
Autonomous Mission-Driven Robots
in Extreme Environments

Thesis by
Amanda Bouman

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2022
Defended April 11th, 2022

ii

© 2022

Amanda Bouman
ORCID: 0000-0002-4215-2913

All rights reserved

iii

ACKNOWLEDGEMENTS

I want to extend my deepest gratitude to my advisor Prof. Joel Burdick, for his
steadfast support, kindness, and dedication to the pursuit of salt of the earth robotics.
I hope to carry this philosophy not only professionally, but through all my future
endeavors.

To past and present members of my research group, particularly Nikola Georgiev,
Matt Burkhardt, Daniel Pastor, Joe Bowkett, and Anushri Dixit: it was a rare
pleasure working alongside a group of uniquely motivated and skilled individuals.

To Lynn Seymour and Sonya Lincoln: thank you for all your efforts behind the
scenes. Field robotics is often a logistical nightmare, and you were always willing
to work through the mess.

I want to thank Jacob Izraelevitz and Brett Kennedy for their effective leadership on
SQUID, as well as Prof. Mory Gharib for his strong support of this work in CAST.

I am thankful to my SubT teammates who found a way to make even the bleakest
settings a lively and productive work environment. Some of my fondest memories
of graduate school will have happened in the mines, caves, tunnels, and random
conference rooms we found ourselves in during those three crazy years. I want to
especially thank Ali Agha for his unyielding determination in creating opportunities
for the team, as well asmy teammates: Thomas Touma, Nikhilesh Alatur, SungKim,
Brett Lopez, David Fan, John Mayo, Kenny Chen, Matt Anderson, Kyon Otsu, Ben
Morrell, Angel Santamaria-Navarro, Oriana Peltzer, Sammi Lei, Jeffrey Edlund,
Torkom Pailevanian, Mike Wolf, Josh Ott, and Shehryar Khattak.

I want to particularly thank two people from this list for their technical expertise
and guidance: Sung Kim and Brett Lopez. Whether academic or personal, our
discussions over the years almost always had a way of getting to the core of an issue
and shedding light on a productive path forward.

To my friends Marcel Veismann, Abbas Tutcuoglu, Akshita Ganesh, Danilo Ku-
sanovic, Drew Singletary, Eric Ambrose, Gautam Venugopalan, Jorge Castillo,
Magnus Hoffmann, Raj Katti, Rachel Gehlhar, Shushman Choudhury, Tori Lee, and
Vin Narasimhan: thank you for your friendship and support through thick and thin.

And finally to Mom, Dad, Katie, Joe, and Alexander: without you, none of this
work would have been possible.

iv

ABSTRACT

Robotic autonomy systems that can negotiate harsh environments under time and
communication constraints are critical to accomplishing many real-world missions.
Such systems require an integrated software-hardware solution capable of robustly
reasoning about a time-limited mission across a complex environment and negotiat-
ing extreme physical conditions during mission execution. To this end, I will discus
the development of two field-tested systems designed for operation in GPS-denied
areas: (i) a coverage planning framework that enables efficient exploration of large,
unknown environments, and (ii) a ballistically-launched aircraft that converts to an
autonomous, free-flying multirotor in order to provide rapid aerial surveillance.

The first system addresses the time-limited exploration problem by providing a plan-
ning strategy that seeks to maximize the area covered by a robot’s sensor footprint
along a planned trajectory. In order to find solutions over large spatial extents (>1
km) and long temporal horizons (>1 hour), this coverage problem is decomposed
into tractable subproblems by introducing spatial and temporal abstractions. Spa-
tially, the robot-world belief is approximated by a task-dependent structure, enriched
with environment map estimates. Temporally, the belief is approximated by the ag-
gregation of multiple structures, each spanning a different spatial range. Cascaded
uncertainty-aware solvers return a coverage plan over the stratified belief in real time.
Coverage policies are constructed in a receding horizon fashion to ensure motion
smoothness and resiliency to real-world stochasticity in perception and control. This
coverage planning framework was extensively tested on physical robots in various
real-world environments (caves, mines, subway systems, etc.) and served as the
exploration strategy for a competing entry in the DARPA Subterranean Challenge.

The second system addresses rapid multirotor deployment for aerial data collection
during emergencies. While multirotors are advantageous over fixed-winged systems
due to their high maneuverability, their rotating blades are hazardous and require
stable, uncluttered takeoff sites. To overcome this issue, a ballistically-launched,
autonomously-stabilizing multirotor (SQUID – Streamlined Quick Unfolding Inves-
tigation Drone) was designed, fabricated, and tested. SQUID follows a deterministic
trajectory, transitioning from a folded launch configuration to an autonomous, fully-
controllable hexacopter. The entire process from launch to position stabilization
requires no user- or GPS-input and demonstrates the viability of using ballistically-
launched multirotors to achieve safe and rapid deployment from moving vehicles.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] A. Bouman, J. Ott, S. Kim, K. Chen, M. Kochenderfer, B. Lopez, A. Agha-
Mohammadi, and J. Burdick. “Adaptive Coverage Path Planning for Efficient
Exploration of Unknown Environments”. In: Submitted to IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.
Contribution: planner software development, implementation, and simula-
tion/hardware testing.

[2] O. Peltzer∗, A. Bouman∗, S. Kim, R. Senanayake, J. Ott, H. Delecki, M.
Sobu,M. Schwager,M.Kochenderfer, J. Burdick, andA.Agha-Mohammadi.
“FIG-OP: Exploring Large-Scale Unknown Environments on a Fixed Time
Budget”. In: Submitted to IEEE Robotics and Automation Letters (RA-L).
IEEE, 2022.
Contribution: planner software development, implementation, and simula-
tion/hardware testing.

[3] A.Agha-Mohammadi,K.Otsu,B.Morrell, D. Fan,R. Thakker,A. Santamaria-
Navarro, S. Kim, A. Bouman, and [63 others]. “NeBula: Quest for Robotic
Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA
Subterranean Challenge”. In: Journal of Field Robotics (JFR) (2021).
Contribution: global planner software development, implementation, and
simulation/hardware testing.

[4] S. Kim∗, A. Bouman∗, G. Salhotra, D. Fan, K. Otsu, J. Burdick, and A.
Agha-Mohammadi. “PLGRIM:Hierarchical Value Learning for Large-scale
Exploration in Unknown Environments”. In: International Conference on
Automated Planning and Scheduling (ICAPS). Vol. 31. 2021, pp. 652–662.
Contribution: planner software development, implementation, and simula-
tion/hardware testing.

[5] A. Bouman, P. Nadan, M. Anderson, D. Pastor, J. Izraelevitz, J. Burdick,
and B. Kennedy. “Design and Autonomous Stabilization of a Ballistically-
LaunchedMultirotor”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2020, pp. 8511–8517. doi: 10 . 1109 /
ICRA40945.2020.9197542.
Contribution: vehicle, software, and experimental setup design.

[6] A. Bouman∗, M. Ginting∗, N. Alatur∗, M. Palieri, D. Fan, T. Touma, T.
Pailevanian, S. Kim, K. Otsu, J. Burdick, and A. Agha-Mohammadi. “Au-
tonomous Spot: Long-Range Autonomous Exploration of Extreme Environ-
ments with Legged Locomotion”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2020. doi: 10.1109/IROS45743.
2020.9341361.
Contribution: coverage planner software development, implementation, and
simulation/hardware testing.

vi

[7] D. Pastor, J. Izraelevitz, P. Nadan,A. Bouman, J. Burdick, and B. Kennedy.
“Design of aBallistically-LaunchedFoldableMultirotor”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2019. doi: 10.1109/IROS40897.2019.8968549.
Contribution: design of vehicle-based field testing setup.

*These authors contributed equally to the listed work.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . vi
Chapter I: Introduction . 1

1.1 Coverage Planning in Unknown Environments 3
1.2 Rapid Aerial Surveillance . 4
1.3 Thesis Structure . 4

Chapter II: Background and Preliminaries 6
2.1 DARPA Subterranean Challenge . 6
2.2 Underlying Autonomy Modules . 7
2.3 Coverage Path Planning Review . 12
2.4 Partially Observable Markov Decision Process 15

Chapter III: Coverage Planning Framework 17
3.1 Introduction . 17
3.2 Related Work . 19
3.3 Problem Formulation . 20
3.4 Challenges . 22
3.5 PLGRIM: Hierarchical Coverage Planning on Information Roadmaps 23
3.6 Overview . 24
3.7 Hierarchical Belief Representation 26
3.8 Hierarchical Value Learning . 28
3.9 Receding-Horizon Policy Reconciliation 32
3.10 Experimental Results . 34
3.11 Summary . 40

Chapter IV: Local Coverage Planner . 41
4.1 Introduction . 41
4.2 Related Work . 43
4.3 Problem Definition . 44
4.4 Methodology Overview . 45
4.5 World Representation . 45
4.6 Markov Decision Process . 47
4.7 Online Planning . 53
4.8 Experimental Results . 57
4.9 Summary . 61

Chapter V: Global Coverage Planner . 62
5.1 Introduction . 62
5.2 Related Work . 64
5.3 Problem Formulation . 66

viii

5.4 World Representation . 69
5.5 FIG-OP Graph Structure . 71
5.6 Online Planning . 73
5.7 Experimental Results . 74
5.8 Summary . 77

Chapter VI: SQUID . 79
6.1 Introduction . 79
6.2 Mechanical Design . 82
6.3 Ballistic Launch Process and Transition to Stabilized Flight 86
6.4 Active Stabilization . 90
6.5 Summary . 92

Chapter VII: Conclusion . 94
Bibliography . 98

1

C h a p t e r 1

INTRODUCTION

Robotic autonomy systems that can operate in harsh environments under time and
communication constraints are critical to accomplishing many real-world missions,
such as search-and-rescue after a natural disaster, repair of leaking oil wells, or
exploration of planetary bodies. Such systems require an integrated hardware-
software solution capable of: (i) robustly reasoning about a time-limited mission
across a complex environment, and (ii) negotiating extreme physical conditions
during mission execution.

Consider the Tham Luang cave rescue in 2018. Thirteen members of a soccer
team became trapped deep inside a Thai cave after rainfall flooded portions of the
cave. What ensued was a massive, time-sensitive effort to rescue the team before
the start of Monsoon season (Fig. 1.1). Piloted drones were deployed above the
jungle-covered mountainside in order to locate vents in the cave roof for water
drainage and personnel access. Meanwhile, expert divers searched the complex
cave network while contending with rushing water and near darkness [1]. During
one of the dives, a Thai Navy SEAL died of asphyxiation as he tried navigating one
of the many twisting cave chambers. After two weeks and the involvement of nearly
10,000 people, all thirteen team members were rescued alive – an outcome many
consider to be a miracle.

Figure 1.1: Tham Luang cave rescue: members of the rescue team navigating a
flooded cave chamber [2], and a schematic of the mission site. The survivors were
located 2.5 miles (4 km) from the cave entrance [3].

No commercial technology exists today that could have autonomously executed
the Tham Luang rescue mission. Despite robotic autonomy gaining widespread
usage in manufacturing, severe challenges still remain for time-limited operations

2

in unknown and extreme environments. These technical challenges arise when a
system must navigate mobility-stressing elements (uneven terrain, obstacles, stairs,
slopes, narrow passages) while simultaneously coping with perceptually-degraded
conditions (darkness, obscurants, topological self-similarity), without the aid of a
prior map or GPS localization.

The Tham Luang mission calls for an integrated team of air and ground robots that
can rapidly deploy with little to no reliance on skilled human operators. These
systems must simultaneously be nimble enough to negotiate complex topologies
and obstructions, yet large enough to carry a payload capable of providing sensing,
communication, and computing capabilities over a long mission duration. As the
robots navigate the surface and subsurface environments, they must: (i) maintain
and synchronize an internal representation of the world that encodes traversability
and mission-specific information, and (ii) plan risk-mitigating paths that maximize
the area observed, or covered, by a task-specific sensor within a mission-dictated
time budget. This sensor may be a thermal camera for detecting cave vents, an
optical camera for identifying visual clues of survivors, or an omnidirectional range
finder for constructing 3D cave maps. As a robot moves, its sensor footprint sweeps
the environment, expanding the covered area, or more generally, the task-relevant
information about the world.

To provide initial reconnaissance, highly-maneuverable aircraft must quickly launch
through a potentially dense forest canopy to vantage points along the jaggedmountain
range. Then, out of sight of ground operations, the deployed aircraft must maintain
localization without relying on intermittent GPS signals, which are likely to cut-
out during flight through canyons and other sky-obstructing terrain. Meanwhile,
the cave-bound ground robots must repeatedly face mission-critical decisions while
equipped with only a partial understanding of their situation – both in terms of the
world and their place in it. As a robot pushes through the cave’s dark twisting
chambers, consumed by water, dust, and fog, it must carefully evaluate each action,
weighing expectations about the risk ofmission-failure against the value of gathering
new information in service of accomplishing mission objectives.

Motivated by real-world missions like the Tham Luang rescue, this thesis develops
two field-tested systems designed for operation in GPS-denied areas: (i) a coverage
planning framework that enables efficient exploration of large, unknown environ-
ments, and (ii) a ballistically-launched aircraft that converts to an autonomous,
free-flying multirotor for rapid aerial surveillance.

3

1.1 Coverage Planning in Unknown Environments
The coverage planning objective is to find the optimal sequence of sensing ac-
tions that maximizes some task-specific information about the environment. In the
robotics field, this problem is commonly motivated by tasks such as surveillance,
object inspection, and exploration. While a variety of coverage planning algorithms
have been proposed, this thesis is interested in those used to solve the exploration
problem where policies are constructed in a receding horizon fashion as the robot
gathers sensory information about its environment. The challenges associated with
the exploration-driven coverage problem are broadly identified as follows. Note that
these challenges are discussed in greater detail in Chaps. 3-5.

Long-Horizon Planning under Uncertainty: In exploration-drive coverage prob-
lems, the robot’s knowledge about its environment is incomplete and often inaccurate
at runtime. The robot must accumulate data to incrementally build a model of its
environment. To do so efficiently, it needs to reason about the long-term effects of its
actions on the quality and quantity of data it collects. All the while, the robot must
account for uncertainty in hazard assessment, localization, and motion execution
in order to make decisions for maximal information gain in a real-world stochastic
setting.

World Representation: The computational complexity of the coverage planning so-
lution is highly dependent on how the robot maintains and updates a representation
of the world, encoding coverage and traversability information. One of the primary
challenges associated with finding online coverage trajectories arises from the fact
that the representation must simultaneously: (i) span up to several kilometers to fa-
cilitate global coverage mission objectives, and (ii) capture high-fidelity information
about traversability to enable safe navigation through hazardous terrain. The prob-
lem complexity is further exacerbated by the need to reason about a non-additive
coverage reward across a trajectory. Therefore, special attention must be paid to
the manner by which the world representation is updated with coverage information
when simulating a trajectory; i.e., naively replicating the properties of a real-world
coverage sensor can have diminishing returns in an uncertain world.

Resiliency to Unexpected Risks: The robot must replan frequently so that it can
account for new traversability risk information in a coverage trajectory. As the robot
explores its environment, it receives new information, updates its understanding of
the world, and constructs a new coverage plan in a receding horizon fashion. This
approach introduces yet another complication – how to transition from one policy

4

to the next. Policies generated during consecutive planning episodes should: (i)
respect the dynamic constraints of the robot to achieve maximal coverage efficiency,
and (ii) adapt to unexpected hazards in the environment to ensure the robot’s safety.
It is imperative to find a balance between these two distinct, and often opposed,
objectives during real-world execution.

1.2 Rapid Aerial Surveillance
Rapid deployment of an aircraft is critical to gathering aerial data during emergency
response. In these situations, a multirotor aircraft is advantageous over a fixed-wing
system, since it can both hover in place and aggressively maneuver in cluttered envi-
ronments. However, the rotating blades of a multirotor are sensitive to disturbances
and can be hazardous to nearby assets and personnel. Thus, a precise, highly-
deterministic, and fully autonomous deployment pipeline is necessary in order to
rapidly achieve a safe operating altitude. This autonomous deployment pipeline
should comprise two major phases: post-ballistic launch passive stabilization, and
rotor-engaged active stabilization. The requirements of each phase are thoroughly
discussed in Chap. 6, and only briefly mentioned here.

Passive Stabilization: A ballistic launch is necessary to achieve a deterministic
operating altitude, particularly in precarious takeoff conditions, such as deployment
through cluttered areas or from a moving vehicle. The aircraft must thus boast: (i)
an airframe strong enough to carry and transmit launch loads without damaging an
onboard autonomy package, and (ii) an aerodynamic design that ensures attitude
stability as the aircraft travels along the ballistic trajectory. The ultimate objective
of the passive phase is to set the necessary preconditions for autonomous flight.

Active Stabilization: After the aircraft has reached a desired altitude, the rotors
must spool up and transition the platform from ballistic motion to full 6-degree
of freedom control using only onboard sensing, without the aid of GPS. After
successful completion of this phase, the vehicle is ready to initiate a coverage path
planning mission.

1.3 Thesis Structure
Chapter 2 introduces the underlying autonomy components required for the devel-
opment of the coverage planning strategy proposed in Chaps. 3-5. Next, the DARPA
Subterranean Challenge is described, as it served as the concrete mission for which
much of this thesis work was based upon. This chapter also gives a brief tour of
classical coverage path planning approaches, as well as a POMDP overview.

5

Chapter 3 develops a hierarchical framework for exploration of large-scale un-
known environments, called PLGRIM (Probabilistic Local and Global Reasoning
on Information roadMaps). A hierarchical belief space representation is proposed,
which effectively encodes a large-scale world state, while simultaneously capturing
high-fidelity information local to the robot. Global policies (developed in Chap. 5)
guide local policies (developed in Chap. 4), resulting in a cascaded decision pro-
cess. This chapter also introduces a policy reconciliation method, which respects
the robot’s dynamic constraints while ensuring resiliency to unexpected risks.

Chapter 4 presents an online method for finding local coverage polices over a grid-
based representation of the environment. Here, the robot is tasked with planning a
path over a local horizon such that the accumulated area swept out by its sensor foot-
print is maximized. To quickly find near-optimal solutions, this chapter proposes an
effective approximation to the coverage sensor model which adapts to the local en-
vironment. As a result, the robot is able to reason about a submodular, non-additive
coverage reward function across a trajectory, while simultaneously accounting for
traversal distance and risk.

Chapter 5 presents an online method for finding global coverage polices over a
graph-based representation of the environment. This chapter proposes and solves
the Frontloaded Information Gain Orienteering Problem (FIG-OP) – a generaliza-
tion of the traditional orienteering problem where the assumption of a reliable
environmental model no longer holds. This OP variant compensates for model
uncertainty by incorporating a greedy incentive that shifts information gain earlier
in time. By biasing towards short term gain, the robot visits frontiers earlier with
the expectation that they will significantly alter its world understanding by exposing
new opportunities for information gathering.

Chapter 6 presents a ballistically-launched, autonomously-stabilizing multirotor
prototype called SQUID (StreamlinedQuickUnfolding InvestigationDrone). SQUID
follows a deterministic trajectory, transitioning from a folded launch configuration
to an autonomous, fully-controllable hexacopter. The entire process from launch to
position stabilization requires no user- or GPS-input and demonstrates the viabil-
ity of using ballistically-launched multirotors to achieve safe and rapid deployment
from moving vehicles.

Chapter 7 lists the specific contributions of this thesis, and discusses future direc-
tions based off real-world performance of the proposed coverage planning strategy.

6

C h a p t e r 2

BACKGROUND AND PRELIMINARIES

This chapter begins by providing a description of the DARPA Subterranean Chal-
lenge (Sec. 2.1) and the autonomy components underlying the proposed coverage
planning structures and algorithms (Sec. 2.2). Then, a brief review of the coverage
path planning literature is provided (Sec. 2.3). Finally, the partially observable
Markov decisioin process (POMDP) – a framework for sequential decision-making
when the state is not fully observable – is discussed (Sec. 2.4).

This chapter was adapted from:

A. Agha, K. Otsu, B. Morrell, D. Fan, R. Thakker, A. Santamaria-Navarro, S.
Kim, A. Bouman, and [63 others]. “NeBula: Quest for Robotic Autonomy
in Challenging Environments; Team CoSTAR at the DARPA Subterranean
Challenge”. In: Journal of Field Robotics (JFR) (2021).

A. Bouman*, M. Ginting*, N. Alatur*, M. Palieri, D. Fan, T. Touma, T. Paile-
vanian, S. Kim, K. Otsu, J. Burdick, andA. Agha-Mohammadi. “Autonomous
Spot: Long-Range Autonomous Exploration of Extreme Environments with
Legged Locomotion”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2020.

2.1 DARPA Subterranean Challenge
The DARPA Subterranean, or “SubT,” Challenge is a robotic competition that seeks
novel approaches to rapidly navigate, map, and search underground environments.
The teams participating in the systems track develop and implement physical systems
for autonomous traversal of various extreme subterranean environments, including
mines, industrial complexes, and natural caves. The competition spans a period of
three years and includes four major events: Tunnel, Urban, Cave, and Final. During
a “run” in a course, a competitor team has a fixed time window (1 hour) to deploy
their robots in order to locate artifacts in the course. See Fig. 2.1. Each team receives
1 point per artifact if their robots: (i) reach, detect, and recognize the artifact, (ii)
localize the artifact in global coordinates with less than 5 meters error, and (iii)
report the artifact during the 1-hour mission period. The team with the most points
wins the run.

7

Cave

Tunnel

Urban

ThermalRadio frequency GasAcoustic Visual
Artifacts must be

detected, identified, and localized
based using different modalities

Cave

Tunnel

Urban

ThermalRadio frequency GasAcoustic VisualArtifacts must be detected, identified,
localized, and communicated back to an

operator based on their various signatures
and using different sensor modalities

Figure 2.1: The Final Circuit of the DARPA SubT Challenge consists of elements
from all subdomains (i.e., tunnel, urban, cave). To demonstrate efficient exploration
of the environment, competitors score points by accurately reporting the type and
location of artifacts distributed along the course. [4]

2.2 Underlying Autonomy Modules
This section presents the software architecture developed by the Team CoSTAR
(Collaborative SubTerranean Autonomous Robots), while competing in the DARPA
SubT Challenge. The autonomy framework is called NeBula: Networked Belief-
aware Perceptual Autonomy [4]. NeBula is fully integrated on two robot platforms:
a four-wheeled vehicle (Clearpath Husky robot) and a quadraped (Boston Dynamics
Spot robot), as shown in Fig. 2.2. Throughout this text, the NeBula-integrated Spot
robot is referred to as Au-Spot. Au-Spot demonstrated one of the first efforts to
enable large-scale and long-duration autonomy using the Boston Dynamics Spot
robot [5].

NeBula provides the underlying autonomy modules required for the coverage plan-
ning structures and algorithms discussed in Chaps. 3-5. This section will focus on
the NeBula modules: state estimation, traversability analysis, and motion planning.

8

(a) NeBula-integrated Spot (or Au-Spot) (b) NeBula-integrated Husky

Figure 2.2: Both robots are equipped with custom sensing and computing systems,
enabling high levels of autonomy and communication capabilities. The sensing
system consists of 3D LiDARs, Intel RealSense cameras, high-intensity LEDs, an
IMU, and a thermal camera. The entire autonomy stack runs in real-time on an Intel
Core i7 processor with 32 GB of RAM.

State Estimation
The most fundamental component of the NeBula architecture is reliable state esti-
mation under perceptually-degraded conditions. This includes environments with
large variations in lighting, obscurants (e.g., dust, fog, and smoke), self-similar
scenes, reflective surfaces, and featureless/feature-poor surfaces.

Multi-Sensor Fusion: To overcome these challenges, NeBula relies on a LiDAR-
centric uncertainty-aware, multi-sensor fusion framework where a selected odome-
try source is fused as a prior with LiDAR information to enable accurate ego-motion
estimation under challenging perceptual conditions. The main components of the
proposed approach are: (i) an anomaly-aware odometry multiplexer, (ii) a multi-
sensor LiDAR-centric SLAM front-end, and (iii) a SLAM back-end [6]. Fig. 2.3
provides a high-level overview of the approach.

Odometry Multiplexer: To select the best odometry prior to be fused with Li-
DAR information, multiple heterogeneous odometry sources (e.g., visual-inertial,
thermal-inertial, kinematic-inertial, etc.) are fed into an anomaly-aware odometry
multiplexer, referred to as HeRO (Heterogeneous Redundant Odometry) [7]. At ev-
ery time step, HeRO runs a confidence test on each odometry stream (prior) to detect
potential anomalies (e.g., gaps, jumps, divergences) and identifies the most reliable

9

input odometry Y ∈ (� (3) to be used as a prior in the LiDAR-based front-end.

Figure 2.3: State Estimation Architecture Overview [5]
.

Localization Front-End: The output of the odometry multiplexer is sent to a
multi-sensor LiDAR-centric SLAM front-end module, referred to as LOCUS (Lidar
Odometry for Consistent operations in Uncertain Settings) [8]. LOCUS performs
a cascaded GICP-based scan-to-scan and scan-to-submap matching operation to
estimate the relative motion of the robot between consecutive LiDAR acquisitions.

In the scan-to-scan matching stage, Generalized Iterative Closest Point (GICP)
computes the optimal transformation T̂:−1

: that minimizes the residual error E
between corresponding points in !:−1 and !: :

T̂:−1
: = arg min

T:−1
:

E(T:−1
: !: , !:−1), (2.1)

where !: denotes the LiDAR scan acquired at the :-th time step. The optimization
is intialized with an initial transform estimated by HeRO. In the case where no input
is received by HeRO, the identity transformation is used as the prior, and the system
reverts to pure LiDAR odometry.

To enable global consistency across the history of scans, the motion estimated in the
scan-to-scan matching stage is further refined by a scan-to-submap matching step.
Here, !: is matched to a local robot-centered subset (: of the global map. Note that
the global map is an accumulation of past point clouds aligned to the robot pose in
the world frame:

T̃:−1
: = arg min

T:−1
:

E(T:−1
: !: , (:). (2.2)

The initial guess of this optimization is T̂:−1
: , which comes from Eq. (2.1). After

scan-to-scan and scan-to-submapmatching, the final estimatedmotion T̃:−1
: between

consecutive LiDAR acquisitions is the estimated robot odometry.

10

Localization Back-End: The odometry produced by the front-end is fed into the
back-end of the SLAM system, referred to as LAMP (Large-scale Autonomous
Mapping and Positioning) [6]. LAMP receives pose-to-pose constraints, based on
the accumulation of odometry measurements, and solves a Pose Graph Optimization
(PGO) [9] and Incremental ConsistencyMeasurement (ICM) [10] problem for global
localization when loop closures are detected. The output of this step is an estimate
of the robot’s past trajectory, called the pose graph. The use of this structure in the
proposed coverage planning framework is discussed in Chap. 3.

Traversability Risk Analysis and Motion Planning
Another fundamental component of NeBula is traversability analysis and motion
planning, referred to as STEP (Stochastic Traversability Evaluation and Planning)
[11]. STEP allows the robots to safely traverse challenging terrains by (i) quantifying
uncertainty and risk, and (ii) performing risk- and constraint-aware planning using
model predicative control (MPC). Fig. 2.4 provides an overview of the approach.

Figure 2.4: Traversability and Motion Planning Architecture Overview [11].

Risk Sources: Assessment of traversability risk involves the following key chal-
lenges: (i) localization error severely affects how sensor measurements are aggre-
gated to construct environment maps, (ii) Sensor noise, sparsity, and occlusion
induce significant biases and uncertainty in mapping, and (iii) the presence of vari-
ous mobility-stressing elements (e.g., rubble, slopes, rocks, etc.) in the environment
create highly complex constraints on the motion of the robot. STEP addresses these
challenges by modeling traversability cost as a function of the following risk factors:
collision, elevation changes, tip-over, contact loss, slippage, and sensor uncertainty.

Risk Analysis: Analysis relevant to the each risk source is performed independently.
For instance, to compute the traversability cost associated with mobility-stressing
elements (slopes, changes in elevation, obstacles, etc.), data from multiple sensors
is combined, as shown in Fig. 2.5. Depth cameras are used for short-range sensing,

11

(a) Extreme Environments (b) Traversability Analysis

Figure 2.5: Risk-aware planning: (a) shows Nebula-integrated Spot and Husky
exploring different mobility stressing environments: Valentine Cave at Lava Beds
National Monument, CA (top), Arch Mine in Beckley, WV (bottom right), and
Satsop power plant in Elma, WA (bottom left). (b) shows the traversability risk
analysis based on multiple risk factors during Au-Spot’s exploration of the cave.
Risk map colors indicate traversability risk (white: safe, yellow to red: moderate
risk, black: risky). [11]

instantaneous LiDAR point clouds for medium-range sensing, and spatially fused
point clouds [12] for long-range sensing. Positive and negative obstacles, as well as
steep slopes, are detected within a short-range by applying a step filter relative to the
local ground plane. At medium- and long-range sensing: (i) positive obstacles are
detected by performing ground segmentation [13] and settling-based collision checks
[14], (ii) negative obstacles are identified by searching for surface discontinuities
(holes) in the LiDAR point cloud, and (iii) steep slopes are detected using settling
methods [14].

Risk Aggregation: Individual risk analysis is fused into a single risk value estimate
with a confidence value. The risk value is defined in terms of the CVaR (Conditional
Value-at-Risk) metric. Given a local grid-based discretization of the world, the
CVaR metric is computed for each cell in order to generate a risk map. See
Fig. 2.5 (b) for the risk map generated on board Au-Spot during its exploration of
a cave. The use of the risk map in the proposed coverage planning framework is
discussed in Chap. 3.

MotionPlanning: A path generated by the coverage planners, discussed in Chaps. 3-
5, is executed using the STEP motion planner. This involves a two-step process.
First, given a series of coverage waypoints, an A* algorithm over the Risk Map

12

generates a geometric plan that seeks to minimize path risk. The geometric planner
outputs a sequence of poses. Given this sequence, a kinodynamically feasible
trajectory is constructed using a model predicative control (MPC) planner. The
planner aims to find a path near the sequence that satisfies all robot constraints and
minimizes traversability risk to the robot. See Fig. 2.6 for a visualization of the
STEP paths. The geometric and kinodynamic planners replan at a high rate so as
to react to the sudden changes in the risk map. The planned trajectory is executed
with a tracking controller, which sends control inputs to the robot platform.

(a) Two-layered
STEP motion plan

(b) Waypoint Sequence
(blue path)

(c) Single Waypoint
(orange node)

Figure 2.6: Planned geometric path (yellow) and kinodynamic path (red squares).
Given a sequence of waypoints (i.e. local coverage plan) in (a), and a single waypoint
(i.e. global coverage plan) in (b), the geometric and kinodynamic planners find a
feasible trajectory for the robot.

2.3 Coverage Path Planning Review
Traditional coveragemethods decompose the environment into topologically distinct
regions. Provably complete coverage of an environment is achieved by exhaustively
traversing each free region. According to Choset’s coverage taxonomy [15], classical
coverage path planning can be broken down into two categories based on mapping
techniques: exact cellular decomposition and approximate cellular decomposition
[16], [17]. For ease of discussion, we expand these categories to include widely-
adopted approaches that seek complete coverage using topological- andmetric-based
maps. Note that the coverage path planning algorithmsmost relevant to our proposed
schemes are discussed in the Related Work sections in Chaps. 3-5.

13

Topological-based Approaches
Exact cellular decomposition involves separating a space into a set of non-intersecting
regions, called cells, whose union completely fills a target area. The shape and di-
mension of each cell is based on geometric landmarks (obstacles, doors, etc.) or
other sensed features in the environment. From this decomposition, a graph repre-
sentation of the environment can be constructed where nodes correspond to cells
and edges connect adjacent nodes [15]. Since the resolution is dependent upon the
complexity of the environment, these topological graphs are typically compact and
scale well to large environments [18].

A prominent example of exact cellular decomposition is Boustrophedon Cellular
Decomposition (BCD), developed by Choset and Pignon [19]. In this method based
onMorse decomposition, a slice is swept through an environment resulting in spatial
connectivity changes occurring at critical points. The critical points decompose the
target space into polygons that can be covered using simple sweeping motions.

Figure 2.7: Sensor-based Boustrophen Cellular Decomposition [20]. The topologi-
cal graph is incrementally built as the robot senses critical points �?8 .

For coverage in a priori unknown environments, Cao et al. [21] introduced sensor-
based Boustrophedon Cellular Decomposition. Later, Acar and Choset [20] built
upon this method by proposing an improved critical point detection scheme based
on the work of Rimon and Canny [22], which guarantees complete coverage of an
unknown environment (Fig. 2.7). In these methods, critical points are obstacle
vertices detected by on-board sensors [23]. Critical points divide the target space
into polygons, which can be further fragmented based on a robot’s sensing range
[24]. Each cell is covered using back-and-forth sweeping motions, and traversal
between cells is guided by simple graph search algorithms [15].

The Voronoi coverage technique is an online method for finding a topological graph
of the environment based on a Voronoi skeleton – the set of points equidistant to
two obstacles [25]. Local minima on the skeleton are designated as critical points,
which are then used to divide the space into different, often semantic-based, regions

14

which can be sequentially tackled [26]. An important note is that trajectories that
follow the Voronoi skeleton have maximum clearance [27], thereby reducing risk to
the robot as it traverses between regions.

Similar to online Voronoi methods, frontier-based method rely on a continuous re-
calibration of the environment representation based on updated sensor information.
These schemes identify the boundary between uncovered and covered space, regions
termed frontiers [28], in order to construct a map of the environment. Frontiers are
used extensively throughout the exploration literature [29–32], which in part is due
to computational efficiency improvements in frontier detection algorithms [33]. As
a robot visits frontiers and uncovers new areas, the graph-based representation grows
and changes dynamically.

Metric-based Approaches
Approximate cellular decomposition, first introduced by Moravec and Elfes [34]
[35], is a grid-based approach. Approximate methods are agnostic to environment
complexity, and thus divide a space into cells with identical shape and size, based
roughly on the robot’s sensor footprint. Since the union of cells only approximates
the target area [15], the completeness of these methods is determined by the reso-
lution of the grid. When compared to graph-based methods, grid maps are easily
constructed and maintained. However, since the grid needs to resolve detailed fea-
tures in the environment, grid-based approaches can suffer from large space and
time complexities [18].

Zelinsky et al. [36] pioneered use of grid representations to find offline coverage
paths. The method, employing the conventional distance transform algorithm,
propagates a wavefront through an environment represented by rectangular cells
[36]. Adopting a gradient ascent-like strategy, traversal through the cells is based on
a wavefront potential function, which can account for robot safety, as well as start
and end locations. Later work by Oh et al. [37] applied triangular decomposition
methods in order to increase the number of robot navigational directions.

Gabriely and Rimon [38] provided an offline and online coverage solution based
on Minimum Spanning Trees. First the space is decomposed into rectangular cells.
After a spanning tree is constructed, each cell is divided into four smaller cells,
which are visited by traversing the tree. Another online algorithm based on spiral
filling paths is the Backtracking Spiral Algorithm (BSA) [39], as illustrated in Fig.
2.8. Here, the robot navigates along the boundary of the environment. When a full

15

loop is completed, the robot continues along the inner loop. This process continues
until the spiral ends, at which point the robot backtracks to an uncovered pocket in
the environment.

(a) (b)
Figure 2.8: Coverage path based on the Backtracking Spiral Algorithm (BSA). The
agent’s spiral path (red lines) is shown overlaid on a grid-based world. Each spiral is
indicated in (b) with a gray color-coding and label. The backtracking path (dashed
gray lines) between spirals is shown in (a).

2.4 Partially Observable Markov Decision Process
The Partially Observable Markov Decision Process (POMDP) is a general frame-
work for sequential decision-making when the current state is not perfectly observ-
able by the robot. A POMDP is described as a tuple 〈S,A,Z,), $, '〉, where S
is the set of joint robot-and-world states, A and Z are the set of robot actions and
observations. At every time step, the agent performs an action 0 ∈ A and receives an
observation I ∈ Z resulting from the robot’s perceptual interaction with the environ-
ment. The motion model) (B, 0, B′) = ?(B′ | B, 0) defines the probability of being at
state B′ after taking action 0 at state B. The observation model$ (B, 0, I) = ?(I | B, 0)
is the probability of receiving observation I after taking action 0 at state B. The
reward function '(B, 0) returns the expected utility for executing action 0 at state B
[40, 41].

In a POMDP, it is assumed that the state is not perfectly observable. Rather, the
robot only has access to an observation I ∈ Z that provides partial information
about the current state. With only partial state knowledge, the robot must consider
a complete history of past actions and observations:

ℎC = {00, I1, ..., IC−1, 0C−1, IC}. (2.3)

16

The belief state, 1C , is an effective way of capturing ℎC . At time C, the belief 1C is
a posterior distribution over states conditioned on the initial belief 10 and the past
action-observation sequence:

1C = ?(B | 10, 00:C−1, I1:C) . (2.4)

A POMDP can be formulated as a belief MDP, or a Markov decision process
where every state is a belief. A belief MDP is described as a tuple 〈B,A, g, A〉,
where B is the set of belief states over the POMDP states, A is the set of robot
actions, g(1, 0, 1′) = ?(1′ | 1, 0) is the belief state transition function, and the
reward function A (1, 0) returns the utility for executing action 0 in belief 1.

A solution to a POMDP is a policy that maps beliefs to actions, and the optimal
policy is one that maximizes the expected cumulative reward. The optimal policy
of a POMDP for all time C ∈ [0,∞), c∗0:∞ : B→ A, is defined as:

c∗0:∞(1) = argmax
c∈Π0:∞

E
∞∑
C=0

WCA (1C , cC (1C)), (2.5)

where W ∈ (0, 1] is a discount factor for the future rewards, Π0:∞ is the space of
possible policies, and A (1, 0) =

∫
B
'(B, 0)1(B)dB denotes a belief reward which is

the expected reward of taking action 0 at belief 1.

Due the computational complexity of POMDPs, they cannot be solved exactly in
real-time. Online POMDP algorithms approximate the optimal policy by reasoning
over the states reachable from the current belief state over a finite horizon. Common
online methods use a Monte Carlo tree search (MCTS) approach that simulates, or
rolls out, action-observation sequences according to a provided rollout policy. Given
a generative model (or a black box simulator) for discrete action and observation
spaces, MCTS learns the value function of the reachable belief subspace with an
adequate exploration-exploitation trade-off [41, 42].

17

C h a p t e r 3

COVERAGE PLANNING FRAMEWORK

In order for an autonomous robot to efficiently explore an a priori unknown envi-
ronment, it must account for uncertainty in sensor measurements, hazard assess-
ment, localization, and motion execution. Making decisions for maximal reward
in a stochastic setting requires value learning and policy construction over a belief
space, i.e., probability distribution over all possible robot-world states. However,
belief space planning in a large spatial environment over long temporal horizons
suffers from severe computational challenges. Moreover, constructed policies must
safely adapt to unexpected changes in the belief at runtime. This chapter proposes
a scalable value learning framework, PLGRIM (Probabilistic Local and Global
Reasoning on Information roadMaps), that bridges the gap between (i) local, risk-
aware resiliency and (ii) global, reward-seeking mission objectives. Leveraging
hierarchical belief space planners with information-rich graph structures (Fig. 3.1),
PLGRIM addresses large-scale exploration problems while providing locally near-
optimal coverage plans.

This chapter was adapted from:

S. Kim*, A. Bouman*, G. Salhotra, D. Fan, K. Otsu, J. Burdick, and A.
Agha-Mohammadi. “PLGRIM: Hierarchical Value Learning for Large-scale
Exploration in Unknown Environments”. In: International Conference on
Automated Planning and Scheduling (ICAPS). Vol. 31. 2021, pp. 652– 662.

3.1 Introduction
Consider a large-scale coverage mission in an unknown environment, in which a
robot is tasked with exploring and searching a GPS-denied unknown area, under
given time constraints. This problem has a wide range of applications, such as inter-
planetary exploration and search-and-rescue operations [43, 44]. Essential elements
of an autonomy architecture needed to realize such a mission include creating a map
of the environment, accurately predicting risks, and planning motions that can meet
the coverage and time requirements while minimizing risks. In such an architecture,
quantifying and planning over uncertainty is essential for creating robust, intelligent,
and optimal behaviors.

18

Local IRM

Risk Map

Pose Graph

Global IRM

Figure 3.1: Hierarchical Information RoadMaps (IRMs) generated during Au-Spot’s
autonomous exploration of Martian-analog caves at Lava Beds National Monument,
Tulelake, CA.

Froma value learning perspective, a coverage planning problem in an unknown space
can be considered an active learning problem over the robot’s belief, where belief
is defined as the probability distributions over all possible joint robot-world states.
The objective is to find the best action sequence that maximizes the accumulated
reward over time. The agent must accumulate data to incrementally build a model
of its environment, and needs to understand the effects of its actions on the quality
and quantity of data it collects.

Since the agent’s future actions affect its belief of the world and robot state, this
coverage problem is fundamentally a Partially Observable Markov Decision Process
(POMDP) problem [45]. Belief value learning in the POMDP setting intrinsically

19

suffers from the curse of dimensionality [40] and curse of history [46]. Many
powerful methods have been proposed to extend the spatial and temporal horizons
of POMDPs with varying degrees of efficiency and accuracy, such as [47–50]. This
chapter focuses on challenging exploration problems with very large spatial extents
(>1 km), long temporal horizons (>1 hour), and high dimensional belief states
(including beliefs on the state of the environment) that exacerbate the curses of
dimensionality and history for POMDPs.

The main contribution of this work is three-fold:

1) Scalable belief representation of local traversability and global coverage states
of large environments.

2) Hierarchical value learning for efficient coverage policy search over a long
horizon under uncertainty.

3) Policy reconciliation between planning episodes for adaptive and resilient
execution in the real world.

More precisely, this chapter introduces spatial and temporal approximations of
the coverage policy space to enable computational tractability for real-time online
solvers. Spatially, the belief space is decomposed into task-relevant partitions of
space, enriched with environment map estimates. The partitioning structure is
called an Information Roadmap (IRM), as shown in Fig. 3.1 [51]. Temporally, the
problem is decomposed into local and global hierarchical levels, and then we solve
for belief space policies that provide locally near-optimal coverage plans with global
completeness. A Receding Horizon Planning (RHP)-based technique is proposed
to address real-world stochasticity in state estimation and control at runtime.

The remainder of this chapter is as follows. Following the related work discussion,
Sec. 3.3 discusses the unknown environment coverage problem. In Sec. 3.5, we
propose a hierarchical belief representation and value learning framework. Experi-
mental results in simulation and on a physical robot are presented in Sec. 3.10, and
Sec. 3.11 summarizes the chapter.

3.2 Related Work
Frontier-based exploration is a widely used approach for autonomous exploration
(e.g., [28, 33, 52–55]). By continuing exploration until exhausting all remaining

20

frontiers, frontier-based approaches can guarantee completeness of the coverage
of reachable spaces. These methods typically rely on myopic (e.g., one-step) look-
ahead greedy policies, selecting the best frontier upfront. Hence, they can be subject
to local minima and provide suboptimal solutions in time.

Model-free reinforcement learning (RL) has been applied to coverage and explo-
ration problems (e.g., [56–59]). In this setting, the typical approach is to find a policy
which maps sensor data to actions, with the objective of maximizing the reward.
When it comes to long-range, large-scale missions on physical robots, collecting
necessary data can be a significant challenge for this class of methods.

POMDP-based approaches generate a non-myopic policy by considering long-
horizon action sequences (e.g., [60], [61]), interactively learning the value function,
and returning the best action sequence that maximizes the accumulated rewards.
Different methods have reduced the complexity of the POMDP problem in coverage
and exploration problems. Indelman, Carlone, and Dellaert [62] and Martinez-
Cantin et al. [63] employed a direct policy search scheme with a Gaussian belief
assumption. Lauri and Ritala [64] extended this to non-Gaussian beliefs using the
POMCP (Partially Observable Monte-Carlo Planning) solver. However, when it
comes to the large-scale coverage missions, the prior approaches do not scale well
due to the curse of history and dimensionality [46].

Hierarchical planning structures [65] aim to tackle larger problems by employing
multiple solvers running at different resolutions, and are often found to be effective.
In the coverage and exploration context, Umari and Mukhopadhyay [32] applied
hierarchical planning to frontier-based exploration, while [66] extended the lower-
level module to a more sophisticated frontier selection algorithm which considers
the information gain along each path. Lauri and Ritala [64] replaced the lower-
level module with a POMDP-based planner to improve local coverage performance
with non-myopic planning. Kim, Thakker, and Agha-Mohammadi [67] proposed
a hierarchical online-offline solver for risk-aware navigation. Vien and Toussaint
[68] suggested a hierarchical POMCP framework which outperformed Bayesian
model-based hierarchical RL approaches in some benchmarks.

3.3 Problem Formulation
Autonomous exploration in unknown environments under motion and sensing un-
certainty can be formulated as a Partially Observable Markov Decision Process
(POMDP), which is one of the most general models for sequential decision making.

21

In this section, we present a POMDP formulation for coverage problems and address
its intrinsic challenges.

For our coverage planning problem, we define the state as B = (@,,), where @ is the
robot state and, is the world state. We maintain two representations of the world,
i.e., , = (,A ,,2), where ,A denotes the world traversal risk state and ,2 is the
world coverage state.

,A encodes the traversability risk of the world with respect to a robot’s dynamic
constraints. This state is critical in capturing traversability-stressing elements of
the environment (slopes, rough terrain, and narrow passages, etc.) and is typically
constructed by aggregating long-range sensor measurements. The cost function
� (,A , @, 0) returns a value which abstracts the actuation effort and risk associated
with executing action 0 at robot state @ on,A .

,2 provides an estimation of what parts of the world have been observed, or covered,
by a particular sensor. The coverage state is generated by specific sensor measure-
ments, which may not necessarily be useful as navigational feedback, but instead
are based on a task at hand. For instance, the coverage sensor may be a thermal
camera for detecting thermal signatures, or a vision-based camera for identifying
visual clues in the environment. As a robot moves, the sensor footprint sweeps
the environment, expanding the covered area, or more generally, the task-relevant
information about the world.

The coverage planning objective is to determine a trajectory through an environment
that maximizes information gain � while simultaneously minimizing action cost �.
As such, the traversal risk and coverage states form the basis of the coverage reward
function:

'(B, 0) = 5 (� (,2, 0), � (,A , @, 0)), (3.1)

where � (,2, 0) = � (,2) − � (,2 | 0) is quantified as reduction of the entropy �
in ,2 after taking action 0. Note that when covering an unknown space, we do
not have strong priors about the parts of the world that have not yet been observed.
Hence, knowledge about,2 and,A in Eq. (3.1) at runtime is incomplete and often
inaccurate. Thus, in such domains, a Receding Horizon Planning (RHP) scheme
has been widely adopted as the state-of-the-art [69].

22

In POMDP formulation with RHP, the objective function in Eq. (2.5) is modified:

c∗C:C+) (1) = argmax
c∈ΠC:C+)

E
C+)∑
C ′=C

WC
′−CA (1C ′, cC ′ (1C ′)), (3.2)

where) is a finite planning horizon for a planning episode at time C. Given the
policy from the last planning episode, only a part of the optimal policy, c∗

C:C+ΔC for
ΔC ∈ (0,)], will be executed at runtime. A new planning episode will start at time
C + ΔC with updated belief about @,,2, and,A .

3.4 Challenges
This section broadly identifies the challenges associated with solving the unknown
coverage planning problem, Eq. (3.2), as computational complexity—in both time
and space—and conflicting policy objectives over consecutive planning episodes,
arising from unexpected updates in the belief at runtime.

Time Complexity
POMDP planning suffers from the curse of dimensionality [40] and the curse of
history [46]. The former difficulty refers to fact that size of the belief grows
exponentially with the size of the underlying state space. In a grid world where =
and : denote the grid dimension and number of discretization levels, respectively,
the space complexity for a single belief state is O(|: |=). Refer to Fig. 3.2. The latter
difficulty refers to the fact that the policy space (i.e., number of action-observation
sequences) grows exponentially with the planning depth 3, i.e., O(|A|3 |Z|3). As
an example, for large-scale exploration of a 1 km-long environment with an action
resolution of 1 m, the planning depth 3 must be at least 103 in order to reason about
the coverage plan across the environment.

Space Complexity
In addition to the classic time complexity of POMDPs, space complexity also poses a
considerable challenge when handling the unknown environment coverage problem.
As referenced above, in a grid world, the memory complexity is O(|: |=), with = and
: denoting the grid dimension and number of discretization levels, respectively. For
a 1 km2 environment at a 0.1 m resolution, with floating-point risk and coverage
values associated with every cell, the required memory is 800 MB. This amount of
memory should be allocated for every search node, and thus the full space complexity
of planning is O(|A|3 |Z|3 |: |=) during each planning episode.

23

discre
tizatio

n leve
ls :

grid dimension
=

grid dimension =

Figure 3.2: An illustrative example of the space complexity associated with a grid
world, shown overlaid on the pointcloud map of the DARPA SubT final circuit. The
grid dimension is =, and the number of discretization levels is : . Here there are
“quint” (: = 5) coverage levels. For a single particle state, each cell is assigned one
of five coverage probabilities: ?2>E = 1.0, 0.75, 0.5, 0.25, or 0.0. The belief state is
the sum of all particles [47], hence the single belief state complexity is O(|: |=).

Unexpected Belief Updates
As the robot explores its environment, it receives new sensory information, updates
its belief, and constructs a new coverage policy in a receding horizon fashion. Poli-
cies generated during consecutive planning episodes must respect the kinodynamic
constraints of the robot, while simultaneously adapting to unexpected hazards in
the environment. We refer to these two distinct, and often opposed, objectives as
consistency and resiliency of the receding-horizon policy, respectively. Path consis-
tency ensures smooth trajectories and continuous velocities during transitions from
one policy to the next, while path resiliency ensures the path adapts to unexpected
changes in the world risk state. Thus, it is imperative to find a balance between
policy consistency and resiliency, particularly for safety-critical systems.

3.5 PLGRIM: Hierarchical Coverage Planning on Information Roadmaps
In this section, we present a novel and field-tested coverage planning autonomy
framework, PLGRIM (Probabilistic Local and Global Reasoning on Information
roadMaps), for exploration of large-scale unknown environments with complex
terrain. Our proposed methods to tackle the challenges described in Sec. 3.4 are:

1) Space Complexity: We introduce a hierarchical belief space representation
that is compact, versatile, and scalable. We refer to this representation as

24

an Information RoadMap (IRM). Hierarchical IRMs can effectively encode a
large-scale world state, while simultaneously capturing high-fidelity informa-
tion locally.

2) Time Complexity: We propose hierarchical POMDP solvers that reason over
long horizons within a suitable replanning time with locally near-optimal
performance. Higher-level policies guide lower-level policies, resulting in a
cascaded decision process.

3) Unexpected Belief Updates: We introduce a receding-horizon policy recon-
ciliation method that respects the robot’s dynamic constraints while ensuring
resiliency to unexpected belief updates.

In the following subsections, we provide the technical details about the proposed
framework, illustrated in Fig. 3.3.

Figure 3.3: Illustration of PLGRIM framework for large-scale exploration in un-
known environments. It i)maintains hierarchical beliefs about the traversal risks and
coverage states, ii) performs hierarchical value learning to construct an exploration
policy, and iii) reconciles policies over receding-horizon planning episodes.

3.6 Overview
To enable efficient and reactive robot behaviors on very large scales, we decompose
the problem into tractable subproblems by introducing spatial and temporal abstrac-
tions. Spatially, the belief space is approximated by a task-dependent structure,
enriched with environment map estimates. Temporally, the belief space is approx-
imated by the aggregation of multiple structures, each spanning a different spatial

25

range. Finally, we introduce a cascaded optimization problem that returns a policy
over the stratified belief space in real time.

Belief Decomposition
Let us denote the global world state as ,6 and the local world state as ,ℓ, which
is a subset of the global state, i.e., ,ℓ ⊂ ,6, around the robot. Recall that each
world state can be decomposed into their traversal risk and coverage components,
i.e., ,6 = (,6

A ,,
6
2) and ,ℓ = (,ℓ

A ,,
ℓ
2), as discussed in Section 3.3. We define

local and global belief states as 1ℓ = ?(@,,ℓ) and 16 = ?(@,,6), respectively,
where ?(,ℓ) is a local, robot-centric, rolling-window world belief representation
with high-fidelity information, and ?(,6) is a global, unbounded world belief
representation with approximate information.

Policy Decomposition

We decompose the policy into local and global policies: cℓ and c6, respectively.
The overall policy c ∈ Π is constructed by combining the local and global policies:

c(1) = cℓ (1ℓ; c6 (16)). (3.3)

We approximate the original RHP optimization problem in Eq. (3.2) using the
following cascaded hierarchical optimization problem:

cC:C+) (1) = argmax
c∈ΠC:C+)

E
C+)∑
C ′=C

WC
′−CA (1C ′, c(1C ′))

≈ argmax
cℓ∈Πℓ

C:C+)

E
C+)∑
C ′=C

WC
′−CAℓ (1ℓC ′, cℓ (1ℓC ′; c

6

C:C+) (1
6
C))), (3.4)

where c6
C:C+) (1

6) = argmax
c6∈Π6

C:C+)

E
C+)∑
C ′=C

WC
′−CA6 (16

C ′, c
6 (16

C ′)). (3.5)

where Aℓ (1ℓ, cℓ (1ℓ)) and A6 (16, c6 (16)) are approximate belief reward functions
for the local and global belief spaces, respectively. Note that the codomain of the
global policy c6 (16) is a parameter space Θℓ of the local policy cℓ (1ℓ; \ℓ), \ℓ∈Θℓ.

According to this formulation, we maintain the hierarchical belief representations
(Sec. 3.7) and solve for hierarchical POMDP policies (Sec. 3.8). For local planning
consistency and resiliency, we extend Eq. (3.4) to a joint optimization problem given
the previous planning episode policy (Sec. 3.9).

26

Algorithm 1 Hierarchical IRM Construction
input: Risk Map, Pose Graph

Local IRM
Local IRM �ℓ = (#ℓ , �ℓ) ← (∅, ∅)
Add uniformly sampled nodes {=ℓ

8
}8 around the robot to #ℓ

for each =ℓ
8
∈ #ℓ do

Compute risk probability ?(=ℓ
8,A
) and coverage probability ?(=ℓ

8,2
) from Risk Map and

Pose Graph for =ℓ
8

Add ?(=ℓ
8,A
) and ?(=ℓ

8,2
) to the properties of =ℓ

8

end for
Add edges for 8-connected neighbors, {48 9}ℓ8, 9 , to �ℓ

for each 4ℓ
8 9
∈ �ℓ do

Compute traversal risk d8 9 and distance 38 9 for 4ℓ8 9
Add d8 9 and 38 9 to the properties of 4ℓ8 9

end for

Global IRM
if not initialized then

Global IRM �6 = (#6
1
∪ #6

5
, �6) ← (∅, ∅)

end if
Get the current robot pose @ from Pose Graph
if @ is farther from any breadcrumb node ∀=6

8
∈ #6

1
than 3̄1 then

Add a new breadcrumb node =6 = @ to #6
1

end if
Run FrontierManager to add new frontiers {=6

5 +} with coverage probabilities
{?(=6

5 +,2)}, and prune invalidated frontiers, {=6
5 −}, based on the current Risk Map

and Pose Graph ⊲ [33]
for each node =6

8
∈ N�6 (@) do

for each nearby node =6
9
∈ N�6 (=6

8
) do

Compute the traversal distance 38 9 and risk d8 9
if 38 9 < 3̄4 and d8 9 < d̄4 then

Add an edge 46
8 9
to �6 with properties 38 9 and d8 9

else
Remove the edge 46

8 9
from �6

end if
end for

end for
return �ℓ and �6

3.7 Hierarchical Belief Representation
We introduce a hierarchical approximation of the belief space by decomposing the
environment representation into multiple information-rich structures, each referred
to as an Information Roadmap (IRM). We construct and maintain IRMs at two
hierarchical levels: the Local IRM and Global IRM, as illustrated in Fig. 3.1.

27

World Belief Information Sources
During its exploration of an unknown environment, at any given time, the robot’s
understanding of the world is limited to noisy estimates of an observed subset of
the world. IRMs are constructed from these estimates – namely, the Risk Map and
Pose Graph. A Risk Map, constructed through the aggregation of point cloud
sensor measurements, is a local rolling-window map that provides risk assessment,
effectively encoding the risk belief over the local world state ,ℓ [11]. A Pose
Graph estimates the past trajectory of the robot from relative pose measurements
and informs the coverage belief over the global world state,6 [6].

World Belief Construction
We choose to represent the world as a generic graph structure, � = (#, �) with
nodes # and edges � , as the data structure to represent the belief about the world
state. Nodes represent discrete areas in space, and edges represent actions. More
precisely, we define an action as a motion control from the current node =8 ∈ # to a
neighboring node = 9 ∈ # , connected by an edge 48 9 ∈ � .

For a detailed description of the Local and Global IRM construction processes, see
Algorithm 1. We now describe the distinguishing features of each IRM:

1) Local IRM: As an instantiation of the local world belief ?(,ℓ), we employ
a rolling, fixed-sized grid structure �ℓ = (#ℓ, �ℓ), which is centered at the
robot’s current position. We uniformly sample nodes =ℓ

8
∈ #ℓ from ,ℓ, and

compute the risk and coverage probability distribution over a discrete patch
centered at each node, i.e., ?(=ℓ

8,A
) and ?(=ℓ

8,2
), which are stored as node

properties. For an edge 4ℓ
8 9
, we compute and store the traversal distance 38 9

and risk d8 9 , which effectively encodes ?(,ℓ
A) between two connected nodes.

In summary, the Local IRM contains relatively high-fidelity information at a
high resolution, but locally.

2) Global IRM: As an instantiation of the global world belief ?(,6), we em-
ploy a sparse bidirectional graph structure �6 = (#6, �6), which is fixed in
the global reference frame. Due to the space complexity concerns detailed
in Sec. 3.4, a densely-sampled grid structure, like �ℓ, is not a viable op-
tion for �6, as it should span up to several kilometers. Instead, we sparsely
and non-uniformly sample nodes =6

8
∈ #6 from ,6 based on certain node-

classifying conditions. Specifically, #6 contains two mutually exclusive sub-
sets of nodes: breadcrumbs and frontiers, as shown in Fig. 3.4. Breadcrumb

28

nodes are sampled directly from the Pose Graph, and thus capture the covered
traversable space of ,6. Alternatively, frontier nodes are sampled from the
border between covered and uncovered areas, and thus capture the uncovered
traversable space of,6. Finally, in order for such a candidate node =6

8
to be

added to �6, there must exist a traversable path to at least one nearby node
=
6

9
∈ #6. If such a path exists, an edge 46

8 9
, storing traversal distance 38 9 and

risk d8 9 , is added to �6. In summary, the Global IRM captures the free-space
connectivity of ,6 with a notion of coverage, and does not explicitly en-
code highly-likely untraversable or uncertain areas in,6 in order to achieve
compact representation of the large-scale environment.

Frontier Node

Breadcrumb
Node

Risk Map

Local IRM
Global IRM

Figure 3.4: QMDP policy (red arrows displayed above breadcrumb nodes) for
Global Coverage Planning (GCP). A red sphere indicates the QMDP frontier goal.

3.8 Hierarchical Value Learning
Given Local and Global IRMs as the hierarchical belief representation, we solve the
cascaded hierarchical POMDP problems, Eq. (3.4) and Eq. (3.5), for coverage in an
unknown environment.

Solver Formulation
We start by introducing some notations. The value function + (1; c) is the expected
reward of following policy c, starting from belief 1:

+ (1; c) = E
[∑

C

WCA (1C , c(1C))]
]
. (3.6)

29

The value of taking action 0 in belief 1 under a policy c is the action-value function:

&(1, 0; c) = A (1, 0) +
∑
1′∈B

W T (1, 0, 1′)+ (1′; c), (3.7)

whereT (1, 0, 1′) is the transition probability from 1 to 1′ under action 0, as follows:

T (1, 0, 1′) =
∑
I∈Z

?(1′|1, 0, I) ?(I |1, 0). (3.8)

A POMDP solver tries to learn &(1, 0) and + (1) = max0∈A&(1, 0), and re-
turns the policy c that specifies the best action for a given belief 1, i.e., c(1) =
argmax0∈A&(1, 0).

Generalized Coverage Reward
Entropy provides a measure of uncertainty of a random variable’s belief. Given an
IRM � = (#, �) containing a ?(=8,2) value for each node =8 ∈ # , the entropy of the
world coverage state is:

� (?(,2)) = −
|# |∑
8

[
?(=8,2) log ?(=8,2) + ?(=8,¬2) log ?(=8,¬2)

]
. (3.9)

If 0 ∈ A is a motion from node =8 ∈ # to node = 9 ∈ # along edge 48 9 ∈ � , then the
coverage information gain (i.e., coverage uncertainty reduction) in coverage belief
?(,2) induced by 0 is defined as:

� (,2 | 0) = � (?(,2))︸ ︷︷ ︸
current entropy

−� (?(,2 | 0))︸ ︷︷ ︸
future entropy

, (3.10)

where the second term represents the expected future entropy of the world coverage
state after execution of action 0. In practice, Eq. (3.10) is difficult to compute for
a large world state. For a practical computation of the information gain associated
with an action on the local and global IRMs, see Chaps. 4.6 and 5.5.

Although the action cost function at each hierarchical level is dependent upon the
IRM’s particular action set � (i.e., Local and Global IRMs have different action
sets), it can be generically formulated as:

� (,A , @, 0) = :338 9 + :dd8 9 + :``8 9 (@, 0), (3.11)

where 38 9 and d8 9 are the traversal distance and risk along edge 48 9 , respectively. The
cost `8 9 (@, 0) is associated with the current motion primitive, and is a consequence

30

of the robot’s non-holonomic constraints, such as the heading direction. Constants
:3 , :d, and :` weigh the importance of traversal distance, risk, and motion primitive
history on the total action cost.

Then, finally the coverage reward function is defined as a weighted sum of the
information gain and action cost:

'(B, 0) = : � � (,2, I) − :� � (,A , @, 0)), (3.12)

where : � and :� are constant weights.

Local-Global Coverage Planner Coordination
In our cascaded hierarchical optimization framework, we first solve for the global
policy in Eq. (3.5). The global policy solution then serves as an input parameter
to the local policy in Eq. (3.4). This means that Global Coverage Planner (GCP)
provides global guidance to the Local Coverage Planner (LCP).

The role of GCP is to construct a low-fidelity policy that provides global guidance
to uncovered areas, at which point, LCP instructs a local coverage behavior. More
concretely, a target frontier node in the Global IRM, =6

5
∈ #6

5
, can be extracted

from the global-level control 06 ∈ A6 provided by GCP. Since the environment can
be very large (>1 km), GCP must be capable of reasoning over hundreds of nodes
on the Global IRM. To alleviate this scalability challenge, we assume that GCP’s
policy terminates at frontier nodes. By classifying frontier nodes as terminal in the
belief space, we can assume no changes occur to the world coverage state before
termination. Therefore, we omit, from the state space for GCP.

The role of LCP is to construct a high-fidelity policy that provides local guidance
based on information gathering, traversal risk (e.g., proximity to obstacles, terrain
roughness, and slopes), and the robot’s mobility constraints (e.g., acceleration limits
and non-holonomic constraints of wheeled robots). LCP has two phases: i) reach
the target area based on GCP’s guidance, and ii) construct a local coverage path after
reaching the target area. If the target frontier is outside the Local IRM range, i.e.,
=
6

5
∉ ,ℓ, LCP simply instantiates high-fidelity control based on the global-level

control 06, i.e., the robot backtracks along global IRM breadcrumbs in order to
reach the target frontier. If the target frontier =6

5
is within the Local IRM range,

i.e., =6
5
∈ ,ℓ, then LCP performs the nominal information-gathering coverage

optimization, as described in Eq. (3.4). Refer to Fig. 3.5 as an illustration of this
local-global coverage planner coordination.

31

(a) Local Coverage Plan (b) Global Coverage Plan

Figure 3.5: Illustration of local-global coverage planner coordination. Simultane-
ously constructed local (a) and global (b) coverage plans during Husky’s exploration
of a limestone mine are shown. Since the target frontier associated with the GCP
policy is inside the bounds of the Local IRM, LCP maintains control guides the
robot. The local and global policies shown are developed in Chaps. 4 and 5,
respectively.

Global Coverage Planner (GCP) Algorithm
In this work, we adopt the QMDP approach for the global coverage planning problem
[70]. The key idea of QMDP is to assume the state becomes fully observable after
one action, so that the value function for further actions can be evaluated efficiently
in an MDP (Markov Decision Process) setting. In our global coverage planning
domain, we define the first action to be the robot’s relocation to a nearby node on the
Global IRM. At this point, the robot pose is assumed to be fully observable, while
the world risk and coverage states remain unchanged.

More formally, we solve for&6MDP(@
6, 06) by ignoring uncertainty in the robot pose

@6 and changes in the world coverage state,6
2 . In this MDP setting, &6MDP(@

6, 06)
can be learned by Value Iteration very efficiently, even for long discount horizons.
Then, we evaluate the action-value function in Eq. (3.7) in a POMDP setting for the
current belief and the feasible one-step actions:

&(16, 06) =
∫
@6
1(@6)&6MDP(@

6, 06)d@6 . (3.13)

Finally, a POMDP policy can be obtained as follows:

c6 (16) = argmax
06∈A6

&(16, 06). (3.14)

An example of the GCP policy is depicted in Fig. 3.4.

32

(@10 , ,10) (@20 , ,20) (@30 , ,30) (@11 , ,11) (@21 , ,21)

(@40 , ,40) (@50 , ,50) (@60 , ,60) (@31 , ,31) (@41 , ,41)

Figure 3.6: Illustrative example of coverage path planning on the Local IRM with
Monte-Carlo Tree Search. The field-of-view of the robot’s coverage sensor is
represented by a blue circle. Macro actions (6 steps on Local IRM in this example)
associated with the two tree branches, paths A and B, are shown. Note that the final
world coverage states in both branches are identical. Path A is evaluated to be more
rewarding than B since fewer actions were required to cover the same area.

Local Coverage Planner (LCP)
In order to solve Eq. (3.4), we employ POMCP (Partially Observable Monte Carlo
Planning) algorithm [47]. POMCP is awidely-adopted POMDPsolver that leverages
the Monte Carlo sampling technique to alleviate both of the curse of dimensionality
and history. Given a generative model (or a black box simulator) for discrete action
and observation spaces, POMCP can learn the value function of the reachable belief
subspace with an adequate exploration-exploitation trade-off.

More concretely, POMCP evaluates &ℓ (1ℓ, 0ℓ) in Eq. (3.7) by unrolling recursive
value backpropagation through sampled action-observation sequences. The UCT
algorithm for action selection helps to balance between exploration and exploitation
in order to learn the action-value function [41]. Initially, it explores the search space
(possible action-observation sequences) with a random or a heuristically guided
rollout policy. While incrementally building the belief tree, it gradually exploits the
learned values for more focused exploration. See the illustration of local coverage
planning in Fig. 3.6.

3.9 Receding-Horizon Policy Reconciliation
We extend the receding-horizon local coverage planning problem to address the
trade-off between policy consistency and resiliency, as described in Sec. 3.4.

We define a policy reconciliation optimization problem by introducing the previous
planning episode policy into Eq. (3.2) for the current planning episode. For nota-

33

tional brevity, let us denote the time when the previous policy was generated as C0
and the current time as C1 = C0 + ΔC. In order to reconcile consecutive policies over
receding horizons, we extend Eq. (3.2) as follows, given the previous policy c−

C0:C0+)
constructed at time C0 for a finite horizon of) :

c∗C1:C1+) (1; c−C0:C0+)) = argmax
c∈ΠC1:C1+)

[
E

C1+)∑
C ′=C1

WC
′−C1A (1C ′, c(1C ′)) −_R(c−C0:C0+) , cC1:C1+))

]
,

(3.15)

whereR(c−
C0:C0+) , cC1:C1+)) is a regularizing cost function that penalizes inconsistency

between the previous and current policies in terms of kinodynamic constraints, and
_ is a regularization weight parameter. The first term in Eq. (3.15) pursues policy
resiliency based on the up-to-date world belief, which may encode unexpected
hazards, while the second term promotes policy consistency.

Since the conflict between policy consistency and resiliency is most severe at the
junction between two consecutive policies, we decompose Eq. (3.15) into two time
frames, (C1 : C1 + g) and (C1 + g : C1 +)) for g ∈ [0,) − ΔC], and formulate it as a
simplified joint optimization problem for g∗ and c∗

C1+g∗:C1+) :

g∗ = argmax
g∈[0,)−ΔC]

E

C1+g∑
C ′=C1

WC
′−C1A (1C ′, c−C0:C0+) (1C ′)), (3.16)

c∗C1+g∗:C1+) = argmax
c∈ΠC1+g∗:C1+)

E

C1+)∑
C ′=C1+g∗

WC
′−C1A (1C ′, c(1C ′)), (3.17)

c∗C1:C1+) = [c
−
C1:C1+g∗; c

∗
C1+g∗:C+)] . (3.18)

Policy reconciliation is performed in Eq. (3.16) over a single optimization variable
g. By re-evaluating the previous policy c−

C0:C0+) with updated robot-world belief 1C ′,
g dictates how much of the new c∗

C1:C1+) should be in agreement with the previous
policy. Effectively, a larger g promotes policy consistency, while a smaller g
promotes policy resiliency. See Fig. 3.12.

Given g∗ from Eq. (3.16), the optimization problem in Eq. (3.17) becomes iden-
tical to Eq. (3.2), except the change of start time, and can be solved by LCP, as
described in Sec. 3.8. The final receding-horizon policy c∗

C1:C1+) is then constructed
by concatenating the previous policy and a new partial policy, as in Eq. (3.17).

34

3.10 Experimental Results
In order to evaluate our proposed framework, we perform high-fidelity simulation
studies with a four-wheeled vehicle (Husky robot) and real-world experiments with
a quadruped (Boston Dynamics Spot robot). Both robots are equipped with custom
sensing and computing systems, enabling high levels of autonomy and communi-
cation capabilities [4, 71]. The entire autonomy stack runs in real-time on an Intel
Core i7 processor with 32 GB of RAM. The stack relies on a multi-sensor fusion
framework. The core of this framework is 3D point cloud data provided by LiDAR
range sensors mounted on the robots [6]. We refer to our autonomy stack-integrated
Spot as Au-Spot [5].

Baseline Algorithms
We compare our PLGRIM framework against a local coverage planner baseline
(next-best-view method) and a global coverage planner baseline (frontier-based
method).

1) Next-Best-View (NBV): NBV first samples viewpoints in a neighborhood of
the robot, and then plans a deterministic path over a high-fidelity local world
representation to each viewpoint [69]. The set of viewpoint paths serves as
the policy search space. Each policy in the space is evaluated, and NBV
selects the policy with the maximum reward, computed using action cost
and information gain from the world representation. While NBV is able to
leverage local high-fidelity information, it suffers due to its spatially limited
world belief and sparse policy space.

2) Hierarchical Frontier-based Exploration (HFE): Frontier based exploration
methods construct a global, but low-fidelity, representation of theworld, where
frontiers encode approximate local information gain. The set of frontiers
serves as the policy search space. Exploration interleaves a one-step look-
ahead frontier selection and the creation of new frontiers, until all frontiers
have been explored. Hierarchical approaches can enhance the performance
of frontier-based methods by modulating the spatial scope of frontier selec-
tion [32]. However, while HFE is able to reason across the global world belief,
it suffers from downsampling artifacts and a sparse policy space composed of
large action steps, i.e., edges on the global IRM.

Note that in order to achieve reasonable performance in the complex simulated envi-

35

ronments, we allow each baseline to leverage our Local and Global IRM structures
as the underlying search space.

Simulation Evaluation
We demonstrate PLGRIM’s performance, as well as that of the baseline algorithms,
in a simulated subway, maze, and cave environment. Fig. 3.7 visualizes these
environments.

Simulated Subway Station: The subway station consists of large interconnected,
polygonal rooms with smooth floors, devoid of obstacles. There are three vary-
ing sized subway environments, whose scales are denoted by 1x, 2x, and 3x.
Fig. 3.11(a)-(c) shows the scalable performance of PLGRIM against the baselines.
In a relatively small environment without complex features (Subway 1x), NBV per-
formance is competitive as it evaluates high-resolution paths based on information
gain. However, as the environment scale grows, its myopic planning easily gets
stuck and the robot’s coverage rate drops significantly. HFE shows inconsistent
performance in the subway environments. The accumulation of locally suboptimal
decisions, due to its sparse environment representation, leads to the construction
of a globally inefficient IRM structure. As a result, the robot must perform time-
consuming detours in order to pick up leftover frontiers.

Simulated Maze and Cave: The maze and cave are both unstructured environments
with complex terrain (rocks, steep slopes, etc.) and topology (narrowpassages, sharp
bends, dead-ends, open-spaces, etc.). The coverage rates for each algorithm are
displayed in Fig. 3.11(d)-(e). PLGRIM outperforms the baseline methods in these
environments. By constructing long-horizon coverage paths over a high-resolution
world belief representation, PLGRIM enables the robot to safely explore through
hazardous terrain. Simultaneously, it maintains an understanding of the global
world, which is leveraged when deciding where to explore next after exhausting
all local information. In the cave, NBV’s reliance on a deterministic path, without
consideration of probabilistic risk, causes the robot to drive into a pile of rocks
and become inoperable. NBV exhibits similarly poor performance in the maze.
However, in this case, NBV’s myopic planning is particularly ineffectual when faced
with navigating a topologically-complex space, and the robot ultimately gets stuck.
As was the case in the subway, HFE suffers in the topologically-complex maze
due to an accumulation of suboptimal local decisions. In particular, frontiers are
sometimes not detected in the sharp bends of the maze, leaving the robot with

36

an empty local policy space. As a result, the robot cannot progress and spends
considerable time backtracking along the IRM to distant frontiers.

(a) SimulatedMaze (top-down view): large irregular network of narrow
passages with sharp bends and dead-ends.

(b) Simulated Subway (1x scale): large interconnected, polygonal
rooms with smooth floors, devoid of obstacles.

(c) Simulated Cave: large irregular structure with complex terrain,
consisting of rocks, steep slopes, and narrow passages.

Figure 3.7: The performances of PLGRIM and the baseline algorithms were evalu-
ated in various simulated environments.

Real-World Evaluation
We extensively validated PLGRIM on physical robots in real-world environments.
In particular, PLGRIM was run on Au-Spot in a lava tube, located in Lava Beds
NationalMonument, Tulelake, CA. The cave consists of amain tube, which branches
into smaller, auxiliary tubes. The floor is characterized by ropy masses of cooled
lava. Large boulders, from ceiling breakdown, are scattered throughout the tube.
Fig. 3.10 shows the robot’s trajectory overlaid on the aggregated LiDAR point

37

cloud. Fig. 3.8 and 3.9 discus how PLGRIM is able to overcome the challenges
posed by large-scale environments with complex terrain and efficiently guide the
robot’s exploration. Fig. 3.11(f) shows the area covered over time.

Figure 3.8: The Local IRM (yellow, brown, and white nodes represent uncovered,
covered and unknown areas, respectively) is shown overlaid on the Risk Map. A
yellow arrow indicates the robot’s location. LCP plans a path (red) that fully covers
the local area (snapshot A). When ?(,ℓ) updates, the path is adjusted to extend
towards the large uncovered swath while maintaining smoothness with the previous
path. Another ?(,ℓ) update reveals that the path has entered a hazardous area—wall
of lava tube (snapshot B). As a demonstration of LCP’s resiliency, the path shifts
away from the hazardous area, and the robot is re-directed towards the center of the
tube (snapshot C). One minute later, the robot encounters a fork in the cave. The
LCP path curves slightly toward fork apex (for maximal information gain) before
entering the wider, less-risky channel (snapshot D).

Figure 3.9: Portions of the Global IRM constructed in the lava tube are visualized–
yellow nodes represent frontiers, brown nodes represent breadcrumbs. Gray arrows
associate a frontier with a snapshot of the robot exploring that frontier. GCP plans
a path (blue) along the Global IRM to a target frontier after the local area is fully
covered (snapshot E). The robot explores the area around the frontier (snapshot F),
and then explores a neighboring frontier at the opening of a narrow channel to its
right. LCP plans a path (green) into the channel (snapshot G). Later, after all local
areas have been explored, the robot is guided back towards the mouth of cave along
the breadcrumb nodes (snapshot H).

38

4 m

H
A-C

F-G
D

E

Figure 3.10: PLGRIM’s exploration trajectory in Valentine Cave, Lava Beds Na-
tional Monument, Tulelake, CA. Exploration started at the mouth of the cave (red
circle), reached the end of the cave on the right, and returned back to visit uncovered
areas. Boxes indicate the portions of the trajectory associated with the alphabetized
snapshots in Fig. 3.8 and Fig. 3.9.

(a) Subway 1x (b) Subway 2x (c) Subway 3x

(d)Maze (e) Cave (f) Real-world
Lava Tube

Figure 3.11: Exploration by PLGRIM and baseline methods in simulated subway
environments of increasing size (a)-(c), simulated maze (d), simulated cave (e), and
real-world lava tube (f). For (d) and (e), the covered area is the average of two runs.
Red dashed lines indicate 100% coverage of the environments, where applicable. In
(f), due to the extreme terrain conditions of the lava tube, we restricted Au-Spot’s
maximum speed to be 0.5 m/s, or half of the manufacturer-specified maximum
speed, due to the extremely rough terrain conditions in the lava tube.

39

Figure 3.12: Receding-Horizon Policy Reconciliation process for optimal root node
g∗ determination (Sec. 3.9). The right column is the corresponding step from
Husky’s exploration of a real-world limestone mine. Snapshot A is in world belief
state 1C , and snapshots B –D are in the next belief state 1C ′. By re-evaluating
the previous policy c−

C0:C0+) with updated robot-world belief 1C ′ (snapshot B), g
dictates how much of the new c∗

C1:C1+) should be in agreement with the previous
policy (snapshot C). The final receding-horizon policy c∗

C1:C1+) is then constructed
by concatenating the previous policy and a new partial policy (snapshot D).

40

3.11 Summary
This chapter presented a hierarchical framework for exploring large-scale, unknown
environments with complex terrain in a POMDP setting. To obtain a tractable solu-
tion, we introduced a hierarchical belief space representation that effectively encodes
a large-scale world state, while simultaneously capturing high-fidelity information
local to the robot. Then we proposed cascaded POMDP solvers that reason over
long horizons within a suitable replanning time. We demonstrated our framework
in high-fidelity dynamic simulation environments and in real-world environments.
Chaps. 4 and 5 discus alternative local and global coverage planners, which rely on
the same underlying Information Roadmap structures and interact according to the
PLGRIM framework.

41

C h a p t e r 4

LOCAL COVERAGE PLANNER

This chapter presents a method for solving the time-limited coverage problem over
a local grid-based representation of the environment, with the objective being au-
tonomous exploration of an unknown environment. Here, the robot is tasked with
planning a path over a local horizon such that the accumulated area swept out by
its sensor footprint is maximized. Because this problem exhibits a diminishing
returns property known as submodularity, we choose to formulate it as a tree-based
sequential decision making process. This formulation allows us to evaluate how the
robot’s observation of the world affects the utility of future observations, while si-
multaneously accounting for traversability risk and the robot’s dynamic constraints.
In order to adequately investigate the search space, we reduce computation using
an effective approximation to the coverage sensor model which adapts the coverage
range to the local environment, as shown in Fig. 4.1. As a result, we can solve
the submodular coverage problem in a unified manner, which we contend is more
robust to real-world uncertainty than widely-adopted decoupled methods.

This chapter was adapted from:

A. Bouman, J. Ott, S. Kim, K. Chen, M. Kochenderfer, B. Lopez, A. Agha-
Mohammadi, and J. Burdick. “Adaptive Coverage Path Planning for Efficient
Exploration of Unknown Environments”. In: Submitted to IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.

4.1 Introduction
Consider a time-limited mission wherein a ground robot must autonomously explore
an unknown environment with complex terrain. The robot explores by maximiz-
ing the area observed, or covered, by a task-specific coverage sensor. This sensor
may be a thermal camera for detecting thermal signatures, an optical camera for
identifying visual clues, or in our case, an omnidirectional range finder for con-
structing 3D environment maps. As the robot moves, the sensor footprint sweeps
the environment, expanding the covered area, or more generally, the task-relevant
information about the world. The problem of finding efficient and safe coverage
trajectories is computationally complex [29, 53] – one must consider the fact that

42

a robot’s observation of the world affects the utility of future observations, while
concurrently minimizing traversability risk.

A

A

B

B

Figure 4.1: Adaptive coverage range (translucent circle) and coverage path from
single planning episode (blue) in a locally confined (A) and spacious area (B)
during Husky’s autonomous exploration of a limestone mine in Nicholasville, KY.
The robot’s trajectory (yellow) is overlaid on pointcloud (left figure).

Our proposed method quickly finds non-myopic coverage paths by rolling out future
coverage observations using an effective sensor model. Our model is carefully
designed to replicate critical features of a range finder in a computationally efficient
manner. First, the model is probabilistic – coverage probability decreases with
increasing ray sparsity along the radial direction. As a result, the density of coverage
is dictated by the local environment geometry, and large topological features in the
environment are quickly exposed and mapped. Second, to account for ray-surface
interactions that regulate surface visibility, the coverage range, or distance at which
a sensor measurement is performed, adapts to the scale of the local environment
(Fig. 4.1). This approach obviates the need for expensive ray-tracing operations
that make forward rollout algorithms prohibitively slow for a real-time system.

We begin by noting that the time-limited coverage task is a submodular orienteering
problem. Since the robot must understand the effects of its actions on the quality of
future coverage measurements, we choose to formulate this problem as a sequential
decision process. To find near-optimal trajectories at high replanning rates, we use
an online forward rollout search algorithm that plans from the current world-robot

43

state to a travel budget-defined horizon. Our method was evaluated on hardware in
various environments, and served as the local planner for team CoSTAR’s entry in
the Final Circuit of the DARPA SubT Challenge [4].

4.2 Related Work
The problem of finding the optimal sequence of sensing actions, or viewpoints,
in order to maximize some task-specific information has been extensively studied,
both in computer vision and robotics. In the robotics field, the problem of viewpoint
selection is commonly motivated by tasks such as surveillance, object inspection,
and exploration. While a variety of viewpoint selection algorithms have been
proposed, we address those used to solve the exploration problem where policies
are constructed in a receding horizon fashion as the robot gathers more sensory
information about its environment.

Viewpoint selection algorithms employ a sensor model to determine future sensing
locations that maximize scene information. In the context of exploration, these
schemes often rely on identification of the boundary between unmapped andmapped
space, regions termed frontiers, and seek new robot poses that extend the boundary
of mapped space [28]. Traditional frontier-based approaches construct one-step
lookahead policies that find the next most favorable sensing action, the quality of
which is determined by the amount of unmapped area that can be visualized [28],
[54]. Underpinning many approaches is the next-best-view planner (NBV) [69],
where a rapidly exploring random tree is constructed. Each vertex represents a
viewpoint, and the vertex that maximizes a utility function, weighing volumetric
gain against path distance, is greedily selected as the next goal [72], [73]. While
computationally efficient, NBV-based planners are greedy and therefore susceptible
to local minima, leading to suboptimal decision making. An accumulation of
suboptimal local decisions can significantly reduce the amount of sensor information
gathered over time.

In order to optimize viewpoint selection over a multi-step horizon, the exploration
problem has been framed as a variant of the art gallery problem [74]. Here the
objective is to find a minimal set of viewpoints that maximizes coverage of an area.
A critical feature of this problem is the fact that themarginal benefit of selecting a new
viewpoint decreases as the set of already selected viewpoints increases – a property
known as submodularity. A greedy algorithm has been shown to provide a good
approximation of the optimal solution to the submodular function maximization

44

problem [75].

Leveraging the effectiveness of greedymethods for submodularmaximization, many
have adopted a decoupled approach to the exploration problem [76], [53], [24]. First,
sensing locations are selected using a greedy algorithm. Then a path through the
sensing locations is determined. For instance, in the work of Cao et al. [76], a
set of viewpoints is first sampled from a grid-based environment representation.
Then viewpoints are selected in the order of marginal coverage reward. To account
for submodularity, the coverage rewards of the remaining viewpoints in the set are
recomputed after each selection. The final ordering of viewpoints is determined by
solving the standard traveling salesman problem [77]. While a decoupled approach
provides a non-myopic solution in a computationally efficient manner, we contend
that it can be sensitive to model uncertainty, which we discuss in Section 4.7.

The main contribution of this chapter is a unified exploration planning algorithm
for finding an optimal sequence of sensing actions. We propose a reliable, yet
computationally efficient, sensor model that allows us to leverage a rollout-based
search algorithm in order to evaluate the submodular coverage problem without
needing to approximate it as a modular problem. As a result, we can find near-
optimal coverage paths that are robust to model uncertainty.

4.3 Problem Definition
The coverage problem considered here has been abstractly formulated as the shortest
covering path problem (SCPP) where the objective is to identify the shortest path
that covers all nodes in a priori known graph geometry [78]. A node is considered
covered if it is within a pre-defined distance from another node in the path. By
adding a time constraint and removing the pre-specification of a terminal node,
we generalize the SCPP to a time-limited coverage problem using an orienteering
problem (OP) framework.

Given a known environment represented by an abstract graph structure � = (#, �),
with free and occupied nodes # 5 A44 ∪ #>22 = # , our OP objective is to find an
unbounded sequence of nodes ? = {=0, ..., = } ⊆ # 5 A44 such that the number of
free nodes within an accumulated coverage sensor footprint � is maximized, subject
to a budget constraint:

?∗ = argmax
?

∑
=8∈?

� (=8),

subject to 0(?) ≤ 0max,

(4.1)

45

where 0(?) is the path action cost, 0max is a user-defined action cost budget, and the
footprint � maps each node to a set of “covered” nodes: � (=8) = (=81 , =82 , .., =8 9).

Recall that the coverage problem exhibits submodularity; that is, themarginal benefit
of appending the path with a node =2 “close” to =1 ∈ ? is less than that if =1 ∉ ?. To
account for this diminishing returns property, we re-define the OP reward function
to be the marginal coverage given all the previously traversed nodes:

�̃ (=8) = � (=8 | =0, .., =8−1). (4.2)

Then we can define the coverage OP as:

?∗ = argmax
?

∑
=8∈?

�̃ (=8),

subject to 0(?) ≤ 0max.

(4.3)

For the remainder of this chapter, we refer to Eq. 4.3 as our coverage problem.

4.4 Methodology Overview
We model the time-limited coverage problem as a discrete-time sequential decision
making processwhere the optimal policy is a sequence of actions chosen tomaximize
a cumulative coverage reward. To find near-optimal policies in real-time, we employ
a rollout-based search algorithm that estimates the value of an action sequence by
simulating interactions between the robot and world. During a simulated episode,
or rollout, the robot and world states evolve together – the robot executes an action
and makes a coverage observation of its environment, Eq. (4.2), which yields a
subsequent robot-world state and reward. Thus, rollouts provide a method of solving
the submodular coverage problem in a unified manner, i.e. a policy is evaluated on
both the accumulated marginal coverage reward and the path cost.

We introduce our world representation (Sec. 4.5), and then model the coverage
problem as aMarkov decision processwith the goal of formulating an online solvable
submodular optimization problem (Sec. 4.6). To solve this problem in real-time
on a computationally-constrained robot, we propose an effective approximation to
the coverage sensor model, which significantly reduces rollout computation. As a
result, we are able to construct high-quality coverage paths at a high planning rate
(Sec. 4.7).

4.5 World Representation
We represent the local environment around the robot by the Local Information
Roadmap (IRM), introduced in Chap. 3.7. An annotated view of the Local IRM is

46

shown in Fig. 4.2. The Local IRM is a fixed-size lattice graph � = (#, �) with
nodes # and edges � . Nodes represent discrete areas in space, and edges represent
actions. We store two type of information in the IRM: (i) the traversability risk
of the world with respect to the robot’s dynamic constraints, and (ii) what parts
of the environment have been observed, or covered, by a task-specific coverage
sensor. The robot-centered, rolling window Local IRM is continuously updated
with traversability and coverage information based on incoming sensor data.

To construct �, we uniformly sample nodes =8 ∈ # in a neighborhood of the robot,
and compute the traversability risk and coverage probability distribution over a
discrete patch centered at each node, i.e., ?A (=8) and ?2 (=8), which are stored as
node properties. For scalability, we bin node traversability risk probabilities into
three groups: occupied ?A (=8) = 1, unknown ?A (=8) = 0.5, and free ?A (=8) = 0. For
an edge 48 9 ∈ � , we compute and store the traversal distance 38 9 and traversal risk
d8 9 between two connected nodes.

Figure 4.2: Local Information Roadmap (IRM) shown overlaid on the Risk Map.
The IRM contains world coverage and traversability risk information. The goal
of the coverage planner is to construct paths on the IRM that convert nodes from
uncovered traversable (yellow) to covered traversable (brown). By constructing
coverage paths in a receding-horizon fashion, the robot extends the boundaries of
explored space.

47

4.6 Markov Decision Process
A Markov decision process (MDP) is described as a tuple 〈S,A,), '〉, where S is
the set of joint robot-and-world states, and A is the set of robot actions. The motion
model) (B, 0, B′) = ?(B′ | B, 0) defines the probability of being in state B′ after taking
action 0 in state B, and the reward function '(B, 0) returns the utility for executing
action 0 in state B. The objective is to find a mapping from states to actions, i.e. the
policy c, that maximizes the expected sum of future reward.

State
The robot-world state is defined as B = (@,,), where @ is the robot state and ,
is the world state. We define @ and , in terms of the Local IRM. The robot state
@ = (=@, `), where =@ is the node closest to the robot’s current location, and ` is the
robot’s heading direction, defined with respect to the lattice geometry. The world
state is , = �, where � is the IRM containing traversability risk and coverage
world state estimates.

We define an action 0 as the controlled robot traversal from node =8 ∈ # to neigh-
boring node = 9 ∈ # , along an edge 48 9 ∈ � . A node is directly connected to its eight
neighbors, discretizing the valid action space for a single state into movement along
the four cardinal/non-diagonal (N, E, S, W) and four intercardinal/diagonal (NE,
SE, SW, NW) directions. We denote actions along the cardinal and intercardinal
directions by 0√2 and 01, respectively.

Robot Dynamics
We approximate the robot motion model) (@, 0, @′) as deterministic. Given an
action 0 directing traversal of edge 48 9 , the robot will reach node = 9 with probability
1. Actions that cause the robot to leave the bounds of � or enter nodes that are
unknown or occupied, ?A (=8) = 0.5 or 1, have no effect. Note that while we do not
explicitly model motion stochasticity, we manage the effects of such uncertainty by
planning at a high-rate in a receding-horizon fashion.

Probabilistic Coverage Sensor Model
We model our coverage sensor as an omnidirectional range finder. The robot covers
nodes within its line-of-sight, computed using ray-tracing techniques on the traversal
risk map {?A (=8)} in combination with sensor range constraints. To account for
increasing ray sparsity in the radial direction, we compute the coverage probability
for a node as a function of the robot-to-node distance. Given the robot node =@,

48

a node =8 is covered with probability %cov(=8 | =@). We heuristically model the
coverage probability %cov as an S-shaped logistic function:

%cov(=8 | =@) =
1

1 + 4: (A8−A0)
, (4.4)

where A8 is the euclidean distance between the robot node =@ and node =8, and
constants A0 and : are the sigmoid’s midpoint and steepness, respectively. The
coverage probability distribution over the radial distance from the center of the
sensor in shown in Fig. 4.3. The probabilistic sensor model plays a crucial role in
efficiently exploring an environment when the fundamental objective is to construct
a map of the environment. By modulating coverage density based on the local
geometry, the probabilistic model can quickly expose large topological features in
the environment, as detailed in Fig. 4.5.

(a) Coverage Probability
(Continuous)

(b) Coverage Probability
(Discretized)

(c) Non-Diagonal Action 01 (d) Diagonal Action 0√2

Figure 4.3: Our coverage sensor model, based on Eq. (4.4), displayed over contin-
uous space (a), and over the discretized lattice graph world representation (b). The
diffused color map mimics the coverage probability curve– darker shades indicate
higher coverage probabilities. The marginal coverage after a non-diagonal action (c)
and diagonal action (d) is represented by the shaded gray cells. Note that the ratio
of marginal coverage to distance traveled over the lattice is not equivalent for non-
diagonal and diagonal actions: � (B>, 0√2)/38 9 ≠ � (B

>, 01)/38 9 , where B> indicates a
risk-free world. We address this discrepancy with Eq. (4.7).

49

Algorithm 2World Coverage Update
Function CoverageUpdate
Input: robot node =@

world state �
maximum sensor range Amax

1: for all angles \: of the sensor’s angular displacement do
2: for all nodes =8 along ray from =@ in direction \: do
3: Compute robot-to-node euclidean distance A8
4: if ?A (=8) < dmax and A8 < Amax then
5: ?2 (=8) ′← max

[
?2 (=8), %cov(=8 | =@)

]
⊲ Eq. (4.4)

6: else
7: break
8: end if
9: end for
10: end for
11: return {?2 (=8) ′}

World Transition Model
We approximate the world transition function) (,, 0,,′) as deterministic. Func-
tion CoverageUpdate in Alg. 2 presents the process for updating the world coverage
state based upon the the probabilistic coverage sensor model in Eq. (4.4). When
integrating new sensor measurements, we assume independence and compute the
maximum of the old and new coverage probability (Alg. 2-line 5). This yields an
optimistic estimate of coverage.

Reward Function
Wenow redefine ourmarginal coverage fromEq. (4.2) to be the uncertainty reduction
in the world coverage state induced by an action 0:

� (B, 0) =
∑
=8∈#

V

(
?2 (=8 | 0) − ?2 (=8)

)
, (4.5)

where V controls the reward received from covering a node based on its occupancy
status. Due to its sparsity, the Local IRM sometimes fails to identify nodes as
occupied in high risk regions. For instance in Fig. 4.2, the environment boundary,
indicated in the underlying Risk Map, is not fully represented by occupied nodes in
the Local IRM. To stay robust to this unreliable world model, we define the value
of V to be larger for nodes of known occupancy (occupied, uncovered-free, and
covered-free), when compared to the value of V for unknown nodes. As a result,
the constructed coverage paths are more likely to stay within the traversable space
of the environment.

50

The reward function is defined as a weighted sum of marginal coverage and action
penalties:

'(B, 0) = : � � (B, 0) −
[
:3 38 9 + :d d8 9 + :` Δ`

]
, (4.6)

where 38 9 is the traversal distance, d8 9 traversal risk, and Δ` is the cost of rotation
due to the robot’s non-holonomic constraints. Constants : � , :3 , :d, and :` weigh
the importance of coverage, traversal distance, risk, and motion primitive history on
the total reward.

Given a coverage sensor with a circular field-of-view, the uncovered area after a
diagonal and non-diagonal action should scale equivalently with distance traveled.
However, since Eq. (4.5) is evaluated over a discretized space�, the ratio ofmarginal
coverage to distance traveled is not equivalent for all actions on the lattice, as
illustrated in Fig. 4.3. Given this marginal coverage discrepancy between actions,
we define :3 as a function of coverage parameters in order to ensure non-diagonal
(01) and diagonal actions (0√2) are equally rewarding; that is, '(B, 01) = '(B, 0√2)
for the same d8 9 and Δ`. If F is the width of a grid cell in �, then we define :3 as:

:3 =
: �

F
·
� (B>, 0√2) − � (B

>, 01)

(1 −
√

2)
(4.7)

where state B> denotes a risk-free world where the only covered region is aligned
with the robot’s current sensor footprint.

Optimal Policy
It is fundamentally infeasible to solve an unknown environment coverage problem
over an infinite horizon since information about the world is incomplete, and often
inaccurate, at runtime. Instead, in such domains, a Receding Horizon Planning
(RHP) scheme has been widely adopted as the state-of-the-art [69]. The optimal
RHP policy over a horizon) is:

c∗C:C+) (B) = argmax
c∈ΠC:C+)

C+)∑
C ′=C

WC
′−C'(BC ′, c(BC ′)), (4.8)

where) is a finite planning horizon for a planning episode at time C. Given the
policy from the last planning episode, only a part of the optimal policy, c∗

C:C+ΔC for
ΔC ∈ (0,)], will be executed at runtime. A new planning episode will start at time
C + ΔC using an updated robot-world state.

51

(a) Exact Coverage Range

(b) Static Coverage Range

(c) Adaptive Coverage Range (Proposed)

Figure 4.4: Illustrative example of the effect of different coverage sensor models on
exploration completeness: “exact” observation where the coverage range is based
on ray-tracing (a), approximate observation where the coverage range is static (b),
and the proposed approximate coverage sensor model where the range adapts to the
local environment (c). While the exact model provides the best estimate of future
coverage, it is computationally expensive and prevents proper investigation of the
policy space during MCTS. Alternatively, while the static model is inexpensive, it
overestimates the covered area. As a consequence, the passageway below the robot
may not be explored since it provides inaccurately low coverage reward.

52

(a) Pessimistic Coverage Model

(b) Optimistic Coverage Model

(c) Probabilistic Coverage Model (Proposed)

Figure 4.5: Illustrative example of the effect of different coverage sensor models
on the constructed path’s efficiency and completeness: pessimistic model where
the coverage range underestimates the true range (a), optimistic model where the
coverage range overestimates the true range (b), and the proposed probabilistic
model (c). With the pessimistic model, the robot uncovers the narrow channel
after executing an inefficient ping-pong trajectory, which poses undue risk given
its occasional proximity to obstacles. Alternatively, the optimistic model generates
an efficient path down the centerline of the cavern, but the robot fails to detect
the narrow channel and terminates exploration early. Our proposed probabilistic
model combines the benefits of pessimistic and optimistic coverage. The robot
travels down the centerline, sparsely covering the main cavern until it encounters the
end; at which point, it densely covers the space and ultimately exposes the narrow
channel.

53

4.7 Online Planning
We now discus our proposed online coverage planner algorithm, which runs real-
time on hardware. Alg. 3 presents the major components of the planner.

Search Algorithm
In order to solve Eq. (4.8), we use Monte Carlo tree search (MCTS) [79]. Refer
to Function MCTS in Alg. 3. During every planning episode, a lookahead tree,
rooted in an initial robot-world state, is iteratively constructed by simulating action
sequences using a random rollout policy cA>;;>DC , as illustrated in Fig. 3.6. During
a single iteration, rollouts and tree expansion stop when a predefined depth, or our
path budget, is reached. Given a state B and action 0, a generative model G (i.e. the
black box simulator of the MDP) provides a sample successor state B′ and reward
A. Since we do not have access to the ground truth state of the environment, our
generative model is an estimate based on the most recent robot sensor measurements
used to construct the world representation �. MCTS terminates after reaching a
user-defined maximum number of simulations.

Action Sequence Extraction
The action sequencewith the highest estimated value is extracted from the lookahead
tree (Alg. 3 – #3). Then the first # actions from that sequence, 0∗1:# , is sent to the
STEP motion planner for execution, as described in Chap. 2.2. The number
of actions # is defined such that '(B8, 08) > W ∀ 8 ∈ {1 : #}, where W is an
empirically selected one-step reward lower bound. This cropping of the action
sequence is critical to global exploration performance; it ensures the local coverage
path uncovers “enough” area to justify the path travel cost. If 0∗1:# is empty, then
a global planner takes control and guides the robot to areas with high expected
information gain.

Planning Root Update
At the end of every planning episode, 0∗1:# is stored and then used to update the root
of the lookahead tree during the subsequent episode (Alg. 3 – #2). Our root update
approach is based on a receding-horizon policy reconciliation method detailed in
Chap. 3.9. Fig. 4.8 demonstrates the effectiveness of this root update method.

54

Adaptive Coverage Range
While MCTS is an anytime algorithm, meaning that the construction of the tree
can terminate at any point and a solution will be recovered, it only converges to
the optimal solution with a sufficient number of simulations. Although it may be
infeasible to reach the optimal solution given time constraints, estimates of the action
values become increasingly more reliable with more simulations, leading to a higher
quality coverage path. In order to find quality solutions at high planning rates, a
real-time system must find a good balance between the fidelity of a simulation (e.g.
how accurately we model the coverage observation) and the number of simulations.

To maximize the number of simulations within a suitable planning time, we propose
an approximation of the coverage model that reduces the time complexity of the
generative model G. Our approximate world coverage update obviates the need
for expensive ray-tracing operations in Alg. 2. First, we estimate the spaciousness
Aspac of the local environment [80]. Then we adapt the distance at which a range-
finder coverage measurement is performed based on Aspac. We denote this adaptive
coverage distance by Aadapt. See Fig. 4.4 as an example of our adaptive coverage
range approach.

Given a range-finder 3D pointcloud scan {I8} where I8 is the point at which a ray
intersects an obstacle, we compute spaciousness as:

Aspac = 5
(
median{3 (I8)}

)
. (4.9)

where 3 (I8) is the euclidean distance between the range-finder origin and a ray
intersection-point I8, and 5 is a low-pass filter: 5 (GC) = U1 5 (GC−1) +U2 GC with con-
stants U1 = 0.95 and U2 = 0.05. Robust to outliers in a potentially noisy pointcloud,
median{3 (I8)} gives a notion of the current scale of the local environment around
the robot. Then, given Aspac, we compute Aadapt as:

Aadapt =

U · Aspac, if Aspac ≤ Amax

U

Amax, otherwise,
(4.10)

where U is an empirically tuned scaling constant, and Amax is our model-defined
maximum sensor range. Equipped with Aadapt, we generate a probabilistic coverage
mask {<8}, detailed in Alg. 3-#1. The mask serves as an input to the generative
model econGEN (Alg. 4), which then updates the world coverage state using inex-
pensive matrix operations. In comparison, expGen (Alg. 4) uses the more exact, but
significantly more expensive Function CoverageUpdate (Alg. 2).

55

Algorithm 3 Coverage Planner
Function CoveragePlan
repeat

Obtain: state B = (=@, `, �)
pointcloud scan {I8}

#1 Generate Coverage Mask
Compute adaptive coverage range Aadapt in Eq. (4.10)
{<8} ← CoverageUpdate(=@, $, Aadapt) ⊲ Alg. 2

⊲ where $ ⇒ ?2 (=8) = ?A (=8) = 0 ∀ =8 ∈ #
#2 Find Planning Root
=g , `g ← RootNode(B, 0−1:#) ⊲ see PLGRIM in [29]
B← (=g , `g , �) ⊲ update robot state to root parameters
#3 Plan and Execute
)A ← MCTS(B, {<8})
Extract action sequence 0∗1:# from)A
#4 Prep for Next Episode
0−1:# ← 01:#

until timeout

Function RootNode
Input: state B = (=@, `, �)

previous action sequence 0−1:#
Extract path 0−

&:# ⊲ =& is path node closest to =@
Initialize path risk dpath and distance 3path to 0
for action 48 9 in path 0−&:# do
dpath += d8 9/38 9 ; 3path += 38 9
if dpath > dmax or 3path > 3max then

Assign root node =g ← =8
Find root orientation `g ⊲ if =g = =&, then `g ← `

return =g , `g
end if

end for

Function MCTS
Input: state B = (=@, `, �)

coverage mask {<8}
Initialize empty lookahead tree)A
repeat
)A ← SIMULATE

(
B; G

)
⊲ estimate generative model G using efficient
econGEN(B, {<8}, cA>;;>DC) in Alg. 4

until timeout
return)A

56

Algorithm 4 Estimated Generative Models G
Function econGEN ⊲ economical model
Input: state B = (=@, `, �)

coverage mask {<8}
policy c

1: =′@, `
′← c(=@, `)

2: {?2 (=8) ′} ← {max
[
<8 , ?2 (=8)

]
} ⊲ fast

3: A ← '(B, 0) ⊲ Eq. (4.6)
4: return B′, A

Function expGEN ⊲ expensive model
Input: state B = (=@, `, �)

coverage mask {<8}
policy c

1: =′@, `
′← c(=@, `)

2: {?2 (=8) ′} ← CoverageUpdate(=@, �, Amax) ⊲ Alg. 2 (slow)
3: A ← '(B, 0) ⊲ Eq. (4.6)
4: return B′, A

Discussion
A decoupled approach to the coverage planning problem leverages a greedy algo-
rithm for non-myopic viewpoint selection. This approximation relies on the fact that
selecting more viewpoints never reduces the total coverage reward, since Eq. 4.3
exhibits monotonicity [75, 81]. While true in theory, this conjecture falters in a
real-world exploration domain where the robot only has partial information about
the world. In this setting, the inclusion of risky or low quality viewpoints, i.e., those
evaluated using unreliable world estimates, can have adverse effects on the final
policy and the robot’s ability to collect coverage reward over an exploration mission.
Since viewpoint interdependency is not critically examined, a policy incorporates
all viewpoints in order to achieve performance guarantees associated with greedy
methods for submodular maximization [75]. The optimal policy is constructed by
finding the shortest path through a set of viewpoints. The core issues with this
optimization is that it incorrectly assumes a stable and reliable world model. Specif-
ically, the path is constructed without considering that: (i) the robot may fail during
execution of the path, (ii) world coverage and traversability estimates become in-
creasingly unreliable with increasing distance from the robot, and (iii) the world
model (i.e. Local IRM) changes dynamically as the robot uncovers and maps new
regions.

In order to address the aforementioned issues, the proposed approach to the coverage
planning problem exhibits the following properties that make it suitable for a real-

57

world exploration domain.

1) Viewpoint Selectiveness: A policy is evaluated by computing the marginal
coverage reward and path cost for each successive action, or viewpoint, in the
policy (Eq. 4.6). Understanding coverage interdependency between succes-
sive viewpoints lifts the burden of needing to fully cover the current graph
with a single policy – an unproductive and potentially harmful ambition in the
presence of uncertainty. As a result, viewpoints that do not provide sufficient
coverage utility within a time-budget, or jeopardize the robot’s safety, can be
discounted from the final policy, while still preserving MCTS optimality.

2) Robustness to Uncertainty: The lookahead tree is rooted at (or very near
to) the robot’s current location. Hence, MCTS visits nodes close to the
robot more frequently, effectively focusing its search time in areas of the
environment where world coverage and traversability risk estimates are more
reliable. Moreover, due to a discount factor in the problem objective Eq. (4.8),
policies that shift coverage reward earlier in time are more rewarding. By
incorporating this near-sighted incentive, the robot accounts for stochasticity
in sensing and motion control, as well as the fact that the world model will
evolve as undetected areas are exposed.

Fig. 4.6 compares paths constructed by our approach and a decoupled approach in an
uncertain world. Recall in the decoupled approach, viewpoints are greedily selected
in order of highest marginal coverage reward. Therefore, rather than discounting
viewpoints far from the robot where world estimates are poor, the decoupled ap-
proach actually prioritizes distant points since there is less sensor overlap at these
locations with the robot’s current field-of-view. The path planner is then “locked
into” these viewpoints, and optimistically reasons over this potentially unreliable
search space.

4.8 Experimental Results
In order to evaluate our proposed approach, we perform simulation studies and
real-world experiments with a four-wheeled vehicle (Husky robot) and quadruped
(Boston Dynamics Spot robot). Both robots are equipped with custom sensing
and computing systems [4, 5, 71], and the entire autonomy stack runs in real-time
on an Intel Core i7 processor with 32 GB of RAM. The stack relies on a multi-
sensor fusion framework, the core of which is 3D point cloud data provided by

58

LiDAR range sensors [6]. During testing, the proposed approach (or baseline) was
integrated as the local planner within the hierarchical planning framework PLGRIM.
The frontier-based planner detailed in Chap. 5 provided global guidance.

(a) Unified Coverage Planner (Proposed)

(b) Decoupled Coverage Planner

Figure 4.6: For two planning episodes at C1 and C2 during Husky’s autonomous
exploration of a real-world mine, we show the coverage path constructed using our
proposed unified approach (a) and the commonly-adopted decoupled approach (b)
for solving the submodular coverage problem. In (a), the robot collects the remaining
coverage reward at the end of the passage, before continuing to the large, unexplored
passage to the left. In (b) at snapshot C1, the robot incorrectly detects openings at the
end of the passage due to bad sensor measurements and selects a set of viewpoints
accordingly. The shortest path through the poorly-selected viewpoints guides the
robot through a narrow passage to the right, which is riskier and less rewarding than
the passage to the left.

Simulation Evaluation
We evaluated the proposed planner against ours-LF: the proposed rollout-based
method with a low-fidelity coverage sensor model, i.e. non-probabilistic and static
coverage range Amax. All tests were performed in a simulated maze environment, as
shown in Fig. 4.7. The maze consists of a large irregular network of large spaces
and narrow passages, many of which are connected by sharp bends. This geometry

59

exposes the weaknesses of a rollout-based planner where the coverage sensor model
does not effectively approximate the actual range finder sensor. The long-range ours-
LF planner (A<0G = 8m) overestimates the coverage sensor range and, therefore, fails
to detect openings at the sharp bends. As a result, large swaths of the environment
are not exposed, and the robot terminates exploration early. Alternatively, the short-
range ours-LF planner (A<0G = 4m) performs significantly better since it can expose
and explore all narrow passages. However, since it underestimates the coverage
sensor range, it finds redundant trajectories in the large spaces, which contributes to
a slight degradation in performance. Our proposed solution can handle all settings,
since it neither over- or under-estimates the true coverage range in exchange for
reducing computation. Moreover, since the model is probabilistic, it inherently
adjusts its coverage density to the local environment. As a consequence, when the
robot approaches a sharp bend, it travels deep enough to “see” uncovered space
around the corner, which is critical to exposing the entire environment.

Figure 4.7: Results from simulated exploration runs in the simulated maze (shown
at top right). We define our coverage metric to be the accumulated area within an
8m radius of the robot. Each curve is the average of 2 runs.

Real-World Evaluation
Our solution was extensively tested on physical robots in real-world environments.
In particular, we present results from the exploration of a limestone mine (Figs.
4.9, 4.8) and library (Fig. 4.10) in the Kentucky Underground, Nicholasville, KY.
While the mine primarily consists of large passageways (~15m-width) with complex
terrain, the library is a network of narrow aisles (~1.5m-width) with smooth flooring.

60

(a) t = 00:00 (b) t = 00:30

(c) t = 00:31 (d) t = 01:46

Figure 4.8: Snapshots of robot’s navigation through rocks and debris during its
exploration of a limestone mine. The bottom figure shows the robot’s trajectory
(yellow) and snapshot locations on a point cloud map generated by the robot. The
coverage path (blue) and the planning root node (green circle) are shown in snapshots
(a) – (d). Note that (b) and (c) are from consecutive planning episodes as the robot
turns a corner, receives new sensor measurements, and updates the world risk state.
The root node is updated according to the receding horizon reconciliation method,
introduced in Chap. 3.9.

61

20 m

Fig. 4.8

Figure 4.9: Husky’s exploration of a limestone mine during a 60 min. mission
using the proposed coverage planner. The coverage paths down the main corridor
exhibit a wave-like shape. When the robot encounters a junction, it moves toward
the corner in order to maximize coverage of both branches, and then re-aligns with
the centerline of the main corridor. The starting location of snapshot Fig. 4.8 (a) is
indicated on the map. Fig. 5.8 (b) provides the associated coverage plot.

20 m

Figure 4.10: Exploration of a library using the proposed coverage planner.
Fig. 5.8 (a) provides a coverage plot of Au-Spot’s library exploration during a
50 min. mission.

4.9 Summary
This chapter presented an approach for solving the time-limited coverage problem for
autonomous exploration of unknown environments. To solve this problem, which is
submodular in nature, we used a unified rollout-based search algorithm. This allows
us to evaluate how the robot’s observation of the world affects the utility of future
observations, while simultaneously accounting for traversability risk and the robot’s
dynamic constraints. In order to adequately investigate the search space, we reduce
rollout computation using an effective approximation to the coverage sensor model
which adapts the coverage range to the local environment. As a result, we can solve
the submodular coverage problem in a unified manner, which we contend is more
robust to real-world uncertainty than decoupled methods.

62

C h a p t e r 5

GLOBAL COVERAGE PLANNER

This chapter presents amethod for solving the time-limited exploration problem over
a global graph-based representation of the environment. It begins by proposing the
Frontloaded InformationGainOrienteering Problem (FIG-OP) – a generalization of
the traditional orienteering problem where the assumption of a reliable environmen-
tal model no longer holds. The FIG-OP addressesmodel uncertainty by frontloading
expected information gain through the addition of a greedy incentive, effectively ex-
pediting themoment inwhich previously unseen area is uncovered. In order to reason
acrossmulti-kilometer environments, FIG-OP is solved over an information-efficient
world representation (Fig. 5.1), constructed through the aggregation of information
from a topological and metric map, i.e., the Global Information Roadmap and Risk
Map, respectively. The FIG-OP solution exhibits improved coverage efficiency over
solutions generated by greedy and traditional orienteering-based approaches (i.e.
severe and minimal model uncertainty assumptions, respectively).

This chapter was adapted from:

O. Peltzer*, A. Bouman*, S. Kim, R. Senanayake, J. Ott, H. Delecki, M.
Sobu, M. Schwager, M. Kochenderfer, J. Burdick, and A. Agha-Mohammadi.
“FIG-OP: Exploring Large-Scale Unknown Environments on a Fixed Time
Budget”. In: Submitted to IEEE Robotics and Automation Letters (RA-L).
IEEE, 2022.

5.1 Introduction
Consider a time-limited mission where a robot, equipped with mapping and local-
ization capabilities, is tasked with autonomously exploring a large-scale unknown
environment. The robot must (i) maintain an internal environment representation
that encodes traversability and task-specific information, and (ii) plan risk-mitigating
paths that increase the robot’s understanding of the world. All the while, the robot
must account for motion and sensing uncertainty in order to plan and execute ro-
bust exploratory behaviors. To this end, we introduce a planning framework based
on the orienteering problem formulation [82] for solving the resource-constrained
exploration problem over long horizons.

63

Topological Map
Metric Map

Robot

FIG-OP Path

Figure 5.1: FIG-OP path generated during the autonomous exploration of the lime-
stone mine of the Kentucky Underground, Nicholasville, KY, with a Husky robot
platform. The environment representation is broken down into two levels: a dense
robot-centered local metric map, and a sparse globally-spanning topological map.
Arrows show the FIG-OP solution. Path costs are computed on either the metric
(red arrow) or topological map (blue arrow).

Due to the computational constraints imposed by real-time systems, large-scale
environments are commonly represented by topological graph-based structures.
Equipped with this representation, the majority of exploration-driven algorithms
apply one-step lookahead strategies to extend the boundary of explored space,
ultimately resulting in globally sub-optimal plans. More recent approaches have
found long horizon solutions using a traveling salesman problem formulation [83].
However, they assume unlimited mission time and complete understanding of the
environment during policy execution.

In reality, a topological graph structure representing an environment grows and
changes dynamically as the robot uncovers new regions. In addition, the robot faces
a risk of failure when traversing edges of the graph that is not accurately captured in
the graph’s action cost. As a result, the traditional orienteering problem formulation
can suffer from overly ambitious planning, which can lead to a delay in the moment
where new area is uncovered in favor of maximizing an unreliable reward estimate
over the mission horizon. We argue, somewhat counter-intuitively, that a greedy or

64

time discounted incentive allows for effectively exploring dynamic graphs, to ensure
we extend the explored boundary in the near term.

To address the challenges associated with optimal long term planning in unknown
environments, we propose a framework consisting of two primary components.
First, we construct a multi-fidelity world representation that encodes information
about the robot’s traversal risk and past sensor coverage. Then, we find long-horizon
exploratory paths, robust to representation uncertainty, within the allotted mission
time. The specific contributions of this work are as follows.

1. We construct a multi-fidelity, in terms of both time and space, world represen-
tation by combining risk and coverage information from (i) a large-scale, but
outdated and sparse, topological graph-based structure, and (ii) a local-scale,
but continuously updated and high resolution, metric grid-based structure. By
extracting information from both sources, we increase the coverage rate by
more than 35% on average in a 30 minute run, when compared to using only
the topological graph.

2. We propose a variant of the orienteering problem, called the Frontloaded
Information Gain Orienteering Problem (FIG-OP), for planning paths. The
FIG-OP objective is a function of both information gain and travel distance,
resulting in solutions that shift, or frontload, information gain earlier in time.
We introduce an algorithm for solving FIG-OP in real time based on Guided
Local Search [84].

3. The proposed solution was extensively tested on physical robots in various
real-world environments. It also served as the top-level planner for team
CoSTAR’s entry in the Final Circuit of the DARPA SubT Challenge [4]. In
addition, we ran comparative experiments in high-fidelity simulation environ-
ments that show an improvement in coverage rate over competitive baseline
methods.

5.2 Related Work
The objective of the exploration problem is to maximize sensor coverage of an
unknown environment for a given mission time. The term coverage designates the
area swept out by a robot’s sensor footprint [15].

Exploration schemes relying on the identification of the boundary between uncov-
ered and covered space, regions termed frontiers, was first proposed by Yamauchi

65

[28]. Since then, frontiers have been used extensively throughout the exploration
literature [29–32]. Traditional frontier-based approaches construct one-step looka-
head policies that maximize a utility function, accounting for expected gain of
information and the cost of motion [28, 54, 85–89].

Several frontier-based approaches have incorporated art gallery problem schemes
in order to find coverage-optimal paths towards an unexplored boundary. Here, the
objective is to find the minimum number of viewpoints that collectively maximizes
coverage [24, 53, 83]. To ensure computational efficiency, Heng [53] and Cao et al.
[83] approximate the coverage problem, which is inherently submodular [90, 91],
as a modular orienteering problem and traveling salesman problem, respectively.
While non-myopic, these approaches are limited to a local region around the robot
and assume no uncertainty in coverage information during policy construction.

In order to address real-world stochasticity, the coverage problem has also been
formulated as a Partially Observable Markov Decision Process (POMDP) [29, 64].
POMDP solvers find robust long-horizon policies, but require a model of the robot’s
sequential action-observation process under motion and sensing uncertainty. While
models have been effectively developed for short-range planning, POMDP planning
at multi-kilometer scales suffer from model inaccuracy. As a result, [29] assumes
no changes to the state of the environment during global policy construction, signifi-
cantly simplifying the problem to one in anMDP setting where frontiers are terminal
states. As a consequence, the planning horizon is severely limited, resulting in a
myopic exploration policy.

The orienteering problem provides long-horizon solutions to resource-constrained
problems [82]. Variants of the orienteering problem have been proposed for central-
ized multi-robot coverage problems [92] and persistent monitoring problems [93].
However, these methods are not exploration-driven and, thus, rely on a prior map
of the environment. When applied to the exploration problem, the OP suffers from
many sources of model uncertainty (e.g. sensor measurements, hazard assessment,
localization, and motion execution). At a high level, we focus on the false assump-
tion that the graph structure is preserved over the planning horizon. On the contrary,
during exploration, a robot will uncover new swaths of the environment, extending
the horizon of explored space and augmenting its understanding of the world.

66

0 50 100 150 200
Distance along path (m)

0

20

40

60

80

Ac
cu

m
ul

at
ed

 In
fo

rm
at

io
n

Ga
in

 (e

xp
ec

te
d)

FIG-OP (ours)
OP
Greedy

Figure 5.2: Expected accumulated information gain for paths constructed according
to FIG-OP, OP, and a greedy objective in the real-world mine (Fig. 5.8). The
curves are an average of 50 consecutive planning episodes with a planning horizon
of 200 m. Early in the path, FIG-OP is competitive with the greedy algorithm,
and thus quickly collects information gain. Later in the path, the greedy algorithm
suffers due to an accumulation of globally suboptimal decisions. However, since
FIG-OP encourages long-term efficiency, its solution stays competitive with the OP
solution, which is designed to maximize information gain over the entire planning
horizon.

5.3 Problem Formulation
Given an a priori unknown environment, our objective is to construct a long-horizon
path that provides global guidance to frontier regions so as to maximize information
gathered over a predefined time budget. To solve this problem, we propose a variant
of the Orienteering Problem that produces solutions that frontload information.
We call this framework the Frontloaded Information Gain Orienteering Problem
(FIG-OP).

We assume a graph-based environment representation � = (#, �) with nodes #
and edges � . Nodes are discrete areas in space that represent frontiers, and edges
represent actions. More precisely, we define an action to be a traversal from node
=8 ∈ # to a node = 9 ∈ # , connected by an edge 48 9 ∈ � . Each edge 4 in the graph
has an action cost 0(4).

Path ? is a non-repeating sequence of nodes. N(?) and E(?) denote the set of
nodes and edges along path ?, respectively. We define 0? (=8) to be the total action
cost associated with traversal from the root node =0 to node =8 along the edges in ?.

67

More specifically, for any node =8 ∈ ?, we define

0? (=8) =
∑

4∈E(?0:8)
0(4),

where 0(4) is the action cost associated with edge 4, and ?0:8 is the contiguous
subsequence of ? from the root node =0 to node =8.

When visiting a node =8 on graph G, the robot collects information gain IG(=8) ≥ 0,
i.e., the amount of new area uncovered. Let us now consider a frontloading function
F that inflates information gain based on the accumulated action cost until the time
of collection. We wish to solve the optimization problem for FIG-OP as:

maximize
?

∑
=8∈N (?)

L
(
0? (=8)) · IG

(
=8)︸ ︷︷ ︸

FIG

s.t.
∑

4∈E(?)
0(4) ≤ 0<0G and ?0 = =0,

(5.1)

where 0<0G is the robot’s action cost budget. The purpose of the function F is to
favor solutions where frontiers are visited in the near term. To this end, we define F
as follows:

�
(
0
)
= 1 + :1 · (

(
0 − :2
:3

)
, (5.2)

where (is the reversed logistic function ((G) = 1
1+4G , and amplitude :1, inflection

point :2, and steepness :3 are positive shaping parameters of F (see Fig. 5.4) The
frontloading function F exhibits the following properties that make it suitable for
long-horizon exploration planning where model uncertainty is high.

1) Model Uncertainty Compensation: To account for uncertainty in the time
required to map the area beyond a frontier region, F inflates information gain
for frontierswithin a local neighborhood of the robot, effectively expediting the
moment in which new area is uncovered. As a result, policies are constructed
according to amore optimisticmodel of the environmentwhere frontiers likely
lead to large unexplored swaths. By biasing towards short term information
gain, we visit frontiers earlier in time with the expectation that they will
significantly alter our world understanding by exposing new opportunities for
information gathering. See Fig. 5.3.

68

2) Long-Term Efficiency: As action cost 0 goes to infinity, F converges to 1,
reducing Eq. (5.1) to the standard OP formulation. By maintaining this long-
term reward incentive, we assume a level of reliability in our environment
model. We find that this policy-encoded foresight helps the robot gather more
information over the mission time horizon. In essence, FIG-OP strikes a
strategic balance between short and long-term information gain, as illustrated
in Fig. 5.2.

3) Solution Regularization: In contrast with the widely-adopted exponentially
decaying function � (0?) = W

0?

: , F is most sensitive to action cost 0? at its
inflection point :2. This is a critical feature since local action costs, computed
on the metric map are continuously updated, and thus are prone to fluctuations
when estimates of traversability risk unexpectedly change (discussed further
in Sec. 5.4). With this is mind, the inflection point :2 can be selected to
regularize the solution, i.e. lessen the path’s susceptibility to locally fluctuat-
ing estimates. We find that this logistic form reduces detrimental oscillatory
behavior and improves coverage performance, as shown in Fig. 5.4.

We solve the FIG-OP using a receding horizon approach, where a model of the
environment is constructed from the current state and used for planning at each
iteration. By replanning regularly, the robot can adapt to unforeseen changes in the
environment, such as newly uncovered areas or changing action costs.

(a) Orienteering Solution (b) FIG Orienteering Solution

Figure 5.3: Comparison of the OP and FIG-OP solutions generated during Spot
robot’s autonomous exploration of a storage facility. Note that FIG-OP frontloads
information gain, i.e. the first frontier in the solution path returned by FIG-OP has a
lower action cost than that of the first frontier in the OP solution. By following the
FIG-OP path, the robot will rapidly expose a new corridor in the library.

69

0 100 200
Path distance (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e
of

 F
FIG-OP (ours)
OP
EXP

(a) � objective shapes

FIG-OP OP EXP
Method

0

20

40

60

80

100

120

Di
ffe

re
nc

e
in

 H
ea

di
ng

 A
ng

le
s (

de
g)

(b) Heading sensitivity comparison

Figure 5.4: Frontloading function characteristics. (a): The frontloading function
� in Eq. (5.2) is shown for FIG-OP (ours), orienteering problem (OP), and the
exponentially discounted (EXP) problem objectives. FIG-OP parameters are set to
:1 = 1, :2 = 50, :3 = 10. For EXP, we choose : = 50 and W = 0.7, that empirically
maximizes expected accumulated information gain over the 200 meter horizon. (b):
We compare the absolute difference in the robot’s heading direction to the first
waypoint in the path during consecutive planning episodes over a 30 s interval. This
data is extracted from the Husky robot’s exploration mission in a limestone mine
where complex terrain causes unexpected changes in traversability risk estimates.
The plot illustrates the high sensitivity of the exponentially discounting objective
(EXP) to locally changing risk estimates compared to our logistic objective form
(FIG-OP). Note: the box extends from the first quartile to the third quartile of the
data, with a line at the median and a diamond at the mean.

5.4 World Representation
We introduce a multi-fidelity world representation for efficient evaluation of FIG-
OP in Eq. (5.1). First, we define the two sources of information, namely a local
metric map and a global topological maps at the base of our methodology. Then, we
introduce our proposed graph structure for effectively solving the FIG-OP problem.
After defining the information gain metric adopted, we provide our approach for
computing action costs for the edges in the graph.

The robot must always maintain an internal representation of its environment. Tra-

70

ditionally, these representations have fallen under one of two categories: topological
maps ormetricmaps [94]. Topological maps are graph-based structures constructed
by separating a space into a set of non-intersecting regions based on sensed fea-
tures (e.g. frontiers). Since its resolution is dependent upon the complexity of
the environment, topological maps are typically compact and scale well to large
environments. Metric maps, meanwhile, are agnostic to environment complexity
and divide the space into identical cells to form a grid structure. When compared
to topological maps, metric maps are easily constructed and maintained. However,
since the grid must resolve detailed features in the environment, metric maps can
suffer from large space and time complexities [18]. For compactness, versatility and
fidelity, we extract and combine information from a local metric map and a global
topological map for computation of the information gain and travel cost.

Local Metric Map
To capture local traversability risk at a high resolution, we employ a rolling, fixed-
sized grid structure " = {<8}, which is centered at the robot’s current position
[11], introduced as the Risk Map in Chap. 2. This metric map, which is constructed
by aggregating local point-cloud sensor measurements, captures mobility stressing
features in the environment, such as obstacles, slopes, and ground roughness. We
denote <8 as a cell in the grid-based map. Then, using the geometric planner
proposed by Fan et al. [11], we define dℓ (<8, < 9) as the instantaneous cost of the
risk-minimized path between cells <8 and < 9 .

Global Topological Map
To capture the global exploration state at multi-kilometer scales, we use a sparse
bidirectional graph structure �6 = (#6, �6), introduced as the Global Information
Roadmap in Chap. 3. This topological map is globally fixed and consists of two
mutually exclusive subsets of nodes: breadcrumbs =6

8,1
∈ #6 and frontiers =6

8, 5
∈ #6.

Breadcrumbs are generated in the robot’s wake and capture covered traversable
spaces in the environment. Alternatively, frontiers are generated at the boundary
between explored and unexplored areas and, thus, capture uncovered traversable
spaces. Given the topological map �6, we define the action cost d6 (=6

8
, =
6

9
) of

traversal between two nodes =6
8
and =6

9
as the distance associated with the shortest

path, computed by applying Dĳkstra’s algorithm over the weighted graph. The edge
weights are computed between two nodes within a neighborhood using the above
geometric planner over the metric map. Due to range and computational limitations,

71

edge weights are computed only once, despite changes in risk assessment over time.

5.5 FIG-OP Graph Structure
We propose a multi-fidelity complete graph structure � = (#, �), which combines
information from both the local metric map and the global topological map (Fig.
5.1). To reduce the size of the search space, a node =8 ∈ # designates a cluster
of frontiers in the topological map, determined using the DBSCAN algorithm [95].
Functions 5ℓ () and 56 () map a cluster centroid to a metric cell and topological node,
respectively. Every node pair (=8, = 9) is connected by an edge 48 9 ∈ � . Practically,
we assume that by visiting one frontier in the cluster, any neighboring frontier in the
cluster is accessible within a predefined distance.

Shallow Frontier

Deep Frontier

Covered Area

Uncovered Area

Figure 5.5: The estimated depth of uncovered area is one metric used to compute
frontier information gain. Here, frontiers are classified into two categories: deep
and shallow. Deep frontiers indicate entrances to unexplored passages.

Information Gain
See Chapter 3.8 for a theoretical description of information gain based on a reduction
of entropy formulation. Here, we define information gain IG(=6

8
) to be the expected

area that can be uncovered by reaching a frontier node =6
8
on the topological map.

Frontier segments are detected on the metric map using an omnidirectional LiDAR
sensor at a range Asense, based on the Fast Frontier Detector method [33]. Since the
occupancy of cells beyond Asense cannot be reliability determined [96], we do not
count the number of cells expected to be visible to the robot as it travels along an edge.
Instead, we define IG(=6

8
) as a function of the approximated breadth and depth of the

uncovered area beyond a frontier node. Frontier breadth is estimated by measuring
the length (i.e. number of metric map cells) of the frontier segment. Frontier depth
is estimated by attempting to associate a frontier segment with segments detected at
longer ranges using connected component analysis. Frontiers that can be associated

72

with long-range segments have large depth values, as shown in Fig. 5.5.

Multi-Fidelity Action Cost
Since the topological map consists of sparsely sampled nodes and maintains edge
weights based on potentially outdated risk information, it can only provide a crude
estimate of the traversal cost between two clusters =8 and = 9 . To overcome this
weakness, we compute traversal costs over the metric map for clusters located within
its bounds based on the most up-to-date traversal risk assessment. We combine both
metric and topological information to form a multi-fidelity cost estimate:

0(48 9) =

dℓ

(
5ℓ (=8), 5ℓ (= 9)

)
, if 5ℓ (=8), 5ℓ (= 9) ∈ "

dg (56 (=8), 56 (= 9)) , otherwise.

Fig. 5.6 illustrates the benefits of combining action costs computed on the metric
and topological maps. Specifically, it shows how the second action cost in Fig. 5.1
is computed in order to “close the loop" on the topological map.

Metric-based path
Topological-based path

source
goal

Figure 5.6: The FIG-OP graph combines low-fidelity action costs computed on the
topological map (blue) and high-fidelity action costs computed on the metric map
(red). Here, the topological-based and metric-based paths between two frontiers
(source and goal located in the metric map) is displayed on the top layer. By using
the more accurate metric-based path, FIG-OP finds a path that “closes a loop" on the
topological map – a critical feature for accurately estimating action costs globally.

73

Algorithm 5 FIG-GLS: Front-loading variant of Guided Local Search
Input: Graph �, previous solution BC−1, new frontiers F
S ← Construct(�,BC−1, F)
B.solution←S
B.cost← cost(S) ⊲ Using equation (5.1)
AlgLoop← 0
while AlgLoop ≤ MaxAlg

AlgLoop← AlgLoop + 1
LsLoop← 0
while Solution improved and LsLoop ≤ MaxLs

LsLoop← LsLoop + 1
S ← TSP(S)
S ← Swap(S)
S ← BackwardSwap(S)
S ← Insert(S)
S ← Replace(S)

end while
if cost(S) > B.cost:
B.solution←S
B.cost← cost(S) ⊲ Using equation (5.1)

else if S = B
if not disturbed before
S ← Disturb(S)

else
S ← Swap(S)
S ← BackwardSwap(S)
return B

end if
if AlgLoop =MaxAlg/2
S ← Disturb(S)

end if
end if

end while
return B

5.6 Online Planning
Guided Local Search is a state-of-the-art heuristic method for solving the Orienteer-
ing Problem [82, 84]. We extend the method to allow for the modified OP objective
function in Eq. (5.1). Alg. 5 describes the search procedure at a high level. We
introduce three notable changes to [84]:

1) Solutions are evaluated, i.e. the path cost is computed, according to the revised
FIG-OP objective function Eq. (5.1). See Alg. 5.

74

2) Two procedures, Swap and BackwardSwap, are introduced to explore different
orderings of nodes within a solution and increase the objective value. Swap
iterates over the path in a forward direction. To encourage frontloading of
high information gain frontiers, BackwardSwap considers swapping nodes in
reverse order. If the path objective remains the same, the swap is conducted
if the total path cost is decreased.

3) Every iteration, we seed FIG-OP with the previous solution updated with
newly generated frontiers inserted at the front of the path.

The complexity of this sub-optimal solver grows quadratically with the number
of frontier clusters in the graph, which scales similarly to commonly adopted
polynomial-time motion planners.

5.7 Experimental Results
We perform simulation studies and real-world experiments with a four-wheeled
vehicle (Husky robot) and a quadruped (Boston Dynamics Spot robot) in order to
evaluate our proposed algorithm. The robot is equipped with custom sensing and
computing systems [4, 5, 71], and the entire autonomy stack runs in real-time on
an Intel Core i7 processor with 32 GB of RAM. The stack relies on a multi-sensor
fusion framework, the core of which is 3D point cloud data provided by LiDAR
range sensors [6]. To evaluate planner performance in both simulation and real-
world, we compute coverage [<2] as the accumulated area within the robot’s sensor
footprint during a run. Throughout this section, we detail how our experimental
findings validate core features of our proposed method.

Simulations
We demonstrate FIG-OP’s performance in a simulated subway and maze environ-
ment. We compare the performance of FIG-OP against the following frontier-based
exploration planners in the simulated subway and maze environments.

1) FIG-OP: Proposed method where FIG-OP (:1 = 1, :2 = 50, and :3 = 10) is
solved over the multi-fidelity complete graph � using Alg. 5.

2) FIG-OP with Low-Fidelity Action Costs (FIG-LF): Modification to the pro-
posed method where all action costs are computed on the topological graph
�6.

75

3) Greedy: Myopic planner that selects the frontier with the smallest action cost
based on � [28].

4) OP: Long-horizon planner where the orienteering problem is solved over �
using the GLS algorithm in [84].

Simulation results are provided in Fig. 5.7 and Table 5.1.

Model Uncertainty Compensation: The effectiveness of FIG-OP’s greedy incentive
is most evident in the maze environment. The maze consists of a large irregular
network of passages. Most passages lead to long unexplored branches, a fact which
is not encoded in the robot’s model of the environment due to sensing limitations.
As a result, in many cases the information gain assigned to a frontier underestimates
the frontier’s true value. Due to its false assumption of no model uncertainty,
the OP method suffers in this setting since it plans over the full mission horizon
by maximizing an unreliable reward estimate. On the other hand, both FIG-OP
and greedy approaches perform well since frontiers, leading to long unexplored
branches, are visited earlier in the plan.

Long-Term Efficiency: The effectiveness of FIG-OP’s long-horizon planning is
most evident in the subway environment. The subway consists of interconnected,
polygonal rooms. Near the beginning of the mission, the environment model is
inaccurate since frontiers represent large swaths of space, and the model changes
drastically as these frontiers are visited. Hence, FIG-OP and the greedy algorithm
exhibit a higher coverage rate than OP, as shown in Fig. 5.7b. As the mission
progresses and frontiers no longer represent large areas (i.e. model uncertainty
reduces), then the coverage rate for the greedy method decreases. Meanwhile, OP
and FIG-OP exhibit high coverage rates as they efficiency collect the remaining
information in the environment. By strategically balancing greedy incentive and
long-horizon efficiency, FIG-OP explores 95% of the subway faster (on average)
than the greedy and OP methods, as shown in Fig. 5.7a.

Multi-fidelity model validation: We compare FIG-OP with its low-fidelity action
cost counterpart FIG-LF, Table 5.1. We find that integrating information from the
metric map significantly improves coverage capabilities in both simulation environ-
ments, with a notable 35% improvement in coverage rate in the maze environment.

76

Table 5.1: For each listed algorithm, the average coverage metric over 5 runs in
a simulated maze and subway environment is displayed. Standard deviations are
provided in parenthesis.

Simulated Maze

Method Coverage Rate 30 min Coverage Planning Time
(m2/min) (m2) (s)

FIG-OP (ours) 150.3 (7.4) 4577 (165) 0.22 (0.42)
OP 121.7 (6.3) 3822 (275) 0.12 (0.34)
Greedy 154.3 (8.0) 4646 (257) 0.02 (0.04)
FIG-LF 113.5 (7.0) 3468 (250) 0.15 (0.42)

Simulated Subway Station

Method Coverage Rate 95% Coverage Time Planning Time
(m2/min) (min) (s)

FIG-OP (ours) 163.7 (20.5) 12.07 (1.53) 0.08 (0.08)
OP 142.8 (14.1) 13.71 (0.98) 0.05 (0.06)
Greedy 135.4 (17.2) 14.64 (1.83) 0.01 (0.01)
FIG-LF 130.8 (19.4) 14.47 (2.15) 0.09 (0.56)

FIG-OP OP Greedy
Method

10

11

12

13

14

15

16

17

Ti
m

e
un

til
 9

5%
 c

ov
er

ag
e

(m
in

)

(a) Simulated Subway

0 5 10 15 20 25
Time (min)

0

500

1000

1500

2000

Ar
ea

 c
ov

er
ed

 (m
2)

FIG-OP
OP
Greedy

(b) Simulated Subway

0 5 10 15 20 25 30
Time (min)

0

1000

2000

3000

4000

5000
Ar

ea
 c

ov
er

ed
 (m

2)

FIG-OP
OP
Greedy

(c) SimulatedMaze

Figure 5.7: Exploration by our proposed FIG-OP and baseline methods in simulated
subway and maze environments, as displayed in Fig. 3.7. The exploration metrics
for each method consist of five runs, with curve (b) and (c) displaying the averages.
Refer to Fig. 5.4 for details about the box plot.

Field Tests
We extensively tested our FIG-OP solution on physical robots in a subway system,
mine, and storage facility. During hardware tests, FIG-OP was integrated within
the larger autonomy framework PLGRIM, introduced in [29]. That is, the planning

77

system onboard the robot alternates between a local viewpoint-based planner and
a global frontier-based planner (i.e. FIG-OP). Fig. 5.8 show the findings from an
autonomous exploration run in a mine and library.

Solution Regularization: The benefits of the solution regularization provided by
FIG-OP ismost notably demonstrated in a real-world environmentwhere traversabil-
ity risk estimates fluctuate. Using traversability risk estimates from the mine run
(Fig. 5.8), we evaluated path regularization based on different forms of the front-
loading function � in Eq. (5.2). Our findings in Fig. 5.4b indicate that our proposed
logistic form regularizes the solution over consecutive planning episodes. As a
result, the robot can maintain continuous velocities, which is essential for rapid
exploration.

(a) Real-world Library (b) Real-world Mine

Figure 5.8: Autonomous exploration of a library by Au-Spot (a), and a limestone
mine by Husky (b). In this exploration metric, pink denotes time intervals where
FIG-OP was directly guiding the robot. The local planner presented in Chap. 4 has
control otherwise. Note that after the robot has been outside the communication
range of the base station for more than 10 minutes, it retraces its steps until com-
munication is reestablished. During this time, the covered area does not increase.
Figs. 4.9 and 4.10 show point cloud maps of the mine and subway.

5.8 Summary
This chapter presented a novel planning framework for autonomous exploration of
large-scale complex environments under mission time constraints. Our proposed
formulation FIG-OP is a generalization of the orienteering problem where the robot
does not have access to a reliable environment model. FIG-OP compensates for

78

model uncertainty by incorporating a greedy incentive that shifts information gain
earlier in time. We solve FIG-OP over a multi-fidelity world representation, and
demonstrate its ability to strike an effective balance between near- and long-term
planning through an extensive test campaign.

79

C h a p t e r 6

SQUID

Aircraft that can launch ballistically and convert to autonomous, free-flying drones
have applications in many areas such as emergency response, defense, and space
exploration, where they can gather critical situational data using onboard sensors.
This chapter presents a ballistically-launched, autonomously-stabilizing multirotor
prototype (SQUID – Streamlined Quick Unfolding Investigation Drone) with an on-
board sensor suite, autonomy pipeline, and passive aerodynamic stability. The
vehicle demonstrates autonomous transition from passive to vision-based, active
stabilization, confirming the ability of multirotors to autonomously stabilize after a
ballistic launch in a GPS-denied environment.

This chapter was adapted from:

A. Bouman, P. Nadan, M. Anderson, D. Pastor, J. Izraelevitz, J. Burdick,
and B. Kennedy. “Design and Autonomous Stabilization of a Ballistically-
Launched Multirotor”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2020, pp. 8511–8517.

6.1 Introduction
Unmanned fixed-wing and multirotor aircraft are usually launched manually by an
attentive human operator. Aerial systems that can instead be launched ballistically
without operator intervention will play an important role in emergency response,
defense, and space exploration where situational awareness is often required, but the
ability to conventionally launch aircraft to gather this information is not available.

Firefighters responding to massive and fast-moving fires could benefit from the
ability to quickly launch drones through the forest canopy from a moving vehicle.
This eye-in-the-sky could provide valuable information on the status of burning
structures, fire fronts, and safe paths for rapid retreat. Likewise, military personal in
active engagements could quickly deploy aerial assets to gather information as the
situation evolves.

Ballistic launches also provide unique opportunities in the exploration of other
bodies in the solar system. The Mars Helicopter Scout (MHS), deployed from the
Mars 2020 rover, provided the first powered flight on another solar system body in

80

Figure 6.1: Launching SQUID: starting from inside the launcher tube, then deploy-
ing its arms and fins, before reaching its fully-deployed configuration. Note the
slack in the development safety tether and how the carriage assembly remains in the
tube throughout launch. Each snapshot is 41 ms apart

history [97]. MHS greatly expands the data collection range of the rover, however, it
has a multistep launch sequence that requires flat terrain. The addition of a ballistic,
deterministic launch system for future rovers or landers would physically isolate
small rotorcraft from the primary mission asset. Aerial launch technology would
even enable the aircraft to deploy directly from the entry vehicle during decent and
landing, enabling it to land and explore sites that are at a great distance from the
rover.

Multirotor aircraft are advantageous over fixed-wing systems as they can hover
in place and aggressively maneuver in cluttered environments to achieve greater
vantage points. However, the rotating blades of the multirotor are a hazard to
nearby personnel (who may be distracted by other obligations), a problem which
is particularly present if the system is to launch autonomously without human
supervision. In these situations, multirotor aircraft operating in crowded and rapidly
changing environments need a precise, highly deterministic, and fully autonomous
takeoff method to achieve a safe operating altitude away from assets and personnel.

In the application scenarios described above, ideally the multirotor is stored for
extended periods of time ("containerized") before being launched quickly, safely, and

81

autonomously. Furthermore, when deployed from a moving vehicle, the drone must
be aerodynamically stable to avoid tumbling when exposed to sudden crosswinds.
Most current drone designs however are slow to deploy, require user intervention
prior to takeoff, and cannot be deployed from fast-moving vehicles. Current foldable
designs also require the user to manually unfold the arms which slows the process
and puts the user at risk if the multirotor prematurely activates. A multirotor that
can launch from a simple tube and autonomously transition to flight would solve
many of the shortcomings of conventional drone deployment strategies.

While mature tube-launched fixed-wing aircraft are already in active use [98–100],
tube-launched rotorcraft (both co-axial and multirotor) are much rarer and primarily
still in development. Several consumer drones (e.g., the DJI Mavic series [101]
and Parrot Anafi [102]) can be folded to occupy a small volume, but these designs
cannot fit smoothly inside a launch system, and the unfolding is manual. Other
manually unfolding rotorcraft can achieve a cylindrical form factor like SQUID:
the Power Egg from Power Vision folds into an egg shape [103], the LeveTop
drone folds into a small cylinder [104], and the coaxially designed Sprite from As-
cent Aerosystems packs into a cylinder shape [105]. Automatic in-flight unfolding
mechanisms for quadrotors, using both active [106] and passive [107] actuation,
have been developed for the traversal of narrow spaces. However, to enable the
ability to ballistically launch like SQUID, these existing foldable platforms must be
redesigned to withstand launch loads and maintain passive aerodynamic stability
post-launch. Ballistically-launched aerial systems that combine an aerodynamically
stable structure and a foldable airfoil system have been developed in coaxial rotor-
craft [108] and multirotor [109] formats, but both designs are still in the theoretical
design phase, and have yet to demonstrate a transition from ballistic to stabilized
flight.

In previous work [110], we introduced a small SQUID prototype, a folding quadrotor
that launches from a 3-inch tube to a height of 10 m or more, and then passively
unfolds to a fully functional multirotor when triggered by a nichrome burn wire
release mechanism. This prior work introduced the basic aerodynamic principles
and structural design concepts required to sustain the g-forces associated with a
ballistic launch. A prototypewas fabricated and ballistically launched from a vehicle
moving at speeds of 80 km/h (22 m/s). However, the multirotor was stabilized by a
remote pilot after the ballistic launch phase.

This chapter advances the line of investigation started in [110] and presents the

82

design, development and testing of a full-scale SQUID prototype. Capable of
carrying a significant sensor payload, SQUID transitions from a folded, 6 inch-
diameter (152.4 mm) launch configuration to an autonomous, fully-controllable
hexacopter after launch (Fig. 6.1). The entire process from launch to stabilization
requires no user input and demonstrates the viability of using ballistically-launched
multirotors for useful missions.

We review the full-scale SQUID design (Section 6.2), focusing on key changes from
the first prototype [110]. Section 6.3 then describes the ballistic launch phase, Sec-
tion 6.3 describes scale-model testing used to validate SQUID’s passive stabilization
design, and Section 6.4 details the autonomous stabilization procedure. Experiments
summarized in Section 6.4 demonstrate the passive-to-active stabilization pipeline.
Conclusions are found in Section 6.5.

6.2 Mechanical Design
The mechanical design of the new SQUID prototype (hereafter termed SQUID,
while `SQUID will refer to the earlier 3-inch SQUID prototype) is dictated by three
broad functional requirements. The multirotor must: (i) launch from a tube (6-inch
diameter for this prototype), (ii) travel ballistically to a predetermined height, and
(iii) autonomously transition into stable, multirotor flight. To satisfy these non-
traditional flight requirements, SQUID blends design elements from both ballistic
andmultirotor platforms. Themultirotor’s central rigid body houses a battery and the
perception and control systems, and interfaces with six fold-out arms with rotors and
three fold-out fins which passively stabilize the multirotor during ballistic motion.
The layout of key SQUID components is given in Fig. 6.2 and the configuration in
folded and deployed states are shown in Fig. 6.3. Table 6.1 and Table 6.2 provide a
list of key SQUID components and main design attributes.

Table 6.1: SQUID System Properties

Property Value Units

Mass 3.3 kg
Length 79 cm
Folded Diameter 15 cm
Unfolded Diameter (propeller tip-to-tip) 58 cm
Thrust at Hover 56 %
Launch Speed 12 m/s

83

Nosecone Battery

Telemetry
Plate
WiFi Antenna

ESC
VectorNav

TeraRanger

Camera

Landing Gear

Fin

Receiver
USB Hub

PixRacer
Propeller

Motor Arm TX2
Support Column

Figure 6.2: An annotated schematic of SQUID.

Central Rigid Body
In contrast to conventional multirotors, SQUID’s central body must sustain high
transient forces during ballistic launch. Unlike prior `SQUID, which was manu-
ally stabilized by a pilot, SQUID also requires a perception system comprising a
camera (FLIR Chameleon3), rangefinder (TeraRanger Evo 60m), IMU/barometer
(VectorNav VN-100), and onboard computer (NVIDIA Jetson TX2) to achieve full
autonomous stabilization. Due to these added components, the original 3D-printed
aeroshell structure was abandoned in favor of a hollow carbon fiber frame in order
to maximize volume, increase strength, and allow easy access to the perception and
control systems.

The frame consists of six thick carbon fiber plates separated by support columns
(made of aluminum standoff pins surrounded by carbon fiber tubes) that transmit
the launch loads. A 3D printed nosecone reduces drag by approximately 50%
compared to a bluff body nose. The placement of the heavy LiPo battery in the
nosecone shifts the center of mass (COM) upward. This placement ensures that
SQUID’s aerodynamic center (AC) trails behind the COM, which improves the
passive ballistic stabilization. Passive stabilization is further addressed in Section
6.2.

Rotor Arms
The six rotors are mounted on carbon fiber tubes which attach to the central body
with passive, spring-loaded hinges to allow 90◦ of rotation. The arms can exist in

84

(a)

(b)

(c)

Tether Channel

TX2

Spring-loaded
Hinge

Polycarbonate
Launch Tube

Nosecone
(battery inside)

Motion Capture
IR marker

Carriage
Assembly

Camera +
1D Lidar Fin

Landing Gear
("Feet")

Figure 6.3: SQUID partially inside the launcher tube and interfacing with the
carriage (a), and with its arms and fins fully deployed from a side (b) and top
perspective (c).

two states: constrained by the launch tube to be parallel to the body axis (closed), or
extending radially outward perpendicular to the central axis (open). For `SQUID,
the timing of the transition was controlled by an arm release mechanism [110]. For
SQUID however, the transition from closed to open state occurs immediately after
the multirotor leaves the launch tube, reducing mechanical complexity.

A torsional spring inside the hinge generates 1.04 N·m of torque when the arm is
closed, and half that amount when the arm is open. Vibration in the motor arms
during flight dictates the addition of a spring-loaded latch to keep the arms rigidly

85

open after deployment.

Fins
SQUID’s fins provide aerodynamic stabilization during ballistic flight to ensure
the vehicle maintains the launch direction before active stabilization is engaged.
Aerodynamic forces on the fins shift themultirotor’s ACdownward behind the COM,
enabling SQUID to passively weathercock and align with the direction of flight.
Folding fins, rather than fixed fins, are a major design change from `SQUID [110]
and were driven by a compromise between competing requirements of aerodynamic
stability, low drag, constrained tube volume, and design simplicity. This design
change was guided by the use of literature-derived expressions [111, 112] and scale
model testing.

Fixed fins have a number of disadvantages. Any fin requires clean, unseparated
flow to operate as designed. Therefore, fins that remain fixed within the tube area
must also be paired with a streamlined tailbox in order to have access to said flow.
This tailbox streamlining however reduces the wake drag and hence also reduces
the stabilizing force it provides. Additionally, small fins which fit within the tube
can only be partially effective as they have a limited wingspan. Expanding the fins
along the tube only further lowers their aspect ratio (and therefore lift coefficient),
reducing their capacity to move the AC. Deploying fins radially is therefore a
much more effective means of enhancing stability, improving SQUID’s ability to
predictably rotate upwind.

SQUID’s tubular cross section and foldout fins increase stability relative to `SQUID
and simplify launch packaging issues with a simple cylindrical geometry, but do so
at the cost of more ballistic drag. For most SQUID applications however, ballistic
efficiency can be sacrificed for these gains. Foldout fins can be tailored to provide
a desired stability margin between the COM and AC, and provides margin for
swappable payloads that may shift the COM. Given our selected 30 cm fins, the AC
is located 38 cm from the nose, with a margin of 14 cm from the COM. Uncertainties
in aerodynamic coefficients, drag on the arms, and the dynamics of the unfolding
components can lead to substantial deviations from this calculated margin however.
Accordingly, we validated our aerodynamic stability with a 3:1 scale model (50 mm
diameter, 150 grams) using an open air wind tunnel (see Section 6.3) prior to
full-scale tests.

While the hinges connecting the fins to the body are similar to the arm hinges, the

86

Table 6.2: Key SQUID components

Component Description Mass (g)

Flight Electronics
Motors T-Motor F80 Pro, 1900kv 36 (x6)
ESCs T-Motor F30A 2-4S 6 (x6)
Propellers 7" diameter x 4" pitch 8 (x6)
Flight Controller mRo PixRacer (PX4 Flight Stack) 11
Receiver X8R 8-Channel 17
Telemetry HolyBro 100 mW, 915 MHz 28
Battery 4S LiPo, 6000 mAh, 50C 580

Perception System
Onboard Computer NVIDIA TX2 144
Carrier Board Orbitty Carrier Board 41
Rangefinder TeraRanger Evo 60mm 9
IMU/Barometer VectorNav VN-100 4
Camera FLIR Chameleon3 w/ 3.5 mm Lens 128

fins do not use a latching mechanism because vertical vibrations have little impact
on their functionality. “Feet" attached to the ends of the fins protect the tips and
enable them to double as landing gear.

6.3 Ballistic Launch Process and Transition to Stabilized Flight
SQUID’s mechanical design and onboard active controls manage the deployment
sequence (Fig. 6.4). The deployment pipeline comprises two primary phases:
passive stabilization and active stabilization. In the first phase, the multirotor’s
aerodynamic design ensures attitude stability as it travels along a ballistic trajectory
after launch. Active stabilization begins once the arms are fully deployed and occurs
before the trajectory’s apogee. The following sections provide details on the launch
stabilization process and our experimental validation of these concepts.

Ballistic Launch Process
SQUID is ballistically launched to a minimum height that depends on both the
safety requirements of the assets near the launch site and the altitude required for
the targeted investigation. All the energy needed to loft the multirotor to the desired
height, as well as to overcome the drag of the passive stabilization process, must be
generated over the launching tube’s very short length. Consequently, the airframe
experiences very large acceleration forces while being launched.

The core of the launch mechanism is a re-purposed T-shirt cannon [113]. Pressure

87

is supplied by a liquid CO2 canister that is regulated between 5.5 bar (indoor, to stay
within ceiling clearance) and 6.9 bar (outdoor, maximum safe) chamber pressure in
gas phase. An aluminum stand holds the launch tube in place and allows adjustment
of the launch angle. Accordingly, both the launch height and angle can be adjusted
to avoid local hazards.

Prior to launch, SQUID rests in a folded state inside the launch tube, which is
generally pointed upwards. A 300 gram carriage assembly sits between SQUID and
the tube base, transmitting launch loads generated by the compressed gas directly to
the frame’s support columns. A 25 mm-thick polyethylene foam disk at the base of
the carriage creates a low-friction seal which maximizes the transfer of energy from
the compressed gas into kinetic energy and also prevents the carriage from leaving
the tube during launch.

This launching mechanism has a number of inefficiencies. After launch is triggered,
the compressed gas accelerates SQUID through the tube at approximately 21 g’s
(estimated from video as the IMU saturates at 16 g’s), but short of the unlimited
valve throughput prediction of ≈350 g’s. The maximum height achieved with this
system is also 32m (or 1 kJ potential energy), less than a third of the imparted energy
as calculated from the ideal adiabatic expansion of the CO2 chamber. Discrepancies
between the predicted and estimated values are thought to be from friction within
the tube, losses from a valve throughput, and air drag.

Passive Stabilization - Launch without Wind
After exiting the launch tube, the arms and fins deploy immediately due to the spring-
loaded hinges. This deployment has four effects on the aerodynamic stability: the
COM is shifted towards the nose, the AC is shifted rearward due to the fin lift,
the fins increase aerodynamic damping in yaw, and mass moves outwards which
increases yaw inertia.

As described in Section 6.2, the lower AC helps SQUID maintain orientation and
follow the intended flight path until active stabilization begins. The large displace-
ment between the COMandAC, coupledwith the launchmomentum, causes SQUID
to orient robustly into the apparent wind. When the launch tube is stationary and
roughly vertical, this effect helps SQUID to passively maintain orientation during
the ballistic phase, which simplifies the transition to active stabilization.

88

Folded
Configuration

Launch

Arms and Fins
Deploy

Ballistic
Flight

Motors
Activate

Active
Stabilization Controlled

Flight

Figure 6.4: SQUID deployment sequence.

Passive Stabilization - Launch in Crosswind
During launch from a moving vehicle, SQUID experiences a strong crosswind,
and will weathercock its nose in the direction of the launch platform’s motion.
Accordingly, SQUID’s passive stabilization design ensures that themultirotor travels
smoothly during the ballistic phase and that its orientation at the beginning of the
active stabilization phase is predictable.

To validate SQUID’s expected passive aerodynamic behavior before field testing,
sub-scale wind tunnel tests were performed at the Center for Autonomous Systems
and Technologies (CAST) at Caltech. These tests were intended to prove that the new
folding fin architecture could provide a sufficient stabilizing effect in the presence
of a crosswind.

The sub-scale wind tunnel tests were performed using a 1/3 scale model of SQUID.
Scaling for ballistically-launched drones near apogee, presented in [110], primarily
depends upon the Froude number (*/

√
6!), launch- to wind-velocity ratio, geo-

89

U

Vlaunch

θ

Figure 6.5: Wind Tunnel Testing. Left: definition of experiment parameters. Right:
snapshot sequence showing stable upwind pitching of the 1/3 SQUID model.

metric parameters, and launch angle. Since SQUID’s tailbox is a bluff-body disc,
separation at the base is virtually guaranteed, meaning Reynolds effects can be
neglected [111]. To correct the sub-scale results to be representative of the full-
scale model, the trajectories and velocities were scaled by a factor of 3 and

√
3,

respectively [110].

Accordingly, the performance of a vertical launch of 4.5 m/s in 10 m/s crosswinds
(Fig. 6.5) can be extrapolated to the behavior of a full-sized drone launched at
7.8 m/s in a 17 m/s crosswind. The aerodynamically stable behavior, as indicated
by the upwind turn, illustrates that the multirotor with deployed fins and motor arms
produces a sufficient righting moment to predictably orient the multirotor upwind
on launch. While not perfectly analogous (full-scale tests were performed at 12 m/s
and a slightly different geometry), these sub-scale trajectories had a similar one-third
scaled stability margin (5cm) and provided confidence that the full-sized SQUID
would have a predictable trajectory if launched from a moving vehicle (a goal for
future work).

Transition from Passive to Active Stabilization
SQUID commences the autonomy pipeline once the distance sensor indicates the
vehicle has cleared the launch tube. The passive-to-active transition occurs after
the vehicle has exited the tube and the arms are fully deployed, allowing the motors
to spin. Starting the motors early in the ballistic phase of launch is important as
the motors need to be fully spooled up and stabilizing the multirotor before apogee.
At apogee, the airspeed may not be sufficient to provide enough aerodynamic sta-

90

bilization, risking the multirotor entering a tumbling state from which is may not
recover.

6.4 Active Stabilization
Our active stabilization solution is based upon previous research into autonomously
recovering a monocular vision-based quadrotor after its state-estimator fails due
to a loss of visual tracking [114, 115]. For our visual inertial odometry pipeline,
we utilize the open-source Robust Visual Inertial Odometry (ROVIO), an extended
Kalman Filter that tracks both 3D landmarks and image patch features [116]. Since it
tightly integrates image intensity informationwith intertial data to produce odometry
estimates, ROVIO is capable of operating in stark, low-texture environments such
as over pavement, water, and the surface of other planets.

The first stage of the active stabilization phase controls the attitude to a nominal
zero-roll/pitch orientation using the IMU-based attitude estimate. As the air pressure
around the multirotor spikes on launch, the barometric altitude estimates become
unreliable and the altitude must be maintained open-loop, biased upwards for safety.
The barometric readings stabilize within three seconds of launch, and at this point,
SQUID begins actively controlling its altitude and attempts to reduce the vertical
velocity to zero. As no horizontal position or velocity information is available,
active control of the lateral position is not possible and SQUID continues to drift in
plane until the VIO can be initialized.

Several conditions need to be met before the VIO can be successfully initialized.
Firstly, the pitch and roll rates need to be near-zero to ensure that the camera captures
frames with lowmotion blur. Secondly, the vertical velocity needs to be near-zero so
the distance between the multirotor and the ground remains constant and the initial
feature depth can be well established using rangefinder measurements. Finally, the
lateral velocitymust be small (once again tominimizemotion blur), so themultirotor
is allowed to drift for 10 s post spool up to enable aerodynamic drag to bleed off
excess speed. Future iterations of the autonomy pipeline will sense when to initialize
VIO directly from the detected motion blur, enabling the vehicle to enter position
stabilization sooner after launch.

The VIO is considered initialized when the cumulative variance of the VIO’s x-
and y-position estimates drop below a preset threshold. The pose estimates are then
fed into the flight controller state estimator filter to be fused with the IMU. At this
point, SQUID has full onboard state estimation and can now control both altitude

91

and lateral position.

Launcher

Lower Optitrack
Camera Rail

Upper Optitrack
Camera Rail

Tether Redirect

SQUID

ROVIO View

Figure 6.6: Launching SQUID in 42 foot-tall flying arena. The arena has two tiers
of motion capture cameras.

Experimental Validation
To demonstrate the proposed passive-to-active stabilization pipeline, we launched
SQUID in a 42 foot-tall flying arena at CAST (Fig. 6.6). The arena has two tiers of
Optitrack motion capture cameras allowing SQUID’s position and orientation to be
tracked throughout the duration of a flight for offline analysis. During initial devel-
opment, a tether system was constructed inside the arena to prevent the multirotor
from damaging the facility in the event of a launch failure. A small weight was used
to passively eliminate any slack in the tether. As SQUID accelerates significantly
faster than the 1 g of the counterweight (note the slack in the tether in Fig. 6.1),
it is unlikely that the tether interfered with the critical passive-to-active attitude
stabilization phase.

Fig. 6.8 shows the position tracking of a full launch to active position stabilization
test flight. At launch (t=0), altitude is quickly gained as the multirotor accelerates.
The motors turn on at Point 1 and begin actively stabilizing the attitude. By Point
2, the barometer has recovered from the launch and closed-loop altitude control
commences. Ten seconds after the motors are turned on (Point 3), VIO initialization
begins. At Point 4, the VIO is initialized and starts to feed pose estimates to
the flight controller, which then actively controls the position of the multirotor,

92

completing the pipeline. The pipeline was successfully demonstrated across several
days, lighting conditions, and launch pressures. Footage of the launches can be
found at https://youtu.be/mkotvIK8Dmo.

0.07 s 0.13 s

0.20 s 1.13 s

Figure 6.7: Preliminary outdoor free-flight SQUID testing.

Figure 6.8: Onboard state estimates and ground truth during launch. 1: Motors on,
2: Closed-Loop altitude control, 3: VIO initialization, 4: Position control.

6.5 Summary
SQUID has successfully demonstrated the ability to ballistically launch and transi-
tion into autonomous onboard control. In particular, we demonstrate:

93

1. A 3.3 kg hexacopter with a payload of an advanced sensor package andmission
computer.

2. An airframe strong enough to carry and transmit launch loads without dam-
aging onboard components.

3. Passive aerodynamic stability generated by folding fins that set the necessary
preconditions for transition to autonomous flight.

4. Wind tunnel testing that validates the proposed multirotor design in cross-
wind launches.

5. An autonomy pipeline that carries the platform from launch detection to full 6-
degree of freedom stabilization using only onboard sensing (IMU, barometer,
rangefinder, and camera) and without the need for GPS.

To further validate the robustness of the presented system, future development
of SQUID will include outdoor launches in windy/gusty conditions (Fig. 6.7) and
launches from a moving vehicle. Planned hardware improvements include a delayed
fin- and arm-release trigger to extend the ballistic range.

This proof-of-concept system validates the viability of a ballistically-launched mul-
tirotor that deploys without human involvement, opening up new applications in
fields such as disaster response, defense, and space exploration.

94

C h a p t e r 7

CONCLUSION

Inspired by real-world emergency situations, this thesis seeks to develop autonomous
robotic systems capable of: (i) robustly reasoning about a time-limited mission
across a complex environment, and (ii) negotiating extreme physical conditions
during mission execution. These objectives motivated the development of two pro-
posed autonomy systems: a coverage planning strategy for exploration of large-scale
unknown environments (Chaps. 3-5), and a ballistically-launched autonomously-
stabilizing multirotor for rapid aerial surveillance (Chap. 6). The specific contribu-
tions of this thesis are listed as follows.

• Hierarchical information-rich structures for spatial and temporal ap-
proximation of the coverage policy space. Spatially, the policy space is
approximated by a task-dependent structure enriched with environment map
estimates, termed an Information Roadmap (IRM). Temporally, the space
is approximated by the aggregation of multiple IRMs, each spanning a dif-
ferent spatial range. Throughout this thesis, two IRMs were discussed and
maintained: a local grid-based IRM that captures high-fidelity information
in a neighborhood of the robot, and a global graph-based IRM that can span
multiple kilometers and encodes free-space connectivity.

• Cascaded coverage decision making over a stratified policy space. To
bridge the gap between local, risk-aware resiliency and global, reward-seeking
mission objectives, a policy constructed globally serves as an input parameter
to the local coverage planner. Higher-level policies guide lower-level policies,
resulting in a cascaded decision process.

• Receding-horizon scheme for reconciling consecutive coverage policies.
As the robot explores an environment, it receives new sensory information,
updates its belief, and constructs a new coverage policy in a receding horizon
fashion. Policies generated during consecutive planning episodesmust respect
the kinodynamic constraints of the robot, while simultaneously adapting to
unexpected hazards in the environment. This reconciliation scheme finds an
effective balance between these two, sometimes opposed, objectives.

95

• Method to solve the time-limited submodular coverage problem for ex-
ploration of unknown environments, modeled by rolling grids. The time-
limited coverage problem on a dense grid exhibits a diminishing returns prop-
erty known as submodularity. Consequently, the robot must evaluate the how
its observation of the world affects the utility of future observations, while
simultaneously accounting for traversability risk and uncertainty. The pro-
posed method satisfies these requirements by rolling out future robot-world
states using an effective coverage sensor model. In particular, the range of
the coverage sensor model adapts to the local environment in order replicate
ray-surface interactions that regulate surface visibility. This approach obvi-
ates the need for expensive ray-tracing operations that make forward rollout
algorithms prohibitively slow for a real-time system.

• Method to solve the time-limited modular coverage problem for explo-
ration of unknown environments, modeled by dynamic graphs. The time-
limited coverage problem on a sparse graph is modular; that is, the marginal
benefit of visiting a frontier does not decrease as the set of already visited fron-
tiers increases. While this reduces the complexity of the problem, one must
still consider the fact that the graph structure grows and changes dynamically
as the robot uncovers new regions. To address this point, a generalization
of the orienteering problem (OP), where the robot does not have access to a
reliable environment model, is proposed and solved. This OP variant com-
pensates for model uncertainty by incorporating a greedy incentive that shifts
information gain earlier in time. By biasing towards short term informa-
tion gain, the robot visits frontiers earlier with the expectation that they will
significantly alter its world understanding by exposing new opportunities for
information gathering.

• Design and autonomous stabilization of a ballistically-launched multiro-
tor. A foldable hexacopter with an onboard sensor suite, autonomy pipeline,
and passive aerodynamic stability was designed, fabricated, and tested. The
vehicle demonstrates autonomous transition from passive to vision-based, ac-
tive stabilization. This confirms the ability of multirotors to autonomously
stabilize in a GPS-denied environment after a ballistic launch from a moving
or unstable platform.

96

Future Coverage Planning Work
The proposed coverage planning strategy was tested and evaluated with an under-
standing that it would need to perform robustly during the Final Circuit of the
DARPA Subterranean Challenge. With this in mind, real-world behavior was the
primary performance metric. An extensive field test campaign was conducted to
evaluate and robustify the proposed coverage planning strategy. While field testing
is expensive and time-consuming, when in conjunction with a concrete deadline, it is
uniquely effective at exposing fundamental shortcomings in a system. From the field
perspective, coverage planning performance degradation was primarily attributed to
two major areas: system modeling and global guidance.

System Modeling: Within the field of exploration-driven coverage planning, much
focus has been placed on achieving a high fidelity system model (e.g. modeling
a coverage sensor’s range, incidence angle, etc.), without a critical examination
of the overall performance benefits of such a design choice. Rather than strictly
attempting to model a system more exactly, further efforts could be directed towards
developing clever modeling approximations so that computation can be distributed
more effectively. Chapter 4 takes a step in that direction by proposing an adaptive
coverage sensor model, which reduces rollout computation. A similar philosophy
can be applied to approximating the world model. For the proposed local planner,
a careful balance was struck between the Local IRM dimension and the size of the
lookahead tree; a large, dense IRM requires that a big tree be constructed in order to
find high quality coverage paths. As a consequence for ensuring a reasonably sized
tree, the Local IRM was often too sparse to capture risky areas in the environment,
creating a domino effect with the introduction of many new issues that had to be
addressed. Alternatively, one could design a world model where its fidelity varies
according to the underlying Risk Map. Areas of the graph within a neighborhood
of risky terrain would have higher resolution, thereby (i) increasing the likelihood
that high-risk regions are encoded in the model, (ii) providing more navigational
directions to the robot, and (iii) obviating the need for a large lookahead tree.

Global Guidance: Another important avenue of investigation should focus on how
to include global guidance in a local plan. While Chapter 3 formalizes a close-knit
relationship between a global and local policy, the practical implementation was
fairly unsophisticated – if the global planning guidance is within the bounds of the
local planning domain, then the local planner has full control. A literature review
reveals that a similar switching scheme is used in the majority of other local-global

97

planning proposals. Without a global perspective, the local planner tends to make
globally suboptimal decisions, like guiding the robot away from areas of good
communications and towards the vicinity of its robot teammates. Attempts were
made to encode high fidelity global information into the Local IRM using global
distance transforms and Voronoi skeletons, but local performance suffered when the
planner was faced with competing objectives.

98

BIBLIOGRAPHY

[1] Thai cave rescue: Drones, dogs, drilling and desperation. https://www.
bbc.com/news/world-asia-44652397. 2018.

[2] Thailand cave rescue: ’Four-day window’ for boys to escape. https://
www.bbc.com/news/world-asia-44754335. 2018.

[3] L. Pham. 775183603LP047_Thailand_ Cav. www . gettyimages . com,
Getty Images News Collection #986095734. 2018.

[4] A.Agha-Mohammadi,K.Otsu,B.Morrell, D. Fan,R. Thakker,A. Santamaria-
Navarro, S. Kim, A. Bouman, and [63 others]. “NeBula: Quest for Robotic
Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA
Subterranean Challenge.” In: Journal of Field Robotics (JFR) (2021).

[5] A. Bouman∗, M. Ginting∗, N. Alatur∗, M. Palieri, D. Fan, T. Touma, T.
Pailevanian, S. Kim, K. Otsu, J. Burdick, and A. Agha-Mohammadi. “Au-
tonomous Spot: Long-Range Autonomous Exploration of Extreme Environ-
ments with Legged Locomotion.” In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2020.

[6] K. Ebadi, Y. Chang, M. Palieri, A. Stephens, A. Hatteland, E. Heiden,
A. Thakur, B. Morrell, L. Carlone, and A. Agha. “LAMP: Large-scale
Autonomous Mapping and Positioning for Exploration of Perceptually-
degraded Subterranean Environments.” In: IEEE International Conference
on Robotics and Automation (ICRA). 2020.

[7] A. Santamaria-navarro, R. Thakker, D. D. Fan, B. Morrell, and A. Agha-
mohammadi. “Towards Resilient Autonomous Navigation of Drones.” In:
International Symposium on Robotics Research. 2019.

[8] M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, L. Carlone, C. Guarag-
nella, and A. Agha-mohammadi. “LOCUS: A Multi-Sensor Lidar-Centric
Solution for High-Precision Odometry and 3D Mapping in Real-Time.” In:
IEEE Robotics and Automation Letters 5.2 (2020), pp. 2123–2130.

[9] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard. “Past, Present, and Future of Simultaneous Localization
and Mapping: Toward the Robust-Perception Age.” In: IEEE Transactions
on robotics 32.6 (2016), pp. 1309–1332.

[10] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan. “Pair-
wise Consistent Measurement Set Maximization for Robust Multi-Robot
Map Merging.” In: 2018 IEEE international conference on robotics and
automation (ICRA). IEEE. 2018, pp. 2916–2923.

99

[11] D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and A. Agha-mohammadi.
“STEP: Stochastic Traversability Evaluation and Planning for Safe Off-Road
Navigation.” In: arXiv preprint arXiv:2103.02828. 2021.

[12] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. “Voxblox:
Incremental 3D Euclidean Signed Distance Fields for on-board MAV plan-
ning.” In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Vancouver, BC, 2017.

[13] M. Himmelsbach, F. v. Hundelshausen, and H. .-. Wuensche. “Fast Segmen-
tation of 3D Point Clouds for Ground Vehicles.” In: 2010 IEEE Intelligent
Vehicles Symposium. 2010.

[14] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart. “Driving on Point Clouds:
MotionPlanning, TrajectoryOptimization, andTerrainAssessment inGeneric
Nonplanar Environments.” In: JFR 34.5 (2017), pp. 940–984.

[15] H. Choset. “Coverage for Robotics–a Survey of Recent Results.” In: Annals
of Mathematics and Artificial Intelligence. 31.1 (2001), pp. 113–126.

[16] T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr. “Survey on Coverage
Path Planning with Unmanned Aerial Vehicles.” In:Drones 3.1 (2019), p. 4.

[17] Y. Li, H. Chen, M. J. Er, and X. Wang. “Coverage Path Planning for UAVs
Based on Enhanced Exact Cellular Decomposition Method.” In: Mecha-
tronics 21.5 (2011), pp. 876–885.

[18] S. Thrun. “Learning metric-topological maps for indoor mobile robot navi-
gation.” In: Artificial Intelligence 99.1 (1998), pp. 21–71.

[19] H. Choset and P. Pignon. “Coverage Path Planning: The Boustrophedon
Cellular Decomposition.” In: Field and service robotics. Springer. 1998,
pp. 203–209.

[20] E. U. Acar and H. Choset. “Sensor-Based Coverage of Unknown Envi-
ronments: Incremental Construction of Morse Decompositions.” In: The
International Journal of Robotics Research 21.4 (2002), pp. 345–366.

[21] Z. L. Cao, Y. Huang, and E. L. Hall. “Region Filling Operations with
Random Obstacle Avoidance for Mobile Robots.” In: Journal of Robotic
systems 5.2 (1988), pp. 87–102.

[22] E. Rimon. “Construction of C-space Roadmaps from Local Sensory Data.
What Should the Sensors Look For?” In:Algorithmica 17.4 (1997), pp. 357–
379.

[23] M. Coombes,W.-H. Chen, and C. Liu. “Boustrophedon Coverage Path Plan-
ning for UAV Aerial Surveys in Wind.” In: 2017 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE. 2017, pp. 1563–1571.

100

[24] J. Faigl and M. Kulich. “On Determination of Goal Candidates in Frontier-
based Multi-Robot Exploration.” In: 2013 European Conference on Mobile
Robots. IEEE. 2013, pp. 210–215.

[25] R. Bormann, F. Jordan, J. Hampp, and M. Hägele. “Indoor Coverage Path
Planning: Survey, Implementation, Analysis.” In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 1718–
1725.

[26] R. Bormann, F. Jordan, W. Li, J. Hampp, and M. Hägele. “Room segmen-
tation: Survey, implementation, and analysis.” In: 2016 IEEE international
conference on robotics and automation (ICRA). IEEE. 2016, pp. 1019–1026.

[27] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin. “Path planning for
Mobile Robot Navigation using Voronoi Diagram and Fast Marching.” In:
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2006, pp. 2376–2381.

[28] B. Yamauchi. “A Frontier-Based Approach for Autonomous Exploration.”
In: Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97.’Towards New Computa-
tional Principles for Robotics and Automation’. IEEE. 1997, pp. 146–151.

[29] S. Kim∗, A. Bouman∗, G. Salhotra, D. Fan, K. Otsu, J. Burdick, and A.
Agha-Mohammadi. “PLGRIM:Hierarchical Value Learning for Large-scale
Exploration in Unknown Environments.” In: International Conference on
Automated Planning and Scheduling (ICAPS). 2021.

[30] A. Howard, L. E. Parker, and G. S. Sukhatme. “Experiments with a Large
Heterogeneous Mobile Robot Team: Exploration, Mapping, Deployment
and Detection.” In: The International Journal of Robotics Research 25.5-6
(2006), pp. 431–447.

[31] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. “Coordinated
Multi-Robot Exploration.” In: IEEE Transactions on robotics 21.3 (2005),
pp. 376–386.

[32] H. Umari and S. Mukhopadhyay. “Autonomous Robotic Exploration based
on Multiple Rapidly-Exploring Randomized Trees.” In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2017, pp. 1396–
1402.

[33] M. Keidar and G. A. Kaminka. “Robot Exploration with Fast Frontier De-
tection: Theory and Experiments.” In: Autonomous Agents and Multi-Agent
Systems (AAMAS). 2012, pp. 113–120.

[34] H. Moravec and A. Elfes. “High Resolution Maps fromWide Angle Sonar.”
In: Proceedings. 1985 IEEE international conference on robotics and au-
tomation. Vol. 2. IEEE. 1985, pp. 116–121.

101

[35] A. Elfes. “Sonar-Based Real-World Mapping and Navigation.” In: IEEE
Journal on Robotics and Automation 3.3 (1987), pp. 249–265.

[36] A. Zelinsky, R. A. Jarvis, J. Byrne, S. Yuta, et al. “Planning Paths of
Complete Coverage of an Unstructured Environment by a Mobile Robot.”
In: Proceedings of international conference on advanced robotics. Vol. 13.
Citeseer. 1993, pp. 533–538.

[37] J. S. Oh, Y. H. Choi, J. B. Park, and Y. F. Zheng. “Complete Coverage
Navigation of Cleaning Robots using Triangular-Cell-BasedMap.” In: IEEE
Transactions on Industrial Electronics 51.3 (2004), pp. 718–726.

[38] Y. Gabriely and E. Rimon. “Spanning-tree based coverage of continuous
areas by amobile robot.” In:Annals ofmathematics and artificial intelligence
31.1 (2001), pp. 77–98.

[39] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara. “BSA: A com-
plete coverage algorithm.” In: proceedings of the 2005 IEEE international
conference on robotics and automation. IEEE. 2005, pp. 2040–2044.

[40] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. “Planning and acting
in Partially Observable stochastic domains”. In: Artificial Intelligence 101
(1998), pp. 99–134.

[41] M. J. Kochenderfer, T. A. Wheeler, and K. H.Wray. Algorithms for decision
making. MIT Press, 2022.

[42] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. “Online planning al-
gorithms for POMDPs.” In: Journal of Artificial Intelligence Research 32
(2008), pp. 663–704.

[43] J. G. Blank. “RoboticMapping and Exploration of a Terrestrial Lava Tube: A
Structured Planetary Cave Mission Simulation with a Remote Astrobiology
Science Team.” In: 3rd International Planetary Caves Conference. 2020.

[44] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro,
T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, et al. “Emergency
response to the nuclear accident at the Fukushima Daiichi Nuclear Power
Plants using mobile rescue robots.” In: JFR 30.1 (2013), pp. 44–63.

[45] G. E. Monahan. “State of the art—a survey of partially observable Markov
decision processes: theory, models, and algorithms.” In: Management sci-
ence 28.1 (1982), pp. 1–16.

[46] J. Pineau, G.Gordon, and S. Thrun. “Point-based value iteration: An anytime
algorithm for POMDPs.” In: ĲCAI. 2003, pp. 1025–1032.

[47] D. Silver and J. Veness. “Monte-Carlo planning in large POMDPs.” In:
NeurIPS. 2010, pp. 2164–2172.

[48] A. Somani, N. Ye, D. Hsu, and W. S. Lee. “DESPOT: Online POMDP
Planning with Regularization.” In: NeurIPS. 2013, pp. 1772–1780.

102

[49] B. Bonet and H. Geffner. “Learning Sorting and Decision Trees with
POMDPs.” In: Proceedings of the International Conference on Machine
learning (ICML). 1998, pp. 73–81.

[50] S.-K. Kim, O. Salzman, andM. Likhachev. “POMHDP: Search-based belief
space planning using multiple heuristics”. In: International Conference on
Automated Planning and Scheduling (ICAPS). Vol. 29. 2019, pp. 734–744.

[51] A. Agha-Mohammadi, S. Chakravorty, and N. Amato. “FIRM: Sampling-
based Feedback Motion Planning Under Motion Uncertainty and Imperfect
Measurements.” In: The International Journal of Robotics Research (ĲRR)
33.2 (2014), pp. 268–304.

[52] T. Tao, Y. Huang, F. Sun, and T. Wang. “Motion planning for slam based on
frontier exploration.” In: 2007 International Conference on Mechatronics
and Automation. 2007, pp. 2120–2125.

[53] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys. “Efficient visual ex-
ploration and coverage with a micro aerial vehicle in unknown environ-
ments.” In: 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2015, pp. 1071–1078.

[54] H. H. González-Banos and J.-C. Latombe. “Navigation strategies for ex-
ploring indoor environments.” In: The International Journal of Robotics
Research 21.10-11 (2002), pp. 829–848.

[55] R. Grabowski, P. Khosla, and H. Choset. “Autonomous exploration via
regions of interest.” In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vol. 2. 2003, pp. 1691–1696.

[56] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. “Curiosity-driven Explo-
ration by Self-supervised Prediction.” In: arXiv preprint arXiv:1705.05363.
2017.

[57] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. Efros.
“Large-Scale Study of Curiosity-Driven Learning.” In: arXiv:1808.04355.
2018.

[58] Y. Burda, H. A. Edwards, A. J. Storkey, and O. Klimov. “Exploration by
Random Network Distillation.” In: arXiv preprint arXiv:1810.12894. 2018.

[59] N. Savinov, A. Raichuk, R. Marinier, D. Vincent, M. Pollefeys, T. Lillicrap,
and S. Gelly. “Episodic Curiosity through Reachability.” In: arXiv preprint
arXiv:1810.02274. 2018.

[60] H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee. “Motion planning under
uncertainty for robotic tasks with long time horizons”. In: The International
Journal of Robotics Research (ĲRR) 30.3 (2011), pp. 308–323.

[61] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee. “Intention-aware online
POMDP planning for autonomous driving in a crowd.” In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2015, pp. 454–460.

103

[62] V. Indelman, L. Carlone, and F. Dellaert. “Planning in the continuous do-
main: A generalized belief space approach for autonomous navigation in un-
known environments.” In: The International Journal of Robotics Research
(ĲRR) 34.7 (2015), pp. 849–882.

[63] R.Martinez-Cantin, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet.
“A Bayesian exploration-exploitation approach for optimal online sensing
and planning with a visually guided mobile robot.” In: Autonomous Robots
27.2 (2009), pp. 93–103.

[64] M. Lauri andR. Ritala. “Planning for Robotic Exploration Based on Forward
Simulation.” In: Robotics and Autonomous Systems 83 (2016), pp. 15–31.

[65] L. P. Kaelbling and T. Lozano-Pérez. “Planning in the know: Hierarchical
belief-space task and motion planning.” In: Workshop on Mobile Manipu-
lation, IEEE ICRA. 2011.

[66] T. Dang, S. Khattak, F. Mascarich, and K. Alexis. “Explore Locally, Plan
Globally: A Path Planning Framework for Autonomous Robotic Exploration
in Subterranean Environments.” In: Proceedings of the International Con-
ference on Advanced Robotics (ICAR). 2019, pp. 9–16.

[67] S.-K. Kim, R. Thakker, and A. Agha-Mohammadi. “Bi-directional value
learning for risk-aware planning under uncertainty.” In: IEEE Robotics and
Automation Letters 4.3 (2019), pp. 2493–2500.

[68] N. A. Vien and M. Toussaint. “Hierarchical Monte-Carlo Planning.” In:
Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

[69] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. “Reced-
ing horizon "next-best-view" planner for 3D exploration.” In: 2016 IEEE
international conference on robotics and automation (ICRA). IEEE. 2016,
pp. 1462–1468.

[70] M. Littman, A. Cassandra, and L. Kaelbling. “Learning policies for partially
observable environments: Scaling up.” In: Machine Learning Proceedings.
1995, pp. 362–370.

[71] K. Otsu, S. Tepsuporn, R. Thakker, T. S. Vaquero, J. A. Edlund, W. Walsh,
G. Miles, T. Heywood, M. T. Wolf, and A. Agha-mohammadi. “Supervised
autonomy for communication-degraded subterranean exploration by a robot
team.” In: IEEE Aerospace Conference. 2020.

[72] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M. Hut-
ter. “Graph-based subterranean exploration path planning using aerial and
legged robots.” In: Journal of Field Robotics 37.8 (2020), pp. 1363–1388.

[73] C. Witting, M. Fehr, R. Bähnemann, H. Oleynikova, and R. Siegwart.
“History-aware autonomous exploration in confined environments using
MAVs.” In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2018, pp. 1–9.

104

[74] S. K. Ghosh. Visibility algorithms in the plane. Cambridge University Press,
2007.

[75] A.Krause andD.Golovin. “Submodular functionmaximization.” In:Tractabil-
ity 3 (2014), pp. 71–104.

[76] C. Cao, H. Zhu, H. Choset, and J. Zhang. “TARE:AHierarchical Framework
for Efficiently Exploring Complex 3D Environments.” In: Robotics: Science
and Systems Conference (RSS), Virtual. 2021.

[77] C. H. Papadimitriou. “The complexity of the Lin–Kernighan heuristic for the
traveling salesman problem.” In: SIAM Journal on Computing 21.3 (1992),
pp. 450–465.

[78] J. Current, H. Pirkul, and E. Rolland. “Efficient algorithms for solving the
shortest covering path problem.” In: Transportation Science 28.4 (1994),
pp. 317–327.

[79] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. “A
survey of Monte Carlo Tree Search methods.” In: IEEE Transactions on
Computational Intelligence and AI in games 4.1 (2012), pp. 1–43.

[80] K. Chen, B. T. Lopez, A. Agha-mohammadi, and A. Mehta. “Direct LiDAR
Odometry: Fast Localization With Dense Point Clouds.” In: IEEE Robotics
and Automation Letters 7.2 (2022), pp. 2000–2007. doi: 10.1109/LRA.
2022.3142739.

[81] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Hanrahan,
and N. Joshi. “Submodular trajectory optimization for aerial 3d scanning.”
In: Proceedings of the IEEE International Conference on Computer Vision.
2017, pp. 5324–5333.

[82] I.-M.Chao, B. L.Golden, andE.A.Wasil. “The teamorienteering problem.”
In: European Journal of Operational Research 88.3 (1996), pp. 464–474.

[83] C. Cao, H. Zhu, H. Choset, and J. Zhang. “TARE:AHierarchical Framework
for Efficiently Exploring Complex 3D Environments.” In: 2021.

[84] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden. “A
guided local search metaheuristic for the team orienteering problem.” In:
European Journal of Operational Research 196.1 (2009), pp. 118–127.

[85] B. Fang, J. Ding, and Z. Wang. “Autonomous robotic exploration based on
frontier point optimization and multistep path planning.” In: IEEE Access 7
(2019), pp. 46104–46113.

[86] C. Wang, W. Chi, Y. Sun, and M. Q.-H. Meng. “Autonomous robotic ex-
ploration by incremental road map construction.” In: IEEE Transactions on
Automation Science and Engineering 16.4 (2019), pp. 1720–1731.

105

[87] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis. “Graph-
based path planning for autonomous robotic exploration in subterranean
environments.” In: IEEE. 2019, pp. 3105–3112.

[88] T. Roucek, M. Pecka, P. Čížek, T. Petrıcek, J. Bayer, V. Salanský, T. Azayev,
D. Hert, M. Petrlık, T. Báca, V. Spurný, V. Krátký, P. Petrácek, D. Baril,
M. Vaidis, V. Kubelka, F. Pomerleau, J. Faigl, K. Zimmermann, M. Saska,
T. Svoboda, and T. Krajnık. “System for multi-robotic exploration of under-
ground environments CTU-CRAS-NORLAB in the DARPA Subterranean
Challenge.” In: arXiv preprint arXiv:2110.05911 (2021).

[89] J. Williams, S. Jiang, M. O’Brien, G. Wagner, E. Hernandez, M. Cox, A.
Pitt, R. Arkin, and N. Hudson. “Online 3D Frontier-Based UGV and UAV
Exploration Using Direct Point Cloud Visibility.” In: IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI). IEEE. 2020, pp. 263–270.

[90] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser. “Efficient informative
sensing usingmultiple robots.” In: Journal of Artificial IntelligenceResearch
34 (2009), pp. 707–755.

[91] J. Binney, A. Krause, and G. S. Sukhatme. “Informative path planning for
an autonomous underwater vehicle.” In: IEEE. 2010, pp. 4791–4796.

[92] B. Liu, X. Xiao, and P. Stone. “Team Orienteering Coverage Planning with
Uncertain Reward.” In: arXiv preprint arXiv:2105.03721 (2021).

[93] J. Yu, M. Schwager, and D. Rus. “Correlated orienteering problem and
its application to persistent monitoring tasks.” In: IEEE Transactions on
Robotics 32.5 (2016), pp. 1106–1118.

[94] D. Filliat and J.-A. Meyer. “Map-based navigation in mobile robots: I. a
review of localization strategies.” In:Cognitive SystemsResearch 4.4 (2003),
pp. 243–282.

[95] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. “A density-based algo-
rithm for discovering clusters in large spatial databases with noise.” In: kdd.
Vol. 96. 34. 1996, pp. 226–231.

[96] A. Visser, M. v. Ittersum, G. Jaime, A. Luis, L. A. Stancu, et al. “Beyond
frontier exploration.” In: Robot Soccer World Cup. Springer. 2007, pp. 113–
123.

[97] NASA. Mars Helicopter to Fly on NASA’s Next Red Planet Rover Mission.
May 2018 (accessed on January 2019). url: www.nasa.gov/press-
release / mars - helicopter - to - fly - on - nasa - s - next - red -
planet-rover-mission.

[98] Raytheon.CoyoteUAS. (Accessed July 2019).url:https://www.raytheon.
com/capabilities/products/coyote.

106

[99] UVision.HeroUAV. (Accessed on July 2019).url:https://uvisionuav.
com/main-products/.

[100] Leonardo. Horus-detail-Leonardo. (Accessed on July 2019). url: https:
//www.leonardocompany.com/en/allproducts.

[101] DJI. Mavic 2-DJI Store. (Accessed on 01/2019). url: https://store.
dji.com/product/mavic-2.

[102] Parrot.DroneCamera 4kHDRANAFI. (Accessed on 01/2019).url:https:
//www.parrot.com/us/drones/anafi.

[103] Powervision. PowerEgg Camera Drone, Fly To The Future. (accessed on
January 2019). url: https://www.powervision.me/en/product/
poweregg.

[104] LeveTop. The Foldable & Portable Drone. url: https://www.levetop.
com/.

[105] A. AeroSystems. Ascent AeroSystems. 2019 (accessed on January 2019).
url: http://www.ascentaerosystems.com/.

[106] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza. “The
Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly.” In:
IEEE Robotics and Automation Letters. IEEE. 2019.

[107] N. Bucki and M. Mueller. “Design and Control of a Passively Morphing
Quadcopter.” In: IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2019.

[108] P. Gnemmi, S. Changey, K. Meder, E. Roussel, C. Rey, C. Steinbach, and
C. Berner. “Conception and manufacturing of a projectile-drone hybrid sys-
tem.” In: IEEE/ASME Transactions on Mechatronics 22.2 (2017), pp. 940–
951.

[109] L. Henderson, T. Glaser, and F. Kuester. “Towards bio-inspired structural
design of a 3D printable, ballistically deployable, multi-rotor UAV.” In:
Aerospace Conference, 2017 IEEE. IEEE. 2017, pp. 1–7.

[110] D. Pastor, J. Izraelevitz, P. Nadan, A. Bouman, J. Burdick, and B. Kennedy.
“Design of a Ballistically-Launched Foldable Multirotor.” In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2019.

[111] S. F. Hoerner. Fluid-dynamic Drag: practical information on aerodynamic
drag and hydrodynamic resistance. Hoerner Fluid Dynamics, 1958.

[112] S. Hoerner. “Fluid-dynamic lift.” In: Hoerner Fluid Dynamics (1985).

[113] tshirtguns.com. Bleacher Reacher Mega T-Shirt Launcher. url: http://
tshirtgun.com/bleacher%5C_reacher%5C_mega%5C_2014.pdf.

107

[114] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza. “Automatic Re-
Initialization and Failure Recovery for Aggressive Flight with a Monocular
Vision-Based Quadrotor.” In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2015.

[115] R. Brockers, M. Humenberger, D. Weiss, and L. Matthies. “Towards au-
tonomous navigation of miniature UAV.” In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops. IEEE.
2014.

[116] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart. “Iterated
extended Kalman filter based visual-inertial odometry using direct photo-
metric feedback.” In: The International Journal of Robotics Research 36.10
(2017), pp. 1053–1072.

