with a small factor a, the error terms F and the nonlinear terms N in the

remaining term R, we derive the leading order terms in the linearized equations

(2 ) )
QO + RORSY + ?)fsl%(ﬂé)aﬂﬂ = -0+ n+ Cw(Q — R@RQ) + Ra, (252)
3sin(20) B 3 2 _
M+ ROpn + — 505 = (=2+ 7 n 7)1+ —Lia(Q)]
+ Cw(Qﬁ - RaRﬁ) + an (253)
3sin(28) ,, . 3 2 -
+ ¢, (26 — RORE) + Re, (2.54)

where the full expansion of R is given in and their estimates are de-
ferred to Section 2.9 In the following subsections, we establish the linear
stability for —. The contribution of R is small. Using this prop-
erty, we can further establish the nonlinear stability of the approximate profile

(2.44) using a bootstrap argument.
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We introduce the following notation

7 ™2 Q) ) sin(2
Ei(Q)(R) £ Lin(Q)(R) — Lun(© / | g,
(2.55)
According to the normalization condition of ¢, (2.47)), we can simplify
o+ Lo ()(R) = = Lnn()(R) (2.56)
w T b = o : .

Definition 2.6.1. We define the differential operators
DR = R@R, Dﬁ = Sin(Qﬁ)ag

and the linear operators L;

3 _ _
Q2 -D)———_D,Q—Q QO — Dp0
L1(2,1m) R TR’ + 1+ e r2),
a3 3 i~ . Do
Ly(2,m) = —Dpgn 1+RD577+( 2+1+R) n+ le(Q)nvLcw(n Dg7),
3 3 2 _ _ _
0L _Dpe——2_D 9 2 -1 -D
L3(£,€) rE TR 5E + (— 1+R)5 — 12(Q)€ + ¢, (3§ — DgE),

(2.57)

where L15(Q) is defined in (2.55) and Q,7 are defined in (2.44). Define the
local part of £; by eliminating c,,, [:12(9)

3

Lio(Q.n) 2 —DpQ) — ———— D0 —Q
10(2,7m) R 1+ R 3 + 1,
3 3
£ _Dpn— D 24— 2.58
Loo(n) R7 1+ R g1+ (— +1—|—R) ( )
Laol€) £ Dt — Dy + (-2 - — )
30 — R 1—|—R B 1—|—R .

With the above notations, (2.52))-(2.54)) can be reformulated as
Q= Li(2n) +Ra, m=L(hm) + Ry, & = L3(§) + Re, (2.59)

where we have used the following identities to rewrite the L15(€2), ¢, terms in
©.53)-[2.54)

9L 1(9)
71:( )77+cw(2n Dgij) =

| 2L1(Q)
yiye’

€+ cu(2 — DRg) = —
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2.6.1.1 Key observations

There are several key observations that play a crucial role in our analysis.
Firstly, the leading order terms in the €, 71 equations (2.52))-(2.53) do not
couple the £ term, which is consistent with our derivation for the leading

order system ([2.38)).

Secondly, in the & equation, the coupling between €2 and £ through the nonlocal
term L15(92) and ¢, is weak due to the fact that & is much smaller than
Q, 7. After removing these nonlocal terms, only involves local terms
about £. By choosing a suitable singular weight, we will show that ¢ is linearly

stable up to the weak nonlocal term.

Thirdly, all the nonlocal terms in (2.52)-(2.53)), e.g., c.,, L12(€2), have coeffi-
cients with small angular derivative. For example, using (2.44]), we have

eo( — ROR0) = ., - %F(B)%. (2.60)

We can apply the weighted angular derivative to gain a small factor «
|5in(28)950(8)] = [2asin?(B)T(8)] < 2a1(5).

A similar observation and estimate have been obtained for a different I' in [42].

2.6.1.2 The angular transport term

To understand the effect of the angular transport term in (2.52)-(2.54), we
choose a weight p(R, 5) = A(R)(sin(f)) " (cos(f))~ " and then perform the

L? estimate and use integration by parts to obtain

1d 3sin(2
5%“22; @) = —<%QBQ, Qp(R, B)> + other terms (o.t.)
_ /3(sin(28)p)s
= <m, Q2§0> + o.t..
It is not difficult to show that
3(sin(2
B =31 ) eos'(9) - 301 — ) sn(5).

Suppose that v1,7v9 < 1. If 8 is small, the angular transport term contributes
a growing factor 3(1 — ;) > 0 to the energy norm.

To establish the linear stability, it is natural to first establish the (weighted) L?
estimate of (2.52)-(2.54). However, the above argument shows that for small
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B > 0 the angular transport term destabilizes the profile of the singularity
using the singular weights A(R)(sin(5)) " (cos(/5)) "7 with ;3 < 1. A possible
approach to address this issue in the estimate is to choose ~y; close to or larger
than 1, i.e. a very singular weight in the § direction is desired. In [42], 71 is
chosen to be close to 1 so that such growing factor is minimized. For —
, due to the presence of the nonlocal term, e.g., ¢, (Q — ROgS)), which

only vanishes of order sin(23)*/2

near § = 0,7/2, if we use a very singular
weight for the angular component 3, such nonlocal term will be very difficult

to control.

To handle the angular transport term in the L? estimate, we observe that
sin(28)95Q is small since Q varies slowly in 3. We expect that a similar
smallness result holds for the perturbation term sin(2/3)052 and we will justify
it in Section This observation motivates us not to perform integration

by parts for the angular transport term in the weighted L? estimate.

2.6.2 Outline of the linear stability analysis

We decompose the linear stability analysis of —, or equivalently
(2.59)) into several steps. Based on the first observation in Section , we
separate the estimates of the system of 2, n — and the equation of

¢ @39

In Section [2.6.3], we estimate the local part of the linearized operators £; (2.57)),
i.e. Ly (2.58). The argument is mainly based on integration by parts.

Instead of first performing the weighted L? estimate of the system, we perform
the weighted L? estimate of the angular derivative in Section [2.6.4f The mo-
tivation is that using the third observation in Section [2.6.1.1, we gain a small
factor a'/2 for the nonlocal terms in the equations of Dg{), Dgn. Therefore,
we can treat the nonlocal terms as small perturbations and use the estimates
of Ly in Section 2.6.3) to establish the estimates of D, Dgn. See also the
motivation in Section Once we obtain the estimates of Dg(2, Dgn,
we can treat the angular transport terms in the weighted L? estimates of the
equations of ), 7 — as perturbations. This overcomes the difficulty
discussed in Section 2.6.1.2]

In Section we use two models to illustrate the cancellations in (2.52)),(2.53)),

which are crucial for the estimates of L12(f), ¢,,. This motivates several tech-
nical estimates in Section [2.6.6l
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In Section [2.6.6, we establish the weighted L? estimates of €, with less sin-
gular weights, and obtain the damping terms for ¢, l~)12(Q). We design the
less singular weights carefully to fully exploit the cancellations discussed in

Section [2.6.5] This is the most difficult part in the whole analysis.

After we obtain the damping terms for ¢, L15(), we can treat the nonlocal
terms in — as perturbations. Using the estimates of the local oper-
ators Ly in Section [2.6.3] we further establish weighted L? estimates of Q,7
with more singular weights that are introduced in [42] in Section m This
enables us to apply several key estimates in [42] in our nonlinear estimates and

simplify the whole estimates.

From the second observation in Section [2.6.1.1], we treat the nonlocal terms in
the ¢ equation (2.54) as small perturbations. We estimate Dg&, ¢ in Section
using the estimate of L3y in Section [2.6.3|

2.6.3 Estimates of L, Log, L30
We first introduce several singular weights that will be used throughout the
chapter.
Definition 2.6.2. Define ¢;, 1; by

2 (L+R) 2 (L+R)

P1E sin(26)77, ¢ 7 sin(25)77, (2.61)
4 4 '
o 2 O i) cos() 7, e 2 L (9 con() ™,

=9 . — o
where o0 = 75,7 = 1 + 3.

The weights 1, @2 have been introduced in [42] for stability analysis.

The weights ¢; and 1), are essentially the same. We introduce 1, for con-
sistency and the following reasons. Firstly, we will apply the weights ¢; to
Q,7n and the weights ¢; to £. In particular, we will construct weighted H?
norm H3(y) for Q,n and H3(y) for € in (2.129). Secondly, ¢; and ¢, have
similar forms, and v¢; and 1), also have similar forms. It is easy to see that
01 S o, 1 S e, We choose 1) less singular than oy for 8 close to 0 since 5
does not decay in R when Rsin(8)* is fixed and 3 is small. See Lemma [A.0.§

regarding the estimate of ¢.

Recall Lig, L20, L30 ([2.58) in Definition [2.6.1] The following Lemmas will be
used repeatedly.
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Lemma 2.6.3. For some §,01,09 > 0, consider the weights

(1+ R)*
R4

(1+ R)*

e sin(8) ™ (cos(8)) .

(2.62)

p(R, ) = (sin(28))7°, ¥(R, B) =

Assume p'/?Q, ©'?n € L?. We have

1
(L10(&2, ), Q) + (Lao(n), np) < (=7 + 31— 31) (112%™ 2113 + llme™?|13)-
(2.63)
Assume that '/?¢ € L?. Denote a V b = max(a,b). Then it holds true that

(Laf€),€0) < (= 5 +300-alvIL-aD)lle B (264

We will apply Lemma to the singular weights in Definition [2.6.2} i.e.
@ = p; or wg and ¥ = Y; or Yy. Hence, the exponents we will use are
0=0= % ord =7v=1+,0 = 0,0, =0 or o = 7. Since these exponents
are very close to 1, we have the order |1 —d| ~ 0, |1 — ;| V |1 — 3| = 0. The

reader can regard the terms |1 — 4|, |1 — &;| V|1 — 3] = 0.

Remark 2.6.4. The constant —3 in (2.63)) can be improved to —1 + ¢ for any
e > 0 by considering A (L10(£2, 1), Q) 4+ (L20(n), ne) for some A, > 0, and —3

in ([2.64]) can be improved to —%. Yet, we do not need these sharper estimates.

Proof of Lemma |2.6.5 By definition of ¢, 1, we have

Bsn@Dp)s 3 (n28) ) 3eos(20)-(1=8)
2(1+ R)p 2(14+ R) sin(2B)79 1+ R - ’
(3sin(268))s _ 3 (sin(8)""" cos(8)' "),
2(1+ R)y (1+ R) sin(B)=% cos(8)?
3 2 2
= H—R((l — 61) cos™(B) — (1 — d) sin”())
< 3max(|1 — 1], |1 — d2|),
(Ro)r  (RY)r <(1+R)4> R 2R 3 _1 2
20 RS Jp2(1+R* 1+R 2 2 1+4R
(2.65)

Using integration by parts for the transport terms in Ly (2.58]), we yield

(~Da82.0) = ( - o008 = ((Re)n,22) = (L2280
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Similar calculation applies to ——2% D32 in L1o. Using the above calculations,

1+R
we get

(Ro)r | (3sin(28)yp)

(L1o(62m), ) = ( 2,0% ) — (2,00) + (,1¢)

2¢ 2(14+ R)p
1 2
(== — 1—-6]—1, Q2 Q
1 2
= — - — =131 -4, Q2 Q, ).

Similarly, using integration by parts for the transport terms in Lo (2.58)) and
(2.65), we get

(Lao(n), ) = <(R¢)R + (Ssm(%mﬁﬁ@ + <( 2+ i) 772<p>

2¢ 21+ R)y I+ R

oR 3 3 1 R
< A0 e s (o —,2>:<———— 31—5,2>.
—<1+R o Tl =0+ (=24 o p) e > 1y g Aol

(2.66)

We estimate the interaction term between €2, 7. Note that

4(14_ 2 )<1+ R)> 2 n R > 1
4 1+R 4 1+4+R 1+4R 1+R~

Using the Cauchy-Schwarz inequality implies

1 2 1 R
Q, << —QQ> <— —,2>.
Wy < (3t T et iap e
Combining the above estimates, we prove

2

1 2
(L10(2,m), Qo) + (L20(82, 1), n0) < < “5 17 gr" 3]1 -0, Q 90>
R R

| 1 9 1
L PP T —92> e >
+< 5 1+r?l |’”‘”>+<4+1+R +<4+1+R’7’¢

1
< (_1 +31 - 5|> (1Q 2113 + 1™ 2113).

Recall L3y in Definition [2.6.1} For (2.64)), we use the computations (2.65))-
(2.66)) to obtain

(Ca(e).g0) = (500 BEWD gy 1 (2= 2o ew)
§<%—§+3(\1—51!V|1—52\) + (= 2—1+—R>w>
<(— 543008l v L= 8))lles I3
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2.6.4 Weighted L? estimate of the angular derivative D32, Dgn
Definition 2.6.5. Define an energy E(f,1) and a remaining term R(3, 1) by

1/2
B(8,1)(2m) 2 (11D 18 + 1 Damey*I13)
R(B,1) £ (DgRa, Do) + (DR, Dgnpa).

(2.67)

To simplify the notations, we drop €2,7 in £(5,1). The main result in this
subsection is the following. This proposition enables us to treat the angular
transport terms in — as perturbations. A similar estimate has been
established in [42].

Proposition 2.6.6. Assume that <p§/2DgQ, 90§/2D57] c L?. We have

<Dﬁ£1(97 77)7 (D59)902> + <D5£2(Q’ 77)7 (D,BU)S%)
) (2.68)

<= (5 = a)(E(8, 1)) + Ca(Liy(2)(0) + 1 L12( Q)R [72s)).

where Ly, Ly are defined in Definition [2.0.1]

We will use the following basic property of D = sin(25)0ds, I'(f) = cos(5)*
repeatedly
DsT(B) = —2asin?(B) cos®(B) = —2asin®*(B)[(B),

(2.69)
|DsT(B)] < 2asin(B)T(5).

Proof. Notice that the angular transport term in (2.52))-(2.53|) can be written

as HiRDﬁ and that Dz commutes with the derivatives in (2.52)-(2.53)) and
L19, L2 ([2.58). We have
Dg/:l(Q, 77) = D5<L10(Q, 7]) + CwDﬁ(Q — R@RQ))

= ng(DﬂQ, Dﬁ’f]) + CwD5<Q - R@RQ),

DgLs(2,m) = Dg(Lao(2,m) + %fm(g)ﬁ + (0 — RORQD)) (2.70)

9
= L19(Ds2, Dgn) + %le(Q)Dﬁﬁ + ¢, Dg(n — ROgN),

where we have used ([2.56]). Applying Lemma with ¢ = @y and 6 = v =

1+ {5, we derive
(L10(DsS2, Dgn), (D) pa) + (L20(DsS2 Dan), (Dsn)w2)

1
<(=7 + 311 =D (11Ds5 3 + 1 Doy 1) (2.71)

1 1/2 1/2
S(_é_l + a)<||DBQg02/ I3 + ||D677%02/ ||§)
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Recall ¢, = —2L15(Q)(0). Using (A.16) in Lemma and the Cauchy-

Schwarz inequality, we obtain

caD5(@ = RORD), (D52 + e Dsld — ROu), (Damhes]
S 2| Laa( @ O)I(1Ds 3 | + 1 Dmey 1)

Recall the notation L15(92) (2.55). Applying Lemma and (A.15)) in
Lemma [A.0.6] we derive

2 - _ = _
| = Lo@Dsngs|| S allLin@ R |Fa(r.

Therefore, using the Cauchy-Schwarz inequality, we yield

2

EEH(Q)DM, Dg(n)e2) S 041/2\@12(9)1“371\|L2(R)HDM<P§/2H2- (2.73)

{

Combining (2.71)), (2.72), (2.73)) and adding the inner product about two terms
in (2.70), we prove
(DsL1(2,n), (D)) +(DsLa(82,1), (Dsn)p2)

1 2 2 - _
< — (7 — )(IDy *I13 + 1Dsnes *I3) + Ca 2| Lua (@) R |

Danol/?
LQ(R)II 5192 | |2
1/2 1/2 1/2

+ €t L@ O)|(1Ds23 1 + 1Dsmed 1)

where C' is some absolute constant. Using the notation E(8,1) (2.67)), the
Cauchy-Schwarz inequality concludes the proof of Proposition m (notice
that —1/4 < —1/5). O

2.6.5 Ideas in the estimates of the nonlocal terms

Recall ¢, L15(Q) from [247), ([2:55)
2 2 [ ™% Qsin(25)
= — 2 L,(Q - _ = el Sl
G T 12(2)(0) Wa/o /0 R dRdp,

~ B2 O gin
Lum = [ [ anas,

The most difficult part in the linear stability analysis of , (or equiv-
alently (2.52)-(2.54))) lies in the nonlocal terms L15(Q), ¢, Note that the con-
stant in the coercivity estimates of the local part of the linear operators L;,
i.e. L;p, is small. For example, this constant is about —}l in Lemma . We

(2.74)
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cannot estimate the nonlocal terms in some weighted Sobolev norm and treat
them as small perturbations since these nonlocal terms are O(1) for small a.
It is crucial for us to exploit the cancellation among various terms so that we

can obtain sharp estimates of these nonlocal terms.

We use two models to study L»(Q) and the ¢, term. Similar models have
been used in our previous work with Hou and Huang on the asymptotically

self-similar blowup of the Hou-Luo model [20].

2.6.5.1 Model 1 for nonlocal interaction

We consider the following coupled system
2 .
8tQ =1, m = —L12(Q)T_] (275)
TQ

to study the cancellation between the nonlocal term %Elg(Q)ﬁ in the 7 equa-
tion and 7 in the 2 equation in (2.59). The above model is derived by dropping
other terms in (2.59)). The profile 7 satisfies 77(0, 8) = 0 and 77 > 0 for R > 0.

The motivation to exploit nonlocal cancellation is inspired by our previous joint
works with Hou and Huang on the De Gregorio model [19] and the Hou-Luo
model for smooth initial data [20]. In these works, the nonlocal cancellations

between H f and f, where H is the Hilbert transform, play an important role.

From Lemma we have a similar cancellation between Li5(€2) and €.
Roughly speaking, i12(Q) behaves like —Q. We perform L?(p;) estimate on
Q and L?(py) estimate on 7 for some singular weights p, ps to be determined

and combine both estimates

%%(@, Q1) + (n,mp2)) = (L npr) + <%Elz(9)n, npz) = 1.

Formally, I is the sum of the projections of 17 onto two opposite directions. To
exploit this cancellation using Lemma , we choose p; = sin(26)po, p2 =
ASEpo with some A > 0 and singular weight po, such as py = R3 R72 to

obtain

I = (Qsin(28),mp0) + (AL12(€2), npo) = (2sin(28) + AL1a(92), 1p0).

For k € [%, 4], applying Young’s inequality ab < sa® + ibz for some s > 0, we
yield

I < sl|(Qsin(25) + ALia(Q) B3 + (45) " Hinpo R*?||3 £ A+ B.
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If k—1> %\, using Lemma we obtain

~ 2
A = s[|Qsin(2B)Y2R2|12 — s((k — 1)\ — g)\2)HL12(Q)R"“/Q

L*(R)
< s]|Qsin(28)* RT3,

We remark that even estimating the first term in I, which is (Q2sin(23),7p0)
and does not involve the nonlocal term, we get an upper bound

s||Qsin(28)/2R7*/2||2+ B. The above calculation shows that by designing the
weights py, po carefully, we can exploit the nonlocal cancellation and obtain an

even better estimate. Moreover, we gain a damping term for Elg(Q) from A.

We will use similar ideas to estimate the L15(€2) term in the linearized equation

£52- 5D,

2.6.5.2 Model 2 for the ¢, term

We consider the following coupled system
atQ =1 + ng7 aﬂ] = wa, (276>

where £(0,3) =0,g(0,8) =0, f,g > 0 for R > 0 with fR™!,gR™! € L'. Note
that the profiles 7 — ROrn, Q — RORS) satisfy similar properties. This system
models the ¢, terms in the €2, 7 equations in (2.59)) by dropping other terms.
Denote W = sin(28)R™!. Recall ¢, in ([2.74). We have

2 2
__<Q7 Sin(26)R_l> = __<Q7 W>

e’ yyes

Cy =

Denote B = %(g, W). By definition, B > 0. We derive an ODE for ¢, using
the Q2 equation
2

yye;

O (8L, W) = cu(g, W)+(n, W) = QW) g, W)+, W) = =B(Q,W)+(n, W).

Multiplying both sides by (£)%(Q, W) = —2¢,, we get

2 dtcw Cu Wa%(% > 1+ 1o ( 77)

We see that the ¢,,g term in the €2 equation in (2.76)) provides a damping term
for ¢, in this ODE. In the L?(ps) estimates of n in (2.76]), we have

Ai(n,mpa) = co(n, fp2) = Is.
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Since fp,, W > 0, we can exploit the cancellation between the integral I, in
(2.77) and I3. By combining the estimates of both terms, we can obtain better

estimates of I, and Is.

In the estimates of —, we will derive a similar ODE for ¢, which
provides a damping term for ¢2. This damping term is crucial for us to control
the nonlocal ¢, terms in (2.52)-(2.54). There is a coupling term —c,,(n, W)
in this ODE similar to I in (2.77)). Using an idea similar to the one stated

above, we will combine the estimates of such term and the ¢, term in the 7

equation in (2.53)).

2.6.6 Weighted L? estimate of ), with a less singular weight
In this subsection, we prove Proposition to be introduced on the weighted

L? estimate of 2, with less singular weights.

The proof consists of several steps and we sketch it below. Firstly, we intro-
duce the weights in our weighted estimates and motivate the choices of these
weights. In Section [2.6.6.2] we estimate the local part of £;, £y using mainly
integration by parts argument, which is similar to that in Section 2.6.3] In
Section [2.6.6.3] we use some ideas and estimates similar to those in Model 1
to estimate the interaction among €2, and Z~L12(Q). In Section we use
a direct calculation to estimate the ¢, term in the 2 equation in . Due
to the special form of the weight g in , the main term in this estimate
is a damping term for L2,(Q)(0). In Section [2.6.6.5, we use some ideas and
estimates similar to those in Model 2 in Section to estimate the c,
term in the n equation. In Section [2.6.6.6] we estimate the angular transport
term in the ), n equations in and treat it as perturbations. In Sections
2.6.6.7,[2.6.6.8, we summarize these estimates, and establish some inequalities
to conclude the proof of Proposition [2.6.8]

Since the amount of damping in the energy estimate is small, we cannot over-
estimate several terms and need to track the coefficients in the estimates. Thus
the estimates involve several explicit calculations, which will be presented in
Appendix m These calculations, and can also be verified with
the aid of Mathematica. E| In view of Lemma , in the following estimates,

the reader can regard I'(8) ~ 1,c ~ 2.

1 The Mathematica code for these calculations can be found via the link https://www.
dropbox.com/s/y6vihxi3pa8okvr/Calpha_calculations.nb?d1=0.


https://www.dropbox.com/s/y6vfhxi3pa8okvr/Calpha_calculations.nb?dl=0
https://www.dropbox.com/s/y6vfhxi3pa8okvr/Calpha_calculations.nb?dl=0
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Definition 2.6.7. To exploit the cancellation of the system, we define the

following weights

A9a ( . 31+R 3 ((1+R? 3(1+R)?* 1
Yo 8077( TR 6\ R 2 8 (278
1+ R)3 '
o £ % sin(28), p2 R34+ R2,

where 7, I'() = cos®([3) are given in ([2.44]).

Compared to ¢, in (2.61), the above weights are less singular in the R,/

components.

2.6.6.1 The forms of the singular weights

There are several considerations to choose the above weights g, pg. Firstly,
to obtain the damping terms in the energy estimate similar to that in Lemma
2.6.3] the weights in the R direction can be a linear combinations of R~
with various & [19, 42]. See also Lemma [2.6.3] For R near 0, we need the
weight to be singular, e.g., R~ for a large k;. For very large R, we need the
weight with slow decay, e.g., R~* with small k,. However, using only these
two powers R~% and R are not sufficient. Suppose that we use a weight
0o = R + cR~* with well chosen ki, ks, c. Applying a calculation similar to

that in ([2.66]) in Lemma to (Lagn, o), we can obtain (D, n%pg) for some
coefficient D(R, 3). However, D may not be negative in the whole domain

as the one that we obtain in or |[D(R, )| with R = O(1) may become
much smaller than |D(0, 8)| and |D(o0, 8)|. In either case, we cannot establish
linear stability since the nonlocal terms are not small. Therefore, we need to
add several powers R~* in ¢g, 1. The first formula of v, in is more

important than the second, and it contains three different powers.

Secondly, we add 7 in the denominator in vy to cancel the variable coeffi-
cient in our energy estimates, and design ¢q with the factor sin(23). These
forms are similar to that in Model 1 in Section [2.6.5.1 where we choose
p1 = sin(26)po, p2 = =0 for some weight py. These special forms are im-
portant and enable us to combine the estimates among L12(2), Q2 and n. This
is the most important motivation in designing v, ¢o in . See Model 1

in Section [2.6.5.1| and estimate ([2.82)).
(1+R)?

Thirdly, we choose ¢y with the factor “—7~ to derive a damping term for
L12(£)(0) from the nonlocal term c,,(Q — D). See (2.85).
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The main result in this section is the following

Proposition 2.6.8. Define an energy E(R,0) and a remaining term R(R,0)

E(R,0) = ([|Q4/*[[3 + It |13 + 10 L32(2) (0))72,

R(R,0) = (Ra, Qo) + (R, mbo) + 1oL12(Q)(0)(Ra,sin(2B)R™Y), o = ——.

Assume that Q,n satisfies that E(R,0), E() < +00. For some absolute con-

stant py, we have
%%((E(R, 0)* + mE(8,1)%)) < —<$ — Ca)((E(R,0)* + m E(8,1)%))
1

- 2
~ (4= Ca)L(R)(0) ~ (3~ Ca)| | (|, | +RR.0) + R (5, 1)

where the energy E(B,1) and the remaining term R(B, 1) are defined in (2.67)).

Recall L1, L5 in Definition [2.6.1] Direct calculations with weights ¢q, 1o imply

(L£1(82,1), Qo) = —(RIRQ, Qo) — (2, Qo) + (1, Qo)

+ ¢, {2 — RORQ, Qo) — < D3, Qg00>,

3
1+R
3 2 -
(L2, m), mbo) = —(ROmn, o) + (=2 + = )m w0 ) + (== Lua( )7, ko)

1+R
+ Cw<7_] - RaRﬁ? 77¢0> - < Dﬁnu 77¢0>7

3
1+R
(2.80)
where we have used the notation Dg = sin(23)ds to simplify the formula. We

treat the sum of the first two terms on the right hand side as damping terms.

2.6.6.2 The damping terms

We first handle the first two terms on the right hand side of the £, equation
in (2.80). Using integration by parts for dr, we derive

1 1
— (RO, Qo) — (2, Qo) = —(Reo, 53392> —(Q, Q) = <§(R900>R - 900>Qz>7

3 1 3
— (RORrn, ntbo) + <(—2 + H—R>U’7WO> = <§(R¢0)R +(=2+ H—RWO’ 772>-
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Using the formulas of vy, po (2.78)), we compute the coefficients in the inner
products in Appendix and obtain

1
— (RORSY, Qo) — (2, o) = —((2R7* + 23—2 + 3R + 2)sin(26), 22,

— (ROgn, mbo) + <(—2 +1 i R)n n¢o>

3(1+ R)? 9 3 1 9
=—(———(1+4R+3R"+3R°)l > 2.81
(Sgpr— (1 4R+ 3R +3RIL(5) (2.81)
2.6.6.3 Estimate of interaction between {2 and 7

We use ideas in Model 1 in Section [2.6.5.1|to combine the estimates of (£, n)
and ( L12( )77, no). Using (12.44) and (2.78)), we can compute

18 (2 un) = (et + S

IT 2 (Q, np) = <Qsm(25) <é3 +31;R +1)>7

where c is defined in (2.44) and satisfies ¢ = 2 + O(a) (see Lemma
We design v (2 so that the denominator in ¢y and the coefficient 7 in I

cancel.
Applying the Cauchy-Schwarz inequality, we yield

9 .
I+ 11 = (Qsin(28) + L), nR*)

+ <Q sin(24) + %[NJQ(Q), 3171 ;2R> + (Qsin(28),n)

< §<(Q sin(28) + %£12(Q))2> R’3> + ﬁ@ﬂ R™) (2.82)
436<772’ (14};21%) >
o ) o 3 1) -

We design the special forms 1)y, ¢q in (2.78)) to obtain the good form Qsin(24)+
C'L15(Q) for some C' > 0in I 4 I1. Next, we exploit the cancellation between

Q and L;5(Q) using Lemma We apply Lemma with k£ = 2,3 to

i 6<(Qsin(26) n %212(9))2, R—2> +
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simplify Ji, J3 defined above:

Jy + Js :< (éR—S + 6R‘2> sin(25)2, Q2>

3
4 9 T 9? ~
—— (2. — -2 Lia(Q)R™32| 2,
3 ( de 2 (47rc)2) [1£12(2) Iz (R)
9 T 9

— 6( ) [1L42(€), R 72(r) & M + Ma + Ms.

8me 2 (8mc)?
We further simplify M, M3 defined above. Using Lemma we have

|me — 2| < o and

4 9 T 9 4 9 T 9 1

. T 9L Ty« _Z. 20 2.2 _Z

3 el T oame) S T3 3¢ grg)tCa<—;+Ca (2.83)

_G.i(l_fi)<_6.g( _E.ﬂ)+(ja<_1+ca '
8me 2 8mwe” T 16 2 16 4 ’

for some absolute constant C'. It follows that
1 - _ ~ _
Mz + Mz < (=7 + Ca)(||L12(), B 2 Z2my + |1L12(2), B[ 72(m))
1 .
= (_Z + Ca)||L12(Q)p?| |7,

where we have used the notation p defined in (2.78]). Therefore, we yield the
damping for ElZ(Q).

Remark 2.6.9. The above computations of Ji, Jo, J3, Jy are exactly the same
as those in Model 1 in Section [2.6.5.1] We choose the constants in the weights

(2.78]) carefully so that when we apply Lemma the constant —((k —
)X — ZX?) in (A7) is negative, i.e. (2.83).

Using (2.82), the above estimate of M, + Mj in J; + J3 and sin(23)* < sin(24),

we prove

T
4 1+ Ry
§< (53—3 +6R + ;—R> sin(26), QQ> (2.84)
3(1+R)? 3 R

3
R34 E z
+<16 s r Tiiir"

1 ~
2> - (Z — Ca)||L1a()p" 172 gy-

2.6.6.4 Estimate of the projection ¢, in the () equation

We estimate the terms involving ¢, in (2.80)) in this subsection. Notice that
¢, defined in (2.47)) is the projection of €2 onto some function. Using (2.44))
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and ([2.78)), we can calculate

(Q — RO, Qpg) = <%F(5) (1i_RR)3’Q(1 —]ir%f) (25)> 6Coz<sm(22 <ﬁ),Q>,

We show that the above projection is almost equal to L12(€2)(0). Notice that

izt gy

_LEmCACE 1) o) (1w o s gy

Using Lemma [A.0.1} (2.78]) and the Cauchy-Schwarz inequality, we have

3/2 3/2
a sin(2 ————sin(2 _
Il < ;{ 15} 1/2 Q) Q 1;52) B 1/ ]1% (1 fR>3/2
2 2
< alle” o,
1 (1 3/2 1 3/2
11| < a{=sin(26), 9] Q+—R)Sin2ﬁ —-R—sin2ﬂ
R R3/2 2 (1+ R)3/? 2
< o[22
It follows that
sin(20)

210 RO ) =6 G Q) < 1+ 111 S a0l

R

Recall the definition of ¢, in (2.47)). Using the above estimate and then the
formula of L15(£2)(0) (2.31), we have

Cw<Q — R@RQ, Q(p0> = —%LU(Q)(O) . é<Q — R@RQ, Q(p0>
< 21u@)0) 6 T( 0) 4 calLo@O) - I0A 1 (p
= — 6(L12(2)(0))? + Ca| L12(2)(0)] - |24/ ]2

— (6 — Ca)(L12(2)(0))? + Cal|Qpy |-

By choosing ¢ in (2.78)) carefully, we obtain a damping term for L;5(£2)(0)?
from ¢, (Q — ROrQY). This is one of the motivations to choose the special form

of ©@o-

2.6.6.5 Estimate of the projection ¢, in the n equation

We use some ideas and estimates similar to those in Model 2 in Section 2.6.5.2]

to estimate the ¢, term in the n equation ([2.80)).
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Using ¢, = —=L15(Q)(0) (2.47) and expanding the coefficient (77 — ROr7)o
using the formulas (2.44)) and (2.78)), which is presented in Appendix |A.0.2.2]

we derive
_ _ 27 1 81 1
{1 = RO, o) = = L) O 7 ) ~ 5re @O 0 )
2 A, + A,
(2.86)

An ODE for L5(€2)(0) Using the © equation in (2.59)) and derivation similar
to that in Model 2 in Section[2.6.5.2 we derive the following ODE for L;5(£2)(0)

in Appendix [A.0.2.3]

L @) = 2 (—4z5(@)0) + L@ (@) (n, T ED)

_ L12<Q)(o)<%, DBQ> + ng(Q)(0)<RQ’ singﬁ) >>

(2.87)

Note that we have multiplied both sides of the ODE for L2,(€)(0) by the con-
stant == and will include 2= L3,(€2)(0) in the energy E(R,0) (2.79). The first
term on the right hand 51de prov1des damping for L3,(2)(0), which is similar to
that in . It enables us to control the term A;, A; in . Based on the
idea in Model 2 in Section and the fact that the integrands in A, and
L12(Q)(0)<n, Sln(25)> in have different signs, we combine the estimate of

Ay in (2.86) and the n term in (2.87)) as follows to exploit cancellation

A £ A2+48—1L12(Q)(0)<7% Smgﬁ)> - 88730L12(Q)(0)<777 }%(

—1+2sin(2ﬁ))>.
(2.88)

Next, we estimate A; in (2.86) and Az by treating them as perturbation.
Applying the Cauchy-Schwarz inequality yields

(1+ R)? R3? 1
Ay < —|L H ~(1— 2sin(2
= 87rc| i2( R3/2 21l (1 —i—R)QR( sin(24)) 2 (2.80)
A< L@ )| Wy : |
1_471'0 12 > 1+ RpP? 1+ RRI:

The integrals on R, in (2.89)) equal to ,/%(— — \/_ , respectively, which

are computed in Appendix |A.0.2.4, Then we reduce (2.89) to

’H (1+ R)? ‘ !H?7(1+R)3/2

Az < by|L12(Q2 TR

) Ay < bo|L12(£2)(0)

3.90)
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where by, by are given by

L 81 [1.3n L 27
& 2 (28 gy b, & 20
Y7 8re 6(2 ) b

Are\ 8

Using the Young’s inequality ab < sa® + ibQ for any s > 0, we get

(1+R)? 1+R)3/2
A“LA3—32H77 R3/? ‘ 128H ‘2
2 2 b§ (2.91)
+ LH(Q)(O)<4 x 1/32 I 9/128)'

Using Lemma [A.0.T] for the estimate of ¢ and a direct calculation yield

% b2 8l 81 \°1,3r 32 /271\*r 81
—L ——4=8—) A=+ = (=) ==
1/8+9/32 dre (87rc) 6( 2 )+ 9 <47TC> 8 mc

4 (81\? 3r 4 (27 81
< (=) (ZEopn+ 2 (2E) 2=
_3<16> (2 )—|—9<8) 2+Ca<C’a

(2.92)

Combining the identities (2.86)), , the damping term of L?,(©)(0) in
(2.87) and the estimate (2.91)), we prove

o — RO, i) + o L @(0) (. 22y EL )0
At Art o L@ Y By 0)0)
=A; + Ag — 481 -4L%,(92)(0) (2.93)

1 (1+R)?* 9 (1+R)?

=(n?, — L2,()(0) [ — .

W3 T AR AR Gy v
3 11+R)* 3(1+R)3

< 2 tT— ) o7 ) 2

_16<77 6 B 8 R )+ CaLi()0),

where we have used (2.92)) to derive the last inequality.

2o 81)

2.6.6.6 Estimate of the angular transport term

From the definition of the weights (2.61] -, we have

38111 QB) —1/2
< R [ewaric
Yo S P2, ( + ) ¢0 ¢2, 1 + R)R()OQ

Therefore, we can estimate the angular transport terms in (2.80)), (2.87) as

follows

~

3Ds2 3D
— (T o) S 15 ol o (=75 o) S 11 Doty el
81 3sin(23)

~ IO gy Do) 5 1@ Ol Ds2es
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where we have used ¢! < 1 (see Lemma [A.0.1)). Using the energy notations
E(5,1) (2.67) and E(R,0) (2.79), we further derive

300 3Dsn 81 BSin(Qﬁ)
— (T o) — (= o) — T Laa()( )<(1+R)R’ ) (2.94)

<K E(R,0)E(S,1),

for some absolute constant K;. We remark that the absolute constants K1, Ko, ...

do not change from line to line.

2.6.6.7 Completing the estimates with a less singular weight

Combining the estimates (2.80)-(2.84)), (2.85)), (2.87)), (2.93)), (2.94) and using
the notations F(R,0), R(R,0) (2.79), we obtain

1d 1d 1/2 1/2)12 81
~ 2 E(R,0)? Q + + ——L2,()(0
9 dt (R,0)° = 2dt (H Yo Hz 1m0 H2 A 12( )(0)

< (Q7,5in(28) D()) + (n*, D(n)) + (—% +Ca)l|Lia()p" |72
+ L3,(2)(0) (=6 + Ca) + Ca(Q? @) + K1 E(R,0)E(8,1) + R(R,0),

(2.95)
where D(Q2), D(n) are given by
9 1 1+R
D)2 2R3 — 2R _3R" A
() R~ SR~ 3R 2+3R +6R™ +
3(1 4 R)?
D(n) & —%(1 + 4R+ 3R* + 3R)L(B) !
3 3(1+ R)? 3R 3 /1(1+R?* 3(1+R)3
R S LRI SR
+(16 T3 R 4(1+R)) Gty B
(2.96)

Recall the weights ¢, ¥ in (2.78)). In Appendix|A.0.2.5, we estimate D(£2), D(n)
and prove

Sn(20)D(Q) < ~po, D) < — o, (2.97)

which only involves elementary estimates.

For L2,(€)(0) in (2.95)), we use Lemma about ¢ (e =24 O(a)) to get

1 81 1 81
_ < T < o -
6+ Ca< 8>< 5 4+ Ca< 8X47TC 4+ Ca,
which implies
9 1 81 , 9
(=6 + Ca)L1,(2)(0) < —2 - —L5,(2)(0) — (4 — Ca)L1,(2)(0),  (2.98)

- 8 dme
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where C' is some absolute constant and may vary from line to line. Observe
that

K\E(R,0)E(B,1) < 1—2)0E(R 0)*> + 100K E?(B,1). (2.99)

Recall E(R,0) in (2.79). Finally, substituting the estimates (2.97))-(2.99) in

(2.95)), we prove

1d

1 181
s ER0) <= (5 - Ca)||Qp0 I3 — —||77¢1/2||2 -

2 dt 8 dmc 12(2)(0)
1 -
— (4= Ca)L3,()(0) = (7 = Ca)l[L12(Q)p V2| g2y
1
+ mE(R 0)? + 100K E*(3,1) + R(R,0)
1 1 ~
S(—§ +Ca)E*(R,0) — (3~ Ca)||L12(2)p" || 2(r)
— (4 — Ca)L3,(2)(0) + 100K E*(5,1) + R(R,0),
(2.100)
where we have used —= + Ca + 100, — —|— m < —3 —i— Ca to derive the last
inequality.

2.6.6.8 Linear stability with a less singular weight

Using the reformulation (2.59)), and the notations E(S, 1) and R(f, 1) defined
in , we have

;j; (B,1))2 = (D L1(9, ), (DsQ)a) + (DaLa(,m), (Dyn)is) + R, ).
(2.101)
Now we combine and to establish the linear stability of —
(2.53) with the less singular weight . Firstly, we choose an absolute
constant uy such that
100K7 < %m,
where the absolute constant K is determined in . From ([2.78]), we have

R~2 < p. Hence,
1 Zaa( Q)R [72(my < [1L12(2)p"?[[72(r)

Combining Proposition [2.6.6] (2.100)), the formulation (2.101)), and the above
estimates, we establish the estimate for E(R,0)* + u1 E(3,1)?

S HB(R.0 4 i B(3, 1)) < ~(5 — Ca)(B(R,0° + mE(5,1)%)
— (4= Ca)LA(O)(0) — (5 — CallBBap? ey + R(R,0) + 1 R(G, 1),

(2.102)
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The proof of Proposition [2.6.8| is now complete.

2.6.7 Weighted L? estimate of ), with a more singular weight
With the linear stability (2.102)) with a less singular weight, we can proceed

to perform the weighted L? estimate with a more singular weight.

Definition 2.6.10. Define an energy E(R,1) and a remaining term R(R,1)
by
N 1/2))2 1/21)2 1/2
B(R1) 2 (1061213 + Inget*13)
R<R7 1) = <RQa Q901> + <R777 77901>>

where 1, are given in Definition [2.6.2]

(2.103)

The main result in this Section is the following.
Proposition 2.6.11. Assume that ngi/Q, ngoi/Z € L?. We have that
<£1(QJ 77)7 Qg01> + <£2(Qv 7])7 77901>
2
L?(R)) ’

1 .
< — 6(E(R, 1)) + K3 (L@(Q)(O) + HL12(Q)R‘1‘
where Ly, Ly are defined in Definition K3 > 0 is some fixed absolute
constant.

Proof of Proposition|[2.6.11. A direct calculation yields
(L1(92,m), Q1) = (L10(Q,n), Q1) + (2 — RORKQ, Qipr),

2 - _ _ _
(La(82,m), mon) = (Lao(n), 1) + —(Laa(Q)77, 1p1) + €] — ROgi, nen).
(2.104)
Applying Lemma with ¢ = ¢y and 0 =0 = %, we yield

(L10(2,m), Qp1) + (L20(n), n901)

1 1/2 1/2 1 1/2 1/2
(= 311 = oI5 + lIner113) < =2 (1920115 + et 1)

Recall ¢, = —%ng(Q)(O) (2.47). Using (A.16) in Lemma and the

Cauchy-Schwarz inequality, we obtain
[ ((Q—RORRQ), Q1) | +|ew (M—RIRM), mo1)| S [Laa(2)(0) (1121 3+ Imer [ [3)/>.

For L15() in (2.104)), using the Cauchy-Schwarz inequality, we derive

1/2

2 - 1y F _ = _
(s le@nmen) < o7 |Ln@nel bllnet |l < || En@R ||, linet Il
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where we have applied Lemma/A.0.3and (A.15) in Lemma in the second

inequality.

Using the Cauchy-Schwarz inequality and the energy notation F(R, 1) (2.103)),
we complete the proof of Proposition [2.6.11] 0J

2.6.8 Weighted L? estimate of Dg¢ and ¢
The estimates of ¢ are simpler since the main terms in the equation of £ (2.54))
do not couple with €, 7 directly. We use the weights 11, ¢ in Definition [2.6.2]

Proposition 2.6.12. Suppose that /%€, ;/ZDgf € L?. We have

(£3(0,€),€01) < (=3 + Co)lléws|
+ Ca (L3(2)(0) + | La( QR 2 ), (2105)

(DL3(0,), (D)) < (=3 + Ca)llDsgs|
+Ca (L@(Q)(O) + ||i12(Q)R*1Hi2(R)) . (2.106)

Proof of Proposition[2.6.13. Since Dz commutes with L3 (see Definition [2.6.1])

and L;5(R) does not depend on 3, a direct calculation implies

2

<£3(Qa 5)7 §¢1> - <‘C30(€)7 51/)1> - E<z12(9)g7 5191) + Cw<3€ - DRE? §¢1>
2 (Lin(Q)DsE, (Ds6 )

<D5£3(Q’ 5)’ <D55>¢2> = <£30(Dﬁf)> (Dﬂf)¢2> - E

+ cu(Dp(3€ — Dgé), Ebo).
(2.107)

Applying (2.64) in Lemma with ¢ = 1 (a constant multiple of ¥ does
not change the estimate in (2.64)) and with ¢ = 15 (see Definition [2.6.2)),

respectively, we derive

1 3
(L30(6). €un) < (=5 +3[1 = allevr” I3 < —llewr” |15

2
(Lan(Dat), (Dahin) < (5 +8(11 =] V|1~ o))IDcud [} (2:108)
< (=2 + )lIDsgud I,

where vy =1+ & 0:%.

o Using the Cauchy-Schwarz inequality, we yield

~ o D @)F €] S0 L@ vt

(2.109)
¥ _ 1/2
Sal[Lia(Q) R |a] €601 o,



67

where we have applied Lemma [A.0.3]and (A.25) in Lemma to derive the

second inequality:.

Using the Cauchy-Schwarz inequality, (2.47)) and Lemma |A.0.8, we obtain

co(3€ = D€, &) S o™ Laa(Q)(0)] - [(3€ — Dr&)vr”[JalI€vn” |2
S alLiz(Q)(0)] - [lévr” 1>

Plugging ([2.108])-(2.110)) in (2.107) and using the Cauchy-Schwarz inequality
, we prove ([2.105]).

The proof of (2.106)) is completely similar. We apply estimates similar to those

in ([2.109)-([2.110) and Lemmas|A.0.3) to control the ¢, and Ly5(€) terms.

Combining these estimates, using the second inequality in (2.108|) and then the
Cauchy-Schwarz inequality prove (12.106]). O

(2.110)

2.6.8.1 The weighted L? energy

Using the reformulation ([2.59)), we have

L1212 + 1o 2112) = (L(Qn), Q1) + (La( ), i)
+ (Ra, Q1) + (Ry, ne),
2 5 SIEVI2IE = (£4(6), 860 + (Re, ),

Do) 2 = (DsLa(€). (Dat)iba) + (DyRe, Dakin).

2dt

2 dt
Recall the energy E(R, 1) and the remaining term R(R, 1) in Definition [2.6.10}

E(R,1) = (|01 %12 + |Iney?112)2, R(R,1) = (Ra, Up1) + (R, ne1).-

Combining the above reformulation, Propositions [2.6.8 2.6.11] [2.6.12] and
R™2 < p -, we know that there is some absolute constant puo, which
is small enough, e.g., us K3 <

100, such that the following estimate holds

1d

L0 (B(R0P + mB(B.17 + maB(R, 1 + 166!l + 1Dscs )

< - (% —Ca) <E(R, 0)> 4+ 1 E(B,1)* + M2E(R 12 + |62 + || Dgenl/?| 2 )

~ (3= Ca)L3(2)(0) - (5 ~ Ca)

1/2

+ R0<Qa n, é)a

L2
12P L2(R)

(2.111)



68
where Ry is defined below. We define the following weighted L? energy and

the remaining term R, [

1/2
7

Eo(Q,7,€) 2 (E(R,0)% + m B(8, 17 + paB(R, 1) + ll6w1 |3 + | Doty )
Ro(€2,1,6) £ R(R,0) + mR(8,1) + paR(R, 1) + (Re, £0) + (DRe, (Do)
(2.112)
where (E(R,0),R(R,0)),(E(B,1),R(B,1)),(E(R,1),R(R,1)) are defined in
(2.79), (2.67) and (2.103)), respectively, and pu; are some fixed absolute con-

stants.

We do not need the extra damping for L;5(Q)p"/? and Li5(€2)(0) in (2.111)
due to Lemma [A.0.4] and the fact that Ej is stronger than ||Q(IE§)2 ||z2. Using
(A29), we know that Cal|L1o(2)p"?| |35 ), CalL12(2)(0)]? can be bounded by

CaFE?. Hence, using the notation Ey, R, we derive the following result from

111,

Corollary 2.6.13. Let Ey(2,1,€), Ro(£2,1,€) be the energy and the remaining

term defined in (2.112)). Under the assumptions of Propositions 2.6.11
and we have

%%EOQ < —(% — Ca)E; + Ro.

2.7 Higher order estimates and the energy functional

In this section, based on the weighted L? estimates established in Corollary
[2.6.13] we proceed to perform the higher order estimates in the spirit of Propo-
sitions [2.6.11] so that we can complete the nonlinear analysis. In sub-
section , we perform the weighted H'! estimates of £; and illustrate how to
apply several lemmas to control different terms in DgL;. In Section [2.7.2] we
use a similar argument to establish weighted H? and H? estimates. In these

estimates, we treat the nonlocal terms as perturbations and apply Lemma

recursively.

Since &(x,7) does not decay in the o direction when y is fixed (see the estimates
of £ in Lemma, we cannot obtain the decay estimate for its perturbation
&. Hence, in order to obtain the L control of ¢ and its derivatives, which
will be used later to estimate the nonlinear terms, we cannot apply a H* —

L type Sobolev embedding. We perform the L*> estimates of ¢ and its

?In fact, Ey contains a L? norm of the angular derivative D, Dgn, DgE.



69

derivative directly in Section m This difficulty is not present in [42] by
removing the swirl. The coefficient of the damping term in is given by
L =—-2— ﬁ < —2. This simple inequality is actually related to the flow
structure. In fact, I; is the leading order term of —2 — v, (see and
(2.45))), and the positive sign of v, is related to the hyperbolic flow structure
2 < 0,0 > 0 and 0(z,0) = 0. See more discussions after Lemma [2.4.1] The
fact that I is bounded uniformly away from 0 enables us to establish the L>

estimate of &.

2.7.1 Weighted H' estimates

We remark that the weighted H! estimate with angular derivatives is already
established in Section about DgQ, Dgn and Section about Dg€.
Recall the weighted differential operator Dp = ROg in Definition 2.6.1 We

define an energy and a remaining term

1/2
E(R,2)(2,1,€) 2 (11DrSe)*I3 + 1Danel |2 + [1Dpgv *113)

R<RJ 2) (Qv 7, 5) é <DRR97 DRQQOI> + <DRR777 DR77901> + <DRR§J DR&M%
(2.113)
where 1,1, are defined in (2.61)).

Proposition 2.7.1. Under the assumption of Corollary and that gp}mDRQ,

@1/2DRT],1/}i/2DR£ € L?, for some fized absolute constant K4, we have

(DRrL1(S2,m), (DrS)@1) + (DrL2(2,1), (Drn)er) + (DrLs(§), (DrE)Y1)
g—%E%&m+Kﬂﬁ

where Ey, E(R,2) are defined in (2.112) and (2.113)).

Proof. Since D commutes with Dg, Ds in £;, Lo (Definition [2.6.1)), we have

DRrLi(2,m) = L1o(DrSY, Drn) — Dg

2

= L1o(DrSY, Dgn) + Z I;

=1

11 R . DﬁQ + CwDR(Q — R@RQ)

3
D+ Dp(—2 4+ —2—).
R Dot De(=2+4 p)

2 - 2 -
+ —L12(Q) - Dri+ —DgrL12(Q) - 7+ ¢, Dr(7 — ROR7)
T« T

DrLs(2m) = Lo(Drn) — D

5
= Lyo(Drn) + Z I,

i=1
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3 3

DrLs(€2 &) = L3o(DrE) — DRl - Dgé + Dr(—2 — r) £
- lim(ﬁ) - Dpé — iDRLQ(Q) <€ + ¢, Dp(3€ — RORE)
yiye’ O
5
= L30(DgE) + Z I1I;.
i=1

Applying (2.63) with ¢ = ¢y (see (2.61)), and (2.64) with ¢ = ¢ (see (2.61))
in Lemma and 3|1 — 0| < =&, we yield

307
(L10(DrSY, Drn), (DrQ)e1) + (L20(Drn), (Drn)er)
1
< = (I1DaS%1 13 + 1Dangy 1),

(La0(Dit), (Da€)i) < —IIDrgul |

Notice that ¢, 1 (2.61)) satisfy v1 < @9, Y1 < 1by. For the terms not involving
L15(Q), ¢, we use Ey defined in (2.112) to control the weighted L? norm of
DgS), Dgn. 1t is easy to see that

1/2 1/2 1/2 1/2
10?12 S 11DsQ0s 12 S Boy Ly ||z S 1 Dsney N2 S Eo,
1 Lp |2 S ney?llee S Eor Iy |2 S ||Dstdy”| |22 S Eo,
1/2 1/2
1L || 2 S 1160y S Eo.

Recall ¢, = —2-L15(2)(0). Applying (A.16) in Lemma to I, Il; and
(A.26) in Lemma to 1115, we obtain

1ot ?|l2 S [Laa(@)0) S Eoy  |1TTspy* ||z S [L12(Q)(0)] < Eo,
1TTI501%|| 2 S alLia(Q)(0)] < k.

Finally, for the E12(Q) terms, we apply Lemmam To apply Lemma ,

we need the L* norm of some angular integrals, whose estimates are given in

(A.15)) in Lemma about €, 7 and (A.25) in Lemma about £. Using

these estimates, we obtain

L0 ||2 S 1L @QR Y2y S Eoy  [1T1ipr |12 SNR'Q|2 S Eo,
1Ly || 2 S | Laa( Q)R |2y S @Bo,  |[TTL0 || 12 S af|[R7IQ|12 < .

The result now follows using the Cauchy-Schwarz inequality (notice that —% <

—%, a < 1) and applying the energy notation (2.113]). O
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Using the reformulation ([2.59)), we have

L po(r,2) = 1L (1DR0 I + 1 Dan 1B + 1Dawl”)
= (DrLi(%,n), (DrQ)p1) + (DrL2(2,n), (Drn)er)
+ (DrLs(E), (DrE)Yn) + R(R, 2).
Therefore, it is not difficult to combine the above reformulation, Corollary
2.6.13| and Proposition to prove the following results.

Corollary 2.7.2. Suppose that Q,n,& satisfy Eo(Q2,n,&), E(R,2)(,n,§) <

+00, where Ey, E(R,2) are defined in (2.112)) and (2.113), respectively. Then
there exists an absolute constant us, such that, the following statement holds

true. The weighted H' energy E, and its associated remaining term R, defined

by
Ev(Q,0,€) 2 (E2(Q,0,€) + nsBA(R, 2)(2,n,6) ",
Ri(2n,8) = Ro+ ugR(R )

where Roy, R(R,2) are defined in ) and , satisfy

1d 1
< (—— E? .
5 L <( 1O+Oa) T+ Ry

(2.114)

2.7.2 Weighted H? and H? estimates

Recall the weights ¢;,1); in Definition m For DkQ. Dkn, k = 2,3, we use
weight ¢1; for other second or third derivative terms D}%D’ Q, Dy, D’ 5, 7 > 1
we use weight ¢y, For DEE k = 2,3, we use weight t1; for other second or

third derivative terms D%Déf , 7 > 1, we use weight 3.

In the same spirit of the weighted H' estimates established in Sections
and [2.7.1] we perform the weighted H? and H? estimates. We estimate the
second and third derivative terms in the order of D3, DgDg, D%, D}, D3 D,

DgD%, D3, The motivation to first estimate the angular derivative terms is

the same as that in Sections [2.6.1.2] and [2.6.4] This order of energy estimates

has been used in [42]. In these estimates, we treat the nonlocal terms as

perturbations and apply Lemma [2.6.3| recursively.

Similar to the weighted H! energy function E; and Corollary [2.7.2] there exist
some absolute constants p;x, which can be determined in the order (j,k) =
(2,0),(2,1),(2,2), (3,0),(3,1), (3,2), (3, 3), such that the weighted H> energy

functional E3 > 0 and its associated remaining term R3 defined below satisty
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the estimates stated in Corollary [2.7.3]
B30, €) 27 + 3 S s (I1DED 0?3
1=2,3 0<k<
+ [1DEDS no |13 + | DRDY el 1),
Ra(Q2n,&) 2R+ > > Nl7k<<DE,D,ZB_kRQa (DRDG Q)i
1=2,3 0<k<
+ (DD Ry, (DRDS n)g) + (DDl Re, (DD €)) )
(2.115)

where E7, Ry are defined in (2.114)), (p;, ;) = (ps,13) for &k = 0,1,2 and
(1, 11) otherwise.

Corollary 2.7.3. Suppose E3(2,n,&) < +00. Then the energy Ej satisfies
1d

1
——F3(Q < (——= E3 :

We refer the weighted H? estimates to the arXiv version of [16]. The weighted

H? estimates can be generalized in a straightforward manner.

2.7.3 C! estimates
We introduce the following weights for the weighted C* estimates
1+ R

or=—p ¢2 =1+ (Rsin(28)*) 0, (2.116)

and the following C! norm

1£ller = [1fllse + 101 Drflloc + 162D5 [l

1+ R 1
=1 lloo + 15— D fll + II(1 + (R in(28)) %) D fllc.

(2.117)

To close the nonlinear estimates, we need to control the L norm of 2, n, ¢ and
their derivatives. For €2, 7, the weighted H? estimates that we have obtained
guarantee that Q,n € C!, which will be established precisely in later sections.
For &, however, since the weight 1, (see Definition is less singular in
B for 3 close to 0, the weighted H? space associated to & is not embedded
continuously into C!'. Alternatively, we perform C' estimates on ¢ directly.

This difficulty is absent in [42] by removing the swirl.
Firstly, the transport term in the £ equation in (2.48)), including the nonlinear
part in N, is given by

A(€) 2 (14 3a)Dpé + agDré + (- V)E+ (u- V)E (2.118)
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The main damping term in the & equation is (—2 — 7,)¢. (12.45)) shows that

—Uy = —7 + oy + [.0.t. Therefore, we consider

3
1+R 1+R

We further introduce =, to denote the lower order terms in the ¢ equation

(PR

<_2 - ﬁy)f = (_ )f +Z= 5 = ( - 77y)£~ (2'119)

Zo = —v,€ + ¢,(26 — RORE) + (ac, ROg — (0~ V))E — (uyn + a,n). (2.120)
Then the ¢ equation in (2.48) can be simplified as

3 _
0+ A(E) = (-2 — H—R)§+_1 +Z0 + Fe + N, (2.121)

where we have moved part of the nonlinear term N defined in (2.49)) to the
transport term A(§) and N, is given by

N, = (2¢, — v,)€ — uyn. (2.122)

Notice that _ﬁ < 0. Multiplying £ on both sides and then performing L

estimate yield

2dt|l§\|2 < =201 + €N 1En [z + [1Zalloo + [ Felloo + [ Nelloo), (2123)

where the transport term A(§) vanishes.

Before we perform weighted C! estimates, we rewrite A(£) defined in ([2.118)

as follows

A() = (1+30-+ae) Dat j’

Dg)&) & A1 (6)+Ax(8).
(2.124)

= Ds)+H((ur ) V-

Recall the weights ¢1, ¢2 in (2.116)). Observe that Dg commutes with 4; and
Dp commutes with Dy, Dg. Denote by [P, Q)] the commutator PQ) — QFP. A

direct calculation shows that

$1DrAE — A(¢1DRS)

3
:¢1DR1 iR Dsé — (1 4+ 3a+ ac))Dréy - DrE + [¢1Dg, AsJE,
3 (2.125)
=13 7Dt + (1+3a+aq) T 701 DrE + (01D, A€,

P2 D AE — A(pa D) = —Ai(p2 — 1) - D& + [92Dp, A3,



74
where we have used A;(1) = 0 in the last equality. Hence, using (2.121)) and

the above calculation, we obtain the equation of ¢ Dgé

061 D) + A91 D) = 1 Dst — (1+3a -+ acr)

T R¢1DR§ — [¢1Dr, A&

3 _ _ _
+ 1 Dp((—2 — H——R)g) + $1Dp(E1 + 22+ Fe + N,).

We remark that —(1 + 3@)ﬁ¢1DR£ is a damping term, though we will not

use it. Performing L* estimate for ¢, D3¢, we obtain the following estimate,

which is similar to (2.123])
|I¢1DR€II2 —(2 = laci])||¢1 Dré|13, + 3l1¢1 Dréllsol €]l

th
+ |91 DrE| | (3| Dpéllo + I|[¢1 DR, A2)]|oo + |91 DR(Z1 + Zo + Fe 4 No)||=),
(2.126)
where we have used |;25| < 3 and
3 3 3R¢
$1DRE - p1Dr(—2 — H——R)g =¢1Dré - ((—=2 — H_—R)¢1DR5 + ¢1(1+—R)2)

< — 2(¢1DR€)* + 3|| 1 Drél| ol 1€ ] oo-

Similarly, using (2.121]), (2.125)) and performing L*° estimate on ¢oD3¢ yield

1d

2t 192 D56l = =202Dsl s + 1102 Datllel | A (02 = 1) Ditllae )

+ 116208 lo (l[$2Dp, Aslé] oo + [[$2D5(Z1 + =2 + Fe + No)llz=),

where we have used

3

2D - o Dp(—2 — H—R)f —2(¢aDgE)>.

We defer the estimates of the remaining terms in (2.123)),(2.126]),(2.127) which
are small, to Section [2.9]

2.7.4 The energy functional and the H™ norm
Using all the energy notations (2.67)), (2.79)), (2.103), (2.112)), (2.113]),(2.114))
and ([2.115)), we obtain the full expression of F3 (2.115)

1/2 1/2 81 1/2
B = 110015 + [l 15 + L3 (0(0) + [1Ds”|13

1/2 1/2 1/2 1/2 1/2
+ i (1Ds923 1+ 11Dy *I18) + s (101118 + byt 18) + 10171
+ pts (11DrY |13 + 1Dt |13 + 1 Dy *|13)

1/2 1/2 — 1/2
£ 30 s (UDEDE 1 B + 1D Fol |3 + 1| DE DY Feul )

1=2,3 0<k<I

(2.128)
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where (p;, 1) = (¢1,¢1) for k=1, (@i, ¢;) = (02, ¢2) for k # L and [ =2, 3.
Recall ¢;,1; in Definition 2.6.2] We define the H™(p) norm with m > 0 as

follows
1l 25 (1D Pl + > 1IDRDE ™ fo* e (2.129)
0<k<m i+j<m—1

The H°(p) norm is the same as L*(p;) norm. For the H3(¢) norm, we use
[2.129)) with p; = ¢;; for the H?(1)) norm, we use with p; = ;1 =1, 2.
We simplify H3(p) as H3. We apply the H® norm for ©,n and the H3(z))
norm for £&. We use the H™ norm to establish the elliptic estimate in the next
Section. We will only use the H?, H?(¢)) and H?, H?(¢)) norms. Remark that

the H™ norm is different from the canonical Sobolev H™ norm.

From the Definition [2.6.2| of ¢;, ¥;, we have a simple relationship between H™
and H™ ().

Lemma 2.7.4. For 157 < A < % and m < 3, we have

1 ll3emoy S A, 1si(B)* fllzen S [ fll2em - (2.130)

The proof follows from simple inequalities 1; < 5, sin(8)*¢; < 1y, Dg sin(B)*-
o = 2X cos?(B) sin(B) w2 < ¢y for i < 3, and expanding the norm.

We also define the corresponding inner products on H? and H3(1)), which are
equivalent to H?, H3(v))

(f,0)1 = pa(Dgf, Dggepa) + pa(f, gp1) + p3(Drf, Drger)
+ Z sl D f oy 2 + Z pivsi( DR D% f, D Dhgi),

k=23 §>1, 2<i+j<3

(f, 9wy = (Daf, Dsgiba) + (f, gt1) + ps(Drf, Drgir)
+ Z Hk,kHDZf@D%/QHLQ + Z ﬂi+j,i<D§%Défa D%Dé9¢2>'

k=2,3 j>1, 2<i+j<3

(2.131)
Clearly, using these notations and (2.112)), (2.113]), (2.114)), (2.115)), we have
81
E5 = —Lip(Q)(0) + (2%, 00) + (0°, o) + (2, Qs + (0.1 + (& sy
81 . _
R3 = (Ra, Qo) + (Ry, ntbo) + 4—le2(9)(0)<729,3111(25)1% Y

+ <RQ; Q>H3 + <Rna 77>H3 + <R§7 §>H3(¢)‘
(2.132)
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We also have the following simple inequality

1905 + Il + 11l 5w < Es(Qn,6). (2.133)

2.8 Elliptic regularity estimates and estimate of nonlinear terms
In this section, we first follow the argument in [42] to establish the H?3 esti-
mates for the elliptic operator and justify that the leading order term of the
(modified) stream function can be written as in subsection 2.8.1] Then
to simplify our nonlinear estimates, we will generalize several estimates derived
in [42] in subsection [2.8.2]

The fact that ¢ (see Lemma and ¢ do not decay in certain direction
makes the estimates of nonlinear terms complicated since we cannot apply the
same weighted Sobolev norm to €,7,£. More precisely, the H*(1) norm for
¢ is weaker than the H* norm for 2,7 (see (2.130)). To compensate this, we
use a combination of C! norm and H* (1)) norm for £&. We will establish several
estimates for £ in subsection . Moreover, estimating the H* norm of v,¢&
in the n equation ([2.48)) will be more difficult since £ is in a weaker Sobolev
space. In subsection [2.8.3] we will estimate the nonlinear term v,£ in the 7
equation (2.48)). We will also perform a new estimate of the transport term
with weighted H? data.

Recall that the Biot-Savart law in R? is given by (2.18), which can be refor-

mulated using the polar coordinates as
1 1
- Tr¢ - ; T‘w - ﬁaﬁﬁ¢ =W,

where r = /2?2 + y?, f = arctan(y/x). We introduce R = r® and ¥(R, 3) =
L(r, B), AR, B) = w(r, B). It is easy to verify that the above elliptic equation
is equivalent to

Lo(V) & —a®?R*Opp¥ — a(4 + a) ROV — 9330 — 4V = (). (2.134)
The boundary condition of ¥ is given by

U(R,0) = U(R,7/2) =0, lim ¥(R,3)=0. (2.135)
—00

2.8.1 H3 estimates
Recall that the H™,m > 0 norm defined in Section [2.7.4] is given by
N ke (1+R)? i el (L+R)?
HfHHm - Z HDRfRQ Sln(zﬁ)g/Q HL2 + . Z HDRDﬂ fR2 Sln(2/8)7/2 HL27
0<k<m i+7<m—1

(2.136)
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where 0 = 99/100,7 = 1 + «/10 and we have used the definition of ¢; in
Definition The H° norm is the same as L?(¢;) norm.

Proposition 2.8.1. Assume that 0 < a < i,l < v < 2, and € satisfies
19|22 < +o0 with

/ﬁ/2 Q(R, B)sin(26)dpB =0 (2.137)
for every R. The solution Oof satisfies
|| R*Orr P |3z + al|[RORg Y |lys + ||055¥ |35 < C|Q 300
for some absolute constant C' independent of o and .

Remark 2.8.2. We need the orthogonality assumption (2.137)) since sin(2/4) is in
the null space of the self-adjoint operator Lo(¥) = —033V —4V with boundary
condition ¥(0) = ¥(n/2) = 0, which is the limiting operator in as
a — 0. See more discussion on the connection between this orthogonality

assumption and the elliptic estimate in the arXiv version of [16].

Since the H? norm is the same as that in [42] and the H? estimates can be
easily extended to the H? estimates, the complete proof follows from the same
argument in [42]. Here, the proof is even simpler since there is no first order

angular derivative term in (2.134)), i.e. dz(tan(8)¥), which is one of the major
difficulties in obtaining the elliptic estimate in [42].

The singular term In general the vorticity €2 does not satisfy the assump-

tion (2.137) in Proposition 2.8.1] Suppose that ¥ is the solution of ([2.134]).
Consider ¥ = ¥+ G sin(23). The goal is to construct G so that £, (V) satisfies

(2.137)), i.e. OW/2 Lo (¥)sin(28)df = 0. Recall the notation Li5(Q) in (2.31).
Following the argument in [42], in Appendix we derive

1 . A 1. R 4
G = _ELIQ(Q)(R) +G, G2 —-——Ra / / Q(s, B) sin(28)sa"'ds.
o Jo

(2.138)

Although there is a large factor 1/a in G, it can be proved that ||G||ys can
be bounded by C||€2||s using a Hardy-type inequality. We refer the reader to
[42] and [44] for more details.

Using Proposition and an argument similar to that in [42], we have the

following result, which is similar to Theorem 2 in [42].
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Proposition 2.8.3. Assume that o < }l and Q € H3. Let U be the solution
to (2.134) with boundary condition (2.135)). Then we have

I
@ [R*Opr¥ |l + || RORg ¥l + 11055(¥ — — sin(28) Lz () |lps < Cl[ 3o

for some absolute constant C' independent of a,~y in the definition (2.136]).

Remark 2.8.4. The H? norm of aDrdsW is not included in Theorem 2 in [42).
Yet, the estimate of such term can be derived easily from Proposition [2.8.1

and the estimate of G defined in ([2.138]).

2.8.2 Estimates of nonlinear terms
In this subsection, we generalize several estimates of nonlinear terms derived in

[42], which will be used in our nonlinear stability estimate in the next section.

We define the W»* norm:

Ty Hsm@ﬁ)‘éDRM o+ 3 Jios],..

0<k+35<1,j#0 i + sin(25) <k<l

(2.139)
A similar W* has been used in [42] and our W' norm is slightly different
from that in [42]. We replace the operator (R + 1)¥0% by D% = (ROx)*. The
reason for doing this is that the stronger weight (R+ 1) is not necessary in the
derivation of the product rule in [42] related to W', and that the differential
operator Dr commutes with £, in the elliptic equation ([2.134)), while 0r does
not. Therefore, the higher order elliptic estimates related to dr can depend

on the value of a. We will only use these estimates when « is very small.

Functions in WW"* From Proposition in Appendix [A] we know that
[(B),Q,7 € W,

Remark 2.8.5. We do not apply the W norm to &, €.

Recall the C! norm in (2.117). For the C! and W* norms, we have a simple

result.

Proposition 2.8.6. For any f,g € C* and *fEp € W, we have

1+R

1£gller < [l fllellgller,  lpller S ll—5—pllwee.
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The W** version of the following result has been established in [42], whose

generalization to W™ is straightforward.

Proposition 2.8.7. Assume that f,g € W“*. Then we have

Fgllwise St [ f[Iwree llgliwee

Recall from (2.45)) that L;5(Q) = 37« We define ¥ by

2 1+R
Lo(0) = —a’R*0gr¥ — a(4 + a)RORY — 9550 — 4V = Q,
where L, is the operator in (2.134]). We have the following estimates.

Proposition 2.8.8. Fora <1 1, we have

1 —|— R - sin(?ﬁ)

I Opp(V — L12(Q))||W7’°° S a, | L12(Q) e S v,
1 +R _
||—D2‘I’||w5°° +CV|| aBDR\IJ||W5»°°
1 +R sin 25)
I @ - @)ae S

The proof of the first inequality follows from the same argument in [42]. The

proof of the second inequality follows from L;5(Q) = % in (2.45) and a

direct calculation. The third inequality follows from the first two inequalities.
We refer more details to the arXiv version of [16].
2.8.2.1 Some embedding Lemmas

A similar version of the following estimate has been established in [42]. We
remark that we have modified the weight for the R variable in the W"* norm.

We refer the proof to the arXiv version of [16].
Proposition 2.8.9. Assume that 1+R) S f e WA, then we have f € H? and

1+ R)
11 1 e

We have the following decay estimate.

Lemma 2.8.10. Suppose that £ € H?(¢)), we have

| B2 sin(28) €l < €l
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The above estimate also holds for & € H? since H? is stronger than H?(¢)) (see
Lemma [2.7.4)).

Proof. Using a direct calculation yields
[ 5in(25) 2 RE?|| 1= < ||0RDs(sin(28)!2RE?)||nr = [|95(sin(26)"/%(€ + 26 Dge))|| s
<Isin(28)712(€ + 26 Dr€)l|1r + |1 5in(25)"/(2605€ + 205€ Dr€ + 2605 D€ 11.

Recall the definition of H?(¢)) (2.129) and the weights in Definition m
Using the Cauchy-Schwarz inequality concludes the proof. O

Lemma 2.8.11. We have
Al S a2 f I,

1+ R
[ fller = (1 f[lze + ]

R
provided that the right hand side is bounded.

Dpfllie + |(1+ (Rsin(28)*)79) Daf |l S ™| ][5,

The first inequality has been established in [42]. Recall the definition of H?

and its associated weights in (2.136)). The second inequality follows from the

argument in the proof of Lemma [2.8.10] the Cauchy-Schwarz inequality and
-1

(1+ R)?

Sin(25)7/2_1||,;2 < a_l/Q, I sin(ZB)”’/z_l_%HLz < a V2,

||1+R

2.8.2.2 The product rules

In this subsection, we generalize the estimates of nonlinear terms and the

transport terms derived in [42] to the H3(1)) norm.

Denote the sum space X = H3 @ W>* with sum norm

1/11x = oofllglle + [lhllwose = f =g+ R} (2.140)

We use the following product rules to estimate the nonlinear terms.

Proposition 2.8.12. For all f € X, g € H?, £ € H3(¢) NCY, we have

1£glle < o211 £[]xlgl s,

iy s (2.141)
fElleswy S o I lx (e g ler + 1€l w) )

The first inequality has been proved in [42]. We will focus on the product rule
with H?(¢) norm.
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Proof. If f € W5, applying the same argument in [42] yields

1f€llew) S a2l fllwsee €] o).

Now, we assume f € H?. We consider the third derivative D?* = D%Dé terms
since other are terms are easier. If (D? v;) = (D%, 91), (D3, 1), we use a

L? x L™ interpolation

1D*(fe)w, P13 < S IIDF 0¥ Rey P2 + 3 (| DF DRy 3

k=0,1 k=23

S A ller 1€l wy + 1l lIEller
< o 2| fllsll€l ey + 11 £l Eller,

where we have applied Lemma [2.8.11|to || f||c: and Lemma to obtain the

last inequality.

If D* = D%Dg or D3 Dk, the corresponding singular weight in the #*(+) norm
is 10. We consider the term D%{fDﬁf’lp%/Q in the L? estimate of D3(f&)yy/?,
which is a typical and the most difficult term. The previous L? x L* estimate
fails since D%{@D;/Q ¢ L*(R, 3). Recall the Definition of 1, 9. Denote

W = ﬂ P = sin(ﬁ)_g COS(ﬂ)_’y,

Rt (2.142)
Q =sin(26)77, S=sin(26)7, A=y —o.

Clearly, we have oy = WQ, 1o = WP, ¢y x WS and P < sin(3)*Q. We use
a L*(R,L=(8)) x L®(R, L*(3)) estimate f]

IDREDSFWP) 213 < |||l sin(8) 2 DRE(R, e 5| D3 QY2 (R, )| )V |

= ||A(R)* B(R)* W |12 (s)-
(2.143)
We further estimate the integrands A(R), B(R). Applying the Poincare in-

equality yields

A(R) < |05 (sin(8)>2DRE(R, )| p1(s) + || sin(8)2DRE(R, )| r2s)
£ A1 (R) + Ax(R).

3The L?(R, L>=(B)) x L>(R, L?(B)) estimate of the mixed derivatives term in the H?
norm is due to Dongyi Wei. We are grateful to him for telling us this estimate. We apply
this idea to derive the estimates in the #3(¢) norm.

LY(R)
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Using the Cauchy-Schwarz inequality, we can bound the first term as follows
A(R) S [[sin(B)* T DRE(R, )l1ap) + |Isin(8)? sin(28) " DsDRE(R. )l 11(p)
SISY2DRE(R, 12|52 sin(8) > 2
+ [[PY2Ds DRE(R, )|z || P71/ sin(8)? sin(28) 7| e

Recall P, S, X defined in (2.142)) and v = 14 §5. A simple calculation yields
1572 sin(8)2 7|2 < [[sin(8)* 7|12 S a2,
|1P=42sin(8)2sin(28) ]2 < ||sin(8)"2 " cos(8)* 7|2 S a2
Combining the above estimates, we derive
A S A(R) + Az(R)
S a7 (|ISVEDRE(R, lzaqs) + 1P DsDRE(R, llz2(s)) + [IDRE(R, )l 22s)-

Recall WS < 41, WP < 1. Consequently, we have

A2 (R)W |1 (ry S @ HI€l s -

Recall B(R) in (2.143). Since DgfQY*W'/2 DpDsfQY?W*?2 € L2, we have
lim cog_,oB(R) = 0 and yield

1B2||(ry < 08B 12y S 110 Ds fQ" (|12l Da f QY212 S 111135,

where we have used 0 = R™'Dg, ™' < W2 and W(Q = ¢, to obtain the
last inequality. Plugging the estimates of A and B in ([2.143|), we yield the
desired estimate on ||D%§D5f¢;/2||,;2. O

We generalize the H? estimate of transport term derived in the earlier arXiv

version of [42] as follows.

Proposition 2.8.13. Assume that u, dgu, Dru € H? and Q € H3,& € H3(¥)N

C! we have
1
[(Q, uDRQ) 23| < a2 (|[ullas + |10l + [|Drull3s) |19 [3,
1
(€, uDRE | S a2 (ullae + 110sullae + ||Drullae) (1€l e w) + o' ?[1€]ler)?

Moreover, for all u, Dru € X = H3 & W>® and Q € H3,& € H3(¢) NC, we

have
(Q, uDs N3] S V2 (JJul|x + |[Drul|x)) |25,
(€, uDs)rp)| S a2 (|Jullx + [|Drullx)) (1] ls ) + a'?|[€]ler).
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The proof follows from the argument in the proof of Proposition [2.8.12] and
that in the earlier arXiv version of [42]. Here, the proof is easier since the
data is more regular (than H?), i.e. H? or H3(¢), and then the estimate of
several nonlinear terms can be done by applying L estimate on one term.
To estimate the mixed derivative terms, e.g., (D%Ds&, D% Dg(uDsé)1h), we
apply the L*(R, L>=(3)) x L*°(R, L*(3)) argument similar to that in the proof
of Proposition [2.8.12]

The following result is a simple H3, H3(1)) generalization of another transport

estimate in the earlier arXiv version of [42].

Proposition 2.8.14. Let H3(p) be either H3 or H3(¢). For all g € H3(p), u
with || Dsul|pe < 0o fori < 3 and ||D%D%6ﬁu||Loo < oo fori+j <2, we have

9, uDrg)rs ()] S o 2( Y IDgull= + Y [IDRD0sul|z=)llgl 3

0<i<3 i+j<2

The proof follows simply from applying L estimate on the u term and inte-

gration by parts.

2.8.3 A new estimate of the transport term and the estimate of v,¢
In this subsection, we establish a new estimate of the transport term which is

necessary to close the nonlinear estimate and estimate ||v,£||%s which is not
covered by Proposition [2.8.12]

Proposition 2.8.15. Let ¥ be a solution of (2.134). Suppose that g, €
H3, & e H3 ()N CE. We have

1 _
9, =7 DrYDsg)as| S a1 s 9135

sin(2/3)
1 _
(&, WDR\IJDB€>H3(w)| S a2 le (1€l + o 721[E]ler)*.
If one apply Proposition [2.8.13| with u = %, || Drul|s in the upper bound

cannot be bounded by ||Q||xs.

DRV
sin(26) -
that in Proposition |[2.8.12 except that we need to perform integration by parts

for the terms (D3g,uD3*Dgp) in the estimate. We focus on a typical and

Proof. Denote u = The estimate of the transport term is similar to

difficult term (D% D¢, DRuD3E1s) to see why we can improve the estimate in
Proposition [2.8.13] Other terms can be estimated similarly.
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For this term, it suffices to estimate the L? norm of DéuDg&/};/ ?. Recall
Py = WP with W, P defined in ([2.142]). We have

| DRuDEEw; (|2 < | DFuW 2| 2(r 1o ) || DFEP 2| o 128y 2 A - B.

The term A can be bounded by Ca~%/2||u||ys, which is further bounded by
Ca™32(|Q||4» using Proposition m The term B is bounded by C'|[[¢[]3s3(y)-

It is similar to the argument in the proof of Proposition [2.8.12] and we omit
the detail. U

Finally, we estimate the nonlinear term v,£ in the n equation ([2.48]).

Proposition 2.8.16. Let U, ¥ be a solution of (2.134) with source term Q,<Q,
respectively, and V(W) be the operator which is related to v, and is to be defined
in ([2.150). Assume that € € H3(¢) NCL,Q € H3. We have

IVi(0)El s S @ 21192 s (@2 1€ er + 1€l laes )

_ (2.144)
VA (D)l lges S (1€l -

The difficulty lies in that H3(1) is weaker than H? (see Lemma [2.7.4). We
can not apply Proposition [2.8.12| directly to estimate v,£. We need to use a
key fact that v, vanishes on g = 0.

Proof. We use the formula of Vi (W) (2.152) to be derived

Vi(¥) = a1 + 2cos® B) DV — DDV — DV, + 2V, + sin®(5)050,
+ a? cos?(B) D2V = A(V) + o cos?(B) DR V.
where U, = U — %le(ﬂ). We first consider the second inequality in
(2.144). Notice that V;(¥) vanishes on 3 = 0. More precisely, Proposition

m implies sin(3)~Y/2V1(¥) € W>*. Applying the product rule in H#* norm
in Proposition 2.8.12] Lemma [2.7.4] and then Proposition [2.8.8] we yield

IVi(D)Ellss S @2 sin(B) " 2Vi () oo [ sin(B8) %€ e S @2 [[€] oy

Next, we consider the first inequality in (2.144]). From Proposition we
know that sin(8)~/24(¥) € H3. Applying Propositions [2.8.12, and

Lemma [2.7.4] we derive

IACR)E] e S a2 AE) sin(B) ™ lyea |l sin(B8) 2 las oy S @21 lea €] ez
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Finally, we focus on the term g £ a?D%V in V;(¥). We consider the third
derivative terms D3(D%W - ) with D3 = DL DY, i+ j = 3 in the H? estimate
since other terms are easier. If D3 = D%, we need to estimate the L? norm

of D%(gé’)gp}/z. Since ¢ =< 11, the estimate follows from the argument in the
proof of Proposition 2.8.12] and we obtain

1/2
| D%(a? DEWE) 0y (12 < )| s (€] s o) + @272 [[€][en)-

2 ~

Otherwise, we need to estimate the L? norm of D2Ds(g - &)¢s/* with D? =
D%Dé,i + 7 = 2 (note that Dg commutes with Dg). We rewrite Dg(gé) as

follows
Dg(g€) = 0pg(sin(28)¢) + gDpé
= sin(28)**95g(sin(25)"/1¢) + sin(28) " (sin(28) /?g) sin(28)'* D¢,

Notice that sin(23)"4p, < ¢1,4;. Using the idea in the discussion of Lemma
and expanding the H? norm, one can verify easily that

1D*(Ds(9€)) ¢y *| |12 <||sin(28) 2059 - sin(28) /€] e
+ || sin(28) "2 sin(28) Y4 Dg€| |-

Applying the H? version of the product rule in Proposition [2.8.12] (it is given
in [42]), Proposition to g = a?D%¥, and Lemma we obtain

1D*(Ds(9€)) s "1z S a™/2[|sin(28)" D] |pez | sin(28)/*€] [z
+ a2 sin(28) 712 gllal | sin(25) " D] e

< o[ s 1€ s ) -

Combining the estimates of A(¥) and o? D%V completes the proof. O

2.9 Nonlinear stability

In this section, we complete the estimates of the remaining terms R3 in Corol-
lary and in (2.123),(2.126)),(2.127)). We will prove the following for the

energy Ej3 in (2.115) and E(§, 00)

1d 1
QEE?% < —EE:? + Ca'?(E5 + allé]|2)

+ Ca™3%(Es + o?|€]|e1)? + Ca®Es, (2.145)

d
S S E(E, 00)? < —B(€,00)" + Clléller 0By + aleller)

+Cllller (a7 E5 + a7 Ey[[¢]ler) + Ca’E(§, 00),  (2.146)
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for any initial perturbation Q,n, £ with F3(Q2,n,£) < 400 and E(§,00) < +o0,

where

B(g,00) £ (€12 + llo2Ds€]1% + pallér Drél[3)"? (2.147)

for some absolute constants py. FE(§,00) is equivalent to ||€||c: (2.117) once

we determine the absolute constants ji,.

The major step is the linear stability that gives the damping term (—% +
Ca)E3 and (=1 + Ca)E(£,00)?. We have already established the linear
stability in Corollary and estimates (2.123)), (2.126)), (2.127). The re-
maining terms R3 in Corollary and in (2.123)), (2.126)), (2.127) con-
tribute other terms in —. We will further construct an energy
E%(Q,n,€) £ aB(£,00)2+ E2(2,1,€) and these remaining terms are relatively

small at the threshold £ = O(a?). Then we can close the nonlinear estimate.

We will first derive several formulas for later use in subsection 2.9.1l Then we
estimate the remaining terms mentioned above. In subsection [2.9.2] and [2.9.3],
we will apply the product rules obtained in subsection to estimate the
transport terms and nonlinear terms and then complete the estimate .
We will derive the C! estimate in subsection and prove finite
time blowup in subsection 2.9.60 We remark that estimates similar to the C*
estimates are not required in [42] since there is no swirl.

Notations Throughout this section, x is the radial cutoff function in Lemma
A.0.40 We use U,, ¥, to denote the lower order terms in W, U, i.e.

_ SiIl(QB) L12<Q), ‘If* Y \I/ . ' ( )le(Q) (2.148)

yiye; TQ

U, and ¥ enjoys the elliptic estimate in Proposition and W, W, satisfy
Proposition [2.8.8]

I

2.9.1 Formulas of the velocity and related terms
In this subsection, we derive the formulas of the velocity in terms of the stream
function in the (R, §) coordinates to be used later and then collect the remain-
ing terms to be estimated in the nonlinear stability analysis.
Denote

uEU(Y), vEV(9), u = UI(T),

. X X (2.149)
u, = Us(¥), v, =V1(V), v, = Va(V).
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The formula of U,V in terms of ¥ are given in (2.25). We also collect them
below. Using (2.24)-(2.25)), Dr = ROg, 70, = aDpg and the incompressible

condition u, + v, = 0 , we compute

U(¥) = —2rsin fU — arsin DV — r cos f0s V¥,
V(U) = 2rcos fV + ar cos BDrY — rsin S0V,

sin(2/3)
2

U (D) = —%oﬂ sin(28) DLW — %sin(QB)DR\I/ + A
—¢0s(20)03V — avcos(20)03 DRV,

Us(W) = a(—1 — 2sin® B)DrW¥ — aDpDs¥ — Dg¥ — 2¥
— a?sin?(B) DAY — 0082(5)82111,

Vi(¥) = a(1+ 2cos® B)DrVY — aDpDgV — DgW¥ + 2W
+ o cos®(B) DRV + sin®(8)05 7,

Vo(¥) = —Uh(9).

(2.150)

Recall ¥ = %Lm(Q) + W,. For the terms not involving the R-derivative,
e.g., ¥, 0¥, we compute the contributions from the leading order part of ¥,
ie. %ng(ﬂ), and W, separately,

2r cos(0)

U(v) = ——&ng(Q) — 2rsin(fB)V, — arsin DY — r cos f03 V.
T
2
e 20y )+ uw,v.),
T
2rsin(f) :
V(v) = TLH(Q) + 2r cos BV, + ar cos BDrY — rsin f0zV,

2 %ﬁfﬂ)m(m V(W)

2

Uy (W) = —%Lm(ﬁ) — 2 Sin(25) DR — & sin(28) Da¥ — cos(26)05V.

in(2 2
— acos(28)s DR + Sm; b )agxp* 22 LL(Q) + Uy (D, 0,),
T
2
Va(¥) = —Uy (V) = ELH(Q) — Ui (¥, 0,).
(2.151)
The first term in the formulas of U, V, Uy, V5 is the leading order term. Observe

that
—Dgsin(28) — 2sin(28) — cos®(8)d5 sin(28) = 0,

—Dgsin(2) + 2sin(28) + sin®(8)95 sin(23) = 0.
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For the terms not involving the R-derivative in Uy (W), V1 () (2.150)), the con-

tributions from sin(23)L15(2) cancel each other. Hence, we have

Us(0) = a(—1 — 2sin® B)Dp¥ — aDr DV — DsV,
— 20, — o?sin®(B) DRV — cos®(6)93 V.,

Vi(0) = a(1 + 2 cos? B)Dr¥ — aDrDs¥ — Dy,
+ 20, + o cos®(B) DLW + sin®(B)93 ¥

(2.152)

We decompose U, V in (2.151))-(2.152)) so that we can apply the elliptic estimate
n PI‘OpOSitiOHS 7 tO U(\IJ7 \Il*)a V(\Da \Ij*), Ul(\Ij7 \IJ*)a ‘/2(\117 \Ij*), UQ(\D)? ‘/1(@)

Recall the formula of u -V in (2.27)
u-V = —(aR&B\If)OR + (2‘11 + aR@R\IJ)QB.

Since ¥ = Sln(26)L 12(2) + U, Dg = sin(23)03, we have

2 cos(25) 2 2\11* + aDrV¥
A 2
£ —L2(Q)D Q
— L) Ds + T(9),
a  2cos(2p) 2V, + aDgV¥
T(Q) = . Lm(Q)DR aaﬁllf*DR + Sln(?ﬂ) Dﬁ.
(2.153)
Using (2.45), we have 2 L15(Q) = 2z and

0V = Dy T(),
" 1+R”

Recall the formulations (2.52)-(2.54) and their equivalence (2.59)). We use the
notations | m ) to rewrite u,, u, and so on, and the above computations to
expand the remaining terms R in - - R consists of three parts: the

lower order terms in the linearized equation (denote as P), the error term F
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(2.46)) and the nonlinear term N (2.49)). The formula of P is given below
RQ:PQ+FQ+NQa Rn:Pn+Fn+Nn, R§:P§+F’£—|—Ns7
Pq =(—3aDg — T(2)Q + (ac,Dr — (u-V))Q,

Py =(=30Dn = TQ))n + (acuDr — (- V) = (U(8) + )
~ (TA(W) + - Laa(@)7 — (G(T)E + Vi(0)3),
P =(~3aD ~ T + (acu Dy — (w- V)E+ (~Va(B) + 1)

9 _ _

+ (=V2(0) + —Li2(2))€ — (V2(0)7 + Ua(¥)n).

(2.154)

We remark that P is the difference between the linear part of (2.48) and
25)-E50).

Recall ¢, = —1,¢ = é—i— 3 and Q,7 in (2.44). Notice that ¢ = é,Q* =

%ﬁ,m = %ﬁf = cos(f)® is a solution of (2.40) and €, 7 satisfy
Q=QI(B), 1=nl(B), £ [; Lds = 1+LR' Hence, we have

_ _ ~ 3
DrQ=¢,Q+1n, Dgij=2¢,0+——1.
R Coll+1 RT] Cwdl + 1+ Rn
Hence, we can simplify Fo, F), in (2.46) as
FQ = (—3aDR —u- V)Q,
_ 3 _ o (2.155)
Fy=(——% —U(¥)n—Vi(¥)§ + (—3aDr —u - V)7,

1+ R
where we have used the notations in (2.149) for 4, 4y, Uy, Uy.

Recall the definition of the H3, H3(¢)) inner product in (2.131]) and the remain-

ing terms Ry in (2.115)),(2.132). See also the full expression of the weighted
H? energy Es3 (2.128)) related to Rs Clearly, we have

81 . -1
Rs = (Ra, Qpo) + (Ry, mibo) + 4_7TCL12(Q)(0)<RQ’ Sin(28) &) (2.156)

+ (Ra, Wywz + (Ry, mwz + (Re, Oz w)-
We remark that (-, -) in the first three terms is the L? inner product defined in
(2.15). We assume that Q,n € H* Q € L*(p),n € L2(¢), £ € H3(¥), € € CL.
We will choose initial perturbations €2, n, £ in these classes. In subsection [2.9.2]
we estimate the transport terms in the last three terms in R3. In subsection
[2.9.3] we estimate the nonlinear terms in the last three terms in R3. In sub-

section [2.9.4], we estimate the first three terms in R3.
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2.9.2 Analysis of the transport terms in P, N, F’

In this subsection, we estimate the transport terms in P, N and F in H? or
H3()) norm. Our main tools in this and the next few subsections are the
product rules, the elliptic estimates obtained in Section and Lemma
on L15(Q).

The reader should pay attention to the subtle cancellation near R = 0 in the
estimates in subsections [2.9.2.3] [2.9.2.4]

2.9.2.1 Transport terms I : (—3aDr — T(Q))g in P

We estimate

(~=3aDg — T(V) Qsal, Lo = [((~3aDg — T(2))n, )seal:
(=3aDr — T ()&, ).

Recall T(Q) in (2.153))

I
I3

(
(

2 cos(2) ~ - 1 - _
——— Lis(N)Dp— U, Dp+——— 2V, +aDrWV)Dg.
12() Dr—adg R+sin(2ﬁ)( +aDr¥)Dg

Applying Proposition to estimate the above coefficients, then Proposition
2.8.13to the Dy transport terms and Proposition 2.8.14] to the Dp transport

terms yield

3aDp+T () = 3aDp—

Lo Qs LS alnllis,  Is < oIl )

2.9.2.2 Transport term ] : —acROpg — (u-V)g in N ([2.49)

We are going to estimate

[((—acDp — (u-V))Q, Qgz|,  [((—acDp — (w-V))n,m)sz,
[((—acDr — (0 V))&, E)rzy)l-

Recall ac¢; = —2(;;‘3‘)[112(9)(0) in (2.47) and the computation about u -V in
@2.153)

2(1 — «) N 2 cos(2p3)

(—acDr — (u-V)) = ( — L12(22)(0) L15(Q) + a0sV,)Dg

T
2 20, aDrpV
B (ELm(Q) * sin(25) * sin(Qﬂ))Dﬁ'

For the first two Dy transport terms, we apply Proposition [2.8.14] and Lemma
Mto estimate || Df,L12(2)|| o for k < 3. For the third, fourth ((Z L12(2))Dp)
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and fifth (Siil(l’z*ﬁ))Dﬁ) transport terms, we apply Proposition [2.8.13| Proposi-

tion [2.8.3| to JzV.,, snIIE—Z,B) and (A.10) in Lemma [A.0.4) to L12(2). For the last

transport term, we use Proposition [2.8.15] Hence, we derive

L] S o™ 2[Q1s, ol S o219l 0],

I S a2 (1€l sy + @ 2]€]ler)?.
The largest term is 2 L;5(Q2) Dg, which leads to a~*? in the upper bound.

2.9.2.3 Transport term III : (ac,Dg — (u-V))g in P

Next, we estimate

lacoDr—(u-V))Qlls,  [lacoDr—(u-V))illuz, oo Dr—(u- V))& lnaw)-

(1+R)*
R4

['(8) = cos(B8)™ and a careful calculation to cancel the singular weight R~
near R = 0. Using the formula for ¢, in (2.47)) and the computation in (2.153]),

we have

Recall that H? contains a singular weight . We use the explicit form

(ac,Dr — (u-V))g

2 2 cos(2 2
L 200828) | Q) Dy — —ng(Q)Dﬂ> g
T T

(2.157)
+ (a0yV, Dy — (sin(26)) (20, + aDp¥)Dy)g £ 1(g) + I1(g).

Denote @ = L12(2) — xL12(€2)(0). We use L15(Q2) = Q +xL12(2)(0) to rewrite
1(g)

2 1 2 1
I= ;L12(Q)<0)(_DR9 + cos(28)xDrg — axDﬁg) + ;Q(COS(QB)DRQ — aDﬁg)
2]+ L.

(2.158)
Using and the formula of g = Q,7 in , we have
Dl = —2asin?(B)I,  Dgg = —2asin®(B)g.
It follows that
Iy = 2 L1o(@)(0)(~Dig + cos(28)xDig + 250’ (8) x9)
n (2.159)

= %LH(Q)(O)(—(l — X)Drg + 25i0*(8)x(=Drg + g)).
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Since the smooth cutoff function y satisfies 1 —x(R) = 0 for R < 1. I; vanishes
quadratically near R = 0. For (g,H*(p)) = (Q,H?), (7, H?) or (&, H3(¢)),
applying Lemma, to g = Q,7, (A.26) in Lemma to g = £ and using

a direct calculation yield

()2 0) S [La2()0)[([1(X = X)gllms o) + |1 PrG = 9ll23(0))
S alLp(Q2)(0)] < of [92|5s,

where we have used (A.9)) in Lemma in the last inequality.
Recall Q = L15(2) — xL12(2)(0) and I, I1(g) in (2.157)), (2.158)). For g = Q, 17,

applying the product estimate in Proposition [2.8.12] we get
112(gll2s S @™ 2| Qs (1 Drgl s + [ Dggllwseo) S @29 s,
111(9)|las S @ 2(19 [3es (]| Drgllws + || Dagllwsee) S o2[[Qfs,

where we have applie roposition [2.8.3| to emma (A.0.4{to () an ropo-
h have applied Propositi v, L Q and Prop
sition [A.0.7to ¢ = Q. 77. For g = £, applying Proposition [2.8. ields
ition [A.0.7 to g = Q,7. For g = £, applying P 2.8.12] yields ]
L)y S 2 11@ s (|| Dréller + 1 Dré s vy
+ || Dpéller + 11Dp€llasiwy) S o'?1]Q[pes,
L)) S o 2119 (|| D€l lyper + | DrE |l w)
+a'?[|Dgller + |1 Dpéllrny) S 119l

where we have used Lemma to estimate the norm of £&. Hence, we prove

lacuDr — (u- V)Ql3s + [lacoDr — (u- V))ill3e
+ ||anDR - (U ) V))é“mw) 5 041/2||Q||7-13-

2.9.2.4 Transport term [V: (=3aDr —u-V)g in Fo, F,, Fy
We will prove for (g, H*(p)) = (0, H?), (i1, 1), (€, H? ()

|(=3aDg —a - V)gl|us(p S o (2.160)

4The estimate of I5(€), II(€) can be improved to a’/?||Q||»s but we do not need this
extra smallness here.
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From 2.45 , we have leg(ﬁ)(O) = 3a. Hence, we can apply the decomposi-

tion in —3aDr —u-V)g to get

(=3aDp —u-V)g = Li(g) + I2(g) + I1(g)
11(g) = (0050, Dy, — (5in(28))" (2. + aDp)Dy)g,

2 - 1
L(9) = —Lia(Q)(0)(=Drg + cos(28)xDrg — —xDsg),
~ 1
h(9) = 2Q(cos(26) Drg ~ - D),

where Q = L15(Q) — xL12(2)(0). Notice that the computation (2.159) still
holds for g = Q, 7
2 = :
Li(g) = = Lia(@)(0)(=(1 = X) Drg + 2sin*(8)x(—Drg + g)-

Recall L15(Q) = (ii’;%) Notice that (1— X)DRg,DRg 9,QDgrg, QDsg vanish

quadratically near R = 0. Applying Lemma 6 to ¢ = Q,7 and using a

(2.161)

=1|t\3=1

direct calculation yield

11:(9)lle S el Lia()(0)] S o, [ITa(g)ll3e S .

Since ¢ already vanishes quadratically near R = 0, using Lemma for £

and a direct calculation give

1Ll S alLi(@)O0)] S o, L@ < o

For I1(g) with g = Q,7, we apply Propositions [2.8.9] and the triangle
inequality to yield

1+ R)3 1+ R | - 1+ R)?
111 < I 11w < 1R a0 w1 D
1+ R, . L1/aw - 1+ R)?
1 sing2s) 20, + aDRw>||Ws,m||¥Dﬁg||wsm <o

R
where we have applied Proposition to ¥, ¥, and Proposition to
9="0,7.

For 1(£), we use Propositions [2.8.12] and Lemma to get

I ey S @ 2[105 W lws (|| DrEllyper + ol Dré )

+ a7 ?|(sin(26)) 72U, + aDrY)|lws (2| Dl ler + ||Dséllrswy) S ™.
2.9.3 Nonlinear forcing terms in P, N, F’

The estimates in this subsection are obtained by applying the product esti-
mates in subsection directly.
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2.9.3.1 Nonlinear forcing term in P, F;

We are going to estimate

B =l = (O®) + )0 = (O(0) + — L)l
1 = [(=Va(9) + 1206 + (~Va(0) + = L1a(62)Ellsc

I = |[Vi(P)§ + Vi(©)E |3z, 1T = |[U2(0)7] + Ua(0)n][3s )
From ([2.45)), %ng((l) = IJ%R. Recall the formula of U;, V; in (2.151))-([2.152)).
Applying Propositions we obtain
- 2 _ _ 2 _
UL(¥) + — Lo (€)oo = || = Va(¥) + —L1a(Q)[ s S
T T
2 2
1T:(9) + = Liz( Dl = [| = Va(¥) + —Luo(Q) oo S 19, (3162)
T T
U2(W)l s S, [|[U2(®) s S 12 |35
Applying Proposition [2.8.12 Lemma to 7 and Lemma to &, we
yield

L a2l + a7 219 bl lwse S @2 (1l + 1191e),
11 S oM (a2 lg]er + 1€l ray) + a1l (@ 1€l ler + 1€l )
< a2 leller + NIEllas ) + @*]1 Qe

where we have used Lemma in the last inequality. Using Lemma
and Proposition 2.8.12] we derive

[y S 1|Us(9)i7 + Ua(O)nl e S o2 ([ bs [l s + U (2) s 1] )
< a'2([1920]3s + 1] 1342)-
For I,, we use Proposition [2.8.16 and Lemma [A.0.§] to obtain

L S (¢l wy+a 2 (@2 1Eller+HIEl 2 ) S @2 1€ sy +0* 212 -

2.9.3.2 Nonlinear forcing term in N ([2.49)

Recall the formula of Uy, V5 in (2.151]). We use the following decomposition

VH() = U (¥) = (Ua(W) + —Laa(®) — —Lun(2) = 1 + T

Applying Proposition to I and Lemma to I, we obtain

1V2(P)llx = 1U(W)]|x S ]l + o7 ILi2(Q)llx S a7 QU Iy (2.163)
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Applying Propositions [2.8.12] 2.8.3] we get

10U (@)las S @219 s 1] s,
1(Va(©)ellacy S o219l (€l lracy + a2 lI€ len).

Applying Proposition [2.8.16| to Vi&, Proposition [2.8.12] and Lemma to
Usn yields
1= Vi(0)elle < a2 Qles (1l ey + '€l er),
| = Ua(@)nllsswy S N02(B)nllas S @ 21192 aes 1] s
Finally, from (2.47), (A.9), the scalar ¢, satisfies |c,| < a7 *||Q||3. Hence, we

obtain
lewQlae S a7 Qs lewnlle S o Qs nlle,

llewtllmaw) S o HIQel1Ells )
2.9.3.3 Nonlinear forcing terms in F

Recall that we have estimated the transport term (—3aDr—uV)g in Fo, F,,, F¢

in (2.160)). The remaining terms in Fn and Fg (see ([2.46)), (2.155)) are

3 _ o o _ _

I'= (=177~ Ui@)n-WW)E, 1= (26, - Va(¥))§ — U2()i — Drg,
(2.164)

where we have used —ac;Dr = —Dpg — 3aDp since ¢ = l + 3 (2.44)). From

(2.45), we have 2L15(Q) = 1+R Using U;, V; in (2.151)- (]2 152)), 77 (2.44) and
Proposition [2.8.8] we have

1+R - 3

—_— U) 4+ —— oo S

1+R - 1+ R

1 @) e S0, gy <0

Applying the embedding in Proposition [2.8.9] and then the algebra property
of W3 in Proposition to 77 and the above estimates, we get

3
H(_H—R — ()7l S 2, [[U2(9)7]ls ) S NU2(0) 73 < 0
where we have used (2.130) in the second inequality. Applying the product
estimates in Propositions|2.8.12} [2.8.16| Proposition to Vo(¥) and Lemma
to é, we yield
3 _ _
1+R)éll% w S o (@ |Eller + [1€lle) S o2,

IVi(P)E]le S al/zl\éllww) a2

[1(Va () —
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For the remaining part in I, we simply use ¢, = —1 and Lemma to get

125€ = Dréllase) + lls—F +R€|IH

Therefore, combining the formula of F in (2.46), (2.155)), the estimate (2.160)

and the above estimates of I, 11, we prove

[Fallue S o IFlle S o [|[Fellew) S o™ (2.165)

2.9.4 Analysis of the remaining terms in R;

It remains to estimate
81

(Ro, Qo). (Ryvmio), 1 Lro(@)(O0){Rasin(@A)R™),  (2166)

in R3 (2.156|). Recall the definition of ¢g, 1y in Definition and ¢ in
Definition [2.6.2} Note that 1g(R, 5) grows linearly for large R. Clearly, we

have

2] 5 P1,
) 4, 3 (A+RP 3(1+R* 3 .
= — F 1 —_— — _ F 1 é ‘
Yo 32R (B) + 16 ( RA + 2 I3 2R (8) o1 + Vo2

Since the weights ¢, 102, R~'sin(28) are much weaker than the weights 1,

the estimates of
81

(Ra, Qp0),  (Ry,nvo2), 4—L12(Q)(0) (Ra,sin(28)R™)

follows from the same argument as that in the last two sections and a similar
bound can be derived. It remains to estimate (R,,nRI(S)~!). Compared to

¢1, RT'(B)~! is much less singular in R and 3. We focus on how to control the

growing factor R. We use the decay estimate of 77 in Lemma and € in
Lemma[A.0.8] In particular, for i + j < 7 we have

[DRDi| S a(l+R)™,  |DRD3E| S €] S o®(1+ R)sin(8) . (2.167)

Recall the decomposition of R, in (2.154)) and the error F, defined in (2.155).
We use argument similar to that in the last subsection to estimate || F;,(RT'(8)~1)/2,.

A typical term in F’ can be estimated as follows
/ / Vi(D)2E2RT(3) " dRdB

<a? / / Y1+ R)*sin(B)"*RI'(B) 'dRdS < o < o,
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where we have applied Proposition to estimate V(W) and used o < g (we
will choose « sufficiently small). Similarly, we have || F,(RT(3)"1)Y?||3 < ot

Hence, using the Cauchy-Schwarz inequality, we get

[(Fy nBE(B) ™) S |IF(RD(B) ™) 2|l In(RD(8) )22 S 0?2 S o Es,
where we have used ([2.132) to derive the last inequality.

Recall P, in (2.154)), N, in (2.49) and the formula of u- V in (2.153)). We use

integration by parts and then a L estimate to estimate the transport terms

in P,, N,. A typical term in these transport terms can be estimated as follows

2 —1\| __ 2 . —1 2
(= L1a() Dy, D] = [(— Lo ()05 (in(28)T), 77 )|
S @[ Lo ()|l In(RT )23
< o710 2| e Iy |3 S o7V,

where we have used I'(3) = cos(8)?, |sin(28)9sT(8)~! < T(B)~! in the first
inequality, Lemma in the second inequality and (2.132]) in the last in-
equality.

For the nonlinear terms related to 7, i.e. (2¢, — U;(¥))n in N, (2.49) and
— (U (W) + 1J%R)n in P, (2.154), we also apply a L> estimate. For example,
we have
_ 1/2
[((2¢0 = U (W), nRT(B)™)] 5 [[260 — Un()]|noe | It 3
< o7 [Qle |15 S o7 B,

where we have used ([2.163)) and |c,| = 2 |L12(2)(0)] < o {|Q||s (see Lemma
A.0.4)) in the last inequality.

For the terms related to 7, £ in P, (2.154), i.e. (U3(¥)+ 2 L12(2))7, Vi(V)E),
they can be estimated easily by using the fast decay of £, 7 (2.167)).

Finally, for the terms related to &, i.e. V4(¥)¢ in N, (2.49) and Vi(¥)¢ in
(2.154), we get

[(Vi(®)§, nRE )| + [(Vi(2)€, nRT )]
Sl R0V |2 |€RY? sin(28) ||

([[Vi(9) sin(28) 747122 + [[VA(@) sin(28) T2 | 2)
Sl 22118 s oy (1[V3 (2) sin(28) %] 2 + | [ V3 (¥) sin(28) "7/l 12)
SES(1Qsin(28) 7772 + [|Qsin(28) /2| 12) $ B3 (o + Ey),
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where we have applied Lemma [2.8.10] in the second inequality, the weighted

L? (with weight sin(28)77, 0 = +5) version of Proposition in the third

inequality and a direct computation using (2.44)) in the last inequality.

Combining the estimates of Fn, P,, N,, we have

(R, nRT™| < a™3?ES + o?E2 + o*E;.

2.9.4.1 Completing the H® and H3(¢)) estimates

From ([2.133), we can use E3 to bound |||z , ||n||u3, ||£||#3(s)- Combining

the estimates in the last few subsections, we prove

(Ra, Qg + (R mas| + [{(Res )z )|
SalP(ES + allé][2) + a7 (B + o€ |en)? + o B,

where Ej is defined in (2.115). Combining Corollary and the above
estimates, we prove (|2.145)).

2.9.5 Remaining terms in the C! estimate of ¢

Recall that we perform L estimates on £ and its derivatives in subsection
[2.7.3 In this subsection, we complete the estimate of the remaining terms in
these estimates and derive . We group together the remaining terms in
(2.123), (2.126)), (2.127)), which remain to be estimated. They can be bounded
by

1€ller (1Exller + [1Ealler + [[Feller + [ Noller),  I€ller[1[¢1Dr, A2Jé] oo,
1€lle1[[¢2Dg, Aslél oo, lacillld1Drél[Zoe,  [1¢2DgE] || [AL (P2 — 1) - Dgél| o=

2.9.5.1 Analysis of =1,=5, N,

Recall 2y, 5, N, in (2.119), (2-120),(2.122)

V= (s VA0, Ny = (2 — Va(W))E — Ua( ),

Ep = —Vo(V)€ + (26 — RORE) + (ac, RO — (u- V))& — (U2(0)7] + Uz (¥)n),

where we have used V5(¥) = v,, Us(¥) = u, (2.149). Recall (2.45)), (2.47),
(2.148]). We have

2 - 3 2 sin(25)
L) = = — 2 Lu()(0), U, = U —
T 12(8) 1+ R © T 2(1)(0)

[1]

ng(Q).

e’
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Then we obtain V5(¥) — 2= = —Uy (¥, V,) (see (2.151)) .

For the transport term (ac, D — (u-V))E, we use the decomposition (2.153)).
Then each term in =, 25, N, depends only on L5(92), ¥, 1, and their approx-
imate steady state, e.g., Vao(¥). To estimate the C' norm of the product in
=1,Z9, N,, using Proposition , we only need to estimate the C' norm of

each single term.

For the terms depending on ¥, ¥, e.g., Vo(¥) —%ng(Q) (see (2.151))-(2.152)),
we apply Proposition and Lemma [2.8.11] to obtain the C! estimate. For
the terms depending on W, W, we apply Propositions [2.8.8 and [2.8.6| to esti-

mate the C' norm.

For the terms depending on L15(€2), we use (A.10)) in Lemma to estimate

the C' norm.

The slightly difficult term is Va(¥). Using the formula of V5(¥) in (2.151)),

(2.152), Propositions [2.8.3 and Lemmas [2.8.11] [A.0.4] we get
2 2

Vo(W)|er S ||Va (W) — — L1a(Q)]|er + — || L12(Q2) ]|

Va0l < V() ~ = Lia@)ler + = [Lao(@) e

S (@2 +a Dl S o[

~Y

(2.168)

Using (A.23)-(A.24) in Lemma and Lemma we have |[€]|c1 +

[|DREler < a2, ||7ller < a. From (2.45), we know ||L12(Q)||er < a. Therefore,
we get

1Z1ller S alléller,  |I1Z2ller S @219l + a?||n]]2s,

I1Noller S @7 I8l lex 192522 + ™[ les 7] es.

The largest term in = is given by (Us(V)77+ U (W)n), which leads to the above
upper bound.

2.9.5.2 Analysis of F’f

Recall F; and - V defined in (2.46) and (2.153)

Fe = (26, — Va(0))€ — Up(V)7] — aq RORE — (1 - V),

-, 2cos(28)

2V, DpV¥
a-VE=( ¥y + alpY

sin(205)

For £ terms, we use ||D§2D/JB'§||51 <a?i+j <2 from (A.23)-(A.24) in Lemma
A.0.8. For other terms, we use ||7]|c: < a from Lemma and apply the
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strategy in the last subsection to estimate the C! norm. We get

|Feller S o

2.9.5.3  ||[¢2Ds, As)|loos ||[61 DR, A2JE ||

Recall A, defined in (2.124)). Using (2.153)), we have

As(€) = - L D)Dat + (T(D) + T()¢

%le(Q)Dﬁf - %COS(%)(LH(Q) + L12(€)) Dr¢

20, + aDp¥ + 2V, + DRV
sin(203)

— 04(85\11* + 85\11*>DR§ + Dg¢

£ (H,Dg + HyDg + H3Dp + HyDg)E.

Recall ¢1, @2 defined in (2.116). For D = Dpg, Dg and ¢ = ¢1, ¢2, a direct
computation yields
lp~'Dg| < 1. (2.169)

Let HD be a term in the above formula of A, and (D,¢) = (Dg, ¢1) or

(Dg, ¢2). Using (2.169) and the C' norm defined in (2.117) to control the L™
norm of D H, ¢DE, DE, H, we obtain

pD, HDJ¢| = |¢DH - D — HD¢ - DE|
< ||H|le||ller + || H| | ||6 7 D] | o< || o DE 1o S || H]ler|I€] e

Applying the strategy in Section[2.9.5.1|to estimate the C* norm of ¥, U, L5(Q)

terms, we get

1Hiller S @M@l ([ Holler S 1€l + a,
1 Hsller S @' [|Qles + o, [|Haller S @ |Qles + o

The largest term is a1 L15(2) in H;, which is estimated by (A.10) in Lemma
and using DgL12(Q2) = 0.

Combining the above estimates, we conclude that

I[DR, A2J€ll, [[[Ds; A2lélloe S [1E]ler (a1l + )
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2.9.5.4 Analysis of |a¢|, ||Ai1(¢2 — 1) - D]

Using (2.47) and (A.9)) in Lemma [A.0.4] we obtain
laci| < Ca™ [Lin(Q)(0)] < Ca™ Q|-

Using the formulas of ¢9, A; in (2.116)), (2.124)), we get

|6y " Ar (2 — 1) =|o5 ' (1 + 3a 4+ ae) D + HLRDB)(R sin(28)*)~1/49)

1
ngs;l(@(l +3a + ac) + Ca)(Rsin(2p8)~) /40
1
40(1 +3a + Ca™H|Q|3s) + Ca,
where we have used Dg(Rsin(25)*)~1/40 = ~L(R sin(23)%)~1/40,
|Ds(Rsin(28)%)~V40| < af(Rsin(26)%) 7149 in the first inequality. Therefore,

we get

1
A1 (62 — 1) - Dglr < (5 + Ca+ Ca M| Qlya)[| 2D -

40
2.9.5.5 Completing the C' estimates

From ({2.133), we can use Es3 to further bound ||Q||ys, ||n]]2, |[€] 23 (). Plug-
ging all the above estimates of the remaining terms in (2.123]), (2.126]), (2.127]),

we prove

2 _ 2 2
2dt||§” < =2|¢|1A, + Ca?||€]]os
+O|¢]ler (a2 Bs + al|¢]|er + a7 ES + a7 EsI¢] o),
H¢2Dﬂf|\2 <—(2- —)H¢2D55H2 + Ca®||p2Dsé ||
+O/1¢]ler (o' Es + a|€]|er + @ Ef + o B3¢ |er),
2dt||¢1DR§H2 < =2||p1 D&% + 3||¢1DRE || 0o (|| @2 D€ oo + 11€]]0)
+C[¢][er (' Es + o [¢]|er + a7 ES 4+ a7 By |€][er) + Ca||dr Dré |

2dt

Hence, for some absolute constant 4, e.g., py = the energy defined in

(2.147)) satisfies ([2.146)).

10’

2.9.6 Finite time blowup with finite energy velocity field
2.9.6.1 The bootstrap argument

Now, we construct the energy

E(Q,1,8) = (E3(Q,1,8)” + aB(¢,00))"2. (2.170)



102

Adding the estimates ([2.145)) and ax (2.146)), we have

1d 1
§EE2(Q n, &) < EE2 + Ka'?E? + Ka™*?E® + Ko®FE, (2.171)

for some universal constant K, where we have used the fact that E(£, 00) is
equivalent to |[£||¢1 since py is an absolute constant. We know that there exists
a small absolute constant a; < and K, such that, for any a < a7 and

E = K.o?, we have

1000

1
—EEQ + Ka'?E? + Ka™?E3 + Ko®FE < 0. (2.172)

It E(Q(v 0)7 77(7 0)7 6(7 O)) < K*Oé2> we have
E(Q(t),n(t),£(t)) < K.a?, (2.173)

for all time ¢ > 0, where we have used the time-dependent normalization con-
dition ([2.47) for ¢, (t), ¢(t). Applying Lemma[A.0.4 to L1(£2)(0) and Lemma

2.8.11]to Q,n, we derlve
2
lew(t)] = —\le(Q)(ON < Cal[|Qlx: < Ca™'E < Ko,
—a 2
)] = |- —Liy(2)(0)] < Ca™*E < Ky,
€]z + ||TI||L°<> < CE < Ca® < Kyamin(||Q| g, ||7]| ),
|€]]z < Ca™'2E < Kqa®/?,

where we have used ||Q||p, ||7]|r~ > Ca according to (2.44) and Lemma
in the last inequality, and Kg > 0 is some absolute constant. We further

take
3T Kf 1

IR, 1K% 16(Ke £ 1)1
where K7 is the constant defined in Lemma [A.0.11] For o < oy, using ¢, =
—1,¢ = é + 3 and the formula of Q, 7 in (2.44), we further yield

ap = min(ay, (2.174)

S _ +é, < L +& > 1+3
- 3 Cw Cw — & & o )
9 o T T 9y

) . i ) 1
19+ Ol < 10|z < o I+l < [[7llz= < @ [¢]|z < 502
(2.175)

2.9.6.2 Finite time blowup

For Holder initial data, the local well-posedness of the solutions follows from

the argument in [I1] for the 2D Boussinesq equations. The Beale-Kato-Majda
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type blowup criterion still applies to the Boussinesq equations in the specified
domain. The time integral of ||V0||L~ controls the breakdown of the solutions
in the 2D Boussinesq equations [I1]. We will control this quantity and show
that there exists Ty such that f [|IVO(-, 5)||cods = oo in the 2D Boussinesq
equations. The solutions remain in the same regularity class as that of the
initial data before the blowup time. In particular, the velocity field is in C'b®

before the blowup time.

Let x(+) : [0,00) — [0,1] be a smooth cutoff function, such that y(R) = 1
for R <1 and x(R) = 0 for R > 2. We choose perturbation Q = (x(R/\) —
DQ,0(R, B) = (x(R/\) —1)f and n = 0, £ = 0, can be obtained accordingly,
where 0(z, ) is recovered from 6, by integration . Obviously, 2,17, =0
for R < A. Using Lemmal[A.0.11|for ©,7, ¢ and o < ay (see (2.174))), we obtain
that these initial perturbations satisfy F((0),7(0),£(0)) < 2K00%/? < K,a?
for sufficiently large . We remark that the initial perturbation is of size C'®/?
even for extremely large A because £ does not decay in the C' norm for large

R. Tt is important to add a small weight o in F(£, 00) when we define the

final energy in (2.170)).

In particular, the initial data Q + Q = y(R/A)Q (recall Q(R,8) = w(w,y)),
0 + 6 = x(R/\)f have compact support and thus we have finite energy ||u +
|2 < +00, [|0 + 0|12 < +00. c,(t), (t) are determined by (2.47)).

Denote by wphy, Opny the corresponding solutions in the original Boussinesq
equation (2.16)-(2.17)), which are related to the rescaled variables w, 6 via the

rescaling formula (2.9), (2.11])

wphy (T, 4(T)) = Cw(T)_l(W + @)(CI(T)_1$a 7),
Ophy (2, £(7)) = Co(7) " (0 + 0)(Ci(T) ", 7),

) = exp (/ +cwds) (2.176)
exp (- / () + ds ). t(T):/OTcw(T)dT.

We remark that the scaling parameters in (2.11) become (¢, + ¢, + ¢).

Denote

t(7)
M(r) £ / 198,10 (5) e .



104
Using a change of variable s = ¢(p) and 9,(0+60) = (n+1),0,(0+0) = (£ +£),

we obtain

7= [ 190t oDl Culp)dr
= [ oo o+ @l + 1€ + Ol

where we have used the formula ([2.176) and C,'(p)C; ' (p) = C.(p)~? ac-
cording to (2.11)),(2.12) in the second equality. Using the bootstrap estimates

(2.175) and Lemma about £, we obtain
M(r) =< a/ C.,(p)~tdp.
0

Using (2.175) and (2.176), we have e=®?/2 < C,(p) < e P/2. Therefore, we
obtain M (1) < 400 V7 < 400 and

/ M(r)dr > C’a/ / P 2dpdr = 0o, t(o0) < / e Pdp < +oo.
0 o Jo 0

Denote T* = t(c0). Applying the BKM type blowup criterion in [I1], we
obtain that the solutions remain in the same regularity class as that of the
initial data before 7™ and develop a finite time singularity at 7. Similarly, by
rescaling the time variable, we prove that ||wpny||re and ||VOpuy||re blowup
at 7.

Remark 2.9.1. The crucial nonlinear estimate and a priori estimate
, i.e. the bootstrap estimate for small perturbation, offer strong control
on the perturbation and the exact solution before the blowup time. In particu-
lar; it allows us to truncate the far field of the approximate steady state, which

leads to a small perturbation only, to obtain initial data with finite energy.

2.9.6.3 Convergence to the self-similar solution

Taking the time derivative of , using the a priori estimate for
the small perturbation and analysis similar to that in the previous Section,
we can further perform H? estimates on €, 7;, H?(x)) and L™ estimates on
&. In particular, following the argument in our previous joint work with Hou
and Huang [19], we can further obtain that there exists an exact self-similar
solution Qo oo € H3, oo € H3(¥)NL>, such that the solution of the dynamic

rescaling equation with initial data constructed in Subsection [2.9.6.2| converges
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0 (Qoo, Moos Eso) €xponentially fast. The convergence is in the H? norm for the
variables Q2,7 and both H?(¢)) and L> norm for the variable £.

Using the a-priori estimate ([2.173) and Lemma [A.0.8] we have ||€ +£(2)||er <
Ca?/? for all time in the dynamic rescaling equation. Using Lemma|A.0.13] we

know that the space C! (the weighted C! space) can be embedded continuously
into the standard Holder space C®/°. Therefore, the C' estimate of & + &
implies that £+£(¢) € C*/*° with uniform Hélder norm. Since £+&(t) converges
to &s in L™, we have £, € C°/%0. Finally, using the same argument, the fact
that Qu, 70 € H® and the embedding H* — C* in Lemma [2.8.11], we conclude
Qoo Noos Eno € O,

Notice that ¢;+¢; > i from (2.175]). Thus, the self-similar blowup is focusing.
This completes the proof of Theorem [2.1]

2.10 Finite time blowup of 3D axisymmetric Euler equations

In this section, we prove Theorem [2.2 We first review the setup of the prob-
lem. In Section [2.10.1] we reformulate the 3D Euler equations and discuss the
connection between the 3D Euler and 2D Boussinesq; see e.g., [89]. In Section
[2.10.2] we establish the elliptic estimates. In Section [2.10.3] we will construct
initial data and control the support of the solution under some bootstrap as-
sumptions. With these estimates, the rest of the proof follows essentially the
nonlinear stability analysis of the 2D Boussinesq equations and is sketched in

the same subsection.

Notations In this section, we use x1, xs, r3 to denote the Cartesian coordi-

nates in R?, and

r=1\/x}+ a3, z=ux3 U =arctan(xs/z) (2.177)

to denote the cylindrical coordinates. The reader should not confuse r with

the radial variable in the 2D Boussinesq.

Let u be the axi-symmetric velocity and w = V x u be the vorticity vector.

In the cylindrical coordinates, we have the following representation

u(r, z) = u"(r, 2)e,+u’(r, 2)eg+u*(r, 2)e,, w = W' (r, 2)e,+w’(r, 2)eg+w?(r, 2)e,,
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where e,, ey and e, are the standard orthonormal vectors defining the cylin-
drical coordinates,

Ty T2 T

?

&= (7’7’()) r r

and r = y/a? + 23 and z = 3.

We study the 3D axisymmetric Euler equations in a cylinder D = {(r,z) : r €
0,1],z € T}, T = R/(2Z) that is periodic in z. The equations are given below:

Oy (ru®y +u" (ru?), + v (ru?), = 0,
W W s 1 . (2.178)
The radial and axial components of the velocity can be recovered from the

Biot-Savart law

1 ~ 1 - ~ ~ 1=
—(Orr + ;ar + 0.2)Y + 71_21/] = wev ut ==, U =1+ ;1/1 (2.179)
with a no-flow boundary condition on the solid boundary r = 1
U(1,2) =0 (2.180)

and a periodic boundary condition in z.

We consider solution w? with odd symmetry in z, which is preserved by the
equations dynamically. Then ¢ is also odd in z. Moreover, since ¢ is 2-periodic

in z, we obtain

P(r,2k—1)=0. forall keZ (2.181)

This setup of the problem is essentially the same as that in [86] 87].
Equation (2.179) is equivalent to —A (1) sin(¥9)) = wsin(¥9), where

¥ = arctan(zy/z1) and A is the Laplace operator in R3. We further assume
that w? € C*(D) with support away from r = 0. It follows w’ sin(J) € C*(D).
Note that the cylinder Dy, = {(r,2) : v € [0,1],2k —1 < z < 2] — 1}
satisfies the exterior sphere condition. Under the boundary condition ([2.180))-
(2:181), using Theorems 4.3, 4.6 in [54] we obtain a unique solution 1 sin¥ €
C%*%(Dy;) N C(Dyy) for any k < I, k,1 € Z. This further implies the existence

and the uniqueness of solution of (2.179))-(2.181)).

Due to the periodicity in z direction, it suffices to consider the equations in the
first period Dy = {(r,2) : r € [0,1],|2] < 1}. We have the following pointwise
estimate on 1), which will be used to estimate ¢ away from the supp(w?) in

Section 2.10.2]
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Lemma 2.10.1. Let ¢ be a solution of ([2.179)-[@.180), and w’ € C*(Dy) for
some o > 0 be odd in z with supp(w’) N Dy C {(r,2) : (r — 1)? + 2% < 1/4}.
For 1 <r <1,]2| <1, we have

(r, 2)| < /D 1w (71, 21))| (1 4 log((r —r)? + (2 — z1)2)]>r1dr1dzl.

If the domain of the equation (2.179)) is R?, the estimate is straightforward
by using the Green function. For the domain we consider, the Green function
would be complicated. The proof is based on comparing 12 sin(¢)) with the so-
lutions of —A(wy sin(9)) = fi(r, 2) sin(¥) in R, where fi are some functions
related to w?. We defer the proof to Appendix .

If the initial data u® of (2.178)-(2.180]) is non-negative, u’ remains non-negative

0

before the blowup, if it exists. Then, v’ can be uniquely determined by (u?)2.

We introduce the following variables

62 (ru®)? o=ur (2.182)

We reformulate ((2.178])-(2.180)) as

até + uré'r + Uzéz = 07 ata} + UT(IJT + Uza}z - _4827
T
1 1.~ ~ - 1~ -
—<63 + ;87” + 83 - ﬁ)w = 7’(:], ¢(1, Z) = 07 u" = _wza u® = ;w + wr-

(2.183)

2.10.1 Dynamic rescaling formulation
We introduce new coordinates (z,y) centered at » = 1,z = 0 and its related

polar coordinates
r=C(r)'z, y=1-1)C(r)",
p=+a*+y? [=arctan(y/z), R=)p",

where Cj(7) is defined below (2.187)). The reader should not confuse p with
the notations for the weights, and the relation R = p* with R = r® in the 2D

Boussinesq. By definition, we have

(2.184)

z2=Cy(r)x, r=1—-C/(1)y=1-Ci(1)psin(s). (2.185)



108
Consider the following dynamic rescaling formulation centered at r = 1,2 =0

( ) = Co(7)0(1 — Ci(7)y, Co(T)x, 1(T)),

w(z,y,7) = Cyu(T)0(1 — Cy(7)y, Ci(T)x, t(T)), (2.186)
( ) = Cu(T)Cu(7)*P(1 = Ci(r)y, Ci(7), (7)),

) ) )

C,(1) = C,(0)exp (/OT cw(s)d7'>,
Ci(7) = Cy(0) exp ( /0 ' —cl(s)ds>, t(r) = /0 "o,

and the rescaling parameter ¢;(7), co(T), ¢ () satisfies cy(7) = ¢(7) + 2¢,(7).
We remark that Cy(7) is determined by Cj, C,, via Cy = C2C;'. We have this
relation due to the same reason as that of (2.12). We choose (r, z) = (1,0) as
the center of the above transform since the singular solution is concentrated
near this point. We have 0 <y < C;',|z| < C " since r € [0,1], |2] < 1. We

have a minus sign for 0,

(2.187)

8@/9 = _0901(7—)97‘7 ayw = _Owcl(7—>(br7 ayw = _chl(7>_12;T'

Let (0,&) be a solutions of ([2-183)). It is easy to show that w, 6 satisfy
Oi+cx-VO+(—u")0,4+u*0, = cob), witx-Vw+(—u")w,+u w, = cww—i-r—i@x.
The Biot-Savart law in depends on the rescaling parameter Cj, 7

— (Ow + Oy + %C’l@lﬂb + %C’f@/} =rw, u'(r,x) = =, u*(r,z) = %C’ﬂb — 1y,
where r = 1 — Cj(7)y (2.185)). We introduce u = u*,v = —u". Then, we can

further simplify
1—rt
et‘{‘(ClX‘i‘u-V)e:CQG’ wt_i_(clx_{_uV)w:gx_'_Tex’
1 1 1
o (6x:v + ayy)77b + ;ClaZﬂb + ﬁcl%vb =Tw, U(ZL‘, y) - _¢y + ;Cl¢7 v = ¢x7
(2.188)
with boundary condition (z,0) = 0. If C; is extremely small, we expect

that the above equations are essentially the same as the dynamic rescaling

formulation (2.10)) of the Boussinesq equations. We look for solutions of ([2.188|)

with the following symmetry

W(I‘,y) = —W(—l‘,y), 9(1'7y) = 9(—x,y).
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Obviously, the equations preserve these symmetries and thus it suffices to
solve (2.188) on z,y > 0 with boundary condition ¥ (x,0) = ¥(y,0) = 0 for
the elliptic equation.

2.10.2 The elliptic estimates

In this Section, we use the ideas in Section to estimate the time-
dependent elliptic equation in . We first estimate 1) away from supp(w).
In Section [2.10.2.1], we outline the estimates. In the remaining subsections, we

localize the elliptic equation and establish the H? elliptic estimates.

Under the polar coordinates (2.184) p = \/22 4+ y2, § = arctan(y/z), we refor-
mulate (2.188) as

C’l cos(p) C?

C
— ppw pQ/J— 855¢+—Sln(ﬁ) p@ZJ 8/37#4-?7/1:7”0). (2.189)

Recall R = p® from ([2.184]). Denote

V(R,5) = 3 1/1( B), QR B) = wlp, B),

(2.190)

Since we rescale the cylinder Dy = {(r,z) : r < 1,|z| < 1}, the domain for

(z,y) is ~
Dy & {(x,y) : 2| <G Yy e[0,C71) (2.191)

We focus on the sector p < C;'; or equivalently R < C; %, and 8 € [0,7/2]
due to the symmetry of the solutions. Notice that pd, = aROr = aDg. It is
easy to verify that (2.189)) is equivalent to

— @2R2833\P — Oé(4 + a)R@R\IJ — 855\11 —4¥

) (2.192)
Ci p U = rQ).

+ %(sm(ﬁ)(? + aDg)V + cos(B)0s¥) +

r

We keep the notation p = RV, r = 1 — Cypsin(B) to simplify the formulation.
The boundary condition of ¥ is given by (in the sector R < €[ %)

U(R,0)=Y(R,7/2) =0. (2.193)
Definition 2.10.2. We define the size of support of (0, w) of (2.188)

S(T) = essoo{p : 9(1‘,y,7’) = O,W(Qf,y,T) = 0 for :I"Q + y2 > PZ}
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Obviously, the support of €, 7 defined in (2.190)) is S(7)®. After rescaling the
spatial variable, the support of (5,&)) of (12.183)) satisfies

supp 8(t(7)), supp @(t(r)) C {(r,2) : ((r — 1)* + 2*)* < Gi(7)S(7)}.

We will construct initial data of (2.188]) with compact support S(0) < 400
and use the idea described in Section [2.2.3.1| to prove that Cj(7)S(7) remains
sufficiently small for all 7 > 0.

Remark 2.10.3. There are several small parameters «, Cj(7), Cy(7)S(7) in the
following estimates. We will choose a to be small. For most estimates, the con-
stants are independent of Cj(7). We will choose C;(0) to be much smaller than
« at the final step. This allows us to prove that C;(7), Ci(1)S(7), (Ci(7)S(7))"
are very small. One can regard C(7) ~ 0. Recall the relation (2.185)) about
r. In the support of the solution, we have r = 1 — Cjpsin(5) ~ 1. We treat

the error terms in these approximations as small perturbations.

Recall the L? inner product defined in (2.15)). Using the estimate in Lemma
2.10.1) we obtain in the following Lemma that the L? norm of ¥ away from
the support of the solution is small. It will be used later to localize(2.192)).

Lemma 2.10.4. Suppose that the assumptions in Lemma [2.10.1] hold true.
Let S(7) be the support size of w(7),0(t). Assume Cy(1)S(t) < 3. For any
M > (25(7))%, we have

W1 nr<r<cy-—ollre S C(M) - ||Q] L2,
C(M) £ (1 + |log(C:MM ™)) SM™Y*||Q| 2.

The proof follows from the estimate in Lemma the Cauchy-Schwarz
inequality and a direct calculation, which is standard. We refer it to the arXiv
version of [16]. We will choose M so that C'(M) is small, e.g., C(M) < 1 or
C(M) < 37V If we use an estimate similar to Proposition and then
restrict it to M < R < (2C))~?, the constant in the upper bound is a~!, which

is not sufficient for our purpose.

Remark 2.10.5. We restrict the domain of the integral D; to R < (2C))™°,

which is equivalent to p < (2C;)~" due to (2.184)), so that D; is in Dy (2.191)).
We impose R > M > (25(7))* so that D; is away from the support of the
solution. Since S(7), Ci(7) are the variables defined in (x, y) coordinates, when

we pass to (R, ) coordinates, we have a a power for these variables, e.g.,

(S(7))*, (Cufr))™.
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2.10.2.1 Outline of the estimates

In Section [2.10.2.2 we use (2.192) to derive the elliptic equation (2.196)) for
xV¥ with some cutoff function y. The equation is similar to (2.134]) in the

2D Boussinesq and has an extra error term Z,. We first establish the L?
estimate of x;V in the same Section [2.10.2.2] To estimate the terms involving
derivatives of x, e.g., D%\ ¥, we use Lemma . The L? estimate enables
us to estimate the error term Z,. The advantage of localizing is that
x¥ can be treated as a solution of the elliptic equation in Ry. Then,
in Section , we apply the H* version of the key elliptic estimate in
Proposition recursively to y; ¥ with y; that has smaller support, and
establish the higher order elliptic estimates.

2.10.2.2 Localizing the elliptic equation

We will take advantage of the fact that Cj(7)S(7) can be extremely small and
localize the elliptic equation. Firstly, we assume that Cj(7)S(7) < 3. Recall
the relation ([2.185)) about r. Then we have r = 1 — Cipsin(f5) > %, r=t <1,

Let x1(+) : [0,00) — [0,1] be a smooth cutoff function, such that y;(R) =1
for R < 1, x1(R) = 0 for R > 2 and (Dgrx1)? < x1- This assumption can
be satisfied if xy; = x2 where y is another smooth cutoff function. Denote
XA(R) = x1(R/N). It is easy to verify that

(Drxa)? = (R/Arx1(R/N)? S x1(R/A) = xa(R),  [DRxal S lacre<ar,
(2.194)
for k <5, where we have used |D%x1| < ;1 in the first inequality. Denote

\I/X = \I/XA, QX = QX)\.
At this moment, we just simplify ) as x. Note that R?0gr + ROr = D% and
rQy, = (1 — Cipsin(B))Q, = Q, — Cipsin(B)Q,,

aDp(x¥) = aDpxV + axDr7, (2.195)
a*D}(x¥) = o®xDEY + 2aDpx - aDrV + o> DEx .

Multiplying x on both sides of (2.192)), and using ([2.195)) and a direct calcu-
lation yield

— a?DRV, —4aDp¥, — 935V, — 4V, = Q + Z,, Z, =71+ Zy + Z,
(2.196)
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with boundary condition (2.193)), where Z, Z, and Z3 are given below

Cip, . —02 i
Z1 = ——L(sin(B) (20, + aDpl,) + cos(8)d5¥,) — — -,
ol
LT (02 D3x + 4aDpy)V — 202Dy Dy, (2197)
T

Z3 = —Cypsin(B)Q,.

Recall that R = p*,r =1 — Ciy = 1 — Cypsin(f) from (2.184), (2.185) and
L15(f)(0) from (2.31)). Next, we derive L12(Z,,)(0). It will be used in Section
2.10.2.3] when we apply Proposition [2.8.3]

Firstly, for sufficiently smooth €, ¥ with €2 vanishing at least linear near R = 0,
we show that Li2(Z,, )(0) is independent of the cutoff radial A for A > (S(7))~.
From A > (S(7))%, we have Q = Q- x) = 2,,. For any ¢ > 0, using integration
by parts, we get
(050 + 4V, sin(28) R 1pse) = (—40, + 4V, sin(268) R 1) = 0,
(a®?D3V, +4aDp¥,, sin(2B)R1) = (a*0r(DrV,) + 4adp¥,,sin(243))

w/2
= —404/ U (0, ) sin(28)dp.
0

Note that ¥ may not vanish at R = 0. Since p = RY® vanishes at R = 0,
it is easy to see that Z, vanishes at R = 0. Therefore, integrating both sides
of with sin(28)R™'1g>., and then using the above computations and
taking ¢ — 0, for A > (S(7)%), we have

/2
Lu(Z,)(0) = ~Lua(@)(0) +40 [ ¥(0.H)sin@Aas (2199

Next, we perform L? estimate for W, . It will be used later to estimate Z, in

(2199).

Lemma 2.10.6. There exists o > 0 such that if @ < oo, C;S < 4721 for
A= %Cl’a, the solution of (2.196)) satisfies

*|| D%y, Iz + al Wy, |17z + all0s Uy, ll22 S oI

~

Firstly, we have A = }10[_“ > S% and Q, = Qx, = Q. We impose (;5 <
411 g5 that A > (25)* and C(M) < Ca'in Lemma with M = A
At this step, this bound is good enough for us to treat Z; in —
as perturbation. In the following estimates, we treat the small factor Cj in Z,
approximately equal to zero and r &~ 1. See also Remark
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Proof. We simplify x» as x. Multiplying (2.196) by ¥, and using integration
by parts, we get

%"

2
—
= a®||RORWy |72 + ——[1Wxl[Z2 + 105 W llz2 — 410y l72

(2.199)
= (€, \IIX> + (21 + Z, \Ijx> + (2o, Wx)-
Using the Fourier series expansion with basis {sin(2nf)},>1, one can verify
that
1059172 > 4[|z,
which is sharp with equality when ¥, = sin(28). Therefore, multiplying the

above inequality by 1 — ¢ and then applying it to the left hand side of ([2.199)

yields

200 — o a
e + S0

I Z 042HDR\I/X||%2 +
2 2 o 2 o 2
> @l DW s + G112 + 10501
where we have used o < 1.

Within the support of y = x,, we have R < 2\. By assumption, we have
A= %C’l_a > 445°. Tt follows that

Q=

Ciplron = CzRéleu < 01(2)\)é =27
llog(CA%)| S al, 28 < AV,

S o
(2.200)
The Z,, Zs terms (2.197)) contain the small factor Cjp. Since r—! < 1, we get
121102 S @2(|[Wllie + laDRY |12 + (1050 |22) S @™ 212 S @*212,

1251122 < ][9] 22 S 11222
We perform integration by parts for the last term —2a?DpxDr¥V in Z, (2.197))
—20*(DrxDr¥, Ux) = —a*(RxDgrx, 0r¥?) = o*((RxDrX)r, ¥°)
= a*((Drx)® + xDix + xDrx, ¥?).

Using the above identity, (2.194) for |D%x| and (2.200]), we obtain
[(Z2, W\)| S (@®+0)[[¥1acrenlie S al[Placrean|lie S @l[¥1rcre@oy-alliz,

where we have used 2\ < (2C;)~® in the last inequality. Since (25)* < A and

SAV/ <1 (see (2.200), we apply Lemma [2.10.4{ with A/ = A and (2.200) to
get

[(Z2, U )| S a1+ [og(CAY)2(SAV?IQ[7: S o™ IQI[7.
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Plugging the estimates of 7y, Zo, Z3 and ||, ||z < o~ /21Y2 into (2.199) and

then using the Cauchy-Schwarz inequality, we prove
I < Ca Y2122 + Co- T+ Ca™H|Q|2.

Now we choose
oy = min((2C) 7,471, (2.201)

Then for a < ay, we have Ca < % Solving the above inequality yields
15 a tj9lR.. s

2.10.2.3 Localized #? estimates

Notice that the elliptic equation is localized to R < 2)\ < 1C;, which
is away from the boundary of the rescaled domain D; = [0, C; Y x[-C;L, C7Y.
Therefore, ¥, can be treated as a solution of in the whole space R >
0,8 € [0,7/2] with source term €, + Z,. We can apply Proposition to
improve the elliptic estimate in Lemma [2.10.6] In this estimate, we need to
further estimate Q, + Z, and L12(82, + Z,).

The term in Z, (2.196)),(2.197)) either has a small factor Cjp ~ 0 (see Remark
2.10.3), or is localized to A < R < 2X due to the factor (Drx)*, where X is

the parameter in the cutoff function x(R/A). To show that the second type

of term is small, we use Lemma [2.10.4] and interpolation. Using the smallness

of these variables and Lemmas [2.10.4] and [2.10.6] we can treat Z, as a small

perturbation. Since p = RY® and Dy = 0 for |R| < 1, the singular weight

k
W = (125)

of terms involving p, Drx.

.k = 1,2 is treated approximately as 1 in the following estimates

Proposition 2.10.7. Let ¥ be the solution of (2.192)) and W = “;—f)k for
k=1or2 Ifa<ay 2201), C\S < a-87 Y7L for A =LCr*, we have

A?|R?Opp¥ W12 + | |[RORs Wy, W || 2
sin(20)
T

+1[05(Wy, — (L12(€2) + X1 L12(2,)(0)W ][22 S [[QW]] 2,

where Z,, is defined in (2.196)),(2.197) and x1 is the cutoff function. Moreover,
for v > (S(1))*, Li2(Zy,)(0) does not depend on v and satisfies

1+ R

L12(Z,)(0)] = [L12(Z,,)(0)] S (4" =" + min(a, (8Y°C;S)"/?)) |2

2.
(2.202)
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Remark 2.10.8. Let x,, be the cutoff function in Lemma [2.10.6| We choose
A= %C’l’a so that y,, = 1 in supp(x,). This allows us to apply Lemma [2.10.6
to estimate various terms in supp(x,). We use Li2(Z,,)(0) to correct ¥ so
that ¥, — Sn@B) (1,1,(Q) — X1L12(Z,,)(0)) vanishes near R = 0. Choosing

yiye?

small C}S, v later, we use (2.202)) to show that Li2(Z,,)(0) is very small.

Proof. Step 1. We apply the elliptic estimate in Proposition [2.8.3| in the
weighted L? case, which can be proved using the same argument in [42], to

obtain

I 2 Q?||R*OrrVY, W||2 + a||[RORs Y, W||L2

. 2.203
SI0) @t 2 W € @t ZW e

+ Haﬁﬁ(quA -

Under the assumption ;S < a8 /%! we have (25)* < %Cl_a = \. Thus,
Q, =002 = Q. Recall Z, = Z;, + Zy + Z3 in (2.197)) and p = RY*. Within
the support of y, we have

CipW = CiRY*72(1 4+ R)? < G20V < 47V, (2.204)
We can apply Lemma [2.10.6| to estimate the L?(WW?) norm of Z;

1Z:W |22 S N1CW x| ([0l |2+l [DRY |12+ 05y |22) € 47 ]2,

(2.205)
Estimate of Z3 defined in (2.197)) is trivial
| ZsW |2 < 47YQ| 2. (2.206)

Recall Z, defined in (2.197)). Notice that the support of Z5 liesin A < R < 2\
due to the Dgx term. Within this annulus, we get W < 1. Due to the

smallness of Cjp from ([2.204]), we have

||Z2W||L2 5 O‘H\Ijl)\SRSQ)\HLQ -+ a2||DRxDR\I/||L2. (2207)

Using A = 1C;® and (1S < o877, we obtain
[ log(CAY)| = [log(8 V)| < a7, SATVe=8Y2CiS <a.  (2.208)

Since A > (25(7))%, applying Lemma|2.10.4| with M = X and (2.208)) to C' (M),

we get
W <reanllze S @ '87°CS[1Q]2 < Q12 (2.209)
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Applying Lemma [2.10.6{ to DrWV,, and using (2.207)), (2.209)), we yield

1Z:W Iz S allf]z2 + a'?|Qlz S o219 2. (2.210)

Plugging (2.205)-(2.210) into (2.203) and using 4~*/“a~! < 1, we prove

IS QW2 S QW] L2, (2.211)

Step 2: Smallness of Z;. We use interpolation and the smallness of
[|U1a<p<an||z2 (2.209) to refine the estimate of Z, in (2.210]). The refinement

is used to estimate the term o' Li5(Z,) in I (2.203)), and is important to prove
(2.202)). Using integration by parts, we obtain
J £ ||a®DrxDr¥|[5 = a*(R(Drx)*Dr¥, Or¥)

(2.212)
= —a*(0r(R(DgrX)*)Dr¥, V) — a*(R(Drx)*0rDr¥, ).

Using 2194, we get |8R(R(DRX>2)| 5 |DRX|]—)\§R§2)\>(DRX)2 S Xl/\SRSQ/\'
Using the Cauchy-Schwarz inequality, we yield

J S o*(a®|[DrxDRY||2 + | X DR ¥||L2) [P 1< rean] [ 2. (2.213)

We further estimate o?||xD%Y||z2. Using |D%x| < 1a<r<2n and (2.195)), we

obtain

2Dz S &P DRV |12 + o||[DrxDrY|| 12 + || ¥ 1< pean] |2

By definition, we have a?||DrxDg¥||;2 = J'/2. Using (2.203),([2.211)),(2.209),

we obtain

DO DRY|l2 S N1QW |z + T2 + a?||Q|2 S QW2 + T2 (2.214)

Plugging o?||DrxDg%¥||;> = J'/?, the first inequality in (2.209) and the esti-
mate (2.214) in (2.213)), we establish

J < TV |QW]|o + JYH)am18Y 18|19 | 2
< a(JY2 + [|QW]|5)8YC,S||QW || 2.

~

The above inequality is a quadratic inequality on B = JY2/||QW ||, : B% <
A(B+1),A = a8*CyS < a, which implies B < AY2. Thus, we prove

JYV2 < 2809 2 |OW || 2.
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Combining the above estimate of J and ([2.207))-(2.208]), we yield

1ZoW |2 < (8Y°C,S + a2 (8Y/°C18) ) ||QW || 12

(2.215)
< min(a, (81/QCZS)1/2)HQWHL2.
Using Lemma [A.0.4] (2.205]), (2.206) and (2.215]), we establish
[L12(Zy,) = x1L12(Z, ) (O)W ]|z S I Z W] |2 (2.216)

SIZy+ Zy + Z3)W |2 S o [QW] | 2,

where we have used 4~ /*a~! < a. Combining (2.203)), (2-211)) and (2.216)),
we complete the proof of the first estimate. We remark that we only need the
bound ||ZoW||z2 < of[QW |12 from (2.215)) in this estimate.

Step 3: Estimate of L15(Z,,)(0). Note that the previous estimates hold true
for the weights W = W}, £ (121,3) with k =1 or 2. Recall Z,, = Z1 + Zy + Z3

(2.196)). Using Lemma [A.0.4] (2.205)), (2.206) and (2.215)), we prove

|L12(Z3, ) O S 12 Whllze S (Z1 + Zo + Zs)W || 2
< (47 wa" + min(a, (8°C,9)2))||QW4 || 2,

~Y

which is (2.202). Using (2.198), we yield that L,2(Z,,) is independent of v for
v > S(r)°. O

Proposition 2.10.9. Suppose that ¥ is the solution of (2.192) and Q € H3.
If a <y (2.201), A =2"1C;*, CS < - (213"l then we have

*||R*Opr ¥y, |lne + al[RORs Wy, ||

_ smOEZB) (L12() + x1L12(Zy, ) Oz S 119208,
1+R

+ 1|985(P

[L12(Z,,)(0)] S 37|92

||L2.

Moreover, Li3(Z,,)(0) does not depend on v for v > (S(7))*.

The small factor 37/ will be used later to absorb a~* for several k € 7., i.e.
371/eq~F <) 1. The estimate of L12(Zy, )(0) follows from (2.202). The proof of
the first inequality follows from the idea discussed at the beginning of Section
[2.10.2.3) and estimates similar to the Step 1 in the proof of Proposition [2.10.7]
Suppose that €2 has size 1. Using the smallness of C, C}.S (see Remark,
Lemma and Proposition [2.10.7] formally, we get that C;pf2 has size 0,
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CipTV, has size ~ 0 for T = 93, Dg or Id, a* DrxDrV has size a’a™ = «
and Dfx ¥ has size & 0. Hence, Zy, L(L12(Zy) — x1L12(Z,)(0)) have size less
than «, 1, respectively, which enables us to treat them as perturbation. More-
over, the terms 7, Z; in Z,, have derivatives whose orders are lower
than D W, , 939, . The term Zs = —Cjpsin(B)Q in does not involve W
and its estimate is trivial. These allow us to use induction to establish higher

order estimates.

Denote ¥, , ., =V, — @(LIQ(Q) +x1L12(Z,,)(0)). To simplify our discus-

«

sions, we introduce some notations for different elliptic estimates. Recall H™
defined in (2.136) and H° = L?(p;). For some weight /V[v/, differential operator
T = DgDﬁ% and constant u, we denote by P(W, T, p, o, Cy, U, Q) the following
elliptic estimate for the solution ¥ of ([2.193))

Q?||[TDRY W2 ||s + al|[TDrds ¥ W2 ||o + || TO2,, W2

| (2.217)
SUDREQ b + (12505,

where A\ = uC;® is the parameter for the cutoff function. We put D% in the
upper bound since Dg commutes with the elliptic operator £, , which
was observed in [42]. The upper bound controls the Dé derivatives of D%Q.
We simplify P(W, T, u, o, Cp, U, Q) as P(W, T, ).

Recall the weights ¢; (2.6.2) and the H? norm (2.136). Denote

1+ R)* _ - .
PO:P(( R* ) ,]d,2 3)’ P1+j:73(9017<DR)]72 * ]])a OS.] Sga
Psij = P(p2, (Dr)’ D, 27%7), 0< j <2, (2.218)

P8+j = P(SO% (DR)jD%a 2_11_j), ] = O, 1, 7310 = P(QDQ, Dg, 2_13)7

We establish P; in an increasing order by induction. In other words, we first
establish for T being Dp derivatives, then for 7 including one Dg
derivatives, and so on. Estimate P, is established in Proposition [2.10.7} and
it serves as the base case. This order of estimates has been used in [42]. The

support of the cutoff function in P, satisfies

XP=1 in supp(x"™V) Usupp(Q), xV £ xi(R/(27'Cr®)). (2.219)

Hence, to prove P,, we can apply P;,l < n — 1. The H? elliptic estimate

follows from all P;.
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Proof. We demonstrate the ideas in the induction by mainly proving the
L?(¢1) elliptic estimate P;. To establish P,,n > 1, in step I, we use the P,
version of the elliptic estimates in Proposition with source term Q2 + Z,,
which can be proved by the argument in [42]. We simplify x™ as y. In the
case of n = 1, using the P, elliptic estimates (or the L?(¢;) estimates), we

obtain

Q|| R20rpV ., 01|12 + | |RORs Wy, 01| 12
+11055(¥, — (7a) "L sin(28)(Lia(Q + Zy)) - 01 12 S 1N Q + Z)er |12
(2.220)

In step II, we apply Lemma to the Lis(+) terms and the elliptic estimate
we have obtained, i.e. P;,;7 < n — 1, to control the Z, terms. In the case of
n =1, P;,i <n—1is Py, which has been established in Proposition [2.10.7]
Our goal is to establish

1/2 2
120112 S 11901 M2, (2:221)
sin(2/3)

aTm

1255 ( (Lia(Zy) = 1L Z)(O0)) 91 e S 101212, (2:222)

in the case of n = 1, and similar estimates in the case of n > 1.

Recall Z, = Zy + Zy + Z3 and (2.197). By triangle inequality, it suffices
to establish the above estimates for Z; separately. Note that Z3 in ([2.197))
does not involve ¥ and contains the small factor Cjp (see below).
The above estimates (and similar estimates in the case of n > 1) for Z3 are
straightforward by applying Lemma to estimate the Lis(-) term. The
above estimates (and similar estimates appeared in the proof of P,,,n > 1) for

Zy, Zy are established by the following substeps.

Firstly, Z,, Z5 defined in only contain the first order derivative Dg, 05
of W, which are lower order than the leading terms D%V, , agxpx in ([2.196]).
Hence, we can apply the previous elliptic estimates, e.g., Py or Proposition
[2.10.7 for n = 1, to estimate the norm of higher order derivatives of Z, Zs
or the norm of 7y, Z, with more singular weight. To estimate the ¥ terms
in Z,, Zy that do not involve Dp derivative, e.g., 93V, ¥, , we decompose W,
into

v .20, —

w0 2 D (1,0) 1+ Lin(z)(0)).

lye’

Sinﬂ(iﬂ) (L12(€2) + x1L12(Z,)(0)),

(2.223)
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We apply the elliptic estimates to estimate ¥, ., Lemma[A.0.4land Proposition
2.10.7|for L15(Z,)(0) to estimate ¥, o. Formally, compared to €2, ¥, , and ¥, -

. _1 .
have size 1, ™", respectively.

Secondly, Z; and Z, contain small factors. For Z; (2.197), since A = CC;
for C € [2713,274], in supp(x), we get a small factor

Cipx < 1r<arCip < Ci 2NV < 87V <\ ok (2.224)

forany k € Z,. For Z; defined in , the first term in Z5 also contains the
small factor Cyp, the second and the fourth terms contains a small factor o and
the third term contains . These small factors cancel the factor a™*
. In the case of n = 1, we estimate typical terms, Cjpr='9s¥,, aDrxV,

in Z, (2.197). Denote

in ¥, 5 in

(1+ R)?
R

Recall @1 = (f(8)W)”. (8) = sin(28) /%0 = £ ([£6.2). Using
9(R, D) ()2 < Ng(R. B)lli<s) S 1059(R. Mlrzey, 9= 0, W,

p= RY* Dgx =0 for |R| <1, Proposition [2.10.7| and Lemma we get

_ 1/2 1/2
1Cior 050,01 |2 < 1050 fll2 S @105 0y |2 S @P|1QW ]2 S @®[|Q0)?| 12,
1/2 _ 1/2
laDax V1 * |l S al|Dax¥flls S ol |Drxds¥|ls < a-a Y|QW ||y < 1|Qe)?| 2,

W= (2.225)

where we have used ([2.219)) with [ = 0 so that we can apply Proposition [2.10.7
to estimate Drx0sV. Other terms in Z, can be estimated similarly. We prove
(2.221]). Estimates similar to (2.221]) in the case of n > 1 are proved similarly.

Thirdly, we consider ([2.222]) and similar estimates appeared in the proof of P,

with n > 1, which are more difficult to prove since they contain a~!. Recall

1, P2 in (2.78) and W in (2.225). Using Lemma and (A.12) in its proof,

for any p,l > 0 and ¢ = 1,2, we obtain

sin(2
||DgD%8¢23 ﬂ(aﬁ> (L12(Z1 + ZQ) — X1L12(Zl + Z2)(O))<p;/2||2

Sat > |IDR(Zy+ Zo)W 2.

1<max({—1,0)

(2.226)

We need to further estimate the right hand side. The most difficult term
in 2y, Zs (2.196)),(2.197) is aDrxV, since other terms contain smaller factors
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a?,Cjp and their weighted Sobolev norm can be bounded by «a(||DRQ||#e +
12| |#») using the same argument as that in Step 2. Formally, a¥ has size 1

compared to (2. Exploiting the factor Dy, we show that aDgx V¥ has size a.

To estimate aD%(Drx¥), we have two types of terms I; = aD?lxllf and
Iim £ aDLx DRV with j,m > 1 and j+m = i+ 1. Note that |log(C;A\Y)| <
a~t, SATVe < 2B3/ey S < . Applying Lemmawith M = Xto Dif'x ¥,
we get

|aDE XTW |2 < [laDi X P2 < ol (2.227)

When i = 0, we do not have ;,,. Recall i < max(l —1,0) in the summation

in (2.226]). Thus, in the case of n = 1, combining ([2.226)) and ([2.227]) implies
(2.222). The same argument applies to the case of [ < 1.

It remains to estimate [;,, with j,m > 1, in the case of [ > 2. Recall Li5(-)

from ([2.31), ¥, » from ([2:223) and x = x™. Since supp(Djx) = {\, < R <

2\, } is away from supp(Q2) Usupp(x1) C {R < S} (see (2.219)), we get
D3XDET, )

' . w/2
=Dl - M( — /0 DEQ(R, B) sin(28)dB + DgX1L12(ZX(m>)<O)> =0.

yiye;

Thus, we can subtract the singular term from Déng\I/
Dpx DR = Dix DR (W — W ) 5). (2.228)

Formally, compared to €2, Dgng%\If has size 1. In the summation in ([2.226]),
we have i <[—1. Since j+m=i+1land j > 1, weget m=i+1—75 <[—1.
By definition , the weighted DgDﬂ% elliptic estimates appear in P,, if
n > 1 and | < 3. Thus, using the elliptic estimate P,, (m <l —1<n—1)in
the induction hypothesis, i.e. T = D% W = ¢ in ([2.217), we yield

[aDRXDE (Y = Wy )W |[o S al|DE (Vs — Wyom 2) W2
S a([[DE Qe + [[9Q o),
where H? = L?(¢1). Combining (2.226)-(2.229)), we establish the P,, version
of (2.222)) for Z; + Z,.

Therefore, combining (2.220))-(2.222)), we obtain the L?(¢;) elliptic estimate,
i.e. P;. Repeating this argument, we can obtain the P;,2 < [ < 10 and H?

(2.229)

elliptic estimates.
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Note that the assumption on X, C;, S, i.e. C;S < a-(2'3)~Y/2~1 implies A > S°
and
471/040471 < 371/047 (81/acls)l/2 < ((210)71/04)1/2 < 371/a.

Since the estimate ([2.202]) in Proposition [2.10.7| does not depend on A as long
as A > (9(7))%, using (2.202) and the above calculation, we establish the

desired estimate on Li3(Z,, )(0). O

Remark 2.10.10. The term Dﬁ%xD%\I’ can also be estimated using an argument
similar to that in the Step 2 of the proof of Proposition 2.10.7 We find the

above approach simpler.

Recall Q in (2.44). We have a result similar to Proposition [2.8.8|

Proposition 2.10.11. Let Wy(t) be the solution of (2.192) with source term
Qo = W (R/v). Ifa < ag 2201)), A = 27130, 1S < a(213)7 Vel 20 < ),

then we have

1+R 1+R

DU, |l + o] ROraWo,y, [|yws.e

1+R - sin(25)
=5 0ss(Wop — ——

|L12(Zy,)(0)] S 377,

where Z,,, associated to Wy is defined in (2.196)),(2.197). Moreover, L12(qu)(0)
does not depend on p for up > (S(7))* and enjoys the above estimate for

L12(Zy,)-

all

(L12(Q0) + x1L12(Z3, ) (0)) [l S @,

Remark 2.10.12. Although Q) = QY is time-independent, the equation ([2.179)
is not and W(t) depends on how we rescale the space. The factor 2v is the

support size of €y. We impose A > 2v so that y» = 1 in the support of Q.

The proof follows from the argument in the proof of Propositions 2.8.8]
and 2.10.9

2.10.3 Nonlinear stability

We apply the nonlinear stability analysis of the 2D Boussinesq equations to
prove Theorem [2.2] In Section [2.10.3.1], we impose the bootstrap assumption
on the support size. In Section [2.10.3.2] we construct the approximate steady
state and impose the normalization conditions, which are small perturbations

to those in the 2D Boussinesq. In Section [2.10.3.3] we estimate the terms
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in the 3D Euler (2.188)) that are different from the 2D Boussinesq (2.42)).

These terms contain factors that are much smaller than o and we treat them
as perturbations. In Section [2.10.3.4] we generalize the nonlinear stability
estimates in the 2D Boussinesq to the 3D Euler. In Section [2.10.3.5] we use
the ideas described in Section to control the growth of the support. In

Section [2.10.3.6] we prove finite time blowup.

2.10.3.1 Bootstrap assumption on the support size

Recall oy defined in (2.201)) in Lemma [2.10.6f We first require a@ < ay. We

impose the first bootstrap assumption: for ¢ > 0, we have
Cy(t) max(S(t), 5(0)) < a- (2%) "= £ K(a). (2.230)

Under the above Bootstrap assumption, the support of w,f in D; does not
touch the symmetry axis and z = =+1, and the assumption in Proposition
is satisfied. We will choose C;(0) at the final step, which guarantees the
smallness in (2.230)).

2.10.3.2 Approximate steady state and the normalization

condition

Since the rescaled domain D, (2.191)) is bounded, we construct approximate
steady state with bounded support. We localize 2,0 defined in (2.44) to
construct the approximate steady state for (|2.188)|)

Q0 S XZIQ7 9_0 = Xue_ = Xl/(l + xJ(ﬁ))? (2231>

where x,, = x1(R/v) and we have applied the integral operator J(f) in Lemma
. We can choose x; = Y2 for another smooth cutoff function y; such
that X}/Q = X1 is smooth. We use @y to denote Qq in the (z,y) coordinates.
Clearly, the support size of (g, 0y is 2v. Using the computation in (A.44]), we

have

Mo = 800()@9_) = aCOSQ(ﬁ)DRXV : J(ﬁ) + O‘COS(ﬁ)T_lDRXV + X1,
& (R, B) = 0,(x,0) = asin(B) cos(B)Drx, - J(7) + asin(B)r ' Drx, + x..&,
(2.232)
Let Wy(t) be the solution of with source term Q. Applying Lemma
and the analysis in its proof, we know that g, 7, & enjoys the same

estimates as that of ), 7, £ in Lemmas and [A.0.8]
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We need to adjust the time-dependent normalization condition for ¢, (t), ¢;(t).
Firstly, we choose the time-dependent cutoff radial A(t) = 27'3(C)(t))™* ac-
cording to Proposition [2.10.9

Define wan (t) according to (2.197), or equivalently (2.198), with ¥ = W (¢),
Q = Qg and x = xx(0). It does not depend on the cutoff radial if A(0) > (2v)?,

where 2v is the size of support of Q5. We use the following conditions

] >
Cu(t) = —1— ELH(QO = Q+ Zy,,)(0),

. 1 l—a 2 . - -
a(t) = - +3 - aLu(Qo = Q+ Zy, ,)(0).

(2.233)

«

We remark that ¢,(t), ¢ (t) is time-dependent. Without the Z term, the above

conditions for ¢, ¢ are the same as that in (2.44)) with a correction due to the

difference between the profiles (€2,7) in (2.44) and Qq, 7 in (2.231))-(2.232).
For this difference, we use (2.47) to correct ¢, ¢.

For any perturbation §)(¢), we use the following conditions for ¢, (t), ¢;(t)

cu(t) = —%ng(Q(t) + Zyny )(0),  alt) = ! ;Oécw(t). (2.234)

Without the Z term, the above conditions for ¢, (t), ¢;(t) are the same as that
in (227,

We add the Z terms in , since the behavior of ¥, which is the
solution of ([2.192)), is characterized by L12(24Z,)(0) for R close to 0 according
to the elliptic estimate in Proposition For the 2D Boussinesq equation,
we use L15(€2)(0) to determine ¢, ¢; since it also characterizes the behavior of

U near R = 0 according to Proposition [2.8.3

We choose the above conditions so that the error of the approximate steady
state vanishes quadratically in R near R = 0 and that the update of Q(t), n(t)
(w,0,) in equation also vanishes quadratically in R near R = 0 if
the initial perturbation (-,0),n(+,0) (6,(0)) vanishes quadratically. We also
determine ¢, ¢; in and ¢, ¢ in based on this principle.

Remark 2.10.13. We will choose v to be very large, relative to a~!. Therefore,
we treat Qg ~ Q, 0y ~ 6. Due to the small factor 37/ in Propositions [2.10.9]

2.10.11} we treat Lio(Z,)(0), L12(Z,)(0) ~ 0. From Remark [2.10.3| and the

bootstrap assumption (2.230]), we also have C; ~ 0,C}S ~ 0,7 ~ 1. We treat

the error terms in these approximations as perturbation.
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2.10.3.3 Estimate of the lower order terms

The equations (2.188|) are slightly different from (2.42) for the Boussinesq
systems. We show how to estimate their differences. Suppose that w(t),0(¢)
are the perturbations and the support size of @y + w(t), 0 + 0(t) is S(t).

Assume that the bootstrap assumption ([2.230]) holds true. For the term %Qm
within the support of w, 0, we have p < S(t),r =1 — Cipsin(5) € [3/4,1]. We

get
1—rt

| |<S1—r<Cip<CS(t) < af2i3) Vet (2.235)

which is extremely small compared to a. Since p = RY®, the factor Cip, 1 —r*
vanish high order in R near R = 0. Hence, 1%4996 is a smooth (near R = 0)

small error term.

For the term lC’lw inu=—v,+ 1C’;¢ defined in (2.188)). Under the (R, 3)
coordinates, it becomes <2(p¥(R, 8)). Compared to —t, = —(p*¥), in (2.25),
%(pllf(R, f)) vanishes on f = 0,7/2 and contains a small smooth factor
C,p = C;RY* within the support of w, 6.

The last difference is the elliptic estimate between Propositions [2.8.3 and
2.10.9] Notice that in (2.188)), we only use ¥(R, 3) for (R, 3) within the sup-
port of w, 0. We have W, (R, ) = ¥(R, f) for A(t) = 27C % R < S(t).
Finally, x1L12(Zy,,)(0) in Proposition only affects the equation near

R = 0. Since ﬂQ € L?, using the estimate in Proposition [2.10.9, we get

|L12(Zy, ) (0)| = | L12(Zy, ) )(0)] S @371/,

[L12(Zy, ) (0)] £37Y =5z,

where we have used A(t) > (S(t))* due to (2.230]) to obtain the first identity,
and used (2.44),(2.231) and ||*EQ|| 12 < a to obtain the first inequality. The
terms in (|2.236)) are treated as small terms with amplitude close to 0.

Using the argument in Section 2.9, we can estimate these lower order terms in
H3,H3 (1)) or C! norm accordingly and obtain a small constant in the estimate
bounded by C(1 + a=®)(37Y* + (4S), where k,C > 0 are some absolute

constant.

2.10.3.4 Nonlinear stability

Notice that the domain D; (2.191)) of the dynamic rescaling equation is bounded

and is different from R . We cannot apply directly the estimates in Sections
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because in these estimates, we linearize the equations around ,7, &
which are defined globally.

We consider the system of 6,,60,,w obtained from (2.188)) and then linearize
it around the approximate steady state Qq, 7o, &o, G, ¢ constructed in Section

2.10.3.2/to obtain a system similar to ([2.52)-(2.54) for the perturbation (2,7, ¢)

with Q, 7, €, og (= 2 L12(Q)) replaced by Qo, 70, &0, = L12(). We also put

the lower order terms discussed in Section [2.10.3.3| into the remaining terms
Ra, Ry, Re.

According to Lemma , we know that Qq, 7o, & converges to €, 7, £ in the
H3, H3(¢)) norm as v — oo (v is the cutoff radial in (2.231))). Moreover, we can
easily generalize the H3 H3(¢)) convergence to the higher order convergence.
We choose the same weights and the same energy norm as that in Section
[2.612.9] Then for sufficient large v, due to these convergence results, under the
bootstrap assumption ([2.230)), we can obtain the following H?3, H3(1)) estimates
similar to that in Corollary

1d 1
5 B3 @n.€) < (=35 + Ca)E5 + Ry,

where F3, R3 are defined in ([2.115)). We have a slightly weaker estimate (1—13 <
L) due to the small difference between (Qo, 70, &) and (2,7, ).

Remark 2.10.14. The choice of v is independent of C;(0). We will choose initial
data with the size of the support S(0) > 2v. Though S(0) > v is large, we
choose C;(0) small enough at the final step and verify (2.230)).

Recall the equation for the 2D Boussinesq equation in the C' estimate
of . The damping part in (2.121)) is (—2— %%)5 . For the 3D Euler equation, it
is replaced by (—2 — %le(Qo))g . For sufficient large v, using the convergence
results, we can obtain estimates similar to (2.123)), (2.126)), (2.127)) with slightly

larger constants, e.g., —2,3 are replaced by —2 + ﬁ, 3+ 1—(1)0.

There exists a large absolute constant 1y, such that for v > vy, v satisfies the

above requirements, and we have
\W—le(Q — Q) (0)] < —. (2.237)

To estimate the H? norm of R, R, and H?(¢),C' norms of R¢, we apply
the estimates in Section 2.9 and the argument in Section [2.10.3.3] Therefore,
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for v > 1, under the bootstrap assumption, we obtain the following non-
linear estimate for compactly supported perturbations Q(t),n(t),£(t) around
(Qo, o, &), which is similar to (2.171)),

1d

1
__E2 0 < __E2 C 1/2E2 73/2E3 2E

+C(a, Ci(t), S())(E* + E + E?),
where the energy F is defined in (2.170)). The last term is from the estimates
of the lower order terms discussed in Section [2.10.3.3] e.g., 1;—149,3, %Clw, and
C(a, Ci(t),S(t)) = C(14+a~%) (37 Y+ Cy(t)S(t))), for some universal constant
C. Under the bootstrap assumption [2.230] we further obtain

Cla,Cy(t),5(t) S (1 +a)3 Ve <ol (2.239)

Combining (2.238)), (2.239)), we obtain that there exist a3 with 0 < a3 < as (g
is the constant in (2.201)) in Lemma [2.10.6)) and an absolute constant K >0,

such that if £(€(0),7(0),£(0)) < Ka?, under the bootstrap assumption [2.230}

we have

E(Q(t),n(t),&(t)) < Ko (2.240)

Recall ¢, ¢, ¢, ¢ defined in ([2.233)), (2.234]). Using ([2.236]), (2.237)), |L12(22)(0)] <

192/l < E < a?, we obtain

1 1 1
ot tl] < — 4037 YeqC & >_—43——— (O3 Yoyl _ (.
|Cw + G + 1 T +Ca, a+a > —+3— o a

We further choose a4 with 0 < a4 < ag, such that for a < ay,

3 1 3
—— C —— C —. 2.241
2<cw+cw< 5 Cl+cl>4a ( )

2.10.3.5 Growth of the support

Recall Definition [2.10.2| of S(7). Finally, we use the idea in Section [2.2.3.1] to
estimate the growth of the support S(7) of the solutions w 4@y, & +6y. Denote

() = u(t) + at), W(t) = U(t) + Bo(t), at) = alt) +a.

Applying (2.24)-(2.25)) and (2.27) to (I\/, we can rewrite the transport term u-V
in (2.188)) as

U-V = (=8,0 + Crr—'0)d, + 0,00,
B (OéClpCOS(ﬁ)

- RU — aR03V)0k + (20 + aRORT — M

0)0;,
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where p = RY® r = 1 — Cjpsin(B). The above formula is different from (2.27))

due to the extra term C’lr_llg&r. Notice that ¢x - V becomes ac;ROr under
the (R, 3) coordinates. For a point which is inside the support of w + @, 6 + @
and has coordinates (R(t)), (8(t)), its trajectory under the flow (x +u) -V

is governed by

A aCy(t)p(t) cos(B(t))
R(t) = aGR(t) + r(0) (2.242)

dt
— aR(H)03V(R(t), B(1)),

where the relation between ¢(t), Cj(t) is given in ([2.187)).

Lemma 2.10.15. Under the assumption of Propositions[2.10.9,2.10.11 and
that Q € H3, for R < S(t), we have

(1 + RY3)U(R, B)| + (1 + RY*)950(R. B)|
Sa |9l + 1 S @ EQ), n(t), £(1)) + 1.

Recall the weights ¢; in Definition for the H? norm (2.136). Denote by
H3 the modified H? space with radial weight (12—5)2 in the H3 space replaced
by %. The H? version of the elliptic estimates in f’roposition 2.10.9| can be
obtained by the same argument. Since Q + €2 is in H? space (€ vanishes lin-
early near R = 0), applying the H? elliptic estimate to U — U, and L15(Z,)(0),

where U, = M([/12((2) +x1L12(Z,)(0)), and Lemma to \/I}Q, we obtain

yes

10559125 S @712+ Qollis S a7 1Qs + 1 S @™ B(Q(), (1), £(1)) + 1.

Y Y

Applying the argument in the proof of Lemma [2.8.10] we establish the decay

estimate.

Now we assume that the initial data satisfies £(Q(0),7(0),£(0)) < Ka?. Under
the bootstrap assumption (2.230]), we have a priori estimates ([2.240)), (2.241]).

Plugging the bootstrap assumption [2.230}, (2.240) and Lemma|2.10.15|in ([2.242]),

we derive

%R(t) < agR(t) + Cala ' E+ 1DR()*? < agR(t) + CaR(t)*3,

where we have used Cj(t)p(t) < Cy(t)S(t) < 1,7~! < 1. From the formula of
Ci(t), we know LCy(t) = —¢(¢)Cy(t). Multiplying Cf*(¢) on both sides, we get

%(Jf‘R(t) < CaCeRY3(t) = Ca(CFR)Y3C(1)*/3.
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From the a priori estimate ([2.241)) and the formula of Cj in (2.187)), we know
Cr(t) < Cf(0) exp(—%). Then solving this ODE, we yield

T2
* b
(CFR()? < (Ci(0)*S(0))'* + Ca / Gy (0) exp(—)db
0
< C1(0)*3(S(0)*7 + Ca).
Taking the supremum over (R(t), 5(t)) within the support of €, 6, we prove

Ci(1)S(t) < Cla, S(0))CH(0). (2.243)

2.10.3.6 Finite time blowup

For fixed o < aug, v > 149, we choose zero initial perturbation (0) = 0,7(0) =
0,£(0) = 0. Then the initial data is (€, 6y) defined in which has
compact support with support size S(0) = 2v. We choose initial rescaling
C1(0) such that C'(a, S(0))C;(0) < K(«)/2, where K(«) is defined in ([2.230)).
Using the a priori estimates (2.240), (2.241)) and (2.243), we know that the
bootstrap assumption in can be continued. Thus these estimates hold

true for all time.

Since —% < cyte, < —% ((2.241))) and the solutions w, # are close to @y, §, for
all time in the dynamic rescaling equation, using the argument in Subsection
2.9.6/and the BKM blowup criterion in [I], we prove that the solutions remain
in the same regularity class as that of the initial data before 7" < +o00 and
develop a finite time singularity at 7%, where T* = t(oc0) = fooo Cy(m)dr <
+00.

Since fy+60(t) > 0 and the support of w, # is away from the axis, we can recover

u? = 51/2/7“, w? from 6, w via , . From and the discussion
below ([2.231)), Xll,/Q(R) = Y1(R/v) is smooth. Since 0(z,y) > 1 (A20), it is
even in z, and § € CY, we get §/2 € CL. Tt follows 6% = x./?0/? =
X1(R/v)6Y? € ¢V, Using uf = 6;/%/r, the relation (2.186), and r > 1in
supp(u), we get uf§ € CH. Due to the regularity on uf, wf and the fact that
in Dy, they are supported near (r,z) = (1,0), the solutions have finite energy

in Dl-
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Chapter 3

FINITE TIME BLOWUP OF THE DE GREGORIO MODEL
ON R

In this chapter, we study the singularity formation of the De Gregorio (DG)
model and the generalized Constantin-Lax-Majda model model on
R. To establish finite time blowup of the DG model on R from C° data,
we will develop the important method of constructing the approximate steady
state (approximate self-similar profile) with a small residual error numerically
and incorporating the residual error as a small and lower order term in the
energy estimate. We refer to Sections [[.4] and [I.4.] for the background and

conjectures of these models.

3.1 Preliminaries for the 1D models
Recall the De Gregorio (DG) model

Wy + Uw, = ugw, Uy = Hw. (3.1)
and the gCLM model discussed in Section
Wy + auw, = Uzw, Uy = Hw, (3.2)

where H is the Hilbert transform defined below and the domain can be R or

St (periodic case)

1 1 L —
Hyw(z) = %P.V. /R ;}(_y?ydy, Hsiw(z) = EP.V./O w(y) Cot(%)dy.
(3.3)
Here L is the period of the circle. If a = 1, (3.2) is the DG model. If a = 0,
(3.2) becomes the Constantin-Lax-Majda (CLM) model [26]

Wy = Upw, Uy = Hw. (3.4)

These models admit the same symmetry groups in Section as the 3D Euler
equations: the Galilean invariance, the rotation symmetry, and the scaling
symmetry. In 1D, the rotation symmetry reduces to the reflection symmetry:
if w(z,t) is a solution to (3.2), then —w(—z,t) is also a solution to (B.2).

As a result, the odd symmetry w(z,t) = —w(—=x,t) is preserved. The local
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well-posedness of (3.2)) in C** with any k € Z, U {0} and a € (0,1) can be
established by the particle trajectory method [89]. See also [97]. Solutions to
these models satisfy the BKM blow-up criterion (2.2)). See also [10] and [73]

for the local well-posedness theory and the blow-up criterion.

Connections with the SQG equation In [5], Castro-Cordoba observed
that a solution w(y,t) of the De Gregorio model (3.1)) can be extended to a

solution of the surface quasi-geostrophic (SQG) equation
0, +u-VO=0, u=V(-A)""% (3.5)

with infinite energy via the connection 0(z,y,t) = xw(y,t).

Under the radial homogeneity ansatz 0(t,r, 3) = r*=2%g(t, 3), Elgindi-Jeong
[46] established a connection between a solution € to the generalized SQG
equation and a solution g(¢, ) to the gCLM model (3.2)) with a > 1 up to

some lower order term in the velocity operator.

See Section B.1.3 for more discussion on the connections between these models

and incompressible fluids.

3.1.1 Existing results

The gCLM model has been studied actively in recent years since it can
characterize the competition between advection and vortex stretching in dif-
ferent scenarios and has concrete connection to fluids equations [5, 46]. For
a < 0, the advection would work together with the vortex stretching to pro-
duce a singularity. Indeed, Castro and Cordoba [5] proved the finite time
blow-up for a < 0 based on a Lyapunov functional argument. The case of
a = 0 reduces to the CLM model and finite time singularity and finite time

singularity was established in [26].

Smooth self-similar profiles of for sufficiently small @ and C* self-similar
profiles for all @ € R with |aa| sufficiently smal were established in [44]. In joint
work with Hou and Huang [19], we established finite time asymptotically self-
similar blowup of with small |a| for C2° initial data, and with arbitrary
large |a| for C* initial data with small |ac|. We will prove these results in this
Chapter [3] Similar results were obtained independently by Elgindi-Ghoul-

Masmoudi [49] on the stability of the self-similar solutions constructed in [44].
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Regarding the global regularity of the De Gregorio model , Jia-Stewart-
Sverak [73] proved the nonlinear stability of a steady state Asin(2z) of
with period 7 using spectral theories. As a result of [73], there exists global
solution to from smooth initial data close to Asin(2x). In [83], Lei-Liu-
Ren discovered a novel equation (see (5.9))) and a conserved quantity for initial
data wy with a fixed sign and established the global regularity of for such
initial data. We note that for strictly positive or negative initial data wy, the
CLM model does not blow up.

Lushnikov-Silantyev-Siegel [88] provided strong numerical evidence for singu-
larity formation of with various a and obtained a critical value a, ~
0.6890665. For on a circle, they discovered a new type of self-similar
blowup solutions of the form w(x,t) = tc—l_tf(x) for a. < a < 0.95, which is
neither focusing nor expanding. The blowup results we established in [14] are

inspired by these discoveries.

There are other 1D models for 3D Euler equations and the SQG equation, see
e.g., [28] and Section[1.2] and we refer to [44] for an excellent survey.

3.2 Main results
Let €, ¢, ¢, be the solution of the self-similar equation of (3.2)) given below

(qx 4+ alU)Qy = (¢, + U,)Q, U, = HQ, (3.6)

with ¢, < 0 and a self-similar profile € # 0 in some weighted H' space. Then

for some given T > 0,

1 x C
@0 = T ((T—tw) YT (3.7)

is a self-similar singular solution of ({3.2]).

We define some notions about the self-similar singularities to be used in this

chapter.

Definition 3.2.1 (Two types of asymptotically self-similar singularities). We
say that a singular solution w of is asymptotically self-similar if there
exists a solution of (9, ¢,¢,) with © # 0 in some weighted H' space
and ¢, < 0 such that the following statement holds true. By rescaling w
dynamically, i.e. C,(t)w(C)(t)x,t) for some time dependent scaling factors

C,(t),Cy(t) > 0, it converges to  as t — T~ in some weighted L? norm,
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where 7" > 0 is the blowup time. In addition, we say that the asymptotically
self-similar singularity is of the expanding type if the self-similar solution (3.7
associated to (2, ¢, ¢,) satisfies v < 0 and of the focusing type if v > 0. We

call v the scaling exponent.

Remark 3.2.2. We will specify in later Sections the weighted L? norm in which
the dynamically rescaled function of w converges to the self-similar profile {2
in the following Theorems. We will also specify in later Sections the stronger
weighted H! norm that the self-similar profile Q belongs to, so that the Hilbert
transform U, = H( is well defined and (€2, ¢, ¢,,) is a solution of . In the
case of small |a|, we refer to Propositions [3.4.1] and Section for

more precise statements. Similar statements also apply to other cases.

Our first main result is regarding the finite time singularity of the original De

Gregorio model.

Theorem 3.1. There exist some C:° initial data on R such that the solution
of with a = 1 develops an expanding and asymptotically self-similar
singularity in finite time with scaling exponent y = —1 and compactly supported
self-similar profile Q € H'(R).

Although the initial data and the self-similar profile 2 have compact support,
due to the expanding nature of the blowup, the support of the solution will

become unbounded at the blowup time.

Remark 3.2.3. Surprisingly, the blowup solution in Theorem satisfies the
property that ||w(z,t)/z||L= is uniformly bounded up to the blowup time (that
is, supyejo 7 ||w(@,t)/7|[c < +00), which can be seen from the special scaling
exponent v = —1 and the proof of Theorem [3.1]

Remark 3.2.4. The uniform boundedness of ||w(t)/x||r~ over [0,T") implies
that w(x,t) cannot blowup at any finite x, which is consistent with the ex-

panding nature of the blowup.

The second result is finite time blowup of (3.2)) for small |a| with C'2° initial
data.

Theorem 3.2. There exists a positive constant 6 > 0 such that for |a| <
0, the solution of with some C2° initial data develops a focusing and
asymptotically self-similar singularity in finite time with self-similar profile
Qe H'(R).
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The third result is finite time blowup of (3.2)) for all a with C' initial data.

Theorem 3.3. There exists Cy > 0 such that for 0 < o < min(1/4, Cy/|al),
the solution of with some C¢ initial data develops a focusing and asymp-
totically self-similar singularity in finite time with self-similar profile ) satis-
fying |z|~1/?Q € L? and |2|*/?Q, € L2

The blowup results in Theorem and Theorem also hold for the De

Gregorio model on the circle.

Theorem 3.4. Consider on the circle. (1) There exists Cy > 0 such that
if la| < C1, the solution of develops a singularity in finite time for some
C initial data. (2) If 0 < a < min(1/4, Cy/|a|), then the solution of
develops a finite time singularity for some initial data wy € C* with compact

support.

Remark 3.2.5. Due to the fact that (3.2) on a circle does not enjoy the perfect
spatial scaling symmetry, we do not establish the result on the asymptotically

self-similar singularity in the above theorem.

The initial data wy we constructed for the previous theorems satisfied the
property that wy is odd and wy < 0 for z > 0. Theorem 5 in the arXiv
version of [19] shows that for large a > 0, the Holder regularity with a small
Holder exponent « for wy in this class is crucial for the focusing asymptotically

self-similar blow-up.

We remark that an important observation made by Elgindi and Jeong in [44]
is that the advection term can be substantially weakened by choosing C'* data
with small o. We use this property in the proof of Theorem [3.3]

The proof of Theorem mainly follows from those of Theorems [3.2] 3.3
There are two additional steps. If the asymptotically self-similar blowup of
on R from compactly supported initial data is focusing, we can show that
the support of the solution at the blow-up time remains finite. Moreover, we
show that in the support of w, the difference between the velocities generated
by the Hilbert transform on the real line and on S! can be arbitrarily small by
choosing initial data with small support. Thus, the blowup mechanism of
on R generalizes to on the circle. We have applied a similar argument
to study finite time blowup of 3D Euler equations in Section [1.1] For these
reasons, we refer to Section 5.2 in [19] for the proof of Theorem [3.4]
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Organization of this Chapter The rest of the chapter is organized as
follows. In Section [3.3] we outline our general strategy that we use to prove
nonlinear stability for various cases. In Section [3.4] we study the De Gregorio
model with small |a|. In Section [3.5 we construct an approximate self-similar
profile with a small residual error numerically for the case of a = 1 and apply
our method of analysis to prove the finite time self-similar blowup for C'°
initial data. In Section |3.6] we study the case with any a € R and prove finite
time singularity for any a € R on R for some C* initial data with compact
support. Finally, in Section [3.7, we use a Lyapunov functional argument to

prove finite time blowup for all @ < 0 with smooth initial data.

Notations Since the functions that we consider in this chapter, e.g., w, u,

have odd or even symmetry, we just need to consider R*. The inner product

is defined on R™, i.e.

[e%e) [ee) I/P
(f,g) & /0 fgd, ||f||Lpé(/0 |f|pda:) |

In Section |3.5] we further restrict the inner product and the norm to the

interval [0, L], e.g (f,g) = fOL fgdzx, since the support of w,w lies in [—L, L.

We will use the basic notations introduced in Section [2.1.5] In addition, we
use — to denote strong convergence and — to denote weak convergence in
some norm. The upper bar notation is reserved for the approximate profile,

e.g., w. The letters e, f, ay, as, ag are reserved for some parameters that we will

choose in Section 3.5

3.3 Ideas in establishing nonlinear stability

We will follow the general framework introduced in Section [I.3] We use both
analytic and numerical approaches to construct the approximate self-similar
profile in various cases. The analytic approach is based on a class of self-similar
profiles of the Constantin-Lax-Majda model (CLM) [26], or equivalent
with a = 0, which are derived in [44]. In [44], the exact self-similar profiles of
(3.2) with @ # 0 are also constructed in various cases. We remark that our

analysis does not rely on these profiles of (3.2)) with a # 0.

This analytic approach does not apply to study (3.2)) with @ = 1 and smooth
data since it cannot be treated as a small perturbation to the CLM model.
Instead, we will use the numerical construction in Section [1.3.6.1] to obtain a

piecewise smooth approximate steady state w with a small residual error.
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A very essential part of our analysis is to prove linear and nonlinear stability of
the approximate steady state of the dynamic rescaling equation. The dynamic
rescaling equation of (3.2)) is given below

w + (q(t)r + au)w, = (cu(t) + up)w (3.8)

where ¢(t) and ¢, (t) are time-dependent scaling parameters. See (3.13))-(3.15))
and subsection for more discussion on the dynamic rescaling formula-

tion. Let (w,u, ¢, ¢,) be an approximate steady state of the dynamic rescaling
equation. We define the linearized operator L(w)
L(w) = —(Gz + at)w, + (G + Uz)w + (up + )0 — (au + @)y,
(3.9)
u, = Hw,

where the scaling factors ¢; and ¢, which depend on w, will be chosen later.
Let w be the perturbation around the approximate steady state w. The sta-
bility around @ is reduced to analyzing the nonlinear stability of the dynamic
equation

wy = L(w) + N(w) + F (3.10)

around w = 0. The perturbation w lies in H(£2), a Hilbert space on a domain
Q. Here F = (¢, + U,)w — (Gx + att)®, is the residual error and N(w) =
(€w+ uz)w — (G + u)w, is the non-linear operator. We remark that L(w) and
N(w) are nonlocal operators since u, = H(w) is nonlocal. Due to the presence
of the non-linear operator N and the error term F', it is not sufficient to only

show that the spectrum of L has negative real parts.

Our approach is to first perform the weighted L? estimate with appropriate
weight function ¢ to establish the linear stability (we drop the terms N(w)

and F to illustrate the main ideas)

1d

§E<g0w,w> = (pw, L(w)) < =XMypw,w), w e H(Q) (3.11)
for some A > 0 and then extend the above estimates to the weighted H!
estimates. We can use a bootstrap argument to establish the nonlinear stability

of (3.10)), provided that F' is sufficiently small in the energy norm.

We will focus on the linear stability (3.11]) to illustrate the main ideas. The

linearized equation around some approximate self-similar profile (w,w, ¢, é,)

reads

wr = — (G + att)wy + (€ + Ug)w + (up + ¢,)w — (au + ¢x)i, . (3.12)
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The linear stability of the profile is mainly due to the damping effect from

some local terms and cancellation among several nonlocal terms.

3.3.1 Derivation of the damping term

The damping effect of the equation comes from two parts that depend locally
on w: the stretching term (¢x + a)w, and the vortex stretching term (¢, +
Uz )w. An important observation of the approximate profile is that (¢, + @) is
negative for large |z|, thus the vortex stretching term (¢, + @, )w is a damping
term for large |z|. This is the main source of the damping effect for large
|z|. However, (¢, + @,)w is not a damping term for x near 0 since ¢, + U, is

positive.

The profile we constructed satisfies ¢z + au > 0 for all z > 0 within the
support of the solution and ¢z + au ~ Cxz near x = 0 for some C' > 0, which
can be seen in later sections. Thus for x close to 0, we can follow the ideas
in Section to derive the damping term in the weighted L? estimate with

singular weight from the local terms ¢;x + au > 0.

Another subtlety in our analysis is that we do not use a singular weight to
derive a damping term from (¢;x+u)w, in all cases with different a. In the case
of a = 1, we need to estimate the perturbation near the endpoints x = 0, +L
carefully. We choose a singular weight ¢ of order O((z — L)™?) near z = L in

order to obtain a sharp estimate of u. See more discussions in next Section.

3.3.2 Estimates of the nonlocal terms

The linearized equation contains several nonlocal terms that are difficult
to control. To estimate the vortex stretching term (u, + ¢, )@ in , we
take full advantage of the cancellation between u, and w, see Lemmas [B.0.3
and To control the last term —(au + ¢x)w, in (3.12), we have to
choose appropriate functional spaces (X,Y) and develop several functional
inequalities ||u||x < Cxy||w||y with a sharp constant Cxy. For example, we
need to make use of the isometry property of the Hilbert transform. We remark
that an overestimate of the constant Cxy could lead to the failure of the linear
stability analysis since the effect of the advection term can be overestimated.
To implement the above ideas in obtaining the damping term and estimating

the nonlocal terms, we need to design the singular weight very carefully. See
(3.18) and (3.62)) for some singular weights that are used in our analysis.
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Singular weights similar to those in Sections and in the form of linear

combination of |z|~* have also been designed independently in [42, 49| for the

stability analysis.

Energy estimates with computer assistance In the case of a = 1, we
need to use computer-assisted analysis and refer to Section for its role
in our analysis. There is another computer-assisted approach to establishing
stability by tracking the spectrum of a given operator and quantifying the
spectral gap; see, e.g., [7]. The key difference between this approach and our
approach is that we do not use computation to quantify the spectral gap of
the linearized operator L in , since L is not a compact operator due to
the Hilbert transform w, = Hw. We refer to [55)] for an excellent survey of

other computer-assisted proofs in PDE.

3.4 Finite time self-similar blowup for small |q|

In this section, we will present the proof of Theorem [3.2 We use this example
to illustrate the main ideas in our method of analysis by carrying stability
analysis around an approximate self-similar profile with a small residual error
by using a dynamic rescaling formulation. In this case, we have an analytic

expression for the approximate steady state w.

3.4.1 Dynamic rescaling formulation

We will prove Theorem by using a dynamic rescaling formulation. Let
w(z,t),u(x,t) be the solutions of the original equation (3.2). Following the
ideas in Section we obtain that

Oz, 7) = Cp(T)w(Cy(T)z, (7)),  t(z,7) = Cu(7)Ci(7) u(Cy(T)x, (7))

(3.13)
are the solutions to the dynamic rescaling equations
Or(2,7) + (e(7)x + at) @, (2, T) = cu(T)0 + Upw, U, = Ho, (3.14)
where
Culr) = exp ( / ' co(s)dr)., Cu(r) = exp ( / ' —a(s)ds)., 1(r) = / " Cu(rydr
’ ’ ’ (3.15)

We have the freedom to choose the time-dependent scaling parameters ¢;(7)
and ¢, (7) according to some normalization conditions. Suppose that &(7) con-

verges to {0, in some weighted L? norm and ¢;(7), ¢,(7) converge t0 ¢ 00, Cy 00,
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respectively, as 7 — 00, with (Quo, €100, Cu,0o) being a steady state of (3.14)

and Q. # 0 in some weighted H! space. Since the steady state equation of
(3.14)) is the same as the self-similar equation (3.6)), we can use (3.7 to obtain

a self-similar singular solution of (3.2)). We refer to Propositions [3.4.1]

and Section [3.4.3] for more details about the convergence and the regularity of

() in the case of small |a|]. Similar statements apply to other cases.

To simplify our presentation, we still use ¢ to denote the rescaled time in the

rest of the chapter.

3.4.2 Nonlinear stability of the approximate self-similar profile

Consider the dynamic rescaling equation
w + (qx + av)w, = (cp + up)w, u, = Hw. (3.16)

For a = 0, we have the following analytic steady state obtained in [44]

—x b

O= g, U=,
b? + 22 b? + 22

ag=1,¢c,=-1, (3.17)

where b = 1/2. The above steady state can also be obtained by using the
exact formula of the solution of (3.2) with @ = 0 given in [26] and analyzing

the profile for smooth solution near the blowup time.

We will use the strategy and the general ideas outlined in Section to estab-

lish the linear and nonlinear stability of the approximate self-similar profile.

Choosing an appropriate singular weight function plays a crucial role in the

stability analysis. We will use the following weight functions in our L? and H*

estimates:
1 1 (b% + 2%)?
TR Baor | Brt (3.18)
1 z (b +2?)?
2, _
ETe s T T (3.19)

where @ is defined in (3.17) and b = 1/2. Note that ¢ < 7 + 1 and ¢ <

x4 2%
Theorem is the consequence of the following two propositions.

Proposition 3.4.1. Let @, p,v be the function and weights defined in (3.17)),
(3-18) and (3.19). There exist some absolute constants ay, j,c¢ > 0, such that
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if |a| < ag and the initial data w + wy of (3.16) (wo is the initial perturbation)
satisfies that wy is odd, wy € H?, wy.(0) =0 and E(0) < c|a|, where

E2(t) & (W(1), @) + p{wi(t), ),

then we have (a) In the dynamic rescaling equation (3.16|), the perturbation
remains small for all time: E(t) < c|a| for allt > 0; (b) The physical equation
(3.2) with initial data w + wy develops a singularity in finite time.

Proposition 3.4.2. There exists some universal constant 6 with 0 < § < ag
such that, if |a] < 0 and the initial perturbation wqy satisfies the assump-
tions in Proposition[3.4.1], then the solution of the dynamic rescaling equation
(3.16), (0 4+ w, & + ¢,y + ), converges to (e, Cloo, Cuoo) With Qo — W €
L2(9), Qoo — @e € L2(W), Cloo > 0,Ch00 < 0. Moreover, w + w converges
to Qo in L*(p) exponentially fast and (Qso, Cloo, Cuoo) 18 the steady state of
. In particular, the physical equation (3.2)) with initial data w + wy de-
velops a focusing and asymptotically self-similar singularity in finite time with
self-similar profile Qo € H*(R).

In Appendix [B], we describe some properties of the Hilbert transform. We will

use these properties to estimate the velocity.

Proof of Proposition[3.4.1. For any |a| < ag, where ag > 0 is to be determined,
we consider the following approximate self-similar profile by perturbing ¢; in
(13.17) -

x
R b (3.20)
where b = 1/2. We consider the equation for perturbation w,u around the
above approximate self-similar profile

wit(Gr+at)w, = (Cp+ty)w+ (Uy+c)w—(autcr)o,+N(w)+F(w) , (3.21)

where N and F' are the nonlinear terms and the error, respectively, and are
defined below:

N(w) = (¢ + uz)w — (qzr + au)w,, F(w)=—a(u— uy(0)x)w, . (3.22)
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We choose the following normalization condition for ¢; and ¢,
a(t) = —aug(t,0), cu(t) = —u.(t,0). (3.23)

Note that @ is smooth and odd, the initial data w4+ @ € H? and the evolution
of preserves the odd symmetry of the solution. Standard local well-
posedness results imply that w(t, ) 4+ @ remains in H? locally in time, so does
w(t,-). Using the above normalization condition, the original equation ([3.16])
and the fact that w, v are odd, we can derive the evolution equation for w, (¢, 0)

as follows

%(wx(t, 0) + @a(0)) = [(co + Gy + g + 1) (@ + )]s

=0

— [(@z + au + gz + au)(wy + ©;)].

=0

= [(cy + Gy + up + y) — (¢ + ¢ + atiy + auy)|(@y + wy) i

= [(éw + ax) - (El + aﬂx)](@x + Wx) =0,

=0

where we have used (3.20]) and @,(0) = 2 to obtain the last equality. It follows

@ a(t,0) = %(wx(t, 0) + @, (0)) = 0, (3.24)

which implies w,(t,0) = wp(0).

In the following discussion, our goal is to construct an energy functional
A

E*(w) = (w? ) + pl{w? 1) for some universal constant p and show that F
satisfies an ODE inequality

—— F*(w) < OE® — (1/4 — Cla|)E? + Cla|E,

for some universal constant C. Then we will use a bootstrap argument to

establish nonlinear stability.

Linear Stability = We use ¢ defined in for the following weighted L2
estimates. Note that ¢ is singular and is of order O(x™*) near x = 0. For
an initial perturbation wy € H? that is odd and satisfies wy.(0) = 0, w(t, )
preserves these properties locally in time (see (3.24)). We will choose wp(x)
that has O(|z|™!) decay as |z| — oo (same decay as &). Hence, (w?, o) is

finite. We perform the weighted L? estimate
1d
5%(0“}27 90> = <—(51$ + aﬂ)“‘)z + (50.) + am)wa WSO> + <<U:Jc + Cw)wa w90>

— ((au + @)y, we) + (N(w),we) + (F (@), wp) (3.25)

L T4 II+1II+ N, + F,.
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For I, we use integration by parts to obtain
1
I= (g5 (@ +anp). + (et ). %),

Recall ¢ = 1 — 2a (3.20). Using the explicit formula of profile (3.20) and
weight (3.18]), we can evaluate the terms in I that do not involve a as follows

bt ((b2 + x2)2> b,

L wo)e + (@ + ) =

20 2(b% + 22)? b2x3 L 2 4a?
B b2zt z(b? + 22) B (b2 4 x2)? b 222 + b 51
©2(b2 + 22)2 b3 b2zt b2 + 22 x4 2 2
(3.26)

where we have used b = 1/2. From (3.20) and ([3.18]), we have

1
|55 l@e — = +amgle |,

—2 4 Uy n -2+ Uxpy

. (3.27)

) Sl
Hence, we can estimate I as follows
1 1
I= <%((Ell’ + at)p), + (¢ + E$),w2go> < - <§ — C’|a|) (W?, @), (3.28)

for some absolute constant C'. Denote @ = u(z) — u,(0)z. (3.23) implies that

2 T 2¢
TPy
2

<1+ 1) (14

qr + au = au, Uy = Uz + C,.

Using the definition of /7 in (3.25),(B.5)) and (B.6), we obtain
1 1 T
I = —<(u$ — 0, (0))w, = + %> = —55u2(0) < 0. (3.29)
For I11, we use the Cauchy—Schwarz inequality to get

11T = —a(iw, Gyp) < ‘Q’HWWHJ

For @, we use the Hardy inequality (B.8|) to obtain

@y (70 + 274 12 ww‘ ’2 . (3.30)

(@270 +a™) S(ag, e +27%) ST e Swhe) . (331)
Note that (3.20) and (3.18]) implies
2 2 3 2 | 2
6, —a\-1/2 ‘:’—b +a° x DT +aT o g
@y (270 + 27" ¥ B2+ 222 (@2+ 172 ba? LR PR S
We get
ITT < Cla|{w?, ). (3.32)
Combining the estimates (3.28]), (3.29) and (3.32)), we obtain
1d
(w?,¢) < —(1/2 = Clal){w?,¢) + N1 + Fy . (3.33)

2dt
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Weighted H! estimate The weighted H' estimate is similar to the L?
estimate. We use the weight 1 defined in (3.19)) and perform the weighted H!

estimates

%%(wi, V) = (—((Gx + at)wy)z + ((Cow + Ug)w)z, Wath)
+ <((Ux + Cw)@)wix¢> - <((CL’LL + Clx)wx)wa quzz)> (334)
+ (N W)z, weth) 4+ (F(w)g, wpth)

ET4IT+IIT+Ny+ Fy.

For I, we obtain by using integration by parts that

I = {(—(qz + at)wy, + (—¢ — aty + Cp + Uy )Wy + Ugew, Wrth)
1

- @((czx Fau))e + (6 — o+ (1= ais), w2) — (G (est)er ).

Similar to (3.26)), we use formula (3.20)), (3.19)) to evaluate the terms that do

not involve a.

2.2 2 2\2
i(lch)wr(éw—1+ugc):2 b <(b +«’U)> e b1

29) (b2 + 22)? b2x 2422 2
2bx (b* + 2%)?
Ugy =\ - : = —5 0.
(Uzat)), < (02 + 22)2 b22 L ba? =

Similar to (3.27)), we use (3.20) and (3.19)) to show that the remaining terms

in I are small. We get

| s i — - 1) -

Lo
1
=lal| |5 (22 + @) +2 — || Slal,
where we have used ¢, — 1 = —2a. Therefore, we can estimate I as follows
1 2
I's =(5 = Clal){ws, ), (3.35)

where C' is some absolute constant. For /1, we have

IT = <((uw + CW)@)mwacw) = <um@awx¢> + <(u:c + Cw)wxaww¢>

1 T N _
= _<Ua:xwma ; + ﬁ> - <ua:7w:nwa:¢> £ 1L+ 11, s

(3.36)

where @ = u — u,(0)x, U, = u, — u,(0). Note that

Uge = Hwyy,  we(0) = 1z, (0) = 0.
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Applying with (u,,w) replaced by (u,,w,) and , we obtain
<umwz, §> =0, (Ugpwy,x)=0. (3.37)
It follows that
In = —<umwx, §> 612 <uwww, ) = 0. (3.38)
For I in (3.36]), we use an argument similar to to obtain
10| S (@3, e~ +a7?) 2 (e o ) @), w2,

(3.31)) shows that this first term in the RHS is bounded by (w?, ¢)'/2. For the
second term, we use the definition (3.20]) and (3.19)) to obtain

4 2 2\ 2 (12 212
R N N B . —b+x (0% + 27) <
)(x o) (@) }_ 241 ((b2+x2)2) 22 ~
Hence, we have
1L S (WP, ) /2 (w2, )2, (3.39)

For II1 in (3.34), we note that ¢z + au = a(u — u,(0)x). Similarly, we have
1111 S lal(w?, @) w2, )2, (3.40)
In summary, combining (3.35)),(3.36)), (3.38)), (3.39) and (3.40]), we prove that

%%(wi,wé Clw?, )2 (w; w>1/2—<%—cya\)<wg,¢>+NQ+FQ, (3.41)

where C' is some absolute constant.

Estimate of nonlinear and error terms We use the following estimate
to control ||uy||so

1/2 1/2 1/2 1/2
Pllugelly? = Cllw]ly[lwalls? < Clw?, @) 4 (w2, )14,

Recall the definition of N(w), F/(@) in (3.22). For the nonlinear part Ny, Na,

we have

N = (N(w),we) < (la] + Dlluz|loofw?, 0) S lltalloo(w?, )

Nz = (N(w)a,wath) S (la| + Dllualloo(w, ¥) < Moo (w?, ),
where we use that |a| < 1 since we only consider small |a| in Theorem [3.2] We
note that F(_) satisfies F'(w) = O(z?) near 0 and F(w) = O(z™!) for
large . From (3.18) and (3.19)), we have F(w) € L*(¢) and (F()), € L*(¢).

Then for the error terms F}, F5, we can use the Cauchy—Schwarz inequality to

||ux||oo <C||u$||

(3.42)

obtain
1| = [(F(@),wp)| < (F2(@), o) (w?, o) < Jal(w?, )2,

3.43
1B = K(F@ st < (F@ 002020 S lalf . )
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Nonlinear Stability Let 4 < 1 be some positive parameter to be deter-

mined. We consider the following energy norm

E2(t) & (W, @) + plw?, ).

Using the previous estimates on u, and the Cauchy—Schwarz inequality, we
have

(W o) Pz, )2 < PER lualloo < Cl0?, o) 4w, )t < OB

Combining (3.33)), (3.41)), (3.42)), (3.43) and the above estimate, we derive

1d 1
5520 < = (5 = Clal ) B2+ Cule? )2 902 4 Clal + Cluta o

IN

— (; —Cla| — C\/ﬁ) E? 4+ Cla|E +Cu~Y1E3

where C' is some absolute constant. Now we choose yu such that C'\/p < 1/4.

Note that p is also a universal constant. It follows that

1d 1
§£E2(t) S — <Z — Cl\al) E2 + Clla\E + ClEB s (344)

where ' is a universal constant. For ¢, (t) and ¢(t), they satisfy the following

estimate
lco(t)] = |ug(t,0)] < CoFE, | (t)] = |au.(0)] < CLE

for some absolute constant C5. Hence there exist absolute constants ag,c > 0
with Ciag < 1/8, such that for |a| < ag, if E(0) < c|a|, using a bootstrap

argument, we obtain
E(t) < clal, |eo(t)],|a(t)] < CyE(t) < Cyclal, (3.45)

for all ¢ > 0. We can further require

( 1 1
801’ 2026 ’
so that we get |, (t)], |¢(t)] < Caclal < 5, which implies

ap < min

Co+co(t) <=1/2, ¢t)+¢ >1/2. (3.46)

As a result, we can choose small initial perturbation wy which modifies @ in
the far field so that we have an initial data w + wg with compact support. We
can also require that wy,(0) = 0 and F(0) < c|a|]. Then the bootstrap result
and ¢, + ¢,(7) < —1/2 < 0 imply the finite time blowup. We conclude the
proof of Proposition [3.4.1} U
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Based on the a-priori estimate, we can further obtain the convergence result.

3.4.3 Convergence to the self-similar solution
Proof of Proposition[3.4.3. An important observation is that the approximate

self-similar profile is time-independent. Therefore, we take the time derivative

in (3.21)) to obtain

wie + (C + all)wie = (Co + Ua)wr + (Ust + )@ (3.47)
— (auy + ), + N(w)y

where the error term F'(w) vanishes since it depends on the approximate self-

similar profile only. Note that the normalization condition also implies

d
2 wa(t,0) = 0.
g (t:0)

Exponential convergence Note that the linearized operator in is
exactly the same as that in the weighted L? estimate (3.21). Therefore, we
obtain v

57 (Wi o) < =(1/2 = Cla){(wi, @) + (N (W), wip). (3.48)

The nonlinear part reads

N(w)p = (Cot + Ugpt)w + (o + Uz)wr — (Crapx + aty)wy — (X + au)w, ¢

SET+IT+IIT+1V,

(3.49)
where ¢, ; = —u;+(0), ¢+ = —au,(0) according to the . We are going
to show that

(N (W)e wip)| S B(t){wy, ). (3.50)

From previous estimates, we can control ||w||se; ||Uz|oo, || 2|z, ]cul, lci| by

E(t). Using (B.§) with p = 2,4, 27* + 272 < ¢ (see (3.18)) and the L2
isometry of the Hilbert transform, we have

1tz = 1z (0) (27" +272) 2|l < [lwp!|l22 < E(),
1tz = 2t (0)) (@™ + 272) )2 S [lwe | 2.

Moreover, we have

RS T

r—ylx

2
r+yl 4\ 1/2
< <wt2790>1/2< (log‘ —) P 1> S (w, )2,
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Taking « = 0 in the above estimate, we also yield the bound for |u,(0)| and

thus that for |c, |, |ci¢|. The tail behavior of ¢ (3.18)) satisfies

22 1 ey L, B2
(,OIE—FF‘F[)—Q:O(QZ >—|—b , go—b :E+F<SO.
Recall &t = u — u,(0)z and (3.23]). We can estimate different parts of N(w); as

follows

(T, wep)| < [{(Cut + uze)w, we(o = 07| + b7 {(Curt + U )w, wi)|
S (27 + 27wl oo w? )2 4 072 el ol lwe™ 2|2
+ 07 |ug gl l2l|wllollwr|l2 S E(E){wf, ) |

B ((cr +au)p),
(H+IV,wtgp>—<cw+ux+ 2% w >>

S Ntalloo (Wi, 0) S E() (W], @)

(111, wip) = <Clt + au , W 2w 901/2>
x

< ||ews + a= | llea 2l allene 2112 S E@O7, ).

where we have used |zp,/p| < 1 to estimate IT + IV and ||w,p'/?

|l =
||w,¥'/?||y < E(t) to obtain the last inequality. In summary, we have proved
(3.50). Consequently, by substituting the above estimates and (3.45)) into
(3.48), we obtain
ld, 2 2
5 Wk e < (12~ Clal)(ef, 0) + CsB(D) e, )
—(1/2 = Clal){wi, ¢) + Csclal(wf, )

—(1/2 = Cla| — Csclal){wy, @)

IN

for some universal constant C3. Thus, there exists 0 < § < ag such that
1
Co+ Csc0 < 1

Hence, if |a| < 6, we obtain

d

1 2
o ——{w;, p). (3.52)

(Wi p) < =(1/2 = Cla| = Cyelal)(wr, ¢) < =5
It follows that (w?, o) converges to 0 exponentially fast as ¢ — oo and that
w(t) is a Cauchy sequence in L?*(¢) as t — oco. It admits a limit w., and we
have

[(W(t) — weo) " ?[|2 < €74, (3.53)
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According to the a-priori estimate (w,(t,)?,v) < E%*(t) < (ca)?, there is a
subsequence w(t,) of w(t), such that w,(t,)y'/? converges weakly in L?, and
the limit must be wy, ,1'/2. Therefore, we conclude that wy, € L?(y) and

Weoz € L2(1). Using these convergence results, we obtain
a(t) = —aug(t,0) - —aHw(0), ¢, = —ug(t,0) > —Hw(0),  (3.54)

as t — oo. Using the formulas of @ in (3.17), ¢, in (3.18) and the above
result, we obtain w.,, & € H'(R), which implies w, + @ € H'(R).

Convergence to self-similar solution Finally, we verify that w., + @ with
SOIE €] o0, Cuw oo 15 @ steady state of ([3.16).

We use 2, U, k;, K, to denote the original solution of
O=w+w, U=u+u, kK =c¢+¢, FK,==c,+7C,.
In particular, we define (4, Us) by
Qoo = Woo + @, Usor = H(Qo)-
Notice that
wi = = (K + U)Q — (kgz + al)Q, = K(t).
Due to the exponential convergence (3.52)), we have

(K(t)?,p) =0 ast— +oo. (3.55)

Suppose that {w(t,, <) }n>1 is a subsequence of {w(t, -) }+>o such that as n — oo,
tn — o0 and wy(t,)Y'/? converges weakly to wa ,1'/? in L. From (3.53)), we
obtain that {w(t,)},>1 converges strongly to ws, in L*(p). Therefore, Q(t,) —
Qs converges strongly to 0 in L2(p) and Q,(t,)1'? — Qg ,1'/? converges
weakly to 0 in L2. From ([3.54), we obtain that x;(t,), 5w (t,) converge to some

scaling factors ¢; o, Cu,00, T€SpPectively.

Using these convergence results, the relation v = 2% between two weights and
the standard convergence argument, we obtain that K(t,)¢'/? — K (co)p!/?

converges weakly to 0 in L?, i.e.

((ky + Up)Q2 — (kix + al) Qx)gol/Q

3.56
—((Cwso + Usos) Q0 — (Cloot + aUs0) Qo) 0/>  — 0. (3:56)
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We refer to the arXiv version of [I9] for the detailed proof of this result.

Note that ([3.55)) shows that K(¢,) — 0 in L?*(¢). We get
(Cw,oo + Uoo,z)Qoo - (Cl,oox + ano)Qoo,x =0

in L?(p). The a-priori estimate and the convergence result imply that
Cloo > 1/2>0, cyoo < —1/2 < 0. Therefore, the solution Q(¢) in the dynamic
rescaling equation converges to Q. in L?(¢) and (Qu, €100s Cw o) 1S a steady
state of , or equivalently, a solution of the self-similar equation (3.6)).
Using the rescaling relations and , we obtain that the singularity

Cl,00

is asymptotically self-similar. Since v = — > 0, the asymptotically self-

Cw,00

similar singularity is focusing. The regularity Q. € H'(R) follows from the
result below ((3.54)). O

Remark 3.4.3. An argument similar to that of proving convergence to the
self-similar solutions by time-differentiation given above has been developed
independently in [42]. There is a difference between two approaches in the
sense that an artificial time variable was introduced in [42], while we use the

dynamic rescaling time variable.

3.5 Finite time blowup for a = 1 with C¢° initial data

In this section, we will prove Theorem regarding the finite time self-similar
blowup of the original De Gregorio model with a = 1. Compared to the De
Gregorio model with small |a| analyzed in the previous Section, the case of
a = 1 is much more challenging since we do not have a small parameter a in the
advection term wuw,. The smallness of |a| has played an important role both
in the construction of analytic approximate self-similar profile and the
stability analysis, where we treat the advection term as a small perturbation.
We will use the same method of analysis presented in the previous section
except that the approximate steady state is constructed numerically. Since
our approximate steady state is constructed numerically, we also present a
general strategy how to obtain rigorous error bounds for various terms using

Interval arithmetic guided by numerical error analysis, see subsection [3.5.3

To begin with, we consider (3.2) with a = 1. The associated dynamic rescaling

equation reads

wr + (gr + w)w, = (¢p +ug)w, u, =Hw . (3.57)
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For an odd initial datum wy supported in [—L, L], we use the following nor-

malization conditions

u(L
C = —%, w — C]. (358)
We fix L = 10. With the above conditions, we have (c;z + u) T 0 and
r==xL
0wy (t,0) = O0p((uy + co)w — (z + u)w;)
v=0 (3.59)

= (€ + ug(t,0) — ¢; — uy(t,0))w,(t,0) = 0.

Thus w,(t,0) remains constant and x = £ is a stationary point of (3.57)) and
the support of w will remain in [—L, L], as long as the solution of the dynamic

rescaling equation remains smooth.

The reader who is not interested in the numerical computation can skip the
following discussion on the numerical computation and go directly to Section
and later subsections for the description of the approximate profile and

the analysis of linear stability.

3.5.1 Construction of the approximate self-similar profile

We approximate the steady state of numerically by using the normaliza-
tion conditions (3.58). Since w is supported on [—L, L] and remains odd for all
time, we restrict the computation in the finite domain [0, L] and adopt a uni-
form discretization with grid points z; = th,7 = 0,1, ...,n = 8000, h = L/8000.
In what follows, the subscript i of w¥ stands for space discretization, and the
superscript k stands for time discretization. We solve numerically using

the following discretization scheme:

1. Initial guess is chosen as w? = —£=%i sin(™%) i = 0,1,..., n.
i - A y Ly ey

k k

2. The whole function w” is obtained from grid point values w; using a
standard cubic spline interpolation on [—L, L], with odd extension of w¥
on [—L,0]. We approximate w';,i at the boundary using a second order

extrapolation:

B Swh —dwk |+ Wk,
o 2h

The resulting w* is a piecewise cubic polynomial and w* € C%!'. The

k

derivative point values w;

. are evaluated to be w¥(z;).
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3. The values of u* and u* at grid points are obtained using the kernel

integrals:

1 [t Ti— Y 1 [ 2y
k k i k k
== 1 d L= — dy.
uz T /(; W (y) og ‘xz y‘ Y, ux,z A :CZ2 _ ygw (y) Y

In particular, for each z;, the contributions to the above integrals from
the neighboring intervals [x;_,, Z;+m| are integrated explicitly using the
piecewise cubic polynomial expressions of w; the contributions from the
intervals [0, L]\ [2;_m, T;i1m] are approximate by using a piecewise 8-point
Legendre-Gauss quadrature, in order to avoid large round-off error. We

choose m = 8. We compute u*, similarly and will use it later.

4. The integration in time is performed by the 4y, order Runge-Kutta
scheme with adaptive time stepping. The discrete time step size Aty =
trr1 — tx is given by Aty = %m, respecting the CFL stability

condition |qz + uf| = < 1.
k

5. After each time step, we apply a local smoothing on w? to prevent oscil-
lation:
w; Zwi—1+§wi +4_1wi+1’ r=1,...,n— 1.

Our computation stops when the pointwise residual

Fo]jz = (Ci + uﬁl)wf - (Cfﬁxz + uf)wfl

k

satisfies max; |[F*,| < 107°. Then we use @ = w" as our approximate self-

similar profile. The corresponding scaling factors are
¢ = ¢, = —0.6991
by rounding up to 4 significant digits.

We remark that we observe second order convergence in space and fourth order
convergence in time for the numerical method described above. However, we
do not actually need to do convergence study (by refining the discretization)
for our scheme, as we can measure the accuracy of our approximate self-similar
profile a posteriori. The criterion for a good approximate self-similar profile is

that it is piecewise smooth and has a small residual error in the energy norm.

All the numerical computations and quantitative verifications are performed

by MATLAB (version 2019a) in the double-precision floating-point operation.
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Figure 3.1: Approximate self-similar profile.

The MATLAB codes can be found via the link [I7]. To make sure that our
computer-assisted proof is rigorous, we adopt the standard method of interval
arithmetic (see [96], 100]). In particular, we use the MATLAB toolbox INTLAB
(version 11 [99]) for the interval computations. Every single real number p
in MatLab is represented by an interval [p;, p.] that contains p, where p;, p,
are precise floating-point numbers of 16 digits. Every computation of real
number summation, multiplication or division is performed using the interval
arithmetic, and the outcome is hence represented by the resulting interval
[P, P.] that strictly contains P. We then obtain a rigorous upper bound on | P|
by rounding up max{|P|, | P,|} to 2 significant digits (or 4 when necessary). We
remark that, when encountering a non-essential ill-conditioned computation,
especially a division, we will replace it by an alternative well-conditioned one.
For example, for some function f(z) such that f(0) = 0, f,(0) < +o0, the

evaluation of @ at © = 0 will be replaced by the evaluation of f,(0).

3.5.1.1 Compact support of the approximate profile

The approximate profile @ we obtain actually has compact support. Below
we explain how we obtain a compactly supported approximate self-similar
profile. First let us assume that w is a solution of the steady state equation

(or equivalently self-similar equation), i.e. setting w; = 0 in (3.57)),
(qr +uw)w, = (cy + uzp)w, u, = Hw.

Differentiating both sides and then evaluating the resulting equation at x = 0,
we obtain

(Cl + ux)wx|a::0 = (Cw + uaz)wm|$:07
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which implies ¢; = ¢, provided that w,(0) # 0. Suppose that we have a
finite time self-similar blowup. Then the scaling factor ¢, is negative. See the
discussion in Section 2.1.4l Tt follows that ¢; = ¢, < 0. This also holds true
for the approximate profile: ¢; = ¢, < 0. Moreover, we have that u > 0 for
x > 0 and grows sublinearly for large x. The difference between the signs of
¢ and u(z) and their different growth rates for large |x| lead to the following

change of sign in the approximate profile
Gro+u(xg) =0, gr+u(zr)>0for0<z<zy, Gr+u(zr)<O0fforz>x,

for some xy > 0. We expect that a similar change of sign occurs in the dynamic
variable ¢;x + u and the solution of will form a shock. When we solve
w numerically, we can fix the point where the sign of ¢z + u changes by
imposing (3.58). Moreover, the approximate profile satisfies that ¢, + @, (z) is
negative for x > xq (see Figure . For z > z(, we expect that the dynamic
variable ¢, + u,(z) is also negative, which implies that (¢, + u,(z))w in (3.57)
is a damping term. For z > z, due to the transport term (¢x + u)w, with
ar + u(z) < 0 and the damping effect (¢, 4+ u.(x))w, the solution tends to
have compact support. For this reason, in our computation, we have chosen the
initial data with compact support and controlled the support of the solution
by imposing . As a result, the approximate profile also has compact
support.

3.5.1.2 Regularity of the approximate profile

In the domain [—L, L], since w is obtained from the cubic spline interpolation,
it has the regularity C*![—L, L]. Moreover, since &(x) = 0 for |z| > L, & is
a Lipschitz function on the real line. We remark that @ is in H'(R) but not
in H*(R) since @, is discontinuous at z = +L (see Figure [3.1)). Multiplying
(x? — L?), we get a compactly supported and global Lipschitz function (2% —
L?)&,. Hence we can define the Hilbert transform of ((z? — L?)@,), which is

in L for any 1 < p < +o00.

Applying (B.4)) in Lemma we have
Uy = H(DI? HOCII('TQ - L2) = H((wa<x2 - LZ))

Using the regularity of @, we have that u is at least C® in (=L, L) and @,

grows logarithmically near x = L since @, is discontinuous at x = +L.
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3.5.1.3 Regularity of the perturbation

We will choose an odd initial perturbation wy such that wy +w € C* and
wo(0) = 0. Standard local well-posedness result shows that w + @ remains
smooth locally in time. Hence, the regularity of w and @ are the same before
blowup. Since the odd symmetry of the solution w + @ is preserved and @ is
odd, this implies that w is odd. From this property and w,(0) = 0 (see (3.59)),
w is of order O(x3) near z = 0. On the other hand, we have w(+L) = 0
since its support lies in [—L, L]. In the following derivation, the boundary
terms when we perform integration by parts on w terms will vanish, which can
be justified by these vanishing conditions. We will use this property without

explicitly mentioning it.

In [91], the De Gregorio model (3.2) with a = 1 was solved numerically on R
for t € [0, 1]. The author demonstrated the growth of the solution numerically
and plotted the solutions at several times that have similar profiles, which

share some similar structure with our .

3.5.2 Linear stability of the approximate self-similar profile
Linear stability analysis plays a crucial role in establishing the existence and
stability of the self-similar profile. We will establish the linear stability of the

approximate self-similar profile in this subsection.
Linearizing (3.57) around @, 4, ¢, ¢,, yields
wi (G +u)w, = (Cp+ Uz )w+ (Uy+ )0 — (u+ ), + N(w)+ F(w) , (3.60)

where w, u, ¢;, ¢, are the perturbations of the approximate self-similar profile,

N and F' are the nonlinear terms and the residual error, respectively,

Nw) = (ep+up)w — (qx + u)w,, F(0) = (¢y+ ty)w — (G + 0)w,. (3.61)

Main ideas in our linear stability analysis Compared to ,
does not contain a small parameter a in the nonlocal term (u + ¢;x)w,, which
makes it substantially harder to establish linear stability. There are three key
observations in our linear stability estimates. First of all, we observe that
the u,w term (vortex stretching) is harmless to the linear stability analysis as
we have shown in Section [3.4 We construct the weight function carefully to
fully exploit the cancellation between u, and w (see Lemma . Secondly,

we observe that there is a competition between the advection term uw, and
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the vortex stretching term u,w. We expect some cancellation between their
perturbation uw, and u,w. By exploiting this cancellation, we obtain a sharper
estimate of u/x by w, which improves the corresponding estimate using the
Hardy inequality . Roughly speaking, for = close to 0, the term u/x can
be bounded by w/5 in some appropriate norm; similarly, for = close to L, the
term (u(z) —u(L))/(x — L) can be bounded by w/3 in some appropriate norm.
The small constants, 1/5 and 1/3, are essential for us to obtain sharp estimates
on the non-local term u. If we had used a rough estimate with constant 1/5
replacing by 1/2, we would have failed to establish linear stability. Using the
first two observations, the estimate of most interactions can be reduced to
the estimate of some boundary terms. In order to obtain a sharp stability
constant, we express these boundary terms as the projection of w onto some
functions and exploit the cancellation between different projections to obtain

the desired linear stability estimate.

Due to the odd symmetry of u,w, we just need to focus on the positive real

line. Denote .
(f.q) 2 / fodz, N1l = 11l
0

for any 1 < p < oco. For most integrals we consider, it is the same as the
integral from 0 to 400 since the support of w lies in [—L, L]. Define a singular

weight function on [0, L]

_ . - -1
0 (_%_E_ L];—QiQ) ' (Xl <@_x5&) IR (@_ . 3L)%)> ’

(3.62)
where Y1, x2 > 0 are cutoff functions such that x; + x2 = 1 and
1 z€0,4] exp (5 + 5
xi(z) = . xi(z) = ( 41 61) Va € [4,6]
0 €6 10] L+exp (71 + .5)

Note that the denominator in (3.62)) is negative in (0, L) and that ¢ > 0 is a

singular weight and is of order O(x™*) near x = 0, O((x — L)™?) near = = L.
Performing the weighted L? estimate on (3.60)) yields

1d
Sk = (= (@@ + D + Eu + T wip) + ((ua + ), Gwp)

— {( + u), @) + (N(w), wi) + (F(@),w) (3.63)

2D+I1+ N+ F.
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For D, we use integration by parts to obtain
1
D= <@((6zx + @)p)e + (Co + ﬁx),w2<,0> 2 (D(@),w?y). (3.64)

From (3.62)), we know that ¢(z) = O(z™*) near x = 0 and ¢(z) = O((z—L)?)

near x = L. Using these asymptotic properties of ¢, one can obtain that
D(w)(0) = —(¢, + u,(0))/2 <0, D(w)(L)= (¢ +u.(L))/2<0.

We can verify rigorously that D(w)(z) is pointwisely negative on [0, L). In
particular, we treat (D(&),w?y) as a damping term. See Section for the

discussions on the derivation of the damping term.

We estimate the interaction near x = 0 and x = L differently. First we split

the I term into two terms as follows:

I = ((uy + c,)w — (qxr + u),,w
(( )@ — (@ + u)@r, wexi) . (3.65)
+ <(uz + Cw)a) - (Clx + U)%M@Xﬂ = Il + I2~
We use different decompositions of (u, + ¢,)w — (qz + u)w, for = close to 0
and to L. For x close to 0 (the x; part), we use ¢, = ¢ to obtain
_ _ _ Wi _ (Uuzyt+c, utqr
(ugp + co)w — (qr + u)w, = (ug + ) (w— 7 >+:ng5< o )
x
oy z — Yz 0 - Ug 0 4 w T 0
w5:c>+x@x<u uz(0)  u—u(0)r 4 —l—u()))

b} x 5
For x close to L (the xy part), using ¢, = ¢, = —u(L)/L (3.58), we have

= (uy + ¢u) ((D —

u+cr=u—u(L)+ ¢z — L).

Therefore, we obtain

(g + €)@ — (a1 + WDy = (up + €)o — (x — L)Dy - —— u(L) + ¢(x — L)

z—L
= (uz + cw)<d) — —wm(xg— L)> + (x — L)@x<um ; Cw UT “(Lx) 7: z(x — L))
= ( + ) (@ - #) - g(x — D)@a(cy + us(L))

(- L)@m<uz — u, (L) u-— u(L) — ug (L) (x — L))

3 x—L
Using (3.65)) and the above decompositions near z = 0, we get

I - < (1% —us(0) w —ux(O)ﬂf) 7 933%wa1>

5 2 3

+ <(cw + uy), <w — %&)ﬂ:) wX190> — %(cw + 1, (0)) (xwz, wx19) (3.66)

£ I+ Ly + L.



157

Similarly, near x = L, we have

= ( (ol - B QOB o )

(et o)y (@ = gnlo — 1)) o) = Blew + (D)o -~ Liom o

£ Iy + Ipg + Dps.
(3.67)

3.5.2.1 The first part: the interior interaction

To handle the first term on the right hand side of (3.66)) and (3.67)), i.e. I, I>1,
we use the Cauchy—-Schwarz inequality to obtain
I, < H (1 Uy — up(0)  u—u,(0)x

952 - 3 ) H2||953@a:W90X1||2,

Hlux Uy ( u—U(L)—ux(L)(x—L)H I

9 _
(l‘—L 2 L) WxWQDXQHQ-

(3.68)
Using integration by parts yields

H <1ux —xzx(U) u—ux ) H

—ux H _/ ux(o))g;g,(uux(o)x)d“HWHz
25‘ ’U,z_ugz H 1 (u— g )x)Q‘OL
/(”’H”H
= %H 5;5< (L)~ us (0)L)
-l H s e + :0)°
D o »
where we have used ¢, = ¢, = —u(L)/L in the second to the last line. To

obtain the last inequality, we have used estimate (B.8) with p = 4, the facts
that the integral in || - ||2 is from 0 to L and that w is supported in [—L, L].
Denote v = u — u(L) — u,(L)(x — L). Obviously, we have

v(L) =v,(L) =0, v(0) = —u(L) + uy(L)L = L(c, + uy(L)).
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Using the above formula and integration by parts, we obtain

Hlux—ux u—u(L) —ug(L)(z — H _H* v H2
(x — L)? 2 3x—L (v—L)2ll2
1 Ve |2 2/L VU v 2
S T T e
9llz — Lll2 3 )y (x—L)3 (x — L)21l2
(3.70)
_ 1 2_11)2‘L_13/Lv2 +H H
9lle—Lll2 3(x—-1L)3lo 3 o (x—L)*
I ve |12 1 v(0)? —um(L)H2 1 )
= = N — - 57 \Cw :EL .
ollz—zll 30—y TR

Using a formula similar to (B.1]) yields
(up — ug(L)) (@ — L)™' = H (w(z — L)7").

We further obtain the following by using the L? isometry of the Hilbert trans-

form

L _ )2 2 _ I))?
[l [ E [ DRy
o (v—1L) g (r—L) wgo,r) (v —1L)
Note that the Cauchy—Schwarz inequality implies
_ _ )2
2¢[0,L)] (1’ -
0 —1
( / (g — ug(L ) ( / 2dx)
—L

= (u(0) — u(—L) — ux(L)L)* (3L3) _ %(Cw +uz§L)) L _ %(Cw _Hzx(L)) |

v

Combining (3.70)), (3.71])) and the above inequality, we get

Hl%_ux u—u(L)—ux(L)(ac—L)H2
(x — L)? 2
w? 1 Uy — Uy (L))? 1 9
STy e e e R

< ééﬁdm — (3LL + ﬁ) (cw +us(L))2.
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Combining (3.68]) , (3.69) and (3.72]) and using the elementary inequality zy <

Axe? + ﬁyQ, we obtain the estimate for Iq;, ]21,

Lug —ug(0) u—ux 3- 2
<
Ly +In 25&1” < 3 H 1004, —— ||z wwexallz
4 94y Hluz ug (L) u—u(L) —uy(L)(z — L) H2
—L (x — L)? 2
+ 7||(f0 — L)*@.wpxalls (3.73)
1 3_ 9 w?
= ‘“H H " 1000, 1* w””WXIHQJraQ/R CEIE

7L

where ai,as > 0 are some parameters to be chosen later.

3 3

2 2 2
— Wz - L)@.w PR T L)),
36 [(z — L) @ewexallz 2<[ )(Cw uz (L))

3.5.2.2 The second part

Combining I9, Iy in (3.66), (3.67)), respectively, and using the definition of ¢

(3.62)), we obtain
Iio + 1o :<(C +u ) (D—lw X1+ @—1@ (.T—L) X2 WQO>
w X /)y 5 ./,U 3 xT

= 1 e f2r
- <(cw Tl <_x3 r L?— x2> > (3.74)
= (co + ux(O))<w, —% - §> + <(Ux — up(0))w, _% B §>

+ <(cw —i—u@w,—%%

where e and f are constants in the definition of ¢ (3.62). Since w € C*! and
w(0) = we(0) = wee(0) = 0, we have w - 272 € L' and the above integrals are

well-defined. Using (B.5) and (B.6]), we obtain
1 1 —
Z R

2 3

<<ux_ux(o))W7l>_led$ T 2(0).

z 2 T 4 e

Note that (¢, + u;)w is odd. The Tricomi identity Lemma implies

2z 1 1
<(cw+ux)w,——L2_x2>:—/R+(cw+ux)w (L—x_ L+x) dx

- /R %dz = —mH((cy + uz)w)(L)

= —mc,Hw(L) — mH (upw)(L) = —me,uq (L) — = (u

(3.75)
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Combining (3.74)), (3.75)) and (3.76)), we obtain

ot e =(e + w0 (i (~ 5~ £) ) = a0

3 x

— freyu. (L) — %ui(L)

3.5.2.3 The remaining part: the boundary interaction

Let ag = ag(% - %) The negative term that appears in the last term of ([3.73)

can be written as

—a2<% + %)(cw Fup(D)? = —ag(cy + ua(L))2 (3.78)

Combining (8.78), B-77), Lis, Ios in (3:66) and (B:67), we obtain

Lo + Ing + 1z + Inz — ag(cy + ug(L))?

= (e s (=35 = ) ) = u0) - freua(t) - 0
4 2

= ¢ (e + ua(0){w, 20ax10) = S (Cw + ua(L))(w, (z = L)Dax20)

— as(cw + ugz (L)

= w0) (o (-3~ £) - gomoae) - Fual0))

4

+ ¢ <<w (—1 - 6) — S A@aX1p g(x - L)%xw> — fru (L) — ascw>

{
)2

L) <<w, (e D) - Tun(L) - 2050, - agumw)) |

(3.79)
Note that

2 [fw 1 b 2

u(L) 1 [t L+x
S Sl A .
c 7 LW/O og (L — x) w(z)dz

All the integrals in (3.79) and ¢, u,(0),u,(L) are the projection of w onto

some explicit functions. We use the cancellation of these functions to obtain
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a sharp estimate of the right hand side of (3.79)). Denote

Je éilog Lo gu(O)é_i gu(L)é2—x
“  Lrm L—z)’ v r’ v w(L? — x?)’
N 1 e 4 em
g1 = 3 T 5$W1X190 A Gu,(0)5
1 4 5 (3.80)
e
g2 = (—g - 5) - gmleso - §($ — L)@y Xop — fTGu. (L) — @39,
2 _ fr
g3 = —g(ff — L)@, xa2p — (7 + a3) Gug(L) — 2039, -
With these notations, we can rewrite (3.79)) as follows
g (0)(w, + ¢, {w, ga2) + ux(L){w,
(0)(w, g1) + cw(w, g2) + ua(L)(w, gs) (3.81)

= (W) Gua (0)) (W, 1) + (W5 Geo ) (W5 g2) + (W, Gy (1)) (W5 g3)-

For some function R € C([0, L]), R > 0 to be chosen, we introduce

= (390)1/2007 fi2 (R‘P)_mguz(o), fa2 (RSO)_l/lea
fs 2 (Ro) g0, f12 (Rp) Vg, (3.82)
fs = (R<P)71/29ux(L)7 fo = (390)71/29&

Our goal is to find the best constant of the following inequality for any w €
L*()

(frw)(fo ) + s ) (Foy) + (5 0) (o, ) < Copl|yl13, (3.83)

which is equivalent to

(W, Gun @)@, 91) + (W, ga Hw, 92) + (W, Jua(1)) (@, g5) < Co(R, ),

so that we can estimate (3.81) by (R,w?y) with a sharp constant. From the
definition of functions g, f, we have that g5 € span(ge,,, Gu,(0): Gu.(L): 91, g2) and

fs € span(fi, fa, ..., f5) 2V, dimV = 5. (3.84)

Without loss of generality, we assume y € V since ||Pyl|2 < ||y||2 and (y, fi) =
(Py, fi), where P is the orthogonal projector onto V. Suppose that {e;}?_,
is an orthonormal basis (ONB) in V' with respect to the L? inner product on
[0, L]. It can be obtained via the Gram-Schmidt procedure. Then we have
2 =37 {z,e)e for any z € V. We consider the linear map 7' : V — R®
defined by (T'z); = (2,¢;), Vz € V. It is obvious that T is a linear isometry
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from (V, (-, -)72) to R® with the Euclidean inner product, i.e. ||Tz||;z = ||2]]z2-
Denote v = Ty,v; = T'f; € R® . Using the linear isometry, i.e. {f;,y) = vTv;
and ||y||2 = vTv, we can reduce (3.83) to

Z (v vg_1)(vdv) = v ( Z V9i 103 )0 < Copv v,

1<i<3 1<i<3

Denote M £ Y, 509 1v% € R®*. Then the above inequality becomes
v Mv < Copv’v. _U_sing the fact that vT Mv = vT MTv, we can symmetrize it
to obtain

UTM+—WU < C’Opthv.
Since (MT + M)/2 is symmetric, the optimal constant C,; is the maximal
eigenvalue of (M + M™)/2, i.e.

M+ M7T 1
C’opt - )\max (+—)

5 = Amax(5 D (vasivg + vy ). (3.85)

1<i<3

We remark that maximal eigenvalue \,.x is independent of the choice of the
ONB of V. For other ONB, the resulting Apax Will be Ay (Q(M + MT)QT /2)
for some orthonormal matrix () € R°*5, which is the same as . Using
(3-79), (3-81), (3-83) and (3-85), we have proved

Lo + Iog + Lz + oz — az(c, + ug(L))?

1
S)\max(§ Z (WFWQTZ- + U?ivg;j—l)><R7 ("")290)7

1<i<3

(3.86)

where v; € R is the coefficient of f; (see ) expanded under an ONB
{ei}5_, of V = span(fi, fo, ..., f5), i.e. the j-th component of v; satisfies v;; =
(fi,e;). We will choose R so that Apax < 1 and then the left hand side can be
controlled by (R, w?p).
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3.5.2.4 Summary of the estimates

In summary, we collect all the estimates of I;;,i = 1,2,5 = 1,2,3, (3.66]),

, and (| - ) to conclude

((ug + o) — (qr +u),0p,wp) =1 =1 + I, = Z L;
i=1,2,j=1,2,3
2
w 5 ) w
<ay ? + 100a; ||z wxw¢X1]|2+a24mdx
_ 2 1
+ WH@ — L)*wwoxall; + )\max(i D (vaivy; + vaivg, 1)) (R, W)
1<i<3

£(A(B),6%0) + (g 3 (02105 + oot ))(R, 7).

1<i<3

(3.87)

where A(w) is the sum of the four terms in the first inequality and is given by

a a a 230.v1)? x — L)@, x2)?
A(w):<—i+ 2 n 2 )_1+( X1>90+(( ) X2)80‘
zt (x—L)> (z+ L) 100a; 36as
(3.88)
Optimizing the parameters To optimize the estimate, we choose
1
e=0.005, f=0.004, a;=-—,
L (3.89)
as = 1.4f = 0.0056, a3 = 5(3 + =) = 0.00192

After specifying these parameters, the coefficient of the damping term D(@)
(see (3.63)) and the coefficient of the estimate of the interior interaction A(w)

are completely determined. Then we choose
R(w) = —D(w) — A(w) — 0.3 (3.90)

in (3.82). The numerical values of D(w), A(w) and R(w) on the grid points
are plotted in the first subfigure in Figure We can verify rigorously (see
the discussion below) that R(w) = —D(w) — A(w) — 0.3 > 0. In particular, the
coefficient of the damping term satisfies D(w) < —0.3 — A(w) and is negative
pointwisely. The corresponding f; in (3.83) are determined. The optimal

constant in (3.86]) can be computed :

1
Copt = Amax(5 D (vaisrvg; + v, ) < L. (3.91)

1<i<3
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L estimate H' estimate
3 - - - —D(w) 0.9 - - - - - -
—A(w)
—R(W) = -

Figure 3.2: Hlustration of the linear stability estimates. Left: Coefficients
of the damping term D(w) in the L? estimate, the estimate of the interior
interaction A(w) and the remaining terms R(w). Right: Coefficient of the
damping term Dy (@) in the H' estimate.

Combining (D(w), in (3.63), (3-87) and (3.91), we obtain the linear esti-

mate

1d

2dt<w ©) = (D(@),w?p) + I+ N1 + Fy
< (D(@),w%¢) + (A(@),0%0) + (R@),w*0) + N+ Fr - (392

= —0.3(w? ) + Ny + F.

For those who are not interested in the rigorous verification of the numerical
values, they can skip the following discussion and jump to Section for
the weighted H'! estimate.

3.5.3 Rigorous verification of the numerical values

We will use the followmg strategy to verify R(w) > 0 ( - Copt < 1 -
and Dsy(w) < —0.95 ) to be discussed later. These quantities appear in
the weighted Sobolev estimates and are determined by the profile.

(a) Obtaining an explicit approximate self-similar profile. As described
in section [3.5.1] our approximate self-similar profile w is expressed in terms of
a piece-wise cubic polynomial over the grid points x; = %,2’ =0,---,n. The
function values, w(z;), @, (z;), which are used to construct the cubic Hermite
spline, are computed accurately up to double-precision, and will be represented
in the computations using the interval arithmetic with exact floating-point
bounding intervals. All the following computer-assisted estimates are based

on the rigorous interval arithmetic.
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(b) Accurate point values of 4, u,, i,,. We have described how to com-
pute the value of u,(z) (or u(x),u,,(z)) from certain integrals involving w
on [—L, L] in paragraph (3) in Section [3.5.1] For any = € [0, L], the integral
contribution to u,(z) from mesh intervals within m = 8 mesh points distance
from x is computed exactly using analytic integration. In the outer domain
that is 8h distance away from z, the integrand w(y)/(z —y) is not singular and
we use a composite 8-point Legendre-Gauss quadrature. There are two types
of errors in this computation. The first type of error is the round-off error in
the computation. The second type of error is due to the composite Gaussian
quadrature that we use to approximate the integral in the outer domain. No-
tice that in each interval [ih, (i41)h] away from x, @ is a cubic polynomial and
the integrand w(y)/(x —y) is smooth. We can estimate high order derivatives
of the integrand rigorously in these intervals. With the estimates of the deriva-
tives, we can further establish error estimates of the Gaussian quadrature. In
particular, we prove the following error estimates of the composite Gaussian
quadrature in the computation of u,, i, 4., in the Supplementary material [18|
Section 7]

Errorgg(uy) < 2-10717, Errorgg(u) < 2.10719, Errorgg(ug,) < 5-10718,
(3.93)

These two types of errors will be taken into account in the interval representa-
tions of @,. That is, each u,(x) will be represented by [|t,(x)—¢€| 7, [0, (x)+€] /]
in any computation using the interval arithmetic, where |-|; and [-]; stand
for the rounding down and rounding up to the nearest floating-point value,
respectively. We remark that we will need the values of @,(x) at finitely many

points only. The same arguments apply to u(z) and ., (x) as well.

(c) Rigorous estimates of integrals. In many of our discussions, we need to

rigorously estimate the integral of some function g(z) on [0, L]. In particular,

we want to obtain ¢, ¢y such that ¢; < fOL g(z)dr < co. A straightforward
low

way to do so is by constructing two sequences of values g*? = {g;*}I |, g =
{glew}n | such that

up

g’ > max g(z) and ¢’ < min g(z).

€T 1,2 €T 1,2

Then we can bound

n L n
h-Zgﬁowgfo g(m)dxgh-ngp.
i=1 1=1
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In most cases, we will construct ¢ and ¢'°* from the grid point values of

g and an estimate of its first derivative. Let g™ = {g™>}¥ denote the

= max{|g;”

max

sequence such that g;

max
x Y

|,|g%“|}. Then if we already have g

we can construct ¢*? and ¢'% as
g7 = g(m:) +h-(g0™); and g™ = g(a;) = h- (g7

We can use this method to construct the piecewise upper bounds and lower
bounds for many functions we need. For example, our approximate steady
state w is constructed to be piecewise cubic polynomial using the standard

cubic spline interpolation. Since w,,, is piecewise constant, we have Wi
low

and w2t for free from the grid point values of w. Then we can construct

(Dup/low wgp/low

up/low
up 7 p/

and w recursively.

Note that for some explicit functions, we can construct the associated se-
quences of their piecewise upper bounds and lower bounds more explicitly.

w

For example, for a monotone function g, ¢*” and ¢'°* are just the grid point

values.

Moreover, we can construct the piecewise upper bounds and lower bounds for
more complicated functions. For instance, if we have £2%/"** and s /% for two
functions, then we can construct ¢g*?/** for g = f,f, using standard interval
arithmetic. In this way, we can estimate the integral of all the functions we

need in our computer-aided arguments.

Sometimes we need to handle the ratio between two functions, which may

introduce a removable singularity. For example, in the construction of D(w)"P

and D(@)"v for D(@) in (3.64)), it involves e, @f;—“” and ¢ is a singular weight

4 near x = 0. Directly applying interval arithmetic to the ratio

of order x~
near a removable singularity can lead to large errors. We hence need to treat
this issue carefully. For example, let us explain how to reasonably construct
g/ for a g(z) = f(x)/x such that f(x) has continuous first derivatives and
f(0) = 0. Suppose that we already have f“P/!*" and fﬁp/lm. Then for some

small number ¢ > 0, we let

o {2 £ 17 1
? )

g;" = max ,
Ti—1 Ti—1 T4 Z;

7

} for each index 7 such that x;_; > ¢.

Otherwise, for z € [0,¢), we have

o) = 19— pe(@)) for some £(x) € [0.2) € [0,).

T
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Then we choose ¢;” = max,¢jo. fi¥ for every index i such that z; < e. The
parameter € needs to be chosen carefully. On the one hand, ¢ should be
small enough so that the bound f,({(x)) < maxzepr—c ) |f=(Z)| is sharp for
x € [L —¢e,L]. On the other, the ratio ¢/h must be large enough so that
i iy, flovfaq, £ Jz; and flov/z; are close to each other for z; | > e.

Other types of removable singularities can be handled in a similar way.
See more detailed discussions in the Supplementary Material |18, Section 1.3].

(d) Estimates of some (weighted) norms of w,u. Once we have used
the preceding method to obtain @24/ @ /1" &P/ and @w/°v from the
grid point values of w, we can further estimate some (weighted) norms of
w, e.g., ||wellre, ||@zz||Le, rigorously. Moreover, from the discussion of the
regularity of 4, in Section (3.5.1.2)), the norms of 4, such as ||t,||s and
||%zz|| L2, can be bounded by some norms of w. See more detailed discussions

in the Supplementary Material [18, Section 1.3].

(e) Rigorous and accurate estimates of certain integrals. Our rigorous
estimate for integrals in the preceding part (c) is only first order accurate. Yet
this method is not accurate enough if the target integral is supposed to be a
very small number. When we need to obtain a more accurate estimate of the

integral of some function P, we use the composite Trapezoidal rule

/ P(a)dz = 3 (P(x:) + P(wi1))h/2 + exror(P).

h a<i<b
The composite Trapezoidal rule uses the values of P on the grid points only,
which can be obtained up to the round off error. The numerical integral error,
error(P), can be bounded by the L' norm of its second order derivative, i.e.
C||P"||1h?* for some absolute constant C. We use this approach to obtain
integral estimates of some functions involving the residual F(w). For each
function P that we integrate, we prove in the Supplementary Material [I§],
Section 3| that ||P”||,: can be bounded by some (weighted) norms of , w,

(:)xx
x

e.g., ||@|lr<, ||te|lr~ and ||2z£]|2. Since these norms can be estimated by
the method discussed previously, we can establish rigorous error bound for the

integral.
(f) Rigorous estimates of C,,;. Denote by M, the matrix in (3.85))

3

1
E (UZiflvg;' + ’U2ﬂ)2Ti_1) = §V1V2Ta
i=1
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A 6x6 A 6x6
where Vi £ [v1,v2,v3,v4,05,06] € R®*® and Va = [vg, 01, vy, 3, 06, 5] € R°¥C,

and {v;}¢_, are defined as in Section [3.5.2.3 Note that M, is symmetric, but
not necessarily positive semidefinite. The optimal constant C,,; is then the
maximal eigenvalue of M. To rigorously estimate C,;, we first bound it by

the Schatten p-norm of M,:
Copt < || My[lp, £ Te[|MP]VP for all p > 1. (3.94)

S

|M[P = MP. Therefore, we have

Here | M| = /MI M, = /M?2. In particular, if p is an even number, we have

Tel| M[7] = 277 - Te[(ViVy)P] = 277 Te[(Vy V)] £ 277 - T [ X7

where X = V;'V;. Note that each entry of X is the inner product between
some v; and v;, i,7 = 1,...,6. Recall from (3.84]) and its following paragraph
that v; = T'f;,i = 1,2, ...,6 and that T : V — R® is a linear isometry. We have
(fis f5) = (Tfi, Tf;) = v vj.
Therefore, to compute the entries of X, we only need to compute the pairwise
inner products between fi, ..., fs (we do not need to compute the coordinate
vectors v; explicitly). This is done by interval arithmetic based on the discus-
sion in the preceding part (c). Therefore each entry X;; of X is represented
by a pair of numbers that we can bound from above and below. Once we have
the estimate of X, we can compute an upper bound of Tr[X?] stably and rig-
orously by interval arithmetic, which then gives a bound on C,,; via . In

particular, we choose p = 4 in our computation, and we can rigorously verify
that Copt < 1.

3.5.4 Weighted H' estimate

We choose

b=—1 (l—i), zelo,L], (3.95)

w\xr L?
as the weight for the weighted H' estimate. Note that the weight 1 is non-
negative for 0 < z < L, and is of order 272 near z = 0 and O(1) near z = L.
We can perform the weighted H! estimate as follows
1d
5%(‘%2&77@ = (—((@z + Wwz)z + ((Co + Us)w)z, with)
+ (U + €o)@)a, weth) — (((u + 2 )Wz) 2, wath) (3.96)
(N (@) wat) + (@), wat))

ST+ I+ 11+ Ny+ Fy.
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For I, we use ¢; = ¢, and integration by parts to get
I= < — (& 4+ U)Wy + Ugpw, wxl/z>

_ %((ax ) W) + (e, 020) (3.97)

2 (Dy(@), b)Y + (Tpatw, wypth).

The first term in [ is a damping term. We plot the numerical values of Dy(w)
on the grid points in Figure 3.2 We can verify rigorously that it is bounded
from above by —0.95. Thus we have

< -0 95<w2 V) + (ligaw, Wat)) 2 95<w2 D)+ 1 (3.98)
B ) T’ TLE T - : R 25

where Iy = (Uy,w,w,1). For 11,111, we note that

IT+ 111 = (ugpw + (g + )0z — (e + ¢)we — (T + U)W, W)
= (Upe, W) — ((QT + U)Wy, W) L1+ 10

Using the definition of ¢, we get
I = (e, weth) = SRE
= (UgaW, Wy = (UgaWz, —— 75 /-
! x  L?
Since w,(0) = 0 by the normalization condition and u,,(0) = 0 by the odd
symmetry, we can use the same cancellation as we did in (3.37)) to get

1
zzWxy — ) — 07 zxWr) =0.
<u w x> (UpeWy, T)

Therefore I1; vanishes and we get
IT+ 111 =11 =—{(qT + U)Wy, W), (3.99)

which is a cross term. In fact, after performing integration by parts, it becomes
interaction among some lower order terms, i.e. of the order lower than w, (e.g.,

Uy Uy, W).

Remark 3.5.1. So far, we have established all the delicate estimates of the lin-
earized operator that exploit cancellations of various nonlocal terms. We have
obtained the linear stability at the L? level and the linear stability estimates
for the terms of the same order as w,, €.g., Ugz, in the weighted H! estimates

after performing integration by parts. The remaining estimates do not require
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specific structure of the equation. Suppose that we have a sequence of approx-
imate steady states wy, with h; converging to 0 that enjoy similar estimates
and have approximation error (F(wy.)?, ) 4 (F(wp,)2,¥) of order h? for some
constant S > 0 independent of h;, where F'(wp,) is defined similarly as that in
(3.61). Then we can apply the above stability analysis to the profile w;, and
the argument in Sections to finish the remaining steps of the proof
by choosing a sufficiently small h = h,,. Here h plays a role similar to the small
parameter a in these sections. An important observation is that A, and the
required approximation error to close the whole argument can be estimated
effectively. Once we have determined h,,, we can construct the approximate
steady state wp, numerically and verify whether wy,, enjoys similar estimates

and has the desired approximation error a posteriori.

In the following discussion, we first give some rough bounds and show that the
remaining terms can be bounded by the weighted L? or H' norm of w with
constants depending continuously on @w. This property implies that similar
bounds will also hold true if we replace the approximate steady state w by
another profile w, if @ — @ is sufficiently small in some energy norm. We will
provide other steps in the computer-assisted part of this chapter later in this

section.

The remaining linear terms in the weighted H! estimate are Iy = (tzw, w1)
in (3.99) and I, in (3.99). Denote p = 272 + (z — L)™2. Note that u +
a|z—o0r =0, ¢, = ¢. Applying integration by parts to the integral ||u, + ¢ —

T(u+qz)/z|3, |Jus + a — 3(u+ qz)/(z — L)||3 and using an argument similar
to those in (3.69)), (3.70), we get

1
2

L L
1
HW+@@MW@Z/<U+W¥Q,+_——7W$§8/(%+qu-
0 0

(x—1L)

Using the L? isometry of the Hilbert transform, the identity fOL ugdr = u(L) =

—L - ¢; and expanding the square, we further obtain
[1(u+ ) p' 215 < 8||wll3 + 8(2¢; - u(L) + Lef)
< 8||wlf3 < 8l 1= (w?, ).
Applying the Cauchy—Schwarz inequality, we can estimate I, I 15 as follows

| = [{Taew, wet))] < [|Taat) 20| oo o,y (WP, )2 (w2, )2,
1T15] = |{(c1@ + w)@py waetd]) < |07 200t || ooto.ry {(crw + w)?, p)V/2 (W2, )2,
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Hence, combining the above estimates, we yield
|| + [T15] < Cy(@)(w?, @) /2w, )2, (3.100)
where

C(@) 2 |tiaat 02| Lo po,1) + VBl D0t || ool o Il
(3.101)
and p = x72 + (r — L)™%. From the definitions of ¢, , , the
quantities appeared in C}(w) satisfy that

e =0((@ " + (z - L)),
|ﬂm¢1/290_1/2| = O(WM(x_l + (L — x)_l)_1|)v
(@72 + (2 = L)) Pweep? = O(|(1 + (x = L) 7))

In particular, these quantities are bounded for any = € [0, L] and thus C} ()

is finite.

Therefore, combining (3.96)), (3.98)), (3.99) and (3.100)), we prove for any ¢ > 0,

1d
2dt

From (3.92) and (3.102), we can choose €, > 0 and construct the energy
E(t)* = (w?, o) + pu(w}, ) such that

— (Wi ¥) < —0.95(w3, ) +ewy, ) +(de) T CL®@)* (W?, )+ Na+ Fa, (3.102)

EE(z&)2 < —CO(u,e)E(t)* + Ny + Fy + u(Ny + Fy), (3.103)

where C(u, ) > 0 depends on p, e. For example, one can choose ¢ = 0.65, pu =
0.4eC} (@0) ™2 to obtain C(u,e) = 0.2. We have now completed the weighted L?

and H! estimates at the linear level.

3.5.4.1 Nonlinear stability

Recall that N, F' are defined in (3.61)), Ny, F7 in (3.63), and N, F5 in (3.96).

Since ¢; = ¢, a direct calculation yields 0, N (w) = tzw — (T + U)Wy

Using integration by parts similar to that in and ( -, we obtain
1
Ny + uNy = <%((clx +u)p)s + (¢, + ux),w2<p>

+ ,u< ((qx 4+ u)),, w§w> + pUgppw, we ).

2¢
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Recall E(t) = ((w?, ) + u(w?,1))/2. We can estimate u,, w, Uy, as follows

1/2 1/2 1/2 1/2
]|z < 2]l kol gy < 2llll3[|wslly

< 2Vl R TS B,
[ellzoe < sl lzr < (s )2 107 0 0y < 1 21197 1 B D),
WllLee = [[Wellot = Wy, Lior) = H L1[0,L]
laar™ |2 < llwaw™ |2 < p= 207207 |1 B(),
where we have used (B.3)), w,(0) = 0 and the L? isometry of the Hilbert
transform to obtain the last estimate. Recall ¢; = ¢, = —u(L)/L (3.58]). We
have ¢z + u|y—o,, = 0, |¢1| = |cu| < |Jug||L=~ and
\cx +u| < min(|z|, |L — 2]) - ||cw + Ual|zop0,L]

< 2min(Je], |L - 2)lfuelc.
For any x € [0, L], using the Leibniz rule, we derive

(lam+ ol , | (lar + o

¥
<202+ ||(Jz| A (L - :B))(’(f;‘

3.104
1l (3.104)

(8

+

||, Dlitallz 2 Co(@) |

Combining the above estimates, we prove

N1+ 1Nz < (Co(@) + 2)||ug] [z (W?, 0) + plw, )
+ a2 | oo [tas ™ ol ]| (w3, )2 (3.105)
< C3(®7M)E<t)37
where » T
Ca(@, 1) = 20~ (Co(@) + 2) e el 1
_ - —1y(1/2
s e (L | AN e [P Y
We remark that the above L* norms are taken over [0, L]. From the definition

of p, 1, it is not difficult to verify that C3(w, u) < 4o0.

To estimate the error term, we use the Cauchy—Schwarz inequality

W) + p(F(@)e; wat))

Fy + pky = <F(@)7 R (3.106)
(@)%, ) + i(F(@)2, )2 E(t) £ error(@) E(1),

< ((F

Guideline for the remaining computer assisted steps Recall the def-
inition of o, in (3.62)) and ([3.95). From the weighted L? and H' estimates,
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and the estimates of the nonlinear terms, we see that the coefficients and con-
stants, e.g., D(@) in (3.64), C1(w) in and Cs(w, p) in (3.105)), depend
continuously on w. Hence, for two different approximate steady states wy, , wh,
computed using different mesh hy < hq, if wp, — wp, is small in some norm,
e.g., some weighted L? or H' norm, we expect that all of these estimates hold
true for these two profiles with very similar coefficients and constants. At the
same time, the residual error of the profile computed using the finer mesh
error(wp,) can be much smaller than that of the coarse mesh error(wy,). In
particular, if the numerical solution wy, exhibits convergence in a suitable norm
as we refine the mesh size h, then we can obtain a sequence of approximate
steady states that enjoy similar estimates with decreasing residual error(wy,).
See also the Remark [3.5.1] From our numerical computation, we did observe
such convergence of w, computed using several meshes with decreasing mesh
size h. Using the estimates that we have established, we can obtain nonlinear
estimate for each profile w similar to (3.44])

1d

55752@) <
where E(t)? = (w?, @) + u(@0){w?, 1) and the positive constants K;(w), Ky (W),

p(w) depend continuously on w. From this inequality, we can estimate the size

— K (@) E*(t) + Kqo(w) E*(t) + error(w) E(t),

of error(w) that is required to close the bootstrap argument. A sufficient con-
dition is that there exists y > 0 such that — K (0)y*+ Ko (w)y> +error(w)y < 0,

which is equivalent to
4 - error(@) - Ky(@) < Ki(@)*. (3.107)

Hence, we obtain a good estimate on error(w) that is required to close the

whole estimate.

In practice, we first compute an approximate steady state w;, using a rela-
tively coarse mesh, e.g., mesh size h = L/1000 or L/2000 (correspond to 1000
or 2000 grid points). Then we can perform all the weighted L?, H' estimates
and determine the weights ¢, 1), the decomposition in the estimates and all
the parameters in to obtain the linear stability, and perform the non-
linear estimates. After we obtain these estimates, we can determine an upper
bound of error(w) using and choose a finer mesh with mesh size hsy to
construct a profile wy,, with a residual error less than this upper bound. After

we extend all the corresponding estimates to the profile iy,, we found that
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the corresponding constants and coefficients in the estimates are almost the
same as those that we have obtained using w;, constructed by a coarser mesh.

Therefore, we can perform analysis on wp, and close the whole argument.

In the Supplementary material [I8, Sections 2,4|, we will provide much sharper

estimates of the cross terms ([3.100)), (3.102) and the nonlinear terms (3.105]).

These sharper estimates provide an estimate of the upper bound of error(w)
in that is not too small. This enables us to choose a modest mesh
to construct an approximate profile with a residual error less than this upper
bound. In particular, we choose h = 2.5 - 10~® and the computational cost of
wy, is affordable even for a personal laptop computer. The rigorous estimate
for the residual error of this profile in the energy norm is established in the
Supplementary material [I8, Section 3|. More specifically, we can prove the
following estimate, which improves the estimate given by significantly.

Lemma 3.5.2. The weighted H' estimate satisfies

1d
57 (@Wh ) =T+ T+ No o Fy < ~025(w5,0) +7.5(w°, ) + N + F,

where I, 115 combine the damping and the cross terms and are defined in

B98). (B:99), respectively.

These refinements are not necessary if one can construct an approximate pro-
file with a much smaller residual error using a more powerful computer with
probably 10 — 100 times more grid points. With these refined estimates and
the rigorous estimate of the residual error of @y, we choose p = 0.02 and boot-
strap assumption E(t) = (w? ) + p{w?,¥) < 5-107* to complete the final
bootstrap argument. We refer the reader to the Supplementary material [18],

Section 5| for the detailed estimates in the bootstrap argument.

The remaining steps are the same as those in the proof of Theorem [3.2 Recall
the weights ¢ and in the weighted L? and H' estimates and
the regularity of the approximate profile @ in Section [3.5.1.2] Note that ¢
is of order O(z™) near z = 0 and O((x — L)™?) near x = L, and ¢ is of
order O(z72) near x = 0 and O(1) near x = L. We can choose a small and
odd initial perturbation w supported in [—L, L] with vanishing w,(0) = 0 such
that w restricted to [0, L] satisfies w € L?(p),w, € L*(¢) and w + © € C°.
The bootstrap result implies that for all time ¢ > 0, the solution w(t) + w,

c+¢ = ¢, (t)+¢, remain close to w, ¢, (¢, < —0.69), respectively. Moreover, in
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the Supplementary Material [I8, Section 6], we have established the following

estimate

1d,
2dt

Using this estimate and a convergence argument similar to that in Section

wis @) < —0.15(w/, ).

[3.4.3] we prove that the solution eventually converges to the self-similar profile

Woo With scaling factors ¢ oo = cuo0o < 0. Since v = —Z’—Z = -1 <0,
the asymptotically self-similar singularity is expanding. Thus we obtain an
expanding and asymptotically self-similar blowup of the original De Gregorio

model with scaling exponent v = —1 in finite time.

3.6 Finite time blowup for C“ initial data
In [44], Elgindi and Jeong obtained the C* self-similar solution w, of the
Constantin-Lax-Majda equation

Crrw, = (€ + Uz )w

for all « € (0, 1], which reads

2sin (%) sgn(z)|z|

Wq = — )
1+ 2cos (%) |z| + |z|2 (3.108)
2(1 4 cos (%) |z]%) 1 ) '
Uo,x = ) - Co = —1,
T 14 2c0s (9F) |z]* + a2 ' a

where ¢, ¢, are the scaling parameters.

In this section, we will use the above solutions to construct approximate self-
similar solutions analytically and use the same method of analysis presented
in Section [3.4| to prove finite time asymptotically self-similar singularity for C'*
initial data with small a on both the real line and on the circle. We will focus
on solution of with odd symmetry that is preserved during the evolution.
In particular, we will construct odd approximate steady state and analyze the

stability of odd perturbation around the approximate steady state.

3.6.1 Finite time blowup on R with C¢ initial data
In this section, we prove Theorem [3.3] Throughout the proof, we impose

laa] < 1 and o < . We choose the following weights in the stability analysis

1 1+2cos (%) |z|™ + |z|*>® 1
(5) lot® + Jal , Yo = —5Pal’. (3.109)
(6]

7T T sen(@)wa |1 +2

We choose these weights so that the estimates of (w?, ¢,) and (w? v,) are

comparable in the energy estimates.
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3.6.1.1 Normalization conditions and approximate steady state
The self-similar equation of DG model with parameter a reads
(x4 au)w, = (cy + Ug)w . (3.110)

For any a > 0, € (0,1), we construct C* approximate self-similar profile of

(3.110)) below
1

Way Uay Clo=——aUa.(0)=——2a, ¢,=—1. (3.111)
a a

The only difference between the above solution and the C'* self similar solutions

of CLM (3.108) is the ¢; term. The above solution satisfies (3.110]) up to an

error

1
Fo(we) = —(Gx — =2 4 g )W p = —0(Ua — U 2(0)T)wa, 4z (3.112)
«

Linearizing the dynamic rescaling equation around the approximate self-
similar profile in (3.111]), we obtain the following equation for the perturbation
W, U, €, Cy:
Wi + (CLa® + atg)ws =(Co + Uaz)w + (Uz + Cu)Wa
— (au + x)waz + N(w) + Fy(wa) ,
where the error term F,(w,) is given in and the nonlinear part is given
by

(3.113)

N(w) = (cy + uz)w — (g + au)w,.
We choose the following normalization conditions for ¢(t), ¢, (t)
a(t) = —aug(t,0), c,(t) = —u.(t,0). (3.114)
Using and u,,(0) = 2, we can rewrite the above conditions as

a(t)+e = é—a(ux(t,O)—l—ua,z(O)), Cot o = 1—(ug(t, 0)+1ua.(0)). (3.115)

3.6.1.2 Estimate of the velocity and the self-similar solution
We introduce the notation

02 u—uy(0)x, Uy = uy —ugy(0), (3.116)
and use the weighs defined in to perform the L?, H' estimates.

We first state some useful properties of the C'“ approximate self-similar solu-

tion that we will use in our stability analysis.
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Lemma 3.6.1. For a € (0,1], we have the following estimates for the self-
similar solutions defined in (3.108|). (a) Uniform estimates on the damping

effect

1 1

1 B 1
21/}0[ xwa + (Cw + ua,x) - E = _1/2 y (3117)
(UazeVa)z o 4o|z|®(|z|* + cos (a—;))

—
29, (1+2cos (%) |z|* + |z[>*)?

(b) Vorticity and velocity estimates:

2 2
waam a, Hx Wa,zx S a, Hx Wa,zz T TWa,zx 5 042, (3118)
Wey 00 Wa e’}
2(0 )} < zo AL, “?“ o] Salz[* A1) (3.119)
(c) Asymptotic estimates of Yq, V-
fa = (a5 )
a
Yo = 30 < (] + 2] ) (3.120)
« a (03 ag Y .
[l s [ ] 5
¢a o Pa

where A < B means that A < CB and B < C'A for some universal constant
C.

(d) The smallness of the weighted L? and H' errors:

(Fa (wa)Q ‘Pa> S a2a27 <(Fa(wa>>g2ca¢oc> N a20z2, (3.121)
((|x]* A 1) am, o) S1L (3.122)

These estimates can be established by using the explicit formulas of w,, ua,

Clas Cos Pas Yoy Falwa) given in (3.108), (3.109), (3.111)) and (3.112), which
are elementary. Therefore, we will not present the estimates here and refer the

reader to the arXiv version of [19] for the details.

Remark 3.6.2. We will use (3.117)) to derive the damping terms in the weighted
L? and H! estimates. Using (3.118)), we gain a small factor « from the deriva-

tives of w,. This enables us to show that the perturbation term wuw, , is

small. Estimates (3.120) shows that 21, . /%a, T¢¥a./@a are close to 1 and
—1, respectively, which allows us to estimate ¢, 4, Vo . effectively.
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Lemma 3.6.3 (L estimate).

el loo S (WP, @a) (W2, Pa) ', (3.123)

iy = | S @l va) 22| A1 S alwl, va) 2, (3.124)
T

w(@)| S alw?, ) a| AL (3.125)

where & = u — u,(0)z.

The proofs of these estimates are standard so we only sketch the main ideas
and refer to the arXiv version of [19] for the details. The weights 1, ¢, can be

simplified by applying (3.120)). Estimate (3.123)) follows from the interpolation
between the weighted L? norm of u, and u,, and by using the weighted esti-

mates of the Hilbert transform in Lemma[B.0.4] To prove (3.124)), we can first

rewrite u, — g as an integral of w, with some kernel. Then the estimate can

be established by the Cauchy-Schwarz inequality and estimating the integrals
of some explicit functions. Estimate (3.125]) is proved by estimating w(z) by

the L' norm of w, and the Cauchy—Schwarz inequality.

8 |

Estimate (3.124)) shows that we can gain a small factor o from u, —

Uy — u/T.

We use a strategy similar to that in the proof of Theorem [3.2]to prove Theorem
3.3l The key step is establishing linear stability by taking advantage of the

following;:
(a) the stretching effect ¢ nzw, and the damping term (¢, + ty0)w ;
(b) the cancellation (B.11]), (B.5) involving the vortex stretching term u,we;

(c) the smallness of the advection term auw, . (see (3.118))) by choosing |ac|

to be sufficiently small.

To control the velocity u, we need to use Lemma [B.0.4] in Appendix [B] which
states some nice properties of the Hilbert transform for a Hélder continuous

function.
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3.6.1.3 Linear estimate
We first perform the weighted L? estimate with respect to (3.113)). We proceed

as follows

1d

5%«*‘]27 (1004> = <_(El,o¢x + auoz)wx + (Ew + Ua,x)W’WS0a>

+ ((ug + Co)Wa, Wpa) — ((au + T)Wa z WPa) (3.126)
+ (N (W), wpa) + (Fa(wa), wpa)
SI+1I+1II+N+F

For I, we use integration by parts, (3.117)) and ¢, = é — au, . (0) to get

1
I = <—((El7az + auy) o)z + (Co + ua7x),w2goa>

21% . (3.127)
= —5 %) + 05~ (e = 0z (0))P0)e, ).
For the second term, we use (3.119)) and (3.120)) to yield

1 1 U — Ua,z(0)T TPa o
a5 a — Uax 0 ajr| — ‘_ a,x — Uax 0 7 7
5 (= o002 0)s| = |5t = 11(0)) + eI 0

1 U Uy — Uaz(0)T [(TPa. 1 ‘

—|Z _ Y : )| < l-a<a.

Combining (3.127]) with the above estimate, we derive

1 1
I< —§<w2,90a> + C\a!a(wz,gpa> S <§ — C|a|a> <w2,gpa), (3.128)
where C' > 0 is some universal constant.

Recall the definitions of ¢, in (3.109)), ¢ = —au,(0),c, = —u,(0) in (3.114))
and u, u, in (3.116). We have ¢,z 4+ au = au, ¢, + u, = u,. For 11, we use the
cancellation (B.11]) and (B.5)) to get

IT = (Upwe, wpa)

N 194 am o _
— —<uzw -sgn(x), |z|772% + 2 cos <7> 2|17 + |=| 1> (3.129)
< —(iipw - sgn(), |z 1) = —gug(m <0.

For 111, we have

Ui Wapr 14 2cos () |z]* + 2>

I1I| = s WP :‘ <_ iy 2 >‘
[T = [((au + c17)Wa,z, WPa)| a — W |z[1+20

S lal([5 |72

!l w,

ol ™72 4 27 ).
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Using the estimate for w, (3.118) and the Hardy inequality (B.12)), we obtain

111] S Jala{| 2|, lwl (12l 72 + Jo| 7))
S lala (@2, 2] 32 (w2, o] 1202
+ laladi, fol =52) V22, o] )2
S lafaa™ (w2, o] 750) V2, fo 1) 2

+ |CL|O[C¥_1<LU2, |x|_1_a)1/2(w2, |x|—1+a>1/2

(3.130)

< laja(w?, @a),
where we have used ([3.120]) to obtain the last inequality.
Plugging (3.128)), (3.129) and (3.130]) in (3.126]), we establish

ld
2 dt

(W, pa) < = (; - CIa!a) (W?, @a) + (N (W), wPa) + (Fa(wa), wpa). (3.131)

3.6.1.4 Weighted H' estimate

Recall the definition of the weight v, in (3.109). We now perform the weighted
H?' estimate with respect to (3.113)

1d

5%(”57 Vo) = <_<(El,ax + Ao )Wz ) + ((Co + ua,x)w)an Wyta)

+ (U + Co)Wa)e, Watba) — (((au + Clz)waym)m Wata)

+ (N(W)e-wetba) + (Fa(Wa)e, Wella)
SET+II+III+N,+ F,.

The estimate of each term in I, 1, I11 is very similar to that in the weighted
L? estimates in last section and the weighted H' estimates in Section m
so we only sketch the estimates. Note that I only involves the local terms.
We can first apply integration by parts and then use the second and the third
identities in to obtain the damping term similar to (3.128)). For I, we
have

IT = —(UppWo, Wala) + (llgWa s, Wetha) = T + Iy,

where & = u + c,x = u — ugy(0)x (see (3.116])). To estimate II;, we use
the nonlocal cancellation (B.11f), (B.5) with (u,,w) replaced by (zu,,,zw,)
to obtain an estimate similar to (3.129)), which has a favorable sign. For I,

and I11, they involve the derivative of w,, which gives a small factor a. We
can use Lemmas [3.6.1}, to estimate the profiles and the weights, and use
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Lemma to estimate @ and u,. We present the estimate of a typical term

below. Consider the following decomposition for 117

11l = _<<<au + Clx)wa,z)xy wzwa> = _a<amwa,:p + ﬁwa,xm wx¢a>

- —a<(ﬂx _ E)wa,x,wxwa> _ a<9(wa,x + T ss), wx¢a> 2711 + I,
X e

The advantage of the above decomposition of is that we gain a small factor a by

applying (3.124) to @, — % and the third estimate in (3.118)) to (wWa 2 + TWa zz)-
Using ((3.124]), the Cauchy—Schwarz inequality and (3.122]), we get

111 < laladw?, o) - {(J2]* A Dlwal, [walta)

< lalaws, o) - ((|2]* A 1)?w] 4 ) S lalafw?, ).

Similarly, other terms in Iy, [T1; can be bounded by |a|a{w?,1),) or the in-
terpolation between (w? 1,) and (w? ¢,). We refer to the arXiv version of

[19] for the detailed estimates. In particular, we obtain

1d

5 7 Wi a) < = (% - O|a|a) (wpta) + Cw?, o) (0], a) /2

+ <N(w>xa waoc> + <Foz(wa)oc> Wr¢a>a

(3.132)

for some universal constant C'.

In the following two subsections, we aim to control the nonlinear and error

terms
(N(W),wpa), (Fa(Wa),wPa), (N(W)zweta), (Fo(Wa)z, Wela)

in (3.131f) and (3.132]).

3.6.1.5 Estimates of nonlinear terms

Recall from (3.114) and (3.116]) that

ar 4+ au = a(u — uy(0)x) = atl, ¢y + Uy = Uy — Uy(0) = Uy
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For the nonlinear terms in (3.131)) and (3.132)), we use integration by parts to

obtain
- at
(N(w),wpq) = ((cw + uz)w — (qx + au)w,, wpq) = <ux + ( 2za)$,w2g0a>
(e}
- a - UzT
— <usz280a> + §< (Ux + 5 ia,z) 7w280a> 2 I + 12,
«

<N(w)w7w$¢a> = <((Cw =+ U;,;)w - (Clx + au)wx)x7wx7/}a>

= <u:c:r,‘w + ’[wax, W:c¢a> - a<axwx + ﬂwxma Wa:woz>

- (awa)m
et

= <ﬂxwxa Waﬂ/}o» + <Uxa:wvwx¢a> + CL< - ’Wgwa>

£ IIl —|—IIQ —|—I[3

For each term I;, I'];, we use Lemmato control the L norm of w, @/z, @,
or U, —@/z, and use (w2, @), (W2, 1,) to control other terms. We present the
estimate of I3 that has a large coefficient a and is more complicated. Other
terms can be estimated similarly. For I/3, we notice that

(@), 1. Lateer 1 @\ li (Ve
— Uy — —FUg = - - -3 x — T P . —-1].
et 2" T 9 o\ 73 ) Taz Ty

Then we use the L™ estimate (3.124) to control @, — a/x, (3.123)) to control
u/x =u/r —u,(0) and (3.120) to estimate the terms involving 1,. This gives

[Ig - g< - (ax - g) +g <¢Zx$ - 1) 7wiwa>

0 Bt | Jetud s

< (lalafw?, va)'? + lalafw?, ga) /w2, Ya) ) (WS, ta)
S (W, 0a) + (WE, ¥a))*?,

where we have used |aa| < 1. Similarly, we have

. u
Uy — —
x

|
LOO

Ly I, I TT S (WP @a) + (w2, 10a)) 3. (3.134)

Combining (3.133|) and ([3.134]), we obtain the following estimates for the non-

linear terms

(N(w),wpa) = I+ Iy S (W 0a) + (Wi a))??,

3.135
(N @rsata) = 1+ Tl + 1 S () + (202 )
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3.6.1.6 Estimates of the error terms

Recall the error terms in the weighted L2, H! estimates in (3.131]) and (3.132)
are given by

<Fa(wa)>w90a>> <(Fa<wa))xawx7vba>'

Using the Cauchy-Schwarz inequality and the error estimate (3.121f), we obtain

(Fo(Wa) wpa) < (Falwa)? pa) /2w, 0a)"? S lalalw?, ga)/?,

3.136
(Fa(wa))a, watha) < <(Fa(woz))iv¢a>1/2<wia¢a>l/g S |a|a<wi,¢a)1/2, ( )

3.6.1.7 Nonlinear stability and convergence to self-similar solution

Now, we combine the weighted L?, H' estimates (3.131]), (3.132)), the estimates
of nonlinear terms ((3.135)) and error terms (3.136)). Using these estimates and
an argument similar to that in the analysis of nonlinear stability in Section

[3.4.2], we can choose an absolute constant 0 < p such that the following energy

E2(t) £ (w*, ¢a) + 1wz, Ya)
satisfies the differential inequality

%%E%) < — (g — C’|a|a> E*(t) + Cla|aE(t) + CE*(t), (3.137)

where C' > 0 is an absolute constant. From (|3.120]), we have
O S [ e llogto)ldy S ([ w22 [ ol togyl?)
1/2
<B0) (o* [ logsP (ol + 1) "ay) S Bloa*a™) S ab(0)
The normalization condition (3.114]) implies
lcw(t)] = |ua(t,0)] < CsaE(R),  |a(t)] = laus(0)] < Cslalak(t),  (3.138)

for some absolute constant C3 > 0.

The remaining steps are essentially the same as those in the proof of Theorem

in Sections|3.4.2] for the De Gregorio model in the case of small |a| so

we omit the details here. We refer to the arXiv version of [19] for the details
and conclude the proof of Theorem [3.3]
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3.7 Finite time blowup for negative a with C* initial data
For the sake of completeness, we state the finite time blowup result of (3.2))

for negative a with smooth initial data.

Theorem 3.5. Let w € C*°(S*) be an odd function such that u,(0) = Hw(0) >
0. Then (3.2) with a <0 develops a singularity in finite time.

The real line case has been proved by Castro and Cérdoba [5]. We consider
the case of S! with 7 periodic solution. The corresponding Hilbert transform

is given by
1 w/2
u, = Hw = —/ w(y) cot(x — y)dy.

T J o
Proof. Taking the Hilbert transform on yields

(ug)e = %(ui —w?) — aH (uwy).
Note that w(0) = 0. Choosing x = 0 gives

d 1

— ~u,(t,0)* — aH (uw,)(t,0). (3.139)
dt 2

Next we show that H(uw,)(t,0) < 0. Since w is odd, m-periodic, and smooth

locally in time , it admits a decomposition

w(t,r) = Z a,(t)sin(2nz), w, = Z 2na,(t) cos(2nx),

n>1 n>1

ug(t,0) =

for some a,(t) decays sufficiently fast as n — +o00. It is easy to show that
a
u(t,xz) = — — sin(2nz).
() == 3 5o sintzna)

Next, we compute u/ sin(zx),w, cos z. Using telescoping, we get

(2
SlIl nx) Z cos( (2 — 1)a),
sin(x
1<k<n
2n —1 9 1
cos(2nx) cosx = cos(2n ) ;— cos(2n + )x

It follows that
Qn,
SHI:L‘:_Z Z 2cos((2k — 1)z Zcos ((2k — 1)x)
1<k<n k>1 nzk

2n —1 2 1
o, cos i — ZQnCLnCOS( n )x—;—cos( n+ 1)z

n>1

- Zcos((2n — x)(na, + (n — 1)a,_1),

n>1
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where ag = 0, and we have used summation by parts to get the last two iden-
tities, which are valid since a,, decays sufficiently fast. Using the orthogonality
of {cos((2n — 1)x)},>1 on L*(—7/2,7/2), we derive

T2y a
H(uw,)(t,0) = 1 / wy cos(x)dx = % Z(Z En)(kak—k(kz— Dag—1).

T sinx
/2 E>1 n>k

(3.140)
Denote Sj, £ Z@k e for k > 1 and Sp = 0. Since a,, decays sufficiently fast,
so does S,,. We then have a, = k(S — Sks1) and

kak + (k? - l)ak_l - k‘Q(Sk - Sk+1) + (k - 1)2(Sk_1 — Sk)
We can reduce H(uw,)(t,0) to

H (uw,)(t,0) = %Z Sk(k*(Sk — Sky1) + (k= 1)*(Sk—1 — Si))

k>1

1 1 1
=5 > Sp2k—1) - 5 > SuSkarhk® + 3 > SiSpoa(k —1)?

k>1 k>1 k>1

1
= 5Zs,i(%—l) > 0.

k>1

Consequently, for a < 0, (3.139) implies

d 1
— > 2 .

T

Since u,(0,0) > 0, it follows that the solution must develop a finite time

singularity. O
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Chapter /

ASYMPTOTICALLY SELF-SIMILAR SINGULARITY OF THE
HOU-LUO MODEL

In this chapter, we study the asymptotically self-similar singularity of Hou-Luo

model [86] introduced in Section [1.3.6.2

wy + uw, = 0, (41)

0, +ub, =0, wu,=Huw.
Since the HL model can be seen as the restriction of the 2D Boussinesq equa-
tions on the boundary and it captures several features of the 2D Boussinesq
equations (see Section , our analysis of serves as an intermediate
step toward the analysis of the full 2D Boussinesq equations. The analysis of
(4.1]) is much more complicated than that of the DG model in Chapter [3|since
(4.1) is a more complicated coupled system, while the DG model is a

scalar equation.

4.1 Main results

The main result of this chapter is stated by the informal theorem below. The

more precise and stronger statement will be given by Theorem in Section

2.10.1

Theorem 4.1. There is a family of initial data (6o, wo) with Oy, wo € C,
such that the solution of the HL model will develop a focusing asymp-
totically self-similar singularity in finite time. The self-similar blowup profile
(Osos Woo) 1S unique within a small energy ball and its associated scaling expo-
NENES Cl ooy Cuo oo SALISTY [AN—2.99870] < 6-107° with A = ¢ 00|Cuw0o|~*. Moreover,
the CY norm of 0 is uniformly bounded up to the blowup time T, and the C®
norm of 6 blows up at T for any B € (v, 1] with v = %

Using the self-similar profile (6, ws ), we can construct the self-similar blowup
solution

T 1 T

1
0 Dol T 400 = g, =T =)
(4.2)

wi(x,t) =
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that blows up at T'= 1. The blowup exponent A ~ 2.99870 in the HL. model is
surprisingly close to the blowup exponent A ~ 2.9215 of the 3D Euler equations
considered by Luo-Hou [86l, 87]. An important property that characterizes the
stable nature of the blowup in the HL model is that ¢x + u > 0.49x,¢ =
3,u < 0 for any x > 0, here u, ¢, are the velocity and the scaling exponents
of an approximate self-similar profile. We use this property to extract the
main damping effect from the linearized operator in the near field using some

carefully designed singular weights.

As we will show later, ¢;x + @ is the velocity field for the linearized equation
in the dynamic rescaling formulation. The inequality ¢z + u > 0.49x,x > 0
implies that the perturbation is transported from the near field to the far
field and then damped by the damping term ¢, w in the w equation and by
2¢,,0,, in the 0, equation. This is the main physical mechanism that generates
the dynamic stability of the self-similar blowup in the HL model. We believe
that this also captures the dynamic stability of the blowup scenario considered
by Luo-Hou along the boundary [86], 87|, whose numerical evidence has been

reported in [85].

There are four important components of our analysis for the HL model. The
first one is to construct the approximate steady state with sufficiently small
residual error by decomposing it into a semi-analytic part that captures the
far field behavior of the solution and a numerically computed part that has
compact support. See more discussion in Section [£.4] The second one is that
we extract the damping effect from the local terms in the linearized equations
by using carefully designed singular weights. The third one is that the con-
tributions from the advection terms are relatively weak compared with those
coming from the vortex stretching terms. As a result, we can treat those terms
coming from advection as perturbation to those from vortex stretching. The
last one is to apply some sharp functional inequalities to control the nonlocal
terms and take into account cancellation among various nonlocal terms. This
enables us to show that the contributions from the nonlocal terms are rela-
tively small compared with those from the local terms and can be controlled
by the damping terms. We refer to Section for more detailed discussion

of the main ingredients in our stability analysis.

We believe that the analysis of the 2D Boussinesq equations and 3D Euler

equations with smooth initial data and boundary would benefit from the four
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important components mentioned above. The stability analysis of the HL
model is established based on some weighted L? space. For the 2D Boussinesq
equations and 3D Euler equations, a wider class of functional spaces, e.g.,
weighted LP or weighted C'* spaces, can be explored to derive larger damping

effect from the linearized equations and to further establish stability analysis.

There is an interesting implication of our blowup results for the self-similar
solution (w,, 0,) defined in (4.2). In Section we show that the profile
satisfies lim, o O (x)|z|™7 = C for some C' > 0 (see (4.2))). Thus, we have
limy 1 0.(z,t) — Clz|” for any x # 0. Since 0 < 7 < 1, the self-similar
solution forms a cusp singularity at x = 0 as t — 1. Moreover, from Theorem
[4.1] for a class of initial data 6y, the C7 norm of the singular solution 6 is
uniformly bounded up to the blowup time. Note that from Theorem (4.1} we
have |y —0.33304] < 2-107°, thus v ~ # and limy_; 0,(z,t) = C|z|" = C|z|'/3.
Similarly, we can generalize the method of analysis to prove lim;_,; w,(z,t) =
Co|z|=1/2 a2 Cy|z|~V/3. Interestingly, the limiting behavior is closely related
to a family of explicit solutions of discovered by Hoang and Radosz in
62

w(z,t) = klz|Y3sgn(z), O(z,t) = e kx| + ek, (4.3)

where c1, co > 0 are suitable constants and k > 0 is arbitrary. We remark that
from Theorem [4.1] the C*/3 norm of # from a class of smooth initial data that
we consider blows up at the singularity time since % > v, while the non-smooth

6 in ([4.3) remains in C''/3 for all time.

The cusp formation and the Holder regularity on 6 are related to the C''/2 con-
jecture by Silvestre and Vicol in [103] and the cusp formation on the Cordoba-
Cordoba-Fontelos (CCF) model [19, 28, 76, 84], which is the §—equation in
coupled with w = HA. The cusp formation of a closely related model
was established in [63], and the C'/? conjecture was studied in [44], [49] for
a class of C1® initial data with small . Using the same method for the HL
model, we have obtained an approximate self-similar profile for the CCF model
with residual O(107®) and v = 0.5414465, which is accurate up to six digits.
This blowup exponent 7 is qualitatively similar to that obtained in [88] for
the generalized Constantin-Lax-Majda model (gCLM) (see[97|) with a = —1.
In a follow-up work, we will generalize our method of analysis to study the

cusp formation of the CCF model, and rigorously prove that 6 € C up to the
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singularity time with v > 1/2. Moreover, the C” norm of § will blow up at
the singularity time for any 5 > ~.

The rest of the chapter is organized as follows. In Section [2.10.1] we outline
some main ingredients in our stability analysis by using the dynamic rescaling
formulation. Section [£.3]is devoted to linear stability analysis. In Section [4.4]
we discuss some technical difficulty in obtaining an approximate steady state
with a residual error of order 107, In Section [4.5] we perform nonlinear
stability analysis and establish the finite time blowup result. In Section [1.6]
we estimate the Holder regularity of the singular solution. In Section [4.7]
we give a formal derivation to demonstrate that both the HL model and the
2D Boussinesq equations with O initial data for velocity and 6 and with
boundary have the same leading system for small «. We make some concluding
remarks in Chapter [6] Some technical estimates and derivations are deferred
to Appendix [C]

4.2 QOutline of the main ingredients in the stability analysis

In this section, we will outline the main ingredients in our stability analy-
sis by using the dynamic rescaling formulation for the HL model. We will
follow the general framework introduced in Section [1.3] The most essential
part of our analysis lies in the linear stability. We need to use a number of
techniques to extract the damping effect from the linearized operator around
the approximate steady state of the dynamic rescaling equations and obtain
sharp estimates of various nonlocal terms. Since the damping coefficient we
obtain is relatively small (about 0.03), we need to construct an approximate
steady state with a very small residual error of order 1071°. This is extremely
challenging since the solution is supported on the whole real line with a slowly
decaying tail in the far field. We use analytic estimates and numerical analy-
sis with rigorous error control to verify that the residual error is small in the
energy norm. See detailed discussions in Section and Section 10 of the
Supplementary Material [21].

Passing from linear stability to nonlinear stability is relatively easier since
the perturbation is quite small due to the small residual error. Yet we need
to verify various inequalities involving the approximate steady state using
the interval arithmetic [55], 96, T00] and numerical analysis with computer

assistance. The most essential part of the linear stability analysis can be
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established based on the grid point values of the approximate steady state
constructed on a relatively coarse grid, which does not involve the lengthy
rigorous verification. See more discussion in Section [4.3.13] The reader who
is not interested in the rigorous verification can skip the lengthy verification

process presented in the Supplementary Material [21].

4.2.1 Dynamic rescaling formulation

An essential tool in our analysis is the dynamic rescaling formulation. Let
Wphy (2, 1), Opny (2, t) be the solutions of the physical equations (4.1)). Following
the ideas in Section we obtain that

w(@,7) = Co(T)wphy (Co(T)2, (7)), Oz, T) = Co(7)0pny (Ci(7)z, (7))
are the solutions to the dynamic rescaling equations

wr + (g + ww, = cow + 0, 0.+ (qr+u)l, = cof, u, = Ho, (4.4)

t(r):/OTCw(s)ds, C.(7) = exp (/OTcw(s)ds),

Ci(r) = exp ( I —q(s)ds) - atn) = ([ atos)

In order for the dynamic rescaling formulation to be equivalent to the original

where

HL model, we must enforce a relationship among the three scaling parameters,

cl, ¢, and ¢y, i.e. ¢y = ¢ + 2¢,,.

To simplify our presentation, we still use ¢ to denote the rescaled time in (4.4)).
Taking the x derivative on the 8 equation in (4.4)) yields
wr + (g + u)w, = cuw + 0,
e+ ( ) (4.5)
(02) + (qx + )by = (cog — 1 — Uz )0, = (2¢y — up)ly, u, = Hw,
where ¢y = ¢; + 2¢,,. We still have two degrees of freedom in choosing ¢, ¢, to
uniquely determine the dynamic rescaled solution. We impose the following

normalization conditions on ¢, ¢

ex:c(o) C, = lcl + ux(O) (46)

=2
4T L(0) 2

These two normalization conditions play the role of forcing

gzx(ta 0) = 9:1}11}<O’ 0)7 wx(tv O) = wz(()? 0) (47)
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for all time. Our study shows that enforcing 6,,(t,0) to be independent of
time is essential for stability by eliminating a dynamically unstable mode in

the dynamic rescaling formulation.

4.2.2 Main result
Throughout this chapter, we will consider solution of (4.4 with odd w, 6, and
6(t,0) = 0. Under this setting, it is not difficult to show that the odd symme-

tries of 0,,w, u and the condition #(¢,0) = 0 are preserved by the equations.

Due to the symmetry, we restrict the inner product and L? norm to R
)2 [ ade WA= [ fae (48)
0 0

Let ¥, ¢ be the singular weights defined in (4.25), and A; be the parameter
given in ((C.25)). We use the following energy in our energy estimates

T _
E(f,.9) 2 P05 + Mllgv 2[5 + Ao (Hg(0))* + As(f,271)*
+ M(lIDe U215 + Ml Dage[3),
where Hg(0) = —% [ gz~'dx is related to ¢, in (4.6). Our main result is the

following.

(4.9)

Theorem 4.2. Let (0,0,¢;,¢,) be the approvimate self-similar profile con-
structed in Section and E, = 2.5-107°. For odd initial data 6 ., wo of
with 05(0) = 0 and a small perturbation to (0,,0), E(6y, — 0y, wo — @) < E,,
we have (a) E(0, — 0,,w — @) < E, for all time.

(b) The solution (0,w, c;, ¢,) converges to a steady state of (4.4)) (foo, Woos Cl ooy Cuw00)
162 (8) =002 )0V 21| (@(8) =woo )2 [a+ e (£) =Croo 2+ | (E) = oo [ < Ce™2*

exponentially fast, for some ko > 0,C > 0. Moreover, (0,Woo, Cloos Cwoo)
enjoys the reqularity E(0y 00 — 0., weo —@) < E., and is the unique steady state
in the class E(0, — 0,,w — @) < E, with normalization conditions (4.6)and
6(0) =0, and odd assumption on 6,,w.

(c) Lety = 2= = GootPoce o have |22 —2.99870| < 6-107°. Moreover,

Cl,0
the solution enjoys the Holder estimates 0o € C7 and sup;s ||0]|c S 1.

(d) For the physical equations (4.1) with the above initial data, the solution
blows up in finite time T with the following blowup estimates for any v < f <1

8 ()lles 2 (T — )70, 6= zgﬁf‘j) - 0.
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If in addition 6y |x|'~7 € L™, the C7 norm is uniformly bounded up to the
blowup time: sup,eio 7y ||Opny (t)]lcr S 1.

The assumption 6 .|z|'™7 € L in (d) is to ensure the decay |6y, < Clz|",
which is consistent with 6y € C7. In fact, if 6y € C7, we get |0p(z)] < 1+ |z|7.

Then, formally, 6y, has a decay rate |z[7~1.

4.2.3 Main ingredients in our stability analysis
The key step to prove Theorem is the stability analysis. We will outline

several important ingredients to establish it in this subsection.

4.2.3.1 The stability of the linearized operator

The most essential part of our analysis is the linear stability of the linearized
operator around the approximate steady state (,@,é,¢,). To simplify our
notation, we still use w, u, 0, ¢, and ¢, to denote the perturbation. The lin-
earized system for the perturbation is given below by neglecting the nonlinear

and error terms:

00, + (G + 10)0yp = (26, — Uy)0y + (2¢0 — uy)0, — ubyy,
B+ (@ 1) = (20— 02)0, + (26— ) w0

wi + (G + W)w, = Cow + 0, + coo — u,, ¢, = uy(t,0), ¢ =0.

The condition ¢, = u,(t,0),¢q = 0 is a consequence of the normalization
conditions . There are two groups of terms in the above system, one
representing the local terms and the other representing the nonlocal terms.
Among the nonlocal terms, we can further group them into three subgroups,
one from the vortex stretching term, one from the advection term, and the

remaining from the rescaling factor c,,.

As in our previous works |16l [19], we design some singular weights to extract
the damping effect from the local terms. As we mentioned before, we will
use ¢ + u > 0.49z to extract an O(1) damping effect. Since the damping
coefficient that we can extract from the local terms is relatively small and the
linearized operator is not a normal operator, we typically expect to have a
transient growth for a standard energy norm of the solution to . This
will present considerable difficulty for us to obtain nonlinear stability since
the approximate steady state also introduces a residual error. To overcome
this difficulty, we need to design a weighted energy norm carefully so that the

energy of the solution to the linearized equations decreases monotonically in
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time. We remark that weighted energy estimates with singular weights have

also been used in [I3], 14], 42, [73] for nonlinear stability analysis.

4.2.3.2 Control of nonlocal terms

The most challenging part of the linear stability analysis is how to control
several nonlocal terms that are of O(1). It is essential to obtain sharp estimates
of these nonlocal terms by applying sharp weighted functional inequalities,
e.g., Lemma [C.0.§ and taking into account the cancellation among different
nonlocal terms and the structure of the coupled system. We have also used
the L? isometry property and several other properties of the Hilbert transform
in an essential way. We remark that some of these properties of the Hilbert
transform have been used in the previous works, see e.g., |5 13| 19, 29, 44].
Based on our observation that the blowup is driven by vortex stretching and
the advection is relatively weak compared with vortex stretching, we will treat
the nonlocal terms that are generated by the advection terms, e.g., uf,, in
, as perturbation to the linearized vortex stretching terms, e.g., u,0, in
. We will use the following five strategies in our analysis.

(1) The decomposition of the velocity field. We first denote @ £ u — u,(0)x
and choose a constant ¢ = 1/(2p — 1) where p is related to the order of the
singular weight |z|7? being used. We further decompose @ into a main term

and a remainder term as follows:

A

U = cxly + (U — cxly) = Uy + Ug, (4.11)

where @), = cxii, and @g = (@ — cxt,). The contribution from the remainder
term g is smaller than x4, due to an identity (see Appendix |C.1.1))

1

I~ 5

~ —p||2 1 ai
Ux)x P[5 = 212/, —dz. (4.12)
+

We can choose p = 3 in the near field, which enables us to gain a small factor

of 1/5 in estimating the g term in terms of the weighted norm of ,.

(2) Exploiting the nonlocal cancellation between @, and w. For the main term
upy; = cxru, and the vortex stretching term —u,0,, we use an orthogonality

between u, and w

(i, wz™®) = (Hw — Hw(0),wz™®) = 0 (4.13)
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(see Lemma |C.0.4). We will use similar orthogonal properties to exploit the

cancellation between —,6, in the 0, equation and 6, in the w equation in
(4.10) by performing the weighted L? estimates for 6, and w together. To

illustrate this idea, we consider the following model:

Model 1 for nonlocal interaction

Oy = —(uz — uz(0))0,, wy =06,.

The above system is derived by dropping other terms in (#.10)). The profile 4,
satisfies 0,(0) = 0 and 6, > 0 for z > 0.

By performing L?(p;) estimate on 6, and L?(py) estimate on w, we get

L (002, 0u1) + {0,0p2)) = —{(1ta — 12 (0))upr, B2) + (2, 6, 2 1. (414)

2dt
From (4.13)), we know that (u, —u,(0))z~2 and wx™! are orthogonal. Formally,
I is the sum of the projections of €, onto two directions that are orthogonal.
To exploit this orthogonality, we choose p; = (uxf,) " py with any g > 0. We

can rewrite I as follows
I=(—(u, — ux(O))x_2, 9x§xp1x2> + (uwx_l, GﬁIplxz) £ (A+ B, Gxéxple),

where A = —(u, — u,(0))2™2 and B = pwz~!. Applying the Cauchy-Schwarz
inequality yields
I < ||A+ Bl|2]10:02p12%||2.

The equality can be achieved if 0,0,p12> = ¢(A + B) for some c¢. Expanding
||A + Bl|2 and using Lemma with f = w and g = u, we get

14+ Bz = 1Al + | BIlz + 2(4, B) = [|All; + || BIl3, (4.15)

which is sharper than the trivial estimate ||A + Bl|2 < ||A||2 + ||B||2. The
||A]|2 term can be further bounded by ||wz™!||3 using the L? isometry of the
Hilbert transform in Lemma The ||B||3 term can be bounded by the

weighted L? norm of w directly.

(3) Additional damping effect from ¢,. Another nonlocal term in (4.10]) is
Cw = Uz(t,0) = H(w)(t,0). Physically, the role of ¢, is to rescale the amplitude
of the blowup profile w in the original physical variable so that the magnitude
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of the dynamic rescaled profile remains O(1) for all time. Thus, we expect that
the dynamic rescaling parameter c,, should also offer some stabilizing effect to
the blowup profile and the linearized system . Indeed, by deriving an
ODE for ¢, we can extract an additional damping term, which will be used
to control other nonlocal terms associated with ¢,,. To illustrate this idea, we

consider the following model:
Model 2 for the ¢, term
00, = cof, Ow =60, + .7, (4.16)

where f,g are odd and f,g > 0 for x > 0 with fz=',gz~' € L'. Note that
the profile satisfies that 0, — 26,,,© — xw, are odd and positive for x > 0.
This system models the ¢, terms in (4.10) with coupling #, in w equation by
dropping other terms. Recall
Cw = —l/ Ydr = —z(w,x_1>.
R s

™ T

Obviously, it can be bounded by some weighted L? norm of w using the Cauchy-
Schwarz inequality. Yet, the constant in this estimate is large. Denote A =
(f,a™1), B = (g,27'). By definition, A, B > 0. We derive an ODE for ¢,
using the w equation

2

0w, 27") = co(g,27") + (n,27") = == Blw,a™") + (0o, 27").

T
We see that the ¢, term in the w equation in (4.16) has a damping effect,
which is not captured by the weighted L? estimates. To handle the coupled

term, we also derive an ODE for (0, 2~!) using the 6, equation

Ol ™) = c,(f,27!) = —EA(w,x_1>.

T

Multiplying both sides of these ODEs by (w,z™1) or (f,,z7!), we yield

L ey = “2 B ) 4 {0 Y (w2,
%dt 727 (4.17)
§8t<€x,x_1>2 = ——A(Qx,x_l)(w,a:_1>.

T

The (0, x7'){w, z7!) terms in the above ODEs have cancellation. This implies
that the ¢, term in the 6, equation and 6, term in the w equation have can-

cellation, which is not captured by the weighted L? estimate. We will derive
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similar ODEs in the analysis of (4.10)) and obtain damping term similar to

—2B(w,z~")? in the above ODEs, which enables us to control the ¢,, terms in

(4.10) effectively.

(4) Estimating the u term in (4.10). To estimate the u terms in (4.10)) effec-
tively, we have two approaches. The first approach is to exploit the cancellation
between u and w similar to that in Model 1. See Lemma [C.0.4l The second
approach is to decompose @ into the main term u,; = cru, and an error term
UpR as . For ), we employ the estimates on u, discussed previously. The
error term g enjoys better estimate and is treated as a perturbation.

(5) Obtaining sharp estimates for other interaction terms. To obtain sharper
estimates for a number of quadratic interaction terms, we introduce a number
of parameters in various intermediate steps and optimize these parameters
later by solving a constrained optimization problem. In the ODE for ¢, and the
weighted L? estimates, we need to control a number of quadratic interaction
terms, e.g., (w, z71)-(0,, z71). We treat these interaction terms as the products
of projection of 6, and w onto some low dimensional subspaces and reduce
them to some quadratic forms in a finite dimensional space. This connection
enables us to reduce the problem of obtaining sharp estimates of these terms
to computing the largest eigenvalue A.x of a matrix. We then compute A ax
as part of the constrained optimization problem to determine these parameters

and obtain a sharper upper bound in the energy estimate.

4.3 Linear stability
In this section, we establish the linear stability of (4.23]) in some weighted L?

spaces.

4.3.1 Linearized operators around approximate steady state

The approximate steady state of (4.5) (6., @) we construct are odd with scaling
factors
& =3, |e,+1.00043212] < 107%, ¢, ~ —1.

It has regularity @,0, € C® and decay rates 9'w ~ 2% 910, ~ z2 7' i =
0,1,2 with « slightly smaller than —1/3. One can find plots of (@,d,) (with
particular rescaling) in Figure |4.2|in Section [4.5.5| See detailed discussion in

Section [£.4] Note that we do not require a C*° approximate steady state in
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our analysis, since the C*® approximate steady state is regular enough for us

to perform weighted H' estimates and establish its nonlinear stability.

Linearizing around the approximate steady state (6., ), we obtain the equa-

tions for the perturbation

040, + (o + 1W)0p = (26, — Ue)0p + (2¢0 — Uy )0y — by + Fp + N(6),

w + (Gx + t)w, = Cow + 0, + c,w — uw, + F, + N(w),
(4.18)

where the error terms Fy, F,, and the nonlinear terms N (6), N(w) read

Fy
N(0)

(2, — Ue)0p — (Qx 4+ Q) - Op,  Fo =0, + co — (G + ) - @y,

(2¢y, — up)ly — ubpy, N(w) = cw — uw,.
(4.19)

We consider odd initial perturbation wy, 6y, with wg.(0) = 0,6y ..(0) = 0.
Note that the normalization conditions (4.6)),(4.7) implies

o =u:(0), =0, 0.(t0)=060y.:(0) =0, wy(t,0)=wp.(0)=0,
(4.20)
for the perturbation. Since w, #, are odd, these normalization conditions imply
that near x = 0, w = O(2?),0, = O(x?) for sufficient smooth solution. This
important property enables us to use a more singular weight in our stability

analysis to extract a larger damping coefficient.
We rewrite the ¢,, and u terms as follows

(2¢, — up)0p — ubpp = —(up — 1.(0))0, — (U — U (0)2) 0y + (0, — 20,,),
Co — Uy = —(u — Uy (0)x)w, + (0 — zw,).
(4.21)
Denote A = (—=A)Y2. From d,u = Hw and A = 9,H, we have u(z) =
—A'w(z) = L [log|z — ylw(y)dy. Using this notation, we get u — u,(0)z =

—A"'w — Hw(0)z. We introduce the following linearized operators

Loi(f,9) = —(ax +u)fe + (26, — Ua) f
— (Hg — Hg(0))d, — (=A"'g — Hg(0)2)0,,,
Loa(f g)=—(a +U)gz+cwg+f ( A g — Hg(0)z)w, (4.22)

Lo(f,9) = La(f,9) + Hg(0)(w — v0,).



198
Using these operators, we can rewrite (4.18) as follows
00 = Lo1 (04, w) + (0, — 20,,) + Fp + N(6),

(4.23)
0w = L1(0p,w) + (0 — xi0,) + F, + N(w).

Clearly, Ly, L, are the linearized operators associated to (4.18). The moti-
vation of introducing Ly, L, is that the estimates of these operators will be

used importantly in both the weighted L? and weighted H' estimates.

4.3.2 Singular weights

For some ey, €5, e3 > 0 determined by the profile (@, ), we introduce

1 - P
fl = €1$_2/3_<9:1:+3x9:1:x)a 52 = e2x_2/d_<91+?x0xx)a 53 = _6_331,—4/3_096'
(4.24)

Following the guideline of the construction of the singular weight in [19], we

design different parts of the singular weight that have different decays as follows

1

1

- _ - —4/3

Q3T )

Un (™ 4+ agz™®), Yy

0o =™, @n=as(r +anx7?),  pp =gz,

(4.25)
where the parameters are positive and chosen in , and the cutoff function
x defined in Appendix is supported in |z| > py for py > 10%. The
subscripts f, n, s are short for far, near, singular. We use the following weights

in the weighted Sobolev estimate
V=t + Y5, 0 =@s+ pn+ o5 (4.26)

We introduce x;, &1, &2 and add them in the definition of 1,,, 1; for the following
purposes. Firstly, recall from the beginning of Section that 0, + cxf,,
with ¢ = § or ¢ = 2 has decay 2 which is close to z7%/3. In particular, for
sufficient large z, it can be well approximated by ex~2/3 for some constant e.
The parameters ey, e5 in (4.24]) are determined in this way. Secondly, in the far

/3 cox™2/3 for some

field, where x(x) = 1, the weights 1,1 reduce to c;z~
c1, Co, respectively. These explicit powers are much simpler than the weights
in the near field and have forms similar to those in ¢. They will be useful for
the analytic estimates (see Section and simplify the computer-assisted
verification of the estimates in the far field. We introduce &3 similar to &1, &

and it will be used later.
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Remark 4.3.1. Since x is supported in || > 10% and the profile (@, 0,) decays
for large |z|, we gain a small factor in the estimates of the terms involving
X. Thus, the upper bound in these estimates are very small. The reader can

safely skip the technicalities due to the y terms.

4.3.2.1 The form of the singular weights

We add 6,, 0,, terms in the denominators in ,,, ¥ # to cancel the variable coef-
ficients in our energy estimates. In Model 1 in Section we have chosen
p1 = (ux,) 'py so that we can combine the estimates of two interactions
in (4.14). Here, we design v, ¢, with a similar relation 1, = %x_lgpn, f=
0, + %'Iéxcc + x¢&: for the same purpose. Similar consideration applies to ¢¢, 5.

See also estimates (4.35)), (4.40). This idea has been used in [16] [19] for sta-
bility analysis.

The profile satisfies 6, + %atém, 0, + %x@m > 0 for x > 0. The weight v is of

order x7° for z close to 0, while it is of order 27%/3 for large 2. We choose ¢ of

4

order z~* near 0 so that we can apply the sharp weighted estimates in Lemma

to control u, and wu.
We will use the following notations repeatedly

A

u—uy(0)z, Uy = uy — uy(0). (4.27)

=41

4.3.3 Weighted L? estimates
Performing weighted L? estimates on (4.23)) with weights 1, ¢, we obtain

0., 0,0) = (L9104, 020) + o(0n — 200, 020) + (N(0), 020) + (Fy, 0,1))

:< — ((@x + W)04s, 0,0) + ((2€0 — Uy )by, 9m>)

(= {1t = 00D + (1= g (0)2) e, 620 + {8 — 2B, 0,5))
+ (N(8), 0,0) + (Fp, 0,0) & Dy + Q1 + Ny + F,
%%(w,wgp) = (L1w, wp) + oWy — TWpa, wep) + (N (W), wp) + (F,, wep)

= (= (@ + B, wp) + (g ) + ({0n,00) — (1 = ua(O)a)s, wip)

+ (W — xwx,wgo)) + (N (w),we) + (F,, wp) 2 Dy + Qo+ Ny + F.
(4.28)
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Our goal in the remaining part of this section is to establish an estimate similar
to
Dy 4+ MiDy+ Q1 + M@z < —c(||0.0"2[3 + Ml|lwe?|13), (4.29)

for some Ay > 0 with ¢ > 0 as large as possible. This implies the linear stability
of with N;, F; = 0 in the energy norm ||0,42]|2 + \i||we'/?||3. The
actual estimate is slightly more complicated and we will add 2, (0,,271)? to
the energy. We ignore the term ¢, and (6, z~1)? for now to illustrate the main
ideas. See (4.74)).

The Dy, D, terms only involve the local terms about #,,w and we treat them
as damping terms. The @); term denotes the quadratic terms other than D; in
the weighted L? estimates; the IV; and F} terms represent the nonlinear terms

and error terms in (4.23).

For D, D,, performing integration by parts on the transport term, we obtain
D1 = <D979920 >7 D2 = <Dwyw280>, (430)

where Dy, D, are given by

= i((ax +a)), + 26, — Uy, D, = i((éla: + 0)p)s + Gy

2
We will verify that Dy, D, < —c¢ < 0 for some constant ¢ > 0 in ((C.30)),
Appendix . The weight ¢ in (4.26]) involves three parameters aq, s, as.

We choose the approximate values of a; with a; > 0 so that Dy < —c with ¢ as

Dy

large as possible and varies slowly. This enables us to obtain a large damping
coefficient. After we choose aq, as, a3, we choose positive ay, as and ag in the
weight ¢ in so that D, < —c; with ¢; as large as possible and varies
slowly. The final values are given in (C.24]). See also Figure for plots of
the grid point values of Dy, D,,.

Using the notations in (4.27]), we can rewrite Q)1 + A\Q2 as follows

Ql + )\1Q2 = _<7:L:t§x + aéxm: Qx@ + )‘1 <w> 9:):@) - )\1 <a@xa w@) <4 31>
(_ .

+ (0 — 20,2), 0,0) + Mo (0 — 2i0,), we).

The terms in Q)1 + \()2 are the interactions among u,w, 6, and do not have a
favorable sign. Our goal is to prove that they are perturbation to the damping
terms D1, Dy and establish (4.29)). This is challenging since the coefficients of

the quadratic terms in (1 + A\;@)2 and in D; are comparable.
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4.3.3.1 Decompositions on @);
Recall different parts of the weights in (4.25). They provide a natural decom-

position of the global interaction among u, w, 8, into the near field and the far

field interaction. We have a straightforward partition of unity

Vb YT =1 o e st = 1. (4.32)

According to different singular orders and decay rates of the weights in (4.25)),

Y=t ppp~! are mainly supported in the far field, ¢, in the near field,

1

©n~ ! near |z| ~ 1, and .0 near 0. Next, we decompose the interaction

using these weights. Using 1) = 9y + 1, we get
—<’L~L$9_x, 9m¢> = _<a$<0_x+X§1)v 0x¢n>_<a$<0_x+X52)v 0$¢f>+<ﬂwx<§l¢n+€2¢f>v 0$>

We decompose the first two terms on the right hand side of as follows
— (Ul + W, 0210) + Ai (w0, O2p)
(= (BB + X2) + W, Othg) + N (B py))
(= (a0 + XE2) + B, Oathn) + A (B wi0n) ) + (0, 0

+ (U X (&0 + E20p), 02) & Iy + I+ I+ L.
The subscripts f,n,s,r are short for far, near, singular, remainder. De-
note I, = —Ai{(tw,,we) in (4.31). The main terms in are Iy, I,
and I,. From the above discussion on , the interactions in I, I, I,

are mainly supported in different regions. Since u depends on w linearly, I,

(4.33)

can be seen as the interaction between w and itself. This type of interac-
tion is different from I, Iy, I,. Since ¢, = u,(0) = —2 [L wdz, the terms
Co((0p — 2042), 0:00), Micy (0 — 2@,), wp) in are the projections of w, 0,
onto some rank-1 space. The estimate of the ¢, terms is smaller than that of
I, Iy, I, I,,. The term I, is very small compared to other terms and will be

estimated directly.

We will exploit the structure of the interactions in (4.31)) using the above

important decompositions.

4.3.4 Outline of the estimates
In order to establish the weighted L? estimates similar to (4.29)), we first de-
velop sharp estimates on each term in the above decomposition. In these esti-

mates, we introduce several parameters, when we apply the Cauchy-Schwarz
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or Young’s inequality. These parameters are important in our estimates. Since
the coefficients in the damping term D, Do are relative small, we can
treat the interaction term as perturbation to the damping term using the en-
ergy estimates, only for certain range of parameters. See more discussion in
Remark[4.3.3] Thus, the upper bound in these estimates depend on several pa-
rameters. Then, using these estimates, we reduce the estimate similar to (4.29))
to some inequality constraints on the parameters with explicit coefficients. See
for an example. Finally, to obtain an overall sharp energy estimate, e.g.,
(4.29) with ¢ > 0 as large as possible, we determine these parameters guided

by solving a constrained optimization problem.

In our energy estimates, to obtain the sharp weighted estimates of xu,, u with
singular weight =2 by applying Lemma we can only use a few ex-
ponents p = 3,2, g Thus, we need to perform the energy estimates very
carefully. The linear combinations of different powers in Lemma [C.0.8] e.g.,
ax~* 4 Bx~2, plays a role similar to that of interpolating different singular

4 272, Tt enables us to obtain sharp weighted estimates with

weights, e.g., x~
singular weight 2727 and intermediate exponent ¢. In our weighted estimates
of u,, u, we choose some weights with a few parameters, see e.g., . More-
over, to generalize the cancellations and estimates in the Model 1 in Section
to the more complicated linearized system , we also need to per-

form the energy estimates carefully so that we can apply the cancellation in

Lemma [C.0.4]

4.3.5 Estimates of the interaction in the near field I,
We use ideas in Model 1 in Section4.2.3.2/to estimate the main term introduced

below and ideas in Section [4.2.3.2] to estimate wu.

Firstly, we choose ¢ = % in the decomposition U= %xﬂx +u— %m)x, and

decompose i, (0, + x&1) + @, into the main term M and the remainder R
as follows

_ 1 B
20+ XE1) + (U= ZUp) 0, = MR, (4.34)

U] =

This term also appears in Iy and we will use another decomposition in Section
4.5.0l
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Recall I,, in (4.33)). Using the above decomposition, we yield

In = _<az(0_x + X&) + ae_xw; 0m¢n> + )\1 <w; 91¢n>
= < - <M7 Qéqubn) + /\1 <wa ex90n>> + <_R7 0x¢n> S IM + ]R

The estimates of Iy are similar to that in Model 1 in Section [£.2.3.2] Recall

the formulas of 1, ¢, in ([#.25). Using Young’s inequality ab < t,a? + ﬁbQ

for t5 > 0, we obtain

I = (i, O (002 + ™)) + (W, O a5 (ar ™ + ayz™?)
= <—ﬁx93_2 + Maswz !, Qx(aga:_l + alx_Q)) (4.35)
o _ 1 _ _
< ts|| — Uz 24 \aswr 1||§ + EH%(O@QE Yy aqx 2)||§
2

Remark 4.3.2. We design the special form 1),, in so that the denominator
in 1, and the coefficient 4, + %Q_Mx + x&; in M cancel each other. This allows
us to obtain a desirable term of the form J £ —@,22 + M\aswz!. The term
ta||7]|3 in is a quadratic form in w, where we can exploit the cancellation

between 1, and w to obtain a sharp estimate. See Model 1 for the motivation.

Using the weighted estimate in Lemma and Lemma with f = w

and g = u, we get
to]| — T2 + Maswz |3
:t2(||ﬁx:c’2\|§ — 2\ a5 (lly, wa™°) + (A1a5)2|ywx*1u§) (4.36)

—ts (Jlwz ™23 + (Mas)?fwa J13) = ta(wh a7t + (as)%a2).

The cancellation is exactly the same as (4.15) in Model 1. For [Ix, using
Young’s inequality ab < toa® + @bQ, (4.12) with p = 3 and the weighted
estimate in Lemma [C.0.8] we obtain

N - - 1. B 1 _
Ir = (@ — —0p2) 0z, Outbn) < too|(@ — guxx)x 35 + EHJT?’%%%H%

1

5
boay - 22 L a5 g _ loo —2))2 L 5 2
2 a1+ e Bl = 2l 4 o Bl
(4.37)
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The remainder I is much smaller than I, since we get a small factor %%1 = %
from (4.12). Combining the above estimates, we establish the estimate for

In =Ipm+ Iz

t
I, < <w2, tow 4 2t 4 t2(>\1(l/5)237_2>

25
1 1 _
02 —1 —2\2 36, 4 2>'
+< x) 4t2 (0521: —|-051I ) + 4t22 (LU ¢ )

(4.38)
Remark 4.3.3. If we neglect other terms in (4.31)) except I,,, a necessary con-

dition for (4.29) is
L+ D1+ ADy < —c([|00"]]2 + M|lwio"2[[3) (4.39)

with ¢ > 0, where D, Dy are the damping terms in . We cannot deter-
mine the ratio A\ between two norms and ¢; in Young’s inequality without using
the profile (6, @). For example, if we use equal weights \; = 1,1, = toy = %,
cannot apply estimate to establish even with ¢ = 0. Therefore,
we introduce several parameters, especially when we apply Young’s inequal-
ity. At this step, we do not fix Ay, t;; such that the subproblem holds
with ¢ > 0 as large as possible. In fact, such parameters may not be ideal for
(4.29) since the final energy estimate involves other terms in , to
be estimated later on. Instead, we identify the ranges \; € [0.31,0.33],¢y €
[5,5.8], a2 € [13,14], such that a weaker version of with ¢ = 0.01 holds
with the estimate on I,. See Appendix for rigorous verification.

Similarly, we will obtain the ranges of other parameters ¢; introduced in later

we

estimates. We will determine the values of Ay, ¢;; in these ranges by combining

the estimates of I, I, and other terms in (4.31]).

The estimates (4.35)), (4.36)) on the main term is crucial. If we estimate two in-
ner products separately without using the cancellation between ,, w in Lemma
with f = w and g = u, we would fail to establish (4.39) even with ¢ =0

since the damping term D; is relatively small.

Remark 4.3.4. Several key ideas in the above estimates will be used repeatedly
later. Firstly, we will perform decompositions on @ into the main term and

the remainder similar to (4.34)). Secondly, we will use Lemmas |C.0.4] to

estimate the inner product between @ and w similar to (4.36[). Thirdly, we will
use Lemma to estimate weighted norms of 4, @ similar to (4.36]).
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4.3.6 Estimates of the interaction in the far field I;

We use ideas and estimates similar to that of I, to estimate I;. The main

difference is that to estimate the inner product between 1, and w, instead of

using Lemma [C.0.4} we will use Lemma [C.0.5, See estimates (4.35]) and (4.40)).

Firstly, we choose ¢ = % in (.11)) and decompose i, (6, + x&2) + if,, into the

main term M and the remainder R as follows

_ _ 3 _ 3 _
We choose ¢ = %, which is different from that in (4.11)), since we will apply
(4.12) with a different power p later. Recall I; in (4.33). The above formula

implies
Iy = —(ty(0 + X&) + Whye, Ou105) + N1 (0, wipf)
= (= (M 007) + M 6o} ) + (<R, 0007) 2 g + I

Recall the weights ¢, ¢ in (4.25)). Using Young’s inequality a-b < tya*+ -b°

t1
for some t; > 0 to be determined, we obtain

I = (—astizz™ + Magwz™?,0,) = (—azlza™" + hagws™ /2, 0,271/%)

I _ 1 _
< t|| — astizz™! + A\aswa 1/3H§+E|]9xx V31122 Iy + T
1
(4.40)

We design the special form 17 in (4.25]) to obtain a desirable term of the form
—a3li, 7t + Magwr /3. See also Remark |4.3.2l We further estimate I ;.

Applying Lemma [C.0.8 and Lemma [C.0.5] we derive

IM,l :t1(||a3ﬂxx_1||§ — 2a3)\1a6<ﬂw,wx_4/3) + ()\1@()‘)2”&}])_1/3”3)
2&3)\10&6
2V/3

A tiogA
22 4 B0 (g ) — DR 0720

=t UJQ,O(Q?
AR V3

=ty (o3 lwz I3 — (llaza™2(3 = Nlwz™2|13) + (Aae)?|lwa™2[[3)

(4.41)
Remark 4.3.5. The negative sign in —t;2a\; o (T, wr~43) in ([.41])) is crucial.

Firstly, we can bound the positive term %\/‘gﬁtlﬂwx_w 3||, derived from the
identity in Lemma directly without an overestimate. Secondly,

—%Hﬂrx_w 312 from the same identity provides a good quantity that
allows us to control the weighted norm of u, %, with a slowly decaying weight

using Lemma [C.0.8]
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We introduce D, to denote the parameter in (4.41))

tiog Ao

V3

We use Young’s inequality ab < t12a> + 5 b2 for some t15 > 0 and (| - with

p= % to estimate I directly

D, = (4.42)

3

I = (= 201, igb) < tioll (@ = i) + 16O

\1|O~3

9 1 _
— to - » —2/312 ew ch 5/3 2'
0 gl 0,0 0t
(4.43)

The remainder I is smaller since we get a factor Tl—l = 2 from ((L.12).

Combining the above estimates, we obtain the estimate of Iy = Ir1+1a2+1Ir

A )
Iy <t1<w agm_Q + Mw—4/3 + (A1a6)2x_2/5>

\/3
9

2 23y 5/3 >_< _ > ~_92/3))2
4 (B2 0 (b)) = (Du o)l
(4.44)

Similar to the discussion in Remark {.3.3] in order for Iy + Dy + Dy <
—c([|0:9Y 2|2 + Mi||wp/?||2) with ¢ = 0.01, we can choose t; € [1.2,1.4],t15 €
[0.55,0.65]. See Appendix for the verification.

4.3.7 Estimates of the interaction with the most singular weight I

Recall I, in (4.33) and ¢, = ayz™ in (4.25). Using Young’s inequality ab <
taa* + o b2 for t, > 0, we yield

(M)

I, = M{w, 0.05) = Magw, .27 < ty{w? o73) + m
4

(02, 27°).  (4.45)

In order for I+ Dy + Dy < —c(|[0,0"?||2 + M| |we'/?||3) with ¢ = 0.01, we can
choose ¢, € [3,5]. See Appendix [C.3.1] for the verification. We do not combine
estimates of I, with the estimates for the interaction between @ and 6, in
Section since the weight 7% is too singular. In fact, to apply estimate
similar to that in in Model 1, the weight for 6, near 0 is 2 order more

singular than that of w. In this case, it is of order 27°

than .

near 0 and more singular
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4.3.8 Estimates of the interaction v and w
Firstly, we rewrite —\; (@, w,wy) in (4.31)) by decomposing @, into the main

term @, + x&3 and the error term &3

Luw = =M (1, Gpwp) = =i (1, (0g + XE3)wep) + A1 (@, XEswip) = J+ 1,9, (4.46)

We will estimate I,o in Section [£.3.9] and show that it is very small. See also
Remark [4.3.1]

Difficulty The main difficulty in establishing a sharp estimate for J is the
slow decay of the coefficient (w, + x&3)¢. A straightforward estimate similar
to (4.43)) yields |J| < Aj]|axP||2||@ewpxP]||2. In view of the weighted estimate
in Lemma [C.0.8| we have effective estimates of (u — u,(0)z)z ™ for exponent
p=3,20r 2. In order to further control ||w,wez?||; by the weighted L? norm
||wp?/?
for large |x|. On the other hand, if we choose p = g, the resulting constant
% in Lemma is much larger than the constant %,% corresponding to
p=3,p=2.

|2, we cannot choose p = 3 or p = 2 due to the fast growth of a?

To overcome this difficulty, we exploit the cancellations between v and w in
both the near field and the far field, which is similar to that in the estimate
of I,,,Iy. We decompose the coeflicient (w, + x&3)¢ in J into the main terms
M, and the remainder K,

1 1
(Wy + x&3)p = —563046I_2 +mat+ <(@x + X&) + 563%%_2 - 7’1110_4)

2 My 4+ My + Ko,
(4.47)

where e3, ag are defined in (4.24) and (4.25) and 7, > 0 is some parameter.

Let us motivate the above decomposition. From the definitions of &3, ¢ in
(4.24)-(4.26) and the discussion therein, we have @, + x& ~ —1esz ™3, o &

gz ™23 for some es, ag > 0 and large |z|. Thus, (@, + x&3)¢ can be approxi-
mated by —3esapr? for large |z|. Since ¢ ~ ayz™* and W, ~ w,(0) > 0 near

0, (0, + x&3)p is approximated by 72~* for some 7, > 0 in the near field.
Using the above formula, we can decompose J as follows

J = _)\1 <ﬂ’7 (wx + ng)(d(ﬁ) = _)‘1 <a7 M1w> - )‘1 <ﬁ7 M2w> - )‘1 <,&7 Kuww>
2 v+ Lye + Ik,
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To estimate the main terms, we use cancellations in Lemma [C.0.4] Using

@ = u—u,(0)z defined in (4.27), —u,(0){x, wr™?) = Zu2(0) and Lemma

2

with f =w and g =u, we get
)\ (£:10% )\ €30 T )\ (£:Y0% u u
16346 163Ck6 (0)2 1€3tk6

~ 2\ __

where A = (—0?)'/2. We denote by A(u) the right hand side of the above

equation

Iy, =

)\1630&6 ™ 2 )\1630&6
— Uy 0)° —
7 1 u=(0)

A(u) 2 Ty (4.48)

3 T T
Since esagA; > 0 and (A%, %) > 0, the second term in A(u) is a good term

and we will use it in the weighted H'! estimate.

Although I is a quadratic form on w, it does not have a good sign similar to
the identities in Lemma |C.0.4. Yet, we can approximate @ by 4, using (4.11))
and then use the cancellation between 4, and w. Choosing ¢ = % in and
using the cancellation in Lemma [C.0.4 with f = w and g = u, we obtain

Uy

1
[_/\/[2 = —>\17'1 <’11, l'_4(JJ> = —)\17'1 <'[L — S'ELI.Z',U)ZIZ'_4> )\17’1(3 wx 3>

= —)\17'1 <fl, — 5a$x7w.f_4>.

The form @ — %ﬁxm allows us to gain a small factor % using (4.12)) with p = 3.

Using Young’s inequality ab < ca? + 4%62, 4.12)) with p = 3 and Lemma ,

we obtain

—_

1

L < 2o (fal | - 5az>x*3|r§ g ler 1)

271 _
wun (Gl [+ 5w~ [)

t34 —2/2 1 —12 2 t34 4 1 —2
- S
171( || H2+4t lwz™|[2) = AT 55T +4t34l‘
(4.49)
for some t34 > 0. For t31,t35 > 0 to be defined, we denote
Sul = t31$_6 + t3217_4 +2- 10_51'_10/3. (450)

We estimate [ directly using Young’s inequality and the weighted estimate

in Lemma [C.0.8|
I = =M, Kuww) < M(|[asii?][3 + —HS V2K o] |2)

4t31 _4 4t32 72 2 _ 36)\1
—/c S >
5" T woul ) T g

<2107 @[3,
(4.51)

< )\1 <w27
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where IC,,, in defined .
Remark 4.3.6. From (4.24)),(4.25) and (4.26)), we have asymptotically ., ~
Cz~* for z close to 0. The slowly decaying part in K, is given by f =
+ e300

(Wx + xEs) ez~ ? -2
of 1 — x, since —iezz*/3

= (1= x)(@s + tesz™*)agz™/3. In the support
approximates @,, f can be approximated by cx 2
with some very small constant c¢. We add x7¢, 2-107°2719/3 in S,; so that
K2,_S. ' can be bounded by ¢. We also add the power =% in S,; to obtain a

uUw U

sharper estimate. See also Remark [4.3.3] for the discussion on the parameters.

Combining the above estimates on Iy, Iz, we prove

" 25 9

107 5|| Uz _2/3H2+]r2

Lww=J+ 1y < A1<w2

72)\
49

tsy 4, 1,
/c Sy (B - >
+ oul +T1(2533 ~|—4t34:1: )

+ A(u) + ——
(4.52)
The term I,, was not estimated and we keep it on both sides. We can determine

the ranges of parameters t3;, tsy, ta4, 71 50 that J+D;+Dy < —0.01(]|0,4" 2|2+
A lJwip'2]13).

4.3.9 Estimates of the I, [,»

Recall 1,4, I,5 in (4.33) and . Since x is supported in the far field |z| >
p2 > 108 and the profile (@, §,) decays, we can get a small factor in the estimate
of these terms. We establish the following estimate in Appendix

‘[7‘1‘ + ‘[TQ‘ < <G97 9920> + <Gw7w2> + Gcczn (453>

where Gy, G, G, are given by

92+ /3)2 A2 2Eav1/201/2] 12
Go=10- CV o s, 6= MNP e
10° ,6A1(2 4+ /3
G, = 10_10.:1:_4/3+1O_5x_2/3—|—T(—1< . \/_)) (2*°xE0)” + 10 %y
(4.54)

These functions are very small compared to the weights ¢, ¥ (4.25 - We
focus on a typical term Gy to illustrate the smallness. From ( - - for
large |x|, &, %, 1 have decay rate z72/3
For 9'0,, we recall from the beginning of Section that it has decay rate

2%~ with « slightly smaller than —5. Thus |x (£, + &tp)|? /1 has decay
—2

, ¥, has a decay rate at least x~

rate x Since y is supported in |z| > py > 108, we get a small factor
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715, < 10719 which absorbs the large constant 10'° in Gy. Therefore,

Gy is very small compared to 1.

4.3.10 Summary: estimates of Ly, L, 1

Recall Lg1, L, in (4.28), the quadratic terms in (4.28), (4.31). Combin-
ing (4.30)),(4.44),(4.38)), (4.45), (4.52) and (4.53)), we obtain the estimate on
£917£w1

(L6102, 0.0) + M {Loiw,wp) < (Dg+ Agp™, 02)) + (M D, + Ao, W)

t1o —

7 10-5\ 115 —2/3]12 2
gt = g 107 )3 4 Alu) + Gec?,

(4.55)
where A(u) is defined in (4.48)), D,,t12 are given in (C.24]), and the Ay, A,
terms are the sum of the integrals of w?, 62 in the upper bounds in (4.44)),(4.38)),

[35), ([T53) given by
P Iy N S Y
Ayg = T + (Y 0302°"°)

4t1 4t12
1 —2\2 1 230 (A1a4)2 -5
ex:p n T G )
+ (4t2 (™' + az7?)* + 47522( ¥y) ) 0, " + Gy

A
A, 2t (a%x_2 + —a3\/1§O{6 ™43 4 (A1a6)2x_2/3)

t
+ (t2$_4 + 22§ -4 +t2</\1055) i 2) —|—t4$_3

4t31 _4 4t32 _2 tay _4 1
A /c S — G
* (2535 T v RSt nlgpa T e |
(4.56)

In the previous estimates, we have obtained the ranges of ¢;; such that I 4
Dy + Dy < —0.01(][0,0"2||2 4+ A1 ||wp'/?||2) for several terms [ in (4.31), e.g.,
I = Iy, I,,. We further determine the approximate values of A, %;; so that

Dy + Agp™t < —c, MD, + A, < =\ (4.57)

with ¢ > 0 as large as possible. The functions in depend on the param-
eters and other explicit functions. The above task is equivalent to solving a
constrainted optimization problem by maximizing c, subject to the constraints
and A, t;; > 0 within an interval that we have determined.

Estimates - imply the linear stability estimate (4.29)) up to the ¢,
terms in , Au and G.c2. In Section [4.3.11] we further control
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Figure 4.1: Illustration of linear stability estimates. Left : Grid point values
of =Dy, Agyp™" and —Dy — Agyp~! for z € [0,40]. Right: Those of —\;D,,,
Ay ¢t and =\ D, — A,¢7 ! (with A\; = 0.32).

these ¢, terms. The estimate of these ¢, terms are small. We will perturb

A1, t;; around their approximate values and finalize the choices of A, ¢;;. The

final values of these parameters are given in ((C.24)), (C.25).

The main reasons that we can establish are the followings. Firstly,
we exploit several cancellations using Lemma and apply sharp weighted
estimates in Lemma to estimate the nonlocal terms. Secondly, we have
I+ Dy + Dy < —c(||0.4" 212 + M||wp'/?||2) for I being the main terms in
, ie. I = Iy I, or I,. Thirdly, the interactions in Iy, I,,, I, are mainly
supported in different regions. See the discussion after (4.33]). Finally, the

main term in [, is estimated using several cancellations.

To illustrate that the inequalities in can actually be achieved, we plot in
Figure the grid point values of the functions —Dy — Agp~! and —\;D,, —
Ayt for o € [0,40] with the parameters Aj,t;; given in , . It
is shown that their grid point values are all positive and uniformly bounded

away from 0. In fact, the minimum of the grid point values of —Dy — Agtp~?
is above 0.032 and that of —\;D,, — A ¢! is above 0.054.

Estimate (4.55) on Ly, L, is important and we will use it in Section to
establish the weighted H'! estimates.

4.3.11 Estimate of the ¢, term
We use the idea in Model 2 in Section 4.2.3.2 to obtain the damping term for

¢, by deriving the ODEs for ¢ and (6,,2')?. We introduce some notations

- - - 1
dy £ <9x,[£_1>, dy £ <¢9x,$_1>, Ug £ HO,, uan=1u-— gﬂx:v (458)
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4.3.11.1 Derivation of the ODEs

Recall ¢, = u,(0) = —2 f0+°° 2dz from (4.20). Using a derivation similar to
that in Model 2 in Section [£.2.3.2] , we derive the following ODE in Appendix

' (159

The ODE for d2 (C.§)) is derived similarly in Appendix [C.1.3.1, There is
a cancellation between these two ODEs, which is captured by Model 2 in

Section [£.2.3.2] To exploit this cancellation, we combine two ODEs and derive
the following ODE in Appendix with Ay, A3 > 0 to be chosen

d Uy ne *F,+ N
_gcgzg(éwmx(o))cz +Cw/ Md$_cwd9_cw/ o+ Nw)
0 0

A
SO (R 4 Nl = %(aw + 14, (0))2 + 26,32 + To + Rope,  (4.60)

where 7 is the sum of the quadratic terms that do not have a fixed sign
To = — (A2 — Asdy)cudy + Aaco(w, f2) — Asdo(0a, fo) + Asdo(w, fa)
+ )\20w<qu_17 f8> - >‘3d9<qu_1a f9>a

ua is defined in (4.58)), f; defined in (C.5)) are some functions depending on
the profile (@,0), and Ropg is the sum of the remaining terms in the ODEs

(4.61)

given by

Ropr = —Aaco(Fy, + N(w), 27 + Asdg(Fp + N(0), 2. (4.62)

Since the approximate steady state satisfies ¢,, < 0, (0) < 0, %32(&,+1,(0))c?
and 2¢,A\3d% in (4.60) are damping terms.

4.3.11.2 Derivation of the 7, term

Let us explain how we obtain (4.60)). The ODEs of ¢2,d2 ((#.59)) and (C.g)) in-

volves the integrals of the nonlocal terms w, u, in the form of (@, f) or (i, g)
for some functions f,g. To estimate these terms effectively, we use the an-
tisymmetry property of the Hilbert transform in Lemma to transform
these terms into integrals of w. We first consider (i, g) and (u,,g). Using

u, = Hw, ”’“”_Tu”(o) = H(%) and Lemma , we get

w

(2, 9) = (Hw, ) = —(w, Hg), {rg) = (H (%) ,29) = ~(*, H(ag)).
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For (@, f), we first approximate f by p, for some function p and then perform

a decomposition @ = czt, + (4 — cxi,). We obtain
<1~L, f) - (ﬂ,pﬁ—i—(fb, f_px> - <ﬂapx>+<cxam f_px>+<&_cxa:c> f_px> £ [1+12+I3-

The last term enjoys much better estimate than (@, f) due to and the
fact that f — p, is much smaller than f. For I, I5, using integration by parts,
we get

Iy + Iy = (Uy, —p + cx(f — pz))-

Using (4.63)), we can further rewrite the above term as an integral of w.

In addition, we introduce the function f; to simplify the integrals of w,#@,.
These derivations lead to the 7o term. We refer the details to Appendix[C.1.3]

We remain to estimate the ¢, terms in (4.28)) in the weighted L? estimates and
f3, f7 that are defined in (C.5)). We combine 7 and these ¢, terms, and define

T 2 To+collp — 2000, 0,0) + Mco(@ — 2@0e, wp) = To+ colw, f3) + colba, fr).
(4.64)

In the weighted L? estimates, it remains to estimate 7. Though each term in
T can be estimated by the weighted L? norms of w, 6, and 2, (,, x~')? using
the Cauchy-Schwarz inequality, these straightforward estimates do not lead
to sharp estimates since these Cauchy-Schwarz inequalities do not achieve (or
are close to) equalities for the same functions. We use the optimal-constant

argument in [I9] to obtain a sharp estimate on 7.

4.3.11.3 Sharp estimates on 7

For positive T}, Ty, T3 € C(R,) and positive parameter s1, 3 > 0 to be deter-

mined, we consider the following inequality with sharp constant C,,
T < Conl|WI I3+ 10T 13 + |25 )3 4 5162 + sadf), (4.65)
where up is defined in . We define several functions
X =uwl? Y =0T Z=usz'T}?
91 = —%x‘le”z, g2 = RTT? g5 = 172, g0 = f17 Y,

gs = $_1T51/27 g6 = f6T271/27 g7 = f7T271/2, gs = f8T§1/27 g9 = f9T371/2-
(4.66)
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Notice that each term in (4.61)) and (4.64) can be seen as the projection of

X,Y, Z onto some function g;. For example, ¢, dy can be written as follows

2 [Cw >0,
cw:ux(O):——/O ;dx:<X,gl), dgz/o Zda::<Y,g5>.

™

Using the definition of 7 in (4.61), (4.64) and the functions in (4.66)), we
rewrite (4.65)) as

T :<X7 gl><X7 g3> + <X> gl><Y7 g7> - <)‘2 - >‘3(Z9)<X7 g1><Y7 g5> + )‘2<X7 gl><X7 g2>
— A3(Y, g5) (Y, g6) + A3(Y, 95) (X, ga) + (X, 91)(Z, g8) — A3(Y, 95)(Z, 99)
<Copt(IIX13 + Y15+ [1Z1]5 + 51(X, g1)* + 52(Y, g5)°).
(4.67)

We project X, Y, Z onto the following finite dimensional spaces

X € span{gi, 92, 93,94} =1, Y € span{gs, g6, 97} = o,

’ (4.68)
Z € span{gs, g9} = Xs,

which only makes the right hand side of (4.67]) smaller. Then (4.67)) completely
reduces to an optimization problem on the finite dimensional space. Using the

optimal-constant argument in [19], we obtain
C1opt = )\max(D_l/QMsD_l/Q)a

where D, M defined in ((C.17) are symmetric matrices with entries determined
by the inner products among g;. In particular, C,,; can be computed rigorously
and we present the details in Appendix [C.1.5

4.3.12 Summary of the estimates

Recall the ¢, terms in (4.28)), the operators in (4.22). Combining (4.55)), (4.61))
and (4.64), we yield

<£00x7 0x’¢> + )\1 <»wa, WQD> + 76 = <£’916)x7 9x¢> + /\1<'Cw1w’ w@) +T
<(Dp + Agtp ™", 050) + (M Dy, + Aup™ ) (4.69)

9 T2\ _ -
—(Dy =ty — =21 5) 32 A ot 2
( ot = g 107 )i 3 4+ T + Alu) + Gec?

We use the remaining damping of w, 6, %, and the argument in Section[4.3.11.3

to control 7. In (C.19), Appendix [C.1.6, we define T; > 0,s; > 0 that are
used to compute the upper bound of C,,; < 1 in (4.65). These functions and
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scalars are essentially determined by four parameters A\, A3, Kk, g1 > 0. Using

the estimate (4.65)), we obtain

u
T <TI0 213 + 112 T3 213 + 1l + sad. (4.70)

The ua term can be further bounded by ||t,272/3||; and ||wz2||; similar to

(4.51)), which is established in (C.22]) in Appendix |C.1.6| Plugging (C.22) and
(4.70) in , we obtain

T < =k, 2|5 = kMl |wp 2|5+ (514 Ge) el + sady — 107 | @, ™35+ A(w),

(4.71)
for K > 0 determined in Appendix [C.2] The details are elementary and pre-
sented in Appendix [C.1.6] For Ay, A3 > 0 given in (C.25), we define the
weighted L? energy

T 4
E(0,,w) = "9957,[11/2’@+)\1wal/2”§+)\2§‘F<w,l‘_l>2+)\3<9m$—1>2. (4.72)

Note that 2(w,z™') = —u,(0) = —c, (£.20). Recall the relations of different
operators in (4.22). Combining the equations (4.28)), (4.60) and using the
estimates (4.69)) and (4.71)), we establish

1d A
ST (0,w) = (Loba, 0:0) + Ma(Low,wi) + T + %(aw + 1, (0))2

+2e,M3d5 + Rp2
< =] |00 [5 = kM [lwp 2[5 — 1076 |dpz >3 ]]5 + A(u)

A
+ (%(éw + 1, (0)) + 51 + GC) e 4 (2603 + 52)ds + Rp2,

where Rz is given by
Ri2 2 Ny + FL+ M Ny + MFs+ Rope (4.73)

and N;, F; are defined in (4.28)) and Ropgr in (4.62). Recall A(u) in (4.48)),
¢ = uz(0). Using the definitions of s; in (C.19)), we get

A A
%(éw + 0, (0)) + 81 + G + = 116230‘6 Y YT Vo

for re,,x > 0 determined in Appendix [C.2] Hence, we obtain

A
Al) + (T2 0+ 0 (0)) + 51+ G ) + (200 + 52)d
= —1.,C2 — KA3d — A1€30s <AE E>

)
r T
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Therefore, we obtain

1d
s Ei0w) < — ] [0:42 13 — mXa[|lwip! ][5 — 107 [aga |3 —

)\163&6 u

— TcwCQ — H/\gdg + Rz 2 Q+Rpe.

w

(4.74)
These parameters satisfy r., > §rAg. Thus (4.74) implies
EﬂEl(e’w) < —RE{(0,w) + Rpe, (4.75)

and we establish the linear stability. See also (4.29). Compared to (4.75)),
([£.74) contains extra damping terms —||d,z~*3(|3, —(A%, %) and —(re, —

g/i)\Q)ci. We choose 7., > k5A; and keep these terms in (4.74]) mainly to

obtain sharper constants in our later weighted H' estimates.

4.3.13 From linear stability to nonlinear stability with rigorous ver-
ification
In this subsection, we describe some main ideas how to go from linear stability

to nonlinear stability with computer-assisted proof.

(1) As we discuss at the beginning of Section , the most challenging and es-
sential part in the proof is the weighted L? linear stability analysis established

in Section 4.3], since there is no small parameter and the linearized equations
(4.10) are complicated.

(2) The weighted L? linear stability estimates can be seen as a-priori estimates
on the perturbation, and we proceed to perform higher order energy estimates
in a similar manner and establish the nonlinear energy estimate for some energy
E(t) of the perturbation

%EQ < CE? - \E® +¢E. (4.76)

Here, —AE? with A\ > 0 comes from the linear stability, C E? with some con-
stant C'(w, #) > 0 controls the nonlinear terms, and ¢ is the weighted norm of
the residual error of the approximate steady state. See more details in Section
1.5 To close the bootstrap argument E(t) < E* with some threshold E* > 0,
a sufficient condition is that e < * = A\?/(4C'), which provides an upper bound

on the required accuracy of the approximate steady state.

The essential parts of the estimates in (1), (2) are established based on the

grid point values of (@, §) constructed using a moderate fine mesh. These parts
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do not involve the lengthy rigorous verification in the Supplementary Material

[21]. These estimates already provide a strong evidence of nonlinear stability.

A significant difference from this step and step (1) is that we have a small
parameter €. As long as ¢ is sufficiently small, thanks to the damping term
—\E? established in step (1), we can afford a large constant C'(@, ) in the
estimate of the nonlinear terms and close the nonlinear estimates. We can

complete all the nonlinear estimates in this step.

(3) We follow the general approach in [19] to construct an approximate steady
state with residual error below a required level €*. To achieve the desired
accuracy, the construction is typically done by solving for a sufficiently
long time using a fine mesh. The difficulty of the construction depends on
the target accuracy £*, and we refer to Section [4.4] for more discussion on the
new difficulty and the construction of the approximate steady state for the HL
model. Here, the mesh size plays a role similar to a small parameter that we
can use. In practice, the profile (@y, ;) constructed using a moderate fine mesh
) is close to the one (ws,#s) constructed using a finer mesh Qy with higher
accuracy. As a result, the constants C'(@,f) and \ that we estimate in (4.76))
using different approximate steady states (w;,#;) are nearly the same. This
refinement procedure allows us to obtain an approximate steady state, based
on which we close the nonlinear estimates . We refer more discussion of
this philosophy to [19].

(4) Finally, we follow the standard procedure to perform rigorous verification
on the estimates to pass from the grid point value to its continuous counter-
part. Estimates that require rigorous verification with computer assistance
are recorded in Appendix [C.3] In the verification step, we can evaluate the
approximate steady state on a much finer mesh €23 with many more grid points
so that they almost capture the whole behavior of the solution. Then, we use
the regularity of the solution to pass from finite grid points to the whole real
line. In this procedure, the mesh size in {23 plays a role similar to a small
parameter that we can exploit. In practice, to perform the rigorous verifica-
tion, we evaluate the solution computed in a mesh with about 5000 grid points

using a much denser mesh with more than 5 - 10° grid points.

In summary, in steps (2)-(4), we can take advantage of a small parameter

which can be either the small error or the small mesh size, while there is no
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small parameter in step (1). Though these three steps could be technical, they

are relatively standard from the viewpoint of analysis.

We remark that the approach of computer-assisted proof has played an im-
portant role in the analysis of many PDE problems, especially in computing
explicit tight bounds of complicated (singular) integrals [6, 32], 56] or bounding
the norms of linear operators [4, [50]. We refer to [55] for an excellent survey
on computer-assisted proofs in establishing rigorous analysis for PDEs, which
also explains the use of interval arithmetics that guarantees rigorous computer-
assisted verifications. Examples of highly nontrivial results established by the
use of interval arithmetics can be found in, for example, [52] [60, 82] [102].
Our approach to establish stability analysis with computer assistance is dif-
ferent from existing computer-assisted approach, e.g., [7], where the stability
is established by numerically tracking the spectrum of a given operator and
quantifying the spectral gap. See Sections|l.3.7]and the last paragraph in|3.3.1

for more discussions and explanations.

4.4 On the approximate steady state

The proof of the main Theorem [4.2] heavily relies on an approximate steady
state solution (#,®, &, ¢,) to the dynamic rescaling equations , which is
smooth enough, e.g., @, 6, € C3. Moreover, as discussed in Section , the
residual error of the approximate steady state must be small enough in order
to close the nonlinear estimates. In particular, the residual error £ requirement

depends on the stability gap A via the inequality ¢ < \?/(4C).

For comparison, we refer the reader to our previous work on proving the finite-
time, approximate self-similar blowup of the 1D De Gregorio model via a
similar computer-aided strategy [19], where the corresponding approximate
steady state is constructed numerically on a compact domain [—10, 10]. The
stability gap that the authors proved in that work is relatively large (around
0.3), and thus the point-wise error requirement on the residual can be relaxed
to 1076,

For the HL model, however, the stability gap A & x = 0.03 (see (C.25))) that
we can prove in the linear stability analysis is much smaller, which leads
to a much stronger requirement on the residual error. More precisely, we need
to bound the residual in a weighted norm by 5.5 x 10~7 with weights

that are singular of order x=%, k > 4 near 0 and decay slowly for large z. This
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effectively requires the point-wise values of the residual to be as small as 10710,
To achieve this goal, it is not sufficient to simply follow the method in [19],

mainly due to the following reasons:

1. The steady state solution to is supported on the whole real line
and has a slowly decaying tail in the far field (see below). If we ap-
proximate the steady state on a finite domain [—L, L], we need to use
an unreasonably large L (roughly L > 10%°) for the tail part beyond
[—L, L] to be considered as a negligible error, since truncating the tail
leads to an error of order L%/ ~ L=/3. It is then impractical to achieve
a uniformly small residual by only using mesh-based algorithms such as

spline interpolations.

2. Numerically computing the Hilbert transform of a function supported
on the whole real line R is sensitively subject to round-off errors. For
example, when computing v from an odd function w via the Hilbert
transform, we need to evaluate the convolution kernel log(|ly — x|/|y +
x|), which will be mistaken as 0 by a computer program using double-
precision if |z /y| < 107'%. Such round-off errors, when accumulated over
the whole mesh, are unacceptable in our case since we have a very high
accuracy requirement for the computation of the approximate steady

state solution.

To design a practical method of obtaining a sufficiently accurate construc-
tion, we must have some a priori knowledge on the behavior of a steady state
(Wooy Boos Cloos Cwoo)- Assume that the velocity us, grows (if it grows) only sub-
linearly in the far field, i.e. uoo(2)/%, U s(x) — 0 as x — oco. Substituting
this ansatz into the steady state equation of 6, in yields

0 2¢
0OTT T 4=t which implies 0, ~
) 00,T

2Cw,oo/cl,oo

Qoo,x Cl,00
Furthermore, using these results to the steady state equation of w in (4.5))
yields

Woo,x Cuw,00 -1
~ 2.

., which implies  wag ~ @/ oo,
Woo Cl,00

From our preliminary numerical simulation, we have ¢, /¢« close to —1/3.
This straightforward argument implies that ws, and 0 ., should behave asymp-
totically like xtwee/Cloo  g2tw.o/Cloo a3 1 — 400, respectively, which in turn

justifies the sub-linear growth of .
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Guided by these observations, we will construct our approximate steady state

as the combination of two parts:
w=wp+w, 0=0,+0, (4.77)

We will call (wy, 6) the explicit part and (w,, 6,) the perturbation part. The
explicit part (wp, 6) is constructed analytically to approximate the asymptotic

tail behavior of the steady state for > L, and satisfies wy, 0, € C® and

20 with a ~ ¢, /¢ < —%. The construction of w, and its

Hilbert transform relies on the following crucial identity

wy ~ T 0, ~

Ta
o
which is proved in the proof of Lemma in Appendix [C] It indicates that
the leading order behavior of Hf for large z is given by —cot % - [z[7¢, if
[ is odd with a decay rate |z|~*. By perturbing sgn(z)|z|~* and (4.78), we

construct wy, € C® and obtain the leading order behavior of Hw, for large x.

H(sgn(z)|x|™*) = —cot lz|7*, a€(0,1), (4.78)

This is one of the main reasons that we can compute the Hilbert transform of
a function with slow decay accurately and overcome large round-off error in its
computation. The perturbation part (w,, 8,) is constructed numerically using a
quintic spline interpolation and methods similar to those in [19] in the domain
[—L, L] for some reasonably large L (around 10'®). By our construction, they
satisfy that w,,0,, € C2. Since achieving a small residual error is critical to
our proof, a large portion of the Supplementary Material [21] is devoted to the
construction (Section 10) and error estimates of the approximate steady state

(Section 11-15) with the above decomposition, especially the w, part.

4.4.1 Connection to the approximate steady state of the 2D Boussi-
nesq in R?

To generalize the current framework to the 2D Boussinesq equations, an im-

portant step is to construct an approximate steady state with a sufficiently

residual error. The construction of the approximate steady state of the HL

model provides important guidelines on this. The steady state equations of

the dynamic rescaling formulation of the 2D Boussinesq, see e.g., [16], read

(qr+u)-Vw =c,w+ b,
(qr+u)-V0 = (c+2c,)0, u=V(-A)'w.

Denote r = |z|. Assume that the velocity u grows sub-linearly in the far field:

u“e) 4 0 as r — oo and the scaling factors satisfy ¢; > 0,¢, < 0. Note that

T
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x -V = rd,. Passing to the polar coordinate (r, 3),r = |z|, 8 = arctan 22 and

dropping the lower order terms, we yield

aroww(r,8) = cow + 0, + lot., ¢rdb(r,f) = (2c, + )b + lo.t.

Using an argument similar to the above argument for the HL. model, we obtain

w(r, B) ~ p(B)r,  6(r,B) ~ g(B)r'™>, a="2<0.

C

We remark that 0, has a decay rate 72* faster than that of w. The computation
in [87] suggests that o ~ —3%. Thus, the profile (if it exists) for the 2D
Boussinesq does not have a fast decay, and we also encounter the difficulties
similar to (1) and (2). In particular, the 2D analog of difficulty (2) is to
obtain the stream function ¢y = (—A) 'w accurately in R%. To design a
practical method that overcomes these difficulties, it is important to perform a
decomposition similar to (4.77)), where w,, V6, have compact support and wy, 85
capture the tail behavior of the steady state. For the 2D Boussinesq, wy, 6,
become semi-analytic since the angular part p(f), ¢(8) cannot be determined
a-priori. To overcome the difficulty of solving the stream function in the far
field, we seek a generalization of . We consider the ansatz ¢ = r*T f(3)

and solve
—A(* U f(B)) = rp(B)
with boundary condition f(0) = f(7/2) = 0 due to the Dirichlet boundary

condition and the odd symmetry for the solution w. In the polar coordinate,

the above equation is equivalent to
(=05 — 2+a)’)f(B) =p(B), f(0)=f(r/2)=0.

Solving the above equation is significantly simpler than solving —Ay = w in
R%r since it is one-dimensional and in a compact domain. The above two for-
mulas are a generalization of that connects the leading order far field
behavior of w with that of the velocity. We believe that the above decomposi-
tion is crucial to construct the approximate steady state with sufficiently small
residual error for the 2D Boussinesq equations. The supplementary material
on the analysis of the decomposition for the HL model can be seen as
a preparation for the more complicated decomposition in the 2D Boussineq

equations.
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4.5 Nonlinear stability and finite time blowup
In this section, we further establish nonlinear stability analysis of (4.23)).

4.5.1 Weighted H'! estimate
In order to obtain nonlinear stability, we first establish the weighted H! esti-
mate similar to
5 IDABM 2B+ Ml Dusrp )
2dt (4.79)
< — e[| Dabet) 2[5 + Ml | Dawip'?|[3) + CEF (0, w) + R

for some ¢,C > 0, where D, = x0,, F; is defined in (4.72) and R are the

error terms and nonlinear terms in the weighted H' estimate to be introduced.

In the work of Elgindi-Ghoul-Masmoudi [49], they made a good observation
that the weighted H' estimates of the equation studied in [49] can be estab-
lished by performing weighted L? estimates of x0,f with the same weight as
that in the weighted L? estimate, since the commutator between the linearized
operator and xd, is of lower order. Inspired by this observation, we perform
weighted L? estimates on 20,0, and z0,w. However, one important differ-
ence between our problem and that considered in [49) is that the commutator
between the linearized operator in and x0, is not of lower order.

Denote D, = x0,. Similar weighted derivatives have been used in [16], 42, [49]
for stability analysis. We derive the equations for D,0,, D,w. Taking D, on

both side of (4.23]), we get

8tD{L‘9$ = £91(Dwex7 wa) + Ctz(ew - xexx) + [D:L"?*Cel](ex;w) + DxFG + D:):N(e)u

Oy Dyw = L1 (Db, Dyw) + coDy(@ — 2@y) + [Dyy Loa](0r,w) + Dy Fp + DN (0),
(4.80)

where [D,, L](f,g) & D.L(f,9) — L(D.f, Dpg). In Appendix , we obtain

the following formulas for the commutators

SEEESEES

[DCC? 'Cwl](exa w) = _(ax - )wa - ﬂ(@x + mex)y
(4.81)

where 4, i, are defined in (4.27)).
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Performing the weighted H! estimates, we get

0 (1D2be, Do) + WD, Do)

= ({£01(D20, Do), Dbt} + M{Lur (Ds0, Do), Dasop))
+ ({02 Lot} (B2 0), Do00) 4+ M (D Lan] (6120, Do) (4:82)
+ ((eoDalBr = wlre), Dablat)) + M {cuDe(® — 32,), Dewip) ) + R
= Q1+ Q2+ Qs+ Ran,

where Ry is the remaining term in the weighted H! estimate

R = (D N(0), Dy0,1) + M\ (DN (w), Dywe)

(4.83)
+ (Do Fy, Do) + Ai(DyFiy, Dawep).
4.5.1.1 Estimate of (),
Applying the estimate of Ly, L, in to (D0, D,w), we obtain
Q1 < (Dy + Agt™", (D)) + (M Do + Aup™, (D) *0) (4.84)

+ A(=A"Y(D,w)) + G, - (HD,w(0))?,

where G. is defined in (4.54), and we have dropped the term related to
||@,z=%/3]|3 in (4.55) since Dy, — 5t1o— 231 -107° > 0. In addition, we have re-
placed u = —A™'w in A(u) in ([#.55) by —A~'(D,w) and replaced ¢, = Hw(0)
by HD,w(0). Recall the definition of A(u) in (4.48)). Since A = HO, and

Ho H = —1d, we yield

Du(—A""Dy)(0) = HD,wo(0) = —- / wpdz =0,
R

i
which implies

G.-(H(Dw)(0))> =0, A(-A"'D,w)<0. (4.85)

We treat ; as the damping terms in the weighted H! estimate since from

(C.31)), we have

Do+ Ay < —k, MD,+ Ay ' < =Mk, K>0. (4.86)
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4.5.1.2 Estimate of (),
Recall the commutators in (4.81). The profile satisfies u, — % > 0 and thus
—(ty — ) f with f = D,0,, D,w is a damping term in the D0, or D,w
equation. We do not estimate these terms.
For the term D,u,0, in (4.81)), using integration by parts, we get

Dy, D) =~ s, 30,(0,) = (5Bt 620).

The approximate steady state satisfies the following inequality
(8%0), < 0.020), (4.87)

which will be verified rigorously by the methods in the Supplementary Material

[21]. We record it in (C.34), Appendix[C.3] Using (4.87)), we obtain

—(Dylighy, Do0,0) < e1||6,4Y2|)2, &1 = 0.01. (4.88)

The nonlocal terms in (4.81)) are of lower order than D,w and we estimate

then directly. We introduce some weights

Su2 = t’?lx_6 + t72]7_4 +2- 10_61’_10/3, Sug = t81$_6 + t82$_4 +2- 10_61‘_10/3,
(4.89)
for some parameters t;; > 0 to be determined. Using Young’s inequality, we
get
- 1 —1/25
<IIDsS 4|15 + 71150 *s Dabtl 3 (4.90)
. 1. —1/2,5 =
+ 18857115 + 711Sus " (B + Dius) Dubut 3.

We introduce the weights S5, S,3 for a reason similar to that of S,; in Remark
4.3.6 Recall D, = 1, and @, U, in (4.27). Using the weighted estimates in

Lemma yields

102847113 + 118,471 3
4t 4t 36 U
<@ (i g e o (=g 0)a )+ (14 ) 2107l
25 9 49
(4.91)
In (£.91)), we do not estimate ||ii,z2/3||2 in ||D,@S%?||2 and keep it on both

sides.
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Remark 4.5.1. We will choose large enough parameters ¢;; in Sy2, Su3 SO
that the weighted L? norm of D,0, terms in are relative small compared
to the damping term of D,0, in the weighted H' estimate , e.g., @1 in
[@.84). See also (#.86). The weighted L? norm of w and ||i,z~2/3||5 in (£.91)
will be bounded using the damping terms in the weighted L? estimate .

The same argument applies to controlling the weighted L? norm of D,w term

in (105).

Next, we estimate the u((w, + D) term in (4.81)). The idea is similar to that
in Section [£.3.8f We perform the following decomposition

— M{@(@, + Do), Dywe)
o B 1 1 3 N (4.92)
=— M\ (u(@0, + Do, — gxﬁg), D wp) — 5)\1(”)(53, Dywp) = J+ I,3.

The estimate of [,3 is similar to (4.53)) and we obtain the following estimate
in Appendix

13| < (G2, w?) + (Gus, (Dew)?) 4+ Geac?, (4.93)
where G, G,3 and Gy are given by

1 (2)‘1(2 +/3) )2x72/3 Q. — A llz&sx' 013 103
4106 5 e 36 " (4.94)
Gus = 10°(z"*x&s0)” + 10 xep,

Gw2 =

These functions are small due to the same reason that we describe in Section
4.3.9.

For J, we perform a decomposition

1 A
J = —/\1<1l, ((@x—l—wax—gxfg)go—635637_2)wa>— 1693046 (@1, Dpwx ™) & I1+1,.

Note that @ = u — u,(0)x and fooo xDywr*dr = fooo wydr = 0. Using Lemma
0.0.4 with f = w and g = u, we get

)\ oo
I, =— 1693% <<u, Dywz™?) — ux(O)/ xDxcm_Qd:E)
0
A A
— - SB fwe) = B E D,
9 9 T T
which can be controlled using the damping term in (4.74]). Denote
1

Su4 = t91$76+t92$74+5'10741'710/3, ]Cuwg = (@x‘i‘Dm@x—ngg)gﬁ— 63;6 .1’72

(4.95)
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For I, using Young’s inequality and the weighted estimate in Lemma [C.0.§]

we get

1] < A\i(Sua, @) + <’C2

uw?2
4t91 4 4t92 _92
% r + 9 x

Sui + (Daw)?)

361

< (w?
> 1<w 9 49

5107 d,a 2?5 + <lc2

Uw2

5174 ’ (Diﬂw)2>
(4.96)
We introduce the weight S,,4 for a reason similar to that of S,; in Remark [4.3.6]

The ||ti,2~2/3||2 term is further controlled by the corresponding damping term
in (@74).

)+

Combining the above estimates on the commutators in (4.81), we obtain

QZ §<_(ax - g) + B(ﬂ/fl, (Dze$)2w> + <_)\1(a$ - g) + ngoila (Dl”w)290>

A1€30 (AE g>

+e1]|0,0 23 + (Aua, ) +
r T

+ ((1 + ig) 21070 + 3231 5. 10*4) |25 + Geacl,

(4.97)
where G, is defined in (4.94). The term (@, — L) comes from the commutators
and we do not estimate them in ()5 in . The terms By, B,,, Aws
are the sum of the coefficients in the integrals of (D,0,)?, (D,w)? w? in the

above estimates

A A1
BQ é u2 ( I-Tw) + Su3 (95093 + D 9:093) wZ Bw - IC’ZWQSulll + ng,

4
AL 4 (¢ 2y 4 2
w2 = (trn + 25) + (tr2 + g)x + 1<251' gx

)+ Goo.
(4.98)

4.5.1.3 Estimate of ()3

Recall the ¢, terms in (4.80). Denote by K1, K5 the following L? norms

K1 2 [10a(2*0a0at?) ™2, Kz 2 [10:(2°00a0)™ |2 (4.99)

Using integration by parts and the Cauchy-Schwarz inequality, we obtain

|Cw<Dx(8z - Ie_xz)a D$0z¢>|
:|Cw<_x29_xa:a: . ($¢), 89601‘>| = Icw<ax(x30_xxx¢)7 9x>|
<w| - [10s (2 Oarat0 )t 2| 210202 |2 = Kilcu| - [|620"]]2,
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where we have used 20,(f — 20,f) = —2fse, [ = 0, in the first equality.

Similarly, we have

Mleu(Da(® = 22,), Do) < Mlea] - [05(a"@2ai0) ™ el

1/2

= M Ks|co| - [lwe 7o

Using Young’s inequality, we obtain

Qs <Kilco| - |09 + MEleo| - [Jwp™ ||

+—

< 102022 + o w2 2+Ci<
181 + o 215 + 2 (T +

where 1,7y > 0 are chosen in (|C.26)).

4.5.1.4 Summary of the estimates

We determine the parameters ¢;; in the estimates in Sections 4.5.1.144.5.1.3]

and choose k9 so that

Dy, + Both™' < —kKg, Do+ Bup ' < —kay,

U U
Dygs & Dy + Agyp™" — (ty — 5), Dys & MDD, + A, ' — Ap (U, — E)
(4.101)

The terms Dy, D, are the coefficients of the damping terms in the weighted
H' estimate and are already determined in the weighted L? estimates.
The terms By, B,o ™! defined in are the coefficients in the weighted
L? norm of D,0,, D,w in (4.90), (4.96). The motivation of is that we
use the damping terms to control the weighted L? norms of D,0,, D,w in the
estimates of @;. The idea is the same as that in Remark [£.5.1]

We first choose ky < k = 0.03 in Appendix [C.2] where  is related to
(4.75)). This choice is motivated by our estimate . The dependences
of Aya, By, B, on t;; are given in (4.98]), (4.89), (4.95)). Inequalities in (4.101])
can be seen as constraints on ¢;;. We choose t;; subject to the constraints
such that ||Au2p ! | is as small as possible. This enables us to ob-
tain sharper constant ay: in the weighted H! estimate . After t;; are

determined, we verify (4.101f) and

| Aw2p™ oo < apr, (4.102)

using the methods in the Supplementary Material [2I], and record them in
(C.37)), Appendix [C.3| where az is given in (C.26).
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Combining (4.84)), (4.85)), (4.88), (4.97)), (4.100) and (4.101)), we prove
1d
2dnge>lﬂg+AM@mn¢ﬂ@>

< — ko [(Dallo )02 13 — maal[(Dow) o 2115 + (g1 + 1) 100213
K2 ()\1[(2)2)02 " )\163056 u u

1/2)2 (G ALY
+ (aHl +'7/2)||(JJSO ||2 + c2 + 471 + 4/_}/2 w 9 < :L,7 1,)

36 6 . 36X\ )~ -
+ ((1+49) 2107+ 22510 4>||u$x 2032 4 Ry
(4.103)
Recall the weighted L? energy F; in ([#.72). For some \; > 0, we construct
the energy
E*(0;,w) = B} (05, w) + (|| Dablet0 |5 + At | Dawip!?3)

= [10:0"21[5 + Ml lwyp"?| 13 +/\2%Ci (4.104)
+ Aad + M([[ D20 2[5 + Ml | Dacop2[[3).

Note that c,, ||0.0?||2, [|we'/?|]2 in (4.103) can be bounded by the energy
Ey in (472). The terms (A% %) and ||@,2~2/?||3 can be bounded by their

damping terms in (4.74). To motivate later estimates and the choice of several
parameters, we neglect these two terms. Then (4.103)) implies (4.79) with
¢ = Ko and some C' > 0. Combining (4.75)) and (4.79), we get

1d
52 B2 (00, w) < —(k=MC) Ef—ka(|| Dablot) 34N || Dawip*[[))+ R 2+ MR,

2 dt
(4.105)
where k = 0.03. We first choose k9 < k and then \4 small enough, such that

R — )\40 Z R9. (4106)

Then we obtain the linear stability of (4.23]) in the energy norm FE.

4.5.2 Nonlinear stability
Combining (4.74) and m we derive

1d
Qﬁﬁ@stﬂmwmgnMwwﬂvw%wmkf

= Ahiz[(Dabn )0 215 = Aaria M [[(Dow) 0215 + Aaler + 1) 102013

K? M K5)?
+ Aalan + )l 21+ ha(Goa 1k BTS2
4y 479
A A
p(se, 163&6)(/\%, g> + Rz + MR

9 3
36 36\
1 2.107
+((( +39) 20T+ 0

5. 10‘4>)\4 - 10-6) l|dpa23||2.
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Since k9 < K, we choose small A\; > 0 in Appendix so that

)\163@6 /\163046 ( 36 _6 36)\1 _4 _6
: 1+ 2).2.1 5.1 )/\ 1
4 9 3 (1+ 49) 07 + 19 5-10 4 < 1077,
K2 (\MK;)? T2
C_)\<_1 >—>\Gc> L2
fe ! 4m - 479 e =Ry
R — )\4”}/1 - >\481 Z Ko, :‘i)\l — )\472 — )\4CLH1 Z /ig)\l, /i)\g Z /€2>\3,

(4.107)
where K7, Ky are defined in (4.99). The above inequalities will be verified
rigorously by the methods in the Supplementary Material [21I]. Note that
Te, > A2k and Kk < k. The above conditions are essentially the same as
(4.106]). We keep the damping term (A%, “) and ||d,z~ 3|3 in to control
the corresponding terms in (4.103)). Plugging the above estimates and

into the differential inequality, we yield

1d T
§£E2(01,w) < — ko |03 — KoM [Jwe' 2[5 — @7%2 — Kadadg
— Mkia|[ (Do) 2|12 — Aakio || (Do) 0 2|2 + Rz + MR
S — RQEQ(Qm,u}) + RL2 + >\4RH1 £ —K2E2(9$,M) + R,
(4.108)

where R = Rz + MRy and ko = 0.024 is given in (C.26)).

4.5.2.1 Outline of the estimates of the nonlinear and error terms

Recall the definitions of Rz and Ry in and . The nonlinear
terms in Rz, Ry, e.g., (D.N(0), D,0,1), depend cubically on 6,,w. In the
Supplementary Material [21], we use the energy E(f,,w) and interpolation to
control ||us||so and |||/ Using these L™ estimates, we further estimate
the nonlinear terms in R. For example, a typical nonlinear term in R can be

estimated as follows

1 1 1
(e, 06} = 5[ {urt, 0:(0:))] = 51 (i), 62)] = 5] (st + iy, 62)]
1 x
< lulle + 1l 75 L) 020
g

[lz=)116:0" 2115,

uz oo
=9 L 1/}

where we have used |%| < ||ugy||o in the last inequality since u(0) = 0. The

above upper bound can be further bounded by E3(6,,w).
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The error terms in Rz, Ry, e.g., F1 = (Fy,0,1), depend linearly on 6,, w.
We estimate these terms using the Cauchy-Schwarz inequality. A typical term

F can be estimated as follows
|Fr] < [ |o 16202 |-

The error term ||Fy3p/2||, is small and |[|0,4'/2||; can be further bounded by
El,,w).

In the Supplementary Material [21], we work out the constants in these esti-

mates and establish the following estimates

R =R+ MR <36E>+¢cE, £=55-10"".

4.5.2.2 Nonlinear stability and finite time blowup

Plugging the above estimate on R in (4.108]), we establish the nonlinear esti-
mate
1d

iaEQ(Gm,w) < ko B0y, w)? + 36E(0,,w)* + cE(0,,w),

where kg = 0.024 is given in ((C.26). We choose the threshold E, = 2.5-107°

in the Bootstrap argument. Since
—koE? 4+ 36E2 + B, <0,

the above differential inequality implies that if E(0) < F,, the bootstrap

assumption

E(0,(t),w(t)) < E. (4.109)

holds for all ¢ > 0. Consequently, we can choose odd initial perturbations 6,, w
which satisfy w,(0) = 6,,(0) = 0, F(0,,w) < E, and modify the far field of
0,0 so that @ + w, 0, + 0, € C2°. The bootstrap result implies that for all
time ¢ > 0, the solution w(t) + @, 0,(t) + 0., c;(t) + &, c,(t) + ¢, remain close
to @,0,,¢,¢,, respectively. Using the rescaling argument in Section , we
obtain finite time blowup of the HL model.

4.5.3 Convergence to the steady state

We use the time-differentiation argument in [19] to establish convergence. The
initial perturbations (6, w) satisfy the properties in the previous Section. Since
the linearized operators and the error terms in are time-independent,

differentiating in t, we get
at(ex)t = EG((ez)tawt) + atN(e)v at(w)t = ﬁw((ex)bwt) + atN(w)-



231

Applying the estimates of Ly, L, in Section and (4.75)) to (0.)¢, wy, we

obtain

1d
§%E1<<9:E)tawt)2 < —RE((0:)1,w0)° + Ra,

where the energy notation E; is defined in (4.72)) and R, is given by

™
Ey((0a)ew0) = [102) 113 + Al lwro (3 + Ao (Bhc)? + As(Ordly)?,

Ra = (ON(0), (62))) + A (0N (w), wiep)
— X20ic (O, N (w), 271 + X30,dg (O, N (), 2.

The term 0O,c,, in the above estimates is from
Hw;(0) = 9, Hw(0) = dyc,,.

Similarly, we obtain the term 0,dy. Using the a-priori estimate F(6,,w) < F,
in (4.109) and the energy Fi((0.);,w;), we can further estimate Ry. In the
Supplementary Material [21], we prove

——E1((0)r,w)* < —0.02E,((0,)r, wi)*. (4.110)

Using this estimate and the argument in [I9], we prove that the solution w +
@, 0,40, converge to the steady state Wao, 0o in L2(p), L2(1) and ¢;(t), c,(t)
converge to ¢, Cy 0o €xponentially fast. Moreover, the steady state admits
regularity (D) (weo — @) € L2(¢), (D) (0200 — 0,) € L%(3) for i = 0,1. We

obtain 6, from 6., by imposing 0-,(0) = 0 and integration.
Recall the energy E in (4.104]). Since
Xom/2 >3 > 152, E > (\m/2)?|c,| > 1.5]c,|

(see (C.25)), using the convergence result, the a-priori estimate (4.109) and
(4.20), we obtain

_ 2 5)
E(‘gr,oo - 93:7(")00 - @) S E*; Clioo = El - 37 ‘Cw,oo - Ew’ S §E* — g : 10_5-
(4.111)

Recall ¢, < —1.0004 from the beginning of Section £.3.1 Thus, ¢, < —1
and we conclude that the blowup is focusing and asymptotically self-similar

with blowup scaling A = % satisfying

Cl0o

A=A < e S < 3Ja, —cund £ 1070 < 6-1075, X = 2.99870,
¢, C,

Cu,00

where ) is the determined by the first 6 digits of —¢;/¢,,.



232

4.5.4 Uniqueness of the self-similar profiles

Suppose that (w,6;) and (wse, #3) are two initial perturbations which are small
in the energy norm FE(w;,0;,) < E.. The associated solution (w;,0; ) solves
@23)

0w = Lo(0; 5, w;) + Fy + N(6;), Owi = L,(0;5,w;) + Fo, + N(w;).

Denote

&uéwl—wg, 5¢9é01—02, (5N9 :N(Ql)—N(Hg), (SNw :N(wl)—N(wg)
(4.112)

A key observation is that the forcing terms Fy, F,, do not depend on (w;, 6;).

Thus, we derive

0:60, = Lg(50,,0w) + 6Ny, 00w = Lo(50,, 6w) + 6N,

Applying the estimates of Ly, L,, in Section and (4.75)), we get
1d
§EE1(6GI’ 6w)? < —KkE1(00,, 0w)? + R

where the energy notation E; is defined in (4.72)) and Rj is given by

Ry = (6N, 60,00)+ A1 (TN, 6wp) —Aacoy (60)- (SN, 2~ 1)+ Agdp (56, )- (SNg, z1).

The above formulations are very similar to that in Section [4.5.3] Formally,
the difference operator § is similar to the time differentiation 0;. In the Sup-
plementary Material [21], we show that (06, dw) enjoys the same estimates as
that of (9,0, w;) in (4.110)

1d
As aresult, E(d6,,0w) converges to 0 exponentially fast and the two solutions
(w; + @i, 0; + 0;),i = 1,2 converge to steady states (w; oo, 0;0) With the same

Woo aNd O . Since 6; »(0) = 0, two steady states are the same.

4.5.5 Numerical evidence of stronger uniqueness

The above discussion argues that the steady state is unique at least within a
small energy norm ball. However, our numerical computation suggests that
the steady state of the dynamical rescaling equations , is unique (up
to rescaling) for a much larger class of smooth initial data w,d with #(0) =0

that satisfy the following conditions:
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1. odd symmetry: w(z) and 6,(x) are odd functions of z;
2. non-degeneracy condition: w,(0) > 0 and 6,,(0) > 0;

3. sign condition: w(z),6d,(z) > 0 for z > 0.

In fact, these conditions are consistent with the initial data considered by
Luo-Hou in [86, 87| restricted on the boundary. They are preserved by the
equations as long as the solution exists. Moreover, this class of initial data
leads to finite time blowup of the HL model [23].

Here we present the convergence study for the dynamic rescaling equations for
four sets of initial data that belong to the function class described above. The
four initial data of w are given by w®(x) = a;fi(biz),i = 1,2,3,4, where

x ze~ (#/10)° x (1 — 2%)?

=152 folr) = ————, f3(z) = T Ji= a2y

fl(x> 1+ 22

and the parameters a;,b; are chosen to normalize the initial data such that
they satisfy the same normalization conditions:

w?(0)=1 and ul(0)=-25 i=1,23,4.

x T

The initial data of 6, are chosen correspondingly as
93@ = (qzr + u(i))wg(f) — o, i=1,234,

so that the initial residual of the w equation is everywhere 0. The initial value
of the scaling parameters are set to be ¢, = 3 and ¢, = —1, respecting our
preliminary numerical result that ¢;/¢, ~ —3. Note that all these initial data
of w, 0, are far away from the approximate steady (with proper rescaling) with
O(1) distance in the the energy norm that is used in our analysis. In particular,
we have w®(z) = O(z7Y), w@(z) = O(zte @107 LB (2) = O(x3) for
x — 400, while the approximate steady should satisfy w(x) = O(2%/%) where
¢, /€ is approximately —1/3 according to our numerical results. Moreover,
w®(z) has two peaks, while @(z) only has one. Figure (a) plots the four
initial data of w for x € [0, 40].

With each set of these initial data, we numerically solve the dynamic rescaling
equations (4.5) subject to the normalization conditions (4.6) using the algo-
rithm described in Section 10 of the Supplementary Material [21] (by modifying
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initial data of w for z € [0,40] profile of w when Re drops below 10~* profile of 6, when Re drops below 10~*
07 0s

profile of 6, when Re drops b

(d) (e)

Figure 4.2: Profiles of w, 6, with different initial data. (A) Four different initial
data of w; (B)(C) Profiles of w and #, when Re drops below 10~ the first time.
(D)(E) Profiles of w and 6, when Re drops below 107 the first time.

the initial values of the part w, and (6,),). We verify the uniqueness of the
steady state by comparing the profiles of w at the first time the maximum grid-
point residual Re := max;{|F,(z;)|, |Fp,(z;)|} drops below some small number

€. Here the residuals F, and Fj, are defined as
F,=—(qxr+uww, +c,+v, Fp, =—(cqr+u)by+ (2c, —u,)l,. (4.114)

Figure (b) and (c) plot the solutions of w when Re < 107" and when
Re < 1079, respectively. We can see that the profiles of w from different
initial data are barely distinguishable when the residual is smaller than 10~%;
they become even closer to each other when the residual is even smaller. This
implies that the solutions in the four cases of computation should converge to

the same steady state.

4.6 Holder regularity of the blowup solution

(SRS

To estimate the € norm with v = o of the solution 6, we will use the

following estimate
_ y y
VD =IOy i) [* foptel S byl [ 27

lz —y|
Sle—yl 7 —27) || for" e S o' ]
(4.115)
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for any 0 < x < y. The difficulty lies in the decay estimate of 6, since the
previous a-priori estimates only imply that 6, decays with rate slower than
277!, The decay rate 277! is sharp since it is exactly the decay rate of the
self-similar profile 0 ,, which will be established in Section . In Section
[4.6.2) we establish the decay estimates of the perturbation. In Section [4.6.3]

we estimate the Holder norm of the solution.

Notations In this Section, we use the notation A < B if there exists some
finite constant C' > 0, such that A < CB. The constant C' can depend on
the norms of the approximate steady state (§,&) and the self-similar profile
(O, wWoo) comstructed in Section [4.5.3 e.g., ||0.]|o, ||0x/co; as long as these
norms are finite. These constants do not play an important role in character-

izing several exponents and thus we do not need to track them.

4.6.1 Decay estimates of the self-similar profile

Recall that we have constructed the self-similar profile (6., ws) in Section
4.5.3, Using the estimate (4.111]), we obtain

U (2)] <2175, ) o + uoo()] > 03|21,
) S I, Tt + ()] 2 030 g
Usow € L, O(1) #0, 0,0 € L™,

whose proofs are referred to Section 10 in the Supplementary Material [21].
Recall that the profile (0o, wso) solves

(ClLoo® + Uso )00z = Co00b000s  Uooy = Hwso. (4.117)

Solving the ODE on 6, we obtain
O () = O (1) exp(J (),

smye [y g, = Gxten D
1 ClooY + Uso(Y) T e F U ()

CH oo

== Using the estimates on us in (4.116), we obtain |J(z) —

Denote v =
vlog(z)| < 1. YThus, for some constant C; > 0 depending on the profile, we
get

lim O (2)x™" = C10(1) # 0.

T—r00
Plugging the above limit and (4.116)) in the formula of O, , in (4.118]), we yield

€o,00 oo ()™ = C17050(1). (4.119)

lim 0, o2’ = lim — 22T
T—00 T—00 Cf 5T + Uoo (,I‘)
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Combining the above estimate and 0 , € L* from (4.116)), we prove

0noe™ 7 ]oo S 1. (4.120)
Differentiating (4.117)) and using cg oo = €100 + 2€w,00, We get

(Cl,oox + uoo)eoo,mm = (CG,co — Cloo — uoo,x)eoo,x = (20w,oo - uoo,x)eoo,r- (4121>

Using (4.116f), we further obtain

xeoo,x:v

B ’ (2¢4,00 — uoox)x’ <
ClooT + Uso oo 4 Uso

i ‘ <1. (4.122)

Y
Qoo,w

4.6.2 Decay estimates of the perturbation
Note that we have constructed (0, ws) in Section with estimate (4.111)).
We treat them as known functions. Similar to (4.18]), (4.19)), linearizing the

0, equation around the self-similar profile, we get
0402+ (ClooTHUosot1)py = (2¢4, 00— Uoo 2 ) Out (20— Uy ) Ooo 2 — U0 2zt (26— ) O,
with normalization conditions

cw =uz(0), =0, cg=c+2c,. (4.123)

Here, the nonlinear terms are given by uf,., (2¢, — u;)0,, and the error term
is 0 since we linearize the equation around the exact steady state. To obtain
the decay estimates of 6, with a decay rate O(|z|?™!), we choose p with a
growth rate O(|x|'~7) and perform L° estimate on 6,p, which will imply

10.] < |p7!| < |z~ for large . We derive the equation for 6,p as follows

0t (0,p) + (Cloo® + Uso + 1) (0,p)x = I(p)bsp + J,
[(P £ 2Cy,00 — Usoz (Cl,oox + UOO)PJUP_17 (4'124>
J & (20, — Uy)0o0pp — Woo zup + U0ppr + (20, — Uz)0,p.

)
)

For a typical function p with a growth rate O(|z|"™!), e.g., p = sgn(z)|z|"7!,
since us has sublinear growth (4.116|), for large = > 0, we get

I(p) = 2000 + Cloo(®' )2’ 4+ Lot. = 24 00 + Cloo(1 — ) + Lo.t. = Lot

where we have ¢ (1 —¥) = €100 — Co.00 = —2Cu .00 t0 Obtain the last equality.

Thus, we expect that I(p) is not uniformly negative, i.e. I(p) < —c for some
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¢ > 0, and we do not obtain a damping term in the L*° estimate of 6,p, which
is different from the weighted L? and H' estimates in Sections [4.3] In
some sense, the decay rate O(|z|7™!) is critical. An ideal choice of p with the
desired growth rate is 0;01@, since we have and I(p) term in ({4.124])

vanishes:

(Cl,oo'r + uoo)eoo,:vx

I(p) = 2Cy 00 — Usow —

900,90

o (260.),00 - uoo,x>eoo,x - (cl,oox + uoo)eoo,xx —0

eoo,x

where we have used (4.121)) to obtain the last equality.

Recall ¢, = u,(t,0). Using p = 0}, |xg‘;'+i”| S 1lin (4.122) and %] S ||t ],
we get

|J| = ‘(2Cw — U,CE)—7 —Uu . —ub ’ + (QCW - Ux)exp

T
Hoo,a: eoo,m 0307;,;

N ||ux||00(1 + ||9:vp||00)'

For 0,(-,0)p € L™, performing L> estimates in (4.124]), we yield
d
EHempHoo S [t |oo (14 [1020]|o0)- (4.125)

Next, we control ||u,||s. Recall the energy F in (4.104) and the a-priori
estimates in (4.109)),(4.111))

E<0x,oo + 9:5 - Q_x;woo +w— (D) S E*, E(Qw,oo - ex;woo - (D) S E*

Using the triangle inequality, for any t > 0, we get

10202 ||2 + [ Dabatd' (]2 + [|wp' 2|2 + || Dawp!? |2 + [c (@) + |do(62)] S 1.
(4.126)

Denote k3 = 0.02. Applying (4.113) to two solutions (fs,ws) and (0o +

0, we +w), we get

106212 + llw ()0 [l2 + lew ()] S Er(0:(t), w(t))

(4.127)
< e " E(0,(0),w(0) < e 8t

where we have used (4.126)) to obtain the last inequality. Since H(D,w)(0) = 0,
using Lemma we get H(D,w) = D,Hw = xu,,. From (4.25)) and (4.26)),
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we have 2743 + 272/3 < . Applying Lemma to f=D,wand f =w
(note that H(D,w)(0) = 0), we obtain
sl S [ fuastelds = [ (Do) Howdo S |[H(Duso)o o[ Huow P
R R

S 1Dswa™ 9 ollwe ™l S | Dol 22 S €72
(4.128)

Plugging the above estimate in (4.125)), we yield

d —K
Zll0aplloo S 71+ 1020l o0)-

Since k3 > 0, solving the differential inequality and using [z'~7| < |6, 1| from

(4.120]), we prove

sup [|0:(t)pl[ee S 1, sup H9x<t>xliw|’oo S sup ||993(t)9:;,c1>oH00 S L
>0 >0 >0

Since 6 is even, using (4.115)), (4.120) and the above estimate, we prove

sup [|0oe + 0(t)||cr S 1. (4.129)
t>0

Remark 4.6.1. Since we do not have a damping term in the L°° estimate

(4.125), the exponential convergence estimates in (4.127)), (4.128)) play a crucial
role in obtaining (4.129).

4.6.3 Holder regularity
Denote § = 0, + 0 and by 6, the solution with initial data 6(0,-) in the

physical space. Recall the rescaling relation and the normalization conditions

@123)
C,(r) = exp(/OT Co(s) + Cooods), t(r) = /OT C,(s)ds,

Cy(1) = exp(/OT co(8) + co.0ds), Ci(T) = exp(— /OT(cl(s) + C100)ds),

0(x,7) = Co(T)0pny (Ci(T)2, t(7)), o= 2¢0, ¢ =0.
(4.130)
From assumptions 6, (0)|z|'~" € L* in (d) in Theorem , E(0,(0)=0,,0(0)—
w) < 1, and estimates and E(0uor — Or, woo — @) < 1, it is not difficult
to obtain that 6,p € L*. Thus, 9,9 enjoys the energy estimates in Section
[1.6.2 Using ({.127), (4.129), (4.130) and ¢, = Cp,00, We prove

Sup [[Bpny ((7))l o+ = sup [[0(r)[|o+ C5 ' ;7 = sup 10(7)|en eXp(/ —2c,d7) S 1.
7>0 7>0 720 0
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4.6.3.1 Blowup in higher Holder norm

We show that for any 8 > v, the C? norm of the solution blows up. Since
1 < (zx) for x € [0, 1], using (4.127)) and Cauchy-Schwarz inequality, we get

1 1 /
o) = 000) = | [ 0.l < ([ 0007 an) " S oo Pl s e
(4.131)

Recall the formulas in (4.130). Denote T' = t(c0). Since |c,(7)| decays expo-
nentially (4.127)) and ¢, o < —%, we obtain

Cu(7) Z e, Cylr) ™ Z 70T, Cy(r)™! 2 e,

T — t(T) = / Cw(S)dS Z / w08 ] g z oCenooT

Recall Y€ 00 = Cgoo = Cloo + 2Cu 0. Denote § = _Basemtre _ 20870 5 g We

Cw,o00 1_7

have

= lirr_1>inf Ophy (z, T)|| 0o (T—t(7))5 e lirginf ||é(x, T)||CBC';1CfB exp(0Cy.00T)-

Note that 0. (0) = 0. Using [.131)), we have ||0(7)||cs > |0(r,1) — 0(r,0)| >
|0 (1)| — C exp(—k37). Using this estimate, § = —ﬁcl’;’;’% and (4.116)), we
establish

S 2 liminf |0 (1)] exp((—cg.00 + BCloo + 0Cw.00)T) 2 [00(1)] > 0.

We conclude the proof of result (d) in Theorem [4.2]
Remark 4.6.2. The exponential convergence in (4.127)) is crucial for us to ob-

tain the unique Hoélder exponent v that characterizes the regularity of the
singular solution and the sharp blowup rate. It enables us to essentially treat

the perturbation as 0.

4.7 Connection between the HL model and the Boussinesq equa-
tions

In this section, we discuss the connection between the leading order system

of the HL model and that of the 2D Boussinesq equations in R with low

regularity initial data.
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4.7.1 The leading order system for the 2D Boussinesq equations
The 2D Boussinesq equations in Ry read
wy+u-Vw =40,
' (4.132)
Qt +u-Vl = 0,

where the velocity field u = (u,v)” : R% x [0,T) — R? is determined via the
Biot-Savart law

_szwa U = _wy7 U:wma
with no flow boundary condition ¥(z,0) =0 =z € R.

Consider the polar coordinate (r, ) in Ry : r = (22 4+y?)/%, 3 = arctan(y/x).
For a > 0, denote

R = Ta? Q(R7 /B) = w($7 y)’ n(R7 5) = Q.Z‘(x7y)’ f(R’ 6) = Qy(x7y>

In [I6], the following leading order system of (4.132]) is derived based on the
framework developed in [42] under the assumption that w, V@ are in some

Holder space C'* with sufficient small «

2 /2 Q) ) sin(2
Q=n n= aLm(Q)Ti, Li15(92 / / (25) dsdp.
(4.133)

An important observation made in [16] is that for certain class of C* data, 6 is
anisotropic in the sense that |6,| < a|f,|. Moreover, this property is preserved
dynamically. Therefore, the 6, variable does not appear in the leading order

system. Define the following operators

/ f(R,B)sin(26)dB, Sf(R / f(s dS. (4.134)
By definition, we have
2 2 [ d
—Lia(Q) = — /R PQ(s) 85 — S(PQ). (4.135)

Since L15(2) does not depend on /3, we apply the operator P to both sides of

(4.133]) to obtain
2
OpSl = Pn, 0,Pn= ELm(Q)Pn = S(PQ) - Pn. (4.136)

The above system is an 1D coupled system on P2, Pn. Once Pf), Pn are
determined, we can obtain an explicit solution of (4.133)).
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4.7.2 The leading order system for the HL model

We use the observation made in [44] that the advection can be substantially
weakened by choosing C'* data with sufficiently small . Suppose that w, @, €
C* with small a. Then the advection terms in the system of (w, 6,) in the HL

model become lower order terms

we =0, +lot., (0,)=—u.b0,+1lot., wu,=Huw. (4.137)

The above system is already very similar to by taking Q =w,n =6,.
We further perform a simplification for the Hilbert transform. We impose
extra assumptions that w, , are odd, which are preserved dynamically. Due
to these symmetries, it suffices to consider the HL. model on R,. For = > 0,

symmetrizing the kernel, we get

1

Hole) = 1 [ ol -—

r—Yy T4y
1/ 2y 1/ 2 dy
= — w(y dy = — wyY)—F———
T JR, ()xQ—yQ T JR, ()(a?/y)2—1y

We learn the following formal derivation of the leading order part of general

)dy

™

singular integral operator from Dr. Elgindi. E| Denote

X=z% Y=y QUX)=w(), nX)=~0.(x). (4.138)
Using the above change of variables and d—yy = idTY, we get
1 2 ay 1 ay
Huw(zx) = —/ WYV — = — [ QY)K.(X,Y)—,
am Jg, (F)Ve=1Y  am g, Y

where K,(X,Y) = (5)1% Next, we consider the leading order part of
Y
K,(X,Y) as @« — 0". Note that

X X
lim (=)Y* =0, for X <Y, lim (?)W = o0, for X >V,

a—0t a—0t

Hence, for X # Y and XY > 0, we get

lim KQ(X, Y) = -2 1Y>X-
a—0t

L Similar derivation was presented in the One World PDE Seminar "Singularity for-
mation in incompressible fluids" by Dr. Elgindi. https://www.youtube.com/watch?v=
29zUjm7xF1lI&feature=youtu.be


https://www.youtube.com/watch?v=29zUjm7xFlI&feature=youtu.be
https://www.youtube.com/watch?v=29zUjm7xFlI&feature=youtu.be
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Therefore, formally, we get

2 [ ay
Hw(z) = “or ). w(Y)7 +lLot. = =SQUX) + lo.t., (4.139)

where the operator S is defined in (4.134)). Now, plugging the above formula in

(4.137)), dropping the lower order terms in (4.137) and applying the notations
(4.138]), we derive another leading order system for the HL. model

OUX) = n(X), Im(X) = SQX) - n(X). (4.140)

The above system is exactly the same as that in (4.136[). We remark that the

lower order term in the simplification (4.139)) needs to be estimated rigorously.

In general, the system (4.137]) is more complicated than (4.140f) since the
Hilbert transform is nonlocal and is a singular operator, while we can obtain a

local relation between S f and f by taking derivative Ox (Sf)(X) = —%%X)

Note that 1x.y = 1,-,. Undoing the change of variables in (4.138]), we get

2 day 2 dy 2 [~ dy
50(%) = = [ 10005 = = [ Lawn) o =2 [Tu)
’ " (4.141)

The operator on the right hand side is closely related to the Choi-Kiselev-
Yao (CKY) simplification of the Hilbert transform [22]. Therefore, the leading
order system (|4.140)) can be seen as the CKY’s simplification of (4.137)) without

the lower order terms.
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Chapter &

COMPETITION BETWEEN ADVECTION AND VORTEX
STRETCHING

In this chapter, we investigate the DG model on S! to study the competition
between advection and vortex stretching, an essential difficulty in studying
the regularity of 3D Euler equations. In Chapter [3, we have established the
finite time blowup of the De Gregorio (DG) model on R with smooth data.
Yet, the blowup mechanism does not generalize to the case of S! due to the
expanding nature of the blowup solution on R. The dynamic of the solution in
the case of S* is much more complicated, and we will show that the solutions
exhibit dichotomous behaviors from initial data with different regularity. We
refer to Sections [1.4.7} and for the background and conjectures of the

DG model and existing results.

We focus on odd initial data wy with period 7 in class X (see (5.1)): wo(z) >0
or wo(xr) < 0 for all z € [0,5]. These properties are preserved dynamically.
The class of initial data in X seems to provide the most promising scenario for
a potential blowup solution of on S* up to now for the following reasons.
Firstly, the initial data considered in Chapter [3| [19] that lead to finite time
blowup of on R satisfies the same sign and symmetry properties as those
in X. Secondly, for the gCLM model [97] with a > 0, which is closely
related to (3.1), singularity formation [I3, 14, 19, 44} 49] all develops from
initial data with the same sign and symmetry properties as those in X. In
particular, in [14], we established that the gCLM model on S* with a slightly
less than 1, which can be seen as a slight perturbation to , develops finite
time singularity from some smooth initial data in X. Thirdly, this scenario
can be seen as a 1D analog of the hyperbolic blowup scenario for the 3D Euler
equations reported by Hou-Luo [86, 87]. See also [16] [78, 80]. In fact, the
restriction of the (angular) vorticity in [16}, 78, 80l 86, 87| to the boundary has
the same sign and symmetry properties as those in X. Thus, to establish global
regularity of for general smooth initial data, which relates to Conjecture
I in Section [I.4.3] we need to address the important question of whether there

is a finite time blowup in this class. We note that the initial data considered
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in [73] is close to the steady state Asin(2x) of (3.1]). Thus it belongs to or is
close to that in X.

Note that the CLM model can only blow up in finite time at the zeros of
w [26]. Since the vortex stretching is the driving force for a potential blowup
of , it is likely that a potential singularity of with general data is
also located at the zeros of w. For a zero zy of w, across which w changes
sign, the leading order term of w near zq is Ofw(xo)(x — 20)* for some odd
k € Z,. It has the same sign and symmetry properties as those in X. Thus,
our analysis of with w € X can provide valuable insights on the local
analysis of these potential singularities. For a zero zy of w, across which w

does not change sign, the local analysis could benefit from [83].

5.1 Main results

Throughout this chapter, we consider initial data wq in the following class X
X2 {f : f is odd ,m — periodic and f(z) <0,z € [0, g]}, (5.1)

'3

|, we can consider a new variable

unless we specify otherwise. We assume wy < 0 on [0, %] without loss of

T
12
Whew(T) £ w(z + Z) and then reduce it to the previous case. It is not difficult

generality. For the case of wy > 0 on [0

to show that the solution w(#) remains in X.

Our first main result is a one-point blowup criterion. A similar blowup criterion
has been obtained in our previous work [I3] for the DG model and the gCLM

model with dissipation.

Ld2
Theorem 5.1. Suppose that wy € X N H' and fow/2 ’wo—o" sin(2x))dx < +o00.
The unique local in time solution of (3.1) cannot be extended beyond T > 0 if
and only if

/T u,(0,t)dt = oo. (5.2)

For w € X N H', we have u,(0,t) > 0. Suppose that w vanishes to the order
|z|?, 8 > 0 near x = 0. Then t—gsin@m) is of order |z|?¥=V=f+1 = |2|°~! near
x = 0, which is locally integrable. A similar conclusion holds for the local
integrability near x = 7. For w € C La'n X, the sign condition in X implies
that w degenerates at its zeros in S*\{0, 7/2} with an order 3 > 1, if it exists,
and thus %3 sin(2x) is still locally integrable. In particular, for wy € C* N X

with a finite number of zeros and a finite order of degeneracy, the assumption
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Wz . .
J. /2 ‘LO”” sm(2:c)‘dx < 400 holds automatically. Based on Theorem , we

0 w
obtain the following global well-posedness result.

Theorem 5.2. Suppose that wy € X N H, wo(z)z™! € L, and A(wy) =
foﬂ/Q %sin@x)‘d:v < +o00. There exists a global solution w of with
initial data wo. In particular, (a) for wy € X N CH with a € (0,1) and
A(wp) < +00, there exists a global solution from wo; (b) for wy € X NCY with

A(wp) < 400, the unique local solution w € Nac1C* from wy exists globally. If
the initial data further satisfies wy € CY* with a € (0,1) and wy(0) = 0, we
have

w1 + | (0,1)] < K (wo)e“@,

[lw(t)|| e < K (wo) exp(2exp(K (wo) exp(CQ(2)1))),
where Q(2) = foﬂ/z |wo| cot? ydy and K(wg) is some constant depending on
Hu(0), Han(5), [lwol |1, Q(2), Alw).-

In the general case, the a-priori estimates are much weaker. See Lemma
and Remark for more discussions. Since H® — C'* for s > a + 2,
Theorem 5.2 implies the global well-posedness (GWP) in H* N X with s > 2.
The condition wy(z)z™' € L> in Theorem |5.2]is necessary since we can obtain

a finite time blowup for wy that is less regular near x = 0.

Theorem 5.3. For any 0 < a < 1,s < %, there exists wg € X NC*N H* N
00 . w/2 w2’$ . .

C>(S"\{0}) with ] - sm(Zx)‘dx < 400, such that the solution of ({3.1)

with initial data wy develops a singularity in finite time. In particular, we have

fOT u,(0,1)dt = oo.

w

One can establish the local well-posedness of in O% with any k € Z, U
{0} and « € (0,1) using the particle trajectory method [89]. From the ill-
posedness result for the incompressible Euler equations in [3], it is conceivable
that is ill-posed in C!. For C! initial data, there is a unique local solution
in Np<1C®. Thus, in view of the above Theorems, in the class w € X, the
blowup criterion in Theorem and the regularity results in Theorems

and [5.3] are sharp.

Theorem verifies the conjecture on the GWP of on S! and rules out
potential blowup of from initial data in C*° N X. It also addresses the
conjecture made in [44] in the case of S* that the strong solution to is
global for C* initial data in class X. Note that the smooth initial data that
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lead to singularity formation of the gCLM model on St [13], 14, 19] or the
CLM model [26] can be chosen in the class in Theorem [5.2l Thus, Theorem
implies that the advection in can prevent singularity formation in the
CLM model or the gCLM model for such initial data. The global regularity
results in Theorem can be generalized to the DG model with an
external force fw linear in w, where f € C'™ is a given even function. Theorem
resolves the conjecture made in [44] [104] that develops a finite time
singularity from initial data wg € C* or wy € H* for any a € (0,1) and s < %

in the case of S'. The case of R has been resolved in [19] with wy € C°.

In [44], Elgindi-Jeong made an important observation that the advection can
be substantially weakened by choosing C'* data with sufficiently small a;, and
constructed C* self-similar blowup solution of on R with small a. For
on S, a finite time blowup from C® data with small o was obtained in
[19]. In Theorem the Holder exponent o can be arbitrary close to 1. As
we will see in the proof, it suffices to weaken the advection slightly. Theorem
is inspired by our previous work [I4], where we constructed a finite time
blowup solution for the gCLM model with a slightly less than 1 and

smooth initial data.

5.1.1 Connection with the CLM model
The CLM model (3.4) can be solved explicitly [26]

(e, t) = 4w ()
T (2= tHuwo(2))? + Puf () (5.3)
Huw(z,t) = 2Hwo(2)(2 — tHwy(x)) — 2tw§(x)' |

(2 — tHwy(x))? 4 t2wi(x)

We consider the solution of with period 7 . From , the solution can
blow up at x in finite time if and only if wy(z) = 0 and Hwy(x) > 0. Consider
odd wy with wy < 0 on (0,75). Since Hwy(0) > 0 and Hwy(3) < 0, the only
point & with wy(x) = 0 and Hwy(z) > 0 is = 0. Within this class of initial
data, from Theorem u,(0,t) controls the blowup in both the CLM model
and the De Gregorio model. On the other hand, the CLM model blows up in
finite time for smooth initial data, while from Theorems[5.2 [5.3] the advection
term in the De Gregorio model can prevent singularity formation if the initial

data is smooth enough.
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5.1.2 Competition between advection and vortex stretching

The competition between advection and vortex stretching and its relation with
the vanishing order of w € X near x = 0 can be illustrated by a simple
Taylor expansion. Suppose that near x = 0, w = —2* + l.o.t. for a > 0 and
u = cx + [.o0.t. for some ¢ > 0, where [.0.t. denotes the lower order terms. We

120, is odd and at least

impose the latter assumption on u since u = —(—0,)
C! with u,(0) > 0 for nontrivial w € X. The leading order term of uw, and

uzw near x = 0 are given by

uw, = —ace® +l.ot., u,w= —cx®+lo.t.

This simple calculation suggests that a — 1 characterizes the relative strength
between the advection |uw,| and the vortex stretching |u,w| near x = 0. The
advection is weaker than, comparable to, and stronger than the vortex stretch-
ing if a <1, a =1, and a > 1, respectively. Considering the stabilizing effect
of advection [14] 67, 07| and the destabilizing effect of vortex stretching [26],
one would expect that there exists singularity formation in the case of a < 1
and global well-posedness in the case of a > 1. Theorems and confirm
this formal analysis. In the case of a = 1, e.g., wg € C'"* with wy,(0) # 0
in Theorem the effects of two terms balance, making it very challeng-
ing to establish the GWP result in Theorem [5.2] To prove these results, we
need to quantitatively characterize the competition in three different cases
and precisely control the effects of advection and vortex stretching. See more

discussions in Section [£.2
5.1.3 Connections with incompressible fluids
5.1.3.1 The effect of advection

Theorem 5.2 provides some valuable insights on potential singularity formation

in incompressible fluids. We consider the 2D Boussinesq equations
wt—l—u-Vw:Hm, Gt—l—u-VQ:O, (54)

where w is the vorticity, € is the density, and u is the velocity field determined
by V4 (—=A)tw.

In the whole space, a promising potential blowup scenario is the hyperbolic-
flow scenario with 6,,w being odd in both z,y, and positive 6,,w in the first

quadrant. The induced flow is clockwise in the first quadrant near the origin.
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A similar scenario has been used in [62} T06]. In this scenario, the flow in the y-
direction in the first quadrant moves away from the origin. To understand the
effect of y—advection, we derive a model on 6,, which is the driving force for
the growth in . Taking x—derivative on (5.4)) and using the incompressible

condition ug, = —uy 4, we yield

00, +u -V, = —uy .0, — us 0, = us 0, — us,0,. (5.5)

Dropping 6, term and the advection in x direction and simplifying w = 6,, we

further derive

8,5095 + u28y0x = u27y(95,;, (56)
u= VA, uy, = Oy (—A)710,. (5.7)

See more motivations for these simplifications in Appendix [D.0.2] Note that
the #—equation in with reduces to the incompressible porous media
equation |30} [31]. Equation captures the competition between the vortex
stretching us 0, and the y-advection u20,0, in (5.5). This model relates to
(3.1) via the connections 6, — —w, 9y (—A)~" — —H. Moreover, the solu-
tions of the two models enjoy similar sign and symmetry properties. See more
discussions in Appendix The connection between 0., (—A)~! and H
can be justified under some assumptions [20} 23] [7T], though it may not be

consistent with the current setting.

Valuable insight from Theorem and the connection between the above
model and is that if 6,(z,y) vanishes near y = 0 to order |y|* with
a > 1, the advection may be strong enough to destroy potential singularity
formation. In the hyperbolic flow scenario, due to the odd symmetry in y, a
typical 6 near the origin is of the form 0(z,y) ~ c;x' Ty + l.o.t. for § € O
and 0(z,y) ~ ciz*y + l.o.t. for # € C*. In both cases, 6, vanishes linearly
in y, and thus the effect of y—advection can be an obstacle to singularity
formation. Such effect can be overcome by imposing a solid boundary on y = 0
and singularity formation with C1* velocity has been established in [16]. For
smooth data, the importance of boundary has been studied in [86] [87]. In the
absence of a boundary, new mechanisms to overcome the advection or a new

scenario may be required to obtain singularity formation of ([5.4) in R?.
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5.1.3.2 Connections with the SQG equation

In [5], Castro-Cordoba observed that a solution w(y,t) of the De Gregorio
model (3.1]) can be extended to a solution of the SQG equation

0, +u-VO=0, u=V(-A)""% (5.8)

with infinite energy via the connection 0(z,y,t) = zw(y,t). We can perform
derivations for similar to those in —. Under this connection, the
terms dropped in the derivations are exactly 0, and the SQG equation in the
hyperbolic-flow scenario [62] reduces exactly to the DG model with a
solution in class X. Hence, our analysis of provides valuable insight into
the effect of advection in in such a scenario. Moreover, from Theorem
5.2 we obtain a new class of globally smooth non-trivial solutions to ([5.8)
with infinite energy. Note that a globally smooth solution to (5.8) with finite
energy has been constructed in [7]. See also [59]. Singularity formation of
from smooth initial data with infinite energy follows from [19].

Under the radial homogeneity ansatz 6(t,r, 3) = r>~2%g(t, 3), Elgindi-Jeong
[46] established a connection between a solution 6 to the generalized SQG
equation and a solution g(t,3) to the gCLM model with a > 1 up to
some lower order term in the velocity operator. Our analysis of the global
regularity of sheds useful light on the analysis of with a > 1 and
constructing globally non-trivial solutions to the generalized SQG equation
using the connection in [46]. In particular, our argument to analyze u,(0) and
a singular integral, which is defined in and characterizes the competition
between advection and vortex stretching in , can be generalized to the
gCLM model with a > 1. See more discussions in Chapter [6]

Organization of the Chapter The rest of the chapter is organized as
follows. In Section [5.2], we discuss the main ideas in the proofs of the main
theorems. In Section [5.3] we establish the one-point blowup criterion. In
Section , we discuss the stabilizing effect of the advection in (3.1) and study
the positive-definiteness of several quadratic forms, which are the building
blocks for the GWP results in Theorem [5.2] In Section [5.5], we prove Theorem
. In Section , we construct finite time blowup of with C* N H*
data. We make some concluding remarks on the potential generalization of

the results in Chapter [6] Some technical Lemmas and derivations are deferred
to Appendix [D]
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5.2 Main ideas and the outline of the proofs
In this section, we discuss the main ideas and outline the proofs of the main

theorems.

5.2.1 Difference between the De Gregorio on R and on S*

Note that the initial condition considered in [19] that leads to finite time
blowup of on R has the same sign and symmetry properties as those in
X. To establish the well-posedness results in Theorems[5.1]and [5.2] we need to
understand the mechanism on S! that prevents singularity formation similar
to [19].

For (3.1]) on S* with w € X, we have two special points = 0,z = 7/2, which
correspond to x = 0,z = oo in the case of R. One of the key differences

between two cases is captured by the evolution of ||w]|z:

S [ ewa) <2 [T [ st eotta + ey,

which is derived in ((5.22),(5.23)). Since w < 0 on [0, 7/2], — foﬂm w(z)dz is the

same as ||w||p1.

For z +y < 7, the interaction on the right hand side has a positive sign due
to cot(x + y) > 0, which leads to the growth of ||w||;1. On the other hand,
for x +y > 7, the interaction has a negative sign, which contributes to the
decrease of ||w||:. The former and the latter interaction can be seen as the
interaction near 0 and 7/2, respectively. The latter plays a crucial role in our
proof as a damping term. For comparison, a similar ODE can be derived for
(3.1) on R with cot(x + y) replaced by x—}ry The interaction is always positive
and can contribute to the unbounded growth of the singular solution in [19]
in the far field. Yet, for on S', similar growth near z = /2 is prevented

due to the above damping term.

Moreover, for on S! with w € X, we have —u € X and thus u,(0) > 0
and u, (%) < 0 for nontrivial w. The sign of u,(5 z,
the vortex stretching u,w in depletes the growth of the solution. Using
these observations, we show that the nonlinear terms near x = 7 are harmless.

Thus, the main difficulty is the analysis of (3.1)) near x = 0.

) suggests that near z =
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5.2.2 The one-point blowup criterion

In [83], an important equation was discovered

SOV = —Sul (V)P — SHu((V) P + 3 (He)s!,  (59)
which implies ) ,
%@% = —% <u%)x + w,Hw,. (5.10)

Identity (5.10) can also be obtained from the equation of w, and w™! using
(3-1).

To prove Theorem [5.1], one of the key steps is the estimate of a new quantity
7T'/2 W%
fo W

the singularity caused by % for w € X. Since w(t) remains in X (5.1) and

sin(2z)dr. The vanishing property of sin(2z) near x = 0,5 cancels

w < 0on [0,7], %isin(2x) has a fixed sign. To control the nonlinear terms
in the energy estimate, we will exploit the conservation form (u%) , use an
x
important cancellation on a quadratic form of w, and a crucial extrapolation
inequality on u. Using some estimates in [I3] [19], we derive a-priori estimates
Oﬁ/ ? °:J—”2” sin(2z)dx, which controls w(x) away from x = 7 by
interpolation. By exploiting the damping mechanisms near x = /2 discussed
in Section [5.2.1, we further show that wu,(%,?) cannot blow up before the

blowup of wu,(0,¢). With these estimates, we obtain an a-priori estimate on

on 1, (0), [[w]]..

||w||r in terms of f(f u,(0, s)ds, and establish the one-point blowup criterion

by applying the Beale-Kato-Majda type blowup criterion [T} [73]. See also [97].

5.2.3 Global well-posedness
To prove Theorem using Theorem [5.1] we need to further control u,(0).

In the special case of wy € C* with wy,(0) = 0, the key step is to establish

™
2
0

d s
7 /2 w cot® zdx = / (Ugw — uw,) cot® xdx > 0. (5.11)
0

The quantity foﬂ/ ?weot? zdz is well-defined for w € € with w,(0) = 0 and
a > 0. The above inequality quantifies that the stabilizing effect of advection
is stronger than the effect of vortex stretching in some sense for w in this
case. We will exploit the convolution structure in the quadratic form in ([5.11])
and use an idea from Bochner’s theorem for a positive-definite function to
establish . We remark that an inequality similar to has been

established in the arXiv version of [I9], where a more singular function cot” x
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with f > 2.2 is used. The inequality is stronger than that in [19]
since fOW/Qw(cot z)Pdx is not well-defined for w € Ch with a € (0,3 — 2)
and w,(0) = 0. Since w < 0 on [0,7/2], implies an a-priori estimate
of foﬂﬂ |w cot? z|dx, based on which we can further control ||w]||z1,u,(0) and

establish the global well-posedness.

In the general case, wy can vanish only linearly near x = 0. The proof is
much more challenging since foﬂ/ 2 |w cot? x|dx is not well-defined, and there is
no similar coercive conserved quantity. Note that in this case, for wy close
to Asin2z in the C? norm, the solution w(z,t) converges to Asin2zx as t —
oo [73]. As pointed out in [73], this imposes strong constraints on possible
conserved quantities. Thus, it is not expected that there is any good conserved

quantity similar to some weighted norm of w.

To illustrate our main ideas, we consider wy € C»* N X with wy, # 0. In
this case, the only conserved quantities seems to be w,(z,t) = wg.(z) for
r = 0, 7. Surprisingly, the one-point conservation law w,(0,?) = wo(0) allows
us to control Q(S,t) defined below for f < 2. We remark that we do not
have monotonicity of Q(f,t) in ¢ similar to (5.11)) when 5 < 2. A crucial

observation is the following leading order structure

/2
6.2 [ oty neorniay = 220 R0, RE 015 o

’ (5.12)
for any 8 < 2. As long as w(t) remains in C*, we can choose 3 sufficiently
close to 2, such that (2 — 8)Q(5,t) is comparable to —w,(0), which is time-
independent. Using this observation, an ODE of Q(/3,t) similar to but
with a nonlinear forcing term and an additional extrapolation-type estimate,
we can control Q(B(t),t) with B(t) sufficiently close to 2. In the case of the
less regular initial data wy € X N H! with wyz™! € L, we will establish
an estimate similar to (5.12). This enables us to further control u,(0) and
establish the global well-posedness.

5.2.4 Finite time blowup

To prove Theorem we follow the framework introduced in Section See
also the work of Chen-Hou-Huang [19]. We also adopt an idea developed in
our previous work [I4] that a singular solution of the gCLM model can be
constructed by perturbing the equilibrium sin(2z) of . We first construct a
C* approximate self-similar profile of wo = C-sgn(x)|sin 2z|* with a < 1
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sufficiently close to 1. Our key observation is that for « < 1, the advection
uw, is slightly weaker than the vortex stretching u,w. See the discussions in
the paragraph before Section and in Section [5.1.2] Then we establish the
nonlinear stability of the profile w, in the dynamic rescaling formulation of
based on the coercivity estimates of a linearized operator established in
[83] and several weighted estimates. Using the nonlinear stability results and

the argument in [14] [19], we further establish finite time blowup.

The finite time singularity of on R from C¢° initial data established in
[19] has expanding support, and the vorticity blows up at co. The singularities
of the gCLM model with weak advection constructed in [13] [19, [44] [49]
are focusing, and the blowups occur at the origin. Due to the relatively strong
advection and the compactness of a circle, the C'* singular solution of
on S we construct is neither expanding nor focusing, which is similar to that
in [T4]. Moreover, the solution blows up in most places at the blowup time.
Compared to the analysis of the gCLM model in [I4], the blowup analysis of
(3.1) with C* data is more complicated due to the less regular profile and its

estimates in the nonlinear stability analysis with singular weights.

5.3 One-point blowup criterion

In this section, we establish the one-point blowup criterion in Theorem [5.1]

Recall the class X defined in (5.1)) and the Hilbert transform on a circle with

period w

sin(z + )

— )
5.13)
For (3.1]) with initial data wy € X, it is not difficult to obtain that w(-, t), —u(-,t)

remain in X.

1 w/2 1 w/2
uy, = Hu = —=PV. w(y) cot(z—y)dy, wu= ——/ w(y) lo

X
. —m/2 ™ J_n/2 sm(ac
(

5.3.1 Energy estimate
To perform energy estimate using ((5.10]), we multiply both sides of ([5.10|) with
—sin(2z) € X so that _u;_ﬁ sin(2x) > 0. Integrating them over S', we obtain

1d 2 1 ;
el _ Y sin(2x)dr = —/ <uﬂ) sin(Qx)dx—/ Wy Hw, sin(2z)dx = I+
th g1 w 2 S1 W /z g1

(5.14)

&

II.
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We introduce the following functionals

w

Alw) £ / Y sin(2z)dz, E(w) = A(w) + uz(0) + ||w]|L1,
s (5.15)

Ut) 2 /0 t (0, 5)ds.

We choose the special function sin 2x due to the crucial cancellation in Lemma

[D.0.3]
I1 :/ wyHw, sin(2x)dx = 0. (5.16)
S1

For I, using integration by parts, we obtain

1 2 22) wa
I = ——/ u&(sin(Zx))xdx = —/ M& sin(2x)dx
st s

2 w 1 osin(2z) w
w/2 2 2
- —2/ UCos(22) Wy o (92
o sin(2zr) w

A crucial observation is that by taking advantage of the conservation form
(u%—;)m and performing estimate on (5.10)) with an explicit function, the coeffi-

u cos(2x)
sin(2x)

than u,,w. We further estimate I from above. Since w,—u € X, we derive

_LZ}_?: sin(2z) > 0, T = 0, and cos(2r) < 0 on [7, 7). It follows

cient in the nonlinear term I for x away from x = 0, § is of lower order

/4 92 2
1< -2 / uweos22) Wi o) < H “ Aw), (5.17)
0

sin(2x) w sin ) ‘LOO[O,Z]

where A(w) is defined in (5.15)). The fact that the nonlinear term in [7/4, 7 /2]
is harmless is related to the discussion in Section [5.2.1} To control -, we use

the following extrapolation.

Lemma 5.3.1. Suppse that w € X satisfies A(w) < +00,u,(0) < +oo and
w € L'. We have

u
< 1)1 w051 + 2 d
|zl g @O+l + Dlog(ellipg +2), 618)
1 cos /2wl 1 S (Aw) (wa(0) + [fwl|22)) 2
Isin -wllze S (Aw)us(r/2)])2 (5.19)

1/2

We remark that [|w|[rep,z) can be further bounded by || | cos x| w|| .
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Proof. Denote

. . . . ;
K(z,y) = Smylog sm(m—i—y)‘ _siny, anx + tany

sin x sin(x —y)!  sinz tanz — tany |’
r+1
- ‘
f(z) = zlog |-——
From ([5.13)), we get
u 1 (72 1 sin(x + y) 1™ w(y
—— = ——/ w(y) = log‘ : ’dy = ——/ d )K(w,y)dy'
sinx T Jo sin x sin(x — y) mJo siny
(5.20)

For e < % to be determined, we decompose (5.20) as follows

w/2 (

u w(y)
. ‘ 5/ 1|y/x—1|>5 —K(.T,y)‘dy
sin 0 siny
/2 w sin(x +
+/ 1‘y/x_1‘§5 ,(y)‘log‘M‘dyé]—i—H.

0 sin v sin(z — y)
Denote z = {22 For |y/x — 1| > ¢, z,y € [0,7/2], we have
|Z_1|:‘tany—tan:v‘:) sin(z — y) ‘:‘sin(x—'y)‘z |z —y| >

tan x COSZ - COSY - tanx cosy -sinz T

For z € [0,7] and y € [0, 7], using sinz < tanz,siny < tany and the above

estimate, we get

z+1

tany1 -
z—11

anx + tany

f(z) Sloge™,

t
K(z,y) < og’t ‘:zlog

~ tanx anxr — tany

where we have used f(z) < 1for z > 2 and z < £ to obtain the last inequality.
It follows

w/2 w/2
I < log 5‘1/ &l dy < log 8_1/ (—w(y))(coty + 1)dy
0 0

sin y

< loge™ (us(0) + [[wl]1).

For II, since |4 — 1| < & < 55 and 2 € [0,7/4], we yield y € [0,%]. Since

sinz =< z on [0,37/4], we get :EE?—FZ;‘ < % . Using these estimates, we
derive tzi 1
Y+
I11g IIWIIme,;j)/ (1 +log ‘)—dy
ly/z—1]<e y—zl'z
1+e
1+2
~ lellemog) [ (1+log| =)
1—e¢ -z



256

Using a change of variable s = z — 1 € [—¢, €], we further obtain

17 5 ||W||Lw(07g)\/ log |S|_1ds S 610g€_1||w||Loo(0’§).

|s|<e

1

Choosing & = (||w]|z=(,x) +10)~" < {5,

we prove

[lu(sinz) |z om/a) S (12(0) + [|wlls + 1) log ™
u

S
S (u(0) +[|wlx + 1) log([[wl[z=(0.7) + 2),

which is exactly (/5.18]).

For z € [0, 7], using the Cauchy-Schwarz inequality, we prove
(o) eos )] < (cos ) [ enwldy < [ fea(w)licosn) P2y
0 0

/2,2 /2 1/2
(/ = sin(Qx)dx/ |w|(cot x + 1)d:c)
0o |l 0

< (Aw) (e (0) + [|wllz)) "2,

AN

which is the first inequality in (5.19). The proof of the second inequality in
(5.19)) is similar. O

5.3.1.1 Estimates of ||w]||z1,u.(0)

To close the energy estimate using Lemmal5.3.1], we further estimate ||w||z1, u,(0)
in terms of U(t). Similar estimates have been established in [13] and the arXiv

version of [19]. Integrating (3.1) over [0, 7] and using integration by parts, we

yield

d

w/2 /2 /2
— —wdx = / —Ug) + Uwydr = —2/ upwdr = I11. (5.21)
dt Jo 0 0

Since w is odd, symmetrizing the kernel in ([5.13)), we obtain

III = 2 /W/Qw(x) /W/Qw(y)<cot(x —y) — cot(z + y))dyda:

™

0 0
2 w/2 pm/2
=— / / w(z)w(y) cot(x + y)dxdy (5.22)
T Jo 0
4 w/2

—2 [ e (- [ e cotta+ pay).
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Since —w(x) > 0 on [0, 7] and cot z is decreasing on [0, 7], we get

T x w/2
- [ wtweotta iy < = [ wtcordy < = [ ) cotydy S . 0).
(5.23)

It follows

/2 /2 /2
Mg uw) [ ey 5 [ ety =111 £ 0,00 [~y

Using Gronwall’s inequality, we establish
t
(@l < flwol[zr eXp(C/ ue (0, s)ds) < |lwol| 1 exp(CU(1)).
0

Taking the Hilbert transform on both side of (3.1)) and applying Lemma|D.0.1}

we derive

%ux(()) = H(uzw — uw,)(0) = 2H (u,w)(0) — H(0,(uw))(0)
— 20— w0+ - [ corytu
T T )2 T (524)

1?1
:UZ«))—’——/ s—uwdy.

T J_ 2SNy

Note that uw < 0 for all x and u,(0) > 0 for w € X. It follows

Using Gronwall’s inequality, we obtain

0 < u,(0,t) < u,(0,0)exp(U(t)) = Hwo(0) exp(U(t)).

Plugging the above estimates, (5.16]), (5.17) and Lemma in (5.14)), we

obtain
© 4w) S C()lwnllur, Heo(0)) exp(CU ()

dt
Ao ((A@)(1:(0) + Jol]2)) " +2).
where C(||wol|z1, Hw(0)) is some constant only depending on ||wo||p1, Hwo(0).

Recall the energy F(w) in (5.15). Combining the above estimates, we establish

© Bw) S Olllwollue, Heo(0) exp(CU (1)) - Blog(E +2)

Solving the differential inequality, we prove

E(w) < (E(w) +2) exp(exp(C’(HwOHLl,HwO(O))/0 exp(CU(s))ds)). (5.25)
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5.3.2 Estimate near z = 5

In view of Lemma [5.3.1] we have control of ||w]||pw~[0,q using A(w), u,(0) and

1/2.

||w||zr only away from z = 7, i.e. a < 7, due to the vanishing weight (cos x)

2 )
We further estimate u,(7/2,t) so that we can apply Lemma [5.3.1] to control
l|w||so. This will enable us to apply the BKM type blowup criterion for ({3.1))

to establish Theorem [B.11

Using a derivation similar to that in (5.24)), we obtain

d  m o T 1 ™ 1 N

—Up(=) =ui(=) + — dy =1+ 11. 5.26

R e T e (5.26)
A crucial observation is that for w € X, u, (%) = % fo y) tan(y)dy is neg-

ative. Thus the vortex stretching term u2(% ) depletes the growth of u.(5),
which is the main mechanism that u,(5) does not blowup as long as U(t) is
bounded. See also Section [5.2.1. On the other hand, since uw < 0, the advec-

tion term = [ ﬁuwdy is negative and contributes to the growth of u,(%).

Y)
Our goal is to show that the growing effect is weaker. The main difficulty is

the singular functions (cosy)~2,tany near y = 5 in I and I since we can

control w away from y = z

For I1, we decompose it as follows

s 1 s
Il = —/ tan® (y)uwdy + —/ uwdy = 11 + 1 1.
0 T Jo

™

Since Il does not involve a singular function, the estimate of 11, is simple.

Using (5.13)), we get

ju()] 5/0 [w(y)l] cosy|'/?| cos y| V2| log | sin(z — y)||dy

S| eos ] 2wl|ooll] cos 2| 72| ass | log 2| e S 1] | cos 2] w]|oc
It follows
10| < Jlullzellwllzr S 11 | cos 2] 2w]|oc]lw]] - (5.27)
For I and Iy, our goal is to establish
[+10 > iu (5) = Clus (5| llg (5.28)

We will further use Lemma and e—Young’s inequality to estimate |um(1) |-
||w||z= and close the estimate of u,(%) in (5.26). Note that near y = 5, we
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have (cosy)™!, tany = + O(|w/2 — y|). For simplicity, we consider the

w/2 y
coordinate near % and introduce

D sry) = o (5.29)

f:cu(x+z

tanz

Remark 5.3.2. Since tanz = z + O(2%),sinz = z + O(2®) near z = 0, in the

following derivations, we essentially treat tan z,sin z similar to z.

Clearly, g, = Hf, g and f are odd and f > 0,9 < 0 on (0,7). Using (5
(5.29), (tan(z + 7/2))? = (tanx) ? and symmetrizing the integrals in I, Hl,

we get

- 72 )2
fﬂmngwmwzil Acmmmemmw

— —— 27 dxd
7r2 / tanw tany ey,

1 92 w/2
1 = — 5 dx:—/ f‘g dx
T Jo tan‘x T Jo tan‘x
2 /2 f(:z:) /2 sin(x +y
-5 f(y)lo —\dy
0 an’z J, sm( Y)
1 sin(z + y)
log| dy.
/ / J( tan : tanQy) °8 sin(z — y) Y
Recall s from ([5.29)). Note that
sin(x + y) ‘_‘tanx—i—tany‘_ s—i—l7 1 . 1 . (5.30)
sin(x — tanx — tany 1—s tan x tany

We further obtain

[+1I = %/0 /OW/Q%%”(:LS_ (1 +82)10g‘%‘>dxdy.

Note that f(z)f(y) > 0 for z,y € [0,5]. The competition between I, 11
is characterized by the interaction kernel K(s) = 4s — (1 + s?) log ‘ S+1‘ 5 €
[0,00). An important observation is that for large s or small s, K(s) ~ 2s. In

particular, it is easy to obtain

K(s) = s*K(s™),
1+s

1
K(s) 23—(1+32)10g‘1—+8 locs<at >s—C’log‘
— s

1a§s§a*1
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for some absolute constant 0 < a < 1 and C > 0. It follows

1 /2 W/Qfxfy 8—|—1
1+leﬁ/ / %(s—Clog‘l
0 0 Y )

1a§s§a*1>dxdy'

Repeating the above derivations, we get

s+1
1—s 1a§s§a_1f(x)d$dy'

(5.31)

1 T fly) [T
[+1L > Z(Hf(o))z—C/O tan?y/o log

Next, we show that

1 (™ s+
T I llm T2 o [ o] 7 Lo S (o)
0

tany 1—s

We consider a change of variable z = tan z. The restriction s € [a,a™!] implies
z € [atany,a ' tany]. Using dv = —15dz and (5.30)), we yield

1+22

a"ltany t 1
J(y) < HfHoo/ log‘2+ any‘ dz
tany atany Z_tany 1+Z
a_ltany a™t
< ||f||00/ lo Mﬂ dz < ||fHL°°/ log‘T—H‘dT< ||f||L°°;
~ ta’ny atany Z_tany - @ T_l h

where we have used another change of variable z = 7 tan y to obtain the third

estimate.

Recall f = w(z + 7) from (5.29). Plugging the above estimates in (5.31)), we
establish

w/2
rein = 50500 [ gy gy = Lot 002l F O

0 tany

where we have used the facts that f is odd and that f has a fixed sign on [0, 7]
to obtain the equality. We prove ([5.28)).

5.3.2.1 Estimate of u, ()

Combining the estimates ([5.26])-(5.28)), we obtain

d T

g

1 , 7 m

) > Juz(5) = Clug(5)] - [lwllzee — | [eos || |oc|[w][ 12 £ J.
4 2 2

Recall the energies in ([5.15)). Using Lemma |5.3.1], we derive

v
[l S [ (N2 (B@)2 + Ew), ] [eosaPwllwllwll S E*(w).
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Using e—Young’s inequality, we yield

1 T T T
72 72C5) — Clua(Dl (jua (§)M2BE@)? + Bw)) - CE*(w)
1 T
> 2.2y 2().
Since uz(g) < 0, we derive

d T 1 T
a T <« 22T 2(,0).
dt|ux(2)| < 8%(2)+0E (w)

Using the estimate ([5.25]), we prove
T T b
e, 3)] < [Hu(5)]+C [ EXw(s))ds
0

< |Hwo(g)| + C(E(wo) +2)2€Xp(2exp(0(|!wo|\u,Hwo)/0 exp(CU(s))ds)).

(5.32)
5.3.2.2 The blowup criterion
Using ((5.25)), (5.32)) and Lemma we prove
t
[|lwl|re < Ki(wo) exp(2 exp(Kl(wo)/ exp(CU(s))ds)), (5.33)
0

where C' is some absolute constant, and the constant K;(wp) depends on
Hwy(0), Hwo(5), ||wo|[ and A(wp). Applying the BKM-type blowup crite-

rion, we conclude the proof of Theorem [5.1]

5.4 Stabilizing effect of the advection and several quadratic forms
In order to apply Theorem to establish the well-posedness result, we need
to control u,(0). Yet, u,(0) itself does not enjoy a good estimate. Recall the

ODE of u,(0) from ([5.24).

d 2 w/2
G0 =+ 2 [ 2y
o sin*y

Since u,(0) > 0 for w € X, the quadratic nonlinearity u?(0) makes it very diffi-
cult to obtain a long time estimate on u,(0). Since u,(0) = =2 OW/Q w(y) cot ydy
can be viewed as a weighted integral of w with a singular weight near 0, it mo-

tivates us to estimate other weighted integral that controls u,(0).
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For 8 € (1,3), we introduce

Q(B,t) = — /me(y,t)(cot y)Pdy, B(B,t) & /2 (Ugw — uw,) cot? zdz.
’ ’ (5.34)
For w € X N H', Q(B,t),B(B,t) are well-defined if w vanishes near x = 0
at order |z|Y with v > § — 1. For w € X, since w < 0 on [0,7/2], we have
Q(B,t) > 0. The boundedness of Q(3,t) implies that w cannot be too large
near 0, and it allows us to control the weighted integral of w near 0. In Section
5.5, we will combine it and ||w||: to further control u,(0).

Remark 5.4.1. The special singular function (coty)? and functional Q(3,t)
are motivated by the homogeneous function |y|~# and [, w/y’dy, which were

used to analyze the gCLM model on the real line in the arXiv version of [19].

Using (3.1)), we obtain the ODE of Q(/3,t)
d
2Q(5.0) = ~B(5.1). (5.35)

We should further estimate B(3,t). The key Lemma to prove Theorem [5.2| is

the following. To simplify the notation, we will drop “t” in some places.

Lemma 5.4.2. Suppose that w € C* is odd with « € (0,1) and w(z)z~! € L™.
There exists some absolute constant By € (1,2), such that for B € [Bo,2), we

have
1 51 5(sP1 = 1)
B(9) = ~2-9) (w0 [ /[ ) oty D dady),
(5.36)
where s(x,y) = L [f in addition w € CY* with « € (0,1) and w,(0) = 0,

coty

for B =2, we have

B(2) > 0.
Note that in Lemma [5.4.2] we do not impose the sign condition: w < 0 (or
> 0) on [0,7/2]. Thus, it is likely that Lemma can be generalized to
study (3.1)) with a larger class of data.

Lemma [5.4.2) quantifies the stabilizing effect of the advection, and reflects that
the advection is stronger or almost stronger than the vortex stretching for w

vanishes at least linearly near x = 0, which has been discussed heuristically
in Section [5.1.2} In fact, if w € C** with w,(0) = 0, using (5.35)) and Lemma
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5.4.2) we obtain that @(2,t) is bounded uniformly in ¢ and thus w can not be

too large near 0. In the general case, w can vanish only linearly near x = 0.
Then Q(2,t) is not well-defined since w(cot y)? is not integrable. In this case,
we apply (5.36). Though Q(5,t) may not be bounded uniformly in ¢, the

critical small factor 2 — (8 indicates that Q(f3,t) cannot grow too fast.

5.4.1 Symmetrization and derivation of the kernel
To prove Lemma [5.4.2] we first symmetrize the quadratic form B(3) and derive
its associated interaction kernel. The symmetrization idea has been used in

[23] to analyze some quadratic forms in the Hou-Luo model. Denote

_ tany _ cotx (5.37)

5§ = .
tanx  coty

Since w is odd, applying (5.13) and following the symmetrization argument
in the arXiv version of [19], we derive (5.38)) in Appendix if w vanishes
near x = 0 at order |z|” with v > § — 1

w/2 p7/2
Bl = % /0 /0 w(z)w(y) Py (w, y)dwdy, (5.38)
where

+ (cot )Pt (g(sﬁJrl +1)log

£ (coty)? ' Py g(s) + (coty) TP 4(s).

Similar derivations and kernels were obtained in the arXiv version of [19]. The

logarithm terms come from the advection uw, and are positive. Other terms

—(s" — 1)522f1,7' = (6 — 1,08+ 1 are from the vortex stretching u,w and are

negative. Thus, the kernel Ps captures the competition between two terms.

The main term in Pj is (cot y)? ™1 Py 5(s) since (cot y)?*! is more singular. For

s near 1, Ps(s) is positive due to the singularity in log ‘g‘ It is not difficult
to see that
lim Py g(s) = (8= 2)s",  lim Py s(s) = (8 —2)s"* (5.40)

Formally, as [ increases, the kernel Ps(x,y) becomes more positive-definite.
Recall the ODE of Q(8) from (5.34)), (5.35)). The higher vanishing order of w
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near 0, the larger 8 we can choose with Q(3) being well-defined, and it is more
likely that Q(/3,t) is decreasing and bounded uniformly in ¢. Therefore, the
higher vanishing order of w near 0 reflects the stronger effect of the advection,
which potentially depletes the growing effect of the vortex stretching. The
asymptotics suggests that to obtain the positive definiteness of P3,
should be at least 2. Indeed, such result is proved in the arXiv version of [19]
for § = 2.2 under the sign condition w € X by showing that P; s(s) > 0
pointwisely. However, the method in [19] can not be applied to the critical

case f = 2 since numerical result shows that P »(s) < 0 for s < 0.5 or s > 2.

For B < 2, it is not expected that Pj is positive-definite and the gap is of
order 2 — [ quantified in Lemma We study the modified kernel and its

associated quadratic form

sB=1 s
Kip(8) = Pup(s) + 2 s+ ), Kaols) = Pasls) + (2 - 1) =%
Kz = (cot y)ﬁﬂKl 5 + (cot y)ﬁ’le,
/ / (y) Kp(z,y)dzdy,
(5.41)

where P;, s are defined in (5.39), (5.37). Using (5.38)), (5.39)), (5.41)), and the

following identities

(s + 5%)(cot y)? T = cot z(cot y)? + (cot 2)? cot y,

/ / (s + 57) (cot y)** dwdy (5.42)
_2 / ot ydy / * wcoty)*dy = w0,

we derive
Biﬁ) _ %/03 /ng(x)w(y){Pﬁ(x,y)

L (P = 1D)s -1
+@=B)(o+ Nfeoty)™ + g cory) ) fody

— B(3)+ (2-P) (ux(O)Q(ﬂ)

+%/02 /ng(a:)W(y)@B;—__ll)s(cot y)ﬁ‘ldmdy)-

Hence, Lemma is equivalent to B(f) > 0, or the positive definiteness of
KB for g € [ﬁo,?]
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cotx
coty

Our key observation is that s(z,y) = can be written as p(u — v), for
some function p and variables u,v, and Kz can be written as a convolution
kernel after a change of variable. This allows us to follow the idea in Bochner’s
theorem for a positive-definite function to leverage the positive part of Kz(s)

and establish that K is positive-definite.

In the following derivation, we restrict 8 to 5 € [1.9,2]. The reader can think
of the special case § = 2, since we will choose 5 to be sufficiently close to 2.
5.4.1.1 Reformulation of K, 4

We introduce

Fi(z) £ w(x)(cotz) 2,

Recall scoty = cotx from (5.37)). Using s%(cot )P = (cot y cot x)%, we

derive

(cot y)ﬁ“Klwg(s) = (cot y)’BJrl ﬁHs %Kl,ﬁ(S) = (cot y cot x)%fﬁﬁ(s).

Hence, we can rewrite the quadratic form associated with K 5 in B(ﬁ) (15.41))

w/2
/ / )(cot y) 1 Ky g(s)dady

_ /0 /0 Fu(@)Fu(y) Ky g(s)dady.

For z,y € [0, /2], we consider a change of variable

as follows

(5.45)

e* Fy (arctan e*)
14 e

, Wig(2) = Kyg(e).
(5.46)

tany __
1+ 2r and s = tanxz

r = arctane’, y=arctane’, Fy(z)=

The variables r = log tan 2 maps (0, §) to R. Using Z_f =

e!~", we obtain

Fi(arctan e”) Fy (arctane') - . '
B K Me"e'dtd
- / / T+ 15(e" )€ et dtdr

_ /R /R Fy(r) Fy(8) Wy s(t — r)dtdr.
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Recall Fy in (5.44)). Since cot(arctane”) = e™", we can rewrite Fj in terms of

w
e"w(arctan e”)(cot(arctane”)) =n e_%rw(arctan e’)
FQ(T) = D) = D)
1+er 1+er

Next, we discuss the integrability of W; s and Fh. Since w(z)z™! € L™,
arctanx < min(z, 1) and g € [1.9,2], we get

IFy(r)] < e " min(1, ") < min(e"4, ¢4,

Recall the definition of K g in (5.44)). Clearly, |K; 5(s)[?, [Wis(2)|P are locally
integrable for any p > 0. Using (5.40)), ’log ‘%1‘ — 2‘ < s3 for s > 2 and a

1 s
direct estimate, we obtain

f(l,ﬁ(s) = k1,6(5_1)> |f(1,ﬁ(8)| < s < s Vfor s> 2.

~

Note that for large s, the leading exponents s appeared in each term of

K, g are canceled. As a result, we yield

Wis(z) = Kig(e®) = Kigle™) = Wis(=2),  [Wis(z)] S e ¥/ for 2] > 1.
(5.47)

Denote by f = Jg exp(—iz€) f(z)dz the Fourier transform of f. Using the

Plancherel theorem, for some absolute constant C'; > 0, we get
Bi(3) = C1 [ IB(OPTWia(©)de (5.49)
R

5.4.1.2 Reformulation of K,z

Similarly, we reformulate the kernel K 5 and its associated quadratic form in
B(p) in (5.41)) as follows

/ / y)(cot )’ Ky 5(s)dxdy

= [ [ BB Waste = riarar = ¢ [ [ 1@ Taate)ie

(5.49)
for some absolute constant C; > 0, where
e 2 "w(arctane”) -
Fy(r) = . , Wap(z) = Koy p(e”),
; 1 * e? ) , (5.50)
Ras(s) = 5 (%7 + 57T log |2 | = (677 =57 75,
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The variable Fj corresponds to w(z)(cot x)% after a change of variable. For

f(gﬂ, Wa, Fy with s > 2,|z| > 1, we have
[Fy(r)| Smin(ed, e71),  Wyp(z) = Wap(—2), Kap(s) = Kap(s™),
(Was(2)] S e /4, |Kap(s)] S 572

5.4.2  Positivity of W, 3
Recall the formulas of B;(5) (5.48)), (5.49). To show that B;(5) > 0, we only
need to prove Wjﬂ(g) > 0 for any £. Since W3 is even, it is equivalent to

show that

1. 1 .
Gip§) & W) == | W, Ty = [ W d
1910 2 GWisl) = 5 [ Wip(e e = [ W) con(atye 20

2
(5.51)
for any &£. Since Gm(g),ﬁm(g) are even, we can further restrict to & > 0.
We first study the positivity of Gi1 g, which is much more difficult than that of
Ga .

5.4.2.1 Positivity of G4

Since we are interested in the case where [ close to 2, using continuity, we can

essentially reduce proving G g > 0 to the special case = 2.

Lemma 5.4.3. Let W = Wi9,G = G12. Suppose that there exists xy >
0,M >0, such that

G(§) >0, £€l0,M], (5.52)
W'(z) >0, x€][0,z, (5.53)
W (o) — %(!W”(mo)\ + /OO |W’”(x)|da:> > 0. (5.54)

Then there exists By € (1,2), such that for any B € [5o,2] and &, we have

Using continuity of W; g in 8 and the smallness of 2 — 3, we will show that
(5.52)-(5.54) hold for W; g,G1 3. The proof of this part is standard and is
deferred to Appendix [D.0.4]

Next, we prove that (5.53)), (5.54) implies G 2(£) > 0 on [M, 00|, which along
with (5.52) prove G 2(§) > 0. The same argument applies to G g. We simplify
Wi, G1 o defined in (5.44), (5.46), (5.51) as W, G.
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Large ¢ We will choose M to be relatively large. This allows us to exploit
the oscillation in the integral G(§) (b.51)) for £ > M. From the definition of
W(z) in (5.44) and (5.46|), we know that W (x) is smooth away from = = 0
and W (z) is singular of order log|z| near z = 0. Using integration by parts
twice, we yield
G =¢"! W (2)0, sin(z€)dr = —€£! W'(z) sin(z€)dx
Ry Ry
=2 [ W(2)0,(1 —cos(x))dr =2 [ W'(x)(1 — cos(x€))dw,
Ry Ry
(5.55)

where the boundary term vanishes due to W (z)sin(xf) = O(xlogz) and
W'(z)(1—cosx€) = O(22?) = O(x) and the fast decay (5.47). The advantage

x
of the above formula is that we obtain a nonnegative coefficient 1 — cos(z§).

For some zy > 0, we define

G1(¢) &2 / W (x)(1 — cos(x€))dr, G1(&) = / W"(x)(1 — cos(x€))dx.
0 o
(5.56)
It suffices to verify G1(§) > 0 and G(¢) > 0. Thanks to (5.53) and 1 —
cos(éx) > 0, we obtain G1(§) > 0. For Go(§), the main term is associated

with 1 since cos(z€) oscillates. In fact, using integration by parts, we yield

Ga(&) = —W'(xg) — /00 W"(x) cos(x)dx

o

= —W'(zo) — €71 /00 W"(2)0, sin(z€)dx

_ —W/(Qjo) + W//(x(])Sin(gOg) + /Oo W///($) Sln(fxg) dr

> (o) = 3 (W) + [ W )).

where we have used £ > M in the last inequality. We choose xy > 0 and
decompose the integral into two domains z < zy and x > xz in (5.56) since
W in the above derivation is not integrable near x = 0. Using the assumption

(5.54), we obtain G5(&) > 0.

5.4.2.2  Verification of the conditions in Lemma [5.4.3

We discuss how to verify ((5.52)-(5.54]) below.
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Figure 5.1: Rigorous lower bound of G(&) for £ = ih,h = 0.05,0 < i < 400,
G(ih) > 0.

Firstly, G(£) is smooth in & and the Lipschitz constant satisfies

|0:G| < / |W (x)|zdz = by. (5.57)
Ry

The constant b; will be estimated rigorously. For small £ € [0, M|, we compute
a lower bound of the integral G(&) rigorously for the discrete points { = ih,i =
0,1,2..,n, M = nh, and verify G(ih) > 0. For £ € [ih, (i + 1)h], we use

G(€) > min(G(ih), G((i + 1)h)) — gbl >0 (5.58)

and verify the second inequality to obtain G(§) > 0. This enables us to

establish (5.52]).

For (5.53)) and ((5.54)), let us first motivate why they hold true for some xq, M.
Using ([5.44)) and (5.46) yields the asymptotic behavior of W (x) for x near 0

c c
W(z) ~ ~Clogle” = 1|~ ~Clogz, W'(z)~ —— <0, W'(z)~ 5 >0,

T 72

for some constant C' > 0. See also (D.3]) for a detailed derivation. Since W"
is integrable away from 0, (5.53)), (5.54]) hold true for small zy and large M.

In practice, we choose g = logg and M = 20 in Lemma . Note that
W5 is an explicit function. We prove for 2y = log2 in Appendix
We discuss how to compute the integrals in and ([5.54)) and verify
these conditions, which are independent of &, rigorously in Appendix [D.0.6]
This allows us to establish the conditions in Lemma [5.4.3] The rigorous lower
bound of G(§) for & = ih € [0, M] is plotted in Figure 5.1}, and G(¢) is strictly

positive.
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5.4.2.3 Positivity of Gy

Recall W3 5, G 5 defined in (5.50) and (5.51)). For G g, it is easier to establish
its positivity than that of G . From the argument in Section [5.4.2.1] and
(5.55), a sufficient condition for G (&) > 0 is the convexity of W5 3. We have

the following result.

Lemma 5.4.4. For any 3 € (1,2], we have Wy s(x) > 0 for x > 0. As a
result, Ga 5(§) > 0 for any £ and 5 € (1,2].

The proof is based on estimating W5/ 5 directly using its explicit formula and
elementary inequalities, which is not difficult and deferred to Appendix[D.0.4]

5.4.2.4 Proof of Lemma [5.4.2

Combining Lemma [5.4.3] and Lemma [5.4.4] we establish that there exists
Bo € (1,2), such that for § € [By,2] and any &, Wjﬁ(f) = 2G14(§) >
0,7 = 1,2. From (5.48), (5.49), we prove B;(#) > 0. Recall the defini-

tions of B(B), B1(8), B2(B) from (5.41), (5.45), and (5.49). We obtain B(8) =
Byi(B) + Ba(B) = 0.

Note that to obtain the equivalence between the forms of B(/) in ((5.34) and
, we require that w vanishes near x = 0 at order |z|” with v > g — 1.
Using the relation between B(S) and B(8), we prove in Lemma
for 8 € [By,2) and odd w € C* with wz™ € L. If in addition w € C1
and w,(0) = 0, we obtain that the vanishing order of w near z = 0 is larger

than 1 and choose 5 = 2 to establish B(2) = B(2) > 0. We conclude the proof
of Lemma [(.4.21

5.5 Global well-posedness

In this section, we use the crucial Lemma to control u,(0,t) and then
establish the global well-posedness result in Theorem using the one-point
blowup criterion in Theorem We impose the assumptions wy € H' N
X, wo(x)z™t € L™, and A(wp) < +oo stated in Theorem [5.2

Recall Q(3) defined in (5.34). To apply Theorem [5.1] from Holder’s inequality

/2
1, (0)] < / w(y)] cotydy < QAP lwl[17, (5.50)
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we only need to control ||w||z: and Q(5). In (5.22)),(5.23)), we derive the

evolution of ||w]|z:
d w/2 92 w/2 pm/2
— — / w(z)dr = —/ / w(z)w(y) cot(x + y)dzdy. (5.60)
dt 0 T Jo 0

Recall the discussion of the interaction on the right hand side in Section [5.2.1]
For x +y > 7, the interaction has a negative sign and it will play a crucial

role as a damping term.

5.5.1 Special case: wy € C' wy.(0) =0
For initial data wy with wp,(0) = 0, w,(0,¢) = 0 is preserved and Q(2,t) =
- fow/ ?w(y) cot? ydy is well-defined. Using (5.35) and Lemma [5.4.2, we obtain

d
—Q(2,1) = —B(2,t) <0.
2001 = B <
Since w < 0 on (0, §), we derive Q(2,¢) > 0 and
/2 /2
/ |w| cot? ydy = Q(2,t) < Q(2,0) = / |wo| cot® ydy < +oo.
0 0
Next, we estimate ||w||;1. We first establish an estimate similar to ([5.23)

T /2
—AWMWWWMWS—A w(y)cot?ydy = Q1) (5.61)

for x € [0, ). Since cotz < 0 for z > 7, coty < 1 on [0, %], and coty is

decreasing on [0, 7], for 0 <y <z < 7, we get
Ly<o cot(z +y) < 1ycrlyc, cot(z 4 y) < 1y<r 1y, coty < coty?,

where we have used z +y > F,cot(z +y) < 01if 7 < y < z in the first
inequality. Since w < 0 on [0, 5], we prove ((5.61). Plugging (5.61) in the
estimates ([5.21))-(5.22)), we derive

d w/2

w/2 w/2
— —wdx < Q(Z,t)/ —wdzr < Q(2, O)/ —wdx.
dt Jo 0 0

Using the above estimate and the interpolation (5.59) with 8 = 2, we obtain

[leollzr < [lwol] 220,

[uz(0)] S (Q(2,D)l|wllz)? < (Q(2,0)|wol 1) /2“0,
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for some constant C' > 0. Applying the same argument as that in Sections

[5.3.1{ and [5.3.2| with U(t) replacing by CQ(2,0)t, we establish

[|w||zee < K (wo) exp(2 exp(K (wo) exp(CQ(2,0)1))),

where we have used f; exp(CQ(2,0)s)ds < K (wp)ef?®0 and K (wp) is some
constant depending on Huwy(0), Hwo(5), ||wol|r1, @(2,0) and A(wy). We prove
the result in Theorem for the case of wy € C* with wy,(0) = 0.

We remark that the above a-priori estimates can be generalized to initial data

wo with lower regularity, e.g., wo/|z|' ™ € L™ for some a > 0 and wy € XNH'.

5.5.2  General case

Recall from Section the difficulties and ideas in the general case where
wo can vanish only linearly near x = 0. In this case, the monotone quantity
Q(2,t) in the previous case is not well-defined and not applicable. We will
exploit a relation similar to the conservation law w,(0,t) = wy,(0) and control

Q(S,t) for S sufficiently close to 2.

5.5.2.1 Estimate of wz!

For the less regular initial data wy € H' with wez™' € L™, w,(0,t) is not
well-defined. Instead of using the conservation law w,(0,t) = wp ,(0), we show

that w(z,t)z~! cannot grow too fast for x near 0. Consider the flow map

d
S0 1) = u(@(,1),1), P(,0) = (5.62)

We focus on z € [0, ]. Since u(x,t) >0, u(0,t) = 0, and u(,t) = 0, we get
d
%(I)(LE t) >0, 0<P(x,ty) < P(x,ts), (5.63)
for t; < t,. Using (3.1)), we derive the equation of w/z
w w (N
Or— + udy (=) = (uy — —
e <:c) (u x)x
Fix v € (0,2). Using the embedding H' < C7, we have w,u, € C7. Since
Up(z) =™ =0 at z =0 and w < 0 on [0,7/2], for z € [0,7/2], we yield
w(P(z,t), t))< B w(@(m,t),t))
(z,1) O(,1)
(‘D(l‘,t),t)‘
t)y I

(z,

W) (uz(P(2,t),t) —

i

S @@, ) |w|]

i
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Denote
A -1
m = | |w0m | |Loo .
Using Gronwall’s inequality and (5.63)), we derive

%)wp /|¢xs>m|w< )12

< mexp(C|®(x, )" / eo(s)| e

Since ®(-,t) is a bijection from [0, 7/2] to [0,7/2] and z is arbitrary, we yield

w(z,t) L N !
— | =mexp(Cla” | flw(s)l[mds) < m(A+Cla["exp(C | [lw(s)l[mds),
0 0

(5.64)

where we have used |z| < 7/2,e® < 14 Az - e < 1+ Cze®? for some

absolute constant C' in the last inequality. The above estimate shows that
limsup,_,, |w(zx,t)/z| is bounded uniformly in ¢, which is an analog of w,(0,¢) =
wo(0). Moreover, we obtain that w(z, )z~ € L™.

5.5.2.2 Weighted L! estimates

From the local well-posedness result and (5.64)), we have w(t) € X N H! and
w(z,t)z~! € L™, and w(t) satisfies the assumptions in Lemma [5.4.2] A key
step to control Q(3,t) is establishing the following weighted L' estimates.

Lemma 5.5.1. Let By be the parameter in Lemma . For 8 € [Bo,2), we

have

d d

CQB.1) < O~ QB0 +C2 - HD(), el < CQB,1) ~ CD(1),
(5.65)

for some absolute constant C,Cy > 0, where D(t) > 0 is a damping term

w/2
/ / y) cot(x + y) Lotysr/odrdy. (5.66)

As a result, for some absolute constant A > 0, we have

d

Z(QB)+ M2 = B)llwlln) S (2 - HRAB.1), (567)

At first glance, the estimate (5.67) looks terrible due to the quadratic nonlin-

earity Q?(3,t). Yet, we have a crucial small factor 2— 3, which can compensate
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the nonlinearity. The boundedness of wz™"! for z near 0 (5.64]) implies the fol-
lowing leading order structure of Q(3,t)

w/2 1
Q(B,t) = —/ w(z,t)(cot ) dx < m/ z -1 Pdr + R(B,t)
o 0
< 0
where the remainder R(3,t) is of order lower than (2— 3)~!. For /3 sufficiently
close to 2, we get (2 — 5)Q(f,t) < m, which is time-independent. Formally,

the nonlinearity in (5.67) becomes linear. In Section [5.5.2.3] we will apply
(5.67) and this key observation to prove Theorem

The first estimate in (5.65)) is highly nontrivial since the forcing term wu, (0)Q(3)
(see (5.71))) cannot be controlled by Q%(3). The idea behind Lemma is
that for the forcing terms B(S,t) in (5.35) and (5.36) and that in (5.60)), we

use the more singular integral Q(3,t) to control them near x = 0, and the

magic damping term D(t) from (5.60) to control them near z = /2. To

prove Lemma [5.5.1] we need several inequalities, whose proofs are deferred to

Appendix [D.0.5

Lemma 5.5.2. Denote a A b = min(a,b). Forz,y € [0,7/2],08 € [3/2,2], we

have
cot(z + y) < Lyyysa/o cot(z + y) + (cot z cot y)”, (5.68)
cot y(cot £)° 2 A cot x(cot y)? 2
< (cot zcoty)’ + 1y ysna cot(m —z — y), (5.69)
cot ylysn/z S (cotzcot y)? + 1ypysa/ocot(m —z —y). (5.70)

Proof of Lemma[5.5.1 Using w(x)w(y) > 0 for z,y € [0,7/2]* and (5.68]), we

obtain

/ / y) cot(x + y)dxdy

n/
/ 2/ y)(cot z cot y)Pdady < —D(t) + Q*(B,1),

where D(t) is defined in ([5.66)). Using the above estimate and ([5.60]), we prove
the second estimate in (5.65). Recall the ODE of Q(5,t) (5.35). Applying
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Lemma [5.4.2] for 5 € [fy, 2), we get

%Q(M) <(2-5 <ux(0)Q(ﬁ,t)
! s -1 2
+ = //[0 o w(@)w(y)(coty)” 82—_dxdy> = (2= 06)(11 + L),

1

(5.71)
where s = % Next, we estimate f(s) = 8(3527_11_1). Note that g € (3/2,2).
For s > 0, the following estimate is straightforward

0 < f(s) S Lscry2s + Lijacs<a + 152236_2 SsAsT
Since s = &L ,
coty
f(8)(coty)’t < (s A sP72) - (coty)? ! = cot y(cot )’ A cot z(cot )2
< (cotwcoty)’ + 1y ysnya cot(m — z — y)

= (cot z cot y)’ — Lyt ysn/2 cot(z + y).

Using w(z)w(y) > 0 for z,y € [0,7/2], the above estimate and (5.66]), we

derive

w/2
0< I < / / (cotxcot y)'B — 1yt y>n/2 cot(z + y))dxdy

_Q 67 )

For I, we cannot establish the desired estimate by comparing the kernel similar

to the above since
coty(cot 2)? < (cotzcot y)’ — 1, ysn/2 cot(z + y)

does not holds for  close to 0 and y close to 7/2. In fact, for 7/2—y = t#,x =,
with ¢ sufficiently small, the left hand side is of O(1), while the right hand side
is o(t). The main difficulty lies in that (coty)? is too weak to control cot y for
y close to /2.

A key observation is that we can further impose the restriction Q(f5,t) <
uz(0) < [|lwl|zr. In fact, if u,(0) < Q(B,t), we obtain the trivial estimate

I = u,(0)Q(B,1) < Q*(B,1).

In the other case Q(5,t) < u,(0), thanks to the interpolation (5.59)), we derive

2 (0) S QB )P w77 < (up(0))P||w]] 77,
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which implies u,(0) < ||w||z1. Now, we decompose I1 = u,(0)Q(3,t) as follows

w/2

/2 w/3
< =
I N/o |w]| cot ydyQ(B,t) /o |w]| cot ydyQ(B,t) +/ﬂ/3 |w| cot ydyQ (B, t)

2 T+ J.

For Jy, since coty < (coty)? for y < 7/3, we get J; < Q*(B,t). For Jy, using
QA1) < ux(0) < [|w|[pr, we yield
w/2 w/2 w/2
s [ lleotylwln £ [ wly)eotydy [ (s,
w/3 /3 0

where we have used w(z) < 0 on [0, 7/2] to obtain the last inequality. Applying
(5.70) and cot(m — x —y) = — cot(x + y), we obtain

Jo S / / (COt$COt Y)? — 1y yysn/o cot(z + y))d:vdy
= Q*(B,t) + D(1).

Combining the above estimates on Ji, Ja, in the other case Q(f5,t) < u,(0),
we prove
L ST+ 1 SQ*(B,t) + D(t).

Combining the above estimates on Iy, I, we establish the first inequality in
(5.65). Estimate ((5.67) follows directly from (5.65]) by choosing A > 0 with
Col > 2C eg., A= % O
Remark 5.5.3. We cannot apply (5.59) to estimate u,(0) in [; directly, since
such estimate only offers

d

QB 6) + pllwll) S (2= B)(QB, 1) + pllwllr)’
with power v < 1 for any well chosen p, which is not sufficient for our purpose.
Compared to (5.67), the above estimate loses a small factor (2 — 3)'~7, which
is due to the fact that we do not have a good estimate on ||w||.:, while for

Q(B,t) we have the crucial small factor 2 — 5. We only add minimal amount

of ||w]|z1 in the energy in (5.67) due to a similar reason.

5.5.2.3 A bootstrap estimate

Now, we are in a position to establish the global well-posedness result in The-

orem in the general case. It follows from a bootstrap lemma.
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Lemma 5.5.4. Suppose that wy satisfies the assumptions in Theorem [5.3.
Denote m = ||woxr™Y||z=. There exists some absolute constant c, such that for
o==,if fOT u(0, 8)ds < 400, we have f0T+§ u,(0, 8)ds < +00.

Proof. Without loss of generality, we assume m > 0. Recall Q(f,t) from

(5.34). Denote
In view of Theorem and ((5.59), for wy € H' N X, the solution w(z,t)

remains in H' if H(B,t) < +oo for some 8 < 2. Thus, it suffices to control H.
Using Lemma [5.5.1] we have

d

S H(B,1) < u(2 = P)H (B, 1) (5-72)

for some absolute constant ¢ > 0 and any 8 € [fy,2). Since fOT uz (0, s)ds <
0, using Theorem , we obtain sup,cp [|w(t)||m < 400, [|w(T)||L < +o0.

Using ([5.64), we obtain
w/2 1 w/2
Q.1 = [ lel(cotyPdy < [ folydy+C [ foldy
0 0 0

1

< m/ (yl_ﬁ + Cy" P exp(CT sup Ho.;(t)HHl)>dy + Cl|w(T)|| 2

0 t<T
m
< —— + Cmexp(CT sup ||w(t)||gr) + Cllw(T)||Lt,
2—p 1<T
(5.73)

where C'is some absolute constant and we have used |(cot )’ —2 77| < | cot x—
x a7t < 272 < 1 in the first inequality. Thus, there exists 3, slightly
less than 2 , such that

H(61,T) = Q(61, T) + A2 = B)l|lw(T)||

2
< o Cmexp(CTsup [w(t) ) + Cllo(Dln < 5
2—-5 +<T 2—- 5
Solving the ODE (5.72) with 8 = on t > T, we yield
d .
EH (B1,t) > —p(2 — Br),
which along with the estimate on H(f5;,T) imply
-1 -1 2 — 51
H (B, T+7)>H (B, T) — p(2 = p1)7 > — (2 = BT

2m
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Note that p is absolute. We choose § = . Then, for t € [T, T + ¢], we yield
- 2-06 2-01  2-h 4m

Y6, t) > — = H(Bi,t) < : 5.74

(Bt) =2 =0 4m 4m (ﬁl’)_Z—ﬁl (5:74)

Applying (5.59), we obtain u,(0,t) < @5 on [T, T + ¢]. We conclude the

proof. O

Remark 5.5.5. Denote V(t fo uz(0,s) + 1)ds. We can obtain an a-priori

estimate for V(¢) by trackmg the bounds in the above proof. Using standard
energy estimates and (5.33)), we obtain

Cmexp(Ct Sup lw®)[la) + Cllw@®)lr < g(V(2), Ch),

g(z,c) = c-exp(c - exp(c-exp(c - exp(c - exp(c - exp(cr)))))),

for some constant C; > 1 depending only on the initial data. Note that the
estimate of ||w]|r~ is triple exponential growth, and then the estimate
of ||w||g is a quintuple one due to extrapolation in bounding ||u,||r~. These
estimates further lead to the above sextuple exponential growth. For any

T > 0, choosing $; with 2 — 8, = ¢ - Ll) for some absolute constant ¢

g(V(T),C
and using ((5.59)), (5.74]), we yield
V(T +6) < g(V(T),Cy),

for some constant C; > 0 depending only on wy. Since ¢ and Cy are inde-
pendent of T', iterating the above estimate yields an a-priori estimate for V'(¢)
with any ¢ > 0.

Remark 5.5.6. The above estimate is consistent with the heuristic in the para-

graph below ) that the nonlinearity (2 — Q2 in ( - or (2 — B)H? is
essentially hnear. In fact, for t € [T, T + 6], (5.74) implies (2 — Bl)Q(ﬁl, t) <
(2= B1)H(P1,t) < 4m. Formally, Q(f,t) grows exponentially in ¢ for 8 close
to 2, which we can barely afford, while in the previous case, Q(2,t) is bounded
uniformly. This argument is similar in spirit to extrapolation, e.g., the BKM

blowup criterion [I].

5.6 Finite time blowup for C* N H* data

In this section, we prove Theorem on finite time blowup for with
C*N H* data for any o € (0,1) and s € (1/2,3/2). We will use ideas outlined
in Section [5.2
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Since we will adopt several estimates established in [14], 83|, for consistency,
throughout this section, we assume that the solution w is 27 periodic. This
modification also simplifies our notations. Theorem can be established by
applying the same argument to wy(z) = wy,(27). As a result, the Hilbert
transform and the set X becomes

1 g —
Hf & —P.V./ cot xz—yf(y)dy,

2m -

X = {f : fis odd , 27w — periodic and f(x) <0,z € [0,77]}.

5.6.1 Slightly weakening the effect of advection

Recall the discussion on the competition between advection and vortex stretch-
ing in Section [5.1.2] To characterize that the advection is relatively weak for
we C*NX with w = —Cz® near x = 0, we study using the dynamic

rescaling formulation
w + uw, = (¢ + up)w, u, = Hw (5.75)

derived in ((5.77)-(5.79) with the normalization condition
cu(t) = (@ — 1)u,(0,1), (5.76)

where ¢, is a rescaling factor. If u,(0,t) is bounded away from 0 : w,(0,t) >
C > 0 for all ¢, the competition between advection and the vortex stretching
is encoded in the sign of ¢, since sign(c,) = sign(a — 1), which can determine
the long time behavior of the solution. See the discussion below . We
remark that the idea and condition are similar to those in [14], which

play a crucial role in establishing singularity formation for the gCLM model.

5.6.2 Dynamic rescaling formulation

We follow the method in [14] 19] to construct finite time blowup solution using
the dynamic rescaling formulation of (3.1)). Let w(z,t), u(x,t) be the solutions
of equation (3.1). Following the ideas in Section [2.1.4] we obtain that

w(z,7) = Co(Tw(z,t(7)), (z,7) = Cu(T)u(z, (1)) (5.77)
are the solutions to the dynamic rescaling equations
Wy + U0, = Cow + U, Uy = Hw, (5.78)

where

CL(r) = exp < /OTcw(s)ds), Hr) = /0 "L (s)ds. (5.79)
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Remark 5.6.1. In (5.77))-(5.78]), we do not rescale the spatial variable. This is

different from the dynamic rescaling equation in Section [2.1.4] which contains
a factor Ci(7) in (5.77) and a stretching term ¢;(7)zw, in (5.78). Here, we
simply choose ¢ (1) =0 and Cj(7) = 1.

We will impose some normalization condition on the time-dependent scaling
parameter ¢, (7), and establish that —C} < ¢,(7) < —C < 0 for all 7 > 0
and some C7,C > 0. To simplify our presentation, we still use ¢ to denote the
rescaled time in the rest of this section, unless specified, and drop ~ in .

Then ((5.78) reduces to (5.75).

5.6.3 Construction of the C* approximate steady state

Based on the discussion in Sections [5.1.2] and [5.6.1], we first construct an ap-
proximate steady state (wq, Cy.o) Of with w, € C%* and w, ~ —Cxz® near
x = 0. Following the idea in [14], we perform the construction by perturbing
the equilibrium sin(z) of (3.1). A natural choice of w, is

1 s
wo = —sgn(z)|sin(z)|%ca, C€o = (;/ (sinz)® cot gdx)_l. (5.80)
0

We choose the above ¢, to normalize Hw,(0) = 1. Let u, be the associated

velocity with u, , = Hw,. We choose ¢, , according to ((5.76)

Coa = (@ —1Dug(0) = a— 1. (5.81)

Denote

w; = —sinz, wu; =sinz, N, =w,— wi. (5.82)

For « close to 1, we expect that (w,, us) are close to (wq,uq).

Lemma 5.6.2. Let k1 = 3, ky = L. For ky < 35 <a <1 and z € [—7, 7|, we

have
10i0a] < (1 —a)|sinz|™", i=1,2,3, (5.83)
[Hno| S (1= a)lz[®,  |0:Hna| S (1—a)|sinz[=, (5.84)
(@ — Dwy — SIN T (Wa 00 — Wize)| S ((1—a) Alz]?)|sinz|* . (5.85)
For x near 0, the above estimates on w,, are similar to those for w, = —z“ and
wy; = —x. The reader can think of k1, ko close to 1, and that « is even closer

to 1.
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Proof. Due to symmetry, it suffices to consider x > 0.

Firstly, using Lemma and 1 < a — Ky, we obtain

|(sinz)*—sinz| = (sinz)™(sinz)* " (1—(sinz)' ) < (1—a)(sinz)™. (5.86)

Recall ¢, defined in (5.80]). Using the above estimate, we obtain

1 ™
—/ |(sinz)® — sin x| cot gd:ﬁ Sl—a, |ca—1S1—a. (5.87)
T Jo

Next, we establish the estimate of w, defined in (5.80). A direct calculation
yields

Waz = —Co(3INT)* 1 COST,  Waue = —Co(a—1)(sinz)* 2 cos® z+ac, (sin z)”.

(5.88)

We consider a typical case i = 3 in ([5.83]), and the case i = 1 or 2 can be proved

similarly. Recall wq,u1,n, from (5.82)). Using (5.86)), (5.87) and ke < a, we
get

Naze| = |Wawe — sinz| < |acy(sinx)® — sinz| + (1 — a)(sin2)* 2

<(sinz)® —sinz| + (1 — a)(sina)* 2 < (1 — a)(sinz)™ 2.

For (5.85)), the first bound (1 —«)|sin z|*~* follows directly from (5.83). Using
(5.88), |wi 22| = sinx and a direct calculation, we yield

|(Oé - 1>w0¢ - Sinx(wa,w:v - wl,zm)|
<Jea(a — 1)a(sinx)* *(cosx — cos? )| + C(sin 2)* ™ + sin z|w; 4|

<(sinz)* Hz|? + (sinz)**t < (sinx)* Ha|?,
where we have used |1 — cosz| < 2.

Next, we prove (5.84). Denote D, = sinzd,. Using (5.83)) and k, =  close to

1, we have

10amalls S (1= )] [sinz[™ Y[ 1 -0,

102 (Dana)llze S 11 0uttal + [sin 20204 |[2a $ (1 —a)|sinz] Y| S1—a.
(5.89)
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Recall from ([5.80) that u,.(0) = Hw,(0) = 1 = u;,(0). It implies Hn,(0) =

0. Since the Hilbert transform is L* bounded, using Hélder’s inequality and

(5-89), we yield
x x 3/4
oo =| [ outinalo)dy) < o Hnaloe ([ 1d0)" S o Hn e
0 0

= & HOutna| |10 € 20010l |10 S (1 = a)a®/™.

Y

Since D, Hn, vanishes on x = 0, 7, using an estimate similar to the above, we

yield
Dy Hno ()] S 110 (Do Hno ()| (|2 A=) S [0 (D Hijo (2)) || | sin /4.

Applying Lemma (n = 2), we yield
0:(DzHno) = 0:(H(Dina) — H(D21a)(0)) = 0:(H(Dyna) = H (0 Dina)-

Applying (5.89) and the fact that H is L* bounded, we establish
| Do Hijo ()| S |1H (82 Dana) |4 | sin ¥ < |00 Dot || sinz 7 S (1—a) | sinz*/%,
which implies the second inequality in ((5.84)). U

The above L* estimate on Hn, can be replaced by L estimates with larger p,
which offers more vanishing order of Hn, near x = 0. Here, the power |z|>/*

is sufficient for our later weighted energy estimates.

5.6.4 Nonlinear stability of the approximate steady state
In this section, we follow [14], [19] to perform stability analysis around (we, Cwa)
constructed in ([5.80]), (5.81)) and establish the finite time blowup results. We

first introduce some weighted norms and spaces.

Definition 5.6.3. Define the singular weight p = (sin 2) 2, the standard inner
product (-,-) on S!, the weighted norms || - ||, and the Hilbert spaces H as
follows

= [ ot 152 o [T w5170 <0l < )
9 0 gax, H A7 . SiIl2 % ’ ’ H
(5.90)

with inner products (-, -)3; induced by the H norm.

The H norm was introduced in [83] for the stability analysis of the De Gregorio

model. By definition, we have

(f 9w = (4m) " (fo, 9up). (5.91)



283

5.6.4.1 Linearized equation

Linearizing (5.75)) around wy, ¢, «, we obtain the equation for the perturbation
w, ¢, (Note that (w + wa, cw + €ua) is the solution of (5.75))

Wi = —UaWy + Ug gW + UgWy — UWg g + Co oW + Cuwa + N(w) + F(wy)

A (5.92)
£ Low~+ Nw) + F(w,),
where the nonlinear term N(w) and error term F(w,) are given by
N(w) = (Co + up)w — uwy,  F(wa) = (Con + Unp)Wa — UaWau-  (5.93)
We choose the normalization condition on ¢, according to ([5.76|)
cw = (a0 = 1)u,(0). (5.94)

Under the conditions (5.76)), (5.94)), it is easy to obtain that the slope of w/x®

is fixed, i.e.

t o , ,0 a . N .
lim w(z,t) + wa(x) _ lim w(z,0) + w, (3:)’ lim w(z,t) _ lim
z—0 xr< z—0 xr< z—0 % z—0 T

In particular, if the initial perturbation wy(z) vanishes near x = 0 with order
higher than z%, e.g., ?“, the perturbation w(z,t) will also vanish near z = 0
with higher order. This allows us to perform energy estimates on w with a

singular weight near x = 0.

We treat the linearized operator L, as a perturbation to £,
Liw = —uwy + U zW + Up) — UW1 g = — Sin Tw, + CoS Tw — U, SIN T + U coS ,

where we have used the explicit formulas (5.82]), and perform the following

decomposition

Low = Liw — (Ug — U)Wy + (Uaz — Ul z)w + Uy (Wa — w1)
- u(wa,x - Wl,cc) + Co,aW + CwWq

= L1w — U(No)Ws + HNo - W + Uple — oz + Co oW + CuWa L Liw+ Row,
(5.95)

where u(n,) denotes the odd velocity u with u, = Hn,. In fact, we have
u(na) = _(_am)—l/zna_

The operator £; enjoys an important coercive estimate established in [83].
The following slight modification of the result in [83] is from [14].
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Lemma 5.6.4. Suppose that f,g € H and [ fdx = 0. Denote ey(z) =

cosx — 1 and

fe = <f7 €0>'Ha <f7 g)Y = <f - fee()ag - 9860>H'

We have : (a) Equivalence of norms : (H/R - e, (-,-)y) s a Hilbert space and
the induced norm || - ||y satisfies 5||flla < ||f|ly < ||f]|u-

(b) Orthogonality : ||leo|ly = 1 and
(f = feeo,eo)r = 0. [IfI3 = f2 + |I£I5-
(c) Coercivity : (Lif, fy < —g||f||§,

Using (5.91) and the above result (b), we can represent (-, -)y as follows

(f.9)y = (f = feeo, 9)n = (4m) " (fo + fesinz, gup), (5.96)

where we have used 0,¢y = —sin .

5.6.4.2 Weighted H! estimates

We consider odd perturbation w, which satisfies |, grwdr = 0. Recall the
linearized equation ([5.92) and the decomposition ([5.95). Performing energy

estimate on (w,w)y yields

1d
5%(w,w>y = (Liw,w)y + (Row,w)y + (N(w),w)y + (F(wa),w)y. (5.97)

The estimate of the first term (£jw,w)y follows from Lemma

3
(Liw,w)y < —gHWH?/- (5.98)

For the remainder R, in (5.95)), a direct calculation yields

arRaw = _u(na)wx:ﬂ + aana R UgaTa — una,xm + Cw,awm + waa,m

A

_u(na)wzx + Ra,2w~

Applying (5.96)), we derive
(Row,w)y = (47) 0, Row, (wy + wesinz)p)

=(47) "~ u(Na)Wez, (Wp + wWe sinx)p) + (47r)_1<7?,a,2, (wp + wesina)p) = T+ I1.
(5.99)
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Recall p = (sin £)72. Since sin £ < z, we can essentially treat p as z72. For
I1, it suffices to estimate ||Rq.owp'/?||2. Since ¢, = (a — 1)u,(0) (5.94), we
decompose R, 2 as follows
Raoo =0, Hng - w~+ UgpNe — (. — 1y (0) SIN T) Mg 2
2 y Mo = ( (0) sin )., (5.100)
+ 1, (0) (v = Dwaz — SINT * Ny zz) + CoaWa-

Next, we estimate the L?(p) norm of each term. The main difficulty is the
estimate of the nonlocal term, e.g., ||uzaNap'/?||2, due to the singular weight
p near x = 0 and that the profiles w,, n, are not smooth near x = 0, 7. Since
Nap*’? ¢ L (see (5.80),(5.82)), we need to perform a weighted estimate on
Ugze. It is based on the lemma below, which shows that the Hilbert transform

commutes with % up to some lower order terms.
Lemma 5.6.5. Suppose that L € L*([—m,x]). We have

Hf = HIO) ) f )y,

. B 5)‘5/_1 f(y)

The proof is deferred to Appendix[D.0.1} Since u,w are odd, we get u,,.(0) = 0.
Applying the above Lemma with f = w, and using the fact that H is L?

bounded, we yield

— e =1— ||L2<HH( )HL2+H HL1<H “[l2 S lwllp. (5.101)

Applying (5.83)) in Lemma we obtain

[taattap' |22 S lltaet™ ||zl 10l [ S (1 = @)l|w]]a

Denote @ = u — u,(0) sinz. Next we estimate ||@n z2p"?||2. From (5.80) and
(5-83), 7aze is similar to |sinz|*2, which is singular both at z = 0,7. To
overcome the singularities from 7, ., and p'/2, we estimate 7(sin ) "'z ~!. For

x| > %, since 4(m) = 0 and |sinz| < |7 — |z]|7!, we yield
la(sine) e~ S Jalm — |2l 7 S 110sullso S Htaall2 S 1wl

For |z| < 7, since @(0) = 0,u(0) = 0, using integration by parts, we obtain

O la] 1
|G (sinx) "t Sﬁz—

S| [ o) @ -

1 ~ -1 i 2 2 1/2
S sslowa- (| via—y)dy)
0
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Since Oy, U(y) = Oyyu + u,(0) siny, using (5.101)), we derive

a(sing) et S @72 (Juwer ™ 2 + [us(0))22 < [lw]la

Since p'/? = (sin%)~! =< 27!, applying the above estimate and (5.83), we

obtain

1 1/2

[1(u = uz(0) sin @) 0 cup™ ||z < [la(sine) ™ 02| |oc 1000 sin |2

S (1= a)llwlll| [sinz™ ]y < (1= a)llw]l.

The estimates of other terms in ((5.100) and I in (5.99)) are relatively simple.
Since w vanishes at z = 0, 7, using the Hardy-type inequality in Lemma[D.0.5]

we yield
lw(sinz) ™' p2[[s S [lwz™2[lo + [lwlm — [~ ]2

S llwaz™ Iz + lwall2 S Nowz ™2 < [l

Applying the above estimates and (5.84)) in Lemma [5.6.2] we obtain

102 Hno - wp' Iz < [lw(sine) ™ p!2[|o [ sin(2) 0 Higa| |z S (1 = a)||w] [

Applying (5.85)) in Lemma and (1 —a) A2? < (1 — )|z, we yield

1/2 |O¢—1:B—1||2

[l Slltellze|I(1 = @) Az]*)| sin @
St l2(1 = a) V2] [sin|* "],

S(1 = )2 Jwlls S (1 — )2 o]l

||U96<O)((a - 1)0*)01,:1: —sin - na,x:c)

Recall ¢, o = (o — 1) from ([5.81)). The estimate of the last term in ((5.100) is
trivial
lw.awep™ll2 S (1 = @)l
Combining the above L?(p) estimates of each term in (5.100)), we establish
1111 S Rl |(we + wesina)p/2]5
1 1
< (1= a)?[Jwlla(llwlln + |wel) S (1 = a)2]|wlf,

where we have applied |w,| < ||w]||3 from Lemma in the last inequality.

(5.102)

Next, we estimate the term I from (5.99). Applying integration by parts, we
yield

A 1 2 -1 2
I = (—u(Na)wez, wep) = (—u(na)p, 582(‘*’9:) ) = §<ax(u<77a>p)/) , Wap),

I & (—u(Na)Wez, WesINT - p) = wWel Oy (u(Na)p - sinT), Wy).

1
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Since p = (sin%)72,10,p| < plz|™", and O,u(na) = Hny, applying (5.84), we
derive

(1)
02 (una)p)]| S (Deuna)| + |22 )p S [10.u(ma)llscp S (1= @),
102 (u(na)p - sinx)| S |u(na)pl + [20:(u(na)p)]
S 10zu(na)llsclzpl + (1 = a)fzlp < (1 = a)z|p.
Using the above estimate and the result (b) in Lemma [5.6.4] we establish

1] S 110a(w(na)p)p™ ool lwop™ 15 S (1 = a)llwl Ry,

1] S (1= a)lwe| - [lwzzp|lr S (1= a)llw]lallwzp [0 S (1= a)||wlf3,.
(5.103)

Plugging the estimates ((5.102)) and ((5.103) in (5.99)) and then applying Lemma
[.6.4] we obtain

[(Raw,w)v| S (1= a)?Jwlf; < (1 = ) ?|w][3- (5.104)

5.6.4.3 Estimates of nonlinear and error terms

Recall the nonlinear term N (w) and error term F(w,) from (5.93)). Since N (w)
is similar to that in [14, 83| and the perturbation w lies in the same space H,
the estimate of N(w) is almost identical to that in [I4, 83]. In particular, we
yield

(N @)l S il S [l (5.105)

and refer the detailed estimates to [14] [83].

In the following derivation, we use the implicit notation O(f) to denote some
term ¢ that satisfies |g| < f. It can vary from line to line. Due to symmetry,

we focus on z € [0, 7.

For the error term F'(w,), we first compute 0, F (w,)

axF(wOé) = UqzaeWao — UaWa,zz + Cw,aWa,z- (5106)

Recall uy = sinz, w; = —sinz, 1, = wo—w from (5.82), and ug , —u1 , = H1jy.
Applying Lemma and |w,| < |sinz|* (5.80)), we yield
UazaWa = (ul,xft + aana,x)wa = U1,z2Wa + O((l - Oé)‘ sin 1"’{171+Q)
= Uy gewi — SINT - Ny + O((1 — )| sin x| 1) (5.107)
= (sinz)? + O((1 — )| sin z|* 1),
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We decompose the second term in ([5.106|) as follows

UaWa,zz = Ual)azx + UaW1 za
X (5.108)
= (U — SINZ)Ngze +SINT - N gz + Ui gw = 11 + Lo + I5.

Using ((5.84)), we yield

|ua,m’ S |u1,m| + 0 Hno| S |Sinx’mila

[ug —sinz| < (J|uz(Ma)]]oo + 1)|sinz| < | sinz|.
Recall 4, ,(0) = 1 from . For 0 < x < 7, the above estimate implies
U — sinx| < |uy — x| + Cla]® = ‘ /x(uax(:v) — Uy 2(0))dx| + C|z|?
0
= | [ toas(0) - (& = |+ Clal 5 [ o = )+ Claf 5 Jal
Therefore, we yield
[ug — sinz| S Lycajolz|" ! + Lpsr ol sinz| < [sinz| - 2|,

which along with ([5.83)) imply the estimate of I; in ([5.108])

L] < (1—a) sinac|“2_1|x|“1.

For I3 in (5.108)), applying (5.84) and u; = sinx,w; = —sinx, we get

I3 = ugwy 4o + (Uq — U1 )W 2z = (Sin 7)* 4+ O(] sin x|2||uam||oo)

= (sinz)* + O((1 — a)| sinz|?).

Recall ¢, = o — 1 from (5.81). We combine I, in (5.108)) and ¢, owaz in
(5.106)) and then apply (5.85)) to obtain

|CoaWar — Lo] = [( = 1)wa e —SINT - Mo ua] S ((1— ) A |x|2)| sim:zc|°‘_1

< (1—a)Y?|z| - |sinz|*L.

Plugging the above estimates on [; and ¢, , in (5.108), we establish

UaWaze—CooWar = N1+ I3+ (Ta—Cp aWar) = (sin2)2+O((1—a)'/?|z|" | sin z|*271),
(5.109)
where we have used [sinz| < [sinz|[®7! |sinz| < |z] < 1 and Ky < a to

combine the estimates of I; in the last estimate.



289
Recall k1 = 3,k = % from Lemma [5.6.20 Combining (5.106), (5.107) and

4
(5.109), we establish
8xF(wo¢) = (Sinl‘)Q . (1 — 1) + O((l — Of)| Sinx|fi1—1+a> + O(l . a)1/2|$|51| Sinx|f€2—l

= (1 — a)Y?|sinz|"2~ Yz,

where we have used |sinz|"t* %2 < |sinz|®™ < |z|* to obtain the last esti-

mate. Using the above estimate and Lemma [5.6.4], we prove

(F(wa)w)y] S IE@allyllwlly S N0.F (wa)p'?[[allwlly

S (1= a) || [sina|™ o ] |wlly S (1—a)?||wl]y.
(5.110)
The integral is bounded since 2k — 2 = —}l > —1,2k0 + 2k — 4 = —% > —1.

5.6.4.4 Nonlinear stability and finite time blowup

Combining (5.98)), (5.104), (5.105)), and (5.110]), we establish the following
nonlinear estimate for some absolute constant C' > 0

1d 3
57 Wl < =5 = ClL=alA[wlfy + C11 = aZ[lwlly + Cllwll3-

Therefore, there exist absolute constants oy < 1 sufficiently close to 1 and p >

0, such that for any « € (ap, 1), if the initial perturbation satisfies ||wo|ly <
pl1 — a2, then

lw(®)ly < pll = a2,

Con+ealt) = (0= 1)1 +ua(0)) < (0~ 1)1~ Cla—1]7) < Lo 1)

holds true for all ¢ > 0. Since the weight p = O(1) near z = 7 and (J,wa)?p
is integrable near x = m, we can choose initial perturbation wy such that
llwolly < |l —a|Y2, wy € C*((—7/3,7/3)) and wy + we € C*NC=(S'\{0}).
For example, wy can be —w, near r = 7, wyg = 0 near x = 0 and smooth in
the intermediate region. A simple Lemma shows that wy + w, € H® for
any s < a+ 3, and a direct calculation gives [ |sinz - f2/f|dx < 400 where
f = wo+w,. Using the rescaling argument in Section [5.6.2| we establish finite
time blowup of from wy + we.

The condition foT Uphy (0, 1)dt = oo in Theorem where wu,y,, is the velocity
in , follows from Theorem or a calculation using the above a-priori
estimates on the perturbation and the rescaling relations —. Due
to the inclusion C* C C*, H®* C H** for 0 < a1 < a, 51 < s, we conclude the
proof of Theorem
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Chapter 6

CONCLUDING DISCUSSIONS AND RELATED PROBLEMS

Toward the Hou-Luo scenario with smooth data

In this thesis, we have centered around the important question of singularity
formation for the 3D incompressible Euler equations. Our ultimate goal is to
establish singularity formation of the 3D Euler equations with smooth data

and boundary.

In Chapter [2| following the framework in Section and adopting several
important methods from [42], we have proved finite time blowup of the 2D
Boussinesq and the 3D axisymmetric Euler equations with solid boundary and
Cbe velocity that has finite energy. These results provide the first rigorous

justification of the Hou-Luo scenario using C** data.

We remark that the analysis presented in Chapter [2| relies heavily on the
small parameter o from the C%® regularity of the velocity. By choosing a
sufficiently small o, several important nonlocal terms in the equations can be
made arbitrarily small. As a result, the equations can be characterized by a
much simpler leading order system. For smooth initial data considered in |86,
87], it is almost impossible to obtain an analytic expression of an approximate

steady state with a small residual error for the dynamic rescaling equations.

In Chapters [3, i, we further develop the framework for smooth data and
establish finite time asymptotically self-similar blowup of the De Gregorio
model on R and the Hou-Luo model from Cg° initial data. An important
novelty is to construct the approximate steady state with a small residual
error by solving the dynamic rescaling equations numerically for a sufficiently
long time. The residual error is incorporated in the energy estimates as a
small and lower order term. This approach can be generalized to construct
the approximate steady state for the 2D Boussinesq equations in the Hou-Luo

scenario.

The framework of analysis established in this thesis provides a promising ap-
proach to studying the singularity formation of the 2D Boussinesq equations

and the 3D axisymmetric Euler equations with smooth initial data and bound-
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ary. The key step is to establish the linear stability analysis of the approximate
steady state in . We can follow the general strategy developed in this the-
sis, in particular Section and Chapter {4 by (1) extracting the damping
effect from the local terms, (2) treating the advection terms as the perturba-
tion to vortex stretching, and (3) controlling the nonlocal terms by developing
sharp functional inequalities on the Biot-Savart law and exploiting cancellation
among them to control the nonlocal terms by using the damping effects from
the local terms. See also Section Compared with the HL model, we will
encounter some additional difficulties associated with the advection away from
the boundary, and need to estimate more complicated Biot-Savart law in the
2D Boussinesq and the 3D Euler equations. In our future work, we will explore
a more effective functional space, e.g., weighted LP or weighted C'“ space, to
establish the stability analysis. Such space offers the advantage of weakening
the effect of the advection in the stability analysis and extracting larger damp-
ing effect from the local terms in the linearized equations. Moreover, it still

allows us to estimate the Biot-Savart law effectively.

Singularity formation in related equations
Our framework is useful to study other fluids equations and models. We discuss

some equations and problems below.

Incompressible porous medium equation The 2D incompressible porous

medium (IPM) equation
0, 4+u-V0=0, u=V+-(-A)"'9,0, (6.1)

describes the evolution of density transported by incompressible flows. Equa-
tion (6.1) has the same level of regularity as the surface quasi-geostrophic
(SQG) equation (3.5)), which has a Biot-Savart law u = V*+(—A)~"/20. Whether

the IPM equation blows up in finite time remains an open question.

Simplifying the w equation in the 2D Boussinesq equations (|1.3)) by w = 0,,
we obtain

O +u-Vo=0, w=40, u=Vi{-A)lu,
which is exactly (6.1]). See also the discussion in Section [5.1.3] We consider a

scenario similar to the Hou-Luo scenario: 6 is even in z, ,(z,y) > 0 for 2 > 0.
Note that 6, is the driving force for the growth of w in (1.3), and it leads to a
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strong alignment between 6, and w. It is reasonable to expect that this sim-
plification does not change the essential mechanism in generating a potential
singularity in the presence of a boundary. In particular, we expect that the
method developed in this thesis to study the blowup of the 2D Boussinesq
equations can be generalized to study the potential singularity formation of

the IPM equation with smooth data and boundary.

In the above scenarios with boundary, the solutions to the 3D axisymmetric
Euler equations, the 2D Boussinesq equations, and the IPM equation all enjoy
the following parities. The density § or swirl (u”)? is even, and the velocity u*
for the 3D Euler or u; for Boussinesq and IPM equations is odd with respect
to the symmetry axis: z = 0 for the 3D Euler or x = 0 for the 2D Boussinesq
and the IPM equations. These parities are important to generate the potential
singularity. See [38] for the discussions of parity in the singularity formation

of some 1D models.

These examples of potential finite time blowup for the 3D axisymmetric Euler
equations, the 2D Boussinesq equations, and the IPM equations with boundary

suggest the following guideline of blowup, which has some flavor of universality.

In the presence of boundary, singularity formation may develop
from smooth initial data if the Biot-Savart law has a certain parity

and the solution satisfies suitable sign and symmetry properties.

Singularity formation without boundary In the case without the bound-
ary, the understanding of the potential singularity of incompressible fluids with
smooth data is much poorer. In Chapter [5 we have proved that stronger ad-
vection can prevent singularity formation in the DG model on S*. Thus, one
of the guidelines to study finite time blowup without boundary is to look for
a scenario where the advection is relatively weak. Meanwhile, it is important
to understand how the vortex stretching generates the blowup without the

boundary.

For these purposes, one can study the modified 3D axisymmetric Euler equa-
tions (1.14]) [72] that add a weight € to the advection. The authors in [72]
showed numerically that (1.14) develops a stable self-similar singularity for

weak advection. Thus, a natural step is the following.
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Problem 1. Prove that there exists ¢g > 0, such that the modified 3D azx-
isymmetric Euler equations ((1.14) with any 0 < e < &g develop a finite time

singularity from some C2° initial data.

A closely related problem is establishing the singularity formation of Constantin-

Lax-Majda type models in 2D
w = K(ww, z€R? (6.2)

where IC(w) is some zero order Calderon-Zygmund operator in 2D. Singularity
formation of (6.2)) is listed as an open problem in [57]. See also [25]. We focus

on three specific operators

K(w) = 8$y(—A)’1w, Kw)=(-A) 1w, Kw)= 81(—A)’1/2w. (6.3)

These operators arise naturally in 2D. In fact, we consider the equation of 6,

in (61)
Oy +u-Vl, = —u, 0, —v,0,. (6.4)

For the vortex stretching term, we have —u,0, = —0,,(—A)7'6, - 6., which
relates to the first operator in (6.3). If we remove the advection term and

—v,0, from (6.4]), we get (6.2).

The second operator in ([6.3)) relates to v, = 9,z (—A) 'w in the 2D Boussinesq
equations (|1.3). The third operator relates to the SQG ({3.5)), where the Biot-
Savart law is given by u = V+(—A)~1/20. The question is the following.

Problem 2. Prove finite time blowup of (6.2) with K(w) being one of the
operators in (6.3)) from some C° initial data.

Unlike the 1D CLM model (3.4), (6.2]) cannot be solved explicitly for general
initial data. We believe that our framework provides a promising approach to
studying Problems [1] [2|

Based on the solutions to these problems, a potential approach to construct
finite time blowup of the full equations is by a continuation argument. One
adds the advection back to the equations and then gradually increases the
strength of the advection. For strong advection, the singular solution would
be unstable. In this case, it would be helpful to consider the equations of the
self-similar blowup profile, which is time-independent, rather than the dynamic

equations.
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General vorticity model

We have shown in this thesis and previous discussions that the competition
between the advection and vortex stretching is an essential difficulty for singu-
larity formation in incompressible fluids and can lead to complicated dynamics.
In Chapter [5, we construct a finite time blowup solution of the De Gregorio
model on S* from C* N X initial data for any 0 < a < 1, The blowup
result from initial data wy in class X is sharp as we have proved global regu-
larity for wy € C*'NX. From these results, we better understand the situation
where the advection is weaker. In particular, the weakening of the advection
is a local phenomenon since the initial data wy € C(S*\{0}) N X of the sin-
gular solution is only C'* at the origin. This phenomenon is quite surprising
since the advection and the vortex stretching are nonlocal effects. A natural

question is the following.

Problem 3. How universal are this phenomenon and weakening mechanism?

Do they depend on the specific Biot-Savart law?

In the DG model, the velocity u is determined by the Hilbert transform w, =
Hw. To study the above problem, we can consider the general vorticity model

proposed in [3§]
W uwy = upw, Uy = K(w), x €St (6.5)

where K is a non-trivial Fourier integral operator with bounded symbol m
satisfying |m(k)| < %“f' The motivation for this bound on m(k) is that the
velocity u should be at least one order more regular than w to avoid the loss

of derivative. In particular, we have ||u,||gs Ss ||w]|ms-

It is conjectured in [38] that can blow up from H* data with s < 2. In
the case of Hilbert transform K = H, reduces to the DG model , and
we have resolved the conjecture in Chapter [5] The construction of finite time
blowup in Chapter [5|is based on perturbing the smooth steady state sin(2z)
of the DG model. We first developed this argument in [I4]. For even symbol
m, i.e. K(w) is odd if w is odd, we believe that this argument can be applied
to study singularity formation of and answer Problem 3| in the context
of the 1D vorticity model. Such an answer will allow us to understand the
essential feature of the weakening mechanism and then generalize it to full

fluids equations.
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Global regularity of (6.5) can be investigated using the argument in Chapter

(] with additional assumptions on the operator K.

Global regularity of the De Gregorio model on S*

In Chapter |5, we have established the global regularity of the DG model on
St from initial data wy € H' N X with wy(z)z™! € L>, based on a one-point
blowup criterion, where X denotes the class of odd solution w with w(z,t) <0
for x € [0,7/2]. This result rules out the potential blowup of the DG model
on S! from smooth initial data in X that provide the most promising blowup

candidate up to now.

Our analysis provides valuable insights on the global regularity of with
more general data, which relates to the Open Problem I in Section [I.4.1] A
potential direction is to generalize the one-point blowup criterion to a finite-
points version. For simplicity, we assume that the number of zeros of w(z,t) is
finite, and the zeros are z;(t),i = 1,2,..,n with O,w(x;(t),t) # 0. It is shown
in [73] that the number n and 0,w(x;(t),t),i = 1,2.,,.n are conserved. Denote
Ni(t) & {x : w(z,t) = 0, sgn(w,(r,t)) = £1}. A natural generalization of
Theorem is that the solution of cannot be extended beyond T if and

only if
/ > fua(w, t)]dt = (6.6)

zeN_(t)
A weaker version is that Y. | |u,(z;(t),t)| controls the breakdown of the so-
lution. These blowup criteria are consistent with that of the CLM model. See
the discussion in Section We believe that these criteria are important

for establishing global regularity from general smooth initial data.

Passing from to the global regularity, one may estimate functionals and
quadratic forms similar to those in Section [5.4]in a suitable moving frame. We
remark that our proof of Lemma [5.4.2 does not require the assumption of the
sign of w. Thus, it is conceivable that the argument can be adapted to study

other scenarios.
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Appendixz A

APPENDIX TO CHAPTER 2

In Appendix we estimate I'(8) and the constant ¢ appeared in the
approximate profile (2.44]). In Appendix , we perform the derivations
and establish several inequalities in the linear stability analysis in Section
. In Appendix , we derive the singular term in the elliptic
estimates. In Appendix we will establish several estimates of Li5(€)
that are used frequently in the nonlinear stability analysis. Notice that we
only have the formula of 7 = 6, in . We need to recover 6, & = éy
from 7 via integration. Yet, we do not have a simple formula to perform
integration. Alternatively, we derive useful estimates for ¢ in Appendix .
Some estimates of 2,7 are also obtained there. In Appendix we show
that the truncation of the approximate steady state would contribute only to
a small perturbation under the norm we use, and we prove Lemma In

Appendix [A.0.7, we prove Lemma [2.10.1] In Appendix we study the
toy model introduced in [42].

A.0.1 Estimates of I'(8) and the constant c
Lemma A.0.1. For x € [0,1], the following estimate holds uniformly for
A > 1/10,

(1—a2%)2* < <. (A1)
Consequently, for § € [0,7/2], 2> X > 1/10, we have

(D(8) = 1)(sin(28))*] < |(cos®(B) = 1)(cos(8))*] <

>| &

and

- %) _ E/ﬂm(r(ﬁ) ~ 1)sin(28)d8] < 2a.

Proof. Using change of a variable ¢ = z*, it suffices to show that for ¢ €
[0, 1], (1 — )t~ < . Notice that A > 1/10 and ¢ < 1. Using Young’s inequal-

ity, we derive

A
-t = (2 =)
- =2 A
<n%(1—t)+%t R RN e L
_X< 142 > _X</\+n) =\



306

which implies (A.1)). The remaining inequalities in the Lemma follows directly
from (A.1]). O

A.0.2 Computations in the linear stability analysis
We perform the derivations and establish several inequalities in the linear

stability analysis in Section [2.6.6

The calculations and estimates presented below can also be verified using
M athematica |I| since we have simple and explicit formulas.

A.0.2.1 Derivations of (2.81))

Recall the formulas of vy, po in (2.78)). A direct calculation yields

SR — o = (5 (r- LERDY LI o)
~(5(—2m —ar 1) = B s

9 1
—_ (23—3 + SR +3RT 4 5) sin(28).

Denote 1y = A(R)['(8)~!. For the coefficient in the n integral in (2.81)), we
have

1
2
= (I+1NrB)

!The Mathematica code for these calculations can be found via the link https://www.
dropbox.com/s/y6vfhxi3pa8okvr/Calpha_calculations.nb?d1=0.

(RAR)) r + (=2 + ——=) A(R))T(5)

1 3
§(Rw0)R +(—24+——=)o = ( 1+ R

1+R



https://www.dropbox.com/s/y6vfhxi3pa8okvr/Calpha_calculations.nb?dl=0
https://www.dropbox.com/s/y6vfhxi3pa8okvr/Calpha_calculations.nb?dl=0
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Note that A(R) = 2 (“;{3)3 + %(HR) > ([2.78). A direct calculation implies

,_3 (U+Rp 1+m
1=35 R3 R ),
3 1+R2 (1+R)3 (1+R? _(1+R)*
_3_2<3 [T R
(1
:E-—iEL@RZM+RHﬁﬂ+MR —3(1+ R)’R)
2\ R
3(1+ R)?

= W(—i% — 3R+ 3R3),

= (2 g (R )

_3(1+R
= 32R4)( 2—2R+3)(2+3R(1+ R)),
1 2
I+ 1= 3(3;;) (=3 —3R+ 3R>+ (1—-2R)(2+ 3R + 3R?))
3(1+ R)? 2 3

The above calculations imply (2.81)).

A.0.2.2 Derivations of ([2.86))

From (2.44)), we know

n—R@m_j1+RP< 6R 6 18R )_ 3R
7 ~ 6R \(1+R)3 (1+ R)3 (1+R*)  1+R

Using the above identity, (2.78) and ¢, = —2L15(2)(0) (2.47)), we can com-
pute

n— ROp1 9 31+ R
(7 — RORM)Yocy :u—g (R_3 i >Cw

7 8¢ 2 R
_ 2l R ( _3 §1~I—R>C
8 1+ R 2 R* )
27 1 8laa 1\ —2
= — ) - —L12(Q)(0
( 8¢ (1+ R)R? i 16¢ R) T 2(2)(0)
27 1 81 1
=( - L15(£2)(0
( 4mc (1 + R)R? 8cR>1ﬂ )(0),

which implies ([2.86]).
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A.0.2.3 Derivation of the ODE (2.87) for L;5(92)(0)

Multiplying sin(2/3)/R on both sides of (2.52)) and then integrating (2.52)), we

derive

D Lo(@)(0) = — (R0, 2 1 @)(0) + (0 - ROp0, 2D

sin(205) > < 3 sin(20) sin(20)
, = D5, )+ (Ra, 22,
=g vR TR )T\ TR
The first term vanishes by an integration by parts argument. Using (2.44)) and
(2.47), we can compute the third term

~ ~ sin(20)
Cw<Q - R@RQ R >
sin(2p) T /OO 6R
=—C, dBdR = —«c,, ———=dR
C/ / 1+R) R 2 %), 0+rR)?
1 © 3
:37TOéCw (—(1 + R)il + 5(1 + R)2> 0 = %Cw = —3L12(Q>(0)
It follows that
d B sin(20) 3sin(20) sin(2p)
- L1z($2)(0) = —4L12(Q)(0)+<77, - >—< IR Dﬁ9>+<nﬂ, - >
Multiplying 2= L;5(2)(0) to the both sides, we derive (2.87).
A.0.2.4 Computations of the integrals in ([2.89)
A simple calculation implies that for any k& > 2
o 1
/ (1+ R) " dR = 1
0 (A.2)

* R o 1 1 1
———dR = — dR = :
/0 (1+ R)* /0 (1+ Rt (1+ R)* (k—1)(k—2)
For the integral in 3, we get
w/2
/ (1— 2sin(28))2d5 =
0

3Ty

w/2
/ in(28)d + 4 / (sin(2))2d3
- 0
rdg=5

wm wm

Using (A.2]) with & = 4 and the above calculation, we can compute

H%é(l—?sm 23) H —/Ooo(lJr—RR)LLdR'/OWﬂ(l—2Sin(25))2dﬁ

1 3m

6(7_4>
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Using (A.2]), we can calculate

H (1 +RR)3/2 (1 +1R)R2

2 /2 00 T
‘ / 1dﬁ-/ (1+R)dR=".
0 0 8

2

A.0.2.5 Estimates of D(Q2), D(n) and the proof of (2.97)

We introduce

3(1+ R)?
%(1 + AR+ 3R® 4 3R%),

2 (3,5 3(1+R)? 3R 3 (11+R* 3(1+R)?
@@—(ER*@ RQ‘u@+m) E( )

D1(n) = -

6 R3 +8 R*

Recall D(€2), D(n) in (2.96)) and the weights ¢q, ¥y defined in (2.78)). By defi-
nition, D(n) = D1(n)T'(B8)~* + Dy(n). Thus, (2.97) is equivalent to

1

Sn@A)DO) < —pr, DTG + Do) < o (A

To prove the first inequality, it suffices to prove

9 1 4 1+R 14+ R)?
D(Q):—2R‘3—§R‘2—3R‘1—§+§R_3+6R‘2+ ;R 5—( 6+R3),

which is equivalent to proving

4 1 9 1 1 1 1 1 1
_2 _ _ —3 _ _ —2 _ _ _ —1 _ _ _ < .
( +3+6)R +( 2+6+2)R +( 3+3+2)R +( 2+3+6)_0

It is further equivalent to

1 13
——R34+2R?2-ZR'<0
2 + 6 -

which is valid since 2,/% X 1673 > 2. Hence, we prove the first inequality in
A3).

For the second inequality in (A.3)), firstly, we use I'(5) Da(n) < Do(n) (I'(8) =
cos*(f3) (2.44)) to obtain

Ds(n) £D1(n) + Da(n)T(B) < Di(n) + Da(n)
3 { 1+ R?

“16 ¥ (14+ 4R+ 3R* + 3R?) (A.4)

_ 1+ R)? 4R 11+R)* 3(1+R)3
R7? 2( - - :
- TR COTIIR T 8 R }
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Recall the definition of v in (2.78). Multiplying both sides of the second
inequality in (A.3]) by I'(3), we obtain that the inequality is equivalent to

Do) < 15 (-3 U - SO (A5)

We split the negative term in the upper bound of D3(n) in (A.4) as follows

(1+R)? 2 3
—2—R4(1+4R+3R + 3R?)
:—%{(H—RH—BRQ)+R(1+R)2+R(2—2R+2R2)}
(4R 3(1+R? (A+R)' (I+R*(1-R+R

N 2R4 2 R2 2R3 R3
It follows that

Ds(n) < i{ﬂ (_l N §) LA+ R (_1 N l)

16 R4 2 8 R3 2 6
1(1+ R)? 1+ R?*1—-—R+ R? 1 4R
JLUSR? (S RPU-ReR) 1 AR )
2 R? R3 R 1+R

3 11+R?® 1(1+R)*
_{_é R* 3 R3
1(1+4R?* (1+RO+RY) 1 43}

2 R? R3 T TITR
Observe that
LA+ R 1(0+R? . 3(0+R)! ( 7 (1+R)* 1(1+R)2>

3 R 2 R 16 R3 s B T3 R
4
<_iﬂ’
= 16 R3
1+R(Q+R) 1 4R 1 4R
— 4 - _(14+ R+ ——
R3 TR R R2 (1+ >+1+R
_1)\2
L ®-?
R (1+R) —

where we have used %(HRR)Q > % X 4 > 1/2 to derive the first inequality.

Therefore, we prove (A.5)), which further implies the second inequality in (A.3]).

A.0.3 Derivation of the singular term in the elliptic esti-
mates

Suppose that W is the solution of (2.134). Consider U = U+ Gsin(206).

Notice that if a = 0, sin(2/3) is the kernel of the operator £, in (it is

self-adjoint if a = 0). We have

Lo(U) = Q+ L,(Gsin(28)) = Q — (’R*9rrG + oo + 4)RORG) sin(273).
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We look for G(R) that satisfies G(R) — 0 as R — +o00 and L,(¥) is orthogonal
to sin(2/):

w/2
0= / §in(28)(Q — (0> R20anG + a(a + 4) RIG) sin(25))dB
0
for every R, which implies
a2R28RRG -+ Oé(Oé + 4)R8RG = EQ*, (A6)
T

where Q.(R) = W/Q Q(R, B)sin(26)df and we have used fo sin?(28)dB3 =
7. The above ODE is first order with respect to drG and can be solved
explicitly. Multiplying the integrating factor éR‘“HTa to both sides and
then integrating from 0 to R yield

RE20G = — RQ*(t)téfldt.

o’
Imposing the vanishing condition G(R) — 0 as R — +o0, we yield

4 & 44 s
G=——— 3—3/ Q, (t)ta " dtds.
R 0

o’

Using integration by parts, we further derive

1 o0 S
G=— [ 0,s =) / O, (t)ta " dtds
am Jgr 0
1 [>Q, 1 R
=—— (S)ds - —R_i/ Q*(s)s%_lds.
ar Jr ] aT 0

Using the above formula and the notation Li5(€2) (2.31]), we derive ([2.138]).

A.0.4 Estimates of L5(2)

Recall Ly5(Q) = L15(Q) — L12(2)(0). We have the following important cancel-
lation between Li5(Q) and Q.

Lemma A.0.2. For k € [3/2,4] and any A > 0, we have

(sin(28)QL15(Q), R*) = ——HL12 R—W‘

L3R’
((sin(28)Q 4+ AL12(Q))%, R7%) = (R™*(sin(28))?, Q2) (A7)

(k= 1A — gV) Elz(Q)R*’“/Q‘ i

L3(R)
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Proof. From the definition of Li2(w)(R) in (2-55), we know that it does not
depend on  and

w/2 B
/0 (s, 3) sin(28)d5 = —(OnLn(R))E.

Using integration by parts, we obtain

(sin(2B8)QL2(Q), R7F) = /0 OO(—(8Ri12(R))R)E12(Q)R_de

k—1 [
= -5 L12(9)2Ride,
2 Jo
which is the first identity in (A.7). The second identity in (A.7)) follows from
(E%Q(Q), R = §||£12(Q)R*k/2||%2(m and the first identity. O

To estimate f}lz(Q) g in L;, we use the following simple Lemma.

Lemma A.0.3. Let g be some function depending on Q,7,& and ¢ be some
weights. We have

w/2
0

@@)5 ) S 1B La@ e [ RAR SR B8]

(DhL1a(2)%¢% ¢) S ||RTIDEQ|2,

/2
R (R, 8)¢(R, A)dB|| .
| rewserms|
(A.8)
for k > 1, provided that the upper bound is well-defined, where Dr = ROR.

Proof. The first inequality follows directly from that Li5(€) does not depen-

dent on 8. Recall the definition of L15(2) in ([2.55) and Dy = ROg. Notice
that for £ > 1, we have

B w/2
DhLu(® =~ [ Dl 0(R5)sin(28)d5,
0
Using the Cauchy-Schwarz inequality, we prove
B 00 w/2 w/2

(DhLe@)Pe o) = | (( | pirams)sneaas? | g%odﬁ) IR

0 0 0

0 /2 /2
s [ okt gedsiar
o Jo 0

/2
<Ir Dol [ Beer s
0 *(R)
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Lemma A.0.4. Let x() : [0,00) — [0,1] be a smooth cutoff function, such
that x(R) =1 for R <1 and x(R) =0 for R > 2. For k = 1,2, we have

1+ R ~ _ _ (14 R)?
@~ S IR0l 1En@ R + B2 gy <110,
1+ R)* 1+ R)*
1@l 190 1 (L1a(2) ~ L@z < 120
(A.9)

provided that the right hand side is bounded. Moreover, if Q € H3, then for
0<k<3,0<1<2, we have

[L12(2) — Li2()(0)x|ns + [|Dr(L12(2) — Li2(D)(0)X) |22 S 11243,
1 DRL12()] oo + [[DR(L12(2) = xLa2(2) (0) oo S 12225,
(1 + R)OrDyL1a(Q)]|oo + [I(1 + R)OrDR(L12(2) — xL12(2)(0)|lso S 19242,
L2 D[ x + [[DrLi2(Q)[x < 12|,

(A.10)
where X £ H3 & W5 is defined in (2.140).

Remark A.0.5. We subtract xL12(£2)(0) near R = 0 since L5(f2) does not

vanishes at B = 0.

Proof. Recall L15(2) in (2:31) and L;5(Q) in (2.55). Using the Cauchy-Schwarz
and the Hardy inequality, we get

1 1+ R 1 1+ R
Lio() || S {92], =) S |[—=—9Q||12 2r) S |[——=—9| 12
IL@llz= S 49 ) S I Cllzzll ey S 17 e,

Il @l S | 7l @R < [ s Onbn(@) R < (0% R )

(A.11)
for [ =1, %, 2, which implies the first two inequalities in (A.9)). For k = 1,2,
observe that

1 L@ — L@ Ol

(1+ R)k- (1+ R)*

Nl 7 Lia(Q)x|[r2(r) + | 7 Lio(Q) (1 = )|z (r)
L - 1+ R)
Sl Eaa@llzz + 1na@lzzay < 10 1 4 1 aof@)120m,

where we have used (A.11) in the last inequality. Denote 2, = Oﬂ/ > Qdg.
From ([2.31)), we know
< Q.(9) 1

Lia(Q)(R) = /R — S = /0 T K (R, $)0.(8)dS, K(R.S) = glnss.
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The L? boundedness of L, is standard. Notice that K is homogeneous of
degree —1, i.e. K(AR,AS) = MN'K(R,S) for A > 0. Using change of a
variable S = Rz , we get

Lx(Q)(R) = /000 }%K(l, 2)Q(R2)Rdz = /000 K(1,2)Q.(Rz)dz.

Then, the Minkowski inequality implies
L1 @)]e < / K (1L, 2)]190 (R2) |2y de < / K(1,2)= V||| 2dz
0 0
— (19| / 82z <119
z>1

We complete the proof of (A.9)). Notice that DpLi(Q2) = —Q., || DEx||z2 < 1
for 1 <k <4and DglLi5(2) = 0, Dgx = 0. Using that sin(26) in the weight
p1 = sin(26)77 1+R) is integrable in the 3 direction and (A.9), we yield

1(L12(€2) — Lia () (0)x) 1?22 + || D (L12(2) — Li2(2)(0)x) 1| 12

(o) ~ Lia@) 00 L 4 11Dk Lot @) — Laa(@)000) T
<o o SR @)ook
<o oo < e

(A.12)

which implies the first estimate in (A.10). From the definition of L15(€) in
(2.31), we have DrL12(Q) = Li2(DgQ2). Notice that |[D%y(R)| < 1. Using
(A.9), we prove for k < 3

DR 12|z + [Li2(Q)(0)] - I1DEX| e S 11U [,

which implies the second estimate in (A.10]). Similarly, since Og D% L12(Q) =
OrL1a(DySY) = —R7'DLOL(R), where Q. (R) = [*Q(R, 5)dB, and that | <

2, we have

10rDRL12(Q)]| 1 = [[R7 Dl 1= (r

1 2 — 1/2
SR DIy l|OR(R 1D§Q*>||L4(R) <11,

which along with the second estimate in and |0r DL Li2(Q)(0)] <

~Y

|L12(2)(0)] < [€2|]3s completes the proof of the third estimate in (A.10]).
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Since xL12(€2)(0) does not depend on 3, we apply the first two estimates in

(A.10) to yield

DR L1a(Q)]|x < [|DR(L12(2) = xL12(2)(0) 122 + [| DX Li2(2)(0)| oo
S Qe + [L12(2)(0)] < 11€2[5es

for i = 0,1. We complete the proof of (A.10]). O
A.0.5 Estimate of the approximate self-similar solution
In Appendix [A.0.5.1] we estimate some norm of €2, 7 using the explicit formu-

las. For &, it is given by an integration of 7 that does not have an explicit
formula. We estimates ¢, its derivatives and some norm in subsection [A.0.5.2]

A.0.5.1 Estimate of Q,T_]

Recall the formula of €, in (2.44)). A simple calculation yields

-~ «a3RI(B) _  a6RU(B) - - abRT(B) _ _ a18R’T(B)
C= a1 carny TR SOy PRI T
(A.13)

Without specification, in later sections, we assume that R > 0,3 € [0,7/2].

Lemma A.0.6. The following results apply to any k < 3,0 <i+j <3,7 # 1.
(a) For f = Q,1,Q — DrQ,7j — Dgij, we have

IDRfIS [, IDRDAfI S asin(B)f. (A.14)

(b) Let @; be the weights defined in (2.61)). For g = Q, 1, we have
w/2 /2 . .
| EOreassat [ RDWDPeds St (ML)
0 0
uniformly in R and
((Di(g — Drg))*, 1) S %, ((DRrDj(g — Drg))%¢2) Sa’. (A.16)

Proof. Recall Dg = sin(23)0s, Dr = ROg. Using ['(3) = cos(5)*, (2.69) and

a direct calculation gives

|DIT(B)| < asin(B)T(B),
2 2 A17
R < R D R < R (A.17)
(1+ R)™ (1+R)™ ~ (1+R)™

| 1A

B1+R)m

b
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for 1 <35 <5 0<i<5and m=2,3,4. Combining these estimates and the
formulas in (A.13]) implies (A.14)). As a result, we have the following pointwise

estimates for g = Q or 7

R o R
|Dkgl < g < ozF(B)m, |DRpDjgl S asin(B)g < a? Sin(ﬁ)F(ﬁ)—(l YR
RT
[Di(9 — Drg)l S 9 — Drg S a%7
' 2
IDLD}(0 ~ Dug)| S asin(8)(a — Dag) S *sin(5) 11

for k <3,i4+j < 3,5 # 0, where we have used ¢ = % in Lemma . Recall
; in Definition 2.6.2

o1 2 (1+ R)*R*sin(28)77, ¢y = (1+ R)*R *sin(28)7".

Notice that for o = %,7 =1+ {5, we have

™/
/ zr(ﬁ)%in(w)*odﬁ <1,
0
/2

w/ T
/ " 02 sin(B)PT(6)? sin(26)d5 < o? / cos(B)2"1-/1045 < ¢
0 0

Combining the pointwise estimates, the estimates of the angular integral and

a simple calculation then gives (A.15]), (A.16]). O
Recall the W“*® norm in (2.139)). We have

Proposition A.0.7. It holds true that T'(3),Q,7 € W with

(1+ R)?
T(B)|[wre S 1, ”T

1D lwree + [ Dgiillwr < a.

(1+ R)?

U roe + 1L lbyrs S

Proof. 1t follows from the calculation and sin(B)T(8) sin(28)~*/> < 1.

O
A.0.5.2 Estimates of ¢
Recall that the approximate self-similar profile 7 (2.44)) is given by
= a G6R 6 x
0.)(z,y) =n(R,0) = ————=cos®(f) = — . (A1
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We also use 77(x,y) to denote the above expression. Throughout this section,

we use the following notation

R= (2" +¢)*? B=arctan(y/z), S§=("+y")*? 7 =arctan(y/2),
(A.19)
where z will be used in the integral. 0(z,y), £(R,6) = 0,(z,y) can be obtained

from 7(z,y) (or ,) as follows

f=1+ /Oxn(z,y)dz, £=0,= /Ox iy (2,y)dz. (A.20)

We can choose 6(0,y) = ¢ for other constant ¢ > 0, and it does not change

V0. Observe that

6 3ay (224 y?)2

- Y2 + 22 (1 + (22 + y2)o/2)4
1 3ayz (22 4+yH)?

22+ 2214 (22 + y2)a/277

ﬁy(’za y) = -
' (A.21)
1 3asin(271)S

(z,9) = —;mﬁ,

where we have used the notation S, 7 defined in (A.19)). Hence, we get

_ To6a 3ay (2249?22 1/ 3asin(271)S _
o ¢ Y4221+ (22 +y?)e2) 0 Z 2(145)
(A.22)

These integrals cannot be calculated explicitly for general . We have the

following estimates for &.

Lemma A.0.8. Assume that 0 < a < TIOO' For R > 0,5 € [0,7/2] and
0<1+4+7 <5, we have

IDRDAEI S =€, |DRD)(3€ — RORE)| S €, (A.23)

aQ(xQ +y2)o¢/2 yoz ) rlte
4 < min (1.
(1+ (@2 + %)) (1 +y2)? ytre

o’ > sin®(5) cos®t1(3)
S 1=k (1,8<7r/4(1 + Rsin®(5))? + 1,827r/4m) . (A.24)

_ _ 1+ R
£ atcos(B), IfEller S I

where || - ||c1 is defined in (2.117)). Let 11,15 be the weights defined in (2.61)).
We have

Iy

(1+ (Rsin(26)%)"1)|| 1~ < o,

/2 . o
| RO vas 5 o (A.25)
uniformly in R, and

<(D}%DZ3(3€_ RaRg))2>¢k> S 014, <(D3’%Dé’g)2a,¢)k’> 5 <§2>wk> SJ a47 (A26)
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where (D%D%,wk) represents (D%, 1) for 0 < i < 5, and (D%Dé,’@[)g) for
t+7<5,j>1.

Remark A.0.9. Using (A:22)), we have —¢ > 0 for R > 0,8 € [0,7/2].
We have several commutator estimates which enable us to exchange the deriva-

tive and integration in (| so that we can estimate D' D’ 5 easily.
Recall the relation between 0,,0, and Og, 3 in (2.24). We have the following

relation
1
Dr = ROr = a(at@x—i—y@y), Ds = sin(28)0s = 2yd,—2asin®(B)Dg. (A.27)

The first relation holds because R = r*, RO = 17“8,,, and the second relation

is obtained by multiplying 0, = Sm(ﬁ ) Dy 4 st 6 by y and then using
y/r =sin(B),z/r = cos(f).
Lemma A.0.10. Suppose that f(0,y) =0 for any y. Denote

(x,y) / —f(z,y)d (A.28)
We have
DrlI(f)(z,y) = I(Ds[)(,y), (A.29)
DsI(f)(x,y) = I(D-f)(x,y) = —2asin®*(8) - [(Ds f) + 2al(sin*(1) Ds f),
(A.30)

where R, 3,5, T are defined in (A.19)), provided that f is sufficiently smooth.

Proof. Notice that y0, commutes with the z integral. From (A.27), it suffices

to prove
20 1(f)(w,y) = 1(20.f).

A direct calculation yields
1
20 1()(w9) =0, | () = flay)
0

1
100w = [ 5204z = fa)
0
It follows (|A.29). Using the fact that both y0, and ROr commute with the z
integral and the formula of Ds (A.27) twice, we derive
DsI(f)(z,y) = (290, — 2asin®(B)Dp)I(f) = I(2yd, f) — 2asin*(B)(Dsf)
= I(D,f + 2asin®(7)Dgf) — 2asin®(B)I(Dsf)
= I(D,f) + 2al (sin*(7)Ds f) — 2asin®(B)I(Dg f).
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Identity (A.30]) follows by rearranging the above identity. O

Next, we prove Lemma [A.0.8

Proof of Lemma[A.0.8 Step 1. Recall D = ROg, Dg = sin(23)ds. First, we
show that

S
1+95

o zq B
Dy, DIE| < a / L sin(2r) (e y)dz < & (A.31)
0

for 0 < i+ 7 < 5. Using I'(8) = cos(5)*,(2.69)) and a direct calculation yields
R2

R . . . .
D] S g PGS asm@T(),  |Dhsin(25)| 5 sin(26)
(A.32)
for 4 < 5. Denote
3 S 9a? S?
f(S,7)= ; sin(27) T Sﬁ = % sin(QT)F(T)m. (A.33)

We remark that f = —z7,(2,y) according to (A.21). Obviously, f(S,7) > 0.

Using the above estimates, we get
|DsDIf| < f (A.34)

for i + 7 < 5. Notice that (A.22) implies £ = —I(f) and that I(-) (A.28) is a

positive linear operator for z > 0. We further derive
[I(DsDLfI)| < I(|DsDLf|) S I(f) (A.35)
for i + 7 < 5. Using (A.29) and the above estimates, we yield
|DRE| = [DRI(f)| = I(Dsf) < I(f)-
For other derivatives D%Dé with j > 1,7+ j < 5, we estimate D3¢, which is
representative. Using (A.30]), we have
D3¢ =D3I(f) = D (I(D-f) — 2asin®(8) - I(Dsf) + 20 (Ds f sin®(7)))
=I1(D2f) — 2asin®(B) - I(DsD,(f)) + 2al(sin®*(7)DsD. f)
+ Dg (—Qa sin?(3) - I(Dsf)) + Dy (204[(D5f sin2(7')))

=l + o+ J3+ Jy+ Js5.

For Jy, Jo, J5, we simply use sin?(3),sin?(7) < 1 and (A.35) to obtain

Iy, Jo, Js S I(|DRDLSI) < 1(f) (A.36)
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for (i,7) = (0,2),(1,1),(1,1), respectively. For Jy, if Dg acts on sin?(3), we
obtain aDs(sin?(B3)) - I(Dsf), which can be bounded as before using (A.35).
For the remaining parts in .J, and J5, Dg acts on I(-), and we can use (A.30))
again to obtain several terms. Each term can be bounded using and an
argument similar to (A.36). The estimates of other derivatives DED% can be
done similarly. We omit these estimates. Since the right hand side of
is %](f) = —%f =< —¢, the above estimates imply (A.31]).

Step 2. The estimate (A.31)) can be generalized to i + j < 6 easily. Hence, we
get

|DRrD%(3€ — RORE)| S |DpDiE| + | D D5E| < =€,
for any ¢ + 7 < 5, which proves (A.23]).

Step 3: Pointwise estimate. In this step, we prove (A.24)). From (A.22), we
know that the first inequality in (A.24)) is equivalent to

x af,2 2\ /2 2 2\a/2 el 1+«
/ y Sy ) L @4y y )3m.n(1x )
0

Y22 (L4 (24 22)02)0 Y (L4 (22 + 7)) (T4 y° Tytte
. t . . . .
For z € [0, 7], we have 2% + y* < 2% + y*. Since 717 Is increasing with respect

tot > 0, we yield

(y2 +22)a/2 < (y2 +x2)a/2
1+ (y2 +22)a/2 ~14+ (y2 +x2)o¢/2'

Therefore, it suffices to prove

J(z )A/x Y = dz < v min | 1 v
T 2 A (g2t 2202 N (14 ) yira )
(A.37)

Case 1: x <1+y Observe that

J < dz = dt,
_(1+yﬂ?A Y+ 2 Ty Jo 1422

where we have used change of a variable z = yt to derive the identity. Since
a < 1/10, we get

z e 0o o z e z 1+
/y dtg/ dt <1, /y dtg/yto‘dtgx .
o 112 , 1t o 1+ ; ylta

Combining the above estimates, we prove (A.37)) for x < 1+ y.
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Case 2 : x> 1+y Firstly, we have

Ly ot x y e

J(z,y) = /0 2+ 22 (1+ (v + ZQ)a/Q)?)dZ + /1+y 2+ 22 (1+ (2 + Zz)a/2>3dz
£ N+ Jo.

We apply the result in Case 1 to estimate J;

y . (1+y)'te y°
Jl+yy) < —2 1, < .
It+y.9) 3 tyep ( ylto (1+y~)3

o

For J5, we have

x y P Ly % t—2a Ly /oo oo
Jo < ———dz = o dt < * T4t
2_/1+yy2+222’3°‘ Y /1+1«'1+t2 ~Y ity

Y Y
<yt (1 + y)”o‘ Yy yro oy
~ Y (L+y)tt2e (IT4+ype I+~ (L+y*)¥

where we have used change of a variable z = yt to derive the first identity.

Noting that > y in this case. We conclude

«a e 14+a
Y Y . x
J =i+ S < 1,—— .
)=+ 523 1l < o (1)

Combining the above two cases, we prove (A.37)), which implies the first in-
equality in (A.24]).
Finally, we prove the second inequality in (A.24]). Using the notation (A.19)),

we have

R=(2*+y*)*? y* = Rsin®(8),

(@*+y*)** R y* _ Rsin?(B)

I+ @+)P? I+ R (+y)P  (1+ Rsm(5))

For x <y, we have 8 > 7/4, 1 <sin(f), 2? +y* < y?. Hence,
y*  xtte < ye ' Rsin®(3) cos't*(p) < Rcos'™(3)

(L+yo)Pytre ™ (14 (a2 +y2)e2)P3 yl+e (1+R)® sin'*(8) ~ (1+R)?
Combining the above identity and the estimate, we prove the second inequality

in (A.24). The last inequality in (A.24) follows directly from (A.23]) and the
first two inequalities in (A.24)).

Step 4: Estimates of the integral Now, we are in a position to prove (|A.25)

and (|A.26]). We are going to prove

a4

/2
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Clearly, (A.25) and (A.26) follow from the above estimate and ((A.23)).

Notice that 1; defined in (2.61)) satisfies

(1+ R)*
R4

where v =14 &, 0 = 5. Using (A.24), 1 + Rsin®(8) > (1 + R)sin®(8), we
yield

Y1, S sin(f3)~ cos(5)~7, (A.39)

/2
(1+ R)? / EPunds

) O[4R4 w/4 sin2a(ﬁ) w/2 cosg2et2
s, e maeme L, Gy

< o'R' (1+R)!
~(1+R)S R*

w/2
+/ﬂ/4 cos(3)*7* sin(3) 7 cos(B) ”dﬁ}

{ // sin(8) " sin(8) " cos(8)

w/2

<ot ([ om@eas s | €8 dg) S o

where we have used a < ﬁ, da+o0 < %, 2+ 2a—v > 1, to derive the last

inequality which does not depend on « for a < ﬁ. It follows (|A.38]). O

A.0.6 Other Lemmas

We use the following Lemma to construct small perturbation.

Lemma A.0.11. Let x(-) : [0,00) — [0,1] be a smooth cutoff function, such
that x(R) =1 for R <1 and x(R) =0 for R > 2. Denote

Xa(R) =x(R/N), =x0 =800, &=08,000), (A40)
where  is obtained in (A.20). We have

Jm (120 = Qs + 1L+ R) (0 = Dl + 1163 = sy = 0,
| - (A.41)
limsup | €y — €| < Kpa?,

A—+o00

where K19 > 0 is some absolute constant. In particular, we also have

lm L35(Qx — Q)(0) + (% — ), @o) + ((Ta — 7)%, 00) = 0. (A.42)

A——+00

We need a Lemma similar to Lemma [A.0.101
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Lemma A.0.12. Suppose that f(0,y) = 0 for any y. Denote J(f)(z,y) =
1f0 z,y)dz. We have

DRJ(f)(xv y) = J(Dgf)(l',y),
DgJ (f)(x,y) = J(Ds f)(z,y) = —2asin*(B) - J(Ds [) + 2aJ (sin*(7) Ds f),

where R, 3,5, T are defined in (A.19), provided that f is sufficiently smooth.

The first identity follows from a direct calculation and the proof of the second

is similar to that in Lemma We omit the proof.

Proof of Lemma[A.0.11 Step 1: Estimate of J(1). Using (A.20) and the op-
erator J in Lemma [A.0.12) we get § = 1+ 2J(7}). We have the following

estimate for J(7)
T B 1 [ B
DD S T =5 [ awidz S (A4
0

for 0 < i+ j < 5. The proof of the first inequality follows from Lemma
and the argument in the proof of . The proof of the second inequality
is similar to that of by considering x < 14y and z > 1 4+ y. We omit
the proof.

Step 2: Estimate of iy — 7, &x — €. Recall 7y = 9,(xx0), & = 9,(xx0) and the
formula of 0,, 0, (2.24). A direct calculation yields

(&8~ 1= oD a4 -1y
—arcos’(8) D - J(1) + a2 D, + (- 1, o
&(r.8) - £=a™ Dy, 54 (- 1 |
—asin(8) cos()Dra - J(3) + "2 Dy + (13~ 1
where we have used 9,0 = 7, 0,0 = £, § = 1+xJ(7)) = 1+7rcos(8)J (7). From

(A.40), we have
Dgxx =0, [Drxal = (R/NIX'(R/A)] S 1.

Similarly, we have
[Drxal S (A.45)
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for k =1,2,3,4. For Gy(R, ) = Q@DRXA with g(8) = sin(8) or cos(f) and
i+j <3, since R > \in supp(Dkxy) and r = R~V we get

D5 DRGAl Sa RV 1gzs,  [DGTDRGH| Sa sin(2B8)R™Y 1 g,

Recall the C! norm (2.117) and H? (2.136)). Using the fast decay of G, in R

and the smoothness in 3, we get
lim ||(1+ R)G,l|z =0, lim ||Gy||ler = 0. (A.46)
A—00 A—00

Notice that dgxyr, (xa — 1) = 0 for R < A. From the formula of 7 and

(A.26) in Lemma [A.0.8, we know (x; — 1)(1 + R);j € H? (1} decays R~ for
large R) and & € H?(v)). Using the estimates of J(7) in (A.43)), we also have

(x1 —1)J(7) € H* C H3(). Therefore, applying (AH), (AI5) to x», (A10),
the fact that the H? norm is stronger than the H?(¢)) norm (2.129)), and the

Dominated Convergence Theorem yields
Jim {|(1+ R) (7 = 1)l [ws =0, lim 1€x = Ellns ) = 0.

Similarly, we have

lim ||Qy — Q|| = 0.
A—00

Using (A.43), (A.45) and the fact that 77 decays for large R (see (2.44])), we

have
lim sup || sin(3) cos(8) Drxx - J(77)|]er = 0.

A—00

Using (A.23))-(A.24)) in Lemma [A.0.8) and (A.44)-(A.46[), we conclude
100 = Déllex S 0%, Tmysrool|én = Eller S 0.
We complete the proof of (A.41]).

Recall that the H? norm is stronger than L?*(¢;). Using Lemma for

L12(2)(0), the fact that ¢o < 1,10 < (1 4+ R)gp; (see Definition [2.6.2) [2.6.7))
and the limit obtained in (A.41]), we prove (A.42]). O

Let C'i0 be the standard Holder space. Recall the C' norm defined in (2.117).
We have the following embedding.

Lemma A.0.13. Suppose that f € C'(R,) and f(R,7/2) =0 for R > 0.
We have

I flless < Callfller

for some constant C,, depending on a only.
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Proof. Recall the relation between the Cartesian coordinates (x,y) and the
polar coordinates (r, 3), (R, ). Since f vanishes on the axis # = 7. It suffices
to prove that f is Holder in R . Let (Ry, (1), (R2,[2) be arbitrary two
different points in R% ,, i.e. Ry, Ry > 0,51, 32 € [0,7/2], and ry = R}/a,rg =
R;/ “. Without loss of generality, we assume Ry < Ry, 81 < 3 and || f]|er = 1.

From ([2.117), we have |f| < 1,|0rf] < 15, 105f] < RY40sin(23)2/40-1,
Using

sin(2ﬁ)°‘/40’1 5 (sin(ﬁ)o‘/zlofl + cos(ﬁ)a/‘m*l) 5 (/Ba/4071 + (7r/2 . ﬂ)a/4071)
and the estimates of the derivatives, we obtain

|f(R1, 1) — [(Ry, Bo)|
& 1 B2 . .
S/ |aﬁf(R17 )|dﬁ < CRf/ (ﬂﬁ_l + (g _ 6)4—0—1> dﬁ

<CaRI (B — B + (5 — B — (5 - B)%) < CuRP |8 - Bil
|f (R, B2) = [(Re, B2)|

</R2|a f(Rﬁ)|dR</R2LdR—1o 1JFR2<(R — Ry)Y/40
= J R » P2 = Ju T+R _g1+R1N2 1 )

where we have used log {2 < log(1 + Ry — Ry) and log(1 + z) < /% for

x > 0 in the last inequality. The distance d between two points is
d* = (ry cos(f1) — 73 cos(f2))” + (r1sin(f1) — rasin(fa))”
= (ry — 19)* + 2r179(1 — cos(By — B2))
|Rl/a_ 1/a|2—{—4R1/aR1/aSln( (/81 ))2
2|%),
where we have used R; < R in the last inequality. Using triangle inequality
and the above estimates, we prove |f(Ry, 81) — f(Ra, 82)] < Cudio. O

ml\DI»—l

> Co(|Ry — Ro|¥™ + RY*|, —

A.0.7 Proof of Lemma [2.10.1]
Proof of Lemma[2.10.1, We simplify w’ as w and denote by ¥ = arctan(xs/x;)
the angular variable. Recall the cylinder Dy = {(r,2) : r € [0,1],|z] < 1}. We

extend wl,.)ep, to R? as follows :

we(r,z) = w(r, z) for (r,z) € D1, we(r,z) =0 for (r,z) ¢ D;. (A.47)



326

Note that w, is only supported in Dy, which is different from w. Denote

1 1 1 1
wy = max(tw,, 0), —Opp — 8 0, —|— A =0, + ;& +0,, + ﬁ&w’
2m
sin(W)wy(rq, 2
Yi(r, 2) 47?/ / / (2 ) j;( ! 1.> 1/2r1d7’1dz1d19,
(z—z1)2+ 712417 — 2sin(d)rr)

(A.48)
where A is the Laplace operator in R3 in cylindrical coordinates. Clearly, ¥
solve the Poisson equation in R?: —A(sin(9)v+(r, 2)) = wx(r, 2) sin(d), which

can be verified easily using the Green function of —A. Since wy > 0, using the

sin(¥) i sin(19) > 0
((zfz1)2+r2+r572sin(ﬁ)rrl)1/2 ((zf,zl)2+r2+1"f+2sin(i?)rrl)l/2 -
for ¥ € [0, 7], we get 1+ > 0.

above formula and

Let ¢ be a solution of (2.179)-(2.180). By definition of £, we have
—A(¢sin(0)) = sin(9) L1 = wsin(v9).

Consider the domain D} = {(r,2,9) : r € [0,1],]z| < 1,9 € [0, 7]}, which is a
half of the cylinder D;. Next, we compare ¢ sin(«9) and ¢ sin(¥) in Df using

the maximal principle for the Laplace operator A.

Recall from (A.47) that w, = w in DY C D;. For (r,2z,9) € D, we have
sin(d) > 0 and

—A((¥ —y)sin(®)) = (w — wy)sin(v) < 0. (A.49)

On the boundary of dD;, we have ¥ € {0,7}, r = 1 or z € {—1,1}. The
boundary related to ¥ € {0,7} is {(r,2,9) : r € [0,1],]2] < 1,9 = 0,7}, or
equivalently {(z,v,2) : |z| < 1,y = 0,]z| < 1} in the Cartesian coordinates.
It contains the symmetry axis » = 0. Recall that ) is odd and 2-periodic in

z. We obtain ([2.181]) z/?(r,:l:l) = 0. Recall the boundary condition ([2.180)

¥(1,2) = 0 and the fact that /" is nonnegative. We have

(Y =1y )sin(¥) =0 for 9 €{0,x},

(v —1)sin(¥) <0 for r=1 or z€{-1,1},

where we have used sin() > 0 in Df. Applying the maximal principle to
in the bounded domain DY, we yield (¢)(r, z) — 1, (r, z)) sin(d) < 0 in
Df, which further implies 9 (r, z) < 1, (r, z) for r < 1,|2| < 1. Similarly, we
have ¢ 4+ ¢_ > 0. Hence W\ <y +_.
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Recall from (A.47)),(A.48) that supp(w+) C supp(w) N D; and the assumption
supp( YN Dy C {(r,2) : (r—1)>+ 2% < 1/4} in Lemma [2.10.1, Thus, for
r>1 1> (11, 21) in the support of wy and |[J| < 7, we have r > % and

(z—2)*+ 7 +1r] —2cos(V)rry = (z — 21)* + (r — r1)? + 4sin®(9/2)rr,
= (((z = 21)" + (r =) 2+ [0))*.

We have similar estimate with cos(1}) replaced by sin(¢). Using this estimate
and integrating the ¢ variable in the integral about ¢4 in (A.48]), we complete
the proof. 0

Remark A.0.14. The above proof can also be established in the Cartesian

coordinates, which is essentially the same up to change of variables.

A.0.8 A toy model for the 2D Boussinesq equations
We consider the toy model introduced in [42]

— (1A(t), —22A(t)) - Vw = 046,

6 — (2IA(E), A1) - VO =0, A(t) = /]R 2 %w(y,t)dy,

where 0,0 = 0,,6. This model can be derived from the 2D Boussinesq equa-
tions by approximating the velocity (u,v) by uy, (0,0,¢)-(z1, —z2) and rescaling
the solution by a constant. Assume that w is odd in xy and x5, and 6 is even in
x1 and odd in zy. We show that for initial data wy, VO, € C%(RRy), the solution
exists globally. We follow the argument in [42]. Without loss of generality, we
assume supp(9,0y) C [—1,1]2. Using the derivation in [42], we get

T)/ w(s)ds, ,u(t)—eXp(/O A(s)ds),

I Y1y2 Y2
; = 4/0 p(s)dsJ(t) / / |y|4 (0100) (1e(t)y1, u(t))dyldyQ'
(A.50)

w(wy, xe,t) = (0160) (1(t) 1,
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Next, we estimate J(t). Denote 0(xy, z5) = O(z1, x2) — 0o(0, x5). Clearly, we
have 910 = 9,6. We simplify z1(t) as pu. Since (916) (puy1, 2) = 17104 (8o (g, “)),

supp(@léo) = supp(d16y) C [—1,1]%, using integration by parts and O, Zﬁ’f =
y2(y3—3y7)

e We yield
y1y2 = Y2
J=p" / / )y, )dy dy
o A O )
[ plye y2(y3 — 3y7) Y2
- L1, 2 - / / Y2l = 30) G Y2y, dy
s /0 (12 +y3)? ol ? |y[6 ho(py u) e
27+ Js.

Since Ay € C*, 05(0, x3) = 0 and Gy (1, 0) = 0, we have |0g(z1, 22)| < |21|*|22].
It follows

00 —1 00 2
J < _1/ moY2 %d _ —2/ < d < —2’
| 1| ~ M 0 (/172 I y%)Q [ Y2 1% 0 (1 + 22)2 LM

pt %0 02(12 — 32
|J2| 5 M—2/ (,Uyl)a/ yQ(y2 yl)
0 0

ot

ge | Su? / (1) 7 dyy So p™°
0

Plugging the above estimates in (A.50]), we obtain

Thus, i remains bounded for all time. Formula (A.50]) implies that the solution
exists globally.
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Appendix B
APPENDIX TO CHAPTER 3

Throughout this section, without specification, we assume that w is smooth
and decays sufficiently fast. The general case can be obtained easily by ap-

proximation.

The following identity is well known whose proof can be found in e.g., [39] [44].

Lemma B.0.1 (The Tricomi identity). We have

H(wHw) = %((HW)Z _u2).

The Hilbert transform has a nice property that it almost commutes with the

-1
power x”, x.

Lemma B.0.2. Suppose that u, = Hw. Then we have

Uy — ur(0) w _ B W
— = H <;> , or equivalently (Hw)(x) = (Hw)(0) + xH <;> .
(B.1)
Similarly, we have
Uge = Hwyy, Tz, = H(zw,). (B.2)
Suppose that in addition w is odd. Then we further have
2 2 Ugy Wy — WI(O)
T Uy = H(2%w,), 2u, = H(aw), —=H|——"—=. (B.3)
x x

If w is odd and a piecewise cubic polynomial supported on |—L, L] with w(L) =

w(—L) =0 (W', w" may not be continuous at x = +L), then we have
Uprn (02 — L?) = H(wye(2* — L?)). (B.4)

Proof. The identity (B.1)) is very well known. We have

we = O L gy ) ( L 1) dy = 71TP.V./ W) g, — g <w> ().

r ugs rT—y y (x—y)y y
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For (B.2)), note that

1
Hw, = uge, H(rw,)(0)=—— /wxdx = 0.

™

From (B.1f), we get

H(zw,)(x) = H(zw,)(0) + 2(Hw, ) (2) = 2Ugy ().

For (B.3]), if w is odd, then we obtain

H(z*w,)(0) = —l/xwxdx _ ! /wdm = 0.

s T
Applying (B.1)) again yields

H(z*w,) = H(2%w,)(0) + 2 H (1w,) = 2 H(1w,) = 7%Uq,.

For the second identity, since w is odd, we can apply a similar argument to

yield H(zw)(0) = =% [wdz =0 and

H(zw)(x) = H(zw)(0) + tHw = s Hw = zu,.

For the third identity in (B.3]), first of all, we have

wy = —Hug,.

wWe—wg (0

If w is odd, then u,u,, are also odd. ) and “ez are L? for w smooth

with suitable decay at infinity. Using an argument similar to that in the proof

of (B.1]) implies
Wg — wx(o) — _H <uxx>

x x
Applying the Hilbert transform on both sides proves the third identity.

Next, we consider (B.4)). From the assumption of w, we know w € H!(R). We
can apply (B.3)) to yield

Uy = H(2?w,), L*ug, = LPH(w,),

which implies (z? — L*)ug, = H(w,(z* — L?)). Since w is a piecewise cubic

polynomial on [—L, L] and is continuous globally, we further have that w,(z?—

L?) is globally Lipschitz and it is in H'(R). By the L? isometry of the Hilbert
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transform, we get u,,(z? — L?) € H'(R). Using the fact that the derivative

commutes with the Hilbert transform, we yield
0pH (wo(2® — L*)) = H(Ou(wa(2® — L7))),
which implies
Upgr (2% — L?) + 2uper = H(wye(2® — L?) + 22w,).

Using the linearity of the Hilbert transform and u,,x = H(zw,)(B.2), we
conclude the proof of (B.4). O

The cancellation in the following Lemma is crucial in our linear stability anal-

ysis.

Lemma B.0.3. Suppose u, = Hw. (a) We have

/ de = T(2(0) +2(0) 2 0. (B.5)

Furthermore, if w is odd (so is u, due to the symmetry of Hilbert transform),

we have

/ (e = weO)w 1 T20) — a2 (0)) = Tw2(0) > 0. (B.6)

x3 207
In particular, the right hand side of (B.5|) vanishes if u,(0) = w(x) = 0.
(b) We have
/ Ugawexdr = 0. (B.7)
R

(¢) The Hardy inequality: Suppose that w is odd and w,(0) = 0. For p = 2,4,

we have
(u — ug(0)z)? 2 \° /(uz—ux(O))Q 2\’ [ w?
~ 7 dr < | — =2 2 dr=— —dx.
/ ape =\ ap = \or1) ™

Proof of (B.5). Note that u, = Hw, u,(0) = —% [ “dz. Using Lemma [B.0.1]

we get

/wdx:/w'[{wdx—ux@)/gdx

T i i

= —7TH(CU . Hw)(O) + WUm(O) : UI(O)

= S(W7(0) =12(0)) + w3 (0) = 7 (w(0) + u2(0)).

If w(0) = 0, the above estimates are reduced to Zu2(0). O
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Proof of . If wis odd and smooth, then w/z is even and smooth and
H(w/x) is odd. Using (B.1) and Lemma [B.0.1] we have

/(“w—xwdg; _ /%H (%) F— (%H (%)) (0)

T {(£<0>>2 1 (?) (0)2} = T (2(0) 12, (0))

T T

If u,,(0) = 0, the above equality is reduced to Fw?2(0). O

Proof of (B.7). Applying (B.5)) with (u,,w) replaced by (tzs,w,) yields
R U

i T

™

= 2 (0 (0) + (5u)?(0)) = O,

where we have used (2u,;)(0) = (zw,)(0) = 0 to obtain the last equality. [

Proof of (B.8)). The first inequality in (B.8)) is the standard Hardy inequality
[61]. Since w is odd and w,(0) = 0, w/z,w/z?* € L*(R). From (B.0.3), we have

s () ()= (1 (5)-u () w)

Since w is odd, we obtain H(¥) = 0. Hence, we can simplify the second
equality as follows

n(Z)-Ln(z)-tams _wono)

2 T T x 2

Applying the L? isometry property of the Hilbert transform H to H (%), H(),
we establish the equality in (B.8§]). d

The following Lemma is an analogy of Lemma [B.0.3| for Holder continuous

functions. (B.9),(B.10) and (B.11)) are from Cérdoba & Cordoba [29).
Lemma B.0.4 (Weighted estimate for C* functions). Suppose that u, = Hw

and w is odd in (B.9), (B-11)) and (B.12). (a) For 8 € (0,2), we have

(ug — ux(()))2 1 w?
~— 7 dr < d
/ |2|1+6 v tan? ’%’T A cot? %’r || 1+6 !
1 w
<
seraar) wwdﬂ” (B9)
1 d
\:E|1 2B”/\cotz 6” |5L’|1
< d B.10
SErEP / PRk (B10)
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provided that the right hand side is finite, where a A b = min(a,b). Note that
we do not need to assume that w is odd in (B.10]).

(b) For 5 € (0,2), we have

/%d:ﬁ > 0. (B.11)

(¢) 1D Hardy inequality [61]: For B € (0,1), we have

/%dw < <$)2/(%|;|++§de < %/ |x°|‘;2+1. (B.12)

The first inequality in (B.12)) is the Hardy inequality [6I] and the second
inequality in (B.12)) follows from (B.9)).
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Appendiz C
APPENDIX TO CHAPTER 4

Throughout this section, we assume that w is smooth and decays sufficiently
fast. The general case can be obtained by approximation. The properties of the
Hilbert transform in Lemmas C.0.3| are well known, see e.g., [13, 19, 39].

Lemma C.0.1. Assume that w is odd. We have
w
Hw(x) — Hw(0) = zH(—).
x
Lemma C.0.2. Assume that w is odd and w,(0) = 0. For p = 1,2, we have
(uy — uy(0))x™? = H(wx™P). (C.1)
Consequently, the L? isometry property of the Hilbert transform implies

(e — ua(0)277][3 = [lwa™[5.

Recall the inner product (f, g) = [;° fgdz (see (£:8) Jand A = (—D)"/? = HO,.

Lemma C.0.3. For f € P, g € L? with i + % =1and 1 <p< oo, we have

(Hf,g)=—(f,Hg). (C.2)

Lemma C.0.4. Denote A = (—0%)Y2. Assume that f is odd and g, =
Hf, g(0)=0. We have

(Hf — Hf(0), fa™°) =0,

(9. £y = =(A2, D), g, f27) = —(a2,2) — T, (02

Identities similar to those in Lemma have been used in [5] 13} 19, 49].
We refer the proof of Lemma to the arXiv version of this paper [20].

Lemma C.0.5. Assume that w € L*(|z|™*/3 + |z|7%/3) is odd and u, = Hw.
We have

/ (uz () — uz(0))? _ / <w_2 +2v3- sgn(:v)w(ux(x) _ ul(o”)dw

|37’4/3 ’JZ|4/3 ’$‘4/3
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It seems that the identity (£.78) H(|z|™) = tan (&) sgn(z)|z|~*, which will
be used in the proof of Lemma [C.0.5] is difficult to locate in the literature.
We thus give a proof.

Proof. Firstly, we compute H(|z|~®). For a € (0,1), we have H(|z|™) =
Cosgn(z)|z|~®, for some constant C,. We determine C,, by applying Lemma
[C03to

€T B 1
1+ 22’ 1422

c /OO L /OO S
" T = ——dux.
o 1+a? o r(1+2?)

The integrals can be evaluated using the Beta function B(z,y) and B(5,1 —

= lz|™, Hf =Cysgn(x)|z|™*, g=—

which implies

B) = o ﬁﬂ for 5 € (0,1). In particular, we get

Co =

atl loa) _ w/sin((a+1)7/2) an (28
G ey~ (7)

Choosing a = 1/3, we get

B(
B

—_sgn(@)lal ", H(sgn(@)lal %) = —v3lal . (C.3)

H(|lz|7?) = 7

Recall that w is odd. We assume that w is in the Schwartz space. Applying
the Cotlar identity, see e.g., [19], 39],

(HF)* = F?+2H(F - HF),

[éA(“z($|x’4/3 /|m|2/3 g ) du
:/R{W/?’ (2) +2waprn (Cm (%)) bz,

Since the Hilbert transform is antisymmetric (Lemma|C.0.3), we get H(wH (%)) =

fR 2)dr = 0. Using Lemma , we obtain

w

p:\?“H(%H(;)) _ |x]2/3§H<wH(%)> = san(o)la| P H (wH(2)).

we yield
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Thus, applying Lemma , then (C.3) and H(¥) = "““_T““(O) in Lemma
[C.0.1] we prove

1:/ ’“"23 — 2 (sgn(z)|z|*) wH (%) }dm
:/R 2Vl owH (2) Jad
— [ { + 2l et = e
:/ (| 7+ 2V3sgn(a )“’(“x(x)_uf(o)))dag.

’33‘4/3

8

|4/3
2

S

/_/h\/_HﬁH

B
l\')rJ>
gy

w

To prove the Lemma for general odd w € L?(|z|~%/3 4 |2|7%/3), or equivalently
© € L(|z[*? + |2|/?), we approximate £ by the Schwartz function and use
the fact that |z|?? is an A, weight [39]. O

The weighted estimates in Lemma were established in [29).
Lemma C.0.6. For f € L*(a=*3 + 272/3), we have
_ m — _
ICHf = HFO)zla < cot Sl £l = 2+ V3|l fa™* 2,

™
[1H fa=' ]2 < cot || fa™ o = 2+ VB)|| fa |2,

The estimate in the following Lemma is the Hardy inequality [61].

Lemma C.0.7. Assume that u is odd. Then for p > —, we have

/+°° (u(x) —ux(0)z)* _ 4 ) /+°° <“r(”f)_“1<0))2.

x2p ~ (2p—1)? x2r—2

Lemma C.0.8. Assume that w is odd and w € L*(x~*+172/%). Letu, = Hw.
For any o, 8,7 > 0, we have

(e — 1 (0)) (@™ + Ba™2) 213 = [lw(aa™ + Bz=2) |3,

waﬂmm_+é+;&yﬂt

R (0 el

_) ‘ (253:4 912

The first identity follows from Lemma [C.0.2] Applying Lemma with
p = 3,273 5 and then Lemma 2[ to the power a:*4, =2 yield the second

inequality. The constants -, 2 36

o=, 5,50 are determined by (2 @1 Withp=3,2 5

)4y 3
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C.1 Derivations and estimates in the linear stability analysis
C.1.1 Derivation of (4.12))
For p € [1, 3], using integration by parts yields

| 1 @ 0 @, @
- - P2 _ x x XV
(@ = 5 7 %)zl /R <(2p 12w 2p—_1aw x2p> o

1 @2 1 2 1 2
i SN RT3 PR Y .
/m <(2p “pawr gy Qa2+ o ) do @p— 1) Jp, 222"

C.1.2 Estimate of I,1, 1,5, 1,3

We construct the cutoff function x in (4.25) as follows

1
T, L =5-105, 1= 100,.

x(x) = %arctan(( X

Recall 1,1, I, in (4.33)), (4.46]), and (4.92)

N N 1. .
Irl = <uacX(€1¢n+§2¢f)7 9x>7 ]7’2 - )\1 <u7 X{Sw@>v Ir3 = —5/\1<UX§3, me@>

(C4)
Recall from the beginning of Section [4.3.1] “ 1| that @, 6, @y, Oy have decay rates
%, 22, xo‘_l,x2°‘_1, respectlvely, with « shghtly smaller than —:. Using the

formulas of &; in and ¢y, ¢, in , -, we obtam the decay
rates x(&1¢, + §2¢f) ~ Clx*“/g‘, x&3p ~ C’gx*Z for sufficiently large x, where

C1, Cy are some constants.

Recall @, = u, — u,(0). Using the Cauchy-Schwarz inequality and Lemmas

we obtain
I | < [l o] [X(E100n + €204)0] |2
< 2+ V3)|lwa P [a[x (€1 + Eavoy)b]|2-

For I,5, we first decompose it as follows using @ = v — u,(0)z

Ly = M (u, X&wp) — ua(0)Mi{z, x&wp) = Ji + Ja.
Using the Cauchy-Schwarz inequality, Lemma with p = % and Lemma
we get

_ 61 _
| Ji] < MJua ™3| || |3 x&wel |2 < ?Huxx Y3 1) |23 xswep| |

6 (2 4+ V3 B
R T
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Recall ¢,, = u,(0). For J,, using Cauchy-Schwarz inequality, we yield

[ o] < Mol - X 2we 2 ol lzgsx /20! o.

In the above estimates of I, if we further bound ||x (&, + &v0f)8s]|2 by
the weighted L? norm ||6,17/2||», we obtain a small factor p, /® since y is
supported in |z| > py and the profile has decay. See also the above discussion
on the decay rates. Similarly, we get a small factor in the estimates of Jy, Jo
3xEwpl]a, ||z

from ||z x&swe||2, respectively.

Using Young’s inequality ab < ta? + 7 62 we obtain

(2+V3)?

St + a0 )0l + tra ™

1 (6)‘1(2 + \/_))2||$4/3
At5o )

L | + [ Tra| < tsa||wz™3]|3 +

xEswe) |3

A?I|x€3><1/290”2||%c2
Atss wr?

+ tsal XM 2w 3 +

where t5; = 10710 ¢50 = 1075, t53 = 1072, We choose these weights t5; so

that the terms ta?, Lb% in Young’s inequality are comparable. It follows the

)4t
estimate .
Note that replacing w in 1,5 in (C.4) by —%wa, we obtain I,.3. Therefore,

applying the same estimate as that of 1,5 to I,3, we yield

201 (2 + v/3)
5

-1/3 4/3

1 I,3] <

lJwz™ 2|2 [|2* "X Do) |2

1/2 1/2901/2“2'

A
+ g\cw\ X2 Dawe?||a||z€sx

Using Young’s inequality ab < ta? + 4 b2 we establish

1 (2)\1(2 +v3) 5
4oy
)‘%Hx&Xl/QS@l/QH%z

36t95 w

[z ™13

13| < toa||7**xEDowo] |3 +

+ tos || X /> Dowe?| |3 +

where tg, = 10°, 95 = 1073, We choose these weights g4, t95 so that the terms

ta?, 41tb2 in Young’s inequality are comparable. It follows
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C.1.3 Derivations of the ODE (4.60) in Section 4.3.11

We use the following functions in the derivations

1, 1ux ﬂ _
fQéZ?_ ( ) — fs =M@ —aw,)p
s 30, 1/(3 BT s 0
f4—5 T +5(5u99m 5 T )7 f6—l’2’ (05)
a _ 3 1@ A3 20,
f7—(9:r: I9x1)¢a f8 4 4.1” f9— 59xx 5

C.1.3.1 Derivations of the ODE for 2, d2 and (4.60)

Recall ¢, = u,(0) = —% f0+oo “dz from (4.20). Multiplying the equation of w

in (4.18) by —% and then taking the integral from 0, 400 yield

izcw_i/+ooidx_/oo (CZZL‘—'—U)wx—f_uwxd];_/oo%dx
dt 2 dt —x 0 x 0
* F,+ N(w)

+/ de_/ Fot Nw) o
0 - 0 T
* F,+ N(w)

 Uw, + u, ™, _
= ————dx —dp + =(Cy + 1z (0))c, — ————2dz,
/0 " x —dy 2(0 u,(0))c /0 " x

where we have used the notation dp in [{£.58) and [;° _ix = THf(0) with

f = w,w in the last identity. Multiplying ¢, on both sides, we yield

]- d < x _3:
ldn Zzz@”az(o))ciﬁw/ Wy + Uiy
2dt 2 2 0 x (C.6)
< F N ’
—cydg — Cw/ L(w)dm_
0 xr

which is exactly (4.59)).

We derive the ODE for dy using the 6 equation in (4.18)). Since fR+ %dz =

0, we get
ida = QCw/ — 4+ ZCw/ = — / 9 + ue””wd . / ugxx + uccex de
dt R, T R, T . -

Fy+ N(0
+/-i74lméh+5+g+h+g
0
(C.7)

We use the notation (-,-) in (4.8) to simplify the integral. For I3, using inte-

gration by parts, we obtain

I = —{((@0,),, z7Y) = (@h,, D,z 1) = —(ab,, 2.
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Similarly, for I, we get

I4 = —<u9_m, .'1772).

Recall ¢,, = u,(0). We rewrite the above term using the decomposition v =

U+ u, (0)z (4.27))

I = — (T + ug (0)2)0,, 272) = —(l,, 27%) — c,dy.

where we have used the notation dy defined in (4.58)). Using (4.58)), we can
simplify Iy, I as

]1 = QEwdg, ]2 = QCWCZQ.

The c,dy term in I and I, are canceled partially. Using these computations

and multiplying both sides of (C.7)) by dy yields

1d - ul, * ), * Fyp+ N0

— L2 = 20,02 + cudody — dg/ L dg/ e g + dg/ Lo = NO) 4,
o T 0

2dt ° 0 x
(C.8)

Since dy > 0, the term c,dy in (C.8)) and (C.6) have cancellation.
The quadratic parts on the right hand sides in ((C.6)), (C.8)) involve the following

terms remained to estimate

Jy = (U, w,r ™y, Jo = (w,wx ), Js = (0, 0,2572), Jy=(0,0,27%). (C.9)

We use the idea in Section [£.3.11.2] to rewrite the integrals of u as the integrals
of w and of G — £,z = ua (see 1} We use the functions f; defined (C.5)

to simplify the integrals of 6,,w. In Appendix|C.1.3.2] we rewrite J; as follows

J1+J2: <w>f2>+<qu717f5>7 JBZ <9$7f6>7 J4: <qu717f9>_<w7f4>'

(C.10)
For some parameters Ay, A3 > 0 to be determined, combining (C.6)) and (C.§)),
we yield
1d dom TA
57 (5 T dady) = 22(% +12(0))c + Ao (Ji + J2) — Aacuds

— Al (F, + N(w), 271 4 28, A3d5 + Ascodgdy
- )\3d,9<]3 - >\3d9J4 + /\3d9<F9 + N(@), {L‘_1>.

Plugging ((C.10)) in the above ODE, we derive (4.60)).
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C.1.3.2 Derivations of (C.10) in the ODEs

Recall the integrals J; from ((C.9). We use the idea in Section4.3.11.2to derive
the formulas in (C.10)).

Recall & = u—1u,(0)z from (4.27). Firstly, we consider .J,. Since fooo wydr =0,
we have

Jo = (u — uy (0)z, 0™ t) = (G, @,z ).
We approximate the far field of w,z~! by i(%)x and derive

R R 08 (1S

Applying integration by parts, (C.1]) and (C.2)) yields
1, 1 1 w 1/w 1/w
o= R0 (2). ) = )= )
Jo2 4(uwx> 4< z) ANz AV

In Js1, the coefficient

3w, 1w

C4dax 4a?

decays much faster than @,z for large x. We approximate @ by %ﬂxx

J <~ 3wx+1w> <~ 1. 3 Wy 1cu>+1<~ 3wx+1w> 54T
= {0, -—+-= U— =g, —— A+~ —= V= (U, ——F—— ) = .
21 "4 x  4x2 5 4 x 422/ 5 4 x 422 1

Using a direct computation and then applying (C.1)) and (C.2)), we get

1.3, La, ., 1,3 _ 1 w\ _

Iy = 2( 0, @2) + (25,8)) = £ (G (e @) + 7(H () @)
1, 3 1 w 1, 3 1u,
= 2 (=Zw, Ho,) — ~ (=, Ho)) = —=(w, “tigy + ——
5 (gl Ao = 30 HO)) = =, e + 7200,

where we have used [ u,(0)w,dz = 0 in the second identity. Using the
notation and function in (4.58)), (C.5)), we can simplify I; as

Il = <UA.’E_1, f8>

Combining the above calculations on Jss, I1, I5, we obtain
1 u, 1.3 1w, UA
P L VL P L S LAY
2 = 11+ I + J22 W 5(4U:m:+4x) + . s
For J; in (C.9)), using integration by parts, we obtain
Uy U

Jy = (™ w,) = —(0p(uz™h),w) = (——= + —, w).

xr 2
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We can simplify J; + J using the function f, in (C.5)

J1+']2: <w7f2>+<qu717f5>' (Cll>

For J3, using fs defined in ((C.5)), we get

Jz = {0, ux™2) = (0, f6). (C.12)

For Jy in ((C.9)), we use a similar computation to obtain

1) -2,
=g 5 5\ ) S
. 1. 360, 20, 1/ 30, 26, 3/. 0,
= (= g 5+ 575 ) + g 50+ 5 25) = 5(6 ()

2 Jy + Jug + Jus.

_ 0, 3
Ji = <ﬂ,, Gxx’2> = <1], P + g

30, 20, 3<~

(

8|

@, (

8|

For Jy;, using the notations in (4.58) and (C.5)), we obtain

Ju = (uaz™", fo).

For Jyo, Juz, using Lemmas [C.0.2] and [C.0.3], we derive

o= 3o G+ 35 (- o)+ 3 (2).0)

- — (§<w,H9‘m> n %(‘;",Héa) |
o o By ) -,

Combining the above computations and using the notations g, f4 defined in

3up. 1(3 2y,
J4:J41+J42+J43=(UM_I,f9>_<wa— 5 +5(_uem+‘ . )>

o 5 5 T
= (uaz ™", fo) — (w, fa).

The formulas in (C.11)), (C.12)) and the above formula imply ((C.10)).
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C.1.4 Derivations of the commutators in (4.81))

Recall D, = 20, and the operators in (4.22)). We choose f = 0,,9 = w in
(4.22)). We use the notation u, = Hw. Then u = —A~tw.

Firstly, we compute the commutator related to the transport term. Using

(Gr + )0, = (¢ + %) Dy, for p = w or 0,, we yield

U
- [Dan (Elx + ﬁ')aa:]p = _[Dxa (El + ;)Dx]p
U U U U
= - Dr<<él + ;)Dacp> + (El + E)Dx(pr> - _Dm(él + E)sz - _(I_l’ﬂc - ;)Dacp
(C.13)
Next, we compute the velocity corresponding to D,w. Using Lemma [C.0.1]
we get
H(D,w) — H(D,w)(0) = H (w;) = 20, Hw = Tuy,.
Note that H(D,w)(0) = —% fR wgdx = 0. We obtain D,u, = xu,, = H(D,w).
From

(ruy — u)y = Uy, = H(Dyw), (zu, —u)(0) =0,

we obtain that xu, — x is the velocity corresponding to D,w. Therefore, we

have
How=1u,, —-AN'w=u H(D,w)0)=0,

H(Dyw) = 2Upy, —A(Dyw) = zu, — u.
Using these formulas, for ¢ = @, or 8,, we obtain

Dx< — (=Atw — Hw(O)a:)q) — ( — (-A"'Dyw — HD:M@)@Q)

=Dy~ (u — 1, (0)2)q) + (2, — u)g (©.14
= — (U — up(0)2) Dyq + (—(zus — us(0)7))q + (Tus — u)g
= — (u— u,(0)2)(Daq + q)-
Similarly, we have
D, (= (Hw — Hw(0)x)q) — (—(HDaw — HD(0))q)
— Dy (— (1t — 1,(0))q) + Ttsug (C.15)

= Dxuarq - (ua: - ux(0)>D:cq + TUzrq = _(ux - uac(o))qu

Since ¢ w, 0, in L, vanish in the commutator, applying with
p=w and with ¢ = @, yields the formula for [D,, £,;] in (4.81]). Note
that

D.((2¢, — u4)0:) — (2¢, — Uy) D0, = —D,u,0,.
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Combining this computation, (C.13) with p = 6,, (C.14) with ¢ = 6,, and
(C15) with ¢ = 6,, we derive the formula for [D,, L¢] in (4.81].

C.1.5 Derivation and computing C,, in Section [4.3.11.3
Recall the inequality (4.67]), the functions in (4.66]), and the spaces 3; in (4.68]).

We use the argument similar to that in [19] to derive and compute Cp.

In Section 4.3.11.3] we have reduced (4.67)) to an optimization problem on the
finite dimensional space X1 @ Yo @ X3 with X € ¥1,Y € 35, Z € ¥3. Here,

we have a direct sum of spaces since there is no inner product among X,Y, Z.
Let {e;,eq, e3,e4} be an orthonormal basis (ONB) of ¥; with e; = Hgng\lé;
{es, €5, €7} be that of ¥y with ey = Hgg:H%; {es, eq} be that of X3. Then {e;}]_,
is an ONB of ¥ £ X, @ 3y @ %s.

Let v; € RY be the coordinate of g; in ¥ under the basis {e;}!_, and p =
(z,9,2) € R*x R? x R? be that of X +Y + Z. The vectors v; and p are column
vectors. By abusing notation, we also use (-,-) to denote the Euclidean inner

product in R?. With these convections, each summand on the left hand side
of (4.67) is a quadratic form in p. For example, we have

(X, 00){Y. g7) = (p,v1)(p,vr) = (p" 1) (v7 p) = p" (V107 )p.
Hence, is equivalent to
p" Mp < Copp" Dp, (C.16)
where M and D are given by
M = vlvg + vlv7T — (A2 — )\3629)1)11)? + Avyvs
— A3Usva + A3vsvl + Aovivd — Asvsvg (C.17)

D = Id + s1v10] + syvsvs .

111 1 — g1 — 95 — —
By definition of €;,€es5, 1.6. e = m,eg) = m, we have V1 = HnggEl,’U5 =

||g5]|2E5, where E; € RY is the standard basis of R, i.e. the i-th coordinate of

E; is 1 and 0 otherwise. Therefore, D is a diagonal matrix

D =diag(1+s1|lg1ll3, 1, 1, 1, 1+ soflgs|l3, 1, 1, 1, 1) € R

Symmetrizing the left hand side of (C.16) and using a change of variable
q = DY?p, we obtain

1
Copt = Amax(D™V2M,D™Y?) M, = 5 (M + MT).
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Firstly, M can be written as
M = ‘/1‘/2T> ‘/2 = (’U37U77,U57/U27v671}4aU87U9)7

Vi= (’Ul, U1, —()\2 - (%)\3)7}17 A2V1, —A3Us, A3Us, Agv1, —)\3?15)-

Then M, = ;(ViVy" + VW) = SULUY with Uy = [Vi, Vo], Uy = [V3, V4] €
R9*16. Using the argument in [19], for any even integer p > 2, we obtain

o < (DML 2 < 3 (D LU D7y
= 2 Y (Te (UL D~ Uy )P) 7. '

We will explain how to rigorously estimate the bound above in the Supple-

mentary Material [21].

C.1.6 Estimate of 7 in Section [4.3.12]
For Ag, A3, te1, K, 7, > 0 chosen in (C.25), Appendix and tgy determined
by these parameters, we define T; and s;

Ty = (—MDy, — Aup™" = Mik)p — tgz ™, To = (—Dy — Agp™" — k)0,

7T)\1€3CY6
v 12

Ty = 25tqa ™" + teer 3, s = _gAZ(Ew + 4, (0)) — 7. — G,

Sg = —2C, A3 — K3,
(C.19)
We will verify that 7; > 0,s; > 0 later. The parameter r., is essentially
determined by k. See Appendix [C.2.2) for the procedure to determine these

parameters. Plugging the above T; and s; in (4.65)), we can compute the upper
bound of C,, in using with p = 36
Copt < 27 HTr(UF D71U,)P)MP < 0.9930 < 1, (C.20)
which is verified in , Appendix Thus from (4.65)), we obtain
T < T3 + 110313 + | =213 5 + sic? + sad,
which is exactly (4.70). By definition of Ty, T, we have
(Do + At~ "), 07) + (T2, 03) = —r{07, ¥),
((MDy + A1), w?) + (11, W) = —kA{w?, ©) — ter(w?, 7).

Hence, plugging the above estimate on 7 in (4.69)), we yield

J = —hl|0:9"2]5 = sM w213 — ter|lwz 2|3 + s1c + sadj
UA 1/2 9 72)\1 _ -
+H?T3/ 13 — (Du_@tn_ 10 - 10 5>Hux:c 283012 1 A(u) + G2

(C.21)
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It remains to estimate the ua term. Recall ua in (4.58) and T3 in (C.19). A

direct calculation yields

UA 12 °O~
| /||2—/ (i —
0

21+ L.

O] =
=4

Using (4.12)) with p = 3 and Lemma [C.0.2] we get

Iy = te||uax 2|3 = ter||wa |3

For I,, using integration by parts and Lemma about @ with a = =0,

we get

> 1 a? 2 uu u? > 1 u? 1 5 7 u?
- L z _“ T _ _ z Yy - /3 _
I = t62/0 e i3 s T g0t = tb’?/o o5 a3 Tl Oar T g

Y U S AN R S N I A
— 62 0 2_5x4/3 ( 15) 10/3 62 o W 2_5+1_54_9 Z.

Combining the estimates of I, I yields

1 8 36

=137 -
25 ' 15 49

B < tallwa?3+ (5 + 15 - 32 Jellias ™05, (C22)

We define tg in Appendix so that the terms ||i,22/3||2 in (C.22) and
(C.21)) are almost canceled. We establish (4.71)), i.e.

J < —wl0:0" 25— wAdllwp 2|3+ (s14+ Ge)el, + s2df — 1070 |agz™ P54+ Alu).

C.2 Parameters in the estimates
C.2.1 Parameters
Parameters ey, s, e3 introduced in (4.24)) are determined by the approximate

self-similar profiles

e = 1.5349, ey = 1.2650, e = 1.3729. (C.23)

We choose the following parameters for the weights 1, ¢ (4.25)),(4.26))

1 = 537 Qg = 33, g = 068, Gy = 121, 5 = 2]., Qg = 077,
(C.24)
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and the following parameters in the linear stability analysis in Section

49
)\1 = 032, tl = 129, tlg == ? . 09Du, tg = 55, t22 == 135, t31 == 32,

t32 = 05, t34 - 29, T = 47, t4 - 387 )\2 - 215, )\3 - 0135,

ter =0.16, K =0.03, 7o, =0.15.
(C.25)

Parameter \; is introduced in (4.29)), (4.31); t2, too are introduced in the esti-

mates of I, , ; t1,t12 are introduced in the estimate of I ,
; t4 is introduced in the estimate of I, in ; (t31,132),t34, 71 are
introduced in the estimate of I, in , and , respectively;
A2, A3, g1, K, T, are introduced in to estimate 7T in .

The parameter D, introduced in (4.42)), ts2 in (C.19)) are determined by the

above parameters

. t10é3/\10é6 9 72A1

1 8 36, _
Du = \/g s teo = (Du — —t12 —

.175_176 . .7 1.
07 =105 + 15 39

49 49

After we complete the weighted L? estimate, we choose the following parame-

ters in the weighted H' estimates and nonlinear stability estimates

ko = 0.024, t;; =28, tro=2, tgg =05, tso =07, tg=1, tgo=12,
7 =098, 7 =0.07, \=0.005 F,=25-10"° az =0.31.
(C.26)
Parameters t7;, tg;, to; are introduced in the estimates of () , ; Ko
in (4.101)); 71,72 in (4.100); A4 in (4.107). Parameter ay; is determined by the
above parameters via Ao and

aglr — 03].

C.2.2 Choosing parameters in 7 and determining x

We first choose r., = k5 A2 with small £ = 0.001. The remaining unknown
parameters in the linear stability analysis are Ay, A3, tg1 > 0. Once A9, A3, ts1
are chosen, the functions 7} and scalars s; in are determined and then we
can compute C,p; in using the argument in Section and Appendix
We optimize A9, A\3,t61 > 0 subject to the constraints 7; > 0,s; > 0,
such that C,p; < 0.98 and C,, is as small as possible. Then we obtain the

approximate values for Ay, A3, tg1.
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Our goal is to obtain k as large as possible. The estimate of C,,; depends on
all the parameters in —. We gradually increase x until C,,; < 0.98
is violated. We further refine all the parameters in — one by one
and by modifying them around their approximate values to obtain smaller
Copt- Then we increase k again. Repeating this process several times, we
obtain larger x and x = 0.03. Finally, we increase r., until C,, < 0.98 is vio-
lated. This allows us to obtain a damping term for ¢? with a larger coefficient
in the weighted L? estimate , Using this procedure, we determine the

parameters in ((C.24]), (C.25)) and further establish (4.74)).

In our process of determining the parameters, we actually first use the grid
point values of the functions and only need to track the constraints, e.g., T; > 0,
on the grid points instead of every z € R. After we determine all parameters,

we verify the constraints rigorously by using computer-assisted analysis and
establish the desired bound C,,; < 0.993 < 1 ({C.20)).

C.3 Rigorous verification

This section is a collection of inequalities that will be rigorously verified with
the help of computer programs. The methods of computer-assisted verification
are introduced and discussed in detail in the Supplementary Material [21]. All
the numerical computations and quantitative verifications are performed in
MATLAB (version 2020a) in double-precision floating-point operations. The
MATLAB codes can be found via the link [17].

C.3.1 Ranges of the parameters

Denote by
t
Gi(A1, ta, tag) £ tox™* + Qi;$_4 + ta(Aras )’ 2,
1 1 _
Gg(tz, t22) £ —(0623771 + 05133'72)2 —+ —(xgemwn)z

4t 4too

the coefficients in (4.38]). Applying estimate (4.38) on I,,, we establish (4.39))
with ¢ = 0.01 if

1
)\—G1()\17t2,t22)9071 + D, < —c, Gata,ta)™" + Dy < —c,
1

where D,,, Dy defined in (4.30) are the coefficients in Dy, Dy. To verify the
above estimate for A; € [Ay, A1) = [0.31,0.33], ta € [tay, ton] = [5.0,5.8],t2 €

[tao1, taou] = [13, 14], since G, G are monotone in Ay, to, tao, it suffices to verify



349

1
/\_G1<)\1uat2uat22u)8071 + Dy, < —c¢, Ga(ta,ton)™ '+ Dy < —c.  (C.27)
1
Similarly, in order for I;+D;+ Dy < —0.01(]|0,0 2|24 A1 ||wp?/?||3) with esti-
mate on ]f and /\1 € [)\1[, Alu] = [031, 033], tl € [t1l7t1u] = [12, 1.4],t12 €
[t121, t124] = [0.55,0.65], it suffices to verify

1
/\—G:&()\lu,tlmtuu)(ﬂ_l + D, < —¢, Gatu, i)'+ Dg < —c, (C.28)
1

where

A
Gg(/\l, t17 tlg) = tl (Oé%I_Q + M$_4/3 —f- ()\1066)21L'_2/3),
V3
1 1 -
Galty, trs) = — a7 2% 4+ —— (¢ 0,,2°3)2.
a(t1, t2) T T (¢ 10ra”)
In order for I,+D;+Dy < —0.01(||0,9Y2||o4+ 1| |we/?||2) with estimate (4.45)
on Iy and Ay € [y, A1) = [0.31,0.33], t4 € [ty tsn] = [3.5,4.0], it suffices to

verify

1
)\—G5<t4u) + Dw S —C, Gﬁ()\lu,t4l) + D9 é —C, (C29)
11
where \ )
G5(t4) = t41'_390_1, G(;()\l,t4) = ( 2?4) $_5¢_1.
4

Remark C.3.1. We do not actually use the above estimates. Yet, they provide

a useful guideline to determine the parameters ¢;; in the estimates.

C.3.2 Inequalities on the approximate steady state
To establish the nonlinear estimates in Sections [4.3] and 4.5 we have used sev-
eral inequalities on the approximate steady state and the parameters defined

in Appendix [C.2] These inequalities are summarized below.

In (4.30), we derive the damping terms in the weighted L? estimate with
coefficients Dy, D,,. These coefficients are negative uniformly. That is, for
some ¢ > 0, we have

Dy, D, < —c<0. (C.30)
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Recall that we choose the weights T; and s; defined in (C.19)) and apply the
argument in Section[£.3.1T.3|to obtain the sharp estimate of the T term defined
in (4.64). This estimate requires that the weights are nonnegative, i.e.

T1 = (_)\1Dw — Awg@_l — )\1/{)()0 — t61$_4 > 0,
Ty = (—Dg — Agtp™" — Kk)1p > 0, (C.31)
Ty = 25tgi2 % + teor Y% > 0.

and

51 = —%Ag(éw + u,(0)) — 7.

SS9 = —QEW)\g — H)\g > 0.

12 (C.32)

Using the above Tj,s; and the argument in Section [C.1.5] we establish the

following estimate for the constant Cy, in (4.65)
Copt < 27H(Tr(UF D71U,)P)MP < 0.9930 < 1. (C.33)

The fact that C,,; < 1 implies (4.70).

In the weighted H' estimates, we have used

(2%U020)) < 0.020) (C.34)

in (4.87)) to establish (4.88]). We have also used

Dy + Agtp™" — (1, — E) + Bpp ™' < —ko,
= (C.35)
MDy, + Aup™ = Mty — =) + Bop ' < —kap.
T
and
||Aw290_1||oo S a1, (036)

originated from (4.87) and (4.102)) to establish (4.103]).
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Appendix D
APPENDIX TO CHAPTER 5

D.0.1 Properties of the Hilbert transform and functional inequali-
ties

The following Cotlar’s identity for the Hilbert transform is well known, see

e.g., [19, 139, @4].

Lemma D.0.1. For f € C*(S'), we have

H(fHf) = (( =1

We have the following commutator identity from Lemma 2.6 in [14].

Lemma D.0.2. For f € H'(S") with period nw, we have

Hsin(2) 1)~ sin(CD)H f = —— / f sin(2y)dy = H(sin(*2) £.)(0).

The case n = 2 is proved in [14]. The general case follows by a rescaling

argument.

We use the following important Lemma to establish the energy estimate in

Section B.3]

Lemma D.0.3. Suppose thatw € H' is w-periodic and odd. We have [ wy Huw,:
sin(2x)dx = 0.

Proof. We prove the identity for smooth function w € C°°, and the general
case w € H' can be obtained by approximation. Applying Lemma with
f=wand n =1 yields

SE | w.Hw, - sin(2r)dz = /

. e <H(Sin(2x)wz) — H(Sin(Qx)wx)(0)>dx

_ /S o H(sin(2e)u, ).
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Denote f = sin(2x)w,. Using m = L(tanz+cot z) = 3(cot(5 —z)+cot(z)),

(5.13) and Lemma |D.0.1| we obtain
1

S=3 /Sl(cot(g — 1) + cot(2))f - Hfdw =

= H(HDG) = PG = (HP0) = £

(H(FHN(G) = HFHA)(0))

D)

Since w € C*° and it is odd, we get f(0) = f(5) = 0. Note that

o N3

Hf(g) — Hf(0) = %/51 (cot(g —x) + cot x) sin(2z)w,dx

1 2
= —/ ‘ sin(2z)w,dx = 0.
s

1 sin(2z2)

We obtain S = 0 and establish the desired result. O

We use the following Lemma from [I6] to estimate the profile in Section

Lemma D.0.4. For x € [0,1], a, A > 0, we have

«
1_0()\<_
(1—a%)t < S

We refer the proof to that of Lemma

We have the following Hardy-type inequality [61] in bounded domain.

Lemma D.0.5. For p > 1 and L > 0, suppose that fz P2 fa=P/?t1 ¢
LA([0, L]). We have

2
/ —dx< — _dx.
P2

It can be proved by applying an integration by parts argument. A proof can
be founded in the Supplementary material of [20].

Next, we prove the commutator-type Lemma [5.6.5

Proof of Lemmal[5.6.5. A direct calculation yields

S & L(f - Hi(0) - H(L)
L :gcotf“— ot ot =) )y
217T ”1<ycot%_( y)cot%y)f(y)
2 [ 6 - ot P,
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where g(z) = zcot 3 and it satisfies g(2) = g(—z). Since g is Lipschitz on
[—37/2,37/2]

3

, 2 z |sinz —z| _ z
l9°(2)] = | cot 5 2(sinz)?| ~ 2(sinz)2 V2
applying |g(y) — g(y — x)| < |x|, we prove the desired result. O

D.0.2 Derivation of a model for 2D Boussinesq equations
We derive the model ([5.6))-(5.7)), and discuss its connections with (3.1]). Recall
the Boussinesq equations (5.4) and (/5.5])

8t6z +u- VQB = _ul,:vecc - Ugwgy = u2,y9z — u2,z0y-

Inspired by the anisotropic property of 6 in [16], i.e. |6,] << |6,| near the
origin, we drop the 6, term. To study the y-advection, we further drop the

z-advection. Then we obtain (}5.6))
8,5990 + Ugayex = u27y9x.

Since 0, is the forcing term in the w equation in (5.4)), it leads to a strong
alignment between 6, and w. Thus, we simplify the w-equation in (5.4) by
w = 0,, which leads to the following Biot-Savart law in ([5.7)

u=V+(-A)4,, Upy = Opy(—A) 710,

This model relates to (3.1]) via the connections 6, — —w, 0, (—A)™' — —H.
The velocities of the two models us and u are related via ug,, = Oy (—A) 710, ~
—H(—w) = Hw = u,. Moreover, the solutions of the two models enjoy similar
sign and symmetry properties. Suppose that 6, satisfies the sign and symmetry
properties in the hyperbolic-flow scenario. The induced flow us(z,y) is odd in
y with us(z,y) > 0 in the first quadrant near (0,0). The odd symmetries of
0., us in y are the same as those of w,u in for class X . Moreover,
for fixed z > 0, —0,(z, -) and w satisfy similar sign conditions, and uy(z, -) and

u satisfy similar sign conditions near the origin.
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D.0.3 Derivation of (/5.38))-(/5.39)
Recall the formulas of u,,u in (5.13) and the quadratic form in (5.34]). Using

integration by parts, we obtain

/2
B(p) = /0 (2upw — (uw),) cot? xdx

w/2 w/2 1
:2/ umwcotﬁxdx—ﬂ/ uwcot’ ' x——dx £ T+ I1.
0 0 sin® x

/2
in the integration by parts vanish since

The boundary terms wuw cot®
0
u(r/2) =0 and u(z) = O(x),w(r) = O(xY) with v > f — 1 near = 0 by the

assumption in Lemma [5.4.2

Since w is odd, using (5.13)) and symmetrizing the kernel, we yield

/2 /2
I= —/ w(z) cot? z/o w(y)(cot(x —y) — cot(z + y))dy

m™Jo
1 w/2 p7m/2

— _/ / w(z)w(y) P (z,y)dzdy,
™ Jo 0

where

Pi(z,y) = cot’ z(cot(z — y) — cot(z + y)) + cot’ y(cot(y — =) — cot(z + y)).

Recall s = % in ((5.37). We get cot z = scoty. We expand cot(x—1y), cot(x+
y) as follows
cotxcoty + 1 scot?y + 1

t(x —y) = -
cot(z — y) coty —cotz  coty-(1—s)’

cotzcoty —1  scot’y—1

cot(x = = :
(z+y) coty +cotx  coty-(1+s)

Thus, we obtain

e S L1 1
cot(:c—y)—COt(x‘i‘y) :COty<1_5 N 1+ s +c0ty(1—8 * 1+S)
¢ 252 1 2
= co
9T cotyl — s2’
s 1 1 1

)+ ——(

1—s 1+s coty_1—5+1+s
2s 1 2s
1—s2 cotyl—s?

)

cot(y — x) — cot(x +y) = cot y(—

= —coty
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Using the above formulas and cot® x = s° cot® y, we yield

252 1 2s 1 2s

) + cot” y(— cot y

2s
1—s2

Py = cot?y - s°(coty

1—32 cotyl — s? 1—s2 cotyl—s2

= cot? Ty (57T — 1) + cot? T y(sP71 = 1)

1—32

We remark that P, <

For I, using 1) we get

ﬁ . 1 w/2
Cot w(y) log
sm i 0

/m/ Py(z, y)w(z)w(y)dedy,

sin(z + y)
sin(z — y)

&

where
B reotPtax  cotPly sin(z + y)
P2:§< sin? x - sin? )log i — ‘
y sin(z — y)
Note that
cot’ =1z — coth 1 2 4+ cot?t 2 ‘sin(:z; +y) ‘ B ‘cotx+coty 1+ 5)
sin? z T lsin(z — y) cot z — coty 1—sl
We derive

1+s

1+
Py(z,y) = g(co‘cBJrl y(1+ 5" log ‘1—_‘2

+ cot? Ly (1 4 5771 log‘

We remark that P, is positive. Combining the formulas of P, P,, we derive

(6-39-(-39.

D.0.4 Positive definiteness of the kernel
In this subsection, we prove Lemmas|[5.4.3|and Lemma [5.4.4] which are related
to the positive definiteness of the kernel K; 5. We establish (5.53)) for 2o = log 2

in Appendix [D.0.4.7]

Proof of Lemmal[5.4.3 We show that there exists fy € (1,2), such that con-
ditions (5.52))-(5.54) hold for W = Wi 3,G = G 5 with 8 € 5, 2]. Then using
the same argument as that in Section , we obtain Gy 3(§) > 0 for all £
and £ € [fo, 2.

Firstly, we impose 8 € [1.9,2]. Recall G; 3 defined in (5.51))

€)= /000 W; s(x) cos(z€)dx, (D.1)
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and Wi s in (5.44), (5.46). Clearly, W; g(z) converges to Wia(x) as f — 2

almost everywhere. Moreover, from the formula of W, g and the decay estimate

, we have
(Wis(2)] S Lzsae™ M+ 10 (1 + [log |2])), (D.2)
where the term log |z| is due to the logarithm singularity log [s—1| = log |e*—1]
in ((5.44). Thus, using dominated convergence theorem, we yield
lim Gy 3(§) = G12(8).

B—2—

Using (D.1)) and (D.2), we obtain that Gy (&) is equi-continuous
0:Coa€) < [ Wis(ollaldr S 1.

Thus, we obtain that Gy g(§) converges to Gy 2(§) uniformly for € € [0, M],

where M is the parameter in Lemma [5.4.3|

For x near 0, from (5.44) and ((5.46)), we have

B+1

Wig(x) = —2(621 + 67%1) log [e® — 1| + Ss(x),

where Sg(x) is smooth near x = 0. Thus a direct calculation yields

1 1 C
OpWis(e) > (5% 4 e F' )0, log |ef — 1] —
X

2 ||
. (D.3)
2%@%$+eﬁ§$ ‘ ¢,2_ ¢

T TR T E T
for some absolute constant C' > 0 and |z| < 3. Therefore, there exists § > 0,

such that

OpWip(x) >0, 2x€]0,6]. (D.4)
Note that Wy g(x) = K, g(e”) is smooth for (5,z) € [1.9,2] x [, zo],
where 1z is the parameter in Lemma . We get that 0,,W; g(x) converges
to 0 Wi 2(x) uniformly for x € [0,20] as 8 — 2, and that 0,W; 3(z9) —
0 Wia(xo) as B — 2.

Next, we consider the integral on W in ([5.54). We need the decay estimate

of W/"s. For r = e > 1 and s > r > 1, performing Taylor expansion on

log |%| and ﬁ, we obtain that the kernel K 1,5 (5.44) enjoys the expansion

B—1i—2
2 7 10

Kip=Ya(B)s P, Ja(A) $1, max(

i>1

) < ai(B) < 10(i+1).

(D.5)
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with a;(f) increasing. Since the expansions for log |25

e
uniformly for s > r > 1, the above expansion also converges uniformly. Thus,
we can exchange the summation and derivatives when we compute 9K, 5. We
are interested in the leading order term in the above expansion. It decays at
1

least s~(#~1/2 since other terms in K, 4 that decay more slowly, such as s,
are canceled. Using W) 5(z) = K g(e*) and (D.5), for x > x4 > 0, we yield

3 Z ( 7041(6)1 _ ‘ Z az Z 367041'(6):1:

i>1

|03 Wi p(2)] =

B—1
— = —z/4
SeTrge

where the implicit constant can depend on xq. Note that 92W; g(z) — 92Wy2(z)

for any z > ¢ > 0 as § — 2. Using dominated convergence theorem, we yield

lim |8 Wi g(x )|dx:/ |02 W1 o()|dx. (D.6)

B—2— zo

Note that the conditions (5.52))-(5.54)) hold with strictly inequality for W =
Wi2,G = G12. From the uniform convergences G15(§) — G12(§) on [0, M],
8§W175(:U) — 8§W172(x) on [5, .’170], azwlwg(l'(ﬁ — 8IW1,2(;E0) as 5 — 2, "

and (D.6]), we conclude that there exists 8y € (1,2), such that (5.52)-(5.54)
hold for W = WLB? G = Gl,ﬂ with g € [ﬁo, 2] [l

D.04.1 Convexity of W, 3

We first establish (5.53) for 29 = log 2 and then prove Lemma [5.4.4]

Since W; g is given explicitly in (5.44)), (5.46]) and (5.50)),, to simplify the deriva-

tions, we have used Mathematica. All the symbolic derivations and simplifi-

cation steps are given in Mathematica (version 12) [12]. We only provide the

steps that require estimates.

Suppose that W (z) = K(e”) and denote s = e”. Using the chain rule, we yield

Dre Wi (1) = D00 i (") = €2 (0° K 5) (") + € (0K 5) (")

= 3282[( 5(s) + s@f(iﬁ(s) 2 I(s, B).
To establish - OpeWia(x) > 0 for x € [0, z0], 20 = logg, it suffices to
prove I1(s,2) > 0 for s € [1,5/3]. For i = 1, 8 = 2, using symbolic calculation,

(D.7)

we yield

P+ P

I(s,2) = 15201 1 5)%

Py =9(1+ s)*(1 — s+ 5% log

s—i—l‘
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We do not write down the expression of P; since it is an intermediate term
and is not used directly. We provide its formula in Mathematica [12]. Using
log(1+ 2) < z for z > —1, we yield

1—s
1+s

2 2

1+s )_
14+s 1+s

1—s

> —(

(D.8)

log‘ = —log‘

Using the above inequality and simplifying the expression, we yield

1 s
I(5,2) > ——= (P +9(1 + 5)*(1 — s + =
1(5,2) 2 433/2(1+s)3( 1+ 9(1+s) (1 —s+s >S+1) 453/2(1 + 5)%’

2(—9 + 9s + 27s* — 18s% — 59s% + 9s° + 9s%)
(s —1)? '

Py=—

Since s € [1, 2], using 8" < s7,i < j and 9s 4 9s* < 15 + 25 < 41, we obtain

— 9+ 95+ 275> — 185® — 595" + 95° + 9s°
<(9s 4+ 27s% — 185 — 18s%) + 5%(9s + 9s* — 41) < 0,

which implies P > 0 on [1,2]. It follows I1(s,2) > 0 on [1,5/3] and ([5.53))

3
with z¢ = log g

Next, we prove Lemma

Proof. Recall Wy 4(x) = Kypg(e®) and their formulas from (5.50). Denote
s = e”. Using (D.7)), it suffices to prove that I5(s,3) > 0 for all s = e* > 1.
Using symbolic calculation, we have

1+s g—1

—1) T 5

(s, 8) = 057 Loy (5.8) + a*(1 + ™) log

where I51(s, ) is an intermediate term and its formula is given in Mathematica
[12]. Since 8 > 0, using (D.§), we yield

B(s8) 2 557" sl 6) + a2(1 +52) o) 2

N

S_alg,g(s, ﬁ)

Next, we show that Io5(s,5) > 0. Simplifying the expression, we obtain

P+ P+ P .
Faals B) = ﬁ Py = —2a%(s* = 1)*(1 — 25 4 5™),

Py = 8as(s* —1)(s* + 52), Py = 4s(35% 4 s — 52 — 352729,
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Sincea:% [O,%] and s > 1, weget2s—1—522>2s—1—s=5—1>0.

Thus, we obtain P, P, > 0. Using s2* < s again, we derive

Py > 45(38* + s* — 5 — 35%) = 45*(s® — 1 + 35 — 35%)
=45%(s —1)(s* + s+ 1 —3s) = 4s*(s — 1)* > 0.

Combining the above estimates of P;, we establish I5(s,5) > 0fors > 1,5 > 1,
which further implies 0,, W55 > 0 for = > 0. O

D.0.5 Proof of other Lemmas
Proof of Lemmal[5.5.2. Recall that z,y € [0,7/2] and § € [3/2,2]. In the

following estimates, the reader can think of the special case § = 2.

For z +y < 7, since y < § — x and cot z is decreasing on [0, 7], we have
cot x coty > cot x cot(m/2 —x) = 1. (D.9)
Since min(z,y) < 5(z +y) < I, we obtain max(cot z, coty) > 1 and
(cot 2 coty)? > cot z cot y > min(cot x, cot y) > cot(z + y).

The case z +y > 7 is trivial, and we prove (5.68) in Lemma [5.5.2, Next, we
consider (|5.69))

I £ coty(cotx)?2Acot z(cot y)? 2 < (cot z cot y)+1, 1 ysr 2 cot(r—z—y) £ J.

Note that 1,4 ,>x/2 cot(m — 2 — y) is nonnegative. Without loss of generality,

we assume x < y. Since f < 2 and cotx > coty, we get

I = coty(cot z)°72.

[y

Case 1: z+y < 7/2 Since v < yand v < 3(z +y) < 7, using (D.9),
cotx > 1, cotx > coty and S € [1,2], we yield

J > (cot z coty)? > (cot z coty)? = > (coty)? ™ > coty(cot )2 = I.

Case 2: x4y > 5 In this case, J contains the term cot(m — 2 —y) > 0.

Case 2.a: z > - Since y > = > 3, we have coty < cotx,cotx < 1 and

cot(m —x —y) > cot 5 2 1. It follows

I < cotz(cotx)’ 2= (cotz)’ 1 <1< cot(m—a—1y) < J
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Case 2.b: v < Z and 7 —x —y < y. Since 1 S cotz and cot z is decreasing
on [0, 7], we yield

I < coty < cot(m —x —y).
Case 2.c: r < and7m—x —y > y. Since y > %(x+y) > 1w < %, we have

1

cotx 2, coty > cosy>w/2—y.

Note that 7 — x — y > y implies 7/2 — y > x/2. We yield
cot xcoty 2 @ 21,
which along with 1 < cotz, coty < cotz,f € [1,2] imply
I < coty(coty)? =2 = (cot )’ < (cotzcoty)? ! < (cotxcoty)’ < J.
We conclude the proof of .

Next, we prove ([5.70))

IT 2 cotylysnss S (cot xcoty)’ + 1oy yseacot(n —x —y) = J.

We focus on y > 7/3. We consider three cases: (a) z+y < 7/2, (b) z+y > 7/2
andT—2z—y <y, (c)z+y>7%,7—2x—y>y. Inthefirst case, from (D.9),

we have J > 1 2 II. In the second case, since cot z is decreasing, we get

J > cot(m —x —y) > cot(y) > I1I.

In the third case, since v <7 —2y <7—27/3 <7/3,y > F and 7/2—y > /2,

using the same argument as that in the above Case 2.c, we yield
cotzcoty > 1, J> (cotwcoty)’ > 1> 11

So far, we conclude the proof of (5.70) and Lemma [5.5.2 O

The initial data constructed in Section enjoys the following regularity

in Sobolev space.

Lemma D.0.6. Suppose that wy satisfies wy + wa € C(SN\{0}) and wy €
C?*(—7/3,7/3), then wy + w, € H® for any s < a + 1.
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Proof. Let x be a smooth even cutoff function on S (27 periodic) with x(z) =

1 for |z| < § and x(x) = 0 for |z| > §. We decompose wy + w, as follows
Wo + Wa = XWa + Xxwo + (1 — x)(wo +wa) =1+ 11+ 111

Clearly, II,1II € C?> C H* for any s; < 2. Denote f, = Yw,. Since f, is
odd, it enjoys an expansion w,(z) = >, axsin(kz). Next, we estimate ay.

Using integration by parts, we yield
s . C s ,
ar =C [ fosin(kx)dx = ; fi, cos kxdx
0 0
¢ [ : A
= E (1x§1/k + ll/kgxgﬂ/4)fa coskxdr = J, + Js,
0

where the restriction 1,<,/4 is due to the fact that y is supported in |z| < 7 /4.
Recall the formula of w, from (5.80). A direct calculation yields

1/k 1/k
AR / fllde < / 2N <o k0
0 0

For .J5, using coskz = 0,225 9iw,(z)| < |2[*" and integration by parts

again, we derive

_/sin(k k7Y 1 1A
| Ja| Sa K 1<‘Tf&(g)’+zfl/k

1.1 1 [/
<a k—l (- a—1 _/ a—2d
N (k(k) +o U |z|*“dx)

[V sin k:fv‘dx)

< k_l(k'_a + k_l(k’_l)a_l) ,Sa k'_a_l.

~Q

Therefore, for s < a + %, we establish
Z |6Lk|2k28 S Zk—2—2a+25 < —I—OO,
E>1 E>1

which implies w,x = fo € H®. We conclude the proof. O

D.0.6 Rigorous verification

To establish Lemma we need to verify conditions ((5.52)), (5.54)) in Lemma
5.4.3] Note that condition (5.53|) has been verified in Appendix [D.0.4.1

Since the kernel W 5 is explicit (5.44)),(5.46)), to simplify the derivations, we
have used Mathematica. All the symbolic derivations and simplification steps

are given in Mathematica (version 12). We only provide the steps that require
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estimates. All the numerical computations and quantitative verifications are
performed in MATLAB (version 2019a) in double-precision floating-point op-
erations. The Mathematica and MATLAB codes can be found via the link

[12]. We will also use interval arithmetic [96, 100] and refer the discussions to
Appendix [D.0.6.4]

To obtain (5.52)), using the approach in Section |5.4.2.2) we only need to verify

(5.58]). Conditions ((5.58|) and (5.54) involve a finite number of integrals and
the Lipschitz constant b; in (5.57)). Since these conditions are not tight, we

use the following simple method to verify them.

To estimate the integral of f on [A,00) with A > 0, we first choose B suf-
ficiently large and partition [A, B] into A = yo < y1 < ... < yny = B. We
will estimate the decay of f in the far field in Appendix [D.0.6.3] and treat the
integral in [B,00) as a small error. For each small interval I = [y;, yi11], we

use a trivial first order method to estimate the integral
min f(o) < [ f@)de < [fmax @), 1] =viwr -y (D0
x I x

Denote by f*(I), f'(I) the upper and lower bounds for f in I. To use (D.10)),
we estimate f!(I), f*(I) for each interval I = [y;, y;11]. For simplicity, we drop

the dependence on I.
We simplify W1 5 defined in (5.44]),(5.46) as W. All the integrands involved in
(5.58), (5-54), (B.57) are W (z) cos(a€) for & = ih,i = 0,1, .., 3, [W (2)z], [W" (z)].

To obtain the piecewise upper and lower bounds for these integrands, using

basic interval arithmetics, see e.g., [55]
(f9)* = max(f'g", f'g", f*g', f'g"), (fg)' = min(f*g", f'g", f*d', f'd"),
1" =max(|f',[/*]), (f-9)'=f—=g¢" (F-9"=["—7,
(D.11)
we only need to obtain the bounds for cos(z&), W, |Wx|, W". Those for x are

trivial.

D.0.6.1 Upper and lower bounds for W, Wz, W"

We simplify f{l,? in (5.44) as K. Denote s = e*. Using the chain rule and
W(z) = K(e*) = K(s), we get
PW (2) = 2K (%) = e* (P K)(e%) + 32 (0°K) (e®) + *(OK) (")
= 23K (s) + 3520 K (s) + sOK (s) £ DK (s).
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Since e” is increasing, the bounds for W on [z, x| and those for K on [e®, e%v]
enjoys
fl — gl(exl’ eacu), fu — gu(exl’ emu%

) ) ) (D.12)
(fyg) = (VV’ K)v (8§W7D3K)7 (W(x):v,K(s) logs)'

Thus it suffices to get bounds for K, K log(s), D*K. Recall K from (5.44)) with

f=2
~ s+1 s3 — 53
K(s) = (s2 +s_%)log‘ — 2s
s—1 82—1 D.13
3 s+1 152+ s+ 1 (D-13)
= (s2 +s_§)log‘ ‘—28
— s+1

In the interval s € [s;, s,] with 1 < s; < s,, using monotonicity, e.g., 5%/

[s?/Q 3/2] the fact that log ’SH’ is decreasing and ([D.11)), we get the upper

and lower bounds for K

~ L+ 1 182 4 s, +1
KZ(SZ,SU> _ ( 3/2 + 873/2) lOg Su T+ ‘ 2 l 1/23u + s, + :
w = 1 Sy + 1
+1 P+si+1 (D-14)
K D)= (832 + 57 ’31 )_2 —128 E S
(Slas ) ( +S ) 0og s; — Sy Su+1

Next, we consider f(log s. For s € [s;,,] with s; > 1, since log s > 0, we get
K(s)log(s) < K"log(s) < max(K"log s;, K"log s,).

Similarly, we obtain the lower bound for K logs. Yet, near s = 1, the upper
bound blows up due to log|s;— 1| in K“. Note that logs < s—1. Using (D.g),
for s > 1, we get

s—|—1 1 1 s+1 2 s+ 1
9y((s—1)1 ‘ — —1)41 _ 1 > 0.
((s=1)log (s+1 8—1)(8 )+Ogs—1 8—|—1+Og5—1_
Thus, log |*1|(s — 1) is increasing on [s;, s,] and
s+1 s+1 Su+1
] ’ ‘1 <1 ‘— — 1) < log | 2 ‘ 1),
og | -—|logs <log|—| (s —1) <log p—1 ($u—1)

We obtain the following improvement for the upper bound of K (s)logs on
[Sla Su]

ﬂ‘.(s — 1) —2s] —I/QLSZH
1 u

K(s)log(s) < (s3/% + 5, *%) log -

u
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For D?K (s), firstly, using symbolic computation, we yield

DK (s) = Pya(s) — JJZ;M(S) + P5(3)’

Pyi(s) = 54s + 54s® + 266s* + 1245° + 266s° + 545° + 5457,

Pys(s) = 180s” + 180s”,

Ps(s) = 27(s*> = 1)*(1 + s + %) log ‘g , Ps(s) =8(s — 1)35%2(1 + )%,

(D.16)

Since 1 < s; < s, and Py, Py, Ps are increasing, we get PY = P,.(s,), P., =
P,.(s) for index m = 41,42 or m = 6. The bounds for P5 are also trivial

s1+1
Sl—l ’

Sy +1
Sy — 1

P! =27(s?—=1)*(1+s;+5?) log

L PE = 27(s2— 1) (140 +52) log‘

Using the bounds for Py, Py, Ps, Ps and (D.11]), we can further derive the
bounds for D3K .

D.0.6.2 Upper and lower bounds for cos(x§)

For f € C?%([a,b]) and x € [a,b], the basic linear interpolation implies f(z) =

=2 f(b) + 12 f(a) + 3f"(01)(x — @) — b) for some 71 € [a, ] and

win(f(a), £(3)) ~ "

<f(z) < max(f(a), f(b)) +

1"l Lo fa
(b—a)?
8

1"l Lo [a,0]-

Applying the above estimate to f(x) = cos(z€) and |f"(z)] < &2, we derive
the upper and lower bounds for cos(z&) on [a, b].

To verify (5.58)), it suffices to get a lower bound for G(§) with £ = jh. Applying
(D.12), (D.14)), the above estimate for cos(x{) and (D.10), we yield

/yi+1 COS(f&)W(CL’)dl’ > (yi+1 i yi) . 117 I(x) £ COS(Iﬁf)W<$>.

Yi
The term I' can be obtained using (D.11]). For y; close to 0, we should avoid
using (D.11)) to derive I' since it involves W*(x;, z,) = K*(e™,e*) (D.14),

which blows up near x = 0. For x¢ < 7/2, since cos(z€) > 0, we derive I'

using

cos(x&)W (z) > cos(x&)W"' > min((cos(-£))' W', (cos(-€))“Wh).



365

For large £, the above estimate is not sharp due to large oscillation in cos(z¢).

Denote m = M? ho = b — a. We consider an improved estimate

/ab cos(x§)W (v)dx = /ab cos(z&)(W () — m)dx + m/ab cos(x€)dx

: b
22" ] cos(a {1 —
(bE) — i _
W Wosin) —sinfag) o W — W
2 ¢ 2
where we have used W —m € [W; —m, W, —m| = [— W“g S Wug o,

Using the above estimates, we obtain the lower bound of the integral in G(§)
(5.51)) in a finite domain. The integrals in (5.57) and (5.54)) in a finite domain

are estimated similarly.

D.0.6.3 Decay estimates of W, 92W

It remains to estimate the integrals in (5.58), (5.51)), (5.57)) and (5.54]) in the

far field. For s > 1, using Taylor expansion, we yield

s+ 1 2 g3
= —(2k—-1) _ £ '
3—1‘ ’—3238 31— g2

(D.17)

s+1’_
s—1

log s~ (k=1 ‘10

2k—1

Using the above estimate and (D.13]), we obtain

2 182 4+s+1 2 573 s+1
32 .2 _ 9 7—‘ 32 25 L (-3/2) ‘
R e R S ] P
2L+ 1+ I
Note that I; = 1/2 < 25732, We derive
N 9 1 _
K| <5722+ o7 — = +log ot — ‘) 2 52K pals). (D.18)

Next, we estimate D3K (D.16). Using (D.17), we decompose Ps in (D.16) as

follows

|Ps — Ps | < Pserr,
—3

2 2
P5’M - 27(82 - ]‘)4(]‘ ts+ 82)_7 P5,er7" = 27(32 - ]-) (]. +s+s )3 1 i
S — S
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Recall Py, Pya, Bs from (D.16). Denote P; = Py — Py + Ps pr. We estimate
(D.16]) as follows

|D3K|< |P42_P41+P5,M|+P5,er7"< |P7|+P5,err.

D.1
Fs - B Fs (D-19)

1

By definition, P; is a sum of a polynomial of s and s7". Simplifying the

expression of P (see details in [12]) and using the triangle inequality, we yield

|P;| < Py = 54 + 545! + 2165 + 270s% + 288s® + 58s* + 165° + 4825° 4 1857
= S7P8,tail<5)7

where Py 1q4 = Pg(s)s~7 is decreasing in s. For Py and the error term

P .r, we have

Py =8(—1+4 5321+ 5)t > s™32.8(1 — s71)3 2 5732, ,u(s),
Poorr _ 91 +5+5%) _ 5901 +5)

9
_ <5320 (14 ) 2 §32E, . (s).
P 4s5P(1+s) o 7 S AsT) = s Buails)

Plugging the above estimates in (D.16]), (D.19)), we obtain

< @ + P5,err < & + P5,err < ng(PB,tail
PG PG P6 PG Pﬁ,tail

|D*K (s)

Clearly, K'm@-l(s) is decreasing. Since P g, Erei are decreasing and Fg 14
is increasing, Ktail’g is decreasing. Using W(x) = K (€*), we estimate the
integrals in G(&) (5.51) and (5.57)) in the far field as follows

o 5 00 ~ 2
’ / W(z) Cos(xf)da:) < Ktm‘l(eB)/ e 32 dy = Ktail(eB)ge_?’B/Q,
B B

h ; > . 2B 4
/ (W (w)z|dr < Ktail(€B>/ e 32 pdy = Ktail(€B>(? + 5)6733/2,
B B

(D.21)
and treat them as error. Similarly, we estimate the integral in (5.54) in the

far field.

So far, we conclude the estimates of all the integrals in ((5.58)), (5.51)), (5.57)

and (5.59).

D.0.6.4 Interval arithmetic

To implement the above estimates and verify ((5.58)), (5.54)) rigorously, we adopt

the standard method of interval arithmetic [96] [100]. In particular, we use the
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MATLAB toolbox INTLAB (version 11 [99]) for the interval computations.

Every single real number p involved in the above estimates is represented
by an interval [p;,p,| that contains p, where [p;, p,| are some floating-point

numbers. We refer to [19] 20} 55] for related discussion.



	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Introduction
	The 3D incompressible Euler equations
	The Hou-Luo scenario
	A framework to study singularity formation
	Competition between advection and vortex stretching

	Singularity Formation in Incompressible Fluids
	Preliminaries
	Main results and ideas
	Derivation of the leading order system
	Self-similar solution of the leading order system
	The dynamic rescaling formulation
	Linear stability
	Higher order estimates and the energy functional
	Elliptic regularity estimates and estimate of nonlinear terms
	Nonlinear stability
	Finite time blowup of 3D axisymmetric Euler equations

	Finite Time Blowup of the De Gregorio Model on Lg
	Preliminaries for the 1D models
	Main results
	Ideas in establishing nonlinear stability
	Finite time self-similar blowup for small Lg
	Finite time blowup for Lg with Lg initial data
	Finite time blowup for Lg initial data
	Finite time blowup for negative Lg with Lg initial data

	Asymptotically Self-Similar Singularity of the Hou-Luo Model
	Main results
	Outline of the main ingredients in the stability analysis
	Linear stability
	On the approximate steady state
	Nonlinear stability and finite time blowup
	Hölder regularity of the blowup solution
	Connection between the HL model and the Boussinesq equations

	Competition between Advection and Vortex Stretching
	Main results
	Main ideas and the outline of the proofs
	One-point blowup criterion
	Stabilizing effect of the advection and several quadratic forms
	Global well-posedness
	Finite time blowup for Lg data

	Concluding Discussions and Related Problems
	Bibliography
	Appendix to Chapter 2
	Appendix to Chapter 3
	Appendix to Chapter 4
	Derivations and estimates in the linear stability analysis
	Parameters in the estimates
	Rigorous verification

	Appendix to Chapter 5

