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ABSTRACT

Phonon-phonon and electron-phonon interactions underlie many fundamen-
tal transport properties like thermal conductivity and electrical mobility, and
models of these properties provide information about the underlying micro-
scopic interactions present in the materials. Many of these models use the
Boltzmann transport equation where the choice of the expression for the col-
lision integral is the most important and challenging aspect since it should
capture all of the relevant interactions. In the past the expressions were semi-
empirical, but in recent decades first principles models with no fitting param-
eters have become more commonplace, leading to discovery of new materials
or providing deeper insights into the relevant mechanisms governing trans-
port. This thesis presents first-principles calculations of thermal conductivity
in polymer crystals, and charge transport at high electric fields in semicon-
ductors in the Boltzmann transport framework.

Polymers are thermally insulating in their typical amorphous form, but it is
known that their thermal conductivity can be enhanced through drawing and
aligning of their polymer chains. With perfect chain alignment, the structures
can be described as polymer crystals, which tend to contain many atoms per
unit cell. However, the conventional understanding of thermal transport in
crystals predicts low thermal conductivity for complex, many atom unit cells.
It is known from simple models that phonon focusing redirects the heat flow
into the polymer chain direction, but the extent to which phonon focusing
plays a role in setting the intrinsic upper limits of polymer thermal conductiv-
ity has not been assessed from a first principles standpoint. We calculate the
ab initio lattice conductivity of polythiophene, a complex molecular crystal
with 28 atoms per unit cell, using the temperature dependent effective poten-
tial (TDEP) method to obtain finite temperature phonon properties taking
into account the large quantum nuclear motion of hydrogen atoms present in
polymers. We find a high thermal conductivity due to phonon focusing and
stiff branches that overcome the expected low phonon lifetimes. The phonon
focusing aligns group velocities along the chain axis throughout the Brillouin
zone, even for states with wave vector almost orthogonal to the chain axis.

For charge transport, ab initio calculations focus almost exclusively on low
field mobility, but technologically relevant phenomena like negative differen-
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tial resistance manifest only at high fields far from equilibrium. Further, there
are no ab initio calculations of non-equilibrium electronic noise, which differs
qualitatively from transport observables at high fields. We report a method-
ological advance that obtains both the high-field transport properties and the
non-equilibrium noise using an ab initio Boltzmann transport approach. Our
method extends the collision integral to high fields by making physically mo-
tivated approximations to account for the non-linearities at high fields.

Using our method, we calculate the high-field noise and transport proper-
ties in GaAs and find that the 1ph level of theory is inadequate. Thus, we
implement an approximate form of higher order interactions where electrons
are scattered consecutively by two phonons (2ph) and find that these 2ph
processes qualitatively alter the energy relaxation of the electron system com-
pared to 1ph scattering, resolving a long-standing discrepancy in the strength
of intervalley scattering inferred from different experiments. We also calculate
non-equilibrium electronic noise from first principles for the first time. How-
ever, we are not able to reproduce experimental trends, and we suggest that
2ph processes beyond our approximation may be necessary to obtain experi-
mental agreement. Our calculation shows how noise provides a new observable
against which the accuracy of first-principles methods can be measured.
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C h a p t e r 1

INTRODUCTION

This chapter has been adapted, in part, from:

Peishi Cheng, Nina Shulumba, and Austin J. Minnich (Sep 2019). “Ther-
mal transport and phonon focusing in complex molecular crystals: Ab
initio study of polythiophene”. In: Phys. Rev. B 100, pp. 094306. doi:
10.1103/PhysRevB.100.094306.

Alexander Y. Choi, Peishi Cheng, Benjamin Hatanpää, and Austin J.
Minnich (Apr 2021). “Electronic noise of warm electrons in semiconduc-
tors from first principles”. In: Phys. Rev. Materials 5, pp. 044603. doi:
10.1103/PhysRevMaterials.5.044603

Peishi Cheng, Shi-Ning Sun, Alexander Y. Choi, and Austin J. Minnich
(Jan 2022). “High-field transport and hot electron noise in GaAs from
first principles: role of two-phonon scattering”. In: arXiv:2201.11912

In solids, resistance to the transport of heat and charge comes from the scatter-
ing experienced by heat and charge carriers like the electron and the phonon.
Calculating macroscopic material properties like thermal or electrical conduc-
tivity can reveal the physics underlying the transport phenomena and help
build better microscopic models of the resistive interactions that scatter elec-
trons and phonons. This thesis concerns calculations of heat and charge trans-
port with a first-principles description of the microscopic interactions to pro-
vide physical insight into the transport behavior of phonons and electrons in
materials.

1.1 From phenomenological models to first-principles simulation
using density functional theory

Some of earliest transport models that acknowledged the microscopic nature
of the charge and heat carriers were the Drude model and the kinetic model of
thermal conductivity. Below is the expression for electrical mobility obtained
from the Drude model which treats the quantum mechanical electron entirely
classically, but accounts for the resistance experienced by the electron through

https://doi.org/10.1103/PhysRevB.100.094306
https://doi.org/10.1103/PhysRevMaterials.5.044603
https://arxiv.org/abs/2201.11912
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a phenomenological relaxation time τ [1].

µ = eτ

m∗
(1.1)

Here, e is the elementary charge and m∗ is the effective mass of the electron.
Similarly, one can derive an expression for the thermal conductivity in an
isotropic material due to phonons from the kinetic theory of gases [2], where
the phenomenological quantity is the mean free path l.

κ = 1
3Cvl = 1

3Cv
2τ (1.2)

Here, C is the heat capacity, v is the phonon velocity, and the mean free path
can also be expressed in terms of a relaxation time as l = vτ . These relax-
ation times reflect the finite lifetime of electrons or phonons during transport
due to all scattering processes occurring in the material, expressed through a
single average number. This averaging obscures a more detailed picture of the
transport physics.

Progress in solid state physics has been marked by better transport models and
less approximate ways to obtain the relaxation time. Calculation of phonon
thermal conductivity from the Boltzmann equation was first performed by
Peierls [3] who obtained finite phonon lifetimes due to intrinsic anharmonicity
from perturbation theory. The models that followed derived frequency and
temperature dependent relaxation times but only for acoustic phonons whose
dispersions were assumed to be linear [4, 5]. Building on these models, and in
the absence of more accurate methods to determine phonon properties, studies
instead developed intuitions for high thermal conductivity based on empirical
observation [6]. For charge transport, theoretical advancements focused on
expressions for the electron-phonon (e-ph) matrix element, with the very first
attempt being made for free electrons in metals interacting with linear disper-
sion acoustic phonons [7]. In semiconductors, the matrix element was found by
considering phonons as continuum elastic waves which deform the crystal and
using macroscopic measured material properties like elastic constants for semi-
empirical expressions, forming the basis of “deformation potential” theory [8],
with later extensions to materials with multiple, anisotropic valley structures
[9]. Moving beyond the free electron model with the pseudopotential method
[10, 11] made the study of the e-ph interaction possible across a wider range
of materials, but still requiring experimental measurements of phonon disper-
sions. Due to these limitations, a first-principles theory, also called ab initio
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theory meaning a theory “from the beginning,” was desired. An ab initio the-
ory should be applicable to many materials, requiring the specification only
of the atom positions and identities, and with scattering rates calculated for
each unique state in the Brillouin zone.

The beginnings of such an ab initio treatment for both electrons and phonons
on the same footing was made possible by Kohn-Sham density functional the-
ory (DFT) [12] which solves for the electronic ground state based on functionals
on the electron density. While the eigenstates of the Kohn-Sham Hamiltonian
are fictitious orbitals that do not, in general, correspond to the quasiparticles
of the actual system, they are still used as an approximate representation of
the electronic states and provide a way to calculate interactions for each state
individually. Phonon calculations from microscopic theories were possible be-
fore DFT but largely restricted to metals with a nearly free electron model
[13]. DFT permitted a more general approach to lattice dynamics since atomic
vibrations are defined by the interatomic forces which can be calculated in the
DFT framework by the Hellman-Feynmann theorem [14, 15], with the initial
methods directly displacing atoms [16, 17], and later methods using linear re-
sponse theory [18]. DFT is not entirely free of shortcomings since all practical
calculations use an approximate form of the exchange-correlation functional,
and DFT cannot describe strongly correlated materials due to its nature as
a mean-field method, but it is a desirable framework because it does not re-
quire any empirical inputs and is computationally efficient compared to more
advanced theories.

Enabled by DFT, ab initio calculations of transport coefficients are now pos-
sible, revealing the most important factors governing transport phenomena
and enabling predictive calculations for never-synthesized materials. A salient
example was the prediction of remarkably high thermal conductivity of boron
arsenide which, at the time, had never been synthesized [19]. The calculations
attributed the high thermal conductivity to low phonon scattering rates due to
unique features in the phonon dispersion, an analysis which was only possible
due to calculation of phonon properties throughout the entire Brillouin zone.
The subsequent synthesis and measurement of BAs [20, 21] stimulated further
development of theory, revealing the importance of higher order scattering pro-
cesses [20, 22]. We take this as an example of the dialectical process of theory
guiding experiment, which then guides theory, and so on, and motivates our
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first-principles calculations which aim to provide insight into the physics of
microscopic interactions in materials.

1.2 Transport under the validity of perturbation theory: The Boltz-
mann transport equation

Next, let us narrow our scope to a particular framework of first-principles
transport calculation. There are many ways to compute the heat and charge
transport properties, with the appropriate method depending on the struc-
ture and spatial order of the material of interest, as well as the type and
strength of the interactions in the material. In this thesis, we are interested in
crystalline materials where the interactions can be treated using perturbation
theory. Perturbation theory is valid when carriers can be described as weakly
interacting quasiparticles whose lifetime is much longer than the frequency or
energy of the quasiparticle itself. Under these conditions, transport can be
calculated using the Boltzmann transport equation (BTE)

The history of the BTE extends back 150 years and a detailed derivation is
beyond the scope of this thesis, so we aim to give a conceptual background
based on the more rigorous account found in Ref. [23]. The BTE was origi-
nally formulated by Boltzmann to obtain macroscopic properties of gases from
a microscopic picture of gas particle collisions through the use of probability
distribution functions of particles having a given momentum and position. The
BTE comes from the Liouville equation which is a conservation equation on the
“flow” of the distribution function f (N)(t, r,p) through some control volume in
the momentum and position phase space for N particles, in analogy to fluids
[24]. However, this phase space has 6N independent coordinates (3 momentum
and 3 position coordinates for each particle) which renders the problem practi-
cally intractable. The BTE instead seeks to describe the distribution function
of a single representative particle averaged over the coordinates of all other
N − 1 particles. The result of this averaging leads to a collision term which
describes the redistribution of flow in the phase space of the representative
particle due to its interactions and scattering with other particles.

Later, the BTE was extended to solid state physics to describe the distributions
of heat and charge carriers. The BTE formalism for electrons and phonons is
semi-classical in that the carriers are treated by neglecting any wave-like inter-
actions but including particle-like collisions derived from quantum mechanical
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perturbation theory using Fermi’s Golden Rule. A first principles Boltzmann
framework involves calculating the transition rates of Fermi’s Golden Rule
without reference to ad hoc constants, which has been made possible by DFT.

The Boltzmann equation is given below:

∂f

∂t
+ p

m
· ∇rf + F · ∇pf =

(
∂f

∂t

)
coll
. (1.3)

Here f is the distribution function f(t, r,p) which describes the probability of
finding a particle at position r with momentum p at time t. The distribution
function is the solution to the BTE we seek, which, in our case, is for phonons
or electrons described as particles. F is any force field that acts on the particles,
p is the momentum vector, r is the position vector. The various terms have
physical meanings which we depict schematically in Fig. 1.1: the second term
on the left hand side describes diffusion, the third term on the left hand side
describes advection due to body forces on the particles, and the right hand
side is the collision term which has no general form and depends on the system
of interest. The principal difficulty with the Boltzmann equation is specifying
the expression for the collision term which must include the relevant physics
of the materials. In the ab initio framework, the collision integral calculates
the scattering interactions from first principles. For transport, the electrons
and phonons can interact with one another and with defects or impurities, or
scatter due to disorder in the material. Let us now discuss the materials of

Figure 1.1: The BTE with schematic representation of particles undergoing
processes represented by various terms in the equation.
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interest in this thesis and the motivation for their study which will decide the
relevant interactions to be included in the Boltzmann framework.

1.3 Heat transport: The intrinsic upper limit in crystalline poly-
mers due to phonon-phonon interactions

While amorphous polymers are known to have poor thermal conductivities on
the order of ∼ 0.1 Wm−1K−1, it has been known since the late 1970s that
orienting the polymer chains through drawing can increase the thermal con-
ductivities along the draw direction by nearly 2 orders of magnitude [25, 26].
This enhancement was well understood in terms of the alignment and crys-
tallization of the polymer chains that facilitates heat flow along the strong
intrachain bonds instead of through the weak interchain van der Waals bonds
[27]. However, a new wave of interest in the thermal properties of aligned
polymers was generated beginning in 2010 due to a measured thermal conduc-
tivity of over 100 Wm−1K−1 in a polyethylene nanofiber [28], suggesting that
the upper limit of thermal conductivity in polymers is higher than previously
thought. This upper limit exists at the theoretical ideal of drawing and chain
alignment which is a fully crystalline polymer. For electrically insulating crys-
tals, the thermal conductivity is due to phonons and can thus be described
from first principles using the Boltzmann transport equation. Such a study
would be of interest since the high thermal conductivity of polymer crystals
which tend to have complex, many atom unit cells seem to buck the trend of
other complex crystals which are typically poor thermal conductors [29].

The high uniaxial thermal conductivity in crystalline polymers can be partially
attributed to the typically stiff, covalently bonded backbones of carbon, and
partially to phonon focusing. Phonon focusing describes the situation where
the phonon group velocity is not aligned with the wave vector, leading to pref-
erential propagation of phonons along certain crystallographic directions and
has been studied in polymers [30]. The theory of phonon focusing was first
formulated to describe the propagation of elastic waves in single crystals [31]
and first measured at low temperatures in cubic crystals as differing ampli-
tudes and patterns of ballistic phonons based on the elastic anisotropy [32, 33].
In polymer crystals, the focusing phenomena is more exaggerated due to the
extremely anisotropic bonding. Stronger covalent bonds in one crystal axis
compared to the others lead to higher group velocities in that axis, leading
to ellipsoidal isofrequency surfaces in the Brillouin zone. Since the group ve-
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locity is the gradient of frequency with respect to wave vector, an ellipsoidal
surface will have group velocity vectors preferentially oriented along the short
axis of the ellipse. While early studies of phonon focusing were interested
in imaging the patterns that result from low temperature ballistic transport
to understand elastic anisotropy, at room temperatures these patterns vanish
since the transport is diffusive, but the focusing still affects the thermal con-
ductivity. Analyses of how focusing affects thermal conductivity were almost
always restricted to acoustic phonons of small wave vector [34, 35]. So the
combined effect of phonon focusing across the entire Brillouin zone with the
many phonon branches of complex polymer crystals, in conjunction with the
stiff polymer backbones giving large group velocities, is unclear.

Most modern simulations of heat transport in polymers have focused on other
factors besides phonon focusing that affect thermal conductivity. A large frac-
tion of studies have been molecular dynamics simulations establishing the mi-
croscopic basis for the relationship between morphology and thermal conduc-
tivity [36–38]. MD studies are useful because they can manipulate the force
fields to show which interactions have the largest effect on morphology and
thus thermal conductivity [39]. However, these force fields are also the pri-
mary shortcoming due to their semi-empirical nature, where studies of intrinsic
thermal conductivity in PE using MD have produced significant discrepancies
[40, 41].

Instead, first principles approaches based on the Boltzmann equation [42] are
more suitable for studying intrinsic upper limits. The ab initio study of poly-
mer crystals was made possible by the inclusion of the van der Waals (vdW)
interaction in DFT, which is a non-trivial task due to the dynamical and
non-local nature of vdW interactions compared to the most commonly em-
ployed DFT functionals that rely on approximations of locality [43]. With
these advancements, first principles Boltzmann approaches have been applied
to study the thermal conductivity of non-polymer quasi-1D crystals, reporting
size effects [44], or symmetry selection rules [45]. Studies of polymer thermal
transport focus on polyethylene, describing the change in thermal conductivity
between a single PE chain and the bulk crystal [46]. Other studies of polymers
are limited to assumptions of ballistic transport [47] or relaxation time approx-
imations to the BTE [48]. Importantly, though, almost all studies neglect the
effect of zero point nuclear motion which is large in polymers due to the pres-
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ence of light hydrogen atoms with zero point energies corresponding to 1000 K
[49]. This obstacle was overcome by application of the temperature-dependent
effective potential (TDEP) method [50], adapted to include zero point motion
by sampling the Born-Oppenheimer energy surface at the temperature of in-
terest using thermal amplitudes that include the additional displacement from
quantum nuclear motion [49, 51]. This sampling thus also includes the effect
of finite temperature anharmonicity [52–54]. Without the correct quantum
statistics for nuclear motion, the thermal conductivity in PE is overestimated
by around 50% [49].

The work of this thesis is a first-principles calculation in a complex polymer
crystal that informs the intrinsic upper limits of thermal conductivity in poly-
mers, includes quantum nuclear motion, and analyzes the effect of phonon
focusing throughout the entire Brillouin zone. Studying these theoretical lim-
its provides guidance for how close experiments are to the ideal, and studying
polymers beyond polyethylene allows us to make more general claims about
the features are important in setting the high thermal conductivity. Our calcu-
lations focus on the intrinsic resistances in an electrically insulating complex
crystal, and thus requires the phonon-phonon interactions coming from the
anharmonicity in the material. The scattering of phonons by isotopes are
also included due to natural isotopic distributions. These are the interactions
which we must include in our first principles Boltzmann framework.

We will focus on crystalline polythiophene which is an example of a complex
polymer crystal. It has 28 atoms per unit cell compared to the 12 atoms per
unit cell of polyethylene. It has attracted interested in its substituted form,
poly(3-hexylthiophene) (P3HT), for both its thermal [55, 56] and electrical
properties [57]. Experimentally, a relatively high thermal conductivity of ∼4
Wm−1K−1 was reported for amorphous aligned chains of unsubstituted poly-
thiophene [58].

1.4 Charge transport: Non-linear effects and electron-phonon scat-
tering in semiconductors at high electric fields

The current-field relationship of semiconductors is known to be non-linear at
high electric fields, and the study of high-field charge transport is of funda-
mental and practical interest for semiconductor devices [59–62]. For example,
nonlinear variation of drift velocity with electric field was observed in elemental
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semiconductors [63–65], and current instabilities observed in III-V semiconduc-
tors [66, 67]. The current instabilities are known as the Gunn effect and form
the basis of solid state microwave sources [59]. Modeling of high-field trans-
port became widespread beginning in the 1970s through the application of the
Monte Carlo method, enabling the simulation of various phenomena across a
range of electric fields, temperatures, and geometries [68].

A qualitative understanding of the relevant physics at both low and high fields
can be indirectly inferred from Monte Carlo simulation by fitting scattering
rates to data, but the various free parameters and empirical constants sug-
gest the need for a more precise and microscopic description of the scattering.
Such a description is possible, especially given the advances in the ab initio
theory of electron-phonon interactions [69, 70]. There are other interactions
experienced by electrons in solids like electron-impurity or electron-electron
interactions, but the dominant source of scattering at room temperature and
low carrier concentrations is that of electrons scattered by phonons [70]. As
a result, the low-field mobility has been computed from first principles within
the quasiparticle picture using the Boltzmann transport equation for diverse
materials [71] including Si [72–75], GaN [76], GaAs [77, 78], hybrid perovskites
[79, 80], two-dimensional materials [81–84], and other compound semiconduc-
tors [85, 86]. For other materials with strong e-ph interactions where the
quasiparticle picture breaks down, the charge carrier is the polaron and the
Kubo formula has been applied to calculate the mobility [87–89]. Advances to
ab initio e-ph theory continue to be reported, with examples such as the GW
corrections to the e-ph interaction [75, 90] and inclusion of the quadrupole
interaction [91, 92]. Within the Boltzmann transport framework, works have
studied phonon drag [93] and magnetotransport [94].

The calculated observable in all of the above ab initio reports, though, is the
low field mobility. This thesis is concerned with extending the ab initio calcu-
lation to high electric fields to model the non-linear transport characteristics
of semiconductors. However, non-linearities arise in the collision integral at
high fields since the quadratic terms present from linearizing the distribution
about the equilibrium distribution can no longer be neglected as they were
at low fields. There are recent works reporting high field transport from first
principles where the non-linearities are included in the collision integral and
the distribution is obtained by time stepping the BTE to steady state [95], or
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by the Monte Carlo method [96]. In our work, we describe a method which
solves for the steady state distribution directly through a series of physically
motivated approximations. While such a method provides no information
about the real time dynamics of reaching steady state, it avoids the numerical
instabilities associated with time stepping [95].

We choose to study GaAs which is a prototypical semiconductor containing
a region of negative differential mobility and exhibiting the Gunn effect. For
GaAs, achieving quantitative accuracy in the first-principles calculation of even
the low-field mobility remains a subject of ongoing work, with discrepancies
between initial ab initio calculations [77, 78] largely ascribed to differences
in the band structure with different effective masses and valley separations
[97]. A recent calculation of electron mobility including higher-order terms in
which electrons are sequentially scattered by two phonons has indicated that
these processes are non-negligible [98]. Calculations at high fields including
two-phonon processes may reveal additional effects of this scattering.

1.5 Hot electron noise: A new ab initio observable
While the majority of first principles simulation has focused on low field mo-
bility with only two prior works reporting high field transport, there were no
works prior to this thesis reporting an ab initio treatment of electronic noise at
high fields, despite its experimental accessibility [99, 100] and its importance in
applications like radio astronomy [101]. Electronic noise arises from stochastic
nature of scattering processes which leads to fluctuations in the occupation
of electronic states. A nonrandom measure of electronic noise is the power
spectral density (PSD), often measured as the PSD of current fluctuations.
Owing to the fluctuation-dissipation relation, the PSD close to equilibrium is
proportional to the mobility and thus does not provide additional information
about charge transport [102–104]; this is known as the Nyquist relation. How-
ever, away from equilibrium, the PSD contains qualitatively new information
because it characterizes the fluctuations about a non-equilibrium steady-state
distribution, in contrast to transport observables that characterize the mean
of the steady-state distribution like drift velocity [99, 105].

The development of theory for treating fluctuations began in 1935 with the
application of kinetic theory to velocity fluctuations in a non-equilibrium gas
[106]. For charge carriers, an important link was established between the
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diffusion coefficient under non-equilibrium steady state conditions and the
spectral density of current fluctuations [107] which is why the current PSD at
frequencies small compared to scattering rates is also known as diffusion noise.
Most relevantly for our work, the noise calculation was later formulated in
terms of solutions to the BTE [108], providing the foundation for our ab initio
Boltzmann transport treatment. Numerical investigations of noise phenomena
began in earnest around the same time that Monte Carlo simulations were
used to study high-field transport. However, as with the study of high-field
transport, a first-principles framework with no adjustable parameters for the
calculation of noise is desirable.

The study of intervalley scattering is an example of both the ambiguity that
arises from fitting parameters in semi-empirical models as well as the unique
transport behavior exhibited by noise PSD. Intervalley scattering in GaAs
in particular has been the subject of substantial experimental and theoreti-
cal study due to its role in producing negative differential resistance [61] and
non-monotonic features of the PSD versus electric field [107, 109–111]. Early
theoretical works derived symmetry selection rules for intervalley scattering,
concluding that only LA and LO phonons could mediate intervalley coupling
between states at the Γ and L points [112]. Diverse experimental and nu-
merical methods have reached conflicting conclusions regarding the strength
of intervalley scattering in GaAs as quantified by the intervalley deformation
potential (IDP), denoted by DΓL [113]. Transport studies involving measure-
ments of PSD [114, 115], I-V curves in sub-micron structures [116], and thresh-
old field versus stress [117] interpreted using Monte Carlo simulations with
semi-empirical scattering rates [118] concluded that the intervalley scattering
strength must be weak (DΓL ∼ 2 × 108 eV cm−1) to match trends of experi-
mental data. On the other hand, experiments based on photoluminescence of
optically excited carriers inferred a markedly larger value (DΓL ∼ 8 × 108 eV
cm−1) [119–123]. Recent first-principles calculations [124] support the larger
value of the deformation potential due to contributions from non-longitudinal
phonons, as selection rules are relaxed away from high symmetry points [125].
Advances in experimental methods have enabled the relaxation of photoexcited
electrons to be monitored with momentum and energy resolution, providing
insights into the effect of intervalley scattering on the differing timescales of
momentum and energy relaxation [126–128]. Despite these experimental ad-
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vances, the discrepancy in the intervalley scattering strength inferred from
various experiments remains unresolved.

In the ab initio framework, all electronic states are treated on the same footing
and definition of intervalley scattering simply comes from which states are se-
lected to belong to a particular valley [126]. However, in practice, calculations
are limited to an energy range of interest which creates a separation between
electronic states in the Brillouin zones and provides a convenient way to define
different valleys. In this manner, the first principles calculation provides a far
less ambiguous method of investigating the effect of intervalley processes on
the high-field transport by showing the aggregate effect of all such processes
calculated without parameterizing based on valley label. Furthermore, the
effect of 2ph scattering has only been studied for low field mobility. The 2ph
processes may produce additional effects on high field transport if they have a
non-trivial contribution at higher energies where intervalley scattering occurs
in GaAs.

1.6 Outline of thesis
In this thesis, we show how our first principles calculations test the limits of
conventional ab initio theory and revealing the mechanisms that determine
transport phenomena.

In Chapter 2, we give an overview of the Temperature Dependent Effective
Potential (TDEP) method to obtain interatomic force constants that accounts
for zero point nuclear motion, as well as an overview of the thermal conduc-
tivity calculation using the Boltzmann equation. We then calculate the lattice
thermal conductivity of polythiophene, a complex polymer crystal. We find
a high thermal conductivity nearing 200 Wm−1K−1 despite a complex unit
cell containing 28 atoms due to extremely anisotropic bonding which leads to
strong phonon focusing and high group velocities in both acoustic and opti-
cal branches throughout the Brillouin zone that overcomes the expected short
phonon lifetimes. Without the phonon focusing that aligns group velocities
along the chain axis, the thermal conductivity would be reduced to a value of
34 Wm−1K−1. As additional evidence of the generality of the phonon focusing
mechanism, we calculate the thermal conductivity of a high-pressure phase of
polytetrafluoroethylene and also find a high thermal conductivity that would
be only half as large without focusing.
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In Chapter 3, we give an overview of the theory required to calculate hot
electron noise and high field transport, and describe our numerical methods
for obtaining these high field observables from first principles. Specifically, we
combine an ab initio e-ph collision integral with the Boltzmann description of
the behavior of electronic fluctuations. We obtain e-ph matrix elements using
Wannier interpolation. Further, we modify the collision integral of the typical
low-field BTE to account for the non-linearities that arise at high fields. We
also include higher order e-ph scattering where an electron is scattered by two
phonons in succession (2ph). We restrict our calculation to 2ph events where
the intermediate state is close to the band energy to achieve computational
tractability.

In Chapter 4, we calculate the drift velocity and hot electron noise in GaAs
for electric fields up to 5 kV cm−1 including on-shell 2ph scattering. We start
by discussing the deviation of noise and transport from low-field values, and
explain the frequency dependence of the current PSD as coming from the quasi-
elastic nature of scattering at moderate electric fields. At higher electric fields,
we report that the on-shell 2ph processes we include produce significantly
improved agreement with drift velocity measurements compared to the 1ph
level of theory, and that the 2ph scattering noticeably increases the energy
relaxation of the electron system which explains a long-standing discrepancy
in the strength of intervalley scattering inferred from different experiments.
The trends of hot electron noise in GaAs are not reproduced and we suggest
that intervalley 2ph processes beyond our approximation may be necessary to
obtain experimental agreement. Our work tests the limits of conventional ab
initio theory and shows the utility of first principles calculations in revealing
the mechanisms that determine transport phenomena.

Finally, in Chapter 5 we summarize our work and suggest directions for further
investigation.
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C h a p t e r 2

THERMAL TRANSPORT AND PHONON FOCUSING IN
COMPLEX POLYMER CRYSTALS

This chapter has been adapted, in part, from:

Peishi Cheng, Nina Shulumba, and Austin J. Minnich (Sep 2019). Ther-
mal transport and phonon focusing in complex molecular crystals: Ab
initio study of polythiophene. In: Phys. Rev. B 100, pp. 094306. doi:
10.1103/PhysRevB.100.094306.

As discussed in Ch. 1, one of the most notable successes in the ab initio
thermal transport field was the prediction of high thermal conductivity in
boron arsenide [19], which revised and expanded longstanding intuitions [6]
about what materials constitute good thermal conductors. However, one of
the criteria that was not controverted by the BAs calculation was associa-
tion of simple unit cells with high thermal conductivity, which appears to be
contradicted by the complex unit cells of polymer crystals.

The first studies of enhanced polymer thermal conductivity due to stretching
were in polystyrene and polymethylmethacrylate [129]. Because of the ease
at which polyethylene (PE) crystallizes, it became the primary focus for the
following decades [26, 27, 130–133], with a few studies of other polymers like
polyacetylene [134] or polypropylene [27]. While PE nanofibers had the high-
est reported thermal conductivities for polymers [28, 135], more sophisticated
fabrication techniques were applied to produce macroscopic film samples with
thermal conductivities greater than 60 Wm−1K−1 [136, 137]. Experimental
methods that can measure phonon mean free paths suggest that these films
are still limited by finite crystal domain size and that the thermal conduc-
tivity can be increased further [138, 139]. Even for more complex molecular
crystals with up to 48 atoms per unit cell, compared to the 12 atoms per unit
cell in PE, thermal conductivities are still reported on the order of tens of
Wm−1K−1 [140].

To understand where polymer crystals fit into the picture of crystal thermal
transport and what role phonon focusing plays in enhancing thermal con-

https://doi.org/10.1103/PhysRevB.100.094306
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ductivity, we are interested in expanding the study beyond polyethylene. In
molecular dynamics studies of polymers, calculations of many different mate-
rials allowed for the most important factors that determined morphology to be
extracted and established with more certainty [39]. Thus, we seek to calculate
the crystal thermal conductivity of various polymers beyond polyethylene to
investigate the phonon behavior throughout the Brillouin zone that leads to
the high uniaxial thermal conductivity of polymer crystals. In this chapter,
we will calculate and discuss the thermal conductivity of polythiophene and
the high-pressure thermal conductivity of polytetrafluoroethylene.

2.1 Interatomic force constants including quantum nuclear motion
and finite temperature anharmonicity

The ab initio approach to thermal conductivity is based on computing the in-
teratomic force constants (IFCs) using density functional theory (DFT) which
we have noted must include the effects of quantum nuclear motion. To do so,
we use the TDEP method for which we give an overview here. Once the IFCs
have been computed, all the relevant phonon properties can be calculated us-
ing lattice dynamics and the Boltzmann transport equation. Lattice dynamics
broadly refers to the study of phonons and the properties that can be derived
from phonons. Phonons are the normal modes of a crystal and derived as
plane wave solutions to the equations of motion. For thermal conductivity,
one begins from the lattice Hamiltonian given below
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∑
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where Φαβ
ij and Φαβγ

ijk are the interatomic force constants which describe how
the energy of the lattice changes with respect to displacements along all of
the atomic degrees of freedom indexed by i, j, k for atoms in the unit cell
and α, β, γ for the Cartesian directions. The Φαβ

ij are the harmonic IFCs
which give the phonon frequencies, and the first three terms constitute the
harmonic Hamiltonian for which phonons are the eigenstates. The Φαβγ

ijk are
the third order, anharmonic IFCs which are considered the perturbations to
the harmonic Hamiltonian leading to phonon-phonon scattering. There are
of course higher order terms which contribute to scattering through higher
order perturbation theory and have been the focus of much recent study [22,
141, 142]. Various methods of first principles computation of phonons differ
principally in their methods for obtaining the IFCs.



16

First principles approaches to IFCs since their development in the 1980s are
essentially zero temperature approaches since DFT is a zero temperature
method. Until recently, phonon methods could be grouped into two classes:
the direct approach and the linear response approach. The direct approach,
also called the “frozen phonon” approach, displaces atoms and calculates the
change in energy to obtain force constants [143, 144], with a popular imple-
mentation given in Ref. [145]. The linear response approach based on linear
response theory requires, in principle, expensive computation of the dielectric
matrix, but in practice requires the solution of a more straightforward self
consistent equation in a formulation known as density functional perturbation
theory (DFPT) [18], with implementations across many electronic structure
codes. Both of the methods described above calculate the interatomic force
constants for displacements about the equilibrium positions in the zero tem-
perature crystal structure obtained from DFT. However, this can be an issue
when crystal structures of interest are dynamically unstable at 0 K such as
SrTiO3 [146]. These structures are stabilized at room temperature because
the atoms have much larger thermal displacements that experience a poten-
tial which appears harmonic and stabilizes the vibrational excitation. The
main concept of TDEP is to obtain the force constants that better reflect the
vibration of nuclei in this finite temperature potential. We note that there
are other methods to obtain finite temperature phonons with similar ideas to
TDEP [147–149].

In contrast to the zero temperature phonon approach which is a Taylor expan-
sion of the potential energy surface about the zero temperature equilibrium
atomic positions, the TDEP method seeks a different set of interatomic force
constants corresponding to a model Hamiltonian of the same form as Eq. 2.1
that best fit the potential effectively felt by the atoms at a given temperature.
To do this, one obtains a set first-principles forces associated with atomic dis-
placements that correspond to the temperature of interest and compares them
to the forces that should result from the model Hamiltonian, which are given
by the equation below:

fM
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β
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Here fM
iα are the forces on atoms given the model Hamiltonian of Eq. 2.1 with

only third order anharmonic terms, and here the IFCs are the model IFCs.
The TDEP method minimizes the difference between the model forces of Eq.
2.2 and the actual forces calculated with thermal displacements. This is done
through a least squares solution for the IFCs, with the symmetry constraints
of the crystal. The result is the set of force constants which best represent the
Born-Oppenheimer energy surface sampled at the temperature of interest.

The original TDEP method sampled the energy surface using ab initio molec-
ular dynamics (AIMD) simulation, obtaining the force-displacement data from
various time steps in the simulation. A schematic of this process is given in Fig.
2.1 where the atoms have some displacement at a given time step, with the
blue color around the mean position of the atoms representing the potential felt
by the atoms as calculated from DFT. However, the force-displacement data
at each time step is not independent of the previous time steps by definition,
since the purpose of the molecular dynamics simulation is to track the evolu-
tion of the system through time. Since the fitting of TDEP benefits from time
steps that are uncorrelated to provide more constraints on the linear system,
computational inefficiencies arise due to correlated AIMD time steps which
are redundant constraints in the solution of the IFCs. Most importantly, this
method suffers from the classical nature of molecular dynamics which does not
account for the zero point motion of atoms which are important in polymers.

Quantum nuclear motion with thermal snapshots
An approach which addresses both drawbacks involves the use of “thermal
snapshots,” where the force-displacement data are not obtained from AIMD,
but instead by providing random displacements to the atoms based on expres-
sions for the phonon mode amplitude that corresponds to a given temperature
[51], and calculating the resulting forces using DFT in the particular snapshot.
The snapshots idea has a long history [150], with applications to lattice dy-
namics given in Refs. [147, 148, 151]. The expression for the thermal average
amplitude is given in Eq. 2.3 below.

〈Aiλ〉 =
√
~(2nλ + 1)

2miωλ
(2.3)

Here, i indexes the atom, and λ is single index of phonon modes for unique
combinations of wave vector and branch index. We also have nλ for the Bose-
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Figure 2.1: Schematic of the TDEP method which finds the best fit of force
constants to a model Hamiltonian using the forces and displacements calcu-
lated from first principles. Each atom has some displacement ui. Each plane
represents either a time step in an ab initio molecular dynamics simulation,
or a thermal snapshot where the displacements obey quantum statistics. The
blue represents the potential experienced by the atoms which leads to forces
on the atoms.

Einstein occupation of a phonon with frequency ωλ. The atoms have mass
mi. The real space atom displacements and velocities come from sums over
the thermal amplitudes and eigenvectors for all phonons in the Brillouin zone.
These thermal snapshots will be independent of one another due to the dis-
placements coming from a random distribution, and will incorporate the quan-
tum statistics directly, accounting for zero point motion, with the IFCs subse-
quently obtained in the same way as before. In the schematic of Fig. 2.1, we
can imagine that instead of atomic positions coming from the classical equa-
tions of motion integrated from prior time steps in the simulation, each time
step is now an uncorrelated force-displacement data set with displacements
larger than in AIMD due to the quantum nuclear motion.

One additional complication arises from this method though. The expression
for the quantum thermal amplitude depends itself on the phonon frequencies
which we are trying to obtain, so the scheme requires iteration to self consis-
tency. In TDEP, the initial iteration uses a simple pair potential for which
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the phonon frequencies can be analytically obtained and are known to be sta-
ble [51]. Once iterated to self consistency, we have obtained the IFCs which
correctly represent the potential energy surface experienced by the atoms in-
cluding their zero point motion.

The fitting of TDEP can be thought of as a renormalization scheme where
the TDEP phonons at a given temperature come from the harmonic part of
an approximate representation of the true interatomic potential fitted up to
a third order expansion. Thus, the TDEP phonons include anharmonicity
to all orders felt by the thermal sampling of the atoms [152]. While this
fitting may seem ad hoc, we note that a recent work provides a more rigorous
theoretical derivation for phonon renormalization due to anharmonicity with
explicit expressions based on the fourth order IFCs [142]. The approaches
differ, but provide a justification for renormalization.

2.2 Thermal conductivity from the Boltzmann transport equation
Let us know discuss how thermal conductivity is calculated from the BTE to
see how the IFCs determine the transport properties.

The thermal conductivity by Fourier’s law is given by J = −κ∇T where Jα is
the heat current in direction α which, for phonons, is given by the following
expression:

Jα = 1
V

∑
λ

~ωλvλαnλ (2.4)

where nλ is the non-equilibrium phonon occupation that arises due to a thermal
gradient, and vλα is the phonon group velocity given by ∂ωλ/∂kα, and the sum
runs over all phonons indexed by λ for unique combinations of wave vector
and branch index, as before. Since the phonon frequencies depend on the
harmonic force constants, the group velocities are also affected. This is one
way in which the TDEP phonons may give qualitatively different results from
phonons calculated using a different method. The anharmonic force constants
are involved in the scattering processes which determine the n at steady state.
Obtaining the thermal conductivity requires solution of the BTE for the non-
equilibruim phonon occupations.

Since thermal conductivity is a material property with no time dependence,
we seek the solution to the Boltzmann equation at steady state meaning there



20

is no time dependence. Further, there is no force that can act directly on
phonons, so the advection term also vanishes. The phonon BTE is thus given
by the following form:

p
m
· ∇rnλ =

(
∂nλ
∂t

)
coll
. (2.5)

We can manipulate this further by expressing the spatial gradient of the left
hand side in terms of the thermal gradient, and using p = mv:
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(2.6)

where on the left hand side, we have the diffusion of phonons due to a temper-
ature gradient. We can assume that the temperature gradient is small so that
the non-equilibrium phonon distribution is only a small deviation from the
equilibrium distribution function: nλ = n0

λ + n1
λ where n0

λ is the equilibrium
Bose-Einstein occupation and n1

λ is the deviation. One consequence of this as-
sumption is that the diffusion term of the left hand side can be approximated
by simply the diffusion term corresponding to the equilibrium occupation:

∂nλ
∂T
≈ ∂n0

λ

∂T
= ~ωλ
kBT 2n

0
λ(n0

λ + 1) (2.7)

using the mathematical identity n0
λ + 1 = n0

λe
~ω/kBT . Now we discuss the form

of the collision integral for phonons to see how the anharmonic IFCs enter into
the expressions. We restrict our discussion to phonon-phonon scattering even
though we include isotope scattering in our calculation, because the equations
and derivations are somewhat analogous. The collision integral describes the
increase or decrease of the phonon occupation due to scattering with other
phonons. Let us consider a phonon-phonon scattering process where a phonon
of index λ coalesces with another phonon λ′ to form a phonon λ′′, which has
a probability expressed using Fermi’s Golden Rule:

Pλλ′→λ′′ = 2π
~

∣∣∣〈f |Ĥ3|i〉
∣∣∣2 δ(Ef − Ei) (2.8)

where the delta function ensures the conservation of energy, and 〈f |Ĥ3|i〉 is the
phonon scattering matrix element due to the anharmonic part of the Hamil-
tonian:
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Ĥ3 = 1
3!
∑
ijk

∑
αβγ

Φαβγ
ijk u

α
i u

β
j u

γ
k. (2.9)

A common coordinate transformation of the Hamiltonian into creation and
annihilation operators allows us to calculate the matrix element algebraically,
where the displacements are now expressed as a sum over all the normal modes
of the system:

uαi =
√

~
2Nmi

∑
λ

εiαλ√
ωλ
eiq·ri

(
âλ + â†λ

)
(2.10)

where N is the number of unit cells, â†λ is the creation operator, âλ is the
annihilation operator, and εiαλ is the α component of the eigenvector for phonon
λ and atom i. Using the normal mode coordinates, we can write the product
of the 3 displacements in Eq. 2.9 as:

uαi u
β
j u

γ
k =

(
~

2N

)3/2 1
√
mimjmk

∑
λλ′λ′′

εiαλ ε
jβ
λ′ ε

kγ
λ′′√

ωλωλ′ωλ′′
eiq·ri+iq

′·rj+iq′′·rk

×
(
aλ + a†λ

) (
aλ′ + a†λ′

) (
aλ′′ + a†λ′′

)
.

(2.11)

Each matrix element will have terms like:

∑
λλ′λ′′

〈
f
∣∣∣ (aλ + a†λ

) (
aλ′ + a†λ′

) (
aλ′′ + a†λ′′

) ∣∣∣ i〉
=
∑
λλ′λ′′

〈
f
∣∣∣ aλaλ′a†λ′′

∣∣∣ i〉 = 3
√
nλnλ′(nλ′′ + 1)

(2.12)

where the factor of 3 comes from the multiplicity of the aλaλ′a†λ′′ terms in the
sum over all phonon indices, and we have used the following properties of the
creation and annihilation operators [153]:

â† |n〉 =
√
n+ 1 |n+ 1〉

â |n〉 =
√
n |n− 1〉

〈i|j〉 = δij.
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The interpretation of Eq. 2.12 is that the matrix element for a phonon co-
alescence process λ + λ′ → λ′′ will only have nonzero components that are
due to the components of the anharmonic term where phonons λ and λ′ are
annihilated and a phonon λ′′ is created.

The expression for the matrix element now becomes:

〈f |Ĥ3|i〉λλ′→λ′′ = 1
2
∑
ijk

∑
αβγ

Φαβγ
ijk

√
nλnλ′(nλ′′ + 1)

(
~

2N

)3/2

× εiαλ ε
jβ
λ′ ε

kγ
λ′′

√
mimjmj

√
ωλωλ′ωλ′′

eiq·ri+iq
′·rj+iq′′·rk .

(2.13)

We observe that the third order IFCs are involved in the matrix element,
which is how the anharmonicity produces phonon-phonon scattering. The
matrix element for the phonon coalescence process we have taken as an example
involves sums over all possible combinations of the 3Na atomic degrees of
freedom (where Na is the number of atoms per unit cell) where each term in
the sum uses the eigenvectors of the 3 phonons involved in the process, taking
only components corresponding to the unique combination of atomic degrees
of freedom (iα, jβ, kγ).

The resulting expression for the scattering rate using Eq. 2.8 for this particular
phonon coalescence process is:

Pλλ′→λ′′ = ~2π

16Nnλnλ′(nλ′′ + 1) |Φλλ′λ′′|2 δ(Ef − Ei) (2.14)

where we have lumped the sums over the atomic degrees of freedom into
|Φλλ′λ′′ |2. The full expression for the collision integral for phonon-phonon
scattering requires deriving expressions similar to Eq. 2.14 for phonon de-
cay where λ→ λ′ + λ′′, and summing over all possible coalescence and decay
processes for each phonon state λ.

To obtain the form of the BTE that is numerically solved, a substantial amount
of algebra is involved which is detailed in Refs. [42, 154, 155]. It relies on a
clever choice of the deviational occupation given by the following definitions:
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n1
λ = ∂n0

λ

∂ωλ

kBT

~
Ψλ

Ψλ = Fλ · ∇rT

(2.15)

which are substituted into expressions like Eq. 2.14 The resulting collision
integral is given by:

(
∂nλ
∂t

)
coll

=
∑
λ′λ′′

W+
λλ′λ′′ (Ψλ + Ψλ′ −Ψλ′′) + 1

2W
−
λλ′λ′′ (Ψλ −Ψλ′ −Ψλ′′)

(2.16)

where the plus and minus superscripts of W+
λλ′λ′′ and W−

λλ′λ′′ correspond to
phonon coalescence and decay, respectively. Their expressions resemble the
rates of Eq. 2.14 but with slightly different normalization factors and using
equilibrium phonon occupations:

W+
λλ′λ′′ = ~π

4Nn0
λn

0
λ′(n0

λ′′ + 1) |Φλλ′λ′′|2 δ(ωλ + ωλ′ − ωλ′′) (2.17)

W−
λλ′λ′′ = ~π

4Nn0
λ(n0

λ′ + 1)(n0
λ′′ + 1) |Φλλ′λ′′ |2 δ(ωλ − ωλ′ − ωλ′′) (2.18)

We see that the BTE is a set of linear equations on the Ψλ. The thermal
conductivity can then be expressed in terms of the vector Fλ since the defini-
tion of Eq. 2.15 implies a deviational occupation that is linear with respect to
a small temperature gradient, and the thermal conductivity is defined as the
linear response coefficient of the material to a temperature gradient.

2.3 Thermal conductivity in crystalline polythiophene
Let us begin our study with crystalline polythiophene through an ab initio
Boltzmann approach.

Computational parameters
We briefly discuss the parameters used in calculating the IFCs from TDEP
and the thermal conductivity. We use a 5.0 Å cutoff for the second order
interatomic force constants which yields convergence of the vibrational free
energy within 0.1 meV per atom. We use a 3.0 Å cutoff for the third order
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interatomic force constants. For a grid of comparable density, using an in-
creased third order cutoff of 3.3 Å yields only a reduction of 4% in the thermal
conductivity.

We use the VASP implementation of DFT [156–159] to calculate the forces.
The plane wave energy cutoff was 800 eV with a reciprocal space mesh of 3 × 3
× 3 to sample the Brillouin zone. We incorporate van der Waals interactions
with a non-local density functional [160–162] (commonly denoted vdw-DF)
that captures long range correlation and has been tested for the polyethy-
lene crystal [163]. Others have studied the performance of various non-local
functionals for polymer crystals [164] and found that this functional, and an
updated version, performed best in estimating the a and b lattice parameters.
We note that the choice of functional can affect the computed value of the
thermal conductivity [165]. Our choice of functional was motivated by the
desire to include van der Waals interaction in a parameter free way. Eight
iterations were required to obtain self-consistent force constants. A single it-
eration comprises the extraction of the force constants from the thermalized
supercell and generation of the thermal displacements for the supercells used in
the successive iteration. The supercell was composed of a 2 × 2 × 2 repetition
of the orthorhombic unit cell for a total of 224 atoms.

The Boltzmann transport equation was solved iteratively on a 18 × 18 × 18
grid in the Brillouin zone with a tetrahedron integration method for energy
conservation. The included scattering mechanisms are intrinsic anharmonic
phonon-phonon scattering and isotopic scattering [166] from the natural iso-
tope distribution. Convergence of the thermal conductivity was verified by
calculating thermal conductivity for various q-grid densities and plotting the
inverse of the grid density with thermal conductivity to extrapolate to infinite
grid density. Using an anisotropic q-grid where the chain axis has a higher
grid density, extrapolation yields a value of 201 Wm−1K−1. Using an isotropic
grid, extrapolation yields a value of 195 Wm−1K−1. We report the value using
the 18 × 18 × 18 grid since it is obtained using the densest grid calculated,
and the value lies within the two extrapolated values.

Harmonic phonon properties of crystalline polythiophene
The structure of the PT unit cell is given in Figures 2.2(a-c). Figure 2.2(a)
shows the chains extending along the z axis. The atoms in each chain are co-



25

  

a = 7.84 Å

b = 5.86 Å

(a)

(b)

(c)

X

Y

Z (d)

c = 7.85 Å 

Figure 2.2: The structure and dispersion of polythiophene (PT). (a) Structure
of a PT crystal with chains extending in the z axis. (b) View of the xy plane
of the unit cell. There are two chains in each unit cell. Chains from the
adjacent cell are shown. (c) Single polymer chain of PT showing that the
length of unit cell in the chain axis is two thiophene chemical repeat units. (d)
Calculated phonon dispersion of PT, showing numerous branches. The dark
blue and light blue branches correspond to the spectral thermal conductivity
of the acoustic-like and optic modes, respectively, as seen in Figure 2.3. Inset:
The phonon dispersion along symmetry directions from Γ. The branches for
which isoenergy contours are plotted later are highlighted in red (Figure 2.5a)
and orange (Figure 2.5b).
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valently bonded, while van der Waals bonding occurs between chains. Figure
2.2(b) shows the orthorhombic primitive cell which contains two such chains.
The chains from adjacent cells are shown for reference. Figure 2.2(c) shows a
single PT chain composed of the thiophene repeat units; a primitive cell con-
tains two thiophene repeat units per chain. Our calculated lattice parameters
from the relaxed structure are a = 7.84 Å, b = 5.86 Å, c = 7.85 Å for an or-
thorhombic unit cell. The lattice parameters from experiment are a = 7.80 Å,
b = 5.55 Å, c = 8.03 Å also for an orthorhombic unit cell [167], corresponding
to a mean absolute relative error of 2.78%.

The computed phonon dispersion for PT is given in Figure 2.2(d). The disper-
sion contains 84 branches corresponding to the degrees of freedom of the 28
atom primitive cell. The branches are highly dispersive in the Γ−Z direction
up to nearly 50 THz, whereas the branches are far less dispersive in the Γ−X
and Γ− Y directions, becoming nearly dispersionless above 5 THz.

Temperature dependence and spectral thermal conductivity in poly-
thiophene
Such a complex crystal would be expected to have a low thermal conductivity if
considering only the phonon scattering phase space, which would be large given
the numerous branches. For instance, the primitive cell of tetrahedrite contains
29 atoms per cell and has a thermal conductivity of around 1 Wm−1K−1[168].
We calculate the chain-axis thermal conductivity of PT to be 198 Wm−1K−1

at room temperature. This value is higher than both the room temperature
thermal conductivity of silicon and the ab initio thermal conductivity of the
simpler polyethylene crystal, which has only 12 atoms per unit cell [49]. The
cross-chain thermal conductivity along the x and y axes are calculated as 8.3
and 7.3 Wm−1K−1 at room temperature, respectively, a substantial thermal
anisotropy which is expected for these elastically anisotropic polymer crystals.

The thermal conductivity versus temperature, as shown in Figure 2.3(a), was
calculated by solving the Boltzmann transport equation at each temperature
using the force constants generated at 300 K. While other works have indepen-
dently calculated force constants for a grid of temperature and volume, such
a calculation is computationally expensive for our system due to the size and
complexity of the PT crystal. We calculated force constants on a grid of vol-
umes at a single temperature (300 K) and determine the equilibrium volume
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Figure 2.3: Thermal conductivity versus temperature and spectral thermal
conductivity. (a) Thermal conductivity along the chain (blue solid line) and
along the x axis perpendicular to the chains (orange dashed line) versus tem-
perature using force constants obtained at 300 K. The polymer chains are
oriented along the z axis (blue line). The chain-axis thermal conductivity is
198 Wm−1K−1 at room temperature. (b) Spectral thermal conductivity versus
phonon frequency along the chain axis. The contributions from acoustic-like
modes and optic modes are highlighted in dark blue and light blue, respec-
tively.

at this temperature by minimizing the Gibbs free energy. We then used the
force constants at the equilibrium volume to calculate thermal conductivity at
other temperatures. Given that the force constants are fixed, the trend shows
the expected decrease of thermal conductivity with increasing temperature as
our calculation includes only isotope and intrinsic anharmonic scattering.

Figure 2.3(b) shows the spectral thermal conductivity versus phonon fre-
quency. Isolating purely acoustic modes below 5 THz is difficult because
there is significant overlap in frequencies with some optical modes, as was
also observed for polyethylene [49]. Thus, we denote the modes below 5 THz
as acoustic-like modes, and all modes above 5 THz as optical modes. Greater
than 96% of the thermal conductivity is due to phonon modes with frequencies
below 16 THz, even though modes exist up to 92 THz. Around two thirds of
the heat is conducted from the acoustic-like modes, with the remainder carried
by the optical modes.

Comparison of PT thermal conductivity to an isotropic crystal
We next examine how the lifetimes and group velocities compare between PT
and Si. The comparison with Si, an isotropic crystal with a lower but same
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order of magnitude thermal conductivity, will reveal the importance of phonon
focusing. We calculated the thermal conductivity of Si using the phonon prop-
erties generated by TDEP in Ref [169]. The phonon lifetimes versus frequency
for PT and Si are shown in Figure 2.4(a). The results show that the lifetimes
in PT are an order of magnitude lower than in Si over nearly the entire fre-
quency range of 0-16 THz despite PT having the higher thermal conductivity.
We can quantitatively assess how much heat is carried by individual modes
over the entire spectrum of phonon lifetimes by examining thermal conductiv-
ity accumulation plots with respect to lifetime, shown in Figure 2.4(b). We
observe that long lifetime modes in Si contribute significantly to the thermal
conductivity, with over half of the thermal conductivity coming from modes
with lifetimes greater than 50 ps. In contrast, in PT there are almost no
modes contributing to thermal conductivity that have lifetimes greater than
50 ps. This comparison suggests that the lifetimes for these complex crystals
are of the order expected of a crystal with a complex unit cell and thus high
scattering rates.

Next, we present the group velocity magnitude versus frequency in Figure
2.4(c). We observe that PT possesses modes with higher group velocity modes
than Si. To determine whether a higher group velocity magnitude by itself
can be responsible for the high thermal conductivity of PT, we compute the
RMS group velocity (

√
(∑λ v

2
λ)/Nλ). For PT, the value is 4.33 km s−1 below 18

THz, which is the frequency range containing 99% of the thermal conductivity.
The value for Si is 3.46 km·s−1 below 13 THz, which is the corresponding
frequency range containing 99% of the heat carrying modes. From these results
alone, and without taking phonon focusing into account, how PT can have a
higher thermal conductivity than Si despite having an order of magnitude
lower lifetimes and only a slight increase in the RMS group velocity is not
obvious.

PT is highly anisotropic and thus phonon focusing is expected to occur. A
way to assess the strength of phonon focusing is to compare the RMS group
velocity in the chain direction to the RMS group velocity magnitude. In PT,
this RMS group velocity in the chain direction (0-18 THz) is 4.29 km s−1,
which is indeed very close to the RMS group velocity magnitude of 4.33 km
s−1. For Si, the RMS group velocity in the chain direction (0-13 THz) is 2.00
km s−1 which is far from the RMS group velocity magnitude of 3.46 km s−1.
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Figure 2.4: Phonon lifetimes and group velocities of PT and Si. (a) Phonon
lifetimes versus frequency for PT (blue dots) and Si (orange triangles). (b)
Thermal conductivity accumulation function versus lifetime. The thermal con-
ductivity of PT is due almost entirely to modes with lifetimes less than 50 ps,
in contrast to Si which has more than half of its thermal conductivity from
modes with lifetimes longer than 100 ps. (c) Phonon group velocities along
the chain axis (z) versus frequency of PT (blue dots) and Si (orange triangles).
(d) Thermal conductivity accumulation function versus group velocity along
the chain axis. Nearly two-thirds of the heat in PT is carried by modes with
group velocity larger than the maximum group velocity in Si.

The effect of phonon focusing is also evident in Figure 2.4(d). Over half of the
heat in PT is carried by modes with group velocity greater than 12 km s−1 be-
cause the highest group velocity modes correspond to the acoustic-like modes
below 5 THz, which possess group velocity vectors oriented along the chain
as well as the longest lifetimes in PT. However, optical modes also contribute
substantially due to phonon focusing. While these modes possess the shortest
lifetimes, as seen in the frequency range above 5 THz in Figure 2.4(a), phonon
focusing allows these modes to overcome their low lifetimes to still contribute
32% of the total thermal conductivity. As a comparison, for Si we find that
once the lifetimes become comparable to those in PT in the frequency range
of 8-10 THz there is negligible contribution to thermal conductivity, despite



30

the group velocities in that range being near the maximum for Si, because of
the lack of phonon focusing.

Isoenergy contours show dramatic phonon focusing
To further analyze the influence of phonon focusing, we plot isoenergy con-
tours. We note that in contrast to previous work, our isoenergy contours are
generated by calculating the dynamical matrix for a dense grid in the Bril-
louin zone using the ab initio force constants and subsequently plotting lines
of equal frequency for a given plane in the Brillouin zone. Thus, they are valid
beyond the typical frequency and wave vector ranges of isoenergy contours
derived from continuum elasticity. The group velocity is the gradient of the
frequency with respect to wave vector, so the group velocity vector is always
normal to an isoenergy contour.
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Figure 2.5: Isoenergy contours in PT. (a) The isoenergy contours of an acoustic
branch with an anisotropy in the maximum group velocity ratio of 7.2 in PT
for the kx = 0 plane. The lines are contours of equal frequency. The arrows
show the direction of the group velocity vector. The contours are similar to
those Ref. [34] corresponding to the quasi-transverse acoustic branch. (b) The
isoenergy contours of an optical branch with a much larger anisotropy ratio of
22.7. The group velocity of nearly all the modes are pointed along the chain
axis. We observe a similar effect in other planes in the Brillouin zone for this
branch, and for other optical branches with a large anisotropy ratio.

Figure 2.5(a) plots the isoenergy contours of a branch with a ratio of the
largest group velocity along the chain axis to the largest group velocity along
the cross-chain axis of 7.2, corresponding to the orange branch in the inset of
Figure 2.2(d). The contours are similar to those in Ref. [34] corresponding to
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the quasi-transverse acoustic branch. On the other hand, Figure 2.5(b) shows
the isoenergy contours of an optical branch with an anisotropy ratio of 22.7,
corresponding to the red branch in the inset of Figure 2.2(d). The contours
reveal an exceptional degree of phonon focusing such that even for vibrations
with wave vectors pointing almost completely orthogonal to the direction of the
chain, the vibrational energy is still transported in the direction of the chain.
We observe this effect throughout the Brillouin zone, irrespective of the plane
for which the isoenergy contours are plotted. This phenomenon resembles the
degree of focusing calculated for quasi-longitudinal acoustic branches [34, 35],
but in PT the optical branches are also focused.

Thermal conductivity in hypothetical polymers with no phonon fo-
cusing
We quantitatively assess the importance of phonon focusing for the chain axis
thermal conductivity by calculating the thermal conductivity of an isotropic
version of PT in which the group velocity and wave vector are parallel. Note
that only the direction of the group velocity is changed, but not the magni-
tudes of the group velocities and lifetimes. We find that the thermal conduc-
tivity of this isotropic crystal would be only 34 Wm−1K−1, confirming that
the anisotropy is the key factor which underlies the high thermal conductivity.
In fact, if we calculate the other extreme where the group velocity vectors
of every mode is pointing along the chain direction, the thermal conductivity
increases by only 7.5%. We performed this computation for the polyethylene
crystal as well, finding an “isotropic” thermal conductivity for polyethylene of
67 Wm−1K−1, less than half of the actual calculated value. The extreme case
of perfect focusing in the chain direction would yield only a 3.2% increase.

To further emphasize this conclusion, we plot the spectral thermal conductivity
for the hypothetical isotropic PT as seen in Figure 2.6. In the frequency range
where the acoustic-like modes previously contributed over 100 Wm−1K−1 (68%
of the original thermal conductivity), there is now very little contribution, even
though this frequency range contains modes with the largest group velocities
and longest lifetimes in PT. In contrast, if we calculate this isotropic thermal
conductivity for silicon, it is unchanged from the actual value.
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Figure 2.6: The spectral thermal conductivity versus frequency in the case
where the group velocities are parallel to their wave vector (blue) compared to
the actual (orange). Phonon focusing underlies the high thermal conductivity
of PT, particularly for modes below 5 THz.

2.4 Discussion of prior work and heuristic understanding of high
thermal conductivity in PT

We now discuss our results in the context of prior work on polymer crys-
tals. First, many works use an average lifetimes or average mean free paths
to analyze thermal transport in polymer crystals due to computational or ex-
perimental limitations [34, 140]. Using our ab initio calculations, we are able
to assess the accuracy of these approximations. First, as in Figure 2.4(b), we
find that the distribution of lifetimes for phonons that conduct heat is narrow,
between 0-50 ps, so that assuming an average lifetimes is in fact a reasonable
estimate. However, the estimate of an average mean free path is less accurate
because the shortest lifetime modes can contribute significantly to thermal
transport due to phonon focusing, while modes with group velocity approach-
ing the maximum value possess the longest lifetimes. Thus the range of mean
free paths relevant for heat transport spans 1 nm to 1 µm.

Second, we examine previous treatments of phonon focusing in anisotropic
solids. Many previous works employed the Debye approximation because of
the assumption of that acoustic phonons dominate the thermal transport [34,
35]. Our work demonstrates that phonon focusing has a dramatic effect on
both acoustic and optical phonons for nearly all phonons regardless of wave
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vector because dispersive optical modes persist throughout the thermal phonon
frequencies. Consequently, future studies on thermal transport in polymers
will have to be more cautious when interpreting results using simple models
neglecting optical modes, since focusing allows optical phonons to contribute
substantially to heat transport.

We note that the phonon focusing effect is expected to be more effective in
quasi-1D materials compared to quasi-2D materials like graphite where the
group velocities in the ab plane are similar because of covalent bonding between
atoms in the plane, and thus the focusing largely exists only from anisotropy
with the cross plane direction. In the quasi-1D case, both cross-chain directions
have weak van der Waals bonding while the chain direction has strong covalent
bonds, resulting in the focusing of an additional dimension of phonon modes
and an enhanced chain-axis thermal conductivity. Indeed, we find that for the
polarization shown in Figure 2.5(b), 87% of the modes have a group velocity
vector that points less than 10 degrees away from the chain axis.

Let us also discuss the high value of thermal conductivity in PT from a more
general, heuristic perspective to see where it stands with other crystals. If
we consider the simple equation for thermal conductivity from the kinetic
model presented in Ch. 1: Eq. 1.2, then we see that thermal conductivity is
proportional to the phonon lifetime and to the square of the phonon group
velocity. The roughly equivalent expression for the diagonal element of the
thermal conductivity tensor, with knowledge of individual phonon properties
in the crystal, is given below:

καα = 1
V

∑
λ

cλv
2
αλταλ, (2.19)

Where we have the same proportionalities, but the sum is over all phonon
modes in the super cell of volume V , meaning that the atom density of the
material is also a factor for thermal conductivity. Comparing the values of
thermal conductivity of Si and PT, where our calculated value of thermal
conductivity in Si is around 130 Wm−1K−1, it may seem implausible that
the thermal conductivity of PT is higher than in Si. If we consider phonon
focusing only in a spherical Brillouin zone, we would only get a factor of 3
enhancement in thermal conductivity, while the lifetimes are 10 times lower
in PT. Further, the RMS group velocities in PT are only about 25% larger
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than in Si (4.33 km s−1 versus 3.46 km s−1). Altogether, based on this rough
estimate, the thermal conductivity of PT should be only 47% of the value of
Si ( 1

10 × 1.252 × 3 = 0.47).

However, here the use of average quantities for assessing thermal conductivity
leads to misinterpretation. Although the RMS group velocity of PT is only
4.33 km s−1, the highest group velocities are on the order of 15 km s−1, which
is to be expected given the covalent bonding of the carbon atoms along the
polymer chain, leading to velocities comparable to that of diamond around
18 km s−1 [170]. These high group velocities also correspond to the highest
lifetimes at low frequencies (c.f. Fig. 2.4a and 2.4c), which lead to substantial
contributions to heat conduction. Furthermore, the phonon focusing factor
can be greater than 3 since the PT Brillouin zone is orthorhombic and not
spherical. The shape of the Brillouin zone also may explain the difference in
the degree to which phonon focusing enhances thermal conductivity in PT
versus PE, since PE has a shorter unit cell along the chain axis. The atom
density in PT is also higher than in Si. The volume of the PT unit cell is
360.6 Å3 with 28 atoms per unit cell which gives an atom density of 0.078
atoms/Å3. In Si, there are 2 atoms per primitive cell with a volume of 41.0 Å3

(our calculations used a lattice parameter of 5.474 Å from minimizing the free
energy), which gives an atom density of 0.049 atoms/Å3. This difference makes
sense given the low packing factor of a diamond cubic structure. Therefore,
PT has nearly a 60% higher atom density. Taken together, we can see how the
thermal conductivity in an anisotropic crystal is more difficult to assess from
a heuristic standpoint, but that the high value of thermal conductivity in PT
compared to other crystals arises from many factors, where we have analyzed
phonon focusing in particular.

Finally, we consider our prediction for PT in comparison to the predicted
and experimentally realized thermal conductivities of other crystalline poly-
mers. Prior computational works reported a range of 8 to 100 Wm−1K−1in
polymer crystals lacking significant disorder [39] while the highest reported
experimental values in macroscopic samples have ranged from 20 to around 65
Wm−1K−1[136, 137, 140]. Our work, along with other recent ab initio stud-
ies [49] indicate that the upper bound for polymer crystals is at least 160
Wm−1K−1. The steady progress in synthesis and associated increase in mea-
sured thermal conductivity in various material systems suggest that the pre-



35

dicted values from ab initio calculations can serve as useful guiding references,
highlighting the utility of parameter free thermal conductivity calculations
for the materials synthesis community. While defects and the difficulties of
crystallizing polymers are substantial barriers to achieving high thermal con-
ductivity, the generality of the phonon focusing mechanism in suggests that
there are some crystalline polymers that, if synthesized at high enough quality,
could have thermal conductivities exceeding 100 Wm−1K−1.

2.5 Thermal conductivity in the high pressure phase of polyte-
trafluoroethylene (PTFE)

The study of thermal conductivity under hydrostatic pressure has a history
extending back nearly 100 years [171] due to its importance in geophysics and
mineral physics, although the experimental setups necessary to conduct high
quality measurements were not available until much later [172]. Pressure is
often taken as the complementary thermodynamic state variable to tempera-
ture, so tuning pressure as well as temperature probes another axis of phase
diagrams and allows us to see the effect of different crystal structures [172].

With the maturation of first-principles calculations, initial studies of the pres-
sure dependence of thermal conductivity focused on materials relevant to geo-
physics like MgO [173]. The thermal conductivity versus pressure many ma-
terials like diamond [174], cubic BN [175], and Te compounds [176] were ana-
lyzed with respect to how the phonon dispersion and scattering rates changed
with pressure. Other studies showed examples of the failure of conventional
Leibfried–Schlomann (LS) theory predictions of the trend of thermal conduc-
tivity versus pressure due the use of phonon mode averaged quantities in the LS
expressions that do not account for the change in scattering phase space with
pressure [177]. Later calculations in BAs and BSb showed non-monotonic de-
pendence of thermal conductivity versus pressure due to competing responses
of three-phonon and four-phonon scattering [178]. In 2D materials, the ther-
mal conductivity is often studied with respect to mechanical strain [179–182].

However, there are comparatively fewer studies of polymers under pressure.
A polymer of interest is polytetrafluoroethylene (PTFE) which has a high
pressure, high symmetry phase at modest pressures below 1 GPa [183, 184].
This phase is orthorhombic with the polymer chains forming a planar zigzag ar-
rangement with identical symmetry to the ambient pressure phase of polyethy-
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lene. However, at ambient pressure, the crystal structure of PTFE is helical
with many chemical repeat units along the chain per unit cell. In this phase,
even at high degrees of crystallinity, the absolute value of thermal conductiv-
ity is quite low, around 0.3 Wm−1K−1[185]. Given that PE has such a high
thermal conductivity, it is worth considering whether PTFE will also have a
higher thermal conductivity at high pressures in the high symmetry phase.

In a prior computational study of PTFE using MD, the thermal conductivity
was calculated at ambient temperature and pressure but the PTFE crystal
structure was initialized in the high pressure phase [39]. In that work, the low
thermal conductivity of PTFE was attributed to segmental disorder due to
dihedal axis rotations which prevented the formation of long range phonons.
However disorder may also have been introduced as the material attempted
to reach the helical crystal structure favored in ambient thermodynamic con-
ditions. Thus, our interest in studying PTFE under pressure is less concerned
with the particular pressure dependence, but rather its potential for high ther-
mal conductivity given the similarity of the high pressure phase to the PE
crystal structure, and the potential to further generalize the phonon focusing
mechanism in quasi-1D materials.

To study materials under pressure, let us first define pressure which can be
obtained by one of the Maxwell relations:

P = −
(
∂F

∂V

)
T

(2.20)

where F is the Helmholtz free energy which includes the phonon free energy
calculated using the canonical partition function.

Since the total free energy requires the phonons, sampling a large number
of volumes involves significant computational expense. We take the typical
approach of calculating phonons for a small number of volumes and then fitting
an equation of state to the free energy which allows us to obtain pressure
through an analytical derivative of this equation of state. We select 5 volumes
and relax atom positions and unit cell parameters while keeping the cell volume
fixed. We then calculate the phonons at 300 K. We fit a Birch-Murnaghan
equation of state (EOS) [186]. From this fit, we can select a volume, and
thus pressure, of interest for the thermal conductivity calculations. The free
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Figure 2.7: Helmholtz free energy and pressure versus volume in PTFE. The
circles correspond to the free energies from the actual TDEP calculation. The
blue curve corresponds to the best fit of a Birch Murnaghan equation of state
(EOS). The red curve is the pressure corresponding to the volume, given by
Eq. 2.20. The vertical dashed line corresponds to the volume of zero pressure

energy calculated from TDEP, the Birch-Murnaghan EOS fit to these TDEP
free energies, and the corresponding pressure are shown in Fig. 2.7.

We note that when we attempt to calculate IFCs for the unit cells of lower
pressure, some branches show unstable phonons meaning the structure is not
dynamically stable, consistent with the phase diagram which indicates a helical
phase for pressures below 0.6 GPa [184].

For the thermal conductivity calculations, we select a volume of 111.9 Å3

corresponding to a pressure of 0.781 GPa. The phonon dispersion and unit
cell parameters corresponding this volume are shown in Fig. 2.8. We note that
in this structure, we have aligned the chains along the X axis. The crystal
structure is almost identical to the PE crystal structure at ambient pressure,
except with fluorine atoms in the place of the hydrogen atoms of PE. The a
lattice parameter is much shorter in this structure than in PT due to short and
simple chemical repeat units of PTFE. As a result, the Γ−X path in the BZ
is much longer in this structure. The phonon dispersion shows that there are
many highly dispersive branches along the Γ−X path and other paths along
that direction (S−Y and Z−U). As in PT, the optical branches along the X
direction are highly dispersive all the way up to the highest frequency phonons
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Figure 2.8: The crystal structure and dispersion of PTFE. Note that the PTFE
chains are extended along the X axis, in contrast to PT where the chains are
extended along the Z axis. Since the monomer units of PTFE are much shorter
than in PT, the a axis of the unit cell is much shorter in PTFE despite both
polymers having 2 chemical repeat units per unit cell. In the dispersion, we
can see highly dispersive modes along the Γ-X direction. Note the absence of
modes around 90 THz due to the lack of hydrogen atoms in PTFE.

around 40 THz. In contrast, along the non-chain directions, the branches are
flat after 5 THz.

This phonon dispersion suggests that we will see substantial phonon focusing
in this material as well. We obtain phonons with second order force constants
including neighbor atoms up to 6Å away and a real space cutoff of 3Å for the
third order anharmonic force constants. We calculate the thermal conductivity
using an anisotropic q-grid of 27 × 19 × 19. The thermal conductivity is
48.3 Wm−1K−1 at room temperature at a pressure of 0.781 GPa. This is an
increase in the thermal conductivity of over 3 orders of magnitude compared
to the low pressure phase. In some ways, this increase is not too surprising
since it is known that pressure induced phase transitions can significantly alter
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the thermal conductivity, but typically phase transitions decreases thermal
conductivity [172, 187].

Figure 2.9: Isotropic and actual spectral thermal conductivity for PTFE. The
isotropic thermal conductivity is 25.3 Wm−1K−1 compared to the actual ther-
mal conductivity of 48.3 Wm−1K−1.

To see the extent to which phonon focusing affects the thermal conductivity,
we again calculate the isotropic thermal conductivity with group velocity mag-
nitudes unchanged but group velocity vectors aligned with the wave vector.
The resulting thermal conductivity is 25.3 Wm−1K−1, almost half the actual
value. The decomposition of thermal conductivity versus frequency is shown
for the actual case against this isotropic case in Fig. 2.9. As in PT, we see
that there are non-negligible contributions to the thermal conductivity up to
40 THz which includes many optical modes. We attribute this again to the
phonon focusing of the optical modes. For the opposite case of a fully focused
PTFE, we see only a 4.1% increase in the thermal conductivity, indicating
that the degree of phonon focusing is close to maximal. We thus have further
evidence that phonon focusing is of vital importance in setting the high ther-
mal conductivity of polymer crystals by showing that it also has a dramatic
effect on the thermal conductivity of PTFE.

2.6 Summary
We calculated the first-principles thermal conductivity including quantum nu-
clear effects and finite temperature anharmonicity in crystalline unsubstituted
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polythiophene and in the high-pressure phase of polytetrafluoroethylene. We
obtain a thermal conductivity of 198 Wm−1K−1 for crystalline PT at room
temperature and 48 Wm−1K−1 for PTFE at room temperature and 0.6 GPa.
We find that exceptional phonon focusing of both acoustic and optical branches
that affects nearly all of the modes in the Brillouin zone permits even modes
with short, picosecond range lifetimes to contribute to conduction. Our work
indicates that the intrinsic upper bound for the chain axis thermal conductiv-
ity of polymer crystals may rival the values of metals and semiconductors, as
phonon focusing occurs in any anisotropic crystal.

Looking at the degree to which phonon focusing enhances the thermal conduc-
tivity in PT, PE, and PTFE compared to their hypothetical isotropic equiv-
alent, we can see that the focusing factor is between 2 to 5, which is not so
different from the value of around 3 expected for just a spherical Brillouin
zone and analysis for acoustic modes only [35]. However, when assessing the
intrinsic upper limits, first-principles calculations are especially well suited,
because they reveal the quantitative balance of all of the factors relevant to
thermal conductivity like atom density, mode specific lifetimes and velocities,
and of course phonon focusing.

The field of first principles phonon calculations is now around 15 years old,
and seeks to understand the physics and expand the materials boundaries at
the extremes of thermal conductivity. For high thermal conductivity, we have
already mentioned the success of BAs, while achieving the lowest possible ther-
mal conductivity is important in applications like thermoelectrics and thermal
barrier coatings [188]. Polymers have been studied for both extremes of low
[189] and high thermal conductivity. For the first-principles thermal transport
field, the primary approach to achieving high thermal conductivity has been
to increase the phonon lifetime by reducing phonon-phonon scattering. Our
study of intrinsic thermal conductivity of polymers shows that another possi-
ble route to high thermal conductivity is through phonon focusing in quasi-1D,
highly anisotropic solids.
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C h a p t e r 3

THEORY AND METHODS FOR HIGH-FIELD TRANSPORT
AND ELECTRONIC NOISE FROM FIRST PRINCIPLES

This chapter has been adapted, in part, from:

Alexander Y. Choi, Peishi Cheng, Benjamin Hatanpää, and Austin J.
Minnich (Apr 2021). Electronic noise of warm electrons in semiconductors
from first principles. In: Phys. Rev. Materials 5, pp. 044603. doi:
10.1103/PhysRevMaterials.5.044603

Peishi Cheng, Shi-Ning Sun, Alexander Y. Choi, and Austin J. Minnich
(Jan 2022). High-field transport and hot electron noise in GaAs from first
principles: role of two-phonon scattering. In: arXiv:2201.11912

The goal of this chapter is to establish the theory and equations for the calcu-
lation of high-field transport and hot electron noise from first principles. Let
us begin with a brief background on the prior literature for these topics.

Early work on high-field charge transport in semiconductors focused on di-
electric breakdown in polar semiconductors, establishing an early treatment of
electronic interactions with polar longitudinal optical phonons [190]. Subse-
quent experimental work focused on the nonlinear trends of drift velocity ver-
sus electric field in elemental semiconductors [63–65], the Gunn effect in III-V
semiconductors [66, 67], measurement of the negative differential resistance re-
gion associated with the Gunn effect [191–193], and measurement of the high
frequency AC mobility that provided insight into the energy relaxation time
[194–197]. Initial theoretical studies using the Boltzmann equation employed
model distribution functions [198, 199] or numerically solved the BTE under
various approximations [200–202] to investigate high-field transport phenom-
ena such as energy relaxation and intervalley scattering processes. Beginning
in the 1970s, Monte Carlo calculations became the predominant method for
modeling high-field transport [203–205], with an important review given in
Ref. [68]. First-principles studies of high field transport from first principles
have been reported by time stepping the BTE to steady state [95], or by the
Monte Carlo method [96], but not by direct solution to the high-field, steady
state BTE.

https://doi.org/10.1103/PhysRevMaterials.5.044603
https://arxiv.org/abs/2201.11912


42

The history of the theoretical description of fluctuations about a non-equilibrium
steady-state was briefly discussed in Ch. 1, and expanded here. As noted previ-
ously, in 1935, Leontovich used kinetic theory to examine velocity fluctuations
of a non-equilibrium gas [106]. Around 20 years later, Wannier established
the definition of a diffusion coefficient for transport about a non-equilibrium
steady state [206]. Hashitsume considered a microscopic description of occu-
pancy fluctuations about a steady distribution using the Fokker-Planck equa-
tion with a random source term [207]. In analogy with earlier works on fluctu-
ational Maxwell equations, Kadomotsev introduced Langevin sources into the
Boltzmann equation [208]. Shortly thereafter, Price derived the fluctuation-
diffusion relation for spatially homogeneous fluctuations, linking Wannier’s
diffusion coefficient to the spectral density of current fluctuations even out-
side of equilibrium [107]. In the same year, Lax formulated a general kinetic
theory of fluctuations for a Markovian system [209]. Throughout the 1960s,
Gantsevich and co-workers applied Lax’s kinetic theory to dilute gases for
which the evolution of the one particle distribution function is governed by
the linear Boltzmann Equation [108]. Their technique, termed the “method
of moments,” demonstrated how to compute the spectral density of current
fluctuations using only the solutions of the linear Boltzmann equation. Con-
currently with Gantsevich, starting from Kadomotsev’s Boltzmann-Langevin
equation, Kogan and Shul’man developed a Langevin treatment of the current
density fluctuations [210]. Lax, van Vliet, and Kogan and Shul’man indepen-
dently confirmed that the method of moments and the Langevin approach are
equivalent [211–213].

Numerical studies of noise proliferated around the same time that Monte Carlo
simulations were used to study high-field transport, as they could also be used
simulate the real time trajectories of electrons to calculate non-equilibrium
diffusion and thus PSD [214]. Initial calculations in GaAs primarily reported
that the high-field diffusion coefficient differed substantially from that pre-
dicted using the Einstein relation [215, 216], which is to be expected as the
Nyquist relation is no longer valid and the PSD is an independent transport
observable. Later Monte Carlo calculations [114, 115, 217] and analytical mod-
els [218–220] of transport in GaAs used PSD as an additional observable to
study intervalley processes and their role in the Gunn effect and intervalley
diffusion. Calculations of PSD were also made in Si [221–224], and other com-
pound semiconductors [225–227]. The most recent works studies of noise focus
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on the effect of short channels [228] or impurities [229] on PSD at cryogenic
temperatures, noise in modern heterostructure devices [230, 231], and PSD
in graphene [232, 233]. However, as with the study of high-field transport, a
first-principles framework with no adjustable parameters for the calculation of
noise is desirable.

3.1 Boltzmann equation for charge transport
We are interested in charge transport in semiconductors studied using the
BTE. In contrast to the BTE for phonon transport where no forces act on the
phonons, we are interested in studying how charge carriers behave under the
influence of an electric field. We therefore assume spatial homogeneity. The
BTE with no diffusion and only force term, with the same variables as Eq. 1.3
is given as:

∂f

∂t
+ F · ∇pf =

(
∂f

∂t

)
coll

(3.1)

To manipulate this into the form we want, let us first consider wave vectors
instead of momentum where we have p = ~k by the de Broglie relation. Our
gradient must be calculated for wave vectors in the first Brillouin zone. The
force on electrons due to the electric field is given by F = eE where e is the
elementary charge, and E is the electric field vector. Finally, we write the
collision integral as a function of the electron occupation since the scattering
due to Fermi’s Golden Rule depends on the density of the initial and final
states, making the collision integral a function of the solution itself. Thus the
charge BTE that we are interested in is:

∂fmk

∂t
+ eE

~
· ∇kfmk = I[fmk] (3.2)

Here, fmk is occupation of the electron state at wave vector k with band index
m, and e is the fundamental charge. I is the collision integral that describes
scattering experienced by electrons. As discussed in Ch. 1, the dominant in-
teraction near room temperature for non-degenerate carrier concentrations is
electron-phonon scattering [70]. When solving for charge transport observ-
ables, we often consider the system at steady state where the time derivative
term vanishes by definition, and the solution of the Boltzmann equation is the
non-equilibrium steady-state distribution function f smk. Our work focuses on
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the conduction band of GaAs for which there are no interband transitions in
the energies of interest, so we omit the electron band indices in the remaining
equations for simplicity.

One of the most important charge transport observables is the DC conduc-
tivity, defined by Jα = ∑

β σ
αβEβ where J is the current density due to the

electric field. The current density can be expressed as a sum over all electron
occupations:

J = 2e
V0

∑
k

vkf
s
k (3.3)

Here, V0 is the volume of the supercell, vk is the group velocity of the electron
at state k, and the factor of 2 comes from the assumption of spin degeneracy.
So we can see that obtaining the conductivity is a matter of solving the BTE
for the distribution function.

Next, let us discuss the form of the collision integral with scattering from
electron-phonon interactions. The transition rates based on Fermi’s Golden
Rule are given by [1]:

I[fk] = −2π
~

1
N

∑
νq
|gk,νq|2

(
δ(εk−~ωνq−εk+q)Hem +δ(εq +~ωνq−εk+q)Habs

)
(3.4)

where the sum is over phonon wave vector q and phonon branch indices ν for
scattering phonons which satisfy momentum conservation, the delta functions
ensure energy conservation, and gk,νq is the e-ph matrix element calculated
from first principles for a given scattering process. N is the total number of
q-points sampled from the Brillouin zone. Hem and Habs weight the scattering
probabilities to account for the electron and phonon occupations and are given
below:

Hem = fk(1− fk+q)(Nνq + 1)− (1− fk)fk+qNνq

Habs = fk(1− fk+q)Nνq − (1− fk)fk+q(Nνq + 1)
(3.5)

We can see that the collision integral itself depends on the distribution function
we are trying to solve for, and that the dependence is, in general, a nonlinear
function of the distributions themselves.
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A common way to make progress on this nonlinearity is to write the distribu-
tion functions as expansions about the equilibrium, Fermi-Dirac distribution
f 0

k with a deviational occupation ∆fk so that the total electron occupation is
fk = f 0

k + ∆fk. At low fields, we can drop higher order terms of the form
O(∆f 2). To solve at high electric fields, we need to move past this approxi-
mation, but the expressions before dropping higher order terms are useful for
understanding the approach to the collision integral at high fields, so we show
it here.

As an example, consider the expression for the emission weight Hem. The
expressions for the absorption weight will be similar. After substituting the
definition of the electron distribution expanded about equilibrium, we have for
phonon emission:

Hem =(f 0
k + ∆fk)(1− f 0

k+q −∆fk+q)(Nνq + 1)

− (1− f 0
k −∆fk)(f 0

k+q + ∆fk+q)Nνq
(3.6)

Then, grouping similar terms and without removing any higher order terms,
we get:

Hem = ∆fk

[
(1− f 0

k+q −∆fk+q)(Nνq + 1) + (f 0
k+q + ∆fk+q)Nνq

]

−∆fk+q

[
f 0

k(Nνq + 1) + (1− f 0
k)Nνq

]
+ f 0

k(1− f 0
k+q)(Nνq + 1)− (1− f 0

k)f 0
k+qNνq

(3.7)

Often, the e-ph collision integral is solved under the assumption of constant
lattice temperature, meaning that the phonon occupations are equal to the
Bose-Einstein function N0

νq for the temperature of interest. In this case, the
third line with terms not grouped with ∆fk or ∆fk+q will vanish due to iden-
tities based on conservation of energy. Recall the mathematical identities that
(1 − f 0

k) = eεk/kBTf 0
k, and (N0

νq + 1) = e~ωνq/kBTN0
νq. Thus the terms on the

third line of Eqn. 3.7 become:

f 0
k(1− f 0

k+q)(N0
νq + 1)− (1− f 0

k)f 0
k+qN

0
νq

= e(εk+q+~ωνq)/kBTf 0
kf

0
k+qN

0
νq − eεk/kBTf 0

kf
0
k+qN

0
νq
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The expression equals zero due to conservation of energy for the phonon emis-
sion process since εk = εk+q + ~ωνq.

After eliminating the third line of Eq. 3.7 and simplifying the expressions
within the square brackets, we obtain the emission weight expression for this
collision integral as

Hem = ∆fk

[
Nνq + 1− f 0

k+q −∆fk+q

]
−∆fk+q

[
f 0

k +Nνq

]
(3.8)

We note here that this is the fully non-linear weight for phonon emission, with
only algebraic simplifications. The only nonlinear term corresponds to the
−∆fk+q term inside the first set of square brackets, and we have arbitrarily
chosen to group it with the ∆fk term, but could also group it with the ∆fk+q

term.

Applying a similar analysis yields the following expression for the fully non-
linear weight for phonon absorption:

Habs = ∆fk

[
Nνq + f 0

k+q + ∆fk+q

]
−∆fk+q

[
Nνq + 1− f 0

k

]
(3.9)

Let us now discuss how these weights are simplified in the low-field case.

Low field approximations to the BTE
Electrical mobility is often of interest in the region where the response of
the system is linear with respect to the electric field, so the linear response
coefficient corresponds to application of low electric fields, which allows sim-
plification to the BTE. The following derivation follows largely from Ref. [73].

If we reasonably assume that at low-fields we have ∆fmk � f 0
mk, then we

simply neglect higher order terms of the form ∆fk∆fk+q in Eqs. 3.8 and
3.9 which gives us a collision integral that is linear in the ∆f . The weights
associated with this linearization are:

Ĥem = ∆fk(Nνq + 1− f 0
k+q)−∆fk+q(Nνq + f 0

k)

Ĥabs = ∆fk(Nνq + f 0
k)−∆fk+q(Nνq + 1− f 0

k+q)
(3.10)
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Another consequence of the assumption that ∆fmk � f 0
mk is that the electric

field term can be approximated as coming from only the effect of the field on
the equilibrium occupation, which leads to an analytical expression:

∇kfk ≈ ∇kf
0
k =

(
df 0

k
dεk

dεk

dk

)
= − ~

kBT
vkf

0
k(1− f 0

k) (3.11)

Using this approximation, with the assumption of steady state ∂fk
∂t

= 0, and
substituting the linearized weights of Eq. 3.10 into the collision integral, we
obtain the low-field BTE:

eE
kBT

· vkf
0
k(1− f 0

k) =2π
~

1
N

∑
νq
|gk,νq|2

[
(
δabs

k,νq(Nνq + f 0
k+q) + δem

k,νq(Nνq + 1− f 0
k+q)

)
∆fk

−
(
δabs

k,νq(Nνq + 1− f 0
k) + δem

k,νq(Nνq + f 0
k)
)

∆fk+q

]
(3.12)

where we have multiplied −1 through the entire BTE, and used δem
k,νq and δabs

k,νq

for the delta functions for phonon emission and absorption, respectively, for a
given scattering process. We write them explicitly below.

δem
k,νq = δ(εk − ~ωνq − εk+q)

δabs
k,νq = δ(εk + ~ωνq − εk+q)

(3.13)

Finally, when solving for mobility, the deviational occupation is often rewritten
in the form given below that simplifies the whole BTE:

∆fk = f 0
k(1− f 0

k) eE
kBT

· Fk (3.14)

The physical meaning of this expression is that the deviational occupation
scales linearly with electric field, and the solution is captured by a new dummy
variable Fk. If we substitute this expression into the low-field BTE of Eq. 3.12,
we can see that terms of the form f 0

k(1− f 0
k) eE

kBT
appear on both sides of the

BTE and can be divided out due to the linearity of both the collision integral
and the dot product.
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The resulting BTE is given below:

vk = 2π
~

1
N

∑
νq
|gk,νq|2

[ (
δabs

k,νq(Nq + f 0
k+q) + δem

k,νq(Nq + 1− f 0
k+q)

)
Fk

−
f 0

k+q(1− f 0
k+q)

f 0
k(1− f 0

k)
(
δabs

k,νq(Nq + 1− f 0
k) + δem

k,νq(Nq + f 0
k)
)

Fk+q

] (3.15)

A common approximation in the literature is to obtain a solution while dis-
regarding the second term in the sum on the right hand side of the equation
above. This is known as the relaxation time approximation (RTA), and the re-
sulting electron occupations for each state are independent of the occupations
of all other states, since each Fk requires no knowledge of the Fk+q. However,
it is known that the full solution to the BTE beyond the RTA will be substan-
tially different if the scattering is anisotropic [234], and this has been shown
to be the case in GaAs [97]. Whether through the RTA, or through the full
solution, once the Fk are obtained, the conductivity can be calculated using
the following expression [73]:

σαβ = 2e2

V0kBT

∑
k
f 0

k(1− f 0
k)vαkF

β
k (3.16)

Finally, we can calculate the mobility which normalizes the conductivity by
nc, the carrier density:

µαβ = σαβ
enc

(3.17)

The purpose of this derivation is to show that the BTE formalism when solving
for low-field mobility does not involve the electric field at all. One can see that
in Eq. 3.15, the electric field does not appear in the expression since the
solution being sought is the linear response. The nonlinearity of the collision
integral is ignored due to nearness to equilibrium. This is the framework that
we move beyond to solve for charge transport at high fields.

Wannier interpolation of e-ph matrix elements
The e-ph matrix elements gk,νq of Eq. 3.4 are perhaps the most important
ingredients for a first principles charge transport calculation. For a scattering
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process that takes an electron from state ψk to another state ψk+q through a
phonon at q of branch ν, the e-ph matrix element is:

gk,νq = 〈ψk+q|∂νqV |ψk〉 (3.18)

Typically, the electronic states are taken to be the DFT eigenstates, and
∂νqV is the perturbation induced in the self-consistent DFT potential due
the phonon indexed by νq. The perturbation potential is typically obtained
from DFPT from which the phonons are calculated.

However, when calculating transport quantities like mobility, fine grids for the
electrons and phonons are required. This is because the phonon energy scale
is on the order of tens of meV whereas the electron energy scale is on the
order of eV, so dense sampling is required to include the possible scattering
channels and thus obtain the converged scattering rates. This means calculat-
ing the e-ph matrix elements for up to millions of combinations of electrons
and phonons, a computationally demanding task often limited by the cost of
DFPT. The development of Wannier interpolation made the fully ab initio
calculation possible [235–237].

Wannier functions have a broad range of purposes and physical interpretations
[237], but we concern ourselves here only to their application to transport
calculations. The reason Wannier functions are able to provide interpolation of
the necessary quantities like the e-ph matrix elements on fine grids throughout
the entire Brillouin zone is because the e-ph interaction is short ranged in
non-polar materials [236]. This fact alone is not enough, but by selecting
the Wannier functions that are maximally localized, one obtains an efficient
representation of the e-ph interaction that allows interpolation to fine grids.

Achieving maximal localization requires a definition of the real space spread
of Wannier functions, which are composed of electron eigenstates, or Bloch
functions, that are defined to be spatially delocalized. A definition for a local-
ization functional was established [238] that relied on a gradient in reciprocal
space through a finite difference scheme. Coincidentally, this is the same finite
difference scheme we use in Sec. 3.2 to calculate the reciprocal space gradient
at high electric fields.
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Finally, we note that in polar materials, the e-ph interaction is not short range
due to the interactions of electrons with polar LO phonons. This long range
contribution must be included separately [239, 240].

A more detailed outline of the theory behind the interpolation of the e-ph
interaction using Wannier functions requires a not insubstantial amount of
derivation which we consider beyond the scope of this thesis given that many
accessible electronic structure codes are able to perform such interpolations,
not necessarily with Wannier functions. An important review of Wannier
functions can be found in Ref. [237] and a review of their use in the context of
mobility calculations can be found in Ref. [71]. Our work uses the Perturbo
code [241] developed at Caltech by the Bernardi group.

3.2 Effect of high electric fields on the Boltzmann equation
There must be changes to the BTE at high fields since we no longer satisfy the
condition that ∆fk � f 0

k. This prevents the use of an analytical expression
for the field term, and the collision integral no longer has negligible nonlinear
terms.

Electric field term using finite differences
At high fields, the gradient term can no longer be approximated by the gradient
on the equilibrium distribution only; ∇kfk 6= ∇f 0

k. This occurs because the
reciprocal space gradient on the deviational occupation ∆fk is non-negligible.

Instead of treating the field term entirely numerically, we keep the analyti-
cal expression for the equilibrium distribution and employ a finite difference
formula [242, 243] to obtain the reciprocal space gradient on ∆fk:

∇k[∆fk] =
∑

b
wbb(∆fk+b −∆fk) (3.19)

Here, b is a set of vectors connecting a grid point in reciprocal space k to its
neighbors, and wb is a weight factor that is unique for each set of neighbor
vectors of the same magnitude b = |b|. The vectors and weights are chosen so
that the gradient is correct to linear order, which, depending on the symmetry
of the crystal and the grid points in the Brillouin zone, may require more than
one “shell” of neighbor vectors [242]. However, in GaAs this condition can be
satisfied with just one shell and we write the simplified constraint for a single
shell that gives the correct gradient:
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wb
∑
i

biαb
i
β = δαβ (3.20)

where i indexes the vectors of the shell and α and β are Cartesian directions.
In GaAs, the shell that satisfies this constraint is simply the set of vectors
connecting the point k to its first nearest neighbors. The meaning of the
weights wb becomes somewhat more intuitive if we consider a one dimensional
derivative of some function f(x) which has two nearest neighbor points at
f(x ±∆x) where instead of neighbor vectors we simply have ±∆x. Then we
have that wb = 1/(2∆x2) and the finite difference scheme of Eq. 3.19 gives
the familiar central difference formula:

df

dx
=
∑
±∆x

±∆x
2∆x2 (fx±∆x − fx) = (fx+∆x − fx−∆x)

2∆x (3.21)

As noted previously, the finite difference formula of Eq. 3.19 is the same used
to calculate spatial spread when constructing maximally localized Wannier
functions.

The finite difference scheme can be expressed as a matrix acting on a vector of
the distribution function at each grid point in the Brillouin zone with entries
in each row of the finite difference matrix at locations corresponding to the
nearest neighbors of the grid point for the row, and with a matrix vector
product that satisfies Eq. 3.19. If we further incorporate the dot product with
the electric field that appears in the field term of the BTE, then we can write
the matrix as:

∑
α

∑
k′

eEα
~
Dα

k,k′∆fk′ =
∑
α

∑
b
Eαbαwb(∆fk+b −∆fk) (3.22)

where Dα
k,k′ is the finite difference matrix for Cartesian direction α, and has

entries of 0 except when k′ = k + b or k′ = k. The dot product is now a
sum over matrix vector products for each of the Cartesian directions. This
may seem like a more tedious way to write the gradient term, but we do so
to clearly formulate the BTE as a set of linear equations, which we will solve
using numerical techniques for large linear systems. We can now write the
BTE for high fields as follows:
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− eE
kBT

· vkf
0
k(1− f 0

k) +
∑
α

∑
k′

eEα
~
Dα

k,k′∆fk′ = I[fk] (3.23)

On the left hand side, we have both the analytical expression for the field term
on the equilibrium occupation and the numerical expression for the field term
on the deviational occupation. The task is to now address the form of the
collision integral I[fk] for high electric fields. We have said previously that
non-linearities are non-negligible at high fields, but we will show that certain
approximations can be made to obtain a collision integral for high fields that
remains linear on the deviational occupations.

Collision integral at high electric fields
Previously, we neglected higher order terms of the form ∆fk∆fk+q in the fully
non-linear weights of Eqs. 3.8 and 3.9, since ∆fk � f 0

k, a condition we know
is violated at high electric fields. However, for non-degenerate electrons, the
distribution function values are always much less than the phonon occupations
(fk � Nq) even at high fields. Therefore, if we look at the fully nonlinear
expressions in Eqs. 3.8 and 3.9, we see that there are electron occupation
terms that are added or subtracted from phonon occupations that will have
negligible effect. Thus, we remove these electron occupation terms and the
resulting weights are:

Hem = ∆fk(Nνq + 1)−∆fk+q(Nνq)

Habs = ∆fk(Nνq)−∆fk+q(Nνq + 1)
(3.24)

The physical meaning of neglecting the electron occupations in the weights is
that, for non-degenerate carrier concentrations, the e-ph scattering rate does
not depend on the electron occupation unless it multiplies the phonon occu-
pation. This is a consequence of our definition of the electron distribution
function expanded about equilibrium, fk = f 0

k + ∆fk, which led to the can-
cellation of many terms as outlined in the derivation leading to Eq 3.8. The
approximation is particularly well-satisfied for GaAs owing to its relatively low
Debye temperature of 360 K [244], yielding phonon occupations Nq ∼ 1 even
at optical phonon energies.

We numerically verify the validity of this approximation by solving for the
deviational occupation using the weights of Eq. 3.24 which allows the BTE to



53

Figure 3.1: Average occupation of the phonons and electrons involved in scat-
tering a state at a given energy, using the solution to the BTE at a field of
5 kV cm−1. The averages are weighted by the delta functions as given in Eq.
3.25. It can be seen that the electron occupations are at least two orders of
magnitude smaller than the phonon occupations, justifying the solution of the
BTE without reference to the electron occupations in the collision integral.

be solved as a linear system. We plot the equilibrium and deviational electron
occupation as well as the phonon occupation at the highest electric field of
interest in Fig. 3.1. Note that since the weights in the occupation factor
depend on the final state that can be coupled, we are not simply plotting the
Fermi Dirac distribution versus energy. There is a phase space factor that
depends on the allowed e-ph scattering processes, and we account for this by
plotting the average value of the phonon and electron occupations weighted
by the delta functions. The averages are given by the equations below:

〈Nq〉k =
∑
q′
δem

k,νq(Nq′ + 1) + δabs
k,νqNq′

〈f 0
k+q〉k =

∑
q′

(δem
k,νq + δabs

k,νq)f 0
k+q′

〈|∆fk+q|〉k =
∑
q′

(δem
k,νq + δabs

k,νq)|∆fk+q′ |

(3.25)

We see in Fig. 3.1 that the electron occupations are indeed much smaller than
the phonon occupations, justifying our solution of the BTE without electron
occupations in the collision integral. When comparing the high-field weights
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of Eq. 3.24 to the low-field weights of Eq. 3.10, we see that they are identical
except for the presence of electron occupations in Eq. 3.10. It may seem like
the low-field weights are “less approximate” since they use information about
the electron occupations, but what we are saying with our high-field collision
integral is that even if we included the non-linear terms, we would obtain the
same distribution as if we had not included any electron occupations in the
weights to begin with. Thus, to be consistent with the approximation, we do
not include any electron occupations.

We have established that at high fields, the collision integral is still linear on
the deviational occupations, so we now formally write the high-field BTE as a
set of linear equations, where we replace I[fk] with a matrix:

− eE
kBT

· vkf
0
k(1− f 0

k) +
∑
α

∑
k′

eEα
~
Dα

k,k′∆fk′ =
∑
k′

Θk,k′∆fk′ (3.26)

where we denote Θk,k′ as the scattering matrix, which corresponds to the
linear, high-field collision integral. We explicitly give its expression below:

∑
k′

Θk,k′∆fk′ = −2π
~

1
N

∑
νq
|gk,νq|2

[ (
δabs

k,νqNνq + δem
k,νq(Nνq + 1)

)
∆fk

+
(
δabs

k,νq(Nνq + 1) + δem
k,νqNνq

)
∆fk+q

]
(3.27)

Here, k′ ranges over all possible electronic states, and the diagonal (k′ = k)
entries of the scattering matrix correspond to the first term on the right hand
side of the equation which is a sum over all possible scattering channels, and
thus are equal to the scattering rates times −1. The off diagonal entries of
the matrix are only nonzero when k′ = k + q, and contain exactly the amount
of coupling between states at k and k + q, mediated by all possible phonon
branches ν at the wave vector q.

We rearrange terms so that we have a linear system of the form Ax = b:

∑
k′

[∑
α

eEα
~
Dα

k,k′ −Θk,k′

]
∆fk′ = eE

kBT
· vkf

0
k(1− f 0

k) (3.28)
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We have now transformed the BTE from a set of coupled integro-differential
equations into a linear system of differential equations where the inhomogenous
term is the equilibrium field term on the right hand side.

We now define a relaxation operator which captures the effect of both the
electric field and the scattering matrix:

∑
k′

Λk,k′∆fk′ ≡
∑
k′

[∑
α

eEα
~
Dα

k,k′ −Θk,k′

]
∆fk′ (3.29)

The solution to the BTE can now be expressed symbolically using the inverse
of this relaxation operator.

∆fk =
∑
k′

Λ−1
k,k′

(
eE
kBT

· vk′f 0
k′(1− f 0

k′)
)

(3.30)

The field dependent conductivity can now be written:

σαβ(E) = 2e2

kBTV0

∑
k
vk,α

∑
k′

Λ−1
k,k′(vk′,βf

0
k′(1− f 0

k′)) (3.31)

which reduces to the low field conductivity of Eq. 3.16 when the electric field
is small, and the relaxation operator contains no field term on the deviational
occupation, reducing to just the scattering matrix.

Another commonly reported high-field observable is the drift velocity which
describes the mean velocity of of electrons at steady state for a given electric
field:

V = 1
n

∑
k

vkf
s
k (3.32)

Here n = ∑
k fk is the total particle number. There are many studies reporting

the drift velocity versus field curve in GaAs [191–193] since GaAs is a material
that exhibits the Gunn effect, which manifests as a region of negative slope in
the drift velocity curve.

AC conductivity and differential conductivity
Another important transport quantity at high fields is the AC small-signal
conductivity σωαβ, which describes the linear response of the system about
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steady-state [99]. The AC conductivity at zero frequency is known as the
differential conductivity. The differential conductivity is identical to the DC
conductivity at low fields, but deviates from the DC value at high fields where
there is a non-equilibrium steady state.

With the steady distribution f sk being set by a DC field E as described above,
an AC field perturbation given by δEeiωt, induces a fluctuation of the electron
distribution δfk(t) = δfk(ω)eiωt. This fluctuation is governed by the Fourier
transformed Boltzmann equation:

∑
k′

(iωI + Λ)k,k′ δfk′ = −eδE
~
· ∇kf

s
k (3.33)

Here, I is the identity matrix and the iω term comes from the Fourier transform
of the time derivative in Eq. 3.2. The fluctuation in the distribution function
induces a current fluctuation about the DC value, given as:

δjα = 2e
V0

∑
k
vk,α δfk (3.34)

Again the factor of 2 comes from the assumption of spin degeneracy. The
small-signal AC conductivity is defined as the linear response coefficient of the
current density to the field perturbation, σAC

αβ (ω,E) ≡ δjα/δEβ. This is why
the zero frequency AC conductivity is known as the differential conductivity.
An explicit expression for AC conductivity can be obtained by combining the
above expressions:

σAC
αβ (ω,E) = 2e2

V0~
∑

k
vk,α

∑
k′

(iω I + Λ)−1
k,k′

[
−∂f

s
k′

∂kβ

]
(3.35)

At equilibrium the steady distribution reduces to the equilibrium distribution
f sk = f 0

k, the relaxation operator reduces to the scattering matrix, Λk,k′ =
Θk,k′ . By examining Eq. 3.16 and Eq. 3.35, we see that at equilibrium the
zero-frequency AC conductivity, or differential conductivity, is equal to the
low-field conductivity as expected.

The differential mobility will become negative in the region of negative slope
of the drift velocity (Eq. 3.32).
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3.3 Ab initio computation of electronic noise
As discussed in Ch. 1, the behavior of fluctuations at high electric fields probes
the e-ph interactions in a qualitatively different way that cannot be described
by mean transport quantities like drift velocity alone [99, 105]. Since the fluc-
tuations themselves obey the BTE, the dissipation of fluctuations at low fields
is already captured by the linear response of the system about the equilibrium
state, represented in the low-field conductivity we calculate using the BTE. At
high fields, the fluctuations are not dissipating back to equilibrium but rather
to a non-equilibrium steady state, and the associated non-equilibrium noise is
termed “hot electron noise.”

Let us now describe the equations used to calculate hot electron noise. Sup-
pose that the steady state distribution f sk is known. Just as in equilibrium,
fluctuations in the instantaneous occupation of the quantum states occur. Mi-
croscopically, these fluctuations arise because of the stochastic nature of the
scattering described by Θmkm′k′ . At steady state, detailed balance requires
that the mean flux of particles into every quantum state is zero. However,
the flux of particles into or out of a quantum state is a Poissonian process
and is characterized by a variance. Therefore, the instantaneous net flux into
a quantum state is in general non-zero due to instantaneous imbalance be-
tween the incoming and outgoing fluxes [245]. Consequently, the occupation
of quantum states fluctuates under both equilibrium and non-equilibrium con-
ditions. In the macroscopic limit at which fluctuations are observed in the
laboratory, these distribution function fluctuations appear as instantaneous
current fluctuations, or equivalently, as electronic noise. A non-random char-
acteristic of these fluctuations is the power spectral density (PSD) of current
density fluctuations, which, by the Wiener-Khintchine Theorem, is related to
the single-sided Fourier transform of the autocorrelation of the current density
fluctuations [99, 246]:

Sjαjβ(ω) ≡ (δjαδjβ)ω = 2
∫ ∞
−∞

δjα(t)δjβe−iωtdt (3.36)

where the overbar indicates ensemble average over the states in the system,
and the factor of 2 comes from the even and real nature of the autocorrelation
which gives the single-sided Fourier transform as twice the amplitude of the
double-sided spectrum.
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We seek to link the macroscopic current density fluctuations to microscopic
distribution function fluctuations. Following Ref. [245], we now consider ran-
dom fluctuations about the non-equilibrium steady state, δfk(t) = fk(t)− f sk.
In contrast to the fluctuations associated with the small signal conductivity,
these fluctuations are induced by the stochastic nature of scattering rather
than an external perturbation. The corresponding current density fluctua-
tions can be expressed in terms of the fluctuation in the distribution function
as in Eq. 3.34.

It follows that the ensemble average of the correlation function of instantaneous
current fluctuations along axes α and β, δjα(t)δjβ, can be expressed in terms
of the correlation function of the occupation fluctuations, δfk(t)δfk1 :

δjα(t)δjβ =
(

2e
V0

)2∑
k

∑
k1

vk,α vk1,β δfk(t)δfk1 (3.37)

Equation 3.37 shows that computing the spectral density of current density
fluctuations requires calculating the correlation of occupation fluctuations for
states at k and k1: δfk(t)δfk1 . This function is known as the time-displaced,
two particle correlation function [245]. Through a quantum statistical me-
chanical treatment, Gantsevich and coauthors have demonstrated that the
time-displaced, two particle correlation function obeys the same Boltzmann
equation as the fluctuation itself [108]:

∂

∂t
δfk(t)δfk1 +

∑
k′

Λk,k′ δfk′(t)δfk1 = 0 (3.38)

where Λk,k′ is the same relaxation operator of Eq. 3.29 which now acts on
the correlation function. The result of Eqn. 3.38 can also be justified less
mathematically rigorously but with more physical intuition from Onsager’s
regression hypothesis (in particular, see Sec. 1 of Ref. [245]).

Solving Eqn. 3.38 requires specifying an initial condition, δfk(t)δfk1 |t=0, which
is known as the one-time, two-particle correlation function. For a non-degenerate
system with a fixed number of particles N , Fowler [247] and Lax [209] derived
the required condition as:

δfk(t)δfk1|t=0 = f skδkk1 −
fkfk1

N
(3.39)
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where the second term on the right-hand side indicates that a correlation exists
between occupations due to the fixed particle number.

Now, substituting the current fluctuation expression of Eq. 3.37 into the
Wiener-Khintchine relation of Eq. 3.36 allows us to express the current PSD
explicitly in terms of the correlation function solution to the Boltzmann equa-
tion of Eq. 3.38:

(δjαδjβ)ω =
(

2e
V0

)2∑
k

∑
k1

vk,α vk1,β (δfkδfk1)ω (3.40)

Here, (δfkδfk1)ω is the Fourier transform of the correlation function solution
to the Boltzmann equation:

(δfkδfk1)ω =
∫ ∞
−∞

δfk(t)δfk1 e−iωt dt (3.41)

This also has the meaning of the spectral density of occupation fluctuations
by the Wiener-Khintchine theorem. Since we are interested in the power spec-
tral density at a given frequency, as opposed to the full time dependence of
the time-displaced two particle correlation function, we can instead solve the
Fourier transformed version of Eq. 3.38. The result, which exploits the station-
ary property of the autocorrelation function, allows us to express the Fourier
transformed correlation function as [245]:

(δfkδfk1)ω = 2<
[∑

k′
(iωI + Λ)−1

kk′ δfk′(t)δfk1|t=0

]
(3.42)

Where the initial condition of Eq. 3.39 becomes the inhomogeneous term for
the Boltzmann equation of Eq. 3.38. Combining Eqs. 3.39, 3.40, and 3.42, we
obtain the following expression:

Sjαjβ(ω) = 2
(2e
V0

)2
<
[∑

k
vk,α

∑
k′

(iωI + Λ)−1
kk′

∑
k1

vk1,β

(
f sk′δk′k1 −

f sk′f sk1

N

)]

= 2
(2e
V0

)2
<
[∑

k
vk,α

∑
k′

(iωI + Λ)−1
kk′ (f sk′(vk′,β − Vβ))

]
(3.43)

Here, Vβ is the drift velocity (Eq. 3.32) along the β axis. As a check of the
above derivation, consider an equilibrium system for which E = 0 and Vβ = 0.
The equation is simplified with f sk = f 0

k and Λkk′ = Θkk′ . Then, we have:
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Sjαjβ(ω,E = 0) = 2
(2e
V0

)2
<
[∑

k
vk,α

∑
k′

(iωI + Θ)−1
kk′(f 0

k′vk′,β)
]

(3.44)

With the same simplifications, the equilibrium AC conductivity from Eq. 3.35
is:

σAC
αβ (ω,E = 0) = 2e2

~V0

∑
k
vk,α(iωI + Θ)−1

kk′

[
− ∂f 0

k′

∂kβ

]
(3.45)

Combining the above expressions, we obtain the familiar Nyquist relationship
[104]:

Sjαjβ(ω,E = 0) = 4kBT0

V0
<
[
σAC
αβ (ω,E = 0)

]
(3.46)

The “effective distribution function”
An alternative but mathematically equivalent perspective can be gained by re-
arranging the order of certain summations which gives some physical intuition
for the expressions derived above and more clearly indicates the quantities
that are calculated in practice.

First, note that there are 3 sums in the first line of Eq. 3.43, where the first
and last sums over k and k1 come from expressing the current fluctuations
as occupation fluctuations in 3.40. The middle sum over k′ comes from the
relaxation operator acting on the correlation function. The second line of
Eq. 3.43 shows that multiplying the initial condition of Eq. 3.39 by the group
velocity and summing over k1 gives a simplified expression. So we can consider
a situation where we seek the Fourier transformed solution indicated in Eq.
3.42, but multiplied by the group velocity and summed over k1. This quantity
would correspond to a modified and Fourier transformed version of Eq. 3.38:

∑
k1

vk1,β

∑
k′

(iωI + Λ)k,k′ (δfkδfk1)ω =
∑
k1

vk1,β

(
f skδkk1 −

f skf
s
k1

N

)
(3.47)

Let us now define a new variable which has been denoted the “effective distri-
bution function” [233]:

gωk,β =
∑
k1

vk1,β(δfkδfk1)ω (3.48)
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With this definition, and with the same simplification of the initial condition
as given in the second line of Eq. 3.43, we obtain a Boltzmann equation for
the effective distribution function:

∑
k′

(iωI + Λ)k,k′ g
ω
k′,β = f sk(vk,β − Vβ) (3.49)

In practice, Eq. 3.49 is the equation that is actually solved, since the effective
distribution function also offers a more simple expression for the current PSD:

Sjαjβ(ω) = 2
(

2e
V0

)2

<
[∑

k
vk,α g

ω
k,β

]
(3.50)

Thus, calculating the spectral density of curent fluctuations requires solving
the inhomogeneous Boltzmann equation twice. First, the steady state distribu-
tion function must be obtained using Eq. 3.28. Then, the Boltzmann equation
is solved again with inhomogeneous term f sk(vk,β − Vβ) with f sk ≡ f 0

k + ∆fk.
The Brillouin zone integration of Eq. 3.50 is then performed to calculate the
power spectral density.

Equations 3.49 and 3.50 also give some physical intuition for what can produce
a large current PSD. The right hand side of Eq. 3.49 tells us that the current
PSD is larger for steady-state distributions with occupation in states for which
there is a larger difference between the group velocity and the drift velocity,
roughly corresponding to distributions with larger variance. This accords with
the intuition that noise power is larger when you have a wider distribution
of velocities, but that the magnitude of the velocities cannot be too small,
otherwise the noise power is reduced. This is the meaning of the velocity term
in the sum in Eq. 3.50.

3.4 Numerical methods
We now describe the numerical methods and parameters used to calculate of
the equations described above for electronic noise and high-field transport in
GaAs. The observables of interest are the drift velocity and current PSD versus
electric field. These require solution to the Boltzmann equation whose inputs
are the electronic structure and e-ph matrix elements, which are computed for
GaAs from first principles. These quantities are first computed on a coarse
grid using Density Functional Theory (DFT) and Density Functional Pertur-
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Formulating and 
solving this 

linear system

Our code: Steady state and fluctuational Boltzmann equation

Quantum ESPRESSO

PERTURBO Wannier 
interpolation

DFTDFPT
Electronic structure 
and Bloch functions

Phonons and 
perturbation potentials

e-ph matrix elements and 
scattering rates with a fine grid and 

BTE for steady state distribution function

PSD from fluctuation autocorrelationBTE for effective distribution function

Drift velocity

Figure 3.2: The computational workflow for obtaining high-field transport
and electronic noise from first principles. The phonon and electron states are
obtained from Quantum Espresso through DFT and DFPT. The electron
band energies, phonon energies, and e-ph matrix elements are then interpo-
lated to a fine grid using Perturbo. The steady state BTE is then con-
structed and solved as a linear system as given in Eq. 3.28, from which the
drift velocity is obtained. Next, the effective distribution function is calcu-
lated with the steady state distribution as an input according to Eq. 3.49
which allows the current PSD to be calculated.

bation Theory (DFPT). They are then obtained on a fine grid using Wannier
interpolation. Using the matrix elements and band structure on these fine
grids, we solve the respective Boltzmann equations to obtain the steady state
distribution for drift velocity, and the effective distribution function for the
current PSD. This process is outlined schematically in Fig. 3.2.

Numerical parameters
For the DFT and DFPT calculations, we use Quantum Espresso (QE)
[248, 249]. The coarse grid for the electronic structure and electron-phonon
matrix elements is 8 × 8 × 8. The electronic structure calculations using QE
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employ the same simulation parameters as in Ref. [77] where the plane wave
cutoff is 72 Ryd and the lattice parameter is 5.556 Å.

The Wannier interpolation to finer grids is performed using Perturbo [241].
Perturbo includes corrections for polar materials that are necessary in GaAs
[239]. Our calculations were reported in two papers. In the first paper [250],
we reported results up to an intermediate electric field of 800 V cm−1and used
fine grid of 200× 200× 200 with a 10 meV broadening parameter for the delta
function in the electron-phonon scattering rates [77]. We found that with this
grid density, the PSD at the highest field calculated differed by less than 1%
from the value obtained on a grid with twice the number of grid points. In
the second paper [251], we reported calculations up to a large electric field of
5000 V cm−1and used a fine grid of 250× 250× 250 with a 5 meV broadening
parameter. The transition rates of Eq. 3.27 were calculated at 300 K in
both papers, and the phonons are considered to be in equilibrium. In both
papers, we set the Fermi level to obtain a carrier concentration of 1015 cm−3

corresponding to a non-degenerate electron gas.

In Perturbo, an energy window is specified to limit the points sampled in
the Brillouin zone to only those in the relevant energy range. As the electric
field increases, electrons are driven to higher energies compared to the energies
relevant to thermal equilibrium at room temperature, so this energy window
must be larger compared to that used for low-field mobility calculations. In
the first paper, the energy window is set to 325 meV above the conduction
band minimum (CBM), and in the second paper the energy window is 375
meV above the CBM. Increasing the energy window significantly increases the
number of points in part due to the inclusion of the L valley. The primary
limitation on computational tractability is the number of k-points sampled
since we explicitly construct the matrices that constitute the BTEs of interest,
for reasons discussed in the following section. The computational cost grows
quickly as the energy window increases since the size of the matrices grows
quadratically with the number of k-points. For an energy window of 375 meV
and a grid density of 250× 250× 250, we have around 61,000 k-points.

Solving the BTE as a linear system
Our code explicitly constructs the relaxation operator of Eq. 3.29 as a ma-
trix by first calculating the scattering matrix given by 3.27 and then adding
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the effect of the finite difference matrix (Eq. 3.22). Next, we calculate the
inhomogeneous term of Eq. 3.28 and solve for the steady state distribution
function. We use this steady state distribution function to calculate the in-
homogeneous term of Eq. 3.49 and obtain the effective distribution function
which is summed to obtain the current PSD. We note that the typical approach
for solving the BTE when calculating low-field mobility as in Eq. 3.15 involves
an iterative scheme which begins from the RTA solution and iterates to self
consistency [73]. This reduces the memory cost since no matrix is constructed,
however we found that this iterative method was numerically unstable for the
high-field case. Instead, we construct the linear system and solve it directly
using the Generalized Minimal Residual (GMRES) algorithm which is suitable
for large matrices. In the first paper, we use the GMRES implementation from
the Scientific Python library [252], and in the second paper we use a Fortran
implementation of GMRES given by Ref. [253].

Other e-ph interactions
Recent studies have report the effect of the quadrupole electron-phonon inter-
action on charge transport [91, 254]. The quadrupole interaction is the leading
order polar interaction in non-polar materials since there are no dipole inter-
actions like with LO phonons. In polar materials like GaAs, the quadrupole
interaction is higher order due to the presence of LO phonons. The work of
Ref. [91] predicted a significant correction to the mobility in GaAs limited
by acoustic mode scattering, but our calculations were performed at 300 K
where the scattering is dominated by polar optical phonons so we neglected
quadrupole interactions.

Another higher-order e-ph interaction is due to electrons scattered by two con-
secutive phonons, which was reported to be necessary to achieve quantitative
agreement of mobility in GaAs [98]. We discuss this process in the following
section.

3.5 Two-phonon (2ph) scattering
The computational framework for the first-principles calculation of 2ph scat-
tering, where electrons are scattered by two consecutive one-phonon events,
was recently developed and reported to be non-negligible for low-field mobil-
ity in GaAs [98]. As we will show, the level of theory with first order e-ph
scattering where electrons are scattered by one phonon (1ph) is insufficient for
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high-field transport and hot electron noise. Therefore, we included scattering
from 2ph processes with approximations to ensure computational tractability
for the high-field case.

The 2ph scattering rate, as derived in Ref. [98], is given by:

Γ(2ph)
nk = 2π

~
1
N2

∑
νq

∑
µp

[
Γ̃(1e1a) + Γ̃(2e) + Γ̃(2a)

]
(3.51)

where N is the number of phonon points sampled from the Brillouin zone,
and sums are over all pairs of phonons that couple two electronic states, with
the second phonon identified by branch index µ and wave vector p. The
superscripts refer to the three types of 2ph processes: emission and then ab-
sorption of a phonon (1e1a), emission of two phonons (2e), and absorption of
two phonons (2a). The contribution of each type of 2ph process, indexed by
superscript i, is given by:

Γ̃(i) = A(i)W (i)δ(εk − εk′ − α(i)
p ωµp − α(i)

q ωνq) (3.52)

where k′ indexes the final state reached in the 2ph scattering process given
by k′ = k + q + p, A(i) is the weighting factor based on phonon and electron
occupations which we discuss later to include the same modifications we make
for high fields, W (i) is the 2ph process amplitude, and the constants α(i) are
determined by the type of scattering process, taking on the values given below:

α(1e1a)
p = 1, α(2e)

p = 1, α(2a)
p = −1,

α(1e1a)
q = −1, α(2e)

q = 1, α(2a)
q = −1

The 2ph process amplitude is given by:

W (i) =

∣∣∣∣∣∣
 gν(k,q)gµ(k + q,p)
εk′ − εk+q + α

(i)
p ωνp + iη − Σk+q

+ gµ(k,p)gν(k + p,q)
εk′ − εk+p + α

(i)
q ωνq + iη − Σk+p

∣∣∣∣∣∣
2

(3.53)
where gν(k,q) is the one-phonon matrix element corresponding to coupling
between an electron at k scattering to an electron at k + q through a phonon
of mode ν at q, and so on for the other matrix elements. The ε correspond to
the band eigenvalues, ω are the phonon energies, iη is an infinitesimal required
to prevent divergences in the denominator, and Σn1k+q is the self-energy of the
electron at k + q.
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Figure 3.3: Schematic comparing one-phonon (1ph) scattering processes to
two-phonon (2ph) processes. For 1ph, there is only phonon emission and
absorption, whereas for 2ph there are 3 possible processes. For each of the
three processes, we show both cases where the intermediate state can be on-
shell, meaning the intermediate state reached is equal to the band energy; or
off-shell, meaning the intermediate state is not equal to the band energy. The
second row shows on-shell processes which are included in our calculation, and
the intermediate state is blue to indicate the difference.
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The 2ph framework differs from the 1ph framework in several ways; we note
two particularly important differences indicated by Eqn. 3.53. First, the in-
termediate electron state reached after being scattering by the first phonon
(εk ± ~ωq) is a virtual state that does not necessarily have the band energy
(εk+q) at the corresponding point in the Brillouin zone. If the virtual state
energy coincides with the band energy, the 2ph process is called “on-shell” or
“resonant,” and if it does not coincide with the band energy, the process is
called “off-shell” or “non-resonant.” The difference between the virtual energy
and the band energy is called the off-shell extent. Second, the amplitude of
a given 2ph scattering process depends on the self-energy of the intermediate
state (Σ in the denominators of Eq. 3.53). We consider only the imaginary
part of the self-energy which is directly proportional to the scattering rate
at the intermediate state. Since the scattering rate should include both 1ph
and 2ph scattering, the calculation for 2ph processes requires iteration un-
til self-consistency, where the initial iteration approximates the intermediate
state scattering rate as containing only 1ph processes and the resulting 2ph
scattering rate is used in the next iteration. We show a schematic of all three
types of 2ph processes alongside the conventional 1ph processes in Fig. 3.3.
The 1e1a process is shown to be on-shell.

Including 2ph scattering at the fully ab initio level for high-field transport is
prohibitively computationally expensive. We impose several approximations
to make the calculation feasible. First, we include only 2ph processes with
an intermediate state that is within a specified threshold of off-shell extent,
meaning that the process is nearly “on-shell.” This on-shell approximation
is expected to capture many relevant 2ph processes owing to the 2ph rate
being inversely proportional to the square of the off-shell extent (c.f. the
denominator of Eq. 3.53). Although these on-shell 2ph processes consist of
successive 1ph pathways, they directly couple electronic states that are not
coupled by 1ph processes and may therefore qualitative alter the momentum
and energy relaxation compared to the 1ph level of theory.

Second, we found empirically that increasing the number of self-consistent
iterations beyond three did not lead to qualitative changes in the trend of
computed observables, and we therefore employed three iterations rather than
ten as in Ref. [98].
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Next, we neglect the second term in the 2ph process amplitude of Eq. 3.53,
which corresponds to the symmetric 2ph process where the order of scattering
by phonons at wave vector q and p is reversed, leading to an intermediate state
at k+p instead of at k+q. Inclusion of this term increased the computational
cost by around an order of magnitude while only changing the observables by
around 10%, likely because the k + p intermediate state is, in general, not
on-shell if k + q is on-shell.

Finally, let us discuss the form of the occupation weights A(i) which have the
following expressions:

A(1e1a) = Nνq +NνqNµp +Nµpfk′ −Nνqfk′

A(2e) = 1
2
[
(1 +Nνq)(1 +Nµp − fk′)−Nµpfk′

]
A(2a) = 1

2
[
Nνq(Nµp + fk′) + (1 +Nµp)fk′

]
To be consistent with our approximations used to extend the 1ph collision
integral to high fields, we also consider the electron occupation terms to be
negligible. The resulting expressions are given by:

Ã(1e1a) = Nνq +NνqNµp

Ã(2e) = 1
2
[
(1 +Nνq)(1 +Nµp)

]
Ã(2a) = 1

2
[
NνqNµp

] (3.54)

The 2ph rates we obtain with these approximations we term “on-shell 2ph”
for the remainder of the paper. For the 2ph calculations, we include only
processes with an off-shell extent of 25 meV or less, meaning the intermediate
virtual state is within 25 meV of the band eigenvalue. We find that increasing
this tolerance to 30 meV increases the 2ph rates by only 1.2%. When calcu-
lating noise and transport quantities with 2ph scattering, we are limited by
computational tractability to a fine grid of 200× 200× 200.

3.6 Summary
We have described the theoretical framework and numerical methods we use
to calculate high-field transport and hot electron noise from first principles.
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It required extending the collision integral to high fields by recognition of the
important terms in the occupation weights which provided justification for
neglecting non-linearities arising at high fields in GaAs. We also applied the
reciprocal space gradient numerically to the deviational occupation expressed
in terms of a linear operator. We then solve the steady state BTE directly as
a linear system.

We then derived the expressions necessary for calculating the current PSD from
the BTE. It required solving a Fourier transformed BTE for the occupation
correlation function, which requires the steady stsate distribution function as
an input. We simplified the expressions to show that, in practice, we solve for
an “effective distribution function” which is summed to obtain the hot electron
noise.

We discussed our method for including 2ph scattering processes which includes
only on-shell type processes to permit computational tractability.

Finally, we note that while we have applied the method to GaAs in particu-
lar, it is easily extendable to other technologically interesting semiconductors
where the Debye temperature is not too high and the carrier concentration is
non-degenerate.



70

C h a p t e r 4

ELECTRONIC NOISE AND HIGH-FIELD TRANSPORT IN
GALLIUM ARSENIDE

This chapter has been adapted, in part, from:

Alexander Y. Choi, Peishi Cheng, Benjamin Hatanpää, and Austin J.
Minnich (Apr 2021). Electronic noise of warm electrons in semiconductors
from first principles. In: Phys. Rev. Materials 5, pp. 044603. doi:
10.1103/PhysRevMaterials.5.044603

Peishi Cheng, Shi-Ning Sun, Alexander Y. Choi, and Austin J. Minnich
(Jan 2022). High-field transport and hot electron noise in GaAs from first
principles: role of two-phonon scattering. In: arXiv:2201.11912

We now show the results of our calculations based on the theory and numeri-
cal approach detailed in the previous chapter. As mentioned in Sec. 3.4, our
results were reported in two papers [250, 251]. The first paper [250] reported
calculations at intermediate electric fields less than 800 V cm−1 beyond the
linear response regime of low fields, but without 2ph scattering. In this field
range, we studied mechanisms important to non-equilibrium transport to es-
tablish concepts relevant to high-field transport. In the second half of the
chapter, we show the calculations of the second paper [251] which extent to
5000 V cm−1.

4.1 The warm electron regime
While at high fields the deviational occupation ∆fk exceeds the equilibrium
population f 0

k, there is a region of moderate electric fields where the non-
linearity in the collision integral is still small, but the field term can no longer
be approximated by the effect of the electric field only on the equilibrium
distribution, ∇kfk 6= ∇f 0

k since the reciprocal space gradient on the devia-
tional occupation ∆fk is non-negligible. By including this additional electric
field term but without modification of the collision integral, an appropriate
solution can be obtained. This approximation was originally denoted as the
“warm electron” approximation since the excess energy of the electrons over
the thermal value can be non-zero while remaining small on that scale [255],

https://doi.org/10.1103/PhysRevMaterials.5.044603
https://arxiv.org/abs/2201.11912
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Figure 4.1: Deviational occupation, DC mobility, and AC mobility versus
field in GaAs at warm electric fields. (a) Deviational occupation of the Γ
valley in GaAs at 300 K versus electric field. Curves plotted for E = 100 V
cm−1(blue), and E = 800 V cm−1(orange). The dashed black line is a guide
to the eye. (b) Normalized longitudinal (‖) DC mobility versus electric field
of the cold (dashed blue line) and warm electrons (solid red line). The heating
of the electrons leads to a decreased mobility. The trend of the normalized
mobility agrees well with experiments: Figure 1, Ref. [228] (Upward black
triangles) and Figure 4, Ref. [256] (Downward black triangles). (c) Real part
of the longitudinal small-signal AC mobility versus frequency for equilibrium
(dashed black line), E = 100 V cm−1(dash-dot blue line), and E = 800 V
cm−1(solid orange line) under the warm electron approximation. The AC
mobility exhibits spectral features at frequencies that are characteristic of the
inverse momentum and energy relaxation times (see Section 4.2).

in contrast to the “cold electron” regime which entails the low-field approxi-
mations of Sec. 3.1.

We begin by examining the steady state distribution and associated transport
observables in the cold and warm electron regimes. Figure 4.1a plots the
deviational steady state distribution functions under the two approximations
versus wave vector parallel to the electric field, kx. We refer to this direction
as the longitudinal direction. At low fields E < 100 V cm−1, the solutions
are nearly identical, but as the field increases, differences in the distribution
functions emerge. Under the cold electron approximation, Eq. 3.15 shows
that ∆fk is required to possess odd symmetry about the Brillouin zone center
because ∂f 0

k/∂k is odd with respect to kx while the scattering matrix is even
(Θkk′ = Θ−k−k′); this symmetry is evident in Fig. 4.1a. In contrast, in the
warm electron case the electrons can be heated and the solution becomes
asymmetric with increasing field.
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The transport properties of the warm electron distribution differ from those of
the cold distribution because warm electrons in the high energy tail are able
to emit optical phonons and hence exhibit higher scattering rates. As reported
previously [98], the predicted mobility of GaAs exceeds the experimental mo-
bility owing to the exclusion of higher-order phonon scattering processes and
the lower calculated effective mass (0.055 m0) compared to experiment (0.067
m0) [257].

Therefore, to facilitate comparison we examine the DC mobility normalized by
its low-field value in Fig. 4.1b. The low-field value of the computed mobility
is 17,420 cm2V−1s−1. At low fields E < 100 V cm−1, the mobility under the
warm and cold electron approximations agrees to within 1%. At E = 800
V cm−1, the DC mobility of the warm electrons has decreased by more than
10%. This behavior is qualitatively consistent with the sublinear current volt-
age characteristic (CVC) of n-type GaAs [99], or a decrease in mobility with
increasing electron temperature. The field dependence of the normalized mo-
bility shows favorable comparison to experiment, implying that our calculation
is properly capturing the heating with the field.

In addition to steady quantities, the small-signal AC mobility can be computed
as in Eqn. 3.35. Figure 4.1c presents the small-signal AC mobility for the warm
electron gas versus frequency for several electric fields. At zero frequency, the
equilibrium AC mobility is equal to the equilibrium DC mobility, as expected.
The decrease of the AC mobility with electric field at is also consistent with
the trend observed in the DC mobility. At f ∼ 1 THz, the AC field frequency
exceeds the phonon-mediated scattering rates which redistribute the electrons,
and thus the AC mobility rolls off at all fields. This result reflects the electrical
response transitioning from a purely resistive to a purely reactive regime as
the frequency exceeds the highest scattering rates.

The frequency dependence of the AC mobility indicates the relevant timescales
of momentum and energy relaxation [258]. In particular, for 800 V cm−1, we
observe a lower value of the AC mobility at low frequency, followed by a
maximum at around 100 GHz. This feature is due to energy exchange with
phonons and will be discussed in Section 4.2.
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Figure 4.2: Longitudinal current power spectral density in GaAs versus electric
field, relaxation times versus energy, and electron temperature versus electric
field. (a) Spectral density of longitudinal current density fluctuations (solid
red line) normalized to the Nyquist value versus electric field along with Davy-
dov spectral densities calculated using ADP (dash-dot blue line) and Fröhlich
(dashed yellow line). At equilibrium, the noise agrees with Nyquist-Johnson
noise (dotted black line). The ab initio calculation predicts a steeper decrease
in current PSD with field compared to the approximations. The symbols cor-
respond to experimental measurements (Figure 11, Ref. [110]). (b) Relaxation
time versus energy above conduction band minimum for GaAs at 300 K using
ADP (dash-dot blue line), Fröhlich potential (dashed yellow line), and com-
puted (red circles). The energy of the zone-center LO phonon is shown for
reference (dashed black line). (c) Effective electron gas temperature versus
electric field for ADP (dash-dot blue line), Fröhlich (dashed yellow line), and
computed (solid red line). The magnitude of electron heating is similar among
the various calculations.

PSD comparison to parameterized model
We now calculate the spectral density of current fluctuations from the non-
equilibrium steady state in GaAs. Figure 4.2a shows the spectral density of
longitudinal current fluctuations versus electric field at an observation fre-
quency of 1 MHz, far smaller than any scattering rate. At equilibrium, the
noise is given by the Nyquist relation, Eqn. 3.46. It is conventional to re-
port the spectral density normalized to the Nyqist value to allow comparison
between samples of different carrier density [100].

As the electric field increases, the computed noise decreases below the Nyquist
value. Few experimental studies of noise in GaAs cover the fields of present
interest, but reasonable agreement is observed with measurements by Bareikis
et al. [110]. We note that a decrease with field is observed in other studies in
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GaAs [217, 228] though the sparsity of data in the relevant electric field range
prevents direct comparison.

To better understand the decreasing trend, we use an approximate solution of
the Boltzmann equation for an electron gas interacting quasi-elastically with
a thermal phonon bath [102, 201]. Under the quasi-elastic approximation, the
distribution function is expanded in momentum space using Legendre polyno-
mials. Because the distribution is nearly isotropic in momentum space under
quasi-elastic scattering, only the two lowest Legendre polynomials need be
retained [259]; the zeroth-order term gives the occupancy versus energy and
is known as the Davydov distribution. The model is parameterized by the
energy dependence of the momentum and energy relaxation times, τ and τε

respectively, and the inelasticity ratio τ/τε [99]. Once these parameters are
specified, the Davydov distribution can be computed and used with Eq. 3.43
to calculate the spectral density of current fluctuations [245].

Approximate analytic expressions for the electron relaxation times in semi-
conductors are available [234]. Previous works have calculated the Davydov
distribution for a power-law energy dependence of the relaxation times such
as that from the acoustic deformation potential (ADP) [260–262]. However,
in GaAs at room temperature, the long-ranged Fröhlich interaction with lon-
gitudinal optical (LO) phonons is the dominant scattering mechanism [77, 78].

In Fig. 4.2a, we compare the ab initio longitudinal spectral density to that
predicted using the Davydov distribution with the ADP and Fröhlich scatter-
ing rates. The approximate relaxation times have been scaled to match the
computed low-field mobility, and the inelasticity ratio has been selected using
an estimation of the energy and momentum relaxation times (see Fig. 4.3).
The spectral density is observed to decrease monotonically with the electric
field. This decrease is captured qualitatively by the Fröhlich calculation. In
contrast, the ADP noise increases monotonically with field.

These trends can be understood in terms of the different energy dependencies
of the relaxation times in the various approximations. Figure 4.2b shows the
phonon-mediated relaxation times versus energy for electrons in GaAs at 300
K for the three cases. Below the zone-center LO phonon energy ~ωLO ∼
35 meV, the computed relaxation times are set by LO phonon absorption
[77]. Above the LO phonon energy, LO emission becomes dominant and the
relaxation times sharply decrease to a value that remains roughly constant
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until electron energies are near the L-valley minimum at ∼ 0.25 eV above the
CBM. This absorption-to-emission transition is qualitatively captured by the
Fröhlich approximation. The ADP relaxation times agree reasonably well with
the computed ones in the emission-dominated region but do not exhibit the
absorption-to-emission transition.

The electric field dependence of the spectral noise power reflects the balance
between the growth of scattering rates with electron energy and the heating of
the electron gas by the DC field [263]. To understand this balance, we exam-
ine the effective electron temperature of the steady distribution for the three
cases in Figure 4.2c. The effective electron temperature is calculated as the
temperature of a Maxwell-Boltzmann distribution that yields the same energy
density as the steady state distribution. At low fields E < 100 V cm−1, the
temperature is equal to the lattice temperature. As the electric field increases,
the effective temperature increases, corresponding to occupation at higher en-
ergies and increased scattering rates. Near equilibrium where the mobilities
are equivalent, the temperature rise predicted from each approximation is
similar, but at higher fields, the ab initio calculation predicts a slightly lower
temperature than do either the ADP or Fröhlich approximations.

As the electron gas heats, higher energy states are occupied and thus the spec-
tral noise power, Eq. 3.43, includes contributions from fluctuations in those
states; hence, the spectral noise power may increase on heating. On the other
hand, at these high energies, the scattering events which damp out fluctuations
are more frequent, tending to decrease the noise. The competition between
these mechanisms sets the trends shown in Figure 4.2a. For both Fröhlich
and the present calculations, the sharp increase in scattering rates associated
with the absorption-to-emission transition dominates, and the spectral density
decreases monotonically with electric field. In contrast, the ADP approxima-
tion shows increasing noise with electric field as the heating of the electrons
dominates the weak increase of the scattering rates.

The evolution of the spectral density with electric field demonstrates the sen-
sitivity of the spectral noise power to the energy dependence of the scattering
rates. Although the mobility at equilibrium is equivalent for all three cases, the
non-equilibrium noise behavior exhibits qualitatively different trends depend-
ing on the energy dependence and inelasticity of the scattering mechanisms.
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Figure 4.3: Longitudinal vs transverse PSD and spectral density of energy
fluctuations versus frequency as a measure of energy relaxation time. (a)
Computed power spectral density (PSD) of longitudinal (‖, dashed orange line)
and transverse (⊥, dashed-dotted blue line) current density fluctuations versus
frequency at E = 800V cm−1, along with the Nyquist-Johnson prediction for
E = 0 (solid black line). (b) Spectral density of energy fluctuations versus
frequency at equilibrium (solid black line), E = 800 V cm−1(dashed orange
line). The time scale for electron temperature fluctuations sets the upper
frequency limit for the convective mechanism.

4.2 Frequency dependence of electronic noise
The non-equilibrium noise exhibits spectral features that are not present in the
Nyquist-Johnson case. Figure 4.3a shows the spectral density of longitudinal
(L) and transverse (T) current fluctuations (relative to the electric field axis)
versus frequency at E = 800 V cm−1. There are several notable features of
the spectral density in this figure. First, the spectral density is constant at
low frequencies and rolls off as frequency increases, decreasing to 50% of its
low frequency value at 300 GHz. Secondly, an anisotropy exists between the
longitudinal and transverse spectral densities. Finally, the longitudinal noise
exhibits a non-monotonic trend for frequencies around 50 GHz, similar to that
observed for the AC mobility in Fig. 4.1c. Spectroscopic measurements of the
noise power at these frequencies have not been performed, but these trends
are qualitatively similar to those observed in recent Monte Carlo simulations
[264].
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We discuss each of these points in turn. Consider first the noise at equilib-
rium. The zero-field curve shows that the longitudinal and transverse spectral
densities are equal and coincide with the Nyquist-Johnson value, Eqn. 3.46.
As with the AC mobility, the spectral density rolls off at frequencies exceeding
the phonon-mediated scattering rates because the electronic system cannot re-
distribute in response to the fluctuation. This roll-off behavior has been noted
previously [255] and has also been observed for phonon thermal conductivity
(see Fig. 1b in Ref. [265]).

Now consider the noise with E = 800 V cm−1. A similar roll-off with in-
creasing frequency as the equilibrium case is observed. At low frequency, both
the longitudinal and transverse spectral densities are lower than the Nyquist
value because of the increased electron temperature. However, an anisotropy
exists in the spectral densities. The origin of this feature is the “convective”
mechanism [99, 102, 266] and can be understood by decomposing the current
fluctuations into two sources. The first is the fluctuation of the drift velocity,
due to scattering between states of differing group velocity. The second is
the fluctuation of the electron temperature, due to the energy exchange with
the thermal phonon bath which depends on the energy of the states undergo-
ing scattering. Under non-equilibrium conditions, these fluctuations couple.
As the gas is heated by the electric field, the fluctuating current induces a
variation in the Joule heating. The resulting electron temperature fluctuation
changes the conductivity, which in turn modifies the current. This coupling
only exists for fluctuations longitudinal to the electric field because transverse
fluctuations do not affect Joule heating. In sublinear CVC materials such as
GaAs, the conductivity decreases with electron temperature, and the convec-
tive mechanism suppresses longitudinal fluctuations. This feature is indeed
observed in Fig. 4.3a.

The convective mechanism is only present at frequencies ωτε � 1, where τε
is the energy relaxation time. As discussed above, the local maxima from
the convective contribution appears at ωτε = 1 in the longitudinal direction
(see Ref. [99], Chapter 7). The energy relaxation time can also be extracted
by calculating the spectral density of electron temperature fluctuations versus
frequency. This calculation is the energy analogue of Eqn. 3.43, where the rele-
vant state quantity is the energy instead of the group velocity. The expression
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is given below:

SδTeδTe(ω) = 2
(2e
V0

)2
<
[∑

k
εk
∑
k′

(iωI + Λ)−1
kk′

∑
k1

εk1

(
f sk′δk′k1 −

f sk′f sk1

N

)]

(4.1)

Figure 4.3b shows the spectral density of energy fluctuations versus frequency
for several electric fields. At low frequencies, f < 10 GHz, the spectral den-
sity increases with field as the temperature fluctuations rise with higher Joule
heating. At higher frequencies, f ∼ 50 GHz, the energy fluctuations decrease
to 50% of their low frequency values and begin to converge for the two fields
shown. This convergence signifies that the temperature of the electron gas
cannot change sufficiently rapidly due to its finite thermal capacitance. Con-
sequently, the convective noise mechanism is removed and the anisotropy of
the densities in Fig. 4.3a also disappears; the longitudinal and transverse spec-
tral densities converge. The convective mechanism is also responsible for the
non-monotonic trend of the AC mobility seen in Fig. 4.1c.

4.3 Quasi-elastic scattering
The present formalism for electronic noise permits the study of the microscopic
processes responsible for electronic noise in a manner that is difficult to obtain
by other methods. As an example, consider the spectral features present in
Fig. 4.3. Comparing the frequency where the current power spectral density
and energy power spectral density reach half of their low frequency values (300
GHz versus 50 GHz, respectively), the energy relaxation time is inferred to be
around 6 times longer than the momentum relaxation time, implying that
the quasi-elastic assumption is valid. This observation is surprising given the
well-known dominance of high-energy LO phonon emission in GaAs [77] and
that inelasticity is expected when the physical temperature is comparable to
the Debye temperature [255]. Analytical treatments of noise under dominant
LO phonon coupling typically assume strongly inelastic interactions between
the electrons and lattice (see Sec. 3.8 of Ref. [102], Sec. 7.3 of Ref. [99], or
Ref. [267]).

We identify the origin of this discrepancy by examining how individual scatter-
ing events contribute to the momentum and energy relaxation of the electron
system to the phonons. These transfers can be expressed as sums over each of
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Figure 4.4: Histogram of momentum and energy loss, and deviational occu-
pation versus energy of calculated cases versus various approximations. (a)
Probability histograms of longitudinal momentum loss Rk (blue bars) and
energy loss Rεk (yellow bars) normalized by the thermal averages at 800 V
cm−1. The dashed lines represent the average transfer per scattering event.
At this field, the average fractional dissipation of longitudinal momentum is
∼ 3× larger than that for energy. (b) Deviational occupation ∆fk in GaAs
at 300 K versus energy calculated under the RTA (dashed black line), hot
Maxwell-Boltzmann (dashed-dotted grey line), and ab initio warm electron
approximation (solid orange line) at 800 V cm−1. The dashed black line is
added as a guide to the eye. Neither the RTA nor the Maxwell-Boltzmann
capture the hot electron tail.

the electron-phonon scattering processes in the collision integral weighted by
the energy and momentum of the mediating phonon. Every electronic state in
the BZ is coupled via phonons to other states; by summing over all possible
scattering processes, we obtain the average energy and momentum exchanged
in a single scattering event. More precisely, the fractional change in momen-
tum and energy per scattering event are calculated from:

Rkx(k) = 1
Θk|kx|

∑
k′

(kx − k′x)Θk′k (4.2)

Rεk(k) = 1
Θkεk

∑
k′

(εk − εk′)Θk′k (4.3)

Θk is the scattering rate for state k which is -1 times the diagonal element
of the scattering matrix. Θk′k is the scattering rate from state k to state k′.
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These expressions capture the dissipation of momentum and energy for a given
state as a fraction of the momentum and energy at that state.

These fractional changes at 800 V cm−1are plotted as a probability histogram
in Figure 4.4a. In this figure, we have binned each state by the value of Rk and
Rεk . For all the states in a given bin, we calculate the probability of scattering
P ∝ ∑

bin Θkf
s
k (the final quantity is normalized to unity). The horizontal

position indicates the average fractional change in energy or momentum in-
duced by the event. Positive values of the fractional change correspond to
net transfers to the lattice, or dissipation, while negative values correspond to
transfers to the electrons, or accumulation. The height of a bar represents the
probability of scattering in a given time interval, weighted by the steady state
distribution at 800 V cm−1.

Figure 4.4a reveals several important features. First, energy transfers are
clustered into two groups. The grouping of accumulation events around −0.75
corresponds to the∼ 35 meV energy gain associated with LO absorption, which
dominates scattering of electrons below the emission threshold ~ωLO. The
relatively disperse grouping of the dissipation events reflects a balance between
LO emission and absorption for states above the threshold. Second, in contrast
to energy transfers, momentum transfers grow with the wave vector of the
mediating phonon. Consequently, a broader and more disperse distribution of
momentum transfers is available. Finally, the balance between dissipation and
accumulation differs between energy and momentum. In equilibrium, these
processes are balanced, but at 800 V cm−1, the net transfers for both quantities
are dissipative as the warm electrons transfer excess momentum and energy
to the lattice. The dashed lines in the figure represent the average fractional
transfer per scattering event and indicate that the net momentum dissipation
exceeds the energy dissipation by around a factor of 3. This imbalance is partly
responsible for the disparate time scales of energy and momentum relaxation
observed in Fig. 4.3.

The second contributing factor to the relatively long energy relaxation time is
the presence of a hot electron tail in the calculated distribution. In Fig. 4.4b,
we plot the steady deviation distribution, ∆fs, calculated under the warm elec-
tron approximation using the full e-ph scattering matrix versus energy. For
reference, the corresponding distributions for a hot Maxwell-Boltzmann at
the non-equilibrium electron temperature and a ‘relaxation-time distribution’
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obtained under the warm electron approximation with only the on-diagonal
elements of the scattering matrix. The ab initio treatment predicts a hot
electron tail that is not observed with either approximate method. Although
representing only a small fraction of the population, these hot electrons are
at energies 5-10× the thermal average value. Consequently, many scattering
events are needed to return these electrons to equilibrium, further increasing
the energy relaxation time. The result is that the quasi-elastic approximation
is unexpectedly accurate despite the inelastic nature of optical phonon scat-
tering, and thus explaining the features in the spectral noise power and AC
mobility.

Summary of findings from warm electron regime
We have calculated the transport and noise properties in GaAs beyond the
low-field linear response approximations employed in studies of mobility only.
We have shown that the distribution function becomes asymmetric as a result
of relaxing the low field approximations. We have also shown how the trend
of the PSD versus field can be thought of as a balance between scattering
and electron heating, where scattering damps out fluctuations and reduces
PSD while heating the electrons to high energies tends to increase the PSD.
We show how using the Davydov distribution predicts the wrong trend for
the PSD due to incorrectly capturing this balance of scattering and electron
heating. We have shown how the frequency dependence of the PSD reflects
the timescales of the e-ph scattering rates, and that anisotropy in the PSD
can be understood through the differing timescales of energy and momentum
relaxation. We showed that at these intermediate electric fields less than 800
V cm−1, the scattering is still approximately quasi-elastic.

4.4 High field transport: Drift velocity
Let us now show the transport behavior at high electric fields. We first con-
sider the drift velocity versus electric field at the 1ph level of theory, presented
in Fig. 4.5. The base calculation is observed to qualitatively reproduce sev-
eral trends, including the linear increase of the drift velocity with electric field
below 1 kV/cm, followed by a rapid decrease and a region of negative differ-
ential mobility. However, the low-field mobility, corresponding to the slope
of the drift velocity at low electric fields, is markedly overestimated, with the
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predicted mobility of 18,570 cm2V−1s−1 exceeding the experimental value of
around 8,000 cm2V−1s−1[257] by over a factor of two.

Figure 4.5: Drift velocity versus electric field for the base calculation (dotted
black curve), the corrected bands case (dot dashed orange curve), and the
on-shell 2ph case (solid blue curve), as described in the text. The inclusion
of on-shell 2ph processes gives the best agreement of the three cases with the
experimental drift velocity measurements of Ruch et al. [191] and Ashida et
al. [268].

Some of the discrepancies in the drift velocity curve can be attributed to
inaccuracies in the DFT band structure. First, the computed effective mass is
overestimated compared to experiment (0.055me versus 0.067me, respectively)
[97]. Second, the minimum of the L valley in the DFT band structure are at
250 meV above the conduction band minimum (CBM) instead of 300 meV as in
experiments [257, 269]. To quantify the correction to the drift velocity due to
the band structure, we replace the energy eigenvalues of states in the Γ valley
with those calculated using a spherically symmetric band structure model [201]
with the experimental effective mass of 0.067me and a non-parabolicity of 0.64
[234]. We also rigidly shift the DFT band energies in the L valleys by 50 meV
to achieve the experimental Γ-L valley separation of 300 meV. We note that
while other works have obtained band structures closer to experiment using
GW corrections [78, 97, 98], prior analysis for GaAs has argued that the main
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effect of these corrections is to alter the effective mass rather than the e-ph
coupling strength [97].

The drift velocity versus electric field with these corrections, denoted “cor-
rected bands,” is plotted in Fig 4.5. The agreement of the velocity field curves
with experiment is improved, with a low-field mobility of 12,674 cm2V−1s−1,
but the slope of the drift velocity curve remains overpredicted.

4.5 Two-phonon scattering rates
It has been reported that the low-field mobility of GaAs, and thus the slope
of the drift velocity versus field curve, is overestimated even with corrections
to the band structure, and that additional scattering from 2ph processes is
necessary to achieve improved agreement with experiment [98]. To assess the
impact of these corrections on the high-field drift velocity, we computed the
on-shell 2ph scattering rates as specified in Sections 3.5 and 3.4. These cal-
culations employed the corrected band structure described above to facilitate
comparison of the effects of 2ph scattering relative to the effective mass cor-
rection.

The effect of the additional on-shell 2ph scattering on the drift velocity is shown
in Fig. 4.5. The agreement of the calculated drift velocity with experiment
improves further, with the low-field mobility computed to be 9086 cm2V−1s−1,
within 15% of the experimental value. Further, the threshold field for the
onset of negative differential resistance is around 3.8 kV/cm, which agrees
better with the experimental value around 3.5 kV/cm [257] than either of the
cases with 1ph scattering.

To gain more insight, we examine various features of the on-shell 2ph rates,
which have not yet been reported for energies above 100 meV where processes
relevant to high-field transport such as intervalley scattering and energy re-
laxation occur. In Fig. 4.6a, we show the on-shell 2ph scattering rates versus
energy above the CBM along with the 1ph scattering rates with the corrected
bands. We find that the on-shell 2ph rates are comparable to the 1ph rates
over the entire energy range up to 375 meV, with a magnitude slightly less than
half of the 1ph rates. Between 100 meV and 300 meV, the 2ph scattering rates
are roughly constant, and increase above 300 meV. This trend is also observed
in the 1ph rates and is attributed to the onset of intervalley scattering.
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The on-shell 2ph rates are smaller but within a factor of 2 of the full 2ph
rates reported in Ref. [98] for energies below 100 meV. This underestimate is
expected given the neglect of most off-shell 2ph processes in our calculation.
The full 2ph rates include scattering from virtual states that can be arbi-
trarily far from the band energy and thus include many additional processes.
Although the contribution to the scattering rate of an individual off-shell pro-
cess decreases with off-shell extent per Eqn. 3.53, the large phase space for
such processes may compensate so that the final off-shell scattering rate is
non-negligible.

Figure 4.6b shows the fraction of processes involving two LO phonons versus
energy. Below 200 meV, greater than 90% of the on-shell 2ph processes involve
only LO phonons, but at higher energies near and above the minimum of the L
valleys, a substantial fraction of the 2ph processes involve phonons other than
the LO mode. In Ref. [98], only 2ph processes involving LO phonons were
considered, and the figure shows that such an approximation is justified for
the low-energy scattering rates relevant for the low-field mobility. However, it
is known that intervalley scattering is mediated through all phonon modes, [77,
78, 97, 124, 125] not just the LOmode, thereby explaining why the contribution
of non-LO phonons becomes increasingly important at higher energies. For
energies exceeding 350 meV, more than half of the scattering processes involve
non-LO phonons.

To assess the magnitude of intervalley scattering due to 2ph processes, we
plot the intervalley scattering rates for transitions from the Γ valley to the L
valley in Fig. 4.6c. The 2ph intervalley rates become non-negligible around
275 meV and are around half the magnitude of the intervalley rates in the
1ph framework, enhancing the overall strength of intervalley scattering when
including on-shell 2ph. Prior numerical studies of transport experiments have
not included 2ph intervalley scattering processes, which has consequences for
the interpretation of transport experiments as discussed in Section 4.9.

Figure 4.6d shows the 2ph scattering rates in the L valleys. We observe that the
scattering rates are up to half of the values for 1ph scattering, particularly near
the L valley minimum. At higher energies, the 2ph rates are a smaller fraction
of the 1ph rates due to the dependence of the 2ph rates on the self-energy
of the intermediate state in the denominator of the 2ph process amplitude
(Eqn. 3.53). The scattering rates and thus imaginary part of the self-energies
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Figure 4.6: Scattering rates from on-shell 2ph processes versus energy. (a) 1ph
scattering rates from the corrected bands case (orange triangles), the on-shell
2ph rates (blue dots), and the full 2ph rates iterated to self consistency as
given in Fig. 4 of Ref. [98] (red squares). The increase in scattering rates
around 0.3 eV is due to the onset of intervalley 2ph processes. (b) Fraction of
the on-shell 2ph rates coming from processes mediated by LO phonons only.
As intervalley scattering becomes permitted, non-LO phonons participate in
2ph scattering. (c) Intervalley scattering rate for states in Γ scattered to the L
valley. The on-shell 2ph intervalley scattering is around half of the magnitude
of 1ph intervalley scattering. (d) On-shell 2ph rates in the L valley. The on-
shell 2ph rates are comparable to the 1ph rates below 330 meV, but become
a smaller proportion of the 1ph scattering rates above 330 meV due to the
increase in the intermediate state scattering rate.

for the intermediate states becomes larger at higher energies, and the 2ph
process amplitude decreases, reducing the strength of 2ph scattering.
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4.6 Valley occupation and high field distribution
We now consider how the steady-state distribution function and valley oc-
cupations are altered by the inclusion of on-shell 2ph scattering. Intervalley
scattering causes the transfer of population from the light Γ valley to the higher
mass L valley, which is the origin of negative differential resistance underlying
the Gunn effect. We first investigate this transfer by plotting the fraction of
the steady-state population in the L valley versus electric field in Fig. 4.7a.
We observe that the base calculation predicts the most carriers in the L valley,
followed by the corrected bands case and then the 2ph case. This feature can
be partly attributed to the L valley being lower in energy in the DFT bands
compared to the other two cases. In the corrected bands case where the valley
separation was increased by 50 meV and the effective mass increased, fewer
electrons have sufficient energy to transfer, and hence the L valley popula-
tion is lower. However, the on-shell 2ph case has substantially fewer carriers
in the L valley than even the corrected bands case, despite having increased
intervalley scattering rate as shown in Fig. 4.6d.

To identify the origin of this unintuitive feature, we plot the steady-state distri-
bution function for an electric field of 3 kV/cm in Fig. 4.7b. The distribution
function for the base calculation exhibits a clear peak around 250 meV, in-
dicating that substantial population has transferred to the L valley. In the
corrected bands case, the peak is weaker and begins at 300 meV, reflecting the
rigid shift in the L valley energy. The corrected bands distribution function
also has a higher population in the Γ valley, consistent with Fig. 4.7a, due to
the higher effective mass which inhibits the heating of the carriers. Finally,
the distribution for the on-shell 2ph case exhibits still higher population for
energies below 200 meV and markedly reduced L valley population.

4.7 The effect of two-phonon scattering on energy relaxation rate
These features of the distribution function in the on-shell 2ph case reflect the
increased momentum and energy dissipation contributed by 2ph processes.
First, the on-shell 2ph scattering rates increase the total scattering rate by
about 50%, decreasing the mobility by around the same factor. Recalling
that the Joule heating per carrier is given by µE2 [270], the Joule heating
of the electrons therefore decreases with the on-shell 2ph rates added. In
addition to this reduced Joule heating, energies of the final states reached by
2ph scattering processes involve combinations of phonons and thus the energy
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Figure 4.7: Occupation of L valley versus electric field, and steady state dis-
tribution at a representative electric field. (a) Fraction of carriers in t. he L
valley at steady state versus electric field for the three cases described in the
text. The on-shell 2ph case has the slowest accumulation of carriers in the L
valley despite having increased intervalley scattering compared to the other
two cases. (b) Steady-state distribution function versus energy at 3 kV/cm
for the three cases. The on-shell 2ph distribution has fewer carriers at high
energy.

relaxation mechanisms due to 2ph processes may qualitatively differ from those
of 1ph processes in which phonons are only emitted or absorbed.

To gain more insight into energy relaxation by 2ph processes, we first dis-
aggregate the 2ph scattering rate by the process type. Recall that there are
three types of 2ph processes: emission and then absorption of a phonon (1e1a),
emission of two phonons (2e), and absorption of two phonons (2a). For 1ph
scattering events, the electrons gain energy when absorbing a phonon and lose
energy when emitting a phonon. For 2ph scattering, 2a processes cause energy
gain, 2e processes cause energy loss, and 1e1a processes lead to little energy
change when mediated by phonons of similar energy, which is approximately
true for 2ph scattering below 200 meV involving only LO phonons with lit-
tle dispersion. When considering only LO phonon processes, the 2e and 2a
processes produce approximately twice the energy loss or gain of the corre-
sponding 1ph process. Thus, 2ph processes may substantially alter the energy
relaxation compared to the 1ph case.
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Figure 4.8: 2ph rates by process type and corresponding energy loss. (a)
Breakdown of 2ph process type versus energy in the Γ valley. At low ener-
gies, the 1e1a rate (red dots) comprises nearly all of the total 2ph rate (black
squares). Above 100 meV, the 2e rate (blue triangles) has the largest con-
tribution of the three types. The 2a rate (green diamonds) remains small at
all energies. (b) Average energy loss versus electron energy in the Γ valley.
The on-shell 2ph case has noticeably higher energy loss between 100 meV and
300 meV where the 2e rates are strongest. (c) Breakdown of 2ph process type
versus energy in the L valley. The 1e1a rates are the dominant type, with 2a
rates having a weak energy dependence and contributing most at the L valley
minimum. The 2e rates are small but within an order of magnitude of the
1e1a and 2a rates even at the valley minimum. (d) Average energy loss versus
energy in the L valley showing the less negative (closer to zero) energy loss of
the on-shell 2ph case near the valley minimum due to the dominance of 1e1a
processes.
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The scattering rate for each type of 2ph process in the Γ valley is shown in
Fig. 4.8a. We observe that at low energies below 60 meV, only 1e1a and 2a
processes are present, with the 1e1a being the dominant process. This re-
sult is consistent with that reported for the full 2ph calculation (Fig. 5 in
Ref. [98]). No 2e processes are allowed below 60 meV since the emission of
two LO phonons would result in a final state with an energy in the band gap.
Starting around 60 meV, 2e processes are energetically allowed, and above
100 meV they are larger in magnitude than the 1e1a processes. The 1ph case
exhibits less structure because the only allowed processes are single phonon
absorption and emission, leading to a single transition to phonon emission
dominated scattering at around 35 meV as in Fig. 4.6a. As intervalley tran-
sitions become possible around 275 meV, 2a and 1e1a processes increase their
contribution, while 2e processes do not increase until slightly above 300 meV
since reaching the L valley minimum through emission of two phonons requires
starting at higher energies in the Γ valley.

We next compute the average energy loss versus the energy of electrons in the
Γ valley. The average energy loss for a state at wave vector k is given by the
following equation:

〈εloss〉k = 1
Θk

∑
k′

(εk − εk′)Θk,k′ (4.4)

where Θk is the total scattering rate for state k due to all scattering processes,
εk is the energy of the state at k, and Θk,k′ is the scattering rate from state k to
state k′. This weighted average quantifies the average energy exchanged with
the lattice by an electron after scattering considering all types of emission and
absorption processes. A positive energy loss means that, on average, carriers
at that energy tend to emit phonons and lose energy, while a negative energy
loss means that carriers tend to absorb phonons and gain energy.

The result for the corrected bands and on-shell 2ph cases are given in Fig. 4.8c,
with the average value at each energy plotted as a solid line as a guide to the
eye. Below 35 meV, the average energy loss is negative with a value around−35
meV for the corrected bands case, corresponding to the LO phonon absorption
dominated scattering. The on-shell 2ph case shows a slightly less negative
energy loss because the 1e1a processes which dominate at low energy are nearly
elastic, shifting the average energy loss towards zero. Above 35 meV in the
corrected bands calculation, LO phonon emission processes are energetically
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allowed and begin to dominate the scattering, leading to a positive energy loss.
For the on-shell 2ph case, as 2e processes start to dominate above 100 meV,
the average energy loss increases and ends up about 20% higher (5 meV) than
the corrected bands result between 100 and 250 meV. Near the energy of the
L valley minimum, the increased contribution of 1e1a and 2a processes above
275 meV reduces the difference in energy loss between the on-shell 2ph and
the corrected bands case.

We note that there is a difference between the quantity calculated here in Fig.
4.8 versus the quantity calculated for the warm electron regime in Fig. 4.4.
The quantity in Fig. 4.4 is given as a fraction of the energy and momentum
at a given state, weighted by the steady state distribution function at some
electric field. The quantity here is independent of electric field. This explains
the quasi-elastic result of Fig. 4.4, since at the moderate electric field of 800 V
cm−1, the steady state distribution function is still heavily weighted to lower
energies, meaning that the energy absorption at low energy states balances out
the dominance of energy loss at higher energy states, resulting in a small net
energy loss and thus long energy relaxation time that leads to the quasi-elastic
condition.

The observation of higher average energy loss for 2ph processes in Fig. 4.8
helps to explain the slower accumulation of carriers in the L valley for the on-
shell 2ph case. In addition to the decreased power input from Joule heating
owing to the lower mobility, 2ph processes are able to more effectively cool the
electronic system, decreasing the population with sufficient energy to transfer
to the L valley.

We now examine the categorization by 2ph scattering process and the average
energy loss for the L valley, shown in Figs. 4.8b and 4.8d, respectively. For
the scattering categorization, we observe a qualitatively similar trend as in the
Γ valley, where the majority of the 2ph scattering near the L valley minimum is
1e1a, with 2a scattering rates depending only weakly on energy. The 2e rates
increase rapidly around 330 meV and exceed the 1e1a rates near the edge of
the energy window (375 meV).

A difference in the 2e rates compared to the Γ valley is that the L valley 2e rates
are within an order of magnitude of the 1e1a and 2a rates for energies less than
60 meV above the valley minimum (< 360 meV), while those in the Γ valley
are orders of magnitude smaller. This nonzero 2e rate can be attributed to
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two factors. First, the e-ph matrix elements for acoustic mode scattering in
the L valley are around 4 to 10 times larger than those in the Γ valley so that
the scattering rate associated with the emission of two low energy, zone-center
acoustic modes is much larger than in Γ, though still weaker than either 1e1a
or 2a processes by at least a factor of five due to the low density of states for
zone-center acoustic phonons.

Second, electronic states exist in Γ at energies below the L valley minimum
whereas they do not exist below the Γ minimum. However, these states can
only be reached through intervalley scattering. Since our 2ph calculation is
restricted to on-shell processes, 2e processes involving L to Γ intervalley tran-
sitions must take successive 1ph pathways, which are few in comparison to
other scattering pathways in L due to the small effective mass of the Γ valley.
Thus, the 2e processes are nonzero but still smaller in magnitude than 1e1a
or 2a for energies below 330 meV. However, once an intermediate state can
be reached that is near the L valley minimum, the 2e rate rises because 2ph
processes involving L-L intervalley or L-intravalley phonons together with an
L-Γ intervalley phonon may occur. The L-L intervalley phonons have large
wave vector with energies on the order of 30 meV [78], and the L-intravalley
phonons are LO phonons of comparable energy, explaining why the 2e rate
rises around 330 meV.

Next, we plot the average energy loss from the on-shell 2ph case versus the
corrected bands case in Fig. 4.8d. The corrected bands case with 1ph scatter-
ing has negative energy loss (energy gain) below 340 meV because scattering is
dominated by phonon absorption, as was the case for the Γ valley. The Γ states
that are below the L valley minimum in energy are not immediately accessible
via phonon emission due to the large wave vector and high energy phonons
needed to mediate intervalley scattering, restricting scattering to phonon ab-
sorption processes.

We observe that the energy loss in the on-shell 2ph case is noticeably higher
between 300 meV and 340 meV. Above 340 meV, the difference between the two
cases is smaller due to the 2ph rates in the L valley becoming less significant in
comparison to the 1ph rates, as discussed for Fig. 4.6b. The reason for the less
negative energy loss near the L valley minimum is the same as in the Γ valley;
namely, the 1e1a processes are nearly elastic, causing the average energy loss
to be less negative.
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4.8 PSD at high electric fields: Hot electron noise
The PSD is sensitive to the strength of intervalley scattering processes [114,
220], and hence a stricter test of the present level of theory can be obtained
by computing the PSD of the hot electrons. The normalized hot electron PSD
versus electric field along with experimental measurements from the literature
is given in Fig. 4.9. The experimental PSD exhibits a characteristic non-
monotonic trend of an initial decrease, followed by a marked increase around
the onset of negative differential mobility and a subsequent decrease. The data
have been obtained by various methods including time of flight [256] for the
diffusion coefficient and direct measurements of noise power [217, 271]. The
time of flight results of Ref. [256] are suggested to overestimate the magnitude
of the peak [272], but despite scatter in the data and the possibility of experi-
mental inaccuracies the same qualitative trend has been reproduced in several
studies.

Figure 4.9: PSD versus electric field for the three cases as described in the text.
None of the calculated cases are able to reproduce the peak in the PSD near 3
kV cm−1 that appears in the experimental data: PSD from noise temperature
and differential mobility measurements (filled circles [271] and open circles
[217]), and from time of flight experiments (triangles [256]).

This trend has been attributed to the following factors. First, the PSD weakly
decreases at low fields as carriers are heated to higher energies with higher
scattering rates, leading to a decrease in mobility. As a result, the PSD also
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decreases since the proportionality relation between mobility and PSD [102–
104] is approximately satisfied at low fields. Near the threshold field for nega-
tive differential mobility, intervalley transitions become possible, and the peak
in the PSD has been attributed to intervalley diffusion that arises due to scat-
tering between two valleys of highly dissimilar effective masses [61, 107, 109].
Finally, the PSD decreases at high fields due to the accumulation of carriers
in the L valley. The decrease occurs because the group velocities in the L
valley are substantially lower than those in the Γ valley and hence make a
lesser contribution to the electric current and PSD as indicated by the group
velocity factor in the sum in Eq. 3.50.

The PSD from the base calculation predicts some features of the experimental
non-monotonic trend, with the initial decrease at low field originating from the
increase in scattering rates [250], followed by a weak peak and decrease above
2.5 kV/cm. However, overall the calculated PSD is in poor agreement with the
experiments, with the rise in the PSD being significantly underestimated. In
the corrected bands case, the initial decrease of the PSD versus field is weaker,
consistent with the increased effective mass which inhibits electron heating,
and the subsequent decrease of the PSD after the peak occurs at a larger field
(3 kV/cm), consistent with the L valley minimum having been shifted to higher
energies. However, little improvement in the magnitude of the PSD peak is
observed.

Surprisingly, however, the inclusion of on-shell 2ph scattering does not yield
improved agreement for the PSD, with the weak peak largely unchanged com-
pared to either calculation at the 1ph level of theory. Further, in all three
cases the onset of intervalley scattering by itself does not produce a peak in
the PSD, suggesting that the precise details of how intervalley scattering me-
diates transitions between valleys are of high importance to producing this
characteristic feature. Further discussion on this point is given in Sec. 4.10.

4.9 Resolving a discrepancy in the intervalley scattering strength
We have established that the on-shell 2ph level of theory yields improved
agreement with experiment for the drift velocity compared to the 1ph level of
theory but does not predict the trend of PSD in GaAs. We have also shown
how the on-shell 2ph contributes substantially to intervalley scattering and
qualitatively affects the evolution of the electron distribution function with
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electric field, in particular by increasing the energy relaxation rate. We now
discuss how these findings allow for the resolution of a discrepancy in the IDP
inferred from different experiments [113], and we discuss the possible reasons
for the lack of a peak in the PSD.

Interpretation of experimental studies of intervalley scattering
Intervalley scattering in GaAs has been the subject of intensive experimental
and theoretical study owing to its importance to negative differential resistance
and the Gunn effect. Many studies aimed to quantify the strength of intervalley
scattering as measured by the IDP in the semi-empirical expression originally
derived by Conwell [255]. While this model is now known to be inaccurate [124,
125], the IDP in the model nevertheless captures the magnitude of intervalley
processes in a single number that is comparable across studies [273].

The IDP value in GaAs has been inferred primarily from two classes of ex-
periments, charge transport and photoluminescence response to optical exci-
tation. In transport studies, an external field was applied to a sample and
the current or noise response was measured. The transport was simultane-
ously modeled with Monte Carlo methods based on semi-empirical scattering
rates, and the IDP was obtained by fitting simulation and experiment. This
approach has been used on samples subjected to uniaxial stress along the
[111] crystal axis [117] to identify the shift in threshold field for onset of neg-
ative differential mobility with stress, with additional modeling performed in
Ref. [118]; and measurements of the diffusion coefficient [256] with model-
ing in Ref. [114]. The value of the IDP extracted from these experiments is
approximately D ∼ 2× 108 eV/cm.

In the other class of experiments, the sample was subjected to optical excita-
tion and the resulting photoluminescence was measured. Although the details
vary between experiments, the electron lifetime below and above the L val-
ley energy can be directly extracted from the measurements, thereby providing
the intervalley scattering rate. This approach does not require assumptions re-
garding the physical origin of the scattering. This approach has been employed
by Dymnikov et al., who measured the depolarization of photoluminescence in
a magnetic field [274]; Karlik et al., who deduced a lifetime based on relative
photoluminescence intensities [122]; and Fasol et al. using the broadening of
the photoluminescence peak [275]. The value of the IDP from these methods
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is generally around a factor of four larger than that inferred from transport
studies. We show the differing values of IDP from both classes of experiments
in Fig. 4.10. An extensive review of the discrepancy was given by Reklaitis et
al. [113], and it remains unresolved.

Figure 4.10: Intervalley deformation potential (IDP) values inferred from high-
field transport and photoluminescence experiments. The high-field transport
experiments require modeling to fit the data [114, 117, 118]. The photolu-
minescence experiments extract a lifetime that is used to deduce the IDP
[122, 274, 275]. A clear discrepancy exists in the IDP inferred from the two
sets of experiments.

Our observation that on-shell 2ph scattering has a marked effect on the high-
field transport properties in GaAs provides a means to reconcile the differing
conclusions. An important difference between the two types of experiments
is that determining the intervalley scattering strength from transport experi-
ments requires interpretation using simulations, while the optical experiments
directly provide a lifetime. The IDP values inferred from transport experi-
ments are therefore susceptible to inaccuracies in the assumed scattering rates.
We have shown in Fig. 4.7b that the inclusion of 2ph scattering qualitatively
changes the steady-state distribution function at high fields due to contribu-
tions to momentum as well as energy relaxation (Fig. 4.8b and 4.8d). Specif-
ically, the 1ph level of theory underpredicts the energy relaxation and hence
overpredicts the population at high energies, leading to an overprediction of
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the L valley population and hence a suppression of the PSD peak. In the MC
simulations used to interpret the experiments, a lesser value of the IDP would
therefore be needed to compensate, explaining the smaller value inferred from
transport studies. Even if the 1ph scattering rates are increased in magnitude
to achieve the same mobility from the 2ph calculation, we find that the energy
relaxation remains underpredicted and the artificially large heating at the 1ph
level of theory remains. Further, based on the semi-empirical expressions for
the 1ph rates used in MC studies, the magnitude of the 1ph rates required
to prevent the overpopulation at high energies would lead to a substantial
underprediction of the low-field mobility.

We therefore conclude that the correct intervalley scattering rates are those
inferred from optical studies, resolving the discrepancy regarding the strength
of intervalley scattering in GaAs as described in Ref. [113]. Our work also pro-
vides a clear physical origin for the underprediction of the IDP from transport
studies.

4.10 Possible origin for lack of PSD peak
Finally, we consider possible origins of the discrepancy in the PSD versus elec-
tric field. Recall that the non-monotonic trend of the PSD in GaAs can be
separated into three regimes: an initial decrease due to carriers experiencing
larger scattering rates, a peak attributed to “intervalley diffusion,” and a sub-
sequent decrease due to accumulation of carriers in the L valley [61]. In prior
MC studies, the intervalley scattering was described by a single parameter, the
IDP, which was obtained by fitting the simulated and experimental PSD, thus
providing a means to reproduce the experimental trend even if the intervalley
processes responsible for the trend are missing or inaccurately described.

Fitting 1ph results to get PSD peak
In fact, we find that we can reproduce the PSD peak if alter the 1ph scat-
tering rates in an ad hoc way that is comparable to the artificially small IDP
fitted from experiments. This fitting requires using the model band structure,
increasing the strength of LO phonon scattering by 50%, and also reducing
the strength of all 1ph intervalley scattering by a factor of 5. The resulting
PSD increases dramatically at intermediate fields while the drift velocity re-
mains qualitatively similar. We show this result in Fig. 4.11 where the curves
corresponding to modifications described above are denoted “Fitted 1ph.”
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Figure 4.11: Drift velocity and PSD with parameterized 1ph rates. The “Fitted
1ph” curve uses a model band structure, and with all intervalley scattering
rates reduced by a factor of 5. The fitted 1ph curve has a much larger PSD
peak, but represents the unphysical nature of parameterized models.

The interpretation here is that reducing intervalley scattering not only slows
the accumulation of electrons in the L-valley, but also significantly reduces the
scattering experienced by the fluctuations themselves. As we discussed in Sec.
4.1, the PSD is suppressed as scattering rates increase, so a lower intervalley
scattering rate means there is less suppression of fluctuations, especially at
the high energy states where intervalley scattering can occur. This leads to
an increase in the PSD. However, the arbitrary increase of the LO phonon
scattering rates by 50% could only be justified using our post-hoc knowledge
of the strength of 2ph scattering rates. And further, we know that a five-fold
reduction in 1ph scattering rates, exclusive only to intervalley processes, is
unphysical as there is no reason to doubt such a large deviation of the e-ph
scattering rates calculated from first principles. Thus we see how a parame-
terized model can lead to an incorrect physical interpretation.
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Missing 2ph processes
What the above analysis shows is that predicting the experimentally observed
PSD trend requires correctly describing not only the overall scattering rate
magnitude but also incorporating the correct couplings between electronic
states, since the energies of the initial and final states involved in the pro-
cess correspond to the location of the off-diagonal elements of the collision
matrix. In the Γ valley, these off-diagonal elements determine the energy
relaxation rate which in turn affects the electron population capable of under-
going intervalley scattering. For Γ-L scattering, these elements determine the
the steady-state population in the L valley but also the specific states that
undergo intervalley transitions. Intervalley transitions at higher energies may
increase the PSD owing to the larger difference between their group veloci-
ties and the drift velocity as in Eqn. 3.48. Therefore, all relevant scattering
processes must be present to achieve the correct steady-state distribution as
well as the correct scattering rates experienced by the fluctuations about that
steady state if the PSD is to be accurately predicted.

E

k

L valley Γ valley
1e1a

2e

1e1aωLO

Figure 4.12: Schematic of on-shell 2ph processes and missing off-shell inter-
valley processes in the L valley of GaAs. The open circles correspond to the
intermediate virtual state. The black arrows correspond to an on-shell 2ph pro-
cess which are included in our calculation since the intermediate virtual state
is close to the band energy. We show a 1e1a process, which is the predominant
type of 2ph scattering in the L valley. The gray arrows show representative
off-shell processes that are not included in the present calculation. Both an
off-shell 1e1a and off-shell 2e process are shown, beginning with the emission
of an LO phonon which has a large e-ph matrix element due to the Frohlich
interaction. We suggest that missing off-shell processes like the ones shown
may be necessary to predict the peak in PSD.
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We suggest that the missing scattering processes that are necessary for the
PSD peak are off-shell 2ph transitions. The processes that mediate intervalley
transfers at energies exceeding the L valley minimum are one example of such
missing processes. We schematically illustrate some of these missing processes
alongside the included on-shell processes in Fig. 4.12. As an example, a 2ph
intervalley transition from the L valley minimum to the Γ valley could be
achieved by the emission of a zone-center LO phonon, with a large e-ph matrix
element due to the Frohlich interaction, followed by emission or absorption of
an acoustic intervalley phonon. The 1e1a process in particular would yield
a transition at high energies that could lead to an increase in PSD. Another
location where the missing off-shell 2ph processes could change the trends is
at low electron energy. We can see in Fig. 4.6 that our on-shell rates are lower
than the full calculation of Ref. [98], and in particular are missing the double
“step” feature in the full calculation, which was attributed to the 1e1a rates
increasing as the intermediate state starts to include more on-shell processes.
Such an energy dependence is not possible in our calculation, and indeed we
see in Fig. 4.8 that the on-shell 1e1a rates lack the non-monotonic trend.
The energy dependence of the 2ph rates at low energies may play a significant
role in the trends versus electric field. Still, including off-shell 2ph processes
remains a formidable computational task and is the subject of future work.

4.11 Summary
The primary numerical tools used to study electronic noise have been Monte
Carlo (MC) methods [231, 264, 276–278]. These simulators have many ad-
vantages, including the ability to incorporate realistic device geometries and
space charge effects through coupled Poisson solvers, and they are thus use-
ful to interpret experimental measurements on devices. However, MC studies
rely upon semi-empirical models of scattering and electronic structure that
require parameters such as deformation potentials, sound velocities, effective
masses, and energy gaps to be specified and calibrated against experiment.
The methods are thus most useful for well-characterized materials for which
these empirical models are available.

The development of ab initio methods to study transport phenomena without
adjustable parameters enable an understanding of the microscopic scattering
processes that underlie macroscopic properties and permit the prediction of
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new materials. However, thus far these methods have been restricted to the
low-field, cold electron regime.

In our work, we have described an ab initio theory of electronic noise and
high-field transport in semiconductors, and applied the method to GaAs. The
method requires no adjustable parameters, with the phonon dispersion, band
structure, and electron-phonon coupling calculated from first-principles. We
have demonstrated the ability of the method to show disparate timescales of
energy and momentum relaxation, as well as the frequency dependence of the
PSD. Although the 1ph theory has been thought to be adequate for GaAs
and used extensively in Monte Carlo simulations, we have found that on-shell
2ph processes play a fundamental role in all aspects of high-field transport,
including energy relaxation and intervalley scattering. This finding resolves
a long-standing discrepancy regarding the value of the IDP as inferred from
transport and optical studies in favor of the stronger value obtained from
photoluminescence measurements. Further, the characteristic peak in the PSD
versus electric field is not predicted at this level of theory. We suggest that
off-shell 2ph intervalley scattering processes may be required to observe this
feature. Our work demonstrates that the ab initio computation of high-field
transport and noise properties may provide considerable insight into the e-ph
interaction in semiconductors.
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C h a p t e r 5

SUMMARY AND FUTURE WORK

The unifying theme of this thesis has been the study of transport phenomena
using the Boltzmann transport equation with ab initio inputs. As discussed
in Ch. 1, the main complication in the BTE is the formulation of the colli-
sion integral, and including the proper form of the interactions in the collision
integral is necessary to achieve experimental agreement. Approximate forms
of scattering can lead to qualitatively different results and thus the ab ini-
tio approach provides a way to rigorously assess the importance of various
mechanisms on the transport properties without the ambiguity of adjustable
parameters. Furthermore, a first-principles formulation of the BTE requires
calculation of phonon and electron properties throughout the Brillouin zone
instead of using some average quantity, permitting an analysis of which phonon
or electron states contribute most substantially to transport and the reasons
for their contribution.

In the realm of thermal transport (Ch. 2), we studied the intrinsic upper limits
of thermal conductivity using unsubstituted polythiophene as an example of
a complex polymer crystal with high uniaxial thermal conductivity. We found
that despite the short phonon lifetimes of many modes, an extreme degree of
phonon focusing results in a large total contribution to phonon conductivity
when summing over the entire Brillouin zone, a result we show would have
been difficult to predict based on heuristic analysis of average group velocities
and average lifetimes. We showed that the isoenergy contours for branches
where there is a much stronger anisotropy have almost complete focusing in the
chain axis, which allowed even optical modes at high frequency to contribute
non-negligibly to thermal transport. In a fictitious isotropic version of PT
with no phonon focusing, the thermal conductivity would be over 80% lower.
To further validate the importance of the phonon focusing mechanism, we
performed the same calculation in the high-pressure phase of PTFE and found
a similar result, with the thermal conductivity in this high-pressure phase over
3 orders of magnitude larger than in the ambient pressure phase. In both
PT and PTFE, further aligning the group velocity along the chain axis only
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increased the thermal conductivities by less than 10%, indicating that in both
materials, the degree of phonon focusing is close to maximal.

We then used the BTE to study charge transport and fluctuations at high elec-
tric fields. In Ch. 3, we gave an overview of the typical approach for solving
the BTE at low fields and the required theoretical and numerical techniques to
overcome the typical low-field approximations. The two main advances were
the inclusion of the reciprocal space gradient on the deviational occupation
and the analysis of the non-linearities in the collision integral that allowed us
to make the physically justified approximation of neglecting all electron occu-
pations when compared to phonon occupations. Together, these two modifica-
tions yielded a steady-state BTE for high electric fields that we solved directly
as a linear system. Next, we described the theory used to describe the behav-
ior of fluctuations at high fields characterized by the current power spectral
density and also called hot electron noise. Two important facts established the
BTE approach to hot electron noise: first, that the current PSD is the Fourier
transform of the current autocorrelation due to the Wiener-Khintchine the-
orem, and second, the current autocorrelation itself obeys the BTE. From
there, we showed that a rearrangement of the order of summation allowed for
a direct computation of the PSD through a Fourier transformed BTE whose
solution is an effective distribution function that is summed over the Brillouin
zone with velocity to give the PSD. We also included two phonon scattering,
and made approximations to permit the calculation of this higher-order e-ph
scattering process for the large number of electronic states at high energies.
We calculated only processes that were within some energy tolerance of being
on-shell.

We discussed the results of applying this theoretical and numerical framework
to GaAs in Ch. 4. We analyzed results in the warm electron regime first, show-
ing that the slope of the PSD versus field at moderate electric fields indicates
the balance of increasing scattering rates against the heating of the electrons
to higher energies, and that semi-empirical models failed to predict the right
trend. We showed that the frequency dependence and anisotropy of the PSD
revealed the timescales of energy and momentum relaxation. We analyzed
these relaxation timescales by calculating the fractional energy and momen-
tum loss from individual scattering processes, weighted by the steady state
distribution function, to show that in the warm electron regime the scattering
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can be considered quasi-elastic. In the hot electron regime, we showed that the
inclusion of 2ph scattering was essential for achieving the best agreement with
the drift velocity curve. Two-phonon scattering also qualitatively changed the
nature of energy relaxation and intervalley scattering in GaAs, which explains
a discrepancy in the literature regarding the strength of intervalley scattering,
as 1ph scattering leads to excessive heating of the electrons. We showed that
even with 2ph scattering, the increase of the PSD is not reproduced which
we attribute to the lack of off-shell intervalley 2ph processes. Our study in-
dicates the importance of achieving not just the correct scattering rates, but
also the correct energies of the final states reached after scattering, showing
how the behavior of fluctuations provides a new observable against which ab
initio methods can be measured.

5.1 Future work
We discuss some new directions of investigation suggested by our findings.

Phonon lifetimes between polymer crystals
In our study of polymer thermal transport, we showed that PT indeed has
much lower phonon lifetimes than a simple crystal like Si, but we did not
discuss the difference in lifetimes between various polymers. Analyzing the
difference between the scattering rates of different polymers may yield addi-
tional insights. For example, it has been shown that flexural phonons are the
dominant contributor to thermal conductivity in graphene due, in part, to a
symmetry based selection rule involving the reflection symmetry of graphene
that reduces anharmonic scattering [180, 279]. The polythiophene rings in
each polymer chain are also planar like graphene, and while the symmetry of
the PT crystal is of course different from graphene, the flexural modes of the
PT chains may also obey certain selection rules that eliminate certain anhar-
monic interactions and thus enhance the phonon lifetime compared to other
polymers. This may explain how PT has a higher thermal conductivity than
PE, despite a more complicated unit cell.

Hot electron noise in other semiconductor materials
The BTE framework for the ab initio computation of electronic noise and
high field transport described in Ch. 3 may be applied to other materials
where the approximation of negligible electron occupations is valid. Another
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semiconductor similar to GaAs is InP which also has a direct gap and exhibits
negative differential resistance. However, its satellite valleys have a larger
energy separation from the conduction band minimum, meaning the onset
of intervalley processes occurs at higher electric fields compared to GaAs [99],
producing different trends of noise versus electric field. If two phonon processes
are not significant in InP and the ab initio calculation of hot electron noise at
the 1ph level yields reasonable agreement with experimental data, the results
may provide additional insight into the influence of intervalley scattering on
the behavior of fluctuations, since the analysis in GaAs is hampered by missing
2ph processes and a lack of experimental agreement.

Inclusion of off-shell two-phonon processes in GaAs
As we have already discussed, only on-shell 2ph processes were included in
our calculation for GaAs due to computational limitations, but the off-shell
2ph processes may be vital for reproducing the experimental trend of PSD.
The off-shell 2ph processes necessary for reproducing the experimental trends
might be made computationally tractable by employing by different approx-
imations that more accurately capture the 2ph scattering present in GaAs.
For example, instead of calculating all off-shell processes, it may be the case
that 1e1a or 2e processes dominate the intervalley scattering processes we are
interested in studying so that 2a processes can be neglected. A large source
of computational cost comes from the ab initio calculation of the e-ph ma-
trix elements entering into the 2ph process amplitude of Eq. 3.53. Although
ab initio matrix elements are known to differ from those of simple physical
models, employing semi-empirical expressions like those for the acoustic de-
formation potential, and polar optical phonon scattering [1], may reduce the
computational burden enough to determine which 2ph scattering channels are
most responsible for the experimental trends.

More interactions for electrons from first principles
Our framework for high-field transport and hot electron noise has treated only
electron-phonon scattering, but there are other interactions that can scatter
electrons and would alter the trends versus electric field. Our calculation in
GaAs was performed at room temperature for low carrier concentrations pre-
cisely to avoid these other interactions, but transport at low temperatures
and higher carrier concentrations involves electron-impurity scattering. Semi-
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conductors are typically doped by introducing impurities that are ionized to
provide free carriers, but these ionized impurities can scatter electrons, and an
ab initio description of both neutral and charged impurities has only recently
been developed [280, 281]. The ab initio study of high-field transport and hot
electron noise at low temperatures where both impurity and e-ph scattering
are present may reveal new dynamics when compared to prior Monte Carlo
studies of the same phenomena.

Electron-electron interactions are also important at higher carrier concentra-
tions, and become especially relevant at electric fields even higher than those
studied here, on the order of 105 V cm−1in GaAs [282], as the carriers are
heated to energies above the band minimum that are greater than the band
gap and impact ionization can occur. One way the impact ionization rate
can be calculated is through the imaginary part of the self energy of a GW
calculation [283, 284]. For hot electron noise however, electron-electron inter-
actions introduce additional correlations between fluctuations (c.f. Ch. 2 of
Ref. [245]) which requires modification of the equations of Ch. 3 and thus
additional theory development. At high carrier concentrations, the interac-
tion of electrons with plasmons or coupled plasmon-phonon modes [285] also
become important. In general, electron-electron interactions are a many-body
physics problem [286] that are the focus of much contemporary solid state re-
search, and their inclusion requires careful treatment within the quasiparticle
Boltzmann framework.

Non-equilibrium phonon occupations
The framework presented in Ch. 3 for hot electron noise assumes equilibrium
occupations of phonons given by the lattice temperature, which is valid when
the phonon-phonon (ph-ph) scattering rate is large enough such that the en-
ergy from the electrons is dissipated on a timescale much shorter than the
electron-phonon scattering rate. When this does not occur, it can lead to non-
equilibrium phonon populations that qualitatively alter the scattering in the
electron and phonon systems, and one may be required to consider not just the
e-ph and the ph-ph interaction but also the scattering of phonons by electrons
(ph-e). This is a well known phenomena for electrons driven by photoexcita-
tion in semiconductors [287], and non-thermal phonon populations have also
been observed in graphene [288] and aluminum [289]. For relaxation of pho-
toexcited carriers without an applied field, recent efforts have been made to
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develop ab initio descriptions beyond the standard two-temperature model by
coupling the phonon and electron BTEs with an energy transfer rate [290], or
through direct coupling of the state occupations [291]. For transport under the
presence of an electric field or temperature gradient, the non-equilibrium pop-
ulations of electrons and phonons can lead to a mutual “drag” which affects
the transport coefficients, and the first-principles framework for calculating
these phenomena has been recently established [93].

At low temperatures, the phonon-phonon scattering rate is lower since phonon
occupations are smaller; at high electric fields, the energy dissipated by elec-
trons is also higher, so the equilibrium assumption for phonons may not be
valid. In fact, prior Monte Carlo studies have analyzed the effect of non-
equilibrium phonons on the noise behavior in GaAs at 77 K, and found a
non-negligible effect [292, 293]. In the same spirit of this work, a fully ab
initio calculation of noise and transport trends versus electric field with cou-
pled phonon and electron systems may provide new insights when compared
to both the prior models and the experimental results.
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