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ABSTRACT

This thesis develops multiple optical engineering mechanisms to modulate the elec-
tronic, magnetic, and optical properties of strongly-correlated quantum materials,
including polar metals, transition metal trichalcogenides, and copper oxides. We
established the mechanisms of Floquet engineering and magnon bath engineering,
and used optical probes, especially optical nonlinearity, to study the dynamics of

these quantum systems.

Strongly-correlated quantum materials host complex interactions between different
degrees of freedom, offering a rich phase diagram to explore both in and out
of equilibrium. While static tuning methods of the phases have witnessed great
success, the emerging optical engineering methods have provided a more versatile
platform. For optical engineering, the key to success lies in achieving the desired

tuning while suppressing other unwanted effects, such as laser heating.

We used sub-gap optical driving in order to avoid electronic excitation. There-
fore, we managed to directly couple to low-energy excitation, or to induce coherent
light-matter interactions. In order to elucidate the exact microscopic mechanisms
of the optical engineering effects, we performed photon energy-dependent measure-
ments and thorough theoretical analysis. To experimentally access the engineered
quantum states, we leveraged various probe techniques, including the symmetry-
sensitive optical second harmonic generation (SHG), and performed pump-probe

type experiments to study the dynamics of quantum materials.

I will first introduce the background and the motivation of this thesis, with an em-
phasis on the principles of optical engineering within the big picture of achieving
quantum material properties on demand (Chapter I). I will then continue to introduce
the main probe technique used in this thesis: SHG. I will also introduce the experi-
mental setups which we developed and where we conducted the works contained in
this thesis (Chapter II). In Chapter III, I will introduce an often overlooked aspect of
SHG studies — using SHG to study short-range structural correlations. Chapter IV
will contain the theoretical analysis and experimental realizations of using sub-gap
and resonant optical driving to tune electronic and optical properties of MnPSs3.
The main tuning mechanism used in this chapter is Floquet engineering, where light
modulates material properties without being absorbed. In Chapter V, I will turn to

another useful material property: magnetism. First I will describe the extension of
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the Floquet mechanism to the renormalization of spin exchange interaction. Then
I will switch gears and describe the demagnetization in Sr,CuzO4Cl; by resonant
coupling between photons and magnons. I will end the thesis with a brief closing
remark (Chapter VI).
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NOMENCLATURE

(Hyper-)Raman scattering. The scattering process where the scattered light has
a photon energy smaller than the fundamental (or SHG for hyper-Raman)
photon energy due to the loss of energy to excitations such as phonons.

Curie temperature. The temperature above which ferromagnetic materials become
paramagnetic.

Dzyaloshinskii—-Moriya interaction. An exchange interaction between spins S;
and S; which has the form D;; - (S; X S;).

Exchange interaction. The interaction between electron spins due to the quantum
mechanical effects of identical particles.

Fermi level. The highest energy level occupied by electrons in a material at absolute
Zero.

Fluence. The energy of a pulse divided by the spot size.

Fundamental frequency. The frequency of the incident light, without any har-
monic optical nonlinear processes.

Monochromatic. Containing only one wavelength or frequency.

Mott insulator. Insulating materials due to electron correlations despite being pre-
dicted to be metallic by the band theory.

Néel temperature. The temperature above which antiferromagnetic materials be-
come paramagnetic.

Point group. A mathematical group containing all the spatial symmetry operation
elements in a crystal.

Population inversion. A state where the excited states have higher electron occu-
pation than the ground state.

Quantum materials. An umbrella term for unconventional materials with strong
electronic correlations or orders, nontrivial band topology, or other effects
that are true revelations of quantum mechanics.

Quantum phase transition. Phase transitions that occur as a function of a non-
thermal tuning parameter.

Scattering plane. The plane spanned by the incident light and the reflected light.

Spin canting. Spins that are not oriented in a collinear way, but are tilted by a small
canting angle.
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Telescope. Two lenses placed with a distance equal to the sum of the two focal
lengths, which is used, e.g., to change the beam size. The beam size ratio
after and before the telescope is equal to the focal length of the second length
divided by the the focal length of the first lens.

Thermalize. Come into thermal equilibrium.



Chapter 1

INTRODUCTION

1.1 Quantum material properties on demand

The prospects

Part of our job as condensed matter physicists is to discover and to design new
phases of matter. Room-temperature superconductors can lead to an energy revolu-
tion. Simulating the global warming pattern or the cancer proteins require material
platforms that can perform fast computation, classical or quantum. Since the early
centuries of chemistry, scientists have successfully synthesized a library of com-
pounds, which never ceased to surprise us with novel properties, from exotic types
of magnetism, to strange phases of (or out of) unconventional superconductivity, to
the puzzling plateaus in the Hall conductivity, to ultra-thin materials which contain
just one layer of atoms. With all this success, however, there are still important
mysteries that we cannot answer at this moment. Can we really find suitable topo-
logical superconductors for robust quantum computation? Are we able to create
room temperature superconductors? Or even, how do we understand the existing

high-7; superconductors and the proximate phases?

Or maybe, can we do something more than synthesis, and create new (unheard of)
phases of matter while understanding the existing materials simultaneously? At the
end of the day, we are limited by what nature gives us, but adding some external

stimuli to these natural materials we would have almost infinite possibilities.

This leads to the idea of quantum material properties on demand (Basov, Averitt, and
Hsieh, 2017), where one does not have to worry about getting the correct material
that does the correct thing. Alternatively, we get a reasonable material platform to
start with, and then smartly design the physical environment where this material

lives, to achieve some properties or functions that we desire.

Quantum materials are ideal for completing this task, because they are so com-
plicated. In a traditional solid-state physics class, we learn about how electrons
orbiting a lattice of ions form energy bands and how the lattice deforms. How-
ever, in quantum materials there exist several comparable energy scales: the kinetic
energy of electrons, the spin-orbit coupling, the electronic correlations, and more.

The intricate balance between these energy scales determine the states of the lattice,
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charge, orbit, and spin degrees of freedom in the system, and a quantum phase
transition can happen if one of these energy scales is modified. When the quantum
phase transition happens in the right direction, we achieve properties on demand,

be it electronic, magnetic, or optical.

The methods

What all condensed matter physicists have witnessed in the past few years is a bloom-
ing field where we not only gain insights into existing materials, but also add more
and more tuning knobs to the materials to achieve new properties foreign to the ma-
terials themselves. This trend is enabled by both a deeper theoretical/computational
understanding of the interplay between the various degrees of freedom, and rapid
technological developments in lasers, precision control, and microscopy capacities.
Before we proceed to the main theme of this thesis, optical engineering methods,
I would like to provide below an incomplete list of what scientists have tried for
external control of quantum material properties. I will focus on the physics side,
while I recommend readers to read the references to have a peek into the amazing

techniques which enabled all the progress.

High pressure: All solid-state physics starts from the lattice, which is the periodic
arrangements of the atoms. The inter-atomic distance determines how likely elec-
trons can hop between neighboring atoms, therefore determining the Mott physics.
The lattice also determines the phonon properties, which can be the driving force of
superconductivity. Based on diamond anvil cells, scientists have applied hydrostatic
pressure to materials, modulating their lattice. As a result, there have been reports
of pressure-induced structural phase transitions, Mott transitions, and even potential

room-temperature superconductivity (Drozdov et al., 2015; Snider et al., 2020).

Static electric field: Two-dimensional (2D) materials are on the ascent. For some
materials like graphene, scotch tape suffices to cleave monolayers. 2D materials
also promise high tunabilities. Bringing in techniques from the semiconductor
industry, a gate voltage can be applied to add or extract electrons from the thin film,
changing its Fermi level thus its Fermi surface. Electric fields can also serve to

break symmetries in 2D materials, allowing previously forbidden effects.

Heterostructuring and twistronics: The easy manipulation of 2D materials also

enables heterostructuring, which is placing two different materials on top of each

'We note that there are concerns about the Snider et al. paper, regarding the data processing and
interpretation.
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other in order to induce emergent effects. One example is the superconducting
proximity effect, where the supercurrent-carrying Copper pairs can enter a nearby
normal material. By placing an iron atomic chain on top of a superconducting thin
film, researchers have observed the Majorana modes (Nadj-Perge etal., 2014). Along
comes the idea of twistronics, where a moiré pattern forms as one stacks two different
monolayers or two of the same monolayers with a twisting angle. There has been
an explosion of works related to twistronics/moiré in the past few years, including
superconductivity in twisted bilayer graphene (Cao et al., 2018) and Wigner crystals
realized in heterobilayers (H. Li et al., 2021), which are demonstrations of how
uncommon theorized phases of matter can arise from synthetic matter. Combining
moiré patterns with the application of static electric fields, researchers have achieved

continuous tuning across the Mott transition (T. Li et al., 2021).

Static magnetic field: Magnetic fields are able to reorient the spin directions in
magnets, to break the energy bands into discrete Laudau levels, or to suppress
superconductivity. Pulsed magnets can generate magnetic fields exceeding 100 T,
allowing the access of new phase diagrams and helping to elucidate the answers to
old problems, such as the symmetry breaking in the pseudogap phase of cuprates
(Chan et al., 2016).

Optical engineering: Light incorporates both the electric and magnetic fields, and
light can be viewed both as a particle and a wave. Therefore, light can couple to
materials in a plethora of ways. Light can excite phonons, electrons, and magnons,
directly or indirectly, via the interaction of materials with the electric or the magnetic
field within a light beam. Light can also change material properties without exciting
anything (Floquet engineering). For more details, see the Chapter 1.2 and all the

following chapters.

1.2 Principles of optical engineering of quantum materials

Principles of ultrafast optics: laser sciences and techniques

Though the sunlight can also modulate material properties, as evidenced by the
developments in solar cells, we still need lasers to optical engineer condensed matter
systems, because lasers are monochromatic, coherent, and easy to manipulate. Most
coupling between light and matter requires strong light fields, and therefore, we use

pulsed lasers to perform these tasks.

Compared to continuous wave (cw) lasers, the output of a pulsed laser can be



describe by the a sinusoidal wave modulated in the time domain,
E(t) = A(?) sin (wt + ¢), (1.1)

where w is the "center frequency" of the laser, A(?) is the envelope of the pulse, and

¢ is called the carrier envelope phase.

In most outputs of pulsed lasers, the envelope A(¢) is a train of pulses, as illustrated
in Figure 1.1. Each pulse has a Gaussian or a hyper-secant-squared shape, and the
time duration of each pulse is labeled as Ar. The number of pulses per second is
called the repetition rate (rep rate). The electric field at the peak of the pulses and

the corresponding power are called the peak field and the peak power.

Figure 1.1: The envelope of a pulsed laser.

For cw lasers the energy is uniformly distributed in time. However, in pulsed lasers
the energy is concentrated in pulses, enabling a much larger peak power than the
average power. For a typical 5 W laser with a rep rate of 1 kHz and a pulse duration
of 35 fs, a peak field on the order of 10'! V/m can be reached if the beam is focused
down to 100 ym. This field is more than enough to induce dielectric breakdown in

the air.

Apart from the large peak power, another advantage endowed by ultrafast femtosec-
ond lasers is the high temporal resolution. A lot of energy scales in condensed
matter systems are on the order of 1 to 100 meV, and a potential way to elucidate

these energy scales is by measuring the system dynamics governed by these energy
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scales. Therefore, we need a femtosecond laser in order to take stroboscopic snap-
shots of the system to discern the system states at different time delays after some
events, such as the arrival of a previous strong optical pulse. This is the principle of
pump probe type experiments, where a strong "pump" pulse induces modulations
inside the materials, and some responses are probed as a function of the time delay

between the pump and probe pulses.

The short duration of the optical pulses means that they cannot be monochromatic,
since lasers with a single frequency can only be continuous wave lasers (the Fourier
transform of E (¢) has a finite bandwidth centered around w due to the envelope A).
Therefore, an ultrafast laser must be generated by a gain medium? that can support
multiple cavity modes. Assume the frequency separation between two adjacent
cavity modes is Ay and N modes participate in the pulse generation process, the

shortest possible time duration is given by

_0.441
"~ NAv

for Gaussian-shaped pulses. The titanium-doped sapphire (Ti:sapphire) lasers have

At (1.2)

a bandwidth of about 128 THz, corresponding to a range of 300 nm around the
central 800 nm, supporting millions of modes for a meter-sized cavity.

In order to generate robust pulses periodically in time, the phase differences between
all frequency modes propagating inside the cavity must be fixed and stable. This is
accomplished by a process called mode locking. There are two major approaches
of mode locking, active and passive, and most ultrafast femtosecond lasers operate
with passive mode locking, unless a synchronization is required between the laser

pulses and the electrical signal performing the active mode-locking process.

For passive mode locking, a saturable absorber, which is a material whose absorption
decreases as the light intensity increases, is placed inside cavity. Thinking in the
time domain, each time the peak of the pulse passes through the saturable absorber,
the absorption is low, while when other parts of the pulse pass through the saturable
absorber, the absorption is higher. Therefore, the pulse gets sharper and sharper in
time, since the saturable absorber increases the relative intensity of the stronger part
of the pulse to the weaker part of the pulse. Thinking in the frequency domain, since

the absorption coefficient of the saturable absorber is modulated with a time period

2A laser emits light through a process of optical amplification based on the stimulated emission
of electromagnetic radiation. The gain medium obtains energy from the laser pumping process,
either electrically or optically, in order to stay in a population inversion state, so the gain medium
can amplify the light. When the gain exceeds the loss from the cavity, a laser functions.
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of the cavity round trip time 7 = 1/Av, this process links the mode with frequency

vo and the side frequencies vo+kAv or vo— kAv, enabling the mode-locking process.

Optical properties of quantum materials

As mentioned above, the optical engineering effects can be detected through pump
probe type experiments. Although photoemission spectroscopy (Sie, Rohwer, et al.,
2019) and electron diffraction (Vigliotti et al., 2004) can serve as the probes, the
most versatile probes to use are optical probes—another laser pulse after the strong
pump pulse. Therefore, we need to understand how the optical properties reflect the

modulations to the electronic and magnetic properties of materials.

We start from the optical conductivity o (w), which relates the oscillating electric
current and the electric field with j(w) = o(w)E (w). In a semiclassical model, we

can calculate the real part of the optical conductivity as (Armitage, 2018)

e’ 2

e o) (s’ |pIs) P D5 (hw), (1.3)

o (w) =

where (s’|p|s) is the dipole matrix element and Dy (%w) is the joint density of
states. From Equation 1.3 we can see that the real part of the optical conductivity
reflects the density of states at the corresponding energies from the Fermi level. A
typical conductivity spectrum is illustrated in Figure 1.2. The green part represents
a Drude response, which is intraband excitation near the Fermi level from free
electrons, normally seen in metals. The red part represents the interband excitation.

The blue part represents the phonons and other low-frequency excitations.

Conductivity

Frequency

Figure 1.2: A typical optical conductivity versus frequency. From Armitage, 2018.

From the real part of the optical conductivity o, many other optical constants of

the material can be derived. The imaginary part of the optical conductivity o is



related to o) by the Kramers-Kronig relation,

o (w) = —%Awdw’w. (1.4)

The complex dielectric constant € can be written in terms of the real part of the

dielectric constant €| and the real part of the optical conductivity o by

47Ti0'1

(1.5)

€ =€+
w

The refractive index n is the square root of the dielectric constant n = Ve = n, + ik,
where n, and k are the real and imaginary parts of the refractive index, respectively.
The absorption coefficient « is related to the imaginary part of the refractive index
k by @ = 4k /A, where A is the wavelength of light in the vacuum. The reflectivity

R can be inferred from n, using the Fresnel equations,

ny cos6; —no cos 6, (1.6)
ry = , .
> nycos; +nycos b,

ny cos 8; — ny cos 6,
r =
P nsycos6; +nycos 6,

(1.7)

where the light is entering medium 2 from medium 1, and r represents the complex
amplitude reflection coefficient. s-polarization means that the electric field polar-
ization is perpendicular to the scattering plane and p-polarization means that the

electric field polarization is parallel to the scattering plane.

Equation 1.3 shows that modulations to the band structure of a material can be man-
ifested in the optical properties. How does magnetism affect the optical properties

of materials?

When magnetic orders break the symmetries of the system, they can be picked up by
the second harmonic generation anisotropy, which is governed by nonlinear optical
susceptibilities different from the linear optical constants as described above (the
whole of Chapter II is dedicated to this subject). However, a more common probe
of magnetic orders leverages the polarization of light. Here one needs to consider
the dielectric constant € not as a scalar but as a second-rank tensor ¢;;, where the
indices i and j run through the spatial coordinates x, y, and z. Magnetism can
induce changes to the off-diagonal elements of the tensor ¢;;, enabling the Faraday
effect and the magneto-optical Kerr effect (MOKE).

The Faraday effect represents a rotation of the light polarization when a linearly

polarized light passes through a magnetic material. The reason is that left- and
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right-circularly polarized light travelling at different speed in magnetic media, and
linearly polarized light is nothing but a linear superposition of left- and right-
circularly polarized light. The Faraday polarization rotation can be calculated as

(Némec et al., 2018)
wd

S evRe(o)

where w is the light frequency, d is the sample thickness and ¢;; is the additional

Im(e,-j), (18)

dielectric constant induced by magnetism. The Faraday effect requires that the light
propagation direction is along the magnetization direction. The same holds true for
MOKE.

The MOKE describes a rotation of the light polarization when a linearly polarized
light is reflected from the surface of a magnetic material. Since a lot of materials
which we studied are not transparent at our optical probe frequency, we mainly used
the MOKE to detect both ferromagnetism and antiferromagnetism. Ferromagnetism
is straightforward, since the material carries a macroscopic magnetization. There
are three geometries for how we conduct the MOKE experiments, depending on the
relative orientation between the magnetization, the sample surface and the scattering
plane, as illustrated by Figure 1.3. When the magnetization is perpendicular to
the sample surface normal, one can use a normally incident light and probe the
polarization change. This is called polar MOKE. When the magnetization is along
the sample surface normal, it will be perpendicular to the propagation of a normally
incident light, so one will have to use obliquely incident light. Within this category,
when the magnetization is parallel to the scattering plane, it makes the reflected light
elliptically polarized and this geometry is called longitudinal MOKE. Or otherwise,
when the magnetization is perpendicular to the scattering plane, it modifies the

reflectivity of the sample surface, and this geometry is called transversal MOKE.

\ L N,

polar longitudinal transversal

Figure 1.3: Three different geometries of MOKE measurements.

For antiferromagnetic materials, the lack of average magnetization does not hinder

their investigation via MOKE. One reason is that the spins in a lot of antiferromag-
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netic materials are canted, through either the antisymmetric Dzyaloshinskii—Moriya
interaction or the coupling to other spin sublattices, forming a net magnetic moment
anyway. The other reason is that if some external stimuli launch some coherent
dynamics in the antiferromagnetic spins, a dynamical magnetization can also be
induced (Némec et al., 2018), which is proportional to L. x dL./dt, where L is the
order parameter of antiferromagnetism: the staggered magnetization, defined as the
average magnetic moment in one sublattice within antiferromagnetism minus the

average magnetic moment in the other sublattice within antiferromagnetism.

Both the Faraday effect and the MOKE effect scales linearly with the magnetic order
parameters, namely, reversing the spins switches the sign of the effect. However,
in some cases, the magnetic orders can, for example, induce some lattice changes
through magneto-elastic coupling, which do not necessarily care about the orien-
tation of the magnetization. In these cases some effects can depend quadratically
on the order parameters. For example, in the Voigt effect (sometimes called the

Cotton—Mouton effect), the polarization rotation angle is
a, = PP sin(2(¢ - B)). (1.9)

where ¢ is the light propagation angle, £ is the magnetization angle, and the magnetic

linear dichroism parameter PMMP

is quadratic in the magnetization projected onto
the plane normal to the light propagation direction. This required relative orientation
between the light propagation and the magnetization is quite opposite to what the

Faraday effect requires.

For completeness I will conclude this part with a discussion of topological materials,
with an emphasis on the effect of band structure geometries on the photogalvanic
effect (PGE), where a dc current can be induced by light illumination through a
rectification process. If a system preserves the time-reversal symmetry but breaks
the spatial inversion symmetry, the Berry curvature € should be an odd function of
the momentum k (Orenstein et al., 2021). Consider that we apply an electric field
along the x direction, the Fermi surface will be displaced along the x direction, and
the net flux through the Fermi surface caused by the Berry curvature € would be
proportional to the electric field E. This net flux will cause an anomalous current
which is a product of the instantaneous acceleration of the electron wave packets
and the Berry curvature flux. This anomalous current requires a circularly polarized
light, because 1) the acceleration is proportional to the time derivative of the field,

which is zero for a dc field, and 11) if the light is linearly polarized, the acceleration
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and the Berry curvature flux will always be out of phase since the former is out of
phase with the field and the latter is in phase with the field. Therefore, this effect
is called the circular PGE (CPGE), and the magnitude scales quadratically with the
light field E.

Optical engineering of quantum materials: A brief history

The previous section focuses on the probe part of a pump probe type experiment.
This section will focus on the pump part, talking about different existing ways that
light can modulate material properties. This section will establish a context where

our research works took place.

When sunlight is strong, the earth is warm. People have known the heating effect of
light for thousands of years. Similarly, if the various subsystems (lattice, electrons,
and spins) thermalize quickly, the effect of light illumination can be summarized
as an elevated temperature. This can be exploited to induce temperature-driven
phase transitions. Heating up the lattice induces structural phase transitions, while
heating up spins above their Curie or Néel temperature induces demagnetization

(Beaurepaire et al., 1996), holding prospects for fast data storage.

Talking about optical engineering of magnetism, although in most cases the electric
field component of light can impart energy into the spin subsystem more efficiently
via spin-orbit coupling, the magnetic field component of light can also naturally
couple to the spins inside the material through magnetic dipole Zeeman interaction,
an energy term of —u - B, where u is the magnetic moment. It has been shown that
the low-frequency terahertz light can induce resonant magnons through this Zeeman

mechanism (Kampfrath et al., 2011).

The magnetic field component of light always carries some finite frequency. If one
wants to mimic a static magnetic field using light, they have to rely on the inverse
Faraday effect, where a static magnetization can be induced by the electric field

component of a circularly polarized light through (Kimel et al., 2005)

M(0) = 1)6(—7T[E(a)) X E*(w)]. (1.10)

This idea of using a finite-frequency electric field in light to mimic a static field in
order to couple to some static orders inside materials has been extended beyond mag-
netism, such as inducing electronic gyrotropic (chiral) orders in 1T-TiSe, through
shining circularly polarized light onto the sample (Xu et al., 2020). By using light to
create a static scalar field that couples to the gyrotropic order, and cool the sample
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down across the gyrotropic phase transition, the authors managed to train a large

chiral domain.

In the previous cases of magnetism control, the spins themselves stay at the original
locations and their orientations change because the light adds an additional term to
the free energy of the spins. However, different nonthermal approaches exist. For
one example, by exciting electrons across the charge gap using light, holons and
doublons can emerge, where zero or two electrons occupy each lattice site which
should be occupied by exactly one electron in equilibrium (Afanasiev et al., 2019).
In this way, the spins themselves are disrupted spatially and it is no surprise the
magnetic order will also be suppressed. As another example, light can modify the
exchange interaction between spins (Ron, Chaudhary, et al., 2020), which is the

already existing term in the spin free energy.

Low-frequency (mid-infrared) light can excite phonons, which are lattice vibrations.
Since most condensed matter physics happens in the background of the lattice,
excited phonons can couple to and modify various orders, including magnetism (Disa
et al., 2020), ferroelectricity (Nova et al., 2019), and superconductivity (Mitrano
et al., 2016). The authors used group theory-based symmetry analysis to determine

which phonon couples to which order nonlinearly.

Established orders can also be reversed using light. If an order can choose from two
possible states with equal energy, the free energy of the order parameter exhibits
a double-well shape. When the light is intense enough, the electrons gain enough
energy to escape their local minimum, as they roll into the other local minimum
(Stanciu et al., 2007; Rubio-Marcos et al., 2018; Ning et al., 2020).

The recent developments of "Floquet engineering" (Y. H. Wang et al., 2013; Oka
and Kitamura, 2019; Rudner and Lindner, 2020; Mclver et al., 2020) have enabled
an optical engineering mechanism where the effects come purely from the coherent
interaction between electrons and the electric field in light. Floquet engineering
can potentially shape the electronic, magnetic, and optical properties of quantum
materials on demand. It will be the main focus of Chapter IV and Chapter 5.1. I
will omit the detailed introductions here.
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Chapter 2

TIME-RESOLVED SECOND HARMONIC GENERATION
(TR-SHG)

2.1 Principles of SHG

Introduction to nonlinear optics

Shine a red beam onto a glass and you get a red transmission. Double the red beam
intensity and the red transmission intensity doubles. This is the essence of linear
optics. Shine a red beam onto a f-BaB,04 (BBO) crystal and you get an additional
blue transmission. Double the red beam intensity and the blue transmission intensity

quadruples. This is the essence of nonlinear optics.

Apart from being an interesting physical phenomenon, optical nonlinearity is useful
in condensed matter research, as will be shown throughout later parts of the thesis.
We performed the main works in this thesis using a second harmonic generation
(SHG) probe, a process where light is generated at double the frequency of the
incident light. Therefore, it is necessary that we provide an introduction of SHG

and the optical nonlinearity in general.

Linear optics can be described by the equation P(¢) = yE(t), where the electric
field induces a proportional electric polarization, linked by y, the 3x3 susceptibility
tensor!. If the field E oscillates with frequency w, the induced polarization P will
also oscillate with frequency w, which will emit scattered light with frequency w.

In reality, there are more terms contributing to P(¢) (Boyd, 2020),
P() = xWE@®) + YPEME() + xPEWGE@)E(@) + ... (2.1)

In this case, if E carrying a frequency w oscillates with a phase factor e, then

P will carry additional e 2wt o=3iwr - factors in addition to the fundamental

frequency e, which means that harmonics of the fundamental frequency are

generated.

Note that this equation is true only for lossless media. If there is absorption of light, the electric
polarization at a certain time instant does not only depend on the electric field at that time instant,
but also on the electric field at earlier time instants. However, even for media with loss, this equation
can still be written in the frequency domain and the main conclusions about optical nonlinearity will
not be affected.



13

The magnitude of the higher-order susceptibility y ") decreases approximately by a
factor of 1/E, when n increases by 1, where Ey is the characteristic atomic electric
field strength on the order of 10! V/m. Therefore, at weak light intensities, the
higher-order frequency generation is much weaker than the lower-order frequency
generation, let alone the fundamental light, because the n-th order harmonic gener-
ation intensity scales to the n-th power of the incident light intensity. As a result,
intense light is required to observe harmonic generations of light, so femtosecond
lasers are suitable for this kind of experiment, thanks to their high peak power.
However, note that at high light intensities, higher-order harmonic generation in-
tensity does not have to be weaker than lower-order harmonic generation intensity,
especially for the comparisons between even- and odd-order harmonic generations

(see the part below).

While the linear susceptibility y(!) is a 3x3 tensor, the second harmonic generation
(SHG) susceptibility y? is a 3x3x3 tensor, and the third harmonic generation
(THG) susceptibility y is a 3x3x3x3 tensor. This ever-increasing number of ele-
ments in the tensors is extremely useful in determining the symmetries of condensed

matter systems, be it structural, electronic, orbital or magnetic.

The essence of harmonic generation can be understood classically. Assume the elec-
trons live inside a harmonic potential, and the electric field at frequency w serves as
the external force on the electrons. Then the problem is a simple forced harmonic
vibration, and the well-known steady-state solution is just the electrons vibrating at
w. There is no second- or third-harmonic generation. However, if we add higher
than quadratic terms into the electron potential, the Fourier transform to the os-
cillating solution of the electrons will contain higher-order frequency components.
Depending on whether the electrons live in a noncentrosymmetric or centrosymmet-
ric environment, the lowest-order correction to the harmonic x> potential is the x>
or the x* term, enabling a lowest-order harmonic generation at the second harmonic
or the third harmonic (meaning that SHG is forbidden in centrosymmetric media

within this classical model).

SHG as a way to study system symmetries: Various origins

We can use a simpler argument to show that SHG is mostly forbidden in centrosym-
metric media. The SHG process (actually, only the leading-order electric dipole
term, as we will soon see) can be described by the equation

2),ED
Pi(2w) = x5
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where the summation over j and k is implicated on the right-hand side. I will
discuss the the exact meaning of ED later. Now let us apply a spatial inversion
operation to the Equation 2.2. Here P becomes —P and E becomes —E since they
are polar vectors. If the system possesses spatial inversion symmetry, y®EP is not
changed at all. Therefore, Equation 2.2 becomes —P;(2w) = )(l.(jzlz’EDE (W Er(w),
telling us that y®EP must vanish. Historically, this property makes SHG a very
sensitive probe for surfaces or interfaces, since they necessarily break the inversion
symmetry. SHG is also a sensitive probe for phase transitions that breaks the
inversion symmetry, such as ferroelectricity (which will be part of the focus of

Chapter III).

With this inversion symmetry sensitivity said, it was well known to researchers
in the early days of SHG that SHG can also occur in centrosymmetric materials
(Bloembergen, Chang, et al., 1968), though often orders of magnitude weaker
than the SHG from noncentrosymmetric materials. What is the origin of the SHG
observed? Now we clarify some terms used to distinguish SHG origins. The process
described by Equation 2.2 is called the electric-dipole (ED) process, which is the
leading order of SHG. If the bulk of the material breaks the inversion symmetry,
then the bulk ED is allowed, and everything is good.

If the bulk ED is forbidden by the inversion symmetry, we need to distinguish
between several other SHG processes. The first one is the surface ED, which is the
same ED term, but from the necessarily inversion symmetry-breaking surface of
the materials. The surface ED is much smaller than the bulk ED term, because the
surface effect is only evident in several top layers, while the bulk ED contribution
can come from all the way down to the penetration depth of the fundamental or
SHG light, whichever is smaller. Another often overlooked ED SHG source is the
randomly oriented polar domains, which break the local inversion symmetry and
thus allow a finite ED SHG (Dolino, 1972).

Or more often, we need to consider higher-order SHG process in the absence of bulk
ED. The first one is the magnetic dipole (MD) contribution, and the second one is
the electric quadrupole (EQ) contribution. Both contributions are 1/c weaker than
the ED contribution, where c is the speed of light. Basically this is a game of how
you can combine two quantities oscillating at w to form another quantity oscillating
at 2w. Within the MD category, there are two ways. The first one is combining
E(w) and H(w) within light to form P(2w), where H is the magnetic field, and
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P(2w) oscillates to emit SHG. We call this the type-1 MD SHG,

Pi(2w) = X}J?,}MDlE () H (). (2.3)
The second one is still combining two E (w), but forming an oscillating magnetiza-
tion M (2w) to emit SHG. We call this the type-2 MD SHG,

2).MD2
M;(2w) = )(i(jlz

Ej(w)Ei(w). (2.4)
Both processes are allowed in centrosymmetric media because H and M are axial

vectors.

The EQ contribution is a combination of two E(w) to form an oscillating electric
quadrupole Q(2w) to emit SHG. A lot of literature converts this to an equivalent
form, which is combining £ (w) and its gradient VE (w) to form P(2w), described
by the equation P;(2w) = )(l.(J.ZIZ}EQ,E (w)ViE(w). However, we need to take
precautions with this conversion because it is actually a sum of EQ and type-1 MD
(Pershan, 1963). We show this by breaking up this equation to symmetric and
antisymmetric parts regarding the last two indices,
1 0)Ey 2).EQ’
Pi(2w) = S L B (@) VeEI(0) + X Ej(@)VIEk(w)] o5

1 ’ ’
LY Ej (@) VeEN (@) = x (Y Ej(@)ViE(w)].

For the antisymmetric part (the second line of equation 2.5), V4 E;(w) — V,E(w)
is actually just H. Therefore, the symmetric part (the first line of Equation 2.5)
corresponds to the EQ SHG, described by

P;(2w) = X}j?,z;EQE,-(w)vkEl(w), (2.6)

where the last two indices of the fourth-rank tensor y?EQ are interchangeable (for

more details on the intrinsic symmetry of the y(? tensors, see Chapter 2.2).

With surface ED, type-1 MD, type-2 MD and EQ all allowed in the absence of bulk
ED SHG, how do we know what exactly the source is if we observe some SHG in a
centrosymmetric material? The first way is tracking how the SHG intensity evolves
with the angle of incidence of the fundamental light, while keeping other factors
fixed. This can be done by using an s-polarized light, where the polarization is
perpendicular to the scattering plane, so the electric field direction stays fixed when
the angle of incidence is changed, and detecting the s-polarized component of SHG
(I will discuss more details in Chapter 2.2). ED SHG contribution is not affected
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by the angle of incidence, as evidence by the Equation 2.2, so the SHG should be
constant for all angles of incidence. However, MD and EQ contributions depend
strongly on the angle of incidence. For the type-1 MD, the direction of H depends on
the angle of incidence. For type-2 MD, how the oscillating M generates the detected
SHG depends on the angle of incidence. For EQ, the V part actually renders the
dependence on the angle of incidence (more details in Chapter 2.2). Another way to
distinguish these different SHG sources is by performing SHG rotational anisotropy,
where different processes have different functional forms. This will be the main
topic of Chapter 2.2. In that chapter we will also talk about how the different

processes above contribute to the final SHG intensity that we observe.

Apart from discerning the inversion symmetry, SHG can also resolve different point
groups better than linear optics. The root of this advantage is the increased number
of susceptibility tensor elements. I will provide an example to illustrate this point.
Consider the point groups 3 and 4 for example?. For linear susceptibility tensor, the

symmetry-allowed tensor forms of these two point groups is the same

X O 0
0 xu O] (2.7)
0 0 Xz

so linear optics cannot distinguish these two point groups. On the other hand, their
SHG susceptibility tensor y ?-EP is very different. The tensor for the point group 3

1S

Xxxx Xxxy Xxxz
Xxxy —Xxxx Xxyz
Xoxxz Xoxyz 0
Xxxy —Xxxx —Xxyz
—Xaxx —Xaxxy Xxxz ||, (2.8)
~Xoxyz Xoxxz 0
Xzxx 0 0
0 Xzxx 0
0 0 Xzzz

2Throughout this thesis I will use the Hermann-Mauguin notation, sometimes called the inter-
national notation, for point groups. The correspondance between different notations can be found on
the webpage https://en.wikipedia.org/wiki/Crystallographic_point_group.
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which has six independent coefficients, while the tensor for the point group 4 is

0 0 Xxxz
0 0 Xxyz
Xxxz Xxyz 0
0 0 ~Xxyz
0 0 Xxxz || (2.9)
~Xxyz) Xz 0
Xzxx 0 0
0 Xaoxx 0
0 0 Xzzz

which is different from Equation 2.8 and has four independent coefficients. There-

fore, SHG is able to distinguish between the point groups 3 and 4.

Above, we talked about how we use SHG to say something about the point group of
the materials, especially the inversion symmetry of the system, and what other SHG
processes exist in centrosymmetric media. Now at the end of this section I would
like to talk about time-reversal symmetry a little bit—not really how SHG helps
to determine the time-reversal symmetry of the systems, but how the time-reversal

symmetry dictates the form of the SHG susceptibility tensors.

Under time-reversal, nonmagnetic systems often do not change?, so the SHG tensors
should not change. We call these time-reversal even tensors the i-type tensors. In
magnetic systems, the time-reversal operation reverses all the spins inside the system,
and how the SHG susceptibility tensors change depends on how the tensors couple
to the magnetic order. If the tensors couple directly (linearly) to the magnetic order,
then the tensors should also change sign. If the tensors couple indirectly to the
magnetic order (for example, quadratically because the tensors couple to the lattice
deformation induced by the magnetic order), then the tensors should stay the same.
We call the time-reversal odd tensors the c-type tensors. The i or ¢ types will impose
additional restrictions to the tensor forms. An important thing to note here is that
whether the tensor is i- or c-type does not depend on the SHG category (ED, MD,
or EQ), namely, one has to determine how a specific SHG process seen in a specific
material couples to the magnetic order, in order to determine the type of the SHG

tensor, and cannot make a priori guesses on the types of the susceptibility tensor.

3This is not actually true if the SHG probe fundamental frequency or its second harmonic is
resonant with some electronic transitions, since the excitation of electrons can have complicated
ramifications on the treatment of the time-reversal operation.
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Quantum mechanical descriptions of SHG

The classical model of harmonic generation mentioned above is intuitive, but does
not help much if we want to perform calculations of y‘?) in real materials, especially
if the fundamental frequency w or 2w is close to some electronic transitions. We
will resort to a quantum mechanical description of SHG here. SHG is a three-photon
process, where the density of photons is so high that the material can simultaneously
absorb two photons and emit one photon which combines the energy of the prior two
photons, as illustrated in Figure 2.1. The system starts from an initial state, absorbs
fiw to an intermediate state, and then absorbs 7iw to the final state. The intermediate
state and the final state can be virtual states. However, if there are states close to the
energy hw or 2hiw, the SHG will be enhanced.

III:‘IIIIIIIIIII

hw
2hw

hw

Figure 2.1: The three-photon process.

If we want to treat this problem quantum mechanically, we need to write down the

Hamiltonian caused by the SHG probe light,

1

H=>—[p - qA(r, N1 +qe(r,1), (2.10)
m

where A is the vector potential and ¢ is the electrostatic potential. Using the
Coulomb gauge, V x A(r,t) = 0, we can drop the second term since ¢(r,7) = 0.

Therefore, the interaction Hamiltonian is

ve 94,
m
) 2.11)
— _ﬁA(O) X pel(k~r—wt).
m

In the electric dipole approximation, we assume the light wavelength is much larger

than the dimension of the electronic wavefunction, and set e*” = 1. If we retain
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the Taylor expansion of this exponential to higher orders, we get MD, EQ SHG

and so on. So with the Coulomb gauge and the electric dipole approximation
V = ~(q/m)A(0) - pe™".

Often in condensed matter physics we use another gauge, called the length gauge.
The length gauge and the Coulomb gauge are related by the Goeppert-Mayer trans-
formation, A’(x) = A(x) + VA, where A(x) = —x - A(0). In the length gauge, the

interaction Hamiltonian can be written as
V =—eE(0,1) - x. (2.12)

Plugging this interaction Hamiltonian to a second-order time-dependent perturbation
theory, we can calculate the SHG susceptibility in the ED channel

- E; = 2hw)(Em — Eg — hiw)
(glr;1E){f]ri|m)(m|r;|g)
(Em — Eg + 2hw)(Er — Eg + hw) (2.13)

N (glri|£){f]rilm)(ml|r;|g)
(Ef — Eq — hw)(Em — Eg + hw)

VD o Z (glri|£){t|r;|m){mlr|g)
ijk (Ef
m,f

+(j © k).
Here g denotes the ground electronic state to start with, m and f are intermediate
states and final states to be summed over. If one already knows the wavefunctions of
the extended states derived from the band structure or localized states derived from
a single-ion model inside a material, they can select the states which are closest to

resonance with any of the three lines# in Equation 2.13 and calculate y.

2.2 SHG rotational anisotropy

The high-speed measurement setup: from 10 K to 400 K

SHG is good for distinguishing between different point groups of the materials,
thanks to the large number of independent tensor elements. However, a single SHG
intensity cannot tell us which elements are zero and which are not. One needs to
measure at least a functional form in order to fit according to some hypothetical
point group, to determine whether the point group is correct or not. This is achieved

through SHG rotational anisotropy (RA).

The principle of SHG RA measurements is as follows: a fundamental beam is

focused onto the sample surface and the reflected SHG intensity in the specular

“4These three lines correspond to three SHG pathways, and often only the first line remains if the
system starts from the ground state.
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direction is measured. The single crystal sample rotates along its sample surface
normal, then the SHG is measured as a function of this sample rotation angle. We
can control the incident light to be s- or p-polarized, and we can choose to collect
the SHG reflection in the s- or p-polarization. Therefore, we get four combinations
- SS, SP, PS, and PP, where the first (second) letter indicates the incident (reflected)
light polarization. However, this approach has two problems (Torchinsky et al.,
2014). The first is that for low-temperature measurements the samples are placed
inside a cryostat, and due to the space limitations it is not easy to rotate a sample
inside the cryostat. The second problem is that, if the beam is not focused exactly
at the center of the sample rotational axis, when the sample is rotated the beam
will walk on the sample surface, thus greatly limiting the measurement capacity.
Therefore, we adopted an alternative but equivalent approach, where we do not
rotate the sample but rotate the scattering plane consisting of the incident light and
the SHG reflection. This is basically saying instead of rotating the sample in the

lab, we rotate the lab around the sample.

When rotating the scattering plane, there are two strategies. One is measuring SHG
angle by angle—staying at one angle, measuring SHG for a period of time, then
rotating to the next angle until the whole 27 rotation is finished. For this approach,
we can use a photomultiplier tube (PMT) combined with a lock-in amplifier to
measure the SHG intensity at each scattering plane angle. However, this approach
cannot filter out the low-frequency noises for the laser intensity, namely, if the SHG
intensity differs between two scattering plane angles, it is hard to say whether it truly
comes from the SHG anisotropy or it comes from the laser intensity fluctuation.
Therefore, we adopted another approach for better signal-to-noise ratio. We rotate
the scattering plane with a high frequency (~2 Hz) while almost simultaneously
measuring the SHG reflection from all angles, and integrate for a period of time
in order to average between rotations (Harter et al., 2015). Since SHG responses
from different angles cannot be separated temporally with this approach, it requires
separating them spatially. Since PMT has no spatial resolution, we used a charge-
coupled device (CCD) camera as the SHG detector.

As illustrated in Figure 2.2, we used a grating-based oblique-incidence setup to
measure the SHG rotational anisotropy, because by using oblique incidence with
a combination of all the four polarization combinations (SS, SP, PS, and SP) we
can obtain more complete information about the SHG susceptibility tensor y?,

and by using a grating we can make sure that the focused beam does not move
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on the sample when we rotate the scattering plane. A diffraction grating diffracts
the incoming beam to various orders m according to the equation d sin 6, = mA,
where d is the distance between adjacent slits of the grating. In normal gratings the
majority of the diffracted power goes to the O-th order, which is not needed in our
experiment. We only need the +1 order in order to perform the oblique incidence,
though with normal incidence on the grating the -1 order will also be inevitably

generated. Therefore, we chose to use a phase mask to diffract the incoming beam.

Figure 2.2: The SHG-RA setup. The left is a cartoon taken from Harter et al., 2015.
The right is the actual setup.

A phase mask is just like a diffraction grating—periodic slits etched into fused
silica, and the slit distance determines the diffraction angle. However, in phase
masks the etching depth is accurately controlled, and by selecting the correct etching
depth (see Figure 2.3), interference effects make the O-th order diffraction vanish.
Each wavelength corresponds to an optimal etching depth’. Therefore, the main
diffraction power goes to the +1/-1 orders, while some remains in the higher orders.
For 800 nm normal incidence, the optimal etching depth is 0.882 ym. For 1200
nm normal incidence, the optimal etching depth is 1.339 ym. For 1030 nm normal
incidence, the optimal etching depth is 1.144 um. We use d sin 6,, = mA to calculate
the diffraction angle. For fundamental wavelength of 800 nm, we used a phase
mask with d = 14.4 um, resulting in a diffraction angle of 3.2°. For fundamental
wavelength of 1200 nm, we used a phase mask with d = 21.4 um, resulting in a
similar diffraction angle. The material of our phase mask is AR-coated fused silica,

and the lateral dimensions are shown in Figure 2.3. The total thickness of the phase

SFor a calculator of the optimal etching depth, see https://www.holoor.co.il/optical-
calculator/gratings-optical-calculator/.
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mask is 0.5 mm, which can be varied. A possible vendor is Photomask PORTALS.
We face the etchings towards the sample. The duty cycle of the etching is 50%.

period

a=10mm Tdepth

a=10mm

Figure 2.3: The phase mask. The left is a top view showing the lateral dimensions
of the phase mask, with etched and un-etched sections. The right is a side view
of the etched section of the phase mask, showing the period and the etching depth.
Courtesy of Wencan Jin.

Now I would like to describe all the optics involved in the SHG-RA setup from
upstream to the sample, then to the CCD detector. The whole setup is horizontal
and on an optical table lower than people’s eyes, in order prevent stray laser light
from entering the eyes. Before light enters the setup, it goes through some power
and polarization control optics. For the power control, we can either use two
polarizers (Thorlabs LPVIS050), a half waveplate (Thorlabs WPHO5M-808) and a
polarizer, or a continuous variable neutral density filter (Thorlabs NDC-25C-2-B)
and a polarizer. Because in the SHG-RA setup, the incident light onto the sample
is linearly polarized, and the light power must be kept constant while the scattering
plane is rotated, we must shine a circularly-polarized light into the setup and use
a rotating polarizer to choose s or p polarization. Therefore, we put a quarter
waveplate (Thorlabs AQWPO5M-980, QWP in Figure 2.2) after the power control
module, and make the fast axis of the quarter waveplate at 45° with the polarization
axis of the polarizer in the power control module to create circularly-polarized light.
The circular polarization can be checked by measuring the output power as one
rotates another polarizer after the quarter waveplate; it should be constant, or in

practice within 5% variance.

Then we use a telescope (Thorlabs LA1433-B with f = 150 mm, and AC508-075-B
with f =75 mm as L1 in Figure 2.2) to shrink the beam size going into the setup
by a factor of half. After the first lens of the telescope we put a rotating polarizer
(Thorlabs LPVIS050, LP1 in Figure 2.2) to control the incident polarization. We

Shttps://www.photomaskportal.com.
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put the phase mask (PM in Figure 2.2) close to, but not exactly at the focal point of
the first lens, in order to reduce damage to the phase mask. In practice, we put the
phase mask after the focal point of the first lens. The +1 and -1 order diffraction
beams diverge after the phase mask, and the second lens of the telescope (L1) also
serves to collimate these two orders. In real experiments, the -1 order is blocked by

a black tape and only the +1 order passes through.

Then we use an achromatic doublet lens (Thorlabs AC254-030-AB-ML, L2 in Figure
2.2) with a focal length of 30 mm as the objective, to get both a tight focus and a
significant angle of incidence of ~ 8°. Note that both the fundamental and SHG
wavelengths pass through this doublet lens. That is why we used an achromatic lens,

and one needs to pay attention to which side of the lens faces the incoming beam.

The sample is placed at the focus of the objective, and its surface normal should be
aligned to coincide with the optical axis of the whole setup in order to get a constant
angle of incidence when the scattering plane is rotated. In practice, both of these
two constraints can be met if the +1 order reflection beam coincides with the -1
order incoming beam, and the -1 order reflection beam coincides with the +1 order

incoming beam.

The reflected beam passes through an output polarizer (Thorlabs GT5-A, LP2 in
Figure 2.2) to select the SHG polarization between between s and p. In some
literature this output polarizer is also called an analyzer. Because the reflected beam
is not along the optical axis of the setup, we mounted the output polarizer on a cage
plate (Thorlabs SPO1). We machined a hole on one side of the plate to hold the
output polarizer, and another hole on the other side of the plate to allow the incident

beam through.

Finally we arrive at the signal collection and measurement module. Instead of normal
mirrors, We use dichroic mirrors (transmitting longer wavelengths and reflecting
shorter wavelengths) with a cut-oft wavelength of 635 nm (Semrock Di03-R635-t1-
25-D which is of custom size) to steer the SHG beam into the CCD detector, in order
to pre-filter out the fundamental wavelengths. We use a periscope geometry. We
use one dichroic mirror to reflect the beam up to the vertical direction, and a second
dichroic mirror to pick up the beam and reflect it into the CCD (DM2 and DM3 in
Figure 2.2). Note that the fundamental beam also transmits through DM?2 before
reaching the sample. When the scattering plane rotates, the incident fundamental
beam polarization oscillates between s and p for DM2, causing an oscillation in
the intensity transmission, we put a third dichroic mirror (DM1 in Figure 2.2) to
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compensate for this unwanted effect (Harter et al., 2015).

Before the CCD we put several spectral filters to further filter out the strong funda-
mental reflection. For our 800-nm SHG experiments, we used two 650-nm shortpass
filters (Edmund optics 84-712) and two 400-nm bandpass filters (Thorlabs FB400-40
and FBH400-40).

Since the SHG intensity is very weak, we used an electron multiplying CCD camera
(Andor iXon Ultra 987) to enhance the detection efficiency. The 512x512 pixels
enable the SHG signal at different scattering plane angles to be projected onto
different spots on the CCD image. Cooling the CCD camera down to -85 °C helps
reducing the thermal noises, but cosmic rays can still enter the CCD as super bright
spots on the acquired CCD image. Therefore, we always acquire more than one
CCD image with the same experimental conditions and use despeckle algorithms to
obtain the correct SHG rotational anisotropy. We show some typical CCD images
in Figure 3.3. Since the beam has a finite size, we choose an inner ring and an outer
ring which encompass the measured signal, and integrate everything between these
two rings to get the SHG intensity at a certain scattering plane angle. A box made of
black acrylic sheets encompasses the whole setup with holes to let beams through,

in order to reduce the noise.

To rotate the scattering plane, the input polarizer LP1, the phase mask PM, and
the output polarizer LP2 need to rotate with exactly the same speed. This in-
frastructure is done by coupling all spinning parts to the same rod (McMaster-
Carr 8934K26) through tubes, needle-roller bearings (McMaster-Carr 5905K135),
sprockets (McMaster-Carr 2737T2 and 2737T13), and roller chains (McMaster-
Carr 6261K171). The rod is then connected to a stepper motor (Lin Engineer-
ing 5618S-01S-RO) through shaft couplings (McMaster-Carr 6412K11), which is
then controlled by a motor controller [Galil DMC-30016-BOX(SER)]. We use cus-
tomized programs to control the rotation of the scattering plane, and set the rotation

frequency to be 2 Hz.

We mount our samples onto customized copper sample mounts using Torr Seal
epoxy for better thermal conductivity. If one performs SHG-RA experiments at
room temperature and ambient pressure, we can simply tape the sample mount
onto a standard mirror mount for easier alignment. If one wants to perform these
experiments at lower/higher temperatures, we use optical cryostats (Janis ST-500)
in combination with IR fused silica windows for different temperatures and optical

access, where the window transmission is nearly constant (~ 90%) in the near
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infrared range.

For measurements at different temperatures we screw our sample holder onto the
cryostat cold plate with indium foil between them for better thermal conduction. The
whole chamber is pumped down to 10~ torr by a vacuum pumping station (Pfeiffer
HiCube 80 Eco) combining a backing pump and a turbopump. We have achieved
temperatures from 80 K to 400 K using liquid nitrogen as the cryogenic liquid and
down to 10 K using liquid helium. For low-temperature experiments we glue a
cover slip onto the extruded sample mount edge with vacuum grease, lying on top
of the sample surface with a gap. This trick prevents low-temperature condensation
forming on the sample surface during measurements. Since our SHG-RA setup is
horizontal, we use the cryostat vertically, and use transfer lines to transfer cryogenic
liquids into the cryostat. Normally the pressure inside the liquid dewar is more than
3 psi higher than the atmosphere pressure for stable liquid flow. We connect a tube
from the exhaust arm of the cryostat to prevent ice from forming at the output port
of the cryogenic exhaust. We put the cryostat on an XYZ translation stage (Thorlabs
PT3) for easier movements.

Determining the susceptibility tensor
In this section I will talk about how to determine the SHG susceptibility tensor y (2
from the measured SHG rotational anisotropy with SS, SP, PS, and PP polarization

channels.

As shown in Chapter 2.1, either P or M is generated at frequency 2w. The conversion
from P or M to our measured SHG reflection is a complex problem requiring solving
the Maxwell’s equations under boundary conditions (Bloembergen and Pershan,
1962), but a simple conclusion is that, both the magnitude and the direction of the
electric field in the SHG reflection E(2w) is proportional to P(2w), and likewise
for the relationship between H and M. E and H are related by E o« k X H.

The procedure starts from determining the SHG process (ED, EQ, or MD; i- or
c-type) and the material’s point group. With this information the form of the y(?
tensor can be determined. We used the Bilbao crystallographic server to help us

with this task”. This involves several steps:

i) Determining the rank of the tensor. ED and MD tensors are of third-rank, and EQ
tensors are of fourth-rank.

https://www.cryst.ehu.es/.
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i1) Determining the intrinsic symmetries of the tensor. For ED, all the three indices
correspond to polar vectors, and the last two indices should be interchangeable be-
cause the ivalent ing that y?EP = (2-ED
y are equivalent, meaning that x, ;" = x;
symmetry of the tensor is V[ V2] (using the Jahn symbols?). For type-1 MD, the first

. Therefore, the intrinsic

two indices correspond to polar vectors and the last one corresponds to an axial vec-
tor. The intrinsic symmetry is V2eV. For type-2 MD, the first index corresponds to
an axial vector. The last two indices correspond to polar vectors and are interchange-
able. The intrinsic symmetry is eV[V2]. For EQ, all the four indices correspond to
polar vectors. Normally in the equation P;(2w) = Xl.(jZIE}EQE (w)ViE(w) we sub-
stitute V with ik because the electric field carries a phase factor e!*”. However, this
needs to be done with caution since the V gradient takes place inside the nonlinear
optical material and k is not continuous across the material surface (Yang et al.,
2009). Therefore, in the rare instances where the incident beam contains both s and
p polarization and the gradient is taken along the sample surface normal and the
material is anisotropic, we cannot replace V with ik. Fortunately, in the common
cases we are allowed to replace V with ik and therefore the second and fourth in-
dices of the tensor y»-EQ are interchangeable. In Chapter 2.1 we already said that
for the EQ contribution the last two indices should be interchangeable, so the last
three indices should all be interchangeable. The intrinsic symmetry is V[V3]. For
magnetic point groups, if the tensor is c-type, a time reversal constant a should be
added in front of the Jahn symbols for relevant SHG processes (see Appendix A for

an example).

iii) Using the selected (magnetic) point group and the Jahn symbols corresponding
to the intrinsic symmetries, we can use the Bilbao crystallographic server to get
the corresponding SHG susceptibility tensors. One should be careful about the
convention of the definition of x, y, and z directions used in the server, especially

for trigonal and hexagonal point groups.

Having obtained the tensors, we need to rotate them from the structural coordinates
to the lab coordinates, where the sample sample surface is the xy plane and the
surface normal is z. Say the sample surface normal is the direction [hkl] so the
normal unit vector is u = r/|r|, where r = ha+ kb + [c. To rotate the tensor, we first

need to find the rotation matrix that rotates vector z = (0,0, 1) to u, which is

1-c¢
R=1+[v]x+[vi——

(2.14)

S

8https://www.cryst.ehu.es/html/cryst/mtensor_help.html.
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where v =z Xu, s = |v|, c = z- u, and [v]x is the skew-symmetric cross product

matrix of v defined as

vi 0 —vi|. (2.15)

Using a third-rank tensor as example, then we can calculate the tensor in the lab
coordinates as
lab crys
Xl';}k = Rl'l"Rjj/Rkk/Xl'/jy/k/' (216)

Then we calculate the tensor when the scattering plane (or equivalently, the sample)

rotates by an angle ¢. The rotation matrix R¥ can be expressed as

cosp —sing O
—sing cosp Of, 2.17)
0 0 1

so the tensor can be transformed as
¢ _ p¥ p¥ p¢ lab
Xin = R R R X i (2.18)
We will use this tensor to calculate the SHG intensity at a scattering plane angle ¢.

We set the scattering plane to be the xz plane, and use an angle of incidence 6.
The wave vector k o« (sin 0, 0, cos 8). For s polarization incidence, the electric field
E « (0,1,0). For p polarization incidence, the electric field E o (—cos 8, 0, sin 6).
The magnetic field H o< k X E.

Then we can calculate P(2w), using the tensor and the fields. For s polarization
reflection, the measured SHG intensity / (2w) o (Py)z. For p polarization reflection,
the measured SHG intensity /(2w) o (P, cos@ + P, sin#)?, because we need to
project the SHG field amplitudes to the direction perpendicular to the reflection

wave vector.

We have obtained the functional form of /(2w) in all the four SS, SP, PS, and PP
geometries. If we have also measured the SHG rotational anisotropy data, we can
then fit these four channels simultaneously. In the actual data we need to know
which angle corresponds to ¢ = 0 in the functional form. This can be done either
through some symmetry analysis or by marking some specific crystallographic axis
on the sample holder, so we can compare this direction with the obtained SHG
anisotropy in the setup geometries. For the simultaneous fit, we are sometimes

allowed to add an (close to one) overall factor to each polarization channel to
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account for the difference in reflectivity between s— and p— polarized light. If the
fitting is reasonably good, we can extract the relative strength between different
tensor elements and/or their temperature evolution. To get their absolute values,
we need to compare the measured intensity to that of some standard sample, such
as GaAs. If the fitting fails, one needs to either consider other SHG sources, or
conclude that the point group which is used for the fit has higher symmetry than the

actual point group of the sample.

2.3 Time-resolved measurement techniques

Generating pump pulses: Regenerative amplifier, OPA, DFG, and BBO

We have thoroughly introduced the SHG probe technique. Now I will turn to the
pump side—the laser pulses that actually modulate the material properties. In the
Hsieh lab we use a Ti:sapphire femtosecond ultrafast laser (Coherent Astrella),
which has a fundamental output of 800 nm pulses. The rep rate is 1 kHz, the pulse
width is 35 fs, and the maximal power is 5 W. We use a beam splitter to split 3.5 W
into an optical parametric amplifier (Light Conversion TOPAS), which can generate
a spectrum from 1160 nm to 2600 nm. The maximal efficiency occurs at 1400 nm,
where the power of the signal plus idler can reach 1 W. The OPA beams can either go
through a differential frequency generation (DFG) module to generate wavelengths

as long as 15 ym with a power ~ 10 mW, or bypass DFG to directly reach the setups.

I would like to use this section to briefly discuss the components of a femtosecond

laser, as well as OPAs and DFGs. I will use the systems in the Hsieh lab as examples.

The main part of Astrella is a regenerative amplifier, where weak pulses can be
amplified inside the gain medium Ti:sapphire, and the amplified pulses are the main
output of the laser. Two important beams need to enter the regenerative amplifier,
including the seed laser which contains the weak pulses to be amplified, and a pump
laser to supply energy to the amplifier (inducing the population inversion). I will
talk about the general principles of a regenerative amplifier later, and now I want to

first focus on the seed laser and the pump laser.

The seed laser in the Astrella system is called Vitara. Vitara itself is an 800-nm
Ti:sapphire laser (one that is not amplified is often called an oscillator) made by
the mode-locking mechanism described in Chapter 1.2, with a bandwidth of 70
nm. Vitara also needs its own pump laser to gain energy. That pump module
is called Coherent Verdi G-Series, which is a continuous-wave optically-pumped

semiconductor laser emitting green (532 nm) light. Verdi G itself is pumped by



29

an 808-nm laser diode. The emission wavelength of Verdi G is engineered by the
composition and the thickness of the gain medium, and the emitted radiation is
converted to green by frequency doubling with nonlinear crystals. The rep rate of
the oscillator Vitara is 80 MHz.

The pump laser for the amplifier in the Astrella system is called Revolution. Revolu-
tion is a diode-pumped, intra-cavity doubled, Q-switched Nd: YLF laser of 527 nm.
Q-switch is another way to make ultrafast lasers other than mode locking. While
mode locking is used for generating femtosecond pulses, Q-switch is mainly used for
nanosecond pulses, where the Q (which stands for quality) factor of the lasing cavity
which controls the loss of light circulating the cavity can be switched. Though some
lasers use electro-optical Q-switch, most Q-switched lasers (including Revolution)
use acousto-optical Q switch, where a radio-frequency (RF) signal is converted to
ultrasonic vibrations in the acousto-optical modulator, which then changes the loss
of the circulating light. When the loss is high, lasing is suppressed. When the loss
is low, a burst of laser power is emitted. The 527-nm beam comes from frequency

doubling through an LBO crystal.

With the seed laser and the pump laser ready, we are now ready to talk about the
principles of the regenerative amplifier. We should note that the peak power of the
pulses is very high, and thus prone to unwanted nonlinear effects in the gain medium.
Therefore, the lasers use a method called chirped pulse amplification (CPA), which
earned a Nobel Prize in Physics in 2018. In this method, the pulses are stretched
in time, so their peak power can be greatly reduced. Then the stretch pulses get
amplified. Finally they are compressed again in time to form short but stronger

pulses.

There are two ways to stretch a pulse in time. As Equation 1.2 shows, the shortest
pulse width is inversely proportional to the bandwidth of the pulse. A pulse whose
time duration is equal to this shortest value is called bandwidth limited, meaning that
its time duration cannot be further compressed unless it gains a broader bandwidth
through nonlinear processes. Therefore, one way to stretch the pulses is cutting some
bandwidth of the pulses, so the remaining bandwidth still forms a bandwidth-limited
pulse, though with longer time duration. However, in this way the pulses cannot be
compressed back after the amplification process because part of the bandwidth is

already lost, so it is not an ideal way to stretch pulses in this application.

So we turn to chirping the pulses. A chirped pulse is not bandwidth limited. A very

common way to produce chirped pulses is to pass a bandwidth-limited pulse through
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Revolution: pump laser, 1 kHz,
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Pockels cell pulse picker, 1 kHz

Figure 2.4: The layout of Astrella. The thick blue arrows mean pumping energy.

any dispersive media. Red light travels faster than blue light inside the media, so
red light leads the pulse and blue light trails behind. As a result, the pulses get
stretched in time. A more efficient and controlled way to induce chirping is by using
prism pairs or diffraction grating pairs. A prism or grating can separate different
wavelengths spatially, so different wavelengths travel different distances (in air or
vacuum) at the same speed c, resulting in chirping effects similar to the ones seen in
dispersive media. Normally the beam needs to go through four prisms or gratings

to merge spatially again.

After the pulses are stretched, they are sent into the regenerative amplifier. For
the regenerative amplifier, the gain medium first accumulates energy by optical
pumping. Then, an electro-optical or acousto-optical switch opens so a pulse can
enter the cavity and undergo several round trips inside the cavity to be amplified,
and then the pulse gets emitted out of the cavity. An electrically controlled Pockels
cell, which manipulates the beam polarization, and a polarizer are used as a pulse
picker, to down convert the rep rate from the 80 MHz oscillator to 1 kHz. A sketch

of the whole Astrella system is shown in Figure 2.4.

The 800-nm pulses from the Astrella amplifier then enter the OPA to generate
longer wavelengths. One can view this process as breaking the 800-nm photon
(1.55 eV) into two parts, whose photon energy sums up 1.55 eV (the fundamental
pump photon energy). The part that has a higher energy (wavelength shorter than
twice the pump wavelength) is called the signal beam and the part that has a lower

energy (wavelength longer than twice the pump wavelength) is called the idler beam.
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However, the real optical path is more complicated.

The 800-nm pump beam is split into three ways: 80% as beam 1, 16% as beam 2, and
4% as beam 3. Beam 3 is focused onto a nonlinear crystal (NC1) to generate a white
light continuum (WLC), which contains the signal wavelengths. The WLC is then
dispersed in time. Both the WLC and beam 2 are focused onto another nonlinear
crystal (NC2). Beam 2 serves as the pump beam to amplify some wavelengths of
the WLC. The time delay between beam 2 and the WLC is controlled, and which
wavelengths of the WLC coincide with beam 2 in time on the NC2 determines
which wavelength of the WLC gets amplified. This wavelength will be the signal
wavelength of the OPA output. The amplification happening in the NC2 is the
pre-amplification process. After the pre-amplification, only the pre-amplified signal
continues to propagate, and all other beams (including the beam 2 as a pump and
the idler wavelengths generated, as well the sum frequency generation between
these wavelengths) are blocked. The pre-amplified signal typical outputs 1-3 uJ of
energy. The following main amplification process can boost this to tens ~ hundreds

of microjoules.

The path length of main pump beam (beam 1) is controlled so that beam 1 and
the pre-amplified signal arrive at a third nonlinear crystal (NC3) at the same time.
On the NC3, both beam 1 and the pre-amplified signal are collimated and follow
exactly the same beam path. In this way, the signal can be amplified again. Proper
pump intensity is required for saturated amplification. If the pump intensity is too
low, the conversion efficiency of OPA is low. If the pump intensity is too high,
both the spatial and spectral profile of the OPA output will be bad. In this way, the
idler is also generated in collimation with the signal, and the signal polarization is

perpendicular to the idler polarization.

After the signal and idler beams are generated through the OPA, they can enter the
non-collinear differential frequency generation (NDFG, here non-collinear means
that the signal and idler beams are not collinear on the DFG crystal) to generate
longer wavelengths. If one pumps the OPA with photon energy Ep, and requires
a DFG photon energy Eprg, the required signal and idler photon energies can be
calculated as

Esig + Eiq = Epu, (2.19)

Egig — Eia1 = EDpFa- (2.20)

In the actual beam path, the collimated signal and idler beams coming out of the

OPA get separated by a dichroic mirror, and they shine onto a DFG nonlinear crystal
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at the ssame time. When changing the DFG wavelength, both the angle difference
between signal and idler beams and the angle of the DFG crystal need to be changed.

With the signal or idler wavelengths, we can double their frequencies using BBO
crystals to get the visible spectrum. For the use of BBO crystals, phase matching

conditions need to be considered.

The essence of phase matching can be viewed in a BBO crystal with a thickness d in
the z direction. The fundamental frequency beam propagates along the z direction,
seeing a refractive index n(w), and SHG is generated at each z position inside the
BBO crystal. After the SHG is generated at a specific z position, the SHG continues
to propagate along the z direction with a refractive index n(2w). The SHG generated
at different z locations all propagates to the back side of the BBO crystal, and one
needs them to constructively interfere to efficiently generate an overall SHG output,
namely, their phases need to match at the back side of the BBO crystal. The phase of
each SHG component carries both the phase of the fundamental beam at the location
where SHG is generated, and the phase accumulated through the SHG propagation.
Therefore, to achieve phase matching n(w) must be equal to n(2w). In reality,
the phase-matching conditions are met using different cuts of the BBO crystals for
different nonlinear processes. A 29.2° cut is for SHG of 800 nm and a 44.3° cut
is for THG of 800 nm. Given a specific cut of BBO and a specific fundamental
wavelength, one can also change the angle of incidence and the azimuthal angle to

optimize the SHG efliciency from the BBO crystal.

Transient reflectivity and time resolved (tr) MOKE setups

We have introduced the generation of the pump pulses. Now I will introduce the
pump probe setups. For the pump side, we can use different wavlengths, different
angles of incidence, different polarizations, and different intensities. For the probe
side, we can choose from different probe methods. We can use reflectivity as
a probe of the charge dynamics. We can use MOKE to probe the dynamics of
magnetism, as detailed in Chapter 1.2. We can use SHG to probe the dynamics of

symmetry-breaking orders, such as antiferromagnetism.

For the pump beam path, we can use a half wave plate (Thorlabs AQWP05M-1600
for OPA signal wavelengths) and a polarizer (Thorlabs LPNIR050) to control its
intensity. We place the half wave plate in a motorized precision rotation stage
bundled with a DC servo motor (Thorlabs KPRM1E) for automated fluence control.

We use another half wave plate after the polarizer to change the linear polarization
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of the pump beam, or a quarter wave plate (Thorlabs AQWP05M-1600) after the

polarizer to create a circularly or elliptically polarized pump beam.

power {a.u.)

Figure 2.5: Typical measurement from the knife-edge method.

We can measure the beam size of the focused pump beam on the sample using a
knife edge method. We mount a knife edge on a two translation stages (Thorlabs
PT1), one for moving the knife edge to the sample location along the z axis (the
optical axis of the objective before the sample), and another one for moving the
knife edge laterally in order to cut part of the beam. We put a power meter after the
knife edge and measure the transmitted power as a function of the lateral position of
the knife edge. A typical measurement is shown is Figure 2.5. Assume a Gaussian
beam profile of the intensity I = Iyexp (—2r*/w?), we can fit the measured data to

an error function,

). (2.21)

From this fitting we can get the full-width-at-half-maximum (FWHM) diameter of
the focused beam to be wvV2In2.

P 2(x -
w

We can measure the both the temporal and the frequency profile of the pump beam
using frequency-resolved optical gating (FROG). In FROG the beam is split into two
arms, similar to a Michelson interferometer. One arm has a fixed optical path and
the other arm has a retroreflector on a translation stage. The two reflections are then
focused onto a BBO crystal, and their sum-frequency generation (SFG, which in this
case has the same wavelength as the SHG of the beam since the two reflections have
identical wavelengths) is measured by a spectrometer as a function of the optical
path length of the adjustable arm. Using a phase-retrieval algorithm, we can obtain
the temporal and the frequency profile of the beam.



34

In a pump probe experiment, both the beam size and the penetration depth of
the pump beam should be much larger than those of the probe beam in principle.
However, our experiments require a large pump fluence so the pump beam size
cannot be too big. Our typical pump beam size is 150 um and a typical probe beam
size is 100 um. The fluence of the pump beam should also be much larger than that
of the probe beam in principle. This can easily be satisfied in transient reflectivity
or tr-MOKE experiments because they are linear optical probes, and even with a
weak probe we can still get a good signal-to-noise ratio. However, if we use an SHG
probe, we normally use a probe fluence on the same order of magnitude as the pump
fluence, since SHG is a nonlinear process and a fundamental probe that is too weak

will result in an almost undetectable SHG intensity.

For transient reflectivity (AR/R) measurement, the reflection of the probe beam
is routed into a biased Si detector (Thorlabs DET10A2) using a D-shaped mirror
(Thorlabs PFD10-03-PO1 mounted on DMM1). The detector is then connected to a
lock-in amplifier (Stanford Research Systems SR830) using BNC cables.

For pump probe experiments, the pump goes through a delay stage (ILS100LM-
S) with a broadband hollow retroreflector (Newport UBBR2.5-1I), controlled by a
motion controller (Newport ESP301) to control the delay between the pump and
probe pulses. An optical chopper system (Thorlabs MC2000B) chops the pump
pulses at half the laser rep rate (500 Hz) triggered by the laser output. Therefore,
half of the probe pulses going into the photodetector are modulated by the pump pulse
and the other half are not modulated by the pump pulse. By taking the difference
between these two, we can get the pump-induced changes to the reflectivity AR.
When measuring the R itself, we set the frequency of the lock-in amplifier to be

equal to the laser rep rate, instead of half the laser rep rate as when measuring AR.

Lock-in amplifiers are used to measure small signals in a noise environment which
is up to a million times larger than the signal itself. The power lies in the Fourier
transform of periodic functions. For example, when measuring AR, the signal that
we want to measure is Rpumped — Runpumped. Be€cause we use a chopper at 500 Hz, the
signal that we want to measure is a signal modulated at 500 Hz. What the lock-in
amplifier does is that it first mixes (multiplies) the signal and a sinusoidal reference
waveform at 500 Hz, then applies a low-pass filter. This effectively singles out
the 500-Hz Fourier transform of the measured signal. Lock-in amplifiers has two
channels, labeled X and Y. The signal obtained from the description above is called

X. In Y, everything is the same but the phase of the reference waveform is shifted
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by 90°. Therefore, we can obtain both the amplitude and the phase of the measured
signal relative to the reference waveform. A time constant determines the transfer

function of the low-pass filter by

H(w) = (2.22)

1 +iwt’
where 7 = RC in an RC low-pass filter. Using a larger 7 yields a less-noisy

measurement.

We can also define a phase-insensitive amplitude R = VX2 + Y2. However, in real
experiments, we do not use the R channel (not to be confused with the reflectivity
R). Rather, we auto-phase to concentrate all signals to the X channel, and measure
the X channel only. The reason is that changes in reflectivity can be both negative
and positive, but using the R channel hinders the determination of the sign. Still,
we do not know whether a positive reading in the X channel means a positive or a
negative AR (changes in reflectivity). To determine this, we can leak a little bit of
the pump beam into the photodetector and keep the phase of the lock-in amplifier
fixed. Then we can use the sign of the lock-in reading caused by the pump leakage
to help us determine the sign of AR. At high light intensities the response function
of the photodetector can become nonlinear. Therefore, we use ND filters in front
of the photodetector to reduce the light intensity entering the photodiode. We have
also placed a polarizer in front of the photodetector to continuously tune the light

intensity entering the photodiode, therefore achieving a maximal AR.

In tr-MOKE setups, we need to measure a light polarization change on the order of
mrad to urad. A normal photodetector cannot reach a high enough signal-to-noise
ratio. We need to use a balanced detector (Thorlabs PDB210A) to complete this
task. Here we focus on the simplest cases where the magnetism induces a linear

polarization rotation or an elliptical polarization.

To detect a small polarization change, we first use a Wollaston prism (Thorlabs
WPQ10) to separate the beam into two orthogonally polarized outputs with a sep-
aration angle. Then the two outputs enter the two detectors of a balanced detector,
which subtracts the two inputs from each other. Without the pump we first need
to balance the balanced detector. For the magnetism-induced polarization rotation
case, we put a half-wave plate in front of the Wollaston prism, so that the two outputs
from the Wollanston prism have equal intensities. At this point the reading from
the balanced detector is zero and it is said to be balanced. With this condition the

detection sensitivity for the polarization rotation is the highest. Then we add the
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pump beam and chop the pump at half the laser rep rate. If the pump modifies the
magnetism, changes in the light polarization will make the balanced detector no

longer balanced.

If the magnetism induces an elliptical polarization, the balancing method above
will not work for detecting a change in the ellipticity, because a change in the
ellipticity will not change the directions of the major and minor axes within an
elliptically polarized light which have a 90° phase difference. Therefore, to balance
the balanced detector, we first need to use a quarter-wave plate to transform the
elliptically polarized light into a linear polarization. Then we use a half-wave plate
as normal to balance the balanced detector. In this way changes in the light ellipticity

will make the balanced detector no longer balanced.

The tr-SHG setup

Because the CCD detector that we used for SHG measurements cannot be connected
to a lock-in amplifier, we have to bear with the readout noise of the CCD camera and
the extrinsic noises when we perform tr-SHG experiments. We used several tricks

to reduce the noise.

First of all, since for the most of the time we only measure tr-SHG at a fixed scattering
plane angle (e.g., the largest lobe in the SHG-RA patterns), namely, the scattering
plane is not rotating, so we do not care about the spatial resolution of the CCD
camera. The SHG spot can occupy ~ 100 pixels on the CCD camera, and instead
of averaging the readings from all the pixels occupied by the SHG spot, we perform
binning on the pixels (normally 16x16) to make a large pixel then read out just
the large pixel. In this way we can greatly reduce the readout noise from the CCD
camera. We also repeat the same time-delay scan for multiple (~ 10) times in order

to filter out the laser power fluctuation.

If we do need to take the tr-SHG RA patterns, we have to make sure that the mirror
that steers the pump beam into the objective and thus the sample does not block the
incident or reflected probe beams at any scattering plane angles. For oblique pump
incidence this is easy since we can just place a D-shaped mirror (Thorlabs PFD10-
03-PO1 mounted on DMM1) out of the circle formed by the spinning incident probe
beam for introducing the pump beam onto the sample. If we want to do normally
incident pump beam, however, things get a little bit tricky because the separation
between the +1 and -1 order probe beams before the objective is only ~ 1 cm and

we need to fit a mirror into that space. We glued a small mirror (d = 5 mm) onto an
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optical post using a thin pin as the steering mirror for the pump beam. In this way,

the SHG-RA pattern is only blocked at the two vertical angles.

Although we put a lot of filters in front of the CCD camera to only allow the SHG
wavelengths through, the pump scattering and the mixing between the pump and
probe can pose a serious obstacle in our measurements. Some high-order generation
of the pump beam can fall into the acceptance range of the filters, and in some cases
they can overwhelm the CCD camera and make the SHG detection impossible. This
problem is especially acute when an odd-order harmonic generation of the pump is
close to the probe SHG wavelength, and the structure of the sample does not break
inversion symmetry. For example, if we want to pump a material at 2000 nm and
probe SHG at 800 nm to see changes in the MD SHG, the fifth-harmonic of the
2000 nm will be much stronger than the SHG of 800 nm. The pump scattering is an
effect caused by the pump only so it persists at all time delays.

On the other hand, some high-order mixing between the pump and probe can also
fall into the acceptance range of the filters, but this effect is only present close to
t = 0. Both the pump scattering and the pump-probe mixing do not necessarily
fall onto the same pixels as the SHG spot on the CCD camera, so some of the
times we can filter them spatially. But if they do fall onto the same spot, there
are two ways we can fix this. The first solution is that we use a very obliquely
incident pump beam which does not even go through the same objective lens as the
probe beam. We can minimize (but not necessarily remove) the pump scattering
this way. Another solution is that we use a spectral band pass filter that has a
narrower bandwidth, which might allow the SHG frequency through but reject other
unwanted beams. However, note that a narrower bandwidth filter will also make the

SHG beam intensity itself weaker.

Data analysis methods

There are two typical shapes of the time-resolved responses. The first shows a
coherent Gaussian behavior and the second shows an asymmetric decaying behav-
ior, as shown by the red and black curves in Figure 2.6. The coherent Gaussian
shape normally represents the convolution between the pump and probe pulses,
and often indicates that no excitations are generated by the pump, especially if the
excitations need to take longer time to decay than the pulse width. For example, a
coherent AR/R can often be seen when the system is pumped sub-gap because no

real electronic transitions are made. On the con