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INTRODUCTIOR

This thesis 1lc not intended to add any substance to the
philoscophical controversies being v:zed about "many-valued
logics™, 1Its purpose is to develope, for the first time as far
as the writer knows, the interesting mathematlcal theory which
lies behind these logics. It is un eflort to provide & sene
method of attack on discovering the properties of operations on
a finlte number of elements to a finite number of elements,

It is likely that the greatest practical application in the
future of the study of these logics will lie in the discovery of
relations between operations on a finite number of elements and
the principles upon which they are based, Consider the case when
n is 2, the Boolean Algebra, and all of the binary operations on
two elements such that the result of the operation 1s again one
of two elements. Study of &ll possible combinstions shows that
there are 16 operations definable that satisfly these conditions.
The relationships between these operztions and th=ir properties
can be falrly easily established by trial and error methods because
of the smallness of thelr number, HNow teske n as 3. All of the
possible binary operations on & elements to 3 elements sre 16,183
in number. In case we wish to select a pariicular bluary opera—
tion, the methods of trial and error are impractical, This
problem was faced when the problem of finding & slngle binary
operation which would generate ezch of the othsr binary operations
was suggested, The analogous case for n is 2 was solved by in-
pection of the 16 operations. The number of binary operations

2
on n elements to n elements is n¥ .



Lewis and Langford have proven propositions in &-valued
logic. To do this they made a table in which they placed the
results of arplying each of 3 truth-values to the proposition.
If the proposition kel the truth-value "certalunly true® in each
case, chan the proposition was sald to bz asseriable, It is ob-
vious that For the case of & generai n we can not mske out a
table ol this scrt. 3Besides, this would ilnvolve the proving of
a proposition for esch value of n., Because of these c¢ifficulties
we abandorn this wethod and aevelope & more general one. Then we
prove propositions which will hold for @ny finite integral value
of n. These proocfs nold as well for n = 1,000,000 as n = 2.

Sunitarlizing briefly the results of the following chapters,
we have:

(1) Genzrallzed msay results or the Boolean Algebra, ob-
taining & singie bilnery operstions which will generate 41l of
the remaining operastions of the logic; generulized the Boolean
expunsion.

{(2) Obtained more couwpletely the propertles of five types
of implication, one of which was cefined by Lukasiewicsz.

(3) Discovered which of tie important propositions of
Whitenead and Russell carry over to Ln ior five dififerent types
of implication.

(¢) Developeld two types of erithmetic of L.

In ciosing, I vish Lo express my apprecisztion to Professor

E.T
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Bell for kis direction of this thesis and his many suggestions

relating to this wmork.



CHAPTER OHE
THE DEVELOPLENT OF THE ALGERHA OF H-VALUZSD LOGIC

INTRODUCTION, Im 1920 Lukasiewiczl defined in terms of a
matrix a "three-valued loglc"., A& ysur later ?catg generalized
two-valued truth systems, giving an m-valued system. Thnis sys-
tem was defined in terms of two operaztors which were generali-
zations of the negation and disjunction of two-valued logic.
Lukasiewiczl gave a short characterization of an n-valued sys-
tem in 1222, This wus followed by a papﬁrg in 1830 defining
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implication and negation for an n-valued system. Lewis
Langford extended the results concerning the three-valusd lo-
gic given by Lukasiewicz and Tarski in their papers by using
the truth-tables in terms of which Post had defined his n-val-

ued system,

1. B8ee J. Lukaslewicz and A.Tarski,"Untersuchungen fiberfien

Aussagenkalktil", C.hk. Soc.d.Sc. et d. Let. de Versovie, XXIII

(1830), Classe II1, p. 32, footnote 5; p. 38, footnote 17.
This paper 1s referred to as LT in subsequsnt references.

Bels Post,"Introduction to a General Theory of Propositions",

&
*

Amer. Jour. of Jath., XLIII (1921}, pp. 163-185. See partic-
ularly pp. 180-185, Heferred to as P.

S, Lukasiewicz,"Philosophische Bemerkungen zu menrvertigen
Systemen des Aussagenkalkidls", C.H. Boc.d.Bc. et d. Let., de
Varsovie,XXII1I {(1930), Classe III, ppe 51 f£f. Called L.

4. Lewis and Langford: Symbolic Logic, Century Co., 1832. See

in particular Chapter VII, Henceforth called LL,
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In this coapter we delfine the implication and negative of
Lukasiewicz in terms of the pegativs and disjuncitive of Post,

il

These in turn are defined in lerws of & singlse Oygratcrs, [ R
The operateors of Post sare introauced since they vwill alliow us
to gensrate the matrix of uny orier function on n truth-values.
This stetement may not be made about the implication and nega-
tion of Lukssiewicz since they are not symbolically uompL@teS
To the sabove operators we add thres oithars, equivalence and
two products, pg¢ znd pxg. ¥YWith these relations we davelop an
extension of the algebra on two truth-values to n truth-values.
large portion of the properties of Chapter Two of Symbolic

Logic by Lewis and Langford hsve been generalized. By gener-

>

slization we mean that in the case when n 1ls iwo the generalized
vroperty becomes the Boolean progsrty of which it is the gen-
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alization. In the next chapter this algsbra 1
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propoaitions listed by %hitshesd and hussell as the most impor-

tent in aivisions Z,3,4, and 5 of tne Pricclpia watinsmatica,

5. %ebb,"Definition of Postls Generslized Hegative and Maxiwum

ir Terms of cne Binery Operction’, Amer. Jour. of Math., LVIII

(1936), p.. 195-1s4. Post was familisr with a result of this
niture. See P op. § His operator was defined by
p,q;;.agnp)%c/vhq. The delinition in the paper cited azbove
was ?‘qu-FJm(?\QQ)-

6. For this statemsnt I am incebted to ir. J.C.C. lickinsey of

:""

the University of Cslifornia,., 2or the welinition of "synbol-

lcelly complate® see LL page Zol.



“he notation used follows tiwet of Whitehead and Russell,
Hp was introduced instesd of wp to avoid contusicn with Post's
negation. IU is morz convenlisnt to have the subscript of the
truth-valuss, t range 1 = 0,1,...,0-1 than in the traditionszl
manner since this allows the use of congruences.

ROTATION AND DaFIalTlONc. Let Ly be & loglc of n, where

n is ¢ positive integer, truth-values t Tys esey tpys The

O
ti are marks sucihh thut to eich of the ti any one of the n
truth-values of the systew way be assigned, One interpretation
that may be given to ihem is that ti is less likely to be true
than ti if 1<J, ty is as likely to be true es ty if i = j,
and t4 1s more likely to be true than tj if 1 >J). Then t,
is teken to pe certainly true and to certeinly folse. During
thae remainder of this chapter %, may be interpreted as beilng
cartainly true since we accept a proposition as being ssserta-
ble when we can show that it has the truth-value I, for zll pos-
sible truth-vslues tret the cowmponent eiementary propositions
may assume. Since these demonstrations depend upon the subscripts
and not upon the truth-values correlsted with the subscript, we
can correlate any truth-value with %, , and obtaln a ssries of prop-
ositions having the truth-value correlated to t,, for all possi-
ble truth-values of its component propositions,

Let Lp be the logic based on the lmplication and negation

of Lukasiesicz’ and in the case of Lg» &8 modified by Lewis and

7. See LT and L.



AP - a
Langford™. P represents toe logle of Post™, p, ¢, T, X, ¥,

=1d are alevontay Lronnsitions in Pt
and z are eleusntary propos.toons ix Ly, Ly and Pp. pELp
signifies that p is in L., =2tc.

-

- Y e P 3 £ P v e o~ T eovre = W, o~ T g e e AT e ey s . 5
In place oif tie malrices ol Lewls ang Lenglord, we adopt

arithmetical methods of showing vinal vaiues the wotrix possesses.
we denote this arithmetic, vi.ocno lnciudes the oriinely Oper&-—

-4 — o2 wn s e e oot 3% AT e ey 3 S % -

Lions o1 +, -y » » > » < 3 MEL Arigy 58 uUs le’ Ll J&z;itﬁ lﬂt~3g 2rs

.. - 2 + [P x re
S5 Dy wevy By B, i, b, kK by 2, T

tiste the truth-values
t. €L, with 1€4, we use the following wo sywlolis:
If p has ike truth-value ty, [Qy T i (1= Uylyeseyn=-1). Df
E(Q,q,...,r;a,b,...,aﬂ indicates Df

1. f(P,dye.esT35,Dy2..,8) 15 considered as a con-
venient method 6f writing f(bﬂﬂ.B},...,Bﬂ%a,b,...,e)
Where P,Qse s ,T€Lp; a,byec.,2€ A,

Ze f@gﬁgg...Jﬂga,b,...,e) may be any rational poly-
nomial with asrguments and operatiouns in A.

3. 1f for [l =4, [ =3 ,..00[] =k
fﬁgﬂﬁy...,@fa,b,..,e) = ¢, then [?(p,q,...,r;a,b,,..,eﬂ =4
wnere c¢=d mod n, O0%£d<nmn.

If we enclose a system of brackets in anothsr set of brack-
ets, we shall conslaer the expression to mean tihat we shall op-

erate with the lunner bracxets belore consivering the outer set

of brackets; e.g., by Dt;i]"”"}j we mearn [:H';}] .

Be ©Oee Li Chopter VILI.

Je beE P



The chiel iillerence between [ ] cmd[__] is that ail op=-
eratiouns indicated inL]’are in Ly whiie &li opercations indi-
cated in[] are in 4. A4n eemple is [I»DQJ = [n-1+q -?,j)_] if
Bﬂ)[?]' This statement might be weitten as {oliows: If
¢ has the truth-value t; and q the truth-value tg* where

v

£ = n-l¥j-i.

Pyt

i%»J, then the truth-value of ;D tj is tg where
It is convanient to define:
ir [p] = i, [QJ = j, tasn D
Ec&af;;a{y,q)] = j where 1£]

=1 where 1>].

Ir p] =4, [q] = j, then Df
[min(p ,q)] = j where 12}
i where 1<j.

It is evident from ths gropsrities of coangruonces that

s

l:f_}}- 1{] may be written as @+b]. Atcorcingly, we sihall cone
dar ):a-[- max {(p ,q)] to mean [[ 1+ vm,{\m,(i_‘];] ete,

Pots are used here ag in the two-valusd Logic for punctue

ation.

e shall define all operations of L in tcrms of pla. The
truth-table for p[ g given bhy:
i '—J [3-+ meX (.t PRt )] | ne
Other tlons in L, to be used sre derfined =5 lollows:
1,02 Q°.=.y, pzﬂ.z.pt o (L = 0,100 ,0-3) Df

) . h-|
1.0 QVQ-""« 1§ C) bt
1.04  Hp.=.pBm-zrl] Df



We shall at times find 1t wmore conveniesnt to use p.q than pg.
In such instences p.g will be considered &8 wurely snolher way

of writing pa.

1.06 ;:oa,,.z.(pc,)':"""gJ Df
1.07 p=q.5:1pDq.cDOPp bf
1.08 pxq.=. (31:**“'\/(1""31 Df

THEQREMS KEADILY DLDUCIELE. rFrom the precsiing Jdefinitions
we can readlily show the folliowing thnecrems concerning thelr
properties,

b R el
Proof: [P [p] phjz E+ wex ( [p"'7 [g"ﬂ)] (1.02,1.91)
= [3.1-[9“"]:]
Continuing this process
[P T e e - e

or j?ﬁ]’s [?—+g].
1.2 [pvzz]'{max(ﬁ,q)]
Proof: [pv QJ' = Ep[ q)h"]‘-'- @+max{p,q)+n~lj = [mex(p,q)]

(1.03,1.1)
1.3 Jup] ‘= [n-l——p]
Proof: [_I"%pl’ = Ep +2n-—2p—l] :Eq-l—-p] (1.04,1.1)

1.4 chg’:: [in(e,q]]

Proof: [go] = [n.-l«-max(n—l—p,n—l-»q)] (1.0B,1.5,1.2)
L Pl <), [p-i-gpfn-1-q] ene oo =[5]
U SE, Bot-fefol-d] e B =[]
1t [p]=[4]» [p-1-p]=f-1-q] =nd [56]"=[F] =[q]
Hence [pq]' = [win(p ,q)]



1.5 [p2d] = n-1 i [Sf]
=[b-1vc-g] 1 [1>[0]
Proofs [p) q]’ = [min{p,:.;}{-n‘l-p] (1.06,1.1)
I [4=2f], [podl = [p+u-l-g] = n-l
i >, Bod = [n-lte-g
La6 [?isg]': n-l i eua only if [p] = [4)
=fn-tto-g] 10 []>(4]
=[p-i4p-q] i [p]<]d]
Prood:s  (L.07,41.9,1.3)

From ihis resull we rewdlily see that 1.07 implies that
two propositions may be asserted as equivaient when and only
when they heve the sace truth-table. Using 1.6 and the pre-
ceding theorems we lummedliulely get the foilowing relations of
equivalence between the operstions in L, with those of L, and
The diffsrence in notation of truth-values wmust be cone-

in

sidered. t in Ly becomes By in Ly and ty , in Py, Thus

[n-1+q-p] in L, becomes L +g-p] in L, and [l+e-p] in P

1.7”’ PDQ«=.PCq; PDO4A. €Ly, plg. éLn.

1.8" Np.=.(Wp); Np.€L,, (¥p)el,..

1.8" p=q.z.pEq, pP=q.B.pEq; P=4g.€ Ly, PEq.€L;.

1,10 pDg.Dq:=.p V4

Proof': E)DQ.DC;],: [o-lto-(n-1)] = (q] if [Fl=[q]
Sinca [{1-11’ q~p]>@] if [E»]f: n-1

:[q] if [p]:: n-l, we have

1J. See Li p. 213 footnole or L p. 72.

1l. BSee LL p. 21l4. pEq iz un.elfined for Lipe
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E:DQ.DQ‘X [n—l-rq-(n—l)-c;fp] =[_p] if [p]>E1] and Dga; n-1
[PDa.5 q)’ = n-1 if [p] = n-1
Hence, (p>a.> ql'= [max(p,q)] = v d
'ld.l’l p;?ﬁig.pﬁq; pVa. e Ls, pPOg. € L,.
1.12" pa.z.pAa;  pawel,, phAa.ge L.
1,132 p1¢z¢n¢‘p,‘pi.§wn4p (i = 2,8,.0.,n-1); ﬁi, pl. ¢ L
~nDs A{p.ePn.
l.lé'n'3 qu.z.p“ng; qu.ean, anq.e Ppe
1.15 [pxq]’ =0 1if [pq]’ = 0
= [max(p,q)] if [pq:(/;ét)
Proof: [pxq]’ - [11» max ( [rx~l+p] » [n~1+q] )] (1.08,1.1,1.2)
. I [pq] = 0, [xq' = [len-T =0
It [pog'# 0, [wx(fa-lvg] , -2 c])] = [n-brmox(p,0)]
or [pxd| = Brn-l mealo,o]] = oo, )] if [pd0
1.18 pVg.=.qVp
1.17 (pVa)Vr.=.p¥(gVr)
Proof: [{qu)Vr]’ [m&x {max(@,&},lﬂ = [x{?;»&-\,r)ﬂ
[?V{qu):]/

#

it

1.18 pg.=.qp

1.18 (pajr.=.plaer)

120  pxo.=.aXp

1.21  px{axr) .= (pxg)xr

Proof: If [(pq)zj/z O then 1.21 reduces to 1l.18, if [(pq)xf),?o

then 1.21 reduces Lo 1.17

18, BSez LL p. 214,
13, See P p. 180.
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1.2 plaVr).=:1pq.V.pr
Proof: By 1.16 without loss of generality we can tate[ﬁ]%;{}ﬂ.
Ir [IZZ @:\Z[r] , then [p(qu)}l =[¢] and @q.V.ng/ = [cx]
If @]7@2__[}: , then [p(qu)]/ =[’:ﬂ ana [pq.v.pv]{ = [pj
1f @Z[_r]>[pl s, then [p(qu)]f = [;ﬂ and [pc:;.vipzjl = [P] .
1.22 pV(ar)=. (pVq) (pVr)
Proof: Similar to that of 1.32.
1.24 pV¥(qVr).S:pVa.V.pVr
Proof: E?axip,maz(q,rﬁﬂ ot Egax{ﬁax(;,q),max(p,r)}] »
1.25 px(gVr).=ipxg.V.pxr
Proof: If [§] = 0, [px(qvf)]’ = 0 end [preVopxd] =
If @ =0, Eq‘lr:((=['§] and [pxa. V.‘pxr]' = [prx]’
Hence [Jx(qu)] [prg.V. px"] if [} =
Similarly for [r] = O.
If [B#0, [@#0, [¥] £ 0, ﬁ‘ﬁen we can replace X by V an
1.25 becomes 1.74.
1.26 pe=:n.Vepg
Proof: [}.V.pér = Eﬁax p,min(p,qXﬂ
If [§)S[d then [p.v.pq]/ ‘-"-[p]
If fp]> [g] then @.V.yq]’ = [p]
1.0 pVgVr.=.pV{cVr), par.=.p(qr), pxgxr.Z.px(qxr) Df
1,010 xi. o xt Df
1.011 in.-.» Vi, VoooVa,, sizilaerly for Zf

-—oJoKo

n-l

Xy, 5K Df

where x; and X (1,3,.¢0,k = 0,1,...,n-1)

L}t
are sny elementary progositions.
- J. -W/ - ire >
1.27 [};ij =1 if [f] = n-i

=0 if [x]# n-i
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Proof: 1If [{] = n-} where Jj#1 then [;3]'= [p~j+3] = 0. But
xd occurs in X , hence [X 0 if [xj#n-i (L.4,1.08,
1.010,1.18). If [k] = n-i, [x _]/= 0, E:[‘H{]é 1 and [Xi]l= 1,
since t, does not occur in Xy.

1.28 ‘11”3"'-"‘31;]/‘ 1 if [x] = 0-1,[y] = ned, .. fz] = nek

= 0 otherwise,

proofs  (1.27,1.15).

1.2 XjXj.2.t, 1+ 3

Proofs  (Ll.4,1.27).

1,30 Xy A=ty i43

Proof: (1.15,1.37).

1.31 Z XyaZaty

Proof: 1If [x] = n-i, [ga.,l].- 1, [XoVu Ve VX, VX VeeoVX, = 0

/
C'.nd st.d] l (i J,l,...,ﬁ*‘l)- (1‘2,1..;27}0

. . ] 4
1.32 {?hi} K2 Tg3h e x mzk} =ty
Proofs (1.31).

n-1i h-1 = -y e h-l

1.33 ZZZY_,L} x[_ZY,.gx X{fzkz «Ze z{:)? xixij“.fxzk}

Proof: (l.Ea,l.aw,l‘“,l 17).

1,012 By F(x,¥s+.+,2) we vepresent any function of X,¥,ss»,2. Df

Or to be more explicit, if [;] = i,[}] = Jyeesy [2]5 k, then
F(5,¥,s++5%) has a definite value hi. F(ti,tj,...,tk) has
the truth-value that F(X,¥,evs,2) has when X,¥,sss32 ale re-

placed by ti,tj’."’tKﬂT}FiiJVleeLy.

1,013 If st,y,...,z)._.g:&n D2 LETU L OIS SRR K)}
then %LJ 4 ;f i i X ;X w0 eXZp )T, wheTe Ay ik
represents some celinite truth-value th wnich depends
upon F(X,¥,ees32), is said to be the norwal form for

kvl

F{x,¥,e00s2)e
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1.34 F(x)ez ZF(ti)XX

proof: [.r.'(zl)xxp ] [_ j £ Ex] = i
=0 Ganer@;aa LelB,1en7)
Hence [ZF(L VXX JF E. (ti)J/ it [x] =
1e35 FXy¥penesZ)eTe %Zo 3 (bi,tj,...,-z;k)x(};ﬁ_i Yigees Zn-—-k)}

Proof: Generalization of that of L.o4.

P

The above is a proof that F(X,¥j;ees,2) iy wlways be ex-

™ PR Y
pressed in normal form, Ai,),..,,k is ﬂ(ti,ﬁj,...,bk;.

- i, Ay
1.36 x J\in:u o ‘Al)@itzito

Proof: If (}] = n-i, Eci]/z 0. Heunce [,_:I&l] = 0 and [:x )(Xj:]
for [X] =1 (1= 9,L,...,0-1). (1.4,1.27).

Xy becomes ~vxo A L. Ihis ailows us io consldsr 1.36 as

7

"

& generalization of x{vx) =0 in L-e  LeoB can be used as a
proof thet any function F{X,¥,...,3) can be generated frow plge
In such ¢ proof ve would substitute (tO)K, wnere
[F(tistg0meerty)] '
for F(ti’tg""’th) as the coefficiest of o Ynaj .o Zn_ha
Then, since we huve obtained t, in Lerus of p,q, we nuve obtalned
F{X,¥s500e,2) in terms of p‘q. fhis may &.80 be consincred as a
means of Jdetermining an expression for any single valued function
ot a finite number oi elements to & {inite nuwiier of slements.

Ve also sce tnat in h“ Le55 becoies The Booizin expansion,



CHAPTRER TVO
IMPLICATION
in L? ve find that pOPp and pHC.cDr:D>:pDOr hold. How-

ever in Ly the imp.ication of Lukasiewizcz fails to possess the
latter property, that of transitivity. There are s grest nusber
of possible chioices of matrices defining impliication relationsls.
If by plg we mewun "p implies g% anu i we tike [pIq]' =n-1 1if
and only if [p]é [d] it is interesting to aiscover the necessary
and sufficient conditions thst must be imposed upon plg before
the proposition plg.qIr:I:pir holds in Ln’ Using our earlier
interpretation for truth-values we see that the condition
Eplq]' = n-1 if and only if [p] <[] involves the principle "a

nrogposition implies any which is equally or more probable; and

b
is implied by any which 1is& equally or la2ss probable."lg
An investigation of the possibilities of plq definzd in the
above manner leads us to lhe folilowlng Lheorems
8.1 If Bsiq]/ = n-1 when and only when [f < [q] then in order for
[plq.qir:l:plr]' = n-l1 where p,q,r may assume any truth-value
ti» tj, ty it is necessary sud sufficient that
L1 [>[E>E
then [_plq]}__ [plr],
and [pIr]’_S[qu]'
2. And if p,q,r have particular truth-values, say ti,

t?’ and tk respectively, where 1> j>k then either

15. BSez irn perticular LL pp. 228 and 250.

16. LL p. 250,
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(arsT> pre]’
and E)Iq]"—"- E:Ir]'
or [qir]lz E‘.»I:c]l
sad - [prdy pid’
but we cannot huve both of the relations
[cgiﬂl > \}_)Iir]/
£nc [pl(ﬁ')@lzﬂl noloing siwullaneously.
rroefs L. I [F£[Y)
Then B_]/ T lieh, LEKINE [pIq.c;Ir:I;pIr]/ = n-l.
>l
e (27 -
Then @Iq.glr:l:pixf}' hacou.es [plq.l.pir], since
fir] = n-1i.
Therefore, ir [p] >[rlz [g] then
@Ic;]’g[plr]’ in coroer for the gproposition plo.glr:I:pir
to hold since by hypotizcis E}Iq]/”-‘- n-lL if and only
v BISE-
Be [@]2 ]1>[x] -
@Ii;.gi'f:I:plrj/hc:ozz:es [(:;Ir.I.pIIj/ since [pica/ = n-l,
denve, us above, if [q2 [(] >[£] thern
RIS pro
s FDE>E .
In pilcg.qlr:I:pir Irom g =nd b we see that the
conditions
14’2 pra]’
[p1d% [p1r]” wust nold.
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If these concitions hold
[ v 4
[pIq.qug]_)_ Em.r]
However, 1l is necessuary thot the eguality sign hold
in ithe above statement, othervise by hy,otiesis
Ec G.gIr:Is pIr];.‘.n—“ iren, irorder ror the equality
sign to hold, for & jarticulur set of truth-values such

thet [p]>[§i]7[r], it is necesssary wnd sufricient that either

ol = pnl
'y Br]
or [a1z] > 1o’

[pIQ] = @Ir]'.

The above conditions are evidently sufficient.

PG does not satisiy the tonoctions Tor transitivity vhen
n)2 sinee i o] =2, [] =1, 1] =0
/. . o -
[}))q] b [n—-:fo—?] 5, {pDC.qDT -
i < e o i - P N A — ey ES
Honce [p: C.0DTID:pd ] = [71-4.*{;«@-4‘1;»«,;) = n-2,

cx

In otner voraz, for thsse perticulir veluss of p,a,r

i

i

:::‘
1

try

Vv
[

{

]

Theve sre miny opsrations which saclisiy 6.k. In particulsar

£,01 pll%. B Y01 ot

8,02 pIya.T.H{pljq.1. (pl. q,} i

6.03 plaq.=:p12q.Vq bf
0



17

.05 I ge=epIl Vaq.VLig Df
= =
5 -]
Wream vhoeran Satdnr s os BY o go.aaie bl unas trnanmrTang A eT
DO Giioxha QoL LiiaLiDns Jy HEwils Q4 Wi L20rfus O.L o8

cnapber, wo detesnin: Lhelr Lrulh-taoies,
= p-i if [;«] <[c]
[z}—lfq-»ﬂ it T >[4 -
).
5.3 [?’I;;‘,“i]/ = a-1 it [F£[q]
0o 11 [5H
Proofs If [S[ then [Iyq'= n-l and [pIie.I . (53,q 5‘] [t 1 tg = 0.
ience [pigq] =[a{pr, q.;lxpllq)}]: el i [p]z[g] :
If [i]>[] tien say [pilh = 1 where isn-l,
then [ps.gqj = [‘*‘itil}_ tifﬁ]’:: [11—-1-—{11—-1)]
I = w1 1 (s
] i E>0H
Proof: [plﬁq]' = n-1 if [p],é[q] , neace [3,1 GV, c] n-l.
[PI,,;;Q]/ -0 ir [g >E‘] heace [plog. w.qJ = [q] in this case.
6.5 [pIyq]’= n-1 if [ g [q]
=[o-1- 0[] > []
Proof: Sanme type as in S.4.
6.6 [915q]/ n-1 if [;]<[q:(
[Hp.v. q] 1r [o] >[q]

Proof:  (2.3,1.72)

\
»
3
L
‘-...J
e
§

1

£

i

(1;

-~ » LI U R St e L . - o -
By theorems 5.%,58.:,0.5 1t Lo evicent thnt ol.g, piza, &nd

ol 40 setisfy the nscessory cnd guillcient com dltlons of 6.l

making each of these types oi lzpilcetion transitive., If we

check the conditlone for pl ¢ in .1 for the particuisr values

o}
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of [r] = mn-i, [a] = -8, F] =0, we fiad wnem n>2 that

! / P - - 3

2 9% [plsr] ontrary to coaditions 8.1 part 2.
Thus, we can sey ohot pl ¢ 1s not trensitive
A > 5 A Wi 3 L‘& J* Sre) 1) Wwd Ciiad e

It iz Intereoting to dcoteraine which ol the propositions

Listed s the wost iluportanc by V“altzheod anuy ussell in divisions

£a

2,0,4, anl 5 of

Principle wochesnatica nole in Ln. We 1list these

important propositions in vie Principlsa setihematica below:

2e pIN¢ .. L.ellip

"y

e
ns

Le1E Nplg.esldo

2,16 plo.Xl.HN¢INp

4005 QI.T.I::”I':‘I.;JII‘
2.08 ploJlicir.l.plz

2,21 Np.Il.plc

S22 pe.l:n.l.pg

.43 plg.pIr:l.p.l.qr

2435 pPePlu.l.qg
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€5
™

o
(444

pIlg.ltpr.l.qr
$447 plr.als.lipg.l.rs
4.01 pEq.=.plg.qlp Df
4,1 plg.B.HglIlp

4,11 pEc.E.NpENq

4,13 p.E.H(Hp)

4.2 pEp

4.21 pEq.B.qEp

4,22 pEg.qBr:l:pir
4,24 p.B.pp

4£.25 p.E.pVp

4.3 pg.E.qp

4,31 pVg.R.qVp

4,52 (pa)r.E.plor)
4,53 {(pVa)Vr.E,pV{qVr)
4,4 p.qVr:B:pq.V.pr
4.41 DpJV.gr:E:pVq.pVr
470 plcg.E:p.E.pg
4,75 a.I:p.E.pg

5.1 pa.I.pEqg

5.2 p.l.qBr:E:pg.E.pr

V]

5.6 p.He.l.r:Eip.IogVr

Utilizing the resulls ol theorems G .l,0.0,0.44,50.5, and 6,6
we obtain the following table of results. A stands for assert-
'able ana N for not assertable. Thus, in the table we {ind A
oprosite 2.02 and under leq. Thet means 1f we replace I by Il
in 2,02 above, the proposition is assertabie in Loe The rest of

the table reads in the same manner,
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plga

N

A

pi
N

plza
&

N
H

Plgq

pl;q
A
A
A
A

A
A

o<
15
06
c.08

04

Zel7
2.08
2,21
5,26

P

[
~ .
~e

A
1
N

N

[SM] ©y SN ]
»
) M3 3 X

A

N

4.11
4.18
4.21

4.1
4.22
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plyq plsa pI.q pl,q Pl q
&, % A A A A A
4.85 A A A A A
4.3 A A A A A
4,51 A A A A A
4,32 A A A A A
4.33 A A A A A
{e4 A A A A A
4.41 A A A A A
4.7 A A A A A
4.73 A N A N A
5.1 A N A N A
5.52 N N A ! N
5.6 N N N N N
Total of
Ats 33 20 31 21 33

The abhove table 1s verified on succeeding pages.

4
14 states as be~

The five propositions which Lukasicwicz
in a sufficient condition that the systen Ln zey be put on
& postulational basis hold in Ly, for pliq. They follow:

pllq.ll.qilpzll;gllp, ﬁpilﬁq.rl.qllp.

By utilizing definition 4,01 pE,q.=.plyg.qip (L 2 0,1,004,5)
we obtalin the following taeorems concerning the truth-tables of
pEiq:

/
6.7 [bgﬁq] = n-1 ir [p] =[g]

= O otherwise,

12. See LT p. 41 (following Theorem 26).
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5.8 pﬁgq]' = n-1 if [p] = E}]
= [pq]/ othervwise
6,9 [pgéq]' = n-1 if Lp] = [q]
= [? eq) otherwice
.10 [u, ] = n1 ir [F] = []
- [(N,w q) (Ng .V, D)] wige
VIERIFICATION OF UHY [LESULTS OF THE TARLE,

Below we have proven the results of the table. Ve first list
& proposition number wna then have five sub-numbers under this
heading. The first sub-number relers to the verificstion of the

result for pi g, the second for pl.g, etc.

L
.02 q.l.plg
True for pic when [p)£ E;] .
1. [[#A>[q]-
Eallq] [n-1tc- ]
But @é]}l—-lqbq-—p] since [n~-1-p]2 0.
Hence L.e proposition holds for all[p] » E;] .
2. Let[p[=12, [g] =1, then
Eq.?z.p}igq:(/: 0, so does not hold when n >Z.
S. If [p>la] then %}1:)&] L} therefore theorem holds.
4. Let [q=n-2, [p] = n-1, then theorem does not hold

for n>2.
[Pl >Ma].
[cﬂ > [b}p]/ evidently holds.
Similarly for [@4[&@]/ when E.I .;,mq] bmomes& I5.¥ }/
208 plilg.l.qlfp
True if Ex-l-—p:( 2[q]-

i
»
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1. fe-2-p] <[q]-.

Then [pllf;‘%q]/ = [n-l4n-1-g-p) siuce [p]>[r~1-q)

and slso [q_Ile]' :Bx«l-m_l-c-;;ﬂ mawing tre sroposition hold.
£, Tfolds siuce E}IEESQJ/: 0 = EI;”)] '«x;f‘v.en.[n—l—-p:}<[q].

“. Proposition does not hold vhen n>o for E}j: n-1, B =

i
o]
R
™

it

4. Proposition does not hold when n>2 fer[f] = n-2,[q] = n-1.
5. vhen [NpKk], tren [Ndl'<[¥]
and [qlijfzg]’ = [re.v.3p]} LPIE?%?G]/: Epi%(:}_]/ Theorem holds.,
ZelT  Hplg.iJlalp.
True if [No]<[p].
Proof fullows same lines es 1in L.,C&.
2.16 plq.I.NqINp.
Proof same type s in £.08.
“el7 HNulNp.l.plo.

Proof seme type a5 in 2.038.
.04 pLl.cir:Isc.l.pir.
True if &a] §[_r].
1. [8 >[r].
True i [q]é E1~1+1‘—p
Toke [d> E}-l‘&‘r«;ﬂ, then []>[r] =n< [n—-1~q+r]<[3_3],.
torordingly, E.Il.piir]/= [A-1tn-l+r-p-q]
znd  [e.Ip.ql _LI:]' = Eﬁ-—lm-li'r-gaq]
and the thecren rkolds for tris cose,
e Let [E] = 2, [q] = 1, znc[r] = 1. For this cu3e the
theoren doss not hola for n?>=.
& (ed>i.
Holas if [q]g]r].



Let [q] z[p]l~ ], tnen E.Eb;lu:(/I ] 2]}3.1;‘%.{;15:(']/.
We get the same result when [p[> R>[r], wmering the theorem
hold.
4. Does not hold lor n>»2 when[p] = n-2, [a] = n-l, [r] = n-Z.
5. P >[x]-
Tnen @151*_]/ = D 173.\7.1']/.
Holis 1f [q)< [up.v.r]’
Take [qﬂ;»ﬁ‘éi;.v.r]{, then [q(y[x] ,):q]>E§1:ﬂ/, snd [p] >[§‘¥q;]<
sence [quIs.pIgr] =[be.Voup.v.r]’
and @,Ié.qléﬂ/ :@;q.v.zzp.v.ﬂ/ woking theorem hold.
2408 qlr.l:plg.l.pir.
True 1L [plglr].
1. (9] >[*].
[q 2 el >Ir], @Ilq]/ = n-l and @Ilr]/= [n-1t r—;ﬂ making
B:;Ilq.Il.gJIlrj/= )’p-»lfr-—gﬂ
[eIyr] = [p-ltr-q], but [o-Itr-qlfu-l+r-p} weking
theorem hold for this case.
(o] >[a] >]x],
E’Ilq‘ll‘pliz']/" [p-ltr-d] = [qllrjﬁ so theorem holds.
Ea]>[r]g 4], Epilr]/%@f{lq]/ so thoorenm holas.,
2. Holds.
5. B> k], Bzl =[]
[q]é[r], nolds since tien B}IQI']/"-‘ [x].
[zRI>E s [(IaI5p14 = ] = [aI .
[#] > [al>[x], Eﬁizq.Ié.pIBrJ’ = [¥] = [qaZzr]%
defalse ifp] = L, [g] =1, [r] =0 and n>:.
5. [p]>[r], then EDISr:(/: B‘p."i.xj/.

3]
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[q]é[_r] holds since Lpli;q]% Ezp.v.q] fong f&lp.‘f.fjé[l“?p,v‘zﬂ,.

(1> 171, [ev.g2 o]

Theoren holds if enunlity sign 1s true.

Let then [E\Jp.‘u’.t}l} EI)."‘J.?],, or E]) [’.Vr_],.

Then [;315}@.15.9151*:]’ = E}’@:.;."J.ifp.%f.,r],

But [aI.r]"= [Fq.v.r], and [ia.V.]% [5a.v..7.5] so the
theoraes holds.

(] > 1>]x] E}Iaq.iﬁ.plglj/= i%p.*»/’.r]la.n{té [3151*_],: f_ﬁq.%’.:ﬂ/
[’C;Té E\;J’, tusrerore [Ho.V.r]& E&‘p.‘!.z_’],:-'an:i th: theorem
holds,

2.06 pla.l:icir.l.plr
True for [plelr].
L (@5 B> ED 1] = [a-ltr-g], [o1,2] = [o-bereq]
since [:a-l+r-—p_]g[n~l+r-oﬂ, [(:_Ii_.ll.piir_]/s n-1L.
[r] >e]> IxJ
[q Z—lr .Ii . ;:>I~Lr_]' = [_n—l-*n—-lﬂ—p- {(n-1) ’r-w;)
= Ln—l-qu;‘]
But @I}_Q-]/: Ea«iﬁ;—g] so theorex holdsg,
1> 2 [ [p17] = [+ a-d)
and @Ilr.ll.pi;}j/ = E}-l’f‘l’—‘}ﬁj
But E:-lw..p]é[:n—y- q-p] so theorew holis.
2. Evident,
3. [e]>[r]s B}Igrjr::[lr].
[]4[x], then [al,v.I, pizf] = [r] en @Igﬂg [c]s[r].
[@]> ], then [qisr.ls.plzxj/‘: n-L.
4. Hot zssertable for n»r il Lp] = 1, [oj = 0, [r] = 0.
5. [0>[7], @Igrjl = [Z_"\Ip."v’.r_]:

[[£E1, Tols]'= w1, [algrIs.plr] = L’Pvﬂ,
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B)I CE] L;.\f.“, 4 uro":-.L s S0 trheorem holds for this case.

BlzlE], [i,a) = Dic.v.r], [pLe]’= [e.va];
[qlngé [r 5;] making this cas2 hold,
B> 1>k, @Iérj'= [_J’J.I‘j: leér:]’ = [Hs.7.4]%

¥ el . P S S R RN A
Heocs tieoren nolus 18 zquality 15 trus in

[ et

- . ! - ol ’_ - e . ’
If qu.512|>[p4.51-], qugr.I;_j.pIérJ = [i,‘i.-g.;\fp.i.ﬂ

. - r .. +y <7 r . 1 - q o 1
rut [efn.:)q_] = qu.v.cﬂ, 5o theoreis holus for =ll cases.

Evident,

Zewdk Noleleplig
True for [d<[a].
L. [51>[4), [;ulc] [3.:1«-.:.+o-él>{_ .
2. Yot assericbie ler[p]= 1, [yl
B. ot wssertobic forfp]z 1, [q]
4. Trus sibce when L]>[q] ['J.L c],= [IJLJ.
o 1 - BT

Se  Peligl.dl.pe
True wvhen [p]27q].

[p]([c] then [Q.Il.pf; /2 i

O when n>iZ.

C vihen n >d.

it

zlan Ca Pat uflECLJ.- IC}.L [ﬁz - ;, B] =7 ‘,}‘.eﬂ k41 > :« .

5. [p]<[o] s [PIz:a.Iy ch -(gl.a;i] = n-1,

s

o
.

[;g]<(9], @.¢5:q15p] - E.Iszfm.v.gﬂ,: n~1e

S48 po.Iup

True if [p[<[a].

. Hot asserteble for {5,] 1, [@] =2 when np>=2.



If ]’_p]>1'9] then we hove glp which fov tuiese values is
asusartabis for eil rive tyoes orf implicstion,
PBliekeg
Bone as 2.26,
pGel.relipaiogir
Truz for Lc] >[I_‘] .
1. E‘]>[r], qulr_],: [n—li—r-s-cﬂ
@ é[;%li-r-q] true
[p]) [n~l+r-—q], then E.I}_.QI }_rj 'z Ln-—lm-—lﬂ—qngﬂ
since [pl[r] an.ll.xj/: Ez-—l-}r-min(p ,q)]/
Therefore [yq.ll.r]’é[;f.li.qliﬂ’ ani theorem holds,
2. Wot ussartabie for n>R2 wien [y] -1, [q] =z, [r] = 1.
5. BPE] (a1 = [r]
Holds if B’EB]‘
[pj>[r], [%3-13~f~1151‘]f=[1‘]s @Q-Igaﬂlzﬂrj, 20 theorem
holds,
4. [o]>IE], forg] =[]’
[p]—é_[_i‘kg/ holds.
For nY 2 the theorem is not sssertzble for[@] =2,
[a] =1, ] =o.
5. [9]>[r], [glgr]f=[§§q.‘v'.r]./
):;.jg Nq.v.r], holds., ' _
[§£>[§Q.V.€]; <0 [?Q.ID.€]'= [ﬁp.v.ﬁq.v.ﬁ]i zaking

proposition noid.

=27
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cedl pel.alr:li:ng.il.r
True if Ejtj/éﬁf_]
1. Mot usuervablie Jov n>:Z  when [g] =1, [ﬁ] =1, [r] = 0.
2, If E)]>]}_] [C]>):r_] then Jp.Tg fI J ana
LC. X{J.T = 0, mweidng ths thooren hold,
4. Holds since for [v]>[r], EJ>LJ Lr*.I,.Iﬂ 2[r] and
[?.Ig.qlz;] ]

4, Yot zsserteble for n7? when [2] -1, [ﬁ] -1, [x] =0,
5. Yot sscertsble for n»2 when [p] = 1, Jg] =1, [¥] = 0.

YeB3 ple.glr:I:pir
For vroofs see earilier part ol the cvhepter.
l. Yot esscrtuble,
2. Assertsbie.
Os Assertzble,.
4. Asserteble.
B. Hot csssrizble.
S35 p.pigil.g
True when @]g
1. Hot aszzrtabvle for n> < wnen [Q] =1, [ﬁ] =
2. Holds szince ~hen [}]74gj, [glzéJ/:
3, Eﬂ;>ﬁg, @.plnqzlﬂ:qjlz @Q‘Ig-é]’= n-l.

4, ot azsertable for n»2 when [p]

«

-

i
"
-

[Qf:[ =
.L, [QJ - Q’

5. Not uzssricble for n PR when []

i

5,42 pla.plr:I:n.l.qr

True when [p|< ]’
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[q]g B])[p], then [pxlq],: Ln-li-p—q}, [ler]’a*Ln-—lt-p-»r]
or [pllcgfé [ler_]’
Lp.Ii.~:;rJ/, 80 thoor=m hoids for this casg.
[r]> [g*]>[p] , Sz & ¢bove since ¢ and T sre symsetrical.

[c]>E>] or [r]>[p], then B}ng.p}igr]/: g = [p.lg.qrjl

. [p]> [qrj/, [p.Ig.qr]/: [qr]/, and either Lngci:{/: o or

-

[};}I;xj/:[r], 50 [glgq.;]:;r]/ = [_qr_]/making the theorem

hold,

@ >kl [pelgeor]’ = [39] = [pIa.nI F%

5. ij >@xj/ and E;]é [Iil . Then [p.Iﬁ.q:r]/:—. &Egl.Veer/ = B‘Jf}).\:",{ﬂ/

[pzs_q]/: [szp.v.q:[/, hence [_’§>15¢.pz$rj’ = [%Ep“f.q]f
The case is the saue for [g] >[r].
plg.Ispr.I.gr
True when [pjg];q] » [T]2 E:quj/
1. @]>[ﬂ7@],[;:»r.}:l.q1j/ = [rllq:[/ = [n-4g-x]
[p1,2]" = P-14-p]< [n-lta-r].
2. [Pl >[x] > [pr.Ig.c;r']/ =0 = [p}:gq]/.
5. PlPEI B, [retgear) = [ = [pLa)
4, [;ﬂ>[rj 7[(;], [pr.Ié;.qr:{/: E{‘érj,f LPI,,}Q:}/ = [E’-Ip]/
But [E;?pjgﬁ\?r]/.
5. [o] >[] »[a]» @r.lb.qrj/: [ia;’r.”\?.c]/
[r.q = [3\1‘;;.*\].@%@@,‘&.(;]/

pir.gls:Ispc.l.rs
Trie if E:xcji;: [rs]/.
1. [1;(;;]/>st /, anc toke B{]g[ﬂ .
gl«lr], [s]< E}] » then .l .rs]/ = [rn-lts-p)
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[_qus], = [n-lts-¢ é[n-Hs-pj
Hernce [pllr.qlis]%l;aq.li.rs]f

1501, [¥I<], tien [g.I, .rs], = [p-1tr-g]
and [;:)I}zf{ [n-i—fr-—p], so [oI,.qI 2:::] Tce I

Since the proposition is syuuetrisc in p aud g

.xs:]

(o-)‘ ....._
("
"‘S
©
m
ot
i

ment for [p]s[g] is the szxe =z in the sbove cuse, making
the proposition hold,
2. If [pq]}[x_‘s]' then eitihsr [_plgr]lz 9 or @135],2 0
waking the propesiticu hold.
2 [}a}’; E"s]/ Isl€lr], then [r,q.lg_.rs = E]»
[px reql, g [s]-
The treatment ie tne szwe lor []>[r].
4, [pq]’>[;'s]’, Isle ], then @cg.lét.r:)]/.z [Es.v. ci]
and [ql,gys]’ :[}Eq]’, mexing [pl,r.al,s jg faégb.w’.?‘é(ﬂ/,
The tre.toomt is e sawe Jor [s]>[r].
B, [pej>£rs]’, [s] g—[r] , then [Q&.L“.ﬂ/ =[Es.vann . vag)’
but [QISS:T = E;«Eq.“*-f.&f;]/éﬁﬁz.?.I‘%‘q."f.E]/, Lalily toe
| cop .

k’ { 500

Lot ter

tisoran Lola s,
. . 3 T A e T e -
Pra trewtient lor E‘]>[J is of uhv: sale (ypé.

é - ¢ e e X

é“ia-l yz(:iufjd:l’j4-jaiui‘$p

True for [Pl [o], wie 2 [iigl< [ iyj

Lo 9] >[:J maRilng 3‘3‘1] 7z [‘Jj ? Eilqjl ) l/_n-?d—t}wil] ) [ﬂq'll'mﬂ /.
e Eviuasnt, '
G. N0t essertabee Jor nys vvaen [P = L, E’j "o

"

i, [af =
5. [A>[], wasing [Jr‘:[> [ ] [{3.&. c} E.y.-. .:J [vc Is.flpj

8 T, s e gy et el el TEF ]
“a. Bot assertzbie fovr ny>.o wres []



4,11 pEq:BE:Np.E.Hg
True when [p] = ] -
1. [§]>[§], then [pElq]/= [n-1tq-p], and [ﬁp.El.ﬁ@]/:{?-lfq~§].
[]1<[], then L;)Elq]/ = [-lrp-q], and [ip.E.Nq] = p-lip-q] .
2. gﬂ7éﬁﬂ , then jpqullz 0 and f@p.Eg.N%]/: 3.
3., HNot assertable for n>Z when{?] = Q, and[ﬁ] = 1.
4. HNot assertable for n >2 Whenwy] = 0, and]?] = 1.
5. [p]>[a] , then [pE5q]/: @p.v.q]/, and I}Jp.Es.Hcﬂ’ :[ﬂp.v.q]/.
[p]<d] » then [pEsq]/ = [Ng.V.p], and [N’p.EB.E%q]/:]}Iq.V.;ﬂ/ .
4,13 p.E.N(¥p)
True since [ﬁ(ﬁpﬂ/ = [n~l~(n~l)+§} = [l
4,2 pEp
Obviously true,
4.21 pEg.E.qEp
By inspection of theorems 1.6, 6.7, 6.8, 6.9, and 6.10
it is evident that [pEiq]/= [aBsp] (4 = 1,2,3,4,5).
«22 pEq.qBr:I:pir
True when [p] = E:;], or [p]= [r], or [q] = [r].
1. Not assertable for n>2 when Ep] =1, Lq] =2, ]"_1:') = Q.
E.quﬂﬂtMnﬁwa@Hﬂ,w [4]#Ir], in which case
[@Ezgj/= 0 = {?Ezq.qﬁg?]/making the theorem hold.
Se [p]ié [af » [a)# [¥1, [p1#[¥] , then EEqu.qESr]/ = @qrj/
and [pEgrj/=[?§]g thus making [pEsq.qB5§ﬂ§[PE5§r;
4. [0]#£[d] > Q)£ 5 [p]#[x], then [pE,q.qE,r] =[Np.Nq.Nr]’
and [pE,r] = [ip.r]’, thus making [PE4q.aE,T] < B)E‘lr]f
5. Not assertable for n>»2 when [f] =0, [q] =1, [¥] = n-1.
If we prove that a proposition pEsq (i = 1,2,5,4,5) is as-
sertable for some particular 1 then pﬁjq, where the truth-values

of p and g do not change as J chang:s, is assertable for all J
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(3 =1,2,...,5), since [pEq] = n-1 (x = 1,2,...,5) 1f and
only if Eg] = [g]. ¥e have utilized this fzact in propositions
4,24 ,4,25,4,3,4,31,4,38,4,.55,44%,4.41 giving In each case the
proof for pE.q, or where the proof for pHE;q wmay be found.
4,24 p.E.pp
[ev]'= [#]-
4,25 pJE.pVp
[Ve] = 7]

4.5 pa.B.gp

(1.18).
4,31 pVgq. B.gVp

(1.18).
4.32 {pg)r.E.p{qr)

(1.19).
4,23  (pV¥q)Vr.E.pV(qVr)

(r.17).
44 pP«qVr:E:pq.V.pr

(1.22).
2441 p.V.qr:E:pVq.pVr

(1.23).
4,71 plg.E:p.BE.pg

Obviously true when [p]g[q_’] .

1. [p] >[a], then [leq]/ = E‘x—-lﬁ»q—p] , and [p.El.pq]’ = Ln—l+<z~p]

2. [£]>[d], then [pIQQT = 9, and [?.Eg.pQ]’Z 0.
3. [1] >)’9], then Lplgq]’::):q], and @.Eg.qu/: Lq].
4o [B]>[6], then [pI q]’=[Np], and [p.E .pq] = [ng]"
5 [g]7[g], then [plﬁq]/= Iﬁp.V‘QJ; and [?.EE.pQszigp.V. q3<

-

*
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561

5.82

ag.I1:p.Fapq
Truz when [pl<fa].
1.{9]>[], then E;:.El.pq]’z B-1ta-p]. But [g< [n-lta-p].
2. ¥ot assertable for n >2 when [p] = 2, [q] = 1.
5. [o[q] » then [p.Ez.pq]) =[4] -
4. Not assertable for n>Z2 when [p] = n-1, [g] = 1.
5.[0]y[d] , then \p.Eg.pa] = [Np.V.q]. But q Np.V.q .
Pe.1.pEq
True vhen [p] = [q].
1. [P1>[Q]> [vBq) = [n-2ta-p], but [d]< fp-ltq-p].
(<], PEd = [n-tre-q], but Elsm-ltp-q].
2. Not assertable for n>2 when[p]=1, [g] = 2.
5. [}#] > then [pE5a] = [pal-
4. Not assertable for n»2 when[p] = n-1, [a] = n-2.
5.[p]<[q] s [pE5q], = B}.V.NQ]; end @q]é@.v.ﬁqf.
[P]> ], similar to [p]<]d] -
P.1.Q%r:E:pg.B.pr
Trus if fq] = [¢].
1. Not assertable for n>2 when [p_]

t
1R ]

i
<
»

l;Eﬂ

B. HNot zssertable for n>2 when[p] = 1, [g]

1, [r]
2, [r]

)
1

1.

5. [F]2ld] >[x], then E}.Iz.qur]’: [x]
and [Pq-Eg-prJ/ = [Esr] = ).

9> []> ¥, then [p-Ig.afg] = [x]
and [pq.Eg.pr:{ = B"E:sr],: [r] .

53

Similarly we can show that [p]>[r]>[], and [r]> P} > @]

hold.
% th position becomes [pel,.qB.riE.:pE.pL
[p]é[g;r], hen proposition becomes [p.I,.qB.r:E;:pE;p)
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This obvicusly holds, meking the proposition hold for
1,0, ranging over zll possible truth-values.
4, Not zssertavle for ns 2 when [pj = n-1, f_q'_[ =1, Df‘] = 0,
5, Not assertabie for np» 2 when [?] =1, ]ﬁ] =1, [f] = 0.

5.6 Pela:I r.tBiplogVr

1. Tot assertable for n>% When[p] = 1 [q] =1, @7] = 0.
2. Not assertable for n>2 whenfp] = 1,[q] = 1, ] = 0.
5. Hot assertable for n>2 when [_p] =n-l,d = 1,[x] = 0.
4. Mot assertable for n>2 whenfp| = n-i, ] = 1,[r] = 0.

i

n-1,[¢] = n-2,[r] = L

Considering now the five propositions of Lukasliewicz:

5. HNot assertuble for n>Z2 when[p]

p:Il:qllp, leq.Ilqulr.Il.ler, leQ.IlQ:Il:qup.Ilp,
pllq.ll.qup:Il:qup, ﬁp.ll.Nq:Il.qup.
The first, seccnd and fifth of these propositions we huve proven
already. They are respectively, 2.02, 2.06 and 2.,17. Consider~
ing the remaining two we Iind that they both hold,
The proofs foilow:
pilq.llqzll:qllp.llp
Fl2El, (5L = [-lte-(e1] = [2]
and [lecg’ = [n-lfq-gﬂ;_[q] 50 that [leQ.quj,-‘l [p].
FI<E]> (ro-Ld = (] = RIe18]
Thus the proposition holds,
leq.Il.qup:Il:qllp
@] £ [F], obviously trus.

@>El, [o18) = [-lo-q] = [pT1a-T;qI;p]-



CHAPTER THEEE

THE ARITHMZTIC OF N-VALUED LOGIC

INTRODUCTION, This chapter 1s buased largely upon efforts
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to extend the results given in the papers "Arithmetlc of Logie®
by br. E.1. Belll5 and YOn Belll's Arithmetic of Poolean Algebra"
by Y.h, Hurwitzls. #ost of the operutions that we shall use are
gensrslizations of those given by Bell and Hurwitz. However, in
a few cases the cobvious generazlizstion i¢ found to be defective,
and we have to Seck more obscure generallzations, or even at
tiges, operations that are not generalizations of the correspond-
ing operations in the sbove mentionec papers

This chapter is meunt to be merely a short exploration of
the possibilities of this topie. kany continuations of some of
the items of this section will probsbly be evident., However,
lack of time anu spzce prevent & more thorough trestment of this
subject. Later the writer intends to more thoroughly explore the
generalizations of the ideas in the pspers of Dell and Hurwitz,

as well as attempting to sdapt the results in ths pepers of Bern-
18

rs
7

ll < & " - 19 o
stein” , Stone™, and Von Neumenn~ to a loglc of n-values.

15, Trens. Awer,. gath. Soc., 28 (1527), rp. B87-611l, Henceforth

referred to a5 BH.

16, Trans. Amer. gsth. Soc., 30 (1928), pp. 420-424, Called H.

17. Bernstein, "On Finite Boolean Algebras", Amer. Jour. of

mdthu, LVII (-L 55), ppo 736"‘742&

18, Stone, Proc, of Hat, Acad. of Sciences, 20, pp. 197-202,

19, J,. Von Neumann and #¥,H. Stone, Fundemente Mathencticae, XXV

(1955), pp. 353-378.



36

We shall sey that we have developed the arvithmetic of
n-vzlued logic 1T we cén rind operstlons 1o Lo wiich satisfy
the abotrzeticn ol the posiulstszs covaring the corvesponding
oserstions in the roticnsl arithmetic. For thaose postulate
systems we shiall consult the pepers of Bell an Furwitz., They
are listed in briel on the following piges,

In the Boolsan case two sets of operctions, duals of esch

n

othzr, are given which forw the arithmetic of logic. Ve shall
not attempt this since if we were to stiempt 1t we would have to

enlarge the number of thesorems in Chapter Jne so a3 to cover the

ed

o
duals of many of the theorems that spypasr, However, 1t is well
to remember that the dual case can be worked out zs easily as the
case which we have given,
MOTATINN, We shall state our postulates for an abstract
ring B#, as in B p. 59<, in which the operations 8,P,L,G,C,D,R
may be read as, respectively, sum, product, L.C.e, GCuD.,
divides,and residual. In L, we use the same letters, avolding
the use of the small letters since many a2re in use as proposi-
tlons., Various definitions will be introduced as they sre nseded.
POSTULLTES FOR &,P,L,G,C,D,R. These postulates are from B
and retain zs nuch as possible of the notation used there.

Postulates for &5 and P.

R¥,. If x,y sre any two elements of R¥, xSy, xPy are uniquely
determined elements of R¥#, and
x8y = ybx, . yPx = xPy.

R#,, If x=,y,2z are any three elements ol R¥*,

D

(xSy)sz = x8(ysz), (xpy Pz = xP(yPz),
xP{ysz) = (xPy)S(xPz).
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L#,, There exist in R# two distinct unicue elements, denoted

feogh

by u end z, cciled the unlty, zero of R¥, such that if x 1is

o

any eleascnt of B¥, x8z = x, xPu = X.

Postulotes for division in R¥,

Pl. xbx,
P2. xDy.yDz:D> 1xDz,

By
I

P&, XLy.yoxin =y,
N

where xDy is uniquely signiicent for each x%F 2z wnd y in Rx,

with the sxception thut zDz is significant bul indeterminate in

Postulates for G and [ in R*,

P4, xGy = yGx,

P5. #G(yGz) = (xGy)Gz = xGyGz,
P6, (2Gy) Dx. (xGy) Dy,

P7. 2% .20y 1 2D{xCy),

P8, xLy

i

(11

YixX,

(3]

P3. xL(yLz) (xly)Lz = xLyLz,

pio, xD{xLy) .yD{xLy),

Pll. xDz.yDz:: (xLy) Dz,

where =,y zre any elements in 3% and xly and xGy are uniquely
determined in R,

Postulztes for congruence in R*,

o

Let xCy be = relation in R¥ such thet, if x,y,z,w are elements
in R¥, xCy is uniquely significant in R¥ znd the postulates Pl2-
P15 ere satisfied:

Pl2, xCy> yix,

P13. xCy.yCz:D:1xl2,

Pl4. xCy.zCw: D1 {x5z)C(ysw),
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P15, xCy.z0wi: (xPz)C(yPw).

1 S I S S B < by PR N - Yo oy e s
Then O 1o celled abstract algelrals CONOSTULNS.

If B% 4s re;leced by its instance A, an instunce of xCy is

2"b= (6= b wod ), vwhere z£,b are integers > 0 and m is an integer

In A C is sz1d to bz arithuetic congruence if to the

rostulztes PLEI-PlE are urd ed thz p

Q
o
ct
4
"
ot
[
v

rLe. {(a=D mod a): mm divides z, m 5 Q3

P17. (ka=ke mod m) (a=b wmod mt), m#Q,
where qm! = m, and g = G.C.D. of k,m;

Pls. a=a mod .

Abstraction of the residusl.

Let e,b,h,m for the moment denote elemsnts of R*., Then, if
m is uniquely determzined by (u wunity in R¥},
PL2. {aD(th)}.{mDh}.{m +u,
where h runs through a2ll elsaents dn R¥, we shall call m the
residual of b with resgect to 4, and we shull write m = bRa,
BEUIVALEUCE, In addition to the sets of postulates listed
by Tr, Z.T7. Bell, 1t is wall to list & set of postulates for equal-

b

ity. In tha Boolezn ¢use the propertles of identity, symmetry,

and trensitivity are satisiied by Boolean eguivsience, This

o)

ig not the cose where ndDZ. Then, w2 can see by 4.82 that all of
the types of eguivalsnce wilch we .elined are not tremsitive, Of
the three types which are tronsitive (ngq, pqu, and pﬂéq), e
shall use pE.q since this fas the simplest trutn-tazble of the
three, Using our earlicr interpretatlion for truth-values, pEzq

stutes thut either p is ecuivalent to g, or p is not equivilent

to g. This is not the cise with plizg wno #B4q, @5 can readlily be
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szan by theorems 6.7,6.8, and 6.9,

The set of postulates gziven helow =sre those given by Dr.
.V, Huntingtongﬂ with the exception that it hzs bsen necessary
to change the operations listed in postulzte D,

"An obvious set of postulates for = is as {follows, where
2,b,C,0.. are undersiood to b2 elements ol the class ¥,
Postulote A. If & 1s in the cliss ¥, then a = a,

Postulate B, If & = b, then b = a,

Postulate C, If 4 = b, and

o
fi
[#]

-
ot

Pt
o
o
g‘\

= c.
Postulate D. If x = y, then £{x,a,0,C,e¢) = I(¥,8,0,Cuus)
vhere f(x,2,b,Chees) 15 any element oi the cluss K built wp
froa ths clements X,a,b,C,ess; Dy successive apilicetions of
the operstor ' and £(¥,4,0,C,5es) is the element obtained from
T{x,8,0,Cynes) by writing y in pluce of x throughout.™

pqu satisfies these postulates because of the following
theorems:

Postulste A: 4.2,

Postulzte B: 4,21, This ls & stronger thesorem than

L

Dol 0H

el

Postulate C: 4,22,

Postulzate D: Since we heve def'ined operations as only
operating on the truth-tables of & function, if two propostions
have identical truth-tazbles one wsy replace the other. But
our definition of ecquiveience implies thet ir two propositions

2

ere equivalent they will h:ove icenticeal truth-tuzbles. Thus

20. Huntington, Truns. Amsr. heth. Soc., 35 (193%), £.280.
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if xE.y holds we ce&n renlsce X by ¥ wheraver » occurs without
changing the value of our funcnion £(x,0,0,T,es)e Thils satis-
fies Postulate D,
We shall drop the subscript on E-~ heaceforth unlszss we are
raferring to soms typs of enulvelernie ctler tran B,
THA SUL AND PRODUCT I6 L, . In wording out the tr:insforms of
operators it is well to romember thet = in 24 treonefoxms inte B
in Ln. Remembering thisz w2 are led ta ire forliowing thsory:
7.0L X0¥ .= xVy Dt
7.02 EPY o~ o XY Df
7.1 xPy and xSy satizfy postulites R%lf R¥o, B¥.,
Proof: R¥*; is satisfied since x8y and xPy zre unigucly deter-
mined by l.< and L.4&. Also
xSy.BE.¥y3x  {(4.31), XPy.E.¥Px (4.3).
R¥, is satisfied since
(xSy)sz.E.x8(ysSz) (4.23), (xPy)rz.i.xP(yPz) (4.32),
xP(ySz) 2. (xPy) s (xPz) (4.4).

R#, is sutiefied where the zero end unliy orf Lr cre re-
4

O

spectively t, end tn-l’ since
xSt .Bex (1.2), &na xbt, j.iex (3.4).
7.1 «liowe us vo call xBy snt »Py £o cefirz! the transforms
of the suw and vrosuct 1o L,
DIVISION I Ly,
7.0% xDy.=.ylox bf
il mee M B

oy : L N, s S S B
7ol XDY in un BLULIIIACT DOICAL. SIEL UL,y e

Proof': PL, pabe (4,2).
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inspection of the zroof wil: show tist I mey be any

one of the five types of implicution that we heve de-
fined,

P *¥Dy.yDx:1:xEy

%
¥Ey wes defined in this foshion,
By 8.3 x divides y {(xDy) vwhen [ﬁlg[?]. xDy may be regarded
as division in Lo
THE L,C.i, AND C.C.0, IX Lﬂ'
7.04 xCy.7 . xVy D
7.05 XLy .ZXY pf
7.5 xGy satisfiles postulates P4, P5, PS5 and P7.
Proof: P4, XGy.E.¥Cx (4.31)
P5, xG(yGz) .. (xCy) Gz 4,85
P6. (xCy)Dx. (zGy) Dy This is true since
E%'IB'XV?]I: n-1 znd {y.Ig.xVy]r= n-1.
P7. 2Dx.2Dy:I:20(LGy)e This may be written as
XIgz.yIzz:I:(xVy)Izz which is evidently true.
I may be anyone of the defined implications.

7.4 xLy satisfies postulstes P8,F2,FP10,PLl1.

Proof: P8. xLy.E.yLx (4.3)
Pg.  xL(yLz).E.(xLy)Lz (4.32)

P10, xD(xLy).yD(xly). Ihis may be written as
XY« il.“.zyl,.y which is obviously true.

Pll., xDz.yDz:I:(xLy)Dz. This becozes

”I X2 ﬁy I.Z.Ig.xy whi.ch 15 true.

Then by 7.3 and 7.4 we can consider that xGy and xLy are

transforns of the G.C.D, and LL.C.#. i L .

dd
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RESLDUALS I L. We can rewrite P19 in L in the form
( pD(xPq )} { yh.% é[yj #n-1
where x is sllowed to have auy trulh-value such that

{pp{qu§ holds. fThese concitions szres

L

1 Bﬂ:&ﬁﬂ then » can asswes &ny value =nd [X] Z p-l.

[Q]>Lp] toen [ﬂé[‘ﬂ - S0 if[ff] "[,.j s Lhien yDlx.

This Lezds us to the dafinition

Ir

F

706 qﬁp.z.qlsy ot
T.12 y.5.¢Rp
Proct's If y.2.¢Rp

vhen [q] é[_p] » [¥] = n-1

[al>P], ] = 0o (8.4)

and y satisfies the above condition for & residusl.

1t

#

COHGRUENCE IN Lq. flo genersziization of Hurwitztis con-
5ruenoeml,//:l/u/was founi. The genersiization x .J.g?
of xp/ = yp' satisfies PLZ, PL3, Pl4 and PL5 bhut Joes not satis-
Ty P16 or P17. Thus we could call XP B.yP, algebralc congru-
ence since they satisfy the lour postulates given for algebraic
congruence.

Feeping the definitions thet we have made previously for
the sum, product, divides, residusl, G.C.0. anc L.C.%., when
n;>5, if we zcoept Hurwitzls definition for cangruencezg, it is
impossihlie to satisfy PL7. iAscuwing thut X=¥y mod p when
XeEezZVrp and y.n.zVgp, then if we tsake zxz.R.zVrp and
zy.B.z¥qp where [g<[z]< [2y] " end U #Ef] , then

(1) zx =zy mod p,  but

() » =y mod qip only when (gagt;[;vyjﬁ

21. Sce H p. 421, (c).
22, H p. 421.
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" () holds. Tut by P19

#
=
§
’,.A
o
HEN

- . Lt
in case [}] = n-1, then [}p]
l?ﬁé{;énrl in gerersl, Tris lewds us to the conclusicn that
defining ihe swm, product eand vesidusal =g we heve, ws sre unable

to satisfy P17 by Burwitsats Cofinition of cougrasnie,

8

However, we re nble to :rove the follovwinsthzorem
7.07 (x=y mod p).=.xVp.BE.yVp of
7.18 xVp.HB.¥yVp s=ztisiies postulates Pl ...,P1:,P18.

Proof: PlE,...,Pl5 ars evident,
PL6: xVp.E.t VpiE:pDx. ([d# 0).
If [>[F] then [kVp.B.t,Vp] = 0, =nd [Po” = o.
Ir BE£[y] (or pDx) then [pr.E.tOVpJ/: n-l, or the
statement 1s true,
Hurwltz interzrets P16 to say:
¥x =0 mod » if =nd only if phx. “This is teco restrictive
# statepment in by, since p could divide o wien pDy sernd

y#0. TIhds analogue occcurs in A, We can amand Hurwitz's

spection of xVp.E.yVp verifies this statement.

P18: xVp.E.XVp is obviously brue.
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ANOTHER EXAMPLE OF THE ARITHMETIC OF L.

Deserting the operations defined in the earlier part of
thils chapter, we find that we can develope zn arithmetic on the
subscripts of the truth-values. This analogy with A is much
more striking for ‘n >2 than for n = 2, when we only have two
elements available. The operations which we shall use are de-

fined below:

7,010 p+g.=.ptd Df
1

7.0l -p.=.(¥p) Df

7.012 poq.a.pw(q")'] Df

They lead us to the following theorems:
7.20 Jp+q) = [p+q]

Proof: [p+d]’ = [ptq]]/,_. [p+d]-

7.2k p+aq.E.qp

Proof: [p1—q] = fa+p].

Note that we are retaining E from the previous section,

A

meaning by & E.

»

7.22 p+(g+r).E.(p+ Ot

Proof: [p“l‘ (CI'I‘I‘)Y = LP’I’QJrI‘] = L(P‘f a)t T]/-

7.013 p+i+qtr.=.pt{qg+71) Df
7,23 E-p]'= [-1]

Proof: [op]' = [(Np)l]/ = [_n—l—p+l] = [n—-p}

7.014 p-q.=.p+(-q) Df
7.24  p-p.E.t,

Proof: [p-p]' = [ptn-p] = [n] = 0.

7.25 [goq]": qu] (Notice absence of prime on [pd])

Proof: [poq]’ = [P Y= (p+ pa-p] =[pq).

7T.26 poq.E.qop

Proof: [Pq] = Bpﬂ
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7.27 po(qor).E.(pog)or

Proof: an(qor)]' = [pqr] = [_(poq)or]'

7.015 pogor.=.{pog)or Df
7.28 po(g+r).B.pog+ por

Proof: [_pa(q+ r)]' = [plat r]’] = [plar r)] = [pat pr] = [poat por]’
7.29 poty.E.p

Proof: [pot]] = [1.p] [p]

7.20 ptt,.E.p

Pmmﬁlpftd ﬂ[pf@ = [7].

7.3L (-plog.E.~(poq)

Proof': [(—p)oq:]/'#[_(mp)q] = [ng-pq] = [n~ pa] ]

7.32 (-p)o(-q).E.poq

Proof: [(-p)o(-a)]’= [(a-p) (n-a)] = [n*-np-na+pq] = [pq].

Te35 PpHXE.qiBEix.E.q-p

Proof: Where O;gDﬂ«;n then there 1s evidently only one wvalue
of x such that |p+x] =[q]. But [x] = [g+n-p]satisfies this
relcationship. Therefore the theorem holds.

7.4 Ln is a ring under operations p4q and poq.

Proof: (The following numetals refer to the postulates on p. 37

of B.L. van der Waerden: Mocerne Algebrs, Vol. I.)

I. Postulates on addition.
(a) (7.22).
(v) (7.21).
(c) (7.23).
II. Postulates on multiplication.
(a) (7.27)
I:I. Distributive laws,
(a) (7.28)
(b) (7.28,7.26).
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p+4a and poq are generalizations of the two operations
that ;Stczane?'5 used as a basis for his ring in Lg. It is well to
note that poq is & genersalization of pg in Lo.

Many other theorems could be developed about the above
operations, but those given are sufficient to indicate a few of
their properties and also the method to be used in working out

new theorems.

23, M,H., Stone, Proc, N.A.S5., 21 (1935), pp. 103-105.




CHAPTER FOUR

Reprinted from the Proceedings of the NATIONAL ACADEMY OF SCIENCES,
Vol. 21, No. 5, pp. 252-254. May, 1935.

GENERATION OF ANY N-VALUED LOGIC BY ONE BINARY
OPERATION?

By DonaLp L. WEBB
DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY

Communicated April 1, 1935

A two-valued logic was shown in 1913 by Sheffer? to be obtainable by
the iteration of a single binary operation. It was proved in 1925 by Zylin-
ski® that Sheffer’s function and its ‘‘dual,” also introduced by Sheffer,
are the only binary operations such that the iteration of either one will
generate the two-valued logic of functions of two propositions. Zylinski's
proof was by means of a truth table of 4 columns and 16 rows, correspond-
ing to the two possible values (¢ or ») which an arbitrary function ®(x, y)
can assume in a two-valued system. While theoretically applicable to an
n-valued system, the method of direct inspection of the truth table is im-
practicable. Following another method we prove that: Any n-valued logic,
where n 2 2, can be generated by the iteration of one binary operation.

Designate the » truth values which an “elementary proposition” may
take in an #-valued logic by the marks ay, a1, ..., a,_1. For convenience,
drop the ¢ and retain only the subscript, so that our marks arenow 0, 1, . . .,
n—1. It is to be observed that these numbers denote merely # distinct
marks without any arithemetical significance. Let p and ¢ be any ele-
mentary propositions. Construct a truth table for two elementary proposi-
tions, p, ¢, of two columns and #? rows with the » marks, 0, 1, ..., n—1
by assigning in the sth row of the table to p the value [i—1—(z2—~1)"]/n,
and to ¢ the value (3—1), where 7 = jmod %, j7 =2 Oand: = 1, 2,

.., = Denote the statement, p has the value 1, by p = i; let pBq denote
any function of p, ¢ whose values are in the range 0, 1, ..., —1, when
p =1,q = jandz, j are in the same range; let78j = k denote thatif p = ¢
and ¢ = j then pBqg = k, where % is in the range.

Define the stroke, “|,” function, plg, by

dj=0ix=j ii=0C+1)" @ji=01,...,n—1).
From this binary operation we shall generate all functions of two variables
in the n-valued logic. The proof will consist in exhibiting the particular
gerneral column of the p, ¢ truth table in which the #* marks ¢, (s = 1, 2,

.., n?) are arbitrary elements of the set 0, 1,..., »—1 as a function con-
structed on $, ¢ by means the stroke |.

As a notational definition we write

P=p p=pY G=1,. ., 0-0),

in which the exponents are superscripts. Define R; ;($, ) to be a function
of p and ¢ such that in row j of the truth table, R, ;(p, ¢) = 7 and in every

47
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other row R;;(p,¢9) = 0 (¢ =0,1, ..., n—1; j = 1,2, ..., »). For
brevity we shall write R;; for R, ;(p, ¢). Similarly, any function F(p, q)
of p, ¢ will be written F.

From the definition of plg it is evident that p' can be obtained by operat-
ing with the cyclic substitution S = (0,1..., #—1) on the values of °
Similarly, p* can be obtained by operating on the values of $° with the ith
power, S, of S. Hence Ry, ; and (p°|¢")" 1| (p°|p!) are equivalent for
the values of a, b indicated next, which we shall write

R, ;= @)UY, @ = t—fr—t—tfi=r s ===t ¥
By means of R, ; we obtain R; ; in terms of p, ¢ and plg. For,
RO,J"E‘ POIpl’ Ri,j'E' (Rl,j)i—zl(R[),j)i—l (1 = 2’ 3, sy n_"'l)

Define pawg = p°|¢" ", pong = RiilRop, paig = Ni_yaM}_, (i = 3, 4,
s ). My = Roy, My, = My_ya ¢ (Ry, w90 +1R0 htvyn 1), Ny =

M},ah+1R1_1. )

Then we see that pasg has the property Qazt = ¢; 10 = 7 (Z = 0, 1, 2).

Hence, by an easy mathematical induction, we prove that if

pong = Ny_yaiMy_,, then Oa,i = 4, 20,0 =4 (1 =0, 1, ..., n—1).
Let T;(p, ¢) be any function of p, ¢ and define
Tia,Tha, T3 = (T10,T5) 0, Ts
Tva,Ty0, T30, Ty = ((The, To)anTs) e, Ty
Ty TsenTsay. - . anly = (. . . (TranTo)anTs)n. - - T
From the properties of pa,g it follows that
0a,0a,...a0ai0,0a,...0,0 =< (G =0,1, ..., n—1),

Hence we can construct any function F(p, ¢) of p, ¢ having the values
¢ in row ¢ of the truth table, where ¢ is any one of the marks 0, 1, ...,
n—1, as follows:

F(P, (Z) = RlplanRt2:2an v Olnlztnz,n2

This follows immediately from pa,g by inspection of the rows in the
following table,

ho,0a,0ay. . .a,0a,...a,0 =
Oa,ba,0q,. ..a,0q,...a,0 = 4

0a,0e,0a,...0ta,...a,0 =

0a,0a,0a,...a,0a,...0,t,: = b,

Now F(p, ¢) is any function defined by the truth table of the n-valued
x . . / / . E
a:{n-fg-l-(J-l)J/n},b:fn-(J-l;”]
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logic. Hence, if # = 2, any function of two propositions p, ¢ can be con-
structed from p, ¢ and plg in the manner just indicated. To extend this
result to a function of m propositions, 1, ps, ..., Pm, we make the addi-
tional definitions and take the steps indicated below.

Define 4, , = ¢mod »” where ¢ is any positive integer and 4, , = 0.
Now we shall construct a truth table on py, ..., p; by assigning to p;
(s =1,2, ..., k) the value

Ps = {[(] - l) - (] - l)kvs,n]/nkws}lm
inthe jthrow (j = 1,2, ..., 7). Let Rﬁj =R, ;(py, ..., pr) be defined

on a truth table of pi, ..., p as RY; = i in row j, and RF; = 0 elsewhere.
Let Sf = (RE_, )G =1,2 ...,45.

It is evident that a function F(pi, ..., ) will exist in a truth table on
b1, - .., Pr4: and will be the function obtained from the pi, ..., pp truth

table by replacing each row by #' consecutive identical rows. This, then,
increases the number of rows from #* to n* 7,
Hence, we can prove

RE; = Rip(SFhpw) where b = (j—1), + 1, L= [j~1—(i—1),.] /n +
1G=1,2...,7%5 E=3,4,...,m).

Having determined R[;, we proceed to construct any F(p, ..., pn)
in terms of pi, ..., p, and the stroke, “‘|”’, by using the same procedure

as for m = 2. For if ¢; is the value of F(py, ..., p,) in row 7, then it fol-
lows that

X
F(pr, ..y Pm) = RE0:R 5. . . ayRm,ym.”
Thus any function on any number of propositions p1, ..., ., can be

constructed by means of a single binary operation, the stroke, “|”.

! The author is under obligations to Dr. E. T. Bell for his suggestions, aiding both in
the solution of this problem and its presentation.

2 Sheffer, H. M., Trans. Amer. Math. Soc., 14, 481488 (1913).

8 Zylinski, E., Fund. Math., 7, 203-209 (1925).
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DEFINITION OF POST’S GENERALIZED NEGATIVE AND
MAXIMUM IN TERMS OF ONE BINARY OPERATION.

By Doxarp L. WEBB.

In 1921 Post® demonstrated that it was possible to construct a function
for any order table in a system of m truth-values by the use of two primitive
functions, ~u p and p /.. g which are generalizations of the functions ~ p and
2V g in the two-valued case. Recently we * have been able to show that a
function on m truth-values for any order table can be constructed in terms
of one binary operation, using in this demonstration a negative that corre-
sponds to Post’s ~.,, p, a binary operator p @, ¢ which, for the value com-
binations used in the interpolation formula, corresponds to Post’s p \/ . ¢, and
a binary operator p | ¢ which has no equivalent among the operators employed
by Post. In the latter paper all operators were defined in ferms of plg.
In this paper by redefining the truth-table of p | ¢ we are enabled to define
Post’s ~u p and p \/ m ¢ in terms of the « | ”” function, thus greatly simplifying
the proof that any m-valued logic can be generated by one binary operation.
We find too that p | ¢ as so defined reduces in the two-valued case to one of
Sheffer’s f‘unc‘cions,3 as it evidently must.

The notation used in this paper is patterned after that of Post so as to
avoid confusion.

Let to, t1,* * +, tm_1, where m is any positive integer, signify the m truth
values that an elementary proposition can assume in a m-valued logic. Denote
by p, ¢ elementary propositions. Let p=1; signify that the proposition p
has the truth-value #;. Make the two additional arithmetical definitions:

min (4, ) —i if §=j (1,§=0,1,2, - )
—j. i i
t=t,modn, (1=0,1,2,- ) 0=t < 1.
Hence, p | q is defined: if p=1t;, ¢ =1¢; (i, =0,1,- - -, m —1), then

P | @ =tx where k = [min (4, ) + 1]m.

L E. L. Post, American Journal of Mathematics, vol. 43 (1921), pp. 163-185.

2D. L. Webb, Proceedings of the National Academy of Sciences, vol. 21 (1935),
pPp. 252-254.

8 H. M. Sheffer, Transactions of the American Mathematical Society, vol. 14 (1913),
pp. 481-488.
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THEOREM 1. ~, p=p|p.

If p==t;, then p|p=1t; where k= (i 4+ 1),. Thus p|p cyclically

permutes the truth-values ¢;, giving p | p and ~,, p the same truth-table..

Therefore the two are equivalent.
Using Post’s definition, ~? P = ~m~mp, efc., We may write

THEOREM 2. p Vwg=~""(p]|q).

By repeating the above process we find that if p=—t;, —~* p=ts,
where k= (i + )m (h=2,3,- - -, m—1). Hence, if p=1;, ¢ ={;, then
~m3(p | g) =t where = {[min (i, j) +1]m - m — 1}, or § = min(, j).
But p\/wq* as given by Post has the same truth-table, making the two
equivalent. '

Since Post has shown that we can generate a function of any order in a
m-valued truth system by means of ~i, p and p \/ » ¢, then, by using the above
theorems, we can generate a function of any order in a m-valued truth system
in terms of “ | .

CALIFORNIA INSTITUTE OF TECHNOLOGY.

* This is called a maximum since the higher truth-value has the smaller subscript.
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