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ABSTRACT 

One of the most remarkable aspects of human cognition is its flexibility. We can think new 

thoughts, infer meaning, plan actions, predict, extrapolate, and so much more. How do our 

brains enable this versatility? A growing ability to simultaneously record from large 

populations of single neurons in human cortex has begun to provide insight.1 Recent studies 

have identified that shared populations of neurons in posterior parietal cortex (PPC) of a 

human subject (involved in a brain-machine interface (BMI) clinical trial) encode many 

aspects of motor cognition: attempted and imagined actions, observed actions and the 

semantic processing of action verbs.2-4 Individual units are complex, but population 

representations manifest rich associations across neurons, supporting diverse behavioral 

contexts. Here, in novel work, we establish that the same PPC substrate also encodes 

aspects of sensory cognition, and unpack the functional organization of information that 

enables this versatility.5 We record populations of neurons in PPC of the same human 

subject, a tetraplegic trial participant implanted with a 4x4 mm microelectrode array.2-5 In a 

series of novel results, we first establish that neurons in this PPC substrate encode actual 

(or felt) touch to oneself, at short latency, with bilateral receptive fields, organized by body-

part.5 We show that imagined touch to oneself and observed touch to others engage the 

same substrate.5 To understand coding mechanisms further, we manipulated the touch 

location (cheek, shoulder), and the touch type (pinch, press, rub, tap). As in the motor 

domain, individual neurons exhibit highly variable responses. At the population-level, 

however, we find that the diverse touch conditions are explained by a small number of 

subspaces (meaningful groupings of neurons) that encode basic-level, elemental 

information such as touch location, and touch type. This suggests a compositional basis in 

PPC, such that various touch conditions are encoded through diverse combinations of 

common primitive elements. Moreover, these subspaces are generalizable, able to explain 

novel (held out) data. These principles of compositionality and generalizability suggest a 

basis by which PPC may support cognitive behaviors such as comprehension, in situations 

that extend beyond our experiences. In support of this interpretation, we show finally that 

this PPC substrate encodes seen touch universally – not only to insensate arm regions on 

the tetraplegic human subject, and to other human individuals, but also to a wide sampling 

of inanimate objects. As predicted, neural information combines and generalizes across 

conditions such that touch to objects with more similar features, is more similarly encoded. 

Taken together, our work is a novel, neuron-level characterization of how high-level cortex 

in humans may support diverse sensory, motor, and cognitive behaviors. We speculate that 

populations of neurons in PPC encode rich internal models of the world that can be flexibly 

repurposed for diverse (and novel) behavioral contexts.  
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C h a p t e r  1  

INTRODUCTION 

From tying our shoelaces to solving complex equations or imagining life on Mars, every 

situation engages our brain’s representations of our knowledge, yet in myriad ways. These 

representations are flexibly repurposed to meet diverse situational demands: to infer 

context, understand others’ actions or words, think new thoughts, or plan and execute 

actions.6 In every situation, knowledge is manipulated, information must be stitched together 

across domains into meaningful, coherent, context-relevant representations that inform our 

behavior. A fundamental question in neuroscience is: how do our brains represent 

knowledge in a manner that can support the depth and versatility in our repertoire?  

 

This question has historically been difficult to address. On the one hand, human 

neuroimaging studies identify brain regions like posterior parietal cortex (PPC) that 

simultaneously support diverse sensory, motor, and cognitive behaviors, but lack the spatial 

resolution to clarify their neuron-level underpinnings.7-11 On the other hand, 

neurophysiological studies have typically been conducted in animal models which offer high 

spatial resolution but limit the scope of testable behavior. For example, while it is possible 

to study how a monkey plans and executes movements, and how it responds to movements 

it sees performed by others, it is difficult to study how it may imagine the same movement 

(or to know if it is, in fact, imagining the movement).12,13  

 

Moreover, until recently, electrophysiological studies relied on technologies that severely 

limited the number of neurons that could simultaneously be recorded and examined.13 

Recent technological advances offer the ability to simultaneously study large populations of 

single neurons, not only in animal models, but more recently, in humans.1 This has begun 

to offer new insight into the computational basis by which our brains flexibly support diverse 

behaviors. Indeed, it has renewed support for a neural population doctrine, the idea that 

populations of neurons, and not individual neurons, are the fundamental units of 

computation in our brains.1 While single neurons provide interesting snapshots of brain 

behavior, they do not adequately capture how populations of neurons collectively and 

coherently support behavior.  

 

In recent population-level studies, shared neurons within a human PPC substrate have been 

found to encode many variables related to motor cognition: attempted and imagined 

actions, observed actions and the semantic processing of action verbs.2-4 Neural 

information within this substrate is distributed across the population. Individual units are 

complex, but population representations manifest rich associations across neurons that 

form in a context-dependent manner, supporting diverse task conditions (i.e., behavioral 

contexts).2 This organizational structure has been termed partially mixed selectivity and 
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allows relatively small number of highly variable and heterogenous neurons to represent 

many variables simultaneously.4  

 

Here, we extend this work. We establish for the first time that this same human PPC 

substrate also encodes aspects of sensory cognition and unpack the functional organization 

of information that enables this versatility. To study actual touch to oneself and tactile 

cognition (imagined touch and observed touch), we record populations of neurons within 

PPC through a microelectrode array implanted for an ongoing brain-machine interface (BMI) 

clinical trial.5 This array (4x4 mm) is in the left hemispheric PPC, at the junction of the post-

central sulcus (PCS) and intraparietal sulcus (IPS), a location we abbreviate PC-IP. All 

results presented in this thesis derive from single-unit recordings from this array.  

 

In Chapter 2, we discuss theories for flexible human cognition that have been built from 

cognitive behavioral, and neuroscientific evidence. Specifically, we introduce the concepts 

of internal models and of mirror neurons and discuss how they have been proposed to 

support cognition.6,13 We introduce the PPC, the brain region studied in this thesis, and 

discuss how prior PPC literature supports our hypothesis that it provides a rich, shared 

substrate within which to study how diverse forms of touch and tactile cognition engaged 

shared neural information. Lastly, we introduce the methods used in this thesis to investigate 

intended questions. In Chapter 3, we establish that populations of neurons in human PPC 

encode actual (or felt) touch to oneself.5 PPC neurons encode receptive fields to touch 

bilaterally, organized by body-part. We additionally show that tactile imagery shares this 

neural substrate, recruiting the same organizational structure. In Chapter 4, we show that 

neuronal populations from the same substrate encodes not only actual touch to oneself, but 

also observed touch to other individuals. We manipulated the touch location (cheek, 

shoulder), and the touch type (pinch, press, rub, tap). As in the motor domain, individual 

neurons exhibit highly variable responses. At the population-level, however, we find that the 

diverse touch conditions are explained by a small number of subspaces (meaningful 

groupings of neurons) that encode basic-level, elemental information such as touch location, 

and touch type. This suggests a compositional basis in PPC, such that various touch 

conditions are encoded through diverse combinations of common primitive elements. 

Moreover, these subspaces are generalizable, able to explain novel (held out) data. In 

Chapter 5, we show finally that this PPC substrate encodes seen touch universally – not 

only to insensate arm regions on the tetraplegic human subject, and to other human 

individuals, but also to a wide sampling of inanimate objects. As predicted, neural 

information combines and generalizes across conditions such that touch to objects with 

more similar features, is more similarly encoded. Taken together, our work is a novel, 

neuron-level characterization of how high-level cortex in humans may support diverse 

sensory, motor, and cognitive behaviors. We speculate that populations of neurons in PPC 

encode rich internal models of the world that can be flexibly repurposed for diverse (and 

novel) behavioral contexts.  
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C h a p t e r  2  

BACKGROUND 

As humans, we have a rich understanding of the world that we flexibly implement in diverse 

situations. Even from just a still image of a person in action, for example, we can infer what 

he is doing, why is he doing it, imagine what might have just happened, or predict what he 

may do next. Such daily events reflect the remarkable versatility with which our brains can 

repurpose our knowledge stores, a core aspect of human intelligence. Yet, the way that 

neurons in our brains flexibly manipulate and repurpose our knowledge for different 

behavioral contexts and situational demands remains largely unknown.  

 

2.1 A cognitive behavioral account – internal models 

 

Much behavioral and observational evidence supports a view that at the heart of our 

cognition are flexible internal models of the world.6 Internal models are our intuitive 

understanding of the world – our brains representations of the physical structure of the world 

and its dynamics, of how objects around us interact, of how they don’t. This mental blueprint 

begins to develop early in life and becomes richer and faster as we grow, and as we learn. 

Infants, for example, can differentiate liquids from solids by five months of age, and by 11 

months, can infer an object’s weight from its compression of a soft material.6,14 Much 

literature suggests that our foundational understanding develops not only regarding physics 

(objects and mechanics) but consistently in other domains as well including number 

(numerical and set operations), space (geometry and navigation), and psychology (agents 

and groups).6 Each domain is organized by a set of entities and abstract principles relating 

the entities to each other.  

 

By adulthood, we have a deep understanding of the world that can support complex 

cognition. We rely on this understanding in diverse real world-scenarios, such as to infer the 

meaning of a new word we hear or to plan a complex series of movements.6 A simple 

example can illustrate the depth and versatility of these internal models. Read the following 

sentence: imagine a white tiger standing on its hind paws, eating an ice cream cone with its 

right front paw, and holding a phone in its left front paw, and with a pink ribbon around its 

neck. We may never have come across this type of tiger, but most of us can come up with 

a mental representation of such a tiger, flexibly manipulating our knowledge of a tiger, ice 

cream and a pink ribbon and combining them in a novel manner.  

 

This example of imagining a tiger eating ice cream highlights at least two core features of 

how internal models are thought to support human cognition. First, internal models are 

compositional.1,6 In this example, we have a mental representation of basic-level, primitive 

elements: tiger, ice cream cone, pink ribbon. We combine them as necessary to meet the 

task demands. Second, these elements generalize across contexts. Even if the only tigers 
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we have ever come across or heard of have been black and yellow, we can generalize that 

knowledge now to the new context of a white tiger. Such principles of compositionality and 

generalizability provide a way for internal models to enable novel constructions beyond our 

experiences, supporting complex cognitive behaviors such as prediction, extrapolation, 

imagination, and many other forms of cognition.1,6  

 

Establishing the neural basis for a system of internal models has remained a challenge to 

date. Human neuroimaging studies show that multiple behaviors often activate shared 

cortex but cannot clarify the neuron-level mechanisms that underlie such shared cortical 

activation.14 One brain region that may carry such a system is the posterior parietal cortex 

(PPC). The PPC is uniquely situated for such a role. It lies posterior to the primary 

somatosensory cortex (S1) and anterior to the visual cortex. Functionally, it has been 

described as an association region, integrating sensory information from multiple channels, 

and subserving coordination of movements of the body in space, specifically of the limbs, 

hands, and eyes.15-19 It has been implicated in a variety of high-level brain functions including 

decision making, awareness, attention, and action planning.20-23 Many of these functions 

have been studied in regions of PPC that lie along its intraparietal sulcus (IPS).  

 

In support for a system of internal models in the human brain, magnetic resonance imaging 

(MRI) studies find that parietal and frontal regions are involved in intuitive physical 

inference.14 PPC carries invariant representations of properties of external objects, like 

mass, underlying physical reasoning such as prediction and inference, consistent with an 

internal model of the physical world in PPC.14 The PPC has also been implicated in thinking 

about physical concepts presented as words, consistent with a notion that it represents 

abstract, generalizable physical concepts. These studies suggest a critical role for PPC in 

implementing a system of internal models yet, these studies cannot elucidate the neuron-

level underpinnings of this implementation.  

 

2.2 Studies in neuroscience – mirror neurons 

 

While the neuron-level basis for human cognition is unknown, generalizability in 

neuroscience has extensively been studied in the context of mirror neurons. Mirror neurons 

are a special class of neurons that were discovered in non-human primates (NHPs), and 

first reported in 1988.13 They have typically been studied in the motor domain. They are 

neurons that respond to specific actions (e.g., grasping an object) both when the monkey 

executes the grasp as well as when the monkey observes the grasp being performed by 

another individual.7,24,25 Different neurons were found that responded to grasps of different 

types: e.g., grasping-and-holding an apple versus grasping-and-eating an apple. Moreover, 

the neural response to both executed and observed action is matched, or congruent. The 

congruent activation of these neurons to specific actions was interpreted as a coding for the 

intentions of actions, for the purpose of action understanding. This became prominent as 

the mirror hypothesis: we understand actions we see by simulating them within our own 

action production systems.7,24-26  
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In the initial report, mirror neurons were identified within the frontal cortex in monkeys 

(specifically, in a region called F5).13 Similar neurons have since been found in distributed 

cortical as well as subcortical regions.24 Although examining human brain function at the 

neuron-level has historically been a challenge, similar neurons were reported in distributed 

brain regions in human subjects as well, recording from intracranial electrodes placed for 

mapping seizure foci in patients with epilepsy.27 Moreover, in the years since their discovery, 

analogous neurons have been postulated to exist in other domains as well, such as for 

emotions (e.g., pain), or sensations (e.g., touch), together creating a general theory for how 

we understand the external world: the mirror system.12,28  

 

This hypothesis, however, has significant shortcomings. Its basic units, mirror neurons, are 

single neurons characterized by specificity and congruency.29 How might such neurons 

alone account for how we understand actions we cannot perform? Or sensations we cannot 

experience? We cannot fly, for instance, but we can certainly understand a bird flying. Or in 

the example above, even if we may never have seen a cow being milked, we can understand 

the activity occurring. We understand these activities even if they do not exist within our own 

action repertoire for our neurons to simulate ourselves performing these actions. Moreover, 

if mirror neurons respond to specific forms of actions (that are within our repertoire), a 

framework of mirror neurons alone cannot account for complex cognition.29 How might they 

explain extrapolation? Or prediction? Or imagination?  

 

Mirror neurons may certainly play a role in cognition, but they appear to be inadequate by 

themselves. As such, the mirror neuron theory is grounded in a special type of neurons, 

exemplifying the single neuron doctrine, or an idea that individual neurons are the 

fundamental units of computation in our brains.1 The advent of newer technologies and the 

ability to simultaneously study large populations of single neurons in human cortex has 

begun to provide new insight. Growing evidence supports a notion that studying individual 

neurons cannot capture the complex ways that populations of neurons behave in, 

collectively.2 Within this population doctrine, individual neurons provide intriguing samples 

but cannot capture the true mechanisms by which neural populations function.1 The idea 

that ensembles of neurons may be more informative to studying cognition than individual 

neurons is not a new one, but it is seeing a new light given recent advances in recording 

technologies that allow sampling from hundreds, sometimes thousands, of neurons 

simultaneously.1  

 

Indeed, many recent studies that have examined mirror neurons through recording from 

populations of neurons have found that they exist within a heterogeneous and diverse mix 

of neurons. In classical mirror type experimental paradigms in the motor domain, some code 

exclusively for executed actions, others for observed actions.2-5 A small minority behave in 

the traditional mirror fashion, responding in a congruent manner to specific executed and 

observed actions. Moreover, recent evidence confirms that shared activation between 

executed and observed actions is not limited to congruent mirror neurons but instead 

involves subspaces of the population comprised of other types of neurons as well.2-5 Such 

studies support a notion that examining cognitive behavior at the level of individual neurons 
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offers at best an impoverished understanding of the true mechanisms involved. Re-

evaluating prior data (such as congruently activating mirror neurons to specific executed 

and observed actions) at the level of neural populations could offer remarkable new insight.  

 

2.3 The posterior parietal cortex: a substrate for cognition  

 

One brain region in which mirror neurons have been identified is PPC. PPC neurons in many 

regions around intraparietal sulcus (IPS) have been described to be multimodal: they 

integrate multisensory information (e.g., vision, proprioception) and transform these inputs 

into a representation useful for guiding our actions in the external world.30-35 In NHPs, 

neurons in PPC regions respond congruently when the monkey observes specific actions, 

as well as when the monkey performs the corresponding action.26,28 Even in the sensory 

domain, some PPC neurons have been identified that respond congruently not only when a 

monkey feels a touch but also when it sees touch to another monkey on the corresponding 

body part.26,28 Such neurons have typically been interpreted as mirror neurons and taken as 

evidence of mirroring: using one’s own body as a reference for perceiving actions by, or 

touch to, others.  

 

The rich sensory responsiveness of PPC neurons makes it a good substrate for diverse 

human behaviors, including cognition. However, growing evidence raises suspicion that 

mirror neurons alone are adequate for this diverse encoding in PPC. For example, human 

neuroimaging studies indicate that not only seen touch to other individuals, but also to 

inanimate objects, activate overlapping regions of PPC.36-39 It is difficult to explain how mirror 

neurons that activate similarly during felt touch and observed touch to similar body parts, 

might support touch to inanimate objects. Such studies, along with the previously discussed 

shortcomings of the mirror hypothesis, suggest that while mirror neurons do certainly exist, 

and may certainly play a role in diverse human behavior, broader mechanisms may be at 

play in substrates like PPC.6  

 

Another line of evidence that PPC is a rich substrate for many cognitive variables, especially 

related to sensory-motor behavior comes from studies of its role in predictive (or forward) 

modeling.18,21 This is a specialized type of internal model that has been studied in PPC. This 

model is concerned with utilizing a copy of the current motor command (known as efference 

copy), predicting upcoming states of movement, comparing it with all available, incoming 

sensory feedback, and enabling rapid, dynamic correction or updating of movement plans 

to increase the accuracy and dexterity of movements.18,21 Such predictive modeling can 

compensate for delayed or noisy sensory information. It has been suggested that PPC is a 

prime location for such a predictive internal model because it receives (and associates) 

multiple sensory modalities.18,21 Predictive or forward modeling within PPC during executed 

movements has been well studied in animal models. While such prediction itself is 

consistent with the broader idea of cognitive internal models, human neuroimaging evidence 

suggests that imagined movements also engage the same internal models, further 

supporting a view that these internal models (here, of the body) are flexible, and that PPC 

may provide a rich substrate for cognitive variables.40  
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It is likely that not individual neurons, but rather, populations of neurons in PPC, are critical 

to supporting these cognitive variables.1 In direct support, many recent studies from the 

Andersen lab have identified that shared populations of neurons are mutually engaged 

during many aspects of motor cognition.2-4,20,21,41 During an ongoing BMI clinical trial in the 

lab, a spinal cord injured (at cervical level three-four), tetraplegic human subject was 

implanted with a microelectrode array in the left hemispheric PPC. Neural populations 

recorded through this array were found to provide a shared substrate for not only executed 

movements, but also for attempted and imagined movements, observed actions and the 

semantic processing of action verbs.2-4,20,21,41 In these studies, individual neurons are 

invariably complex, showing highly heterogeneous and variable encoding patterns. Yet, the 

population can support these various cognitive behaviors (or variables) in a seemingly 

systematic manner. For example, neural activity evoked by movements of a certain body 

part (e.g., shoulder) are very similar across behaviors (e.g., imagined, or attempted 

movements).2-4,20,21,41 In other words, the neural population appears to organize in a context-

dependent manner, such that similar contexts (e.g., movement by a similar body part) are 

represented similarly across behaviors.  

 

The encoding pattern within this population has been termed partially mixed selectivity, 

distinguishing it from mixed selectivity.4,42,43 Traditionally, studies have looked at neural 

representations from a pure electivity perspective, where individual neurons are tuned to 

single task variables only, or a sparse selectivity perspective, where neurons are turned to 

specific combinations of task variables.4,42,43 Mixed selectivity, on the other hand, is a 

framework where neurons in a population are tuned, often nonlinearly, to idiosyncratic 

combinations of variables.4,42,43 In contrast, in partially mixed selectivity, neurons in a 

population are still tuned to idiosyncratic combinations of variables yet, across the 

population, organizes in a context-dependent manner allowing similar contexts across 

behaviors to evoke similar neural activity.4,42,43  

 

The findings that populations of neurons in human PPC encode many aspects of motor 

cognition is consistent with the population doctrine, that populations of neurons (and not 

individual neurons alone) are at the heart of human behavior.1 Moreover, such studies 

provide a way that mirror neurons might be involved yet allow for broader mechanisms to 

support cognition than a framework of mirror neurons alone. Such findings are also 

consistent with an idea that PPC may implement a framework of flexible, cognitive internal 

models.18 If this is true, however, we can hypothesize that these models should support not 

only motor cognition but also sensory aspects. For example, this PPC population should be 

able to encode felt touch or seen touch. Moreover, it might encode seen touch more 

broadly, to inanimate objects as well. This thesis tests this hypothesis.  

 

2.4 Methods for examining shared representations  

 

Studying the brain basis for is challenged by the difficulty in recording neural activity at a 

high resolution in humans. Functional imaging techniques such as functional magnetic 
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resonance imaging (fMRI) cannot enable neuron-level precision.44-46 Similarly, surface or 

intracortical electrode recordings often have limited neuron-level capabilities. For instance, 

electroencephalography (EEG) records the brain’s electrical activity from the scalp, using 

an array of electrodes to measure the gross activity of a region.47-49 Another technique is 

called electrocorticography (ECoG).47-49 It is in invasive, intracortical recording directly from 

the brain. However, like EEG, it records aggregate voltage signals from the brain. The 

spatial resolution is much higher than with EEG, but nonetheless record local field potentials 

(LFPs) and are unable to resolve single unit neural activity.  

 

One avenue for the exploration of such questions in humans is to record from high-fidelity, 

high-resolution, chronically implanted electrode arrays for research purposes (e.g., BMI 

studies).48-50 BMI is a technology that allows for communication between the brain and an 

external device, such as a prosthetic limb or a computer. This may be unidirectional from 

brain to machine (or machine to brain), or bidirectional. BMIs measure brain activity either 

directly through neurons, or through a proxy or an aggregate measure (such as LFPs 

recorded through EEG).48-50 However, in recent years, there have been an increasing 

number of human clinical trials in which chronic electrode arrays have been implanted 

directly on the surface of the brain.3 These arrays enable the recording of activity from 

populations of single neurons within the brain.  

 

Human BMI research has provided a unique opportunity to bridge between basic research 

and its clinical applications. For instance, several patients suffer strokes or other 

neurological conditions that leave them unable to communicate.3,41 BMIs have 

demonstrated potential (albeit in research settings for the time being) in assisting these 

‘locked-in’ patients to communicate again, through machines.3,41 Similarly, there are patients 

unable to move their limbs because of, for example, spinal cord injury. BMIs can help such 

paraplegic patients regain some lost functionality. Sometimes this is as simple as being able 

to drink from a bottle or from a cup. A proof of principle has been demonstrated through the 

control of a robotic limb, or through direct stimulation of their muscles to perform the 

movement.3  

 

The Andersen lab has been involved in a BMI clinical trial as was described above. The 

work presented in this dissertation includes neuronal recordings from one human participant 

in this trial. The details of the trial are presented in later chapters, but briefly, the subject is 

a human tetraplegic subject that sustained a high cervical (between cervical levels three 

and four) injury. This spinal cord injury (SCI) is motor complete (American Spinal Injury 

Association [ASIA] score A) meaning that the participant has no sensation or motor function 

below approximately the level of her shoulders. This subject was implanted with a 

chronically implantable electrode array in her left PPC, approximately ten years prior to this 

report. Most recordings reported here were performed approximately 6 years after 

implantation. Although previous publications from the Andersen lab have occasionally 

labeled the site of the implant as the anterior intraparietal area (AIP), a region functionally 

defined in NHPs, we will refer to the implantation site as post-central-intraparietal (PC-IP) 

area, acknowledging that further work is necessary to characterize the functional 
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homologies between human and NHP anatomy. The implant is small (4mm x 4mm) with 96 

recording channels (with 4 additional reference channels) and has offered a singular 

opportunity to record from human single units with high-fidelity.  

. 
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C h a p t e r  3  

ACTUAL AND IMAGINED TOUCH WITHIN HUMAN POSTERIOR PARIETAL CORTEX  

 

The following chapter’s contents are taken and adapted from Chivukula et al. 2017, with 

modifications done to fit the dissertation format.  

 

Chivukula, S. et al. (2021). “Neural encoding of actual and imagined touch within human 

posterior parietal cortex”. eLife 10: e61646. doi: 10.7554/eLife.61646. 

 

3.1 INTRODUCTION 

 

Touch is a complex, multisensory perceptual process 33,51,52. In non-human primates 

(NHPs), multisensory input (e.g., visual, tactile) converges upon neurons in higher-order 

brain regions such as the posterior parietal cortex (PPC) where they are integrated into 

coherent representations 30-34,53-56. Recent human neuroimaging studies suggest that the 

PPC is also recruited during touch cognition in the absence of actual tactile input (e.g., seen 

touch, or imagined touch), supporting a notion that both higher-level touch processing and 

tactile cognition share a neural substrate 57,58. To date, however, such a link has not been 

established at the single neuron level.  

 

We recently reported an analogous relation in the parallel domain of motor function 2-4,21,59. 

In these studies, we found that a shared PPC neuronal population coded for overt 

movements as well as cognitive motor variables including imagery, observed actions and 

action verbs 2-4,21,59. This richness of representation is made possible through a partially 

mixed encoding in which single neurons represent multiple variables, allowing a relatively 

small neuronal population (recorded through a 4x4 mm implanted microelectrode array) to 

provide many movement related signals 4,43. Here, we hypothesize that the same PPC 

neuronal population engaged by high-level motor cognition also encodes actual tactile 

sensations as well as tactile cognition within this partially mixed encoding structure.  

 

The neural correlates of somatosensory perception are characterized by spatially structured 

receptive fields to touch that respond at short latency 38. In NHPs, subregions of the PPC 

within and medial to the intraparietal sulcus (IPS) encode tactile receptive fields that respond 

to bilateral stimuli 30,33,53,55,56. These are often large receptive fields, extending across 

multiple body parts 30-32,53-56,60. In humans, functional magnetic resonance imaging (fMRI) 

studies support multisensory encoding of touch within and medial to the IPS in anterior 

portions of PPC 61-63. Although these studies indicate that relatively small regions of PPC 

may encode touch to large portions of the body, the limited spatial resolution of fMRI 

precludes a characterization of tactile receptive fields. The inability to resolve single neurons 

in fMRI is especially problematic when attempting to understand the significance of the 

grossly overlapping representations of actual touch and cognitive representations of touch 
57,58. Spatial correspondence in fMRI cannot confirm whether representations share a 
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neuron-level substrate 64. Taken together, it is unclear from the current literature whether 

individual neurons in human PPC discriminate touch to different segments of the body with 

spatially structured receptive fields, and, if so, whether cognitive processing of touch 

engages the same populations of cells.  

 

In a unique opportunity, we investigated touch processing in a tetraplegic human subject, at 

the level of single neurons recorded from an electrode array implanted in the left PPC for an 

ongoing brain machine interface (BMI) clinical trial. We recorded single and multi-unit neural 

activity during the presentation of actual touch and during imagined touch to sensate 

dermatomes above the level of the participant’s injury. We found that human PC-IP neurons 

encoded actual touch at short latency (~50 ms) with bilateral spatially structured receptive 

fields, covering all tested, sensate regions within the head, face, neck, and shoulders. The 

tactile imagery task evoked body part specific responses that shared a neural substrate with 

actual touch. Our results demonstrate that PPC neurons that discriminate touch are partially 

reactivated during a tactile imagery task in a body part specific manner. The latter represents 

a novel finding, thus far untestable in NHP models, and suggests PPC involvement in the 

cognitive processing of touch.  

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Study participant 

 

The study participant, NS, is a 60-year-old tetraplegic female with a motor complete spinal 

cord injury (SCI) at cervical level C3-4 that she sustained approximately ten years prior to 

this report. She has intact motor and sensory function to the level of her bilateral deltoids. 

NS was implanted with two 96-channel Neuroport Utah electrode arrays (Blackrock 

Microsystems model numbers 4382 and 4383) six years post-injury, for an ongoing BMI 

clinical study. Implants were made in the left hemisphere as human neuroimaging studies 

have typically reported stronger coding of intention related activity in left versus right PPC 
65,66. She consented to the surgical procedure as well as to the subsequent clinical studies 

after understanding their nature, objectives and potential risks. All procedures were 

approved by the California Institute of Technology (IRB #18-0401), University of California, 

Los Angeles (IRB #13-000576-AM-00027), and Casa Colina Hospital and Centers for 

Healthcare (IRB #00002372) Institutional Review Boards.  

 

3.2.2 Implant methodology and physiological recordings 

 

The electrode implant methodology in NS has been previously published 3,4,43. One array 

was implanted at the junction of the left intraparietal sulcus with the left post-central sulcus 

in what we refer to as PC-IP. The other was implanted in the left superior parietal lobule 

(SPL). Implant locations were determined based on preoperative functional magnetic 

resonance imaging (fMRI). The participant performed imagined hand reaching and grasping 

movements during a functional MRI scan to localize limb and hand areas within this region. 

Following localization, a craniotomy was performed on August 26, 2014. The PC-IP 
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electrode array was implanted over the hand/limb region of the PPC within the dominant 

(left) hemisphere, at Talairach coordinates [-36 lateral, 48 posterior, 53 superior]. In the 

weeks following implantation, it was found that the SPL implant did not function. Although 

this electrode array was not explanted, only data recorded from the PC-IP implant were 

used in this study.  

 

3.2.3 Experimental setup 

 

All experimentation procedures were conducted at Casa Colina Hospital and Centers for 

Healthcare. Participant NS was seated in a motorized wheelchair in a well-lit room. Task 

procedures are presented in detail in the sections below. For most tasks, however, one 

experimenter stood directly behind the participant and was responsible for providing tactile 

stimuli to the participant. A 27-inch LCD monitor was positioned behind NS (visible to the 

experimenter but not to the subject) to cue the experimenter for the presentation of a 

stimulus. Cue presentation was controlled by the psychophysics toolbox (Brainard, 1997) 

for MATLAB (Mathworks) 67.  

 

3.2.4 Data collection and unit selection 

 

Data were collected over a period of approximately eight months in the fourth year after NS 

was implanted. Study sessions were conducted between two and three times per week, 

lasting approximately one hour each. Neural activity recorded from the array was amplified, 

digitized, and sampled at 30 kHz from the electrodes using a Neuroport neural signal 

processor (NSP). The system has received food and drug administration (FDA) clearance 

for less than thirty days of recording. We received an investigational device exemption (IDE) 

from the FDA (IDE #G120096, G120287) to extend the implant duration for the purposes of 

the BMI clinical study. Putative neuron action potentials were detected at threshold 

crossings of -3.5 times the root-mean-square of the high-pass filtered (250 Hz) full 

bandwidth signal. Each individual waveform was made of 48 samples (1.6 ms) with 10 

samples prior to triggering and 38 samples after. Single and multiunit activity was sorted 

using Gaussian mixture modeling on the first 3 principal components of the detected 

waveforms. The details of our sorting algorithm have been previously published by our group 
4. To minimize noise and low-firing effects in our analyses, we used as a selection criterion 

for units, a mean firing rate greater than 0.5 Hz and a signal to noise ratio (SNR) greater 

than 0.5. We defined SNR for the waveform shapes as the difference between their mean 

peak amplitude and the baseline amplitude, divided by the variability in the baseline.  

 

Each recording session was assumed to be independent in reporting the total number of 

units. However, it is likely that some fraction of units recorded on separate days are 

resamples of the same neuron, given that recordings for different days were made from the 

same array. Neural waveforms are largely a function of the geometry of the electrode with 

respect to the neuron, and not a unique signature that can be used to characterize a neuron. 

Thus, it is impossible to determine whether waveforms collected on separate days represent 

the same, or different neurons. However, the degree to which recordings change from one 
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day to the next can be taken as a general indicator of whether there may be some daily 

change in which neurons are recorded from. In other words, if the set of waveforms across 

the array are the exact same from one day to the next, it is likely that we are recording from 

the same neurons. Conversely, if the waveforms change substantially from one day to the 

next, it is likely that we are recording from, at least partially, distinct populations of neurons. 

We performed two analyses to quantify changes in neural recordings across days. In the 

first, more conservative of the two analyses, we compare the number of waveforms on each 

channel between days. If the number of waveforms on a single channel changes, then this 

is strong evidence that there has been some substantial change in the neural recordings. 

By this measure, an average of 29% ± 4.2% of channels change across days. In the second 

analysis, we used a permutation shuffle test to measure whether the recorded waveforms 

on the same channel were more similar than waveforms across different channels. By this 

assessment, 58% ± 8% of neurons were distinct from one day to another. These values 

indicate that there was some degree of neural turnover from one day to the next.  

 

Well isolated single and multi-units were pooled across recording sessions. To ensure that 

such pooling did not bias the conclusions of this manuscript, we performed core analyses 

within this manuscript on single units alone, potential multi-units alone and all units together. 

The results of these analyses, shown as supplemental figures for key results, generally 

demonstrate that our results were robust to the pooling of all sorted units together. For the 

separation of spike sorted units into high quality single and multi-units, we used as a 

threshold the mean across all units of the base-10 logarithm of their cluster isolation 

distances, based on a previously described method 4,68. Sorted units for which the cluster 

isolation distance was above this measure were considered single units, and those with a 

distance below this threshold were considered potential multi-units. Findings were robust to 

the exact choice of isolation distance threshold. 

 

For measurements of neural latency to stimulus response (please refer to the task 

descriptions below for more information), a custom capacitive probe was used to record the 

exact time of tactile stimulation. This probe was built using a Raspberry Pi 2B and Adafruit 

Capacitive Touch Hat (Adafruit product ID 2340). The digital output (a binary output for touch 

or no touch) was transmitted through a BNC cable into the NSP at an analog signal sampling 

rate of 2 kHz.  

 

3.2.5 Task procedures 

 

We used several experimental paradigms to probe various features of actual and imagined 

touch representations in the PC-IP. In each paradigm, the participant was instructed to keep 

her eyes closed. The basic task structure comprised three phases. Each trial began with the 

presentation of a cue to the experimenter (or an auditory cue in the tactile imagery condition, 

see specific task description below), 1.5 seconds in duration, indicating the stimulus (for 

example, touch NS’s left cheek). This was followed by a brief delay, 1 second in duration. 

Then written text appeared on the screen to signal the experimenter to present the instructed 

stimulus, for 3 seconds (in the tactile imagery paradigm, a beep indicated the “go” signal for 
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the participant). Exact time intervals varied depending on task. Trials were pseudorandomly 

interleaved; all conditions were necessarily required to be performed at least once before 

they were repeated. In tasks in which both left and right body sides (ipsilateral and 

contralateral to the implant, respectively) were tested, stimuli were delivered to one body 

side at a time.  

 

3.2.5.1 Neural responsiveness to touch 

 

This task variant explored neuronal responsiveness and selectivity to actual touch to body 

parts (receptive fields) with preserved somatosensory input (above the level of SCI). Body 

parts tested included the forehead, vertex of the head, left and right back of the head, left 

and right cheeks, left and right sides of the neck, and the dorsal surfaces of the left and right 

shoulders. As controls, the left and right hands (clinically insensate) and a null condition (no 

stimulus presentation) were also included. Actual touch stimuli were presented to each body 

part as finger rubs by the experimenter at approximately one per second. The 

experimenters’ fingertips were used to provide touch stimuli over an approximately 3 cm x 

5 cm patch of skin on each tested body part. Stimuli to the left and right body sides were 

delivered on separate trials to evaluate each side independently. To ensure that any neural 

activity observed arose from actual touch and not from observed touch or other stimuli, NS 

was instructed to close her eyes throughout the task. She additionally wore ear plugs to 

block auditory input. This task was performed on four separate days. On each day, ten trials 

per condition were conducted. In total, we recorded from 398 sorted units on four separate 

testing days.  

 

3.2.5.2 Neural response latency 

 

The purpose of this task was to determine the latency of neural response to actual touch for 

the left and right sides of the body. Tested regions included the left and right cheeks, the left 

and right shoulders, and as controls, the left and right hands (insensate). Actual touch stimuli 

were presented as in the task above. Instead of finger rubs, however, a capacitive touch 

probe was used to enable precise delineation of the actual time of contact (touch) before 

the onset of a neural response. This task was performed on eight separate days, with eight 

trials per condition in each run of the task. In total, we recorded from 838 sorted units. 

  

3.2.5.3 Receptive field size 

 

This task aimed to estimate the size of neuronal receptive fields to actual touch. Neural 

responses to nine equally spaced points were evaluated, two centimeters apart, along a 

straight line from NS’s right cheek to her neck (Figure 3.2-figure supplement 3). Only the 

right side (contralateral to the implant) was tested in this task. The first of these nine points 

was on the malar eminence, and the ninth point was on the neck as shown. In addition to 

the nine points, a null condition (no stimulus presentation) was also included. Stimuli were 

presented via a paintbrush (three mm round tip) gently brushed against each location, at a 

frequency of one brush per second. Touch was restricted to a small region of approximately 
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0.5 cm (parallel to test sites) by 2.5 cm (perpendicular to the test sites) immediately above 

the marked points shown in panel A of Figure 3.2-figure supplement 3. The paintbrush 

was employed to deliver spatially localized sensations without accompanying skin distortion 

that could mechanically stimulate nearby sensory fields. Data were recorded on six separate 

days. On each day, ten trials of each condition were tested. In total, we recorded from 585 

sorted units. 

 

3.2.5.4 Engagement during tactile imagery 

 

This task was intended to establish whether PC-IP neurons are engaged by tactile imagery, 

and whether neural patterns evoked by cognitive processing of imagined touch and actual 

touch share a common neural substrate (e.g., activate the same population of neurons in 

similar ways). In this variant, the participant was presented with either actual touch stimuli 

or instructed to imagine the sensation of being touched. NS was instructed to keep her eyes 

closed throughout. Actual stimuli were cued to the experimenter with written words that 

appeared on the monitor. Because the participant’s eyes were closed, the participant did 

not receive any information about the body part that would be stimulated prior to 

experiencing the touch. The cue was followed by a one second delay and then at the sound 

of a beep (the “go” signal), rubs at 1Hz were presented with the capacitive touch probe to 

either the left or right cheeks, shoulders, or hands. During imagined touch trials, an auditory 

cue was presented to NS instructing her to imagine being touched on her right cheek, 

shoulder, or hand. The auditory cue consisted of a voice recording of the words “cheek”, 

“hand”, or “shoulder” with cue duration of approximately 0.5 seconds. After a one second 

delay, at the sound of the beep, NS imagined touch to the cued body part. We asked the 

participant to imagine the sensations as alternating 1Hz rubbing motions similar to what she 

actual during actual touch trials. A null condition (without actual or imagined touch), not 

preceded by an auditory cue was used to establish a baseline neural response. Data were 

recorded on eight separate days. Eight trials of each condition were performed on each 

testing day. In total, we recorded from 838 sorted units.  

 

3.2.6 Quantification and statistical analysis 

 

In the analysis of data from the various task paradigms used in this study, we utilized several 

statistical methods. Some were specific for certain tasks, but others were applicable to 

multiple sets of data from the different paradigms. For ease of reference, we have described 

all methods together in this section. Where necessary, we provide specific examples from 

tasks to help illustrate their use in our manuscript. Unless explicitly noted, all recorded units 

for a given task were used in the statistical analyses pertaining to that task.  

 

3.2.6.1 Linear analysis (relevant for Figures 3.1 and 3.4, and for Figure 3.1-figure 

supplement 2, Figure 3.2-figure supplement 3 and Figure 3.4-figure supplement 1) 

 

To determine whether a neuron was tuned (i.e., differentially modulated to touch locations), 

we fit a linear model that describes firing rate as a function of the neuron’s response to each 



 

 

16 

touch location. Neuronal responses were summarized as the mean firing rate computed 

between 0.5 and 2.5 seconds after stimulus presentation onset. The starting time of 0.5 

seconds was chosen to minimize the influence of variable experimenter delay in presenting 

the stimulus. The baseline response was summarized as the mean firing rate during the 1.5 

second window before the stimulus presentation cue. The linear equation is written as:  

𝐹𝑅 =∑𝛽𝑐𝑋𝑐 + 𝛽0
𝑐

 

where 𝐹𝑅 is the firing rate, 𝑋𝑐 is the vector indicator variable for touch location 𝑐, 𝛽𝑐 is the 

estimated scalar weighting coefficient for touch location 𝑐, and 𝛽0 is a constant offset term. 

𝑋𝑐 was constructed by assigning a value of 1 if the corresponding firing rate was collected 

when touch location c was being stimulated and with a 0 otherwise. All baseline samples 

were also assigned a 0, effectively pooling together baseline data independent of 

subsequent touch location. Here we used indicator variables as our predictors because our 

stimulus was applied in a binary manner, either touch was applied to a position on the skin 

or not. Note that in principle, the formalism of linear models allows multiple indicator 

variables to take on a value of 1 at the same time. In our experiment, this would amount to 

simultaneous touch of two or more body parts. However, in out experiments, simultaneous 

touch was not tested and thus only one indicator variable could take a value of 1 at a time. 

Neural responses to a particular body location were considered responsive if the t-statistic 

for the associated beta coefficient was significant (p<0.05, false discovery rate (FDR) 

corrected for multiple comparisons). A unit was considered tuned if the F-statistic comparing 

the beta coefficients was significant (p<0.05, false discovery rate (FDR) corrected for 

multiple comparisons). 

 

The linear models for each task were computed using all test conditions within the task, 

except when comparing discriminative coding between the left and right body sides. For this 

analysis, the goal was to determine how informative information encoded for one body side 

was for the other. Each neuron was fit by two linear models, one for touch locations exclusive 

to sensate regions of the contralateral side (e.g., contralateral shoulder, neck, back, and 

cheek) and one for touch locations exclusive to sensate regions of the ipsilateral side (e.g., 

ipsilateral shoulder, neck, back, and cheek). More details regarding this analysis are in 

Methods: Tests for mirror symmetric neural coding of body locations: single unit analysis.  

 

3.2.6.2 Population Correlation (relevant for Figures 3.2 and 3.4, and for Figure 3.2-

figure supplement 4 and Figure 3.4-figure supplement 1) 

 

We used correlation to compare the population neural representations of various tested 

conditions (stimulus presentations) against each other in a pairwise fashion. Correlation was 

chosen over alternative distance metrics (such as Mahalanobis or Euclidean distance) 

because it provides an intuitive metric of similarity that is robust to gross changes in baseline 

neural activity across the entire neural population. Alternative distance metrics were tested 

and gave comparable results (e.g., Figure 3.2-figure supplement 5). 
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To perform the population correlation analyses, we quantified the neural representations as 

a vector of firing rates, one vector for each condition (stimulus location) with each vector 

element summarizing the response of an individual unit. As before, neural activity was 

summarized as the mean firing rate during the stimulation phase window, defined as 0.5 to 

2.5 seconds after the onset of stimulus presentation. Firing rate vectors were constructed 

by averaging the responses across 50-50 splits of trial repetitions. The mean responses 

across different splits were correlated within and across conditions (e.g., across stimulations 

of different sensory fields), then the splits were regenerated, and the correlation computed 

250 times. Performing the splits 250 times was chosen based on an empirical analysis 

applied to preliminary data. For preliminary data, we performed the analysis with N splits, 

with N ranging from 5 to 200 in steps of 5. We found that the mean correlation across splits 

converged to a stable value by about 80 splits. We then roughly tripled that to ensure that 

the numerical sampling scheme would capture a stable value of our cross-validated 

correlation metric. The across condition correlations measured similarity between 

population responses for different sensory fields, answering the question - are the tactile 

sensations similar or dissimilar from the perspective of the recorded neural population? The 

within condition correlations assist in our interpretation of the across format correlations by 

allowing us to quantify the theoretical maxima of the similarity measure (e.g., if the within 

condition correlation is measured at 0.6, then an across condition of 0.6 suggests identical 

neural representations.)  

To test whether the difference between any pair of conditions was statistically significant, 

we used a shuffle permutation test applied to the correlations computed over the 250 

random splits. To illustrate, in Figure 3.4E we applied this analysis to test whether the 

correlation between actual and imagined cheek touch was significantly different from that of 

actual cheek touch and imagined shoulder touch. The true difference in the correlations was 

computed as the difference in the mean correlations between actual and imagined cheek 

touches (over the 250 splits) and the mean of the correlations between actual cheek touch 

and imagined shoulder touches. We then randomly shuffled the two distributions together 

(2000 times) and computed the difference in the mean correlations for each shuffle. The 

distribution of shuffled differences served as the null distribution, against which we 

compared the true difference to determine significance. As in the case above, our 

permutation shuffle test used 2000 shuffles to ensure that the numerical sampling scheme 

would capture a stable value of the percentile of our true difference as compared to the 

empirical null distribution.  

 

3.2.6.3 Decode analysis (confusion matrix; relevant for Figures 3.1 and 3.4, and for 

Figure 3.1-figure supplement 3) 

 

Classification was performed using linear discriminant analysis with the following parameter 

choices: one, only the mean firing rates differ for unit activity in response to each touch 

location (covariance of the normal distributions are the same for each condition); and two, 

firing rates for each unit are independent (covariance of the normal distribution is diagonal). 

These choices do not reflect assumptions about the behavior of neurons, but instead, were 

found to improve cross-validation prediction accuracy on preliminary data. In our 
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experiments, we acquired 10 repetitions per touch location, generally not enough data to 

robustly estimate the covariance matrix that describes the conditional dependence of the 

neural behavior on the stimulus. In choosing equal covariance, we are able to pool data 

across touch locations, achieving a more generalizable approximation of the neural 

response as verified by cross-validation. 

 

The classifier took as input a matrix of firing rates for all sorted units. The analysis was not 

limited to significantly modulated units to avoid “peeking” effects 69. Classification 

performance is reported as prediction accuracy of a stratified leave-one-out cross-validation 

analysis. The analysis was performed independently for each recording session and results 

were then averaged across days. 

 

3.2.6.4 Tests for mirror symmetric neural coding of body locations: single unit 

analysis (relevant for Figure 3.2-figure supplement 6) 

 

The purpose of this analysis was to assess whether neural responses to one body side were 

the same as neural responses to the alternate body side on a single unit basis. Heuristically, 

we used a cross-validation approach, similar in concept to the population correlation, to ask 

whether the neural responses to one body are similar to the other body side. The transition 

to single units required one major modification from the population approach: Instead of 

comparing the pattern of response across neurons (as in the population case), we compared 

the pattern of response across the set of lateralized body locations (shoulder, neck, cheek, 

and back). We first selected the set of neurons that demonstrated discriminative encoding 

to at least one of the body locations that was tested to ensure that there was a meaningful 

discriminative pattern across sites to form a basis of comparison. Then we used a cross-

validation procedure to compare within and across body-side encoding. A schematic 

representation of how the two sides were compared is shown in panels B-F of Figure 3.2-

figure supplement 6.  

 

For each neuron, we created a linear model that explained firing rate as a function of the 

response to each touch location on the right side. The linear model was constructed using 

indicator variables as described above, however, the set of body locations was restricted to 

shoulder, neck, cheek, and back. In this way, the response of a neuron is quantified by the 

continuous set of beta values for the 4 locations. This model was then used to predict the 

responses for the same 4 locations on the left side. The ability to predict the responses was 

quantified as the R2
Right to Left. This metric is hard to interpret on its own; a low R2

Right to Left could 

indicate that responses are very distinct between the right and left side or it could indicate 

that the neuron is not very discriminative (e.g., there is high trial-to-trial variability relative to 

the differences in response to the different touch locations). Therefor we also computed a 

cross-validated R2
Left to Left measure. This disambiguates the R2

Right to Left measure. If R2
Right to 

Left is low but R2
Left to Left is high then we know that the unit is discriminative, but that the 

patterns of response between the right and left side are distinct. To compare apples-to-

apples both the R2
Left to Left and R2

Right to Left were computed using leave-one-out cross-

validation. This is necessary to ensure that the two measures are computed based on the 
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same amount of training data. To directly compare these values, we plotted them against 

each other as a scatter plot. If the patterns of response are similar, this would lead to data 

points falling along the identity line. If the patterns are distinct, the data points should fall 

below the identity line.   

 

3.2.6.5 Response latency (relevant for Figure 3.3) 

 

We quantified the neural response latency to touch stimuli at the level of the neural 

population. Prior to the analysis, trials were aligned by touch onset as detected by the 

capacitive touch sensor (ground truth).  Principal component analysis (PCA) was used to 

summarize the population-level temporal response of recorded neurons 70,71. We 

constructed a matrix of neural data D that was (n) by (t * c * r) in size, with n being the 

number of neurons, t being the number of time points, c being the number of conditions, and 

r being the number of trial repetitions. For each neuron, activity was sampled every 2 ms 

and no additional smoothing was applied. 2 ms windows was chosen to allow high temporal 

resolution to precisely localize the timing of the neural response with respect to touch 

contact. We used t=201 time bins starting from -150 ms and stopping at 250 ms with respect 

to the time of touch sensor contact. Different ranges from time-of-contact (up to -500 ms 

before and 500 ms after probe contact) were tested and the basic average latency was 

robust to the exact window choice. c=2, including data for touch to the cheek and touch to 

the shoulder. r=10, as we acquired 10 repetitions per condition. Principal components were 

calculated based on the singular value decomposition algorithm.  

The first principal component (1PC) was retained, and responses were averaged across 

conditions and repetitions. Single trial results were visually inspected, and basic temporal 

profiles were consistent across conditions and repetitions. This process was performed 

separately for data acquired for touch to the left side and right side of the body. The 1PC 

was then fit with a piece-wise linear function with two transition points. The choice of two 

transition points was set based on visual inspection of the data and allow for an initial 

baseline, a subsequent rise, and a final plateau. The time at which transitions occurred 

was not constrained, being purely a product of the fitting process. Latency was reported 

as the time the piece-wise linear fit crossed the 95th percentile of the baseline data, as 

measured by the distribution of activity in the window between -150 and 0 ms. To compute 

bootstrapped quartile bounds of the latency estimates, the above process was repeated 

1000 times while resampling with replacement from the 1PC single trial results. To verify 

that 1000 resamples was sufficient to estimate a stable estimate of the quartile range, we 

repeated the process with 1500 resamples and found that the quartile estimate changed 

less than 1%. 

To determine whether the mean difference of latency estimates was significant between the 

right and the left side, we performed a permutation shuffle test. We used a rank test to 

compare the true difference in latency estimates against an empirical null distribution of 

differences in latency estimates generated by shuffling labels and repeating the comparison 

2000 times. 
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3.2.6.6 Quantifying macroscale receptive field structure (relevant for Figure 3.2-figure 

supplement 2) 

 

We found that many neurons responded to touch to multiple body locations. We wished to 

further characterize the receptive field structure to determine whether neurons were 

characterized by single-peaked broad receptive fields or discontinuous receptive fields with 

multiple peaks. To adjudicate between these possibilities, we selected touch locations to the 

contralateral (right) forehead, cheek, neck, and shoulder for further analysis because these 

locations are approximately collinear. We reasoned that if neurons are characterized by 

single-peak type responses, then responses across a collinear set of testing sites will result 

in a single local maximum (either with a single peak and fall off on either side, or as a 

monotonic increase to the edge locations). On the other hand, if receptive fields are 

characterized by multiple peaks, then responses should have multiple local maxima.  

Neurons were first restricted to those demonstrating significant differential responses 

between the four sites (ANOVA, p<0.05, FDR corrected). Each neuron was then grouped 

according to its location of preferred (peak) response. This resulted in four groups of 

neurons: neurons that responded maximally to the forehead, the cheek, the neck or the 

shoulder. For each neuron, the goal was to identify if the firing rate monotonically 

decreases with increasing distance from the preferred location or rises again, allowing for 

a second maxima. For example, for a unit preferring the forehead, this would manifest as 

firing rate at forehead larger than at cheek, at cheek larger than at neck, and at neck larger 

than at shoulder. Tests of firing rate between adjacent locations were performed by one-

tailed t-tests between the pair of locations, evaluating whether the firing rate at the location 

nearer the preferred response was greater than at the location more distant. In the 

example of the forehead preferring units, the t-tests evaluated whether cheek>neck and 

neck>shoulder. If it was found that any of those comparisons was not true (e.g., firing rate 

at neck greater than at cheek) after correcting for multiple comparisons, this implied a 

second local maxima. The unit was then classified as multi-peak. If no second local 

maxima was found the unit was classified as single-peak.  

 

3.2.6.7 Receptive field size estimation (relevant for Figure 3.2-figure supplement 3) 

 

In our first experiment, we tested touch responses across major body parts at a course 

resolution. Patterns of neuronal responses suggest that multiple body parts can be 

represented in individual neurons, although the response field around each body part is 

locally narrow (not expansive, covering all body parts). To evaluate this further, as a 

complimentary dataset, we tested tactile representations at a finer spatial precision to begin 

to characterize the size of their receptive fields. We characterized the response patterns of 

individual neurons to tactile stimuli delivered to each of nine points along the subject’s face 

and neck. All units demonstrating a differential spatial response to touch to each of the nine 

fields were included in this analysis. For each of these units, we first identified the preferred 

site of stimulus delivery as the point associated with the largest firing rate. Next, we 

examined its response to delivering stimuli to the other points. To estimate the average size 

of a neuronal receptive field as a function of its preferred point of stimulus delivery, we fit a 
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Gaussian model to the average responses grouped by the preference of the neuron. The 

Gaussian model had three free parameters, and was defined as:  

 

𝐺(𝑥) = 𝐴𝑒−
1
2(
𝑥−𝜇
𝜎 )

2

+ 𝑐 

 

Here, 𝐴 is the amplitude of the Gaussian, 𝜎 is the standard deviation, and 𝑐 is the constant 

offset term. 𝜇 is the mean/center of the Gaussian and was fixed at the preferred point. A 

separate model (with the appropriate value of 𝜇) was fit to each of the response groups. The 

field size was described as the full width at half maximum (FWHM).  

 

3.2.6.8 Temporal dynamics of population activity during tactile imagery task: within 

category (relevant for Figure 3.5) 

 

We performed a sliding-window classification analysis to quantify the strength and temporal 

dynamics of population coding in the tactile imagery task. In this task, the participant heard 

an auditory cue specifying a body part (“cheek”, “hand”, or “shoulder”) that lasted 

approximately 0.5 seconds, followed by an approximately two second delay, and finally a 

beep instructing the participant to initiate imagining a touch sensation at the cued body part. 

This task could engage at least four cognitive processes: 1) semantic processing of the cue; 

2) preparation/anticipation for imagery; 3) attentional modulation; 4) imagined touch per se. 

We used a dynamic classification analysis to understand how the neural population evolved 

during the course of the trial to determine whether the population was best described as 

mediating a single cognitive processes or multiple cognitive processes. In brief, the analysis 

consisted of creating a dataset that consisted of the population response measured in small 

temporal windows throughout the course of the trial. We trained a classifier separately on 

each temporal window and applied each classifier to both temporal windows. In this way we 

can measure how information about the cued stimulus evolves in time (e.g., does there exist 

neural coding during the delay portion of the trial, and, if so, does the neural coding during 

the delay match neural coding during active imagery). Classification was performed using 

linear discriminant analysis as described above. We used cross-validation to ensure that 

training and predicting on the same time window was directly comparable to training on one 

window and testing on an alternate time window; in other words, we were careful to ensure 

that accuracy across all comparisons reflects generalization accuracy using the same 

amount of training and test data. Classifiers were trained and tested on neural responses to 

the three imagery conditions: cheek, hand, and shoulder. Population response activity for 

each time window was computed as the average neural response within a 500 ms window, 

stepped at 100 ms intervals. Window onsets started at -700ms seconds relative to auditory 

cue onset (cue-delay epoch) with the final window chosen 3.5 seconds after the beep (onset 

of the imagery epoch). Classification was performed on all sorted units acquired within a 

single session. Mean and bootstrapped 95% confidence intervals were computed for each 

time bin from the cross-validated accuracy values computed across sessions.  

 

We used a fixed window size for averaging time series data for analysis (box-car smoothing) 

as it provides straight-forward bounds for the temporal range of data that are included in the 
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analysis for a particular time window. 500 ms was chosen as a good balance between 

temporal resolution and noise mitigation. We note that although the window size can 

influence various metrics (e.g., larger smoothing windows can increase coefficients of 

determination, R2) the choice of smoothing size is largely inconsequential as long as the 

kernel size is kept consistent when making comparisons across conditions. The choice of a 

100 ms step size was anchored to the choice of smoothing window. A small step, such as 

1 ms would not be justified with a 500 ms time window. We chose 100 ms, representing a 

change in 20% of the data, to allow us the ability to temporally localize changes in neural 

response without unnecessarily oversampling a smoothed signal and thus not 

unnecessarily increasing computation time for analysis. 

 

We believe that this technique, by helping us to understand when information appears and 

how information compares across task phases, provides a valuable approach to 

understanding how population activity relates to the underlying cognitive processes. For 

example, if neural decoding reaches significance only after the go cue, neural activity would 

be inconsistent with semantic or anticipatory processing. Alternatively, if neural processing 

begins with the cue, and the same pattern of neural activity is maintained throughout the 

trial, with no changes during the active imagery phase, then the data would be inconsistent 

with processing imagined touch per se.  

 

The classification analysis described above was used to measure general similarity of the 

population response to the tested conditions across time. However, to explicitly test whether 

population activity was changing, we used Mahalanobis distance as our measure. This is 

necessary as classification involves a discretization step that makes the technique relatively 

insensitive to changes in neural population activity that do not cross decision thresholds. 

Mahalanobis distance, being a proper distance measure, is a more sensitive measure of 

change.  To illustrate, imagine that a classifier is trained on time point A and tested on time 

point B. At time point A, the means of the two classes are 0 and 1 respectively and at time 

point 2 the means are 0 and 4 respectively. All classes are assumed to have equal but 

negligible variance (e.g., 0.01) in this example. When trained on time point A, the classifier 

finds a decision boundary at 0.5. with 100% classification accuracy. When tested on time 

point B, with the same 0.5 decision boundary, the classifier again is 100%. Naively, this 

could be interpreted as signifying that no change in the underlying data has occurred, even 

though the mean of the second distribution has shifted. 

 

Separation in neural activity between the cue-delay epoch and the imagery epoch was 

quantified using a cross-validated Mahalanobis distance computed between the observed 

neural activity at a time point and a reference (baseline) defined as the neural activity 

immediately following the presentation of the auditory cue, from .25 to .75 seconds. 

Distances were measured separately for each of the three conditions and then averaged. 

The mean and standard error on the mean (SEM) were computed across sessions for the 

cross-validated distance measures and plotted in Figure 3.5C. Activity during the cue-delay 

epoch and the go epoch were compared using a rank-sum test of the averaged activity 

during the phase averaged responses across sessions.  
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3.2.6.9 Temporal dynamics of single unit activity during tactile imagery task: within 

category (relevant for Figure 3.5) 

 

We wished to understand the behavior of single neurons that led to the temporal dynamics 

of the population. The temporal dynamics of single unit activity during the imagery task (for 

the imagined touch conditions only) were quantified a principal component analysis (PCA, 

Figure 3.5D). A sliding-window classification analysis was first performed on each sorted 

unit from all testing days in the same manner as described above for the population activity, 

with the exception that classifier took as input a vector of the firing rates for a single unit as 

opposed to a matrix of the firing rates for all units recorded in a single session. This allowed 

a quantitative description of the temporal dynamics for each sorted unit. Next, a principal 

component analysis (PCA) was applied to the dynamic classification matrices with individual 

neurons counting as the independent observations. PCA has become a standard method 

for describing the behavior of neural populations 70. Typically, PCA is applied to firing rate 

measurements of neurons. However, in our case, we were less interested in capturing the 

main modes of variability with respect to individual conditions, but instead wanted to capture 

the main modes of variability with respect to the temporal dynamics of information encoding.   

 

3.2.6.10 Temporal dynamics of population activity during tactile imagery task: across 

category (relevant for Figure 3.6) 

 

We wished to evaluate the similarity in neural representations of actual and imagined touch 

in a time resolved manner, as well as to compare the similarities in activity from one epoch 

(cue-delay) to another (stimulus: actual or imagined touch). We performed a sliding-window 

(dynamic) correlation analysis in a cross-validated manner to compute within-format 

correlation in addition to across-format correlations. For this analysis, we restricted the 

tested body sites in the actual touch format to the right cheek and right shoulder only. Neural 

activity from the left side was not used, to try and match the conditions for the imagined 

touch format, in which only touch to the right side was tested. Similarly, the hand was not 

included in this analysis to match conditions that evoked responses in both formats.  

 

For cross-validation, the analysis began with splitting trial repetitions into training and testing 

sets (5 trial repetitions each). A sliding time-window was used for the analysis with window 

size of 500ms and step size of 100ms. Correlations were computed between training and 

testing sets for all combinations of windows, starting from 500 ms before the cue-onset to 

1000 ms after the end of the stimulus phase. Within each window, we organized the neural 

response data into two matrices (one each for the training and the test trial splits) with two 

columns each. Each column contained trial averaged firing rates during the corresponding 

time window for each of the two tested stimulation sites (cheek and shoulder), with one value 

per unit. The columns represented the two formats. Thus, for N units recorded, two tested 

stimulation sites and two formats (actual and imagined), each matrix was of size (2*N) x 2. 

The mean response across each matrix (computed separately for training and test sets) 

was subtracted from each value to ensure that a positive correlation across formats reflected 
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a similarity in the pattern of responses to the two body sites and not general offsets in the 

mean response of the different neurons. Finally, correlations were computed between 

training and test sets for all combinations of time windows. This was done across 50 random 

50-50 trial splits and the results averaged across these repetitions. The analysis was 

performed for each recording session independently and the depicted results averaged over 

days.  

 

3.3 RESULTS 

 

We recorded from a total of 101.6  7.2 neurons (Figure 3.1-figure supplement 1) over 14 

sessions in the PPC (left-hemisphere) of a tetraplegic human participant (spinal injury at 

level three to four; C3/4). In previous work, we referred to the implant area as the anterior 

intraparietal cortex, a region functionally defined in NHPs 2-4,20,43,59,72. Here we refer to the 

recording site as the postcentral-intraparietal area (PC-IP), acknowledging that further work 

is necessary to definitively characterize homologies between human and NHP anatomy. 

Recordings were split across four tasks, designed to probe basic properties of the neuronal 

population during both actual and imagined touch. Recordings were made from chronic 

implanted arrays and thus neuronal waveform sorting resulted in both well-isolated neuronal 

waveforms and multi-neuron groupings. The main figures aggregate across sorted channels 

while key analyses are performed separately for well-isolated and multi-unit activity in 

supplemental figures.  

 

3.3.1 PC-IP neurons encode bilateral tactile receptive fields 

 

We first examined the hypothesis that PC-IP neurons encode tactile receptive fields to 

dermatomes above the level of the participant’s spinal cord injury (SCI). Tactile stimuli were 

delivered as rubbing motions at approximately 1Hz, for 3 seconds. The subject was asked 

to keep her eyes closed to eliminate neural responses arising from visual input. Tactile 

stimuli were presented to bilateral axial (forehead, vertex, cheek, neck, back) and truncal 

(shoulder) body parts to determine the extent of body coverage of any tactile representations 

among PC-IP neurons. As controls, touch was also presented to the bilateral hands 

(insensate regions below the level of SCI), and a null condition was included (with no 

stimulus delivered), to verify that touch related neural responses did not arise by chance.  

 

For each neuron, we fit a linear model that explained firing rate as a function of responses 

to each touch location. Neural responses to a particular body location were considered 

significant if the t-statistic for the associated beta coefficient was significant (p<0.05, false 

discovery rate (FDR) corrected for multiple comparisons). A significant fraction of the 

neuronal population encoded touch to each of the tested body parts with preserved 

somatosensation (χ2(1)=3908.98, p<0.05; Figure 3.1A, Figure 3.1-figure supplement 2). 

These results are consistent with bilateral encoding as the tested body parts included both 

body sides. Neither touch to the hands nor the null condition elicited significant neuronal 

modulation. Single neurons discriminated the location of actual touch. Of the 263 responsive 

units shown in Figure 3.1A, we found that 257 discriminated touch location (analysis of 
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variance (ANOVA), false discovery rate (FDR) corrected for multiple comparisons). 

Representative examples of neurons showing clear discrimination between the different 

touch locations are shown in Figure 3.1B. As expected, a population of discriminative cells 

enabled accurate cross-validated classification of the touched body part (Figure 3.1C; see 

Figure 3.1-figure supplement 3 for single session examples). 
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Single neurons were heterogenous, responding to variable numbers of touch sites (Figure 

3.2A, Figure 3.2-figure supplement 1). Right and left sides tended to respond to the same 

number of fields (evidenced by the strong diagonal structure of Figure 3.2A). Tactile 

receptive fields of PC-IP neurons were diverse with evidence both for broad single peaked 

fields and multi-peaked fields characterized by spatially separated regions of enhanced 

response (Figure 3.2-figure supplement 2, Figure 3.2-figure supplement 3). 

 

PC-IP neurons demonstrated mirror symmetric bilateral coding. We performed a cross-

validated population correlation analysis to measure population level similarity in the 

responses to each touch location (Figure 3.2B, Figure 3.2-figure supplement 4). In brief, 

the neural activation pattern elicited by touch to each body location was quantified as a 

vector, with each vector element capturing the mean response for a particular neuron during 

actual touch. These vectors were then pair-wise correlated in a cross-validated manner so 

that the strength of correlation between any two body-parts could be compared against the 

strength of correlation for repeated touches applied to the same body part. We found that 

responses to the same touch locations on the right and left sides are highly correlated, 

comparable to the correlation for repeated touches applied to the same body part. This result 

is consistent with a strong, mirror symmetric, bilateral encoding. As expected, correlations 

involving the hands and the null condition were distributed about zero, consistent with a lack 

of systematic neural population response to these conditions. The results from the 

correlation analysis were similar for alternative distance metrics (Figure 3.2-figure 

supplement 5). Further, analysis of single units revealed mirror symmetry in bilateral 

representation for the vast majority of the population, paralleling population level findings  

(Figure 3.2-figure supplement 6).  



 

 

28 

 
 

3.3.2 Tactile responses occur at short latency to bilateral stimuli 

 

We explored PC-IP population response latency to tactile stimulation on the contralateral 

and ipsilateral body sides. In a variation of the basic task paradigm, we used a capacitive 

touch sensing probe to acquire precise measurements of the time of contact with the skin 

surface in order to measure the latency in neuronal response from the time of tactile 

stimulation. We probed latency on the bilateral cheeks and shoulders. As a control, we 

included both hands in the task design.  

 

We measured latency as the time at which the response of the neural population rose above 

the pre-stimulus baseline activity (Figure 3.3). The neural population response was 

quantified as the first principal component computed from principal component analysis 

(PCA) of the activity of all neurons 70,73. The first principal component was then fit with a 

piece-wise linear function and latency was computed as the time the linear function crossed 

the baseline pre-stimulus response. Response latency was short for both body sides and 

was slightly shorter for contralateral (right) receptive fields (50 ms) than for ipsilateral (left) 
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receptive fields (54 ms) although this difference was not statistically significant (Permutation 

shuffle test, p>0.05). Figure 3.3A shows the time course of the first principal component 

relative to time of contact of the touch probe (stepped window; 2 ms window size, stepped 

at 2 ms, no smoothing) along with the piece-wise linear fit (dashed line). A bootstrap 

procedure was used to find the inter-quartile range of latency estimates (Figure 3.3B).  

 

 
 

3.3.3 Tactile imagery task evokes body part specific responses congruent with actual 

touch 

 

The results thus far establish that PC-IP neurons have spatially structured tactile receptive 

fields that are activated at short-latency consistent with processing of tactile sensations. Are 

neurons that encode tactile sensations also recruited during tactile imagery? And if so, how 

might evoked neural responses compare to those arising from actual touch? To address 

these questions, we analyzed population activity elicited during a cue-delay-go tactile 

imagery task and compared the neuronal activity to that resulting from actual touch to 

matching body parts recorded during interleaved trials. During the imagery conditions, the 

participant was instructed to imagine touch to the right (contralateral) cheek, shoulder, or 

hand with the same qualities as the actual touch stimuli the participant actual during 

interleaved trials. A null condition was included as a baseline to measure neural activity 

when no stimulus was presented. 

 

As with findings for actual touch, neuronal responses elicited during the tactile imagery task 

following the go cue (during the imagery phase) were discriminably encoded (Figure 3.4A, 

cross-validated accuracy 92%). High decode accuracy is consistent with the participant’s 

compliance with task instructions and implies that the tactile imagery task elicited 

discriminative neural responses. A significant fraction of PC-IP neurons encoded actual 

touch to the cheeks and shoulders but not to the hands (Figure 3.4B; χ2(1)=355.73, p<0.05), 
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consistent with results presented in Figure 3.1. In comparison, a smaller fraction of the 

neuronal population was responsive to the cheek and shoulder during imagery of tactile 

stimuli (Figure 3.4B). Of note, a significant number of neurons were active during imagined 

touch to the hand (χ2(1)=188.89, p<0.05), despite the hand being clinically insensate in the 

study participant (and despite actual touch to the hand not eliciting neuronal activation). The 

extent of overlap between the set of units active during actual and the tactile imagery 

condition is illustrated in Figure 3.4C. The degree of overlap, compared to what is expected 

by chance, was statistically significant (permutation shuffle test, p<0.05). Results were 

qualitatively similar for well-isolated single units (Figure 3.4-figure supplement 1).  

 

 
 

We used the population correlation measure to compare population level neural activity 

across conditions (Figure 3.4D). Neural activity during the tactile imagery task shared a 

neural substrate with responses evoked by actual touch: representations evoked during the 

imagery task and during actual touch were more similar for matching body parts than for 

mismatched body parts (Figure 3.4E, permutation shuffle test p<0.05).  

 

3.3.4 Dynamic evolution of population coding between task epochs suggests multiple 

cognitive processes  

 

The analyses above were restricted to the mean neuronal activity following the go cue (e.g., 

during actual touch or during imagery) to allow a direct comparison with results reported for 
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the previous paradigms. We now expand this analysis. During the tactile imagery task, the 

participant heard a verbal cue specifying a body part (verbal cue = “cheek,” “hand,” or 

“shoulder”) followed approximately 1.5 seconds later by a beep instructing the participant to 

imagine the stimulus at the cued body part on the right side of the body. This cue-delay 

paradigm is standard in the motor physiology literature and is used to dissociate planning 

from motor execution related neural activity 3,74-76. In our case, the cue-delay was unique to 

the tactile imagery condition. We utilized the cue-delay task to begin to dissociate in time 

neural activity related to different aspects of the task. 

 

To leverage the benefits of the cue-delay paradigm, we performed a dynamic classification 

analysis (500ms windows, stepped at 100ms). Results are shown as a matrix (Figure 3.5). 

In brief, the diagonal elements represent the cross-validated prediction accuracy for a 

specific time window. The off-diagonal elements represent how well the classifier 

generalizes to alternate time windows. Each row can be interpreted as quantifying how well 

decision boundaries established for the diagonal time windows generalize to other time 

windows. This analysis allows us to measure when the neuronal population represents the 

different body parts (the diagonal) and whether population coding is similar or distinct during 

the task phases (the off-diagonal). We are interested in two main phases of the task, the 

early portion comprised of the cue and delay (cue-delay), and the later portion when the 

participant is actively imagining the stimulus (go/imagery). Figure 3.5A schematically 

illustrates examples of possible results. The examples are meant to be illustrative and are 

not an exhaustive list of possibilities. The population may be discriminative exclusively 

during the imagery phase, during the cue-delay and imagery phases but with distinct 

population coding, during the cue-delay and imagery phases with identical coding, or during 

the cue-delay and imagery phases with partially shared and partially distinct coding. Each 

pattern would suggest a different interpretation of various forms of cognitive processing that 

may be engaged in a tactile imagery task (see Discussion).  

 

The results of our classification analysis (Figure 3.5B) are most consistent with body part 

selectivity during both the cue-delay and imagery phases, with partially shared and partially 

distinct population coding of the body parts between phases. The shared component is 

evident in the significant generalization accuracy in the off-diagonal elements, a 

representative row of which is shown in Figure 3.5C (blue portion) where cross-validated 

accuracy generalizes from approximately 70% within the cue-delay phase to approximately 

60% during the imagery phase. The distinct population activity between phases is 

highlighted by a cross-validated Mahalanobis distance that provides a sensitive measure of 

change which is masked by the discretization process of classification (expanded rationale 

in Methods: Temporal dynamics of population activity). The findings demonstrate a 

significant change between the activity patterns in the cue-delay and the imagery epochs 

(Figure 3.5C, gray).  
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To further clarify the properties of individual units, we conducted a dynamic classification 

analysis for each recorded unit. This resulted in the same matrices described above, but 

now each matrix represents how information coding evolves for a single unit. Time resolved 

classification data were then analyzed using principal component analysis, the first three 

principal components of which are shown in Figure 3.5D. A majority of variance (26%) is 

explained by units that are active during both epochs with similar coding. Coding during the 

imagery epoch exclusively or during the cue-delay epoch exclusively explained an additional 

9% of variance.  

 

3.3.5 Cognitive processing during the cue-delay and imagery epochs of the tactile 

imagery task shares a neural substrate with that for actual touch 

 

Finally, we look at how encoding patterns through time generalize between the tactile 

imagery and actual touch conditions. A dynamic correlation analysis was applied both within 

and across the imagery and actual touch condition types (Figure 3.6A). In brief, the neural 

activation pattern elicited to each body location was quantified as a vector, and these vectors 

were concatenated to form a population response matrix for each condition type and for 

each point in time. These vectors were then pair-wise correlated in a cross-validated manner 

so that the strength of correlation between conditions could be assessed relative to the 

strength of correlation within condition, and across time. We found that the neural population 

pattern that defined responses to actual touch was similar to population responses both 

during the cue-delay or the imagery phases of the imagery task (Figure 3.6A). This implies 

that cognitive processing prior to active imagery as well as during imagery share a neural 

substrate with actual touch. Sample neuronal responses that help to understand single unit 

and population behavior are shown in Figure 3.6B.  
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3.4 DISCUSSION 

 

We have previously reported that human PPC encodes many action variables in a high-

dimensional and partially mixed representation 2,4,43. This architecture allows many 

parameters to be encoded by a small number of neurons, while still enabling meaningful 

relationships between variables to be preserved. Here we show that neurons recorded from 

the same electrode array in the same clinical trial participant are also selective for bilateral 

touch at short latency. Responses to actual touch are organized around body part, sharing 

population representations between the left and right side. Additionally, a tactile imagery 

task elicits body part specific responses that share a neural substrate with that for actual 

touch. Furthermore, we found neural selectivity during the active imagery epoch as well as 

during the cue and delay epochs that precede imagery. The distinguishable population 
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activity during these different phases indicates an encoding of multiple cognitive processes 

that may include semantic association, memory, attention, sensory anticipation, or imagery 

per se.  

 

3.4.1 Human PC-IP encodes tactile stimuli with large and bilateral receptive fields.  

 

Cortical processing of somatosensory information begins in the anterior portion of the 

parietal cortex (APC) within four cyto-architectonically defined areas termed BA 3a, 3b, 1 

and 2 77-79. Each of these four sub-regions represents primarily contralateral somatosensory 

information 80-87. Moving from the APC to superior regions of the PPC, spatially localized 

and segregated sensory representations become progressively more integrated, resulting 

in neuronal receptive fields that are larger, frequently encompassing multiple segments of 

the body 52,60,88-94 including bilateral encoding 85-87,95. This process of integration is thought 

to play an integral role in sensory processing for the guidance of movement 18,32. Our results, 

demonstrating that PPC neurons encode mirror symmetric spatially structured tactile 

receptive fields at short latency, are consistent with these prior reports. They further provide 

the first single neuron evidence supporting a role of human PPC in tactile processing. As 

hypothesized, when comparing the current results with our prior reports, we find that the 

same PPC neuronal population engaged by high-level motor cognition also encodes actual 

tactile sensations, providing a common neural substrate for sensory and motor processing 
2,3,72.  

 

3.4.2 Short latency tactile responses 

 

In NHPs, reported latency to touch responses in primary somatosensory cortex (S1) from 

contralateral touch range between 19 and 23 ms 96,97. PPC response latencies to touch are 

less clear, but neurons in the lateral intraparietal area within NHP PPC orient to visual stimuli 

at a mean latency of approximately 45 ms 98. A recent human invasive electrocorticographic 

study reported mean latencies to visual response of approximately 60 ms in PPC 99 similar 

to the mean response latencies to visual stimuli within the occipital cortex 98,99. Our own 

response latency to actual touch of ~50 ms compares well with these data and is consistent 

with rapid somatosensory processing within PPC for updating internal estimates of the body 
18,32.  

 

3.4.3 Tactile imagery dynamically invokes multiple cognitive processes in human PC-

IP that share a neural substrate with actual touch 

 

In motor neurophysiology, neural activity related to planning and execution are dissociated 

in time by introducing a delay between the cue instructing movement, and the movement in 

response to the cue 75,100. We have previously found that such distinctions between planning 

and execution are preserved during motor imagery paradigms in tetraplegic individuals 3. 

Here, a similar paradigm allowed temporal dissociation in cognitive processing during tactile 

imagery. Single units demonstrated three dominant response profiles (Figure 3.5D): 1) a 

shared selectivity pattern between the cue-delay and imagery epochs, consistent with 
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cognitive engagement during all phases of the imagery task, 2) selectivity exclusively during 

the cue-delay epoch but not the imagery epoch, and 3) selectivity exclusively during the 

imagery epoch but not the cue-delay epoch. In a previous study, we found similarly 

heterogeneous responses during the cue, delay and imagery epochs for imagined hand 

grasp shapes 101. These single unit temporal selectivity profiles provide a basis for the 

population level findings of generalization in classification results between the cue-delay and 

the imagery epochs (Figure 3.5B and Figure 3.5C) but also a separation in neural state-

space between these epochs (Figure 3.5C).  

 

The tactile imagery task evoked body part specific cognitive activity that shared a neural 

substrate with actual touch within the PC-IP. Activity during imagined touch to the cheek, for 

example, was more similar in representation to actual touch to the cheek than to actual 

touch to the shoulder, and vice versa. Interestingly, the overlapping neural representations 

between actual touch and those elicited during imagery were not limited to the stimulus 

phase (actual touch and imagery) itself, but also extended to the cue-delay phase of the 

imagery task. This overlap echoes our recent findings for shared neural representations 

between imagined and attempted actions, as well as for shared neural representations 

between observed actions and action verbs 2,4. These studies are consistent with views in 

which cognition recruits sensorimotor cortical regions 102-106. We acknowledge that as with 

all passive neural recording studies, ours cannot establish a causal role for these neurons 

in tactile cognition. Understanding the unique contribution of PC-IP neurons within the larger 

network of brain regions engaged in cognitive touch processing remains to be explored. 

Nonetheless, our current results provide the first human single unit evidence of a shared 

neural substrate between tactile imagery and actual touch.  

 

One concern with the use of all imagery experiments is that participant compliance cannot 

be externally validated. This raises the possibility that the participant is not performing the 

task or is performing the task in an unexpected manner. We think this is unlikely for three 

reasons. First, the subject by the time of this study was well versed in performing cue-

delayed paradigms in the motor domain using both motor imagery and overt movements. In 

Zhang and Aflalo et al. 2017, the participant’s performance of overt movements was perfect: 

the participant both performed the correct cued action and performed the action at the go 

cue (i.e., no movements began prior to the go cue as validated by measurements of 

electromyogram activity) 4. Second, our current pattern of results that includes stable and 

accurate body part specific encoding within the cue-delay and imagery epochs, with a shift 

between epochs, is consistent with the participant performing the task as instructed. At a 

minimum, it is consistent with the participant’s performing two distinct cognitive operations 

during the two primary phases of the task with remarkable trial to trial consistency. Third, 

evidence for a shared neural substrate between actual touch and the imagined touch 

conditions indicates that selective responses during the imagery task are related to tactile 

cognition. 

 

3.4.4 What does neural processing within human PC-IP during tactile imagery 

represent? 
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While our task identifies dynamic engagement of multiple cognitive processes during tactile 

imagery, it is inadequate to precisely define the cognitive correlates of the observed neural 

activity. A number of cognitive processes may be engaged during the tactile imagery task 

including preparation for and/or execution of imagery, engagement of an internal model of 

the body, semantic processing of the auditory cue, allocation of attention to the cued body 

location or nature of the upcoming stimulus, and/or sensory memory for the corresponding 

actual sensation applied by the experimenter. 

 

The precise neural correlates of tactile imagery are unknown, but evidence suggests that 

both imagined and actual touch may engage the same internal mental representations, or 

internal models, of the body 107,108. Support for such a shared representation comes largely 

from the parallel domain of motor imagery 107. Imagined and actual movements show 

similarity at the behavioral (e.g., similar duration), physiological (e.g., alteration of heart 

rate), and neural (e.g., activating the same neural substrates) levels 10,109-114. These studies 

have been interpreted as evidence that imagined movements are the simulation of the 

internal models that track the state of our bodies during movement 40. In powerful support 

of such a notion, we have shown that populations of neurons in human PPC code motor 

imagery and overt actions in highly similar ways 4. The domain of tactile imagery has been 

less studied in comparison. However, relevant to the current paper, behavioral evidence has 

demonstrated that internal models of motor actions can influence sensory perception of 

touch 107. Further, human neuroimaging studies suggest that overlapping brain regions are 

activated during both imagined and actual touch, including the PPC 108,115,116. This points to 

not only a shared substrate for the representation of imagined and actual touch, but also to 

their likely engagement of similar internal models. Because an internal model may be 

involved in anticipatory or planning activity (and/or related to imagery), it could at least partly 

explain the pre-stimulus (post-cue, pre-imagination) neural activity we observed.  

 

Another possibility is that the neural activity following the auditory cue in our study 

represents semantic processing of the cued word. Evidence suggests that a network of brain 

regions is activated in processing word meaning, including those involved in processing their 

higher-order sensory aspects, or motor intentions such as PPC 102,103,106,117-119. Within this 

framework, semantic processing of the auditory cue (e.g., instructing imagined touch to the 

cheek) may engage the same population of neurons responsible for the higher-level 

processing of touch, consistent with our data. In support, we recently reported that action 

verbs and visually observed actions share a common neural substrate in the same PPC 

neural populations reported in the current study 2. Results were consistent with automatic 

semantic processing as distinct from imagery. The current findings would extend possible 

semantic processing to the tactile domain and demonstrate neuronal selectivity for auditory 

cues (in addition to written text used in the previous study).  

 

Hearing an auditory cue can direct the study participant’s attention to the cued body part. 

Attention to a stimulated body part has been shown to enhance sensory processing in 

human neuroimaging 120-123. In neurophysiological studies, this manifests as a gain in 
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stimulus responses 124,125. However, during the imagery task, no stimulus was delivered to 

the participant. An attention account of our data would require that attention result in highly 

discriminable patterns of activity without a sensory stimulus (or pre-stimulus). Most studies 

of pre-stimulus attention report modest modulation of baseline neural activity 124-126. 

However, the failure to find pre-stimulus effects may be the consequence of insensitive 

analysis techniques: Indeed, recent single neuron work in NHP visual cortical area 4 (V4) 

demonstrated discriminable coding for the locus of attention prior to stimulus presentation 

and, further, that the pre-stimulus activation patterns were systematically related to the post-

stimulus response patterns 126. These recent results suggest that attention may be 

decodable elsewhere, and they match the results presented in this manuscript. It is also 

consistent with what we have previously described as partially-mixed selectivity 4,43. If our 

results are interpreted within the framework of attention, our current findings are inconsistent 

with a simple gain-like mechanism for attention, but instead suggest a richer mechanism by 

which information is selectively enhanced for further processing 126. 

 

Our task was not designed to tease apart the different possible cognitive correlates of the 

observed neural activity engaged during imagery. We think the temporal dynamics of the 

signal indicate that multiple cognitive process may be engaged throughout the course of the 

task. The above cognitive phenomena may each independently engage the same neural 

population as distinct phenomena or may be distinct processes that nonetheless engage 

the same underlying neural substrate.  

 

3.4.5 PC-IP and plasticity following spinal injury 

 

The extent to which the human PPC reorganizes following SCI is unknown. Lesion studies 

in NHPs suggest that BA 3b and 3a, 1 and 2, show altered sensory maps following SCI, in 

a manner dependent on thalamic input from the afferent sensory pathways such as the 

dorsal column-medial lemniscus system 127. With mid-cervical lesions, for instance, there is 

an initial loss of BA 3b hand representations, and a slight expansion in face representation 

at approximately two years 127,128. Although significant axonal sprouting has been 

demonstrated to occur at the site of deafferentation in the spinal cord, with increased 

projections to brainstem nuclei, the changes observed in the somatosensory cortex are 

significantly smaller 127,128. Moreover, the reorganization in higher order somatosensory 

centers such as the secondary somatosensory cortex is even more restricted than in BA 3b 
128. Similar stability in the topography of the somatosensory cortex has been identified in 

human subjects that have suffered limb amputations. In these amputees, there is a 

preserved digit map within the primary somatosensory cortex 129,130. 

 

The results of our experiments suggest significant stability in tactile somatosensory 

architecture within the PPC. A substantial fraction of the neuronal population activated in 

response to imagined touch to the hand, where no response to actual touch was seen 

(insensate in the study participant), lending support to the idea that despite the lack of 

peripheral input from the hand due to the participant’s spinal cord injury, the brain maintains 

an internal representation of tactile sensations 131. The findings that intracortical 
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microstimulation produces discernable tactile perceptions from insensate body regions 

further reinforce a maintained representation of somatosensation after deafferentation 
132,133. These findings will prove useful for bidirectional neural prostheses. We acknowledge 

that while additional work probing cortical reorganization following SCI is necessary to fully 

understand its electrophysiological consequences, our results provide insight into the 

maintenance of basic tactile processing within the human PC-IP, after SCI.  

 

3.5 CONCLUSION 

 

Multiple lines of evidence indicate a critical role for the human PPC in the integration of 

convergent multimodal sensory information to enable complex cognitive processing and 

motor control. To date, however, its processing of somatosensory information at the single 

neuron level has remained fundamentally unexplored. In the unique opportunity of a BMI 

clinical trial, we examined the neural encoding of actual and cognitive touch within the 

human PC-IP. We found that local populations of PC-IP neurons within a 4x4 mm patch of 

cortex encode bilateral touch sensations to all tested body regions above the level of the 

participant’s injury at short latency. A significant fraction of PC-IP neurons responded during 

the imagined touch condition with matching sensory fields to actual touch. The activity in the 

delay period of the task, between cueing and imagining touch, may reflect cognitive 

processes including tactile semantics, sensory anticipation, attention as well as active 

imagery. Together, our results provide the first single unit evidence of touch processing 

within the human PC-IP and identify a putative substrate for the encoding of cognitive 

representations of touch, thus far untested in animal models.   
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C h a p t e r  4  

MIRROR NEURONS ARE A MANIFESTATION OF A BROAD MECHANISM OF 

UNDERSTANDING 

 

4.1 INTRODUCTION 

 

We don’t just see the world. We understand it.7,13,24,25,27,106,134,135 From a brief video or even 

a still image of a person in action, we can infer what they are doing, why they are doing it, 

what they will do next, or what they might have done but didn’t. A fundamental question in 

neuroscience is how neural populations transform sensory inputs into such deep and 

versatile understanding.  

 

Mirror neurons have been proposed as the neural basis for such understanding, at least for 

how we understand what another person intends or feels.24,25 Mirror neurons were 

discovered in high-level motor regions of the monkey brain and activated both when a 

monkey performs a specific movement, such as grasping an apple, and when the monkey 

observes someone else perform a corresponding movement.25 These neurons inspired the 

mirror hypothesis: to understand the intentions of others, we map the visual representation 

of others’ actions onto our own corresponding movement neurons. By simulating what we 

see within our own motor production circuits, we understand the intentions of others. Similar 

neurons have been postulated to enable understanding in other domains, such as emotions 

or sensations.12,28,36-39,57 Collectively, these are termed the mirror system and are 

hypothesized to account for much of the way we understand the external world. 

 

Yet, the mirror hypothesis has received numerous critiques.29 For example, if understanding 

comes from activating our own high-level action representations, how can we understand 

actions we have never performed (e.g., jumping a skateboard)? Or could never perform 

(e.g., flying)? Human understanding is far more versatile than current data indicate mirror 

neurons can support. Limitations of the mirror hypothesis have led to speculation that mirror 

neurons may play other roles in behavior, such as guidance of movement based on the 

actions of others.136 Alternatively, a potential role for these neurons in understanding may 

be clouded by an emphasis on interpreting the behavior of single neurons.1 It is possible 

that analysis at the level of neural populations, and not individual neurons, can illuminate 

how these interesting neurons enable human-like understanding.1  

 

We have recently recorded from populations of single neurons in the human posterior 

parietal cortex (PPC) during motor, sensory, and cognitive behaviors in human participants 

taking part in a brain-machine interface (BMI) clinical trial. We find that these neurons 

encode many diverse body-related variables such as action verbs, observed actions, motor 

and sensory imagery, and motor plans.2-5 Individual neurons are often complex, yet 

population level representations demonstrate shared encoding across these varied domains 

in a functional organization we have termed partially-mixed selectivity.2-5 Based on these 
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past results we hypothesize here that “mirroring” is one manifestation of a more general 

mechanism by which we create shared internal representations of the world. To test this 

hypothesis, we recorded populations of neurons in human PPC while the participant 

experienced actual touch (to the subject) or observed touch (to another individual). We first 

validated the core mirror neuron phenomenon in the sensory domain of the participant. 

Then, to understand population-level coding mechanisms we manipulated the location of 

touch (cheek, shoulder) and touch type (pinch, press, rub, tap). We find that individual neural 

responses are highly variable. However, across the population, task conditions decompose 

along shared population-level neural subspaces that represent basic features of the stimuli 

such as body location and touch type. These shared, basic features generalize across task 

conditions, combining or being repurposed as necessary, like building blocks. Taken 

together, we speculate that populations of neurons within the PPC support versatile 

understanding not through a process of mirroring, but instead by encoding the 

representational building blocks of human cognition. Recent work in the cognitive 

neuroscience literature hypothesizes that human-like learning and thinking is largely 

enabled by how we build and utilize models of world to understand, explain, imagine, and 

plan. Human single neurons in PPC support this hypothesis by demonstrating that 

language, imagination, planning, and perception tap into the same underlying shared neural 

substrates.  

 

4.2 METHODS 

 

4.2.1 Subject details 

 

All data were recorded from a 62-year-old tetraplegic female participant in a brain-machine 

interface (BMI) clinical trial. She has a high-cervical spinal cord injury (SCI) between cervical 

levels three and four, sustained approximately 10 years prior to the study, and with no 

preserved sensory or motor function below the shoulder-level. She was implanted with two 

96-channel Neuroport Arrays (Blackrock microsystems model numbers 4382 and 4383) 6 

years post-injury, in the left hemisphere. Informed consent was obtained, and she 

understood the nature, objectives, and potential risks, of the surgical procedure and the 

subsequent clinical studies. All procedures were approved by the Institutional Review 

Boards (IRBs) at the California Institute of Technology (IRB #18-0401), the University of 

California, Los Angeles (IRB #13-000576-AM-00027), and Casa Colina Hospital and 

Centers for Healthcare (IRB #00002372). 

 

4.2.2. Experimental setup 

 

All experiments were conducted at Casa Colina Hospital and Centers for Healthcare. NS 

was seated in a motorized wheelchair in a well-lit room. A 27-inch LCD monitor was 

positioned behind NS (visible to the experimenters but not to NS) too cue the experimenter 

for the presentation of stimulus. Cue presentation was controlled by the psychophysics 

toolbox (Brainard, 1997) for MATLAB (MathWorks).67  
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4.2.3 Physiological recordings 

 

NS was implanted with one Neuroport array at the junction of the intraparietal sulcus (IPS) 

and postcentral sulcus (PCS), a region we refer to as PC-IP.5 The other was in the left 

superior parietal lobule (SPL). Following surgery, the SPL implant did not function. Only data 

recorded from PC-IP were used in this study. Both arrays were explanted approximately 

one year after data in this study were collected.  

 

Neural activity recorded from the array was amplified, digitized, and sampled at 30 kHz using 

a Neuroport neural signal processor. This system has received Food and Drug 

Administration (FDA) clearance for <30 days of recordings. We received an investigational 

device exemption (IDE) from the FDA (IDE #G120096, G120287) to extend the implant 

duration for the purposes of the BMI clinical study.  

 

We have previously published our sorting algorithm.4 Putative neuron action potentials were 

detected at threshold crossings of -3.5 times the root-mean-square of the high-pass filtered 

(250 Hz full bandwidth signal. Each waveform was made of 48 samples (1.6 ms), with 10 

samples prior to triggering and 38 samples after. Single- and multi-unit activity was sorted 

using Guassian mixture modeling on the first three principal components of the detected 

waveforms. To minimize noise related effects, we used, as selection criteria, a mean firing 

rate greater than 0.5 Hz and signal to noise ratio (SNR) >0.5.  

 

Well-isolated single and multi-units were pooled across recording sessions. To ensure that 

such pooling did not bias the conclusions of the paper, we performed core analyses on 

single-units alone, potential multi-units alone, and all units together. The results of these 

analyses, shown as supplemental figures for key results, and generally demonstrate that 

our results were robust to the pooling of all sorted units together.  

 

4.2.4 Task procedures 

 

4.2.4.1 Basic sensory mirroring task (BSMT; relevant for Figure 4.1). This task was 

performed to establish the shared responsiveness of PPC neurons to felt touch and to 

observed touch. NS sat facing an experimenter (actor). One experimenter stood behind the 

actor, and another behind NS. The task involved touch to one of two body parts (cheek, 

shoulder), to one of two persons (subject, or actor). Touch was provided as rubs performed 

bilaterally by the experimenter standing behind the person being stimulated, at 

approximately 2 rubs per second, for 2 seconds. Cheek touches were rubs parallel to the 

jawline (from cheek bone to chin and back again). Shoulder touches were rubs along the 

top of the shoulder, from near the neck to the outside of the shoulder and back. The task 

was performed on 6 individual recording sessions, with 10 trials per condition. In all, 805 

units were recorded, of which 756 met selection criteria.  

 

4.2.4.2 Multidimensional sensory mirroring task (MSMT; relevant for all Figures except 4.1). 

This task was performed to understand mechanisms by which neural information is shared 
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across populations of PPC neurons to support felt and observed touch. The basic setup 

was like the previous task. Here, however, we manipulated three dimensions: 2 body parts 

(cheek, shoulder), provided to 2 persons (NS, actor), in one of 4 types (pinch, press, rub, 

tap). As in the BSMT, touch stimuli were provided at approximately 2 per second, for 2 

seconds. Rubs were as described. Pinches were performed in a non-painful manner with 

the thumb, index, and middle fingers. Presses were performed with the index and middle 

fingers and taps by the tips of the index and middle fingers. This task was performed on 7 

recording sessions, with 10 trials per condition. In all 707 units were recorded, of which 699 

met selection criteria.  

 

4.2.5 Quantification and statistical analysis 

 

4.2.5.1 Linear analysis (relevant for Figure 4.1B, Figure 4.2A). For each unit, we fit a linear 

model describing its firing rate as a function of response to each test condition. Response 

was defined as the mean firing rate between 0.5 after onset of the stimulus phase and 

ending 0.5 s after. These times were chosen to minimize the influence of experimenter 

delays in presenting the stimulus. The baseline was defined as firing rate during the 1 s prior 

to stimulus presentations. The linear model was written as:  

 

𝐹𝑅 = ∑ 𝛽𝑐
𝑐

X𝑐 +  𝛽0 

Where 𝐹𝑅 is the firing rate, X𝑐 is the vector indicator variable for test condition c, 𝛽𝑐 is the 

estimated scalar weighting coefficient for each condition, and 𝛽0 is a constant offset term. A 

neuron was considered responsive to a particular condition if the t-statistic for its associated 

beta coefficient was significant (p<0.05, false discovery rate (FDR) corrected for multiple 

comparisons).  

 

4.2.5.2 Discriminability index (relevant for Figure 4.1C, Figure 4.2B). To quantify how well 

neural activity can be discriminated from baseline (pre-stimulus) activity, we developed a 

cross-validated measure: discriminability index (DI). As with the linear analysis described 

above, the stimulation phase window was defined as 0.5 after onset of the stimulus phase 

and ending 0.5 s after, and baseline was defined as the 1 s prior to stimulus presentation). 

The firing rate of all recorded neurons was concatenated into a vector, denoted by A. The 

firing rate of each neuron during the baseline phase was similarly concatenated to form a 

vector, denoted by 𝐵. Next, a non-dimensional discriminability index (DI) was computed as: 

 

𝐷𝐼 =
𝐴̅ − �̅�

√𝜎𝐴
2 + 𝜎𝐵

2

2

 

 

Where 𝐴̅ is the mean of the firing rate vector 𝐴, �̅� is the mean of the firing rate vector 𝐵, 𝜎𝐴 

is the standard deviation of the vector 𝐴, and 𝜎𝐵 is the standard deviation of the vector 𝐵.  
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4.2.5.3 Time-resolved classification (relevant for Figure 4.2C). Classification was performed 

using linear discriminant analysis (LDA) with the following parameter choices: (1) only the 

mean firing rates differ for unit activity in response to each test condition (covariance of the 

normal distributions are the same for each condition) and (2) firing rates for each unit are 

independent (covariance of the normal distribution is diagonal). The classifier took as input 

a matrix of firing rates for all sorted units. The analysis was not limited to significantly 

modulated units to avoid ‘peeking’ effects.69 The analysis was performed independently for 

each recording session, and results were then averaged across days. In Figure 2C, this 

analysis was performed in a sliding-time window manner (300 ms each window, stepped at 

10 ms intervals), beginning 0.5 s prior to the stimulation onset. Classification performance 

is reported as prediction accuracy of a stratified leave-one-out cross-validation analysis.  

 

4.2.5.4 Correlation (relevant for Figure 4.1F). We performed cross-validated correlation to 

compare the neural representations of various test conditions (stimulus presentations) 

against each other in a pairwise manner. We quantified the neural representations as a 

vector of firing rates, one vector for each condition with each vector element summarizing 

the response of an individual unit. Neural activity was summarized as the mean firing rate 

during the stimulation phase window, defined as before (0.5 s after onset of the stimulus 

phase to 0.5 s after it ended). Firing rate vectors were constructed by averaging the 

responses across 50–50 splits of trial repetitions. The mean responses across different 

splits were correlated within and across conditions, then the splits were regenerated, and 

the correlation computed 250 times. The within-condition correlations assist in our 

interpretation of the across-format correlations by allowing us to quantify the theoretical 

maxima of the similarity measure (e.g., if the within-condition correlation is measured at 0.6, 

then an across condition of 0.6 suggests identical neural representations). 

 

4.2.5.5. Event related averages (relevant for Figure 4.1E, Figure 4.2D, Figure 4.2E, Figure 

4.2F, Figure 4.2-figure supplement 1). For each unit, neural activity was averaged within 

750 ms intervals starting from 0.5 s prior stimulation onset, stepping to 2.5 s after, in 100 ms 

step intervals. Responses were grouped by condition, and a mean and standard error on 

the mean (SEM) were computed for each time window and for each condition.  

 

4.2.5.6 Generalizability analysis (relevant for Figure 4.4 and Figure 4.4-figure supplement 

1). This analysis was performed to understand how neural information belonging to one 

domain (e.g., body part) generalizes across another domain (e.g., touch type or person). 

For this analysis, we restricted the tested touch types to pinch and press only. Thus, the 

three dimensions we tested were: touch type (pinch, press), body part (cheek, shoulder), 

and person (actual touch, or observed touch). In all, there are 8 test conditions.  

 

We quantified the neural response to each condition as a vector of firing rates, one vector 

for each condition, with each element in each vector summarizing the response of an 

individual unit. All sorted units were used in this analysis. As in other analyses, neural activity 

was summarized as the mean firing rate beginning 0.5 s after onset of stimulation phase 

and ending 0.5 s after its conclusion. Next, we identified population-level neural subspaces 
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that optimally differentiate between pairs of conditions (training conditions) and testing how 

well these subspaces differentiate between pairs of test conditions. For example, in Figure 

4.4A, we identified a subspace that optimally differentiates between body parts during 

actual pinches and asked: how well does this subspace also differentiate between body 

parts during observed pinches? To create the subspaces, we linearly regressed (using 

partial least squares regression) the vectors for the pair of training conditions, such that the 

variance (or separation) between each unit’s response to the two conditions was maximized. 

We then used this model to compute the separability (or variance) in neural space between 

test data from the test pair of conditions. This separability in neural space for the test data 

was normalized to the cross-validated separability in space between held out data from the 

training pair of conditions (in a stratified, cross-validated manner), between -1 and 1. This 

basic computation was performed in reverse as well, such that in this example, a subspace 

was created that optimally differentiated between observed cheek pinch and observed 

shoulder pinch, and tested to identify separability between actual cheek pinch and actual 

shoulder pinch. The results in both directions were averaged and recorded as the 

normalized generalizability of information (in this example case, generalizability of 

information separating body parts across actual and observed touch). The generalizability 

was computed for each day independently and averaged across recording sessions. 

Confidence intervals were estimated using a bootstrap procedure.  

 

The generalizability analysis was performed on both real neural data, as well as a population 

(same size as the real number of neurons) of synthetically generated mirror neurons. The 

neurons were generated by assigning identical firing rates to actual and observed touch to 

a randomly chosen body part, and a randomly chosen touch type (between pinch and 

press). A vector of firing rates (of length 10, for ten trials) was constructed, with a mean 1, 

and a standard deviation of 1.2, for that pair of conditions, and 0 for all other pairs of 

conditions. This population of synthetic neurons was then used as the dataset for the 

generalizability analysis (Figure 4.4-figure supplement 1).  

 

4.2.5.7 Demixed principal components analysis (dPCA) (relevant for Figure 4.5). We used 

the most recent version of dPCA with the default parameters.137 dPCA is an analysis 

technique that decomposes neural data along user-defined neural dimensions 

(marginalizations) that capture variance related to variables in the experiment. This 

decomposition allows understanding the structure in neural data as it relates to the 

experimentally manipulated variables. We used all sorted units in this analysis. dPCA takes 

as input a matrix that summarizes (for all units to be included), their firing rates to each of 

the test conditions (i.e., all combinations of experimental variables; in the MSMT this is the 

full factorial, or 16 conditions), along each trial repetition. Neural activity was averaged within 

750 ms intervals starting from 0.5 s prior to the onset of the stimulation phase, stepping to 

0.25 s after, in 50 ms step intervals. In our current study, we were interested in 

understanding how much of the population variance was explained by independent 

dimensions (i.e., body-part, touch type, and person being touched) as well as by interaction 

terms (touch type x body-part, body-part x person, touch type x person, and touch type x 

person x body-part). Thus, we used all 7 possible marginalizations within this analysis.  
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4.2.5.8 Modeling the single neuron response properties to various test conditions (BSMT) 

(relevant for Figure 4.1D). This analysis was performed to understand how individual 

neurons responded to four formats:  actual cheek touch (Ac), actual shoulder touch (As), 

observed cheek touch (Oc), and observed shoulder touch (Os). Various possibilities exist. 

For example, the neuron might respond to actual touch to both body parts but not to any 

observed touch. Alternatively, it could respond to both actual and observed touch to the 

one body part but not to the other. We can model the firing rate for a given unit as:  

 

𝑓𝑟 =  𝛼 ∙ 𝐴𝑐 +  𝛽 ∙ 𝐴𝑠  +  𝛾 ∙ 𝑂𝑐  +  𝛿 ∙ 𝑂𝑠 

 

Where 𝑓𝑟 is the firing rate for the unit, 𝐴𝑐, 𝐴𝑠, 𝑂𝑐, 𝑂𝑠 are the four formats, and 𝛼, 𝛽, 𝛾, and 𝛿 

are the weighting coefficients for each format, respectively. If the unit does not respond to a 

format, then the dot product of the unit’s weighting coefficient and the format collapses to a 

scalar value. If a unit responds to two formats in a matched manner, then the weighting 

coefficient for these two formats will be identical. For the analysis, we allowed a weighting 

coefficient to be either 0 or 1, such that that across 4 formats, there are a total of 16 possible 

models for each neuron. We fit the parameters of each of the 16 models using standard 

linear regression techniques (see above), and the results were compared. As selection 

criteria to evaluate the “best” model from all candidate models, we used the Bayesian 

information criterion (BIC) and cross-validated coefficient of determination (cvR2). The 

models were grouped according to four categories: invariant (in which the weighting 

coefficient was identical across all formats), body part specific (in which the weighting 

coefficient was invariant for matched body parts, but not for mismatched body parts), 

person specific (in which the weighting coefficient was invariant for touch to the same 

person) or idiosyncratic (all other combinations).  

 

4.2.5.9 Modeling the single neuron response properties to various test conditions (MSMT) 

(relevant for Figure 4.3, Figure 4.3-figure supplement 1, Figure 4.3-figure supplement 2, 

Figure 4.3-figure supplement 3, Figure 4.3-figure supplement 4, Figure 4.3-figure 

supplement 5). This analysis is like the earlier modeling analysis for the BSMT, except it has 

been expanded to accommodate for more test conditions. To understand the breakdown of 

individual units that create the population response, we first defined four formats: actual 

cheek touch (Ac), actual shoulder touch (As), observed cheek touch (Oc), and observed 

shoulder touch (Os). An individual neuron could respond to one or more formats. If it 

responds to more than one format, it could respond with a matched selectivity pattern (SP; 

the precise pattern of responses) to each of the four touch types (pinch, press, rub, tap) 

within the format, or with a mismatched SP. Across the four formats, the firing rate for a 

given unit can be described mathematically as:  

 

𝑓𝑟 =  𝛼 ∙ 𝐴𝑐 +  𝛽 ∙ 𝐴𝑠  +  𝛾 ∙ 𝑂𝑐  +  𝛿 ∙ 𝑂𝑠 

 

Where 𝑓𝑟 is the firing rate for the unit, 𝐴𝑐, 𝐴𝑠, 𝑂𝑐, 𝑂𝑠 are the four formats, and 𝛼, 𝛽, 𝛾, and 𝛿 

are the weighting coefficients for each format, respectively. If the unit does not respond to a 
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format, then the dot product of the unit’s weighting coefficient and the format collapses to a 

scalar value. Within this type of a linear model, if a unit responds to formats with an identical 

SP, then the weighting coefficient for all those formats will have an identical weighting 

coefficient. In all, there are 51 unique models for all the ways in which SPs can be expressed 

across formats.   

 

To determine how SPs compared across formats, we fit the parameters of each of the 51 

models using standard linear regression techniques (see above), and the results were 

compared. As selection criteria to evaluate the “best” model from all candidate models, we 

used the Bayesian information criterion (BIC) and cross-validated coefficient of 

determination (cvR2).   

 

4.3 RESULTS 

 

We recorded populations of single neurons from NS, a tetraplegic individual (spinal injury at 

levels 3–4; C3/4) participating in a BMI clinical trial. Recordings were made from a 

microelectrode array implanted at the junction of the post-central sulcus (PCS) and 

intraparietal sulcus (IPS). NS could not move her arms or hands, complicating studies that 

study mirror-like responses using executed and observed movements. However, NS had 

well-defined sensory receptive fields that responded at short latency thus opening the 

possibility studying mirror-like phenomena in the sensory domain.5 We performed two 

primary experiments: The first experiment used a simple paradigm to validate whether PPC 

neurons have mirror-like properties, firing in similar ways to experienced and observed 

tactile sensations. After confirming mirror-like responses, we performed a second 

experiment, expanding the number of task dimensions to test whether PPC populations 

support a general mechanism.  

 

4.3.1 Mirror-like responses in human PPC single neurons 
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In preliminary investigations, we found many compelling examples of neurons 

demonstrating the specificity and congruency that are the defining feature of mirror neuron 

responses. Specificity is defined as the selective activation for a restricted set of tactile 

sensations, such as neural response when NS felt her outer shoulder being rubbed but not 

her inner shoulder. Congruency is defined as having the same selective activation for 

experienced and observed sensations. We performed a basic sensory mirroring task 

(Experiment 1 – BSMT, Figure 4.1A) to quantify whether sensory mirror-like responses 

could be robustly identified in our population of human single neurons. We recorded 757 

± 19.72 neurons over 6 sessions while the participant felt rubbing motions applied to her 

cheek or shoulder or observed rubbing motions applied to an experimenter’s cheek or 
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shoulder. This two-factor (body part x person) design allowed us to test for specificity and 

congruency. We found robust coding of experienced and observed tactile sensations 

(population Mahalanobis distance from baseline with 95% CI, Figure 4.1B; percent of cells 

modulated from baseline, t-test p<0.05 corrected for multiple comparisons, Figure 4.1C). 

Many neurons demonstrated mirror-like responses, firing in a similar manner to touches to 

the cheek or shoulder, invariant to whether the touches were felt or observed (model 

analysis, body part specific, p<0.05 corrected, Figure 4.1D). Example neurons showing 

these mirror-like responses are shown in Figure 4.1E (firing rate thorough time). We found 

that the mirroring phenomena was robust at the neural population level. We summarized 

the response of the entire population during each condition as a vector of the mean firing 

rate while the participant experienced or observed touch. We found a significant correlation 

between the observation and experience conditions for matching body parts. Further, the 

correlation was higher for matching body parts than mismatched body parts (t-test, p<0.05, 

Figure 4.1F). These data provide powerful support for the basic phenomena of neurons 

responding in similar ways to both experienced sensations and observed sensations and 

is consistent with previous interpretations that we may understand the tactile sensations 

experienced by others through simulation within our own tactile processing system, either 

through single-unit or population mechanisms. However, from this simple paradigm, it is 

unclear whether these shared responses are direct evidence for a mirror mechanism, or 

instead, may be part of a more general mechanism in which shared representations support 

cognition.  

 

4.3.2 Unpacking the population code: multidimensional sensory mirroring task 

 

To better understand shared encoding between experienced and observed actions, we 

performed a second experiment (Experiment 2), that augmented the first experiment to 

include four different types of touch (pinch, press, rub, and tap). These touch-types were 

selected as they resulted in perceptually distinct stimuli both under observed and actual 

touch conditions, and not based on assumptions about the underlying selectivity of recorded 

neurons. Thus, in the updated task there are three manipulated dimensions (body part, 

touch type and person) combined in a full factorial design for a total of 16 conditions. 

Including the additional dimension allowed us to 1) test whether encoding similar variables 

in similar ways was a ubiquitous property of the neural population; and 2) test whether these 

shared responses are consistent with a compositional basis, encoding multidimensional 

sensations as a combination of basic sensory properties. We recorded from an average of 

654 ± 22.40 neurons over 7 sessions using the second experiment. We briefly describe 

single unit response properties before jumping into our two main tests.  
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4.3.2.1 Single neuron responses are highly heterogenous. As in the first experiment, we 

found robust coding of experienced and observed tactile sensations (population 

Mahalanobis distance from baseline with 95% CI, Figure 4.2A; percent of cells modulated 

from baseline, t-test p<0.05 corrected for multiple comparisons, Figure 4.2B). The response 

to the different touch types could be discriminated for experienced or observed conditions 

(time-resolved classification, Figure 4.2C). However, the inclusion of additional touch types 

highlighted the near universal complexity of single unit responses that were difficult to 

reconcile with simple mirror neuron accounts. For example, Figure 4.2D shows the 

response properties of a single cell when NS felt a gentle pinch to her cheek or shoulder as 

well as when she observed another person being pinched on their cheek or their shoulder. 

This cell’s response is consistent with the idea that NS knows what another person is 

experiencing because her own tactile cells are being recruited in a similar manner. However, 

testing the same neuron with additional touch-types reveals a more complicated pattern 

(Figure 4.2E), selective for pinch to her own cheek but responding to all touch-types during 

observation. A straightforward interpretation of the mirror mechanism would predict that 

NS would understand all touch-types as a pinch, inconsistent with behavioral evidence that 

the touch types were easily discriminated and the finding that observed touch types are 
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discriminable (e.g. Figure 4.2C). Several additional example neurons illustrating the lack of 

specificity to touch-type are shown in Figure 4.2E and Figure 4.2-figure supplement 1.  

 

We turned to a model selection analysis to summarize the behavior of single neurons across 

the entire population (Figure 4.3). The model selection analysis allows us to categorize 

neurons based on patterns of congruency in their responses to the four touch-types across 

all sensory fields, where sensory fields are defined as the location the touch was applied 

(i.e., cheek or shoulder, on NS or the experimenter). We began by constructing, for each 

neuron, a linear tuning model to describe its selectivity pattern (SP; the firing rate values for 

each of the four touch types) within each sensory field. We then use a model selection 

procedure to categorize whether these linear models demonstrated congruency (matched 

SP) across sensory fields. There are 51 possible models, each capturing one realization of 

SP to each sensory field and whether the responses are congruent (matched SP) or 

incongruent (or mismatched SP) across sensory fields. (Figure 4.3-figure supplement 1). 

For interpretative purposes, these 51 models were grouped into 7 categories (as labeled, 

Figure 4.3-figure supplement 1). A few examples are illustrated schematically Figure 

4.3A-C and in Figure 4.3-figure supplement 2 (see figure legend). We computed all 51 

possible models for every neuron. From amongst these possibilities, we identified the linear 

model that best described neural behavior using two metrics: Bayesian information criterion 

(BIC) and coefficient of determination (R2). The percentage of PPC cells that behaved 

according to each model was summarized as the average percentage provided by these 

two measures. The breakdown of single unit activity according to all 51 models is shown in 

Figure 4.3-figure supplement 3 (and split by BIC and R2 in Figure 4.3-figure supplement 

4). The breakdown according to the 7 categories is shown in Figure 4.3D (and split by BIC 

and R2 in Figure 4.3-supplement 5). The PPC population was heterogeneous, composed 

of many complex patterns of congruency across sensory fields. 
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4.3.2.2 Population-level neural subspaces mediate generalizability of information. 

The mirror-mechanism is proposed to link what we see with what we intend or feel. Based 

on our previous data within this PPC substrate, we hypothesized that the mirror mechanism 

is a manifestation of a broader computational strategy by which shared, basic features within 

populations of PPC neurons generalize across task dimensions (behavioral contexts). To 

test this hypothesis, we train a linear model to discriminate the PPC population response for 

values along one dimension for fixed values of the other two dimensions. Mathematically, 

this model identifies a population-level neural linear subspace (or simple, subspace) that 

discriminates between values of the chosen dimension for fixed values of the other 

dimensions. Then, we test whether this subspace allows similar discrimination for alternate 

values of the fixed dimensions. For example, we train the model to discriminate touch types 

(dimension 1, pinch versus press), for fixed body part (dimension 2, e.g., cheek) and person 

(dimension 3, e.g., NS, experienced touch). Then we test the ability of this model to similarly 

discriminate touch type when switching body part and/or person. This analysis provides a 

simple way of quantifying whether information-rich (e.g., enabling discrimination) neural 

population codes are shared across task dimensions. If the mirror-mechanism is the 

dominant motif that determines population-level encoding, then we would predict 

preferential sharing or generalization when matching body locations between self and other 

(e.g., between cheek and cheek or between shoulder and shoulder). Otherwise, under a 

more general mechanism for shared encoding, we would expect generalizable information 

to be a ubiquitous phenomenon.  

 

The analysis is schematically illustrated in Figure 4.4A. Here, a subspace is formed that 

optimally distinguishes actual pinches to the shoulder from actual pinches to the cheek. 

This example subspace thus answers the question: where on my body is being pinched? 

We can than ask how well this decision space generalizes e.g., when the person being 

touched is not NS but the experimenter, such that pinches to the cheek and shoulder are 

observed instead of experienced, or to different touch types, such as actual presses to 

the cheek or shoulder instead of pinches. In the illustrative example of Figure 4.4A, the 

decision subspace also allows distinguishing the body part to which pinch is applied, if it 

were observed instead of experienced.  
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The results of this analysis are shown in Figures 4.4B-D. We constructed subspaces for all 

main pairs of variables and tested for generalization. In Figure 4B we show the resulting 

patterns of generalization when discrimination subspaces are built around the two body 

parts: cheek and shoulder. The subspace generalizes to allow body parts to be 

discriminated, whether touch is applied to the same (or the other) person, and whether it is 

of the same type (e.g., pinch versus press) or the other touch type. Similarly in Figure 4.4C, 

we show that discriminable patterns built around coding of touch type (e.g., discriminating 

pinch versus press) generalize to allow discrimination whether for the same person or the 

other, and within and across body parts. Interestingly, Figure 4.4D shows a fundamentally 

different pattern, with generalization in some contexts but not all. In other words, touch type 

and body location are encoded in ways that generalized across contexts while the person 

did not. Such preferential encoding fits with the known functions of our cortical implant site 

(see discussion).  

 

To assist interpretation, we repeat the analysis with a population of synthetically generated 

mirror neurons (Figure 4.4-figure supplement 1). As expected, the analysis shows that a 

population composed exclusively of mirror-like neurons only showing similar responses for 

matched conditions across self and other does not support ubiquitous generalization, unlike 

our PPC population.  

 

4.3.2.3 Architecture of knowledge representation in human PPC: structured 

compositionality. The mirror-mechanism has been suggested to link visual inputs to single 

neurons encoding high-level action goals. We hypothesize that experienced and observed 

sensations are represented through a combination of simple primitive elemental features 

encoded by the population. We used a demixed-principal components analysis (dPCA) to 

visualize and quantify how much of the population-level response could be understood as 

being composed of a linear combination of these elemental features (such as information 

about body part or touch type) encoded by the population.137 The dPCA analysis 

decomposed the pooled population response across all test conditions into independent 

factors (here, body part, touch type and person), interaction effects (body part-person, body 

part-touch type, and person-touch type), and a term accounting for a shared neural 

response to any form of touch.  
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The results are shown in Figure 4.5A. A significant fraction of population behavior, 

described here as the percentage of the population variance described by each component, 

relates to the shared neural response to any form of touch. Otherwise, the largest variance 

is explained by the three main effects with smaller amounts relating to the interactions. This 

breakdown suggests that most of the population’s response to various forms of touch is 

comprised of information deriving from independent dimensions of body part, touch type, 

and person. However, amongst these three dimensions, body part and touch type contribute 

more to the population response than the third (person) dimension. This asymmetry 

suggests that within this population of PPC neurons, the compositionality may be 

asymmetric or structured.  

 

To ensure that dPCA is capturing generalizable features of the neural population code, we 

performed a generalization test of the dPCA components. To this end, we performed a two-

factor dPCA on two dimensions of the data for a single level of the third dimension. We then 

applied the learned mapping to the held-out level of the third dimension. The results are 

shown in Figure 4.5B for each possible combination of the two-factor dPCA. As expected, 

we find that main components of body part and touch type generalize, consistent with the 

hypothesis that PPC populations encodes generalizable basic components of sensations. 

Finally, we repeated this dPCA analysis for our synthetic mirror neurons. As shown in Figure 

4.5C, canonical mirror neurons do not form a representational basis. 

 

4.4 DISCUSSION 

 

4.4.1 Mirror neurons reconsidered. Mirror neurons are an influential theory for how we 

understand the actions and experiences of others.12,24,25,28 At a broad level, the mirror 

hypothesis makes the claim that neurons within high-level regions responsible for planning 

our own motor behavior or bodily sensations are also involved in understanding the 

intentions and experiences of others.25 Our data are consistent with this view as we show 

that neurons active during experienced sensations also become active when observing 

somebody else being touched in similar ways. The mirror hypothesis also proposes a “mirror 

mechanism” whereby understanding is achieved through a process of simulation.7,27 This 

has been primarily described in the motor domain where most mirror studies are carried out. 

In this view, individual neurons in higher-order motor cortices encode action goals. Different 

single neurons encode different goals, resulting in a full vocabulary.7,27 These neurons are 

assumed to naturally be imbued with meaning under the assumption that we must 

understand our own actions. The mirror mechanism, by extending access to this vocabulary 

to what we observe, can therefore directly impart understanding.7,24,25,27 It is here that our 

interpretation of mirror-like responses diverges from the classical model.  

 

Our data demonstrate that shared responses associated with mirroring are part of a more 

general mechanism in which shared representations support cognition. A shared 

representation of pinch, for example, informs not only felt cheek pinches, but also felt 

shoulder pinches, as well as observed pinches. A mirror mechanism implemented through 
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simulation loses intuitive appeal in clarifying such shared population activation, such as 

during rubbing motions whether experienced on one’s cheek or observed on another’s 

shoulder. Are we here understanding how a rub to the shoulder feels by simulating it in our 

cheek-sensitive neurons? Likewise, if the key operational feature is similar patterns of 

activation, the same logic would lead one to predict that we understand how a tapping 

motion feels by simulating it in our pinch neurons or vice versa. In our view, the shared 

representations reported in this, and in our recently published work, are the neural 

architecture that allows us to efficiently learn and generalize our experience more broadly. 

This basic view can connect to a recently developed theory of human-like cognition. 

 

4.4.2 Potential basis for cognitive models of the world. A recent branch of cognitive 

neuroscience has put forth the idea that human-like learning and thinking is largely built on 

the internal models we construct of the world.6,14 These models are thought to play a 

ubiquitous role, providing a common substrate to inform our perception, cognition, 

imagination, and planning. Yet, to date, the neural basis for this cognitive neuroscientific 

framework remains largely unexplored, though preliminary neuroimaging evidence points to 

a role for PPC 14. Our results, demonstrating shared representations that can be 

decomposed into basic building blocks, support this computational architecture, and provide 

preliminary insight into its neural implementation within human PPC. This framework 

provides a unifying account of many of our recent results, suggesting that language, 

imagination, planning, and perception tap into the same underlying shared internal models.2-

4,23 Understanding our neural results in this framework also helps to address limitations 

associated with mirror neurons, as discussed below.   

 

4.4.3 Generalization. By the mirror account, single neurons encode our own action goals, 

and the mirror mechanism extends access to these representations to observation.136 As 

stated above, such a mechanism does not allow for understanding action goals outside our 

own repertoire. In our account, high-level regions of the cortex encode representational 

building blocks that can be combined in novel ways to understand novel stimuli. Future 

studies can directly test this idea: For example, we would predict that if were to ask a 

participant to imagine what it would feel like if we pinched her tail (something clearly outside 

the participant’s direct experience) we would find that the neural subspace associated with 

pinches would combine with cortical representations associated with tails, presumably built 

from observation of animals. 

 

4.4.4 A selfless theory. The mirror account assumes a temporal dependence: individuals 

form motor representations through producing actions that can subsequently be accessed 

during observation.24 In our understanding, such temporal precedence is not necessary. 

Individuals can form representational building blocks using any possible information source. 

To use an example from Patricia Churchland, even if I have never myself milked a cow, I 

can readily build understanding by watching someone else milk a cow which in turn, can 

then help me quickly understand milking a goat or help inform my own attempts to milk a 

cow.138 No doubt our own actions and experiences provide unique and unreproducible forms 

of knowledge. Just as the description of a sunset cannot replace witnessing a sunset, it is 
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likely that observing pinches cannot replace the experience of having been pinched. Thus, 

our own experiences can change the nature of our internal representations but are not a 

prerequisite to form these representations. Indeed, we predict that the population of neurons 

that have mirror-like sensory responses will also show encoding for observed contact 

between inanimate objects as they share an underlying basis in the physics of interacting 

objects.  

 

4.4.5 Relationship to alternative accounts of mirror neurons. Considering arguments 

against the mirror hypothesis, a number of groups have hypothesized that visual information 

related to the actions of others arises in our motor system simply as a means to guide motor 

behavior e.g., by mediating motor imitation, observational learning, or planning in response 

to the actions of others.136 These are compelling accounts given that animals clearly use 

observation of the actions of others to guide their own motor behavior. It is less clear how 

well such explanations can account for our data: There is no simple corollary of generating 

an endogenous sensory experience in response to the sensory experiences of others and 

thus these alternative accounts are less persuasive in the sensory domain. In our view, the 

compositional building blocks provide useful representations that can inform all relevant 

aspects of behavior. In the motor domain, this can include understanding the actions of 

others as well as guiding our own motor behavior based on the actions of others. 

Interestingly, the degree of population-level similarity between executed and observed 

actions appears to be smaller than we report here, in the sensory domain.136 While there 

are many possibilities, one intriguing hypothesis is that the number of possible ways 

observed actions can inform our own cognition and behavior (e.g., understanding, imitation, 

learning, motor planning) is substantially larger than the sensory case and thus leads to 

more multi-faceted neural responses.   

 

4.4.6 Relevance to BCI. Numerous clinical trials have shown that individuals with paralysis 

can use signals from motor regions of the brain to control external devices, such as robotic 

limbs or computer cursors.3,45,50 The underlying brain signals are low-dimensional and 

roughly encode movement direction in a smooth continuous fashion enabling researchers 

to collect sufficient data to train a decoding algorithm in a few minutes time. Future 

implementations of BCIs could communicate the contents of the mind more directly, such 

as direct decoding of high-level concepts, visual imagery, or emotional state. The 

dimensionality of these signals is far larger than basic movements. However, if these high-

dimensional datasets are encoded using generalizable relatively low-dimensional basis 

sets, then ability to read out these high-dimensional signals may be tractable. To this end, 

proof-of-concept studies have already demonstrated the ability to decode high-fidelity faces 

or the semantic content of visual scenes from rich low-dimensional basis sets.139 

 

4.5 CONCLUSION 

 

Understanding how systems of neurons transform data into understanding is central to 

understanding human cognition and how we can create smarter machines. Our data 

demonstrate that mirror neurons are one manifestation of a more general mechanism by 
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which neural populations encode generalizable representational building blocks. Recent 

cognitive science literature has demonstrated that such building blocks are a key feature 

that enable human-like learning and thinking. 
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C h a p t e r  5  

A Vision of Touch in Human Posterior Parietal Cortex 

 

5.1 INTRODUCTION 

 

Touch is a multisensory perceptual process.51,52 When an ant crawls up our hand, we often 

both feel it and we see it. In other words, the touch we perceive is constructed from both 

visual and tactile information.30-33,82 But what does it mean to see touch? Are our brains 

responding to motion on (or near) our body?30-33,82 To the distance (or lack thereof) between 

the object and our body? In another setting, the ant may not even be on our hand but on a 

blade of grass.36-39 Do our brains represent observed touch to objects (like the grass) in the 

same way as to our body? The capacity for our brains to process seen touch to objects 

(including ourselves) independent of felt touch is an essential, yet poorly understood, 

element of touch perception. More broadly, because touch is ubiquitous in our daily lives, 

understanding how and where our brains process seen touch is critical to understanding 

how we perceive the world in general. 

 

There is considerable evidence that posterior parietal cortex (PPC) is involved. In non-

human primates (NHPs), PPC neurons are modulated by visual information: they respond 

to touch to a monkey differently depending on whether the touch is only felt or also seen.140-

143 Moreover, some PPC neurons have been identified that respond congruently not only 

when a monkey feels the touch but also when it sees touch to another monkey on the 

corresponding body part.140 Such neurons have typically been interpreted as mirror neurons 

and taken as evidence of mirroring: using one’s own body as a reference for perceiving 

touch to others.36-39,57,144 However, this view is restrictive. Human neuroimaging studies 

indicate that not only seen touch to other individuals, but also to inanimate objects, activate 

overlapping regions of PPC.36,57 While these studies cannot clarify the neuron-level 

mechanisms of such shared activation, they highlight that PPC processing of seen touch 

(and touch in general) is richer than mirror neurons alone can support.  

 

Our lab’s recent work has provided fresh insight into the computational basis for behavior in 

human PPC. In an ongoing brain-machine interface (BMI) clinical trial, we recorded from 

populations of single neurons in human PPC of a tetraplegic participant and found that they 

are simultaneously engaged during many forms motor, sensory, and cognitive behaviors.2-

4 This PPC population encodes variables such as observed actions, observed touch, motor 

and tactile imagery, felt touch, and others.2-4 Individual neurons are highly variable, 

including a small fraction that behave like mirror neurons. The population, however, forms 

rich associations across neurons and domains, representing basic-level, primitive elements 

that can be repurposed for many different behaviors, in a functional organization that we 

termed partially mixed selectivity.4,43 For example, within the sensory space, we found that 

this population of heterogeneous PPC neurons encodes felt touch, at short latency, through 

primitive elements such as which body part (e.g., cheek, shoulder) is touched and in what 
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form (e.g., pinch, press).5 These elements are compositional, combining in myriad ways to 

inform diverse touch conditions (e.g., cheek pinch, shoulder press). They are also 

generalizable, able to explain novel (held out) data. Moreover, they generalize to other forms 

of touch processing as well, supporting not only felt touch, but also imagined touch to 

oneself, and seen touch to others.  

 

Here we test a hypothesis that this PPC population provides a versatile substrate that can 

account for seen touch, not just to others but more universally, also to oneself (independent 

of tactile input) and to objects in the world. In a unique opportunity, we record single-unit 

activity in the same study participant as above (insensate below approximately the shoulder-

level) during various forms of seen touch.5 We find that this PPC population represents seen 

touch to all tested objects, including the participant’s insensate arm regions. Touch is 

preferentially encoded over visually matched controls (such as motion near the object but 

without contact), and invariant to gaze. Seen touch to all regions of objects is encoded, but 

touch responses are sensitive to object attributes: similar object features evoke more similar 

PPC responses to touch. As in previous studies, individual neurons are complex.3 Yet, 

meaningful information can be decoded from population representations such as the precise 

location along an object that is touched, and whether touch was seen as the stimulus moved 

toward the object or away from the object. Our current results are a novel, neuron-level 

understanding of seen touch, thus far untested in animal models or in humans. Taken 

together with our previous work in PPC, we speculate that this PPC substrate encodes an 

internal model for touch, a mental blueprint for touch and all its related aspects, that is flexibly 

engaged whether the touch is felt, imagined, or seen.  

 

5.2. METHODS 

 

5.2.1 Subject details 

 

All data were recorded from a 62-year-old tetraplegic female participant in a brain-machine 

interface (BMI) clinical trial. She has a high-cervical spinal cord injury (SCI) between cervical 

levels three and four, sustained approximately 10 years prior to the study, and with no 

preserved sensory or motor function below the shoulder-level. She was implanted with two 

96-channel Neuroport Arrays (Blackrock microsystems model numbers 4382 and 4383) 6 

years post-injury, in the left hemisphere. Informed consent was obtained, and she 

understood the nature, objectives, and potential risks, of the surgical procedure and the 

subsequent clinical studies. All procedures were approved by the Institutional Review 

Boards (IRBs) at the California Institute of Technology (IRB #18-0401), the University of 

California, Los Angeles (IRB #13-000576-AM-00027), and Casa Colina Hospital and 

Centers for Healthcare (IRB #00002372). 

 

5.2.2 Experimental setup 

 

All experiments were conducted at Casa Colina Hospital and Centers for Healthcare. NS 

was seated in a motorized wheelchair in a well-lit room. For all tasks, a wheel-chair 
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compatible drawing board was placed in front of the subject. Task details are presented 

below, but briefly, various objects (including the subject’s arms) were placed on the drawing 

board such that touch to the objects was clearly visible to the subject at a convenient head 

position. A 27-inch LCD monitor was positioned behind NS (visible to the experimenters but 

not to NS) too cue the experimenter for the presentation of stimulus. Cue presentation was 

controlled by the psychophysics toolbox (Brainard, 1997) for MATLAB (MathWorks).67  

 

5.2.3 Physiological recordings 

 

NS was implanted with one Neuroport array at the junction of the intraparietal sulcus (IPS) 

and postcentral sulcus (PCS), a region we refer to as PC-IP. The other was in the left 

superior parietal lobule (SPL). Following surgery, the SPL implant did not function. Only data 

recorded from PC-IP were used in this study. Both arrays were explanted approximately 

one year after data in this study were collected.  

 

Neural activity recorded from the array was amplified, digitized, and sampled at 30 kHz using 

a Neuroport neural signal processor. This system has received Food and Drug 

Administration (FDA) clearance for <30 days of recordings. We received an investigational 

device exemption (IDE) from the FDA (IDE #G120096, G120287) to extend the implant 

duration for the purposes of the BMI clinical study.  

 

We have previously published our sorting algorithm.4 Putative neuron action potentials were 

detected at threshold crossings of -3.5 times the root-mean-square of the high-pass filtered 

(250 Hz full bandwidth signal. Each waveform was made of 48 samples (1.6 ms), with 10 

samples prior to triggering and 38 samples after. Single- and multi-unit activity was sorted 

using Guassian mixture modeling on the first three principal components of the detected 

waveforms. Well-isolated single and multi-units were pooled across recording sessions. To 

ensure that such pooling did not bias the conclusions of the paper, we performed core 

analyses on single-units alone, potential multi-units alone, and all units together. The results 

of these analyses, shown as supplemental figures for key results, and generally 

demonstrate that our results were robust to the pooling of all sorted units together.  

 

5.2.4 Task procedures 

 

5.2.4.1 Basic touch task (BTT; Figure 5.1; Figure 5.1-figure supplement 1, Figure 5.1-

figure supplement 4, Figure 5.1-figure supplement 5, Figure 5.1-figure supplement 6, 

Figure 5.1-figure supplement 7). The purpose of this task was to explore the selectivity of 

PPC neurons to touch compared to touch-like controls. NS viewed stimuli (brush strokes at 

1 Hz, for 2 seconds) to one of four objects (Figure 5.1A). These were the hand region 

(insensate) of the subject’s right arm (Native), the same region of an experimenter’s right 

arm (Exp-Right), a banana and a sponge. Stimuli included seen touch (Touch), touch-like 

motion overlapping, but not touching, the object (Overlap), motion adjacent (Adjacent), and 

motion far (Far) from the object. Objects were placed on a drawing board placed in front of 
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the subject, with only the tested object visible on any time. The stimulated site on each object 

consistently subtended a consistent angle on the eyes.  

 

Each trial began with a cue to the experimenter indicating the object and stimulus, followed 

by a one second pause, then a two second stimulation phase, and ended with a one second 

intertrial interval. Eight blocks of pseudorandomly interleaved trials were conducted. All 

conditions were tested within each block, prior to the next block commencing. To test 

whether gaze fixation influenced the neural responses, two versions of this task were 

performed. In one, fixation was always at the Touch site (Figure 5.1), and in the other, it 

was at the Adjacent site (Figure 1-figure supplement 4). In total, we recorded from 382 

neurons over six recording sessions.  

 

5.2.4.2 Multiple object task (MOT; Figure 5.2, Figure 5.2-figure 2 supplement 1, Figure 

5.1-figure supplement 2, Figure 5.1-figure supplement 3). We performed this task to 

examine the sensitivity of PPC touch representations to object attributes. Here, NS viewed 

touch stimuli (brush strokes at 1Hz for 2 seconds) presented to one of four objects: insensate 

regions of the subject’s right arm (Native), an experimenter’s right arm (Exp-Right), the 

same experimenter’s left arm (Exp-Left), and a sponge. Three fields were defined on each 

of the arms: Field 1 on the hand, Field 2 on the distal forearm, and Field 3 on the proximal 

forearm. Three similarly separated fields were also defined on the sponge. Corresponding 

fields on all objects subtended a consistent angle on the eyes. The subject was instructed 

to fixate gaze at the field to which touch was being applied. The trial structures and durations 

were as described in the previous task. As earlier, only the tested object was visible at any 

time. In total, we recorded from 672 neurons over seven recording sessions.  

 

Another version of this task was performed to test whether seen touch to inanimate objects 

other than the sponge was also represented. As in the previous paragraph, NS viewed touch 

to different fields on multiple objects. Here, 7 objects were tested to sample various 

household categories. These included: the subject’s right arm (Native), scissors, hammer, 

shoe, toy alligator, banana, and sponge. Two fields were defined on each object, 

consistently separated. Field 1 was away from NS; Field 2 was closer to NS. As earlier, 

only the tested object was visible at any time. NS was instructed to always gaze at the tested 

touch site. In total, in this version, we recorded from 545 neurons over six recording 

sessions.  

 

5.2.4.3 Spatial coverage task (SCT; Figure 5.3). This task was performed to evaluate the 

spatial coverage of neural response fields and their properties. A magnetic tracking probe 

(Ascension trakSTAR, Ascension Technology, Corp.) wrapped in cotton and attached to a 

six-inch coffee stirrer was used to provide the tactile stimulus. Two objects were tested: the 

subject’s right and left arms. For this task, the arm that was being tested was placed in front 

of the subject on a drawing board with the palm downward (i.e., the dorsal arm facing 

upward and being tested). Each recording session began with the calibration of this sensor 

to 14 pre-defined points on each of the two arms: the fingertips, the knuckles, the medial 

and lateral margins of the wrist, and the medial and lateral margins of the elbow. Calibration 
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was followed by the actual task. The task involved drawing the probe along each arm and 

along each digit, so that across all five digits, the probe covered the entire two-dimensional 

vector space of the arm from fingertips to elbows. Each trial began with a 2.5 s cue to the 

experimenter indicating the arm (left or right) to be tested, a finger (thumb, index, middle, 

ring, pinky) and a direction (proximal or distal). Following a 1 s delay, the stimulation phase 

began, lasting a total of 8 s. During the stimulation phase, the trakSTAR was drawn along 

the arm from the indicated fingertip to elbow and back to fingertip (if the cued direction was 

proximal) and from elbow to fingertip and back to elbow (if the cued direction was distal). 

The full factorial of the task thus comprised 5 digits x 2 directions x 2 objects. Because the 

probe was pre-calibrated, the neural firing rate response to touch could be precisely 

correlated to spatial location along the arm. During the task, gaze was always fixated at the 

contact point, tracking the probe. We ran four sessions of this task on non-consecutive days, 

recording from a total of 421 neurons. 

 

5.2.4.4 Reference frame task (RFT; Figure 5.4, Figure 5.4-figure supplement 1, Figure 

5.4-figure supplement 2, Figure 5.4-figure supplement 3). This task was performed to 

evaluate how changes in gaze position (Gaze, or G) or touch location (Field, or F) affect 

neural firing rate. Two objects were tested: the subject’s right arm (Native) and a sponge 

(Sponge). Because neurons could prefer one position of an object over others, we tested 

two positions for each object, acknowledging that this cannot adequately sample the infinite 

possible positions but only give a preliminary sense of how position may affect responses. 

Objects were placed on a drawing board that stood in front of the subject’s wheelchair such 

that the subject could rest her arms conveniently on the drawing board. The drawing board 

was approximately 3 feet x 2 feet and was placed such that the longer edges were parallel 

to the floor and facing the subject. Position 1 consisted of the object at approximately a 45° 

angle to the lower, longer edge of the table. Position 2 consisted of the object at 

approximately a 90° angle to the same edge. Four locations or fields were defined along 

each object, approximately 3 cm apart. On the arm, these were on the knuckles, on the 

wrist, and two along the forearm. They were similarly spaced along the sponge. Each trial 

began with presentation of the effector to be tested and its position (over 5 s). The effector 

of interest was placed in the correct position at this time. Next, over 1 s, the location for gaze 

was cued as an audible sound (1,2,3, or 4 with 1 being farthest from the body and 4 being 

nearest). Simultaneously, the location for touch was cued on the screen (LCD monitor 

placed adjacent to the subject) visible to the experimenter. There was a brief 1 s pause 

followed by the onset of the stimulus phase, lasting 2 s. During the stimulus phase, touch 

was presented to the cued location, as brush strokes, at 1 Hz, for 2 s. The stimulus phase 

was followed by an inter-trial interval of 0.5 s. A schematic representation of the task is 

shown in Figure 4A. Four trials were performed for each unique combination of gaze and 

touch location. This task was performed in 6 sessions, during which a total of 589 neurons 

were recorded.  

 

5.2.5 Quantification and statistical analysis 
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5.2.5.1 Linear analysis (Figure 5.1B, Figure 5.2B, Figure 5.1-figure supplement 1, Figure 

5.1-figure supplement 2, Figure 5.1-figure supplement 3, Figure 5.1-figure supplement 

4, Figure 5.1-figure supplement 5). For each unit, we fit a linear model describing its firing 

rate as a function of response to each test condition. Response was defined as the mean 

firing rate between 0.5 and 2.5 s after stimulus onset. These times were chosen to minimize 

the influence of experimenter delays in presenting the stimulus. The baseline was defined 

as firing rate during the 1 s prior to stimulus presentations. The linear model was written as:  

 

𝐹𝑅 = ∑ 𝛽𝑐
𝑐

X𝑐 +  𝛽0 

Where 𝐹𝑅 is the firing rate, X𝑐 is the vector indicator variable for test condition c, 𝛽𝑐 is the 

estimated scalar weighting coefficient for each condition, and 𝛽0 is a constant offset term. A 

neuron was considered responsive to a particular condition if the t-statistic for its associated 

beta coefficient was significant (p<0.05, false discovery rate (FDR) corrected for multiple 

comparisons).  

 

5.2.5.2 Discriminability index (Figure 5.1C, Figure 5.2B, Figure 5.1-figure supplement 2, 

Figure 5.1-figure supplement 4). To quantify how well neural activity can be discriminated 

from baseline (pre-stimulus) activity, we developed a cross-validated measure: 

discriminability index (DI). As with the linear analysis described above, the stimulation phase 

window was defined as 0.5 to 2.5 s after the stimulus onset, and baseline was defined as 

the 1 s prior to stimulus presentation). The firing rate of all recorded neurons was 

concatenated into a vector, denoted by A. The firing rate of each neuron during the baseline 

phase was similarly concatenated to form a vector, denoted by 𝐵. Next, a non-dimensional 

sensitivity index was computed as: 

 

𝐷𝐼 =
𝐴̅ − �̅�

√𝜎𝐴
2 + 𝜎𝐵

2

2

 

 

Where 𝐴̅ is the mean of the firing rate vector 𝐴, �̅� is the mean of the firing rate vector 𝐵, 𝜎𝐴 

is the standard deviation of the vector 𝐴, and 𝜎𝐵 is the standard deviation of the vector 𝐵. In 

Figure 5.1C, this calculation was performed in a time resolved manner, using a sliding time 

window (300 ms each, stepped at 10 ms intervals), beginning 1.5 s prior to the stimulus 

onset. Mean and bootstrapped 95% confidence intervals were computed for each time bin 

from the values computed for each session. The same baseline window was used as in the 

static version.  

 

5.2.5.3 Classification (Figure 5.1D, Figure 5.2D) and time-resolved classification (Figure 

5.1E). Classification was performed using linear discriminant analysis (LDA) with the 

following parameter choices: (1) only the mean firing rates differ for unit activity in response 

to each touch location (covariance of the normal distributions are the same for each 

condition) and (2) firing rates for each unit are independent (covariance of the normal 

distribution is diagonal). The classifier took as input a matrix of firing rates for all sorted units. 
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The analysis was not limited to significantly modulated units to avoid ‘peeking’ effects.69 

Classification performance is reported as prediction accuracy of a stratified leave-one-out 

cross-validation analysis. The analysis was performed independently for each recording 

session, and results were then averaged across days. In Figure 5.1E, this analysis was 

performed in a sliding-time window manner (300 ms each window, stepped at 10 ms 

intervals), beginning 0.5 s prior to the stimulation onset.  

 

5.2.5.4 Correlation (Figure 5.2C). To perform the population correlation analyses, we 

quantified the neural representations as a vector of firing rates, one vector for each condition 

with each vector element summarizing the response of an individual unit. As before, neural 

activity was summarized as the mean firing rate during the stimulation phase window, 

defined as 0.5–2.5 s after the onset of stimulus presentation. Firing rate vectors were 

constructed by averaging the responses across 50–50 splits of trial repetitions. The mean 

responses across different splits were correlated within and across conditions, then the 

splits were regenerated, and the correlation computed 250 times. To test whether the 

difference between any pair of conditions was statistically significant, we used a shuffle 

permutation test applied to the correlations computed over the 250 random splits.  

 

5.2.5.5 Event related averages (Figure 5.1-figure supplement 5, Figure 5.2-figure 

supplement 1). For each unit, neural activity was averaged within 750 ms intervals starting 

from 0.5 s prior stimulation onset, stepping to 2.5 s after, in 100 ms step intervals. 

Responses were grouped by condition, and a mean and standard error on the mean (SEM) 

were computed for each time window and for each condition.  

 

5.2.5.6 Selectivity curve analysis (Figure 5.1-figure supplement 7). This analysis was 

performed to evaluate whether the neural coding for touch relative to controls (overlap, 

adjacent, far stimuli). For each unit tuned to at least one condition (p<0.05, FDR corrected, 

see above), repetitions for each condition were split in half to create training and test splits 

of the data. Repetitions were then averaged to create a single value per condition for each 

of the training and the test sets. Training set data were rank ordered from the object resulting 

in the highest firing rate to the object resulting in the lowest firing rate. This computed order 

was used to sort the test data, and the firing rates for each of the four stimuli (touch, overlap, 

adjacent, far) to objects was noted. This process was repeated 500 times and the results 

averaged across folds. The result is a cross-validated measure of the response of each unit 

as a function of rank. Responses were normalized between 0 and 1, before averaging 

across the population of tuned units. Confidence intervals were estimated using a bootstrap 

procedure. Both the mean and the 95% confidence interval are shown.  

 

5.2.6.7 Spatial coverage of tactile responsiveness (Figure 5.3B, Figure 5.3C). For 

analyses, the insensate arm region was divided into a grid of size 5 x 4 (5 fingers x 4 

regions), where the 4 regions were the fingers, the palm, the distal forearm, and the proximal 

forearm. Each trial consisted of the magnetic probe touching a particular region twice (once 

moving from elbow to fingertips, and once moving the other way). Thus, across 12 trials, 

there were 24 times that the probe traversed each region. The neural response to a region 
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was summarized as the mean firing rate within a region (i.e., across all the times the firing 

rate was sampled as the tracker was drawn along the region), such that there a total of 5 

fingers x 4 regions x 24 points in all. The baseline firing rate response was defined as the 

mean firing rate for that region in the 1 s immediately prior to the stimulus onset. For each 

unit, we performed a cross-validated partial least squares regression in which we evaluated 

for a systematic variation in the unit’s response to each of the grid locations. A unit was 

considered significantly tuned if the F-statistic for this regression model was significant 

(p<0.05, FDR corrected for multiple comparisons). For comprehensive examination, this 

process was repeated with only those firing rates from when the probe was moving in one 

direction (e.g., fingertips to elbow) and not the other, and vice-versa.  

 

For graphically illustrating the spatial coverage of touch responsiveness, the firing rate at 

each grid location was averaged such that there were two points now within each of the 5 x 

4 grid, one for proximal motion of the probe (i.e., fingertips to elbow) and one for distal motion 

(i.e., elbow to fingertips). This grid of firing rates was first plotted as a heatmap in MATLAB. 

A computer graphics program (Blender, Inc.) was used to color a vector graphics model of 

a human arm with the heatmap generated in MATLAB. This could precisely be performed 

by dividing the arm into individual pixels and defining the color of the pixel based on the 

heatmap.  

 

Finally, a PCA was performed on all the firing rate responses across all significant units 

together. First, all significant units were identified, independently for the right and the left 

arms. Their firing rates across the 5 x 4 grid were concatenated to form a vector. These 

vectors were then concatenated, column wise. A PCA was applied to this matrix (one for 

each of the right and left arms). The resulting principal components were transformed back 

into a 5 x 4 grid. These described the spatial coverage within each component.  

 

5.2.6.8 Spatial localization of seen touch response (Figure 5.3D). For this analysis, we 

divided the entire length of the arm from fingertips to elbows into 10 evenly separated sites 

along each finger, for a total of 50 points. The magnetic tracking probe sampled spatial 

locations near each of these sites, for all of which there was a corresponding firing rate 

response. We first grouped all the sampled points (and corresponding firing rates), on each 

trial, by the site to which it was nearest. For each trial, the firing rate response of all the 

points attached to each site was averaged. Thus, there were 50 such firing rate measures 

for each trial. We performed an analysis in which we trained a linear model using gaussian 

process regression, based on the firing rates across the 50 sites, in a stratified leave-one-

out cross-validation analysis. All trials but one was used to train the linear model. The model 

was tested by asking it to predict the contact site using data from the held-out trial. This 

process was repeated across all trials. The prediction accuracies are reported as mean 

along with the 95% confidence interval on the mean and categorized by the digit along which 

the site was. This analysis was done using held-out data from the same laterality (i.e., the 

same arm from which data were used to train the model), as well as across-laterality (using 

data from the arm not used to train the model). The analysis was performed separately for 

each recording session, and results averaged across days. 
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5.2.6.9 Stimulus direction prediction (Figure 5.3E). In this analysis, used LDA classification 

to predict the direction of motion of the probe, i.e., proximal, or distal. The classifier was 

given as input a matrix of firing rates across the 5 x 4 x 24 grid of firing rates (see Methods: 

Spatial coverage of tactile responsiveness), along with a label indicating the direction of the 

probe during the recorded firing rate. All sorted units were used in this analysis. The 

classifier predicted, in a stratified leave-one-out cross-validation, the probe motion direction 

on held-out data. The analysis was performed separately for each recording session, and 

results averaged across days.  

 

5.2.6.10 Reference frame evaluation (Figure 5.4B, Figure 5.4-figure supplement 2). We 

used a gradient analysis to quantify how changes in the behavioral variables (field location 

(F), gaze or eye location (E), object position) influenced the neural response to touch. We 

created a four-by-four matrix (response matrix) representing the neural activity for each 

unique combination of touch location (F) and gaze position (E), in each of the two object 

positions, and for each object (Native, Sponge). Gradients were then determined using the 

gradient function in MATLAB. For each gradient, a resultant angle and length was computed 

to summarize the net direction and magnitude of change across the entire response matrix 

(idealized responses shown in Figure 5.4-figure supplement 1). However, gradients often 

show a symmetrical pattern that would result in cancellation of symmetrical angles. To avoid 

this, we double each angle in the matrix and represent each angle from 0° to ±180°. 

Therefore, the summed resultant angle is represented by 0° for gradients oriented left and 

right, ±180° for gradients oriented up and down, and −90° for gradients oriented along the 

diagonal. The summed resultant angle and length however cannot be mapped directly onto 

the response matrix; thus, we have notated the appropriate variable and combinations of 

variables to help with interpretation. For example, in Figure 5.4-figure supplement 1, gaze 

only (E) modulation would be found at ±180°, Field only (F) modulation is seen at 0°, E+F 

at 90°, and E-F at −90°. Therefore, we can use the angle of the resultant angle as a proxy 

for overall orientation bias for a variable or variable pair. This analysis was performed for 

each object, in both positions of the object. The position in which the object displayed a 

greater gradient was denoted the preferred position for the object. Figure 5.4B and Figure 

5.4-figure supplement 2 show a distribution of orientations for the Native and the Sponge 

objects, respectively, in their preferred positions.  

 

5.2.6.11 Correlation in neural response to seen touch across positions (Figure 5.4-figure 

supplement 3). We wished to examine whether there was symmetry in the response 

pattern for each unit to seen touch to the various combinations of gaze and touch location, 

across preferred and non-preferred response positions. For each unit, on each object, we 

concatenated the responses to all unique combinations of gaze and touch location (in each 

position) into a vector. This vector was correlated across preferred and non-preferred 

positions. The distribution of correlation coefficients across the neural population for the 

Native arm, and the sponge, are shown in Figure v4-figure supplement 3. To test whether 

the mean correlation coefficient of this histogram distribution was statistically significant, we 

used a shuffle permutation test applied to the correlations computed over 250 random 50-
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50 splits of trials. The distribution of shuffled differences served as the null distribution, 

against which we compared the true mean correlation coefficient to determine significance.  

 

5.3 RESULTS 

 

We recorded populations of single neurons from NS, a tetraplegic human participant (spinal 

cord injury at cervical levels 3-4; C3/4) in a BMI clinical trial. NS has no sensation or motor 

function below the shoulder-level. Recordings were made from a microelectrode array 

implanted in the left hemisphere at the junction of the post-central and intraparietal sulcus, 

during four tasks that probed neural responsiveness to seen touch to insensate regions of 

her arms, to other human arms, or to inanimate objects. Waveform sorting resulted in both 

well-isolated singe-units and multi-unit groupings. The main figures aggregate across sorted 

channels, but key analyses are performed separately for well-isolated and multi-unit activity 

(shown in supplemental figures) to ensure that pooling units did not bias our results.  

 

5.3.1 Human PPC encodes seen touch (visual estimation of touch) to objects 

 

We first examined the hypothesis that PPC neurons encode seen touch to more than just 

the human form. In a basic touch task (BTT), the subject viewed stimuli (brush strokes at 

1Hz, for 2s) to one of four objects (Figure 5.1A). Stimuli included seen touch (Touch) and 

three controls: touch-like motion overlapping but not touching the object (Overlap), motion 

adjacent (Adjacent) and motion far (Far) from the object. Four objects were tested including 

the subject’s insensate right hand (Native), a matched region on an experimenter’s right 

hand (Exp-Right), a banana, and a sponge. There were thus two animate objects (arms) 

and two inanimate objects (banana, sponge). The touched site on each object subtended a 

consistent angle on the subject’s eyes. Gaze (monitored by pupil tracking) was always 

directed at the stimulus location.  
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5.3.1.1 PPC neurons encode seen touch to all tested objects. For each neuron, we fit a 

linear model that explained firing rate as a function of responses to each stimulus location. 

Neural response to a stimulus was considered significant if the t-statistic for the associated 

beta coefficient was significant (p<0.05, false discovery rate [FDR] corrected for multiple 
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comparisons). Of 382 total neurons recorded in this task, 227 responded to at least one 

stimulus (ANOVA). Across objects, the PPC population preferentially encoded seen touch 

over other stimuli (χ2(1)=3175.44, p<0.05; Figure 5.1B; Figure 5.1-figure supplement 1), 

although all conditions were significantly represented. The responsiveness to touch did not 

differ across objects. Moreover, the strength of the neural response, measured by the 

discriminability of neural response from baseline activity, did not differ across objects 

(Figure 5.1C). We separately found, in a multiple object task (see Methods: MOT) that the 

PPC response to seen touch is expansive (Figure 5.1-figure supplement 2; Figure 5.1-

figure supplement 3) and includes many categories of objects such as tools (scissors, 

hammer), household items (shoes, toys), fruit (banana) and of course, the sponge. These 

results are consistent with the PPC response to seen touch being broad, if not universal.  

 

5.3.1.2 Seen touch is preferred over controls even when it is not the target of gaze. In a 

control version of the task (Figure 5.1-figure supplement 4), gaze was directed at the 

adjacent site during all stimuli. As in the version when gaze was directed at the touch site, 

the PPC responsiveness to seen touch was greater than to the controls, indicating that the 

preferential encoding of touch by this population is not simply due to touch being at the focus 

of gaze. In further support that gaze was not the main driver of the results, the response 

profile to the controls did not differ either, between the two versions of the task.  

 

5.3.1.3 Is the PPC response a measure of stimulus distance from the body? If this were 

true, we would expect that the population responsiveness to the overlap condition should 

be greater than to adjacent, which in turn should be greater than to the far condition. This 

is, however, not the case. Although a significantly larger fraction of the PPC population 

responds to overlap than to the other controls in some conditions (e.g., when gaze is at the 

touch site), this is not consistent across gaze positions. Moreover, there is no significant 

difference between responsiveness to adjacent and far stimuli. Together, these findings 

suggest that this PPC population prefers seen touch and may also encode visual stimuli 

(Overlap) in the immediate vicinity of the body (i.e., peri-personal space) but does not 

encode stimuli as a function of distance from the body.  

 

Individual neurons were heterogeneous, representing one or more stimuli, to one or more 

objects (Figure 5.1-figure supplement 5). Representative examples of neurons 

highlighting this variability are shown in Figure 5.1-figure supplement 6. To understand 

single unit responsiveness, we performed an analysis in which for each unit, we first rank 

ordered the objects based on the maximal mean response they evoked (across the four 

stimuli; Figure 5.1-figure supplement 7). Across all such ordered unit responses, we found 

that within each object rank, touch evoked a greater mean response than control stimuli, 

paralleling the population activity (as in Figure 5.1B). This is confirmed also by a principal 

component analysis (PCA), in which most of the variance in neural activity across rank 

ordered units is explained by touch (Figure 5.1-figure supplement 7).  

 

5.3.1.4 PPC discriminates the stimulus-object response but not object identity alone. As 

expected, a population of heterogeneous neurons enabled accurate cross-validated 
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classification of the PPC responses to stimuli (Figure 5.1D). Consistent with touch 

representations being strongest in this population, the classification accuracy for touch was 

higher than for the controls. The greatest confusion within this classification was for the two 

arms (the subject’s and the experimenter’s). This indicates that the PPC response is 

sensitive to object identity, and that similar object features may evoke more similar 

responses to seen touch, a point which we expand upon next. Of note, in a sliding time 

version of this analysis, classification accuracy prior to stimulus onset is at chance level 

(Figure 5.1E), indicating that the discriminability is for the stimulus-object response and not 

for object identity alone.  

 

5.3.2 PPC responses to seen touch are sensitive to object attributes 

 

To understand the sensitivity of touch responses to object features further, we performed a 

task (MOT; Figure 5.2A) in which the subject viewed seen touch to one of three locations 

on one of four objects. Three objects were arms: the subject’s insensate right arm (Native), 

matched regions of an experimenter’s right arm (Exp-Right), and the same experimenter’s 

left arm (Exp-Left). The fourth object, a control, was the sponge. Three fields (touch 

locations) were defined on each object. On the arms, these were the hand (field 1), the distal 

forearm (field 2), and the proximal forearm (field 3).  

 

Of 672 neurons recorded in this task, 478 discriminated touch locations on the four objects 

(Figure 5.2B). All touch locations are robustly represented, and comparably discriminable 

from baseline (Figure 5.2B). Some example neurons are shown in Figure 5.2-figure 

supplement 1, illustrating response to specific conditions. At the level of the neural 

population, a cross-validated correlation analysis (Figure 5.2C) shows that seen touch 

responses to the three arms are more similar than to each other than to the sponge. This is 

true in every field, and especially prominent for field 1 and field 3. For example, the mean 

correlation coefficient for the representation in field 1 of the native arm to the two 

experimenter arms (exp-right and exp-left) is 0.84 and 0.77, significantly greater than the 

between the native arm and the sponge (0.6; p<0.05 for both comparisons).  
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The object sensitivity manifested also in a cross-validated classification analysis (Figure 

5.2D). All conditions could be accurately discriminated. However, as in the correlation 

analysis, representations of the three arms are similar, resulting in confusion. For example, 

in field 1, the native arm tends to be confused for the experimenter’s right arm, less so for 

the experimenter’s left arms, and almost negligibly to the sponge. This supports that similar 

object features evoke more similar PPC responses to seen touch. Of note, this analysis 

shows that the experimenter’s right arm tends to be confused more often for the 
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experimenter’s left arm, than for the subject’s right arm, suggesting that the feature space 

that drives touch responses may be more complex (e.g., involving skin color, texture, hair, 

etc.) rather than just shape alone.  

 

5.3.3 PPC response to seen touch is spatially sensitive but not spatially restricted 

 

The preceding task showed that seen touch responses depend upon the features of the 

touched object. But are all regions of objects represented? How do individual units enable 

the population response? We performed a spatial coverage task (SCT; Figure 5.3A) in 

which we recorded neural activity while the subject viewed touch along the full length 

(insensate) of her right and left forearm. Touch was provided by a magnetic tracking probe 

that was pre-calibrated to defined points along the two arms (such as fingertips and elbows). 

It was then traced, along each finger, either proximally (from fingertip to elbow) or distally 

(from elbow to fingertip), such that the entire arm was covered, and the neural response to 

touch could be precisely correlated to the spatial location of the probe. Manipulating the 

starting direction of the probe additionally allowed us to evaluate whether there was 

directionality to the touch responses (i.e., whether the probe moving distal or proximal 

modulated the response).  

 

For analyses, we divided the forearm into four regions: the fingers, the palm, the distal and 

the proximal forearm. In all, 189 or 399 units recorded in this task were significantly 

modulated (Figure 5.3-figure supplement 1) by seen touch to at least one region (and in 

at least one direction of the probe), on the right arm (146) or the left arm (143). The individual 

unit responses on both left and right arms were strongly correlated (r=0.83, p<0.05). 

Similarly, for each unit, the response during proximal probe motion and distal motion were 

strongly correlated, both for the right arm (r=0.77, p<0.05) and for the left arm (r=0.72, 

p<0.05). These findings together indicate that unit responses to touch are consistent 

however touch is applied (i.e., direction). Moreover, consistent with our previous studies, 

information generalizes across similar contexts (here, from left arm to right arm).  

 

Individual units exhibited response fields to seen touch that spanned multiple regions. The 

response fields for some example units are shown in Figure 5.3B, during both proximal and 

distal probe motion, and on both left and right arms. A PCA performed on the pooled 

response across all units (Figure 5.3C) showed that the population collectively provides full 

spatial coverage for seen touch to both left and right arms. Seen touch to the hands (on 

both the left and right sides) accounted for most of the variance in population neural activity. 

The projection of the first three components of the PCA during the distal and proximal probe 

motions is shown in Figure 5.3C.  
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We next asked: in a population that provides full spatial coverage of seen touch to objects, 

yet is sensitive to object features, can the precise spatial location of touch be decoded from 

the population activity? To answer this, we first divided the arm length into a grid of size 5 

x20 (5 fingers, 20 evenly sized divisions from fingertip to elbow). We found that a trained 

model could accurately predict the precise location of held out data (Figure 5.3D) on both 

the right arm (59.95%, p<0.05) and the left arm (55.43%, p<0.05). Moreover, information 

generalizes across left and right arms. A model trained on data from the right arm could 

predict test data from the left arm (41.02%, p<0.05), and vice versa (42.33, p<0.05). We 

found similarly that not only touch location, but even the direction of probe motion could be 

accurately decoded from population data (Figure 5.3E), within laterality (right: 87.44%; left: 

86.57%), as well as when trained on data from right and tested on left (70.73%) and vice 

versa (72.79%).  

 

5.3.4 PPC responses to seen touch are encoded in a variety of reference frames 

 

Our findings thus far indicate that seen touch responses in PPC are sensitive to object 

features, and preferentially encoded over matched controls (e.g., overlapping but non-

contacting motion). But does changing eye position modulate the response to touch? 

Moreover, if the object changes position in space, does the PPC response to touch remain 

constant? In other words, does information about touch to an object in one position 

generalize to that in another position?  

 

We performed a reference frame task (RFT; Figure 5.4A) to evaluate whether responses 

to seen touch are object centric, or relative to gaze (i.e., eye position). We systematically 
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manipulated touch and gaze position across 1) 2 objects (subject’s right arm and sponge), 

in 2) 2 positions each, with 3) 4 locations on each object across which touch and gaze were 

independently varied. This task allowed us to identify whether units behaved according to 

one of three types (Figure 5.4-figure supplement 1): 1) eye position units that responded 

maximally to a particular eye position regardless of where touch is applied, 2) field units that 

responded maximally to seen touch to a particular field on an object regardless of eye 

position, or 3) eye-field units responded maximally when gaze was targeted at the touched 

field.  

 

 
 

For each unit, we identified its preferred response position (for each object) as that evoking 

the maximal mean response across all 16 conditions (4 touch locations and 4 gaze 

positions). On both objects (Figure 5.4B and Figure 5.4-figure supplement 2), there was 

a heterogeneity in the behavior of individual units (in their preferred position for that object). 

Most units were eye-field units that encoded seen touch relative to eye position, although a 

number were field units whose maximal response was tied to features of the object (a 

particular field) regardless of eye position. Across units, the response patterns generalized 

across preferred and non-preferred positions (Figure 5.4-figure supplement 3). 

 

5.4 DISCUSSION 

 

Touch is a ubiquitous perceptual process. When we are touched on ourselves, our brains 

typically receive both visual and tactile information regarding the stimulus.30-32 Just as often, 

however, we perceive touch through visual information alone, such as when we see touch 

to objects around us. How does our brain see touch we can’t feel?  

 

In recent work, we identified a population of human PPC neurons that processes many 

forms of touch: felt touch to oneself, imagined touch to oneself, and observed touch to 

others.5 Although individual neurons are complex, the population creates rich associations 
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across neurons, representing basic-level, elemental information that relates to touch types, 

or body parts.2 This information is flexible, generalizing across diverse contexts, including 

during cognitive touch processing (in the absence of tactile input).  

 

Our current study extends these findings, advancing our understanding of touch perception. 

We show, through human single-unit recordings, that 1) PPC neurons encode seen touch 

even to oneself, independent of felt touch, 2) these neurons more broadly encode seen 

touch to objects around us, not just animate but also inanimate, and 3) human PPC also 

encodes touch related variables such as the spatial point of contact, and direction of motion 

of stimulus. These results represent novel findings, previously unstudied in humans or in 

animal models.  

 

5.4.1 PPC provides a neural basis for seen touch to oneself 

 

In NHPs, PPC neurons are often multimodal: they respond to visual, tactile, and other 

sensory stimuli.30-33,145 During touch to oneself, multiple studies suggest that PPC neurons 

estimate the stimulus in all available modalities (e.g., visual, tactile) and combine estimates 

into a unified representation.34,54,141-143,146 In support, for example, the perceptual accuracy 

of touch is enhanced when visual information is available, and concordant, with tactile 

information. Conversely, it can confound touch perception when it is discordant with tactile 

information.147  

 

Our study is the first neuron-level characterization of the human PPC response to seen 

touch, completely disentangled from simultaneous tactile information. We make use of a 

unique opportunity to record from a tetraplegic human subject with intact cortex while 

applying touch to insensate arm regions. We find that PPC neurons encode spatially 

structured receptive fields to seen touch, bilaterally, and provide full spatial coverage. 

Individual units are heterogeneous, with response fields organized by body part (e.g., hand, 

or forearm). At both the level of individual units and the neural population, however, 

information generalizes across body sides. This mirror symmetry is consistent with our 

previous findings for felt touch representations, and imagined touch, within this same 

neural population.5 It reflects a broad theme in our current study: the PPC population 

supports similar behavioral contexts in similar ways. In other words, touch to objects with 

similar attributes evokes similar PPC neural activity, whether the objects are one’s own left 

and right arms, or others’ arms.  

 

5.4.2 Seen touch is encoded broadly, even to objects other than oneself 

 

Foundational studies in NHPs have documented that some PPC neurons encode not only 

stimuli to the monkey’s body but also to others’, and to realistic substitutes.32 For example, 

some neurons have been identified that respond to position of a monkey’s arm covered from 

view, as well as to the seen position of another, and to a realistic look-alike.32 In our own 

previous work, we found that the same neural population we recorded from here, responded 

to both felt touch to oneself, and seen touch to other individuals.5 Our current results extend 
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this work. We find here that the response to seen touch within this PPC population is not 

limited to oneself, or to other humans, but also includes objects with no resemblance to the 

human form (like a shoe). These findings are consistent with recent human neuroimaging 

studies that indicate similarly, that seen touch to animate and inanimate objects share 

cortical activation with felt touch to oneself.57 We find that on all objects, touch is 

preferentially encoded over other visual stimuli (such as motion near the object). Yet, the 

touch responses are sensitive to object identity. As we mentioned above, similar objects 

(here, the arms), engage the neural population more similarly.  

 

PPC neurons may also be sensitive to where touch occurs relative to one’s body. In Figure 

5.2B, for example, across objects, PPC touch responsiveness (and discriminability) to field 

3 (nearest to the subject’s body) was higher than to fields 1 (farthest) and 2, although all 

fields were represented. A similar result has been described within PPC in the motor 

neurophysiology literature. When we manipulate objects, for example, actions that move 

objects away from ourselves (e.g., push) evoke activity different from those actions that 

bring objects closer toward us (e.g., grasping).148 One hypothesis is that PPC represents 

processes (including seen touch) in our immediate vicinity (our peri-personal space) 

differently than those that occur further away. Consistent with such a view, although touch 

is preferentially encoded over controls in our task, the overlap condition tended to be 

represented more strongly than the near or far conditions.  

 

5.4.3 Could neural activity in PPC during seen touch arise from alternate cognitive 

processes?  

 

Processing seen touch could engage resources involved in action observation (i.e., the 

action that provides the stimulus), or allocation of attention, or other processes. In previous 

work from our lab, for example, we found that this PPC population encoded manipulative 

actions (e.g., drag, drop, push, grasp) that the subject observed being performed by 

others.2 Indeed, PPC has been described to belong to an action observation network (AON), 

a system of distributed brain regions that contributes to our perception of various classes of 

actions.136 Yet, in the current study, it appears unlikely that the coding for seen touch simply 

reflects the general phenomena of action observation for at least three reasons. First, we 

found that visually matched controls (touch like motion without contact at various distances) 

did not evoke the same response as to touch. Second, we found that this same substrate 

encodes many other forms of touch including imagined touch to oneself and felt touch. 

Moreover, felt touch is encoded at short latency, suggesting that this PPC region is involved 

in the rapid somatosensory processing of touch.5 Third, the structure of seen touch 

responses to the subject’s insensate arm regions shared a similar body-part organization 

and left-right mirror symmetry to felt touch representations in our previous work.4,5 The 

recruitment of a substrate involved in felt touch representations, with shared structure 

across seen and felt touch to oneself, and its engagement in seen touch more broadly, 

supports a view that this substrate represents touch and that seen touch responses do not 

simply reflect neural activity related to action observation.  
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Gaze can direct attention to a particular target, and attention has been shown to enhance 

stimulus response.124-126,149 Thus, the preferential encoding of touch over controls when 

touch was the target of gaze could have been a gain modulation due to attention. However, 

even when gaze was fixated at an alternate site (the adjacent site), we found the same 

preferential response for touch over controls. We note, however, that from the reference 

frame task, a substantial fraction of neurons in this PPC population encoded seen touch 

relative to gaze. This suggests that the population represents touch preferentially over other 

stimuli even when it is not the direct target of gaze, but the strength of response to touch is 

modulated by gaze, possibly mediated by directing attention to the touch location. 

 

5.4.4 Unpacking the functional organization of a shared substrate across diverse 

forms of sensory, motor, and cognitive behaviors 

 

Aggregating across our current and previous work, this PPC substrate processes 

attempted and observed actions, semantic processing of action words, motor, and tactile 

imagery, felt touch to oneself, seen touch, and other variables.2-5 Classically, shared 

representations across behaviors have been interpreted through mirror neurons.13,24,27,150 

These are neurons that were first discovered in high-level cortex in monkeys and activate 

congruently (i.e., identically) both when a monkey performs a specific movement (e.g., 

grasping an apple) and when it observes someone else performing the corresponding 

movement.35,36,151-153 Their specificity and congruency inspired a mirror hypothesis: we 

understand others’ intentions by mapping the visual representations of their actions onto 

neurons that process our own movements.154 Similar neurons have been postulated to 

enable understanding in other domains as well, such as for emotions or sensations, 

collectively forming a system that supports how we understand the world.12,28 Yet, the mirror 

neuron hypothesis is restrictive. If understanding actions, emotions, or sensations comes 

from activating neurons that process our own, mirror neurons alone cannot explain how we 

understand actions we cannot perform (e.g., flying), or sensations or emotions we may 

never have experienced before.29 It is also difficult to understand how a mirror neuron that 

processes felt touch to ourselves may activate to touch we see to a shoe, or a toy.  

 

Mounting recent literature points to a neural population doctrine, in which the fundamental 

units of computation in our brains are not individual neurons, but rather populations of 

neurons.1 Consistent with this, in our previous and current work, we have found that 

individual neurons exhibit variability and heterogeneity in the variables they respond to. At 

a population level, however, rich associations develop across neurons, enabling meaningful 

relationships to be encoded. We termed this functional organization partially mixed 

selectivity.4 This organizational structure enables many related variables (or behaviors) to 

be simultaneously represented by a shared substrate.  

 

Within the sensory domain, we previously found that this substrate encodes many forms of 

touch. Subspaces of population activity codify meaningful, basic-level information such as 

the type of touch, where on the body is touched. These can combine in diverse ways to 

inform touch behaviors, and generalize across individuals, such that this substrate can 
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support not only touch when felt but also when imagined or observed occurring to others. 

At the neuron-level, this is made possible by the partially mixed functional organization. At 

the population level, this organization is consistent also with the cognitive behavioral view 

that at the heart of human cognition are flexible internal models of the world. These models 

are automatically engaged during all our behavior, including cognition, and are functionally 

a blueprint of the world around us that can generalize across diverse conditions to inform 

our repertoire.6,14 Our current results accord with such a view that PPC encodes a flexible 

internal model (here, for touch) that supports diverse contexts of touch, including seen touch 

to objects in the world, not limited to the human form.6,14  

 

5.5 CONCLUSION 

 

We provide the first human neuron-level evidence that PPC encodes seen touch to oneself, 

to other individuals and to inanimate objects. The population encodes seen touch in a 

manner sensitive to object identity, yet the touch response is broad, if not universal. Our 

work adds to previous findings that this population of neurons also supports felt touch and 

imagined touch to oneself. Collectively this work supports a view that populations of neurons 

in shared high-level brain regions like PPC encode information in a versatile manner that 

can support diverse forms of behavior including cognition, as we show here through touch 

and tactile cognition. 
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C h a p t e r  6  

CONCLUSION 

This dissertation is a novel, neuron-level demonstration that shared populations of neurons 

in human PPC support many aspects of sensory cognition. Previous studies from the 

Andersen lab showed that this substrate encoded multiple variables related to motor 

cognition including executed movements, attempted movements, observed actions and 

the semantic processing of action verbs.2-5 Here, we build upon this work, extending it into 

the sensory domain. We show that the same substrate also encodes actual touch and 

imagined touch to oneself, observed touch to others, as well as observed touch to objects 

in our environment. As in the motor domain, individual neurons exhibit highly variable 

responses.2 At the population-level, however, we find that the diverse touch conditions are 

explained by a small number of subspaces (meaningful groupings of neurons) that encode 

basic-level, elemental information such as touch location, and touch type. This suggests a 

compositional basis in PPC, such that various touch conditions are encoded through diverse 

combinations of common primitive elements. Moreover, these subspaces are generalizable, 

able to explain novel (held out) data. These principles of compositionality and 

generalizability suggest a basis by which PPC may support cognitive behaviors, even in 

situations that extend beyond our experiences.  

Understanding the neuron-level basis for behavior has, to date, been challenged by most 

conventional research modalities to date. On the one hand, human neuroimaging studies 

suggest that multiple behaviors often activate shared cortex, including within PPC, but 

cannot clarify the neuron-level mechanisms that underlie such shared cortical activation.36-

39,115 On the other hand, neurophysiological studies in animal models offer high (neuron-

level) resolution but are limited in the scope of behavior that can be examined, especially 

cognitive behavior.30-33 Our current work takes advantage of recent technological advances 

that allow examining populations of human neurons at the high resolution of single units 

over multiple sessions, an ability that has not always been available.1 We showed that 

shared populations of neurons are similarly engaged during many forms of touch, whether 

actual, imagined or seen. The principles of compositionality and generalizability we 

demonstrate provide a way by which populations of neurons in PPC may flexibly be 

repurposed for diverse cognitive forms. We speculate that our findings might represent the 

neural implementation of a system of cognitive internal models.6,14 Consistent with such a 

view, this substrate supports not only sensory cognition (as we showed here), but also motor 

cognition (as in previous studies from the Andersen lab).2-5 Moreover, these diverse forms 

of sensory and motor cognition share similar neural information organized in similar 

manners. In further support that our findings might reflect internal models in PPC, we found 

that touch is encoded not only to oneself or to other humans, but also to inanimate objects. 

In other words, neural information regarding variables encoded can be repurposed to a 

variety of behavioral contexts.  
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6.1 Future directions 

Our work opens several exciting avenues for future experimentation and exploration. These 

range from further understanding the neuron-level underpinnings of cognition, to clinical 

applications and interdisciplinary efforts that can help countless individuals afflicted with 

various conditions. A few possible extensions of this work are outlined below. 

6.1.1. Cognitive neurophysiology. In this work, we studied the functional organization of 

neural information within a population of neurons in human PPC that supports diverse 

behaviors. We found that population representations appear consistent with a compositional 

and generalizable framework of basic-level, primitive elemental information. A natural 

question that arises is: is such a functional organization widespread across cortex? In other 

words, do other high-level brain regions (such as prefrontal cortex) follow a similar 

informational framework? Moreover, we speculated that our findings might be consistent 

with a framework of internal models implemented in PPC. Do other high-level brain regions 

also implement internal models? Or do they access those internal models in PPC? In either 

case, how do different brain regions coordinate and coherently function to enable our 

behavioral repertoire? Many brain regions (including high-level regions) appear specialized 

for certain behaviors over others. For example, PPC appears to support many sensory-

motor behaviors, but face recognition or place recognition appears to be housed in the 

temporal lobe. If all high-level brain regions encode many variables, and can support diverse 

behaviors, what provides them their functional specialization? Another line of questions 

concerns how compositionality and generalizability might lie at the basis of dreams, or 

memory. This work has immediate clinical relevance because disorders of such processes 

could lead to pathologies such, potentially such as post-traumatic stress disorder through 

impaired (or exaggerated) generalization of memories (especially fear memories), sleep 

disorders, or many other neuropsychiatric conditions. In short, understanding the answers 

to these questions at the neuron-level will lead to a previously unavailable, comprehensive 

understanding of the brain basis for human behavior.  

6.1.2 Translational science. The work presented here has tremendous clinical 

significance. One example of a potential avenue is in the BMI arena. BMIs are devices that 

record neural activity from the brain, decode the activity and utilize that activity in a prosthetic 

device. Examples of BMIs might be driving a cursor on a screen through brain activity or 

moving a robotic arm through brain activity.3,49,50 Such prosthetics could be life changing for 

patients with paralysis, for example. Within this space, our work in which we understand 

better how brain regions encode different behaviors could inform better decoder design. 

Knowing that neural information is organized in a compositional manner, for example, might 

enable decoders that can make use of this structure not only in making sense of motor 

signals (e.g., during movement by a robotic arm), but also in sensory processing (e.g., when 

the robotic arm hits an obstacle). Moreover, understanding how information is represented 

within a substrate can enable more efficiently transferring skills learned during one BMI 

application (such as a robotic limb) to another (such as the cursor-on-screen). Such BMI 

implementations of our findings could tremendously increase the efficiency and practicality 

of BMI design. Extending this line of reasoning further, BMIs not only provide a means to 
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augment or to restore function to patients, but also provide an invaluable way to study how 

populations of neurons in human brains learn, and how this learning is represented. Another 

potential future direction is to implement our findings in silico. A neural network model that 

mimics human-like cognition can provide a powerful paradigm in which to study how 

cognition unfolds. It provides an invaluable mechanism to study how pathologies (like 

strokes) might cause perturbations in the network, leading to impairments of cognition. To 

close the loop, it can finally provide a means to study how rehabilitation (such as learning) 

can affect the network, hopefully restoring lost abilities.  

Taken together the work presented here not only enriches our understanding of human 

brain function, offering insight into the ways in which our remarkable repertoire is enabled, 

but also has broad applications for the successful implementation of future brain machine 

interfaces, decoding algorithms, and neuro-prosthetics.  
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